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before sharing with untrusted parties. However, they do not pro-
vide quantifiable privacy guarantees and are prone to inference
attacks. In this demo, we present DP-Shield, an interactive frame-
work for face image obfuscation under the rigorous notion of
differential privacy. DP-Shield showcases our recently proposed
obfuscation methods, namely DP-Pix and DP-SVD, and also in-
cludes two alternative methods for comparison. The audience
will be able to learn about existing DP methods by interacting
with them using real-world face image datasets. Furthermore,
DP-Shield integrates widely used image quality measures and
practical privacy risk measures (i.e., face recognition) to illustrate
the efficacy of our methods.

1 INTRODUCTION

An immense amount of image data is generated from a variety of
sources, such as social medial platforms and surveillance cameras.
The wide release of such data would greatly benefit society, e.g.,
advancing computer vision research and applications. However,
as image data may contain sensitive information, the privacy of
individuals captured in the data may be put at risk. For instance,
images from social media platforms and surveillance cameras
may expose human faces, which adversaries may use to track
or profile an individual [7, 10]. To preserve privacy, image data
must be obfuscated before sharing with untrusted parties.

Widely used face obfuscation techniques include pixeliza-
tion [11] and blurring [14]. However, deep convolutional neural
networks (CNNs) are successful at re-identifying faces obfuscated
with those techniques [11]. Furthermore, standard obfuscation
approaches do not allow privacy to be effectively bounded. In
other words, they do not quantify the sensitive information that
may be leaked in the obfuscated image. In light of those limita-
tions, recent approaches [5, 6] adopted the notion of differential
privacy [4] (DP) for image obfuscation. DP-Pix [5] is the first
approach to extend DP to individual-level image publication,
which defines neighboring images for content protection and
reduces sensitivity via pixelization. DP-SVD [6] adopts metric
privacy [3] and provides indistinguishability based on perceptual
image features. Furthermore, DP-SVD designs a novel sampling
approach in high-dimensional spaces to achieve privacy.

In this study, we present DP-Shield, an interactive framework
demonstrating DP-Pix and DP-SVD for face image obfuscation.
For comparison, we include two alternative methods, namely
DP-Samp [15] and Snow [8]. As shown in Figure 1, DP-Shield
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applies differentially private image obfuscation to an input image
and evaluates the obfuscated image for quality and practical
privacy risk. Image quality is measured using Mean Squared Error
(MSE) and Structural Similarity (SSIM). Practical privacy risk is
measured via state-of-the-art face recognition techniques [13]
that are trained on publicly available datasets. DP-Shield shows
great promise for enhancing the privacy of image data that is
shared with a wide audience.

Compared with our recent work [12], DP-Shield presents the
following contributions: (1) Users can interact with DP image
obfuscation methods by varying privacy and algorithm-specific
parameters. They can observe intermediate results as well as final
outputs of the DP methods, which help them understand the key
steps through the quantitative evaluation results. (2) DP-Shield
focuses on face images, which are considered to be highly sen-
sitive. To that end, this study adopts two large scale real-world
face image datasets, namely VGGFace2 and CASIA-WebFace, to
illustrate the feasibility of DP image obfuscation methods in real
world applications. (3) We assess the privacy risk of sharing
face images by applying state-of-the-art face recognition tech-
niques [13] before and after applying privacy and evaluating
the difference. Our approach simulates practical privacy attacks,
where an adversary attempts to re-identify the obfuscated face
image using public face recognition models.

The rest of the paper is organized as follows: Section 2 intro-
duces DP-Shield and DP image obfuscation methods; Section 3
discusses the empirical evaluation conducted using real-world
face datasets; Section 4 describes how the audience can inter-
act with our demonstration; Section 5 concludes the paper and
discusses directions for future work.

2 DP-SHIELD OVERVIEW

As shown in Figure 1, the core of DP-Shield is the set of differen-
tially private image obfuscation methods. After an input image is
obfuscated, DP-Shield also evaluates the image quality based on
widely adopted metrics as well as practical privacy risks using
state-of-the-art techniques for face recognition.

2.1 Differential Privacy Preliminaries

Differential privacy [4] is the state-of-the-art notion for quantify-
ing privacy leakage in statistical databases. Differential privacy
allows the publication of aggregate statistics about the input
database via a randomized algorithm M, so that the output of
M remains roughly the same even if any record in the input is
arbitrarily modified. Given the output of M, an adversary will
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not be able to infer much about any individual record in the input,
hence protecting privacy. More formally, given any neighboring
databases 9 and D’ that differ by at most one record, a random-
ized mechanism M satisfies (e, §)-differential privacy if for any
Z C range(M), Pr[M(D) € Z] < € -Pr[M(D’) € Z] + 6. The
parameters € > 0 and § € [0, 1] specify the degree of privacy pro-
vided by the mechanism. Smaller € and § values indicate stronger
privacy protection, and vice versa.

Metric-based privacy [3] extends differential privacy to a set of
secrets X equipped with a distance metric, i.e., d x, and guarantees
a level of indistinguishably that is proportional to the distance
between secrets. Adopted by DP-SVD [6], metric privacy allows
the publication of individual-level data while providing prov-
able privacy guarantees. When dx is the Hamming distance for
databases, metric privacy is equivalent to differential privacy [3].

2.2 Image Obfuscation Methods

DP-Shield presents two innovative methods which apply the
principle of differential privacy to image obfuscation.

DP-Pix. Differentially private pixelization (DP-Pix) [5] was the
first approach to provide differential privacy guarantees in the
publication of individual-level image data. The novelty of DP-Pix
is in adapting the notion of neighboring databases to the image
domain through the definition of m-neighborhood.

Definition 2.1. (m-neighborhood [5]) Two images are consid-
ered neighboring if they have the same dimension and differ at
most by m pixels.

Under this definition, the presence of any content represented
by up to m pixels, e.g., persons or objects, is protected by differ-
ential privacy. The data owner can specify the value of m, where
larger values indicate stronger privacy.

Another key idea of DP-Pix is to adopt pixelization in order
to address the high sensitivity in image publication. A grid is
superimposed onto the input image where each grid cell is of size
b x b pixels. The average pixel value in each grid cell is reported
in a differentially private manner via the classic Laplace mech-
anism [4]. Specifically, let I denote the input image and Py (I)
denote the pixelization with parameter b. DP-Pix generates the

differentially private pixelization P, (I) = P, (I) + Laplace( 25;52“ ),
where Laplace( 252521) represents i.i.d. random noise drawn from

a Laplace distribution with 0 mean and 222™ scale. It can be

shown that DP-Pix satisfies e-DP [5].

DP-SVD. DP-SVD [6] adopts the metric privacy paradigm [3]
with the goal of providing indistinguishability based on percep-
tual image features. Unlike DP-Pix, which achieves differential
privacy by directly perturbing super-pixels, the DP-SVD mecha-
nism perturbs perceptual features derived from the input image.
DP-SVD first applies singular value decomposition (SVD) to an
input image and achieves metric privacy by perturbing i highest
singular values. The perturbation noise is drawn using a novel
sampling method, which is applicable in high-dimensional spaces.
Specifically, in i-dimensional space, let xo denote the input vec-
tor, i.e., containing the real singular values. A mechanism that
samples the output vector x according to following probability
distributions satisfies € - d;-privacy [6]:

1 e\ (z-1)!
2\yr) (i-1)
where d; represents i-dimensional Euclidean distance and i is
assumed even without loss of generality. The parameter i is a

Dei(x0)(x) = Ceje € %t0X) ;= 1)
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chosen by the user. Increasing i may result in a higher utility and
better approximation of the input image but may require a large
amount of noise to achieve privacy.

Other Methods. We also consider two alternative methods
which provide weaker privacy guarantees. The Snow [8] method
employs pixel-level noise by arbitrarily re-assigning pixel intensi-
ties to a constant value, i.e., 127 for grayscale images. The method
adopts a parameter p which denotes the percentage of altered
pixels. Snow achieves (0, §)-DP with § = 1 — p and protects indi-
vidual pixels in the input image, i.e., a special case with m = 1
in Def. 2.1. DP-Samp is our adaptation of the video sanitization
method from [15] to individual images. It subsamples pixels with
the most useful values for reconstructing the input image, i.e., top
k pixel values. Our adaptation modifies the sampling constraints
to protect up to m pixels in the input, similar to DP-Pix. More
technical details about DP-Samp can be found in [12]. Although
the authors of [15] provided an analysis of the e-DP guarantee,
a pixel candidate generation step was performed in the public
setting, hence providing weakened privacy protection.

3 EXPERIMENTS
3.1 Methodology

We conduct empirical analysis on the image obfuscation methods
to present the audience with a comparative evaluation. Two
widely used face datasets are adopted: VGGFace2 [2] and CASIA-
WebFace [16]. VGGFace2 contains 3.31 million images of 9131
subjects. CASIA-WebFace contains 494,414 face images of 10,575
subjects. We detect the facial region in each input image using
MTCNN and convert it to grayscale with a standard resolution
of 160 X 160 pixels. The default parameter values used are: b = 4
for DP-Pix, i = 6 for DP-SVD, k = 48 for DP-Samp, and m = 1 for
both DP-Pix and DP-Samp.

To measure image quality, we adopt Mean Squared Error (MSE)
and Structural Similarity (SSIM) as in previous works [5, 6]. Both
measures are computed between the clean and obfuscated im-
ages, and the average among each dataset is reported. Lower MSE
indicates higher quality; higher SSIM indicates higher quality. To
measure practical privacy risks, we measure the accuracy of re-
identification using state-of-the-art face recognition techniques,
e.g., FaceNet with the Inception ResNet (V1) network [13]. Our
rationale is that an adversary may have access to publicly avail-
able images of individuals and thus can deduce the identity of an
obfuscated facial image using well-known models. Specifically,
for both datasets, we randomly sample 1000 individuals for the
study and 20 images per individual, partitioned between training
and testing (15 : 5). An SVC classifier is trained on the FaceNet
embeddings of the training partition, and we report its accuracy
on the testing partition. For non-private grayscale images, the
re-identification accuracy is 94.18% for VGGFace2 and 82.72% for
CASIA-WebFace.

3.2 Quality vs. Privacy Results

We report MSE, SSIM, and face re-identification accuracy for
VGGFace2 and CASIA-WebFace in Figure 2 and Figure 3, re-
spectively. The privacy parameters € and § indicate the level of
privacy protection, and lower values indicate stronger privacy
protection. While larger e values have been used, e.g., in [1], our
study focuses on € < 5.1In classic DP [4], it is recommended to set
d= ﬁ to protect each record in input. However, the evaluation
of Snow focuses on § > 0.1, as lesser values of § give little to no
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Figure 2: Mean Squared Error (MSE), Structural Similarity (SSIM)
and Re-Identification Rate results on VGGFace2 dataset.
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Figure 3: Mean Squared Error (MSE), Structural Similarity (SSIM)

and Re-Identification Rate results on CASIA-WebFace dataset.

utility. As we increase € or §, we observe that MSE decreases and
SSIM increases for all DP methods, and the re-identification rate
increases as well. These results confirm that all methods exhibit
a trade-off between utility and privacy.

In comparison to other methods, Snow leads to a higher re-
identification risk (with higher § values in both Figure 2 and
Figure 3), indicating lower empirical privacy protection. DP-SVD
yields high image quality, illustrated by the highest SSIM scores
and lower MSE errors, but also leads to higher re-identification
rates. Both DP-Pix and DP-Samp yield lower image quality and
lower privacy risks in comparison to DP-SVD. Those results may
be used by data owners to fine tune the DP parameters, in order
to achieve acceptable image quality and privacy risk levels.

We observe that DP-Samp leads to the lowest image quality
and re-identification rate in VGGFace2 (Figure 2). Through the
analysis of Sobel gradients [9], we find that images in this dataset
contain more details. As a result, the pixel subsampling approach
incurs higher information loss. We believe that the algorithm-
specific parameters, i.e., b, i, and k, may be tuned for each dataset
to find an optimal trade-off between privacy and utility.

4 DEMONSTRATION PLANS

DP-Shield is available at https://fan-group.github.io/imageprivacy/.
Three interactive use cases on real-world datasets will be demon-
strated: (1) exploration of different DP methods for sanitizing
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images; (2) exploration of the effects of DP methods on image
embeddings; (3) the quantitative and qualitative evaluation of DP
methods.

4.1 Exploring DP Methods

The "Methods" page illustrates how each DP method obfuscates
images with given privacy parameters. As shown in Figure 4, the
audience can select an input image from VGGFace2 or CASIA-
WebFace. The audience can then select a DP method and modify
its parameter(s) to see how the output image, as well as the quality
measures, may vary. To help the audience better understand
the DP methods, we also display the intermediate results of the
methods. For example, in Figure 4 we show the pixelized image
before applying Laplace noise in DP-Pix.

In addition, the audience will learn about the practical privacy
protection offered by DP methods against facial recognition at-
tacks (described in Section 3.) Specifically, as in Figure 5, we show
the top 5 most likely identities predicted by the facial recogni-
tion model using the clean image vs. using the obfuscated image,
along with the confidence of each predicted identity. The audi-
ence will observe that performance of facial recognition yields
higher uncertainty (i.e., lower confidence) on the obfuscated im-
age when compared to the non-private image. This illustrates
that DP image obfuscation methods are effective at deterring
facial recognition based attacks.

4.2 Facial Image Representations

The "Representations” page illustrates how neural representa-
tions of face images (i.e., FaceNet embeddings) vary under differ-
ent DP methods and parameters. Similar to the “Methods” page,
the audience can select a DP method and parameter values to
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Figure 6: Representation for Clean vs. Obfuscated Images with
DP-Pix with € = 1, b = 6 and m = 1 (best viewed in color)

observe their effects on the image representations. To visualize
high-dimensional embeddings in 2D-space in a consistent man-
ner, a Linear Discriminant Analysis (LDA) model is trained on
the training partition of each dataset and applied to the clean
and obfuscated images in the test partition.

Figure 6 shows the projections of the clean and obfuscated
images for 5 individuals in VGGFace2, where the DP-Pix method
was applied to generate the obfuscated images. We observe that
privacy methods may introduce distortions in the neural rep-
resentations of face images. On one hand, images of the same
individual may be further apart after applying privacy methods,
e.g., ID 20 in Figure 6. On the other hand, images of different
individuals may not be separated after applying privacy methods,
e.g., IDs 17 and 26 in Figure 6. The visualization demonstrates
to the audience that DP methods can introduce uncertainty into
popular facial recognition techniques and hence offer protection
against practical privacy attacks.

4.3 Quantitative and Qualitative Evaluation

The audience can navigate to the “Evaluations” page to view
a quantitative evaluation of each evaluated DP method on the
VGGFace2 and CASIA-WebFace datasets. For an interactive and
comparative evaluation, aggregated results for each dataset (us-
ing the same data as in Figure 2 and Figure 3) are shown in
colored column charts.

The audience can also observe sample output images of the
DP methods on various € and § values by navigating to the
“Sample Images" page, as shown in Figure 7. Increasing the privacy
parameter values decreases distortions or disturbances in the
output of all methods, resulting in better image quality. Compared
to other methods, DP-Samp yields lower image quality, even with
higher e values.

5 CONCLUSION

We demonstrated DP-Shield, a face image obfuscation frame-
work that provides differential privacy guarantees. We described
the differentially private image obfuscation methods as well as
the evaluation methodology using large real-world datasets. DP-
Shield conveys the aggregated evaluation results to the audience
for a comparative evaluation among the DP methods. Further-
more, it allows the audience to interact with each method, learn-
ing to interpret the image quality measures and practical privacy
risks. Future work may include open-sourcing the DP image ob-
fuscation methods, releasing the face re-identification attacks as
a standard test set, and improving the usability of DP-Shield for
mobile applications.
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