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ABSTRACT
Sequential pattern analysis has become a mature topic, with a lot

of techniques for a variety of sequential pattern mining-related

problems. Moreover, tailored solutions for specific domains, such

as business process mining, have been developed. However, there

is a gap in the literature for advanced techniques for efficient de-

tection of arbitrary sequences in large collections of activity logs.

In this work, we make a threefold contribution: (i) we propose a

system architecture for incrementally maintaining appropriate

indices that enable fast sequence detection; (ii) we investigate

several alternatives for index building; and (iii) we compare our

solution against existing state-of-the-art proposals and we high-

light the benefits of our proposal.

1 INTRODUCTION
Event log entries refer to timestamped event metadata and can

grow very large; e.g., even a decade ago, the amount of log entries

of a single day was at the order of terabytes for certain organiza-

tions, as evidenced in [3]. Due to their timestamp, the log entries

can be regarded as event sequences that follow either a total or

a partial ordering. The vast amount of modern data analytics

research on such sequences is divided into two broad categories.

The first category comprises sequential pattern mining [11],

where a large set of sequences is mined to extract subsequences

that meet a variety of criteria. Such criteria range from frequent

occurrence, e.g., [23, 33] to importance and high-utility [12]. In

addition, there are proposals that examine the same problem of

finding interesting subsequences in a huge single sequence, e.g.,

[25]. However, these techniques fail to detect arbitrary patterns,

regardless of whether they are frequent or interesting; e.g., they

are tailored to a setting where a support threshold is provided and

only subsequences meeting this threshold are returned, whereas

we target a different problem, that is to return all subsequence

occurrences given a pattern.

The second category of existing techniques deals with detect-

ing event sequences on the fly and comprises complex event

processing (CEP). CEP is a mature field [14, 34] and supports

several flavors of runtime pattern detection. We aim to solve

a similar problem to CEP but tailored to a non-streaming case,

where pattern queries are submitted over potentially very large

log databases. Since logs continuously arrive, we account for

periodic index building and we support pattern matching where

the elements in the pattern are not strictly in a sequence in the
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logs, e.g., in the log sequence ABBACC, we are interested in detect-

ing the occurrence of the pattern ABC despite the fact that in the

original sequence other elements appear in between the elements

in the searched pattern. Given that we relax the constraint of

strict contiguity, techniques based on suffix trees and arrays are

not applicable. Contrary to CEP, we aim to detect all pattern

occurrences efficiently and not only those happening now.

In summary, our contribution is threefold: (i) we propose a

system architecture for incrementally maintaining appropriate

indices that enable fast sequence detection and exploration of

pattern continuation choices; (ii) we investigate several alter-

natives for index building; and (iii) we compare our solution

against existing suffix array-based proposals, focusing on logs

from business processes, showing that not only we can achieve

high performance during indexing but we also support a broader

range of queries. Compared to other state-of-the-art solutions,

like Elasticsearch, we performmore efficient preprocessing, while

we provide faster query responses to small queries remaining

competitive in large queries in the datasets examined; addition-

ally, we build on top of more scalable technologies, such as Spark

and Cassandra, and we inherently support pattern continuation

more efficiently. Finally, we provide the source code of our im-

plementation.

The structure of the remainder of this paper is as follows. We

present the notation and some background next. In Section 3,

we introduce the architecture along with details regarding pre-

processing and the queries we support. We discuss the index

building alternatives in Section 4. The experimental evaluation

is in Section 5. In the last sections, we discuss the related work,

open issues and present the conclusions.

2 PRELIMINARIES
In this section, we first present the main notation and then we

briefly provide some additional background with regards to the

techniques against which we compare our solution.

2.1 Definitions and notation
We aim to detect sequential patterns of user activity in a log,

where a log contains timestamped events. The events are of a

specific type; for instance, in a log recording the user activity

on the web, an event type may correspond to a specific type

of click and in business processes, an event corresponds to the

execution of a specific task. The events are logically grouped in

sets, termed as cases or sessions or traces
1
, whichmay correspond

to a specific session or the same process instance or, in the generic

case, grouped by other user-defined criteria. More formally:

1
In this work, we use the terms trace, case and session interchangeably.
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Our Method Exact rooted subtree matching

Supported policy SC, STNM SC, Tree Matching

Database usage Yes No

Preprocess rationale Indexing of all possible pairs Indexing of all the subtrees

Query processing rationale Combination/merging of results of pairs in the query sequence Binary search in the subtrees space

Table 1: Differences between the technique in [19] and our method

Symbol Short description
𝐿 the log containing events

𝐴 the set of activities (or tasks), i.e., the event

types

𝐸 the set of all events

𝐶 the set of cases, where each case corresponds

to a single logical unit if execution, i.e., a ses-

sion, a trace of a specific business process

instance execution, and so on

𝑒𝑣 an event (𝑒𝑣 ∈ 𝐸), which is an instance of an

event type

𝑡𝑠 the timestamp of an event (also denoted as

𝑒𝑣 .𝑡𝑠)

𝑙 the size of 𝐴, |𝐴|
𝑛 the maximum size of a case

𝑚 the size of 𝐶, |𝐶 |
Table 2: Frequently used symbols and interpretation

Definition 2.1. (Event Log) Let 𝐴 be a finite set of activities

(tasks). A log 𝐿 is defined as 𝐿 = (𝐸,𝐶,𝛾, 𝛿, 𝑡𝑠, ⪯) where 𝐸 is the

finite set of events, 𝐶 is the finite set of Cases, 𝛾 : 𝐸 → 𝐶 is a

surjective function assigning events to Cases, 𝛿 : 𝐸 → 𝐴 is a

surjective function assigning events to activities, 𝑡𝑠 records the

timestamp denoting the recording of task execution and ⪯ is

a strict total ordering over events belonging to a specific case,

normally based on execution timestamps.

The notion of timestamp requires some further explanation. In

sessions like web user activity and similar ones, events are usually

instantaneous. However, this is not the case in task executions

in business processes. In the latter case, the timestamp refers

to either the beginning of the activity or its completion, but

in any case, logging needs to be consistent. The duration of

activities can only be estimated implicitly and not accurately

from the difference between the timestamps of an event and its

successor, because there may be delays between the completion

of an activity and the beginning of the execution of the next

activity downstream. However, systematic analysis involving

task duration can be conducted only if the exact task duration is

captured, which requires extensions to the definition above. Such

extensions is out of the scope of this work and are orthogonal to

our contributions.

Table 2 summarizes the main notation; |𝐴| is denoted as 𝑙 , the

maximum size of a case is denoted as 𝑛, and the size of the set of

cases |𝐶 | is denoted as𝑚.

Next, to provide the context of the queries we aim to support,

we define the two main types of event sequence detection that

we employ in this work:

Strict contiguity (SC) , where all matching events must ap-

pear strictly in a sequence one after the other without any

other non-matching events in-between. This definition

is widely employed in both exact subsequence matching

and CEP systems and stream processing engines, such as

Flink [6].
2
For example, SC applies when we aim to detect

pattern occurrences, where a search for a product on an

e-shop website is immediately followed by adding this

product to the cart without any other action in between.

Skip-till-next-match (STNM) , where strict contiguity is

relaxed so that irrelevant events are skipped until we de-

tect the next matching event of the sequential pattern [34].

STNM is required when, for example, we aim to detect

pattern occurrences where after three searches for specific

products there is no any purchase eventually in the same

session.

Example: let us assume that we look for a pattern AAB, where
A,B are activities. Let us also assume that a log contains the

following sequence of events <AAABAACB>, where the timestamps

are implicit by the order of each event. SC detects a pattern

occurrence starting at the 2nd position, whereas STNM detects

two occurrences; the first one contains the events at the 1st, 2nd

and 4th position, while the second one contains the events at the

5th, 6th and 8th position. Note that other types of event sequence

detection allow for additional and overlapping results, e.g., to

detect a pattern in the 1st, 3rd and 8th position, as discussed at

the end of this work [34].

2.2 Exact rooted subtree matching in
sublinear time

Strict contiguity (SC) is directly relevant to subsequence match-

ing and tree-based techniques have been used for a long time for

finding sub sequences in large datasets. Suffix trees and suffix

arrays are commonly used to this end. The method presented

in [19] can find subtrees in sublinear time and it has been used

to detect possible continuations of a given event sequence in

business processes in [27].

In a nutshell, the technique in [19] solves the problem of find-

ing the occurrences of a subtree with𝑚 modes in a tree 𝑇 with

𝑛 nodes in 𝑂 (𝑚 + 𝑙𝑜𝑔𝑛), after pre-processing the tree. First, the
string𝑊 corresponding to 𝑇 is created; this is achieved through

traversing the tree in a preorder manner and adding a 0 every

time we recur to a previous level. This yields a𝑊 of length equal

to 2𝑛.𝑊 is then used to create a suffix array 𝐴, in which the

starting positions of the 2𝑛 suffices are specified. After discard-

ing those starting with 0, we end up with 𝑛 suffices. The main

property of 𝐴 is that suffices are sorted by the nodes’ order. The

subtree to be searched in 𝑇 is first mapped to a preorder search

string, and then a binary search in 𝐴 is performed.

In Table 1 we present the high-level differences between this

method and our proposal. We rely on simple indexing employing

a database backend, while, during query processing, the main

2
https://ci.apache.org/projects/flink/flink-docs-stable/dev/libs/cep.html
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Figure 1: Architecture overview

operation is merging and post-processing of sorted lists, as ex-

plained in the next sections. More importantly, we support both

STNM and SC pattern types.

3 SYSTEM ARCHITECTURE
There exist several CEP proposals along with fully-fledged proto-

types and complete systems that allow users to query for Strict

contiguity (SC) or Skip-till-next-match (STNM) patterns, but

these are operating in a dynamic environment over a data stream.

Therefore, we need to develop a system that can receive adhoc

pattern queries over a large collection of logs and process them

in an efficient manner. These queries will be defined later in this

section and are broadly divided into three main categories (sta-

tistics, pattern detection and pattern expansion). We focus on

offline pattern detection, but we account for the fact that the logs

are constantly growing bigger and bigger. This entails that any

practical approach needs to be incremental, i.e., to support the

consideration of new logs periodically.

The overview of our proposed architecture is shown in Fig-

ure 1. There exists a database infrastructure containing old logs

and, periodically, new logs are appended. There are two main

components in the architecture. The pre-processing component

constructs and/or updates an inverted index that is leveraged

during query processing. This index is stored in a key-value data-

base to attain scalability. In our implementation, we have chosen

Cassandra
3
, because of its proven capability to deal with big

data and offer scalability and availability without compromis-

ing performance. However, any key-value store can be used in

replacement.

The second component is the query processor, which is re-

sponsible for receiving user queries, retrieving the relevant index

entries and constructing the response.

These two components are described in more detail in the

remainder of this section, while indexing is discussed in the next

section.

3.1 The pre-processing component
The log database has a typical relational form, where each record

corresponds to a specific event. More specifically, each row in

the log database contains the trace identifier, the event type, the

timestamp and any other application-specific metadata that play

no role in our generic solution. The second input of the pre-

processing component contains the more recent log entries that

3
https://cassandra.apache.org/

trace: <(A,1), (A,2), (B,3), (A,4), (B,5), (A,6)>

Pair Strict Contiguity Skip till next match

(A,A) (1,2) (1,2),(4,6)

(B,A) (3,4),(4,5) (3,4),(5,6)

(B,B) - (3,5)

(A,B) (2,3),(4,5) (1,3),(4,5)

Table 3: Pairs created per different policy.

have not been indexed yet. For example, if the index is updated

on a daily basis, the log file is expected to contain from a few

thousand of events up to several millions.

Pattern indexing and querying is applied per trace. In other

words, for each distinct trace, a large sequence of all its events

is constructed sorted by the event timestamps. To this end, the

recent logfile is combined with the log database. In addition, and

since the trace may span many indexing periods, new log entries

need to combined with already indexed events in the same trace

in a principled manner to avoid duplicates. If new logged events

belong to a trace already started, we extract stored information

from the indexing database (the exact procedure will be described

in detail shortly).

Based on these trace sequences, we build an inverted index-

ing of all event pairs. That is, we extract all event pairs from

each trace, and for each pair we keep its trace along with the

corresponding pair of timestamps. This information is adequate

to answer pattern queries efficiently, where these queries may

not only refer to pattern detection, but frequency counts and

prediction of next events, as discussed in Section 3.2.1. The in-

dex contains entries of the following format: (A,B):{(trace12,
2,5),(trace12, 7,11), (trace15,1,6),. . . }. In this exam-

ple, the pair of event types (A,B) has appeared twice in trace12

at timestamps (2,5) and (7,11), respectively, and once in trace15.

The pre-processing component is implemented as a Spark

Scala program to attain scalability. Next, we delve into more

details regarding pre-processing subparts.

3.1.1 Creation of event pairs. There are more than one ways

to create pair of events in a trace, which depends on the different

policy applied. We have already given two policies, namely SC

and STNM, which impact on how pairs are created.

Let us assume that a specific trace contains the following

sequence of pairs of event types and their timestamps: trace:
<(A,1), (A,2), (B,3), (A,4), (B,5), (A,6)>. Table 3

shows the pairs created per different policy. This example shows

a simplified representation of the inverted indexing. SC detects

only the pairs of events that are consecutive. There is no pair

pair (B,B) because there is an event (A) between the two Bs in
the trace. As expected, the SC policy creates less pairs per trace

and is also easier to implement.

STNM skips events until it finds amatching event, but there are

no overlapping pairs, the timestamps of which are intertwined.

For example, regarding pair (A,B), we consider only the (1,3)

pair of timestamps and not (2,3). The complexity of pair creation

in STNM is higher and there are several alternatives that are

presented in Section 4.

A final note is that our approach can work even in the ab-

sence of timestamps. In that case, the position of an event in the

sequence can play the role of the timestamp.
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Algorithm 1 Update index

1: Input : new_events
2: traces← transform new_events to traces as in the Seq table

3: temp← LastChecked table joined with traces

4: new_pairs← [ ]

5: for all trace in traces do
6: extract events

7: for all (𝑒𝑣𝑎, 𝑒𝑣𝑏 ) do
8: 𝑙𝑡 ← temp.get(𝑒𝑣𝑎, 𝑒𝑣𝑏 ) .𝑙𝑎𝑠𝑡_𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 for the

same trace

9: if 𝑒𝑣𝑎 .𝑡𝑠 > 𝑙𝑡 then
10: new_pairs += create_pairs(𝑒𝑣𝑎, 𝑒𝑣𝑏 )
11: end if
12: end for
13: end for
14: append new_pairs to the Index table

3.1.2 Tables in the indexing database. The pre-processing

phase creates and updates a set of tables, which can all be stored

in a key-value store, such as Cassandra. The first one contains

the trace sequence, so that there is no need to be reconstructed

from scratch every time is needed, e.g., to append new events.

The second one is the index presented earlier. The other tables

are auxiliary ones, which are required during index creation and

query answering.

• Seq with key: 𝑡𝑟𝑎𝑐𝑒𝑖𝑑 and value: {(𝑒𝑣𝑎, 𝑡𝑠𝑎), (𝑒𝑣𝑏 , 𝑡𝑠𝑏 ), ...}.
This table contains all traces that are indexed. It is used to

create and update the main index; new events belonging

to the same trace are appended to the value list.

• Indexwith a complex key: (𝑒𝑣𝑎, 𝑒𝑣𝑏 ) and value containing
a list of triples: {(𝑡𝑟𝑎𝑐𝑒𝑖𝑑 , 𝑡𝑠𝑎, 𝑡𝑠𝑏 ), ...}. This is the inverted
index, which is the main structure used in query answer-

ing.

• Count with key a single event type: 𝑒𝑣𝑎 and value a list

of triples: {(𝑒𝑣𝑏 , 𝑠𝑢𝑚_𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛, 𝑡𝑜𝑡𝑎𝑙_𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛𝑠),
(𝑒𝑣𝑐 , 𝑠𝑢𝑚_𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛, 𝑡𝑜𝑡𝑎𝑙_𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛𝑠), ...}. For each event
𝑒𝑣𝑎 , we keep a list which contains the total duration of

completions for a pair (𝑒𝑣𝑎, 𝑒𝑣𝑥 ) and the total number of

completions. This is used to find the most frequent pairs

where an event appears first and also we can leverage the

duration information in case further statistics are required.

• Reverse Count, which has exactly the same form of key

and value with Count, but the statistics refer to pairs that
have the event in the key as their second component

• LastCheckedwith complex key a pair (𝑒𝑣𝑎, 𝑒𝑣𝑏 ) and value
a list of pairs: {(𝑡𝑟𝑎𝑐𝑒𝑖𝑑 , 𝑙𝑎𝑠𝑡_𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛), ...}. The length
of the list is the number of traces inwhich the pair (𝑒𝑣𝑎, 𝑒𝑣𝑏 )
appears. The 𝑙𝑎𝑠𝑡_𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 field keeps the last times-

tamp of 𝑒𝑣𝑏 in a pair detection. This table is used to prevent

creating and indexing pairs more than once.

3.1.3 Index update. In dynamic environments, new logs ar-

rive continuously, but the index is not necessarily updated upon

the arrival of each new log record. New log events are batched and

the update procedure is called periodically, e.g., once every few

hours. To avoid the generation of duplicates, the LastChecked

table introduced above plays a crucial role. The index update

rationale is illustrated in Algorithm 1.

In line 3 of the algorithm, we extract the LastChecked table

and keep only its part that refers to the traces that their id ap-

pears in new events. In line 10, the create_pairs procedure is

Algorithm 2 Pattern detection

1: procedure getCompletions(< 𝑒𝑣1, 𝑒𝑣2, . . . , 𝑒𝑣𝑝 >)

2: previous← Index.get(𝑒𝑣1, 𝑒𝑣2)

3: for 𝑖 =2 to 𝑝 − 1 do
4: 𝑖𝑑𝑥_𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛𝑠 ← Index.get(𝑒𝑣𝑖 , 𝑒𝑣𝑖+1)
5: for all 𝑐 in 𝑖𝑑𝑥_𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛𝑠 grouped by trace do
6: new← [ ]

7: for all 𝑝𝑟 in previous for the same trace do
8: if 𝑝𝑟 .𝑙𝑎𝑠𝑡_𝑒𝑣𝑒𝑛𝑡 .𝑡𝑠 == 𝑐.𝑓 𝑖𝑟𝑠𝑡 .𝑡𝑠 then
9: append 𝑐 to 𝑝𝑟 and add to new

10: end if
11: end for
12: previous← new

13: end for
14: end for
15: return previous

16: end procedure

not specifically described here but can be any of the algorithms

presented in Section 4 depending also on the policy employed.

A subtle point is that the index may grow very large. To miti-

gate this, a separate index table can be used for different periods,

e.g., for different months. In addition, the traces corresponding

to completed sessions can be safely pruned from the Seq table,

along with the corresponding value entries in LastChecked.

3.2 The query processor component
The architecture described can support a range of pattern queries

that are presented in Section 3.2.1. In Section 3.2.2, we give differ-

ent solutions for predicting subsequent events in a pattern while

trading off accuracy for response time.

3.2.1 Different type of queries. The query input is a pattern

(i.e., a sequence) of events < 𝑒𝑣1, 𝑒𝑣2, 𝑒𝑣3, . . . , 𝑒𝑣𝑝 > for all sup-

ported query types. The query types in ascending order of com-

plexity are as follows:

• Statistics. This type of query returns statistics regarding

each pair of consecutive events in the pattern. The sta-

tistics are those supported by the Count table, namely

number of completions and average duration. Also, from

the LastChecked table, the timestamp of the last comple-

tion can be retrieved. The pairwise statistics can provide

useful insights about the behavior of the complete pattern

with simple post-processing and without requiring access

to any other information. For example, the minimum num-

ber of completions of a pair provides an upper bound of

the completions of the whole pattern in the query. Also,

the sum of the average durations gives an estimate of the

average duration of the whole pattern. Finally, the number

of completions could be more accurately bounded if all

pairs in the pattern are considered instead of the consecu-

tive ones only; clearly, there is a tradeoff between result

accuracy and query running time in this case.

• Pattern Detection. This query aims to return all traces

that contain the given pattern. Query processing starts by

searching for all the traces that contain event pair (𝑒𝑣1, 𝑒𝑣2).

At the next step, the technique keeps only the traces where

the same instance of 𝑒𝑣2 is followed by 𝑒3 to the pattern;

to this end, it finds all the traces that contain (𝑒𝑣2, 𝑒𝑣3) and

keeps those for which 𝑒𝑣2 has the same timestamp in both

cases. Up to now, we have found the traces that contain

88



Algorithm 3 Accurate exploration of events

1: Input: pattern 𝑒1, 𝑒𝑣2, ..., 𝑒𝑣𝑝
2: candidate_events← from Count Table get all events that has

𝑒𝑣𝑝 as first event

3: propositions← [ ]

4: for all 𝑒𝑣 in candidate events do
5: tempPattern← append 𝑒𝑣 to pattern

6: candidate_pairs← getCompletions(TempPattern)

7: proposition← apply time constraints to candidate pairs

(optional)

8: append proposition to propositions

9: end for
10: return propositions sorted according to Equation (1)

(𝑒𝑣1, 𝑒𝑣2, 𝑒𝑣3). The execution continues in the same way

up to 𝑒𝑣𝑝 , as shown in Algorithm 2. It is trivial to extend

the results with further information, such as the starting

and ending timestamp.

• PatternContinuation.Another aspect for pattern query-
ing is exploring which events are most likely to extend the

pattern in the query. This has several applications, such

as predicting an upcoming event given partial pattern in

an incomplete trace, or computing the probability of an

event to appear in a pattern, based on prior knowledge. In

this query, the response contains the most likely events

that can be appended to the pattern, based on a scoring

function. Equation 1 gives a score for a proposed event.

Total completions refer to the frequency of this event to

follow the last event in the query pattern, while average

duration favors events that appear closer to the pattern in

the original traces.

𝑆𝑐𝑜𝑟𝑒 =
𝑡𝑜𝑡𝑎𝑙_𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛𝑠

𝑎𝑣𝑒𝑟𝑎𝑔𝑒_𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛
(1)

3.2.2 Pattern Continuation Alternatives. Exploring events for

pattern continuation can be computationally intensive, depend-

ing on the log size. Some times, we want accurate responses,

while in other cases it is adequate to receive coarser insights so

that we can trade accuracy for response time. We present three

alternative ways of exploring events, namely one accurate, one

fast heuristic and one hybrid that is in between the previous two.

• Accurate. In Algorithm 3, we present the outline of this

method. In line 2 we use the Count table to find all event

pairs that begin with the last event of the pattern and col-

lect the second events of the pairs in the candidate_events

list. The procedure getCompletions is already provided

in Algorithm 2. We also allow for constraints in the av-

erage time between the last event in the pattern and the

appended event; these constraints are checked in line 7.

The strong point of this approach is that all pattern contin-

uations are accurately checked one-by-one; the drawback

is that the response time increases rapidly with the size of

log files and the number of different events.

• Fast. In Algorithm 4 we perform a heuristic search. We

start by finding the upper bound of the total times the

given pattern has been completed (lines 3-8). Then, for

every possible event 𝑒𝑣 , we approximate the upper bound

if this event is added at the end of the pattern, by keep-

ing the minimum between the max_completions and the

Algorithm 4 Fast exploration of events

1: Input: Pattern 𝑒1, 𝑒𝑣2, ..., 𝑒𝑣𝑝
2: max_completions←∞
3: for all (𝑒𝑣𝑖 , 𝑒𝑣𝑖+1) in pattern do
4: count← Count Table get 𝑒𝑣𝑖 , 𝑒𝑣𝑖+1
5: if count.total_completions < max_completions then
6: max_completions← count.total_completions

7: end if
8: end for
9: propositions← [ ]

10: for all ev in Count.get(𝑒𝑣𝑝 ) do
11: completions←min(max_completions,ev.total_completions)

12: append (ev.event,completions,ev.average_duration) to

propositions

13: end for
14: return propositions sorted according to Equation (1)

Algorithm 5 Hybrid exploration of events

1: Input: Pattern 𝑒1, 𝑒𝑣2, ..., 𝑒𝑣𝑛
2: Input: topK

3: fast_propositions← run Algorithm 4 for the input pattern

4: propositions ← run Algorithm 3 for topK of

fast_propositions

5: return propositions sorted according to Equation (1)

total completions of 𝑒𝑣 (line 11). The strong point of this

approach is that it is fast, since it extracts precomputed

statistics from the indexing database but the results rely

only on approximations.

• Hybrid. Lastly, in Algorithm 5 we perform a trade off

between accuracy and response time. This flavor receives

topK as an input parameter. First, the fast alternative runs

to provide an initial ranking of possible pattern continua-

tions. Then, for the topK intermediate results, the accurate

method runs. In this flavor, the trade-off is configurable.

Setting topK to 𝑙 , the technique degenerates to the ac-

curate, while setting topK to 0 is equal to the fast only

alternative.

4 ALTERNATIVES FOR INDEXING EVENT
PAIRS

The indexing of event pairs largely depends on the pattern de-

tection policy. For the Strict contiguity (SC) policy, the process

is straightforward. For Skip-till-next-match (STNM), there are

three flavors. Each trace is processed separately in parallel using

Spark. Below, we show the processing per trace; therefore the

overall complexity for the complete log needs to be increased by

a factor of O(𝑚). The techniques presented in this section refer

to the implementation of the create_pairs procedure in Alg. 1.

4.1 Strict Contiguity
This method is straightforward: we parse each trace and we add

the consecutive trace events in the index. The complexity is𝑂 (𝑛),
where 𝑛 is the size of a trace sequence in the log file.

4.2 Skip-till-next-match
The three different ways to calculate the event pairs using the

skip-till-next-match (STNM) strategy have different perspectives.
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Algorithm 6 Parsing method (per trace)

checkedList← [ ]

for i in (0, trace.size-1) do
inter_events← [ ]

if 𝑒𝑣𝑖 .type not in checkedList then
5: for j in (i,trace.size) do

if 𝑒𝑣𝑖 .type==𝑒𝑣𝑗 .type then
update inv_index with (𝑒𝑣𝑖 , 𝑒𝑣𝑗 )

for all inter_e in inter_events do
update inv_index with (𝑒𝑣𝑖 , 𝑖𝑛𝑡𝑒𝑟_𝑒)

10: end for
reset inter_events

else if 𝑒𝑣𝑗 .type not in inter_events then
update inv_index with 𝑒𝑣𝑖 , 𝑒𝑣𝑗

append 𝑒𝑣𝑗 to inter_events

15: end if
end for
append 𝑒𝑣𝑖 to checkedList

end if
end for

The Parsing method computes pairs while parsing through the

sequence. The Indexing method, first detects the positions of

each distinct event and then calculates the pairs. Finally, the State
method updates and saves a state for the sequence for each new

event.

Each method can be used in different scenarios. As we will

show in the experimental section, the Indexingmethod dominates

in the settings investigated. But this is not necessarily always the

case. For example, if we operate in a fully dynamic environment,

where new events are appended continuously as a data stream,

its easier to keep a state of the sequence than calculating all the

pairs from the start. However, in our core scenario where new

logs are processed periodically, all three ways apply. In addi-

tion, if a domain has a lot of distinct events, i.e., 𝑙 is very high

and much higher than the cardinalities examined, the Indexing
method becomes inefficient and thus is better to use the Parsing
one.

Parsing method. The main structure is inv_index, which is a

trace-specific part of the Index table. For each trace, the entries of

this table are augmented in parallel and since there is no ordering

in the values, this is not a problem.

The main rationale is shown in Algorithm 6, which contains

two main loops, in line 2 and in line 5, respectively. The idea is

to create all the event pars (𝑒𝑣𝑖 , 𝑒𝑣 𝑗 ), in which 𝑒𝑣𝑖 is before 𝑒𝑣 𝑗 .

The checkedList prevents the algorithm from dealing with events

types that has already been tested. While looping through the

trace sequence for an event 𝑒𝑣1, the algorithm appends all new

events to inter_events until it finds an event, 𝑒𝑣2 that has the

same type as 𝑒𝑣1. When this happens it will create all the pairs

of 𝑒𝑣1 with the events in the inter_events list (line 8-10) and will

empty it (line 11). After that point, the algorithm proceeds with

creating pairs where the timestamp of the first event is now equal

to 𝑒𝑣2’s timestamp. While updating the index, some extra checks

are performed to prevent entering the same pairs twice.

Complexity Analysis. Even though there are two loops iterating
the events, the if statement in line 4 can be true only up to 𝑙 times

(where 𝑙 is the number of distinct elements) and so the complex-

ity is 𝑂 (𝑛𝑙2), with 𝑛 being the length of the trace sequence. The

space required is𝑂 (𝑛+𝑙2), for the inv_index and the checkedList.

Algorithm 7 Indexing method (per trace)

1: indexer← map(event_id):[timestmap1,timestamp2,...]

2: for all 𝑒𝑣𝑎 in indexer do
3: for all 𝑒𝑣𝑎 in indexer do
4: CreatePairs(indexer[𝑒𝑣𝑎 .tsList],indexer[𝑒𝑣𝑏 .tsList]))

5: end for
6: end for

procedure CreatePairs(times_a,times_b)

i,j,prev← 0,0,-1

pairs← [ ]

while i < times_a.size and j < times_b.size do
5: if times_a[i] < times_b[j] then

if times_a[i] > prev then
append (times_a[i],times_b[j]) to pairs

prev←times_b[j], i←1, j←1

else
10: i←1

end if
else

j←1

end if
15: end while

return pairs

end procedure

Algorithm 8 State method (per trace)

1: index← HashMap((𝑒𝑣𝑖 , 𝑒𝑣 𝑗 ):[𝑡𝑠1, 𝑡𝑠2, 𝑡𝑠3 ...])

2: for all 𝑒𝑣 in the trace do
3: Add_New(index,𝑒𝑣)

4: end for
5: return index

6: procedure Add_New(index, new_event)

7: for all combinations where new_event is the 1st event

in index do
8: update state

9: end for
10: for all combinations where new_event is the 2nd event

in index do
11: update state

12: end for
13: end procedure

Indexingmethod. The key idea is to read the whole sequence
of events while keeping the timestamps in which every event

type occurred (line 1). Then, for every possible combination of

events we run the procedure, in which we create the pairs. The

procedure is similar to a merging of two lists, while checking

for time constrains. More specifically, in line 5, the order of the

events is checked and then in line 6, we ensure that there are no

overlapping event pairs.

Complexity Analysis. In line 1, we loop once the entire sequence
to find the indexes of each distinct event (𝑂 (𝑛)). Then, the next
loops in lines 2-3 retrieve all the possible event pairs (𝑂 (𝑙2)) and
finally the procedure in line 4, will pass through their indices

(𝑂 (𝑛)). This gives a total complexity of𝑂 (𝑛+𝑙2𝑛), which is simpli-

fied to𝑂 (𝑛𝑙2). The total space required is𝑂 (𝑛+𝑙2), for the partial
and the pairs. I.e., the complexity is similar to the Parsing method.
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State method. The algorithm is based on a Hash Map, which

contains a list of timestamps for each pair of events. We first ini-

tialize the structure by adding all the possible event pairs that can

be created (line 1) through parsing the sequence and detecting

all distinct event types that appear. Then we loop again through

the event sequence. While looping through the sequence we add

new event (𝑒𝑣𝑖 ) in the structure, by first updating all the the pairs

that have 𝑒𝑣𝑖 as the first event and then as the second (procedure

lines 7-12). During these updates, we ensure that no pair is over-

lapping. The update operation is as follows. For each (𝑒𝑣𝑖 , 𝑒𝑣 𝑗 )

entry in the HashMap, if the list of the timestamps has even

size, we append 𝑒𝑣𝑖 .𝑡𝑠; otherwise we do nothing. Similarly, for

each (𝑒𝑣 𝑗 , 𝑒𝑣𝑖 ) entry in the HashMap, if the list of the timestamps

has odd size, we append 𝑒𝑣𝑖 .𝑡𝑠 ; otherwise we do nothing. At the

end, we trim all timestamp lists of odd size (not shown in the

algorithm).

Complexity Analysis. The space complexity is𝑂 (𝑙2) due to the
HashMap. In line 2, the loop is passing through all the events

in the sequence and for every event executes the procedure

Add_new. This procedure has two loops passing through the set

of distinct events (𝑙 ), which gives us a total complexity of 𝑂 (𝑛𝑙)
multiplied by the complexity to access the HashMap, which is

𝑂 (1) in the average case. Despite this lower complexity, in the

evaluation section, we will provide evidence that the overheads

due to the HashMap access are relatively high.

Implementation information. We have used Spark and

Scala for developing the pre-processing component, which en-

capsulates the event pair indexing, and Java Spring for the query

processor. The source code is publicly available on GitHub.
4
,
5

5 EVALUATION
We used both real-world and synthetic datasets to evaluate the

performance of the proposed methods. We start by presenting

the datasets, followed by the evaluation of the different flavors of

indexing event pairs. Then we compare the preprocess time with

the proposal in [19] and Elasticsearch v7.9.1 and finally we show

the response time for queries that executed in both methods. In

query processing, we also compare against SASE [34].
6
All tests

were conducted on a machine with 16GB of RAM and 3.2GHz

CPU with 12 cores. Cassandra is deployed on a separate machine

with 64GB of RAM and 2GHz CPU. Each experiment is repeated

5 times and the average time is presented.

5.1 Datasets
The real-world datasets are taken from the Business Process In-

telligence (BPI) Challenges, and more specifically from the years

2013, 2017 and 2020. BPI13
7
is an event log of Volvo IT incident

and problem management. It includes 7,554 traces, which contain

65,533 events in total. The mean, min and max number of events

per trace for this dataset are 8.6, 1 and 123, respectively. BPI17
8
is

an event log, which corresponds to a loan application of an Dutch

financial institute. It includes 31,509 traces, which contain over

1M (1,202,267) events in total. The mean, min and max number of

events per trace for this dataset are 38.15, 10 and 180, respectively.

4
https://github.com/mavroudo/SequenceDetectionPreprocess

5
https://github.com/mavroudo/SequenceDetectionQueryExecutor

6
The SASE code repository used in the experiments is https://github.com/haopeng/

sase

7
doi:10.4121/500573e6-accc-4b0c-9576-aa5468b10cee

8
https://data.4tu.nl/articles/BPI_Challenge_2017/12696884

Log file Number of traces Activities

max_100 100 150

max_500 500 159

med_5000 5,000 95

max_5000 5,000 160

max_1000 1,000 160

max_10000 10,000 160

min_10000 10,000 15

bpi_2013 7,554 4

bpi_2020 6,886 19

bpi_2017 31,509 26

Table 4: Number of traces and distinct activities for every
process-like event log.

From BPI20
9
, we use an event log of requesting for payment for

a business trip. This is the smaller real-world dataset. It includes

6,886 traces, which contain 36,796 events. The mean, min and

max number of events per trace for this dataset are 5.3, 1 and 20,

respectively.

We also created synthetic datasets. First with the help of the

PLG2
10

tool, we created 3 different processes, with different num-

ber of distinct activities (15,95,160). Then by modifying the num-

ber of traces per logfile, we created logs that contain from 500 to

400,000 events. The log files are in the XES
11

format. In Figure

2, the distributions of events per trace and unique activities per

trace are shown. The purpose of these figures is to provide ev-

idence that our test datasets cover a broad range of real-world

trace profiles, thus the experimental results are trustworthy. In

general, logs with the terms “med” and “max” in their name have

more events per trace and much more unique activities than

those with the term “min”. Summary metadata are also in the

Table 4. The process-oriented logs are not big, but are used in

order to compare our approach against the one in [19], which

has been employed in pattern continuation in business processes.

This method cannot handle much bigger datasets. To test the

scalability of our solution, we employ some additional random

datasets that will be introduced separately.

5.2 Evaluating the different ways of indexing
pairs

In this section, we evaluate the different flavors that index the

event pairs according to the skip-till-next-match (STNM) policy.

We aim to find the pros and cons for each flavor in Section 4

and also define the different real life scenarios to use them com-

plementing the discussions already made above. We start the

evaluation using the datasets in Table 4. The results are shown

in Table 5. The main observation is that all three flavors perform

similarly while indexing process-like datasets. When the relative

differences are larger (e.g., larger than 30% for bpi_2020), the

absolute times are small, so the impact of different decisions is

not that important.

These datasets are not big. To better test the potential of the

three alternatives, we created log files in which the events were

not based on a process. We range the number of traces from 100

to 5000, the number of max events per trace from 50 to 4000

9
https://doi.org/10.4121/uuid:52fb97d4-4588-43c9-9d04-3604d4613b51

10
https://plg.processmining.it/

11
https://xes-standard.org/
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Figure 2: Distributions of the number of events and activities (i.e., unique event types) per trace for every process like log
file.

Log file Indexing Parsing State

max_100 4.874 4.49 4.572

max_500 8.454 7.109 7.294

max_1000 10.656 10.407 10.447

med_5000 23.105 22.601 22.417

max_5000 38.152 34.854 38.444

max_10000 79.863 77.964 80.796

min_10000 15.604 13.979 13.625

bpi_2020 6.803 10.384 8.822

bpi_2013 9.528 8.044 8.197

bpi_2017 170.9 171.666 179.352

Table 5: Execution times of differentmethods (in seconds).

and the number of activities from 4 to 2000. We refer to them

as random datasets, due to the lack of correlation between the

appearance of two events in a trace, which is not the typical case

in practice, and renders the indexing problem more challenging.

The results are presented in Figure 3. In the first plot, we set

the number of traces equal to 1000 and the number of different

activities equal to 500, while changing the number of max events

per trace from 100 to 4000. I.e., we handle up to 4M events. In

the second plot, we keep the maximum number of events per

trace and distinct activities to 1000 and 100, respectively while

increasing the number of traces from 100 to 5000. I.e., we handle

up to 5M events. Lastly, we maintain both the number of traces

and maximum number of events to 500 and increase the distinct

activities from 4 to 2000.
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Figure 3: Comparison of execution times of the three dif-
ferent approaches of indexing the event pairs according to
the STNM policy for large random logs.

From the Figure 3, we can observe that the Indexing alternative

outperforms the other two, in some cases by more than an order

of magnitude. The simplicity of this method makes it superior to

State, even though the time complexity indicates that the latter is

better. The State method performs better than Parsing; especially

in the third plot we can see the non-linear correlation between

the execution time and the number of distinct activities.

In summary, our results indicate that indexing is the most

efficient flavor to use when dealing with log files considered

periodically (so that new log entries are a few millions): it has
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Log file [19] Strict (1 thread) Strict Indexing (1 thread) Indexing Elasticsearch

max_100 1.054 3.764 3.701 5.398 4.874 0.67

max_500 2.68 5.593 4.649 12.568 8.454 4.68

max_1000 4.458 7.084 5.69 22.544 10.656 10.167

med_5000 6.913 20.361 9.175 113.04 23.105 31.80

max_5000 16.163 25.419 12.452 210.713 38.152 31.41

min_10000 26.64 31.379 8.782 116.318 15.604 38.15

max_10000 37.569 63.975 21.006 734.844 79.863 121.167

bpi_2020 95.269 11.461 8.597 17.908 6.803 14.49

bpi_2013 504.089 12.817 7.918 14.925 9.528 9.973

bpi_2017 very high 451.666 66.284 crash 170.9 364.293

Table 6: Comparison of execution times between [19] and our proposal (time in seconds).

minimum space complexity and it has the best executing time.

On the contrary, State is preferable when operating in a dynamic

environment, when for example new logs will be appended at

the end of every few minutes and some traces will be active for

weeks. State allows to save the current state of the log and, when

new events are appended, it can calculate the event pairs without

checking the previous ones. Even though the space complexity

is higher than the other methods, it is expected to dominate in a

real dynamic scenario.

5.3 Pre-process comparison
Based on the previous results, we continue the comparison using

only the Indexing alternative for the STNM policy. We compare

the time for building the index for both SC and STNM against

[19], which supports only SC, and against Elasticsearch. The

results are presented in Table 6; to provide the full picture we

run Spark in two modes, namely using all the available machine

cores and using a single Spark executor. The latter allows for

direct comparison against non-parallel solutions.

Considering how [19] works, logs that are based on processes

are easier to handle. We can split the test datasets of table 4

into three categories, namely small synthetic datasets (100-1000

traces), large synthetic datasets (5000 & 10000 traces) and real

datasets (from the BPI challenge). In the first category, Strict

performs almost the same as [19], while Indexing has significantly

higher execution time, due to the more complex process it runs.

In the second category, Strict scales better and achieves better

times than [19]. Finally, in real datasets, our method achieves

two order of magnitude lower times compared to [19]. When

using the bpi_2017 dataset, [19] could not even finish indexing

in 5 hours. This is probably based on the large amount of events

(≈1.2M) combined with the high number of distinct events per

trace. This lead to a very large suffix array, which probably could

not fit in main memory and ended up doing an extensive amount

of I/Os. For the same dataset, both Indexing and Strict managed

to create inverted indexing in less than 3 minutes when using all

machine cores.

Compared to Elasticsearch, we can observe that our best per-

forming technique is on average faster for the last two categories

(large synthetic and real datasets). In the larger real dataset, build-

ing an index to support STNM queries according to our proposal

is more than 2.1X faster than Elasticsearch.

Parallelization-by-design is a big advantage of our method;

we do not simply employ Spark but we can treat each trace in

parallel. Further, parallelization applies to both the event-pair

creation and the storage (Cassandra is a distributed database). As

Log file [19] Our method (2) Our method (10)

max_100 0.0023 0.007 0.022

max_500 0.0026 0.020 0.029

max_1000 0.0022 0.010 0.050

med_5000 0.0022 0.013 0.280

max_5000 0.0026 0.007 0.230

min_10000 0.0022 0.060 2.200

max_10000 0.0026 0.012 0.400

bpi_2020 0.0059 0.006 0.290

bpi_2013 0.0185 0.034 4.000

Table 7: Comparison response times in seconds

shown in Table 6, indexing can run even 10 times faster when

using all 12 cores available. This is not the case for the [19] and

other solutions, like Elasticsearch. However, there exist some

structures that build suffix trees in parallel [2, 13, 20]. But still,

the most computational intense process is to find all the subtrees

and store them. The number of subtrees is increased with the

number of leaves, which depends on the different traces that can

be found in a logfile.

5.4 Query response time
We start by comparing the response time for a single query, be-

tween our method and the one in [19]. Since [19] supports the

strict contiguity (SC) policy solely, we use this policy to create

the inverted index and then execute a pattern detection query,

as described in Section 3.2.1. Then, we compare the STNM solu-

tions against Elasticsearch and SASE, which does not perform

any preprocessing. We do not employ Elasticsearch in the SC

experiments, because it is more suitable for STNM queries; more

specifically, supporting SC can be achieved with additional ex-

pensive post-processing. Finally, we compare the pattern con-

tinuation methods and show the effectiveness of the trade-off

between accuracy and response time.

5.4.1 Comparison against [19] for SC. The results of the com-

parison are shown in Table 7. In the first column, we can see

the response time of [19] for the different log files. In the next 2

columns, we have different response times for detection queries,

for pattern length equal to 2 and 10, respectively. As discussed

in Section 2.2, all subtrees are precalculated and stored, which

means that the detection query time is𝑂 (𝑙𝑜𝑔𝑛 + 𝑘) where 𝑛 here

is the number of different subtrees and 𝑘 is the number of sub-

trees that will return. As such, for [19], the response time does

not depend on the querying pattern length. On the other hand,
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Log file Elasticsearch SASE Our method

pattern length = 2

max_100 0.006 0.003 0.003

max_500 0.009 0.014 0.006

max_1000 0.009 0.038 0.004

med_5000 0.048 0.958 0.006

max_5000 0.015 1.400 0.005

min_10000 0.145 1.565 0.031

max_10000 0.048 7.024 0.011

bpi_2013 0.071 0.205 0.008

bpi_2020 0.068 0.366 0.040

bpi_2017 0.609 70.491 0.102

pattern length = 5

max_100 0.011 0.002 0.008

max_ 500 0.018 0.014 0.012

max_ 1000 0.017 0.038 0.013

med_ 5000 0.126 0.999 0.048

max_ 5000 0.037 1.226 0.036

min_ 10000 0.647 1.688 0.525

max_ 10000 0.170 6.413 0.061

bpi_ 2013 0.155 0.233 0.063

bpi_ 2020 0.246 0.534 0.562

bpi_ 2017 4.652 370.142 1.495

pattern length = 10

max_100 0.020 0.002 0.048

max_500 0.031 0.014 0.039

max_1000 0.032 0.038 0.060

med_5000 0.239 1.010 0.279

max_ 5000 0.075 1.245 0.218

min_10000 1.340 1.712 3.707

max_10000 0.289 6.491 0.373

bpi_2013 0.259 0.229 0.374

bpi_2020 0.440 0.531 4.262

bpi_ 2017 9.661 440.066 11.188

Table 8: Response times for STNM queries in seconds

our proposal incrementally calculates the completion for every

event in the pattern as described in Section 3.2.1; as such, the

response time depends on the pattern length. In Figure 4, we

show how response time increases with respect to the querying

pattern length.

The experiments in Table 7 were executed 5 times and we

presented the mean response time. However, we have noticed a

fluctuation in response times, which is affected by the events in

the pattern. Each event has a different frequency in the log files;

e.g., starting and ending events are more frequent than some

events that correspond to an error. When events in the querying

pattern have low frequency, the response time will be shorter

because there are fewer traces that need to be tested.

For small patterns, with length equal to 2-5, we get similar

response times between the two methods, while [19] is always

faster. As pattern length increases, our method’s response time

increases as well, but we also return as a by-product detection

for all the sub-patterns.

In summary, the table shows the penalty we pay against a state-

of-the-art technique during subsequence matching; however, the

benefits of our approach are more significant: we allow efficient

indexing in large datasets and we support, with similar times,

pattern queries using the STNM policy.

5.4.2 Comparison against Elasticsearch and SASE for STNM.
In Table 8, we present comparison against SASE and Elasticsearch

0 10 20 30 40 50
Pattern length

0

20

40

60

80

100

120

Ti
m

e 
in

 se
co

nd
s

Response time in respect of pattern length
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Figure 5: Response time for different pattern continuation
methods for different query pattern lengths

query response times, when, in each experiment, we search for

100 random patterns. There are two main observations. Firstly,

running techniques that perform all the processing on the fly

without any preprocessing, such as SASE, yields acceptable per-

formance in small datasets but significantly degrades in larger

datasets, such as bpi_2017 and max_10000. In the former dataset,

techniques that perform preprocessing are faster by 2 orders of

magnitude. Secondly, there is no clear winner between Elastic-

search and our solution. But, in general, we are faster for small

queries of pattern size equal to 2 and in all but one dataset for

pattern size equal to 5, while Elasticsearch runs faster for pattern

length equal to 10. However, for the longest running long queries,

our solution is only 15.8% slower. Therefore, we can claim that

our solution is competitive for large query patterns. Moreover, we

can relax our query method to achieve faster times, as explained

in the next part of the evaluation, while we support pattern con-

tinuation more efficiently due to the incremental approach of

pattern processing that we adopt; i.e., we do not have to repeat

the complete query from scratch.

5.4.3 Comparison of pattern continuation alternatives. In Fig-

ure 5, we show the response times between Accurate and Fast

method for the dataset max_10000. We can see that the Accurate

method follows the same pattern as the graph in Figure 4, which

is what we expected as it performs pattern detection for every

possible subsequent event in the pattern. On the other hand, there

is no significant increase of response time for the Fast heuristic

with regards of the pattern length.

We are trying to fill this performance gap with the Hybrid

alternative. In Figure 6, we use again the max_10000 dataset and a

pattern with 4 events and we show the response timewith respect

to the 𝑡𝑜𝑝𝐾 parameter given to Hybrid. The response time for

both Accurate and Fast is constant, because they do not use this

parameter. As expected, the time increases linearly as 𝑘 increases.
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Figure 7: Accuracy of pattern continuation methods for
different 𝑡𝑜𝑝𝐾 values

Fast’s execution time is the lower bound and Accurate’s is the

upper one.

For the same setup, we perform an accuracy test presented in

Figure 7. We use as ground truth the events returned from the

Accurate method and compute the accuracy as the fraction of

the events in the top 𝑘 propositions from Hybrid that exist in

the propositions reported by Accurate, where 𝑘 is the number of

propositions returned from Accurate. The accuracy is increasing

as the number of 𝑘 increases until it reaches 100% for 𝑘=8. For

the same value, response time is half of the Accurate, as shown in

the previous graph. Also in this example we could achieve a 80%

accuracy with 𝑘=2 and 1/3 of the response time that Accurate

would have taken.

6 RELATEDWORK
Our work relates to several areas that are briefly described here

in turn.

Complex event processing. There are number of surveys pre-

senting scalable solutions for the detection of complex events in

data stream. A variety of general purpose CEP languages have

been developed. Initially, SASE [30] was proposed for executing

complex event queries over event streams supporting SC only.

The SQL-TS [24] is an extension to the traditional SQL that sup-

ports search for complex and recurring patterns (with the use of

Kleene closure), alongwith optimizations, to deal with time series.

In [9], the SASE language was extended to support Kleene clo-

sures, which allow irrelevant events in between thus covering the

skip-till-next-match (STNM) and skip-till-any-match strategies.

An extensive evaluation of the different languages was presented

in [34] along with the main bottlenecks for CEP. In addition, the

K*SQL [21] language, is a strict super-set of SASE+, as it can work

with nested words (XML data). Besides the languages, most of

these techniques use automata in order to detect specific patterns

in a stream, like [18]. Our technique differs from them as we do

not aim to detect patterns on the fly, but instead, to construct the

infrastructure that allows for fast pattern queries in potentially

large databases. To this end, the work in [22] also uses pair of

events to create signatures, but for scalability purposes, this work

considers only the top-k most frequent pairs, which yields an

approximate solution, whereas we focus on exact answers. In

addition, [22] focuses on the proposal of specific index types,

whereas we follow a more practical approach, where are indices

are stored as Cassandra tables to attain scalability.

Pattern mining. For non-streaming data, a series of methods

have been developed in order to mine patterns. The majority

of these proposals are looking for frequent patterns; e.g., Sahli

et al in [26] proposed a scalable method for detecting frequent

patterns in long sequences. As another example, in several other

fields such as biology, several methods have developed, which

are typically based in statistics (e.g., [1, 15]) and suffix trees (e.g.,

[10]). Parallel flavors have also been proposed, e.g., in [7]. Other

forms of mined patterns include outlying patterns [5] or general

patterns with high utility as shown in [32]. It is not trivial to build

on top of these techniques to detect arbitrary patterns, because

these techniques typically prune non-interesting patterns very

aggressively.

Business processes. There are applications in business process

management that employ pattern mining techniques to find out-

lier patterns and clear log files from infrequent behavior, e.g.,

[16, 28], in order to facilitate better process discovery. Another

application is to predict if a trace will fail to execute properly;

for example, in [4, 17], different approaches to predicting the

next tasks of an active trace are presented. None of these tech-

niques addresses the problem of efficiently detecting arbitrary

sequences of elements in a large process database as we do, but

the technique in [27] encapsulates our main competitor, namely

[19]. Finally, in [8], a query language over business processes

was presented to support sub-process detection. The proposed

framework can be leveraged to support SC and STNM queries

over log entries rather than subprocesses, but this entails using a

technique like SASE, without any pre-processing. Our evaluation

shows that such techniques are inferior to our solution.

Other data management proposals. The closest work to ours

from the field of data management is set containment join queries,

e.g., [31]. However, this type of joins does not consider time

ordering. An interesting direction for future work is to extend

these proposals to work for ordered sequences rather than sets;

to date, this remains an open issue.

7 DISCUSSION
We have proposed a methodology to detect pattern according to

the Strict contiguity (SC) and Skip-till-next-match (STNM) policy

in large log databases, assuming that new events arrive and pro-

cessed in big batches. However, there are several issues that need

to be addressed with a view to yielding a more complete solution.

First, sequential patterns, in their more relaxed form, allow for

overlappings, which is commonly referred to as the skip-till-any-

match policy. Supporting such patterns places additional burden

to both the indexing process and query execution. Second, in

many cases, assuming a total ordering is restrictive and also, the

way some events may be logged, even in the same trace, cannot

be regarded as following a total order. For example, in predic-

tive maintenance in Industry 4.0, it is common to group events

in large sets ignoring their relative order, e.g., [29]. Extending
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our approach to operate under partial ordering is an interesting

extension. Additionally, judiciously choosing the optimal update

period is an open issue and gives rise to a multi-objective problem

where low indexing time and result timeliness are contradicting

objectives. Finally, the pattern continuation techniques can ac-

count for other operation modes, where an event is not appended

only at the end, but also at arbitrary places in the query pattern.

Our proposal can be easily extended to cover these cases, but we

omit details here.

8 CONCLUSION
Despite the big advances in complex event processing and sequen-

tial pattern mining, efficient detection of arbitrary subsequences

in log databases is an overlooked issue. Our proposal fills this gap

and proposes indexing techniques along with query evaluation

algorithms that allow the user to detect any patterns according

to either the strict contiguity and the skip-till-next-match policy.

Compared to subsequence matching techniques that support only

strict contiguity, we show that our indexing can scale and also,

query processing times are competitive when both approaches

are applicable. Compared to Elasticsearch, a state-of-the-art solu-

tion, we build the indices faster and we run small queries faster,

while we are competitive in large queries. Further, our solution

can support exploration of pattern extension alternatives with dif-

ferent trade-offs between running time and accuracy and builds

on top of scalable technologies, like Spark and Cassandra.
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