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ABSTRACT
Selectivity estimation is a fundamental database task, which has

been studied for decades. A recent trend is to use deep learning

methods for selectivity estimation. Deep autoregressive models

have been reported to achieve excellent accuracy. However, if the

relation has continuous attributes with large domain sizes, the

search space of query inference on deep autoregressive models

can be very large, resulting in inaccurate estimation and inef-

ficient inference. To address this challenge, we propose a new

model that integrates multiple Gaussian mixture models and a

deep autoregressive model. On the one hand, Gaussian mixture

models can fit the distribution of continuous attributes and re-

duce their domain sizes. On the other hand, deep autoregressive

model can learn the joint data distribution with reduced domain

attributes. In experiments, we compare with multiple baselines

on 4 real-world datasets containing continuous attributes, and

the experimental results demonstrate that our model can achieve

up to 20 times higher accuracy than the second best estimators,

while using less space and inference time.

1 INTRODUCTION
Selectivity estimation aims to estimate the fraction of a query

predicate accurately and fast in small memory usage without

actual execution [11]. It has applications in approximate query

processing and query optimization [45]. Although selectivity

estimation has been studied for decades, it is still a notoriously

difficult problem and the accuracy may drop significantly as the

query complexity increases [30, 55].

The difficulty of selectivity estimation is to learn the joint

data distribution of a relation and estimate selectivity accurately

and efficiently. DBMSes [33, 36, 42] estimate selectivity based

on histograms or sketches. These estimators can conduct query

inference very fast, but may have poor accuracy due to the inde-

pendence assumption that they make. Traditional learning based

estimators, such as probabilistic graphical model [47] and kernel

density estimation [22, 26], relax the assumption slightly, but

still have their shortcomings. For example, the kernel density

estimation [22, 26] is struggled with high dimensional data, and

the probabilistic graphical model [47] is inefficient in estimation.

Recently, deep learning models have been employed for selec-

tivity estimation. Deep autoregressive modes (AR models) are

employed in the estimators [49, 54, 55], which learn the joint data

distribution without independence assumptions. As reported in

the experimental results [49, 54, 55], estimators based on AR

© 2022 Copyright held by the owner/author(s). Published in Proceedings of the 
25th International Conference on Extending Database Technology (EDBT), 29th 
March-1st April, 2022, ISBN 978-3-89318-085-7 on OpenProceedings.org. 
Distribution of this paper is permitted under the terms of the Creative Commons 
license CC-by-nc-nd 4.0.

models often achieve state-of-the-art accuracy. After AR models

are trained, estimators invoke a sampling method, such as pro-

gressive sampling [54, 55], to estimate the selectivities of queries

with range predicates since enumerating all points in a query

range is prohibitively expensive. However, when there are at-

tributes with large domain sizes in the dataset, such as spatial

attributes or temporal attributes, the estimation based on a sam-

pling method like progressive sampling can be inaccurate since

the sample space is very large. For example, to manage the ef-

ficiency of progressive sampling, estimators may use up to 10
4

samples in estimation. However, the sample space of a real-life

dataset can be much larger, e.g., the sample space of HIGGS used

in previous work [11] is up to 10
41
. The large difference may

render progressive sampling inaccurate on estimation.

To address the aforementioned challenge, we aim to design a

model that is able to reduce the domain sizes of some attributes,

and thus the sample space, such that the ARmodel can learnmore

accurate joint distribution of dataset with large domain sizes. In

this work, we propose a new model for selectivity estimation that

integrates a deep autoregressive model with Gaussian mixture

models, which is called IAM. On the one hand, the AR model

can be used to capture the strong correlations of data and learn

the joint data distribution. On the other hand, Gaussian mixture

models (GMMs) can be used to learn the data distribution of

continuous attributes and reduce domain sizes of these attributes.

Furthermore, we integrate GMMs and an AR model into one

single model, such that training can be performed end-to-end,

which is a desirable feature with practical benefits for machine

learning algorithms. IAM has two advantages compared with

previous AR model based estimators. For training, since domain

sizes of some attributes are reduced by GMMs and the data dis-

tribution is simplified, we can learn a better AR model with the

same model size. For inference, the search space is smaller, and

the progressive sampling is more accurate and efficient.

Another challenge of integrating an AR model and GMMs

in IAM is how to handle range queries. It is prohibitively ex-

pensive to enumerating all distinct values in the query range

and summing their estimated probabilities. To address the chal-

lenge, previous work [54, 55] of using AR models propose to

use the progressive sampling algorithm to estimate selectivities

for range queries. Unfortunately, this sampling method is biased

when applied to our model IAM since we need to consider the

probabilities on mixture models. To address the challenge, we

propose a modification to the progressive sampling algorithm

based on the estimated probabilities on mixture models, making

the sampling algorithm to be unbiased on IAM. This enables IAM
to perform accurate and efficient estimation.

Contributions. Our work has the following contributions:
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• We propose a novel model IAM that integrates GMMs and

an AR model for selectivity estimation, which effectively ad-

dresses the problem of the existing AR model based estima-

tors [49, 54, 55] on data containing continuous attributes with

large domain sizes. IAM is able to learn the data distribution

on data with continuous attributes efficiently and effectively.

• We propose a modification to the progressive sampling algo-

rithm by considering the probabilities on mixture models, so

that it can do unbiased sampling for query inference in IAM.

This algorithm enables IAM to perform efficient and accurate

estimation for range queries.

• We conduct comprehensive experiments to compare IAM with

other baselines on four real-life datasets with continuous at-

tributes with large domain sizes. Our results show that IAM
achieves up to 20 times higher accuracy than the second best

estimators at tail, and efficient estimation. IAM has the best

query performance while being integrated into the query opti-

mizer of Postgres.

2 PROBLEM FORMULATION
2.1 Problem Definition
Consider a relation𝑇 with𝑛 attributes {𝐴1, 𝐴2 · · ·𝐴𝑛}. We denote

the domain of 𝐴𝑖 by 𝐷𝑜𝑚(𝐴𝑖 ) and the domain size of 𝐴𝑖 by |𝐴𝑖 |.
We introduce the following definitions:

Definition 2.1 (Query Predicates). A query 𝑞 is a conjunction

of single attribute’s predicate: 𝑅 = 𝑅1 ∧ 𝑅2 ∧ · · · ∧ 𝑅𝑛 , where
𝑅𝑖 ⊆ 𝐷𝑜𝑚(𝐴𝑖 ) can be a range or a point predicate. Each predicate
contains an attribute, an operator and a value (e.g., 𝐴1 = 4 or

𝐴2 > 3).

Definition 2.2 (Selectivity). Selectivity is defined as the fraction
of tuples in 𝑇 that satisfy 𝑞: 𝑎𝑐𝑡𝑠𝑒𝑙 (𝑞) = |{𝜃 (𝑡) = 1|𝑡 ∈ 𝑇 }|/|𝑇 |,
where 𝜃 (𝑡) indicates whether 𝑡 is contained in the answer of 𝑞

and |𝑇 | is the number of tuples in 𝑇 .

Definition 2.3 (Selectivity Estimation). Selectivity estimation

aims to estimate the selectivity of query 𝑞 without actually an-

swering 𝑞. We use 𝑒𝑠𝑡𝑠𝑒𝑙 (𝑞) to denote the estimated selectivity

of query 𝑞.

Supported Queries. Following previous work [4, 22, 24, 37, 41,

55], we support selectivity estimation on queries with conjunc-

tions and disjunctions of predicates. We focus on conjunctions

in the rest of the paper. Note that disjunctions can be easily

supported by the inclusion-exclusion principle, e.g., 𝑅𝑖 ∨ 𝑅 𝑗 =
𝑅𝑖 + 𝑅 𝑗 − 𝑅𝑖 ∧ 𝑅 𝑗 .

For operators, we support range queries (≠, <, ≤, >, ≥) and
point queries (=). Both types of queries can be represented by

the aforementioned representation of 𝑞. For example, given a

query (30 ≤ 𝐴1 ≤ 100) ∧ (𝐴2 = man), it will be represented as

⟨𝐴1 ≤ 100, 𝐴1 ≥ 30, 𝐴2 = man⟩.
Problem. Given a relation 𝑇 , we aim to construct a data-driven

model by learning from 𝑇 . This model can be used to perform

selectivity estimation accurately and efficiently for each incoming

query 𝑞.

We aim to support relations containing continuous attributes

with large domain sizes (e.g., spatial attributes or temporal at-

tributes). Moreover, we focus on range predicates on continuous

attributes. This is because 1) predicates on continuous attributes

are usually range predicates. For example, given a points of inter-

est (POIs) dataset, we may want to find POIs in a spatial range,

rather than at a specific latitude and longitude; 2) The selectiv-

ities of point predicates on such attributes are usually 0 or
1

|𝑇 | ,
and thus point predicates on such attributes are easy to estimate.

Extension to support Joins. Our model supports multi-way,

multi-key equi-joins, similar to previous work [24, 54].

2.2 Formulation as Joint Distribution
Estimation

We consider the problem of selectivity estimation as joint dis-

tribution estimation. A joint probability distribution of relation

𝑇 is a probability distribution in which each of 𝐴1, · · · , 𝐴𝑛 falls

in a value specified for that attribute. We use 𝑃 (𝑎1, · · · , 𝑎𝑛) to
represent joint probability distribution. Given a query𝑞, actual se-

lectivity can be calculated by using the joint probability distribu-

tion: 𝑎𝑐𝑡𝑠𝑒𝑙 (𝑞) = ∑
𝑎=(𝑎1, · · · ,𝑎𝑛) ∈𝐷𝑜𝑚 (𝐴1)×···×𝐷𝑜𝑚 (𝐴𝑛) 𝑃 (𝑎) ·𝜃 (𝑎)

where 𝜃 : 𝐴1 × 𝐴2 × · · · × 𝐴𝑛 → {0, 1} is a function indicating

whether (𝑎1, · · · , 𝑎𝑛) is contained in 𝑞. Thus, the essential prob-

lem of selectivity estimation is accurately estimating the joint

distribution.

Formulation on Multiple Tables. The joint distribution can

be extended to multiple tables as follows. Given a dataset, the

join schema is generated from full outer join on all tables, 𝑇 =

𝑇1 ⊲⊳ 𝑇2 ⊲⊳ · · · ⊲⊳ 𝑇𝑁 . The joint probability distribution is defined

on all attributes of all tables in the dataset:

𝑃 (𝑇 ) = 𝑃 (𝑇1 .𝐴1,𝑇1 .𝐴2, · · · ,𝑇𝑁 .𝐴𝑘 ) (1)

3 BACKGROUND ON DEEP
AUTOREGRESSIVE MODELS

Decomposition of Joint Distribution We formulate selectiv-

ity estimation as a joint distribution problem. If all the entries of

the joint distribution are stored, we can return exact selectivity

for a query. However, this is prohibitively expensive due to the

huge number of entries. To factorize the joint distribution into

lower dimensions to reduce space consumption, some classical

methods such as histograms and Bayesian Network are based

on independence assumption or conditional independence as-

sumption. They are struggled on data with strong correlations. In

this paper, we factorize the joint probability using autoregressive

decomposition without any independence assumption as follows:

𝑃 (𝐴1, · · · , 𝐴𝑛) =
𝑛∏
𝑖=1

𝑃 (𝐴𝑖 |𝐴1, · · · , 𝐴𝑖−1) (2)

Deep Autoregressive Models. AR models are feed-forward

deep learning models that predict values from past values, which

can be used to approximate joint distributions. Some recent re-

search which propose to adopt AR models for selectivity esti-

mation achieve accurate results empirically [17, 49, 54, 55], We

use AR models as the distribution estimator. We follow the pre-

vious work [54, 55] to use ResMADE [9] as the AR model since

ResMADE has been demonstrated to have a good trade-off on ac-

curacy and efficiency [55]. Our proposed technique also supports

other AR models but exploring them is not our focus.

Model Training. The input of the AR model is all tuples in a

dataset, and the output is the estimated probability distribution.

During the training, the weights (or parameters) of the AR model

are learned from data by minimizing the cross-entropy loss [20]

between the true distribution 𝑃 and the estimated distribution 𝑃 ,

given in Equation 3.
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𝑙𝑜𝑠𝑠𝐴𝑅 = 𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑃, 𝑃) = − 1

|𝑇 |
∑
𝒕 ∈𝑇

𝑃 (𝒕) log 𝑃 (𝒕)
(3)

The model parameters are optimized by minimizing the loss

using back propagation [3] with stochastic gradient-based meth-

ods [27].

To train an AR model on 𝑇 , we need to encode tuples in 𝑇 as

inputs of the model and decode model outputs to get probability

distribution. We adopt the encoding and decoding strategies of

previous work [54, 55].

Encoding Strategy. For each input attribute𝐴𝑖 for the ARmodel,

we map its domain values into a range of integer values: [0, |𝐴𝑖 |).
The mapping will keep the original order of domain values. For

example, if 𝐷𝑜𝑚(𝐴𝑖 ) = {dog, cat, monkey}, the encoding will be

dog → 1, cat → 0, monkey → 2, which follows the lexicograph-

ical order.

Decoding Strategy. For each encoded attribute 𝐴𝑖 , the output

layer will allocate |𝐴𝑖 | dimensional vector for the distribution

𝑃 (𝑎𝑖 |𝒂<𝑖 ). For example, for 𝐷𝑜𝑚(𝐴𝑖 ) = {dog, cat, monkey}, an
example of the output distribution is ⟨0.1, 0.3, 0.6⟩.
Query Estimation. The AR model is a point estimator for each

tuple 𝒕 . It will be much harder for an AR model to answer range

queries. Given a range query 𝑞 that 𝑅 = 𝑅1 ∧ 𝑅2 ∧ · · · ∧ 𝑅𝑛 , a
naive method for selectivity estimation on 𝑞 is exhaustive numer-

ation: 𝑒𝑠𝑡𝑠𝑒𝑙 (𝑞) = ∑
𝒕 ∈𝑅 𝑃 (𝒕), where 𝒕 ∈ 𝑅 represents all tuples

in 𝑅. Unfortunately, this is prohibitively expensive since 𝑅 can

contain 𝑂 (∏𝑖 |𝐴𝑖 |) in the worst case. To address this, previous

work [54, 55] use progressive sampling. Progressive sampling

samples each tuple according to the attribute order by focusing

on the high probability values. In a nutshell, to get a sample

𝒔 from 𝑅, we sequentially sample 𝑠𝑖 from 𝑃 (𝐴𝑖 |𝐴𝑖 ∈ 𝑅𝑖 , 𝒔<𝑖 ) ,
where 𝑃 (𝐴𝑖 |𝐴𝑖 ∈ 𝑅𝑖 , 𝒔<𝑖 ) is the probability distribution of 𝐴𝑖 in

𝑅𝑖 given 𝒔<𝑖 . It could be obtained by inputting 𝒔<𝑖 into the AR

model. With progressive sampling, a tuple with higher probabil-

ity in 𝑅 is more likely to be sampled. Selectivity estimation of one

sample is

∏
𝑖 𝑃 (𝐴𝑖 ∈ 𝑅𝑖 |𝒔<𝑖 ). The final estimation from multiple

samples can be obtained by averaging the selectivity estimation

of all samples. Progressive sampling is unbiased for selectivity

estimation with AR models [55].

Join Queries. AR models can also be used to estimate selectiv-

ities of join queries [54]. We follow the methods in previous

work [24, 54] to learn joint distribution on join results. Specifi-

cally, IAM captures the correlations across joins in a join schema

of relations in a single AR model, and employs Exact Weight al-

gorithm [57] to generate unbiased samples of the full outer join,

which are fed into the AR model to learn the joint distribution.

Interested readers may refer to Neurocard [54] for details.

4 PROPOSED MODEL
Section 4.1 gives an overview of our proposed model. We present

the technique for fitting data in GMMs to reduce domain sizes

in Section 4.2. Then we present our model that integrates an AR

model and GMMs in Section 4.3.

4.1 Overview
Challenges. As discussed in Section 3, we use progressive sam-

pling for estimation on the deep autoregressive models and the

sampling space can be up to

∏
𝑖 |𝐴𝑖 |. For continuous attribute 𝐴𝑖

with a large domain size, e.g., spatial coordinates, the domain size

|𝐴𝑖 | can be as large as |𝑇 | when there are no duplicated values in

Figure 1: Overview of IAM.

𝐴𝑖 . With the huge sample space, the AR models will suffer in two

aspects. 1) The AR models will become inaccurate in selectivity

estimation since the number of samples cannot be too large, e.g.,

10K, in practice. 2) It is time-consuming to perform query infer-

ence for selectivity estimation. Neurocard [54] proposes to use

column factorization to reduce model size dramatically, but the

sample space size is not reduced. Hence Neurocard suffers from

the two issues as well.

Overview of high-level idea. To address the challenges, we

propose to use a machine learning method to fit (or preprocess)

a continuous attribute, and produce a new set of attributes with

much smaller domain sizes. Then we learn an AR model with the

new attributes. To the best of our knowledge, the idea has not

been explored for modeling data distribution in either machine

learning or database literature.

Specifically, we propose a new model that integrates GMMs

into an AR model, which is called IAM. Figure 1 shows the frame-

work of IAM. IAM uses GMMs as a preprocessing to get a new set

of attribute values (left part in Figure 1), i.e., we leverage GMMs

to "cluster" the values of an attribute and use their correspond-

ing component indexes of GMMs to replace the original values.

The idea has several advantages: 1) Domain size of a continuous

attribute fitted by a GMM can be dramatically reduced to the

number of components (e.g., frommillions to dozens in our exper-

iments). For GMMs, we only need to store a few parameters, i.e.,

weights, means and covariances. Hence, the model size becomes

very small and the training of the AR model converges much bet-

ter. 2) As the domain size is decreased, the sample space in query

inference of the AR model becomes much smaller. Therefore,

selectivity estimation will be more efficient and more accurate.

3) The component indexes of GMMs are used as input attribute

values to the AR model, and this enables us to integrate GMMs

and an AR model. During model construction as shown in Fig-

ure 1, for each tuple in the dataset, IAM has two steps: 1) We use

GMMs to fit continuous attributes to reduce their domain sizes;

2) Tuples composed by the new attribute values are fed into the

AR model to learn the data distribution.

Alternatives.We proceed to discuss several alternative methods

to model continuous variables. First, equi-depth histograms [34]

learn the data distribution by splitting data into buckets where

each bucket contains same number of data points, and thus we

can reduce the domain size to the number of buckets. Second,

spline based histograms [35] construct a spline with a given num-

ber of data points to approximate the CDF with minimal maxi-

mum error. Third, uniform mixture models (UMMs) learn multi-

ple overlapping buckets withwidth adjusting, so it is more flexible

compared with histograms. QuickSel [37] learns a UMM with

training queries. We integrate equi-depth histograms, splines

and UMMs into AR models. However, the performance of these

249



methods are not comparable with IAM. We present the experi-

mental results in Section 6.6. Finally, we also consider KDE-based

methods [22, 26] that use the kernel functions to define the shape

of local probability distributions. However, KDE-based methods

usually use at least thousands of samples to construct the Gauss-

ian kernels, and for each tuple in a given relation we need to

consider all the kernels. Hence, the estimation is very inefficient,

and we do not use it.

Remarks. DeepSpace [49] andQuickSel [37] also adopt mixture

models in a different way from IAM. We next clarify the differ-

ences. (1) IAM vs. DeepSpace [49]. DeepSpace uses GMMs in a

very different way from IAM. On the one hand, DeepSpace feeds

the original data values into a AR model and outputs the distribu-

tion of the original data, which is the same as Neurocard in this

sense. However, IAM takes GMMs as a preprocessing method

for the continuous attributes to reduce their domain sizes. Then

IAM feeds values of the reduced domain into a AR model and

outputs the data distribution with reduced domain. The differ-

ence between DeepSpace and Neurocard is that the AR model

of DeepSpace outputs GMM parameters while Neurocard out-

puts a vector to represent the learned probability for continuous

attributes. Hence, the domain sizes of the continuous attributes

and the search space size in the AR model of DeepSpace is the

same with those of Neurocard, but much larger than those of

IAM. (2) IAM vs. QuickSel [37]. QuickSel learns uniform mix-

ture models to fit the data distribution from training queries. In

contrast, our model uses mixture models to fit some attributes

and cluster them to reduce their domain sizes.

4.2 Fitting Continuous Attributes using
Gaussian Mixture Models

We consider alternative design choices for using GMMs to fit con-

tinuous attributes, and we next present our key design choices.

OneGaussianMixtureModel for OneAttribute.We use one

GMM to fit one attribute as shown in Figure 1 for two reasons.

• A GMM can be used to fit either one attribute or multiple

attributes. However, fitting multiple attributes with one mix-

ture model will be less memory efficient. Consider fitting 𝑛

attributes with GMMs. If we use one GMM, the covariance

matrix will take 𝑂 (𝑛2) memory; If we use 𝑛 GMMs, each for

an attribute, all the 𝑛 covariance matrices will only take 𝑂 (𝑛)
memory.

• AR models are also capable of learning the correlations of at-

tributes. Therefore, it would not be necessary to explore the

ability of GMMs to capture the correlations among attributes,

although it can capture correlations when being used to fit mul-

tiple attributes. Our preliminary experiments on comparing

with the option of using GMMs to fit with multiple attributes

show that it did not have better estimation accuracy.

Figure 2: Architecture of a GaussianMixtureModel. Input
an attribute value of 𝐴𝑖 and output a value of the new at-
tribute.

Using Gaussian Mixture Models to Reduce Domain Sizes.
Now we consider an attribute 𝐴𝑖 that is fitted by a GMM with 𝐾

components in Figure 2. For an attribute value 𝑎𝑖 of 𝐴𝑖 from a

tuple 𝒕 , the GMM computes its new attribute value as follows: 1)

𝑎𝑖 is fed into each component of GMM to compute 𝑃1, · · · , 𝑃𝐾 ,
where 𝑃𝑘 is the probability that 𝑎𝑖 is in the 𝑘-th component

of GMM. 2) we choose the index of the component with the

maximum probability as the new attribute value for the input

value, i.e., 𝑎′
𝑖
= argmax{𝑃1, · · · , 𝑃𝐾 }. Then 𝑎′𝑖 will be used as

a value of input tuple for the AR model. Compared to directly

feeding original attribute value 𝑎𝑖 into the AR model, the input

layer size and output layer size for the new value 𝑎′
𝑖
is reduced

from |𝐴𝑖 | to 𝐾 and the size of sample space for this attribute in

query inference is reduced as well.

An alternative method would be sampling the component id

based on the probabilities 𝑃1, · · · , 𝑃𝐾 as the new attribute value.

In contrast, we choose the component index with the maximum

probability for the following two considerations.

• Training efficiency. Consider feeding one tuple of a dataset

to GMMs. If we choose the component index with maximum

probability, we get one tuple after applying GMMs on the

tuple, and take it as a input to the AR model. However, if we

sample component ids based on the probabilities of a GMM,

and generate 𝑞 samples for each GMM, we get 𝑞 output values

from each GMM. Then we need to choose a output value from

each GMM and concatenate them into new tuples as inputs to

the AR model. Hence, we will have 𝑞𝑝 new tuples if we have 𝑝

GMMs. In this case, one tuple from the dataset will generate

𝑞𝑝 tuples as the input to the AR model. The total number of

tuples for the AR model will be very large, which is inefficient

for training.

• Accuracy. The output probabilities from the GMMs are differ-

ent after each epoch of training if we use the aforementioned

sampling strategy. Since we use the output of the GMMs as

the input data for the AR model, the input data are different

in each epoch of training and thus our model will become

more difficult to converge. However, when we only use the

component index with maximum probability, the GMMs could

converge fast, making the AR model converge fast too.

In our preliminary experiments, we find the two methods achieve

similar accuracy in query inference while the first method is more

efficient. Therefore, we opt the first method in IAM.

When to Use Gaussian Mixture Models. Another problem is

which attributes do we use GMMs. We have the following design

choices for IAM.

• For a continuous attribute with a large domain size, we use

GMM to fit it. Empirically, we use GMM when the domain size

is larger than 1000. Our empirical study in Section 6 shows

that our method is robust to various skewness of data.

• For categorical attributes, we do not use GMMs to fit when

measuring distance between two distinct values in a categori-

cal attribute is not easy. In this case, we support column fac-

torization [54] on large domain categorical attributes to re-

duce model size by following Neurocard. Suppose domain

size of attribute 𝐴 is 10
2𝑛
, we could factor it into two at-

tributes 𝑠𝑢𝑏𝐴1 and 𝑠𝑢𝑏𝐴2 of domain size 10
𝑛
. Then the model

size is reduced from 10
2𝑛

to 2 × 10
𝑛
. This factorization does

not loss any information since it is also based on chain rule:

𝑃 (𝐴) = 𝑃 (𝑠𝑢𝑏𝐴1, 𝑠𝑢𝑏𝐴2) = 𝑃 (𝑠𝑢𝑏𝐴1)𝑃 (𝑠𝑢𝑏𝐴2 |𝑠𝑢𝑏𝐴1).
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To determine the number of components𝐾 for mixture models,

we can use Variational Bayesian Gaussian Mixture (VBGM) [51]

to get the number of components.

Model Training. Now we discuss the training procedure for

one GMM. We first present why the classic EM algorithm is not

suitable for IAM, and then present our method.

Expectation–maximization (EM) algorithm is a typical method

to estimate parameters of GMM by iteratively finding maximum

likelihood [44]. Given a set of values from attribute 𝐴𝑖 to fit a

GMM with 𝐾 components, we first initialize weights 𝜙𝑘=1· · ·𝐾 ,
means 𝜇𝑘=1· · ·𝐾 and covariances Σ𝑘=1· · ·𝐾 . Each iteration includes

two steps: 1) Expectation step (E step). Calculate the probability

𝑃𝑘 (𝑎𝑖 ) for each value of𝐴𝑖 in each component 𝑘 based on current

parameters. 2) Maximization step (M step). Update three parame-

ters of GMM based on their maximum likelihood estimation. We

iteratively execute E step and M step until convergence. In the

M step, the parameters can be only updated based on all tuples.

However, this is not suitable for IAM since we want to integrate

mixture models with an AR model and use batches of tuples to

update the model parameters, which is a common method in

deep learning models. Hence we use a different algorithm.

Our algorithm is inspired by KeOps [6]. Given a set of values

from attribute 𝐴𝑖 , suppose we want to fit these values into a

GMM with 𝐾 components. GMM takes weights 𝜙𝑘=1· · ·𝐾 , means

𝜇𝑘=1· · ·𝐾 and covariances Σ𝑘=1· · ·𝐾 of the components as parame-

ters. GMM initializes 𝜙𝑘=1· · ·𝐾 , 𝜇𝑘=1· · ·𝐾 and Σ𝑘=1· · ·𝐾 by VBGM.

We only use uniform samples from dataset. Hence, the initializa-

tion is efficient. In each training epoch, GMM takes each value as

input and fits the data by maximum likelihood estimation. GMM

uses negative log likelihood loss as the objective function:

𝑙𝑜𝑠𝑠GMM (𝐴𝑖 ) =
1

|𝑇 |
∑
𝑎𝑖 ∈𝐴𝑖

− log(
𝐾∑
𝑘=1

𝜙𝑘N(𝑎𝑖 |𝜇𝑘 , Σ𝑘 )), (4)

whereN(𝑎𝑖 |𝜇𝑘 , Σ𝑘 ) is the probability of 𝑎𝑖 in 𝑘-th Gaussian com-

ponent.

The loss function can be optimized by stochastic gradient

descent (SGD) [27] with back propagation [3] on batches of tuples.

Since SGD with batches of tuples is also used to optimize the AR

model, we can seamlessly integrate GMMs and the AR model

in our training algorithm. After training, we replace the input

attribute value 𝑎𝑖 with its new value 𝑎′
𝑖
, which is the component

id with the maximum probability:

𝑎′𝑖 = argmax

𝑘∈{1· · ·𝐾 }
(𝑃𝑘 (𝑎𝑖 )) = argmax

𝑘∈{1· · ·𝐾 }
(𝜙𝑘N(𝑎𝑖 |𝜇𝑘 , Σ𝑘 )) (5)

We use 𝐴′
𝑖
to represent the new attribute generated from 𝐴𝑖 .

For an attribute 𝐴𝑖 fitted by a GMM, the domain size of 𝐴′
𝑖
is 𝐾 ,

which is much smaller than the domain size of 𝐴𝑖 (|𝐴′
1
| ≪ |𝐴1 |

and |𝐴′
3
| ≪ |𝐴3 | in Figure 1). For an attribute 𝐴𝑖 that is not

fitted by any GMM, the new attribute 𝐴′
𝑖
has the same domain as

𝐴𝑖 (𝐷𝑜𝑚(𝐴′
2
) = 𝐷𝑜𝑚(𝐴2) in Figure 1). Our model may employ

multiple GMMs, and we train them in parallel.

4.3 Integration of Gaussian Mixture Models
and a Deep Autoregressive Model

We proceed to present the proposed method IAM that integrates

GMMs into an AR model.

Model Architectures. Figure 1 illustrates IAM. IAM consists of

two parts. 1) First, we use GMMs to fit continuous attributes in

a relation 𝑇 in parallel by following the approach in Section 4.2.

2) Second, We concatenate the output of all GMMs (𝑎′
1
and 𝑎′

3
in

Figure 1) and attribute values not in any GMM (𝑎′
2
in Figure 1) as

a new tuple (⟨𝑎′
1
, 𝑎′

2
, 𝑎′

3
⟩ in Figure 1). Then we take the new tuple

as a input into an AR model as we discussed in Section 3. For ex-

ample, as shown in Figure 1, suppose {|𝐴1 | = 100, |𝐴2 | = 3, |𝐴3 | =
50} and 𝐾GMM1

= 10, 𝐾GMM2
= 5. After encoding, the new at-

tributes domain will be {𝐷𝑜𝑚(𝐴′
1
) = {0, 1, · · · , 9}, 𝐷𝑜𝑚(𝐴′

2
) =

{0, 1, 2}, 𝐷𝑜𝑚(𝐴′
3
) = {0, 1, · · · , 4}}. Then we feed the encoded

tuples into an AR model.

Separate Training. A straightforward idea of training would be

first training multiple GMMs for continuous attributes to reduce

their domain sizes, and then training a AR model with the new

tuples. Unfortunately, training these models separately is ineffi-

cient and could be less optimal. For deep learning algorithms, it

is ideal that all parameters of the model can be simultaneously

trained for one loss function since this is normally much benefi-

cial than training model separately. To achieve this, we propose a

joint end-to-end training method that combines multiple GMMs

and an AR model into one model.

Joint Training Algorithm.We illustrate our end-to-end joint

training procedure with the example in Figure 1. Suppose that

we have a set of tuples 𝑇 with attributes 𝐴1, 𝐴2, 𝐴3, where 𝐴1 is

a continuous attribute to be fitted into GMM1,𝐴2 is a categorical

attribute, and𝐴3 is a continuous attribute to be fitted into GMM2.

The forward propagation of our model training consists of two

steps. (1) First, for each tuple 𝒕 = ⟨𝑎1, 𝑎2, 𝑎3⟩ in relation 𝑇 , the

attribute value 𝑎1 is fed into GMM1 and we get a new value 𝑎′
1

based on Equation 5; the attribute value 𝑎3 is fed into GMM2 and

we get a new value 𝑎′
3
; 𝑎2 is not fed into any GMM, and 𝑎′

2
= 𝑎2.

Then tuple 𝒕 is reduced to a new tuple 𝒕 ′ = ⟨𝑎′
1
, 𝑎′

2
, 𝑎′

3
⟩. Notice that

the calculation in GMM1 and GMM2 can be done in parallel. (2)

Then 𝒕 ′ is fed into an AR model and we get the estimation 𝑃 (𝐴′
1
),

𝑃 (𝐴′
2
|𝑎′
1
) and 𝑃 (𝐴′

3
|𝑎′
1
, 𝑎′

2
). Note that 𝑃 (𝐴′

𝑖
|𝒂′<𝑖 ) is different from

𝑃 (𝐴𝑖 |𝒂<𝑖 ), since different 𝑎1 and 𝑎3 might generate same 𝑎′
1
and

𝑎′
3
after fed into GMM1 and GMM2. Total loss of the joint model

IAM is the sum of all the GMMs loss and the AR model loss:

𝑙𝑜𝑠𝑠 =
∑

𝑙𝑜𝑠𝑠GMM + 𝑙𝑜𝑠𝑠AR, (6)

where 𝑙𝑜𝑠𝑠GMM and 𝑙𝑜𝑠𝑠AR can be computed by Equation 4 and

Equation 3, respectively. We use SGD [27] with back propaga-

tion [3] on batches of tuples to minimize the total loss.

ColumnOrder. Previous work [55] shows the left-to-right order
is effective for the AR models. We evaluate the impact of column

order on IAM in our experiments and get similar result as [55].

Support of Join Queries. We use the method discussed in Sec-

tion 3 to train for full outer join, which follows Neurocard. Since
the continuous attributes fitted by GMMs are usually not join

keys, we train the AR model on join tuples that contain new

attributes values from GMMs by following Neurocard.

5 QUERY INFERENCE
We proceed to present the query inference method of IAM for

selectivity estimation. We focus on queries that contain range

predicates on continuous attributes, as well as both point and

range predicates on categorical attributes. It is trivial for estimat-

ing selectivities of point predicates on continuous attributes, as

discussed in Section 2. We first discuss the query construction in

Section 5.1. Next we present an unbiased progressive sampling

algorithm for IAM in Section 5.2. Finally we present the query

inference procedure in Section 5.3.
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Figure 3: Overview of query inference. GMMs and AR
model follow Figure 1.

5.1 Query Construction
We use the notations from Figure 1 and Section 4. Figure 3 gives

the overview of query inference. Consider a query 𝑞 with query

range 𝑅 = 𝑅1 ∧ 𝑅2 ∧ · · · ∧ 𝑅𝑛 , where 𝑅𝑖 ⊆ 𝐷𝑜𝑚(𝐴𝑖 ). Since
IAM uses the AR model to learn the joint distribution, a natu-

ral idea is following previous work [54, 55] to use progressive

sampling for estimating 𝑞. However, we learn the joint distri-

bution 𝑃 (𝐴′
1
, · · · , 𝐴′

𝑛) but not 𝑃 (𝐴1, · · · , 𝐴𝑛) as discussed in Sec-

tion 4.3. Hence, we need to transform query 𝑞 with query range

𝑅 = (𝑅1 ⊆ 𝐷𝑜𝑚(𝐴1)) ∧ · · ·∧ (𝑅𝑛 ⊆ 𝐷𝑜𝑚(𝐴𝑛)) to a query 𝑞′ with
query range 𝑅′ = (𝑅′

1
⊆ 𝐷𝑜𝑚(𝐴′

1
)) ∧ · · · ∧ (𝑅′𝑛 ⊆ 𝐷𝑜𝑚(𝐴′

𝑛)).
Recall that for the input attributes {𝐴′

1
, · · · , 𝐴′

𝑛} of the AR

model, some of them are reduced by GMMs and others are same

as original attributes. Hence, we construct a query 𝑞′ with 𝑅′ =
𝑅′
1
∧ 𝑅′

2
· · · ∧ 𝑅′𝑛 for IAM by the following two rules.

• For attribute 𝐴′
𝑖
that is the same as 𝐴𝑖 , we set 𝑅

′
𝑖
= 𝑅𝑖 .

• For attribute𝐴′
𝑖
reduced from𝐴𝑖 by a GMM, each distinct value

in 𝐷𝑜𝑚(𝐴′
𝑖
) represents a component index in the GMM and 𝑅𝑖

might intersect with any components in the GMM. Hence, we

set 𝑅′
𝑖
= 𝐷𝑜𝑚(𝐴′

𝑖
).

For example, the constructed query 𝑞′ in Figure 3 is 𝑅′ = 𝑅′
1
∧

𝑅′
2
∧ 𝑅′

3
, where 𝑅′

1
= 𝐷𝑜𝑚(𝐴′

1
), 𝑅′

2
= 𝑅2, and 𝑅

′
3
= 𝐷𝑜𝑚(𝐴′

3
).

5.2 Unbiased Progressive Sampling
Algorithm

Challenge toVanilla Progressive SamplingAlgorithm.With

the constructed query 𝑞′, a natural idea is to use the progressive

sampling algorithm discussed in Section 3 to estimate 𝑃 (𝑞′) =
𝑃 (𝑅′

1
∧ 𝑅′

2
· · · ∧ 𝑅′𝑛). However, our goal is estimating 𝑃 (𝑞) =

𝑃 (𝑅1 ∧ 𝑅2 ∧ · · · ∧ 𝑅𝑛). For the attribute 𝐴′
𝑖
reduced from 𝐴𝑖 by

a GMM, we define 𝑅′
𝑖
= 𝐷𝑜𝑚(𝐴′

𝑖
), but 𝑅𝑖 ≠ 𝐷𝑜𝑚(𝐴′

𝑖
). Hence,

sampling 𝑠𝑖 from 𝑃 (𝐴′
𝑖
|𝐴′
𝑖
∈ 𝑅′

𝑖
, s<𝑖 ) is biased.

To address the challenge, we propose to use the probability

of 𝑅𝑖 on each component of the GMM to correct the bias. We

denote this probability as a 𝐾-dimensional vector 𝑃GMM (𝑅𝑖 ) =
⟨𝑃1

GMM
(𝑅𝑖 ), · · · , 𝑃𝐾

GMM
(𝑅𝑖 )⟩, where 𝐾 is the number of compo-

nents in the GMM and 𝑃𝑘
GMM

(𝑅𝑖 ) is cumulative probability of 𝑅𝑖
on 𝑘-th Gaussian component. We use a sampling method to calcu-

late 𝑃𝑘
GMM

(𝑅𝑖 ). First, we randomly generate 𝑆 samples from each

Gaussian distribution in the GMM, where 𝑆 is a hyper-parameter.

Second, we calculate the number of samples 𝑆𝑘 that locate in the

query region 𝑅𝑖 for each component 𝑘 = 1 · · ·𝐾 . Then we get

𝑃𝑘
GMM

(𝑅𝑖 ) = 𝑆𝑘
𝑆
. Notice that the first step is a one-time prepro-

cessing that can be done before any query is processed.

High-level Idea for Unbiased Progressive Sampling. Now
we present the unbiased progressive sampling algorithm for IAM.

When we sequentially generate a sample s = ⟨𝑠1, 𝑠2, · · · , 𝑠𝑛⟩ ,
there are two situations for each 𝑠𝑖 .

• If attribute𝐴′
𝑖
is directly from𝐴𝑖 , we sample 𝑠𝑖 ∼ 𝑃𝐴𝑅 (𝐴′

𝑖
|𝐴′
𝑖
∈

𝑅′
𝑖
, s<𝑖 ) and store the probability 𝑃𝐴𝑅 (𝐴′

𝑖
∈ 𝑅′

𝑖
|s<𝑖 ).

• If attribute𝐴′
𝑖
is reduced from𝐴𝑖 by a GMM,we first correct the

bias: 𝑃 (𝐴′
𝑖
|𝐴𝑖 ∈ 𝑅𝑖 , s<𝑖 ) = 𝑃𝐴𝑅 (𝐴′

𝑖
|𝐴′
𝑖
∈ 𝑅′

𝑖
, s<𝑖 ) × 𝑃GMM (𝑅𝑖 ).

Then we sample 𝑠𝑖 ∼ 𝑃 (𝐴′
𝑖
|𝐴𝑖 ∈ 𝑅𝑖 , s<𝑖 ) and store the proba-

bility 𝑃 (𝐴𝑖 ∈ 𝑅𝑖 |s<𝑖 ).
where 𝑃𝐴𝑅 (𝐴′

𝑖
|𝐴′
𝑖
∈ 𝑅′

𝑖
, s<𝑖 ) can be obtained from the output

of the AR model. The selectivity estimation of 𝑞 based on s is∏
𝑖 𝑃 (𝐴𝑖 ∈ 𝑅𝑖 |s<𝑖 ). The final selectivity estimation of 𝑞 can be

obtained by averaging selectivity estimation of multiple samples.

We use the example in Figure 3 to illustrate the procedure of

drawing a sample s as following:
• Forward 0 into the AR model and get 𝑃𝐴𝑅 (𝐴′

1
). Feed 𝑅1 into

GMM1 and get 𝑃GMM (𝑅1). Calculate 𝑃 (𝐴′
1
|𝐴1 ∈ 𝑅1) = 𝑃𝐴𝑅 (𝐴′

1
|𝐴′

1
∈

𝑅′
1
)×𝑃GMM (𝑅1) to correct the bias. Sample 𝑠1 ∼ 𝑃 (𝐴′

1
|𝐴1 ∈ 𝑅1).

Compute and store 𝑃 (𝐴1 ∈ 𝑅1).
• Forward ⟨𝑠1⟩ into theARmodel and get 𝑃𝐴𝑅 (𝐴′

2
|⟨𝑠1⟩). 𝑃 (𝐴′

2
|𝐴2 ∈

𝑅2, ⟨𝑠1⟩) = 𝑃 (𝐴′
2
|𝐴′

2
∈ 𝑅′

2
, ⟨𝑠1⟩). Sample 𝑠2 ∼ 𝑃 (𝐴′

2
|𝐴2 ∈

𝑅2, ⟨𝑠1⟩). Compute and store 𝑃 (𝐴2 ∈ 𝑅2 |⟨𝑠1⟩) .
• Forward ⟨𝑠1, 𝑠2⟩ into the AR model and get 𝑃𝐴𝑅 (𝐴′

3
|⟨𝑠1, 𝑠2⟩).

Feed 𝑅3 into GMM2 and get 𝑃GMM (𝑅3). Calculate 𝑃 (𝐴′
3
|𝐴3 ∈

𝑅3, ⟨𝑠1, 𝑠2⟩) = 𝑃𝐴𝑅 (𝐴′
3
|𝐴′

3
∈ 𝑅′

3
, ⟨𝑠1, 𝑠2⟩) ×𝑃GMM (𝑅3) to correct

the bias. Compute and Store 𝑃 (𝐴3 ∈ 𝑅3 |⟨𝑠1, 𝑠2⟩).
The probability of s is 𝑃 (𝐴1 ∈ 𝑅1) × 𝑃 (𝐴2 ∈ 𝑅2 |⟨𝑠1⟩) × 𝑃 (𝐴3 ∈
𝑅3 |⟨𝑠1, 𝑠2⟩).

Theorem 5.1. The aforementioned progressive sampling on IAM
is unbiased.

For a sample s, consider sampling 𝑠𝑖 for attribute𝐴
′
𝑖
. There are

two situations. 1) Attribute 𝐴′
𝑖
is not generated from any GMM.

Then 𝐴′
𝑖
is same as 𝐴𝑖 and 𝑅

′
𝑖
= 𝑅𝑖 . Hence, 𝑃 (𝐴′

𝑖
|𝐴𝑖 ∈ 𝑅𝑖 , s<𝑖 ) =

𝑃𝐴𝑅 (𝐴′
𝑖
|𝐴′
𝑖
∈ 𝑅′

𝑖
, s<𝑖 ). Drawing 𝑠𝑖 from 𝑃 (𝐴′

𝑖
|𝐴𝑖 ∈ 𝑅𝑖 , s<𝑖 ) has

been proved unbiased in [55]. 2) Attribute 𝐴′
𝑖
is generated from a

GMM. We consider the range 𝑅𝑖 =
⋃
𝑘 𝑅

𝑘
𝑖
, where 𝑅𝑘

𝑖
is the subset

of 𝑅𝑖 contained in the 𝑘-th component. Hence

𝑃GMM (𝐴′
𝑖 ) = ⟨𝑃GMM (𝑅1𝑖 ), · · · , 𝑃GMM (𝑅𝐾𝑖 )⟩

= ⟨
𝑠 (𝑅1

𝑖
)

𝑠 (𝐴′
𝑖
= 1) , · · · ,

𝑠 (𝑅𝐾
𝑖
)

𝑠 (𝐴′
𝑖
= 𝐾) ⟩

,

where 𝑠 (𝑅𝑘
𝑖
) is the number of tuples in 𝑅𝑘

𝑖
and 𝑠 (𝐴′

𝑖
= 𝑘) is the

number of tuples in the 𝑘-th component, which also represents

the number of tuples with𝐴′
𝑖
= 𝑘 . Since we define 𝑅′

𝑖
= 𝐷𝑜𝑚(𝐴′

𝑖
),

we have

𝑃AR (𝐴′
𝑖 |𝐴

′
𝑖 ∈ 𝑅

′
𝑖 , s<𝑖 ) = 𝑃AR (𝐴

′
𝑖 |𝐴

′
𝑖 ∈ 𝐷𝑜𝑚(𝐴′

𝑖 ), s<𝑖 )

= ⟨
𝑠 (𝐴′

𝑖
= 1, s<𝑖 )
𝑠 (s<𝑖 )

, · · · ,
𝑠 (𝐴′

𝑖
= 𝐾, s<𝑖 )
𝑠 (s<𝑖 )

⟩

Since 𝑠 (s<𝑖 ) is the number of tuples given s<𝑖 , we consider for
any 𝑘 ,

𝑠 (𝐴′
𝑖=𝑘,s<𝑖 )

𝑠 (𝐴′
𝑖
=𝑘) = 𝐶 , where 𝐶 is a constant that only depends

on s<𝑖 . Hence

𝑃AR (𝐴′
𝑖 |𝐴

′
𝑖 ∈ 𝑅

′
𝑖 , s<𝑖 ) × 𝑃GMM (𝐴′

𝑖 )

=⟨
𝑠 (𝑅1

𝑖
)

𝑠 (𝐴′
𝑖
= 1) , · · · ,

𝑠 (𝑅𝐾
𝑖
)

𝑠 (𝐴′
𝑖
= 𝐾) ⟩ × ⟨

𝑠 (𝐴′
𝑖
= 1)

𝑠 (s<𝑖 )
, · · · ,

𝑠 (𝐴′
𝑖
= 𝐾)

𝑠 (s<𝑖 )
⟩

=𝐶 ⟨
𝑠 (𝑅1

𝑖
)

𝑠 (s<𝑖 )
, · · · ,

𝑠 (𝑅𝐾
𝑖
)

𝑠 (s<𝑖 )
⟩ = 𝐶𝑃 (𝐴′

𝑖 |𝐴𝑖 ∈ 𝑅𝑖 , s<𝑖 )
Therefore, drawing 𝑠𝑖 from 𝐶𝑃 (𝐴′

𝑖
|𝐴𝑖 ∈ 𝑅𝑖 , s<𝑖 ) is unbiased.
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5.3 Query Inference with Unbiased
Progressive Sampling

OverviewofQuery Inference. Figure 3 demonstrates an overview

of query inference based on the model in Figure 1. There are two

steps to estimate a query. The first step is initialization, i.e., con-

structing 𝑞′ for IAM. The second step is the proposed progressive

sampling. For each sample s, we sequentially sample 𝑠1, 𝑠2, · · · , 𝑠𝑛
and get the selectivity estimation based on the method in Sec-

tion 5.2.

Query Inference Procedure. Now we outline the query infer-

ence procedure for a query𝑞 in Algorithm 1.We first initialize the

final result as 0 (line 1). In step 1, we construct a query 𝑞′ (line 2)
based on the method discussed in Section 5.1 (e.g.,𝑅′

1
= 𝐷𝑜𝑚(𝐴′

1
),

𝑅′
2
= 𝑅2 and 𝑅′

3
= 𝐷𝑜𝑚(𝐴′

3
) in Figure 3). In step 2, we follow

the unbiased progressive sampling algorithm in Section 5.2 to

generate multiple samples. For each sample s, we first initial-

ize it as an all 0 vector (line 4) and set its probability 𝑝 as 1

(line 5). Then we sequentially sample 𝑠1, 𝑠2, · · · , 𝑠𝑛 for each at-

tribute. For the 𝑖-th attribute, we feed s into the AR model (line 7)

and get the probability distribution 𝑃AR (𝐴′
𝑖
|𝐴′
𝑖
∈ 𝑅′

𝑖
, s<𝑖 ) (lines 8-

9). If 𝐴′
𝑖
is reduced from a GMM, we first calculate 𝑆𝑘 for each

component in the corresponding GMM based on method in Sec-

tion 5.2 and get 𝑃GMM (𝑅𝑖 ) = ⟨𝑆1
𝑆
, · · · , 𝑆𝐾

𝑆
⟩ (line 11). Then we use

𝑃GMM (𝑅𝑖 )×𝑃AR (𝐴′
𝑖
|𝐴′
𝑖
∈ 𝑅′

𝑖
, s<𝑖 ) to correct the bias (line 12). If𝐴′

𝑖

is not reduced by any GMM, we directly use 𝑃AR (𝐴′
𝑖
|𝐴′
𝑖
∈ 𝑅′

𝑖
, s<𝑖 )

(line 14). Then we multiply the range probability 𝑃 (𝐴𝑖 ∈ 𝑅𝑖 |s<𝑖 )
with 𝑝 to update 𝑝 (line 15) and draw 𝑠𝑖 from 𝑃AR (𝐴′

𝑖
|𝐴′
𝑖
∈ 𝑅𝑖 , s<𝑖 )

(lines 16-17). After multiple samples are generated in parallel, the

final result can be obtained by averaging the selectivity estima-

tion of all samples (lines 18–19).

HandlingUnqueried Columns.We usewildcard-skipping [55]
method which uniformly masks a subset of columns and replaces

their original values in the tuple with a special token as the train-

ing data for IAM. This method can reduce query inference time

by skipping progressive sampling for the unqueried columns.

Batch Query Inference. IAM supports batch query inference.

Given a batch query size 𝑏 and the number of samples 𝑆𝑝 in

progressive sampling, we initialize 𝑆𝑝 vectors as samples for

each query. In each iteration, we consider the 𝑆𝑝 × 𝑏 samples as

a batch and do unbiased progressive sampling for IAM.

6 EXPERIMENTS
We conduct experiments to evaluate the following aspects:

• Accuracy.We evaluate the accuracy of IAM and compare with

various baselines including state-of-the-art baselines.

• Inference Time.We compare the inference time of IAM with

baselines.

• End-to-End Time. We evaluate how IAM impact on a query

optimizer.

• Training Time. We show how maximum error changes with

the increase of the number of epochs for model training.

• AlternativeDomainReducingMethods.We compare GMM

with 3 alternative domain reducing methods.

• Number of Mixture Components. We evaluate the effect

of the number of components in the GMMs on accuracy.

• Impact of GMM Sample Number. We evaluate the impact

of the number of GMM sample on accuracy and estimation

time.

We also evaluate the impact of unbiased sampling algorithm, the

impact of hyper-parameters and the impact of data and query

Algorithm 1: Query Inference on IAM

Input: Query 𝑞 = ⟨𝑅1, · · · , 𝑅𝑛⟩, an IAM model, 𝑆 samples

drawn from each Gaussian component in each

GMM, number of samples 𝑆𝑝 in progressive

sampling;

Output: Selectivity estimation of 𝑞;

1 𝑃 = 0;

2 𝑞′ : 𝑅′𝑞 = ⟨𝑅′
1
, · · · , 𝑅′𝑛⟩ ; // Step 1

3 for 𝑗 = 1 to 𝑆𝑝 do // Step 2
4 s = 0𝑛 ;
5 𝑝 = 1;

6 for 𝑖 = 1 to 𝑛 do
7 Feed s into AR model;

8 𝑃AR (𝐴′
𝑖
|s<𝑖 ) = the 𝑖-th output of AR model;

9 Obtain 𝑃AR (𝐴′
𝑖
|𝐴′
𝑖
∈ 𝑅′

𝑖
, s<𝑖 ) from 𝑃AR (𝐴′

𝑖
|s<𝑖 ) by

renormalizing;

10 if 𝐴′
𝑖
is from GMM then

11 Calculate 𝑃GMM (𝑅𝑖 );
12 𝑃 (𝐴′

𝑖
|𝐴𝑖 ∈ 𝑅𝑖 , s<𝑖 ) = 𝑃AR (𝐴′

𝑖
|𝐴′
𝑖
∈

𝑅′
𝑖
, s<𝑖 ) × 𝑃GMM (𝑅𝑖 );

13 else
14 𝑃 (𝐴′

𝑖
|𝐴𝑖 ∈ 𝑅𝑖 , s<𝑖 ) = 𝑃AR (𝐴′

𝑖
|𝐴′
𝑖
∈ 𝑅′

𝑖
, s<𝑖 )

15 𝑝 = 𝑝 × 𝑃 (𝐴𝑖 ∈ 𝑅𝑖 |s<𝑖 );
16 Draw sample 𝑠𝑖 ∼ 𝑃 (𝐴′

𝑖
|𝐴𝑖 ∈ 𝑅𝑖 , s<𝑖 );

17 s[𝑖] = 𝑠𝑖
18 𝑃 = 𝑃 + 𝑝
19 return 𝑃

𝑆𝑝

Table 1: Datasets in Evaluation.

Dataset Rows Cols.Cat Cols.Con Joint

WISDM 4.8 × 10
6

2 3 10
21

TWI 1.9 × 10
7

0 2 10
13

HIGGS 1.1 × 10
7

0 7 10
41

IMDB 2.0 × 10
12

13 5 10
19

distribution. Due to the page limitation, we report them in the

technical report [25].

6.1 Experimental Setup
6.1.1 Datasets. We use three single table real-world datasets

with different attribute types, column numbers and domain sizes.

Table 1 describes them. "Cols.Cat" and "Cols.Con" refer to the

number of categorical columns and the number of continuous

columns, respectively. "Joint" is the product of all domain sizes.

Note that we use datasets containing continuous attributes as

IAM aims to address the challenges arising from continuous

attributes.

WISDM [52]. A real-world dataset contains accelerometer

and gyroscope time-series sensor data collected from phones and

smartwatches of 51 test subjects. We use 5 columns with both

categorical attributes and continuous attributes: subject_id
(categorical, 51), activity_code (categorical, 18), x (continuous,

1 × 10
6
), y (continuous, 1 × 10

6
), and z (continuous, 1 × 10

6
).

TWI. We use a collection of geo-tagged tweets posted in the

U.S. in 2016. We use 2 continuous attributes with large domain

sizes: latitude (continuous, 3×106) and longitude (continuous,
3 × 10

6
). This can be considered as a typical spatial dataset.
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HIGGS [2]. This dataset has 21 features which are kinematic

properties measured by the particle detectors in the accelerator.

Following the previous work [11] on selectivity estimation, we

use 7 high-level features as attributes: m_jj (continuous, 1 ×
10

6
), m_jjj (continuous, 5 × 10

5
), m_lv (continuous, 3 × 10

5
),

m_jlv (continuous, 5 × 10
5
), m_bb (continuous, 1 × 10

6
), m_wbb

(continuous, 7 × 10
5
), and m_wwbb (continuous, 8 × 10

6
) in our

experiments.

We use two statistical methods to measure the correlation and

skewness of the datasets. Nonlinear Correlation Information En-

tropy (NCIE) [50] is used to measure correlations. Smaller NCIE

indicates stronger correlation. The NCIEs are 0.33, 0.37. 0.67 for

WISDM, TWI and HIGGS, respectively. Hence, WISDM and TWI have

stronger correlations while HIGGS has a relatively weak correla-

tion. We use Fisher’s definition [60] to measure skewness. Closer

to 0 indicates similar to Gaussian distribution. The skewness

are 2.3, -1, 81 for WISDM, TWI and HIGGS, respectively. Hence,
HIGGS has stronger skewness while WISDM and TWI have weaker

skewness.

To test the accuracy of join queries and end-to-end execution

time on a query optimizer, we also use the real-world IMDB dataset
with extra attributes.

IMDB. Previous work [24, 29] reported that IMDB is a good

dataset for selectivity estimation evaluation as it has strong

attributes correlations [30]. Since IMDB dataset does not have

continuous attribute with large domain size, we concatenate x,
y, z attributes from WISDM to table movie_info, and latitude,
longitude attributes from TWI to table title. The concatenated
attribute values are uniformly sampled from WISDM and TWI.

6.1.2 Estimators. We compare IAM 1
with 11 other estimators,

including several classic methods (Sampling, MHIST, BayesNet,
Postgres and KDE), three query-driven supervised learning meth-

ods (UAE-Q [53],MSCN [29] and QuickSel [37]), two state-of-

the-art data-driven unsupervised learning methods (DeepDB and

Neurocard), and a hybrid learning method (UAE [53]). FLAT [58]

ran out of memory on our datasets.

Sampling. Sampling keeps a portion of tuples sampled uni-

formly from the original dataset. For a fair comparison, the por-

tion is based on the space consumption of IAM, which are 0.63%,

0.02% and 0.23% for WISDM, TWI and HIGGS respectively.
Postgres [42] (version 9.6.6). It keeps 1D histograms of data.

MHIST [41]. Multi-dimensional histogram is a classic statisti-

cal method without independence assumptions. This method is

used as the state-of-the-art multi-dimensional histogram method.

BayesNet [7]. BayesNet shows high accuracy in previous

work [55]. Following the previous work [55], we use Chow-Liu

tree [7] as the Bayesian Network since empirically it has the best

result given the allowed space. We follow the parameter setting

for BayesNet used in previous work [55] for a fair comparison.

KDE [22, 26]. Similar to IAM, KDE also learns continuous

data distribution but leverages Gaussian kernels. Its bandwidth

is calculated based on the Scott’s rule [48]. KDE also uses queries

as feedback to optimize bandwidth. We use the open source code

published by authors [21].

MSCN [29]. This method is based on multi-set convolutional

neural networks [29]. We use the open source code published by

the authors [28]. We generate 1K samples for bitmaps on each

dataset and use two layers (256 hidden units) of multilayer per-

ceptrons on the query encoding, which is its default setting [29].

1
https://github.com/mzz235711/IAM

We also consider the other two query-driven deep learning meth-

ods Sup [18] and Model_QE [10]. They have similar results with

that of MSCN, and we will not report them.

QuickSel [37]. This method learns uniform mixture models

from training queries. We use the code published by the au-

thors [56].

DeepDB [24]. DeepDB is a recent unsupervised data-driven

estimator. This method learns joint data distribution based on

the Sum-Product Network (SPN) [38]. We use its open source

code [23]. We set the number of samples per SPN to 1M, which

follows previous work [24, 54] for a fair comparison.

Neurocard [54]. Based on Naru [55], Neurocard further sup-

ports join operator and optimizesNaruwith column factorization

to better handle categorical attributes with large domain sizes.

IAM further optimize Neurocard to address the challenges aris-

ing from continuous attributes. We use its source code [59]. We

follow the settings of its source code [59], such as hidden layer set-

ting and the size of progressive sampling for query inference (set

as 8K samples), which strikes a good balance between accuracy

and efficiency.

UAE and UAE-Q [53]. UAE learns the joint data distribution

from both data and queries with a deep autoregressive model.

UAE-Q learns the joint data distributions from queries only.

For a fair comparison, IAM, UAE follow Neurocard in the

parameter settings for neural networks, which use 4 hidden layers

(256, 128, 128, 256 units). To reduce training cost, we use join

sampler technique [54] to sample 10
6
tuples from the datasets

as training data for IAM, UAE and Neurocard. For the columns

fitted by GMMs in IAM, Neurocard and UAE handle them with

column factorization. We set the maximum subcolumn size of

column factorization as 2
11
, and columns with large domain sizes

are factorized into 2 subcolumns in our datasets. IAM, UAE and

Neurocard do not use column factorization for other columns as

the domain sizes are small. We train IAM for each dataset. We

use a GMM for each continuous attribute of each dataset. The

number of GMM components is set at 30 on all the datasets, and

can be decided by VBGM automatically. When conducting query

inference, we generate 10K samples for each component in GMM.

We tune hyper-parameters of baselines by following previous

work to get good accuracy and efficiency in estimation. We run

estimators, including GPU-based estimators (KDE, MSCN, Neu-
rocard, UAE-Q, UAE and IAM) and other CPU based estimators,

on a Tesla V100 Xeon E5-2698.

6.1.3 Query Workloads. We generate 2K testing queries for

each dataset. The query generationmethod for single table datasets

follows [55]. We first draw some attributes from the dataset. For

each selected attribute 𝐴𝑖 , if 𝐴𝑖 is a categorical attribute, we uni-

formly draw a value from its domain and randomly draw an oper-

ator from {=, ≤, ≥}. If 𝐴𝑖 is a continuous attribute, we randomly

draw a value between the maximum and the minimum of its do-

main and uniformly draw an operator from {≤, ≥}. Then we gen-

erate a query by the conjunction of each predicate. For example, a

query in TWI could be (latitude ≤ 43.5)∧(longitude ≥ −32.7).
For IMDB dataset, we only generate join queries. We follow the

method in Neurocard [54]. The queries are uniformly distributed

to each join graph of the benchmark JOB-light [54] (18 in total).

For each join graph, we draw a tuple from the inner join result.

We randomly place 5–11 operators based on whether the column

supports range filter or point filter. The true selectivity of a query

is obtained by executing it on Postgres. We generate another

10K queries as training data in the same way for MSCN, KDE,
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Table 2: Estimation errors on WISDM.

Estimator Mean Median 95th 99th Max

Sampling 4.15 1.06 2.57 123 821

Postgres 17.9 4.17 54.5 199 1908

MHIST 46.7 1.55 12.5 1154 8837

BayesNet 3.5 1.33 6.91 31.9 437

KDE 17.0 4.30 50.0 207 1952

DeepDB 2.72 1.14 4.75 34.0 333

MSCN 5.37 1.83 20.9 59.0 197

QuickSel 8499 51 50036 91191 193798

Neurocard 1.30 1.06 2.07 4.73 36.6

UAE 1.30 1.06 2.07 4.73 36.6

UAE-Q 3.32 1.46 6.56 34.17 384

IAM 1.25 1.05 1.89 4.52 14.3

Table 3: Estimation errors on TWI.

Estimator Mean Median 95th 99th Max

Sampling 93.6 1.02 2.63 2119 15962

Postgres 84.1 1.12 21.6 1709 26671

MHIST 58.2 1.14 9.09 146 29431

BayesNet 185 1.04 4.50 24.9 189983

KDE 7.58 1.00 1.36 68 2170

DeepDB 243 1.04 68 8110 38340

MSCN 2.09 1.11 2.91 9.89 586

QuickSel 171 1.00 7.26 5635 30398

Neurocard 5.01 1.01 3.68 47.3 1889

UAE 1.04 1.01 1.15 3.00 11.6
UAE-Q 1.44 1.05 1.99 9.00 71.5

IAM 1.26 1.01 2.21 9.32 26.0

Table 4: Estimation errors on HIGGS.

Estimator Mean Median 95th 99th Max

Sampling 24.0 1.10 128 564 2368

Postgres 11.6 2.52 49.0 146 939

MHIST 104 5.33 253 1580 20528

BayesNet 2.44 1.33 5.23 12.2 815

KDE 6.72 1.56 23.4 93 882

DeepDB 2.31 1.23 4.46 14.9 504

MSCN 2.75 1.79 7.61 15.2 49.3

QuickSel 3025 7.58 3250 54299 1092969

Neurocard 1.28 1.09 2.24 4.41 16.0

UAE 1.27 1.07 2.08 4.32 16.0

UAE-Q 2.72 1.83 4.70 8.70 516

IAM 1.25 1.07 1.98 3.86 9.00

QuickSel, UAE-Q and UAE so that the training queries and the

testing queries have the same distribution.

Evaluation Metrics. We report the Q-Error [30, 55] as the ac-

curacy metric: 𝑒𝑟𝑟𝑜𝑟 (𝑞) = max( 𝑎𝑐𝑡𝑠𝑒𝑙 (𝑞)
𝑒𝑠𝑡𝑠𝑒𝑙 (𝑞) ,

𝑒𝑠𝑡𝑠𝑒𝑙 (𝑞)
𝑎𝑐𝑡𝑠𝑒𝑙 (𝑞) ) .We assume

𝑎𝑐𝑡𝑠𝑒𝑙 (𝑞) ≥ 1

|𝑇 | and 𝑒𝑠𝑡𝑠𝑒𝑙 (𝑞) ≥ 1

|𝑇 | to avoid divided by zero.

We report the error in different quantiles. We especially concern

the tail cases (95%, 99% and maximum), as most existing esti-

mators have good accuracy in median case, but they have very

different performance at tail cases. In addition, we also evaluate

end-to-end querying time.

Table 5: Estimation errors on IMDB.

Estimator Mean Median 95th 99th Max

Postgres 164 5.00 386 3436 29800

DeepDB 260 2.14 122 1520 158226

MSCN 366 4.97 144 2506 144795

Neurocard 13.9 1.59 44.5 300 1136

UAE 13.9 1.59 44.5 300 1136

UAE-Q 137 3.59 301 4395 9933

IAM 9.35 1.54 36 156 581

6.2 Accuracy Evaluation
Tables 2–5 report the errors of all the estimators on the four

datasets and the lowest error is in bold. We observe that IAM
has significantly better accuracy than all the other estimators

in the tail cases (i.e., 95th, 99th, and Max), and matches with

the best estimator in terms of mean and median. Overall, IAM
outperforms Sampling by 1.12−614 times, Postgres by 25.6−1026
times, BayesNet by 2.03 − 7307 times, KDE by 10.3 − 1068 times,

DeepDB by 2.15−1475 times,MSCN by 1.32−22.5 times,QuickSel
by 1.00 − 1.2 × 10

5
times and Neurocard by 1.02 − 26 times. We

next discuss the main findings.

(1) Sampling has good performance in terms of median in each

dataset. However, the accuracy of Sampling becomes worse in the

tail cases. This is because Sampling cannot handle low-selectivity
queries well, which is also reported in previous work [55].

(2) Postgres has large errors. That is because Postgres is based
on the independence assumption, which results in poor accuracy

when attributes have strong correlations (WISDM and TWI).
(3)MHIST outperforms Postgres on most cases because it uses

multi-dimensional histograms. However, it cannot perform well

onmaximum error case because of its uniform spread assumption.

The side effect of this assumption on MHIST is more obvious

when the dataset has strong skewness (HIGGS).
(4) KDE performs poorly, particularly on datasets with large

domain sizes and categorical attributes (WISDM). This may be

because 1) the bandwidth tuning required by KDE is difficult with

large domain sizes and 2) it is difficult to learn the distribution of

discrete data with Gaussian kernels.

(5) MSCN can handle well on large domain attributes and

strong correlations. However,MSCN still has up to 5.8×102 error
at tail cases. That may be because 1) MSCN heavily relies on

distribution of sampled training queries. Its performance becomes

poor at tail cases because the probability that training queries

hit low-selectivity data is very small; and 2) When a dataset has

strong skewness, it is difficult for the training queries to represent

the data distribution accurately. Hence,MSCN has relatively bad

performance on WISDM.
(6) QuickSel has large errors in most cases. Similar to his-

togram,QuickSel makes uniform distribution assumption within

a bucket, which may not hold. QuickSel has particularly bad

performance on high dimensional datasets (HIGGS) since multi-

dimensional buckets are hard to capture correlations.

(7)UAE-Q outperforms the other two query-driven supervised

methods, even if it does not use samples as doesMSCN. Similar to

other query-driven methods, it does not perform well on datasets

with strong skewness (WISDM and IMDB) as the training queries
cannot represent the data distribution well. UAE performs better

than UAE-Q by learning from both data and query workload.

(8) BayesNet has relatively good performance in most cases.

However, it has large errors on maximum error cases since dis-

cretization [12] used by BayesNet will lead to information loss
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for continuous attributes. Additionally, BayesNet is based on

conditional independence assumption, its performance will drop

quickly when datasets have strong correlations (e.g., TWI).
(9) DeepDB has good performance in terms of median. How-

ever, the accuracy degrades significantly in tail error cases when

attributes have strong correlations. This is because DeepDB
makes independence assumption on some nodes in SPN. In ad-

dition, DeepDB uses linear function for continuous domain in

leaf nodes, which may result in extremely large errors when

attributes in datesets, such as TWI, have non-linear distributions.
(10) IAM achieves the best performance on tail errors andmean

errors on most datasets. Neurocard, UAE and IAM are all based

on the AR model. However, IAM outperforms Neurocard by up

to 26 times at tail cases, and outperforms UAE by up to 2.6 times

at tail cases. The improvement could be attributed to two reasons:

First, since domain sizes of continuous attributes are very large, it

is difficult forNeurocard and UAE to learn distribution accurately
with a reasonable model size even if Neurocard and UAE use

column factorization to reduce the input and output layer sizes.

In contrast, IAM can learn the distribution more accurately since

the domain sizes are reduced by mixture models (e.g., which is

reduced from 10
6
to 10

2
in TWI). Second, for query inference,

sample space will be extremely large for Neurocard and UAE.
However, sample space for IAM is much smaller since we use

GMMs to reduce the domain sizes, and thus IAM has higher

accuracy using the same number of samples.

We present the accuracy of join queries on IMDB for Postgres,
MSCN, DeepDB, Neurocard, UAE-Q, UAE and IAM, which sup-

port join queries. As expected, Postgres has the worst accuracy on
the median. IMDB has more attributes and join queries are more

complicated. This indicates that it is hard for 1D-histogram to

approximate complex distribution.MSCN performs better than

Postgres but worse than data-driven methods. This is because

we use more columns and tables for join queries, and it is more

difficult for the training queries to represent the data distribution.

DeepDB has better accuracy than Postgres but worse than Neu-
rocard and IAM. This is because 1) DeepDB assumes conditional

independence on table subsets, and 2) DeepDB uses linear func-

tions to learn continuous attributes with complex distribution.

IAM, Neurocard and UAE are both based on AR models. IAM
outperforms Neurocard and UAE by 1 time on the 99th and the

maximum. Compared with Neurocard and UAE, IAM uses GMMs

for continuous attributes to reduce sample space, and thus it

achieves better estimation than Neurocard and UAE.

6.3 Inference Time
6.3.1 Single Query Inference. Figure 4 shows the estimation

time of all estimators with single query inference. Note that

Neurocard, UAE-Q and UAE have the same procedure in query

inference, and we use Neurocard in Figure 4 to represent both of

them. KDE,MSCN, Neurocard, UAE-Q, UAE and IAM are GPU-

based. The other estimators are CPU-based. Since the estimation

time is affected by many factors (such as CPU or GPU, coding

language, deep learning framework, etc.), we would need to be

careful in comparing the running time.

IAM can produce estimations in reasonable time, i.e., around

10ms on single table datasets and around 40ms on IMDB. IAM
is much more efficient than Neurocard in query inference for

two reasons. First, the input and output layer sizes of Neurocard
are larger than those of IAM since IAM uses mixture models to

reduce domain sizes. The model size of Neurocard is 1–2 times

Figure 4: Inference time on each dataset.

Table 6: Model sizes of Neurocard and IAM (MB).

WISDM TWI HIGGS IMDB

MSCN 2.5 2.5 2.5 2.6

DeepDB 79 30 98 320

Neurocard 1.8 0.9 2.5 11

IAM 1.1 0.66 1.6 6.3

Table 7: Inference time with batch query processing on
IMDB (ms per query). OOM refers to out of memory.

batch size 1 64 128

Model_QE 20 0.3 0.18

MSCN 0.9 0.09 0.06

Neurocard 54 14 OOM

IAM 39 9.7 7.3

larger than that of IAM as shown in Table 6. Therefore, forward

computation and progressive sampling are more expensive for

Neurocard. Second, for continuous attributes fitted by the GMMs

in IAM,Neurocard uses column factorization to reduce the model

size. However, column factorization increases the number of col-

umn, and Neurocard needs more forward computation in query

inference. DeepDB is comparable with IAM on inference time.

MSCN is very fast in estimation.MSCN needs scanning samples,

and thus its inference time is impacted by the materialized sam-

ple ratio. QuickSel constructs buckets for all overlapped training

query regions. Hence, its inference time is impacted by the size

of training query workloads.

6.3.2 BatchQuery Inference. This experiment is to evaluate

if batch query processing for Neurocard and IAM can improve

performance. It is known that query-driven estimators are light-

weight and typically support batch query processing, and we

report the estimation time of Model_QE [10] and MSCN in this

experiment for reference. Table 7 shows the estimation time of

different batch sizes on IMDB. We make the following observa-

tions. 1). IAM can benefit from batch query inference, and IAM
takes less than 10ms to estimate a query for batch size 64. Since

the model size of IAM is smaller than the size of Neurocard,
IAM benefits more from batch query inference than Neurocard.
2) MSCN and Model_QE has better speed up efficiency than

Neurocard and IAM . This is because Neurocard and IAM need

preprocessing on CPU for each step of progressive sampling. This

preprocessing is hard to be handled with batch. Bitmap samples

for each query in MSCN are also generated sequentially, and

thus the estimation time changes little when batch size increases.

6.4 End-to-End Time
We proceed to evaluate the impact on query optimization since

a major application of selectivity estimation is to improve the

performance of query optimization. We compare the end-to-end
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Figure 5: End-to-end time
on IMDB.

Figure 6: Training epoch vs.
max error.

Table 8: Training time (s) on IMDB.

MSCN DeepDB Neurocard IAM

256 636 1169 3522

query execution time of using different estimators. Following

the procedure [5], we modify the query optimizer in Postgres so
that it accepts external selectivity estimation. We focus on the

queries on IMDB, which are more complex and challenging for

query optimizers than queries on single table. For each query,

modified Postgres collects selectivities of all subqueries provided
by different estimators, and use them for query optimization.

Figure 5 gives the average end-to-end query execution time of

different estimators. Since UAE and Neurocard have similar accu-

racy on IMDB, we use Neurocard to represent both of them. We

have two findings. First, query optimizer could generate better

query plans when estimators offer more accurate selectivity es-

timations. IAM provides the most accurate estimation, and its

query execution is the most efficient. Second, the performance

gap in terms of estimation accuracy is not the same as that in

terms of end-to-end time. For example, IAM outperforms Post-
gres by more than an order of magnitude on mean accuracy, but

only improves on Postgres by 1.83 times in terms of end-to-end

time. On the other hand, IAM outperforms Neurocard by 48% on

mean accuracy, and improves on Neurocard by 25% in terms of

end-to-end time. This is because (1) a query optimizer may give

the same query plan even if the estimated selectivities are differ-

ent and (2) query execution time could be similar even if query

plans are different. This implies that improvement of estimators

in terms of accuracy may not be able to translate into decrease

on query execution time, although better estimations provide

better results for approximate query processing application.

6.5 Training Time vs Estimation Error
We proceed to evaluate the impact of training epochs on esti-

mation errors. IAM takes 40 seconds, 189 seconds, 258 seconds

and 646 seconds for one training epoch on WISDM, TWI, HIGGS
and IMDB, respectively. Figure 6 shows the maximum estimation

error versus the number of training epochs on three datasets. We

observe that IAM is efficient on training since it can converge

to a good estimation performance with a few training epochs.

For example, IAM can reach to convergence with about 11, 9, 19

and 7 epoches on WISDM, TWI, HIGGS and IMDB, respectively, as
shown in Figure 6.

We report the training time of IAM and other learning based

methods in Table 8. MSCN is very fast in training since the size

of training queries is much smaller than the size of dataset (10
12
).

Although Neurocard is faster than IAM since IAM learns both

GMMs and an ARmodel, they are in the same order of magnitude.

Table 9: Impact of domain reducing methods on WISDM.

Methods

Error

Est. time (ms)

Median 95th Max

GMM (30) 1.05 1.89 14.3 8.4

Hist (30) 1.19 7.19 10230 6.5

Hist (100) 1.09 2.73 2399 7.3

Hist (1000) 1.08 2.15 62 10.6

Spline (30) 1.33 7.86 10230 8.1

Spline (100) 1.13 2.51 519 8.6

Spline (1000) 1.07 1.93 110 11.7

UMM (30) 1.40 31.6 2981 7.9

UMM (100) 1.13 3.67 105 6.9

UMM (1000) 1.08 2.65 72.8 13.2

Table 10: Impact of domain reducing methods on TWI.

Methods

Error

Est. time (ms)

Median 95th Max

GMM (30) 1.01 2.21 26.0 4.87

Hist (30) 1.13 139 43044 3.56

Hist (100) 1.04 8.52 60797 3.4

Hist (1000) 1.01 2.84 28782 16.4

Spline (30) 1.11 22.8 119839 8.5

Spline (100) 1.05 8.47 60907 4.5

Spline (1000) 1.01 3.2 26627 17

UMM (30) 1.38 85 73108 4.5

UMM (100) 1.07 10.5 1060 3.7

UMM (1000) 1.07 2.76 351 8.3

6.6 Alternatives for Reducing Domains
We consider the 3 alternative methods in Section 4.1 for reducing

domains and integrate them into IAM. 1) Equi-depth histogram

(Hist). 2) Spline based histogram (Spline) [35]. 3) Uniformmixture

model (UMM). Following the previous work [35, 41] and to ex-

plore the highest accuracy, we use 30, 100 and 1000 components

for each alternative method. Tables 9–11 report the accuracy

and estimation time of all methods. We observe that 1) when

alternative methods using the same number of components with

GMM, GMM has better accuracy than other methods in most

cases, and 2) when alternative methods using a larger number of

components to achieve high accuracy, they have similar median

error with GMM, but have much larger max error and longer es-

timation time than GMM. This is because all alternative methods

assume uniform distribution within a component even if they

use different methods to construct components. However, most

real-world datasets are very skewed. Those methods have to use

many components to fit the data. Hence, we use GMM in IAM.

6.7 Varying the Number of Mixture
Components

This experiment is to evaluate the effect of the number of com-

ponents in the GMM on accuracy. As shown in Figure 7, IAM is

very robust to the number of the components when the number

is larger than 30 on all datasets. Specifically, the accuracy gen-

erally becomes better as the number of components is smaller

than 30 and more components of mixture models are used. The

improvements on accuracy is dramatically when the component

number increases in the range of 1–10. However, when the num-

ber of components reaches 30, further increasing the number will

not improve accuracy much. Table 12 gives the memory usage
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Table 11: Impact of domain reducing methods on HIGGS.

Methods

Error

Est. time (ms)

Median 95th Max

GMM (30) 1.07 1.96 9.00 10

Hist (30) 1.2 12.9 18658 12.9

Hist (100) 1.12 3.43 12774 9.1

Hist (1000) 1.04 1.65 527 25.4

Spline (30) 1.38 11.3 25794 11

Spline (100) 1.22 2.52 527 13.2

Spline (1000) 1.14 2.00 527 23

UMM (30) 2.8 45.4 4398 13

UMM (100) 1.21 3.33 35 11

UMM (1000) 1.12 2.77 11 39

(a) WISDM (b) TWI

(c) HIGGS (d) IMDB
Figure 7: Varying the number of components.

Table 12: Model size (MB) of IAM vs. number of compo-
nents.

# WISDM TWI HIGGS IMDB

1 0.72 0.51 0.72 6.1

10 1.0 0.56 0.9 6.2

30 1.1 0.66 1.6 6.3

50 1.2 0.77 2.1 6.5

70 1.3 0.88 2.7 6.6

with different numbers of mixture components. We observe that

the model size will increase with the increase of the number of

components, although accuracy may not improve much beyond

a certain level.

7 RELATEDWORK
Deep autoregressivemodels andmixturemodels.Closest to
our work is the deep autoregressive models [9, 13, 43], which are

state-of-the-art density estimation models in machine learning.

Recent estimators [19, 49, 53, 54] based on the deep autoregres-

sive model have reported impressive accuracy results. However,

the accuracy of these estimators will deteriorate significantly in

the presence of attributes of large domain size (e.g., continuous

attributes), as the search space in query inference will be very

large.

To address the challenge, we propose the novel idea of inte-

grating mixture models and an AR model for selectivity estima-

tion. Mixture models use multiple simple probability models to

learn data distribution. Typically, mixture models are used for

unsupervised clustering and are powerful in modeling data dis-

tributions. However, very little research (including QuickSel [37]

and DeepSpace [49] as discussed in Section 4) considers mixture

models in selectivity estimation.

Other deep learning based estimators. DeepDB [24] uses

sum-product networks (SPNs) [38] as the density estimator. DeepDB

learns multiple SPNs, each on a subset of correlated tables, and

conditional independence is assumed across the SPNs. FLAT [58]

improves on DeepDB with no independence assumption. Dutt

et al. [11] considers selectivity estimation as a regression problem

and uses neural networks to fit the queries. MSCN [29] improves

on it to handle categorical attributes and joins by using neural

networks to extract features and concatenate them by a convolu-

tional network.

Classical estimators.We next provide a brief review of classi-

cal methods by categories. First, sample based methods [16, 32]

do selectivity estimation on a set of samples. Performances of

these methods are highly related to the sample portion. Second,

histogram based methods [1, 4, 8, 15, 31, 34, 39–41, 45, 46] build

buckets based on data or queries. They often make conditional

independence and uniform distribution assumptions. Third, prob-

abilistic relational models (PRMs) [14, 47] use Bayesian Networks

to model the joint distribution, which also rely on conditional in-

dependence assumption. PRMs have relatively high accuracy but

low efficiency on estimation. Fourth, Kernel Density Estimation

(KDE) [22, 26] methods use Gaussian kernel to fit data distribu-

tion without any independence assumption. Their performances

are not often competitive since adjusting the bandwidth is diffi-

cult. Both KDE and mixture models learn data distribution with

some simple function. However, there are two essential reasons

we use mixture models rather than KDE. 1) KDE needs to sample

many tuples as Gaussian kernel, so the reduced domain size could

be also very large. 2) KDE is inefficient in query inference, which

is also shown in our experiment in Section 6.3.1.

8 CONCLUSIONS AND FUTUREWORK
In this work, we propose a novel model IAM that integrates

GMMs and a deep autoregressive model. We utilize the GMMs

to reduce large domain sizes of continuous attributes, and thus

search space of the deep autoregressive model is reduced dra-

matically. We also develop an unbiased progressive sampling

algorithm for IAM, enabling IAM to perform accurate and fast

range query inference. Our experiments demonstrate that IAM
achieves more accurate selectivity estimations than the baselines.

Compared with a real DBMS and other estimators, IAM has the

best performance on query optimization.

In the future, we plan to implement other mixture models in

IAM to learn different data distributions. Additionally, it is of

interest to extend IAM on other approximate query processing

queries, such as AVG and SUM queries.
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