O

proceedings

Shift-Table: A Low-latency Learned Index for Range Queries
using Model Correction

Ali Hadian
Imperial College London

ABSTRACT

Indexing large-scale databases in main memory is still challeng-
ing today. Learned index structures — in which the core com-
ponents of classical indexes are replaced with machine learning
models — have recently been suggested to significantly improve
performance for read-only range queries.

However, a recent benchmark study shows that learned in-
dexes only achieve limited performance improvements for real-
world data on modern hardware. More specifically, a learned
model cannot learn the micro-level details and fluctuations of
data distributions thus resulting in poor accuracy; or it can fit to
the data distribution at the cost of training a big model whose
parameters cannot fit into cache. As a consequence, querying a
learned index on real-world data takes a substantial number of
memory lookups, thereby degrading performance.

In this paper, we adopt a different approach for modeling a
data distribution that complements the model fitting approach
of learned indexes. We propose Shift-Table, an algorithmic layer
that captures the micro-level data distribution and resolves the
local biases of a learned model at the cost of at most one memory
lookup. Our suggested model combines the low latency of lookup
tables with learned indexes and enables low-latency processing of
range queries. Using Shift-Table, we achieve a speedup of 1.5X to
2X on real-world datasets compared to trained and tuned learned
indexes.

1 INTRODUCTION

Trends in new hardware play a significant role in the way we
design high-performance systems. A recent technological trend is
the divergence of CPU and memory latencies, which encourages
decreasing random memory access at the cost of doing more
compute on cache-resident data [25, 42, 44].

A particularly interesting family of methods exploiting the
memory/CPU latency gap are learned index structures. A learned
index uses machine learning instead of algorithmic data struc-
tures to learn the patterns in data distribution and exploits the
trained model to carry out the operations supported by an al-
gorithmic index, e.g., determining the location of records on
physical storage [7, 12, 18, 24, 25, 29]. If the learned index man-
ages to build a model that is compact enough to fit in processor
cache, then the results can ideally be fetched with a single access
to main memory, hence outperforming algorithmic structures
such as B-trees and hash tables.

In particular, learned index models have shown a great poten-
tial for range queries, e.g., retrieving all records where the key is
in a certain range A < key < B. To enable efficient retrieval of
range queries, range indexes keep the records physically sorted.
Therefore, retrieving the range query is equivalent to finding
the first result and then sequentially scanning the records to

© 2021 Copyright held by the owner/author(s). Published in Proceedings of the
24th International Conference on Extending Database Technology (EDBT), March
23-26, 2021, ISBN 978-3-89318-084-4 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Series ISSN: 2367-2005

253

Thomas Heinis
Imperial College London

retrieve the entire result set. Therefore, processing a range query
A < key < B is equivalent to finding the first result, i.e., the
smallest key in the dataset that is greater than or equal to A (sim-
ilar to lower_bound(A) in the C++ Library standard). A learned
index can be built by fitting a regression model to the cumulative
distribution function (CDF) of the key distribution. The learned
CDF model can be used to determine the physical location where
the lower-bound of the query resides, i.e., pos(A) = N X Fg(A)
where N is the number of keys and Fy is the learned CDF model
with model parameters 6.

Learned indexes are very efficient for sequence-like data (e.g.,
machine-generated IDs), as well as synthetic data sampled from
statistical distributions. However, a recent study using the Search-
On-Sorted-Data benchmark (SOSD) [22] shows that for real-
world data distributions, a learned index has the same or even
poorer performance compared to algorithmic indexes. For many
real-world data distributions, the CDF is too complex to be learned
efficiently by a small cache-resident model. The data distribution
of real-world data has "too much information” to be accurately
represented by a small machine-learning model, while an accu-
rate model is needed for an accurate prediction. One can of course
use smaller models that fit in memory with the cost of lower pre-
diction accuracy, but will end up in searching a larger set of
records to find the actual result which consequently increases
memory lookups and degrades performance. Alternatively, a
high accuracy can be achieved by training a bigger model, but
accessing the model parameters incurs multiple cache misses
and also increases memory lookups, reducing the margins for
performance improvement.

In this paper, we address the challenge of using learned models
on real-world data and illustrate how the micro-level details
(e.g., local variance) of a cumulative distribution can dramatically
affect the performance of a range index. We also argue that a
pure machine learning approach cannot shoulder the burden of
learning the fine-grained details of an empirical data distribution
and demonstrate that not much improvement can be achieved
by tuning the complexity or size thresholds of the models.

We suggest that by going beyond mere machine learning mod-
els, the performance of a learned index architecture can be sig-
nificantly improved using a complementary enhancement layer
rather than over-emphasizing on the machine learning tasks. Our
suggested layer, called Shift-Table is an algorithmic solution that
improves the precision of a learned model and effectively acceler-
ates the search performance. Shift-Table, targets the micro-level
bias of the model and significantly improves the accuracy, at the
cost of only one memory lookup. The suggested layer is optional
and applied after the prediction; it can hence be switched on or
off without re-training the model.

Our contributions can be summarized as follows:

o We identify the problem of learning a range index for real-
world data, and illustrate the difficulty of learning from
this data.

10.5441/002/edbt.2021.23

https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2021.23

o We suggest the Shift-Table approach for correcting a learned
index model, which complements a valid (monotonically
increasing) CDF model by correcting its error.

e We show how, and in which circumstances, the suggested
methods can be used for best performance.

e We suggest cost models that determine whether the Shift-
Table layer can boost performance.

o The experimental results show that our suggested method
can improve existing learned index structures and bring
stable and almost-constant lookup time for real-world
data distributions. Our enhancement layer achieves up
to 3X performance improvement over existing learned
indexes. More interestingly, we show that for non-skewed
distributions, the Shift-Table layer is effective enough to
help a dummy linear model outperform the state of the
art learned indexes on real-world datasets

2 MOTIVATION
2.1 Lookup Cost for Learned Models

In modern hardware, the lookup times of in-memory range in-
dexes and the binary search algorithm are mainly affected by
their memory access pattern, most notably by how the algorithm
uses the cache and the Last-Level-Cache (LLC) miss rate.

Processing a range query in a learned index has two stages:
1) Prediction: Running the learned model to predict the location
of the first result for the range query; and 2) Local search (also
known as last-mile search): searching around the predicted loca-
tion to find the actual location of the first result. Figure 1a shows
common search methods for the local search. If the learned model
can determine a guaranteed range area around the predicted po-
sition, one can perform binary search. Otherwise, exponential or
linear search should be used, starting from the predicted position.

A cache miss in a learned index can occur in the first stage
for accessing the parameters of the model (if the model is too
big to fit in cache), or in stage two for the local search. Key in
understanding the cost of a learned index is that local search is
done entirely over non-cached blocks of memory. A learned index
built over millions of records could predict the location of records
with an error of, say, 1000 records and yet achieve no performance
gain over binary search algorithms or algorithmic indexes. This
is because while the learned index fits the models in cache, its
algorithmic competitors also fit the frequently-accessed parts of
the data in cache, which limits the potential for improvement for
a learned index.

2.2 Lookup Cost for Algorithmic Indexes

Classical algorithms, such as binary search, can be seen as a hi-
erarchy of [non-learned] models, which take the middle-point
as its parameter and predicts (accurately) which direction the
search should follow. Specifically for the first few steps of binary
search where the middle-points usually reside in cache, the func-
tionality of binary search is the same as a learned model from a
performance point of view.

In a pure binary search on the entire data, the first set of mem-
ory locations accessed by the algorithm (i.e., the median, quarters,
etc.) will already be in the CPU cache after a few lookups. There-
fore, the major bottleneck in binary search is for the latter stages
of search where the middle elements are not in cache, causing
last-level-cache (LLC) misses. Figure 1b shows a schematic illus-
tration of how caching accelerates binary search.

254

In basic implementations of binary search, the “hot keys” are
cached with their payload and nearby records in the same cache
line, which wastes cache space. Binary search thus uses the cache
poorly and there are more efficient algorithmic approaches whose
performance is not sensitive to data distributions.

Cache-optimized versions of binary search, e.g., a binary search
tree such as FAST [21], a read-only search tree that co-locates
the hot keys but still follows the simple bisecting method of bi-
nary search, are up to 3X faster than binary search [22]. This
is because FAST keeps more hot keys in the cache and hence it
needs to scan a shorter range of records in the local search phase
(cache-non-resident iterations of the search).

2.3 Preliminary Experimental Analysis

For a tangible discussion and to elaborate on the real cost of a
learned model, we provide a micro-benchmark that measures
the cost of errors in a learned index. We use the experimental
configuration used in the SOSD benchmark [22], i.e., searching
over 200M records with 32-bit keys and 64-bit payloads. Figure 2a
shows the lookup time of the second phase (local search) in a
learned model for different prediction errors. We include the
lookup times for binary search, as well as FAST [21], over the
whole array of 200M keys.

We are interested to see that if the position predicted by a
learned index, say predicted_pos(x), has an error A, then how
long does it take in the local phase to find the correct record. Thus,
for each query x;, we pre-compute the ‘output’ of the learned
index with error A, i.e., [predicted_pos(x;) + A], and then run
the benchmark given {x;, [predicted_pos(x;) + A]} tuples.

As shown in Figure 2a, if the error of the model is more than
~300 records on average, then FAST outperforms the learned
model (with linear or exponential local search). Even if the learned
model can give a guaranteed range around the predicted point
to guide the local search and enable binary search, FAST outper-
forms it if the error exceeds 1000 records. The same trend can be
seen for the LLC miss rates in Figure 2b.

Note that this micro-benchmark over-estimates the maximum
error that the learned index can have because we only compare
the time of local search phase in a learned index with the total
search time of FAST and binary search. Considering the time
taken to execute the model for predicting the location, a learned
model needs to have a much lower error to compete with the
generic, reliable, and distribution-independent algorithms such
as binary search and FAST. For example, FAST takes 200 nanosec-
onds to search a key in the entire 200M-key dataset. If a learned
index takes, say, 120 nanoseconds to run (for accessing model
parameters and computing the prediction), then the local search
can take at most 80 nanoseconds so that the learned index can
outperform FAST, which means that the prediction error (A) must
be less than 16 records (based on Figure 2a).

Tuning the learned index for a balance of model size and ac-
curacy is a challenging task. Improving the local search time
requires using a more accurate model with a higher learning
capacity and more parameters. However, accessing such a big
model typically incurs further cache misses during model exe-
cution, and consequently the lookup time. Therefore, if the data
distribution cannot be learned efficiently with a small memory
footprint (fitting into cache), outperforming cache-efficient al-
gorithmic indexes is very challenging. This is indeed the case
for most real-world datasets that cannot be modelled accurately
with a small-sized model.

Exponential search

Binary search

Linear search
Actual
position

(model-provided max error estimate)

(a) Different "last-mile" search methods (performed after location prediction) in learned index. The locations predicted by the
model depend on the query and are not known in advance. Since the last-mile search algorithms need to access different memory
locations for each query, they cannot exploit the processor cache and the search algorithm incurs multiple cache misses

. L1-cache- resident locations Non-cached location accessed by binary search,
causing LLC miss
. L2 / L3 -cache- resident locations

N/4- /2[-\[\/_\31\]/4 N
AN NEEN NENNAN DANEN NNGHA AEND REND BN

(b) Schematic illustration of processor caching in binary search. The locations accessed by the very early stage of binary search,
such as the min, max, and the midpoint, are frequently accessed and available in the L1 cache. Further steps of binary access

locations that are less frequently accessed and fit on lower levels of the memory hierarchy. Therefore, a deterministic search

algorithm like binary search enjoys a high cache hit rate

Figure 1: Comparison of patterns in binary search (partially cached) and local search in learned indices (non-cached).

2.4 Difficulty of Learning Real-world Data

To use a learned index in a production system, it is essential to
identify when learned indexes fail to achieve superior perfor-
mance and what aspects of the data distribution contributes to
the performance of a learned index model. We realized that a
major challenge in understanding learned indexes is that the
common practices of performance evaluation for indexing al-
gorithms are misleading for learned indexes. For example, it is
common to use the uniform and skewed distributions (such as
log-normal) as arguably the two best- and worst-case extremes
for a search task [25]. However, for evaluating search over sorted
read-only data, the difficulty of the task is determined by the
unpredictability of the data, which is not necessarily a factor of
skewness or shape parameter of the data distribution. As we will
show in this section, most statistical distributions are much easier
to model than real-world data.

Distributions that matter. An interesting observation from the
SOSD benchmark results is that even for datasets that have the
same background distribution, e.g., both closely match a uniform
distribution, the performance of a learned model can vary signif-
icantly, depending on the fine-grained details in the empirical
CDFs. For example, consider Figures 3a and 3b, which repre-
sent two CDFs that are both close to uniform. The uniform data
(uden64 [22]) is comprised of dense integers that are synthetically
sampled from a uniform distribution, and Facebook (face64 [22])
is a Facebook user ID dataset. While both datasets match closely

255

with the uniform distribution, face64 is significantly harder to
model due to its fine-grained details in the CDF. The lookup time
of learned indexes (both RMI and Radix-Splines) for face64 is
6-7x higher than that of uden64 (see Table 2) because there are
many micro-level details (unpredictability) in the CDF, hence a
huge model with a high learning capacity is needed to fit the CDF
accurately. Using the RMI learned index, for example, the uden64
data is easily modelled with a simple line (two parameters) with
near-zero error, while the best architecture found by the SOSD
benchmark for modelling the face64 data is a hierarchy of two
linear models, a huge model (136 MB), with an average error of
202 records.

Generally speaking, real-world datasets are more difficult to
learn compared to synthetic ones and the learned index built
over them is not significantly faster than the algorithmic rivals.
The main question remains what distinguishes a real-world data
from a synthetic one? Consider the four distributions in Figure 3,
where Figures 3a, 3c are synthetic (generated from uniform and
log-normal distributions), and Figures 3b, 3d are real-world data.
The mini-chart inside each CDF highlights the distribution in
a small sub-range, i.e., a “zoomed-in” view of the CDF. For the
synthetic data, the CDF is very smooth in any short sub-range
of the whole CDF. Synthetic data (such as uniform, normal and
log-normal) are built using a cumulative density function that
is derivable, meaning that the at any small sub-range, the shape
of the CDF is close to a straight line with a slope that is close
to the derivation of the underlying CDF in that range. Such a

—e— Linear
Binary
—e— Exponential

—— Binary w/o model
—— FAST
—— DRAM latency

| 2

1000

800 A

600 -

400 4

search time (ns)

200-/

10!

103 104 10° 106

Error (search area)

102

(a) Lookup time

Cache misses

A

10? 10° 104
Error (search area)

10° 106

(b) Cache misses

Figure 2: Cost of local search in a learned index

smooth CDF has less information to be compressed into a model.
For example, a learned index model based on linear splines can
accurately fit the whole CDF by fitting each part of the CDF to a
line. Even for very skewed distributions, such as log-normal, the
data is so predictable that it can be easily fitted to simple, linear
models.

Real-world data, however, is much less predictable and has
a much higher level of complexity in its patterns. Even if an
ideal learning algorithm is used to model the real-world data, the
model itself needs to be very big because the compressed version
of the CDF (to be stored as a model) is still very big.

This explains why state-of-the-art learned indexes perform ex-
tremely well for datasets that are synthetically generated from a
statistical distribution (such as uniform, normal, and log-normal),
but perform comparably poor for real-world data that even al-
most match (shapewise) with those synthetic distributions [22].
On real-world datasets, learned indexes have a high cache miss
rate and lookup time, contrary to their primary goal of having
fewer cache misses.

Using learned models is beneficial when they are 1) accurate
enough to predict a position within the same cache line that con-
tains the data point, otherwise the lookup time will be adversely
affected due to multiple cache misses, and 2) compact enough to
fit in cache and not to cause LLC misses. With this in mind, we
can argue that a pure machine-learning approach might fail to
“learn the data perfectly” and “fit the model in cache” simultane-
ously, specifically in case of real-world datasets that contain a lot
of underlying patterns like spikes and generally noise.

As a consequence, learned models are crucial to indexing but
they cannot shoulder the burden of indexing the data alone. We
hence suggest an algorithmic layer that can mitigate the difficulty

256

------ e

(a) uniform

------ I

(b) Facebook

--------- Ve

(d) OSMC

(c) Lognormal
Figure 3: Example distributions with different complexi-

ties in micro and macro levels

key

v

4

| Records | |

Records |

(a) Learned index (b) Model + Shift-Table

Figure 4: Leveraging correction layers to a learned index

of learning the data distribution. In this approach, the learned
model is allowed to learn an semi-accurate, small model that
learns the holistic shape of the distribution, and the fine-tuned
modelling is provided by the algorithmic layers.

2.5 Model Correction

While learned index models are powerful tools for describing a
data distribution in a compact representation, merely focusing
on learning a highly-accurate model does not necessarily lead
to a high-performance index. In this paper, we suggest a new
approach for boosting existing learned models with additional
layers, specifically developed with hardware costs in mind.

The suggested helping layers add a small overhead when exe-
cuting queries, but significantly reduce the overall lookup time
of the learned index. The suggested layers are very powerful
and consequently allow for using more lightweight models, yet
ideally avoid computationally-expensive algorithms for training.

As Figure 4 illustrates, in addition to the learned index model
we add a correction layer, an optional component, that can be
added to improve the performance. We explore the potential of
correction layers in the next sections.

3 SHIFT-TABLE

A learned model predicts a relative position Fy(x) for a given
query x. To calculate the position of the result, the estimated

relative position is multiplied by the number of keys, and trun-
cated to an integer (the index), hence the predicted position is
[NFy(x)]. The actual position of the record, however, is NF(x)
where F(x) is the empirical CDF of the data points, and N is
the data size. Therefore, the result is NF(x) — [NFy(x)] records
ahead of the predicted position. We identify NF(x) —[NFy(x)] as
the drift of Fg at key x, which is the signed error of the prediction,
as opposed to the absolute error.

The idea of the Shift-Table layer is to have a lookup table that
contains the drift values so that the drift of the prediction can
be corrected. Capturing the drift for every value of x requires an
auxiliary index, which is not feasible. However, we can use the
output of the learned index model ([NFy(x)]), which is in the
range of [0, N], and we construct a mapping from each possible
output of the model, say k, to “how far ahead is the actual record if
model predicts k’s record”, so that we can correct the predictions
using this mapping. This means that for each prediction, we only
need an extra lookup of k in a fixed array of size N.

To build the Shift-Table layer, we first partition the keys x, - - - , xn—1

into N partitions. We define Py as the set of keys for which the
model predicts k as the position:

P ={x | [NFy(x)] = k} @

Each of the indexed keys in Py has an index, say NF(x) and
a prediction k = [NFy(x)]. For each partition, we extract two

parameters that specify the range for local search, namely Ag
and Cy. Ay is defined as:

Ar = min (NF(x) —k]) Vx e P, (2)

which indicates that if the predicted location is k, the search
should be started at point k+Ay. Also, Cy. = |Py| is the cardinality
of Py, i.e., the number of indexed keys for which the prediction
predicts the k’th record, in other words, the length of the area
that has to be searched in the local search phase.

To correct the prediction, we first compute the predicted posi-
tion k = [NFg(x)], and then perform local search in the range
of [k+Ap, k+ Ap +Cg —1].

The number of partitions depends on the range of the output of
the learned index, which should be 0, N). Therefore, The <Ay, Cr.>
pairs: pairs are stored in a single array of size N, so that the
correction can be done using a single lookup into the array of
pairs.

A Shift-Table layer is depicted in Figure 5. The index contains
100 elements in range [0,999]. The CDF model is a simple model:
Fp(x) = x/1000, hence the prediction is simply k = [x/10]. If the
query is 771, for example, the prediction of the model is k = 77.
The correction information are A77; = —41 and C77 = 2, which
indicates that the result is -41 records ahead of the prediction,
and the search area is of length 2. Therefore, the local search is
performed on the indexes of range [36,37].

Algorithm 1 shows how Shift-Table is used to accelerate query
processing. The Shift-Table layer reduces the prediction error of
the model, but incurs an additional memory lookup.

3.1 Querying non-indexed keys

If the query is on the indexed keys, the result is in range [k +
Ar , k+ Ay +Ck —1]. In Figure 5, for example, querying 771 and
782 points to the correct range that contains the result. However,
if the query is not among the indexed keys, then the query is
either within the range, or in the position just after the range (at
data[k+Ar+Ck]. For example, in Figure 5, the record correspond-
ing to queries 778 and 781 is the same, though the aforementioned

257

Algorithm 1 Search with direct-mapped learned index

1: procedure FIND_LOWER(q, model, Shift-Table)
2: pos = model.predict(q)

3 pos = Shift_Table.mapping[pos].startPoint

4 range = Shift_Table.mapping[pos].range

5: if range < linear_to_binary_threshold then
6
7
8
9

pos = LinearSearch(start=data[pos],range)
else
pos = BinarySearch(start=data[pos],range)
end if
10: return pos
11: end procedure

model (k = [g/10]), maps 778 to range [36, 37], and 781 to [38, 39].
In both cases, however, the local search algorithm (either binary
or linear search) within the range computes the correct position
of the result (i.e., 38). Notably for g = 778, a typical local search
implementation realizes that the query is greater than the largest
value in range and returns the first index right after the range of
[36,37], which is 38.

Another issue that can arise for non-indexed keys is when the
predicted position Py has an empty partition that none of the
indexed keys belongs to. In Figure 5, if the query is 15, then the
predicted position is k = [15/10] = 1, but P; is empty because
the model does not predict position 1 for any of the indexed
keys. If the query is predicted to be in an empty partition, the
result is the first record in the next non-empty partition, e.g.,
the result of query=15 is record 3. To make the Shift-Table layer
consistent for the empty partitions, we put pseudo values for
A, C in the mapping layer such that they refer to the same range
as the next existing partition. If P& is an empty partition and
Py is the first non-empty partition after Pz, then C; .o = Cy and
Ao = A+ (k- k). The pseudo A, C-values are depicted using
dashed arrows in Figure 5.

3.2 CDF and duplicate values

It should be noted that the empirical CDF function, i.e., F(X) =
P(X < x) does not exactly identify the result of a range query
on x. In this paper, we use the CDF (F(x)) notation as the index of
the result corresponding to x. We consider range queries of type
(key <= query), hence the CDF for a point x is the relative posi-
tion of the first key in the indexed keys, as the range is scanned
towards the right. More precisely, we assume that NF(xg) = 0
and NF(xny—-1) = N — 1 (for the last key).

A range learned index built for a specific comparison operator,
say x < g, can be used for other operators (>, >,, etc.) with a
brief left/right scan. However, if there are too many duplicates
in the indexed data, then the the performance of the learned
index will be worse for queries that do not match the presumed
definition of F(X). In such cases, it is more efficient to use the
specific definition of F(x) that reflects the position of the result of
the query in the most common type of constraint in the queries.
For example, if most of the queries are of type x >= g, then F(x)
should be defined such that NF(x) identifies the index of the last
key among the duplicate values.

3.3 Building the Shift-Table layer

Algorithm 2 describes how the mapping of the Shift-Table layer
is built. In the first stage, it computes the A, C values and updates
for the non-empty partitions, i.e., Pxs for which at least one of

35

36 37 38 39 98 99

Records |

| 769 | 770 | 771 | 782 | 785 |

| 830 | 999 |

(only keys shown)

0 1 2 3

76 77 78 83 99

|-41,1]-41,2-402]| l1a2] . [o1]|

Records 0 1 2 3

...‘A,‘

0

(only keys shown) | 0 | 1 | 2 |35|

35 36 37 38 39 98 99
| 769 | 770 | 771 | 782 | 785 | | 830 | 999 |

Figure 5: Shift-Table

the indexed keys is mapped to k. In the second stage, a backward
traversal is performed on the Shift-Table layer and the compute
the pseudo-values for the empty partitions (Algorithm 2, lines
10-14). Starting from the last entry, a pseudo-partition has the
same count (C) as the first non-empty partition on its right side,
but the shift A is adjusted so that they both point the the same
region for local search.

The computational complexity of building the Shift-Table layer
is O(N) x O(Fy) to compute the drifts and updating the mapping,
as it only traverses the data and the Shift-Table layer once. In
case that running the model is expensive, model executions can
be parallelized for faster execution.

Algorithm 2 Building the Shift-Table layer

1: procedure SHIFT-TABLE_BurLbp(model (Fy), data)

2 Shift-Table = Array of tuples <A, C>, all set to zero

3 for all x € data do

4 pos = NF(x) > Position of x (sec 3.2)
5 k = [NFy(datali])]

6: A = pos — k

7 Shift_Table[k].A = min(Shift_Table[k].A, A)

8 Shift-Table[k].C += 1

9 end for

fork —< N-1---0do
if Shift_Table[k].C = 0 then > Empty partitions
Shift_Table[k].C = Shift_Table[k-1].C
Shift_Table[k].A = Shift_Table[k-1].A + 1
end if
15: end for
16: return Shift_Table
17: end procedure

10:
11:
12:
13:
14:

3.4 Compressing the Shift-Table layer

Correcting the prediction of the model using the Shift-Table layer
takes a single DRAM lookup irrespective of the size of the index.
However, it might be of interest to reduce the size of the layer.
The Shift-Table layer is an array of size N, containing <A, C>
tuples. Further compression can be used to decrease the memory
footprint of the Shift-Table layer.

One approach is to keep a single parameter instead of the
<A, C> tuples. In this regard, a predicted position k should be
mapped to the key that is in the median point among the keys in
Py, which is

258

_ C
Ay = Ak+7k (3

To correct using the Ay values, the final position is computed
as pos = k + Ay, which indicates where the search should be
started without specifying the guaranteed range that should be
searched. Therefore, search algorithms that require the bound-
aries specified such as binary search cannot be used for local
search. As discussed in section 2.4, linear or exponential search
can be used for local search without boundaries, but they are
slightly slower if the error is considerable after the correction.

A second approach that complements the first one, is to shrink
the size of the Shift-Table layer by merging nearby partitions.
We can extend the definition of # = {Py,---,Pn} to allow
partitions that have a size of M < N. We define M partitions
M = {PM e ,PAA//II } where each partition is defined as:

©

Similarly, AQ’I is the minimum "move to the right" shifts that

P = {x | [MFp(x)] = k}

each of the keys in Pllgl need:

A} = min (NF(x) - [NFp(x)]) ¥x € PM! (5)
and Cy. should be defined such that the boundary is valid for
all keys in PM, which is:
Y = max(NF(x) - ([NFp(x)] + A)")) Vx € P!
| S S—

start of the search window

(6)

To combine approaches to compact the Shift-Table layer, we
can use average drifts AQ’I instead of the <A£’I R CQ’I > pairs:

AM = |+”| > (NF(x) - [NFo(x)]) ()
k xEP,iV[

and then use [NFg(x)] +A}[‘§[\4F9]
Suppose the same data as in Figure 5, but instead of a Shift-Table
layer of size N, we use only M=30 partitions. Table 1 shows how
a compact Shift-Table layer is built and used for correction, on
a portion of the index. We use the same model (Fy = [x/1000]),
hence the prediction is NFy(x) = [0.1x], and the partition cor-
responding to a key is NFg(x) = [0.03x]. All of the records
from data[35..39] are assigned to the same partition ng and their
predictions are shifted 40 records backwards. Note that when

as the corrected prediction.

M # N, a partition does not specify a single point (or range) for
all of the keys in the partition. Instead, the position of a key af-
ter correction depends on both NFy(x) (prediction) and MFy(x)
(partition number). For example, all keys belonging to Pzgg ,
data[35 - - - 39] have the same correction of Agg = —40, but their
final predictions are different. Therefore, the correction error of
a compact Shift-Table layer is less than the number of elements

in the partitions.

ie.,

Table 1: Illustration of Shift-Table with M = 30 mapping
entries on an index with N = 100 keys

Index 34 35 36 37 38 39 40 41
key (x) 752 | 769 | 770 | 771 | 782 | 785 | 820 | 830
Predicted index= [0.1 x] 75| 76 | 77| 77| 78| 78| 82| 83
Error before correction -41 | -41 | -41 | -40 | -40 | -39 | -42 | -42
Partition (k) = [0.03 x] 22 23 24

AP -41 -40 -42

Prediction after correction | 34 | 36 | 37 | 37 | 38| 38| 40| 41
Error after correction 0 1 1 0 0 -1 0 0

The drift of PI]CW , namely Az’f is the index of the median key

among the members of Pl]cw . This means that if the key is predicted
to be in the k’th partition (among the M partitions), the local
search is done around [NFy(x)] + AQ/I .

Using a Shift-Table layer of size K < N does not affect the
complexity of building the layer, which is O(N) X O(Fyg) + O(M).
However, if the midpoint-values are used (correction without
specifying the boundary), it is possible to construct the map
using a sample of the indexed keys, which comes at the cost of
the accuracy. Using a sample of size S < N, the layer can be built
in O(S) X O(Fp) + O(K) time.

Nonetheless, keep in mind that the Shift-Table layer is de-
signed for applications that favour latency to memory footprint,
hence reducing the memory footprint of the Shift-Table layer
by a large factor will limit its margin for improvement as the
fine-grained details of the empirical CDF will be lost to some
extent.

3.5 Measuring the error

Since the Shift-Table layer specifies a range for local search,
the notion of error is not trivial. However, we can use the es-
timates without range A), for which the correction picks the
median value among the keys in the Py. The error for the keys

in each partition is {[%] R | R [%]} if Cy is odd, and
{[%] -1,---,0,---, [%]} if Cy. is even. The average error is
approximately Cy /4.

In alearned index without Shift-Table, the error is the distance
between F(x) and Fg(x). After correcting the model with the
Shift-Table, however, the error only depends on the Cy. values, i.e.,
a prediction error only occurs when [Fy(x)] predicts the same
position for multiple keys. Therefore, the local search range and
the error are combinations of multiple step functions over the
Pis with C. > 1.

The average error depends on the data distribution in the
query workload. If the queries are uniformly sampled from the
keys, then the average error is:

1 2
e= — ch
ZNkeP

®

259

estimated pos
! P Model

Model + Shift-Table |

= =
< 2

position

"
kA

-
A

prediction error (log-scale)

2.0
le8

1.0 15

position

10 00 05

0.5
key

lel9

(a) Example data & model (b) Error

Figure 6: Error correction using the Shift-Table layer

3.6 Behaviour of the Shift-Table layer

Figure 6 illustrates how the Shift-Table layer corrects the error of
a linear interpolation model on the OSMC data. While the model
is too simple to capture the patterns in data, the Shift-Table layer
alone is effective for correcting the predictions. While the average
error of the model is 28 million keys, Shift-Table reduces the error
to only 129 keys.

Shift-Table corrects two types of error. First, when the model
has a considerable local bias, which means that NF(x) diverges
significantly from NFy(x) in a sub-range of the data distribution.
The second type of error is the fluctuations of the distribution
between the nearby keys, for most of which the Shift-Table layer
is very effective. The only type of error that can degrade the
performance of the Shift-Table layer is when there is a congestion
of keys in a small sub-range of values, leading to many of the
keys being classified in a single layer, and hence having some
partitions with high Cy.

The behavior of the Shift-Table layer and its error estimate
indicates that it can be effective in eliminating different types
of errors that models have. One common type of error is the
local bias in the model, i.e., when the error of the model, i.e.,
NFy(x) — NF(x) has a considerable bias in some sub-ranges of
the distribution, meaning that the F and Fy diverge at some point.
This happens when the model cannot capture the CDF in a local
neighborhood. Table 2 shows that even if a single line is used as
a model, which has a huge bias in most areas of the distribution,
the Shift-Table layer can efficiently eliminate the huge bias of a
fully linear model (a single line as a model), and reduces the error
significantly such that the linear model outperforms all other
algorithms for the real-world datasets, as well as the uspr dataset
(sparse uniformly-distributed integers) which has a significantly
higher variance than uniformly-distributed dense integers.

Another type of error that the Shift-Table layer eliminates is
the local variance in the data, which is the fluctuations of the
values between nearby keys. This type of error is very common
in real-world data. For example, the face, uspr, and uden datasets
all follow a uniform distribution, but they have different local
variances, which is the amount of fluctuations in the nearby keys.
The uden dataset is very easy to model using the learned indexes
and does not require a helping layer such as Shift-Table. The
other two datasets, however, are very hard to model using the
learned index structures. This is because the Shift-Table model
can easily correct the fluctuations of values (different increments
between each two points), as long as the model does not predict
a single record for a lot of nearby keys (resulting in a high Cy
value).

3.7 Cost model of the Shift-Table layer

The accuracy of the model after correction with Shift-Table de-
pends on the cardinalities of the partitions (C; values). Ideally,
if the records of each partition reside on a single cache line, the
results will be retrieved in a single memory lookup. The cost
of local search, i.e., the mapping between the accuracy in each
partition and the latency to do local search depends on the hard-
ware. As discussed in section 2.1, the latency of search for various
ranges can be measured by a micro-benchmark over non-cached
regions with different sizes. Let L(s) be the measured latency of
non-cached search over a range containing s records. The latency
for looking up a key in a region of size s is L(Cy). Assuming that
the queries have the same distribution as the data points, the
average lookup latency for the index is:

1
Latency with Shift-Table = Latency(Fp) + 1 Z CrL(Cy) (9)
keP

The cost model can also be used to estimate which of the
local search algorithms should be used, by substituting in equa-
tion 9 the local search cost of each local search algorithm, i.e.,
L(s) mappings for linear, binary, and exponential search; and for
and their different implementations. Branch-optimized binary
search would be the natural choice if the Shift-Table model can
determine the boundary (if using the Ay, Cy pairs), otherwise
either linear or exponential search should be chosen based on
the latency estimate.

Taking the cost of running the Shift-Table layer into account,
we should consider how much the correction improves the accu-
racy of the learned index model and hence estimate the speedup.
The lookup time of the model without using the Shift-Table model
can be estimated once the Shift-Table model is built, without run-
ning a speedup benchmark. The model error for each key is
A = A + % therefore the estimated runtime of the index
without correction is:

1 _
Latency without Shift-Table = Latency(Fy) + N Z CrL(Ag)

keP
(10)

3.8 CDF model validity constraint

The correction layer requires the learned model to be a valid
CDF function, i.e., Fg(x) should be monotonically increasing:
xi > xj — Fp(x;) >= Fg(x;). Among our baselines, the RadixS-
plines learned index always produces a valid (increasing) CDF,
but the RMI index does not always produce monotonically in-
creasing predictions. In RMI, for example, the CDF model might
decrease when using cubic models [30] or on the edge point
between two models in the second-level. If Fy(x) is not mono-
tonically increasing, then the correction layer could identify a
range that does not include the query result, because the values
of x for which the learned model predicts k’th record are not in
a contagious memory block.

A learned index model that is non-monotonic can still use the
Shift-Table layer, as the output of the Shift-Table layer would still
predict a position but it is not guaranteed that the position is in
the predicted range. Therefore, the local search algorithm should
check if the query is in the predicted range and perform a search
outside of the range. Another hack for non-monotonic model is
to use the A midpoint-values instead of the Ay, Cy pairs, which
predicts a location (instead of a range) to start the local search.

260

If the Shift-Table layer uses the <AM, c}fc\’f > pairs, it can deter-
mine the range for local search and we can apply either linear or
binary search, depending on the error range. We do linear search
if the range is smaller than a threshold (8 keys, in our experi-
ments), otherwise a binary search is performed. However, if it
only contains the average shift values (A, it predicts a position
without specifying the boundaries that contain the record; hence
either linear or exponential search can be performed depending
on the average error rate and performance objectives (average or
worst-case latency).

3.9 Tuning the system

The Shift-Table layer is optional and adds overhead to the search.
Therefore, enabling Shift-Table is only worthwhile if it can even-
tually accelerate the original learned index structure. An effective
configuration of the index is a choice between 1) Using the model
alone, 2) model + Shift-Table. Note that the Shift-Table layer is
optional and can be deactivated with zero cost. The output of the
model and the Shift-Table layer are of the same type and both
represent a prediction of the records, hence if the Shift-Table
layer is disabled, we can easily use the model alone for prediction
of the records.

While tuning the system, the performance of each configu-
ration can be directly measured using performance tests, or by
measuring the model error and then using the cost model of the
Shift-Table model on the bottom of the architecture (section 3.7).

The parameters of the architecture, i.e., the Shift-Table array
size M and the parameters of the learned CDF model, can be
tuned by computing the error estimate using Shift-Table’s cost
model, or alternatively, by running a performance tests on the
built architecture. Our suggested default value for the Shift-Table
layer is M = N, because using a mapping layer that has the same
number of entries as the keys will ensures that the layer can
exhibit its ultimate effect to eliminate the signed error, and does
not have more latency compared to using smaller M values.

An advantage of Shift-Table is that the learned model does
not need to be very accurate, as a correction will be applied
anyway. Therefore, a more relaxed measure can be used instead
of least-square error. In this paper, however, we do not learn the
model w.r.t. the Shift-Table layer, for the sake of simplicity and
to keep the Shift-Table layer detacheable (optional), preserving
the assumption that the Shift-Table layer can be disabled to free
up memory space on run-time while the model can still be used.

The accuracy of the learned model also determines the size of
the entries of the Shift-Table layer. Each mapping entry should
at most fit a A value of Apax, which is the maximum error of
the model. If, for example, the error is smaller than 216 /2, then a
16-bit integer (short type) can be used.

4 EVALUATION

In this section, we compare the performance of our proposed
method with the SOSD benchmark !, which is a recent bench-
mark for search on sorted data. The benchmark includes learned
indexes, classical indexes, and no-index search algorithms.
Experimental Setup. The algorithms are implemented in C++
and compiled with GCC 9.1. The experiments are performed on
a system with 16 GB of memory and Intel Core i7-6700 (Skylake),
which has four cores and is running at 3.4 GHz with 32 KB L1,
256 KB L2, and 8 MB L3 caches. The operating system is Ubuntu
18.04 with kernel version 4.15.0-65. In our setup, the LLC miss

Lhttps://github.com/learnedsystems/SOSD/tree/mlforsys19

penalty measured by Intel Memory Latency Checker 2 is 36 ns,
which is the minimum lookup time of an ideal index.

Note that all data resides in main memory. The range index
finds the first indexed key that is equal to or bigger than the
lookup key. Also, the keys on the physical layout are sorted
(i.e., it is a clustered index), so that the entire result set of the
range query can be returned once the first key is found. Similar
to [22, 25], we only report the lookup time for the first result
and do not include the scan times in our experiments because all
indexes use the same layout for the data records.

Datasets. For the sake of reproducibility, we used the same
datasets as in the SOSD benchmark, which contains four datasets
synthetically generated from known distributions and four real-
world ones. The synthetic data are generated from different distri-
butions, namely logn: lognormal distribution (0, 2), norm: normal
distribution, uden: uniformly-generated dense integers, and uspr:
uniformly-generated sparse integers. The real-world datasets
are face: Facebook user IDs [42], amzn: book sale popularity
from Amazon sales rank data 3, osmc: uniform sample of Open-
StreetMap locations 4, and wiki: timestamps of edit actions on
Wikipedia articles®. All datasets contain 200M unsigned integers.

Implementation details. Our experiments are based on the
SOSD benchmark [22]. The baseline includes two learned indexes,
namely RadixSpline [33] (RS), which uses linear splines; and Re-
cursive Model Index (RMI), which uses a hierarchy of models.
Note that RMI has a choice of different models and SOSD [22]
specifically handpicked the best models for each of the datasets
in the benchmark ©. SOSD also includes no-index search algo-
rithms such as binary search (BS), linear interpolation search (IS),
and the recently suggested non-linear triple-point interpolation
(TIP) [42]. We also compare against algorithmic index structures
such as ART: Adaptive Radix Tree [26], FAST [21], RBS (Radix
Binary Search): a two-stage algorithm in which a radix struc-
ture that maps a fixed-length key prefix to the range of all keys
having that prefix and then a binary search is performed on the
range [22], and STX implementation of B+tree [1]. Finally, we
included four On-the-fly search algorithms, namely BS: Binary
search (STL implementation), TIP: three-point interpolation [42],
Interpolation search, which is similar to binary search but uses
interpolated positions in each iteration, and IM: Interpolation as
a Model: a dummy model that interpolates the key between the
minimum and maximum value of the keys and then performs
exponential search around the predicted key.

The experiments use either 32- or 64-bit unsigned integer
IDs for the key (depending on the dataset), and 64-bytes for the
payload.

4.1 The SOSD benchmark

To test the effectiveness of the suggested layers compared to
learned indexes, we use a simple interpolation model (IM), i.e.,
Fo(x) = (x—minVal)/(maxVal—minVal). Such a dummy model
is deliberately chosen to purely delegate the burden of data mod-
elling to the correction layers.

https://software.intel.com/en-us/articles/intelr-memory-latency- checker

3https://www.kaggle.com/ucffool/amazon- sales-rank-data-for-print-and-kindle-books

https://aws.amazon.com/public-datasets/osm

Shttps://dumps.wikimedia.org

6The architectures and parameters of the RMI models used for each dataset is spec-
ified at https://github.com/learnedsystems/SOSD/blob/mlforsys19/scripts/build_
rmis.sh

261

The Shift-Table layer has the same number of entries as the
actual data, i.e., M = N. We followed the tuning procedure dis-
cussed in section 3.9: we start from the model (IM and RS) and
consequently evaluate IM+Shift-Table and RS+Shift-Table. The
cost of running the Shift-Table layer is around 40ns, which pays
off by reducing the prediction error and thus lookup time. There-
fore, based on the cost model of the Shift-Table layer (Section 3.7)
and the error-to-latency micro-benchmark (Figure 2a), we should
not add the Shift-Table layer if the error before adding the con-
figuration is less than a threshold (10 records), or 2) the error of
the index after adding the Shift-Table layer does not decrease
by a factor of 10 (roughly equivalent to the 50-nanoseconds
latency the additional layer, according to the error-to-latency
micro-benchmark).

Table 2 compares the lookup times (nanoseconds per lookup)
of the baseline algorithms with our dummy interpolation model
(IM), and the two corrected versions, i.e., IM+Shift-Table and
RS+Shift-Table. Note that ART does not support data with dupli-
cate keys, and FAST does not support 64-bit keys. Also, interpo-
lation search (IS) takes too much time on some datasets, because
the execution time of interpolation search highly depends on the
uniformity of data distribution, varying from O(loglogN) + O(1)
iterations on uniform distributions, to O(N) iterations for very
skew ones [42].

For the synthetic datasets, the difficulty of the datasets for
our dummy linear interpolation model varies from very easy
(udené4) to extremely hard (logn64). While the Shift-Table layer
significantly improves a dummy layer on non-uniform data dis-
tributions, it cannot outperform the learned index models. This
is not surprising, as all synthetic datasets (uniform, lognormal,
and uniform) have a pattern derived from continuously differ-
entiable density functions, hence the distribution is similar to
a straight line on smaller sub-ranges as we "zoom in" the data
distribution (e.g., see Figure 3c). Therefore, a learned index struc-
ture composed of linears at the bottom (including both RMI and
RS) can effectively model the distribution using a very compact
representation.

For the real-world data, however, the fluctuations in data se-
verely affect both RMI and RS learned indexes. The Shift-Table
layer, effectively corrects a highly inaccurate dummy IM model,
such that it outperforms the RMI learned index by 1.5X to 2X on
all datasets, while RS falls behind both. Keep in mind that RMI
requires to be tuned with the best architecture and parameters,
while Shift-Table does not require a manual training process and
can even work with a simple model such as IM that is not trained,
and yet deliver a lower latency.

Figure 7 shows the average build times of the indexes, along
with the standard deviation bars indicating how the build time
varies for different distributions. Please note that the RMI imple-
mentation used in the SOSD benchmark needs to be compiled for
faster retrievals, however we did not include RMI’s extra over-
head for compiling the code and only reported the build time.
IM+Shift-Table, the winner method latency-wise, also takes ei-
ther the same or even less build time than the competing learned
indexes.

4.2 Explaining the performance

The latencies reported in Table 2 present the fastest configuration
for each learned index. In this section, we present the details of the
tuning process to see the optimum performance of each learned
index.

Table 2: Comparison of lookup times (nanoseconds per lookup) with the SOSD benchmark. The red box indicates the base

model (IM) and the enhanced versions.

Learned indexes

Average Log2 errors indicate the average number of iterations
in binary search for the last-mile search stage. Larger models
result in lower Log2 errors in all indexes and lead to faster last-
mile search, however, once the model exceeds the LLC cache sizes,
cache-miss rate increases (when running the model), and hence
the prediction time worsens. For RS, ART, and B+tree, the cache
misses and extra overhead of running the models increases either
the number of instruction, the cache misses, or both, enough
to prevent the index from improving latency by increasing the

Algorithmic indexes On-the-fly search |
Dataset| ART FAST RBS B+ttree| BS TIP IS
logn32 | N/A 230 385 375
norm32 | 173 197 267 390
uden32 | 99.4 196 235 389
2]
E uspr32 | N/A 198 230 390
& | lognod [238 NA 622 427
norm64 | 214 N/A 317 427
uden64 | 104 N/A 255 428
uspr64 | 216 N/A 244 427
amzn32| N/A 208 243 393
= face32 179 203 238 388
o
S |amzn64| NJ/A N/A 284 428
E face64 | 290 N/A 257 427
osmc64 [N/A N/A 410 428
wiki64d | N/A N/A 271 437
i L}
é 10° '
2 [|
2 10’)
2
3
210
()
o
[
20 {10 e
< o ot o \\I\\I S e e footprint.
PRY gure® gpSt @e° R ?\;5\\\“&\:5&\'«\‘ 2

Figure 7: Build times (average time for all datasets)

For those indexes that have a parameter affecting the index
size (such as the branching factor in B+tree, and the number of
radix bits in ART, RS, and RBS), the performance can be tuned
by evaluating the latency for different index sizes.

Figure 8 shows the latencies of the indexes for the face64 and
osmc64 datasets, along with the average Log2 error, CPU instruc-
tions, and L1/LLC cache misses. IM+Shift-Table and RS+Shift-
Table achieve faster lookup times on both datasets. For most in-
dexes, except RMI and RBS, the latency does not improve beyond
a certain optimum index size, after which the latency increases
again. RBS has a much larger latency than both [IM/RS]-Shift-
Table indexes of the same size, and extrapolating the RMI laten-
cies also suggest that if we could extend RMI size to 1400MB
(equal to Shift-Table’s size), it could not achieve a game-changing
performance on either of the datasets. Note that we could not run
RMI with larger models because RMI embeds the parameters into
the code, and the compile times for models larger than 400MB
were astonishingly high.

262

4.3 Layer size

As discussed in section 3.4, the Shift-Table layer can be com-
pressed by merging multiple entries, hence reducing its footprint.
Figure 9 shows the effect of the Shift-Table layer size on lookup
time and prediction error. Shift-Table can operate in two modes:
R-1: a full layer containing <A£/I , C;CVI > pairs similar to Figure 5
that indicates the exact range for local search (hence enabling
binary search); and S-X: a compressed single-entry map similar
to Table 1 containing one AkM entry per X records. Thus, S-X
contains M = N/X entries; and the memory footprint of S-1 is
half the size of R-1.

The error of the S-1 Shift-Table is slightly more than that of
R-1. This is due to the fact that S-1 is designed to draw boundaries
for binary search; hence it always points to the first record of
each partition; while R-1 always points to the middle of the parti-
tion and almost half the error of S-1. Performance-wise, however,
S-1 always has the lowest latency, because its boundaries for the
last-mile search operation do not need to be discovered using
additional boundary-detection algorithms such as exponential
search. As expected, compressing the Shift-Table by allocating
one entry per X records increases the error and hence degrades

¢ RS RMI ® ART ® B+tree

¢ RBS

% IM+ShiftTable RS+ShiftTable

Lookup time , face64
1000 4

Log?2 error , face64

' 2 4x10°

» & °

.“1“%’!~“!

L]
800 o

¢ 3x10° {0q
600 ¢

o,
400 '?W. -
:)'

200

2x10°

Lookup time (ns)

L 7S
& CPU Instructiol

Instructions , face64

ot
O d :x"

L 4
‘0

LLC-misses , face64

L1-misses , face64
0.4

?.ftc“

Isses
@
=}

0.3 Y

2]
o

"000 “ 0.2

0.1

LLC cache m
N B
o o

Lookup time , osmc64

0"
L 2
1000 °

4x10°

L 2
R 2
%®

Wye o0
*hoget o

L 4
°

Log?2 error

° 2x10°

Lookup time (ns)
3
o

L 4
L4
.o
Ci CIﬁJ Instructions

Instructions , osmc64
L et T S—
®e o0 o # 0
2">¢.tnn & 100
3x10 L S

>

L X °

LLC-misses , osmc64

L]
L]
J

L1-misses , osmc64
1254 o 0.4

3 e

Q
03 '
‘. L 4
e 75 *oed oo
‘} 0.2
%

Q..’i
. e "ok
. s "3 et

.))('
L S

o
(=]

0.1

LLC cache mi
N
(%)

o

T T T . T T
10 10

10
Index size Index size

Index size

IB I5 I8 I5 IB
10 10 10 10

Index size Index size

Figure 8: Analysis of the effect of index size on performance

Em S10
S 100

w5 1000
B Without Shift-Table

103 4

Lookup time (ns)
=
i

200%

200 (ace'ﬂ”l \09“31“0((“6A05((\C6A“6e(\31 \)5‘)(37' \N'\\L'\GB‘

(a) Latency

Avg error (records)

aﬁ\'L“E’A ﬁacea’l \09“31“0““6D‘05Y<\C6A“de“31 \,\59(31 W‘\\‘.\G’A

(b) Error
Figure 9: Analysis of the effect of Shift-Table layer size

the performance. This is due to the fact that with higher com-
pression ratios, the ability of Shift-Table to "memorize" the fine-
grained details of the data distribution degrades due to the loss
of information after merging.

5 RELATED WORK

On-the-fly search on sorted data A fundamental problem that
is studied for decades is how to find a key among a sorted list
of items. The classic approach is binary search and numerous
extensions have been suggested to improve it for special cases,
most notably interpolation search [35] and exponential search [3].

263

For data distributions that are close to uniform, interpolation-
search is shown to be very effective [13, 36, 42]. Due to the
growing gap between CPU power and memory latency in the past
decade, more advanced interpolation techniques such as three-
point interpolation are becoming viable on modern hardware [42].
Exponential search enables binary search over an unbounded list.
Exponential search is also extensively used in learned indexes
when the key is more likely to be near a "guessed" location, but
a guaranteed boundary around the guessed point that contains
the data is not known [7, 25, 32].

Range indexes An alternative to on-the-fly binary search
over sorted data is to keep the data in an index structure. Nonethe-
less, indexes that are built to answer range queries (such as B-
trees) are similar to the binary search in that they need to keep
the data sorted internally. Common index structures for range
index include skiplists, B+trees, and radix-trees. The B+-tree is
cache-efficient, but requires pointer chasing, which incurs multi-
ple cache misses [14]. There has been a tremendous effort to make
binary search trees and B+-trees efficient on modern hardware.
For example, FAST [21] organizes tree elements efficiently to ex-
ploit modern hardware features such as the cache line and SIMD.
Another common solution is to use compression techniques on
the indexed keys, most notably as a radix-tree. Modern radix
trees exploit hardware-efficient heuristics for fitting a distribu-
tion in memory (usually by building a heuristically-optimized
compressed trie), such as adaptive radix index (ART) [5, 26], and
Succinct Range Filter (SuRF) [44]. Skiplist is specifically efficient
for concurrent updates workloads [41, 43].

Learned index structures Learned range indexes [7, 12, 25,
29, 33] have recently been suggested as an alternative to range
indexes. In this approach, a model is trained from the data with
the intent of capturing the data distribution and processing the
queries more efficiently. We refer to the paper by Kraska et
al. [25], which introduced the idea of the learned index. In a
learned index, the CDF of the key distribution is learned by fit-
ting a model, and the learned model is subsequently used as a
replacement of the index (B+-trees or similar) for finding the lo-
cation of the query results on the storage medium. Index learning
frameworks such as the RMI model [25, 30] can learn arbitrary
models [30], although a further theoretical study [9] as well as
a recent experimental benchmark [22] have shown that simple

model like linear splines are very effective for datasets. Spline-
based learned indexes include Piecewise Geometric Model index
(PGM-index) [11], Fiting-tree [12], Model-Assisted B-tree (MAB-
tree) [19], Radix-Spline [23], Interpolation-friendly B-tree (IF-
Btree) [18] and some others [29, 40]. We refer to [10] for an exten-
sive comparison of learned indexes. Recently, there has been nu-
merous theoretical works [4, 27, 38, 39] on learned indexes. Also,
numerous efforts have been made to handle practical challenges
around using a learned index, including update-handling [7, 17]
and designing a learned DBMS [24]. The idea of using a model
of the data to boost an existing algorithmic index has been the
center of focus in the past few years [14, 17, 19, 37]. In the multi-
variate area, learning from a sample workload has also shown
interesting results [8, 20, 28, 32]. Aside from the main trend in
learned indexes, which is on range indexing, machine learning
has also inspired other indexing and retrieval tasks. This includes
bloom filters [6, 31], multidimensional indexing on datasets with
correlated attributes [15], and other applications [2, 16, 34].

6 CONCLUSION AND FUTURE WORK

Learning and modeling data distributions via machine learn-
ing approaches is a great idea for managing and analyzing data
management systems. However, the approaches and objective
functions that are common in machine learning problems are
not necessarily optimal choices when the ultimate target is per-
formance improvement. Instead of pushing machine learning
model algorithm to its limits for highly accurate modeling of
data distributions, it is more efficient if we only use ML models
to approximate the high-level, generalizable "patterns" in data
distribution (the holistic shape), and handle the fluctuations and
fine-grained details of the distribution using a more hardware-
efficient approach, outperforms learned models as well as algo-
rithmic index structures even if a simple or somewhat dummy
model such as min/max linear interpolation is used. The Shift-
Table layer is effective in learning almost all distributions even
without using models that require training from data, and takes
only a single pass over the data points to build the layer. Our
results show that even a simple linear model equipped with the
Shift-Table enhancement layer outperforms trained and tuned
learned indexes by 1.5X to 2X on real-world datasets.

Our current work only considers read-only workloads. We
leave it as future work to adapt Shift-Table with workloads having
updates. One idea is to capture the drifts in data distribution using
update-tracking segments [17], and use Fenwick trees to estimate
and correct the drifts in both the model and the Shift-Table.

REFERENCES

[1] STX. B+Tree C++ Template Classes. http://panthema.net/2007/stx-btree.

[2] Naiyong Ao, Fan Zhang, Di Wu, Douglas S Stones, Gang Wang, Xiaoguang
Liu, Jing Liu, and Sheng Lin. 2011. Efficient parallel lists intersection and index
compression algorithms using graphics processing units. VLDB Endowment 4,
8 (2011), 470-481.

[3] Jon Louis Bentley and Andrew Chi-Chih Yao. 1976. An almost optimal algo-

rithm for unbounded searching. Information processing letters 5 (1976).

Rasmus Bilgram and Per Hedegaard Nielsen. 2019. Cost Models for Learned

Index with Insertions. Technical Report. University of Aalborg.

Robert Binna, Eva Zangerle, Martin Pichl, Giinther Specht, and Viktor Leis.

2018. HOT: a height optimized Trie index for main-memory database systems.

In SIGMOD. 521-534.

Zhenwei Dai and Anshumali Shrivastava. 2019. Adaptive learned Bloom filter

(Ada-BF): Efficient utilization of the classifier. arXiv:1910.09131 (2019).

Jialin Ding, Umar Farooq Minhas, Jia Yu, Chi Wang, Jaeyoung Do, Yinan Li,

Hantian Zhang, Badrish Chandramouli, Johannes Gehrke, Donald Kossmann,

David Lomet, and Tim Kraska. 2020. ALEX: An Updatable Adaptive Learned

Index. In SIGMOD. 969-984.

Mohamad Dolatshah, Ali Hadian, and Behrouz Minaei-Bidgoli. 2015. Ball*-

tree: Efficient Spatial Indexing for Constrained Nearest-neighbor Search in

(4]
(5]

(6]
(71

264

(9]
[10]

(1]

[12

[13]
[14]

[15]

[16]
[17]
(18]
[19]
[20]

[21]

[22]

[23]

[24]

[25]

[26

[27]
[28]

[29]

[30]
[31]
[32]
(33]
[34]

[35

[36]
(37]

[38

[39]

[40

[41]

[42

[43]

[44]

Metric Spaces. arXiv:cs.DB/1511.00628

Paolo Ferragina, Fabrizio Lillo, and Giorgio Vinciguerra. 2020. Why are learned
indexes so effective?. In ICML, Vol. 119. PMLR.

Paolo Ferragina and Giorgio Vinciguerra. 2020. Learned data structures. Recent
Trends in Learning From Data (2020), 5-41.

Paolo Ferragina and Giorgio Vinciguerra. 2020. The PGM-index: a fully-
dynamic compressed learned index with provable worst-case bounds. VLDB
Endowment 13, 8 (2020), 1162-1175.

Alex Galakatos, Michael Markovitch, Carsten Binnig, Rodrigo Fonseca, and
Tim Kraska. 2019. FITing-Tree: A Data-aware Index Structure. In SIGMOD.
1189-1206.

Goetz Graefe. 2006. B-tree indexes, interpolation search, and skew. In DaMoN.
Goetz Graefe and Harumi Kuno. 2011. Modern B-tree Techniques. Foundations
and Trends in Databases 3, 4 (2011), 203-402.

Ali Hadian, Behzad Ghaffari, Taiyi Wang, and Thomas Heinis. 2021. COAX:
Correlation-Aware Indexing on Multidimensional Data with Soft Functional
Dependencies. arXiv:cs.DB/2006.16393

Ali Hadian and Thomas Heinis. 2018. Towards Batch-Processing on Cold
Storage Devices. In ICDEW.

Ali Hadian and Thomas Heinis. 2019. Considerations for handling updates in
learned index structures. In AIDM.

Ali Hadian and Thomas Heinis. 2019. Interpolation-friendly B-trees: Bridging
the Gap Between Algorithmic and Learned Indexes. In EDBT.

Ali Hadian and Thomas Heinis. 2020. MADEX: Learning-augmented Algo-
rithmic Index Structures. In AIDB.

Ali Hadian, Ankit Kumar, and Thomas Heinis. 2020. Hands-off Model Integra-
tion in Spatial Index Structures. In AIDB.

Changkyu Kim, Jatin Chhugani, Nadathur Satish, Eric Sedlar, Anthony D
Nguyen, Tim Kaldewey, Victor W Lee, Scott A Brandt, and Pradeep Dubey.
2010. FAST: fast architecture sensitive tree search on modern CPUs and GPUs.
In SIGMOD. 339-350.

Andreas Kipf, Ryan Marcus, Alexander van Renen, Mihail Stoian, Alfons
Kemper, Tim Kraska, and Thomas Neumann. 2019. SOSD: A Benchmark for
Learned Indexes. NeurIPS Workshop on Machine Learning for Systems (2019).
Andreas Kipf, Ryan Marcus, Alexander van Renen, Mihail Stoian, Alfons
Kemper, Tim Kraska, and Thomas Neumann. 2020. RadixSpline: a single-pass
learned index. In AIDM.

Tim Kraska, Mohammad Alizadeh, Alex Beutel, Ed H. Chi, Jialin Ding, Ani
Kristo, Guillaume Leclerc, Samuel Madden, Hongzi Mao, and Vikram Nathan.
2019. SageDB: A Learned Database System. In CIDR.

Tim Kraska, Alex Beutel, Ed H Chi, Jeffrey Dean, and Neoklis Polyzotis. 2018.
The case for learned index structures. In SIGMOD. 489-504.

Viktor Leis, Alfons Kemper, and Thomas Neumann. 2013. The adaptive radix
tree: ARTful indexing for main-memory databases. In ICDE. 38-49.

Pengfei Li, Yu Hua, Pengfei Zuo, and Jingnan Jia. 2019. A Scalable Learned
Index Scheme in Storage Systems. arXiv:1905.06256 (2019).

Pengfei Li, Hua Lu, Qian Zheng, Long Yang, and Gang Pan. 2020. LISA: A
Learned Index Structure for Spatial Data. In SIGMOD.

Anisa Llavesh, Utku Sirin, Robert West, and Anastasia Ailamaki. 2019. Ac-
celerating B+tree Search by Using Simple Machine Learning Techniques. In
AIDB.

Ryan Marcus, Emily Zhang, and Tim Kraska. 2020. CDFShop: Exploring and
Optimizing Learned Index Structures. In SIGMOD. 2789-2792.

Michael Mitzenmacher. 2018. A Model for Learned Bloom Filters and Related
Structures. arXiv:1802.00884 (2018).

Vikram Nathan, Jialin Ding, Mohammad Alizadeh, and Tim Kraska. 2020.
Learning Multi-dimensional Indexes. In SIGMOD. 985-1000.

Thomas Neumann and Sebastian Michel. 2008. Smooth interpolating his-
tograms with error guarantees. In BNCOD. Springer, 126—138.

Harrie Oosterhuis,] Shane Culpepper, and Maarten de Rijke. 2018. The
potential of learned index structures for index compression. In ADCS.

W Wesley Peterson. 1957. Addressing for random-access storage. IBM journal
of Research and Development 1, 2 (1957), 130-146.

CE Price. 1971. Table lookup techniques. Comput. Surveys 3, 2 (1971), 49-64.
Wenwen Qu, Xiaoling Wang, Jingdong Li, and Xin Li. 2019. Hybrid Indexes
by Exploring Traditional B-Tree and Linear Regression. In WEBIST. 601-613.
Alexandre Sablayrolles, Matthijs Douze, Cordelia Schmid, and Hervé Jégou.
2018. Deja Vu: an empirical evaluation of the memorization properties of
ConvNets. arXiv:1809.06396 (2018).

Alexandre Sablayrolles, Matthijs Douze, Cordelia Schmid, and Hervé Jégou.
2019. Spreading vectors for similarity search. In ICLR.

Naufal Fikri Setiawan, Benjamin IP Rubinstein, and Renata Borovica-Gajic.
2020. Function Interpolation for Learned Index Structures. In ADC. 68-80.
Stefan Sprenger, Steffen Zeuch, and Ulf Leser. 2016. Cache-sensitive skip list:
Efficient range queries on modern cpus. In DaMoN. Springer, 1-17.

Peter Van Sandt, Yannis Chronis, and Jignesh M Patel. 2019. Efficiently Search-
ing In-Memory Sorted Arrays: Revenge of the Interpolation Search?. In SIG-
MOD. 36-53.

Zhongle Xie, Qingchao Cai, HV Jagadish, Beng Chin Ooi, and Weng-Fai Wong.
2017. Parallelizing skip lists for in-memory multi-core database systems. In
ICDE. IEEE, 119-122.

Huanchen Zhang, Hyeontaek Lim, Viktor Leis, David G Andersen, Michael
Kaminsky, Kimberly Keeton, and Andrew Pavlo. 2018. Surf: Practical range
query filtering with fast succinct tries. In SIGMOD. 323-336.

	Shift-Table: A Low-latency Learned Index for Range Queries using Model CorrectionAli Hadian, Thomas Heinis

