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ABSTRACT

Continuous applications such as device monitoring and anomaly
detection often require real-time aggregated statistics over un-
bounded data streams. While existing stream processing systems
such as Flink, Spark, and Storm support processing of stream-
ing aggregations, their optimizations are limited with respect
to the dynamic nature of the data, and therefore are suboptimal
when the workload changes and/or when there is data skew.
In this paper we present AdCom, which is an adaptive combiner
for stream processing engines. The use of AdCom in aggregation
queries enables pre-aggregating tuples upstream (i.e., before data
shuffling) followed by global aggregation downstream. In con-
trast to existing approaches, AdCom can automatically adjust the
number of tuples to pre-aggregate depending on the data rate
and available network. Our experimental study using real-world
streaming workloads shows that using AdCom leads to 2.5-9%
higher sustainable throughput without compromising latency.

1 INTRODUCTION

Continuous or real-time applications often require real-time ag-
gregated statistics over an unbounded stream of events or tuples.
For example, ride-sharing platforms such as Uber and Lyft utilize
real-time aggregated statistics about traffic conditions to provide
suggestions on trip routes [1, 27]. As another example, interac-
tive entertainment platforms such as King.com provide their data
science teams with real-time aggregated statistics over billions
of user events from different games and systems [11].

To efficiently process continuous streams of data in real-time,
applications rely on Distributed Stream Processing Engines (SPEs)
such as Spark Streaming [29], Apache Flink [5], Apache Samza [19],
or Apache Storm [24]. These systems enable data stream pro-
cessing with low-latency and high throughput, and can scale by
distributing computations among a cluster of machines.

In the particular case of streaming aggregations, which are
groupBy-aggregation queries on continuous data, query exe-
cution involves shuffling of data stream tuples among compute
machines of the cluster. This data shuffling involves communica-
tion between machines via network, which incurs a performance
overhead in terms of a decrease in throughput and an increase
in end-to-end latency. The shuffling overhead—of which the net-
work bandwidth between machines is an important factor—also
increases as the degree of parallel processing increases. There-
fore, it is essential to reduce the shuffling overhead to improve
the overall performance of SPEs for streaming aggregations.

Current SPEs optimize data shuffling by extending the “com-
bine plus reduce” pattern of MapReduce (batch) to streaming. In
particular, SPEs first pre-aggregate upstream (i.e., locally aggre-
gate tuples in each partition before shuffling over the network)
and then perform a global aggregation operation downstream.
To cater to the needs of continuous applications, the number
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of input tuples accumulated prior to applying local aggregation
is based on a pre-configured mini-batch interval (e.g., for every
1000 tuples or every 5 seconds).

While SPEs allow configuring the mini-batch interval, its fixed
size during query execution is not ideal for real-time applications.
This is because, it lacks adaptability to the dynamic nature (w.r.t.
data rate changes and/or data skew) of datastreams. For example,
if the throughput of a data stream suddenly increases to what the
SPE cannot sustain (i.e., when the network gets saturated), SPE
inflicts a “backpressure” on the upstream operators. Backpressure
leads to an increase in the system’s latency. Likewise, if there is
(sudden) data skew in the stream, some instances of the (down-
stream) aggregation operation will process more records than
others leading to saturation of network buffers and consequently
affecting latency. One way to deal with the unpredictable nature
of datastreams is to re-configure the size of the network buffers
and/or mini-batch intervals to pre-aggregate. However, this re-
quires re-starting the query, which is expensive and undesirable
for continuous applications.

In this paper, we propose AdCom, which is an adaptive combiner
for SPEs. In contrast to pre-aggregating tuples based on a fixed
mini-batch interval, AdCom uses dynamic mini-batch intervals.
This allows “on-the-fly” adjusting of the number of tuples to pre-
aggregate. To deal with sudden changes in data rate, AdCom uti-
lizes a feedback mechanism consisting of a proportional-integral
controller that continuously monitors its network buffers, and
an actuator that signals AdCom to adjusts its mini-batch interval.
Thus, a high network usage results in pre-aggregating more num-
ber of tuples and vice-versa. This allows SPEs to adapt to sudden
data rate changes and/or skew, and achieve a higher sustainable
throughput without compromising latency.

We implemented AdCom in Apache Flink!, which we consid-
ered as a representative SPE, and performed an extensive evalu-
ation using real-world and synthetic datasets. Our results indi-
cate that with AdCom, Flink can autonomously adapt to data rate
changes and can execute aggregation queries with higher sustain-
able throughput (up to 2.5X) compared to existing approaches.

2 BACKGROUND

We start with a discussion on streaming aggregations that we
consider in this paper. We then describe the limitations of SPEs
in execution aggregation queries. We use Apache Flink as a rep-
resentative SPE to explain key concepts. These concepts also
generalize to other SPEs like Spark Streaming or Apache Storm.

2.1 Streaming Aggregations
We focus on the computing of streaming aggregates that are most
common in stream analytics applications. More specifically, we
consider unbounded aggregations on continuous queries that
have the following general form:
dataStream.groupBy(...).aggregate(...)

In the above general form, the groupBy(. .. ) transformation

first groups elements of the data stream by the specified key(s).
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Figure 1: Illustration of executing a groupBy-max query.

Then, the aggregate(...) transformation computes a “rolling”
aggregate as an output data stream. Such queries are the backbone
of many common data analytic tasks such as retrieving, gathering,
and organizing data. Common aggregate functions supported by
SPEs include sum(), min(), max(), and avg() among others.
SPEs also support parameterizing aggregate transformations with
User Defined Functions (UDFs).

As an example, consider a weather analytics dashboard that
continuously updates the maximum temperature of all regions
in a neighborhood. The application receives as an input, a data
stream S of <timeStamp,regionld, temperature> events, and
executes the aggregation queryzz

S.groupBy(regionld).max(temperature)
For a given stream such as:
[1,A, 23], [2, A 25],[1,B,19],[1,C, 28],[2, B, 18], . . .
the aggregation query produces the following resulting stream:
(A, 23], [A, 25, [B, 19],[C, 28], B, 19], . ..

Figure 1 gives a high level overview of executing such an
aggregation query on a Flink cluster. It includes two tasks A and B
with their respective subtasks running in parallel. In this example,
subtasks A.1and A.2, which perform the groupBy transformation,
communicate with the two instances of task B, which perform
the max () transformation. The groupBy() operations leads to
shuffling of stream elements over the network?. Before shuffling,
the output of the upstream (or sender) task is first queued in a
(network) buffer at (1). The events, which are already grouped
by key, are then flushed on to the network after a pre-configured
timeout (e.g., 100ms) or when the buffers are full. Likewise, on
the receiver side, the data is first queued in a buffer at @ which
is then consumed by the downstream subtasks.

2.2 Limitations of SPEs

SPEs strive to achieve a high sustainable throughput and low end-
to-end latency. In real-world workloads, however, SPEs have to
deal with two scenarios that affect its throughput and latency: (1)
When the data stream’s arrival rate increases to what a system can
not handle, and (2) when there is data skew, which causes some
instances of the aggregation tasks to process many more records
than others. In both these scenarios, SPEs exhibit a backpressure
mechanism, where the stream of events is queued up in network
buffers before being processed. This leads to an increase in end-
to-end latency, and in the worst case stalls the dataflow.

In the case of aggregation queries, backpressure on the sender
tasks, either due to a high arrival rate or data skew, can be miti-
gated to some extent by first locally aggregating. This is akin to
the use of a combiner in MapReduce [8]. In the context of data

2for brevity, we suppress the map() (or project()) transformation to project out
the timeStamp attribute
30ther similar transformation are keyBy() and reduceByKey() .
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Figure 2: Limitations of SPE w.r.t. data rate changes when
executing a groupBy-sum query.
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streaming, SPEs pre-aggregate records based on small mini-batch
interval (e.g., for every 5 seconds) before shuffling them over the
network. However, this pre-aggregation is suboptimal as using a
fixed mini-batch interval leads to an increased end-to-end latency
when workload changes and/or when there is skew.

We illustrate this limitation with an experiment that we per-
formed using Apache Flink. We considered a groupBy-sum query
and a setup comprising four local (pre-) aggregation tasks and
four global aggregation tasks. The mini-batch interval to pre-
aggregate was set to 5s and 5K records. Figure 2 shows the sys-
tem’s throughput (in blue; left axis) and its end-to-end latency
(in orange; right axis).

As we observe in Figure 2, the end-to-end latency remains
constant (~0.5s) as the data rate increases from 200 records/s
to 5K records/s. Also, the system achieves its highest sustain-
able throughput of ~8K records/sec. Note that when the arrival
rate further increases to 15K records/s, we see a spike in end-to-
end latency. This is because, the system exhibits a backpressure
mechanism and consequently an increased (up to 60s) end-to-end
latency when it can no longer cope with the arrival rate.

One way to deal with the changes in workload is to re-configure
the number of tuples to pre-aggregate and/or the size of the net-
work buffers. However, this requires restarting the query each
time the workload changes, which is expensive and undesirable
for real-time applications.

3 ADAPTIVE COMBINER

We now present AdCom, an adaptive combiner for SPEs that over-
comes the limitations mentioned above. The use of AdCom aids in
optimizing aggregation queries in SPEs by dynamically adjusting
the mini-batch interval to pre-aggregate prior to data shuffling,
which enables the SPE to constantly achieve the highest sustain-
able throughput without compromising latency.

The key challenge in designing AdCom is to determine when to
emit locally aggregated tuples. As discussed above, using a fixed
mini-batch interval is useful, but when the arrival rate of records
is higher than what the network can handle, the backpressure
mechanism is activated and leads to high latency. On the other
hand, if the arrival rate is too low, then a large mini-batch interval
will diminish the lowest achievable latency for the query.

3.1 The Feedback Mechanism

We tackle the above challenge by making use of a feedback mech-
anism, which comprises (1) a controller and (2) an actuator. The
controller continuously monitors the network buffers and com-
putes an optimal mini-batch interval for the current workload.
The actuator periodically sends “signals” (i.e., the new config-
uration for the mini-batch interval) to the parallel instances of
AdCom. This feedback mechanism allows AdCom to dynamically
adjust the time (and/or number of tuples) for which it should
locally aggregate tuples.



Figure 3 gives an overview of executing an aggregate query
using AdCom. Before we delve into its details, recall that back-
pressure is inflicted when the incoming arrival rate of records
surpasses what the system can handle. In the context of query
execution, this happens when the (sender’s) network buffer is
queued up with records that it cannot flush to the network (i.e.,
shuffle). More formally, denote by A the rate at which a pre-
aggregation task writes records to its buffer (i.e., the mini-batch
interval) and by yu the rate at which the records are flushed out
from the buffer. Further, let p = % denote the fraction of buffer
utilized. Intuitively, a backpressure situation arises when p > 1.
The key idea of our approach is to always keep p < 1 by contin-
uously updating A, which translates to adapting the mini-batch

interval to pre—aggregate4.

3.2 AdCom’s Controller and Actuator

We now detail the working of the controller and actuator. As
shown in Figure 3, the controller and the actuator are part of
Flink’s job manager. This allows us to globally control all (par-
allel) AdCom instances (i.e., pre-aggregation subtasks) that are
executed in the same phase. This is crucial for preserving the
query semantics with respect to the order in which the records are
processed downstream. Otherwise, having a controller for each
of AdCom’s parallel instance would result in writing records (to
its buffers) at different time intervals. This may lead to a change
in the order that records are processed downstream, which may
be undesirable depending on the application.

We use a proportional-integral (PI) controller to continuously
compute the optimal A. PI controllers have been widely used in
control systems and applications that require continuous modu-
lated control®. We refer interested readers to [12] for a compre-
hensive overview. In what follows, we discuss how we use a PI
controller in the context of performing streaming aggregations.

At high level, and as illustrated in Figure 3, the controller
continuously calculates an error value e(t) for each time ¢, which
is the difference between the desired value py of the network
buffer utilization and the measured current buffer utilization p.
Based on the error value, it updates A based on a proportional (Kp)
and integral (K1) terms. The proportional control term determines
the correction in A, which is proportional to e(t). The integral
term further applies a correction based on past values of e(t), to
diminish the residual error (i.e., when e(t) > 0 or e(¢) < 0 after
applying the proportional correction).

In more detail, we compute e(t) as follows. Denote by Ay, . .., Ay
the parallel instances of AdCom, and by p 4, the buffer utilization
for instance A;. Since we want to globally control all instances
(as mentioned above), we compute the error value as:

o(t) = _{ pd —ave(pa,,--..pa,) ifBA; st pa,=1

pa — 1 otherwise

In other words, we compute e(t) using the average buffer utiliza-
tion across AdCom’s parallel instances. To cope with data skew,
we compute e(t) as pg — 1, i.e., when there is at least one AdCom
instance with 100% buffer utilization. The desired value py is
set based on the Service-Level Objective (SLO) to keep low or
medium backpressure on the upstream operators, which usually
corresponds to 50-80% usage of the network buffers.

When e(t) > 0, the p signals are too high, then the controller
produces an input signal that decreases p. This materializes by

4 Alternatively, one can continuously update y or both.
5Some control systems additionally make use of a derivative component, i.e., a PID
controller; we do not use it as it is suitable only for slow moving loops.
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Figure 3: Overview of AdCom.

increasing the pre-aggregating time (and decreasing A) at AdCom.
Vice-versa, when e(t) < 0, the controller produces an input
signal that increases the usage of the buffers. This leads to “less
aggregation” and increase in A at AdCom. Finally, based on the
e(t), the controller applies a correction based on proportional
(Kp) and integral (K7) terms, which we explain next.

Proportional Factor (Kp). It is crucial for any controller to
let the magnitude of the corrective action depend upon the mag-
nitude of the error. This states how quickly AdCom responds to er-
rors. For instance, small errors lead to small adjustments, whereas
larger errors result in greater corrective actions. This is accom-
plished by the proportional factor Kp (Equation 1). It helps the
controller apply the largest control action if e(t) is large and not
making the system unstable if e(¢) is small. The next proportional
parameter (i.e., the mini-batch interval) to pre-aggregate records
is denoted by A(t + 1) and it is computed based on the current
parameter A(t) summed with the proportional factor Kp times
the error t(e), as follows:

At +1) = At) + [Kp.e(t)] 1)

The controller estimates a proportional correction if e(t) is
within the desired min and max values of p;. However, since
we consider average buffer utilization, it may be possible that
e(t) becomes zero. Therefore, no correction is taken in this case.
One way to fix this is to reduce the desired range or increase
Kp. However, this leads to AdCom making rapid and unstable
adjustments, which is very undesirable. Therefore, we further
use an integral factor K to determine the corrective action.

Integral Factor (K). The integral factor makes the controller
not react only based on the momentary e(t) but also based on
its previous values. It provides a way to amplify small errors
and keep adding them up over time. The accumulated values
provide a significant control signal and help the system not oscil-
late when it reaches the optimal time to locally aggregate tuples.
We compute the integral factor based the three last values of
e(t) with a sliding window-based histogram that implements the
reservoir algorithm. In our experiments, this window size was
enough to achieve a steady-state on the pre-aggregation parame-
ter of AdCom (see Section 4). Equation 2 composes the AdCom’ PI
controller with its proportional and integral factors that we use
to calculate the new pre-aggregation parameter A.

(t-3)
At +1) = [A2) + (Kp.e(t))] +[A1) + (K. tf e(r).dr)] (2)

3.3 Using AdCom in Flink

One can make use of AdCom at the API level, by parameterizing
it with the groupBy() key and a query specific UDF for pre-
aggregation. For example, our modifications to Flink allow us to
write the example aggregate query of Section 2 as:

S.adcom(regionId, max(temperature))
.groupBy(regionId).max(temperature)



4 EXPERIMENTS

We conducted an experimental study using a real-world dataset
in the context of a ride-sharing application. Our goal was to
compare the performance of Flink when using AdCom and other
existing optimizations. In particular, we investigated: (i) how well
AdCom adapts when data rate changes; (ii) how well AdCom fares
when there is data skew; (iii) AdCom’s resource efficiency, and; (iv)
how distributive and user-defined aggregate functions affect its
performance. We found that:

e Flink+AdCom achieved up to 2.5—9% higher sustainable through-
put when data rate increased by 4x.

o AdCom is competitive to state-of-the-art when handling skew.

e Flink+AdCom with 8 reducers achieved 9x higher throughput
than Flink+noOptimization, and 3Xx higher throughput than
state-of-the-art.

e Flink+AdCom achieved similar throughput but lower latency
when using distributive and user-defined aggregate functions.

4.1 Experimental Setup

Implementation and cluster. We implemented AdCom as a new
operator in Apache Flink. The PI controller and the actuator are
implemented as components of Flink’s job manager and use
Flink’s job monitoring API to monitor network buffer usage of
AdCom. All of our experiments were run on a local Flink cluster
consisting of four machines, each with 16GB of main memory, one
hard disk of 2TB, one Intel Xeon 2.66GHz 64-bit 8 core CPU, and
Ubuntu 16.04.6 (kernel GNU/Linux 4.4.0) as the operating system.
The machines in the cluster are connected via 1 Gbps Ethernet.
We used Apache Flink 1.11.2 and Java 1.8 for our implementation.
We configured the Flink cluster with four Task Managers and
one Job Manager, and set the maximum sub-task parallelism to 8
per node (i.e., the same number of CPU cores).

Datasets and aggregation queries. We used the New York
City Taxi and Limousine Commission (TLC) [22] dataset. It con-
sists of three million taxi trip records with fields capturing pick-
up and drop-off dates/times, pick-up and drop-off locations, trip
distances, itemized fares, rate types, payment types, and driver-
reported passenger counts. We additionally considered the TPC-
H benchmark dataset [4] with scale factor 5.

For the TLC dataset, we considered queries with algebraic and
distributive aggregate functions. In particular: (i) we considered
an event-count query (which we denote by Q1 in the text below)
that sums the number of passengers for each taxi driver, and
(ii) and an aggregation query that computes for each taxi driver
the average number of passengers, trip distance, and trip time
(denoted by Q2). For the TPC-H data we considered the TPC-
H query 1, which is an aggregation query over a single table
(lineitem) consisting of COUNT, SUM, and AVG aggregate functions.

We followed Karimov et al. [15] to generate on-the-fly data
streams for benchmarking streaming applications. In particular,
we load the datasets in memory and implement a streaming data
source that can emit events with different characteristics (see
Sections 4.2 and 4.3 below).

Baseline. To evaluate the performance of AdCom, we compare
it with no pre-aggregation, and with the state-of-the-art stream-
ing aggregation optimizations available in Flink [13]. In more
detail, we compare against (i) MiniBatch, which buffers input
records before the shuffle phase, and (ii) Local-Global Aggre-
gation, which executes the MiniBatch and then pre-aggregates
records locally (akin to Combine plus Reduce in MapReduce).
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Figure 4: Effect of change in data rate.

We set the maximum latency and the maximum number of in-
put records that can be used for MiniBatch and Local-Global
aggregation to 3 seconds and 3K events, respectively.

4.2 Effect of Change in Data Rate

We first study how well Flink adapts to a sudden surge in data
arrival rate when using AdCom and compare its performance with
the baseline approaches. We consider the TLC dataset, and a
stream data source that for the first 60 mins generates events at
50K records/sec, then for the next 100 mins at 200K records/sec,
and finally again reverts to a rate of 50K records/sec. We consid-
ered the aggregation query Q1 and measured its throughput and
latency, for which the results are shown in Figure 4.

We observed that Flink+AdCom achieved a higher throughput
than Flink+MiniBatch and Flink+LocalGlobal (see Figure 4(a)).
More specifically, when the input throughput is 50K rec/sec,
AdCom achieved an optimal mini-batch interval of 3.5s (starting
from the default value of 500ms) compared to a fixed interval
(of 3s and 3K events) for Flink+LocalGlobal. This allows us to
obtain a slightly higher throughput for the first 60mins. As the
input rate surges to 200K records/sec, AdCom further adapts its
mini-batch interval (from 3.5s to 8.5s), which allows Flink+AdCom
to achieve much higher throughput (from 3.6X up to 9x).

Figure 4(b) also shows the percentage of Flink’s network buffer
utilization for such a workload, which correlates to its latency.
High buffer utilization indicates high backpressure and increased
latency, whereas a lower buffer utilization indicates a low back-
pressure and lower latency. We observed that with AdCom, Flink
had an overall lower buffer utilization due to AdCom constantly
adjusting its mini-batch interval. When the workload suddenly
surges to 200K records/sec, AdCom had a buffer utilization (up
to 80%) but stabilizes after it reaches a sustainable throughput
of 18K records/sec per subtask (see Figure 4(a)) pre-aggregating
records every 8.5s. With baseline approaches, we observe that
pre-configured mini-batch intervals are not ideal for dynamic
workloads and lead to high buffer usage with surges in data rate.

Our results indicate that AdCom allows Flink to adapt to data
rate changes and achieve a higher sustainable throughput.

4.3 Effect of Skew Workloads

We now proceed to evaluate how well Flink performs in the
presence of skew workloads. We consider the TLC dataset, and a
stream data source at 50K records/sec that for the first 60 mins
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generates tuples following a uniform key distribution, then for
the next 70 mins following a skewed distribution, and finally
again reverts to a normal distribution. We considered the ag-
gregation query Q1 and measured its throughput and Flink’s
network buffer utilization, for which the results are shown in
Figure 5.

We observed that the LocalGlobal optimization allowed Flink
to reduce the network shuffle and cost of global aggregation in the
presence of skew. However, as shown in Figure 5(a), we observed
that throughput across subtasks had some variation. Flink+AdCom
also responded well to skew as it also first locally aggregates, and
achieved a slightly higher throughput with negligible variation.
This is because, AdCom adjusted its mini-batch interval to 3.5s
compared to (pre-configured) 3s of LocalGlobal. We also show
the network buffer utilization for this setting in Figure 5(b). Note
that different subtasks have different buffer utilization, and hence
we show two lines (one for the overloaded task and other for
remaining tasks). As observed in Figure 5(b), AdCom leads to lower
buffer utilization and hence lower backpressure.

Overall, our experiments indicate that AdCom is competitive
to LocalGlobal aggregation in dealing with data skew.

4.4 Resource Efficiency

We now evaluate the resource efficiency of Flink when using
AdCom for data streams with high arrival rate. A common strat-
egy to cope with high arrival rate is to add more resources, i.e.,
increase the degree of parallelism. When we add more global (i.e.:
reducer) subtasks after the shuffle phase, it helps the query to
avoid backpressure. Hence, it can sustain a higher throughput.
We consider the TLC dataset and a streaming source that gen-
erates events at a fixed rate of 200K rec/sec and process query Q1
with different aggregation optimizations. To deal with a higher
workload, we set the maximum latency and the maximum num-
ber of input records that can be used for MiniBatch and Local-
Global aggregation to 7 seconds and 7K events, respectively.
Figure 6 shows the throughput of the query for different strate-
gies. We observed that Flink+AdCom with 8 reducers achieved 9x
higher throughput than Flink+noOptimization, and 3x higher
throughput than Flink+MiniBatch and Flink+LocalGlobal. Fur-
ther, Flink+AdCom required only 8 reducers to achieve the same
throughput that Flink+LocalGlobal achieves with 24 reducers.
This is because the MiniBatch and the LocalGlobal approaches
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first accumulates (mini-batches) records every 7 seconds, and
then aggregate every 7K tuples. In contrast, AdCom leverages
a hash-based data structure, which allows us to consume and
pre-aggregate tuples in a single pass and hence requires less
resources.

Based on these experiments, we conclude that AdCom is more
resource efficient compared to MiniBatch and LocalGlobal.

4.5 Results for User-defined and Distributive
Aggregate Functions

Lastly, we evaluate the performance of AdCom for aggregation
queries with both distributive and algebraic aggregate functions.
We considered queries Q2 (on the TLC dataset) and TPC-H Q1
and set the maximum latency and the maximum number of input
records that can be used for MiniBatch and LocalGlobal aggrega-
tion to 1s and 1K events, respectively. The arrival rate for each
stream was 50K records/sec. The results are shown in Figure 7.

We first discuss the results for TPC-H query Q1. We observed
that Flink achieves the same throughput when using either of
AdCom, MiniBatch, or LocalGlobal. This is because the config-
ured maximum latency of 1s and the maximum number of input
records of 1K events that configured for MiniBatch and Local-
Global aggregation was sufficient to handle the workload and the
user-defined aggregate function. Although Flink+AdCom achieved
a similar throughput, it adapts its mini-batch interval from 1s to
50ms, and thus achieving a lower latency than Flink+MiniBach
and Flink+LocalGlobal (not shown here).

For query Q2, which involves an algebraic aggregate, we ob-
served that Flink+AdCom again achieves a higher throughput than
Flink+MiniBatch and Flink+LocalGlobal. We note that, other than
AVG(), Flink+LocalGlobal cannot optimize queries with algebraic
aggregate functions. In contrast, AdCom allows specifying any
UDF for pre-aggregating which makes it suitable to aggregation
queries that accept a “useful” combiner.

Overall, we found that Flink+AdCom achieves a higher through-
put without compromising on latency even for distributive aggre-
gate functions. We also performed experiments (not shown here
due to space constraints) considering queries involving other
distributive and algebraic aggregate functions such (e.g., sum,
max, min, and top-k) and observed similar performance.



5 RELATED WORK

We now discuss how ideas presented in this paper are related
to prior work on adaptive stream processing. Due to space con-
straints, we discuss works that are most related.

Das et al. [7] studied the effect of batch sizes on throughput and
latency, and proposed a control algorithm based on fixed point it-
eration. Their work focuses on determining the optimal batch size
for ingesting the data into SPE and relies on past queries. Zhang
et al. [31] proposed Dynamic Block and Batch Sizing (DyBBS)
using an online control algorithm integrated with isotonic regres-
sion. Besides adjusting the micro-batch size, DyBBS also adjusts
the execution parallelism (i.e., batch size/block size in Spark).
Instead of adapting the batch size, Drizzle [26] focuses on opti-
mally scheduling multiple batches (or a group), and automatically
tunes the group size. A-scheduler [6] further extended this ap-
proach by dynamically changing the batch sizes using an expert
fuzzy control mechanism. Wu et al. [28] studied the impact of
batch size on Kafka streams that are then ingested into SPEs,
and proposed a reactive batching strategy to cope with variable
network conditions. Lohrmann et al. [17] proposed strategies
to switch between adaptive buffer (re-)sizing and dynamic task
chaining to optimize execution plans. All these approaches focus
on adjusting the batch size w.r.t. the entire query or prior to
ingesting the data stream into the SPE. In contrast, we focus on
the batch size specific to an (aggregation) operator. AdCom is thus
complementary to the above approaches.

Apart from dynamically configuring the batch size, many
works have also focused on adapting the execution plan. WASP [14]
uses a network-aware framework that is able to adapt the query
plan to the resources available in run-time via task re-assignment,
operator scaling, and query re-planning. Nasir et al. [18] proposed
a hash-based algorithm to partition data that optimizes network
shuffle and deals with skew workloads. While [3, 16, 20, 25] have
studied eliminating redundant computations via dynamically
sharing of data and/or compute, [10, 21] focused on adaptability
via query complication. Eddies [2] also tackled the problem of
unpredictable workloads by reordering operators at runtime.

Feedback mechanisms have been a central component in en-
abling adaptive stream processing. FAST [9] uses adaptive sam-
pling methods based on a PID controller to adjust the sampling
rate for processing streams. Tolosana-Calasanz et al. [23] uses a
feedback mechanism based solely on proportional factor to mini-
mize resource utilization. In AdCom, we leverage a PI controller,
which is specific to optimizing local-aggregations.

6 CONCLUSION AND FUTURE WORK

Adaptability of SPEs to varying workloads is important for real-
time applications. In this paper, we considered streaming aggre-
gations, which are the backbone of many real-time applications.
We have proposed AdCom, an adaptive combiner for SPEs, which
improves the performance of aggregation queries under variable
workloads. We have proposed a lightweight feedback mecha-
nism that continuously monitors the network buffers, and allows
AdCom to autonomously adapt to varying workloads. In our ex-
perimental evaluation using a real-world dataset, we have shown
that AdCom achieves a higher sustainable throughput (up to 9x)
without compromising latency, is resilient to data skew, and is
resource efficient when compared to existing optimizations.

As future work, we plan to extend our work to fog and edge
computing environments [30]. In particular, we plan to study
how to adapt AdCom for nodes that are resource (e.g., memory)
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constrained. We also plan to make AdCom adaptive to hybrid en-
vironments that include unreliable compute nodes and network
channels. Lastly, we plan to extend existing optimizers to cre-
ate the AdCom UDF during compile time, so it can relieve the
developers of this task.
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