
Towards A General SIMD Concurrent Approach to
Accelerating Integer Compression Algorithms

Juliana Hildebrandt
TU Dresden

Dresden, Germany
juliana.hildebrandt@tu-dresden.de

Dirk Habich
TU Dresden

Dresden, Germany
dirk.habich@tu-dresden.de

Wolfgang Lehner
TU Dresden

Dresden, Germany
wolfgang.lehner@tu-dresden.de

ABSTRACT
Integer compression algorithms play an important role in column-
oriented data systems. Previous research has shown that the vec-
torized implementation of these algorithms based on the Single
Instruction Multiple Data (SIMD) parallel paradigm can multiply
the compression as well as decompression speeds. While a scalar
compression algorithm usually compresses a block of 𝑁 consec-
utive integers, the state-of-the-art SIMD implementation scales
the block size to 𝑘 ∗ 𝑁 with 𝑘 as the number of elements which
could be simultaneously processed in a SIMD register. However,
this means that as the SIMD register size increases, the block
of integer values for compression also grows, which can have a
negative effect on the compression ratio. In this paper, we analyze
this effect and present an idea for a novel general approach for
the SIMD implementation of integer compression algorithms to
overcome that effect. Our novel idea is to concurrently compress
𝑘 different blocks of size 𝑁 within SIMD registers. To show the
applicability of our idea, we present initial evaluation results for a
heavily used compression algorithm and show that our approach
can lead to more responsible usage of main memory resources.

1 INTRODUCTION
Column-store database systems are state-of-the-art for analytical
application scenarios [3, 11]. These systems have in common
that all values of every column are encoded as a sequence of
integer values and, thus, query processing is done on these integer
sequences [1, 6]. The necessary memory space for storing these
integer sequences can be reducedwith the help of some additional
lightweight computations for integer compression. Moreover,
compressed integer values offer advantages for data processing
such as increasing the effective bandwidth to reduce the memory
wall or a better utilization of the cache hierarchy. As shown
in [4, 5, 12, 15], there is a large number of lightweight integer
compression schemes available. Nevertheless, compression as
well as decompression leads to additional computational effort,
which is typically kept low by means of vectorization.

Vectorization based on the Single Instruction Multiple Data
(SIMD) parallel paradigm is a state-of-the-art technique, because
all mainstream CPUs offer powerful SIMD extensions nowa-
days [10]. The main objective of SIMD is to increase the single-
thread performance by executing an identical operation on mul-
tiple data elements in a vector or SIMD register simultaneously
(data parallelism) [10]. In recent years, the efficient SIMD-based
implementation of these integer compression algorithms has at-
tracted a lot of attention [4, 5, 15], since it further reduces the
computational effort. As described in [15], the general state-of-
the-art SIMD-based implementation can be described as follows:

© 2022 Copyright held by the owner/author(s). Published in Proceedings of the
25th International Conference on Extending Database Technology (EDBT), 29th
March-1st April, 2022, ISBN 978-3-89318-085-7 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

While a scalar compression algorithm would compress a block of 𝑁
consecutive integers, the state-of-the-art SIMD approach scales this
block size to 𝑘 ∗𝑁 with with 𝑘 as the number of integers which can
be simultaneously processed within a SIMD register.

A current hardware trend is to increase the size of the SIMD
registers. On the one hand, Intel’s latest SIMD extension AVX-512
uses 512-bit SIMD registers, while previous SIMD extensions of
Intel operate on 128-bit (SSE) or 256-bit (AVX2). On the other
hand, the ARM NEON extension (available in ARMv7-A and
ARMv8-A) was limited to a SIMD register size of 128-bit, the
recently announced Scalable Vector Extension (SVE) (available in
ARMv8-A AArch64) aims at supporting much wider SIMD regis-
ters from 128 to 2,048-bits, in 128-bit increments [14]. The wider
the SIMD registers, the more data elements can be stored and
processed simultaneously, which promises significant speedups.
However, this means that as the SIMD register size increases, the
block of integer values for the state-of-the-art SIMD implemen-
tation for compression also grows, which can have a negative
effect on the compression ratio.

Our Contribution and Outline. In this paper, we analyze
this effect and show that the compressed output of a state-of-
the-art SIMD implementation could be many times larger than
the result of a scalar implementation of the same compression
algorithm. Thus, this is not conducive to reducing the memory
footprint. To overcome that, we present an idea for an alterna-
tive generalized approach for the SIMD-based implementation
by concurrently compressing 𝑘 different blocks of size 𝑁 within
SIMD registers. To present our approach, the remainder of the
paper is structured as follows: In Section 2, we briefly summa-
rize the state-of-the-art in the domain of integer compression
algorithms including the SIMD-based implementation. Moreover,
we theoretically analyze the compression ratios of the scalar and
SIMD-based implementations of a heavily used and representa-
tive compression algorithm. Then, we present our alternative
generalized approach for the SIMD-based implementation in Sec-
tion 3. In particular, we will (i) discuss different implementation
choices for our running representative compression algorithm,
(ii) present some initial evaluation results, and (iii) discuss our
ongoing research work. We close the paper with related work in
Section 4 and a short summary in Section 5.

2 STATE-OF-THE-ART
The objective of every lossless, lightweight integer compression
algorithm is to represent a finite sequence of integer values with
as few bits as possible [4, 5, 12, 15]. Over the past few decades,
a large corpus of different scalar algorithms has evolved [4, 5,
12, 15]. The algorithms have in common that the compressed
representation for single or blocks of integer values often consists
of control patterns and data snips [15]. Data snips represent the
compressed integers in binary format, while control patterns
store the auxiliary information to interpret the data snips.

Short Paper

Series ISSN: 2367-2005 414 10.48786/edbt.2022.32

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2022.32

SIMD Concurrent Compression
(SIMD register size k=4)

State-of-the-art SIMD Compression
(SIMD register size k=4)

Scalar Compression
(Block size N=4)

C D

C D

C D

C D

C D

D

C C C C

D D D

compress

compress

compress

compress

compress
compress

input sequence

Block 1

Block 2

Block 3

Block 4

compressed
representation

k-way
scaled
Block
(k*N)

concept
- scaling of block size with

the SIMD register size k
- applying compression on

scaled block
Our novel concept
- lane-wise compression of

blocks with size N
- concurrent compression of

k blocks Legend
C = control pattern
D = data snip

1 2 3 4Block

Figure 1: Overview of compression processing concepts.

A well-known and representative integer compression algo-
rithm is BitPacking (BP) belonging to the class of null suppression
algorithms by omitting leading zero bits [12]. We use BP as run-
ning example throughout the paper. The scalar version of BP
for 64-bit integer values is called BP64 and works as follows: A
finite input sequence of integer values is subdivided into blocks
of 64 integers each. For each block, the minimal number of bits
required for the largest element is determined. Then, all 64 inte-
gers in each block are stored in data snip with with the respective
number of bits for each value. The used bit width is stored in
a single byte as control pattern. Other scalar compression algo-
rithms operate in a similar way and Figure 1 gives a schematic
overview about this procedure using a block size of four.

As described in [15], the state-of-the-art generalized SIMD
approach is characterized by the fact, that (i) the block size is
scaled by the SIMD register size 𝑘 – 𝑘 is the SIMD register size
in number of integer values — and (ii) the application of the com-
pression on this larger block size. For example, SIMD-BP256 is the
SIMD-based implementation of our running example algorithm
BP64 for SIMD register sizes of 256-bits. In those SIMD registers,
we are able to store and process 4 64-bit integer values at once,
so that the block size is scaled by 𝑘 = 4. Based on that, the 𝑘-way
scaled SIMD block contains 256 integer values and for these 256
elements, the minimal number of bits required for the largest
element is determined. Then, all 256 integers in each block are
stored in a data snip with that many bits for each value and the
used bit width is stored as common control pattern.

Advantages of this generalized 𝑘-way scaling concept for
SIMD are: (i) in many cases, scalar algorithms can be easily ported
to SIMD-based implementations, (ii) the generalized approach
supports different SIMD register sizes, and (iii) the SIMD-based
implementations are faster than the scalar versions [4, 5, 12, 15].
However, a main drawback of this k-way scaling is that the com-
pression factor

𝑐 𝑓 (𝑘) = |k-way compressed data|
|uncompressed data|

(1)

mostly increases with an increasing SIMD register and block size.
On the one hand, fewer control patterns need to be stored due to
larger block sizes. On the other hand, a number of larger integer
values may be compressed with a larger bit width. To precisely
analyze this effect, we use our running example algorithm and
derive the expected compression factor for different integer bit
width distributions.

Our analysis framework works as follows: The scalar algo-
rithm BP64 encodes blocks of 64 64-bit values with the least
possible common bit width and the bit width as control pattern
itself with 64 bits. The SIMD-based implementations with SIMD

register size 𝑘 encode 64 ·𝑘 values with the same approach. Given
is a data distribution for 64-bit integer values characterized by
the probability for the bit widths 0 ≤ 𝑏 ≤ 64 : 𝑝 (𝑏) and a SIMD
register size 𝑘 . Now, we can distinguish 65 cases correspond-
ing to blocks of 64 · 𝑘 values which are encoded with bit width
0 ≤ 𝑏 ≤ 64. Each of these cases (i) occurs with a probability
𝑝 ′(𝑏, 𝑘), which depends on the given data distribution and the
SIMD register size 𝑘 , and (ii) is characterized by a block com-
pression factor 𝑐 𝑓 ′(𝑏, 𝑘). The expected compression factor for a
𝑘-way SIMD-based implementation of BP can be calculated by

𝑐 𝑓 (𝑘) =
64∑
𝑏=0

𝑝 ′(𝑏, 𝑘) · 𝑐 𝑓 ′(𝑏, 𝑘) . (2)

The block compression factor 𝑐 𝑓 ′(𝑏, 𝑘) is given by

𝑐 𝑓 ′(𝑏, 𝑘) = |𝑘-way compressed block|
|uncompressed block|

=
1 + 𝑏 · 𝑘
64 · 𝑘 (3)

and the block probability can be derived by the following con-
sideration. The probability of the occurrence of a block of size
64 · 𝑘 containing only zero values is 𝑝 ′(0, 𝑘) = 𝑝 (0)64·𝑘 . The
probability of a block encoded with one of the bit widths 0 ≤ 𝑏

is
(∑𝑏

𝑏𝑤=0 𝑝 (𝑏𝑤)
)64·𝑘

. The probability for the occurrence of a
block encoded with bit width 𝑏 is the difference of the above
probability and all probabilities for the occurrences of blocks
with a smaller bit width than 𝑏:

𝑝 ′(𝑏, 𝑘) =
(

𝑏∑
𝑏𝑤=0

𝑝 (𝑏𝑤)
)64·𝑘

−
𝑏−1∑
𝑏𝑤=0

𝑝 ′(𝑏𝑤, 𝑘) . (4)

For the compressed size ratio between a 𝑘-way SIMD-based im-
plementation and the scalar implementation of BP, we calculate
𝑐 𝑓 (𝑘)
𝑐 𝑓 (1) with 𝑐 𝑓 (1) corresponding to the scalar compression factor
(scaling factor 𝑘 = 1).

In the following, we apply these formulas on two different data
distributions where most integer values are characterized by a
bit width of 2, but we also have a probability 𝑥 for integer values
with a larger bit width. These larger integer values are denoted
as outliers. While in the first case the outliers have a bit width of
3, the outliers in the second case have a bit width of 60. Figure 2
depicts the compressed size ratio 𝑐 𝑓 (𝑘)

𝑐 𝑓 (1) , 𝑘 = {2, 4, 8, 16, 32} for the
SIMD-based implementations for both cases and different outlier
probabilities. As we can observe, all lines are below 1 for case
one with the outlier bit width of 3. That means, each SIMD-based
implementation (using different k-way scalings) has a lower com-
pression factor than the scalar algorithm. The reason is the lower
number of control patterns for larger blocks and the more or
less homogeneous bit widths for all integer values. Moreover,
the value 𝑘 for the best SIMD-based implementation yielding the
best compression ratio depends on the outlier probability.

In contrast to that, for the second case with the outlier bit
width of 60 and lower outlier probabilities, we see that all lines
are above 1. This means, the compression ratio of the scalar
variant is much better than of the SIMD-based implementations.
For example, a compressed representation of 8-way SIMD-based
implementation of BP – SIMD register size 512-bit with 64-bit
integer values – is 4 times larger than for the scalar variant.
Those disturbing effects happen and destroy the advantages of
the SIMD-based integer compression, especially since a small
number of outliers has such large effects.

415

Figure 2: Ratio of SIMD and scalar compressed data size.

3 BLOCK CONCURRENT COMPRESSION
From the previous section and our experimental evaluations
in [4, 5, 7], we conclude that the state-of-the-art SIMD-based
approach optimizes the compression algorithms from a perfor-
mance perspective. However, this approach has shortcomings
from a memory footprint point of view. To overcome that, we
propose an alternative generalized SIMD approach and explain
the application to our running example algorithm BP. Afterwards,
we present some initial evaluation results and discuss our further
research activities in that direction.

General Idea. Instead of scaling the block size by the SIMD
register size 𝑘 , we suggest a block concurrent compression con-
cept as generalization as depicted in Figure 1. In this block con-
current concept, each SIMD register place – also called SIMD lane
– compresses its own data block. Thus, the number of available
SIMD lanes determines the number of blocks which will be com-
pressed simultaneously. The advantages are (i) the same block
size of the scalar compression algorithms is maintained and (ii)
the control patterns as well as data snips are calculated lane-wise.
That means, we apply the scalar compression algorithm on each
SIMD lane on different data blocks concurrently. A shortcoming
could be that integer values from different memory regions must
be loaded into vector registers.

Application to BP. Figure 3 illustrates the realization of BP
with our block concurrent concept. Here, we assume integer
values of size 64-bit, which will be compressed with the scalar
variant BP64 as introduced above. The assumed SIMD register
size 𝑘 is 8, so that eight different data blocks of 64 values are
compressed simultaneously. That means, we are processing 512
integer values in total of the finite input sequence of integer
values and compute eight control patterns and data snips as
compressed output. The BP compression is done in two phases,
thereby each phase iterates over all 512 integer values. In the
first phase, the bit width of the largest integer value within each

Block Concurrent SIMD Compression
(Block size N=64; SIMD register size k=4)

Postprocessing
(Store-Phase)

Compression Computation
(Compute-Phase)

Preprocessing
(Load-Phase)

Finite Sequence
of Integer Values

0

1

…

63

64

65

…

127

128

129

…

191

192

193

…

255

Gather Scatter

Compressstore

Task
Preparing SIMD registers
For the block concurrent
compression computation

Task
Lane-wise computation of
control patterns and data
Snips for each data block
concurrently

Task
Writting compressed
representation to the output

Pos

Figure 3: Block concurrent BP compression.

block is determined, while the second phase uses the determined
bit widths to shorten the values accordingly and to finally write
out the compressed representation.

As shown in Figure 3, we distinguish (i) a preprocessing step
to load the data from the input into the vector registers, (ii) a
computation step to shorten the values, and (iii) a postprocessing
step to write the data into the output area. These steps are exe-
cuted in each phase and each phase executes 64 iterations for 64
values per block. That means, for the 𝑛𝑡ℎ iteration, we require the
integer value of the 𝑛𝑡ℎ position of each considered data block
in the SIMD register. Assuming that the input sequence contains
correct ordered data (horizontal data layout), we simply could use
a SIMD-gather operation to load the corresponding values of the
different data blocks into the SIMD register. The SIMD-gather
seems an expensive operation, because it can be used for random
memory access. However, in our case, we realize a strided access
with a distance of 64.

In the computation step, we apply the appropriate SIMD func-
tions for each phase. In the first phase, we apply the SIMD func-
tions to compute the number of leading zeros for the largest value
per lane (per block). Based on the number of leading zeros, we
compute the minimal number of bits for the compression. This bit
widths are used in the second phase to concatenate the shortened
data values while using an appropriate SIMD-bitshifting oper-
ation, which can be applied for each lane individually. Because
in the single lanes, the data is concatenated with a different bit
width, the lanes are filled at different loop passes. For example, a
lane is full after 2 iterations for a bit width of 30 (assuming 64 bit
integer values), but for a bit width of 2, we need 32 iterations to
fill a lane. In any case, if one of the lanes is full, it has to be written
to the output (postprocessing step). Here, we see two alternatives.
The first alternative is to use a SIMD-compressstore-operation
to consecutively write out lanes as soon as they are full. In this
case, data snips of the different blocks are intertwined. The sec-
ond alternative is to use a SIMD-scatter-operation. Since the bit
width for each block is determined at first, the bit widths can also
be used to calculate the position for each full lane in the output.
In this case, we are able to organize the data snips for each of
them in a consecutive manner.

Since we read the input data twice, we must also perform the
SIMD-gather operation twice. To avoid this, we can optimize
this by using a buffer with a size of 512 (8 · 64) values. In the first
phase, this buffer is filled with the gathered input data, while in
the second phase, we only to consecutively load the data from
the buffer. In this case, we save one SIMD-gather operation.

Evaluation. To evaluate whether and when our general idea
is suitable, we implemented our running compression algorithm

416

(a) Space vs. Time. (b) Space Time Products (STP).
Figure 4: Compression and runtime comparison for the
following implementation variants: scalar (Sc), state-of-
the-art SIMD (Sota) and our proposed block concurrent
implementations (2G/S, GB/S, 2G/C, GB/C) for two outlier
probabilities (𝑝 = 0.001 and 𝑝 = 0.005 denoted by the suf-
fixes 1 and 5 in the labels).

example BP in its scalar form and with the state-of-the-art SIMD1

as well as our novel block concurrent approach using Intel’s lat-
est SIMD extension AVX-512. For the block concurrent approach
(𝑘 = 8), we implemented the following variants as described
above: (i) 2x gather with scatter (denoted as 2G/S), (ii) gather
with buffer and scatter (GB/S), (iii) 2x gather with compressstore
(2G/C), and (iv) gather with buffer and compressstore (GB/C).
The state-of-the-art SIMD implementation only uses SIMD-load
and SIMD-store operations with a block scaling factor 𝑘 = 8.
We compiled our source code using g++ (version 9.3.0) with
the optimization flags -O3 -fno-tree-vectorize -mavx512f
-mavx512cd. We ran our evaluation on an Intel Intel(R) Xeon
Phi(TM) CPU 7250 with 204GB DDR4 main memory (the avail-
able high-bandwidth memory called MCDRAM was neither used
explicitly nor configured as L3 cache). All experiments are exe-
cuted single-threaded, happened entirely in-memory, were re-
peated 10 times, and we averaged the results.

For our experiments, we only use the setting of the analysis
from Section 2, where the compression ratio of the state-of-the-
art SIMD approach was poor, so that the compression ratio of the
block concurrent approach is the same as for the scalar imple-
mentation as thus much better compared to the state-of-the-art
SIMD approach. For that, we generated synthetic data, where
most integer values are characterized by a bit width of 2 and
we varied the probability for integer values with a larger bit
with of 60. The resulting performances in runtimes normalized
by the scalar runtimes and compression rates normalized by the
scalar compression rates are depicted in Figure 4a for two outlier
probabilities 𝑝 = 0.001 and 𝑝 = 0.005. As we can see, the block
concurrent approach achieves lower normalized-to-scalar run-
time performances than the state-of-the-art implementation (0.66
vs. 0.28 for 𝑝 = 0.001 and 0.59 vs. 0.33 for 𝑝 = 0.005), but better
runtime performances than the scalar implementation on the one
hand. On the other hand, the normalized-to-scalar compression
factor of the block concurrent approach is much better than for
the state-of-the-art SIMD case (3.8 vs. 1.0 for 𝑝 = 0.001 and 2.9
vs. 1.0 for 𝑝 = 0.005). To compare the measurements in time and
space in equal way, our goal is to maximize the uncompressed
data size per compressed data size and time respectively for a
given uncompressed data size to minimize the product of com-
pressed data size and time. Because of the square influence of the
uncompressed data size, we define the space time product (𝑠𝑡𝑝)
1Both implementations for 64-bit integers are inspired by existing implementa-
tions of Daniel Lemire for 32-bit integers published on Github: https://github.com/
lemire/LittleIntPacker/blob/master/src/bitpacking32.c, https://github.com/lemire/
simdcomp/blob/master/src/avx512bitpacking.c

as

𝑠𝑡𝑝 =
|𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 | · 𝑟𝑢𝑛𝑡𝑖𝑚𝑒

|𝑢𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 |2
=

𝑐 𝑓 · 𝑟𝑢𝑛𝑡𝑖𝑚𝑒

|𝑢𝑛𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 | , (5)

and thus, determine the product of space in bits and time in
nanoseconds that is needed for each uncompressed bit to perform
the compression. The less the 𝑠𝑡𝑝 of a compression process, the
more economically the limited memory is used. Figure 4b shows
the 𝑠𝑡𝑝 of each implementation as an area as well as the tuples
of all compression factors and 𝑟𝑢𝑛𝑡𝑖𝑚𝑒

|𝑢𝑛𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 | fractions leading
of the same 𝑠𝑡𝑝 as lines. The block concurrent implementations
are much better than the state-of-the-art SIMD implementation
for both outlier probabilities (0.0066 𝑛𝑠/𝑏𝑖𝑡 vs. 0.0108 𝑛𝑠/𝑏𝑖𝑡 for
𝑝 = 0.001 and 0.0190 𝑛𝑠/𝑏𝑖𝑡 vs. 0.030 𝑛𝑠/𝑏𝑖𝑡 for 𝑝 = 0.005).

Ongiong Research Activities. Due to the promising results,
wewant to intensify ourwork in this area and refine our approach
by looking at different exiting integer compression algorithms.
From our point of view, the preprocessing and postprocessing
components are the biggest challenges, since often the block size
are varied depending on the data. In addition, a comprehensive
comparison with the state-of-the-art SIMD approach must be
carried out to work out the advantages and disadvantages.

4 RELATEDWORK
A comprehensive overview of the field of lossless lightweight
integer compression algorithms and SIMD implementations is
given by the following papers [4, 5, 12, 15]. In addition to that,
we presented a meta-model to specify integer compression algo-
rithms in a descriptive and abstract way with the ability to derive
executable code from that description [8, 9]. An integration of our
presented generalized SIMD approach into the transformation
to the executable code is in the focus of our ongoing research
activities. Moreover, the selection of the best-fitting integer com-
pression variant is a research field with a very dynamic develop-
ment [2, 5]. With our alternative generalized SIMD approach, we
extend the variety of variants increasing the importance of the
selection. From a SIMD execution point of view, our presented
generalized SIMD approach is in line with the idea of sharing
vector registers for concurrently running queries as described
in [13]. Nevertheless, the application as well as the specific chal-
lenges differ. However, both approaches show that an alternative
use of SIMD execution can be profitably employed.

5 CONCLUSION
Integer compression algorithms play an important role to re-
duce the memory footprint and to speedup query processing
in column-stores. While a scalar compression algorithm usually
compresses a block of 𝑁 consecutive integers, the state-of-the-art
SIMD implementation usually scales the block size to 𝑘 · 𝑁 with
𝑘 as the number of elements that could be simultaneously pro-
cessed in a SIMD register. However, this means that as the SIMD
register size increases, the block of integer values for compression
also grows, which can have a negative effect on the compression
ratio. In this paper, we analyzed this effect and showed that the
compressed output could be many times larger than the result
of a scalar implementation. To overcome that, we presented an
approach towards a novel general approach for the SIMD imple-
mentation by concurrently compressing 𝑘 different blocks of size
𝑁 within SIMD registers of size 𝑘 . Moreover, we showed some
initial evaluation results for a heavily used compression algo-
rithm. Our block concurrent implementation can lead to more
responsible usage of main memory resources.

417

REFERENCES
[1] Daniel J. Abadi, Samuel Madden, and Miguel Ferreira. 2006. Integrating

compression and execution in column-oriented database systems. In SIGMOD.
671–682.

[2] Martin Boissier andMax Jendruk. 2019. Workload-Driven and Robust Selection
of Compression Schemes for Column Stores. In EDBT. 674–677.

[3] Peter A. Boncz, Martin L. Kersten, and Stefan Manegold. 2008. Breaking the
memory wall in MonetDB. Commun. ACM 51, 12 (2008), 77–85.

[4] Patrick Damme et al. 2017. Lightweight Data Compression Algorithms: An
Experimental Survey (Experiments and Analyses). In EDBT. 72–83.

[5] Patrick Damme et al. 2019. From a Comprehensive Experimental Survey to
a Cost-based Selection Strategy for Lightweight Integer Compression Algo-
rithms. ACM Trans. Database Syst. 44, 3 (2019), 9:1–9:46.

[6] Patrick Damme et al. 2020. MorphStore: Analytical Query Engine with a
Holistic Compression-Enabled Processing Model. Proc. VLDB Endow. 13, 11
(2020), 2396–2410.

[7] Dirk Habich et al. 2018. Make Larger Vector Register Sizes New Challenges?:
Lessons Learned from the Area of Vectorized Lightweight Compression Algo-
rithms. In DBTest. 8:1–8:6.

[8] Juliana Hildebrandt et al. 2017. Metamodeling Lightweight Data Compression
Algorithms and its Application Scenarios. In ER Forum and Demo Track. 128–
141.

[9] Juliana Hildebrandt, Dirk Habich, Patrick Damme, and Wolfgang Lehner. 2016.
Model Kit for Lightweight Data Compression Algorithms. In EDBT. 692–693.

[10] Christopher J. Hughes. 2015. Single-Instruction Multiple-Data Execution. Mor-
gan & Claypool Publishers.

[11] Marcel Kornacker et al. 2015. Impala: A Modern, Open-Source SQL Engine
for Hadoop. In CIDR.

[12] Daniel Lemire and Leonid Boytsov. 2015. Decoding billions of integers per
second through vectorization. Softw. Pract. Exp. 45, 1 (2015), 1–29.

[13] Johannes Pietrzyk, Dirk Habich, and Wolfgang Lehner. 2020. To share or not
to share vector registers?. In DaMoN. 12:1–12:10.

[14] Nigel Stephens et al. 2017. The ARM Scalable Vector Extension. IEEE Micro
37, 2 (2017), 26–39.

[15] Wayne Xin Zhao et al. 2015. A General SIMD-Based Approach to Accelerating
Compression Algorithms. ACM Trans. Inf. Syst. 33, 3 (2015), 15:1–15:28.

418

