
MM-infer: A Tool for Inference of Multi-Model Schemas∗
Demo Paper

Pavel Koupil
Department of Software

Engineering, Charles University
Prague, Czech Republic

pavel.koupil@matfyz.cuni.cz

Sebastián Hricko
Department of Software

Engineering, Charles University
Prague, Czech Republic

sebastian.hricko@gmail.com

Irena Holubová
Department of Software

Engineering, Charles University
Prague, Czech Republic

irena.holubova@matfyz.cuni.cz

ABSTRACT
The variety feature of Big Data, represented by multi-model data,
has brought a new dimension of complexity to data management.
The need to process a set of distinct but interlinked models is a
challenging task. In our demonstration, we present our prototype
implementation MM-infer that ensures inference of a common
schema of multi-model data. It supports popular data models and
all three types of their mutual combinations, i.e., inter-model ref-
erences, the embedding of models, and cross-model redundancy.
Following the current trends, the implementation can efficiently
process large amounts of data. To the best of our knowledge,
ours is the first tool addressing schema inference in the world of
multi-model databases.

1 INTRODUCTION
The knowledge of a schema, i.e., the structure of the data, is
critical for its efficient processing in all types of database man-
agement systems (DBMSs) no matter if schema-full, schema-less,
or schema-mixed. The problem of inference of a schema from a
given schema-less data has been studied for several years mainly
for XML and JSON. For XML documents the schemas involve
regular expressions which describe the structure of particular
elements. According to the Gold’s theorem [4] regular languages
are not identifiable only from positive examples (i.e., sample
XML documents), so either heuristics [5, 10] or a restriction to
an identifiable subclass of regular languages [2] is applied. New
approaches for JSON focus mainly on schema inference for Big
Data [1, 8]. However, the volume of Big Data is not its only chal-
lenge. The variety feature represented by the multi-model data
adds a new dimension of complexity – the need to process a set
of distinct but interlinked data models.

Example 1.1. Fig. 1 provides an example of a scenario from multi-
model benchmark UniBench1. It represents an e-shop where customers,
members of a social network, order products from various vendors. For
our purposes, it was extended with references and redundancy. The
arrows represent intra-model (black) and inter-model (red) references.
The redundancy can be seen in the case of objects Product and Customer
in the relational and JSON document model. Objects Customer also form
a subset of objects Person in the graph model. □

At the logical level, the transition between two models can be
expressed either via (1) inter-model references or by (2) embedding
one model into another (such as, e.g., columns of type JSONB in
relational tables of PostgreSQL2). Another possible combination

∗Supported by the GAČR project no. 20-22276S.
1http://udbms.cs.helsinki.fi/?projects/ubench
2https://www.postgresql.org/

© 2022 Copyright held by the owner/author(s). Published in Proceedings of the
25th International Conference on Extending Database Technology (EDBT), 29th
March – 1st April, 2022, ISBN 978-3-89318-085-7 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

HasCreated

HasTag

Knows

HasInterest

XML

JSON

Key/Value

Graph Relational

Product

Vendor Customer

Invoice

Person

Tag

Post Product

Order

Feedback

Customer

Figure 1: Extended UniBench multi-model scenario

of models is via (3) cross-model redundancy, i.e., storing the same
data fragment in multiple models.

In the case of multi-model data, the inference of a schema is fur-
ther complicated by contradictory features of the combined mod-
els (such as structured vs semi-structured, aggregate-oriented
vs aggregate-ignorant, order-preserving vs order-ignoring etc.),
cross-model integrity constraints (ICs) involving inter-model
references, cross-model redundancy, or the existence of a (par-
tial) schema in some models. Besides, there are verified single-
model inference approaches that, however, naturally target only
specifics of the particular data model. Furthermore, the ques-
tion is how to represent the resulting multi-model schema. All
these aspects imply the need for a schema inference approach
that (1) can be universally applied to multi-model data and cover
all specifics of the individual models and (2) can process large
amounts of data in distributed multi-model DBMSs efficiently.

To address the key indicated challenges, we extend our pre-
vious research results both in the area of inference of an XML
schema [5, 10] and unifiedmanagement of multi-model data [6, 9].
In this demonstration, we present a tool calledMM-infer3, a mod-
ular and extensible framework that enables one to infer a schema
for given multi-model data. It supports all popular data models
(relational, graph, key/value, column, and document) and all three
types of their combination. If needed, it can process and integrate
to the result also an existing partial schema, both user-defined
or inferred by a single-model approach. Both types of input, i.e.,
data eventually with partial schemas, are transformed to a unify-
ing representation called Record Schema Description (RSD) using
the local schema inferrer. At the same time, a set of compressed
footprints and statistics describing the data is built. A global
schema inferrer then merges the local RSDs into the resulting
global multi-model schema and uses the footprints and statistics
to efficiently detect candidates for local ICs, intra/inter-model
references, and cross-model redundancy to be eventually modi-
fied by the user. Efficient processing of possibly large input data
set is ensured by Apache Spark4 and the idea of footprints that

3https://www.ksi.mff.cuni.cz/~koupil/mm-infer/
4https://spark.apache.org/

Demonstration Paper

Series ISSN: 2367-2005 566 10.48786/edbt.2022.52

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2022.52

enable fast filtering of the information. The resulting multi-model
schema is provided in a selected textual or graphical format.

In the remainder of this paper, we introduce the ideas imple-
mented in MM-infer and outline our demonstration.

2 MULTI-MODEL SCHEMA INFERENCE
The core problem of schema inference in the multi-model world
is how to “grasp” all the input models and their specific features.
A naive approach would choose one of the models to represent
all the data and use a single-model inference strategy. However,
since the models naturally do not have the same features, it
would lead to imprecise and unnatural structures. First, in Tab. 1
we provide an overview of the popular models we support, their
classification, and especially a unification of model-specific terms.

Unifying Aggregate-ignorant Aggregate-oriented
term Relational Graph Key/value Document Column

Kind Table Label / type Bucket Collection Column
family

Record Tuple Node /
edge

(key, value) Document Row

Property Attribute Property – Field Column
Domain Data

type
Data type – Data type Data type

Value Value Value Value Value Value
Identifier Key Identifier Key Identifier Row key
Reference Foreign

key
– – Reference –

Array – Array Array Array Array
Structure – – Set / Zset /

Hash / ...
Nested doc. /
object

Super
column

Table 1: Unification of terms in popular models [6]

The logical basic unit for which we infer a schema is a kind.
To unify its representation, we introduce the notion of a Record
Schema Description (RSD). It enables one to describe a schema of
one kind regardless of its model(s). Naturally, it covers also the
case of a schema for a single record. In the proposed inference
process RSD serves for representation of both types of input
(data or schema), intermediate schemas, as well as the resulting
multi-model schema.

The RSD has a tree structure, and it describes the structure
of a property, a record, or a kind (i.e., a set of records). Its root
corresponds to the root property of the respective data model
(e.g., the root XML element or the anonymous root of a JSON
hierarchy) or an artificial root property encapsulating the proper-
ties (e.g., in the relational or graph model). An RSD is recursively
defined as a tuple 𝑟𝑠𝑑 = (𝑛𝑎𝑚𝑒 , 𝑢𝑛𝑖𝑞𝑢𝑒 , 𝑠ℎ𝑎𝑟𝑒 , 𝑖𝑑 , 𝑡𝑦𝑝𝑒𝑠 ,𝑚𝑜𝑑𝑒𝑙𝑠 ,
𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛, 𝑟𝑒𝑔𝑒𝑥𝑝 , 𝑟𝑒 𝑓), where:

• 𝑛𝑎𝑚𝑒 is the name of the property extracted from the data
(e.g., _id, person), or it can be anonymous (e.g., in case
of items of JSON arrays or an artificial root property).

• 𝑢𝑛𝑖𝑞𝑢𝑒 is the IC specifying uniqueness of values of the
property. Its values can be T (true), F (false), or U (unknown)
for intermediate steps of the inference process.

• 𝑠ℎ𝑎𝑟𝑒 = 𝑜𝑐𝑐/𝑎𝑙𝑙 is the number of records inwhich the prop-
erty occurs (𝑜𝑐𝑐) from all the input records (𝑎𝑙𝑙). Hence it
also bears information about the optionality of a property.

• 𝑖𝑑 is the IC specifying that the property is an identifier. Its
values can also be T, F, or U with the same meaning.5

• 𝑡𝑦𝑝𝑒𝑠 is a set of data types that cover the property. For a
simple property it involves simple data types (i.e., String,
Integer, ...). For a complex property it involves values

5Note that for the sake of simplicity the current version of MM-infer does not
support composite identifiers (or references).

Array (i.e., ordered (un)named (not)unique child proper-
ties – e.g., child XML elements or items of JSON arrays),
Set (i.e., unordered unnamed unique child properties –
e.g., items of Set in Cassandra6), and Map (i.e., unordered
named unique child properties – e.g., attributes of a rela-
tional table). In the final phase of the inference process
the set is reduced to a single resulting datatype.

• 𝑚𝑜𝑑𝑒𝑙𝑠 is a (possibly empty) set of models (D = document,
R = relational, G = graph, C = column, K = key/value) that
involve the property. If the set contains more than one
item, it represents cross-model redundancy. If the value
of𝑚𝑜𝑑𝑒𝑙𝑠 within a child property changes, it corresponds
to embedding one model to another.

• 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 is a (possibly empty) set of recursively defined
child properties.

• (Optional) 𝑟𝑒𝑔𝑒𝑥𝑝 specifies a regular expression over the
set 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 (or its subset – e.g., in case of XML elements
and attributes, forming together child properties). The re-
spective model does not support a more specific restriction
on the order/amount of child properties if not specified.

• (Optional) 𝑟𝑒 𝑓 specifies that the property references an-
other property. Thanks to the unified representation, we
also cover self-references and inter-model references.

Example 2.1. Fig. 2 provides sample RSDs of selected kinds from
Fig. 1 in their textual form – one for the relational model (violet) and two
for the document model (green and white). In the white case (XML) we
can see nonempty 𝑟𝑒𝑔𝑒𝑥𝑝 extracted from a DTD. □

relational table Customer
(_, U, 1/1, U, Map, R, {
 (birthday, F, 1/1, F, Datetime, R, ε, ε, ε),
 (firstName, F, 1/1, F, String, R, ε, ε, ε),
 (id, T, 1/1, T, F, Integer, R, ε, ε, ε),
 (lastName, F, 1/1, F, String, R, ε, ε, ε)
 }, ε, ε)

collection Customer RSD based on a single document Customer

RSD based on a single row of table Customer

(_, U, 1/1, U, Map, D, {
 (_id, T, 1/1, T, Number, D, ε, ε, ε),
 (address, U, 1/1, U, Map, D, {
 (city, U, 1/1, U, String, D, ε, ε, ε),
 (zipCode, U, 1/1, U, Number, D, ε, ε, ε),
 (street, U, 1/1, U, String, D, ε, ε, ε)
 }, ε, ε),
 (birthday, U, 1/1, U, String, D, ε, ε, ε),
 (firstName, U, 1/1, U, String, D, ε, ε, ε),
 (lastName, U, 1/1, U, String, D, ε, ε, ε)
 }, ε, ε)

{
 _id : 4145,
 firstName : "Anne",
 lastName : "Maxwell",
 birthday : "1989-02-23",
 address : {
 street : "Ke Karlovu 3",
 city : "Praha 1",
 zipCode : 11000
 }
}

(_, U, 1/1, U, Map, D+R, {
 (_id, T, 1/2, T, Number, D, ε, ε, ε),
 (address, U, 1/2, U, Map, D, {
 (city, U, 1/1, U, String, D, ε, ε, ε),
 (zipCode, U, 1/1, U, Number, D, ε, ε, ε),
 (street, U, 1/1, U, String, D, ε, ε, ε)
 }, ε, ε),
 (birthday, U, 2/2, U, Datetime+String,
 D+R, ε, ε, ε),
 (firstName, U, 2/2, U, String, D+R, ε, ε, ε),
 (id, T, 1/2, T, Integer, R, ε, ε, ε),
 (lastName, U, 2/2, U, String, D+R, ε, ε, ε)
 }, ε, ε)

RSD based on a set of documents Invoice
(invoice, U, 1/1, U, Map+Array, D, {
 (creationDate, F, 1/1, F, Datetime,
 D, ε, ε, ε),
 (customerId, F, 1/1, F, Integer, D, ε, ε, ε),
 (id, T, 1/1, T, Integer, D, ε, ε, ε),
 (orderId, F, 1/1, F, Integer, D, ε, ε, ε),
 (paid, F, 1/1, F, Boolean, D, ε, ε, ε),
 (totalPrice, F, 1/1, F, Map+Double, D, {
 (currency, F, 1/1, F, String, D, ε, ε, ε)
 }, ε, ε),
 (vendorId, F, 1/1, F, Integer, D, ε, ε, ε),
 }, ((customerId|vendorId)+, orderId,
 creationDate, totalPrice+, paid?), ε)

Merged RSD Customer

id firstName lastName birthday
4145 Anne Maxwell 1989-02-23

Figure 2: An example of RSDs and possible merging

2.1 Inference Process
With the unifying representation of all possible types of input
data, the inference process can treat all of them in the same
way, which simplifies the processing and eases the detection of
various cross-model aspects, such as redundancy. In general, the
approach was designed in order to support:

• various aspects of the combined models and their specifics
known for popular multi-model DBMSs [7] (such as sets /
maps / arrays / tuples, (un)ordered properties, etc.),

• local ICs, redundancy, and intra/inter-model references,
6https://cassandra.apache.org/

567

• possible, but not compulsory user interaction influencing
the result, such as modification of suggested candidates
(for ICs, redundancy etc.) or specification of non-detected
cases, and

• processing of Big Data, i.e., efficient filtering and parallel
processing of input.

The inference process is based on the fact that two RSDs can
be merged to describe a common schema of the respective kinds.
The input of the process is formed of the following:

(1) A non-empty set of single/multi-model DBMSs D1,D2, ...
which together contain a set of kinds 𝜅1, 𝜅2, ..., 𝜅𝑁 . Each
kind is associated with its model(s). For each model sup-
ported in a particular DBMS D𝑖 , we also know whether it
is schema-less/full/mixed and whether the order of sibling
properties of a kind must be preserved.

(2) A (possibly empty) set of predefined schemas 𝜎 ′
1, 𝜎

′
2, ..., 𝜎

′
𝑛

where 𝑛 ≤ 𝑁 , (partially) describing selected kinds.
(3) A (possibly empty) set of user-specified input information

which can be of the following types:
(a) Redundancy set of kinds 𝑅 = {𝜅1, 𝜅2, ..., 𝜅𝑟 }, 𝑟 ≤ 𝑁

which describe the same part of reality, i.e., they will
have a common schema 𝜎 . (Note that there is no restric-
tion on the models the kinds in 𝑅 can have.)

(b) Simple data type assigned to a selected property.
(c) Local IC assigned to a selected property. The possible

constraints involve identifier, unique, or (not) null.
(d) Reference represented by an ordered pair of properties

where the first one is the referencing property and the
second one is the referenced property.

The inference process consists of the following stages:

(1) Local Schema Inferrer : For each kind𝜅 we generate its local
RSD as follows:

(a) If 𝜅 has a predefined schema 𝜎 ′
𝜅 we transform it into

RSD representation.
(b) Otherwise, we generate for𝜅 a basic RSD using a parallel

approach as follows:
(i) We generate a trivial RSD for each record of kind 𝜅.
(ii) We merge (see Sec 2.1.1) trivial RSDs of 𝜅, and even-

tually all kinds in its respective redundancy set 𝑅𝜅 ,
to a basic RSD.

(2) Gathering of Footprints and Statistics: Parallel to the local
schema inference, for each kind 𝜅 we gather its auxiliary
statistics (see Sec. 2.1.2) as follows:

(a) Phase Map: We gather statistics for each value of each
property 𝑝𝜅

𝑖
of 𝜅.

(b) Phase Reduce: We merge all statistics of values of each
property 𝑝𝜅

𝑖
, resulting in aggregated statistics and foot-

print of property 𝑝𝜅
𝑖
.

(c) Candidate Set: We apply a set of heuristic rules on the
merged statistics of each property to produce a set of
candidates for redundancy, local ICs, and references.

(d) The user can confirm/refute the candidates at this stage
or add new ones.

(3) Global Schema Inferrer : Having a unified RSD representa-
tion and confirmed candidates for each input kind 𝜅, we
generate the final global RSD as follows:

(a) We merge (see Sec 2.1.1) all RSDs related to one kind 𝜅 .
(b) (Optionally) we check the validity of the eventual newly

detected candidates. Either the user can refute or con-
firm them, or MM-infer can perform a full check.

(4) We transform the resulting set of RSDs and respective ICs
to the user-required output (e.g., UML, JSON Schema etc.).

2.1.1 Merging of RSDs. Generation of a basic (local) RSD con-
sists of generating an RSD for each record and their merging into
a common schema. When creating the resulting RSD for each
kind, this merging is also used at the global (multi-model) level,
knowing the whole data set. We check whether merging is possi-
ble, merge the information, and modify the regular expression
describing the data.

Having two RSDs 𝑟𝑠𝑑1 = (𝑛𝑎𝑚𝑒1, 𝑢𝑛𝑖𝑞𝑢𝑒1, 𝑠ℎ𝑎𝑟𝑒1 = 𝑜𝑐𝑐1/𝑎𝑙𝑙1,
𝑖𝑑1, 𝑡𝑦𝑝𝑒𝑠1,𝑚𝑜𝑑𝑒𝑙𝑠1, 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛1, 𝑟𝑒𝑔𝑒𝑥𝑝1, 𝑟𝑒 𝑓1) and 𝑟𝑠𝑑2 = (𝑛𝑎𝑚𝑒2,
𝑢𝑛𝑖𝑞𝑢𝑒2, 𝑠ℎ𝑎𝑟𝑒2 = 𝑜𝑐𝑐2/𝑎𝑙𝑙2, 𝑖𝑑2, 𝑡𝑦𝑝𝑒𝑠2,𝑚𝑜𝑑𝑒𝑙𝑠2, 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛2, 𝑟𝑒𝑔𝑒𝑥𝑝2,
𝑟𝑒 𝑓2), the merging process creates the resulting RSD 𝑟𝑠𝑑 = (𝑛𝑎𝑚𝑒 ,
𝑢𝑛𝑖𝑞𝑢𝑒 , 𝑠ℎ𝑎𝑟𝑒 = 𝑜𝑐𝑐/𝑎𝑙𝑙 , 𝑖𝑑 , 𝑡𝑦𝑝𝑒𝑠 ,𝑚𝑜𝑑𝑒𝑙𝑠 , 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛, 𝑟𝑒𝑔𝑒𝑥𝑝 , 𝑟𝑒 𝑓)
as follows:

• If𝑛𝑎𝑚𝑒1 <> 𝑛𝑎𝑚𝑒2, it has to be resolved by the user/default
settings. Otherwise, 𝑛𝑎𝑚𝑒 = 𝑛𝑎𝑚𝑒1.

• 𝑢𝑛𝑖𝑞𝑢𝑒 =𝑚𝑖𝑛(𝑢𝑛𝑖𝑞𝑢𝑒1, 𝑢𝑛𝑖𝑞𝑢𝑒2), where F < U < T
• 𝑜𝑐𝑐 = 𝑜𝑐𝑐1 + 𝑜𝑐𝑐2 and 𝑎𝑙𝑙 = 𝑎𝑙𝑙1 + 𝑎𝑙𝑙2
• 𝑖𝑑 =𝑚𝑖𝑛(𝑖𝑑1, 𝑖𝑑2), where F < U < T
• 𝑡𝑦𝑝𝑒𝑠 = 𝑡𝑦𝑝𝑒𝑠1∪𝑡𝑦𝑝𝑒𝑠2, whereas if there appear two types
𝑡1, 𝑡2 ∈ 𝑡𝑦𝑝𝑒𝑠 , s.t. 𝑡1 ⊂ 𝑡2, then 𝑡1 is removed from 𝑡𝑦𝑝𝑒𝑠 .

• 𝑚𝑜𝑑𝑒𝑙𝑠 =𝑚𝑜𝑑𝑒𝑙𝑠1 ∪𝑚𝑜𝑑𝑒𝑙𝑠2
• 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 = 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛1 ∪ 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛2, whereas the child prop-
erties with the same name are recursively merged too.

• 𝑟𝑒𝑔𝑒𝑥𝑝 is a result ofmerging of regular expressions 𝑟𝑒𝑔𝑒𝑥𝑝1
and 𝑟𝑒𝑔𝑒𝑥𝑝2 using a verified strategy [5].

• If 𝑟𝑒 𝑓1 == 𝑟𝑒 𝑓2, then 𝑟𝑒 𝑓 = 𝑟𝑒 𝑓1. Otherwise, it has to be
resolved by the user/default settings.

Example 2.2. In Fig. 2 bottom right, an example of merging an RSD
of a relational table (violet) and an RSD of a document (green) is provided.
We can see cross-model redundancy of the two models (denoted by D+R
for the root property), properties that are a part of only one of the models
(R for property id or D for properties address and _id), and a union type
(Datetime + String for property birthday). □

2.1.2 Efficient Data Processing. The second challenge we face
is the possible extensive size of data. For this purpose, we exploit
parallel processing for inference of the structure of the data (uti-
lizing the Apache Spark), i.e., extraction and merging of RSDs.
And we apply heuristics that enable us to speed up the detection
process of non-structural information. In particular, to detect lo-
cal ICs (e.g., uniqueness or nullability), references, or redundancy,
we would need to check the active domains of all properties and
their combinations. For optimization of this process, during the
necessary parsing of the input data, we gather (1) basic statistics
(e.g., minimum, maximum, average, etc.) and (2) footprints of
active domains stored using the Bloom filter [3].

The basic statistics enable to quickly filter, e.g., non-overlapping
sets of the value of referencing and referenced properties. After
the filtering using basic statistics, we perform filtering using the
footprints. In general, the Bloom filter enables to bear smaller in-
formation about the active domains of properties to be compared
but at the cost of possible false positives. Using this approach,
we efficiently generate a small set of candidates for redundancy,
references, and local ICs. Then, either the user can confirm or
refute them, or a full scan and checking of all values (but just for
the particular candidates) can be performed.

568

2.2 Architecture and Implementation
The frontend of MM-infer was implemented in Dart using frame-
work Flutter7; the backend was implemented in Java and using
Apache Spark. The architecture of MM-infer, depicted in Fig. 3,
reflects the steps of the above-described inference process.

AbstractSchemaRepresentation RSD XML Schema JSON
Schema

Schema Representation

RSD Merger Redundancy Checker Integrity Constraints
Checker

Stats Transformation:
Stats Reducer

Transformation:
Stats to Candidates

Candidates Resolver

RSDTransformation:
RSD Merger

RSD Reducer

Local Schema Inferrer

Predefined
Schema
Wrapper

Inferred
Schema
Wrapper

Trivial
Schema
Wrapper

Stats
Builder

Wrapper

Transformation: Data to RSD Map: Data to Statistics

Global Schema Inferrer

Multi-Model DBMS / Polystore

 PostgreSQL

Figure 3: Architecture ofMM-infer

At the bottom, we can see data sources (green box) – a multi-
model DBMS or a set of single/multi-model DBMS (i.e., a polystore-
like storage). The local schema inferrer (yellow box) uses three
types of wrappers that transform the input data/schema into
RSD (predefined, inferred, and trivial). It merges them locally
(i.e., within one DBMS) using Apache Spark. In parallel, it gathers
and merges the data statistics and produces the respective candi-
dates to be eventually modified by the user. The global schema
inferrer (red box) merges the RSDs globally (i.e., in the context of
all inputs) and checks candidates for ICs and redundancy. The re-
sulting multi-model schema is provided to the user in the chosen
representation (violet box).

3 DEMONSTRATION OUTLINE
MM-infer currently supports the following models and DBMSs:
PostgreSQL (relational and document, i.e., multi-model), Neo4j8
(graph), andMongoDB9 (document) which represents both schema-
full and schema-less DBMS.

In our demo of MM-infer, we build two use cases around (1) a
structurally rich multi-model scenario from UniBench depicted
in Fig. 1, even extended to demonstrate all interesting cases, and
(2) simpler but real-world data from IMDb10 transformed into
multiple models (i.e., relational, graph, and document). We will
gradually go through the inference process, i.e., (1) choice of

7https://flutter.dev/
8https://neo4j.com/
9https://www.mongodb.com/
10https://www.imdb.com/interfaces/

Figure 4: MM-infer – Modification of Candidates (left =
referencing property, middle = referenced property, right
= list of all candidates for references)

particular DBMSs, models, and kinds, (2) modification of candi-
dates for ICs and redundancy (see Fig. 4), and (3) analysis of the
inferred result. Using the two distinct data sets, we will show:

• the effectiveness of the approach, i.e. inference of a multi-
model schema consisting of three distinct models and in-
volving all three types of cross-model boundaries,

• the advantages of detection of cross-model redundancy,
• the applicability of default candidates and possible user-
specified alternatives and their impact on the result.

Since MM-infer is a prototype implementation representing
the first stage of an ongoing research project, we will also show
where and how it can be further extended thanks to its modular
design. Our planned (near) future extensions involve support for
more complex ICs (e.g., composite identifiers and references or
CHECK constraints), support of more types of DBMSs, and trans-
formation of the output schema to various representations (e.g.,
UML or a categorical representation [9]). An essential extension
will also be the inference of versions of schemas for the purpose
of evolution management.

ACKNOWLEDGEMENTS
This paper was supported by the GAČR grant project no. 20-22276S.

REFERENCES
[1] Mohamed Amine Baazizi, Dario Colazzo, Giorgio Ghelli, and Carlo Sartiani.

2019. Parametric Schema Inference for Massive JSON Datasets. VLDB J. 28, 4
(2019), 497–521.

[2] Geert Jan Bex, Wouter Gelade, Frank Neven, and Stijn Vansummeren. 2010.
Learning Deterministic Regular Expressions for the Inference of Schemas
from XML Data. ACM Trans. Web 4, 4, Article 14 (sep 2010), 32 pages.

[3] BurtonH. Bloom. 1970. Space/Time Trade-Offs in Hash Codingwith Allowable
Errors. Commun. ACM 13, 7 (jul 1970), 422–426.

[4] E. M. Gold. 1967. Language Identification in the Limit. Information and Control
10, 5 (1967), 447–474.

[5] Michal Klempa, Michal Kozak, Mário Mikula, Robert Smetana, Jakub Starka,
Michal Švirec, Matej Vitásek, Martin Nečaský, and Irena Holubova (Mlýnková).
2013. jInfer: A Framework for XML Schema Inference. Comput. J. 58, 1 (12
2013), 134–156.

[6] Pavel Koupil, Martin Svoboda, and Irena Holubová. [n.d.]. MM-cat: A Tool for
Modeling and Transformation of Multi-Model Data using Category Theory.
In MODELS ’21 Companion, pages = 635–639, publisher = IEEE, year = 2021.

[7] Jiaheng Lu and Irena Holubová. 2019. Multi-Model Databases: A New Journey
to Handle the Variety of Data. ACM Comput. Surv. 52, 3, Article 55 (2019).

[8] Diego Sevilla Ruiz, Severino Feliciano Morales, and Jesús García Molina. 2015.
Inferring Versioned Schemas from NoSQL Databases and Its Applications. In
ER 2015 (LNCS), Vol. 9381. Springer, 467–480.

[9] Martin Svoboda, Pavel Contos, and Irena Holubova. 2021. Categorical Model-
ing of Multi-Model Data: One Model to Rule Them All. In MEDI 2021 (LNCS),
Vol. 12732. Springer, 1–8.

[10] Ondrej Vosta, Irena Mlynkova, and Jaroslav Pokorný. 2008. Even an Ant Can
Create an XSD. In DASFAA 2008 (LNCS), Vol. 4947. Springer, 35–50.

569

