
SAHARA: Memory Footprint Reduction of Cloud Databases
with Automated Table Partitioning

Michael Brendle
michael.brendle@uni.kn
University of Konstanz

Nick Weber∗
n.weber@celonis.com

Celonis SE

Mahammad Valiyev∗
mahammad.valiyev@tum.de

Technical University of Munich

Norman May
norman.may@sap.com

SAP SE

Robert Schulze
robert.schulze@mailbox.org

SAP SE

Alexander Böhm
alexander.boehm@sap.com

SAP SE

Guido Moerkotte
moerkotte@uni-mannheim.de

University of Mannheim

Michael Grossniklaus
michael.grossniklaus@uni.kn

University of Konstanz

ABSTRACT
Enterprises increasingly move their databases into the cloud. As
a result, database-as-a-service providers are challenged to meet
the performance guarantees assured in service-level agreements
(SLAs) while keeping hardware costs as low as possible. Being
cost-effective is particularly crucial for cloud databases where the
provisioned amount of DRAM dominates the hardware costs. A
way to decrease the memory footprint is to leverage access skew
in the workload by moving rarely accessed cold data to cheaper
storage layers and retaining only frequently accessed hot data
in main memory. In this paper, we present SAHARA, an advisor
that proposes a table partitioning for column stores with minimal
memory footprint while still adhering to all performance SLAs.
SAHARA collects lightweight workload statistics, classifies data
as hot and cold, and calculates optimal or near-optimal range
partitioning layouts with low optimization time using a novel
cost model. We integrated SAHARA into a commercial cloud
database and show in our experiments for real-world and syn-
thetic benchmarks a memory footprint reduction of 2.5× while
still fulfilling all performance SLAs provided by the customer or
advertised by the DBaaS provider.

1 INTRODUCTION
As enterprises are increasingly moving their databases into the
cloud, database-as-a-service (DBaaS) providers (e.g., Amazon
Redshift [14], Snowflake [18], or SAP HANA Cloud [61]) need
to reduce hardware costs instead of only focusing on the clas-
sical database objective of maximizing performance to remain
competitive in the marketplace. DBaaS providers can tailor their
hardware setup to customer needs based on different compute,
memory, and storage nodes. Such flexible provisioning models
enable DBaaS providers to adapt the (virtual) hardware to the ex-
pected workload by configuring database instances appropriately.
Additionally, DBaaS providers typically host database instances
of thousands of customers. Consequently, multiple database in-
stances, e.g., different tenants, can be placed on the same (virtual)
node to increase the tenant density and to utilize available hard-
ware resources more efficiently.

∗Work done while at SAP SE.

© 2022 Copyright held by the owner/author(s). Published in Proceedings of the
25th International Conference on Extending Database Technology (EDBT), 29th
March-1st April, 2022, ISBN 978-3-89318-086-8 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Performance Memory Footprint
Objective Function

Ro
w

Co
lu
m
n

St
or
ag

e
M
od

el

SAHARA

Strife [58] Chiller [73]
Schism [17] Hilprecht [31]
Horticulture [56] Clay [63]
Mesa [50] IBM DB2 [59, 74]

MS SQL Server [2, 3]

Casper [7]
IBM DB2 [34]

MS SQL Server [47]

Figure 1: Comparison between SAHARA and state-of-the-
art table partitioning advisors on their objective function
and storage model.

Previouswork [44] identified the provisioned amount of DRAM
as the primary driver of hardware costs. For example, in 2021,
a memory-optimized Google Cloud [26] instance costs monthly
only $18 per vCPU and $80 per TB of provisioned disk space,
while main memory is prized at $2606 per TB of DRAM. Since
DBaaS providers are able to scale memory nodes flexibly, re-
ductions in memory footprint (e.g., smaller buffer pool sizes for
database instances) quickly translate to substantial hardware
cost savings. However, service-level agreements (SLAs) guaran-
tee customers a certain level of performance. As a result, DBaaS
providers are challenged to meet the performance SLAs provided
by the customer or advertised by the DBaaS provider while keep-
ing the memory footprint of their offerings as low as possible.

In this paper, we present SAHARA1, which proposes a table
partitioning for each relation such that the buffer pool size is
minimized while all performance SLAs are fulfilled. To illustrate
the main idea of SAHARA, let us consider the query “SELECT
DISCOUNT FROM LINEITEM WHERE SHIPDATE >= 1994-12-24
and SHIPDATE < 1995-01-01” that selects the discount of all
shipped line items between Christmas and New Year’s Eve 1994.
Assume that LINEITEM is stored on pages in a disk-based column
store with a buffer pool, that it is not clustered by SHIPDATE, and
that it does not have any index on SHIPDATE. Under this assump-
tion, the whole SHIPDATE column must be scanned to evaluate
the selection predicate. Further, to project on DISCOUNT, almost
all pages of the DISCOUNT column are accessed because the qual-
ifying tuples are likely distributed over all DISCOUNT pages. In
1A storage advisor based on heavy and rare accesses.

Series ISSN: 2367-2005 13 10.5441/002/edbt.2022.02

https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2022.02

Pa
rti
tio

ns

𝑃1

𝐶1,1
CO

𝐶2,1
CK

𝐶3,1
OD

𝐶4,1
OK

𝐶5,1
OP

𝐶6,1
SP

Si
ng

le
4
KB

Pa
ge
s

(a) Non-partitioned ORDERS relation

𝑃1
𝑃2
𝑃3
𝑃4

𝑃5

𝑃6
𝑃7

1992-01-01
1993-01-01
1993-05-30
1994-05-27
1995-01-02

1997-05-01
1997-09-02
S3

𝐶1,∗
CO

𝐶2,∗
CK

𝐶3,∗
OD Partition-driving attribute OD

𝐶4,∗
OK

𝐶5,∗
OP

𝐶6,∗
SP

0
1

16

32

48

64

Page
 Tem

perat
ure

Ac
ce
ss

Fr
eq
ue
nc
y

pe
r4

KB
Pa
ge

No access
Frozen
Cold

Break-even

Warm

Hot

(b) Range-partitioned ORDERS relation on attribute O_ORDERDATE as chosen by SAHARA

Figure 2: Example of page accesses to six attributes of ORDERS for a non-partitioned and a range-partitioned layout. After
executing 200 queries of the JCC-H benchmark [10], the pages are classified as hot or cold according to the five-minute
rule [27]. The range-partitioned layout proposed by SAHARA consists of fewer hot pages than the non-partitioned layout.
The buffer pool size can then be reduced with SAHARA’s layout by keeping only hot-classified pages in DRAM.

contrast, creating a range partitioning on SHIPDATE with par-
tition boundary values 1994-12-24 and 1995-01-01 reduces the
number of accessed pages and, therefore, the required buffer
pool size. There are two reasons for this: First, due to partition
pruning, only the SHIPDATE column of the single range partition
[1994-12-24, 1995-01-01) must be scanned to evaluate the selec-
tion predicate. The SHIPDATE column of all other range partitions
is not accessed. Second, because of the correlated storage of the
DISCOUNT column with the SHIPDATE column that follows from
the range partitioning, only DISCOUNT pages that refer to the
range partition [1994-12-24, 1995-01-01) are accessed to project
on DISCOUNT. All other range partitions are not accessed.

To show that SAHARA’s idea also works for more complex
workloads, we consider Fig. 2, illustrating two partitioning lay-
outs for six attributes of ORDERS after executing 200 queries of
the JCC-H benchmark [10]. The non-partitioned layout is shown
on the left, while the right shows the range-partitioned layout
proposed by SAHARA. Each column partition consists of multi-
ple 4 KB pages (i.e., each horizontal line represents a single 4 KB
page). To quantify the impact of SAHARA’s layout on the buffer
pool size, we count the number of physical page accesses of all
operators by the workload. To draw a reasonable border between
frequently (hot) and rarely (cold) accessed pages, we consider the
five-minute-rule2 to classify pages as hot or cold [27]. Hot pages
are shown in red, whereas cold pages are white (no access) or
blue (at least one access). We observe that the range-partitioned
layout proposed by SAHARA consists of fewer hot pages than the
non-partitioned layout. In particular, only a subset of O_CUSTKEY
(CK), O_ORDERDATE (OD), and O_ORDERKEY (OK) is frequently ac-
cessed in SAHARA’s layout compared to the non-partitioned
layout. Consequently, the buffer pool size can be reduced with
SAHARA’s layout by keeping only hot-classified pages in DRAM.

Fig. 1 shows that existing table partitioning advisors focuses
on the classical database objective of maximizing performance. In
particular, existing table partitioning advisors [17, 31, 50, 56, 58,
63] do the exact opposite of what SAHARA intends to achieve:
To balance the load on partitions, they distribute accesses evenly
across all partitions and, therefore, generate pages with mixed
temperatures (hot and cold data). This pollutes the buffer pool

2The five-minute-rule is a simple rule of thumb based on economic considerations
comparing the cost-performance ratio of DRAM and secondary storage: “[d]ata
referenced every five minutes should be memory resident” [27].

with cold data because all pages with hot data (including cold
data) are required to be held in DRAM to maximize performance.

Besides a different objective function, Fig. 1 shows that state-
of-the-art table partitioning advisors are mainly designed for
row stores [2, 3, 17, 31, 50, 56, 58, 59, 63, 73, 74]. SAHARA in-
stead is a table partitioning advisor designed for column stores
and considers, in contrast to related work [47, 74], the impact
of dictionary compression on the memory footprint of range
partitioning layouts. This aspect is crucial since many column
stores allow dictionary compression [1].

Furthermore, SAHARA collects physical data accesses and,
therefore, is not sensitive to skew in the distribution of data
accesses, unlike IBMDB2 [34, 59, 74] andMicrosoft SQL Server [2,
3, 47] that rely on the optimizer’s what-if API. Finally, SAHARA
is a table partitioning advisor that handles all operators, contrary
to Casper [7], which considers only selections.

Our contributions are summarized below:
• We formalize the problem of minimizing the memory foot-
print while fulfilling performance SLAs for range parti-
tionings with optional dictionary compression (Sec. 3).
• We introduce SAHARA, a table partitioning advisor that
collects lightweight workload statistics (Sec. 4) and calcu-
lates (near)-optimal range partitioning layouts with low
optimization time (Sec. 5) for estimates of accesses as well
as storage sizes (Sec. 6) using a novel cost model (Sec. 7).
• We integrated SAHARA prototypically into SAP HANA
Cloud and analyze the memory footprint, hardware costs,
precision of estimates, optimality, overhead, and optimiza-
tion time for real-world and synthetic benchmarks (Sec. 8).

2 OVERVIEW
We present a table partitioning advisor that optimizes each re-
lation independently from other relations. Its objective is to de-
crease buffer pool pollution and reduce data accesses.We consider
derived partitioning of multiple relations as future work. Our
table partitioning advisor focuses on range partitioning because
hash and round-robin partitioning distribute accesses evenly over
all partitions and are thus unsuitable for memory footprint re-
duction [43]. For large (fact) tables, a multi-level partitioning
setup might be preferred, such that hash partitioning can be used
for scale-out as a first level and range partitioning for memory
footprint reduction as a second level.

14

Current
Partitioning

Layout

SAHARA’s
Statistics Collector

Section 4

Workload Buffer Pool

Minimum of
Memory Footprint

SAHARA’s Enumerator
Section 5

SAHARA’s Estimator
Section 6

SAHARA’s Cost Model
Section 7

Partitioning
Layout

Candidate

Estimated
Accesses and
Storage Sizes

Estimated
Memory
Footprint

Proposed
Partitioning

LayoutPr
op

os
ed

Bu
ffe

rP
oo

lS
iz
e

Figure 3: The system model of SAHARA consists of four
building blocks: a statistics collector, an enumerator for
partitioning layout candidates, an estimator for work-
load’s data accesses and storage sizes, and a cost model for
the memory footprint of partitioning layouts.

2.1 Problem Statement
For a given relation with 𝑛 attributes, let attribute𝐴𝑘 (1 ≤ 𝑘 ≤ 𝑛)
refer to the partition-driving attribute, e.g., O_ORDERDATE (OD)
in the range-partitioned ORDERS relation in Fig. 2. For each at-
tribute 𝐴𝑘 , there exists a set of potential range partitioning
specifications S𝑘 . For example, Fig. 2 shows the range specifica-
tion S3 ∈ S3 of the O_ORDERDATE (OD) attribute. The problem
we consider is to find a partition-driving attribute 𝐴𝑘 , a range
partitioning specification S𝑘 ∈ S𝑘 , and a buffer pool size 𝐵 ∈ N
such that the memory footprintM of a workload𝑊 is minimized
(e.g., lower monetary memory costs), while the workload exe-
cution time E for range partitioning specification S𝑘 and buffer
pool size 𝐵 does not violate a performance 𝑆𝐿𝐴 (e.g., a maximum
workload execution time provided by the customer or advertised
by the DBaaS provider):

argmin
1≤𝑘≤𝑛,S𝑘 ∈S𝑘 ,𝐵∈N

M(S𝑘 ,𝑊 , 𝐵)
subject to E(S𝑘 ,𝑊 , 𝐵) ≤ 𝑆𝐿𝐴.

2.2 System Model
Fig. 3 shows the system model of SAHARA. We first collect data
access statistics during workload execution for the current par-
titioning layout (Sec. 4). This could also be a non-partitioned
layout if SAHARA was not applied before. We then enumerate
partitioning layout candidates, where each partitioning layout
candidate is identified by a partition-driving attribute 𝐴𝑘 and a
range partitioning specification S𝑘 ∈ S𝑘 . Sec. 5 presents exact
and heuristic enumeration algorithms to determine a partitioning
layout. Afterwards, in Sec. 6, the statistics collected on the current
partitioning layout must be transformed into estimates of sta-
tistics for each partitioning layout candidate. The reason is that
workload’s data accesses differ for each partitioning layout can-
didate due to partition pruning. In addition, compression ratios
can also differ due to the number of values replicated into the dic-
tionaries of multiple partitions. Finally, our cost model calculates
for each partitioning layout candidate the memory footprintM
based on estimated accesses, storage sizes, a given 𝑆𝐿𝐴, and the
hardware configuration (Sec. 7). A partitioning layout candidate
with minimal memory footprintM is proposed. Besides, a buffer
pool size 𝐵 is calculated to fulfill the 𝑆𝐿𝐴. As shown in Fig. 3, we
may also end up in the current partitioning layout.

3 PROBLEM FORMALIZATION
We formalize the problem of Sec. 2.1 by defining range partition-
ing layouts for a relation in a column store.

Definition 3.1. Let 𝑅 be a relationwith𝑛 attributes𝐴1, ..., 𝐴𝑛 .
A range partitioning specificationS𝑘 = {𝑣1𝑘 , ..., 𝑣𝑝𝑘 } ⊆Π𝐷

𝐴𝑘
(𝑅)

with 𝑣1𝑘 < . . .< 𝑣𝑝𝑘 and 𝑣1𝑘 = min(Π𝐷
𝐴𝑘
(𝑅)) is a subset of the do-

main of the partition-driving attribute 𝐴𝑘 (1≤𝑘 ≤𝑛).
The main idea is that we record accesses on the domain of

each attribute and classify value ranges as hot or cold. We then
choose a partition-driving attribute𝐴𝑘 and propose a range parti-
tioning specification S𝑘 from a set of range partitioning spec-
ifications S𝑘 . For example, the right side of Fig. 2 shows the
proposed range partitioning specification S3= {1992-01-01, . . . ,
1997-09-02} for partition-driving attribute O_ORDERDATE (OD).
Further, we call any other attribute𝐴𝑖 ≠ 𝐴𝑘 a passive attribute.

Definition 3.2. A partitioning P(S𝑘) = {𝑃1, . . . , 𝑃𝑝𝑘 } of a
relation 𝑅 into 𝑝𝑘 partitions is generated by

𝑃 𝑗 B
{
𝜎𝑣𝑗𝑘 ≤𝐴𝑘<𝑣(𝑗+1)𝑘

(𝑅) (𝑗 < 𝑝𝑘)
𝜎𝑣𝑝𝑘 ≤𝐴𝑘 (𝑅) (𝑗 = 𝑝𝑘) , for all 1 ≤ 𝑗 ≤ 𝑝𝑘 .

The partitioning P(S𝑘) is generated by selecting only tuples
of relation 𝑅 for partition 𝑃 𝑗 , where the value of the partition-
driving attribute 𝐴𝑘 is between two partition boundaries 𝑣 𝑗𝑘 and
𝑣 (𝑗+1)𝑘 ofS𝑘 . For example, Fig. 2 shows the partitioning P(S3) =
{𝑃1, ..., 𝑃7} generated from the range partitioning specificationS3.

Definition 3.3. We associate with every tuple in relation 𝑅 a
unique global tuple identifier gid ∈ [1, |𝑅 |], and with every
tuple in a partition 𝑃 𝑗 a unique local tuple identifier lid ∈
[1, |𝑃 𝑗 |]. Given a partition 𝑃 𝑗 and a local tuple identifier lid, the
global tuple identifier is retrieved by 𝑃 𝑗 [lid] .GID.

We associate local and global tuple identifiers to identify the
same tuple of different partitioning layouts.

Definition 3.4. An uncompressed column partition 𝐶𝑢
𝑖,𝑗 of

𝐴𝑖 (1 ≤ 𝑖 ≤ 𝑛) in 𝑃 𝑗 (1 ≤ 𝑗 ≤ 𝑝𝑘) is a vector of length |𝑃 𝑗 | with
𝐶𝑢
𝑖,𝑗 [lid] = 𝑃 𝑗 [lid] .𝐴𝑖 , for all 1 ≤ lid ≤ |𝑃 𝑗 |,

where 𝑃 𝑗 [lid] .𝐴𝑖 retrieves the value of attribute 𝐴𝑖 in parti-
tion 𝑃 𝑗 for the tuple with the local tuple identifier lid.

An uncompressed column partition is a vector of all values of
an attribute for a partition. The local tuple identifiers determine
the placement of the values inside the vector. Almost all column
stores allow for optional dictionary compression [1]. We thus
introduce definitions for dictionaries and compressed columns.

Definition 3.5. Let Π𝐷
𝐴𝑖
(𝑃 𝑗) = {𝑣1𝑖,𝑗 < . . . < 𝑣𝑑𝑖,𝑗 } denote the

domain of an attribute 𝐴𝑖 of partition 𝑃 𝑗 . The dictionary of at-
tribute 𝐴𝑖 of partition 𝑃 𝑗 is a bijection 𝐷𝑖, 𝑗 = (vid𝑖, 𝑗 :Π𝐷

𝐴𝑖
(𝑃 𝑗)→

[1, 𝑑𝑖, 𝑗]) with vid𝑖, 𝑗 (𝑣𝑦𝑖,𝑗) = 𝑦𝑖, 𝑗 .

The dictionary 𝐷𝑖, 𝑗 of attribute𝐴𝑖 of partition 𝑃 𝑗 is a bijection
vid𝑖, 𝑗 , where Π𝐷

𝐴𝑖
(𝑃 𝑗) is the domain and [1, 𝑑𝑖, 𝑗] is the range

of the function, such that the 𝑦-th value of the domain returns
number 𝑦.

Definition 3.6. Adictionary-compressed columnpartition
𝐶𝑐
𝑖, 𝑗 of attribute 𝐴𝑖 in partition 𝑃 𝑗 is a vector of numbers in
[1, 𝑑𝑖, 𝑗], such that

𝐶𝑐
𝑖, 𝑗 [lid] = vid𝑖, 𝑗 (𝐶𝑢

𝑖,𝑗 [lid]), for all 1 ≤ lid ≤ |𝑃 𝑗 |.

15

The dictionary-compressed column partition 𝐶𝑐
𝑖, 𝑗 stores the

numbers returned by the bijection vid𝑖, 𝑗 of the dictionary 𝐷𝑖, 𝑗

for all values of attribute 𝐴𝑖 for partition 𝑃 𝑗 .

Definition 3.7. We define a column partition𝐶𝑖, 𝑗 depending
on the effectiveness of dictionary compression:

𝐶𝑖, 𝑗 B

{
(𝐶𝑐

𝑖, 𝑗 , 𝐷𝑖, 𝑗) if | |𝐶𝑐
𝑖, 𝑗 | | + | |𝐷𝑖, 𝑗 | | ≤ | |𝐶𝑢

𝑖,𝑗 | |
𝐶𝑢
𝑖,𝑗 otherwise,

where | | . . . | | is the number of bytes to store a(n) (un-)compressed
column partition or a dictionary. The storage size in bytes of𝐶𝑖, 𝑗
is then defined as | |𝐶𝑖, 𝑗 | | = min(| |𝐶𝑐

𝑖, 𝑗 | | + | |𝐷𝑖, 𝑗 | |, | |𝐶𝑢
𝑖,𝑗 | |).

Fig. 2 shows all column partitions 𝐶1,1, . . . ,𝐶6,7 for ORDERS
generated from the range partitioning specification S3. Finally,
we define the range partitioning layout as a set of all column
partitions 𝐶𝑖, 𝑗 .

Definition 3.8. A partitioning layout L(𝑅,𝐴𝑘 ,S𝑘) for a re-
lation 𝑅 and a range partitioning specification S𝑘 with partition-
driving attribute𝐴𝑘 consists of the set of all column partitions𝐶𝑖, 𝑗 :

L(𝑅,𝐴𝑘 ,S𝑘) B {𝐶𝑖, 𝑗 | 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑝𝑘 }.

4 STATISTICS COLLECTION
We begin by describing our approach by explaining how work-
load statistics are collected for the current partitioning layout (cf.
Fig. 3). On the one hand, we record domain (dictionary) accesses
to enumerate range partitioning layout candidates in Sec. 5. On
the other hand, we capture row (logical tuple identifiers) accesses
to calculate the memory footprint of a partitioning layout in
Sec. 7 based on estimated accesses and storage sizes (Sec. 6).

As we focus on reducing the memory footprint for a workload,
the distribution of data accesses over time is crucial because it
impacts the buffer pool eviction policy [23, 55]. For example, if
a data item is accessed twice within a short period, it is likely
cached in the buffer pool at the second access. Thus, we track
accesses only within specified time windows so that the statistics
are not dominated by many accesses occurring only during a
short period. However, by increasing the length of a time win-
dow, it becomes more difficult to separate the access pattern of
individual queries. Therefore, Sec. 7 shows how the length of a
time window should be chosen.

Definition 4.1. Let 𝑄 be a set of queries (workloads), Ω a set
of time windows, and 𝑅 a relation. A workload trace𝑊 is then
defined as

𝑊 ⊆ {(gid, 𝐴𝑖 , 𝑞, 𝜔) | 1 ≤ gid ≤ |𝑅 |, 𝐴1 ≤𝐴𝑖 ≤𝐴𝑛, 𝑞 ∈ 𝑄,𝜔 ∈ Ω},
where each element in𝑊 denotes a single access to attribute 𝐴𝑖

of the tuple with global tuple identifier gid by query 𝑞 within
time window 𝜔 .

We record accesses block-wise to reduce the memory overhead
of the statistics collection. This can lead to imprecise access
frequencies if a block contains values with heavily skewed access
patterns. As a result, smaller block sizes lead to more precise
access frequencies. We previously analyzed the impact of the
block size on the precision of the access frequency of values and
showed how workload statistics are collected space and time-
efficiently [12]. In our experiments in Sec. 8, we set the block size
such that 1% additional memory is spent on statistics compared
to the data set size.

Definition 4.2 (Row block counter). We define a row block
access for an attribute 𝐴𝑖 , a partition 𝑃 𝑗 , a local block number 𝑧,
and a time window 𝜔 as

𝑥block (𝐴𝑖 , 𝑃 𝑗 , 𝑧, 𝜔) B

1 ∃ gid, 𝑞, lid : (gid, 𝑖, 𝑞, 𝜔) ∈𝑊
∧ lid ∈ [1, |𝑃 𝑗 |] ∧ 𝑃 𝑗 [𝑙] .GID = gid
∧ ⌊lid/RBS𝑖, 𝑗 ⌋ = 𝑧

0 otherwise,
where the row block size RBS𝑖, 𝑗 is the number of local tuple
identifiers that are grouped for counting accesses.

A row block access is recorded if𝑊 contains at least one ele-
ment that accesses the attribute𝐴𝑖 of the tuple by query 𝑞 within
time window 𝜔 , such that the lid of partition 𝑃 𝑗 corresponds to
the gid of the tuple and falls into the local block number 𝑧.

To define domain block accesses, we assume a Boolean func-
tion eval(𝑖, 𝑣, 𝑞) that evaluates a value 𝑣 for a conjunction of
predicates in query 𝑞’s WHERE clause on 𝐴𝑖 .

Definition 4.3 (Domain block counter). Let Π𝐷
𝐴𝑖
(𝑅) = {𝑣1𝑖 <

.. < 𝑣𝑢𝑖 < .. < 𝑣𝑑𝑖,𝑗 } denote the domain of an attribute 𝐴𝑖 . We
define a domain block access for an attribute 𝐴𝑖 , a domain
block number 𝑦, and a time window 𝜔 as

𝑣block (𝐴𝑖 , 𝑦, 𝜔) B

1 ∃ gid, 𝑞, 𝑣𝑢𝑖 : (gid, 𝑖, 𝑞, 𝜔) ∈𝑊
∧ eval(𝑖, 𝑣𝑢𝑖 , 𝑞) ∧ 𝑅 [gid] .𝐴𝑖 = 𝑣𝑢𝑖
∧ ⌊𝑢𝑖/DBS𝑖 ⌋ = 𝑦

0 otherwise,
where the domain block sizeDBS𝑖 is the number of consecutive
values in the domain constituting a block.

A domain block is accessed if there is at least one query in the
workload trace that satisfies the predicate during the given time
window and is part of the specified domain block.

Example. Fig. 4 presents the statistics collected for the execu-
tion of JCC-H Query 3 [10] during one time window. Row blocks
of each accessed attribute are shown on the top left, whereas
domain blocks are at the bottom left. The query execution plan is
illustrated on the right. We show the first access to each attribute
because we only record whether or not a block was accessed
during a time window. Blocks accessed by an operator are high-
lighted using a unique color and number 𝑥 to identify the query
execution plan operator that caused that access. The selection
operators 1 and 2 touch all row blocks of C_MKTSEGMENT and
O_ORDERDATE, but the respective domain blocks only record if
domain values satisfied the WHERE clause (Def. 4.3). Therefore,
range-partitioning ORDERS on O_ORDERDATE (OD) with [1993-05-
29, 1998-08-03) would create a column partition that is never
accessed. In particular, ORDERS has 15 million tuples which are all
fetched without partitioning, given the range partitioning speci-
fication S= {1992-01-01, 1993-05-29}, we would fetch 3,204,724
tuples. The subsequent hash join 3 touches all row and domain
blocks on the build (CUSTOMER) and the probe side (ORDERS). How-
ever, only a subset of the rows is accessed, e.g., the customer with
C_CUSTKEY (CK) ‘5004’ was filtered out by 1 . Hence, the buffer
pool is polluted with cold data since all pages but not all rows are
read. Next, an index nested loop join 4 touches all row blocks
in ORDERS, but only ≈75% of the row blocks in LINEITEM. For ex-
ample, the order with L_ORDERKEY (OK) ‘43’ comprises 3 million
items, which spans multiple blocks, but was already filtered out
by 2 . The following selection 5 filters all L_SHIPDATE (SD) values
smaller than 1993-05-30. Values larger than 1993-09-26 are not
read since the L_SHIPDATE (SD) of an item is not 121 days after its
O_ORDERDATE (OD), and orders with an O_ORDERDATE (OD) larger

16

<
<

𝜎O_ORDERDATE<1993-05-29 𝜎C_MKTSEGMENT=‘FURNITURE’

⋈O_CUSTKEY=C_CUSTKEY
HJ

⋈O_ORDERKEY=L_ORDERKEY
INL

𝜎L_SHIPDATE>1993-05-29

ΓO_ORDERKEY

Sortrevenue desc, O_ORDERDATE, top 10

𝜋L_ORDERKEY, revenue, O_ORDERDATE, O_SHIPPRIORITY

sum(L_EXTENDEDPRICE * (1 – L_DISCOUNT)) as revenue

Ro
w
Bl
oc
ks

𝑥
bl
oc
k

D
om

ai
n
Bl
oc
ks

𝑣 b
lo
ck

max

min

CUSTOMER

CK
1

1.5M

5000
5001
5002
5003
5004
5005

3

3

MS
A.

FU
RN

I-
TU

RE

M.
1

1

ORDERS

OK
1

60M

40
41
42
43
44
45

4 4

CK
1

1.5M

13687
87
5002
120
5004
7

3

OD

1992-
01-01

1993-
05-29

1998-
08-02

2

2

SP

O

8

8
LINEITEM

OK
1

60M

42
43
43
43
43
43

4

DC
0.00

0.10
7

7

EP
900

105059

7

SD

1992-
01-02

1993-
05-30

1993-
09-27

1998-
12-01

5
5

6

ORDERS CUSTOMER

LINEITEM

Block Access
No Block Access

Figure 4: Collected statistics on row and domain blocks for the execution of JCC-H Query 3 during one time window.

than 1993-05-28 were filtered out by 2 . While such constraints
are only known to domain experts [11] and cannot be extracted
from query execution plans, domain block counters can provide
this insight. The memory footprint can be reduced by creating
a range partition with [1993-05-30, 1993-09-27) on L_SHIPDATE
(SD), i.e., 75% of LINEITEM pages are fetched without partitioning,
while a partitioning layout based on the range partitioning spec-
ification S = {1992-01-01, 1993-05-30, 1993-09-27} would access
only 5% of the pages. While the following group-by operator 6

does not create new accesses, the sorting operator 7 additionally
accesses L_DISCOUNT (DC) and L_EXTENDEDPRICE (EP). Finally,
the projection 8 accesses only ten blocks of L_SHIPPRIORITY
(SP) since it is a top-k query.

5 DETERMINING PARTITIONING LAYOUTS
We now explain how we determine a partitioning layout based
on the collected statistics (Sec. 4). Since any attribute 𝐴𝑘 may
be the partition-driving attribute, we compute a partitioning
layout for each possible 𝐴𝑘 . Afterwards, we propose the layout
that minimizes the memory footprint most while not violating
the customer’s 𝑆𝐿𝐴. We identify an optimal range partitioning
for 𝐴𝑘 in Sec. 5.1 and present a heuristic in Sec. 5.2 to lower the
optimization time.

5.1 Optimal Range Partitioning Layout
Alg. 1 finds an optimal range partitioning specification for a par-
tition-driving attribute 𝐴𝑘 using dynamic programming (DP).
The idea is to calculate the optimal range partitioning for 𝑑
(1≤𝑑 ≤𝑑𝑘) distinct values of the domain of 𝐴𝑘 (𝑑𝑘 is the num-
ber of distinct values of 𝐴𝑘) by using a previously calculated
optimal range partitioning with 𝑑−1 or less distinct values. We
then find the optimal range partitioning for 𝐴𝑘 iteratively. Alg. 1
uses two two-dimensional arrays cost and split. Array cost
(resp. split) stores at position [d][s] the optimal memory foot-
printM (resp. partition border) for a range partitioning with 𝑑
distinct values and the 𝑠-smallest value 𝑣𝑠𝑘 ∈Π𝐷

𝐴𝑘
(𝑅) as the lower

bound of the range partition.
The first for loop (Lines 2 to 10) iterates over the number of

distinct values 𝑑 , while the second for loop (Lines 3 to 10) iter-
ates over all possible start positions 𝑠 . For each combination of 𝑑
and 𝑠 , we initialize the cost array at position [d][s] with the
memory footprintM for a single range partition for the value
range [𝑣𝑠𝑘 , 𝑣 (𝑠+𝑑)𝑘) (or [𝑣𝑠𝑘 ,∞) for the last range) with 𝐴𝑘 as a
partition-driving attribute (Lines 4 and 5). Sec. 6 and 7 explain
how the memory footprint for this single range partition is esti-
mated and calculated. The split array is initialized with ∞ to

Algorithm 1: Optimal Range Partitioning Layout
Memory :cost[d][s]: optimal memory footprintM for a range

partition of 𝑑 distinct values starting at value 𝑣𝑠𝑘
split[d][s]: optimal partition border for a range
partition of 𝑑 distinct values starting at value 𝑣𝑠𝑘

1 Function DP(𝑅,𝐴𝑘 , 𝑥block, 𝑣block):
2 for 1 ≤ d ≤ 𝑑𝑘 do //iterate over distinct values

3 for 1 ≤ s ≤ 𝑑𝑘 − d + 1 do //iterate over start values

4 𝑣𝑢𝑏𝑘 ←∞; if s+d < 𝑑𝑘 then 𝑣𝑢𝑏𝑘 ← 𝑣(s+d)𝑘
5 cost[d][s]←M(𝑅,𝐴𝑘 , 𝑥block, 𝑣block, 𝑣𝑠𝑘 , 𝑣𝑢𝑏𝑘)

6 split[d][s]←∞ // no partition border

7 for 1 ≤ b < d do // iterate over partition borders

8 if cost[b][s]+ cost[d-b][s+b] < cost[d][s]
9 cost[d][s]← cost[b][s]+ cost[d-b][s+b]

10 split[d][s]← b // partition border 𝑣(𝑠+𝑏)𝑘
11 S𝑘 ← {} // create range partitioning specification

12 build(𝑑𝑘 , 1, S𝑘) // build range partitioning specification

13 return (cost[𝑑𝑘][1], S𝑘)
14 Procedure build(d,s, &S𝑘): // pass S𝑘 as reference

15 if split[d][s] = ∞ then S𝑘 = S𝑘 ∪ {𝑣𝑠𝑘 }
16 else
17 build(split[d][s],s,S𝑘)
18 build(d-split[d][s],s+split[d][s],S𝑘)

indicate that there is no partition border (Line 6). Afterwards, we
check if it is more beneficial to have a partition border at 𝑣 (𝑠+𝑏)𝑘
(1≤𝑏 <𝑑) and update cost and split accordingly (Lines 7 to 10).
For this, we combine the previously calculated optimal range par-
titioning for 𝑏 distinct values starting at 𝑣𝑠𝑘 with the previously
calculated optimal range partitioning for 𝑑 − 𝑏 distinct values
starting at 𝑣 (𝑠+𝑏)𝑘 . Finally, we build and return the optimal range
partitioning specification with its memory footprintM (Lines 11
to 13). Lines 14 to 18 show the recursive build of the specification
based on the split array. The complexity of Alg. 1 is O(𝑑𝑘3) due
to the three for loops over the distinct values 𝑑𝑘 of attribute 𝐴𝑘 .

Correctness.We now prove that Alg. 1 finds the range par-
titioning specification for a partition-driving attribute 𝐴𝑘 with
the minimal memory footprintM.

Theorem 5.1. Alg. 1 finds an optimal range partitioning speci-
fication for a partition-driving attribute 𝐴𝑘 according toM.

Proof. We prove the correctness of Alg. 1 by induction over
the number of distinct values 𝑑 for value ranges [𝑣𝑠𝑘 , 𝑣 (𝑠+𝑑)𝑘).
Base case (𝑑=1): The only possible range partitioning specifi-
cation for the value range [𝑣𝑠𝑘 , 𝑣 (𝑠+1)𝑘) of any starting value
𝑣𝑠𝑘 ∈ Π𝐷

𝐴𝑘
(𝑅) is a single range partition. Alg. 1 is correct since

17

d=1 s=1
initialize

cost [1][1]=0
split[1][1]=∞

[1992-01-02,1993-05-30[

s=2
initialize

cost [1][2]=5
split[1][2]=∞

[1993-05-30,1993-09-27[

s=3
initialize

cost [1][3]=0
split[1][3]=∞

[1993-09-27,∞[

d=2 s=1
initialize

cost [2][1]=10
split[2][1]=∞

[1992-01-02,1993-09-27[

b=1
cost [2][1]=5
split[2][1]=1

s=2
initialize

cost [2][2]=20
split[2][2]=∞

[1993-05-30,∞[

b=1
cost [2][2]=5
split[2][2]=1

d=3 s=1
initialize

cost [3][1]=25
split[3][1]=∞

[1992-01-02,∞[

b=1
cost [3][1]=5
split[3][1]=1

b=2
cost [3][1]=5
split[3][1]=2

Figure 5: Example of the optimized version of Alg. 1 with
L_SHIPDATE as a partition-driving attribute.

cost[1][s] is initialized with the memory footprint of the single
range partition on the range [𝑣𝑠𝑘 , 𝑣 (𝑠+1)𝑘) (Line 5), split[1][s]
with the partition border∞ (Line 6), and both are not updated in
Lines 7 to 10 since the condition of the for loop is not satisfied
for any 𝑏 if 𝑑=1.
Induction step (𝑑−1→ 𝑑): We now prove that Alg. 1 finds the
optimal range partitioning specification for the value range [𝑣𝑠𝑘 ,
𝑣 (𝑠+𝑑)𝑘) of any starting value 𝑣𝑠𝑘 ∈Π𝐷

𝐴𝑘
(𝑅) with 𝑑 distinct values.

We assume the induction hypothesis that Alg. 1 finds the optimal
range partitioning specification for a value range with less than
𝑑 distinct values. First, we have to show that Alg. 1 considers
that the optimal range partitioning specification can be a single
range partition on the value range [𝑣𝑠𝑘 , 𝑣 (𝑠+𝑑)𝑘). This is con-
sidered by the initialization of cost[d][s] and split[d][s]
(Lines 5 and 6). Second, we have to show that Alg. 1 consid-
ers that the optimal range partitioning specification can be a
combination of optimal range partitioning specifications for the
value ranges [𝑣𝑠𝑘 , 𝑣 (𝑠+𝑏)𝑘) and [𝑣 (𝑠+𝑏)𝑘 , 𝑣 (𝑠+𝑑)𝑘) with a parti-
tion border at 𝑣 (𝑠+𝑏)𝑘 (1 ≤ 𝑏 < 𝑑). This is considered since
Alg. 1 iterates over all partition borders 𝑣 (𝑠+𝑏)𝑘 and updates
cost[d][s] and split[d][s] if the sum of the memory foot-
print for the optimal range partitioning specifications on the
value ranges [𝑣𝑠𝑘 , 𝑣 (𝑠+𝑏)𝑘) and [𝑣 (𝑠+𝑏)𝑘 , 𝑣 (𝑠+𝑑)𝑘) is smaller than
cost[d][s] (Lines 7 to 10). By the induction hypothesis, the
memory footprint of the optimal range partitioning specifica-
tion for both value ranges can be fetched from cost[b][s] and
cost[d-b][s+b] since 𝑏 and 𝑑 −𝑏 are smaller than 𝑑 . Hence,
Alg. 1 is correct. □

Optimization.We further optimize the runtime of Algorithm 1
by iterating only over domain blocks (instead of all distinct val-
ues) and considering only partition borders between two domain
blocks if at least one time window is accessed differently. We
still find an optimal range partitioning for uncompressed col-
umn partitions by applying both pruning strategies. In contrast,
with dictionary compression, we may not find the optimal range
partitioning if pruning is applied. If some values occur only in
a single column partition, the storage size decreases because a
dictionary-compressed column partition may require fewer bits
to store the vid (since only a subset of the active domain of the
attribute is present in this column partition), if additional com-
pression techniques such as bit-packing [60, 71] are applied. We
argue that the performance benefit is superior to the pruning of
the search space. However, Alg. 1 considers all values and finds
the optimal partitioning.

Example. Fig. 5 presents how the optimized version of Alg. 1
finds the optimal range partitioning for LINEITEM with L_SHIP-
DATE as a partition-driving attribute for JCC-H Query 3. The
domain block counters for L_SHIPDATE (SD) in Fig. 4 show only
three potential lower bound values of a range partition: 1992-01-
02, 1993-05-30, and 1993-09-27. Thus, Fig. 5 shows the iteration
over𝑑 (1≤𝑑 ≤ 3) horizontally (Lines 2 to 10) and the iteration over
the potential lower bound values 𝑣𝑠𝑘 (Lines 3 to 10) vertically. For
each combination of 𝑑 and 𝑠 , we show the initialize step (Lines 4
to 6) of the cost and split array at position [d][s] for a single
range partition for the value range [𝑣𝑠𝑘 , 𝑣 (𝑠+𝑑)𝑘) (or [𝑣𝑠𝑘 ,∞) for
the last range). We also denote each step of the iteration over
the partition borders at 𝑣 (𝑠+𝑏)𝑘 (1 ≤ 𝑏 < 𝑑) (Lines 7 to 10). The
recursive build of the optimal range partitioning specification
from the split array is highlighted in bold.

5.2 Heuristic Approach MaxMinDiff
Since Alg. 1 finds an optimal partitioning but has cubic complex-
ity, we now present a heuristic to lower optimization time. The
idea is to leverage the partition-driving attribute domain block
counters and cluster values with almost identical accesses. On
the one hand, we group consecutive domain blocks that were all
accessed during the same time window to merge hot data into
a single partition. On the other hand, we split domain blocks
that were not all accessed during the same time window into
partitions to separate hot and cold data. While this might gener-
ate a partition for each domain block, we introduce a heuristic
that clusters consecutive domain blocks such that MaxMinDiff,
i.e., the number of time windows with accesses to a non-empty
and strict subset of the domain blocks, is smaller or equal than a
tuning parameter Δ ∈ N.

Fig. 6 illustrates the calculation ofMaxMinDiff for two bound-
aries l and r, based on domain block counters (y-axis) of column
ORDERS.O_ORDERDATE for 200 JCC-H queries during 89 time win-
dows (x-axis). We highlight domain block accesses in red if, for a
given time window𝜔 ∈ Ω, all domain blocks between l and r are
accessed (22 time windows). Such domain blocks will be grouped
into a single partition. In contrast, we highlight domain block
accesses in blue if, for a given time window, only a non-empty
and strict subset of the domain blocks between l and r is accessed
(16 time windows). Therefore, in this example, MaxMinDiff is 16.

Alg. 2 describes the heuristic for finding a near-optimal range
partitioning for a partition-driving attribute 𝐴𝑘 . Given domain
block boundaries l and r, we search for the domain block that
was accessed during most time windows, and place it into the
current range partition, i.e., the boundaries l̂ and r̂ (Lines 2 to 6).

Time Windows Ω

D
om

ai
n
Bl
oc
ks

𝑣 b
lo
ck

l

r

Block access
(outside l and r)
All blocks between
l and r are accessed

Non-empty and strict subset of
blocks between l and r are accessed

No block access

Figure 6: The calculation of MaxMinDiff based on domain
block counters of O_ORDERDATE after 200 JCC-H queries.

18

Algorithm 2: Heuristic Approach MaxMinDiff
1 Function Heuristic(𝑅,𝐴𝑘 , 𝑣block, l, r,Δ):
2 hot← l; f← 0
3 for l ≤ 𝑦 < r do // search for hottest domain block

4 f̂← 0; for 𝜔 ∈ Ω do f̂← f̂ + 𝑣block (𝐴𝑘 , 𝑦,𝜔)
5 if f̂ > f then hot← 𝑦

6 l̂← hot; r̂← hot + 1 // initialize range partition

7 while l < l̂ ∨ r > r̂ do // extend range partition

8 Δl ←∞; Δr ←∞
9 if l < l̂ then Δl ← MaxMinDiff(𝑅,𝐴𝑘 , 𝑣block, l̂ − 1, r̂)

10 if r > r̂ then Δr ← MaxMinDiff(𝑅,𝐴𝑘 , 𝑣block, l̂, r̂ + 1)
11 if Δl > Δ ∧ Δr > Δ then break
12 if Δl ≤ Δr then l̂← l̂ − 1 else r̂← r̂ + 1
13 S𝑘 ← {} // create range partitioning specification

14 if l < l̂ then S𝑘 ← S𝑘 ∪ Heuristic(𝑅,𝐴𝑘 , 𝑣block, l, l̂,Δ)
15 S𝑘 ← S𝑘 ∪ {𝑣(l̂ ·DBS𝑘)𝑘 } // partition border at pos l̂ · DBS𝑘
16 if r > r̂ then S𝑘 ← S𝑘 ∪ Heuristic(𝑅,𝐴𝑘 , 𝑣block, r̂, r,Δ)
17 return S𝑘
18 Function MaxMinDiff(𝑅,𝑘, 𝑣block, l, r):
19 Diff← 0
20 for 𝜔 ∈ Ω do
21 max← 0; min← 1
22 for l ≤ 𝑦 < r do
23 max←𝑚𝑎𝑥𝑖𝑚𝑢𝑚 (max, 𝑣block (𝑘, 𝑦,𝜔))
24 min←𝑚𝑖𝑛𝑖𝑚𝑢𝑚 (min, 𝑣block (𝑘, 𝑦,𝜔))
25 Diff← max − min + Diff
26 return Diff

Afterwards, we iteratively extend the current range partition
to the left or right as long as MaxMinDiff of the current range
partition is smaller or equal than Δ (Lines 7 to 12). Lines 18
to 26 show the calculation of MaxMinDiff, as illustrated in Fig. 6.
For each time window 𝜔 ∈ Ω (Lines 20 to 25), we loop over all
domain block indexes 𝑦 between l and r (Lines 22 to 24) and
add a time window 𝜔 to MaxMinDiff if at least one (Line 23)
but not all domain blocks (Line 24) were accessed during 𝜔 , i.e.,
only a non-empty and strict subset of the domain blocks was
accessed within 𝜔 . Next, the heuristic is called recursively on all
domain block indexes smaller and on all domain block indexes
larger than l̂ and r̂ (Lines 14 and 16). We also add the current
lower bound value 𝑣 (l̂ ·DBS𝑘)𝑘 as partition border to the range
partitioning specification S𝑘 (Line 15). To obtain the index of the
value in the domain of 𝐴𝑘 , we multiply the domain block index l̂
by the domain block size DBS𝑘 of𝐴𝑘 (Definition 4.3). Finally, the
range partitioning specification S𝑘 is returned (Line 17).

The heuristic leverages only domain block counters instead of
using the cost function. Therefore, the proposed partitioning is
only near-optimal, while the complexity is reduced to O(𝑑𝑘2).

6 ACCESS AND STORAGE SIZE ESTIMATOR
We now describe how SAHARA estimates accesses and storage
sizes of partitioning layout candidates based on collected statis-
tics of the current partitioning layout (Sec. 4). We first describe
the estimation of column partition accesses and then of storage
sizes. These estimates are required in Alg. 1 (Line 5) to initialize
single range partitions generated for a value range [𝑣𝑙𝑏𝑘 , 𝑣𝑢𝑏𝑘)
(or [𝑣𝑙𝑏𝑘 ,∞) for the last range) with a memory footprintM and
to compute an optimal range partitioning specification from it
recursively. The calculation of the memory footprint M of a
single range partition is shown in Sec. 7.

6.1 Estimating Column Partition Accesses
We start by estimating an access 𝑥col during a time window𝜔 for
the column partition of the partition-driving attribute𝐴𝑘 by lever-
aging its domain block counters 𝑣block (Sec. 4). The estimate de-
pends on whether the domain block counters record at least one
access during 𝜔 , which falls into the value range [𝑣𝑙𝑏𝑘 , 𝑣𝑢𝑏𝑘)
of the partition boundaries. If no access exists, we assume that
the column partition will not be accessed, e.g., partition pruning
is applied.

Definition 6.1. The estimate of a column partition access
𝑥col for a time window𝜔 ∈ Ω for a partition-driving attribute𝐴𝑘
with range partition specification boundaries 𝑣𝑙𝑏𝑘 , 𝑣𝑢𝑏𝑘 ∈ S𝑘 ∪
{∞} is

𝑥col (𝐴𝑘 , 𝑣𝑙𝑏𝑘 , 𝑣𝑢𝑏𝑘 , 𝜔) B

1 ∃ 𝑦 : 𝑣block (𝐴𝑘 , 𝑦, 𝜔) = 1∧
⌊𝑙𝑏𝑘/DBS𝑘 ⌋ ≤ 𝑦 < ⌈𝑢𝑏𝑘/DBS𝑘 ⌉

0 otherwise.

To estimate accesses to a column partition of a passive at-
tribute 𝐴𝑖 , i.e., an attribute different than the partition-driving
attribute 𝐴𝑘 , we need to consider how the range partition of
the partition-driving attribute impacts accesses to the passive
attribute, e.g., partition pruning [43] also influences accesses to
passive attributes. We argue that three cases exist for estimating
the column partition accesses 𝑥col during a time window 𝜔 to a
passive attribute 𝐴𝑖 .

Case 1: The passive attribute was not accessed during 𝜔 , i.e.,
all row block counters of 𝐴𝑖 during 𝜔 are zero. Thus, the column
partition of 𝐴𝑖 will not be accessed during 𝜔 .

Case 2: The range partition of the partition-driving attribute
influences accesses to the passive attribute. This is the case
if the set of rows accessed in 𝐴𝑖 during 𝜔 is a subset of the
rows accessed in 𝐴𝑘 , i.e., for each local tuple identifier, 𝐴𝑖 ’s row
block counter is smaller or equal than 𝐴𝑘 ’s row block counter
during 𝜔 . We then use the already estimated access 𝑥col dur-
ing 𝜔 from𝐴𝑘 (Definition 6.1).

Case 3: Otherwise, the range partition of the partition-driving
attribute does not influence accesses to the passive attribute
during 𝜔 . We assume that the column partition of 𝐴𝑖 will be
accessed during 𝜔 .

Definition 6.2. We define an estimate of a column partition
access 𝑥col for a time window 𝜔 ∈ Ω for a passive attribute 𝐴𝑖

based on a partition-driving attribute 𝐴𝑘 ≠ 𝐴𝑖 with range parti-
tion specification boundaries 𝑣𝑙𝑏𝑘 , 𝑣𝑢𝑏𝑘 ∈ S𝑘 ∪ {∞} as

𝑥col (𝐴𝑖 , 𝐴𝑘 , 𝑣𝑙𝑏𝑘 , 𝑣𝑢𝑏𝑘 , 𝜔)B

0 ∀ 𝑗, 𝑧 : 𝑥block (𝐴𝑖 , 𝑃 𝑗 , 𝑧, 𝜔) = 0
𝑥col (𝐴𝑘 , 𝑣𝑙𝑏𝑘 , 𝑣𝑢𝑏𝑘 , 𝜔)
∀ 𝑗, lid :
𝑥block (𝐴𝑖 , 𝑃 𝑗 , ⌊lid/RBS𝑖, 𝑗 ⌋, 𝜔)
≤𝑥block (𝐴𝑘 ,𝑃 𝑗 ,⌊lid/RBS𝑘,𝑗⌋,𝜔)

1 otherwise.

For example, based on the row block counters of O_CUSTKEY
(CK) and O_ORDERDATE (OD) in Fig. 4, we observe that the rows
accessed in CK are a subset of the rows accessed in OD. Further,
all accesses to OD read domain values [1992-01-01, 1993-05-29).
Consequently, the column partition of the passive attribute CK
defined by the value range [1993-05-29, 1998-08-03) of OD will
not be accessed.

19

6.2 Estimating Column Partition Sizes
We now estimate a column partition’s storage size, both for
partition-driving and passive attributes. The estimate of the un-
compressed column partition size depends on the estimated car-
dinality of the range partition and the attribute data type size in
bytes.

Definition 6.3. We define an estimate of an uncompressed
column partition size �| |𝐶𝑢 | | in bytes for an attribute 𝐴𝑖 based
on a partition-driving attribute 𝐴𝑘 with range partition bound-
aries 𝑣𝑙𝑏𝑘 , 𝑣𝑢𝑏𝑘 ∈ S𝑘 ∪ {∞} as�| |𝐶𝑢 | | (𝐴𝑖 , 𝐴𝑘 , 𝑣𝑙𝑏𝑘 , 𝑣𝑢𝑏𝑘) B CardEst(𝐴𝑘 , 𝑣𝑙𝑏𝑘 , 𝑣𝑢𝑏𝑘) · | |𝑣𝑖 | |,

where CardEst(𝐴𝑘 , 𝑣𝑙𝑏𝑘 , 𝑣𝑢𝑏𝑘) ≈
��� 𝜎𝑣𝑙𝑏𝑘 ≤𝐴𝑘<𝑣𝑢𝑏𝑘

(𝑅)
��� is a car-

dinality estimate provided by the database [16] and | |𝑣𝑖 | | is the
average storage size of the data type of attribute 𝐴𝑖 .

To estimate a compressed column partition’s size, we first
estimate the dictionary size, which is influenced by the number
of values replicated within the dictionaries of different partitions.
Hence, we multiply the estimated distinct count and the attribute
data type size in bytes.

Definition 6.4. We define an estimated dictionary size |̂ |𝐷 | |
in bytes for an attribute 𝐴𝑖 based on a partition-driving attribute
𝐴𝑘 with range partition specification boundaries 𝑣𝑙𝑏𝑘 , 𝑣𝑢𝑏𝑘∈S𝑘 ∪
{∞} as
|̂ |𝐷 | | (𝐴𝑖 , 𝐴𝑘 , 𝑣𝑙𝑏𝑘 , 𝑣𝑢𝑏𝑘) B DvEst(𝐴𝑖 , 𝐴𝑘 , 𝑣𝑙𝑏𝑘 , 𝑣𝑢𝑏𝑘) · | |𝑣𝑖 | |.

where DvEst(𝐴𝑖 , 𝐴𝑘 , 𝑣𝑙𝑏𝑘 , 𝑣𝑢𝑏𝑘) ≈
���Π𝐷

𝐴𝑖

(
𝜎𝑣𝑙𝑏𝑘 ≤𝐴𝑘<𝑣𝑢𝑏𝑘

(𝑅)
)��� is

the estimated distinct count provided by the database [16].

The estimated dictionary-compressed column partition size
depends on the number of bits needed to represent all vids of
the attribute’s domain within a column partition (assuming bit
packing [60, 71]). We multiply this value by the estimated cardi-
nality.

Definition 6.5. The estimate of a dictionary-compressed
column partition size �| |𝐶𝑐 | | in bytes for an attribute 𝐴𝑖 based
on a partition-driving attribute 𝐴𝑘 with range partition specifi-
cation boundaries 𝑣𝑙𝑏𝑘 , 𝑣𝑢𝑏𝑘 ∈ S𝑘 ∪ {∞} is

�| |𝐶𝑐 | | (𝐴𝑖 , 𝐴𝑘 , 𝑣𝑙𝑏𝑘 , 𝑣𝑢𝑏𝑘)B
⌈⌈𝑙𝑜𝑔2 (DvEst(𝐴𝑖 , 𝐴𝑘 , 𝑣𝑙𝑏𝑘 , 𝑣𝑢𝑏𝑘))⌉

8 · CardEst(𝐴𝑘 , 𝑣𝑙𝑏𝑘 , 𝑣𝑢𝑏𝑘)−1
⌉
.

7 COST MODEL
Based on the estimated accesses and storage sizes (Sec. 6), we
can calculate the memory footprintM of a single range partition
for the value range [𝑣𝑙𝑏𝑘 , 𝑣𝑢𝑏𝑘). Alg. 1 (Line 5) employs this
memory footprint to propose a table partitioning recursively.
Moreover, we calculate a buffer pool size 𝐵 ∈ N to fulfill a given
performance 𝑆𝐿𝐴, i.e., the maximum workload execution time.

The idea is that column partitions that are frequently accessed
(Def. 7.1) are classified as hot and configured to hold all data
in DRAM. Column partitions that are rarely accessed are clas-
sified as cold, and data is loaded on-demand from disk upon
each read. The buffer pool size is calculated by summing up the
sizes of all column partitions classified as hot. To fulfill a given
performance 𝑆𝐿𝐴, the classification depends on the hardware
configuration, e.g., disk speed, as well as the number of accesses
and the 𝑆𝐿𝐴 itself. To classify column partitions as hot or cold,
we consider the five-minute-rule as the cost break-even point

of storing data in DRAM versus performing disk I/O for every
access [27]. As prices, capacities, and performance of these two
storage tiers evolve at a different pace, we refer to the rule as a
timeless 𝜋-second-rule:

𝜋 B
Disk Costs [$]

Disk IOP [Page/s] / DRAM Costs [$/Page] . (1)

Accordingly, we classify a column partition as hot if it is accessed
more often than every 𝜋-seconds. A misclassification of a hot
column partition as cold induces many expensive disk IOPs, de-
grades performance, and potentially violates the 𝑆𝐿𝐴. In contrast,
misclassification of a cold column partition as hot increases the
DRAM consumption and thus the memory footprint.

Definition 7.1. Given an estimated column partition size �| |𝐶𝑖, 𝑗 | |,
an estimated access frequency 𝑋 col

𝑖, 𝑗 , a maximum workload exe-
cution time 𝑆𝐿𝐴, and 𝜋 , the memory footprint of a column
partition 𝐶𝑖, 𝑗 in $ that fulfills the 𝑆𝐿𝐴 is

M(�| |𝐶𝑖, 𝑗 | |, 𝑋 col
𝑖, 𝑗 , 𝑆𝐿𝐴, 𝜋)B

{
Mhot (�| |𝐶𝑖, 𝑗 | |) if 𝑆𝐿𝐴/𝑋 col

𝑖, 𝑗 ≤𝜋
Mcold (�| |𝐶𝑖, 𝑗 | |, 𝑋 col

𝑖, 𝑗 , 𝑆𝐿𝐴) else,

where the access frequency 𝑋 col
𝑖, 𝑗 is the sum over all estimated

accesses 𝑥col (Sec. 6) of all time windows 𝜔 ∈ Ω.
According to the 𝜋-second-rule, a data item accessed twice

within 𝜋 seconds should be cached in the buffer pool at the
second access. Hence, the time window length should not be
set substantially smaller than 𝜋 . Otherwise, statistics could be
dominated bymany accesses occurring only during a short period,
cached in the buffer pool. In addition, the Nyquist–Shannon
sampling theorem proves that a sample rate of 𝜋/2 is sufficient to
achieve precise statistics [64]. Therefore, we set the time window
length to 𝜋/2.

We now specify the cost functionsMhot andMcold. The mem-
ory footprint of a hot classified column partition is only affected
by the estimated column partition size in bytes and the DRAM
costs (in $ per byte) because all data is held in DRAM.

Definition 7.2. Given an estimated column partition size �| |𝐶𝑖, 𝑗 | |,
the memory footprint of a hot columnpartition in $ is

Mhot (�| |𝐶𝑖, 𝑗 | |) B DRAM Costs [$/B] ·�| |𝐶𝑖, 𝑗 | |.
The memory footprint of a column partition classified as cold

considers the estimated column partition size, the estimated num-
ber of accesses, the 𝑆𝐿𝐴, and the hardware configuration because
data is fetched for every access.

Definition 7.3. Given an estimated column partition size �| |𝐶𝑖, 𝑗 | |
in bytes, an estimated access frequency 𝑋 col

𝑖, 𝑗 , and a maximum
workload execution time 𝑆𝐿𝐴 in seconds, the memory foot-
print of a cold column partition in $ is

Mcold (�| |𝐶𝑖, 𝑗 | |, 𝑋 col
𝑖, 𝑗 , 𝑆𝐿𝐴)B

𝑋 col
𝑖, 𝑗

𝑆𝐿𝐴[s] ·
⌈ �| |𝐶𝑖, 𝑗 | |[B]
𝑠𝑝 [B/Page]

⌉
·Disk Costs [$]
Disk IOP[Pages]

where 𝑠𝑝 is the size of a page in bytes.

We propose a buffer pool size based on the hot classified col-
umn partitions, such that the performance 𝑆𝐿𝐴 is fulfilled.

Definition 7.4. Given a partitioning layout L(𝑅,𝐴𝑘 ,S𝑘), a
maximum workload execution time 𝑆𝐿𝐴, and 𝜋 , we define the
proposed buffer pool size 𝐵 as

𝐵(S𝑘 , 𝑆𝐿𝐴, 𝜋) B
∑

𝐶𝑖,𝑗 ∈L(𝑅,𝐴𝑘 ,S𝑘)
1{𝑆𝐿𝐴/𝑋 col

𝑖, 𝑗 ≤ 𝜋} ·�| |𝐶𝑖, 𝑗 | |.

20

1
4×
1
2×

𝑆𝐿𝐴

2×
4×

0.15 0.25 0.5 1 2 3 4 5

W
or
kl
oa
d
Ex

ec
ut
io
n
Ti
m
e
E

re
la
tiv

e
to

𝑆
𝐿
𝐴
[lo

g
sc
al
e]

Buffer Pool Size [GB] [log scale]

SAHARA
Non-Partitioned

DB Expert 1 (Hash)
DB Expert 2 (Range)

(a) JCC-H (SF 10)

1
4×
1
2×

𝑆𝐿𝐴

2×
4×

0.125 0.25 0.5 1 2 3

W
or
kl
oa
d
Ex

ec
ut
io
n
Ti
m
e
E

re
la
tiv

e
to

𝑆
𝐿
𝐴
[lo

g
sc
al
e]

Buffer Pool Size [GB] [log scale]

𝑆𝐿𝐴 is not fulfilled
MIN in Memory (𝑆𝐿𝐴)

WS in Memory
ALL in Memory

(b) Join Order Benchmark

Figure 7: Comparison of end-to-end workload execution times (y-axis) for varying buffer pool sizes (x-axis) between
SAHARA and partitioning layouts proposed by database experts, running the workloads JCC-H and JOB.

Further, two system-specific restrictions exist: A minimum
partition cardinality and a page size. First, if the partition cardi-
nality is below a certain threshold, the overhead of scheduling
jobs and opening and closing partitions becomes too large, and
we assign an infinite memory footprint to the range partition
such that Alg. 1 proposes a partitioning, where the cardinality of
each range partition is above the threshold. Second, the column
partition size is at least the system’s disk page size.

8 EXPERIMENTAL EVALUATION
We evaluate the memory footprint reduction achieved by SA-
HARA (Sec. 8.1), hardware cost savings (Sec. 8.2), the preci-
sion of access and storage size estimations (Sec. 8.3), optimality
of layouts (Sec. 8.4), and the overhead and optimization time
(Sec. 8.5). We implemented SAHARA as a prototype in SAP
HANA Cloud [46, 61], a fully automatic advisor that only de-
pends on static hardware or software related properties. First, we
discuss the experimental setup.

Hardware: Our test system is equipped with an Intel Xeon
E7-8870 v4 CPU (4 sockets) and 1 TB DRAM. Secondary storage
is provided by a RAID of 8 disks (HGST HUC101812CSS204 HDD)
with 10k rpm and a SAS 12 Gbit/s interface.

Workloads: The JCC-H benchmark [10] (scale factor 10) is
our first workload. It extends the TPC-H benchmark [69] with
data and query skew. For example, special shopping events such
as the Black Friday are reflected by corresponding spikes in the
O_ORDERDATE column of the ORDERS table. Our second workload
is the Join Order Benchmark (JOB) [40]. JOB consists of 113
queries and uses real-world data from IMDb with data skew
and correlations that aggravate estimation errors. We randomly
sampled 200 queries for both JCC-H and JOB. Query and data
skew, as well as data correlation, pose a challenging environment
for SAHARA.

Parameters: We calculate 𝜋 = 70 by inserting the prices,
capacities, and performance of our hardware into Equation 1. As
a result, we set the time window length to 𝜋/2 = 35, such that we
fulfill the Nyquist–Shannon sampling theorem (Sec. 7). Further,
we set the minimum partition cardinality to 100, 000 based on
the multi-threading and partitioning capabilities of SAP HANA
Cloud. The page size varies between 4 KB and 16MB, depending
on the column partition data type [65]. Finally, logical tuple
identifiers are grouped into blocks of 4 KB, and domain blocks
are limited to at most 5000 per attribute, such that 1% additional
memory is spent on data access counters compared to the data
set size. Overall, the parameters are neither workload-specific
nor need tuning by a database administrator.

Baseline andDatabase Experts: To demonstrate SAHARA’s
effectiveness, we compare SAHARA against combinations of
partitioning layouts and buffer pool sizes. As a baseline, we
include the non-partitioned layout. Since related approaches
(Sec. 9) optimize performance and, therefore, differ in their ob-
jective function to SAHARA, we compare ourselves to carefully
hand-optimized partitioning layouts for memory footprint re-
duction and hardware cost savings proposed by experts. For
JCC-H, the layout referred to as DB Expert 1 represents the rec-
ommendation [22] of hash-partitioning the primary key columns
of ORDERS and LINEITEM. The layout referred to as DB Expert 2
represents the recommendation [15] of range-partitioning the
columns O_ORDERDATE and L_SHIPDATE. To the best of our knowl-
edge, no related work on partitioning the tables of JOB exists.
As JOB executes many joins between the foreign key column
movie_id and the primary key column id of table TITLE, DB
Expert 1 might partition on these columns. The layout referred
to as DB Expert 2 creates range partitions on columns with se-
lective filter predicates, e.g., on TITLE.PRODUCTION_YEAR. The
layouts from SAHARA and all database experts are published on
https://github.com/SAHARAEngineer/SAHARA.

For both JCC-H and JOB, we compare SAHARA against three
strategies to configure the buffer pool size. The strategy referred
to as ALL in Memory denotes the baseline where the buffer pool
size is set to the accumulated storage size of all partitions. This
yields the best performance but results in a high memory foot-
print. The strategy referred to as WS in Memory is a database
expert, who profiled the workload accesses and set the buffer
pool size to the working set (WS) size, i.e., all accessed data fits
into the buffer pool. The strategy referred to as MIN in Memory
(SLA) represents a database expert, who sets the buffer pool size
to the smallest value such that the 𝑆𝐿𝐴 is still fulfilled.

8.1 Exp. 1: Memory Footprint Reduction
The first experiment analyzes the effect of the partitioning layouts
on theminimal required buffer pool size, i.e., the smallest memory
footprint to fulfill a performance 𝑆𝐿𝐴 provided by a customer.
As 𝑆𝐿𝐴, we choose a maximum workload execution time 4×
slower than the in-memory workload execution time E on a non-
partitioned layout. For other 𝑆𝐿𝐴s, we observed similar behavior.

Fig. 7(a) shows on the y-axis the relative end-to-end work-
load execution time for the previously explained partitioning
layouts of JCC-H. The x-axis represents the buffer pool size. The
storage sizes differ for all layouts since the partitioning specifica-
tion impacts dictionary compression and additional compression
techniques such as bit-packing. For instance, hash partitioning

21

0
0.05

0.10

0.15

0.20

0.15 0.25 0.5 1 2 3 4 5

C G
oo

gl
e
[¢
]

Buffer Pool Size [GB] [log scale]

SAHARA
Non-Partitioned

DB Expert 1 (Hash)
DB Expert 2 (Range)

(a) JCC-H (SF 10)

0
0.01
0.02
0.03
0.04
0.05
0.06

0.125 0.25 0.5 1 2 3

C G
oo

gl
e
[¢
]

Buffer Pool Size [GB] [log scale]

𝑆𝐿𝐴 is not fulfilled
MIN in Memory (𝑆𝐿𝐴)

WS in Memory
ALL in Memory

(b) Join Order Benchmark

Figure 8: Comparison of hardware memory costs in ¢ on Google Cloud (y-axis) for varying buffer pool sizes (x-axis) be-
tween SAHARA and partitioning layouts proposed by database experts, running the workloads JCC-H and JOB.

produces many duplicate dictionary entries. The execution times
of all layouts are approximately equal between the storage size
(ALL in Memory) and the size of the accessed data (WS in Mem-
ory). In this segment, the buffer pool size may be reduced without
increasing execution times. Further lowering the buffer pool size
starts to increase the execution time. For the non-partitioned
layout, the smallest possible buffer pool size, which still fulfills
the 𝑆𝐿𝐴, is 900 MB. DB Expert 1 needs a buffer pool size of at
least 1000 MB because hash-partitioning does not cluster hot
and cold data into separate partitions, while DB Expert 2 can de-
crease the buffer pool size until 700 MB using range partitioning.
The layout proposed by SAHARA reduces the buffer pool size
to 280 MB while still fulfilling the 𝑆𝐿𝐴 by separating hot and
cold data into disjoint partitions to avoid pollution of the buffer
pool with cold data. Thus, SAHARA increases the tenant density
by 2.5× compared to layouts proposed by experts. Since SAHARA
consistently yields the best performance or comes close to the
best performance for all buffer pool sizes, SAHARA reduces the
memory footprint for all other possible 𝑆𝐿𝐴s.

The measurements for JOB in Fig. 7(b) show similar effects.
SAHARA is again able to run the workload with the smallest
buffer pool (240 MB) and increases the tenant density by at
least 1.7× compared to database experts and the baseline. DB
Expert 1 consumes substantially more memory than other parti-
tioning layouts due to many duplicate dictionary entries caused
by hash partitioning.

8.2 Exp. 2: Hardware Cost Savings
The second experiment analyzes the hardware cost that a DBaaS
provider needs to pay for executing the workload. As SAHARA
optimizes the memory footprint, we calculate the DRAM and
disk costs with a fixed number of CPUs. The task of proposing
an appropriate number of CPUs [19, 20] is beyond the scope of
the paper. We run the experiment on the introduced on-premise
hardware but map the provisioned resource costs to a so called
memory-optimized Google Cloud instance, priced at $2606.10 per
TB/month of DRAM and $80.00 per TB/month for regional stan-
dard provisioned disk space (HDD) [26]. While DRAM and disk
space are billed per GB on Google Cloud, DBaaS providers can
reduce hardware costs internally on a more fine-granular level
by placing multiple database instances on the same node. Hence,
we consider memory costs CGoogle of a Google Cloud instance
per MB/s in ¢.

Fig. 8(a) shows on the y-axis the memory cost CGoogle in ¢
for different partitioning layouts of JCC-H and on the x-axis the
buffer pool size. We use the same definition of the 𝑆𝐿𝐴 as in

Experiment 1. The costs of all layouts decrease from the stor-
age size (ALL in Memory) until the first local minimum close to
the size of the accessed data (WS in Memory). By lowering the
buffer pool size further, the costs start to increase because in-
creasing execution times impact costs more heavily than reduced
buffer pool sizes. Below a buffer pool size of ca. 800MB, costs for
SAHARA and both database experts are reduced since hot data
is cached in the buffer pool. While the 𝑆𝐿𝐴 for both experts is no
longer fulfilled, SAHARA reduces the costs to 0.04¢ with a buffer
pool size of 280 MB and fulfills the 𝑆𝐿𝐴. For the non-partitioned
layout and both experts, the cost-optimal buffer pool size (0.06¢)
that fulfills the 𝑆𝐿𝐴 is 2.4 GB. Thus, SAHARA yields the smallest
buffer pool size and memory costs.

The measurements for JOB in Fig. 8(b) show similar behavior.
SAHARA achieves a cost-optimal buffer pool size, still fulfilling
the 𝑆𝐿𝐴, at only 240 MB (0.15¢), while other layouts require a
buffer pool size of at least 1000MB for minimal costs (0.16¢).

8.3 Exp. 3: Precision of Estimates
The third experiment evaluates how precisely SAHARA estimates
data accesses, storage sizes, and the memory footprint. We gen-
erated for JCC-H 67 and for JOB 37 random partitioning layouts
with a random partition-driving attribute. We then compared
the estimated and actual values at relation, attribute, and column
partition level. For JCC-H (JOB), we analyzed 67 (37) estimates
at relation, 1030 (310) at attribute, and 5699 (2237) at column
partition level.

Data Accesses. Fig. 9(a) shows the ratio of estimated and
actual data accesses at relation, attribute, and column partition
level for both JCC-H (left side) and JOB (right side). Overestima-
tion is shown on the top, underestimation at the bottom. Since
partition pruning impacts the number of data accesses in a range-
partitioned layout and SAHARA proposes a new layout based on
the collected statistics, the current layout can impact the preci-
sion of the estimates. However, we observe that most estimates
are bound by a factor of 4. Therefore, expensive misclassifica-
tions of a hot page as being cold and vice versa are prevented.
In general, estimates for JCC-H are more accurate than for JOB
because JOB is based on the real-world IMDb dataset, whereas
the dataset of JCC-H remains synthetic.

Storage Size. Fig. 9(b) shows the ratio of estimated and actual
storage size at relation, attribute, and column partition level. We
observe that all storage size estimates for JCC-H are bound by a
factor of 1.5. For JOB most estimates are bound by a factor of 2.
SAHARA tends to underestimate storage sizes because cardinali-
ties in commercial databases tend to be underestimated [40].

22

1
16

1
8

1
4

1
2

1
2
4
8
16

𝑅 𝐴𝑖

JCC-H (SF 10)
𝐶𝑖, 𝑗

𝑋
co
l /𝑋

co
l [
lo
g
sc
al
e]

𝑅 𝐴𝑖

JOB
𝐶𝑖, 𝑗

un
de
re
st
im

at
io
n

ov
er
es
tim

at
io
n

(a) Estimated vs. actual data accesses

1
16

1
8

1
4

1
2

1
2
4
8
16

𝑅 𝐴𝑖

JCC-H (SF 10)
𝐶𝑖, 𝑗

� ||..
.
||[

B]
/|
|.
..
||[

B]
[lo

g
sc
al
e]

𝑅 𝐴𝑖

JOB
𝐶𝑖, 𝑗

un
de
re
st
im

at
io
n

ov
er
es
tim

at
io
n

(b) Estimated vs. actual storage sizes

1
16

1
8

1
4

1
2

1
2
4
8
16

𝑅 𝐴𝑖

JCC-H (SF 10)
𝐶𝑖, 𝑗

M̂
/M

[lo
g
sc
al
e]

𝑅 𝐴𝑖

JOB
𝐶𝑖, 𝑗

un
de
re
st
im

at
io
n

ov
er
es
tim

at
io
n

(c) Estimated vs. actual memory footprint

Figure 9: Precision of data access 𝑋 col/𝑋 col, storage size �| | . . . | |/| | . . . | |, and memory footprint M̂/M at relation, attribute,
and column partition level for random partitioning layouts with random partition-driving attribute.

Memory Footprint. Figure 9(c) shows the ratio of estimated
and actual memory footprint at relation, attribute, and column
partition level. We observe again that most estimates for JCC-H
are bound by a factor of 2, while estimates for JOB are underesti-
mated.

8.4 Exp. 4: Optimality
The fourth experiment evaluates the impact of the estimated
memory footprint M̂ on the output of SAHARA. We created
partitioning layouts with the lowest estimated memory foot-
print M̂ for all possible partition-driving attributes and number
of partitions. We then ran the workload and compared the ac-
tual memory footprintM for each layout against SAHARA, the
non-partitioned layout, and the layouts proposed by database
experts.

Fig. 10 shows on the y-axis the actual memory footprintM for
layouts of six different partition-driving attributes of LINEITEM.
The x-axis denotes the number of partitions per layout. We also
highlight SAHARA, the non-partitioned layout, and the layouts
chosen by database experts. As SAHARA estimates are accurate
(Sec. 8.3), the proposed layout with five partitions and L_SHIP-
DATE as partition-driving attribute is close to the optimum with
seven partitions. DB Expert 2 chooses the same partition-driving
attribute but has a higher memory footprint than SAHARA due
to a different partitioning specification. DB Expert 1 picks the
wrong partition-driving attribute (L_ORDERKEY) and has a higher
memory footprint than most other layouts. L_RECEIPTDATE and
L_COMMITDATE as partition-driving attributes also have a low
memory footprint due to their correlation with L_SHIPDATE. We
observed similar behavior (not shown) for other tables of JCC-H
and JOB.

1.5
2.0
2.5
3.0
3.5
4.0

1 2 3 4 5 6 7 8 9 10

Ac
tu
al
M
em

or
y

Fo
ot
pr
in
tM

[$
]

Number of Partitions for LINEITEM

L_COMMITDATE
L_EXTENDEDPRICE
L_QUANTITY

L_RECEIPTDATE
L_SHIPDATE
L_ORDERKEY

SAHARA
Non-Partitioned
DB Expert 1/2/

Figure 10: Comparison between SAHARA and other lay-
outs of LINEITEM on the actual memory footprintM.

As SAHARA’s choice is close to the optimum, it particularly
reduces data accesses and increases the compression ratio. The
reason is that an increasing number of partitions would separate
hot and cold data better into disjoint partitions by reducing the
number of accesses and, therefore, reducing the memory foot-
print. However, an increasing number of partitions would also
increase the storage size in most cases due to dictionary dupli-
cates and, therefore, increases the memory footprint. SAHARA
instead balances both.

Using the MaxMinDiff heuristic (Alg. 2) instead of Alg. 1 (DP)
increases the memory footprintM (not shown) not at all or by
a tiny margin: For JCC-H, ORDERS (0.6%) and LINEITEM (0.8%);
For JOB, AKA_NAME (0.1%), CAST_INFO (2.9%), CHAR_NAME (4.3%),
and MOVIE_INFO (6.5%). MaxMinDiff provides near-optimal par-
titioning layouts because the memory footprint increases by at
most 6.5%.

In sum, SAHARA’s partitioning layout is close to the opti-
mum, while other partitioning layouts may fail due to the wrong
choice of the partition-driving attribute or range partitioning
specification.

8.5 Exp. 5: Overhead and Optimization Time
The final experiment evaluates the memory (relative to the data
set size) and runtime overhead (relative to the in-memory work-
load execution time of Experiment 1) for collecting statistics
during workload execution, as well as the optimization time of
SAHARA, using either Alg. 1 (DP) or Alg. 2 (MaxMinDiff).

The results (Tab. 1) show that SAHARA has a low optimization
time and a low memory overhead. The runtime overhead is no-
table but enables substantial memory footprint and hardware cost
savings. To reduce the overhead, statistics may be collected only
periodically or sampling is applied. For detailed space and time
efficient implementation techniques the reader is referred to [12].
In sum, SAHARA is practical and can be applied in production.

Table 1: Overhead for statistics collection and optimiza-
tion time for determining the optimal partitioning layout.

Workload JCC-H JOB
Statistics Collection: Memory Overhead 0.39% 0.28%
Statistics Collection: Runtime Overhead 14.84% 18.74%
Optimization Time: Alg. 1 (DP) 3.06sec 1.45sec
Optimization Time: Alg. 2 (MaxMinDiff) 0.02sec 0.01sec

23

9 RELATEDWORK
Physical Design Advisors. Popular approaches for physical de-
sign advice include index advisors [2, 13, 35, 38, 49, 53, 74], storage
model advisors [4, 6, 28], table placement advisors [39, 45, 54, 68],
and resource advisors for elasticity [19, 20]. We limit the dis-
cussion to table partitioning advisors, which are orthogonal to
the approaches mentioned above. Data skipping techniques [67]
work on a more fine-granular level and can be applied within ta-
ble partitions. Similarly, Qd-tree [72] analyzes filter predicates
and groups rows into pages to minimize I/O cost by routing the
queries to the blocks that need to be accessed.

The main difference between state-of-the-art table partition-
ing advisors and SAHARA is the objective function. While all
other advisors focus on maximizing performance, the objective
function of SAHARA is memory footprint reduction.

Besides SAHARA, Casper [7] is the only table partitioning
advisor specifically built for column stores. All other partition-
ing advisors are mainly designed for row stores. In Casper, the
partition-driving attribute has to be provided by the DBA, and
only selections are considered. SAHARA instead recommends
a partition-driving attribute, estimates data access correlations
between passive and partition-driving attributes, and handles all
operators.

Schism [17], Clay [63], Horticulture [56], Mesa [50], Hilprecht
et al. [31], Strife [58], and Chiller [73] are table partitioning advi-
sors for distributed DBMS and designed for row stores. In par-
ticular, they aim to minimize cross-partition transactions by dis-
tributing hot accesses evenly across all server nodes. In contrast,
the hot and cold partitions proposed by SAHARA intentionally
lead to unbalanced access patterns.

Table partitioning advisors in IBM DB2 [34, 59, 74] and Mi-
crosoft SQL Server [2, 3, 47] support column stores only partially.
For example, IBM DB2 does not support range partitioning for
column store tables [33]. Both commercial tools minimize esti-
mated query costs, i.e., query response time, using the optimizer’s
what-if API. Apart from a different objective function, SAHARA
generates partitioning proposals based on actual data accesses
and lower optimization time.

Classification of Hot and Cold Data. Disk-based DBMS
employ buffer pools with fixed page sizes to manage data larger
than main memory [30]. Replacement policies [23, 55] have been
proposed to minimize the number of I/O operations, while the
buffer pool size has to be provided by the DBA. Related work [29,
42] showed that a buffer pool induces significant computation
and memory overhead when all data fits in memory. To avoid this
overhead, in-memory DBMS were initially designed without a
buffer pool [9, 36, 66]. However, recent work [41, 51, 65] showed
how modern buffer pool designs still achieve in-memory speed.
Nevertheless, DRAM remains an expensive resource. Therefore,
related work [5, 8, 21, 24, 25, 32, 42, 70] focuses on identifying hot
and cold data, intending to move cold data to secondary storage
or compressing cold data with a higher compression ratio.

The main difference between related work and SAHARA is
their hot and cold classification. While related work requires the
DBA to specify a memory budget, SAHARA uses the five-minute-
rule to classify data as hot and cold without additional tuning
knobs, based only on the hardware and the workload.

Furthermore, the systems differ in the way hot and cold data is
identified. Project Siberia [5, 24, 42] and X-Engine [32] leverage
access frequencies at row, respectively, at extent granularity, to
determine temperatures. Project Siberia collects log samples to

estimate the access frequency, while SAHARA counts block-wise
and collects actual accesses of the workload. Anti-Caching [21]
and LeanStore [41, 51] utilize replacement policies instead of
access counters to identify cold data. Unlike both approaches,
SAHARA’s goal is to propose a range partitioning that separates
hot and cold data that necessitates fine-granular access statistics,
e.g., on the domain. Also, access frequencies need to be calcu-
lated for the cost model. HyPer [25] uses flags of the CPU’s MMU
for each virtual memory page to identify cold pages for com-
pression. In contrast to our work, they lack a formal definition
of the temperature. Hyrise [8] and Mosaic [70] determine hot
and cold columns based on a representative workload sample.
Since data access patterns are already heavily distorted within
a column due to events like Black Friday [10, 23, 32], SAHARA
classifies hot and cold data at a more fine-granular level and
proposes a range partitioning.

MAT [52] collects memory accesses on processors for only
analyzing table partitionings and buffer pool sizes. SAHARA
instead collects data accesses inside the database and proposes
instead analyzing a table partitioning and a buffer pool size.

CostModels.Query optimizers utilize cost models [40, 48, 62]
to minimize query response time. Lomet [44] proposes a cost
model for a cost/performance analysis by assigning every opera-
tion, either main memory or secondary storage operation costs.
SAHARA’s cost model instead assigns the memory footprint to a
column partition and still fulfills performance 𝑆𝐿𝐴s. This allows
SAHARA to build an optimal table partitioning recursively.

Histograms. The heuristic MaxMinDiff was inspired by his-
togram construction. While traditional histograms [37, 57] group
values based on a one-dimensional domain, e.g., access frequency,
MaxMinDiff considers the distribution of accesses over time.

10 CONCLUSION AND FUTUREWORK
We presented the first table partitioning advisor that optimizes
the table partitioning on the memory footprint while still ful-
filling performance 𝑆𝐿𝐴s. The proposed range partitioning is
based on hot- and cold-classified value ranges, such that pages
of hot-classified partitions contain mainly hot data while pages
of cold-classified partitions group cold data. This allows to re-
duce the buffer pool size substantially to keep only pages with a
high density of hot data in DRAM but still adhering to all per-
formance 𝑆𝐿𝐴s. Furthermore, SAHARA’s partitioning proposal
is based on actual data access statistics. Therefore, SAHARA
does not rely on the optimizer’s what-if API and is not sensi-
tive to any skew in the distribution of data accesses. In addition,
SAHARA collects data accesses from all operators during sta-
tistics collection and, therefore, can be used for any workload.
Further, SAHARA considers dictionary compression and parti-
tion pruning. Both are excellent further opportunities to reduce
the memory footprint of databases and are employed in many col-
umn stores. Finally, we integrated SAHARA into a prototype of
a commercial cloud database and showed that SAHARA reduces
the memory footprint (e.g., the buffer pool size) and memory
costs by 2.5× compared to database experts while still adher-
ing to all 𝑆𝐿𝐴s. Therefore, SAHARA is practical for popular free
and mature commercial systems.

In future, we plan to predict the future workload based on
an observed workload to decide if proactive re-partitioning is
beneficial. This is the case, for example, if the re-partitioning
costs are amortized by a better fit of the table layout to the future
workload.

24

REFERENCES
[1] Daniel Abadi, Peter A. Boncz, Stavros Harizopoulos, Stratos Idreos, and Samuel

Madden. 2013. The Design and Implementation of Modern Column-Oriented
Database Systems. Foundations and Trends in Databases 5, 3 (2013), 197–280.

[2] Sanjay Agrawal, Surajit Chaudhuri, Lubor Kollar, Arun Marathe, Vivek
Narasayya, and Manoj Syamala. 2004. Database Tuning Advisor for Microsoft
SQL Server 2005. PVLDB (2004), 1110–1121.

[3] Sanjay Agrawal, Vivek Narasayya, and Beverly Yang. 2004. Integrating Vertical
and Horizontal Partitioning into Automated Physical Database Design. In
SIGMOD ’04. ACM, 359–370.

[4] Ioannis Alagiannis, Stratos Idreos, and Anastasia Ailamaki. 2014. H2O: A
Hands-free Adaptive Store. In SIGMOD ’14. ACM, 1103–1114.

[5] Karolina Alexiou, Donald Kossmann, and Per-Åke Larson. 2013. Adaptive
Range Filters for Cold Data: Avoiding Trips to Siberia. PVLDB 6, 14 (2013),
1714–1725.

[6] Joy Arulraj, Andrew Pavlo, and Prashanth Menon. 2016. Bridging the
Archipelago between Row-Stores and Column-Stores for Hybrid Workloads.
In SIGMOD ’16. ACM, 583–598.

[7] Manos Athanassoulis, Kenneth S. Bøgh, and Stratos Idreos. 2019. Optimal
Column Layout for Hybrid Workloads. PVLDB 12, 13 (2019), 2393–2407.

[8] Martin Boissier, Rainer Schlosser, and Matthias Uflacker. 2018. Hybrid data
layouts for tiered HTAP databases with pareto-optimal data placements. In
ICDE ’18. IEEE, 209–220.

[9] Peter A. Boncz. 2002. Monet: A Next-Generation DBMS Kernel For Query-
Intensive Applications. Ph.D. Dissertation. Universiteit van Amsterdam, Ams-
terdam, The Netherlands.

[10] Peter A. Boncz, Angelos-Christos Anatiotis, and Steffen Kläbe. 2017. JCC-
H: Adding Join Crossing Correlations with Skew to TPC-H. In TPCTC 2017.
Springer International Publishing, 103–119.

[11] Peter A. Boncz, Thomas Neumann, and Orri Erling. 2014. TPC-H Analyzed:
Hidden Messages and Lessons Learned from an Influential Benchmark. In
Performance Characterization and Benchmarking. Springer International Pub-
lishing, Cham, Switzerland, 61–76.

[12] Michael Brendle, Nick Weber, Mahammad Valiyev, Norman May, Robert
Schulze, Alexander Böhm, Guido Moerkotte, and Michael Grossniklaus. 2021.
Precise, Compact, and Fast Data Access Counters for Automated Physical
Database Design. In BTW 2021. GI.

[13] Nicolas Bruno and Surajit Chaudhuri. 2007. An online approach to physical
design tuning. In ICDE ’07. IEEE, 826–835.

[14] Mengchu Cai, Martin Grund, Anurag Gupta, Fabian Nagel, Ippokratis Pandis,
Yannis Papakonstantinou, and Michalis Petropoulos. 2018. Integrated Query-
ing of SQL database data and S3 data in Amazon Redshift. IEEE Data Eng. Bull.
41, 2 (2018), 82–90.

[15] Cisco Systems, Inc. 2019. TPC-H Full Disclosure Report: Microsoft SQL Server
2019. http://tpc.org/results/fdr/tpch/cisco~tpch~30000~cisco_ucs_c480_m5_
server~fdr~2019-11-01~v04.pdf.

[16] Graham Cormode, Minos Garofalakis, Peter J. Haas, and Chris Jermaine. 2011.
Synopses for Massive Data. Foundations and Trends in Databases 4, 1–3 (2011),
1–294.

[17] Carlo Curino, Evan Jones, Yang Zhang, and Sam Madden. 2010. Schism: A
Workload-driven Approach to Database Replication and Partitioning. PVLDB
3, 1-2 (2010), 48–57.

[18] Benoît Dageville, Thierry Cruanes, Marcin Zukowski, Vadim Antonov, Artin
Avanes, Jon Bock, Jonathan Claybaugh, Daniel Engovatov, Martin Hentschel,
Jiansheng Huang, Allison W. Lee, Ashish Motivala, Abdul Q. Munir, Steven
Pelley, Peter Povinec, Greg Rahn, Spyridon Triantafyllis, and Philipp Unter-
brunner. 2016. The Snowflake Elastic Data Warehouse. In SIGMOD ’16. ACM,
215–226.

[19] Sudipto Das, Divyakant Agrawal, and Amr El Abbadi. 2013. ElasTraS: An
Elastic, Scalable, and Self-Managing Transactional Database for the Cloud.
ACM Trans. Database Syst. 38, 1, Article 5 (2013), 45 pages.

[20] Sudipto Das, Shoji Nishimura, Divyakant Agrawal, and Amr El Abbadi. 2011.
Albatross: Lightweight Elasticity in Shared Storage Databases for the Cloud
Using Live Data Migration. PVLDB 4, 8 (2011), 494–505.

[21] Justin DeBrabant, Andrew Pavlo, Stephen Tu, Michael Stonebraker, and Stan
Zdonik. 2013. Anti-caching: A New Approach to Database Management
System Architecture. PVLDB 6, 14 (2013), 1942–1953.

[22] Dell Inc. 2021. TPC-H Full Disclosure Report: Exasol 7.1. http://tpc.org/results/
fdr/tpch/dell~tpch~30000~dell_poweredge_r6525~fdr~2021-05-26~v02.pdf.

[23] Peter J. Denning. 1968. The Working Set Model for Program Behavior. Com-
mun. ACM 11, 5 (1968), 323–333.

[24] Ahmed Eldawy, Justin Levandoski, and Per-Åke Larson. 2014. Trekking
Through Siberia: Managing Cold Data in a Memory-optimized Database.
PVLDB 7, 11 (2014), 931–942.

[25] Florian Funke, Alfons Kemper, and Thomas Neumann. 2012. Compacting
Transactional Data in Hybrid OLTP & OLAP Databases. PVLDB 5, 11 (2012),
1424–1435.

[26] Google. 2021. Google Cloud Pricing. https://cloud.google.com/compute/all-
pricing. Last accessed on 2021-08-31.

[27] Jim Gray and Franco Putzolu. 1987. The 5 Minute Rule for Trading Memory
for Disc Accesses and the 10 Byte Rule for Trading Memory for CPU Time. In
SIGMOD ’87. ACM, 395–398.

[28] Richard A. Hankins and Jignesh M. Patel. 2003. Data Morphing: An Adaptive,
Cache-Conscious Storage Technique. PVLDB (2003), 417–428.

[29] Stavros Harizopoulos, Daniel J. Abadi, Samuel Madden, and Michael Stone-
braker. 2008. OLTP through the Looking Glass, and What We Found There.
In SIGMOD ’08. ACM, 981–992.

[30] J. M. Hellerstein, M. Stonebraker, and J. Hamilton. 2007. Architecture of a
Database System. Now Publishers Inc.

[31] Benjamin Hilprecht, Carsten Binnig, and Uwe Röhm. 2020. Learning a Parti-
tioning Advisor for Cloud Databases. In SIGMOD ’20. ACM, 143–157.

[32] Gui Huang, Xuntao Cheng, Jianying Wang, Yujie Wang, Dengcheng He, Tiey-
ing Zhang, Feifei Li, Sheng Wang, Wei Cao, and Qiang Li. 2019. X-Engine: An
Optimized Storage Engine for Large-scale E-commerce Transaction Processing.
In SIGMOD ’19. ACM, 651–665.

[33] IBM. 2021. IBM DB2: Restrictions, Limitations, and Unsup-
ported Database Configurations for Column-Organized Tables.
https://www.ibm.com/docs/en/db2/11.5?topic=to-restrictions-limitations-
unsupported-database-configurations-column-organized-tables. Last
accessed on 2021-08-31.

[34] IBM. 2021. IBM DB2: The Design Advisor. https://www.ibm.com/docs/en/
db2/11.5?topic=strategy-design-advisor. Last accessed on 2021-08-31.

[35] Stratos Idreos, Martin L Kersten, and Stefan Manegold. 2007. Database Crack-
ing. In CIDR ’07. 68–78.

[36] Alfons Kemper and Thomas Neumann. 2011. HyPer: A Hybrid OLTP&OLAP
Main Memory Database System Based on Virtual Memory Snapshots. In ICDE
’11. IEEE, 195–206.

[37] Robert Philip Kooi. 1980. The Optimization of Queries in Relational Databases.
Ph.D. Dissertation. Case Western Reserve University, Cleveland, OH, USA.

[38] Jan Kossmann, Stefan Halfpap, Marcel Jankrift, and Rainer Schlosser. 2020.
Magic mirror in my hand, which is the best in the land? An Experimental
Evaluation of Index Selection Algorithms. PVLDB 13, 11 (2020), 2382–2395.

[39] K. Ashwin Kumar, Abdul Quamar, Amol Deshpande, and Samir Khuller. 2014.
SWORD: Workload-Aware Data Placement and Replica Selection for Cloud
Data Management Systems. The VLDB Journal 23, 6 (2014), 845–870.

[40] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter A. Boncz, Alfons Kemper,
and Thomas Neumann. 2015. How Good Are Query Optimizers, Really?
PVLDB 9, 3 (2015), 204–215.

[41] Viktor Leis, Michael Haubenschild, Alfons Kemper, and Thomas Neumann.
2018. LeanStore: In-Memory Data Management beyond Main Memory. In
ICDE ’18. IEEE, 185–196.

[42] Justin J Levandoski, Per-Åke Larson, and Radu Stoica. 2013. Identifying hot
and cold data in main-memory databases. In ICDE ’13. IEEE, 26–37.

[43] Sam S Lightstone, Toby J Teorey, and Tom Nadeau. 2010. Physical Database
Design. Morgan Kaufmann Publishers Inc.

[44] David Lomet. 2018. Cost/Performance in Modern Data Stores: How Data
Caching Systems Succeed. In DaMoN ’18. ACM, 9:1–9:10.

[45] Ryan Marcus, Olga Papaemmanouil, Sofiya Semenova, and Solomon Garber.
2018. NashDB: An End-to-End Economic Method for Elastic Database Frag-
mentation, Replication, and Provisioning. In SIGMOD ’18. ACM, 1253–1267.

[46] Norman May, Alexander Boehm, and Wolfgang Lehner. 2017. SAP HANA –
The Evolution of an In-Memory DBMS from Pure OLAP Processing Towards
Mixed Workloads. In BTW 2017. GI, 545–546.

[47] Microsoft. 2021. MS SQL Server: Database Engine Tuning Advi-
sor. https://docs.microsoft.com/en-gb/sql/relational-databases/performance/
database-engine-tuning-advisor?view=sql-server-ver15. Last accessed on
2021-08-31.

[48] Guido Moerkotte. 2020. Building Query Compilers. http://pi3.informatik.uni-
mannheim.de/~moer/querycompiler.pdf, Mannheim, Germany. Last accessed
on 2021-08-31.

[49] Vikram Nathan, Jialin Ding, Mohammad Alizadeh, and Tim Kraska. 2020.
Learning Multi-Dimensional Indexes. In Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data (SIGMOD ’20). Association
for Computing Machinery, New York, NY, USA, 985–1000.

[50] Rimma Nehme and Nicolas Bruno. 2011. Automated Partitioning Design in
Parallel Database Systems. In SIGMOD ’11. ACM, 1137–1148.

[51] Thomas Neumann and Michael Freitag. 2020. Umbra: A Disk-Based System
with In-Memory Performance. CIDR ’20, Article 29 (2020), 7 pages.

[52] Stefan Noll, Jens Teubner, NormanMay, and Alexander Böhm. 2020. Analyzing
Memory Accesses with Modern Processors. In DaMoN ’20. ACM, Article 1,
9 pages.

[53] Matthaios Olma, Manos Karpathiotakis, Ioannis Alagiannis, Manos Athanas-
soulis, and Anastasia Ailamaki. 2020. Adaptive partitioning and indexing for
in situ query processing. The VLDB Journal 29, 1 (2020), 569–591.

[54] Oguzhan Ozmen, Kenneth Salem, Jiri Schindler, and Steve Daniel. 2010.
Workload-aware Storage Layout for Database Systems. In SIGMOD ’10. ACM,
939–950.

[55] Elizabeth J. O’Neil, Patrick E. O’Neil, and Gerhard Weikum. 1993. The LRU-K
Page Replacement Algorithm for Database Disk Buffering. In SIGMOD ’93.
ACM, 297–306.

[56] Andrew Pavlo, Carlo Curino, and Stanley Zdonik. 2012. Skew-Aware Auto-
matic Database Partitioning in Shared-Nothing, Parallel OLTP Systems. In
SIGMOD ’12. ACM, 61–72.

[57] Viswanath Poosala, Peter J. Haas, Yannis E. Ioannidis, and Eugene J. Shekita.
1996. Improved Histograms for Selectivity Estimation of Range Predicates. In
SIGMOD ’96. ACM, 294–305.

[58] Guna Prasaad, Alvin Cheung, and Dan Suciu. 2020. Handling Highly Con-
tended OLTP Workloads Using Fast Dynamic Partitioning. In SIGMOD ’20.
Association for Computing Machinery, New York, NY, USA, 527–542.

25

[59] Jun Rao, Chun Zhang, Nimrod Megiddo, and Guy Lohman. 2002. Automating
Physical Database Design in a Parallel Database. In SIGMOD ’02. ACM, 558–
569.

[60] Mark A. Roth and Scott J. Van Horn. 1993. Database Compression. In SIGMOD
’93. ACM, 31–39.

[61] SAP. 2021. SAP HANA Cloud. https://saphanajourney.com/hana-cloud/. Last
accessed on 2021-08-31.

[62] P. Griffiths Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G.
Price. 1979. Access Path Selection in a Relational Database Management
System. In SIGMOD ’79. ACM, 23–34.

[63] Marco Serafini, Rebecca Taft, Aaron J. Elmore, Andrew Pavlo, Ashraf Aboul-
naga, andMichael Stonebraker. 2016. Clay: Fine-Grained Adaptive Partitioning
for General Database Schemas. PVLDB 10, 4 (2016), 445–456.

[64] C. E. Shannon. 1949. Communication in the Presence of Noise. Proceedings of
the IRE 37, 1 (1949), 10–21.

[65] Reza Sherkat, Colin Florendo, Mihnea Andrei, Rolando Blanco, Adrian Dra-
gusanu, Amit Pathak, Pushkar Khadilkar, Neeraj Kulkarni, Christian Lemke,
Sebastian Seifert, and et al. 2019. Native Store Extension for SAP HANA.
PVLDB 12, 12 (2019), 2047–2058.

[66] Mike Stonebraker, Daniel J. Abadi, Adam Batkin, Xuedong Chen, Mitch Cher-
niack, Miguel Ferreira, Edmond Lau, Amerson Lin, Sam Madden, Elizabeth
O’Neil, Pat O’Neil, Alex Rasin, Nga Tran, and Stan Zdonik. 2005. C-Store: A
Column-Oriented DBMS. PVLDB (2005), 553–564.

[67] Liwen Sun, Michael J. Franklin, JiannanWang, and EugeneWu. 2016. Skipping-
Oriented Partitioning for Columnar Layouts. PVLDB 10, 4 (2016), 421–432.

[68] Rebecca Taft, EssamMansour, Marco Serafini, Jennie Duggan, Aaron J. Elmore,
Ashraf Aboulnaga, Andrew Pavlo, and Michael Stonebraker. 2014. E-Store:
Fine-Grained Elastic Partitioning for Distributed Transaction Processing Sys-
tems. PVLDB 8, 3 (2014), 245–256.

[69] TPC. 2021. TPC-H Standard Specification. http://tpc.org/tpc_documents_
current_versions/pdf/tpc-h_v3.0.0.pdf.

[70] Lukas Vogel, Viktor Leis, Alexander van Renen, Thomas Neumann, Satoshi
Imamura, and Alfons Kemper. 2020. Mosaic: A Budget-Conscious Storage
Engine for Relational Database Systems. PVLDB 13, 12 (2020), 2662–2675.

[71] Till Westmann, Donald Kossmann, Sven Helmer, and Guido Moerkotte. 2000.
The Implementation and Performance of Compressed Databases. SIGMOD
Rec. 29, 3 (2000), 55–67.

[72] Zongheng Yang, Badrish Chandramouli, ChiWang, Johannes Gehrke, Yinan Li,
Umar Farooq Minhas, Per-Åke Larson, Donald Kossmann, and Rajeev Acharya.
2020. Qd-Tree: Learning Data Layouts for Big Data Analytics. In SIGMOD ’20.
ACM, 193–208.

[73] Erfan Zamanian, Julian Shun, Carsten Binnig, and Tim Kraska. 2020. Chiller:
Contention-Centric Transaction Execution and Data Partitioning for Modern
Networks. In Proceedings of the 2020 ACM SIGMOD International Conference
on Management of Data (SIGMOD ’20). Association for Computing Machinery,
New York, NY, USA, 511–526.

[74] Daniel C. Zilio, Jun Rao, Sam Lightstone, Guy Lohman, Adam Storm, Christian
Garcia-Arellano, and Scott Fadden. 2004. DB2 Design Advisor: Integrated
Automatic Physical Database Design. PVLDB (2004), 1087–1097.

26

