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ABSTRACT
We consider a convex mixed integer nonlinear program to model
a lot-sizing optimization problem, in which demand decreases
as the price of the sold product increases. To model the demand-
price dependence, we propose a hyperbolic function and compare
it to a linear demand-price dependence in the literature. By an-
alyzing the parameters of the hyperbolic function, we show its
potential to better model the realistic dependence between de-
mand and price. We illustrate the solution of the problem by
solving an instance with the Muriqui Optimizer solver and com-
pare the hyperbolic and linear models.
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1 INTRODUCTION
Whenever certain operations are required between production
runs of an item on a machine, lot-sizing appears naturally in
production planning. In general, the setup cost of these opera-
tions does not depend on the quantity of products processed and,
therefore, to minimize the costs, production must be run using
large lot sizes. On the other hand, in a make-to-stock production
system, this can generate high holding costs, as rawmaterials and
some other components must be stored from the moment of pro-
duction until the moment of shipment to the customer. Lot-sizing
optimization aims to achieve the best trade-off between setup
and holding costs, ensuring demand satisfaction and respecting
the machine’s production capacity.

Optimization models for production planning have been an
important object of study for more than 5 decades. The seminal
work of Wagner and Whitin [13] already addresses the formula-
tion of the production planning problem for a single product in a
single resource with unlimited production and inventory capaci-
ties. Since then, research on lot-sizing problems has focused on
more realistic models and algorithmic approaches to enable their
solution. Overviews in these topics are provided in [2, 5, 6]. A
thorough study of mathematical formulations for the lot-sizing
problems, seeking tight linear relaxations and good lower bounds
for the problems, can be found in [11].

In this paper, we address the capacitated lot-sizing optimiza-
tion problem that arises on a single level production planning of
a single storable item. The classic version of this problem aims
at the determination of the production over a planning horizon,
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which minimizes the total cost, given by the sum over all peri-
ods, of fixed setup costs and linear production and holding costs.
A specific characteristic of this classic problem is that demand,
which may vary over the time periods, is always met. Moreover,
it is assumed that each positive production quantity during a
period induces a setup, even in cases where production takes
place in two consecutive periods.

We follow other works in the literature in an effort to adjust
the assumptions of classic lot-sizing optimization models to more
realistic situations, focusing on the dependence between demand
and selling price. For that, instead of minimizing the total cost, we
maximize gains, considering that revenue is given by a nonlinear
function of demand in each period. Empirical evidences show
that the classic assumption of a constant demand in each period
of the planning horizon is an excessive simplification of reality.
In [4], the authors relax this assumption considering a model
where demand linearly decreases with the selling price. Other
works consider different versions of lot-sizing problems with non-
constant demands, addressing their dependence on inventory
level [9, 10], price [1], price and marketing expenditure [12], and
product’s price and its environmental performance [15]. More
realistic demand-price models are presented in [14], as well.

In [4], the revenue is modeled as a concave quadratic function
of demand, leading to a convex Mixed Integer Quadratic Pro-
gramming (MIQP) problem. The difficulty in solving this class of
problems years ago is reflected in [4], which proposes a decom-
position algorithm to solve the subproblem that arises when the
integer variables of the model are fixed.

Taking advantage of the recent development in the area of
Mixed Integer Nonlinear Programming (MINLP), we take a step
forward in adjusting of the classic lot-sizing models to realis-
tic situations, considering a more suitable nonlinear function to
model the relationship between demand and price. We present a
theoretical analysis of the function considered in our model to es-
tablish the correspondence between our nonlinear demand-price
dependence and the linear dependence adopted in [4]. We show
that our MINLP problem is also convex. Through a numerical
example, we illustrate how the output for our model compares
to the output for the MIQP model.

2 MATHEMATICAL FORMULATION
In this section, we present an MINLP formulation for the single-
item capacitated lot-sizing problem, where the selling price at
each period of the time horizon considered is dependent on the
item demand. We will investigate the two following functions to
model this dependence,

𝑓 1 (𝑑𝑡 ) := 1
𝛽𝑡
(𝛼𝑡 − 𝑑𝑡 ),

𝑓 2 (𝑑𝑡 ) := 1
𝜏𝑡𝑑𝑡+𝜇𝑡 − 𝜎𝑡 ,

(1)
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where 𝑓 𝑗 (𝑑𝑡 ) is the selling price value of the amount of demand
𝑑𝑡 at period 𝑡 , for each 𝑗 = 1, 2, and 𝛼𝑡 , 𝛽𝑡 , 𝜏𝑡 , 𝜇𝑡 , 𝜎𝑡 are given pa-
rameters. From now on, we will distinguish between parameters
and data. Parameters are associated with the definition of the
functions in (1), as data refer to the instances data of the lot-sizing
models.

The linear demand-price dependence formulated by 𝑓 1 was
adopted in the single-item capacitated lot-sizing problem in [4].
The parameters 𝛼𝑡 > 0 and 𝛽𝑡 ∈ (0, 1) represent, respectively, the
demand for zero price, and the decreasing rate of the demand as
the price increases. The assumption of a decreasing demand as the
price increases is certainly more realistic than the assumption of a
given demand that does not depend on the price, and considering
this in the lot-sizing problem leads to better decisions concerning
both production and pricing. However, the constant decreasing
rate of the demand as the price increase is still an approximation
of reality, so we propose the alternative convex function 𝑓 2 to
model the demand-price dependence.

Next, we consider this demand-price dependence in the stan-
dard formulation of lot-sizing optimization as a mixed integer
program. Table 1 shows the notation used.

Data
𝑡max number of periods in the time horizon 𝑇 ;
𝑖0 initial inventory level;
𝑟𝑡 production capacity in period 𝑡 ;
ℎ𝑡 unit holding cost at the end of period 𝑡 ;
𝑐𝑡 unit production cost in period 𝑡 ;
𝑞𝑡 setup cost in period 𝑡 ;

Variables
𝑑𝑡 demand in period 𝑡 ;
𝑝𝑡 unit selling price in period 𝑡 ;
𝑖𝑡 inventory level at the end of period 𝑡 ;
𝑥𝑡 production quantity in period 𝑡 ;
𝑦𝑡 binary variable (1, if there is production in period 𝑡 );

Table 1: Notation

For each 𝑗 = 1, 2, we formulate

(𝑃 𝑗 ) 𝑧 := max
∑
𝑡 ∈𝑇

𝑝𝑡𝑑𝑡 − 𝑐𝑡𝑥𝑡 − ℎ𝑡 𝑖𝑡 − 𝑞𝑡𝑦𝑡 (2)

subject to: 𝑑𝑡 = 𝑥𝑡 + 𝑖𝑡−1 − 𝑖𝑡 , 𝑡 ∈ 𝑇 (3)
𝑥𝑡 ≤ 𝑟𝑡𝑦𝑡 , 𝑡 ∈ 𝑇 (4)

𝑝𝑡 = 𝑓 𝑗 (𝑑𝑡 ), 𝑡 ∈ 𝑇 (5)
𝑥𝑡 , 𝑖𝑡 , 𝑑𝑡 , 𝑝𝑡 ≥ 0, 𝑡 ∈ 𝑇 (6)
𝑦𝑡 ∈ {0, 1}. 𝑡 ∈ 𝑇 (7)

The objective function (2) is the total gain given by the sum over
all periods of the difference between the revenue and the total
cost, i.e. production, holding and setup costs. Constraint (3) rep-
resents the flow balance constraint in period 𝑡 , the inflows are the
initial inventory 𝑖𝑡−1 and the production 𝑥𝑡 , the outflows are the
demand 𝑑𝑡 and the ending inventory 𝑖𝑡 . Constraint (4) represents
the capacity restriction and also fixes the setup variable 𝑦𝑡 to 1
whenever there is positive production. Constraint (5) establishes
how the demand depends on the price. Constraints (6-7) deter-
mine the domain of the variables. We note that, besides deciding
on the lot size in each period, our problem model also decides on
the selling price of the product.

Finally, in Proposition 1, we set the relationship between the
parameters in the two models ( 𝑗 = 1, 2), and establish their range

or sign. This will be relevant for the analysis presented in Section
3. In the remaining of the paper, the parameters used will follow
the definitions in Proposition 1.

Proposition 1. Let 𝜖, 𝛿 ∈ (0, 1). For each 𝑡 ∈ 𝑇 , let 𝛼𝑡 > 0,
𝛽𝑡 ∈ (0, 1), and define

𝜎𝑡 =
𝛼𝑡

𝛽𝑡 (1 + 𝛿
1−𝜖 )2

, (8)

𝜇𝑡 := 𝛽𝑡/(𝛼𝑡 + 𝛽𝑡𝜎𝑡 ), (9)

𝜏𝑡 :=
1

𝛿𝛼𝑡

(√ 𝜇𝑡

𝜎𝑡
− 𝜇𝑡

)
. (10)

Then, all the parameters defined in (8)–(10) are positive.

Proof. The verification is trivial for 𝜎𝑡 and 𝜇𝑡 . For 𝜏𝑡 , we
observe that

𝜇𝑡

𝜎𝑡
=

𝜇𝑡 𝛽𝑡 (1 + 𝛿
1−𝜖 )

2

𝛼𝑡
>

𝜇𝑡 𝛽𝑡

𝛼𝑡
>

𝜇𝑡 𝛽𝑡

𝛼𝑡 + 𝛽𝑡𝜎𝑡
= 𝜇2𝑡 .

□

3 AN ANALYSIS OF THE DEMAND-PRICE
DEPENDENCE FUNCTIONS

The definition of the parameters in Proposition 1 establishes
the correspondence between the two functions presented in (1)
and the behavior of the two models investigated. In this section,
we analyze similarities and differences among the models, and
extract from this analysis how the assignment of values to the
parameters can be used to better adapt them to different charac-
teristics of real problems.

We start verifying in Proposition 2, that the demand becomes
equal to zero when the price assumes the same value in all models,
given by 𝛼𝑡/𝛽𝑡 .

Proposition 2. We have 𝑓 1 (0) = 𝑓 2 (0) = 𝛼𝑡
𝛽𝑡
.

Proof. Clearly 𝑓 1 (0) = 𝛼𝑡
𝛽𝑡
. Also,

𝑓 2 (0) = 1
𝜇𝑡

− 𝜎𝑡 :=
𝛼𝑡 + 𝛽𝑡𝜎𝑡

𝛽𝑡
− 𝜎𝑡 =

𝛼𝑡

𝛽𝑡
.

□

In Proposition 3, we see how the parameters 𝜖 and 𝛿 can also
be used to determine the demand value for a zero price when
considering 𝑓 2. We note that this demand value is 𝛼𝑡 for 𝑓 1.

Proposition 3. Let 𝜁 := (1 + 𝛿
1−𝜖 )

2 and

𝑑𝑡 :=
𝛿𝜁√

𝜁 + 1 − 1
𝛼𝑡 .

Then

𝑓 2 (𝑑𝑡 ) = 0.
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Proof.

𝑓 2 (𝑑𝑡 ) =
1

𝜏𝑡𝑑𝑡 + 𝜇𝑡
− 𝜎𝑡

=
1

1
𝛿𝛼𝑡

(√
𝜇𝑡
𝜎𝑡

− 𝜇𝑡

)
𝑑𝑡 + 𝜇𝑡

− 𝜎𝑡

=
1

1
𝛿𝛼𝑡

(√
𝛽𝑡

(𝛼𝑡+𝛽𝑡 𝛼𝑡
𝜁 𝛽𝑡

) 𝛼𝑡
𝜁 𝛽𝑡

− 𝛽𝑡

𝛼𝑡+𝛽𝑡 𝛼𝑡
𝜁 𝛽𝑡

)
𝑑𝑡 + 𝛽𝑡

𝛼𝑡+𝛽𝑡 𝛼𝑡
𝜁 𝛽𝑡

− 𝛼𝑡

𝜁 𝛽𝑡

=
𝛼𝑡

1
𝛿

(√
𝛽2𝑡

(𝛼2
𝑡 (1+ 1

𝜁
)) 1

𝜁

− 𝛽𝑡

𝛼𝑡 (1+ 1
𝜁
)

)
𝑑𝑡 + 𝛽𝑡

1+ 1
𝜁

− 𝛼𝑡

𝜁 𝛽𝑡

=
𝛼𝑡

𝜁 𝛽𝑡
𝛿𝛼𝑡

(√
𝜁+1−1
𝜁+1

)
𝑑𝑡 + 𝜁 𝛽𝑡

𝛿𝛼𝑡

𝛿𝛼𝑡
𝜁+1

− 𝛼𝑡

𝜁 𝛽𝑡

=
𝛼𝑡

𝜁 𝛽𝑡

𝛿 (𝜁 + 1)𝛼𝑡
(
√
𝜁 + 1 − 1)𝑑𝑡 + 𝛿𝛼𝑡

− 𝛼𝑡

𝜁 𝛽𝑡
(11)

The result then follows by replacing 𝑑𝑡 by 𝑑𝑡 in (11). □

In the remaining of the section, we analyze the revenue func-
tion, given by the product between the item demand and the
corresponding selling price defined by each function in (1). We
verify that each revenue function has a unique maximum point,
which varies with the parameters in 𝛼𝑡 and 𝛿 .

Proposition 4. Let 𝑟𝑒𝑣 𝑗 (𝑑𝑡 ) := 𝑓 𝑗 (𝑑𝑡 ) · 𝑑𝑡 , for 𝑗 = 1, 2. Then
𝑑

𝑑𝑡
𝑟𝑒𝑣1 (𝑑𝑡 ) =

1
𝛽𝑡

(𝛼𝑡 − 2𝑑𝑡 ), (12)

𝑑

𝑑𝑑𝑡
𝑟𝑒𝑣2 (𝑑𝑡 ) =

𝜇𝑡

(𝜏𝑡𝑑𝑡 + 𝜇𝑡 )2
− 𝜎𝑡 , (13)

and
𝑑2

𝑑2𝑡
𝑟𝑒𝑣1 (𝑑𝑡 ) = − 2

𝛽𝑡
, (14)

𝑑2

𝑑𝑑2𝑡
𝑟𝑒𝑣2 (𝑑𝑡 ) = −2 𝜇𝑡𝜏𝑡

(𝜏𝑡𝑑𝑡 + 𝜇𝑡 )3
. (15)

Corollary 1. Let 𝑟𝑒𝑣 𝑗 (𝑑𝑡 ) := 𝑓 𝑗 (𝑑𝑡 ) ·𝑑𝑡 , for 𝑗 = 1, 2. We have
• 𝑟𝑒𝑣1 (𝑑𝑡 ) is strictly concave for all 𝑑𝑡 ∈ R, and 𝑑𝑡 = 𝛼𝑡/2 is
the unique critical point of 𝑟𝑒𝑣1 (𝑑𝑡 ),

• 𝑟𝑒𝑣2 (𝑑𝑡 ) is strictly concave for all 𝑑𝑡 ∈ R, and 𝑑𝑡 = 𝛿𝛼𝑡 is
the unique critical point of 𝑟𝑒𝑣2 (𝑑𝑡 ).

Proof. Considering Proposition 4, it is straightforward to
verify all the results above, except the expression for the critical
point of 𝑟𝑒𝑣2 (𝑑𝑡 ), which comes from (10) and
𝑑

𝑑𝑑𝑡
𝑟𝑒𝑣2 (𝛿𝛼𝑡 ) =

𝜇𝑡

(𝜏𝑡𝛿𝛼𝑡 + 𝜇𝑡 )2
− 𝜎𝑡 =

𝜇𝑡(√
𝜇𝑡
𝜎𝑡

− 𝜇𝑡 + 𝜇𝑡

)2 − 𝜎𝑡 = 0.

□

It is interesting to note that when using 𝑓 1, for each period 𝑡 ,
the price becomes negative for demand values greater than 𝛼𝑡 ,
therefore this is the maximum value for the 𝑑𝑡 in the feasible set
of the problem. Moreover, the maximum revenue always occurs
when the demand reaches 50% of this maximum value. By varying
the value of the parameter 𝛿 in 𝑓 2, on the other hand, we control
the percentage of 𝛼𝑡 that leads to the maximum revenue, gaining
more flexibility to better model the decrease rate of demand as the
price increases and also, the point where the maximum revenue
occurs.

In Figure 1 we exemplify the plots of the two price and revenue
functions, as well as the zeros of 𝑓 1 and 𝑓 2. Finally, we present
the plots of the derivatives of the revenue functions highlighting
the maximum revenue point, where the derivatives are equal to
zero.

0 50 100 150 200 250 300

demand

0

50

100

150

200

250

300

350

400

450

500

p
ri
c
e

f1

f2

0 50 100 150 200 250 300

demand

0

0.5

1

1.5

2

2.5

3

re
v
e
n
u
e

10
4

f1*d

f2*d

0 50 100 150 200 250 300

demand

-50

0

50

100

150

200

250

300

350

400

450

500

d
e
ri
v
a
ti
v
e
 o

f 
th

e
 r

e
v
e
n
u
e

d(f1*d)/dd

d(f2*d)/dd

(0.5alpha,0)

(delta*alpha,0)

Figure 1: Modeling price vs. demand (𝛼 = 250, 𝛽 = 0.5, 𝜖 =

0.75, 𝛿 = 0.4)

From Corollary 1, we establish the following result, which
allows us to apply algorithms for convex MINLP to (𝑃1) and (𝑃2),
with guarantee of global optimality at the solution obtained.

Corollary 2. Problems (𝑃 𝑗 ), for 𝑗 = 1, 2, are convex MINLP
problems, i.e., if (7) is replaced with 𝑦𝑡 ∈ [0, 1], for all 𝑡 ∈ 𝑇 , then
the relaxation of (𝑃 𝑗 ) obtained is a convex optimization problem.

4 A NUMERICAL EXAMPLE
In this section, we illustrate our modeling approaches with a
small example. The parameters and the data for the two models
are shown in Table 2.
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𝜖 := 0.25; 𝛿 := 0.4;
𝛼 := (104, 103, 92, 95, 91, 93);
𝛽 := (0.19, 0.21, 0.36, 0.23, 0.38, 0.35);
𝑡max := 6; 𝑖0 := 0;
𝑟𝑡 := (115, 157, 29, 101, 106, 77);
ℎ𝑡 := (3.73, 1.56, 2.56, 1.09, 3.76, 3.55);
𝑐𝑡 := (4.06, 1.62, 2.66, 1.14, 3.88, 3.50);
𝑞𝑡 := (41.52, 15.53, 51.55, 3.69, 15.00, 8.37);
Table 2: Example (parameters and data)

In Tables 3–4, we present the numerical values of the variables
at the optimal solution of the problem when considering both
functions, 𝑓 1 and 𝑓 2, to model the demand-price dependence.
In Figures 2–5, we show how the revenue and costs vary in the
time horizon on the solution for 𝑓 1 and 𝑓 2, and in Figures 6–7
we compare the results over the entire time horizon.

The results shown were obtained in 0.03 second by Gurobi
[3] for 𝑓 1, and in 1.25 second by Muriqui Optimizer [8] for 𝑓 2.
The Hybrid Outer Approximation Branch-and-Bound (HOABB)
algorithm from Muriqui Optimizer was applied (see [7] for de-
tails). We ran our experiments under Windows 10, on an Intel
Core i7 processor, with 16GB RAM. We implemented our code in
Scilab, AMPL, and R.

𝑡 = 1 𝑡 = 2 𝑡 = 3 𝑡 = 4 𝑡 = 5 𝑡 = 6
𝑝𝑡 277.64 246.35 129.94 207.56 120.43 135.07
𝑑𝑡 51.25 51.27 45.22 47.26 45.24 45.73
𝑥𝑡 51.25 96.49 0.00 92.50 0.00 45.73
𝑖𝑡 0.00 45.22 0.00 45.24 0.00 0.00
𝑦𝑡 1 1 0 1 0 1

Table 3: Solution of the example for 𝑓 1

𝑡 = 1 𝑡 = 2 𝑡 = 3 𝑡 = 4 𝑡 = 5 𝑡 = 6
𝑝𝑡 197.08 174.76 93.17 146.96 86.63 97.05
𝑑𝑡 40.81 40.85 35.64 37.73 35.54 35.96
𝑥𝑡 40.81 76.49 0.00 73.27 0.00 35.96
𝑖𝑡 0.00 35.64 0.00 35.54 0.00 0.00
𝑦𝑡 1 1 0 1 0 1

Table 4: Solution of the example for 𝑓 2

From the results in Tables 3–4 and from the plots in Figures
2–5, we see that for the parameters chosen, both models lead
to a similar behavior for the optimal production along the time
horizon. From the values of the variables 𝑦𝑡 in the tables, and
from the setup costs in Figure 5, we see that production occurs
in the same periods for both models.

On the other hand, the faster decrease in the demand as the
price increases, modeled by 𝑓 2, leads to a decrease in the revenues
and also in the production and holding costs whenever they are
positive, which we can observe in Figures 2–4. Furthermore, we
see in the tables, that production decreases in all periods when
𝑓 2 models the demand-price dependence.

In Figures 6 and 7, by considering the entire time horizon,
we see a clear decrease in production due to a more aggressive
response of the demand to an increase in the price.

Figure 2: Revenue (𝑝𝑡𝑑𝑡 )

Figure 3: Production cost (𝑐𝑡𝑥𝑡 )

Figure 4: Holding cost (ℎ𝑡 𝑖𝑡 )
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Figure 5: Setup cost (𝑞𝑡𝑦𝑡 )

Figure 6: Total revenue and profit

Figure 7: Total production, holding and setup costs

5 CONCLUSION
With the advance in the development of efficient algorithms
and solvers for convex mixed integer nonlinear programming in
the last decade, it becomes possible to better model production
planning optimization problems. In this work, we exploit this
possibility considering a hyperbolic function to model demand-
price dependence in a lot-sizing problem. We discuss how the
parameters in the function can be used to adjust the model to the
characteristics of the application, and illustrate the application
of the Muriqui optimizer solver to an instance of the problem
formulated. Considering other functions to model demand-price
dependence and a more comprehensive numerical experiment,
we intend to demonstrate in future work, how the advance in
convex MINLP can be useful to solve more realistic lot-sizing
problems, leading to better decisions concerning production.
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