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ABSTRACT

Our answer-graphmethod to evaluate SPARQL conjunctive queries
(CQs) finds a factorized answer set first, an answer graph, and
then finds the embedding tuples from this. This approach can
reduce greatly the cost to evaluate CQs. This affords us a second
advantage: we can construct a cost-based planner. We present
the answer-graph approach, and overview our prototype sys-
tem, Wireframe. We then offer proof of concept via a micro-
benchmark over the YAGO2s dataset with two prevalent shapes
of queries, snowflake and diamond. We compare Wireframe’s
performance over these against PostgreSQL, Virtuoso, Mon-
etDB, and Neo4J to illustrate the performance advantages of our
answer-graph approach.

1 INTRODUCTION

Science is, of course, driven by observation. It is now becoming
also ever more driven by data. Some of the datasets involved
are unimaginably large. The data is often wildly heterogeneous,
and rarely well structured as in business applications. This de-
mands new skills, methods, and approaches of scientists, and
challenges computer scientists with devising new data models,
query languages, systems, and tools that better support this.

Graph-like data has become prevalent among scientific data
stores and elsewhere. The data-science research community has
begun to focus on how best to support the management of graph
data and its analysis. One data model for graph databases is
the Resource Description Framework (RDF) [18], paired with the
query language SPARQL [8]. These have evolved as W3C stan-
dards, initially for addressing the Semantic Web. An RDF store
conceptually consists of a set of triples to represent a directed,
edge-labeled multi-graph. The triple ⟨s, p, o⟩ represents the di-
rected, labeled edge from subject node “s” to target node “o” with
label (predicate) “p”. In RDF, nodes have unique identity. The
semantics, however, is carried by the labels and how the nodes
are connected. The UniProt [16] SPARQL Endpoint (dataset)
[17], for example, consists of 63,376,853,475 RDF triples as of
this writing. UniProt (Universal Protein resource) is a freely
accessible, popular repository of protein data.

The SPARQL query language provides a formal way to query
over such graph databases. Types of SPARQL queries can be
thought about as small graphs themselves, so-called query graphs.
In a SPARQL conjunctive query (CQ), the “nodes” are the query’s
binding variables and the “edges” between these are the labels
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Figure 1: Example of an answer graph (shaded red).

to be matched. An “answer” to a CQ over a data graph G (that
is, the graph database), denoted as JCQKG, is a homomorphic
embedding of the query graph into the data graph that matches
the query’s labels to the data graph’s labeled edges. An answer
is then a tuple of node ID’s as a binding of the query’s node
variables. As such, each answer can be considered as a sub-graph
matched in the data graph.

A CQ can be quite expensive to evaluate and may require
extreme resources, given both the potentially immense size of the
data graph and the relative complexity of the CQ’s query graph.
The challenge is to reduce the expense and neededmachinery.We
present a novel approach to query optimization and evaluation for
CQs that we call Wireframe. A set of embeddings is the CQ’s
answer; this in itself is not a graph. In Wireframe’s approach, as
an intermediate step, we instead find the answer graph, the subset
of edges from the data graph that suffices to compose the CQ’s
embeddings. This affords us powerful advantages: the answer
graph is essentially the ideal factorization of the embeddings;1 and
we can find a best plan by estimated cost to evaluate this answer
graph by cost-based plan enumeration via dynamic programming.

Wireframe’s runtime evaluation employs two reductionmech-
anisms over the accumulating answer graph—node burnback and
edge burnback—to guarantee a minimal factorized edge set. Given
this evaluation paradigm, it is possible to devise a cost-based
planner. Wireframe’s optimization and evaluation is implemen-
tation agnostic; it can be easily implemented on any RDF-system
architecture.

We presented the vision of Wireframe’s approach in [9]. We
have since developed and implemented the approach. Herein, we
demonstrate Wireframe’s key advantages via a prototype imple-
mentation, and compare its performance over amicro-benchmark
against competing approaches.

1Wireframe can guarantee the minimum answer graph for acyclic CQs, and the
minimum answer graph modulo the choice of triangulation of the CQ for cyclic
CQs.
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Figure 2: An example of the evaluation model for the answer graph generation.

2 RELATEDWORK

RDF Systems. Over the past decade, a number of RDF systems
have been developed. We can categorize them into: triple stores;
property tables; column-based stores; and graph-based stores.

In triple stores, RDF data is stored in a long, but slim table
with three columns where each row is a triple, ⟨s, p, o⟩, of RDF
data [12]. For conjunctive queries (CQs), this single long, slim
table approach requires self-joins over the table many times,
which can lead to bad query performance. Large table scans
and index look-ups can also lead to bad selectivity estimation,
and, therefore, poor query optimization [1]. To overcome this,
an index over the triple store for each of the six permutations
over S, P, and O is often maintained [12, 24]. RDF-3x uses this
approach by building a clustered B++ trees for each permutation
of ⟨s, p, o⟩: ⟨s, p, o⟩, ⟨s, o, p⟩, ⟨p, s, o⟩, ⟨p, o, s⟩, ⟨o, s, p⟩, and ⟨o, p, s⟩
[12, 13]. It also maintains additional nine aggregate indexes to
include the six binary and three unary projections of ⟨s, p, o⟩,
which is useful for selectivity estimation. The aggregate indexes
eliminate the need for expensive self-joins, therefore, improving
query performance. TripleBit [26] constructs a compact triple
matrix to minimize the use of indexes during query evaluation.

In contrast to triple stores, property tables use a flat but fat
table where each row represents a subject value with columns for
distinct property values [20]. In large, sparse RDF data, many cells
of this single flat-fat table can be null, due to the absence of object
values for the given subjects and predicates. To overcome this,
Jena [20] clusters properties into different groups, and creates
multiple property tables accordingly. BitMat [3] proposed a 3-D
bit cube to represent subjects, predicates, and objects.

In column-based stores, RDF data is stored using multiple two-
column tables [1]. There is a table for each unique property, with
one column for the subject, and the other for the object. The tables
can be stored using either physical row-store or column-store.
This approach provides superior performance whenever there
are value-based restrictions on properties. It can scale poorly,
however, when the size of tables varies [15].

Graph-based stores are designed to handle graphmanipulation
over RDF data generally outside of the scope of SPARQL queries
[6, 11]. These systems focus on specialized graph operations over
RDF data [19]. For better performance, gStore [27] constructs
VS-tree and VS*-tree index to evaluate both exact and wildcard
SPARQL queries using subgraph matches. In [2], a compressed
𝑘2-triples technique is used to run SPARQL queries in memory.
Factorization and Join Algorithms. Factorized databases are
compact representations of relational tables [4]. They not only
reduce the memory footprint while evaluating queries, but also
reduce the query processing time by avoiding redundancy. This

idea is even more effective for graph databases and queries, as
we can show that our answer graph is an ideal factorization.

The semijoin operator can improve performance by ensuring
everything in the outer (left) table joins with the inner (right)
table. Wireframe’s burnback mechanisms implement a form of
semijoin, in a way. We likely could re-engineer our Wireframe
burnback mechanisms via semijoin, were we to implement atop
a platform providing a highly efficient semijoin.2

Worst-case optimal join algorithms use query decompositions
for joins, accounting for the structural properties of the query
along with the input relation statistics. This is in contrast to a
traditional database where joins are evaluated “one join at a time”
without taking the structure of the query into account [14].

Work that is related to ours in its mechanics is that of [25].
In [25], they reduce the transmission cost in distributed envi-
ronments by generating a plan—i.e., a sequence of semijoins—to
evaluate acyclic conjunctive queries over datasets partitioned
across different servers. Of course, our objectives in Wireframe
and that of [25] are different, necessitating different methodolo-
gies. That said, our approach has advantages. Their algorithm
for an acyclic CQ requires traversing the query tree twice. Wire-
frame does not need to. Their work does not apply to cyclic
queries, whereas Wireframe does.

3 THE ANSWER-GRAPH APPROACH

In [4], the authors introduce the concept of factorization as a
query-optimization technique for relational databases. Their tech-
nique is designed, and works exceptionally well, for schema and
queries for which cross products of projections of the answer
tuples all show up as answer tuples. This happens, for instance, in
schema not in fourth normal form. Evaluating for these projected
tuples first and then cross-producting them later can be a much
more efficient strategy. Deciding how best to factorize—how to
project into sub-tuples—is difficult, however.

For CQs, this last part is trivial: the factorization of the embed-
ding tuples is fully down to component node pairs, corresponding
to the labeled edges. This is our answer graph.3 Factorization is
sometimes a significant win for evaluating relational queries; it is
virtually always a win for evaluating graph CQs.

An answer graph, AG, for a CQ is a subset of the data graph
G that suffices to compute the embeddings for the CQ . We call
theminimum such subset the ideal answer graph, iAG. The iAG is
often quite small, significantly smaller than the set of embeddings,
and extremely much smaller than G. Thus, we evaluate a CQ’s
embeddings in two steps: first, we find its iAG; then we compose
2This is future work of ours.
3This is demonstrably true when the CQ is tree shaped. This is arguable when
the CQ has cycles. In the latter case, the factorization can be characterized as
projections to tuples of node pairs and node triples (triangles).
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Figure 3: Wireframe: a two-phase cost-based optimizer for conjunctive queries.

the embeddings, which we call defactorization, from the iAG,
rather than from G. This two-step approach can be significantly
more efficient.

Consider the data graph G and the chain query CQ𝐶 in Fig. 1.
The query finds all tuples of nodes ⟨w, x, y, z⟩ from G such that
⟨w, x⟩ is connected by an edge labeled A, ⟨x, y⟩ by B, and ⟨y, z⟩ by
C. Due to multiplicity from A-edges fanning in to, and C-edges
fanning out of, B values, the embedding set is twelve tuples. Our
answer graph consists of just eight labeled node pairs (in red).
Such differences are greatly magnified when on a larger scale.

Our answer-graph approach affords us a second key advantage.
We can devise a cost-based query optimizer based on dynamic
programming to construct a query plan. A plan for us is simply a
specified order of the CQ’s query edges with which to evaluate
to matching answer-graph edges. Our evaluation strategy for
such plans is explained next, and our Wireframe optimizer for
choosing plans is presented in Section 5.

4 THE EVALUATION MODEL

Our evaluation model for CQs then becomes two phase: answer-
graph generation and embedding generation.
Answer-graph generation. For each query edge of the plan,
in turn, our answer graph (AG) is populated with the matching
labeled edges from G that meet the join constraints with the
current state of the AG. Call this an edge-extension step. Then
nodes in the AG that failed to extend are removed, and this “node
burnback” cascades.

Consider the CQ with query edges ⟨?w,A, ?x⟩, ⟨?x, B, ?y⟩, and
⟨?y,C, ?z⟩ in Fig. 2. Assume that the state of the AG after evaluat-
ing for query edges ⟨?w,A, ?x⟩ and ⟨?x, B, ?y⟩ is as shown in the
figure, and that the next query edge to be evaluated is ⟨?y,C, ?z⟩.
This next edge is connected to the previously evaluated edges by
the node variable ?𝑦. When retrieving data edges from G with

label C (the query edge’s label), one needs to ensure that the
sources of retrieved data edges match to one of nodes bound to
?𝑦 in AG. After populating AG thusly, many nodes of ?𝑦 in AG
may be “unattached” to any of the new edges; these nodes are
marked to be removed during the node burnback procedure. In
Fig. 2, the new answer graph has an unattached node, 10. Dur-
ing node burnback, this node is removed along with all of its
edges, ⟨5, 10⟩ and ⟨6, 10⟩. Removing these edges can result in
more unattached nodes, such as node 6, which no longer has any
edge with the label 𝐴 (contrasted with node 5). Thus, in the next
iteration, node 6 is removed with all of its edges, ⟨1, 6⟩, ⟨2, 6⟩,
⟨3, 6⟩, and ⟨4, 6⟩. The node burnback procedure then terminates,
as no further unattached nodes result.
Embedding generation. The embedding tuples are then gener-
ated over the answer graph by joining the answer edges appro-
priately. Given the ideal answer graph iAG and an acyclic CQ ,
the order in which we join is immaterial. No 𝑘-ary tuple is ever
eliminated during a join with a next query edge from the iAG.
This step is often quite fast, given the iAG is small. Evaluating
this directly from the data graph G, on the other hand—which is
what other evaluation methods for CQs do—can be exceedingly
expensive. Fig. 3 illustrates, comparing a standard evaluation
with our two-phase answer-graph approach.

5 THE PLANNERS

5.1 The Answer-Graph Planner

Plan Cost. The edge walk is our unit for estimating a plan’s cost:
the retrieval of a matching edge from G. To estimate the number
of edge walks, node and edge cardinality estimations are made
for each successive edge extension. Note that the cost of node
burnback is amortised: every edge added that does not survive
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Figure 4: Triangulating a cyclic CQ using a mesh plan

Figure 5: A running example of edge burnback procedure

to the iAG is, at some point, removed. Wireframe employs car-
dinality estimators drawn from a catalog consisting of 1-gram
and 2-gram edge-label statistics computed offline [7, 10, 22, 23].
The Edgifier. A plan is a sequence of the CQ’s query edges to
be materialized. We employ a bottom-up, dynamic-programming
algorithm to construct the edge order based on cost estimation
(which relies upon the cardinality estimations).

When the query graph of a CQ has cycles—a cyclic query—
there is an additional part to planning. Node burn-back suffices
to generate the ideal answer graph for acyclic queries, but not for
cyclic. The example in Fig. 4(I) illustrates why. Spurious edges (in
red)—e.g., ⟨𝑥3, 𝑧6⟩ and ⟨𝑥4, 𝑧5⟩—can remain that do not participate
in any final embeddings—i.e., ⟨𝑥3, 𝑧5, 𝑦7, 𝑒1⟩ and ⟨𝑥4, 𝑧6, 𝑦8, 𝑒2⟩.
Nevertheless, one can still use this non-ideal answer graph to
generate the embeddings using defactorization.

Even so, it is possible to reduce significantly further the an-
swer graph. To cull spurious edges requires an edge burnback
procedure in addition to node burnback. This requires the CQ’s
cycles have been triangulated; node triples are materialized in
addition to the node doubles (the AG edges) during evaluation.
Triangulation is the choice of which additional “query edges”,
which we call chords, to add.

The Triangulator. For cyclicCQs, in addition to the query-edge
enumeration, cycles in the query graph of length greater than
three are triangulated by adding chord edges. During evaluation,
a chord is maintained as the intersection of the materialized joins
of the opposite two edges for each triangle in which it participates.
There are many different ways one can triangulate a CQ; the
materialization cost depends on the order and choice of chord
bisection of cycles (down to triangles). We employ a bottom-up
dynamic programming algorithm to generate a bushy plan—we
call this a mesh plan—that dictates such an order and choices.

The mesh plan, when executed with node burnback but not
edge burnback, guarantees that the node sets, but not necessarily
the edge sets, will always be minimal. A correct answer graph,
AG, will be found, but it is no longer guaranteed to be ideal. as
spurious edges may remain in the AG, as demonstrated in Fig. 4(I).
The embeddings can, of course, be found from this non-ideal AG.
Edge Burnback.With the addition of edge burnback mechanism
at runtime, we can guarantee again that we find the idealAG (iAG)
when answering cyclic CQs, modulo the choice of chords that
were added. This works by checking the chords’ materializations
to chase what needs to be removed on cascade. This ensures that
spurious edges are removed.
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Fig. 4(II) shows a mesh plan which establishes as sequence
of chords to triangulate the given query graph 𝐶𝑄𝐷 . At the bot-
tom of the plan, the first chord ⟨?𝑒, ?𝑧⟩ is added, which creates
the triangle

a
?𝑒,?𝑥,?𝑧 by joining two query edges ⟨?𝑥, ?𝑧⟩ and

⟨?𝑥, ?𝑒⟩ on their common node ?𝑥 . At the next step up, a second
chord ⟨?𝑒, ?𝑦⟩ is added to create a triangle

a
?𝑒,?𝑧,?𝑦 by joining

the previous chord ⟨?𝑒, ?𝑧⟩ and the query edge ⟨?𝑧, ?𝑦⟩ on their
common node ?𝑧. At the root of the plan, a “seal” process occurs
between the chord ⟨?𝑒, ?𝑦⟩ of the left subplan and the query edge
⟨?𝑒, ?𝑦⟩ of the right subplan, where it constructs the full cycle of
the query graph. Each time we triangulate, we record the node
triples (as triangles) drawn accordingly from G in the Triangle
table, and the data chords in the Answer Graph table. We also
record in the support column of the Answer Graph table the
number of different triangles that each data edge (or data chord)
participate, grouped by its opposite node label (which we call the
pivot). For example, in the Answer Graph table, the edge ⟨𝑥3, 𝑒1⟩
has a support of 2 with the pivot of 𝑧; that is, it is part of two
triangles where the opposite node is of the label 𝑧. We can find
these from the Triangle table:

a
𝑒1𝑧5𝑥3

and
a

𝑒1𝑧6𝑥3
.

The seal process marks all uncommon data edges and data
chords between the right and left subplans—we call these unsealed
edges—by updating their supports in the Answer Graph table
to 0. Unsealed edges represent the arcs that are not part of any
cycle. Data edges that reside only on such arcs cannot be part of
the ideal AG. The task of edge burnback is to remove these edges.
It begins by removing all unsealed edges, along with triangles in
which they participate. Removing a triangle involves removing all
its data edges, which might also belong to other triangles in the
query graph, thereby removing those triangles too. This process
cascades until no unsupported triangle is left to be removed.
Whenever we remove a triangle, we decrease the support of all of
its constituent edges by one in the Answer Graph table. When the
support of any data edge or chord in the Answer Graph becomes
0, then it is safe to remove it along with the triangles in which it
participates. The process cascades until there are no edges with
zero-support remaining in the Answer Graph table.

Fig. 5 demonstrates the process of edge burnback. After the
sealing process, the unsealed set of edges are {⟨𝑒1, 𝑦8⟩, ⟨𝑒2, 𝑦7⟩},
as shown in the Answer Graph table of Fig. 4(II). We next update
the support of these two edges to 0 in the Answer Graph table.
We then call the edge burnback procedure. This first removes
the zero-support edges from the Answer Graph table. Next, this
deletes triangles

a
𝑒1𝑦8𝑧6

and
a

𝑒2𝑦7𝑧5
which those edges partici-

pated from the Triangle table. The support for each of the edges
in the Answer Graph table that was part of a recently deleted tri-
angle is decremented by 1. For example, for the removed trianglea

𝑒1𝑦8𝑧6
, the support is decremented for edges ⟨𝑧6, 𝑦8⟩ and ⟨𝑒1, 𝑧6⟩.

For the removed triangle
a

𝑒2𝑦7𝑧5
, the support is decremented for

edges ⟨𝑒2, 𝑧5⟩ and ⟨𝑧5, 𝑦7⟩. In the next iteration, the zero-support
edges are removed from the Answer Graph table, which leads,
in turn, to triangles

a
𝑒1𝑧6𝑥3

and
a

𝑒2𝑧5𝑥4
being deleted from the

Triangle table. The support is then decremented for the edges
that participated in those deleted triangles. And so forth. This
process halts once there is no edge left with zero-support in the
Answer Graph table. The resulting answer graph is then the ideal
AG (iAG).

The overhead of edge burnback must be balanced off against
the benefit of obtaining the iAG versus a larger, non-ideal AG.
This is work in progress. In our experiments, our evaluation over
cyclic CQs is without edge burnback.

5.2 The Embedding Planner

Plan Cost. When generating the embeddings for an acyclic CQ
from its iAG, the order in which we join (connected) answer edges
is immaterial. As the 𝑘-ary tuples are extended, no intermediate
results are ever lost. Thus, for this, no planning is required.
The Defactorizer. On the other hand, when the CQ is cyclic,
or when the AG provided is non-ideal, intermediate results can
be lost. The join order then matters. We call this process defac-
torization. Alternative plans for embedding materialization are
synonymous with choosing this join order. It is possible to do
this again via a cost-based approach via a bottom-up, dynamic
programming algorithm, using our catalog statistics.

6 EXPERIMENTS

Prototype.We have implemented a prototype, Wireframe, that
runs on top of PostgreSQL, a popular relation database system.
Wireframe implements the two phases described in Section 5,
each with a separate planner and evaluator. The planner for the
first phase outputs an optimal left-deep tree plan that indicates
the execution order of the query edges. The evaluator then takes
the tree plan to evaluate the query edges in sequence. For the
second phase, we presently use a greedy approach to generate a
tree plan based on the available statistics from the AG phase. The
node burnback procedure is implemented via procedural SQL.
Environment. To evaluate Wireframe’s performance, we use
the YAGO2s dataset [21] containing 242M triples with 104 distinct
predicates. With a select set of 10 acyclic and 10 cyclic CQs,
we compare query execution times against PostgreSQL v11.0
(PG), Virtuoso v6.01 (VT), MonetDB v11.31 (MD), and Neo4J
v.3.5 (NJ). All experiments were conducted on a server running
Ubuntu 18.04 LTS with two Intel Xeon X5670 processors and
192GB of RAM.
Micro-benchmark. For the queries, we implemented a query
miner that generates valid, non-empty queries over a dataset
using query templates (with placeholders for edge labels). For
our experiments, we use two templates,𝐶𝑄𝑆 and𝐶𝑄𝐷 , as shown
in Figures 3 and 4, respectively. With these two templates, we
mined 218,014 snowflake-shaped queries and 18,743 diamond-
shaped queries. For our preliminary experimental study, we chose
top ten queries in the size of final embeddings for each shape.

While in [5], it is argued that there are no use cases for cyclic
queries, many, including us, have argued there certainly are. In
[14], they discuss how triangle queries, the simplest of cyclic,
have become increasingly popular for social networks, biological
motifs, and graph databases. And that cyclic queries have not
been used much yet in practice has been due in large part to that
they have been too expensive to evaluate.
Comparators. For PostgreSQL and MonetDB, the dataset was
imported as a triple store, with indexes on the string dictionary,
and six composite indexes over the permutations of subject, pred-
icate, and object. We set the size of the memory pool to eight GB
for all of the systems, except for MonetDB (which sets its own
resource allocations based on the server). We repeat execution
of each query five times, taking the average of the last four runs
(i.e., warm cache), as reported in Table 1. The execution time is
the time spent to retrieve all the result tuples for a query.
Results.One can observe from Table 1 that the size of the answer
graph is exceedingly smaller than the number of embeddings. For
instance, for the second snowflake-shaped query, the AG is 2,867
times smaller than the number of embeddings. It is no surprise,
therefore, that Wireframe (WF) achieves good performance; it
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CQ𝑆 Snowflake-shapedQueries (1/2/3/4/5/6/7/8/9) PG WF VT MD NJ |iAG| |Embeddings|

1 diedIn/influences/actedIn/owns/wasCreatedOnDate/actedIn/created/hasDuration/wasCreatedOnDate 66 4 * * * 1660 2931986
2 hasChild/influences/actedIn/actedIn/wasBornIn/created/actedIn/hasDuration/wasCreatedOnDate 63 3 246 * * 993 2847184
3 isCitizenOf/influences/actedIn/exports/wasCreatedOnDate/actedIn/created/hasDuration/wasCreatedOnDate 37 7 287 * * 1140 2670339
4 isMarriedTo/influences/actedIn/actedIn/wasBornOnDate/created/actedIn/hasDuration/wasCreatedOnDate 59 3 286 * * 3317 2569017
5 isMarriedTo/influences/actedIn/wasBornOnDate/isMarriedTo/actedIn/created/wasCreatedOnDate/hasDuration 57 17 268 * * 3580 2127992
6 isMarriedTo/influences/actedIn/hasGender/isMarriedTo/actedIn/created/hasDuration/wasCreatedOnDate 57 12 268 * * 3580 2123951
7 diedIn/isMarriedTo/actedIn/owns/wasCreatedOnDate/actedIn/created/hasDuration/wasCreatedOnDate 30 15 266 * * 10761 2111948
8 isMarriedTo/influences/actedIn/hasFamilyName/isMarriedTo/created/actedIn/hasDuration/wasCreatedOnDate 32 14 261 * * 3580 2102297
9 isMarriedTo/hasChild/actedIn/wroteMusicFor/created/created/actedIn/hasDuration/wasCreatedOnDate 35 9 256 * * 7330 1786626
10 isMarriedTo/influences/actedIn/actedIn/created/created/directed/hasDuration/wasCreatedOnDate 39 4 237 * * 3317 1533188

CQ𝐷 Diamond-shaped Queries (1/2/3/4) PG WF VT MD NJ |AG| |Embeddings|

11 isLocatedIn/linksTo/isCitizenOf/livesIn * 39 * * * 813311 59695937
12 livesIn/isCitizenOf/isLocatedIn/linksTo * 81 * * * 833355 58785214
13 isCitizenOf/wasBornIn/linksTo/diedIn * 12 * * 297 132961 3141996
14 isCitizenOf/diedIn/linksTo/wasBornIn * 21 * * 296 251054 3124213
15 wasBornIn/isAffiliatedTo/linksTo/playsFor * 37 * * * 470196 2310680
16 wasBornIn/playsFor/linksTo/isAffiliatedTo * 39 * * * 471520 2299729
17 isConnectedTo/linksTo/extractionSource/byTransport * 33 67 * 140 112040 1312372
18 created/rdfs:label/linksTo/isPreferredMeaningOf * 264 65 203 130 772994 169380
19 linksTo/isPreferredMeaningOf/created/skos:prefLabel * 114 22 111 135 766785 169324
20 diedIn/linksTo/wasBornIn/graduatedFrom * 12 92 * 195 68720 106214

Table 1: Query execution time (sec) in different systems (* denotes terminating the query after 300 seconds).

avoids the redundant edge-walks that arise from many-many
joins. While the second snowflake-shaped query took 63 seconds
on PostgreSQL, it only took three seconds on Wireframe. The
AG approach requires a much smaller memory footprint, which
can be beneficial for traditional database systems that heavily
use secondary storage. The approach also competes well against
main-memory intense systems such as Neo4J and Virtuoso. For
the cyclic, diamond-shaped queries, employing only node burn-
back does not guarantee the ideal answer graph, as discussed
above. We have found that the resulting AGs can be significantly
larger than the ideal, sometimes close to the number of embed-
dings. For this reason, Wireframe was slower for some of the
cyclic queries, notably 18 and 19. Even so, its performance over
cyclic queries is quite good. With further plan- and run-time
optimization with edge burnback, we believe that the perfor-
mance will be stellar. One can view our approach as an additional
optimization technique on top of traditional databases to han-
dle SPARQL CQs or to boost the performance of existing RDF
systems.

7 CONCLUSIONS

We have clear objectives for our next steps. First, one has a richer
plan space when considering bushy plans for both our first and
second phases. The challenge is to devise a suitable cost model
for searching the bushy-plan space via dynamic programming.
Second, when the size of an answer graph is distant from the
ideal, generating the embeddings can be costly. Triangulation
promises to reduce this significantly. This requires investigat-
ing the trade-offs between the added cost for maintaining the
triangle materializations and the reduced cost from generating
the embeddings from the significantly smaller ideal AG. Lastly,
we are to explore further optimizations within this space. Large
graphs are meant to be queried.
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