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ABSTRACT
A missing value represents a piece of incomplete information
that might appear in database instances. Data imputation is the
problem of filling missing values by means of consistent data
with respect to the semantic of the entire database instance they
belong to. To overcome the complexity of considering all possi-
ble candidates for each missing value, heuristic methods have
become popular to enhance execution times, while keeping high
accuracy. This paper presents RENUVER, a new data imputation
algorithm relying on relaxed functional dependencies (rfds) for
identifying value candidates best guaranteeing the integrity of
data. More specifically, the RENUVER imputation process focuses
on the rfds involving the attribute whose value is missing. In
particular, they are used to guide the selection of best candidate
tuples from which to take values for imputing a missing value,
and to evaluate the semantic consistency of the imputed missing
values. Experimental results on real-world datasets highlighted
the effectiveness of RENUVER in terms of both filling accuracy
and execution times, also compared to other well-known missing
value imputation approaches.

1 INTRODUCTION
With the advent of big data, the presence of missing values inside
database instances has been widely recognized as an important
problem to tackle [1]. Several application contexts might require
the absence of this type of inconsistencies inside their datasets.
For instance, machine learning processes could not provide good
accuracy scores if trained on data containing many missing val-
ues. In general, it is not possible to infer reliable knowledge
using datasets with incomplete information [18]. For this rea-
son, particular efforts have been devoted to the data imputation
problem. The latter is faced through the definition of techniques
for treating missing values, and it is also considered as one of
the fundamental tasks in data cleaning [8]. The identification
of the best values in a dataset to impute the missing ones is an
extremely complex task, since it entails the evaluation of all pos-
sible combinations in the value distribution. Many approaches
existing in the literature rely on the idea that a missing value can
be imputed by another value belonging to the same population,
aiming at preserving the overall integrity of data [12]. Moreover,
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heuristics have been widely employed in order to efficiently se-
lect values to be imputed, without worsening the accuracy of the
imputation [11].

This paper presents RENUVER (Rfd basEd NUll ValuE Repairer),
a data imputation algorithm relying on Relaxed Functional De-
pendencies (rfds) for imputing missing values within a relational
database instance. The concept of rfd extends the fd definition
by admitting the possibility to use approximate comparison meth-
ods with respect to the equality constraint, and the possibility
for the dependency to hold on a subset of data [7]. In general,
rfds provide metadata suitable for detecting and repairing many
types of errors, such as duplicates, outliers, and constraint viola-
tions [15]. Thus, they could be potentially used for identifying
suitable candidate values for replacing missing ones in the data
imputation process. Moreover, the less restrictive constraints of
the rfd definition enable a broader analysis of the correlations
among attributes. For this reason, rfds might potentially suit bet-
ter than canonical fds in the data imputation process. RENUVER
exploits rfds for: i) identifying the candidate tuples useful for the
imputation of missing values, ii) ranking candidate tuples based
on their similarity with respect to the tuples containing missing
values, and iii) evaluating each imputation aiming to guarantee
the semantic consistency of the whole dataset.

RENUVER represents an heuristic approach aiming at perform
an imputation process in polynomial time. In particular, theworst-
case time complexity of RENUVER is 𝑂 (𝑛2 ·𝑚 · |Σ| · (𝑘 ·𝑚 · |Σ| +
𝑘log𝑘)), where 𝑛,𝑚 represent the number of tuples and the num-
ber of attributes of the dataset, respectively; |Σ| indicates the
number of rfds holding on the dataset, and 𝑘 represents the
average number of possible candidate tuples exploitable for im-
puting a missing value. The effectiveness of RENUVER has been
evaluated on real-world datasets in terms of precision, recall, F1-
measure, and execution time. In order to extract rfds, we relied
on an existing rfd discovery algorithm [6], since the problem of
discovering rfds is out of the scope of this paper. Moreover, we
introduce a novel method for the automatic evaluation of data im-
putation results, which permits to judge the imputed values even
in case of different syntactical representations. Evaluation results
demonstrate that RENUVER outperforms other data imputation
approaches [14, 20, 23].

The paper is organized as follows: Section 2 reviews the litera-
ture concerning data imputation approaches. Section 3 provides
preliminary notions on rfds. Section 4 defines the data impu-
tation problem. The RENUVER algorithm is described in Section
5, whereas an experimental evaluation measuring its effective-
ness is presented in Section 6. Finally, conclusions and further
research are reported in Section 7.
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2 RELATEDWORK
In the last decade, several solutions to the data imputation prob-
lem have been proposed. Among them, there is a class concerning
the application of linear regression mechanisms. The linear re-
gression model proposed in [26] for numerical missing values
aims to solve two among the most common problems arising
with data imputation mechanisms working on numerical values:
the sparsity problem, which deals with the possibility that the
number of tuples without a missing value (a.k.a. complete tuple)
might not be enough to guarantee a precise imputation process,
and the data heterogeneity problem, which deals with the fact
that different tuples might not belong to the same regression
model. Thus, instead of assuming the same regression model for
all tuples, the authors aim to learn a model that is valid only
for a single complete tuple and those most similar to it. In this
way, it is no longer necessary to exclusively rely the imputation
process on the values belonging to the first 𝑘-nearest complete
tuples. Consequently, the process is completely dependent on
the results of the regression model. Instead, a multivariate regres-
sion model (MRL) is used in REMIAN, which has been defined
to address the problem of real-time missing value imputation in
error-prone environments [17]. It is able to dynamically adapt the
MRL model parameters in order to detect and reject anomalies in
an efficient manner, and then incrementally updates the model
parameters upon the arrival of new data over streams. Moreover,
in [22] regression models have been employed in an alternative
way to impute missing values. In this work, rather than trying
to directly infer the missing values, the authors propose to first
predict distances between missing values and complete ones, and
then impute values by means of inferred distances. Thus, they
defined an approximation algorithm to the maximum distance
likelihood problem for imputing a missing value, after proving
its NP-hardness.

Similarly to the approaches mentioned above, in what follows
we discuss several clustering-based techniques, which can also
be used for the imputation of missing values over numerical
datasets. For instance, Nikfalazar et al. propose an imputation
algorithm based on fuzzy clustering techniques [19]. In particular,
it first averages attributes with no missing values to determine
an initial imputation, and then identifies an appropriate number
of clusters for the application of fuzzy clustering. Applying this
technique to the entities within the dataset enables the acquisition
of information such as the membership degree and the centroids,
thanks to which the initial imputation can be updated with the
most suitable value derived from the previous steps.

Instead, Wang et al. present a clustered adversarial matrix
factorization-based framework for the imputation of structured
missing values [24]. The methodology allows for the identifica-
tion of a dimensional subspace consistent with the clustering
structure, easing the process of transferring knowledge among
data points within the same cluster. The framework encourages
the imputed values to have a similarly distributed probability of
the complete values so that by evaluating the joint distribution
of the imputed value it is possible to evaluate the difference from
the ground truth values: a small joint distribution would indicate
a conspicuous difference between the imputed values and the
true ones.

Another class of approaches for data imputation relies on ma-
chine learning techniques. The framework Holoclean, proposed
in [20], exploits machine learning techniques for repairing errors
in structured datasets. It allows for the treatment of many types

of inconsistencies such as duplicate, incorrect, and missing val-
ues. This is made possible through the automatic generation of a
probabilistic model, which extrapolates the features representing
the uncertainty in the dataset and uses them for characteriz-
ing a probabilistic graphical model. The application of statistical
learning and probabilistic inference is then responsible for re-
pairing the errors. Moreover, the consistency of data entries can
be guaranteed by specifying a set of integrity constraints.

The first two classes of approaches discussed above aim at
solving the data imputation problem by means of a model infer-
ring properties among data in a supervised/unsupervised fashion.
They turn out to be very fast, even though for their own nature,
they can only be applied over numerical datasets. On the con-
trary, RENUVER allows for the imputation of numerical, textual,
and categorical data, since it treats each missing value accord-
ing to the data domain it belongs to. On the other hand, the
methodology used in Holoclean allows also for the imputation
of textual and categorical values. Furthermore, Holoclean firstly
introduces the usage of metadata, i.e., Denial of Constraints, for
supporting the imputation of missing values. However, the ex-
ploitation of metadata in the imputation process is marginal in
Holoclean’s logic, since they are merely used as integrity con-
straints that imputed values have to satisfy. Instead, metadata
can be exploited also to generate candidate values, as done in
RENUVERwith rfds. In general, rfds represent properties holding
on the (quasi-)entire dataset, yielding the possibility of capturing
the semantic structure of data.

In fact, rfds have already been considered in the data imputa-
tion context. For instance, Bohannon et al. introduce a specific
type of rfds, called Conditional Functional Dependencies (cfds),
capable of capturing the overall correctness of data [3]. The
general structure of cfds yields the possibility of capturing the
semantics of data, opening their usage for data cleaning purposes.
Moreover, although the authors have not proposed any proper
data imputation approach, they defined a set of sql queries for
detecting cfd violations, enabling the possibility to exploit them
for checking the integrity of an imputed dataset. However, the
acquisition of this class of rfds from data requires an expensive
process involving intensive manual effort [13], relying on this
type of metadata. Instead, another data imputation algorithm
relying on rfds was introduced by Song et al. [23]. It relies on
differential dependencies (dds), another specific type of rfds [21],
which exploits similarity rules in order to offer tolerance on
value variations. To enrich the data imputation process, the au-
thors studied the problem of maximizing the number of imputed
missing values. In particular, the authors presented 4 different
algorithms for treating missing values, i.e. an integer linear pro-
gramming, its approximation, a randomized algorithm, and its
derandomized version, called Derand. The latter is identified by
the authors as the ideal solution for imputing multiple missing
values with a deterministic bound of approximation.

Among all the discussed proposals, Derand represents the
one most similar to RENUVER, since they both make use of rfds
for the generation of candidates and for verifying the result of
the imputation process. However, RENUVER exploits rfds also
for selecting the most suitable candidate for the imputation of
a missing value among all the possible ones. On the contrary,
Derand applies a probabilistic approach for performing such
selection.
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Table 1: A summary of symbols used throughout the paper.
Symbol Description
R Relational database schema
𝑅 Relation schema
𝑟 Relation instance
𝑛 Number of tuples in 𝑟

𝑚 Number of attributes in 𝑟

𝑟 ′ Relation instance after the imputation process
𝑟 Relation instance of tuples with missing values

𝑋,𝑌,𝑍 Attribute sets
𝐴, 𝐵,𝐶 Attributes
𝑎,𝑏, 𝑐 Attribute values
𝑡 Tuple of 𝑟

𝑑𝑜𝑚 (𝐴) Attribute domain
𝑡 [𝐴] Projection of 𝑡 onto 𝐴
𝑡 [𝑋 ] Projection of 𝑡 onto 𝑋

𝑡 [𝐴] = _ Missing value of tuple 𝑡 on attribute 𝐴
𝜑 rfdc
Σ Set of rfdcs
Σ′ Set of non-key rfdcs
Φ Set of distance constraints
𝜙 Distance constraint
𝛿𝐴 Distance function on 𝑑𝑜𝑚 (𝐴)
Σ′𝐴 Set of rfdcs for imputing 𝑡 [𝐴] = _
𝜌𝑖𝐴 Cluster of rfdcs with RHS threshold 𝑖 for imputing 𝑡 [𝐴] = _
ΛΣ′𝐴

Set of clusters 𝜌𝑖𝐴 for imputing 𝑡 [𝐴] = _
ΛΣ′ Set of ΛΣ′𝐴
𝑝 Distance pattern between two tuples

𝑇𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 Set of candidate tuples
𝑘 Size of a set of candidate tuples𝑇𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒

𝑑𝑖𝑠𝑡 Distance value computed between two tuples according to an rfdc

3 PRELIMINARIES
Before presenting the proposed approach, let us briefly introduce
the definitions of fds and rfds. For sake of clarity, Table 1 sum-
marizes the notations used within definitions and procedures
throughout the paper.

Definition 3.1 (Functional Dependency). Given a relational data-
base schema R, and 𝑅 = {𝐴1, . . . , 𝐴𝑚} one of its relation schemas,
and a tuple 𝑡 ∈ 𝑟 , we use 𝑡 [𝐴𝑖 ], with 0 ≤ 𝑖 ≤ 𝑚, to denote
the projection of 𝑡 onto 𝐴𝑖 ; similarly, for a set of attributes 𝑋 =
{𝐴𝑖1 , . . . , 𝐴𝑖𝑘 }, with 1 ≤ 𝑘 ≤ 𝑚, 𝑡 [𝑋 ] ∈ 𝑑𝑜𝑚(𝐴𝑖1 )×. . .×𝑑𝑜𝑚(𝐴𝑖𝑘 )
represents the projection of 𝑡 onto 𝑋 , also denoted with Π𝑋 (𝑡).
An fd on R is a statement 𝑋 → 𝑌 (𝑋 implies 𝑌 ), with 𝑋,𝑌 ⊆
𝑎𝑡𝑡𝑟 (𝑅), such that, given an instance 𝑟 of 𝑅, 𝑋 → 𝑌 is satisfied
in 𝑟 if and only if for each pair of tuples (𝑡1, 𝑡2) in 𝑟 , whenever
𝑡1 [𝑋 ] = 𝑡2 [𝑋 ], then 𝑡1 [𝑌 ] = 𝑡2 [𝑌 ]. The sets of attributes 𝑋 and
𝑌 are named Left-Hand-Side (LHS) and Right-Hand-Side (RHS)
of the fd, respectively.

With respect to fd definition, the rfd generalizes the compar-
ison paradigm, by including similarity/distance-based compar-
isons between tuple projections, also admitting the possibility
for a dependency to hold only on a subset of tuples. The latter
can be defined through either a coverage measure, quantifying
the portion of the dataset on which a dependency holds or a
condition restricting the domain on which a dependency can hold
[7]. Since the proposed approach exploits only rfds relying on a
similarity/distance-based tuple comparison method, in what fol-
lows we provide only the definition of this type of rfds, known
as rfdc. For a more general definition of rfd, see [7].

Definition 3.2 (rfdc). Given a relational database schema R,
and 𝑅 = {𝐴1, . . . , 𝐴𝑚} one of its relation schemas, an rfdc 𝜑 on
R

𝑋Φ1 → 𝑌Φ2 (1)

Table 2: A sample of the Restaurant dataset.
Name City Phone Type Class

𝑡1 Granita Malibu 310/456-0488 Californian 6
𝑡2 Chinois Main LA 310-392-9025 French 5
𝑡3 Citrus Los Angeles 213/857-0034 Californian 6
𝑡4 Citrus Los Angeles _ Californian 6
𝑡5 Fenix Hollywood 213/848-6677 _ 5
𝑡6 Fenix Argyle _ 213/848-6677 French (new) 5
𝑡7 C. Main Los Angeles _ French 5

where
• 𝑋,𝑌 ⊆ 𝑎𝑡𝑡𝑟 (𝑅);
• Φ1 contains (for each attribute𝑋𝑖 ∈ 𝑋 ) a constraint 𝜙𝑖 [𝑋𝑖 ]
that can be used to determine whether pair of tuples with
values in 𝑑𝑜𝑚(𝑋𝑖 ) are “similar” enough (likewise for each
attribute 𝑌𝑗 ∈ 𝑌 with 𝜙 𝑗 [𝑌𝑗 ] ∈ Φ2). More specifically,
each 𝜙𝑖 [𝑋𝑖 ] (𝜙 𝑗 [𝑌𝑗 ] resp.) requires the specification of
a similarity/distance function defined on the domain of
𝑋𝑖 (𝑌𝑗 , resp.), an operator, and a threshold setting the
boundaries for the satisfaction of the constraint;

holds on a relation instance 𝑟 (denoted by 𝑟 |= 𝜑) if and only
if for each pair of tuples (𝑡1, 𝑡2) ∈ 𝑟 for which 𝑡1 [𝑋 ] and 𝑡2 [𝑋 ]
satisfy the constraint 𝜙𝑖 [𝑋𝑖 ] for each 𝑋𝑖 ∈ 𝑋 , then 𝑡1 [𝑌 ] and
𝑡2 [𝑌 ] satisfy the constraint 𝜙𝑖 [𝑌𝑖 ] for each 𝑌𝑖 ∈ 𝑌 .

For sake of simplicity, in the following examples, we apply a
more compact notation for the constraints, showing only the op-
erator and the numeric threshold associated with each attribute.

Example 3.3. Let us consider the sample relation shown in
Table 2, derived from a database of restaurants in USA. Within
this database, each tuple represents a restaurant providing in-
formation about its name, address, city, phone number, type of
cuisine, and class. The latter is a numeric id associated to the
type of cuisine. This dataset is the result of a data integration
process, hence some restaurants might be duplicated. On such
dataset, the following rfdc holds:

𝜑4 : Name(≤4) −→ Phone(≤1)
which states that, if two restaurants have a similar name, then
they also have a similar phone number. This should be true de-
spite the names and/or the phone numbers of restaurants being
written in different ways or using different abbreviations. Thus,
the boundary defining how much two tuples can be considered
similar on a given attribute is represented by the threshold re-
ported on the subscript of the attribute.

From a theoretical point of view, rfdcs permit to use any type
of similarity/distance functions, e.g., edit distance, abs differences,
and so forth. However, they are usually inherited from the func-
tions involved in the automatic rfdc discovery process [6]. For
the scope of this proposal, without loss of generality, we can
consider rfdcs with a single attribute on the RHS, and the asso-
ciated constraint 𝜙2. In particular, we considered 𝜙2 composed
of a distance function, the operator ≤, and a distance threshold.
Given an rfdc 𝜑 , we defined functions 𝐿𝐻𝑆 (𝜑) and 𝑅𝐻𝑆 (𝜑), re-
turning the attributes on the LHS and the one on the RHS of 𝜑 ,
respectively. Furthermore, we also specify the function𝑅𝐻𝑆𝑡ℎ (𝜑),
which returns the distance threshold associated to the constraint
𝜙2 associated to the RHS attribute of 𝜑 . A particular type of rfdc
is the key-rfdc, which is defined in the following.

Definition 3.4 (Key rfdc). Given a relation schema 𝑅, and an
instance 𝑟 of 𝑅, an rfdc 𝜑 : 𝑋Φ1 → 𝐴𝜙2 is said to be key if and
only if 𝜑 holds on 𝑟 (𝑟 |= 𝜑), but there is no pair of distinct tuples
(𝑡1, 𝑡2) ∈ 𝑟 , for which 𝑡1 [𝑋 ] and 𝑡2 [𝑋 ] satisfy all the constraints
in Φ1 [𝑋 ].
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4 THE PROPOSED IMPUTATION APPROACH
In this section, we formalize the data imputation problem by
defining some of its underlying concepts, then describing the
basics of the proposed imputation approach. Let us start defining
the concept of missing value.

Definition 4.1 (Missing value). Given a relation schema 𝑅, de-
fined over a set of attributes 𝑎𝑡𝑡𝑟 (𝑅), an instance 𝑟 of 𝑅, an at-
tribute 𝐴 ∈ 𝑎𝑡𝑡𝑟 (𝑅), and a tuple 𝑡 ∈ 𝑟 , a missing value of tuple 𝑡
on the attribute 𝐴, denoted as 𝑡 [𝐴] = _, is such that 𝑡 [𝐴] is null.

Here, 𝑟 is said to be an incomplete instance, and 𝑟 ⊆ 𝑟 is such
that each 𝑡 ∈ 𝑟 is an incomplete tuple.

Missing values entail the general missing value imputation
problem, which is formally defined as follows.

Definition 4.2 (Missing value imputation problem). Given a re-
lation schema 𝑅, and an instance 𝑟 of 𝑅, for every tuple 𝑡 ∈ 𝑟
and every attribute 𝐴 ∈ 𝑎𝑡𝑡𝑟 (𝑅) for which 𝑡 [𝐴] = _, the imputa-
tion problem consists of finding a plausible value 𝑎 ∈ 𝑑𝑜𝑚(𝐴),
such that the database instance 𝑟 ′ resulting from the imputa-
tion process preserves the semantic consistency of the original
database.

A missing value imputation approach also requires the appli-
cation of constraints for evaluating the semantic consistency at
the end of the imputation process, i.e., for verifying whether the
imputed values are plausible. The proposed approach exploits
rfds to both guarantee the verification of the semantic consis-
tency, and to drive the searching of meaningful candidates for
all missing values.

Definition 4.3 (Semantically consistent imputation). Given a
relation schema 𝑅, defined over a set of attributes 𝑎𝑡𝑡𝑟 (𝑅), an
instance 𝑟 of 𝑅, and a set of rfdcs, Σ, holding on 𝑟 (𝑟 |= Σ), an
instance 𝑟 ′ of 𝑅 resulting from an imputation process 𝐼 over the
instance 𝑟 , denoted as 𝑟 ′ = 𝐼 (𝑟 ), is semantically consistent iff
𝑟 ′ |= Σ.

Example 4.4. Let us consider the sample relation shown in
Table 2, and the rfdc

𝜑0 : Phone(≤0) −→ City(≤10)
which states that, if two restaurants have the same phone number,
then they are placed in a city with a similar name. Assuming
that we imputed 𝑡7 [Phone] with the value 𝑡1 [Phone], then the
imputation process would not be semantically consistent, since
the tuple pair (𝑡1, 𝑡7) violates the previously mentioned rfdc.
This is due to the fact that 𝑡1 and 𝑡7 share the same value on the
attribute Phone (i.e., edit distance = 0), but the correspondent
values on the attribute City overcome the distance threshold (i.e.,
edit distance > 10).

One of the possible strategies that could guarantee the seman-
tic consistency of the imputation process is to find candidate
values for 𝑡 [𝐴] = _ by considering a set 𝑇𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 ⊆ 𝑟 of plau-
sible candidate tuples from which to take values for imputing
𝑡 [𝐴], such that ∀𝑡𝑘 ∈ 𝑇𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 , 𝑡𝑘 [𝐴] ≠ _ and 𝑡𝑘 is similar to 𝑡
on some attributes beyond 𝐴.

In what follows we define the criteria used by RENUVER for
deciding when a tuple can be considered as a plausible candidate,
which is based on rfdcs.

Definition 4.5 (Plausible candidate tuple). Given amissing value
𝑡 [𝐴]=_ over a database instance 𝑟 of a relation schema 𝑅, and an
rfdc 𝜑 : 𝑋Φ1 → 𝐴𝜙2 holding on 𝑟 , a tuple 𝑡

′ ∈ 𝑟 can be considered

as a plausible candidate tuple for imputing 𝑡 [𝐴] according to 𝜑
iff 𝑡 and 𝑡 ′, are similar according to the constraints in Φ1.

Example 4.6. Let us consider the rfdc 𝜑0 shown in Example
3.3 and the sample relation shown in Table 2. The only candidate
tuple for imputing 𝑡6 [City] according to 𝜑0 is 𝑡5, since it is the
only one with a phone number satisfying the LHS constraint of
𝜑 (𝑡6 [Phone] and 𝑡5 [Phone] are equal). Thus, it is possible to use
𝑡5 [City] for imputing 𝑡6 [City], i.e., Hollywood.

The candidate tuple generation process performed according
to Definition 4.5 has to be generalized in order to perform the
imputation process on tuples containing more than one missing
value, and for each 𝑡 ∈ 𝑟 .

Missing value imputation for a tuple. Let 𝑅 be a relational
schema defined over a set of attributes 𝑎𝑡𝑡𝑟 (𝑅), 𝑟 an instance
of 𝑅, 𝑡 a tuple of 𝑟 , 𝑍 ⊂ 𝑎𝑡𝑡𝑟 (𝑅) a set of attributes such that for
each 𝐴 ∈ 𝑍 𝑡 [𝐴] = _, and Σ a set of rfdcs holding on 𝑟 . An im-
putation process for 𝑡 consists of selecting a plausible candidate
tuple 𝑡 𝑗 for each𝐴 ∈ 𝑍 such that 𝑡 [𝐴] = _, so that 𝑡 [𝐴] can be set
equal to 𝑡 𝑗 [𝐴]. However, when for a 𝑡 [𝐴] = _ it is not possible
to identify a plausible candidate tuple guaranteeing a semantic
consistent imputation (see Definition 4.3), it is better to leave
𝑡 [𝐴] unimputed. Although this strategy has been widely applied
in other approaches [23], it yields to another important issue that
RENUVER deals with, i.e., minimizing the number of non-imputed
values.

It is worth noting that an imputed tuple 𝑡 could itself become
a candidate tuple for imputing another tuple 𝑡 ′ ∈ 𝑟 .

5 THE RENUVER ALGORITHM
RENUVER takes in input a dataset 𝑟 and the set of rfdcs Σ holding
on it, and performs the following operations:

(a) Data pre-processing. It extracts the set of tuples 𝑟 with one
or more missing values from the dataset, and it succes-
sively constructs Σ′ by removing from Σ the key-rfdcs,
since they are not useful for the imputation process.

(b) rfdc selection. Given a tuple 𝑡 ∈ 𝑟 with a missing value on
attribute 𝐴, RENUVER selects from Σ′ the set of rfdcs Σ′𝐴
suitable for generating candidate values for 𝑡 [𝐴], i.e., those
with 𝐴 as RHS attribute. The rfdcs in Σ′𝐴 are then parti-
tioned into a set of clustersΛΣ′𝐴 = {𝜌𝑅𝐻𝑆𝑡ℎ1

𝐴 , . . . , 𝜌
𝑅𝐻𝑆𝑡ℎ𝑛
𝐴 }

based on the RHS thresholds. The clusters define the order
in which the rfdcs have to be considered to generate candi-
date values for 𝑡 [𝐴], i.e., from lowest to highest threshold
values.

(c) Imputing missing values. Given a tuple 𝑡 ∈ 𝑟 with a miss-
ing value on attribute 𝐴, and the clusters ΛΣ′𝐴 , RENUVER
iteratively performs the following operations:
i selects the plausible candidate tuples 𝑡 ′ in 𝑟 that satisfy
the LHS constraints of an rfdc in 𝜌

𝑅𝐻𝑆𝑡ℎ𝑖
𝐴 and such that

𝑡 ′[𝐴] ≠ _;
ii computes a distance value 𝑑𝑖𝑠𝑡 for each plausible candi-

date tuple 𝑡 ′ as the minimum distance between 𝑡 and 𝑡 ′

on the LHS attributes of the rfdcs in 𝜌
𝑅𝐻𝑆𝑡ℎ𝑖
𝐴 ;

iii imputes 𝑡 [𝐴] with 𝑡 ′[𝐴], where 𝑡 ′ is a plausible candi-
date tuple with the lowest distance value;

iv verifies whether the imputed value for 𝑡 [𝐴] causes a vio-
lation of previously holding rfdcs. In this case, RENUVER
selects the next plausible candidate tuple with the low-
est distance value.
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Name City Phone Type Class
t1 Granita Malibu 310/456-0488 Californian 6

Chinos Main LA 310-932-9025 French 5
Citrus Los Angeles 213/857-0034 Californian 6
Citrus Los Angeles _ Californian 6
Fenix Hollywood 213/848-6677 _ 5

Fenix Argyle _ 213/848-6677 French (new) 5
C. Main Los Angeles 213/857-0034 French 5

t2
t3
t4
t5
t6
t7

Name City Phone Type Class
t1 Granita Malibu 310/456-0488 Californian 6

Chinos Main LA 310-932-9025 French 5
Citrus Los Angeles 213/857-0034 Californian 6
Citrus Los Angeles _ Californian 6
Fenix Hollywood 213/848-6677 _ 5

Fenix Argyle _ 213/848-6677 French (new) 5
C. Main Los Angeles _ French 5

t2
t3
t4
t5
t6
t7

   Name(≤ 8), Phone(≤ 0), Class(≤ 1) ➝ Type(≤ 0)

   Class(≤ 0) ➝ Type(≤ 5)
   City(≤ 2)  ➝ Phone(≤ 2)
   Name(≤ 4)  ➝ Phone(≤ 1)
   Name(≤ 8), Phone(≤ 0)  ➝ City(≤ 9)
   Name(≤ 6), City(≤ 9)  ➝ Phone(≤ 0)
   Phone(≤ 1) ➝ Class(≤ 0)

 ...   ...

  : City(≤ 2)  ➝ Phone(≤ 2)

  : Name(≤ 4)  ➝ Phone(≤ 1)

: Name(≤ 6), City(≤ 9)  ➝ Phone(≤ 0)Phone

violated!

Name City Phone Type Class
t1 Granita Malibu 310/456-0488 Californian 6

Chinos Main LA 310-932-9025 French 5
Citrus Los Angeles 213/857-0034 Californian 6
Citrus Los Angeles _ Californian 6
Fenix Hollywood 213/848-6677 _ 5

Fenix Argyle _ 213/848-6677 French (new) 5
C. Main Los Angeles _ French 5

t2
t3
t4
t5
t6
t7

Name City Phone Type Class
t1 Granita Malibu 310/456-0488 Californian 6

Chinos Main LA 310-932-9025 French 5
Citrus Los Angeles 213/857-0034 Californian 6
Citrus Los Angeles _ Californian 6
Fenix Hollywood 213/848-6677 _ 5

Fenix Argyle _ 213/848-6677 French (new) 5
C. Main Los Angeles 310-932-9025 French 5

t2
t3
t4
t5
t6
t7

Name City Phone Type Class
t1 Granita Malibu 310/456-0488 Californian 6

Chinos Main LA 310-932-9025 French 5
Citrus Los Angeles 213/857-0034 Californian 6
Citrus Los Angeles _ Californian 6
Fenix Hollywood 213/848-6677 _ 5

Fenix Argyle _ 213/848-6677 French (new) 5
C. Main Los Angeles _ French 5

t2
t3
t4
t5
t6
t7

  : City(≤ 2)  ➝ Phone(≤ 2)

  : Name(≤ 4)  ➝ Phone(≤ 1)

: Name(≤ 6), City(≤ 9)  ➝ Phone(≤ 0)0

Phone

b) RFDc selection

c) Imputing missing values

Imputing t7[Phone] with t2[Phone]

Imputing t7[Phone] with t3[Phone]

  : City(≤ 2)  ➝ Phone(≤ 2)

  : Name(≤ 4)  ➝ Phone(≤ 1)

: Name(≤ 6), City(≤ 9)  ➝ Phone(≤ 0)

a) Data pre-processing

Phone

Phone

Phone

Phone

  : Phone(≤ 1)  ➝ Class(≤ 0)

NOT violated!

  : Phone(≤ 1)  ➝ Class(≤ 0)

Figure 1: An example of RENUVER imputation on the Restaurant dataset of Table 2.

These operations are repeated for each cluster in ΛΣ′𝐴 ,
from 𝑡ℎ0 to 𝑡ℎ𝑛 , as long as the imputation is not successful.

Figure 1 shows the results of the aforementioned steps of
RENUVER on the sample data in Table 2 and a subset of rfdcs hold-
ing on it. During the pre-processing step (a), RENUVER searches
for all tuples containing at least one missing value, which are
then added to the 𝑟 set, in this case 𝑡4, 𝑡5, 𝑡6, and 𝑡7. In addition,
the process of detecting key-rfdcs leads to the identification of

𝜑1, which will therefore not be used during the imputation pro-
cesses. The remaining rfdcs, deemed non-key rfdcs, i.e., from
𝜑2 to 𝜑7, are inserted within the Σ′ set.

When the rfdc selection step (b) focuses on the imputation
of the missing value on the Phone attribute of tuple 𝑡7, all rfdcs
having this attribute on the RHS are selected. They correspond
to 𝜑6, 𝜑4, and 𝜑3, which are organized in clusters based on their
RHS thresholds. Thus, as shown in Figure 1, the rfdcs in the
set ΛΣ′Phone

are separated into 3 clusters, labeled with 𝜌0Phone,
𝜌1Phone, and 𝜌2Phone, respectively. The imputation process step
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(c) for 𝑡7 [Phone] starts by looking for plausible candidate tu-
ples having a non-missing value on the Phone, and satisfying
the LHS of 𝜑6, since it is the only rfdc in the cluster with the
lowest label value, i.e., 𝜌0Phone. The resulting plausible candi-
date tuples are 𝑡2 and 𝑡3. Based on the LHS attributes of 𝜑6, i.e.,
Name and City, RENUVER calculates the distance values between
𝑡2 and 𝑡7, and between 𝑡3 and 𝑡7, which correspond to 7.5 and
3, respectively. Then, it first considers the tuple with lowest
distance value, i.e., 𝑡3, for the imputation process. This means
that 𝑡3 [Phone] = 213/857-0034 is a candidate value 𝑡7 [Phone].
However, while verifying the semantically consistency of this im-
putation, it happens that the rfdc 𝜑7 is invalidated. Consequently,
RENUVER analyzes the next candidate tuple, i.e., 𝑡2, yielding to
impute 𝑡7 [Phone] with 𝑡2 [Phone] = 310-932-9025. This is se-
mantically consistent with Σ, yielding to the termination of the
imputation for 𝑡7 [Phone].

Algorithm 1 provides the main procedure of RENUVER. In par-
ticular, the pre-processing steps are described from Line 1 to Line
6. Then, the rfdc selection step is shown from Line 7 to Line
10, where a cycle iterating through each missing value 𝑡 [𝐴] = _
organizes the rfdcs exploitable for the imputation of each 𝑡 [𝐴].
Finally, the imputation step is performed from Line 11 to Line 14,
where all gadgets are employed for imputing each missing value
𝑡 [𝐴] = _, and verifying the correctness of such imputation (see
the sub-procedure (IMPUTE_MISSING_VALUE). After the imputa-
tion of a missing value 𝑡 [𝐴] = _, it is necessary to re-evaluate the
set of rfdcs exploitable for the imputation of some other missing
values, since the new imputed value can turn a key rfdc into a
non-key one (Line 14).

Example 5.1. Let us consider the tuple 𝑡4 from Table 2 and the
following rfdc, previously identified as a key-rfdc in Example
5.2:

𝜑1 : Name(≤8) ,Phone(≤0) ,Class(≤1) → Type(≤0)
Let us suppose we imputed 𝑡4 [Phone] with the value “213/857-
0034” derived from 𝑡3 [Phone]. As a consequence, 𝜑1 is no longer
a key rfdc, since upon the imputation process the tuple pair
(𝑡3,𝑡4) satisfies the LHS constraints of 𝜑1, hence 𝜑1 can be used
for the imputation of other missing values.

A detailed description of RENUVER procedures are provided in
the following paragraphs.

5.1 Pre-processing
As said above, the first step of RENUVER consists of two data pre-
processing operations: the extraction of tuples containingmissing
values and the identification of key-rfdcs. The elimination of key
rfdcs during the pre-processing phase contributes to reduce the
execution time of RENUVER since these rfdcs do not contribute
to the identification of plausible candidates for the imputation
process.

Example 5.2. Let us consider the following rfdcs,
𝜑1 : Name(≤8) ,Phone(≤0) ,Class(≤1) → Type(≤0)
𝜑2 : Class(≤0) → Type(≤5)

holding on the dataset of Restaurants whose sample is reported in
Table 2. The rfdc 𝜑1 asserts that two restaurants having similar
names, same phone, and similar classes, must also be of the same
type. Referring to Table 2, it is possible to verify that there is
no pair of distinct tuples satisfying the LHS constraints of 𝜑1,
making it a key-rfdc. Conversely, for 𝜑2 there are at least two
tuples (e.g., 𝑡3 and 𝑡4) satisfying the LHS constraint in Table 2.

Algorithm 1 RENUVER

INPUT: a relation instance 𝑟 , a set of rfdcs Σ
OUTPUT: an imputed relation instance 𝑟
1: let Σ′ ← {𝜑 | 𝜑 ∈ Σ ∧ is not a Key-rfdc}
2: let 𝑟 ← ∅
3: let ΛΣ′ ← ∅
4: for each 𝑡 ∈ 𝑟 do
5: if 𝑡 has at least one missing value then
6: 𝑟 ← 𝑟

⋃ {𝑡}
7: for each missing value𝐴 ∈ 𝑡 do

⊲ rfdc selection procedure
8: let Σ′𝐴 ← {𝜑 | 𝜑 ∈ Σ′ ∧ 𝜑 : 𝑋Φ1 → 𝐴𝜙2 }
9: letΛΣ′𝐴 ← { 𝜌𝑖𝐴 | 𝜌𝑖𝐴 holds all 𝜑 with 𝑅𝐻𝑆𝑡ℎ (𝜑) =

𝑖 }
10: ΛΣ′ ← ΛΣ′

⋃
ΛΣ′𝐴

11: for each 𝑡 ∈ 𝑟 do
12: for each missing value𝐴 ∈ 𝑡 do
13: 𝑟 = IMPUTE_MISSING_VALUE(𝑟, 𝐴, 𝑡, Σ′,ΛΣ′𝐴)

14: Σ′ ← {𝜑 | 𝜑 ∈ Σ ∧ is not a Key-rfdc}
15: return 𝑟

Pre-processing steps are included in the main procedure of
RENUVER (Algorithm 1). In particular, the definition Σ′ represents
a set of rfdcs where key dependencies have been filtered-out
(Line 1). Moreover, by iteratively analyzing all tuples in the in-
stance 𝑟 , RENUVER stores all tuples having at least a missing value
in the set 𝑟 (Lines 4-6). In this way, the whole imputation process
can start and it can properly focus the attention on rfdcs and
data properly filtered.

5.2 Rfdc selection
For each a missing value 𝑡 [𝐴] = _ (Algorithm 1 - Line 7), RENUVER
collects all rfdcs that can be used to impute 𝑡 [𝐴], allowing for
the identification of all plausible candidates for its imputation.
In particular, the rfdcs are selected based on their RHS attribute,
i.e., all rfdcs with attribute 𝐴 as RHS are added to a set Σ′𝐴 (Line
8).

Successively, ΛΣ′𝐴 is defined as a set of clusters 𝜌𝑖𝐴 , each group-
ing all rfdcs having the same threshold on the RHS attribute
(Line 9).

Example 5.3. Let us consider tuple 𝑡4 extracted from Table 2.
Since 𝑡4 has a missing value on the attribute Phone, it is possible
to consider the following two rfdcs for its imputation:

𝜑3 : City(≤2) → Phone(≤2)
𝜑4 : Name(≤4) → Phone(≤1)

Consequently, RENUVER adds 𝜑3 and 𝜑4 to the same set of rfdcs
exploitable for the imputation of attribute Phone. However, the
two rfdcs belong to two different clusters because of their RHS
threshold, i.e., 2 and 1, respectively.

5.3 Imputing missing values
Algorithm 2 summarizes the procedure for imputing a missing
value of a tuple. It takes as input a database instance 𝑟 of a relation
schema 𝑅, an attribute 𝐴 ∈ 𝑎𝑡𝑡𝑟 (𝑅), a tuple 𝑡 having a missing
value on 𝐴, and the set of rfdc clusters ΛΣ′𝐴 (see Algorithm 1).
The procedure iteratively selects a cluster in descending order of
their associated RHS thresholds (Line 1). Based on the currently
examined rfdcs cluster, it retrieves all plausible candidate tuples
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Algorithm 2 IMPUTE_MISSING_VALUE

INPUT: an instance 𝑟 , an attribute 𝐴, a tuple 𝑡 ∈ 𝑟 with
𝑡 [𝐴] = _, a set of rfdcs Σ′, a set of clusters ΛΣ′𝐴 containing
rfdcs exploitable for imputing 𝑡 [𝐴]
OUTPUT: an imputed relation instance of 𝑟 for the missing
value 𝑡 [𝐴] = _ or the same instance of 𝑟 passed as input if the
imputation for 𝑡 [𝐴] = _ is not performed
1: for each 𝜌𝑖𝐴 ∈ ΛΣ′𝐴 in descending order of RHS threshold

do
2: let 𝑇𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 ← FIND_CANDIDATE_TUPLES(𝑟,𝑡,𝜌𝑖𝐴)
3: Sort 𝑇𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 in ascending order of distance values
4: for each (𝑡 𝑗 , 𝑑𝑖𝑠𝑡 𝑗 ) ∈ 𝑇𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 do
5: 𝑡 [𝐴] ← 𝑡 𝑗 [𝐴]
6: if IS_FAULTLESS(𝑟, 𝐴, 𝑡, Σ′) then
7: return 𝑟
8: else
9: 𝑡 [𝐴] ← _
10: return 𝑟

from 𝑟 (Line 2). At this point, all candidate tuples have already
been evaluated according to a distance value with respect to 𝑡
(see Algorithm 3), and they are sorted in ascending order based
on this distance value (Line 3) and singularly examined for the
imputation process (Line 4). More specifically, the procedure tries
to use a candidate tuple 𝑡 𝑗 previously selected from the set of all
candidate tuples𝑇𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 ; but before concluding the imputation
process, it is necessary to verifywhether the semantic consistency
of the whole relation instance is preserved after imputing 𝑡 [𝐴]
with the value 𝑡 𝑗 [𝐴] (Line 6), and if the evaluated value for 𝑡 [𝐴]
turned out to be fault for 𝑡 [𝐴], the procedure returns the missing
value flag, i.e., _ (Line 9).

In the following paragraphs, we provide the details of the
sub-procedures mentioned above.

Generation of candidate tuples. Algorithm 3 defines the proce-
dure for finding the candidate tuples used to impute the missing
value of 𝑡 [𝐴]. The goal here is to process all tuples in 𝑟 , by eval-
uating their distance with respect to 𝑡 . To this end, it uses two
underlying concepts: distance pattern and distance value, whose
definitions are provided in the following.

Definition 5.4 (Distance pattern). Given a relation schema 𝑅 =
{𝐴1, . . . , 𝐴𝑚}, a relation instance 𝑟 of 𝑅, a tuple pair (𝑡, 𝑡 𝑗 ), and
𝛿𝐴1 , . . . , 𝛿𝐴𝑚 a list of distance functions on𝑑𝑜𝑚(𝐴1), . . . ,𝑑𝑜𝑚(𝐴𝑚),
respectively. A distance pattern 𝑝 for the tuple pair (𝑡, 𝑡 𝑗 ) is a vec-
tor of 𝑚 elements [𝑝1, . . . , 𝑝𝑚] such that for each 1 ≤ 𝑖 ≤ 𝑚,
𝑝𝑖 = _ if 𝑡 [𝐴𝑖 ] = _ or 𝑡 𝑗 [𝐴𝑖 ] = _, and 𝑝𝑖 = 𝛿𝐴𝑖 (𝑡 [𝐴𝑖 ], 𝑡 𝑗 [𝐴𝑖 ])
otherwise.

In other words, the distance pattern defines the distance be-
tween 𝑡 and 𝑡 𝑗 for each attribute in 𝑅, which is computed through
a distance function suitable to the domain of each attribute. In
particular, RENUVER uses the absolute difference for numerical
values, the edit distance for string values [25], and the equality
constraint for boolean values, as distance functions, so it is able
to work with string, int, float, double, and boolean attributes.

Example 5.5. Let us consider the tuple pair (𝑡5, 𝑡6) of Table
2. The distance pattern is a vector of 5 elements whose values
can be computed using the edit distance for attributes Name and
Phone, and the absolute distance for attribute Class. Since the
attributes City and Type have a missing value on both 𝑡5 and 𝑡6,
it is not possible to calculate a distance value for them. Thus, the

Algorithm 3 FIND_CANDIDATE_TUPLES

INPUT: an instance 𝑟 , a tuple 𝑡 ∈ 𝑟 with 𝑡 [𝐴] = _, a set of rfdcs
𝜌𝑖𝐴 with 𝐴 as RHS attribute and 𝑖 as RHS threshold.
OUTPUT: A set of pairs (𝑡 𝑗 , 𝑑𝑖𝑠𝑡 𝑗 ), where 𝑡 𝑗 is a candidate tuple
valid to impute 𝐴 and 𝑑 𝑗 is the computed distance between 𝑡 and
𝑡 𝑗

1: let 𝑇𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 ← ∅
2: for each 𝑡 𝑗 ≠ 𝑡 ∈ 𝑟 ∧ 𝑡 𝑗 [𝐴] ≠ _ do
3: let 𝑝 be a distance pattern computed between 𝑡, 𝑡 𝑗
4: let 𝑑𝑖𝑠𝑡𝑚𝑖𝑛 ← +∞
5: for each 𝜑 : 𝑋Φ1 → 𝐴𝜙2 ∈ 𝜌𝑖𝐴 do
6: if p satisfies Φ1 on LHS(𝜑) then

7: let dist←
∑

𝐵∈𝑋
𝑝 [𝐵 ]
|𝑋 |

8: if 𝑑𝑖𝑠𝑡 < 𝑑𝑖𝑠𝑡𝑚𝑖𝑛 then
9: 𝑑𝑖𝑠𝑡𝑚𝑖𝑛 ← 𝑑𝑖𝑠𝑡

10: 𝑇𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 ← 𝑇𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒
⋃ (𝑡 𝑗 , 𝑑𝑖𝑠𝑡𝑚𝑖𝑛)

11: return 𝑇𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒

corresponding value on the distance pattern is flagged with _,
and the pattern is the vector: [7, _, 0, _, 0].

Given a distance pattern 𝑝 and an rfdc 𝜑 : 𝑋Φ1 → 𝐴𝜙2 , it
is possible to state that 𝑝 satisfies the constraint Φ1 iff for each
attribute 𝐵 ∈ 𝑋 , we have 𝑝 [𝐵] ≠ _ and 𝑝 [𝐵] contains a value less
or equal than the distance threshold associated to 𝐵.

Definition 5.6 (Distance value). Given a relation schema 𝑅, an
instance 𝑟 of it, a tuple pair (𝑡, 𝑡 𝑗 ) of 𝑟 , an rfdc 𝜑 : 𝑋Φ1 → 𝐴𝜙2 ,
and a distance pattern 𝑝 satisfying the constraint Φ1. A distance
value 𝑑𝑖𝑠𝑡 between tuples 𝑡 and 𝑡 𝑗 according to𝜑 can be computed
as

𝑑𝑖𝑠𝑡 =

∑
𝐵∈𝑋

𝑝 [𝐵]

|𝑋 | (2)

Example 5.7. Let us consider tuple 𝑡6 from Table 2. Suppose we
are following the imputation process for 𝑡6 [City] by considering
tuple 𝑡5 as a plausible candidate tuple. As stated on Example 5.5,
the distance pattern 𝑝 between 𝑡5 and 𝑡6 is [7, _, 0, _, 0]. Among
the rfdcs exploitable for imputing 𝑡6 [City] the following one is
considered:

𝜑5 : Name(≤8) ,Phone(≤0) → City(≤9)
Since 𝑝 satisfies the constraints on the LHS of 𝜑5, the distance
value between 𝑡5 and 𝑡6 can be computed according to Equation
2:

𝑑𝑖𝑠𝑡 (𝑡5,𝑡6) =
𝑝 [Name] + 𝑝 [Phone]
|{Name,Phone}| =

7 + 0
2 = 3.5

By considering the definitions provided above, for each tuple
𝑡 𝑗 ≠ 𝑡 having a non-missing value on attribute 𝐴, Algorithm 3
computes their distance pattern (Line 3). Then, a cycle iterates
through each rfdc 𝜑 (Lines 5-9), and analyzes its LHS constraints
(Φ1) to check if the distance pattern 𝑝 satisfies them (Line 6).
The actual distance between 𝑡 𝑗 and 𝑡 is computed according
to Equation 2, yielding a distance value 𝑑𝑖𝑠𝑡 . In particular, the
iteration over the rfdcs (Lines 5-9) aims at finding the minimum
possible distance value 𝑑𝑖𝑠𝑡𝑚𝑖𝑛 achievable for 𝑡 𝑗 with respect to
the considered rfdcs. The candidate tuple 𝑡 𝑗 and the minimum
distance value 𝑑𝑖𝑠𝑡𝑚𝑖𝑛 are then included in the candidate set
𝑇𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 (Line 10).
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Algorithm 4 IS_FAULTLESS

INPUT: a database instance 𝑟 , an attribute 𝐴, a tuple 𝑡 imputed
on attribute 𝐴, a set of rfdcs Σ′
OUTPUT: true if imputation is semantically consistent, false
otherwise
1: for each 𝜑 : 𝑋Φ1 → 𝐵𝜙2 ∈ Σ′ 𝑠 .𝑡 . 𝐴 ⊆ 𝑋 do
2: for each 𝑡𝑖 ∈ 𝑟 do
3: let 𝑝 be a distance pattern computed between 𝑡, 𝑡 𝑗
4: if p satisfies Φ1 on LHS(𝜑) then
5: if p does not satisfy Φ1 on RHS(𝜑) then
6: return false
7: return true

Example 5.8. Let us consider the imputation process for 𝑡7 [Phone].
Suppose that during the identification of plausible candidate tu-
ples 𝑡2 and 𝑡3 are selected through the following rfdc:

𝜑6 : Name(≤6) ,City(≤9) → Phone(≤0)
Let the distance patterns of the tuple pairs (𝑡2, 𝑡7) and (𝑡3, 𝑡7)
be 𝑝 (𝑡2,𝑡7) = [6, 9, _, _, 0] and 𝑝 (𝑡3,𝑡7) = [6, 0, _, _, 1], respectively.
Then, by applying Equation 2, the distance value between the
tuples of each tuple pair are:

𝑑𝑖𝑠𝑡 (𝑡2,𝑡7) =
𝑝 (𝑡2,𝑡7) [Name] + 𝑝 (𝑡2,𝑡7) [City]

|{Name,City}| =
6 + 9
2 = 7.5

𝑑𝑖𝑠𝑡 (𝑡3,𝑡7) =
𝑝 (𝑡3,𝑡7) [Name] + 𝑝 (𝑡3,𝑡7) [City]

|{Name,City}| =
6 + 0
2 = 3

According to the computed distances, we can establish the order
in which the plausible candidate tuples will be considered, i.e.,
first 𝑡3, and if the verification of the imputation process fails, then
𝑡2.

Verifying the imputation process. Algorithm 4 shows the pro-
cedure to verify whether the imputation of a tuple 𝑡 on attribute
𝐴 introduces semantic inconsistencies. To this end, the algorithm
selects all available rfdcs 𝜑 having the imputed attribute 𝐴 on
the LHS (Line 1), and searches for any tuple 𝑡𝑖 satisfying LHS
constraints of 𝜑 , but violating the RHS one when compared to 𝑡
(Lines 3-5) (see Definition 4.3).

Example 5.9. Let us consider two tuples, 𝑡3 and 𝑡7 extracted
from Table 2, and suppose we imputed 𝑡7 [Phone] with the value
“213/857-0034”, derived from 𝑡3 [Phone], having selected 𝑡3 as
the first candidate tuple in Example 5.8. During the verification
process, the following rfdc is considered:

𝜑6 : Phone(≤1) −→ Class(≤0)
The evaluation of the imputed tuple 𝑡7 according to 𝜑6 allows to
verify that the value pair (𝑡3 [Phone], 𝑡7 [Phone]) satisfies the LHS
of 𝜑6. However, when evaluating the RHS of 𝜑6 concerning the
value pair (𝑡3 [Class], 𝑡7 [Class]), the similarity/distance function
(in this case, the absolute distance) returns a value 1, which is
above the threshold provided by 𝜑6 on attribute Class. 𝜑6 no
longer holds on the entire dataset, and the value “213/857-0034”
is not suitable for 𝑡7 [Phone].

6 EVALUATION
As shown in [23], the problem of imputing missing values is
NP-compete. To this end, RENUVER exploits rfdcs in order to find
the best candidates for each missing value in polynomial time.
In particular, the pre-processing - step (a) requires 𝑂 (𝑛 + |Σ|)
time, with 𝑛 tuples analyzed to extract the ones containing at

least one missing value, and |Σ| rfdcs evaluated to determine
and remove all key rfdcs. The rfdc selection - step (b) requires
𝑂 (𝑛 ·𝑚 · |Σ|) time, since in the worst case 𝑛 ·𝑚 missing values are
considered (with 𝑛 number of tuples and𝑚 number of attributes),
and for each of them, all rfdcs should be analyzed (with |Σ|
number of rfdcs) in order to consider the ones useful to extract
possible candidate values. Finally, the most complex step is the
one for imputing missing values - step (c), which requires to
extract candidate tuples by pairing tuples containing a missing
value with all the remaining ones (i.e., 𝑂 (𝑛2 ·𝑚)). Moreover, for
each value, it is necessary to analyze all rfdcs collected in the
previous step by computing the distance value (i.e., |Σ| ·𝑚 for
each missing value, in the worst case), yielding a𝑂 (𝑛2 ·𝑚2 · |Σ|))
time complexity for finding candidate tuples. Furthermore, by
considering a set of candidate tuples for each missing value and
each rfdc in Σ (i.e., 𝑂 (𝑛2 ·𝑚¤|Σ|)), having size 𝑘 << 𝑛, entails
sorting them in 𝑂 (𝑘log 𝑘) according to the computed distance
value, using the first one that does not produce a violation for
any rfdc (𝑘 candidate tuples in the worst case, each of them
requiring the computation of distance values for each rfdc, i.e,
|Σ| ·𝑚 in the worst-case). Thus, the whole complexity of step (c) is
𝑂 (𝑛2 ·𝑚 · |Σ| · (𝑘 ·𝑚 · |Σ| +𝑘log 𝑘)), where 𝑛 represents the number
of tuples, and𝑚 represents the number of attributes. With this
in mind, in what follows, we present the experimental results
obtained for evaluating the imputation efficiency and accuracy
of RENUVER. We also compared RENUVER with other approaches
exploiting different imputation strategies.

6.1 Evaluation settings
Implementation details and hardware. Webenchmarked RENUVER

against a kNN-based approach [14], a holistic-machine learning-
based approach [20], and a differential dependencies guided ap-
proach [23], respectively. All evaluations were performed under
the same conditions. The sessions have been executed separately
on an iMac Pro with an Intel Xeon W 8-core @3.2 GHz, 32GB
RAM.

Datasets. The compared algorithms have been evaluated on
four real-world datasets whose statistics are reported in Table 3.
In order to perform an accurate comparison between the imputed
values and the expected ones, missing values have been artificially
injected. This process is achieved by randomly selecting a certain
percentage of values in the dataset to be turned into missing
values. In particular, we performed the evaluation sessions by
varying the percentage of missing values in the range [1%, 5%] on
each considered dataset. Furthermore, to avoid an arrangement
of missing values in favor of one algorithm over another, for
each missing rate we produced five injected datasets, yielding
a total of twenty-five variants of the same dataset. The metrics
adopted for the comparison are then averaged over each missing
rate. Finally, in order to evaluate time and memory limits, we also
considered the Physician dataset1, since it contains a suitable mix
of textual and numerical attributes, and has a sufficiently high
number of attributes to stress the performances of the considered
imputation approaches.

Relaxed functional dependencies. For evaluating how much
the imputation process varies accordingly to the selected rfdcs,
both the rfdc based imputation algorithms RENUVER and Derand
were executed on different sets of rfdcs, extracted by setting
the threshold limits for attribute comparison to set of values

1https://data.medicare.gov/data/physician-compare
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Table 3: Details of the considered real-world datasets.

Dataset Attributes Tuples #rfdcs # missing values
[#] [#] thr=3 thr=6 thr=9 thr=12 thr=15 [1%] [2%] [3%] [4%] [5%]

Restaurant 6 864 25 124 445 1262 1961 52 104 155 206 259
Cars 9 406 802 3696 10454 23902 38522 37 73 110 146 183
Glass 11 214 1511 5763 11648 18748 27445 24 47 71 94 118
Bridges 13 108 1830 5381 8961 14711 18844 14 28 42 56 70

{3, 6, 9, 12, 15}, respectively. Notice that, a greater threshold value
admits a less restrictive similarity correlation among the attribute
values. The sets of rfdcs for the considered datasets have been
obtained by executing the discovery algorithm presented in [6].

Evaluation process. In order to provide an accurate assessment
of the capabilities offered by the various imputation algorithms,
the achieved results were validated not only on the basis of strict
equality with the original value, but also of their semantic sim-
ilarity (e.g., despite not being equal, values “213/848-6677” and
“213-848-6677”, do represent the same semantic value). Carrying
out this type of analysis on the imputation results would entail
a considerable manual effort, making it extremely difficult to
perform on large datasets. For this reason, we designed a rule-
based framework for the automatic verification of the imputation
results, which has been applied with the same configurations to
evaluate results of all compared approaches. The methodology
exploits a rule file that specifies the admissible values for each
attribute in the dataset. Plausible values can be specified in three
different ways:

• Value set: it is possible to specify what are the values that
have the same meaning, e.g., “new york”, “new york city”,
and “ny” all express the same concept, so they are all
placed in the same set. If both the imputed value and the
expected value belong to the same set, then the imputation
will be considered correct.
• Custom designed regex: it is possible to specify which struc-
tural variations are admissible in order to consider the
imputation still valid. It is the case of the aforementioned
attribute Phone, for which it is possible to specify that,
although the numerical part must be the same, it is admis-
sible to employ different separators. Thus, the imputed
value only needs to preserve the same characters (or dig-
its) as the expected value, according to what is expressed
in the regex.
• Delta variation: it is possible to specify for a numerical
attribute the delta from the expected value, e.g., attribute
Horsepower on the cars dataset admits a delta of 25 horse-
power both in positive and in negative. If the imputed
value falls within the admissible delta variation from the
expected value, then the imputation will be considered
correct.

The rule files for each dataset have been manually defined
after a painstaking evaluation of each attribute value distribution.
This methodology guarantees a completely automatic evaluation
process, allowing for the verification of a missing value impu-
tation also in terms of syntactical variations. Furthermore, this
methodology helps to save time in the analysis of results derived
from different executions and configurations. To the best of our
knowledge, this is the first time that this type of approach for
validation has been applied in the data imputation context.

Evaluation metrics. The effectiveness of the data imputation
approaches have been evaluated by considering three different
metrics: precision, recall, F1-measure.

In this context, precision defines how many missing values
are correctly imputed with respect to the number of imputed
missing values. This parameter resembles a reliability score, in-
deed it keeps track of how the algorithm performs when it has
to decide whether to impute with an uncertain value or leave
the missing value. In details, let true be the correctly imputed
missing values and imputed be all the imputed missing values,
then: precision = |true

⋂
imputed |

|imputed |
The recall represents the fraction correctly imputed missing

values. In detail, let missing be the missing values in the dataset
and true the correctly imputed missing values at the end of the
imputation process, then: recall = |true

⋂
missing |

|missing |
The F1-measure is computed by combining the precision and

recall according to the following formula:
F1-measure = 2 × precision×recall

precision+recall

6.2 Qualitative evaluation
We first evaluated how many missing values were correctly im-
puted by RENUVER considering different sets of rfdcs. In particu-
lar, we carried out different tests by varying the maximum RHS
distance threshold that the rfdcs set should provide. Considering
five threshold limits, we wanted to verify whether by varying
the thresholds also the scores based on the adopted metrics un-
derwent the stated previously expected change. In fact, as said
before, by adopting higher thresholds, an increase in the number
of imputed missing values is expected, to the detriment of a de-
crease in accuracy, due to a less restrictive constraint provided
by the rfdcs.

Figure 2 shows the results achieved for Glass, Bridges, Cars,
and Restaurant datasets, respectively. For the Glass dataset, the
variation of rfdc threshold limits does not produce a serious
impact on all metrics as the missing rate increases. This is due to
the fact that the values of the dataset are closed decimal numbers,
and in some cases, the rfdc threshold values do not capture the
correlation among data. Thus, as the missing rate increases, the
amount of imputed and erroneously imputed values increases.
Instead, the Bridges dataset highlights the aforesaid theoretical
assumptions. In fact, despite providing high precision scores, a
low RHS threshold limit severely afflicts the recall score, and con-
sequently, the F1-measure. On the contrary, a higher threshold
limit improves the recall score, since more missing values can be
imputed. However, the precision scores are lower, since with a
higher threshold a broader set of candidate tuples are admissi-
ble, which does not always correspond to a correct imputation.
For this dataset, the F1-measure score provides a good overview
of the threshold limits trade-off. These metrics highlights that
a high RHS threshold limit still provides better overall results
than a lower limit. However, despite the application of threshold
limits, on the Bridges dataset, a higher missing rate yields lower
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Figure 2: Performances of RENUVER by varying the max RHS distance thresholds and with different missing rates.

scores. Concerning the Cars dataset, results are comparable in
terms of precision scores with the Bridges dataset. In fact, also
in this case, lower RHS distance threshold limits provide higher
precision scores. However, unlike the Bridges dataset, the appli-
cation of rfdcs with a lower maximum RHS threshold does not
cause an excessive drop in recall scores. Thus, this test proved
that running RENUVER on the Cars dataset, by exploiting rfdcs
with lower RHS threshold limits, yields better results in terms
of the trade-off between the number of the imputed missing
values and the correctly imputed ones. Finally, results for the
Restaurant dataset follow the same trends of the ones collected

for the Bridges dataset. In fact, Figures 2j-2l strongly highlight
the increase of the Recall as the RHS threshold increases, but
yielding to a decrease of the Precision. Nevertheless, since Pre-
cision scores are high enough, higher RHS thresholds appear
to be the best performing ones, in terms of F1-measure, for the
Restaurant dataset.

In general, for all considered qualitative metrics it is not un-
usual to record a non-monotonic trend. In fact, a slight variability
in missing rates does not impact on the amount of available can-
didate tuples. Thus, the overall achievable score strictly depends
on the attributes exhibiting the missing values.
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Figure 3: Comparison among RENUVER, Derand, Holoclean and kNN on real-world datasets by varying the missing rates.

6.3 Comparative evaluation
We performed a comparative evaluation of RENUVER respecting
to three other solutions, whose methodologies cover most of the
classes of approaches for data imputation discussed in Section
2. In particular, RENUVER has been compared to the Derand al-
gorithm presented in [23], which also exploits rfdcs during the
imputation process. Furthermore, we also compared RENUVER
to Holoclean, a Holistic machine-learning solution that has set
the state-of-the-art in the data imputation context [10]. Finally,
we also compared RENUVER to the kNN-based imputation ap-
proach presented in [14]. Both RENUVER and Derand have been
implemented in Java, while kNN and Holoclean2 have been im-
plemented in Python.

Concerning themetadata, for the comparison between RENUVER
and Derand, we used the same set of rfdcs (i.e., by using the fol-
lowing threshold limits: 15 for the Restaurant and Glass datasets,
and 3 for the Physician dataset). As for Holoclean, its execution
requires a set of Denial Constraints, which were also retrieved
through an automatic discovery process [2, 9].

RENUVER, Derand, and Holoclean were tested on the Restau-
rant, Glass, and Physician datasets. Instead, the comparison with
kNN has been performed on the Glass dataset, since it contains
only numerical values. In fact, kNN solutions are specifically
designed to perform imputation on this type of dataset. All ex-
perimental sessions were performed on the same sets of missing
values.

Figure 3a shows the obtained results in terms of recall, by vary-
ing the missing rate over the 𝑥 scale. Notice that RENUVER pro-
vides almost a monotonous trend, with the recall score improving
as the missing rate increases, but for the 5% missing rate, where
RENUVER has recorded a slight decrease of recall score. On the
contrary, both Derand and Holoclean follow a non-monotonous

2Publicly available on https://github.com/HoloClean/holoclean

trend. Derand, initially obtained a higher recall score, but consid-
erably dropping as the missing rate increases. Instead, Holoclean
obtained recall scores that are always lower than both RENUVER
and Derand, following an unpredictable trend.

Figure 3b shows the precision scores obtained by RENUVER, De-
rand, and Holoclean. The results highlight the ability of RENUVER
to accurately identify a suitable imputation, outperforming the
compared solutions with a precision score always above the 0.8
value. On the contrary, Derand and Holoclean achieved worse
precision scores, with maximum precision values of 0.55 and
0.47, respectively. Figure 3c summarizes the results in terms of
F1-measure. Results further emphasize the overall better abil-
ity of RENUVER to perform a more coherent imputation process,
achieving better scores on all missing rates.

Figures 3d, 3e, and 3f provide the results of the comparison
between RENUVER and all considered approaches (including kNN)
on the Glass dataset. As opposed to the previous comparison, here
the improvements are remarkably higher in this evaluation since
RENUVER outperforms the compared approaches on all considered
metrics. The worst results are obtained by Derand, since it was
not able to fill any missing value for this dataset. Finally, also
for this evaluation, the precision scores proved the superiority of
RENUVER in accurately identifying whether to impute or restore
the missing value, achieving an overall score always above 0.8.

Time and memory requirements. As a final evaluation, we
performed stress tests on RENUVER and all compared imputa-
tion approaches, aiming to determine their time and memory
requirements. To this end, we stopped the execution of algo-
rithms exceeding 48 hours of execution time and/or 30GB of
memory consumption, respectively. To do this, we performed
two additional evaluation sessions. The first one is focused on
the Restaurant dataset, but by considering greater missing rates,
i.e., [5%, 10%, 20%, 30%, 40%], whose results are shown in Table 4.
We can notice that the fastest approach is Holoclean, whereas
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Table 4: Performance limits on the Restaurant dataset by
varying the missing rates, i.e. [5%, 10%, 20%, 30%, 40%].

Dataset #Tuples #Attributes #Missing val. #rfdcs #DCs

Restaurant 864 6

259 (5%)

1961 9
518 (10%)
1037 (20%)
1555 (30%)
2074 (40%)

Dataset Approach Recall Precision F1-Meas. Time Mem.

Re
st
au
ra
nt

(v
ar
yi
ng

th
e
m
is
si
ng

ra
te
) RENUVER

0.329 0.864 0.476 14m 29s 1.38 GB
0.296 0.832 0.437 23m 21s 1.31 GB
0.294 0.845 0.436 33m 20s 1.36 GB
0.258 0.828 0.394 36m 37s 1.37 GB
0.232 0.726 0.349 30m 23s 1.38 GB

Derand

0.295 0.419 0.345 47h 13m 7.21 GB
- - - TL -
- - - TL -
- - - TL -
- - - TL -

Holoclean

0.275 0.544 0.362 14s 0.99 GB
0.099 0.218 0.131 15s 0.99 GB
0.071 0.153 0.095 14s 0.99 GB
0.064 0.192 0.095 11s 0.78 GB
0.165 0.419 0.237 10s 0.79 GB

TL: time limit of 48 hours exceeded − ML: memory limit of 30 GB exceeded

Derand registered severely higher execution times, exceeding the
48h time limit starting from the 10% of missing rate. The faster ex-
ecution times of Holoclean can be justified by the conspicuously
lower number of metadata to be processed during the imputation
process, i.e., 9 Denial of Constraints, compared to 1961 rfdcs.
Nevertheless, RENUVER still registered the best performances on
all the considered qualitative metrics.

The second evaluation session is focused on the Physician
dataset, by fixing the missing rate and by varying the number
of tuples to be considered. This dataset is particularly complex
to analyze, since it also contains a high number of attributes
(i.e., 18 attributes). In fact, this dataset allowed us to catch a time
and/or memory limit for all considered approaches (i.e., RENUVER,
Derand, and Holoclean), as shown in Table 5. In particular, we can
notice that, on average, both RENUVER and Holoclean registered
faster execution times than Derand. In fact, the latter exceeds
the time limit of 48h on the datasets having 2072 and 10359
tuples, respectively. On the other hand, Holoclean manages to
achieve reasonable executions times, but the huge amount of
consumed memory makes it exceed the 30GB memory limit on
the dataset having 10359 tuples. Finally, RENUVER also exceeds
the time limit on the largest dataset, despite a more reasonable
memory consumption. This evaluation session also proved the
capability of RENUVER to outperform the compared approaches
on the considered qualitative metrics.

7 CONCLUSION
In this paper, we proposed RENUVER, a data imputation algorithm
that exploits attribute correlations expressed in terms of relaxed
functional dependencies. The latter enables RENUVER to select
and evaluate tuple candidates to be used during the imputation
process. The whole imputation process preserves the semantic
consistency of the data, by guaranteeing that no imputation can
violate any rfdc. Evaluation results demonstrate the effectiveness
of RENUVER on both filling rate and qualitative metrics, i.e. Recall,
Precision, and F1-Measure. In particular, the results highlighted
that RENUVER works particularly well on the precision measure.
Finally, a comparative evaluation demonstrated that RENUVER out-
performs recent approaches using different imputation strategies,

Table 5: Performance limits on the Physician dataset by
varying the percentage of tuples, i.e. [1%, 2%, 3%, 4%, 5%].

Dataset #Tuples #Attributes #Missing val. #rfdcs #DCs

Physician

104 (1%)

18

13 (1%) 1430

74
208 (2%) 27 (1%) 2553
1036 (3%) 135 (1%) 3895
2072 (4%) 269 (1%) 5708
10359 (5%) 1319 (1%) 6137

Dataset Approach Recall Precision F1-Meas. Time Mem.

Ph
ys
ic
ia
n

(v
ar
yi
ng

th
e
nu

m
be

r
of

tu
pl
es
)

RENUVER

0.338 1 0.505 470ms 1.48 GB
0.328 0.547 0.410 3s 1.79 GB
0.326 0.607 0.424 1m 19s 0.71 GB
0.254 0.483 0.333 15m 1s 1.30 GB

- - - TL -

Derand

0.121 0.210 0.151 1h 10s 1.25 GB
0.125 0.190 0.150 9h 49m 3.32 GB
0.110 0.121 0.115 25h 40m 8.21 GB

- - - TL -
- - - TL -

Holoclean

0.230 0.300 0.599 7s 3.95 GB
0.115 0.120 0.117 12s 5.15 GB
0.097 0.114 0.104 1m 8s 6.16 GB
0.156 0.167 0.161 8m 21s 26.89 GB

- - - - ML
TL: time limit of 48 hours exceeded − ML: memory limit of 30 GB exceeded

classification models (kNN), machine learning-based (Holoclean),
and dependency-based (Derand).

In the future, we would like to evaluate RENUVER with rfdcs
whose thresholds have associated an upper bound dependent
from attribute domains and value distributions. Moreover, to
increase the number of imputed values, we would like to extend
RENUVER with the possibility of selecting plausible candidate
tuples among multiple datasets. Finally, we would like to study
the applicability of RENUVER over incremental scenarios, like
for example those related to the imputation of time series [16],
which would require the usage of incremental rfdc discovery
algorithms [4, 5].
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