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ABSTRACT

Well-chosen secondary indexes are highly relevant for database
performance. For complex workloads, current index selection
algorithms are either not fast or not highly competitive. Our ap-
proach, SWIRL, which is based on reinforcement learning, offers
both. The necessary knowledge about index candidates is inter-
nalized during a preliminary training procedure. The training
effort is then traded off against rapid runtimes while workloads
containing known and unknown queries can be handled, which
is relevant, e.g., in cloud-based business application scenarios.
In this work, we (i) explain how we model the index selection
problem for reinforcement learning, (ii) enable our approach to
generalize to unseen workloads, (iii) achieve efficient training
for thousands of index candidates by relying on invalid action
masking, and (iv) compare it to state-of-the-art and other RL in-
dex selection approaches on the analytical TPC-H, TPC-DS, and
Join Order Benchmarks. The results show that overall SWIRL de-
termines competitive index configurations and outperforms com-
petitors in terms of runtime, some by orders of magnitude.

1 INTRODUCTION

Secondary indexes are indispensable for the performance of rela-
tional database systems [6]. Determining the right set of indexes
is a challenging process that has been researched for the past 50
years [32, 36]. There are various sophisticated index selection
approaches, but for complex workloads, current approaches pro-
duce either solutions of high quality or provide low selection
runtimes. Yet, they fall short of striking the right balance between
both and further metrics, e.g., Extend [50] and DB2Advis [56] in
the schematic Figure 1. Our index selection approach based on
reinforcement learning (RL), SWIRL, bridges this gap by incorpo-
rating knowledge of vast amounts of workloads during training.

Motivation. By 2022, more than 75% of all databases are esti-
mated to run in the cloud [22]. The increasing share of database
deployments in cloud environments, especially in Software-as-
a-Service (SaaS) scenarios, shifts the responsibility for effective
physical database design to cloud vendors that maintain these
systems. This development and the cloud’s promise to reduce
the total cost of ownership [15] allow for reconsidering how
physical database design challenges are approached. The sheer
number of systems to be maintained and dynamically changing
workloads [37], which demand fast reactions by reconfigurations,
require that optimized configurations, e.g., for indexes, can be
determined quickly and efficiently. In SaaS scenarios, thousands
of customers run similar workloads on similar schemata because
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Figure 1: Index selection algorithms show weaknesses in
different dimensions. Functionality means, e.g., support-
ing multi-attribute indexes or budget constraints.

such applications predefine schemata and workloads [2]. There-
fore, the resulting physical database design decision problems
are also — to some degree — similar.

However, knowledge about these characteristics is not utilized
by state-of-the-art index selection approaches. These approaches
determine solutions without relying on prior knowledge, often
resulting in long runtimes or in degraded performance. Alterna-
tive concepts like reinforcement learning-based approaches can —
if applied carefully — effectively exploit these characteristics and
the fact that massive amounts of training data exist [18]: During
training, an agent efficiently learns which indexes are benefi-
cial under what circumstances for the predefined schemas. After
training, and in contrast to state-of-the-art approaches, it does
not need to enumerate possible solutions expensively but infers
suitable indexes almost instantaneously based on the previously ac-
cumulated knowledge. While other approaches must account for
complex effects, e.g., index interaction (see Section 2.1) by costly
and iteratively testing multiple configurations, our approach in-
ternalizes such effects during training. Naturally, to gain this
knowledge, extensive training is required, which is justifiable if
efficient index configurations can be determined quickly later
when the model is frequently applied.

Contributions. This paper offers the following contributions:

e We present an RL-based index selection approach match-

ing the performance of the best competitors while its run-

time outperforms the fastest (but not as good) algorithms.

Our solution applies a sophisticated workload model to

generalize to workloads with unseen queries and relies on

invalid action masking to reduce training durations.

e We include the first survey and performance study for
RL-based index selection and evaluate our approach with
complex analytical database benchmarks on PostgreSQL
in terms of training overhead, runtime, and performance.

e We provide an open-source implementation! that can be
used to reproduce our results and adapted for further RL
experiments with other physical database design chal-
lenges.

ISWIRL’s source code: https://github.com/hyrise/r]_index_selection
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2 BACKGROUND

This section introduces the index selection problem and its main
challenges (Section 2.1) before we formalize it in Section 2.2. Af-
terward, we introduce the formal foundations of RL in Section 2.3.

2.1 The Index Selection Problem

Index selection describes the process of determining an optimal
set of indexes for a workload under constraints, e.g., a storage
budget or a specified maximum number of indexes [44]. We
denote these constraints as stop criteria. In the following, we
explain which factors make index selection a challenging problem.
For more details, we refer to a recent experimental survey [32]
on index selection.

Large solution space. For reasonably sized datasets and work-
loads, numerous options for indexation, i.e., index candidates,
exist. The number of relevant index candidates depends on the
number of attributes (real-world datasets can contain thousands
of attributes [5]) accessed by the workload’s queries and the max-
imal number of attributes per index (multi-attribute candidates
are typically generated by permuting single-attribute candidates).
Evaluating all candidate combinations is, in general, impractical
as their number exceeds the number of attributes by orders of
magnitude [59]. Hence, enumerating all solutions is infeasible.
Index interaction. During index selection, the candidates can-
not be considered independent because indexes interact [51]: the
existence of one index can affect the performance impact of an-
other index. Thus, during every step of an index selection process,
the currently existing indexes have to be taken into account. This
fact requires frequent recomputations of the candidates’ benefits
because every index creation or removal might drastically impact
another index candidate’s potential benefit.

Quantifying index impact. Determining the potential perfor-
mance impact of index candidates is essential for comparing
them and choosing the most promising ones. Physically creating
indexes and measuring their impact is theoretically possible, but
long creation and execution times render this method infeasi-
ble. For this reason, index selection approaches typically rely on
estimates instead of actual measurements. Some database sys-
tems offer hypothetical indexes that are not (entirely) physically
created but only inexpensively simulated for such estimations.
These hypothetical indexes are considered by the DBMS’ opti-
mizer (what-if optimization [13]) to generate query plans and
cost estimations. Despite the relatively cheap simulation of hy-
pothetical indexes, the cost estimation process is still a major
contributor to the runtime of index selection algorithms [43].
While cost estimations may differ from actual execution costs
to a large extent [7], they are typically the only feasible option
for large workloads and still allow for comparing different index
selection approaches [32].

2.2 Problem Formalization

We consider a workload characterized by N query templates (or
query classes) and K involved attributes. Each query class n is
represented by a set of attributes g, € {1,...K},n = 1,..,N,
that are accessed. Further, by I, we denote a given set of index
candidates. A (multi-attribute) index i € I is characterized by
an ordered set of attributes from {1, ..., K}. The width W of an
index corresponds to the number of attributes it contains. Wy qx
denotes the largest index width considered during index selection.
The required storage of index i is denoted by m;, i € I. A selection
of indexes is denoted by the subset I* C I. The costs to execute
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a query of class n depend on the chosen selection of indexes I*
and are denoted by parameters c,, (I*). Assuming that queries of
class n occur with frequencies fp, n = 1,..., N, the total workload
costs C depend on I* and amount to

Cry=, eeall). (1)

The goal is to determine an index selection I* C I such that
C(I"), cf. (1), is minimized and a given storage budget B (stop
criterion) is not exceeded. Using binary variables x;, which in-
dicate whether a candidate index i € I is part of the selection I*
(1 yes, 0 no), i.e, I"(X) := Ujer.x,=1 {i}, the total storage used by
a selection I = I*(X) amounts to M(I*(X)) := X;cy mi - x; and
the index selection problem can be mathematically defined by:

minimize C(I*(X¥)) subjectto M(I*(¥)) <B. (2)

x;€{0,1},iel
In this context, a restriction on the number L of selected indexes
would correspond to a cardinality constraint, };cy x; < L.

2.3 Reinforcement Learning

Reinforcement Learning (RL) covers a group of algorithms to
solve decision problems. Those problems are characterized by
processes that repeatedly allow an agent to perform an action
a; of its available actions A given a current state s; € S [55].
The state describes the properties of the environment the agent
is currently observing. Depending on the problem and the RL
algorithm, A and S can be either discrete or continuous and have
an arbitrary number of dimensions. After performing the chosen
action, a new state sy41 is reached, and the process repeats. To
provide agents with feedback on whether the action was chosen
well, they receive a feedback signal, the reward r; after each
decision. The simulation might end at some point, leading to
episodes of finite length characterized by the states, the agent’s
decisions, and the following rewards. The problem is to find an
optimal policy, which maps states to actions, concerning the
discounted future long-term reward for a starting state at time ¢:

G = Zkzo Yk “Tevk (3

Rewards are discounted to take into account that further pro-
gression in the decision process becomes less predictable. Low
values of the discount factor y € [0, 1) motivate the agent to act
more greedily and consider possible long term rewards less.

To implement an RL system, the agent needs to estimate the
best expected value of G; correctly. The Q-value is the expected
value of G; given a certain state s; and the chosen action a;, i.e.,

Q(s,a) = E[G¢ls¢ =s,ar = a]. 4)

The Q-value, as specified in (4) can be reformulated iteratively,

as it incorporates the Q-value of the following state and its long
term reward, G;4+1. This allows to learn an estimator for the Q-
value using the Bellman-update, given an observed state s;, a
performed action a;, the reward r;, and the follow-up state s;11:

Q(st,ar) « Qs ar) +n - (re + amaé(AQ(SHl’ at+1) — Q(se, ar)),

where 11 € (0, 1) is the learning rate. Higher n values increase the
update size but decrease the stability of the estimation. In this
setup, the agent keeps a matrix to store and update the Q-value
for each observed combination of s; and a;. This representation
allows it to derive a policy from the Q-estimation, by greedily
choosing the action a that maximizes Q(s, a) in the current state
s. Actions are randomly chosen with a specified probability ¢ to
ensure that the agent does not always choose the same actions



(and leaves beneficial states unobserved). Further, instead of using
tabular Q-values, a generic function approximator, such as an
artificial neural network (ANN), can represent Q. In this setup,
the difference between the network’s estimation for the Q-value
and the computed target value r; + maxg,, ca Q(St+1, ar+1) is
minimized at each learning step.

This concept can be further expanded with policy gradient
methods, which do not derive a policy from the learned value
estimations but instead keep a parametric policy a; = 7 (s;). By
adjusting @, the mapping from s; to a; is changed. Adjusting ®
usually relies on the policy gradient theorem, which allows to
improve expected rewards via ® only based on past observations.
Our experiments rely on Proximal Policy Optimization (PPO)
[52]. PPO offers the advantage of adjusting the learning rate
automatically. Correctly adjusting the rate stabilizes the learning
process by avoiding drastic changes in the agent’s behavior and
improves overall performance.

The index selection problem can cause states in which not
all actions within A are applicable, i.e., not all indexes can be
created, for instance, due to budget constraints, cf. Equation (2).
Such invalid actions could be modeled by assigning large negative
rewards to such actions. We will incorporate another feedback
mechanism: action masking [28]. In this approach, the agent
receives the allowed actions as input and is structurally enforced
to select an element within this set. This technique shortens the
learning process, as this element of the decision does not have to
be represented within the agent’s policy anymore. In addition,
peak performance can be increased as well [28]. Such efficiency
considerations are essential if the overall action space consists
of many actions but only a few of these actions are allowed in
a given state. If action masking were omitted, the agent would
have to explore many of the invalid actions to recognize which
are allowed (depending on the state).

3 RELATED WORK

In the following, we first introduce the state-of-the-art index se-
lection approaches that are later used for evaluations. Afterward,
we discuss existing RL-based approaches and their differences to
our solution before we conclude with requirements for a com-
petitive RL-based index selection approach in Section 3.3.

3.1 Existing Index Selection Approaches

There is a multitude of existing index selection algorithms, the
first dating back to 1971 [36]. Most techniques either iteratively
add indexes to an empty start configuration or reduce a compre-
hensive start configuration step by step. Reductive approaches [9,
57] often result in very long runtimes because many iterations
are necessary to comply with the specified constraints [32]. For
this reason, we chose three additive algorithms for comparison
that showed either the fastest runtimes or were able to deter-
mine the best (or even optimal) solutions during a recent ex-
perimental evaluation study [32]: AutoAdmin by Chaudhuri and
Narasayya [12], DB2Advis by Valentin et al. [56], and Extend by
Schlosser et al. [50]. We refer the interested reader to [32] for
brief descriptions of these algorithms. The referenced perfor-
mance study has shown that none of the existing approaches
meets both performance criteria - high quality and fast solutions
- for complex analytical workloads.

Even though adaptive indexing [30] or database cracking [29]
are valuable indexing techniques, they are not considered in
this work. These techniques typically target column stores while
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we investigate generally applicable index selection approaches.
Further, they are not available for database systems that offer
publicly available hypothetical index interfaces, such as Post-
greSQL, which would hinder a fair comparison and distract from
this work’s main focus, i.e., comparing existing with RL-based
index selection approaches.

3.2 RL-based Index Selection Approaches

Lately, a couple of RL-based index selection approaches have been
presented as an alternative to existing rule- and enumeration-
based heuristics. The RL approaches show promising results
with regards to some aspects but also have different limitations.
Next, we describe these approaches, including their limitations,
and highlight differences to our work. Table 1 compares the ap-
proaches along different dimensions: (i) whether multi-attribute
indexes are supported, (ii) the index selection’s stop criterion (see
Section 2.1), (iii) the availability of an open-source implemen-
tation for further experiments and the reproduction of results.
Further, (iv) we examined how the listed publications incorporate
the representation of the workload at hand. We compare whether
or not they can generalize to to (v) unknown workloads that
include completely unseen query classes. Lastly, (vi) we mention
how the approaches were evaluated.

Sharma et al. were the first to present an RL-based index se-
lection approach, NoDBA, capable of creating single-attribute
indexes in 2018 [53]. They evaluate their ideas with queries that
filter TPC-H’s LINEITEM table on multiple attributes. The model
represents the workload as a matrix that contains the selectiv-
ity of every attribute for every query if the query is filtered on
this attribute. This model makes the generalization to unknown
queries theoretically possible even though it is not discussed
in the publication. Varying frequencies of the queries are not
considered but could be modeled by repeatedly adding the same
query to the state matrix, which would be unfeasible for larger
workload sizes. Their approach does not consider other operators
(apart from selection predicates) for index selection. Naturally,
this is a significant limitation as other operators, e.g., joins and
aggregates, are responsible for a large amount of the overall run-
time in typical database workloads [19, 40]. The authors provide
an open-source implementation? of their work.

Sadri et al. present DRLinda for cluster databases [48, 49].
While multi-attribute indexes are not supported, considering
multiple instances in a database cluster sets a different focus, fur-
ther complicates the problem, and is a differentiator to all other
- including our - approaches. The workload is represented in
three ways: (i) an access matrix that encodes for every attribute
whether or not it is accessed in a query, (ii) an access vector

that counts how often every attribute is accessed in total, and

. . # uni
(iii) a selectivity vector that holds selectivity = % fi

each attribute. This model could enable the agent to generalize
to unknown workloads which is not discussed or evaluated in
the publication. There is neither a public implementation nor
an evaluation that compares with state-of-the-art index selec-
tion approaches available. For our evaluations (Section 6), we
have reimplemented DRLinda and included it in our open-source
repository, see Footnote 1 on Page 2.

Lan et al. propose another RL-based solution that allows iden-
tifying multi-attribute indexes [33]. With increasing index widths
(W), the number of candidates increases drastically; for workloads
with hundreds of attributes, thousands of relevant 3-attribute

2Source Code for NoDBA [53]: https:/github.com/shankur/autoindex



Table 1: Comparison of different reinforcement learning-based index selection approaches.

NoDBA [53] DRLinda [48] Lan etal. [33] SmarTIX [35] DRLISA [58] SWIRL
(i) Multi-attribute indexes No No Yes No Unspecified Yes
(if) Stop criterion # Indexes # Indexes # Indexes® # Steps No improvement Budget
(iii) Implementation available Yes No Yes Yes No Yes
(iv) Workload representation Yes Yes None None Unspecified Yes
(v) Generalization new queries + ++ - - Unspecified +++
(vi) Evaluation TPC-H scans TPC-H partly TPC-H TPC-H YCSB TPC-H/DS, JOB

indexes exist [32]. The set of available actions usually comprises
one action per index candidate for RL-based approaches. The au-
thors propose five heuristic rules that serve as a preselection to
reduce the number of index candidates (and consequently actions)
and enable the selection of multi-attribute indexes. Excluding
index candidates in advance may limit the potential solution
quality [50]. The model does not implement workload represen-
tation. For this reason, it cannot generalize and is only suitable
for the exact training workload. The evaluation is conducted on
14 TPC-H queries and the implementation?® is publicly available.
Licks et al. present SpiarTIX: A database indexing agent based
on reinforcement learning [35], provide an open-source imple-
mentation?, and an extensive introduction to RL in the context of
index selection. Their implementation is not capable of creating
multi-attribute indexes and does not include workload represen-
tation. In consequence, generalization is not possible. While the
approach is evaluated with the full TPC-H benchmark and com-
pared to a multitude of other approaches, the best-performing
state-of-the-art approaches [32] are not included. Their training
procedure trades off long trainings (days) against avoiding in-
accuracies of cost estimations: SyiarTIX derives query runtimes
from actual query executions instead of what-if estimations.
Yan et al. target NoSQL databases with DRLISA [58], which
is a differentiator to all other approaches. Further, it is the only
approach that stops independently of the number of indexes or a
storage budget. Instead, it terminates if no further performance
improvement can be realized. According to the paper, the RL
model takes a workload representation as input, but we could not
find further details regarding this representation. Consequently,
generalization may or may not be possible. The authors do not
mention any publicly available implementation and evaluate their
approach with the YCSB (Yahoo! Cloud Serving Benchmark) [14].

3.3 Research Gap: Requirements for
Competetive RL-based Index Selection

Based on the motivation stated in Section 1, the limitations
of state-of-the-art (Section 3.1), and RL-based approaches (Sec-
tion 3.2), we derive the following requirements for a competitive
RL-based index selection approach. In terms of performance indi-
cators, a potential approach should determine solutions that are
competitive (R-I) with the solutions of the best state-of-the-art
algorithms, e.g., AutoAdmin or Extend, while the computation of
such solutions should be significantly faster (R-II), for instance,
comparable to the computation times of DB2Advis. At the same
time, the training duration of the proposed model should not
outweigh (R-III) the advantage gained during application time.
None of the existing RL-based approaches offers all the func-
tionality that is commonly expected from index selection ap-
proaches, cf. Table 1. Multi-attribute indexes are widely deployed

3Implementation of Lan et al. [33]: https://github.com/rmitbggroup/IndexAdvisor
4S\MaRTIX s [35] experimental setup: https://doi.org/10.5281/zenodo.3254967
Due to space restrictions, budget results were not reported by the authors.
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in real-world environments [21]. Thus, we require a powerful
new RL-based solution concept to support multi-attribute indexes
(R-1V). Besides, the proposed solution should accept storage bud-
gets (R-V) as a stop criterion as they allow more fine-grained
solutions compared to criteria targeting a fixed number of in-
dexes [32]. Further, an index selection algorithm based on RL
should be able to generalize (R-VI) to unknown workloads, at
least to a reasonable extent. Otherwise, retraining the agent for
every workload change would be necessary, which is — given
the training durations for RL approaches — unrealistic and would
make the approach much less attractive.

There is currently no RL-based index selection approach that
competes with state-of-the-art algorithms in terms of R-I to R-III
and unifies the functionality demanded by R-IV to R-VI. Lastly,
meeting the requirements should be evaluated on multiple com-
plex analytical workloads against competitive state-of-the-art
approaches, which has not been done for existing RL approaches.

4 SWIRL: SELECTION OF WORKLOAD-
AWARE INDEXES USING RL

In this section, we detail our approach (SWIRL) that tackles index
selection with RL. We start with an overview in Section 4.1. After-
ward, in Section 4.2, we explain how we model the index selection
problem in an RL-compatible fashion and handle the resulting
complexity; therefore, we answer how the environment’s state,
i.e., the queries, the budget, and the active indexes, is represented.
Lastly, we clarify the applied training procedure that enables
efficient training and determining solutions of high quality.

4.1 Overview

Figure 2 depicts an overview of the entities involved in the RL-
based index selection process and how they interact. The process
is divided into three phases: (i) preprocessing: training and test-
ing workloads are generated, index candidates are determined,
and the workload representation model is prepared; (ii) train-
ing: the agent learns which indexes are valuable for the provided
queries as well as how these indexes interact, and (iii) application:
the agent applies the trained model to determine indexes for cer-
tain workloads. During (ii) and (iii), the agent iteratively selects
indexes for a given workload. This process forms the Markov
decision process that the RL algorithm observes, cf. Section 2.3.
Preprocessing. @ The user, e.g., a database administrator (DBA),
can specify a set of representative® queries. The potential impact
of the specified query set is discussed later in Section 4.2.2.

(@ Afterward, index candidates are generated based on the
input schema’s attributes and the set of representative queries.
Restricting the set of index candidates to relevant ones is cru-
cial [32, 33] since index candidates correspond to the agent’s ac-
tions, and too large action spaces complicate the agent’s process

®Relying on representative queries is in accordance with other learned ap-
proaches [27].
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Figure 2: Overview of RL-based index selection process. Divided into preprocessing, training, and application phase.

of determining reasonable solutions and can increase training
durations. At the same time, candidates should not be limited
too much; otherwise, solutions of high quality cannot be de-
termined [50]. For this reason, not all but most attributes of the
schema (and their permutations) should become index candidates.
By default, our system generates all syntactically relevant index
candidates (except for indexes on very small tables, n < 10 000).
Permutations are generated according to a user-specified admissi-
ble index width (Wj,4x). The candidate generation also prepares
predictions of the index sizes for every candidate based on the
estimates of a what-if optimizer.

(® Based on the representative queries, random workloads are
generated as follows. A workload consists of (a subset of) the
representative queries and assigns a random frequency to each
query. Thereby, we create variability and ensure that the agent
has to handle different query-frequency pairs during training to
anticipate a wide variety of workloads later during application.

The created workloads are split into training and test sets, and
it is guaranteed that the test set contains only workloads that are
not part of the training set. Besides, it is possible to specify that
a certain number of the representative queries are not part of
any training but only of test workloads to guarantee pure out-of-
sample predictions. By doing so, we can investigate that agent’s
capability to generalize to unknown queries and workloads.

(® Machine learning models are usually provided with nu-

merical features. The workload model is responsible for creating
workload representations, i.e., transforming information about
the queries of the current workload to a numerical representation
that can be passed to neural networks. This process is crucial
because, without a representation, unknown queries cannot be
handled. Details are presented in Section 4.2.2.
Training. During training, the agent learns which indexes are
beneficial in which situations by efficiently trying out many index
configurations for different workloads. Thereby, it is also able
to implicitly discover and internalize complex effects like the
relationship between different candidates, i.e., index interaction,
without these effects being explicitly specified or modeled.

The central components of the RL process are the index se-
lection environment and the index selection agent. The agent is
stateless and provides numerical actions that correspond to the
creation of indexes in the environment. The stateful environment
encapsulates the DBMS: it translates and implements the agent’s
actions in the DBMS, determines their consequences, rewards
the agent (Section 4.2.4), informs it about the environment’s state
(Section 4.2.1), and abstracts further parameters, e.g., the budget.
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® The environment retrieves a new workload (®) for every
training episode. Within one episode, the workload is constant.
(® Subsequently, the costs and plans for every query of the cur-
rent workload are requested from the what-if optimizer given the
current index configuration, which is usually empty for the first
step of an episode. (7)) Then, the agent’s action space is restricted
to contain only actions that are valid for the environment’s cur-
rent state. These restrictions are a major factor for converging as
quickly as possible and allowing thousands of index candidates
without limiting the candidate set a priori. Actions can be limited
based on the current workload, the remaining budget, or previous
actions; see Section 4.2.3 for details. This procedure is a main
differentiator to existing RL-based index selection approaches.
For the state representation, the current state of the environment,
e.g., the remaining budget, current costs, and active indexes, is
translated to numerical features so that it can be passed to the
agent. This process includes the retrieval (9) of the workload
representation from the workload model. (10) The environment’s
state and, if available, a reward are passed to the agent, which,
in return, @ reacts with an action under consideration of the
currently valid actions. (12) After the environment implemented
the agent’s actions by creating indexes via the what-if utilities,
the process is continued at step (® until there are no valid actions
left, e.g., if the budget is exceeded or a user-specified maximum
number of iterations has passed. After a configurable number
of iterations, the ANN (cf. Section 2.3) is updated to reflect the
observations collected during the passed iterations.
Application. After training, our model is applied as follows. At
(®, the actual workload is received instead of training workloads.
Starting with an empty index set, the agent repeatedly evaluates
the fitted ANN to subsequently select the action a; @ with
the highest estimated reward (the best index) for a state s; .
Choosing a; leads to a new state sy41 for which a;41 is determined
until the budget is exceeded. This procedure can particularly
be applied to any unknown workload as the ANN can even be
evaluated for unseen s;. Note, the application of our model is
fast compared to state-of-the-art non-RL approaches since (i)
interactions with the what-if optimizer are not necessary and (ii)
due to the trained ANN, only simple evaluations remain to be
performed.

4.2 Model

Below, we explain how we model the index selection problem for
RL. We elaborate on how information about the environment, e.g.,
the workload and current index configuration, is transformed
into a vector-based representation, i.e., how we represent the
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Figure 3: State representation for a simplified example workload. The numbers are example values for demonstration.

environment’s state. Afterward, we discuss how the workload is
represented, how changes of the index configuration are modeled
as actions of the agent, and how the agent is rewarded.

4.2.1 State Representation. Figure 3 shows how we encode
the index selection problem with a simplified sample workload.
The sample contains 28 features distributed over 7 vectors, en-
closed by a dashed box. The number of necessary features to
effectively represent a particular instance of the index selec-
tion problem largely depends on the number of query classes
in the workload, their complexity, and the number of indexable
attributes; details are covered later in this section.

The cost and storage information contained in the state repre-

sentation can be based on actual measurements or on estimates
obtained from a what-if optimizer. While the latter option of-
fers only estimates, it is much faster. As state representations
must be updated during training for each of the agent’s steps,
we rely on the what-if-based estimations; actual execution time
measurements are simply impractical. The state representation
can be divided into three aspects: the workload, meta information
(e.g., budget), and the current index configuration. All of these
aspects influence which indexes of all possible indexes are ben-
eficial: for two different workloads, completely different index
configurations might lead to the best performance.
Workload representation. Workloads can either contain the
same query classes, but their frequencies can differ, or the query
classes themselves can differ. The workload representation must
reflect both cases. For a workload with N query classes and a
specified representation width of R (in Figure 3, N = 3, R = 4),
the workload representation consists of (i) N numerical vectors
of length R that represent the queries’ contents, (ii) a vector of
length N with a numerical value for each query’s frequency, and
(iil) another vector that contains the estimated execution cost per
query (N values) given the currently active index configuration.
Representing the queries’ contents is crucial for our approach and
a main differentiator to other approaches; without it, the agent
cannot learn about the structure of queries, recognize similarities,
and, in the end, generalize to unseen queries, see Section 4.2.2.

Even though the neural network structure is fixed, a model
that was trained with workload size N can always be utilized
to determine index configurations even if the workload size is
different, e.g., N, during inference time. IfN <N, padding can
be applied, i.e., query representation, frequency, and cost per

160

query are set to 0 for N — N queries. Otherwise, if N > N, a
representative set of the workload with size N must be created.
Such a set can always be found, e.g., by focusing on the most
relevant queries and summarizing similar queries; workload com-
pression [11, 16] has been effectively used for index selection
in the past. Also, query clustering approaches exist to reduce
the total query count [37]. Choosing N to be sufficiently large
in the beginning can avoid the need for workload compression
altogether or, at least, decrease the possible information loss
caused by it. Choosing N sufficiently small allows controlling
the model’s complexity.

The meta information contains four scalar features regarding
storage and workload cost: (i) a value for the currently specified’
storage budget (B), (ii) the current storage consumption based on
the what-if optimizer’s index size predictions, and (iii) the initial
(without any indexes) and (iv) current cost (C) for executing the
entire workload, cf. Equation (1).

The current index configuration encodes for every indexable
attribute (see Section 4.1) whether an index is present or not. In
the simplest case, with a maximum index width of Wy,4x = 1, this
information can be represented by a binary vector as every index
can exist once or not at all. Encoding the index configuration is
more challenging if multi-attribute indexes are admitted because
there can be millions of index candidates, e.g., for TPC-DS with
Winax = 4, |I| ® 1.3 million [32]. If we used a binary vector as
above, we would increase the number of (very sparsely populated)
features by the number of index candidates which would be
infeasible. Since wide indexes occur in real-world systems [21]
and limiting W4y can harm performance [50], decreasing the
dimensionality by limiting the number of candidates is also not
an option. Hence, we encode the information on the current index
configuration for each indexable attribute separately to avoid
large feature spaces: The value in the vector is incremented by
1/p for every index that contains the corresponding attribute. p
refers to the position in the index. For example, for Idx(1_cdate,
1_rdate) 1_cdate’s pis 1 (vector value 1/1)and 1_rdate’s p is 2
(value 1/2). If a further index Idx(c1, c2, c3, 1_cdate) would
exist, 1_cdate’s vector value would be 1.25 = 1 + 1/4. Modeling
the current index configuration like that - in contrast to a binary
vector — implicates some loss of information: instead of encoding
which exact indexes exist, we encode to which degree attributes

"Storage budgets are externally specified, e.g., by DBAs or external meta models.



are covered by indexes. However, according to our evaluations,
the agent is able to handle this encoding. In addition, the index
selection environment still maintains the full information that is,
e.g., necessary for applying action masking (Section 4.2.3).
Concatenation and normalization. Before the presented state
information is passed to the neural network, the vectors are con-
catenated, and the contents are normalized with StableBaseline’s
VecNormalize class, which normalizes values X to X using their
moving average X and the variance ¢2(-) as follows (¢ := 1078
prevents possible divisions by zero):

X=(X-X)/(*X) +¢)°>.

Normalization is applied to improve the network’s learning be-
havior. The used activation function tanh suffers from vanishing
gradients on large inputs. This effect can be avoided by normal-
ization with zero mean and a variance of one [23].

Number of features. The number of features F passed to the
model, except for the meta information (MI), is not fixed and
varies with the problem instance at hand and the configuration.
It amounts to:

F=N-R+N+N+MI+K. (5)

The number of query classes in the workload (N) largely af-
fects the size of the frequency, cost per query, and query repre-
sentation vectors. Also, the representation width (R) is important
for large workloads as it is multiplied with N. If the workloads
that are passed to the model contain complex, unlike queries, R
must be chosen large enough to capture different queries and
their similarities properly. Lastly, large database schemas can
result in hundreds of thousands of indexable attributes. Hence,
we only consider attributes (cf. K) that are accessed by at least
one query. Otherwise, it could result in too many features only to
represent the current index/action status. For a TPC-DS scenario
with a workload size of 30 query classes and a representation
width of 50, there are 30 - 50 + 30 + 30 + 4 + 186 = 1 750 features
for 186 indexable attributes, cf. Equation (5).

4.2.2  Workload Modeling and Query Representation. One of
the main goals of our approach - and a major differentiator to
existing approaches — is to be able to handle query templates
that were not part of the training workloads. Of course, these
templates should not differ entirely but be reasonably similar
to the query templates used during training. Thus, the set of
training queries should roughly capture the workload expected
at application time.

The desired capability to handle unknown queries requires us
to set such queries into context with known ones, which adds
complexity to the model: details of the queries must be encoded
such that the agent can incorporate them into its decision mak-
ing, i.e., a detailed representation of the workload respectively
of its queries is necessary. This representation must be compact
enough to avoid feature explosion and contain enough detail to
distinguish queries properly. Besides, the task of creating the rep-
resentation must not be too complex as it would further increase
training durations.

Figure 4 depicts how our representation model is built and
how representations are inferred. We build representative plans
from the set of representative queries by utilizing the what-if
optimizer and index candidates. For every query, the what-if
optimizer is repeatedly invoked to generate various plan alterna-
tives based on different index configurations. Theoretically, the
query representation could be built entirely on the queries’ SQL
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strings, but execution plans contain more details, information
about index usage and might change with the agent’s actions,
i.e., index decisions. The representative plans are passed to the
representation model.

The operators of every plan that are relevant® for index se-
lection are transformed into a text representation. For example,
under the presence of an index on TabA.Col4, a text represen-
tation IdxScan_TabA_Col4_Pred< might be generated. The text
representations for all representative plans are stored in the oper-
ator dictionary, which assigns an ID to every distinct operator’s
text representation. These IDs are used in the next step to con-
struct a Bag Of Operators (BOO) (cf. bag-of-words model [10, 25]),
i.e., a numerical representation of the operators of a query.
Dimensionality Reduction. The BOO could be made part of
the state representation. However, using the BOO without further
processing would result in numerous, very sparsely populated
features per query. For the TPC-DS benchmark’s query templates,
we count 839 distinct relevant operators, which we would need
to incorporate for every query of the workload, i.e., N times.
Consequently, we apply a dimensionality reduction step. Based
on the BOO representations of all representative plans, we build
a Latent Semantic Indexing [17] model to reduce the feature
count. Other approaches, e.g., random projections [3] or principal
component analysis, could also be used to reduce dimensionality.

Choosing the number of features representing a query — the
representation width R — is a tradeoff decision. Larger values for
R increase the model’s size and training times. Smaller values can
lead to insufficient workload representations. The library used
for the LSI model (see Section 5) indicates how much information
is lost when the model is built. We experimented® with varying
values for R and found that for the examined workloads and R =
50, approximately 10% of information is discarded. Additionally,
since the agent’s performance does not improve much when
choosing higher R values, R = 50 seems to be a reasonable choice.

Alternative workload modeling approaches. In the litera-
ture, alternative workload modeling approaches [18, 54] exist.
These approaches differ because different use cases guided their
design. For example, the workload modeling of Ding et al. [18]
builds the input for a classifier that determines which of two

8We focus on operators that are affected by indexes. Source code: https://github.com/
hyrise/r]_index_selection/blob/main/swirl/bag_of_operators.py

Representation width experiments: https://github.com/hyrise/rl_index_selection/
tree/main/experiments/representation_width
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query plan alternatives is cheaper. The modeling approach fea-
turizes query plans based on physical operators, too. However,
the featurization is schema-agnostic without explicitly referring
to accessed tables or attributes. Instead, it encodes and aggre-
gates different information, e.g., the amount of work done per
operator type. Ding et al’s workload modeling is reasonable for
their use case. In contrast, our approach is specifically designed
for an RL-based index selection agent. Our agent’s actions are
directly related to particular operators and attributes. Therefore,
the explicit knowledge of how attributes and operators occur in
the workload is necessary for good index selections.
Simplifications and extensions. If unknown queries are not
required to be handled, the modeling can be simplified. For ex-
ample, Hilprecht et al’s approach [27] for RL-based partitioning
models the workload by only encoding the frequency share of
known queries in the current workload. We argue that even in
cloud scenarios (see Section 1), with a predefined set of standard
queries, the assumption that no unknown queries will occur is
invalid because customers usually formulate additional queries.
The exact values for query template parameters can influence
the execution costs and resulting query plan. If only the costs
differ, the workload model’s query representation is identical, but
the corresponding value in the query cost vector (cf. Section 4.2.1)
reflects the difference. Query plans (for the same query with
different parameters) that contain different physical operators
can be expressed by our BOO model. However, semantically
equivalent but structurally different (e.g., operator order) query
plans could result in the same BOO. This issue could be avoided
by also encoding the structure of the plan, e.g., by including
the preceding operator(s) in the representation of subsequent
operators. Since we did not encounter any such issues, the current
version of our model does not encode the preceding operators.

4.2.3 Actions. The action space determines how the agent can
act, i.e., for index selection, which indexes the agent can create.
Our model employs a discrete action space A, where every action
is a unique (multi-attribute) index candidate, i.e., we set A := I.
The index candidates are determined during preprocessing, cf.
Section 4.1; the existence of thousands of multi-attribute index
candidates is not rare for real workloads and datasets [50].

Carefully designing and handling the action space is crucial
for two reasons. (i) As stated in Section 2.3, the training effi-
ciency depends on the number of available actions. For complex
combinatorial problems, more available and dependent actions
(index interaction) further complicate the problem. Simply lim-
iting the index candidates a priori might reduce the size of the
action space but can also negatively impact the quality of the
determined index configurations as shown by Schlosser et al. [50].
In addition, (ii) particular actions might be invalid at particular
states. Comparable to the rules of chess where moving pawns
across three squares is forbidden, the index selection process also
follows specific rules: we can consider the repeated creation of
an existing index or exceeding the storage budget as a breach
of the rules. In RL, rules are usually enforced by large negative
rewards to teach the agent the invalidity of certain actions. How-
ever, everything that must be learned can potentially increase
the training duration and harm performance.

We utilize invalid action masking [28] to (temporarily) disable
actions given the current state, thereby guiding the agent to only
consider a subset of all available actions. Valid actions must be
updated before every step, and there are four reasons why actions
could be marked invalid, which is also demonstrated in Figure 5.
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Figure 5: Example for invalid action masking. Numbers in
braces on (in)validation actions indicate the reasons for
the change. Creating an index (A,B) drops the index (A).

(1) Index candidate irrelevant for workload. Before the agent’s
first step, we check for every index candidate whether it is
syntactically relevant for the workload at hand, i.e., whether
all of the index’s attributes occur in the workload.

Index would exceed the budget. Before every step, we cal-
culate for every index candidate whether its creation would
exceed the storage budget, given the current consumption.
Index already existing. After choosing an action g, it is
marked invalid such that it cannot be chosen again. Later,
action a can be marked valid again, e.g., due to choosing
actions that are associated with multi-attribute indexes.
Invalid precondition. Before the first step, all multi-attribute
indexes are masked as invalid. Only after the agent chose
an index (A), all multi-attribute indexes with A as the first
attribute, e.g., indexes (A, B), (A, C), are made valid. We fol-
low the intuition of Chaudhuri et al. “that for a two-column
index to be desirable, a single-column index on its leading col-
umn must also be desirable” [12, p. 151] and the procedure of
the Extend index selection algorithm by Schlosser et al. [50].
Three- and n-attribute indexes are masked accordingly.
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DBAs might favor preventing the model from handling indexes
that were manually created based on domain knowledge or that
guarantee service-level agreements (SLAs). Such indexes can be
made inaccessible by invalidating actions affecting them. The
effect of action masking on the number of available actions in
realistic circumstances is demonstrated later in Section 6.3.

4.2.4 Reward. For each action, the agent receives a reward,
rt, cf. Equation (4), that incentivizes beneficial actions and guides
the learning process. There are multiple options for building re-
ward functions for index selection that could consider relative
or absolute cost impacts of indexes, their storage consumption,
and their validity (see Section 4.2.3). Absolute cost impacts have
the disadvantage that these might largely differ for similar ac-
tions for different workloads and do not account for the required
storage. For this reason, in line with Extend [50], to consistently
optimize the usage of storage in each step/state t, we consider the
additional relative benefit (reduction of workload costs, cf. Equa-
tion (1)) of an index selection I} per additional utilized storage
as reward, cf. Section 2.2:

_(CUpy) - cy))/c(0)
O M(I) - M)

re(Iy)

In contrast to other approaches, it is unnecessary to punish in-
valid actions with negative rewards due to action masking. Our
implementation allows defining alternative reward functions.



4.25 Miscellaneous. To prevent overfitting, we monitor the
model’s performance with workloads that are different from
training and testing set every few thousand steps. If the mov-
ing average of the performance stops improving, we record the
model’s current state. Also, we employ extensive caching of cost
requests (cf. Section 5), which largely impacts the training dura-
tion, see Section 6.3.

5 IMPLEMENTATION

In this section, we detail the implementation of SWIRL. Our open-
source implementation, see Footnote 1 on Page 2, to train, evalu-
ate, and adapt the presented approach is written in Python 3 and
should facilitate further experiments with RL-based approaches
for index selection or physical database design in general.
Database. Throughout the paper, we use the database system
PostgreSQL and HypoPG [47] for what-if optimization. We rely
on Kossmann et al’s [32] index selection evaluation framework’s
cost evaluation component that encapsulates the retrieval of
query plans, query costs, index information and enables us to
create and drop hypothetical indexes. For this reason, the pro-
posed approach is not tightly coupled to PostgreSQL, but support
for other database systems that also offer what-if optimization
could be added. Usually, cost estimation requests are responsible
for the majority of the runtime of index selection algorithms.
Therefore, the cost evaluation component implements a cache
for such requests, which is indispensable for efficient training
procedures, see Section 6.3.

Model. For the implementation of the RL algorithm (PPO), we
use Stable Baselines [26] versions 2 and 3 that rely on Tensor-
flow, respectively PyTorch. The agent interacts with a database
environment that is implemented according to OpenAi’s gym [8]
interface. The latent semantic indexing model used for workload
representation (Section 4.2.2) is built with Gensim [46].

The model’s hyperparameters that are displayed in Table 2
were experimentally determined. The gamma value appears low
compared to other problems that are traditionally solved via RL.
A value in the lower range increases the agent’s greediness, while
it is still chosen high enough to allow long term considerations in
the relatively short episodes of the index selection problem. We
have demonstrated in Section 4.2.1 that the number of features
depends mainly on the workload size and the used representation
width. Therefore, it might be necessary to adapt the network
architecture for larger problem instances before training; the
displayed size was sufficient for the evaluated workloads.
Flexibility. Our implementation is divided into multiple com-
ponents, e.g., the reward determination, state representation, or
the maintenance of the action space are handled by components.
Hence, alternative implementations for these components can
be added to evaluate different problem modeling strategies and
design decisions experimentally. Most parameters, e.g., the work-
load size, maximum index width, or utilized reward function,
can be configured via JSON configuration files. Furthermore, the
concept of our approach is not tailored to index selection but
could be extended to other physical database design problems,

Table 2: Hyperparameters for our PPO (Section 2.3) model.

Hyperparam Value ‘ Hyperparam Value
Learning rate n 2.5-107*|Discounty 0.5
Batch size 2048 Clip Range 0.2
ANN Layer Structure for Q and = 256-256 |Policy MLP
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e.g., automated compression selection or partitioning, as long
as the impact of varying configurations can be determined and
transformed to a reward.

6 EVALUATION

This section evaluates our approach, assesses whether it fulfills
the requirements formulated in Section 3.3, and compares its
performance to state-of-the-art index selection algorithms.

After describing the experimental setup in Section 6.1, we
evaluate the solution quality of the index configurations identi-
fied by SWIRL (Section 6.2) and compare the necessary training
durations in different contexts (Section 6.3), which also includes
an assessment of the effectiveness of invalid action masking.

6.1 Experimental Setup

All experiments were executed on an AMD EPYC 7F72 with 24
cores with Python 3.7 and PostgreSQL 12.5. Each experiment
was repeated with multiple random seeds to ensure stable results.
While neither the experiments nor the RL agent, in general, are
limited to a particular index type, the following experiments use
non-covering B-trees, the default index type of PostgreSQL.

Competitors. Based on the findings of a recent performance
study by Kossmann et al. [32], we compared SWIRL with three
state-of-the-art approaches: DB2Advis (fastest), Extend (best), and
AutoAdmin (well-tried); cf. Section 3.1. The implementations!®
were obtained from the study. Note that “the re-implemented
algorithms do not fully reflect the behavior and performance of
the original tools, which may be continuously enhanced and op-
timized.” [32, p. 2387]. We have chosen DRLinda [48] and Lan et
al. [33] for RL comparisons. Lan et al’s solutions were shown to
be on par with state-of-the-art approaches [33] for known work-
loads. DRLinda is the only competitive algorithm that seeks to
generalize to unseen workloads [48, 49]. Originally, DRLinda does
not support storage budgets but a maximum number of indexes
to create selections of different sizes. To evaluate selections for a
given budget, we subsequently select indexes according to the
order associated with DRLinda’s solutions for increasing num-
bers of indexes as long as permitted by the experiment’s budget.
To achieve better and more fine-grained solutions, we also check
whether subsequent (potentially smaller) indexes can be added.

Attempts to combine DRLinda with Lan et al’s [33] solution
to support multi-attribute indexes were not successful.!! Their
index representation approaches — attribute-based for DRLinda vs.
index candidate-based for Lan et al. - might not be compatible.
Benchmark workloads. We chose the three benchmarks: TPC-
H [45], TPC-DS [41], and Join Order Benchmark (JOB) [34] for
evaluation because they contain complex queries that challenge
index selection approaches [32] and differ in dataset size and
origin as well as workload complexity (number and intricacy of
queries). The JOB is based on data from the Internet Movie Data
Base (IMDB), while the TPC benchmarks utilize synthetically
generated data. All benchmark-defined primary and secondary
indexes are removed for the following experiments.

For a better assessment of index selection algorithms during
the following measurements, and in line with a previous evalu-
ation study [32, p. 2389 and Figure 4], we exclude the TPC-DS
queries 4, 6,9, 10, 11,32, 35, 41, 95 and the TPC-H queries 2, 17, 20.
The study states that “these queries dominate the costs of the

3ource code of competitors: https://git.io/index_selection_evaluation
UDRLinda multi-attribute attempt: https://github.com/hyrise/r]_index_selection/
tree/main/experiments/drlinda_multi_attribute
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Figure 6: Comparison of state-of-the-art approaches vs SWIRL for a Join Order Benchmark workload (N = 50; 20% of
templates are unknown to SWIRL) on PostgreSQL. Chart: cost relative to processing w/o indexes; table: selection runtime.

entire workload, thereby rendering the index selection problem
less complex because an index that decreases the cost of at least
one of these queries would always outperform indexes for other
queries by orders of magnitude” [32, p. 2389]. Further, we use an
index width Wipqx of at most 3 as larger values are not beneficial
for the considered workloads for PostgreSQL, cf. [32]. The repre-
sentation width (Section 4.2.1) is set to R = 50 for all experiments.

6.2 Performance

For the following experiments, we create workloads of size N by
randomly choosing query templates from all available templates
of a selected benchmark and assign random frequencies accord-
ing to a uniform distribution. In addition, we define a certain
number of query templates that are withheld during training and
the share that these withheld queries make up in the test work-
loads used for evaluation. Independent of the unknown templates,
we always ensure that test workloads are not used for training.
Thus, evaluated workloads differ from training workloads in
three dimensions: (i) the exact combination of query templates
and (ii) the exact frequency-template-combination have not been
seen during training. (iii) Also, the evaluated workloads contain
the unknown templates withheld during training.

First, we evaluate the performance in terms of achieved so-
lution quality (R-I) (cf. Section 3.3) and observed runtime (R-II)
for determining the evaluated solutions. Therefore, SWIRL is
compared to the competitors in Figure 6 for a single JOB-based
workload for budgets from 0.5 to 10GB. We used a workload size
of N=50. Of the JOB’s 113 query templates, 10 were withheld
during training, all of these are included in the workload evalu-
ated in Figure 6. Hence, 20% of the workload’s query templates
are unknown to the agent. The bar chart depicts the estimated!?
workload processing costs for different budgets while the table
displays the runtime for these solutions. The figure demonstrates
that a set of adequately chosen indexes decreases the costs sig-
nificantly. Also, it becomes apparent that SWIRL is competitive
with state-of-the-art approaches and outperforms DRLinda: in
terms of cost, its performance is roughly on par with the best-
performing algorithms (or even better for large budgets). Regard-
ing selection runtime, it outperforms all competitors in all cases.
AutoAdmin and Extend, which were among the best in previous
performance studies [32], are often orders of magnitude slower.

After evaluating one workload comprehensively, we now eval-
uate SWIRL'’s performance across many different cases. For each

12The underlying index selection evaluation framework [32] also allows reporting
actual workload execution times. This functionality can be used to, e.g., assess cost
estimation accuracy. Note, such an assessment is not the focus of this paper.

of the three benchmarks, we trained a model and generated 100
random evaluation workloads with different frequencies and
20% of query templates that were withheld during training. For
each of the 100 evaluation workloads, we determined index con-
figurations with all competitors for random budgets between
0.25GB and 12.5GB, calculated average performances as well as
runtimes, and present the results in Figure 7. In contrast to our
train-once-apply-often approach, Lan et al. has to determine a
solution via their RL algorithm for every problem/workload in-
stance, cf. Section 3.2. The non-parallel RL algorithm causes large
training/solution times, > 12 hours for some TPC-DS workloads.
Therefore, we could evaluate only TPC-H workloads with the
provided implementation (Footnote 4 on Page 4) for Lan et al.

Figure 7 depicts the averages (means) of the relative workload
cost and the index selection runtime for 100 evaluation workloads
for each of the three benchmarks. While Extend determines the
best solutions across all benchmarks (regarding the relative total
workload costs compared to using no indexes: RC := C(I*)/C(0),
Equation (1)), SWIRL'’s solutions are, on average, close to the best
solutions. For instance, for TPC-DS, SWIRL’s performance is on
average only 1.3pp worse than Extend’s. In addition, the perfor-
mance is superior over DB2Advis, AutoAdmin, DRLinda, and Lan
et al’s solution. The large overall differences to DRLinda can be
explained by its approach to representing workloads and the lack
of multi-attribute index support. Lan et al’s performance is close
to the best that we have observed, but its required solution time
(see above) is also the highest.

Regarding the mean selection runtime (cf. @t), SWIRL outper-
forms all five competitors after training. It undercuts AutoAdmin,
Extend, and Lan et al. by orders of magnitude. For example, for the
TPC-DS, SWIRL determines index configurations in 2.1s on aver-
age, while DB2Advis takes 12X, Extend 52X, and AutoAdmin 168X
as long. DRLinda is only marginally slower. The difference might
be due to SWIRL’s efficient handling of index candidates via
action masking and the native support for budget constraints,
see Section 6.1. As a result, SWIRL dominates all competitors in
terms of selection runtime and the fast competitors (DRLinda and
DB2Advis) in both dimensions, performance and runtime.

6.3 Training Duration & Effort

RL index selection approaches pay the price for determining
efficient configurations upfront: short runtimes at application
time are exchanged for long training durations. Table 3 shows
the training time (R-III) and the number of cost requests that
occurred during training (with 16 parallel environments) along
with the number of features and actions for different scenarios.
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AutoAdmin

Join Order Benchmark

DB2Advis

DRLinda

Extend

TPC-DS Benchmark

Lan et al.

SWIRL

TPC-H Benchmark

50 1

40

301

90 1

881

86 1

784

764

744

Relative workload cost
(% of without indexes)

10!

102

Selection runtime (s)

10!

102

Selection runtime (s)

100

10! 102

Selection runtime (s)

@ RC ot 2 RC ot @ RC ot
AutoAdmin 36.64% 552.4s 87.07% 353.5s 76.79% 6.7s
DB2Advis 42.38% 5.4s 87.24% 25.3s 74.93% 0.7s
DRLinda 53.98% 6.2s 90.19% 2.2s 78.50% 0.3s
Extend 29.27% 207.0s 86.02% 109.5s 72.30% 5.2s
Lan et al. - - - - 72.49% 563.0s
SWIRL 30.57% 2.4s 87.31% 2.1s 72.47% 0.1s

Figure 7: Comparison across 100 random workloads of the TPC-H (SF10), TPC-DS (SF10), and Join Order Benchmark on
PostgreSQL. RC := C(I*)/C(0) denotes the relative workload costs; @ the arithmetic mean, t the selection time.

The training duration refers to the time needed for conver-
gence until no further improvements are realized. Obtaining the
cost for a query given a particular index configuration is denoted
as a cost request. The number of requests is crucial for assessing
index selection approaches because even though a single request
takes only milli- or microseconds, it is not uncommon that mil-
lions of such requests are issued during selection processes [32].
In addition, the training duration also contains the time required
for computing the state representation, applying action masking,
creating hypothetical indexes, updating the weights of the neural
network, and using it for predictions during training.

Several dimensions influence the problem complexity and,
thereby, the training durations: (i) the workload size N influ-
ences the number of features and large values increase the time
necessary for estimating the workload’s execution costs as more
queries have to be converted to query plans by the optimizer. (ii)
The complexity of the queries: more complex queries cause longer
optimization times. (iii) The number of index candidates: many
candidates lead to large action spaces and the agent requires
more time to determine efficient actions; also, the existence of
more indexes can increase query optimization time [32, p. 2392].
For these reasons, the evaluated scenarios cover workloads of
different sizes from all three supported benchmarks and different
admissible index widths. Table 3 shows that training durations
increase with the workload and index candidate complexity and
range from multiple minutes to a couple of hours. Even for large
workload sizes with 100 query templates and 3-attribute indexes,
the training duration is reasonable. To set this into context, Ex-
tend needs ~ 9 minutes to determine a solution for a scenario
for which SWIRL trains 331 minutes, or 37x as long. As shown in
Figure 6 and Figure 7, SWIRL’s runtimes only amount to a few
seconds. Hence, if dozens or hundreds of systems must be tuned
(repeatedly), short runtimes compensate for long training dura-
tions. The training time of our reimplementation of DRLinda is
in the same range. While DRLinda’s model is simpler, the utilized
DON [39] is, in Stable Baselines, not as efficient as PPO.

Table 3 also demonstrates that a large fraction of the time
required for training is caused by cost requests, even though
most of these requests can be cached. This effect can be observed
for most state-of-the-art index selection approaches, too [32, 43].
Interestingly, training durations can vary significantly for similar
numbers of cost requests, which can be observed for the two JOB
experiments: the first causes more cost requests but requires only
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47% of the training duration. This effect is probably due to the
much lower cost request cache rate, which, in turn, is caused by
more index options and possible actions (due to a larger Wiayx).
Effectiveness of action masking. As explained in Section 4.2.3,
we rely on invalid action masking to provide state-dependent ac-
tion sets, thereby, assisting the agent during training by reducing
the action space. In the following, we investigate the effective-
ness of applying this technique to index selection. Figure 8 gives
an intuition on the effectiveness by depicting the share of valid
actions at any given point of a single training episode for a JOB
scenario. The figure also shows how many valid actions refer to
indexes of widths 1, 2, or 3 and the fraction of these actions that
are invalidated because they do not fit the remaining budget.

Figure 8 demonstrates that in the beginning, only = 8%, and at
no point, more than 12% of all actions are valid; with a decreas-
ing remaining budget, more indexes are invalidated because they
are too large. In addition, the majority of valid actions refer to
indexes of widths 1 and 2. For these reasons, invalid action mask-
ing appears as an effective technique to restrict action spaces.
Consequently, this technique also decreases the required training
duration for convergence. According to our experiments, the
duration for a non-masking variant increases by 8x for a TPC-H
scenario with a maximum index width, Wy,,4x = 1, to achieve
comparable performance. This effect is even more pronounced for
more realistic problems with larger action spaces: for TPC-H with
Winax=3, which comes with significantly more index candidates
(111=3 532 vs |I|=46), the solution quality of the non-masking ver-
sion was not close to SWIRL'’s, even after training more than 10X
as long. We observe that without action masking, the overall per-
formance might be worse even with extended training durations,
which is in line with [28].

. w=1
W =1 (too large)

100
-'*L‘._.“._ e Remaining budget
10.0 75
751 II|"|I| | |

50
5.01 III

| I I I I 25
i TN ITTORIN
Steps or agent's index decisions
Figure 8: Impact of invalid action masking on the number
of valid actions for a JOB scenario (storage budget B=10GB,
maximum index width W,,4,=3, |A| = 819 candidates).
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Table 3: Training duration and problem complexity metrics for different scenarios. Wy, 4x: admissible index width.

Benchmark N #Features W,y #Actions (A =1) #Episodes

Training duration breakdown

Total Costing (% of Total) #Cost requests (%cached

@ Episode time

TPC-H 19 468 1 46 2272
TPC-H 19 468 3 3532 768
TPC-DS 30 1750 1 186 751
TPC-DS 30 1750 2 3174 512
TPC-DS 60 3310 2 3174 512
JOB 100 5265 1 61 1616
JOB 100 5265 3 819 560

)
0.07h 20.2% 1829088 (95.9%) 0.1s
0.19h 32.6% 1802016 (71.2%) 0.9s
0.42h 22.0% 3002 850 (92.5%) 2.0s
0.77h 22.4% 2995 680 (84.6%) 5.4s
1.31h 23.4% 5991360 (86.9%) 9.2s
2.58h 37.4% 10097 600 (83.3%) 5.7s
5.52h 47.5% 9990400 (63.4%) 35.5s

7 DISCUSSION & INTERPRETATION

The goal of our RL-based index selection approach was to fill the
gap between algorithms that identify close-to-optimal configura-
tions and algorithms that determine solutions quickly.

By comparing SWIRL to four state-of-the-art competitors with
complex analytical benchmarks, we have shown that it fulfills
the requirements stated in Section 3.3: it determines comparably
good (R-I) (and sometimes better) multi-attribute (R-IV) index
configurations also for partly unknown workloads (R-VI) faster
than others (R-II) for different storage budgets (R-V) as shown
in Section 6.2. Due to its stochastic nature, there is no guarantee
for close-to-optimal solutions, and rarely, SWIRL performs worse
than its competitors. We argue that this drawback is acceptable
for the advantage gain in solution times, which is due to the dif-
ferent modus operandi compared to state-of-the-art approaches.
Most of these approaches reevaluate the benefit of index candi-
dates every time a candidate was chosen to incorporate index
interaction (see Section 2.1) effects. In contrast, SWIRL, inter-
nalizes the knowledge about dependencies of index candidates
(index interaction) during training and does not require costly
reevaluations during application.

The handling of unknown query templates would not be possi-
ble if the agent only learned which indexes are suitable for which
exact query templates. Instead, the agent must know about the
queries’ contents, i.e., its operators and about their influence on
performance and indexes. Therefore, we featurize the workload’s
query plans (Section 4.2.2) to enable the agent to understand
which operations of a query benefit from which index. Naturally,
this approach is influenced by the data, i.e., query classes, seen
during training: if unknown queries contain too many previously
unseen operators, it is harder for the agent to associate them
with index candidates and optimize decisions. In such cases, the
training data should be improved. Furthermore, invalid action
masking has been proven to be effective (Section 6.3) in reducing
the number of applicable actions. Thereby, it enables acceptable
training times (R-III). Compared to the runtimes of state-of-the-
art algorithms, the observed training durations are still signifi-
cant. Consequently, there is a clear tradeoff between long a priori
training durations and low runtimes during application. For this
reason, the use of RL-based index selection approaches is not
reasonable in all scenarios but only where the repeated determi-
nation of index configurations in similar scenarios is necessary,
e.g., in cloud environments (cf. Section 1).

Training data influence. The results presented in Section 6
raise the question of how SWIRL’s generalization capabilities

depend on the training data. We conducted two experiments!3:

3 Experiments investigating the impact of the training data: https://github.com/
hyrise/r]_index_selection/tree/main/experiments/training_data_influence
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(i) We investigated how the number of unknown queries dur-
ing training impacts the agent’s performance. As expected, the
performance decreases if a higher number of query templates
is unknown during training. (ii) We examined whether the per-
formance depends on the particular set of query templates that
are unknown during training. The specific selection of query
templates appears to be of minor importance if the workload size
N is sufficiently large.

Limitations. Our model is trained for a particular schema. Work-
loads that are totally different from the training workloads might
cause suboptimal results. However, techniques as transfer learn-
ing [42] to speed up the retraining of existing models and more
sophisticated workload representations, e.g., with word2vec [31,
38] approaches, could overcome these challenges. Also, even
though there are no conceptual limitations, we have not evalu-
ated SWIRL for transactional workloads yet. While their queries
are usually less complex [1], such workloads pose different chal-
lenges, e.g., lock contention and index maintenance costs [24, 32].

8 CONCLUSIONS & FUTURE WORK

We presented a novel index selection approach based on rein-
forcement learning that identifies competitive solutions orders
of magnitude faster than state-of-the-art approaches. In contrast
to other RL solutions, SWIRL supports multi-attribute indexes
and generalizes to (partly) unknown workloads. While invalid
action masking appears to be an effective technique for efficient
training, training can take up to a few hours and be up to 50x
higher than solution times of state-of-the-art algorithms. Hence,
it is most reasonable to apply SWIRL in scenarios where many
index selection problems must be solved, e.g., managed cloud sce-
narios, because SWIRL trades off fast solution runtimes against
elevated training durations.

For future work, our model could be extended to integrate
further aspects of physical database design, e.g., automatic com-
pression [4] or partitioning [27] selection. Also, the impact of
alternative workload representation techniques, e.g., as presented
by Sun et al. [54], on the model’s performance could be inves-
tigated. Lastly, there are opportunities to reduce training times:
SWIRL could be provided with expert-based [20] index configu-
rations as a starting point. Such decisions could be derived from
state-of-the-art algorithms, e.g., Extend. Additionally, transfer
learning [42] could be applied. First, SWIRL would be trained on
a wide variety of workloads (Phase 1). Later (Phase 2), when the
particular application scenario is known, SWIRL'’s training from
Phase 1 is continued with more specific workloads. Each Phase 2
(for different scenarios) benefits from the Phase 1 training.
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