Advances in Database Technology
— EDBT 2021

24th International Conference

on Extending Database Technology
Nicosia, Cyprus, March 23-26, 2021
Proceedings

Editors

Yannis Velegrakis
Demetris Zeinalipour
Panos K. Chrysanthis

Francesco Guerra

http://OpenProceedings.org/

Advances in Database Technology — EDBT 2021 Series ISSN: 2367-2005
Proceedings of the 24th International Conference

on Extending Database Technology

Nicosia, Cyprus, March 23-26, 2021

Editors

Yannis Velegrakis, University of Trento, Italy and Utrecht University, Netherlands
Demetris Zeinalipour, University of Cyprus, Cyprus

Panos K. Chrysanthis, University of Cyprus, Cyprus and University of Pittsburgh, USA
Francesco Guerra, University of Modena and Reggio Emilia, Italy

C proceedings

OpenProceedings.org
University of Konstanz
University Library

78457 Konstanz, Germany

COPYRIGHT NOTICE: Copyright © 2021 by the authors of the individual papers.

Distribution of all material contained in this volume is permitted under the terms of the Creative Commons license CC-by-
nc-nd 4.0

OpenProceedings ISBN: 978-3-89318-084-4 DOI of this front matter: 10.5441/002/edbt.2021.01

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2021.01

Foreword by the PC Chair

The International Conference on Extending Database Technology (EDBT) is an established forum for researchers and
practitioners alike to disseminate knowledge and research results related to data management. This year, the 24th
edition of EDBT, scheduled to take place between March 23rd and March 26, 2021 in Nicosia, Cyprus, has instead
been held entirely online, due to the circumstances and the travel restrictions imposed by the 2020/2021 pandemic.
It has been jointly organized with the International Conference on Database Theory (ICDT).

The organizing committee solicited contributions in many different areas, including, but not limited to, Data Prepa-
ration, Data Privacy, Database Engines, Distributed Data Systems, Graph Management, Reasoning over Data, Ma-
chine Learning and Al in Databases, Novel Database Architectures, Semi-structured Data Management, and User
Interfaces for Data. Novel in this year’s edition is the solicitation of contributions in the area of Applied Database
Systems for Data Science. The goal is to give the opportunity to researchers from different areas dealing with in-
teresting data management challenges in the context of Data Science, to disseminate them to the data management
community, and at the same time to give database researchers working on interesting data science scenarios to pub-
lish their works.

The main Research track, the Industrial & Application track, as well as the Demonstration track have remained as
in previous years, while the Short paper track has been slightly extended to accommodate papers of 6 pages, to allow
more technical content.

With some rare exceptions, research papers were reviewed by 4 reviewers. Discussions and decisions were taken
under the coordination of a senior PC member, with expertise in the respective area of the paper under review. The
reviewing phase involved two cycles: resulting in a number of papers being revised and having their qualify improved
significantly.

Consistent with the tradition, the program included two keynotes, one on Data Profiling by Felix Naumann (Hasso
Plattner Institute, Germany), and one on Knowledge Management by Katja Hose (Aalborg University, Denmark).
These keynotes were complemented by the two additional keynotes of the co-organized ICDT. Last but not least, the
program had the traditional tutorial track, featuring four tutorials on topics related to knowledge graphs, blockchains,
text-to-SQL, and time series management. The overall program was accompanied by 6 Workshops.

The Program committee reviewed 108 full research papers, of which 27 were accepted. For short papers, 34 papers
out of 113 were selected. The Industry and Application track received 22 submissions of which it selected 11 for
publication, while the demo track received 24 works of which 15 were accepted.

Given that this year the conference took place online, it was a good opportunity to exploit at the maximum the
opportunities that digital technologies can offer. Furthermore, it was our intention to make sure that the paper
contributions are disseminated to a broader audience, especially outside the conference participants. For this reason,
the authors were asked to provide a pre-recorded presentation of 10 min that will remain in the proceedings, a 30 sec
pitch video that advertises the results of the contribution and a graphics ad.

In order to recognize significant contributions and give credits to the authors, the technical program committee
awarded the Best Paper award to one of the research papers and the Best Demonstration award to one of the demos.
Furthermore, following the EDBT tradition, it awarded the Test-of-Time award to a paper from the EDBT 2011 pro-
ceedings that has been deemed to have the greatest impact among those of that year. A novelty in this year’s EDBT
edition is the additional recognition of the Best Short Paper.

The realization of EDBT 2021 is a result of a collaborative effort of the different chairs and program committee
members. Congratulations are in place to the senior PC members for guiding the discussions in such a professional
and timely manner, ensuring the selection of the best quality papers. Special thanks for the excellent collaboration and
quality of work go to the Industrial and Application Chair Eric Simon, the Demonstration Chair Sihem Amer-Yahia,
the tutorial chairs Stefan Manegold and Wang-Chiew Tan, and the Workshop Chair Evaggelia Pitoura. A great deal
of credits go to the Proceedings Chair Francesco Guerra for all the extra work he has put in organizing the material
and making sure that all the proceedings information is in place. My appreciation goes also to the members of the
paper award committees for the effort they put in evaluating the candidate papers and providing the decisions in a
timely manner. I find it impossible to describe the passion, professionalism, consistency and collaborative attitude the
general chairs Demetris Zeinalipour and Panos K. Chrysanthis have demonstrated. It was great working with them.
I would also like to thank all the program committee members since due to them the high quality program became
possible, the award committees, as well as Angela Bonifati and Marc H. Scholl from the EDBT Board for the their
numerous advices and support. Last but not least, I would like to thank all the authors for the works they submitted
to the conference, the keynote speakers, the tutorial presenters, and the demonstration presenters.

Yannis Velegrakis, EDBT 2021 PC Chair

Message from the General Chairs

The 24th edition of the International Conference on Extending Database Technology (EDBT) was held between the
23rd and 26th of March 2021, despite the COVID-19 worldwide pandemic. Continuing its longstanding tradition as
a premier data management research forum taking place in a European location, EDBT 2021, jointly organized with
the International Conference on Database Theory (ICDT), was held virtually in Nicosia, the capital of the beautiful
island of Cyprus.

At the onset, our aim has been to offer as close to an in-person, face-to-face experience as possible, maximizing
the dissemination of knowledge and sharing of research results among the EDBT/ICDT participants at no health
risk to them, and together discover the Cypriot culture and hospitality. EDBT/ICDT 2021 was initially planned to
become the first hybrid EDBT/ICDT conference, combining physical presentations with an extended online audience,
although this plan later evolved into an online format due to the ongoing situation with COVID-19. To this end, we
have been committed to offering the best possible online experience to attendees by capitalizing and expanding on
the success of earlier conferences.

Particularly, we decided on a number of novelties compared to previous conferences. Firstly, given that an optimal
online experience cannot be achieved with pre-recorded presentations, but only with live presentations and direct
interactions between the speakers and the audience, we decided in coordination with the Program Chairs on the
online synchronous delivery of all events, including all research presentations, tutorials and live demonstrations.
The next challenge was to select the appropriate conference management platform. Our personal experience as
participants in several online conferences during the past year, and our evaluation of a number of popular web
socializing platforms, led us to the decision that a custom conference attendance experience can only be delivered
by an in-house platform that relies on a reliable teleconferencing channel, an intuitive interface, and a low learning
curve.

To this end, the Data Management Systems Laboratory at the University of Cyprus, under the leadership of
Demetris Zeinalipour developed and hosted a novel web-based platform named VGATE (Virtual Gate) to online con-
ferences. VGATE allowed the Organizing Committee to collaborate over a Web-based Sheet interface (like Google
Sheets) to plan and manage the organization. VGATE provided numerous helpful building-blocks in the online orga-
nization, namely, zoom license management and user status integration, integration of proceedings and multimedia
content, industry booths, live sessions, social rooms, and for the first time an online helpdesk supported by Easy-
Conferences Ltd. Special thanks to Paschalis Mpeis (University of Cyprus, Cyprus), Soteris Constantinou (University
of Cyprus, Cyprus) and Constantinos Costa (University of Pittsburgh, USA) for their support and code contribu-
tions to the project under an extremely tight schedule. Special thanks also to Zoom Video Communications, Inc., for
facilitating and sponsoring EDBT/ICDT 2021.

Novel this year is the participation of EDBT/ICDT to the newly founded Diversity and Inclusion (D&I) initiative of
the Data Management community. EDBT/ICDT (alongside SIGMOD, VLDB, SoCC, and ICDE) celebrates the diversity
in our community and welcomes everyone regardless of age, sex, gender identity, race, ethnicity, socioeconomic
background, country of origin, religion, sexual orientation, physical ability, education, work experience, etc. To
introduce this initiative, Panos K. Chrysanthis, the EDBT/ICDT D&I Chair, together with Sihem Amer-Yahia (CNRS,
University Grenoble Alpes, France), a D&I Core Member, organized a panel as part of the Reception on DAY1 of the
conference.

With D&I and broad participation in mind, the conference program was structured in a way that is convenient
to at least half of the world at any given time. Specifically, the program was split into morning sessions (CET),
which were convenient for EU-ASIA participants, on DAY1 and DAY3, and the afternoon sessions (CET), which
were convenient for EU-America participants on DAY2 and DAY4. The Workshops were scheduled on DAY1 in the
morning or afternoon based on the geographical location of their presenters. Social events were split along the same
lines, presenting the host country, Cyprus, through music and videos on culture, geography, food, leisure, and other
enjoyable aspects of Cyprus. Virtual corridor and hallway discussions were supported by a number of unmoderated
and dynamic social rooms on VGATE at all times.

This year we also introduced some additional novelties, namely: (i) We introduced a special ceremony during Re-
ception on DAY?2, titled “Pandemic Greetings from the Pioneers and the Next Data Management Challenge”, with greet-
ings by Philip A. Bernstein (Microsoft Research, WA, USA), Laura M. Haas (University of Massachusetts — Amherst,
MA, USA), Yannis Ioannidis (University of Athens, Greece) and Jeffrey D. Ullman (Stanford, CA, USA); (ii) we intro-
duced the concept of a sponsored industry talk during Dinner on DAY3, with title “Behind the Scenes of Snowflake’s
new Search Optimization Service”, by Ismail Oukid (Snowflake, Germany) and Stefan Richter (Snowflake, Germany);
(iii) we introduced a dedicated “Demos in Action: Meet the Authors!” session during Dinner on DAY3, which allowed
Demo presenters to individually showcase their demos to participants in their private presentation space through

ii

https://edbticdt2021.cs.ucy.ac.cy/
https://vgate.cs.ucy.ac.cy/

VGATE. Finally, we also continued to support the Climate Change discussion with a session on DAY4, led by Antoine
Amarilli (Télécom Paris, France), with guest Benjamin Pierce (University of Pennsylvania, USA).

In all above endeavors, we had the support and encouragement of our incredible Organization Committee and the
EDBT Executive Board, in particular, the President of EDBT Executive Board Angela Bonifati (Lyon 1 University,
France), as well as the Chair of the ICDT Council Wim Martens (University of Bayreuth, Germany).

We are grateful to the entire Technical Program Committees, which, under the excellent leadership of the EDBT
Program Chair Yannis Velegrakis (University of Trento, Italy and Utrecht University, Netherlands) and the ICDT
Program Chair Ke Yi (Hong Kong University of Science and Technology, Hong Kong), brought forward an exciting
technical program with a rich production of technical content (proceedings, videos, pitches, ads, etc.). Our gratitude
also extends personally to the EDBT Demonstration Chair Sthem Amer-Yahia (CNRS, University Grenoble Alpes,
France), the EDBT Workshop Chair Evaggelia Pitoura (University of Ioannina, Greece), the Climate Chair Antoine
Amarilli (Télécom Paris, France), the EDBT Applied Database Systems for Data Science Vice-Chair Paul Groth (Uni-
versity of Amsterdam, Netherlands), the EDBT Industrial/Application Chair Eric Simon (SAP, France), the Tutorial
Chairs Stefan Manegold (CWI, Netherlands) and Wang-Chiew Tan (Megagon Labs, USA), for the excellent collabora-
tion, and exchange of ideas and insightful discussions. We would also like to highlight EDBT Demonstration Chair
Sihem Amer-Yahia’s success in putting together EDBT’s first all-women Demonstration Track Committee. We would
also like to thank the organizers of the six, co-located workshops DOLAP, BigVis, BMDA, DARLI-AP, SIMPLIFY and
PIE+Q for enriching the scope of the technical program.

Several people contributed to the successful organization of the EDBT/ICDT 2021 conference. Special thanks to the
following valued collaborators for their passion in organizing a memorable event: the Sponsorship Chair Divyakant
Agrawal (University of California-Santa Barbara, USA), the Publicity Chair Herodotos Herodotou (Cyprus University
of Technology, Cyprus), the Finance Chair George Pallis (University of Cyprus, Cyprus), the EDBT Proceedings Chair
Francesco Guerra (University of Modena and Reggio Emilia, Italy), the ICDT Proceedings Chair Zhewei Wei (Renmin
University, China), the Workshops Proceedings Chair Constantinos Costa (University of Pittsburgh, USA) and the
Website support by Nicolas Kantzilaris (Easy Conferences, Cyprus).

Our sincere gratitude to our platinum sponsor, Snowflake, and our bronze sponsors, Oracle and Zoom, as well as
the contact persons behind the support, namely Martin Hentschel (Snowflake), Ann Brisson (Oracle) and Alberto
Colautti (Zoom).

Organizing EDBT 2021 at the University of Cyprus was Prof. George Samaras¥’ passion. After his unexpected
passing two years ago, his friends and colleagues at the University of Cyprus volunteered to make his passion a
reality. We are grateful to the EDBT Executive Board for giving us this opportunity and trusting us to organize EDBT
2021 alongside ICDT 2021 in Cyprus, as proposed by George in 2018. We dedicate the EDBT/ICDT 2021 in honor of
the memory of Prof. George Samarast (1959-2018).

We hope you enjoyed EDBT/ICDT 2021’s exciting technical program and your virtual visit to Cyprus!

Demetris Zeinalipour, University of Cyprus, Cyprus
Panos K. Chrysanthis, University of Cyprus, Cyprus and University of Pittsburgh, USA

EDBT/ICDT 2021 General Co-Chairs

iii

Program Committee Members

Research Program Committee Chair
Yannis Velegrakis, U Trento, Italy & Utrecht U, The Netherlands

Senior Program Committee Members

Periklis Andritsos, U Toronto, Canada
Nikos Bikakis, Athena Res. Ctr., Greece
Elena Ferrari, U Insubria, Italy

Avigdor Gal, Technion - Israel IT, Israel
Lukasz Golaz, U Waterloo, Canada

Paul Groth, U Amsterdam, Netherlands
Sergio Greco, U Calabria, Italy

Program Committee Members

Karl Aberer, EPFL, Switzerland

Ashraf Aboulnaga, Qatar Comp. Res. Inst., HBKU, Qatar

Bernd Amann, Sorbonne U, France

Nicolas Anciaux, INRIA, France

Walid G. Aref, Purdue U, USA

Akhil Arora, EPFL, Switzerland

Manos Athanassoulis, Boston U, USA

Nikolaus Augsten, U Salzburg, Austria

Elena Baralis, Politecnico di Torino, Italy
Denilson Barbosa, U Alberta, Canada

Ilaria Bartolini, U Bologna, Italy

Senjuti Basu Roy, New Jersey IT, USA

Luigi Bellomarini, Banca d’Italia, Italy

Michael Benedikt, U Oxford, UK

Alexander Boehm, SAP SE, Germany

Luc Bouganim, INRIA, France

Andrea Cali, Birkbeck U London, UK

Marco Calautti, U Trento, Italy

Bogdan Cautis, U Paris-Sud, France

Mel Chekol, Utrecht U, Netherlands

Vassilis Christophides, ENSEA, ETIS, France
Dario Colazzo, U Paris Dauphine — PSL, France
Bin Cui, Peking U, China

Alfredo Cuzzocrea, ICAR-CNR & U Calabria, Italy
Sabrina De Capitani di Vimercati, U Milano, Italy
Antonios Deligiannakis, TU Crete, Greece
Cagatay Demiralp, Sigma Computing, USA
Stefania Dumbrava, ENSIIE, France

George Fakas, Uppsala U, Sweden

Ju Fan, Renmin U China, China

Donatella Firmani, Roma Tre U, Italy

George Fletcher, Eindhoven UT, Netherlands
Daniele Foroni, Huawei, Germany
Johann-Christoph Freytag, HU Berlin, Germany
Avigdor Gal, Technion — Israel IT, Israel
Johann Gamper, Free U Bozen-Bolzano, Italy

iv

Christian S. Jensen, Aalborg U, Denmark

Laks V.S. Lakshmanan, U British Columbia, Canada
Qiong Luo, HKUST, China

Raymond Ng, U British Columbia, Canada

Tamer Ozsu, U Waterloo, Canada

Pinar Tozun, IT U Copenhagen, Denmark

Yunjun Gao, Zhejiang U, China

Rainer Gemulla, U Mannheim, Germany

Boris Glavic, Illinois IT, USA

Paolo Guagliardo, U Edinburgh, UK

Michael Gubanov, Florida State U, USA

Xi He, U Waterloo, Canada

Melanie Herschel, U Stuttgart, Germany

Jan Hidders, U London, UK

Katja Hose, Aalborg U, Denmark

Vagelis Hristidis, U California — Riverside, USA
Haoyu Huang, Google, USA

Xin Huang, Hong Kong Baptist U, Hong Kong SAR
Ekaterini Ioanou, Tilburg U, Netherlands

Zsolt Istvan, ITU Copenhagen, Denmark

Panos Kalnis, King Abdullah UST, Saudi Arabia
Vana Kalogeraki, Athens U Eco. & Busin., Greece
Verena Kantere, National TU Athens, Greece
Panagiotis Karras, Aarhus U, Denmark

Asterios Katsifodimos, TU Delft, Netherlands
Anastasios Kementsietsidis, Google Research, USA
Haridimos Kondylakis, FORTH-ICS, Greece

Nick Koudas, U Toronto, Canada

Georgia Koutrika, Athena Research Center, Greece
Alexandros Labrinidis, U Pittsburgh, USA

Ulf Leser, HU Berlin, Germany

Guoliang Li, Tsinghua U, China

Han Li, Amazon, USA

Xiang Lian, Kent State U, USA

Chunbin Lin, Amazon AWS, USA

Matteo Lissandrini, Aalborg U, Denmark

Eric Lo, Chinese U Hong Kong, Hong Kong SAR
Ping Lu, Beihang U, China

Nikos Mamoulis, U Ioannina, Greece

Ioana Manolescu, INRIA & Inst. Poly. Paris, France
Sebastian Michel, TU Kaiserslautern, Germany
Paolo Missier, Newcastle U, UK

Mohamed Mokbel, U Minnesota — Twin Cities, USA

Mirella M. Moro, U Federal Minas Gerais, Brazil
Davide Mottin, Aarhus U, Denmark

Hieu Nguyen, eBay, USA

Behrooz Omidvar-Tehrani, LIG, France

Mourad Ouzzani, Qatar Comp. Res. Inst., HBKU, Qatar

George Papadakis, U Athens, Greece

Olga Papaemmanouil, Brandeis U, USA
Odysseas Papapetrou, TU Eindhoven, Netherlands
Paolo Papotti, Eurecom, France

Alok Pareek, Striim, USA

Torben Bach Pedersen, Aalborg U, Denmark
Eric Peukert, Leipzig U, Germany

Dimitris Plexousakis, ICS-FORTH, Greece
Laura Po, U Modena & Reggio Emilia, Italy
Arnau Prat, Sparsity Technologies, Spain
Nicoleta Preda, U Versailles, France
Abdulhakim Qahtan, Utrecht U, Netherlands
Louiga Raschid, U Maryland, USA
Mohammad Sadoghi, U California, Davis, USA
Carlo Sartiani, U Basilicata, Italy

Kai-Uwe Sattler, TU Ilmenau, Germany
Sebastian Schelter, U Amsterdam, Netherlands

Industrial Track Program Committee

Tyler Akidau, Snowflake, USA

Minhea Andrei, SAP, France

Angela Bonifati, U Lille, France

Jianjun Chen, Bytedance US Lab, USA
Thomas Fanghaenel, Salesforce, USA
Avrilia Floratou, Microsoft, USA

Prasanta Ghosh, Microsoft, USA

Yash Govind, Informatica LLC, USA

Laura Haas, U Mass. Amherst, USA

Zack Ives, U Pennsylvania, USA

Martin Kersten, MonetDB Solutions, Netherlands
Hariharan Lakshmanan, Oracle, USA
Dustin Lange, Amazon Research, USA
Jyoti Leeka, Microsoft, USA

Stefan Mandl, EXASOL AG, Germany
Anisoara Nica, SAP Labs Waterloo, Canada
Berthold Reinwald, IBM Research-Almaden, USA
Alejandro Salinger, SAP SE, Germany
Dennis Shasha, New York U, USA
Mohamed Soliman, Datometry, USA
Nesime Tatbul, Intel Labs and MIT, USA
Wei Wang, Nat. U Singapore, Singapore
Xuezhi Wang, Google, USA

Yongsik Yoon, Snowflake, USA

Kai Zeng, Alibaba Group, China

Steffi Scherzinger, U Passau, Germany
Petra Selmer, Neo4j, UK

Juan Sequeda, data.world, USA

Lidan Shou, Zhejiang U, China

Giovanni Simonini, U Modena & Reggio Emilia, Italy

Hala Skaf-Molli, U Nantes, France

Kostas Stefanidis, Tampere U, Finland

Gabor Szarnyas, CWI, Netherlands

Letizia Tanca, Politecnico di Milano, Italy
Ernest Teniente, U Politécnica Catalunya, Spain
Arash Termehchy, Oregon State U, USA

Chao Tian, Alibaba, China

Riccardo Torlone, Roma Tre U, Italy

Farouk Toumani, Clermont Auvergne U, CNRS, France

Katerina Tzompanaki, CY Cergy Paris U, France
Vasilis Vassalos, Athens U Eco. & Busin., Greece
Panos Vassiliadis, U Ioannina, Greece

Yannis Velegrakis, Utrecht U, Netherlands
Jianguo Wang, Purdue U, USA

Wendy Hui Wang, Stevens I'T, USA

Wolfram Wingerath, Bagend, Germany

Nikolay Yakovets, TU Eindhoven, Netherlands
Meihui Zhang, Beijing IT, China

Demonstration Track Program Committee

Anastasia Ailamaki, EPFL, Switzerland

Elena Baralis, Polytecnico di Torino, Italy
Senjuti Basu Roy, NJIT, USA

Angela Bonifati, Lyon U, France

Renata Borovica-Gajic, U Melbourne, Australia
Malu Castellanos, TERADATA, USA

Sarah Cohen Boulakia, U Paris Sud, France
Maria Luisa Damiani, U Milan, Italy

Anna Fariha, UMass Amherst, USA

Irini Fundulaki, FORTH, GRnet, Greece

Katja Hose, Aalborg U, Denmark

Vana Kalogeraki, Athens U Eco. & Busin., Greece
Zoi Kaoudi, TU Berlin, Germany

Georgia Koutrika, ATHENA, Greece

Toana Manolescu, INRIA, France

Renée J. Miller, Northeastern U, USA

Silvia Nittel, U Maine, USA

Fatma Ozcan, Google, USA

Nesime Tatbul, Intel Labs & MIT, USA

Pinar Toziin, ITU, Denmark

Esther Pacitti, U Montpellier (INRIA & CNRS), France

Danica Porobic, Oracle, Switzerland
Agma Traina, ICMC-USP, Brazil

Zografoula Vagena, U Paris, France and Relational A, USA

Xiaolan Wang, Megagon Labs, USA
Karine Zeitouni, U Versailles, France

Additional Reviewers

Yaniv Gur, IBM Research-Almaden, USA
Ahmed Al-Baghdadi, Kent State U, USA
Niranjan Rai, Kent State U, USA

Weilong Ren, Kent State U, USA

Tahereh Arabghalizi, U Pittsburgh, USA
Evangelos Karageorgos, U Pittsburgh, USA
Xiaoting Li, U Pittsburgh, USA

Anthony Sicilia, U Pittsburgh, USA

Prithu Banerjee, U BC, Vancouver, Canada
Saket Gurukar, Ohio State U, Ohio, USA
Garima Gaur, IIT Kanpur, India

Sainyam Galhotra, U Mass., Amherst, USA

vi

Nikos Giatrakos, TU Crete, Greece

Angjela Davitkova, TU Kaiserslautern, Germany
Leonardo Gazzarri, U Stuttgart, Germany

Flavio Giobergia, Politecnico di Torino, Italy

Eliana Pastor, Politecnico di Torino, Italy

Uta Storl, Darmstadt U of Applied Sciences, Germany
Wolfgang Mauerer, TU of Appl. Sc. Regensburg, Germany
Vasilis Efthymiou FORTH ICS Greece

Nikos Myrtakis U Crete, Greece

Benjamin Wollmer, Bagend and U Hamburg, Germany
Andrea Rossi, U Roma Tre, Italy

Tobias Lindaaker, Neo4j, Sweden

Conference Organization

General Chairs
Demetris Zeinalipour, University of Cyprus, Cyprus
Panos K. Chrysanthis, University of Cyprus, Cyprus and University of Pittsburgh, USA

EDBT Program Chair
Yannis Velegrakis, University of Trento, Italy and Utrecht University, Netherlands

ICDT Program Chair
Ke Yi, Hong Kong University of Science and Technology, Hong Kong

EDBT Industrial/Application Chair
Eric Simon, SAP, France

EDBT Applied Database Systems for Data Science Vice-Chair
Paul Groth, University of Amsterdam, Netherlands

EDBT Demonstrations Chair
Sihem Amer-Yahia, CNRS, Univ. Grenoble Alpes, France

Tutorial Chairs
Stefan Manegold, CWI, Netherlands
Wang-Chiew Tan, Megagon Labs, USA

Workshops Chair
Evaggelia Pitoura, University of Ioannina, Greece

Climate Chair
Antoine Amarilli, Télécom Paris, France

EDBT Proceedings Chair
Francesco Guerra, University of Modena and Reggio Emilia, Italy

ICDT Proceedings Chair
Zhewei Wei, Renmin University, China

Workshops Proceedings Chair
Constantinos Costa, University of Pittsburgh, USA

Diversity and Inclusion Chair
Panos K. Chrysanthis, University of Pittsburgh, USA

Sponsorship Chair
Divyakant Agrawal, UC Santa Barbara, USA

Publicity Chair
Herodotos Herodotou, Cyprus University of Technology, Cyprus

Finance Chair
George Pallis, University of Cyprus, Cyprus

Website Chair
Kyriakos Georgiades, EasyConferences, Cyprus

vii

Test-of-Time Award

Established in 2014, the Test-of-Time Award of the Extended Database Technology (EDBT) Conference recog-
nizes papers presented at the EDBT Conferences that have had the most impact in terms of research, method-
ology, conceptual contribution, or transfer to practice over the past ten years. The 2021 Test-of-Time Award
committee looked and evaluated the impact of the papers in the EDBT 2011 proceedings, and selected

SeMiTri: a framework for semantic annotation of heterogeneous trajectories
by Zhixian Yan, Dipanjan Chakraborty, Christine Parent, Stefano Spaccapietra, and Karl Aberer
published in the EDBT 2011 Proceedings, pp. 259-270, DOI: 10.1145/1951365.1951398,

because it is one of the earliest papers to propose a general method for enriching moving object trajectories
with semantics useful for supporting location-based services, which have been and still are in high demand
across several application sectors. Since its publication, SeMiTri has generated significant interest, and follow-
up work on semantic processing of mobile data and trajectories.

The EDBT 2021 Test of Time Award committee was formed by Barbara Catania, University of Genova, Italy,
Gautam Das, University of Texas at Arlington, USA, Beng Chin OOI, National University of Singapore, Singa-

pore, Themis Palpanas, University of Paris, France, and Yufei Tao, Chinese University of Hong Kong, China.

The EDBT Test-of-Time award for 2021 will be presented during the EDBT/ICDT 2021 Conference in Nicosia,
Cyprus, as part of the Awards session on March 24, 2021.

viil

http://doi.acm.org/10.1145/1951365.1951398
https://edbticdt2021.cs.ucy.ac.cy/

Best Paper Award

The Best Paper Award Committee has looked at the papers accepted in the conference and selected one that
was distinguishing itself in terms of research quality, presentation, technical challenges, and novelty. The
selected paper is

DomainNet: Homograph Detection for Data Lake Disambiguation

by Aristotelis Leventidis, Laura Di Rocco, Wolfgang Gatterbauer,
Renée J. Miller and Mirek Riedewald.
DOI: 10.5441/002/edbt.2021.03

The paper presents DomainNet, a system that disambiguates values from heterogeneous datasets by creating a
network representing co-occurring values and computing their graph centrality. The system is unsupervised,
its accuracy outperforms the state-of-the-art, and it is accompanied by an open benchmark. The paper is of
high significance: the problem is important, the proposed solution is effective, and the benchmark facilitates
further research.

Abstract: Modern data lakes are deeply heterogeneous in the vocabulary that is used to describe data. We
study a problem of disambiguation in data lakes: how can we determine if a data value occurring more than
once in the lake has different meanings and is therefore a homograph? While word and entity disambiguation
have been well studied in computational linguistics, data management and data science, we show that data
lakes provide a new opportunity for disambiguation of data values since they represent a massive network of
interconnected values. We investigate to what extent this network can be used to disambiguate values.
DomainNet uses network-centrality measures on a bipartite graph whose nodes represent values and at-
tributes to determine, without supervision, if a value is a homograph. A thorough experimental evaluation
demonstrates that state-of-the-art techniques in domain discovery cannot be re-purposed to compete with our
method. Specifically, using a domain discovery method to identify homographs has a precision and a recall
of 38% versus 69% with our method on a synthetic benchmark. By applying a network-centrality measure to
our graph representation, DomainNet achieves a good separation between homographs and data values with
a unique meaning. On a real data lake our top- 200 precision is 89%.

The EDBT 2021 Best Paper Award committee was formed by Avigdor Gal, Technion Israel Institute of Tech-
nology, Israel, Lucasz Golab, University of Waterloo, Canada, Christian Jensen, Aalborg University, Denmark,

and Qiong Luo, HKUST, China.

The EDBT Best Paper Award for 2021 will be presented during the EDBT/ICDT 2021 Conference in Nicosia,
Cyprus, on March 24, 2021.

ix

http://dx.doi.org/10.5441/002/edbt.2021.03
https://edbticdt2021.cs.ucy.ac.cy/

Best Short Paper Award

The Best Short Paper Award Committee has looked at the papers accepted in the conference and selected
one that was distinguishing itself in terms of research quality, presentation, technical challenges, novelty, and
potential impact to the broader research community and industry. The selected paper is

Answer Graph: Factorization Matters in Large Graphs

by Zahid Abul-Basher, Nikolay Yakovets, Parke Godfrey, Stanley Clark, and Mark Chignell.
DOI: 10.5441/002/edbt.2021.56

The paper proposes a two-step method for answering SPARQL conjunctive queries. The first step constructs
an answer graph consisting only of node-edge-node triples that are answers to the query (a factorized answer
set). In the second step, this answer graph is used to compute the actual embeddings for the query. The
authors present detailed implementations for generating answer graphs and computing the final embedding,
particularly in the case of cyclic conjunctive queries. Some first results from an experimental evaluation are
also provided.

The EDBT 2021 Best Short Paper Award committee was formed by Manos Athanasoulis, Boston University,
USA, Johann Gamper, Free University of Bozen-Bolzano, Italy, loana Manolescu, INRIA, France, Letizia Tanca,
University of Milan, Italy, and Yannis Kotidis, Athens University of Economics and Business, Greece

The EDBT Best Short Paper Award for 2021 will be presented during the EDBT/ICDT 2021 Conference in
Nicosia, Cyprus.

http://dx.doi.org/10.5441/002/edbt.2021.56
https://edbticdt2021.cs.ucy.ac.cy/

Best Demonstration Award

The Best Demonstration Award Committee has reviewed the video recordings of the 15 demos accepted at
EDBT/ICDT and selected the most engaging demonstration that serves as an example of a structured and well
illustrated demonstration and showcases an end-to-end system on a state-of-the-art topic that promotes data
management beyond its boundaries. The selected demo is

Conversational OLAP in Action

by Matteo Francia, Enrico Gallinucci, and Matteo Golfarelli
(DISI - University of Bologna)
DOI: 10.5441/002/edbt.2021.74

For demonstrating COOL, a tool supporting natural language COnversational OLap sessions. COOL interprets
and translates a natural language dialogue into an OLAP session that starts with a GPSJ query. The demon-
stration is engaging and showcases the usability of COOL and its capabilities in assisting query formulation
and ambiguity resolution.

The EDBT 2021 Best Demonstration Award committee was formed by Sihem Amer-Yahia, CNRS Univ. Greno-
ble Alpes, France, Elena Baralis, Politecnico di Torino, Italy, Maria Luisa Damiani, University of Milan, Italy,
Anna Fariha, UMass Ambherst, USA, Irini Fundulaki, FORTH, GRnet, Greece, Zoi Kaoudi, TU Berlin, Ger-
many, Georgia Koutrika, ATHENA, Greece, Esther Pacitti, University of Montpellier (Inria&CNRS), France,
and Agma Traina, ICMC-USP, Brazil.

The EDBT Best Demonstration Award for 2021 will be presented during the EDBT/ICDT 2021 Conference in
Nicosia, Cyprus, on March 24, 2021.

Xi

http://dx.doi.org/10.5441/002/edbt.2021.74
https://edbticdt2021.cs.ucy.ac.cy/

Table of Contents

Foreword by the PC Chair e e e e e e i
Message from the General Chairs ii
Program Committee MemDbers iv
Conference Organizationt vii
Test-of-Time AWardo e e e viii
Best Paper AWardo ix
Best Short Paper Awardo X
Best Demonstration AWard e e xi
Table of CONENESottt e xii

Research Papers

Exchanging Data under Policy Views
Angela Bonifati, Ugo Comignani, Efthymia Tsamoura. i 1

DomainNet: Homograph Detection for Data Lake Disambiguation
Aristotelis Leventidis, Laura Di Rocco, Wolfgang Gatterbauer, Renée J. Miller, Mirek Riedewald 13

GPU-INSCY: A GPU-Parallel Algorithm and Tree Structure for Efficient Density-based Subspace Clustering
Jakob Redsgaard Jorgensen, Katrine Scheel, Ira Assent 25

JIT happens: Transactional Graph Processing in Persistent Memory meets Just-In-Time Compilation
Muhammad Attahir Jibril, Alexander Baumstark, Philipp Gotze, Kai-Uwe Sattler 37

Fixing Wikipedia Interlinks Using Revision History Patterns
Tova Milo, Slava Novgorodov, Kathy Razmadze e 49

Automating Data Quality Validation for Dynamic Data Ingestion
Sergey Redyuk, Zoi Kaoudi, Volker Markl, Sebastian Schelter 61

Provenance-Based Algorithms for Rich Queries over Graph Databases
Yann Ramusat, Silviu Maniu, Pierre Senellart 73

Sequence detection in event log files
Ioannis Mavroudopoulos, Theodoros Toliopoulos, Christos Bellas, Andreas Kosmatopoulos, Anastastios Gounaris . . 85

A Comparative Evaluation of Anomaly Explanation Algorithms
Nikolaos Myrtakis, Vassilis Christophides, Eric Simon e 97

Scaling Density-Based Clustering to Large Collections of Sets
Daniel Kocher, Nikolaus Augsten, Willi Mann e 109

Assess Queries for Interactive Analysis of Data Cubes
Matteo Francia, Matteo Golfarelli, Patrick Marcel, Stefano Rizzi, Panos Vassiliadis 121

SolveDB+: SQL-Based Prescriptive Analytics
Laurynas Siksnys, Torben Bach Pedersen, Thomas Dyhre Nielsen, Davide Frazzetto 133

Multi-Objective Influence Maximization
Shay Gershtein, Tova Milo, Brit YOUNGMaAnn.ttt e e 145

Subjectivity Aware Conversational Search Services
Yacine Gaci, Jorge Ramirez, Boualem Benatallah, Fabio Casati, Khalid Benabdeslem 157

xii

GeoBlocks: A Query-Cache Accelerated Data Structure for Spatial Aggregation over Polygons
Christian Winter, Andreas Kipf, Christoph Anneser, Eleni Tzirita Zacharatou, Thomas Neumann, Alfons Kemper .

Indoor Spatial Queries: Modeling, Indexing, and Processing
Tiantian Liu, Huan Li, Hua Lu, Muhammad Aamir Cheema, Lidan Shou

Structure Detection in Verbose CSV Files
Lan Jiang, Gerardo Vitagliano, Felix Naumann

FRESQUE: A Scalable Ingestion Framework for Secure Range Query Processing on Clouds
Hoang Tran Van, Tristan Allard, Laurent d’Orazio, Amr ELAbbadi

Cache on Track (CoT): Decentralized Elastic Caches for Cloud Environments
Victor Zakhary, Lawrence Lim, Divy Agrawal, Amr ELAbbadi.

Knowledge Graph Management on the Edge
Weigin Xu, Olivier Curé, Philippe Calvez e

PolyFit: Polynomial-based Indexing Approach for Fast Approximate Range Aggregate Queries
Zhe Li, Tsz Nam Chan, Man Lung Yiu, Christian Jensen it

Shift-Table: A Low-latency Learned Index for Range Queries using Model Correction
Ali Hadian, Thomas Heinis o v e e e e e e e e

An Efficient and Secure Location-based Alert Protocol using Searchable Encryption and Huffman Codes
Sina Shaham, Gabriel Ghinita, Cyrus Shahabi

Concealer: SGX-based Secure, Volume Hiding, and Verifiable Processing of Spatial Time-Series Datasets
Peeyush Gupta, Sharad Mehrotra, Shantanu Sharma, Nalini Venkatasubramanian, Guoxi Wang

Evaluation of Hardening Techniques for Privacy-Preserving Record Linkage
Martin Franke, Ziad Sehili, Florens Rohde, Erhard Rahm i

Proof-of-Execution: Reaching Consensus through Fault-Tolerant Speculation
Suyash Gupta, Jelle Hellings, Sajjad Rahnama, Mohammad Sadoghi

Scalable Linear Algebra Programming for Big Data Analysis
Leonidas FEgaraso
Short Papers

Automated Machine Learning for Entity Matching Tasks
Matteo Paganelli, Francesco Del Buono, Marco Pevarello, Francesco Guerra, Maurizio Vincini

COCOA: COrrelation COefficient-Aware Data Augmentation
Mahdi Esmailoghli, Jorge Arnulfo Quiane Ruiz, Ziawasch Abedjan oo,

Efficient Exploratory Clustering Analyses with Qualitative Approximations
Manuel Fritz, Dennis Tschechlov, Holger Schwarz e

AutoML4Clust: Efficient AutoML for Clustering Analyses
Dennis Tschechlov, Manuel Fritz, Holger Schwarz e

Feature-driven Time Series Clustering
Donato Tiano, Angela Bonifati, Raymond Ng

Indexed Log File: Towards Main Memory Database Instant Recovery
Arlino Magalhaes, Angelo Brayner, José Maria Monteiro, Gustavo Moraes.c.. oo,

HorsePower: Accelerating Database Queries for Advanced Data Analytics
Hanfeng Chen, Joseph D’silva, Laurie Hendren, Bettina Kemme

xiii

169

181

193

205

217

229

241

253

265

277

289

301

313

325

331

337

343

349

355

361

Robust and Memory-Efficient Database Fragment Allocation for Large and Uncertain Database Workloads
Rainer Schlosser, Stefan Halfpap 367

TD-AC: Efficient Data Partitioning based Truth Discovery
Mouhamadou Lamine BA, Osias Noél Nicodéme Finagnon ToSSOU i, 373

Towards Automated Concept-based Decision TreeExplanations for CNNs
Radwa El Shawi, Youssef Sherif, Sherif Sakr 379

Efficient Maintenance of Distance Labelling for Incremental Updates in Large Dynamic Graphs
Muhammad Farhan, Qing Wang e e 385

KISS - A fast kNN-based Importance Score for Subspaces
Anna Beer, Ekaterina Allerborn, Valentin Hartmann, Thomas Seidl. 391

SceneRec: Scene-Based Graph Neural Networks for Recommender Systems
Gang Wang, Ziyi Guo, Xiang Li, Dawei Yin, Shuai Ma i 397

Efficient Contact Similarity Query over Uncertain Trajectories
Xichen Zhang, Suprio Ray, Farzaneh Shoeleh, Rongxing Lu i 403

AdCom: Adaptive Combiner for Streaming Aggregations
Felipe Gutierrez, Kaustubh Beedkar, Abel Souza, Volker Markl i, 409

Querying Top-k Dominant Traffic Flows on Large Urban Road Networks
Stella Maropaki, Paolo Sottovia, Stefano Bortoli 415

On Supporting Scalable Active Learning-based Interactive Data Exploration with Uncertainty Estimation Index
Xiaoyu Ge, Panos Chrysanthis 421

Efficient Discovery of Approximate Order Dependencies
Reza Karegar, Parke Godfrey, Lukasz Golab, Mehdi Kargar, Divesh Srivastava, Jaroslaw Szlichta 427

Towards Scalable Data Discovery
Javier Flores, Sergi Nadal, Oscar ROMErot 433

Adaptive Multi-Model Reinforcement Learning for Online Database Tuning
Yaniv Gur, Dongsheng Yang, Frederik Stalschus, Berthold Reinwald 439

Optimising Fairness Through Parametrised Data Sampling
Vladimiro Gonzalez-Zelaya, Julian Salas, Dennis Prangle, Paolo Missier 445

Using Landmarks for Explaining Entity Matching Models
Andrea Baraldi, Francesco Del Buono, Matteo Paganelli, Francesco Guerra 451

Human-Interpretable Rules for Anomaly Detection in Time-Series
Ines Ben Kraiem, Faiza Ghozzi, André Péninou, Geoffrey Roman-Jimenez, Olivier Teste 457

DBMS Performance Troubleshooting in Cloud Computing Using Transaction Clustering
Arunprasad Marathe 463

Revisiting Multidimensional Adaptive Indexing [Experiment & Analysis]
Anders Hammershgj Jensen, Frederik Lauridsen, Fatemeh Zardbani, Stratos Idreos, Panagiotis Karras 469

Twin Subsequence Search in Time Series
Georgios Chatzigeorgakidis, Dimitrios Skoutas, Kostas Patroumpas, Themis Palpanas, Spiros Athanasiou, Spiros
Skiadopoulos. 475

Progressive Mergesort: Merging Batches of Appends into Progressive Indexes
Pedro Holanda, Stefan Manegold 481

Multiple-Source Context-Free Path Querying in Terms of Linear Algebra
Arseniy Terekhov, Vlada Pogozhelskaya, Vadim Abzalov, Timur Zinnatulin, Semyon Grigorev 487

Xiv

Answer Graph: Factorization Matters in Large Graphs
Zahid Abul-Basher, Nikolay Yakovets, Parke Godfrey, Stanley Clark, Mark Chignell 493

Schema Inference for Property Graphs
Hana Lbath, Angela Bonifati, Russ HArMert 499

Optimizing SPARQL Queries using Shape Statistics
Kashif Rabbani, Matteo Lissandrini, Katja HOSe0 505

Preserving Diversity in Anonymized Data
Mostafa Milani, Yu Huang, Fei CRiang e e e 511

Automatic Tuning of Read-Time Tolerances for Optimized On-Demand Data-Streaming from Sensor Nodes
Fulius Hiilsmann, Chiao-Yun Li, Jonas Traub, Volker Markl i 517

SOJA: A Memory-efficent Small-large Outer Join for MPI
Liang Liang, Guang Yang, Thomas Heinis, David Taniar 523

Industrial Papers

JENGA - A Framework to Study the Impact of Data Errors on the Predictions of Machine Learning Models
Sebastian Schelter, Tammo Rukat, Felix BieSSTANN o oo vt e e e e 529

Decongestant: A Breath of Fresh Air for MongoDB Through Freshness-aware Reads
Chenhao Huang, Michael Cahill, Alan Fekete, Uwe Roehm 535

DLC: A New Compaction Scheme for LSM-tree with High Stability and Low Latency
Peiquan Jin, Jianchuang Li, HAi LONg 547

Financial Data Exchange with Statistical Confidentiality: A Reasoning-based Approach
Luigi Bellomarini, Livia Blasi, Rosario Laurendi, Emanuel Sallinger 558

Generating Realistic Test Datasets for Duplicate Detection at Scale Using Historical Voter Data
Fabian Panse, André Diijon, Wolfram Wingerath, Benjamin Wollmer 570

Path Indexing in the Cypher Query Pipeline
Jochem Kuijpers, George Fletcher, Tobias Lindaaker, Nikolay Yakovets 582

A Deep Learning Architecture for Audience Interest Prediction of News Topic on Social Media
Ciprian-Octavian Truicd, Elena-Simona APOSTOL, Teodor Stefu, Panos Karras 588

AutoDBaaS: Autonomous Database as a Service for managing relational database services
Mayank Tiwary, Pritish Mishra, Shashank Mohan Jain, Kshira Sahoo 600

Scalable Spatio-temporal Indexing and Querying over a Document-oriented NoSQL Store
Nikolaos Koutroumanis, Christos Doulkeridis e 611

Production Experiences from Computation Reuse at Microsoft

Alekh Jindal, Shi Qiao, Hiren Patel, Abhishek Roy, Jyoti Leeka, Brandon Haynes 623
WILSON: A Divide and Conquer Approach for Fast and Effective News Timeline Summarization

Yiming Liao, Shuguang Wang, Dongwon Lee e 635
Demos

Conversational OLAP in Action
Matteo Francia, Enrico Gallinucci, Matteo Golfarelli i 646

Smart City Data Analysis via Visualization of Correlated Attribute Patterns
Yuya Sasaki, Keizo Hori, Daiki Nishihara, Ohashi Sora, Yusuke Wakuta, Kei Harada, Makoto Onizuka, Yuki
Arase, Shinji Shimojo, Kenji Doi, Hongdi He, Zhong-ren Pengy 650

XV

SciNeM: A Scalable Data Science Tool for Heterogeneous Network Mining
Serafeim Chatzopoulos, Thanasis Vergoulis, Panagiotis Deligiannis, Dimitrios Skoutas, Theodore Dalamagas,
Christos Tryfonopoulos

IMCEF: The IoT Meta-Control Firewall for Smart Buildings
Soteris Constantinou, Antonis Vasileiou, Andreas Konstantinidis, Panos Chrysanthis, Demetrios Zeinalipour-Yazti

BBoxDB Streams: Distributed Processing of Real-World Streams of Position Data
Jan Kristof Nidzwetzki, Ralf Hartmut GUEING oot e e e e e e e e e e e e e e e e e e e

Correlation graph analytics for stock time series data
Tong Liu, Paolo Coletti, Anton Dignds, Johann Gamper, Maurizio Murgia

Conquering a Panda’s weaker self - Fighting laziness with laziness
Stefan Hagedorn, Steffen Kldbe, Kai-Uwe Sattler. et

DocDesign 2.0: Automated Database Design for Document Stores with Multi-criteria Optimization
Moditha Hewasinghage, Sergi Nadal, Alberto Abello i

Visualizing and Exploring Big Datasets based on Semantic Community Detection
Maria Krommyda, Konstantinos Tsitseklis, Verena Kantere, Vasileios Karyotis, Symeon Papavassiliou

Exploration and Analysis of Temporal Property Graphs
Christopher Rost, Kevin Gomez, Philip Fritzsche, Andreas Thor, Erhard Rahm

Coronis: Towards Integrated and Open COVID-19 Data
Giorgos Santipantakis, George Vouros, Christos Doulkeridis

Effective and Scalable Data Discovery with NextiaJ]D
Javier Flores, Sergi Nadal, Oscar ROMEro e

A Tool for JSON Schema Witness Generation
Lyes Attouche, Mohamed-Amine Baazizi, Dario Colazzo, Francesco Falleni, Giorgio Ghelli, Cristiano Landi, Carlo
Sartiani, Stefanie SCRerziNGer

covRew: a Python Toolkit for Pre-Processing Pipeline Rewriting Ensuring Coverage Constraint Satisfaction
Chiara Accinelli, Barbara Catania, Giovanna Guerrini, Simone Minisi i

EasyBDI: Near Real-Time Data Analytics over Heterogeneous Data Sources
Bruno Silva, Jose Moreira, Rogério Luis COStaot e
Tutorials

Tutorial on the Internals of Permissioned Blockchains and on How to Build Applications with Hyperledger Fabric
ZSOIEISIVAN . . . oot e

Deep Learning Approaches for Text-to-SQL Systems
George Katsogiannis-Meimarakis, Georgia Koutrika e

Big Sequence Management: Scaling up and Out
Karima Echihabi, Kostas Zoumpatianos, Themis Palpanas

xvi

654

658

662

666

670

674

678

682

686

690

694

698

702

706

710

714

c proceedings

Exchanging Data under Policy Views

Angela Bonifati
Lyon 1 University & Liris CNRS
Lyon, France
angela.bonifati@univ-lyon1.fr

ABSTRACT

Exchanging data between data sources is a fundamental problem
in many data science and data integration tasks. In this paper, we
focus on the data exchange problem in the presence of privacy
constraints on the source data, which has been disregarded in the
literature to date. By leveraging a logical privacy-preservation
paradigm, the privacy restrictions are expressed as a set of policy
views representing the information that is safe to expose over
all instances of the source in order to exchange them with the
target. We introduce a protocol that provides formal privacy
guarantees and is data-independent, i.e., under certain criteria,
it guarantees that the mappings leak no sensitive information
independently of the instances lying in the source. Moreover, we
design an algorithm for repairing an input mapping w.r.t. a set of
policy views, in cases where the input mapping leaks sensitive
information. We show that the repairing can build upon hard-
coded and learning-based user preference functions and we show
the trade-offs. Our empirical evaluation shows that repairing
mappings is quite efficient, leading to repairing sets of 300 s-t
tgds in an average time of 5s on a commodity machine. It also
shows that the repairing based on learning is robust and has
comparable runtimes with the hard-coded one.

KEYWORDS

privacy-preserving data integration, data exchange, mapping
repairs

1 INTRODUCTION

Data exchange is a key process in data science and data integra-
tion pipelines, leading to translating data compliant with a source
schema S and lying in a source database to a target database with a
non-overlapping target schema T [1, 4, 17]. Data exchange is also
part of metadata management operations [6], since the schema
mappings between source and target also known as source-to-
target (s-t) dependencies X¢; (s-t tgds) are declarative expressions
manipulating schema elements, i.e. metadata rather than data.
Despite a wealth of research on the topic, the privacy-aware
variant of the data exchange problem has received little attention
to date. However, recent data protection regulations such as EU
GDPR or CCPA in the US bring the attention to the problem of
protecting personal data when transferring data across countries
and institutions, thus motivating our work. In a privacy-aware
data exchange scenario (as exemplified in Figure 1), the source
schema comes with a set of constraints called policy views V
representing the data that is safe to expose to the target over all
instances of the source. The policy views can be considered as
user views on the data of the source and can encode possible
formulations of the different purposes the data will undergo dur-
ing the exchange process as in many data protection regulations.

© 2021 Copyright held by the owner/author(s). Published in Proceedings of the
24th International Conference on Extending Database Technology (EDBT), March
23-26, 2021, ISBN 978-3-89318-084-4 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Series ISSN: 2367-2005

Ugo Comignani
Grenoble INP Ensimag & LIG CNRS
Grenoble, France
ugo.comignani@grenoble-inp.fr

Efthymia Tsamoura
Samsung Al Research
Cambridge, UK
efi.tsamoura@samsung.com

(possibly)
unsafe instance
over schema T

source instance
over schema S

Policy views V M (repair of M)

safe instance
over schema T

View instance
over schema V

Figure 1: A privacy-aware data exchange setting with map-
pings and policy views.

This process entails the repairing of the original mapping M into
amapping M’ in order to make the exported target instance safe.
However, in order to realize such a data exchange scenario, one
needs to address the following issues: (1) given a set of privacy
restrictions on the source schema, what would it mean for a data
exchange setting to be safe under the proposed privacy restric-
tions?; (2) assuming that the privacy-preservation protocol is
fixed, how could we assess the safety of a data exchange setting
w.r.t. the privacy restrictions and provide strong guarantees of no
privacy leakage?; finally, in case of privacy violations, (3) how
could we repair the s-t tgds (and transform the mapping M into
a repaired mapping M’)?

To address the first issue, we build upon prior work on the
logical foundations of privacy-preserving data integration [5, 21],
and we tailor them to a data exchange setting. Hence, we de-
fine a set of s-t tgds to be safe w.r.t. the policy views if every
positive information that is kept secret by the policy views is
also kept secret by the s-t tgds. As we will see in subsequent
sections and contrarily to previous work, our proposed privacy-
preservation protocol is data-independent allowing us to provide
strong privacy-preservation guarantees over all instances of the
sources. As such, our work leads to the first practical frame-
work establishing privacy-conscious data exchange. The above
addresses the second aforementioned issue in that it enables a
schema-level enforcement of the privacy-preserving protocol
with strong guarantees. Regarding the third issue, we propose a
repairing algorithm for the proposed privacy-preservation proto-
col in case of detected unsafety. Since multiple repairs are pos-
sible, such an algorithm might leverage techniques for learning
the user preferences during the repairing process, which is also
a desirable feature in privacy enforcement over sensitive data.
In order to further illustrate the relevance of our problem, we
illustrate a running example inspired by a real-life data exchange
process between two different hospitals in the UK.

1.1 Ilustrative example

Consider the source schema S of NHS consisting of the following
relations: P, Hy, Hs, O and S as illustrated in Figure 2 (a). Re-
lation P stores for each person registered with the hospital, his
insurance number, his name, his ethnicity group and his county.
Relations Hy and Hg store for each patient who has been ad-
mitted to some hospital in the north or the south of UK, his

!https://www.nhs.uk/

10.5441/002/edbt.2021.02

https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2021.02

Source schema S = {P(i,n, e, c); HN (i, d); Hs (i, d);
O(i,t,p);S(i,n,e,c)}
Target schema T = {EthDis(e, d); CountyDis(c, d); SO(e)}
View schemas V = {V1(e,d); Va(c,d); V3(t, p); Va(e)}
(a) Schemas S, T and V

P(i,n,e,c) A HN(i,d) — V(e d) (1)
P(i,n,e,c) A Hs(i,d) — Va(c,d) (2)
O(i,t,p) = Vs(t,p) ®)
S(i,n,e,c) = Vq(e) (4)

(b) Policy views V
P(i,n,e,c) A Hy(i,d) — EthDis(e, d) (5)
P(i,n,e,c) A HN(i,d) — CountyDis(c,d) (6)
S(i,n,e,c) A O(i, t,p) — SO(e) (7)

(c) Mapping from S to T.
Figure 2: Schema and tgds in our illustrative example

insurance number and the reason for being admitted to the hospi-
tal. Relation O stores information related to patients in oncology
departments and, in particular, their insurance numbers, their
treatment and their progress. Finally, relation S stores for each
student in UK, his insurance number, his name, his ethnicity
group and his county.

Consider also the set V' comprising the policy views (1)—-(4).
The policy views define the information that is safe to make
available to the public. View (1) projects the ethnicity groups
and the hospital admittance reasons for patients in the north of
UK; view (2) projects the counties and the hospital admittance
reasons for patients in the south of UK; view (3) projects the
treatments and the progress of patients of oncology departments;
view (4) projects the ethnicity groups of the school students. The
policy views are compliant with the NSS privacy preservation
protocol that is adopted at the hospital. Precisely, the NSS pri-
vacy preservation protocol considers as unsafe any non-evident
piece of information that can potentially de-anonymize an indi-
vidual. For example, views (1) and (2) do not leak any sensitive
information concerning the precise address of patients. Indeed,
they include patients from a very large geographical area thus
implying that the probability of de-anonymizing a patient is sig-
nificantly small. Similarly, views (3) and (4) are considered to be
safe: the probability of de-anonymizing patients of the oncology
department from view (3) is zero, since there is no way to link a
patient to his treatment or his progress, while view (4) projects
information which is already evident to public.

Finally, consider the following set of source-to-target depen-
dencies Xg;. Dependencies (5) and (6) project similar information
with the views (1) and (2), respectively. However, contrarily to
the views, they solely focus on patients in the north of UK. Finally,
dependency (7) projects the ethnicity groups of students who
have been in some oncology department, whereas view V4 aims
at concealing the information about the department in which a
student has been admitted.

The above example shows that the policy views defined within
one hospital might be in stark contrast with the mappings used to
export patient’s information to another hospital. This motivates
the aforementioned questions (1), (2) and (3) about establishing
formal guarantees for privacy preservation as well as enabling
repairing of the mappings in order to make them safe. To the

best of our knowledge, our work is the first to provide practical
algorithms for a logical privacy-preservation paradigm effective
in a real system [10], described as an open research challenge
in [5, 21]. Our technique is inherently data-independent thus
bringing the advantage that both the safety test and the repairing
operations are executed on the metadata provided through the
mappings and not on the underlying data instances.

The paper is organized as follows. Section 2 discusses the re-
lated work. Section 3 presents the basic concepts and notions. Sec-
tion 4 lays our privacy preservation protocol. Section 5 presents
our repairing algorithms and their properties. mechanism. Sec-
tion 6 outlines the experimental results, while Section 7 concludes
our work. The code base along with the experimental data are
publicly available at [12].

2 RELATED WORK

Privacy in data integration. Safety of secret queries formu-
lated against a global schema and adhering to the certain an-
swers semantics has been tackled in previous theoretical work
[21]. They define the optimal attack that characterizes a set of
queries that an attacker can issue to which no further queries
can be added to infer more information. They then define the
privacy guarantees against the optimal attack by considering the
static and the dynamic case, the latter corresponding to modifica-
tions of the schemas or the GLAV mappings. The same definition
of secret queries and privacy setting is adopted in [5], which
instead focuses on boolean conjunctive queries as policy views
and on the notion of safety with respect to a given mapping.
An ontology-based integration scenario is assumed in which the
target instance is produced via a set of mappings starting from
an underlying data source. Whereas they study the complexity
of the view compliance problem in both data-dependent and
data-independent setting, we focus on the latter and extend it
to non-boolean conjunctive queries as policy views. We further
consider multiple policy views altogether in the design of a prac-
tical algorithm for checking the safety of schema mappings and
for repairing the mappings in case of violations.

Privacy in data publishing. Data publishing accounts for
the settings in which a view exports or publishes the information
of an underlying data source. Privacy and information disclosure
in data publishing linger over the problem of avoiding the dis-
closure of the content of the view under a confidential query. A
probabilistic formal analysis of the query-view security model
has been presented in [20], where they offer a complete treatment
of the multi-party collusion and the use of external adversarial
knowledge. Access control policies using cryptography are used
in [20] to enforce the authorization to an XML document. Our
work differs from theirs on both the considered setting, as well
as the adopted techniques and the adopted privacy protocol.
Striking the balance between utility and privacy in a logic-based
framework has been the object of investigation in recent studies
focusing on data publishing for Linked Data [13, 14, 19]. The
problem there is remarkably different from ours since they focus
on publishing a single RDF dataset by applying privacy and util-
ity queries in SPARQL, checking for their compatibility, and for
update operations realizing the privacy and utility constraints.

Controlled Query Evaluation. Controlled Query Evalua-
tion is a confidentiality enforcement framework introduced in
[23] and refined in [9],[7] and [8], in which a policy declaratively
specifies sensitive information and confidentiality is enforced by
a censor. Provided a query as input, a censor verifies whether the

query leads to a violation of the policy and in case of a violation
it returns a distorted answer. It has been recently adopted in
ontologies expressed with Datalog-like rules and in lightweight
Description Logics [18]. They assume that the policies are only
known to database administrators and not to ordinary users and
that the data has protected access through a query interface. Our
assumptions and setting are quite different, since our multiple
policy views are accessible to every user and our goal is to render
the s-t mappings safe with respect to a set of policies via repairing
and rewriting.

Data privacy. Previous work has addressed access control to
protect database instances at different levels of granularity [22], in
order to combine encrypted query processing and authorization
rules. Our work being logic-based and declarative does not deal
with these authorization methods, as well as does not consider
any concrete privacy or anonymization algorithms operating on
data instances, such as differential privacy [15] and k-anonymity
[24]. Further exploring the connection between concrete privacy
enforcement and logic-based privacy formalisms is the subject
of future investigation.

Data exchange. The vast literature on data exchange [17] has
inspired our work. In the considered scenarios, the source and
target schema are considered along with s-t mappings and target
dependencies, the latter being both egds and tgds. Similarly, past
work on degugging schema mappings [11] has focused on all pos-
sible routes generated by the exchange process when incomplete
or undefined values in one or more variables are exported from
the source instance. By opposite, we focus in this paper on the
case in which s-t mappings are coupled with source dependencies
under the form of policy views, the latter being typical in privacy
scenarios and unexplored in the classical data exchange setting.

3 PRELIMINARIES

Relational symbols and critical instances. Let Const, Nulls,
and Vars be mutually disjoint, infinite sets of constant values,
labeled nulls, and variables, respectively. A schema is a set of rela-
tion names (or just relations), each associated with a nonnegative
integer called arity. A relational atom has the form R(f) where
R is an n-ary relation and 7 is an n-tuple of terms, where a term
is either a constant, a labelled null, or a variable. An equality
atom has the form t; = t» where t; and t» are terms. An atom is
called ground or fact, when it does not contain any variables. A
position in an n-ary atom A is an integer 1 < i < n. We denote
by Al;, the i-th term of A. An instance [is a set of relational facts.
An atom (resp. an instance) is null-free if it does not contain la-
belled nulls. The critical instance of a schema S, denoted as Crtg,
is the instance containing a fact of the form R(¥), for each n-ary
relation R € S, where * is called the critical constant and ¥ is an
n-ary vector. A substitution o is a mapping from variables into
constants or labelled nulls.

Dependencies and queries A dependency describes the seman-
tic relationship between relations. A Tuple Generating Dependency
(tgd) is a formula of the form V¥ A(X) — 3y p(X, §), where A(X)
and p (X, y) are conjunctions of relational, null-free atoms. An
Equality Generating Dependency (egd) is a formula of the form
VX A(X) — x; = xj, where A(X) is a conjunction of relational,
null-free atoms. We usually omit the quantification for brevity.
We refer to the left-hand side of a tgd or an egd § as the body, de-
noted as body (), and to the right-hand side as the head, denoted
as head(9). An instance I satisfies a dependency §, written I |= &
if each homomorphism from body(8) into I can be extended to a

homomorphism h’ from head(§) into I. An instance [satisfies a
set of dependencies X, written as I |= X, if I |= ¢ holds, for each
d € X. The solutions of an instance I w.r.t. X is the set of all in-
stances J such that J 2 I'and J | X. A solution is called universal
if it can be homomorphically embedded to each solution of I w.r.t.
>

A conjunctive query (CQ) is a formula of the form 35 A; A;,
where A; are relational, null-free atoms. A CQ is boolean if it
does not contain any free variables. A substitution o is an answer
to a CQ Q on an instance [if the domain of o is the free variables
of Q, and if o can be extended to a homomorphism from A; A;
into I. We denote by Q(I), the answers to Q on I.

Let S be a source schema and let T be a target schema. A
mapping M from S to T is defined as a triple (S, T, X), where X =
Sst3, 1.e. the set of the s-t dependencies over S and T. We usually
refer to the dependencies in Xg; as mappings. A variable x of a
mapping p € Xg; is called exported if it occurs both in the body
and the head of y. We denote by exported(u), the set of exported
variables of p. The inverse of set of s-t dependencies X, denoted
as Z;tl is the set consisting, for each mapping p in Zs; of the
form A(¥) — p(%, 1), a mapping p~! of the form p(¥,7) — A(X).
We focus on GAV mappings in this paper, thus assuming that
i is empty. Moreover, we consider the setting in which ¥ only
consists of X; thus not including ¥;. This implies that target egds
and target tgds are excluded, since, despite their usage in data
exchange, their role is less understood in the privacy-preserving
variant considered in this paper.

4 PRIVACY PRESERVATION

In this section, we introduce our notion of privacy preservation.
Let V be a set of policy views over S, representing the information
that is safe to expose for instances I of S. Our goal is to verify
whether a user-defined mapping M = (S, T, %) is safe w.r.t. the
views in a set V. Below, we will introduce a notion for assessing
the safety of a GAV mapping M with respect to a GAV mapping
M7, when both make use of the same source schema S. Moreover,
let ¥; = X, be the dependencies associated with M;.

4.1 A formal privacy-preservation protocol

Our notion of privacy preservation builds on the logical foun-
dations introduced in [5] for ontology-based data integration
for boolean queries. However, we extend the notion of privacy
preservation from [5] to a relational data exchange setting in the
presence of non-boolean conjunctive queries. First, we define the
notion of disclosure of a CQ by a mapping as follows:

Definition 4.1. A mapping M = (S, T, X) does not disclose a CQ
p over S on any instance of S, if for each instance I of S there
exists an instance I’ such that I = I’ and p(I’) = 0.

The problem of checking whether a mapping M over S does
not disclose a boolean and constants-free CQ p on any instance
of S is decidable for GAV mappings consisting of CQ views [5].
In particular, M does not disclose p on any instance of S if and
only if there does not exist a homomorphism from p into the
unique instance computed by the visible chase visChases(2) of
under the critical instance Crtg of S. The visible chase computes
a universal source instance defined as follows:

Definition 4.2. 7 Given a mapping M = (S, T, %), an instance I
is a universal source instance over S if for any instance J over the
source schema S, there exists an homomorphism h from J into I

such that for any constant ¢ from J that is made visible through

M, h(c) = =.

The only constant occurring in the instance computed by
visChaseg(Z) is the critical constant * and it represents any other
constant that can occur in the source instance.

We introduce our own variant of the visible chase, which
organizes the facts derived during chasing into subinstances
called bags. Algorithm 1 describes the steps of the proposed
variant. Please note that Algorithm 1 derives the same set of
facts with the algorithm from [5]. However, instead of keeping
these facts in a single set, we keep them in separate bags. Before
presenting Algorithm 1, we will introduce a couple of useful new
notions. The first notion serves the need of defining derived egds
that allow to unify as many labeled nulls as possible with the
critical constant in the target instance. The second notion allows
to define relevant bags for which this unification must hold. Both
notions are exploited by the visible chase (Algorithm 1) whose
last step triggers the obtained egds.

Definition 4.3. Consider an instance I. Consider also a s-t
tgd 8 and a homomorphism h from body(d) into I, such that
h(x) € Nulls, for some x € exported(§). Then, we say that the
egd

body(8) — /\ X & % 8)
Vx €exported(5):h(x) eNulls

is derived from ¢ in I. For an egd € that is derived from a s-t tgd
d1in I, tgd(e) denotes J. For a set of s-t tgds X and an instance I,
Y~ is the set comprising for each § € X, the egd that is derived
from §in I.

Definition 4.4. Consider an instance I, whose facts are orga-
nized into the bags f, ..., fm. Consider also a derived egd § of
the form (8) and an active trigger h for § in I. A bag f; is relevant
for § and h in I, where 1 < i < m, if some fact F € h(body(J))
occurs in f; and if some h(x) is a labeled null occurring in f;,
where x € exported(d).

Let Bj,,...,Bjr € P1,..., Pm be the set of bags that are rele-
vant for § and hin I. Let v = {h(xj) — h(x;)} if h(x;) = *, and
v ={h(x;) = h(x;)} if h(x;) ¢ Const, where x;, x; are variables
from exported(8). Then, the derived bag f for and h in I consists
of the facts in U;‘:I v(Bj;). The bags Bj,, ..., fj, are called the pre-
decessors of . We use fj;, < f to denote that 8}, is a predecessor
of f,for1 <1<k

We are now ready to proceed with the description of Algo-
rithm 1. Given a s-t mapping, Algorithm 1 computes a universal
source instance whose facts are organized into bags. Algorithm 1
first computes the instance Iy by chasing Crtg using the s-t tgds,
line 1. It then chases Iy with the inverse s-t tgds >~ ! line 2. and
proceeds by chasing I; with the set of all derived egds >, for
each § € ¥ in Iy, line 4. Algorithm 1 computes a fresh bag at each
chase step. In particular, for each active trigger h for 6 in I, Algo-
rithm 1 adds a fresh bag with facts h’(head(§)), if § € ZU 1,
line 9; otherwise, if § € X, then it adds the derived bag for § and
hin I, see Definition 4.4, line 20.

Note that, X~ aims at “disambiguating” as many labeled nulls
occurring in I as possible, by unifying them with the critical
constant =. Since * represents the information that is “visible" to a
third-party, chasing with X~ computes the maximal information
from the source instance a third-party has access to. Note that
Algorithm 1 always terminates [5]. Let B = visChases(X). We
will denote by Is(2), the instance Ugep S-

Algorithm 1 visChaseg(Z)

: Bp := bagChaseTGDs(Z, Crts)

. By = bagChaseTGDs(27}, Upes, B\ Crts)

: Let £~ be the set of all derived egds ~, foreachd € £ in I
: return bagChaseEGDs(2x, By U B1)

N T

: procedure bagChaseTGDs(Z,)
B:=0
for each § € ¥ do
for each active trigger h : body(8) — I do
create a fresh bag f§ with facts h’(head(§))
10: add fto B

11: return B

Y ® 3 G

12: procedure bagChaseEGDs(Z~, B)
13: i:=0;1 :=Ugep P

14: do

15: i:=i+1

16: for each (6 € X~ of the form (8) do

17: for each active trigger h : body(§) — I;—1 do
18: if h(x) # *, for some x € exported(d) then
19: Let f be the derived bag for § and hin I;_;
20: add fto B

21: Li=LUupg

22: while I;_1 # I;

23: return B

Example 4.5. We demonstrate the visible chase algorithm over
the policy views and the s-t dependencies from Example 1.1. We
show how the algorithm runs first on the policy views V and
then show the computation on Xg;.

We first present the computation of Is (V) = UgevisChases (V) B-

The critical instance Crtg of S consists of the facts shown in
the following Eq. (9)

P %%, %) HN (% %)

where = is the critical constant.
The instance I} computed by chasing the output of line 1 using
V=1 will consist of the facts

HN(nj, %)
Hs(n{,)

Hs(#, %) O(x%,%,%) S(x % % %) (9)

P(nj, nn, *, n¢)

o(n{’, %) (L)

7’ 7

’ "
P(ni,nn,ne,*) S<ni s N s %, Ne

where the constants prefixed by n are labeled nulls created while
chasing Crtg with the inverse mappings. Since there exists no
homomorphism from the body of any s-t tgd into I; mapping
an exported variable into a labeled null, X~ will be empty, see
Definition 4.3. Thus, Is(V) = I;.

We next present the computation of Is (Zs:) = UpgevisChases (/) B-
The instance I] computed by chasing the output of line 1 by 52
will consist of the facts

HN(ni: *)
HN(ni', %) O(ni", né’,n")'

P(nj, np, %, n¢) S(n{’,ny, % nY))

P(ni', N/, Ne, *)
Since there exists a homomorphism from the body of e into I]
mapping the exported variable e into the labeled null ne, and
since there exists another homomorphism from the body of y,
into I] mapping the exported variable c into the labeled null n,
>~ will comprise the egds €; and €2 shown below

P(i,n,e,c) AHn(i,d) = e ~ = (e1)
P(i,n,e,c) AHN(i,d) = c~ = (e2)

The last step of the visible chase involves chasing I} using Y.
W.lo.g, assume that the chase considers first €; and then e;.
During the first step of the chase, there exists a homomorphism
from body(e;) into I]. Hence, ne = *. During the second step
of the chase, there exists a homomorphism from body(ez) into
Il’ and, hence, n¢ = *. The instance computed at the end of the
second round of the chase will consist of the facts

P(nj, nn, *, *) Hn (nj, %) Hn(n{, %) (10)
S(n!’,n{, % ny) O(n{’,n{",ny

Since there exists no active trigger for €; or €, in the above
instance (Eq (10)), the chase will terminate.

The facts in Is(Zs;) will be organized into the following bags
B1—P5 (one bag per line)

(u5'h)
SO(e) R IN S(n{’,n}l, % ng),0(n!’, n{’, n;)')

1

S
CountyDis(c, d) M P(n/,n}, ne, *), Hn(n!, %)

Lh3)

EthDis(e, d) <,
(e1,ha)
_

P(nj, np, % n¢), Hy (n;, *)

P(n{, np, ne, #), Hn(n!, %) P(n{, np, % %), Hn(n], %)

h
P(ni, % 1), Hy (i)~ P, i, %), g (i,)

hi={i—n_,nHnj,er neco*d -}
hy ={ct xd > =}
hs ={er> *d > *}
hy={i—>nl,nHnj, e ne,coxd -}
hs ={i— ni,n>npe %c ne,d - =}

The contents of the bags correspond to the right-hand side of
the arrows. However, for presentation purposes, we also show
the related dependency § and the homomorphism h that lead to
the derivation of each bag (shown at the top of each arrow), as
well as, the facts in h(body(9)) (left-hand side of each arrow).
The obtained bags will be part of the universal source instance
Is(Zst). Such an instance will be used in Section 5 in order to
apply the notion of safety in the repairing of the underlying
mappings ;.

4.2 Preserving the privacy of policy views

We consider a mapping M = (S,T,X) to be safe w.r.t. a view
mapping My = (S, V, V) (with V being the set of policy views
and V being the schema of the views as shown in Figure 1), if M
does not disclose the information that is also not disclosed by
My . Definition 4.6 and Theorem 4.7 presented below formalize
our notion of privacy preservation and show that there exists a
simple process for verifying whether M is safe w.r.t. My.

Definition 4.6. A mapping Mz = (S, To, 22) preserves the pri-
vacy of a mapping My = (S,T1,21) on all instances of S, if for
each constants-free CQ p over S, if p is not disclosed by M; on
any instance of S, then p is not disclosed by M3 on any instance
of S.

THEOREM 4.7. A mapping My = (S, T2, £2) preserves the pri-
vacy of a mapping M; = (S, T1,21) on all instances of S, if and
only if there exists a homomorphism h from Is(Z3) into Is(Z1),
such that h(x) = *.

Proor. (Sketch) First we show that the following holds:

Proor. By adapting the proof technique of Theorem 16 from
[5], we can show that J = I5(24;) is a universal source instance
I5(2) satisfying the following property: for each pair of source
instances I and I’, such that I’ is indistinguishable from I w.r.t. the
mapping M, there exists a homomorphism h from I’ into Is(X)
mapping each schema constant into the critical constant *. Due
to the existence of a homomorphism h from I’ into Is(), for each
pair of indistinguishable source instances I and I’, we can see
that if ¥ ¢ p(J) for a constants-free CQ p, then p(I’) = 0. Due to
the above and due to Definition 4.1, it follows that M = (5, T, X)
does not disclose a constants-free CQ p over S on any instance
of S.]

Lemma 4.8 states that, in order to check if a constants-free CQ
is safe according to Definition 4.1, we need to check if the critical
tuple is among the answers to p over the instance computed by
visChaseg(Z). Next, we show the following lemma.

LEMMA 4.9. Given two instances I; and Iy, the following are
equivalent
(1) for each CQ p, ifii € p(Iy), then u € p(Iy), where i is a
vector of constants
(2) there exists a homomorphism from I to I, preserving the
constants of I

PRrROOF OF LEMMA 4.9. (2)=(1). Suppose that there exists a ho-
momorphism h from I; to I preserving the constants of Iy. Sup-
pose also that & € p(I1), with p being a CQ. This means that there
exists a homomorphism h; from p into I} mapping each free vari-
able x; of p into u;, for each 1 < i < n, where n is the number
of free variables of p. Since the composition of two homomor-
phisms is a homomorphism and since h preserves the constants
of I; due to the base assumptions, this means that ho hy is a
homomorphism from p into I mapping each free variable x; of p
into t;, for each 1 < i < n. This completes this part of the proof.

(1)=(2). Let p1 be a CQ formed by creating a non-ground atom
R(y1, ..., yn) for each ground atom R(us, ..., u,) € I1, by taking
the conjunction of these non-ground atoms and by converting
into an existentially quantified variable every variable created
out of some labelled null. Let X denote the free variables of p;
and let n = |X|. From the above, it follows that there exists a
homomorphism hy from p; into I; mapping each x; € X into
some constant occurring in I1. Let & € p1(I1). From (1), it follows
that# € p;(I) and, hence, there exists a homomorphism h; from
p1 into I mapping each x; € X into u;, for each 1 < i < n. Since
hq ranges over all constants of I; and since hj (x;) = ha(x;) holds
for each 1 < i < n, it follows that there exists a homomorphism
from I to I, preserving the constants of I. This completes the
second part of the proof. O

Lemma 4.9 can be restated as follows:

LEMMA 4.10. Given two instances I and Iy, the following are
equivalent

(1) for each CQ p, if t & p(L2), thent & p(I1)
(2) there exists a homomorphism from I to I

We are now ready to return to the main part of the proof. Given
a CQ p over a source schema S, and a mapping M defined as the
triple (S, T,X), where T is a target schema and X is a set of s-t
dependencies, we know from Proposition 4.8 that if M discloses
p on some instance of S, then there exists a homomorphism of

LEMMA 4.8. A mapping M = (S, T, Z) does not disclose a constants- p into visChases(Z) mapping the free variables of p into the

free CQ p over S on any instance of S, iff % ¢ p(J), where] = Is(Zs;).

critical constant x.

From the above, we know that Mj does not preserve the pri-
vacy of M; if there exists a CQ p over S, such that * ¢ J; and
% € Jo, where J; = Is(21) and J = Is(Z2). We will now prove
that Mj preserves the privacy of M; iff there exists a homomor-
phism from J into J; that preserves the critical constant *. This
will be referred to as conjecture (C).

(=) If My, preserves the privacy of Mj, then for each CQ p, if
% ¢ p(J1), then * ¢ p(J). From the above and from Lemma 4.10,
it follows that there exists a homomorphism ¢ : J, — Ji, such
that @(x) = =.

(<) The proof proceeds by contradiction. Assume that there
exists a homomorphism h from J; into J; preserving *, but My
does not preserve the privacy of M;. We will refer to this as-
sumption as assumption (A;). From assumption (A;) and the
discussion above it follows that there exists a CQ p over S such
that* ¢ p(J;) and ¥ € p(J2). Let hy be the homomorphism from p
into J, mapping its free variables into *. Since the composition of
two homomorphisms is a homomorphism, this means that h o hy
is a homomorphism from p into J; mapping its free variables
into x, i.e., * € p(J1). This contradicts our original assumption
and hence concludes the proof of conjecture (C). Conjecture (C)
witnesses the decidability of the instance-independent privacy
preservation problem: in order to verify whether Mj preserves
the privacy of M; we only need to check if there exists a homo-
morphism ¢ : Is(22) — Is(Z1), such that §(x) = *. O

Theorem 4.7 states that in order to verify whether My is safe
w.r.t. My, we need to compute I5(21) and I5(Z2) and check if
there exists a homomorphism from the second instance into the
first one that maps * into itself. If there exists such a homomor-
phism, we say that Is(2;) is safe w.r.t. Is(Z3), or simply safe, and
we say that it is unsafe otherwise.

Example 4.11. Continuing with Example 1.1, we can see that
the s-t tgds are not safe w.r.t. the policy views according to
Theorem 4.7, since there does not exist a homomorphism from
the instance I5(Zg;) into the instance Is(V). This means that
there exists information which is disclosed by Xs; in some in-
stance that satisfies Xg;, but it is not disclosed by V. Indeed,
from S(ni”, n//, % n.) and O(ni”, n{, n;,’), we can see that we can
potentially leak the identity of a student who has been to an
oncology department. This can happen if there exists only one
student in the school coming from a specific ethnicity group and
this ethnicity group is returned by 5. Please note that the policy
views are safe w.r.t. this leak. Indeed, it is impossible to derive this
information through reasoning over the returned tuples under
the input instance and the views V3 and V4.

Furthermore, by looking at the facts P(nj, np, %, *) and Hy (n;j, *),
we can see that we can potentially leak the identity and the dis-
ease of a patient who has been admitted to some hospital in the
north of UK. This can happen if there exists only one patient
who relates to the county and the ethnicity group returned by
e and p¢. Note that the policy views Vi and Va do not leak this
information, since it is impossible to obtain the county and the
ethnicity group of an NHS patient at the same time.

5 REPAIRING UNSAFE MAPPINGS

In Section 4, we presented our privacy preservation protocol and
a technique for verifying whether a mapping is safe w.r.t. another
one, over all source instances. This section presents an algorithm
for repairing an unsafe mapping M w.r.t. a set of policy views
V. This is a fundamental operation needed to amend mappings

Algorithm 2 repair(2, V, prf, n)
1 3q := frepair(Z, V, prf)
2: 3g :=srepair(Z1,V, prf, n)
3: return X,

whenever the policy views are modified and become unsafe (e.g.
in the presence of data protection regulations).

Algorithm 2 summarizes the steps of the proposed algorithm.
The inputs to it are, apart from ¥ and V, a positive integer n
which will be used during the second step of the repairing pro-
cess and a preference mechanism prf for ranking the possible
repairs. In the simplest scenario, the preference mechanism imple-
ments a fixed function for ranking the different repairs. However,
it can also employ supervised learning techniques in order to
progressively learn the user preferences by looking at his prior
decisions.

Since a mapping M is safe w.r.t. V if the instance Is(X) is
safe according to Theorem 4.7, Algorithm 2 rewrites the tgds in
M, such that the derived visible chase instances are safe. The
rewriting takes place in two steps. The first step rewrites ¥ into
a partially-safe set of s-t dependencies 21, while the second step
rewrites the output of the first one into a new set of s-t depen-
dencies X7, such that I5(32) is safe. As we will explain later on,
partial-safety ensures that the intermediate instance I; produced
by visChases(Z1) at line 2 of Algorithm 1 is safe, but it does
not provide strong privacy guarantees. The benefit of this two-
step approach is that it allows repairing one or a small set of
dependencies at a time.

5.1 Computing partially-safe mappings

Since the problem of safety is reduced to the problem of checking
for a homomorphism from I5(X) into Is(V), a first test towards
checking for such a homomorphism is to look if the mappings
in ¥ would lead to such a homomorphism or not. For instance,
by looking at ys in Example 1.1 it is easy to see that it leaks
sensitive information, since it involves a join between students
and oncology departments, which does not occur in Is(V).

Definition 5.1. A mapping M = (S, T, %) is partially-safe w.r.t.
My = (S,V,V) on all instances of S, if there exists a homomor-
phism from chase(2~1, Crty) \ Crty into Is(V).

From Algorithm 1, it follows that ¥ is partially-safe iff the
intermediate instance I; computed by visChaseg(Z) is safe.

PROPOSITION 5.2. A mapping M = (S,T,X) is partially-safe
w.rt. My = (S,V, V) on all instances of S, if for each u € 3, there
exists a homomorphism from body(y) into Is(V) mapping each
x € exported(y) into the critical constant .

Note that according to Proposition 5.2, in our running example
Y5t would be partially-safe, if ys ¢ g, then since there exist
homomorphisms from the bodies of ys and g into Is(V), map-
ping their exported variables into . It is also easy to show the
following

Remark 1. A mapping M = (S, T,2) issafe wr.t. My = (S,V,V)
on all instances of S, only if it is partially-safe w.r.t. My on all
instances of S.]

Proposition 5.2 presents a quite convenient, yet somewhat
expected, finding: in order to obtain a partially-safe mapping, it
suffices to repair each s-t dependency independently of the others.
Furthermore, the repair of each y € ¥ involves breaking joins

and hiding exported variables, such that the repaired dependency
iy satisfies the criterion in Proposition 5.2.

We make use of the result of Proposition 5.2 in Algorithm 3.
Algorithm 3 obtains, for each i € %, a set of rewritings R » out of
which we will choose the best rewriting according to prf. The set
Ry consists of all rewritings that differ from p w.r.t. the variable
repetitions in the bodies of the rules and the exported variables.
Below, we present the steps of Algorithm 3.

For each s-t tgd p and for each atom B € body(u), Algorithm 3
constructs a fresh atom C and adds C to a set C. The set of atoms C
provides us with the means to identify all repairs of y that involve
breaking joins and hiding exported variables. In particular, each
homomorphism & from C into Is(V) corresponds to one repair
of p. In lines 12-25, Algorithm 3 modifies each atom B € body ()
by taking into account prior body atom modifications. The prior
modifications are accumulated in the relation p and the mapping
. The relation p keeps for each variable x from body(y), the
fresh variables that were used to replace x during prior steps of
the repairing process, while ¥/ is a substitution from the partially
repaired body into Is(V). In particular, at the end of the i-th
iteration of the loop in line 12, i holds the substitution from the
first repaired i atoms from body(y) into Is(V). We adopt this
approach instead of replacing variable x in position p always by
a fresh variable, in order to minimize the number of the joins we
break.

Below, we describe how Algorithm 3 modifies each body atom
of y, w.r.t. a homomorphism &, lines 9-27. Let C = v(B) be the
fresh body atom that was constructed out of B in line 5. For each
atom B € body(y) and for each p € pos(B), if the variable y in
position p of C is not mapped to the critical constant * via £ and
B|p is an exported variable, this means that the variable sitting in
position p of B should not be exported (see first condition in line 16).
Similarly, if the variable sitting in position p of B is mapped to a
different constant than the one that y maps via &, then this means
that the variable sitting in position p of B introduces an unsafe
Jjoin (see second condition in line 16). In the presence of these
violations, we must replace variable x in position p of B, either by
a variable that was used in a prior step of the repairing process,
line 17-18), or by a fresh variable, lines 19-23. Otherwise, if there
is no violation so far, then we add the mapping {x — &(y)} to
¥, if it is not already there, lines 24-25. Finally, the algorithm
chooses the best repair according to the preference function,
lines 28-31.

PRrRoPOSITION 5.3. For any M = (S, T,%), any My = (S,V, V)
and any preference function prf, Algorithm frepair returns a map-
ping M’ = (S, T, %) that is partially-safe w.r.t. My on all instances
of S.

ProoF. (Sketch)From Proposition 5.2, amapping M = (S, T, %)
is partially-safe w.r.t. My = (S, V, V) on all instances of S, if for
each p € 3, there exists a homomorphism from body(u) into
Is (V) mapping each x € exported(p) into the critical constant .
Since for each y € ¥ frepair computes a set of repaired tgds Ry,
it follows that Proposition 5.3 holds, if such a homomorphism
exists, for each repaired tgd in R,. The proof proceeds as follows.
Let y& and /' denote the repaired s-t tgd and the homomorphism
¥ computed at the end of each iteration i of the steps in lines 12—
25 of Algorithm 3. Let also B denote the i-th atom in body ().
Since each C € C is an atom of distinct fresh variables, since &
is a homomorphism from C to Is(V) and since /(B') = p|;, it
follows that in order to prove Proposition 5.2, we have to show
that the following claim holds, for each i > 0:

Algorithm 3 frepair(Z, V, prf)

1: for each iy € ¥ do
2 vi=0,C:=0
3 for each B € body(y), where B = R(¥) do
4: create a vector of fresh variables i
5 create the atom C = R(%)
6 add (B,C) to v
7 addCtoC
8 Ry=0
9 for each homomorphism ¢ : C — Is(V) do
10: p=0,9:=0
1 fr =4
12: for each B € body(y,) do
13: C= V(B)
14: for each p € pos(B) do
15: x=Blp,y=Clp
16: if x € exported(p) and * # &(y) or x €
dom(¥) and ¥/(x) # é(y) then
17: if 3x’ s.t. (x,x") € p and ¥(x') = é(y)
then
18: Blp =«
19: else
20: create a fresh variable x’
21: add (x,x") to p
22: add {x' — &(y)} to Y
23: Blp =x’
24: else if x ¢ dom(y) then
25: add {x — é(y)} to ¥
26: if i # p then
27: add i, to Ry
28: if R, # 0 then f
29: choose the best repair p of i from R, based on prf
30: remove /1 from ¥
31: add g to =

32: return ¥

e ¢. ! is a homomorphism from the first i atoms in the
body of y, into Is(V) mapping each exported variable
occurring in BY, ..., B! into the critical constant *.

For i = 0, ¢ trivially holds. For i + 1 and assuming that ¢ holds
for i let C'*! = y(Bi*1), line 13. The proof of claim ¢ depends
upon the proof of the following claim, for each iteration p > 0 of
the steps in lines 14-25:

o 0. ¢i+1(Bi+1|P) = (y), where y = Ci+1|p.

The claim 0 trivially holds for p = 0, while for p > 0, it directly
follows from the steps in lines 16-25. Since ¢ holds for i, since
the steps in lines 16—-25 do not modify the variable mappings in
! and due to 6, it follows that ¢ holds for i + 1, concluding the
proof of Proposition 5.3. O

Example 5.4. We demonstrate an example of Algorithm 3.

Since Algorithm 3 focuses on Is(V) overlooking the actual
views in V, we will not explicitly define V. Instead, we will only
assume that the visible chase computes the instance

Is(V) = {R1(*, n1,nz), S1(n1, n2,n2), S1(ny, n3, %), S(ng, %, %) }

where ni—ns are labeled nulls. Consider also the mapping M
consisting of the following s-t dependency

R1(x,4,2) A S1(y, 2. 2) — T1(x,2) (1)

Note that M is not partially-safe. Algorithm 3 computes two
repairs for y11 by applying the steps described below. First, it com-
putes the atoms Ry (x1, x2, x3) S1(x4, x5, x¢) and adds them to C,
lines 3-7. Then, it identifies the following three homomorphisms
from C into Is(V):

& = {x1 P %X N1, X3 B N2, X4 > N1, X5 N, X > Na}
& = {x1 P %,x2 P N1, X3 > N2, X4 > Np, X5 > N3, X6 > %)

& = {x1 > %,X2 > N1, X3 > N2, X4 > N1, X5 5 %, X6 > %)

From &), we can see that the joins in the body of y; are safe;
however, it is unsafe to export z. From &, we can see that is safe
to reveal the third position of S1; however, it is unsafe to join the
second and the third position of S;. Algorithm 3 then iterates over
& and &, line 9. When B = Ry (x,y,z) and p < 3, Algorithm 3
computes ¢ to {x + #7y — ni}, since there is no violation
according to line 16. When B = Ry (x, y, z) and p = 3, however, a
violation is detected. This is due to the fact that z is an exported
variable and &(x3) = ny. Algorithm 3 tackles this violation by
creating a fresh variable z;. Then, it adds the relation (z, z1)
to p, replaces z in B|3 by z; and adds the mapping {z; — nz}
to ¢, lines 19-23. Algorithm 3 then considers S; (y, z, z). When
p = 1, no violation is encountered, since ¥/ (y) = & (x4). However,
when p = 2, a homomorphism violation is encountered, since z is
an exported variable and since £(x3) = ny. Since (z,z1) € p and
¥(z1) = & (xs5), Algorithm 3 replaces z in the second position of
S1(y, z, z) by z1, line 19. By applying a similar reasoning, we can
see that the variable z siting in S (y, z, z)|3 is also replaced by z;.
Hence, the first repair of p is

Ri(x,y,21) A Si(y,z1,21) = Ti(x) (r1)

Algorithm 3, then proceeds by repairing y1 based on &. When
B = Ri(x,y,z), Algorithm 3 proceeds as described above and com-
putes ¥ to {x > %,y > ny,z; — n2}. When B = S1(y, z,z) and
p = 1, then no violation is encountered since /(y) = &1 (x4), while
when B = S1(y, z, z) and p = 2, there is a violation. Since the con-
dition in line 18 is not met, Algorithm 3 creates a fresh variable
z and adds the mapping {zz + n3} to . When B = S1(y, z, 2)
and p = 3, then no violation is met, since z € exported(u) and
& (x6) = *. Hence, the second repair of i is

Ri(x,y,2z1) A S1(y, z2,2) — T1(x, 2) (r2)
Finally, we can see that the repair for yy w.rt. & is

Ri(x,y,21) AS1(y,2,2) = T1(x,2) (r3)

5.2 Computing safe mappings

Unifications of one or more labeled nulls occurring in I; with the
critical constant *, might lead to unsafe instances. Consider, for
instance, a simplified variant of Example 1.1, where ¥¢; comprises
only pe and .. Both p, and p, are partially-safe, as we have
explained above. However, the unification of the labeled nulls nj,
and n¢ produces an unsafe instance. Algorithm 4 aims at repairing
the output of the previous step, such that no unsafe unification
of a labeled null with * takes place.

Consider again the simplified variant of £5; from above. Since
3¢t is partially-safe, it suffices to look for homomorphism viola-
tions in I;, for i > 1. A first observation is that the homomorphism
violations are “sitting" within the bags. This is due to the fact that
each bag stores all the facts associated with the bodies of one or
more s-t tgds from Xg;. A second observation is that one way for
preventing unsafe unifications is to hide exported variables. For
example, let us focus on the unsafe unification of ne with *. This

unification takes place due to €1, which in turn has been created
due to the fact that e is an exported variable in .. By hiding the
exported variable e from p,, we actually prevent the creation of
€1 and hence, we block the unsafe unification of e with *. Hiding
exported variables is one way for preventing unsafe unifications
with the critical constant. Another way for preventing unsafe
unifications is to break joins in the bodies of the rules.

Example 5.5. This example demonstrates a second approach
for preventing unsafe labeled null unifications.

Consider a set of policy views V leading to the following in-
stance Is(V) = {R1(n1, ny, %), Ry (%, %,n2),S1(*)}, where n; and
ny are labelled nulls. Consider also the mapping M consisting of
the following s-t dependencies:

Ri(x,x,y) AS1(y) — T1(y) (12)
Ri(x, x,y) — Ta(x) (13)

It is easy to see that M is partially-safe, but unsafe in overall.
Indeed, Is(X) will consist of the following bags (for presentation
purposes, we adopt the notation from Example 4.5):

(4;.0:)
T1(¥) ——= Ry (n3, 3, %), S ()
o
To0e) 20, R (o)
(€3,03)

R1(n3, n3,), S1(*) —— Ry(*,*,%),S1(*)

where €3 := Ri(x,x,y) = x =%,0; = {y — *},0, = {x — =} and
03 = {x — ns3,y — =}. Note that €3 has been created out of ys,
since there exists a homomorphism from body(y3) into Ry (ns, n3, *)
mapping the exported variable x into ns.

One approach for preventing the unsafe unification of n3 with
* is to hide the exported variable x from p3. By doing this, we
block the creation of ¢, and hence the unsafe unification.

A second approach is to keep x as an exported variable in 3,
but modify the body of pz by breaking the join between the first
and the second position of Ry

Ri(x,z,y) AS1(y) — T1(y) (1)

By doing this, we prevent the creation of ¢, since the instance
computed at line 2 of Algorithm 1 would consist of the facts
R1(ns, ns, %), Ry(%, %, ng), S1(*) and, hence, there would be no
homomorphism from body(y3) into it. Note that the modification
of piz to pij is safe. Intuitively, this holds, since we break joins,
and thus, we export less information.

Before presenting Algorithm 4, we will introduce some new
notation. The depth of each bag f, denoted as depth(f), coin-
cides with the highest derivation depth of the facts in f. The
support of a bag 8, denoted as =, is inductively defined as fol-
lows: if depth(f) = 1, then = = f8; otherwise, if depth(f) > 1,
then Uﬁ/<ﬁﬂ’<. Consider an active trigger h for § in I lead-
ing to the creation of a bag . We use the following notation:
dependency(p) = d, trigger(f) = hand premise(f) = h(body(9)).
Two bags f1 and f; are candidates for modifyBody if 1 < S,
depth(f1) = 1, depth(f2) = 2 and there exists at least one re-
peated variable in the body of tgd(f1).

Algorithm 4 presents an iterative process for repairing a partially-
safe 3, by employing the three ideas we described above: checking
for homomorphism violations within each bag and preventing
unsafe unifications either by hiding exported variable, or by mod-
ifying the bodies of the s-t tgds. In brief, at each iteration i > 0,
the algorithm repairs one or more dependencies from ¥;, where
>0 = X, and incrementally computes the visible chase of the new

Algorithm 4 srepair(2, V, prf, n)

Algorithm 5 hideExported (S, V, prf)

1 29 =2

2: By := visChaseg(X)

3:1:=0

4: do

5: i1 =2

6: cont := false

7: if 3 unsafe f € B;, s.t. depth(f) < depth(f’), V unsafe
bag f’ € B; then

8: cont := true

9: if i < n then

10: r1 = 0; r := hideExported(f, V, prf)

11: if 3By, B2 € B, s.t. Py, P2 are candidates for
modifyBody then

12: r1 := modifyBody(tgd(f1), tgd(p2), prf)

13: if r1 # 0 and it is preferred over ry w.r.t. prf then

14: remove tgd(f;) from ;41

15: add r; to 241

16: else

17: remove tgd(f) from ;1

18: add rp to 241

19: else

20: if 3p’, s.t., p < B’ € B; then

21: add hideExported(f, V, prf) to 241

22: else remove tgd(f) from X4

23: compute Jiyq from X2;, ¥;41 and B;

24: i=i+1

25: while cont and i < n
26: return X,

set of dependencies, lines 4-25. Algorithm 4 terminates either
when the dependencies are safe, or when the maximum num-
ber of iterations n is reached, line 25, in which case it repairs
all unsafe dependencies by hiding their exported variables. The
algorithm starts by initializing Xy to X, lines 1. Then, at each
iteration i, it first identifies the lowest depth unsafe bag, line 7,
and attempts to repair the dependencies from X; that lead to its
creation, lines 7-22. If i < n, it proposes two different repairs for
3, one based on hiding exported variables through hideExported
(Algorithm 5), and the second based on eliminating joins through
modifyBody (Algorithm 6), lines 10-19. Algorithm 4 applies the
modifyBody if there exist two bags in the support of § that are
candidates for modifyBody. Informally, Algorithm 4 tries to ap-
ply modifyBody as early as possible (condition depth(f;) =1,
depth(f2) = 2) and when there are one or more repeated vari-
ables in the body of tgd(f1) (recall Example 5.5). Otherwise, if
i = n, it either applies the function hideExported, or it eliminates
the s-t tgds that are responsible for unsafe unifications.

Note that when we reach the maximum number of itera-
tions we do not apply modifyBody. This is due to the fact that
modifyBody might lead to unsafe unification of labeled nulls to
* that were not taking place before the modifying the s-t tgd
through modifyBody. In contrast, hideExported is a safe modifi-
cation, since it does not lead to new unsafe unifications.

THEOREM 5.6. For any partially-safe M = (S, T, %),
any My = (S,V,V), any preference function prf and n > 0, Al-
gorithm srepair returns a mapping M’ = (S, T, ') that preserves
the privacy of My on all instances of S.

Proor. (Sketch) Since srepair takes as input a partially-safe
mapping M = (S, T, %), it follows from Definition 5.1 that there

: J = premise(f)
vi=0
: for each n € Nulls occurring into J do
add {n — x} to v, where x is a fresh variable
: R = 0
: for each & : v(J) — Is(V) do
p = tgd(f)
for each x € dom(¢) do
if £(x) # = then
10: for each y € exported(y) do
11: if 7(y) = v_1(x), where 7 = trigger(/) then
12: remove y from exported(y)
if y # tgd(p) then
14: add pto R
: choose the best repair p;, of i from R based on prf
return y,

R A AT >

Jun
w

=
ISR

Algorithm 6 modifyBody(y1, p2, prf)
: R=0
2: if 3 one or more repeated variables in body(y;) then
3: for each ¢:body(uz) — body(y1) mapping some
x1 € exported(pq)
into some x ¢ exported(yz) do

4: Let B C body(p1), s.t. £(body(y2)) = B

5 Let V be the set of repeated variables from B

6: Let P be the set of positions from B, where all vari-
ables from V occur

7: for each non-empty S C P do

8 Hi=m

9: replace the variables in positions S of y by fresh
variables

10: add pto R

11: choose the best repair g, of y from R based on prf
12: return p,

exists a homomorphism from chase(£~1, Crty) \ Crty into Is (V).
Furthermore, from Proposition 5.2, we know that for each p € %,
there exists a homomorphism from body(y) into Is(V) map-
ping each x € exported(y) into the critical constant *. Due to
the above, since the steps in lines 16-20 of Algorithm 1 do not
introduce new labeled nulls and since srepair applies the pro-
cedure hideExported to each unsafe bag f in By, if there does
not exist a bag f’ € By, such that § < f, it follows that M’ pre-
serves the privacy of My on all instances of S, if hideExported
prevents dangerous unifications of labeled nulls with the critical
constant in line 4 of Algorithm 1. In particular, assume that we
are in the n-th iteration of the steps in lines 4-25 of Algorithm 4.
Let 59,..., BM be the unsafe bags in By,. Assume also that for
each1<I<M, ,BL was derived due to some active trigger hl,
for some derived egd el ex.in I;, where j > 0, line 17 of Algo-
rithm 1. Let p! = tgd(¢l), for each 0 < | < M and let ,u£ be the
repaired s-t tgd. Finally, let ﬁ?H_I, . ﬂf;{rl be the bags in B41,
line 23 of Algorithm 4. Based on the above, in order to show that
Theorem 5.6 holds, we need to show that (i) the number of bags
in Bu41 is < the number of bags in B, and that (ii) the s-t tgds

in (Z \ U?ﬁo ,ul) U U?;IO ,u£ are safe. In order to show (i) and (ii),
we consider the steps in Algorithm 5: for each 1 < I < M, each
exported variable y occurring in y, which leads to an unsafe

min | max | step
s-t tgds per scenario (ngep) 100 | 300 | 50
body atom per s-t tgds (naroms) 1 3(5) -
exported variables per s-t tgds (nyars) 5 8 -

Table 1: Properties of the generated iBench scenarios.

unification, line 11 of Algorithm 5, is turned into a non-exported
variable. O

By combining Proposition 5.3 and Theorem 5.6 we can prove
the correctness of Algorithm 2. Furthermore, if the preference
function always prefers the repairs computed by hideExported
from the repairs computed by modifyBody, we can show the
following:

PROPOSITION 5.7. For each mapping M = (S, T, %), each My =
(S, V,V) and each preference function prf that always prefers the
repairs computed by hideExported from the repairs computed by
modifyBody, Algorithm 2 returns a non-empty mapping that is
safe w.r.t. My, if such a mapping exists.

Proor. (Sketch) From Algorithm 3, we can see that frepair
always computes a non-empty partially-safe mapping, if such
a mapping exists. Note that a mapping, where no variable is
exported and no repeated variables occur in the body of the s-
t tgds is always partially-safe as long as, the predicates in the
bodies of the s-t tgds are the same with the ones occurring in
the policy views. Please also note that such a mapping is always
considered by frepair. The above argument, along with the fact
that a partially-safe mapping can be transformed into a safe
one by turning exported variables into non-exported ones by
means of the function hideExported, shows that Proposition 5.7
holds.]

6 EXPERIMENTS

We gauge the efficiency of our repairing algorithm on two types
of preference function: a hardcoded one and a learning-based
preference function.

We evaluated our algorithm using a set of 3.6K diverse map-
ping scenarios each of which consisting of a set of policy views
and a set of s-t tgds. The characteristics of the scenarios are
summarized in Table 1. In each scenario, we used a different num-
ber of s-t tgds Ndeps @ different number of body atoms ngroms
and a different number of exported variables nyqrs. The source
schemas and the policy views have been synthetically generated
using iBench, the state-of-the-art data integration benchmark
[2]. We considered relations of up to five attributes and we cre-
ated mappings using the iBench configuration recommended by
the authors of [2]. We generated a set of varied policy views by
applying the iBench operators copy, merge, deletion of attributes
and self-join, each of which has been applied 10 times.

We implemented our algorithm in Java and we used the Weka
library [16] that provides an off-the-shelf implementation of the k-
NN algorithm for the learning-based preference function. We ran
our experiments on a laptop with one 2.6GHz 2-core processor,
16Gb of RAM, running Debian 9.

In the remainder, all data points have been computed as an
average on a total of 5 runs preceded by one discarded cold run.
Running time of repair. First, we study the impact of the num-
ber of s-t tgds and body atoms on the running time of repair. We
adopt a fixed preference function that chooses the repair with
the maximum number of exported variables. In case of ties, the

10

golden standard golden standard

prediction | p) prediction | p)
i 230 0 m 290 1
12 0 395680 12 42 395577

(a) Pypax confusion matrix. (b) Pgyy confusion matrix.

Table 2: Confusion matrix for the golden standards.

repair with the maximum number of joins is preferred. We vary
the number of s-t tgds from 100 to 300 by steps of 50 and the
number of body atoms from 3 to 5, respectively. The obtained
results are shown in Figure (3a), illustrating the fact that the
median repairing time is less than 1.5s in most cases. For the
most complex scenario containing up to five body atoms per s-t
tgd, the median running time is less than 8s with 71s being the
maximum. These results clearly show the high performance of
our repair method along with its scalability. The reader should
keep in mind that the repairing process is triggered prior to ex-
changing the data between source and target and might be rerun
each time a mapping (set of s-t tgds) is modified or each time a
policy view is modified, thus bringing the overhead to be quite
reasonable in both cases.

Figure (3b) shows the time breakdown for repair. The first bar
shows the average running time to run the visible chase over the
input s-t mappings, the second one shows the average running
time for checking the safety of the computed bags and the third
one shows the average running time for repairing the s-t tgds.
The results show that the repairing time is 32x greater than the
time to compute the visible chase and 40x greater than the time
to check the safety of the chase bags for scenarios with 300 s-t
tgds. In the simplest scenarios, these numbers are much lower
(reduced to 5x and 9x, respectively). Overall, the absolute values
of the rewriting times are kept low (of the order of few seconds)
for all these scenarios and gracefully scale while increasing the
number of s-t tgds and the number of atoms in their bodies.
Time breakdown between frepair and srepair. Figure (3c) shows
the average running time for frepair and srepair for the consid-
ered scenarios. We can see that srepair is the most time-consuming
step of our algorithm. We can also see that the running time of
srepair increases more in comparison to the running time of
frepair when increasing the number of the s-t tgds and the num-
ber of atoms in their bodies. This is due to the incurred overhead
during the incremental computation of the visible chase after
repairing a s-t tgd (line 23 of Algorithm 4). Figure (3d) shows
the correlation between the number of active triggers detected
while incrementally computing the visible chase and the run-
ning time of srepair for scenarios with 100 s-t tgds using the
ANOVA method (p-value < 2.2¢71%). Figure (3d) shows that the
most complex scenarios lead to the detection of more than 45, 000
active triggers. Despite the high number of the detected active
triggers, the running time of srepair is kept low thus confirming
its efficiency.

Leveraging learning-based preferences. We adopted the fol-
lowing steps in order to evaluate the performance of our learning
approach. First, we defined the following two golden standard
preference functions that we will try to learn:
® Prax, which chooses the repair with the maximum num-
ber of exported variables and in case of ties, it chooses the
repair with the maximum number of joins.
® Pyyg, Which computes the average number of exported
variables and joins for each repair, and choose the one
with the maximum average value.

Max body size : 3 Max body size : 5

)
o

Execution time

e

e

100 150 200 250 300 100 150

Number of s-t tgds

(a) Repairing times.

Max body size : 3

Max body size : 5
frepair
srepair

Average execution time (s)

00

DQQD EEQQQ

Number of s-t tgds

(c) Time breakdown between frepair and srepair.

Average execution time (s)

Max body size : 3 Max body size : 5

Jﬁjj

Number of s-t tgds

15 - Chasing critical instance

Safety check of output schema
Running repairing algorithm

$jjj

(b) Time comparisons.

00 0

300

Execution time (s)

T T T T T
0 20000 40000 60000 80000 100000

Number of active triggers explored in srepair

(d) Running time of srepair over 100 s-t tgds.

Figure 3: Summary of the performance-related experimental results.

Max body size : 3 Max body size : 5

(s)

Execution time

300

Number of s-t tgds

Figure 4: Repairing times with ML classifiers.

For both preference functions, we created a training set of 10, 000
measurements for the k-NN classifier by running the repairing al-
gorithm on fresh scenarios of 50 s-t tgds and five body atoms per
s-t tgd. For each input vector (§y, §7) whose repair we wanted to
predict, we computed the Euclidean distance between (Sry, d7)
and the vectors of the training set. We also set the value of pa-
rameter k to 1. This parameter controls the number of neighbors
used to predict the output. Higher values of this parameter led to
comparable predictions and are omitted for space reasons. Finally,
we used the trained k-NN classifier as a preference function in
srepair, rerun the above scenarios and compared the returned re-
pairs with the ones returned when applying the golden standards
Pmax and Pgyg as preference functions.

Learning Py, 4. Table (2a) (left) reports the confusion matrix
associated to learning Pyqx, including the choices made by the
k-NN classifier during its iterations.

Let us call 1 and o two possible repairs of an s-t tgd as evalu-
ated by the k-NN classifier. We can observe that the prediction of
11 was correct (and equal to the golden standard in the training
set) in 230 cases, while the prediction of yz was correct in 395,680
cases.

This confirms the fact that py is the best repair across the
iterations of the k-NN algorithm and is also chosen in case
and yip are equally weighed by the preference function.

Furthermore, we also report the accuracy of learning the pref-
erence function, obtained by measuring the closeness of the
learned mapping to the golden standard mapping.

We used the Matthews Correlation Coefficient metric (MCC)
[3] to compare the repairs returned by the trained k-NN classifier
and the ones returned when applied Pj,qx. This is a classical
measure that allows to evaluate the quality of ML classifiers when

11

ranking is computed between two possible values (in our case,
the choice between p1 and). This measure has been computed
using the following formula:
Ni,1 X Naz — N1z X Nojy

V(N11 +Ni2) (N1 + Naj1) (No2 + Ni2) (N22 + Nojp)
where Nj ; is the number of predictions of y; when p; is ex-
pected. Thé results of MCC range from —1 for the cases where
the model perfectly predicts the inverse of the expected values,
to 1 for the cases where the model predicts the expected values.
The value MCC = 0 means that there is no correlation between
the predicted value and the expected one. By applying MCC to
the learning of Py,qx, we observed that the data are clearly dis-
criminated, thus leading to high-quality of our prediction in this
case (MCC =1).

Learning Pgyg. Table (2b) (right) shows the confusion matrix
associated to learning Pgyg. We can see that the predictions are
less accurate in this case. The data is not as clearly discriminated
as before, leading to a fairly negligible error rate (< 0.02%). How-
ever, the latter is still acceptable for learning, since only < 0.02%
of the predictions are erroneous. This is corroborated by an MCC
value equal to 0.93, thus leading to a fairly acceptable quality of
the prediction in this case too.

Running time of repair with ML classifiers. In the last ex-
periment, we want to measure the impact of learning on the
performance of our algorithm. To this end, we compare the run-
ning time of repair when adopting a hard-coded preference func-
tion (as in the results reported in Figure 3) and when adopting a
learned preference function. Figure 4 shows the running times
for the same scenarios used in Figure 3. We can easily observe
that the runtimes are rather similar with and without learning
and the difference amounts to a few milliseconds. This further
corroborates the utility of learning the preference function and
shows that the learning is robust and does not deteriorate the
performances of our algorithm.

Qualitative study. In order to illustrate the utility of our ap-
proach, in this experiment we study possible rewritings of a
mapping defined over the NHS schema.The NHS schema focuses
on storing information concerning patients admitted in hospi-
tals. Here, we consider the dependencies involving general in-
formation on patients. This includes administrative information

MCC =

Relation #atts
birth 34 Relation #atts
patient 17 birth_export 34
mothers_social _data 8 patient_export 17
pis_e_prescribing 27 pis_e_prescribing_export 27
death 50 death_export 50
(a) Source schema characteristics (b) Target schema characteristics

Relation #atts

link_death_drugs 3

death_causes 20

prescribed_drugs_evolution 9

mothers_social 8

fathers_social 6

(c) Policy views schema characteristics

(1) birth(...) — birth_export(...)

(2) patient(...) — patient_export(...)

(3) pis_e_prescribing(...) — pis_e_prescribing_export(...)
(4) death(...) — death_export(...)

(d) Mapping over NHS

death(...) A pis_e_prescribing(...) — link_death_drugs_data(...)
death(...) — death_causes(...)
pis_e_prescribing(...) — prescribed_drugs_evolution(...)
birth(...) A patient(...) — mother_social(...)
birth(...) — fathers_social(...)

(e) Policy views over NHS

Table 3: Properties of the NHS dataset.

Rewrited | #possible | #frontier variables in repairs
tgd repairs min max
(1) 3 25 29
() 2 13 14
3) 2 18 18
(4) 2 25 25

Table 4: Properties of the repairing process.

(relation patient in the source schema), social and medical infor-
mation on the patient himself (relations birth and death), social
data on patients’ mothers (relation mother_social_data) and in-
formation on drugs prescriptions (relation pis_e_prescribing).

The characteristics of the source schema are summarized in
Table 3a. The mapping to rewrite and the characteristics of its
target schema are summarized in Tables 3d and 3b, respectively.
The set of policy views and the characteristics of their target
schema are reported in Tables 3e and 3c, respectively.

The link_death_drugs_data view allows to link the prescribed
drugs with patient pathology, but no personal information is ex-

ported to prevent the identification of the patient. The death_causes

view gives access to the causes of death of the admitted patients.
The prescribed_drugs_evolution view gives access to drug pre-
scriptions information without any identifying information. The
mother_social and fathers_social views give access to patients’
mothers and fathers social information.

In Table 4, we show the number of possible repairs for each
tgd in Table 3d. It can be seen that the tgd (1) has three possible
repairs, exporting from 25 to 29 variables, respectively. Anal-
ogously, the tgd (2) leads to two possible repairs, allowing to
export from 13 to 14 variables each. Both tgds (3) and (4) lead to
two possible repairs, with a constant number of exported vari-
ables for each tgd. These rewritings are distinguished by the
exported variables, and one can decide to choose which repair-
ing fits best her needs either visually or by leveraging the user
preference function, as shown in our previous experiment.

7 CONCLUSION

We have studied the problem of data exchange in the presence
of privacy restrictions expressed as policy views on the source

12

schema. We have proposed a repairing process for the mappings
that are unsafe under the source policy views. Our approach is
inherently data-independent and leads to repairing the mappings
guaranteeing privacy preservation at a schema level. As such,
our approach is orthogonal to several data-dependent privacy-
preservation methods (such as differential privacy methods), that
can be used on the source and target instances to further corrob-
orate the privacy guarantees. The study of such fruitful combi-
nations of methods is devoted to future work.

We also envision several other extensions of our work, such as
the study of more expressive GLAV mappings and the interplay
between data-independent and data-dependent privacy methods
as well as the usage of other learning methods.

ACKNOWLEDGEMENTS

Research by the first author is funded by ANR (under Grant No.
18-CE23-0002 QualiHealth)

REFERENCES

[1] Marcelo Arenas, Pablo Barceld, Leonid Libkin, and Filip Murlak. 2014. Foun-

dations of Data Exchange. Cambridge University Press.

Patricia C Arocena, Boris Glavic, Radu Ciucanu, and Renée J Miller. 2015. The

iBench integration metadata generator. In Proceedings of VLDB.

[3] Pierre Baldi, Seren Brunak, Yves Chauvin, Claus AF Andersen, and Henrik
Nielsen. 2000. Assessing the accuracy of prediction algorithms for classifica-
tion: an overview. Bioinformatics 16, 5 (2000).

[4] Zohra Bellahsene, Angela Bonifati, and Erhard Rahm (Eds.). 2011. Schema
Matching and Mapping. Springer.

[5] M. Benedikt, B. Cuenca Grau, and E. Kostylev. 2017. Source Information

Disclosure in Ontology-Based Data Integration.. In AAAL

Philip A. Bernstein. 2005. The many roles of meta data in data integration. In

In ACM SIGMOD.

[7] Joachim Biskup and Piero Bonatti. 2004. Controlled query evaluation for

enforcing confidentiality in complete information systems. International

Journal of Information Security 3, 1 (2004).

Joachim Biskup and Torben Weibert. 2008. Keeping secrets in incomplete

databases. International Journal of Information Security 7, 3 (2008), 199-217.

[9] Piero A. Bonatti, Sarit Kraus, and VS Subrahmanian. 1995. Foundations of

secure deductive databases. IEEE TKDE 7, 3 (1995), 406-422.

Angela Bonifati, Ugo Comignani, and Efthymia Tsamoura. 2019. MapRepair:

Mapping and Repairing under Policy Views (demo). In ACM SIGMOD. 1873—

1876.

Laura Chiticariu and Wang Chiew Tan. 2006. Debugging Schema Mappings

with Routes. In Proceedings of VLDB. 79-90.

Ugo Comignani. 2020. MapRepair - open source code. https://github.com/

ucomignani/MapRepair.git.

Remy Delanaux, Angela Bonifati, Marie-Christine Rousset, and Romuald

Thion. 2018. Query-Based Linked Data Anonymization. In ISWC 2018. 530-

546.

Remy Delanaux, Angela Bonifati, Marie-Christine Rousset, and Romuald

Thion. 2019. RDF Graph Anonymization Robust to Data Linkage. In WISE

2019. 491-506.

Cynthia Dwork and Aaron Roth. 2014. The Algorithmic Foundations of

Differential Privacy. Foundations and Trends in Theoretical Computer Science 9,

3-4 (2014), 211-407.

Frank Eibe, MA Hall, and [H Witten. 2016. The WEKA Workbench. Online

Appendix for" Data Mining: Practical Machine Learning Tools and Techniques.

Morgan Kaufmann (2016).

R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. 2005. Data exchange: semantics

and query answering. Theoretical Computer Science 336, 1 (2005).

Bernardo Cuenca Grau, Evgeny Kharlamov, Egor V. Kostylev, and Dmitriy

Zheleznyakov. 2015. Controlled Query Evaluation for Datalog and OWL 2

Profile Ontologies. In IJCAL

Bernardo Cuenca Grau and Egor V. Kostylev. 2016. Logical Foundations of

Privacy-Preserving Publishing of Linked Data. In AAAL 943-949.

Gerome Miklau and Dan Suciu. 2007. A formal analysis of information disclo-

sure in data exchange. J. Comput. Syst. Sci. 73, 3 (2007).

Alan Nash and Alin Deutsch. 2007. Privacy in GLAV Information Integration.

In ICDT.

Muhammad L. Sarfraz, Mohamed Nabeel, Jianneng Cao, and Elisa Bertino. 2015.

DBMask: Fine-Grained Access Control on Encrypted Relational Databases. In

In CODASPY. 1-11.

George L Sicherman, Wiebren De Jonge, and Reind P Van de Riet. 1983. An-

swering queries without revealing secrets. ACM TODS 8, 1 (1983), 41-59.

Latanya Sweeney. 2002. k-Anonymity: A Model for Protecting Privacy. Inter-

national Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 10, 5

(2002), 557-570.

[2

6

[8

[10

(1]

[12

[13]

(14

[15]

[16]

[17

(18]

[19

[20]
[21]

[22]

[23]

[24]

O

proceedings

DomainNet: Homograph Detection for Data Lake
Disambiguation

Aristotelis Leventidis
Renée J. Miller

ABSTRACT

Modern data lakes are deeply heterogeneous in the vocabulary
that is used to describe data. We study a problem of disambigua-
tion in data lakes: how can we determine if a data value occurring
more than once in the lake has different meanings and is therefore
a homograph? While word and entity disambiguation have been
well studied in computational linguistics, data management and
data science, we show that data lakes provide a new opportunity
for disambiguation of data values since they represent a massive
network of interconnected values. We investigate to what extent
this network can be used to disambiguate values.

DomainNet uses network-centrality measures on a bipartite
graph whose nodes represent values and attributes to determine,
without supervision, if a value is a homograph. A thorough exper-
imental evaluation demonstrates that state-of-the-art techniques
in domain discovery cannot be re-purposed to compete with
our method. Specifically, using a domain discovery method to
identify homographs has a precision and a recall of 38% ver-
sus 69% with our method on a synthetic benchmark. By apply-
ing a network-centrality measure to our graph representation,
DomainNet achieves a good separation between homographs and
data values with a unique meaning. On a real data lake our top-
200 precision is 89%.

1 INTRODUCTION

Data lakes are large repositories where the metadata, including
table names, attribute names, and attribute descriptions may be
incomplete, ambiguous, or missing [32]. Modern data lakes are
heterogeneous in many different ways: semantics, metadata, and
data values. We consider the problem of determining if a data
value (i.e., the value of an attribute in a table) that appears more
than once in the data lake has a single meaning. A data value
with more than one meaning is a homograph. We illustrate the
data lake disambiguation problem through an example.

ExAMmPLE 1.1. Consider the small sample of a data lake in Fig-
ure 1, showing four tables about different topics. T1 is about cor-
porate sponsorship for efforts to save at-risk species, T2 is about
populations in zoos, T3 is about car imports, and T4 is about corpo-
rate sales. Without disambiguation, a simple keyword search for
Jaguar will return a very heterogeneous set of tuples.

One approach to tackle this problem would be to apply document
disambiguation by treating tables as documents. Such techniques
are excellent at discerning topics in natural language documents
and using this information to further disambiguate the words. How-
ever, because of the nature of tables that are often used to express

© 2021 Copyright held by the owner/author(s). Published in Proceedings of the
24th International Conference on Extending Database Technology (EDBT), March
23-26, 2021, ISBN 978-3-89318-084-4 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Series ISSN: 2367-2005

Laura Di Rocco

Wolfgang Gatterbauer

Mirek Riedewald
Northeastern University
Boston, MA, USA
{leventidis.a,la.dirocco,w.gatterbauer, miller,m.riedewald}@northeastern.edu

13

T1|Donor At Risk Donation T2|name locale num
Google Panda 1M Panda Memphis 2
Volkswagen Puma 2M Panda Atlanta 2
BMW Jaguar 0.9M Lemur National 20
Amazon Pelican 1.5M Jaguar San Diego 8

Talcl 2 Cs T4 ;\Iame Revze;l;g ;;Zai

aguar .

?ﬁus JTaflg‘lt; }jﬁKaH Puma 464 13000

500 Fia}; Itfl Apple 456 370870

Y Toyota 123 123456

Figure 1: Running example with Jaguar and Puma having multi-
ple meanings. How can we use co-occurrence information across
a data lake to discern different meanings?

relationships between different types of entities and values, distin-
guishing between a donor table T1 and a zoo table T2 that contain
within them synonyms for animals while also being about very dif-
ferent topics (donations and zoos) is a difficult task. Distinguishing
between car manufacturers T3 and corporations T4 can be even
harder because of the prevalence of numerical values.

Entity resolution and disambiguation methods commonly as-
sume a small set of tables about a small number of entity types
(which may have the same or different schemas). In contrast, in
a data lake the values to be disambiguated may appear in hun-
dreds of tables about very different entity types and relationships
between them. The ambiguous values need not be named entities,
but may be descriptors or any data value in a table. This makes
entity resolution inapplicable, but opens up new opportunities to
use the large network of values and co-occurrences of values in the
lake in new ways.

In entity resolution (ER) [9], the idea is to determine if two
(or a set of) tuples refer to the same real-world entity or not. An
important assumption in ER is that the tables being resolved are
about the same (known) entity types. As an example, given a set
of tables about papers that include authors as data values, we
can determine if two tuples refer to the same paper (have the
same meaning). As a by-product of entity resolution, a data value,
for example “X. Wang,” may be identified as an ambiguous data
value that refers to more than one real-world entity. Schema-
agnostic ER techniques have been proposed that do not assume
the entities are represented by the same schema [37]. However,
these approaches still assume the tables being resolved represent
entities of the same type.

In our problem, we are not starting with a small set of tables
that are known to refer to the same type of real-world entities,
e.g., customers or research papers. We want to understand in a
data lake with a massive number of tables if the value “Puma”

10.5441/002/edbt.2021.03

https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2021.03

in T1 (see Figure 1), Attribute At Risk refers to the same real-
world concept (not necessarily an entity) as “Puma” in Table T4,
Attribute Name.

Disambiguation of words in documents has also been heavily
studied [4, 24, 43, 49]. Solutions often rely on language structures
or labeled training data. In contrast to documents, which are free
text, tables are structured and lack the same intuitive notion of
context. While plenty of research has explored disambiguation
of documents, to the best of our knowledge there is no work on
disambiguation of data lakes. This is of importance because data
lakes can contain many data values that have different meanings.
As an example, “Not Available” is a well known way to represent
NULL values in a table. “Not Available” is not ambiguous from a
natural-language point of view. However in a data lake it may
appear in multiple attributes corresponding to names, telephone
numbers, IDs etc., making “Not Available” a homograph meaning
“unknown name” or “unknown number;,” etc.

Determining if a value in a data lake has a single or multiple
meanings is unexplored territory. We define data lake disam-
biguation as follows:

DEFINITION 1 (DATA LAKE DISAMBIGUATION). Given a data
lake containing a collection of tables with possibly missing, incom-
plete, or heterogeneous table and attribute names. For any data
value v that appears in more than one attribute (column) or table,
determine if it has a single meaning or more than one meaning.
The latter are called homographs.

A homograph is not necessarily a single word from a dictionary
or a vocabulary. In a data lake, a homograph can be a phrase,
initialism (e.g., “NA”), identifier, or any blob (data value). We
do not assume homographs to be named entities; they can be
adjectives or another part of speech. Homographs arise naturally
from words used in different contexts, e.g., the classic example
of Apple as a fruit or a company, or Jaguar in Example 1.1. They
can also arise due to errors, e.g., when animal color “yellow” is
accidentally entered in the habitat column. We consider this now
ambiguous value a homograph. Notice that updates to the data
lake can change a homograph to a value with a single meaning,
e.g., when the table with the only alternative meaning is removed;
and vice versa.

In this work, we examine the global co-occurrence of data
values within a data lake and how such information can be used
to disambiguate data values. We show that a local measure is
not sufficient and motivate why and how the full network of
value co-occurrences enables effective disambiguation. This net-
work exploits table structure and had not been considered in the
most commonly studied disambiguation problems such as named-
entity disambiguation and entity resolution. Its disambiguation
power comes at a price: The value co-occurrence information
is massive and it is not obvious how to process it efficiently for
disambiguation.

Contributions. We address the data lake disambiguation
problem using a network-based approach called DomainNet. Our
main contributions are as follows.

e We define the problem of homograph detection in data lakes.
Homographs may arise in tables that do not represent the
same (or even similar) types of entities, and hence cannot be
identified using entity resolution and disambiguation. They
may not even be words in natural language and do not ap-
pear in natural-language contexts, making language models
ineffective.

14

e We present DomainNet, a network-based approach to deter-
mine if a data value appearing in multiple attributes or tables
is a homograph. DomainNet is motivated by work on commu-
nity detection where a community represents a meaning for a
value (e.g., animal or car model). A homograph is then a value
that occurs in multiple communities. However, in the homo-
graph detection problem (i) there are an unknown and possibly
large number of meanings for a value and (ii) our goal is to
find values that span communities, not the communities. We
identify two measures for finding such community-spanning
values, the local clustering coefficient [48] and the betweenness
centrality [16], and empirically evaluate their usefulness in
homograph detection.

e We present an evaluation on a synthetic dataset (with ground

truth), studying the performance of both centrality measures

and motivating the use of the more computationally expensive
betweenness centrality. We compare DomainNet to a recent
unsupervised domain detection algorithm D* [36] (any value

belonging to multiple domains is a homograph). D* achieves a

precision and a recall of 38% whereas DomainNet reaches 69%.

We create a disambiguation benchmark from the real data used

in a recent table-union benchmark [33] and show that we can

effectively find naturally occurring homographs in this data

(89% of the first 200 retrieved values are homographs based on

ground truth). We also systematically introduce homographs

into real data and show that betweenness centrality achieves

85% accuracy when homographs are injected into both small

and large attributes, and over 97% accuracy when homographs

are all injected into attributes with at least 500 distinct values.

We show that DomainNet is effective even when there is high

variance in the number of meanings of different homographs.

To illustrate the importance of homograph discovery, we show

the impact that as few as 50 homographs (injected into a clean

unambiguous real data lake) can have on a domain discovery
algorithm [36]. As the number of of homographs increases, the
accuracy of the domain discovery algorithm deteriorates.

The scalability of our approach depends on the size of the data

lake vocabulary (the number of values) and on the density

of the network (number of edges). We use real data (from

NYC open data) with a vocabulary size of 1.5M to show that

we can compute the DomainNet network in 3.5 min and find

homographs in 27 min using an approximation of betweenness
centrality based on sampling.

The remainder of this paper is organized as follows. In Sec-
tion 2 we discuss existing work in disambiguation. In Section 3
we introduce our approach and describe how applying central-
ity measures on a graph representation of the data lake can be
used to identify homographs. Section 4 summarizes the datasets
used in our experimental evaluation presented in section 5. We
conclude and outline possible future directions of our work in
Section 6. For further information, please visit our project page
at https://northeastern-datalab.github.io/table-as-query/

2 FOUNDATIONS OF DISAMBIGUATION

Disambiguation has been studied in several contexts in NLP, data
management and broadly in Al and data science. We analyze how
this work can be applied to disambiguation in data lakes.

2.1 Entity Resolution

Entity Resolution (ER) identifies records (also called tuples) across
different datasets (or sometimes corpora) that represent the same

real-world entities. ER is generally applied to structured and
semi-structured data including tables and RDF triples [18]. Some
ER approaches also identify ambiguous values as part of the
resolution process. For example, using collective entity resolution
over two types of tables (e.g., papers and authors) one can identify
if a value, say “X. Wang,” refers to different authors [3]. Similarly
in familial networks, one can resolve synonyms (different values
that refer to the same person) and identify homographs (same
value used to refer to different people) [26].

ER assumes that the information to be resolved or disam-
biguated is of a single known type (e.g., resolving customer tuples
or patient records) or a small set of types (e.g., authors, their pa-
pers, and publishing venues). Some work, called schema-agnostic
ER, does not require that all data be represented using the same
schema [9]. However, all these approaches start with the assump-
tion that two or more tables (or corpora) are describing the same
type of entities [37, 38, 42].

In data lake disambiguation, we seek to find ambiguous val-
ues even when we do not know what type of entities a table is
describing. We also do not know if different tables are describing
the same or different entities. Hence, we cannot apply collective
models or other resolution models that rely on this knowledge.

ExamMPLE 2.1. Given the four tuples with Jaguar: [BMW,
Jaguar, 0.9M], [Jaguar, San Diego, 8], [XE, Jaguar, UK],
and [Jaguar, 25.8, 432241, does Jaguar have the same mean-
ing? These four tuples correspond to four different types of facts:
donors and the amount they contribute to protect an endangered
species, animals in zoos, car models, and economic information
about companies. ER schema-agnostic algorithms are insufficient
in resolving (or disambiguating) values within these heterogeneous
tables because they rely on the hypothesis that the tables they
examine refer to the same type of real-world entity.

2.2 Semantic Type Detection

A possible approach to data lake disambiguation is to discover
semantic types for all attributes (columns) and then label a value
appearing in different semantic types a homograph. In the run-
ning example, identifying the semantic type of T1.At Risk and
T2.name as animal and mammal, respectively, and knowing that
mammals are animals, one can infer that Jaguar is not a ho-
mograph there. In contrast, recognizing T3.C2 is of type “Car
Manufacturer,” which is neither a sub- nor super-type of animals,
implies that Jaguar in T3 and T1 represents a homograph. Here,
we discuss different approaches to semantic type discovery and
to what extent they could be used for homograph detection.

Knowledge-based Techniques. There has been consider-
able work on semantic type detection in the Semantic Web com-
munity that uses external knowledge from well-known ontolo-
gies including DBpedia [28], Yago [46] and Freebase [5]. Most
solutions have been applied to Web tables [11, 12, 29] that are
small (in comparison to other data lakes) and have rich metadata
(table and attribute names).

Hassanzadeh et al. [20] use a map-reduce approach to find
similarity between a (column, data value) pair from a table with
a (class, instance label) pair from the Knowledge Base (KB). Ritze
et al. [41] match Web tables to DBpedia to profile the potential
of Web tables for augmenting knowledge bases with missing
information. These approaches cannot infer type information
for an attribute that it is not part of the KB. Unfortunately, the
coverage of values from data lakes in Open KBs is low (a recent
study reports about 13% [33]), limiting their applicability.

15

Supervised Techniques. An alternative are machine learn-
ing (ML) techniques that infer the semantic type of attributes.
ML solutions utilize a variety of graphical models (Conditional
Random Fields [19], Markov Random Fields [31]), as well as Multi-
level Classification [47], and Deep Learning [23]. Sherlock [23]
uses features about the values in an attribute to classify some of
the attributes in a data lake into one of 78 semantic types (like
address or horse jockey) [23]. A recent solution, called SATO [51],
augments this approach and shows that using row information
can improve the classification accuracy for the same 78 seman-
tic types. These approaches require large amounts of labeled
training data and are limited by the set of pre-defined types.

Unsupervised Techniques. Unsupervised semantic type dis-
covery algorithms have only recently started to be studied. We
discuss two unsupervised algorithms, one for semantic type dis-
covery, D* [36], and one for table unionability search [33].

D* provides an unsupervised approach with a focus on as-
sembling all the values of each semantic type in a data lake [36]
(these values are called a "domain"). They propose a data-driven
approach that leverages value co-occurrence information to clus-
ter values that are from the same domain. Heuristics attempt to
deal with ambiguous values that may appear in multiple domains.
In our context, D* can be used to label values that appear in mul-
tiple domains as homographs. This indeed serves as a baseline in
our experiments.

Table Union Search [33] solves a different problem. Given a
query table, they find a set of tables from the lake that are most
unionable with it. In order to do so, they provide several similar-
ity measures that are used collectively to calculate how unionable
two attributes are. This work can use both ontological and se-
mantic (word embedding) signals when present to determine
unionability over heterogeneous attributes, but does not attempt
to find or label homographs.

2.3 Disambiguation in Related Areas

Word-sense disambiguation (WSD) [24, 34], i.e., the task of identi-
fying which meaning of a word is used in a sentence, is an impor-
tant problem in computational linguistics. Although a human can
proficiently perform this task on a document, constructing algo-
rithms that perform this task effectively is still an open research
problem. Techniques proposed so far range from dictionary-based
methods, which use the knowledge encoded in lexical resources
(e.g., WordNet) [34], to more recent solutions in which a classifier
is trained for each distinct word on a corpus of manually sense-
annotated examples [39]. Additionally, completely unsupervised
methods have also been proposed that cluster occurrences of
words, thereby inducing word senses, i.e, word embeddings [24].
The aforementioned solutions rely on information (or latent infor-
mation) about the structure of sentences including grammatical
rules. Finally, while solutions that do not rely on grammar also
exist, they only operate on documents and not tables [4, 43].

Another relevant sub-task in Natural Language Processing is
Named-Entity Recognition (NER), which has been proposed as a
possible solution for disambiguation [49]. NER seeks to locate and
classify named entities mentioned in unstructured text into pre-
defined categories such as person names, organizations, locations,
etc. NER systems have been created that use linguistic grammar-
based techniques as well as statistical models [1].

A special case of the NER problem is the author name disam-
biguation problem [14, 44] Authors of scholarly documents often
share names which makes it hard to distinguish each author’s

work. Hence, author name disambiguation aims to find all publi-
cations that belong to a given author and distinguish them from
publications of other authors who share the same name. Different
solutions have been proposed using graphs [30]. However, the
graph structure proposed is largely domain specific. The graph
contains not only the information about the co-authorship and
published papers, but also venue of the paper published, year of
research activities and so on.

3 DISAMBIGUATION USING DOMAINNET

We now present our proposed solution, DomainNet!, for finding
homographs in a data lake.

3.1 Problem Definition

Recall from Definition 1 that a homograph is a data value that
appears in at least two attributes with more than one mean-
ing. Values that are not homographs are unambiguous values.
In data lakes, attribute and table names can be missing or mis-
leading (with many ambiguous terms like “name,” “column 2,
or “detail”) [32]. Well-curated enterprise lakes may have more
complete metadata, but even they do not follow the unique name
assumption—which states that different attribute names always
refer to different things. As a result, many data lake search ap-
proaches rely solely on the table contents [10, 13, 52, and others].
In a similar vein, in DomainNet, we investigate to what extent
data values and the co-occurrence of data values within attributes
can be used to determine if a value is a homograph.

EXAMPLE 3.1. In Figure 1, the data value Jaguar is a homograph
because it refers to the animal in Tables T1 and T2 and refers to
the car manufacturer in Tables T3 and T4. Other values such as
Panda and Toyota are unambiguous since they only have a single
meaning across all tables. Puma is also a homograph, appearing as
an animal and a company. Figure 2 displays which values co-occur
with Jaguar in the same column using an incidence matrix: the
vertical axis shows the different values, and the horizontal axis the
different attributes occurring in the data lake.

Note that homographs need not be values from a dictionary. They
can be any data value that appears in a table. Another example
of a homograph is the data value 01223 which in some attributes
may refer to a Massachusetts zip code and in others to an area code
near Cambridge, UK, and in yet others to the suffix of an Oil Filter
Element Replacement product code.

| Fiat Toyota Apple Puma Jaguar Pelican Panda Lemur
T2.name 1 1 1
T1.At Risk 1 1 1 1
T4.Name 1 1 1 1
T3.C2 1 1 1

Figure 2: Incidence matrix: vertical axis attributes, horizontal
axis data values.

In a well-curated database or warehouse, we may know the
semantic meaning of each attribute (e.g., "Animal Name" vs. "Com-
pany Name") and can leverage it to identify homographs. How-
ever, in a dynamic, non-curated data lake, we cannot rely on this
information to be available.

IThe code for DomainNet and our benchmarks is available at https://github.com/
northeastern-datalab/domain_net.

16

3.2 DomainNet: Viewing Values as a Network

In data lakes, without a priori knowledge of table semantics
or types, we take a network-based approach to understanding
the meaning of repeated data values. We propose to detect ho-
mographs using network measures. For that purpose, we can
interpret the co-occurrence information about values across dif-
ferent attributes using a network representation in which nodes
represent data values and edges represent the fact that two values
co-occur in at least one column (attribute) in the data lake.

ExAMPLE 3.2. In Figure 3, we depict the values from the same
four attributes shown in Example 3.1. Figure 3a shows the value
co-occurrence network. Notice that by removing both “Puma” and
“Jaguar” the remaining nodes become disconnected into two compo-
nents. This captures the intuition that those two values are pivotal
in that they bridge two otherwise disconnected meanings or graph
components.

Whereas this representation allows us to apply straightfor-
ward metrics from community detection, it comes at a high cost:
the representation uses more space than the original data lake.
The incidence matrix is sparse and has as many entries as there
are cells in the data lake (Figure 2). In contrast, the co-occurrence
graph increases quadratically in size with respect to the cardi-
nality of attributes (the size of the vocabulary) in the data lake
(Figure 3a). Consider a single column with 100 values. The inci-
dence matrix represents this information with 100 rows, 1 column,
and 100 entries. The co-occurrence graph represents this with
100799/2=4950 edges across 100 nodes.

Thus, we use a more compact network representation that
allows us (after some modifications) to apply network metrics to
discover pivotal points (Figure 3b). DomainNet uses a bipartite
graph composed of (data) value nodes and attribute nodes. The
attribute nodes represent the set of attributes and the value nodes
the set of data values across all attributes in the lake. Every data
value is treated as a single string, it is capitalized and has its
leading and trailing white-space removed to ensure consistent
comparison of data values across the lake. Notice that each data
value, even if found in multiple attributes, is represented by one
single value node in the graph. An edge is placed between a
value node and an attribute node if the data value appears in
the attribute (column) corresponding to that attribute node. Data
values that appear in more than one attribute are candidates for
being homographs.

ExAMPLE 3.3. Figure 3b, shows a portion of the DomainNet rep-
resentation for Figure 1 using only the four attributes of Example 3.1.

Toyota Apple Values Attributes
Fiat Fiat T3.C2
Toyota
Apple T4.Name
Jaguar Puma Puma
Jaguar .
Lemur Pelican T1.At Risk
Panda
Panda Pelican Lemur T2.name
(a) Co-occurrence graph (b) Bipartite graph

Figure 3: Two graph representations of a portion of Figure 1.

In the DomainNet bipartite graph, we call two data values
neighbors if they both appear in the same attribute (and hence
there is a path of length two between them in the graph). Similarly,

two attributes are neighbors if they have at least one data value
in common (and hence there is a path of length two between
them). For a data value node v, N(v) denotes the set of all its
value neighbors. We also define the cardinality of a data value
node v as the number of neighbors |N(v)|, which is the number
of unique data values that co-occur with o. If n is the number of
value nodes and a the number of attribute nodes, the number of
edges in a DomainNet graph over real data tends to be much less
thann - a.

Tables to Graph. Recent work on embedding algorithms in
relational databases [2, 7, 27] use a graph representation of tables.
Like DomainNet, they model values and columns as nodes. De-
pending on the problem addressed, some approaches also include
nodes for rows and tables. Like in our approach, column names
are not assumed to be present or unambiguous.

Koutras et al. [27] and Capuzzo et al. [7] use a tripartite graph
representation in which every value node is connected with its
column node and its row node. Such an approach works well for
the tasks of tuple-level entity resolution and for schema matching
(a similar task to semantic type discovery). We experimented
using both row and table information in DomainNet and found it
was not useful in disambiguating values. In our example, Panda
in T1 and T2 are not homographs, but the row information makes
them seem quite different and we did not find it helpful.

In contrast, Arora and Bedathur [2] use a homogeneous graph
using only data value nodes that are connected with each other
if they appear in the same row of the table. They do not use
the value co-occurrence information within a column, making
homograph detection using solely row context inappropriate in
large heterogeneous datasets.

3.3 Homograph-Disambiguation
Methodology

Intuitively, data values that frequently co-occur with each other
will form a latent semantic type or community in DomainNet,
with many paths of varying length between them. Homographs
will span two or more communities. Notice however that we do
not know a priori what the communities are or even how many
there are. While there is a rich literature on community detection,
many approaches require knowledge of the possible communities
such as the number of communities [8]. Others are parameter-
free, meaning they can learn the number of communities [21,
and others]. However, in our problem the number is not only
unknown, it may be massive. A data lake with just a modest num-
ber of tables may have many attributes representing a multitude
of different semantic types (communities of values) [8, 15].
What we propose in this paper is to use network centrality
measures that can be defined without prior knowledge of how
many communities exist, their overlap, or the distribution of
attribute cardinalities. The intuition behind centrality measures
is to capture how well connected the neighbors of a given node
are. We define variants of these measures appropriate for the
DomainNet bipartite graph. We then discuss to what extent these
measures may distinguish whether a data value has a single
meaning or multiple meanings (the latter being a homograph).

Local Clustering Coefficient as a homograph score. The lo-
cal clustering coefficient (LCC) [48] for a given value node mea-
sures the average probability that a pair of the node’s neighbors
are also neighbors with each other, i.e., the fraction of value-
neighbor triangles that actually exist over all possible triangles.

17

The LCC metric is usually defined over unipartite graphs (such
as the co-occurrence graph in Figure 3(a)). We use the definition
of value-neighbors (recall the set of all value neighbors of a value
node u is N(u)) to generalize LCC to our bipartite graph.

The pairwise clustering coefficient of two data value nodes v
and w is defined as the Jaccard similarity between their neighbors
_ N(o) N N(w)

" N@) UN(w)’

Given a graph G and a value node u, the LCC is defined as
the average pairwise clustering coefficient among all the node’s
value neighbors:

Cow

o = ZUEN(u) Cou (1)
¢ IN ()]

The LCC of a node u can be computed in time O(N(u)?) and

provides a notion of the importance of a node in connecting

different communities.

HypotHEss 3.4 (HomoGraPHS USING LCC). A value node cor-
responding to a value that is a homograph will have a lower local
clustering coefficient than a value node with a single meaning.

Intuitively, we expect unambiguous values to appear with a
set of values that co-occur often and thus have high LCC scores.
This behavior should be less common for homographs, which
may span values from different communities as they appear in
various contexts depending on their meaning.

Despite LCC’s computational simplicity, the measure as de-
fined in Equation (1) is no more than the average Jaccard simi-
larity between the set of attributes that a value co-occurs with.
Unfortunately, it is well-known that Jaccard similarity is biased
to small sets. As consequence, the measure is not as effective in real
data lakes where attribute sizes are often considerably skewed.
Our experiments will confirm this downside of LCC.

Betweenness Centrality as a homograph score. The LCC of
a node is fast to compute, but it only considers the local neigh-
borhood of a value. In a data lake, the local neighborhood may
not be sufficient. In particular, the local neighborhood may not
include values that are members of the same community but
happen to not co-occur. In order to overcome these two problems
(missing values in the neighborhood and attributes with very
different cardinalities) we look at metrics that take a more global
perspective on the network.

The betweenness centrality (BC) of a node measures how often
a node lies on paths between all other nodes (not just the neigh-
bors) in the graph [16]. One way to think of this measure is in a
communication network setting where the nodes with highest
betweenness are also the ones whose removal from the network
will most disrupt communications between other nodes in the
sense that they lie on the largest number of paths [35].

Consider two nodes v and w. Let oy, be the total number of
shortest paths between v to w, and let o4, (u) be the number of
shortest paths between v to w that pass through u (where u can
be any node).? The betweenness centrality of a node u is defined
as follows, where v and w can be any node in the graph:

BC(w)=) Gow(®).

vFEU,WHEU Oow

@)

2Since the bipartite graph used in DomainNet is not homogeneous we also examined
other variations of BC such as considering only values nodes as end points for
the examined shortest paths. We found that using all nodes in the BC definition
provided empirically the best results for finding homographs.

Tpw (W)
O,
Intuitively, a homograph appears with sets of values that do

not or rarely co-occur across those sets, and thus the shortest
paths between such non-co-occurring nodes would have to go
through the homograph node. Conversely, unambiguous values
appear with a set of values that also co-occur a lot, and thus the
shortest path between them does not unnecessarily have to go
through one or a few nodes.

By convention = 0 if 04y (and therefore o4y (1)) is 0.

HypoTHESIS 3.5 (HoMoGRAPHS USING BC). A value node corre-
sponding to a homograph will have a higher betweenness centrality
than a value node with a single meaning.

ExAMPLE 3.6. The LCC scores of the Jaguar and Puma data
value nodes in Figure 1 are 0.36 and 0.43 respectively. The LCC
scores of the other data value nodes that appear more than once,
Toyota and Panda, are somewhat higher at 0.46. The BC scores
of the Jaguar and Puma value nodes in Figure 1 are 0.025, 0.003
respectively. The BC of the other value nodes that appear more than
once, Toyota and Panda, are at 0.002. Since this example only uses
four small tables it does not expose the possibly different rankings
between LCC and BC scores but suggests that BC, even on small
graphs is more discerning.

Complexity of BC. Calculating the BC for all nodes in a
graph is an expensive computation. A naive implementation takes
O(n®) time and O(n?) space (n denotes the number of nodes
in the graph). The most efficient algorithm to date is Brandes’
algorithm [6] that takes O(nm) time and O(n + m) space (for
unweighted networks) where m is the number of edges in the
graph. Notice that this algorithm is still expensive if the graph is
dense (i.e., m >> n).

The high time complexity of BC motivated approximations,
which usually sample a subset of nodes from the graph and
thus do not calculate all shortest paths. One common sampling
strategy is to pick nodes with a probability that is proportional
to their degree (nodes with high degree are more likely to appear
in shortest paths). Riondato and Kornaropoulos [40] provide an
approximation algorithm via sampling with offset guarantees.
Geisberger, Sanders, and Schultes [17] provide an approximation
algorithm without guarantees that performs very well in practice.
The complexity of the approximate BC is O(sm) where s is the
number of nodes sampled. We chose Geisberger, Sanders, and
Schultes [17] to approximate betweenness centrality to benefit
most from its short run-time on large graphs.

3.4 Disambiguation Using DomainNet

In this section, we describe the implementation of an end-to-end
system which allows users to disambiguate data lakes using our
proposed methodology. Our system has three steps as illustrated
in Figure 4: (1) construct DomainNet graph; (2) calculate measures;
and (3) rank measures.

DomainNet graph construction. The input is a set of raw data
tables from relational databases, CSV files, or any other open
data format. It is important to note that we do not require any
information in regards to types, attribute names, or the semantics
of relationships between tables. We build our bipartite graph as
described in Section 3.2.

Graph measure computation. Using the DomainNet graph con-
structed in the previous step, our system computes both LCC and
BC scores for each value node (Section 3.3). We show empirically
in Section 5.1 that BC outperforms LCC in homograph detection.

18

©,

Panda
Panda
Lemu

Jagual

Data Lake

DomainNet

T2.name

TLA risk-

Memphis 2

43224
13000
456 370870
123456

Jaguar
Puma
Apple
ota 123

25.8
Attributesh

T4.Name

Xe Jaguar UK
500 Fiat Italy
Prius __ Toyota Japan

Lcc BC | LCcC N BC
Panda 0.45 0.002 0.6 0.03
Puma 0.43 0.003
0.4 (o) 0.02
Jaguar 0.36 0.024 29 il s 3 0.01
Toyota 0.45 0.002 .O 0

> Q@ P o

XY

< LR 7>°’0<Z°
N

O ,\@\0 &

® : ®

Figure 4: Disambiguation system on DomainNet. (1) Construct a
DomainNet graph from a data lake. (2) Calculate BC and LCC scores
for each value node in the graph. (3) Rank the scores accordingly.

Graph measure ranking. Nodes are ranked by their centrality
score (ascending order for LCC measures, and descending order
for BC measures) the top ranked data values present to a user.

4 DATASET DESCRIPTION

Homograph detection in data lakes is a new problem and no
benchmarks are available for it. While many data lakes exist, they
do not contain labels that identify the homographs. In addition to
being a hugely expensive task when done manually, homograph
labeling is not a one-time effort: when the content of the data
lake changes, an unambiguous value can become a homograph or
vice versa. Hence, benchmark design in this context constitutes
a non-trivial contribution in itself.

We introduce the four datasets used for the evaluation of
DomainNet. The first is a new synthetic benchmark and the other
three contain real data. The second is an adaptation of the Table
Union Search (TUS) Benchmark [33] that uses real tables from
UK and Canadian open-data portals and which we adapt for our
problem. The third is a modified version of TUS, called TUS-I,
where we systematically inject homographs. The fourth, used
to evaluate scalability, is a real data set from NYC Education
Open Data, which was also used to evaluate a domain discovery
approach [36].

Table 1 summarizes detailed statistics about the datasets. For
each, we list the number of tables, the total number of attributes
(columns) across all tables, the number of unique values in the
data lake, the total number of homographs, the range of cardinal-
ities of any homograph® (Card(H)), and the range of the number
of distinct meanings, #M, (based on ground truth) the different
homographs have across the data lake. All datasets can be found
at https://github.com/northeastern-datalab/DomainNet-Datasets

Table 1: Four datasets and their statistics.

#Tables #Attr #Val #Hom Card(H) #M
SB 13 39 17,633 55 151-1,966 2
TUS -1 1,253 5020 163,860 N/A N/A N/A
TUS 1,327 9859 190,399 26,035 3-22,703 2-100
NYC-EDU 201 3496 1,469,547 N/A N/A N/A

3Recall the definition of the cardinality of a homograph node v as |N (v) |, which is
the number of unique data values that v co-occurs with.

4.1 Synthetic Benchmark (SB)

We designed a small fully synthetic, but real-world inspired, data
lake for a systematic validation of our approach. It consists of 13
tables generated using Mockaroo?, which lets the data creator
specify data sources from various categories.

Each table has 1000 rows, except for two tables that contain
countries and states. We used the real numbers of countries and
US states of 193 and 50, respectively. There are 55 data values
that are homographs, e.g., Sydney (city or name), Jamaica (city or
country), Lincoln (car or city), CA (country or state abbreviation),
and Pumpkin (grocery product or movie title). The benchmark
along with its metadata (full list of tables and their schemas and
stats) are in our github.

4.2 Table Union Search Benchmark (TUS)

In the absence of homograph-labeled large real data lakes, we set
out to find a closely related benchmark that we could adapt to our
purposes. Unfortunately, while there are many table-based bench-
marks, even those for data-semantics-related problems generally
proved hard to adapt. For example, the VizNet corpus [22] used in
semantic type detection in tables [23, 51] provided ground-truth
labels for only a small fraction of the columns in the repository,
making ground-truth discovery of all homograph labels practi-
cally impossible. We therefore selected the Table Union Search
(TUS) benchmark [33], which contains real data and provides
a ground-truth mapping for each column to the set of columns
in the repository that it is unionable with. This enables us to
automatically label all homographs. Let U(a) denote the set of
columns (attributes) a given column a is unionable with and no-
tice that a is always unionable with itself, hence a € U(a). Let
A(n) be the set of columns (attributes) a data value n appears in.
Converting the TUS benchmark into our bipartite graph represen-
tation, we can automatically label data values as “unambiguous”
or “homograph” based on the unionability ground truth.

DEFINITION 2 (HOMOGRAPH IN THE TABLE UNION SEARCH
BENCHMARK). A data value n is a homograph if there exist two
attributes a and a’ in A(n) such that U(a) # U(a’); otherwise n is
an unambiguous value.

Intuitively, a data value is a homograph if it appears
in at least two different columns that are not unionable
(and hence have different types). For instance, assume value
USA appears in columns country_x1 and location_x2 in
tables X1 and X2, respectively. If the corresponding two
columns are unionable, i.e., U(country_x1) = U(location_x2) =
{country_x1,location_x2}, then we can conclude that USA is
an unambiguous value. In contrast, the columns containing the
value jaguar in the zoo or donor tables are not unionable with
either the company or car model tables and hence jaguar would
be labeled a homograph.

Based on Definition 2 there are 164,364 unambiguous values
and 26,035 homographs in the TUS benchmark, suggesting homo-
graphs are very abundant in real data lakes. Notice that attribute
cardinalities in TUS have high skew, a common phenomenon in
data lakes for open-data repositories [32]. Hence, this benchmark
provides a “stress-test” for our approach. How well can it deal
with both small and large cardinalities of attributes containing a
homograph (in TUS these cardinalities range from 3 to 22,703).

4https://www.mockaroo.com/

19

4.3 TUS with Injected Homographs (TUS-I)

Having real data is important, but we also need to understand the
performance of our solution as the number of homographs in a
data lake changes. To this end, we modified the TUS benchmark
as follows. First, we removed all 26,035 homographs. Second, we
carefully introduce artificial homographs with different proper-
ties. Since the artificial homographs are now the only ones in
the data lake, we can measure how their properties affect the
detection algorithm.

A homograph is injected by selecting two different data val-
ues from two columns that are not unionable. These original
values are then replaced by a new unique value such as “Inject-
edHomograph1”. We only replaced string values with at least 3
characters. In our experiments, we vary the minimum allowed
cardinality of the attributes containing values replaced with an
injected homograph. We also vary the number of meanings of an
injected homograph. This allows us to evaluate the effectiveness
of our approach in identifying homographs with respect to the
cardinality and number of meanings of the homographs.

5 EXPERIMENTAL EVALUATION

The main goal of the experiments is to evaluate how well
DomainNet performs in terms of precision and recall for identi-
fying the homographs in the benchmark datasets. We are par-
ticularly interested in determining if the more expensive be-
tweenness centrality (BC) provides significant improvement over
local clustering coefficients (LCC) (Section 3). Since a homograph
candidate must appear in at least two different table columns,
DomainNet pre-processes the input to remove data values that
appear only once in the data lake. As a result, the corresponding
graph representation has about 3% fewer nodes in the TUS bench-
mark and 30% fewer nodes in SB. Moreover we examine how our
method scales with larger input graphs and how homographs can
impact existing data integration tasks such as domain discovery.

Comparison to a baseline. There is no previous work that
directly explores homograph detection in data lakes (Section 2),
and previous work on the related problem of semantic type detec-
tion and domain discovery is generally supervised, i.e., requires
labeled training data. Hence, the only suitable algorithm that
we could reasonably adapt to solve our problem is the recently
proposed state-of-art unsupervised domain-discovery algorithm
D* [36]. We used the original code provided by the authors® with
its default parameter settings. When applied to a data lake, D*
assigns attributes to the discovered domains. A natural way to
identify homographs then is to identify data values that appear in
more than one of those domains. We compare D* to DomainNet
on the synthetic benchmark as it only contains string values.
D* discovers domains only for string data, making it ineffective
on the TUS benchmark, which contains real data with many
numerical attributes.

Measures of success. We generally measure precision and
recall, which are reported for the k top-ranked homograph can-
didates identified by each of the algorithms. By default k is set to
the true number of homographs in the data lake.

Software implementation. We implemented DomainNet in
Python 3.8, using Networkit ¢ [45] to calculate exact and approx-
imate BC scores over our bipartite graph. This is a Python library
for large-scale graph analysis whose algorithms are written in

5The code is available at https://github.com/VIDA-NYU/domain-discovery-d4.
Chttps://networkit.github.io

C++ and support parallelism. All our experiments were run on a
commodity laptop with 16GB RAM and an Intel i7-8650U CPU.

5.1 Fully Synthetic Benchmark (SB)

We first use the SB to compare the homograph rankings obtained
using the LCC and BC measures (Section 3) in order to study
their ability to identify homographs. The bipartite graph for SB
is relatively small, consisting of 17,672 nodes (17,633 data-value
nodes and 39 attribute nodes) and 19,473 edges. We calculated
the local clustering coefficients (LCC) and betweenness centrality
(BC) for each node in the graph and examined how these scores
differ between homographs and unambiguous values.

Which measure is better at discovering homographs? Figure 5
shows the top-55 data values based on LCC. For LCC, lower
scores should in theory indicate a greater probability of being a
homograph. Notice how more than 75% of the top-ranked data
values are not homographs, meaning that a large number of
unambiguous values have smaller LCC scores than the homo-
graphs. This is mainly caused by unambiguous values from small
domains that do not co-occur often with many values in their
domain. This confirms our hypothesis from Section 3 that LCC
may not work well when homographs appear in small domains.
In fact, the majority of the 55 homographs in the dataset have
LCC scores significantly above 0.45 and so it is not necessarily
true that homographs have low LCC cores. Overall the results
indicate that LCC scores do not provide an effective separation
between homographs and unambiguous values.

On the other hand, the BC scores result in a vastly better
top-55 result as shown in Figure 6. Here 38 out of the top-55
BC scores correspond to homographs. This is a much improved
outcome over the LCC scores in Figure 5. But what happened
to the remaining 17 homographs that are not in the top-55? We
noticed that the remaining 17 homographs have betweenness
scores of nearly zero and they all are values corresponding to
homographs that are abbreviations of country and state names.
Recall that these are the only two tables in SB with fewer than
1000 tuples, where the state table contains only 50 tuples. This
means that the BC score for values in these small domains cannot
be very large as there cannot be as many shortest paths that
would pass through the homograph in question.

An explanation for the low BC scores for these homographs is
the fact that there is considerable intersection between the coun-
try and state values which is not the case with other homographs
(e.g., the car brands and cities intersect only on the value Lincoln
and Jaguar). This relatively large intersection also reduces the BC
scores for those homographs as the number of shortest paths con-
necting two nodes between cities and states is much larger. For
example, going from the country code GR to the state code MA,
the shortest path could be using the homograph AL (which is for
Albania/Alabama) or CA (which is for Canada/California) or any
other homograph between countries and states. As a result those
homographs receive lower BC scores, because the denominator
in Equation (2) becomes large.

How good is previous work at finding homographs? As discussed
earlier, we compare DomainNet against a competitor based on
D*[36]. When applied to the SB dataset, D* discovers four do-
mains corresponding to Country, Country Code, Scientific
Animal Name,and Scientific Plant Name.It maps the domains
on 14 out of 39 table columns (attributes) in SB. Among these
14 attributes, there are 21 of the 55 homographs. Overall, when

20

considering the top-55 results returned, the D*-based algorithm
disambiguates homographs in SB with a precision, recall, and
F1-score of 38%. Using the BC score, DomainNet achieves for the
top-55 results a precision, recall, and F1-score of 69%.

5.2 Experimental Evaluation on TUS-I

We now study the BC-score-based version of DomainNet in more
detail on the large real-world dataset TUS-I with the injected
homographs. Due to the cost of running BC for each node, all
BC scores are approximated using 5000 samples. ’

Table 2: % of the 50 injected homographs appearing in the top-50
results vs. cardinality of the data values replaced by the injected
homograph. (Numbers are averages of 4 runs for each threshold.)

2> 100
93.5%

> 200
93.5%

2> 300
95%

> 400
94.5%

2> 500
97.5%

Cardinality of replaced values >0
% of injected homographs in top 50 85%

How does cardinality affect homograph discovery? Recall that
after removing all original homographs in TUS, the TUS-I dataset
only contains the homographs we methodically injected in or-
der to study a specific effect on betweenness centrality. We ran
our experiments by randomly selecting 50 pairs of values from
different domains® and replaced them with our 50 injected homo-
graphs. Each experiment was repeated 4 times with a different
seed for selecting the values for replacement. Since the number of
homographs in our experiment is always 50, in an ideal scenario
the top-50 BC scores would correspond to exactly those injected
homographs.

We found that cardinality has the expected impact on BC
scores in terms of separating homographs and unambiguous val-
ues. If the data values chosen for replacement have a not too small
cardinality (i.e., they co-occur with many other values) then the
BC score of their injected homograph was notably higher. We con-
firmed this observation in Table 2 where we varied the cardinality
threshold for the data values chosen for replacement. Overall, as
we increased the cardinality threshold, a larger percentage of the
injected homographs ranked in the top-50. In fact, if the replaced
values had a cardinality of 500 or higher, DomainNet consistently
ranked at least 48 of the 50 injected homographs in the top 50.
For reference, the largest attribute in TUS has 25,000 values and
over half of all attributes have more than 500 values.

How does the number of meanings of a homograph affect ho-
mograph discovery? In addition to varying the cardinality of the
replaced values, we also examined how the number of meanings
of the injected homographs impacts their BC-based rankings. The
number of meanings of an injected homograph is the number
of values replaced for each injected homograph. The replaced
values are all chosen from different domains to ensure that the
injected homographs have consistently the specified amount of
meanings. We explored injected homographs with the number
of meanings in the range 2 to 8 for replaced data values with a
cardinality of 500 or higher. Table 3 shows that as we increase
the number of meanings, DomainNet becomes better at discover-
ing them. This is consistent with our intuition for betweenness
centrality since homographs with more meanings are more likely

7 A common heuristic for the sample size is about 1-3% of the total number of nodes
in the graph. This works well in practice with sparse graphs like DomainNet [17].
We will further test the validity of this heuristic in Section 5.4.

8Different domains in the TUS benchmark context means values from columns that
are not unionable with each other.

0.55

0.50| | Value Type
‘5045 W homograph
27" munambiguous value
go040.

o
S 0.35

20.30
£0.25
k7
5020
Yo.1s
i
£0.10
-
0.05
0.00 LB

"9 S "
o) 'o\(‘ @“ 6,00 & zg \\eg <x> o\) @\ 5 Q\r,‘ﬂ\) :X) \z <<\ '&S\“”"\b Qq"’ 00\ Q\)e;&b a“\’\\ \(\\'o go Q\’o \\»\‘So GVQ\’O : o’b \-cg\ \c’b ,7\\(\ «OQ\\1~°>(<\ e,Q:‘ < \6% i;‘\ R 2291 \\0 O P
$TS TS ba‘\ e o‘“ 2O IO C P &5 pS "(\c RS @°c°‘(:<~° MRS e
(70\3 PRt RN (;oQ\\ oe'%'o N \n& I R & &“
.\{3‘0 90“\ « W
RS

Figure 5: The top-55 data values with the lowest local clustering coefficients. Homographs are scattered throughout and do not necessarily
have low LCC coefficients.

0.11
0.10 Value Type
0.09 ® homograph
g‘ m unambiguous value
©0.08 .
£0.07
5
5 0.06
90.05
Qo
§0.04
o
%0.03
@0.02
| 1
0.00 Illlllllll--------__...._.._.._........_......
o’° <9\<\\° & d ((\ \é\ d‘* "“b S <(\\@ \@ ‘_\0 0°0 \) ‘\e o"’a\e\‘ ‘oﬂ &R ((\(o & 0}’00 ,,)c‘\b%o & 6{00‘4- q,‘@\‘\a(\‘\qy q@‘ e,‘de"'b & ‘\ «‘ ,{&e 0o-}-
& W \<\ e \«? <<‘& DS @o OQ)QOﬂé\?’\CC\CQOO <<\‘<« O
P VRS ‘0 RRCESEN & Q, A & Q\z VGOV\ &° \’z\’\\\’ C"« @ Q\\ \\"é &
e C‘g’ SRR <\°" © @ ©
& o < @ S @ (e LS
(, () X (<, \Q B »(\
& '&Q \{K L& (,o S
& <@ & W
ey ¥

Figure 6: The top-55 data values with the greatest betweenness centrality scores. In the top-55 data values, 38 of them are homographs.
The homographs not in the top-55 are country/state abbreviation homographs.

Table 3: % of injected homographs in the top 50 according to be-

tweenness centrality while varying the number of meanings of 1.0- PP
the injected homographs Number of true homographs cut-off line ,f—
og {0 A=
meanings of injected homographs 2 3 4 5 6 7 8
% of homographs in top 50 97.5 97.5 985 985 100 100 100 0.6 —— Precision
--- Recall
oal | AE N e, F1-Score
to be hub nodes that connect multiple sets of nodes with each ' [
other in our bipartite graph representation of the data lake. P S 7 T o e s s
5.3 Homographs in TUS Benchmark 0.0)

. . 0K 25K 50K 75K 100K 125K 150K 175K
Lastly, we explore the performance of DomainNet with between- Kk

ness centrality on the real TUS dataset with its 26,035 real homo-
graphs. Since the number of homographs is large, we not only
report precision, recall, and F1-score for the top-26,035 results,
but for all top-k with k from 1 all the way to the number of
nodes in our graph, i.e., 190,399. We do not compare against the
D*-based algorithm for homographs, because D* operates only
on string attributes, and given the large number of numerical
attributes the D* coverage will be even lower than in SB (where
it only finds domains for 14 out of 39 attributes).

Figure 7: Top-k evaluation on the TUS dataset. The vertical line at
k=26,035 denotes the number of true homographs in the dataset.

increases. At k = 26,035 (vertical line in Figure 7), which is the
number of true homographs in the TUS benchmark, we achieve
a precision, recall and F1-score of 0.622. The highest F1-score
occurs at k = 29,633 where precision, recall, and F1-score are

How does our approach perform on a real open-data benchmark? 0.615, 0.7 and 0.655, respectively.
Figure 7 shows the summary of our top-k evaluation results. It is important to emphasize that our approach is completely
Notice that for relatively small values of k such as k = 200 unsupervised and does not assume any external knowledge about
our method can identify homograph values with high precision the tables or their values. Existing state-of-the-art methods that
(0.89). Naturally, as we increase k precision decreases and recall tackle data integration tasks as described in Section 2 cannot be

21

readily used for homograph identification or their coverage is
severely limited (e.g., knowledge-based approaches like AIDA
(50D

Below we report the top-10 values and their BC scores from
the TUS benchmark.

“Music Faculty” — 0.00064

“Manitoba Hydro” — 0.00045

“50” — 0.00029

“1800ZZMALDY2” — 0.00028

“? — 0.00027

“Conseil de développement” — 0.00025
“125” — 0.00023

“2” — 0.00022

“Biomedical Engineering” — 0.00022
“SQA” — 0.00016

All 10 data values are homographs based on the ground truth.
Notice that from a natural-language perspective these 10 values
do not seem to be homographs, but a closer look at the data
revealed good reasons why they were labeled as homographs.
For example the value Music Faculty appears in two distinct
contexts: as a geographic location/landmark in transportation-
related tables as well as a department in university-related tables.

The value with the fifth-highest BC score is the period char-
acter. This may seem bizarre, but the period is used extensively
as a null replacement in a large variety of tables and thus it acts
as a homograph with a very large number of meanings. Finally,
notice that we identify numerical values such as 50, 125 and 2,
which appear in a variety of contexts such as addresses, iden-
tification numbers, quantity of products, etc. Numerical values
are traditionally difficult to deal with in many data-integration
tasks, hence being able to identify some of them in a completely
unsupervised manner is a notable step toward better coverage
for numerical values.

5.4 Scalability

As discussed in Section 3.4, Step 1 (graph construction) and Step
2 (centrality measure computation) are the most computationally
expensive in our approach. In this section, we examine empiri-
cally the scalability of these steps.

The time to construct our bipartite graph is dependent on how
long it takes to scan all input tables, which is a relatively fast
operation. For example, the bipartite graph for the TUS dataset
takes about 1.5 minutes to construct, which is how long it takes
to read through each table in the dataset.

The runtime of Step 2 depends on the graph measure used.
LCC is a local measure that is efficient to compute, but as we
demonstrated in section 5.1 it is not as effective in finding homo-
graphs as BC is. Computing the LCC score for every node in the
TUS dataset takes 4 seconds. For the global measure BC, since we
are more interested in the score rankings rather than the scores
themselves, approximating BC via sampling can significantly
decrease the runtime without compromising quality.

In Figure 8, we examine how precision and runtime vary as
we change the number of samples used for the approximate BC
algorithm [17] on the TUS benchmark. Even for a small sample
size (e.g., 1000), precision stabilises at 0.6. Notice that 1000 sam-
ples correspond to around .5% of the nodes in the TUS graph and
it takes about 40 seconds for the algorithm to complete. The BC
approximation has a complexity of O(sm) where s is the num-
ber of nodes sampled and m the number of edges in the graph.
Based on the literature and testing on our graphs we found that

22

sampling 1% of the nodes provides a good approximation of BC
that is very consistent with the score rankings produced by the
exact BC computation.

We also considered a bigger data lake to further test execution
times—the NYC education open data dataset as used in D* [36].
The bipartite graph representation of that dataset has roughly
1.5M nodes and 2.3M edges which is an order of magnitude
larger than the bipartite graph for the TUS dataset. The graph
was constructed in 3.5 minutes and the BC scores for every node
were computed in 27 minutes using approximate BC on 1% of
the nodes (~15K nodes).

To examine how runtime scales with graph size we extracted
random subgraphs® of various sizes from the bipartite graph used
for the NYC education dataset. We ran approximate BC for each
graph by sampling 1% of its nodes and measured the runtime.
Figure 9 shows that runtime increases linearly with graph size
(i.e., number of edges) which is in accordance with the O(sm)
complexity of the approximate BC algorithm. .

1.0 250
—— Precision
Time

0.8 200
[Te}
3 S~
8 0.6 Wm 1505
9 v
s £
0
204 100
2
o

0.2 50

004 1000 2000 3000 4000 5000 ©

Sample Size

Figure 8: Precision at k (where k is the number of homographs
in the dataset) and execution time at various sample sizes for ap-
proximate BC on the SB and TUS datasets. Exact BC on TUS took
150 minutes with a precision of 0.631.

900
800
700

D600

Q

£ 500

=
400
300

200

1.1M 1.2M

Edges

0.9M 1.0M 1.3M 1.4M 1.5M

Figure 9: Runtime of approximate BC for various sized subgraphs
based on the NYC education dataset.

5.5 Impact of homograph discovery on D*

As shown in Table 1 the number of homographs in a real data lake
can be large. To further understand the impact of homographs on

9The subgraphs were constructed by randomly selecting an attribute node and
adding all its connecting value nodes. We repeat by selecting another attribute node
until the subgraph reaches the desired size (within some margin)

Meanings
—— no homographs
—— 2

155 4
—— 6

160

=
u
=}

145

Domains

140

135

50 100 150
Injected Homographs

200

Figure 10: Number of domains found by D* over different TUS-
injected datasets. The horizontal red line shows the number of
domains found when no homographs were present in the dataset.

existing approaches, we consider the task of domain discovery
and examine how knowing homographs a priori can benefit them.

We report the results of five different runs of D* in Figure 10.
The plots show the number of domains found by D* (y-axis) as
we vary the number and meanings of the injected homographs.
To be fair in the comparison and to understand the impact of
homographs on the domain discovery task, we use the TUS-I
benchmark. We first ran D* over the dataset without homographs
and then over the same dataset with injected homographs. More
specifically, we injected 50, 100, 150 and 200 homographs with 2, 4
and 6 meanings. In all the above configurations the dataset always
had 68 domains based on the ground truth. The horizontal line
in Figure 10 shows that D* returns 134 domains for TUS-I with
no homographs. The difference in the number of domains based
on the ground truth and D*’s results is due to the nature of the
TUS benchmark [33] as it is created from a set of large real open
data tables that were randomly sliced vertically and horizontally.
Consequently, in some cases the columns originating from the
same table no longer share any values, causing D* to discover
more domains than there are based on ground truth.

As we increase the number and meanings of the injected homo-
graphs, D* returns even more domains leading to lower accuracy.
D*’s output provides statistics about the maximum and the aver-
age number of domains assigned to a column. In the TUS-I with
no homographs, that maximum is 2 and the average is almost
1 (i.e., 1.031) and it increases with the number of homographs.
With 200 homographs the maximum is 4 and the average is 1.04.
We also ran D* on the TUS-I with 5000 injected homographs, to
simulate a dataset with a large proportion of homographs as in
the TUS benchmark. The maximum domains per column is 22
and the average is 1.7 with a total of 371 domains found. The
presence of homographs is negatively affecting D* and causing it
to erroneously assign larger numbers of heterogeneous domains
to attributes as the number of homographs increases. Homograph
discovery therefore is an important step that can be executed
before domain discovery to improve its performance.

6 CONCLUSION AND FUTURE WORK

We presented DomainNet, a method for finding homographs in
data lakes. To the best of our knowledge, this is the first solution
for disambiguating data values in data lakes. Notably, our ap-
proach does not require complete or consistent attribute names.

We showed that a measure of centrality can effectively sep-
arate homographs from unambiguous values in a data lake by

23

representing tables as a network of connections between values
and attributes.

We compared against an alternative approach using D* to
identify the semantic domain (type) of attributes [36] and label-
ing a value a homograph if it appears in more than one domain.
Our direct computation of homographs has significantly better
precision and recall than the domain-discovery approach. This
seems to be due to D* at times placing homographs into a domain
represented by their most popular meaning and the fact that D*
does not find domains for every attribute. When we inject ho-
mographs into real data, DomainNet is robust to the number of
meanings of the homographs, reliably finding homographs with
even better accuracy as the number of meanings increases. We
also demonstrated the importance of homograph detection by
showing that the presence of homographs can have consider-
able impact on existing semantic integration tasks (specifically,
domain discovery).

In a benchmark created from real data, our method provides
a clear separation with high precision of homographs from val-
ues that are repeated, but always with the same meaning. The
accuracy is influenced by the cardinality of the homograph (i.e.,
the number of data values with which the homograph co-occurs).
When this number is too small, the bipartite graph representation
is not always sufficient to effectively identify all homographs. In
our experiments, the accuracy dropped from 97% to 85% as we
reduced the cardinality of homographs.

The homographs we discover on real data include phrases
with multiple meanings (e.g., Music Faculty referring both to
a geographic location and to a University unit). They also in-
clude null values (e.g., a dot “.” can indicate unknown/missing
X where X varies in different contexts) and data errors (e.g.,
Manitoba Hydro, an electric company, is placed in the wrong
column Street Name). In NLP, previous work on disambiguation
primarily focuses on the disambiguation of words and named-
entities. Our method is purely based on co-occurrence informa-
tion and does not discriminate between different types of homo-
graphs. In fact, we provide the first approach to disambiguate
numerical values in tables (e.g. 25 can be a street number or an
ID number).

Identifying homographs from tables in a completely unsuper-
vised manner can play an important role in improving other
data-lake analysis tasks. Specifically, we are considering how to
determine if a homograph is an error, e.g., the value has been
placed in the wrong cell. With such knowledge, we can help not
only identify such errors, but clean them as well. We also believe
that our homograph metrics can improve supervised semantic
type detection such as Sherlock [23] or SATO [51].

In this context, it will also be important to determine the
number of distinct meanings of a homograph. Our approach is
motivated by work on community detection where a commu-
nity represents a meaning for a value (e.g., animal or car model).
Hence we are investigating the role of community detection al-
gorithms on discovery of meanings of values in data lake tables.
Notice that in this problem, we do not know a priori what the
communities are or even how many there are. Non-parameterized
community detection algorithms can be used to discern the num-
ber of meanings of homographs. However, innovation is needed
for homographs with large numbers of meanings (such as null
equivalents) [21, and others].

To the best of our knowledge there are no available bench-
marks for homograph detection. Our synthetic benchmark (SB)

and our benchmarks TUS and TUS-I (that use real open data
tables [33]) are the first open benchmarks in this area.

In order to design a robust and completely unsupervised so-
lution that scales to large data lakes, we have quite deliberately
limited DomainNet to use only value co-occurrence information
in table columns, ignoring additional structural information like
co-occurrence of values in the same row. Our goal was to explore
how much this information alone reveals about data value se-
mantics. Given our strong positive results, we believe our metrics
should become an important feature that could be used in other
problems that involve understanding or integrating tables. An
important open problem is to extend DomainNet to collectively re-
solve ambiguous metadata and data, perhaps using probabilistic
graphical models that have been applied to collectively resolving
multiple types of entities at once [26] and to collectively resolving
data and metadata inconsistency in schema mapping [25].

Acknowledgments. This work was supported in part by the
National Science Foundation (NSF) under award numbers IIS-
1956096 and CAREER IIS-1762268.

REFERENCES

[1] R. Agerri and G. Rigau. Robust multilingual named entity recognition with
shallow semi-supervised features. Artif. Intell., 238:63-82, 2016.

[2] S. Arora and S. Bedathur. On embeddings in relational databases. CoRR,
abs/2005.06437, 2020.

[3] I Bhattacharya and L. Getoor. Collective entity resolution in relational data.
ACM Trans. Knowl. Discov. Data, 1(1):5, 2007.

[4] L Bhattacharya, L. Getoor, and Y. Bengio. Unsupervised sense disambiguation
using bilingual probabilistic models. In ACL, pages 287-294. ACL, 2004.

[5] K. D. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor. Freebase: a
collaboratively created graph database for structuring human knowledge. In
SIGMOD, pages 1247-1250. ACM, 2008.

[6] U.Brandes. A faster algorithm for betweenness centrality. Journal of mathe-
matical sociology, 25(2):163-177, 2001.

[7] R. Cappuzzo, P. Papotti, and S. Thirumuruganathan. Creating embeddings
of heterogeneous relational datasets for data integration tasks. In SIGMOD,
pages 1335-1349, 2020.

[8] T. Chakraborty, A. Dalmia, A. Mukherjee, and N. Ganguly. Metrics for com-
munity analysis: A survey. ACM Comput. Surv., 50(4):54:1-54:37, 2017.

[9] V. Christophides, V. Efthymiou, T. Palpanas, G. Papadakis, and K. Stefanidis.

An overview of end-to-end entity resolution for big data. ACM Comput. Surv.,

53(6), 2020.

Y. Dong, K. Takeoka, C. Xiao, and M. Oyamada. Efficient joinable table

discovery in data lakes: A high-dimensional similarity-based approach. CoRR,

abs/2010.13273, 2020.

J. Eberius, P. Damme, K. Braunschweig, M. Thiele, and W. Lehner. Publish-time

data integration for open data platforms. In Proceedings of the 2nd International

Workshop on Open Data (WOD), pages 1:1-1:6, 2013.

J. Eberius, M. Thiele, K. Braunschweig, and W. Lehner. Top-k entity aug-

mentation using consistent set covering. In SSDBM, pages 8:1-8:12. ACM,

2015.

R. C. Fernandez, J. Min, D. Nava, and S. Madden. Lazo: A cardinality-based

method for coupled estimation of jaccard similarity and containment. In ICDE,

pages 1190-1201. IEEE, 2019.

A. A. Ferreira, M. A. Gongalves, and A. H. F. Laender. A brief survey of

automatic methods for author name disambiguation. SIGMOD Rec., 41(2):15-

26, 2012.

S. Fortunato. Community detection in graphs. Physics reports, 486(3-5):75-174,

2010.

L. C. Freeman. A set of measures of centrality based on betweenness. Sociom-

etry, 40(1):35-41, 1977.

R. Geisberger, P. Sanders, and D. Schultes. Better approximation of between-

ness centrality. In ALENEX, pages 90-100. SIAM, 2008.

L. Getoor and A. Machanavajjhala. Entity resolution: Theory, practice & open

challenges. PVLDB, 5(12):2018-2019, 2012.

A. Goel, C. A. Knoblock, and K. Lerman. Exploiting structure within data for

accurate labeling using conditional random fields. In Proceedings of the 14th

International Conference on Artificial Intelligence (ICAI), 2012.

O. Hassanzadeh, M. J. Ward, M. Rodriguez-Muro, and K. Srinivas. Under-

standing a large corpus of web tables through matching with knowledge

bases: an empirical study. In Proceedings of the 10th International Workshop on

Ontology Matching, volume 1545 of CEUR Workshop Proceedings, pages 25-34.

CEUR-WS.org, 2015.

K. Henderson, T. Eliassi-Rad, S. Papadimitriou, and C. Faloutsos. HCDF: A

hybrid community discovery framework. In SIAM International Conference on

[10]

[11]

[12]

[13]

[14]

(15

[16]
[17]
[18]

[19

[20]

[21]

24

Data Mining, SDM, pages 754-765. SIAM, 2010.

K. Z. Hu, S. N. S. Gaikwad, M. Hulsebos, M. A. Bakker, E. Zgraggen, C. A.
Hidalgo, T. Kraska, G. Li, A. Satyanarayan, and C. Demiralp. Viznet: Towards
A large-scale visualization learning and benchmarking repository. In CHI,
page 662. ACM, 2019.

M. Hulsebos, K. Z. Hu, M. A. Bakker, E. Zgraggen, A. Satyanarayan, T. Kraska,
C. Demiralp, and C. A. Hidalgo. Sherlock: A deep learning approach to
semantic data type detection. In SIGKDD, pages 1500-1508. ACM, 2019.

I Tacobacci, M. T. Pilehvar, and R. Navigli. Embeddings for word sense disam-
biguation: An evaluation study. In ACL (1). ACL, 2016.

A. Kimmig, A. Memory, R. J. Miller, and L. Getoor. A collective, probabilistic
approach to schema mapping using diverse noisy evidence. IEEE Trans. Knowl.
Data Eng., 31(8):1426-1439, 2019.

P. Kouki, J. Pujara, C. Marcum, L. M. Koehly, and L. Getoor. Collective entity
resolution in multi-relational familial networks. Knowl. Inf. Syst., 61(3):1547~
1581, 2019.

C. Koutras, M. Fragkoulis, A. Katsifodimos, and C. Lofi. REMA: graph
embeddings-based relational schema matching. In EDBT, volume 2578, 2020.
[28] J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas, P. N. Mendes,
S. Hellmann, M. Morsey, P. van Kleef, S. Auer, and C. Bizer. DBpedia - A
large-scale, multilingual knowledge base extracted from wikipedia. Semantic
Web, 6(2):167-195, 2015.

O. Lehmberg, D. Ritze, R. Meusel, and C. Bizer. A large public corpus of web
tables containing time and context metadata. In WWW, pages 75-76, 2016.
F. H. Levin and C. A. Heuser. Evaluating the use of social networks in author
name disambiguation in digital libraries. J. Inf. Data Manag., 1(2):183-198,
2010.

G. Limaye, S. Sarawagi, and S. Chakrabarti. Annotating and searching web
tables using entities, types and relationships. PVLDB, 3(1):1338-1347, 2010.
F. Nargesian, E. Zhu, R. J. Miller, K. Q. Pu, and P. C. Arocena. Data lake
management: Challenges and opportunities. PVLDB, 12(12):1986-1989, 2019.
F. Nargesian, E. Zhu, K. Q. Pu, and R. J. Miller. Table union search on open
data. PVLDB, 11(7):813-825, 2018.

R. Navigli. Word sense disambiguation: A survey. ACM Comput. Surv.,
41(2):10:1-10:69, 2009.

M. E. J. Newman. Networks: An Introduction. Oxford University Press, 2010.
M. Ota, H. Mueller, J. Freire, and D. Srivastava. Data-driven domain discovery
for structured datasets. PVLDB, 13(7):953-965, 2020.

G. Papadakis, G. M. Mandilaras, L. Gagliardelli, G. Simonini, E. Thanos,
G. Giannakopoulos, S. Bergamaschi, T. Palpanas, and M. Koubarakis. Three-
dimensional entity resolution with JedAL Inf. Syst., 93:101565, 2020.

G. Papadakis, J. Svirsky, A. Gal, and T. Palpanas. Comparative analysis of
approximate blocking techniques for entity resolution. PVLDB, 9(9):684-695,
2016.

M. T. Pilehvar and R. Navigli. A large-scale pseudoword-based evaluation
framework for state-of-the-art word sense disambiguation. Comput. Linguis-
tics, 40(4):837-881, 2014.

M. Riondato and E. M. Kornaropoulos. Fast approximation of betweenness
centrality through sampling. Data Min. Knowl. Discov., 30(2):438-475, 2016.
D. Ritze, O. Lehmberg, Y. Oulabi, and C. Bizer. Profiling the potential of
web tables for augmenting cross-domain knowledge bases. In WWW, pages
251-261. ACM, 2016.

G. Simonini, S. Bergamaschi, and H. V. Jagadish. BLAST: a loosely schema-
aware meta-blocking approach for entity resolution. PVLDB, 9(12):1173-1184,
2016.

B. Skaggs and L. Getoor. Topic modeling for wikipedia link disambiguation.
ACM Trans. Inf. Syst., 32(3):10:1-10:24, 2014.

N. R. Smalheiser and V. L. Torvik. Author name disambiguation. Annu. Rev.
Inf. Sci. Technol., 43(1):1-43, 2009.

C. L. Staudt, A. Sazonovs, and H. Meyerhenke. Networkit: A tool suite for
large-scale complex network analysis. Netw. Sci., 4(4):508-530, 2016.

F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: a core of semantic knowl-
edge. In WWW, pages 697-706, 2007.

K. Takeoka, M. Oyamada, S. Nakadai, and T. Okadome. Meimei: An efficient
probabilistic approach for semantically annotating tables. In AAAI pages
281-288. AAAI Press, 2019.

D. J. Watts and S. H. Strogatz. Collective dynamics of ‘small-world’ networks.
Nature, 393(6684):440-442, 1998.

V. Yadav and S. Bethard. A survey on recent advances in named entity recog-
nition from deep learning models. In COLING, pages 2145-2158. ACL, 2018.
M. A. Yosef, J. Hoffart, I. Bordino, M. Spaniol, and G. Weikum. Aida: An online
tool for accurate disambiguation of named entities in text and tables. PVLDB,
4(12):1450-1453, 2011.

D. Zhang, Y. Suhara, J. Li, M. Hulsebos, C. Demiralp, and W. Tan. Sato:
Contextual semantic type detection in tables. PVLDB, 13(11):1835-1848, 2020.
E. Zhu, F. Nargesian, K. Q. Pu, and R. J. Miller. LSH ensemble: Internet-scale
domain search. PVLDB, 9(12):1185-1196, 2016.

[22]

[23]

[24]

[25]

[26]

[27]

[29]

[30]

[31]
[32]
[33]
[34]

[35]
[36]

(371

[38]

[39]

(40]

[41]

[42]

[43]
[44]
[45]

[46

[47]

[48

[49]

[50]

[51]

[52]

O

proceedings

GPU-INSCY: A GPU-Parallel Algorithm and Tree Structure for
Efficient Density-based Subspace Clustering

Jakob Redsgaard Jergensen
Department of Computer Science
Aarhus University, Denmark

Katrine Scheel
Department of Computer Science
Aarhus University, Denmark

Ira Assent
Department of Computer Science
DIGIT Aarhus University Centre for

jakobrj@cs.au.dk scheel@cs.au.dk Digitalisation, Big Data and Data
Analytics
Aarhus University, Denmark
ira@cs.au.dk
ABSTRACT subspace’s dimensionality. When finding clusters, the density

Subspace clustering is the task of grouping objects based on mu-
tual similarity in subspaces of the full-dimensional space. The
INSCY algorithm extends the well-known density-based cluster-
ing algorithm DBSCAN. It finds dimensionality-unbiased non-
redundant subspace clusters using a tree structure to speed up the
processing of subspaces. Still, finding density-based clusters in all
subspaces implies an exponential search space in the number of
dimensions. Thus, the running time of INSCY is still measured in
hours on even small datasets of 2000 points. For larger datasets,
it becomes prohibitively expensive.

To benefit from INSCY for real-world sized datasets, we pro-
pose a novel GPU-parallel approach that runs on standard graph-
ics cards. To utilize the many cores of the GPU, we need new
algorithmic strategies that fit the computational model of the
GPU. While the GPU provides a large number of threads, tra-
ditional algorithms incur diverging threads and poor memory
alignment, both of which lead to idle time and poor runtime
performance. In INSCY, extracting subspace regions from the
SCY-tree structure and the density-based clustering of regions
itself are thus unfit for the GPU.

Our novel GPU-friendly algorithm GPU-INSCY computes the
same subspace clustering as INSCY at dramatically reduced run-
times. To achieve this, we devise a restructured SCY-tree index-
structure and associated operations for the GPU, as well as a
GPU-parallel density-based subspace clustering.

We experimentally show that GPU-INSCY scales well with the
size of the dataset and the number of dimensions, and improves
the running time of INSCY by a factor of several thousand for
large datasets of high dimensionality.

1 INTRODUCTION

Clustering, i.e., grouping data points based on mutual similarity,
is a widely used data mining task, e.g., for grouping customers to
allow for targeted marketing. However, real-world data is often
high-dimensional, and a higher number of dimensions means
that there are more possibilities for points to seem dissimilar.
This is known as the curse of dimensionality. Due to this effect,
points tend to group within a subspace of the full-dimensional
space, leading to the task of subspace clustering [2, 4, 15], where
we search for clusters with all possible subspaces. To search for
such clusters, we often employ density-based clustering simi-
lar to DBSCAN [12]. Most subspace clustering algorithms, e.g.,
SUBCLU [15], use a fixed density threshold independent of the

© 2021 Copyright held by the owner/author(s). Published in Proceedings of the
24th International Conference on Extending Database Technology (EDBT), March
23-26, 2021, ISBN 978-3-89318-084-4 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Series ISSN: 2367-2005

25

threshold needs to match the expected density such that we
can find all points within clusters, but without including ev-
erything. However, the expected density is lower for higher-
dimensional subspaces than it is for lower-dimensional subspaces.
For density-based subspace clustering, this problem implies that
density-measures that do not take the subspace’s dimensionality
into account are biased toward lower subspaces. To address this
problem, Assent et al. [6] formulated a dimensionality-unbiased
density-measure and utilized this in the algorithm INSCY [8].
INSCY, furthermore, removes redundancy and provides an index-
structure called SCY-tree used to partition and prune regions of
density-connected data points. A drawback that remains, is that
the running time is still measured in hours on even small datasets
of a couple of thousands of points.

To reduce the runtime of dimensionality-unbiased density-
based subspace clustering, we exploit modern graphics cards
(GPUs), capable of general-purpose computations, fast context
switches, and parallelizing over many cores, but with a restric-
tive computational model and limited memory. The high com-
putational throughput of GPUs has been utilized to improve
clustering runtimes [1, 5, 10]. However, to our knowledge, there
exists no GPU-parallelization of a dimensionality-unbiased index-
supported algorithm like INSCY, which is challenging to GPU-
parallelize due to index and depth-first subspace search being
optimized for (sequential) CPU processing.

Contributions. In this work, we present a novel GPU-parallel
algorithm, called GPU-INSCY, which provides the same cluster-
ings as INSCY at substantially reduced runtimes. To achieve this,
we restructure several major parts of INSCY, the index-structure
SCY-tree, the operations used to partition regions of data, and
the clustering of points. INSCY partitions regions represented by
SCY-trees through a sequence of operations. We show how to
make these operations parallel and combine several partitions
into one process. Combining these allows us to avoid many re-
dundant iterations and temporary copies. The clustering step
is also GPU-parallelized and improved further by utilizing the
density monotonicity for neighborhoods in increasing subspaces.

This paper is organized as follows: Section 2 discusses related
work, Section 3 gives the background of subspace clustering
and INSCY, Section 4 describes our new parallel algorithm GPU-
INSCY, Section 5 presents the experimental comparison of INSCY
and GPU-INSCY, and Section 6 concludes our work.

2 RELATED WORK

Subspace clustering is the task of grouping points based on mu-
tual similarity in any possible subspace of the full-dimensional
space, hence its worst case complexity is exponential in the num-
ber of dimensions.

10.5441/002/edbt .2021.04

https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2021.04

Algorithms for subspace clustering [2, 4, 6-8, 11, 14, 15, 25]
are often categorized into bottom-up or top-down approaches
[16, 21, 24, 26]. Bottom-up approaches start with clustering in 1-
dimensional subspaces, iteratively combining k-dimensional sub-
space clusters into (k +1)-dimensional subspace clusters. CLIQUE
[4] and MAFIA [14] are grid-based approaches that may miss
subspace clusters spanning across grid cells. Instead of clustering
dense cells, SUBCLU [15] clusters dense points, as in the density-
based full space clustering algorithm DBSCAN[12]. An issue with
SUBCLU and other density-based subspace clustering approaches
is that they use a fixed density-threshold for all subspaces. There-
fore, they do not take dimensionality into account and are biased
towards lower-dimensional subspace clusters. INSCY is an ex-
tension of SUBCLU that mitigates this problem by introducing a
density measure normalized by a subspace’s expected density.

Top-down approaches start by clustering the full-dimensional
space and iteratively refine the subset of dimensions associated
with each subspace cluster [2, 3, 29]. These approaches limit sub-
space clusters by assigning each point in the data to exactly one
subspace cluster. Due to the exponential search for subspaces,
many of the algorithms take an approximate approach to sub-
space clustering [2, 14, 20]. They do so using a heuristic to pick
the subspaces that are examined or only compute clusterings of
dense regions instead of single dense points. These approaches
might miss clusters that exact algorithms like INSCY capture.

Even though exact subspace clustering algorithms are time
consuming, few algorithms have been proposed to reduce the
running time by exploiting the high computational throughput of
the GPU. Utilizing the many cores of the GPU is highly challeng-
ing because of the distinct and limited computational model, as
well as limited memory. There have been proposed several GPU-
parallelized full-space clustering algorithms [5, 10, 13, 17, 19].
One of the earliest GPU versions of the full-space clustering algo-
rithm DBSCAN was CUDA-DClust* [10], which starts multiple
searches for clusters in parallel. If multiple searches start within
the same cluster, they are merged. Multiple other GPU-versions
of DBSCAN have been developed [5, 18, 19, 28]. Our assessment
of self-reported results suggest that G-DBSCAN([5] and CUDA-
DClust*[10] are the best performing options. An experimental
evaluation [22] studies three of these GPU-versions and finds that
G-DBSCAN is the fastest and CUDA-DClust” uses less memory.

Only one GPU-parallelization of a well-known subspace clus-
tering approach has been proposed [1] for grid-based MAFIA.
GPUMAFIA parallelizes one operation at a time, mapping nested
for-loops of minor computations directly to parallel threads. Our
restructuring of INSCY lets us GPU-parallelize GPU-INSCY even
further such that we can even parallelize operations performed
at different points of the process. We completely restructure the
algorithm and its underlying SCY-tree structure to fit the compu-
tational model and the memory structure of the GPU.

To the best of our knowledge, we are the first to develop a GPU-
parallelized version of a density-based subspace clustering algo-
rithm, in particular an algorithm that supports dimensionality-
unbiased density measures and exploits indexing structures for
efficient computation.

3 BACKGROUND
3.1 The graphics processing unit

We give a short introduction to graphics processing units (GPUs)
and their computational model. When using a GPU for general-
purpose computation, the GPU is co-processor, and the CPU is

26

main processor. Throughout the paper, we use the term parallel to
denote parallel execution under the GPU’s computational model.
The main difference between a multi-core CPU and a GPU is that
GPUs can perform fast context switches and that several cores
on the GPU uses the same program counter and, therefore, must
perform the same operations.

CUDA is NVIDIA’s framework for using their line of GPUs.
It uses the concept of a kernel, which is a function executed on
multiple threads in parallel. Threads are organized into blocks,
and all threads within a single block are capable of synchronizing,
share fast accessible memory, and use atomic operations. How-
ever, there is a physical limit to the number of threads a block
can contain, and the communication between threads comes at a
time-cost. Each block is further separated into warps. All threads
within a warp share a program counter, implying that they must
perform the same instructions (SIMD) at all times. In the case of
branch-diversion, threads in different branches will remain idle
until the other branch has finished.

When parallelizing operations on the GPU, we are not guar-
anteed any order of executions. Therefore, our goal is to identify
independent operations, i.e., operations that do not use the partial
result of each other and therefore can be run in any order with-
out changing the final result. All allocation of memory and calls
to kernels are done by the CPU and executed on the GPU. All
communication with the GPU comes with a time-cost due to the
large latency of data transfer. Therefore, it is essential to balance
where data is processed and how long it takes to transfer.

3.2 INSCY

We describe INSCY briefly. For further details please see [8]. We
use the following terminology: let X € R™ be a d-dimensional
dataset with n points, D = {0,...,d — 1} an index set for the
full dimensional space, S C D a subspace of D, and N? (p) the
neighborhood with radius ¢ of a point p in subspace S.
According to INSCY [6], a subspace cluster is a maximal set
of points of at least minc, which are density-connected in a
subspace according to some density measure, and which is not
redundant w.r.t. a higher dimensional subspace projection:

Definition 3.1. INSCY Subspace Cluster
A set of points C C X in subspace S C D is a subspace cluster if:

e objects in C are S-connected: Vp,q € C : Jo1,...,0m €
C:p=o01Aq=om AVie{2,...,m}: o; eNg(oi_l)
o all points fulfill the density criterion: Vp € C : dc(p),
e Cismaximal,i.e., contains all S-connected objects: Vp, q €
X :p,qS-connected = peCAqgeC,
e minimum cluster size: |C| > ming,
¢ not redundant: AC’, S’ subspace cluster with C’ € C A
ScS' AIC|=rx|C|
where r is the redundancy parameter, minc is the minimum size
of a cluster, and dc’ (p) is any dimensionality-unbiased density
criterion within subspace S.

In this paper, we use the dimensionality-unbiased rectangular
density measure for the density criterion dcs (p) = |Ngg P =
max(F - a(S), i), where F is the density factor threshold, a(S) =

IS|
Es [|Nf (p)|] = |X] % is the expected density, c(S) =

7% 1 (B4 1) with T(n+1) = nxT(n),T(1) = 1,1(1/2) = Vi,
vg is the volume of subspace S, and y is the minimum number
of points required for not just being pseudodense. Other density
measures can also be used. For further details see [6]. Note that

Def. 3.1 is similar to density-based clustering in DBSCAN [12],
but with an unbiased density notion wrt. subspaces.

SUBCLU [15] uses monotonicity of density-connectivity to
prune points that lie outside clusters in a lower-dimensional sub-
space projection. However, for INSCY’s unbiased density measure
that scales with the expected density of a subspace, monotonicity
is lost. Still, as [6] observes, pruning can be done by discard-
ing points that are not dense w.r.t. the lowest possible density
threshold, i.e., for the full-space. INSCY finds such points, called
not weak-dense, which can safely be pruned before searching
for clusters within superspaces of the current space. A point is
weak-dense if INg9 (p)| = max(F X a(D), u).

3.2.1 The INSCY algorithm. The idea of INSCY is to bound
the search for subspace clusters by identifying regions that fully
contain potential clusters. INSCY describes such a region by the
dimensions it spans and the respective intervals in these dimen-
sions, and call it a subspace region. INSCY performs a depth-first
search (DFS) of the subspace regions, i.e., enumerating all pos-
sible subspace regions. INSCY does so by recursively extending
with one dimension at a time and partitioning the region into
intervals along that dimension. When INSCY returns from the
recursion, it performs density-based clustering within the current
subspace region to obtain the clusters. This implies that INSCY
cluster points within all superspaces of the current space first.

Each dimension is partitioned into a fixed number of cells.
As a cluster likely spans multiple cells, INSCY register this by
having a border between each cell at the size of the neighborhood
radius e. When performing density-based clustering, it follows
that if there are no points within this border, the two cells’ points
cannot be density-connected. Otherwise, a cluster may span
both cells. Such connected cells are referred to as S-connected.
S-connected cells must be merged into a density-connected in-
terval to ensure that no clusters are split. An interval spanning
multiple cells is identified by the first cell. A dimension might
have multiple density-connected intervals, and INSCY is called
recursively on each interval in a depth-first manner. The whole
process of expanding with a new dimension and bounding to
a density-connected interval is referred to as restricting w.r.t. a
new dimension and the cell identifying the interval. The pair of
dimension d and cell ¢ is called a descriptor (d, c). When expand-
ing with a new dimension, we expand one region at a time. Figure
1 shows a 1-dimensional example, and the expansion into two
dimensions. On the left, the dimension is split into three cells,
where two are S-connected and merged into one interval marked
by green. On the right, we see the expansion. The red region is
split into cells along the added dimension and connected with
any S-connected cells, and likewise for the green region.

To keep track of the possible dimensions and cells that can be
restricted, INSCY introduces an index-structure called SCY-tree.
The idea of SCY-tree is to precompute the number of points within
cells along a dimension such that restricting becomes easier. The

—>

dimension 1

M O
L]
.. h

[N D |

dimension 0 —9>

I

dimension 0 —9>

Figure 1: Expansion of 1-d regions into 2-d

27

Figure 2: SCY-tree for examples in [8]; node values cell :
count; dimensions and points colored as in later figures

SCY-tree, therefore, represents the dimensions and cells not yet
restricted. The SCY-tree is a tree-structure containing nodes that
represent a partition of a space along a specific dimension. All
nodes regarding a specific dimension are located at the same
height in the SCY-tree, which we call a layer. The children of
a node represent splits into cells along a dimension, one child
per cell. Each node contains its cell number and the count of
points within the cell it represents. A cell with an S-connection
is represented by adding a sibling with the same cell number,
but with the count of points set to -1. Such a node is called
an S-connector node. INSCY keeps track of S-connections by
continuing the path of S-connector nodes down to the leaf layer.
The root node of the SCY-tree represents a restricted subspace
region. SCY-trees that represent regions that share a border are
called neighboring SCY-trees. For further details, see [8].

Figure 2 (top) shows an example of an initial SCY-tree for
the full-dimensional space. In this example, the space is first
partitioned along dimension 0, creating three cells noted by the
cell number and the count of points in that cell cell : count. Cell
1 has an S-connection, which is represented by a node without
a count of points. Each cell is then further partitioned along
dimension 1, discarding cells that do not contain any points.

INSCY proceeds as in Algorithm 1. For each descriptor, create a
restricted SCY-tree. If cells in the SCY-tree are S-connected, merge
connected restricted SCY-trees into one final restricted SCY-tree.
INSCY prune the final restricted SCY-tree for redundancy, call
recursively, and cluster the points if there is a possibility for
non-redundant clusters.

Restrict. INSCY restricts a SCY-tree by identifying nodes
matching the current descriptor, i.e., the nodes residing on the
layer of the restricted dimension and with the same cell number
as the descriptor. For each matching node, copy the node’s path
to the root and subtrees below the node into a new restricted

Algorithm 1 INSCY(scytree, df, X,d,r, F, i, & minc, R)

1: for dye = df tod do
for ¢y = 0 to ngejys do
scytree’ « restrict(scytree, dre, cre)
scytree’ « mergeNeighbors(scytree, scytree’, dre, cre)
if prune_recursion(scytree’, F, y, €, minc) then
INSCY(scytree’,dye + 1, X,d, 1, F, u, &, minc, R)
if prune_redundancy(scytree’, r, R) then
R « R U clustering(scytree’, X, F, p, €)

SCY-tree. Since the SCY-tree keeps track of not yet restricted
dimensions, the matching node itself is not copied. The node’s
children are now children of the node’s parent. The count of
points is also updated to reflect the number of points in the
restricted region. Figure 2 (bottom) contains two restricted SCY-
trees for descriptors (1,0) and (1, 1) and the merged result. For
descriptor (1,0) only 2 nodes match, leading to a small SCY-tree.

Merge. INSCY merges neighboring restricted SCY-trees if
there exists an S-connection, i.e. when an S-connector path starts
at dimension d and has cell number ¢ that matches the current
descriptor (d, ¢). Merge is done by going through the two re-
stricted SCY-trees and copying the nodes in both. A node can be
represented in several SCY-trees. During the merge, nodes with
the same cell number and the same parent are merged. Figure 2
(bottom), shows that the descriptor (1, 0) matches an S-connector
node, the node represented by only a 0 on dimension 1, and there-
fore INSCY restricts the neighboring descriptor (1, 1) and merges
the two restricted SCY-trees.

Pruning recursion. To reduce the search space, INSCY prunes
the final restricted SCY-tree before calling recursively, as follows:
Remove non-weak dense points and check if the region’s number
of points still exceeds minc. INSCY only proceeds with the re-
cursion if this is the case, as further restrictions will only reduce
the number of points.

Pruning redundancy. When returning from the recursive
call INSCY has found clusters in all superspaces of the current
subspace. The current region can therefore be pruned by redun-
dancy. INSCY prunes by redundancy by checking if the result
already contains a cluster covering a factor r of the points in the
restricted region. If the number of points in the region is large
enough, INSCY computes the density-based clustering on all
points in the final restricted SCY-tree and adds all non-redundant
clusters to the result.

4 GPU-INSCY ALGORITHM

INSCY is inherently computationally expensive, making it infea-
sible to run on large real-world datasets. As mentioned in the
introduction, GPUs provide computational power that algorithms
designed for a different computational model of single-core CPUs,
as INSCY, cannot utilize. We design an algorithm for the GPU
that reduces the running time of INSCY substantially, making it
feasible to run on much larger datasets. To summarize the nota-
tion found in this section we provide Table 1 for ease of reading.
Recall that threads in a warp must execute the same instructions
to fully utilize the GPU’s computational power. INSCY does not
group similar operations and would perform poorly on the GPU.
The idea of each iteration in INSCY is to bound a subspace
region by restricting and merging, prune that region, and perform

Algorithm 2 GPU-INSCY(scytree’, df, X,d,r, F, ji, &, minc, R)

1: L « GPU_restrict_and_merge(scytree, df, d)

2: precompute_neighborhoods(X, L, ¢)

3: for dye «— df tod - df do

4: C « 1d array of size |X]| initialized to —1

for Vscytree’ € L[dye] do

if prune_recursion(scytree’, F, y, €, minc) then

GPU-INSCY (scytree’, dre + 1, X, d, 1, F, 1, e, minc, R)
if prune_redundancy(scytree’, r, R) then

9: L' « L' U {(scytree’,C)}

10: R « RU GPU_clustering(L’, X, F, y, €)

5
6:
7:
8

28

Table 1: Notation

Mnodes number of nodes

Npts number of points

Neells number of cells

Ndims number of dimensions

Ny dims number of restricted dims

pa € NMnodes

ce € N"nodes

co € N"nodes

la € Ndims

dims € N"dims

r_dims € N"r_dims

po € N'pts

pl € N''pts

incl € {0, 1}ndims><ncells><nnodes
inClpts c {0’ l}ndimsxncellsxnpts
idx € NdimsXNcellsXNnodes
idxpts € N"dimsXNcellsXNpts

n co € NdimsXNcellsXNnodes

is_S(i)

parent array

cell array

count array
layer-indexing array
dimension array
restricted dims array
point-id array
point-placement array
node inclusion array
point inclusion array
node new-index array
point new-index array
new-count array

is S-connection

s_incl(j,i,¢) should be included
S € {0, 1} dimsXNcells S-connection array
M e Nndimsxncells merge map

n_pa € NPdimsXNcellsXNnodes new-parent array

new-children array
representative node

n_ch € Nndimschellsxnnodesxncellsxz

rep(J,c,i)

clustering in that region. This process is repeated until all clusters
in all subspace regions are found. This approach is efficient for a
sequential algorithm. However, when parallelizing for the GPU,
we prefer grouping identical and independent operations to make
each kernel call utilize as many cores as possible. Making INSCY
run parallel on the GPU is not straightforward since many partial
computations depend on previous results. E.g., in the alternation
between restricting and merging SCY-trees, we need the previous
merged SCY-tree and the neighboring restricted SCY-tree before
continuing to merge.

In this section, we present a new algorithm called GPU-INSCY,
in which we tackle the problem of identifying and reorganizing
the operations that can be performed in parallel to reduce running
time. Contrary to INSCY, GPU-INSCY aims to perform similar
and independent operations simultaneously for multiple final
restricted SCY-trees to utilize multiple thread blocks. Remember
that this allows us to use more cores, but it is only possible if the
threads in different blocks do not need to communicate.

We first outline the general order of computations in GPU-
INSCY, and we later explain this reordering. These reorderings
do not affect the result since the reordered operations are inde-
pendent of each other as discussed below for each change we
introduce. GPU-INSCY can be seen in Algorithm 2. First, compute
the set L of all final restricted SCY-trees. Precompute the neigh-
borhoods for all points in all final restricted SCY-trees. For each
final restricted SCY-tree, prune the recursion, call GPU-INSCY
recursively, and prune for redundancy. All non-pruned final re-
stricted SCY-trees are added to L’. Finally, we cluster all points
in each of the final restricted SCY-trees in L’.

Restrict and merge. In GPU-INSCY, we isolate all restrict
and merge operations at the beginning of the algorithm, whereas
INSCY performs them ad hoc. We isolate the operations such that
we can parallelize them in different thread blocks. The result of

each restrict and merge operation only depends on the informa-
tion parsed to the recursion. Computing all restricted SCY-trees
at the beginning does, therefore, not change the final result. Par-
allelizing within each thread block is not a simple task due to
both the alternation between restrict and merge and the fact
that INSCY only visits nodes in the SCY-trees one by one when
restricting and merging. We discuss how to parallelize restrict
and merge in Section 4.1.2, after introducing a representation of
the SCY-tree index-structure for the GPU in Section 4.1.1.

Precomputing the neighborhoods. Computing the neigh-
borhoods is an expensive task, and it is used both for the cluster-
ing and when computing weak-density while pruning a recursion.
In Section 4.2, we describe how to precompute the neighborhoods
in parallel and how we take advantage of having direct access to
the neighborhoods in a subspace of the current space.

Pruning. In Section 4.3, we parallelize both pruning phases
following the same approach as for restrict and merge.

Clustering. In Section 4.2, we change the sequential way of
expanding the clusters [12] with one density-connected point at
a time, to obtain a more efficient clustering algorithm.

4.1 SCY-tree on the GPU

The SCY-tree representation and the associated operations are not
very suited for the GPU. Section 4.1.1 describes how to represent
the SCY-tree in a GPU friendly fashion and Section 4.1.2 describes
how to perform the restrict and merge operations in parallel.

4.1.1 Representing the SCY-tree on the GPU. Handling mem-
ory on the GPU is more restrictive than on the CPU, and allo-
cating memory can only be done from the CPU. Furthermore, it
is expensive to alternate between calling kernels, transferring
data, and allocating memory. Therefore, we prefer to allocate
memory and transfer data as few times as possible. GPU memory
is loaded one block at a time to reduce latency, implying that
data used close together in time should be placed close together
in memory. If the data we use is not placed in the same block, we
get cache misses, i.e., not using the loaded data, which we would
like to reduce. For ease of reference, we call the GPU friendly
representation of the SCY-tree GPU-SCY-tree. A way to represent
tree structures on the CPU is to create an object for each node
with pointers to its children, parent, and other values in the tree.
This structure is very flexible and allows adding nodes on the fly.
However, this does not fit well with the restrictions on the GPU.

Remember, all nodes for a particular dimension are placed on
the same layer in the SCY-tree. These layers are indexed by j
starting with j = —1 for the root and incrementing toward the
leaf layer j = ngjn,s — 1, implying that lower indices are above
the higher indices in the SCY-tree. In Section 4.1.2, we describe
how we handle all nodes on the same layer simultaneously, and
we would therefore like to place these nodes close together in
memory. The same is the case for points contained in the tree.

Instead of representing nodes as objects, we choose to repre-
sent the GPU-SCY-tree as arrays, with an entry for each node.
Each array represents the kind of pointer or values that a node
contains. In the arrays, we locate nodes on the same layer in the
SCY-tree next to each other and order the layers by their index
Jj. In this way, data for nodes on the same layer is placed close
together in memory, making it more likely to avoid cache-misses.
We organize points using the same reasoning. To represent the
GPU-SCY-tree, we use a total of eight arrays with one entry
per node, point, or dimension. An example is given in Figure 3.
Besides the arrays we also keep count of the number of nodes

29

12 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21

0
2o lojololol1]212]3]alalala]
841 ol1]1]2/2]0(1]1]olol1]2]
B0l s l1falr1lall2]1]1]1]
Fe 0 | 1 | ;o] 1]2]3]4a]5]6]7]8]0]
179 1 | 5 | 21311411515 |15 |16 18 18] 20| 1]

r_dims: @

Figure 3: GPU-SCY-tree for SCY-tree in Figure 2.

Npodes» Number of points ny;5, number of cells ngej;s, number
of dimensions in the SCY-tree ng;,,s, and number of restricted
dimensions 1, gims-

The nodes are represented using three arrays: the parent
pointer pa € N'nodes the cell number ce € N™nodes and the
count of points co € N"nrodes Notice that we do not keep point-
ers to children, see Section 4.1.2 for reasoning. To access each
layer j we have an array with the starting index of each layer
la € N™ims and an array with the dimensions that the lay-
ers represent dims € N"dims_We furthermore keep an array of
the restricted dimensions r_dims € N"r_dims however, for the
GPU-SCY-tree in Figure 3 this is empty. To keep track of the
points in the GPU-SCY-tree, we have two arrays with an entry
for each point. One keeps track of the points’ index in the dataset
po € N"ts and the other keeps track of which leaf-node each
point is placed in pl € N"pts.

4.1.2 Restrict and merge on the GPU. When parallelizing for
the GPU, we identify: (i) ways to reorder independent tasks that
can be performed in parallel, (ii) similar tasks that can be per-
formed by a warp, and (iii) ways to allocate memory as few times
as possible. Restrict and merge for a SCY-tree are sequential op-
erations where we look at one node at a time, check if it should
be included, and copy all information to the temporary or final
result. Running this in parallel on the GPU requires a substantial
restructuring due to two things: The alternation between restrict
and merge and a node’s inclusion being dependent on the inclu-
sion of either the parent or one of its children. As mentioned
before, such a dependency makes the process sequential, which
is not suitable for the GPU.

In Section 4, we state that all final restricted SCY-trees can
be computed first in the recursion since the computation only
requires the descriptors and the SCY-tree parsed to the recur-
sion. But to parallelize the restrict and merge operation, we need
several observations and restructuring that we now provide.

Allocating once. To allocate memory only once per restricted
GPU-SCY-tree, we first compute which nodes and points are
included in the restricted SCY-trees. This information is kept
in two temporary binary arrays both initialized to 0. One for
nodes incl € {0,1}"dims*McelisXMnodes with entries for each de-
scriptor and node combination. And one for points incly;s €
{0, 1}"dimsXMcellsXNpts with entries for each descriptor and point
combination. Here 0 and 1 represent false and true, respectively.
In Figure 2, we show the restriction for descriptor (1,0). In Figure
4 we show the same restriction in GPU-SCY-tree representa-
tion, and the temporary arrays. Here the five included nodes are
marked with a 1 in incl. Knowing which nodes and points are
included allows us to compute the new indices of the nodes and
points in the restricted SCY-trees. We compute the indices forn-
odes and points using inclusive scan (cumulative sum) of incl for
each descriptor. The result is kept in idx € N"dimsXMcellsXNnodes

restrict descriptor (1, 0)

01 2 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21
ine: ENEAEHENEN
o T 1o 2
R 12 12 133 []33 3]33] o]
ine; EIKECICN NN ENEAE
ias» EIKIKAKEAKEEIENENEN
m0 1 2 3 4
v ICIOIEEE KRR s
«ENADE ~000
- EEH r_dims |l

Figure 4: Restrict example before combining with merge.

and idxpss € NPdimsXTeellsXMpts This is used to determine where
each node is placed in the resulting SCY-tree. E.g. in Figure 4, the
last included node is placed at entry 4 = idx(18) — 1. Further-
more, for each descriptor, we use the last index to allocate the
needed memory for the restricted SCY-trees.In Figure 4 we need
to allocate space for 5 = idx(|idx| — 1) nodes. After allocating
memory, we copy all included nodes and points to the restricted
SCY-trees. To copy, we need the new count of points in the sub-
trees starting at each node n_co € N"dims*McellsXMnodes which
we compute along side the inclusion of each node.

Restrict is independent. We observe that the restrict opera-
tion only requires the SCY-tree parsed to the recursion and the
descriptor it is restricting w.r.t.. Both the descriptor and the SCY-
tree are not changed during the recursion. Therefore, the restrict
operations of each recursion are completely independent of each
other and all other operations. Consequently, the final result does
not depend on the order of restriction, and we can parallelize the
restrict operations over different thread blocks, which allows us
to utilize more cores.

Restrict - similar tasks and restructuring. INSCY restricts
by identifying all nodes matching a descriptor and then visiting
upward and downward in the layers of the SCY-tree from there.
INSCY copies all nodes on the path to the root and the subtree
below the matching nodes to the new restricted SCY-tree. We
take advantage of the SCY-tree being a well-balanced tree with
a layer for each dimension. Observe that nodes on layers above
the restricted dimension are included if any of its children is in-
cluded in the restricted SCY-tree. The nodes on layers below are
included if their parent is included. Because of the dependency
w.r.t. inclusion between parents and children, we have a depen-
dency between layers where we need to compute the inclusion of
nodes up- and downwards in the GPU-SCY-tree starting from the
restricted dimension. However, observe that computing the in-
clusion of each node on a layer is independent of the other nodes
on that layer. Using this observation, we suggest computing the
inclusion of nodes one layer at a time, making the computation of
node inclusion parallel over each node on a layer. Since we keep
the ordering between parents and children, we do not violate the
dependency, and hence we compute the same result as INSCY.

When computing the inclusion of nodes, we have four cases,
where the computation is different for each of them. One for
nodes directly above the restricted dimension, one for the nodes
on the remaining layers above, one for nodes directly below the
restricted dimension, and one for the nodes on the remaining

30

layers below. We handle each of the cases in their own kernel, to
avoid branch-divergence that would lead to idle threads.

We compute the inclusion array incl in parallel with thread
blocks for each descriptor (dims(j), c) where j is the layer repre-
senting the restricted dimension and c is the cell numberWithin
each block, we process sequentially over each layer j + k where
—-j < k < ngims — J, starting from k = 0 and increment-
ing/decrementing from there. For all nodes i on a given layer we
parallelize using threads.

When we compute the inclusion array incl, we treat normal
nodes and S-connector nodes slightly differently. An S-connection
is only used to enforce a merge along the restricted dimension.
Therefore, we discard the S-connector path starting at the re-
stricted dimension. Remember, we have an S-connection on the
restricted dimension, when an S-connector node i has a normal
node as the parent:

is_S(i) == (co(i) < 0) A (co(pa(i)) = 0). (1)
In Figure 3, node 10 represents an S-connection since it has a
negative count and its parent, node 4, has a positive count.

We can now use this when searching for nodes i matching the
descriptor (dims(j), c). A node i on layer j matches the descriptor
(dims(j), c) if its cell number matches the cell number of the
descriptor ce(i) = ¢ and it is not an S-connector node starting at
the restricted dimension —is_S(i):

s_incl(j,i,c) := (ce(i) = ¢) A (—is_S(i)). (2)
In Figure 3, for descriptor (1, 0), node 6 should be treated as
a match since it is in dimension 1 and has cell number 0 and
does not represent an S-connection. Node 10 also matches the
descriptor, but it represents an S-connection, so it should not be
treated as a match.

We wish to compute inclusion for all nodes on the layers
above the restricted dimension. This requires us to look at each
child of a given node. As the number of children can vary from
node to node, threads in the same warp would stay idle until the
other threads have visited all their children. We address this by
parallelizing over all children instead and letting the children
mark if their parent is included. Observe that now each thread
only visits the current node and its parent, instead of a varying
number of children.

Starting from layer j we compute inclusion for the nodes on
layer j—1 just above the restricted dimension dims(j). The parent
pa(i) of a node i is marked as included if the node i matches the
descriptor s_incl(j, i, c):

Y0 < j < ngims, 0 < ¢ < Neepss
la(j) <i<la(j+1),s_incl(j,i,c):
incl(j, c, pa(i)) := 1.

®)

In Figure 4 node 2 is included since node 6 matches the descriptor.

Sequentially moving towards the root, we can now compute
inclusion for nodes on layer j — k where 2 < k < j. The parent
pa(i) is now included if the node i is marked as included:

Y0 < j < Ngims, 0 S ¢ <neepps, 1 <k <j—1,
la(j—k) <i<la(j—-k+1),incl(j,c,i):
incl(j, c, pa(i)) = 1.

©)

In Figure 4 the root, node 0, is included since node 2 is included.

Similarly, we include nodes on the layer j+1 directly below the
restricted dimension dims(j) if the parent matches the descriptor:

V0 < j < Ngims> 0 < ¢ < ngepps, la(j+1) <i<la(j+2):
incl(j, ¢, i) :== s_incl(j, pa(i),c).

In Figure 4 node 14 is included as node 6 matches the descriptor.

Moving towards the leaves, we compute inclusion for nodes
on layer j + k where 2 < k < ngj,s — j by checking if a node’s
parent is marked as included:

Y0 < j < Ngims, 0 < € < Neeps, 2 < k < Ngims — Js
la(j+k) <i<la(j+k+1):
incl(j,c, i) := incl(j, c, pa(i)).

After we have computed the inclusion of the nodes on the leaf
layer, we can compute which points are included. A point p is
included if the leaf node where it is located pl(p) is included:

(6)

Y0 < j < Ngims, 0 < € < Neejs, 0 S p < Mpgs -

incl(j,c,pl(p)) if j < ngims — 1 7

ce(pl(p)) = c

E.g. in Figure 4 point 1 is included since the leaf node 14 where the
point is placed is included. The computation is done in parallel
over each descriptor as blocks and each point p as threads. We
handle the case of restricting the leaf layer by directly checking
if the placement node’s cell number matches the descriptor.

Restrict and merge combined. INSCY alternates between
restricting and merging as long as S-connections are found. The
merge operation only merges restricted SCY-trees that represent
subspace regions within the same subspace. Therefore, merges
are independent between restricted dimensions in the same re-
cursion. However, remember that the merge operation merges
the newly restricted SCY-tree with the previous merged SCY-tree.
Instead of this sequential process, we devise a strategy to per-
form merges and restrictions simultaneously. Implying that we
avoid allocating space for the temporary restricted and merged
SCY-trees, and by that, save time.

Precomputing SCY-trees to merge. Observe that in INSCY,
what makes the merge process sequential, is that we do not
know in advance which SCY-trees need to be merged for a given
descriptor. However, this only depends on the S-connections
along the restricted dimension. A merge is only necessary if
there is an S-connection between two cells on the restricted
dimension. We suggest precomputing which SCY-trees need to
be merged for each descriptor in advance. First, check if there
is an S-connection for the given descriptor, then compute from
which descriptor the merging process should start. The first check
for S-connections can be parallelized as follows. We define S €
{0, 1}dimsXMNeells g table of whether there exists an S-connection
for a given descriptor. Each entry of S is initialized to 0 and
updated in parallel over each layer j as thread blocks and each
node i as threads. The update entails writing 1 if the node i is
the start of an S-connector path.

inclpts (J,ep) == {

else

Y0 < j < ngims,la(j) <i<la(j+1),is_S(i) :

S(j, cells(i)) = 1. (8)

We use S to compute from which descriptor each merge se-
quence starts. This information is saved in M € NPdims*Mcells
where each entry represents a descriptor. For each entry, we com-
pute which restricted SCY-trees should be merged, denoted by the
cell number ¢ of the descriptor associated with the first SCY-tree
in that merge sequence. Remember that we start a new sequence

31

Step 1: shown for all descriptors

01 2

0 nnu Merge map M: 0
1 o [0] 1
2 2

Step 2: only shown for descriptor (1,0)

012 3 45 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

inct: KA KHENER
»po: CIEIEIENEN
(B s [0[5].1]3)

n_ch:

0/node nnmnn
0/s-connection nnnnn
1/node Hnnnn
1/s-connection Hnnnn
2/node nnmnm
2/s-connection nnnn

incty:s: [I IEH I EH NN ER KR X
i oo [1(2(3alafaaala]a]a]
s 0 Jo]1]2]3]4]5]6]7]7]

0 1

S-connected S:

2 3 456 7

2 0 Jo oo 24 1 [2]3]4]s]6 7 a]
o KN KHENEY Ll 5 (44 lals]7]7]7]
- El IEIEN

dims": [} 2 1 | r_dims" [El}

Figure 5: Restrict after combining with merge.

of merges whenever there was no S-connection from the previous
cell S(j, c—1). In other words, if there is an S-connection between
two cells, we continue the sequence with identifier M(j, ¢ — 1).
If not, we start a new sequence with the identifier c.

V0 < j < Ngims, 0 < ¢ < nggpps
{MUJ—l)if@>O)AﬂLc—H
c

else

M(j,c) == ©)

Equation 9 is parallelized over layers j but remains sequential
over cell numbers ¢ since we need to know the preceding entry
M(j,c — 1) to compute M(j,c).

The table with S-connections S and merge map M for the
GPU-SCY-tree in Figure 3 are shown in Figure 5. S contains an
S-connection in dimension 1, starting at cell 0. Therefore, in M,
a merge sequence starts at cell 0, continuing to cell 1.

Avoiding merge sequences. The merge map M allows us to
avoid the merge sequence and instead directly include nodes that
would be in the final restricted SCY-tree for a given descriptor.
More concretely, when checking if a node i on the restricted di-
mensions d = dims(j) matches the descriptor, we instead look up
the restricted dimension and the current node’s cell number in the
merge map M. We treat node i as a match if M(j, ce(i)) matches
the cell number c of the descriptor. This changes Equation 2 into:

s_incl(j,i,¢) :== (M(Jj,ce(i)) =c) A (mis_S(i)), (10)
and Equation 7 into

V0 < j < ngims: 0 < ¢ < Neeprss P < Npts

incl(j, ¢, pl(p)) if j <ngims — 1

M(j,c,ce(pl(p))) =c else

inclpss(j,c.p) = {
(11)

E.g. for descriptor (1, 0), we now also treat node 7 in Figure 3 and
5 as a match, since cell 1 in dimension 1 has a merge sequence
starting at cell number 0.

Since nodes on the restricted dimension are not included,
nodes directly below that dimension will become their grand-
parents’ children instead. This implies that the grandparent can
end up with multiple children with the same cell number. Nodes
with the same parent and cell number would have been merged
in INSCY and must also be merged in GPU-INSCY to ensure that
INSCY and GPU-INSCY still compute the same final restricted
SCY-trees. However, INSCY merges these one by one and GPU-
INSCY merges them all simultaneously. In Figure 5, nodes 14 and
16 will now both be children of node 2, and they have the same
cell number, so they must be merged.

Merging nodes can propagate the problem of children, with
the same cell number, down towards the leaves. We merge such
nodes during our new restrict phase. We keep track of nodes
that need to be merged in the restricted SCY-trees by computing
two things: each node’s new parent n_pa € N"dimsXcellsXNnodes
and the node’s new children n_ch € NdimsXMcellsXMnodesXMeellsX2
Examples of both arrays are shown in Figure 5. All entries of
n_pa and n_ch are initialized to —1. For each descriptor, n_pa
holds the new parents of all nodes. Likewise for n_ch, except that
we make room for all possible children by n..j;s X 2. A node can
have two types of children: normal or S-connector nodes. For
both types, we can have a node for each cell. To look up the type
of a node we use:

0 ifco(i)>0

1 else

S_idx(i) = { (12)

Merge representatives. When merging nodes in the SCY-tree,
we pick one of the nodes to be the representative, which is the
node that will actually be included in the final restricted SCY-tree.
We will lookup the representative node rep(j, c, i) by

rep(j,c, i) == n_ch(j,c,n_pa(j,c,i),ce(i),S_idx(i)).

If a node should be represented in the final restricted SCY-tree
we say that it is fused into that SCY-tree. We call it fused if it is
either merged or included in the SCY-tree. If a node is merged
into the SCY-tree, the count of points and children is added to
the representative node. In Figure 5, nodes 14 and 16 should be
fused, but only node 16 is included as the representative.

We assign a new parent to all nodes that are fused into the
final restricted SCY-tree. This implies that iff n_pa has a value
that is not —1, the associated node has been fused into the final
restricted SCY-tree. Notice that we can use n_pa(j,c,i) > 0 to
check if the parent has been fused instead of just checking if it
has been included incl(j, c, i).

When identifying the new parent of a node i, below the re-
stricted dimension, we look up which node the old parent has
been merged into. This will be one of the children of the new
grandparent of node i, which is identified as the representative
node for the parent:

Y0 < j < Ngims: 0 < ¢ < Ngeprss 2 < k < ngims — s
la(j+k) <i<la(j+k+1),n_pa(j,cpa(i)) >0:
n_pa(j,c, i) :==rep(j, c, pa(i)).

(13)

When computing the new parent for nodes just below the
restricted dimension, we need to skip the nodes on the restricted
dimension, since the restricted layer is removed from the result.
However, for a node above the restricted dimension, there are no

32

changes. Therefore, no merge of nodes can occur, and we do not
need to check which child has been picked:

V0 < J < Ngims, 0 < ¢ < Neeglss
la(j+1) <i<la(j+2),s_incl(j, pa(i),c) :
n_pa(j,c.i) := pa(pa(i)).

E.g., the parent of node 14 is node 6, and the parent of node 6 is
node 2. Therefore, the new parent of node 14 is node 2.

For all nodes above the restricted dimension, we do not change
the child-parent relationship, and they can be copied in parallel.

(14)

Vo< j< Ndims> 0 < € < Neepps, 1 < k< J

la(j—k) <i<la(j—k+1),I(j,ci):
n_pa(j,c,i) = pa(i),

n_ch(j,c, pa(i),ce(i),S_idx(i)) = i.

(15)

Below the restricted dimension, we need to decide which of
the merged nodes is the representative. It is not important which
of the nodes is picked, but all threads involved in the merge must
agree on just one node. We do this by letting each node i, that is
fused, write its id as the representative, i.e., the new child:

Y0 < j < Ngims, 0 < € < Neeprs, 1 < k < Ngims —
la(j+k) <i<la(j+k+1),n_pa(jci)>0:
rep(j,c, i) :=i.
We synchronize such that all threads see the same node id, and
only include that node as the new child. E.g., in Figure 5 both
node 14 and 16 would vote for themselves as the representative.

In our example, node 16 was the last to write. Therefore, node 16
becomes the representative. This expands Equation 5 into:

(16)

V0 < j < ngims, 0 < ¢ < Neeps, la(j+1) <i<la(j+2):

incl(j, ¢, i) == s_incl(j, pa(i),c) A (rep(j,c, i) = i), (17)
and Equation 6 into:
V0 < j < im0 < ¢ < Ngepss 2 < k < Ngims — Js
laj+k)<i<la(j+k+1): (18)

incl(j,c, i) :== (n_pa(j,c,i) = 0) A (rep(j,c, i) =1i).

For a point, the placement can change since nodes are merged.
Therefore, we check if the node where the point is placed is fused
into the final restricted SCY-tree. This is the case if the node has
been assigned a new parent. Equation 11 changes into:

V0 < j < Ngimss 0 < ¢ < Neejpes p < Npts
nfpa(j, CuDZ(P)) >0 if j < Ndims — 1

inclpts(j, ¢, p) = {M(j, c.ce(pl(p))) =c

else
(19)

Accumulating count. Now that we know which nodes are
fused into the SCY-tree, we can accumulate the count of points in
the subtree of each node i. For nodes on the same layer, the entry
in n_co might be incremented by different threads. Therefore,
we need to use atomic addition, implying that threads handling
nodes on the same layer must be in the same thread block. For the
layer just above the restricted dimension, we sum the old count
of all children that are normal nodes and fused. If the parent is
included and an S-connector node, we set the count to —1:

V0 < j < Ngims: 0 < ¢ < ngepis, la(j) <i < la(j+1),s_incl(j,i,c) :
if co(i) >0

if co(pa(i)) <0
(20)

n_co(j, ¢, pa(i)) + co(i)

n_co(j, ¢, pa(i)) := {_1

For the nodes on the remaining layers above the restricted dimen-
sion, we iteratively sum the new count of points of the children:
V0 < j < Ngime0 < ¢ < ngeppss 1 Sk < j—1,
la(j—k) <i<la(j—-k+1),incl(j,c,i):
n_co(j,c,n_pa(j,c,i)) :=
. {n_co(j, ¢, pa(i)) + n_co(j,c,i) if co(i) =0
if co(pa(i)) <0

(1)

For all layers below the restricted dimension, the new count is a
sum of the old counts of all fused nodes:

-1

Yo<j< Ndims> 0 < € < Negejps, 1 < k< Ndims = J>
la(j+k) <i<la(j+k+1),n_pa(i) 20:
—1if co(i) <0

n_co(j,c,rep(j,c,i)) + co(i) else
(22)

n_co(j,c,rep(j,c,i)) = {

Overview of restrict and merge operations. To summa-
rize, the restricting and merging for all descriptors is done by

e Initialization: Each entry of incl, incly;s, idx, idxp;s, and
n_co is initialized to 0. Each entry of n_ch and n_pa is
initialized to —1.

e Step 1: Compute for which descriptors the associated SCY-
trees will be merged using two kernels; one that checks for
each descriptor if there is an S-connection, using Equation
8, and one that uses this information to compute which
SCY-trees will be merged, using Equation 9.

e Step 2: Compute which nodes are included in the final re-
stricted and merged SCY-trees, and accumulate the count
of points in the subtrees. We compute the inclusion in the
restriction using five kernels. First, directly above the re-
stricted dimension we use Equations 3, 15, and 20, second,
for the remaining layers above we use Equations 4, 15, and
21, third, directly below we use Equations 17, 14, 16, and
22, fourth, for the remainder below we use Equations 18,
13, 16, and 22, and at last, we compute inclusion of points
by checking if the leaf-node where the point is placed is
included using Equation 19.

o Step 3: We now know which nodes and points are included
in the final restricted SCY-trees. We do an inclusive scan
and decrement each entry with 1 to compute the new
indices for nodes idx and points idxp;s. This is also used
to allocate the arrays for all final restricted SCY-trees.

o Step 4: All needed information has been precomputed, and
we now copy all nodes, points, dimensions, and restricted
dimensions to the final restricted SCY-trees. Each copy is
independent and can be done completely in parallel.

4.2 Density-based clustering on the GPU

In this section, we discuss how to find the subspace clusters for
all points in each SCY-tree. For each subspace region, the clus-
tering process of INSCY is similar to that of DBSCAN [12]. The
main difference is that INSCY supports different density measures
and that clustering is done in a subspace projection. DBSCAN,
and other density-based clustering methods, find clusters by ex-
panding chains of density-connected points. This is a sequential
process that we would like to replace with a parallelized process.

As discussed in related work, G-DBSCAN [5] is a competi-
tive parallelization of full-space DBSCAN with rectangle kernel
for density assessment. To support INSCY subspace clustering

33

and further improve runtime performance, we introduce three
major algorithmic solutions: supporting a different unbiased,
i.e., subspace-dependent density-measure, reduced neighborhood
searches, and expanding several clusters at once.

Precomputing the neighborhoods. To compute the neigh-
borhood without allocating worst-case sizes, G-DBSCAN first
computes the neighborhoods’ size, then allocates space, and at
last populates the neighborhoods with the neighboring points.
For GPU-INSCY, the neighborhood of each point in all SCY-trees
can be computed independently of other points and can therefore
be computed in parallel over different thread blocks.

GPU-INSCY additionally takes advantage of already having
computed the neighborhoods in the lower-dimensional subspace
projections of the current subspace. Since adding a dimension to
a subspace only increases the distance between points, previous
neighborhoods can be used to bound the search for neighbors
effectively. We demonstrate that this is an efficient strategy in
the experiments, see Section 5.

Collecting the clusters. Using the precomputed neighbor-
hoods, G-DBSCAN proceeds as follows. While there are still
unclustered points, pick a random point to expand a cluster from.
While that cluster is still being expanded, look at all points in
parallel. If a point has just been added to the cluster, add its neigh-
bors that have not yet been clustered to the current cluster. Since
G-DBSCAN run in parallel for all points, but only a few points
actually expand a single cluster each iteration, many threads are
left idle. We suggest instead that a point adds itself to a clus-
ter. Furthermore, we expand all clusters simultaneously for each
point p in parallel as threads and over each descriptor in parallel
as blocks. We precompute for each point if it is dense and only
perform the following for dense points. For each descriptor, let
C € N"rts be clustering labels for each point p in the SCY-tree
associated with that descriptor. Start by assigning all points to a
singleton cluster, letting the cluster id be the point id, C(p) := p.
While any cluster is still being expanded, look at all points in
parallel. If the point p can reach a cluster with a lower cluster-id
through its neighborhood, add the current point to that clus-
ter C(p) := mingen, (p)u(p} C(q)- Between each iteration, we
synchronize such that all threads know if any cluster has been
expanded. For each iteration we check for all points if they can
be expanded, thus we ensure that all density connected clusters
have been found.

Clustering of each subspace region (SCY-tree) is independent
of each other since the subspace regions are not S-connected,
meaning that no density-connected clusters can span multiple
subspace regions. Therefore, since no communication is needed,
we can compute the clustering in parallel for each SCY-tree using
different thread blocks. However, since we want to perform all
clusterings in parallel and each SCY-tree must have been pruned
first, we can only perform clusterings in parallel at the end.

4.3 Pruning on the GPU

As previously mentioned, we parallelize both pruning phases. In
the interest of space, we keep the discussion brief as it follows the
same approach as for restricting and merging the GPU-SCY-trees.

When pruning the recursion, we compute in parallel for each
point if it is weak-dense. If it is not, mark it as not-included and
propagate the count up in the SCY-tree layer by layer. We also
parallelize the propagation over all nodes on a layer. If the count
in the root is below minc, then we do not continue with the
recursion for this SCY-tree.

Pruning for redundancy is done as follows. For each super-
space of the current subspace, we execute three kernels: Find the
size of each cluster, find all clusters that overlap with points in the
current SCY-tree, and find the smallest cluster that overlaps with
the points in the current SCY-tree. Update the largest smallest
cluster max_min_cluster that overlaps with the current SCY-tree.
If the number of points in the SCY-tree scaled by the parameter r
is smaller than max_min_cluster, we do not perform clustering
for this SCY-tree because it can only contain redundant clusters.

4.4 Trading off speed for memory usage

Each recursive call of GPU-INSCY is parallelized over all descrip-
tors simultaneously. This requires that we keep all final restricted
SCY-trees, neighborhoods, and clusters in memory for all descrip-
tors. However, memory on the GPU is limited, putting a bound on
how large inputs we can process in parallel. There is, therefore, a
natural trade-off between memory usage and how many descrip-
tors we efficiently parallelize over simultaneously. To support
efficient processing of larger inputs, we devise a version of GPU-
INSCY called GPU-INSCY-memory that iterates over subsets of
descriptors that we then parallelize over. We study this trade-off
experimentally in Section 5.

5 EXPERIMENTS

5.1 Experimental setup

We conduct experiments for comparison of GPU-INSCY with
INSCY on synthetic and on real-world data, and study impact
of parameters on a workstation with Intel Core i7-9750HF CPU
2.60GHz X 12 cores, 16 GB RAM, GeForce GTX 1660 TI 6 GB
dedicated RAM. The large scale experiments in Section 5.4 are
executed on NVIDIA TITAN V 12 GB dedicated RAM, Intel Core
E5-2687W 3.100GHz X 10 cores, 400 GB RAM.

We use a search-tree for efficient neighborhood search in
INSCY, which provides a large speedup and makes it a fairer com-
parison. We have experimentally validated that GPU-INSCY and
INSCY produce identical subspace clusterings. Plots and further
details have been omitted due to the space limit. We provide our
source code at: https://github.com/jakobrj/GPU_INSCY.

5.2 Comparison with INSCY.

For subspace clustering, the dimensionality and size of the dataset
are dominating factors regarding runtime. Especially dimension-
ality since, as the number of dimensions increases, the number
of possible subspaces increases exponentially.

To compare INSCY and GPU-INSCY and the impact of input
data, we use the data generator provided by [1] to generate syn-
thetic datasets with dense clusters in arbitrary subspaces that
may overlap and have a small percentage of noise. As in [7], we
generate different datasets with four hidden subspace clusters.
All runtimes are averages of three runs on datasets with the same
generator settings. All dataset have been min/max-normalized.
The default parameters for INSCY and GPU-INSCY in these ex-
periments are F = 1, R = 1,y = 8, ¢ = 0.01, n,yys = 4, and mine
is set to 5% of the data points.

To analyze components of our algorithm, we also test GPU-
INSCY* and GPU-INSCY-memory. GPU-INSCY" is a version of
GPU-INSCY that does not bound the neighborhood search, so
that we can study the effect of bounding the neighborhood search.
GPU-INSCY-memory is described in Section 4.4. For our exper-
iments we group the descriptors by the dimensions such that
each iteration of the recursions is only parallel over the cells.

34

INSCY
GPU-INSCY
—— GPU-INSCY*
—— GPU-INSCY-memory

/

10 20 30
number of dimensions

INSCY
GPU-INSCY
—+— GPU-INSCY*
—— GPU-INSCY-memory

time in seconds
[=
o o
D 2

time in seconds
=
o
2

—
o
>

2000 4000 6000
number of points

8000

(a) Scalability in |D|. (b) Scalability in |X]|.

15000 15000

INSCY INSCY
GPU-INSCY GPU-INSCY
—— GPU-INSCY* —— GPU-INSCY*

10000 10000

—— GPU-INSCY-memory —— GPU-INSCY-memory

o
=3
o
=)

5000

factor of speedup
factor of speedup

0 10 20 30
number of dimensions

2000 4000 6000 8000
number of points

(c) Speedup in |D|. (d) Speedup in |X|.

Figure 6: Scalability in size and dimensionality

105 4 77354.22

31439.81 INSCY

GPU-INSCY
104 4

103 4
283.441

102 5 62.529
36.152

101 4

time in seconds

4.892

2.912 3.037

1004

10714 0.061

0.037

glass vowel pendigits sky(0.5 x 0.5) sky(1x1) sky(lx2)

Figure 7: Real world data; INSCY aborted after 24 hours

Comparison of INSCY and GPU-INSCY. In Figure 6a, the
running time for INSCY is decent for lower dimensions but in-
creases rapidly for higher dimensions. GPU-INSCY reduces the
running time to a point where it is faster to find subspace clus-
ters for 25 dimensions using GPU-INSCY than finding subspace
clusters for two dimensions using INSCY. In fact, in Figure 6c,
the speedup of GPU-INSCY relative to INSCY keeps increasing.
For 30 dimensions we achieve a factor of speedup of more than
2000%. A similar effect is observed for increasing the number of
points. In Figure 6b, INSCYs runtime again increases faster than
for GPU-INSCY. In Figure 6d, we see that the speedup becomes
a factor of several thousand. This speedup is much higher than
expected for the relatively low number of 1536 cores on our GPU.

Comparison of versions of GPU-INSCY. As mentioned in
Section 4.2, we attribute this dramatic speedup to our bounding
of the neighborhood searches. This effect is also clear in Figure
6¢c and 6d, where we see that GPU-INSCY* achieves a 500-1000%
speedup, corresponding to a good use of the cores, and GPU-
INSCY achieves a substantially larger speedup of up to 14’000x
obtained by our improved neighborhood search. GPU-INSCY-
memory allows us to run on larger datasets, with only a slight
reduction of factor 2 in speedup, which is a reasonable trade-off.

5.3 Real world datasets

We also demonstrate GPU-INSCY speedups for real-world datasets.

We report runtimes on the three datasets (glass, vowel, pendigits)

[23] also studied in [7, 8]. The glass dataset Xgy455 € R214X9

vowel Xyope1 € R990X10, and pendigits Xpendigits € R7494x16

Furthermore, we also evaluate on a more sizable higher dimen-
sional real world data set, part of the SkyServer dataset[27]
that contains measurements of objects in the sky, e.g., stars and
galaxies. We select three different areas of size 0.5%0.5, 1x1, and
1x2, measured in spherical coordinates (RA/Dec): Xsk y(0.5x0.5) €
R7253X17 Xskey(1x1) € R29627X17 apd Xskey(1x2) € R59285X17 Ey_
periments are aborted if they run for more than 24 hours, as
INSCY does for larger setups. In Figure 7, we see that we obtain
high speedups on all datasets, but much higher for larger datasets
up to 157000 speedup.

5.4 Effect of parameters

In this section, we study the effect of parameters for the density
criterion, ¢, y1, F and the model parameter n,jj.

In particular, the parameters for the density criterion are ex-
pected to impact the running time. Especially the neighborhood
radius ¢ is interesting since GPU-INSCY uses a strategy for re-
ducing the neighborhood search that INSCY does not employ.
The bigger the part of the subspace region that the neighborhood
radius covers, the less we save by reducing the search area for
the neighborhoods. Therefore, we expect that GPU-INSCY will
obtain the greatest speedup for smaller values of ¢. In Figure 8a,
we study the range of ¢ between 0 and 0.02, and see that this is
the case, but that the speedup remains large for the entire range.

The minimum number of points in the neighborhood y and
density threshold F only affect the number of points that are
dense and weak-dense. The fewer points that are dense or weak-
dense, the fewer points INSCY and GPU-INSCY need to process.
As this is the same fraction of points for both INSCY and GPU-
INSCY, we, therefore, expect to see a similar reduction in time for
both algorithms. For y, we study the range between 2 and 16, as
this parameter is intended as a cut-off for avoiding tiny subspace
clusters in very high-dimensional subspace projections (called
pseudodense in INSCY). The factor F that governs the extent
to which expected density is exceeded is evaluated in the range
between 0.5 and 2.5. A value of 0.5 implies that we only expect a
point to be half as dense as the expected density, which is a very
low criterion, and 2.5 is more than twice the expected density,
which is rather high. In Figure 8b and 8c, we see that the speedup
for the density parameters remains stable for both criteria. As
expected, we see that the running time decreases equally for both
INSCY and GPU-INSCY as p increases.

The parameter number of cells n..j;; does not change the
result, but only how we partition the subspace into cells and
regions. We can, therefore, pick whichever number of cells INSCY
or GPU-INSCY perform the best at. In Figure 8d, we study a
range between 2 and 10 cells. Here both INSCY and GPU-INSCY
perform best at a lower number of cells, especially GPU-INSCY.

5.5 Scalability and different distributions

We evaluate scalability and different data distributions for GPU-
INSCY alone. The running time of INSCY quickly becomes too
high, e.g., more than 10 hours for 8000 points and 15 dimen-
sions, which makes experiments for large inputs infeasible. In
this section, we use GPU-INSCY-memory.

35

104 INSCY 104 INSCY
kY GPU-INSCY 3 GPU-INSCY
8 8
& 102 %102
=) £
£ £
5100 S 100

0.005 0.010 0.015 0.020 5 10 15
neighborhood size € min number of points in neighborhood 1
(a) Varying . (b) Varying 1.
10° 10°
INSCY INSCY
B GPU-INSCY 8 GPU-INSCY
S10 s10°
@ Q
@ &
£ £
£ 10t g 10!
0.5 1.0 1.5 2.0 2.5 2 4 6 8 10
density threshold F number of cells

(c) Varying F. (d) Varying nceiis.

Figure 8: Runtimes for different parameter values

1200 1200
» 1000 » 1000
k=) ©
S 800 S 800
S I+
L (7]
“ 600 “ 600
£ £
@ 400 o 400
£ £
= 200 = 200 /
0 0
0.00 025 050 0.75 1.00 10 20 30 40 50
number of points le6 number of dimensions
(a) Scalability in |X|. (b) Scalability in |D]|.
250 250
2200 2200
2 2
o o
$ 150 £ 150
& &
£ 100 < 100
(] (]
£ €
S 50 S 50
0 2 4 6 8

o

0 20 40 60 0

number of clusters standard deviation

(c) Scalability in number of clus-(d) Scalability in cluster spread

ters. (standard deviation).

time in seconds

0 20 40 60
number of clusters

(e) Scalability in number of clus-
ters with stable density.

Figure 9: Runtimes for scalability experiments

To test various distributions, we use the generator provided
by [9], but modify it to generate clusters in random subspaces
and not just the first k dimensions. The default settings used
for the dataset generator are 64000 points with 4000 points for
each cluster, except 1%, which is uniformly distributed noise. The
dataset values range from —100 to 100, and the full space consists
of 15 dimensions. Each cluster is normally distributed with a

standard deviation of 0.3 in a random 3-dimensional subspace. All
datasets have been min/max-normalized. The default parameters
for GPU-INSCY in these experiments are F = 0.1,R=1, =1,
€ =0.0003, ngepis = 4, and minc = 500 points.

Scalability. Figure 9a shows runtimes with increasing dataset
size |X| up to 1°024°000. The figure shows that GPU-INSCY per-
forms subspace clustering on 1°024°000 points in less that 20
minutes. We also run experiments for increasing dimensionality
|D| up to 50, as shown in Figure 9b. GPU-INSCY can perform
subspace clustering in 50 dimensions (and on 64000 points) in
less than 6 minutes.

Data distribution. We evaluate performance on data with
different distributions using the same setting as for scalability.
In Figure 9c, we increase the number of clusters, keeping clus-
ter distribution (standard deviation) and total number of points
fixed. As we can see, large numbers of clusters further reduce the
runtime of GPU-INSCY, as it finds fewer points in each neighbor-
hood when the number of points per cluster decreases. In Figure
9d, we increase the spread of clusters (standard deviation). Again,
the runtime of GPU-INSCY further improves, as neighborhoods
are again less populated. Finally, we conduct an experiment with
stable density. As the number of clusters is doubled, we increase
cluster density accordingly by halving standard deviation. As
Figure 9e confirms, similar density results in stable runtime when
scaling number of clusters.

To summarize, the trend is that a lower density implies fewer
points in each neighborhood and, therefore, a lower runtime.
This means that GPU-INSCY scales particularly well for large
numbers of clusters and clusters that are spread.

Overall, GPU-INSCY outperforms INSCY by two-four orders
of magnitude with respect to runtimes for all tested settings.
Even on our small GPU, we measure the running time in seconds
instead of hours for smaller datasets (< 10°000 points and 15
dimensions) and minutes instead of days for larger datasets.

6 CONCLUSION

In this paper, we propose GPU-INSCY, a novel GPU-parallel
algorithm for dimensionality-unbiased density-based subspace
clustering, following INSCY. GPU-INSCY outperforms INSCY by
several orders of magnitude. To achieve this, we utilize GPU cores
by restructuring both the algorithmic processing and the data
structure SCY-tree used in INSCY to fit the GPU computational
model. Furthermore, GPU-INSCY proposes a further reduction
of the time spent on neighborhood searches. Our experiments
show that GPU-INSCY scales well w.r.t. dimensionality and size
of the dataset, and compared to INSCY, the gap even continues
to grow with the scale of data.

ACKNOWLEDGMENTS

This work was supported by Independent Research Fund Den-
mark.

REFERENCES

[1] Andrew Adinetz, Jiri Kraus, Jan Meinke, and Dirk Pleiter. 2013. GPUMAFIA:
Efficient subspace clustering with MAFIA on GPUs. In European Conference
on Parallel Processing. Springer, 838-849.

Charu C Aggarwal, Joel L Wolf, Philip S Yu, Cecilia Procopiuc, and Jong Soo
Park. 1999. Fast algorithms for projected clustering. ACM SIGMoD Record 28,
2 (1999), 61-72.

Charu C Aggarwal and Philip S Yu. 2000. Finding generalized projected
clusters in high dimensional spaces. In Proceedings of the 2000 ACM SIGMOD
international conference on Management of data. 70-81.

Rakesh Agrawal, Johannes Gehrke, Dimitrios Gunopulos, and Prabhakar
Raghavan. 1998. Automatic subspace clustering of high dimensional data for

36

5

[

(6

=

[9

—

[10]

(1]

(12

[13]

[14]

[15]

[16]

[17]

(18

[19]

[20]

[21]

[22

[23]

[24

[25]

[26]

[27]

[28

[29]

data mining applications. In Proceedings of the 1998 ACM SIGMOD international
conference on Management of data. 94-105.

Guilherme Andrade, Gabriel Ramos, Daniel Madeira, Rafael Sachetto, Renato
Ferreira, and Leonardo Rocha. 2013. G-dbscan: A gpu accelerated algorithm
for density-based clustering. Procedia Computer Science 18 (2013), 369-378.
Ira Assent, Ralph Krieger, Emmanuel Miiller, and Thomas Seidl. 2007. DUSC:
Dimensionality unbiased subspace clustering. In seventh IEEE international
conference on data mining (ICDM 2007). IEEE, 409-414.

Ira Assent, Ralph Krieger, Emmanuel Miiller, and Thomas Seidl. 2008. EDSC:
efficient density-based subspace clustering. In Proceedings of the 17th ACM
conference on Information and knowledge management. 1093-1102.

Ira Assent, Ralph Krieger, Emmanuel Miiller, and Thomas Seidl. 2008. INSCY:
Indexing subspace clusters with in-process-removal of redundancy. In 2008
Eighth IEEE International Conference on Data Mining. IEEE, 719-724.

Anna Beer, Nadine Sarah Schiiler, and Thomas Seidl. 2019. A Generator for
Subspace Clusters.. In LWDA. 69-73.

Christian Béhm, Robert Noll, Claudia Plant, and Bianca Wackersreuther. 2009.
Density-based clustering using graphics processors. In Proceedings of the 18th
ACM conference on Information and knowledge management. 661-670.
Chun-Hung Cheng, Ada Waichee Fu, and Yi Zhang. 1999. Entropy-based
subspace clustering for mining numerical data. In Proceedings of the fifth ACM
SIGKDD international conference on Knowledge discovery and data mining.
84-93.

Martin Ester, Hans-Peter Kriegel, Jorg Sander, Xiaowei Xu, et al. 1996. A
density-based algorithm for discovering clusters in large spatial databases
with noise.. In Kdd, Vol. 96. 226-231.

Reza Farivar, Daniel Rebolledo, Ellick Chan, and Roy H Campbell. 2008. A
Parallel Implementation of K-Means Clustering on GPUs.. In Pdpta, Vol. 13.
212-312.

Sanjay Goil, Harsha Nagesh, and Alok Choudhary. 1999. MAFIA: Efficient
and scalable subspace clustering for very large data sets. In Proceedings of the
5th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, Vol. 443. ACM, 452.

Karin Kailing, Hans-Peter Kriegel, and Peer Kroger. 2004. Density-connected
subspace clustering for high-dimensional data. In Proceedings of the 2004 SIAM
international conference on data mining. SIAM, 246-256.

Hans-Peter Kriegel, Peer Kréger, and Arthur Zimek. 2009. Clustering high-
dimensional data: A survey on subspace clustering, pattern-based clustering,
and correlation clustering. ACM Transactions on Knowledge Discovery from
Data (TKDD) 3, 1 (2009), 1-58.

You Li, Kaiyong Zhao, Xiaowen Chu, and Jiming Liu. 2013. Speeding up
k-means algorithm by gpus. J. Comput. System Sci. 79, 2 (2013), 216-229.
Woong-Kee Loh, Yang-Sae Moon, and Young-Ho Park. 2014. Erratum: Fast
Density-Based Clustering Using Graphics Processing Units [IEICE Transac-
tions on Information and Systems Vol. E97. D (2014), No. 5 pp. 1349-1352].
IEICE TRANSACTIONS on Information and Systems 97, 7 (2014), 1947-1951.
Woong-Kee Loh and Hwanjo Yu. 2015. Fast density-based clustering through
dataset partition using graphics processing units. Information Sciences 308
(2015), 94-112.

Gabriela Moise and Jorg Sander. 2008. Finding non-redundant, statistically
significant regions in high dimensional data: a novel approach to projected
and subspace clustering. In Proceedings of the 14th ACM SIGKDD international
conference on Knowledge discovery and data mining. 533-541.

Emmanuel Miiller, Stephan Giinnemann, Ira Assent, and Thomas Seidl. 2009.
Evaluating clustering in subspace projections of high dimensional data. Pro-
ceedings of the VLDB Endowment 2, 1 (2009), 1270-1281.

Hamza Mustafa, Eleazar Leal, and Le Gruenwald. 2019. An Experimental Com-
parison of GPU Techniques for DBSCAN Clustering. In 2019 IEEE International
Conference on Big Data (Big Data). IEEE, 3701-3710.

David J Newman, SCLB Hettich, Cason L Blake, and Christopher] Merz. 1998.
UCI repository of machine learning databases, 1998.

Lance Parsons, Ehtesham Haque, and Huan Liu. 2004. Subspace clustering
for high dimensional data: a review. Acm Sigkdd Explorations Newsletter 6, 1
(2004), 90-105.

Karlton Sequeira and Mohammed Zaki. 2005. SCHISM: a new approach to
interesting subspace mining. International Journal of Business Intelligence and
Data Mining 1, 2 (2005), 137-160.

Kelvin Sim, Vivekanand Gopalkrishnan, Arthur Zimek, and Gao Cong. 2013. A
survey on enhanced subspace clustering. Data mining and knowledge discovery
26, 2 (2013), 332-397.

Alexander S Szalay, Jim Gray, Ani R Thakar, Peter Z Kunszt, Tanu Malik,
Jordan Raddick, Christopher Stoughton, and Jan vandenBerg. 2002. The SDSS
skyserver: public access to the sloan digital sky server data. In Proceedings
of the 2002 ACM SIGMOD international conference on Management of data.
570-581.

Rajeev J Thapa, Christian Trefftz, and Greg Wolffe. 2010. Memory-efficient
implementation of a graphics processor-based cluster detection algorithm
for large spatial databases. In 2010 IEEE International Conference on Elec-
tro/Information Technology. IEEE, 1-5.

Kyoung-Gu Woo, Jeong-Hoon Lee, Myoung-Ho Kim, and Yoon-Joon Lee. 2004.
FINDIT: a fast and intelligent subspace clustering algorithm using dimension
voting. Information and Software Technology 46, 4 (2004), 255-271.

O

proceedings

JIT happens: Transactional Graph Processing in Persistent
Memory meets Just-In-Time Compilation

Muhammad Attahir Jibril
TU Ilmenau
Germany
muhammad-attahir.jibril@tu-ilmenau.de

Philipp Gotze
TU Ilmenau
Germany
philipp.goetze@tu-ilmenau.de

ABSTRACT

Graph databases are used for different applications like analyzing
large networks, representing and querying knowledge graphs,
and managing master data and complex data structures. Besides
graph analytics, the transactional processing of concurrent up-
dates and queries represents a challenging data management task.
In this paper, we investigate the usage of persistent memory as a
very promising technology for graph processing. We present a
novel architecture for transactional processing of queries and up-
dates on a property graph model that exploits and addresses the
specific characteristics of persistent memory by hybrid storage
and memory management as well as a just-in-time query compila-
tion approach. Our experimental evaluation on interactive short
read and update query workloads show that PMem-based systems
that are well-designed to exploit PMem characteristics outper-
form traditional disk-based systems significantly and have only
a small overhead compared to DRAM-only systems. Moreover,
the evaluation shows that JIT compilation brings performance
benefits especially when an adaptive compilation approach is
leveraged to hide the overhead of compilation as well as the
latency of PMem.

1 INTRODUCTION

Graph databases represent an important class of NoSQL systems
with numerous flavors, including systems for analyzing large
graphs, systems for querying knowledge bases, and systems sup-
porting updates on graphs and navigational queries. They are
designed for different graph data models ranging from RDF triples
to property graph models, as well as different processing mod-
els from database query processing to approaches like the bulk
synchronous parallel (BSP) model.

The numerous available systems mainly adopt the typical ar-
chitectures of database systems, i.e., traditional disk-based archi-
tecture, in-memory architecture or scalable, distributed solutions.
Graph data are either stored in disk-based data structures and
loaded into memory for processing or kept directly in in-memory
structures (without requiring to load data during startup) while
using techniques like logging to allow for persistent updates.

In this work, we present a novel architecture for graph
databases based on persistent memory (PMem). PMem - also
known as non-volatile memory (NVM) or storage-class mem-
ory (SCM) — is one of the most promising trends in hardware

© 2021 Copyright held by the owner/author(s). Published in Proceedings of the
24th International Conference on Extending Database Technology (EDBT), March
23-26, 2021, ISBN 978-3-89318-084-4 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Series ISSN: 2367-2005

37

Alexander Baumstark
TU Ilmenau
Germany
alexander.baumstark@tu-ilmenau.de

Kai-Uwe Sattler
TU Ilmenau
Germany
kus@tu-ilmenau.de

development which have the potential to hugely impact database
system architectures. Characteristics such as byte-addressability,
read latency close to DRAM but with read-write asymmetry, and
inherent persistence open up new opportunities for database sys-
tems. Specifically, Intel’s Optane DC Persistent Memory Modules
(DCPMMs) are already available on the market and supported by
the Persistent Memory Development Kit (PMDK) [17]. Several
studies, as well as our experiments, have identified the following
characteristics of this technology (we elaborate these in more
detail in Section 3):

(C1) PMem has a higher latency and lower bandwidth than
DRAM.

(C2) Reads and writes on PMem behave asymmetrically.

(C3) DCPMMs internally work on 256-byte blocks.

(C4) Failure atomicity is only guaranteed for 8-byte aligned
writes.

The focus of our work is an architecture for hybrid transactional/
analytical processing (HTAP) on a property graph model. Trans-
action support covers insert/update/delete operations on nodes,
relationships, and their properties with ACID guarantees. Fur-
thermore, we support Cypher-like navigational queries. In this
paper, we particularly focus on data structures and techniques for
query and transaction processing in graph databases exploiting
PMem and addressing the characteristics (C1)-(C4) mentioned
above. Although we aim for HTAP, we do not consider graph
analytics in this paper yet. Exploiting PMem for graph analytics
is discussed by other researchers, e.g., in [13]. Our contributions
are as follows:

o We present the architecture of an HTAP graph engine with
storage structures designed for PMem, primarily taking
(C1)-(C3) into account.

o We discuss the implementation of a timestamp ordering-
based multiversion concurrency control (MVTO) protocol
optimized for PMem addressing (C4).

e We describe our just-in-time (JIT) query compilation ap-
proach for compiling graph queries into machine code to
hide the higher latency of PMem as described in (C1).

Thus, the novelty of our work lies in the design, adaptation as
well as evaluation of transaction and query processing techniques
to leverage the idiosyncrasies of persistent memory for graph
databases.

2 RELATED WORK

Several of the approaches presented in this paper are based on
insights from previous work. In particular, the lessons learned
regarding the new concepts of data structures for PMem had a

10.5441/002/edbt .2021.05

https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2021.05

major impact on the design decisions for our graph engine. There
is, to our knowledge, no transactional graph system or JIT query
compilation approach targeting persistent memory, yet. Hence,
we approach the subject from three directions: general graph
management, PMem-aware data structures and storage engines
as well as query compilation.

Graph Management. For graph data management, numer-
ous data models and systems have been proposed in the past.
Among the several database models for graph data [3], RDF for
the Semantic Web and property graph models are the most promi-
nent. On top of these, query languages like SPARQL for RDF triple
data, diverse SQL dialects, and dedicated languages like Cypher!
and Gremlin [36] have been developed. The SQL standardization
committee is currently working on standardizing the graph query
language GQL.

Depending on the supported data model and query language,
graph database systems are either special-purpose systems such
as triple stores for RDF like Virtuoso, native stores for prop-
erty graphs e.g., Neo4j, relationally-backed approaches such as
DB2RDF [7] and EmptyHeaded [1]; or extensions of SQL systems
like Grail [11] and SAP HANA [37]. Here, standard DBMS imple-
mentation techniques are used for data storage, indexing, trans-
action management, and query processing. Particularly, traversal
operations [32], as well as support for graph analytics [29, 38],
play an important role. However, only very few approaches try
to support HTAP workloads (TigerGraph, Neo4j) and to our
best knowledge, no established graph system is utilizing PMem
yet [6].

Recently, however, Gill et al. [13] investigated the application
of DCPMMs in Memory mode for running graph analytics. They
evaluated large scale data sets on existing graph frameworks and
demonstrated that their NUMA-aware algorithms on cheaper
single machine setups with DCPMMs can outperform more ex-
pensive DRAM-only cluster setups. With Sage [9], the authors
have shown that the AppDirect mode of DCPMMs in combination
with sophisticated algorithms can even achieve a better perfor-
mance than an unmodified in-memory graph database used on
PMem in Memory mode. They especially address the asymmetry
of PMem by introducing the parallel semi-asymmetric model.
Here, the entire graph is stored as a read-only copy in PMem and
a smaller mutable part in DRAM. A volatile auxiliary structure
keeps track of deleted edges for graph filtering. Since the focus is
on parallel analytical queries, we assume that no transactional up-
dates are possible. In this paper, we want to make the appropriate
contribution in this regard.

PMem-aware Storage Designs. Researchers recently started
adapting existing data structures to PMem. This includes several
variants of the B*-Tree [8, 43], hybrid variants like the FPTree
[31], the LB*-Tree [27], DPTree [49], and HiKV [47], as well as
LSM-Tree variations [19]. There are also latch-free B*-Tree vari-
ants targeting modern hardware, such as the Bw-Tree [26, 45] and
the BzTree [4]. While the former addresses multi-core systems
with flash storage, the BzTree is explicitly designed for PMem.
Apart from the individual data structures, some approaches for
PMem-based storage engines have been proposed. SOFORT [30]
is a columnar transactional storage engine leveraging PMem
by minimizing logging and updating data in place, aiming for
mixed OLAP and OLTP workloads. Peloton [33] is another re-
lational DBMS engine already considering PMem by applying

!https://www.opencypher.org

38

write-behind logging [5]. The basic idea is to write and flush
all changed entries in-place to PMem during commit. A more
recent proposal is the key-value store RStore [25]. It opts for a
log-structured design with an index. It utilizes linked and fix-
sized append-only blocks in PMem. Once a block is full, it is
considered immutable and indexed in a volatile tree which is
rebuilt during recovery. Additionally, RStore employs partitions
that are owned by only one thread at a time, each having its own
log to parallelize recovery.

JIT Query Compilation. Similarly, there are numerous
works on query compilation techniques. Neumann [28] presented
a query compiler architecture using the LLVM framework? to
generate and compile code for queries in the HyPer database.
Based on this, Kohn et al. [21] proposed an approach to mask
the compilation time by compiling the query in the background
while interpreting it. They further improve the efficiency by using
different execution modes depending on the query type. There
are also works that try to provide a lightweight approach, apart
from LLVM. An alternative approach, LegoBase, provides a query
compiler that generates high-level code in multiple steps, where
each step replaces declarative components of the query with
imperative code [41]. Funke et al. [12] proposed a lightweight
intermediate representation (IR) to reduce compilation times for
queries by estimating value lifetimes before code generation. The
Voodoo IR [35] is a declarative algebra for utilizing many-core
architectures and GPUs by generating OpenCL code. Although
these approaches are designed for relational DBMSs, query com-
pilation is also applied in several graph DBMSs, like TigerGraph
and Neo4j. However, while JIT query compilation is a broad re-
search topic, there is presently no system that utilizes it to hide
the memory access latency of PMem.

3 PERSISTENT MEMORY SPECIFIC DESIGN
GOALS

This section aims to summarize the observations of several stud-
ies as well as our experiments regarding the characteristics and
challenges introduced by PMem - in particular, Intel’s Optane
DCPMMs. Subsequently, we derive general design goals for sys-
tems trying to integrate PMem in their hardware landscape. We
hope they help others to avoid common pitfalls when conceiving
new efficient systems for modern storage hierarchies.

3.1 Characteristics and Challenges

The first three items presented are specific characteristics of
Intel’s DCPMM technology, while the remaining are explicit
challenges that mostly result from PMem and other system pecu-
liarities.

(C1) PMem has a higher latency and lower bandwidth
than DRAM. Random access read latency and the read
bandwidth of PMem is worse than DRAM by a factor of
about three. Persistent writes are also slower than writes
to DRAM. PMem bandwidth is about 7 X lower than that
of DRAM [42, 48].

Reads and writes on PMem behave asymmetrically.
This concerns several aspects, namely performance, en-
ergy consumption, and cell wear. Asymmetrically slower
writes cost more energy and lead to wear.

DCPMMs internally work on 256-byte blocks. They
utilize a write combining buffer that is used to reduce

(C2)

(C3)

http://llvm.org/

write load by trying to combine four cache lines into one

256-byte block write. Interestingly, read operations also

benefit when a multiple of the block size is used [42, 48].
(C4) Failure atomicity is only guaranteed for 8-byte
aligned writes. The largest failure-atomic store instruc-
tion covers only 8 bytes of data, aligned on an 8-byte
boundary. Anything larger has to be implemented in soft-
ware. This means that inconsistencies of data structures
due to partial changes in case of system failures and re-
ordering of instructions by the compiler or the CPU have
to be avoided.
PMem allocations are expensive. Compared to DRAM
allocations, PMem allocators such as the PMDK allocator
need significantly more time [14, 15, 24]. This is mainly
due to the necessity of cache line flushes and recovery mea-
sures. In conjunction with the higher latencies of PMem,
allocations can be —depending on the number of threads-
up to 8x slower than on DRAM [24].
Dereferencing persistent pointers can prevent opti-
mizations. A persistent pointer is a 16-byte structure
consisting of a pool identifier (similar to a file path) and an
offset in this pool. It was introduced in PMDK and keeps
its validity across application restarts. Since this concept
of persistent pointers is not integrated into compilers (yet),
their handling cannot be automatically optimized as it is
the case for volatile pointers [39].

(C5)

(Ce)

3.2 Design Goals

From the above characteristics and challenges, we can more or
less directly formulate corresponding general design goals as
follows. Apart from the generic usability of these goals, we will
also use them as a foundation for the design decisions in the next
section.

(DG1) Algorithmically save writes (C1 & C2). This was one
of the first common goals when PMem came up. The idea
is to reduce the number of writes by trading them off for
more reads. Furthermore, certain intermediate results
can be kept in DRAM instead of PMem. In practice, it
has been shown that not the number of writes but rather
the number of flushed cache lines is decisive.

Opt for a DRAM/PMem hybrid storage design (C1
& C2). It has been shown that a pure PMem-only archi-
tecture causes too much performance degradation com-
pared to its DRAM counterpart. A hybrid DRAM/PMem
approach is therefore highly recommended when seek-
ing the best performance and still requiring persis-
tence [14, 15].

Optimize the access granularity to 256 bytes (C3).
Besides, the data structures should be aligned to cache
lines. Only then a sequential pattern and correspond-
ingly the peak bandwidth can be reached. Everything
else can be considered as random access.

Prefer failure-atomic writes over logging or shad-
owing (C4). For this purpose, flushing of cache lines via
the clwb (cache line write back) instruction and barriers
such as sfence (store fence) have to be used. However,
the number of such barriers should be minimized for best
performance. PMDK transactions can be used to simply
and universally achieve failure atomicity. However, for
performance-critical sections, the underlying logging

(DG2)

(DG3)

(DG4)

39

and snapshotting approach can lead to excessive over-
head. Thus, in the long run, an individual realization of
failure atomicity with optimally arranged 8-byte stores,
clwb instructions, and barriers should be preferred.

(DG5) Use group allocations and reuse blocks of memory
instead of deallocating (C5). Not every new record in
a system should be associated with an allocation. The
less frequent allocation of larger blocks or groups can
amortize the overhead. Deallocating can also be replaced
by suitable free space management. Since they increase
the number of allocations, copy-on-write techniques
should be replaced by in-place updates or reuse a pre-
allocated space.

(DG6) Avoid dereferencing of persistent pointers (C6).
Persistent pointers should preferably only be used dur-
ing application (re)start for initialization. Afterward, the
current valid virtual pointer or application-specific off-
sets should rather be used. Alternatively, the external
location could be converted to a virtual reference once
before using it multiple times. In addition, pointer chas-
ing should be avoided as well, as shown in [14, 15].

4 STORAGE MODEL

Essentially, there are two classes of graph data models, namely
RDEF triple stores and property graphs. RDF stores express every-
thing as triples (subject-predicate-object) which link two nodes
or a node to a property value (also called resources and liter-
als). Predicates can therefore be relationships or property keys.
Property graphs, on the other hand, consist of explicit node,
relationship, and property structures where the properties are
directly assigned to a node or relationship. The RDF model cre-
ates a lot of redundancies, which could lead to additional write
load, which in turn will most likely have a negative impact on
PMem performance. Therefore we decided to opt for the property
graph model, which is more compact, more expressive, and more
efficient to query.

Data Model Definition. In the following, we adopt a prop-
erty graph model where a graph G = (N, R) consists of nodes
N and directed relationships R € N X N. Eachnode n € N is
identified by a unique identifier id : N — ID. Furthermore, a
label (used, e.g., as a type descriptor) is assigned to each node
and each relationship via a labeling function/ : {N UR} — L
where L is the set of labels.

Properties are represented as key-value pairs (k,v) € P with
P = K x D where K denotes the set of property keys and D the
set of possible values including numbers, strings, etc. To each
node and relationship, a set of properties can be associated via
p: {NUR} — P(P) where P(P) denotes the power set of P.

4.1 Design Decisions

The above data model is implemented by storing the graph in
node, relationship and property tables maintained in persistent
memory. For efficient data access, the specific characteristics of
current PMem technology as mentioned in Sections 1 and 3 have
to be taken into account. The application of our derived design
goals led to the following key design decisions:

(DD1) Each of the tables is managed as a linked list of chunks
where a chunk is a fixed-sized array (cache-line aligned
and a multiple of 256 bytes) of records. To reuse the

space of deleted records, standard free space manage-
ment using a persistent list is implemented. This way,
tables can dynamically and efficiently grow or shrink for
updates, by allocating/deallocating chunks (DG3, DG5).
A chunk stores equally-sized records of the same type
(nodes, relationships, properties). Thus, records can be
addressed via their offsets. Similar to a sparse index,
an additional persistent lookup table allows efficient ac-
cess to chunks based on the record offset (DG1, DG6).
Note that we use array offsets because they can be rep-
resented as 8-byte integers instead of 16-byte persistent
pointers. This not only saves space but also allows for
failure-atomic stores and avoids costly dereferencing
(DG1, DG3, DG6).

In order to represent nodes and relationships as equally-
sized records, properties are outsourced to a sepa-
rate table. Furthermore, all variable-length values (e.g.,
strings) are dictionary encoded. Both lead to a reduced
number of write operations (DG1).

The connections between nodes and their relationships
as well as their properties are represented via array off-
sets instead of (persistent) pointers. Because relation-
ships are directed, each node refers to its list of both
outgoing and incoming relationships, also via offsets.
The storage model is designed hybrid both for sec-
ondary indexes and for transaction management (DG2).
Further details are provided below.

(DD2)

(DD3)

(DD4)

(DD5)

4.2 Key Data Structures

In the following, we give an overview of the key data structures
to represent the property graph model and further structures
necessary to realize our design decisions and achieve a great
performance.

Nodes, Relationships, and Properties. Fig. 1 illustrates the
primary storage structures of a persistent graph which we have
implemented using Intel’s PMDK [17]. The highlighted row illus-
trates a respective node or relationship record. On top of both the
node and relationship table, an additional sparse index is used
which maps the identifiers of the first record of each chunk to
their corresponding memory location. For each chunk there is
a bitmap to indicate free and occupied record slots, enabling an
efficient reclamation of deleted entries. The chunks are linked
by a persistent pointer to allow the scanning of all data. Node
records consist of a label, the offset of the first incoming and first
outgoing relationship, as well as the offset to their properties.
Relationship records also have a label as well as the offset to their
properties. Furthermore, they store the location of the source
and destination nodes that they connect. Optionally, relation-
ship records hold offsets to the next relationships of their source
and destination node. Note that the records for nodes and rela-
tionships contain a few additional fields needed for transaction
processing which are described in Section 5. In total, this results
in a record size for nodes and relationships of 56 and 72 bytes
respectively.

The properties are stored in a separate chunked table as key-
value pairs. These are grouped in batches, each belonging to a
single node or relationship, to obtain cache-line-sized records.
In order to allow variable-length key-value pairs, string types
are stored as dictionary codes. If there are more properties for a
single node or relationship, the property record links to the next
entry. These data structures resemble the typical storage layout

40

to_rship_list
sparse from_rship_list /
index - -

roperties
label ! / Prop

nodes

T

i
T
\ I ;)
\ | r
\ | ;o
\)
1

. chunk i

3
: l_—J

|
slots
relationships

chunked_vec

\)

=

chunked_vec

- O
]

3

chunk

,__

Figure 1: Graph data structures

of disk-based, table-oriented systems such as SQL databases or
even graph databases like Neo4j. However, in our case, table
chunks are not copied between disk and memory but instead
accessed directly in PMem. In addition, nodes, relationships, and
associated properties can be addressed individually via their
identifiers/offsets.

Dictionary. As mentioned before, to allow for variable-length
labels, property keys, and values, a dictionary is used. This com-
presses strings and, thus, reduces space and write overhead as
well as ensures that records remain addressable by offset. Fur-
thermore, the comparison of codes instead of strings speeds up
operators such as filters. The dictionary consists of two hash
tables for bi-directional translation to make lookups fast. These
must be kept persistent, in case of failure, since the codes and
strings are not stored elsewhere. An alternative could be to only
store one of the hash tables in PMem and rebuild the other DRAM-
resident part. Depending on the workload (either more inserts or
more queries), the more frequently used table should be kept in
DRAM.

Hybrid Indexes. The table-based storage model is useful for
lookups on physical node/relationship identifiers (which repre-
sent array offsets) as well as scan-intensive processing where
large parts of the nodes or relationships are visited. However,
for lookup queries on node/relationship properties, scans are too
expensive. In order to accelerate these queries, we additionally
provide B*-Tree indexes. An index can be constructed on nodes
with a given label and for a property. The values of these proper-
ties are used as keys in the index. Since the indexes are secondary
data structures that can be rebuilt in the event of a failure, they
do not have to be completely persistent. To still have a good com-
promise between recovery and query performance, we opted for
a DRAM/PMem hybrid approach (selective persistence) similar
to [18, 31, 47]. In particular, this means that the leaf nodes are
stored in PMem and the inner nodes in DRAM, resulting in a
maximum of one PMem-resident node being read per lookup
(if not already cached by the CPU) and significantly reduced
recovery time. This has an additional economic advantage since
less DRAM is used, which we expect to be more expensive than

persistent memory <@ commit =——

dirty_list

volatile memory

IIII::LlIIIIII

i

e ypdate ==

Figure 2: Structure of transactional data

PMem in the near future. In accordance with DG3, all nodes on
PMem are cache-line-aligned and a multiple of 256 bytes. For
analytical queries, multi-dimensional index structures optimized
for PMem could also be used where properties represent the
dimensions [18].

5 TRANSACTION PROCESSING

An HTAP architecture requires high-performance concurrency
control mechanisms. Several studies in the past [34, 46] have
shown that DBMSs with multi-version concurrency control
(MVCC) exhibit higher concurrency than their single-version
counterparts. Here, transactions can be concurrently executed
on different versions of the same object, thus increasing the over-
all transaction throughput especially when the transactions are
long-running and contention is high [22]. This also allows for
scalability and efficient utilization of modern multi-core CPUs.
MVCC is implemented differently by different DBMSs, each mak-
ing certain design decisions in order to optimize for its target
workloads. The interplay between these design decisions ulti-
mately results in computation and storage overhead trade-offs.
Below, we discuss how we implemented these MVCC design de-
cisions in a PMem setting to achieve our design goals presented
earlier in Section 3.

5.1 Concurrency Control Protocol

Existing concurrency control (CC) protocols such as two-phase
locking (2PL), optimistic concurrency control (OCC), or times-
tamp ordering (TO) can essentially be used in a multi-version
setting. We chose MVTO as our CC protocol. With our MVTO
implementation, we support updates of an arbitrary number of
objects within a single transaction and achieve snapshot isola-
tion guarantees. Note, that we use MVTO here mainly as an
example to evaluate how an MVCC protocol implementation can
exploit and address the specifics of PMem. However, in princi-
ple, the main concepts should apply to implementations of other
protocols too.

There is a transaction identifier (timestamp), txn-id, given to
each transaction at the beginning of the transaction that uniquely
identifies it. Each data object maintains meta-data fields for con-
currency control purposes. To this end, we extend the data struc-
tures of nodes and relationships, as shown in Fig. 2, by additional
persistent fields — txn-id, begin timestamp bts, end timestamp
ets and read timestamp rts - and a volatile field - pointer. The
txn-id-field is used for write-locking, by way of coordinating
which versions are valid for which write-transactions. By default,
it is set to zero except if the object is locked by a write-transaction,
where it is set to the transaction’s txn-id using a CaS instruc-
tion [22]. The begin timestamp and end timestamp fields mark
the validity of an object for access by a read-transaction, while the
read timestamp indicates the latest transaction that read it. The

41

pointer field stores a volatile pointer to a list of dirty objects (i.e.,
in DRAM) to address (DG1) and (DG2). Alternatively, the bts,
ets, and rts fields and perhaps also the txn-id of the current
version could be moved to DRAM in order to reduce the persis-
tent record size. These fields could then be re-initialized during
recovery (or during the first access after a failure). However, this
could also be disadvantageous because the transaction informa-
tion of the current version would always have to be retrieved
with another random read in DRAM.

Write transaction. A transaction T always updates the latest
version of an object o. It creates a new version 041 of the object
if no other transaction has a lock on 0; and o; has not been
read by a more recent transaction (i.e., the transaction identifier
id(T) > rts(o;)). Otherwise, T aborts. The txn-id field of 0;41
is set to id(T). In case of an update, 0;41 is kept in the dirty list
in volatile memory until commit. If the transaction inserts a new
object, this object is already stored in the persistent array (i.e., in
PMem), but still locked until the end of the transaction.

Read transaction. A transaction T reads version o; of an ob-
ject for which id(T) is between the bts and ets, i.e., bts(o;) <
id(T) < ets(o;), and which is not locked by another active trans-
action. Thus, the object is accessed in PMem first (representing
the most recent committed version) and if this is not the version
valid for T then the dirty list in volatile memory is traversed to
retrieve the correct version. In case of a lock held by another
transaction, the transaction is aborted. Upon reading o;, the rts
field is updated to id(T) unless rts(o;) > id(T). In this case, the
transaction reads an older version without updating rts.

Commit. For commit of a transaction T, the timestamp fields
of the updated object version 0;41 are set accordingly: bts to
id(T) and ets to INF and for the previous version o;, the field
etsis set to id(T). In the case of delete, ets of the deleted version
0i+1 is set to id(T) instead. If the object was newly created, how-
ever, it is simply unlocked (i.e., resetting txn-id to 0). Otherwise,
0i+1 has to be copied back to PMem. In order to guarantee failure
atomicity, this memory copy has to be performed atomically. This
can be implemented in different ways. One approach is to rely
on the solution provided by the Intel PMDK to atomically update
and persist data that is larger than the power-fail atomic size
or portions of data that are non-contiguous. PMDK uses trans-
actional operations for memory allocation, freeing, and setting.
Internally, these transactions are implemented via redo logging
to ensure the atomicity of memory allocations and undo logging
for transactional snapshots [40]. Other approaches are, e.g., using
Multi-Word CaS instructions such as PMwCAS [44] which allows
atomically changing multiple 8-byte words on PMem. In our cur-
rent implementation, we use the PMDK solution for the sake of
simplicity (DG4). However, this comes with a small overhead.

5.2 Version Storage

A transaction updating an object version o; creates a new ver-
sion 0;4+1 by making a copy of o; and appending it to the front
of the list of dirty versions (i.e., version chain). It then performs
all updates on 041 in DRAM until commit. Keeping all uncom-
mitted data in volatile memory is a design decision we made in
order to minimize the number of writes to PMem (DG1, DG2).
This hybrid DRAM/PMem approach allows for the creation of
all versions by transactions to be a volatile copy instead of the
more expensive copy to PMem, and also allows for all the write
operations that occur during the lifetime of a transaction to be
performed at DRAM latency until the transaction is to commit
when the updates are finally persisted in PMem. Note that a dirty
object has the same structure as its committed version but with a
different validity interval (as specified by the range [bts, ets]).

5.3 Garbage Collection

In our current implementation, we use Transaction-level Garbage
Collection (GC), where storage space occupied by dirty ver-
sions that are not going to be used anymore is reclaimed at
transaction-level granularity [46]. A node or a relationship main-
tains a volatile dirty list, only if there is a valid dirty version of it.
A dirty version is not used anymore if it becomes invalid (i.e., the
transaction that created it aborts) or if it is no longer visible to any
active transaction (i.e., its ets < id(T) of the oldest active trans-
action T). All empty or unused dirty lists are discarded during a
commit. If the storage space to be reclaimed is in PMem, either
because a committed transaction deleted the object or the object
was inserted by an aborted transaction, we do not deallocate the
record slot(s). Rather, we simply mark it with a bitmap as free
for later reuse (DG5).

6 QUERY PROCESSING

The characteristics of PMem have several implications for query
processing. First of all, data access is no longer block-oriented
and, therefore, has to be optimized for sequential access. The
direct and byte-addressable access is very similar to in-memory
databases. In graph databases, this is particularly useful for tra-
versal operators. However, as mentioned above, reading from
PMem is slower than from DRAM. Hiding this higher latency
requires efficient cache utilization, multithreaded processing, and
various execution modes.

6.1 Push-based Approach

We address these requirements by a multithreaded push-based
query engine. Our engine provides a set of graph-specific algebra
operators [16] such as NODESCAN, RELATIONSHIPSCAN, and FORE-
ACHRELATIONSHIP; as well as standard relational operators like
FILTER, PROJECT, and several JOIN variants. As every operator
is implemented and ahead-of-time (AOT)-compiled, i.e., avail-
able at run-time, the engine is able to interpret queries (given
as graph algebra expressions) directly by calling these opera-
tors with the required parameters. Processing a typical traversal
query (MAtcH in Cypher) is initiated by scans on the node or
relationship tables including filters. For each node satisfying the
optional filter condition the traversal operation is applied, i.e.,
the NoDEScAN operator forwards the current node to the next
operator FOREACHRELATIONSHIP, and so on. (Fig. 3).

Though traversals could be also implemented using joins of a
standard relational query engine [11], the FOREACHRELATIONSHIP
leverages the direct addressability of data in PMem. As described

42

~_ 7
N =D =
& JIT-compiled,
'FE inlined
g ipeline
9 pip

I
I
1
|
|
|

Interpretation +
query compilation

‘ execute ‘

[
>

Figure 3: Query execution plan

in Sect. 4.2, node records contain the persistent addresses (offsets)
of their relationships, which in turn store the address of the
sibling nodes, and are used to traverse the path. This avoids the
problem of join escalation during traversals.

For query parallelization, we leverage a task model. Scans
are performed as parallel scans: Each task processes a range
of the node/relationship tables. Thus, all subsequent operators
following the scan are also performed within this task until a
pipeline breaker like a join or sort operator is reached. This way,
we follow the morsel-driven parallelism approach [23].

For using indexes in query processing, an appropriate INDEXS-
CAN operator is provided that performs a lookup or range scan
on the B*-Tree, extracts the matching nodes from the node tables,
and passes them to the subsequent operator pipeline.

6.2 Just-In-Time Query Compilation

Besides the AOT compiled query engine, we implement a JIT
query compiler that transforms graph algebra expression into
machine code. Traditional query execution engines use a query
interpreter to execute query statements. This has several draw-
backs that reduce the resulting performance. An interpreter relies
on AOT compiled code, which means that the appropriate meth-
ods must be available for every possible occurrence of a particular
tuple element type. Furthermore, a query interpreter is not able
to recognize equal or redundant instructions. Particularly for
operators that lead to variable cardinalities, like selections or
aggregations, it introduces additional overhead. Query compi-
lation is an approach to tackle these issues. Our approach aims
to compile given graph algebra expressions into highly efficient
machine code using the JIT compilation technique [20]. As the
compiling framework, we chose the LLVM compiler infrastruc-
ture because it provides numerous relevant features for the JIT
compilation, reliable performance, and portability to several ar-
chitectures. Moreover, the LLVM IR provides an instruction set
suitable for the implementation of all the abstractions needed for
our graph query engine. One significant requirement for the JIT
query compiler is the fulfillment and compliance with the formu-
lated design goals (DG1-DG6). This is mainly done by reusing

(calling) AOT-compiled code, e.g., access methods to nodes or
methods for transaction processing. Thereby, the code generation
effort will be reduced because it is already compliant with the
design goals and optimized by the AOT compiler.

Similar to the approach presented by [28], we aim to process
intermediate tuple results as long as possible in the CPU reg-
isters. In order to achieve this, it is necessary to transform the
complete query pipeline into a single LLVM IR function. Here it
becomes apparent that a transformation from graph algebra to
machine code can be easily accomplished with LLVM IR. How-
ever, to ensure reliable performance, we identified the following
requirements for the IR code generation that must be met.

(1) Minimize stack allocation and avoid heap allocation.

(2) Process initializations only at the first entry point of the
IR function.

(3) Process type information at (JIT) compile-time.

(4) Provide full compatibility to the AOT execution engine.

One significant advantage of query compilation over interpre-
tation is that the tuple element type information can be handled
at compile-time. The consequence of this is the absence of type
conversions at run-time as code can be generated for individual
types.

Starting from a graph algebra expression that forms an opera-
tor tree, each operator will be transformed into LLVM IR code.
Further, each operator provides at least an entry and a consume
IR basic block, representing the operator’s start and end points.
Complex operators comprise more basic blocks for the actual tu-
ple processing, e.g., JoIN. Though, the general control flow starts
at the entry basic block. After processing in further basic blocks,
the control flow branches to the consume basic block to push the
results to the next operator. A branching instruction links each
consume basic block with the entry basic block of the succeeding
operator, forming an inlined query pipeline. Fig. 4 illustrates the
transformation process, starting from a query plan in the form
of graph algebra. Furthermore, it shows each operator’s return
path, which is, for most cases, the loop header of the previous
operator. The finish operator will be called after the complete
scan. Depending on the query, it invokes the function return or
the next query pipeline.

The query engine’s current implementation provides two ac-
cess paths for the query pipeline: the NopDEScAN and CREATE
operator. Code generation for these operators is basically the
same as for the normal operators. Both contain at least the entry
and consume basic block. As an access path is always the first
operator in the pipeline, it must also provide the actual generated

Graph scan_entry LLVM IR
Algebra loop_head l define void @start(i8* %0, 64 %1,i64 %2, 8" %3, 164 %4,
’ - i64* %5, 164" %6, 164" %7, void (i64*)* %8, 164 %9,
[64 xi64*]* %10) {
Collect loop_body entry:
check_label %19 = call i8* @gdb_get_nodes(i8* %0)
I %20 = getel tptr (64 xi64*], [64 xi64*]
%10,i64 0,64 1
nsum : :
consume %21 = load i64*,i64** %20, align 8
Foreach . %22 = bitcasti64* %21 to i8*
Relationship finish %23 = call i32 @dict_lookup_label(i8* %0, i8* %22)
%24 = call %node_iterator* @get_vec_begin(i8* %19,
fe_entry 164 %1,i64 %2)
— %25 = call i1 @vec_end_reached(i8* %19,

%node_iterator* %24)

%26 =icmp eq i1 %25, false

bri1 %26, label %loop_body, label %finish
loop_body:

consume

‘ NodeScan ’
collect_entry

Figure 4: Graph algebra to LLVM IR transformation

}

43

function’s entry point. Due to the reason that the code genera-
tor transforms the complete pipeline into a single IR function,
memory allocation must be carefully handled. For this reason,
the access path initializes all relevant values for the complete
query pipeline, e.g., number of nodes, projection keys, or global
constants.

The code generation for joins requires additional work. A join
operator comprises two inputs. For now, we consider the right
sub-pipeline of the join as the side which will be materialized.
Consequently, it requires the prior execution of the right sub-
pipeline. However, the actual code generation starts from the
left sub-pipeline in order to minimize tree traverses. Whenever
the code for an access path is generated, it checks if the current
function is already initialized. If this holds, it swaps the function
entry basic block with its own and connects the finish basic
block of the second access path with the entry basic block of the
previous access path. This enables the handling and execution of
multiple query pipelines within a single function.

IR Code Generation. We use the visitor design pattern to gen-
erate the appropriate IR code for each operator. Further, this
enables the extension of the query engine in future work. Each
operator derives from a base class and implements a codegen
method for code generation. The query engine calls the visitor
to start the code generation process, which calls all the oper-
ator’s codegen methods recursively. We implement several IR
abstractions that help to generate IR code with more ease. Due
to the reason that most operators rely on loops, we provide two
IR loop abstractions. The while_loop abstraction is used for the
iteration through a chunked vector. It receives the vector, the
current iterator, the succeeding basic block, and the actual loop
body as function arguments. The other loop abstraction is the
while_loop_condition, used for the iteration as long as a con-
dition is valid. Further, our abstraction set contains methods that
generate code to extract label codes or property values. The oper-
ator IR code is based on these abstractions and mainly mimicking
the push-based processing described previously. An additional
structure is built to provide the type of tuple element at code
generation and the appropriate register value. The code of the
next operators is generated according to the type of the previ-
ous tuple element. For example, the projection operator uses the
proper node functions if the last result tuple element is a node.
This handling allows for generating code without much effort at
run-time.

JIT Compilation. We extended the JIT compiler of LLVM to
further features. First of all, our JIT query engine can persist
already compiled code to PMem. This has the advantage that no
further compilation is required for subsequent runs of a query.
For that purpose, a persistent and concurrent hash map is used.
The compilation output of the JIT is a binary object file that will
be linked with the current database instance. Usually, this file is
located in a memory buffer in the volatile memory. Before the
compilation process, the query engine generates a unique query
identifier that comprises the operators’ identifiers, which will be
used to lookup the persistent hash map for already compiled code.
If the code is found, it will be linked with the current database
instance. Otherwise, the compilation process of the query starts.
The compiled code will be persisted in PMem after its compilation,
using the query identifier as a key for the hash map.

A major advantage of JIT compilation is the ability to opti-
mize the IR code at run-time. The LLVM framework provides
a convenient approach for IR code optimization. Several LLVM

optimization passes can be used for this purpose. An analysis of
the IR code reveals that it comprises mainly of loops and pointer
arithmetics. Therefore, our optimization strategy focuses on these
constructs. The following optimization pass cascade is used to
further optimize the code at run-time:

o Promote Memory To Register transforms instructions that
allocate stack memory into register values. This makes
the IR code generation convenient and compliant with the
requirement (1).

o Control Flow Graph Simplification merges and deletes basic
blocks if they have common or no predecessors.

o Loop Unrolling removes the overhead of loops by explicit
extraction of the body to multiple instructions.

o Dead Code Elimination eliminates unreachable code.

o Instruction Combining combines redundant instruction to
form smaller and faster code with the same effect.

Additionally, the IR code is optimized with the standard C++
aggressive optimization (-O3).

Adaptive Execution. While the compiled query code itself
is fast, the compilation time should also be considered. Notably,
when executing short-running queries where only a small por-
tion of data is touched, the compilation time will be longer than
the actual execution time. In order to hide the compilation time
as well as memory access latency of PMem, we additionally sup-
port an adaptive query processing approach, which is illustrated
in Fig. 3. In contrast to the approach by [21], the adaptive exe-
cution can switch between only two modes, which is currently
sufficient for our engine. The interpretation mode is always ini-
tiated first at query execution. This mode uses AOT-compiled
database code to execute the query. Similarly, the visitor design
pattern is used to transform the given algebra query plan into
the interpret functions. These functions are then linked together,
forming a cascade of functions that execute the actual query. The
downside of such an approach is the additional (AOT-compiled)
code overhead because every operator and its varieties must be
available at compile-time. During adaptive execution, the query
engine switches to the JIT mode after compilation.

We take advantage of the morsel-driven parallelism for the
actual switching procedure, where morsels are pinned to a single
task and pushed into a task pool. The working threads pull a task
from the pool and execute the task function (the query) on the
pinned morsel.

We implement the task function as a static function. As the
execution always starts in the interpretation mode, it will be
initialized to the appropriate function, which invokes the inter-
pretation. While the query is executed in the interpretation mode,
a background thread compiles the query plan into machine code.
The compilation process emits a function that processes the query
plan into machine code. As soon as the compilation is done, it
redirects the static task function to the compiled function. The
next pulled task from the pool will execute the compiled query
function.

7 EVALUATION

In this section, we report the results of a set of experimental
evaluations whose research goal is threefold:

1. We evaluate our PMem-based HTAP engine and show
the effectiveness of our design decisions to exploit PMem
characteristics for graph processing. In this context, we
aim to investigate, on the one hand, the benefits of using

44

persistent memory for graph processing. On the other
hand, we compare our system to disk-based and DRAM-
based solutions (§ 7.3).

2. We compare the speed of volatile, persistent, and
DRAM/PMem hybrid B*-Tree index lookups. We quan-
tify the recovery overhead of our hybrid index (which
we expect to be insignificant) as a trade-off for increased
query performance (§ 7.4).

3. We evaluate our JIT query compilation approach. We
demonstrate when and how much it enhances the per-
formance of transactional queries. We expect the JIT com-
pilation to yield benefits especially for long-running and
more complex queries (§ 7.5).

7.1 Environment

For the experiments, we used a dual-socket Intel Xeon Gold 5215
server with 10 cores each at max. 3.4 GHz. The server is equipped
with 384 GB DDR4 RAM, 1.5 TB Intel Optane DCPMM, and 4 X
1.0 TB Intel SSD DC P4501 Series connected via PCle 3.1 x4. The
server runs CentOS 7.8 (Linux 5.7.7 kernel). The operating mode
of the PMem modules is set to AppDirect which allows us direct
access to the devices. On the PMem DIMMs, we have created an
ext4 file system and mounted it with the DAX option to enable
direct loads and stores bypassing the OS cache. For accessing
PMem, we used the Intel PMDK version 1.9.1 and libpmemobj-
cpp® version 1.11. The JIT compilation was done with LLVM
version 11.

7.2 Workload & Setup

The Linked Data Benchmark Council (LDBC) specifies bench-
marks and benchmarking procedures and also verifies and pub-
lishes benchmark results [10]. The LDBC-Social Network Bench-
mark (SNB) models a social network comprising of different en-
tity types interconnected by relationships — both with property
types and property values. Activities of persons are represented
as messages about topics or tags that are posted in forums mod-
erated by unique persons. Persons like messages, have interests
in tags, are members of forums, and make comments in response
to posts or other comments. Message activities are the bulk of
the data on the social network. There also are places and orga-
nizations to which a person is connected via residence, study,
and work relationships. The LDBC-SNB defines an Interactive
Workload and a Business Intelligence Workload. The Interactive
Workload comprises of three classes of queries: (1) Interactive
Complex Read Queries that are relatively complex and traverse a
fair portion of the graph data, (2) Interactive Short Read Queries
that perform lookups and short traversals within the neighbor-
hood of a node, and (3) Transactional Interactive Update Queries
that perform transactional insertions and updates of node and
relationship objects [10].

We generated and used the LDBC-SNB data [2] at scale factor
(SF) 10 as our benchmark data. As the focus of this paper is on
transactional graph processing, not graph analytics, we selected
the LDBC-SNB Interactive Short Read (SR) and the Interactive
Update (IU) query sets as query workload for our experiments.

3https://github.com/pmem/libpmemobj-cpp

4
10 = DISK-i PMem-s mmm PMem-p EEE PMem-i DRAM-s mmm DRAM-p EEE DRAM-i
103

+ 10?

v

Q

wn

£ 10!

g

5 10°
10!

Wk Dk Lk Lk i
1 2-post 2-cmt 3 4-post 4-cmt 5-post 5-cmt 6-post 6-cmt 7-post 7-cmt
query
Figure 5: Results for SNB Short Reads
mmm DISK-hot mmm PMem-hot mmm DRAM-hot
DISK-cold PMem-cold DRAM-cold
10*
~ 10°
wn
@
n 10?2
E
o 10!
E
-
100
1071
1 2 3 4 5 6 7 8
query

Figure 6: Results for SNB Interactive Updates

7.3 Benefit of PMem

We first want to evaluate how much the design decisions in our
PMem-optimized graph engine and our implementation of trans-
action processing reduce the overhead of PMem in our system (de-
noted as PMem in the figures) compared to a pure DRAM-based
in-memory implementation of it. Moreover, we want to compare
the performance gains brought about by the lower access latency
of PMem compared to a DISK-based system, in addition to pro-
viding persistence. To this end, we employ two baselines: A disk
baseline (represented as p1sK), which is an open-source native
graph database where we stored all the primary data on SSD
and created an additional DRAM index. For the DRAM baseline
(depicted as DrAM), we adapted our system to additionally run in
a pure volatile mode where we keep data entirely in DRAM. We
expect our system to outperform the disk-based system. With
regards to the DRAM baseline, we anticipate to bridge the per-
formance gap with our PMem-conscious design and achieve a
near-DRAM performance while providing persistence, especially
for hot runs.

Interactive Short Reads. Fig. 5 shows the query execution
times for the SR query set. The execution times are average times
of 50 runs on hot data, each with a different input ID parameter.
post and cmt (short for post and comment respectively) represent
the two subclasses of a message entity. For PMem, we show the
execution times without indexes for single-threaded execution
(PMem-s), multi-threaded execution (PMem-p) as well as with in-
dexing support (PMem-i). We employ similar denotations for our

45

DRAM baseline: DRAM-s, DRAM-p, and DRAM-i. For the disk
baseline, we also conducted executions with index support and re-
port the performance numbers for hot runs (i.e., when the data is
in DRAM), denoted by DISK-i. We used our hybrid DRAM/PMem
implementation of the B*-Tree (Section 4) for PMem, while for
DRAM, we used a volatile B*-Tree. We maintain the same set of
indexes throughout our experiments.

The results in Fig. 5 show that exploiting PMem-specific char-
acteristics in storage architecture and transaction processing can
significantly bridge the performance gap between DRAM and
PMem. It can be noted that for multi-threaded execution of some
of the queries, the execution times are very close since the SR
queries are short-running and the PMem latency is already hid-
den by the CPU caches for hot runs. An interesting research
direction is thus to investigate this in the context of graph ana-
lytics, where queries are compute-intensive, long-running, and
navigate across a significant portion of the graph. While the re-
sults show performance improvements of multi-threading both
for DRAM and PMem, however, indexes have a stronger influence.
Unlike graph analytics that significantly benefit from parallel
execution, interactive queries like SR and IU benefit more from
indexes, as they are essentially lookup queries whose execution
time overhead comes mainly from scanning the tables of record
chunks to retrieve the start node object. As a result, we compare
the performance of indexed query execution both on our sys-
tem and on the DISK baseline. We can see from the figure that
our PMem-based system outperforms the disk-based system for
indexed execution in all the queries, as we had expected.

4|
10 = Compile Time === JIT PMem AOT PMem mmm |IT DRAM AOT DRAM
103 L
w
v
Q
7]
E02t
[}
E
=
101 L
10°
1 2-post 2-cmt 3 4-post 4-cmt 5-post 5-cmt 6-post 6-cmt 7-post 7-cmt
query

Figure 7: Results for SNB Short Reads with Single Threaded Execution

Interactive Updates. We maintain the indexed query execu-
tion and present the execution times for the IU query set with
indexed support in Fig. 6. Here, we measured both the times to
execute the update queries as well as times for the transactions
to commiit (i.e., notably, persisting the updates in PMem). Simi-
lar to the SR queries, we took the average execution time of 50
runs on hot data with varying object property values as input
parameters. In addition to results on hot data, we also present the
execution times for cold runs, i.e., for the first query runs. The
results show our PMem-based system not only outperforms the
disk-based system by an order of magnitude even for hot runs
but also performs insert and update operations at near-DRAM
latency. For hot data, it is even closer.

Overall, the results of Fig. 5 and Fig. 6 show that in direct
comparison with the DRAM variant, our hybrid approach of
MVTO implementation to address the specifics of PMem adds
only a marginal overhead. This validates our MVCC design de-
cisions of Section 5 and also obviates the need for showing the
results of a pure PMem implementation which has an overhead
of maintaining dirty versions on PMem.

7.4 Indexes and Recovery

We evaluated index performance and recovery by way of compar-
ing our hybrid index that keeps inner nodes in DRAM, trading-off
recovery for improved performance, against two baselines. One
a volatile index that keeps all nodes in DRAM and the other a

2.0
O 15F
Q
(7]
2
o 1.0F
E
)
0.5 F I
0.0
PMem Hybrid DRAM
Index

Figure 8: Average Time per Lookup of Persistent, Hybrid,
and Volatile Indexes

46

persistent index that stores all nodes on PMem. We evaluated
them based on the average time for indexed scans in the SNB SR
queries. To study the performance differences, we measured the
time to lookup and retrieve a node ID from the appropriate index.
Fig. 8 shows the average lookup time for the persistent, volatile,
and hybrid indexes - denoted respectively as PMem, DRAM, and
Hybrid. The lookup times are averages of all ID value lookups of
nodes with the same label type (Person) in all the respective SR
queries. The hybrid approach enhances the lookup performance
by 2x while keeping the recovery time as low as 8 ms, in com-
parison to the complete volatile index build time of 671 ms. This
recovery overhead would also be necessary for each index cre-
ated on specific properties. Added up, the overhead of completely
rebuilding the indexes in the volatile case is comparatively dras-
tic. Therefore, we see the hybrid variant as a good compromise
between runtime performance and recovery.

7.5 JIT

The final part of our evaluation focuses on the JIT query compi-
lation approach. The first two benchmarks show the capability
of JIT-compiled code itself, without any mechanism to hide the
compilation time. For this purpose, we execute the interactive
read and update queries from the SNB. Thereafter, we examine
the gain from adaptive execution. Although we expect it to be
much more efficient for analytical and long-running queries, it is
insightful to see the benefits on short and transactional queries
in comparison to AOT-compiled code. In particular, the combi-
nation with PMem could make this approach profitable even for
short-running queries.

Interactive Short Reads. Fig. 7 shows the results for the SR
executed with the JIT query engine. We calculated the average
execution time of 50 runs on hot data with different parameters.
The queries are executed single-threaded without indexes. The
compilation time of the queries is only a few milliseconds. As the
number of operators increases, the compilation time increases
by only a few milliseconds. However, the results show clearly
that the JIT-compiled is always faster than the AOT-compiled
code. The JIT-compiled code is mostly even faster when the
actual compilation-time of the query is included. Especially more
complex queries, like 7-posT and 7-cMT, can benefit from the JIT
compilation approach.

Interactive Updates. The results for the IU executed with the
JIT query engine are shown in Fig. 9. There are not many opti-
mization possibilities for the generated IR code, as the queries are

== DRAM AOT-hot
DRAM AOT-cold
mmm DRAM JIT-hot

10k

1000

time (msecs)

DRAM JIT-cold
s PMem AOT-hot
PMem AOT-cold

4

s PMem JIT-hot
PMem JIT-cold
mmm Compile Time

5 6 7 8

query

Figure 9: Results for SNB Interactive Updates executed with JIT compiled code

1000

wZ& PMem adaptive

800

600

400

time (msecs)

200

1 2-post 2-cmt 3

mmm PMem AOT

wzm DRAM adaptive mmm DRAM AOT

5-post 5-cmt 6-post 6-cmt

query

Figure 10: Results for SNB Short Reads with Adaptive Execution

short when index support is enabled. Executing these queries us-
ing scans and selections shows similar behavior to the benchmark
before. However, here we focus on code for short queries, where
the execution time is less than the compilation time. JIT code
executed on cold data is noticeably slower, while the resulting
performance on hot data is similar to the AOT code. However, ex-
ecuting these queries with the JIT compilation approach shows
that it is not always the best option to generate code during
runtime for executing a query. The compilation time for these
short queries is much higher than the actual execution time.
Furthermore, executing these short queries with the adaptive
approach leads to the execution of the query pipeline using the
AOT-compiled code entirely, which corresponds to the results of
the AOT code in Fig. 9.

Adaptive Query Executions. The previous benchmarks
show the capability of executing JIT-compiled queries. It is
clearly visible that the JIT-compiled code itself outperforms the
AOT code on DRAM and PMem. However, waiting for the com-
pilation of the query limits the performance improvement of this
approach. The adaptive query execution approach eliminates this
problem by executing the AOT code while query compilation
is done in the background. Additionally, this is useful to hide
the memory access latency of PMem. The next benchmark com-
pares the adaptive query execution approach using morsel-driven
parallelism with multi-threaded AOT-compiled query execution.
Similar to the previous benchmarks, we execute each query on
DRAM and PMem. The results in Fig. 10 show that the adaptive

47

execution is always faster than the multi-threaded AOT execu-
tion. The execution on PMem can particularly benefit from the
adaptive approach. The additional latency introduced by PMem
leads to an earlier execution of the fast JIT-compiled code in the
query pipeline stage, which enhances the query processing. For
the queries 1, 2-pPosT, 2-cMT, and 3, it leads to similar execution
times for DRAM and PMem. The adaptive approach provides
faster query execution times for most queries and in worst-case
similar performance than multi-threaded AOT code. More com-
plex queries can benefit even more from the adaptive approach
as there is more space for code optimization, like for the queries
7-POST and 7-CMT.

8 CONCLUSION

Persistent memory represents a promising technology for data
management solutions whose efficient use requires rethinking
data structures and architectures. In this work, we have presented
the first results of our PMem-based graph engine for hybrid trans-
actional/analytical workloads. Based on the characteristics of
PMem technology, we have discussed, implemented, and eval-
uated design choices regarding storage structure, transaction,
and query processing. The promising results using the LDBC-
SNB interactive short read and update query sets show that a
PMem-based storage engine that is well-optimized for PMem
characteristics incurs only a marginal performance overhead
compared to a pure in-memory solution. The main benefits are,
among others, the competitive performance without the need to

keep large parts of the data in (volatile) main memory (resulting
in constant answer times both for cold and hot data) as well as
near-instant recovery guarantees. Additionally, the results have
shown that in comparison to AOT-compiled query execution,
JIT compilation speeds up query processing when the compila-
tion time is less than the execution time. Particularly, adaptive
compilation further enhances query execution performance by
hiding PMem access latency. In our ongoing work, we plan to
investigate the behavior of complex graph analytics and highly
concurrent updates. Moreover, there are several opportunities
for further performance improvements, e.g., by employing more
hybrid DRAM/PMem approaches such as for dictionaries.

ACKNOWLEDGMENTS

This work was partially funded by the German Research Foun-
dation (DFG) in the context of the project “Hybrid Transaction-
al/Analytical Graph Processing in Modern Memory Hierarchies
(#TAG)” (SA 782/28-2) as part of the priority program “Scalable
Data Management for Future Hardware” (SPP 2037) and by the
Carl-Zeiss-Stiftung under the project “Memristive Materials for
Neuromorphic Electronics (MemWerk)”.

REFERENCES

[1] Christopher R. Aberger, Susan Tu, Kunle Olukotun, and Christopher Ré. 2016.
EmptyHeaded: A Relational Engine for Graph Processing. In SIGMOD. 431-
446.

[2] Renzo Angles, Janos Benjamin Antal, Alex Averbuch, Peter A. Boncz, Orri
Erling, Andrey Gubichev, Vlad Haprian, Moritz Kaufmann, Josep-Lluis Larriba-
Pey, Norbert Martinez-Bazan, Jozsef Marton, Marcus Paradies, Minh-Duc
Pham, Arnau Prat-Pérez, Mirko Spasic, Benjamin A. Steer, Gabor Szarnyas,
and Jack Waudby. 2020. The LDBC Social Network Benchmark. CoRR
abs/2001.02299 (2020).

[3] Renzo Angles and Claudio Gutiérrez. 2008. Survey of graph database models.
ACM Comput. Surv. 40, 1 (2008), 1:1-1:39.

[4] Joy Arulraj, Justin J. Levandoski, Umar Farooq Minhas, and Per-Ake Larson.
2018. BzTree: A High-Performance Latch-free Range Index for Non-Volatile
Memory. PVLDB 11, 5 (2018), 553-565.

[5] Joy Arulraj, Matthew Perron, and Andrew Pavlo. 2016. Write-Behind Logging.
PVLDB 10, 4 (2016), 337-348.

[6] Maciej Besta, Emanuel Peter, Robert Gerstenberger, Marc Fischer, Michal
Podstawski, Claude Barthels, Gustavo Alonso, and Torsten Hoefler. 2019.
Demystifying Graph Databases: Analysis and Taxonomy of Data Organization,
System Designs, and Graph Queries. CoRR abs/1910.09017 (2019).

[7] Mihaela A. Bornea, Julian Dolby, Anastasios Kementsietsidis, Kavitha Srinivas,
Patrick Dantressangle, Octavian Udrea, and Bishwaranjan Bhattacharjee. 2013.
Building an efficient RDF store over a relational database. In SIGMOD. 121~
132.

[8] Shimin Chen and Qin Jin. 2015. Persistent B+-Trees in Non-Volatile Main

Memory. PVLDB 8, 7 (2015), 786-797.

Laxman Dhulipala, Charles McGuffey, Hongbo Kang, Yan Gu, Guy E. Blelloch,

Phillip B. Gibbons, and Julian Shun. 2020. Sage: Parallel Semi-Asymmetric

Graph Algorithms for NVRAMs. PVLDB 13, 9 (2020), 1598-1613.

Orri Erling, Alex Averbuch, Josep-Lluis Larriba-Pey, Hassan Chafi, Andrey

Gubichev, Arnau Prat-Pérez, Minh-Duc Pham, and Peter A. Boncz. 2015. The

LDBC Social Network Benchmark: Interactive Workload. In SIGMOD. 619-

630.

Jing Fan, Adalbert Gerald Soosai Raj, and Jignesh M. Patel. 2015. The Case

Against Specialized Graph Analytics Engines. In CIDR.

Henning Funke, Jan Miihlig, and Jens Teubner. 2020. Efficient generation of

machine code for query compilers. In DaMoN @ SIGMOD. 6:1-6:7.

Gurbinder Gill, Roshan Dathathri, Loc Hoang, Ramesh Peri, and Keshav Pingali.

2020. Single Machine Graph Analytics on Massive Datasets Using Intel Optane

DC Persistent Memory. PVLDB 13, 8 (2020), 1304-1318.

Philipp Gotze, Arun Kumar Tharanatha, and Kai-Uwe Sattler. 2020. Data Struc-

ture Primitives on Persistent Memory: An Evaluation. CoRR abs/2001.02172

(2020).

Philipp Gotze, Arun Kumar Tharanatha, and Kai-Uwe Sattler. 2020. Data struc-

ture primitives on persistent memory: an evaluation. In DaMoN @ SIGMOD.

15:1-15:3.

[16] Jurgen Hélsch and Michael Grossniklaus. 2016. An Algebra and Equivalences

to Transform Graph Patterns in Neo4j. In EDBT/ICDT.

Intel Corporation. 2020. Persistent Memory Development Kit. http://pmem.

io/pmdk. Online, accessed December 2020.

Muhammad Attahir Jibril, Philipp Gétze, David Broneske, and Kai-Uwe Sat-

tler. 2020. Selective Caching: A Persistent Memory Approach for Multi-

Dimensional Index Structures. In HardBD & Active @ ICDE. 115-120.

[9

=

[10]

[11]
[12]

[13]

[14]

[15]

[17]

(18]

48

[19] Sudarsun Kannan, Nitish Bhat, Ada Gavrilovska, Andrea C. Arpaci-Dusseau,
and Remzi H. Arpaci-Dusseau. 2018. Redesigning LSMs for Nonvolatile Mem-
ory with NoveLSM. In USENIX ATC. 993-1005.

Timo Kersten, Viktor Leis, Alfons Kemper, Thomas Neumann, Andrew Pavlo,
and Peter A. Boncz. 2018. Everything You Always Wanted to Know About
Compiled and Vectorized Queries But Were Afraid to Ask. PVLDB 11, 13
(2018), 2209-2222.

André Kohn, Viktor Leis, and Thomas Neumann. 2018. Adaptive Execution of
Compiled Queries. In ICDE. 197-208.

Per-Ake Larson, Spyros Blanas, Cristian Diaconu, Craig Freedman, Jignesh M.
Patel, and Mike Zwilling. 2011. High-Performance Concurrency Control
Mechanisms for Main-Memory Databases. PVLDB 5, 4 (2011), 298-309.
Viktor Leis, Peter A. Boncz, Alfons Kemper, and Thomas Neumann. 2014.
Morsel-driven parallelism: a NUMA-aware query evaluation framework for
the many-core age. In SIGMOD. 743-754.

Lucas Lersch, Xiangpeng Hao, Ismail Oukid, Tianzheng Wang, and Thomas
Willhalm. 2019. Evaluating Persistent Memory Range Indexes. PVLDB 13, 4
(2019), 574-587.

Lucas Lersch, Ivan Schreter, Ismail Oukid, and Wolfgang Lehner. 2020. En-
abling Low Tail Latency on Multicore Key-Value Stores. PVLDB 13, 7 (2020),
1091-1104.

Justin J. Levandoski, David B. Lomet, and Sudipta Sengupta. 2013. The Bw-Tree:
A B-tree for new hardware platforms. In ICDE. 302-313.

Jihang Liu, Shimin Chen, and Lujun Wang. 2020. LB+-Trees: Optimizing
Persistent Index Performance on 3DXPoint Memory. PVLDB 13, 7 (2020),
1078-1090.

Thomas Neumann. 2011. Efficiently Compiling Efficient Query Plans for
Modern Hardware. PVLDB 4, 9 (2011), 539-550.

Donald Nguyen, Andrew Lenharth, and Keshav Pingali. 2013. A lightweight
infrastructure for graph analytics. In SIGOPS SOSP. 456-471.

Ismail Oukid, Daniel Booss, Wolfgang Lehner, Peter Bumbulis, and Thomas
Willhalm. 2014. SOFORT: a hybrid SCM-DRAM storage engine for fast data
recovery. In DaMoN @ SIGMOD. 8:1-8:7.

Ismail Oukid, Johan Lasperas, Anisoara Nica, Thomas Willhalm, and Wolfgang
Lehner. 2016. FPTree: A Hybrid SCM-DRAM Persistent and Concurrent B-Tree
for Storage Class Memory. In SIGMOD. 371-386.

Marcus Paradies, Wolfgang Lehner, and Christof Bornhovd. 2015. GRAPHITE:
an extensible graph traversal framework for relational database management
systems. In SSDBM. 29:1-29:12.

Andrew Pavlo, Gustavo Angulo, Joy Arulraj, Haibin Lin, Jiexi Lin, Lin Ma,
Prashanth Menon, Todd C. Mowry, Matthew Perron, Ian Quah, Siddharth
Santurkar, Anthony Tomasic, Skye Toor, Dana Van Aken, Zigi Wang, Yingjun
Wu, Ran Xian, and Tieying Zhang. 2017. Self-Driving Database Management
Systems. In CIDR.

Andrew Pavlo and Matthew Aslett. 2016. What’s Really New with NewSQL?
SIGMOD 45, 2 (2016), 45-55.

Holger Pirk, Oscar R. Moll, Matei Zaharia, and Sam Madden. 2016. Voodoo -
A Vector Algebra for Portable Database Performance on Modern Hardware.
PVLDB 9, 14 (2016), 1707-1718.

Marko A. Rodriguez. 2015. The Gremlin graph traversal machine and language
(invited talk). In DBPL. 1-10.

Michael Rudolf, Marcus Paradies, Christof Bornhévd, and Wolfgang Lehner.
2013. The Graph Story of the SAP HANA Database. In BTW. 403-420.
Nadathur Satish, Narayanan Sundaram, Md. Mostofa Ali Patwary, Jiwon Seo,
Jongsoo Park, Muhammad Amber Hassaan, Shubho Sengupta, Zhaoming Yin,
and Pradeep Dubey. 2014. Navigating the maze of graph analytics frameworks
using massive graph datasets. In SIGMOD. 979-990.

Steve Scargall. 2020. PMDK Internals: Important Algorithms and Data Structures.
Apress, 313-331.

Steve Scargall. 2020. Programming Persistent Memory. Apress.

Amir Shaikhha, Yannis Klonatos, Lionel Parreaux, Lewis Brown, Mohammad
Dashti, and Christoph Koch. 2016. How to Architect a Query Compiler. In
SIGMOD. 1907-1922.

Alexander van Renen, Lukas Vogel, Viktor Leis, Thomas Neumann, and Alfons
Kemper. 2019. Persistent Memory I/O Primitives. In DaMoN @ SIGMOD. 12:1-
12:7.

Shivaram Venkataraman, Niraj Tolia, Parthasarathy Ranganathan, and Roy H.
Campbell. 2011. Consistent and Durable Data Structures for Non-Volatile
Byte-Addressable Memory. In USENIX FAST. 61-75.

Tianzheng Wang, Justin J. Levandoski, and Per-Ake Larson. 2018. Easy Lock-
Free Indexing in Non-Volatile Memory. In ICDE. 461-472.

Ziqi Wang, Andrew Pavlo, Hyeontaek Lim, Viktor Leis, Huanchen Zhang,
Michael Kaminsky, and David G. Andersen. 2018. Building a Bw-Tree Takes
More Than Just Buzz Words. In SIGMOD. 473-488.

Yingjun Wu, Joy Arulraj, Jiexi Lin, Ran Xian, and Andrew Pavlo. 2017. An Em-
pirical Evaluation of In-Memory Multi-Version Concurrency Control. PVLDB
10, 7 (2017), 781-792.

Fei Xia, Dejun Jiang, Jin Xiong, and Ninghui Sun. 2017. HiKV: A Hybrid Index
Key-Value Store for DRAM-NVM Memory Systems. In USENIX ATC. 349-362.
Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph Izraelevitz, and Steven
Swanson. 2020. An Empirical Guide to the Behavior and Use of Scalable
Persistent Memory. In USENIX FAST. 169-182.

Xinjing Zhou, Lidan Shou, Ke Chen, Wei Hu, and Gang Chen. 2019. DPTree:
Differential Indexing for Persistent Memory. PVLDB 13, 4 (2019), 421-434.

[20]

[21]

[22]

(23]

[24]

[25]

[26

[27]

[28

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]
(371

(38]

[39]
[40]
[41]
[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

O

proceedings

Fixing Wikipedia Interlinks Using Revision History Patterns

Tova Milo
Tel Aviv University
milo@post.tau.ac.il

ABSTRACT

Wikipedia, the web-based free content encyclopedia project, is
one of the most popular websites on the Web. Its “open-door”
policy, allowing anyone to edit, has made Wikipedia the largest
and possibly the best encyclopedia in the world. At the same
time, the continuously evolving content, constantly updated by a
large number of uncoordinated users, renders the maintenance of
a clean, consistent encyclopedia an extremely challenging task.

The goal of the WICLEAN (WC) system presented in this pa-
per is to assist Wikipedia editors in this difficult task. Specifically,
we focus on the correctness of Wikipedia inter-links that point
from one article (entity) to another. Such inter-links form a key
component of the structured part of Wikipedia and their correct-
ness is critical for coherent browsing. Given an entity type of
interest, our highly parallelizable algorithm identifies relevant edit
patterns across revision histories of Wikipedia entities of related
types, along with time windows in which partial edits are tolerable.
The discovered patterns/windows are then used by WC to alert
Wikipedia editors on past edits that appear to be incomplete, as
well as to provide users with on-line assistance as they update
the encyclopedia. Our experiments with real-life Wikipedia data
demonstrate the efficiency and effectiveness of WC in identifying
actual errors in a variety of Wikipedia entity types.

1 INTRODUCTION

Wikipedia, the free-content web encyclopedia, is one of the most
popular websites on the Web. Per Time magazine, Wikipedia’s
"open-door" policy of allowing anyone to edit the data, has made
it the largest, and possibly best, encyclopedia in the world [2].
Nonetheless, the continuously evolving content, constantly up-
dated by a large number of uncoordinated users, renders the main-
tenance of a clean, consistent encyclopedia an extremely challeng-
ing task. To understand the volume of the updates, the English
Wikipedia in 2018 consisted of 6 million articles, with an average
of 3.4 million edits per month, by roughly 30K active editors [4].
The goal of our work is to assist Wikipedia editors in this
difficult task. Specifically, we focus here on the correctness of
inter-links that point from one article to another in the structured
sections of Wikipedia (such as infoboxes and tables), which is
critical for coherent browsing. Maintaining the integrity of these
links is challenging, as illustrated by the following example.

Example 1.1. Consider the Wikipedia page of the soccer player
Neymar. The links in its infobox point to the page of his current
club, Paris Saint Germain F.C. (PSG), his place of birth, and so
on. When Neymar moved to PSG in 2017, leaving his previous
team, Barcelona F.C., the three related pages, Neymar, PSG, and
Barcelona F.C. had to be updated.

There are three typical causes for inconsistently updating these
links. First, Wikipedia editors are not provided with a compre-
hensive list of links that need to be updated as a result of such an

© 2021 Copyright held by the owner/author(s). Published in Proceedings of the 24th
International Conference on Extending Database Technology (EDBT), March 23-26,
2021, ISBN 978-3-89318-084-4 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Series ISSN: 2367-2005

Slava Novgorodov
eBay Research
snovgorodov@ebay.com

49

Kathy Razmadze
Tel Aviv University
kathyr@mail.tau.ac.il

event. A typical error related to player transfers is updating only
the page of the new club and neglecting to update the page of the
old club, which still incorrectly links to the player.

Second, different pages are often edited by different people,
typically, in an uncoordinated manner. It could be that, e.g., the
page of the club is updated by one dedicated editor, whereas no
editor has taken up the responsibility of updating Neymar’s page
or even noticed the absence of a corrected link. Moreover, no
mechanism alerts the active editors of Neymar’s page of a related
update, that may require action on their part.

Third, it is often impractical to correct all links simultaneously.
For example, player transfers occur during predetermined periods,
referred to as transfer windows, and tend to take a long time to
be officially confirmed. In the meantime, many rumors regarding
conflicting transfer destinations are posted in various media out-
lets. Consequently, in that span, there may be hundreds of edits
of player pages, adding/removing new/old links, and reverting
previous edits, whereas the club pages are commonly updated
only once the transfer is officially approved.

More generally, Wikipedia contains very noisy data, as it could
be edited by anyone, including bots!, inexperienced editors, and
opposite-agenda editorsZ, resulting in editing conflicts® and dis-
pute resolution?. This process of frequent conflicting edits, cul-
minating in a consistent state, is a naturally evolving mechanism
to mitigate noise, due to the distributed and asynchronous nature
of Wikipedia edits. Thus, enforcing immediate corresponding up-
dates to all relevant links during the dispute period is impractical
and counterproductive. Moreover, the existence of a time window,
that may range from hours to months (depending on the context of
the update and the involved entities), during which partial incon-
sistent edits are tolerable, beyond serving as a necessary trigger for
the dispute resolution process, also has the advantage of providing
users with the most up-to-date, albeit tentative, information.

Previous work. Much research has been devoted to aspects
of this problem in the more general context of detecting errors
in knowledge bases (KBs) [22]. Some of these works [27, 30]
also evaluated their solutions over Wikipedia, representing a snap-
shot of it as a KB, with pages as entities, and entity relations
derived from inter-links. Over this representation and an input set
of integrity constraints, pertaining to entity relations, the objec-
tive is to detect all their violations. While these works provide
satisfactory solutions for the intended problem over KBs, cast-
ing the special case of inconsistencies in the constantly-evolving
Wikipedia’s links into this generic framework, omits important
practical considerations specific to the operation of Wikipedia.

To illustrate, continuing with our example of player transfers, a
possible constraint over the corresponding KB may state that if
player A links to club B, then club B also links to player A and
vice versa. If there exists only one link or two contradictory links,
then a violation of this constraint is detected. There are several
drawbacks to applying this approach as a comprehensive solution.
Uhttps://www.bbc.com/news/magazine-18892510
2hltps://en.wikipedia.orglwiki/Wikipedia:Lameslﬁedilﬁwars

3https://en.wikipedia.org/wiki/Edit_conflict
4hllps://en.wikipedia.org/Wiki/Wikipedia:Disputeﬁresolution

10.5441/002/edbt .2021.06

https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2021.06

First, the most crucial drawback relates to the fact that the con-
straints are static and lack any temporal dimension. Concretely,
the constraint does not account for the time window, discussed
in Example 1.1, during which partial edits are acceptable (and,
in some cases, practically unavoidable). An inconsistency should
be resolved at the earliest appropriate moment but not earlier. In
this case, this earliest moment is arguably the end of the transfer
window. However, detecting the constraint violation right after
Neymar’s page is linked to PSG, without a link in the other direc-
tion, is treated the same as detecting it long after the end of the
transfer window. Consequently, one is uncertain whether to take
immediate action or allow the unsupervised process of sequen-
tial refining edits to run its course and converge into a consistent
state. We note that solutions suggested in previous works (e.g.,
[27]), discussed above, can successfully identify ‘window-less’
edits’ combinations. That is edits that should all be applied si-
multaneously and are distributed uniformly across the timeline of
Wikipedia’s revision history. However, our empirical analysis iden-
tified many edit patterns associated with specific time windows,
such as in Example 1.1. Our work is, thus, complementary to the
above works, as it aims to address specifically these patterns.

Second, most works assume the existence of a set of constraints
as input for the solution framework. This is not realistic in the
case of Wikipedia. Wikipedia entries encompass a wide array of
domains and sub-domains, each with its own set of constraints.
While there are broad similarities across related domains, each
domain may be infinitely nuanced. Given the volume of domains,
entity types, and case-specific subtleties, the task of comprising
a nearly exhaustive list of important constraints is impractical,
particularly if one is also interested in complex relations (where,
e.g., a combination of 10 pages must be consistently updated).

In this line of research, closest to us, is the recent work of [36],
where the focus is on Wikipedia, and on top of detecting viola-
tions of the given constraints, the solution produces corresponding
correction rules, that dictate how one can resolve partial edits.
This is inferred by examining the revision history, identifying the
most common patterns of revision actions for completing each
type of partial editing. Nevertheless, this work also does not aim to
identify tolerable time windows and targets the scenario where the
list of constraints is provided as input (a more detailed comparison
to this and previous works is presented in Section 2).

Our approach. To address the above limitations, we present
in this paper WiClean (WC), a system that automatically infers
common edit patterns (combinations of edits), along with a time
window for allowing partial edits of each pattern, alerts editors of
inconsistencies, and suggests concrete corrections.

The thesis underlying WC is that the majority of Wikipedia
updates follow desirable patterns and lead to consistent states.
WC, thus, mines revision logs to identify common update patterns
and the time windows in which they occur. Potential errors are
then detected by updates that deviate from the patterns and are
not completed within the corresponding window. For such partial
patterns, WC suggests all completions to known patterns, providing
statistical metadata to facilitate an informed course of action.

Before describing our solution techniques, we illustrate the
format of the revision history. Figure 1 depicts excerpts from
the revision histories of players and clubs merged into a single
timeline. The Subject column identifies the article where the addi-
tion/removal of a link occurred, the Object column identifies the
article to which the added/deleted links point, and the Relation
column describes the link type (the column R will be explained

50

+/- | Subj Relati Object Time R
1 - Neymar current_club Barcelona F.C 1531 0
2 - Gianluigi Buffon current_club Juventus E.C. 1534 1
3 - Neymar in_league LaLiga 8711 1
4 - Barcelona F.C squad Neymar .2804 0
5 + Neymar current_club | PSGEC. 3321 0
6 + PSGEC. squad Neymar .8263 1
7 + Barcelona E.C. squad Neymar 4040 0
8 + PSG EC. squad Gianluigi Buffon 4051 1
9 + Gianluigi Buffon | in_league Ligue 1 .3330 1
10 + Neymar in_league Ligue 1 8711 1
11 - Juventus E.C. squad Gianluigi Buffon 4058 1
12 + Neymar current_club | Barcelona F.C .5861 0
13 - Kylian Mbappe current_club Monaco E.C. .9459 1
14 - Neymar current_club PSG FE.C. 3732 0
15 - Gianluigi Buffon | in_league Serie A 3380 1
16 - Neymar current_club Barcelona F.C 6109 1
17 + Neymar current_club PSG E.C 7694 1
18 - Barcelona E.C. squad Neymar .8001 1
19 + Kylian Mbappe current_club | PSGEC. .9589 1
20 - Monaco F.C. squad Kylian Mbappe .9451 1
21 + PSG EC. squad Kylian Mbappe 9885 1

Figure 1: Actions from revision history of several articles

later). One can see that, after several edits and reverts, the transfer
of Neymar is reflected in his and the teams’ pages.

Methods. Formally, we model Wikipedia entities (articles) and
the links between them as a graph. Nodes and edges are labeled by
type names. Intuitively, the revision history of each article records
the edits made to the outgoing links of the corresponding graph
node. Given an entity type of interest, our algorithm identifies
meaningful relevant edit patterns across revision histories, along
with time windows in which partial edits are acceptable. By mak-
ing an analogy between link edits (resp. edit patterns) and graphs
(graph patterns), we can harness conventional graph mining algo-
rithms to our context. However, some important adaptations must
be made to account for (1) the Wikipedia type hierarchy that
requires the examination of a larger number of potential patterns,
and (2) the distributed nature of the edits across revision histories
of multiple entities, that makes the construction of the full edits
graph prohibitively expensive. For the former we introduce a join-
based computation (optimized by the underlying SQL engine) to
quickly prune infrequent patterns; for the latter we use incremental
graph construction that considers only relevant entity types.

The discovered windows and patterns are then used by WC to
assist Wikipedia editors in correcting/updating Wikipedia links.
Here again, we employ an optimized join-based computation to
quickly identify potential errors. WC both alerts Wikipedia editors
on past edits that appear to be incomplete as well as provides users
with on-line assistance as they update Wikipedia.

Our contributions can be summarized as follows:

e Model. We formulate and present a simple, natural model for
capturing time windows and update patterns of interest. Given
an entity type £, our goal is to find related and common update
patterns across the Wikipedia graph. Such updates may involve
entities of the same or other types. We first introduce the notion
of abstract update actions that generalize a set of actions involv-
ing specific entities to general patterns over the corresponding
entity types. We then define the notion of connected patterns
which include abstract actions that are related (possibly transi-
tively) to entities of the input type of interest. The frequency of
a pattern, within a time frame w, is then naturally defined as
the fraction of entities of type ¢ that participate in a pattern that
occurs within the time frame w (Section 3).

o Identifying windows and patterns. Building on algorithms
for graph mining, we devise a scalable, highly parallelizable
algorithm, based on the following three points. (1) We represent

5 Typically around eight hierarchy levels.

the identified patterns by relational tables, incrementally com-
puted by dedicated relational queries. This allows harnessing
the effective optimizations of the SQL engine underlying WC.
(2) Unlike conventional graph mining algorithms that assume
that the entire graph is given as input, our focus on connected
patterns allows WC to incrementally consider only the entity
types (and their corresponding revision histories) that may po-
tentially be related to the input type via frequent edit patterns,
thereby significantly saving on graph construction. (3) We focus
on non-overlapping time windows and split the revision histo-
ries accordingly. This reduces the number of actions (edits) to
be considered for each window (and resp. the size of the edits
graph) and allows parallelizing the processing of the action sets
in the different windows (Section 4).

o Using Windows and patterns. An immediate application of
the discovered patterns is to alert Wikipedia editors on partial
edits performed in past windows, as well as to assist users in
current edits. For that, we examine the discovered windows
and then signal, for each window and pattern, partial edits that
may be extended to a full pattern occurrence. Our algorithm
builds on the previously mentioned relational representation of
patterns and employs dedicated outer-join queries to identify
partial pattern occurrences (Section 5).

o Implementation and experiments. We have implemented our
solution and employed it over real Wikipedia data. We con-
sidered a variety of Wikipedia entities, identifying a multitude
of interesting time frames and corresponding relevant frequent
edit patterns, and signals of updates that deviate from the mined
patterns. Our experiments demonstrate the effectiveness of our
approach for identifying real-life errors. The experiments fur-
ther demonstrate the efficiency and scalability of our algorithms,
compared to competing baselines (Section 6).

To complete the outline of the paper, we overview related work
in Section 2 and discuss future work in Section 7.

Finally, we note that the prototype of WC was demonstrated in
[20]. The short paper accompanying the demonstration provided
only a high-level overview of its capabilities and user interface
whereas the present paper details the model and algorithms under-
lying our solution as well as their experimental evaluation.

2 RELATED WORK

We overview related work from several related fields.

Wikipedia Cleaning. Much effort has been devoted over the
past years to the cleaning and correction of errors in Wikipedia.
Our work, which focuses on link correction, is complementary
to works on entity resolution, completeness prediction, and van-
dalism detection [9, 33]. Similarly to our work, [13] also aims to
improve inconsistencies in Wikipedia’s infoboxes, representing
it as an RDF database. However, [13] does not take the revision
history into account and instead uses user interaction as the main
tool. In contrast, our algorithm requires no user assistance, other
than setting the initial parameters.

Revision history as a tool. Revision histories have been used
in multiple areas, e.g., in program repairing, in recording prove-
nance in knowledge bases and assisting query answering [10]. In
Wikipedia, revision histories have been leveraged for various pur-
poses, such as the discovery of controversial topics, the estimation
of an article’s translation quality and the detection of vandalism
[23]. Other lines of work attempt to learn how to use the edits
to enrich Wikipedia, e.g. to edit infoboxes with news extracted
from tweets, or to connect Wikipedia edits to recent news articles

51

[17]. Our work is complementary to these efforts, considering the
consistency/completeness of edits to multiple related entities.

As mentioned in the introduction, particularly close to our work
is [36], which, similarly to WC, infers from edit histories in Wiki-
data knowledge bases how to correct inconsistencies/violations.
Nevertheless, this problem is formalized over a different model
with similar but different objectives. One important difference
is that in the setting of [36], the constraints are provided in ad-
vance, and the focus is on correction rules (for violations of these
constraints) mining from relevant past edits. Whereas, one of the
key contributions of our work is the derivation of such constraints
(edit patterns, in our context). Moreover, the setting of [36] does
not take into account the time frames in which a given constraint
should or should not be enforced. Another key difference is that
[36] do not harness the Wikipedia type hierarchy as a means to
enrich their constraints of correction rules.

Other works that use the Infobox revision history focus on
cleaning tasks. These include refining infobox titles by locating
duplicate attributes within each entity type, predicting when a
given infobox is likely to be updated and by whom, and identifica-
tion of vandalizing editors [8].

Constraints inference and enforcement. The patterns we iden-
tify can be viewed as a form of integrity constraints. There is a
large body of work devoted to inferring and enforcing such con-
straints. Two recent examples are [27, 30]. In [30], both positive
and negative examples are used to infer the constraints. Their
approach consists of greedily identifying, at each step, the most
promising rule, in terms of the coverage of the positive examples.
As [30] focus on identifying rules that make good predictions,
some of the rules that exceed the confidence threshold will not be
found. An alternative approach is taken by [27], where rules are
mined via an exhaustive, breadth-first search method. They devise
sophisticated pruning strategies and optimizations that enable their
solution to efficiently run on large KBs, such as Wikidata.

Many other approaches to KB correction have been explored
in the literature, e.g., discovering denial constraints [14] and error
detection via the few-shot learning framework (e.g., [22]).

A key difference, in our setting, is that the constraints need to
be enforced only outside the time frames in which inconsistencies
are acceptable. Thus, we focus on a different objective, where in
addition to the update patterns, we also identify the corresponding
time window for each pattern. Another difference is that we iden-
tify patterns from the sequence of actions in the revision log, and
not from a static snapshot of the knowledge base. Moreover, the
above works (barring [36], which we discussed separately above),
are concerned with detecting the rules/constraints, while one ad-
ditional objective, in our setting, is to also compute correction
suggestions for violations (partial patterns) of these rules. Lastly,
to our knowledge, we are the first to leverage the type hierarchy
to consider more nuanced rules, at varying levels of abstraction.

The importance of considering consistency, w.r.t. a sequence of
actions, has recently been emphasized in the vision paper of [12].
Our work matches their motivating use-case, which advocates
the usage of Wikipedia revision logs for data cleaning. Another
related, complementary line of work deals with optimizing the
corrections procedure over the detected constraint violations [11,
19]. It would be interesting to examine whether their techniques
may be employed in our setting, to further optimize WC.

(Sequential) itemset/association rule mining. Algorithms for
frequent itemset/association rules mining have been the focus of
many works, including contexts where the mined items belong to
a type hierarchy [32].As we seek connected patterns, conventional

a-priori style algorithms for frequent itemsets mining [7] inappli-
cable to our setting. Such algorithms recursively assemble larger
frequent itemsets from smaller ones, but arbitrary sub-patterns of
a connected pattern may not be connected, w.r.t. the input type.
Consequently, our solution exploits principles from graph mining
algorithms rather than general frequent itemsets.

Another closely related line of work deals with sequential item-
set/association rules mining, where the pattern is mined from a
sequence of items [34, 41] and [5] which discovers temporal rules
for web data cleaning. In these works, the focus is also typically
on arbitrary items set, rather than connected patterns. More impor-
tantly, the order of the items in the sequence is important in these
works. In contrast, as explained in Section 3, in our case, only the
co-occurrence of items within the given window matters, whereas
their relative positioning within the window does not.

An interesting set of works that deal with sequential patterns
mining studies probabilistic or uncertain databases [18, 29]. In our
setting, there is inherent uncertainly, w.r.t. the (in)correctness of
the identified partial updates, and thus examining the connection
to such works is an interesting direction for future research.

Graph mining. Graph mining algorithms (see survey in [24])
can be roughly divided into two categories: algorithms that mine
patterns in a set of graphs (e.g. [39]) and algorithms that are pro-
vided with a single large graph (e.g. [26, 28]). Our context is
the latter. Multiple notions of graph pattern frequency have been
proposed in the literature, many of which consider the number of
distinct isomorphisms from the given pattern graph to the input
graph [15, 24]. However, as our goal is to characterize how fre-
quent a pattern is relative to a particular entity type of interest,
we employ here the notion of frequency, inspired by [16], that
counts the number of nodes, out of all nodes of the given type,
that are involved in some pattern occurrence. Our notion can also
be viewed as a special case of the MNI support in [15], where the
isomorphism count focuses only on the given entity type.

As discussed above for association rules mining, since our fo-
cus is on connected patterns (and the corresponding frequency
notion), algorithms that consider arbitrary sub-graphs (e.g. [21])
are unsuitable for our setting. We follow instead the “grow and
store” approach of [26], that iteratively expands previously identi-
fied (connected) patterns. However, two issues must be addressed
when adapting such a scheme to our context. First, the need to
support the Wikipedia type hierarchy entails a richer order relation
among patterns (see Section 3), which, to our knowledge, is not
supported by any of the existing algorithms for mining connected
patterns in graphs. Second, [26] (and all other comparable works),
assume that the algorithm receives as input the entire graph. This
is impractical in our context. Specifically, as our experiments
demonstrate, materializing the complete edits graph from a mas-
sive number of entity revision histories is infeasible. Our dedicated
algorithm addresses both these issues. In general, modifying solu-
tions that expect the entire graph as input, is, arguably, not trivial.
For instance, the work of [40], which leverages the embedding of
the nodes to mine patterns, cannot be straightforwardly integrated
into our approach of gradually examining larger subgraphs, as the
embedding loses its utility if the underlying graph changes.

Another related line of work is Link Prediction [35, 38] that
discover missing links within Wikipedia. However, these works
do not detect incorrect links that should be removed.

Wikipedia information extraction. To conclude, we note that
one may think of the patterns/time windows that we derive as a
particular type of information, extracted from Wikipedia revision

52

logs. Much previous work has been devoted to information ex-
traction from Wikipedia articles (e.g. [31]) rather than their edit
history. As mentioned, some works consider the revision logs, but
for other purposes, and could be useful information or tool for
us. In particular, [37] devise optimization methods for processing
Wikipedia’s revision history, as it is a massive and complicated
dataset, and [25] infers the level of expertise of a specific editor
from statistics of conflicts with other editors.

3 PRELIMINARIES

We start by presenting the data model underlying the system.

Wikipedia Graph. We model the relations between entities at
a given point in time using a graph G(V, E). Each node represents
an entity and is labeled by a unique name (e.g. Neymar) and a type
(e.g. soccer player). Each edge represents a relationship between
two entities and is labeled accordingly (e.g. current_club).

We use an alignment from Wikipedia entities to DBPedia [1]
to derive the entity types. The link labels (relationship names) are
derived directly from Wikipedia. In general, the types belong to
type taxonomy - the higher the type is in the taxonomy the more
general it is - and an entity may have multiple types. For two types
t,t" we use t’ < t to denote the fact that ¢ either equals to ¢’ or
generalizes it. For example, Soccer_Player < Athlete < Person.
We assume that each entity e has one most specific type to which
it belongs and use it as its label, denoted type(e). For a type t we
use entities(t) to refer to all entities labeled by a type t” < ¢.

Actions and inverse actions. The revision history of Wikipedia
entities contains edits to the graph edges. We particularly consider
two types of actions: adding new edges and deleting existing ones.
Our model associates each action with a time stamp. We use a
triplet of the form a = (+, (u,,v),t) (resp. a = (-, (u,1,v), 1)) to
denote the addition (rep. deletion) of edge from u to v with label [
at time t. We use source(a) = u and target(a) = v to denote the
source and target entities, resp., of the added/deleted edge. We say
that an action a’ is the inverse of a preceding action a, denoted
a’ = Inv(a) if applying a’ after a leaves the graph unchanged.

For example, in row #1 in Figure 1 we see an update to Ney-
mar’s Wikipedia entry, when a user removed (—) the Barcelona
(= v) team that Neymar (= u) was playing at (= I), at a certain
time (=t), and, action #12 is an inverse action of action #1.

Note that, in Wikipedia, each action appears at the revision
history of the source node of the edge. Intuitively, this is because
the revision history of each article records the edits made to the
outgoing links of the corresponding graph node. Updates of other
incoming links are recorded in the revision logs of these other
pointing entities. Continuing the above example, the two actions
#1 and #3 will appear in the revision history of Neymar’s page,
and the gray action set in Figure 1 is the set of actions taken from
entities of the same type (soccer_player).

(Reduced) set of actions. Given a Wikipedia graph G(V,E), a
set of entities S C V, and a time frame (referred to as window), we
consider the set of all actions (denoted as A) that were recorded in
the revision history of the entities in S, within the given window.

For instance, Figure 1 shows the set of actions recorded in the
revision histories of the entities S = {Neymar, Kyian_Mbappe,
Barcelona_F.C., Gianluigi_Buffon, PSG_F.C., Monaco_F.C., Ju-
vetus_F.C.} at a given time frame. Observe that all the updated
links are outgoing links from the entities in S.

In the update processes, some edits may naturally be reversed.
To consider only the final effect we focus on reduced actions sets
that do not include action and its inverse. More formally, given a
graph G, we say that two action sets are equivalent if, when the

actions are applied on G in the order of their timestamps, they
yield the same graph. The reduced set of actions, that remain by
removing the rows that their value in column R equals to 0 in the
table of Figure 1. We denote it as reduced actions from Figure 1.

Note that up to possibly different timestamps, the reduced
version obtained through this iterative removal process is unique,
as it contains the same set of graph update operations. Furthermore,
the timestamps are no longer important as any permutation of the
actions yields the same output graph. We thus consider from
now on only reduced sets of actions and ignore the timestamps,
referring to actions as pairs a = (op, (u, ,v)) where op € {+ —}.

Abstract actions. Since we are trying to find general update
patterns across the Wikipedia graph, we want to generalize a
set of actions involving specific entities to general patterns over
the corresponding entity types. For that we define the notion of
abstract actions. We associate with each entity type ¢ an infinite
set of variables t1, ty, Then, an abstract action is the pair of
the form a = (op, (¢’,1,¢"")) where op € {+,—}, t" and t"” are type
variables, [is an edge label.

Patterns. We define a pattern as a set of abstract actions. We
consider two patterns identical if they are the same up to isomor-
phism on the variable names of the same type. We refer to a pattern
that contains only a single action as a singleton pattern. Given a
pattern p we say that a set A” of concrete actions is a realization of
p (resp. that p is an abstraction of A”) if A’ may be obtained from
p by replacing each variable of type ¢t by a some Wikipedia graph
node in entities(t), s.t. distinct variables are assigned different
Wikipedia graph nodes.

An observation that will be useful in the sequel is that for a
given action a, the set of its possible abstractions can be easily
computed by traversing the type hierarchy and replacing source(a)
(resp. target(a)) by some variable of type > type(source(a))
(= type(target(a))).

To illustrate the above notions, in the reduced actions in Figure
1 lines #2 and #13 are both realization of the singleton pattern
{-, (playerl, current_club, team1)} (which we consider identical,
e.g., to the isomorphic pattern {-, (player2, current_club, team2)}).
On the other hand, the reduced actions in Figure 1 contain no
realization of the pattern
[{-, (player1, current_club, team1)},

{—, (player1, current_club, team2)}]
as the assigned team nodes have to be distinct in the realization,
but all players in the table were removed from a single team.

(Abstract) actions graph. It is useful to make an analogy be-
tween action sets and graphs. Given a set of concrete (resp. ab-
stract) actions A (p), consider the directed labeled graph g4 (9p)
with a node per each entity in A (variable in p), labeled by the
entity (variable) type name, and where there exists an edge from
node v; to vy, labeled [op, [], iff A (p) includes an (abstract) action
of the form (op, (v1,,v2)). We refer to these graphs as abstract
graphs as the actual entity identities (resp. the variable names) that
the nodes represent are insignificant.

With this graph view, a realization of a pattern p in a set of
actions A corresponds to an isomorphism from g, to a subgraph
of g4, where the type of each node in p either equals or is more
general than the type of its corresponding node in g4. Given a type
t, we say that the pattern p is connected (w.r.t. t) iff g, contains a
node variable of type ¢ from which all other nodes are reachable.

Connected patterns. Given an entity type ¢, we are interested
in entities’ updates that are related (possibly transitively) to entities
of type t. We thus focus on connected patterns, where the updated
edges are related.

53

Definition 3.1. For an update pattern p, let g, be its correspond-
ing abstract graph. Given a type t, we say that the pattern p is
connected (w.r.t. t) iff g, contains a node of type ¢ from which
all other nodes are reachable.

In the discussion below we refer to such a node (variable) as the
pattern’s source (w.r.t. t). If multiple such nodes exist in the graph,
we arbitrarily pick one to serve as the pattern’s distinguished
source and we use below the term source to refer to this single
distinguished node, and denote is as source;.

For example, the pattern shown in Figure 3 is connected w.r.t. to
the type player. Its corresponding graph g, appears in Figure 2(a)
where all nodes are reachable from the source node player_1. But
if we replace the variable player; in lines 11 and 13 of Figure 3
by a new variable players, then the pattern becomes disconnected,
see Figure 2(b), and composed of two smaller, connected patterns
- the abstract actions in lines 10, 5, 2, 7 (with source player_1) and
the abstract actions in lines 11, 13 (with source player_2).

For a type t we only consider patterns that are connected w.r.t.
t. Thus, for brevity, we use below the term pattern to refer to a
connected pattern, and omit the type ¢ when clear from the context.

o — - squad —
S // \ / Player_2) Team_2 \\
Ve g \\ = B /J \\ _ /g\ B /
(PIayeril/Z Hu"e”LCI;b - - T -current_club —
\, - \\\\\\; ‘CHS“LCI% //,,K +squad /,—m,\
5‘74\/@\,}\ > ™~ (Player_1) (Team_1)
N Team_2) \\ L \‘\ e
‘ \‘\ // T +current_club T
+in_league\ - in_league ‘
e - +in_league | - in_league
™ — .
[League_1) ‘/ League_2 \‘ w‘/ League 1\J (League_2 N
PR e N A

Figure 2: (a) connected pattern, (b) unconnected pattern

Frequent patterns. To define that a pattern is frequent we
would like to measure the amount of support that a pattern has,
regarding the seed type entities.

Many notions of patterns frequency have been considered in
the graph mining literature. Common notions consider the number
of distinct isomorphisms from the given pattern graph to the input
graph (e.g. occurrence-based support [24] and MNI support [15].
However, as our goal is to characterize how frequent a pattern is
in the context a particular seed type of interest, we employ here a
notion of frequency inspired by the [16] that counts the number
of nodes (out of all nodes of the given seed type) that are involved
in some pattern. For readers familiar with the MNI-based support
in [15], we note that our notion of frequency can also be viewed
as a special case where the isomorphism count focuses only on
the seed entity type node.

Given a type ¢, a pattern p and a set A of actions, we define the
frequency of p (w.r.t. to t and A) as the fraction of entities of ¢ that
participate as source nodes in a realization of p is A.

Definition 3.2. The frequency of a pattern p in a set of actions
A, w.r.t. to a type t in p, is defined as frequency(p, A, t) =

|{e € entities(t) | e appears in realization entities(t)|
|entities(t)|

To continue with our running example, consider the actions in
Figure 1 and the pattern in Figure 3, and assume there are overall
five players in Wikipedia. The frequency of this pattern in the
given actions set, w.r.t. to the type player, is 0.2 because there is
only one player (Neymar) that the patterns hold for (with Neymar
mapped to player_1), out of the five existing players. However,
the frequency of the partial pattern displayed in figure 3 in lines 1

Edit type | Subject Relation Object
10 + playery | current_club | team;
11 - player; | current club | teamy
5 + team; squad player;
13 - teamy squad player,
2 + player; | in_league league;
7 - player; | in_league league;

Figure 3: Pattern found from set of action in Figure 1

and 2 (gray lines) in this actions set (again w.r.t. the type player),
is 0.4 because there are 2 players for which that pattern holds.
Partial Order of Patterns. Given a type ¢, a set A of actions
and frequency threshold r we will be interested in finding pat-
terns whose frequency in A (w.r.t. the given type) is above the
threshold. To avoid redundancy, we would like to consider only
the most specific such patterns. Formally, we say that a pattern p
is more specific than a pattern p’ (alternatively, p’ is more gen-
eral than p), denoted p < p’, if p’ may be obtained from p by
removing some abstract actions, replacing some type variables
in p by corresponding variables of a more general type, or both.
An alternative definition is close frequent sub-graph, as defined in
[39]. To illustrate, for the patterns:
p1 = {(+ (playery, current_club, teamy)),
(-, (player, current_club, teams))}
p2 = {(+ (athletey, current_club, teamy)),
(-, (athletey, current_club, teamy))}
p3 = {(+ (athletey, current_club, teamy))}
we have that p; < p2 < p3.

Thus, given a type t and a set A of actions our goal will be
to find the most specific patterns with a frequency above a given
threshold. Our formal definition refines the closed frequent graph
pattern notion of [39], taking the type hierarchy also into consid-
eration when ordering patterns.

Definition 3.3. Given a set of actions A, a type t, and a fre-
quency threshold 7, we say that a pattern p is a most specific
frequent pattern in A (w.r.t. t and 7), if frequency(p,At) >t
and there is no pattern p < p where frequency(p, A, t;) > 7.

Relatively frequent patterns. Finally, note that in the discus-
sion so far, the frequency of patterns p was measured w.r.t. a given
type, as the percentage of entities of the given type that serve as a
pattern source. In some cases, it is interesting to further explore
what percentage of these entities adhere to a more specific pattern
p’. For example, what percentage of players among the ones that
move to a new team also, change the league. For that we define
the notions of relative frequency and relative frequent patterns.

Definition 3.4. For two patterns p, p’ s.t. p’ < p, the relative
frequency of p’ w.r.t. p in a set of actions A (for a given type
variable t), is defined as

rel_frequency(p’, p, A t) = frequency(p’,At)

frequency(p.At) *

Definition 3.5. Given a set of actions A, a type t, a pattern p
and a relative frequency threshold z,.;, we say that a pattern p’
is a most specific relative frequent pattern in A, w.r.t. t and p, if
rel_frequency(p’,p, A, t) > 7,¢ and there is no more specific
pattern p < p’ where frequency(p, p, A, t) > 7.

4 FINDING WINDOWS AND PATTERNS

Intuitively, given an entity type t of interest, we wish to signal
out significant time frames and identify the most specific frequent
patterns in them.

We will first explain how, given a specific window w and fre-
quency threshold z, the most specific frequent patterns in w (W.r.t.
type t), are efficiently identified. The extraction of relative fre-
quent patterns is similar. Finally, we will explain how the windows
and thresholds to examine are selected.

54

As noted in Section 3, the (reduced) set of edit actions per-
formed over Wikipedia entities in the time window w may be
viewed as a graph. Thus one may harness graph mining algorithms,
such as the ones presented in [24] to identify frequent connected
patterns. Such algorithms work roughly as follows. Starting from
patterns consisting of a single edge, they incrementally expend the
patterns with new edges. At each iteration, they check which of
the extended obtained patterns are frequent, prune all the others,
and iteratively continue expending the frequent ones.

There are, however, two important issues that one has to address
when adapting such a scheme to our context.

1. Supporting the Wikipedia type hierarchy entails a richer
order relation among patterns (as defined in Section 3), which to
our knowledge is not supported by any of the existing algorithms
for mining connected patterns in graphs. While the modifications
to the algorithms, to support this, are rather immediate, the number
of patterns that now need to be examined becomes larger, and thus
the patterns’ frequency test must be performed efficiently. For
that, we represent each graph’s type of relation as a relational
table, containing its pattern realizations. That allows us to utilize a
join-based computation (optimized by the underlying SQL engine)
to quickly prune infrequent patterns.

2. Observe that common graph mining algorithms assume that
a full graph is given as input to the algorithm. In our setting, the
revision histories are distributed across all Wikipedia entities, and
(even when restricted to the time window w) their overall size can
be very large. Thus, as our experiments show, materializing the
full graph that represents them may be prohibitively expensive.
To avoid this, we embed into the discovery of the incremental
patterns an analogous incremental graph construction, that materi-
alizes only revision histories of entity types that may potentially
be related to the input type ¢ via frequent edit patterns. Our pattern
mining algorithms is detailed in Algorithm 1. For better under-
standing the pseudo-code, we first outline the data structures and
notations that we make use of. For space constraints, an illustrative
example appears in our technical report [3].

4.1 Data Structures and Notation

For each considered time window w, the algorithm incrementally
extracts, from the revision histories determined to be relevant,
the set of actions performed within the time frame. The actions
are abstracted and stored in a dictionary called abstract_actions
whose keys are the time windows. Thus, abstract_actions[w]
denotes a set of abstract actions with realizations in the window
w. The corresponding realizations of each such abstract action are
stored in a dictionary called realizations whose keys are the time
frame and abstract action. Thus, realizations|[w][a] denotes the
set of realizations of abstract action a within window w.

The identified (relative) patterns, for each time window w (and
pattern p in w), are stored in a dictionary named patterns (resp.
rel_patterns) whose keys, again, are the time frames (and re-
lated patterns). Thus patterns[w] (resp. rel_patterns[w][p]) de-
notes the set of (relative) patterns computed for time window w
(and pattern p in w). We overload notation and also use below
realizations[w][p] (resp. realizations[w][p][p’] to denote the
realizations of the (relative) pattern p (p’) within time window
w. As mentioned above, the pattern realizations are implemented
as relational tables. We will explain this point in details below.
Finally, we use an auxiliary data structure tested|[w], whose keys
are the time frames, to record partial patterns that have already
been examined in the computation for the window w.

4.2 Pattern mining

We are now ready to present the Algorithm 1. As mentioned above,
the algorithm follows the line of graph mining algorithms such as
[15], starting from singleton patterns and incrementally expending
them. While doing so it incorporates into the processing the two
optimizations mentioned above, to ensure efficient processing in
our particular setting. We note that several additional optimization
techniques have been introduced in [24, 39], e.g. to minimize the
used storage and search space. These are orthogonal to ours and
thus, for simplicity of presentation, we follow below the basic
scheme of the incremental pattern construction (to which these
orthogonal optimizations can later be applied if desired).

Initialization. Our initial entity set S contains the entities of
input type t. First, we extract for the given window w edit actions
performed on entities in S in time window w. We reduce the set
of actions, eliminating redundant edits and computing the pos-
sible action abstractions (as explained in Section 3) and store
them in abstract_actions[w] and their corresponding realiza-
tions in realization_table[w]. This is performed using the func-
tion reduced_and_abstract_actions(S, w) (line 1). patterns[w]
stores only abstract actions (singleton patterns) whose source is
the seed type t and their frequency in w exceeds the threshold (line
2). We explain below how the frequency is efficiently computed.

Interleaving graph and patterns expansion. We next inter-
leave the extension of considered entity set (and, correspondingly,
the considered subgraph representing their respective revision
histories), with the extension of the patterns.

To determine which other related entities (and, respectively,
entity revision histories) should be considered, we examine the fre-
quent patterns identified so far, to see which additional entity types
appear in them, if any (line 4). Correspondingly, we add their (re-
duced) revision histories within w to the set of considered actions.
For that, we employ again the function reduced_and_abstract
_actions(S, w) (line 8) that reduces the revision histories and adds
the actions abstraction (and their corresponding realizations) to
abstract_actions[w] (resp. realization_table[w]).

Next, we iteratively consider for each previously discovered fre-
quent pattern p € patterns[w], its graph g, and attempt to extend
it with additional edges (abstract action) a € abstract_actions[w],
that has not been considered for it yet (lines 9-14). The procedure
uses the auxiliary global variable tested[w], (initially the empty
set) to record pairs of patterns and actions that have already been
examined. It is important to note that by considering all action
abstractions (rather than just their base type) we can construct
patterns at all abstraction levels.

Extended patterns whose frequency exceeds the threshold are
added to patterns[w] (line 14). We will explain later how the
pattern realizations and frequency are efficiently computed. When
the frequent patterns can no longer be extended w.r.t. the current
set of abstract actions/action realizations, we check again whether
the discovered patterns contain new types whose actions have
not yet been considered (line 4). If so, we repeat the graph and
patterns extension (lines 5 - 15). Observe that the incremental
nature of the patterns’ construction allows refining the previously
derived patterns with the newly added abstract actions, rather than
computing frequent patterns from scratch. In other words, the
extension of the actions graph, and the extension of the patterns
(w.r.t. the extended graph), interleave well.

Note that, in the presentation so far we keep in patterns[w]
all the discovered frequent patterns and not just the most-specific
ones. This is because such general patterns may still be useful, in

55

later iterations, being expended to other, different most-specific
patterns. However, an optimization that we can still employ here
is the removal of these (not most-specific) patterns whose expan-
sions have been fully examined, e.g. where all the entities types
occurring in them have been thoroughly processed (line 15). An-
other optimization that we employ (omitted from the pseudo-code)
is the cashing of the computed frequencies/realization tables, to
be reused if the same patterns are later re-examined with different
thresholds. When all patterns have been discovered, we select the
most specific ones and return them (line 16).

Computing patterns realization and frequency. To complete
the picture we need to explain how the patterns realizations and fre-
quency are computed in lines 12-13 of the algorithm. To efficiently
compute (and extend) pattern realizations, we represent each pat-
tern realization in realizations[w][p] by a relational table whose
attribute names correspond to the pattern variables names, and
whose tuples capture the different realizations of the pattern in
the given time window (namely the qualifying assignments of
concrete Wikipedia graph nodes to the pattern variables).

Now, note that given a pattern p and an abstract action a, there
may be several ways to extend the graph g, with a. First, a’s
source may be “glued” to any of the nodes (variables) in p of
the same type as a (if such exist). Second, for each such possible
gluing, a’s target may either be added to the pattern as new pattern
node (in which case g, is extended by both a new edge and a new
node) or the target may also be glued to an existing same type
node (in which case g, is extended by only a new edge).

We process each such possible extension as follows. Let p’
be such an extended pattern. An important observation is that,
using the relational representation discussed above, the realiza-
tion table of the extended pattern p’ can be easily computed, from
realizations[w][p] and realizations[w][a], via a join-based query.
For the glued pattern/action nodes we use equijoin on the corre-
sponding attributes, whereas for the new node (if such exists),
we require inequality to all same type attributes. Finally, we only
need to project a single column for each pattern attribute. Then,
the frequency of a pattern p w.r.t. a type t can be easily com-
puted from the relation, by an SQL count operator that counts the
number of distinct nodes appearing in the column corresponding
to the pattern’s source variable, (then dividing the count by the
cardinality of entities(t)).

Mining Relative Patterns. To conclude, we note that the com-
putation of relative frequent patterns proceeds in a similar manner.
The only difference is that each pattern p we begin the expansion
process starting from p itself, and relative frequency (rather than
just frequency) is computed similarly, but using the formula in
Definition 3.4. We omit the details for space constraints.

4.3 Finding Windows and Thresholds

So far we assumed that we are given a window w and a threshold
7, and our goal was to identify the (relative) frequent patterns in
w, w.r.t. the seed type t. To identify windows and thresholds of po-
tential interest, we use a simple heuristic, which our experiments
show to be extremely effective.

We restrict our attention to non-overlapping time windows and
split the revision histories accordingly. This allows parallelizing
the processing of the action sets in the different windows. Our
analysis of real Wikipedia data indicates this to be a reasonable
design choice. For an input type ¢ there are very few meaningful
(update-wise) time frames that overlap and those can be merged
into a somewhat longer window that includes both update patterns.

Algorithm 1: Mine connected patterns

Algorithm 2: Find windows and patterns

Input: entity set S,Wikipedia type ¢, window w, frequency threshold 7,
relative threshold 7,.¢;
Output: (relative) patterns and their time frames: patterns[w],
rel_patterns[w][p]

call reduced_and_abstract_actions(S,w) to create abstract_actions[w] and
realizations[w];

patterns[w] = {{a} | a € abstract_actions[w] Atype(source(a)) = tA
frequency({a}) > 7 };

3 tested[w]={};

4 while new type names found in patterns[w] do

5 foreach p € parterns[w] do

6 foreach new type name t € p do

7 L S = get_entities(?);

8

)

call reduced_and_abstract_actions[S, w] to expand
abstract_actions[w] and realizations[w];

9 while there exists p € patterns[w], a € abstract_actions[w], s.t.
(p, a) ¢ tested[w] do

10 tested[wl=tested[w] U{(p, a;) };

1 foreach pattern p’ obtained by expending p with a; do

12 compute realizations[w][p’] from realizations[w][p] and
realizations[w][a;];

13 frequency(p’) =
|distinct entities of type t in realizations[w][p’]| L if

|lentities(t)|
frequency(p’) > T then
14 L patterns[w]=patterns[w] U{p’ };

15 | prune(patterns[w]),realizations[w]

16 patterns[w]=most_specific_patterns(patterns[w]);
17 Return(patterns)

Our algorithm is initialized with minimal window size (the sys-
tem default is two weeks) and frequency thresholds (default 0.7),
which are iteratively refined: The window size is extended (resp.
the threshold it lowered) if no qualified patterns were found, or if
the refinement leads to the discovery of additional patterns. The
extension granularity (resp. frequency bound reduction) may be
determined by the user. Otherwise, the default refinement policy
is to alternate between multiplying the window size by two (re-
taining the threshold as it) and reducing the frequency thresholds
by 20% (retaining the window size). This is repeated as long as
the refinement leads to new patterns, up to a maximal window
size of one year, and a minimum threshold value of 0.2 (All exper-
iments were run with this setting). We chose the above heuristic
by examining several alternatives, as elaborated in Section 6, and
chose the one with the lowest running time among all heuristics
that performed best in terms of F1 score evaluations.

We now present the full algorithm, depicted in Algorithm 2.
As mentioned above, given an entity type ¢, our initial entity set
S contains all entities of the input type. Users not familiar with
the type hierarchy may provide a seed entity e and the system will
use type(e) as an input (lines 1-3). To derive type(e) we use an
alignment from Wikipedia entities to DBPedia [1]. Then to find
all entities of type t we employ a corresponding inverse index.

We first split the timeline into consecutive time frames of size
Wmin (line 7). Next we call (possibly in parallel) the procedure
Mine_connected_patterns, described in Algorithm 1 in Section
4, for all windows (line 9). We iteratively refine the considered
windows width (Wp,i,) and frequency threshold (7) (following the
heuristics described above), and until a stable result is obtained
(lines 10-11). Finally, for each discovered pattern p in window w,
its relative frequent patterns are mined as well (lines 14).

56

Input: Wikipedia type ¢ or seed entity e, min. window width Wy, 5,
frequency threshold 7, relative threshold 7,.;
Output: (relative) patterns and their time frames
if ¢ is not given then
| t=type(e);
S = get_entities(?);
patterns = [];
rel_patterns = [];
Frequent patterns Stage;
split the timeline into a set W of consecutive time frames of size Wy, in;
foreach win W do
L patterns[w]= Mine_connected_patterns(S, £, w, 7, Tye1)

SR

e ® N m e W

-
5

if patterns==[] or refine?(Wypin,7,patterns)==True then

1 L go to line 7 with the updated W,y,ip,, 73

=

-
19

Relative frequent patterns Stage;

foreach w € W do

14 rel_patterns[w] = Mine_rel_connected_patterns (patterns[w],
rel_patterns[w], abstract_actions[w], realizations[w],7,¢7);

Return(patterns,rel_patterns)

-
@

o

S USING WINDOWS AND PATTERNS

We employ the discovered windows and patterns to clean and
correct Wikipedia entries, as well as to assist users in editing.

Cleaning. An immediate application of the discovered patterns
is to alert Wikipedia editors on partial edits from past windows.
For that, we examine the discovered windows and identify for each
window and pattern (using an efficient outer-join based algorithm,
described below, parallelly processed) partial sets of actions that
may be extended to a full pattern occurrence. To assist the editor
in determining how (if) the partial edit should be completed (or
reversed), we present examples of other full patterns.

To explain how the algorithm works, recall from Section 4.2
that, to discover patterns, we iteratively expand the pattern’s graph,
joining corresponding action relations to form a relation table that
captures the pattern realizations. In each such join, the left-hand
side (LHS) relation represents the realizations of a (partially grow-
ing) portion of the pattern, and the right-hand side (RHS) relation
contains the realizations of the added edge. The join conditions
assert the (in)equalities of the corresponding graph nodes. To iden-
tify partial updates, that haven’t been properly completed, we
similarly traverse the graph. But instead of the abovementioned
Jjoin operator, we employ a full outer-join [6], with analogous
(in)equality conditions. Note that, unlike the join, the full outer-
join also records in the output relation those LHS (resp. RHS)
tuples not matching any RHS (LHS) tuple, padding the missing
attribute values with nulls. In terms of our patterns, partial pattern
realizations (resp. action realizations) that are missing a corre-
sponding action (partial pattern) are also recorded in the relation,
padded by null values. The incomplete edits can then be easily
identified via a selection query retrieving tuples with null values.
A result table keeping the attributes of original action relations is
kept to record which missing updates cause null values.

Our algorithm for identifying partial updates is depicted in
Algorithm 3. For a time window w and a pattern p, it focuses on
the entity types in p. It invokes reduced_and_abstract_actions
(described earlier), to examine their revision histories and con-
struct the realization relations of their corresponding abstract ac-
tions (lines 1-2.) Next we traverse the pattern’s graph g,, and
iteratively outer-join the corresponding relations (lines 8-9). We
use pi ... pn to denote the incrementally growing sub-patterns
(from the first singleton edge ay, to the full pattern p). The array

Algorithm 3: Identifying partial updates

Input: window w, pattern p

Output: partial realizations of p in w

let S be the set of entity types in p;

call reduced_and_abstract_actions(S,w) to create abstract_actions[w] and
realizations[w];

N

3 letey, ..., ey be the edges in the pattern’s graph g, in some traversal order;

4 letay ..., ap be the corresponding actions in p;

s pr={ai};

6 all_realizations[p,] = realizations[w][a];

7 fori=2...ndo

8 pi=pi-1U{ai};

9 compute all_realizations|[p;] from all_realizations[p;_1] and
realizations[w][a;] using full outer-join;

10 partial_r = {r € all_realizations[p] | r includes a null value }};
Return(partial_r)

all_realizations|p;] is used record the intermediate (possibly in-
complete) pattern instantiations. Finally we return all tuples that
include null values (lines 10-11). An example of the algorithm
execution appears in our technical report [3].

Edit assistance. Update patterns often appear periodically in
multiple windows. For example, transfer windows occur each
summer with a similar edit pattern. Our system automatically
identifies such periodic patterns/windows and provides online
edit assistance (via a plug-in) to users that update pattern entities
within a given window, suggesting potential update completions,
as explained above. The algorithm for identifying patterns that
need completion follows similar lines, with the user alerted on
partial edits that involve entities that she is updating.

6 EXPERIMENTS

We open this section by describing the experimental setup, the
examined datasets, baselines, and evaluation methods. We then
present the results, both in terms of running time and quality.
Finally, we present a comparative analysis of heuristics, demon-
strating the superior performance of the heuristic used by WC.

6.1 Experimental Setup

We have implemented WC as a web browser extension, with back-
end in Python, frontend in JavaScript, and SQL over pandas as
the underlying query engine. All experiments were executed on
an Intel 17 2.4Ghz with 96GB RAM and 16 cores server. We ran
experiments over Wikipedia datasets and examined the system per-
formance in terms of running times, the quality of the discovered
patterns, and the number of detected errors, w.r.t. these patterns.
For the quality experiments (and measuring the running time)
we use the default settings of WC. Recall that our algorithm is
initialized with minimal window size (default is two weeks) and
frequency thresholds (default 0.8), which are refined throughout
the computation. As mentioned, the default refinement policy
alternates between multiplying the window size by two and re-
ducing the frequency thresholds by 20%, up to at most one year
window and a minimal 0.2 frequency. For other experiments, that
test the effect of each parameter, we vary the given parameter
while setting all others to default values, as explained below.
Settings. To demonstrate the operation of WC in different
entity domains, we examine here three Wikipedia domains: soccer
(including players, teams, leagues, etc), cinematography (actors,
movies, awards, etc) and US politicians (specifically US senators).
To derive patterns (and correspondingly identify potential edit
errors) we used the revision history for the year 2018. We then
validated the signaled potential errors w.r.t. edits recorded in the

57

revision history of 2019. To further assess (resp. validate) the
identified patterns (signaled errors), we have also consulted three
domain experts - one expert per each of the three domains.

For the soccer domain, we used major European leagues’ soccer
players for our seed set of entities. For the cinematography domain,
we used actors from Hollywood-produced movies for the seed set.
Lastly, in the politicians’ domain, we used US senators for the
seed entity set. In each domain, we considered different sizes of
seed sets by randomly choosing between 100-1K entities from the
respective seed type. We run each experiment 5 times and show
the average running time (the variance was below 5%). For the
entities selection, we used the “recently edited” criterion (edited
in the last year of 2018) to focus on active pages with edits that
may contribute to the mining process, and may also contain errors.
Following Algorithm 2, we also considered related entity types
and extracted their revision history in the corresponding period.

Due to the lack of an appropriate API, obtaining the Wikipedia
data required crawling and parsing entities and it’s revision logs.
Nevertheless, we gathered data for 100K entities - about 10t of
the million frequently edited Wikipedia’s entities [4].

Algorithms. The core of WC is Algorithm 2 (referred in the
sequel as WC) which identifies time windows of interest and cor-
responding edit patterns. A main ingredient of WC is the pattern
mining procedure depicted in Algorithm 1 (referred in the sequel
as PM) that given a specific window w and frequency threshold 7,
identifies the most specific frequent patterns in w (w.r.t. the seed
type of interest). As explained in Section 4, PM refines conven-
tional graph mining algorithms [15] by introducing two dedicated
optimizations: (1) an efficient join-based SQL computation of
patterns realization and frequencies, and (2) an incremental com-
putation that avoids a full materialization of the edits graph. To
demonstrate the importance of these two optimizations, we ex-
amine the running times of the following four algorithm variants.

e PM, our mining algorithm.

e PM /9" 4 restricted variant of PM without our dedicated join-
based queries. Instead, pattern realizations and frequencies are
computed via conventional main memory nested loop.

e PM "¢ g restricted variant of PM that does not utilize our incre-
mental, on-demand graph construction. Instead, the full edits
graph for the given window is materialized then given as input
to the mining process (but patterns realization/frequency is still
computed via our join-based queries).

e PMinGTJoIn conventional graph mining without our two op-
timizations. The edits graph for the window is materialized as in-
put to the mining process, with the pattern realizations/frequencies
computed via the main memory nested loop.

Note that direct comparison to leading graph mining baselines is

not possible due to their use of different frequency metric (not

capturing connectivity property and relativity to a specific type)
and lack of support for type hierarchy. We have thus adapted the
most relevant variant to our context, denoted by PM —inc—join and

benchmark w.r.t. it. See discussion in Section 2.

6.2 Running Time Analysis

Next, we examine how the running time is affected by (1) the size
(number of entities) of the seed type of interest, (2) the frequency
threshold, and (3) the window size. In each experiment, we vary
one parameter while setting the others to a default value (500
seed entities, 0.7 frequency, and two weeks, resp.). As the results
for the different domains show similar trends, we present here a
representative set of experiments for the soccer domain.

Note that, as is common in graph mining algorithms, PM~"¢
and PM~I"6J0in require the full edits graph for the given win-
dow to be materialized. However, materializing this graph, even
for relatively small time windows, can be infeasible. Indeed, our
experiments show that even when considering a two-week time
window, only 100 seed entities, and revision histories only of
entities reachable from the seed set, the graph construction ex-
ceeded 24 hours (the time limit for the graph materialization).
This is due to the dense connectivity of the Wikipedia graph® [4],
the previously mentioned high volume of edits, and the lack of
adequate API, as noted above. Thus, as the graph must be con-
structed for each considered window, we initially focus only on
the two feasible algorithms: PM and PM~/°", with the infeasible
algorithms evaluated over reduced inputs. We report below the
sizes of the partial graphs built by PM and PM~/°/", For intuition
on the relative savings, we note that the graph for the 100 seed
entities during these 2-weeks contains over 100K entities.

Seed set cardinality. We start by examining the running time
as a function of the size of the seed set. Naturally, the more entities
in the seed set, the more related updates need to be examined
and the more revision histories are processed. Consequently the
running time of both PM and PM /%" increases, as illustrated in
Figure 4(a). The threshold is set here to the default value of 0.8 and
the window is the month of August. Similar results are obtained
for other thresholds/months. Next to the size of each seed set, we
give (in parenthesis) the overall number of related entities (graph
nodes) processed by the algorithm. In each column, the upper
part shows how much time (in hours) it took to parse the revision
history of the relevant entities and extract the reduced updates set.
This is naturally identical for both algorithms (as they only differ
in the computation of pattern realizations/frequencies). It should
be noted that this time would be much shorter if Wikipedia had
provided a more convincing API for its revision logs or, publicly-
available structured revisions database. The lower part of each
column shows the running time dedicated to the pattern mining
itself. We can see that is significantly shorter for PM that employs
our efficient join-based queries. For PM the pattern mining time
only marginally grows when the seed set size increases and stays
below 15 min, which is very reasonable for offline computation.

Frequency threshold. Next, we examine the running time as
a function of the frequency threshold. The seed set size is set
to a default size of 500 and the window is the month of August.
(Similar results are obtained for other sizes/months). The lower
the threshold, the more potential patterns (and revision histories
of involved entity types) need to be examined, and, consequently,
the processing time of both algorithm increases, as illustrated in
Figure 4(b). The processing time for the revision logs is the same
in both algorithms, but PM mines the patterns much faster. Again,
for PM the pattern mining time increases only moderately when
the threshold decreases and stays below 15 min.

Window size. In this experiment, we measure the preprocess-
ing time for varying window sizes. Figure 4(c) illustrates the
processing time for 2, 4 and 8 weeks window. Specifically, we
see here the running times for the first two weeks of August, the
whole month of August, and the two months July and August,
but similar results are obtained for other similar-length windows.
(The seed set size here is again set to default size of 500 and
the frequency default 0.8. Similar results are obtained for other

6Wikipedia contains about 6 million entities (of which 4 million are considered of
marginal importance) and over 80 million internal links as to 2010.

58

sizes/frequencies). Naturally, the larger the window, the more up-
dates need to be processed and as a result, more patterns may
occur. Consequently, the running time increases. Again, the pro-
cessing time for the revision logs in both algorithms is the same,
but PM mines the patterns much faster.

Parallelism. So far we examined the performance of the PM
component of WC. To complete the discussion we now examine the
full operation of WC, highlighting, in particular, its embarrassingly
parallelized nature. Recall that WC splits the timeline into non-
overlapping windows that may be processed in parallel. Similarly,
independent entity types can be processed in parallel. This is easily
exploitable in a multi-core setting as shown in 4(d). We focus here
on the pattern mining process (the revision logs processing shows
similar trends). The figure shows the time in minutes (in log scale)
of the pattern mining computation for a single core vs 16 cores,
for varying sizes of seed entity sets. As before, next to the size of
each seed set we give in parenthesis the overall number of related
entities (nodes) processed by the algorithm. Note that the numbers
here are the fotal number of nodes processed through all iterations,
for all examined windows and threshold values. Running on 1000
entities takes less than one minute on a single core. 5K entities
need 6 minutes to process on one core and about 1 minute on 16
cores. For 100K entities - the largest entities set generated in the
algorithm execution on the three domains mentioned above - it
took 58 minutes on one core and about 15 minutes on 16 cores.
Overall, the parallelization speedup is about 4x.

Based on known statistics of approximately 5.9 million Wikipedia
entities (one million of them are of mid-to-high importance) [4],
given a preprocessed Wikipedia revisions database/graph (which
unfortunately is currently not publicly available), running on all
Wikipedia entities will take about six hours (one hour on mid-to-
high importance entities) on a 16 core server.

Experiments with small data. As mentioned above, the ma-
terialization of the entire edits graph of Wikipedia, which is a
necessary input for PM~i¢ and PM~i"¢=Jo" takes impractical
time. To, nevertheless, evaluate the efficiency of these two algo-
rithms, we also conducted experiments over considerably smaller
subsets of the Wikipedia graph. Over such small instances, the
running time is less meaningful, however, we can focus instead on
the number of considered pattern candidates as an indication of
the efficiency of these algorithms. Note that, since this experiment
is only possible over small data, typically negligible amounts of
noise become significant, and since the number of seed entities is
small, many of the identified candidates will exceed the threshold.
Therefore, we do not examine any quality indicators.

Concretely, we examined a small subset of Wikipedia, con-
sisting of 10 seed entities from the soccer domain, and all the
revisions of these entities that occurred within an arbitrarily cho-
sen two-week period. We constructed the corresponding edits
graph, containing the seed entities and a close (2-reachable) neigh-
borhood of these seeds in two phases, as follows. We first added
to this graph all the entities that are connected within one link
from the seeds and were also edited in the chosen time window,
and then we also added, analogously, another layer of neighbor-
ing entities - all the entities that are connected within one link to
the previously added entities, and were also edited in the chosen
time window. We did not extend the graph further, as it could
not be materialized within the time frame we defined. The above
construction resulted in a graph with roughly 10K entities.

We compared the performance of PM~"¢ and pM~inc—join
over this graph, to that of PM (our pattern mining algorithm)
and PM~J°" (which does not include our dedicated join-based

W Preproc. (PM-join) M Algo (PM-join)
L Preproc. (PM) W Algo (PM)

B Preproc. (PM-join) M Algo (PM-join)
2 Preproc. (PM) W Algo (PM)

o

@

Running time (min)
Running time (min)

100 (2K) 500 (18K) 1000 (25K) (b) 0.7 04 0.2

O

Running time (min)

o

W Preproc. (PM-join) M Algo (PM-join)
' Preproc. (PM) W Algo (PM)

10
8
6
4
g N
0 .
2w aw 8w

60

W 1 Core

16 Cores

Running time (min)

(d) 500(16K) 1K(25K) 2K(50K) 3K(100K)

Figure 4: Running time when varying the (a) DB size (b) threshold (c) window size (d) WC execution time on 1 vs 16 cores

queries) over a Wikipedia subgraph of the same size. Recall
thatPM and PM 79" in contrast to PM~i"¢ and PM~inc—join (g
not receive the complete graph as input, rather create the relevant
edits subgraph (of the Wikipedia graph) incrementally on-the-fly.
Therefore, to ensure a meaningful comparison, we used as input
a set of 200 seeds, as this results in subgraphs of roughly 10K
entities (which is also the size of the input graphs for PM =" and
PM~inc—joiny Moreover, as we focus solely on the number of
considered candidates, this value will be the same for all variants
of PM, when employed over the same graph, as the frequency defi-
nition is identical for all baselines. Therefore, the result will be
the same forPM and PM~7°" and also the same for PM "¢ and
PM~ine=join Hence, we essentially compare only two approaches
in this experiment (receiving the complete graph in advance versus
computing a more relevant subgraph on-the-fly).

The results show that PM "¢ and PM~I"¢=J%i" consider more
candidates (524), compared toPM and PM~J°" (125). This demon-
strates the superiority of our incremental graph construction ap-
proach, which prunes many of the irrelevant candidates.

6.3 Quality Analysis

To assess the usefulness of WC for error detection we evaluated
the quality of the discovered patterns and the validity of the po-
tential errors signaled using these patterns. We employed WC,
over the subsets of the Wikipedia 2018 revision log relating to the
domains of soccer, cinematography, and US politicians, with the
corresponding seed sets consisting of 1000 entities.

Ground truth patterns. To evaluate the correctness and cover-
age of the detected patterns, we asked each of the three experts to
provide a comprehensive list of common periodic update patterns,
in structured data. The soccer expert provided 11 such patterns
(e.g., the page of a player that won the “Goal of the Month” award
should link to the page of the award and vice versa). The cin-
ematography expert provided 8 patterns (e.g., a TV series page
should point to all the pages of its specific seasons). Lastly, the pol-
itics expert provided 5 patterns (e.g., the page of a newly-elected
senator points to her predecessor’s page and vice versa).

Discovered patterns and detected errors. Interestingly, the
patterns derived by WC are a proper subset of the set of patterns
provided by the experts, implying 100% precision. In terms of
recall, our algorithm detected 9 (out of the 11) soccer-related
patterns, 7 (out of the 8) cinematography related patterns and 4
(out of the 5) US politicians related patterns, yielding an average
recall of 83.3% across all the domains. The discovered patterns
were then used by WC to detect erroneous updates.

Running Algorithm 3 on the 2018 revision log we have iden-
tified 3743 potential errors for the soccer domain, 2554 potential
errors for the cinema domain and 1125 potential errors for US
politicians. To determine which of these are actual errors, we ran
a two-step verification process. First, for each signaled potential
error (partial pattern occurrence) we examined whether it still
existed after the 2019 updates had been applied. Errors that were
eliminated (corrected) are considered true errors. Note, however,
that the remaining set may still include actual errors that went un-
noticed. To determine how many such signaled, unnoticed errors
Wikipedia still contains, we sampled 50 such errors per pattern

59

and asked the relevant domain expert to determine their validity.
Next, examples and results of discovered patterns are provided.

Soccer. Out of the 3743 signaled potential errors, 2680 were cor-
rected in 2019 (71.6%). From the remaining examined cases,
82.1% were indeed verified as actual previously unnoticed errors.

To illustrate, the simplest pattern detected in the soccer domain
indicates that, after joining a new club, the page of the player
should link from the career table to the page of the club, which,
in turn, should add a link to the player’s page in the current squad
table. This pattern has a frequency of 0.8 in the window consisting
of the first week of August. Out of the 50 sampled errors for
this pattern (partial pattern occurrences), 48 indeed turned out to
be previously unnoticed errors (96%). A more complex pattern
includes also the deletion in the player’s page of the link to the old
club, and vice versa. This pattern has a lower frequency (0.4) and a
wider window size (the first two weeks of August). Here, out of 50
sampled potential errors, 44 were verified as actual errors (88%).
An example of such an error, detected by the algorithm, relates to
the page of Nikola Mitrovic, a player that switched leagues. His
new club, ZTE, added him to its current squad table, while the
previous club, Kesla, did not remove him. Similarly, Aleksandrs
Cauna’s page was updated when he joined his new club Jelgava,
whereas the page of RFS, his old club, still pointed to his page past
the transfer window. A relative frequent pattern, that the algorithm
detected, includes an update of the current league link in the
player’s page. While this pattern is much less frequent (since a
player may move to a club in the same league, in contrast to the
previously mentioned patterns, where a violation almost certainly
results in “incomplete” data), its relative frequency, nevertheless,
exceeds the threshold. Out of the 50 detected potential errors, 14
were indeed actual previously unnoticed errors.

Cinematography. One example of a detected pattern relates to an
actor/actress winning the Oscar award: the page of the winner
should link to the page of the award and vice versa. In terms of
quality evaluation, out of the 2554 signaled potential errors, 1731
were corrected in 2019 (67.8%). Of the remaining cases, 81.2%
were determined to be true unnoticed errors.

US Politicians. An illustrative example of a discovered pattern in
the US politics domain pertains to the election of a new senator.
Given such an event, the pages of the new senator and the relevant
state must point to each other, and also a link to the page of the
previous senator is removed from the page of the state. The page
of the previous senator should still point to the state, since the
only modification relates to the adjacent text, detailing the period
during which she held office. Out of the 1125 signaled potential
errors, 728 were corrected in 2019 (67.8%). Of the remaining
cases, 78.1% were determined to be previously unnoticed errors.

Insights. To conclude, we discuss insights derived from the
above evaluation, that reaffirm the distinction between our in-
tended use-cases and those addressed by previous works. As men-
tioned in the Introduction, our solution focuses on patterns that
are associated with a well-defined time window, complementing
existing solutions that target ‘window-less’ constraints. Indeed,
for all the discovered patterns, a statistically significant time win-
dow was identified. In contrast, of the few overlooked patterns,

Table 1: Sample of heuristics test

(w, 7) ‘ Running time (min) Precision Recall F1 Score
2.0x, 20% 2 1 0.84 0.91
1.0x, 20% 1.2 0.88 0.68 0.77
2.0x, 0% 1.2 1 0.75 0.86
1.5x, 10% 32 1 0.68 0.81
3.0x, 40% 1.5 0.75 0.88 0.81

two are not clearly associated with any time window. This further
reinforces the contrast between our solution and other works.

6.4 Parameter Tuning

When refining the two parameters across different iterations, PM
alternates between multiplying the window size by two and reduc-
ing the frequency threshold by 20%. To arrive at these values, we
performed a grid search, selecting the parameters that led to the
fastest running time among the options that yield the best F1 score
(w.r.t. patterns provided by experts). We checked combinations
of reducing the threshold by X and multiplying the window size
by Y, where X ranges from 1% to 100%, in steps of 5%, and Y
ranges from 1.5 to 5, in steps of 0.5. In terms of the bounds for the
above parameters, the window size is restricted to the range of two
weeks to one year, while the threshold is restricted to [0.2,0.7].
These intervals were also derived via an analogous grid search
over various ranges. A sample of the results is depicted in Table 1,
where the left column provides the combination of the changes in
the values of the window size and the threshold. Note that the first
row pertains to the combination used by WC.

These results demonstrate the advantages of our balanced ap-
proach, compared to more extreme approaches. Namely, opting
for very small changes to the parameters increases the running
time and lowers the recall. The recall drops because WC would
terminate at an early stage, as new patterns are not likely to be dis-
covered compared to the previous iteration. At the other extreme,
drastically changing the parameter values, while improving the
running time, lowers the precision score. The latter effect is due
to quickly reaching iterations where the time window is large and
the threshold is low, causing WC to discover erroneous patterns,
whereas WC with our heuristic would terminate prior to this point.

7 CONCLUSION
This paper presents WC, a Wikipedia plug-in assisting editors in
maintaining the correctness of inter-links. Given an entity type
of interest, our efficient, highly parallelizable algorithm identi-
fies relevant edit patterns across revision histories of entities of
related types, along with time windows in which partial edits are
acceptable. The discovered patterns/windows are then used by
WC to alert editors on past edits that appear incomplete, and pro-
vide users with on-line assistance as they update Wikipedia. Our
experiments with Wikipedia data demonstrate the efficiency and
effectiveness of our approach in identifying and correcting errors.
There are several directions for future research. As our work
considers inconsistencies in structured parts of Wikipedia, expand-
ing our approach to consider free text, in particular parts related to
the inter-links, is a challenge. Another intriguing future direction
is enriching the expressiveness of the patterns to support value-
specific instantiations (e.g., a pattern specific to PSG, but not to
football clubs in general). Finally, applying our ideas to other do-
mains where revision histories are available and link consistency
is important (e.g., software repositories) is another challenge.

Acknowledgements This work has been partially funded by the Israel
Science Foundation, the Binational US-Israel Science Foundation, and the
Tel Aviv University Data Science center.

60

REFERENCES

(1]
[2]
[3]
[4]
[5]

[6

(7]
[8]

[9

[10]

[11]

[12]

[13]

[14]
[15]
[16]
[17]
(18]
[19]

[20]

DBPedia. https://wiki.dbpedia.org/.

Time Magazine, “Jimmy Wales”. http://content.time.com/time/specials/
packages/article/0,28804,1975813_1975844_1976488,00.html.

WiClean Technical Report. http://slavanov.com/research/wc-tr.pdf.

Wiki statistics. https://en.wikipedia.org/wiki/Wikipedia:Statistics.

Z. Abedjan, C. G. Akcora, M. Ouzzani, P. Papotti, and M. Stonebraker. Tempo-
ral rules discovery for web data cleaning. PVLDB, 9(4):336-347, 2015.

S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-
Wesley, 1995.

R. Agrawal and R. Srikant. Fast algorithms for mining association rules in
large databases. In VLDB, 1994.

E. Alfonseca, G. Garrido, J.-Y. Delort, and A. Peiias. Whad: Wikipedia histori-
cal attributes data. Language resources and evaluation, 47(4), 2013.

A. Assadi, T. Milo, and S. Novgorodov. Cleaning data with constraints and
experts. In WebDB, pages 1:1-1:6, 2018.

M. Atzori, S. Gao, G. M. Mazzeo, and C. Zaniolo. Answering end-user
questions, queries and searches on wikipedia and its history. IEEE Data Eng.
Bull., 39(3):85-96, 2016.

M. Bergman, T. Milo, S. Novgorodov, and W. C. Tan. Query-oriented data
cleaning with oracles. In SIGMOD, pages 1199-1214, 2015.

T. BleifuB, L. Bornemann, T. Johnson, D. V. Kalashnikov, F. Naumann, and
D. Srivastava. Exploring change: a new dimension of data analytics. Proceed-
ings of the VLDB Endowment, 12(2):85-98, 2018.

S. Bostandjiev, J. O’Donovan, C. Hall, B. Gretarsson, and T. Hollerer. Wigi-
pedia: A tool for improving structured data in wikipedia. In 2011 IEEE Fifth
International Conference on Semantic Computing, pages 328-335, Sep. 2011.
X. Chu, I F. Ilyas, and P. Papotti. Discovering denial constraints. Proc. VLDB
Endow., 6(13):1498-1509, Aug. 2013.

M. Elseidy, E. Abdelhamid, S. Skiadopoulos, and P. Kalnis. Grami: Frequent
subgraph and pattern mining in a single large graph. PVLDB, 7(7), 2014.

W. Fan, X. Wang, Y. Wu, and J. Xu. Association rules with graph patterns.
Proceedings of the VLDB Endowment, 8(12):1502-1513, 2015.

B. Fetahu, A. Anand, and A. Anand. How much is wikipedia lagging behind
news? CoRR, abs/1703.10345, 2017.

J. Ge and Y. Xia. Distributed sequential pattern mining in large scale uncertain
databases. In PAKDD, pages 17-29. Springer, 2016.

F. Geerts, G. Mecca, P. Papotti, and D. Santoro. The LLUNATIC data-cleaning
framework. PVLDB, 6(9):625-636, 2013.

S. Goldberg, T. Milo, S. Novgorodov, and K. Razmadze. WiClean: a sys-
tem for fixing Wikipedia interlinks using revision history patterns. PVLDB,
12(12):1846-1849, 2019.

J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate genera-
tion. ACM sigmod record, 29(2):1-12, 2000.

A. Heidari, J. McGrath, I. F. Ilyas, and T. Rekatsinas. Holodetect: Few-shot
learning for error detection. arXiv preprint arXiv:1904.02285, 2019.

S. Heindorf, M. Potthast, B. Stein, and G. Engels. Towards vandalism detection
in knowledge bases: Corpus construction and analysis. In SIGIR, 2015.

C. Jiang, F. Coenen, and M. Zito. A survey of frequent subgraph mining
algorithms. The Knowledge Engineering Review, 28(1):75-105, 2013.

P. Kin-Fong Fong and R. Biuk-Aghai. What did they do? deriving high-level
edit histories in wikis. 01 2010.

M. Kuramochi and G. Karypis. Finding frequent patterns in a large sparse
graph. Data mining and knowledge discovery, 11(3):243-271, 2005.

J. Lajus, L. Galdrraga, and F. Suchanek. Fast and exact rule mining with amie
3. In European Semantic Web Conference, pages 36-52. Springer, 2020.
N.-T. Le, B. Vo, L. B. Nguyen, H. Fujita, and B. Le. Mining weighted subgraphs
in a single large graph. Information Sciences, 514:149-165, 2020.

M. Muzammal and R. Raman. Mining sequential patterns from probabilistic
databases. Knowledge and Information Systems, 44(2):325-358, 2015.

S. Ortona, V. V. Meduri, and P. Papotti. Rudik: Rule discovery in knowledge
bases. Proceedings of the VLDB Endowment, 11(12):1946-1949, 2018.

D. Raghu, S. Nair, and Mausam. Inferring temporal knowledge for near-
periodic recurrent events. 2018.

N. Rajkumar, M. Karthik, and S. Sivanandam. Fast algorithm for mining
multilevel association rules. In Proc. of TENCON, pages 688—692, 2003.

A. Sarabadani, A. Halfaker, and D. Taraborelli. Building automated vandalism
detection tools for wikidata. WWW 2017 Companion.

R. Srikant and R. Agrawal. Mining sequential patterns: Generalizations and
performance improvements. In Proc. of EDBT, pages 1-17, 1996.

O. Sunercan and A. Birturk. Wikipedia missing link discovery: A comparative
study. In 2010 AAAI Spring Symposium Series, 2010.

T. P. Tanon, C. Bourgaux, and F. M. Suchanek. Learning How to Correct a
Knowledge Base from the Edit History. In WWW, 2019.

T. Tran and T. N. Nguyen. Hedera: Scalable indexing and exploring entities in
wikipedia revision history. pages 297-300, 2014.

R. West, A. Paranjape, and J. Leskovec. Mining missing hyperlinks from
human navigation traces: A case study of wikipedia. In WWW, 2015.

X. Yan and J. Han. Closegraph: mining closed frequent graph patterns. In Proc.
of KDD, pages 286295, 2003.

R. Ying, A. Wang, J. You, and J. Leskovec. Frequent subgraph mining by
walking in order embedding space. 2020.

M. J. Zaki. Spade: An efficient algorithm for mining frequent sequences.
Machine learning, 42(1-2):31-60, 2001.

O

proceedings

Automating Data Quality Validation
for Dynamic Data Ingestion

Sergey Redyuk, Zoi Kaoudi, Volker Markl
Technische Universitat Berlin
[sergey.redyuk,zoikaoudi,volker.markl] @tu-berlin.de

ABSTRACT

Data quality validation is a crucial step in modern data-driven
applications. Errors in the data lead to unexpected behavior of
production pipelines and downstream services, such as deployed
ML models or search engines. Typically, unforeseen data quality
issues are handled via manual and tedious debugging processes
in a reactive manner. The problem becomes more challenging in
scenarios where large growing datasets have to be periodically
ingested into non-relational stores such as data lakes. This is even
worse when the characteristics of the data change over time, and
domain expertise to define data quality constraints is lacking.

We propose a data-centric approach to automate data quality
validation in such scenarios. In contrast to existing solutions,
our approach does not require domain experts to define rules
and constraints or provide labeled examples, and self-adapts to
temporal changes in the data characteristics. We compute a set of
descriptive statistics of new data batches to ingest, and use a ma-
chine learning-based novelty detection method to monitor data
quality and identify deviations from commonly observed data
characteristics. We evaluate our approach against several base-
lines on five real-world datasets, on both real and synthetically
generated errors. We show that our approach detects unspecified
errors in many cases, outperforms other automated solutions
in terms of predictive performance, and reaches the quality of
baselines that are hand-tuned using domain expertise.

1 INTRODUCTION

Data-driven decision making is becoming the norm in modern
enterprises and organizations, and requires maintaining and reg-
ularly updating large datasets, often collected in non-relational
stores such as data lakes. A critical step in these scenarios is data
quality validation, as the quality of the derived insights and deci-
sions crucially depends on the quality of the collected data [42].
Incorrect or missing data can lead to wrong business decisions
and problems in downstream data consumers, such as machine
learning (ML) models or search engines [1, 17, 43], and even crash
systems, e.g., due to null-pointers originating from missing data.
Common sources of errors are bugs in external data sources and
data preprocessing code (e.g., when a data engineer accidentally
changes a time measurement from seconds to milliseconds in a
data-producing pipeline). Such errors often corrupt large parts of
the data to ingest and can immediately lead to devastating conse-
quences, e.g., wrong predictions of ML models that consume the
data [37]. In this work, we focus on automating the detection of
such data quality issues.

We address the following real-world example scenario. Con-
sider a data engineering team at a retail company maintains a
search engine for products. To keep the search engine up-to-date,

© 2021 Copyright held by the owner/author(s). Published in Proceedings of the
24th International Conference on Extending Database Technology (EDBT), March
23-26, 2021, ISBN 978-3-89318-084-4 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Series ISSN: 2367-2005

61

Sebastian Schelter
University of Amsterdam
s.schelter@uva.nl

it deploys a pipeline that regularly ingests and indexes external
product data from various heterogeneous sources, such as web
crawls, log files, key-value stores, or upstream data pipelines.
If a data source introduces errors in the data to ingest, such as
missing values or wrong encoding of strings, then the products
will not be indexed correctly or, even worse, cause the ingestion
process to crash. Such data issues are typically handled reactively:
the engineering team discovers data issues via alerts from devops
engineers, bug reports, and customer reviews. The data is then
manually fixed and back-filled. Handwritten code is added to the
data pipeline in retrospect to catch the observed type of errors
in the future [43].

In this paper, we propose an approach to automate data qual-
ity validation in scenarios where large partitions of a growing
dataset have to be regularly ingested into a common data store
such as a data lake. While relational databases enforce a schema
and integrity constraints for their data [13], many modern ap-
plications rely on non-relational data stores. Pipelines that do
not specify a particular schema or constraints on the data are
often much cheaper to operate in cloud environments (e.g., using
S3 as a distributed filesystem for storing the data partitions and
Apache Spark for processing them).

In contrast to existing work on fine-grained error detection [1,
17, 27, 29, 36, 47], we focus on scenarios where systems regularly
ingest batches of external data, and data errors corrupt a large
fraction of the batch [42] (Section 3). In the aforementioned retail
example, a few missing product reviews in a partition might not
cause issues in the downstream systems, as they are programmed
to handle that (e.g., by using missing value imputation strategies).
However, an unusually high fraction of missing values in the
review description is an indicator of a severe problem in one of
the external data sources.

We automate the detection of six types of errors (explicit and
implicit missing values, numeric anomalies, typos, swapped fields
for numeric and textual attributes) as follows: we leverage pre-
viously ingested data batches as “positive” examples of “accept-
able” data and use a machine learning approach to identify new
batches that significantly deviate from the previously observed
data. Specifically, we compute a set of descriptive statistics over
the ingested data and train a novelty detection ML model [30, 31]
to learn the characteristics of the “acceptable” data. We apply
the ML model on new data batches to ingest, in order to identify
potentially erroneous data batches that significantly differ from
previously observed data (Section 4).

Our approach provides several advantages over existing work.
First, it does not require domain experts to design and maintain
large numbers of rules [3, 20, 43]. Devising such rules and con-
straints is a very tedious and expensive process as the datasets
found in enterprises are typically large and messy [45], especially
if they originate from the integration of different external data
sources. Secondly, our approach is computationally efficient as
the descriptive statistics we apply can be computed in a single

10.5441/002/edbt .2021.07

https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2021.07

pass over the data. Our novelty detection model has a low num-
ber of parameters to optimize. Finally, our automated approach
performs well in cases where the data characteristics change over
time, in contrast to rule- and constraint-based approaches [20, 43]
that require a manual redefinition of rules and constraints.

We evaluate our approach by comparing its predictive per-
formance to automated and hand-tuned variants of the follow-
ing state-of-the-art solutions: Tensorflow Data Validation [6],
Deequ [43], and statistical testing [32, 41]. Then, we evaluate the
sensitivity of our approach towards six types of errors (explicit
and implicit missing values, numeric anomalies, typos, swapped
fields on numeric and textual attributes) and the predictive per-
formance under various error magnitudes (1, 5, 10, 20, . . ., 80%)
in a controlled environment for datasets with synthetically gen-
erated errors. Finally, we evaluate the detection quality of our
approach over time, as (a) the size of the training set for the
novelty detection algorithm grows continuously, and (b) its data
characteristics change over time. In summary, we make the fol-
lowing contributions:

e We propose an approach to automate data quality validation
for data that is periodically ingested into non-relational stores.
In contrast to existing solutions, our approach does not re-
quire domain experts to define rules or labeled examples, and
self-adapts to temporal changes in the data characteristics (Sec-
tions 3 & 4);

e We discuss how to apply our approach efficiently via a novelty-
detection ML model trained on data quality metrics of the
data (Section 4);

e We evaluate our approach against existing baselines on five
real-world datasets with real and synthetically generated er-
rors. We find that our approach detects the unspecified errors
in many cases under varying error magnitudes, outperforms
other automated solutions in terms of predictive performance,
and reaches the ROC AUC score of baselines hand-tuned with
domain expertise (Section 5).

2 BACKGROUND

In the context of this work, we understand data quality validation
as the process of checking that the input data meet the needs
of a data-driven application or its underlying business process,
where these specific needs are either formulated explicitly with
the data standards and policies or assumed implicitly by the ap-
plication logic. The concept of data quality is broadly defined as
a measure of the fitness of the data to their intended uses and
purposes [11]. To identify how well the data fit for the intended
purpose, the wast body of knowledge [5] suggests several data
quality dimensions, such as data accuracy (the degree to which
the data correctly represent the real-world entity it models), com-
pleteness (the degree to which the data contain the necessary
attributes to model the entity), validity (the degree to which the
data are stored or represented in a format that is consistent with
the domain of values), and others. In practice, data quality is
assessed with a set of quantitative metrics that are associated
with the aforementioned data quality dimensions. In this section,
we briefly introduce the data quality metrics that we leverage in
our approach and the machine learning-related background for
novelty detection.

Data quality metrics. We consider several quantitative statis-
tics that can be used to identify data quality issues [18]: (i) com-
pleteness - the ratio of non-missing values to the number of

62

records in the data; (ii) the number of distinct values; (iii) statis-
tics for numeric data types, such as maximum, mean, minimum,
and standard deviation, (iv) the ratio of occurrence for the most
frequent value, etc. These statistics are commonly used in data-
base engines, for data profiling and data quality validation [18] to
summarize data of interest and often act as a proxy for the state
of data quality. Furthermore, most of the statistics can be cheaply
computed in a single scan over the data, except for the number of
distinct values and the ratio of the most frequent value, which are
typically approximated with the hyperloglog and the count-min
sketches respectively [8, 12].

Novelty Detection. Novelty detection is a machine learning
technique that aims to identify new patterns and signals that
were not present in the training data [30]. It is closely related to
anomaly detection as both techniques look for patterns in data
that do not conform to the expected behavior [7]. The difference is
that anomaly detection assumes that outliers are already present
in the training data. In contrast, novelty detection is designed for
cases where we only have access to “positive” examples.

Novelty detection is a form of one-class classification [46]
(due to the absence of negative examples). Novelty detection
algorithms model the data and check whether previously unseen
data points resemble the characteristics of the modeled data (i.e.,
inliers) or deviate from the expected behavior (i.e., outliers). The
decision whether or not a new object (i.e., data point) is an outlier
against a set of known objects follows the continuity assumption
(i.e., two data points that are close in the feature space repre-
sent two objects with the resemblance in real life) and usually
focuses on distance measures. Common example algorithms in
this area are one-class SVMs [44] and isolation forests [26]. For
an in-depth overview of the one-class classification problem and
novelty detection algorithms, we recommend the reader to refer
to Tax [46] and Chandola et al. [7].

3 PROBLEM STATEMENT
In this section, we introduce the problem and its formal definition.

Overview. We address the problem of automating the valida-
tion of data quality on dynamic data without relying on domain
expertise (e.g., manually specified rules and labeled erroneous
data records). As outlined in the running example, we focus on
scenarios where data pipelines regularly ingest large batches of
potentially erroneous external data and face errors that corrupt
a large fraction of the batch.

State-of-the-art solutions in data quality validation typically
require domain knowledge to specify explicit rules, constraints,
patterns, or labeled examples to verify data quality [6, 18, 20, 43].
They, however, fall short in several cases: (i) incomplete domain
knowledge (i.e., when data depict complex processes that even
domain experts cannot fully comprehend or when the domain
expert is unavailable at the given time), the solutions mentioned
above might perform poorly both due to false alarms and missed
errors as the specified set of rules or labeled examples are insuffi-
cient to capture potential errors; (ii) manual monitoring of data
pipelines to detect data quality issues or deployment of staging
environments for software testing are often too costly or time-
consuming, and are only conducted reactively; (iii) the charac-
teristics of the data might slowly change over time, which implies
that manually specified rules have to be constantly adapted and
maintained.

These challenges motivate an automatic approach to data quality
validation that does not rely on manually specified rules or la-
beled examples and self-adapts to changes in data characteristics.

Assumptions. For the given use case of the regular ingestion
of large batches of a growing dataset, we consider previously
observed and successfully ingested data partitions to be of “ac-
ceptable” data quality. This assumption is based on our experience
with real-world use cases: It is common in production to define
principal business and operational performance indicators and
monitor them carefully to evaluate business outcomes. For our
retail company running example, products that are placed in
the wrong category due to various errors lead to negative cus-
tomer reports or low service ratings, or via incident reporting and
tracking systems. This negative feedback serves as a proxy that
affects key performance indicators and catches the attention of
the responsible staff at some point in time. This, in turn, triggers
retrospective analysis. If devastating errors would have occurred
in the previously observed data partitions, they would have been
detected and fixed after a given time. If errors do not trigger a
negative response from the devops engineers or the business
after some period of time, we assume that the downstream task
is robust to them. Furthermore, existing error detection or data
quality validation methods require domain expertise. We focus
on real-world scenarios where domain expertise is not available
that, in turn, render the majority of data quality monitoring tools
inapplicable.

Formal problem statement. Given a structured dataset D of
chronologically ordered partitions djy, . . ., d;—1, each having do-
main A = Ay, ..., Ay, we have to predict upon the arrival of a
new partition d; whether this partition is of acceptable quality
or it is potentially corrupted w.r.t. a set of data quality metrics
Q0 =01,...,0G. We map this problem to a “one-class classifica-
tion” problem [46] where every partition d; is represented by a
feature vector x4, = (x1,...,xG) € RE of the data quality metrics
Q that are computed on every attribute A; of that partition and a
boolean label y4,, which denotes whether the quality of the batch
is acceptable or not. However, we only have access to positive ex-
amples during training (hence the term “one class” classification).
The classification task is to decide whether a future batch d; can
be considered of acceptable quality (i.e., represents an inlier) or
deviates from the state of data quality of the previously observed
data batches (i.e., represents an outlier). The main challenge is
to model the “acceptable” data in an automated manner, without
external specification of the domain or examples of “erroneous”
data that have insufficient data quality.

4 APPROACH

Next, we discuss our approach for automating data quality val-
idation of newly observed data batches based on the problem
definition we presented in the previous section.

Overview. Figure 1 illustrates our approach: for every observed
partition dy, . . ., d;—1, we model the features x4, via a set of de-
scriptive statistics computed from the partition . We train a
novelty detection model [38] on the resulting feature vectors that
learns the characteristics of “acceptable” data @. In order to check
anew data batch d;, we compute its feature vector x; via the cho-
sen descriptive statistics @. Next, we apply the novelty detection
model to label the new batch as acceptable or erroneous based
on the learned decision boundaries of the model @. With every
new data partition d;, we re-train the novelty detection model as
the training set grows with ¢. Our method can be integrated into

63

data pipelines to raise alerts about potential degradation of data
quality automatically. Note that our approach does not rely on
domain expertise expressed in the form of rules, constraints, or
labeled data. Still, it remains valid in cases where the task defini-
tion is relaxed (e.g., domain knowledge is partially available or
some error types are expected).

Data patrtition to validate

Al B A|B Al B) AlB
Computing
Computing X |42 | [v[33] |V |49 descriptive X' | 3.4
descriptive v |37 | |x 41| |'v|ae | statisticson 45
statistics O\‘Y’ 2o | [laal v 36 new
: : : partition
Feature Vector

9\'\(’ 12.

Labeling new
feature vector,

alarm if outlier
KNN
Novelty

Detection

Completeness(A)
ApproxCountDistinct(A)
Completeness(B)
ApproxCountDistinct(B)
Maximum(B)
Minimum(B)

Mean(B)
StandardDeviation(B)

Training novelty detection algorithm on feature vectors

Figure 1: Overview of the approach: for every observed
partition (gray tables), we compute a set of descriptive sta-
tistics as a feature vector (green, Step 1). We train a nov-
elty detection model that learns the characteristics of ac-
ceptable data (Step 2). For the upcoming data partition
(blue table), we compute its feature vector (Step 3) and let
the model decide whether it is similar to the previously
observed data partitions or not (Step 4). In this example,
a missing value in column “A” and a numerical outlier
in column “B” (red) affect the completeness metric and
numeric statistics of the feature vector x;. That, in turn,
raises an alert.

Descriptive statistics as features. For every attribute A; of
the partition d;, we compute several quantitative measures that
correspond to the underlying data quality metrics (see Section 2):

o Completeness - the ratio of not-NULL values;

o Approximate count of distinctive values - the hyperloglog [12]
approximation of the number of distinctive values;

o Ratio of the most frequent value - the count sketch [8] approxi-
mation of the number of occurrences for the most frequently
repeated value, normalized by the batch size;

o Maximum, mean, minimum, and standard deviation for numeric
data types;

o Index of peculiarity [33] for textual data. Index of peculiarity
is based on the bi- and trigram tables of a textual attribute
and reflects the likelihood of the hypothesis that trigrams in
a given word are produced from the same data source that
produced the trigram table. This index is originally applied for
detection of typographical errors and facilitates detection of
typos in text or a “peculiar” occurrence of symbols in words.

I(T) = %(bg n(xy) +logn(yz)) —logn(xyz) ey

Equation 1 represents the index of peculiarity for a trigram
T = (xyz), where n() denotes the number of occurrences
for a selected bi- or trigram in a textual attribute. Index of
peculiarity for a sentence is the root-mean-square aggregation
of indices for each trigram that this sentence contains.

Algorithm 1: Pseudocode of our approach.

Input: t, query raw data partition; k, the number of neighbors;
X, descriptive statistics for previously ingested data partitions;
contamination, the proportion of outliers in X;
dist, distance measure (e.g., Euclidean, Manhattan);
agg, distance aggregation strategy for k nearest data points.

Output: label, query data point t is inlier/outlier

Initialize array statistics; array distances;

-

2 list num_met of metrics for numeric data types;
3 list gen_met of metrics for other data types.
foreach attribute A € t do

metrics = num_met if type(A) is numeric else gen_met

[N

o

foreach metric € metrics do statistics.append(metric(A))

7 end

foreach x € X, tree = BallTree(X, dist) do

/* .getDist(x,k) returns distances to k nearest
neighbors of x; agg(array) is an aggregation

o

function such as mean, median, or max */
o distances.append(agg(tree.getDist(x,k))
10 end
/* percentile(x,q) computes g-th percentile of x */

1

oy

threshold = percentile(distances, (1 — contamination))

/* outlier if aggregated distance from t to k nearest
neighbors exceeds threshold, else inlier */

12 return agg(tree.getDist(statistics,k)) < threshold

We concatenate attribute-level statistics into a univariate nu-
meric vector. Depending on the number of attributes and their
data types, the feature vector varies in length from one dataset
to another, where the length remains constant for partitions of
the same dataset. We normalize the resulting feature vectors to
a scale of 0 to 1. We chose these statistics based on two criteria:
(a) low computational complexity and (b) mapping to the error
types that often occur in real-world scenarios [47]. For a partic-
ular error type that we investigate, we consider statistics that
act as proxies for this error type more descriptive than others
in detecting data quality degradation. By a proxy we mean a
quantitative measure that is expected to change when a partic-
ular error occurs (e.g., numeric outliers are likely to affect the
statistical distribution of the attribute [18]). There is no single
metric that is more descriptive than others for all the given error
types. Preliminary results show that specifying only the descrip-
tive statistics that we expect to be changed when an error occurs
increases performance of our approach. This happens because,
in low-dimensional feature spaces, data points are more distinct
and distance-based methods perform better. However, assuming
“zero domain knowledge” and unknown error types, we cannot
control the choice of descriptive statistics in practice and, thus,
train our approach on all statistics. As discussed in Section 2,
most of these statistics can be computed in a single scan over
the data. Furthermore, we treat the sequence of feature vectors
that we collect over time (i.e., tstgrs, - - -, £ — 1) as separate data
points in the training set. Note that this modeling decision does
not preserve the order of these feature vectors.

Choice of the novelty detection algorithm. Given the na-
ture of the challenge at hand, i.e., “zero domain knowledge” or
unknown error types, only positive examples are available for
training. We thus choose one-class classification algorithms (i.e.,
novelty detection, see Section 2) as the main candidates for our
approach. In this work, we considered several candidates for the
novelty detection (ND) algorithm: Angle-based Outlier Detector

64

(ABOD), Feature Bagging ensemble for the Local Outlier Factor
(FBLOF), Histogram-base Outlier Detection (HBOS), Isolation
Forest, and the K Nearest Neighbors algorithm with both the
maximum and the mean distance aggregation scheme (KNN and
Average KNN, respectively) [30, 31]. To choose one particular
ND algorithm for our approach, we conduct preliminary experi-
ments on one dataset (Amazon Review, monthly data partition)
and three types of errors (explicit and implicit missing values
on all attributes, numeric anomalies on the attribute “overall”)
with 30% of synthetically introduced errors per data batch, in
order to determine which algorithm yields better predictive per-
formance on the one-class classification task (for more details,
see Section 5). We deliberately chose one dataset and a subset
of error types under investigation to avoid overfitting and the
selection bias for the evaluation procedure. Table 1 depicts the
predictive performance metrics (ROC AUC score [22]) for all the
ND candidates, as well as the break-down of the false positive
and false negative results. We report the ROC AUC measure
as it takes into account both the type-I and type-II errors. Fur-
thermore, it is insensitive to imbalanced datasets and preferred
in practice to other performance metrics such as accuracy or
F1 score. In our preliminary experiments, we computed other
performance metrics alongside the ROC AUC score. We noticed
that, since our evaluation scenario introduces a balanced case
where a negative counterpart exists for every positive example,
accuracy, F1 and ROC AUC scores report similar values. Based
on the preliminary results, we chose the k-Nearest Neighbor al-
gorithm with the mean aggregation scheme [38]. This algorithm
consistently outperformed other ND candidates on all three error
types and produced no false positive results, meaning that no
erroneous data batches were labeled as “acceptable”. The second
best-performing candidate is the Angle-Based Outlier Detection
method [23] that yielded comparable predictive performance yet
took an order of magnitude longer to train the model and infer

the labels.

Nearest-neighbor-based novelty detection. For every data
point in the feature space, the k-Nearest Neighbor (kNN) algo-
rithm calculates the average distance to its k nearest neighbors
and learns a threshold to decide what data points to consider
inliers or outliers [2]. The kNN algorithm has a contamination
hyperparameter that defines a ratio of data points that are as-
sumed to be incorrectly labeled as inliers. Hence they are labeled
as outliers in the training data. This scheme internally trans-
lates the one-class classification problem into a standard binary
classification problem where the examples of both classes are
present. The algorithm utilizes the Ball tree[35] space partition-
ing data structure - a binary tree where each node represents
a multi-dimensional hypersphere (i.e., ball) of partitioned data
points. This data structure provides properties that are useful for
efficient k-nearest neighbor search. All data points in the training
set are represented with distances to their k nearest neighbors.
Depending on the design decision, these distances are aggregated
into a single numeric value with one of the available aggregation
strategies (e.g., mean, median, max). These numeric values are
used to learn a decision boundary to differentiate inliers and
outliers - a data point is considered an outlier if its aggregated
distance to k nearest neighbors exceeds the learned threshold.
The threshold is defined with the contamination hyperparameter
c that is translated into the (1 — c¢)th percentile of the array of
aggregated distance for the whole training set. Figure 1 provides
a pseudocode representation of the KNN algorithm.

Table 1: Results of the preliminary experiment on per-
formance evaluation for 7 novelty detection algorithms.
Three error types under investigation are explicit and im-
plicit missing values, and numeric anomalies, depicted as
“Explicit MV”, “Implicit MV”, and “Anomaly” respectively.
We measure predictive performance with the ROC AUC
score (AUC), as well as the number of true positive (TP),
false positive (FP), false negative (FN), and true negative
(TN) results, where FPs are associated with the misclassi-
fication rate and FNs - with the false alarm rate.

’ ND Algorithm H Error type \ AUC \ TP \ FP \ FN \ TN ‘
Explicit MV 9213 | 178 0 28 | 150

One-class SVM Implicit MV 9213 | 1781 0 28 | 150
Anomaly 9691 | 178 0 11 | 167

Explicit MV 9382 | 178 0 22 | 156

ABOD Implicit MV 9382 | 178| 0 22 | 156
Anomaly 9691 | 178| 0 11 | 167

Explicit MV 9353 | 178 0 23 | 155

FBLOF Implicit MV 9382 | 178| 0 22 | 156
Anomaly 9662 | 178 | 0 12 | 166

Explicit MV 5814 | 60 | 118 | 42 | 136

HBOS Implicit MV 5505 | 60 | 118 | 42 | 136
Anomaly 9297 | 176 2 23 | 155

Explicit MV 7331 | 27 | 151| 18 | 160

Isolation Forest Implicit MV .5280 | 27 | 151 17 | 161
Anomaly 8764 | 146 | 32 | 12 | 166

Explicit MV 9325 | 178 0 24 | 154

KNN Implicit MV 9325 | 178 0 24 | 154
Anomaly 9662 | 178 | 0 12 | 166

Explicit MV 9382 | 178 0 22 | 156

Average KNN Implicit MV 9382 | 178 0 22 | 156
Anomaly 9719 | 178| 0 10 | 168

Gu et al. [15] present an extensive statistical analysis of nearest
neighbor algorithms and report that recent work on this family
of methods reaches state-of-the-art performance on novelty de-
tection tasks. Based on the preliminary experiment, we confirm
that the kNN novelty detection method performs on par with
other approaches or outperformed them, both in terms of the
predictive performance and execution time.

Modeling decisions. Next, we discuss several modeling deci-
sions for our kNN-based approach. We choose the Euclidean
distance metric as the most commonly used distance measure
for the RC feature space, and leverage the average distance to
k neighbors as an aggregation strategy. Based on preliminary
experiments, this decision led to consistently higher predictive
performance compared to other settings. Alternative strategies
are choosing the largest distance among k neighbors or com-
puting the median. A systematic comparison of kNN algorithms
with different distance measures revealed that both the “largest”
and the “median” aggregation schemes happen to be less robust
than averaging in our setting.

We set the number of neighbors k to aggregate the distance
measure to a low factor of five. The variation of this parameter
did not lead to significant changes in the predictive performance
during the preliminary experiments. The kNN novelty detection
algorithm is also parameterized with the contamination param-
eter [19]. This parameter defines a fraction of data points in
the training set to be misclassified as “positive” examples and
assumed to be outliers (i.e., false positives). We set the contamina-
tion parameter to 1% to keep the ratio of false positives minimal.

65

Table 2: Characteristics of the datasets. The abbreviations
depict, in a direct order, the number of records in the
dataset, the number of partitions, the total number of at-
tributes, the average number of records in a data partition,
the number of numeric, categorical, and textual attributes.
We also report the real-world error types that two datasets
with the ground truth, Flights and FBPosts, contain.

Dataset Flights | FBPosts Amazon | Retail | Drug
records 147640 11157 1494070 541909 | 161297
part./attr. | 31/9 53/14 1665/9 305/8 3579/6
part. size ~2350 ~105 ~897 ~1776 | ~45
N/C/T 1/4/0 4/3/2 2/1/4 2/5/1 2/2/1
Dataset Flights FBPosts

explicit/implicit missing | wrong encoding, 16%
Errors, % values, 8-38%

incomplete datetime for- | syntactic errors and trans-

mat, 95% lation, 18%

other syntactic/semantic

errors, 60%

We aim to minimize the number of data points in the training set
that are considered to be falsely classified as “inliers”. We base
this decision on our assumption that all the data partitions are of
“acceptable” quality, and no misclassification occurs. Preliminary
experiments showed that setting the contamination parameter to
1% leads, on average, to relatively higher predictive performance
compared to other values (including 0). Note that automated
hyperparameter tuning schemes are challenging in the case of
one-class classification problems, as we do not have labels for
both of the classes - acceptable and erroneous data.

Application to our example scenario. Based on the running
example, imagine the engineering team to apply the proposed
approach as a data quality monitoring tool to validate incoming
data batches before running data preprocessing and indexing jobs.
When a new data batch is examined and no alerts are raised, data
pipelines work without any difference and run the downstream
preprocessing and indexing job. In case an alert is raised, the team
starts a debugging process and applies further error detection and
correction strategies. If the method caught the erroneous data
batch correctly, the team fixes it and released the quarantined
batch back to the pipeline. In the case of false alarms, the data
is returned without alterations. The critical point is when the
erroneous data batch passes data quality checks and goes further
to the downstream pipeline without the errors being fixed (i.e.,
false positives). In this case, system crashes and degradation in
the predictive performance of the underlying ML model might
occur.

5 EVALUATION

In this section, we introduce our experimental setup and discuss
datasets and metrics for our evaluation. We conduct several ex-
periments. First, we compare the predictive performance of our
approach to automated and hand-tuned variants of the follow-
ing state-of-the-art solutions: Tensorflow Data Validation [6],
Deequ [43], and statistical testing [32, 41]. Then, we evaluate the
sensitivity of our approach towards six types of errors (explicit
and implicit missing values, numeric anomalies, typos, swapped
fields on numeric and textual attributes) and the predictive per-
formance under various error magnitudes (1, 5, 10, 20, . . ., 80%)

in a controlled environment for datasets with synthetically gen-
erated errors. Finally, we evaluate the detection quality of our
approach over time, as (a) the size of the training set for the
novelty detection algorithm grows continuously, and (b) its data
characteristics change over time.

5.1 Experimental Setup

We evaluate our proposed approach as follows. We experiment
with a relational dataset that is partitioned by a chosen tempo-
ral attribute (e.g., a creation timestamp for every record). This
allows us to simulate our target scenario of the daily ingestion
of new data batches in a data pipeline. For every data point that
corresponds to a particular day t, we use the previously observed
partitions from timestamp 0 to ¢t — 1 as training data for our
approach. Then, we take both the partition d; and a corrupted
version dy as a counterpart, pass it to our model, and have it
predict whether the partition is of acceptable data quality or not.
Data partitions of acceptable quality are those that do not affect
KPIs and usually depend on the downstream ML task. However,
to decouple our experimental evaluation from the underlying
ML task, we consider partitions of acceptable data quality the
ones that do not contain any errors. We apply standard binary
classification metrics such as the area under the ROC curve (ROC
AUC score [22]) to evaluate how well the approach performs. We
also report confusion matrices to analyze misclassification and
false alarm rates.

Datasets. We experiment on five publicly available real-world
datasets from different application domains. For two of them,
we have access to both the erroneous and the cleaned versions
of the data [25]. The other three do not contain any errors, we
thus generate the errors synthetically [9, 14, 16]. For details, see
Table 2.

Datasets with ground-truth errors. The Flights! dataset [25] con-
tains flight status data that is aggregated from 38 different data
sources (the airline and the airport websites, third-party web re-
sources). Each record represents a particular flight on a particular
day and includes attributes such as the scheduled departure/ar-
rival, the actual departure/arrival, and the departure/arrival gates.
FBPosts? is a dataset of crawled Facebook posts for which we
have chronological information, as well as the erroneous and the
manually cleaned versions of the data (using OpenRefine [24]).
The dataset contains information about a sample of posts - their
title, content type, text, the week it was written, the domain
and the image URL, the number of likes, and the web page it
was crawled from. Missing values are the most common error
type for this dataset. Both datasets have an attribute that defines
the chronological order and enables splitting them into parti-
tions. Two variants of each dataset, the one with errors occurred
and the one where the errors are fixed, are provided. We utilize
these variants as partitions of acceptable data quality and their
corrupted counterparts for our evaluation scenario.

Datasets without ground-truth errors. Amazon Review [16] and
the Online Retail® [9] are two retail datasets. The Amazon
Review* dataset contains information about product reviews:
their ID, title, category, brand, sales ranking, and related products.
The Online Retail dataset contains historical transactional data
from a UK-based retailer. It includes the invoice number, customer

!http://lunadong.com/fusionDataSets. htm
Zhttps://github.com/sergred/automating-data-quality-validation-data
3http://archive.ics.uci.edu/ml/datasets/Online+Retail/
“4http://jmcauley.ucsd.edu/data/amazon/

66

ID, country, quantity, description, and the unit price of a product
being purchased. The third dataset contains information about
Drug Reviews® [14]. It includes the name of a drug, medical
conditions this drug has been designed for, ratings and reviews,
the review date, and the number of users who considered this
review useful. All three datasets have a mix of numeric and
categorical attributes. They also contain an attribute that defines
chronological order and enables partitioning, but we do not have
ground-truth errors available for them.

Synthetic error types. In order to experiment with the datasets
that do not provide ground truth, we inject six types of synthetic
errors. We choose these types of errors because (a) they are
commonly encountered in real-world use cases in industry and
mentioned by many practitioners [6, 18] and (b) the majority of
them is used as example error types in the research field of error
detection [1, 27, 28, 34, 47]. We briefly describe these error types
below.

o Explicit missing values - empty cells in the data as a result of
wrong data collection or integration (e.g., left outer join of two
tables) or, simply, an optional field in a web form that was
never filled by the end-user and, thus, assigned as NULL while
crawling. We remove a fraction of the values of an attribute,
replacing them with NULLs;

o Implicit missing values - empty cells in the data that are en-
coded with values of an attribute’s data type that semantically
represent a missing value, e.g., a string ‘NONE’ or a numeric
value out of the attribute’s domain. In practice, implicit missing
values are the result of missing value imputations mechanisms
that are implemented in a data pipeline. We replace a fraction
of the values of an attribute with ‘NONE’ values for textual
fields or encode it as 99999 for numeric fields.

e Numeric anomalies - unexpected numeric values as a result
of malfunctioning sensors, errors in scaling or type casting
(e.g., change of measurement units from centimeters to meters,
wrong parsing of csv files due to commas as decimal separators,
etc.). For continuous numeric attributes, we corrupt a fraction
of the values by replacing them with Gaussian noise that is
centered at the mean value of the attribute and has a standard
deviation that is scaled randomly from the interval of 2 to 5;

o Swapped numeric fields - misplacement of numeric values as

a result of user mistake or wrong parsing, such as swapping

the length and the width values of a retail product. We choose

two numeric fields in the dataset and swap a fraction of the
values from one attribute to another and vice versa;

Swapped textual fields - analogous to swapped numeric fields

on textual attributes, misplacement of textual values as a result

of user mistake or wrong parsing, such as swapping the first
name and the surname values of in a user registration form.

We choose two textual fields in the dataset and swap a fraction

of the values from one attribute to another and vice versa;

e Typos - unexpected spelling in textual attributes either due
to user mistakes or errors in parsing (e.g., wrong encoding).
We apply the “butterfinger” strategy that randomly replaces a
fraction of letters in textual attributes with other letters that
are neighbors on a “qwerty” keyboard layout.

Given the error types and descriptive statistics under investiga-
tion, sampling strategy does not have major effects on predictive
performance of our approach in most cases. For instance, explicit

Shttps://archive.ics.uci.edu/ml/datasets/Drug+Review+Dataset+%28Druglib.com%
29

Baseline Comparison

o 1.0 =3 average KNN
S) Bl Deequ Hand-Tuned
5 o8 BB Deequ Auto
2 ZZ TFDV Hand-Tuned
806 [TFDV Auto
o«) ,_,l_l_ =l A B STATS

Flights FBPosts Flights FBPosts Flights FBPosts

Last Partition 3 Last Partitions All Partitions

Figure 2: Comparison of the predictive performance of the proposed approach against three baseline solutions: Tensorflow
Data Validation, Deequ, and statistical testing. The subplots represent three different training settings where the baselines
learn from (a) only one recently observed data partition, (b) a combination of the last three data partitions, and (c) all the
observed partitions. The TFDV and Deequ baselines are evaluated in their fully automated variant and a hand-tuned
variant applying domain expertise. The bar chart shows that our approach outperforms the other automated baseline
solutions and reaches the predictive performance of the hand-tuned baselines. The automated variants of the baselines
tend to be conservative and produce false alarms in the majority of cases.

missing values would change the completeness measure, no mat-
ter wherein the data partition this error occurs. We use uniform
distribution for error generation in the evaluation setup.

Hardware specification. We use an Ubuntu workstation with
8 Intel 17-8550U CPU cores (1.80GHz) and 24Gb RAM. We run
all the algorithms with a single process and thread, with an
exception of one baseline solution - Deequ library - that is built
on top of Spark and runs at scale.

5.2 Comparison to Baselines

In our first experiment, we compare the predictive performance
of our proposed approach (“avg. KNN” in Figure 2) to the existing
baseline solutions: Tensorflow Data Validation [6], Deequ [43],
and statistical testing [32, 41]. The purpose of this experiment
is to evaluate whether our automated approach can reach the
performance of hand-tuned state-of-the-art solutions.

Baselines. We compare the proposed approach against several
existing solutions. As the first baseline, we use univariate statis-
tical tests to detect shifts in data distribution between the pre-
viously observed data partitions and the current batch as an
indicator of errors. We use two tests - the Kolmogorov-Smirnov
test to detect shifts in continuous numeric attributes [32], and
the Pearson’s Chi-squared test to detect shifts in frequency dis-
tribution for categorical values [41]. For every attribute of a data
partition, we run one statistical test that gives a p-value as a
measure of whether the data values in the current batch come
from different data distribution than the values in previously ob-
served data partitions. We choose a test based on the attribute’s
data type (numerical or textual data) and compare the outcome
to a common threshold of 0.05. Note that we apply Bonferroni
correction to account for multiple tests.

We also use the Tensorflow Data Validation library [6] (TFDV)
to detect data schema violations as an indicator of erroneous par-
titions. TFDV uses data profiling techniques to model the state
of acceptable data quality by inferring their schema - attribute
names, data domains, various constraints (e.g., on data distribu-
tion, uniqueness, sparsity, etc.). Then, it tests new data against
inferred constraints and raises alerts upon schema violation as a
signal for potential degradation of data quality. Domain experts
use automated schema inference to facilitate data profiling and
analysis but they have to hand-tune the schema to keep it up-
to-date. In addition to the automated version of TFDV, we apply
a hand-tuned version where we define its data schema based
on data profiling and manual monitoring of data batches. This

67

setting aims to compare our approach to a baseline solution that
exploits domain expertise.

Lastly, we include the Amazon Deequ library [42] and utilize its
declarative data quality constraints to validate the data. Similar
to the TFDV baseline, we evaluate Deequ in both an automated
variant and a hand-tuned variant. In the former, Deequ runs data
profiling and constraint suggestion algorithms to generate data
unit tests to validate the quality of data partitions. In the latter,
we utilize a hand-tuned variant where we manually define the
checks to apply based on data profiling and inspection.

Evaluation scenario. For a relational dataset d comprised of
chronologically ordered partitions dy,, . .., d;, and timestamps
14, ..., In, we sequentially pick a timestamp ¢ within the interval
start < k < n, where start is a predefined timestamp number to
start with and n is the number of available partitions. We select
start as 8 in order to limit the minimum size of the training set to
8 data points. We show the partitions ds;ars, . . ., dy_, as training
data to each approach.

For the datasets with the ground truth, we leverage the hand-
labeled “dirty” versions citl, e dAt,, of these partitions for the
evaluation. We give both the clean data partition d; and its cor-
rupted counterpart d; to each approach, and let it decide whether
the data batch is of acceptable quality or contains errors. In this
experiment, we use only the datasets with available ground truth
to compare the predictive performance in real-world cases with
unspecified error types, error magnitudes, and real-world tempo-
ral changes in data characteristics.

For each approach, we record two predictions at each times-
tamp f in the interval start <t < n - one label for the partition
d; and for the erroneous counterpart dy respectively. We compute
the ROC AUC score based on the recorded prediction labels and
the ground truth, where d; has the “inlier” label, and oit has the
“outlier” label. We evaluate the automated baseline solutions in
three different settings, where the automated inference is based
on (a) the last, (b) three last, and (c) all previously observed parti-
tions with no further alteration of the derived rules, constraints,
or patterns, to ensure systematic comparison of our approach
in a fully automated mode. With the first two settings (one and
three data partitions), we evaluate whether using only the most
recent data is sufficient for the automated baseline solutions to
learn the state of “acceptable” data quality accurately and fast.
In contrast, the third setting is applied in order to evaluate the
predictive performance of baselines that take the whole training
set into account and include “far-in-the-past” data partitions.

For the given experimental scenario and datasets, we spent
approximately two hours per dataset for data profiling, manual
inspection, and configuration of Deequ and TFDV via program-
ming interfaces. For Deequ, we implemented declarative unit
tests for data. For TFDV, we adjusted thresholds to allow for
particular fractions of previously unseen data and specified data
ranges. We must point out, however, that hand-tuning involved
analysis of the ground-truth clean data. In this way, we simu-
lated a “domain expert” who knows what errors are expected
in the data. In real-world use cases that assume “zero domain
knowledge”, the analysis we conducted might be infeasible.

Results. Figure 2 depicts the comparison of the predictive perfor-
mance of our approach (“Average KNN”, green) against the three
baseline solutions: Tensorflow Data Validation (yellow), Deequ
(blue), and statistical testing (red). The bar charts report predic-
tive performance on the Flights and the FBPosts datasets under
three different training settings. The baselines learn from (a) only
one recently observed data partition (“Last Partition”, left), (b) a
combination of the last three data partitions (“3 Last Partitions”,
center), and (c) all the observed partitions (“All Partitions”, right).
Tensorflow Data Validation and Deequ baselines are evaluated in
both the fully automated mode and in their hand-tuned variant.

The results indicate that our approach outperforms other auto-
mated baseline solutions and reaches the predictive performance
of hand-tuned baselines (ROC AUC score of 95%, whereas the
hand-tuned Deequ solution reaches 100% and 92% on the Flights
and FBPosts datasets, respectively). Other automated solutions
tend to produce false alarms in the majority of cases. We attribute
this to the fact that the automated baseline solutions are “con-
servative” and strict in terms of their chosen constraints, and
thereby produce false alarms in the majority of cases.

Table 3 depicts average execution times for both our approach
and the baselines. It shows that, on average, our approach is at
least one order of magnitude faster than the baseline solutions.
High computational efficiency is associated with the fact that
both the descriptive statistics and the KNN algorithm are easy
to compute and train. Since the Deequ library is built on top
of Spark, this baseline takes more time to check data quality
metrics for small datasets due to the large overhead for parallel
computation. However, we assume that Deequ might be more
efficient on large-scale data, where other baseline solutions would
perform reasonably slower.

Discussion. The errors in the dataset are mostly missing values
or inconsistencies due to data integration (e.g., different datetime
formats for different records). To be precise, 95% of the arrival
and departure time information have an inconsistent date-time
format, with a large fraction of the data missing. Inconsistencies
in the datetime format lead to two problems - either the year
is omitted, in which case several data preprocessing techniques
replace the missing value with the default year 1970, or the day
and month values are swapped as the solution has no means
of distinguishing these values. 63% of the arrival and departure
gates information is inconsistent in the following ways: (1) pres-
ence of explicit and implicit missing values; (2) the missing value
encoding differs (e.g., -, ‘=", ‘Not provided by airline’); or (3) the
information is semantically incomplete (e.g., the ‘Gate 2’ value
is replaced with the value “Terminal 8, Gate 2’, etc.). Since the
cleaned version of the dataset was provided semi-automatically,
most of the records which contained missing values were im-
puted where possible (e.g., by aggregation) or omitted as there

68

Table 3: Average execution time (in seconds) for base-
line comparison. We compare our approach (Avg. KNN)
against three baselines (Deequ, Tensorflow Data Valida-
tion, and statistical testing), each of them computed in
three modes, where (a) one last, (b) three last, and (c) all
previously observed partitions are used for training. The
table shows that the average execution time of our ap-
proach is one order of magnitude faster than the baselines.

Candidate ‘ Mode ‘ Flights Data | FBPosts Data | AmazonData
Avg. KNN | - 0.042 +-0.001 | 0.006 +-0.001 | 0.215 +- 0.087
1Last | 0.322+-0.018 | 0.313 +-0.020 | 0.782 +-0.358
Deequ 3 Last | 0.381+-0.026 | 0.329 +-0.022 | 1.560 +- 0.800
All 1.115 +- 0.382 | 0.468 +-0.084 | 6.937 +-5.427
1 Last | 0.141+-0.043 | 0.036 +-0.008 | 6.679 +-3.380
TFDV 3 Last | 0.295+-0.060 | 0.058 +-0.014 | 7.479 +-3.753
All 1.388 +-0.702 | 0.126 +-0.060 | 14.40 +-9.940
1 Last | 0.189 +-0.025 | 0.160 +- 0.035 | 11.30 +- 3.575
STATS 3 Last | 0.194+-0.067 | 0.189 +-0.061 | 20.20 +-6.613
All 0.204 +-0.069 | 0.379 +-0.439 | 105.6 +- 30.80

Table 4: Confusion matrices for the baseline comparison.
Analogous to Table 3, we compare our approach against
three baselines in three different modes. We evaluate
TFDV and Deequ baselines in their fully automated vari-
ant and a hand-tuned variant applying domain expertise.

Flights Data FBPosts Data
Candidate | Mode [TP [FP [FN[IN|[TP [FP [FN | IN
Avg. KNN - 30 | O 1 29 [52 |0 5 47
1 Last 30 [O 30 [O 50 | 2 51 1
Deequ 3Last | 30 | O 28 | 2 52 |0 52 |0
All 30 [O 22 8 52 |0 52 |0
1 Last 30 [O 0 30 | 48 | 4 4 48
Deequ
3 Last 30 | O 0 30 | 48 | 4 4 48
Hand-Tuned
All 30 [O 0 30 | 48 | 4 4 48
1 Last 0 30 | 0 30 | O 52 |0 52
TFDV 3 Last 24 | 6 8 22 0 52 | 0 52
All 28 | 2 23 |7 0 52 |0 52
TFDV 1 iast 21 2 28 | 0 52 |0 52
Hand-Tuned 3 Last 0 30 [0 30 [O 52 |0 52
All 0 30 | 0 30 | 50 | 2 4 48
1 Last 0 30 | 0 30 | O 52 |0 52
STATS 3 Last 0 30 | 0 30 | O 52 |0 52
All 0 30 | 0 30 | O 52 |0 52

were no means to guarantee the correct missing value imputa-
tion scheme. 18% of the categorical attribute ‘contenttype’ have
implicit missing value ‘nan’ or syntactic mismatch in categories
(e.g., a combination of German and English words for ‘article’).
16% of the attribute ‘text’ have the wrong encoding.

Our approach performs well on the given datasets and reaches
aROC AUC score of 95%. Many of the baseline solutions, however,
perform on the level of random guessing. Further analysis reveals
that these baselines label the majority of the data partitions as
erroneous (See Table 4). The reason why the data partitions are
labeled as erroneous is due to the conservative default settings of
the baseline solutions, as they are primarily designed to strictly
detect data quality degradation and have false alarm rates as a
secondary concern. Further analysis indicates that TFDV pre-
sumably detects errors in attributes where we know for certain

—— explicit_misvals implicit_misvals ~ —— numeric_anomalies = —— swap_numeric = —— swap_string — typos
1.0 1 J
:
o
] }
g0.8- 4
= |
8}
O 0.6 1 4 4
4
00 01 02 03 04 05 06 07 0800 01 02 03 04 05 06 07 0800 01 02 03 04 05 06 07 08
amazon drug_review retail

Figure 3: Overview of the predictive performance of our approach on three real-world datasets with synthetically gener-
ated errors under varying error magnitude (X-axis, 1 to 80%). We consider six error types: explicit and implicit missing
values, numeric anomalies, typos in textual attributes, swapped fields for numeric and textual attributes. We observe two
patterns: (a) similar predictive performance regardless of the fraction of errors (flat lines), or (b) gradual growth of the
predictive performance towards bigger error magnitude, with the distinctive, more rapid growth for fractions up to 20%.

that there are no errors present. The ‘Source’ and the ‘Flight’
attributes of the Flights dataset do not contain errors. However,
TFDV detects a violation of data schema as there are previously
unseen values in the new batch, so the attribute domain has
changed. A similar situation holds for the FBPosts dataset, with
one additional type of alert - “non-boolean values” (as FBPosts
contains one boolean attribute).

As for the hand-tuned baselines, Deequ reaches a perfect ROC
AUC score on the Flights dataset and 92% on the FBPosts with
hand-tuned thresholds for the completeness metric. For TFDV,
the ROC AUC score ranges from 50 to 82%. The “min domain
mass” parameter (i.e., a minimal fraction of data records that
have to be included from the inferred data domain) was set to
0 in order to allow for any fraction of previously unseen values
in the data partition. Thresholds for the completeness metric
were set similarly to the Deequ baseline. This finding highlights
that manual data quality monitoring and hand-tuning of existing
solutions with the domain expertise is highly dataset-specific
and tedious.

Note that, for Tensorflow Data Validation in several settings,
the automated variants perform better than the hand-tuned vari-
ant. The reason is that the automated variants are retrained after
a new data partition becomes available, whereas the hand-tuned
variant is specified once on the initial training set (i.e., t1 to tszqrs)-

5.3 Sensitivity to Different Error Types and
Magnitudes

In this experiment, we evaluate whether our approach detects
all error types under varying error magnitudes with the similar
predictive performance or whether there are error types that are
harder to detect than others.

Evaluation scenario. For every dataset d with synthetically
generated ground truth, we fix the error type and the error mag-
nitude for generating corrupted data partitions dy. Other than
that, the evaluation scenario is identical to the one in Section 5.2.

Results. Figure 3 shows line charts that represent predictive
performance of our proposed approach per dataset and error
type, where the x-axes of the plot depict the error magnitude.
We are interested in the relationship between the predictive per-
formance of our approach and the fraction of errors that are
introduced in data partitions. Two distinctive patterns arise in
terms of the curve shapes: (a) flat lines represent similar predic-
tive performance regardless of the fraction of errors, whereas (b)
the curves with gradual growth towards more significant error
magnitudes mean that it is easier to detect degradation in data
quality with greater fractions of the data partition being affected.

69

The latter curves capture rapid increase for smaller fractions of 1
to 20%. The relative difference in predictive performance between
the error types varies among the datasets and error magnitudes.
Even though the Drug Review and the Online Retail datasets
show resemblance in terms of the ROC AUC score, the Amazon
dataset exhibits different patterns. For instance, the kNN novelty
detection approach shows constant predictive performance rate
on Amazon’s numeric anomalies but has a “learning curve” for
Drug Reviewor Online Retail.

Discussion. The figure shows that, in general, the predictive
performance differs from one error type to another. We attribute
this behavior to two findings from the experiment’s analysis.
First, some types of errors are, in fact, easier to recognize than
others. That statement holds for the use cases of manual data
quality monitoring that are conducted by domain experts. For
instance, an explicit missing value (e.g., a NULL value) is reason-
ably straightforward to detect even when few data records are
corrupted. Other error types, such as numeric anomalies, can
be detected only in cases where the ranges of acceptable values
are available, or the assumption on data distribution exist [18].
Comparing ROC AUC scores between the error types, error mag-
nitudes, and datasets indicates that predictive performance is
dataset-specific and likely depends on scales and domains of
every data attribute. In the majority of cases, however, missing
values and numeric anomalies can be detected relatively reliably
and result in high ROC AUC scores.

For every error type that we investigate, there are descriptive
statistics that provide better features for classification. For in-
stance, the completeness measure is more descriptive to detect
explicit missing values. Data distribution measures(e.g., mean,
standard deviation, minimum, maximum) are more descriptive
to detect numeric anomalies. However, there is no single metric
that is more descriptive than others for all given error types.

Note that our approach often performs reasonably well in
cases of small error magnitudes (already at 10%), when intro-
duced errors drastically affect the descriptive statistics of a data
partition. Should our approach be insensitive to a specific error
distribution (or particular error types), our approach can be ex-
tended by adding another descriptive statistic that is sensitive to
this error distribution or error type.

Based on Figure 3, typos (brown) appear to be the hardest error
type that we consider in this study. We assume that the index of
peculiarity for textual attributes is a direct proxy for this error.
However, predictive performance on the Drug Review dataset
nearly reaches the level of random guessing, whereas on other
datasets it exhibits a slow learning curve. Further experimental
analysis reveals several differences between textual attributes on

the datasets under investigation. Our approach performs well in
cases where attributes have categorical values with rather low
cardinality and high repetition of values (e.g., country code). It
also performs well on long texts such as reviews and descriptions
with high a likelihood of word repetition within the data batch.
In this case, a typo that is introduced in one word that repeats
itself in the data batch yields high chances for this error to be
detected by our approach, as this word becomes “peculiar” in
the context of the data batch. On the other hand, typos that are
introduced in almost-unique words that belong to a dictionary
of a textual attribute would not be detected as this error replaces
one unique word to another. For several curves that involved
textual attributes, there exists a downward trend at the begin-
ning when the training set is small. It happens due to our design
decision to keep a constant contamination parameter (see Sec-
tion 4, “Modeling Decisions”). In cases of small training sets, the
kNN algorithm learns a broad decision boundary that leads to
false positive results (i.e., where the majority of data points are
considered inliers). Only with the growing training set, the deci-
sion boundary becomes smaller and yields more accurate results.
One preventative measure is to ensure large initial training sets.
When this is not possible, another option is to adaptively select
larger contamination parameters for smaller training sets.

We obtain several findings regarding the relationship between
the predictive performance of our approach and error magni-
tude. In general, we note two patterns in the curve. The first case
is where the ROC AUC score remains approximately constant
across all error magnitudes and does not depend on the fraction
of corrupted records in a data partition. This happens in cases
where a few erroneous records in a data partition are sufficient
to affect descriptive statistics and reliably identify the data parti-
tion as erroneous. The second case is where the ROC AUC score
increases gradually with the growth of the error fraction. In this
case, the reason is that detecting data quality degradation be-
comes easier when more data in the partition are corrupted. One
example is the explicit missing values error type. Note that, for
this example, a clean partition d; might allow for missing values,
so that a simple rule of “100% completeness” is not applicable.
Thus, the higher the difference between the fraction of missing
values in between clean and erroneous data partitions, the higher
is the overall ROC AUC score. Note that the shape of the curve
and the rate of growth are dataset-specific.

5.4 Sensitivity to a Combination of Errors

We also extend the experiment from Section 5.3 to evaluate the
sensitivity of our approach to scenarios where a combination of
two different error types occurs in the same data partition.

Evaluation scenario. For every dataset d with synthetically
generated ground truth, we fix the error magnitude to 50% for
generating corrupted data partitions dy. We choose an attribute
Ap, of every data partition d; and apply a pair of error types
(if suitable for the attribute’s data type). We use all pairwise
combinations of error types under investigation. Other than that,
the evaluation scenario is identical to the one in Section 5.2. Note
that, as we sample the values-to-corrupt uniformly, there is an
overlap in selected cells of a data partition d; for the first and the
second error type of the pair (~ 40%). For the overlapping values,
the second error type overrides the changes made by the first
type, resulting in approximate distribution of corrupted values
to be 20% of the data partition and 30% respectively. In the case
when the union of changes provided by each error type exceeds

70

50% of the data partition, we uniformly sample changes from
the union to ensure total error magnitude of 50%. We compare
the predictive performance of our approach to the respective
performance when only one of the error types is applied.

Results. For every attribute of every dataset and every applied
pair of error types under investigation, we computed three ROC
AUC scores: the one where only the first error type is applied
to corrupt the data, the one where only the second error type is
applied, and one for a combination of applied error types. For
all computed scores, we report the mean squared error of 0.028
between the ROC AUC score on a combination of error types
and the maximum of ROC AUC scores where only one of the
two error types is applied.

Discussion. The results indicate that the predictive performance
of our approach in the case when two error types are combined
is, on average, close to the performance on a single error type,
the “easiest to detect” of the two, taking into account reduced
error magnitudes (i.e., when errors corrupt 20-30% of the data
partition separately, adding up to a total error magnitude of 50%).
We generalize this observation to a combination of more than
two error types that corrupt a data partition together.

5.5 Detection Quality over Time

In this experiment, we evaluate the detection quality of our
approach over time. The motivation behind this experiment is
twofold: (a) the size of the training set for the novelty detection
algorithm grows continuously, which might gradually improve
predictive performance, and (b) data characteristics are volatile
and can change over time, which might lead to the occasional
degradation of predictive performance.

Evaluation scenario. For every dataset d with synthetic errors,
we fix the error type for generating corrupted data partitions dy.
We compute two labels for every daily-ingested data partition,
one for the clean variant and one for the corrupted counterpart.
When we visualize ROC AUC scores over time, we aggregate
these labels on a monthly basis and plot line charts with months
as X-axes. Other than that, we leverage a setup that is identical
to previous experiments.

Results. Figure 4 depicts the line charts that represent changes
in the predictive performance of our approach over time, where
the x-axis is the monthly time window (for clarity reasons, it
is shown by year in the “Drug Review” graph). Two distinctive
patterns arise in terms of the curve shape: (a) flat lines repre-
sent approximately constant predictive performance, whereas
(b) curves with the gradual increase indicate improvements over
time and, respectively, with the growing size of the training set
(see Drug Review). The latter examples converge to a stable rate
and further resemble the behavior of approximately constant
predictive performance.

Discussion. The results indicate how the predictive performance
of our approach changes over time, with the corresponding
growth of the training set for the novelty detection algorithm to
learn from. Similar to the previous section, we see two patterns.
First, in most of the cases, the average prediction performance
does not change significantly over time. This finding might be
counter-intuitive at first, as we usually assume that an ML-based
algorithm tends to perform better with more data points to train
from. The reason for the approximately constant ROC AUC score
is that data points that represent erroneous data partitions are
likely to be far from the decision boundaries learned by the kNN

—— explicit_misvals implicit_misvals =~ —— numeric_anomalies = —— swap_numeric —— swap_string — typos

o 1.01 1 1

o

&

0 0.8 | W |

<D(o

3 0.6] |

o

S S o S o 2,0, W0 Y O oY o> O P ok % o0, SV o o2 A0
20 ,Lg\} 100 ,LQ«J ,LQ'\:L ,LBQ ,LQC) ,prb‘ 2077707 0T 40 20 A0Y 40 20T o ’LB\’\/’L“\’\”L“\’\"L‘)\’\”LQO”LQX 100109 109109

amazon

drug_review

retail

Figure 4: Predictive performance of our approach over time (X-axis). The figure depicts line charts that represent the
ROC AUC score for every dataset with the ground truth, per error type over time. Various magnitudes of errors and data
attributes are aggregated. The results show that, in the majority of cases, the predictive performance does not improve
significantly over time with the growth of the size of the training set. Several cases (Retail, swapped fields and numerical
outliers) demonstrate an initial increase of the ROC AUC score, followed by convergence to a stable rate over time. Note
that, for the Amazon dataset, line charts that depict missing values, numeric anomalies, and swapped fields error types

overlap and are represented by one line (red).

algorithm. These far-off data points (i.e., outliers) are likely to
be detected reliably even under the limited size of the training
set and, therefore, lead to the stable predictive performance of
the kNN novelty detection approach. The second pattern is a
gradual increase in the predictive performance in the beginning
until we converge to a stable performance rate. Examples are
explicit missing values and swapped textual fields for the Drug
Review dataset. We attribute this pattern to the insufficient size
of the training set to learn the decision boundaries that lead to
reliable predictions. We assume that the stage of gradual increase
in predictive performance corresponds to the “learning process”
of the approach to derive accurate decision boundaries with clear
benefits of accumulating more data points to the training set.
After convergence, re-training of the approach is necessary to
self-adapt to temporal changes in data.

The importance of batch frequency. Preliminary experiments
show that, when choosing between daily, weekly, and monthly
ingestion frequencies, daily ingestion of data led to relatively
higher predictive performance. We associate this phenomenon
with larger sizes of the training set.

6 RELATED WORK

We distinguish two lines of research that address related data
management issues at different angles - error detection for data
cleaning [1, 27, 36, 40, 47] and data quality validation [3, 20, 43].

Error detection for data cleaning. The goal of error detection
mechanisms is to find the exact data records and attributes that
contain errors. Abedjan et al. [1] consider four different cate-
gories of error detection solutions: (a) rule violation, (b) pattern
violation, (c) outlier detection, or (d) duplicate conflict resolution
based systems. Some of the algorithms require rules or patterns
to be specified by the end-user. Outlier detection based meth-
ods require clean data to be present in order to “learn” what the
inliers are and then decide whether particular records deviate
from the expected behavior. Our approach follows similar ideas
but constructs feature vectors based on the corresponding data
quality metrics that are computed over the data partition instead
of relying on the raw data itself. This leads to feature vectors of
low dimensionality, fast model training, and guarantees numeric
representation of feature vectors. The last category, duplicate
conflict resolution systems, handles the specific case of duplicate

71

entities in the data, and does not cover other types of errors. Com-
pared to the existing error detection algorithms, our approach
can detect unspecified error types and does not require domain
expertise in terms of rules, patterns, or labeled examples.

Data validation. These methods aim to make a decision whether
the data is valid w.r.t. particular assumptions. Tensorflow Data
Validation [6] models the state of acceptable data quality with
the user-defined data schema - attribute names, data domains,
various constraints (e.g., on data distribution, uniqueness, spar-
sity, etc.). It, then, tests new data against the specified constraints
and raises alerts upon schema violation. To assist the end-user,
initial data schema can be inferred automatically by analyzing
reference data (i.e., an “acceptable” data sample). As stated by
the authors, schema refinement by domain experts is required to
guarantee the performance of the library, and the schema infer-
ence functionality is provided as an aid, not a replacement of the
domain expert. Data linter [20], on the contrary, validates data
against data lints - deviations from accepted practices of data
analysis (analogous to code lints - snippets of code that depict
deviation from best practices in software engineering). The lints
are predefined by the developers of the tool yet are extensible
in case customized practices are in place. Another example is
the Deequ library for automating the verification of data quality
at scale [42], which proposes unit tests for data - a declarative
specification of integrity constraints, such as completeness, con-
sistency, syntactic and semantic accuracy, which the end-user
needs to specify. Schelter et al. [42] also introduce functional-
ity for automated constraint suggestion based on data profiles
(collected descriptive statistics on data attributes). However, this
method requires the presence of reference data - a sample of the
data population that is considered to be of acceptable quality
and is designed to generate suggestions that are validated by a
domain expert. The Metanome platform [36] is a tool for data
profiling that incorporates numerous algorithms for the detection
of functional, order, or inclusion dependencies, as well as cardi-
nality estimation. This method is not a data validation solution as
such, but allows to automatically discover patterns from data that
later could be used as rules for data quality. Metanome requires
“acceptable” data samples to be present for reliable mining of the
data quality patterns. As the main purpose of Metanome is data
profiling and not directly data quality validation, this framework
requires additional rules for detection of data quality issues and
cannot be used directly as a data quality validation tool [10].

To summarize, existing approaches require domain knowl-
edge to define rules, denial constraints, patterns, configuration
of error detection solutions [1, 27], integrity constraints, data
unit tests [42], error generators [39], data schema [6], or data
lints [20]. Automation tools exist for data profiling, constraint
suggestion, schema inference, or error detection. These solutions
assume a domain expert in the loop. Our approach, in contrast,
does not require any domain knowledge specified explicitly for
common error types. In contrast to existing solutions, it is in-
spired by the work of Bleifuf} et al. [4] on exploring changes in
dynamic data, Ehrlinger et al. [10] on automating data quality
validation, and Ioannou et al. [21] on generating benchmark data.
Finally, as our experimental analysis indicates, few automated
solutions for data quality validation appear to be particularly
“conservative” and produce false alarms in the majority of cases.

7 CONCLUSION & FUTURE WORK

Data quality validation is crucial for large-scale production pipelines.

Challenging cases are the ones where domain expertise is incom-
plete and data changes over time. We showed that collecting
simple descriptive statistics over the data and analyzing them
with novelty detection methods makes it possible to distinguish
critical errors in data. In contrast to existing solutions, our ap-
proach does not require domain experts to define rules or labeled
examples, and self-adapts to temporal changes in the data char-
acteristics. We evaluated our approach against existing baselines
on five real-world datasets with real and synthetically generated
errors. We found that our approach detects the unspecified er-
rors in many cases under varying error magnitudes, outperforms
other automated solutions in terms of predictive performance,
and reaches the ROC AUC score of baselines that are hand-tuned
with domain expertise.

In future work, we plan to investigate more exotic types of er-
rors and intend to look deeper into specific types of errors that are
hard to capture by common data quality metrics, e.g., errors that
are a deterministic function of the inputs (like accidentally chang-
ing the encoding). As there exist few real-world datasets that are
available for evaluation purposes in data quality validation on
dynamic data, we also intend to provide a set of benchmarking
datasets. These datasets should contain a wide range of error
types and patterns of temporal changes in data characteristics.
This will enable research on controlling the false alarm rates for
novelty detection algorithms in data quality validation settings.

Acknowledgements. This work was funded by the HEIBRiDS graduate school,
with the support of the German Ministry for Education and Research as BIFOLD,
BBDC 2 (011S18025A), BZML (011S18037A), the Software Campus Program (011517052),
and Ahold Delhaize. All content represents the opinion of the authors, which is not

necessarily shared or endorsed by their respective employers and/or sponsors.

REFERENCES

[1] Ziawasch Abedjan et al. 2016. Detecting Data Errors: Where Are We and
‘What Needs to Be Done?. In PVLDB, Vol. 9.

Fabrizio Angiulli and Clara Pizzuti. 2002. Fast outlier detection in high dimen-
sional spaces. In PKDD.

Dennis Baylor et al. 2017. TFX: A Tensorflow-based Production-scale Machine
Learning Platform. In KDD.

Tobias Bleifuf} et al. 2018. Exploring Change - A New Dimension of Data
Analytics. In PVLDB, Vol. 12.

Michael Brackett and Production Susan Earley. 2009. The DAMA Guide to
The Data Management Body of Knowledge (DAMA-DMBOK Guide). (2009).
Eric Breck, Marty Zinkevich, Neoklis Polyzotis, Steven Whang, and Sudip Roy.
2019. Data Validation for Machine Learning. SysML.

Varun Chandola, Arindam Banerjee, and Vipin Kumar. 2009. Anomaly detec-
tion: A survey. ACM computing surveys (CSUR) 41, 3 (2009).

72

[8] Moses Charikar, Kevin Chen, and Martin Farach-Colton. 2002. Finding fre-
quent items in data streams. In ICALP.

Dagqing Chen, Sai Laing Sain, and Kun Guo. 2012. Data mining for the online
retail industry: A case study of REM model-based customer segmentation
using data mining. (2012).

Lisa Ehrlinger and Wolfram W68. 2017. Automated data quality monitoring.
In ICIQ.

Martin J Eppler. 2006. Managing information quality: Increasing the value of
information in knowledge-intensive products and processes. Springer Science &
Business Media.

Philippe Flajolet, Eric Fusy, Olivier Gandouet, and Frédéric Meunier. 2007.
Hyperloglog: the analysis of a near-optimal cardinality estimation algorithm.
In AofA.

Hector Garcia-Molina. 2008. Database systems: the complete book. Pearson
Education India.

Felix Grifier, Surya Kallumadi, Hagen Malberg, and Sebastian Zaunseder. 2018.
Aspect-Based Sentiment Analysis of Drug Reviews Applying Cross-Domain
and Cross-Data Learning. In DH.

Xiaoyi Gu, Leman Akoglu, and Alessandro Rinaldo. 2019. Statistical Analysis
of Nearest Neighbor Methods for Anomaly Detection. In NeurIPS.

Ruining He and Julian McAuley. 2016. Ups and downs: Modeling the visual
evolution of fashion trends with one-class collaborative filtering. In WWW.
Alireza Heidari, Joshua McGrath, Thab Ilyas, and Theodoros Rekatsinas. 2019.
HoloDetect: Few-Shot Learning for Error Detection. In CoRR. arXiv:1904.02285
[18] Joseph M Hellerstein. 2008. Quantitative data cleaning for large databases.
UNECE.

Peter] Huber. 1992. Robust estimation of a location parameter. In Break-
throughs in statistics. Springer.

Nick Hynes, D Sculley, and Michael Terry. 2017. The data linter: Lightweight,
automated sanity checking for ml data sets. In NIPS MLSys Workshop.
Ekaterini Ioannou, Nataliya Rassadko, and Yannis Velegrakis. 2013. On gener-
ating benchmark data for entity matching. Journal on Data Semantics (2013).
[22] Jin Huang and C. X. Ling. 2005. Using AUC and accuracy in evaluating
learning algorithms. TKDE 17, 3 (2005).

Hans-Peter Kriegel, Matthias Schubert, and Arthur Zimek. 2008. Angle-based
outlier detection in high-dimensional data. In SIGKDD.

Tien Fabrianti Kusumasari et al. 2016. Data profiling for data quality improve-
ment with OpenRefine. In ICITSL

Xian Li, Xin Luna Dong, Kenneth Lyons, Weiyi Meng, and Divesh Srivastava.
2012. Truth finding on the deep web: Is the problem solved?. In PVLDB, Vol. 6.
Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. 2008. Isolation forest. In
ICDM.

Mohammad Mahdavi et al. 2019. Raha: A configuration-free error detection
system. In SIGMOD.

Mohammad Mahdavi and Ziawasch Abedjan. 2020. Baran: Effective Error
Correction via a Unified Context Representation and Transfer Learning. In
PVLDB, Vol. 13.

Zelda Mariet, Rachael Harding, Sam Madden, et al. 2016. Outlier detection in
heterogeneous datasets using automatic tuple expansion. (2016).

Markos Markou and Sameer Singh. 2003. Novelty detection: a review—part 1:
statistical approaches. Signal processing 83, 12 (2003).

Markos Markou and Sameer Singh. 2003. Novelty detection: a review—part 2:
neural network based approaches. Signal processing 83, 12 (2003).

Frank J Massey Jr. 1951. The Kolmogorov-Smirnov test for goodness of fit.
Journal of the American statistical Association 46, 253 (1951).

Robert Morris and Lorinda L Cherry. 1975. Computer detection of typograph-
ical errors. IEEE Transactions on Professional Communication 1 (1975).

Felix Neutatz, Mohammad Mahdavi, and Ziawasch Abedjan. 2019. ED2: A
Case for Active Learning in Error Detection. In CIKM.

Stephen M Omohundro. 1989. Five balltree construction algorithms. Interna-
tional Computer Science Institute Berkeley.

Thorsten Papenbrock, Tanja Bergmann, Moritz Finke, Jakob Zwiener, and
Felix Naumann. 2015. Data Profiling with Metanome. In PVLDB, Vol. 8.
Neoklis Polyzotis et al. 2017. Data Management Challenges in Production
Machine Learning. In SIGMOD.

Sridhar Ramaswamy, Rajeev Rastogi, and Kyuseok Shim. 2000. Efficient
algorithms for mining outliers from large data sets. In SIGMOD.

Sergey Redyuk et al. 2019. Learning to Validate the Predictions of Black Box
Machine Learning Models on Unseen Data. In HILDA.

Theodoros Rekatsinas, Xu Chu, Thab Ilyas, and Christopher Ré. 2017. Holo-
clean: Holistic data repairs with probabilistic inference. In PVLDB, Vol. 10.
Albert Satorra and Pete M Bentler. 1994. Corrections to test statistics and
standard errors in covariance structure analysis. (1994).

Sebastian Schelter et al. 2018. Automating Large-scale Data Quality Verifica-
tion. In PVLDB, Vol. 11.

Sebastian Schelter et al. 2019. Unit Testing Data with Deequ. In SIGMOD.
Bernhard Schélkopf et al. 2000. Support vector method for novelty detection.
In NeurIPS.

Michael Stonebraker and Ihab Ilyas. 2018. Data Integration: The Current
Status and the Way Forward. IEEE Data Eng. Bull. 41, 2 (2018).

David Martinus Johannes Tax. 2001. One-class classification: Concept learning
in the absence of counter-examples. Ph.D. Dissertation. TU Delft.

Larysa Visengeriyeva and Ziawasch Abedjan. 2018. Metadata-Driven Error
Detection. In SSDBM.

(9]

[10]

[11]

[12]

(13]

[14]

[15

[16]

[17]

[19]
[20]

[21]

[23]
[24]
[25]
[26]
[27]

[28]

(29]
[30]

[31

[32]
[33]
[34]
[35]

[36

(371
[38]
[39]
[40]

(41

[42]

[43
[44]

[45]
[46]

[47]

O

proceedings

Provenance-Based Algorithms for Rich Queries
over Graph Databases

Yann Ramusat
DI ENS, ENS, CNRS, PSL University
& Inria
Paris, France
yann.ramusat@ens.fr

ABSTRACT

In this paper, we investigate the efficient computation of the
provenance of rich queries over graph databases. We show that
semiring-based provenance annotations enrich the expressive-
ness of routing queries over graphs. Several algorithms have pre-
viously been proposed for provenance computation over graphs,
each yielding a trade-off between time complexity and gener-
ality. Here, we address the limitations of these algorithms and
propose a new one, partially bridging a complexity and expres-
siveness gap and adding to the algorithmic toolkit for solving this
problem. Importantly, we provide a comprehensive taxonomy
of semirings and corresponding algorithms, establishing which
practical approaches are needed in different cases. We implement
and comprehensively evaluate several practical applications of
the problem (e.g., shortest distances, top-k shortest distances,
Boolean or integer path features), each corresponding to a spe-
cific semiring and algorithm, that depends on the properties of
the semiring. On several real-world and synthetic graph datasets,
we show that the algorithms we propose exhibit large practical
benefits for processing rich graph queries.

1 INTRODUCTION

Graph databases [32] are part of the so-called NoSQL DBMS
ecosystem, in which the information is not organized by strictly
following the relational model. The structure of graph databases
is well-suited to representing some types of relationships within
the data, and their potential for distribution makes them ap-
pealing for applications requiring large-scale data storage and
massively parallel data processing. Natural example applications
of such database systems are social network analysis [13] or the
storage and querying of the Semantic Web [5].

Graph databases can be queried using several general-purpose
navigational query languages, an abstraction of which is regu-
lar path queries (RPQs) [6] (or generalizations thereof, such as
C2RPQs) on paths in the graph. Recently, based on existing solu-
tions to querying property graphs — such as Neo4j’s Cypher [17]
query language or Oracle’s PGQL [38] — an upcoming interna-
tional standard language for property graph querying, GQL [22],
is being designed as a standalone language complementing SQL.
GQL will notably incorporate support for RPQs.

In parallel with these recent developments, the notion of
provenance of a query result [34], a familiar notion in relational
databases, has recently been adapted to the context of graph
databases [31], using the framework of provenance semirings [18].
In this framework, edges of a graph are annotated, in addition to
usual properties, with elements of a semiring; when evaluating

© 2021 Copyright held by the owner/author(s). Published in Proceedings of the
24th International Conference on Extending Database Technology (EDBT), March
23-26, 2021, ISBN 978-3-89318-084-4 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Series ISSN: 2367-2005

Silviu Maniu
Université Paris-Saclay, LRI, CNRS
Gif-sur-Yvette, France

silviu.maniu@lri.fr

73

Pierre Senellart
DI ENS, ENS, CNRS, PSL University
& Inria & IUF
Paris, France
pierre@senellart.com

h < 2.10, charging station

O

h <210

Figure 1: Example road network represented by a graph
with provenance annotations along two dimensions: max-
imum height A (as a positive number) a vehicle must have
to use the road segment, and a Boolean indicating the pres-
ence of an electrical charging station. When a dimension
is not mentioned, the annotations are assumed to be, re-
spectively, h < co and —(charging station).

a query, traversing the paths on the graph can generate new
annotations depending on the semiring operators, resulting in
a semiring value associated with every query result, called the
provenance of the query result. By choosing different semirings,
different information on the query result can be computed. For
example, when edges are annotated with elements of the tropical
semiring (nonnegative real numbers) expressing the distance be-
tween vertices, the provenance of the query result computes the
shortest distance of paths that produce this result; when edges
are annotated with elements of the counting semiring (natural
integers) interpreted as multiplicity, the provenance of the query
result computes the (possibly infinite in case of cycles) number
of ways each query result can be obtained. Underlying properties
of the semiring directly control how the information on graph
edges is encoded, and also how efficient algorithms for query
processing are.

Beyond these simple examples of semirings, the framework of
semiring provenance also allows modeling of intricate issues, e.g.,
when the problem of interest can be decomposed into several sub-
problems and when the resulting provenance does not necessarily
correspond to a particular path in the graph.

Example 1.1. Consider the example of a road transportation
network modeled as a directed graph with provenance anno-
tations on edges. We can for example encode the presence of
points of interests (such as gas stations, restaurants, or electrical
charging stations) as Boolean features on edges, and road prop-
erties (e.g., maximal height or weight for a bridge or tunnel) as
real-valued features.

We will show that, using semiring provenance, we can deal
with graph queries that take into account multiple such features:
a pair of vertices is valid for the queries if there exists at least
one valid path for each restriction between the two locations.
An application of this would be to ensure that different vehicle
categories (say, a high-clearance truck and an electric car that
requires charging on the way) can properly reach a common
destination from the same origin.

10.5441/002/edbt.2021.08

https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2021.08

Another possible semantics for semiring provenance is to
check that all paths between two vertices verify (or exclude) some
properties (e.g., absence of tolls, or presence of gas stations on
the route) thus providing road administrators crucial information
on the global state of the roads between two points.

This is illustrated in Figure 1, a road network where some road
segments have restrictions on the height on vehicles; this is a
first dimension of provenance. The second dimension records
whether there exists an electrical charging station on the road
segment — in our example, this is the case for only one edge.

In our previous preliminary research [31], we generalized
three existing algorithms from a broad range of the computer
science literature to compute the provenance of regular path
queries over graph databases, in the framework of provenance
semirings. Together, these three generalizations cover a large
class of semirings used for provenance, each yielding a trade-
off between time complexity and generality. We also performed
experiments suggesting these approaches are complementary
and practical for various kinds of provenance indications, even
on a relatively large transport network.

In this paper, we extend this work by:

e Introducing a novel algorithm, MULTIDIJKSTRA, for com-
mutative 0-closed (or absorptive) semirings. This algorithm,
generalizing Dijkstra’s algorithm and leveraging prop-
erties of distributive lattices, partially bridges a strong
computational gap between two classes of semirings left
untreated in our previous research. The complexity of the
queries exemplified here belongs in this gap, and strongly
motivated our interest to develop the algorithms in this pa-
per. The experiments we performed demonstrate that our
new algorithm can scale up to very large networks with
dozens of millions of nodes, bringing a notable improve-
ment with respect to the state of the art of provenance
computation in graph databases.

e Establishing a precise summary, in the form of a taxonomy,
of the algorithms used in our context, along with their
complexities and expected properties of the underlying
semirings used for the provenance annotations. We also
analyze similarities with classes of semirings which are
used either for computing provenance of relational algebra
queries [19] or of Datalog programs [11].

e Performing a comprehensive set of experiments on real-
world data demonstrating the running time of provenance
computation over graphs, over a wide variety of semirings
and covering different use cases. We also observe that pa-
rameters depending on the topology of the graph, such as
treewidth [27] seem to have a higher impact on the effi-
ciency of the algorithm than distance-based parameters
such as the highway dimension [4]. The implementation of
all algorithms we use for these experiments is freely avail-
able at https://bitbucket.org/smaniu/graph-provenance/
src/master/.

The paper is organized as follows. We start by introducing
in Section 2 some preliminaries: graph databases enhanced by
provenance annotations, a short overview of the algebraic theory
of semirings, and an explanation on which semiring can be used
for provenance annotations in a few selected practical applica-
tions. We revisit in Section 3 the algorithms we proposed in [31]
and discuss their limitations. Section 4 is a taxonomy summa-
rizing classes of semirings and associated algorithms for graph
provenance. In Section 5, we introduce MULTIDIJKSTRA and the

74

mathematical theory behind distributive lattices, which MurTI-
D1jKSTRA relies on. We present experimental results comparing
all algorithms in practice in Section 6 before discussing related
work in Section 7.

2 PRELIMINARIES

The framework we are considering is that of graph databases
enriched with semiring-based provenance annotations. We detail
here the notation and definitions we previously introduced in [31]
and extend it with some additional concepts. We also introduce
a large number of example semirings, to illustrate the generality
of the problem considered.

2.1 Semirings

The framework for provenance in relational databases introduced
by [18] uses the algebraic structure of semirings to encode meta-
information about tuples and query results. In what follows,
we present the basic notions needed for this paper; for further
details about the theory and applications of semirings, see [20]
and [18, 34] for their applications to provenance.

Definition 2.1 (Semiring). A semiring is an algebraic structure
(K, ®, ®,0, 1) where K is some set, ® and ® are binary operators
over [, and 0 and 1 are elements of K, satisfying the following
axioms:

e (K, &,0) is a commutative monoid: (a®b)®c = a® (bdc),
adb=bda,ad0=0®a=a;

o (K,®,1)isa monoid: (a®b)®c=a® (b®c),1®a=
a®1=a;

o @ distributes over ®:a® (b®c) = (a®b) ® (a®c);

e 0 is annihilator for ®: 0 ®a=a®0=0.

Example 2.2. 1t is easy to check that the following structures
are all semirings:
Tropical semiring. (R* U {co}, min, +, 0, 0).
Top-k semiring. For k > 1 some integer,

((R* U {co})k, mink, +¥, (o0, ...,), (0, 00, . . ., 0)),
where

mink((al, ey ak), (b], ey bk)) = mink{al, cees Qs b], ey bk}

returns the k smallest entries (with duplicates) among
those in a and b, in increasing order, and

(ar,...,a5) +K (b1,....bx) =min*{a; +b; | 1 <i,j < k}.

We further impose that only tuples that are in increasing
order are valid elements of the semiring. Note that the
top-1 semiring is the same as the tropical semiring.
Example:Fork = 2, (1,2)®(1,3) = min®{1,1,2,3} = (1,1)
and (1,2) ® (1,3) = min®{1+1,1+3,2+ 1,2+ 3} = (2,3).
Counting semiring. (N U {co}, +,X,0,1), where

Va € N*

a+00=agXxXo0=00Xag=0o

and 0 + 00 = 00, but 0 X 0o = 00 X 0 = 0.
Boolean semiring. ({1, T}, V,A, L, T), where L (resp, T)
is interpreted as the Boolean false (resp., true) value.
k-feature semiring. For k > 1 some integer,

((R+)k, min, max, (0, 00,), (0,0, 0))

where min and max are applied pointwise; it also exists
in dual form, with min and max exchanged.

Integer polynomial semiring. (N[X],+, X,0,1) where X
is a finite set of variables, and +, X, 0, 1 have their standard
interpretations as polynomial operators and polynomial
values.

Shortest-path semiring.

((RT U {o0}) X 2", @, 8, (o0, ¢), (0,¢))

with the following operators @ and ®:

e (d,m) ® (d',n’) = (min(d,d"), n’") where 7'’ is & if
d<d,n"ifd > d’, and min(rx, n’) (in lexicographic
order, assuming some order on) if d = d’;

e (dm)®(d,n’) = (d+d’, m-n) if neither d nor d’ is oo;
and (d, 7) ® (d’, ’) = (0, ¢) if either d or d’ is co.

As we shall see further, these examples all yield useful appli-
cations for provenance over graphs.

We now consider properties of semirings that will be of interest
to develop specific algorithms — we will illustrate these properties
on the example semirings of Example 2.2. Some of the properties
are summarized in Figure 2; ignore annotations for algorithms
in blue for now.

A semiring is commutative if for all a,b €e K, a® b = b ® a.
A semiring is idempotent if for alla € K, a® a = a.In an
idempotent semiring we can introduce a natural order defined by
a C b iff it exists ¢ € K such that a ® ¢ = b.! Note that this order
is compatible with the two binary operations of the semiring: for
alla,b,ce K,aC bimpliesa®cCbdcanda®cC b®c. An
important property that we wish to use in our setting is that of
k-closedness [29], i.e., a semiring is k-closed if:

k+1 k

Va € K, @ai = EBai.
i=0 i=0

Here, by a’ we denote the repeated application of the ® operation

i times, ie,al =a®a®--- ® a. 0-closed semirings (i.e., those
R ——

in which Va € K, 1 & al: 1) have also been called absorptive,

bounded, or simple depending on the literature. Note that any

0-closed semiring is idempotent (indeed, a®a=a® (1® 1) =

a ® 1 = a) and therefore admits a natural order.

Example 2.3. All semirings in Example 2.2 are commutative
except for the shortest-path semiring (indeed, concatenation is
not a commutative operation).

All of them are idempotent, except for the top-k, counting,
and integer polynomial semirings.

The natural order of the tropical semiring is the total order >
(note that this is the reverse of the standard order on R* U {co}).

The tropical, Boolean, k-feature, and shortest-path semirings
are 0-closed. The top-k semiring is (k — 1)-closed. The counting
and integer polynomial semirings are not k-closed for any k.

Star semirings [14], also known as closed semirings, extend
semirings with a unary * operator, having the following property:
a" =16 (a®a*) =16 (a* ®a). Note that, in 0-closed semirings,
we necessarily have a* = 1. Similarly, in k-closed semirings, we
can define a* = @éc:o a.

Example 2.4. As just mentioned, since the tropical, Boolean,
k-feature, and shortest-path semirings are all 0-closed, we can
simply define in all of them a* = 1. Since the top-k semiring is

(k — 1)-closed, we can define a* with the formula a* = @f:o a.

!In general semirings, this defines a preorder; antisymmetry of this relation can be
shown when the semiring is idempotent.

75

In the counting semiring we can introduce a star operator
with: 0" = 1 and a* = co for a # 0.

It is not possible to simply add a star operator to the integer
polynomial semiring (indeed, if the equation x* = 1+ (xxx™) had
a solution x* as a polynomial in x, its degree would be different
on the left- and right-hand sides of the equation). However, one
can define a more general semiring, that of formal power series, in
which a star operator can be defined. See [18] for details on the
semiring of formal power series, which are not important here.

We will later use the fact that a 0-closed semiring which is
also multiplicatively idempotent (i.e., in which a ® a = a for every
a) turns out to satisfy the axioms of bounded distributive lattices
[8, Theorem 10].

Example 2.5. The only 0-closed semirings that are multiplica-
tively idempotent from Example 2.2 are the Boolean and k-feature
semirings.

2.2 Graph databases with provenance

We now introduce the notion of provenance in graph databases.

Definition 2.6 (Graph Database). A graph database with prove-
nance indication (V, E, A, w) over some semiring (K, ®,®,0, 1) is
an edge-labeled directed graph (V, E, 1) together with a weight
functionw : E — K.

Given an edge e = (u,v) € E, we denote n[e] = u its destina-
tion (or next) vertex, and p[e] = v its origin (or previous vertex).
By analogy we write its weight w[e] instead of w(e). Given a
vertex v € V, we denote by E[v] the set of edges having v as
origin.

A path 7w = ejey - - - ¢ in G is an element of E* with consecu-
tive edges: n[e;] = pleit1] fori =1,...,k — 1. We extend n and p
to paths by setting p[x] = plei1], and n[x] = n[ex]. A cycle
is a path starting and ending at the same vertex: n[c] = p[c].
The weight function w can also be extended to paths by defining
the weight of a path as the result of the ®-multiplication of the

k
weights of its constituent edges: w[z] = (X) w[e;]; this can in

i=1
fact be extended to any finite set of paths by w[{my,...,m,}] =
@?:1 w7;]. For any two vertices x and y of a graph G, we denote
by Pxy(G) the set of paths from x to y.

Definition 2.7 (Path Provenance). Let G be a graph database
with provenance indication over some semiring K. The prove-
nance between x and y, for x and y two vertices of G is defined
as the (possibly infinite) sum:

provi (G)(x,y) == w [ny(G)] = wlrx].
7€Pxy (G)

Several problems can be defined based on this. Given two
vertices s and ¢, the single-pair provenance problem computes
the provenance between s and t. Given a vertex s, the single-
source provenance problem computes the provenance between
s and each vertex of the graph. Finally, the all-pairs provenance
problem computes the provenance for all pairs of vertices.

A regular path query (RPQ) [6] defines a set of admissible paths
from some vertex s through a regular language over edge labels.
The notion of single-source provenance can be generalized to that
of RPQ provenance in a straightforward manner, as we did in [31].
We also showed in [31] that computing such a provenance could
be reduced in polynomial time to the single-source provenance
problem; this works by constructing a product of the graph with

the automaton describing the language of the query. Note that
this construction can be done on-the-fly (avoiding generation of
inaccessible vertices) and that the size of the automaton is usually
quite small; thus, the overhead is usually affordable oven for large
graphs as showed experimentally in [31]. We will implicitly use
this reduction throughout the paper, meaning that we only need
to consider the single-source provenance problem in the rest of
the paper. Consequently, we will also ignore edge labels and see
a graph database as defined by its vertices, edges, and semiring
weights.

2.3 Semantics of path provenance

As defined, the provenance between two vertices in a graph data-
base is in fact a (possibly infinite) sum over the provenances of all
paths from the source vertex leading to the target vertex. As we
observed in [30], the only possible source of non-finiteness in the
sum is due to cycles in the graph, so that we only need to be able
to sum all the powers of a given semiring value. For this to be se-
mantically meaningful we need the semiring to be a star semiring,
and we additionally need the star operator to verify for all semir-
ing element a: a* = P, a” for some well-behaved infinitary
sum operation €P (namely, associativity, and distributivity of ®
over this infinitary sum operator). This class of semirings is com-
monly known as countably complete star semirings, c-complete
star semirings [24], or w-complete star semirings.

Example 2.8. All star semirings identified in Example 2.4 are,
indeed, c-complete star semirings. Note that, for k-closed semir-
ings, the infinitary sum @, a" is simply @ﬁ:o a", and the
condition of being a c-complete star semiring is trivially satisfied
by our choice of star operator. In the remaining cases (counting
semiring, formal power series, formal language semiring) one
can verify that a well-behaved infinitary sum operation can be
introduced, and that it verifies a* = @:;0 a.

We also pointed out in [30] that all-pairs graph provenance
is equivalent to the computation of the asteration of the matrix
corresponding to the graph representation with provenance tags
as cell-values. With all these definitions in place, we observe
that the semantics of provenance over specific semirings actually
corresponds to a various number of problems of interest. Remem-
ber that using the construction of [31] we can extend this to the
provenance of arbitrary RPQs.

Example 2.9. Let G be a graph database over some c-complete
star semiring K, and s and ¢ fixed source and target vertices in G.
The provenance between s and t corresponds to the following
notions, depending on the semiring K:

Tropical semiring: length of shortest path between s and t.

Top-k semiring: lengths of k shortest paths between s and t.

Counting semiring: total number of paths between s and ¢,
edge weights being interpreted as number of edges be-
tween two vertices.

Boolean semiring: existence of a path between s and ¢,
depending on the existence of edges denoted by their
Boolean weights.

k-feature semiring: minimum feature value along each di-
mension of all paths between s and ¢; if min and max are
exchanged, maximum feature value along some path from
stot.

Formal power series: how-provenance, see [18].

Shortest-path semiring: pair formed of alength [and path
label 7 such that x is the shortest path from s to ¢, of

76

length [(if there are multiple shortest paths, 7 is the first
in lexicographic order).

Example 2.10. Let us return to the example in Figure 1. We
model the charging station Boolean feature as an integer feature
by simply setting T = 1 and L = 0. We take the (max, min) defi-
nition of the k-feature semiring where we compute the maximum
value of each feature among some path from origin to destination,
and we order heights in decreasing order (e.g., by taking their
inverse) so that a higher feature value means a (more restrictive)
lower height.

Consider two types of vehicles of interest that want to reach
the vertex t from the vertex s: one has height between 3 and 4
meters, the second is a small (h < 1.5) electric car that needs
at least one charging station on the road to t. In the presence
of the edge from u to v, both of them can reach t from s; with-
out that edge, only the electric car is able to. This is reflected
in the provenance: prov(G)(s,t) = (4, charging station) while
prov(G\{(u,v)})(s,t) = (2.10, charging station).

3 EXISTING ALGORITHMS

We now provide a review of three algorithms to solve the single-
source provenance problem, also previously described in [31].
Each of these algorithms yields a different trade-off between time
complexity and applicability to various types of semirings, as
summarized in Table 1.

Algorithm 1 DijksTRA - single-source

Input: (G = (V,E, w),s) a graph database with provenance in-
dication over K and the source s.
Output: Array w representing the single-source provenance
from s of the reachability query.
1: S0
2 wla] < 0,YaeV
3 wis] « 1
4: while S # V do
5. Select a ¢ S with minimal w|[a]
6: S« SU{a}
7. for each neighbor b of anotin S do
8 w[b] = w[b] & (w[a] ® w[ab])
9: end for
end while
1: return w

—
@ 0

DpksTrA. Dijskstra’s algorithm is generally used to solve
shortest-distance problems in directed graphs. However, as shown
also in [31], the algorithm readily generalizes to our semiring
context, by placing some restrictions on the semirings used. For
instance, the tropical semiring is exactly the semiring that allows
to compute the shortest distance, as in the original algorithm.
The general flow of the algorithm - using general semiring op-
erations — is outlined in Algorithm 1, and Table 1 indicates its
running time (in terms of the graph size and the costs of the
semiring operations @ and ®). Dijkstra’s algorithm is known to
be a very efficient algorithm. However, this efficiency comes from
the fact that it uses a priority queue: once a value is extracted
from it, we know that it is the correct one - this allows us to only
visit each vertex in the graph once. This only works if we apply
D1jKSTRA to semirings which are 0-closed (or absorptive) and in
which an additional condition is satisfied: the natural order is a
total order [31].

As we shall discuss later, there is a large complexity gap be-
tween DIJKSTRA on the one hand and the other two algorithms

Table 1: Required semiring properties and asymptotic complexity for each studied algorithm, where T, is the complexity
of the elementary semiring operation .. The last column assumes constant cost for all semiring operations.

Name Semiring property Time complexity (with semiring op.) Time complexity
MATRIXASTERATION star O(|VITs + |V*(Te + Tg)) o(|v|?)
NODEELIMINATION ~ c-complete star O(|VITs + |V*(Te + Tg)) o([v|?)

MOHRI k-closed Exponential Exponential
MULTIDIJKSTRA 0-closed ®-idempotent O (£ X (Tg|V|log|V|+ |E| (Te + Tg))) Ot x (|V|log|V| +|E|))
DIJKSTRA 0-closed total ordered O(Tg|V|log|V|+ |E|(Te + Tg)) O(|V|log|V|+ |E])

we discuss in this section — NODEELIMINATION and MOHRI —
on the other. This is the main motivation to introduce the new
algorithm we present in Section 5.

Algorithm 2 MoHRI - single-source [29]

Input: (G = (V,E, w),s) a graph database with provenance in-
dication over K and the source s.

Output: Array w representing the single-source provenance
from s of the reachability query.

1: forie{1,...,|0Q|} do

2 wli] «r[i] <0

3: end for

4 wis] «r[s] <1

5. S «— {s}

6: while S # 0 do

7. q < head(S)

8: dequeue(S)

5 1 —rlg]

10 r[g] <0

11: for each e € E[q] do

12: if w[nle]] # wln[e]] ® (r' ® w[e]) then
13: wln[e]] « w[nle]] & (r' ® w[e])
14: r(nle]] « rin[e]l]l ® (r' ® wle])
15: if n[e] ¢ S then

16: enqueue(S, nle])

17: end if

18: end if

19: end for
20: end while
21: w[s] « 1
22: return w

Momnrr. Mohri [29] introduced an algorithm for computing
single-source provenance for reachability queries over k-closed
semirings. Outlined in Algorithm 2, it performs, in a manner
similar to the Bellman-Ford algorithm, step-by-step relaxations
over the edges of the graph (lines 13-14), maintaining a queue to
decide in which order the elements are inspected. The queue can
be chosen in different ways: based on the topology of the graph,
e.g., if the graph is acyclic; or a queue prioritized by weight when,
e.g., one wishes to compute top-k shortest paths using the top-k
semiring.

In the worst case, the theoretical complexity of this approach
is exponential in the size of the graph [29], mainly due to the fact
that the algorithm may have to visit the same cycle in the graph
multiple times. However, the complexity heavily depends on the
implementation of the queue. For instance, for top-k shortest
paths, implementing a priority queue allows for an efficient algo-
rithm, having polynomial complexity. Indeed, as we shall detail
later, for road transportation networks and top-k shortest paths,
experiments show an almost linear-time behavior in k and the
size of the graph.

77

In contrast, the algorithm may be much more inefficient in
practice for other types of networks (such as social networks). As
we conjecture in Section 6, this may be due to the fact that trans-
port networks have relatively low treewidth [27]. The treewidth
is a parameter measuring how much a graph (or more gener-
ally any relational instance) resembles a tree. Many intractable
problems over graphs have tractable solutions on instances of
fixed treewidth. We confirm in Section 6 that many of the algo-
rithms for provenance computation strongly benefit - in terms
of running time - from low treewidth.

Another important graph parameter — stemming from the
active research community around computing routing for, e.g,
driving directions - the highway dimension [4] has been intro-
duced to provide a theoretical basis for the efficiency observed
in practice in state-of-the-art heuristics for computing optimal
transport paths. This parameter relies heavily on weights on the
edges of the graphs and the distribution of shortest distances in
the graph. In our experiments in Section 6, we evaluate whether
this parameter also explains the practical efficiency of our algo-
rithms for computing the provenance of routing queries.

Algorithm 3 NoDEELIMINATION - single-pair

Input: (G = (V,E, w),s,t) a graph database with provenance
indication over K, the source s, and the target ¢.

Output: Single value wy s representing the single-pair prove-
nance between s and t of the reachability query.

1V «—Vu{sdt'}
2 B — EU{(s,s),(t,t')}
3. fori € V' do
4 forjeV’ do
0 wij] ifi# j,
> Wz(j)<_{ 1@ wlij] ifi=j
6: end for
7: end for
8: for kin V do
9: for each (p,q) s.t. (p,k), (k,q) € E’ do
10: Wpg < Wpq © (wpk Wy, ® wkq)

11: end for
12: end for
3: return wgy

-

NoODEELIMINATION. The most general algorithm available is
based on the idea of Brzozowski and McCluskey for obtaining a
formal language expression (i.e., a regular expression) equivalent
to the language of an automaton [9]. The algorithm is outlined
in Algorithm 3. The algorithm works by eliminating vertices one
by one and computing the “shortcut” values for each vertex pair,
until only the source and target vertices remain. This algorithm
works for any c-complete semiring over which a star operation
is defined — this is necessary for the shortcuts computed in the
algorithm to be correct.

total order
DyksTrA

semirings

star semirings
MATRIXASTERATION

c-complete star semirings
NODEELIMINATION

k-closed
MoOHRI

0-closed

Figure 2: Taxonomy of the semirings used for graph provenance along with algorithms that work on them

In general, the complexity of the algorithm is at least cubic in
the number of vertices in the graph, which makes it practically
unusable on large graphs. Importantly, however, it also can be
shown that its complexity is closely related to the treewidth pa-
rameter of the graph. Following a simplicial elimination order
(unfortunately not tractable to compute) one can rephrase the
complexity shown in Table 1 in terms of the treewidth parame-
ter w by O(|V|Ts + [V|w?(Tg + Tg)). Thus, if the treewidth is
small over, e.g., transportation networks, one can benefit from
heuristics for finding a suitable elimination order to optimize this
algorithm. We dedicate a part of our experiments demonstrating
the impact of some heuristics (for instance, focusing on vertices
of higher degrees) on the running time of this algorithm.

Related algorithms. Star semirings are also known as closed
semirings [2] and the star operation is known as the closure
operation. In this sense, all-pair computations correspond to
matrix asteration. For instance, the NODEELIMINATION algorithm
can be used to compute the asteration [2] of a matrix - but, if the
semiring is not c-complete, there is no guarantee of a semantics
compatible with the intuitive semantics of provenance over graph
databases. Matrix asteration allows for a high degree of parallel
computation [1].

4 TAXONOMY

We present in Figure 2 a high-level view linking the properties
and classes of semiring we presented in Section 2 and their as-
sociated algorithms, presented in Sections 3 and 5. The figure
shows a clear hierarchy of classes of semirings, both in terms of
the complexity of the algorithm and the expressive power of the
semirings.

An important practical application that is similar to our setting
is the provenance for Datalog queries introduced in [18] and
further optimized using circuits [11]. Datalog [3] is a language
derived from Prolog, useful for infering new knowledge given
existing facts and a set of inference rules. In the papers above, the
semiring classes for which optimization of queries is possible are
strikingly similar: PosBool(X) and Sorp(X) discussed in [11, 18]
correspond respectively to the positive fragment of the Boolean
function semiring, and to the free (i.e., most general) 0-closed
semiring. In that sense, algorithm optimizations discussed here
apply directly to applications such as Datalog query optimization.

78

5 ALGORITHM FOR 0-CLOSED SEMIRINGS

As explained in Section 3, DIJKSTRA requires a total natural order
on the elements of a 0-closed semiring. This is quite a restrictive
setting (among the examples from Example 2.2, only the tropical
semiring fits), while using a more generally available algorithm
such as MoHRI can lead to practical inefficiency. The question
we are addressing in this section is whether we can bridge this
complexity gap and still obtain practical algorithms for 0-closed
semiring without total orders.

First, we present an example semiring setting, with non-total
natural order, where DIJKSTRA cannot be readily applied.

Example 5.1. Let us consider the 3-feature semiring
(o, 1}3, min, max, (1,1, 1), (0,0,0)).

In the example graph below, the provenance between s and ¢
is: min (max ((0,0, 1), (0,1,0)),(1,0,0)) = (0,0,0) and that be-
tween s and r is: min (max ((1, 0, 0), (0, 1,0)), (0,0, 1)) = (0, 0,0)

(0,0,1

(0,1,0)

®

Assume there would be an order for which D1jksTRA computes
this provenance. Then, starting from s, DiyksTRA would select
either r and assign it provenance (0,0, 1), which is wrong, or ¢
and assign it provenance (1, 0,0), which is also wrong.

In the following, we address this problem and design a new
algorithm, MuLTIDIJKSTRA (for Multidimensional Dijkstra) that
applies to the more general case of 0-closed semirings for which
multiplication is idempotent (such as the k-feature semiring, but
also the Boolean function semiring used in probabilistic databases,
see [34]). As it turns out, such semirings satisfy the axioms of
bounded distributive lattices [8, Theorem 10]; this allows us to
design an efficient algorithm for answering queries using these
types of semirings.

5.1 Mathematical Background

In the following we introduce basic notions about finite distribu-
tive lattices. We assume the lattices we use are finite because

we are only ever using the subsemiring generated by edge an-
notations. As we shall see, this subsemiring is finite when both
operations of the semiring are idempotent.

We refer the reader to [36] for more details regarding the
theory behind distributive lattices.

5.1.1 Definitions and Notation. A lattice (L, <) is a partially
ordered set (poset) where every two elements have a unique
infimum (their meet, A) and supremum (their join, V). A lattice
embedding of a lattice L into a lattice K is a one-to-one join
and meet homomorphism from L to K. In a poset, an element y
covers x (denoted x < y) if x < y and there are no such z such
that x < z < y. A lattice embedding ¢ is tight if x < y implies
£(x) <£(y).?

An element x of a lattice L is join-irreducible if x = a V b
implies that x = a or x = b. The set of non-zero join-irreducible
elements of L is denoted J(L). It induces a subposet of L which
is also denoted by J(L).

For a subset S of a lattice L, we let \/ S = \/,¢s x be the join
of the elements of S. We often write \/ S to specify that the join
takes place in L. A subset S of a poset is a downset or ideal if
x € Sandy < x impliesy € S. The minimum downset containing
an element x is denoted id x. We note D (P), for a poset P, the
family of downsets of P ordered by inclusion.

A chain C of length n in a poset P is a subposet isomorphic to
the linear order Z,, on the n elements {0, 1,...,n — 1}. A chain
decomposition of a poset P is a partition of its elements into a
family C of chains Cy,...,Cy. For a family C = {Cy,...,Cy}

d
of disjoint chains, the product [] C := [] C; consists of all d-
i=1
tuples x = (x1,...,x4) where x; € C; foreachi € {1,...,d}.Itis
ordered by x < y if x; < y; for each i.

5.1.2 Results. A classical result from Birkhoff [7] establishes
an isomorphism between L and D(J(L)):

THEOREM 5.2 ([7]). The map S : x +— id x N J(L) is an isomor-
phism of L to D(J(L)). Its inverse is S +— \/ S .

For a chain decomposition C of a poset, let Cy be the family of
chains we get from the chains in C by adding a new minimum el-
ement to each. In [12], Dilworth proved the following embedding
theorem:

THEOREM 5.3 ([12]). For any chain decomposition C of a poset P
the map S — \/p S is an embedding of D(P) into P =[] Co.

Then, we obtain the following corollary we will use later:

COROLLARY 5.4. Given a chain decomposition C of a distributive
lattice L, there is a tight embedding of L into [] Cp.

5.2 Application to Provenance Computation

Corollary 5.4 provides us with a way to compute provenance
over distributive lattices using a multidimensional version of
Dijkstra’s algorithm. Because an embedding is a homomorphism,
we can compute each component of [| Cp independently. And
because the homomorphism is one-to-one, we can easily recover
the provenance at the end of the computation.

Example 5.5. If we take a look at distributive lattice of the
divisors of 60 with greatest common divisor (gcd) and least
common multiple (Icm) as join and meet operators, we notice
that the divisors of 60 are either powers of 2, 3, 5 or an lcm

ZImplicitly from lattice notation to poset notation: x V y = y means x < y.

79

of these integers. Thus, they can be represented using three di-
mensions representing the factorization of 60 along these prime
numbers: decompose(4) = (2,0,0), recompose(0,1,0) = 3, and
recompose(2, 1,0) = 12. We can then compute independently each
dimension of the result using Dijkstra’s algorithm since each
component is totally ordered; then, partial results are combined.

In other words, we can run separately, ¢ times, Dijkstra’s algo-
rithm for each dimension of this product, where ¢ is the number
of chains in the chain decomposition. This gives us a parameter-
ized algorithm, where ¢ depends on the semiring. For example, for
the semiring used in Example 5.1, £ = 3. We outline the algorithm
in pseudo-code in Algorithm 4. We need the following routines
that are highly specific to the semiring: decompose(e) takes as
parameter an element e of L and returns its image v(e) € . For
the opposite direction recompose(ds, . . .,dn) = \ g<i<n di returns
as expected an element of L.

We use as a subroutine a slightly modified version of Dijk-
STRA, parameterized by the semiring dimension and working
with semirings having elements in vector form, corresponding
to the decomposition. Dijkstra(s,t,i) € J(L) computes the prove-
nance between s and ¢ corresponding to the i dimension of the
decomposition.

Example 5.6. We describe the working of Algorithm 4 in the
example presented in Example 5.1: first, each edge value is de-
composed; this step is easy to follow as the 3-feature values
are already presented in decomposed form. A second step con-
sists in calculating values along each dimensions. Algorithm 1
is launched a first time over the graph with edge values corre-
sponding to the first dimension: 0 for (s, r) and (r, t), 1 for (s, ¢).
The result is 0. Algorithm 1 is launched a second time over the
graph with edge values corresponding to the second dimension:
0 for (s,r) and (s, t), 1 for (r, t). The result is, again, 0. Finally,
Algorithm 1 is launched a third time over the graph with edge
values corresponding to the third dimension: 0 for (s,t), 1 for
(s,r) and (r, t). The result is 0. This ends the second step. The
third step consists in recomposing partial values obtained by
successive applications of Dijkstra’s algorithm. This ends up to
the final provenance value of (0, 0,0).

Algorithm 4 MULTIDIJKSTRA — single-pair

Input: (G = (V,E, w),s,t) a graph database with provenance
indication over K, the source s, and the target ¢.

Output: Single-pair provenance of the reachability query from s
to t.

: for each edge e € E do

decompose(w(e))

. end for

: for each dimension i do
d; < Dijkstra(s, t,1)

end for

: return recompose(dy, . .

N Uy wo e

.»dn)

For the sake of simplicity, we presented the single-pair version
of our algorithm. To extend it to the single-source version one
only needs to perform the recompose subroutine for each vertex
in the graph.

To minimize accesses to the decompose subroutine — which
can be very costly — we optimize MULTIDIJKSTRA by adopting
a lazy approach, where the Dijkstra subroutine calls decompose
only when needed, storing the decomposition across calls. This
avoids scanning the whole graph when s and t are close.

time (s)

1000

100

10

0.1

0.01

0.001

T T T
RoME99, original RoME99, random

RoME99, same USPOwWERGRID, random YEAST, random

T T T
StIF, random

[0BFS 0 0 DyyksTRA (Tropical) 0 0 Mowgri (Tropical)

0 0 Mohri (Top-k)

0 0 NopeELIMINATION-Degree (Tropical)

Figure 3: Comparison between algorithms for shortest distances

Table 2: Graph datasets: size and treewidth lower and up-
per estimates from [27]

type name # of vertices # of edges tw
infrastructure PARI1s 4325486 5395531 55-521
STIF 17720 31799 28-86

USPOWERGRID 4941 6594 10-18

RoME99 3353 43831 5-50

social FACEBOOK 4039 88234 142-237
biology YeAST 2284 6646 54-255

Two other optimizations implemented are a stopping condi-
tion that ends the Dijkstra subroutine when a visited vertex has
value 0, and lazy initialization of the priority queue. These two
optimizations led to vastly improved computation times over the
naive implementation.

5.3 Practical Use Case

As exemplified in the Introduction, k-feature semirings can be
used to ensure that all paths from s to ¢ verify a combination of
features (they all go through a specific set of points of interests,
or verify some road properties) or either ensure the existence
of valid paths up to some collection of restrictions. We show in
the experimental section that this is tractable for practical use
cases (continental-sized areas, around 107 vertices). To the best
of our knowledge, no solution for this that scales even to graphs
of thousands of vertices has been previously proposed.

6 EXPERIMENTS

We performed experiments on real-world graph data, using an
Inria computing cluster running the OAR task manager. The
individual vertices of the cluster have a minimum of 48 GB of
RAM, and run Intel Xeon X5650 or E5-26xx CPUs.

We used datasets® from a variety of domains, mostly repre-
senting infrastructure networks: the OpenStreetMaps network
of Paris (Paris), the Paris public transport network (ST1F), and

3These datasets were used in [27] for treewidth computation experiments, and are
downloadable from https://github.com/smaniu/treewidth/; some of them originate
from http://snap.stanford.edu/data/index.html.

80

the power grid of the continental US (USPOwWERGRID). For com-
parison, we have also evaluated on other types of datasets: a
small subset of the Facebook social network (FACEBOOK) and
the yeast protein-to-protein interaction network (YEAsT). All
these datasets come without provenance annotations, that we
add in different ways depending on experiments. We also used
a real weighted road transportation network dataset ROME99,
with tropical semiring annotations, from the 9th DIMACS Imple-
mentation Challenge®. This dataset consists of a large portion of
the directed road network of the city of Rome, Italy, from 1999.
Basic information about the resulting graphs are summarized in
Table 2.

For datasets without provenance annotations, unless speci-
fied differently, we randomly generate weights in the tropical
semiring for benchmarks, uniformly between 1 and 3 000. To be
able to compare the impact of the weights on the performance
of the algorithms, we also use a constant-weight setting, where
all weights equal to 1. Each experiment generally represents the
average over 10 runs (random choices of origin and destination
vertices).

Our experimental study is focused on comparing the four algo-
rithms presented in this paper, over several semirings. We provide
a comparison of all of our algorithms for the computation over
the tropical semiring (shortest distance), since all algorithms can
be used in this setting. We investigate the running time and the
number of relaxation steps performed by Monrr and MurTiDI-
JKSTRA algorithm, using initial weights provided by the dataset
RoME99, as well as custom weights (all identical and all random);
we then study over all datasets the impact of the elimination or-
der heuristic on the overall performance for NODEELIMINATION.
We then finish with the comparison between our new algorithm
and previous solutions to demonstrate its efficiency.

Evaluating shortest distances. We start by evaluating how the
algorithms deal with the shortest distance semiring, i.e., the trop-
ical and top-k semiring (by setting k = 1). The properties of this
semiring allow their implementation for the first three algorithms:

“http://users.diag.uniromal.it/challenge9/download.shtml

—e— MOHRI, original
—m— MoHRI, random
35| o MOHRI, same
3 l—
2.5
2 |

time (s)

\
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 & 90 95 100
k

Figure 4: Computation time for MoHRI over the top-k distances semiring, for varying values of k and varying weight
assignments (RoME99)

o 17 —
S 16 | —@— MoHRYI, original
X %Z —m— MoHRI, random
]
) 13| —e— MoHRI, same
é 12
o 11 |
T 10 =
Q. g |
- |
E§ 7 i
= 6 g
i3 i
=~ 4 _
I 3 B
% % [P @

H’/’."‘]
= 0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 8 8 90 95 100

k

Figure 5: Number of relaxations performed by MoHRI over the top-k distances semiring, for varying values of k and varying
weight assignments (RoME99)

— 100000
. 103
9310 ~ 10000
— 1.4-10% 103 -
= 1.2-10 1.10°
% — 1000
E 2 -
B 4.2 -10 -
6.8 - 10! 6.8 - 10! 6.8 - 10 = 100
3.1-10! 310! 3.1-10! -
210! -
1.2 - 10!
—10
T T T T T T T T -
ROME99, original ~RoME99, random RoME99, same USPOwWERGRID, random YEAST, random FACEBOOK, random STIF, random PaRris, random

00 NopeELimiNaTION (Id) 0 @ NopEELIMINATION (Degree)

Figure 6: Comparison between elimination orders for NODEELIMINATION algorithm (tropical semiring). Values greater
than 100 000 s are timeouts.

D1KkSTRA, MoHRI, and NODEELIMINATION, whereas MULTIDIJK- no provenance information (BFS). This also allows us to com-
STRA reduces to DIJksTRA in that case. We also implemented a pare the performance of algorithms against non-annotated graph
breadth-first-search traversal for computing accessibility with databases.

81

1.5-103

= 1000
4.2-10! - 100
1.4- 10! -
- 10
s o
[} =
: :
3.9-10%% . 19-2 20
- 0.01
2.2-1073 s -
1.1-107 - -
6.3-107 7.2-107* ~0.001
T T T -
RoME99, random USPOwWERGRID, random StIF, random
[0NopEeELIMINATION (Degree) 0 0 Monr1 0 @ MuLTIDKSTRA
Figure 7: Comparison between NODEELIMINATION, MOHRI, and MULTIDIJKSTRA (3-feature semiring)
10° | —m— MomHRi, 5 values n
—o— MOoHRI, 4 values
—A— Momngr, 3 values |
10! | —®— MULTIDIKSTRA, 5 values 7
© —e— MULTIDIJKSTRA, 4 values
g —a— MULTIDIJKSTRA, 3 values
=
w0 P
\ | 1

10731 \ i
1 2 3

number of features

4 5 6

Figure 8: Computation time for MoHRI and MULTIDIJKSTRA depending on the number of dimensions (RoME99)

T T T]
—— MoOHRI

—e— MULTIDIJKSTRA

time (s)

—_
(==
[

number of nodes

B

10

Figure 9: Average computation time for MoHRI and MULTIDIJKSTRA over random graphs depending on the number of
nodes; shaded areas indicate minimum and maximum computation times observed (3-feature semiring)

Figure 3 shows, on a logarithmic scale, the result for our graphs,
and for some settings of weights (original, random, or same
weights). It is immediately clear from the figure that the choice
of algorithm is crucial: we need the most specialized algorithm
for the semiring we use: DIJKSTRA is more efficient than MoHRI
which is more efficient than NopeELIMINATION. Even for MOHRI,

82

we notice that using it configured for the top-k semiring with
k = 1 does introduce an overhead in execution; when using the
tropical semiring directly the overhead is smaller. We also show
the overhead introduced when using provenance annotations
is quite limited, as the difference between DijksTRrA and BES is
less than an order of magnitude for each dataset, and DIJKSTRA

sometimes even outperforms BFS. Finally, NODEELIMINATION is
always several orders of magnitude slower than Dijkstra. Another
encouraging result is that MoHRI — which allows more classes
of semirings than DIJKSTRA - has a reasonable running time in
practice, despite the stated exponential complexity bound in the
original paper. We turn to evaluating its performance next.

MoHgr in practice. In Figure 4 and in Figure 5 we respectively
study the impact of the factor k on the running time and on the
number of computations performed by the algorithm. Our results
show that the computational time is linear in k, though this is
not the case for the number of relaxations, which increases sub-
linearly in k. This means that for large values of k the algorithm
spends most of its time maintaining the queue.

We also compare the performance of the algorithm depending
on weight assignment (original, random, same). It seems that
considering random values instead of “real” values has almost no
significant impact over the efficiency of the algorithm. This is a
somewhat disappointing result because it rules out the possibility
to parametrize the complexity of the algorithm through network
parameters, for instance, in terms of the highway dimension [4] -
a graph parameter that has been successfully applied for under-
standing the efficiency of state-of-the-art shortest-distance algo-
rithms in road networks. However, the performance increases sig-
nificantly when all weights are uniform, which may be expected
since computation of shortest distances become far simpler, and
far more paths have equal distance.

As pointed out in Section 3 this algorithm performs extremely
well over transportation networks. We wanted to provide a com-
parison of its working time for different kinds of graphs (es-
pecially graphs whose treewidth is large relative to their size).
For this purpose we used a social network dataset: who-trusts-
whom network of people who trade using Bitcoin on a platform
called Bitcoin Alpha [25, 26] (3 783 vertices and 24 186 edges).
The algorithm times out after 48 hours.

What we can learn from this is that the key property making
MoHrtI so efficient over transportation networks is not due to
distance properties (e.g., highway dimension) — impacted by the
weights of the connections — but rather by topological properties

of the underlying graph (e.g., treewidth).

Ordering for NODEELIMINATION. NODEELIMINATION’s perfo-
mance, due to its main loop of creating “shortcuts” in the graph,
is heavily dependent on the order in which the vertices are
eliminated. This elimination ordering is strongly linked to the
treewidth parameter of the graph. For instance, following a degree
based elimination order gives an upper bound on this parameter.

Hence, we have compared different elimination orders for
NopEELIMINATION and found out that the minimum degree based
elimination order (Degree) greatly improves the efficiency of
this algorithm compared to having no such heuristic (Id). This
improvement can be dramatic, as for the YEAST dataset where the
algorithm is two orders of magnitude faster. As expected, weights
over the edges doesn’t impact the running time, as shown in
Figure 6.

This is important in practice: running NODEELIMINATION on
low-treewidth graphs (e.g., infrastructure and transport networks)
can be the difference between the algorithm being unusable and
allowing reasonable running times. Taking into account that
NobpeELIMINATION allows for a large class of semirings, this can
have a significant real-world application impact.

83

MurTiDKSTRA. We now evaluate MULTIDIJKSTRA, our con-
tribution to bridging the gap between absorptive semirings and
more general ones. We compare it to MOHRI and NODEELIMINA-
TION in the case of the k-feature semiring, which is kind of the
canonical semiring that is 0-closed and multiplicatively idem-
potent. Figure 7 showcases this on 3 datasets. In all cases, our
new algorithm is between 3 and 4 orders of magnitude faster
than NoDEELIMINATION, depending on the network we use, and
significantly faster than MOHRI.

We then performed an additional experiment (Figure 8), exam-
ining the impact of the number of features and values actually
used in each feature on the running time of both algorithms. We
found out that when either one of the two criteria reaches 4,
MoHRI times out while MULTIDIJKSTRA keeps scaling.

Finally, Figure 9 presents a comparison between MoHRI and
MurTIDIKSTRA on large Erd6s-Rényi random generated graphs
(generated using Python networkx’s fast_gnp_generation method,
using an average of 1.7 edges per vertex) show that our new
algorithm is still tractable for continental-sized graphs of millions
of vertices. Interestingly, MULTIDIJKSTRA also exhibits a much
smaller variance than that of MoHRr1, whose performance varies
by more than one order of magnitude between runs.

7 RELATED WORK

The idea of encapsulating operations carried along by graph algo-
rithms in terms of semirings has been really common for decades.
In [10, Chapter 25] the authors presented two of the classical
graph algorithms, Floyd-Warshall and transitive closure algo-
rithm in terms of closed semirings. The APSP (All-Pairs Shortest-
Path problem) is elegantly expressible using star semirings; hence,
research focused on the links to linear algebra through matrix
computations [1], allowing to speed up the response time using
parallel computations. Recent work on semiring-based graph
processing has provided to the community some tools such as
GraphBLAS [23], a library of kernel functions dedicated to opti-
mize linear algebra computations over sparse matrices. Unfortu-
nately, this tool focuses essentially on matrix and vector products
and is not amenable to express priority queue management such
as those needed for MoHRI, DIJKSTRA, MULTIDIJKSTRA. Only
NoDEELIMINATION and the matrix asteration algorithms could
benefit of a GraphBLAS implementation: this might increase
their performance, even when retaining their higher asymptotic
complexity with respect to other algorithms.

Amongst many other fields, semirings have been successfully
applied in constraint-solving programming [8], linguistic struc-
ture prediction [37] and formal language theory [33]. This alge-
braic structure is also perfectly suited to the modeling of dynamic
programming [21].

The notion of provenance has also been initially developed
using semirings [18], either for relational databases and Datalog
programs, leading to practical systems such as [35], an exten-
sion to PostgreSQL adding the support for provenance. Many
representation frameworks have been successfully applied to
speed up the computation of the provenance for Datalog pro-
grams, most notably a circuit-based provenance approaches [11]
and the solving of fixed-point equations using derivation tree
analysis [15]. The latter approach led to a proof-of-concept im-
plementation [16] of the resolution of fixed-point equations over
c-continuous semirings using the Newton method.

Compared to our work, relational databases lack the effective
support for navigational queries (recursion is an issue) and Data-
log programs are much more expressive than graphs (they are
closely related to hypergraphs), so we suspect query answering
in Datalog would be highly inefficient for the continental-sized
road-network datasets we target, though we leave this investiga-
tion for future work.

Numerous notions of provenance co-exist in the literature and
each target different usages. The notion we use in this paper
considers the provenance to be computational rather than just in-
formational: we can apply operations over our provenance values
with different semantics depending on the underlying semiring.
Some practical systems, such as [28] rely on property graphs to
represent provenance annotations, that are of an informational
rather than computational nature. Those systems focus on the
further querying of obtained provenance to derive additional
information about the process.

8 CONCLUSIONS

We presented in this paper a study on evaluating the provenance
of rich graph queries using the semiring provenance framework.
We established a taxonomy of semiring classes, based on their
properties. This in turn allows us to find, for a set of impor-
tant semiring classes, the most appropriate algorithm, enabling
real-world applicability. We introduce a new algorithm, MurTIDI-
JKSTRA, which bridges the gap between algorithms for absorptive
semirings and ones for more general classes.

Experimentally, on graph datasets from various domains, we
showed that making sure that the appropriate algorithm is chosen
for the semiring specialization is crucial; gains of several orders of
magnitude are observed between algorithms on the same graph
datasets. Moreover, we notice that algorithms for which their
theoretical complexity is high perform well in practice, especially
on graphs having relatively low treewidth.

We believe the link with classes of semiring for which an
optimization for the computation of the provenance for Datalog
queries exists is a key observation for optimizing computations
in our framework. Investigating this further will allows us to
benefit from the rich literature around Datalog provenance (in
particular, [11]) and to compare to our solutions.

ACKNOWLEDGMENTS

This work has been funded by the French government under
management of Agence Nationale de la Recherche as part of the
“Investissements d’avenir” program, reference ANR-19-P31A-0001
(PRAIRIE 3IA Institute).

REFERENCES

[1] S.Kamal Abdali. 1994. Parallel Computations in *-Semirings. In Computational
Algebra, Klaus G. Fischer, Philippe Loustaunau, Jay Shapiro, Edward L. Green,
and Daniel Farkas (Eds.). Taylor & Francis, Chapter 1, 1-16.

S. Kamal Abdali and David Saunders. 1985. Transitive closure and related

semiring properties via eliminants. Theoretical Computer Science 40 (1985),

257-274. https://doi.org/10.1016/0304-3975(85)90170-7

[3] Serge Abiteboul, Richard Hull, and Victor Vianu. 1995.
Databases. Addison Wesley.

[4] Ittai Abraham, Amos Fiat, Andrew V. Goldberg, and Renato Fonseca F. Wer-
neck. 2010. Highway Dimension, Shortest Paths, and Provably Efficient Algo-
rithms. In SODA. Society for Industrial and Applied Mathematics, Philadelphia,
PA, USA, 782-793. http://dl.acm.org/citation.cfm?id=1873601.1873665

[5] Marcelo Arenas and Jorge Pérez. 2011. Querying semantic web data with
SPARQL. In PODS. New York, 305-316.

[6] Pablo Barceld. 2013. Querying Graph Databases. In PODS. ACM, New York,
175-188.

[7] Garrett Birkhoff. 1937. Rings of sets. Duke Math. J. 3, 3 (1937), 443-454.
https://doi.org/10.1215/S0012-7094-37-00334-X

[2

Foundations of

84

[8] Stefano Bistarelli, Ugo Montanari, and Francesca Rossi. 1997. Semiring-based
constraint satisfaction and optimization. J. ACM 44, 2 (1997), 201-236. https:
//doi.org/10.1145/256303.256306

[9] Janusz A. Brzozowski and Edward J. McCluskey. 1963. Signal Flow Graph

Techniques for Sequential Circuit State Diagrams. IEEE Trans. Electr. Comp.

EC-12, 2 (1963), 67-76.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.

2001. Introduction to Algorithms (2nd ed.). The MIT Press.

Daniel Deutch, Tova Milo, Sudeepa Roy, and Val Tannen. 2014. Circuits for

Datalog Provenance. In ICDT. 201-212.

Robert P. Dilworth. 1950. A Decomposition Theorem for Partially Ordered

Sets. Annals of Mathematics 51, 1 (1950), 161-166. http://www.jstor.org/

stable/1969503

Pedro Domingos and Matthew Richardson. 2001. Mining the network value

of customers. In KDD. ACM, New York, 57-66.

Manfred Droste, Werner Kuich, and Heiko Vogler. 2009. Handbook of Weighted

Automata. Springer, Berlin.

[15] Javier Esparza and Michael Luttenberger. 2011. Solving fixed-point equa-
tions by derivation tree analysis. In International Conference on Algebra and
Coalgebra in Computer Science. Springer, 19-35.

[16] Javier Esparza, Michael Luttenberger, and Maximilian Schlund. 2014. FP-

soLVE: A Generic Solver for Fixpoint Equations Over Semirings. Interna-

tional Journal of Foundations of Computer Science 26. https://doi.org/10.1007/
978-3-319-08846-4_1

Nadime Francis, Andrés Taylor, Alastair Green, Paolo Guagliardo, Leonid

Libkin, Tobias Lindaaker, Victor Marsault, Stefan Plantikow, Mats Rydberg,

and Petra Selmer. 2018. Cypher: An Evolving Query Language for Property

Graphs. In SIGMOD. 1433-1445. https://doi.org/10.1145/3183713.3190657

Todd J. Green, Grigoris Karvounarakis, and Val Tannen. 2007. Provenance

Semirings. In PODS. ACM, New York, 31-40.

Todd J. Green and Val Tannen. 2017. The Semiring Framework for Database

Provenance. In PODS. Association for Computing Machinery, New York, NY,

USA, 93-99. https://doi.org/10.1145/3034786.3056125

Udo Hebisch and Hanns J. Weinert. 1998. Semirings: Algebraic Theory and

Applications in Computer Science. World Scientific, Singapore.

Liang Huang. 2008. Advanced Dynamic Programming in Semiring and Hy-

pergraph Frameworks. (2008), 18.

ISO SC32 / WG3. [n.d.]. Graph Query Language GQL. https://www.

gqlstandards.org/.

[23] J.Kepner, P. Aaltonen, D. Bader, A. Bulug, F. Franchetti, J. Gilbert, D. Hutchison,

M. Kumar, A. Lumsdaine, H. Meyerhenke, S. McMillan, C. Yang, J. D. Owens,

M. Zalewski, T. Mattson, and J. Moreira. 2016. Mathematical foundations of

the GraphBLAS. In 2016 IEEE High Performance Extreme Computing Conference

(HPEC). 1-9. https://doi.org/10.1109/HPEC.2016.7761646

Daniel Krob. 1987. Monoides et semi-anneaux complets. Semigroup Forum 36

(1987), 323-339.

Srijan Kumar, Bryan Hooi, Disha Makhija, Mohit Kumar, Christos Faloutsos,

and V. S. Subrahmanian. 2018. Rev2: Fraudulent user prediction in rating

platforms. In WSDM. 333-341.

Srijan Kumar, Francesca Spezzano, V. S. Subrahmanian, and Christos Faloutsos.

2016. Edge weight prediction in weighted signed networks. In ICDM. 221-230.

Silviu Maniu, Pierre Senellart, and Suraj Jog. 2019. An Experimental Study

of the Treewidth of Real-World Graph Data. In ICDT. Lisbon, Portugal, 18.

https://doi.org/10.4230/LIPIcs. ICDT.2019.12

Hui Miao, Amit Chavan, and Amol Deshpande. 2016. ProvDB: A System

for Lifecycle Management of Collaborative Analysis Workflows. CoRR

abs/1610.04963 (2016). arXiv:1610.04963 http://arxiv.org/abs/1610.04963

Mehryar Mohri. 2002. Semiring Frameworks and Algorithms for Shortest-

distance Problems. J. Autom. Lang. Comb. 7, 3 (2002), 321-350.

Yann Ramusat. 2019. Provenance-Based Routing in Probabilistic Graph

Databases. In VLDB 2019 PhD Workshop. http://ceur-ws.org/Vol-2399/paper08.

pdf

Yann Ramusat, Silviu Maniu, and Pierre Senellart. 2018. Semiring Provenance

over Graph Databases. In TaPP. https://www.usenix.org/conference/tapp2018/

presentation/ramusat

Tan Robinson, Jim Webber, and Emil Eifrem. 2013. Graph Databases. O'Reilly

Media.

Arto Rozenberg, Grzegorz; Salomaa. 1997. Handbook of Formal Languages ||

Semirings and Formal Power Series: Their Relevance to Formal Languages

and Automata. Vol. 10.1007/978-3-642-59136-5. https://doi.org/10.1007/

978-3-642-59136-5_9

Pierre Senellart. 2017. Provenance and Probabilities in Relational Databases:

From Theory to Practice. SIGMOD Record 46, 4 (2017).

Pierre Senellart, Louis Jachiet, Silviu Maniu, and Yann Ramusat. 2018. ProvSQL:

Provenance and Probability Management in PostgreSQL. Proceedings of the

VLDB Endowment (PVLDB) 11, 12 (Aug. 2018), 2034-2037. https://doi.org/10.

14778/3229863.3236253

Mark Siggers. 2014. On the representation of finite distributive lattices. arXiv

1412.0011 [math] (2014), 16. http://arxiv.org/abs/1412.0011

Noah A. Smith. 2011. Linguistic Structure Prediction. Synthesis Lectures on

Human Language Technologies 4, 2 (May 2011), 1-274. https://doi.org/10.2200/

S00361ED1V01Y201105HLT013

Oskar van Rest, Sungpack Hong, Jinha Kim, Xuming Meng, and Hassan Chafi.

2016. PGQL: A Property Graph Query Language. In GRADES. ACM, New

York, NY, USA, Article 7, 6 pages. https://doi.org/10.1145/2960414.2960421

[10]
(1]
[12]

(13]

[14]

[17]

(18]

[19]

[20]
[21]

[22

[24]

[25]

[26]

[27

(28]

[29]

[30]

[31]

[32]

(33]

[34

[35]

[36]

[37]

[38]

O

proceedings
Sequence detection in event log files
Ioannis Mavroudopoulos Theodoros Toliopoulos Christos Bellas
Aristotle University of Thessaloniki, Aristotle University of Thessaloniki, —Aristotle University of Thessaloniki,
Greece Greece Greece
mavroudo@csd.auth.gr tatoliop@csd.auth.gr chribell@csd.auth.gr

Andreas Kosmatopoulos

Aristotle University of Thessaloniki,

Greece
akosmato@csd.auth.gr

ABSTRACT

Sequential pattern analysis has become a mature topic, with a lot
of techniques for a variety of sequential pattern mining-related
problems. Moreover, tailored solutions for specific domains, such
as business process mining, have been developed. However, there
is a gap in the literature for advanced techniques for efficient de-
tection of arbitrary sequences in large collections of activity logs.
In this work, we make a threefold contribution: (i) we propose a
system architecture for incrementally maintaining appropriate
indices that enable fast sequence detection; (ii) we investigate
several alternatives for index building; and (iii) we compare our
solution against existing state-of-the-art proposals and we high-
light the benefits of our proposal.

1 INTRODUCTION

Event log entries refer to timestamped event metadata and can
grow very large; e.g., even a decade ago, the amount of log entries
of a single day was at the order of terabytes for certain organiza-
tions, as evidenced in [3]. Due to their timestamp, the log entries
can be regarded as event sequences that follow either a total or
a partial ordering. The vast amount of modern data analytics
research on such sequences is divided into two broad categories.

The first category comprises sequential pattern mining [11],
where a large set of sequences is mined to extract subsequences
that meet a variety of criteria. Such criteria range from frequent
occurrence, e.g., [23, 33] to importance and high-utility [12]. In
addition, there are proposals that examine the same problem of
finding interesting subsequences in a huge single sequence, e.g.,
[25]. However, these techniques fail to detect arbitrary patterns,
regardless of whether they are frequent or interesting; e.g., they
are tailored to a setting where a support threshold is provided and
only subsequences meeting this threshold are returned, whereas
we target a different problem, that is to return all subsequence
occurrences given a pattern.

The second category of existing techniques deals with detect-
ing event sequences on the fly and comprises complex event
processing (CEP). CEP is a mature field [14, 34] and supports
several flavors of runtime pattern detection. We aim to solve
a similar problem to CEP but tailored to a non-streaming case,
where pattern queries are submitted over potentially very large
log databases. Since logs continuously arrive, we account for
periodic index building and we support pattern matching where
the elements in the pattern are not strictly in a sequence in the

© 2021 Copyright held by the owner/author(s). Published in Proceedings of the
24th International Conference on Extending Database Technology (EDBT), March
23-26, 2021, ISBN 978-3-89318-084-4 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Series ISSN: 2367-2005

85

Anastasios Gounaris

Aristotle University of Thessaloniki,

Greece
gounaria@csd.auth.gr

logs, e.g., in the log sequence ABBACC, we are interested in detect-
ing the occurrence of the pattern ABC despite the fact that in the
original sequence other elements appear in between the elements
in the searched pattern. Given that we relax the constraint of
strict contiguity, techniques based on suffix trees and arrays are
not applicable. Contrary to CEP, we aim to detect all pattern
occurrences efficiently and not only those happening now.

In summary, our contribution is threefold: (i) we propose a
system architecture for incrementally maintaining appropriate
indices that enable fast sequence detection and exploration of
pattern continuation choices; (ii) we investigate several alter-
natives for index building; and (iii) we compare our solution
against existing suffix array-based proposals, focusing on logs
from business processes, showing that not only we can achieve
high performance during indexing but we also support a broader
range of queries. Compared to other state-of-the-art solutions,
like Elasticsearch, we perform more efficient preprocessing, while
we provide faster query responses to small queries remaining
competitive in large queries in the datasets examined; addition-
ally, we build on top of more scalable technologies, such as Spark
and Cassandra, and we inherently support pattern continuation
more efficiently. Finally, we provide the source code of our im-
plementation.

The structure of the remainder of this paper is as follows. We
present the notation and some background next. In Section 3,
we introduce the architecture along with details regarding pre-
processing and the queries we support. We discuss the index
building alternatives in Section 4. The experimental evaluation
is in Section 5. In the last sections, we discuss the related work,
open issues and present the conclusions.

2 PRELIMINARIES

In this section, we first present the main notation and then we
briefly provide some additional background with regards to the
techniques against which we compare our solution.

2.1 Definitions and notation

We aim to detect sequential patterns of user activity in a log,
where a log contains timestamped events. The events are of a
specific type; for instance, in a log recording the user activity
on the web, an event type may correspond to a specific type
of click and in business processes, an event corresponds to the
execution of a specific task. The events are logically grouped in
sets, termed as cases or sessions or traces', which may correspond
to a specific session or the same process instance or, in the generic
case, grouped by other user-defined criteria. More formally:

!In this work, we use the terms trace, case and session interchangeably.

10.5441/002/edbt .2021.09

https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2021.09

Our Method

SC, STNM
Yes
Indexing of all possible pairs
Combination/merging of results of pairs in the query sequence

Exact rooted subtree matching

SC, Tree Matching
No
Indexing of all the subtrees
Binary search in the subtrees space

Supported policy
Database usage
Preprocess rationale
Query processing rationale

Table 1: Differences between the technique in [19] and our method

Symbol Short description

L the log containing events

A the set of activities (or tasks), i.e., the event
types

E the set of all events

Cc the set of cases, where each case corresponds
to a single logical unit if execution, i.e., a ses-
sion, a trace of a specific business process
instance execution, and so on

ev an event (ev € E), which is an instance of an
event type

ts the timestamp of an event (also denoted as
ev.ts)

l the size of A, |A|

n the maximum size of a case

m the size of C, |C]|

Table 2: Frequently used symbols and interpretation

Definition 2.1. (Event Log) Let A be a finite set of activities
(tasks). A log L is defined as L = (E,C, y, 4, ts, <) where E is the
finite set of events, C is the finite set of Cases,y : E —» Cisa
surjective function assigning events to Cases, § : E — Aisa
surjective function assigning events to activities, ts records the
timestamp denoting the recording of task execution and < is
a strict total ordering over events belonging to a specific case,
normally based on execution timestamps.

The notion of timestamp requires some further explanation. In
sessions like web user activity and similar ones, events are usually
instantaneous. However, this is not the case in task executions
in business processes. In the latter case, the timestamp refers
to either the beginning of the activity or its completion, but
in any case, logging needs to be consistent. The duration of
activities can only be estimated implicitly and not accurately
from the difference between the timestamps of an event and its
successor, because there may be delays between the completion
of an activity and the beginning of the execution of the next
activity downstream. However, systematic analysis involving
task duration can be conducted only if the exact task duration is
captured, which requires extensions to the definition above. Such
extensions is out of the scope of this work and are orthogonal to
our contributions.

Table 2 summarizes the main notation; |A| is denoted as [, the
maximum size of a case is denoted as n, and the size of the set of
cases |C| is denoted as m.

Next, to provide the context of the queries we aim to support,
we define the two main types of event sequence detection that
we employ in this work:

Strict contiguity (SC) , where all matching events must ap-
pear strictly in a sequence one after the other without any
other non-matching events in-between. This definition

86

is widely employed in both exact subsequence matching
and CEP systems and stream processing engines, such as
Flink [6].2 For example, SC applies when we aim to detect
pattern occurrences, where a search for a product on an
e-shop website is immediately followed by adding this
product to the cart without any other action in between.

Skip-till-next-match (STNM) , where strict contiguity is
relaxed so that irrelevant events are skipped until we de-
tect the next matching event of the sequential pattern [34].
STNM is required when, for example, we aim to detect
pattern occurrences where after three searches for specific
products there is no any purchase eventually in the same
session.

Example: let us assume that we look for a pattern AAB, where
A,B are activities. Let us also assume that a log contains the
following sequence of events KAAABAACB>, where the timestamps
are implicit by the order of each event. SC detects a pattern
occurrence starting at the 2nd position, whereas STNM detects
two occurrences; the first one contains the events at the 1st, 2nd
and 4th position, while the second one contains the events at the
5th, 6th and 8th position. Note that other types of event sequence
detection allow for additional and overlapping results, e.g., to
detect a pattern in the 1st, 3rd and 8th position, as discussed at
the end of this work [34].

2.2 Exact rooted subtree matching in
sublinear time

Strict contiguity (SC) is directly relevant to subsequence match-
ing and tree-based techniques have been used for a long time for
finding sub sequences in large datasets. Suffix trees and suffix
arrays are commonly used to this end. The method presented
in [19] can find subtrees in sublinear time and it has been used
to detect possible continuations of a given event sequence in
business processes in [27].

In a nutshell, the technique in [19] solves the problem of find-
ing the occurrences of a subtree with m modes in a tree T with
n nodes in O(m + logn), after pre-processing the tree. First, the
string W corresponding to T is created; this is achieved through
traversing the tree in a preorder manner and adding a 0 every
time we recur to a previous level. This yields a W of length equal
to 2n. W is then used to create a suffix array A, in which the
starting positions of the 2n suffices are specified. After discard-
ing those starting with 0, we end up with n suffices. The main
property of A is that suffices are sorted by the nodes’ order. The
subtree to be searched in T is first mapped to a preorder search
string, and then a binary search in A is performed.

In Table 1 we present the high-level differences between this
method and our proposal. We rely on simple indexing employing
a database backend, while, during query processing, the main

Zhttps://ci.apache.org/projects/flink/flink-docs- stable/dev/libs/cep.html

Append events

Cassandra

Logfile

Preprocess

Response

Query Processor

. User
cwy M

Figure 1: Architecture overview

operation is merging and post-processing of sorted lists, as ex-
plained in the next sections. More importantly, we support both
STNM and SC pattern types.

3 SYSTEM ARCHITECTURE

There exist several CEP proposals along with fully-fledged proto-
types and complete systems that allow users to query for Strict
contiguity (SC) or Skip-till-next-match (STNM) patterns, but
these are operating in a dynamic environment over a data stream.
Therefore, we need to develop a system that can receive adhoc
pattern queries over a large collection of logs and process them
in an efficient manner. These queries will be defined later in this
section and are broadly divided into three main categories (sta-
tistics, pattern detection and pattern expansion). We focus on
offline pattern detection, but we account for the fact that the logs
are constantly growing bigger and bigger. This entails that any
practical approach needs to be incremental, i.e., to support the
consideration of new logs periodically.

The overview of our proposed architecture is shown in Fig-
ure 1. There exists a database infrastructure containing old logs
and, periodically, new logs are appended. There are two main
components in the architecture. The pre-processing component
constructs and/or updates an inverted index that is leveraged
during query processing. This index is stored in a key-value data-
base to attain scalability. In our implementation, we have chosen
Cassandra®, because of its proven capability to deal with big
data and offer scalability and availability without compromis-
ing performance. However, any key-value store can be used in
replacement.

The second component is the query processor, which is re-
sponsible for receiving user queries, retrieving the relevant index
entries and constructing the response.

These two components are described in more detail in the
remainder of this section, while indexing is discussed in the next
section.

3.1 The pre-processing component

The log database has a typical relational form, where each record
corresponds to a specific event. More specifically, each row in
the log database contains the trace identifier, the event type, the
timestamp and any other application-specific metadata that play
no role in our generic solution. The second input of the pre-
processing component contains the more recent log entries that

3https://cassandra.apache.org/

trace: <(A,1), (A,2), (B,3), (A,4), (B,5), (A,6)>
Pair Strict Contiguity Skip till next match

(A,A) (1,2) (1,2),(4,6)
(B,A) (3.4),(4.5) (3.4),(5.6)
(8,B) - (3.5

(A,B) (2,3).(4.5) (1,3),(4,5)

Table 3: Pairs created per different policy.

have not been indexed yet. For example, if the index is updated
on a daily basis, the log file is expected to contain from a few
thousand of events up to several millions.

Pattern indexing and querying is applied per trace. In other
words, for each distinct trace, a large sequence of all its events
is constructed sorted by the event timestamps. To this end, the
recent logfile is combined with the log database. In addition, and
since the trace may span many indexing periods, new log entries
need to combined with already indexed events in the same trace
in a principled manner to avoid duplicates. If new logged events
belong to a trace already started, we extract stored information
from the indexing database (the exact procedure will be described
in detail shortly).

Based on these trace sequences, we build an inverted index-
ing of all event pairs. That is, we extract all event pairs from
each trace, and for each pair we keep its trace along with the
corresponding pair of timestamps. This information is adequate
to answer pattern queries efficiently, where these queries may
not only refer to pattern detection, but frequency counts and
prediction of next events, as discussed in Section 3.2.1. The in-
dex contains entries of the following format: (A,B):{(tracel2,
2,5),(tracel12, 7,11), (tracel5,1,6),. . . }.Inthis exam-
ple, the pair of event types (A,B) has appeared twice in trace12
at timestamps (2,5) and (7,11), respectively, and once in tracel5.

The pre-processing component is implemented as a Spark
Scala program to attain scalability. Next, we delve into more
details regarding pre-processing subparts.

3.1.1 Creation of event pairs. There are more than one ways
to create pair of events in a trace, which depends on the different
policy applied. We have already given two policies, namely SC
and STNM, which impact on how pairs are created.

Let us assume that a specific trace contains the following
sequence of pairs of event types and their timestamps: trace:
<(A,1), (A,2), (B,3), (A,4), (B,5), (A,6)> Table3
shows the pairs created per different policy. This example shows
a simplified representation of the inverted indexing. SC detects
only the pairs of events that are consecutive. There is no pair
pair (B,B) because there is an event (A) between the two Bs in
the trace. As expected, the SC policy creates less pairs per trace
and is also easier to implement.

STNM skips events until it finds a matching event, but there are
no overlapping pairs, the timestamps of which are intertwined.
For example, regarding pair (A,B), we consider only the (1,3)
pair of timestamps and not (2,3). The complexity of pair creation
in STNM is higher and there are several alternatives that are
presented in Section 4.

A final note is that our approach can work even in the ab-
sence of timestamps. In that case, the position of an event in the
sequence can play the role of the timestamp.

Algorithm 1 Update index

Algorithm 2 Pattern detection

: Input : new_events
: traces « transform new_events to traces as in the Seq table
: temp « LastChecked table joined with traces
: new_pairs « []
: for all trace in traces do

extract events

for all (evgy, evy,) do

It « temp.get(evg, evy).last_completion for the

same trace
9: if ev,.ts > It then
10: new_pairs += create_pairs(evg, evp)
11 end if
12: end for
13: end for
14: append new_pairs to the Index table

[B~ NS B K I S

3.1.2 Tables in the indexing database. The pre-processing
phase creates and updates a set of tables, which can all be stored
in a key-value store, such as Cassandra. The first one contains
the trace sequence, so that there is no need to be reconstructed
from scratch every time is needed, e.g., to append new events.
The second one is the index presented earlier. The other tables
are auxiliary ones, which are required during index creation and
query answering.

o Seq with key: trace;g and value: {(evg, tsq), (evp, tsp), ...}
This table contains all traces that are indexed. It is used to
create and update the main index; new events belonging
to the same trace are appended to the value list.

e Index with a complex key: (evg, ev,) and value containing
a list of triples: {(trace;q, tsq, tsp), ... }. This is the inverted
index, which is the main structure used in query answer-
ing.

o Count with key a single event type: ev, and value a list
of triples: {(evy, sum_duration, total_completions),

(evc, sum_duration, total_completions), ...}. For each event
evg, we keep a list which contains the total duration of
completions for a pair (ev,, evy) and the total number of
completions. This is used to find the most frequent pairs
where an event appears first and also we can leverage the
duration information in case further statistics are required.

o Reverse Count, which has exactly the same form of key
and value with Count, but the statistics refer to pairs that
have the event in the key as their second component

o LastChecked with complex key a pair (evg, evy,) and value
a list of pairs: {(trace;q, last_completion),...}. The length
of the list is the number of traces in which the pair (evg, evp)
appears. The last_completion field keeps the last times-
tamp of ev, in a pair detection. This table is used to prevent
creating and indexing pairs more than once.

3.1.3 Index update. In dynamic environments, new logs ar-
rive continuously, but the index is not necessarily updated upon
the arrival of each new log record. New log events are batched and
the update procedure is called periodically, e.g., once every few
hours. To avoid the generation of duplicates, the LastChecked
table introduced above plays a crucial role. The index update
rationale is illustrated in Algorithm 1.

In line 3 of the algorithm, we extract the LastChecked table
and keep only its part that refers to the traces that their id ap-
pears in new events. In line 10, the create_pairs procedure is

88

1: procedure GETCOMPLETIONS(< evy, €vy, . . ., €vp >)

2 previous «— Index.get(evy, evy)

3 fori=2top—1do

4 idx_completions < Index.get(ev;, €vj4+1)

5 for all c in idx_completions grouped by trace do
6 new « []

7 for all pr in previous for the same trace do
8 if pr.last_event.ts == c.first.ts then

9 append c to pr and add to new

10: end if

11 end for

12: previous <— new

13: end for

14: end for

15: return previous
16: end procedure

not specifically described here but can be any of the algorithms
presented in Section 4 depending also on the policy employed.
A subtle point is that the index may grow very large. To miti-
gate this, a separate index table can be used for different periods,
e.g., for different months. In addition, the traces corresponding
to completed sessions can be safely pruned from the Seq table,
along with the corresponding value entries in LastChecked.

3.2 The query processor component

The architecture described can support a range of pattern queries
that are presented in Section 3.2.1. In Section 3.2.2, we give differ-
ent solutions for predicting subsequent events in a pattern while
trading off accuracy for response time.

3.2.1 Different type of queries. The query input is a pattern
(i-e., a sequence) of events < evq, evy, evs, . . ., evp > for all sup-
ported query types. The query types in ascending order of com-
plexity are as follows:

e Statistics. This type of query returns statistics regarding
each pair of consecutive events in the pattern. The sta-
tistics are those supported by the Count table, namely
number of completions and average duration. Also, from
the LastChecked table, the timestamp of the last comple-
tion can be retrieved. The pairwise statistics can provide
useful insights about the behavior of the complete pattern
with simple post-processing and without requiring access
to any other information. For example, the minimum num-
ber of completions of a pair provides an upper bound of
the completions of the whole pattern in the query. Also,
the sum of the average durations gives an estimate of the
average duration of the whole pattern. Finally, the number
of completions could be more accurately bounded if all
pairs in the pattern are considered instead of the consecu-
tive ones only; clearly, there is a tradeoff between result
accuracy and query running time in this case.

Pattern Detection. This query aims to return all traces
that contain the given pattern. Query processing starts by
searching for all the traces that contain event pair (evy, evy).
At the next step, the technique keeps only the traces where
the same instance of ev; is followed by e3 to the pattern;
to this end, it finds all the traces that contain (evy, ev3) and
keeps those for which evy has the same timestamp in both
cases. Up to now, we have found the traces that contain

Algorithm 3 Accurate exploration of events

Algorithm 4 Fast exploration of events

1: Input: pattern ey, evy, ..., €evp
2: candidate_events «— from Count Table get all events that has
evp as first event
: propositions« []
: for all ev in candidate events do
tempPattern < append ev to pattern
candidate_pairs < getCompletions(TempPattern)
proposition < apply time constraints to candidate pairs
(optional)
8: append proposition to propositions
9: end for
10: return propositions sorted according to Equation (1)

U

(ev1, evy, ev3). The execution continues in the same way
up to evp, as shown in Algorithm 2. It is trivial to extend
the results with further information, such as the starting
and ending timestamp.

e Pattern Continuation. Another aspect for pattern query-
ing is exploring which events are most likely to extend the
pattern in the query. This has several applications, such
as predicting an upcoming event given partial pattern in
an incomplete trace, or computing the probability of an
event to appear in a pattern, based on prior knowledge. In
this query, the response contains the most likely events
that can be appended to the pattern, based on a scoring
function. Equation 1 gives a score for a proposed event.
Total completions refer to the frequency of this event to
follow the last event in the query pattern, while average
duration favors events that appear closer to the pattern in
the original traces.

total_completions
Score = ————

average_duration W

3.2.2 Pattern Continuation Alternatives. Exploring events for
pattern continuation can be computationally intensive, depend-
ing on the log size. Some times, we want accurate responses,
while in other cases it is adequate to receive coarser insights so
that we can trade accuracy for response time. We present three
alternative ways of exploring events, namely one accurate, one

fast heuristic and one hybrid that is in between the previous two.

e Accurate. In Algorithm 3, we present the outline of this
method. In line 2 we use the Count table to find all event
pairs that begin with the last event of the pattern and col-
lect the second events of the pairs in the candidate_events
list. The procedure getCompletions is already provided
in Algorithm 2. We also allow for constraints in the av-
erage time between the last event in the pattern and the
appended event; these constraints are checked in line 7.
The strong point of this approach is that all pattern contin-
uations are accurately checked one-by-one; the drawback
is that the response time increases rapidly with the size of
log files and the number of different events.

o Fast. In Algorithm 4 we perform a heuristic search. We
start by finding the upper bound of the total times the
given pattern has been completed (lines 3-8). Then, for
every possible event ev, we approximate the upper bound
if this event is added at the end of the pattern, by keep-
ing the minimum between the max_completions and the

: Input: Pattern ey, evy, ..., evp

: max_completions < oo

: for all (ev;, evj41) in pattern do

count < Count Table get ev;, evjt1

if count.total_completions < max_completions then
max_completions «— count.total_completions

end if

. end for

: propositions « []

: for all ev in Count.get(evp) do

R A U A

_ s
[T

append (ev.event,completions,ev.average_duration) to
propositions
13: end for
14: return propositions sorted according to Equation (1)

Algorithm 5 Hybrid exploration of events

: Input: Pattern ey, evy, ..., evp

: Input: topK

. fast_propositions «— run Algorithm 4 for the input pattern

: propositions <« run Algorithm 3 for topK of
fast_propositions

5: return propositions sorted according to Equation (1)

[T

total completions of ev (line 11). The strong point of this
approach is that it is fast, since it extracts precomputed
statistics from the indexing database but the results rely
only on approximations.

Hybrid. Lastly, in Algorithm 5 we perform a trade off
between accuracy and response time. This flavor receives
topK as an input parameter. First, the fast alternative runs
to provide an initial ranking of possible pattern continua-
tions. Then, for the topK intermediate results, the accurate
method runs. In this flavor, the trade-off is configurable.
Setting topK to I, the technique degenerates to the ac-
curate, while setting topK to 0 is equal to the fast only
alternative.

4 ALTERNATIVES FOR INDEXING EVENT
PAIRS

The indexing of event pairs largely depends on the pattern de-
tection policy. For the Strict contiguity (SC) policy, the process
is straightforward. For Skip-till-next-match (STNM), there are
three flavors. Each trace is processed separately in parallel using
Spark. Below, we show the processing per trace; therefore the
overall complexity for the complete log needs to be increased by
a factor of O(m). The techniques presented in this section refer
to the implementation of the create_pairs procedure in Alg. 1.

4.1 Strict Contiguity

This method is straightforward: we parse each trace and we add
the consecutive trace events in the index. The complexity is O(n),
where n is the size of a trace sequence in the log file.

4.2 Skip-till-next-match

The three different ways to calculate the event pairs using the
skip-till-next-match (STNM) strategy have different perspectives.

completions «— min(max_completions,ev.total_completions)

Algorithm 6 Parsing method (per trace)

Algorithm 7 Indexing method (per trace)

checkedList « []
for iin (0, trace.size-1) do
inter_events « []
if ev;.type not in checkedList then
5 for j in (i,trace.size) do
if ev;.type==ev;.type then
update inv_index with (ev;, ev;)
for all inter_e in inter_events do
update inv_index with (ev;, inter_e)
10: end for
reset inter_events
else if ev;.type not in inter_events then
update inv_index with ev;, ev;
append ev; to inter_events
15: end if
end for
append ev; to checkedList
end if
end for

The Parsing method computes pairs while parsing through the
sequence. The Indexing method, first detects the positions of
each distinct event and then calculates the pairs. Finally, the State
method updates and saves a state for the sequence for each new
event.

Each method can be used in different scenarios. As we will
show in the experimental section, the Indexing method dominates
in the settings investigated. But this is not necessarily always the
case. For example, if we operate in a fully dynamic environment,
where new events are appended continuously as a data stream,
its easier to keep a state of the sequence than calculating all the
pairs from the start. However, in our core scenario where new
logs are processed periodically, all three ways apply. In addi-
tion, if a domain has a lot of distinct events, i.e., [is very high
and much higher than the cardinalities examined, the Indexing
method becomes inefficient and thus is better to use the Parsing
one.

Parsing method. The main structure is inv_index, which is a
trace-specific part of the Index table. For each trace, the entries of
this table are augmented in parallel and since there is no ordering
in the values, this is not a problem.

The main rationale is shown in Algorithm 6, which contains
two main loops, in line 2 and in line 5, respectively. The idea is
to create all the event pars (ev;, evj), in which ev; is before ev;.
The checkedList prevents the algorithm from dealing with events
types that has already been tested. While looping through the
trace sequence for an event evy, the algorithm appends all new
events to inter_events until it finds an event, evs that has the
same type as ev;. When this happens it will create all the pairs
of ev; with the events in the inter_events list (line 8-10) and will
empty it (line 11). After that point, the algorithm proceeds with
creating pairs where the timestamp of the first event is now equal
to evy’s timestamp. While updating the index, some extra checks
are performed to prevent entering the same pairs twice.

Complexity Analysis. Even though there are two loops iterating
the events, the if statement in line 4 can be true only up to [times
(where [is the number of distinct elements) and so the complex-
ity is O(nl?), with n being the length of the trace sequence. The
space required is O(n+12), for the inv_index and the checkedList.

90

1: indexer «— map(event_id):[timestmap1,timestamp2,...]
2: for all ev, in indexer do

3: for all ev, in indexer do

4 CreatePairs(indexer[ev,.tsList],indexer[evy,.tsList]))
5 end for

6: end for

procedure CREATEPAIRS(times_a,times_b)
i,j,prev < 0,0,-1
pairs « []
while i < times_a.size and j < times_b.size do
5: if times_a[i] < times_b[j] then
if times_a[i] > prev then
append (times_a[i],times_b[]]) to pairs
prev «times_b[j], i1, je1
else
10: i—1
end if
else
je1
end if
15: end while
return pairs
end procedure

Algorithm 8 State method (per trace)

1: index < HashMap((ev;, evj):[ts1, s, ts3...])

2: for all ev in the trace do

3 Add_New(index,ev)

4: end for

5. return index

6: procedure App_NEw(index, new_event)

7 for all combinations where new_event is the 1st event
in index do

8: update state

9: end for

10: for all combinations where new_event is the 2nd event
in index do

11 update state

12: end for

13: end procedure

Indexing method. The key idea is to read the whole sequence
of events while keeping the timestamps in which every event
type occurred (line 1). Then, for every possible combination of
events we run the procedure, in which we create the pairs. The
procedure is similar to a merging of two lists, while checking
for time constrains. More specifically, in line 5, the order of the
events is checked and then in line 6, we ensure that there are no
overlapping event pairs.

Complexity Analysis. In line 1, we loop once the entire sequence
to find the indexes of each distinct event (O(n)). Then, the next
loops in lines 2-3 retrieve all the possible event pairs (O(I%)) and
finally the procedure in line 4, will pass through their indices
(O(n)). This gives a total complexity of O(n+12n), which is simpli-
fied to O(nl?). The total space required is O(n+12), for the partial
and the pairs. Le., the complexity is similar to the Parsing method.

State method. The algorithm is based on a Hash Map, which
contains a list of timestamps for each pair of events. We first ini-
tialize the structure by adding all the possible event pairs that can
be created (line 1) through parsing the sequence and detecting
all distinct event types that appear. Then we loop again through
the event sequence. While looping through the sequence we add
new event (ev;) in the structure, by first updating all the the pairs
that have ev; as the first event and then as the second (procedure
lines 7-12). During these updates, we ensure that no pair is over-
lapping. The update operation is as follows. For each (ev;, ev;)
entry in the HashMap, if the list of the timestamps has even
size, we append ev;.ts; otherwise we do nothing. Similarly, for
each (evj, ev;) entry in the HashMap, if the list of the timestamps
has odd size, we append ev;.ts; otherwise we do nothing. At the
end, we trim all timestamp lists of odd size (not shown in the
algorithm).

Complexity Analysis. The space complexity is O(I?) due to the
HashMap. In line 2, the loop is passing through all the events
in the sequence and for every event executes the procedure
Add_new. This procedure has two loops passing through the set
of distinct events (I), which gives us a total complexity of O(nl)
multiplied by the complexity to access the HashMap, which is
O(1) in the average case. Despite this lower complexity, in the
evaluation section, we will provide evidence that the overheads
due to the HashMap access are relatively high.

Implementation information. We have used Spark and
Scala for developing the pre-processing component, which en-
capsulates the event pair indexing, and Java Spring for the query
processor. The source code is publicly available on GitHub.4,>

5 EVALUATION

We used both real-world and synthetic datasets to evaluate the
performance of the proposed methods. We start by presenting
the datasets, followed by the evaluation of the different flavors of
indexing event pairs. Then we compare the preprocess time with
the proposal in [19] and Elasticsearch v7.9.1 and finally we show
the response time for queries that executed in both methods. In
query processing, we also compare against SASE [34].5 All tests
were conducted on a machine with 16GB of RAM and 3.2GHz
CPU with 12 cores. Cassandra is deployed on a separate machine
with 64GB of RAM and 2GHz CPU. Each experiment is repeated
5 times and the average time is presented.

5.1 Datasets

The real-world datasets are taken from the Business Process In-
telligence (BPI) Challenges, and more specifically from the years
2013, 2017 and 2020. BPI137 is an event log of Volvo IT incident
and problem management. It includes 7,554 traces, which contain
65,533 events in total. The mean, min and max number of events
per trace for this dataset are 8.6, 1 and 123, respectively. BPI178 is
an event log, which corresponds to a loan application of an Dutch
financial institute. It includes 31,509 traces, which contain over
1M (1,202,267) events in total. The mean, min and max number of
events per trace for this dataset are 38.15, 10 and 180, respectively.

“https://github.com/mavroudo/SequenceDetectionPreprocess
Shttps://github.com/mavroudo/SequenceDetectionQueryExecutor

The SASE code repository used in the experiments is https://github.com/haopeng/
sase

7 d0i:10.4121/500573e6-accc- 4b0c-9576-aa5468b10cee
8https://data.4tu.nl/articles/BPI_Challenge_2017/12696884

91

Log file Number of traces Activities
max_100 100 150
max_500 500 159
med_5000 5,000 95
max_5000 5,000 160
max_1000 1,000 160
max_10000 10,000 160
min_10000 10,000 15
bpi_2013 7,554 4
bpi_2020 6,886 19
bpi_2017 31,509 26

Table 4: Number of traces and distinct activities for every
process-like event log.

From BPI20°, we use an event log of requesting for payment for
a business trip. This is the smaller real-world dataset. It includes
6,886 traces, which contain 36,796 events. The mean, min and
max number of events per trace for this dataset are 5.3, 1 and 20,
respectively.

We also created synthetic datasets. First with the help of the
PLG210 tool, we created 3 different processes, with different num-
ber of distinct activities (15,95,160). Then by modifying the num-
ber of traces per logfile, we created logs that contain from 500 to
400,000 events. The log files are in the XES!! format. In Figure
2, the distributions of events per trace and unique activities per
trace are shown. The purpose of these figures is to provide ev-
idence that our test datasets cover a broad range of real-world
trace profiles, thus the experimental results are trustworthy. In
general, logs with the terms “med” and “max” in their name have
more events per trace and much more unique activities than
those with the term “min”. Summary metadata are also in the
Table 4. The process-oriented logs are not big, but are used in
order to compare our approach against the one in [19], which
has been employed in pattern continuation in business processes.
This method cannot handle much bigger datasets. To test the
scalability of our solution, we employ some additional random
datasets that will be introduced separately.

5.2 Evaluating the different ways of indexing
pairs

In this section, we evaluate the different flavors that index the
event pairs according to the skip-till-next-match (STNM) policy.
We aim to find the pros and cons for each flavor in Section 4
and also define the different real life scenarios to use them com-
plementing the discussions already made above. We start the
evaluation using the datasets in Table 4. The results are shown
in Table 5. The main observation is that all three flavors perform
similarly while indexing process-like datasets. When the relative
differences are larger (e.g., larger than 30% for bpi_2020), the
absolute times are small, so the impact of different decisions is
not that important.

These datasets are not big. To better test the potential of the
three alternatives, we created log files in which the events were
not based on a process. We range the number of traces from 100
to 5000, the number of max events per trace from 50 to 4000

9https://d0i.0rg/1044121/uuid:52fb97d4-4588-4309- 9d04-3604d4613b51
Ohttps://plg.processmining.it/
Uhttps://xes-standard.org/

max_100.xes max_1000.xes med_5000.xes
250 1200
EEm events per trace mmm events per trace mmm events per trace
= activities per trace = activities per trace m activities per trace
1000

800

max_5000.xes min_10000.xes max_10000.xes
1200 5000
EEm events per trace W events per trace mmm events per trace
W activities per trace W activities per trace W activities per trace

1000 2000

4000

800
3000 1500

2000 1000

1000 500

bpi_2013.xes bpi_2020.xes bpi_2017.xes
3500
mmm events per trace = events per trace = events per trace

B activities per trace B activities per trace 7000 B activities per trace

4000 3000
6000
2500
3000 5000

2000

4000
2000 1500
3000
1000 2000
1000

500 1000

0 20 40 60 80 100 120 25 50 75 100 125 150 175 200

Figure 2: Distributions of the number of events and activities (i.e., unique event types) per trace for every process like log
file.

Log file Indexing Parsing State —&— indexing
2000 -@- state —— -

max_lOO 4.874 4.49 4.572 —e—- parsing .—-—r"""./’ __e——"’_//‘

maX_SOO 8.454 7.109 7.294 0 0=1 550 - l(;)O 1500 2000 2500 3000 3500 4000

max_1000 10.656 10.407 10.447 Max trace size

med_5000 23.105 22.601 22.417 B 2000

max_5000 38.152 34.854 38.444 ;J/

max_10000 79.863 77.964 80.796 E . eoeee=

min_10000 15.604 13.979 13.625 0 1000 2000 3000 4000 5000

bpi_2020 6.803 10384 8.822 o Number of traces

bpi_2013 9.528 8.044 8.197

bpi_2017 170.9 171.666 179.352
Table 5: Execution times of different methods (in seconds). O Y %50 s00 750 1000 1250 1500 1750 2000

Number of activities
Figure 3: Comparison of execution times of the three dif-

and the number of activities from 4 to 2000. We refer to them ferent approaches of indexing the event pairs according to
as random datasets, due to the lack of correlation between the the STNM policy for large random logs.

appearance of two events in a trace, which is not the typical case
in practice, and renders the indexing problem more challenging.

The results are presented in Figure 3. In the first plot, we set From the Figure 3, we can observe that the Indexing alternative
the number of traces equal to 1000 and the number of different outperforms the other two, in some cases by more than an order
activities equal to 500, while changing the number of max events of magnitude. The simplicity of this method makes it superior to
per trace from 100 to 4000. Le., we handle up to 4M events. In State, even though the time complexity indicates that the latter is
the second plot, we keep the maximum number of events per better. The State method performs better than Parsing; especially
trace and distinct activities to 1000 and 100, respectively while in the third plot we can see the non-linear correlation between
increasing the number of traces from 100 to 5000. Le., we handle the execution time and the number of distinct activities.
up to 5M events. Lastly, we maintain both the number of traces In summary, our results indicate that indexing is the most
and maximum number of events to 500 and increase the distinct efficient flavor to use when dealing with log files considered
activities from 4 to 2000. periodically (so that new log entries are a few millions): it has

92

Log file [19] Strict (1 thread) Strict Indexing (1thread) Indexing FElasticsearch
max_100 1.054 3.764 3.701 5.398 4.874 0.67
max_500 2.68 5.593 4.649 12.568 8.454 4.68
max_1000 4.458 7.084 5.69 22.544 10.656 10.167
med_5000 6.913 20.361 9.175 113.04 23.105 31.80
max_5000 16.163 25.419 12.452 210.713 38.152 31.41
min_10000 26.64 31.379 8.782 116.318 15.604 38.15
max_10000 37.569 63.975 21.006 734.844 79.863 121.167
bpi_2020 95.269 11.461 8.597 17.908 6.803 14.49
bpi_2013 504.089 12.817 7.918 14.925 9.528 9.973
bpi_2017 very high 451.666 66.284 crash 170.9 364.293

Table 6: Comparison of execution times between [19] and our proposal (time in seconds).

minimum space complexity and it has the best executing time.
On the contrary, State is preferable when operating in a dynamic
environment, when for example new logs will be appended at
the end of every few minutes and some traces will be active for
weeks. State allows to save the current state of the log and, when
new events are appended, it can calculate the event pairs without
checking the previous ones. Even though the space complexity
is higher than the other methods, it is expected to dominate in a
real dynamic scenario.

5.3 Pre-process comparison

Based on the previous results, we continue the comparison using
only the Indexing alternative for the STNM policy. We compare
the time for building the index for both SC and STNM against
[19], which supports only SC, and against Elasticsearch. The
results are presented in Table 6; to provide the full picture we
run Spark in two modes, namely using all the available machine
cores and using a single Spark executor. The latter allows for
direct comparison against non-parallel solutions.

Considering how [19] works, logs that are based on processes
are easier to handle. We can split the test datasets of table 4
into three categories, namely small synthetic datasets (100-1000
traces), large synthetic datasets (5000 & 10000 traces) and real
datasets (from the BPI challenge). In the first category, Strict
performs almost the same as [19], while Indexing has significantly
higher execution time, due to the more complex process it runs.
In the second category, Strict scales better and achieves better
times than [19]. Finally, in real datasets, our method achieves
two order of magnitude lower times compared to [19]. When
using the bpi_2017 dataset, [19] could not even finish indexing
in 5 hours. This is probably based on the large amount of events
(*1.2M) combined with the high number of distinct events per
trace. This lead to a very large suffix array, which probably could
not fit in main memory and ended up doing an extensive amount
of I/Os. For the same dataset, both Indexing and Strict managed
to create inverted indexing in less than 3 minutes when using all
machine cores.

Compared to Elasticsearch, we can observe that our best per-
forming technique is on average faster for the last two categories
(large synthetic and real datasets). In the larger real dataset, build-
ing an index to support STNM queries according to our proposal
is more than 2.1X faster than Elasticsearch.

Parallelization-by-design is a big advantage of our method;
we do not simply employ Spark but we can treat each trace in
parallel. Further, parallelization applies to both the event-pair
creation and the storage (Cassandra is a distributed database). As

93

Log file [19] Our method (2) Our method (10)
max_100 0.0023 0.007 0.022
max_500 0.0026 0.020 0.029
max_1000 0.0022 0.010 0.050
med_5000 0.0022 0.013 0.280
max_5000 0.0026 0.007 0.230
min_10000 0.0022 0.060 2.200
max_10000 0.0026 0.012 0.400
bpi_2020 0.0059 0.006 0.290
bpi_2013 0.0185 0.034 4.000

Table 7: Comparison response times in seconds

shown in Table 6, indexing can run even 10 times faster when
using all 12 cores available. This is not the case for the [19] and
other solutions, like Elasticsearch. However, there exist some
structures that build suffix trees in parallel [2, 13, 20]. But still,
the most computational intense process is to find all the subtrees
and store them. The number of subtrees is increased with the
number of leaves, which depends on the different traces that can
be found in a logfile.

5.4 Query response time

We start by comparing the response time for a single query, be-
tween our method and the one in [19]. Since [19] supports the
strict contiguity (SC) policy solely, we use this policy to create
the inverted index and then execute a pattern detection query,
as described in Section 3.2.1. Then, we compare the STNM solu-
tions against Elasticsearch and SASE, which does not perform
any preprocessing. We do not employ Elasticsearch in the SC
experiments, because it is more suitable for STNM queries; more
specifically, supporting SC can be achieved with additional ex-
pensive post-processing. Finally, we compare the pattern con-
tinuation methods and show the effectiveness of the trade-off
between accuracy and response time.

5.4.1 Comparison against [19] for SC. The results of the com-
parison are shown in Table 7. In the first column, we can see
the response time of [19] for the different log files. In the next 2
columns, we have different response times for detection queries,
for pattern length equal to 2 and 10, respectively. As discussed
in Section 2.2, all subtrees are precalculated and stored, which
means that the detection query time is O(logn + k) where n here
is the number of different subtrees and k is the number of sub-
trees that will return. As such, for [19], the response time does
not depend on the querying pattern length. On the other hand,

Log file Elasticsearch ~ SASE Our method

pattern length = 2

max_100 0.006 0.003 0.003
max_500 0.009 0.014 0.006
max_1000 0.009 0.038 0.004
med_5000 0.048 0.958 0.006
max_5000 0.015 1.400 0.005
min_10000 0.145 1.565 0.031
max_10000 0.048 7.024 0.011
bpi_2013 0.071 0.205 0.008
bpi_2020 0.068 0.366 0.040
bpi_2017 0.609 70.491 0.102
pattern length = 5
max_100 0.011 0.002 0.008
max_ 500 0.018 0.014 0.012
max_ 1000 0.017 0.038 0.013
med_ 5000 0.126 0.999 0.048
max_ 5000 0.037 1.226 0.036
min_ 10000 0.647 1.688 0.525
max_ 10000 0.170 6.413 0.061
bpi_ 2013 0.155 0.233 0.063
bpi_ 2020 0.246 0.534 0.562
bpi_ 2017 4.652 370.142 1.495
pattern length = 10
max_100 0.020 0.002 0.048
max_500 0.031 0.014 0.039
max_1000 0.032 0.038 0.060
med_5000 0.239 1.010 0.279
max_ 5000 0.075 1.245 0.218
min_10000 1.340 1.712 3.707
max_10000 0.289 6.491 0.373
bpi_2013 0.259 0.229 0.374
bpi_2020 0.440 0.531 4.262
bpi_ 2017 9.661 440.066 11.188

Table 8: Response times for STNM queries in seconds

our proposal incrementally calculates the completion for every
event in the pattern as described in Section 3.2.1; as such, the
response time depends on the pattern length. In Figure 4, we
show how response time increases with respect to the querying
pattern length.

The experiments in Table 7 were executed 5 times and we
presented the mean response time. However, we have noticed a
fluctuation in response times, which is affected by the events in
the pattern. Each event has a different frequency in the log files;
e.g., starting and ending events are more frequent than some
events that correspond to an error. When events in the querying
pattern have low frequency, the response time will be shorter
because there are fewer traces that need to be tested.

For small patterns, with length equal to 2-5, we get similar
response times between the two methods, while [19] is always
faster. As pattern length increases, our method’s response time
increases as well, but we also return as a by-product detection
for all the sub-patterns.

In summary, the table shows the penalty we pay against a state-
of-the-art technique during subsequence matching; however, the
benefits of our approach are more significant: we allow efficient
indexing in large datasets and we support, with similar times,
pattern queries using the STNM policy.

5.4.2 Comparison against Elasticsearch and SASE for STNM.
In Table 8, we present comparison against SASE and Elasticsearch

94

Response time in respect of pattern length

1001

801

60

Time in seconds

40

201

0 10 20 30 40 50
Pattern length

Figure 4: Response time with respect to the querying pat-
tern length

max_10000

350 —— Accurate
Fast

0 10 20 30 40 50
Pattern length

Figure 5: Response time for different pattern continuation
methods for different query pattern lengths

query response times, when, in each experiment, we search for
100 random patterns. There are two main observations. Firstly,
running techniques that perform all the processing on the fly
without any preprocessing, such as SASE, yields acceptable per-
formance in small datasets but significantly degrades in larger
datasets, such as bpi_2017 and max_10000. In the former dataset,
techniques that perform preprocessing are faster by 2 orders of
magnitude. Secondly, there is no clear winner between Elastic-
search and our solution. But, in general, we are faster for small
queries of pattern size equal to 2 and in all but one dataset for
pattern size equal to 5, while Elasticsearch runs faster for pattern
length equal to 10. However, for the longest running long queries,
our solution is only 15.8% slower. Therefore, we can claim that
our solution is competitive for large query patterns. Moreover, we
can relax our query method to achieve faster times, as explained
in the next part of the evaluation, while we support pattern con-
tinuation more efficiently due to the incremental approach of
pattern processing that we adopt; i.e., we do not have to repeat
the complete query from scratch.

5.4.3 Comparison of pattern continuation alternatives. In Fig-
ure 5, we show the response times between Accurate and Fast
method for the dataset max_10000. We can see that the Accurate
method follows the same pattern as the graph in Figure 4, which
is what we expected as it performs pattern detection for every
possible subsequent event in the pattern. On the other hand, there
is no significant increase of response time for the Fast heuristic
with regards of the pattern length.

We are trying to fill this performance gap with the Hybrid
alternative. In Figure 6, we use again the max_10000 dataset and a
pattern with 4 events and we show the response time with respect
to the topK parameter given to Hybrid. The response time for
both Accurate and Fast is constant, because they do not use this
parameter. As expected, the time increases linearly as k increases.

Response time in respect of top k
25] G000 0

—— Accurate
Fast
—#— Hybrid

Top k

Figure 6: Response time of pattern continuation methods
for different topK values

Accuracy in respect of top k

Iy
o

o
®

o
o

—#— Accurate
Fast
—=— Hybrid

Accuracy

o
=

o
o

2 4 6 8 10 12 14
Top k

Figure 7: Accuracy of pattern continuation methods for
different topK values

Fast’s execution time is the lower bound and Accurate’s is the
upper one.

For the same setup, we perform an accuracy test presented in
Figure 7. We use as ground truth the events returned from the
Accurate method and compute the accuracy as the fraction of
the events in the top k propositions from Hybrid that exist in
the propositions reported by Accurate, where k is the number of
propositions returned from Accurate. The accuracy is increasing
as the number of k increases until it reaches 100% for k=8. For
the same value, response time is half of the Accurate, as shown in
the previous graph. Also in this example we could achieve a 80%
accuracy with k=2 and 1/3 of the response time that Accurate
would have taken.

6 RELATED WORK

Our work relates to several areas that are briefly described here
in turn.

Complex event processing. There are number of surveys pre-
senting scalable solutions for the detection of complex events in
data stream. A variety of general purpose CEP languages have
been developed. Initially, SASE [30] was proposed for executing
complex event queries over event streams supporting SC only.
The SQL-TS [24] is an extension to the traditional SQL that sup-
ports search for complex and recurring patterns (with the use of
Kleene closure), along with optimizations, to deal with time series.
In [9], the SASE language was extended to support Kleene clo-
sures, which allow irrelevant events in between thus covering the
skip-till-next-match (STNM) and skip-till-any-match strategies.
An extensive evaluation of the different languages was presented
in [34] along with the main bottlenecks for CEP. In addition, the
K*SQL [21] language, is a strict super-set of SASE+, as it can work
with nested words (XML data). Besides the languages, most of
these techniques use automata in order to detect specific patterns

95

in a stream, like [18]. Our technique differs from them as we do
not aim to detect patterns on the fly, but instead, to construct the
infrastructure that allows for fast pattern queries in potentially
large databases. To this end, the work in [22] also uses pair of
events to create signatures, but for scalability purposes, this work
considers only the top-k most frequent pairs, which yields an
approximate solution, whereas we focus on exact answers. In
addition, [22] focuses on the proposal of specific index types,
whereas we follow a more practical approach, where are indices
are stored as Cassandra tables to attain scalability.

Pattern mining. For non-streaming data, a series of methods
have been developed in order to mine patterns. The majority
of these proposals are looking for frequent patterns; e.g., Sahli
et al in [26] proposed a scalable method for detecting frequent
patterns in long sequences. As another example, in several other
fields such as biology, several methods have developed, which
are typically based in statistics (e.g., [1, 15]) and suffix trees (e.g.,
[10]). Parallel flavors have also been proposed, e.g., in [7]. Other
forms of mined patterns include outlying patterns [5] or general
patterns with high utility as shown in [32]. It is not trivial to build
on top of these techniques to detect arbitrary patterns, because
these techniques typically prune non-interesting patterns very
aggressively.

Business processes. There are applications in business process
management that employ pattern mining techniques to find out-
lier patterns and clear log files from infrequent behavior, e.g.,
[16, 28], in order to facilitate better process discovery. Another
application is to predict if a trace will fail to execute properly;
for example, in [4, 17], different approaches to predicting the
next tasks of an active trace are presented. None of these tech-
niques addresses the problem of efficiently detecting arbitrary
sequences of elements in a large process database as we do, but
the technique in [27] encapsulates our main competitor, namely
[19]. Finally, in [8], a query language over business processes
was presented to support sub-process detection. The proposed
framework can be leveraged to support SC and STNM queries
over log entries rather than subprocesses, but this entails using a
technique like SASE, without any pre-processing. Our evaluation
shows that such techniques are inferior to our solution.

Other data management proposals. The closest work to ours
from the field of data management is set containment join queries,
e.g., [31]. However, this type of joins does not consider time
ordering. An interesting direction for future work is to extend
these proposals to work for ordered sequences rather than sets;
to date, this remains an open issue.

7 DISCUSSION

We have proposed a methodology to detect pattern according to
the Strict contiguity (SC) and Skip-till-next-match (STNM) policy
in large log databases, assuming that new events arrive and pro-
cessed in big batches. However, there are several issues that need
to be addressed with a view to yielding a more complete solution.
First, sequential patterns, in their more relaxed form, allow for
overlappings, which is commonly referred to as the skip-till-any-
match policy. Supporting such patterns places additional burden
to both the indexing process and query execution. Second, in
many cases, assuming a total ordering is restrictive and also, the
way some events may be logged, even in the same trace, cannot
be regarded as following a total order. For example, in predic-
tive maintenance in Industry 4.0, it is common to group events
in large sets ignoring their relative order, e.g., [29]. Extending

our approach to operate under partial ordering is an interesting
extension. Additionally, judiciously choosing the optimal update
period is an open issue and gives rise to a multi-objective problem
where low indexing time and result timeliness are contradicting
objectives. Finally, the pattern continuation techniques can ac-
count for other operation modes, where an event is not appended
only at the end, but also at arbitrary places in the query pattern.
Our proposal can be easily extended to cover these cases, but we
omit details here.

8 CONCLUSION

Despite the big advances in complex event processing and sequen-
tial pattern mining, efficient detection of arbitrary subsequences
in log databases is an overlooked issue. Our proposal fills this gap
and proposes indexing techniques along with query evaluation
algorithms that allow the user to detect any patterns according
to either the strict contiguity and the skip-till-next-match policy.
Compared to subsequence matching techniques that support only
strict contiguity, we show that our indexing can scale and also,
query processing times are competitive when both approaches
are applicable. Compared to Elasticsearch, a state-of-the-art solu-
tion, we build the indices faster and we run small queries faster,
while we are competitive in large queries. Further, our solution
can support exploration of pattern extension alternatives with dif-
ferent trade-offs between running time and accuracy and builds
on top of scalable technologies, like Spark and Cassandra.

Acknowledgment. The research work was supported by the
Hellenic Foundation for Research and Innovation (H.F.R.I.) under
the “First Call for H.E.R.I. Research Projects to support Faculty
members and Researchers and the procurement of high-cost
research equipment grant” (Project Number:1052).

REFERENCES

[1] Alberto Apostolico, Matteo Comin, and Laxmi Parida. 2011. VARUN: Discov-
ering Extensible Motifs under Saturation Constraints. IEEE/ACM transactions
on computational biology and bioinformatics / IEEE, ACM 7 (01 2011), 752-26.
https://doi.org/10.1109/TCBB.2008.123

[2] A. Apostolico, C. Iliopoulos, G. Landau, B. Schieber, and Uzi Vishkin. 1988.
Parallel construction of a suffix tree with applications. Algorithmica 3 (11
1988), 347-365. https://doi.org/10.1007/BF01762122

[3] Spyros Blanas, Jignesh M. Patel, Vuk Ercegovac, Jun Rao, Eugene J. Shekita,
and Yuanyuan Tian. 2010. A comparison of join algorithms for log processing
in MapReduce. In SIGMOD Conference. 975-986.

[4] Michael Borkowski, Walid Fdhila, Matteo Nardelli, Stefanie Rinderle-Ma, and
Stefan Schulte. 2019. Event-based failure prediction in distributed business
processes. Information Systems 81 (2019), 220 - 235. https://doi.org/10.1016/j.
i5.2017.12.005

[5] Lei Cao, Yizhou Yan, Samuel Madden, Elke A. Rundensteiner, and Mathan
Gopalsamy. 2019. Efficient Discovery of Sequence Outlier Patterns. Proc. VLDB
Endow. 12, 8 (April 2019), 920-932. https://doi.org/10.14778/3324301.3324308

[6] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridji,
and Kostas Tzoumas. 2015. Apache Flink™: Stream and Batch Processing in a
Single Engine. IEEE Data Eng. Bull. 38, 4 (2015), 28-38.

[7] Alexandra Carvalho, Arlindo Oliveira, Ana Teresa Freitas, and Marie-France
Sagot. 2004. A Parallel Algorithm for the Extraction of Structured Motifs.
Proceedings of the ACM Symposium on Applied Computing 1, 147-153. https:
//doi.org/10.1145/967900.967932

[8] Daniel Deutch and Tova Milo. 2012. A structural/temporal query language
for Business Processes. J. Comput. System Sci. 78, 2 (2012), 583 — 609. https:
//doi.org/10.1016/j.jcss.2011.09.004 Games in Verification.

[9] Yanlei Diao, Neil Immerman, and Daniel Gyllstrom. 2007. Sase+: An agile lan-

guage for kleene closure over event streams. Technical Report. UMass Technical

Report.

Avrilia Floratou, Sandeep Tata, and Jignesh Patel. 2010. Efficient and Accurate

Discovery of Patterns in Sequence Datasets. Proceedings - International Confer-

ence on Data Engineering, 461-472. https://doi.org/10.1109/ICDE.2010.5447843

Philippe Fournier-Viger, Jerry Chun-Wei Lin, Rage Uday Kiran, and Yun Sing

Koh. 2017. A Survey of Sequential Pattern Mining. Data Science and Pattern

Recognition 1, 1 (2017), 54-77.

Philippe Fournier-Viger, Jerry Chun-Wei Lin, Tin Truong-Chi, and Roger

Nkambou. 2019. A survey of high utility itemset mining. In High-Utility

Pattern Mining. Springer, 1-45.

[10]

[11

[12

96

[13] Amol Ghoting and Konstantin Makarychev. 2009. Serial and Parallel Meth-
ods for i/o Efficient Suffix Tree Construction. Association for Computing
Machinery, New York, NY, USA. https://doi.org/10.1145/1559845.1559931
Nikos Giatrakos, Elias Alevizos, Alexander Artikis, Antonios Deligiannakis,
and Minos N. Garofalakis. 2020. Complex event recognition in the Big Data
era: a survey. VLDB . 29, 1 (2020), 313-352.
Roberto Grossi, Andrea Pietracaprina, Nadia Pisanti, Geppino Pucci, Eli Upfal,
and Fabio Vandin. 2009. MADMX: A Novel Strategy for Maximal Dense Motif
Extraction. https://doi.org/10.1007/978-3-642-04241-6_30
Ying Huang, Yingxu Wang, and Yiwang Huang. 2018. Filtering Out Infrequent
Events by Expectation from Business Process Event Logs. 374-377. https:
//doi.org/10.1109/CIS2018.2018.00089
Bokyoung Kang, Dongsoo Kim, and Suk-Ho Kang. 2012. Real-time business
process monitoring method for prediction of abnormal termination using
KNNI-based LOF prediction. Expert Systems with Applications 39, 5 (2012),
6061 — 6068. https://doi.org/10.1016/j.eswa.2011.12.007
Ilya Kolchinsky and Assaf Schuster. 2019. Real-Time Multi-Pattern Detection
over Event Streams. 589-606. https://doi.org/10.1145/3299869.3319869
Fabrizio Luccio, Antonio Mesa Enriquez, Pablo Olivares Rieumont, and Linda
Pagli. 2001. Exact Rooted Subtree Matching in Sublinear Time. Technical Report.
TR-01-14, University of Pisa.
Essam Mansour, Amin Allam, Spiros Skiadopoulos, and Panos Kalnis. 2011.
ERA: Efficient Serial and Parallel Suffix Tree Construction for Very Long
Strings. CoRR abs/1109.6884 (2011). arXiv:1109.6884 http://arxiv.org/abs/1109.
6884
Barzan Mozafari, Kai Zeng, and Carlo Zaniolo. 2010. From Regular Expressions
to Nested Words: Unifying Languages and Query Execution for Relational
and XML Sequences. PVLDB 3 (09 2010), 150-161.
Alexandros Nanopoulos, Yannis Manolopoulos, Maciej Zakrzewicz, and
Tadeusz Morzy. 2002. Indexing web access-logs for pattern queries. In Fourth
ACM CIKM International Workshop on Web Information and Data Management
(WIDM 2002). 63-68.
Jian Pei, Jiawei Han, Behzad Mortazavi-Asl, Jianyong Wang, Helen Pinto,
Qiming Chen, Umeshwar Dayal, and Meichun Hsu. 2004. Mining Sequential
Patterns by Pattern-Growth: The PrefixSpan Approach. IEEE Trans. Knowl.
Data Eng. 16, 11 (2004), 1424-1440.
Reza Sadri, Carlo Zaniolo, Amir Zarkesh, and Jafar Adibi. 2001. Optimization
of Sequence Queries in Database Systems. In Proceedings of the Twentieth
ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems
(PODS °01). Association for Computing Machinery, New York, NY, USA, 71-81.
https://doi.org/10.1145/375551.375563
Majed Sahli, Essam Mansour, and Panos Kalnis. 2014. ACME: A scalable
parallel system for extracting frequent patterns from a very long sequence.
VLDB 7. 23, 6 (2014), 871-893.
Majed Sahli, Essam Mansour, and Panos Kalnis. 2014. ACME: A scalable
parallel system for extracting frequent patterns from a very long sequence.
The VLDB Journal 23 (12 2014). https://doi.org/10.1007/s00778-014-0370-1
Suhrid Satyal, Ingo Weber, Hye young Paik, Claudio Di Ciccio, and Jan
Mendling. 2019. Business process improvement with the AB-BPM method-
ology. Information Systems 84 (2019), 283 — 298. https://doi.org/10.1016/j.is.
2018.06.007
Sebastiaan J. van Zelst, Mohammadreza Fani Sani, Alireza Ostovar, Raffaele
Conforti, and Marcello La Rosa. 2020. Detection and removal of infrequent be-
havior from event streams of business processes. Information Systems 90 (2020),
101451. https://doi.org/10.1016/j.i5.2019.101451 Advances in Information
Systems Engineering Best Papers of CAiSE 2018.
J. Wang, C. Li, S. Han, S. Sarkar, and X. Zhou. 2017. Predictive maintenance
based on event-log analysis: A case study. IBM Journal of Research and Devel-
opment 61, 1 (2017), 11.
Eugene Wu, Yanlei Diao, and Shariq Rizvi. 2006. High-performance complex
event processing over streams. Proceedings of the ACM SIGMOD International
Conference on Management of Data 10, 407-418. https://doi.org/10.1145/
1142473.1142520
[31] Jianye Yang, Wenjie Zhang, Shiyu Yang, Ying Zhang, and Xuemin Lin. 2017.
TT-Join: Efficient Set Containment Join. In 33rd IEEE International Conference
on Data Engineering, ICDE. 509-520.
[32] Junfu Yin, Zhigang Zheng, and Longbing Cao. 2012. USpan: An efficient
algorithm for mining high utility sequential patterns. KDD 2012 (08 2012).
https://doi.org/10.1145/2339530.2339636
Mohammed Javeed Zaki. 2001. SPADE: An Efficient Algorithm for Mining
Frequent Sequences. Mach. Learn. 42, 1/2 (2001), 31-60.
Haopeng Zhang, Yanlei Diao, and Neil Immerman. 2014. On complexity and
optimization of expensive queries in complex event processing. Proceedings of
the ACM SIGMOD International Conference on Management of Data (06 2014).
https://doi.org/10.1145/2588555.2593671

[14]

[15]

[16]

[17]

(18]

[19

[20]

[21]

[22]

(23]

[24]

[25]

[26]

(27]

[28]

[29]

[30]

[33]

[34]

O

proceedings

A Comparative Evaluation of Anomaly Explanation
Algorithms

Nikolaos Myrtakis*
University of Crete
Heraklion, Greece

myrtakis@csd.uoc.gr

ABSTRACT

Detection of anomalies (i.e., outliers) in multi-dimensional data
is a well-studied subject in machine learning. Unfortunately, un-
supervised detectors provide no explanation about why a data
point was considered as abnormal or which of its features (i.e.
subspaces) exhibit at best its outlyingness. Such outlier explana-
tions are crucial to diagnose the root cause of data anomalies
and enable corrective actions to prevent or remedy their effect in
downstream data processing. In this work, we present a compre-
hensive framework for comparing different unsupervised outlier
explanation algorithms that are domain and detector-agnostic.

Using real and synthetic datasets, we assess the effectiveness
and efficiency of two point explanation algorithms (Beam [28] and
RefOut [18]) ranking subspaces that best explain the outlyingness
of individual data points and two explanation summarization
algorithms (LookOut [15] and HiCS [17]) ranking subspaces that
best exhibit as many outlier points from inliers as possible. To
the best of our knowledge, this is the first detailed evaluation
of existing explanation algorithms aiming to uncover several
missing insights from the literature such as: (a) Is it effective to
combine any explanation algorithm with any off-the-shelf outlier
detector? (b) How is the behavior of an outlier detection and
explanation pipeline affected by the number or the correlation of
features in a dataset? and (c) What is the quality of summaries
in the presence of outliers explained by subspaces of different
dimensionality?

1 INTRODUCTION

Detecting and diagnosing data anomalies are important tasks
in data processing pipelines used to build industrial-strength
Machine Learning (ML) systems [32]. Clearly, data points that
significantly deviate from other points in a dataset may be sys-
tematic errors, i.e., outliers, or may manifest changes in the data
generation process per se, i.e., novelties, that decrease the accu-
racy of the predictive models constructed downstream [29, 48].
In scientific and industrial monitoring applications, anomaly de-
tection is often the ultimate goal of the data analysis as it enables
the identification of unusual measurements (e.g., related to faults,
bio-indices, etc.) and/or of suspicious activities (e.g. intrusions,
fraud, etc.). Several unsupervised algorithms for anomaly detec-
tion have been proposed [2, 51] using different methods (e.g.,
proximity or isolation based) to distinguish outliers from inliers

“Work was done while the author was working at SAP.

T This work received funding by the CY Initiative of Excellence (grant "Investisse-
ments d’Avenir” ANR-16-IDEX-0008) and developed during the author stay at the
CY Advanced Studies, whose support is gratefully acknowledged.

© 2021 Copyright held by the owner/author(s). Published in Proceedings of the
24th International Conference on Extending Database Technology (EDBT), March
23-26, 2021, ISBN 978-3-89318-084-4 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Series ISSN: 2367-2005

Vassilis Christophides™
ENSEA, ETIS
Cergy, France
vassilis.christophides@ensea.fr

97

Eric Simon

SAP, France

Paris, France
eric.simon@sap.com

b
a) 3D Dataset)

Subspaces {F1}, {F2}, {F3}

o 202
<>
0,
01
OO —CEOC—>
%1 F1 0,

d) subspace {F2, F3} e)

Subspace {F1, F3}

©) subspace {F1, F2}

Outlier Outlier
&
04 b
o o "
~ ° ° . og 04 Outlier
w . oo w 860
© 9 "5 a0 00800
000 o o 08 "o
e % By o:
F1 F2

Figure 1: A 3d dataset with three 1d and 2d feature sub-
spaces

when labels of data points are impossible or difficult to obtain.
Unfortunately, these algorithms do not explain why a data point
was considered as abnormal, leaving analysts with no guidance
about where to begin their investigation.

In this paper, we focus on algorithms explaining the outly-
ingness aspects of multi-dimensional data points in the form of
subspaces of data features that best explain why a given outlier
deviates the most from the inliers. Such explanations are crucial
to diagnose the root cause of data anomalies [3] and enable cor-
rective actions to prevent or remedy their effect in downstream
data processing (e.g. by repairing data errors or retraining the
predictive models for concept drifts).

To illustrate, assume that we have a three dimensional dataset
with features F;, F2 and F3 and that we would like to explain the
outlyingness of points 01 and 02 depicted by a black circle and a
black square in Figure 1-a). In the full dimensional space of the
dataset, 01 exhibits a small deviation from most of the other points
in the dataset while 02 looks like an inlier although it exhibits a
significant outlyingness when considering the subset of features
{F, F3} (see Figure 1-d). We refer to the former case as full space
outliers and to the latter as subspace outliers. In both cases, we are
interested in explaining under which feature sets (aka subspaces)
points exhibit a high outlyingness. None of the 1d subspaces
{F1}, {F2} and {Fs} explain the outlyingness of the two points
(see Figure 1-b). The same is true for the 2d subspace {Fj, F3}
(see Figure 1-e). Subspace {Fy, F2} explains the outlyingness of
o1 only (see Figure 1-c), while {F, F3} explains the outlyingness
of both points (see Figure 1-d). We can observe that outlyingness
of o1 is higher in {F;, Fo} than in {F, F3}. Features contained
into the explanation of an outlier are called relevant. For instance,
F; and F; are relevant to the explanation of 02.

10.5441/002/edbt.2021.10

https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2021.10

We are primarily interested in unsupervised algorithms that
are both domain-agnostic (i.e., suitable for datasets from vari-
ous domains) and detector-agnostic (i.e., they can be employed
to explain outliers produced by any off-the-self detector). Our
choice of explanation algorithms is motivated by the fact that no
detector is good in all possible settings w.r.t data characteristics
(see the conclusions of several experimental studies [6, 8, 14]).
Hence we are interested in decoupling the outlier explanation
from detection, in contrast to several techniques proposed in Ex-
plainable Artificial Intelligence (XAI) such as output contribution
of attribute values [24, 33] or partial dependence plots [11].

We evaluate two point explanation algorithms, RefOut [18] and
Beam [28], that rank subspaces best explaining the outlyingness
of individual data points, and two explanation summarization
algorithms, LookOut [15] and HICS [17], that rank subspaces best
explaining the outlyingness of as many outlier points as possible.
These algorithms rely on outlyingness criteria of existing detec-
tors such as Local Outlier Factor (LOF) [5], Angle Based Outlier
Detection (ABOD) [21] or Isolation Forest (iForest) [23].

Although there exist several efforts for benchmarking outlier
detectors in batch [6, 8, 12, 42] and stream [22, 43] processing
settings, outlier explanation and summarization algorithms have
not yet been thoroughly evaluated under realistic assumptions.
To the best of our knowledge, this is the first comprehensive
and detailed evaluation of existing algorithms aiming to uncover
several insights missing from the existing literature. More pre-
cisely, our evaluation aims to answer the following questions:
1. Is it effective to combine any explanation algorithm with any
off-the-shelf outlier detector? 2. How is the behavior of an outlier
detection and explanation pipeline affected by the number of fea-
tures or their correlation in a dataset? 3. What is the quality of
summaries in the presence of outliers explained by subspaces of
different dimensionality?

The remaining of the paper is organized as follows. Section 2
introduces the outlier detectors and the point explanation and
summarization algorithms we integrated in our experimental
testbed. Section 3 details the pipelines of algorithms, the datasets
as well as the evaluation metric used in our testbed. Section 4
presents the conducted experiments and the conclusions drawn
regarding the missing insights. Section 5 surveys additional ex-
planation algorithms for data in rest or in motion and justify why
they have not been included in our study. Section 6 concludes
our work and presents plans for future research.

2 OUTLIER DETECTION AND
EXPLANATION ALGORITHMS

2.1 Unsupervised Outlier Detectors

Several methods have been proposed in the literature to measure
the abnormality of a data point in a dataset. In the following,
we survey three unsupervised methods that are widely used for
detecting outliers in datasets with multiple numerical® features [6,
8,12, 13, 42]. As the objective of outlier explanation is to retrieve
subspaces where the outliers are clearly separable from inliers,
we did not include any subspace-based outlier detector [20, 36]
to assess the quality of a particular subspace examined by the
explainer. The outlyingness criteria underlying each method have
respective strengths and weaknesses w.r.t. the characteristics
of the datasets (e.g., dimensionality) and outliers (e.g., highly
clustered or not).

! Anomaly detection methods for categorical data [41] are outside the scope of this
work.

98

Figure 2: Examples of outliers in different subspaces de-
tected by (a) LOF, (b) Fast ABOD and (c) iForest

Density-Based methods, such as Local Outlier Factor (LOF)
[5] take into account the local density of points when searching
for outliers. An example of outliers detected by LOF is illustrated
in Figure 2-a). The point o1 is considered to be an outlier as it lies
on a sparse area while its nearest neighbors lie on dense areas.
The distance of a point p from o is computed using the following
reachability distance (reach-dist):

reach-distg (p < 0) = max{k-dist(o),d(p,0)}

where k-dist(o) is the distance of o to its kth nearest neighbor and
d(p, o) is the direct distance (e.g., Euclidean) between the two
points. LOF computes the local reachability density of a point p
as the inverse of the average reachability distance of p from its
k-nearest neighbors (kNN):

Irdi (p) = 1/(meanoekNN(p)reach—distk(p «—0))

Finally, the density of a point is compared to the average local
reachability density of its neighbors to obtain a score:

Irdy (o)
Irdy (p)

LOF’s time complexity is O(N?), where N is the number of points
in a dataset. Inliers obtain scores around 1 while outliers obtain
scores significantly larger than 1. LOF distinguishes effectively
outliers from inliers in regions of varying density where outliers
lie on highly sparse areas far from dense clusters.

Angle-Based methods compute for each given point, the an-
gles to other data points N. The Angle Based Outlier Detector
(ABOD) [21] uses the variance of these angles as an outlyingness
score. For example, as we can see in Figure 2-b), 01 is an outlier
as its neighbors are located in similar directions (small angle
variance), but o3 is an inlier as it is surrounded by its neighbors
in various directions (high angle variance). The ABOD score for
a given point 01 and any pair of points x1, x2 is computed as:

(x101, x201)
Var

x1.x2€N \ [|x707||? - ||x2071]|?

LOFy (p) = mean,einn(p)

ABOD(o07) =

As ABOD’s time complexity is O(N?), we are focusing on an effi-
cient ABOD variant (O(kN?)), called Fast ABOD, which computes
the angles of a particular point only to its k-nearest neighbors.
Small angle variance results to high ABOD score indicating high
outlyingness. Intuitively, a point is more likely to be an outlier
when it lies on the borders of the data distribution. ABOD avoids
to compute the distance between points, hence it is a suitable
detector for high dimensional datasets.

Isolation-Based methods estimate the probability of a point
to be an outlier on the basis of the number of partitions needed
to isolate it from the other points in a dataset. The less partitions
needed to isolate, the more likely a data point is to be an outlier.
For instance, in Figure 2-c) the point o1 is an outlier as it needs less
partitions to be isolated compared to the inlier 0,. Isolation Forest

(iForest) [23] exploits this property using a forest of random trees
built on samples of the dataset by uniformly selecting features
and their split values. The outlyingness score of a data point is
then computed by averaging over all trees the path length from
the root to the leaf node with the data point:

_E(h(x)
c(n)

s(x,n) =2

The score assigned to points is normalized within the range
[0,1], with outliers getting a score close to 1. iForest has a small
memory-footprint (O(tn)), where ¢ is the number of trees and
n is the subsample size. It achieves a sublinear time-complexity
(O(tnlogn)) by exploiting subsampling and by eliminating the
heavy cost of distance computation. Being agnostic to the dis-
tances (or densities) of points, iForest is able to detect outliers
effectively even if they are lying on less dense areas than the
majority of the points.

2.2 Point Explanation Algorithms

The objective of a point explanation algorithm is to discover the
subspaces that best explain the outlyingness of a multi-dimensional
point, i.e. the feature sets where this point deviates most in the
dataset. Such subspaces are called relevant w.r.t. to the expla-
nation of an outlier. Point explanation algorithms essentially
rely on a search strategy for exploring feature subspaces in a
dataset and an outlyingness criterion. The main challenge is that
no interesting monotonic property holds for most outlyingness
criteria [28], which prevents us to effectively prune the expo-
nential space of feature sets (2d) w.r.t. data dimensionality (d).
Using the detectors presented previously, an outlier discovered
in low-dimensional subspaces may become invisible, i.e., masked
by inliers in high-dimensional subspaces and vice versa.

RefOut [18] is a sampling based algorithm which employs
a stage-wise technique exploiting random subspace projections
to find relevant subspaces of a fixed dimensionality. The main
algorithmic steps of RefOut are illustrated in Figure 3. Initially,
RefOut builds a random pool of size n with random subspace
projections drawn from the full feature space of the dataset. In
the example of Figure 3, we depict a pool of size 4 that contains
3d random subspaces (i.e, 50% of the 6d dataset). Using an off-
the-self detector, the to-be-explained outlier p1 is scored in each
subspace of the pool. To avoid dimensionality bias when scoring
subspaces, the score of a point p in a subspace s, denoted as
score(ps) is standardized using Z-score as follows:

score(ps) — scores

VVar(scores)

RefOut follows a stage-wise technique. In stage 1, RefOut as-
sesses every single feature in the pool. In other words, in this
stage it collects the best univariate subspaces. In our example, for
the feature F1 RefOut partitions the pool into two populations
of random subspaces w.r.t. whether they contain or not the fea-
ture F1. To assess the importance of a feature for explaining the
outlyingness of the point p1, RefOut quantifies the discrepancy
of score populations between the two partitions under the hy-
pothesis that they have equal means. To test this hypothesis, the
two-sample Welch’s t-test [46] is employed as the two samples
may have unequal variances and/or unequal sample sizes. The
partitioning is repeated for every feature in the pool and the
top-k ones with the highest discrepancy are kept; in our exam-
ple we kept only {F1} for simplicity. In stage 2, RefOut applies
the same partitioning and scoring process for 2d subspaces by

score(ps)’ =

99

Point to Explain 6D Dataset 3D Random Pool of size 4

Partition 1 Partition 2

1

{F1, F2, F5), {F3, F4, F6},
{F3, F5, F6}, {F1, F3, F4}

{F1,F2,F5} {F1, F3, F4}| {F3, F4, F6}
p1:0.7 p1:0.6 p1:0.3
-
Discrepancy of p1 scores between two partitions

{F3, F5, F6}|
pi:0.2

Stage 2;
«’

Outlier
Detector

Partition 1
{F1, F3, F4}
p1:0.6

Partition 2

{F3, F5, F6}
p1:0.2

{F1,F2,Fs} {F3, F4, F6}
p1:0.7 p1:0.3

)

——
Discrepancy of p1 scores between two partitions

Results

{F1, F3}
0.8

Figure 3: RefOut steps to find 2d subspaces from a 6d
dataset to explain the point p1

taking the Cartesian product of the top-k subspaces from the
previous stage with all the univariate subspaces drawn from the
pool. In our example, since we are interested in 2d explanations
the process stops at stage 2 and the best subspace ({F1, F3}) is
returned as explanation of point p1. When multiple outliers have
to be explained, RefOut searches for relevant subspaces for every
point individually.

To sum up, the core idea of RefOut is to make subspace selec-
tion adaptive to the outlyingness score of each point and flexible
w.r.t. different detectors. It relies on a pool of random subspace
projections to assess the important features, that may contribute
to the detection of relevant subspaces for a specific point. As
feature importance is measured via the discrepancy of outlying-
ness score distributions, RefOut’s effectiveness depends strongly
on the ability of an off-the-self outlier detector to assign high
scores to outliers. In particular, RefOut makes the assumption
that outliers explained in low-dimensional subspaces exhibit a
significant outlyingness also in their high-dimensional supersets.

Beam [28] is a stage-wise greedy algorithm that takes as in-
put a particular point and returns the subspaces, up to a given
dimensionality, that best explain its outlyingness. Although the
maximum dimensionality of subspaces returned by Beam is pre-
defined, the algorithm may output subspaces of varying dimen-
sionality. Beam maintains two lists: (i) a global list of the best
subspaces considered as relevant across stages, (ii) a stage list
with the best subspaces in each stage. The main algorithmic steps
of Beam are illustrated in Figure 4 via an example requesting to
explain the outlyingness of a point p1 of a 6d dataset with up to
3d subspaces. Using an outlier detector, Beam scores exhaustively
in stage 1 all the 15 2d subspaces drawn from the 6 features space
of the dataset for the point p1. Then, the top-k scored 2d sub-
spaces will be inserted both into the stage list and global list. In
stage 2, the best 2d subspaces kept in stage list will be combined
with other features to form 3d subspaces as depicted in Figure 4.
The top-k 3d subspaces are then kept in the stage list, while the
global list is updated with the 3d subspaces with higher scores for
p1 than the 2d subspaces previously computed. As we required
3d explanations in our example, the process will stop at stage 2.
The global list is then returned as the result of the algorithm.

In a nutshell, Beam is a stage-wise greedy algorithm that ex-
ploits the top-k best relevant subspaces returned by early stages

Point to Explain 6D Dataset
Ea
?Tstagtﬂ
{F1, F2} {F2, F3 {F5, F6}
p1:0.8 p1:0.2 oo p1:0.6
{F1,F2,F3)| |{F1,F2,F4}| o qq |{F4 F5 FBY !
p1:0.7 p1:0.6 p1:0.5 :
(F1.F2} | (F1LF2F3) | . | (F2F4.F5) | oo
p1:0.8 p1:0.7 p1:0.55

Figure 4: Beam steps to find subspaces up to 3 dimensions
from a 6d dataset to explain the point p1

to search for relevant subspaces in latter stages. Hence, its ef-
fectiveness depends strongly on whether a given point obtains
a high outlyingness score in lower projections of the relevant
subspace(s) that should be finally returned. In order to make a
fair comparison with RefOut, we report only the best subspaces
from the stage list in the final stage i.e., subspaces of predefined
maximum dimensionality. We call this variation Beampy.

2.3 Explanation Summarization Algorithms

The objective of an explanation summarization algorithm is to
discover for a set of outlier points, the subspaces that distinguish
as many outliers from inliers as possible. Explanation summariza-
tion algorithms also rely on a search strategy to explore feature
subspaces in a dataset. The main difference is that the outlying-
ness criterion is applied collectively for all outliers rather than
individually. The additional challenge stems from the fact that
some outliers may be explained by subspaces of different dimen-
sionality or in an extreme case all outliers could be explained by
different subspaces. We should stress that explanation summa-
rization is different from group identification and explanation.
In the former case, we consider all the to-be-explained points
as one group, while on the latter, the objective is to identify
these anomalous groups and retrieve explaining subspaces that
segregate each group from the normal instances [25].

LookOut [15] searches exhaustively subspaces of fixed dimen-
sionality and returns those that exhibit a certain utility. LookOut
was genuinely used to obtain 2d subspaces that can be easily
visualized in order to explain a set of outliers. However, we used
the algorithm to explore subspaces of high dimensionality as
well. LookOut formalizes explanation summarization as max-
imization problem using an objective function equipped with
the following properties: (i) non-negative , (ii) non-decreasing
and iii) sub-modular. As submodular optimization is known to
be an NP-hard problem, greedy approximation techniques are
used (e.g., with a 63% approximation guarantee [27]). The main
algorithmic steps of LookOut are depicted via an example in
Figure 5. Given (i) a set of outlier points P = {p1, p2, p3} and
(ii) a number of top-k explanation summaries (i.e., the budget of
the computation), LookOut constructs a subspace list S;;5; with
the top-k subspaces that maximize the scores of the three points
i.e., they provide a concise summary. Initially, LookOut employs
an off-the-self outlier detector to score all outliers in the three

100

3D Dataset :

> Outlier
W : Detector,

Iteration 1

i Objective
: Function

Siist

Iteration 2 ,
N : Objective
Siist_| {F1,F3} Sist | {F2,F3} |: Function
p1:| 09 07 p1:| 0.9 0.8 :
i|p2| 07 03 p2 | 07 0.4 ; Sist
i|p3:| 04 0.8 p3:| 0.4 0.6 : {F1, F2}
R @ ______________________ ! {F1, F3}
p1: {F1,F2}=09 {F1,F3)=0.7 | Results
p2 {F1,F2}=0.7 {F1,F3}=0.3
p3: {F1,F3}=0.8 {F1,F2}=0.4

Figure 5: LookOut steps to find 2d subspaces from a 3d
dataset with budget b = 2 (bold values indicate the high-
est scores per table row)

possible 2d subspaces drawn from the 3d feature space of the
dataset. LookOut’s objective function for concise summarization
is defined as follows:

FSus) =)
pi€P

where score; j represents the outlier score that point p; received
in subspace s;. Then, to assess utility of a subspace s to the Sj;,,
LookOut examines its marginal gain computed as:

Af(5|slist) = f(Stist YUs) = f(Spist)

In our example of Figure 5, Sy;; is initially empty and subspace
{F1, F2} is inserted during the first iteration as all three points
obtain their best outlyingness score in this subspace. During the
second iteration, LookOut examines which of the two remaining
subspaces {F1, F3} and {F2, F3} provide the greatest marginal
gain for Sj;;. In our example, {F1, F3} has a higher marginal
gain than {F2, F3} as its maximizes p3’s score, while p1 and p2
scores are already maximized by {F1, F2}. The two subspaces
are compared w.r.t. the maximum scores of every point currently
in Sj;s+. As the budget in our example is 2 i.e., the number of
subspaces that will be included in explanation, the process stops
and the Sj;; is returned as a summary of the subspaces explaining
the points given as input.

In a nutshell, LookOut returns the top-k subspaces of fixed di-
mensionality that concisely explain multiple outliers. A subspace
is considered a good summary candidate at a certain iteration
step if it maximizes the overall score for at least one outlier.
Hence, LookOut’s effectiveness strongly depends on the ability
of an off-the-self outlier detector to highly score outliers in their
relevant subspaces.

High Contrast Subspaces (HiCS) [17] relies on a subspace search
strategy that exploits combinations of correlated features called
high contrast subspaces. The underlying intuition is that high
contrast subspaces have many empty regions and few very dense
regions, thus they are good candidates for separating outliers
from inliers. Figures 6-a) to -c) illustrate three subspaces with cor-
related features ({FO, F1}, {F0, F1, F8} and {F11, F12, F13}) while
Figure 6-d) a subspace with non correlated features ({F11, F12}).

max score;
Sj €Slist

Figure 6: Data distribution in augmented/projected sub-
spaces of HiCS Datasets

Subspace contrast in HiCS is measured using two-sample sta-
tistical tests? which are applied to the raw feature values under
the null hypothesis that both samples originate from the same
underlying probability density function. To enhance statistical
precision, HiCS performs the statistical test for several Monte
Carlo iterations and the average score is computed per subspace.

HiCS searches for high contrast subspaces via a stage-wise
technique. In the first stage, it scores exhaustively all the 2d sub-
spaces and selects the top-k based on their contrast. In next stage,
the best 2d subspaces, are used to construct 3d subspaces scored
again based on their contrast. The same procedure is repeated
for several stages until reaching the full feature space d of a d-
dimensional dataset; hence, the algorithm may retrieve subspaces
of varying dimensionality. HiCS has been originally evaluated
with LOF, but in principle any other off-the-self detector could
be employed. In order to make a fair comparison with LookOut,
we force HiCS to return subspaces of fixed dimensionality up to
a predefined stage. We call this variation HiCSgy.

To conclude, HiCS is a best effort algorithm that exploits sub-
spaces with correlated features to discover summaries of varying
dimensionality. Although the assumption that outliers are more
likely to appear in correlated features seems effective for highly
clustered anomalies, correlated subspaces may not always ex-
plain outliers, as depicted in Figure 1-e). The main novelty of
HiCS lies in the decoupling of the subspace search strategy from
the scores assigned by an off-the-self detector to a set of outliers.

3 BENCHMARKING ENVIRONMENT

The algorithms along with the datasets used in our testbed are
available in our GitHub repository® to ensure repeatability of
our experiments. Regarding outlier detectors, we used the im-
plementation of LOF and iForest from Scikit-learn [30] and Fast
ABOD from PyOD [50]. We have implemented LookOut, RefOut
and Beam in java and modified HiCS implementation from ELKI
[37]. Our primary concern in this work is the correctness of the
implemented explanation algorithms. All experiments were per-
formed in a Windows personal computer with a 4 core Intel i7
processor and 16GB of main memory.

2The Welch’s t-test or the Kolmogorov-Smirnov test.
Shttps://git.io/JvuO6

101

o a

: Points of : :
! Interest : |
E Explanation ' '
H dimensionality d :

LookOut RefOut

Fast ABOD

Isolation Forest

Qualitative
Metrics

i |HICS_Fast_ABOD: <p1, St

(o]
49
EE
53

(XX]

E RefOut_iForest: <p1, St

Figure 7: Pipelines of outlier detectors