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ABSTRACT
With the ever-increasing urbanization, managing tra�c and

avoiding congestion becomes more and more challenging.

Analysing the dynamics of vehicles is a crucial aspect of alle-

viating the problem of tra�c congestion. One key aspect in as-

sessing the tra�c situation is to identify dominant �ows, which
are subject to high tra�c volumes, and hence, are most prone to

generate congestion. Real-world tra�c data tracking vehicles in

an urban network are proved to be extensive, subject to incon-

sistencies, and often detections are missing. These render many

of the prior techniques inapplicable, highlighting the need for a

novel robust and scalable technique. In this paper, we propose

IST, an indexing technique for real-life tra�c data, a scoring

function for identifying the dominant �ows and Flow-Scan, an

algorithm for querying the dominant �ows from the proposed

index. Our experimental results demonstrate the e�ciency and

e�ectiveness of the presented method. Robustness and e�ective-

ness were tested querying top-: dominant �ows on a real-life

dataset. In addition, with synthetic data, we demonstrate that

our method is scalable while comparing it to related existing

methods.

1 INTRODUCTION
Predicting and preventing tra�c congestion is important for

multiple reasons, such as reducing the driving time from place to

place, reducing pollution, reducing waste of fuel, and in general

improving the e�ciency of urban mobility. In order to prevent

tra�c congestion in urban roads, it is necessary to analyse the

tra�c dynamics and identify the areas where tra�c jams are

more likely to happen. Identifying these potentially problematic

areas is the �rst step to pursue solutions alleviating the issue

using tra�c optimization techniques.

Dominant �ows refer to the longest possible sequences of

road segments where a signi�cant number of vehicles travel in

a given time window. They are crucial information to enable

regional tra�c optimization techniques and to coordinate tra�c

light plans in order to calibrate the capacity of roads. Detecting

dominant �ows enables smart tra�c light plans optimization,

allowing on the one hand to increase the throughput of vehicles

crossing intersections in the directions a�ected by the dominant

�ows (tra�c throttling), and on the other hand slow down tra�c

along with the dominant �ows when road capacity cannot be

further extended and backpressure must be applied to avoid

saturation of road edges, i.e., congestions. Congestions can be

interpreted as multiple overlapping �ows that constrain each

other and so creating tra�c jams. In addition, the longer the
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Figure 1: Example of dominant �ows in an area during
three di�erent times of a day.

dominant �ows are the more areas they a�ect. Thus, detecting

these �ows allows adjusting the tra�c light plans to avoid these

tra�c jams. Once the dominant �ows are detected, dedicated

analytics can be applied to them for further tra�c and movement

pattern analysis and for understanding macroscopic tra�c trends.

Additionally, knowing the dominant �ows can be a powerful

analytical tool for de�ning strategies for tra�c management and

control of tra�c authorities.

As vehicles are used by people, it is not always straightforward

to model their behaviour and moving patterns. For example,

Figure 1 presents the dominant �ows in an area at three di�erent

times of a day. As we can see, the �ows are con�icting, especially

between the one from 03:00-04:00 that goes from intersection

A to intersection H and the one from 08:00-09:00 where it goes

from intersection H to intersection A. The most common tra�c

light systems allow tra�c engineers to adjust tra�c light plans

during the day to accommodate di�erent �ows. Thus, existing

adaptive tra�c light systems seek dominant �ow information

during the day to avoid tra�c jams and shorten commute time.

Our case study concerns an area in one of the largest Chi-

nese metropolis where installed cameras allow to monitor tra�c

at intersections. Automated video processing allows detecting

trajectories of vehicles across intersections, while detecting and

tracking their plate number. Summaries of the information ex-

tracted from videos are made available for tra�c optimization

processes at 1 second frequency. The inherent complexity of real-

life environment, video processing and software pipelines make

the process prone to errors and failures that must be accounted

for. This work is part of a solution combining cloud technologies

and AI which strives for analysing and coordinating the tra�c

in the city to alleviate the tra�c congestion.

Working with real-life data is a challenging task. Real-life data

can be highly incomplete, with respect to missing values, and

high noise. Our case study uses data from camera sensors that
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cover only certain parts of the road network, leading to missing

information. For example, in Figure 1, there are no camera sensors

located in intersection B, so if multiple vehicles traveling from

intersection D to intersection B create a dominant �ow, this �ow

will be probably missed. Furthermore, camera sensors might

su�er from various problems during their lifetime. Malfunction,

bad visibility due to the weather or dirt may prevent precise

detection of plate numbers. The aforementioned issues generate

various types of inconsistencies in the detection data, and thus

making the dominant �ow identi�cation more challenging.

The top-: dominant �ow extraction is not a new problem. Yet,

the previous work [1–3, 6, 9] is considering only the frequency

of the �ows and not their length. However, if the length of the

�ows are ignored, single very frequent road segment �ows would

dominate the top-: results and not allow the longer and more im-

portant �ows to be identi�ed and analysed. The PSSS method [3]

suggests the use of a variant of a fundamental sequential pattern

mining method [5, 8]. However, this technique is not applicable

in our context due to our challenging real-life data where missing

values in the detections are not rare. The method proposed in [3]

is using the successor list of each sensor in order to �nd “hot

routes”, but in our setting where missing values are common

and not all road edges are monitored, the successor lists will not

achieve the desired outcome and end up giving wrong results.

This work is focused on identifying dominant �ows in given

time windows during the day, to support an adaptive tra�c light

system aimed at optimizing tra�c by controlling road capacity

and prevent congestion of vehicles on urban roads. In this paper,

we aim to discover dominant �ows occurring during ad-hoc time

windows based on the frequency and length of the �ow. The

approach we are presenting in this work enables to overcome

the issues that the previous methods have with the imperfect

real-life data. Furthermore, we consider not only the frequency

of a �ow, but also its length. The main idea of this work is to

use simple data structures to store all the vehicle detections from

the camera sensors based both on their timestamps and their

location. We adopt a combination of an inverted index and su�x

trees to index only the necessary vehicle trip detections. From

the index, we are then able to identify the most dominant �ows

very e�ciently in multiple ad-hoc time windows.

Contributions and Outline. In summary, in this work we

make the following contributions:

• We introduce a novel scoring function to determine the

�ows based on a weighted factor between their frequency

and length.

• We propose a simple indexing technique for vehicle detec-

tions on road networks.

• We propose an e�cient algorithm to identify dominant

�ows on multiple ad-hoc time windows from the proposed

index.

• With thorough experiments, we demonstrate that our in-

dexing and querying methods are e�cient and viable so-

lutions to our case study.

The rest of the paper is organised as follows. Section 2 reviews

the related work, while in Section 3 the problem of �nding the

top-: dominant �ows is introduced. Then, Section 4 describes the

indexing function for detecting the dominant �ows. We evaluate

our approach with the state-of-the-art approaches in Section 5.

Finally, Section 6 concludes the paper with the �nal remarks and

provides directions for future work.

2 RELATEDWORK
A vehicle trip can be seen as an ordered sequence of detections

where each detection represents a single itemset of the sequence.

Thus, the identi�cation of dominant �ows can be abstracted,

and therefore, can be related to the frequent sequential pattern

mining topic. One of the early works on this topic is [10] in which

the authors made a generalization of a sequential pattern and

proposed the GSP algorithm to discover the frequent patterns.

Later, two di�erent methods, SPADE [12] and Pre�xSpan [5, 8],

were proposed that outperformed the GSP method. SPADE [12]

was introduced as a method of frequent sequence mining using

a lattice structure. Pre�xSpan [5, 8] algorithm was later used in

other works [3] for various applications like ours.We chose to use

this method as our baseline, and not SPADE since this method

was used in other works as well, even though none of them

perfectly apply in our application, as described in the following

Section 5.

An adaptation of Pre�xSpan algorithm, the PSSS [3] method

was proposed in order to mine hot routes on a road network using

private vehicle Electronic Registration Identi�cation data. The

problem addressed in [3] can be considered similar to our work

and we use the PSSS method as a baseline in our experiments.

However, there are two main di�erences which make PSSS not

applicable for our case. First, only the frequency of a route is

considered; in our method we use a combination of the frequency

and the length of a �ow to de�ne it as “hot” or dominant. Second,

in PSSS method successor lists for each road node are introduced

that determine the neighbouring road nodes where a following

detection could happen. These successor lists are used to restrict

the search of hot �ows only on the neighbouring road edges.

Although this makes PSSS method more e�cient compared to the

Pre�xSpan, it cannot be applied in our case. In a real case scenario,

we have missing data and gaps in the detections that prevent the

successor list of each road node to bene�t the identi�cation of hot

�ows. For example, in Figure 1, the successor list of intersection

A includes intersections B and C. If a dominant �ow is from

intersection A to intersection E through intersection C, and the

camera on intersectionC is temporarily not giving any detections,

this �ow would be missed since the search from intersection A
will be stopped once there won’t be any detections in intersection

C. Furthermore, in our case study scenario, there are intersections

that do not have detectors and thus by default there are detections

missing. The adjacency property of the road network detections

is also utilized in the GBM method [6], where it is assumed

that the objects are moving in a grid space and each next move

is happening to adjacent grid cells. Again, this property is not

true for the real case scenarios with incomplete vehicle detection,

that, as mentioned before, are due to factor like missing detectors,

faulty hardware, poor weather conditions or network failure and

the inherent complexity of real-time image processing.

Other works related to the frequent pattern on trajectories

include [1, 2, 9] focus on detecting frequent patterns on trajec-

tories that are based on GPS coordinates. These problems are

incomparable to ours, with their biggest di�erence being their

use of coordinates �oating point data instead of �xed road net-

work point data. Furthermore, only the frequency of the patterns

is considered, in contrast to the combination of the length and

the frequency that our work adopts.
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3 PRELIMINARIES
Let � = (* , �) be a directed unweighted graph that represents

a road network. A node D8 ∈ * represents a road intersection

and a directed edge 48 = (DG , D~) ∈ � represents a road segment

that starts from intersection DG and ends in intersection D~ . In

each edge of an intersection a detector is located, which gives

information as a tuple in the form of (2, C, 4), where 2 is the vehicle
id or vehicle plate number, C is the timestamp of the detection

and 4 is the directed road edge where the detection happened.

In a real setting where each detector sends data every 1B42 , we

can create sequences of detections for each vehicle, de�ned as

vehicle trips.

De�nition 3.1 (Trip). A vehicle trip ) is an ordered sequence

of >8 = (C8 , 48 ), where C8 is the timestamp and 48 is the road edge

of a detection that the vehicle moved on. To be considered part

of the same trip, the time di�erence between two sequential

entries must be less than a manually-de�ned time threshold

C<8= . Hence, we de�ne a trip as ) = {>1, >2, . . . , > |) |}, where
C8+1 − C8 ≤ C<8=∀8, 1 ≤ 8 ≤ |) |.

A �ow B = {41, 42, . . . , 4 |B |} is an ordered sequence of road

edges and its length is de�ned as the number of road edges that

it contains, i.e. ;4=(B) = |4 ∈ B |. A trip ) contains a �ow B at

time window, = [C0, C1 ], denoted as (B,, ) v ) if and only if

the trip ) has at least one index 8 where the sequence of road

edges starting at 8 is the same sequence of ordered road edges

during that time window, . More formally ∃8, 1 ≤ 8 ≤ |) | :
4 9 = >8+9−1 .4 ∀1 ≤ 9 ≤ |B | and [>8 .C, >8+|B | .C] ⊆, and >8+9−1 ∈ )
and 4 9 ∈ B . Given a time window, and a set of trips �) , we can

de�ne the frequency of a �ow as the number of trips in which it

is contained, i.e. 5 A4@(B,, ) = |)8 v B |.
In order to avoid considering not useful �ows, we use min-

imum length, ;<8= , and minimum frequency, 5<8= , limits. If a

�ow has less frequency or less length than the minimum, we

ignore it. In addition, we consider only maximal �ows, where

a �ow is considered maximal if there are no sub-�ows with the

same frequency. A score can get assigned to a �ow, based on its

frequency and length. In this work the score is the following:

De�nition 3.2 (Flow Score). Given a �ow B , a time window, ,

a set of trips �) , and a parameter 0 ≤ U ≤ 1, the score of the

�ow is the weighted combination of its frequency and length, i.e.

B2>A4 (B,, , U) = U ∗ 5 A4@(B,, ) + (1 − U) ∗ ;4=(B)
Given a number : ≥ 1, a set of trips �) , a time window,

and a parameter U , the :−Flows problem is to identify all the :

�ows with the highest score.

4 METHOD FLOW-SCAN
The main idea of the proposed method is based on two obser-

vations. First, we need to identify the �ows, or sub-trips, from

the vehicle trips based on their frequency and length. For this

purpose, we adopt a structure that utilizes a variant of the su�x

tree [11]. Second, we don’t need to maintain all the trips from

the vehicles, but only the ones that are candidates for the results.

In other words, we can discard the trips that have less than the

required ;<8= . The trips with less than the required 5<8= need to

get retained, since their sub-trips could potentially have more

than the required 5<8= .

IST Index. The main data structure of the method is an in-

verted index. The keys of the inverted index store all the sub-�ows

with ;<8= that appear in the data. The values of the inverted index

are su�x trees with all the sub-�ows longer than ;<8= having

ID Path Vehicle Timestamps

t1 abcdef A1 2020/03/20 07:12 − 2020/03/20 07:28
t2 abcg A2 2020/03/20 07:25 − 2020/03/20 07:41
t3 hdebc A3 2020/03/20 08:03 − 2020/03/20 08:23

Figure 2: IST index example using ;<8= = 2.

the key as pre�x. The adopted su�x tree, is a compact version of

the known su�x tree. Essentially, the nodes that have only one

sub-tree are merged with the root of their sub-tree. In this way,

the su�x tree has less nodes without loss of the necessary infor-

mation. In addition, each node of the su�x tree has a pointer to a

list of all the trip ids that contain the sub-�ow of the node. Using

this list, the frequency of the sub-�ow can be easily determined.

An auxiliary data structure is used to store the information

of all the trips; trip id, vehicle id that made the trip, and the

starting and ending timestamps. This data structure is a simple

list that is used as supplementary information of the main index.

By scanning this list, the trips inside the time window can be

identi�ed.

Example 4.1. An example is shown in Figure 2 where the IST

index is visualized for three vehicle trips. For this example, we

use ;<8= = 2. All the sub-�ows with length = 2 are indexed

as keys in the IST, depicted as rectangles. Each key of the IST

index is pointing to a su�x tree, depicted as circles, where all

the sub-�ows that have the certain keys as pre�x are indexed.

Furthermore, in the nodes of the su�x trees there are the pointers

to the trip ids lists, depicted as hexagons. The IST index is not

fully illustrated for presentation reasons. As seen in the �gure the

sub-�ows bcdef, bcg and bc are indexed in the second key of the

IST index bc. The su�x tree from that key includes the su�xes

of the mentioned sub-�ows def and g. The root of the tree is

pointing to the list with the trip ids {C1, C2, C3}, since the sub-�ow
bc is contained in all the trips of our example. Accordingly, the

other nodes of the su�x tree contain the respected trip ids in

their id lists.

Flow-Scan Query Method. By indexing the trips using the

IST data structure, we make sure that no unnecessary trips will

become candidates for the dominant �ows result and that no

information of the trips is lost. In order to query the desired

dominant �ows, the Flow-Scan process of reading the data from

the IST data structure is divided into four steps, shown in Algo-

rithm 1. The �rst step is the identi�cation of the trips that happen

inside the time window, (line 3). This step uses the auxiliary

data structure where all the trips are stored is used. Once the

trips inside the time window, are retrieved, the keys from the

IST inverted index are selected (line 4). This step is important in

order to avoid traversing all the data in the IST data structure,

but only the elements that could give candidate �ows for the

result. The third step is to retrieve all the maximal sub-�ows that

are longer than the ;<8= and more frequent than the 5<8= from
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the su�x trees of the keys (lines 5-7). Lastly, the fourth step is

to score the retrieved sub-�ows using the scoring function from

the De�nition 3.2 (lines 8-9) and return the : sub-�ows with the

highest scores.

Algorithm 1 Flow-Scan Algorithm

1: function Query(IST index, query parameters U, :,, )

2: �;>FB ← ∅
3: �),, ← FindTripsInWindow(IST,, );

4:  �.( ← FindIndexKeys(IST, �),, );

5: for each :4~ ∈  �.( do
6: � ← from :4~.Su�xTree �nd all maximal �ows with

more than 5<8=

7: add all � in �;>FB

8: for each B ∈ �;>FB do
9: score(B)

return<0G: [�;>FB]

5 EXPERIMENTS
In this section, we report the experimental evaluation of the

proposed method, especially for what concerns e�ciency and

scalability. We �rst describe the experimental setup, the base-

line methods and the datasets used for the evaluation. Then, we

describe each experiment, report and discuss the results.

5.1 Environment and Setup
Hardware and Implementation. Our experiments were eval-

uated on a machine with 24 cores 3.40GHz Intel(R) Core(TM)

i7-6700 CPUs, with 16GB memory, using Ubuntu 18.04.4 LTS,

and all algorithms are implemented in Java 8.

Compared Algorithms. In our experiments, we use a Naive

baseline algorithm to evaluate the e�ciency of the Flow-Scan

algorithm proposed in this work. The baseline method, Naive,

utilizes the structure of the road network to store a list of de-

tections in each road edge 4 of the network. The list consists of

tuples (C, 2, ?) representing a detection of a vehicle 2 at time C at

the given road edge 4 . The last, ? , is a pointer to the next data

point (detection) of the same vehicle 2 within the same trip ) ,

i.e. the two consequent detections occurred within C<8= . In this

way, the vehicle’s trip can be recreated by traversing the vehicle’s

detections following the pointers ? . During the query process,

the algorithm scans all the road edges 4 for detections that occur

inside the time window, and it constructs �ows by traversing

the detections using the pointers ? . After identifying all �ows,

it calculates a score for each �ow and returns the : �ows with

the highest score. The Naive method can handle the missing data

from the detections since it uses the road network only to store

the detections and not to extract the �ows from it, as opposed

to the PSSS method [3]. In the Naive method, the search of the

�ows is happening by following the pointers of the tuples and

not following the road network structure.

Additionally with the baseline Naive, we compare the pro-

posed method Flow-Scan with the Pre�xSpan method described

in [5, 8] and with the PSSS method described in [3]. Since the

Pre�xSpan and the PSSS methods identify the dominant �ows

based only on their frequency, we use U = 1 for the Naive and

Flow-Scan methods in the experiments that all four algorithms

are present. Furthermore, since the Pre�xSpan and the PSSS

methods were proposed for applications that didn’t use incom-

plete data, we use these algorithms only in the experiments with

the synthetic datasets as described in the following sections.

Datasets. For the evaluation of the aforementioned methods,

we use four di�erent datasets [4], two including real-life data

and two synthetic data. The �rst dataset, RM, is a real-life dataset

collected in a period of a month from tra�c detectors in an area

of a Chinese city. The detectors were located in 6 intersections

monitoring the tra�c on 44 road edges. Each detector was col-

lecting data every 1 second for all the road edges in its radius. In

total, 2894174 detections were collected, from 337089 di�erent

vehicles. The second dataset, RD, includes the data from RM for

one of the days in that month. The data from that day include

116268 detections from 44643 vehicles.

As already mentioned, these real-life data are incomplete and

the PSSS method [3] is not suitable for identifying the dominant

�ows over them. In order to be able to apply the PSSS and the

Pre�xSpan [5, 8] algorithms and to experiment with the scala-

bility of the proposed algorithm Flow-Scan we use two datasets,

with synthetic data. The synthetic data COM were generated in

the same road network as the real-life data RM and RD, with

the di�erence that we included detectors in the 2 intersections

where the real scenario was missing. Then we generated equally

random trips over the road network. In total we generated 18910

detections from 7500 vehicles. In order to evaluate the scalabil-

ity of the methods in bigger road networks, we generated the

synthetic data GRID using the SUMO Simulation of Urban Mo-

bility [7]. We randomly generated trips on a 10G10 intersections

grid road network (having 100 intersections and 360 road edges)

using a utility from SUMO that equally generates trips over the

road network. Then, running the simulation and using TraCI

Tra�c Control Interface library
1
we read the simulation data

and collect the detections. The simulation collected data include

1806141 detections from 135618 di�erent vehicles.

5.2 Results and Discussion
Following, the experimental analysis is reported. We show the

performance of themethods described based on their building and

querying times, and discuss the e�ect that the various parameters

have on the running time of the algorithms. The building time

for each algorithm depends on the nature of the algorithm. For

all of them the building time includes the reading of the data

into memory. For Naive and Flow-Scan it also includes the time

for building their respective index. The query time is the time

used for each algorithm in order to retrieve the dominant �ows

from the data or the index. For all algorithms this time includes

also the scoring of each �ow. For PSSS algorithm the time for

creating the successor list only for the road edges used in the

dominant �ows detection is measured in the query time. Note

that the experimental results reported are the ones we believe

are representative and not the exhaustive set of experiments

performed.

Dataset Size Scalability. For testing the scalability, we run

the four algorithms, Pre�xSpan, PSSS,Naive, Flow-Scan, using

the two synthetic datasets COM and GRID for di�erent number of

detections and vehicles. All algorithms were run with C<8= = 200

sec, U = 1, : = 1, ;<8= = 2 and 5<8= = 2.

Figure 3 shows the scalability of the building and query times

for the four algorithms by changing the number of vehicles in

the COM dataset. As expected, the more vehicles there are in

1
https://sumo.dlr.de/docs/TraCI.html
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Figure 3: Running times for the COM dataset changing
the number of vehicles.
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Figure 4: Running times for the GRID dataset changing
the number of detections.

the dataset, the more time the algorithms need for their building

step. Method Pre�xSpan and PSSS have the same performance on

their building phase since they only read the data into memory in

this step. On the other hand, the query time does not get a�ected

by the number of the vehicles, excepting the Pre�xSpan method

that has to iterate multiple times through the vehicle trips to �nd

the candidates for the result.

In Figure 4, the building and query times for the

Naive, Flow-Scan and PSSS algorithms are shown by changing

the number of detections in the GRID dataset. This dataset was

too large for the Pre�xSpan method and so we do not report run-

ning times for it. Similarly as the COM dataset, with the increase

of the number of detections in the data, the building time of the

methods is increased. For bigger scale of data, such as the GRID

dataset, the building of the IST index is as e�cient as the reading

of the data into memory that the PSSS method is using, while in

the query time the performance is also similar.

Value of TimeWindowW. The time window, is the query

parameter that a�ects the query time. It is used to restricts the

dominant �ows in the result, so that they are happening during

the time window period. Intuitively, when the time window is in

a rush hour period of the day, a signi�cant number of vehicles

will travel in the road edges, more �ows will become candidates

for the result and so, more time will be necessary for the query

process. Figure 5a shows a histogramwith the number of vehicles

per hour for the RD dataset. The peak rush hours are 08:00-09:00

and 18:00-19:00 and the hours with the least tra�c are 01:00-06:00.

We run the Naive and the Flow-Scan algorithms for �ve dif-

ferent time windows that had di�erent number of vehicles. In

this experiment we don’t use the Pre�xSpan and PSSS algorithms

since we use the real-life RD dataset that is incomplete. The rest of

the parameters were C<8= = 200 sec, U = 0.5, : = 10, ;<8= = 1 and
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Figure 6: Query time for Flow-Scan method using the RM
dataset.

5<8= = 1. Figure 5b shows the query times in respect to the num-

ber of vehicles that were in each time window. We can see that

with more vehicles in the time window, the query time increases.

Furthermore, Naive algorithm is a�ected more by the number

of vehicles in the time window, while Flow-Scan algorithm can

handle better the increase.

In addition, for validating our method Flow-Scan over one

month of data, we run the algorithm for the same time windows

for all the days of a month using the RM dataset. The number

of vehicles for each hour for all the di�erent days of the month

follow the same trend as in Figure 5a. Figure 6 shows the query

times for each time window for 30 days. As seen in the �gure,

the di�erent tra�c conditions in the di�erent days do not a�ect

the time windows with small number of vehicles, like the time

windows of 04:00-05:00 and 00:00-01:00. As the number of ve-

hicles increases in the time window, the query time di�erences

also increase.

Value of Time Threshold tmin. The time threshold a�ects

the indexing time because the higher it is, the more detections

will be connected into a single trip. Figure 7 shows the run-

ning times for the Naive and Flow-Scan algorithms, run for the

RD dataset. Again, the Pre�xSpan and PSSS algorithms are not

present because of the incomplete real-life dataset. We chose

as time window, the period between 07:00-08:00 since this

is the period with average number of vehicles. The rest of the

parameters were U = 0.5, : = 10, ;<8= = 1 and 5<8= = 1.

When the time threshold C<8= is increased, the building time

for the Naive index is not a�ected compared to the building time

for the IST index.When the C<8= is increased, as mentioned, more

detections get connected into single trips and the trips grow in

length. However, since the vehicle detections stay the same, we

get less trips in total, and so the building of the IST index is

decreased.
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Figure 7: Running times for the RD dataset changing the
C<8= parameter.
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Figure 8: Running times for the RD dataset changing the
;<8= of the trips.

On the contrary, the query time the Naive algorithm gets more

a�ected by the increase of the C<8= since the trips become longer.

The Naive query phase needs to iterate more times in the length

of the trips than the Flow-Scan algorithm, and so the increase of

the C<8= increases the query time of Naive.

Value of Minimum Length lmin. The ;<8= of the trips con-

trols the length of the �ows that can be candidates as dominant

�ows and thus, indirectly can control how many trips can be

considered from the dataset. If a �ow is shorter than the ;<8=

then it is ignored in the result. In addition, the ;<8= is the value

that controls the length of the sub-�ows stored as inverted index

keys in the IST index. For evaluating how the value of the ;<8=

is a�ecting the Naive and the Flow-Scan methods, we run the al-

gorithms for the RD dataset, with C<8= = 500 sec, U = 0.5, : = 10,

5<8= = 1 and time window, = 07:00-08:00. As mentioned be-

fore, the Pre�xSpan and PSSS algorithms are not included in this

experiment because of the use of the real-life dataset.

Figure 8 shows the running times for the Naive and the

Flow-Scan algorithms. When ;<8= = 1, all the �ows and sub-

�ows are considered as candidates to be dominant, but when the

;<8= increases, the number of �ows longer than the threshold

decrease, thus reducing the candidate �ows. This shows in the

query time for both Naive and Flow-Scan algorithms. For both

algorithms as the ;<8= is increasing, the query time is decreasing

since less �ows needs to be analysed. The IST index stores only

the trips that have more than the ;<8= , and when the ;<8= is

increasing, the index building time is decreasing. The Naive algo-

rithm has more stable building time with the change of the ;<8=

and that is because it does not check for ;<8= of the trips before

indexing them. However, Naive needs more time for querying

than the Flow-Scan, approximately 30% more time, since it keeps

all trips and not only the ones longer than ;<8= .

Values of k, U and fmin. The parameters : , U and 5<8= a�ect

which of the �ows will be detected as the result dominant �ows,

but do not a�ect the running time of the algorithms. The param-

eter : does not a�ect the algorithms’ running times, since the

algorithms do not use any pruning or early stopping condition.

Similarly, changing U and 5<8= a�ect only the scoring function

of the �ows and not the query process of the algorithms.

6 CONCLUSIONS
In this paper, we focused on the real-life scenario of identifying

dominant tra�c �ows, which is crucial for tra�c optimization

techniques, such as avoiding tra�c congestion on urban road

networks. We introduced a scoring function that ranks the �ows,

proposed a simple data structure called IST, and proposed the

Flow-Scan algorithm to identify the highest-ranking �ows by

utilizing the proposed IST index. Our experimental evaluation

shows that the Flow-Scan method is e�cient and scalable. It is

equally e�cient on the synthetic datasets with the state-of-the-

art PSSS method while at the same time our method enables

to overcome the limitations of the PSSS method that does not

consider the length of a �ow as an important factor and is inca-

pable to handle missing values of the real-life data. Furthermore,

although the Flow-Scan method uses more time to build the IST

index compared to the Naive method, it outperforms the baseline

in the query time and thus, it is a viable solutions for the large

scale real-life urban road network scenario studied in this paper.
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