
MAGE: Discovering Mixture-based Areas of Interest
over Geolocated Entities

Kostas Patroumpas
Athena Research Center

Athens, Greece
kpatro@athenarc.gr

Dimitrios Skoutas
Athena Research Center

Athens, Greece
dskoutas@athenarc.gr

Dimitris Sacharidis
Université Libre de Bruxelles

Brussels, Belgium
dimitris.sacharidis@ulb.be

ABSTRACT

We demonstrateMAGE, an open-source tool for mixture-based
best region search over geolocated entities of different types, like
Points of Interest, geotagged posts or photos. MAGE detects the
top-𝑘 areas of arbitrary shapes exhibiting high or low mixture
patterns. Through a graphical interface, we show how users can
specify their preferences, execute the selected algorithm, and
visually inspect the results on map to unveil interesting patterns.

1 INTRODUCTION

Geolocated entities are associated with a location and can be of
different types. Examples include Points of Interest (POIs), such as
shops, restaurants, museums, or geotagged posts, such as photos
or tweets described by keywords. In the former, the type is the
category. In the latter, we can use a technique such as LDA [2]
to extract a set of topics, and then associate each entity with a
vector indicating a distribution over these topics. Given a collec-
tion of geolocated entities, detecting Areas of Interest (AOIs) can
reveal interesting insights for many applications, including geo-
marketing, logistics, and urban planning. Hence, many methods
to detect AOIs based on various criteria exist (e.g., [3–5]).

In this work, we presentMAGE, an open-source tool for detect-
ing AOIs that exhibit interesting (i.e., high or low) spatial mixture
patterns with respect to the types of entities located in them. In
particular, high-mixture AOIs include a wide variety of amenities
and services, as denoted by the different colors of the POIs shown
in Figure 1a and Figure 1b. For instance, such AOIs may attract
customers seeking to purchase a new residence. In contrast, low-
mixture AOIs (Figures 1c, 1d) are dominated by particular type(s)
and reveal regions that are mostly dedicated to specific functions
like a business district or an industrial zone. Previous works for
detecting such patterns are limited to regions of fixed shape (e.g.,
circle or rectangle) [7]. However, fixed-shape regions may not
accurately reflect the actual AOIs occurring in the real world,
which often have arbitrary shapes due to natural barriers (e.g.,
lakes, rivers) or man-made structures (e.g., pedestrian streets).

To overcome this limitation, MAGE employs our graph-based
approach and anytime algorithms for detecting mixture-based
AOIs of irregular shapes [6]. It extends these algorithms to en-
able discovery of diversified top-𝑘 regions, offering results that
are more suitable for exploration. MAGE includes a graphical
interface to select the input dataset, choose the algorithm to be
used, specify input parameters, perform the computation, and
visualize the results on a map. By choosing different algorithms
or parameters, users may obtain regions with differing character-
istics (i.e., in shape or size), thus being able to unveil and explore
different spatial mixture patterns in the data.
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(a) High – CircularScan. (b) High – AdaptiveHybrid.

(c) Low – CircularScan. (d) Low – ExpandBest.

Figure 1: High- and low-mixture best AOI in Athens de-

tected by different methods on POIs from OpenStreetMap.

2 MIXTURE-BASED AOIS

Assume a collectionD of point entities located in a 2-dimensional
space with each entity 𝑝 ∈ D belonging to one or more classes
𝜏 ∈ T . An area (or region) of interest 𝑅 is a subset of points in D.
We define the interestingess score of 𝑅 as 𝜎 (𝑅) = 𝜙 (𝑅) · ( |𝑅 | /𝑀)𝛾 ,
where 𝜙 (𝑅) measures the diversity of the types of entities in 𝑅,
𝑀 is the maximum allowed region size, and 𝛾 is the weight of
the size factor. Intuitively, we would like to favor larger regions
compared to smaller ones, since mixture patterns involving just a
few entities may occur merely by chance. Like previous work [7],
we define function 𝜙 as Shannon’s entropy.

To discover AOIs of arbitrary shapes, rather than fixed shapes
such as rectangles or circles [7], we have proposed a graph-based
approach along with certain properties to ensure that detected
AOIs are meaningful [6]. Given a user-defined distance threshold
𝜖 , we first construct a spatial connectivity graph 𝐺 = (𝑉 , 𝐸) over
the collection D, where 𝑉 is the set of entities and 𝐸 is the set
of edges such that (𝑢, 𝑣) ∈ 𝐸 if 𝑑 (𝑢, 𝑣) ≤ 𝜖 . Without loss of
generality, we assume 𝑑 to be the Euclidean distance; however,
other functions may be employed, such as road network distance.

A region𝑅 is a subgraph𝐺𝑅 = (𝑉𝑅𝐶 ∪𝑉𝑅𝐵
, 𝐸𝑅) of𝐺 , where𝑉𝑅𝐶

and𝑉𝑅𝐵
are core and border points, respectively, adhering to three

conditions. To ensure cohesiveness of 𝑅: (C1) the core points must
form a connected subgraph; and (C2) each border point must be
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connected to at least one core point. To ensure completeness, (C3)
all neighbors of a core point must be included in region 𝑅. This
prevents trivially ‘hand-picking’ subsets of points to form AOIs
that artificially exhibit a high or low mixture pattern.

Given a spatial connectivity graph𝐺 representing a collection
D of entities belonging to different types T , and a maximum
region size𝑀 , the goal is to find the region 𝑅 with the maximum
score 𝜎 (𝑅). A key observation is that the score of a region does
not exhibit monotonicity with respect to its size, since its entropy
may either increase or decrease after each expansion depending
on how the types of the newly enclosed entities compare to those
of the already contained ones. Thus, algorithms proposed for
the best region search problem [5] or Apriori-like algorithms [1]
cannot be applied. Moreover, exhaustively enumerating all sub-
graphs of𝐺 to identify and evaluate candidate regions is clearly
infeasible for large, real-world datasets. Consequently, to address
this problem, we have designed anytime algorithms, i.e., algo-
rithms that aim at detecting regions of as high score as possible
under any given time budget 𝑇 .

3 SEARCH ALGORITHMS

Next, we outline the basic aspects of the algorithms for detect-
ing mixture-based AOIs; full details and an extensive evaluation
can be found in [6]. In order to run in an anytime manner, all
algorithms employ a priority queue𝑄 where each generated can-
didate AOI is pushed according to its score. Thus, instead of fully
expanding all possible candidate regions around a given point
(node in 𝐺) before moving on to the next one, each algorithm
picks the next candidate AOI to expand in decreasing order of
their current score. Despite the extra overhead of queue main-
tenance, this approach increases the likelihood of detecting top
scoring AOIs as early as possible. For clarity, we first present how
each method discovers the mixture-based best (i.e., top-1) region
Then, we discuss how to tackle searching for the top-𝑘 AOIs.

3.1 Fixed-shape Scan

Our starting point is a baseline algorithm that enumerates candi-
date regions relying on a regular geometric shape. Specifically, we
employ circles for such a fixed-shape scan of the search space, so
we call this method CircularScan. As in [7], candidate regions
are generated by exhaustively enumerating circles of increasing
radius between a point 𝑝 ∈ D picked as their center and another
point 𝑝 ′ ∈ D on their circumference. If the number of points in
D is large, it is possible to use only a subset 𝑆 ⊆ D of them as
centers (seeds), e.g., via uniform sampling.

We further enhance this baseline with two adaptations. First,
as already explained, a priority queue 𝑄 maintains the currently
active candidate AOIs to check until expiration of time budget
𝑇 . Initially, each AOI in 𝑄 contains just its center and its nearest
neighbor point fromD. After the top-scoring candidate region𝑅∗
is probed for expansion with the next neighboring point from D,
it may be pushed back to 𝑄 with an updated score if it currently
contains less than 𝑀 points. The second adaptation concerns
validation of candidate AOIs. To satisfy cohesiveness, when enu-
merating circles around a center 𝑝 , we only consider neighboring
points within distance 𝜖 from at least one of the points in the
current candidate 𝑅 around 𝑝 . If the next neighbor point is farther
than 𝜖 from the last neighbor inserted in 𝑅, this candidate region
𝑅 cannot be further expanded with other points; the accumulated
points constitute the set of core points of 𝑅. To satisfy complete-
ness, any neighbor of a core point that is not already part of 𝑅 is

retrieved; these points form the border of 𝑅. If 𝑅 has higher score
than the best region 𝑅∗ found so far at a previous iteration, then
𝑅 itself becomes the current best region 𝑅∗.

3.2 Graph Expansion Strategies

CircularScan produces AOIs of regular shape (i.e., circle-like
regions). We next discuss two strategies based on subgraph ex-
pansion in the connectivity graph𝐺 to detect the best arbitrarily
shaped region 𝑅∗. This graph expansion approach also relies on
a priority queue 𝑄 to enumerate candidate regions and executes
in two phases, namely initialization and expansion.

The initialization phase first selects a set 𝑆 of seed points.
Using uniform random sampling, we pick 𝜌 · |𝑉𝐺 | nodes of the
spatial connectivity graph 𝐺 , where 𝜌 ∈ (0, 1] is a parameter
of the algorithm. Each seed point is then visited to initialize its
corresponding valid region 𝑅 and assign a score to it. For each
seed node 𝑣 , its AOI 𝑅 comprises 𝑣 as its core point and all the
neighbors of 𝑣 in 𝐺 as its border points. In a post-processing
step, the border of 𝑅 is refined: border points that are actually
core points in 𝑅 are removed from the border set of 𝑅 to avoid
unnecessary computations during the expansion phase. Finally,
if 𝑅 does not exceed the maximum allowed size𝑀 and the region
border is not empty, then 𝑅 is inserted to the queue.

Next, the expansion phase iterates over the candidate regions
in 𝑄 until either there are no remaining entries in 𝑄 or the time
budget 𝑇 is exhausted. Once a region 𝑅 is popped from 𝑄 , one
or more border points in 𝑅 are selected to be expanded, which
respectively generate one or more new candidate regions, whose
nodes are a superset of 𝑅. Depending on how many and which
border points to expand, we employ two alternative strategies:
ExpandAll selects all border points, whereas ExpandBest se-
lects the border point which leads to the highest scoring region
once expanded. In ExpandAll, the entire border is expanded
in each iteration, hence the maximum region size𝑀 is reached
much faster, i.e., the expansion for each given seed will terminate
faster. Instead, in ExpandBest, candidate AOIs grow at a slower
pace, but the algorithm can select to expand only favorable bor-
der points. Both expansion strategies generate exactly one new
candidate region from the existing 𝑅. This new 𝑅 becomes the
best region 𝑅∗ if it contains less than𝑀 points and scores higher
than the currently known 𝑅∗. Also, if the border of 𝑅 is not empty,
𝑅 is pushed to 𝑄 to be further expanded in a future iteration.

3.3 Adaptive Strategies

All previous methods rely on a priori selection of a fixed set 𝑆 of
seed points. Yet, suitably placing those seeds is crucial in order
to return a good solution within a limited time budget𝑇 . Picking
more seeds could alleviate the problem but has the downside of
incurring higher execution cost. Hence, the number of utilized
seeds needs to be small, but their allocation should be more effec-
tive. To achieve this, we select seeds dynamically and adaptively
during evaluation employing seed areas. Instead of picking all
seeds at once from the entire study area, we take a few seeds
as starting points to gain some initial insight about the dataset,
and then dynamically adapt the selection of subsequent seeds
accordingly. In [6], we suggested two adaptive search strategies,
each defining its own kind of seed areas.

Strategy AdaptiveHybrid essentially combines ExpandAll
and ExpandBest in two steps. First, it randomly selects a small
number of starting seed points. For each such seed, its correspond-
ing AOI is iteratively expanded using ExpandAll until either
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the maximum size𝑀 is reached or no other neighbor nodes exist.
For each initial seed, its best region is marked as a seed area and
is pushed to queue 𝑄 . During the second step, seed areas are
popped from 𝑄 according to their score. For each such area, one
of its points is randomly selected as a new seed. Intuitively, seeds
drawn from areas already having a relatively high score are more
likely to yield even more high-scoring regions. The selected seed
is then expanded by applying ExpandBest, but removed from
the set of points in that seed area before pushing it back to𝑄 with
its updated score found during expansion. If the seed selected
from that area has yielded a high-scoring region, additional seeds
will be drawn from the same area to examine it more thoroughly;
otherwise, its score will diminish, and seeds will be drawn from
another, more promising area with a higher score.

In strategy AdaptiveGrid, seed areas are the cells of a uni-
form, coarse-granularity grid applied over the dataset D. The
idea is to locate seeds that are uniformly distributed and thus
avoid oversampling/undersampling a dense/sparse area. In the
first step, it takes a small number of seeds by picking grid cells
uniformly at random, and then also randomly choosing a seed
point within each cell. ExpandAll is invoked for each selected
seed point, and the resulting score is assigned to its correspond-
ing cell. The cells with the 𝑘 highest scores are designated as
seed areas for the second step, where a fine-granularity grid is
constructed within each qualified seed area. A series of seed
probes is performed until expiration of time budget𝑇 . Each such
probe successively selects a seed area, then a cell within its fine-
granularity grid, and finally a point within that cell; all selections
are done uniformly at random. A seed selected in this phase is
expanded more thoroughly using process ExpandBest.

3.4 Extensions

3.4.1 Finding top-𝑘 AOIs. The focus in the previously dis-
cussed algorithms was on detecting the best mixture-based AOI
in the input data. As all algorithms employ a priority queue for
maintaining the candidate regions, this approach can be extended
to return the top-𝑘 AOIs for a user-defined 𝑘 , i.e., the 𝑘 regions
with the highest scores. Still, it may frequently occur that the re-
turned AOIs cover almost the same entities with small deviations
in size and slightly different (yet high) scores due to inclusion
of different border points nearby. To avoid this effect, given that
such top-𝑘 results have small practical significance, we introduce
an extra parameter concerning the maximum allowed overlap
𝑜 ∈ [0, 1] between a pair of AOIs. During processing, if the per-
centage of common entities between a new candidate AOI and
another already in the priority queue exceeds this threshold 𝑜 , we
choose to keep in the queue the candidate with the higher score.
As a result, the returned top-𝑘 AOIs may have common entities
(always less than the specified 𝑜 threshold), but are generally
placed in different areas and are more diversified in shape.

3.4.2 Coarse-grained AOIs. Since all algorithms are anytime
and need to find mixture-based AOIs within a time budget 𝑇 ,
results may be poor in size and score if 𝑇 is small, especially
for larger datasets. Clearly, there is a trade-off between the time
budget and the quality of results. Thus, we offer the option for
coarser AOIs that can be discovered faster. In a preprocessing
stage, entities are aggregated into cells of side 𝜖 with a uniform
grid partitioning applied over the input dataset D. Each grid
cell abstracts the distribution of entity types therein and graph
𝐺 represents those cells instead of the original entities; cells
with common sides or vertices are connected in 𝐺 , which is

then used in subsequent processing. Of course, the returned
AOIs are composed of such adjacent cells and are less detailed
in shape. Nevertheless, this approach can quickly provide hints
for interesting mixture patterns in certain areas; users may then
drill down and run the discovery process on such smaller parts
of the data to get finer results consisting of original entities.

4 USER INTERFACE

MAGE is implemented in Python, and the code is publicly avail-
able1. Through a graphical interface (Figure 2), users can easily
load a dataset of geolocated entities, preprocess it, specify their
preferences regarding the method, its parameters and time bud-
get, execute the process to discover mixture-based AOIs, and
inspect the results on the map. Next, we outline these steps.
Load. The user first specifies the input dataset. We currently
support CSV files but extension to other file formats is straight-
forward. As shown in Figure 2a, the input parameters concern the
path to the file, the column delimiter, the columns corresponding
to the entity identifier, name, coordinates, and keywords, as well
as the separator used in the keywords column. If needed, the user
can apply data transformation between coordinate reference sys-
tems. Users may also optionally apply a spatial filter on the input
entities by specifying a bounding box designating the study area.
Preprocess. The second stage (Figure 2b) involves construction
of the spatial connectivity graph 𝐺 . Pairs of entities within the
specified distance threshold 𝜖 are connected with an edge in this
graph. Optionally, for faster discovery over large datasets, input
entities may be aggregated into cells of width and height 𝜖 , which
is enabled by selecting the “Apply grid partitioning” option. In
that case, nodes in 𝐺 correspond to cells, while edges indicate
adjacent cells. Also, in case the input entities are not originally
classified into categories but each is only tagged with one or
more keywords, it is possible to apply LDA [2] in order to auto-
matically assign a vector of topics per entity; once users check
this latter option, they must also specify the number of topics.
After triggering graph construction, statistics on its properties
are shown once preprocessing is complete.
Discover. Once the graph is constructed, it can be reused under
any user-specified parameter settings for any search algorithm
(Figure 2c). First, the maximum size (i.e., number of points or
cells) of an AOI is set. Moreover, a size weight is specified, de-
noting the relative importance of AOI size versus entropy in
the score calculation. A time budget is indicated, dictating the
maximum allowed execution time for the algorithm. The entropy
mode (high or low) must be chosen, as well as the search algo-
rithm to be applied. Other parameters include the percentage of
the initial entities to be used as initial seeds for the discovery;
the maximum allowed degree of overlap between two regions
expressed as percentage of common entities; and the number 𝑘
of AOIs with the highest scores to return. Once the discovery
process is triggered, the best AOIs are returned and visualized
on map with statistics per region (rank, score, actual size).

5 DEMONSTRATION

We have usedMAGE to discover mixture-based AOIs over several
open and proprietary real-world datasets. We will demonstrate
MAGE on open data, including: (i) POIs extracted from Open-
StreetMap2; from this large collection of 21 million POIs world-
wide belonging to 15 thematic categories (e.g., transport, shop,
1https://github.com/smartdatalake/mbrs
2http://download.slipo.eu/results/osm-to-csv/
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(a) Loading the input dataset.

(b) Preprocessing data.

(c) Discovering top-𝑘 mixture-based AoIs.

Figure 2: User interface.

food, education, etc.), we will focus on metropolitan areas (e.g.,
Athens, London, New York). (ii) Crime data available at monthly
updates from the UK police3; we will use crime incidents in Lon-
don, characterized by 16 different crime types (e.g., anti-social
behavior, burglary, theft, robbery, etc.). (iii) Geotagged photos
extracted from Flickr4 for the greater London area. Entities in

3https://data.police.uk/
4https://code.flickr.net/category/geo/

this dataset are not classified in categories, but are labelled with
a variety of keywords, so LDA will be used to derive the topics.

For each dataset, wewill first show how to construct the spatial
connectivity graph with a user-specified distance threshold 𝜖 .
We will also exemplify how to speed up the discovery process
for larger datasets by first aggregating individual points into
cells of a uniform grid. In that case, the graph is computed over
the underlying grid, resulting in more coarse-grained AOIs that
consist of adjacent cells rather than individual points.

Wewill demonstrate that the resulting AOIsmay differ depend-
ing on the chosen discovery algorithm and its parameterization.
In general, the fixed-shape CircularScan tends to detect more
compact regions, smaller both in size (i.e., number of points)
and spatial extent. For example, Figure 1a shows the best high-
mixture AOI, which consists of various types of POIs from Open-
StreetMap in Athens. Note that this AOI has an almost circular
shape, since it has been expanded with POIs around a randomly
chosen initial seed. The best low-mixture AOI identified by Cir-
cularScan also looks circle-like (Figure 1c); clearly, most of
the POIs in this region belong to a certain category (transport)
with only a few points from other categories. In contrast, the
graph expansion methods typically yield AOIs of higher scores
and more varying shapes. Note that the best high-mixture AOI
found by AdaptiveHybrid (Figure 1b) is also located in the same
neighborhood as the one detected by CircularScan (Figure 1a),
but it is more extended and has an elongated shape with many
POIs across major roads. Figure 1d shows the best low-mixture
AOI identified by ExpandBest. This non-convex region covers
a much larger area compared to the one identified by Circu-
larScan in Figure 1c (both maps are in the same scale). With
graph expansion methods, a region can adapt its shape to better
capture the underlying mixture pattern, thus detecting larger
AOIs of irregular shape while still satisfying the conditions for
cohesiveness and completeness. Moreover, the adaptive methods
can return more enlarged AOIs with shapes that better capture
the underlying high/low mixture pattern, usually non-convex
and sometimes rather elongated shapes (e.g., POIs along a main
road and smaller streets nearby).

Finally, we will show the impact of the various parameters,
such as the maximum region size 𝑀 and the weight 𝛾 of the
region size, to the performance of the algorithms and the quality
of the results. We will also point out how the methods employing
adaptive seed prioritization tend to be more robust with respect
to the inherent randomness in the choice of initial seeds.

ACKNOWLEDGMENTS

This work was supported by the EU H2020 project SmartData-
Lake (825041).

REFERENCES

[1] Rakesh Agrawal and Ramakrishnan Srikant. 1994. Fast Algorithms for Mining
Association Rules in Large Databases. In VLDB. 487–499.

[2] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. 2003. Latent Dirichlet
Allocation. J. Mach. Learn. Res. 3 (2003), 993–1022.

[3] Xin Cao, Gao Cong, Christian S. Jensen, and Man Lung Yiu. 2014. Retrieving
Regions of Interest for User Exploration. Proc. VLDB Endow. 7, 9 (2014), 733–744.

[4] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. 1996. A Density-
Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise.
In SIGKDD. 226–231.

[5] Dimitrios Skoutas, Dimitris Sacharidis, and Kostas Patroumpas. 2018. Efficient
progressive and diversified top-𝑘 best region search. In SIGSPATIAL. 299–308.

[6] Dimitrios Skoutas, Dimitris Sacharidis, and Kostas Patroumpas. 2021. Discover-
ing Mixture-Based Best Regions of Arbitrary Shapes. In SIGSPATIAL. 468–479.

[7] Yiqun Xie, Han Bao, Yan Li, and Shashi Shekhar. 2020. Discovering Spatial
Mixture Patterns of Interest. In SIGSPATIAL. 608–617.

577


