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ABSTRACT
In recent years, top-K recommender systems with implicit feed-
back data gained interest in many real-world business scenarios.
In particular, neural networks have shown promising results on
these tasks. However, while traditional recommender systems
are built on datasets with frequent user interactions, insurance
recommenders often have access to a very limited amount of user
interactions, as people only buy a few insurance products.

In this paper, we shed new light on the problem of top-K rec-
ommendations for interaction-sparse recommender problems.
In particular, we analyze six different recommender algorithms,
namely a popularity-based baseline and compare it against two
matrix factorization methods (SVD++, ALS), one neural network
approach (JCA) and two combinations of neural network and fac-
torization machine approaches (DeepFM, NeuFM). We evaluate
these algorithms on six different interaction-sparse datasets and
one dataset with a less sparse interaction pattern to elucidate the
unique behavior of interaction-sparse datasets.

In our experimental evaluation based on real-world insurance
data, we demonstrate that DeepFM shows the best performance
followed by JCA and SVD++, which indicates that neural network
approaches are the dominant technologies. However, for the re-
maining five datasets we observe a different pattern. Overall,
the matrix factorization method SVD++ is the winner. Surpris-
ingly, the simple popularity-based approach comes out second
followed by the neural network approach JCA. In summary, our
experimental evaluation for interaction-sparse datasets demon-
strates that in general matrix factorization methods outperform
neural network approaches. As a consequence, traditional well-
established methods should be part of the portfolio of algorithms
to solve real-world interaction-sparse recommender problems.

1 INTRODUCTION
Recommender Systems have gained enormous popularity: many
of our online purchasing interactions are accompanied by the
suggestion of additional products that we could buy. But not
all domains are equally amenable to existing systems. The in-
surance domain, for example, poses three major challenges to
recommender systems.
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The first challenge is the high sparsity of the interactions per
user. In a typical recommender system scenario, such as the
movie domain, users have access to thousands of movies and
many users may watch hundreds of movies over time. However,
in an insurance setting most users buy only one or two products.
In contrast to typical movie recommenders, where users with
few interactions are removed from the input data [37], the data
sparsity in the insurance domain forces us to learn from as little
information as available and provide recommendations for users
with few interactions because they form the majority of our users.

The second challenge that differentiates the insurance domain
from other domains, where recommender systems are typically
used, is an extreme popularity bias in the data. On the one hand,
there are a few products bought by almost all users. E.g., every
car owner has car insurance. On the other hand, there are many
products only bought by very few users. This skews the data
extremely toward more popular products.

Lastly, the lack of prior knowledge about life events makes the
recommendation task more challenging. Customers’ typically
purchase an insurance product mainly due to a life event such as
getting married, birth of a child, or moving to a new apartment.
This information is not available to the agents unless the customer
actively requests the product or there is a direct meeting with
the customer.

These challenges make the recommendation problem harder
than in traditional settings and may require different approaches
or recommender system designs compared to traditional domains.
Given that to the best of our knowledge they have not beenwidely
studied, this paper addresses the following questions:

• Which recommender system performs the best for insurance
product recommendations? Traditional recommender sys-
tems are typically evaluated against datasets with many
users and many products. In this setting, autoencoders
are considered as the state of the art. However, in settings
with sparse-interaction users and implicit feedback data,
are autoencoders still performing the best?

• How does the revenue change for different methods? When
recommending insurance products, it is not only impor-
tant to recommend relevant products with high precision
but also to generate revenue from the recommended prod-
ucts.Which algorithm performs best in this scenario? Does
optimizing for more relevant products result in a higher
revenue?
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In answering these questions, this paper makes the following
contributions:

• We shed new light on the problem of recommending top-K
insurance products. These kind of recommendations have
to rely on implicit feedback with high skewness toward
popular products and with sparse user interactions.

• We show that in the setting of insurance data, DeepFM
outperforms the existing state of the art method, joint col-
laborative autoencoder (JCA) [39], followed by the matrix
factorized method SVD++ [16].

• We present a new version of the MovieLens 1M dataset,
generated by keeping only less than 6 interactions per
user. Moreover, we enrich this dataset by adding movie
prices extracted from a public API. Consequently, this
dataset shows similar characteristics to our real-world
insurance dataset.

• We show that for other interaction-sparse datasets ma-
trix factorization methods outperform neural network ap-
proaches. Hence, the choice of the best recommender al-
gorithm highly depends on the characteristics of the data
as well as on the interaction pattern of the users with the
data.

• In summary, neural networks do not always win and well-
established traditionalmethods such asmatrix-factorization
approaches should be taken into account when selecting a
mix of promising algorithms for recommender problems.

The rest of this paper is structured as follows. Section 2 de-
scribes existing approaches for implicit feedback product rec-
ommendation and insurance recommendation. In Section 3, we
describe the insurance recommendation setting in more detail. In
Section 4, we introduce the five approaches that we use for our
evaluation. Section 5.1 presents the datasets and our experimen-
tal results (Section 6). Finally, we conclude and present future
work in Section 7.

2 RELATEDWORK
Early recommendation methods have mainly focused on prob-
lems where users provide explicit feedback. Explicit feedback
is available in many popular datasets such as Netflix prize1 or
MovieLens2 [11], where ratings on a scale of 1 to 5 are available.
These ratings are represented as user-item pairs followed by the
corresponding rating. There is a considerable amount of litera-
ture for rating prediction tasks on theMovieLens 10M benchmark
[3–5, 8, 14, 18–20, 30, 41] and the Netflix prize. Additionally, Ren-
dle [27] proposed feature-based factorization machines to extend
the rating data with contextual information such as time or latest
movie rated to improve the predictions. Among neural network-
based models, AutoRec [30] is an autoencoder-based model that
outperformed non-neural methods on the rating prediction task.

While previous work has extensively studied explicit feed-
back, the importance of implicit feedback has gradually increased.
This is mainly due to the rise of interest in market place rec-
ommender systems. Implicit feedback is automatically collected
from users while they interact with marketplaces and is the result
of a user’s behavior e.g. purchase history or clicks. Leveraging im-
plicit feedback—which is also referred to as One-class [7, 22, 33]
or positive-only feedback [6, 32]—is very relevant in real-world
scenarios such as e-commerce systems or insurance platforms.
Early work on recommender systems with implicit feedback uses

1https://www.netflixprize.com/
2https://grouplens.org/datasets/movielens/

a Factorization Machine (FM) with Bayesian Personalized Rank-
ing (BPR) [28]. BPR uses the positive instances in the data (i.e.,
purchased) and samples negative instances from missing data
(i.e., not purchased).

More recent developments of top-K recommender systems
increasingly use neural network architectures. The two most
commonly used methods are autoencoder and multi-layer percep-
tron architectures. Collaborative Denoising Autoencoder (CDAE)
[36] is a neural-network-based collaborative filtering method.
Zhu et al. [39] extended CDAE as joint collaborative autoencoder
to simultaneously learn from a user-centric view and an item-
centric view of the data. Standard matrix factorization uses the
dot product to combine latent user and item features to estimate
the user interactions. Neural Collaborative Filtering (NCF) [13]
generalizes matrix factorization by replacing the dot product by
a trainable multi-layer perceptron (MLP).

Several researchers have addressed insurance recommender
systems. Preliminary work by Qazi et al. [24] used Bayesian
networks, which were further extended in [25]. More recent stud-
ies [2, 17] tackled low frequency interactions in the insurance
domain. Bi et al. [2] utilized cross-domain mechanisms to deal
with cold start users in the insurance domain. Lesange et al. [17]
used XGBoost to build an up-selling system for car insurances.
However, none of these approaches present an in-depth analy-
sis of the private insurance data in comparison to other public
datasets.

3 CASE STUDY: INSURANCE
RECOMMENDATION

While many of the characteristics of e-commerce and multimedia
recommendation datasets (such as the MovieLens dataset) are
similar to insurance recommendation dataset, there exist two
main differences: a lack of customer analytics for traditional insur-
ance companies and the low number of direct interactions between
customers (users) and an insurance company’s products (items).
In e-commerce and multimedia, it is not unusual to have tens,
hundreds, and sometimes even thousands of interactions through
the browsing behavior of customers. For traditional insurance
companies, interactions basically only exist when a new policy
is sold, adjusted, or canceled.

These points of contact are rare and (predominantly for private
customers) occur at key moments in their life: Moving the apart-
ment, getting married, or when having children. This changes
market structures to a setting that economists call “viscous de-
mand” [26]. Business customers, on the other hand, typically
own more policies than private customers, as a large group of
people or companies have to be covered for a large number of
eventualities. Hence, it is harder to pinpoint the particular key
moment when to offer certain insurance policies for business
customers.

Furthermore, information about the customers is not only rare,
but generally out of date. While it is relatively easy to track users
on an e-commerce platform and gather information through
linking accounts with various social media platforms or through
analyzing their browsing behavior, it is much harder in the case of
insurances. To address this gap, insurance companies are trying to
move their customers to their own dedicated mobile applications,
aiming to increase engagement and interact on a more regular
basis.
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Additionally, insurance sales is of course more complex than
just recommending products. An opportunity for selling insur-
ances is the up-selling of an already existing policy. By offering
additional coverages, or a more fitting policy entirely, insurance
companies are able to increase customer retention and profit from
free word-of-mouth marketing. This poses another interesting
problem for recommender systems, where the recommendation
is more structured with each product consisting of multiple cov-
erages. However, a detailed discussion about up-selling is out of
scope for this paper.

3.1 Data Characteristics
In insurance recommender systems, previous purchases of cus-
tomers are the implicit feedback that reflects the customers’ pref-
erences. With this implicit data, we can assume that the product
bought by the customer can be interpreted as positive feedback
or an interest.

i101      i202        i303        

u111            + ? ?

u222          + + ?

u333       ? + ?

u444       ? ? +

i101       i202        i303        

u111        1 0 0

u222        1 1 0

u333       0 1 0

u444       0 0 1

Figure 1: Implicit ratings in an insurance dataset where 𝑢
refers to users and 𝑖 to items.

Figure 1 represents the user-item matrix of a typical insurance
dataset. The left side shows the purchases made by users, indi-
cated by a plus sign. All other user-item pairs are marked with
question marks. Question marks indicate either a missing or a
negative rating. I.e., we have two different categories of missing
information. The right side shows the user-item matrix of the
same data where we assign the value 0 for both categories of
missing information. If an item was bought, we assign the value
1. Because users in general only interact with a small subset of
all available items, this user-item matrix is very sparse.

Another characteristic of insurance datasets is their dimen-
sionality. While the number of users is typically large, i.e. several
hundred thousands or millions of users, the number of prod-
ucts is typically relatively small, i.e., a few hundreds. Common
benchmark datasets for recommendation tasks, in contrast, have
thousands of products. Moreover, a large number of users typ-
ically buy only one or two products such as household or car
insurance. Only a small number of users buy ten or more prod-
ucts. This creates a very sparse dataset, which is furthermore
very strongly dominated by the most popular products, while the
majority of products are in the long tail of rarely bought products.
This is even more the case than in typical long-tail distributions.
A detailed comparison of the insurance dataset with all other
datasets used for our evaluation is given in Section 5.1.

Taking these data characteristics into account is important for
the design of recommender systems. In particular, the designer of
the recommender system should be cautious about a popularity
bias in the system. Although recommending the most popular
products may already achieve a reasonable result in the insurance
recommendation setting, we expect our model to learn the long
tail products as well, and recommend them where necessary.

3.2 Recommender System Design Goals
Our aim is to design a supporting system for sales representa-
tives of an insurance company. This allows the representative to
query potential products for a specific customer. While the rec-
ommender system does not have access to information discussed
in a sales call, the representative can use his or her expertise to
further select the most relevant products among the presented
recommendations. On the one hand, this process makes the rec-
ommendation task more challenging, because we cannot get any
immediate feedback from the end user of the system, in this case
the customer. On the other hand, it is beneficial because the rec-
ommendations are evaluated by domain experts before they are
conveyed to the customers. It is important to note that the goal
is not to replace sales representatives, but to supplement their
work with objective recommendations.

4 METHODOLOGY
In this section, we present five main approaches for the implicit
top-K recommendation setting that we later use for our evalua-
tion of interaction-sparse recommendations.

First, we present a simple popularity-based baseline for com-
parison. Second, we describe SVD++ as a matrix factorization
method, which performs an optimized version of the Singular
Value Decomposition (SVD). Third, we follow SVD++ with an-
other matrix factorization method, Alternating Least Squares
(ALS), a fast and efficient matrix factorization method. Fourth
and fifth, we describe two methods — DeepFM and NCF — that
combine matrix factorization with neural networks. Finally, we
discuss Joint Collaborative Autoencoder (JCA), which is consid-
ered as the state-of-the-art recommender algorithm for implicit
datasets [40].

We formally present 𝑁 users as𝑈 = {𝑢1, ..., 𝑢𝑁 } and𝑀 items
as 𝐼 = {𝑖1, ..., 𝑖𝑀 }. We refer to the one-hot encoded user fea-
tures of a user 𝑈 as 𝑈𝐹 and the one-hot encoded item features
of the item 𝐼 as 𝐼𝐹 . In our case the actual users of the recom-
mender system are the sales representatives of the insurance
company, while the recommender system’s data describes the
insured private or corporate customers. We refer to user and
customer interchangeably throughout this paper and explicitly
refer to the sales representative when needed.

The interaction between users and items is defined by a pur-
chase history, which we define as the set 𝑆 ⊆ 𝑈 × 𝐼 . This set can
be encoded as a matrix in 𝑅𝑁×𝑀 where an element 𝑠𝑛𝑚 is 1 iff
(𝑢𝑛, 𝑖𝑚) ∈ 𝑆 (i.e., user 𝑢𝑛 purchased item 𝑖𝑚) and is otherwise
0. This means the cases where no rating is available or the user
is not interested in that particular item are both encoded in the
same way and thus the system is unable to differentiate between
the two.

4.1 Popularity-Based Baseline
To compare the performance of our algorithms against a sim-
ple baseline, we use the popularity-based recommendation as a
baseline. This non-personalized approach recommends the most
popular items to every user under the condition that the user
does not already have the product. We define the popularity of
any given product by the number of occurrences in the purchase
or rating history of the given dataset.

4.2 Singular Value Decomposition
The singular value decomposition (SVD) is a very useful trans-
formation in linear algebra to dissect a matrix into a product of
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three matrices, each with useful mathematical properties. The
SVD [31] (and also the extension SVD++ [16]) methods make
use of this idea of decomposing the user-item matrix into two
matrices that describe the factors influencing just the users and
just items, respectively. SVD is generally used in explicit datasets,
whereas SVD++ also incorporates the implicit feedback.

�̂�𝑢𝑖 = 𝑏𝑢𝑖 + 𝑞𝑇𝑖
©«𝑝𝑢 + |𝑁 (𝑢) |−

1
2

∑
𝑗 ∈𝑁 (𝑢)

𝑦 𝑗
ª®¬ (1)

Equation 1 shows how recommendations are generated. �̂�𝑢𝑖
is the predicted rating for user 𝑢 and item 𝑖 . It is calculated by
adding the baseline estimate 𝑏𝑢𝑖 (a sum of the mean rating, the
user bias and item bias) to the implicit factor inside the large
parentheses multiplied by 𝑞𝑇

𝑖
, the item factor for item 𝑖 . 𝑝𝑢 is

a vector of user factors of the explicit ratings, while the sum
|𝑁 (𝑢) |−

1
2
∑
𝑗 ∈𝑁 (𝑢) 𝑦 𝑗 represents the implicit ratings. 𝑁 (𝑢) is the

set of all items with implicit feedback from user 𝑢. 𝑦𝑖 is another
item factor for item 𝑖 . When using purely implicit feedback, neg-
ative sampling should be used for the explicit aspects of SVD++
to function. For a detailed description on SVDs, we refer the
interested reader to [9].

4.3 Alternating Least Squares
Alternating Least Squares (ALS) [12] follows the same matrix
factorization route as SVD++. The user-item matrix 𝑅 is decom-
posed into two matrices𝑈 and𝑉 , such that 𝑅 ≈ 𝑈𝑇𝑉 . Individual
rating predictions 𝑟𝑢𝑖 are generated by multiplying the user’s
component vector of𝑈 with

min
𝑈 ,𝑉

∑
{𝑖, 𝑗 |𝑟𝑖,𝑗≠0}

(𝑟𝑖, 𝑗 − 𝑢𝑇𝑖 𝑣 𝑗 )
2 + 𝜆 ©«

∑
𝑖

𝑛𝑢𝑖 | |𝑢𝑖 | |2 +
∑
𝑗

𝑛𝑣𝑗 | |𝑣 𝑗 | |2
ª®¬
(2)

Equation 2 shows the function to beminimized in generating𝑈
and𝑉 , taking the difference between the known rating 𝑟𝑖, 𝑗 and the
predicted rating 𝑢𝑇

𝑖
𝑣 𝑗 . The regularization term is parametrized

by 𝜆. 𝑛𝑢𝑖 denotes the number of items user 𝑖 interacted with and
𝑛𝑣𝑗 is the number of users that have interacted with item 𝑗 .

While gradient descent could be used to solve the Equation
2, research has shown that it is inefficient and slow. Instead, the
matrices 𝑈 and 𝑉 are optimized in an alternating process, hence
the name. In each update step, one matrix is fixed at its current
value and the other is optimized, then the roles are reversed.
This has been shown to transform the objective into a convex
function.

4.4 DeepFM
DeepFM [10] is a factorization machine architecture, originally
introduced for click-through rate prediction. The goal of DeepFM
is to bring together the successful architectures of factorization
machines with deep neural networks. Figure 2 shows an overview
of the DeepFM architecture. The factorization machine (FM) com-
ponent on the left half of the figure represents a typical factor-
ization machine. The deep component on the right half uses a
feed-forward architecture to train higher order feature interac-
tions. A prediction is calculated by applying the sigmoid function
to the sum of both components’ output.

Figure 2: Illustration of the DeepFM architecture.

4.5 Neural Collaborative Filtering
Neural Collaborative Filtering (NCF) [13] is a framework, which
models interactions in multiple layers. The feature vectors of
both users and items are given to an embedding layer, which
turns the one-hot encoded identification vectors into the latent
user and item vectors. These latent vectors are passed through
multiple layers where latent structures in the interactions are to
be learned.

�̂�𝑢𝑖 = 𝑓 (𝑢, 𝑣) (3)

Figure 3: Illustration of the neural matrix factorization ar-
chitecture (NeuMF) as an implementation of NCF.

In classical matrix factorization, a prediction �̂�𝑢𝑖 is generated
as shown in Equation 3, where 𝑓 represents the dot product and
the latent user and item vectors are 𝑢 and 𝑣 , respectively. The
authors show one implementation of NCF (termed as generalized
matrix factorization, GMF) that, when using a linear kernel, their
NCF framework can be understood as a special case of matrix
factorization. Another implementation uses the nonlinearity of a
multi-layer perceptron (MLP) as a general function approximator
to learn the similarity function 𝑓 instead of applying the dot
product. Finally, they introduce a fusion of both GMF and MLP
implementations of their framework as neural matrix factoriza-
tion (NeuMF). Figure 3 shows the GMF component on the left
and the MLP component on the right side. Unlike in DeepFM,
both components learn their individual embedding vectors for
flexibility and act independently of each other. Only in the final
NeuMF layer are the components concatenated to produce the
predicted rating. For our experiments, we will use the NeuMF
implementation.
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4.6 Joint Collaborative Autoencoder
4.6.1 Base model. An autoencoder (AE) is a class of unsuper-

vised neural networks that attempts to reconstruct the input data
in the output layer while learning a lower-dimensional feature
representation of the unlabeled data. The autoencoder architec-
ture that we describe in this section is called Joint Collaborative
Autoencoder (JCA) that provides top-K recommendation [39].

i101       i202        i303        

u111        1 0 0

u222        1 1 0

u333       0 1 0

u444       0 0 1

encoder

decoder

encoder

decoder

0.5 + 0.5

T
=

User-based rating matrix Item-based rating matrix

Final Output

u111       u222        u333        u444        

i101        1 1 0 0

i202        0 1 1 0

i303       0 0 0 1

Figure 4: Illustration of a joint collaborative autoencoder.
Left: User-based rating matrix. Right: Item-based rating
matrix. Finally, user-based and item-based matrices are
combined for calculating recommendations.

The architecture of JCA consists of two encoder-decoder neu-
ral networks (see Figure 4) with one hidden layer of 160 neurons
in both encoder-decoder networks (the same configuration as
used by the original authors). The neural network on the left
side of Figure 4 receives the user-based rating matrix 𝑅 as input,
where the rows of the matrix correspond to the users and the
columns correspond to the items. The neural network on the
right side receives the item-based rating matrix 𝑅𝑇 as input. This
means that the former neural network will handle each user sep-
arately, while the latter will handle each item separately. In order
to calculate the rating matrix that is used for recommendations,
the output of both neural networks is averaged.

The JCA model is formulated as follows:

𝑅 =
1
2
[𝜎 (𝜎 (𝑅𝑉𝑈 + 𝑏𝑈1 )𝑊

𝑈 + 𝑏𝑈2 ) + 𝜎 (𝜎 ((𝑅
𝑇𝑉 𝐼 + 𝑏𝐼1)𝑊

𝐼 + 𝑏𝐼2)
𝑇 )]
(4)

where 𝑅 is the predicted rating matrix and 𝑅 is the input rating
matrix. 𝑉𝑈 and 𝑉 𝐼 are the model weights of the user and item
component in the first layer.𝑊𝑈 and𝑊 𝐼 are the model weights
of the user and item component in the second layer. Moreover,
𝑏𝑈1 and 𝑏𝑈2 are the biases of the user component in the first and
second layers, respectively. 𝑏𝐼1 and 𝑏

𝐼
2 are the biases of the item

components in the first and second layers. Finally, 𝜎 refers to the
sigmoid activation function.

The model minimizes a pairwise hinge loss defined in Equa-
tion 5.

L(𝜃 ) =
∑
𝑢∈𝑈

∑
𝑖∈𝑆+𝑢
𝑖′∈𝑆−𝑢

𝑚𝑎𝑥 (0, 𝑟𝑢,𝑖′ − 𝑟𝑢,𝑖 + 𝑑) +
𝜆

2
| |𝜃 | |2𝐹 (5)

Here, 𝑟𝑢,𝑖 refers to the predicted ratings for user u and item
i. The item 𝑖 ranges over items with a positive feedback, 𝑆+𝑢 =

{𝑖 ∈ 𝐼 | (𝑢, 𝑖) ∈ 𝑆}, while the item 𝑖 ′ ranges over items without
positive feedback, 𝑆−𝑢 = {𝑖 ∈ 𝐼 | (𝑢, 𝑖) ∉ 𝑆}. 𝜆 and 𝜃 present the

L2-norm regularization term and all the model parameters, re-
spectively. Finally, 𝑑 is the allowed margin between positive and
negative samples and | |.| |𝐹 is the Frobenius norm.

5 EXPERIMENTS
In this section we describe the datasets and our experimental
setup. Note that to enable the reproducibility of our experiments,
our code is available on Github3. All datasets with the exception
of the proprietary insurance dataset are publicly available.

5.1 Datasets
For our experiments we use a private insurance dataset, the
publicly available MovieLens dataset, the Youchoose dataset from
the RecSys Challenge 2015, and the publicly available Retailrocket
dataset. Their characteristics are as follows:

Insurance dataset. The core dataset of this paper is our in-
surance dataset (see Table 1), whose challenges we discussed
previously in Section 3. The dataset contains several hundred
thousand users, a few hundred items, and about 1 million user
interactions resulting in a density below 1% (i.e. less than 1% of
possible interactions appear in the dataset). A unique characteris-
tic of the insurance dataset is the number of interactions per user
and per item. The number of interactions per user is never more
than 20, and users on average only interact with 1 to 3 items,
with most users having only a single item. Also, the number of
interactions per item ranges between a handful to a few hundred
thousand. I.e., the most popular item is bought by a few hundred
thousand users while the least popular items are bought by only
a handful of users.

The user data in this dataset contains the policies bought by
the users as well as the users’ demographic features. These demo-
graphic features are age range, gender, marital status, whether
the user is a company or a private customer, and the industry
in which the user is active. For privacy reasons, we cannot give
more details about the dataset.

MovieLens1M. We use the popular MovieLens1M dataset [11].
We choose this dataset over other versions of the MovieLens
dataset and E-commerce datasets because the number of interac-
tions and the number of products are more similar to our insur-
ance dataset. Since the original version of the dataset does not
contain any price value for the movies, we used a public API to
enrich the dataset with movie prices. The enriched movie prices
range from 2$ to 20$ and are approximately normally distributed
around the 10$.

Since we want to solve an implicit feedback task, we consider
the data points with ratings ≥ 4 as positive feedback. Data points
with a rating below 4 are discarded. Hence, we transform the
dataset into one with implicit feedback, making it impossible to
differentiate between negative feedback and missing feedback –
which is also an important characteristic of the insurance dataset.
Moreover, this approach is also used by the authors in [15, 38, 39].

Recent related work focused on recommending items that
have been rated by at least 6 different users, discarding all users
who rated less than 6 items [39]. However, in order to reconstruct
the insurance setting, where people buy typically few insurance
policies, with the MovieLens dataset, we analyze two different
subsets of the MovieLens datasets. MovieLens1M-Min6 contains
users that have rated at least 6 movies and movies that were
rated by at least 6 users – as done in previous work. It contains
3https://github.com/edualc/InsuranceRecommender
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Table 1: General statistics of the different datasets. Skewness is measured as the Fisher-Pearson coefficient.

Dataset User Selection # Users # Items # Interactions Density [%] Skewness User/Item Ratio
Insurance All 100k-1,000k 100-1,000 ∼1,000,000 <1.00 ∼10.00 ∼1000 : 1
MovieLens1M-Max5 ≤ 5 interactions 11 38 39 10.26 5.91 0,29 : 1
MovieLens1M-Max5-New ≤ 5 interactions (newest) 6,038 2,771 30,179 0.18 3.61 2,18 : 1
MovieLens1M-Max5-Old ≤ 5 interactions (oldest) 6,038 2,493 30,179 0.20 9.92 2,42 : 1
MovieLens1M-Min6 ≥ 6 interactions 6,027 3,062 574,026 3.11 3.65 1,97 : 1
Retailrocket All 11,719 12,025 21,270 0.02 19.97 0,97 : 1
Yoochoose All 509,696 19,949 1,049,817 0.01 17.75 25,55 : 1
Yoochoose-Small 5% of all interactions 49,670 7,369 52,491 0.01 11.96 6,74 : 1

Table 2: Interaction statistics for the different datasets.

Interactions p. User Interactions p. Item Cold Start (10-fold CV)
Dataset User Selection Min Avg Max Min Avg Max Users [%] Items [%]
Insurance All 1 1-3 <20 1-10 1-10k 100k-1,000k ∼50.00 <1.00
MovieLens1M-Max5-Old ≤ 5 interactions (oldest) 1 4.99 5 1 12.11 831 0.00 5.28
MovieLens1M-Min6 ≥ 6 interactions 6 95.24 1,415 6 187.47 2,853 0.00 0.00
Retailrocket All 1 1.82 532 1 1.77 129 61.94 45.58
Yoochoose All 1 2.06 53 1 52.63 12,440 28.91 5.09
Yoochoose-Small 5% of all interactions 1 1.06 5 1 7.14 635 90.42 12.89

6,027 users and 3,062 items with a total of 574,026 interactions
resulting in a density of 3.11. As presented in Table 2, one user
interacts on average with 95 items and the maximum number of
rated movies by one user is 1,415.

The majority of users in the MovieLens dataset consume 6
or more items and there is only a very small number of users
with 5 or fewer items – 11 users to be precise. Specifically, the
MovieLens1M-Max5 dataset contains users that have rated at most
5 movies (see Table 2) resulting in only 39 interactions. As this is
not a sufficient amount of data to sensibly train a model. Hence,
we instead selected up to 5 interactions from all users, choosing
either the newest or oldest 5 interactions. These two variants
of the MovieLens1M-Max5 dataset are shown with the suffixes
-New (as MovieLens1M-Max5-New) and -Old (as MovieLens1M-
Max5-Old), respectively.

For our experiments, we selected the MovieLens1M-Max5-Old
and MovieLens1M-Min6. We believe MovieLens1M-Max5-Old
reflects the interaction-sparse feature of the insurance dataset
quite well.

All MovieLens-derived datasets have user features such as age
range, gender, and occupation.

Retailrocket. We also use Retailrocket [29], another publicly
available e-commerce dataset. It contains many different types
of interactions, named as 𝑣𝑖𝑒𝑤 , 𝑎𝑑𝑑𝑡𝑜𝑐𝑎𝑟𝑡 and 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛. We
chose to only include the 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 interaction, as these signals
represent a stronger interest than viewing an item. Furthermore,
the transactions more closely resemble our real-world insurance
dataset. Tables 1 and 2 show the detailed characteristics of the
dataset. Retailrocket contains the fewest number of interactions
across all datasets and is the most skewed. While users have
an average of 1.82 interactions, the most active user has 532
interactions (2.5% of the whole dataset). Furthermore, the total
number of users and items is roughly equal, at 11,719 and 12,025,
respectively.

Yoochoose. This dataset was used in the RecSys Challenge 2015
[1] and contains implicit data about sessions in an e-commerce
webshop. Data points are collected for individual clicks, as well

as purchases. Unlike other datasets, interactions are grouped by
session and not by user. Users will have multiple sessions over
time, but only the session ids are available for identification. No
additional user or item features are present.

As Table 2 shows, the Yoochoose dataset contains by far the
largest number of items, is very sparsely populated and highly
skewed. With an average of 2.06 interactions per user and 19,949
items to choose from, it is very challenging to generate predic-
tions. Moreover, the total number of users strongly dominates
the number of items at a ratio of 25,55:1 with over half a million
of users. Note that this dataset does not contain any demographic
features associated with sessions.

Yoochoose-Small. Given the disproportionally large number
of interactions of the Youchoose dataset compared to the Movie-
Lens and Retailrocket, we also ran the experiments on a smaller
subset containing only 5% of the interactions. It was derived by
randomly subsampling the interactions. As a result the number
of Youchoose interactions are comparable with the insurance and
the Youchoose-small interactions with the other datasets.

Comparison of the insurance dataset and MovieLens1M. Figure
5 shows the distribution of item interactions both for the insur-
ance dataset as well as for the full MovieLens1M dataset. We can
observe that the distribution of the insurance dataset is signifi-
cantly more skewed than the distribution of the MovieLens1M
dataset. When calculating the Fisher-Pearson coefficient [23, 42]
of skewness, the MovieLens1M dataset has a coefficient of 3.65,
while the insurance dataset’s coefficient is three times its size,
namely 10.03 (see Table 1 for the coefficients of all datasets). This
coefficient measures the difference between a given distribution
and the normal distribution. In a normally distributed dataset,
this coefficient is zero.

While we are unable to give concrete numbers for how often
each product was bought for the insurance dataset due to privacy
concerns, we can see that the majority of users in the insurance
dataset have bought a small number of very popular products. On
the other hand, a large number of insurance products are located
in the long tail and thus are bought by only a few users. We also
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note that the skewness of the MovieLens1M-Max5-Old dataset
is very similar to the skewness of the insurance datasets. Hence,
we use the MovieLens1M-Max5-Old dataset in our experiments
to study interaction-sparse recommendations.

Figure 5: Distribution of item interactions for the insur-
ance and MovieLens1M datasets. Axis scale information
is removed for privacy reasons.

5.2 Training and Test Data Generation
The input for our algorithms is based on the user-item-matrix
generated from all the data points in the respective dataset, where
each row represents the sales history of a user and each column
represents the users that bought a given product. We use 10% of
our data as the test set for evaluation, whereas the remaining
90% of data is used to train the different algorithms used in this
paper. The train and test datasets are generated over a 10-fold
cross validation for each of the datasets.

5.3 Evaluation
5.3.1 Evaluation Metrics. We use three ranking-based metrics

for evaluating our algorithms: F1@K, Normalized Discounted
Cumulative Gain or NDCG@K [34], and Revenue@K. Specifically,
we first take the top-K recommendations as well as the top-K
ground truth values for each individual user. Next, we calculate
the 𝑚𝑒𝑡𝑟𝑖𝑐𝑠@K for each individual user, where 𝑚𝑒𝑡𝑟𝑖𝑐𝑠 is one
of the evaluation scores and @K indicates that it is calculated
with the top-K results. Finally, we average the metrics among the
users.

The Discounted Cumulative Gain at K (DCG@K) is defined as:

𝐷𝐶𝐺@𝐾 =

𝐾∑
𝑘=1

2I[𝑟 (𝑘) ∈𝐼𝐺𝑇 ] − 1
log2 (𝑘 + 1) (6)

where 𝑟 (𝑘) is the recommended product at rank k, 𝐼𝐺𝑇 is the
item in the ground truth and I[.] is the indicator function.

We can now define Normalized Discounted Cumulative Gain
at K (NDCG@K) as:

𝑁𝐷𝐶𝐺@𝐾 =
𝐷𝐶𝐺

𝐼𝐷𝐶𝐺
(7)

where the 𝐷𝐶𝐺 is calculated for the recommended products and
𝐼𝐷𝐶𝐺 is the ideal DCG, calculated from the ground truth.

Finally, the Revenue at K is defined as:

𝑅𝑒𝑣𝑒𝑛𝑢𝑒@𝐾 =
∑
𝑛∈𝑁

∑
𝑟 ∈𝑟𝑒𝑐𝑜𝑚@𝐾 (𝑛)∧
𝑟 ∈𝐺𝑟𝑜𝑢𝑛𝑑𝑇𝑟𝑢𝑡ℎ (𝑛)

𝑃𝑟𝑖𝑐𝑒 (𝑟 ) (8)

with 𝑃𝑟𝑖𝑐𝑒 referring to the price of the product at rank k.

5.3.2 Hyper-Parameter Optimization. For each of the meth-
ods, we tuned the hyper-parameters using a subset of the training
data. We applied the algorithms for 20 iterations to find a suit-
able set of parameters, optimizing for the NDCG@1. Finally, we
applied the selected parameters to each algorithm and reported
the results after a fixed number of iterations suitable for each
method and dataset.

The popularity baseline is without hyperparameters. For the
remaining methods, we performed a grid search for various pa-
rameters such as batch size, learning rate and regularization
parameters. The default parameters used can be taken from the
Github repository4. Deviations from the default parameters are
listed below. Both SVD++ and ALS use 256 factors on the in-
surance dataset and both Yoochoose and Yoochoose-Small, 64
on Retailrocket and 16 on the MovieLens datasets. In addition,
SVD++ uses 0.001 as its regularization parameter for all datasets.
DeepFM’s embedding sizes are 32 for Insurance, Yoochoose and
Yoochoose-Small, 16 for Retailrocket and 8 for both MovieLens
datasets. The learning rate was set to 1𝑒 − 4 for Yoochoose and
Yoochoose-Small, 3𝑒 −4 otherwise. NeuMF’s embedding sizes are
256 for Yoochoose, 64 for Retailrocket and 16 for all other datasets.
The learning rates used for JCA experiments are 5𝑒 − 5 for the
insurance dataset, 1𝑒 − 2 for MovieLens1M-Min6, 1𝑒 − 3 for both
MoviveLens1M-Max5-Old and Retailrocket and finally, 1𝑒 − 4
for Yoochoose-small dataset. We used 1𝑒 − 3 as regularization
parameter and 160 neurons in the hidden layer. Lastly, the batch
size for both Movielens datasets, as well as Yoochoose-small is
8, 192, 1, 500 for the insurance dataset, and the sizes of the full
dataset for Retailrocket.

5.3.3 Statistical Significance Test. After evaluating our results
on the explained metrics for 10 fold cross-validation, we used
the non-parametric Wilcoxon Signed Rank Test [35] to verify if
the differences between the results are statistically significant.
We perform the tests for each of the reported metrics for all the
algorithms and datasets used in this paper.

5.3.4 Deployment in Veezoo. The experiments in this paper
were conducted in isolation, that means outside of Veezoo’s code
base. However, these models have been deployed in Veezoo’s
platform5 since 2020. Sales representatives of insurance compa-
nies are able to ask the system and generate recommendations.
In combination with other machine learning approaches, Vee-
zoo was able to measure a 20% increase in premium and a 94%
decrease in time-to-answer for their insurance customers.

6 RESULTS AND DISCUSSIONS
In this section, we analyze the performance of the popularity-
baseline method, SVD++, ALS, DeepFM, NeuMF and JCA for
top-K recommendations on implicit feedback. For all algorithms
we report F1@K, NDCG@K, and Revenue@K. We evaluate the
methods initially on the insurance dataset. Afterwards we present
the results on the MovieLens1M-Min6 dataset, as previously done
by Zhu et al. [39]. Next, we generalize the characteristics of the
insurance dataset by using the MovieLens1M-Max5-Old dataset.
For additional insights, we further evaluate all algorithms on the
Retailrocket, Yoochoose-Small and Yoochoose datasets.

4https://github.com/edualc/InsuranceRecommender
5https://www.veezoo.com/insurance/
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Table 3: Performance of recommender methods on insurance dataset (average of 10 runs).

@1 @2 @3 @4 @5
Method F1 NDCG Revenue F1 NDCG Revenue F1 NDCG Revenue F1 NDCG Revenue F1 NDCG Revenue
Popularity ∗0.3233 ×0.3306 •26.05𝑀 •0.3300 •0.4242 •52.36𝑀 •0.2722 •0.4468 •57.75𝑀 •0.2432 •0.4733 •64.64𝑀 •0.2170 •0.4892 •69.09𝑀
SVD++ ×0.3329 ×0.3405 ×30.22𝑀 •0.3362 +0.4334 56.61M •0.2822 •0.4609 •66.54𝑀 •0.2413 •0.4764 •71.01𝑀 •0.2166 •0.4936 •79.84𝑀
ALS •0.1880 •0.1924 •23.33𝑀 •0.1647 •0.2210 •32.52𝑀 •0.1324 •0.2288 •35.50𝑀 •0.1115 •0.2342 •37.92𝑀 •0.0965 •0.2380 •41.16𝑀
DeepFM 0.3370 0.3438 30.95M 0.3500 0.4482 ×56.05𝑀 0.2953 0.4788 +64.30𝑀 0.2603 0.5035 •71.90𝑀 0.2352 0.5240 •78.20𝑀
NeuMF •0.2995 •0.3067 +26.61𝑀 •0.3147 •0.4011 •52.03𝑀 •0.2707 •0.4337 •62.96𝑀 •0.2420 •0.4601 •73.28𝑀 •0.2164 •0.4765 •80.56𝑀
JCA ×0.3246 ×0.3320 •26.61𝑀 •0.3346 ×0.4289 +55.60𝑀 •0.2826 •0.4581 69.59M ×0.2543 +0.4873 81.81M •0.2214 •0.4976 86.79M
The results of the best performing method for every metric (column) is highlighted with bold font. We compare the results statistically with the best performing using
the Wilcoxian Signed Rank test to ascertain that the difference is statistically significant, where ∗ indicates significance at p<0.1, + at p<0.05, and • at p<0.01 as well as ×
indicates not significant.

Table 4: Performance of recommender methods on MovieLens1M-Max5-Old with users having ≤ 5 products chosen from
their oldest ratings.

@1 @2 @3 @4 @5
Method F1 NDCG Revenue F1 NDCG Revenue F1 NDCG Revenue F1 NDCG Revenue F1 NDCG Revenue
Popularity 0.0324 0.0359 •1,623 0.0400 0.0469 •2,232 0.0415 0.0567 ×3,111 0.0428 0.0656 ×3, 550 0.0417 0.0718 •4, 121
SVD++ ×0.0305 ×0.0337 •1, 243 ×0.0383 ×0.0448 •2, 161 ×0.0408 ×0.0551 •2, 938 ×0.0417 ×0.0637 ×3,653 ×0.0420 ×0.0710 ×4,293
ALS •0.0224 •0.0248 •580 •0.0248 •0.0300 •970 •0.0256 •0.0359 •1, 331 •0.0255 •0.0406 •1, 674 •0.0255 •0.0449 •2, 031
DeepFM •0.0202 •0.0243 •840 •0.0256 •0.0284 •1, 541 •0.0269 •0.0359 •2, 078 •0.0266 •0.0425 •2, 595 •0.0260 •0.0476 •3, 019
NeuMF •0.0171 •0.0202 •531 •0.0213 •0.0236 •1, 092 •0.0244 •0.0317 •1, 755 •0.0248 •0.0387 •2, 142 •0.0255 •0.0440 •2, 540
JCA •0.0242 •0.0266 •868 •0.0307 •0.0358 •1, 597 •0.0324 •0.0438 •2, 224 •0.0329 •0.0502 •2, 776 •0.0327 •0.0556 •3, 279
∗p<0.1; +p<0.05; •p<0.01; × not significant. The p-values are reported from the comparison of the winner algorithm with all other algorithms.

Table 5: Performance of recommender methods onMovieLens1M-Min6 with users having ≥ 6 products.

@1 @2 @3 @4 @5
Method F1 NDCG Revenue F1 NDCG Revenue F1 NDCG Revenue F1 NDCG Revenue F1 NDCG Revenue
Popularity •0.0253 •0.1147 •7, 799 •0.0428 •0.1125 •16, 803 •0.0509 •0.1059 •22, 188 •0.0588 •0.1035 •27, 236 •0.0654 •0.1024 •32, 049
SVD++ •0.0253 •0.1153 •7, 837 •0.0429 •0.1128 •16, 756 •0.0510 •0.1063 •22, 145 •0.0590 •0.1040 •27, 266 •0.0656 •0.1029 •32, 220
ALS 0.0632 •0.2625 •17, 492 0.0971 •0.2401 •30, 299 0.1188 •0.2286 •41, 304 0.1334 •0.2217 •50, 942 •0.1434 •0.2174 •59, 505
DeepFM •0.0243 •0.1611 •10, 677 •0.0465 •0.1449 •19, 084 •0.0615 •0.1380 •26, 290 •0.0726 •0.1336 •32, 771 •0.0811 •0.1317 •38, 878
NeuMF •0.0262 •0.1675 •11, 215 •0.0493 •0.1507 •19, 927 •0.0661 0.1438 27, 613 •0.0774 •0.1398 •34, 392 •0.0856 •0.1372 •40, 503
JCA •0.0508 0.3414 23,012 •0.0857 0.3219 42,354 •0.1123 0.3088 59,596 ×0.1326 0.2997 75,259 0.1487 0.2933 89,892
∗p<0.1; +p<0.05; •p<0.01; × not significant. The p-values are reported from the comparison of the winner algorithm with all other algorithms.

6.1 Evaluation of Metrics F1@K, NDCG@K,
and Revenue@K

Table 3 presents the performance of the six methods on the in-
surance dataset. The results are reported for top-k, where 𝑘 ∈
{1, ..., 5}. The best method on the insurance dataset is DeepFM,
closely followed by JCA, SVD++ and the popularity baseline.
Note that DeepFM is only outclassed in performance by SVD++
in terms of Revenue@2 and by JCA in Revenue@3 and higher.
The popularity-based method produces competitive predictions,
about 5% behind DeepFM’s F1 and NDCG scores. It is able to
exploit the large number of cold start users for a low number of
products in a heavily skewed dataset. NeuMF is even further be-
hind at 10 to 15% compared to DeepFM. However, ALS struggles
to reach even half the performance of DeepFM, indicating that it
is unable to utilize the popularity bias of this dataset.

The evaluation on the MovieLens1M-Max5-Old dataset gen-
eralizes the insurance recommendation results. It can be seen
from Table 4 that in the sparse-interaction setting where, on aver-
age, users have 5 interactions, the popularity-based method and
SVD++ perform best. The significance tests show that these two
methods have almost identical performance. JCA’s performance
is about 25% behind SVD++ and the popularity-based method
in terms of F1-score and revenue. ALS, DeepFM and NeuMF fall
within the same significance range at about 40% behind. However,
in this triplet of methods, DeepFM consistently outperforms its
peers in terms of revenue and matches the revenue of JCA.

Table 5 shows the results for theMovieLens1M-Min6 dataset. In
contrast to the insurance dataset, where users had few products,

the evaluation is carried out on users with 6 or more interac-
tions. In this particular setting, JCA achieves the best result for
a majority of all reported metrics. We also note that ALS per-
forms best for F1@1 up to F1@4. While ALS is lower in terms
of precision compared to JCA, it recommends a more diverse set
of items and achieves a comparatively much higher recall. The
popularity-based method and SVD++, the top methods on the
previous iteration of MovieLens, perform here on the same level
as DeepFM and NeuMF at 40% of ALS and JCA’s F1-score. For the
NDCG however, they perform even below DeepFM and NeuMF
at 30%.

As Table 5 demonstrates, the more products we recommend,
the easier it becomes to suggest a correct product and to achieve
a higher F1-score. One reason is the high number of products
in the ground truth of the users. For instance, in Table 2 we can
see that the average number of interactions per user is 95.24.
However, correctly ranking recommendations by relevance is
a harder problem and NDCG decreases even for the strongly
performing JCA as the number of recommendations increases.

On the Retailrocket dataset, no pricing information is available.
Thus, we are unable to provide results for Revenue@k. The over-
all performance of all methods hovers just below 1% for F1@k
and NDCG@k (see Table 6). We also notice that for F1@1 and ND-
CDG@1 ALS performs best. For higher values of k, however, the
popularity-based method shows the best results, though these
are not strictly significant results when comparing the differ-
ent methods. Among the neural network based methods, JCA is
able to generate comparatively competitive predictions, but both
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Table 6: Performance of recommender methods on Retailrocket

@1 @2 @3 @4 @5
Method F1 NDCG Revenue F1 NDCG Revenue F1 NDCG Revenue F1 NDCG Revenue F1 NDCG Revenue
Popularity ×0.0077 ×0.0084 - 0.0083 0.0104 - 0.0079 0.0118 - 0.0071 0.0124 - ×0.0063 0.0128 -
SVD++ +0.0072 +0.0079 - ×0.0080 ×0.0099 - +0.0071 +0.0109 - ×0.0067 ×0.0118 - ×0.0063 ×0.0126 -
ALS 0.0091 0.0100 - ×0.0076 ×0.0102 - ×0.0065 ×0.0107 - •0.0055 ×0.0109 - •0.0046 •0.0110 -
DeepFM •0.0012 •0.0012 - •0.0006 •0.0011 - •0.0001 •0.0012 - •0.0000 •0.0013 - •0.0000 •0.0013 -
NeuMF •0.0033 •0.0034 - •0.0005 •0.0029 - •0.0001 •0.0029 - •0.0000 •0.0030 - •0.0000 •0.0030 -
JCA ×0.0071 ×0.0077 - +0.0068 ×0.0089 - •0.0063 +0.0097 - +0.0057 ×0.0102 - •0.0052 +0.0106 -
∗p<0.1; +p<0.05; •p<0.01; × not significant. The p-values are reported from the comparison of the winner algorithm with all other algorithms.

Table 7: Performance of recommender methods on Yoochoose-Small

@1 @2 @3 @4 @5
Method F1 NDCG Revenue F1 NDCG Revenue F1 NDCG Revenue F1 NDCG Revenue F1 NDCG Revenue
Popularity •0.0121 •0.0121 +0 +0.0129 •0.0166 •1, 956 0.0119 ×0.0189 +29, 329 0.0110 ×0.0206 •29, 747 ∗0.0101 •0.0217 •46, 858
SVD++ 0.0130 0.0130 +244 0.0132 0.0171 •3, 909 0.0119 0.0192 •26, 189 ×0.0109 0.0208 •32, 611 0.0104 0.0223 •57, 806
ALS •0.0018 •0.0018 ×10, 890 •0.0019 •0.0024 •15, 505 •0.0016 •0.0026 •16, 906 •0.0016 •0.0030 •20, 498 •0.0014 •0.0032 •21, 151
DeepFM •0.0071 •0.0071 ∗4, 038 •0.0040 •0.0075 +10, 518 •0.0024 •0.0086 +19, 773 •0.0008 •0.0087 ×39, 462 •0.0004 •0.0088 ∗45, 012
NeuMF •0.0063 •0.0063 ×4, 394 •0.0058 •0.0081 ∗18, 322 •0.0029 •0.0092 ×30, 925 •0.0011 •0.0094 ×43, 417 •0.0005 •0.0097 ×54, 709
JCA •0.0048 •0.0048 13,268 •0.0054 •0.0069 36,138 •0.0054 •0.0082 51,928 •0.0054 •0.0093 65,938 •0.0053 •0.0102 81,132
∗p<0.1; +p<0.05; •p<0.01; × not significant. The p-values are reported from the comparison of the winner algorithm with all other algorithms.

Table 8: Performance of recommender methods on Yoochoose

@1 @2 @3 @4 @5
Method F1 NDCG Revenue F1 NDCG Revenue F1 NDCG Revenue F1 NDCG Revenue F1 NDCG Revenue
Popularity •0.0132 •0.0132 •85 •0.0138 •0.0177 •46, 364 •0.0139 •0.0210 •601, 826 •0.0120 •0.0219 •612, 250 •0.0112 •0.0232 •1, 159, 084
SVD++ •0.0132 •0.0132 •85 •0.0138 •0.0177 •46, 364 •0.0139 •0.0210 •601, 826 •0.0120 •0.0219 •612, 127 •0.0112 •0.0233 •1, 159, 502
ALS 0.1089 0.1143 9,076,133 0.1079 0.1375 12,852,633 0.0978 0.1519 15,030,259 0.0874 0.1606 16,474,896 0.0782 0.1660 17,411,197
DeepFM •0.0134 •0.0136 •132, 492 •0.0076 •0.0138 •373, 954 •0.0038 •0.0140 •539, 194 •0.0015 •0.0141 •714, 781 •0.0006 •0.0143 •940, 544
NeuMF •0.0127 •0.0128 •7, 063 •0.0101 •0.0145 •216, 167 •0.0061 •0.0151 •421, 229 •0.0036 •0.0156 •868, 317 •0.0020 •0.0159 •1, 012
JCA - - - - - - - - - - - - - - -
∗p<0.1; +p<0.05; •p<0.01; × not significant. The p-values are reported from the comparison of the winner algorithm with all other algorithms.

DeepFM and NeuMF perform significantly worse than all other
methods, with F1-scores of almost zero for F1@3 and higher.
DeepFM’s F1-scores and NDCG are even an order of magnitude
below the popularity-based method. The reason for the low per-
formance of all algorithms is due to the extreme sparsity and
skewness of this dataset (revisit the dataset statistics shown in
Table 1 for details). Under these "extreme conditions" it is hard
for the algorithms to learn a specific pattern.

Let us now analyze the behavior of the algorithms for the
datasets Yoochoose-Small and Yoochoose (see Tables 7 and 8). The
smaller dataset Yoochoose-Small has been chosen to measure the
performance of JCA, since it was impossible to run JCA on the
full Yoochoose dataset. Due to the selection of just 5% of inter-
actions in Yoochoose-Small, the percentage of cold start users
increases by over a factor of 3 from 28.91% to 90.42%. Similar to
MovieLens1M-Max5 dataset, both the popularity-based method
and SVD++ are outperforming all other methods in terms of
F1-score and NDCG across all values of k. However, the large
number of cold start users make this dataset difficult to solve.
Furthermore, users that do have an existing interaction history
have only a low number of products, at most five. In these harsh
conditions, primarily relying on the popularity bias looks to be
the only learnable pattern in the dataset.

The full Yoochoose dataset poses a difficult challenge, since
it features the largest number of items (i.e., 19, 949) across all
datasets. Predicting the top 1 to 5 out of almost 20 thousand
items becomes truly challenging. With over half a million of
users, and just over a million of interactions, the dataset — while
heavily skewed — is also the most sparsely populated one. SVD++
and the popularity-based method reach similar performance met-
rics compared to the Yoochoose-Small dataset above the 1% mark.

However, DeepFM and NeuMF are now able to match their per-
formance for 𝑘 = 1, but not for higher values of k. Unlike for
the Yoochoose-Small dataset, ALS is able to learn a pattern and
reaches 10.89% F1@1, steadily decreasing to 7.82% F1@5.

In summary, the datasets Retailrocket and Yoochoose are good
examples for stress testing recommender algorithms. They also
demonstrate that simpler methods seem to have more robust and
scalable implementations than the neural network approaches.

6.2 Summary of the results
A summary of the overall recommender performance in terms of
mean F1-score, NDCG and revenue across all values of k ∈ [1, 5],
is given in Table 9. Methods are ranked from 1 through 5, with 1
giving the best performance on the particular dataset. While this
table lacks the relative differences in performance, it allows to
quickly see the condensed overall result from the previous result
tables.

Table 9: Overall recommender performance ranking.

Dataset Popularity SVD++ ALS DeepFM NeuMF JCA
Insurance 4 3 6 1 5 2
MovieLens1M-Max5 1† 1† 5† 4 5† 3
MovieLens1M-Min6 5† 5† 2 4 3 1
Retailrocket 1† 1† 1† 6 5 4
Yoochoose-Small 1† 1† 6 4† 4† 3
Yoochoose 2† 2† 1 4† 4† -
Average Rank 2.33 2.17 3.50 3.83 4.33 3.17*

† This rank is given to two or more methods, as their performance is within one
standard deviation. See the individual dataset performance tables for reference.
* JCA was unable to be trained in reasonable time on Yoochoose and thus could not
be ranked on the full Yoochoose dataset. The average rank was calculated counting
its performance on Yoochoose as rank 6.
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The popularity-basedmethod performs surprisinglywell, given
hownaïve and computationally efficient predicting the popularity
bias is. SVD++ always performs similar to the popularity-based
method (as indicated by the matching † symbols in Table 9 for
Popularity and SVD++), suggesting that this method heavily relies
on learning the popularity bias in a dataset. This begs the ques-
tion, if the training of a SVD++ model is even necessary, given
how a similar performance can be reached by the popularity-
based method. ALS looks to be a method that should be in every
recommender system toolbox. While not the best method over all
datasets, its ability to conquer a difficult dataset like Yoochoose
makes it potent. In addition, ALS is a very computationally effi-
cient method, as we will show later in Section 6.3. NeuMF and
DeepFM are conceptually similar methods, and it is not surpris-
ing that their performance is generally similar. However, the
only dataset where they shine (the insurance dataset), is a dataset
where almost all other methods perform well already (with the
exception of ALS). JCA as the only pure neural network method
has competitive results on 3 out of 6 datasets. However, feeding
the full user-item matrix through the JCA network during train-
ing has a risk of memory errors, especially if both user- and item
dimensions grow large.

Figure 6: Comparison of the average F1-score across all
methods and datasets, scaled to the maximum per dataset.
Error bars indicate one standard deviation.

Figure 6 gives a summary of all results in terms of F1-score.
Each bar represents the mean of all F1@1 through F1@5measure-
ments and the error bar is one standard deviation. All methods
except ALS achieve similar F1-scores on the insurance dataset.
Hence, other measures (such as revenue) need to be considered
when choosing the best method. In this dataset, the popular-
ity bias has to be learned. Table 1 in Section 5.1 shows that the
number of users far outweighs the number of items. However,
methods need to go beyond the popularity bias and be able to
predict items that are rarely interacted with. ALS is the only
method that shows to be struggling with this dataset, perhaps
because it has difficulties dealing with outliers.

In the MovieLens-Max5 dataset, the goal is to reproduce the
characteristics of the insurance dataset. There remain a few dif-
ferences, especially in the ratio between users and items and
the percentage of cold start users. We believe that the overall
performance of all methods dropped by an order of magnitude
compared to the insurance dataset, due to the lower number of
interactions per item. The MovieLens-Max5 dataset has a similar
skewness, but far fewer interactions have to be spread across

far more items. Compared to the methods’ performance on the
insurance dataset, the relative spread remains identical except for
the neural network based methods (DeepFM, NeuMF and JCA).
This behavior suggests that not enough interactions were present
to capture the patterns in the underlying interaction history.

The MovieLens1M-Min6 dataset portrays the performance on
a typical non interaction-sparse dataset. Unlike with the other
datasets, here the methods are able to exploit much larger pat-
terns, as users on average interact with more than just a handful
of items. The popularity-based method and SVD++ achieve the
lowest results, as it becomes much more important to generate
predictions that relate to pre-existing interactions. Because this
dataset is much more densely populated than all other datasets,
both ALS and JCA are able to exploit the additional number of
interactions per user and item better than their counterparts. ALS
in particular has to deal with a lot fewer outliers, since every user
and item have at least six interactions.

Retailrocket is a challenging dataset because of the low user
to item ratio, low density and highest skewness out of all our
tested datasets. All methods perform quite poorly on this dataset,
with F1-scores and NDCG values below 1%. With just 1.82 and
1.77 interactions per user and item, respectively, the challenge of
predicting the correct items out of 12 thousand items is arduous.
In addition, almost half (45.58%) of all items are never seen during
training, eliminating a large number of items as potential predic-
tions. DeepFM and NeuMF in particular struggle with this dataset
— significantly more than the other approaches. The fusion of
matrix factorization and neural networks might lead to worse
predictions, as the individual components produce conflicting
signals. All other methods exploit at least the popularity bias in
the dataset.

The Yoochoose-Small dataset — while partially matching sta-
tistics of the insurance dataset — shows the same F1-score pattern
as in the insurance case with ALS trailing far behind the other
methods. However, while JCA was able to closely match the F1-
scores of SVD++ and the popularity-based method, it is unable
to repeat this on Yoochoose-Small. One of the main differences
between the two datasets is the number of cold start users. Where
the insurance dataset features about 50%, Yoochoose-Small has
over 90% cold start users, suggesting that JCA struggles when
users are new. Similarly, NeuMF and DeepFM also struggle with
the increase in cold start users and far fewer interactions per
item. These methods tend to perform better, if there are fewer
numbers of items in relation to the number of users.

Finally, for the Yoochoose dataset results of JCA are not avail-
able. ALS clearly performs best with an order of magnitude lead
over all other methods. This suggests that ALS is able to extract
a pattern which is disconnected from the popularity bias that
SVD++ and the popularity-based method are primarily exploiting.
Another explanation could be that the interaction patterns of Yoo-
choose were broken apart by subsampling 5% of all interactions
for Yoochoose-Small — and ALS is the only method to model the
interaction pattern in such a hostile dataset. When looking at
the absolute F1-scores and NDCG values, the other methods re-
main in the same orders of magnitudes as with Yoochoose-Small,
largely performing very similarly.

Figure 7 gives a summary of all results in terms of revenue.
Each bar represents the mean of all Revenue@1 through Rev-
enue@5 measurements (error bars indicate one standard devia-
tion). Since Retailrocket does not contain pricing information, it
is omitted.
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Figure 7: Comparison of the average revenue across all
methods and datasets, scaled to the maximum per dataset.
Error bars indicate one standard deviation.

On the insurance dataset, both the popularity-based method
and SVD++ achieve less revenue than the F1-score would suggest.
The Yoochoose-Small dataset demonstrates the same pattern
even more pronounced — both the popularity-based method and
SVD++ closely match the F1-score but in terms of revenue are
only able to slightly surpass the revenue generated by ALS.

6.3 Training Time
Finally, we evaluate the run time of all six methods on all six
datasets. Wemeasure the mean training time per epoch. Note that
this information is often omitted in research papers. However,
when applying recommender systems in practice as in our use
case, the training time is crucial — in particular when neural
networks need to be retrained periodically. All experiments are
executed on an NVIDIA TITAN Xp GPU.

Figure 8: The mean training time per epoch in seconds.

Figure 8 shows the mean training time for one epoch across
all datasets. The y-axis is in seconds and markers are placed at
increasing powers of 10 (log-scale). Since the popularity-based
method only needs to extract the frequency of items in the dataset,
it was added to Figure 8 with an “honorary” 1 second training
time. In the remainder of this section, we will focus our compari-
son only on those methods which need to be trained.

All trained methods slow down with the number of interac-
tions, users and items. However, the SVD++, ALS, DeepFM and

NeuMF manage to be trained faster than JCA by an order of
magnitude or more. Moreover, JCA could not be trained on the
Yoochoose dataset due to memory issues. Finally, these results
also demonstrate that the simple popularity-based method not
only shows high F1-scores but also has the added benefit of not
needing any computationally expensive training — knowing the
item frequencies suffices.

7 CONCLUSION & FUTUREWORK
This investigation set out to analyze the possibility of using rec-
ommender systems in the special insurance setting. This special,
revenue-driven interaction-sparse setting poses new challenges
to recommender systems that—to the best of our knowledge—
were not yet explored in detail.

The main lessons learned of our systematic experimental eval-
uation are as follows:

• In the sparse setting of the insurance data with medium
skewness, DeepFM showed better performance than JCA,
the state of the art neural network approach for recom-
mender systems. However, DeepFM is not very robust in
other datasets and should be used carefully. Moreover, JCA
is a very memory-intensive algorithm and needs imple-
mentation improvements to work well for extremely large
combinations of users and items.

• Matrix factorization methods showed better performance
than neural network methods for datasets with higher
skewness than the insurance dataset and a high ratio of
cold start users. Especially SVD++ is generally very robust
across different skewness levels and cold start ratios.

• The popularity-based method showed surprisingly good
performance across all datasets except for one.

• While a large part of the research community primarily
focuses on the sparsity and skewness metrics, the number
of interactions per user and item, respectively, is another
important metric to take into consideration.

• In summary, there is no clear winner among the algo-
rithms for the different dataset characteristics. Hence, in a
real-world scenario with interaction-sparse characteristics
one should use a portfolio of algorithms consisting of ma-
trix factorization and neural network methods. Moreover,
the popularity-based approach should always be part of
the portfolio due to its good performance and easy inter-
pretability. The latter is of particular importance for sales
representatives who need to justify their recommenda-
tions to both their customers and superiors.

As part of future work, we will study more complex revenue-
optimized methods such as multi-objective optimization [21]. In
addition to revenue, an interesting optimization objective is fair-
ness. In the context of the insurance domain, a typical question
could be if a customer is over- or under-ensured and hence pays
a fair price with respect to the insurance coverage.

Moreover, the findings provided here indicate that we can
possibly choose an optimal recommendation algorithm based on
data properties (in our case the skewness of 𝑅 indicates whether
to choose a neural network method or a matrix factorization
method). This echos ideas from machine learning on algorithm
selection and may inform Auto-ML approaches for recommen-
dations. As such, we believe that this work paves the way for
finding optimal recommendation algorithms for a given dataset
based on data properties.
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