
A Parallel Bucket-Based Bottom-Left-Fill
Algorithm for Nesting Problems Using a

Semi-Discrete Representation
Sahar Chehrazad

Department of Computer Science,
KULeuven

Leuven, Belgium
Sahar.Chehrazad@kuleuven.be

Dirk Roose
Department of Computer Science,

KULeuven
Leuven, Belgium

Dirk.Roose@kuleuven.be

Tony Wauters
Department of Computer Science,

KULeuven
Technologiecampus, Gent, Belgium

Tony.Wauters@kuleuven.be

ABSTRACT
We discuss the parallelization of the bottom-left-fill algorithm to
solve nesting problems on multicore processors. The algorithm
uses a semi-discrete representation of both the 2D non-convex
pieces and the strip. In case several rotation angles are allowed
for each piece, the computation of the tentative placement for
each angle is parallelized using OpenMP, limiting the number of
threads to the number of rotation angles. The speedup is further
limited due to load imbalance. Therefore, we develop a bucket-
based bottom-left-fill algorithm, which subdivides the pieces in
buckets and places the buckets, while computing an optimal
ordering of the pieces in each bucket to improve the solution, i.e.,
to minimize the length of the strip. The many possible orderings
of the pieces in a bucket allow to create many tasks that can
be executed concurrently. Dynamic load balancing is used. We
evaluate the parallel performance and the solution quality of this
new algorithm, using different bucket sizes.

KEYWORDS
cutting and packing, nesting, bottom-left-fill algorithm,multicore,
OpenMP

1 INTRODUCTION
Nesting problems, a branch of cutting and packing problems, are
important for many industries, e.g. textile, sheet metal, leather,
glass and paper industries, see [2], and also in additive manufac-
turing, see [7]. In this paper we deal with placing 2D, possibly
non-convex, pieces without overlap on a strip, a rectangular sheet
with a fixed width and a variable length, while minimizing the
used length of the strip. This is known as the irregular strip pack-
ing problem, which is a branch of ‘open dimension’ problems,
see [14]. Depending on the application, the pieces can be rotated
or not. In case rotation is allowed, typically only a few rotation
angles are allowed.

Many heuristic methods have been proposed to solve this NP-
complete problem. Bottom-left-fill is a simple greedy heuristic
algorithm, in which the pieces are placed one by one in the strip in
the left-most and bottom-most position for which the piece does
not overlap any of the already placed pieces (‘fill’ indicates that
a piece can be placed in the empty space between already placed
pieces). The ordering in which the pieces are placed influences
the solution quality, i.e., the used length of the strip. Hence, many

© 2022 Copyright held by the owner/author(s). Published in Proceedings of the 
Joint ALIO/EURO International Conference 2021-2022 on Applied Combinatorial 
Optimization, April 11-13, 2022, ISBN 978-3-89318-089-9 on OpenProceedings.org. 
Distribution of this paper is permitted under the terms of the Creative Commons 
license CC-by-nc-nd 4.0.

(meta-)heuristics have been proposed, that use the bottom-left-
fill algorithm as a ‘building block’, e.g., by permuting the order
in which pieces are placed.

In most applications the pieces are polygons and many meth-
ods use the original polygonal geometry of the pieces [9, 11], but
some methods use a discretization of the pieces and/or the strip.
In the latter case, a 2D discretization can be used [12, 13] or a 1D
discretization, also called semi-discretization [1, 10].

In [5] we presented an efficient bottom-left-fill algorithm using
semi-discretization of the pieces and the strip along the horizon-
tal x-axis. The semi-discretized pieces and the (partially) filled
strip are represented by line segments lying on equidistant verti-
cal lines, called ‘resolution lines’. The bottom-left-fill algorithm
discretizes and places the pieces one by one, sorted according to
e.g. decreasing bounding box area. For each piece, all allowed ro-
tation angles are considered. For each rotation angle, the rotated
piece is tentatively placed in the left-most and bottom-most free
position in the partially filled strip without overlap. Eventually,
the piece is placed with the rotation angle that gives the best
result according to some optimality criteria (see next section).

We assume that the bottom-left corner of the strip has (strip)
coordinates (𝑥,𝑦) = (0, 0) and that the bottom left corner of the
axis-aligned bounding box of each piece has (local) coordinates
(0, 0). Placing a (rotated) piece in the left-most and bottom-most
available position in the partially filled strip without overlap re-
quires to find a ‘translation vector’ 𝑡 = (𝑥𝑡 , 𝑦𝑡 ), that indicates the
position in the strip of the bottom-left corner of the axis-aligned
bounding box of the piece, such that all line segments of the
semi-discretized representation of the piece can be placed in the
strip without overlap. For each piece, the subsequent translation
vectors correspond to the low endpoints of the empty vertical
line segments in the strip, traversing the resolution lines from
left to right and, for each resolution line, traversing the empty
vertical segments from bottom to top.

In principle, for a given translation vector, for all line segments
it must be tested whether they can be placed in the strip without
overlap with already placed line segments. However, in case some
line segments of the piece cannot be placed without overlap, not
all tests must be performed to decide that the current translation
vector does not allow placement without overlap. Indeed, as soon
as a line segment cannot be placed, we update the translation
vector t. Figure 1 shows the placement of a piece.

In [5] we present two ways to further reduce the number of
overlap tests. First, the overlap tests of a piece covering 𝐿 + 1
resolution lines are not performed by considering the line seg-
ments of a piece in subsequent resolution lines, but in the order
{0, 𝐿, 𝐿/2, 𝐿/4, 3𝐿/4, . . .} which quickly gives information about
several parts of the piece. Second, if several copies of the same
piece are placed consecutively, the piece is discretized only once.

Short Paper

 

 

11 10.48786/alioeuro.2022.03

https://OpenProceedings.org/
http://dx.doi.org/10.48786/alioeuro.2022.03


Strip

Next piece

𝐼2,0𝐼1,0𝐼0,0

0

𝑦𝑚𝑎𝑥

0.75

2

00 𝑅 2𝑅 3𝑅 4𝑅 5𝑅
(a)

0 𝑅 2𝑅 3𝑅 4𝑅 5𝑅

𝐼0,0

(b)

0 𝑅 2𝑅 3𝑅 4𝑅 5𝑅

𝐼0,0

𝐼2,0

(c)

0 𝑅 2𝑅 3𝑅 4𝑅 5𝑅

𝐼0,0

𝐼2,0

(d)

0

𝑦𝑚𝑎𝑥

0.75

2

0 𝑅 2𝑅 3𝑅 4𝑅 5𝑅

𝐼0,0

𝐼2,0

𝐼1,0

(e)

0 𝑅 2𝑅 3𝑅 4𝑅 5𝑅

𝐼0,0

(f)

0 𝑅 2𝑅 3𝑅 4𝑅 5𝑅

𝐼0,0

(g)

0 𝑅 2𝑅 3𝑅 4𝑅 5𝑅

𝐼0,0

(h)

𝐼0,0

0 𝑅 2𝑅 3𝑅 4𝑅 5𝑅
(i)

𝐼0,0 𝐼2,0

0 𝑅 2𝑅 3𝑅 4𝑅 5𝑅
(j)

𝐼0,0 𝐼2,0𝐼1,0

0 𝑅 2𝑅 3𝑅 4𝑅 5𝑅
(k)

Figure 1: Placement algorithm: (a) represents the strip with already placed pieces where full lines indicates filled line
segments and dashed lines indicate empty line segments on the resolution lines with 𝑥 = 𝑖 × 𝑅, 𝑖 = 0, 1, 2, . . . . In (b), line
segment 𝐼0,0 cannot be placed with 𝑡 = (0, 0) so we shift it upwards. In (c), 𝐼0,0 is placed at 𝑥 = 0 with 𝑡 = (0, 0.75), but 𝐼2,0
cannot be placed with this translation t. Therefore, in (d), we shift 𝐼2,0 upwards, t is updated to (0, 2). However, in (e) 𝐼1,0
cannot be placed with this translation t. We update t to shift the line segments to the right. We return to 𝐼0,0. In (f) and (g),
we cannot place 𝐼0,0 at 𝑥 = 𝑅. Therefore, we again update t to shift the line segments to the right. In (i), (j) and (k), 𝐼0,0, 𝐼2,0
and 𝐼1,0 can be placed at respectively 𝑥 = 2𝑅, 𝑥 = 4𝑅 and 𝑥 = 3𝑅 with 𝑡 = (2𝑅, 2).

Also, the translation vectors considered for the next copy of
that piece start from the translation vector that allowed to place
the previous copy. More information on the discretization, dis-
cretization error, resolution and the placement algorithm and the
obtained quality can be found in [5].

In [5] the bottom-left-fill algorithm is implemented sequen-
tially. The execution time is very low in comparison with other
implementations of the bottom-left-fill algorithm – without or
with (semi-)discretization – due to the use of appropriate data
structures and algorithm organisation in order to achieve high
performance on a single core (e.g., by maximizing cache hits).

Since current computers are multicore processors, a parallel
implementation using several cores allows to further reduce the
runtime. The parallelization should be done at the right level,
such that threads perform enough work between synchronisa-
tion points, i.e. the grain size should be sufficiently large in order
to achieve high parallel efficiency and thus speedup. Note that
bottom-left-fill is a simple greedy heuristic to solve nesting prob-
lems, and is often combined with (meta)heuristics to improve
the quality of the placement. If the (meta)heuristic allows to exe-
cute several bottom-left-fill placements concurrently, e.g., in an
evolutionary algorithm [3, 6, 10], then the parallelization should
be done at the level of the (meta)heuristic. However, several

12



0 1 2 3 4 5

𝑦0

𝑦1

𝑦3

𝑦4

𝑦2
𝑦5

𝑦6

𝑦7

𝑦8

𝑦11

𝑦12

𝑦15

𝑦9

𝑦10

𝑦13

𝑦14

𝑦16

𝑦17

(a) A discretized piece with 𝑅 = 1.

0 1 2 3 4 5

𝑦0

𝑦1

𝑦3

𝑦4

𝑦2
𝑦5

𝑦6

𝑦7

𝑦8

𝑦11

𝑦12

𝑦15

𝑦9

𝑦10

𝑦13

𝑦14

𝑦16

𝑦17

(b) The segments of a piece are assigned to two threads,
i.e. threads 0 and 1 perform the overlap tests for respec-
tively the gray and black segments.

Figure 2: A low-level parallelization of the bottom-left-fill
algorithm.

(meta)heuristics use the bottom-left-fill algorithm as a ‘building
block’ in a sequential way, see e.g. [1, 9, 11, 12]. In these cases
the bottom-left-fill algorithm itself should be parallelized.

We briefly discuss two approaches to parallelize the bottom-
left-fill algorithm, with different levels of parallelism, which were
not selected because of their disadvantages.

In a high-level parallelization approach, the 𝑁 sorted pieces
are assigned to 𝑃 threads in a cyclic way, such that each thread
handles an appropriate sample of the sorted pieces. All threads
place the 𝑁 /𝑃 assigned pieces concurrently on separate strips,
with the same width (in the 𝑦-direction). The threads are then
synchronized and all strips are concatenated along the𝑥-direction
to make the final solution, see Fig. 3. This approach typically
leads to a large strip length, because of the holes around the
concatenation 𝑥-coordinates. This problem could be solved by
parallelizing only the placement of the 𝑀 largest pieces, and
sequentially placing the 𝑁 −𝑀 smallest pieces afterwards to fill
the holes. If 𝑀 is large, the solution quality is low due to the
impossibility to fill all holes by the 𝑁 −𝑀 smallest pieces. If𝑀
is small, many pieces are placed sequentially, which limits the
speedup.

In a low-level parallelization approach, the placement of a piece,
with a given rotation angle, is parallelized. Checking whether a
piece can be placed in the strip with a given translation vector

Figure 3: The pieces are divided between 4 threads. 4 strips
are concatenated along the 𝑥-direction to make the final
solution.

requires to perform an overlap test for each line segment of that
piece. These tests could be performed concurrently, but this par-
allelization approach would be quite inefficient. Indeed, assume
that the overlap tests are assigned to two threads, see Fig. 2. If
each thread checks the placement of all assigned segments with
the current translation vector t, then afterwards synchronization
is needed to combine the partial results and decide whether the
piece can be placed with this t or whether t must be updated.
However, in the sequential algorithm the translation vector t is
updated as soon as a segment cannot be placed without overlap
with the current t. In the parallel algorithm, unnecessary checks
are performed which reduce the efficiency of the algorithm. The
unnecessary checks could be avoided by increasing the num-
ber of synchronization points. However, the overhead caused
by synchronization will reduce the parallel efficiency and the
speedup.

In this paper we first present an intermediate level paralleliza-
tion, which limits the number of threads that can be used and
thus the speedup, to the number of allowed angles. Afterwards,
we present a bucket-based bottom-left-fill algorithm, that can
improve the solution quality and that allows to execute many
tasks in parallel on a multicore computer.

Figure 4: Placement of each piece of the poly5b data set:
mean and maximum number of tests performed for the 8
allowed rotation angles.

The remainder of the paper is organized as follows. Section
2 presents the parallelization of the bottom-left-fill algorithm.
Section 3 presents the parallelization of the bucket-based bottom-
left-fill. In section 4 computational results are presented, provid-
ing insight in the parallel performance of the method. Finally, in
section 5 we draw some conclusions.

13



2 PARALLELIZATION OF THE
BOTTOM-LEFT-FILL ALGORITHM

The bottom-left-fill algorithm iterates over the pieces and for
each piece all allowed rotation angles are considered. For each
rotation angle, a separate thread checks the placement of the
piece in the strip. The thread (rotation angle) that minimizes the
largest x-coordinate of the tentatively placed piece wins. In case
several threads lead to the minimum, the thread that minimizes
the maximal y-coordinate of the tentatively placed piece wins.
In case there is still a ‘tie break’ the thread with the smallest ID
wins. The parallelization is done using OpenMP [4]. In order to
limit the fork-join overhead, we create the threads only once
before starting the iteration over the pieces and keep them active
until the end of the algorithm. Global variables are used to store
the results of the thread with the best result so far. The winning
thread consolidates the placement in the strip and resets the
global variables. The threads then start placing the next piece.

This approach not only limits the number of threads that can
be used to the number of allowed angles, and thus the speedup,
but also causes substantial load imbalance since the number of
overlap tests varies with the rotation angle. As explained in the
previous section, parallelization of the bottom-left-fill algorithm
at a lower and a higher level are also very inefficient or can lead to
a low solution quality. Therefore, we present in the next section
a bucket-based bottom-left-fill algorithm, which not only can
improve the solution quality, but can also be parallelized more
efficiently.

3 PARALLELIZATION OF THE
BUCKET-BASED BOTTOM-LEFT-FILL
ALGORITHM

It is well known that the solution quality obtained by the (greedy)
bottom-left-fill algorithm can be improved by reordering the
pieces, see [3]. Checking all permutations of the pieces, especially
considering all rotation angles for each piece in each permuta-
tion, is prohibitively expensive. Subdividing pieces in ‘buckets’
and placing the buckets one by one in the strip, while finding an
optimal placement of the pieces in each bucket, reduces the num-
ber of permutations considered but still can improve the solution
quality, compared to the classical bottom-left-fill algorithm.

Suppose that the pieces are subdivided in 𝑘 buckets with size
𝑏 (the last bucket might have less than 𝑏 pieces). Considering all
permutations of the pieces in a bucket and rotating each piece
with 𝑓 rotation angles leads to 𝑏! × 𝑓 𝑏 possibilities. All these
possibilities could be evaluated concurrently, but we create tasks
with sufficient grain-size by grouping 𝑓 possibilities as follows.
In each task the ordering of the 𝑏 pieces is fixed, as well as the
rotation angle of the first 𝑏 − 1 pieces, and all rotation angles
of the last piece are evaluated, to find the rotation angle that
minimizes the maximal 𝑥-coordinate of the pieces in the bucket,
when placed in the strip without overlap. This leads to 𝑏! × 𝑓 𝑏−1

tasks that can be executed concurrently.
Compared to the parallelization of the classical bottom-left-fill

algorithm, the potential speedup is not limited to the number of
rotation angles and the (relative) synchronization overhead is
lower, due to the larger ‘grainsize’ of the tasks.

We have implemented this approach using OpenMP, assuming
that the number of threads can vary. Initially the empty strip is
stored in global variable𝐺𝑙𝑜𝑏𝑎𝑙_𝑆𝑡𝑟𝑖𝑝 . Each thread gets a copy of
the strip in its local memory. We create the threads only once and

keep them active until the end of the algorithm. Global variables
are used to store the result of the thread that minimizes the largest
x-coordinate of the tentatively placed pieces. In case there is a
‘tie break’, the result of the thread that minimizes the maximal
y-coordinate of the tentatively placed pieces will be stored in the
global variables.

Each thread gets a task from the task pool and performs tenta-
tive placement of the assigned permutation and rotations of the
pieces. The thread compares its result, i.e. the best result consid-
ering all rotation angles of the last piece, with the values in the
global variables and updates them in case the thread obtains a
better result. Finally, the main thread updates 𝐺𝑙𝑜𝑏𝑎𝑙_𝑆𝑡𝑟𝑖𝑝 and
resets the other global variables. The threads then start the place-
ment of the next bucket. After placing all buckets, the threads
are joined.

4 RESULTS
In this section we discuss the performance of the parallel algo-
rithms described in the previous sections, implemented in C++
using the Qt environment with OpenMP, compiled using gcc. The
experiments were carried out on Intel(R) Core(TM) i9-10980XE
CPU @ 3.00GHz (18 cores).

We present results for the ‘poly5b’ data set [8] and a data set
with 550 randomly generated pieces. In the latter data set, the
pieces are generated with 4 different diameters, 80% of the pieces
have the smallest diameter and most pieces are non-convex. Both
data sets contain both non-convex and convex pieces, varying in
size. Table 1 shows characteristics of the data sets. The resolution
R, i.e. the distance between consecutive resolution lines, see Fig. 1,
is chosen such that the non-vertical edge with the smallest 𝑥-
projection in the data set is represented (discretized) by 10 line
segments. The pieces are sorted according to decreasing axis-
aligned bounding box area; this allows to place small pieces in
the gaps between already placed large pieces.

4.1 Parallelization of the bottom-left-fill
algorithm

For the parallelization of the bottom-left-fill algorithm we con-
sider 4 different cases: no rotation allowed (𝜃 = 0°), two rotations
with Δ𝜃 = 180°, four rotations with Δ𝜃 = 90° and eight rotations
with Δ𝜃 = 45°. Since the (tentative) placement for each angle is
executed by a separate thread, the number of threads (and cores
of the multicore processor) equals the number of rotation angles.

Table 2 shows the execution times (time to compute the place-
ment, including the semi-discretization, averaged over 100 runs)
of the parallel execution of the bottom-left-fill algorithm. Since
the computations for each rotation angle are performed by a
separate thread, the parallel execution time ideally would be in-
dependent of the number of rotation angles. However, in practice
the execution times grow with the number of allowed rotations,
mainly due to load imbalance. Hence the speedup is smaller than
the number of rotation angles.

To illustrate the load imbalance, the number of tests to tenta-
tively place a piece with each allowed rotation angle is counted,
for each piece of the poly5b data set. Fig. 4 presents the mean
and the maximum number of tests performed for each piece. The
sometimes large difference between the mean and maximum
values results in substantial load imbalance during the placement
of a piece.

14



Table 1: Information on the data sets used for computational experiments.

Data set Number Number of Minimum and maximum Resolution
of pieces different x-projection

pieces of pieces
poly5b 75 75 [3,12] 0.1

550-random 550 550 [1,27.2] 0.1

Table 2: Execution times of the parallel bottom-left-fill algorithm for poly5b and 550-random data sets, time: time (ms) to
compute semi-discretization + time of the placement.

Data set Allowed rotations = number of threads
1 (𝜃 = 0°) 2 (Δ𝜃 = 180°) 4 (Δ𝜃 = 90°) 8 (Δ𝜃 = 45°)

poly5b Parallel time (ms) 4.9 5.9 6.9 7.6
Speedup 1 1.6 2.5 4.6

Strip length 72.4 68.5 66 65.9
550-random Parallel time (ms) 82.0 100.5 113.3 132.3

Speedup 1 1.7 2.9 5.3
Strip length 112.6 111.9 111.4 111.1

Table 3: Information on the parallelization of the bucket-based bottom-left-fill algorithm.

Data set Number of Size of Number of Number of tasks
rotation angles buckets buckets per bucket

𝑓

poly5b 8 (Δ𝜃 = 45°) 3; 4 25; 19 384; 12288
550-random 8 (Δ𝜃 = 45°) 3; 4 184; 138 384; 12288

Table 4: Execution times of the parallel bucket-based bottom-left-fill algorithm for poly5b and 550-random data sets, time:
time (ms) to compute semi-discretization + time of the placement.

Data set Bucket Sequential Parallel Parallel Speedup Speedup Strip
Size time (ms) time (ms) time (ms) (10 threads) (18 threads) length

(10 threads) (18 threads)

poly5b 3 4870 520 320 9.4 15.2 63.1
4 118912 12482 7724 9.5 15.4 63.5

550-random 3 131418 14530 8860 9.0 14.9 108.9
4 3389784 369454 225834 9.2 15.0 109.5

4.2 Parallelization of the bucket-based
bottom-left-fill algorithm

Table 3 shows the information on the parallelization of the bucket-
based bottom-left-fill algorithm. For both data sets 𝑓 = 8 rotation
angles (Δ𝜃 = 45°) are allowed. As explained in the previous
section, every task evaluates the placement of a bucket with a
given permutation of the pieces in the bucket with fixed angles,
except for the last piece, for which 𝑓 = 8 rotation angles are
considered.

Table 4 shows the execution times for the parallel bucket-
based bottom-left-fill algorithm. The results show that, using 10
threads, we obtained a speedup close to 10, due to the dynamic
load balancing of tasks by using a task pool. Note that the over-
head caused by creating threads is minimal since threads are
created only once. Using 18 threads, the speedup increases, but
the parallel efficiency decreases, due to e.g. the critical section
needed to access the task pool.

Table 4 also shows that using buckets improves the solution
quality, i.e., the strip length, compared to the simple bottom-left-
fill algorithm, since the pieces within each bucket are placed in
an optimal way. However, increasing the bucket size does not
necessarily lead to a better global solution due to the greedy
nature of the heuristic.

For bucket size equal to two, the small number of tasks (i.e.,
16) limits the number of threads that can be used. Also, tests with
bucket size 2 indicate that the resulting strip length is worse than
when using larger bucket sizes.

Note that in our experiments the buckets consist of pieces
that are consecutive in the ordering of the pieces according to
decreasing axis-aligned bounding box area. We expect that the
solution quality of the bucket-based bottom-left-fill algorithm
can be improved by selecting the pieces that form a bucket in a
more sophisticated way.

For the poly5b data set, we can compare the performance and
the execution time of the parallel bucket-based bottom-left-fill
algorithm with those of the algorithms presented in [3]. The

15



sequential bottom-left-fill algorithm in [3] uses exact geometry
of the pieces and a semi-discrete strip and requires 14700 ms
(on Pentium 4, approximately 30 times slower than 1 core of the
processor used in our experiments; hence we expect that it would
require ≈ 490 ms on 1 core of our processor). The achieved strip
length should be equal to the length obtained with our bottom-
left-fill algorithm, see [5] for more details. Using meta-heuristics
on top of the bottom-left-fill algorithm, a strip length of 60.5 is
achieved in [3], but the sequential execution time increases to
676610 ms (i.e., ≈ 22550 ms on 1 core of our processor). The strip
length obtained by the bucket-based bottom-left-fill algorithm
with bucket size 3 is worse (i.e., 63.1) but requires a much lower
execution time, especially when many cores are used (i.e., 320
ms on 18 cores).

Since the parallel bucket-based bottom-left-fill algorithm, with
bucket size 3, typically results in a shorter strip length than the
original bottom-left-fill algorithm, while the execution time is still
low, it can be used as an efficient ‘building block’ to implement
various (meta)heuristics already proposed in the literature.

5 CONCLUSION
We presented the parallelization of the bottom-left-fill algorithm
and a variant of it to solve 2D nesting problems using semi-
discretization of both the pieces and the strip. We started from a
very fast sequential code, that substantially outperforms other im-
plementations of the bottom-left-fill algorithm, with or without
semi-discretization.

In the parallel bottom-left-fill algorithm, the computations
required to (tentatively) place a piece for each allowed rotation
angle are performed concurrently. This approach limits the num-
ber of threads, and thus the speedup, to the number of allowed
rotation angles. We have shown that the speedup of the algorithm
is mainly limited by the load imbalance in the computations for
each rotation angle.

We developed a variant of the bottom-left-fill algorithm which
subdivides the pieces into buckets and improves the quality of
the solution by selecting the best ordering of the pieces in each
bucket. This method allows to create many tasks that can be
executed in parallel. By using dynamic load balancing a high
speedup is achieved on a multicore processor with up to 18 cores.
Increasing the bucket size does not always lead to a better global
solution.

Since the parallel bucket-based bottom-left-fill algorithm,
e.g. with bucket size 3, achieves a shorter strip length than the
original bottom-left-fill algorithm, while the execution time is still
low, especially when many cores are used, it can be used as an ef-
ficient ‘building block’ for integration in various (meta)heuristics
proposed in the literature.

ACKNOWLEDGMENTS
We acknowledge the financial support of Interne Fondsen KU
Leuven / Internal Funds KU Leuven, project C24/17/048.

REFERENCES
[1] Rajasekhar Akunuru and N. Ramesh Babu. 2013. A semi-discrete geometric

representation for nesting problems. European Journal of Operational Research
51, 14 (2013), 4155–4174. https://doi.org/10.1080/00207543.2012.751508

[2] Julia A. Bennell and Jose F. Oliveira. 2008. The geometry of nesting problem:
a tutorial. European Journal of Operational Research 184 (2008), 397–415.

[3] Edmund Burke, Robert Hellier, Graham Kendall, and Glenn Whitwell. 2006.
A new bottom-left-fill heuristic algorithm for the two-dimensional irregular
packing problem. Operational Research 54, 3 (2006), 587–601. https://doi.org/
10.1109/TASE.2006.874973

[4] Rohit Chandra, Leonardo Dagum, Dave Kohr, Dror Maydan, Jeff McDonald,
and Ramesh Menon. 2001. Parallel Programming in OpenMP. Academic Press,
San Diego.

[5] Sahar Chehrazad, Dirk Roose, and Tony Wauters. 2021. A fast and scalable
bottom-left-fill algorithm to solve nesting problems using a semi-discrete
representation. European Journal of Operational Research Accepted (2021).
https://doi.org/10.1016/j.ejor.2021.10.043

[6] A.Miguel Gomes and Jose F.Oliveira. 2002. A 2-exchange heuristic for nesting
problems. European Journal of Operational Research 141, 2 (2002), 359–370.
https://doi.org/10.1016/S0377-2217(02)00130-3

[7] Valeriya. Griffiths, James P. Scanlan, Murat H. Eres, Antonio. Martinez-Sykora,
and Phani. Chinchapatnam. 2019. Cost-driven build orientation and bin pack-
ing of parts in Selective Laser Melting (SLM). European Journal of Operational
Research 273 (2019), 334–352.

[8] Eva Hopper. 2000. Two-dimensional packing utilising evolutionary algorithms
and other meta-heuristic methods. Ph.D. Dissertation. University of Wales,
Cardiff School of Engineering.

[9] Bonfim Amaro Junior, Plácido Rogerio Pinheiro, Rommel Dias Saraiva, and
Pedro Gabriel Calíope Dantas Pinheiro. 2014. Dealing with None regular
Shapes Packing. Mathematical Problems in Engineering 2014 (2014), 587–601.
https://doi.org/10.1155/2014/548957

[10] Heng Ma and Chia-Cheng Liu. 2007. Fast Nesting of 2-D Sheet Parts With
Arbitrary Shapes Using a Greedy Method and Semi-Discrete Representations.
IEEE Transactions on Automation Science And Engineering 4, 2 (2007), 273–282.
https://doi.org/10.1109/TASE.2006.874973

[11] Placido R. Pinheiro, Bonfim Amaro Junior, and Rommel D. Saraiva. 2016. A
random-key genetic algorithm for solving the nesting problem. International
Journal of Computer Integrated Manufacturing 29, 11 (2016), 1159–1165. https:
//doi.org/10.1080/0951192X.2015.1036522

[12] Andre Kubagawa Sato, Thiago Castro Martins, Antonio Miguel Gomes, and
Marcos Sales Guerra Tsuzuki. 2019. Raster penetration map applied to the
irregular packing problem. European Journal of Operational Research 279, 2
(2019), 657–671. https://doi.org/10.1016/j.ejor.2019.06.008

[13] Andre Kubagawa Sato, Marcos Sales Guerra Tsuzuki, Thiago Castro Martins,
and Antonio Miguel Gomes. 2016. Study of the grid size impact on a raster
based strip packing problem solution. IFAC-PapersOnLine 49, 31 (2016), 143–
148.

[14] GerhardWaascher, Heike Haußner, and Holger Schumann. 2007. An improved
typology of cutting and packing problems. European Journal of Operational
Research 183 (2007), 1109–1130.

16


