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ABSTRACT
Knowledge graphs are at the core of numerous consumer and
enterprise applications where learned graph embeddings are
used to derive insights for the users of these applications. Since
knowledge graphs can be very large, the process of learning em-
beddings is time and resource intensive and needs to be done in
a distributed manner to leverage compute resources of multiple
machines. Therefore, these applications demand performance
and scalability at the development and deployment stages, and re-
quire these models to be developed and deployed in frameworks
that address these requirements. Ray1 is an example of such a
framework that offers both ease of development and deployment,
and enables running tasks in a distributed manner using simple
APIs. In this work, we use Ray to build an end-to-end system
for data preprocessing and distributed training of graph neural
network based knowledge graph embedding models. We apply
our system to link prediction task, i.e. using knowledge graph em-
bedding to discover links between nodes in graphs. We evaluate
our system on a real-world industrial dataset and demonstrate
significant speedups of both, distributed data preprocessing and
distributed model training. Compared to non-distributed learn-
ing, we achieved a training speedup of 12× with 4 Ray workers
without any deterioration in the evaluation metrics.

1 INTRODUCTION
Knowledge Graphs (KG) have become a disruptive component in
enterprises by providing uniform and semantically rich access to
vast and diverse data sources. The capability of “making sense” of
large KGs is crucial to many tasks ranging from data integration,
entity resolution, search, data extraction, data exchange, and
business intelligence [6, 19]. Representation learning (RL) over
KGs has emerged as one of the key enablers for many of these
tasks.

The goal of RL is to embed a KGwhich is high-dimensional but
very sparse into a low-dimensional space while preserving the
characteristics of the original graph. KG embedding models such
as TransE [3], DistMult [20], and ComplEx [18] process triplets. A
triplet (𝑠, 𝑟, 𝑜) represents a fact where 𝑠 is the subject, 𝑜 is the ob-
ject and 𝑟 is the relation between them. These methods treat each

1https://docs.ray.io/en/master/index.html
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triplet in the knowledge graph independently, and they learn var-
ious structure-relational patterns such as symmetric and inverse
relations between entities. Recent advances in knowledge graph
representation learning have shown that graph neural network
based knowledge graph embedding methods demonstrate supe-
rior performance over traditional embedding methods [14, 15].
State-of-the-art KG embedding methods [4, 14, 15, 17, 21] for
link prediction generally follow an encoder-decoder architecture
where the encoder aggregates the multi-hop context for generat-
ing node embeddings, while the decoder scores and learns the
relations between the nodes.

Due to the growing size and computational complexity of
KGs, distributed KG embedding training has recently attracted
considerable attention in the research community. Existing frame-
works [8, 16, 22] adopt distributed, data-parallel architectures to
cope with high computational and large memory requirements.
In these architectures, the KG is first partitioned, and then par-
titions are distributed across the compute nodes for training.
These frameworks employ different methods for training, for
example, [16] uses ring AllReduce communication architecture
for gradient exchange. DGL-KE [22] and PBG [8] are designed for
traditional KG embedding models such as TransE and DistMult
which process the triplets independently. These models cannot
be used for distributed training of GNN-based KG embedding
models which require 𝑘-hop neighborhood information. One of
the technical challenges in distributed training of GNN architec-
tures is to effectively partition the graph into enough partitions
such that each compute node has a relatively small amount of
self-sufficient data to work with, and the workload is balanced
across all the compute nodes to avoid idle time during SSGD.

Sheikh et al. [16] proposed a system for distributed training
of GNN-based KG embedding models using a neighborhood ex-
pansion method to make partitions self-sufficient. The KG was
first partitioned using an edge-partitioning method, and then the
partitions were expanded using a neighborhood expansion pro-
cess. The neighborhood expansion process included all the 𝑘-hop
neighbors of all the nodes in a partition to avoid cross partition
communication overhead during training at the cost of node and
edge replication. The paper has also introduced constraint-based
negative sampling for training. It was experimentally shown that
drawing negative samples from within the partitions was effec-
tive, and it further reduced cross partition communication during
training as it avoided transferring negative samples across the
partitions.

The distributed training approach in [16] is based on PyTorch
distributed[13] APIs. Using core level APIs of an underlying
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framework such as PyTorch is challenging for scaling and deploy-
ment. More recent distributed frameworks such as Ray [11, 12]
simplify underlying details for scaling and deployment. Ray is
a general-purpose cluster computing framework that provides
universal, simple APIs that enable developers to use existing
libraries and systems for distributed computing. The rich Ray
framework provides APIs for training (Ray Train), tuning (Ray
Tune), online serving (Ray Serve), and distributed data manage-
ment (Modin) [2, 9, 10]. Ray Train [1] provides a simple to use
API for distributed training of neural network models using deep
learning frameworks such as PyTorch. Moreover, it provides com-
posability which allows Ray Train to inter-operate with Ray Tune
for hyperparameter learning.

The contributions of this short paper are summarized as fol-
lows:
• We introduce a state-of-the-art distributed KG embedding
training framework [16] using Ray, and demonstrate perfor-
mance results on an industrial scale KG.

• We provide and evaluate a distributed attribute preprocessing
pipeline using Ray.

• We use Ray Train API for distributed training of the KG embed-
ding model, and demonstrate the simplicity of the API while
performing a complex task.
The rest of the paper is organized as follows: In Section 2

we present an overview of our industrial dataset, and Section 3
describes the architecture of our system. Section 4 provides the
experimental setup and results, and we conclude in Section 5.

2 DATA OVERVIEW

Figure 1: The schema of an enterprise KG with heteroge-
neous node types, edge types and node attributes.

Let𝐺 = (𝑉 , 𝐸,𝐴, 𝑅, 𝜙) denote a KG.𝑉 = {𝑣1, · · · , 𝑣𝑛} is a set of
nodes in 𝐺 . 𝐴 = {𝑎1, · · · , 𝑎𝑘 } defines the node attribute schema
of 𝐺 . Each node 𝑣𝑖 ∈ 𝑉 is associated with a node type 𝜙 (𝑣𝑖 ). Its
corresponding attribute schema is a sub-schema of 𝐴 denoted
by 𝐴𝜙 (𝑣𝑖 ) ⊆ 𝐴. 𝐸 = {𝑒1, · · · , 𝑒𝑚} is a set of directed edges and 𝑅
defines the edge types in𝐺 . Each edge 𝑒𝑘 = (𝑣𝑖 , 𝑟𝑖 , 𝑣 𝑗 ) indicates a
relationship from 𝑣𝑖 to 𝑣 𝑗 of relation type 𝑟𝑖 ∈ 𝑅. Each node type
can include a different set of attribute types resulting in initial
node features with variable lengths. Figure 1 shows the schema
of an example enterprise KG.

3 SYSTEM OVERVIEW
The system architecture for distributed training of KG embed-
ding models using Ray is shown in Figure 2. The input to the
system is the original graph, node attributes and relations, and the

𝑝-partitions of the graphs. The system consists of two main com-
ponents: distributed data preprocessing and distributed training
component. The distributed data preprocessing component takes
in raw attributes of nodes and processes them in a distributed
setting using Ray to produce 𝑘-dimensional feature vectors. The
objective of the distributed training component is to learn a KG
embedding model. The components of the distributed setting are
described below.

3.1 Distributed Data Preprocessing
Our input data was comprised of node attributes that had to
be encoded to feature vectors for the purpose of training the
GNN. These node attributes can be of different formats such as
text, numerical, date, and categorical types. Specifically, dates are
converted into numerical values, we used scikit-learn KBinsDis-
cretizer and OneHotEncoder (or MultiLabelBinarizer) to encode
the numerical and categorical values, and we used a pre-trained
BERT language model for encoding the text attributes.

The process of encoding the node attributes was divided into
two stages: in the first stage, we loaded a pre-trained BERT model
and fit the KBinsDiscretizer, OneHotEncoder, and MultiLabel-
Binarizer model to all the nodes in the input data. The process
of learning the models was not executed in distributed manner.
In the second stage, we applied the learned models to the node
attributes to transform them into feature vectors. This transfor-
mation step was executed in a distributed manner using Ray.

Using@ray.remote, we implemented a Ray remote worker that
receives as an input a subset of nodes with their attributes and a
reference to the pre-trained models. The attributes transforma-
tion was parallelized by splitting the nodes data and distributing
the data among multiple Ray workers. Since all the Ray workers
used the same pre-trained scikit-learn and BERT models, the
models were placed in the distributed Plasma object store using
ray.put(), and the returned object ID was passed to the workers.

The transformation results were gathered from the Ray work-
ers using ray.get() and were concatenated into one array that
contained the transformed node attributes for all the data. The
running time measurements of the distributed attributes process-
ing are reported in Section 4.2.

To cope with the heterogeneity of the entity attributes e.g. in
Figure 1, we modeled the attributes as the immediate neighbors
to the entity and used a 1-hop GCN [7] like network without
self-loop to obtain the entity attribute embedding. That is, we
used a virtual node to represent an entity and its attribute em-
bedding is the result of an aggregation of its attribute neighbors’
embeddings. Different from GCN, each attribute type has a dedi-
cated embedding matrix for the transformation. Note that this
created entity-attribute graph is only used for attribute embed-
ding but not for the later graph convolutional layers. The entity
embeddings are used as initial node features during knowledge
embedding model training.

3.2 Distributed Training
We use the Ray Train API for distributed training of our GNN
model. The API exposes a Trainer class for users. Users have to
pass backend and a training logic function as input. The Trainer
creates an Executor process and handles callbacks from the train-
ing logic function. The Executor is responsible for distributed
training. It creates an actor group, and it passes worker resources,
number of resources, and placement strategies to worker group
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Figure 2: Architecture for Training KG Embedding Models in Ray

processes. Ray Train also provides flexibility in choosing the
backend. It supports libraries Torch, Tensorflow and Horovod.

We use the training architecture described in [16] and en-
capsulate it in Ray Train for distributed training as shown in
Figure 2. When the workers are launched using trainer.run(),
each worker2 loads its graph partition and initializes the model
for training. The number of workers is determined by the num-
ber of graph partitions. The training function (train_gnn) logic
is followed using [16]. After each epoch, Ray Train allows to
collect intermediate results from the distributed training work-
ers. We use PyTorch as our backend. Hence, Ray Train will use
torch.distributed for gradient sharing and update.

4 EXPERIMENTAL EVALUATION
In this section, we describe the evaluation settings of the KG em-
bedding model training using the data described in Section 2. The
data is comprised of 2.8M nodes, 24M edges and 5 relation types.
The feature vector per node obtained from processing the node
attributes had a dimension of 64. For training the KG embedding
model, we divided the data into train, test and validation sets. We
randomly chose 80% of the edges as training edges, and test and
validation sets use the 10% remaining edges each.

4.1 System Setup
We use Ray 1.8.0 [11] as the distributed training framework,
PyTorch Geometric 1.7.2 [5] as the graph embedding framework,
and PyTorch 1.9.0 [13] as the deep learning backend.

We ran our experiments on a cluster of 4 machines. Each node
had two Intel Xeon 6138 CPUs @ 2.00 GHz (80 virtual cores), 726
GB DDR4 DRAM @ 2666 MT/s, 40 Gb Ethernet, 2 P100 GPUs
with 16GB RAM, and was running CentOS Linux 7.9.

We used RGCN [15] and RelGNN [14] to learn the embeddings
of nodes and relationships. For both models, we used three neural

2train_gnn is the worker process

network layers: one for attribute embedding, and two graph con-
volutional layers. The hidden dimension size of GNN-layers is 64,
and we found that an embedding size of 32 dimensions produced
good quality results. For RGCN, we set the hyperparameters as
follows: learning rate 0.01, dropout 0.2. For RelGNN, we used the
following hyperparameters: regularization 0.001, learning rate
0.001, and Adam decay 0.0001.

4.2 Results of Node Attributes Processing
Our input data contained 2.8M nodes that were evenly distributed
among the Ray workers for preprocessing, where each worker
was assigned to one GPU or CPU depending on the task. Since
scikit-learn does not support GPU computations, the attribute
transformations were computed on a CPU, whereas the BERT
transformations were computed on a GPU. We measured the
attributes processing time for 1, 2, 4, 6 and 8 workers.

As shown in Figure 3, the processing time for all the node
attributes using one worker was 10K seconds and by using 8
workers, the processing time was reduced to 2500 seconds. While
increasing the number of workers from 1 to 2 reduced the pro-
cessing time by 2×, going up to 8 workers reduced the processing
time by only 4×. Although we achieved a significant speedup
using the distributed processing setup, we did not achieve linear
scalability by using the full Ray cluster resources. To explain
this behavior, we compared the net workers’ processing time
(averaged across all workers) with the overall processing time
that included retrieving the results. As shown in the figure, while
the net processing time scaled linearly and reduced from 6912
seconds with 1 worker to 846 seconds with 8 workers, there was a
significant overhead introduced by the 𝑟𝑎𝑦.𝑔𝑒𝑡 () operation. This
operation is necessary to collect the results from all the workers
which are distributed across the cluster.
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Figure 3: Distributed node attributes processing time with
Ray.

4.3 Results of Distributed Training
We evaluated the accuracy and scalability performance of dis-
tributed training using Ray against non-distributed training for
the link prediction task. We used the same hyperparameters in
both settings. RGCN and RelGNN treats link prediction as a bi-
nary classification task, i.e. predict if a given triplet is valid or
not.
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Figure 4: AUC and epoch time of RelGNN Training in Ray
(1 worker represents training in non-distributed settings)

For RelGNN, we evaluated the training accuracy on the test set
using Area Under the Curve (AUC) of Receiver Operating Char-
acteristic curve (ROC). Since both the model and input data were
large, we could not take advantage of GPU acceleration due to
limited GPU memory. Thus, we performed the training on CPUs
and used neighborhood sampling. In neighborhood sampling, a
fixed number of node neighbors are randomly selected. We se-
lected 25 and 10 neighbors as first-hop and second-hop neighbors,

respectively. The knowledge graph was partitioned into 2 and
4 partitions for training using 2 and 4 Ray workers. We trained
using the edge mini-batch approach and used 256, 128, and 64
batches for 1, 2, 4 workers, respectively. This approach yielded
the same number of training edges in each training scenario.

In the case of RGCN, we evaluated the performance on Mean
Reciprocal Rank (MRR) metric of the test set. MRR was calculated
by averaging the reciprocal ranks of the test set. We partitioned
the graph into 2,4, and 8 partitions to train using 2,4, and 8
workers on GPUs. For non-distributed training, i.e single trainer
process, we used a batch size of 256 which led to 128, 64 and 32
batches for 2, 4 and 8 workers, respectively.
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Figure 5: MRR and epoch time of RGCN Training in Ray
(1 worker represents training in non-distributed settings)

In the non-distributed setting, training on the whole graph
was performed using only one trainer process, and it did not in-
volve any gradient sharing. From Figure 4(a), it is evident that the
AUC scores of the distributed training were comparable with the
non-distributed settings. With respect to scaling, we were able to
achieve approximately 12× speedup for 4 workers as shown in
Figure 4(b). The results produced using Ray are in agreement with
the non-Ray training approach of [16]. We achieved similar re-
sults for distributed training of RGCN as shown in Figure 5(a,b).
The MRR scores obtained for distributed and non-distributed
training were similar. Moreover, we were able to achieve ap-
proximately 16× speedup with 8 trainers. In both KG embedding
models, super-linear speedup is primarily achieved by the large
time decrease in the compute intensive computational graph for-
mulation which is proportional to the size of the partition. Sheikh
et al. [16] presents the detailed discussion of this super-linear
speedup.

The overhead introduced by using the Ray Trainer API was
negligible, approximately 5 seconds at the start of training. We
also performed evaluation using pytorch.distributed API, and
found that there were no significant differences in running times
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between these two approaches. Thus, developing applications
using Ray APIs simplifies the distributed training process with
no or negligible additional timing cost, where Ray takes care of
managing tasks, such as launching the training session.

5 CONCLUSION
We implemented an end-to-end system for distributed training
of a knowledge embedding model using Ray APIs. Ray provides
easy-to-use, powerful, and flexible APIs that hide the low-level
underlying details for scaling and deployment. We used these
APIs effectively for distributed data preprocessing and training.

Our experimental evaluation on a Ray cluster showed that we
were able to achieve a 4× speedup on the data preprocessing task.
On the distributed training task we achieved a speedup of 12×
on RelGNN and 16× on RGCN, and obtained the same AUC/MRR
scores as in the non-distributed training setting. The overhead
introduced by Ray APIs was negligible.

As future work, we plan to utilize Ray Serve to support scalable
model inference over input graph and integrate business services
for task specific requests. We will build the training and inference
as containerized applications3 and deploy them in a Kubernetes4
cluster.
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