
Implementing cutting planes for the chromatic violation
problem

Diego Delle Donne
ESSEC Business School of Paris

Cergy-Pontoise, France
delledonne@essec.edu

Mariana Escalante
FCEIA - Universidad Nacional de

Rosario and CONICET
Rosario, Santa Fe, Argentina
mariana@fceia.unr.edu.ar

María Elisa Ugarte
FCEIA - Universidad Nacional de

Rosario
Rosario, Santa Fe, Argentina
ugarte@fceia.unr.edu.ar

ABSTRACT
We consider the minimum chromatic violation problem (MCVP)
studied from a polyhedral point of view. A previous paper presents
the classical study of the convex hull of feasible solutions in
it, introducing several exponentially sized families of valid in-
equalities and conditions under which they induce facets. Here
we address the separation procedures for these families to find
proper cuts and add them to the formulation in a cutting-plane
fashion for solving the MCVP. As the inequalities analyzed in
this work are associated with cliques in the given graph, we
explore different clique-finding approaches and compare them
within a computational experimentation over a set of DIMACS
and random instances.

KEYWORDS
chromatic violation, graph coloring, polyhedral study, separation
routines.

1 INTRODUCTION
A k-coloring of a graph is a partition of the vertex set in k stable
sets (i.e., pairwise non-adjacent set of vertices). The k-coloring
problem asks whether a given graph has a k-coloring or not, and
it is known to be NP-Complete if k ≥ 3. The classical vertex color-
ing problem (VCP) asks for the smallest k needed to color a given
graph and it has many known applications such as frequency
assignment problems, course timetabling, scheduling problems,
among others. In practice, it is not difficult to find situations
where the value for k is actually fixed and the goal is to minimize
a conflict-like notion among some vertices in the same color class.
See [2, 3] for a reference on polyhedral results for VCP.

In order to asses these type of problems, [1] proposes a general-
ization of thek-coloring problem, namely theminimum chromatic
violation problem (MCVP), which considers a graphG = (V ,E), a
set of colors C and a subset of weak edges F ⊆ E, and asks for a
|C|-coloring of G ′ = (V ,E \ F) minimizing the number of edges
from F with both endpoints in the same color class. Also, an edge
is strong if it belongs to E \ F .

In [1] a polyhedral study of a formulation forMCVP is initiated.
In particular, the authors perform a straightforward adaptation of
the classical formulation for the vertex coloring problems studied
in [5, 6] which uses binary variables xic for each vertex i ∈ V
and each color c ∈ C, to indicate whether vertex i is assigned
to color c or not. Binary variables zi j for each ij ∈ F are also
introduced, specifying whether vertices i and j receive the same
color. Thus, the formulation aims to minimize

∑
i j ∈F zi j subject

to the following constraints:

© 2022 Copyright held by the owner/author(s). Published in Proceedings of the
Joint ALIO/EURO International Conference 2021-2022 on Applied Combinatorial
Optimization, April 11-13, 2022, ISBN 978-3-89318-089-9 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

∑
c ∈C

xic = 1 for i ∈ V , (1)

xic + x jc ≤ 1 + zi j for ij ∈ F , c ∈ C, (2)
xic + x jc ≤ 1 for ij ∈ E \ F , c ∈ C, (3)

xic ∈ {0, 1} for i ∈ V , c ∈ C, (4)
zi j ∈ {0, 1} for ij ∈ F . (5)

The objective function minimizes the number of (weak) edges
whose endpoints receive the same color in a coloring of the
graph. Constraints (1) ensure that each vertex is colored with
exactly one color, constraints (2) ensure that when the endpoints
of a weak edge have the same color, the corresponding binary
variable associated to this edge assumes the value 1. Constraints
(3) ensure that for each strong edge ij ∈ E \ F and color c ∈ C, at
most one endpoint of the edge receives color c .

The chromatic violation polytope associated with G, F and
C, PCV (G, F ,C) ⊆ R |V | |C |+ |F | is the convex hull of feasible
solutions (x , z) satisfying (1)-(5). We simply write PCV (G) or
PCV (G, F) instead of PCV (G, F ,C) when the sets F and/or C are
clear from the context.

Throughout this paper, we consider the graph G = (V ,E),
F ⊆ E the set of weak edges in G and C, the set of available
colors. If U ⊂ V , the graph induced by U , G[U], is the subgraph
ofG with vertex setU and such that two nodes inU are connected
by an edge if they are in the original graph G . For a vertex i ∈ V ,
Γ(i) is the set of nodes adjacent to i in G. We also define ΓS (i) as
the set of strong neighbours of i , i.e., ΓS (i) = {j ∈ Γ(i) : ij ∈ E \ F },
and equivalently, ΓW (i) = {j ∈ Γ(i) : ij ∈ F } is the set of weak
neighbours of i . ForU ⊆ V , F (U) is the set of weak edges of the
graph G[U].

2 KNOWN FAMILIES OF VALID
INEQUALITIES FOR THE CHROMATIC
VIOLATION PROBLEM

In [1], several exponentially sized families of valid inequalities
are introduced and proved to define facets, under some additional
hypothesis. We next focus on those which are associated with
cliques in the given graph. The results concerning the validity
of these inequalities correspond to Theorem 2.8 and Proposi-
tions 2.11 and 2.14. from [1], and we present them below for
completeness.

Weak clique inequalities. Let K ⊆ V be a set of nodes inducing
a complete subgraph in G. For c ∈ C, the weak clique inequality
(WKI) ∑

i ∈K
xic ≤ 1 +

∑
i j ∈F (K)

zi j

Short Paper

17 10.48786/alioeuro.2022.04

https://OpenProceedings.org/
http://dx.doi.org/10.48786/alioeuro.2022.04

is valid for PCV (G). Moreover, if K is a maximal clique in G −

(F \ F (K)) and |C| > χ (G − (F \ F (K))), then it defines a facet of
PCV (G).

Multicolor clique inequalities. Assume that K ⊆ V is a clique
in G and T ⊆ C. If |C| > χ (G − (F \ F (K))) + 1 and 1 ≤ |T | ≤
|K | ≤ |C| + |T | then the multicolor clique inequality (MKI),∑

t ∈T

∑
i ∈K

xit ≤ |T | +
∑

i j ∈F (K)

zi j (6)

induces a non-empty face of PCV (G). Moreover, under these
conditions (6) induces a facet of PCV (G) if and only if 1 ≤ |T | <
|K | < |C| + |T | and there is no r ∈ V \ K such that K ⊆ ΓS (r).

Multicolor combinatorial clique inequalities. Given K ⊆ V in-
ducing a complete subgraph with all weak edges, a set of colors
T ⊆ C and values qt ∈ N for each t ∈ T , the multicolor combina-
torial clique inequality (MCKI)∑

t ∈T

∑
i ∈K

qtxit ≤
∑
t ∈T

qt (qt + 1)
2 +

∑
i j ∈F (K)

zi j

is valid for PCV (G). Furthermore, if |C| > χ (G − (F \ F (K))) + 1,
then the MCKI defines a facet of PCV (G) if and only if there is
no r ∈ V \ K with K ⊆ ΓS (r) and qΣ < |K | < |C| + qΣ, where
qΣ =

∑
t ∈T qt , and either |T | > 1 or qΣ + 1 < |K |.

In the next sections, we present separation routines for these
families of valid inequalities and our computational results ap-
plying them in a cutting plane framework.

3 SEPARATION ROUTINES FOR MCVP
Given a point (x∗, z∗) ∈ R |V | |C |+ |F | , the separation problem for a
family of valid inequalities consists of finding an inequality of this
family violated by (x∗, z∗), or determining that such inequality
does not exist.

In order to develop separation routines for the above men-
tioned families of valid inequalities, we focus on heuristics for
finding a clique of maximum weight in the given graph. We then
incorporate these procedures in a branch-and-cut algorithm to
solve MCVP. As far as the branching rules are concerned, we
resort to the standard branching rules on the CPLEX framework
used in the experimentation (see Section 4).

The separation phase is the central part of a cutting plane
algorithm and efficient separation algorithms are crucial for the
success of this approach.

Clique-related inequalities are used as cutting planes in many
problems [6, 7], and associated separation problems are usually
NP-Hard.

A first approach that may be considered is to construct in a
preprocessing phase a list of maximal cliques and keep them in a
pool. At each separation round, this list may be scanned in an
attempt to find violated cuts. This approach has the advantage
of looking for cliques once, but the clique construction does not
exploit the information of the current fractional solution being
considered.

As a more interesting approach, we consider the search for
cliques by using information provided by the current point to
be cut off. We implemented two kinds of separation routines: a
greedy heuristic and a backtracking-based search. In particular,
for the greedy heuristic, we consider different orderings to tra-
verse the list of vertices. Additionally, we implemented a local
search procedure to improve the solution of the greedy heuris-
tic. For this procedure, we propose 2 different neighborhood
definitions and a combination of them.

Our backtracking-based clique-search procedure looks for all
possible cliques in the graph. At each level in the backtracking
tree, a new vertex is considered for addition into the clique under
construction. As this search may require an exponential number
of steps, in our implementation we limit the operations made by
the search with a predefined value, which depends on the size of
the instance being solved. We give more details on this subject
in Section 4.

On the other hand, the heuristic separation procedure we
use consists of a standard greedy algorithm for clique searching.
For that purpose, we define weights w(i) for each vertex i of G.
The algorithm starts with the vertex i with maximum weight,
defining a singleton clique K = {i} and, in each iteration, it visits
the vertices of G in decreasing order of their weights, greedily
adding each vertex j to K if K ∪ {j} is a clique.

In addition, different local search techniques are then applied
to improve the results of the greedy algorithm, described in the
next section.

3.1 Weak clique inequalities
Let (x∗, z∗) be the fractional solution obtained after solving the
linear relaxation of MCVP. In order to solve the separation prob-
lem for WKI, we search for a clique K ⊆ V and a color c ∈ C

such that ∑
i ∈K

x∗ic −
∑

i j ∈F (K)

z∗i j > 1

In our implementations, for the greedy algorithms, we consider
three different weights to estimate the contribution of each vertex
to a weak clique inequality, for a fixed c ∈ C:

• wc (i) = x∗ic
• wc

Z (i) = x∗ic −
∑

i j ∈F
z∗i j

• wc
N (i) = x∗ic −

∑
j<Γ(i)

x∗jc

The first two weight functions take into account values asso-
ciated only to the vertex i . The third one considers the weight of
the vertex i in relation to the weights of its non-neighbours, as
they will not be considered for a clique containing i . If a prelim-
inary clique is found, the weights can be refined by neglecting
non-neighbours of the nodes in the clique that are not eligi-
ble for insertion. In addition, local search techniques are then
applied to improve the results of the greedy algorithm. In our
implementations, we perform (1, 1)-swaps, (1, 2)-swaps, and a
combination of both, considering when these exchanges improve
the clique greedily obtained. That is, we make a swap of nodes in
the given clique if the weight of the new clique is bigger than the
weight of the original one. The weight of a clique K we consider
isw(K) =

∑
i ∈K x∗ic −

∑
i j ∈F (K) z

∗
i j .

In the (1, 1)-swap, a vertex i ∈ K is replaced by a non-neighbour
j, if K \ {i} ∪ {j} is a clique and

x∗jc − x∗ic +
∑
s ∈K

z̄is −
∑
s ∈K

z̄js > 0,

where z̄i j = z∗i j , if ij ∈ F and z̄i j = 0 otherwise. In a similar
way, the (1, 2)-swap, consists on replacing a vertex i ∈ K by two
non-neighbouring vertices j and k , if K \ {i} ∪ {j,k} is a clique
and

x∗jc + x
∗
kc − x∗ic +

∑
s ∈K

z̄is −
∑
s ∈K

z̄js −
∑
s ∈K

z̄ks − z̄jk > 0.

18

We consider a third strategy combining these two swap tech-
niques. Given a clique K found greedily with some of the above
mentioned weights, try to perform a (1, 1)-swap on its nodes. If
this cannot be done for any node in K , it looks for (1, 2)-swaps.

Let us remark that we look for cliques using greedy techniques
with the three different weights, trying to find a clique for which
the weak clique inequality is violated. Once we find it, we apply
a local search procedure to try to improve it.

3.2 Multicolor clique inequalities
The separation of the MKI inequalities consists of finding a clique
K and a set of colors T such that the MKI inequality associated
with K and T is violated. However, to tackle these two issues
(finding the clique and the set of colors) at the same time seems
to be extremely difficult. Based on this observation, we decided
to focus on the separation problem assuming that the clique is
fixed before-hand. We explain in Section 3.4 how this is used in
our implementation.

Given a clique K , for each color c , we compute Sc =
∑
i ∈K x∗ic

andwe construct an ordered list Sc1 ≥ Sc2 ≥ . . . ≥ Sck . We finally
considerT1 = {c1},T2 = {c1, c2}, . . . ,T |K |−1 = {c1, c2, . . . c |K |−1},
and check whether∑

c ∈Tr

∑
i ∈K

xit > |Tr | +
∑

i j ∈F (K)

zi j . (7)

If (7) holds for some r ∈ 1, . . . , |K | − 1 we choose Tr as the set
of colors to associate with the MKI cut. If such an r does not
exist we conclude that, for the given clique K there is no MKI
violated by (x∗, z∗). This fact can be proved with really simple
arguments. Therefore, the proposed routine can be considered
an exact separation routine, provided that K is fixed.

3.3 Multicolor combinatorial clique
inequalities

For this family of inequalities we follow almost the same strategy
as before. In this case, let us assume that we have a clique K with
all its edges in F , and rewrite the MCKI as follows:∑

t ∈T

(
qt

∑
i ∈K

xit −
qt (qt + 1)

2

)
≤

∑
i j ∈F (K)

zi j .

Consider a fractional solution (x∗, z∗), the clique K , and let

Xt =
∑
i ∈K

x∗it , z̄ =
∑

i j ∈F (K)

z∗i j .

We shall look for T ⊆ C and values of qt ∈ N, with t ∈ T , such
that ∑

t ∈T

(
qtXt −

qt (qt + 1)
2

)
> z̄.

Definingmt (q) = − 1
2q

2− 1
2q+Xtq the goal is to maximizemt , for

each t ∈ C. Since the roots ofmt are 0 and 2Xt −1, the maximum
is reached at q = Xt −

1
2 . Then,

qt = max
{
0, arg max

{
mt

(⌊
Xt −

1
2

⌋)
,mt

(⌈
Xt −

1
2

⌉)}}
.

Let us consider an ordered list in {mt (qt) : t ∈ C ∧mt (qt) > 0}
in decreasing order, i.e.mt1 (qt1) > mt2 (qt2) > . . . > mtr (qtr). If
T ′ = {t ∈ C : mt (qt) > 0} and

∑
t ∈T ′mt (qt) ≤ z̄, then there is

no MCKI associated with the clique K that cuts (x∗, z∗). Other-
wise, we take T = {t1, t2, . . . , tl }, where l is the first value such

that
l∑
i=1

mti (qti) > z̄.

As in the case of the MKI, the proposed routine for the MCKI
can be considered an exact separation routine, provided that K
is fixed.

3.4 Implementation details
As we remarked above, for a fixed clique K , the way we choose
the set of colors for MKI and also the combinatorial parameters
qt for MCKI, determine exactly if there is an inequality in the cor-
responding family associated withK which cuts-off the fractional
point.

In order to provide cliques to the separation routines for MKI
or MCKI, we implemented a clique pool in which cliques are
stored during the execution of the branch and cut. This pool is
fed by the cliques found by the separation routine for the weak
clique inequalities (WKI). We shall note that this implementation
decision forbid the use of the MKI or MCKI family without the
use of WKI.

4 COMPUTATIONAL EXPERIMENTATION
In this section we present our results on a computational experi-
mentation to assess the practical contribution of the considered
valid inequalities within a branch-and-cut algorithm.

The implementation is coded in Java by resorting to theCPLEX
Java API framework version 12.8. The experimentation was car-
ried out in a notebook running Windows with an AMD RYZEN
7 processor and 8Gb RAM.

Our test set is based on two groups of instances, one of them
generated from the set of DIMACS instances for the standard
graph coloring problem with up to 100 vertices (26 instances in
total), while the second group is composed of randomly generated
instances. Since there are no previous research of this problem,
we build a new set of instances from the DIMACS’s ones and
we named this set as DIMACS-based instances. Its definition is
motivated by the fact that MCVP involves a coloring of the graph
G − F ; a DIMACS-based instance consists on a graph G = (V ,E)
and a set of weak edges F such thatGDIM := G−F belongs to the
above mentioned DIMACS family. For our experimentation, we
considered different sets of weak edges F for each DIMAC’s graph
GDIM , according to a probability q for each non-adjacent pair of
vertices of GDIM , of being chosen as a weak edge. The number
q varies in the set {0.3, 0.5, 0.7, 0.9}. In this way we defined 104
DIMACS-based instances.

The group of random instances is generated as follows. Each
instance involves a graph G[n,p,q] with n nodes, where there
is an edge between a pair of nodes with probability p and it is
weak with probability q. We considered n belonging to the set
{20, 25, 30, 35, . . . 50} and values of p and q in {0.3, 0.5, 0.7, 0.9}
for a total of 112 random instances.

For each graph G in these two groups of instances, we fix the
number of colors at the chromatic number of the graph G − F ,
which was previously obtained for the random instances and it
is known for most of the DIMACS graphs we considered [4]. In
the case that the chromatic number is not known we use the best
known upper bound for it [4]. By choosing the number of avail-
able colors this way, we ensure that there always exists a feasible
solution for all of our MCVP instances. In our experimentation,
we limit the running time to 900 seconds per instance.

19

4.1 Separation parameters for the WKI
We first perform a computational experimentation varying the
different parameters involved in the separation routines devel-
oped for the WKI. Namely,

• BACKTRACKING: limiting the number of recursive calls
to |V |2.

• GREEDY: considering each of the three different orderings
for the vertices, denoted asw ,wZ andwN , according to
the weights defined in Section 3.1.

• GREEDYLS: applying the greedy search and improving
the solution by a local search. We proposed two different
neighbourhoods and a combination of both, denoted as
swap1, swap2 and swapb, respectively, as described in
Section 3.1.

Table 1 shows the number of nodes in the B&B tree for each
possible considered configuration, including the option of not
using any of our cuts (column CPLEX). Each row represents a
group of either DIMACS-based or random instances, which differ
just in the parameter q (i.e., the probability for an edge to be
weak). The reported value in each cell is the average result of the
corresponding group of instances.

According to these results the best configuration is to apply a
greedy algorithm considering the weightswZ with local search
performing (1, 1)-swaps on the clique obtained greedily.

Despite the fact that we have chosen the number of nodes as
a measure of efficiency of the cuts, we also include in Table 2 the
average times for each family of instances (DIMACS-based and
random) in the given configuration to show that the time cost
also behaves properly in our context.

Based on the obtained results, we keep the mentioned best
configuration to perform a computational experimentation with
the rest of the families of valid inequalities, with the goal to assess
their practical contribution to the solution process.

We should remark the fact that results in Table 1 and Table
2 could be slightly misleading. The reason for this is that the
average number of nodes is computed including also those in-
stances achieving the time limit bound. Such instances report a
number of nodes smaller than the real number of nodes which
the method would require to solve the instance to optimality.
For further analyzing this issue in a fair way, we computed the
average node-counts restricted only to those instances which are
solved to optimality by all methods. We could verify then that
the behaviour is similar and so we hold to the conclusion stated
above. We omit to give detailed results here but we support this
in Section 4.2, where we compare the node-counts of different
methods restricted only to those instances which were solved to
optimality by all of them.

4.2 General results for WKI, MKI and MCKI
We conduct experiments to determine the strength of the cuts
associated with the familiesWKI, MKI andMCKI when combined
together. We report in Table 3 the average number of nodes and
average times obtained by different combinations of the cuts.
In order to make a fair comparison among the node-counts, we
only consider those instances solved to optimality within the 900
seconds time limit, both by CPLEX and by every chosen configu-
ration (i.e., “GREEDYLS-wN -SWAP1”, with every combinations
of cuts). We should remark then that each row may involve now
a different number of instances for the group, which we depict
in column #Instances.

The column CPLEX, corresponds to the results obtained by
running CPLEX without any of the cuts considered in this contri-
bution. The rest of the columns of the table show the results of the
chosen configuration GREEDYLS-wN -SWAP1 with the following
combinations of cuts.

• WKI: weak clique inequalities;
• WKI+MCKI: weak clique inequalities and multicolor com-
binatorial clique inequalities;

• WKI+MKI: weak clique inequalities and multicolor clique
inequalities;

• WKI+MKI+MCKI: weak clique inequalities, multicolor
clique inequalities and multicolor combinatorial clique
inequalities.

As the results in Table 3 evidence, the strength of the cuts is
maximized when used alltogether (WKI+MCKI+MKI), exploring
on average 305 nodes, which represents less than 7% of the nodes
explored by CPLEX (i.e., 4878 nodes in average).When comparing
this configuration with the one using just the WKI, we can see
that it also reduces considerably the number of explored nodes
from 1413 to 305.

On the other hand, we can see that the addition of all the cuts
to the separation routine, may increase the running times. In fact,
when comparing option WKI+MKI+MCKI against CPLEX, the
average time is raised from 7,43 to 33,52 seconds.

This behaviour suggests that the implemented cuts are in fact
effective and the added inequalities considerably help in strength-
ening up the linear relaxation of the original formulation. How-
ever, the increase of the execution times may indicate that the
implemented separation routines in this work may be revised
with the goal of improving their efficiency (e.g., by resorting to
better data structures and/or algorithms from the vertex color-
ing literature). Indeed, we analyzed the dual bounds obtained
at the root node of the branch-and-cut tree with and without
using the proposed cuts. Our results showed that the gap of this
bound against the optimal solution is decreased (in average) from
16,08% (without cuts) to 10,04%, when including all the considered
separation routines.

5 CONCLUSIONS AND FUTUREWORK
In this contributionwe consider a generalization of thek-coloring
problem, referred to as theminimum chromatic violation problem
(MCVP). Taking into account several exponentially sized families
of valid inequalities for the MCVP introduced in [1], we address
the associated separation problems with the goal of assessing the
practical contribution of these inequalities when incorporated as
cutting planes within the computational solution of the MCVP.
The families of valid inequalities considered in this work are
associated with cliques in the graph, thus we develop different
heuristic procedures for finding cliques in the given graph.

We conducted a computational experimentation on a test set
composed of 216 instances (104 DIMACS-based and 112 random)
with different sizes and characteristics. At a first stage of the
experimentation, we deduced a proper parameter configuration
for the separation routine of one of the families, namely the weak
clique inequalities (WKI). Afterwards, we fix these parameters and
experiment with the rest of the families addressed in this work,
as their separation procedures depend on a clique pool fed by
the cliques generated by the WKI separation routine. In this last
stage of the experimentation, we analyse the results obtained by
the different possible combinations of WKI with MKI (multicolor

20

Table 1: Node report for different configurations for WKI.

Group CPLEX BACKTRACKING

GREEDY GREEDYLS

w wZ wN

w wZ wN
SWAP1 SWAP2 SWAPB SWAP1 SWAP2 SWAPB SWAP1 SWAP2 SWAPB

1-FullIns_3 7321 2486 12451 7233 10506 9086 9699 5436 10485 6176 5791 9744 8967 12715
1-FullIns_4 50250 4259 625 257 5634 3 626 337 7 224 190 1857 5037 4040
1-Insertions_4 78330 6324 6093 4186 11771 3129 6552 4692 2132 3431 2803 5088 10426 8598
2-FullIns_3 111575 8468 13104 10702 24278 7834 10467 7650 5234 8962 6259 12776 22185 16450
2-Insertions_3 161930 8180 46750 26825 46553 23473 40695 25821 10327 25033 15733 21155 43313 35396
3-FullIns_3 53025 3811 1936 1033 4686 1119 1090 753 692 779 581 287 4104 2308
3-Insertions_3 112189 8043 21596 11581 22321 9044 16016 11886 6017 10481 7802 10162 19714 16549
4-Insertions_3 102356 5229 10888 3993 13846 3253 8481 6664 1753 3220 1807 5071 11006 9253
david 37460 9881 3848 2927 5678 3356 3391 2435 2851 2251 1698 3274 4861 3648
huck 53210 7632 662 605 4311 605 840 1072 309 803 684 1562 3592 3493
jean 74989 7848 2309 2223 3929 3015 2048 960 2625 2684 1215 3341 5383 2295
mug100_1 75300 3312 6950 1054 6175 2011 5687 2022 0 928 222 2205 5886 5092
mug100_25 72125 4243 7135 1589 6798 2001 6259 4119 302 1366 547 2649 6343 5131
mug88_1 89325 4463 9301 2472 10509 2341 7407 4684 209 2172 1272 3118 9571 7643
mug88_25 85013 4109 8073 3436 10682 2942 7033 4819 1139 2144 1021 4285 9817 8242
myciel3 13 14 16 16 19 16 14 14 16 15 15 19 19 19
myciel4 13367 10951 14828 12660 15767 16587 12978 14735 13868 14651 14428 13496 14582 14188
myciel5 183391 18085 32795 20757 52794 20751 30858 15173 16437 26284 16596 25527 51343 38811
myciel6 34473 5282 281 587 4005 36 44 15 436 15 9 489 3590 2571
queen10_10 12259 4294 1515 1199 3097 1725 1852 1940 1184 1118 985 919 2317 1614
queen5_5 0 0 0 0 0 0 0 0 0 0 0 0 0 0
queen6_6 2093 2644 2418 2882 2184 2008 2506 2839 2147 2037 1674 2282 2278 2171
queen7_7 69 44 45 38 62 38 30 34 44 61 48 82 60 64
queen8_12 7991 3246 3378 1505 2824 2579 3405 2531 1214 1328 1403 968 1973 1394
queen8_8 53708 15519 14687 6277 17102 6843 14535 10153 2650 5257 4060 5852 14613 10635
queen9_9 23015 9006 7179 2945 8039 4951 6775 5408 1637 2762 1782 2582 7297 5241
G[20, 0.3, ∗] 2 2 3 1 1 3 2 2 1 2 2 1 1 0
G[20, 0.5, ∗] 11 11 13 8 10 9 7 12 6 9 4 11 8 9
G[20, 0.7, ∗] 109 34 123 55 80 82 76 106 37 33 33 102 70 101
G[20, 0.9, ∗] 25 12 34 15 21 40 34 40 15 15 13 50 20 25
G[25, 0.3, ∗] 1 6 6 5 6 5 6 5 5 3 1 1 3 5
G[25, 0.5, ∗] 678 335 888 282 497 271 672 313 171 227 301 344 664 486
G[25, 0.7, ∗] 752 511 587 460 1086 378 459 461 626 262 434 503 752 950
G[25, 0.9, ∗] 3206 2138 1753 2397 2836 1924 3579 1919 2456 3435 2710 1782 1733 4775
G[30, 0.3, ∗] 144 65 80 69 120 71 63 63 69 63 66 47 66 68
G[30, 0.5, ∗] 797 743 428 293 535 523 788 420 526 493 209 485 663 686
G[30, 0.7, ∗] 3601 2282 2413 2666 2393 2674 2067 2302 2116 1714 1776 2551 2347 2183
G[30, 0.9, ∗] 5469 3963 5273 6190 5859 10126 6592 7233 5829 4538 12104 5838 5672 6436
G[35, 0.3, ∗] 349 207 281 207 642 259 222 245 189 191 213 254 212 316
G[35, 0.5, ∗] 2734 1736 3535 1628 2860 2147 2418 2265 694 1587 1511 2321 2696 2951
G[35, 0.7, ∗] 20465 11009 14241 12579 13995 6052 9606 10466 5880 10473 8624 13877 22242 17990
G[35, 0.9, ∗] 4669 4209 4238 3773 4032 4688 4754 3935 4853 3905 5085 4201 3493 3866
G[40, 0.3, ∗] 84 78 74 114 110 92 70 69 81 74 93 95 94 71
G[40, 0.5, ∗] 6319 3375 4325 3217 4910 3161 2741 3737 1725 4077 1738 2818 4866 4209
G[40, 0.7, ∗] 32951 17273 16897 18231 29006 12684 17411 22552 7906 21629 10240 20027 17820 21933
G[40, 0.9, ∗] 12650 5016 7242 4366 3987 5309 3792 6192 5647 6218 5204 6475 6276 7029
G[45, 0.3, ∗] 17417 3708 12846 3473 13231 4890 12176 5836 2315 3700 2038 7422 12358 8653
G[45, 0.5, ∗] 132353 15432 49556 25873 40826 13366 41065 29486 13717 19856 18977 24236 40140 45825
G[45, 0.7, ∗] 26723 10929 8922 23577 14271 11128 14693 17150 8614 12260 9664 14613 10325 23154
G[45, 0.9, ∗] 29116 22902 9866 20114 29972 11363 9603 11493 5236 12209 8169 13046 7375 8469
G[50, 0.3, ∗] 134894 29668 48925 17396 72277 14296 67752 35312 7566 22337 15452 30288 52433 39224
G[50, 0.5, ∗] 141635 38901 26045 18946 51960 13879 23120 17775 11136 19995 17839 16940 55500 36362
G[50, 0.7, ∗] 54647 11981 4139 3493 5876 2191 4077 2968 1472 3076 2462 2505 5228 4133
G[50, 0.9, ∗] 77962 9452 16059 14416 15551 8889 15939 13804 6888 14384 8864 12384 14470 18115
Average 40825 6543 8660 5793 11306 4801 8205 6155 3324 5388 4119 5963 9922 8807

Table 2: Time report for different configurations for WKI.

INSTANCES CPLEX BACKTRACKING

GREEDY GREEDYLS

w wZ wN

w wZ wN
SWAP1 SWAP2 SWAPB SWAP1 SWAP2 SWAPB SWAP1 SWAP2 SWAPB

DIMACS-BASED 663,2 682,1 676,6 675,4 677,1 678,9 681,3 689,3 679,6 680,1 677,9 681,1 680,2 679,3
RANDOM 92,7 158,3 135,8 136,6 129,6 159,3 137,8 139,4 168,2 139,0 151,6 158,1 118,2 141,0
GENERAL AVERAGE 367,4 410,5 396,2 396,0 393,2 409,5 399,5 404,2 414,4 399,5 405,0 410,0 388,8 400,2

21

Table 3: Time-node report for combinations of WKI, MCKI and MKI

Group
CPLEX

GREEDYLS-wN -SWAP1

#Instances
WKI WKI + MCKI WKI + MKI WKI + MKI + MCKI

time nodes time nodes time nodes time nodes time nodes
1-FullIns_3 3,45 4013 48,19 4817 53,70 4867 67,22 678 68,15 678 2
2-Insertions_3 29,70 47419 20,11 3837 39,68 5061 41,59 2604 44,36 2604 1
huck 2,51 40 11,08 173 10,73 112 2,75 0 2,79 0 1
myciel3 0,14 13 0,16 16 0,16 16 0,16 6 0,16 6 4
myciel4 1,17 2834 10,10 1914 7,27 1043 2,61 41 2,66 41 2
queen5_5 0,27 0 0,27 0 0,27 0 0,29 0 0,29 0 4
queen6_6 7,20 1943 19,81 1377 21,26 1377 73,47 769 74,56 769 2
queen7_7 5,07 69 15,39 44 15,97 44 28,30 31 29,01 31 4
G[20, 0.3, ∗] 0,15 2 0,16 1 0,16 2 0,16 0 0,16 0 4
G[20, 0.5, ∗] 0,25 11 0,23 6 0,21 8 0,28 3 0,25 3 4
G[20, 0.7, ∗] 0,23 109 0,48 37 0,53 50 0,42 2 0,42 8 4
G[20, 0.9, ∗] 0,29 25 0,64 15 0,64 15 0,66 29 0,67 29 4
G[25, 0.3, ∗] 0,25 1 0,17 5 0,19 6 0,19 6 0,20 6 4
G[25, 0.5, ∗] 0,45 678 1,30 171 1,12 132 0,98 45 0,96 48 4
G[25, 0.7, ∗] 0,80 752 4,29 626 1,57 90 1,98 24 2,11 17 4
G[25, 0.9, ∗] 3,06 3206 5,19 2456 5,76 2456 48,05 1753 49,68 1753 4
G[30, 0.3, ∗] 0,26 144 0,31 69 0,33 66 0,35 46 0,36 46 4
G[30, 0.5, ∗] 0,42 243 0,58 120 0,62 117 1,11 32 1,15 25 3
G[30, 0.7, ∗] 2,66 3601 14,90 2116 13,56 1088 7,82 181 9,41 195 4
G[30, 0.9, ∗] 1,67 547 3,55 686 3,88 686 42,82 524 43,49 524 3
G[35, 0.3, ∗] 0,49 320 0,78 223 0,87 196 0,85 116 0,87 100 3
G[35, 0.5, ∗] 2,55 2734 9,17 694 9,00 403 7,31 143 8,25 152 4
G[35, 0.7, ∗] 5,59 2524 18,18 2674 31,12 1301 60,61 772 48,51 393 3
G[35, 0.9, ∗] 3,61 135 6,12 737 6,44 737 7,97 99 8,19 99 2
G[40, 0.3, ∗] 0,59 84 1,28 81 1,25 84 1,36 82 1,43 82 4
G[40, 0.5, ∗] 12,32 7933 58,33 2371 114,76 2686 70,25 797 59,13 494 2
G[40, 0.7, ∗] 1,87 67 28,23 18 28,91 18 8,37 14 8,42 14 1
G[40, 0.9, ∗] 45,33 14999 58,56 8050 83,30 8050 467,66 572 463,01 572 2
G[45, 0.3, ∗] 12,33 17417 15,73 2315 19,42 1641 13,47 1014 13,80 964 4
G[45, 0.5, ∗] 2,08 227 16,57 231 34,52 267 14,30 70 14,95 77 2
G[45, 0.7, ∗] 68,12 49093 432,00 15868 297,58 6369 653,39 1488 446,66 727 2
G[45, 0.9, ∗] 4,49 66 35,27 208 36,25 208 42,56 102 43,06 102 1
G[50, 0.3, ∗] 4,35 1057 6,60 583 6,33 507 48,27 1926 50,24 1926 2
G[50, 0.5, ∗] 265,84 149398 850,26 19392 233,27 2370 144,27 924 101,27 492 1
G[50, 0.7, ∗] 1,73 44 12,12 37 8,61 23 18,42 13 26,00 26 1
Total average 7,43 4878 26,18 1413 19,98 909 38,31 343 33,52 305 100

clique inequalities) and/or MCKI (multicolor combinatorial clique
inequalities).

As a strong point on our contribution, we highlight that the
number of nodes in the branching tree is significantly decreased
when the proposed cutting planes are used, thus evidencing their
effectiveness. Indeed, we obtained good preliminary results show-
ing that the dual bound given by the linear relaxation improves
considerably when using our cuts in the root node without per-
forming any branching.

The drawback, on the other hand, is the fact that execution
times are increased when the separation routines are included
in the algorithm, and so we shall conclude that this first imple-
mentation may not be as efficient as it needs to be. Indeed, as a
future/ongoing line of work we are working in several ideas to
improve the efficiency of our implementation. Our main focus is
to improve our backtracking algorithm, since our implementation
was quite straightforward and it didn’t make profit of important
characteristics of this type of algorithms. In particular, we are
inspecting bounding procedures which may help to significantly
reduce the size of the backtracking tree, allowing to find good
solutions in less time. Our current work in this direction consists

in adapting to our specific problem, the branch-and-bound pro-
cedure introduced in [8] for the classic maximum weight clique
problem.

REFERENCES
[1] Mónica Braga, Diego Delle Donne, Mariana Escalante, Javier Marenco, María E.

Ugarte, and María del C. Varaldo. 2020. The minimum chromatic violation
problem: A polyhedral approach. Discrete Applied Mathematics 281 (2020),
69–80.

[2] Pablo Coll, Javier Marenco, Isabel Méndez-Díaz, and Paula Zabala. 2002. Facets
of the graph coloring polytope. Annals of Operations Research 116-12 (2002),
79–90.

[3] Diego Delle Donne and Javier Marenco. 2016. Polyhedral studies of vertex
coloring problems: The standard formulation. Discrete Optimization 21 (2016),
1–13.

[4] Stefano Gualandi and Federico Malucelli. 2012. Exact Solution of Graph
Coloring Problems via Constraint Programming and Column Generation.
INFORMS Journal on Computing 24 (2012), 81–100.

[5] Isabel Méndez-Díaz and Paula Zabala. 2006. A branch-and-cut algorithm for
graph coloring. Discrete Applied Mathematics 154-5 (2006), 826–847.

[6] Isabel Méndez-Díaz and Paula Zabala. 2008. A cutting plane algorithm for
graph coloring. Discrete Applied Mathematics 156-2 (2008), 159–179.

[7] Manfred W. Padberg. 1973. On the facial structure of set packing polyhedral.
Mathematical Programming 5 (1973), 199–215.

[8] Pablo San Segundo, Fabio Furini, and Jorge Artieda. 2019. A new branch-and-
bound algorithm for the Maximum Weighted Clique Problem. Computers &
Operations Research 110 (2019), 18–33. https://doi.org/10.1016/j.cor.2019.05.017

22

