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Foreword by the PC Chair

The International Conference on Extending Database Technology (EDBT) is an established forum for researchers and
practitioners alike to disseminate knowledge and research results related to data management. This year, the 24th
edition of EDBT, scheduled to take place between March 23rd and March 26, 2021 in Nicosia, Cyprus, has instead
been held entirely online, due to the circumstances and the travel restrictions imposed by the 2020/2021 pandemic.
It has been jointly organized with the International Conference on Database Theory (ICDT).

The organizing committee solicited contributions in many different areas, including, but not limited to, Data Prepa-
ration, Data Privacy, Database Engines, Distributed Data Systems, Graph Management, Reasoning over Data, Ma-
chine Learning and AI in Databases, Novel Database Architectures, Semi-structured Data Management, and User
Interfaces for Data. Novel in this year’s edition is the solicitation of contributions in the area of Applied Database
Systems for Data Science. The goal is to give the opportunity to researchers from different areas dealing with in-
teresting data management challenges in the context of Data Science, to disseminate them to the data management
community, and at the same time to give database researchers working on interesting data science scenarios to pub-
lish their works.

The main Research track, the Industrial & Application track, as well as the Demonstration track have remained as
in previous years, while the Short paper track has been slightly extended to accommodate papers of 6 pages, to allow
more technical content.

With some rare exceptions, research papers were reviewed by 4 reviewers. Discussions and decisions were taken
under the coordination of a senior PC member, with expertise in the respective area of the paper under review. The
reviewing phase involved two cycles: resulting in a number of papers being revised and having their qualify improved
significantly.

Consistent with the tradition, the program included two keynotes, one on Data Profiling by Felix Naumann (Hasso
Plattner Institute, Germany), and one on Knowledge Management by Katja Hose (Aalborg University, Denmark).
These keynotes were complemented by the two additional keynotes of the co-organized ICDT. Last but not least, the
program had the traditional tutorial track, featuring four tutorials on topics related to knowledge graphs, blockchains,
text-to-SQL, and time series management. The overall program was accompanied by 6 Workshops.

The Program committee reviewed 108 full research papers, of which 27 were accepted. For short papers, 34 papers
out of 113 were selected. The Industry and Application track received 22 submissions of which it selected 11 for
publication, while the demo track received 24 works of which 15 were accepted.

Given that this year the conference took place online, it was a good opportunity to exploit at the maximum the
opportunities that digital technologies can offer. Furthermore, it was our intention to make sure that the paper
contributions are disseminated to a broader audience, especially outside the conference participants. For this reason,
the authors were asked to provide a pre-recorded presentation of 10 min that will remain in the proceedings, a 30 sec
pitch video that advertises the results of the contribution and a graphics ad.

In order to recognize significant contributions and give credits to the authors, the technical program committee
awarded the Best Paper award to one of the research papers and the Best Demonstration award to one of the demos.
Furthermore, following the EDBT tradition, it awarded the Test-of-Time award to a paper from the EDBT 2011 pro-
ceedings that has been deemed to have the greatest impact among those of that year. A novelty in this year’s EDBT
edition is the additional recognition of the Best Short Paper.

The realization of EDBT 2021 is a result of a collaborative effort of the different chairs and program committee
members. Congratulations are in place to the senior PC members for guiding the discussions in such a professional
and timely manner, ensuring the selection of the best quality papers. Special thanks for the excellent collaboration and
quality of work go to the Industrial and Application Chair Eric Simon, the Demonstration Chair Sihem Amer-Yahia,
the tutorial chairs Stefan Manegold and Wang-Chiew Tan, and the Workshop Chair Evaggelia Pitoura. A great deal
of credits go to the Proceedings Chair Francesco Guerra for all the extra work he has put in organizing the material
and making sure that all the proceedings information is in place. My appreciation goes also to the members of the
paper award committees for the effort they put in evaluating the candidate papers and providing the decisions in a
timely manner. I find it impossible to describe the passion, professionalism, consistency and collaborative attitude the
general chairs Demetris Zeinalipour and Panos K. Chrysanthis have demonstrated. It was great working with them.
I would also like to thank all the program committee members since due to them the high quality program became
possible, the award committees, as well as Angela Bonifati and Marc H. Scholl from the EDBT Board for the their
numerous advices and support. Last but not least, I would like to thank all the authors for the works they submitted
to the conference, the keynote speakers, the tutorial presenters, and the demonstration presenters.

Yannis Velegrakis, EDBT 2021 PC Chair
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Message from the General Chairs

The 24th edition of the International Conference on Extending Database Technology (EDBT) was held between the
23rd and 26th of March 2021, despite the COVID-19 worldwide pandemic. Continuing its longstanding tradition as
a premier data management research forum taking place in a European location, EDBT 2021, jointly organized with
the International Conference on Database Theory (ICDT), was held virtually in Nicosia, the capital of the beautiful
island of Cyprus.

At the onset, our aim has been to offer as close to an in-person, face-to-face experience as possible, maximizing
the dissemination of knowledge and sharing of research results among the EDBT/ICDT participants at no health
risk to them, and together discover the Cypriot culture and hospitality. EDBT/ICDT 2021 was initially planned to
become the first hybrid EDBT/ICDT conference, combining physical presentations with an extended online audience,
although this plan later evolved into an online format due to the ongoing situation with COVID-19. To this end, we
have been committed to offering the best possible online experience to attendees by capitalizing and expanding on
the success of earlier conferences.

Particularly, we decided on a number of novelties compared to previous conferences. Firstly, given that an optimal
online experience cannot be achieved with pre-recorded presentations, but only with live presentations and direct
interactions between the speakers and the audience, we decided in coordination with the Program Chairs on the
online synchronous delivery of all events, including all research presentations, tutorials and live demonstrations.
The next challenge was to select the appropriate conference management platform. Our personal experience as
participants in several online conferences during the past year, and our evaluation of a number of popular web
socializing platforms, led us to the decision that a custom conference attendance experience can only be delivered
by an in-house platform that relies on a reliable teleconferencing channel, an intuitive interface, and a low learning
curve.

To this end, the Data Management Systems Laboratory at the University of Cyprus, under the leadership of
Demetris Zeinalipour developed and hosted a novel web-based platform named VGATE (Virtual Gate) to online con-
ferences. VGATE allowed the Organizing Committee to collaborate over a Web-based Sheet interface (like Google
Sheets) to plan and manage the organization. VGATE provided numerous helpful building-blocks in the online orga-
nization, namely, zoom license management and user status integration, integration of proceedings and multimedia
content, industry booths, live sessions, social rooms, and for the first time an online helpdesk supported by Easy-
Conferences Ltd. Special thanks to Paschalis Mpeis (University of Cyprus, Cyprus), Soteris Constantinou (University
of Cyprus, Cyprus) and Constantinos Costa (University of Pittsburgh, USA) for their support and code contribu-
tions to the project under an extremely tight schedule. Special thanks also to Zoom Video Communications, Inc., for
facilitating and sponsoring EDBT/ICDT 2021.

Novel this year is the participation of EDBT/ICDT to the newly founded Diversity and Inclusion (D&I) initiative of
the Data Management community. EDBT/ICDT (alongside SIGMOD, VLDB, SoCC, and ICDE) celebrates the diversity
in our community and welcomes everyone regardless of age, sex, gender identity, race, ethnicity, socioeconomic
background, country of origin, religion, sexual orientation, physical ability, education, work experience, etc. To
introduce this initiative, Panos K. Chrysanthis, the EDBT/ICDT D&I Chair, together with Sihem Amer-Yahia (CNRS,
University Grenoble Alpes, France), a D&I Core Member, organized a panel as part of the Reception on DAY1 of the
conference.

With D&I and broad participation in mind, the conference program was structured in a way that is convenient
to at least half of the world at any given time. Specifically, the program was split into morning sessions (CET),
which were convenient for EU-ASIA participants, on DAY1 and DAY3, and the afternoon sessions (CET), which
were convenient for EU-America participants on DAY2 and DAY4. The Workshops were scheduled on DAY1 in the
morning or afternoon based on the geographical location of their presenters. Social events were split along the same
lines, presenting the host country, Cyprus, through music and videos on culture, geography, food, leisure, and other
enjoyable aspects of Cyprus. Virtual corridor and hallway discussions were supported by a number of unmoderated
and dynamic social rooms on VGATE at all times.

This year we also introduced some additional novelties, namely: (i) We introduced a special ceremony during Re-
ception on DAY2, titled “Pandemic Greetings from the Pioneers and the Next Data Management Challenge”, with greet-
ings by Philip A. Bernstein (Microsoft Research, WA, USA), Laura M. Haas (University of Massachusetts – Amherst,
MA, USA), Yannis Ioannidis (University of Athens, Greece) and Jeffrey D. Ullman (Stanford, CA, USA); (ii) we intro-
duced the concept of a sponsored industry talk during Dinner on DAY3, with title “Behind the Scenes of Snowflake’s
new Search Optimization Service”, by Ismail Oukid (Snowflake, Germany) and Stefan Richter (Snowflake, Germany);
(iii) we introduced a dedicated “Demos in Action: Meet the Authors!” session during Dinner on DAY3, which allowed
Demo presenters to individually showcase their demos to participants in their private presentation space through
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VGATE. Finally, we also continued to support the Climate Change discussion with a session on DAY4, led by Antoine
Amarilli (Télécom Paris, France), with guest Benjamin Pierce (University of Pennsylvania, USA).

In all above endeavors, we had the support and encouragement of our incredible Organization Committee and the
EDBT Executive Board, in particular, the President of EDBT Executive Board Angela Bonifati (Lyon 1 University,
France), as well as the Chair of the ICDT Council Wim Martens (University of Bayreuth, Germany).

We are grateful to the entire Technical Program Committees, which, under the excellent leadership of the EDBT
Program Chair Yannis Velegrakis (University of Trento, Italy and Utrecht University, Netherlands) and the ICDT
Program Chair Ke Yi (Hong Kong University of Science and Technology, Hong Kong), brought forward an exciting
technical program with a rich production of technical content (proceedings, videos, pitches, ads, etc.). Our gratitude
also extends personally to the EDBT Demonstration Chair Sihem Amer-Yahia (CNRS, University Grenoble Alpes,
France), the EDBT Workshop Chair Evaggelia Pitoura (University of Ioannina, Greece), the Climate Chair Antoine
Amarilli (Télécom Paris, France), the EDBT Applied Database Systems for Data Science Vice-Chair Paul Groth (Uni-
versity of Amsterdam, Netherlands), the EDBT Industrial/Application Chair Eric Simon (SAP, France), the Tutorial
Chairs Stefan Manegold (CWI, Netherlands) and Wang-Chiew Tan (Megagon Labs, USA), for the excellent collabora-
tion, and exchange of ideas and insightful discussions. We would also like to highlight EDBT Demonstration Chair
Sihem Amer-Yahia’s success in putting together EDBT’s first all-women Demonstration Track Committee. We would
also like to thank the organizers of the six, co-located workshops DOLAP, BigVis, BMDA, DARLI-AP, SIMPLIFY and
PIE+Q for enriching the scope of the technical program.

Several people contributed to the successful organization of the EDBT/ICDT 2021 conference. Special thanks to the
following valued collaborators for their passion in organizing a memorable event: the Sponsorship Chair Divyakant
Agrawal (University of California-Santa Barbara, USA), the Publicity Chair Herodotos Herodotou (Cyprus University
of Technology, Cyprus), the Finance Chair George Pallis (University of Cyprus, Cyprus), the EDBT Proceedings Chair
Francesco Guerra (University of Modena and Reggio Emilia, Italy), the ICDT Proceedings Chair Zhewei Wei (Renmin
University, China), the Workshops Proceedings Chair Constantinos Costa (University of Pittsburgh, USA) and the
Website support by Nicolas Kantzilaris (Easy Conferences, Cyprus).

Our sincere gratitude to our platinum sponsor, Snowflake, and our bronze sponsors, Oracle and Zoom, as well as
the contact persons behind the support, namely Martin Hentschel (Snowflake), Ann Brisson (Oracle) and Alberto
Colautti (Zoom).

Organizing EDBT 2021 at the University of Cyprus was Prof. George Samaras†’ passion. After his unexpected
passing two years ago, his friends and colleagues at the University of Cyprus volunteered to make his passion a
reality. We are grateful to the EDBT Executive Board for giving us this opportunity and trusting us to organize EDBT
2021 alongside ICDT 2021 in Cyprus, as proposed by George in 2018. We dedicate the EDBT/ICDT 2021 in honor of
the memory of Prof. George Samaras† (1959–2018).

We hope you enjoyed EDBT/ICDT 2021’s exciting technical program and your virtual visit to Cyprus!

Demetris Zeinalipour, University of Cyprus, Cyprus
Panos K. Chrysanthis, University of Cyprus, Cyprus and University of Pittsburgh, USA
EDBT/ICDT 2021 General Co-Chairs
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Test-of-Time Award

Established in 2014, the Test-of-Time Award of the Extended Database Technology (EDBT) Conference recog-
nizes papers presented at the EDBT Conferences that have had the most impact in terms of research, method-
ology, conceptual contribution, or transfer to practice over the past ten years. The 2021 Test-of-Time Award
committee looked and evaluated the impact of the papers in the EDBT 2011 proceedings, and selected

SeMiTri: a framework for semantic annotation of heterogeneous trajectories
by Zhixian Yan, Dipanjan Chakraborty, Christine Parent, Stefano Spaccapietra, and Karl Aberer

published in the EDBT 2011 Proceedings, pp. 259–270, DOI: 10.1145/1951365.1951398,

because it is one of the earliest papers to propose a general method for enriching moving object trajectories
with semantics useful for supporting location-based services, which have been and still are in high demand
across several application sectors. Since its publication, SeMiTri has generated significant interest, and follow-
up work on semantic processing of mobile data and trajectories.

The EDBT 2021 Test of Time Award committee was formed by Barbara Catania, University of Genova, Italy,
Gautam Das, University of Texas at Arlington, USA, Beng Chin OOI, National University of Singapore, Singa-
pore, Themis Palpanas, University of Paris, France, and Yufei Tao, Chinese University of Hong Kong, China.

The EDBT Test-of-Time award for 2021 will be presented during the EDBT/ICDT 2021 Conference in Nicosia,
Cyprus, as part of the Awards session on March 24, 2021.
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Best Paper Award

The Best Paper Award Committee has looked at the papers accepted in the conference and selected one that
was distinguishing itself in terms of research quality, presentation, technical challenges, and novelty. The
selected paper is

DomainNet: Homograph Detection for Data Lake Disambiguation
by Aristotelis Leventidis, Laura Di Rocco, Wolfgang Gatterbauer,

Renée J. Miller and Mirek Riedewald.
DOI: 10.5441/002/edbt.2021.03

The paper presents DomainNet, a system that disambiguates values from heterogeneous datasets by creating a
network representing co-occurring values and computing their graph centrality. The system is unsupervised,
its accuracy outperforms the state-of-the-art, and it is accompanied by an open benchmark. The paper is of
high significance: the problem is important, the proposed solution is effective, and the benchmark facilitates
further research.

Abstract: Modern data lakes are deeply heterogeneous in the vocabulary that is used to describe data. We
study a problem of disambiguation in data lakes: how can we determine if a data value occurring more than
once in the lake has different meanings and is therefore a homograph? While word and entity disambiguation
have been well studied in computational linguistics, data management and data science, we show that data
lakes provide a new opportunity for disambiguation of data values since they represent a massive network of
interconnected values. We investigate to what extent this network can be used to disambiguate values.
DomainNet uses network-centrality measures on a bipartite graph whose nodes represent values and at-
tributes to determine, without supervision, if a value is a homograph. A thorough experimental evaluation
demonstrates that state-of-the-art techniques in domain discovery cannot be re-purposed to compete with our
method. Specifically, using a domain discovery method to identify homographs has a precision and a recall
of 38% versus 69% with our method on a synthetic benchmark. By applying a network-centrality measure to
our graph representation, DomainNet achieves a good separation between homographs and data values with
a unique meaning. On a real data lake our top- 200 precision is 89%.

The EDBT 2021 Best Paper Award committee was formed by Avigdor Gal, Technion Israel Institute of Tech-
nology, Israel, Lucasz Golab, University of Waterloo, Canada, Christian Jensen, Aalborg University, Denmark,
and Qiong Luo, HKUST, China.

The EDBT Best Paper Award for 2021 will be presented during the EDBT/ICDT 2021 Conference in Nicosia,
Cyprus, on March 24, 2021.
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Best Short Paper Award

The Best Short Paper Award Committee has looked at the papers accepted in the conference and selected
one that was distinguishing itself in terms of research quality, presentation, technical challenges, novelty, and
potential impact to the broader research community and industry. The selected paper is

Answer Graph: Factorization Matters in Large Graphs
by Zahid Abul-Basher, Nikolay Yakovets, Parke Godfrey, Stanley Clark, and Mark Chignell.

DOI: 10.5441/002/edbt.2021.56

The paper proposes a two-step method for answering SPARQL conjunctive queries. The first step constructs
an answer graph consisting only of node-edge-node triples that are answers to the query (a factorized answer
set). In the second step, this answer graph is used to compute the actual embeddings for the query. The
authors present detailed implementations for generating answer graphs and computing the final embedding,
particularly in the case of cyclic conjunctive queries. Some first results from an experimental evaluation are
also provided.

The EDBT 2021 Best Short Paper Award committee was formed by Manos Athanasoulis, Boston University,
USA, Johann Gamper, Free University of Bozen-Bolzano, Italy, Ioana Manolescu, INRIA, France, Letizia Tanca,
University of Milan, Italy, and Yannis Kotidis, Athens University of Economics and Business, Greece

The EDBT Best Short Paper Award for 2021 will be presented during the EDBT/ICDT 2021 Conference in
Nicosia, Cyprus.
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Best Demonstration Award

The Best Demonstration Award Committee has reviewed the video recordings of the 15 demos accepted at
EDBT/ICDT and selected the most engaging demonstration that serves as an example of a structured and well
illustrated demonstration and showcases an end-to-end system on a state-of-the-art topic that promotes data
management beyond its boundaries. The selected demo is

Conversational OLAP in Action
by Matteo Francia, Enrico Gallinucci, and Matteo Golfarelli

(DISI – University of Bologna)
DOI: 10.5441/002/edbt.2021.74

For demonstrating COOL, a tool supporting natural language COnversational OLap sessions. COOL interprets
and translates a natural language dialogue into an OLAP session that starts with a GPSJ query. The demon-
stration is engaging and showcases the usability of COOL and its capabilities in assisting query formulation
and ambiguity resolution.

The EDBT 2021 Best Demonstration Award committee was formed by Sihem Amer-Yahia, CNRS Univ. Greno-
ble Alpes, France, Elena Baralis, Politecnico di Torino, Italy, Maria Luisa Damiani, University of Milan, Italy,
Anna Fariha, UMass Amherst, USA, Irini Fundulaki, FORTH, GRnet, Greece, Zoi Kaoudi, TU Berlin, Ger-
many, Georgia Koutrika, ATHENA, Greece, Esther Pacitti, University of Montpellier (Inria&CNRS), France,
and Agma Traina, ICMC-USP, Brazil.

The EDBT Best Demonstration Award for 2021 will be presented during the EDBT/ICDT 2021 Conference in
Nicosia, Cyprus, on March 24, 2021.
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ABSTRACT
Exchanging data between data sources is a fundamental problem

in many data science and data integration tasks. In this paper, we

focus on the data exchange problem in the presence of privacy

constraints on the source data, which has been disregarded in the

literature to date. By leveraging a logical privacy-preservation

paradigm, the privacy restrictions are expressed as a set of policy
views representing the information that is safe to expose over

all instances of the source in order to exchange them with the

target. We introduce a protocol that provides formal privacy

guarantees and is data-independent, i.e., under certain criteria,

it guarantees that the mappings leak no sensitive information

independently of the instances lying in the source. Moreover, we

design an algorithm for repairing an input mapping w.r.t. a set of

policy views, in cases where the input mapping leaks sensitive

information. We show that the repairing can build upon hard-

coded and learning-based user preference functions and we show

the trade-offs. Our empirical evaluation shows that repairing

mappings is quite efficient, leading to repairing sets of 300 s-t

tgds in an average time of 5s on a commodity machine. It also

shows that the repairing based on learning is robust and has

comparable runtimes with the hard-coded one.

KEYWORDS
privacy-preserving data integration, data exchange, mapping

repairs

1 INTRODUCTION
Data exchange is a key process in data science and data integra-

tion pipelines, leading to translating data compliant with a source

schema S and lying in a source database to a target databasewith a
non-overlapping target schema T [1, 4, 17]. Data exchange is also

part of metadata management operations [6], since the schema

mappings between source and target also known as source-to-
target (s-t) dependencies Σ𝑠𝑡 (s-t tgds) are declarative expressions
manipulating schema elements, i.e. metadata rather than data.

Despite a wealth of research on the topic, the privacy-aware

variant of the data exchange problem has received little attention

to date. However, recent data protection regulations such as EU

GDPR or CCPA in the US bring the attention to the problem of

protecting personal data when transferring data across countries

and institutions, thus motivating our work. In a privacy-aware

data exchange scenario (as exemplified in Figure 1), the source

schema comes with a set of constraints called policy views V
representing the data that is safe to expose to the target over all
instances of the source. The policy views can be considered as

user views on the data of the source and can encode possible

formulations of the different purposes the data will undergo dur-

ing the exchange process as in many data protection regulations.
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source instance

over schema S

View instance

over schema V

(possibly)

unsafe instance

over schema T

safe instance

over schema T

Policy views V

MappingM

M ′
(repair ofM)

Figure 1: A privacy-aware data exchange settingwithmap-
pings and policy views.

This process entails the repairing of the original mappingM into

a mappingM ′
in order to make the exported target instance safe.

However, in order to realize such a data exchange scenario, one

needs to address the following issues: (1) given a set of privacy

restrictions on the source schema, what would it mean for a data

exchange setting to be safe under the proposed privacy restric-

tions?; (2) assuming that the privacy-preservation protocol is

fixed, how could we assess the safety of a data exchange setting

w.r.t. the privacy restrictions and provide strong guarantees of no
privacy leakage?; finally, in case of privacy violations, (3) how

could we repair the s-t tgds (and transform the mapping M into

a repaired mappingM ′
)?

To address the first issue, we build upon prior work on the

logical foundations of privacy-preserving data integration [5, 21],

and we tailor them to a data exchange setting. Hence, we de-

fine a set of s-t tgds to be safe w.r.t. the policy views if every
positive information that is kept secret by the policy views is

also kept secret by the s-t tgds. As we will see in subsequent

sections and contrarily to previous work, our proposed privacy-

preservation protocol is data-independent allowing us to provide

strong privacy-preservation guarantees over all instances of the

sources. As such, our work leads to the first practical frame-

work establishing privacy-conscious data exchange. The above

addresses the second aforementioned issue in that it enables a

schema-level enforcement of the privacy-preserving protocol

with strong guarantees. Regarding the third issue, we propose a

repairing algorithm for the proposed privacy-preservation proto-

col in case of detected unsafety. Since multiple repairs are pos-

sible, such an algorithm might leverage techniques for learning

the user preferences during the repairing process, which is also

a desirable feature in privacy enforcement over sensitive data.

In order to further illustrate the relevance of our problem, we

illustrate a running example inspired by a real-life data exchange

process between two different hospitals in the UK
1
.

1.1 Illustrative example
Consider the source schema S of NHS consisting of the following
relations: P, HN, HS, O and S as illustrated in Figure 2 (a). Re-

lation P stores for each person registered with the hospital, his

insurance number, his name, his ethnicity group and his county.

Relations HN and HS store for each patient who has been ad-

mitted to some hospital in the north or the south of UK, his

1
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Source schema S = {P(i, n, e, c);HN (i, d);HS (i, d);
O(i, t, p); S(i, n, e, c)}

Target schema T = {EthDis(e, d);CountyDis(c, d); SO(e)}
View schemas V = {V1 (e, d);V2 (c, d);V3 (t, p);V4 (e)}

(a) Schemas S, T and V

P(i, n, e, c) ∧ HN (i, d) → V1 (e, d) (1)

P(i, n, e, c) ∧ HS (i, d) → V2 (c, d) (2)

O(i, t, p) → V3 (t, p) (3)

S(i, n, e, c) → V4 (e) (4)

(b) Policy views V

P(i, n, e, c) ∧ HN (i, d) → EthDis(e, d) (5)

P(i, n, e, c) ∧ HN (i, d) → CountyDis(c, d) (6)

S(i, n, e, c) ∧ O(i, t, p) → SO(e) (7)

(c) Mapping from S to T.

Figure 2: Schema and tgds in our illustrative example

insurance number and the reason for being admitted to the hospi-

tal. Relation O stores information related to patients in oncology

departments and, in particular, their insurance numbers, their

treatment and their progress. Finally, relation S stores for each
student in UK, his insurance number, his name, his ethnicity

group and his county.

Consider also the setV comprising the policy views (1)–(4).

The policy views define the information that is safe to make

available to the public. View (1) projects the ethnicity groups

and the hospital admittance reasons for patients in the north of

UK; view (2) projects the counties and the hospital admittance

reasons for patients in the south of UK; view (3) projects the

treatments and the progress of patients of oncology departments;

view (4) projects the ethnicity groups of the school students. The

policy views are compliant with the NSS privacy preservation

protocol that is adopted at the hospital. Precisely, the NSS pri-

vacy preservation protocol considers as unsafe any non-evident

piece of information that can potentially de-anonymize an indi-

vidual. For example, views (1) and (2) do not leak any sensitive

information concerning the precise address of patients. Indeed,

they include patients from a very large geographical area thus

implying that the probability of de-anonymizing a patient is sig-

nificantly small. Similarly, views (3) and (4) are considered to be

safe: the probability of de-anonymizing patients of the oncology

department from view (3) is zero, since there is no way to link a

patient to his treatment or his progress, while view (4) projects

information which is already evident to public.

Finally, consider the following set of source-to-target depen-

dencies Σ𝑠𝑡 . Dependencies (5) and (6) project similar information

with the views (1) and (2), respectively. However, contrarily to

the views, they solely focus on patients in the north of UK. Finally,

dependency (7) projects the ethnicity groups of students who

have been in some oncology department, whereas view V4 aims

at concealing the information about the department in which a

student has been admitted.

The above example shows that the policy views defined within

one hospital might be in stark contrast with the mappings used to

export patient’s information to another hospital. This motivates

the aforementioned questions (1), (2) and (3) about establishing

formal guarantees for privacy preservation as well as enabling

repairing of the mappings in order to make them safe. To the

best of our knowledge, our work is the first to provide practical

algorithms for a logical privacy-preservation paradigm effective

in a real system [10], described as an open research challenge

in [5, 21]. Our technique is inherently data-independent thus

bringing the advantage that both the safety test and the repairing

operations are executed on the metadata provided through the

mappings and not on the underlying data instances.

The paper is organized as follows. Section 2 discusses the re-

lated work. Section 3 presents the basic concepts and notions. Sec-

tion 4 lays our privacy preservation protocol. Section 5 presents

our repairing algorithms and their properties. mechanism. Sec-

tion 6 outlines the experimental results, while Section 7 concludes

our work. The code base along with the experimental data are

publicly available at [12].

2 RELATEDWORK
Privacy in data integration. Safety of secret queries formu-

lated against a global schema and adhering to the certain an-

swers semantics has been tackled in previous theoretical work

[21]. They define the optimal attack that characterizes a set of

queries that an attacker can issue to which no further queries

can be added to infer more information. They then define the

privacy guarantees against the optimal attack by considering the

static and the dynamic case, the latter corresponding to modifica-

tions of the schemas or the GLAV mappings. The same definition

of secret queries and privacy setting is adopted in [5], which

instead focuses on boolean conjunctive queries as policy views

and on the notion of safety with respect to a given mapping.

An ontology-based integration scenario is assumed in which the

target instance is produced via a set of mappings starting from

an underlying data source. Whereas they study the complexity

of the view compliance problem in both data-dependent and

data-independent setting, we focus on the latter and extend it

to non-boolean conjunctive queries as policy views. We further

consider multiple policy views altogether in the design of a prac-

tical algorithm for checking the safety of schema mappings and

for repairing the mappings in case of violations.

Privacy in data publishing. Data publishing accounts for

the settings in which a view exports or publishes the information

of an underlying data source. Privacy and information disclosure

in data publishing linger over the problem of avoiding the dis-

closure of the content of the view under a confidential query. A

probabilistic formal analysis of the query-view security model

has been presented in [20], where they offer a complete treatment

of the multi-party collusion and the use of external adversarial

knowledge. Access control policies using cryptography are used

in [20] to enforce the authorization to an XML document. Our

work differs from theirs on both the considered setting, as well

as the adopted techniques and the adopted privacy protocol.

Striking the balance between utility and privacy in a logic-based

framework has been the object of investigation in recent studies

focusing on data publishing for Linked Data [13, 14, 19]. The

problem there is remarkably different from ours since they focus

on publishing a single RDF dataset by applying privacy and util-

ity queries in SPARQL, checking for their compatibility, and for

update operations realizing the privacy and utility constraints.

Controlled Query Evaluation. Controlled Query Evalua-

tion is a confidentiality enforcement framework introduced in

[23] and refined in [9],[7] and [8], in which a policy declaratively

specifies sensitive information and confidentiality is enforced by

a censor. Provided a query as input, a censor verifies whether the

2



query leads to a violation of the policy and in case of a violation

it returns a distorted answer. It has been recently adopted in

ontologies expressed with Datalog-like rules and in lightweight

Description Logics [18]. They assume that the policies are only

known to database administrators and not to ordinary users and

that the data has protected access through a query interface. Our

assumptions and setting are quite different, since our multiple

policy views are accessible to every user and our goal is to render

the s-t mappings safe with respect to a set of policies via repairing

and rewriting.

Data privacy. Previous work has addressed access control to

protect database instances at different levels of granularity [22], in

order to combine encrypted query processing and authorization

rules. Our work being logic-based and declarative does not deal

with these authorization methods, as well as does not consider

any concrete privacy or anonymization algorithms operating on

data instances, such as differential privacy [15] and k-anonymity

[24]. Further exploring the connection between concrete privacy

enforcement and logic-based privacy formalisms is the subject

of future investigation.

Data exchange. The vast literature on data exchange [17] has
inspired our work. In the considered scenarios, the source and

target schema are considered along with s-t mappings and target

dependencies, the latter being both egds and tgds. Similarly, past

work on degugging schema mappings [11] has focused on all pos-

sible routes generated by the exchange process when incomplete

or undefined values in one or more variables are exported from

the source instance. By opposite, we focus in this paper on the

case in which s-t mappings are coupled with source dependencies

under the form of policy views, the latter being typical in privacy

scenarios and unexplored in the classical data exchange setting.

3 PRELIMINARIES
Relational symbols and critical instances. Let Const, Nulls,
and Vars be mutually disjoint, infinite sets of constant values,
labeled nulls, and variables, respectively. A schema is a set of rela-
tion names (or just relations), each associated with a nonnegative

integer called arity. A relational atom has the form 𝑅(®𝑡) where
𝑅 is an 𝑛-ary relation and ®𝑡 is an 𝑛-tuple of terms, where a term
is either a constant, a labelled null, or a variable. An equality
atom has the form 𝑡1 = 𝑡2 where 𝑡1 and 𝑡2 are terms. An atom is

called ground or fact, when it does not contain any variables. A

position in an 𝑛-ary atom 𝐴 is an integer 1 ≤ 𝑖 ≤ 𝑛. We denote

by𝐴|𝑖 , the 𝑖-th term of𝐴. An instance 𝐼 is a set of relational facts.

An atom (resp. an instance) is null-free if it does not contain la-

belled nulls. The critical instance of a schema S, denoted as CrtS,
is the instance containing a fact of the form 𝑅(®∗), for each 𝑛-ary
relation 𝑅 ∈ S, where ∗ is called the critical constant and ®∗ is an
𝑛-ary vector. A substitution 𝜎 is a mapping from variables into

constants or labelled nulls.

Dependencies and queries A dependency describes the seman-

tic relationship between relations. A Tuple Generating Dependency
(tgd) is a formula of the form ∀®𝑥 𝜆( ®𝑥) → ∃®𝑦 𝜌 ( ®𝑥, ®𝑦), where 𝜆( ®𝑥)
and 𝜌 ( ®𝑥, ®𝑦) are conjunctions of relational, null-free atoms. An

Equality Generating Dependency (egd) is a formula of the form

∀®𝑥 𝜆( ®𝑥) → 𝑥𝑖 = 𝑥 𝑗 , where 𝜆( ®𝑥) is a conjunction of relational,

null-free atoms. We usually omit the quantification for brevity.

We refer to the left-hand side of a tgd or an egd 𝛿 as the body, de-
noted as body(𝛿), and to the right-hand side as the head, denoted
as head(𝛿). An instance 𝐼 satisfies a dependency 𝛿 , written 𝐼 |= 𝛿

if each homomorphism from body(𝛿) into 𝐼 can be extended to a

homomorphism ℎ′ from head(𝛿) into 𝐼 . An instance 𝐼 satisfies a

set of dependencies Σ, written as 𝐼 |= Σ, if 𝐼 |= 𝛿 holds, for each

𝛿 ∈ Σ. The solutions of an instance 𝐼 w.r.t. Σ is the set of all in-

stances 𝐽 such that 𝐽 ⊇ 𝐼 and 𝐽 |= Σ. A solution is called universal
if it can be homomorphically embedded to each solution of 𝐼 w.r.t.

Σ.
A conjunctive query (CQ) is a formula of the form ∃®𝑦 ∧

𝑖 𝐴𝑖 ,

where 𝐴𝑖 are relational, null-free atoms. A CQ is boolean if it

does not contain any free variables. A substitution 𝜎 is an answer
to a CQ𝑄 on an instance 𝐼 if the domain of 𝜎 is the free variables

of 𝑄 , and if 𝜎 can be extended to a homomorphism from

∧
𝑖 𝐴𝑖

into 𝐼 . We denote by 𝑄 (𝐼 ), the answers to 𝑄 on 𝐼 .

Let S be a source schema and let T be a target schema. A

mapping M from S to T is defined as a triple (S, T, Σ), where Σ =

Σ𝑠𝑡 ;, i.e. the set of the s-t dependencies over S and T. We usually

refer to the dependencies in Σ𝑠𝑡 as mappings. A variable 𝑥 of a

mapping 𝜇 ∈ Σ𝑠𝑡 is called exported if it occurs both in the body

and the head of 𝜇. We denote by exported(𝜇), the set of exported
variables of 𝜇. The inverse of set of s-t dependencies Σ𝑠𝑡 , denoted
as Σ−1𝑠𝑡 is the set consisting, for each mapping 𝜇 in Σ𝑠𝑡 of the

form 𝜆( ®𝑥) → 𝜌 ( ®𝑥, ®𝑦), a mapping 𝜇−1 of the form 𝜌 ( ®𝑥, ®𝑦) → 𝜆( ®𝑥).
We focus on GAV mappings in this paper, thus assuming that

®𝑦 is empty. Moreover, we consider the setting in which Σ only

consists of Σ𝑠𝑡 thus not including Σ𝑡 . This implies that target egds

and target tgds are excluded, since, despite their usage in data

exchange, their role is less understood in the privacy-preserving

variant considered in this paper.

4 PRIVACY PRESERVATION
In this section, we introduce our notion of privacy preservation.

LetV be a set of policy views over S, representing the information

that is safe to expose for instances 𝐼 of S. Our goal is to verify

whether a user-defined mappingM = (S, T, Σ) is safe w.r.t. the
views in a setV . Below, we will introduce a notion for assessing

the safety of a GAV mappingM2 with respect to a GAV mapping

M1, when both make use of the same source schema S. Moreover,

let Σ𝑖 = Σ𝑠𝑡𝑖 be the dependencies associated withM𝑖 .

4.1 A formal privacy-preservation protocol
Our notion of privacy preservation builds on the logical foun-

dations introduced in [5] for ontology-based data integration

for boolean queries. However, we extend the notion of privacy

preservation from [5] to a relational data exchange setting in the

presence of non-boolean conjunctive queries. First, we define the

notion of disclosure of a CQ by a mapping as follows:

Definition 4.1. A mappingM = (S, T, Σ) does not disclose a CQ
𝑝 over S on any instance of S, if for each instance 𝐼 of S there

exists an instance 𝐼 ′ such that 𝐼 ≡M 𝐼 ′ and 𝑝 (𝐼 ′) = ∅.

The problem of checking whether a mappingM over S does

not disclose a boolean and constants-free CQ 𝑝 on any instance

of S is decidable for GAV mappings consisting of CQ views [5].

In particular,M does not disclose 𝑝 on any instance of S if and

only if there does not exist a homomorphism from 𝑝 into the

unique instance computed by the visible chase visChaseS (Σ) of Σ
under the critical instance CrtS of S. The visible chase computes

a universal source instance defined as follows:

Definition 4.2. 7 Given a mappingM = (S, T, Σ), an instance 𝐼

is a universal source instance over S if for any instance 𝐽 over the

source schema S, there exists an homomorphism ℎ from 𝐽 into 𝐼
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such that for any constant 𝑐 from 𝐽 that is made visible through

M, ℎ(𝑐) = ∗.

The only constant occurring in the instance computed by

visChaseS (Σ) is the critical constant ∗ and it represents any other
constant that can occur in the source instance.

We introduce our own variant of the visible chase, which

organizes the facts derived during chasing into subinstances

called bags. Algorithm 1 describes the steps of the proposed

variant. Please note that Algorithm 1 derives the same set of

facts with the algorithm from [5]. However, instead of keeping

these facts in a single set, we keep them in separate bags. Before

presenting Algorithm 1, we will introduce a couple of useful new

notions. The first notion serves the need of defining derived egds

that allow to unify as many labeled nulls as possible with the

critical constant in the target instance. The second notion allows

to define relevant bags for which this unification must hold. Both

notions are exploited by the visible chase (Algorithm 1) whose

last step triggers the obtained egds.

Definition 4.3. Consider an instance 𝐼 . Consider also a s-t

tgd 𝛿 and a homomorphism ℎ from body(𝛿) into 𝐼 , such that

ℎ(𝑥) ∈ Nulls, for some 𝑥 ∈ exported(𝛿). Then, we say that the

egd

body(𝛿) →
∧

∀𝑥 ∈exported(𝛿) :ℎ (𝑥) ∈Nulls
𝑥 ≈ ∗ (8)

is derived from 𝛿 in 𝐼 . For an egd 𝜖 that is derived from a s-t tgd

𝛿 in 𝐼 , tgd(𝜖) denotes 𝛿 . For a set of s-t tgds Σ and an instance 𝐼 ,

Σ≈ is the set comprising for each 𝛿 ∈ Σ, the egd that is derived

from 𝛿 in 𝐼 .

Definition 4.4. Consider an instance 𝐼 , whose facts are orga-

nized into the bags 𝛽1, . . . , 𝛽𝑚 . Consider also a derived egd 𝛿 of

the form (8) and an active trigger ℎ for 𝛿 in 𝐼 . A bag 𝛽𝑖 is relevant
for 𝛿 and ℎ in 𝐼 , where 1 ≤ 𝑖 ≤ 𝑚, if some fact 𝐹 ∈ ℎ(body(𝛿))
occurs in 𝛽𝑖 and if some ℎ(𝑥) is a labeled null occurring in 𝛽𝑖 ,

where 𝑥 ∈ exported(𝛿).
Let 𝛽 𝑗1 , . . . , 𝛽 𝑗𝑘 ⊆ 𝛽1, . . . , 𝛽𝑚 be the set of bags that are rele-

vant for 𝛿 and ℎ in 𝐼 . Let 𝜈 = {ℎ(𝑥 𝑗 ) ↦→ ℎ(𝑥𝑖 )} if ℎ(𝑥𝑖 ) = ∗, and
𝜈 = {ℎ(𝑥𝑖 ) ↦→ ℎ(𝑥 𝑗 )} if ℎ(𝑥𝑖 ) ∉ Const, where 𝑥𝑖 , 𝑥 𝑗 are variables
from exported(𝛿). Then, the derived bag 𝛽 for 𝛿 andℎ in 𝐼 consists
of the facts in

⋃𝑘
𝑙=1

𝜈 (𝛽 𝑗𝑙 ). The bags 𝛽 𝑗1 , . . . , 𝛽 𝑗𝑘 are called the pre-
decessors of 𝛽 . We use 𝛽 𝑗𝑙 ≺ 𝛽 to denote that 𝛽 𝑗𝑙 is a predecessor

of 𝛽 , for 1 ≤ 𝑙 ≤ 𝑘 .

We are now ready to proceed with the description of Algo-

rithm 1. Given a s-t mapping, Algorithm 1 computes a universal

source instance whose facts are organized into bags. Algorithm 1

first computes the instance 𝐼0 by chasing CrtS using the s-t tgds,

line 1. It then chases 𝐼0 with the inverse s-t tgds Σ−1, line 2. and
proceeds by chasing 𝐼1 with the set of all derived egds Σ≈, for
each 𝛿 ∈ Σ in 𝐼1, line 4. Algorithm 1 computes a fresh bag at each

chase step. In particular, for each active trigger ℎ for 𝛿 in 𝐼 , Algo-

rithm 1 adds a fresh bag with facts ℎ′(head(𝛿)), if 𝛿 ∈ Σ ∪ Σ−1,
line 9; otherwise, if 𝛿 ∈ Σ≈, then it adds the derived bag for 𝛿 and

ℎ in 𝐼 , see Definition 4.4, line 20.

Note that, Σ≈ aims at “disambiguating” as many labeled nulls

occurring in 𝐼1 as possible, by unifying them with the critical

constant ∗. Since ∗ represents the information that is “visible" to a

third-party, chasing with Σ≈ computes the maximal information
from the source instance a third-party has access to. Note that

Algorithm 1 always terminates [5]. Let 𝐵 = visChaseS (Σ). We

will denote by 𝐼S (Σ), the instance
⋃

𝛽∈𝐵 𝛽 .

Algorithm 1 visChaseS (Σ)
1: 𝐵0 ··= bagChaseTGDs(Σ,CrtS)
2: 𝐵1 ··= bagChaseTGDs(Σ−1,⋃𝛽∈𝐵0

𝛽 \ CrtS)
3: Let Σ≈ be the set of all derived egds Σ≈, for each 𝛿 ∈ Σ in 𝐼1
4: return bagChaseEGDs(Σ≈, 𝐵0 ∪ 𝐵1)

5: procedure bagChaseTGDs(Σ, 𝐼 )
6: 𝐵 ··= ∅
7: for each 𝛿 ∈ Σ do
8: for each active trigger ℎ : body(𝛿) → 𝐼 do
9: create a fresh bag 𝛽 with facts ℎ′(head(𝛿))
10: add 𝛽 to 𝐵

11: return 𝐵

12: procedure bagChaseEGDs(Σ≈, 𝐵)
13: 𝑖 ··= 0; 𝐼𝑖 ··=

⋃
𝛽∈𝐵 𝛽

14: do
15: 𝑖 ··= 𝑖 + 1

16: for each (𝛿 ∈ Σ≈ of the form (8) do
17: for each active trigger ℎ : body(𝛿) → 𝐼𝑖−1 do
18: if ℎ(𝑥) ≠ ∗, for some 𝑥 ∈ exported(𝛿) then
19: Let 𝛽 be the derived bag for 𝛿 and ℎ in 𝐼𝑖−1
20: add 𝛽 to 𝐵

21: 𝐼𝑖 ··= 𝐼𝑖 ∪ 𝛽

22: while 𝐼𝑖−1 ≠ 𝐼𝑖
23: return 𝐵

Example 4.5. We demonstrate the visible chase algorithm over

the policy views and the s-t dependencies from Example 1.1. We

show how the algorithm runs first on the policy views V and

then show the computation on Σ𝑠𝑡 .
We first present the computation of 𝐼S (V) = ⋃

𝛽∈visChaseS (V) 𝛽 .
The critical instance CrtS of S consists of the facts shown in

the following Eq. (9)

P(∗, ∗, ∗, ∗) HN (∗, ∗) HS (∗, ∗) O(∗, ∗, ∗) S(∗, ∗, ∗, ∗) (9)

where ∗ is the critical constant.
The instance 𝐼1 computed by chasing the output of line 1 using

V−1
will consist of the facts

P(ni, nn, ∗, nc) HN (ni, ∗) O(n′′i , ∗, ∗) (𝐼1)

P(n′i , n
′
n, ne, ∗) HS (n′i , ∗) S(n′′′i , n′′′n , ∗, n′′′c )

where the constants prefixed by n are labeled nulls created while

chasing CrtS with the inverse mappings. Since there exists no

homomorphism from the body of any s-t tgd into 𝐼1 mapping

an exported variable into a labeled null, Σ≈ will be empty, see

Definition 4.3. Thus, 𝐼S (V) = 𝐼1.

We next present the computation of 𝐼S (Σ𝑠𝑡 ) =
⋃

𝛽∈visChaseS (Σ𝑠𝑡 ) 𝛽 .
The instance 𝐼 ′

1
computed by chasing the output of line 1 by Σ−1𝑠𝑡

will consist of the facts

P(ni, nn, ∗, nc) HN (ni, ∗) S(n′′i , n
′′
n , ∗, n′c) (𝐼 ′

1
)

P(n′i , n
′
n, ne, ∗) HN (n′i , ∗) O(n′′i , n

′′
t , n

′′
p )

Since there exists a homomorphism from the body of 𝜇𝑒 into 𝐼
′
1

mapping the exported variable 𝑒 into the labeled null ne, and
since there exists another homomorphism from the body of 𝜇𝑐
into 𝐼 ′

1
mapping the exported variable 𝑐 into the labeled null nc,

Σ≈ will comprise the egds 𝜖1 and 𝜖2 shown below

P(i, n, e, c) ∧ HN (i, d) → e ≈ ∗ (𝜖1)

P(i, n, e, c) ∧ HN (i, d) → c ≈ ∗ (𝜖2)
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The last step of the visible chase involves chasing 𝐼 ′
1
using Σ≈.

W.l.o.g, assume that the chase considers first 𝜖1 and then 𝜖2.

During the first step of the chase, there exists a homomorphism

from body(𝜖1) into 𝐼 ′
1
. Hence, ne = ∗. During the second step

of the chase, there exists a homomorphism from body(𝜖2) into
𝐼 ′
1
and, hence, nc = ∗. The instance computed at the end of the

second round of the chase will consist of the facts

P(ni, nn, ∗, ∗) HN (ni, ∗) HN (n′i , ∗) (10)

S(n′′i , n
′′
n , ∗, n′c) O(n′′i , n

′′
t , n

′′
p )

Since there exists no active trigger for 𝜖1 or 𝜖2 in the above

instance (Eq (10)), the chase will terminate.

The facts in 𝐼S (Σ𝑠𝑡 ) will be organized into the following bags

𝛽1–𝛽5 (one bag per line)

SO(e)
⟨𝜇−1𝑠 ,ℎ1 ⟩−−−−−−−→ S(n′′i , n

′′
n , ∗, n′c),O(n′′i , n

′′
t , n

′′
p )

CountyDis(c, d)
⟨𝜇−1𝑐 ,ℎ2 ⟩−−−−−−−→ P(n′i , n

′
n, ne, ∗),HN (n′i , ∗)

EthDis(e, d)
⟨𝜇−1𝑒 ,ℎ3 ⟩−−−−−−−→ P(ni, nn, ∗, nc),HN (ni, ∗)

P(n′i , n
′
n, ne, ∗),HN (n′i , ∗)

⟨𝜖1,ℎ4 ⟩−−−−−−→ P(n′i , n
′
n, ∗, ∗),HN (n′i , ∗)

P(ni, nn, ∗, nc),HN (ni, ∗)
⟨𝜖2,ℎ5 ⟩−−−−−−→ P(ni, nn, ∗, ∗),HN (ni, ∗)

ℎ1 = {i ↦→ n′i , n ↦→ n′n, e ↦→ ne, c ↦→ ∗, d ↦→ ∗}
ℎ2 = {c ↦→ ∗, d ↦→ ∗}
ℎ3 = {e ↦→ ∗, d ↦→ ∗}
ℎ4 = {i ↦→ n′i , n ↦→ n′n, e ↦→ ne, c ↦→ ∗, d ↦→ ∗}
ℎ5 = {i ↦→ ni, n ↦→ nn, e ↦→ ∗, c ↦→ nc, d ↦→ ∗}

The contents of the bags correspond to the right-hand side of

the arrows. However, for presentation purposes, we also show

the related dependency 𝛿 and the homomorphism ℎ that lead to

the derivation of each bag (shown at the top of each arrow), as

well as, the facts in ℎ(body(𝛿)) (left-hand side of each arrow).

The obtained bags will be part of the universal source instance

𝐼S (Σ𝑠𝑡 ). Such an instance will be used in Section 5 in order to

apply the notion of safety in the repairing of the underlying

mappings Σ𝑠𝑡 .

4.2 Preserving the privacy of policy views
We consider a mapping M = (S, T, Σ) to be safe w.r.t. a view

mappingMV = (S,V,V) (withV being the set of policy views

and V being the schema of the views as shown in Figure 1), ifM
does not disclose the information that is also not disclosed by

MV. Definition 4.6 and Theorem 4.7 presented below formalize

our notion of privacy preservation and show that there exists a

simple process for verifying whetherM is safe w.r.t.MV.

Definition 4.6. A mappingM2 = (S, T2, Σ2) preserves the pri-
vacy of a mapping M1 = (S, T1, Σ1) on all instances of S, if for
each constants-free CQ 𝑝 over S, if 𝑝 is not disclosed byM1 on

any instance of S, then 𝑝 is not disclosed byM2 on any instance

of S.
Theorem 4.7. A mappingM2 = (S, T2, Σ2) preserves the pri-

vacy of a mappingM1 = (S, T1, Σ1) on all instances of S, if and
only if there exists a homomorphism ℎ from 𝐼S (Σ2) into 𝐼S (Σ1),
such that ℎ(∗) = ∗.

Proof. (Sketch) First we show that the following holds:

Lemma 4.8. AmappingM = (S, T, Σ) does not disclose a constants-
free CQ 𝑝 over S on any instance of S, iff ®∗ ∉ 𝑝 (𝐽 ), where 𝐽 = 𝐼S (Σ𝑠𝑡 ).

Proof. By adapting the proof technique of Theorem 16 from

[5], we can show that 𝐽 = 𝐼S (Σ𝑠𝑡 ) is a universal source instance
𝐼S (Σ) satisfying the following property: for each pair of source

instances 𝐼 and 𝐼 ′, such that 𝐼 ′ is indistinguishable from 𝐼 w.r.t. the

mapping M, there exists a homomorphism ℎ from 𝐼 ′ into 𝐼S (Σ)
mapping each schema constant into the critical constant ∗. Due
to the existence of a homomorphismℎ from 𝐼 ′ into 𝐼S (Σ), for each
pair of indistinguishable source instances 𝐼 and 𝐼 ′, we can see

that if ®∗ ∉ 𝑝 (𝐽 ) for a constants-free CQ 𝑝 , then 𝑝 (𝐼 ′) = ∅. Due to
the above and due to Definition 4.1, it follows that M = (S, T, Σ)
does not disclose a constants-free CQ 𝑝 over S on any instance

of S. □

Lemma 4.8 states that, in order to check if a constants-free CQ

is safe according to Definition 4.1, we need to check if the critical

tuple is among the answers to 𝑝 over the instance computed by

visChaseS (Σ). Next, we show the following lemma.

Lemma 4.9. Given two instances 𝐼1 and 𝐼2, the following are
equivalent

(1) for each CQ 𝑝 , if ®𝑢 ∈ 𝑝 (𝐼1), then ®𝑢 ∈ 𝑝 (𝐼2), where ®𝑢 is a
vector of constants

(2) there exists a homomorphism from 𝐼1 to 𝐼2 preserving the
constants of 𝐼1

Proof of Lemma 4.9. (2)⇒(1). Suppose that there exists a ho-

momorphism ℎ from 𝐼1 to 𝐼2 preserving the constants of 𝐼1. Sup-

pose also that ®𝑢 ∈ 𝑝 (𝐼1), with 𝑝 being a CQ. This means that there

exists a homomorphism ℎ1 from 𝑝 into 𝐼1 mapping each free vari-

able 𝑥𝑖 of 𝑝 into 𝑢𝑖 , for each 1 ≤ 𝑖 ≤ 𝑛, where 𝑛 is the number

of free variables of 𝑝 . Since the composition of two homomor-

phisms is a homomorphism and since ℎ preserves the constants

of 𝐼1 due to the base assumptions, this means that ℎ ◦ ℎ1 is a

homomorphism from 𝑝 into 𝐼2 mapping each free variable 𝑥𝑖 of 𝑝

into 𝑡𝑖 , for each 1 ≤ 𝑖 ≤ 𝑛. This completes this part of the proof.

(1)⇒(2). Let 𝑝1 be a CQ formed by creating a non-ground atom

𝑅(𝑦1, . . . , 𝑦𝑛) for each ground atom 𝑅(𝑢1, . . . , 𝑢𝑛) ∈ 𝐼1, by taking

the conjunction of these non-ground atoms and by converting

into an existentially quantified variable every variable created

out of some labelled null. Let ®𝑥 denote the free variables of 𝑝1
and let 𝑛 = | ®𝑥 |. From the above, it follows that there exists a

homomorphism ℎ1 from 𝑝1 into 𝐼1 mapping each 𝑥𝑖 ∈ ®𝑥 into

some constant occurring in 𝐼1. Let ®𝑢 ∈ 𝑝1 (𝐼1). From (1), it follows

that ®𝑢 ∈ 𝑝1 (𝐼2) and, hence, there exists a homomorphism ℎ2 from

𝑝1 into 𝐼2 mapping each 𝑥𝑖 ∈ ®𝑥 into 𝑢𝑖 , for each 1 ≤ 𝑖 ≤ 𝑛. Since

ℎ1 ranges over all constants of 𝐼1 and since ℎ1 (𝑥𝑖 ) = ℎ2 (𝑥𝑖 ) holds
for each 1 ≤ 𝑖 ≤ 𝑛, it follows that there exists a homomorphism

from 𝐼1 to 𝐼2 preserving the constants of 𝐼1. This completes the

second part of the proof. □

Lemma 4.9 can be restated as follows:

Lemma 4.10. Given two instances 𝐼1 and 𝐼2, the following are
equivalent

(1) for each CQ 𝑝 , if ®𝑡 ∉ 𝑝 (𝐼2), then ®𝑡 ∉ 𝑝 (𝐼1)
(2) there exists a homomorphism from 𝐼1 to 𝐼2

We are now ready to return to themain part of the proof. Given

a CQ 𝑝 over a source schema S, and a mappingM defined as the

triple (S, T, Σ), where T is a target schema and Σ is a set of s-t

dependencies, we know from Proposition 4.8 that if M discloses

𝑝 on some instance of S, then there exists a homomorphism of

𝑝 into visChaseS (Σ) mapping the free variables of 𝑝 into the

critical constant ∗.
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From the above, we know that M2 does not preserve the pri-

vacy of M1 if there exists a CQ 𝑝 over S, such that ®∗ ∉ 𝐽1 and

®∗ ∈ 𝐽2, where 𝐽1 = 𝐼S (Σ1) and 𝐽2 = 𝐼S (Σ2). We will now prove

thatM2 preserves the privacy ofM1 iff there exists a homomor-

phism from 𝐽2 into 𝐽1 that preserves the critical constant ∗. This
will be referred to as conjecture (𝐶).

(⇒) IfM2 preserves the privacy ofM1, then for each CQ 𝑝 , if

®∗ ∉ 𝑝 (𝐽1), then ®∗ ∉ 𝑝 (𝐽2). From the above and from Lemma 4.10,

it follows that there exists a homomorphism 𝜙 : 𝐽2 → 𝐽1, such

that 𝜙 (∗) = ∗.
(⇐) The proof proceeds by contradiction. Assume that there

exists a homomorphism ℎ from 𝐽2 into 𝐽1 preserving ∗, butM2

does not preserve the privacy of M1. We will refer to this as-

sumption as assumption (𝐴1). From assumption (𝐴1) and the

discussion above it follows that there exists a CQ 𝑝 over S such

that ®∗ ∉ 𝑝 (𝐽1) and ®∗ ∈ 𝑝 (𝐽2). Letℎ2 be the homomorphism from 𝑝

into 𝐽2 mapping its free variables into ∗. Since the composition of

two homomorphisms is a homomorphism, this means that ℎ ◦ℎ2
is a homomorphism from 𝑝 into 𝐽1 mapping its free variables

into ∗, i.e., ®∗ ∈ 𝑝 (𝐽1). This contradicts our original assumption

and hence concludes the proof of conjecture (𝐶). Conjecture (𝐶)

witnesses the decidability of the instance-independent privacy

preservation problem: in order to verify whether M2 preserves

the privacy of M1 we only need to check if there exists a homo-

morphism 𝜙 : 𝐼S (Σ2) → 𝐼S (Σ1), such that 𝜙 (∗) = ∗. □

Theorem 4.7 states that in order to verify whether M2 is safe

w.r.t. M1, we need to compute 𝐼S (Σ1) and 𝐼S (Σ2) and check if

there exists a homomorphism from the second instance into the

first one that maps ∗ into itself. If there exists such a homomor-

phism, we say that 𝐼S (Σ1) is safe w.r.t. 𝐼S (Σ2), or simply safe, and

we say that it is unsafe otherwise.

Example 4.11. Continuing with Example 1.1, we can see that

the s-t tgds are not safe w.r.t. the policy views according to

Theorem 4.7, since there does not exist a homomorphism from

the instance 𝐼S (Σ𝑠𝑡 ) into the instance 𝐼S (V). This means that

there exists information which is disclosed by Σ𝑠𝑡 in some in-

stance that satisfies Σ𝑠𝑡 , but it is not disclosed by V . Indeed,

from S(n′′i , n
′′
n , ∗, n′c) and O(n′′i , n

′′
t , n

′′
p ), we can see that we can

potentially leak the identity of a student who has been to an

oncology department. This can happen if there exists only one

student in the school coming from a specific ethnicity group and

this ethnicity group is returned by 𝜇𝑠 . Please note that the policy

views are safe w.r.t. this leak. Indeed, it is impossible to derive this

information through reasoning over the returned tuples under

the input instance and the views V3 and V4.
Furthermore, by looking at the factsP(ni, nn, ∗, ∗) andHN (ni, ∗),

we can see that we can potentially leak the identity and the dis-

ease of a patient who has been admitted to some hospital in the

north of UK. This can happen if there exists only one patient

who relates to the county and the ethnicity group returned by

𝜇𝑒 and 𝜇𝑐 . Note that the policy views V1 and V2 do not leak this

information, since it is impossible to obtain the county and the

ethnicity group of an NHS patient at the same time.

5 REPAIRING UNSAFE MAPPINGS
In Section 4, we presented our privacy preservation protocol and

a technique for verifying whether a mapping is safe w.r.t. another

one, over all source instances. This section presents an algorithm

for repairing an unsafe mapping M w.r.t. a set of policy views

V . This is a fundamental operation needed to amend mappings

Algorithm 2 repair(Σ,V, prf, 𝑛)
1: Σ1 ··= frepair(Σ,V, prf)
2: Σ2 ··= srepair(Σ1,V, prf, 𝑛)
3: return Σ2

whenever the policy views are modified and become unsafe (e.g.

in the presence of data protection regulations).

Algorithm 2 summarizes the steps of the proposed algorithm.

The inputs to it are, apart from Σ and V , a positive integer 𝑛

which will be used during the second step of the repairing pro-

cess and a preference mechanism prf for ranking the possible

repairs. In the simplest scenario, the preferencemechanism imple-

ments a fixed function for ranking the different repairs. However,

it can also employ supervised learning techniques in order to

progressively learn the user preferences by looking at his prior

decisions.

Since a mapping M is safe w.r.t. V if the instance 𝐼S (Σ) is
safe according to Theorem 4.7, Algorithm 2 rewrites the tgds in

M, such that the derived visible chase instances are safe. The

rewriting takes place in two steps. The first step rewrites Σ into

a partially-safe set of s-t dependencies Σ1, while the second step

rewrites the output of the first one into a new set of s-t depen-

dencies Σ2, such that 𝐼S (Σ2) is safe. As we will explain later on,

partial-safety ensures that the intermediate instance 𝐼1 produced

by visChaseS (Σ1) at line 2 of Algorithm 1 is safe, but it does

not provide strong privacy guarantees. The benefit of this two-

step approach is that it allows repairing one or a small set of

dependencies at a time.

5.1 Computing partially-safe mappings
Since the problem of safety is reduced to the problem of checking

for a homomorphism from 𝐼S (Σ) into 𝐼S (V), a first test towards
checking for such a homomorphism is to look if the mappings

in Σ would lead to such a homomorphism or not. For instance,

by looking at 𝜇𝑠 in Example 1.1 it is easy to see that it leaks

sensitive information, since it involves a join between students

and oncology departments, which does not occur in 𝐼S (V).

Definition 5.1. A mapping M = (S, T, Σ) is partially-safe w.r.t.
MV = (S,V,V) on all instances of S, if there exists a homomor-

phism from chase(Σ−1,CrtT) \ CrtT into 𝐼S (V).

From Algorithm 1, it follows that Σ is partially-safe iff the

intermediate instance 𝐼1 computed by visChaseS (Σ) is safe.

Proposition 5.2. A mapping M = (S, T, Σ) is partially-safe
w.r.t.MV = (S,V,V) on all instances of S, if for each 𝜇 ∈ Σ, there
exists a homomorphism from body(𝜇) into 𝐼S (V) mapping each
𝑥 ∈ exported(𝜇) into the critical constant ∗.

Note that according to Proposition 5.2, in our running example

Σ𝑠𝑡 would be partially-safe, if 𝜇𝑠 ∉ Σ𝑠𝑡 , then since there exist

homomorphisms from the bodies of 𝜇𝑠 and 𝜇𝑐 into 𝐼S (V), map-

ping their exported variables into ∗. It is also easy to show the

following

Remark 1. AmappingM = (S, T, Σ) is safew.r.t.MV = (S,V,V)
on all instances of S, only if it is partially-safe w.r.t. MV on all
instances of S. □

Proposition 5.2 presents a quite convenient, yet somewhat

expected, finding: in order to obtain a partially-safe mapping, it

suffices to repair each s-t dependency independently of the others.
Furthermore, the repair of each 𝜇 ∈ Σ involves breaking joins
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and hiding exported variables, such that the repaired dependency

𝜇𝑟 satisfies the criterion in Proposition 5.2.

We make use of the result of Proposition 5.2 in Algorithm 3.

Algorithm 3 obtains, for each 𝜇 ∈ Σ, a set of rewritings R𝜇 , out of

which we will choose the best rewriting according to prf. The set
R𝜇 consists of all rewritings that differ from 𝜇 w.r.t. the variable

repetitions in the bodies of the rules and the exported variables.

Below, we present the steps of Algorithm 3.

For each s-t tgd 𝜇 and for each atom 𝐵 ∈ body(𝜇), Algorithm 3

constructs a fresh atom𝐶 and adds𝐶 to a set C. The set of atoms C
provides us with the means to identify all repairs of 𝜇 that involve

breaking joins and hiding exported variables. In particular, each

homomorphism 𝜉 from C into 𝐼S (V) corresponds to one repair

of 𝜇. In lines 12–25, Algorithm 3 modifies each atom 𝐵 ∈ body(𝜇)
by taking into account prior body atom modifications. The prior

modifications are accumulated in the relation 𝜌 and the mapping

𝜓 . The relation 𝜌 keeps for each variable 𝑥 from body(𝜇), the
fresh variables that were used to replace 𝑥 during prior steps of

the repairing process, while𝜓 is a substitution from the partially

repaired body into 𝐼S (V). In particular, at the end of the 𝑖-th

iteration of the loop in line 12,𝜓 holds the substitution from the

first repaired 𝑖 atoms from body(𝜇) into 𝐼S (V). We adopt this

approach instead of replacing variable 𝑥 in position 𝑝 always by

a fresh variable, in order to minimize the number of the joins we

break.

Below, we describe how Algorithm 3 modifies each body atom

of 𝜇, w.r.t. a homomorphism 𝜉 , lines 9–27. Let 𝐶 = 𝜈 (𝐵) be the
fresh body atom that was constructed out of 𝐵 in line 5. For each

atom 𝐵 ∈ body(𝜇) and for each 𝑝 ∈ pos(𝐵), if the variable 𝑦 in

position 𝑝 of 𝐶 is not mapped to the critical constant ∗ via 𝜉 and
𝐵 |𝑝 is an exported variable, this means that the variable sitting in
position 𝑝 of 𝐵 should not be exported (see first condition in line 16).
Similarly, if the variable sitting in position 𝑝 of 𝐵 is mapped to a

different constant than the one that𝑦 maps via 𝜉 , then this means

that the variable sitting in position 𝑝 of 𝐵 introduces an unsafe
join (see second condition in line 16). In the presence of these

violations, we must replace variable 𝑥 in position 𝑝 of 𝐵, either by

a variable that was used in a prior step of the repairing process,

line 17–18), or by a fresh variable, lines 19–23. Otherwise, if there

is no violation so far, then we add the mapping {𝑥 ↦→ 𝜉 (𝑦)} to
𝜓 , if it is not already there, lines 24–25. Finally, the algorithm

chooses the best repair according to the preference function,

lines 28–31.

Proposition 5.3. For any M = (S, T, Σ), any MV = (S,V,V)
and any preference function prf, Algorithm frepair returns a map-
pingM ′ = (S, T, Σ′) that is partially-safe w.r.t.MV on all instances
of S.

Proof. (Sketch) FromProposition 5.2, amappingM = (S, T, Σ)
is partially-safe w.r.t. MV = (S,V,V) on all instances of S, if for
each 𝜇 ∈ Σ, there exists a homomorphism from body(𝜇) into
𝐼S (V) mapping each 𝑥 ∈ exported(𝜇) into the critical constant ∗.
Since for each 𝜇 ∈ Σ frepair computes a set of repaired tgds R𝜇 ,

it follows that Proposition 5.3 holds, if such a homomorphism

exists, for each repaired tgd in R𝜇 . The proof proceeds as follows.

Let 𝜇𝑖𝑟 and𝜓
𝑖
denote the repaired s-t tgd and the homomorphism

𝜓 computed at the end of each iteration 𝑖 of the steps in lines 12–

25 of Algorithm 3. Let also 𝐵𝑖 denote the 𝑖-th atom in body(𝜇𝑟 ).
Since each 𝐶 ∈ C is an atom of distinct fresh variables, since 𝜉

is a homomorphism from C to 𝐼S (V) and since𝜓 (𝐵𝑖 ) = 𝜇𝑟 |𝑖 , it
follows that in order to prove Proposition 5.2, we have to show

that the following claim holds, for each 𝑖 ≥ 0:

Algorithm 3 frepair(Σ,V, prf)
1: for each 𝜇 ∈ Σ do
2: 𝜈 ··= ∅, C ··= ∅
3: for each 𝐵 ∈ body(𝜇), where 𝐵 = 𝑅( ®𝑥) do
4: create a vector of fresh variables ®𝑦
5: create the atom 𝐶 = 𝑅( ®𝑦)
6: add (𝐵,𝐶) to 𝜈
7: add 𝐶 to C
8: R𝜇 := ∅
9: for each homomorphism 𝜉 : C → 𝐼S (V) do
10: 𝜌 := ∅,𝜓 := ∅
11: 𝜇𝑟 := 𝜇

12: for each 𝐵 ∈ body(𝜇𝑟 ) do
13: 𝐶 = 𝜈 (𝐵)
14: for each 𝑝 ∈ pos(𝐵) do
15: 𝑥 = 𝐵 |𝑝 , 𝑦 = 𝐶 |𝑝
16: if 𝑥 ∈ exported(𝜇) and ∗ ≠ 𝜉 (𝑦) or 𝑥 ∈

dom(𝜓 ) and𝜓 (𝑥) ≠ 𝜉 (𝑦) then
17: if ∃𝑥 ′ s.t. (𝑥, 𝑥 ′) ∈ 𝜌 and 𝜓 (𝑥 ′) = 𝜉 (𝑦)

then
18: 𝐵 |𝑝 = 𝑥 ′

19: else
20: create a fresh variable 𝑥 ′

21: add (𝑥, 𝑥 ′) to 𝜌

22: add {𝑥 ′ ↦→ 𝜉 (𝑦)} to𝜓
23: 𝐵 |𝑝 = 𝑥 ′

24: else if 𝑥 ∉ dom(𝜓 ) then
25: add {𝑥 ↦→ 𝜉 (𝑦)} to𝜓
26: if 𝜇𝑟 ≠ 𝜇 then
27: add 𝜇𝑟 to R𝜇

28: if R𝜇 ≠ ∅ then f

29: choose the best repair 𝜇𝑟 of 𝜇 from R𝜇 based on prf
30: remove 𝜇 from Σ
31: add 𝜇𝑟 to Σ

32: return Σ

• 𝜙 . 𝜓 𝑖
is a homomorphism from the first 𝑖 atoms in the

body of 𝜇𝑟 into 𝐼S (V) mapping each exported variable

occurring in 𝐵0, . . . , 𝐵𝑖 into the critical constant ∗.
For 𝑖 = 0, 𝜙 trivially holds. For 𝑖 + 1 and assuming that 𝜙 holds

for 𝑖 let 𝐶𝑖+1 = 𝜈 (𝐵𝑖+1), line 13. The proof of claim 𝜙 depends

upon the proof of the following claim, for each iteration 𝑝 ≥ 0 of

the steps in lines 14–25:

• 𝜃 .𝜓 𝑖+1 (𝐵𝑖+1 |𝑝 ) = 𝜉 (𝑦), where 𝑦 = 𝐶𝑖+1 |𝑝 .
The claim 𝜃 trivially holds for 𝑝 = 0, while for 𝑝 > 0, it directly

follows from the steps in lines 16–25. Since 𝜙 holds for 𝑖 , since

the steps in lines 16–25 do not modify the variable mappings in

𝜓 𝑖
and due to 𝜃 , it follows that 𝜙 holds for 𝑖 + 1, concluding the

proof of Proposition 5.3. □

Example 5.4. We demonstrate an example of Algorithm 3.

Since Algorithm 3 focuses on 𝐼S (V) overlooking the actual

views inV , we will not explicitly defineV . Instead, we will only

assume that the visible chase computes the instance

𝐼S (V) = {R1 (∗, n1, n2), S1 (n1, n2, n2), S1 (n1, n3, ∗), S1 (n1, ∗, ∗)}

where n1–n3 are labeled nulls. Consider also the mapping M
consisting of the following s-t dependency

R1 (𝑥,𝑦, 𝑧) ∧ S1 (𝑦, 𝑧, 𝑧) → T1 (𝑥, 𝑧) (𝜇1)
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Note that M is not partially-safe. Algorithm 3 computes two

repairs for 𝜇1 by applying the steps described below. First, it com-

putes the atoms R1 (𝑥1, 𝑥2, 𝑥3) S1 (𝑥4, 𝑥5, 𝑥6) and adds them to C,
lines 3–7. Then, it identifies the following three homomorphisms

from C into 𝐼S (V):

𝜉1 = {𝑥1 ↦→ ∗, 𝑥2 ↦→ n1, 𝑥3 ↦→ n2, 𝑥4 ↦→ n1, 𝑥5 ↦→ n2, 𝑥6 ↦→ n2}
𝜉2 = {𝑥1 ↦→ ∗, 𝑥2 ↦→ n1, 𝑥3 ↦→ n2, 𝑥4 ↦→ n1, 𝑥5 ↦→ n3, 𝑥6 ↦→ ∗}
𝜉3 = {𝑥1 ↦→ ∗, 𝑥2 ↦→ n1, 𝑥3 ↦→ n2, 𝑥4 ↦→ n1, 𝑥5 ↦→ ∗, 𝑥6 ↦→ ∗}

From 𝜉1, we can see that the joins in the body of 𝜇1 are safe;

however, it is unsafe to export 𝑧. From 𝜉2, we can see that is safe

to reveal the third position of S1; however, it is unsafe to join the

second and the third position of S1. Algorithm 3 then iterates over

𝜉1 and 𝜉2, line 9. When 𝐵 = R1 (𝑥,𝑦, 𝑧) and 𝑝 < 3, Algorithm 3

computes 𝜓 to {𝑥 ↦→ ∗, 𝑦 ↦→ n1}, since there is no violation

according to line 16. When 𝐵 = R1 (𝑥,𝑦, 𝑧) and 𝑝 = 3, however, a

violation is detected. This is due to the fact that 𝑧 is an exported

variable and 𝜉 (𝑥3) = n2. Algorithm 3 tackles this violation by

creating a fresh variable 𝑧1. Then, it adds the relation (𝑧, 𝑧1)
to 𝜌 , replaces 𝑧 in 𝐵 |3 by 𝑧1 and adds the mapping {𝑧1 ↦→ n2}
to 𝜓 , lines 19–23. Algorithm 3 then considers S1 (𝑦, 𝑧, 𝑧). When

𝑝 = 1, no violation is encountered, since𝜓 (𝑦) = 𝜉1 (𝑥4). However,
when 𝑝 = 2, a homomorphism violation is encountered, since 𝑧 is

an exported variable and since 𝜉 (𝑥3) = n2. Since (𝑧, 𝑧1) ∈ 𝜌 and

𝜓 (𝑧1) = 𝜉1 (𝑥5), Algorithm 3 replaces 𝑧 in the second position of

S1 (𝑦, 𝑧, 𝑧) by 𝑧1, line 19. By applying a similar reasoning, we can

see that the variable 𝑧 siting in S1 (𝑦, 𝑧, 𝑧) |3 is also replaced by 𝑧1.

Hence, the first repair of 𝜇 is

R1 (𝑥,𝑦, 𝑧1) ∧ S1 (𝑦, 𝑧1, 𝑧1) → T1 (𝑥) (𝑟1)

Algorithm 3, then proceeds by repairing 𝜇1 based on 𝜉2. When

𝐵 = R1 (𝑥,𝑦, 𝑧), Algorithm 3 proceeds as described above and com-

putes𝜓 to {𝑥 ↦→ ∗, 𝑦 ↦→ n1, 𝑧1 ↦→ n2}. When 𝐵 = S1 (𝑦, 𝑧, 𝑧) and
𝑝 = 1, then no violation is encountered since𝜓 (𝑦) = 𝜉1 (𝑥4), while
when 𝐵 = S1 (𝑦, 𝑧, 𝑧) and 𝑝 = 2, there is a violation. Since the con-

dition in line 18 is not met, Algorithm 3 creates a fresh variable

𝑧2 and adds the mapping {𝑧2 ↦→ n3} to 𝜓 . When 𝐵 = S1 (𝑦, 𝑧, 𝑧)
and 𝑝 = 3, then no violation is met, since 𝑧 ∈ exported(𝜇) and
𝜉2 (𝑥6) = ∗. Hence, the second repair of 𝜇1 is

R1 (𝑥,𝑦, 𝑧1) ∧ S1 (𝑦, 𝑧2, 𝑧) → T1 (𝑥, 𝑧) (𝑟2)

Finally, we can see that the repair for 𝜇1 w.r.t. 𝜉3 is

R1 (𝑥,𝑦, 𝑧1) ∧ S1 (𝑦, 𝑧, 𝑧) → T1 (𝑥, 𝑧) (𝑟3)

5.2 Computing safe mappings
Unifications of one or more labeled nulls occurring in 𝐼1 with the

critical constant ∗, might lead to unsafe instances. Consider, for

instance, a simplified variant of Example 1.1, where Σ𝑠𝑡 comprises

only 𝜇𝑒 and 𝜇𝑐 . Both 𝜇𝑒 and 𝜇𝑐 are partially-safe, as we have

explained above. However, the unification of the labeled nulls nn
and nc produces an unsafe instance. Algorithm 4 aims at repairing

the output of the previous step, such that no unsafe unification

of a labeled null with ∗ takes place.
Consider again the simplified variant of Σ𝑠𝑡 from above. Since

Σ𝑠𝑡 is partially-safe, it suffices to look for homomorphism viola-

tions in 𝐼𝑖 , for 𝑖 ≥ 1. A first observation is that the homomorphism

violations are “sitting" within the bags. This is due to the fact that

each bag stores all the facts associated with the bodies of one or

more s-t tgds from Σ𝑠𝑡 . A second observation is that one way for

preventing unsafe unifications is to hide exported variables. For

example, let us focus on the unsafe unification of ne with ∗. This

unification takes place due to 𝜖1, which in turn has been created

due to the fact that e is an exported variable in 𝜇𝑒 . By hiding the

exported variable e from 𝜇𝑒 , we actually prevent the creation of

𝜖1 and hence, we block the unsafe unification of e with ∗. Hiding
exported variables is one way for preventing unsafe unifications

with the critical constant. Another way for preventing unsafe

unifications is to break joins in the bodies of the rules.

Example 5.5. This example demonstrates a second approach

for preventing unsafe labeled null unifications.

Consider a set of policy viewsV leading to the following in-

stance 𝐼S (V) = {R1 (n1, n1, ∗),R1 (∗, ∗, n2), S1 (∗)}, where n1 and
n2 are labelled nulls. Consider also the mappingM consisting of

the following s-t dependencies:

R1 (𝑥, 𝑥,𝑦) ∧ S1 (𝑦) → T1 (𝑦) (𝜇2)

R1 (𝑥, 𝑥,𝑦) → T2 (𝑥) (𝜇3)

It is easy to see that M is partially-safe, but unsafe in overall.

Indeed, 𝐼S (Σ) will consist of the following bags (for presentation

purposes, we adopt the notation from Example 4.5):

T1 (∗)
⟨𝜇−1

2
,𝜃1 ⟩

−−−−−−−→ R1 (n3, n3, ∗), S1 (∗)

T2 (∗)
⟨𝜇−1

3
,𝜃2 ⟩

−−−−−−−→ R1 (∗, ∗, n4)

R1 (n3, n3, ∗), S1 (∗)
⟨𝜖3,𝜃3 ⟩−−−−−−→ R1 (∗, ∗, ∗), S1 (∗)

where 𝜖3 ··= R1 (𝑥, 𝑥,𝑦) → 𝑥 = ∗,𝜃1 = {𝑦 ↦→ ∗},𝜃2 = {𝑥 ↦→ ∗} and
𝜃3 = {𝑥 ↦→ n3, 𝑦 ↦→ ∗}. Note that 𝜖3 has been created out of 𝜇3,

since there exists a homomorphism from body(𝜇3) intoR1 (n3, n3, ∗)
mapping the exported variable 𝑥 into n3.

One approach for preventing the unsafe unification of n3 with
∗ is to hide the exported variable 𝑥 from 𝜇3. By doing this, we

block the creation of 𝜀, and hence the unsafe unification.

A second approach is to keep 𝑥 as an exported variable in 𝜇3,

but modify the body of 𝜇2 by breaking the join between the first

and the second position of R1

R1 (𝑥, 𝑧,𝑦) ∧ S1 (𝑦) → T1 (𝑦) (𝜇 ′
2
)

By doing this, we prevent the creation of 𝜀, since the instance

computed at line 2 of Algorithm 1 would consist of the facts

R1 (n3, n5, ∗), R1 (∗, ∗, n4), S1 (∗) and, hence, there would be no

homomorphism from body(𝜇3) into it. Note that the modification

of 𝜇2 to 𝜇 ′
2
is safe. Intuitively, this holds, since we break joins,

and thus, we export less information.

Before presenting Algorithm 4, we will introduce some new

notation. The depth of each bag 𝛽 , denoted as depth(𝛽), coin-
cides with the highest derivation depth of the facts in 𝛽 . The

support of a bag 𝛽 , denoted as 𝛽≺ , is inductively defined as fol-

lows: if depth(𝛽) = 1, then 𝛽≺ = 𝛽 ; otherwise, if depth(𝛽) > 1,

then ∪𝛽′≺𝛽𝛽
′≺
. Consider an active trigger ℎ for 𝛿 in 𝐼 lead-

ing to the creation of a bag 𝛽 . We use the following notation:

dependency(𝛽) = 𝛿 , trigger(𝛽) = ℎ and premise(𝛽) = ℎ(body(𝛿)).
Two bags 𝛽1 and 𝛽2 are candidates for modifyBody if 𝛽1 ≺ 𝛽2,

depth(𝛽1) = 1, depth(𝛽2) = 2 and there exists at least one re-

peated variable in the body of tgd(𝛽1).
Algorithm 4 presents an iterative process for repairing a partially-

safe Σ, by employing the three ideaswe described above: checking

for homomorphism violations within each bag and preventing

unsafe unifications either by hiding exported variable, or by mod-

ifying the bodies of the s-t tgds. In brief, at each iteration 𝑖 ≥ 0,

the algorithm repairs one or more dependencies from Σ𝑖 , where
Σ0 = Σ, and incrementally computes the visible chase of the new
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Algorithm 4 srepair(Σ,V, prf, 𝑛)
1: Σ0 ··= Σ
2: 𝐵0 ··= visChaseS (Σ)
3: 𝑖 ··= 0

4: do
5: Σ𝑖+1 ··= Σ𝑖
6: 𝑐𝑜𝑛𝑡 ··= false
7: if ∃ unsafe 𝛽 ∈ 𝐵𝑖 , s.t. depth(𝛽) ≤ depth(𝛽 ′), ∀ unsafe

bag 𝛽 ′ ∈ 𝐵𝑖 then
8: 𝑐𝑜𝑛𝑡 ··= true
9: if 𝑖 < 𝑛 then
10: 𝑟1 ··= ∅; 𝑟2 ··= hideExported(𝛽,V, prf)
11: if ∃𝛽1, 𝛽2 ∈ 𝛽≺ , s.t. 𝛽1, 𝛽2 are candidates for

modifyBody then
12: 𝑟1 ··= modifyBody(tgd(𝛽1), tgd(𝛽2), prf)
13: if 𝑟1 ≠ ∅ and it is preferred over 𝑟2 w.r.t. prf then
14: remove tgd(𝛽1) from Σ𝑖+1
15: add 𝑟1 to Σ𝑖+1
16: else
17: remove tgd(𝛽) from Σ𝑖+1
18: add 𝑟2 to Σ𝑖+1
19: else
20: if ∄𝛽 ′, s.t., 𝛽 ≺ 𝛽 ′ ∈ 𝐵𝑖 then
21: add hideExported(𝛽,V, prf) to Σ𝑖+1
22: else remove tgd(𝛽) from Σ𝑖+1
23: compute 𝐽𝑖+1 from Σ𝑖 , Σ𝑖+1 and 𝐵𝑖
24: 𝑖 = 𝑖 + 1

25: while 𝑐𝑜𝑛𝑡 and 𝑖 ≤ 𝑛

26: return Σ𝑛

set of dependencies, lines 4–25. Algorithm 4 terminates either

when the dependencies are safe, or when the maximum num-

ber of iterations 𝑛 is reached, line 25, in which case it repairs

all unsafe dependencies by hiding their exported variables. The

algorithm starts by initializing Σ0 to Σ, lines 1. Then, at each
iteration 𝑖 , it first identifies the lowest depth unsafe bag, line 7,

and attempts to repair the dependencies from Σ𝑖 that lead to its

creation, lines 7–22. If 𝑖 < 𝑛, it proposes two different repairs for

Σ𝑖 , one based on hiding exported variables through hideExported
(Algorithm 5), and the second based on eliminating joins through

modifyBody (Algorithm 6), lines 10–19. Algorithm 4 applies the

modifyBody if there exist two bags in the support of 𝛽 that are

candidates for modifyBody. Informally, Algorithm 4 tries to ap-

ply modifyBody as early as possible (condition depth(𝛽1) = 1,

depth(𝛽2) = 2) and when there are one or more repeated vari-

ables in the body of tgd(𝛽1) (recall Example 5.5). Otherwise, if

𝑖 = 𝑛, it either applies the function hideExported, or it eliminates

the s-t tgds that are responsible for unsafe unifications.

Note that when we reach the maximum number of itera-

tions we do not apply modifyBody. This is due to the fact that

modifyBody might lead to unsafe unification of labeled nulls to

∗ that were not taking place before the modifying the s-t tgd

through modifyBody. In contrast, hideExported is a safe modifi-

cation, since it does not lead to new unsafe unifications.

Theorem 5.6. For any partially-safe M = (S, T, Σ),
any MV = (S,V,V), any preference function prf and 𝑛 ≥ 0, Al-
gorithm srepair returns a mappingM ′ = (S, T, Σ′) that preserves
the privacy of MV on all instances of S.

Proof. (Sketch) Since srepair takes as input a partially-safe
mappingM = (S, T, Σ), it follows from Definition 5.1 that there

Algorithm 5 hideExported(𝛽,V, prf)
1: 𝐽 := premise(𝛽)
2: 𝜈 := ∅
3: for each 𝑛 ∈ Nulls occurring into 𝐽 do
4: add {𝑛 ↦→ 𝑥} to 𝜈 , where 𝑥 is a fresh variable

5: R := ∅
6: for each 𝜉 : 𝜈 (𝐽 ) → 𝐼S (V) do
7: 𝜇 ··= tgd(𝛽)
8: for each 𝑥 ∈ dom(𝜉) do
9: if 𝜉 (𝑥) ≠ ∗ then
10: for each 𝑦 ∈ exported(𝜇) do
11: if 𝜏 (𝑦) = 𝜈−1 (𝑥), where 𝜏 = trigger(𝛽) then
12: remove 𝑦 from exported(𝜇)
13: if 𝜇 ≠ tgd(𝛽) then
14: add 𝜇 to R
15: choose the best repair 𝜇𝑟 of 𝜇 from R based on prf
16: return 𝜇𝑟

Algorithm 6 modifyBody(𝜇1, 𝜇2, prf)
1: R := ∅
2: if ∃ one or more repeated variables in body(𝜇1) then
3: for each 𝜉 : body(𝜇2) → body(𝜇1) mapping some

𝑥1 ∈ exported(𝜇1)
into some 𝑥2 ∉ exported(𝜇2) do

4: Let 𝐵 ⊆ body(𝜇1), s.t. 𝜉 (body(𝜇2)) = 𝐵

5: Let 𝑉 be the set of repeated variables from 𝐵

6: Let 𝑃 be the set of positions from 𝐵, where all vari-

ables from 𝑉 occur

7: for each non-empty 𝑆 ⊂ 𝑃 do
8: 𝜇 ··= 𝜇1
9: replace the variables in positions 𝑆 of 𝜇 by fresh

variables

10: add 𝜇 to R
11: choose the best repair 𝜇𝑟 of 𝜇 from R based on prf
12: return 𝜇𝑟

exists a homomorphism from chase(Σ−1,CrtT) \ CrtT into 𝐼S (V).
Furthermore, from Proposition 5.2, we know that for each 𝜇 ∈ Σ,
there exists a homomorphism from body(𝜇) into 𝐼S (V) map-

ping each 𝑥 ∈ exported(𝜇) into the critical constant ∗. Due to

the above, since the steps in lines 16–20 of Algorithm 1 do not

introduce new labeled nulls and since srepair applies the pro-

cedure hideExported to each unsafe bag 𝛽 in 𝐵𝑛 , if there does

not exist a bag 𝛽 ′ ∈ 𝐵𝑛 , such that 𝛽 ≺ 𝛽 ′, it follows that M ′
pre-

serves the privacy ofMV on all instances of S, if hideExported
prevents dangerous unifications of labeled nulls with the critical

constant in line 4 of Algorithm 1. In particular, assume that we

are in the 𝑛-th iteration of the steps in lines 4–25 of Algorithm 4.

Let 𝛽0𝑛, . . . , 𝛽
𝑀
𝑛 be the unsafe bags in 𝐵𝑛 . Assume also that for

each 1 ≤ 𝑙 ≤ 𝑀 , 𝛽𝑙𝑛 , was derived due to some active trigger ℎ𝑙 ,

for some derived egd 𝜀𝑙 ∈ Σ≈ in 𝐼 𝑗 , where 𝑗 ≥ 0, line 17 of Algo-

rithm 1. Let 𝜇𝑙 = tgd(𝜀𝑙 ), for each 0 ≤ 𝑙 ≤ 𝑀 and let 𝜇𝑙𝑟 be the

repaired s-t tgd. Finally, let 𝛽0
𝑛+1, . . . , 𝛽

𝑁
𝑛+1 be the bags in 𝐵𝑛+1,

line 23 of Algorithm 4. Based on the above, in order to show that

Theorem 5.6 holds, we need to show that (i) the number of bags

in 𝐵𝑛+1 is ≤ the number of bags in 𝐵𝑛 and that (ii) the s-t tgds

in

(
Σ \⋃𝑀

𝑙=0
𝜇𝑙
)
∪⋃𝑀

𝑙=0
𝜇𝑙𝑟 are safe. In order to show (i) and (ii),

we consider the steps in Algorithm 5: for each 1 ≤ 𝑙 ≤ 𝑀 , each

exported variable 𝑦 occurring in 𝜇𝑙 , which leads to an unsafe

9



min max step

# s-t tgds per scenario (𝑛𝑑𝑒𝑝 ) 100 300 50

# body atom per s-t tgds (𝑛𝑎𝑡𝑜𝑚𝑠 ) 1 3 (5) −
# exported variables per s-t tgds (𝑛𝑣𝑎𝑟𝑠 ) 5 8 −
Table 1: Properties of the generated iBench scenarios.

unification, line 11 of Algorithm 5, is turned into a non-exported

variable. □

By combining Proposition 5.3 and Theorem 5.6 we can prove

the correctness of Algorithm 2. Furthermore, if the preference

function always prefers the repairs computed by hideExported
from the repairs computed by modifyBody, we can show the

following:

Proposition 5.7. For each mappingM = (S, T, Σ), eachMV =

(S,V,V) and each preference function prf that always prefers the
repairs computed by hideExported from the repairs computed by
modifyBody, Algorithm 2 returns a non-empty mapping that is
safe w.r.t. MV, if such a mapping exists.

Proof. (Sketch) From Algorithm 3, we can see that frepair
always computes a non-empty partially-safe mapping, if such

a mapping exists. Note that a mapping, where no variable is

exported and no repeated variables occur in the body of the s-

t tgds is always partially-safe as long as, the predicates in the

bodies of the s-t tgds are the same with the ones occurring in

the policy views. Please also note that such a mapping is always

considered by frepair. The above argument, along with the fact

that a partially-safe mapping can be transformed into a safe

one by turning exported variables into non-exported ones by

means of the function hideExported, shows that Proposition 5.7

holds. □

6 EXPERIMENTS
We gauge the efficiency of our repairing algorithm on two types

of preference function: a hardcoded one and a learning-based

preference function.

We evaluated our algorithm using a set of 3.6K diverse map-

ping scenarios each of which consisting of a set of policy views

and a set of s-t tgds. The characteristics of the scenarios are

summarized in Table 1. In each scenario, we used a different num-

ber of s-t tgds 𝑛𝑑𝑒𝑝 , a different number of body atoms 𝑛𝑎𝑡𝑜𝑚𝑠

and a different number of exported variables 𝑛𝑣𝑎𝑟𝑠 . The source

schemas and the policy views have been synthetically generated

using iBench, the state-of-the-art data integration benchmark

[2]. We considered relations of up to five attributes and we cre-

ated mappings using the iBench configuration recommended by

the authors of [2]. We generated a set of varied policy views by

applying the iBench operators copy, merge, deletion of attributes

and self-join, each of which has been applied 10 times.

We implemented our algorithm in Java and we used the Weka

library [16] that provides an off-the-shelf implementation of the k-

NN algorithm for the learning-based preference function. We ran

our experiments on a laptop with one 2.6GHz 2-core processor,

16Gb of RAM, running Debian 9.

In the remainder, all data points have been computed as an

average on a total of 5 runs preceded by one discarded cold run.

Running time of repair. First, we study the impact of the num-

ber of s-t tgds and body atoms on the running time of repair. We

adopt a fixed preference function that chooses the repair with

the maximum number of exported variables. In case of ties, the

golden standard

prediction 𝜇1 𝜇2

𝜇1 230 0

𝜇2 0 395680

(a) 𝑃𝑚𝑎𝑥 confusion matrix.

golden standard

prediction 𝜇1 𝜇2

𝜇1 290 1

𝜇2 42 395577

(b) 𝑃𝑎𝑣𝑔 confusion matrix.

Table 2: Confusion matrix for the golden standards.

repair with the maximum number of joins is preferred. We vary

the number of s-t tgds from 100 to 300 by steps of 50 and the

number of body atoms from 3 to 5, respectively. The obtained

results are shown in Figure (3a), illustrating the fact that the

median repairing time is less than 1.5s in most cases. For the

most complex scenario containing up to five body atoms per s-t

tgd, the median running time is less than 8s with 71s being the

maximum. These results clearly show the high performance of

our repair method along with its scalability. The reader should

keep in mind that the repairing process is triggered prior to ex-

changing the data between source and target and might be rerun

each time a mapping (set of s-t tgds) is modified or each time a

policy view is modified, thus bringing the overhead to be quite

reasonable in both cases.

Figure (3b) shows the time breakdown for repair. The first bar
shows the average running time to run the visible chase over the

input s-t mappings, the second one shows the average running

time for checking the safety of the computed bags and the third

one shows the average running time for repairing the s-t tgds.

The results show that the repairing time is 32𝑥 greater than the

time to compute the visible chase and 40𝑥 greater than the time

to check the safety of the chase bags for scenarios with 300 s-t

tgds. In the simplest scenarios, these numbers are much lower

(reduced to 5𝑥 and 9𝑥 , respectively). Overall, the absolute values

of the rewriting times are kept low (of the order of few seconds)

for all these scenarios and gracefully scale while increasing the

number of s-t tgds and the number of atoms in their bodies.

Timebreakdownbetween frepair and srepair. Figure (3c) shows
the average running time for frepair and srepair for the consid-
ered scenarios.We can see that srepair is themost time-consuming

step of our algorithm. We can also see that the running time of

srepair increases more in comparison to the running time of

frepair when increasing the number of the s-t tgds and the num-

ber of atoms in their bodies. This is due to the incurred overhead

during the incremental computation of the visible chase after

repairing a s-t tgd (line 23 of Algorithm 4). Figure (3d) shows

the correlation between the number of active triggers detected

while incrementally computing the visible chase and the run-

ning time of srepair for scenarios with 100 s-t tgds using the

ANOVA method (p-value < 2.2𝑒−16). Figure (3d) shows that the
most complex scenarios lead to the detection of more than 45, 000

active triggers. Despite the high number of the detected active

triggers, the running time of srepair is kept low thus confirming

its efficiency.

Leveraging learning-based preferences.We adopted the fol-

lowing steps in order to evaluate the performance of our learning

approach. First, we defined the following two golden standard

preference functions that we will try to learn:

• 𝑃𝑚𝑎𝑥 , which chooses the repair with the maximum num-

ber of exported variables and in case of ties, it chooses the

repair with the maximum number of joins.

• 𝑃𝑎𝑣𝑔 , which computes the average number of exported

variables and joins for each repair, and choose the one

with the maximum average value.
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(a) Repairing times. (b) Time comparisons.

(c) Time breakdown between frepair and srepair. (d) Running time of srepair over 100 s-t tgds.

Figure 3: Summary of the performance-related experimental results.

Figure 4: Repairing times with ML classifiers.

For both preference functions, we created a training set of 10, 000

measurements for the k-NN classifier by running the repairing al-

gorithm on fresh scenarios of 50 s-t tgds and five body atoms per

s-t tgd. For each input vector ⟨𝛿𝐹𝑉 , 𝛿 𝐽 ⟩whose repair wewanted to
predict, we computed the Euclidean distance between ⟨𝛿𝐹𝑉 , 𝛿 𝐽 ⟩
and the vectors of the training set. We also set the value of pa-

rameter 𝑘 to 1. This parameter controls the number of neighbors

used to predict the output. Higher values of this parameter led to

comparable predictions and are omitted for space reasons. Finally,

we used the trained k-NN classifier as a preference function in

srepair, rerun the above scenarios and compared the returned re-

pairs with the ones returned when applying the golden standards

𝑃𝑚𝑎𝑥 and 𝑃𝑎𝑣𝑔 as preference functions.

Learning 𝑃𝑚𝑎𝑥 . Table (2a) (left) reports the confusion matrix

associated to learning 𝑃𝑚𝑎𝑥 , including the choices made by the

k-NN classifier during its iterations.

Let us call 𝜇1 and 𝜇2 two possible repairs of an s-t tgd as evalu-

ated by the k-NN classifier. We can observe that the prediction of

𝜇1 was correct (and equal to the golden standard in the training

set) in 230 cases, while the prediction of 𝜇2 was correct in 395,680

cases.

This confirms the fact that 𝜇2 is the best repair across the

iterations of the k-NN algorithm and is also chosen in case 𝜇1
and 𝜇2 are equally weighed by the preference function.

Furthermore, we also report the accuracy of learning the pref-

erence function, obtained by measuring the closeness of the

learned mapping to the golden standard mapping.

We used the Matthews Correlation Coefficient metric (MCC)

[3] to compare the repairs returned by the trained k-NN classifier

and the ones returned when applied 𝑃𝑚𝑎𝑥 . This is a classical

measure that allows to evaluate the quality of ML classifiers when

ranking is computed between two possible values (in our case,

the choice between 𝜇1 and 𝜇2). This measure has been computed

using the following formula:

𝑀𝐶𝐶 =
𝑁1,1 × 𝑁2,2 − 𝑁1,2 × 𝑁2,1√

(𝑁1,1 + 𝑁1,2) (𝑁1,1 + 𝑁2,1) (𝑁2,2 + 𝑁1,2) (𝑁2,2 + 𝑁2,1)
where 𝑁𝑖, 𝑗 is the number of predictions of 𝜇𝑖 when 𝜇 𝑗 is ex-
pected. The results of 𝑀𝐶𝐶 range from −1 for the cases where
the model perfectly predicts the inverse of the expected values,

to 1 for the cases where the model predicts the expected values.

The value𝑀𝐶𝐶 = 0 means that there is no correlation between

the predicted value and the expected one. By applying MCC to

the learning of 𝑃𝑚𝑎𝑥 , we observed that the data are clearly dis-

criminated, thus leading to high-quality of our prediction in this

case (𝑀𝐶𝐶 = 1).

Learning 𝑃𝑎𝑣𝑔 . Table (2b) (right) shows the confusion matrix

associated to learning 𝑃𝑎𝑣𝑔 . We can see that the predictions are

less accurate in this case. The data is not as clearly discriminated

as before, leading to a fairly negligible error rate (< 0.02%). How-

ever, the latter is still acceptable for learning, since only < 0.02%

of the predictions are erroneous. This is corroborated by an𝑀𝐶𝐶

value equal to 0.93, thus leading to a fairly acceptable quality of

the prediction in this case too.

Running time of repair with ML classifiers. In the last ex-

periment, we want to measure the impact of learning on the

performance of our algorithm. To this end, we compare the run-

ning time of repair when adopting a hard-coded preference func-

tion (as in the results reported in Figure 3) and when adopting a

learned preference function. Figure 4 shows the running times

for the same scenarios used in Figure 3. We can easily observe

that the runtimes are rather similar with and without learning

and the difference amounts to a few milliseconds. This further

corroborates the utility of learning the preference function and

shows that the learning is robust and does not deteriorate the

performances of our algorithm.

Qualitative study. In order to illustrate the utility of our ap-

proach, in this experiment we study possible rewritings of a

mapping defined over the NHS schema.The NHS schema focuses

on storing information concerning patients admitted in hospi-

tals. Here, we consider the dependencies involving general in-

formation on patients. This includes administrative information
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Relation #atts

birth 34

patient 17

mothers_social_data 8

pis_e_prescribing 27

death 50

(a) Source schema characteristics

Relation #atts

birth_export 34

patient_export 17

pis_e_prescribing_export 27

death_export 50

(b) Target schema characteristics
Relation #atts

link_death_drugs 3

death_causes 20

prescribed_drugs_evolution 9

mothers_social 8

fathers_social 6

(c) Policy views schema characteristics

(1) birth(. . . ) → birth_export(. . . )
(2) patient(. . . ) → patient_export(. . . )
(3) pis_e_prescribing(. . . ) → pis_e_prescribing_export(. . . )
(4) death(. . . ) → death_export(. . . )

(d) Mapping over NHS

death(. . . ) ∧ pis_e_prescribing(. . . ) → link_death_drugs_data(. . . )
death(. . . ) → death_causes(. . . )
pis_e_prescribing(. . . ) → prescribed_drugs_evolution(. . . )
birth(. . . ) ∧ patient(. . . ) → mother_social(. . . )
birth(. . . ) → fathers_social(. . . )

(e) Policy views over NHS

Table 3: Properties of the NHS dataset.
Rewrited #possible #frontier variables in repairs

tgd repairs min max

(1) 3 25 29

(2) 2 13 14

(3) 2 18 18

(4) 2 25 25

Table 4: Properties of the repairing process.
(relation patient in the source schema), social and medical infor-

mation on the patient himself (relations birth and death), social
data on patients’ mothers (relation mother_social_data) and in-

formation on drugs prescriptions (relation pis_e_prescribing).
The characteristics of the source schema are summarized in

Table 3a. The mapping to rewrite and the characteristics of its

target schema are summarized in Tables 3d and 3b, respectively.

The set of policy views and the characteristics of their target

schema are reported in Tables 3e and 3c, respectively.

The link_death_drugs_data view allows to link the prescribed

drugs with patient pathology, but no personal information is ex-

ported to prevent the identification of the patient. The death_causes
view gives access to the causes of death of the admitted patients.

The prescribed_drugs_evolution view gives access to drug pre-

scriptions information without any identifying information. The

mother_social and fathers_social views give access to patients’

mothers and fathers social information.

In Table 4, we show the number of possible repairs for each

tgd in Table 3d. It can be seen that the tgd (1) has three possible
repairs, exporting from 25 to 29 variables, respectively. Anal-

ogously, the tgd (2) leads to two possible repairs, allowing to

export from 13 to 14 variables each. Both tgds (3) and (4) lead to

two possible repairs, with a constant number of exported vari-

ables for each tgd. These rewritings are distinguished by the

exported variables, and one can decide to choose which repair-

ing fits best her needs either visually or by leveraging the user

preference function, as shown in our previous experiment.

7 CONCLUSION
We have studied the problem of data exchange in the presence

of privacy restrictions expressed as policy views on the source

schema. We have proposed a repairing process for the mappings

that are unsafe under the source policy views. Our approach is

inherently data-independent and leads to repairing the mappings

guaranteeing privacy preservation at a schema level. As such,

our approach is orthogonal to several data-dependent privacy-

preservation methods (such as differential privacy methods), that

can be used on the source and target instances to further corrob-

orate the privacy guarantees. The study of such fruitful combi-

nations of methods is devoted to future work.

We also envision several other extensions of our work, such as

the study of more expressive GLAV mappings and the interplay

between data-independent and data-dependent privacy methods

as well as the usage of other learning methods.
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ABSTRACT
Modern data lakes are deeply heterogeneous in the vocabulary
that is used to describe data. We study a problem of disambigua-
tion in data lakes: how can we determine if a data value occurring
more than once in the lake has different meanings and is therefore
a homograph? While word and entity disambiguation have been
well studied in computational linguistics, data management and
data science, we show that data lakes provide a new opportunity
for disambiguation of data values since they represent a massive
network of interconnected values. We investigate to what extent
this network can be used to disambiguate values.

DomainNet uses network-centrality measures on a bipartite
graph whose nodes represent values and attributes to determine,
without supervision, if a value is a homograph. A thorough exper-
imental evaluation demonstrates that state-of-the-art techniques
in domain discovery cannot be re-purposed to compete with
our method. Specifically, using a domain discovery method to
identify homographs has a precision and a recall of 38% ver-
sus 69% with our method on a synthetic benchmark. By apply-
ing a network-centrality measure to our graph representation,
DomainNet achieves a good separation between homographs and
data values with a unique meaning. On a real data lake our top-
200 precision is 89%.

1 INTRODUCTION
Data lakes are large repositories where the metadata, including
table names, attribute names, and attribute descriptions may be
incomplete, ambiguous, or missing [32]. Modern data lakes are
heterogeneous in many different ways: semantics, metadata, and
data values. We consider the problem of determining if a data
value (i.e., the value of an attribute in a table) that appears more
than once in the data lake has a single meaning. A data value
with more than one meaning is a homograph. We illustrate the
data lake disambiguation problem through an example.

Example 1.1. Consider the small sample of a data lake in Fig-
ure 1, showing four tables about different topics. T1 is about cor-
porate sponsorship for efforts to save at-risk species, T2 is about
populations in zoos, T3 is about car imports, and T4 is about corpo-
rate sales. Without disambiguation, a simple keyword search for
Jaguar will return a very heterogeneous set of tuples.

One approach to tackle this problem would be to apply document
disambiguation by treating tables as documents. Such techniques
are excellent at discerning topics in natural language documents
and using this information to further disambiguate the words. How-
ever, because of the nature of tables that are often used to express

© 2021 Copyright held by the owner/author(s). Published in Proceedings of the
24th International Conference on Extending Database Technology (EDBT), March
23-26, 2021, ISBN 978-3-89318-084-4 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

𝑇 1 Donor At Risk Donation
Google Panda 1M
Volkswagen Puma 2M
BMW Jaguar 0.9M
Amazon Pelican 1.5M

𝑇 2 name locale num
Panda Memphis 2
Panda Atlanta 2
Lemur National 20
Jaguar San Diego 8

𝑇 3 C1 C2 C3
XE Jaguar UK
Prius Toyota Japan
500 Fiat Italy

𝑇 4 Name Revenue Total
Jaguar 25.80 43224
Puma 4.64 13000
Apple 456 370870
Toyota 123 123456

Figure 1: Running example with Jaguar and Puma having multi-
ple meanings. How can we use co-occurrence information across
a data lake to discern different meanings?

relationships between different types of entities and values, distin-
guishing between a donor table 𝑇 1 and a zoo table 𝑇 2 that contain
within them synonyms for animals while also being about very dif-
ferent topics (donations and zoos) is a difficult task. Distinguishing
between car manufacturers 𝑇3 and corporations 𝑇4 can be even
harder because of the prevalence of numerical values.

Entity resolution and disambiguation methods commonly as-
sume a small set of tables about a small number of entity types
(which may have the same or different schemas). In contrast, in
a data lake the values to be disambiguated may appear in hun-
dreds of tables about very different entity types and relationships
between them. The ambiguous values need not be named entities,
but may be descriptors or any data value in a table. This makes
entity resolution inapplicable, but opens up new opportunities to
use the large network of values and co-occurrences of values in the
lake in new ways.

In entity resolution (ER) [9], the idea is to determine if two
(or a set of) tuples refer to the same real-world entity or not. An
important assumption in ER is that the tables being resolved are
about the same (known) entity types. As an example, given a set
of tables about papers that include authors as data values, we
can determine if two tuples refer to the same paper (have the
same meaning). As a by-product of entity resolution, a data value,
for example “X. Wang,” may be identified as an ambiguous data
value that refers to more than one real-world entity. Schema-
agnostic ER techniques have been proposed that do not assume
the entities are represented by the same schema [37]. However,
these approaches still assume the tables being resolved represent
entities of the same type.

In our problem, we are not starting with a small set of tables
that are known to refer to the same type of real-world entities,
e.g., customers or research papers. We want to understand in a
data lake with a massive number of tables if the value “Puma”
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in T1 (see Figure 1), Attribute At Risk refers to the same real-
world concept (not necessarily an entity) as “Puma” in Table T4,
Attribute Name.

Disambiguation of words in documents has also been heavily
studied [4, 24, 43, 49]. Solutions often rely on language structures
or labeled training data. In contrast to documents, which are free
text, tables are structured and lack the same intuitive notion of
context. While plenty of research has explored disambiguation
of documents, to the best of our knowledge there is no work on
disambiguation of data lakes. This is of importance because data
lakes can contain many data values that have different meanings.
As an example, “Not Available” is a well known way to represent
NULL values in a table. “Not Available” is not ambiguous from a
natural-language point of view. However in a data lake it may
appear in multiple attributes corresponding to names, telephone
numbers, IDs etc., making “Not Available” a homograph meaning
“unknown name” or “unknown number,” etc.

Determining if a value in a data lake has a single or multiple
meanings is unexplored territory. We define data lake disam-
biguation as follows:

Definition 1 (Data lake Disambiguation). Given a data
lake containing a collection of tables with possibly missing, incom-
plete, or heterogeneous table and attribute names. For any data
value 𝑣 that appears in more than one attribute (column) or table,
determine if it has a single meaning or more than one meaning.
The latter are called homographs.

Ahomograph is not necessarily a singleword from a dictionary
or a vocabulary. In a data lake, a homograph can be a phrase,
initialism (e.g., “NA”), identifier, or any blob (data value). We
do not assume homographs to be named entities; they can be
adjectives or another part of speech. Homographs arise naturally
from words used in different contexts, e.g., the classic example
of Apple as a fruit or a company, or Jaguar in Example 1.1. They
can also arise due to errors, e.g., when animal color “yellow” is
accidentally entered in the habitat column. We consider this now
ambiguous value a homograph. Notice that updates to the data
lake can change a homograph to a value with a single meaning,
e.g., when the table with the only alternative meaning is removed;
and vice versa.

In this work, we examine the global co-occurrence of data
values within a data lake and how such information can be used
to disambiguate data values. We show that a local measure is
not sufficient and motivate why and how the full network of
value co-occurrences enables effective disambiguation. This net-
work exploits table structure and had not been considered in the
most commonly studied disambiguation problems such as named-
entity disambiguation and entity resolution. Its disambiguation
power comes at a price: The value co-occurrence information
is massive and it is not obvious how to process it efficiently for
disambiguation.

Contributions. We address the data lake disambiguation
problem using a network-based approach called DomainNet. Our
main contributions are as follows.

• We define the problem of homograph detection in data lakes.
Homographs may arise in tables that do not represent the
same (or even similar) types of entities, and hence cannot be
identified using entity resolution and disambiguation. They
may not even be words in natural language and do not ap-
pear in natural-language contexts, making language models
ineffective.

• We present DomainNet, a network-based approach to deter-
mine if a data value appearing in multiple attributes or tables
is a homograph. DomainNet is motivated by work on commu-
nity detection where a community represents a meaning for a
value (e.g., animal or car model). A homograph is then a value
that occurs in multiple communities. However, in the homo-
graph detection problem (𝑖) there are an unknown and possibly
large number of meanings for a value and (𝑖𝑖) our goal is to
find values that span communities, not the communities. We
identify two measures for finding such community-spanning
values, the local clustering coefficient [48] and the betweenness
centrality [16], and empirically evaluate their usefulness in
homograph detection.

• We present an evaluation on a synthetic dataset (with ground
truth), studying the performance of both centrality measures
and motivating the use of the more computationally expensive
betweenness centrality. We compare DomainNet to a recent
unsupervised domain detection algorithm 𝐷4 [36] (any value
belonging to multiple domains is a homograph). 𝐷4 achieves a
precision and a recall of 38% whereas DomainNet reaches 69%.

• We create a disambiguation benchmark from the real data used
in a recent table-union benchmark [33] and show that we can
effectively find naturally occurring homographs in this data
(89% of the first 200 retrieved values are homographs based on
ground truth). We also systematically introduce homographs
into real data and show that betweenness centrality achieves
85% accuracy when homographs are injected into both small
and large attributes, and over 97% accuracy when homographs
are all injected into attributes with at least 500 distinct values.
We show that DomainNet is effective even when there is high
variance in the number of meanings of different homographs.

• To illustrate the importance of homograph discovery, we show
the impact that as few as 50 homographs (injected into a clean
unambiguous real data lake) can have on a domain discovery
algorithm [36]. As the number of of homographs increases, the
accuracy of the domain discovery algorithm deteriorates.

• The scalability of our approach depends on the size of the data
lake vocabulary (the number of values) and on the density
of the network (number of edges). We use real data (from
NYC open data) with a vocabulary size of 1.5M to show that
we can compute the DomainNet network in 3.5 min and find
homographs in 27 min using an approximation of betweenness
centrality based on sampling.
The remainder of this paper is organized as follows. In Sec-

tion 2 we discuss existing work in disambiguation. In Section 3
we introduce our approach and describe how applying central-
ity measures on a graph representation of the data lake can be
used to identify homographs. Section 4 summarizes the datasets
used in our experimental evaluation presented in section 5. We
conclude and outline possible future directions of our work in
Section 6. For further information, please visit our project page
at https://northeastern-datalab.github.io/table-as-query/

2 FOUNDATIONS OF DISAMBIGUATION
Disambiguation has been studied in several contexts in NLP, data
management and broadly in AI and data science. We analyze how
this work can be applied to disambiguation in data lakes.

2.1 Entity Resolution
Entity Resolution (ER) identifies records (also called tuples) across
different datasets (or sometimes corpora) that represent the same
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real-world entities. ER is generally applied to structured and
semi-structured data including tables and RDF triples [18]. Some
ER approaches also identify ambiguous values as part of the
resolution process. For example, using collective entity resolution
over two types of tables (e.g., papers and authors) one can identify
if a value, say “X. Wang,” refers to different authors [3]. Similarly
in familial networks, one can resolve synonyms (different values
that refer to the same person) and identify homographs (same
value used to refer to different people) [26].

ER assumes that the information to be resolved or disam-
biguated is of a single known type (e.g., resolving customer tuples
or patient records) or a small set of types (e.g., authors, their pa-
pers, and publishing venues). Some work, called schema-agnostic
ER, does not require that all data be represented using the same
schema [9]. However, all these approaches start with the assump-
tion that two or more tables (or corpora) are describing the same
type of entities [37, 38, 42].

In data lake disambiguation, we seek to find ambiguous val-
ues even when we do not know what type of entities a table is
describing. We also do not know if different tables are describing
the same or different entities. Hence, we cannot apply collective
models or other resolution models that rely on this knowledge.

Example 2.1. Given the four tuples with Jaguar: [BMW,
Jaguar, 0.9M], [Jaguar, San Diego, 8], [XE, Jaguar, UK],
and [Jaguar, 25.8, 43224], does Jaguar have the same mean-
ing? These four tuples correspond to four different types of facts:
donors and the amount they contribute to protect an endangered
species, animals in zoos, car models, and economic information
about companies. ER schema-agnostic algorithms are insufficient
in resolving (or disambiguating) values within these heterogeneous
tables because they rely on the hypothesis that the tables they
examine refer to the same type of real-world entity.

2.2 Semantic Type Detection
A possible approach to data lake disambiguation is to discover
semantic types for all attributes (columns) and then label a value
appearing in different semantic types a homograph. In the run-
ning example, identifying the semantic type of T1.At Risk and
T2.name as animal and mammal, respectively, and knowing that
mammals are animals, one can infer that Jaguar is not a ho-
mograph there. In contrast, recognizing T3.C2 is of type “Car
Manufacturer,” which is neither a sub- nor super-type of animals,
implies that Jaguar in T3 and T1 represents a homograph. Here,
we discuss different approaches to semantic type discovery and
to what extent they could be used for homograph detection.

Knowledge-based Techniques. There has been consider-
able work on semantic type detection in the Semantic Web com-
munity that uses external knowledge from well-known ontolo-
gies including DBpedia [28], Yago [46] and Freebase [5]. Most
solutions have been applied to Web tables [11, 12, 29] that are
small (in comparison to other data lakes) and have rich metadata
(table and attribute names).

Hassanzadeh et al. [20] use a map-reduce approach to find
similarity between a (column, data value) pair from a table with
a (class, instance label) pair from the Knowledge Base (KB). Ritze
et al. [41] match Web tables to DBpedia to profile the potential
of Web tables for augmenting knowledge bases with missing
information. These approaches cannot infer type information
for an attribute that it is not part of the KB. Unfortunately, the
coverage of values from data lakes in Open KBs is low (a recent
study reports about 13% [33]), limiting their applicability.

Supervised Techniques. An alternative are machine learn-
ing (ML) techniques that infer the semantic type of attributes.
ML solutions utilize a variety of graphical models (Conditional
Random Fields [19], Markov Random Fields [31]), as well as Multi-
level Classification [47], and Deep Learning [23]. Sherlock [23]
uses features about the values in an attribute to classify some of
the attributes in a data lake into one of 78 semantic types (like
address or horse jockey) [23]. A recent solution, called SATO [51],
augments this approach and shows that using row information
can improve the classification accuracy for the same 78 seman-
tic types. These approaches require large amounts of labeled
training data and are limited by the set of pre-defined types.

Unsupervised Techniques.Unsupervised semantic type dis-
covery algorithms have only recently started to be studied. We
discuss two unsupervised algorithms, one for semantic type dis-
covery, 𝐷4 [36], and one for table unionability search [33].

𝐷4 provides an unsupervised approach with a focus on as-
sembling all the values of each semantic type in a data lake [36]
(these values are called a "domain"). They propose a data-driven
approach that leverages value co-occurrence information to clus-
ter values that are from the same domain. Heuristics attempt to
deal with ambiguous values that may appear in multiple domains.
In our context, 𝐷4 can be used to label values that appear in mul-
tiple domains as homographs. This indeed serves as a baseline in
our experiments.

Table Union Search [33] solves a different problem. Given a
query table, they find a set of tables from the lake that are most
unionable with it. In order to do so, they provide several similar-
ity measures that are used collectively to calculate how unionable
two attributes are. This work can use both ontological and se-
mantic (word embedding) signals when present to determine
unionability over heterogeneous attributes, but does not attempt
to find or label homographs.

2.3 Disambiguation in Related Areas
Word-sense disambiguation (WSD) [24, 34], i.e., the task of identi-
fying which meaning of a word is used in a sentence, is an impor-
tant problem in computational linguistics. Although a human can
proficiently perform this task on a document, constructing algo-
rithms that perform this task effectively is still an open research
problem. Techniques proposed so far range from dictionary-based
methods, which use the knowledge encoded in lexical resources
(e.g., WordNet) [34], to more recent solutions in which a classifier
is trained for each distinct word on a corpus of manually sense-
annotated examples [39]. Additionally, completely unsupervised
methods have also been proposed that cluster occurrences of
words, thereby inducing word senses, i.e, word embeddings [24].
The aforementioned solutions rely on information (or latent infor-
mation) about the structure of sentences including grammatical
rules. Finally, while solutions that do not rely on grammar also
exist, they only operate on documents and not tables [4, 43].

Another relevant sub-task in Natural Language Processing is
Named-Entity Recognition (NER), which has been proposed as a
possible solution for disambiguation [49]. NER seeks to locate and
classify named entities mentioned in unstructured text into pre-
defined categories such as person names, organizations, locations,
etc. NER systems have been created that use linguistic grammar-
based techniques as well as statistical models [1].

A special case of the NER problem is the author name disam-
biguation problem [14, 44] Authors of scholarly documents often
share names which makes it hard to distinguish each author’s
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work. Hence, author name disambiguation aims to find all publi-
cations that belong to a given author and distinguish them from
publications of other authors who share the same name. Different
solutions have been proposed using graphs [30]. However, the
graph structure proposed is largely domain specific. The graph
contains not only the information about the co-authorship and
published papers, but also venue of the paper published, year of
research activities and so on.

3 DISAMBIGUATION USING DOMAINNET
We now present our proposed solution, DomainNet1, for finding
homographs in a data lake.

3.1 Problem Definition
Recall from Definition 1 that a homograph is a data value that
appears in at least two attributes with more than one mean-
ing. Values that are not homographs are unambiguous values.
In data lakes, attribute and table names can be missing or mis-
leading (with many ambiguous terms like “name,” “column 2,”
or “detail”) [32]. Well-curated enterprise lakes may have more
complete metadata, but even they do not follow the unique name
assumption—which states that different attribute names always
refer to different things. As a result, many data lake search ap-
proaches rely solely on the table contents [10, 13, 52, and others].
In a similar vein, in DomainNet, we investigate to what extent
data values and the co-occurrence of data values within attributes
can be used to determine if a value is a homograph.

Example 3.1. In Figure 1, the data value Jaguar is a homograph
because it refers to the animal in Tables 𝑇1 and 𝑇2 and refers to
the car manufacturer in Tables 𝑇3 and 𝑇4. Other values such as
Panda and Toyota are unambiguous since they only have a single
meaning across all tables. Puma is also a homograph, appearing as
an animal and a company. Figure 2 displays which values co-occur
with Jaguar in the same column using an incidence matrix: the
vertical axis shows the different values, and the horizontal axis the
different attributes occurring in the data lake.

Note that homographs need not be values from a dictionary. They
can be any data value that appears in a table. Another example
of a homograph is the data value 01223 which in some attributes
may refer to a Massachusetts zip code and in others to an area code
near Cambridge, UK, and in yet others to the suffix of an Oil Filter
Element Replacement product code.

Fiat Toyota Apple Puma Jaguar Pelican Panda Lemur

T2.name 1 1 1

T1.At Risk 1 1 1 1

T4.Name 1 1 1 1

T3.C2 1 1 1

Figure 2: Incidence matrix: vertical axis attributes, horizontal
axis data values.

In a well-curated database or warehouse, we may know the
semanticmeaning of each attribute (e.g., "Animal Name" vs. "Com-
pany Name") and can leverage it to identify homographs. How-
ever, in a dynamic, non-curated data lake, we cannot rely on this
information to be available.

1The code for DomainNet and our benchmarks is available at https://github.com/
northeastern-datalab/domain_net.

3.2 DomainNet: Viewing Values as a Network
In data lakes, without a priori knowledge of table semantics
or types, we take a network-based approach to understanding
the meaning of repeated data values. We propose to detect ho-
mographs using network measures. For that purpose, we can
interpret the co-occurrence information about values across dif-
ferent attributes using a network representation in which nodes
represent data values and edges represent the fact that two values
co-occur in at least one column (attribute) in the data lake.

Example 3.2. In Figure 3, we depict the values from the same
four attributes shown in Example 3.1. Figure 3a shows the value
co-occurrence network. Notice that by removing both “Puma” and
“Jaguar” the remaining nodes become disconnected into two compo-
nents. This captures the intuition that those two values are pivotal
in that they bridge two otherwise disconnected meanings or graph
components.

Whereas this representation allows us to apply straightfor-
ward metrics from community detection, it comes at a high cost:
the representation uses more space than the original data lake.
The incidence matrix is sparse and has as many entries as there
are cells in the data lake (Figure 2). In contrast, the co-occurrence
graph increases quadratically in size with respect to the cardi-
nality of attributes (the size of the vocabulary) in the data lake
(Figure 3a). Consider a single column with 100 values. The inci-
dencematrix represents this informationwith 100 rows, 1 column,
and 100 entries. The co-occurrence graph represents this with
100*99/2=4950 edges across 100 nodes.

Thus, we use a more compact network representation that
allows us (after some modifications) to apply network metrics to
discover pivotal points (Figure 3b). DomainNet uses a bipartite
graph composed of (data) value nodes and attribute nodes. The
attribute nodes represent the set of attributes and the value nodes
the set of data values across all attributes in the lake. Every data
value is treated as a single string, it is capitalized and has its
leading and trailing white-space removed to ensure consistent
comparison of data values across the lake. Notice that each data
value, even if found in multiple attributes, is represented by one
single value node in the graph. An edge is placed between a
value node and an attribute node if the data value appears in
the attribute (column) corresponding to that attribute node. Data
values that appear in more than one attribute are candidates for
being homographs.

Example 3.3. Figure 3b, shows a portion of the DomainNet rep-
resentation for Figure 1 using only the four attributes of Example 3.1.

Jaguar

Fiat

Toyota Apple

Puma

PelicanPanda

Lemur

(a) Co-occurrence graph

T3.C2

T4.Name

T1.At Risk

T2.name

Fiat
Toyota
Apple
Puma

Jaguar
Pelican
Panda
Lemur

Values Attributes

(b) Bipartite graph

Figure 3: Two graph representations of a portion of Figure 1.

In the DomainNet bipartite graph, we call two data values
neighbors if they both appear in the same attribute (and hence
there is a path of length two between them in the graph). Similarly,
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two attributes are neighbors if they have at least one data value
in common (and hence there is a path of length two between
them). For a data value node 𝑣 , 𝑁 (𝑣) denotes the set of all its
value neighbors. We also define the cardinality of a data value
node 𝑣 as the number of neighbors |𝑁 (𝑣) |, which is the number
of unique data values that co-occur with 𝑣 . If 𝑛 is the number of
value nodes and 𝑎 the number of attribute nodes, the number of
edges in a DomainNet graph over real data tends to be much less
than 𝑛 · 𝑎.

Tables to Graph. Recent work on embedding algorithms in
relational databases [2, 7, 27] use a graph representation of tables.
Like DomainNet, they model values and columns as nodes. De-
pending on the problem addressed, some approaches also include
nodes for rows and tables. Like in our approach, column names
are not assumed to be present or unambiguous.

Koutras et al. [27] and Capuzzo et al. [7] use a tripartite graph
representation in which every value node is connected with its
column node and its row node. Such an approach works well for
the tasks of tuple-level entity resolution and for schemamatching
(a similar task to semantic type discovery). We experimented
using both row and table information in DomainNet and found it
was not useful in disambiguating values. In our example, Panda
in𝑇 1 and𝑇 2 are not homographs, but the row information makes
them seem quite different and we did not find it helpful.

In contrast, Arora and Bedathur [2] use a homogeneous graph
using only data value nodes that are connected with each other
if they appear in the same row of the table. They do not use
the value co-occurrence information within a column, making
homograph detection using solely row context inappropriate in
large heterogeneous datasets.

3.3 Homograph-Disambiguation
Methodology

Intuitively, data values that frequently co-occur with each other
will form a latent semantic type or community in DomainNet,
with many paths of varying length between them. Homographs
will span two or more communities. Notice however that we do
not know a priori what the communities are or even how many
there are. While there is a rich literature on community detection,
many approaches require knowledge of the possible communities
such as the number of communities [8]. Others are parameter-
free, meaning they can learn the number of communities [21,
and others]. However, in our problem the number is not only
unknown, it may be massive. A data lake with just a modest num-
ber of tables may have many attributes representing a multitude
of different semantic types (communities of values) [8, 15].

What we propose in this paper is to use network centrality
measures that can be defined without prior knowledge of how
many communities exist, their overlap, or the distribution of
attribute cardinalities. The intuition behind centrality measures
is to capture how well connected the neighbors of a given node
are. We define variants of these measures appropriate for the
DomainNet bipartite graph. We then discuss to what extent these
measures may distinguish whether a data value has a single
meaning or multiple meanings (the latter being a homograph).

Local Clustering Coefficient as a homograph score. The lo-
cal clustering coefficient (LCC) [48] for a given value node mea-
sures the average probability that a pair of the node’s neighbors
are also neighbors with each other, i.e., the fraction of value-
neighbor triangles that actually exist over all possible triangles.

The LCCmetric is usually defined over unipartite graphs (such
as the co-occurrence graph in Figure 3(a)). We use the definition
of value-neighbors (recall the set of all value neighbors of a value
node 𝑢 is 𝑁 (𝑢)) to generalize LCC to our bipartite graph.

The pairwise clustering coefficient of two data value nodes 𝑣
and𝑤 is defined as the Jaccard similarity between their neighbors

𝑐𝑣𝑤 =
𝑁 (𝑣) ∩ 𝑁 (𝑤)
𝑁 (𝑣) ∪ 𝑁 (𝑤) .

Given a graph 𝐺 and a value node 𝑢, the LCC is defined as
the average pairwise clustering coefficient among all the node’s
value neighbors:

𝑐𝑢 =

∑
𝑣∈𝑁 (𝑢) 𝑐𝑣𝑢
|𝑁 (𝑢) | . (1)

The LCC of a node 𝑢 can be computed in time O(𝑁 (𝑢)2) and
provides a notion of the importance of a node in connecting
different communities.

Hypothesis 3.4 (Homographs using LCC). A value node cor-
responding to a value that is a homograph will have a lower local
clustering coefficient than a value node with a single meaning.

Intuitively, we expect unambiguous values to appear with a
set of values that co-occur often and thus have high LCC scores.
This behavior should be less common for homographs, which
may span values from different communities as they appear in
various contexts depending on their meaning.

Despite LCC’s computational simplicity, the measure as de-
fined in Equation (1) is no more than the average Jaccard simi-
larity between the set of attributes that a value co-occurs with.
Unfortunately, it is well-known that Jaccard similarity is biased
to small sets. As consequence, the measure is not as effective in real
data lakes where attribute sizes are often considerably skewed.
Our experiments will confirm this downside of LCC.

Betweenness Centrality as a homograph score. The LCC of
a node is fast to compute, but it only considers the local neigh-
borhood of a value. In a data lake, the local neighborhood may
not be sufficient. In particular, the local neighborhood may not
include values that are members of the same community but
happen to not co-occur. In order to overcome these two problems
(missing values in the neighborhood and attributes with very
different cardinalities) we look at metrics that take a more global
perspective on the network.

The betweenness centrality (BC) of a node measures how often
a node lies on paths between all other nodes (not just the neigh-
bors) in the graph [16]. One way to think of this measure is in a
communication network setting where the nodes with highest
betweenness are also the ones whose removal from the network
will most disrupt communications between other nodes in the
sense that they lie on the largest number of paths [35].

Consider two nodes 𝑣 and𝑤 . Let 𝜎𝑣𝑤 be the total number of
shortest paths between 𝑣 to𝑤 , and let 𝜎𝑣𝑤 (𝑢) be the number of
shortest paths between 𝑣 to𝑤 that pass through 𝑢 (where 𝑢 can
be any node).2 The betweenness centrality of a node 𝑢 is defined
as follows, where 𝑣 and𝑤 can be any node in the graph:

𝐵𝐶 (𝑢) =
∑

𝑣≠𝑢,𝑤≠𝑢

𝜎𝑣𝑤 (𝑢)
𝜎𝑣𝑤

. (2)

2Since the bipartite graph used in DomainNet is not homogeneous we also examined
other variations of BC such as considering only values nodes as end points for
the examined shortest paths. We found that using all nodes in the BC definition
provided empirically the best results for finding homographs.
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By convention 𝜎𝑣𝑤 (𝑢)
𝜎𝑣𝑤

= 0 if 𝜎𝑣𝑤 (and therefore 𝜎𝑣𝑤 (𝑢)) is 0.
Intuitively, a homograph appears with sets of values that do

not or rarely co-occur across those sets, and thus the shortest
paths between such non-co-occurring nodes would have to go
through the homograph node. Conversely, unambiguous values
appear with a set of values that also co-occur a lot, and thus the
shortest path between them does not unnecessarily have to go
through one or a few nodes.

Hypothesis 3.5 (Homographs using BC). A value node corre-
sponding to a homograph will have a higher betweenness centrality
than a value node with a single meaning.

Example 3.6. The LCC scores of the Jaguar and Puma data
value nodes in Figure 1 are 0.36 and 0.43 respectively. The LCC
scores of the other data value nodes that appear more than once,
Toyota and Panda, are somewhat higher at 0.46. The BC scores
of the Jaguar and Puma value nodes in Figure 1 are 0.025, 0.003
respectively. The BC of the other value nodes that appear more than
once, Toyota and Panda, are at 0.002. Since this example only uses
four small tables it does not expose the possibly different rankings
between LCC and BC scores but suggests that BC, even on small
graphs is more discerning.

Complexity of BC. Calculating the BC for all nodes in a
graph is an expensive computation. A naive implementation takes
O(𝑛3) time and O(𝑛2) space (𝑛 denotes the number of nodes
in the graph). The most efficient algorithm to date is Brandes’
algorithm [6] that takes O(𝑛𝑚) time and O(𝑛 +𝑚) space (for
unweighted networks) where𝑚 is the number of edges in the
graph. Notice that this algorithm is still expensive if the graph is
dense (i.e.,𝑚 >> 𝑛).

The high time complexity of BC motivated approximations,
which usually sample a subset of nodes from the graph and
thus do not calculate all shortest paths. One common sampling
strategy is to pick nodes with a probability that is proportional
to their degree (nodes with high degree are more likely to appear
in shortest paths). Riondato and Kornaropoulos [40] provide an
approximation algorithm via sampling with offset guarantees.
Geisberger, Sanders, and Schultes [17] provide an approximation
algorithm without guarantees that performs very well in practice.
The complexity of the approximate BC is O(𝑠𝑚) where 𝑠 is the
number of nodes sampled. We chose Geisberger, Sanders, and
Schultes [17] to approximate betweenness centrality to benefit
most from its short run-time on large graphs.

3.4 Disambiguation Using DomainNet
In this section, we describe the implementation of an end-to-end
system which allows users to disambiguate data lakes using our
proposed methodology. Our system has three steps as illustrated
in Figure 4: (1) construct DomainNet graph; (2) calculatemeasures;
and (3) rank measures.

DomainNet graph construction. The input is a set of raw data
tables from relational databases, CSV files, or any other open
data format. It is important to note that we do not require any
information in regards to types, attribute names, or the semantics
of relationships between tables. We build our bipartite graph as
described in Section 3.2.

Graph measure computation. Using the DomainNet graph con-
structed in the previous step, our system computes both LCC and
BC scores for each value node (Section 3.3). We show empirically
in Section 5.1 that BC outperforms LCC in homograph detection.
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Figure 4: Disambiguation system on DomainNet. (1) Construct a
DomainNet graph fromadata lake. (2) Calculate BCandLCC scores
for each value node in the graph. (3) Rank the scores accordingly.

Graph measure ranking. Nodes are ranked by their centrality
score (ascending order for LCC measures, and descending order
for BC measures) the top ranked data values present to a user.

4 DATASET DESCRIPTION
Homograph detection in data lakes is a new problem and no
benchmarks are available for it. While many data lakes exist, they
do not contain labels that identify the homographs. In addition to
being a hugely expensive task when done manually, homograph
labeling is not a one-time effort: when the content of the data
lake changes, an unambiguous value can become a homograph or
vice versa. Hence, benchmark design in this context constitutes
a non-trivial contribution in itself.

We introduce the four datasets used for the evaluation of
DomainNet. The first is a new synthetic benchmark and the other
three contain real data. The second is an adaptation of the Table
Union Search (TUS) Benchmark [33] that uses real tables from
UK and Canadian open-data portals and which we adapt for our
problem. The third is a modified version of TUS, called TUS-I,
where we systematically inject homographs. The fourth, used
to evaluate scalability, is a real data set from NYC Education
Open Data, which was also used to evaluate a domain discovery
approach [36].

Table 1 summarizes detailed statistics about the datasets. For
each, we list the number of tables, the total number of attributes
(columns) across all tables, the number of unique values in the
data lake, the total number of homographs, the range of cardinal-
ities of any homograph3 (Card(H)), and the range of the number
of distinct meanings, #M, (based on ground truth) the different
homographs have across the data lake. All datasets can be found
at https://github.com/northeastern-datalab/DomainNet-Datasets

Table 1: Four datasets and their statistics.

#Tables #Attr #Val #Hom Card(H) #M
SB 13 39 17,633 55 151-1,966 2
TUS - I 1,253 5020 163,860 N/A N/A N/A
TUS 1,327 9859 190,399 26,035 3-22,703 2-100
NYC-EDU 201 3496 1,469,547 N/A N/A N/A

3Recall the definition of the cardinality of a homograph node 𝑣 as |𝑁 (𝑣) |, which is
the number of unique data values that 𝑣 co-occurs with.
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4.1 Synthetic Benchmark (SB)
We designed a small fully synthetic, but real-world inspired, data
lake for a systematic validation of our approach. It consists of 13
tables generated using Mockaroo4, which lets the data creator
specify data sources from various categories.

Each table has 1000 rows, except for two tables that contain
countries and states. We used the real numbers of countries and
US states of 193 and 50, respectively. There are 55 data values
that are homographs, e.g., Sydney (city or name), Jamaica (city or
country), Lincoln (car or city), CA (country or state abbreviation),
and Pumpkin (grocery product or movie title). The benchmark
along with its metadata (full list of tables and their schemas and
stats) are in our github.

4.2 Table Union Search Benchmark (TUS)
In the absence of homograph-labeled large real data lakes, we set
out to find a closely related benchmark that we could adapt to our
purposes. Unfortunately, while there are many table-based bench-
marks, even those for data-semantics-related problems generally
proved hard to adapt. For example, the VizNet corpus [22] used in
semantic type detection in tables [23, 51] provided ground-truth
labels for only a small fraction of the columns in the repository,
making ground-truth discovery of all homograph labels practi-
cally impossible. We therefore selected the Table Union Search
(TUS) benchmark [33], which contains real data and provides
a ground-truth mapping for each column to the set of columns
in the repository that it is unionable with. This enables us to
automatically label all homographs. Let 𝑈 (𝑎) denote the set of
columns (attributes) a given column 𝑎 is unionable with and no-
tice that 𝑎 is always unionable with itself, hence 𝑎 ∈ 𝑈 (𝑎). Let
𝐴(𝑛) be the set of columns (attributes) a data value 𝑛 appears in.
Converting the TUS benchmark into our bipartite graph represen-
tation, we can automatically label data values as “unambiguous”
or “homograph” based on the unionability ground truth.

Definition 2 (Homograph in the table union search
benchmark). A data value 𝑛 is a homograph if there exist two
attributes 𝑎 and 𝑎′ in 𝐴(𝑛) such that𝑈 (𝑎) ≠ 𝑈 (𝑎′); otherwise 𝑛 is
an unambiguous value.

Intuitively, a data value is a homograph if it appears
in at least two different columns that are not unionable
(and hence have different types). For instance, assume value
USA appears in columns country_x1 and location_x2 in
tables X1 and X2, respectively. If the corresponding two
columns are unionable, i.e., 𝑈 (country_x1) = 𝑈 (location_x2) =
{country_x1, location_x2}, then we can conclude that USA is
an unambiguous value. In contrast, the columns containing the
value jaguar in the zoo or donor tables are not unionable with
either the company or car model tables and hence jaguar would
be labeled a homograph.

Based on Definition 2 there are 164,364 unambiguous values
and 26,035 homographs in the TUS benchmark, suggesting homo-
graphs are very abundant in real data lakes. Notice that attribute
cardinalities in TUS have high skew, a common phenomenon in
data lakes for open-data repositories [32]. Hence, this benchmark
provides a “stress-test” for our approach. How well can it deal
with both small and large cardinalities of attributes containing a
homograph (in TUS these cardinalities range from 3 to 22,703).

4https://www.mockaroo.com/

4.3 TUS with Injected Homographs (TUS-I)
Having real data is important, but we also need to understand the
performance of our solution as the number of homographs in a
data lake changes. To this end, we modified the TUS benchmark
as follows. First, we removed all 26,035 homographs. Second, we
carefully introduce artificial homographs with different proper-
ties. Since the artificial homographs are now the only ones in
the data lake, we can measure how their properties affect the
detection algorithm.

A homograph is injected by selecting two different data val-
ues from two columns that are not unionable. These original
values are then replaced by a new unique value such as “Inject-
edHomograph1”. We only replaced string values with at least 3
characters. In our experiments, we vary the minimum allowed
cardinality of the attributes containing values replaced with an
injected homograph. We also vary the number of meanings of an
injected homograph. This allows us to evaluate the effectiveness
of our approach in identifying homographs with respect to the
cardinality and number of meanings of the homographs.

5 EXPERIMENTAL EVALUATION
The main goal of the experiments is to evaluate how well
DomainNet performs in terms of precision and recall for identi-
fying the homographs in the benchmark datasets. We are par-
ticularly interested in determining if the more expensive be-
tweenness centrality (BC) provides significant improvement over
local clustering coefficients (LCC) (Section 3). Since a homograph
candidate must appear in at least two different table columns,
DomainNet pre-processes the input to remove data values that
appear only once in the data lake. As a result, the corresponding
graph representation has about 3% fewer nodes in the TUS bench-
mark and 30% fewer nodes in SB. Moreover we examine how our
method scales with larger input graphs and how homographs can
impact existing data integration tasks such as domain discovery.

Comparison to a baseline. There is no previous work that
directly explores homograph detection in data lakes (Section 2),
and previous work on the related problem of semantic type detec-
tion and domain discovery is generally supervised, i.e., requires
labeled training data. Hence, the only suitable algorithm that
we could reasonably adapt to solve our problem is the recently
proposed state-of-art unsupervised domain-discovery algorithm
𝐷4 [36]. We used the original code provided by the authors5 with
its default parameter settings. When applied to a data lake, 𝐷4

assigns attributes to the discovered domains. A natural way to
identify homographs then is to identify data values that appear in
more than one of those domains. We compare 𝐷4 to DomainNet
on the synthetic benchmark as it only contains string values.
𝐷4 discovers domains only for string data, making it ineffective
on the TUS benchmark, which contains real data with many
numerical attributes.

Measures of success. We generally measure precision and
recall, which are reported for the 𝑘 top-ranked homograph can-
didates identified by each of the algorithms. By default 𝑘 is set to
the true number of homographs in the data lake.

Software implementation. We implemented DomainNet in
Python 3.8, using Networkit 6 [45] to calculate exact and approx-
imate BC scores over our bipartite graph. This is a Python library
for large-scale graph analysis whose algorithms are written in

5The code is available at https://github.com/VIDA-NYU/domain-discovery-d4.
6https://networkit.github.io
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C++ and support parallelism. All our experiments were run on a
commodity laptop with 16GB RAM and an Intel i7-8650U CPU.

5.1 Fully Synthetic Benchmark (SB)
We first use the SB to compare the homograph rankings obtained
using the LCC and BC measures (Section 3) in order to study
their ability to identify homographs. The bipartite graph for SB
is relatively small, consisting of 17,672 nodes (17,633 data-value
nodes and 39 attribute nodes) and 19,473 edges. We calculated
the local clustering coefficients (LCC) and betweenness centrality
(BC) for each node in the graph and examined how these scores
differ between homographs and unambiguous values.

Which measure is better at discovering homographs? Figure 5
shows the top-55 data values based on LCC. For LCC, lower
scores should in theory indicate a greater probability of being a
homograph. Notice how more than 75% of the top-ranked data
values are not homographs, meaning that a large number of
unambiguous values have smaller LCC scores than the homo-
graphs. This is mainly caused by unambiguous values from small
domains that do not co-occur often with many values in their
domain. This confirms our hypothesis from Section 3 that LCC
may not work well when homographs appear in small domains.
In fact, the majority of the 55 homographs in the dataset have
LCC scores significantly above 0.45 and so it is not necessarily
true that homographs have low LCC cores. Overall the results
indicate that LCC scores do not provide an effective separation
between homographs and unambiguous values.

On the other hand, the BC scores result in a vastly better
top-55 result as shown in Figure 6. Here 38 out of the top-55
BC scores correspond to homographs. This is a much improved
outcome over the LCC scores in Figure 5. But what happened
to the remaining 17 homographs that are not in the top-55? We
noticed that the remaining 17 homographs have betweenness
scores of nearly zero and they all are values corresponding to
homographs that are abbreviations of country and state names.
Recall that these are the only two tables in SB with fewer than
1000 tuples, where the state table contains only 50 tuples. This
means that the BC score for values in these small domains cannot
be very large as there cannot be as many shortest paths that
would pass through the homograph in question.

An explanation for the low BC scores for these homographs is
the fact that there is considerable intersection between the coun-
try and state values which is not the case with other homographs
(e.g., the car brands and cities intersect only on the value Lincoln
and Jaguar). This relatively large intersection also reduces the BC
scores for those homographs as the number of shortest paths con-
necting two nodes between cities and states is much larger. For
example, going from the country code GR to the state code MA,
the shortest path could be using the homograph AL (which is for
Albania/Alabama) or CA (which is for Canada/California) or any
other homograph between countries and states. As a result those
homographs receive lower BC scores, because the denominator
in Equation (2) becomes large.

How good is previous work at finding homographs? As discussed
earlier, we compare DomainNet against a competitor based on
𝐷4[36]. When applied to the SB dataset, 𝐷4 discovers four do-
mains corresponding to Country, Country Code, Scientific
Animal Name, and Scientific Plant Name. It maps the domains
on 14 out of 39 table columns (attributes) in SB. Among these
14 attributes, there are 21 of the 55 homographs. Overall, when

considering the top-55 results returned, the 𝐷4-based algorithm
disambiguates homographs in SB with a precision, recall, and
F1-score of 38%. Using the BC score, DomainNet achieves for the
top-55 results a precision, recall, and F1-score of 69%.

5.2 Experimental Evaluation on TUS-I
We now study the BC-score-based version of DomainNet in more
detail on the large real-world dataset TUS-I with the injected
homographs. Due to the cost of running BC for each node, all
BC scores are approximated using 5000 samples. 7

Table 2: % of the 50 injected homographs appearing in the top-50
results vs. cardinality of the data values replaced by the injected
homograph. (Numbers are averages of 4 runs for each threshold.)

Cardinality of replaced values > 0 ≥ 100 ≥ 200 ≥ 300 ≥ 400 ≥ 500
% of injected homographs in top 50 85% 93.5% 93.5% 95% 94.5% 97.5%

How does cardinality affect homograph discovery? Recall that
after removing all original homographs in TUS, the TUS-I dataset
only contains the homographs we methodically injected in or-
der to study a specific effect on betweenness centrality. We ran
our experiments by randomly selecting 50 pairs of values from
different domains8 and replaced them with our 50 injected homo-
graphs. Each experiment was repeated 4 times with a different
seed for selecting the values for replacement. Since the number of
homographs in our experiment is always 50, in an ideal scenario
the top-50 BC scores would correspond to exactly those injected
homographs.

We found that cardinality has the expected impact on BC
scores in terms of separating homographs and unambiguous val-
ues. If the data values chosen for replacement have a not too small
cardinality (i.e., they co-occur with many other values) then the
BC score of their injected homographwas notably higher.We con-
firmed this observation in Table 2 where we varied the cardinality
threshold for the data values chosen for replacement. Overall, as
we increased the cardinality threshold, a larger percentage of the
injected homographs ranked in the top-50. In fact, if the replaced
values had a cardinality of 500 or higher, DomainNet consistently
ranked at least 48 of the 50 injected homographs in the top 50.
For reference, the largest attribute in TUS has 25,000 values and
over half of all attributes have more than 500 values.

How does the number of meanings of a homograph affect ho-
mograph discovery? In addition to varying the cardinality of the
replaced values, we also examined how the number of meanings
of the injected homographs impacts their BC-based rankings. The
number of meanings of an injected homograph is the number
of values replaced for each injected homograph. The replaced
values are all chosen from different domains to ensure that the
injected homographs have consistently the specified amount of
meanings. We explored injected homographs with the number
of meanings in the range 2 to 8 for replaced data values with a
cardinality of 500 or higher. Table 3 shows that as we increase
the number of meanings, DomainNet becomes better at discover-
ing them. This is consistent with our intuition for betweenness
centrality since homographs with more meanings are more likely

7A common heuristic for the sample size is about 1-3% of the total number of nodes
in the graph. This works well in practice with sparse graphs like DomainNet [17].
We will further test the validity of this heuristic in Section 5.4.
8Different domains in the TUS benchmark context means values from columns that
are not unionable with each other.

20



Cuba

Ja
m

aic
a

Guya
na

Sou
th

 S
udan

La
os

Tri
nid

ad
 a

nd To
bag

o

Sey
ch

ell
es

Pa
ra

guay

Mau
rit

an
ia

Eas
t T

im
or

Ku
wait

Cap
e 

Ve
rd

e

Mar
tin

iq
ue

Guin
ea

-B
iss

au

Sain
t B

ar
th

ele
m

y

Tu
va

lu

Guam

Le
so

th
o

Fre
nch

 Po
lyn

es
ia

Reu
nion

To
nga GT

Moz
am

biq
ue

Gre
nad

a
Ben

in

Virg
in

ia NE

Geo
rg

ia IL ME GA

Nam
ib

ia

Bhuta
n

Sam
oa
Malt

a

Mald
ive

s

Dom
in

ica

Micr
on

es
ia

Guin
ea

To
go

Swaz
ila

nd

Bah
am

as

Mon
te

neg
ro

Com
or

os

Tu
rk

m
en

ist
an

Belg
iu

m

Mar
sh

all
 Is

lan
ds

Ira
q

Ice
lan

d

Sen
eg

al

Djib
ou

ti

Ja
guar MD

Ko
so

vo SD
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

L
o
c
a
l 
C

lu
s
te

ri
n

g
 C

o
e
ffi

c
ie

n
t homograph

unambiguous value

Value Type

Figure 5: The top-55 data values with the lowest local clustering coefficients. Homographs are scattered throughout and do not necessarily
have low LCC coefficients.
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Figure 6: The top-55 data values with the greatest betweenness centrality scores. In the top-55 data values, 38 of them are homographs.
The homographs not in the top-55 are country/state abbreviation homographs.

Table 3: % of injected homographs in the top 50 according to be-
tweenness centrality while varying the number of meanings of
the injected homographs

# meanings of injected homographs 2 3 4 5 6 7 8
% of homographs in top 50 97.5 97.5 98.5 98.5 100 100 100

to be hub nodes that connect multiple sets of nodes with each
other in our bipartite graph representation of the data lake.

5.3 Homographs in TUS Benchmark
Lastly, we explore the performance of DomainNet with between-
ness centrality on the real TUS dataset with its 26,035 real homo-
graphs. Since the number of homographs is large, we not only
report precision, recall, and F1-score for the top-26,035 results,
but for all top-𝑘 with 𝑘 from 1 all the way to the number of
nodes in our graph, i.e., 190,399. We do not compare against the
𝐷4-based algorithm for homographs, because 𝐷4 operates only
on string attributes, and given the large number of numerical
attributes the 𝐷4 coverage will be even lower than in SB (where
it only finds domains for 14 out of 39 attributes).

How does our approach perform on a real open-data benchmark?
Figure 7 shows the summary of our top-𝑘 evaluation results.
Notice that for relatively small values of 𝑘 such as 𝑘 = 200
our method can identify homograph values with high precision
(0.89). Naturally, as we increase 𝑘 precision decreases and recall
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Figure 7: Top-k evaluation on the TUS dataset. The vertical line at
𝑘=26,035 denotes the number of true homographs in the dataset.

increases. At 𝑘 = 26, 035 (vertical line in Figure 7), which is the
number of true homographs in the TUS benchmark, we achieve
a precision, recall and F1-score of 0.622. The highest F1-score
occurs at 𝑘 = 29, 633 where precision, recall, and F1-score are
0.615, 0.7 and 0.655, respectively.

It is important to emphasize that our approach is completely
unsupervised and does not assume any external knowledge about
the tables or their values. Existing state-of-the-art methods that
tackle data integration tasks as described in Section 2 cannot be
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readily used for homograph identification or their coverage is
severely limited (e.g., knowledge-based approaches like AIDA
[50]).

Below we report the top-10 values and their BC scores from
the TUS benchmark.

• “Music Faculty”→ 0.00064
• “Manitoba Hydro”→ 0.00045
• “50”→ 0.00029
• “1800ZZMALDY2”→ 0.00028
• “.”→ 0.00027
• “Conseil de développement”→ 0.00025
• “125”→ 0.00023
• “2”→ 0.00022
• “Biomedical Engineering”→ 0.00022
• “SQA”→ 0.00016

All 10 data values are homographs based on the ground truth.
Notice that from a natural-language perspective these 10 values
do not seem to be homographs, but a closer look at the data
revealed good reasons why they were labeled as homographs.
For example the value Music Faculty appears in two distinct
contexts: as a geographic location/landmark in transportation-
related tables as well as a department in university-related tables.

The value with the fifth-highest BC score is the period char-
acter. This may seem bizarre, but the period is used extensively
as a null replacement in a large variety of tables and thus it acts
as a homograph with a very large number of meanings. Finally,
notice that we identify numerical values such as 50, 125 and 2,
which appear in a variety of contexts such as addresses, iden-
tification numbers, quantity of products, etc. Numerical values
are traditionally difficult to deal with in many data-integration
tasks, hence being able to identify some of them in a completely
unsupervised manner is a notable step toward better coverage
for numerical values.

5.4 Scalability
As discussed in Section 3.4, Step 1 (graph construction) and Step
2 (centrality measure computation) are the most computationally
expensive in our approach. In this section, we examine empiri-
cally the scalability of these steps.

The time to construct our bipartite graph is dependent on how
long it takes to scan all input tables, which is a relatively fast
operation. For example, the bipartite graph for the TUS dataset
takes about 1.5 minutes to construct, which is how long it takes
to read through each table in the dataset.

The runtime of Step 2 depends on the graph measure used.
LCC is a local measure that is efficient to compute, but as we
demonstrated in section 5.1 it is not as effective in finding homo-
graphs as BC is. Computing the LCC score for every node in the
TUS dataset takes 4 seconds. For the global measure BC, since we
are more interested in the score rankings rather than the scores
themselves, approximating BC via sampling can significantly
decrease the runtime without compromising quality.

In Figure 8, we examine how precision and runtime vary as
we change the number of samples used for the approximate BC
algorithm [17] on the TUS benchmark. Even for a small sample
size (e.g., 1000), precision stabilises at 0.6. Notice that 1000 sam-
ples correspond to around .5% of the nodes in the TUS graph and
it takes about 40 seconds for the algorithm to complete. The BC
approximation has a complexity of O(𝑠𝑚) where 𝑠 is the num-
ber of nodes sampled and𝑚 the number of edges in the graph.
Based on the literature and testing on our graphs we found that

sampling 1% of the nodes provides a good approximation of BC
that is very consistent with the score rankings produced by the
exact BC computation.

We also considered a bigger data lake to further test execution
times—the NYC education open data dataset as used in 𝐷4 [36].
The bipartite graph representation of that dataset has roughly
1.5M nodes and 2.3M edges which is an order of magnitude
larger than the bipartite graph for the TUS dataset. The graph
was constructed in 3.5 minutes and the BC scores for every node
were computed in 27 minutes using approximate BC on 1% of
the nodes (∼15K nodes).

To examine how runtime scales with graph size we extracted
random subgraphs9 of various sizes from the bipartite graph used
for the NYC education dataset. We ran approximate BC for each
graph by sampling 1% of its nodes and measured the runtime.
Figure 9 shows that runtime increases linearly with graph size
(i.e., number of edges) which is in accordance with the O(𝑠𝑚)
complexity of the approximate BC algorithm. .
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in the dataset) and execution time at various sample sizes for ap-
proximate BC on the SB and TUS datasets. Exact BC on TUS took
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Figure 9: Runtime of approximate BC for various sized subgraphs
based on the NYC education dataset.

5.5 Impact of homograph discovery on 𝐷4

As shown in Table 1 the number of homographs in a real data lake
can be large. To further understand the impact of homographs on

9The subgraphs were constructed by randomly selecting an attribute node and
adding all its connecting value nodes. We repeat by selecting another attribute node
until the subgraph reaches the desired size (within some margin)
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Figure 10: Number of domains found by 𝐷4 over different TUS-
injected datasets. The horizontal red line shows the number of
domains foundwhen no homographswere present in the dataset.

existing approaches, we consider the task of domain discovery
and examine how knowing homographs a priori can benefit them.

We report the results of five different runs of 𝐷4 in Figure 10.
The plots show the number of domains found by 𝐷4 (y-axis) as
we vary the number and meanings of the injected homographs.
To be fair in the comparison and to understand the impact of
homographs on the domain discovery task, we use the TUS-I
benchmark.We first ran𝐷4 over the dataset without homographs
and then over the same dataset with injected homographs. More
specifically, we injected 50, 100, 150 and 200 homographs with 2, 4
and 6meanings. In all the above configurations the dataset always
had 68 domains based on the ground truth. The horizontal line
in Figure 10 shows that 𝐷4 returns 134 domains for TUS-I with
no homographs. The difference in the number of domains based
on the ground truth and 𝐷4’s results is due to the nature of the
TUS benchmark [33] as it is created from a set of large real open
data tables that were randomly sliced vertically and horizontally.
Consequently, in some cases the columns originating from the
same table no longer share any values, causing 𝐷4 to discover
more domains than there are based on ground truth.

As we increase the number andmeanings of the injected homo-
graphs, 𝐷4 returns even more domains leading to lower accuracy.
𝐷4’s output provides statistics about the maximum and the aver-
age number of domains assigned to a column. In the TUS-I with
no homographs, that maximum is 2 and the average is almost
1 (i.e., 1.031) and it increases with the number of homographs.
With 200 homographs the maximum is 4 and the average is 1.04.
We also ran 𝐷4 on the TUS-I with 5000 injected homographs, to
simulate a dataset with a large proportion of homographs as in
the TUS benchmark. The maximum domains per column is 22
and the average is 1.7 with a total of 371 domains found. The
presence of homographs is negatively affecting 𝐷4 and causing it
to erroneously assign larger numbers of heterogeneous domains
to attributes as the number of homographs increases. Homograph
discovery therefore is an important step that can be executed
before domain discovery to improve its performance.

6 CONCLUSION AND FUTUREWORK
We presented DomainNet, a method for finding homographs in
data lakes. To the best of our knowledge, this is the first solution
for disambiguating data values in data lakes. Notably, our ap-
proach does not require complete or consistent attribute names.

We showed that a measure of centrality can effectively sep-
arate homographs from unambiguous values in a data lake by

representing tables as a network of connections between values
and attributes.

We compared against an alternative approach using 𝐷4 to
identify the semantic domain (type) of attributes [36] and label-
ing a value a homograph if it appears in more than one domain.
Our direct computation of homographs has significantly better
precision and recall than the domain-discovery approach. This
seems to be due to𝐷4 at times placing homographs into a domain
represented by their most popular meaning and the fact that 𝐷4

does not find domains for every attribute. When we inject ho-
mographs into real data, DomainNet is robust to the number of
meanings of the homographs, reliably finding homographs with
even better accuracy as the number of meanings increases. We
also demonstrated the importance of homograph detection by
showing that the presence of homographs can have consider-
able impact on existing semantic integration tasks (specifically,
domain discovery).

In a benchmark created from real data, our method provides
a clear separation with high precision of homographs from val-
ues that are repeated, but always with the same meaning. The
accuracy is influenced by the cardinality of the homograph (i.e.,
the number of data values with which the homograph co-occurs).
When this number is too small, the bipartite graph representation
is not always sufficient to effectively identify all homographs. In
our experiments, the accuracy dropped from 97% to 85% as we
reduced the cardinality of homographs.

The homographs we discover on real data include phrases
with multiple meanings (e.g., Music Faculty referring both to
a geographic location and to a University unit). They also in-
clude null values (e.g., a dot “.” can indicate unknown/missing
𝑋 where 𝑋 varies in different contexts) and data errors (e.g.,
Manitoba Hydro, an electric company, is placed in the wrong
column Street Name). In NLP, previous work on disambiguation
primarily focuses on the disambiguation of words and named-
entities. Our method is purely based on co-occurrence informa-
tion and does not discriminate between different types of homo-
graphs. In fact, we provide the first approach to disambiguate
numerical values in tables (e.g. 25 can be a street number or an
ID number).

Identifying homographs from tables in a completely unsuper-
vised manner can play an important role in improving other
data-lake analysis tasks. Specifically, we are considering how to
determine if a homograph is an error, e.g., the value has been
placed in the wrong cell. With such knowledge, we can help not
only identify such errors, but clean them as well. We also believe
that our homograph metrics can improve supervised semantic
type detection such as Sherlock [23] or SATO [51].

In this context, it will also be important to determine the
number of distinct meanings of a homograph. Our approach is
motivated by work on community detection where a commu-
nity represents a meaning for a value (e.g., animal or car model).
Hence we are investigating the role of community detection al-
gorithms on discovery of meanings of values in data lake tables.
Notice that in this problem, we do not know a priori what the
communities are or even howmany there are. Non-parameterized
community detection algorithms can be used to discern the num-
ber of meanings of homographs. However, innovation is needed
for homographs with large numbers of meanings (such as null
equivalents) [21, and others].

To the best of our knowledge there are no available bench-
marks for homograph detection. Our synthetic benchmark (SB)
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and our benchmarks TUS and TUS-I (that use real open data
tables [33]) are the first open benchmarks in this area.

In order to design a robust and completely unsupervised so-
lution that scales to large data lakes, we have quite deliberately
limited DomainNet to use only value co-occurrence information
in table columns, ignoring additional structural information like
co-occurrence of values in the same row. Our goal was to explore
how much this information alone reveals about data value se-
mantics. Given our strong positive results, we believe our metrics
should become an important feature that could be used in other
problems that involve understanding or integrating tables. An
important open problem is to extend DomainNet to collectively re-
solve ambiguous metadata and data, perhaps using probabilistic
graphical models that have been applied to collectively resolving
multiple types of entities at once [26] and to collectively resolving
data and metadata inconsistency in schema mapping [25].
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ABSTRACT
Subspace clustering is the task of grouping objects based on mu-
tual similarity in subspaces of the full-dimensional space. The
INSCY algorithm extends the well-known density-based cluster-
ing algorithm DBSCAN. It finds dimensionality-unbiased non-
redundant subspace clusters using a tree structure to speed up the
processing of subspaces. Still, finding density-based clusters in all
subspaces implies an exponential search space in the number of
dimensions. Thus, the running time of INSCY is still measured in
hours on even small datasets of 2000 points. For larger datasets,
it becomes prohibitively expensive.

To benefit from INSCY for real-world sized datasets, we pro-
pose a novel GPU-parallel approach that runs on standard graph-
ics cards. To utilize the many cores of the GPU, we need new
algorithmic strategies that fit the computational model of the
GPU. While the GPU provides a large number of threads, tra-
ditional algorithms incur diverging threads and poor memory
alignment, both of which lead to idle time and poor runtime
performance. In INSCY, extracting subspace regions from the
SCY-tree structure and the density-based clustering of regions
itself are thus unfit for the GPU.

Our novel GPU-friendly algorithm GPU-INSCY computes the
same subspace clustering as INSCY at dramatically reduced run-
times. To achieve this, we devise a restructured SCY-tree index-
structure and associated operations for the GPU, as well as a
GPU-parallel density-based subspace clustering.

We experimentally show that GPU-INSCY scales well with the
size of the dataset and the number of dimensions, and improves
the running time of INSCY by a factor of several thousand for
large datasets of high dimensionality.

1 INTRODUCTION
Clustering, i.e., grouping data points based on mutual similarity,
is a widely used data mining task, e.g., for grouping customers to
allow for targeted marketing. However, real-world data is often
high-dimensional, and a higher number of dimensions means
that there are more possibilities for points to seem dissimilar.
This is known as the curse of dimensionality. Due to this effect,
points tend to group within a subspace of the full-dimensional
space, leading to the task of subspace clustering [2, 4, 15], where
we search for clusters with all possible subspaces. To search for
such clusters, we often employ density-based clustering simi-
lar to DBSCAN [12]. Most subspace clustering algorithms, e.g.,
SUBCLU [15], use a fixed density threshold independent of the

© 2021 Copyright held by the owner/author(s). Published in Proceedings of the
24th International Conference on Extending Database Technology (EDBT), March
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subspace’s dimensionality. When finding clusters, the density
threshold needs to match the expected density such that we
can find all points within clusters, but without including ev-
erything. However, the expected density is lower for higher-
dimensional subspaces than it is for lower-dimensional subspaces.
For density-based subspace clustering, this problem implies that
density-measures that do not take the subspace’s dimensionality
into account are biased toward lower subspaces. To address this
problem, Assent et al. [6] formulated a dimensionality-unbiased
density-measure and utilized this in the algorithm INSCY [8].
INSCY, furthermore, removes redundancy and provides an index-
structure called SCY-tree used to partition and prune regions of
density-connected data points. A drawback that remains, is that
the running time is still measured in hours on even small datasets
of a couple of thousands of points.

To reduce the runtime of dimensionality-unbiased density-
based subspace clustering, we exploit modern graphics cards
(GPUs), capable of general-purpose computations, fast context
switches, and parallelizing over many cores, but with a restric-
tive computational model and limited memory. The high com-
putational throughput of GPUs has been utilized to improve
clustering runtimes [1, 5, 10]. However, to our knowledge, there
exists no GPU-parallelization of a dimensionality-unbiased index-
supported algorithm like INSCY, which is challenging to GPU-
parallelize due to index and depth-first subspace search being
optimized for (sequential) CPU processing.

Contributions. In this work, we present a novel GPU-parallel
algorithm, called GPU-INSCY, which provides the same cluster-
ings as INSCY at substantially reduced runtimes. To achieve this,
we restructure several major parts of INSCY, the index-structure
SCY-tree, the operations used to partition regions of data, and
the clustering of points. INSCY partitions regions represented by
SCY-trees through a sequence of operations. We show how to
make these operations parallel and combine several partitions
into one process. Combining these allows us to avoid many re-
dundant iterations and temporary copies. The clustering step
is also GPU-parallelized and improved further by utilizing the
density monotonicity for neighborhoods in increasing subspaces.

This paper is organized as follows: Section 2 discusses related
work, Section 3 gives the background of subspace clustering
and INSCY, Section 4 describes our new parallel algorithm GPU-
INSCY, Section 5 presents the experimental comparison of INSCY
and GPU-INSCY, and Section 6 concludes our work.

2 RELATEDWORK
Subspace clustering is the task of grouping points based on mu-
tual similarity in any possible subspace of the full-dimensional
space, hence its worst case complexity is exponential in the num-
ber of dimensions.
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Algorithms for subspace clustering [2, 4, 6–8, 11, 14, 15, 25]
are often categorized into bottom-up or top-down approaches
[16, 21, 24, 26]. Bottom-up approaches start with clustering in 1-
dimensional subspaces, iteratively combining 𝑘-dimensional sub-
space clusters into (𝑘 +1)-dimensional subspace clusters. CLIQUE
[4] and MAFIA [14] are grid-based approaches that may miss
subspace clusters spanning across grid cells. Instead of clustering
dense cells, SUBCLU [15] clusters dense points, as in the density-
based full space clustering algorithmDBSCAN[12]. An issue with
SUBCLU and other density-based subspace clustering approaches
is that they use a fixed density-threshold for all subspaces. There-
fore, they do not take dimensionality into account and are biased
towards lower-dimensional subspace clusters. INSCY is an ex-
tension of SUBCLU that mitigates this problem by introducing a
density measure normalized by a subspace’s expected density.

Top-down approaches start by clustering the full-dimensional
space and iteratively refine the subset of dimensions associated
with each subspace cluster [2, 3, 29]. These approaches limit sub-
space clusters by assigning each point in the data to exactly one
subspace cluster. Due to the exponential search for subspaces,
many of the algorithms take an approximate approach to sub-
space clustering [2, 14, 20]. They do so using a heuristic to pick
the subspaces that are examined or only compute clusterings of
dense regions instead of single dense points. These approaches
might miss clusters that exact algorithms like INSCY capture.

Even though exact subspace clustering algorithms are time
consuming, few algorithms have been proposed to reduce the
running time by exploiting the high computational throughput of
the GPU. Utilizing the many cores of the GPU is highly challeng-
ing because of the distinct and limited computational model, as
well as limited memory. There have been proposed several GPU-
parallelized full-space clustering algorithms [5, 10, 13, 17, 19].
One of the earliest GPU versions of the full-space clustering algo-
rithm DBSCAN was CUDA-DClust* [10], which starts multiple
searches for clusters in parallel. If multiple searches start within
the same cluster, they are merged. Multiple other GPU-versions
of DBSCAN have been developed [5, 18, 19, 28]. Our assessment
of self-reported results suggest that G-DBSCAN[5] and CUDA-
DClust*[10] are the best performing options. An experimental
evaluation [22] studies three of these GPU-versions and finds that
G-DBSCAN is the fastest and CUDA-DClust* uses less memory.

Only one GPU-parallelization of a well-known subspace clus-
tering approach has been proposed [1] for grid-based MAFIA.
GPUMAFIA parallelizes one operation at a time, mapping nested
for-loops of minor computations directly to parallel threads. Our
restructuring of INSCY lets us GPU-parallelize GPU-INSCY even
further such that we can even parallelize operations performed
at different points of the process. We completely restructure the
algorithm and its underlying SCY-tree structure to fit the compu-
tational model and the memory structure of the GPU.

To the best of our knowledge, we are the first to develop a GPU-
parallelized version of a density-based subspace clustering algo-
rithm, in particular an algorithm that supports dimensionality-
unbiased density measures and exploits indexing structures for
efficient computation.

3 BACKGROUND
3.1 The graphics processing unit
We give a short introduction to graphics processing units (GPUs)
and their computational model. When using a GPU for general-
purpose computation, the GPU is co-processor, and the CPU is

main processor. Throughout the paper, we use the term parallel to
denote parallel execution under the GPU’s computational model.
The main difference between a multi-core CPU and a GPU is that
GPUs can perform fast context switches and that several cores
on the GPU uses the same program counter and, therefore, must
perform the same operations.

CUDA is NVIDIA’s framework for using their line of GPUs.
It uses the concept of a kernel, which is a function executed on
multiple threads in parallel. Threads are organized into blocks,
and all threads within a single block are capable of synchronizing,
share fast accessible memory, and use atomic operations. How-
ever, there is a physical limit to the number of threads a block
can contain, and the communication between threads comes at a
time-cost. Each block is further separated into warps. All threads
within a warp share a program counter, implying that they must
perform the same instructions (SIMD) at all times. In the case of
branch-diversion, threads in different branches will remain idle
until the other branch has finished.

When parallelizing operations on the GPU, we are not guar-
anteed any order of executions. Therefore, our goal is to identify
independent operations, i.e., operations that do not use the partial
result of each other and therefore can be run in any order with-
out changing the final result. All allocation of memory and calls
to kernels are done by the CPU and executed on the GPU. All
communication with the GPU comes with a time-cost due to the
large latency of data transfer. Therefore, it is essential to balance
where data is processed and how long it takes to transfer.

3.2 INSCY
We describe INSCY briefly. For further details please see [8]. We
use the following terminology: let 𝑋 ∈ R𝑛×𝑑 be a 𝑑-dimensional
dataset with 𝑛 points, 𝐷 = {0, . . . , 𝑑 − 1} an index set for the
full dimensional space, 𝑆 ⊆ 𝐷 a subspace of 𝐷 , and 𝑁𝑆

𝜀 (𝑝) the
neighborhood with radius 𝜀 of a point 𝑝 in subspace 𝑆 .

According to INSCY [6], a subspace cluster is a maximal set
of points of at least 𝑚𝑖𝑛𝐶 , which are density-connected in a
subspace according to some density measure, and which is not
redundant w.r.t. a higher dimensional subspace projection:

Definition 3.1. INSCY Subspace Cluster
A set of points 𝐶 ⊆ 𝑋 in subspace 𝑆 ⊆ 𝐷 is a subspace cluster if:
• objects in 𝐶 are S-connected: ∀𝑝, 𝑞 ∈ 𝐶 : ∃𝑜1, . . . , 𝑜𝑚 ∈
𝐶 : 𝑝 = 𝑜1 ∧ 𝑞 = 𝑜𝑚 ∧ ∀𝑖 ∈ {2, . . . ,𝑚} : 𝑜𝑖 ∈ 𝑁𝑆

𝜀 (𝑜𝑖−1)
• all points fulfill the density criterion: ∀𝑝 ∈ 𝐶 : 𝑑𝑐𝑆 (𝑝),
• 𝐶 ismaximal, i.e., contains all S-connected objects:∀𝑝, 𝑞 ∈
𝑋 : 𝑝, 𝑞 S-connected⇒ 𝑝 ∈ 𝐶 ∧ 𝑞 ∈ 𝐶 ,
• minimum cluster size: |𝐶 | ≥ 𝑚𝑖𝑛𝐶 ,

• not redundant: �𝐶 ′, 𝑆 ′ subspace cluster with 𝐶 ′ ⊆ 𝐶 ∧
𝑆 ⊂ 𝑆 ′ ∧ |𝐶 ′ | ≥ 𝑟 × |𝐶 |

where 𝑟 is the redundancy parameter,𝑚𝑖𝑛𝐶 is the minimum size
of a cluster, and 𝑑𝑐𝑆 (𝑝) is any dimensionality-unbiased density
criterion within subspace 𝑆 .

In this paper, we use the dimensionality-unbiased rectangular
density measure for the density criterion 𝑑𝑐𝑆 (𝑝) := |𝑁𝑆

𝜀 (𝑝) | ≥
max(𝐹 · 𝛼 (𝑆), 𝜇), where 𝐹 is the density factor threshold, 𝛼 (𝑆) =
E𝑆

[
|𝑁𝑆

𝜀 (𝑝) |
]

= |𝑋 | 𝑐 (𝑆)×𝜀
|𝑆 |

𝑣𝑆
is the expected density, 𝑐 (𝑆) =

𝜋
|𝑆 |
2 /Γ

(
|𝑆 |
2 + 1

)
with Γ(𝑛 + 1) = 𝑛× Γ(𝑛), Γ(1) = 1, Γ(1/2) =

√
𝜋 ,

𝑣𝑆 is the volume of subspace 𝑆 , and 𝜇 is the minimum number
of points required for not just being pseudodense. Other density
measures can also be used. For further details see [6]. Note that
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Def. 3.1 is similar to density-based clustering in DBSCAN [12],
but with an unbiased density notion wrt. subspaces.

SUBCLU [15] uses monotonicity of density-connectivity to
prune points that lie outside clusters in a lower-dimensional sub-
space projection. However, for INSCY’s unbiased densitymeasure
that scales with the expected density of a subspace, monotonicity
is lost. Still, as [6] observes, pruning can be done by discard-
ing points that are not dense w.r.t. the lowest possible density
threshold, i.e., for the full-space. INSCY finds such points, called
not weak-dense, which can safely be pruned before searching
for clusters within superspaces of the current space. A point is
weak-dense if |𝑁𝑆

𝜀 (𝑝) | ≥ max(𝐹 × 𝛼 (𝐷), 𝜇).

3.2.1 The INSCY algorithm. The idea of INSCY is to bound
the search for subspace clusters by identifying regions that fully
contain potential clusters. INSCY describes such a region by the
dimensions it spans and the respective intervals in these dimen-
sions, and call it a subspace region. INSCY performs a depth-first
search (DFS) of the subspace regions, i.e., enumerating all pos-
sible subspace regions. INSCY does so by recursively extending
with one dimension at a time and partitioning the region into
intervals along that dimension. When INSCY returns from the
recursion, it performs density-based clustering within the current
subspace region to obtain the clusters. This implies that INSCY
cluster points within all superspaces of the current space first.

Each dimension is partitioned into a fixed number of cells.
As a cluster likely spans multiple cells, INSCY register this by
having a border between each cell at the size of the neighborhood
radius 𝜀. When performing density-based clustering, it follows
that if there are no points within this border, the two cells’ points
cannot be density-connected. Otherwise, a cluster may span
both cells. Such connected cells are referred to as S-connected.
S-connected cells must be merged into a density-connected in-
terval to ensure that no clusters are split. An interval spanning
multiple cells is identified by the first cell. A dimension might
have multiple density-connected intervals, and INSCY is called
recursively on each interval in a depth-first manner. The whole
process of expanding with a new dimension and bounding to
a density-connected interval is referred to as restricting w.r.t. a
new dimension and the cell identifying the interval. The pair of
dimension 𝑑 and cell 𝑐 is called a descriptor (𝑑, 𝑐). When expand-
ing with a new dimension, we expand one region at a time. Figure
1 shows a 1-dimensional example, and the expansion into two
dimensions. On the left, the dimension is split into three cells,
where two are S-connected and merged into one interval marked
by green. On the right, we see the expansion. The red region is
split into cells along the added dimension and connected with
any S-connected cells, and likewise for the green region.

To keep track of the possible dimensions and cells that can be
restricted, INSCY introduces an index-structure called SCY-tree.
The idea of SCY-tree is to precompute the number of points within
cells along a dimension such that restricting becomes easier. The
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Figure 2: SCY-tree for examples in [8]; node values 𝑐𝑒𝑙𝑙 :
𝑐𝑜𝑢𝑛𝑡 ; dimensions and points colored as in later figures

SCY-tree, therefore, represents the dimensions and cells not yet
restricted. The SCY-tree is a tree-structure containing nodes that
represent a partition of a space along a specific dimension. All
nodes regarding a specific dimension are located at the same
height in the SCY-tree, which we call a layer. The children of
a node represent splits into cells along a dimension, one child
per cell. Each node contains its cell number and the count of
points within the cell it represents. A cell with an S-connection
is represented by adding a sibling with the same cell number,
but with the count of points set to -1. Such a node is called
an S-connector node. INSCY keeps track of S-connections by
continuing the path of S-connector nodes down to the leaf layer.
The root node of the SCY-tree represents a restricted subspace
region. SCY-trees that represent regions that share a border are
called neighboring SCY-trees. For further details, see [8].

Figure 2 (top) shows an example of an initial SCY-tree for
the full-dimensional space. In this example, the space is first
partitioned along dimension 0, creating three cells noted by the
cell number and the count of points in that cell 𝑐𝑒𝑙𝑙 : 𝑐𝑜𝑢𝑛𝑡 . Cell
1 has an S-connection, which is represented by a node without
a count of points. Each cell is then further partitioned along
dimension 1, discarding cells that do not contain any points.

INSCY proceeds as in Algorithm 1. For each descriptor, create a
restricted SCY-tree. If cells in the SCY-tree are S-connected, merge
connected restricted SCY-trees into one final restricted SCY-tree.
INSCY prune the final restricted SCY-tree for redundancy, call
recursively, and cluster the points if there is a possibility for
non-redundant clusters.

Restrict. INSCY restricts a SCY-tree by identifying nodes
matching the current descriptor, i.e., the nodes residing on the
layer of the restricted dimension and with the same cell number
as the descriptor. For each matching node, copy the node’s path
to the root and subtrees below the node into a new restricted

Algorithm 1 INSCY(𝑠𝑐𝑦𝑡𝑟𝑒𝑒 , 𝑑𝑓 , 𝑋 , 𝑑 , 𝑟 , 𝐹 , 𝜇, 𝜀,𝑚𝑖𝑛𝐶 , 𝑅)

1: for 𝑑𝑟𝑒 = 𝑑𝑓 to 𝑑 do
2: for 𝑐𝑟𝑒 = 0 to 𝑛𝑐𝑒𝑙𝑙𝑠 do
3: 𝑠𝑐𝑦𝑡𝑟𝑒𝑒 ′ ← restrict(𝑠𝑐𝑦𝑡𝑟𝑒𝑒, 𝑑𝑟𝑒 , 𝑐𝑟𝑒 )
4: 𝑠𝑐𝑦𝑡𝑟𝑒𝑒 ′ ← mergeNeighbors(𝑠𝑐𝑦𝑡𝑟𝑒𝑒, 𝑠𝑐𝑦𝑡𝑟𝑒𝑒 ′, 𝑑𝑟𝑒 , 𝑐𝑟𝑒 )
5: if prune_recursion(𝑠𝑐𝑦𝑡𝑟𝑒𝑒 ′, 𝐹 , 𝜇, 𝜀,𝑚𝑖𝑛𝐶 ) then
6: INSCY(𝑠𝑐𝑦𝑡𝑟𝑒𝑒 ′, 𝑑𝑟𝑒 + 1, 𝑋, 𝑑, 𝑟, 𝐹 , 𝜇, 𝜀,𝑚𝑖𝑛𝐶 , 𝑅)
7: if prune_redundancy(𝑠𝑐𝑦𝑡𝑟𝑒𝑒 ′, 𝑟 , 𝑅) then
8: 𝑅 ← 𝑅 ∪ clustering(𝑠𝑐𝑦𝑡𝑟𝑒𝑒 ′, 𝑋 , 𝐹 , 𝜇, 𝜀)
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SCY-tree. Since the SCY-tree keeps track of not yet restricted
dimensions, the matching node itself is not copied. The node’s
children are now children of the node’s parent. The count of
points is also updated to reflect the number of points in the
restricted region. Figure 2 (bottom) contains two restricted SCY-
trees for descriptors (1, 0) and (1, 1) and the merged result. For
descriptor (1, 0) only 2 nodes match, leading to a small SCY-tree.

Merge. INSCY merges neighboring restricted SCY-trees if
there exists an S-connection, i.e. when an S-connector path starts
at dimension 𝑑 and has cell number 𝑐 that matches the current
descriptor (𝑑, 𝑐). Merge is done by going through the two re-
stricted SCY-trees and copying the nodes in both. A node can be
represented in several SCY-trees. During the merge, nodes with
the same cell number and the same parent are merged. Figure 2
(bottom), shows that the descriptor (1, 0) matches an S-connector
node, the node represented by only a 0 on dimension 1, and there-
fore INSCY restricts the neighboring descriptor (1, 1) and merges
the two restricted SCY-trees.

Pruning recursion.To reduce the search space, INSCY prunes
the final restricted SCY-tree before calling recursively, as follows:
Remove non-weak dense points and check if the region’s number
of points still exceeds𝑚𝑖𝑛𝐶 . INSCY only proceeds with the re-
cursion if this is the case, as further restrictions will only reduce
the number of points.

Pruning redundancy. When returning from the recursive
call INSCY has found clusters in all superspaces of the current
subspace. The current region can therefore be pruned by redun-
dancy. INSCY prunes by redundancy by checking if the result
already contains a cluster covering a factor 𝑟 of the points in the
restricted region. If the number of points in the region is large
enough, INSCY computes the density-based clustering on all
points in the final restricted SCY-tree and adds all non-redundant
clusters to the result.

4 GPU-INSCY ALGORITHM
INSCY is inherently computationally expensive, making it infea-
sible to run on large real-world datasets. As mentioned in the
introduction, GPUs provide computational power that algorithms
designed for a different computational model of single-core CPUs,
as INSCY, cannot utilize. We design an algorithm for the GPU
that reduces the running time of INSCY substantially, making it
feasible to run on much larger datasets. To summarize the nota-
tion found in this section we provide Table 1 for ease of reading.
Recall that threads in a warp must execute the same instructions
to fully utilize the GPU’s computational power. INSCY does not
group similar operations and would perform poorly on the GPU.

The idea of each iteration in INSCY is to bound a subspace
region by restricting andmerging, prune that region, and perform

Algorithm 2 GPU-INSCY(𝑠𝑐𝑦𝑡𝑟𝑒𝑒 ′, 𝑑𝑓 , 𝑋 , 𝑑 , 𝑟 , 𝐹 , 𝜇, 𝜀,𝑚𝑖𝑛𝐶 , 𝑅)

1: 𝐿 ← GPU_restrict_and_merge(𝑠𝑐𝑦𝑡𝑟𝑒𝑒, 𝑑𝑓 , 𝑑)
2: precompute_neighborhoods(𝑋 , 𝐿, 𝜀)
3: for 𝑑𝑟𝑒 ← 𝑑𝑓 to 𝑑 − 𝑑𝑓 do
4: 𝐶 ← 1d array of size |𝑋 | initialized to −1
5: for ∀𝑠𝑐𝑦𝑡𝑟𝑒𝑒 ′ ∈ 𝐿[𝑑𝑟𝑒 ] do
6: if prune_recursion(𝑠𝑐𝑦𝑡𝑟𝑒𝑒 ′, 𝐹 , 𝜇, 𝜀,𝑚𝑖𝑛𝐶 ) then
7: GPU-INSCY(𝑠𝑐𝑦𝑡𝑟𝑒𝑒 ′, 𝑑𝑟𝑒 + 1, 𝑋, 𝑑, 𝑟, 𝐹 , 𝜇, 𝜀,𝑚𝑖𝑛𝐶 , 𝑅)
8: if prune_redundancy(𝑠𝑐𝑦𝑡𝑟𝑒𝑒 ′, 𝑟 , 𝑅) then
9: 𝐿′ ← 𝐿′ ∪ {(𝑠𝑐𝑦𝑡𝑟𝑒𝑒 ′,𝐶)}
10: 𝑅 ← 𝑅 ∪ GPU_clustering(𝐿′, 𝑋, 𝐹, 𝜇, 𝜀)

Table 1: Notation

𝑛𝑛𝑜𝑑𝑒𝑠 number of nodes
𝑛𝑝𝑡𝑠 number of points
𝑛𝑐𝑒𝑙𝑙𝑠 number of cells
𝑛𝑑𝑖𝑚𝑠 number of dimensions
𝑛𝑟_𝑑𝑖𝑚𝑠 number of restricted dims
𝑝𝑎 ∈ N𝑛𝑛𝑜𝑑𝑒𝑠 parent array
𝑐𝑒 ∈ N𝑛𝑛𝑜𝑑𝑒𝑠 cell array
𝑐𝑜 ∈ N𝑛𝑛𝑜𝑑𝑒𝑠 count array
𝑙𝑎 ∈ N𝑛𝑑𝑖𝑚𝑠 layer-indexing array
𝑑𝑖𝑚𝑠 ∈ N𝑛𝑑𝑖𝑚𝑠 dimension array
𝑟_𝑑𝑖𝑚𝑠 ∈ N𝑛𝑟_𝑑𝑖𝑚𝑠 restricted dims array
𝑝𝑜 ∈ N𝑛𝑝𝑡𝑠 point-id array
𝑝𝑙 ∈ N𝑛𝑝𝑡𝑠 point-placement array
𝑖𝑛𝑐𝑙 ∈ {0, 1}𝑛𝑑𝑖𝑚𝑠×𝑛𝑐𝑒𝑙𝑙𝑠×𝑛𝑛𝑜𝑑𝑒𝑠 node inclusion array
𝑖𝑛𝑐𝑙𝑝𝑡𝑠 ∈ {0, 1}𝑛𝑑𝑖𝑚𝑠×𝑛𝑐𝑒𝑙𝑙𝑠×𝑛𝑝𝑡𝑠 point inclusion array
𝑖𝑑𝑥 ∈ N𝑛𝑑𝑖𝑚𝑠×𝑛𝑐𝑒𝑙𝑙𝑠×𝑛𝑛𝑜𝑑𝑒𝑠 node new-index array
𝑖𝑑𝑥𝑝𝑡𝑠 ∈ N𝑛𝑑𝑖𝑚𝑠×𝑛𝑐𝑒𝑙𝑙𝑠×𝑛𝑝𝑡𝑠 point new-index array
𝑛_𝑐𝑜 ∈ N𝑛𝑑𝑖𝑚𝑠×𝑛𝑐𝑒𝑙𝑙𝑠×𝑛𝑛𝑜𝑑𝑒𝑠 new-count array
𝑖𝑠_𝑆 (𝑖) is S-connection
𝑠_𝑖𝑛𝑐𝑙 ( 𝑗, 𝑖, 𝑐) should be included
𝑆 ∈ {0, 1}𝑛𝑑𝑖𝑚𝑠×𝑛𝑐𝑒𝑙𝑙𝑠 S-connection array
𝑀 ∈ N𝑛𝑑𝑖𝑚𝑠×𝑛𝑐𝑒𝑙𝑙𝑠 merge map
𝑛_𝑝𝑎 ∈ N𝑛𝑑𝑖𝑚𝑠×𝑛𝑐𝑒𝑙𝑙𝑠×𝑛𝑛𝑜𝑑𝑒𝑠 new-parent array
𝑛_𝑐ℎ ∈ N𝑛𝑑𝑖𝑚𝑠×𝑛𝑐𝑒𝑙𝑙𝑠×𝑛𝑛𝑜𝑑𝑒𝑠×𝑛𝑐𝑒𝑙𝑙𝑠×2 new-children array
𝑟𝑒𝑝 ( 𝑗, 𝑐, 𝑖) representative node

clustering in that region. This process is repeated until all clusters
in all subspace regions are found. This approach is efficient for a
sequential algorithm. However, when parallelizing for the GPU,
we prefer grouping identical and independent operations to make
each kernel call utilize as many cores as possible. Making INSCY
run parallel on the GPU is not straightforward since many partial
computations depend on previous results. E.g., in the alternation
between restricting and merging SCY-trees, we need the previous
merged SCY-tree and the neighboring restricted SCY-tree before
continuing to merge.

In this section, we present a new algorithm called GPU-INSCY,
in which we tackle the problem of identifying and reorganizing
the operations that can be performed in parallel to reduce running
time. Contrary to INSCY, GPU-INSCY aims to perform similar
and independent operations simultaneously for multiple final
restricted SCY-trees to utilize multiple thread blocks. Remember
that this allows us to use more cores, but it is only possible if the
threads in different blocks do not need to communicate.

We first outline the general order of computations in GPU-
INSCY, and we later explain this reordering. These reorderings
do not affect the result since the reordered operations are inde-
pendent of each other as discussed below for each change we
introduce. GPU-INSCY can be seen in Algorithm 2. First, compute
the set 𝐿 of all final restricted SCY-trees. Precompute the neigh-
borhoods for all points in all final restricted SCY-trees. For each
final restricted SCY-tree, prune the recursion, call GPU-INSCY
recursively, and prune for redundancy. All non-pruned final re-
stricted SCY-trees are added to 𝐿′. Finally, we cluster all points
in each of the final restricted SCY-trees in 𝐿′.

Restrict and merge. In GPU-INSCY, we isolate all restrict
and merge operations at the beginning of the algorithm, whereas
INSCY performs them ad hoc. We isolate the operations such that
we can parallelize them in different thread blocks. The result of
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each restrict and merge operation only depends on the informa-
tion parsed to the recursion. Computing all restricted SCY-trees
at the beginning does, therefore, not change the final result. Par-
allelizing within each thread block is not a simple task due to
both the alternation between restrict and merge and the fact
that INSCY only visits nodes in the SCY-trees one by one when
restricting and merging. We discuss how to parallelize restrict
and merge in Section 4.1.2, after introducing a representation of
the SCY-tree index-structure for the GPU in Section 4.1.1.

Precomputing the neighborhoods. Computing the neigh-
borhoods is an expensive task, and it is used both for the cluster-
ing andwhen computing weak-density while pruning a recursion.
In Section 4.2, we describe how to precompute the neighborhoods
in parallel and how we take advantage of having direct access to
the neighborhoods in a subspace of the current space.

Pruning. In Section 4.3, we parallelize both pruning phases
following the same approach as for restrict and merge.

Clustering. In Section 4.2, we change the sequential way of
expanding the clusters [12] with one density-connected point at
a time, to obtain a more efficient clustering algorithm.

4.1 SCY-tree on the GPU
The SCY-tree representation and the associated operations are not
very suited for the GPU. Section 4.1.1 describes how to represent
the SCY-tree in a GPU friendly fashion and Section 4.1.2 describes
how to perform the restrict and merge operations in parallel.

4.1.1 Representing the SCY-tree on the GPU. Handling mem-
ory on the GPU is more restrictive than on the CPU, and allo-
cating memory can only be done from the CPU. Furthermore, it
is expensive to alternate between calling kernels, transferring
data, and allocating memory. Therefore, we prefer to allocate
memory and transfer data as few times as possible. GPU memory
is loaded one block at a time to reduce latency, implying that
data used close together in time should be placed close together
in memory. If the data we use is not placed in the same block, we
get cache misses, i.e., not using the loaded data, which we would
like to reduce. For ease of reference, we call the GPU friendly
representation of the SCY-tree GPU-SCY-tree. A way to represent
tree structures on the CPU is to create an object for each node
with pointers to its children, parent, and other values in the tree.
This structure is very flexible and allows adding nodes on the fly.
However, this does not fit well with the restrictions on the GPU.

Remember, all nodes for a particular dimension are placed on
the same layer in the SCY-tree. These layers are indexed by 𝑗

starting with 𝑗 = −1 for the root and incrementing toward the
leaf layer 𝑗 = 𝑛𝑑𝑖𝑚𝑠 − 1, implying that lower indices are above
the higher indices in the SCY-tree. In Section 4.1.2, we describe
how we handle all nodes on the same layer simultaneously, and
we would therefore like to place these nodes close together in
memory. The same is the case for points contained in the tree.

Instead of representing nodes as objects, we choose to repre-
sent the GPU-SCY-tree as arrays, with an entry for each node.
Each array represents the kind of pointer or values that a node
contains. In the arrays, we locate nodes on the same layer in the
SCY-tree next to each other and order the layers by their index
𝑗 . In this way, data for nodes on the same layer is placed close
together in memory, making it more likely to avoid cache-misses.
We organize points using the same reasoning. To represent the
GPU-SCY-tree, we use a total of eight arrays with one entry
per node, point, or dimension. An example is given in Figure 3.
Besides the arrays we also keep count of the number of nodes

0 0 0 0 0
0 1 2 3 4 5

1 2 2 3
6 7 8

4 4 4 4
9 10 11 12

5 6 7 7 8 9 10 11 12
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Figure 3: GPU-SCY-tree for SCY-tree in Figure 2.

𝑛𝑛𝑜𝑑𝑒𝑠 , number of points 𝑛𝑝𝑡𝑠 , number of cells 𝑛𝑐𝑒𝑙𝑙𝑠 , number
of dimensions in the SCY-tree 𝑛𝑑𝑖𝑚𝑠 , and number of restricted
dimensions 𝑛𝑟_𝑑𝑖𝑚𝑠 .

The nodes are represented using three arrays: the parent
pointer 𝑝𝑎 ∈ N𝑛𝑛𝑜𝑑𝑒𝑠 , the cell number 𝑐𝑒 ∈ N𝑛𝑛𝑜𝑑𝑒𝑠 , and the
count of points 𝑐𝑜 ∈ N𝑛𝑛𝑜𝑑𝑒𝑠 . Notice that we do not keep point-
ers to children, see Section 4.1.2 for reasoning. To access each
layer 𝑗 we have an array with the starting index of each layer
𝑙𝑎 ∈ N𝑛𝑑𝑖𝑚𝑠 and an array with the dimensions that the lay-
ers represent 𝑑𝑖𝑚𝑠 ∈ N𝑛𝑑𝑖𝑚𝑠 . We furthermore keep an array of
the restricted dimensions 𝑟_𝑑𝑖𝑚𝑠 ∈ N𝑛𝑟_𝑑𝑖𝑚𝑠 , however, for the
GPU-SCY-tree in Figure 3 this is empty. To keep track of the
points in the GPU-SCY-tree, we have two arrays with an entry
for each point. One keeps track of the points’ index in the dataset
𝑝𝑜 ∈ N𝑛𝑝𝑡𝑠 , and the other keeps track of which leaf-node each
point is placed in 𝑝𝑙 ∈ N𝑛𝑝𝑡𝑠 .

4.1.2 Restrict and merge on the GPU. When parallelizing for
the GPU, we identify: (i) ways to reorder independent tasks that
can be performed in parallel, (ii) similar tasks that can be per-
formed by a warp, and (iii) ways to allocate memory as few times
as possible. Restrict and merge for a SCY-tree are sequential op-
erations where we look at one node at a time, check if it should
be included, and copy all information to the temporary or final
result. Running this in parallel on the GPU requires a substantial
restructuring due to two things: The alternation between restrict
and merge and a node’s inclusion being dependent on the inclu-
sion of either the parent or one of its children. As mentioned
before, such a dependency makes the process sequential, which
is not suitable for the GPU.

In Section 4, we state that all final restricted SCY-trees can
be computed first in the recursion since the computation only
requires the descriptors and the SCY-tree parsed to the recur-
sion. But to parallelize the restrict and merge operation, we need
several observations and restructuring that we now provide.

Allocating once. To allocate memory only once per restricted
GPU-SCY-tree, we first compute which nodes and points are
included in the restricted SCY-trees. This information is kept
in two temporary binary arrays both initialized to 0. One for
nodes 𝑖𝑛𝑐𝑙 ∈ {0, 1}𝑛𝑑𝑖𝑚𝑠×𝑛𝑐𝑒𝑙𝑙𝑠×𝑛𝑛𝑜𝑑𝑒𝑠 with entries for each de-
scriptor and node combination. And one for points 𝑖𝑛𝑐𝑙𝑝𝑡𝑠 ∈
{0, 1}𝑛𝑑𝑖𝑚𝑠×𝑛𝑐𝑒𝑙𝑙𝑠×𝑛𝑝𝑡𝑠 with entries for each descriptor and point
combination. Here 0 and 1 represent false and true, respectively.
In Figure 2, we show the restriction for descriptor (1,0). In Figure
4 we show the same restriction in GPU-SCY-tree representa-
tion, and the temporary arrays. Here the five included nodes are
marked with a 1 in 𝑖𝑛𝑐𝑙 . Knowing which nodes and points are
included allows us to compute the new indices of the nodes and
points in the restricted SCY-trees. We compute the indices forn-
odes and points using inclusive scan (cumulative sum) of 𝑖𝑛𝑐𝑙 for
each descriptor. The result is kept in 𝑖𝑑𝑥 ∈ N𝑛𝑑𝑖𝑚𝑠×𝑛𝑐𝑒𝑙𝑙𝑠×𝑛𝑛𝑜𝑑𝑒𝑠
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result
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Figure 4: Restrict example before combining with merge.

and 𝑖𝑑𝑥𝑝𝑡𝑠 ∈ N𝑛𝑑𝑖𝑚𝑠×𝑛𝑐𝑒𝑙𝑙𝑠×𝑛𝑝𝑡𝑠 . This is used to determine where
each node is placed in the resulting SCY-tree. E.g. in Figure 4, the
last included node is placed at entry 4 = 𝑖𝑑𝑥 (18) − 1. Further-
more, for each descriptor, we use the last index to allocate the
needed memory for the restricted SCY-trees.In Figure 4 we need
to allocate space for 5 = 𝑖𝑑𝑥 ( |𝑖𝑑𝑥 | − 1) nodes. After allocating
memory, we copy all included nodes and points to the restricted
SCY-trees. To copy, we need the new count of points in the sub-
trees starting at each node 𝑛_𝑐𝑜 ∈ N𝑛𝑑𝑖𝑚𝑠×𝑛𝑐𝑒𝑙𝑙𝑠×𝑛𝑛𝑜𝑑𝑒𝑠 which
we compute along side the inclusion of each node.

Restrict is independent.We observe that the restrict opera-
tion only requires the SCY-tree parsed to the recursion and the
descriptor it is restricting w.r.t.. Both the descriptor and the SCY-
tree are not changed during the recursion. Therefore, the restrict
operations of each recursion are completely independent of each
other and all other operations. Consequently, the final result does
not depend on the order of restriction, and we can parallelize the
restrict operations over different thread blocks, which allows us
to utilize more cores.

Restrict - similar tasks and restructuring. INSCY restricts
by identifying all nodes matching a descriptor and then visiting
upward and downward in the layers of the SCY-tree from there.
INSCY copies all nodes on the path to the root and the subtree
below the matching nodes to the new restricted SCY-tree. We
take advantage of the SCY-tree being a well-balanced tree with
a layer for each dimension. Observe that nodes on layers above
the restricted dimension are included if any of its children is in-
cluded in the restricted SCY-tree. The nodes on layers below are
included if their parent is included. Because of the dependency
w.r.t. inclusion between parents and children, we have a depen-
dency between layers where we need to compute the inclusion of
nodes up- and downwards in the GPU-SCY-tree starting from the
restricted dimension. However, observe that computing the in-
clusion of each node on a layer is independent of the other nodes
on that layer. Using this observation, we suggest computing the
inclusion of nodes one layer at a time, making the computation of
node inclusion parallel over each node on a layer. Since we keep
the ordering between parents and children, we do not violate the
dependency, and hence we compute the same result as INSCY.

When computing the inclusion of nodes, we have four cases,
where the computation is different for each of them. One for
nodes directly above the restricted dimension, one for the nodes
on the remaining layers above, one for nodes directly below the
restricted dimension, and one for the nodes on the remaining

layers below. We handle each of the cases in their own kernel, to
avoid branch-divergence that would lead to idle threads.

We compute the inclusion array 𝑖𝑛𝑐𝑙 in parallel with thread
blocks for each descriptor (𝑑𝑖𝑚𝑠 ( 𝑗), 𝑐) where 𝑗 is the layer repre-
senting the restricted dimension and 𝑐 is the cell number.Within
each block, we process sequentially over each layer 𝑗 + 𝑘 where
− 𝑗 ≤ 𝑘 < 𝑛𝑑𝑖𝑚𝑠 − 𝑗 , starting from 𝑘 = 0 and increment-
ing/decrementing from there. For all nodes 𝑖 on a given layer we
parallelize using threads.

When we compute the inclusion array 𝑖𝑛𝑐𝑙 , we treat normal
nodes and S-connector nodes slightly differently. An S-connection
is only used to enforce a merge along the restricted dimension.
Therefore, we discard the S-connector path starting at the re-
stricted dimension. Remember, we have an S-connection on the
restricted dimension, when an S-connector node 𝑖 has a normal
node as the parent:

𝑖𝑠_𝑆 (𝑖) := (𝑐𝑜 (𝑖) < 0) ∧ (𝑐𝑜 (𝑝𝑎(𝑖)) ≥ 0) . (1)

In Figure 3, node 10 represents an S-connection since it has a
negative count and its parent, node 4, has a positive count.

We can now use this when searching for nodes 𝑖 matching the
descriptor (𝑑𝑖𝑚𝑠 ( 𝑗), 𝑐). A node 𝑖 on layer 𝑗 matches the descriptor
(𝑑𝑖𝑚𝑠 ( 𝑗), 𝑐) if its cell number matches the cell number of the
descriptor 𝑐𝑒 (𝑖) = 𝑐 and it is not an S-connector node starting at
the restricted dimension ¬𝑖𝑠_𝑆 (𝑖):

𝑠_𝑖𝑛𝑐𝑙 ( 𝑗, 𝑖, 𝑐) := (𝑐𝑒 (𝑖) = 𝑐) ∧ (¬𝑖𝑠_𝑆 (𝑖)) . (2)

In Figure 3, for descriptor (1, 0), node 6 should be treated as
a match since it is in dimension 1 and has cell number 0 and
does not represent an S-connection. Node 10 also matches the
descriptor, but it represents an S-connection, so it should not be
treated as a match.

We wish to compute inclusion for all nodes on the layers
above the restricted dimension. This requires us to look at each
child of a given node. As the number of children can vary from
node to node, threads in the same warp would stay idle until the
other threads have visited all their children. We address this by
parallelizing over all children instead and letting the children
mark if their parent is included. Observe that now each thread
only visits the current node and its parent, instead of a varying
number of children.

Starting from layer 𝑗 we compute inclusion for the nodes on
layer 𝑗−1 just above the restricted dimension𝑑𝑖𝑚𝑠 ( 𝑗). The parent
𝑝𝑎(𝑖) of a node 𝑖 is marked as included if the node 𝑖 matches the
descriptor 𝑠_𝑖𝑛𝑐𝑙 ( 𝑗, 𝑖, 𝑐):

∀0 ≤ 𝑗 < 𝑛𝑑𝑖𝑚𝑠 , 0 ≤ 𝑐 < 𝑛𝑐𝑒𝑙𝑙𝑠 ,

𝑙𝑎( 𝑗) ≤ 𝑖 < 𝑙𝑎( 𝑗 + 1), 𝑠_𝑖𝑛𝑐𝑙 ( 𝑗, 𝑖, 𝑐) :
𝑖𝑛𝑐𝑙 ( 𝑗, 𝑐, 𝑝𝑎(𝑖)) := 1.

(3)

In Figure 4 node 2 is included since node 6 matches the descriptor.
Sequentially moving towards the root, we can now compute

inclusion for nodes on layer 𝑗 − 𝑘 where 2 ≤ 𝑘 < 𝑗 . The parent
𝑝𝑎(𝑖) is now included if the node 𝑖 is marked as included:

∀0 ≤ 𝑗 < 𝑛𝑑𝑖𝑚𝑠 , 0 ≤ 𝑐 < 𝑛𝑐𝑒𝑙𝑙𝑠 , 1 ≤ 𝑘 < 𝑗 − 1,
𝑙𝑎( 𝑗 − 𝑘) ≤ 𝑖 < 𝑙𝑎( 𝑗 − 𝑘 + 1), 𝑖𝑛𝑐𝑙 ( 𝑗, 𝑐, 𝑖) :

𝑖𝑛𝑐𝑙 ( 𝑗, 𝑐, 𝑝𝑎(𝑖)) := 1.
(4)

In Figure 4 the root, node 0, is included since node 2 is included.
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Similarly, we include nodes on the layer 𝑗+1 directly below the
restricted dimension𝑑𝑖𝑚𝑠 ( 𝑗) if the parent matches the descriptor:
∀0 ≤ 𝑗 < 𝑛𝑑𝑖𝑚𝑠 , 0 ≤ 𝑐 < 𝑛𝑐𝑒𝑙𝑙𝑠 , 𝑙𝑎( 𝑗 + 1) ≤ 𝑖 < 𝑙𝑎( 𝑗 + 2) :
𝑖𝑛𝑐𝑙 ( 𝑗, 𝑐, 𝑖) := 𝑠_𝑖𝑛𝑐𝑙 ( 𝑗, 𝑝𝑎(𝑖), 𝑐) . (5)

In Figure 4 node 14 is included as node 6 matches the descriptor.
Moving towards the leaves, we compute inclusion for nodes

on layer 𝑗 + 𝑘 where 2 ≤ 𝑘 < 𝑛𝑑𝑖𝑚𝑠 − 𝑗 by checking if a node’s
parent is marked as included:

∀0 ≤ 𝑗 < 𝑛𝑑𝑖𝑚𝑠 , 0 ≤ 𝑐 < 𝑛𝑐𝑒𝑙𝑙𝑠 , 2 ≤ 𝑘 < 𝑛𝑑𝑖𝑚𝑠 − 𝑗,

𝑙𝑎( 𝑗 + 𝑘) ≤ 𝑖 < 𝑙𝑎( 𝑗 + 𝑘 + 1) :
𝑖𝑛𝑐𝑙 ( 𝑗, 𝑐, 𝑖) := 𝑖𝑛𝑐𝑙 ( 𝑗, 𝑐, 𝑝𝑎(𝑖)) .

(6)

After we have computed the inclusion of the nodes on the leaf
layer, we can compute which points are included. A point 𝑝 is
included if the leaf node where it is located 𝑝𝑙 (𝑝) is included:
∀0 ≤ 𝑗 < 𝑛𝑑𝑖𝑚𝑠 , 0 ≤ 𝑐 < 𝑛𝑐𝑒𝑙𝑙𝑠 , 0 ≤ 𝑝 < 𝑛𝑝𝑡𝑠 :

𝑖𝑛𝑐𝑙𝑝𝑡𝑠 ( 𝑗, 𝑐, 𝑝) :=
{
𝑖𝑛𝑐𝑙 ( 𝑗, 𝑐, 𝑝𝑙 (𝑝)) if 𝑗 < 𝑛𝑑𝑖𝑚𝑠 − 1
𝑐𝑒 (𝑝𝑙 (𝑝)) = 𝑐 else

(7)

E.g. in Figure 4 point 1 is included since the leaf node 14 where the
point is placed is included. The computation is done in parallel
over each descriptor as blocks and each point 𝑝 as threads. We
handle the case of restricting the leaf layer by directly checking
if the placement node’s cell number matches the descriptor.

Restrict and merge combined. INSCY alternates between
restricting and merging as long as S-connections are found. The
merge operation only merges restricted SCY-trees that represent
subspace regions within the same subspace. Therefore, merges
are independent between restricted dimensions in the same re-
cursion. However, remember that the merge operation merges
the newly restricted SCY-tree with the previous merged SCY-tree.
Instead of this sequential process, we devise a strategy to per-
form merges and restrictions simultaneously. Implying that we
avoid allocating space for the temporary restricted and merged
SCY-trees, and by that, save time.

Precomputing SCY-trees to merge. Observe that in INSCY,
what makes the merge process sequential, is that we do not
know in advance which SCY-trees need to be merged for a given
descriptor. However, this only depends on the S-connections
along the restricted dimension. A merge is only necessary if
there is an S-connection between two cells on the restricted
dimension. We suggest precomputing which SCY-trees need to
be merged for each descriptor in advance. First, check if there
is an S-connection for the given descriptor, then compute from
which descriptor themerging process should start. The first check
for S-connections can be parallelized as follows. We define 𝑆 ∈
{0, 1}𝑛𝑑𝑖𝑚𝑠×𝑛𝑐𝑒𝑙𝑙𝑠 , a table of whether there exists an S-connection
for a given descriptor. Each entry of 𝑆 is initialized to 0 and
updated in parallel over each layer 𝑗 as thread blocks and each
node 𝑖 as threads. The update entails writing 1 if the node 𝑖 is
the start of an S-connector path.

∀0 ≤ 𝑗 < 𝑛𝑑𝑖𝑚𝑠 , 𝑙𝑎( 𝑗) ≤ 𝑖 < 𝑙𝑎( 𝑗 + 1), 𝑖𝑠_𝑆 (𝑖) :
𝑆 ( 𝑗, 𝑐𝑒𝑙𝑙𝑠 (𝑖)) := 1.

(8)

We use 𝑆 to compute from which descriptor each merge se-
quence starts. This information is saved in 𝑀 ∈ N𝑛𝑑𝑖𝑚𝑠×𝑛𝑐𝑒𝑙𝑙𝑠 ,
where each entry represents a descriptor. For each entry, we com-
pute which restricted SCY-trees should bemerged, denoted by the
cell number 𝑐 of the descriptor associated with the first SCY-tree
in that merge sequence. Remember that we start a new sequence
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Figure 5: Restrict after combining with merge.

of merges whenever there was no S-connection from the previous
cell 𝑆 ( 𝑗, 𝑐−1). In other words, if there is an S-connection between
two cells, we continue the sequence with identifier𝑀 ( 𝑗, 𝑐 − 1).
If not, we start a new sequence with the identifier 𝑐 .

∀0 ≤ 𝑗 < 𝑛𝑑𝑖𝑚𝑠 , 0 ≤ 𝑐 < 𝑛𝑐𝑒𝑙𝑙𝑠 :

𝑀 ( 𝑗, 𝑐) :=
{
𝑀 ( 𝑗, 𝑐 − 1) if (𝑐 > 0) ∧ 𝑆 ( 𝑗, 𝑐 − 1)
𝑐 else

(9)

Equation 9 is parallelized over layers 𝑗 but remains sequential
over cell numbers 𝑐 since we need to know the preceding entry
𝑀 ( 𝑗, 𝑐 − 1) to compute𝑀 ( 𝑗, 𝑐).

The table with S-connections 𝑆 and merge map 𝑀 for the
GPU-SCY-tree in Figure 3 are shown in Figure 5. 𝑆 contains an
S-connection in dimension 1, starting at cell 0. Therefore, in𝑀 ,
a merge sequence starts at cell 0, continuing to cell 1.

Avoiding merge sequences. The merge map 𝑀 allows us to
avoid the merge sequence and instead directly include nodes that
would be in the final restricted SCY-tree for a given descriptor.
More concretely, when checking if a node 𝑖 on the restricted di-
mensions 𝑑 = 𝑑𝑖𝑚𝑠 ( 𝑗) matches the descriptor, we instead look up
the restricted dimension and the current node’s cell number in the
merge map𝑀 . We treat node 𝑖 as a match if𝑀 ( 𝑗, 𝑐𝑒 (𝑖)) matches
the cell number 𝑐 of the descriptor. This changes Equation 2 into:

𝑠_𝑖𝑛𝑐𝑙 ( 𝑗, 𝑖, 𝑐) := (𝑀 ( 𝑗, 𝑐𝑒 (𝑖)) = 𝑐) ∧ (¬𝑖𝑠_𝑆 (𝑖)), (10)

and Equation 7 into
∀0 ≤ 𝑗 < 𝑛𝑑𝑖𝑚𝑠 , 0 ≤ 𝑐 < 𝑛𝑐𝑒𝑙𝑙𝑠 , 𝑝 < 𝑛𝑝𝑡𝑠 :

𝑖𝑛𝑐𝑙𝑝𝑡𝑠 ( 𝑗, 𝑐, 𝑝) :=
{
𝑖𝑛𝑐𝑙 ( 𝑗, 𝑐, 𝑝𝑙 (𝑝)) if 𝑗 < 𝑛𝑑𝑖𝑚𝑠 − 1
𝑀 ( 𝑗, 𝑐, 𝑐𝑒 (𝑝𝑙 (𝑝))) = 𝑐 else

(11)
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E.g. for descriptor (1, 0), we now also treat node 7 in Figure 3 and
5 as a match, since cell 1 in dimension 1 has a merge sequence
starting at cell number 0.

Since nodes on the restricted dimension are not included,
nodes directly below that dimension will become their grand-
parents’ children instead. This implies that the grandparent can
end up with multiple children with the same cell number. Nodes
with the same parent and cell number would have been merged
in INSCY and must also be merged in GPU-INSCY to ensure that
INSCY and GPU-INSCY still compute the same final restricted
SCY-trees. However, INSCY merges these one by one and GPU-
INSCY merges them all simultaneously. In Figure 5, nodes 14 and
16 will now both be children of node 2, and they have the same
cell number, so they must be merged.

Merging nodes can propagate the problem of children, with
the same cell number, down towards the leaves. We merge such
nodes during our new restrict phase. We keep track of nodes
that need to be merged in the restricted SCY-trees by computing
two things: each node’s new parent 𝑛_𝑝𝑎 ∈ N𝑛𝑑𝑖𝑚𝑠×𝑛𝑐𝑒𝑙𝑙𝑠×𝑛𝑛𝑜𝑑𝑒𝑠

and the node’s new children𝑛_𝑐ℎ ∈ N𝑛𝑑𝑖𝑚𝑠×𝑛𝑐𝑒𝑙𝑙𝑠×𝑛𝑛𝑜𝑑𝑒𝑠×𝑛𝑐𝑒𝑙𝑙𝑠×2.
Examples of both arrays are shown in Figure 5. All entries of
𝑛_𝑝𝑎 and 𝑛_𝑐ℎ are initialized to −1. For each descriptor, 𝑛_𝑝𝑎
holds the new parents of all nodes. Likewise for 𝑛_𝑐ℎ, except that
we make room for all possible children by 𝑛𝑐𝑒𝑙𝑙𝑠 × 2. A node can
have two types of children: normal or S-connector nodes. For
both types, we can have a node for each cell. To look up the type
of a node we use:

𝑆_𝑖𝑑𝑥 (𝑖) :=
{
0 if 𝑐𝑜 (𝑖) ≥ 0
1 else

(12)

Merge representatives.When merging nodes in the SCY-tree,
we pick one of the nodes to be the representative, which is the
node that will actually be included in the final restricted SCY-tree.
We will lookup the representative node 𝑟𝑒𝑝 ( 𝑗, 𝑐, 𝑖) by

𝑟𝑒𝑝 ( 𝑗, 𝑐, 𝑖) := 𝑛_𝑐ℎ( 𝑗, 𝑐, 𝑛_𝑝𝑎( 𝑗, 𝑐, 𝑖), 𝑐𝑒 (𝑖), 𝑆_𝑖𝑑𝑥 (𝑖)) .

If a node should be represented in the final restricted SCY-tree
we say that it is fused into that SCY-tree. We call it fused if it is
either merged or included in the SCY-tree. If a node is merged
into the SCY-tree, the count of points and children is added to
the representative node. In Figure 5, nodes 14 and 16 should be
fused, but only node 16 is included as the representative.

We assign a new parent to all nodes that are fused into the
final restricted SCY-tree. This implies that iff 𝑛_𝑝𝑎 has a value
that is not −1, the associated node has been fused into the final
restricted SCY-tree. Notice that we can use 𝑛_𝑝𝑎( 𝑗, 𝑐, 𝑖) ≥ 0 to
check if the parent has been fused instead of just checking if it
has been included 𝑖𝑛𝑐𝑙 ( 𝑗, 𝑐, 𝑖).

When identifying the new parent of a node 𝑖 , below the re-
stricted dimension, we look up which node the old parent has
been merged into. This will be one of the children of the new
grandparent of node 𝑖 , which is identified as the representative
node for the parent:

∀0 ≤ 𝑗 < 𝑛𝑑𝑖𝑚𝑠 , 0 ≤ 𝑐 < 𝑛𝑐𝑒𝑙𝑙𝑠 , 2 ≤ 𝑘 < 𝑛𝑑𝑖𝑚𝑠 − 𝑗,

𝑙𝑎( 𝑗 + 𝑘) ≤ 𝑖 < 𝑙𝑎( 𝑗 + 𝑘 + 1), 𝑛_𝑝𝑎( 𝑗, 𝑐, 𝑝𝑎(𝑖)) ≥ 0 :
𝑛_𝑝𝑎( 𝑗, 𝑐, 𝑖) := 𝑟𝑒𝑝 ( 𝑗, 𝑐, 𝑝𝑎(𝑖)).

(13)

When computing the new parent for nodes just below the
restricted dimension, we need to skip the nodes on the restricted
dimension, since the restricted layer is removed from the result.
However, for a node above the restricted dimension, there are no

changes. Therefore, no merge of nodes can occur, and we do not
need to check which child has been picked:

∀0 ≤ 𝑗 < 𝑛𝑑𝑖𝑚𝑠 , 0 ≤ 𝑐 < 𝑛𝑐𝑒𝑙𝑙𝑠 ,

𝑙𝑎( 𝑗 + 1) ≤ 𝑖 < 𝑙𝑎( 𝑗 + 2), 𝑠_𝑖𝑛𝑐𝑙 ( 𝑗, 𝑝𝑎(𝑖), 𝑐) :
𝑛_𝑝𝑎( 𝑗, 𝑐, 𝑖) := 𝑝𝑎(𝑝𝑎(𝑖)) .

(14)

E.g., the parent of node 14 is node 6, and the parent of node 6 is
node 2. Therefore, the new parent of node 14 is node 2.

For all nodes above the restricted dimension, we do not change
the child-parent relationship, and they can be copied in parallel.

∀0 ≤ 𝑗 < 𝑛𝑑𝑖𝑚𝑠 , 0 ≤ 𝑐 < 𝑛𝑐𝑒𝑙𝑙𝑠 , 1 ≤ 𝑘 < 𝑗,

𝑙𝑎( 𝑗 − 𝑘) ≤ 𝑖 < 𝑙𝑎( 𝑗 − 𝑘 + 1), 𝐼 ( 𝑗, 𝑐, 𝑖) :
𝑛_𝑝𝑎( 𝑗, 𝑐, 𝑖) := 𝑝𝑎(𝑖),
𝑛_𝑐ℎ( 𝑗, 𝑐, 𝑝𝑎(𝑖), 𝑐𝑒 (𝑖), 𝑆_𝑖𝑑𝑥 (𝑖)) := 𝑖 .

(15)

Below the restricted dimension, we need to decide which of
the merged nodes is the representative. It is not important which
of the nodes is picked, but all threads involved in the merge must
agree on just one node. We do this by letting each node 𝑖 , that is
fused, write its id as the representative, i.e., the new child:

∀0 ≤ 𝑗 < 𝑛𝑑𝑖𝑚𝑠 , 0 ≤ 𝑐 < 𝑛𝑐𝑒𝑙𝑙𝑠 , 1 ≤ 𝑘 < 𝑛𝑑𝑖𝑚𝑠 − 𝑗,

𝑙𝑎( 𝑗 + 𝑘) ≤ 𝑖 < 𝑙𝑎( 𝑗 + 𝑘 + 1), 𝑛_𝑝𝑎( 𝑗, 𝑐, 𝑖) ≥ 0 :
𝑟𝑒𝑝 ( 𝑗, 𝑐, 𝑖) := 𝑖 .

(16)

We synchronize such that all threads see the same node id, and
only include that node as the new child. E.g., in Figure 5 both
node 14 and 16 would vote for themselves as the representative.
In our example, node 16 was the last to write. Therefore, node 16
becomes the representative. This expands Equation 5 into:
∀0 ≤ 𝑗 < 𝑛𝑑𝑖𝑚𝑠 , 0 ≤ 𝑐 < 𝑛𝑐𝑒𝑙𝑙𝑠 , 𝑙𝑎( 𝑗 + 1) ≤ 𝑖 < 𝑙𝑎( 𝑗 + 2) :
𝑖𝑛𝑐𝑙 ( 𝑗, 𝑐, 𝑖) := 𝑠_𝑖𝑛𝑐𝑙 ( 𝑗, 𝑝𝑎(𝑖), 𝑐) ∧ (𝑟𝑒𝑝 ( 𝑗, 𝑐, 𝑖) = 𝑖), (17)

and Equation 6 into:
∀0 ≤ 𝑗 < 𝑛𝑑𝑖𝑚𝑠 , 0 ≤ 𝑐 < 𝑛𝑐𝑒𝑙𝑙𝑠 , 2 ≤ 𝑘 < 𝑛𝑑𝑖𝑚𝑠 − 𝑗,

𝑙𝑎( 𝑗 + 𝑘) ≤ 𝑖 < 𝑙𝑎( 𝑗 + 𝑘 + 1) :
𝑖𝑛𝑐𝑙 ( 𝑗, 𝑐, 𝑖) := (𝑛_𝑝𝑎( 𝑗, 𝑐, 𝑖) ≥ 0) ∧ (𝑟𝑒𝑝 ( 𝑗, 𝑐, 𝑖) = 𝑖) .

(18)

For a point, the placement can change since nodes are merged.
Therefore, we check if the node where the point is placed is fused
into the final restricted SCY-tree. This is the case if the node has
been assigned a new parent. Equation 11 changes into:
∀0 ≤ 𝑗 < 𝑛𝑑𝑖𝑚𝑠 , 0 ≤ 𝑐 < 𝑛𝑐𝑒𝑙𝑙𝑠 , 𝑝 < 𝑛𝑝𝑡𝑠 :

𝑖𝑛𝑐𝑙𝑝𝑡𝑠 ( 𝑗, 𝑐, 𝑝) :=
{
𝑛_𝑝𝑎( 𝑗, 𝑐, 𝑝𝑙 (𝑝)) ≥ 0 if 𝑗 < 𝑛𝑑𝑖𝑚𝑠 − 1
𝑀 ( 𝑗, 𝑐, 𝑐𝑒 (𝑝𝑙 (𝑝))) = 𝑐 else

(19)

Accumulating count. Now that we know which nodes are
fused into the SCY-tree, we can accumulate the count of points in
the subtree of each node 𝑖 . For nodes on the same layer, the entry
in 𝑛_𝑐𝑜 might be incremented by different threads. Therefore,
we need to use atomic addition, implying that threads handling
nodes on the same layer must be in the same thread block. For the
layer just above the restricted dimension, we sum the old count
of all children that are normal nodes and fused. If the parent is
included and an S-connector node, we set the count to −1:
∀0 ≤ 𝑗 < 𝑛𝑑𝑖𝑚𝑠 , 0 ≤ 𝑐 < 𝑛𝑐𝑒𝑙𝑙𝑠 , 𝑙𝑎( 𝑗) ≤ 𝑖 < 𝑙𝑎( 𝑗 + 1), 𝑠_𝑖𝑛𝑐𝑙 ( 𝑗, 𝑖, 𝑐) :

𝑛_𝑐𝑜 ( 𝑗, 𝑐, 𝑝𝑎(𝑖)) :=
{
𝑛_𝑐𝑜 ( 𝑗, 𝑐, 𝑝𝑎(𝑖)) + 𝑐𝑜 (𝑖) if 𝑐𝑜 (𝑖) ≥ 0
−1 if 𝑐𝑜 (𝑝𝑎(𝑖)) < 0

(20)
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For the nodes on the remaining layers above the restricted dimen-
sion, we iteratively sum the new count of points of the children:
∀0 ≤ 𝑗 < 𝑛𝑑𝑖𝑚𝑠 , 0 ≤ 𝑐 < 𝑛𝑐𝑒𝑙𝑙𝑠 , 1 ≤ 𝑘 < 𝑗 − 1,
𝑙𝑎( 𝑗 − 𝑘) ≤ 𝑖 < 𝑙𝑎( 𝑗 − 𝑘 + 1), 𝑖𝑛𝑐𝑙 ( 𝑗, 𝑐, 𝑖) :

𝑛_𝑐𝑜 ( 𝑗, 𝑐, 𝑛_𝑝𝑎( 𝑗, 𝑐, 𝑖)) :=

+
{
𝑛_𝑐𝑜 ( 𝑗, 𝑐, 𝑝𝑎(𝑖)) + 𝑛_𝑐𝑜 ( 𝑗, 𝑐, 𝑖) if 𝑐𝑜 (𝑖) ≥ 0
−1 if 𝑐𝑜 (𝑝𝑎(𝑖)) < 0

(21)

For all layers below the restricted dimension, the new count is a
sum of the old counts of all fused nodes:
∀0 ≤ 𝑗 < 𝑛𝑑𝑖𝑚𝑠 , 0 ≤ 𝑐 < 𝑛𝑐𝑒𝑙𝑙𝑠 , 1 ≤ 𝑘 < 𝑛𝑑𝑖𝑚𝑠 − 𝑗,

𝑙𝑎( 𝑗 + 𝑘) ≤ 𝑖 < 𝑙𝑎( 𝑗 + 𝑘 + 1), 𝑛_𝑝𝑎(𝑖) ≥ 0 :

𝑛_𝑐𝑜 ( 𝑗, 𝑐, 𝑟𝑒𝑝 ( 𝑗, 𝑐, 𝑖)) :=
{
−1 if 𝑐𝑜 (𝑖) < 0
𝑛_𝑐𝑜 ( 𝑗, 𝑐, 𝑟𝑒𝑝 ( 𝑗, 𝑐, 𝑖)) + 𝑐𝑜 (𝑖) else

(22)

Overview of restrict and merge operations. To summa-
rize, the restricting and merging for all descriptors is done by
• Initialization: Each entry of 𝑖𝑛𝑐𝑙 , 𝑖𝑛𝑐𝑙𝑝𝑡𝑠 , 𝑖𝑑𝑥 , 𝑖𝑑𝑥𝑝𝑡𝑠 , and
𝑛_𝑐𝑜 is initialized to 0. Each entry of 𝑛_𝑐ℎ and 𝑛_𝑝𝑎 is
initialized to −1.
• Step 1: Compute for which descriptors the associated SCY-
trees will be merged using two kernels; one that checks for
each descriptor if there is an S-connection, using Equation
8, and one that uses this information to compute which
SCY-trees will be merged, using Equation 9.
• Step 2: Compute which nodes are included in the final re-
stricted and merged SCY-trees, and accumulate the count
of points in the subtrees. We compute the inclusion in the
restriction using five kernels. First, directly above the re-
stricted dimension we use Equations 3, 15, and 20, second,
for the remaining layers above we use Equations 4, 15, and
21, third, directly below we use Equations 17, 14, 16, and
22, fourth, for the remainder below we use Equations 18,
13, 16, and 22, and at last, we compute inclusion of points
by checking if the leaf-node where the point is placed is
included using Equation 19.
• Step 3: We now knowwhich nodes and points are included
in the final restricted SCY-trees. We do an inclusive scan
and decrement each entry with 1 to compute the new
indices for nodes 𝑖𝑑𝑥 and points 𝑖𝑑𝑥𝑝𝑡𝑠 . This is also used
to allocate the arrays for all final restricted SCY-trees.
• Step 4: All needed information has been precomputed, and
we now copy all nodes, points, dimensions, and restricted
dimensions to the final restricted SCY-trees. Each copy is
independent and can be done completely in parallel.

4.2 Density-based clustering on the GPU
In this section, we discuss how to find the subspace clusters for
all points in each SCY-tree. For each subspace region, the clus-
tering process of INSCY is similar to that of DBSCAN [12]. The
main difference is that INSCY supports different density measures
and that clustering is done in a subspace projection. DBSCAN,
and other density-based clustering methods, find clusters by ex-
panding chains of density-connected points. This is a sequential
process that we would like to replace with a parallelized process.

As discussed in related work, G-DBSCAN [5] is a competi-
tive parallelization of full-space DBSCAN with rectangle kernel
for density assessment. To support INSCY subspace clustering

and further improve runtime performance, we introduce three
major algorithmic solutions: supporting a different unbiased,
i.e., subspace-dependent density-measure, reduced neighborhood
searches, and expanding several clusters at once.

Precomputing the neighborhoods. To compute the neigh-
borhood without allocating worst-case sizes, G-DBSCAN first
computes the neighborhoods’ size, then allocates space, and at
last populates the neighborhoods with the neighboring points.
For GPU-INSCY, the neighborhood of each point in all SCY-trees
can be computed independently of other points and can therefore
be computed in parallel over different thread blocks.

GPU-INSCY additionally takes advantage of already having
computed the neighborhoods in the lower-dimensional subspace
projections of the current subspace. Since adding a dimension to
a subspace only increases the distance between points, previous
neighborhoods can be used to bound the search for neighbors
effectively. We demonstrate that this is an efficient strategy in
the experiments, see Section 5.

Collecting the clusters. Using the precomputed neighbor-
hoods, G-DBSCAN proceeds as follows. While there are still
unclustered points, pick a random point to expand a cluster from.
While that cluster is still being expanded, look at all points in
parallel. If a point has just been added to the cluster, add its neigh-
bors that have not yet been clustered to the current cluster. Since
G-DBSCAN run in parallel for all points, but only a few points
actually expand a single cluster each iteration, many threads are
left idle. We suggest instead that a point adds itself to a clus-
ter. Furthermore, we expand all clusters simultaneously for each
point 𝑝 in parallel as threads and over each descriptor in parallel
as blocks. We precompute for each point if it is dense and only
perform the following for dense points. For each descriptor, let
𝐶 ∈ N𝑛𝑝𝑡𝑠 be clustering labels for each point 𝑝 in the SCY-tree
associated with that descriptor. Start by assigning all points to a
singleton cluster, letting the cluster id be the point id, 𝐶 (𝑝) := 𝑝 .
While any cluster is still being expanded, look at all points in
parallel. If the point 𝑝 can reach a cluster with a lower cluster-id
through its neighborhood, add the current point to that clus-
ter 𝐶 (𝑝) := min𝑞∈𝑁𝜀 (𝑝)∪{𝑝 }𝐶 (𝑞). Between each iteration, we
synchronize such that all threads know if any cluster has been
expanded. For each iteration we check for all points if they can
be expanded, thus we ensure that all density connected clusters
have been found.

Clustering of each subspace region (SCY-tree) is independent
of each other since the subspace regions are not S-connected,
meaning that no density-connected clusters can span multiple
subspace regions. Therefore, since no communication is needed,
we can compute the clustering in parallel for each SCY-tree using
different thread blocks. However, since we want to perform all
clusterings in parallel and each SCY-tree must have been pruned
first, we can only perform clusterings in parallel at the end.

4.3 Pruning on the GPU
As previously mentioned, we parallelize both pruning phases. In
the interest of space, we keep the discussion brief as it follows the
same approach as for restricting and merging the GPU-SCY-trees.

When pruning the recursion, we compute in parallel for each
point if it is weak-dense. If it is not, mark it as not-included and
propagate the count up in the SCY-tree layer by layer. We also
parallelize the propagation over all nodes on a layer. If the count
in the root is below 𝑚𝑖𝑛𝐶 , then we do not continue with the
recursion for this SCY-tree.
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Pruning for redundancy is done as follows. For each super-
space of the current subspace, we execute three kernels: Find the
size of each cluster, find all clusters that overlap with points in the
current SCY-tree, and find the smallest cluster that overlaps with
the points in the current SCY-tree. Update the largest smallest
cluster𝑚𝑎𝑥_𝑚𝑖𝑛_𝑐𝑙𝑢𝑠𝑡𝑒𝑟 that overlaps with the current SCY-tree.
If the number of points in the SCY-tree scaled by the parameter 𝑟
is smaller than𝑚𝑎𝑥_𝑚𝑖𝑛_𝑐𝑙𝑢𝑠𝑡𝑒𝑟 , we do not perform clustering
for this SCY-tree because it can only contain redundant clusters.

4.4 Trading off speed for memory usage
Each recursive call of GPU-INSCY is parallelized over all descrip-
tors simultaneously. This requires that we keep all final restricted
SCY-trees, neighborhoods, and clusters in memory for all descrip-
tors. However, memory on the GPU is limited, putting a bound on
how large inputs we can process in parallel. There is, therefore, a
natural trade-off between memory usage and how many descrip-
tors we efficiently parallelize over simultaneously. To support
efficient processing of larger inputs, we devise a version of GPU-
INSCY called GPU-INSCY-memory that iterates over subsets of
descriptors that we then parallelize over. We study this trade-off
experimentally in Section 5.

5 EXPERIMENTS
5.1 Experimental setup
We conduct experiments for comparison of GPU-INSCY with
INSCY on synthetic and on real-world data, and study impact
of parameters on a workstation with Intel Core i7-9750HF CPU
2.60GHz × 12 cores, 16 GB RAM, GeForce GTX 1660 TI 6 GB
dedicated RAM. The large scale experiments in Section 5.4 are
executed on NVIDIA TITAN V 12 GB dedicated RAM, Intel Core
E5-2687W 3.100GHz × 10 cores, 400 GB RAM.

We use a search-tree for efficient neighborhood search in
INSCY, which provides a large speedup and makes it a fairer com-
parison. We have experimentally validated that GPU-INSCY and
INSCY produce identical subspace clusterings. Plots and further
details have been omitted due to the space limit. We provide our
source code at: https://github.com/jakobrj/GPU_INSCY.

5.2 Comparison with INSCY.
For subspace clustering, the dimensionality and size of the dataset
are dominating factors regarding runtime. Especially dimension-
ality since, as the number of dimensions increases, the number
of possible subspaces increases exponentially.

To compare INSCY and GPU-INSCY and the impact of input
data, we use the data generator provided by [1] to generate syn-
thetic datasets with dense clusters in arbitrary subspaces that
may overlap and have a small percentage of noise. As in [7], we
generate different datasets with four hidden subspace clusters.
All runtimes are averages of three runs on datasets with the same
generator settings. All dataset have been min/max-normalized.
The default parameters for INSCY and GPU-INSCY in these ex-
periments are 𝐹 = 1, 𝑅 = 1,𝜇 = 8, 𝜀 = 0.01, 𝑛𝑐𝑒𝑙𝑙𝑠 = 4, and𝑚𝑖𝑛𝐶
is set to 5% of the data points.

To analyze components of our algorithm, we also test GPU-
INSCY* and GPU-INSCY-memory. GPU-INSCY* is a version of
GPU-INSCY that does not bound the neighborhood search, so
that we can study the effect of bounding the neighborhood search.
GPU-INSCY-memory is described in Section 4.4. For our exper-
iments we group the descriptors by the dimensions such that
each iteration of the recursions is only parallel over the cells.
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Figure 6: Scalability in size and dimensionality
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Figure 7: Real world data; INSCY aborted after 24 hours

Comparison of INSCY and GPU-INSCY. In Figure 6a, the
running time for INSCY is decent for lower dimensions but in-
creases rapidly for higher dimensions. GPU-INSCY reduces the
running time to a point where it is faster to find subspace clus-
ters for 25 dimensions using GPU-INSCY than finding subspace
clusters for two dimensions using INSCY. In fact, in Figure 6c,
the speedup of GPU-INSCY relative to INSCY keeps increasing.
For 30 dimensions we achieve a factor of speedup of more than
2000×. A similar effect is observed for increasing the number of
points. In Figure 6b, INSCYs runtime again increases faster than
for GPU-INSCY. In Figure 6d, we see that the speedup becomes
a factor of several thousand. This speedup is much higher than
expected for the relatively low number of 1536 cores on our GPU.

Comparison of versions of GPU-INSCY. As mentioned in
Section 4.2, we attribute this dramatic speedup to our bounding
of the neighborhood searches. This effect is also clear in Figure
6c and 6d, where we see that GPU-INSCY* achieves a 500-1000×
speedup, corresponding to a good use of the cores, and GPU-
INSCY achieves a substantially larger speedup of up to 14’000×
obtained by our improved neighborhood search. GPU-INSCY-
memory allows us to run on larger datasets, with only a slight
reduction of factor 2 in speedup, which is a reasonable trade-off.
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5.3 Real world datasets
Wealso demonstrate GPU-INSCY speedups for real-world datasets.
We report runtimes on the three datasets (glass, vowel, pendigits)
[23] also studied in [7, 8]. The glass dataset 𝑋𝑔𝑙𝑎𝑠𝑠 ∈ R214×9,
vowel 𝑋𝑣𝑜𝑤𝑒𝑙 ∈ R990×10, and pendigits 𝑋𝑝𝑒𝑛𝑑𝑖𝑔𝑖𝑡𝑠 ∈ R7494×16.
Furthermore, we also evaluate on a more sizable higher dimen-
sional real world data set, part of the SkyServer dataset[27]
that contains measurements of objects in the sky, e.g., stars and
galaxies. We select three different areas of size 0.5×0.5, 1×1, and
1×2, measured in spherical coordinates (RA/Dec):𝑋𝑠𝑘𝑦 (0.5×0.5) ∈
R7253×17, 𝑋𝑠𝑘𝑦 (1×1) ∈ R29627×17, and 𝑋𝑠𝑘𝑦 (1×2) ∈ R59285×17. Ex-
periments are aborted if they run for more than 24 hours, as
INSCY does for larger setups. In Figure 7, we see that we obtain
high speedups on all datasets, but much higher for larger datasets
up to 15′000× speedup.

5.4 Effect of parameters
In this section, we study the effect of parameters for the density
criterion, 𝜀, 𝜇, 𝐹 and the model parameter 𝑛𝑐𝑒𝑙𝑙𝑠 .

In particular, the parameters for the density criterion are ex-
pected to impact the running time. Especially the neighborhood
radius 𝜀 is interesting since GPU-INSCY uses a strategy for re-
ducing the neighborhood search that INSCY does not employ.
The bigger the part of the subspace region that the neighborhood
radius covers, the less we save by reducing the search area for
the neighborhoods. Therefore, we expect that GPU-INSCY will
obtain the greatest speedup for smaller values of 𝜀. In Figure 8a,
we study the range of 𝜀 between 0 and 0.02, and see that this is
the case, but that the speedup remains large for the entire range.

The minimum number of points in the neighborhood 𝜇 and
density threshold 𝐹 only affect the number of points that are
dense and weak-dense. The fewer points that are dense or weak-
dense, the fewer points INSCY and GPU-INSCY need to process.
As this is the same fraction of points for both INSCY and GPU-
INSCY, we, therefore, expect to see a similar reduction in time for
both algorithms. For 𝜇, we study the range between 2 and 16, as
this parameter is intended as a cut-off for avoiding tiny subspace
clusters in very high-dimensional subspace projections (called
pseudodense in INSCY). The factor 𝐹 that governs the extent
to which expected density is exceeded is evaluated in the range
between 0.5 and 2.5. A value of 0.5 implies that we only expect a
point to be half as dense as the expected density, which is a very
low criterion, and 2.5 is more than twice the expected density,
which is rather high. In Figure 8b and 8c, we see that the speedup
for the density parameters remains stable for both criteria. As
expected, we see that the running time decreases equally for both
INSCY and GPU-INSCY as 𝜇 increases.

The parameter number of cells 𝑛𝑐𝑒𝑙𝑙𝑠 does not change the
result, but only how we partition the subspace into cells and
regions. We can, therefore, pick whichever number of cells INSCY
or GPU-INSCY perform the best at. In Figure 8d, we study a
range between 2 and 10 cells. Here both INSCY and GPU-INSCY
perform best at a lower number of cells, especially GPU-INSCY.

5.5 Scalability and different distributions
We evaluate scalability and different data distributions for GPU-
INSCY alone. The running time of INSCY quickly becomes too
high, e.g., more than 10 hours for 8000 points and 15 dimen-
sions, which makes experiments for large inputs infeasible. In
this section, we use GPU-INSCY-memory.
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Figure 9: Runtimes for scalability experiments

To test various distributions, we use the generator provided
by [9], but modify it to generate clusters in random subspaces
and not just the first 𝑘 dimensions. The default settings used
for the dataset generator are 64‘000 points with 4000 points for
each cluster, except 1%, which is uniformly distributed noise. The
dataset values range from −100 to 100, and the full space consists
of 15 dimensions. Each cluster is normally distributed with a
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standard deviation of 0.3 in a random 3-dimensional subspace. All
datasets have been min/max-normalized. The default parameters
for GPU-INSCY in these experiments are 𝐹 = 0.1, 𝑅 = 1, 𝜇 = 1,
𝜀 = 0.0003, 𝑛𝑐𝑒𝑙𝑙𝑠 = 4, and𝑚𝑖𝑛𝐶 = 500 points.

Scalability. Figure 9a shows runtimes with increasing dataset
size |𝑋 | up to 1‘024‘000. The figure shows that GPU-INSCY per-
forms subspace clustering on 1‘024‘000 points in less that 20
minutes. We also run experiments for increasing dimensionality
|𝐷 | up to 50, as shown in Figure 9b. GPU-INSCY can perform
subspace clustering in 50 dimensions (and on 64‘000 points) in
less than 6 minutes.

Data distribution. We evaluate performance on data with
different distributions using the same setting as for scalability.
In Figure 9c, we increase the number of clusters, keeping clus-
ter distribution (standard deviation) and total number of points
fixed. As we can see, large numbers of clusters further reduce the
runtime of GPU-INSCY, as it finds fewer points in each neighbor-
hood when the number of points per cluster decreases. In Figure
9d, we increase the spread of clusters (standard deviation). Again,
the runtime of GPU-INSCY further improves, as neighborhoods
are again less populated. Finally, we conduct an experiment with
stable density. As the number of clusters is doubled, we increase
cluster density accordingly by halving standard deviation. As
Figure 9e confirms, similar density results in stable runtime when
scaling number of clusters.

To summarize, the trend is that a lower density implies fewer
points in each neighborhood and, therefore, a lower runtime.
This means that GPU-INSCY scales particularly well for large
numbers of clusters and clusters that are spread.

Overall, GPU-INSCY outperforms INSCY by two-four orders
of magnitude with respect to runtimes for all tested settings.
Even on our small GPU, we measure the running time in seconds
instead of hours for smaller datasets (< 10‘000 points and 15
dimensions) and minutes instead of days for larger datasets.

6 CONCLUSION
In this paper, we propose GPU-INSCY, a novel GPU-parallel
algorithm for dimensionality-unbiased density-based subspace
clustering, following INSCY. GPU-INSCY outperforms INSCY by
several orders of magnitude. To achieve this, we utilize GPU cores
by restructuring both the algorithmic processing and the data
structure SCY-tree used in INSCY to fit the GPU computational
model. Furthermore, GPU-INSCY proposes a further reduction
of the time spent on neighborhood searches. Our experiments
show that GPU-INSCY scales well w.r.t. dimensionality and size
of the dataset, and compared to INSCY, the gap even continues
to grow with the scale of data.
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ABSTRACT
Graph databases are used for different applications like analyzing

large networks, representing and querying knowledge graphs,

and managing master data and complex data structures. Besides

graph analytics, the transactional processing of concurrent up-

dates and queries represents a challenging data management task.

In this paper, we investigate the usage of persistent memory as a

very promising technology for graph processing. We present a

novel architecture for transactional processing of queries and up-

dates on a property graph model that exploits and addresses the

specific characteristics of persistent memory by hybrid storage

andmemorymanagement as well as a just-in-time query compila-

tion approach. Our experimental evaluation on interactive short

read and update queryworkloads show that PMem-based systems

that are well-designed to exploit PMem characteristics outper-

form traditional disk-based systems significantly and have only

a small overhead compared to DRAM-only systems. Moreover,

the evaluation shows that JIT compilation brings performance

benefits especially when an adaptive compilation approach is

leveraged to hide the overhead of compilation as well as the

latency of PMem.

1 INTRODUCTION
Graph databases represent an important class of NoSQL systems

with numerous flavors, including systems for analyzing large

graphs, systems for querying knowledge bases, and systems sup-

porting updates on graphs and navigational queries. They are

designed for different graph datamodels ranging fromRDF triples

to property graph models, as well as different processing mod-

els from database query processing to approaches like the bulk

synchronous parallel (BSP) model.

The numerous available systems mainly adopt the typical ar-

chitectures of database systems, i.e., traditional disk-based archi-

tecture, in-memory architecture or scalable, distributed solutions.

Graph data are either stored in disk-based data structures and

loaded into memory for processing or kept directly in in-memory

structures (without requiring to load data during startup) while

using techniques like logging to allow for persistent updates.

In this work, we present a novel architecture for graph

databases based on persistent memory (PMem). PMem – also

known as non-volatile memory (NVM) or storage-class mem-

ory (SCM) – is one of the most promising trends in hardware

© 2021 Copyright held by the owner/author(s). Published in Proceedings of the

24th International Conference on Extending Database Technology (EDBT), March

23-26, 2021, ISBN 978-3-89318-084-4 on OpenProceedings.org.
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development which have the potential to hugely impact database

system architectures. Characteristics such as byte-addressability,

read latency close to DRAM but with read-write asymmetry, and

inherent persistence open up new opportunities for database sys-

tems. Specifically, Intel’s Optane DC Persistent Memory Modules

(DCPMMs) are already available on the market and supported by

the Persistent Memory Development Kit (PMDK) [17]. Several

studies, as well as our experiments, have identified the following

characteristics of this technology (we elaborate these in more

detail in Section 3):

(C1) PMem has a higher latency and lower bandwidth than

DRAM.

(C2) Reads and writes on PMem behave asymmetrically.

(C3) DCPMMs internally work on 256-byte blocks.

(C4) Failure atomicity is only guaranteed for 8-byte aligned

writes.

The focus of our work is an architecture for hybrid transactional/

analytical processing (HTAP) on a property graph model. Trans-

action support covers insert/update/delete operations on nodes,

relationships, and their properties with ACID guarantees. Fur-

thermore, we support Cypher-like navigational queries. In this

paper, we particularly focus on data structures and techniques for

query and transaction processing in graph databases exploiting

PMem and addressing the characteristics (C1)-(C4) mentioned

above. Although we aim for HTAP, we do not consider graph

analytics in this paper yet. Exploiting PMem for graph analytics

is discussed by other researchers, e.g., in [13]. Our contributions

are as follows:

• We present the architecture of an HTAP graph engine with

storage structures designed for PMem, primarily taking

(C1)-(C3) into account.

• We discuss the implementation of a timestamp ordering-

based multiversion concurrency control (MVTO) protocol

optimized for PMem addressing (C4).

• We describe our just-in-time (JIT) query compilation ap-

proach for compiling graph queries into machine code to

hide the higher latency of PMem as described in (C1).

Thus, the novelty of our work lies in the design, adaptation as

well as evaluation of transaction and query processing techniques

to leverage the idiosyncrasies of persistent memory for graph

databases.

2 RELATEDWORK
Several of the approaches presented in this paper are based on

insights from previous work. In particular, the lessons learned

regarding the new concepts of data structures for PMem had a
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major impact on the design decisions for our graph engine. There

is, to our knowledge, no transactional graph system or JIT query

compilation approach targeting persistent memory, yet. Hence,

we approach the subject from three directions: general graph

management, PMem-aware data structures and storage engines

as well as query compilation.

Graph Management. For graph data management, numer-

ous data models and systems have been proposed in the past.

Among the several database models for graph data [3], RDF for

the SemanticWeb and property graph models are the most promi-

nent. On top of these, query languages like SPARQL for RDF triple

data, diverse SQL dialects, and dedicated languages like Cypher
1

and Gremlin [36] have been developed. The SQL standardization

committee is currently working on standardizing the graph query

language GQL.

Depending on the supported data model and query language,

graph database systems are either special-purpose systems such

as triple stores for RDF like Virtuoso, native stores for prop-

erty graphs e.g., Neo4j, relationally-backed approaches such as

DB2RDF [7] and EmptyHeaded [1]; or extensions of SQL systems

like Grail [11] and SAP HANA [37]. Here, standard DBMS imple-

mentation techniques are used for data storage, indexing, trans-

action management, and query processing. Particularly, traversal

operations [32], as well as support for graph analytics [29, 38],

play an important role. However, only very few approaches try

to support HTAP workloads (TigerGraph, Neo4j) and to our

best knowledge, no established graph system is utilizing PMem

yet [6].

Recently, however, Gill et al. [13] investigated the application

of DCPMMs in Memory mode for running graph analytics. They

evaluated large scale data sets on existing graph frameworks and

demonstrated that their NUMA-aware algorithms on cheaper

single machine setups with DCPMMs can outperform more ex-

pensive DRAM-only cluster setups. With Sage [9], the authors

have shown that the AppDirect mode of DCPMMs in combination

with sophisticated algorithms can even achieve a better perfor-

mance than an unmodified in-memory graph database used on

PMem in Memory mode. They especially address the asymmetry

of PMem by introducing the parallel semi-asymmetric model.

Here, the entire graph is stored as a read-only copy in PMem and

a smaller mutable part in DRAM. A volatile auxiliary structure

keeps track of deleted edges for graph filtering. Since the focus is

on parallel analytical queries, we assume that no transactional up-

dates are possible. In this paper, we want to make the appropriate

contribution in this regard.

PMem-aware Storage Designs. Researchers recently started

adapting existing data structures to PMem. This includes several

variants of the B
+
-Tree [8, 43], hybrid variants like the FPTree

[31], the LB
+
-Tree [27], DPTree [49], and HiKV [47], as well as

LSM-Tree variations [19]. There are also latch-free B
+
-Tree vari-

ants targetingmodern hardware, such as the Bw-Tree [26, 45] and

the BzTree [4]. While the former addresses multi-core systems

with flash storage, the BzTree is explicitly designed for PMem.

Apart from the individual data structures, some approaches for

PMem-based storage engines have been proposed. SOFORT [30]

is a columnar transactional storage engine leveraging PMem

by minimizing logging and updating data in place, aiming for

mixed OLAP and OLTP workloads. Peloton [33] is another re-

lational DBMS engine already considering PMem by applying

1
https://www.opencypher.org

write-behind logging [5]. The basic idea is to write and flush

all changed entries in-place to PMem during commit. A more

recent proposal is the key-value store RStore [25]. It opts for a

log-structured design with an index. It utilizes linked and fix-

sized append-only blocks in PMem. Once a block is full, it is

considered immutable and indexed in a volatile tree which is

rebuilt during recovery. Additionally, RStore employs partitions

that are owned by only one thread at a time, each having its own

log to parallelize recovery.

JIT Query Compilation. Similarly, there are numerous

works on query compilation techniques. Neumann [28] presented

a query compiler architecture using the LLVM framework
2
to

generate and compile code for queries in the HyPer database.

Based on this, Kohn et al. [21] proposed an approach to mask

the compilation time by compiling the query in the background

while interpreting it. They further improve the efficiency by using

different execution modes depending on the query type. There

are also works that try to provide a lightweight approach, apart

from LLVM. An alternative approach, LegoBase, provides a query

compiler that generates high-level code in multiple steps, where

each step replaces declarative components of the query with

imperative code [41]. Funke et al. [12] proposed a lightweight

intermediate representation (IR) to reduce compilation times for

queries by estimating value lifetimes before code generation. The

Voodoo IR [35] is a declarative algebra for utilizing many-core

architectures and GPUs by generating OpenCL code. Although

these approaches are designed for relational DBMSs, query com-

pilation is also applied in several graph DBMSs, like TigerGraph

and Neo4j. However, while JIT query compilation is a broad re-

search topic, there is presently no system that utilizes it to hide

the memory access latency of PMem.

3 PERSISTENT MEMORY SPECIFIC DESIGN
GOALS

This section aims to summarize the observations of several stud-

ies as well as our experiments regarding the characteristics and

challenges introduced by PMem – in particular, Intel’s Optane

DCPMMs. Subsequently, we derive general design goals for sys-

tems trying to integrate PMem in their hardware landscape. We

hope they help others to avoid common pitfalls when conceiving

new efficient systems for modern storage hierarchies.

3.1 Characteristics and Challenges
The first three items presented are specific characteristics of

Intel’s DCPMM technology, while the remaining are explicit

challenges that mostly result from PMem and other system pecu-

liarities.

(C1) PMem has a higher latency and lower bandwidth
than DRAM. Random access read latency and the read

bandwidth of PMem is worse than DRAM by a factor of

about three. Persistent writes are also slower than writes

to DRAM. PMem bandwidth is about 7 × lower than that

of DRAM [42, 48].

(C2) Reads and writes on PMem behave asymmetrically.
This concerns several aspects, namely performance, en-

ergy consumption, and cell wear. Asymmetrically slower

writes cost more energy and lead to wear.

(C3) DCPMMs internally work on 256-byte blocks. They
utilize a write combining buffer that is used to reduce

2
http://llvm.org/
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write load by trying to combine four cache lines into one

256-byte block write. Interestingly, read operations also

benefit when a multiple of the block size is used [42, 48].

(C4) Failure atomicity is only guaranteed for 8-byte
aligned writes. The largest failure-atomic store instruc-

tion covers only 8 bytes of data, aligned on an 8-byte

boundary. Anything larger has to be implemented in soft-

ware. This means that inconsistencies of data structures

due to partial changes in case of system failures and re-

ordering of instructions by the compiler or the CPU have

to be avoided.

(C5) PMem allocations are expensive. Compared to DRAM

allocations, PMem allocators such as the PMDK allocator

need significantly more time [14, 15, 24]. This is mainly

due to the necessity of cache line flushes and recoverymea-

sures. In conjunction with the higher latencies of PMem,

allocations can be –depending on the number of threads–

up to 8× slower than on DRAM [24].

(C6) Dereferencing persistent pointers can prevent opti-
mizations. A persistent pointer is a 16-byte structure

consisting of a pool identifier (similar to a file path) and an

offset in this pool. It was introduced in PMDK and keeps

its validity across application restarts. Since this concept

of persistent pointers is not integrated into compilers (yet),

their handling cannot be automatically optimized as it is

the case for volatile pointers [39].

3.2 Design Goals
From the above characteristics and challenges, we can more or

less directly formulate corresponding general design goals as

follows. Apart from the generic usability of these goals, we will

also use them as a foundation for the design decisions in the next

section.

(DG1) Algorithmically save writes (C1 & C2). This was one

of the first common goals when PMem came up. The idea

is to reduce the number of writes by trading them off for

more reads. Furthermore, certain intermediate results

can be kept in DRAM instead of PMem. In practice, it

has been shown that not the number of writes but rather

the number of flushed cache lines is decisive.

(DG2) Opt for a DRAM/PMem hybrid storage design (C1

& C2). It has been shown that a pure PMem-only archi-

tecture causes too much performance degradation com-

pared to its DRAM counterpart. A hybrid DRAM/PMem

approach is therefore highly recommended when seek-

ing the best performance and still requiring persis-

tence [14, 15].

(DG3) Optimize the access granularity to 256 bytes (C3).
Besides, the data structures should be aligned to cache

lines. Only then a sequential pattern and correspond-

ingly the peak bandwidth can be reached. Everything

else can be considered as random access.

(DG4) Prefer failure-atomic writes over logging or shad-
owing (C4). For this purpose, flushing of cache lines via

the clwb (cache line write back) instruction and barriers

such as sfence (store fence) have to be used. However,

the number of such barriers should beminimized for best

performance. PMDK transactions can be used to simply

and universally achieve failure atomicity. However, for

performance-critical sections, the underlying logging

and snapshotting approach can lead to excessive over-

head. Thus, in the long run, an individual realization of

failure atomicity with optimally arranged 8-byte stores,

clwb instructions, and barriers should be preferred.

(DG5) Use group allocations and reuse blocks ofmemory
instead of deallocating (C5). Not every new record in

a system should be associated with an allocation. The

less frequent allocation of larger blocks or groups can

amortize the overhead. Deallocating can also be replaced

by suitable free space management. Since they increase

the number of allocations, copy-on-write techniques

should be replaced by in-place updates or reuse a pre-

allocated space.

(DG6) Avoid dereferencing of persistent pointers (C6).

Persistent pointers should preferably only be used dur-

ing application (re)start for initialization. Afterward, the

current valid virtual pointer or application-specific off-

sets should rather be used. Alternatively, the external

location could be converted to a virtual reference once

before using it multiple times. In addition, pointer chas-

ing should be avoided as well, as shown in [14, 15].

4 STORAGE MODEL
Essentially, there are two classes of graph data models, namely

RDF triple stores and property graphs. RDF stores express every-

thing as triples (subject-predicate-object) which link two nodes

or a node to a property value (also called resources and liter-

als). Predicates can therefore be relationships or property keys.

Property graphs, on the other hand, consist of explicit node,

relationship, and property structures where the properties are

directly assigned to a node or relationship. The RDF model cre-

ates a lot of redundancies, which could lead to additional write

load, which in turn will most likely have a negative impact on

PMem performance. Therefore we decided to opt for the property

graph model, which is more compact, more expressive, and more

efficient to query.

Data Model Definition. In the following, we adopt a prop-

erty graph model where a graph 𝐺 = (𝑁, 𝑅) consists of nodes
𝑁 and directed relationships 𝑅 ⊆ 𝑁 × 𝑁 . Each node 𝑛 ∈ 𝑁 is

identified by a unique identifier 𝑖𝑑 : 𝑁 → 𝐼𝐷 . Furthermore, a

label (used, e.g., as a type descriptor) is assigned to each node

and each relationship via a labeling function 𝑙 : {𝑁 ∪ 𝑅} → 𝐿

where 𝐿 is the set of labels.

Properties are represented as key-value pairs (𝑘, 𝑣) ∈ 𝑃 with

𝑃 = 𝐾 × 𝐷 where 𝐾 denotes the set of property keys and 𝐷 the

set of possible values including numbers, strings, etc. To each

node and relationship, a set of properties can be associated via

𝑝 : {𝑁 ∪ 𝑅} → P(𝑃) where P(𝑃) denotes the power set of 𝑃 .

4.1 Design Decisions
The above data model is implemented by storing the graph in

node, relationship and property tables maintained in persistent

memory. For efficient data access, the specific characteristics of

current PMem technology as mentioned in Sections 1 and 3 have

to be taken into account. The application of our derived design

goals led to the following key design decisions:

(DD1) Each of the tables is managed as a linked list of chunks
where a chunk is a fixed-sized array (cache-line aligned

and a multiple of 256 bytes) of records. To reuse the
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space of deleted records, standard free space manage-

ment using a persistent list is implemented. This way,

tables can dynamically and efficiently grow or shrink for

updates, by allocating/deallocating chunks (DG3, DG5).

(DD2) A chunk stores equally-sized records of the same type

(nodes, relationships, properties). Thus, records can be

addressed via their offsets. Similar to a sparse index,

an additional persistent lookup table allows efficient ac-

cess to chunks based on the record offset (DG1, DG6).

Note that we use array offsets because they can be rep-

resented as 8-byte integers instead of 16-byte persistent

pointers. This not only saves space but also allows for

failure-atomic stores and avoids costly dereferencing

(DG1, DG3, DG6).

(DD3) In order to represent nodes and relationships as equally-

sized records, properties are outsourced to a sepa-

rate table. Furthermore, all variable-length values (e.g.,

strings) are dictionary encoded. Both lead to a reduced
number of write operations (DG1).

(DD4) The connections between nodes and their relationships
as well as their properties are represented via array off-
sets instead of (persistent) pointers. Because relation-

ships are directed, each node refers to its list of both

outgoing and incoming relationships, also via offsets.

(DD5) The storage model is designed hybrid both for sec-

ondary indexes and for transaction management (DG2).

Further details are provided below.

4.2 Key Data Structures
In the following, we give an overview of the key data structures

to represent the property graph model and further structures

necessary to realize our design decisions and achieve a great

performance.

Nodes, Relationships, and Properties. Fig. 1 illustrates the
primary storage structures of a persistent graph which we have

implemented using Intel’s PMDK [17]. The highlighted row illus-

trates a respective node or relationship record. On top of both the

node and relationship table, an additional sparse index is used

which maps the identifiers of the first record of each chunk to

their corresponding memory location. For each chunk there is

a bitmap to indicate free and occupied record slots, enabling an

efficient reclamation of deleted entries. The chunks are linked

by a persistent pointer to allow the scanning of all data. Node

records consist of a label, the offset of the first incoming and first

outgoing relationship, as well as the offset to their properties.

Relationship records also have a label as well as the offset to their

properties. Furthermore, they store the location of the source

and destination nodes that they connect. Optionally, relation-

ship records hold offsets to the next relationships of their source

and destination node. Note that the records for nodes and rela-

tionships contain a few additional fields needed for transaction

processing which are described in Section 5. In total, this results

in a record size for nodes and relationships of 56 and 72 bytes

respectively.

The properties are stored in a separate chunked table as key-

value pairs. These are grouped in batches, each belonging to a

single node or relationship, to obtain cache-line-sized records.

In order to allow variable-length key-value pairs, string types

are stored as dictionary codes. If there are more properties for a

single node or relationship, the property record links to the next

entry. These data structures resemble the typical storage layout

chunk

chunked_vec
...0 5

nodes

…

chunk

chunked_vec
...0 5

relationships

…

sparse
index propertiesfrom_rship_list

to_rship_list

label

slots

Figure 1: Graph data structures

of disk-based, table-oriented systems such as SQL databases or

even graph databases like Neo4j. However, in our case, table

chunks are not copied between disk and memory but instead

accessed directly in PMem. In addition, nodes, relationships, and

associated properties can be addressed individually via their

identifiers/offsets.

Dictionary. Asmentioned before, to allow for variable-length

labels, property keys, and values, a dictionary is used. This com-

presses strings and, thus, reduces space and write overhead as

well as ensures that records remain addressable by offset. Fur-

thermore, the comparison of codes instead of strings speeds up

operators such as filters. The dictionary consists of two hash

tables for bi-directional translation to make lookups fast. These

must be kept persistent, in case of failure, since the codes and

strings are not stored elsewhere. An alternative could be to only

store one of the hash tables in PMem and rebuild the other DRAM-

resident part. Depending on the workload (either more inserts or

more queries), the more frequently used table should be kept in

DRAM.

Hybrid Indexes. The table-based storage model is useful for

lookups on physical node/relationship identifiers (which repre-

sent array offsets) as well as scan-intensive processing where

large parts of the nodes or relationships are visited. However,

for lookup queries on node/relationship properties, scans are too

expensive. In order to accelerate these queries, we additionally

provide B
+
-Tree indexes. An index can be constructed on nodes

with a given label and for a property. The values of these proper-

ties are used as keys in the index. Since the indexes are secondary

data structures that can be rebuilt in the event of a failure, they

do not have to be completely persistent. To still have a good com-

promise between recovery and query performance, we opted for

a DRAM/PMem hybrid approach (selective persistence) similar

to [18, 31, 47]. In particular, this means that the leaf nodes are

stored in PMem and the inner nodes in DRAM, resulting in a

maximum of one PMem-resident node being read per lookup

(if not already cached by the CPU) and significantly reduced

recovery time. This has an additional economic advantage since

less DRAM is used, which we expect to be more expensive than
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Figure 2: Structure of transactional data

PMem in the near future. In accordance with DG3, all nodes on

PMem are cache-line-aligned and a multiple of 256 bytes. For

analytical queries, multi-dimensional index structures optimized

for PMem could also be used where properties represent the

dimensions [18].

5 TRANSACTION PROCESSING
An HTAP architecture requires high-performance concurrency

control mechanisms. Several studies in the past [34, 46] have

shown that DBMSs with multi-version concurrency control

(MVCC) exhibit higher concurrency than their single-version

counterparts. Here, transactions can be concurrently executed

on different versions of the same object, thus increasing the over-

all transaction throughput especially when the transactions are

long-running and contention is high [22]. This also allows for

scalability and efficient utilization of modern multi-core CPUs.

MVCC is implemented differently by different DBMSs, each mak-

ing certain design decisions in order to optimize for its target

workloads. The interplay between these design decisions ulti-

mately results in computation and storage overhead trade-offs.

Below, we discuss how we implemented these MVCC design de-

cisions in a PMem setting to achieve our design goals presented

earlier in Section 3.

5.1 Concurrency Control Protocol
Existing concurrency control (CC) protocols such as two-phase

locking (2PL), optimistic concurrency control (OCC), or times-

tamp ordering (TO) can essentially be used in a multi-version

setting. We chose MVTO as our CC protocol. With our MVTO

implementation, we support updates of an arbitrary number of

objects within a single transaction and achieve snapshot isola-

tion guarantees. Note, that we use MVTO here mainly as an

example to evaluate how an MVCC protocol implementation can

exploit and address the specifics of PMem. However, in princi-

ple, the main concepts should apply to implementations of other

protocols too.

There is a transaction identifier (timestamp), txn-id, given to

each transaction at the beginning of the transaction that uniquely

identifies it. Each data object maintains meta-data fields for con-

currency control purposes. To this end, we extend the data struc-

tures of nodes and relationships, as shown in Fig. 2, by additional

persistent fields – txn-id, begin timestamp bts, end timestamp

ets and read timestamp rts – and a volatile field – pointer. The

txn-id-field is used for write-locking, by way of coordinating

which versions are valid for which write-transactions. By default,

it is set to zero except if the object is locked by a write-transaction,

where it is set to the transaction’s txn-id using a CaS instruc-

tion [22]. The begin timestamp and end timestamp fields mark

the validity of an object for access by a read-transaction, while the

read timestamp indicates the latest transaction that read it. The

pointer field stores a volatile pointer to a list of dirty objects (i.e.,

in DRAM) to address (DG1) and (DG2). Alternatively, the bts,
ets, and rts fields and perhaps also the txn-id of the current
version could be moved to DRAM in order to reduce the persis-

tent record size. These fields could then be re-initialized during

recovery (or during the first access after a failure). However, this

could also be disadvantageous because the transaction informa-

tion of the current version would always have to be retrieved

with another random read in DRAM.

Write transaction. A transaction𝑇 always updates the latest

version of an object 𝑜 . It creates a new version 𝑜𝑖+1 of the object
if no other transaction has a lock on 𝑜𝑖 and 𝑜𝑖 has not been

read by a more recent transaction (i.e., the transaction identifier

id(𝑇 ) > rts(𝑜𝑖 )). Otherwise, 𝑇 aborts. The txn-id field of 𝑜𝑖+1
is set to id(𝑇 ). In case of an update, 𝑜𝑖+1 is kept in the dirty list

in volatile memory until commit. If the transaction inserts a new

object, this object is already stored in the persistent array (i.e., in

PMem), but still locked until the end of the transaction.

Read transaction. A transaction𝑇 reads version 𝑜𝑖 of an ob-

ject for which id(𝑇 ) is between the bts and ets, i.e., bts(𝑜𝑖 ) ≤
id(𝑇 ) < ets(𝑜𝑖 ), and which is not locked by another active trans-

action. Thus, the object is accessed in PMem first (representing

the most recent committed version) and if this is not the version

valid for 𝑇 then the dirty list in volatile memory is traversed to

retrieve the correct version. In case of a lock held by another

transaction, the transaction is aborted. Upon reading 𝑜𝑖 , the rts
field is updated to id(𝑇 ) unless rts(𝑜𝑖 ) ≥ id(𝑇 ). In this case, the

transaction reads an older version without updating rts.

Commit. For commit of a transaction 𝑇 , the timestamp fields

of the updated object version 𝑜𝑖+1 are set accordingly: bts to

id(𝑇 ) and ets to INF and for the previous version 𝑜𝑖 , the field

ets is set to id(𝑇 ). In the case of delete, ets of the deleted version
𝑜𝑖+1 is set to id(𝑇 ) instead. If the object was newly created, how-

ever, it is simply unlocked (i.e., resetting txn-id to 0). Otherwise,
𝑜𝑖+1 has to be copied back to PMem. In order to guarantee failure

atomicity, this memory copy has to be performed atomically. This

can be implemented in different ways. One approach is to rely

on the solution provided by the Intel PMDK to atomically update

and persist data that is larger than the power-fail atomic size

or portions of data that are non-contiguous. PMDK uses trans-

actional operations for memory allocation, freeing, and setting.

Internally, these transactions are implemented via redo logging

to ensure the atomicity of memory allocations and undo logging

for transactional snapshots [40]. Other approaches are, e.g., using

Multi-Word CaS instructions such as PMwCAS [44] which allows

atomically changing multiple 8-byte words on PMem. In our cur-

rent implementation, we use the PMDK solution for the sake of

simplicity (DG4). However, this comes with a small overhead.
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5.2 Version Storage
A transaction updating an object version 𝑜𝑖 creates a new ver-

sion 𝑜𝑖+1 by making a copy of 𝑜𝑖 and appending it to the front

of the list of dirty versions (i.e., version chain). It then performs

all updates on 𝑜𝑖+1 in DRAM until commit. Keeping all uncom-

mitted data in volatile memory is a design decision we made in

order to minimize the number of writes to PMem (DG1, DG2).

This hybrid DRAM/PMem approach allows for the creation of

all versions by transactions to be a volatile copy instead of the

more expensive copy to PMem, and also allows for all the write

operations that occur during the lifetime of a transaction to be

performed at DRAM latency until the transaction is to commit

when the updates are finally persisted in PMem. Note that a dirty

object has the same structure as its committed version but with a

different validity interval (as specified by the range [bts, ets]).

5.3 Garbage Collection
In our current implementation, we use Transaction-level Garbage

Collection (GC), where storage space occupied by dirty ver-

sions that are not going to be used anymore is reclaimed at

transaction-level granularity [46]. A node or a relationship main-

tains a volatile dirty list, only if there is a valid dirty version of it.

A dirty version is not used anymore if it becomes invalid (i.e., the

transaction that created it aborts) or if it is no longer visible to any
active transaction (i.e., its ets < id(𝑇 ) of the oldest active trans-
action 𝑇 ). All empty or unused dirty lists are discarded during a

commit. If the storage space to be reclaimed is in PMem, either

because a committed transaction deleted the object or the object

was inserted by an aborted transaction, we do not deallocate the

record slot(s). Rather, we simply mark it with a bitmap as free

for later reuse (DG5).

6 QUERY PROCESSING
The characteristics of PMem have several implications for query

processing. First of all, data access is no longer block-oriented

and, therefore, has to be optimized for sequential access. The

direct and byte-addressable access is very similar to in-memory

databases. In graph databases, this is particularly useful for tra-

versal operators. However, as mentioned above, reading from

PMem is slower than from DRAM. Hiding this higher latency

requires efficient cache utilization, multithreaded processing, and

various execution modes.

6.1 Push-based Approach
We address these requirements by a multithreaded push-based

query engine. Our engine provides a set of graph-specific algebra

operators [16] such as NodeScan, RelationshipScan, and Fore-

achRelationship; as well as standard relational operators like

Filter, Project, and several Join variants. As every operator

is implemented and ahead-of-time (AOT)-compiled, i.e., avail-

able at run-time, the engine is able to interpret queries (given

as graph algebra expressions) directly by calling these opera-

tors with the required parameters. Processing a typical traversal

query (Match in Cypher) is initiated by scans on the node or

relationship tables including filters. For each node satisfying the

optional filter condition the traversal operation is applied, i.e.,

the NodeScan operator forwards the current node to the next

operator ForeachRelationship, and so on. (Fig. 3).

Though traversals could be also implemented using joins of a

standard relational query engine [11], the ForeachRelationship

leverages the direct addressability of data in PMem. As described

Figure 3: Query execution plan

in Sect. 4.2, node records contain the persistent addresses (offsets)

of their relationships, which in turn store the address of the

sibling nodes, and are used to traverse the path. This avoids the

problem of join escalation during traversals.

For query parallelization, we leverage a task model. Scans

are performed as parallel scans: Each task processes a range

of the node/relationship tables. Thus, all subsequent operators

following the scan are also performed within this task until a

pipeline breaker like a join or sort operator is reached. This way,

we follow the morsel-driven parallelism approach [23].

For using indexes in query processing, an appropriate IndexS-

can operator is provided that performs a lookup or range scan

on the B
+
-Tree, extracts the matching nodes from the node tables,

and passes them to the subsequent operator pipeline.

6.2 Just-In-Time Query Compilation
Besides the AOT compiled query engine, we implement a JIT

query compiler that transforms graph algebra expression into

machine code. Traditional query execution engines use a query

interpreter to execute query statements. This has several draw-

backs that reduce the resulting performance. An interpreter relies

on AOT compiled code, which means that the appropriate meth-

ods must be available for every possible occurrence of a particular

tuple element type. Furthermore, a query interpreter is not able

to recognize equal or redundant instructions. Particularly for

operators that lead to variable cardinalities, like selections or

aggregations, it introduces additional overhead. Query compi-

lation is an approach to tackle these issues. Our approach aims

to compile given graph algebra expressions into highly efficient

machine code using the JIT compilation technique [20]. As the

compiling framework, we chose the LLVM compiler infrastruc-

ture because it provides numerous relevant features for the JIT

compilation, reliable performance, and portability to several ar-

chitectures. Moreover, the LLVM IR provides an instruction set

suitable for the implementation of all the abstractions needed for

our graph query engine. One significant requirement for the JIT

query compiler is the fulfillment and compliance with the formu-

lated design goals (DG1-DG6). This is mainly done by reusing
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(calling) AOT-compiled code, e.g., access methods to nodes or

methods for transaction processing. Thereby, the code generation

effort will be reduced because it is already compliant with the

design goals and optimized by the AOT compiler.

Similar to the approach presented by [28], we aim to process

intermediate tuple results as long as possible in the CPU reg-

isters. In order to achieve this, it is necessary to transform the

complete query pipeline into a single LLVM IR function. Here it

becomes apparent that a transformation from graph algebra to

machine code can be easily accomplished with LLVM IR. How-

ever, to ensure reliable performance, we identified the following

requirements for the IR code generation that must be met.

(1) Minimize stack allocation and avoid heap allocation.

(2) Process initializations only at the first entry point of the

IR function.

(3) Process type information at (JIT) compile-time.

(4) Provide full compatibility to the AOT execution engine.

One significant advantage of query compilation over interpre-

tation is that the tuple element type information can be handled

at compile-time. The consequence of this is the absence of type

conversions at run-time as code can be generated for individual

types.

Starting from a graph algebra expression that forms an opera-

tor tree, each operator will be transformed into LLVM IR code.

Further, each operator provides at least an entry and a consume
IR basic block, representing the operator’s start and end points.

Complex operators comprise more basic blocks for the actual tu-

ple processing, e.g., Join. Though, the general control flow starts

at the entry basic block. After processing in further basic blocks,

the control flow branches to the consume basic block to push the

results to the next operator. A branching instruction links each

consume basic block with the entry basic block of the succeeding

operator, forming an inlined query pipeline. Fig. 4 illustrates the

transformation process, starting from a query plan in the form

of graph algebra. Furthermore, it shows each operator’s return

path, which is, for most cases, the loop header of the previous

operator. The finish operator will be called after the complete

scan. Depending on the query, it invokes the function return or

the next query pipeline.

The query engine’s current implementation provides two ac-

cess paths for the query pipeline: the NodeScan and Create

operator. Code generation for these operators is basically the

same as for the normal operators. Both contain at least the entry

and consume basic block. As an access path is always the first

operator in the pipeline, it must also provide the actual generated

scan_entry

loop_head

loop_body

check_label

consume

finish

fe_entry

consume

collect_entry

...

NodeScan

Foreach
Relationship

Collect

define void @start(i8* %0, i64 %1, i64 %2, i8* %3, i64 %4, 
i64* %5, i64* %6, i64* %7, void (i64*)* %8, i64 %9, 
[64 x i64*]* %10) {
entry:
...

 %19 = call i8* @gdb_get_nodes(i8* %0)
 %20 = getelementptr inbounds [64 x i64*], [64 x i64*]* 
%10, i64 0, i64 1
 %21 = load i64*, i64** %20, align 8
 %22 = bitcast i64* %21 to i8*
 %23 = call i32 @dict_lookup_label(i8* %0, i8* %22)
 %24 = call %node_iterator* @get_vec_begin(i8* %19, 
i64 %1, i64 %2)
 %25 = call i1 @vec_end_reached(i8* %19, 
%node_iterator* %24)
 %26 = icmp eq i1 %25, false
 br i1 %26, label %loop_body, label %finish
loop_body:
...

}

Graph
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LLVM IR

Figure 4: Graph algebra to LLVM IR transformation

function’s entry point. Due to the reason that the code genera-

tor transforms the complete pipeline into a single IR function,

memory allocation must be carefully handled. For this reason,

the access path initializes all relevant values for the complete

query pipeline, e.g., number of nodes, projection keys, or global

constants.

The code generation for joins requires additional work. A join

operator comprises two inputs. For now, we consider the right

sub-pipeline of the join as the side which will be materialized.

Consequently, it requires the prior execution of the right sub-

pipeline. However, the actual code generation starts from the

left sub-pipeline in order to minimize tree traverses. Whenever

the code for an access path is generated, it checks if the current

function is already initialized. If this holds, it swaps the function

entry basic block with its own and connects the finish basic

block of the second access path with the entry basic block of the

previous access path. This enables the handling and execution of

multiple query pipelines within a single function.

IR Code Generation. We use the visitor design pattern to gen-
erate the appropriate IR code for each operator. Further, this

enables the extension of the query engine in future work. Each

operator derives from a base class and implements a codegen
method for code generation. The query engine calls the visitor
to start the code generation process, which calls all the oper-

ator’s codegen methods recursively. We implement several IR

abstractions that help to generate IR code with more ease. Due

to the reason that most operators rely on loops, we provide two

IR loop abstractions. The while_loop abstraction is used for the

iteration through a chunked vector. It receives the vector, the

current iterator, the succeeding basic block, and the actual loop

body as function arguments. The other loop abstraction is the

while_loop_condition, used for the iteration as long as a con-

dition is valid. Further, our abstraction set contains methods that

generate code to extract label codes or property values. The oper-

ator IR code is based on these abstractions and mainly mimicking

the push-based processing described previously. An additional

structure is built to provide the type of tuple element at code

generation and the appropriate register value. The code of the

next operators is generated according to the type of the previ-

ous tuple element. For example, the projection operator uses the

proper node functions if the last result tuple element is a node.

This handling allows for generating code without much effort at

run-time.

JIT Compilation. We extended the JIT compiler of LLVM to

further features. First of all, our JIT query engine can persist

already compiled code to PMem. This has the advantage that no

further compilation is required for subsequent runs of a query.

For that purpose, a persistent and concurrent hash map is used.

The compilation output of the JIT is a binary object file that will

be linked with the current database instance. Usually, this file is

located in a memory buffer in the volatile memory. Before the

compilation process, the query engine generates a unique query

identifier that comprises the operators’ identifiers, which will be

used to lookup the persistent hash map for already compiled code.

If the code is found, it will be linked with the current database

instance. Otherwise, the compilation process of the query starts.

The compiled codewill be persisted in PMem after its compilation,

using the query identifier as a key for the hash map.

A major advantage of JIT compilation is the ability to opti-

mize the IR code at run-time. The LLVM framework provides

a convenient approach for IR code optimization. Several LLVM
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optimization passes can be used for this purpose. An analysis of

the IR code reveals that it comprises mainly of loops and pointer

arithmetics. Therefore, our optimization strategy focuses on these

constructs. The following optimization pass cascade is used to

further optimize the code at run-time:

• Promote Memory To Register transforms instructions that

allocate stack memory into register values. This makes

the IR code generation convenient and compliant with the

requirement (1).

• Control Flow Graph Simplificationmerges and deletes basic

blocks if they have common or no predecessors.

• Loop Unrolling removes the overhead of loops by explicit

extraction of the body to multiple instructions.

• Dead Code Elimination eliminates unreachable code.

• Instruction Combining combines redundant instruction to

form smaller and faster code with the same effect.

Additionally, the IR code is optimized with the standard C++

aggressive optimization (-O3).

Adaptive Execution. While the compiled query code itself

is fast, the compilation time should also be considered. Notably,

when executing short-running queries where only a small por-

tion of data is touched, the compilation time will be longer than

the actual execution time. In order to hide the compilation time

as well as memory access latency of PMem, we additionally sup-

port an adaptive query processing approach, which is illustrated

in Fig. 3. In contrast to the approach by [21], the adaptive exe-

cution can switch between only two modes, which is currently

sufficient for our engine. The interpretation mode is always ini-

tiated first at query execution. This mode uses AOT-compiled

database code to execute the query. Similarly, the visitor design

pattern is used to transform the given algebra query plan into

the interpret functions. These functions are then linked together,

forming a cascade of functions that execute the actual query. The

downside of such an approach is the additional (AOT-compiled)

code overhead because every operator and its varieties must be

available at compile-time. During adaptive execution, the query

engine switches to the JIT mode after compilation.

We take advantage of the morsel-driven parallelism for the

actual switching procedure, where morsels are pinned to a single

task and pushed into a task pool. The working threads pull a task

from the pool and execute the task function (the query) on the

pinned morsel.

We implement the task function as a static function. As the

execution always starts in the interpretation mode, it will be

initialized to the appropriate function, which invokes the inter-

pretation. While the query is executed in the interpretation mode,

a background thread compiles the query plan into machine code.

The compilation process emits a function that processes the query

plan into machine code. As soon as the compilation is done, it

redirects the static task function to the compiled function. The

next pulled task from the pool will execute the compiled query

function.

7 EVALUATION
In this section, we report the results of a set of experimental

evaluations whose research goal is threefold:

1. We evaluate our PMem-based HTAP engine and show

the effectiveness of our design decisions to exploit PMem

characteristics for graph processing. In this context, we

aim to investigate, on the one hand, the benefits of using

persistent memory for graph processing. On the other

hand, we compare our system to disk-based and DRAM-

based solutions (§ 7.3).

2. We compare the speed of volatile, persistent, and

DRAM/PMem hybrid B
+
-Tree index lookups. We quan-

tify the recovery overhead of our hybrid index (which

we expect to be insignificant) as a trade-off for increased

query performance (§ 7.4).

3. We evaluate our JIT query compilation approach. We

demonstrate when and how much it enhances the per-

formance of transactional queries. We expect the JIT com-

pilation to yield benefits especially for long-running and

more complex queries (§ 7.5).

7.1 Environment
For the experiments, we used a dual-socket Intel Xeon Gold 5215

server with 10 cores each at max. 3.4 GHz. The server is equipped

with 384 GB DDR4 RAM, 1.5 TB Intel Optane DCPMM, and 4 ×
1.0 TB Intel SSD DC P4501 Series connected via PCIe 3.1 x4. The

server runs CentOS 7.8 (Linux 5.7.7 kernel). The operating mode

of the PMem modules is set to AppDirect which allows us direct

access to the devices. On the PMem DIMMs, we have created an

ext4 file system and mounted it with the DAX option to enable

direct loads and stores bypassing the OS cache. For accessing

PMem, we used the Intel PMDK version 1.9.1 and libpmemobj-

cpp
3
version 1.11. The JIT compilation was done with LLVM

version 11.

7.2 Workload & Setup
The Linked Data Benchmark Council (LDBC) specifies bench-

marks and benchmarking procedures and also verifies and pub-

lishes benchmark results [10]. The LDBC-Social Network Bench-

mark (SNB) models a social network comprising of different en-

tity types interconnected by relationships – both with property

types and property values. Activities of persons are represented

as messages about topics or tags that are posted in forums mod-

erated by unique persons. Persons like messages, have interests

in tags, are members of forums, and make comments in response

to posts or other comments. Message activities are the bulk of

the data on the social network. There also are places and orga-

nizations to which a person is connected via residence, study,

and work relationships. The LDBC-SNB defines an Interactive

Workload and a Business Intelligence Workload. The Interactive

Workload comprises of three classes of queries: (1) Interactive

Complex Read Queries that are relatively complex and traverse a

fair portion of the graph data, (2) Interactive Short Read Queries

that perform lookups and short traversals within the neighbor-

hood of a node, and (3) Transactional Interactive Update Queries

that perform transactional insertions and updates of node and

relationship objects [10].

We generated and used the LDBC-SNB data [2] at scale factor

(SF) 10 as our benchmark data. As the focus of this paper is on

transactional graph processing, not graph analytics, we selected

the LDBC-SNB Interactive Short Read (SR) and the Interactive

Update (IU) query sets as query workload for our experiments.

3
https://github.com/pmem/libpmemobj-cpp

44



1 2-post 2-cmt 3 4-post 4-cmt 5-post 5-cmt 6-post 6-cmt 7-post 7-cmt
query

10 2

10 1

100

101

102

103

104

ti
m

e 
(m

se
cs

)

DISK-i PMem-s PMem-p PMem-i DRAM-s DRAM-p DRAM-i

Figure 5: Results for SNB Short Reads
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Figure 6: Results for SNB Interactive Updates

7.3 Benefit of PMem
We first want to evaluate how much the design decisions in our

PMem-optimized graph engine and our implementation of trans-

action processing reduce the overhead of PMem in our system (de-

noted as PMem in the figures) compared to a pure DRAM-based

in-memory implementation of it. Moreover, we want to compare

the performance gains brought about by the lower access latency

of PMem compared to a DISK-based system, in addition to pro-

viding persistence. To this end, we employ two baselines: A disk

baseline (represented as disk), which is an open-source native

graph database where we stored all the primary data on SSD

and created an additional DRAM index. For the DRAM baseline

(depicted as dram), we adapted our system to additionally run in

a pure volatile mode where we keep data entirely in DRAM. We

expect our system to outperform the disk-based system. With

regards to the DRAM baseline, we anticipate to bridge the per-

formance gap with our PMem-conscious design and achieve a

near-DRAM performance while providing persistence, especially

for hot runs.

Interactive Short Reads. Fig. 5 shows the query execution

times for the SR query set. The execution times are average times

of 50 runs on hot data, each with a different input ID parameter.

post and cmt (short for post and comment respectively) represent
the two subclasses of a message entity. For PMem, we show the

execution times without indexes for single-threaded execution

(PMem-s), multi-threaded execution (PMem-p) as well as with in-
dexing support (PMem-i). We employ similar denotations for our

DRAM baseline: DRAM-s, DRAM-p, and DRAM-i. For the disk
baseline, we also conducted executions with index support and re-

port the performance numbers for hot runs (i.e., when the data is

in DRAM), denoted byDISK-i. We used our hybrid DRAM/PMem

implementation of the B
+
-Tree (Section 4) for PMem, while for

DRAM, we used a volatile B
+
-Tree. We maintain the same set of

indexes throughout our experiments.

The results in Fig. 5 show that exploiting PMem-specific char-

acteristics in storage architecture and transaction processing can

significantly bridge the performance gap between DRAM and

PMem. It can be noted that for multi-threaded execution of some

of the queries, the execution times are very close since the SR

queries are short-running and the PMem latency is already hid-

den by the CPU caches for hot runs. An interesting research

direction is thus to investigate this in the context of graph ana-

lytics, where queries are compute-intensive, long-running, and

navigate across a significant portion of the graph. While the re-

sults show performance improvements of multi-threading both

for DRAM and PMem, however, indexes have a stronger influence.

Unlike graph analytics that significantly benefit from parallel

execution, interactive queries like SR and IU benefit more from

indexes, as they are essentially lookup queries whose execution

time overhead comes mainly from scanning the tables of record

chunks to retrieve the start node object. As a result, we compare

the performance of indexed query execution both on our sys-

tem and on the DISK baseline. We can see from the figure that

our PMem-based system outperforms the disk-based system for

indexed execution in all the queries, as we had expected.
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Figure 7: Results for SNB Short Reads with Single Threaded Execution

Interactive Updates. We maintain the indexed query execu-

tion and present the execution times for the IU query set with

indexed support in Fig. 6. Here, we measured both the times to

execute the update queries as well as times for the transactions

to commit (i.e., notably, persisting the updates in PMem). Simi-

lar to the SR queries, we took the average execution time of 50

runs on hot data with varying object property values as input

parameters. In addition to results on hot data, we also present the

execution times for cold runs, i.e., for the first query runs. The

results show our PMem-based system not only outperforms the

disk-based system by an order of magnitude even for hot runs

but also performs insert and update operations at near-DRAM

latency. For hot data, it is even closer.

Overall, the results of Fig. 5 and Fig. 6 show that in direct

comparison with the DRAM variant, our hybrid approach of

MVTO implementation to address the specifics of PMem adds

only a marginal overhead. This validates our MVCC design de-

cisions of Section 5 and also obviates the need for showing the

results of a pure PMem implementation which has an overhead

of maintaining dirty versions on PMem.

7.4 Indexes and Recovery
We evaluated index performance and recovery by way of compar-

ing our hybrid index that keeps inner nodes in DRAM, trading-off

recovery for improved performance, against two baselines. One

a volatile index that keeps all nodes in DRAM and the other a

PMem Hybrid DRAM
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Figure 8: Average Time per Lookup of Persistent, Hybrid,
and Volatile Indexes

persistent index that stores all nodes on PMem. We evaluated

them based on the average time for indexed scans in the SNB SR

queries. To study the performance differences, we measured the

time to lookup and retrieve a node ID from the appropriate index.

Fig. 8 shows the average lookup time for the persistent, volatile,

and hybrid indexes - denoted respectively as PMem, DRAM, and

Hybrid. The lookup times are averages of all ID value lookups of

nodes with the same label type (Person) in all the respective SR

queries. The hybrid approach enhances the lookup performance

by 2x while keeping the recovery time as low as 8 ms, in com-

parison to the complete volatile index build time of 671 ms. This

recovery overhead would also be necessary for each index cre-

ated on specific properties. Added up, the overhead of completely

rebuilding the indexes in the volatile case is comparatively dras-

tic. Therefore, we see the hybrid variant as a good compromise

between runtime performance and recovery.

7.5 JIT
The final part of our evaluation focuses on the JIT query compi-

lation approach. The first two benchmarks show the capability

of JIT-compiled code itself, without any mechanism to hide the

compilation time. For this purpose, we execute the interactive

read and update queries from the SNB. Thereafter, we examine

the gain from adaptive execution. Although we expect it to be

much more efficient for analytical and long-running queries, it is

insightful to see the benefits on short and transactional queries

in comparison to AOT-compiled code. In particular, the combi-

nation with PMem could make this approach profitable even for

short-running queries.

Interactive Short Reads. Fig. 7 shows the results for the SR
executed with the JIT query engine. We calculated the average

execution time of 50 runs on hot data with different parameters.

The queries are executed single-threaded without indexes. The

compilation time of the queries is only a few milliseconds. As the

number of operators increases, the compilation time increases

by only a few milliseconds. However, the results show clearly

that the JIT-compiled is always faster than the AOT-compiled

code. The JIT-compiled code is mostly even faster when the

actual compilation-time of the query is included. Especially more

complex queries, like 7-post and 7-cmt, can benefit from the JIT

compilation approach.

Interactive Updates. The results for the IU executed with the

JIT query engine are shown in Fig. 9. There are not many opti-

mization possibilities for the generated IR code, as the queries are
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Figure 10: Results for SNB Short Reads with Adaptive Execution

short when index support is enabled. Executing these queries us-

ing scans and selections shows similar behavior to the benchmark

before. However, here we focus on code for short queries, where

the execution time is less than the compilation time. JIT code

executed on cold data is noticeably slower, while the resulting

performance on hot data is similar to the AOT code. However, ex-

ecuting these queries with the JIT compilation approach shows

that it is not always the best option to generate code during

runtime for executing a query. The compilation time for these

short queries is much higher than the actual execution time.

Furthermore, executing these short queries with the adaptive

approach leads to the execution of the query pipeline using the

AOT-compiled code entirely, which corresponds to the results of

the AOT code in Fig. 9.

Adaptive Query Executions. The previous benchmarks

show the capability of executing JIT-compiled queries. It is

clearly visible that the JIT-compiled code itself outperforms the

AOT code on DRAM and PMem. However, waiting for the com-

pilation of the query limits the performance improvement of this

approach. The adaptive query execution approach eliminates this

problem by executing the AOT code while query compilation

is done in the background. Additionally, this is useful to hide

the memory access latency of PMem. The next benchmark com-

pares the adaptive query execution approach using morsel-driven

parallelism with multi-threaded AOT-compiled query execution.

Similar to the previous benchmarks, we execute each query on

DRAM and PMem. The results in Fig. 10 show that the adaptive

execution is always faster than the multi-threaded AOT execu-

tion. The execution on PMem can particularly benefit from the

adaptive approach. The additional latency introduced by PMem

leads to an earlier execution of the fast JIT-compiled code in the

query pipeline stage, which enhances the query processing. For

the queries 1, 2-post, 2-cmt, and 3, it leads to similar execution

times for DRAM and PMem. The adaptive approach provides

faster query execution times for most queries and in worst-case

similar performance than multi-threaded AOT code. More com-

plex queries can benefit even more from the adaptive approach

as there is more space for code optimization, like for the queries

7-post and 7-cmt.

8 CONCLUSION
Persistent memory represents a promising technology for data

management solutions whose efficient use requires rethinking

data structures and architectures. In this work, we have presented

the first results of our PMem-based graph engine for hybrid trans-

actional/analytical workloads. Based on the characteristics of

PMem technology, we have discussed, implemented, and eval-

uated design choices regarding storage structure, transaction,

and query processing. The promising results using the LDBC-

SNB interactive short read and update query sets show that a

PMem-based storage engine that is well-optimized for PMem

characteristics incurs only a marginal performance overhead

compared to a pure in-memory solution. The main benefits are,

among others, the competitive performance without the need to
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keep large parts of the data in (volatile) main memory (resulting

in constant answer times both for cold and hot data) as well as

near-instant recovery guarantees. Additionally, the results have

shown that in comparison to AOT-compiled query execution,

JIT compilation speeds up query processing when the compila-

tion time is less than the execution time. Particularly, adaptive

compilation further enhances query execution performance by

hiding PMem access latency. In our ongoing work, we plan to

investigate the behavior of complex graph analytics and highly

concurrent updates. Moreover, there are several opportunities

for further performance improvements, e.g., by employing more

hybrid DRAM/PMem approaches such as for dictionaries.
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ABSTRACT
Wikipedia, the web-based free content encyclopedia project, is
one of the most popular websites on the Web. Its “open-door"
policy, allowing anyone to edit, has made Wikipedia the largest
and possibly the best encyclopedia in the world. At the same
time, the continuously evolving content, constantly updated by a
large number of uncoordinated users, renders the maintenance of
a clean, consistent encyclopedia an extremely challenging task.

The goal of the WICLEAN (WC) system presented in this pa-
per is to assist Wikipedia editors in this difficult task. Specifically,
we focus on the correctness of Wikipedia inter-links that point
from one article (entity) to another. Such inter-links form a key
component of the structured part of Wikipedia and their correct-
ness is critical for coherent browsing. Given an entity type of
interest, our highly parallelizable algorithm identifies relevant edit
patterns across revision histories of Wikipedia entities of related
types, along with time windows in which partial edits are tolerable.
The discovered patterns/windows are then used by WC to alert
Wikipedia editors on past edits that appear to be incomplete, as
well as to provide users with on-line assistance as they update
the encyclopedia. Our experiments with real-life Wikipedia data
demonstrate the efficiency and effectiveness of WC in identifying
actual errors in a variety of Wikipedia entity types.

1 INTRODUCTION
Wikipedia, the free-content web encyclopedia, is one of the most
popular websites on the Web. Per Time magazine, Wikipedia’s
"open-door" policy of allowing anyone to edit the data, has made
it the largest, and possibly best, encyclopedia in the world [2].
Nonetheless, the continuously evolving content, constantly up-
dated by a large number of uncoordinated users, renders the main-
tenance of a clean, consistent encyclopedia an extremely challeng-
ing task. To understand the volume of the updates, the English
Wikipedia in 2018 consisted of 6 million articles, with an average
of 3.4 million edits per month, by roughly 30𝐾 active editors [4].

The goal of our work is to assist Wikipedia editors in this
difficult task. Specifically, we focus here on the correctness of
inter-links that point from one article to another in the structured
sections of Wikipedia (such as infoboxes and tables), which is
critical for coherent browsing. Maintaining the integrity of these
links is challenging, as illustrated by the following example.

Example 1.1. Consider the Wikipedia page of the soccer player
Neymar. The links in its infobox point to the page of his current
club, Paris Saint Germain F.C. (PSG), his place of birth, and so
on. When Neymar moved to PSG in 2017, leaving his previous
team, Barcelona F.C., the three related pages, Neymar, PSG, and
Barcelona F.C. had to be updated.

There are three typical causes for inconsistently updating these
links. First, Wikipedia editors are not provided with a compre-
hensive list of links that need to be updated as a result of such an

© 2021 Copyright held by the owner/author(s). Published in Proceedings of the 24th
International Conference on Extending Database Technology (EDBT), March 23-26,
2021, ISBN 978-3-89318-084-4 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

event. A typical error related to player transfers is updating only
the page of the new club and neglecting to update the page of the
old club, which still incorrectly links to the player.

Second, different pages are often edited by different people,
typically, in an uncoordinated manner. It could be that, e.g., the
page of the club is updated by one dedicated editor, whereas no
editor has taken up the responsibility of updating Neymar’s page
or even noticed the absence of a corrected link. Moreover, no
mechanism alerts the active editors of Neymar’s page of a related
update, that may require action on their part.

Third, it is often impractical to correct all links simultaneously.
For example, player transfers occur during predetermined periods,
referred to as transfer windows, and tend to take a long time to
be officially confirmed. In the meantime, many rumors regarding
conflicting transfer destinations are posted in various media out-
lets. Consequently, in that span, there may be hundreds of edits
of player pages, adding/removing new/old links, and reverting
previous edits, whereas the club pages are commonly updated
only once the transfer is officially approved.

More generally, Wikipedia contains very noisy data, as it could
be edited by anyone, including bots1, inexperienced editors, and
opposite-agenda editors2, resulting in editing conflicts3 and dis-
pute resolution4. This process of frequent conflicting edits, cul-
minating in a consistent state, is a naturally evolving mechanism
to mitigate noise, due to the distributed and asynchronous nature
of Wikipedia edits. Thus, enforcing immediate corresponding up-
dates to all relevant links during the dispute period is impractical
and counterproductive. Moreover, the existence of a time window,
that may range from hours to months (depending on the context of
the update and the involved entities), during which partial incon-
sistent edits are tolerable, beyond serving as a necessary trigger for
the dispute resolution process, also has the advantage of providing
users with the most up-to-date, albeit tentative, information.

Previous work. Much research has been devoted to aspects
of this problem in the more general context of detecting errors
in knowledge bases (KBs) [22]. Some of these works [27, 30]
also evaluated their solutions over Wikipedia, representing a snap-
shot of it as a KB, with pages as entities, and entity relations
derived from inter-links. Over this representation and an input set
of integrity constraints, pertaining to entity relations, the objec-
tive is to detect all their violations. While these works provide
satisfactory solutions for the intended problem over KBs, cast-
ing the special case of inconsistencies in the constantly-evolving
Wikipedia’s links into this generic framework, omits important
practical considerations specific to the operation of Wikipedia.

To illustrate, continuing with our example of player transfers, a
possible constraint over the corresponding KB may state that if
player A links to club B, then club B also links to player A and
vice versa. If there exists only one link or two contradictory links,
then a violation of this constraint is detected. There are several
drawbacks to applying this approach as a comprehensive solution.
1https://www.bbc.com/news/magazine-18892510
2https://en.wikipedia.org/wiki/Wikipedia:Lamest_edit_wars
3https://en.wikipedia.org/wiki/Edit_conflict
4https://en.wikipedia.org/wiki/Wikipedia:Dispute_resolution
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First, the most crucial drawback relates to the fact that the con-
straints are static and lack any temporal dimension. Concretely,
the constraint does not account for the time window, discussed
in Example 1.1, during which partial edits are acceptable (and,
in some cases, practically unavoidable). An inconsistency should
be resolved at the earliest appropriate moment but not earlier. In
this case, this earliest moment is arguably the end of the transfer
window. However, detecting the constraint violation right after
Neymar’s page is linked to PSG, without a link in the other direc-
tion, is treated the same as detecting it long after the end of the
transfer window. Consequently, one is uncertain whether to take
immediate action or allow the unsupervised process of sequen-
tial refining edits to run its course and converge into a consistent
state. We note that solutions suggested in previous works (e.g.,
[27]), discussed above, can successfully identify ‘window-less’
edits’ combinations. That is edits that should all be applied si-
multaneously and are distributed uniformly across the timeline of
Wikipedia’s revision history. However, our empirical analysis iden-
tified many edit patterns associated with specific time windows,
such as in Example 1.1. Our work is, thus, complementary to the
above works, as it aims to address specifically these patterns.

Second, most works assume the existence of a set of constraints
as input for the solution framework. This is not realistic in the
case of Wikipedia. Wikipedia entries encompass a wide array of
domains and sub-domains, each with its own set of constraints.
While there are broad similarities across related domains, each
domain may be infinitely nuanced. Given the volume of domains,
entity types, and case-specific subtleties, the task of comprising
a nearly exhaustive list of important constraints is impractical,
particularly if one is also interested in complex relations (where,
e.g., a combination of 10 pages must be consistently updated).

In this line of research, closest to us, is the recent work of [36],
where the focus is on Wikipedia, and on top of detecting viola-
tions of the given constraints, the solution produces corresponding
correction rules, that dictate how one can resolve partial edits.
This is inferred by examining the revision history, identifying the
most common patterns of revision actions for completing each
type of partial editing. Nevertheless, this work also does not aim to
identify tolerable time windows and targets the scenario where the
list of constraints is provided as input (a more detailed comparison
to this and previous works is presented in Section 2).

Our approach. To address the above limitations, we present
in this paper WiClean (WC), a system that automatically infers
common edit patterns (combinations of edits), along with a time
window for allowing partial edits of each pattern, alerts editors of
inconsistencies, and suggests concrete corrections.

The thesis underlying WC is that the majority of Wikipedia
updates follow desirable patterns and lead to consistent states.
WC, thus, mines revision logs to identify common update patterns
and the time windows in which they occur. Potential errors are
then detected by updates that deviate from the patterns and are
not completed within the corresponding window. For such partial
patterns, WC suggests all completions to known patterns, providing
statistical metadata to facilitate an informed course of action.

Before describing our solution techniques, we illustrate the
format of the revision history. Figure 1 depicts excerpts from
the revision histories of players and clubs merged into a single
timeline. The Subject column identifies the article where the addi-
tion/removal of a link occurred, the Object column identifies the
article to which the added/deleted links point, and the Relation
column describes the link type (the column R will be explained

# +/- Subject Relation Object Time R
1 - Neymar current_club Barcelona F.C ...1531 0
2 - Gianluigi Buffon current_club Juventus F.C. ...1534 1
3 - Neymar in_league La Liga ...8711 1
4 - Barcelona F.C squad Neymar ...2804 0
5 + Neymar current_club PSG F.C. ...3321 0
6 + PSG F.C. squad Neymar ...8263 1
7 + Barcelona F.C. squad Neymar ...4040 0
8 + PSG F.C. squad Gianluigi Buffon ...4051 1
9 + Gianluigi Buffon in_league Ligue 1 ...3330 1

10 + Neymar in_league Ligue 1 ...8711 1
11 - Juventus F.C. squad Gianluigi Buffon ...4058 1
12 + Neymar current_club Barcelona F.C ...5861 0
13 - Kylian Mbappe current_club Monaco F.C. ...9459 1
14 - Neymar current_club PSG F.C. ...3732 0
15 - Gianluigi Buffon in_league Serie A ...3380 1
16 - Neymar current_club Barcelona F.C ...6109 1
17 + Neymar current_club PSG F.C ...7694 1
18 - Barcelona F.C. squad Neymar ...8001 1
19 + Kylian Mbappe current_club PSG F.C. ...9589 1
20 - Monaco F.C. squad Kylian Mbappe ...9451 1
21 + PSG F.C. squad Kylian Mbappe ...9885 1

Figure 1: Actions from revision history of several articles

later). One can see that, after several edits and reverts, the transfer
of Neymar is reflected in his and the teams’ pages.

Methods. Formally, we model Wikipedia entities (articles) and
the links between them as a graph. Nodes and edges are labeled by
type names. Intuitively, the revision history of each article records
the edits made to the outgoing links of the corresponding graph
node. Given an entity type of interest, our algorithm identifies
meaningful relevant edit patterns across revision histories, along
with time windows in which partial edits are acceptable. By mak-
ing an analogy between link edits (resp. edit patterns) and graphs
(graph patterns), we can harness conventional graph mining algo-
rithms to our context. However, some important adaptations must
be made to account for (1) the Wikipedia type hierarchy5 that
requires the examination of a larger number of potential patterns,
and (2) the distributed nature of the edits across revision histories
of multiple entities, that makes the construction of the full edits
graph prohibitively expensive. For the former we introduce a join-
based computation (optimized by the underlying SQL engine) to
quickly prune infrequent patterns; for the latter we use incremental
graph construction that considers only relevant entity types.

The discovered windows and patterns are then used by WC to
assist Wikipedia editors in correcting/updating Wikipedia links.
Here again, we employ an optimized join-based computation to
quickly identify potential errors. WC both alerts Wikipedia editors
on past edits that appear to be incomplete as well as provides users
with on-line assistance as they update Wikipedia.

Our contributions can be summarized as follows:

• Model. We formulate and present a simple, natural model for
capturing time windows and update patterns of interest. Given
an entity type 𝑡 , our goal is to find related and common update
patterns across the Wikipedia graph. Such updates may involve
entities of the same or other types. We first introduce the notion
of abstract update actions that generalize a set of actions involv-
ing specific entities to general patterns over the corresponding
entity types. We then define the notion of connected patterns
which include abstract actions that are related (possibly transi-
tively) to entities of the input type of interest. The frequency of
a pattern, within a time frame 𝑤 , is then naturally defined as
the fraction of entities of type 𝑡 that participate in a pattern that
occurs within the time frame𝑤 (Section 3).

• Identifying windows and patterns. Building on algorithms
for graph mining, we devise a scalable, highly parallelizable
algorithm, based on the following three points. (1) We represent

5Typically around eight hierarchy levels.
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the identified patterns by relational tables, incrementally com-
puted by dedicated relational queries. This allows harnessing
the effective optimizations of the SQL engine underlying WC.
(2) Unlike conventional graph mining algorithms that assume
that the entire graph is given as input, our focus on connected
patterns allows WC to incrementally consider only the entity
types (and their corresponding revision histories) that may po-
tentially be related to the input type via frequent edit patterns,
thereby significantly saving on graph construction. (3) We focus
on non-overlapping time windows and split the revision histo-
ries accordingly. This reduces the number of actions (edits) to
be considered for each window (and resp. the size of the edits
graph) and allows parallelizing the processing of the action sets
in the different windows (Section 4).

• Using Windows and patterns. An immediate application of
the discovered patterns is to alert Wikipedia editors on partial
edits performed in past windows, as well as to assist users in
current edits. For that, we examine the discovered windows
and then signal, for each window and pattern, partial edits that
may be extended to a full pattern occurrence. Our algorithm
builds on the previously mentioned relational representation of
patterns and employs dedicated outer-join queries to identify
partial pattern occurrences (Section 5).

• Implementation and experiments. We have implemented our
solution and employed it over real Wikipedia data. We con-
sidered a variety of Wikipedia entities, identifying a multitude
of interesting time frames and corresponding relevant frequent
edit patterns, and signals of updates that deviate from the mined
patterns. Our experiments demonstrate the effectiveness of our
approach for identifying real-life errors. The experiments fur-
ther demonstrate the efficiency and scalability of our algorithms,
compared to competing baselines (Section 6).

To complete the outline of the paper, we overview related work
in Section 2 and discuss future work in Section 7.

Finally, we note that the prototype of WC was demonstrated in
[20]. The short paper accompanying the demonstration provided
only a high-level overview of its capabilities and user interface
whereas the present paper details the model and algorithms under-
lying our solution as well as their experimental evaluation.

2 RELATED WORK
We overview related work from several related fields.

Wikipedia Cleaning. Much effort has been devoted over the
past years to the cleaning and correction of errors in Wikipedia.
Our work, which focuses on link correction, is complementary
to works on entity resolution, completeness prediction, and van-
dalism detection [9, 33]. Similarly to our work, [13] also aims to
improve inconsistencies in Wikipedia’s infoboxes, representing
it as an RDF database. However, [13] does not take the revision
history into account and instead uses user interaction as the main
tool. In contrast, our algorithm requires no user assistance, other
than setting the initial parameters.

Revision history as a tool. Revision histories have been used
in multiple areas, e.g., in program repairing, in recording prove-
nance in knowledge bases and assisting query answering [10]. In
Wikipedia, revision histories have been leveraged for various pur-
poses, such as the discovery of controversial topics, the estimation
of an article’s translation quality and the detection of vandalism
[23]. Other lines of work attempt to learn how to use the edits
to enrich Wikipedia, e.g. to edit infoboxes with news extracted
from tweets, or to connect Wikipedia edits to recent news articles

[17]. Our work is complementary to these efforts, considering the
consistency/completeness of edits to multiple related entities.

As mentioned in the introduction, particularly close to our work
is [36], which, similarly to WC, infers from edit histories in Wiki-
data knowledge bases how to correct inconsistencies/violations.
Nevertheless, this problem is formalized over a different model
with similar but different objectives. One important difference
is that in the setting of [36], the constraints are provided in ad-
vance, and the focus is on correction rules (for violations of these
constraints) mining from relevant past edits. Whereas, one of the
key contributions of our work is the derivation of such constraints
(edit patterns, in our context). Moreover, the setting of [36] does
not take into account the time frames in which a given constraint
should or should not be enforced. Another key difference is that
[36] do not harness the Wikipedia type hierarchy as a means to
enrich their constraints of correction rules.

Other works that use the Infobox revision history focus on
cleaning tasks. These include refining infobox titles by locating
duplicate attributes within each entity type, predicting when a
given infobox is likely to be updated and by whom, and identifica-
tion of vandalizing editors [8].

Constraints inference and enforcement. The patterns we iden-
tify can be viewed as a form of integrity constraints. There is a
large body of work devoted to inferring and enforcing such con-
straints. Two recent examples are [27, 30]. In [30], both positive
and negative examples are used to infer the constraints. Their
approach consists of greedily identifying, at each step, the most
promising rule, in terms of the coverage of the positive examples.
As [30] focus on identifying rules that make good predictions,
some of the rules that exceed the confidence threshold will not be
found. An alternative approach is taken by [27], where rules are
mined via an exhaustive, breadth-first search method. They devise
sophisticated pruning strategies and optimizations that enable their
solution to efficiently run on large KBs, such as Wikidata.

Many other approaches to KB correction have been explored
in the literature, e.g., discovering denial constraints [14] and error
detection via the few-shot learning framework (e.g., [22]).

A key difference, in our setting, is that the constraints need to
be enforced only outside the time frames in which inconsistencies
are acceptable. Thus, we focus on a different objective, where in
addition to the update patterns, we also identify the corresponding
time window for each pattern. Another difference is that we iden-
tify patterns from the sequence of actions in the revision log, and
not from a static snapshot of the knowledge base. Moreover, the
above works (barring [36], which we discussed separately above),
are concerned with detecting the rules/constraints, while one ad-
ditional objective, in our setting, is to also compute correction
suggestions for violations (partial patterns) of these rules. Lastly,
to our knowledge, we are the first to leverage the type hierarchy
to consider more nuanced rules, at varying levels of abstraction.

The importance of considering consistency, w.r.t. a sequence of
actions, has recently been emphasized in the vision paper of [12].
Our work matches their motivating use-case, which advocates
the usage of Wikipedia revision logs for data cleaning. Another
related, complementary line of work deals with optimizing the
corrections procedure over the detected constraint violations [11,
19]. It would be interesting to examine whether their techniques
may be employed in our setting, to further optimize WC.

(Sequential) itemset/association rule mining. Algorithms for
frequent itemset/association rules mining have been the focus of
many works, including contexts where the mined items belong to
a type hierarchy [32].As we seek connected patterns, conventional
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a-priori style algorithms for frequent itemsets mining [7] inappli-
cable to our setting. Such algorithms recursively assemble larger
frequent itemsets from smaller ones, but arbitrary sub-patterns of
a connected pattern may not be connected, w.r.t. the input type.
Consequently, our solution exploits principles from graph mining
algorithms rather than general frequent itemsets.

Another closely related line of work deals with sequential item-
set/association rules mining, where the pattern is mined from a
sequence of items [34, 41] and [5] which discovers temporal rules
for web data cleaning. In these works, the focus is also typically
on arbitrary items set, rather than connected patterns. More impor-
tantly, the order of the items in the sequence is important in these
works. In contrast, as explained in Section 3, in our case, only the
co-occurrence of items within the given window matters, whereas
their relative positioning within the window does not.

An interesting set of works that deal with sequential patterns
mining studies probabilistic or uncertain databases [18, 29]. In our
setting, there is inherent uncertainly, w.r.t. the (in)correctness of
the identified partial updates, and thus examining the connection
to such works is an interesting direction for future research.

Graph mining. Graph mining algorithms (see survey in [24])
can be roughly divided into two categories: algorithms that mine
patterns in a set of graphs (e.g. [39]) and algorithms that are pro-
vided with a single large graph (e.g. [26, 28]). Our context is
the latter. Multiple notions of graph pattern frequency have been
proposed in the literature, many of which consider the number of
distinct isomorphisms from the given pattern graph to the input
graph [15, 24]. However, as our goal is to characterize how fre-
quent a pattern is relative to a particular entity type of interest,
we employ here the notion of frequency, inspired by [16], that
counts the number of nodes, out of all nodes of the given type,
that are involved in some pattern occurrence. Our notion can also
be viewed as a special case of the MNI support in [15], where the
isomorphism count focuses only on the given entity type.

As discussed above for association rules mining, since our fo-
cus is on connected patterns (and the corresponding frequency
notion), algorithms that consider arbitrary sub-graphs (e.g. [21])
are unsuitable for our setting. We follow instead the “grow and
store” approach of [26], that iteratively expands previously identi-
fied (connected) patterns. However, two issues must be addressed
when adapting such a scheme to our context. First, the need to
support the Wikipedia type hierarchy entails a richer order relation
among patterns (see Section 3), which, to our knowledge, is not
supported by any of the existing algorithms for mining connected
patterns in graphs. Second, [26] (and all other comparable works),
assume that the algorithm receives as input the entire graph. This
is impractical in our context. Specifically, as our experiments
demonstrate, materializing the complete edits graph from a mas-
sive number of entity revision histories is infeasible. Our dedicated
algorithm addresses both these issues. In general, modifying solu-
tions that expect the entire graph as input, is, arguably, not trivial.
For instance, the work of [40], which leverages the embedding of
the nodes to mine patterns, cannot be straightforwardly integrated
into our approach of gradually examining larger subgraphs, as the
embedding loses its utility if the underlying graph changes.

Another related line of work is Link Prediction [35, 38] that
discover missing links within Wikipedia. However, these works
do not detect incorrect links that should be removed.

Wikipedia information extraction. To conclude, we note that
one may think of the patterns/time windows that we derive as a
particular type of information, extracted from Wikipedia revision

logs. Much previous work has been devoted to information ex-
traction from Wikipedia articles (e.g. [31]) rather than their edit
history. As mentioned, some works consider the revision logs, but
for other purposes, and could be useful information or tool for
us. In particular, [37] devise optimization methods for processing
Wikipedia’s revision history, as it is a massive and complicated
dataset, and [25] infers the level of expertise of a specific editor
from statistics of conflicts with other editors.

3 PRELIMINARIES
We start by presenting the data model underlying the system.

Wikipedia Graph. We model the relations between entities at
a given point in time using a graph 𝐺 (𝑉 , 𝐸). Each node represents
an entity and is labeled by a unique name (e.g. Neymar) and a type
(e.g. soccer player). Each edge represents a relationship between
two entities and is labeled accordingly (e.g. 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑐𝑙𝑢𝑏).

We use an alignment from Wikipedia entities to DBPedia [1]
to derive the entity types. The link labels (relationship names) are
derived directly from Wikipedia. In general, the types belong to
type taxonomy - the higher the type is in the taxonomy the more
general it is - and an entity may have multiple types. For two types
𝑡, 𝑡 ′ we use 𝑡 ′ ≤ 𝑡 to denote the fact that 𝑡 either equals to 𝑡 ′ or
generalizes it. For example, 𝑆𝑜𝑐𝑐𝑒𝑟_𝑃𝑙𝑎𝑦𝑒𝑟 ≤ 𝐴𝑡ℎ𝑙𝑒𝑡𝑒 ≤ 𝑃𝑒𝑟𝑠𝑜𝑛.
We assume that each entity 𝑒 has one most specific type to which
it belongs and use it as its label, denoted 𝑡𝑦𝑝𝑒 (𝑒). For a type 𝑡 we
use 𝑒𝑛𝑡𝑖𝑡𝑖𝑒𝑠 (𝑡) to refer to all entities labeled by a type 𝑡 ′ ≤ 𝑡 .

Actions and inverse actions. The revision history of Wikipedia
entities contains edits to the graph edges. We particularly consider
two types of actions: adding new edges and deleting existing ones.
Our model associates each action with a time stamp. We use a
triplet of the form 𝑎 = (+, (𝑢, 𝑙, 𝑣), 𝑡) (resp. 𝑎 = (−, (𝑢, 𝑙, 𝑣), 𝑡)) to
denote the addition (rep. deletion) of edge from 𝑢 to 𝑣 with label 𝑙
at time 𝑡 . We use 𝑠𝑜𝑢𝑟𝑐𝑒 (𝑎) = 𝑢 and 𝑡𝑎𝑟𝑔𝑒𝑡 (𝑎) = 𝑣 to denote the
source and target entities, resp., of the added/deleted edge. We say
that an action 𝑎′ is the inverse of a preceding action 𝑎, denoted
𝑎′ = 𝐼𝑛𝑣 (𝑎) if applying 𝑎′ after 𝑎 leaves the graph unchanged.

For example, in row #1 in Figure 1 we see an update to Ney-
mar’s Wikipedia entry, when a user removed (−) the Barcelona
(= 𝑣) team that Neymar (= 𝑢) was playing at (= 𝑙), at a certain
time (=t), and, action #12 is an inverse action of action #1.

Note that, in Wikipedia, each action appears at the revision
history of the source node of the edge. Intuitively, this is because
the revision history of each article records the edits made to the
outgoing links of the corresponding graph node. Updates of other
incoming links are recorded in the revision logs of these other
pointing entities. Continuing the above example, the two actions
#1 and #3 will appear in the revision history of Neymar’s page,
and the gray action set in Figure 1 is the set of actions taken from
entities of the same type (soccer_player).

(Reduced) set of actions. Given a Wikipedia graph𝐺 (𝑉 , 𝐸), a
set of entities 𝑆 ⊆ 𝑉 , and a time frame (referred to as window), we
consider the set of all actions (denoted as 𝐴) that were recorded in
the revision history of the entities in 𝑆 , within the given window.

For instance, Figure 1 shows the set of actions recorded in the
revision histories of the entities S = {Neymar, Kyian_Mbappe,
Barcelona_F.C., Gianluigi_Buffon, PSG_F.C., Monaco_F.C., Ju-
vetus_F.C.} at a given time frame. Observe that all the updated
links are outgoing links from the entities in 𝑆 .

In the update processes, some edits may naturally be reversed.
To consider only the final effect we focus on reduced actions sets
that do not include action and its inverse. More formally, given a
graph 𝐺 , we say that two action sets are equivalent if, when the
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actions are applied on 𝐺 in the order of their timestamps, they
yield the same graph. The reduced set of actions, that remain by
removing the rows that their value in column R equals to 0 in the
table of Figure 1. We denote it as reduced actions from Figure 1.

Note that up to possibly different timestamps, the reduced
version obtained through this iterative removal process is unique,
as it contains the same set of graph update operations. Furthermore,
the timestamps are no longer important as any permutation of the
actions yields the same output graph. We thus consider from
now on only reduced sets of actions and ignore the timestamps,
referring to actions as pairs 𝑎 = (𝑜𝑝, (𝑢, 𝑙, 𝑣)) where 𝑜𝑝 ∈ {+,−}.

Abstract actions. Since we are trying to find general update
patterns across the Wikipedia graph, we want to generalize a
set of actions involving specific entities to general patterns over
the corresponding entity types. For that we define the notion of
abstract actions. We associate with each entity type 𝑡 an infinite
set of variables 𝑡1, 𝑡2, . . .. Then, an abstract action is the pair of
the form 𝑎 = (𝑜𝑝, (𝑡 ′, 𝑙, 𝑡 ′′)) where 𝑜𝑝 ∈ {+,−}, 𝑡 ′ and 𝑡 ′′ are type
variables, 𝑙 is an edge label.

Patterns. We define a pattern as a set of abstract actions. We
consider two patterns identical if they are the same up to isomor-
phism on the variable names of the same type. We refer to a pattern
that contains only a single action as a singleton pattern. Given a
pattern 𝑝 we say that a set𝐴′ of concrete actions is a realization of
𝑝 (resp. that 𝑝 is an abstraction of 𝐴′) if 𝐴′ may be obtained from
𝑝 by replacing each variable of type 𝑡 by a some Wikipedia graph
node in 𝑒𝑛𝑡𝑖𝑡𝑖𝑒𝑠 (𝑡), s.t. distinct variables are assigned different
Wikipedia graph nodes.

An observation that will be useful in the sequel is that for a
given action 𝑎, the set of its possible abstractions can be easily
computed by traversing the type hierarchy and replacing 𝑠𝑜𝑢𝑟𝑐𝑒 (𝑎)
(resp. 𝑡𝑎𝑟𝑔𝑒𝑡 (𝑎)) by some variable of type ≥ 𝑡𝑦𝑝𝑒 (𝑠𝑜𝑢𝑟𝑐𝑒 (𝑎))
(≥ 𝑡𝑦𝑝𝑒 (𝑡𝑎𝑟𝑔𝑒𝑡 (𝑎))).

To illustrate the above notions, in the reduced actions in Figure
1 lines #2 and #13 are both realization of the singleton pattern
{-, (player1, current_club, team1)} (which we consider identical,
e.g., to the isomorphic pattern {-, (player2, current_club, team2)}).
On the other hand, the reduced actions in Figure 1 contain no
realization of the pattern
[{−, (𝑝𝑙𝑎𝑦𝑒𝑟1, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑐𝑙𝑢𝑏, 𝑡𝑒𝑎𝑚1)},
{−, (𝑝𝑙𝑎𝑦𝑒𝑟1, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑐𝑙𝑢𝑏, 𝑡𝑒𝑎𝑚2)}]
as the assigned team nodes have to be distinct in the realization,
but all players in the table were removed from a single team.

(Abstract) actions graph. It is useful to make an analogy be-
tween action sets and graphs. Given a set of concrete (resp. ab-
stract) actions 𝐴 (𝑝), consider the directed labeled graph 𝑔𝐴 (𝑔𝑝 )
with a node per each entity in 𝐴 (variable in 𝑝), labeled by the
entity (variable) type name, and where there exists an edge from
node 𝑣1 to 𝑣2, labeled [𝑜𝑝, 𝑙], iff𝐴 (𝑝) includes an (abstract) action
of the form (𝑜𝑝, (𝑣1, 𝑙, 𝑣2)). We refer to these graphs as abstract
graphs as the actual entity identities (resp. the variable names) that
the nodes represent are insignificant.

With this graph view, a realization of a pattern 𝑝 in a set of
actions 𝐴 corresponds to an isomorphism from 𝑔𝑝 to a subgraph
of 𝑔𝐴, where the type of each node in 𝑝 either equals or is more
general than the type of its corresponding node in 𝑔𝐴. Given a type
𝑡 , we say that the pattern 𝑝 is connected (w.r.t. 𝑡) iff 𝑔𝑝 contains a
node variable of type 𝑡 from which all other nodes are reachable.

Connected patterns. Given an entity type 𝑡 , we are interested
in entities’ updates that are related (possibly transitively) to entities
of type 𝑡 . We thus focus on connected patterns, where the updated
edges are related.

Definition 3.1. For an update pattern 𝑝, let 𝑔𝑝 be its correspond-
ing abstract graph. Given a type 𝑡 , we say that the pattern 𝑝 is
connected (w.r.t. 𝑡) iff 𝑔𝑝 contains a node of type 𝑡 from which
all other nodes are reachable.

In the discussion below we refer to such a node (variable) as the
pattern’s source (w.r.t. 𝑡). If multiple such nodes exist in the graph,
we arbitrarily pick one to serve as the pattern’s distinguished
source and we use below the term source to refer to this single
distinguished node, and denote is as 𝑠𝑜𝑢𝑟𝑐𝑒𝑡 .

For example, the pattern shown in Figure 3 is connected w.r.t. to
the type 𝑝𝑙𝑎𝑦𝑒𝑟 . Its corresponding graph 𝑔𝑝 appears in Figure 2(a)
where all nodes are reachable from the source node 𝑝𝑙𝑎𝑦𝑒𝑟_1. But
if we replace the variable 𝑝𝑙𝑎𝑦𝑒𝑟1 in lines 11 and 13 of Figure 3
by a new variable 𝑝𝑙𝑎𝑦𝑒𝑟2, then the pattern becomes disconnected,
see Figure 2(b), and composed of two smaller, connected patterns
- the abstract actions in lines 10, 5, 2, 7 (with source 𝑝𝑙𝑎𝑦𝑒𝑟_1) and
the abstract actions in lines 11, 13 (with source 𝑝𝑙𝑎𝑦𝑒𝑟_2).

For a type 𝑡 we only consider patterns that are connected w.r.t.
𝑡 . Thus, for brevity, we use below the term pattern to refer to a
connected pattern, and omit the type 𝑡 when clear from the context.

Figure 2: (a) connected pattern, (b) unconnected pattern

Frequent patterns. To define that a pattern is frequent we
would like to measure the amount of support that a pattern has,
regarding the seed type entities.

Many notions of patterns frequency have been considered in
the graph mining literature. Common notions consider the number
of distinct isomorphisms from the given pattern graph to the input
graph (e.g. occurrence-based support [24] and MNI support [15].
However, as our goal is to characterize how frequent a pattern is
in the context a particular seed type of interest, we employ here a
notion of frequency inspired by the [16] that counts the number
of nodes (out of all nodes of the given seed type) that are involved
in some pattern. For readers familiar with the 𝑀𝑁𝐼 -based support
in [15], we note that our notion of frequency can also be viewed
as a special case where the isomorphism count focuses only on
the seed entity type node.

Given a type 𝑡 , a pattern 𝑝 and a set 𝐴 of actions, we define the
frequency of 𝑝 (w.r.t. to 𝑡 and 𝐴) as the fraction of entities of 𝑡 that
participate as source nodes in a realization of 𝑝 is 𝐴.

Definition 3.2. The frequency of a pattern 𝑝 in a set of actions
𝐴, w.r.t. to a type 𝑡 in 𝑝, is defined as 𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 (𝑝,𝐴, 𝑡) =

| {𝑒 ∈ 𝑒𝑛𝑡𝑖𝑡𝑖𝑒𝑠 (𝑡 ) | 𝑒 𝑎𝑝𝑝𝑒𝑎𝑟𝑠 𝑖𝑛 𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑒𝑛𝑡𝑖𝑡𝑖𝑒𝑠 (𝑡 ) |
|𝑒𝑛𝑡𝑖𝑡𝑖𝑒𝑠 (𝑡 ) |

To continue with our running example, consider the actions in
Figure 1 and the pattern in Figure 3, and assume there are overall
five players in Wikipedia. The frequency of this pattern in the
given actions set, w.r.t. to the type 𝑝𝑙𝑎𝑦𝑒𝑟 , is 0.2 because there is
only one player (Neymar) that the patterns hold for (with Neymar
mapped to 𝑝𝑙𝑎𝑦𝑒𝑟_1), out of the five existing players. However,
the frequency of the partial pattern displayed in figure 3 in lines 1
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# Edit type Subject Relation Object
10 + 𝑝𝑙𝑎𝑦𝑒𝑟1 current_club 𝑡𝑒𝑎𝑚1
11 - 𝑝𝑙𝑎𝑦𝑒𝑟1 current_club 𝑡𝑒𝑎𝑚2
5 + 𝑡𝑒𝑎𝑚1 squad 𝑝𝑙𝑎𝑦𝑒𝑟1

13 - 𝑡𝑒𝑎𝑚2 squad 𝑝𝑙𝑎𝑦𝑒𝑟1
2 + 𝑝𝑙𝑎𝑦𝑒𝑟1 in_league 𝑙𝑒𝑎𝑔𝑢𝑒1
7 - 𝑝𝑙𝑎𝑦𝑒𝑟1 in_league 𝑙𝑒𝑎𝑔𝑢𝑒2

Figure 3: Pattern found from set of action in Figure 1
and 2 (gray lines) in this actions set (again w.r.t. the type 𝑝𝑙𝑎𝑦𝑒𝑟 ),
is 0.4 because there are 2 players for which that pattern holds.

Partial Order of Patterns. Given a type 𝑡 , a set 𝐴 of actions
and frequency threshold 𝜏 we will be interested in finding pat-
terns whose frequency in 𝐴 (w.r.t. the given type) is above the
threshold. To avoid redundancy, we would like to consider only
the most specific such patterns. Formally, we say that a pattern 𝑝
is more specific than a pattern 𝑝 ′ (alternatively, 𝑝 ′ is more gen-
eral than 𝑝), denoted 𝑝 ≺ 𝑝 ′, if 𝑝 ′ may be obtained from 𝑝 by
removing some abstract actions, replacing some type variables
in 𝑝 by corresponding variables of a more general type, or both.
An alternative definition is close frequent sub-graph, as defined in
[39]. To illustrate, for the patterns:
𝑝1 = {(+, (𝑝𝑙𝑎𝑦𝑒𝑟1, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑐𝑙𝑢𝑏, 𝑡𝑒𝑎𝑚1)),
(−, (𝑝𝑙𝑎𝑦𝑒𝑟1, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑐𝑙𝑢𝑏, 𝑡𝑒𝑎𝑚2))}
𝑝2 = {(+, (𝑎𝑡ℎ𝑙𝑒𝑡𝑒1, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑐𝑙𝑢𝑏, 𝑡𝑒𝑎𝑚1)),
(−, (𝑎𝑡ℎ𝑙𝑒𝑡𝑒1, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑐𝑙𝑢𝑏, 𝑡𝑒𝑎𝑚2))}
𝑝3 = {(+, (𝑎𝑡ℎ𝑙𝑒𝑡𝑒1, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑐𝑙𝑢𝑏, 𝑡𝑒𝑎𝑚1))}

we have that 𝑝1 ≺ 𝑝2 ≺ 𝑝3.

Thus, given a type 𝑡 and a set 𝐴 of actions our goal will be
to find the most specific patterns with a frequency above a given
threshold. Our formal definition refines the closed frequent graph
pattern notion of [39], taking the type hierarchy also into consid-
eration when ordering patterns.

Definition 3.3. Given a set of actions 𝐴, a type 𝑡 , and a fre-
quency threshold 𝜏 , we say that a pattern 𝑝 is a most specific
frequent pattern in 𝐴 (w.r.t. 𝑡 and 𝜏), if 𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 (𝑝,𝐴, 𝑡) ≥ 𝜏

and there is no pattern 𝑝 ≺ 𝑝 where 𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 (𝑝,𝐴, 𝑡𝑖 ) ≥ 𝜏 .

Relatively frequent patterns. Finally, note that in the discus-
sion so far, the frequency of patterns 𝑝 was measured w.r.t. a given
type, as the percentage of entities of the given type that serve as a
pattern source. In some cases, it is interesting to further explore
what percentage of these entities adhere to a more specific pattern
𝑝 ′. For example, what percentage of players among the ones that
move to a new team also, change the league. For that we define
the notions of relative frequency and relative frequent patterns.

Definition 3.4. For two patterns 𝑝, 𝑝 ′ s.t. 𝑝 ′ ≺ 𝑝, the relative
frequency of 𝑝 ′ w.r.t. 𝑝 in a set of actions 𝐴 (for a given type
variable 𝑡), is defined as
𝑟𝑒𝑙_𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 (𝑝 ′, 𝑝, 𝐴, 𝑡) = 𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 (𝑝′,𝐴,𝑡 )

𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 (𝑝,𝐴,𝑡 ) .

Definition 3.5. Given a set of actions 𝐴, a type 𝑡 , a pattern 𝑝
and a relative frequency threshold 𝜏𝑟𝑒𝑙 , we say that a pattern 𝑝 ′

is a most specific relative frequent pattern in 𝐴, w.r.t. 𝑡 and 𝑝, if
𝑟𝑒𝑙_𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 (𝑝 ′, 𝑝, 𝐴, 𝑡) ≥ 𝜏𝑟𝑒𝑙 and there is no more specific
pattern 𝑝 ≺ 𝑝 ′ where 𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 (𝑝, 𝑝,𝐴, 𝑡) ≥ 𝜏 .

4 FINDING WINDOWS AND PATTERNS
Intuitively, given an entity type 𝑡 of interest, we wish to signal
out significant time frames and identify the most specific frequent
patterns in them.

We will first explain how, given a specific window𝑤 and fre-
quency threshold 𝜏 , the most specific frequent patterns in𝑤 (w.r.t.
type 𝑡), are efficiently identified. The extraction of relative fre-
quent patterns is similar. Finally, we will explain how the windows
and thresholds to examine are selected.

As noted in Section 3, the (reduced) set of edit actions per-
formed over Wikipedia entities in the time window 𝑤 may be
viewed as a graph. Thus one may harness graph mining algorithms,
such as the ones presented in [24] to identify frequent connected
patterns. Such algorithms work roughly as follows. Starting from
patterns consisting of a single edge, they incrementally expend the
patterns with new edges. At each iteration, they check which of
the extended obtained patterns are frequent, prune all the others,
and iteratively continue expending the frequent ones.

There are, however, two important issues that one has to address
when adapting such a scheme to our context.

1. Supporting the Wikipedia type hierarchy entails a richer
order relation among patterns (as defined in Section 3), which to
our knowledge is not supported by any of the existing algorithms
for mining connected patterns in graphs. While the modifications
to the algorithms, to support this, are rather immediate, the number
of patterns that now need to be examined becomes larger, and thus
the patterns’ frequency test must be performed efficiently. For
that, we represent each graph’s type of relation as a relational
table, containing its pattern realizations. That allows us to utilize a
join-based computation (optimized by the underlying SQL engine)
to quickly prune infrequent patterns.

2. Observe that common graph mining algorithms assume that
a full graph is given as input to the algorithm. In our setting, the
revision histories are distributed across all Wikipedia entities, and
(even when restricted to the time window𝑤) their overall size can
be very large. Thus, as our experiments show, materializing the
full graph that represents them may be prohibitively expensive.
To avoid this, we embed into the discovery of the incremental
patterns an analogous incremental graph construction, that materi-
alizes only revision histories of entity types that may potentially
be related to the input type 𝑡 via frequent edit patterns. Our pattern
mining algorithms is detailed in Algorithm 1. For better under-
standing the pseudo-code, we first outline the data structures and
notations that we make use of. For space constraints, an illustrative
example appears in our technical report [3].

4.1 Data Structures and Notation
For each considered time window𝑤 , the algorithm incrementally
extracts, from the revision histories determined to be relevant,
the set of actions performed within the time frame. The actions
are abstracted and stored in a dictionary called 𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡_𝑎𝑐𝑡𝑖𝑜𝑛𝑠
whose keys are the time windows. Thus, 𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡_𝑎𝑐𝑡𝑖𝑜𝑛𝑠 [𝑤]
denotes a set of abstract actions with realizations in the window
𝑤 . The corresponding realizations of each such abstract action are
stored in a dictionary called 𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑠 whose keys are the time
frame and abstract action. Thus, 𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑠 [𝑤] [𝑎] denotes the
set of realizations of abstract action 𝑎 within window𝑤 .

The identified (relative) patterns, for each time window𝑤 (and
pattern 𝑝 in 𝑤), are stored in a dictionary named 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠 (resp.
𝑟𝑒𝑙_𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠) whose keys, again, are the time frames (and re-
lated patterns). Thus 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠 [𝑤] (resp. 𝑟𝑒𝑙_𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠 [𝑤] [𝑝]) de-
notes the set of (relative) patterns computed for time window𝑤

(and pattern 𝑝 in 𝑤). We overload notation and also use below
𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑠 [𝑤] [𝑝] (resp. 𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑠 [𝑤] [𝑝] [𝑝 ′] to denote the
realizations of the (relative) pattern 𝑝 (𝑝 ′) within time window
𝑤 . As mentioned above, the pattern realizations are implemented
as relational tables. We will explain this point in details below.
Finally, we use an auxiliary data structure 𝑡𝑒𝑠𝑡𝑒𝑑 [𝑤], whose keys
are the time frames, to record partial patterns that have already
been examined in the computation for the window𝑤 .
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4.2 Pattern mining
We are now ready to present the Algorithm 1. As mentioned above,
the algorithm follows the line of graph mining algorithms such as
[15], starting from singleton patterns and incrementally expending
them. While doing so it incorporates into the processing the two
optimizations mentioned above, to ensure efficient processing in
our particular setting. We note that several additional optimization
techniques have been introduced in [24, 39], e.g. to minimize the
used storage and search space. These are orthogonal to ours and
thus, for simplicity of presentation, we follow below the basic
scheme of the incremental pattern construction (to which these
orthogonal optimizations can later be applied if desired).

Initialization. Our initial entity set 𝑆 contains the entities of
input type 𝑡 . First, we extract for the given window𝑤 edit actions
performed on entities in 𝑆 in time window 𝑤 . We reduce the set
of actions, eliminating redundant edits and computing the pos-
sible action abstractions (as explained in Section 3) and store
them in 𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡_𝑎𝑐𝑡𝑖𝑜𝑛𝑠 [𝑤] and their corresponding realiza-
tions in 𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛_𝑡𝑎𝑏𝑙𝑒 [𝑤]. This is performed using the func-
tion 𝑟𝑒𝑑𝑢𝑐𝑒𝑑_𝑎𝑛𝑑_𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡_𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑆,𝑤) (line 1). 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠 [𝑤]
stores only abstract actions (singleton patterns) whose source is
the seed type 𝑡 and their frequency in𝑤 exceeds the threshold (line
2). We explain below how the frequency is efficiently computed.

Interleaving graph and patterns expansion. We next inter-
leave the extension of considered entity set (and, correspondingly,
the considered subgraph representing their respective revision
histories), with the extension of the patterns.

To determine which other related entities (and, respectively,
entity revision histories) should be considered, we examine the fre-
quent patterns identified so far, to see which additional entity types
appear in them, if any (line 4). Correspondingly, we add their (re-
duced) revision histories within𝑤 to the set of considered actions.
For that, we employ again the function 𝑟𝑒𝑑𝑢𝑐𝑒𝑑_𝑎𝑛𝑑_𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡
_𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑆,𝑤) (line 8) that reduces the revision histories and adds
the actions abstraction (and their corresponding realizations) to
𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡_𝑎𝑐𝑡𝑖𝑜𝑛𝑠 [𝑤] (resp. 𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛_𝑡𝑎𝑏𝑙𝑒 [𝑤]).

Next, we iteratively consider for each previously discovered fre-
quent pattern 𝑝 ∈ 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠 [𝑤], its graph 𝑔𝑝 and attempt to extend
it with additional edges (abstract action) 𝑎 ∈ 𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡_𝑎𝑐𝑡𝑖𝑜𝑛𝑠 [𝑤],
that has not been considered for it yet (lines 9-14). The procedure
uses the auxiliary global variable 𝑡𝑒𝑠𝑡𝑒𝑑 [𝑤], (initially the empty
set) to record pairs of patterns and actions that have already been
examined. It is important to note that by considering all action
abstractions (rather than just their base type) we can construct
patterns at all abstraction levels.

Extended patterns whose frequency exceeds the threshold are
added to 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠 [𝑤] (line 14). We will explain later how the
pattern realizations and frequency are efficiently computed. When
the frequent patterns can no longer be extended w.r.t. the current
set of abstract actions/action realizations, we check again whether
the discovered patterns contain new types whose actions have
not yet been considered (line 4). If so, we repeat the graph and
patterns extension (lines 5 - 15). Observe that the incremental
nature of the patterns’ construction allows refining the previously
derived patterns with the newly added abstract actions, rather than
computing frequent patterns from scratch. In other words, the
extension of the actions graph, and the extension of the patterns
(w.r.t. the extended graph), interleave well.

Note that, in the presentation so far we keep in 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠 [𝑤]
all the discovered frequent patterns and not just the most-specific
ones. This is because such general patterns may still be useful, in

later iterations, being expended to other, different most-specific
patterns. However, an optimization that we can still employ here
is the removal of these (not most-specific) patterns whose expan-
sions have been fully examined, e.g. where all the entities types
occurring in them have been thoroughly processed (line 15). An-
other optimization that we employ (omitted from the pseudo-code)
is the cashing of the computed frequencies/realization tables, to
be reused if the same patterns are later re-examined with different
thresholds. When all patterns have been discovered, we select the
most specific ones and return them (line 16).

Computing patterns realization and frequency. To complete
the picture we need to explain how the patterns realizations and fre-
quency are computed in lines 12-13 of the algorithm. To efficiently
compute (and extend) pattern realizations, we represent each pat-
tern realization in 𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑠 [𝑤] [𝑝] by a relational table whose
attribute names correspond to the pattern variables names, and
whose tuples capture the different realizations of the pattern in
the given time window (namely the qualifying assignments of
concrete Wikipedia graph nodes to the pattern variables).

Now, note that given a pattern 𝑝 and an abstract action 𝑎, there
may be several ways to extend the graph 𝑔𝑝 with 𝑎. First, 𝑎’s
source may be “glued” to any of the nodes (variables) in 𝑝 of
the same type as 𝑎 (if such exist). Second, for each such possible
gluing, 𝑎’s target may either be added to the pattern as new pattern
node (in which case 𝑔𝑝 is extended by both a new edge and a new
node) or the target may also be glued to an existing same type
node (in which case 𝑔𝑝 is extended by only a new edge).

We process each such possible extension as follows. Let 𝑝 ′

be such an extended pattern. An important observation is that,
using the relational representation discussed above, the realiza-
tion table of the extended pattern 𝑝 ′ can be easily computed, from
𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑠 [𝑤] [𝑝] and 𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑠 [𝑤] [𝑎], via a join-based query.
For the glued pattern/action nodes we use equijoin on the corre-
sponding attributes, whereas for the new node (if such exists),
we require inequality to all same type attributes. Finally, we only
need to project a single column for each pattern attribute. Then,
the frequency of a pattern 𝑝 w.r.t. a type 𝑡 can be easily com-
puted from the relation, by an SQL count operator that counts the
number of distinct nodes appearing in the column corresponding
to the pattern’s source variable, (then dividing the count by the
cardinality of 𝑒𝑛𝑡𝑖𝑡𝑖𝑒𝑠 (𝑡)).

Mining Relative Patterns. To conclude, we note that the com-
putation of relative frequent patterns proceeds in a similar manner.
The only difference is that each pattern 𝑝 we begin the expansion
process starting from 𝑝 itself, and relative frequency (rather than
just frequency) is computed similarly, but using the formula in
Definition 3.4. We omit the details for space constraints.

4.3 Finding Windows and Thresholds
So far we assumed that we are given a window𝑤 and a threshold
𝜏 , and our goal was to identify the (relative) frequent patterns in
𝑤 , w.r.t. the seed type 𝑡 . To identify windows and thresholds of po-
tential interest, we use a simple heuristic, which our experiments
show to be extremely effective.

We restrict our attention to non-overlapping time windows and
split the revision histories accordingly. This allows parallelizing
the processing of the action sets in the different windows. Our
analysis of real Wikipedia data indicates this to be a reasonable
design choice. For an input type 𝑡 there are very few meaningful
(update-wise) time frames that overlap and those can be merged
into a somewhat longer window that includes both update patterns.
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Algorithm 1: Mine connected patterns
Input: entity set 𝑆 ,Wikipedia type 𝑡 , window 𝑤, frequency threshold 𝜏 ,

relative threshold 𝜏𝑟𝑒𝑙
Output: (relative) patterns and their time frames: 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠 [𝑤 ],

rel_patterns[w][p]
1 call reduced_and_abstract_actions(𝑆 ,𝑤) to create abstract_actions[𝑤] and

realizations[𝑤];
2 patterns[𝑤] = {{𝑎} | 𝑎 ∈ abstract_actions[𝑤] ∧𝑡𝑦𝑝𝑒 (𝑠𝑜𝑢𝑟𝑐𝑒 (𝑎)) = 𝑡∧

frequency({𝑎}) ≥ 𝜏 };
3 tested[w]={};
4 while new type names found in patterns[w] do
5 foreach 𝑝 ∈ patterns[𝑤] do
6 foreach new type name 𝑡 ∈ 𝑝 do
7 𝑆 = get_entities(𝑡 );
8 call reduced_and_abstract_actions[𝑆, 𝑤] to expand

abstract_actions[w] and realizations[w];

9 while there exists 𝑝 ∈ patterns[𝑤], 𝑎 ∈ 𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡_𝑎𝑐𝑡𝑖𝑜𝑛𝑠[𝑤], s.t.
(𝑝, 𝑎) ∉ tested[𝑤] do

10 tested[𝑤]=tested[𝑤] ∪{(𝑝, 𝑎𝑖 ) };
11 foreach pattern 𝑝′ obtained by expending 𝑝 with 𝑎𝑖 do
12 compute realizations[𝑤][𝑝′] from realizations[𝑤][𝑝] and

realizations[𝑤][𝑎𝑖 ];
13 frequency(𝑝′) =

|𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡 𝑒𝑛𝑡𝑖𝑡𝑖𝑒𝑠 𝑜𝑓 𝑡𝑦𝑝𝑒 𝑡 𝑖𝑛 𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑠 [𝑤 ] [𝑝′ ] |
|𝑒𝑛𝑡𝑖𝑡𝑖𝑒𝑠 (𝑡 ) | ; if

frequency(𝑝′) ≥ 𝜏 then
14 patterns[𝑤]=patterns[𝑤] ∪{𝑝′ };

15 𝑝𝑟𝑢𝑛𝑒 (𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠 [𝑤 ]), 𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑠 [𝑤 ]
16 patterns[𝑤]=most_specific_patterns(patterns[𝑤]);
17 Return(𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠)

Our algorithm is initialized with minimal window size (the sys-
tem default is two weeks) and frequency thresholds (default 0.7),
which are iteratively refined: The window size is extended (resp.
the threshold it lowered) if no qualified patterns were found, or if
the refinement leads to the discovery of additional patterns. The
extension granularity (resp. frequency bound reduction) may be
determined by the user. Otherwise, the default refinement policy
is to alternate between multiplying the window size by two (re-
taining the threshold as it) and reducing the frequency thresholds
by 20% (retaining the window size). This is repeated as long as
the refinement leads to new patterns, up to a maximal window
size of one year, and a minimum threshold value of 0.2 (All exper-
iments were run with this setting). We chose the above heuristic
by examining several alternatives, as elaborated in Section 6, and
chose the one with the lowest running time among all heuristics
that performed best in terms of 𝐹1 score evaluations.

We now present the full algorithm, depicted in Algorithm 2.
As mentioned above, given an entity type 𝑡 , our initial entity set
𝑆 contains all entities of the input type. Users not familiar with
the type hierarchy may provide a seed entity 𝑒 and the system will
use 𝑡𝑦𝑝𝑒 (𝑒) as an input (lines 1-3). To derive 𝑡𝑦𝑝𝑒 (𝑒) we use an
alignment from Wikipedia entities to DBPedia [1]. Then to find
all entities of type 𝑡 we employ a corresponding inverse index.

We first split the timeline into consecutive time frames of size
𝑊𝑚𝑖𝑛 (line 7). Next we call (possibly in parallel) the procedure
𝑀𝑖𝑛𝑒_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑_𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠, described in Algorithm 1 in Section
4, for all windows (line 9). We iteratively refine the considered
windows width (𝑊𝑚𝑖𝑛) and frequency threshold (𝜏) (following the
heuristics described above), and until a stable result is obtained
(lines 10-11). Finally, for each discovered pattern 𝑝 in window𝑤 ,
its relative frequent patterns are mined as well (lines 14).

Algorithm 2: Find windows and patterns
Input: Wikipedia type 𝑡 or seed entity 𝑒 , min. window width𝑊𝑚𝑖𝑛 ,

frequency threshold 𝜏 , relative threshold 𝜏𝑟𝑒𝑙
Output: (relative) patterns and their time frames

1 if t is not given then
2 t = type(e);

3 S = get_entities(𝑡 );
4 patterns = [];
5 rel_patterns = [];
6 Frequent patterns Stage;
7 split the timeline into a set𝑊 of consecutive time frames of size𝑊𝑚𝑖𝑛 ;
8 foreach 𝑤 in𝑊 do
9 patterns[𝑤]= Mine_connected_patterns(𝑆, 𝑡, 𝑤, 𝜏, 𝜏𝑟𝑒𝑙 )

10 if patterns==[] or refine?(𝑊𝑚𝑖𝑛 ,𝜏 ,patterns)==True then
11 go to line 7 with the updated𝑊𝑚𝑖𝑛, 𝜏 ;

12 Relative frequent patterns Stage;
13 foreach 𝑤 ∈𝑊 do
14 rel_patterns[𝑤] = Mine_rel_connected_patterns (patterns[𝑤],

rel_patterns[𝑤], abstract_actions[𝑤], realizations[𝑤],𝜏𝑟𝑒𝑙 );

15 Return(𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠, 𝑟𝑒𝑙_𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠)

5 USING WINDOWS AND PATTERNS
We employ the discovered windows and patterns to clean and
correct Wikipedia entries, as well as to assist users in editing.

Cleaning. An immediate application of the discovered patterns
is to alert Wikipedia editors on partial edits from past windows.
For that, we examine the discovered windows and identify for each
window and pattern (using an efficient outer-join based algorithm,
described below, parallelly processed) partial sets of actions that
may be extended to a full pattern occurrence. To assist the editor
in determining how (if) the partial edit should be completed (or
reversed), we present examples of other full patterns.

To explain how the algorithm works, recall from Section 4.2
that, to discover patterns, we iteratively expand the pattern’s graph,
joining corresponding action relations to form a relation table that
captures the pattern realizations. In each such join, the left-hand
side (LHS) relation represents the realizations of a (partially grow-
ing) portion of the pattern, and the right-hand side (RHS) relation
contains the realizations of the added edge. The join conditions
assert the (in)equalities of the corresponding graph nodes. To iden-
tify partial updates, that haven’t been properly completed, we
similarly traverse the graph. But instead of the abovementioned
join operator, we employ a full outer-join [6], with analogous
(in)equality conditions. Note that, unlike the join, the full outer-
join also records in the output relation those LHS (resp. RHS)
tuples not matching any RHS (LHS) tuple, padding the missing
attribute values with nulls. In terms of our patterns, partial pattern
realizations (resp. action realizations) that are missing a corre-
sponding action (partial pattern) are also recorded in the relation,
padded by null values. The incomplete edits can then be easily
identified via a selection query retrieving tuples with null values.
A result table keeping the attributes of original action relations is
kept to record which missing updates cause null values.

Our algorithm for identifying partial updates is depicted in
Algorithm 3. For a time window𝑤 and a pattern 𝑝, it focuses on
the entity types in 𝑝. It invokes 𝑟𝑒𝑑𝑢𝑐𝑒𝑑_𝑎𝑛𝑑_𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡_𝑎𝑐𝑡𝑖𝑜𝑛𝑠
(described earlier), to examine their revision histories and con-
struct the realization relations of their corresponding abstract ac-
tions (lines 1–2.) Next we traverse the pattern’s graph 𝑔𝑝 , and
iteratively outer-join the corresponding relations (lines 8-9). We
use 𝑝1 . . . 𝑝𝑛 to denote the incrementally growing sub-patterns
(from the first singleton edge 𝑎1, to the full pattern 𝑝). The array
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Algorithm 3: Identifying partial updates
Input: window 𝑤, pattern 𝑝

Output: partial realizations of 𝑝 in 𝑤

1 let 𝑆 be the set of entity types in 𝑝;
2 call reduced_and_abstract_actions(𝑆 ,𝑤) to create abstract_actions[𝑤] and

realizations[𝑤];
3 let 𝑒1, . . . , 𝑒𝑛 be the edges in the pattern’s graph 𝑔𝑝 , in some traversal order;
4 let 𝑎1 . . . , 𝑎𝑛 be the corresponding actions in 𝑝;
5 𝑝1 = {𝑎1 };
6 𝑎𝑙𝑙_𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑠 [𝑝1 ] = 𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑠 [𝑤 ] [𝑎1 ];
7 for 𝑖 = 2 . . . 𝑛 do
8 𝑝𝑖 = 𝑝𝑖−1 ∪ {𝑎𝑖 };
9 compute 𝑎𝑙𝑙_𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑠 [𝑝𝑖 ] from 𝑎𝑙𝑙_𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑠 [𝑝𝑖−1 ] and

𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑠 [𝑤 ] [𝑎𝑖 ] using full outer-join;

10 𝑝𝑎𝑟𝑡𝑖𝑎𝑙_𝑟 = {𝑟 ∈ 𝑎𝑙𝑙_𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑠 [𝑝 ] | 𝑟 includes a null value }};
11 Return(𝑝𝑎𝑟𝑡𝑖𝑎𝑙_𝑟 )

𝑎𝑙𝑙_𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑠 [𝑝𝑖 ] is used record the intermediate (possibly in-
complete) pattern instantiations. Finally we return all tuples that
include null values (lines 10-11). An example of the algorithm
execution appears in our technical report [3].

Edit assistance. Update patterns often appear periodically in
multiple windows. For example, transfer windows occur each
summer with a similar edit pattern. Our system automatically
identifies such periodic patterns/windows and provides online
edit assistance (via a plug-in) to users that update pattern entities
within a given window, suggesting potential update completions,
as explained above. The algorithm for identifying patterns that
need completion follows similar lines, with the user alerted on
partial edits that involve entities that she is updating.

6 EXPERIMENTS
We open this section by describing the experimental setup, the
examined datasets, baselines, and evaluation methods. We then
present the results, both in terms of running time and quality.
Finally, we present a comparative analysis of heuristics, demon-
strating the superior performance of the heuristic used by WC.

6.1 Experimental Setup
We have implemented WC as a web browser extension, with back-
end in Python, frontend in JavaScript, and SQL over pandas as
the underlying query engine. All experiments were executed on
an Intel i7 2.4Ghz with 96GB RAM and 16 cores server. We ran
experiments over Wikipedia datasets and examined the system per-
formance in terms of running times, the quality of the discovered
patterns, and the number of detected errors, w.r.t. these patterns.

For the quality experiments (and measuring the running time)
we use the default settings of WC. Recall that our algorithm is
initialized with minimal window size (default is two weeks) and
frequency thresholds (default 0.8), which are refined throughout
the computation. As mentioned, the default refinement policy
alternates between multiplying the window size by two and re-
ducing the frequency thresholds by 20%, up to at most one year
window and a minimal 0.2 frequency. For other experiments, that
test the effect of each parameter, we vary the given parameter
while setting all others to default values, as explained below.

Settings. To demonstrate the operation of WC in different
entity domains, we examine here three Wikipedia domains: soccer
(including players, teams, leagues, etc), cinematography (actors,
movies, awards, etc) and US politicians (specifically US senators).
To derive patterns (and correspondingly identify potential edit
errors) we used the revision history for the year 2018. We then
validated the signaled potential errors w.r.t. edits recorded in the

revision history of 2019. To further assess (resp. validate) the
identified patterns (signaled errors), we have also consulted three
domain experts - one expert per each of the three domains.

For the soccer domain, we used major European leagues’ soccer
players for our seed set of entities. For the cinematography domain,
we used actors from Hollywood-produced movies for the seed set.
Lastly, in the politicians’ domain, we used US senators for the
seed entity set. In each domain, we considered different sizes of
seed sets by randomly choosing between 100-1K entities from the
respective seed type. We run each experiment 5 times and show
the average running time (the variance was below 5%). For the
entities selection, we used the “recently edited” criterion (edited
in the last year of 2018) to focus on active pages with edits that
may contribute to the mining process, and may also contain errors.
Following Algorithm 2, we also considered related entity types
and extracted their revision history in the corresponding period.

Due to the lack of an appropriate API, obtaining the Wikipedia
data required crawling and parsing entities and it’s revision logs.
Nevertheless, we gathered data for 100K entities - about 10𝑡ℎ of
the million frequently edited Wikipedia’s entities [4].

Algorithms. The core of WC is Algorithm 2 (referred in the
sequel as WC) which identifies time windows of interest and cor-
responding edit patterns. A main ingredient of WC is the pattern
mining procedure depicted in Algorithm 1 (referred in the sequel
as PM) that given a specific window𝑤 and frequency threshold 𝜏 ,
identifies the most specific frequent patterns in𝑤 (w.r.t. the seed
type of interest). As explained in Section 4, PM refines conven-
tional graph mining algorithms [15] by introducing two dedicated
optimizations: (1) an efficient join-based SQL computation of
patterns realization and frequencies, and (2) an incremental com-
putation that avoids a full materialization of the edits graph. To
demonstrate the importance of these two optimizations, we ex-
amine the running times of the following four algorithm variants.

• PM, our mining algorithm.
• PM−𝑗𝑜𝑖𝑛 , a restricted variant of PM without our dedicated join-

based queries. Instead, pattern realizations and frequencies are
computed via conventional main memory nested loop.

• PM−𝑖𝑛𝑐 , a restricted variant of PM that does not utilize our incre-
mental, on-demand graph construction. Instead, the full edits
graph for the given window is materialized then given as input
to the mining process (but patterns realization/frequency is still
computed via our join-based queries).

• PM−𝑖𝑛𝑐,−𝑗𝑜𝑖𝑛 , conventional graph mining without our two op-
timizations. The edits graph for the window is materialized as in-
put to the mining process, with the pattern realizations/frequencies
computed via the main memory nested loop.

Note that direct comparison to leading graph mining baselines is
not possible due to their use of different frequency metric (not
capturing connectivity property and relativity to a specific type)
and lack of support for type hierarchy. We have thus adapted the
most relevant variant to our context, denoted by 𝑃𝑀−𝑖𝑛𝑐−𝑗𝑜𝑖𝑛 , and
benchmark w.r.t. it. See discussion in Section 2.

6.2 Running Time Analysis
Next, we examine how the running time is affected by (1) the size
(number of entities) of the seed type of interest, (2) the frequency
threshold, and (3) the window size. In each experiment, we vary
one parameter while setting the others to a default value (500
seed entities, 0.7 frequency, and two weeks, resp.). As the results
for the different domains show similar trends, we present here a
representative set of experiments for the soccer domain.
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Note that, as is common in graph mining algorithms, PM−𝑖𝑛𝑐

and PM−𝑖𝑛𝑐,−𝑗𝑜𝑖𝑛 require the full edits graph for the given win-
dow to be materialized. However, materializing this graph, even
for relatively small time windows, can be infeasible. Indeed, our
experiments show that even when considering a two-week time
window, only 100 seed entities, and revision histories only of
entities reachable from the seed set, the graph construction ex-
ceeded 24 hours (the time limit for the graph materialization).
This is due to the dense connectivity of the Wikipedia graph6 [4],
the previously mentioned high volume of edits, and the lack of
adequate API, as noted above. Thus, as the graph must be con-
structed for each considered window, we initially focus only on
the two feasible algorithms: PM and PM−𝑗𝑜𝑖𝑛 , with the infeasible
algorithms evaluated over reduced inputs. We report below the
sizes of the partial graphs built by PM and PM−𝑗𝑜𝑖𝑛 . For intuition
on the relative savings, we note that the graph for the 100 seed
entities during these 2-weeks contains over 100K entities.

Seed set cardinality. We start by examining the running time
as a function of the size of the seed set. Naturally, the more entities
in the seed set, the more related updates need to be examined
and the more revision histories are processed. Consequently the
running time of both PM and PM−𝑗𝑜𝑖𝑛 increases, as illustrated in
Figure 4(a). The threshold is set here to the default value of 0.8 and
the window is the month of August. Similar results are obtained
for other thresholds/months. Next to the size of each seed set, we
give (in parenthesis) the overall number of related entities (graph
nodes) processed by the algorithm. In each column, the upper
part shows how much time (in hours) it took to parse the revision
history of the relevant entities and extract the reduced updates set.
This is naturally identical for both algorithms (as they only differ
in the computation of pattern realizations/frequencies). It should
be noted that this time would be much shorter if Wikipedia had
provided a more convincing API for its revision logs or, publicly-
available structured revisions database. The lower part of each
column shows the running time dedicated to the pattern mining
itself. We can see that is significantly shorter for PM that employs
our efficient join-based queries. For PM the pattern mining time
only marginally grows when the seed set size increases and stays
below 15 min, which is very reasonable for offline computation.

Frequency threshold. Next, we examine the running time as
a function of the frequency threshold. The seed set size is set
to a default size of 500 and the window is the month of August.
(Similar results are obtained for other sizes/months). The lower
the threshold, the more potential patterns (and revision histories
of involved entity types) need to be examined, and, consequently,
the processing time of both algorithm increases, as illustrated in
Figure 4(b). The processing time for the revision logs is the same
in both algorithms, but PM mines the patterns much faster. Again,
for PM the pattern mining time increases only moderately when
the threshold decreases and stays below 15 min.

Window size. In this experiment, we measure the preprocess-
ing time for varying window sizes. Figure 4(c) illustrates the
processing time for 2, 4 and 8 weeks window. Specifically, we
see here the running times for the first two weeks of August, the
whole month of August, and the two months July and August,
but similar results are obtained for other similar-length windows.
(The seed set size here is again set to default size of 500 and
the frequency default 0.8. Similar results are obtained for other

6Wikipedia contains about 6 million entities (of which 4 million are considered of
marginal importance) and over 80 million internal links as to 2010.

sizes/frequencies). Naturally, the larger the window, the more up-
dates need to be processed and as a result, more patterns may
occur. Consequently, the running time increases. Again, the pro-
cessing time for the revision logs in both algorithms is the same,
but PM mines the patterns much faster.

Parallelism. So far we examined the performance of the PM
component of WC. To complete the discussion we now examine the
full operation of WC, highlighting, in particular, its embarrassingly
parallelized nature. Recall that WC splits the timeline into non-
overlapping windows that may be processed in parallel. Similarly,
independent entity types can be processed in parallel. This is easily
exploitable in a multi-core setting as shown in 4(d). We focus here
on the pattern mining process (the revision logs processing shows
similar trends). The figure shows the time in minutes (in log scale)
of the pattern mining computation for a single core vs 16 cores,
for varying sizes of seed entity sets. As before, next to the size of
each seed set we give in parenthesis the overall number of related
entities (nodes) processed by the algorithm. Note that the numbers
here are the total number of nodes processed through all iterations,
for all examined windows and threshold values. Running on 1000
entities takes less than one minute on a single core. 5K entities
need 6 minutes to process on one core and about 1 minute on 16
cores. For 100K entities - the largest entities set generated in the
algorithm execution on the three domains mentioned above - it
took 58 minutes on one core and about 15 minutes on 16 cores.
Overall, the parallelization speedup is about 4x.

Based on known statistics of approximately 5.9 million Wikipedia
entities (one million of them are of mid-to-high importance) [4],
given a preprocessed Wikipedia revisions database/graph (which
unfortunately is currently not publicly available), running on all
Wikipedia entities will take about six hours (one hour on mid-to-
high importance entities) on a 16 core server.

Experiments with small data. As mentioned above, the ma-
terialization of the entire edits graph of Wikipedia, which is a
necessary input for 𝑃𝑀−𝑖𝑛𝑐 and 𝑃𝑀−𝑖𝑛𝑐−𝑗𝑜𝑖𝑛 , takes impractical
time. To, nevertheless, evaluate the efficiency of these two algo-
rithms, we also conducted experiments over considerably smaller
subsets of the Wikipedia graph. Over such small instances, the
running time is less meaningful, however, we can focus instead on
the number of considered pattern candidates as an indication of
the efficiency of these algorithms. Note that, since this experiment
is only possible over small data, typically negligible amounts of
noise become significant, and since the number of seed entities is
small, many of the identified candidates will exceed the threshold.
Therefore, we do not examine any quality indicators.

Concretely, we examined a small subset of Wikipedia, con-
sisting of 10 seed entities from the soccer domain, and all the
revisions of these entities that occurred within an arbitrarily cho-
sen two-week period. We constructed the corresponding edits
graph, containing the seed entities and a close (2-reachable) neigh-
borhood of these seeds in two phases, as follows. We first added
to this graph all the entities that are connected within one link
from the seeds and were also edited in the chosen time window,
and then we also added, analogously, another layer of neighbor-
ing entities - all the entities that are connected within one link to
the previously added entities, and were also edited in the chosen
time window. We did not extend the graph further, as it could
not be materialized within the time frame we defined. The above
construction resulted in a graph with roughly 10K entities.

We compared the performance of 𝑃𝑀−𝑖𝑛𝑐 and 𝑃𝑀−𝑖𝑛𝑐−𝑗𝑜𝑖𝑛

over this graph, to that of𝑃𝑀 (our pattern mining algorithm)
and 𝑃𝑀−𝑗𝑜𝑖𝑛 (which does not include our dedicated join-based
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Figure 4: Running time when varying the (a) DB size (b) threshold (c) window size (d) WC execution time on 1 vs 16 cores

queries) over a Wikipedia subgraph of the same size. Recall
that𝑃𝑀 and 𝑃𝑀−𝑗𝑜𝑖𝑛 , in contrast to 𝑃𝑀−𝑖𝑛𝑐 and 𝑃𝑀−𝑖𝑛𝑐−𝑗𝑜𝑖𝑛 , do
not receive the complete graph as input, rather create the relevant
edits subgraph (of the Wikipedia graph) incrementally on-the-fly.
Therefore, to ensure a meaningful comparison, we used as input
a set of 200 seeds, as this results in subgraphs of roughly 10K
entities (which is also the size of the input graphs for 𝑃𝑀−𝑖𝑛𝑐 and
𝑃𝑀−𝑖𝑛𝑐−𝑗𝑜𝑖𝑛). Moreover, as we focus solely on the number of
considered candidates, this value will be the same for all variants
of𝑃𝑀 , when employed over the same graph, as the frequency defi-
nition is identical for all baselines. Therefore, the result will be
the same for𝑃𝑀 and 𝑃𝑀−𝑗𝑜𝑖𝑛 , and also the same for 𝑃𝑀−𝑖𝑛𝑐 and
𝑃𝑀−𝑖𝑛𝑐−𝑗𝑜𝑖𝑛 . Hence, we essentially compare only two approaches
in this experiment (receiving the complete graph in advance versus
computing a more relevant subgraph on-the-fly).

The results show that 𝑃𝑀−𝑖𝑛𝑐 and 𝑃𝑀−𝑖𝑛𝑐−𝑗𝑜𝑖𝑛 consider more
candidates (524), compared to𝑃𝑀 and 𝑃𝑀−𝑗𝑜𝑖𝑛 (125). This demon-
strates the superiority of our incremental graph construction ap-
proach, which prunes many of the irrelevant candidates.

6.3 Quality Analysis
To assess the usefulness of WC for error detection we evaluated
the quality of the discovered patterns and the validity of the po-
tential errors signaled using these patterns. We employed WC,
over the subsets of the Wikipedia 2018 revision log relating to the
domains of soccer, cinematography, and US politicians, with the
corresponding seed sets consisting of 1000 entities.

Ground truth patterns. To evaluate the correctness and cover-
age of the detected patterns, we asked each of the three experts to
provide a comprehensive list of common periodic update patterns,
in structured data. The soccer expert provided 11 such patterns
(e.g., the page of a player that won the “Goal of the Month” award
should link to the page of the award and vice versa). The cin-
ematography expert provided 8 patterns (e.g., a TV series page
should point to all the pages of its specific seasons). Lastly, the pol-
itics expert provided 5 patterns (e.g., the page of a newly-elected
senator points to her predecessor’s page and vice versa).

Discovered patterns and detected errors. Interestingly, the
patterns derived by WC are a proper subset of the set of patterns
provided by the experts, implying 100% precision. In terms of
recall, our algorithm detected 9 (out of the 11) soccer-related
patterns, 7 (out of the 8) cinematography related patterns and 4
(out of the 5) US politicians related patterns, yielding an average
recall of 83.3% across all the domains. The discovered patterns
were then used by WC to detect erroneous updates.

Running Algorithm 3 on the 2018 revision log we have iden-
tified 3743 potential errors for the soccer domain, 2554 potential
errors for the cinema domain and 1125 potential errors for US
politicians. To determine which of these are actual errors, we ran
a two-step verification process. First, for each signaled potential
error (partial pattern occurrence) we examined whether it still
existed after the 2019 updates had been applied. Errors that were
eliminated (corrected) are considered true errors. Note, however,
that the remaining set may still include actual errors that went un-
noticed. To determine how many such signaled, unnoticed errors
Wikipedia still contains, we sampled 50 such errors per pattern

and asked the relevant domain expert to determine their validity.
Next, examples and results of discovered patterns are provided.

Soccer. Out of the 3743 signaled potential errors, 2680 were cor-
rected in 2019 (71.6%). From the remaining examined cases,
82.1% were indeed verified as actual previously unnoticed errors.

To illustrate, the simplest pattern detected in the soccer domain
indicates that, after joining a new club, the page of the player
should link from the career table to the page of the club, which,
in turn, should add a link to the player’s page in the current squad
table. This pattern has a frequency of 0.8 in the window consisting
of the first week of August. Out of the 50 sampled errors for
this pattern (partial pattern occurrences), 48 indeed turned out to
be previously unnoticed errors (96%). A more complex pattern
includes also the deletion in the player’s page of the link to the old
club, and vice versa. This pattern has a lower frequency (0.4) and a
wider window size (the first two weeks of August). Here, out of 50
sampled potential errors, 44 were verified as actual errors (88%).
An example of such an error, detected by the algorithm, relates to
the page of Nikola Mitrovic, a player that switched leagues. His
new club, ZTE, added him to its current squad table, while the
previous club, Kesla, did not remove him. Similarly, Aleksandrs
Cauna’s page was updated when he joined his new club Jelgava,
whereas the page of RFS, his old club, still pointed to his page past
the transfer window. A relative frequent pattern, that the algorithm
detected, includes an update of the current league link in the
player’s page. While this pattern is much less frequent (since a
player may move to a club in the same league, in contrast to the
previously mentioned patterns, where a violation almost certainly
results in “incomplete” data), its relative frequency, nevertheless,
exceeds the threshold. Out of the 50 detected potential errors, 14
were indeed actual previously unnoticed errors.

Cinematography. One example of a detected pattern relates to an
actor/actress winning the Oscar award: the page of the winner
should link to the page of the award and vice versa. In terms of
quality evaluation, out of the 2554 signaled potential errors, 1731
were corrected in 2019 (67.8%). Of the remaining cases, 81.2%
were determined to be true unnoticed errors.

US Politicians. An illustrative example of a discovered pattern in
the US politics domain pertains to the election of a new senator.
Given such an event, the pages of the new senator and the relevant
state must point to each other, and also a link to the page of the
previous senator is removed from the page of the state. The page
of the previous senator should still point to the state, since the
only modification relates to the adjacent text, detailing the period
during which she held office. Out of the 1125 signaled potential
errors, 728 were corrected in 2019 (67.8%). Of the remaining
cases, 78.1% were determined to be previously unnoticed errors.

Insights. To conclude, we discuss insights derived from the
above evaluation, that reaffirm the distinction between our in-
tended use-cases and those addressed by previous works. As men-
tioned in the Introduction, our solution focuses on patterns that
are associated with a well-defined time window, complementing
existing solutions that target ‘window-less’ constraints. Indeed,
for all the discovered patterns, a statistically significant time win-
dow was identified. In contrast, of the few overlooked patterns,
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Table 1: Sample of heuristics test
(𝑤, 𝜏 ) Running time (min) Precision Recall F1 Score
2.0x, 20% 2 1 0.84 0.91
1.0x, 20% 1.2 0.88 0.68 0.77
2.0x, 0% 1.2 1 0.75 0.86
1.5x, 10% 3.2 1 0.68 0.81
3.0x, 40% 1.5 0.75 0.88 0.81

two are not clearly associated with any time window. This further
reinforces the contrast between our solution and other works.

6.4 Parameter Tuning
When refining the two parameters across different iterations, 𝑃𝑀
alternates between multiplying the window size by two and reduc-
ing the frequency threshold by 20%. To arrive at these values, we
performed a grid search, selecting the parameters that led to the
fastest running time among the options that yield the best 𝐹1 score
(w.r.t. patterns provided by experts). We checked combinations
of reducing the threshold by 𝑋 and multiplying the window size
by 𝑌 , where 𝑋 ranges from 1% to 100%, in steps of 5%, and 𝑌
ranges from 1.5 to 5, in steps of 0.5. In terms of the bounds for the
above parameters, the window size is restricted to the range of two
weeks to one year, while the threshold is restricted to [0.2, 0.7].
These intervals were also derived via an analogous grid search
over various ranges. A sample of the results is depicted in Table 1,
where the left column provides the combination of the changes in
the values of the window size and the threshold. Note that the first
row pertains to the combination used by WC.

These results demonstrate the advantages of our balanced ap-
proach, compared to more extreme approaches. Namely, opting
for very small changes to the parameters increases the running
time and lowers the recall. The recall drops because WC would
terminate at an early stage, as new patterns are not likely to be dis-
covered compared to the previous iteration. At the other extreme,
drastically changing the parameter values, while improving the
running time, lowers the precision score. The latter effect is due
to quickly reaching iterations where the time window is large and
the threshold is low, causing WC to discover erroneous patterns,
whereas WC with our heuristic would terminate prior to this point.

7 CONCLUSION
This paper presents WC, a Wikipedia plug-in assisting editors in
maintaining the correctness of inter-links. Given an entity type
of interest, our efficient, highly parallelizable algorithm identi-
fies relevant edit patterns across revision histories of entities of
related types, along with time windows in which partial edits are
acceptable. The discovered patterns/windows are then used by
WC to alert editors on past edits that appear incomplete, and pro-
vide users with on-line assistance as they update Wikipedia. Our
experiments with Wikipedia data demonstrate the efficiency and
effectiveness of our approach in identifying and correcting errors.

There are several directions for future research. As our work
considers inconsistencies in structured parts of Wikipedia, expand-
ing our approach to consider free text, in particular parts related to
the inter-links, is a challenge. Another intriguing future direction
is enriching the expressiveness of the patterns to support value-
specific instantiations (e.g., a pattern specific to PSG, but not to
football clubs in general). Finally, applying our ideas to other do-
mains where revision histories are available and link consistency
is important (e.g., software repositories) is another challenge.
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ABSTRACT
Data quality validation is a crucial step in modern data-driven
applications. Errors in the data lead to unexpected behavior of
production pipelines and downstream services, such as deployed
ML models or search engines. Typically, unforeseen data quality
issues are handled via manual and tedious debugging processes
in a reactive manner. The problem becomes more challenging in
scenarios where large growing datasets have to be periodically
ingested into non-relational stores such as data lakes. This is even
worse when the characteristics of the data change over time, and
domain expertise to define data quality constraints is lacking.

We propose a data-centric approach to automate data quality
validation in such scenarios. In contrast to existing solutions,
our approach does not require domain experts to define rules
and constraints or provide labeled examples, and self-adapts to
temporal changes in the data characteristics. We compute a set of
descriptive statistics of new data batches to ingest, and use a ma-
chine learning-based novelty detection method to monitor data
quality and identify deviations from commonly observed data
characteristics. We evaluate our approach against several base-
lines on five real-world datasets, on both real and synthetically
generated errors. We show that our approach detects unspecified
errors in many cases, outperforms other automated solutions
in terms of predictive performance, and reaches the quality of
baselines that are hand-tuned using domain expertise.

1 INTRODUCTION
Data-driven decision making is becoming the norm in modern
enterprises and organizations, and requires maintaining and reg-
ularly updating large datasets, often collected in non-relational
stores such as data lakes. A critical step in these scenarios is data
quality validation, as the quality of the derived insights and deci-
sions crucially depends on the quality of the collected data [42].
Incorrect or missing data can lead to wrong business decisions
and problems in downstream data consumers, such as machine
learning (ML) models or search engines [1, 17, 43], and even crash
systems, e.g., due to null-pointers originating from missing data.
Common sources of errors are bugs in external data sources and
data preprocessing code (e.g., when a data engineer accidentally
changes a time measurement from seconds to milliseconds in a
data-producing pipeline). Such errors often corrupt large parts of
the data to ingest and can immediately lead to devastating conse-
quences, e.g., wrong predictions of ML models that consume the
data [37]. In this work, we focus on automating the detection of
such data quality issues.

We address the following real-world example scenario. Con-
sider a data engineering team at a retail company maintains a
search engine for products. To keep the search engine up-to-date,

© 2021 Copyright held by the owner/author(s). Published in Proceedings of the
24th International Conference on Extending Database Technology (EDBT), March
23-26, 2021, ISBN 978-3-89318-084-4 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

it deploys a pipeline that regularly ingests and indexes external
product data from various heterogeneous sources, such as web
crawls, log files, key-value stores, or upstream data pipelines.
If a data source introduces errors in the data to ingest, such as
missing values or wrong encoding of strings, then the products
will not be indexed correctly or, even worse, cause the ingestion
process to crash. Such data issues are typically handled reactively:
the engineering team discovers data issues via alerts from devops
engineers, bug reports, and customer reviews. The data is then
manually fixed and back-filled. Handwritten code is added to the
data pipeline in retrospect to catch the observed type of errors
in the future [43].

In this paper, we propose an approach to automate data qual-
ity validation in scenarios where large partitions of a growing
dataset have to be regularly ingested into a common data store
such as a data lake. While relational databases enforce a schema
and integrity constraints for their data [13], many modern ap-
plications rely on non-relational data stores. Pipelines that do
not specify a particular schema or constraints on the data are
often much cheaper to operate in cloud environments (e.g., using
S3 as a distributed filesystem for storing the data partitions and
Apache Spark for processing them).

In contrast to existing work on fine-grained error detection [1,
17, 27, 29, 36, 47], we focus on scenarios where systems regularly
ingest batches of external data, and data errors corrupt a large
fraction of the batch [42] (Section 3). In the aforementioned retail
example, a few missing product reviews in a partition might not
cause issues in the downstream systems, as they are programmed
to handle that (e.g., by using missing value imputation strategies).
However, an unusually high fraction of missing values in the
review description is an indicator of a severe problem in one of
the external data sources.

We automate the detection of six types of errors (explicit and
implicit missing values, numeric anomalies, typos, swapped fields
for numeric and textual attributes) as follows: we leverage pre-
viously ingested data batches as “positive” examples of “accept-
able” data and use a machine learning approach to identify new
batches that significantly deviate from the previously observed
data. Specifically, we compute a set of descriptive statistics over
the ingested data and train a novelty detection ML model [30, 31]
to learn the characteristics of the “acceptable” data. We apply
the ML model on new data batches to ingest, in order to identify
potentially erroneous data batches that significantly differ from
previously observed data (Section 4).

Our approach provides several advantages over existing work.
First, it does not require domain experts to design and maintain
large numbers of rules [3, 20, 43]. Devising such rules and con-
straints is a very tedious and expensive process as the datasets
found in enterprises are typically large and messy [45], especially
if they originate from the integration of different external data
sources. Secondly, our approach is computationally efficient as
the descriptive statistics we apply can be computed in a single
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pass over the data. Our novelty detection model has a low num-
ber of parameters to optimize. Finally, our automated approach
performs well in cases where the data characteristics change over
time, in contrast to rule- and constraint-based approaches [20, 43]
that require a manual redefinition of rules and constraints.

We evaluate our approach by comparing its predictive per-
formance to automated and hand-tuned variants of the follow-
ing state-of-the-art solutions: Tensorflow Data Validation [6],
Deequ [43], and statistical testing [32, 41]. Then, we evaluate the
sensitivity of our approach towards six types of errors (explicit
and implicit missing values, numeric anomalies, typos, swapped
fields on numeric and textual attributes) and the predictive per-
formance under various error magnitudes (1, 5, 10, 20, . . . , 80%)
in a controlled environment for datasets with synthetically gen-
erated errors. Finally, we evaluate the detection quality of our
approach over time, as (a) the size of the training set for the
novelty detection algorithm grows continuously, and (b) its data
characteristics change over time. In summary, we make the fol-
lowing contributions:

• We propose an approach to automate data quality validation
for data that is periodically ingested into non-relational stores.
In contrast to existing solutions, our approach does not re-
quire domain experts to define rules or labeled examples, and
self-adapts to temporal changes in the data characteristics (Sec-
tions 3 & 4);

• We discuss how to apply our approach efficiently via a novelty-
detection ML model trained on data quality metrics of the
data (Section 4);

• We evaluate our approach against existing baselines on five
real-world datasets with real and synthetically generated er-
rors. We find that our approach detects the unspecified errors
in many cases under varying error magnitudes, outperforms
other automated solutions in terms of predictive performance,
and reaches the ROC AUC score of baselines hand-tuned with
domain expertise (Section 5).

2 BACKGROUND
In the context of this work, we understand data quality validation
as the process of checking that the input data meet the needs
of a data-driven application or its underlying business process,
where these specific needs are either formulated explicitly with
the data standards and policies or assumed implicitly by the ap-
plication logic. The concept of data quality is broadly defined as
a measure of the fitness of the data to their intended uses and
purposes [11]. To identify how well the data fit for the intended
purpose, the wast body of knowledge [5] suggests several data
quality dimensions, such as data accuracy (the degree to which
the data correctly represent the real-world entity it models), com-
pleteness (the degree to which the data contain the necessary
attributes to model the entity), validity (the degree to which the
data are stored or represented in a format that is consistent with
the domain of values), and others. In practice, data quality is
assessed with a set of quantitative metrics that are associated
with the aforementioned data quality dimensions. In this section,
we briefly introduce the data quality metrics that we leverage in
our approach and the machine learning-related background for
novelty detection.
Data quality metrics.We consider several quantitative statis-
tics that can be used to identify data quality issues [18]: (𝑖) com-
pleteness - the ratio of non-missing values to the number of

records in the data; (𝑖𝑖) the number of distinct values; (𝑖𝑖𝑖) statis-
tics for numeric data types, such as maximum, mean, minimum,
and standard deviation, (𝑖𝑣) the ratio of occurrence for the most
frequent value, etc. These statistics are commonly used in data-
base engines, for data profiling and data quality validation [18] to
summarize data of interest and often act as a proxy for the state
of data quality. Furthermore, most of the statistics can be cheaply
computed in a single scan over the data, except for the number of
distinct values and the ratio of the most frequent value, which are
typically approximated with the hyperloglog and the count-min
sketches respectively [8, 12].
Novelty Detection. Novelty detection is a machine learning
technique that aims to identify new patterns and signals that
were not present in the training data [30]. It is closely related to
anomaly detection as both techniques look for patterns in data
that do not conform to the expected behavior [7]. The difference is
that anomaly detection assumes that outliers are already present
in the training data. In contrast, novelty detection is designed for
cases where we only have access to “positive” examples.

Novelty detection is a form of one-class classification [46]
(due to the absence of negative examples). Novelty detection
algorithms model the data and check whether previously unseen
data points resemble the characteristics of the modeled data (i.e.,
inliers) or deviate from the expected behavior (i.e., outliers). The
decision whether or not a new object (i.e., data point) is an outlier
against a set of known objects follows the continuity assumption
(i.e., two data points that are close in the feature space repre-
sent two objects with the resemblance in real life) and usually
focuses on distance measures. Common example algorithms in
this area are one-class SVMs [44] and isolation forests [26]. For
an in-depth overview of the one-class classification problem and
novelty detection algorithms, we recommend the reader to refer
to Tax [46] and Chandola et al. [7].

3 PROBLEM STATEMENT
In this section, we introduce the problem and its formal definition.
Overview. We address the problem of automating the valida-
tion of data quality on dynamic data without relying on domain
expertise (e.g., manually specified rules and labeled erroneous
data records). As outlined in the running example, we focus on
scenarios where data pipelines regularly ingest large batches of
potentially erroneous external data and face errors that corrupt
a large fraction of the batch.

State-of-the-art solutions in data quality validation typically
require domain knowledge to specify explicit rules, constraints,
patterns, or labeled examples to verify data quality [6, 18, 20, 43].
They, however, fall short in several cases: (𝑖) incomplete domain
knowledge (i.e., when data depict complex processes that even
domain experts cannot fully comprehend or when the domain
expert is unavailable at the given time), the solutions mentioned
above might perform poorly both due to false alarms and missed
errors as the specified set of rules or labeled examples are insuffi-
cient to capture potential errors; (𝑖𝑖) manual monitoring of data
pipelines to detect data quality issues or deployment of staging
environments for software testing are often too costly or time-
consuming, and are only conducted reactively; (𝑖𝑖𝑖) the charac-
teristics of the data might slowly change over time, which implies
that manually specified rules have to be constantly adapted and
maintained.
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These challenges motivate an automatic approach to data quality
validation that does not rely on manually specified rules or la-
beled examples and self-adapts to changes in data characteristics.
Assumptions. For the given use case of the regular ingestion
of large batches of a growing dataset, we consider previously
observed and successfully ingested data partitions to be of “ac-
ceptable” data quality. This assumption is based on our experience
with real-world use cases: It is common in production to define
principal business and operational performance indicators and
monitor them carefully to evaluate business outcomes. For our
retail company running example, products that are placed in
the wrong category due to various errors lead to negative cus-
tomer reports or low service ratings, or via incident reporting and
tracking systems. This negative feedback serves as a proxy that
affects key performance indicators and catches the attention of
the responsible staff at some point in time. This, in turn, triggers
retrospective analysis. If devastating errors would have occurred
in the previously observed data partitions, they would have been
detected and fixed after a given time. If errors do not trigger a
negative response from the devops engineers or the business
after some period of time, we assume that the downstream task
is robust to them. Furthermore, existing error detection or data
quality validation methods require domain expertise. We focus
on real-world scenarios where domain expertise is not available
that, in turn, render the majority of data quality monitoring tools
inapplicable.
Formal problem statement. Given a structured dataset 𝐷 of
chronologically ordered partitions 𝑑1, . . . , 𝑑𝑡−1, each having do-
main 𝐴 = 𝐴1, . . . , 𝐴𝑀 , we have to predict upon the arrival of a
new partition 𝑑𝑡 whether this partition is of acceptable quality
or it is potentially corrupted w.r.t. a set of data quality metrics
𝑄 = 𝑄1, . . . , 𝑄𝐺 . We map this problem to a “one-class classifica-
tion” problem [46] where every partition 𝑑𝑖 is represented by a
feature vector x𝑑𝑖 = (𝑥1, . . . , 𝑥𝐺 ) ∈ R𝐺 of the data qualitymetrics
𝑄 that are computed on every attribute 𝐴𝑖 of that partition and a
boolean label𝑦𝑑𝑖 , which denotes whether the quality of the batch
is acceptable or not. However, we only have access to positive ex-
amples during training (hence the term “one class” classification).
The classification task is to decide whether a future batch 𝑑𝑡 can
be considered of acceptable quality (i.e., represents an inlier) or
deviates from the state of data quality of the previously observed
data batches (i.e., represents an outlier). The main challenge is
to model the “acceptable” data in an automated manner, without
external specification of the domain or examples of “erroneous”
data that have insufficient data quality.

4 APPROACH
Next, we discuss our approach for automating data quality val-
idation of newly observed data batches based on the problem
definition we presented in the previous section.
Overview. Figure 1 illustrates our approach: for every observed
partition 𝑑1, . . . , 𝑑𝑡−1, we model the features 𝒙𝑑𝑖 via a set of de-
scriptive statistics computed from the partition 1 . We train a
novelty detection model [38] on the resulting feature vectors that
learns the characteristics of “acceptable” data 2 . In order to check
a new data batch 𝑑𝑡 , we compute its feature vector 𝒙𝑡 via the cho-
sen descriptive statistics 3 . Next, we apply the novelty detection
model to label the new batch as acceptable or erroneous based
on the learned decision boundaries of the model 4 . With every
new data partition 𝑑𝑡 , we re-train the novelty detection model as
the training set grows with 𝑡 . Our method can be integrated into

data pipelines to raise alerts about potential degradation of data
quality automatically. Note that our approach does not rely on
domain expertise expressed in the form of rules, constraints, or
labeled data. Still, it remains valid in cases where the task defini-
tion is relaxed (e.g., domain knowledge is partially available or
some error types are expected).
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Figure 1: Overview of the approach: for every observed
partition (gray tables), we compute a set of descriptive sta-
tistics as a feature vector (green, Step 1). We train a nov-
elty detection model that learns the characteristics of ac-
ceptable data (Step 2). For the upcoming data partition
(blue table), we compute its feature vector (Step 3) and let
the model decide whether it is similar to the previously
observed data partitions or not (Step 4). In this example,
a missing value in column “A” and a numerical outlier
in column “B” (red) affect the completeness metric and
numeric statistics of the feature vector 𝑥𝑡 . That, in turn,
raises an alert.

Descriptive statistics as features. For every attribute 𝐴 𝑗 of
the partition 𝑑𝑖 , we compute several quantitative measures that
correspond to the underlying data quality metrics (see Section 2):
• Completeness - the ratio of not-NULL values;
• Approximate count of distinctive values - the hyperloglog [12]
approximation of the number of distinctive values;

• Ratio of the most frequent value - the count sketch [8] approxi-
mation of the number of occurrences for the most frequently
repeated value, normalized by the batch size;

• Maximum, mean, minimum, and standard deviation for numeric
data types;

• Index of peculiarity [33] for textual data. Index of peculiarity
is based on the bi- and trigram tables of a textual attribute
and reflects the likelihood of the hypothesis that trigrams in
a given word are produced from the same data source that
produced the trigram table. This index is originally applied for
detection of typographical errors and facilitates detection of
typos in text or a “peculiar” occurrence of symbols in words.

𝐼 (T) = 1
2
(log𝑛(𝑥𝑦) + log𝑛(𝑦𝑧)) − log𝑛(𝑥𝑦𝑧) (1)

Equation 1 represents the index of peculiarity for a trigram
T = (𝑥𝑦𝑧), where 𝑛( ) denotes the number of occurrences
for a selected bi- or trigram in a textual attribute. Index of
peculiarity for a sentence is the root-mean-square aggregation
of indices for each trigram that this sentence contains.
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Algorithm 1: Pseudocode of our approach.
Input: t, query raw data partition; k, the number of neighbors;
X, descriptive statistics for previously ingested data partitions;
contamination, the proportion of outliers in X;
dist, distance measure (e.g., Euclidean, Manhattan);
agg, distance aggregation strategy for k nearest data points.

Output: label, query data point t is inlier/outlier
1 Initialize array 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑠 ; array 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠 ;
2 list 𝑛𝑢𝑚_𝑚𝑒𝑡 of metrics for numeric data types;
3 list 𝑔𝑒𝑛_𝑚𝑒𝑡 of metrics for other data types.
4 foreach attribute 𝐴 ∈ t do
5 𝑚𝑒𝑡𝑟𝑖𝑐𝑠 = 𝑛𝑢𝑚_𝑚𝑒𝑡 if type(𝐴) is numeric else 𝑔𝑒𝑛_𝑚𝑒𝑡

6 foreach metric ∈𝑚𝑒𝑡𝑟𝑖𝑐𝑠 do 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑠.append(𝑚𝑒𝑡𝑟𝑖𝑐 (𝐴))
7 end
8 foreach 𝑥 ∈ X, 𝑡𝑟𝑒𝑒 = 𝐵𝑎𝑙𝑙𝑇𝑟𝑒𝑒 (X, dist) do

/* .getDist(𝑥, k) returns distances to k nearest
neighbors of x; agg(𝑎𝑟𝑟𝑎𝑦) is an aggregation
function such as mean, median, or max */

9 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠.𝑎𝑝𝑝𝑒𝑛𝑑 (agg(𝑡𝑟𝑒𝑒.𝑔𝑒𝑡𝐷𝑖𝑠𝑡 (𝑥, k))
10 end

/* percentile(𝑥,𝑞) computes q-th percentile of x */

11 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = percentile(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠, (1 − contamination))
/* outlier if aggregated distance from t to k nearest

neighbors exceeds 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, else inlier */

12 return agg(𝑡𝑟𝑒𝑒.getDist(𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑠, k)) < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

We concatenate attribute-level statistics into a univariate nu-
meric vector. Depending on the number of attributes and their
data types, the feature vector varies in length from one dataset
to another, where the length remains constant for partitions of
the same dataset. We normalize the resulting feature vectors to
a scale of 0 to 1. We chose these statistics based on two criteria:
(a) low computational complexity and (b) mapping to the error
types that often occur in real-world scenarios [47]. For a partic-
ular error type that we investigate, we consider statistics that
act as proxies for this error type more descriptive than others
in detecting data quality degradation. By a proxy we mean a
quantitative measure that is expected to change when a partic-
ular error occurs (e.g., numeric outliers are likely to affect the
statistical distribution of the attribute [18]). There is no single
metric that is more descriptive than others for all the given error
types. Preliminary results show that specifying only the descrip-
tive statistics that we expect to be changed when an error occurs
increases performance of our approach. This happens because,
in low-dimensional feature spaces, data points are more distinct
and distance-based methods perform better. However, assuming
“zero domain knowledge” and unknown error types, we cannot
control the choice of descriptive statistics in practice and, thus,
train our approach on all statistics. As discussed in Section 2,
most of these statistics can be computed in a single scan over
the data. Furthermore, we treat the sequence of feature vectors
that we collect over time (i.e., 𝑡𝑠𝑡𝑎𝑟𝑡 , . . . , 𝑡 − 1) as separate data
points in the training set. Note that this modeling decision does
not preserve the order of these feature vectors.
Choice of the novelty detection algorithm. Given the na-
ture of the challenge at hand, i.e., “zero domain knowledge” or
unknown error types, only positive examples are available for
training. We thus choose one-class classification algorithms (i.e.,
novelty detection, see Section 2) as the main candidates for our
approach. In this work, we considered several candidates for the
novelty detection (ND) algorithm: Angle-based Outlier Detector

(ABOD), Feature Bagging ensemble for the Local Outlier Factor
(FBLOF), Histogram-base Outlier Detection (HBOS), Isolation
Forest, and the K Nearest Neighbors algorithm with both the
maximum and the mean distance aggregation scheme (KNN and
Average KNN, respectively) [30, 31]. To choose one particular
ND algorithm for our approach, we conduct preliminary experi-
ments on one dataset (Amazon Review, monthly data partition)
and three types of errors (explicit and implicit missing values
on all attributes, numeric anomalies on the attribute “overall”)
with 30% of synthetically introduced errors per data batch, in
order to determine which algorithm yields better predictive per-
formance on the one-class classification task (for more details,
see Section 5). We deliberately chose one dataset and a subset
of error types under investigation to avoid overfitting and the
selection bias for the evaluation procedure. Table 1 depicts the
predictive performance metrics (ROC AUC score [22]) for all the
ND candidates, as well as the break-down of the false positive
and false negative results. We report the ROC AUC measure
as it takes into account both the type-I and type-II errors. Fur-
thermore, it is insensitive to imbalanced datasets and preferred
in practice to other performance metrics such as accuracy or
F1 score. In our preliminary experiments, we computed other
performance metrics alongside the ROC AUC score. We noticed
that, since our evaluation scenario introduces a balanced case
where a negative counterpart exists for every positive example,
accuracy, F1 and ROC AUC scores report similar values. Based
on the preliminary results, we chose the k-Nearest Neighbor al-
gorithm with the mean aggregation scheme [38]. This algorithm
consistently outperformed other ND candidates on all three error
types and produced no false positive results, meaning that no
erroneous data batches were labeled as “acceptable”. The second
best-performing candidate is the Angle-Based Outlier Detection
method [23] that yielded comparable predictive performance yet
took an order of magnitude longer to train the model and infer
the labels.
Nearest-neighbor-based novelty detection. For every data
point in the feature space, the k-Nearest Neighbor (kNN) algo-
rithm calculates the average distance to its 𝑘 nearest neighbors
and learns a threshold to decide what data points to consider
inliers or outliers [2]. The kNN algorithm has a 𝑐𝑜𝑛𝑡𝑎𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛

hyperparameter that defines a ratio of data points that are as-
sumed to be incorrectly labeled as inliers. Hence they are labeled
as outliers in the training data. This scheme internally trans-
lates the one-class classification problem into a standard binary
classification problem where the examples of both classes are
present. The algorithm utilizes the Ball tree[35] space partition-
ing data structure - a binary tree where each node represents
a multi-dimensional hypersphere (i.e., ball) of partitioned data
points. This data structure provides properties that are useful for
efficient k-nearest neighbor search. All data points in the training
set are represented with distances to their 𝑘 nearest neighbors.
Depending on the design decision, these distances are aggregated
into a single numeric value with one of the available aggregation
strategies (e.g., mean, median, max). These numeric values are
used to learn a decision boundary to differentiate inliers and
outliers - a data point is considered an outlier if its aggregated
distance to k nearest neighbors exceeds the learned threshold.
The threshold is defined with the contamination hyperparameter
𝑐 that is translated into the (1 − 𝑐)th percentile of the array of
aggregated distance for the whole training set. Figure 1 provides
a pseudocode representation of the KNN algorithm.

64



Table 1: Results of the preliminary experiment on per-
formance evaluation for 7 novelty detection algorithms.
Three error types under investigation are explicit and im-
plicit missing values, and numeric anomalies, depicted as
“Explicit MV”, “Implicit MV”, and “Anomaly” respectively.
We measure predictive performance with the ROC AUC
score (AUC), as well as the number of true positive (TP),
false positive (FP), false negative (FN), and true negative
(TN) results, where FPs are associated with the misclassi-
fication rate and FNs - with the false alarm rate.

ND Algorithm Error type AUC TP FP FN TN

One-class SVM
Explicit MV .9213 178 0 28 150
Implicit MV .9213 178 0 28 150
Anomaly .9691 178 0 11 167

ABOD
Explicit MV .9382 178 0 22 156
Implicit MV .9382 178 0 22 156
Anomaly .9691 178 0 11 167

FBLOF
Explicit MV .9353 178 0 23 155
Implicit MV .9382 178 0 22 156
Anomaly .9662 178 0 12 166

HBOS
Explicit MV .5814 60 118 42 136
Implicit MV .5505 60 118 42 136
Anomaly .9297 176 2 23 155

Isolation Forest
Explicit MV .7331 27 151 18 160
Implicit MV .5280 27 151 17 161
Anomaly .8764 146 32 12 166

KNN
Explicit MV .9325 178 0 24 154
Implicit MV .9325 178 0 24 154
Anomaly .9662 178 0 12 166

Average KNN
Explicit MV .9382 178 0 22 156
Implicit MV .9382 178 0 22 156
Anomaly .9719 178 0 10 168

Gu et al. [15] present an extensive statistical analysis of nearest
neighbor algorithms and report that recent work on this family
of methods reaches state-of-the-art performance on novelty de-
tection tasks. Based on the preliminary experiment, we confirm
that the kNN novelty detection method performs on par with
other approaches or outperformed them, both in terms of the
predictive performance and execution time.
Modeling decisions. Next, we discuss several modeling deci-
sions for our kNN-based approach. We choose the Euclidean
distance metric as the most commonly used distance measure
for the R𝐺 feature space, and leverage the average distance to
𝑘 neighbors as an aggregation strategy. Based on preliminary
experiments, this decision led to consistently higher predictive
performance compared to other settings. Alternative strategies
are choosing the largest distance among 𝑘 neighbors or com-
puting the median. A systematic comparison of kNN algorithms
with different distance measures revealed that both the “largest”
and the “median” aggregation schemes happen to be less robust
than averaging in our setting.

We set the number of neighbors 𝑘 to aggregate the distance
measure to a low factor of five. The variation of this parameter
did not lead to significant changes in the predictive performance
during the preliminary experiments. The kNN novelty detection
algorithm is also parameterized with the contamination param-
eter [19]. This parameter defines a fraction of data points in
the training set to be misclassified as “positive” examples and
assumed to be outliers (i.e., false positives). We set the contamina-
tion parameter to 1% to keep the ratio of false positives minimal.

Table 2: Characteristics of the datasets. The abbreviations
depict, in a direct order, the number of records in the
dataset, the number of partitions, the total number of at-
tributes, the average number of records in a data partition,
the number of numeric, categorical, and textual attributes.
We also report the real-world error types that two datasets
with the ground truth, Flights and FBPosts, contain.

Dataset Flights FBPosts Amazon Retail Drug
# records 147640 11157 1494070 541909 161297
# part./attr. 31/9 53/14 1665/9 305/8 3579/6
part. size ∼2350 ∼105 ∼897 ∼1776 ∼45
N/C/T 1/4/0 4/3/2 2/1/4 2/5/1 2/2/1

Dataset Flights FBPosts

Errors, %
explicit/implicit missing
values, 8-38%

wrong encoding, 16%

incomplete datetime for-
mat, 95%

syntactic errors and trans-
lation, 18%

other syntactic/semantic
errors, 60%

We aim to minimize the number of data points in the training set
that are considered to be falsely classified as “inliers”. We base
this decision on our assumption that all the data partitions are of
“acceptable” quality, and no misclassification occurs. Preliminary
experiments showed that setting the contamination parameter to
1% leads, on average, to relatively higher predictive performance
compared to other values (including 0). Note that automated
hyperparameter tuning schemes are challenging in the case of
one-class classification problems, as we do not have labels for
both of the classes - acceptable and erroneous data.
Application to our example scenario. Based on the running
example, imagine the engineering team to apply the proposed
approach as a data quality monitoring tool to validate incoming
data batches before running data preprocessing and indexing jobs.
When a new data batch is examined and no alerts are raised, data
pipelines work without any difference and run the downstream
preprocessing and indexing job. In case an alert is raised, the team
starts a debugging process and applies further error detection and
correction strategies. If the method caught the erroneous data
batch correctly, the team fixes it and released the quarantined
batch back to the pipeline. In the case of false alarms, the data
is returned without alterations. The critical point is when the
erroneous data batch passes data quality checks and goes further
to the downstream pipeline without the errors being fixed (i.e.,
false positives). In this case, system crashes and degradation in
the predictive performance of the underlying ML model might
occur.

5 EVALUATION
In this section, we introduce our experimental setup and discuss
datasets and metrics for our evaluation. We conduct several ex-
periments. First, we compare the predictive performance of our
approach to automated and hand-tuned variants of the follow-
ing state-of-the-art solutions: Tensorflow Data Validation [6],
Deequ [43], and statistical testing [32, 41]. Then, we evaluate the
sensitivity of our approach towards six types of errors (explicit
and implicit missing values, numeric anomalies, typos, swapped
fields on numeric and textual attributes) and the predictive per-
formance under various error magnitudes (1, 5, 10, 20, . . . , 80%)
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in a controlled environment for datasets with synthetically gen-
erated errors. Finally, we evaluate the detection quality of our
approach over time, as (a) the size of the training set for the
novelty detection algorithm grows continuously, and (b) its data
characteristics change over time.

5.1 Experimental Setup
We evaluate our proposed approach as follows. We experiment
with a relational dataset that is partitioned by a chosen tempo-
ral attribute (e.g., a creation timestamp for every record). This
allows us to simulate our target scenario of the daily ingestion
of new data batches in a data pipeline. For every data point that
corresponds to a particular day 𝑡 , we use the previously observed
partitions from timestamp 0 to 𝑡 − 1 as training data for our
approach. Then, we take both the partition 𝑑𝑡 and a corrupted
version 𝑑𝑡 as a counterpart, pass it to our model, and have it
predict whether the partition is of acceptable data quality or not.
Data partitions of acceptable quality are those that do not affect
KPIs and usually depend on the downstream ML task. However,
to decouple our experimental evaluation from the underlying
ML task, we consider partitions of acceptable data quality the
ones that do not contain any errors. We apply standard binary
classification metrics such as the area under the ROC curve (ROC
AUC score [22]) to evaluate how well the approach performs. We
also report confusion matrices to analyze misclassification and
false alarm rates.
Datasets. We experiment on five publicly available real-world
datasets from different application domains. For two of them,
we have access to both the erroneous and the cleaned versions
of the data [25]. The other three do not contain any errors, we
thus generate the errors synthetically [9, 14, 16]. For details, see
Table 2.
Datasets with ground-truth errors. The Flights1 dataset [25] con-
tains flight status data that is aggregated from 38 different data
sources (the airline and the airport websites, third-party web re-
sources). Each record represents a particular flight on a particular
day and includes attributes such as the scheduled departure/ar-
rival, the actual departure/arrival, and the departure/arrival gates.
FBPosts2 is a dataset of crawled Facebook posts for which we
have chronological information, as well as the erroneous and the
manually cleaned versions of the data (using OpenRefine [24]).
The dataset contains information about a sample of posts - their
title, content type, text, the week it was written, the domain
and the image URL, the number of likes, and the web page it
was crawled from. Missing values are the most common error
type for this dataset. Both datasets have an attribute that defines
the chronological order and enables splitting them into parti-
tions. Two variants of each dataset, the one with errors occurred
and the one where the errors are fixed, are provided. We utilize
these variants as partitions of acceptable data quality and their
corrupted counterparts for our evaluation scenario.
Datasets without ground-truth errors. Amazon Review [16] and
the Online Retail3 [9] are two retail datasets. The Amazon
Review4 dataset contains information about product reviews:
their ID, title, category, brand, sales ranking, and related products.
The Online Retail dataset contains historical transactional data
from aUK-based retailer. It includes the invoice number, customer

1http://lunadong.com/fusionDataSets.htm
2https://github.com/sergred/automating-data-quality-validation-data
3http://archive.ics.uci.edu/ml/datasets/Online+Retail/
4http://jmcauley.ucsd.edu/data/amazon/

ID, country, quantity, description, and the unit price of a product
being purchased. The third dataset contains information about
Drug Reviews5 [14]. It includes the name of a drug, medical
conditions this drug has been designed for, ratings and reviews,
the review date, and the number of users who considered this
review useful. All three datasets have a mix of numeric and
categorical attributes. They also contain an attribute that defines
chronological order and enables partitioning, but we do not have
ground-truth errors available for them.
Synthetic error types. In order to experiment with the datasets
that do not provide ground truth, we inject six types of synthetic
errors. We choose these types of errors because (a) they are
commonly encountered in real-world use cases in industry and
mentioned by many practitioners [6, 18] and (b) the majority of
them is used as example error types in the research field of error
detection [1, 27, 28, 34, 47]. We briefly describe these error types
below.
• Explicit missing values - empty cells in the data as a result of
wrong data collection or integration (e.g., left outer join of two
tables) or, simply, an optional field in a web form that was
never filled by the end-user and, thus, assigned as NULL while
crawling. We remove a fraction of the values of an attribute,
replacing them with NULLs;

• Implicit missing values - empty cells in the data that are en-
coded with values of an attribute’s data type that semantically
represent a missing value, e.g., a string ‘NONE’ or a numeric
value out of the attribute’s domain. In practice, implicit missing
values are the result of missing value imputations mechanisms
that are implemented in a data pipeline. We replace a fraction
of the values of an attribute with ‘NONE’ values for textual
fields or encode it as 99999 for numeric fields.

• Numeric anomalies - unexpected numeric values as a result
of malfunctioning sensors, errors in scaling or type casting
(e.g., change of measurement units from centimeters to meters,
wrong parsing of 𝑐𝑠𝑣 files due to commas as decimal separators,
etc.). For continuous numeric attributes, we corrupt a fraction
of the values by replacing them with Gaussian noise that is
centered at the mean value of the attribute and has a standard
deviation that is scaled randomly from the interval of 2 to 5;

• Swapped numeric fields - misplacement of numeric values as
a result of user mistake or wrong parsing, such as swapping
the length and the width values of a retail product. We choose
two numeric fields in the dataset and swap a fraction of the
values from one attribute to another and vice versa;

• Swapped textual fields - analogous to swapped numeric fields
on textual attributes, misplacement of textual values as a result
of user mistake or wrong parsing, such as swapping the first
name and the surname values of in a user registration form.
We choose two textual fields in the dataset and swap a fraction
of the values from one attribute to another and vice versa;

• Typos - unexpected spelling in textual attributes either due
to user mistakes or errors in parsing (e.g., wrong encoding).
We apply the “butterfinger” strategy that randomly replaces a
fraction of letters in textual attributes with other letters that
are neighbors on a “qwerty” keyboard layout.
Given the error types and descriptive statistics under investiga-

tion, sampling strategy does not have major effects on predictive
performance of our approach in most cases. For instance, explicit

5https://archive.ics.uci.edu/ml/datasets/Drug+Review+Dataset+%28Druglib.com%
29
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Figure 2: Comparison of the predictive performance of the proposed approach against three baseline solutions: Tensorflow
Data Validation, Deequ, and statistical testing. The subplots represent three different training settings where the baselines
learn from (a) only one recently observed data partition, (b) a combination of the last three data partitions, and (c) all the
observed partitions. The TFDV and Deequ baselines are evaluated in their fully automated variant and a hand-tuned
variant applying domain expertise. The bar chart shows that our approach outperforms the other automated baseline
solutions and reaches the predictive performance of the hand-tuned baselines. The automated variants of the baselines
tend to be conservative and produce false alarms in the majority of cases.

missing values would change the completeness measure, no mat-
ter wherein the data partition this error occurs. We use uniform
distribution for error generation in the evaluation setup.
Hardware specification.We use an Ubuntu workstation with
8 Intel i7-8550U CPU cores (1.80GHz) and 24Gb RAM. We run
all the algorithms with a single process and thread, with an
exception of one baseline solution - Deequ library - that is built
on top of Spark and runs at scale.

5.2 Comparison to Baselines
In our first experiment, we compare the predictive performance
of our proposed approach ( “avg. kNN” in Figure 2) to the existing
baseline solutions: Tensorflow Data Validation [6], Deequ [43],
and statistical testing [32, 41]. The purpose of this experiment
is to evaluate whether our automated approach can reach the
performance of hand-tuned state-of-the-art solutions.
Baselines.We compare the proposed approach against several
existing solutions. As the first baseline, we use univariate statis-
tical tests to detect shifts in data distribution between the pre-
viously observed data partitions and the current batch as an
indicator of errors. We use two tests - the Kolmogorov-Smirnov
test to detect shifts in continuous numeric attributes [32], and
the Pearson’s Chi-squared test to detect shifts in frequency dis-
tribution for categorical values [41]. For every attribute of a data
partition, we run one statistical test that gives a 𝑝-value as a
measure of whether the data values in the current batch come
from different data distribution than the values in previously ob-
served data partitions. We choose a test based on the attribute’s
data type (numerical or textual data) and compare the outcome
to a common threshold of 0.05. Note that we apply Bonferroni
correction to account for multiple tests.

We also use the Tensorflow Data Validation library [6] (TFDV)
to detect data schema violations as an indicator of erroneous par-
titions. TFDV uses data profiling techniques to model the state
of acceptable data quality by inferring their schema - attribute
names, data domains, various constraints (e.g., on data distribu-
tion, uniqueness, sparsity, etc.). Then, it tests new data against
inferred constraints and raises alerts upon schema violation as a
signal for potential degradation of data quality. Domain experts
use automated schema inference to facilitate data profiling and
analysis but they have to hand-tune the schema to keep it up-
to-date. In addition to the automated version of TFDV, we apply
a hand-tuned version where we define its data schema based
on data profiling and manual monitoring of data batches. This

setting aims to compare our approach to a baseline solution that
exploits domain expertise.

Lastly, we include theAmazon Deequ library [42] and utilize its
declarative data quality constraints to validate the data. Similar
to the TFDV baseline, we evaluate Deequ in both an automated
variant and a hand-tuned variant. In the former, Deequ runs data
profiling and constraint suggestion algorithms to generate data
unit tests to validate the quality of data partitions. In the latter,
we utilize a hand-tuned variant where we manually define the
checks to apply based on data profiling and inspection.
Evaluation scenario. For a relational dataset 𝑑 comprised of
chronologically ordered partitions 𝑑𝑡1 , . . . , 𝑑𝑡𝑛 and timestamps
𝑡1, . . . , 𝑡𝑛 , we sequentially pick a timestamp 𝑡𝑘 within the interval
𝑠𝑡𝑎𝑟𝑡 < 𝑘 < 𝑛, where 𝑠𝑡𝑎𝑟𝑡 is a predefined timestamp number to
start with and 𝑛 is the number of available partitions. We select
𝑠𝑡𝑎𝑟𝑡 as 8 in order to limit the minimum size of the training set to
8 data points. We show the partitions 𝑑𝑠𝑡𝑎𝑟𝑡 , . . . , 𝑑𝑡𝑘−1 as training
data to each approach.

For the datasets with the ground truth, we leverage the hand-
labeled “dirty” versions 𝑑𝑡1 , . . . , 𝑑𝑡𝑛 of these partitions for the
evaluation. We give both the clean data partition 𝑑𝑡 and its cor-
rupted counterpart 𝑑𝑡 to each approach, and let it decide whether
the data batch is of acceptable quality or contains errors. In this
experiment, we use only the datasets with available ground truth
to compare the predictive performance in real-world cases with
unspecified error types, error magnitudes, and real-world tempo-
ral changes in data characteristics.

For each approach, we record two predictions at each times-
tamp 𝑡𝑘 in the interval 𝑠𝑡𝑎𝑟𝑡 < 𝑡 < 𝑛 - one label for the partition
𝑑𝑡 and for the erroneous counterpart𝑑𝑡 respectively. We compute
the ROC AUC score based on the recorded prediction labels and
the ground truth, where 𝑑𝑡 has the “inlier” label, and 𝑑𝑡 has the
“outlier” label. We evaluate the automated baseline solutions in
three different settings, where the automated inference is based
on (a) the last, (b) three last, and (c) all previously observed parti-
tions with no further alteration of the derived rules, constraints,
or patterns, to ensure systematic comparison of our approach
in a fully automated mode. With the first two settings (one and
three data partitions), we evaluate whether using only the most
recent data is sufficient for the automated baseline solutions to
learn the state of “acceptable” data quality accurately and fast.
In contrast, the third setting is applied in order to evaluate the
predictive performance of baselines that take the whole training
set into account and include “far-in-the-past” data partitions.
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For the given experimental scenario and datasets, we spent
approximately two hours per dataset for data profiling, manual
inspection, and configuration of Deequ and TFDV via program-
ming interfaces. For Deequ, we implemented declarative unit
tests for data. For TFDV, we adjusted thresholds to allow for
particular fractions of previously unseen data and specified data
ranges. We must point out, however, that hand-tuning involved
analysis of the ground-truth clean data. In this way, we simu-
lated a “domain expert” who knows what errors are expected
in the data. In real-world use cases that assume “zero domain
knowledge”, the analysis we conducted might be infeasible.
Results. Figure 2 depicts the comparison of the predictive perfor-
mance of our approach (“Average KNN”, green) against the three
baseline solutions: Tensorflow Data Validation (yellow), Deequ
(blue), and statistical testing (red). The bar charts report predic-
tive performance on the Flights and the FBPosts datasets under
three different training settings. The baselines learn from (a) only
one recently observed data partition (“Last Partition”, left), (b) a
combination of the last three data partitions (“3 Last Partitions”,
center), and (c) all the observed partitions (“All Partitions”, right).
Tensorflow Data Validation and Deequ baselines are evaluated in
both the fully automated mode and in their hand-tuned variant.

The results indicate that our approach outperforms other auto-
mated baseline solutions and reaches the predictive performance
of hand-tuned baselines (ROC AUC score of 95%, whereas the
hand-tuned Deequ solution reaches 100% and 92% on the Flights
and FBPosts datasets, respectively). Other automated solutions
tend to produce false alarms in the majority of cases. We attribute
this to the fact that the automated baseline solutions are “con-
servative” and strict in terms of their chosen constraints, and
thereby produce false alarms in the majority of cases.

Table 3 depicts average execution times for both our approach
and the baselines. It shows that, on average, our approach is at
least one order of magnitude faster than the baseline solutions.
High computational efficiency is associated with the fact that
both the descriptive statistics and the KNN algorithm are easy
to compute and train. Since the Deequ library is built on top
of Spark, this baseline takes more time to check data quality
metrics for small datasets due to the large overhead for parallel
computation. However, we assume that Deequ might be more
efficient on large-scale data, where other baseline solutions would
perform reasonably slower.
Discussion. The errors in the dataset are mostly missing values
or inconsistencies due to data integration (e.g., different datetime
formats for different records). To be precise, 95% of the arrival
and departure time information have an inconsistent date-time
format, with a large fraction of the data missing. Inconsistencies
in the datetime format lead to two problems - either the year
is omitted, in which case several data preprocessing techniques
replace the missing value with the default year 1970, or the day
and month values are swapped as the solution has no means
of distinguishing these values. 63% of the arrival and departure
gates information is inconsistent in the following ways: (1) pres-
ence of explicit and implicit missing values; (2) the missing value
encoding differs (e.g., ‘-’, ‘–’, ‘Not provided by airline’); or (3) the
information is semantically incomplete (e.g., the ‘Gate 2’ value
is replaced with the value ‘Terminal 8, Gate 2’, etc.). Since the
cleaned version of the dataset was provided semi-automatically,
most of the records which contained missing values were im-
puted where possible (e.g., by aggregation) or omitted as there

Table 3: Average execution time (in seconds) for base-
line comparison. We compare our approach (Avg. KNN)
against three baselines (Deequ, Tensorflow Data Valida-
tion, and statistical testing), each of them computed in
three modes, where (a) one last, (b) three last, and (c) all
previously observed partitions are used for training. The
table shows that the average execution time of our ap-
proach is one order ofmagnitude faster than the baselines.

Candidate Mode Flights Data FBPosts Data Amazon Data

Avg. KNN - 0.042 +- 0.001 0.006 +- 0.001 0.215 +- 0.087

Deequ
1 Last 0.322 +- 0.018 0.313 +- 0.020 0.782 +- 0.358
3 Last 0.381 +- 0.026 0.329 +- 0.022 1.560 +- 0.800
All 1.115 +- 0.382 0.468 +- 0.084 6.937 +- 5.427

TFDV
1 Last 0.141 +- 0.043 0.036 +- 0.008 6.679 +- 3.380
3 Last 0.295 +- 0.060 0.058 +- 0.014 7.479 +- 3.753
All 1.388 +- 0.702 0.126 +- 0.060 14.40 +- 9.940

STATS
1 Last 0.189 +- 0.025 0.160 +- 0.035 11.30 +- 3.575
3 Last 0.194 +- 0.067 0.189 +- 0.061 20.20 +- 6.613
All 0.204 +- 0.069 0.379 +- 0.439 105.6 +- 30.80

Table 4: Confusion matrices for the baseline comparison.
Analogous to Table 3, we compare our approach against
three baselines in three different modes. We evaluate
TFDV and Deequ baselines in their fully automated vari-
ant and a hand-tuned variant applying domain expertise.

Flights Data FBPosts Data
Candidate Mode TP FP FN TN TP FP FN TN
Avg. KNN - 30 0 1 29 52 0 5 47

Deequ
1 Last 30 0 30 0 50 2 51 1
3 Last 30 0 28 2 52 0 52 0
All 30 0 22 8 52 0 52 0

Deequ
Hand-Tuned

1 Last 30 0 0 30 48 4 4 48
3 Last 30 0 0 30 48 4 4 48
All 30 0 0 30 48 4 4 48

TFDV
1 Last 0 30 0 30 0 52 0 52
3 Last 24 6 8 22 0 52 0 52
All 28 2 23 7 0 52 0 52

TFDV
Hand-Tuned

1 Last 21 9 2 28 0 52 0 52
3 Last 0 30 0 30 0 52 0 52
All 0 30 0 30 50 2 4 48

STATS
1 Last 0 30 0 30 0 52 0 52
3 Last 0 30 0 30 0 52 0 52
All 0 30 0 30 0 52 0 52

were no means to guarantee the correct missing value imputa-
tion scheme. 18% of the categorical attribute ‘contenttype’ have
implicit missing value ‘nan’ or syntactic mismatch in categories
(e.g., a combination of German and English words for ‘article’).
16% of the attribute ‘text’ have the wrong encoding.

Our approach performs well on the given datasets and reaches
a ROCAUC score of 95%.Many of the baseline solutions, however,
perform on the level of random guessing. Further analysis reveals
that these baselines label the majority of the data partitions as
erroneous (See Table 4). The reason why the data partitions are
labeled as erroneous is due to the conservative default settings of
the baseline solutions, as they are primarily designed to strictly
detect data quality degradation and have false alarm rates as a
secondary concern. Further analysis indicates that TFDV pre-
sumably detects errors in attributes where we know for certain
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Figure 3: Overview of the predictive performance of our approach on three real-world datasets with synthetically gener-
ated errors under varying error magnitude (X-axis, 1 to 80%). We consider six error types: explicit and implicit missing
values, numeric anomalies, typos in textual attributes, swapped fields for numeric and textual attributes. We observe two
patterns: (a) similar predictive performance regardless of the fraction of errors (flat lines), or (b) gradual growth of the
predictive performance towards bigger error magnitude, with the distinctive, more rapid growth for fractions up to 20%.

that there are no errors present. The ‘Source’ and the ‘Flight’
attributes of the Flights dataset do not contain errors. However,
TFDV detects a violation of data schema as there are previously
unseen values in the new batch, so the attribute domain has
changed. A similar situation holds for the FBPosts dataset, with
one additional type of alert - “non-boolean values” (as FBPosts
contains one boolean attribute).

As for the hand-tuned baselines, Deequ reaches a perfect ROC
AUC score on the Flights dataset and 92% on the FBPosts with
hand-tuned thresholds for the completeness metric. For TFDV,
the ROC AUC score ranges from 50 to 82%. The “min domain
mass” parameter (i.e., a minimal fraction of data records that
have to be included from the inferred data domain) was set to
0 in order to allow for any fraction of previously unseen values
in the data partition. Thresholds for the completeness metric
were set similarly to the Deequ baseline. This finding highlights
that manual data quality monitoring and hand-tuning of existing
solutions with the domain expertise is highly dataset-specific
and tedious.

Note that, for Tensorflow Data Validation in several settings,
the automated variants perform better than the hand-tuned vari-
ant. The reason is that the automated variants are retrained after
a new data partition becomes available, whereas the hand-tuned
variant is specified once on the initial training set (i.e., 𝑡1 to 𝑡𝑠𝑡𝑎𝑟𝑡 ).

5.3 Sensitivity to Different Error Types and
Magnitudes

In this experiment, we evaluate whether our approach detects
all error types under varying error magnitudes with the similar
predictive performance or whether there are error types that are
harder to detect than others.
Evaluation scenario. For every dataset 𝑑 with synthetically
generated ground truth, we fix the error type and the error mag-
nitude for generating corrupted data partitions 𝑑𝑡 . Other than
that, the evaluation scenario is identical to the one in Section 5.2.
Results. Figure 3 shows line charts that represent predictive
performance of our proposed approach per dataset and error
type, where the x-axes of the plot depict the error magnitude.
We are interested in the relationship between the predictive per-
formance of our approach and the fraction of errors that are
introduced in data partitions. Two distinctive patterns arise in
terms of the curve shapes: (a) flat lines represent similar predic-
tive performance regardless of the fraction of errors, whereas (b)
the curves with gradual growth towards more significant error
magnitudes mean that it is easier to detect degradation in data
quality with greater fractions of the data partition being affected.

The latter curves capture rapid increase for smaller fractions of 1
to 20%. The relative difference in predictive performance between
the error types varies among the datasets and error magnitudes.
Even though the Drug Review and the Online Retail datasets
show resemblance in terms of the ROC AUC score, the Amazon
dataset exhibits different patterns. For instance, the kNN novelty
detection approach shows constant predictive performance rate
on Amazon’s numeric anomalies but has a “learning curve” for
Drug Review or Online Retail.
Discussion. The figure shows that, in general, the predictive
performance differs from one error type to another. We attribute
this behavior to two findings from the experiment’s analysis.
First, some types of errors are, in fact, easier to recognize than
others. That statement holds for the use cases of manual data
quality monitoring that are conducted by domain experts. For
instance, an explicit missing value (e.g., a NULL value) is reason-
ably straightforward to detect even when few data records are
corrupted. Other error types, such as numeric anomalies, can
be detected only in cases where the ranges of acceptable values
are available, or the assumption on data distribution exist [18].
Comparing ROC AUC scores between the error types, error mag-
nitudes, and datasets indicates that predictive performance is
dataset-specific and likely depends on scales and domains of
every data attribute. In the majority of cases, however, missing
values and numeric anomalies can be detected relatively reliably
and result in high ROC AUC scores.

For every error type that we investigate, there are descriptive
statistics that provide better features for classification. For in-
stance, the completeness measure is more descriptive to detect
explicit missing values. Data distribution measures(e.g., mean,
standard deviation, minimum, maximum) are more descriptive
to detect numeric anomalies. However, there is no single metric
that is more descriptive than others for all given error types.

Note that our approach often performs reasonably well in
cases of small error magnitudes (already at 10%), when intro-
duced errors drastically affect the descriptive statistics of a data
partition. Should our approach be insensitive to a specific error
distribution (or particular error types), our approach can be ex-
tended by adding another descriptive statistic that is sensitive to
this error distribution or error type.

Based on Figure 3, typos (brown) appear to be the hardest error
type that we consider in this study. We assume that the index of
peculiarity for textual attributes is a direct proxy for this error.
However, predictive performance on the Drug Review dataset
nearly reaches the level of random guessing, whereas on other
datasets it exhibits a slow learning curve. Further experimental
analysis reveals several differences between textual attributes on
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the datasets under investigation. Our approach performs well in
cases where attributes have categorical values with rather low
cardinality and high repetition of values (e.g., country code). It
also performs well on long texts such as reviews and descriptions
with high a likelihood of word repetition within the data batch.
In this case, a typo that is introduced in one word that repeats
itself in the data batch yields high chances for this error to be
detected by our approach, as this word becomes “peculiar” in
the context of the data batch. On the other hand, typos that are
introduced in almost-unique words that belong to a dictionary
of a textual attribute would not be detected as this error replaces
one unique word to another. For several curves that involved
textual attributes, there exists a downward trend at the begin-
ning when the training set is small. It happens due to our design
decision to keep a constant contamination parameter (see Sec-
tion 4, “Modeling Decisions”). In cases of small training sets, the
kNN algorithm learns a broad decision boundary that leads to
false positive results (i.e., where the majority of data points are
considered inliers). Only with the growing training set, the deci-
sion boundary becomes smaller and yields more accurate results.
One preventative measure is to ensure large initial training sets.
When this is not possible, another option is to adaptively select
larger contamination parameters for smaller training sets.

We obtain several findings regarding the relationship between
the predictive performance of our approach and error magni-
tude. In general, we note two patterns in the curve. The first case
is where the ROC AUC score remains approximately constant
across all error magnitudes and does not depend on the fraction
of corrupted records in a data partition. This happens in cases
where a few erroneous records in a data partition are sufficient
to affect descriptive statistics and reliably identify the data parti-
tion as erroneous. The second case is where the ROC AUC score
increases gradually with the growth of the error fraction. In this
case, the reason is that detecting data quality degradation be-
comes easier when more data in the partition are corrupted. One
example is the explicit missing values error type. Note that, for
this example, a clean partition 𝑑𝑡 might allow for missing values,
so that a simple rule of “100% completeness” is not applicable.
Thus, the higher the difference between the fraction of missing
values in between clean and erroneous data partitions, the higher
is the overall ROC AUC score. Note that the shape of the curve
and the rate of growth are dataset-specific.

5.4 Sensitivity to a Combination of Errors
We also extend the experiment from Section 5.3 to evaluate the
sensitivity of our approach to scenarios where a combination of
two different error types occurs in the same data partition.
Evaluation scenario. For every dataset 𝑑 with synthetically
generated ground truth, we fix the error magnitude to 50% for
generating corrupted data partitions 𝑑𝑡 . We choose an attribute
𝐴𝑚 of every data partition 𝑑𝑡 and apply a pair of error types
(if suitable for the attribute’s data type). We use all pairwise
combinations of error types under investigation. Other than that,
the evaluation scenario is identical to the one in Section 5.2. Note
that, as we sample the values-to-corrupt uniformly, there is an
overlap in selected cells of a data partition 𝑑𝑡 for the first and the
second error type of the pair (∼ 40%). For the overlapping values,
the second error type overrides the changes made by the first
type, resulting in approximate distribution of corrupted values
to be 20% of the data partition and 30% respectively. In the case
when the union of changes provided by each error type exceeds

50% of the data partition, we uniformly sample changes from
the union to ensure total error magnitude of 50%. We compare
the predictive performance of our approach to the respective
performance when only one of the error types is applied.
Results. For every attribute of every dataset and every applied
pair of error types under investigation, we computed three ROC
AUC scores: the one where only the first error type is applied
to corrupt the data, the one where only the second error type is
applied, and one for a combination of applied error types. For
all computed scores, we report the mean squared error of 0.028
between the ROC AUC score on a combination of error types
and the maximum of ROC AUC scores where only one of the
two error types is applied.
Discussion. The results indicate that the predictive performance
of our approach in the case when two error types are combined
is, on average, close to the performance on a single error type,
the “easiest to detect” of the two, taking into account reduced
error magnitudes (i.e., when errors corrupt 20-30% of the data
partition separately, adding up to a total error magnitude of 50%).
We generalize this observation to a combination of more than
two error types that corrupt a data partition together.

5.5 Detection Quality over Time
In this experiment, we evaluate the detection quality of our
approach over time. The motivation behind this experiment is
twofold: (a) the size of the training set for the novelty detection
algorithm grows continuously, which might gradually improve
predictive performance, and (b) data characteristics are volatile
and can change over time, which might lead to the occasional
degradation of predictive performance.
Evaluation scenario. For every dataset 𝑑 with synthetic errors,
we fix the error type for generating corrupted data partitions 𝑑𝑡 .
We compute two labels for every daily-ingested data partition,
one for the clean variant and one for the corrupted counterpart.
When we visualize ROC AUC scores over time, we aggregate
these labels on a monthly basis and plot line charts with months
as X-axes. Other than that, we leverage a setup that is identical
to previous experiments.
Results. Figure 4 depicts the line charts that represent changes
in the predictive performance of our approach over time, where
the x-axis is the monthly time window (for clarity reasons, it
is shown by year in the “Drug Review” graph). Two distinctive
patterns arise in terms of the curve shape: (a) flat lines repre-
sent approximately constant predictive performance, whereas
(b) curves with the gradual increase indicate improvements over
time and, respectively, with the growing size of the training set
(see Drug Review). The latter examples converge to a stable rate
and further resemble the behavior of approximately constant
predictive performance.
Discussion. The results indicate how the predictive performance
of our approach changes over time, with the corresponding
growth of the training set for the novelty detection algorithm to
learn from. Similar to the previous section, we see two patterns.
First, in most of the cases, the average prediction performance
does not change significantly over time. This finding might be
counter-intuitive at first, as we usually assume that an ML-based
algorithm tends to perform better with more data points to train
from. The reason for the approximately constant ROC AUC score
is that data points that represent erroneous data partitions are
likely to be far from the decision boundaries learned by the kNN
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Figure 4: Predictive performance of our approach over time (X-axis). The figure depicts line charts that represent the
ROC AUC score for every dataset with the ground truth, per error type over time. Various magnitudes of errors and data
attributes are aggregated. The results show that, in the majority of cases, the predictive performance does not improve
significantly over time with the growth of the size of the training set. Several cases (Retail, swapped fields and numerical
outliers) demonstrate an initial increase of the ROC AUC score, followed by convergence to a stable rate over time. Note
that, for the Amazon dataset, line charts that depict missing values, numeric anomalies, and swapped fields error types
overlap and are represented by one line (red).

algorithm. These far-off data points (i.e., outliers) are likely to
be detected reliably even under the limited size of the training
set and, therefore, lead to the stable predictive performance of
the kNN novelty detection approach. The second pattern is a
gradual increase in the predictive performance in the beginning
until we converge to a stable performance rate. Examples are
explicit missing values and swapped textual fields for the Drug
Review dataset. We attribute this pattern to the insufficient size
of the training set to learn the decision boundaries that lead to
reliable predictions. We assume that the stage of gradual increase
in predictive performance corresponds to the “learning process”
of the approach to derive accurate decision boundaries with clear
benefits of accumulating more data points to the training set.
After convergence, re-training of the approach is necessary to
self-adapt to temporal changes in data.
The importance of batch frequency. Preliminary experiments
show that, when choosing between daily, weekly, and monthly
ingestion frequencies, daily ingestion of data led to relatively
higher predictive performance. We associate this phenomenon
with larger sizes of the training set.

6 RELATEDWORK
We distinguish two lines of research that address related data
management issues at different angles - error detection for data
cleaning [1, 27, 36, 40, 47] and data quality validation [3, 20, 43].
Error detection for data cleaning. The goal of error detection
mechanisms is to find the exact data records and attributes that
contain errors. Abedjan et al. [1] consider four different cate-
gories of error detection solutions: (a) rule violation, (b) pattern
violation, (c) outlier detection, or (d) duplicate conflict resolution
based systems. Some of the algorithms require rules or patterns
to be specified by the end-user. Outlier detection based meth-
ods require clean data to be present in order to “learn” what the
inliers are and then decide whether particular records deviate
from the expected behavior. Our approach follows similar ideas
but constructs feature vectors based on the corresponding data
quality metrics that are computed over the data partition instead
of relying on the raw data itself. This leads to feature vectors of
low dimensionality, fast model training, and guarantees numeric
representation of feature vectors. The last category, duplicate
conflict resolution systems, handles the specific case of duplicate

entities in the data, and does not cover other types of errors. Com-
pared to the existing error detection algorithms, our approach
can detect unspecified error types and does not require domain
expertise in terms of rules, patterns, or labeled examples.
Data validation. Thesemethods aim tomake a decisionwhether
the data is valid w.r.t. particular assumptions. Tensorflow Data
Validation [6] models the state of acceptable data quality with
the user-defined data schema - attribute names, data domains,
various constraints (e.g., on data distribution, uniqueness, spar-
sity, etc.). It, then, tests new data against the specified constraints
and raises alerts upon schema violation. To assist the end-user,
initial data schema can be inferred automatically by analyzing
reference data (i.e., an “acceptable” data sample). As stated by
the authors, schema refinement by domain experts is required to
guarantee the performance of the library, and the schema infer-
ence functionality is provided as an aid, not a replacement of the
domain expert. Data linter [20], on the contrary, validates data
against data lints - deviations from accepted practices of data
analysis (analogous to code lints - snippets of code that depict
deviation from best practices in software engineering). The lints
are predefined by the developers of the tool yet are extensible
in case customized practices are in place. Another example is
the Deequ library for automating the verification of data quality
at scale [42], which proposes unit tests for data - a declarative
specification of integrity constraints, such as completeness, con-
sistency, syntactic and semantic accuracy, which the end-user
needs to specify. Schelter et al. [42] also introduce functional-
ity for automated constraint suggestion based on data profiles
(collected descriptive statistics on data attributes). However, this
method requires the presence of reference data - a sample of the
data population that is considered to be of acceptable quality
and is designed to generate suggestions that are validated by a
domain expert. The Metanome platform [36] is a tool for data
profiling that incorporates numerous algorithms for the detection
of functional, order, or inclusion dependencies, as well as cardi-
nality estimation. This method is not a data validation solution as
such, but allows to automatically discover patterns from data that
later could be used as rules for data quality. Metanome requires
“acceptable” data samples to be present for reliable mining of the
data quality patterns. As the main purpose of Metanome is data
profiling and not directly data quality validation, this framework
requires additional rules for detection of data quality issues and
cannot be used directly as a data quality validation tool [10].
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To summarize, existing approaches require domain knowl-
edge to define rules, denial constraints, patterns, configuration
of error detection solutions [1, 27], integrity constraints, data
unit tests [42], error generators [39], data schema [6], or data
lints [20]. Automation tools exist for data profiling, constraint
suggestion, schema inference, or error detection. These solutions
assume a domain expert in the loop. Our approach, in contrast,
does not require any domain knowledge specified explicitly for
common error types. In contrast to existing solutions, it is in-
spired by the work of Bleifuß et al. [4] on exploring changes in
dynamic data, Ehrlinger et al. [10] on automating data quality
validation, and Ioannou et al. [21] on generating benchmark data.
Finally, as our experimental analysis indicates, few automated
solutions for data quality validation appear to be particularly
“conservative” and produce false alarms in the majority of cases.

7 CONCLUSION & FUTURE WORK
Data quality validation is crucial for large-scale production pipelines.
Challenging cases are the ones where domain expertise is incom-
plete and data changes over time. We showed that collecting
simple descriptive statistics over the data and analyzing them
with novelty detection methods makes it possible to distinguish
critical errors in data. In contrast to existing solutions, our ap-
proach does not require domain experts to define rules or labeled
examples, and self-adapts to temporal changes in the data char-
acteristics. We evaluated our approach against existing baselines
on five real-world datasets with real and synthetically generated
errors. We found that our approach detects the unspecified er-
rors in many cases under varying error magnitudes, outperforms
other automated solutions in terms of predictive performance,
and reaches the ROC AUC score of baselines that are hand-tuned
with domain expertise.

In future work, we plan to investigate more exotic types of er-
rors and intend to look deeper into specific types of errors that are
hard to capture by common data quality metrics, e.g., errors that
are a deterministic function of the inputs (like accidentally chang-
ing the encoding). As there exist few real-world datasets that are
available for evaluation purposes in data quality validation on
dynamic data, we also intend to provide a set of benchmarking
datasets. These datasets should contain a wide range of error
types and patterns of temporal changes in data characteristics.
This will enable research on controlling the false alarm rates for
novelty detection algorithms in data quality validation settings.
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ABSTRACT

In this paper, we investigate the efficient computation of the

provenance of rich queries over graph databases. We show that

semiring-based provenance annotations enrich the expressive-

ness of routing queries over graphs. Several algorithms have pre-

viously been proposed for provenance computation over graphs,

each yielding a trade-off between time complexity and gener-

ality. Here, we address the limitations of these algorithms and

propose a new one, partially bridging a complexity and expres-

siveness gap and adding to the algorithmic toolkit for solving this

problem. Importantly, we provide a comprehensive taxonomy

of semirings and corresponding algorithms, establishing which

practical approaches are needed in different cases. We implement

and comprehensively evaluate several practical applications of

the problem (e.g., shortest distances, top-𝑘 shortest distances,

Boolean or integer path features), each corresponding to a spe-

cific semiring and algorithm, that depends on the properties of

the semiring. On several real-world and synthetic graph datasets,

we show that the algorithms we propose exhibit large practical

benefits for processing rich graph queries.

1 INTRODUCTION

Graph databases [32] are part of the so-called NoSQL DBMS

ecosystem, in which the information is not organized by strictly

following the relational model. The structure of graph databases

is well-suited to representing some types of relationships within

the data, and their potential for distribution makes them ap-

pealing for applications requiring large-scale data storage and

massively parallel data processing. Natural example applications

of such database systems are social network analysis [13] or the

storage and querying of the Semantic Web [5].

Graph databases can be queried using several general-purpose

navigational query languages, an abstraction of which is regu-
lar path queries (RPQs) [6] (or generalizations thereof, such as

C2RPQs) on paths in the graph. Recently, based on existing solu-

tions to querying property graphs – such as Neo4j’s Cypher [17]

query language or Oracle’s PGQL [38] – an upcoming interna-

tional standard language for property graph querying, GQL [22],

is being designed as a standalone language complementing SQL.

GQL will notably incorporate support for RPQs.

In parallel with these recent developments, the notion of

provenance of a query result [34], a familiar notion in relational

databases, has recently been adapted to the context of graph

databases [31], using the framework of provenance semirings [18].

In this framework, edges of a graph are annotated, in addition to

usual properties, with elements of a semiring; when evaluating

© 2021 Copyright held by the owner/author(s). Published in Proceedings of the

24th International Conference on Extending Database Technology (EDBT), March

23-26, 2021, ISBN 978-3-89318-084-4 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons
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Figure 1: Example road network represented by a graph

with provenance annotations along two dimensions: max-

imum height ℎ (as a positive number) a vehicle must have

to use the road segment, and a Boolean indicating the pres-

ence of an electrical charging station. When a dimension

is not mentioned, the annotations are assumed to be, re-

spectively, ℎ ⩽ ∞ and ¬(charging station).

a query, traversing the paths on the graph can generate new

annotations depending on the semiring operators, resulting in

a semiring value associated with every query result, called the

provenance of the query result. By choosing different semirings,

different information on the query result can be computed. For

example, when edges are annotated with elements of the tropical
semiring (nonnegative real numbers) expressing the distance be-

tween vertices, the provenance of the query result computes the

shortest distance of paths that produce this result; when edges

are annotated with elements of the counting semiring (natural

integers) interpreted as multiplicity, the provenance of the query

result computes the (possibly infinite in case of cycles) number

of ways each query result can be obtained. Underlying properties

of the semiring directly control how the information on graph

edges is encoded, and also how efficient algorithms for query

processing are.

Beyond these simple examples of semirings, the framework of

semiring provenance also allows modeling of intricate issues, e.g.,

when the problem of interest can be decomposed into several sub-

problems andwhen the resulting provenance does not necessarily

correspond to a particular path in the graph.

Example 1.1. Consider the example of a road transportation

network modeled as a directed graph with provenance anno-

tations on edges. We can for example encode the presence of

points of interests (such as gas stations, restaurants, or electrical

charging stations) as Boolean features on edges, and road prop-

erties (e.g., maximal height or weight for a bridge or tunnel) as

real-valued features.

We will show that, using semiring provenance, we can deal

with graph queries that take into account multiple such features:

a pair of vertices is valid for the queries if there exists at least

one valid path for each restriction between the two locations.

An application of this would be to ensure that different vehicle

categories (say, a high-clearance truck and an electric car that

requires charging on the way) can properly reach a common

destination from the same origin.
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Another possible semantics for semiring provenance is to

check that all paths between two vertices verify (or exclude) some

properties (e.g., absence of tolls, or presence of gas stations on

the route) thus providing road administrators crucial information

on the global state of the roads between two points.

This is illustrated in Figure 1, a road network where some road

segments have restrictions on the height on vehicles; this is a

first dimension of provenance. The second dimension records

whether there exists an electrical charging station on the road

segment – in our example, this is the case for only one edge.

In our previous preliminary research [31], we generalized

three existing algorithms from a broad range of the computer

science literature to compute the provenance of regular path

queries over graph databases, in the framework of provenance

semirings. Together, these three generalizations cover a large

class of semirings used for provenance, each yielding a trade-

off between time complexity and generality. We also performed

experiments suggesting these approaches are complementary

and practical for various kinds of provenance indications, even

on a relatively large transport network.

In this paper, we extend this work by:

• Introducing a novel algorithm,MultiDijkstra, for com-

mutative 0-closed (or absorptive) semirings. This algorithm,

generalizing Dijkstra’s algorithm and leveraging prop-

erties of distributive lattices, partially bridges a strong

computational gap between two classes of semirings left

untreated in our previous research. The complexity of the

queries exemplified here belongs in this gap, and strongly

motivated our interest to develop the algorithms in this pa-

per. The experiments we performed demonstrate that our

new algorithm can scale up to very large networks with

dozens of millions of nodes, bringing a notable improve-

ment with respect to the state of the art of provenance

computation in graph databases.

• Establishing a precise summary, in the form of a taxonomy,

of the algorithms used in our context, along with their

complexities and expected properties of the underlying

semirings used for the provenance annotations. We also

analyze similarities with classes of semirings which are

used either for computing provenance of relational algebra

queries [19] or of Datalog programs [11].

• Performing a comprehensive set of experiments on real-

world data demonstrating the running time of provenance

computation over graphs, over a wide variety of semirings

and covering different use cases. We also observe that pa-

rameters depending on the topology of the graph, such as

treewidth [27] seem to have a higher impact on the effi-

ciency of the algorithm than distance-based parameters

such as the highway dimension [4]. The implementation of

all algorithms we use for these experiments is freely avail-

able at https://bitbucket.org/smaniu/graph-provenance/

src/master/.

The paper is organized as follows. We start by introducing

in Section 2 some preliminaries: graph databases enhanced by

provenance annotations, a short overview of the algebraic theory

of semirings, and an explanation on which semiring can be used

for provenance annotations in a few selected practical applica-

tions. We revisit in Section 3 the algorithms we proposed in [31]

and discuss their limitations. Section 4 is a taxonomy summa-

rizing classes of semirings and associated algorithms for graph

provenance. In Section 5, we introduceMultiDijkstra and the

mathematical theory behind distributive lattices, whichMulti-

Dijkstra relies on. We present experimental results comparing

all algorithms in practice in Section 6 before discussing related

work in Section 7.

2 PRELIMINARIES

The framework we are considering is that of graph databases

enriched with semiring-based provenance annotations. We detail

here the notation and definitions we previously introduced in [31]

and extend it with some additional concepts. We also introduce

a large number of example semirings, to illustrate the generality

of the problem considered.

2.1 Semirings

The framework for provenance in relational databases introduced

by [18] uses the algebraic structure of semirings to encode meta-

information about tuples and query results. In what follows,

we present the basic notions needed for this paper; for further

details about the theory and applications of semirings, see [20]

and [18, 34] for their applications to provenance.

Definition 2.1 (Semiring). A semiring is an algebraic structure

(K, ⊕, ⊗, 0, 1) where K is some set, ⊕ and ⊗ are binary operators

over K, and 0 and 1 are elements of K, satisfying the following

axioms:

• (K, ⊕, 0) is a commutative monoid: (𝑎⊕𝑏) ⊕𝑐 = 𝑎⊕ (𝑏⊕𝑐),
𝑎 ⊕ 𝑏 = 𝑏 ⊕ 𝑎, 𝑎 ⊕ 0 = 0 ⊕ 𝑎 = 𝑎;

• (K, ⊗, 1) is a monoid: (𝑎 ⊗ 𝑏) ⊗ 𝑐 = 𝑎 ⊗ (𝑏 ⊗ 𝑐), 1 ⊗ 𝑎 =

𝑎 ⊗ 1 = 𝑎;

• ⊗ distributes over ⊕: 𝑎 ⊗ (𝑏 ⊕ 𝑐) = (𝑎 ⊗ 𝑏) ⊕ (𝑎 ⊗ 𝑐);
• 0 is annihilator for ⊗: 0 ⊗ 𝑎 = 𝑎 ⊗ 0 = 0.

Example 2.2. It is easy to check that the following structures

are all semirings:

Tropical semiring. (R+ ∪ {∞},min, +,∞, 0).
Top-𝑘 semiring. For 𝑘 ⩾ 1 some integer,

((R+ ∪ {∞})𝑘 ,min
𝑘 , +𝑘 , (∞, . . . ,∞), (0,∞, . . . ,∞)),

where

min
𝑘 ((𝑎1, . . . , 𝑎𝑘 ), (𝑏1, . . . , 𝑏𝑘 )) = min

𝑘 {𝑎1, . . . , 𝑎𝑘 , 𝑏1, . . . , 𝑏𝑘 }

returns the 𝑘 smallest entries (with duplicates) among

those in 𝑎 and 𝑏, in increasing order, and

(𝑎1, . . . , 𝑎𝑘 ) +𝑘 (𝑏1, . . . , 𝑏𝑘 ) = min
𝑘 {𝑎𝑖 + 𝑏 𝑗 | 1 ⩽ 𝑖, 𝑗 ⩽ 𝑘}.

We further impose that only tuples that are in increasing

order are valid elements of the semiring. Note that the

top-1 semiring is the same as the tropical semiring.

Example: For 𝑘 = 2, (1, 2) ⊕ (1, 3) = min
2{1, 1, 2, 3} = (1, 1)

and (1, 2) ⊗ (1, 3) = min
2{1 + 1, 1 + 3, 2 + 1, 2 + 3} = (2, 3).

Counting semiring. (N ∪ {∞}, +,×, 0, 1), where

∀𝑎 ∈ N∗ 𝑎 + ∞ = 𝑎 ×∞ = ∞× 𝑎 = ∞

and 0 + ∞ = ∞, but 0 ×∞ = ∞× 0 = 0.

Boolean semiring. ({⊥,⊤},∨,∧,⊥,⊤), where ⊥ (resp, ⊤)
is interpreted as the Boolean false (resp., true) value.

𝑘-feature semiring. For 𝑘 ⩾ 1 some integer,

((R+)𝑘 ,min,max, (∞,∞,∞), (0, 0, 0))

where min and max are applied pointwise; it also exists

in dual form, with min and max exchanged.
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Integer polynomial semiring. (N[𝑋 ], +,×, 0, 1) where 𝑋
is a finite set of variables, and +, ×, 0, 1 have their standard
interpretations as polynomial operators and polynomial

values.

Shortest-path semiring.

((R+ ∪ {∞}) × Σ∗, ⊕, ⊗, (∞, 𝜀), (0, 𝜀))
with the following operators ⊕ and ⊗:
• (𝑑, 𝜋) ⊕ (𝑑 ′, 𝜋 ′) = (min(𝑑,𝑑 ′), 𝜋 ′′) where 𝜋 ′′ is 𝜋 if

𝑑 < 𝑑 ′, 𝜋 ′ if 𝑑 > 𝑑 ′, and min(𝜋, 𝜋 ′) (in lexicographic

order, assuming some order on Σ) if 𝑑 = 𝑑 ′;
• (𝑑, 𝜋) ⊗ (𝑑 ′, 𝜋 ′) = (𝑑 +𝑑 ′, 𝜋 ·𝜋 ′) if neither 𝑑 nor 𝑑 ′ is∞;
and (𝑑, 𝜋) ⊗ (𝑑 ′, 𝜋 ′) = (∞, 𝜀) if either 𝑑 or 𝑑 ′ is∞.

As we shall see further, these examples all yield useful appli-

cations for provenance over graphs.

We now consider properties of semirings that will be of interest

to develop specific algorithms – we will illustrate these properties

on the example semirings of Example 2.2. Some of the properties

are summarized in Figure 2; ignore annotations for algorithms

in blue for now.

A semiring is commutative if for all 𝑎, 𝑏 ∈ K, 𝑎 ⊗ 𝑏 = 𝑏 ⊗ 𝑎.
A semiring is idempotent if for all 𝑎 ∈ K, 𝑎 ⊕ 𝑎 = 𝑎. In an

idempotent semiring we can introduce a natural order defined by
𝑎 ⊑ 𝑏 iff it exists 𝑐 ∈ K such that 𝑎 ⊕ 𝑐 = 𝑏.1 Note that this order
is compatible with the two binary operations of the semiring: for

all 𝑎, 𝑏, 𝑐 ∈ K, 𝑎 ⊑ 𝑏 implies 𝑎 ⊕ 𝑐 ⊑ 𝑏 ⊕ 𝑐 and 𝑎 ⊗ 𝑐 ⊑ 𝑏 ⊗ 𝑐 . An
important property that we wish to use in our setting is that of

k-closedness [29], i.e., a semiring is 𝑘-closed if:

∀𝑎 ∈ K,
𝑘+1⊕
𝑖=0

𝑎𝑖 =

𝑘⊕
𝑖=0

𝑎𝑖 .

Here, by 𝑎𝑖 we denote the repeated application of the ⊗ operation
𝑖 times, i.e., 𝑎𝑖 = 𝑎 ⊗ 𝑎 ⊗ · · · ⊗ 𝑎︸             ︷︷             ︸

𝑖

. 0-closed semirings (i.e., those

in which ∀𝑎 ∈ K, 1 ⊕ 𝑎 = 1) have also been called absorptive,
bounded, or simple depending on the literature. Note that any

0-closed semiring is idempotent (indeed, 𝑎 ⊕ 𝑎 = 𝑎 ⊗ (1 ⊕ 1) =
𝑎 ⊗ 1 = 𝑎) and therefore admits a natural order.

Example 2.3. All semirings in Example 2.2 are commutative

except for the shortest-path semiring (indeed, concatenation is

not a commutative operation).

All of them are idempotent, except for the top-𝑘 , counting,

and integer polynomial semirings.

The natural order of the tropical semiring is the total order ⩾
(note that this is the reverse of the standard order on R+ ∪ {∞}).

The tropical, Boolean, 𝑘-feature, and shortest-path semirings

are 0-closed. The top-𝑘 semiring is (𝑘 − 1)-closed. The counting
and integer polynomial semirings are not 𝑘-closed for any 𝑘 .

Star semirings [14], also known as closed semirings, extend
semirings with a unary

∗
operator, having the following property:

𝑎∗ = 1⊕ (𝑎 ⊗ 𝑎∗) = 1⊕ (𝑎∗ ⊗ 𝑎). Note that, in 0-closed semirings,

we necessarily have 𝑎∗ = 1. Similarly, in 𝑘-closed semirings, we

can define 𝑎∗ =
⊕𝑘

𝑖=0 𝑎
𝑖
.

Example 2.4. As just mentioned, since the tropical, Boolean,

𝑘-feature, and shortest-path semirings are all 0-closed, we can

simply define in all of them 𝑎∗ = 1. Since the top-𝑘 semiring is

(𝑘 − 1)-closed, we can define 𝑎∗ with the formula 𝑎∗ =
⊕𝑘

𝑖=0 𝑎
𝑖
.

1
In general semirings, this defines a preorder; antisymmetry of this relation can be

shown when the semiring is idempotent.

In the counting semiring we can introduce a star operator

with: 0
∗ = 1 and 𝑎∗ = ∞ for 𝑎 ≠ 0.

It is not possible to simply add a star operator to the integer

polynomial semiring (indeed, if the equation 𝑥∗ = 1+(𝑥×𝑥∗) had
a solution 𝑥∗ as a polynomial in 𝑥 , its degree would be different

on the left- and right-hand sides of the equation). However, one

can define a more general semiring, that of formal power series, in
which a star operator can be defined. See [18] for details on the

semiring of formal power series, which are not important here.

We will later use the fact that a 0-closed semiring which is

alsomultiplicatively idempotent (i.e., in which 𝑎 ⊗ 𝑎 = 𝑎 for every

𝑎) turns out to satisfy the axioms of bounded distributive lattices
[8, Theorem 10].

Example 2.5. The only 0-closed semirings that are multiplica-

tively idempotent from Example 2.2 are the Boolean and𝑘-feature

semirings.

2.2 Graph databases with provenance

We now introduce the notion of provenance in graph databases.

Definition 2.6 (Graph Database). A graph database with prove-
nance indication (𝑉 , 𝐸, 𝜆,𝑤) over some semiring (K, ⊕, ⊗, 0, 1) is
an edge-labeled directed graph (𝑉 , 𝐸, 𝜆) together with a weight
function𝑤 : 𝐸 → K.

Given an edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸, we denote 𝑛[𝑒] = 𝑢 its destina-
tion (or next) vertex, and 𝑝 [𝑒] = 𝑣 its origin (or previous vertex).

By analogy we write its weight 𝑤 [𝑒] instead of 𝑤 (𝑒). Given a

vertex 𝑣 ∈ 𝑉 , we denote by 𝐸 [𝑣] the set of edges having 𝑣 as

origin.

A path 𝜋 = 𝑒1𝑒2 · · · 𝑒𝑘 in 𝐺 is an element of 𝐸∗ with consecu-

tive edges: 𝑛[𝑒𝑖 ] = 𝑝 [𝑒𝑖+1] for 𝑖 = 1, . . . , 𝑘 − 1. We extend 𝑛 and 𝑝

to paths by setting 𝑝 [𝜋] B 𝑝 [𝑒1], and 𝑛[𝜋] B 𝑛[𝑒𝑘 ]. A cycle

is a path starting and ending at the same vertex: 𝑛[𝑐] = 𝑝 [𝑐].
The weight function𝑤 can also be extended to paths by defining

the weight of a path as the result of the ⊗-multiplication of the

weights of its constituent edges: 𝑤 [𝜋] B
𝑘⊗
𝑖=1

𝑤 [𝑒𝑖 ]; this can in

fact be extended to any finite set of paths by𝑤 [{𝜋1, . . . , 𝜋𝑛}] B⊕𝑛
𝑖=1𝑤 [𝜋𝑖 ]. For any two vertices 𝑥 and𝑦 of a graph𝐺 , we denote

by 𝑃𝑥𝑦 (𝐺) the set of paths from 𝑥 to 𝑦.

Definition 2.7 (Path Provenance). Let 𝐺 be a graph database

with provenance indication over some semiring K. The prove-
nance between 𝑥 and 𝑦, for 𝑥 and 𝑦 two vertices of 𝐺 is defined

as the (possibly infinite) sum:

provK (𝐺) (𝑥,𝑦) B 𝑤
[
𝑃𝑥𝑦 (𝐺)

]
=

⊕
𝜋 ∈𝑃𝑥𝑦 (𝐺)

𝑤 [𝜋] .

Several problems can be defined based on this. Given two

vertices 𝑠 and 𝑡 , the single-pair provenance problem computes

the provenance between 𝑠 and 𝑡 . Given a vertex 𝑠 , the single-
source provenance problem computes the provenance between

𝑠 and each vertex of the graph. Finally, the all-pairs provenance
problem computes the provenance for all pairs of vertices.

A regular path query (RPQ) [6] defines a set of admissible paths

from some vertex 𝑠 through a regular language over edge labels.

The notion of single-source provenance can be generalized to that

of RPQ provenance in a straightforward manner, as we did in [31].

We also showed in [31] that computing such a provenance could

be reduced in polynomial time to the single-source provenance

problem; this works by constructing a product of the graph with
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the automaton describing the language of the query. Note that

this construction can be done on-the-fly (avoiding generation of

inaccessible vertices) and that the size of the automaton is usually

quite small; thus, the overhead is usually affordable oven for large

graphs as showed experimentally in [31]. We will implicitly use

this reduction throughout the paper, meaning that we only need

to consider the single-source provenance problem in the rest of

the paper. Consequently, we will also ignore edge labels and see

a graph database as defined by its vertices, edges, and semiring

weights.

2.3 Semantics of path provenance

As defined, the provenance between two vertices in a graph data-

base is in fact a (possibly infinite) sum over the provenances of all

paths from the source vertex leading to the target vertex. As we

observed in [30], the only possible source of non-finiteness in the

sum is due to cycles in the graph, so that we only need to be able

to sum all the powers of a given semiring value. For this to be se-

mantically meaningful we need the semiring to be a star semiring,

and we additionally need the star operator to verify for all semir-

ing element 𝑎: 𝑎∗ =
⊕∞

𝑛=0 𝑎
𝑛
for some well-behaved infinitary

sum operation

⊕
(namely, associativity, and distributivity of ⊗

over this infinitary sum operator). This class of semirings is com-

monly known as countably complete star semirings, c-complete
star semirings [24], or 𝜔-complete star semirings.

Example 2.8. All star semirings identified in Example 2.4 are,

indeed, c-complete star semirings. Note that, for 𝑘-closed semir-

ings, the infinitary sum

⊕∞
𝑛=0 𝑎

𝑛
is simply

⊕𝑘
𝑛=0 𝑎

𝑛
, and the

condition of being a c-complete star semiring is trivially satisfied

by our choice of star operator. In the remaining cases (counting

semiring, formal power series, formal language semiring) one

can verify that a well-behaved infinitary sum operation can be

introduced, and that it verifies 𝑎∗ =
⊕∞

𝑛=0 𝑎
𝑛
.

We also pointed out in [30] that all-pairs graph provenance

is equivalent to the computation of the asteration of the matrix

corresponding to the graph representation with provenance tags

as cell-values. With all these definitions in place, we observe

that the semantics of provenance over specific semirings actually

corresponds to a various number of problems of interest. Remem-

ber that using the construction of [31] we can extend this to the

provenance of arbitrary RPQs.

Example 2.9. Let𝐺 be a graph database over some c-complete

star semiring K, and 𝑠 and 𝑡 fixed source and target vertices in𝐺 .

The provenance between 𝑠 and 𝑡 corresponds to the following

notions, depending on the semiring K:

Tropical semiring: length of shortest path between 𝑠 and 𝑡 .

Top-𝑘 semiring: lengths of𝑘 shortest paths between 𝑠 and 𝑡 .

Counting semiring: total number of paths between 𝑠 and 𝑡 ,

edge weights being interpreted as number of edges be-

tween two vertices.

Boolean semiring: existence of a path between 𝑠 and 𝑡 ,

depending on the existence of edges denoted by their

Boolean weights.

𝑘-feature semiring: minimum feature value along each di-

mension of all paths between 𝑠 and 𝑡 ; if min and max are

exchanged, maximum feature value along some path from

𝑠 to 𝑡 .

Formal power series: how-provenance, see [18].

Shortest-path semiring: pair formed of a length 𝑙 and path

label 𝜋 such that 𝜋 is the shortest path from 𝑠 to 𝑡 , of

length 𝑙 (if there are multiple shortest paths, 𝜋 is the first

in lexicographic order).

Example 2.10. Let us return to the example in Figure 1. We

model the charging station Boolean feature as an integer feature

by simply setting ⊤ = 1 and ⊥ = 0. We take the (max,min) defi-
nition of the 𝑘-feature semiring where we compute the maximum

value of each feature among some path from origin to destination,

and we order heights in decreasing order (e.g., by taking their

inverse) so that a higher feature value means a (more restrictive)

lower height.

Consider two types of vehicles of interest that want to reach

the vertex 𝑡 from the vertex 𝑠: one has height between 3 and 4

meters, the second is a small (ℎ ⩽ 1.5) electric car that needs

at least one charging station on the road to 𝑡 . In the presence

of the edge from 𝑢 to 𝑣 , both of them can reach 𝑡 from 𝑠; with-

out that edge, only the electric car is able to. This is reflected

in the provenance: prov(𝐺) (𝑠, 𝑡) = (4, charging station) while
prov(𝐺\{(𝑢, 𝑣)})(𝑠, 𝑡) = (2.10, charging station).

3 EXISTING ALGORITHMS

We now provide a review of three algorithms to solve the single-

source provenance problem, also previously described in [31].

Each of these algorithms yields a different trade-off between time

complexity and applicability to various types of semirings, as

summarized in Table 1.

Algorithm 1 Dijkstra – single-source

Input: (𝐺 = (𝑉 , 𝐸,𝑤), 𝑠) a graph database with provenance in-

dication over K and the source 𝑠 .

Output: Array w representing the single-source provenance

from 𝑠 of the reachability query.

1: 𝑆 ← ∅
2: w[𝑎] ← 0, ∀𝑎 ∈ 𝑉
3: w[𝑠] ← 1

4: while 𝑆 ≠ 𝑉 do

5: Select 𝑎 ∉ 𝑆 with minimal w[𝑎]
6: 𝑆 ← 𝑆 ∪ {𝑎}
7: for each neighbor 𝑏 of 𝑎 not in 𝑆 do

8: w[𝑏] = w[𝑏] ⊕ (w[𝑎] ⊗𝑤 [𝑎𝑏])
9: end for

10: end while

11: return w

Dijkstra. Dijskstra’s algorithm is generally used to solve

shortest-distance problems in directed graphs. However, as shown

also in [31], the algorithm readily generalizes to our semiring

context, by placing some restrictions on the semirings used. For

instance, the tropical semiring is exactly the semiring that allows

to compute the shortest distance, as in the original algorithm.

The general flow of the algorithm – using general semiring op-

erations – is outlined in Algorithm 1, and Table 1 indicates its

running time (in terms of the graph size and the costs of the

semiring operations ⊕ and ⊗). Dijkstra’s algorithm is known to

be a very efficient algorithm. However, this efficiency comes from

the fact that it uses a priority queue: once a value is extracted

from it, we know that it is the correct one – this allows us to only

visit each vertex in the graph once. This only works if we apply

Dijkstra to semirings which are 0-closed (or absorptive) and in

which an additional condition is satisfied: the natural order is a

total order [31].
As we shall discuss later, there is a large complexity gap be-

tween Dijkstra on the one hand and the other two algorithms
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Table 1: Required semiring properties and asymptotic complexity for each studied algorithm, where T• is the complexity

of the elementary semiring operation •. The last column assumes constant cost for all semiring operations.

Name Semiring property Time complexity (with semiring op.) Time complexity

MatrixAsteration star O(|𝑉 |T∗ + |𝑉 |3 (T⊕ + T⊗)) O(|𝑉 |3)
NodeElimination c-complete star O(|𝑉 |T∗ + |𝑉 |3 (T⊕ + T⊗)) O(|𝑉 |3)
Mohri 𝑘-closed Exponential Exponential

MultiDijkstra 0-closed ⊗-idempotent O (ℓ × (T⊕ |𝑉 | log |𝑉 | + |𝐸 | (T⊕ + T⊗))) O(ℓ × (|𝑉 | log |𝑉 | + |𝐸 |))
Dijkstra 0-closed total ordered O(T⊕ |𝑉 | log |𝑉 | + |𝐸 | (T⊕ + T⊗)) O(|𝑉 | log |𝑉 | + |𝐸 |)

we discuss in this section – NodeElimination and Mohri –

on the other. This is the main motivation to introduce the new

algorithm we present in Section 5.

Algorithm 2Mohri – single-source [29]

Input: (𝐺 = (𝑉 , 𝐸,𝑤), 𝑠) a graph database with provenance in-

dication over K and the source 𝑠 .

Output: Array w representing the single-source provenance

from 𝑠 of the reachability query.

1: for 𝑖 ∈ {1, . . . , |𝑄 |} do
2: w[𝑖] ← 𝑟 [𝑖] ← 0

3: end for

4: w[𝑠] ← 𝑟 [𝑠] ← 1

5: 𝑆 ← {𝑠}
6: while 𝑆 ≠ ∅ do
7: 𝑞 ← head(𝑆)
8: dequeue(𝑆)
9: 𝑟 ′ ← 𝑟 [𝑞]
10: 𝑟 [𝑞] ← 0

11: for each 𝑒 ∈ 𝐸 [𝑞] do
12: if w[𝑛[𝑒]] ≠ w[𝑛[𝑒]] ⊕ (𝑟 ′ ⊗𝑤 [𝑒]) then
13: w[𝑛[𝑒]] ← w[𝑛[𝑒]] ⊕ (𝑟 ′ ⊗𝑤 [𝑒])
14: 𝑟 [𝑛[𝑒]] ← 𝑟 [𝑛[𝑒]] ⊕ (𝑟 ′ ⊗𝑤 [𝑒])
15: if 𝑛[𝑒] ∉ 𝑆 then

16: enqueue(𝑆, 𝑛[𝑒])
17: end if

18: end if

19: end for

20: end while

21: w[𝑠] ← 1

22: return w

Mohri. Mohri [29] introduced an algorithm for computing

single-source provenance for reachability queries over 𝑘-closed

semirings. Outlined in Algorithm 2, it performs, in a manner

similar to the Bellman–Ford algorithm, step-by-step relaxations

over the edges of the graph (lines 13–14), maintaining a queue to

decide in which order the elements are inspected. The queue can

be chosen in different ways: based on the topology of the graph,

e.g., if the graph is acyclic; or a queue prioritized by weight when,

e.g., one wishes to compute top-𝑘 shortest paths using the top-𝑘

semiring.

In the worst case, the theoretical complexity of this approach

is exponential in the size of the graph [29], mainly due to the fact

that the algorithm may have to visit the same cycle in the graph

multiple times. However, the complexity heavily depends on the

implementation of the queue. For instance, for top-𝑘 shortest

paths, implementing a priority queue allows for an efficient algo-

rithm, having polynomial complexity. Indeed, as we shall detail

later, for road transportation networks and top-𝑘 shortest paths,

experiments show an almost linear-time behavior in 𝑘 and the

size of the graph.

In contrast, the algorithm may be much more inefficient in

practice for other types of networks (such as social networks). As

we conjecture in Section 6, this may be due to the fact that trans-

port networks have relatively low treewidth [27]. The treewidth

is a parameter measuring how much a graph (or more gener-

ally any relational instance) resembles a tree. Many intractable

problems over graphs have tractable solutions on instances of

fixed treewidth. We confirm in Section 6 that many of the algo-

rithms for provenance computation strongly benefit – in terms

of running time – from low treewidth.

Another important graph parameter – stemming from the

active research community around computing routing for, e.g,

driving directions – the highway dimension [4] has been intro-

duced to provide a theoretical basis for the efficiency observed

in practice in state-of-the-art heuristics for computing optimal

transport paths. This parameter relies heavily on weights on the

edges of the graphs and the distribution of shortest distances in

the graph. In our experiments in Section 6, we evaluate whether

this parameter also explains the practical efficiency of our algo-

rithms for computing the provenance of routing queries.

Algorithm 3 NodeElimination – single-pair

Input: (𝐺 = (𝑉 , 𝐸,𝑤), 𝑠, 𝑡) a graph database with provenance

indication over K, the source 𝑠 , and the target 𝑡 .

Output: Single value w𝑠′𝑡 ′ representing the single-pair prove-

nance between 𝑠 and 𝑡 of the reachability query.

1: 𝑉 ′ ← 𝑉 ∪ {𝑠 ′, 𝑡 ′}
2: 𝐸 ′ ← 𝐸 ∪ {(𝑠 ′, 𝑠), (𝑡, 𝑡 ′)}
3: for 𝑖 ∈ 𝑉 ′ do
4: for 𝑗 ∈ 𝑉 ′ do

5: w
(0)
𝑖 𝑗
←

{
𝑤 [𝑖 𝑗] if 𝑖 ≠ 𝑗,

1 ⊕ 𝑤 [𝑖 𝑗] if 𝑖 = 𝑗

6: end for

7: end for

8: for 𝑘 in 𝑉 do

9: for each (𝑝, 𝑞) s.t. (𝑝, 𝑘), (𝑘, 𝑞) ∈ 𝐸 ′ do
10: w𝑝𝑞 ← w𝑝𝑞 ⊕

(
w𝑝𝑘 ⊗ w

∗
𝑘𝑘
⊗ w𝑘𝑞

)
11: end for

12: end for

13: return w𝑠′𝑡 ′

NodeElimination. The most general algorithm available is

based on the idea of Brzozowski and McCluskey for obtaining a

formal language expression (i.e., a regular expression) equivalent

to the language of an automaton [9]. The algorithm is outlined

in Algorithm 3. The algorithm works by eliminating vertices one

by one and computing the “shortcut” values for each vertex pair,

until only the source and target vertices remain. This algorithm

works for any 𝑐-complete semiring over which a star operation
is defined – this is necessary for the shortcuts computed in the

algorithm to be correct.
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total order

Dijkstra

0-closed⊗
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MultiDijkstra

0-closed

𝑘-closed

Mohri

c-complete star semirings

NodeElimination

star semirings

MatrixAsteration

semirings

Figure 2: Taxonomy of the semirings used for graph provenance along with algorithms that work on them

In general, the complexity of the algorithm is at least cubic in

the number of vertices in the graph, which makes it practically

unusable on large graphs. Importantly, however, it also can be

shown that its complexity is closely related to the treewidth pa-

rameter of the graph. Following a simplicial elimination order

(unfortunately not tractable to compute) one can rephrase the

complexity shown in Table 1 in terms of the treewidth parame-

ter 𝑤 by O(|𝑉 |T∗ + |𝑉 |𝑤2 (T⊕ + T⊗)). Thus, if the treewidth is

small over, e.g., transportation networks, one can benefit from

heuristics for finding a suitable elimination order to optimize this

algorithm. We dedicate a part of our experiments demonstrating

the impact of some heuristics (for instance, focusing on vertices

of higher degrees) on the running time of this algorithm.

Related algorithms. Star semirings are also known as closed

semirings [2] and the star operation is known as the closure

operation. In this sense, all-pair computations correspond to

matrix asteration. For instance, the NodeElimination algorithm

can be used to compute the asteration [2] of a matrix – but, if the

semiring is not c-complete, there is no guarantee of a semantics

compatible with the intuitive semantics of provenance over graph

databases. Matrix asteration allows for a high degree of parallel

computation [1].

4 TAXONOMY

We present in Figure 2 a high-level view linking the properties

and classes of semiring we presented in Section 2 and their as-

sociated algorithms, presented in Sections 3 and 5. The figure

shows a clear hierarchy of classes of semirings, both in terms of

the complexity of the algorithm and the expressive power of the

semirings.

An important practical application that is similar to our setting

is the provenance for Datalog queries introduced in [18] and

further optimized using circuits [11]. Datalog [3] is a language

derived from Prolog, useful for infering new knowledge given

existing facts and a set of inference rules. In the papers above, the

semiring classes for which optimization of queries is possible are

strikingly similar: PosBool(𝑋 ) and Sorp(𝑋 ) discussed in [11, 18]

correspond respectively to the positive fragment of the Boolean

function semiring, and to the free (i.e., most general) 0-closed

semiring. In that sense, algorithm optimizations discussed here

apply directly to applications such as Datalog query optimization.

5 ALGORITHM FOR 0-CLOSED SEMIRINGS

As explained in Section 3, Dijkstra requires a total natural order

on the elements of a 0-closed semiring. This is quite a restrictive

setting (among the examples from Example 2.2, only the tropical
semiring fits), while using a more generally available algorithm

such as Mohri can lead to practical inefficiency. The question

we are addressing in this section is whether we can bridge this

complexity gap and still obtain practical algorithms for 0-closed

semiring without total orders.

First, we present an example semiring setting, with non-total

natural order, where Dijkstra cannot be readily applied.

Example 5.1. Let us consider the 3-feature semiring

({0, 1}3,min,max, (1, 1, 1), (0, 0, 0)) .
In the example graph below, the provenance between 𝑠 and 𝑡

is: min (max ((0, 0, 1), (0, 1, 0)) , (1, 0, 0)) = (0, 0, 0) and that be-

tween 𝑠 and 𝑟 is: min (max ((1, 0, 0), (0, 1, 0)) , (0, 0, 1)) = (0, 0, 0)

s

r

t

(0, 0, 1)

(0, 1, 0)

(1, 0, 0)

Assume there would be an order for whichDijkstra computes

this provenance. Then, starting from 𝑠 , Dijkstra would select

either 𝑟 and assign it provenance (0, 0, 1), which is wrong, or 𝑡

and assign it provenance (1, 0, 0), which is also wrong.

In the following, we address this problem and design a new

algorithm,MultiDijkstra (for Multidimensional Dijkstra) that
applies to the more general case of 0-closed semirings for which

multiplication is idempotent (such as the 𝑘-feature semiring, but

also the Boolean function semiring used in probabilistic databases,

see [34]). As it turns out, such semirings satisfy the axioms of

bounded distributive lattices [8, Theorem 10]; this allows us to

design an efficient algorithm for answering queries using these

types of semirings.

5.1 Mathematical Background

In the following we introduce basic notions about finite distribu-

tive lattices. We assume the lattices we use are finite because
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we are only ever using the subsemiring generated by edge an-

notations. As we shall see, this subsemiring is finite when both

operations of the semiring are idempotent.

We refer the reader to [36] for more details regarding the

theory behind distributive lattices.

5.1.1 Definitions and Notation. A lattice (𝐿, <) is a partially
ordered set (poset) where every two elements have a unique

infimum (their meet, ∧) and supremum (their join, ∨). A lattice
embedding of a lattice 𝐿 into a lattice 𝐾 is a one-to-one join

and meet homomorphism from 𝐿 to 𝐾 . In a poset, an element 𝑦

covers 𝑥 (denoted 𝑥 ⋖ 𝑦) if 𝑥 < 𝑦 and there are no such 𝑧 such

that 𝑥 < 𝑧 < 𝑦. A lattice embedding ℓ is tight if 𝑥 ⋖ 𝑦 implies

ℓ (𝑥) ⋖ ℓ (𝑦).2
An element 𝑥 of a lattice 𝐿 is join-irreducible if 𝑥 = 𝑎 ∨ 𝑏

implies that 𝑥 = 𝑎 or 𝑥 = 𝑏. The set of non-zero join-irreducible

elements of 𝐿 is denoted 𝐽 (𝐿). It induces a subposet of 𝐿 which

is also denoted by 𝐽 (𝐿).
For a subset 𝑆 of a lattice 𝐿, we let

∨
𝑆 =

∨
𝑥 ∈𝑆 𝑥 be the join

of the elements of 𝑆 . We often write

∨
𝐿 𝑆 to specify that the join

takes place in 𝐿. A subset 𝑆 of a poset is a downset or ideal if
𝑥 ∈ 𝑆 and𝑦 ⩽ 𝑥 implies𝑦 ∈ 𝑆 . The minimum downset containing

an element 𝑥 is denoted id 𝑥 . We note D(𝑃), for a poset 𝑃 , the
family of downsets of 𝑃 ordered by inclusion.

A chain 𝐶 of length 𝑛 in a poset 𝑃 is a subposet isomorphic to

the linear order Z𝑛 on the 𝑛 elements {0, 1, . . . , 𝑛 − 1}. A chain
decomposition of a poset 𝑃 is a partition of its elements into a

family C of chains 𝐶1, . . . ,𝐶𝑑 . For a family C = {𝐶1, . . . ,𝐶𝑑 }

of disjoint chains, the product

∏C :=
𝑑∏
𝑖=1
𝐶𝑖 consists of all 𝑑-

tuples 𝑥 = (𝑥1, . . . , 𝑥𝑑 ) where 𝑥𝑖 ∈ 𝐶𝑖 for each 𝑖 ∈ {1, . . . , 𝑑}. It is
ordered by 𝑥 ⩽ 𝑦 if 𝑥𝑖 ⩽ 𝑦𝑖 for each 𝑖 .

5.1.2 Results. A classical result from Birkhoff [7] establishes

an isomorphism between 𝐿 and D(𝐽 (𝐿)):

Theorem 5.2 ([7]). The map S : 𝑥 ↦→ id 𝑥 ∩ 𝐽 (𝐿) is an isomor-
phism of 𝐿 to D(𝐽 (𝐿)). Its inverse is 𝑆 ↦→ ∨

𝐿 𝑆 .

For a chain decomposition C of a poset, let C0 be the family of

chains we get from the chains in C by adding a new minimum el-

ement to each. In [12], Dilworth proved the following embedding

theorem:

Theorem 5.3 ([12]). For any chain decomposition C of a poset 𝑃
the map 𝑆 ↦→ ∨

𝑃 𝑆 is an embedding of D(𝑃) into 𝑃 =
∏C0.

Then, we obtain the following corollary we will use later:

Corollary 5.4. Given a chain decomposition C of a distributive
lattice 𝐿, there is a tight embedding of 𝐿 into

∏C0.
5.2 Application to Provenance Computation

Corollary 5.4 provides us with a way to compute provenance

over distributive lattices using a multidimensional version of

Dijkstra’s algorithm. Because an embedding is a homomorphism,

we can compute each component of

∏C0 independently. And
because the homomorphism is one-to-one, we can easily recover

the provenance at the end of the computation.

Example 5.5. If we take a look at distributive lattice of the

divisors of 60 with greatest common divisor (gcd) and least

common multiple (lcm) as join and meet operators, we notice

that the divisors of 60 are either powers of 2, 3, 5 or an lcm

2
Implicitly from lattice notation to poset notation: 𝑥 ∨ 𝑦 = 𝑦 means 𝑥 ⩽ 𝑦.

of these integers. Thus, they can be represented using three di-

mensions representing the factorization of 60 along these prime

numbers: decompose(4) = (2, 0, 0), recompose(0, 1, 0) = 3, and

recompose(2, 1, 0) = 12. We can then compute independently each

dimension of the result using Dijkstra’s algorithm since each

component is totally ordered; then, partial results are combined.

In other words, we can run separately, ℓ times, Dijkstra’s algo-

rithm for each dimension of this product, where ℓ is the number

of chains in the chain decomposition. This gives us a parameter-

ized algorithm, where ℓ depends on the semiring. For example, for

the semiring used in Example 5.1, ℓ = 3. We outline the algorithm

in pseudo-code in Algorithm 4. We need the following routines

that are highly specific to the semiring: decompose(𝑒) takes as
parameter an element 𝑒 of 𝐿 and returns its image 𝑣 (𝑒) ∈ P. For
the opposite direction recompose(𝑑1, . . . , 𝑑𝑛) =

∨
0⩽𝑖⩽𝑛 𝑑𝑖 returns

as expected an element of 𝐿.

We use as a subroutine a slightly modified version of Dijk-

stra, parameterized by the semiring dimension and working

with semirings having elements in vector form, corresponding

to the decomposition. Dijkstra(s,t,i) ∈ 𝐽 (𝐿) computes the prove-

nance between 𝑠 and 𝑡 corresponding to the 𝑖th dimension of the

decomposition.

Example 5.6. We describe the working of Algorithm 4 in the

example presented in Example 5.1: first, each edge value is de-

composed; this step is easy to follow as the 3-feature values

are already presented in decomposed form. A second step con-

sists in calculating values along each dimensions. Algorithm 1

is launched a first time over the graph with edge values corre-

sponding to the first dimension: 0 for (𝑠, 𝑟 ) and (𝑟, 𝑡), 1 for (𝑠, 𝑡).
The result is 0. Algorithm 1 is launched a second time over the

graph with edge values corresponding to the second dimension:

0 for (𝑠, 𝑟 ) and (𝑠, 𝑡), 1 for (𝑟, 𝑡). The result is, again, 0. Finally,
Algorithm 1 is launched a third time over the graph with edge

values corresponding to the third dimension: 0 for (𝑠, 𝑡), 1 for

(𝑠, 𝑟 ) and (𝑟, 𝑡). The result is 0. This ends the second step. The

third step consists in recomposing partial values obtained by

successive applications of Dijkstra’s algorithm. This ends up to

the final provenance value of (0, 0, 0).

Algorithm 4 MultiDijkstra – single-pair

Input: (𝐺 = (𝑉 , 𝐸,𝑤), 𝑠, 𝑡) a graph database with provenance

indication over K, the source 𝑠 , and the target 𝑡 .

Output: Single-pair provenance of the reachability query from 𝑠

to 𝑡 .

1: for each edge 𝑒 ∈ 𝐸 do

2: decompose(𝑤 (𝑒))
3: end for

4: for each dimension 𝑖 do

5: 𝑑𝑖 ← Dijkstra(𝑠, 𝑡, 𝑖)
6: end for

7: return recompose(𝑑1, . . . , 𝑑𝑛)

For the sake of simplicity, we presented the single-pair version

of our algorithm. To extend it to the single-source version one

only needs to perform the recompose subroutine for each vertex

in the graph.

To minimize accesses to the decompose subroutine – which

can be very costly – we optimize MultiDijkstra by adopting

a lazy approach, where the Dijkstra subroutine calls decompose
only when needed, storing the decomposition across calls. This

avoids scanning the whole graph when 𝑠 and 𝑡 are close.
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Figure 3: Comparison between algorithms for shortest distances

Table 2: Graph datasets: size and treewidth lower and up-

per estimates from [27]

type name # of vertices # of edges tw

infrastructure Paris 4 325 486 5 395 531 55–521

Stif 17 720 31 799 28–86

USPowerGrid 4 941 6 594 10–18

Rome99 3 353 4 831 5–50

social Facebook 4 039 88 234 142–237

biology Yeast 2 284 6 646 54–255

Two other optimizations implemented are a stopping condi-

tion that ends the Dijkstra subroutine when a visited vertex has

value 0, and lazy initialization of the priority queue. These two

optimizations led to vastly improved computation times over the

naive implementation.

5.3 Practical Use Case

As exemplified in the Introduction, 𝑘-feature semirings can be

used to ensure that all paths from 𝑠 to 𝑡 verify a combination of

features (they all go through a specific set of points of interests,

or verify some road properties) or either ensure the existence

of valid paths up to some collection of restrictions. We show in

the experimental section that this is tractable for practical use

cases (continental-sized areas, around 10
7
vertices). To the best

of our knowledge, no solution for this that scales even to graphs

of thousands of vertices has been previously proposed.

6 EXPERIMENTS

We performed experiments on real-world graph data, using an

Inria computing cluster running the OAR task manager. The

individual vertices of the cluster have a minimum of 48 GB of

RAM, and run Intel Xeon X5650 or E5-26xx CPUs.

We used datasets
3
from a variety of domains, mostly repre-

senting infrastructure networks: the OpenStreetMaps network

of Paris (Paris), the Paris public transport network (Stif), and

3
These datasets were used in [27] for treewidth computation experiments, and are

downloadable from https://github.com/smaniu/treewidth/; some of them originate

from http://snap.stanford.edu/data/index.html.

the power grid of the continental US (USPowerGrid). For com-

parison, we have also evaluated on other types of datasets: a

small subset of the Facebook social network (Facebook) and

the yeast protein-to-protein interaction network (Yeast). All

these datasets come without provenance annotations, that we

add in different ways depending on experiments. We also used

a real weighted road transportation network dataset Rome99,

with tropical semiring annotations, from the 9th DIMACS Imple-

mentation Challenge
4
. This dataset consists of a large portion of

the directed road network of the city of Rome, Italy, from 1999.

Basic information about the resulting graphs are summarized in

Table 2.

For datasets without provenance annotations, unless speci-

fied differently, we randomly generate weights in the tropical

semiring for benchmarks, uniformly between 1 and 3 000. To be

able to compare the impact of the weights on the performance

of the algorithms, we also use a constant-weight setting, where

all weights equal to 1. Each experiment generally represents the

average over 10 runs (random choices of origin and destination

vertices).

Our experimental study is focused on comparing the four algo-

rithms presented in this paper, over several semirings.We provide

a comparison of all of our algorithms for the computation over

the tropical semiring (shortest distance), since all algorithms can

be used in this setting. We investigate the running time and the

number of relaxation steps performed byMohri andMultiDi-

jkstra algorithm, using initial weights provided by the dataset

Rome99, as well as custom weights (all identical and all random);

we then study over all datasets the impact of the elimination or-

der heuristic on the overall performance for NodeElimination.

We then finish with the comparison between our new algorithm

and previous solutions to demonstrate its efficiency.

Evaluating shortest distances. We start by evaluating how the

algorithms deal with the shortest distance semiring, i.e., the trop-

ical and top-𝑘 semiring (by setting 𝑘 = 1). The properties of this

semiring allow their implementation for the first three algorithms:

4
http://users.diag.uniroma1.it/challenge9/download.shtml

80



0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

k

t
i
m
e
(
s
)

Mohri, original

Mohri, random

Mohri, same

Figure 4: Computation time for Mohri over the top-𝑘 distances semiring, for varying values of 𝑘 and varying weight

assignments (Rome99)

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

k

n
b
o
f
r
e
l
a
x
a
t
i
o
n
s
p
e
r
f
o
r
m
e
d
(
×1

0
4
)

Mohri, original

Mohri, random

Mohri, same

Figure 5: Number of relaxations performed byMohri over the top-𝑘 distances semiring, for varying values of𝑘 and varying

weight assignments (Rome99)

Rome99, original Rome99, random Rome99, same USPowerGrid, random Yeast, random Facebook, random Stif, random Paris, random

10

100

1 000

10 000

100 000

6.8 · 101 6.8 · 101 6.8 · 101

4.2 · 102

1.4 · 103

9.3 · 103

3.1 · 101 3 · 101 3.1 · 101

1.2 · 101
2 · 101

1.2 · 103
1 · 103

t
i
m
e
(
s
)

NodeElimination (Id) NodeElimination (Degree)

Figure 6: Comparison between elimination orders for NodeElimination algorithm (tropical semiring). Values greater

than 100 000 s are timeouts.

Dijkstra, Mohri, and NodeElimination, whereas MultiDijk-

stra reduces to Dijkstra in that case. We also implemented a

breadth-first-search traversal for computing accessibility with

no provenance information (BFS). This also allows us to com-

pare the performance of algorithms against non-annotated graph

databases.
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Figure 3 shows, on a logarithmic scale, the result for our graphs,

and for some settings of weights (original, random, or same

weights). It is immediately clear from the figure that the choice

of algorithm is crucial: we need the most specialized algorithm

for the semiring we use: Dijkstra is more efficient than Mohri

which is more efficient than NodeElimination. Even forMohri,

we notice that using it configured for the top-𝑘 semiring with

𝑘 = 1 does introduce an overhead in execution; when using the

tropical semiring directly the overhead is smaller. We also show

the overhead introduced when using provenance annotations

is quite limited, as the difference between Dijkstra and BFS is

less than an order of magnitude for each dataset, and Dijkstra
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sometimes even outperforms BFS. Finally, NodeElimination is

always several orders of magnitude slower than Dijkstra. Another

encouraging result is that Mohri – which allows more classes

of semirings than Dijkstra – has a reasonable running time in

practice, despite the stated exponential complexity bound in the

original paper. We turn to evaluating its performance next.

Mohri in practice. In Figure 4 and in Figure 5 we respectively

study the impact of the factor 𝑘 on the running time and on the

number of computations performed by the algorithm. Our results

show that the computational time is linear in 𝑘 , though this is

not the case for the number of relaxations, which increases sub-

linearly in 𝑘 . This means that for large values of 𝑘 the algorithm

spends most of its time maintaining the queue.

We also compare the performance of the algorithm depending

on weight assignment (original, random, same). It seems that

considering random values instead of “real” values has almost no

significant impact over the efficiency of the algorithm. This is a

somewhat disappointing result because it rules out the possibility

to parametrize the complexity of the algorithm through network

parameters, for instance, in terms of the highway dimension [4] –

a graph parameter that has been successfully applied for under-

standing the efficiency of state-of-the-art shortest-distance algo-

rithms in road networks. However, the performance increases sig-

nificantly when all weights are uniform, which may be expected

since computation of shortest distances become far simpler, and

far more paths have equal distance.

As pointed out in Section 3 this algorithm performs extremely

well over transportation networks. We wanted to provide a com-

parison of its working time for different kinds of graphs (es-

pecially graphs whose treewidth is large relative to their size).

For this purpose we used a social network dataset: who-trusts-

whom network of people who trade using Bitcoin on a platform

called Bitcoin Alpha [25, 26] (3 783 vertices and 24 186 edges).

The algorithm times out after 48 hours.

What we can learn from this is that the key property making

Mohri so efficient over transportation networks is not due to

distance properties (e.g., highway dimension) – impacted by the

weights of the connections – but rather by topological properties

of the underlying graph (e.g., treewidth).

Ordering for NodeElimination. NodeElimination’s perfo-
mance, due to its main loop of creating “shortcuts” in the graph,

is heavily dependent on the order in which the vertices are

eliminated. This elimination ordering is strongly linked to the

treewidth parameter of the graph. For instance, following a degree

based elimination order gives an upper bound on this parameter.

Hence, we have compared different elimination orders for

NodeElimination and found out that the minimum degree based

elimination order (Degree) greatly improves the efficiency of

this algorithm compared to having no such heuristic (Id). This
improvement can be dramatic, as for the Yeast dataset where the

algorithm is two orders of magnitude faster. As expected, weights

over the edges doesn’t impact the running time, as shown in

Figure 6.

This is important in practice: running NodeElimination on

low-treewidth graphs (e.g., infrastructure and transport networks)

can be the difference between the algorithm being unusable and

allowing reasonable running times. Taking into account that

NodeElimination allows for a large class of semirings, this can

have a significant real-world application impact.

MultiDijkstra. We now evaluateMultiDijkstra, our con-

tribution to bridging the gap between absorptive semirings and

more general ones. We compare it to Mohri and NodeElimina-

tion in the case of the 𝑘-feature semiring, which is kind of the

canonical semiring that is 0-closed and multiplicatively idem-

potent. Figure 7 showcases this on 3 datasets. In all cases, our

new algorithm is between 3 and 4 orders of magnitude faster

than NodeElimination, depending on the network we use, and

significantly faster thanMohri.

We then performed an additional experiment (Figure 8), exam-

ining the impact of the number of features and values actually

used in each feature on the running time of both algorithms. We

found out that when either one of the two criteria reaches 4,

Mohri times out while MultiDijkstra keeps scaling.

Finally, Figure 9 presents a comparison betweenMohri and

MultiDijkstra on large Erdős–Rényi random generated graphs

(generated using Python networkx’s fast_gnp_generationmethod,

using an average of 1.7 edges per vertex) show that our new

algorithm is still tractable for continental-sized graphs of millions

of vertices. Interestingly,MultiDijkstra also exhibits a much

smaller variance than that of Mohri, whose performance varies

by more than one order of magnitude between runs.

7 RELATEDWORK

The idea of encapsulating operations carried along by graph algo-

rithms in terms of semirings has been really common for decades.

In [10, Chapter 25] the authors presented two of the classical

graph algorithms, Floyd–Warshall and transitive closure algo-

rithm in terms of closed semirings. The APSP (All-Pairs Shortest-
Path problem) is elegantly expressible using star semirings; hence,

research focused on the links to linear algebra through matrix

computations [1], allowing to speed up the response time using

parallel computations. Recent work on semiring-based graph

processing has provided to the community some tools such as

GraphBLAS [23], a library of kernel functions dedicated to opti-

mize linear algebra computations over sparse matrices. Unfortu-

nately, this tool focuses essentially on matrix and vector products

and is not amenable to express priority queue management such

as those needed for Mohri, Dijkstra, MultiDijkstra. Only

NodeElimination and the matrix asteration algorithms could

benefit of a GraphBLAS implementation: this might increase

their performance, even when retaining their higher asymptotic

complexity with respect to other algorithms.

Amongst many other fields, semirings have been successfully

applied in constraint-solving programming [8], linguistic struc-

ture prediction [37] and formal language theory [33]. This alge-

braic structure is also perfectly suited to the modeling of dynamic

programming [21].

The notion of provenance has also been initially developed

using semirings [18], either for relational databases and Datalog

programs, leading to practical systems such as [35], an exten-

sion to PostgreSQL adding the support for provenance. Many

representation frameworks have been successfully applied to

speed up the computation of the provenance for Datalog pro-

grams, most notably a circuit-based provenance approaches [11]

and the solving of fixed-point equations using derivation tree

analysis [15]. The latter approach led to a proof-of-concept im-

plementation [16] of the resolution of fixed-point equations over

c-continuous semirings using the Newton method.
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Compared to our work, relational databases lack the effective

support for navigational queries (recursion is an issue) and Data-

log programs are much more expressive than graphs (they are

closely related to hypergraphs), so we suspect query answering

in Datalog would be highly inefficient for the continental-sized

road-network datasets we target, though we leave this investiga-

tion for future work.

Numerous notions of provenance co-exist in the literature and

each target different usages. The notion we use in this paper

considers the provenance to be computational rather than just in-

formational: we can apply operations over our provenance values

with different semantics depending on the underlying semiring.

Some practical systems, such as [28] rely on property graphs to

represent provenance annotations, that are of an informational

rather than computational nature. Those systems focus on the

further querying of obtained provenance to derive additional

information about the process.

8 CONCLUSIONS

We presented in this paper a study on evaluating the provenance

of rich graph queries using the semiring provenance framework.

We established a taxonomy of semiring classes, based on their

properties. This in turn allows us to find, for a set of impor-

tant semiring classes, the most appropriate algorithm, enabling

real-world applicability. We introduce a new algorithm,MultiDi-

jkstra, which bridges the gap between algorithms for absorptive

semirings and ones for more general classes.

Experimentally, on graph datasets from various domains, we

showed that making sure that the appropriate algorithm is chosen

for the semiring specialization is crucial; gains of several orders of

magnitude are observed between algorithms on the same graph

datasets. Moreover, we notice that algorithms for which their

theoretical complexity is high perform well in practice, especially

on graphs having relatively low treewidth.

We believe the link with classes of semiring for which an

optimization for the computation of the provenance for Datalog

queries exists is a key observation for optimizing computations

in our framework. Investigating this further will allows us to

benefit from the rich literature around Datalog provenance (in

particular, [11]) and to compare to our solutions.

ACKNOWLEDGMENTS

This work has been funded by the French government under

management of Agence Nationale de la Recherche as part of the

“Investissements d’avenir” program, reference ANR-19-P3IA-0001

(PRAIRIE 3IA Institute).

REFERENCES

[1] S. Kamal Abdali. 1994. Parallel Computations in *-Semirings. In Computational
Algebra, Klaus G. Fischer, Philippe Loustaunau, Jay Shapiro, Edward L. Green,

and Daniel Farkas (Eds.). Taylor & Francis, Chapter 1, 1–16.

[2] S. Kamal Abdali and David Saunders. 1985. Transitive closure and related

semiring properties via eliminants. Theoretical Computer Science 40 (1985),
257–274. https://doi.org/10.1016/0304-3975(85)90170-7

[3] Serge Abiteboul, Richard Hull, and Victor Vianu. 1995. Foundations of
Databases. Addison Wesley.

[4] Ittai Abraham, Amos Fiat, Andrew V. Goldberg, and Renato Fonseca F. Wer-

neck. 2010. Highway Dimension, Shortest Paths, and Provably Efficient Algo-

rithms. In SODA. Society for Industrial and Applied Mathematics, Philadelphia,

PA, USA, 782–793. http://dl.acm.org/citation.cfm?id=1873601.1873665

[5] Marcelo Arenas and Jorge Pérez. 2011. Querying semantic web data with

SPARQL. In PODS. New York, 305–316.

[6] Pablo Barceló. 2013. Querying Graph Databases. In PODS. ACM, New York,

175–188.

[7] Garrett Birkhoff. 1937. Rings of sets. Duke Math. J. 3, 3 (1937), 443–454.

https://doi.org/10.1215/S0012-7094-37-00334-X

[8] Stefano Bistarelli, Ugo Montanari, and Francesca Rossi. 1997. Semiring-based

constraint satisfaction and optimization. J. ACM 44, 2 (1997), 201–236. https:

//doi.org/10.1145/256303.256306

[9] Janusz A. Brzozowski and Edward J. McCluskey. 1963. Signal Flow Graph

Techniques for Sequential Circuit State Diagrams. IEEE Trans. Electr. Comp.
EC-12, 2 (1963), 67–76.

[10] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.

2001. Introduction to Algorithms (2nd ed.). The MIT Press.

[11] Daniel Deutch, Tova Milo, Sudeepa Roy, and Val Tannen. 2014. Circuits for

Datalog Provenance. In ICDT. 201–212.
[12] Robert P. Dilworth. 1950. A Decomposition Theorem for Partially Ordered

Sets. Annals of Mathematics 51, 1 (1950), 161–166. http://www.jstor.org/

stable/1969503

[13] Pedro Domingos and Matthew Richardson. 2001. Mining the network value

of customers. In KDD. ACM, New York, 57–66.

[14] Manfred Droste, Werner Kuich, and Heiko Vogler. 2009. Handbook of Weighted
Automata. Springer, Berlin.

[15] Javier Esparza and Michael Luttenberger. 2011. Solving fixed-point equa-

tions by derivation tree analysis. In International Conference on Algebra and
Coalgebra in Computer Science. Springer, 19–35.

[16] Javier Esparza, Michael Luttenberger, and Maximilian Schlund. 2014. FP-

soLvE: A Generic Solver for Fixpoint Equations Over Semirings. Interna-
tional Journal of Foundations of Computer Science 26. https://doi.org/10.1007/

978-3-319-08846-4_1

[17] Nadime Francis, Andrés Taylor, Alastair Green, Paolo Guagliardo, Leonid

Libkin, Tobias Lindaaker, Victor Marsault, Stefan Plantikow, Mats Rydberg,

and Petra Selmer. 2018. Cypher: An Evolving Query Language for Property

Graphs. In SIGMOD. 1433–1445. https://doi.org/10.1145/3183713.3190657

[18] Todd J. Green, Grigoris Karvounarakis, and Val Tannen. 2007. Provenance

Semirings. In PODS. ACM, New York, 31–40.

[19] Todd J. Green and Val Tannen. 2017. The Semiring Framework for Database

Provenance. In PODS. Association for Computing Machinery, New York, NY,

USA, 93–99. https://doi.org/10.1145/3034786.3056125

[20] Udo Hebisch and Hanns J. Weinert. 1998. Semirings: Algebraic Theory and
Applications in Computer Science. World Scientific, Singapore.

[21] Liang Huang. 2008. Advanced Dynamic Programming in Semiring and Hy-

pergraph Frameworks. (2008), 18.

[22] ISO SC32 / WG3. [n.d.]. Graph Query Language GQL. https://www.

gqlstandards.org/.

[23] J. Kepner, P. Aaltonen, D. Bader, A. Buluç, F. Franchetti, J. Gilbert, D. Hutchison,

M. Kumar, A. Lumsdaine, H. Meyerhenke, S. McMillan, C. Yang, J. D. Owens,

M. Zalewski, T. Mattson, and J. Moreira. 2016. Mathematical foundations of

the GraphBLAS. In 2016 IEEE High Performance Extreme Computing Conference
(HPEC). 1–9. https://doi.org/10.1109/HPEC.2016.7761646

[24] Daniel Krob. 1987. Monoides et semi-anneaux complets. Semigroup Forum 36

(1987), 323–339.

[25] Srijan Kumar, Bryan Hooi, Disha Makhija, Mohit Kumar, Christos Faloutsos,

and V. S. Subrahmanian. 2018. Rev2: Fraudulent user prediction in rating

platforms. In WSDM. 333–341.

[26] Srijan Kumar, Francesca Spezzano, V. S. Subrahmanian, and Christos Faloutsos.

2016. Edge weight prediction in weighted signed networks. In ICDM. 221–230.

[27] Silviu Maniu, Pierre Senellart, and Suraj Jog. 2019. An Experimental Study

of the Treewidth of Real-World Graph Data. In ICDT. Lisbon, Portugal, 18.
https://doi.org/10.4230/LIPIcs.ICDT.2019.12

[28] Hui Miao, Amit Chavan, and Amol Deshpande. 2016. ProvDB: A System

for Lifecycle Management of Collaborative Analysis Workflows. CoRR
abs/1610.04963 (2016). arXiv:1610.04963 http://arxiv.org/abs/1610.04963

[29] Mehryar Mohri. 2002. Semiring Frameworks and Algorithms for Shortest-

distance Problems. J. Autom. Lang. Comb. 7, 3 (2002), 321–350.
[30] Yann Ramusat. 2019. Provenance-Based Routing in Probabilistic Graph

Databases. In VLDB 2019 PhDWorkshop. http://ceur-ws.org/Vol-2399/paper08.
pdf

[31] Yann Ramusat, Silviu Maniu, and Pierre Senellart. 2018. Semiring Provenance

over Graph Databases. In TaPP. https://www.usenix.org/conference/tapp2018/

presentation/ramusat

[32] Ian Robinson, Jim Webber, and Emil Eifrem. 2013. Graph Databases. O’Reilly
Media.

[33] Arto Rozenberg, Grzegorz; Salomaa. 1997. Handbook of Formal Languages ||

Semirings and Formal Power Series: Their Relevance to Formal Languages

and Automata. Vol. 10.1007/978-3-642-59136-5. https://doi.org/10.1007/

978-3-642-59136-5_9

[34] Pierre Senellart. 2017. Provenance and Probabilities in Relational Databases:

From Theory to Practice. SIGMOD Record 46, 4 (2017).

[35] Pierre Senellart, Louis Jachiet, SilviuManiu, and Yann Ramusat. 2018. ProvSQL:

Provenance and Probability Management in PostgreSQL. Proceedings of the
VLDB Endowment (PVLDB) 11, 12 (Aug. 2018), 2034–2037. https://doi.org/10.

14778/3229863.3236253

[36] Mark Siggers. 2014. On the representation of finite distributive lattices. arXiv
1412.0011 [math] (2014), 16. http://arxiv.org/abs/1412.0011

[37] Noah A. Smith. 2011. Linguistic Structure Prediction. Synthesis Lectures on
Human Language Technologies 4, 2 (May 2011), 1–274. https://doi.org/10.2200/

S00361ED1V01Y201105HLT013

[38] Oskar van Rest, Sungpack Hong, Jinha Kim, Xuming Meng, and Hassan Chafi.

2016. PGQL: A Property Graph Query Language. In GRADES. ACM, New

York, NY, USA, Article 7, 6 pages. https://doi.org/10.1145/2960414.2960421

84



Sequence detection in event log files
Ioannis Mavroudopoulos

Aristotle University of Thessaloniki,

Greece

mavroudo@csd.auth.gr

Theodoros Toliopoulos

Aristotle University of Thessaloniki,

Greece

tatoliop@csd.auth.gr

Christos Bellas

Aristotle University of Thessaloniki,

Greece

chribell@csd.auth.gr

Andreas Kosmatopoulos

Aristotle University of Thessaloniki,

Greece

akosmato@csd.auth.gr

Anastasios Gounaris

Aristotle University of Thessaloniki,

Greece

gounaria@csd.auth.gr

ABSTRACT
Sequential pattern analysis has become a mature topic, with a lot

of techniques for a variety of sequential pattern mining-related

problems. Moreover, tailored solutions for specific domains, such

as business process mining, have been developed. However, there

is a gap in the literature for advanced techniques for efficient de-

tection of arbitrary sequences in large collections of activity logs.

In this work, we make a threefold contribution: (i) we propose a

system architecture for incrementally maintaining appropriate

indices that enable fast sequence detection; (ii) we investigate

several alternatives for index building; and (iii) we compare our

solution against existing state-of-the-art proposals and we high-

light the benefits of our proposal.

1 INTRODUCTION
Event log entries refer to timestamped event metadata and can

grow very large; e.g., even a decade ago, the amount of log entries

of a single day was at the order of terabytes for certain organiza-

tions, as evidenced in [3]. Due to their timestamp, the log entries

can be regarded as event sequences that follow either a total or

a partial ordering. The vast amount of modern data analytics

research on such sequences is divided into two broad categories.

The first category comprises sequential pattern mining [11],

where a large set of sequences is mined to extract subsequences

that meet a variety of criteria. Such criteria range from frequent

occurrence, e.g., [23, 33] to importance and high-utility [12]. In

addition, there are proposals that examine the same problem of

finding interesting subsequences in a huge single sequence, e.g.,

[25]. However, these techniques fail to detect arbitrary patterns,

regardless of whether they are frequent or interesting; e.g., they

are tailored to a setting where a support threshold is provided and

only subsequences meeting this threshold are returned, whereas

we target a different problem, that is to return all subsequence

occurrences given a pattern.

The second category of existing techniques deals with detect-

ing event sequences on the fly and comprises complex event

processing (CEP). CEP is a mature field [14, 34] and supports

several flavors of runtime pattern detection. We aim to solve

a similar problem to CEP but tailored to a non-streaming case,

where pattern queries are submitted over potentially very large

log databases. Since logs continuously arrive, we account for

periodic index building and we support pattern matching where

the elements in the pattern are not strictly in a sequence in the

© 2021 Copyright held by the owner/author(s). Published in Proceedings of the

24th International Conference on Extending Database Technology (EDBT), March

23-26, 2021, ISBN 978-3-89318-084-4 on OpenProceedings.org.
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logs, e.g., in the log sequence ABBACC, we are interested in detect-

ing the occurrence of the pattern ABC despite the fact that in the

original sequence other elements appear in between the elements

in the searched pattern. Given that we relax the constraint of

strict contiguity, techniques based on suffix trees and arrays are

not applicable. Contrary to CEP, we aim to detect all pattern

occurrences efficiently and not only those happening now.

In summary, our contribution is threefold: (i) we propose a

system architecture for incrementally maintaining appropriate

indices that enable fast sequence detection and exploration of

pattern continuation choices; (ii) we investigate several alter-

natives for index building; and (iii) we compare our solution

against existing suffix array-based proposals, focusing on logs

from business processes, showing that not only we can achieve

high performance during indexing but we also support a broader

range of queries. Compared to other state-of-the-art solutions,

like Elasticsearch, we performmore efficient preprocessing, while

we provide faster query responses to small queries remaining

competitive in large queries in the datasets examined; addition-

ally, we build on top of more scalable technologies, such as Spark

and Cassandra, and we inherently support pattern continuation

more efficiently. Finally, we provide the source code of our im-

plementation.

The structure of the remainder of this paper is as follows. We

present the notation and some background next. In Section 3,

we introduce the architecture along with details regarding pre-

processing and the queries we support. We discuss the index

building alternatives in Section 4. The experimental evaluation

is in Section 5. In the last sections, we discuss the related work,

open issues and present the conclusions.

2 PRELIMINARIES
In this section, we first present the main notation and then we

briefly provide some additional background with regards to the

techniques against which we compare our solution.

2.1 Definitions and notation
We aim to detect sequential patterns of user activity in a log,

where a log contains timestamped events. The events are of a

specific type; for instance, in a log recording the user activity

on the web, an event type may correspond to a specific type

of click and in business processes, an event corresponds to the

execution of a specific task. The events are logically grouped in

sets, termed as cases or sessions or traces
1
, whichmay correspond

to a specific session or the same process instance or, in the generic

case, grouped by other user-defined criteria. More formally:

1
In this work, we use the terms trace, case and session interchangeably.
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Our Method Exact rooted subtree matching

Supported policy SC, STNM SC, Tree Matching

Database usage Yes No

Preprocess rationale Indexing of all possible pairs Indexing of all the subtrees

Query processing rationale Combination/merging of results of pairs in the query sequence Binary search in the subtrees space

Table 1: Differences between the technique in [19] and our method

Symbol Short description
𝐿 the log containing events

𝐴 the set of activities (or tasks), i.e., the event

types

𝐸 the set of all events

𝐶 the set of cases, where each case corresponds

to a single logical unit if execution, i.e., a ses-

sion, a trace of a specific business process

instance execution, and so on

𝑒𝑣 an event (𝑒𝑣 ∈ 𝐸), which is an instance of an

event type

𝑡𝑠 the timestamp of an event (also denoted as

𝑒𝑣 .𝑡𝑠)

𝑙 the size of 𝐴, |𝐴|
𝑛 the maximum size of a case

𝑚 the size of 𝐶, |𝐶 |
Table 2: Frequently used symbols and interpretation

Definition 2.1. (Event Log) Let 𝐴 be a finite set of activities

(tasks). A log 𝐿 is defined as 𝐿 = (𝐸,𝐶,𝛾, 𝛿, 𝑡𝑠, ⪯) where 𝐸 is the

finite set of events, 𝐶 is the finite set of Cases, 𝛾 : 𝐸 → 𝐶 is a

surjective function assigning events to Cases, 𝛿 : 𝐸 → 𝐴 is a

surjective function assigning events to activities, 𝑡𝑠 records the

timestamp denoting the recording of task execution and ⪯ is

a strict total ordering over events belonging to a specific case,

normally based on execution timestamps.

The notion of timestamp requires some further explanation. In

sessions like web user activity and similar ones, events are usually

instantaneous. However, this is not the case in task executions

in business processes. In the latter case, the timestamp refers

to either the beginning of the activity or its completion, but

in any case, logging needs to be consistent. The duration of

activities can only be estimated implicitly and not accurately

from the difference between the timestamps of an event and its

successor, because there may be delays between the completion

of an activity and the beginning of the execution of the next

activity downstream. However, systematic analysis involving

task duration can be conducted only if the exact task duration is

captured, which requires extensions to the definition above. Such

extensions is out of the scope of this work and are orthogonal to

our contributions.

Table 2 summarizes the main notation; |𝐴| is denoted as 𝑙 , the

maximum size of a case is denoted as 𝑛, and the size of the set of

cases |𝐶 | is denoted as𝑚.

Next, to provide the context of the queries we aim to support,

we define the two main types of event sequence detection that

we employ in this work:

Strict contiguity (SC) , where all matching events must ap-

pear strictly in a sequence one after the other without any

other non-matching events in-between. This definition

is widely employed in both exact subsequence matching

and CEP systems and stream processing engines, such as

Flink [6].
2
For example, SC applies when we aim to detect

pattern occurrences, where a search for a product on an

e-shop website is immediately followed by adding this

product to the cart without any other action in between.

Skip-till-next-match (STNM) , where strict contiguity is

relaxed so that irrelevant events are skipped until we de-

tect the next matching event of the sequential pattern [34].

STNM is required when, for example, we aim to detect

pattern occurrences where after three searches for specific

products there is no any purchase eventually in the same

session.

Example: let us assume that we look for a pattern AAB, where
A,B are activities. Let us also assume that a log contains the

following sequence of events <AAABAACB>, where the timestamps

are implicit by the order of each event. SC detects a pattern

occurrence starting at the 2nd position, whereas STNM detects

two occurrences; the first one contains the events at the 1st, 2nd

and 4th position, while the second one contains the events at the

5th, 6th and 8th position. Note that other types of event sequence

detection allow for additional and overlapping results, e.g., to

detect a pattern in the 1st, 3rd and 8th position, as discussed at

the end of this work [34].

2.2 Exact rooted subtree matching in
sublinear time

Strict contiguity (SC) is directly relevant to subsequence match-

ing and tree-based techniques have been used for a long time for

finding sub sequences in large datasets. Suffix trees and suffix

arrays are commonly used to this end. The method presented

in [19] can find subtrees in sublinear time and it has been used

to detect possible continuations of a given event sequence in

business processes in [27].

In a nutshell, the technique in [19] solves the problem of find-

ing the occurrences of a subtree with𝑚 modes in a tree 𝑇 with

𝑛 nodes in 𝑂 (𝑚 + 𝑙𝑜𝑔𝑛), after pre-processing the tree. First, the
string𝑊 corresponding to 𝑇 is created; this is achieved through

traversing the tree in a preorder manner and adding a 0 every

time we recur to a previous level. This yields a𝑊 of length equal

to 2𝑛.𝑊 is then used to create a suffix array 𝐴, in which the

starting positions of the 2𝑛 suffices are specified. After discard-

ing those starting with 0, we end up with 𝑛 suffices. The main

property of 𝐴 is that suffices are sorted by the nodes’ order. The

subtree to be searched in 𝑇 is first mapped to a preorder search

string, and then a binary search in 𝐴 is performed.

In Table 1 we present the high-level differences between this

method and our proposal. We rely on simple indexing employing

a database backend, while, during query processing, the main

2
https://ci.apache.org/projects/flink/flink-docs-stable/dev/libs/cep.html
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Figure 1: Architecture overview

operation is merging and post-processing of sorted lists, as ex-

plained in the next sections. More importantly, we support both

STNM and SC pattern types.

3 SYSTEM ARCHITECTURE
There exist several CEP proposals along with fully-fledged proto-

types and complete systems that allow users to query for Strict

contiguity (SC) or Skip-till-next-match (STNM) patterns, but

these are operating in a dynamic environment over a data stream.

Therefore, we need to develop a system that can receive adhoc

pattern queries over a large collection of logs and process them

in an efficient manner. These queries will be defined later in this

section and are broadly divided into three main categories (sta-

tistics, pattern detection and pattern expansion). We focus on

offline pattern detection, but we account for the fact that the logs

are constantly growing bigger and bigger. This entails that any

practical approach needs to be incremental, i.e., to support the

consideration of new logs periodically.

The overview of our proposed architecture is shown in Fig-

ure 1. There exists a database infrastructure containing old logs

and, periodically, new logs are appended. There are two main

components in the architecture. The pre-processing component

constructs and/or updates an inverted index that is leveraged

during query processing. This index is stored in a key-value data-

base to attain scalability. In our implementation, we have chosen

Cassandra
3
, because of its proven capability to deal with big

data and offer scalability and availability without compromis-

ing performance. However, any key-value store can be used in

replacement.

The second component is the query processor, which is re-

sponsible for receiving user queries, retrieving the relevant index

entries and constructing the response.

These two components are described in more detail in the

remainder of this section, while indexing is discussed in the next

section.

3.1 The pre-processing component
The log database has a typical relational form, where each record

corresponds to a specific event. More specifically, each row in

the log database contains the trace identifier, the event type, the

timestamp and any other application-specific metadata that play

no role in our generic solution. The second input of the pre-

processing component contains the more recent log entries that

3
https://cassandra.apache.org/

trace: <(A,1), (A,2), (B,3), (A,4), (B,5), (A,6)>

Pair Strict Contiguity Skip till next match

(A,A) (1,2) (1,2),(4,6)

(B,A) (3,4),(4,5) (3,4),(5,6)

(B,B) - (3,5)

(A,B) (2,3),(4,5) (1,3),(4,5)

Table 3: Pairs created per different policy.

have not been indexed yet. For example, if the index is updated

on a daily basis, the log file is expected to contain from a few

thousand of events up to several millions.

Pattern indexing and querying is applied per trace. In other

words, for each distinct trace, a large sequence of all its events

is constructed sorted by the event timestamps. To this end, the

recent logfile is combined with the log database. In addition, and

since the trace may span many indexing periods, new log entries

need to combined with already indexed events in the same trace

in a principled manner to avoid duplicates. If new logged events

belong to a trace already started, we extract stored information

from the indexing database (the exact procedure will be described

in detail shortly).

Based on these trace sequences, we build an inverted index-

ing of all event pairs. That is, we extract all event pairs from

each trace, and for each pair we keep its trace along with the

corresponding pair of timestamps. This information is adequate

to answer pattern queries efficiently, where these queries may

not only refer to pattern detection, but frequency counts and

prediction of next events, as discussed in Section 3.2.1. The in-

dex contains entries of the following format: (A,B):{(trace12,
2,5),(trace12, 7,11), (trace15,1,6),. . . }. In this exam-

ple, the pair of event types (A,B) has appeared twice in trace12

at timestamps (2,5) and (7,11), respectively, and once in trace15.

The pre-processing component is implemented as a Spark

Scala program to attain scalability. Next, we delve into more

details regarding pre-processing subparts.

3.1.1 Creation of event pairs. There are more than one ways

to create pair of events in a trace, which depends on the different

policy applied. We have already given two policies, namely SC

and STNM, which impact on how pairs are created.

Let us assume that a specific trace contains the following

sequence of pairs of event types and their timestamps: trace:
<(A,1), (A,2), (B,3), (A,4), (B,5), (A,6)>. Table 3

shows the pairs created per different policy. This example shows

a simplified representation of the inverted indexing. SC detects

only the pairs of events that are consecutive. There is no pair

pair (B,B) because there is an event (A) between the two Bs in
the trace. As expected, the SC policy creates less pairs per trace

and is also easier to implement.

STNM skips events until it finds amatching event, but there are

no overlapping pairs, the timestamps of which are intertwined.

For example, regarding pair (A,B), we consider only the (1,3)

pair of timestamps and not (2,3). The complexity of pair creation

in STNM is higher and there are several alternatives that are

presented in Section 4.

A final note is that our approach can work even in the ab-

sence of timestamps. In that case, the position of an event in the

sequence can play the role of the timestamp.
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Algorithm 1 Update index

1: Input : new_events
2: traces← transform new_events to traces as in the Seq table

3: temp← LastChecked table joined with traces

4: new_pairs← [ ]

5: for all trace in traces do
6: extract events

7: for all (𝑒𝑣𝑎, 𝑒𝑣𝑏 ) do
8: 𝑙𝑡 ← temp.get(𝑒𝑣𝑎, 𝑒𝑣𝑏 ) .𝑙𝑎𝑠𝑡_𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 for the

same trace

9: if 𝑒𝑣𝑎 .𝑡𝑠 > 𝑙𝑡 then
10: new_pairs += create_pairs(𝑒𝑣𝑎, 𝑒𝑣𝑏 )
11: end if
12: end for
13: end for
14: append new_pairs to the Index table

3.1.2 Tables in the indexing database. The pre-processing

phase creates and updates a set of tables, which can all be stored

in a key-value store, such as Cassandra. The first one contains

the trace sequence, so that there is no need to be reconstructed

from scratch every time is needed, e.g., to append new events.

The second one is the index presented earlier. The other tables

are auxiliary ones, which are required during index creation and

query answering.

• Seq with key: 𝑡𝑟𝑎𝑐𝑒𝑖𝑑 and value: {(𝑒𝑣𝑎, 𝑡𝑠𝑎), (𝑒𝑣𝑏 , 𝑡𝑠𝑏 ), ...}.
This table contains all traces that are indexed. It is used to

create and update the main index; new events belonging

to the same trace are appended to the value list.

• Indexwith a complex key: (𝑒𝑣𝑎, 𝑒𝑣𝑏 ) and value containing
a list of triples: {(𝑡𝑟𝑎𝑐𝑒𝑖𝑑 , 𝑡𝑠𝑎, 𝑡𝑠𝑏 ), ...}. This is the inverted
index, which is the main structure used in query answer-

ing.

• Count with key a single event type: 𝑒𝑣𝑎 and value a list

of triples: {(𝑒𝑣𝑏 , 𝑠𝑢𝑚_𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛, 𝑡𝑜𝑡𝑎𝑙_𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛𝑠),
(𝑒𝑣𝑐 , 𝑠𝑢𝑚_𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛, 𝑡𝑜𝑡𝑎𝑙_𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛𝑠), ...}. For each event
𝑒𝑣𝑎 , we keep a list which contains the total duration of

completions for a pair (𝑒𝑣𝑎, 𝑒𝑣𝑥 ) and the total number of

completions. This is used to find the most frequent pairs

where an event appears first and also we can leverage the

duration information in case further statistics are required.

• Reverse Count, which has exactly the same form of key

and value with Count, but the statistics refer to pairs that
have the event in the key as their second component

• LastCheckedwith complex key a pair (𝑒𝑣𝑎, 𝑒𝑣𝑏 ) and value
a list of pairs: {(𝑡𝑟𝑎𝑐𝑒𝑖𝑑 , 𝑙𝑎𝑠𝑡_𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛), ...}. The length
of the list is the number of traces inwhich the pair (𝑒𝑣𝑎, 𝑒𝑣𝑏 )
appears. The 𝑙𝑎𝑠𝑡_𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 field keeps the last times-

tamp of 𝑒𝑣𝑏 in a pair detection. This table is used to prevent

creating and indexing pairs more than once.

3.1.3 Index update. In dynamic environments, new logs ar-

rive continuously, but the index is not necessarily updated upon

the arrival of each new log record. New log events are batched and

the update procedure is called periodically, e.g., once every few

hours. To avoid the generation of duplicates, the LastChecked

table introduced above plays a crucial role. The index update

rationale is illustrated in Algorithm 1.

In line 3 of the algorithm, we extract the LastChecked table

and keep only its part that refers to the traces that their id ap-

pears in new events. In line 10, the create_pairs procedure is

Algorithm 2 Pattern detection

1: procedure getCompletions(< 𝑒𝑣1, 𝑒𝑣2, . . . , 𝑒𝑣𝑝 >)

2: previous← Index.get(𝑒𝑣1, 𝑒𝑣2)

3: for 𝑖 =2 to 𝑝 − 1 do
4: 𝑖𝑑𝑥_𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛𝑠 ← Index.get(𝑒𝑣𝑖 , 𝑒𝑣𝑖+1)
5: for all 𝑐 in 𝑖𝑑𝑥_𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛𝑠 grouped by trace do
6: new← [ ]

7: for all 𝑝𝑟 in previous for the same trace do
8: if 𝑝𝑟 .𝑙𝑎𝑠𝑡_𝑒𝑣𝑒𝑛𝑡 .𝑡𝑠 == 𝑐.𝑓 𝑖𝑟𝑠𝑡 .𝑡𝑠 then
9: append 𝑐 to 𝑝𝑟 and add to new

10: end if
11: end for
12: previous← new

13: end for
14: end for
15: return previous

16: end procedure

not specifically described here but can be any of the algorithms

presented in Section 4 depending also on the policy employed.

A subtle point is that the index may grow very large. To miti-

gate this, a separate index table can be used for different periods,

e.g., for different months. In addition, the traces corresponding

to completed sessions can be safely pruned from the Seq table,

along with the corresponding value entries in LastChecked.

3.2 The query processor component
The architecture described can support a range of pattern queries

that are presented in Section 3.2.1. In Section 3.2.2, we give differ-

ent solutions for predicting subsequent events in a pattern while

trading off accuracy for response time.

3.2.1 Different type of queries. The query input is a pattern

(i.e., a sequence) of events < 𝑒𝑣1, 𝑒𝑣2, 𝑒𝑣3, . . . , 𝑒𝑣𝑝 > for all sup-

ported query types. The query types in ascending order of com-

plexity are as follows:

• Statistics. This type of query returns statistics regarding

each pair of consecutive events in the pattern. The sta-

tistics are those supported by the Count table, namely

number of completions and average duration. Also, from

the LastChecked table, the timestamp of the last comple-

tion can be retrieved. The pairwise statistics can provide

useful insights about the behavior of the complete pattern

with simple post-processing and without requiring access

to any other information. For example, the minimum num-

ber of completions of a pair provides an upper bound of

the completions of the whole pattern in the query. Also,

the sum of the average durations gives an estimate of the

average duration of the whole pattern. Finally, the number

of completions could be more accurately bounded if all

pairs in the pattern are considered instead of the consecu-

tive ones only; clearly, there is a tradeoff between result

accuracy and query running time in this case.

• Pattern Detection. This query aims to return all traces

that contain the given pattern. Query processing starts by

searching for all the traces that contain event pair (𝑒𝑣1, 𝑒𝑣2).

At the next step, the technique keeps only the traces where

the same instance of 𝑒𝑣2 is followed by 𝑒3 to the pattern;

to this end, it finds all the traces that contain (𝑒𝑣2, 𝑒𝑣3) and

keeps those for which 𝑒𝑣2 has the same timestamp in both

cases. Up to now, we have found the traces that contain
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Algorithm 3 Accurate exploration of events

1: Input: pattern 𝑒1, 𝑒𝑣2, ..., 𝑒𝑣𝑝
2: candidate_events← from Count Table get all events that has

𝑒𝑣𝑝 as first event

3: propositions← [ ]

4: for all 𝑒𝑣 in candidate events do
5: tempPattern← append 𝑒𝑣 to pattern

6: candidate_pairs← getCompletions(TempPattern)

7: proposition← apply time constraints to candidate pairs

(optional)

8: append proposition to propositions

9: end for
10: return propositions sorted according to Equation (1)

(𝑒𝑣1, 𝑒𝑣2, 𝑒𝑣3). The execution continues in the same way

up to 𝑒𝑣𝑝 , as shown in Algorithm 2. It is trivial to extend

the results with further information, such as the starting

and ending timestamp.

• PatternContinuation.Another aspect for pattern query-
ing is exploring which events are most likely to extend the

pattern in the query. This has several applications, such

as predicting an upcoming event given partial pattern in

an incomplete trace, or computing the probability of an

event to appear in a pattern, based on prior knowledge. In

this query, the response contains the most likely events

that can be appended to the pattern, based on a scoring

function. Equation 1 gives a score for a proposed event.

Total completions refer to the frequency of this event to

follow the last event in the query pattern, while average

duration favors events that appear closer to the pattern in

the original traces.

𝑆𝑐𝑜𝑟𝑒 =
𝑡𝑜𝑡𝑎𝑙_𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛𝑠

𝑎𝑣𝑒𝑟𝑎𝑔𝑒_𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛
(1)

3.2.2 Pattern Continuation Alternatives. Exploring events for

pattern continuation can be computationally intensive, depend-

ing on the log size. Some times, we want accurate responses,

while in other cases it is adequate to receive coarser insights so

that we can trade accuracy for response time. We present three

alternative ways of exploring events, namely one accurate, one

fast heuristic and one hybrid that is in between the previous two.

• Accurate. In Algorithm 3, we present the outline of this

method. In line 2 we use the Count table to find all event

pairs that begin with the last event of the pattern and col-

lect the second events of the pairs in the candidate_events

list. The procedure getCompletions is already provided

in Algorithm 2. We also allow for constraints in the av-

erage time between the last event in the pattern and the

appended event; these constraints are checked in line 7.

The strong point of this approach is that all pattern contin-

uations are accurately checked one-by-one; the drawback

is that the response time increases rapidly with the size of

log files and the number of different events.

• Fast. In Algorithm 4 we perform a heuristic search. We

start by finding the upper bound of the total times the

given pattern has been completed (lines 3-8). Then, for

every possible event 𝑒𝑣 , we approximate the upper bound

if this event is added at the end of the pattern, by keep-

ing the minimum between the max_completions and the

Algorithm 4 Fast exploration of events

1: Input: Pattern 𝑒1, 𝑒𝑣2, ..., 𝑒𝑣𝑝
2: max_completions←∞
3: for all (𝑒𝑣𝑖 , 𝑒𝑣𝑖+1) in pattern do
4: count← Count Table get 𝑒𝑣𝑖 , 𝑒𝑣𝑖+1
5: if count.total_completions < max_completions then
6: max_completions← count.total_completions

7: end if
8: end for
9: propositions← [ ]

10: for all ev in Count.get(𝑒𝑣𝑝 ) do
11: completions←min(max_completions,ev.total_completions)

12: append (ev.event,completions,ev.average_duration) to

propositions

13: end for
14: return propositions sorted according to Equation (1)

Algorithm 5 Hybrid exploration of events

1: Input: Pattern 𝑒1, 𝑒𝑣2, ..., 𝑒𝑣𝑛
2: Input: topK

3: fast_propositions← run Algorithm 4 for the input pattern

4: propositions ← run Algorithm 3 for topK of

fast_propositions

5: return propositions sorted according to Equation (1)

total completions of 𝑒𝑣 (line 11). The strong point of this

approach is that it is fast, since it extracts precomputed

statistics from the indexing database but the results rely

only on approximations.

• Hybrid. Lastly, in Algorithm 5 we perform a trade off

between accuracy and response time. This flavor receives

topK as an input parameter. First, the fast alternative runs

to provide an initial ranking of possible pattern continua-

tions. Then, for the topK intermediate results, the accurate

method runs. In this flavor, the trade-off is configurable.

Setting topK to 𝑙 , the technique degenerates to the ac-

curate, while setting topK to 0 is equal to the fast only

alternative.

4 ALTERNATIVES FOR INDEXING EVENT
PAIRS

The indexing of event pairs largely depends on the pattern de-

tection policy. For the Strict contiguity (SC) policy, the process

is straightforward. For Skip-till-next-match (STNM), there are

three flavors. Each trace is processed separately in parallel using

Spark. Below, we show the processing per trace; therefore the

overall complexity for the complete log needs to be increased by

a factor of O(𝑚). The techniques presented in this section refer

to the implementation of the create_pairs procedure in Alg. 1.

4.1 Strict Contiguity
This method is straightforward: we parse each trace and we add

the consecutive trace events in the index. The complexity is𝑂 (𝑛),
where 𝑛 is the size of a trace sequence in the log file.

4.2 Skip-till-next-match
The three different ways to calculate the event pairs using the

skip-till-next-match (STNM) strategy have different perspectives.
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Algorithm 6 Parsing method (per trace)

checkedList← [ ]

for i in (0, trace.size-1) do
inter_events← [ ]

if 𝑒𝑣𝑖 .type not in checkedList then
5: for j in (i,trace.size) do

if 𝑒𝑣𝑖 .type==𝑒𝑣𝑗 .type then
update inv_index with (𝑒𝑣𝑖 , 𝑒𝑣𝑗 )

for all inter_e in inter_events do
update inv_index with (𝑒𝑣𝑖 , 𝑖𝑛𝑡𝑒𝑟_𝑒)

10: end for
reset inter_events

else if 𝑒𝑣𝑗 .type not in inter_events then
update inv_index with 𝑒𝑣𝑖 , 𝑒𝑣𝑗

append 𝑒𝑣𝑗 to inter_events

15: end if
end for
append 𝑒𝑣𝑖 to checkedList

end if
end for

The Parsing method computes pairs while parsing through the

sequence. The Indexing method, first detects the positions of

each distinct event and then calculates the pairs. Finally, the State
method updates and saves a state for the sequence for each new

event.

Each method can be used in different scenarios. As we will

show in the experimental section, the Indexingmethod dominates

in the settings investigated. But this is not necessarily always the

case. For example, if we operate in a fully dynamic environment,

where new events are appended continuously as a data stream,

its easier to keep a state of the sequence than calculating all the

pairs from the start. However, in our core scenario where new

logs are processed periodically, all three ways apply. In addi-

tion, if a domain has a lot of distinct events, i.e., 𝑙 is very high

and much higher than the cardinalities examined, the Indexing
method becomes inefficient and thus is better to use the Parsing
one.

Parsing method. The main structure is inv_index, which is a

trace-specific part of the Index table. For each trace, the entries of

this table are augmented in parallel and since there is no ordering

in the values, this is not a problem.

The main rationale is shown in Algorithm 6, which contains

two main loops, in line 2 and in line 5, respectively. The idea is

to create all the event pars (𝑒𝑣𝑖 , 𝑒𝑣 𝑗 ), in which 𝑒𝑣𝑖 is before 𝑒𝑣 𝑗 .

The checkedList prevents the algorithm from dealing with events

types that has already been tested. While looping through the

trace sequence for an event 𝑒𝑣1, the algorithm appends all new

events to inter_events until it finds an event, 𝑒𝑣2 that has the

same type as 𝑒𝑣1. When this happens it will create all the pairs

of 𝑒𝑣1 with the events in the inter_events list (line 8-10) and will

empty it (line 11). After that point, the algorithm proceeds with

creating pairs where the timestamp of the first event is now equal

to 𝑒𝑣2’s timestamp. While updating the index, some extra checks

are performed to prevent entering the same pairs twice.

Complexity Analysis. Even though there are two loops iterating
the events, the if statement in line 4 can be true only up to 𝑙 times

(where 𝑙 is the number of distinct elements) and so the complex-

ity is 𝑂 (𝑛𝑙2), with 𝑛 being the length of the trace sequence. The

space required is𝑂 (𝑛+𝑙2), for the inv_index and the checkedList.

Algorithm 7 Indexing method (per trace)

1: indexer← map(event_id):[timestmap1,timestamp2,...]

2: for all 𝑒𝑣𝑎 in indexer do
3: for all 𝑒𝑣𝑎 in indexer do
4: CreatePairs(indexer[𝑒𝑣𝑎 .tsList],indexer[𝑒𝑣𝑏 .tsList]))

5: end for
6: end for

procedure CreatePairs(times_a,times_b)

i,j,prev← 0,0,-1

pairs← [ ]

while i < times_a.size and j < times_b.size do
5: if times_a[i] < times_b[j] then

if times_a[i] > prev then
append (times_a[i],times_b[j]) to pairs

prev←times_b[j], i←1, j←1

else
10: i←1

end if
else

j←1

end if
15: end while

return pairs

end procedure

Algorithm 8 State method (per trace)

1: index← HashMap((𝑒𝑣𝑖 , 𝑒𝑣 𝑗 ):[𝑡𝑠1, 𝑡𝑠2, 𝑡𝑠3 ...])

2: for all 𝑒𝑣 in the trace do
3: Add_New(index,𝑒𝑣)

4: end for
5: return index

6: procedure Add_New(index, new_event)

7: for all combinations where new_event is the 1st event

in index do
8: update state

9: end for
10: for all combinations where new_event is the 2nd event

in index do
11: update state

12: end for
13: end procedure

Indexingmethod. The key idea is to read the whole sequence
of events while keeping the timestamps in which every event

type occurred (line 1). Then, for every possible combination of

events we run the procedure, in which we create the pairs. The

procedure is similar to a merging of two lists, while checking

for time constrains. More specifically, in line 5, the order of the

events is checked and then in line 6, we ensure that there are no

overlapping event pairs.

Complexity Analysis. In line 1, we loop once the entire sequence
to find the indexes of each distinct event (𝑂 (𝑛)). Then, the next
loops in lines 2-3 retrieve all the possible event pairs (𝑂 (𝑙2)) and
finally the procedure in line 4, will pass through their indices

(𝑂 (𝑛)). This gives a total complexity of𝑂 (𝑛+𝑙2𝑛), which is simpli-

fied to𝑂 (𝑛𝑙2). The total space required is𝑂 (𝑛+𝑙2), for the partial
and the pairs. I.e., the complexity is similar to the Parsing method.
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State method. The algorithm is based on a Hash Map, which

contains a list of timestamps for each pair of events. We first ini-

tialize the structure by adding all the possible event pairs that can

be created (line 1) through parsing the sequence and detecting

all distinct event types that appear. Then we loop again through

the event sequence. While looping through the sequence we add

new event (𝑒𝑣𝑖 ) in the structure, by first updating all the the pairs

that have 𝑒𝑣𝑖 as the first event and then as the second (procedure

lines 7-12). During these updates, we ensure that no pair is over-

lapping. The update operation is as follows. For each (𝑒𝑣𝑖 , 𝑒𝑣 𝑗 )

entry in the HashMap, if the list of the timestamps has even

size, we append 𝑒𝑣𝑖 .𝑡𝑠; otherwise we do nothing. Similarly, for

each (𝑒𝑣 𝑗 , 𝑒𝑣𝑖 ) entry in the HashMap, if the list of the timestamps

has odd size, we append 𝑒𝑣𝑖 .𝑡𝑠 ; otherwise we do nothing. At the

end, we trim all timestamp lists of odd size (not shown in the

algorithm).

Complexity Analysis. The space complexity is𝑂 (𝑙2) due to the
HashMap. In line 2, the loop is passing through all the events

in the sequence and for every event executes the procedure

Add_new. This procedure has two loops passing through the set

of distinct events (𝑙 ), which gives us a total complexity of 𝑂 (𝑛𝑙)
multiplied by the complexity to access the HashMap, which is

𝑂 (1) in the average case. Despite this lower complexity, in the

evaluation section, we will provide evidence that the overheads

due to the HashMap access are relatively high.

Implementation information. We have used Spark and

Scala for developing the pre-processing component, which en-

capsulates the event pair indexing, and Java Spring for the query

processor. The source code is publicly available on GitHub.
4
,
5

5 EVALUATION
We used both real-world and synthetic datasets to evaluate the

performance of the proposed methods. We start by presenting

the datasets, followed by the evaluation of the different flavors of

indexing event pairs. Then we compare the preprocess time with

the proposal in [19] and Elasticsearch v7.9.1 and finally we show

the response time for queries that executed in both methods. In

query processing, we also compare against SASE [34].
6
All tests

were conducted on a machine with 16GB of RAM and 3.2GHz

CPU with 12 cores. Cassandra is deployed on a separate machine

with 64GB of RAM and 2GHz CPU. Each experiment is repeated

5 times and the average time is presented.

5.1 Datasets
The real-world datasets are taken from the Business Process In-

telligence (BPI) Challenges, and more specifically from the years

2013, 2017 and 2020. BPI13
7
is an event log of Volvo IT incident

and problem management. It includes 7,554 traces, which contain

65,533 events in total. The mean, min and max number of events

per trace for this dataset are 8.6, 1 and 123, respectively. BPI17
8
is

an event log, which corresponds to a loan application of an Dutch

financial institute. It includes 31,509 traces, which contain over

1M (1,202,267) events in total. The mean, min and max number of

events per trace for this dataset are 38.15, 10 and 180, respectively.

4
https://github.com/mavroudo/SequenceDetectionPreprocess

5
https://github.com/mavroudo/SequenceDetectionQueryExecutor

6
The SASE code repository used in the experiments is https://github.com/haopeng/

sase

7
doi:10.4121/500573e6-accc-4b0c-9576-aa5468b10cee

8
https://data.4tu.nl/articles/BPI_Challenge_2017/12696884

Log file Number of traces Activities

max_100 100 150

max_500 500 159

med_5000 5,000 95

max_5000 5,000 160

max_1000 1,000 160

max_10000 10,000 160

min_10000 10,000 15

bpi_2013 7,554 4

bpi_2020 6,886 19

bpi_2017 31,509 26

Table 4: Number of traces and distinct activities for every
process-like event log.

From BPI20
9
, we use an event log of requesting for payment for

a business trip. This is the smaller real-world dataset. It includes

6,886 traces, which contain 36,796 events. The mean, min and

max number of events per trace for this dataset are 5.3, 1 and 20,

respectively.

We also created synthetic datasets. First with the help of the

PLG2
10

tool, we created 3 different processes, with different num-

ber of distinct activities (15,95,160). Then by modifying the num-

ber of traces per logfile, we created logs that contain from 500 to

400,000 events. The log files are in the XES
11

format. In Figure

2, the distributions of events per trace and unique activities per

trace are shown. The purpose of these figures is to provide ev-

idence that our test datasets cover a broad range of real-world

trace profiles, thus the experimental results are trustworthy. In

general, logs with the terms “med” and “max” in their name have

more events per trace and much more unique activities than

those with the term “min”. Summary metadata are also in the

Table 4. The process-oriented logs are not big, but are used in

order to compare our approach against the one in [19], which

has been employed in pattern continuation in business processes.

This method cannot handle much bigger datasets. To test the

scalability of our solution, we employ some additional random

datasets that will be introduced separately.

5.2 Evaluating the different ways of indexing
pairs

In this section, we evaluate the different flavors that index the

event pairs according to the skip-till-next-match (STNM) policy.

We aim to find the pros and cons for each flavor in Section 4

and also define the different real life scenarios to use them com-

plementing the discussions already made above. We start the

evaluation using the datasets in Table 4. The results are shown

in Table 5. The main observation is that all three flavors perform

similarly while indexing process-like datasets. When the relative

differences are larger (e.g., larger than 30% for bpi_2020), the

absolute times are small, so the impact of different decisions is

not that important.

These datasets are not big. To better test the potential of the

three alternatives, we created log files in which the events were

not based on a process. We range the number of traces from 100

to 5000, the number of max events per trace from 50 to 4000

9
https://doi.org/10.4121/uuid:52fb97d4-4588-43c9-9d04-3604d4613b51

10
https://plg.processmining.it/

11
https://xes-standard.org/
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Figure 2: Distributions of the number of events and activities (i.e., unique event types) per trace for every process like log
file.

Log file Indexing Parsing State

max_100 4.874 4.49 4.572

max_500 8.454 7.109 7.294

max_1000 10.656 10.407 10.447

med_5000 23.105 22.601 22.417

max_5000 38.152 34.854 38.444

max_10000 79.863 77.964 80.796

min_10000 15.604 13.979 13.625

bpi_2020 6.803 10.384 8.822

bpi_2013 9.528 8.044 8.197

bpi_2017 170.9 171.666 179.352

Table 5: Execution times of differentmethods (in seconds).

and the number of activities from 4 to 2000. We refer to them

as random datasets, due to the lack of correlation between the

appearance of two events in a trace, which is not the typical case

in practice, and renders the indexing problem more challenging.

The results are presented in Figure 3. In the first plot, we set

the number of traces equal to 1000 and the number of different

activities equal to 500, while changing the number of max events

per trace from 100 to 4000. I.e., we handle up to 4M events. In

the second plot, we keep the maximum number of events per

trace and distinct activities to 1000 and 100, respectively while

increasing the number of traces from 100 to 5000. I.e., we handle

up to 5M events. Lastly, we maintain both the number of traces

and maximum number of events to 500 and increase the distinct

activities from 4 to 2000.
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Figure 3: Comparison of execution times of the three dif-
ferent approaches of indexing the event pairs according to
the STNM policy for large random logs.

From the Figure 3, we can observe that the Indexing alternative

outperforms the other two, in some cases by more than an order

of magnitude. The simplicity of this method makes it superior to

State, even though the time complexity indicates that the latter is

better. The State method performs better than Parsing; especially

in the third plot we can see the non-linear correlation between

the execution time and the number of distinct activities.

In summary, our results indicate that indexing is the most

efficient flavor to use when dealing with log files considered

periodically (so that new log entries are a few millions): it has
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Log file [19] Strict (1 thread) Strict Indexing (1 thread) Indexing Elasticsearch

max_100 1.054 3.764 3.701 5.398 4.874 0.67

max_500 2.68 5.593 4.649 12.568 8.454 4.68

max_1000 4.458 7.084 5.69 22.544 10.656 10.167

med_5000 6.913 20.361 9.175 113.04 23.105 31.80

max_5000 16.163 25.419 12.452 210.713 38.152 31.41

min_10000 26.64 31.379 8.782 116.318 15.604 38.15

max_10000 37.569 63.975 21.006 734.844 79.863 121.167

bpi_2020 95.269 11.461 8.597 17.908 6.803 14.49

bpi_2013 504.089 12.817 7.918 14.925 9.528 9.973

bpi_2017 very high 451.666 66.284 crash 170.9 364.293

Table 6: Comparison of execution times between [19] and our proposal (time in seconds).

minimum space complexity and it has the best executing time.

On the contrary, State is preferable when operating in a dynamic

environment, when for example new logs will be appended at

the end of every few minutes and some traces will be active for

weeks. State allows to save the current state of the log and, when

new events are appended, it can calculate the event pairs without

checking the previous ones. Even though the space complexity

is higher than the other methods, it is expected to dominate in a

real dynamic scenario.

5.3 Pre-process comparison
Based on the previous results, we continue the comparison using

only the Indexing alternative for the STNM policy. We compare

the time for building the index for both SC and STNM against

[19], which supports only SC, and against Elasticsearch. The

results are presented in Table 6; to provide the full picture we

run Spark in two modes, namely using all the available machine

cores and using a single Spark executor. The latter allows for

direct comparison against non-parallel solutions.

Considering how [19] works, logs that are based on processes

are easier to handle. We can split the test datasets of table 4

into three categories, namely small synthetic datasets (100-1000

traces), large synthetic datasets (5000 & 10000 traces) and real

datasets (from the BPI challenge). In the first category, Strict

performs almost the same as [19], while Indexing has significantly

higher execution time, due to the more complex process it runs.

In the second category, Strict scales better and achieves better

times than [19]. Finally, in real datasets, our method achieves

two order of magnitude lower times compared to [19]. When

using the bpi_2017 dataset, [19] could not even finish indexing

in 5 hours. This is probably based on the large amount of events

(≈1.2M) combined with the high number of distinct events per

trace. This lead to a very large suffix array, which probably could

not fit in main memory and ended up doing an extensive amount

of I/Os. For the same dataset, both Indexing and Strict managed

to create inverted indexing in less than 3 minutes when using all

machine cores.

Compared to Elasticsearch, we can observe that our best per-

forming technique is on average faster for the last two categories

(large synthetic and real datasets). In the larger real dataset, build-

ing an index to support STNM queries according to our proposal

is more than 2.1X faster than Elasticsearch.

Parallelization-by-design is a big advantage of our method;

we do not simply employ Spark but we can treat each trace in

parallel. Further, parallelization applies to both the event-pair

creation and the storage (Cassandra is a distributed database). As

Log file [19] Our method (2) Our method (10)

max_100 0.0023 0.007 0.022

max_500 0.0026 0.020 0.029

max_1000 0.0022 0.010 0.050

med_5000 0.0022 0.013 0.280

max_5000 0.0026 0.007 0.230

min_10000 0.0022 0.060 2.200

max_10000 0.0026 0.012 0.400

bpi_2020 0.0059 0.006 0.290

bpi_2013 0.0185 0.034 4.000

Table 7: Comparison response times in seconds

shown in Table 6, indexing can run even 10 times faster when

using all 12 cores available. This is not the case for the [19] and

other solutions, like Elasticsearch. However, there exist some

structures that build suffix trees in parallel [2, 13, 20]. But still,

the most computational intense process is to find all the subtrees

and store them. The number of subtrees is increased with the

number of leaves, which depends on the different traces that can

be found in a logfile.

5.4 Query response time
We start by comparing the response time for a single query, be-

tween our method and the one in [19]. Since [19] supports the

strict contiguity (SC) policy solely, we use this policy to create

the inverted index and then execute a pattern detection query,

as described in Section 3.2.1. Then, we compare the STNM solu-

tions against Elasticsearch and SASE, which does not perform

any preprocessing. We do not employ Elasticsearch in the SC

experiments, because it is more suitable for STNM queries; more

specifically, supporting SC can be achieved with additional ex-

pensive post-processing. Finally, we compare the pattern con-

tinuation methods and show the effectiveness of the trade-off

between accuracy and response time.

5.4.1 Comparison against [19] for SC. The results of the com-

parison are shown in Table 7. In the first column, we can see

the response time of [19] for the different log files. In the next 2

columns, we have different response times for detection queries,

for pattern length equal to 2 and 10, respectively. As discussed

in Section 2.2, all subtrees are precalculated and stored, which

means that the detection query time is𝑂 (𝑙𝑜𝑔𝑛 + 𝑘) where 𝑛 here

is the number of different subtrees and 𝑘 is the number of sub-

trees that will return. As such, for [19], the response time does

not depend on the querying pattern length. On the other hand,
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Log file Elasticsearch SASE Our method

pattern length = 2

max_100 0.006 0.003 0.003

max_500 0.009 0.014 0.006

max_1000 0.009 0.038 0.004

med_5000 0.048 0.958 0.006

max_5000 0.015 1.400 0.005

min_10000 0.145 1.565 0.031

max_10000 0.048 7.024 0.011

bpi_2013 0.071 0.205 0.008

bpi_2020 0.068 0.366 0.040

bpi_2017 0.609 70.491 0.102

pattern length = 5

max_100 0.011 0.002 0.008

max_ 500 0.018 0.014 0.012

max_ 1000 0.017 0.038 0.013

med_ 5000 0.126 0.999 0.048

max_ 5000 0.037 1.226 0.036

min_ 10000 0.647 1.688 0.525

max_ 10000 0.170 6.413 0.061

bpi_ 2013 0.155 0.233 0.063

bpi_ 2020 0.246 0.534 0.562

bpi_ 2017 4.652 370.142 1.495

pattern length = 10

max_100 0.020 0.002 0.048

max_500 0.031 0.014 0.039

max_1000 0.032 0.038 0.060

med_5000 0.239 1.010 0.279

max_ 5000 0.075 1.245 0.218

min_10000 1.340 1.712 3.707

max_10000 0.289 6.491 0.373

bpi_2013 0.259 0.229 0.374

bpi_2020 0.440 0.531 4.262

bpi_ 2017 9.661 440.066 11.188

Table 8: Response times for STNM queries in seconds

our proposal incrementally calculates the completion for every

event in the pattern as described in Section 3.2.1; as such, the

response time depends on the pattern length. In Figure 4, we

show how response time increases with respect to the querying

pattern length.

The experiments in Table 7 were executed 5 times and we

presented the mean response time. However, we have noticed a

fluctuation in response times, which is affected by the events in

the pattern. Each event has a different frequency in the log files;

e.g., starting and ending events are more frequent than some

events that correspond to an error. When events in the querying

pattern have low frequency, the response time will be shorter

because there are fewer traces that need to be tested.

For small patterns, with length equal to 2-5, we get similar

response times between the two methods, while [19] is always

faster. As pattern length increases, our method’s response time

increases as well, but we also return as a by-product detection

for all the sub-patterns.

In summary, the table shows the penalty we pay against a state-

of-the-art technique during subsequence matching; however, the

benefits of our approach are more significant: we allow efficient

indexing in large datasets and we support, with similar times,

pattern queries using the STNM policy.

5.4.2 Comparison against Elasticsearch and SASE for STNM.
In Table 8, we present comparison against SASE and Elasticsearch
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tern length
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Figure 5: Response time for different pattern continuation
methods for different query pattern lengths

query response times, when, in each experiment, we search for

100 random patterns. There are two main observations. Firstly,

running techniques that perform all the processing on the fly

without any preprocessing, such as SASE, yields acceptable per-

formance in small datasets but significantly degrades in larger

datasets, such as bpi_2017 and max_10000. In the former dataset,

techniques that perform preprocessing are faster by 2 orders of

magnitude. Secondly, there is no clear winner between Elastic-

search and our solution. But, in general, we are faster for small

queries of pattern size equal to 2 and in all but one dataset for

pattern size equal to 5, while Elasticsearch runs faster for pattern

length equal to 10. However, for the longest running long queries,

our solution is only 15.8% slower. Therefore, we can claim that

our solution is competitive for large query patterns. Moreover, we

can relax our query method to achieve faster times, as explained

in the next part of the evaluation, while we support pattern con-

tinuation more efficiently due to the incremental approach of

pattern processing that we adopt; i.e., we do not have to repeat

the complete query from scratch.

5.4.3 Comparison of pattern continuation alternatives. In Fig-

ure 5, we show the response times between Accurate and Fast

method for the dataset max_10000. We can see that the Accurate

method follows the same pattern as the graph in Figure 4, which

is what we expected as it performs pattern detection for every

possible subsequent event in the pattern. On the other hand, there

is no significant increase of response time for the Fast heuristic

with regards of the pattern length.

We are trying to fill this performance gap with the Hybrid

alternative. In Figure 6, we use again the max_10000 dataset and a

pattern with 4 events and we show the response timewith respect

to the 𝑡𝑜𝑝𝐾 parameter given to Hybrid. The response time for

both Accurate and Fast is constant, because they do not use this

parameter. As expected, the time increases linearly as 𝑘 increases.
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Fast’s execution time is the lower bound and Accurate’s is the

upper one.

For the same setup, we perform an accuracy test presented in

Figure 7. We use as ground truth the events returned from the

Accurate method and compute the accuracy as the fraction of

the events in the top 𝑘 propositions from Hybrid that exist in

the propositions reported by Accurate, where 𝑘 is the number of

propositions returned from Accurate. The accuracy is increasing

as the number of 𝑘 increases until it reaches 100% for 𝑘=8. For

the same value, response time is half of the Accurate, as shown in

the previous graph. Also in this example we could achieve a 80%

accuracy with 𝑘=2 and 1/3 of the response time that Accurate

would have taken.

6 RELATEDWORK
Our work relates to several areas that are briefly described here

in turn.

Complex event processing. There are number of surveys pre-

senting scalable solutions for the detection of complex events in

data stream. A variety of general purpose CEP languages have

been developed. Initially, SASE [30] was proposed for executing

complex event queries over event streams supporting SC only.

The SQL-TS [24] is an extension to the traditional SQL that sup-

ports search for complex and recurring patterns (with the use of

Kleene closure), alongwith optimizations, to deal with time series.

In [9], the SASE language was extended to support Kleene clo-

sures, which allow irrelevant events in between thus covering the

skip-till-next-match (STNM) and skip-till-any-match strategies.

An extensive evaluation of the different languages was presented

in [34] along with the main bottlenecks for CEP. In addition, the

K*SQL [21] language, is a strict super-set of SASE+, as it can work

with nested words (XML data). Besides the languages, most of

these techniques use automata in order to detect specific patterns

in a stream, like [18]. Our technique differs from them as we do

not aim to detect patterns on the fly, but instead, to construct the

infrastructure that allows for fast pattern queries in potentially

large databases. To this end, the work in [22] also uses pair of

events to create signatures, but for scalability purposes, this work

considers only the top-k most frequent pairs, which yields an

approximate solution, whereas we focus on exact answers. In

addition, [22] focuses on the proposal of specific index types,

whereas we follow a more practical approach, where are indices

are stored as Cassandra tables to attain scalability.

Pattern mining. For non-streaming data, a series of methods

have been developed in order to mine patterns. The majority

of these proposals are looking for frequent patterns; e.g., Sahli

et al in [26] proposed a scalable method for detecting frequent

patterns in long sequences. As another example, in several other

fields such as biology, several methods have developed, which

are typically based in statistics (e.g., [1, 15]) and suffix trees (e.g.,

[10]). Parallel flavors have also been proposed, e.g., in [7]. Other

forms of mined patterns include outlying patterns [5] or general

patterns with high utility as shown in [32]. It is not trivial to build

on top of these techniques to detect arbitrary patterns, because

these techniques typically prune non-interesting patterns very

aggressively.

Business processes. There are applications in business process

management that employ pattern mining techniques to find out-

lier patterns and clear log files from infrequent behavior, e.g.,

[16, 28], in order to facilitate better process discovery. Another

application is to predict if a trace will fail to execute properly;

for example, in [4, 17], different approaches to predicting the

next tasks of an active trace are presented. None of these tech-

niques addresses the problem of efficiently detecting arbitrary

sequences of elements in a large process database as we do, but

the technique in [27] encapsulates our main competitor, namely

[19]. Finally, in [8], a query language over business processes

was presented to support sub-process detection. The proposed

framework can be leveraged to support SC and STNM queries

over log entries rather than subprocesses, but this entails using a

technique like SASE, without any pre-processing. Our evaluation

shows that such techniques are inferior to our solution.

Other data management proposals. The closest work to ours

from the field of data management is set containment join queries,

e.g., [31]. However, this type of joins does not consider time

ordering. An interesting direction for future work is to extend

these proposals to work for ordered sequences rather than sets;

to date, this remains an open issue.

7 DISCUSSION
We have proposed a methodology to detect pattern according to

the Strict contiguity (SC) and Skip-till-next-match (STNM) policy

in large log databases, assuming that new events arrive and pro-

cessed in big batches. However, there are several issues that need

to be addressed with a view to yielding a more complete solution.

First, sequential patterns, in their more relaxed form, allow for

overlappings, which is commonly referred to as the skip-till-any-

match policy. Supporting such patterns places additional burden

to both the indexing process and query execution. Second, in

many cases, assuming a total ordering is restrictive and also, the

way some events may be logged, even in the same trace, cannot

be regarded as following a total order. For example, in predic-

tive maintenance in Industry 4.0, it is common to group events

in large sets ignoring their relative order, e.g., [29]. Extending
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our approach to operate under partial ordering is an interesting

extension. Additionally, judiciously choosing the optimal update

period is an open issue and gives rise to a multi-objective problem

where low indexing time and result timeliness are contradicting

objectives. Finally, the pattern continuation techniques can ac-

count for other operation modes, where an event is not appended

only at the end, but also at arbitrary places in the query pattern.

Our proposal can be easily extended to cover these cases, but we

omit details here.

8 CONCLUSION
Despite the big advances in complex event processing and sequen-

tial pattern mining, efficient detection of arbitrary subsequences

in log databases is an overlooked issue. Our proposal fills this gap

and proposes indexing techniques along with query evaluation

algorithms that allow the user to detect any patterns according

to either the strict contiguity and the skip-till-next-match policy.

Compared to subsequence matching techniques that support only

strict contiguity, we show that our indexing can scale and also,

query processing times are competitive when both approaches

are applicable. Compared to Elasticsearch, a state-of-the-art solu-

tion, we build the indices faster and we run small queries faster,

while we are competitive in large queries. Further, our solution

can support exploration of pattern extension alternatives with dif-

ferent trade-offs between running time and accuracy and builds

on top of scalable technologies, like Spark and Cassandra.
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ABSTRACT
Detection of anomalies (i.e., outliers) in multi-dimensional data
is a well-studied subject in machine learning. Unfortunately, un-
supervised detectors provide no explanation about why a data
point was considered as abnormal or which of its features (i.e.
subspaces) exhibit at best its outlyingness. Such outlier explana-
tions are crucial to diagnose the root cause of data anomalies
and enable corrective actions to prevent or remedy their effect in
downstream data processing. In this work, we present a compre-
hensive framework for comparing different unsupervised outlier
explanation algorithms that are domain and detector-agnostic.

Using real and synthetic datasets, we assess the effectiveness
and efficiency of two point explanation algorithms (Beam [28] and
RefOut [18]) ranking subspaces that best explain the outlyingness
of individual data points and two explanation summarization
algorithms (LookOut [15] and HiCS [17]) ranking subspaces that
best exhibit as many outlier points from inliers as possible. To
the best of our knowledge, this is the first detailed evaluation
of existing explanation algorithms aiming to uncover several
missing insights from the literature such as: (a) Is it effective to
combine any explanation algorithm with any off-the-shelf outlier
detector? (b) How is the behavior of an outlier detection and
explanation pipeline affected by the number or the correlation of
features in a dataset? and (c) What is the quality of summaries
in the presence of outliers explained by subspaces of different
dimensionality?

1 INTRODUCTION
Detecting and diagnosing data anomalies are important tasks
in data processing pipelines used to build industrial-strength
Machine Learning (ML) systems [32]. Clearly, data points that
significantly deviate from other points in a dataset may be sys-
tematic errors, i.e., outliers, or may manifest changes in the data
generation process per se, i.e., novelties, that decrease the accu-
racy of the predictive models constructed downstream [29, 48].
In scientific and industrial monitoring applications, anomaly de-
tection is often the ultimate goal of the data analysis as it enables
the identification of unusual measurements (e.g., related to faults,
bio-indices, etc.) and/or of suspicious activities (e.g. intrusions,
fraud, etc.). Several unsupervised algorithms for anomaly detec-
tion have been proposed [2, 51] using different methods (e.g.,
proximity or isolation based) to distinguish outliers from inliers
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Figure 1: A 3𝑑 dataset with three 1𝑑 and 2𝑑 feature sub-
spaces

when labels of data points are impossible or difficult to obtain.
Unfortunately, these algorithms do not explain why a data point
was considered as abnormal, leaving analysts with no guidance
about where to begin their investigation.

In this paper, we focus on algorithms explaining the outly-
ingness aspects of multi-dimensional data points in the form of
subspaces of data features that best explain why a given outlier
deviates the most from the inliers. Such explanations are crucial
to diagnose the root cause of data anomalies [3] and enable cor-
rective actions to prevent or remedy their effect in downstream
data processing (e.g. by repairing data errors or retraining the
predictive models for concept drifts).

To illustrate, assume that we have a three dimensional dataset
with features 𝐹1, 𝐹2 and 𝐹3 and that we would like to explain the
outlyingness of points 𝑜1 and 𝑜2 depicted by a black circle and a
black square in Figure 1-a). In the full dimensional space of the
dataset,𝑜1 exhibits a small deviation frommost of the other points
in the dataset while 𝑜2 looks like an inlier although it exhibits a
significant outlyingness when considering the subset of features
{𝐹2, 𝐹3} (see Figure 1-d). We refer to the former case as full space
outliers and to the latter as subspace outliers. In both cases, we are
interested in explaining under which feature sets (aka subspaces)
points exhibit a high outlyingness. None of the 1𝑑 subspaces
{𝐹1}, {𝐹2} and {𝐹3} explain the outlyingness of the two points
(see Figure 1-b). The same is true for the 2𝑑 subspace {𝐹1, 𝐹3}
(see Figure 1-e). Subspace {𝐹1, 𝐹2} explains the outlyingness of
𝑜1 only (see Figure 1-c), while {𝐹2, 𝐹3} explains the outlyingness
of both points (see Figure 1-d). We can observe that outlyingness
of 𝑜1 is higher in {𝐹1, 𝐹2} than in {𝐹2, 𝐹3}. Features contained
into the explanation of an outlier are called relevant. For instance,
𝐹1 and 𝐹2 are relevant to the explanation of 𝑜2.
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We are primarily interested in unsupervised algorithms that
are both domain-agnostic (i.e., suitable for datasets from vari-
ous domains) and detector-agnostic (i.e., they can be employed
to explain outliers produced by any off-the-self detector). Our
choice of explanation algorithms is motivated by the fact that no
detector is good in all possible settings w.r.t data characteristics
(see the conclusions of several experimental studies [6, 8, 14]).
Hence we are interested in decoupling the outlier explanation
from detection, in contrast to several techniques proposed in Ex-
plainable Artificial Intelligence (XAI) such as output contribution
of attribute values [24, 33] or partial dependence plots [11].

We evaluate two point explanation algorithms, RefOut [18] and
Beam [28], that rank subspaces best explaining the outlyingness
of individual data points, and two explanation summarization
algorithms, LookOut [15] and HICS [17], that rank subspaces best
explaining the outlyingness of as many outlier points as possible.
These algorithms rely on outlyingness criteria of existing detec-
tors such as Local Outlier Factor (LOF) [5], Angle Based Outlier
Detection (ABOD) [21] or Isolation Forest (iForest) [23].

Although there exist several efforts for benchmarking outlier
detectors in batch [6, 8, 12, 42] and stream [22, 43] processing
settings, outlier explanation and summarization algorithms have
not yet been thoroughly evaluated under realistic assumptions.
To the best of our knowledge, this is the first comprehensive
and detailed evaluation of existing algorithms aiming to uncover
several insights missing from the existing literature. More pre-
cisely, our evaluation aims to answer the following questions:
1. Is it effective to combine any explanation algorithm with any
off-the-shelf outlier detector? 2. How is the behavior of an outlier
detection and explanation pipeline affected by the number of fea-
tures or their correlation in a dataset? 3. What is the quality of
summaries in the presence of outliers explained by subspaces of
different dimensionality?

The remaining of the paper is organized as follows. Section 2
introduces the outlier detectors and the point explanation and
summarization algorithms we integrated in our experimental
testbed. Section 3 details the pipelines of algorithms, the datasets
as well as the evaluation metric used in our testbed. Section 4
presents the conducted experiments and the conclusions drawn
regarding the missing insights. Section 5 surveys additional ex-
planation algorithms for data in rest or in motion and justify why
they have not been included in our study. Section 6 concludes
our work and presents plans for future research.

2 OUTLIER DETECTION AND
EXPLANATION ALGORITHMS

2.1 Unsupervised Outlier Detectors
Several methods have been proposed in the literature to measure
the abnormality of a data point in a dataset. In the following,
we survey three unsupervised methods that are widely used for
detecting outliers in datasets withmultiple numerical1 features [6,
8, 12, 13, 42]. As the objective of outlier explanation is to retrieve
subspaces where the outliers are clearly separable from inliers,
we did not include any subspace-based outlier detector [20, 36]
to assess the quality of a particular subspace examined by the
explainer. The outlyingness criteria underlying eachmethod have
respective strengths and weaknesses w.r.t. the characteristics
of the datasets (e.g., dimensionality) and outliers (e.g., highly
clustered or not).
1Anomaly detection methods for categorical data [41] are outside the scope of this
work.

Figure 2: Examples of outliers in different subspaces de-
tected by (a) LOF, (b) Fast ABOD and (c) iForest

Density-Based methods, such as Local Outlier Factor (LOF)
[5] take into account the local density of points when searching
for outliers. An example of outliers detected by LOF is illustrated
in Figure 2-a). The point 𝑜1 is considered to be an outlier as it lies
on a sparse area while its nearest neighbors lie on dense areas.
The distance of a point 𝑝 from 𝑜 is computed using the following
reachability distance (reach-dist):

reach-dist𝑘 (𝑝 ← 𝑜) =𝑚𝑎𝑥{𝑘-dist(𝑜), 𝑑 (𝑝, 𝑜)}
where 𝑘-dist(o) is the distance of 𝑜 to its 𝑘th nearest neighbor and
𝑑 (𝑝, 𝑜) is the direct distance (e.g., Euclidean) between the two
points. LOF computes the local reachability density of a point 𝑝
as the inverse of the average reachability distance of 𝑝 from its
𝑘-nearest neighbors (kNN):

lrd𝑘 (𝑝) = 1/(mean𝑜∈kNN (𝑝) reach-dist𝑘 (𝑝 ← 𝑜))
Finally, the density of a point is compared to the average local
reachability density of its neighbors to obtain a score:

LOF𝑘 (𝑝) = mean𝑜∈kNN (𝑝)
lrd𝑘 (𝑜)
lrd𝑘 (𝑝)

LOF’s time complexity is𝑂 (𝑁 2), where𝑁 is the number of points
in a dataset. Inliers obtain scores around 1 while outliers obtain
scores significantly larger than 1. LOF distinguishes effectively
outliers from inliers in regions of varying density where outliers
lie on highly sparse areas far from dense clusters.

Angle-Based methods compute for each given point, the an-
gles to other data points 𝑁 . The Angle Based Outlier Detector
(ABOD) [21] uses the variance of these angles as an outlyingness
score. For example, as we can see in Figure 2-b), 𝑜1 is an outlier
as its neighbors are located in similar directions (small angle
variance), but 𝑜2 is an inlier as it is surrounded by its neighbors
in various directions (high angle variance). The ABOD score for
a given point 𝑜1 and any pair of points 𝑥1, 𝑥2 is computed as:

𝐴𝐵𝑂𝐷 (𝑜1) = Var
𝑥1,𝑥2∈𝑁

(
⟨−−−→𝑥1𝑜1,−−−→𝑥2𝑜1⟩

∥−−−→𝑥1𝑜1∥2 · ∥−−−→𝑥2𝑜1∥2

)
As ABOD’s time complexity is𝑂 (𝑁 3), we are focusing on an effi-
cient ABOD variant (𝑂 (𝑘𝑁 2)), called Fast ABOD, which computes
the angles of a particular point only to its 𝑘-nearest neighbors.
Small angle variance results to high ABOD score indicating high
outlyingness. Intuitively, a point is more likely to be an outlier
when it lies on the borders of the data distribution. ABOD avoids
to compute the distance between points, hence it is a suitable
detector for high dimensional datasets.

Isolation-Based methods estimate the probability of a point
to be an outlier on the basis of the number of partitions needed
to isolate it from the other points in a dataset. The less partitions
needed to isolate, the more likely a data point is to be an outlier.
For instance, in Figure 2-c) the point𝑜1 is an outlier as it needs less
partitions to be isolated compared to the inlier 𝑜2. Isolation Forest
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(iForest) [23] exploits this property using a forest of random trees
built on samples of the dataset by uniformly selecting features
and their split values. The outlyingness score of a data point is
then computed by averaging over all trees the path length from
the root to the leaf node with the data point:

𝑠 (𝑥, 𝑛) = 2−
𝐸 (ℎ (𝑥 ) )
𝑐 (𝑛)

The score assigned to points is normalized within the range
[0,1], with outliers getting a score close to 1. iForest has a small
memory-footprint (𝑂 (𝑡𝑛)), where 𝑡 is the number of trees and
𝑛 is the subsample size. It achieves a sublinear time-complexity
(𝑂 (𝑡𝑛𝑙𝑜𝑔𝑛)) by exploiting subsampling and by eliminating the
heavy cost of distance computation. Being agnostic to the dis-
tances (or densities) of points, iForest is able to detect outliers
effectively even if they are lying on less dense areas than the
majority of the points.

2.2 Point Explanation Algorithms
The objective of a point explanation algorithm is to discover the
subspaces that best explain the outlyingness of amulti-dimensional
point, i.e. the feature sets where this point deviates most in the
dataset. Such subspaces are called relevant w.r.t. to the expla-
nation of an outlier. Point explanation algorithms essentially
rely on a search strategy for exploring feature subspaces in a
dataset and an outlyingness criterion. The main challenge is that
no interesting monotonic property holds for most outlyingness
criteria [28], which prevents us to effectively prune the expo-
nential space of feature sets (2𝑑 ) w.r.t. data dimensionality (𝑑).
Using the detectors presented previously, an outlier discovered
in low-dimensional subspaces may become invisible, i.e., masked
by inliers in high-dimensional subspaces and vice versa.

RefOut [18] is a sampling based algorithm which employs
a stage-wise technique exploiting random subspace projections
to find relevant subspaces of a fixed dimensionality. The main
algorithmic steps of RefOut are illustrated in Figure 3. Initially,
RefOut builds a random pool of size 𝑛 with random subspace
projections drawn from the full feature space of the dataset. In
the example of Figure 3, we depict a pool of size 4 that contains
3𝑑 random subspaces (i.e, 50% of the 6𝑑 dataset). Using an off-
the-self detector, the to-be-explained outlier 𝑝1 is scored in each
subspace of the pool. To avoid dimensionality bias when scoring
subspaces, the score of a point 𝑝 in a subspace 𝑠 , denoted as
𝑠𝑐𝑜𝑟𝑒 (𝑝𝑠 ) is standardized using Z-score as follows:

𝑠𝑐𝑜𝑟𝑒 (𝑝𝑠 )′ =
𝑠𝑐𝑜𝑟𝑒 (𝑝𝑠 ) − 𝑠𝑐𝑜𝑟𝑒𝑠√

𝑉𝑎𝑟 (𝑠𝑐𝑜𝑟𝑒𝑠 )
RefOut follows a stage-wise technique. In stage 1, RefOut as-

sesses every single feature in the pool. In other words, in this
stage it collects the best univariate subspaces. In our example, for
the feature 𝐹1 RefOut partitions the pool into two populations
of random subspaces w.r.t. whether they contain or not the fea-
ture 𝐹1. To assess the importance of a feature for explaining the
outlyingness of the point 𝑝1, RefOut quantifies the discrepancy
of score populations between the two partitions under the hy-
pothesis that they have equal means. To test this hypothesis, the
two-sample Welch’s t-test [46] is employed as the two samples
may have unequal variances and/or unequal sample sizes. The
partitioning is repeated for every feature in the pool and the
top-𝑘 ones with the highest discrepancy are kept; in our exam-
ple we kept only {𝐹1} for simplicity. In stage 2, RefOut applies
the same partitioning and scoring process for 2𝑑 subspaces by

Figure 3: RefOut steps to find 2𝑑 subspaces from a 6𝑑
dataset to explain the point p1

taking the Cartesian product of the top-𝑘 subspaces from the
previous stage with all the univariate subspaces drawn from the
pool. In our example, since we are interested in 2𝑑 explanations
the process stops at stage 2 and the best subspace ({𝐹1, 𝐹3}) is
returned as explanation of point 𝑝1. When multiple outliers have
to be explained, RefOut searches for relevant subspaces for every
point individually.

To sum up, the core idea of RefOut is to make subspace selec-
tion adaptive to the outlyingness score of each point and flexible
w.r.t. different detectors. It relies on a pool of random subspace
projections to assess the important features, that may contribute
to the detection of relevant subspaces for a specific point. As
feature importance is measured via the discrepancy of outlying-
ness score distributions, RefOut’s effectiveness depends strongly
on the ability of an off-the-self outlier detector to assign high
scores to outliers. In particular, RefOut makes the assumption
that outliers explained in low-dimensional subspaces exhibit a
significant outlyingness also in their high-dimensional supersets.

Beam [28] is a stage-wise greedy algorithm that takes as in-
put a particular point and returns the subspaces, up to a given
dimensionality, that best explain its outlyingness. Although the
maximum dimensionality of subspaces returned by Beam is pre-
defined, the algorithm may output subspaces of varying dimen-
sionality. Beam maintains two lists: (i) a global list of the best
subspaces considered as relevant across stages, (ii) a stage list
with the best subspaces in each stage. The main algorithmic steps
of Beam are illustrated in Figure 4 via an example requesting to
explain the outlyingness of a point 𝑝1 of a 6𝑑 dataset with up to
3𝑑 subspaces. Using an outlier detector, Beam scores exhaustively
in stage 1 all the 15 2𝑑 subspaces drawn from the 6 features space
of the dataset for the point 𝑝1. Then, the top-𝑘 scored 2𝑑 sub-
spaces will be inserted both into the stage list and global list. In
stage 2, the best 2𝑑 subspaces kept in stage list will be combined
with other features to form 3𝑑 subspaces as depicted in Figure 4.
The top-𝑘 3𝑑 subspaces are then kept in the stage list, while the
global list is updated with the 3𝑑 subspaces with higher scores for
𝑝1 than the 2𝑑 subspaces previously computed. As we required
3𝑑 explanations in our example, the process will stop at stage 2.
The global list is then returned as the result of the algorithm.

In a nutshell, Beam is a stage-wise greedy algorithm that ex-
ploits the top-𝑘 best relevant subspaces returned by early stages
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Figure 4: Beam steps to find subspaces up to 3 dimensions
from a 6𝑑 dataset to explain the point p1

to search for relevant subspaces in latter stages. Hence, its ef-
fectiveness depends strongly on whether a given point obtains
a high outlyingness score in lower projections of the relevant
subspace(s) that should be finally returned. In order to make a
fair comparison with RefOut, we report only the best subspaces
from the stage list in the final stage i.e., subspaces of predefined
maximum dimensionality. We call this variation BeamFX .

2.3 Explanation Summarization Algorithms
The objective of an explanation summarization algorithm is to
discover for a set of outlier points, the subspaces that distinguish
as many outliers from inliers as possible. Explanation summariza-
tion algorithms also rely on a search strategy to explore feature
subspaces in a dataset. The main difference is that the outlying-
ness criterion is applied collectively for all outliers rather than
individually. The additional challenge stems from the fact that
some outliers may be explained by subspaces of different dimen-
sionality or in an extreme case all outliers could be explained by
different subspaces. We should stress that explanation summa-
rization is different from group identification and explanation.
In the former case, we consider all the to-be-explained points
as one group, while on the latter, the objective is to identify
these anomalous groups and retrieve explaining subspaces that
segregate each group from the normal instances [25].

LookOut [15] searches exhaustively subspaces of fixed dimen-
sionality and returns those that exhibit a certain utility. LookOut
was genuinely used to obtain 2𝑑 subspaces that can be easily
visualized in order to explain a set of outliers. However, we used
the algorithm to explore subspaces of high dimensionality as
well. LookOut formalizes explanation summarization as max-
imization problem using an objective function equipped with
the following properties: (i) non-negative , (ii) non-decreasing
and iii) sub-modular. As submodular optimization is known to
be an NP-hard problem, greedy approximation techniques are
used (e.g., with a 63% approximation guarantee [27]). The main
algorithmic steps of LookOut are depicted via an example in
Figure 5. Given (i) a set of outlier points 𝑃 = {𝑝1, 𝑝2, 𝑝3} and
(ii) a number of top-𝑘 explanation summaries (i.e., the budget of
the computation), LookOut constructs a subspace list 𝑆𝑙𝑖𝑠𝑡 with
the top-𝑘 subspaces that maximize the scores of the three points
i.e., they provide a concise summary. Initially, LookOut employs
an off-the-self outlier detector to score all outliers in the three

Figure 5: LookOut steps to find 2𝑑 subspaces from a 3𝑑
dataset with budget b = 2 (bold values indicate the high-
est scores per table row)

possible 2𝑑 subspaces drawn from the 3𝑑 feature space of the
dataset. LookOut’s objective function for concise summarization
is defined as follows:

𝑓 (𝑆𝑙𝑖𝑠𝑡 ) =
∑
𝑝𝑖 ∈𝑃

max
𝑠 𝑗 ∈𝑆𝑙𝑖𝑠𝑡

𝑠𝑐𝑜𝑟𝑒𝑖, 𝑗

where 𝑠𝑐𝑜𝑟𝑒𝑖, 𝑗 represents the outlier score that point 𝑝𝑖 received
in subspace 𝑠 𝑗 . Then, to assess utility of a subspace 𝑠 to the 𝑆𝑙𝑖𝑠𝑡 ,
LookOut examines its marginal gain computed as:

Δ𝑓 (𝑠 |𝑆𝑙𝑖𝑠𝑡 ) = 𝑓 (𝑆𝑙𝑖𝑠𝑡 ∪ 𝑠) − 𝑓 (𝑆𝑙𝑖𝑠𝑡 )
In our example of Figure 5, 𝑆𝑙𝑖𝑠𝑡 is initially empty and subspace

{𝐹1, 𝐹2} is inserted during the first iteration as all three points
obtain their best outlyingness score in this subspace. During the
second iteration, LookOut examines which of the two remaining
subspaces {𝐹1, 𝐹3} and {𝐹2, 𝐹3} provide the greatest marginal
gain for 𝑆𝑙𝑖𝑠𝑡 . In our example, {𝐹1, 𝐹3} has a higher marginal
gain than {𝐹2, 𝐹3} as its maximizes 𝑝3’s score, while 𝑝1 and 𝑝2
scores are already maximized by {𝐹1, 𝐹2}. The two subspaces
are compared w.r.t. the maximum scores of every point currently
in 𝑆𝑙𝑖𝑠𝑡 . As the budget in our example is 2 i.e., the number of
subspaces that will be included in explanation, the process stops
and the 𝑆𝑙𝑖𝑠𝑡 is returned as a summary of the subspaces explaining
the points given as input.

In a nutshell, LookOut returns the top-𝑘 subspaces of fixed di-
mensionality that concisely explain multiple outliers. A subspace
is considered a good summary candidate at a certain iteration
step if it maximizes the overall score for at least one outlier.
Hence, LookOut’s effectiveness strongly depends on the ability
of an off-the-self outlier detector to highly score outliers in their
relevant subspaces.

High Contrast Subspaces (HiCS) [17] relies on a subspace search
strategy that exploits combinations of correlated features called
high contrast subspaces. The underlying intuition is that high
contrast subspaces have many empty regions and few very dense
regions, thus they are good candidates for separating outliers
from inliers. Figures 6-a) to -c) illustrate three subspaces with cor-
related features ({𝐹0, 𝐹1}, {𝐹0, 𝐹1, 𝐹8} and {𝐹11, 𝐹12, 𝐹13}) while
Figure 6-d) a subspace with non correlated features ({𝐹11, 𝐹12}).
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Figure 6: Data distribution in augmented/projected sub-
spaces of HiCS Datasets

Subspace contrast in HiCS is measured using two-sample sta-
tistical tests2 which are applied to the raw feature values under
the null hypothesis that both samples originate from the same
underlying probability density function. To enhance statistical
precision, HiCS performs the statistical test for several Monte
Carlo iterations and the average score is computed per subspace.

HiCS searches for high contrast subspaces via a stage-wise
technique. In the first stage, it scores exhaustively all the 2𝑑 sub-
spaces and selects the top-𝑘 based on their contrast. In next stage,
the best 2𝑑 subspaces, are used to construct 3𝑑 subspaces scored
again based on their contrast. The same procedure is repeated
for several stages until reaching the full feature space 𝑑 of a 𝑑-
dimensional dataset; hence, the algorithmmay retrieve subspaces
of varying dimensionality. HiCS has been originally evaluated
with LOF, but in principle any other off-the-self detector could
be employed. In order to make a fair comparison with LookOut,
we force HiCS to return subspaces of fixed dimensionality up to
a predefined stage. We call this variation HiCSFX .

To conclude, HiCS is a best effort algorithm that exploits sub-
spaces with correlated features to discover summaries of varying
dimensionality. Although the assumption that outliers are more
likely to appear in correlated features seems effective for highly
clustered anomalies, correlated subspaces may not always ex-
plain outliers, as depicted in Figure 1-e). The main novelty of
HiCS lies in the decoupling of the subspace search strategy from
the scores assigned by an off-the-self detector to a set of outliers.

3 BENCHMARKING ENVIRONMENT
The algorithms along with the datasets used in our testbed are
available in our GitHub repository3 to ensure repeatability of
our experiments. Regarding outlier detectors, we used the im-
plementation of LOF and iForest from Scikit-learn [30] and Fast
ABOD from PyOD [50]. We have implemented LookOut, RefOut
and Beam in java and modified HiCS implementation from ELKI
[37]. Our primary concern in this work is the correctness of the
implemented explanation algorithms. All experiments were per-
formed in a Windows personal computer with a 4 core Intel i7
processor and 16GB of main memory.

2The Welch’s t-test or the Kolmogorov-Smirnov test.
3https://git.io/JvuO6

Figure 7: Pipelines of outlier detectors & explainers

3.1 Pipelines of Executed Algorithms
As illustrated in Figure 7, given (i) a dataset, (ii) a set of outliers
(points of interest) and (iii) a target dimensionality to explain
them, we execute all the possible pairs of explanation and de-
tection algorithms. Each executed pipeline results to a list of
fixed-dimensionality subspaces considered as relevant to each
point of interest. The effectiveness of each pipeline is assessed
using the relevant subspace(s) per point available in the ground
truth of each dataset and the metric that we define in Section 3.3.

Regarding the choice of outlier detectors, we included in our
testbed only LOF, Isolation Forest and Fast ABOD as representa-
tive of three widely used families of batch detection algorithms
namely density, isolation and angle based outlier detection. As re-
ported by several experimental studies [6, 8, 13] these algorithms
frequently outperform distance or cluster-based algorithms in
real and synthetic datasets while they do not require a thorough
tuning of their hyper-parameters. Note also that experimentation
with supervised detectors was outside the scope of our work due
to the scarcity of labels regarding outlier/inlier data points.

To be able to retrieve the explaining subspaces for a number
of outliers given as input, LookOut, Beam and RefOut heavily
depend on the scores assigned by the detector in subspaces of
different dimensionality explaining the given outliers. To shed
some light regarding whether the explainers retrieve the rele-
vant subspaces per outlier in practical settings, we employed
unsupervised detectors that are not very sensitive to their hyper-
parameter tuning. For LOF we use 𝑘 = 15 and for Fast_ABOD 𝑘

= 10. We run iForest for 10 repetitions to reduce the variance of
outlyingness scores and the average score is computed for every
point, using 𝑡 = 100 trees and sub − sample size = 256. These
hyper-parameter values have been used in related experimental
studies as [6], and allow us to detect the outliers in all datasets
of our testbed. Hence, we can draw valuable conclusions for the
subspace search techniques of explainers rather than the quality
of the employed detector.

Regarding the hyper-parameters of the explainers, for HiCSwe
use candidateCutOff = 400, 𝑎 = 0.1, Monte Carlo Iterations = 100
and Welch’s t-test is performed. For LookOut we use budget =
100. For Beam we use beam − width = 100. For RefOut we use
poolsize = 100, beam − width = 100, the random subspace dimen-
sionality is set to 70% of dataset’s dimensionality and Welch’s
t-test is performed. For HiCS, Beam and RefOut we return the
top-100 subspaces as the final result.
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Characteristics Real Datasets (# 3) Synthetic Datasets (# 5)
Outlier Type Full Space Subspace
Explanation Dimensionality 2-4 𝑑 2-5 𝑑
% Contamination with Outliers 10% 2, 3.4, 5.9, 10, 14.3 %
# Relevant Subspaces 60 (A), 151 (B), 249 (C) 4, 7, 12, 22, 31
# Relevant Subspaces per Outlier 3 (1 per dimensionality) 1 (91% outliers), 2 (9% outliers)
# Outliers per Relevant Subspace 1 (A), 1.13 (B), 1.45 (C) 5
% Relevant Feature Ratio 100% 35, 21, 12, 7, 5 %
Outlier Visibility w.r.t. Relevant Subspaces Projections / Augmentations Augmentations

Table 1: Characteristics of real and synthetic datasets

3.2 Real and Synthetic Datasets
In this section we describe the real and synthetic datasets used in
our testbed. The main challenge in explaining outliers stems from
the exponential search space of feature subspaces rather than
the size of the dataset. The difference in the execution time of
explainers depends more on the pruning strategy they employ to
enumerate subspaces rather than on the time spent by detectors
to score the explored subspaces. The selected datasets are suitable
for assessing the quality of outlier explanation algorithms, as they
provide the gold standard regarding the subspace(s) explaining
each anomaly. To reduce confounding factors in the experimental
evaluation of the algorithms, the selected datasets are mainly
contaminated with density-based outliers. Outliers of this type
can be detected by LOF but under certain conditions also by
other detectors like ABOD and iForest (see Section 4). The main
characteristics of our datasets are summarized in Table 1.

Breast, Breast Diagnostic and Electricity Meter are real-world
datasets widely used to benchmark ML methods for anomaly
detection [9]. To facilitate comparison with already published
results, we used the version of these datasets4 made available
by the authors of RefOut algorithm [18]. Specifically, Breast (A)
contains 198 points, 31 features and 20 outliers, Breast Diag-
nostic (B) contains 569 points, 30 features and 57 outliers and
Electricity (C) contains 1205 samples, 23 features and 121 out-
liers. The ground truth provided per dataset contains the outliers
detected by LOF resulting 10% contamination with outliers. Note
that the experiments in [18] revealed that the reported outliers
are full space. To obtain the best subspaces explaining them5,
we followed the method as described in [18] by performing an
exhaustive search from 2 up to 4 dimensions for every dataset
using LOF and keeping the top scored subspace per outlier at the
corresponding dimension. We started from 2 dimensions as the
initial step of HiCS and Beam perform an exhaustive search in
2𝑑 subspaces. We should stress that outliers are identifiable by
LOF in both lower dimensional projections and augmentations (i.e.,
supersets) of the relevant subspaces. These datasets challenge
summarization algorithms (HiCS and LookOut) as subspaces can
best explain one outlier on average, e.g., for Electricity there are
1.43 outliers explained per relevant subspace (see Table 1).

HiCS synthetic datasets6 were created by the authors of the
HiCS [17] algorithm featuring subspace outliers. They initially
splitted the datasets into 2𝑑 up to 5𝑑 subspaces, and generated
high density clusters in each subspace. Then, they randomly
picked 5 points and modified them to deviate from all clusters in

4https://www.ipd.kit.edu/~muellere/RefOut/
5We discovered that the subspaces originally reported by the authors of RefOut
were not optimal for most outliers.
6https://www.ipd.kit.edu/~muellere/HiCS/

Figure 8: Dimensionality of subspaces relevant to outliers
and contamination ratio of HiCS datasets

each subspace. From these datasets we picked the dataset with
the maximum dimensionality (100𝑑) and splitted it into five sub-
datasets from 14 up to 100 dimensions. The ratio of relevant
features is depicted in Table 1 ordered from low (14𝑑) to high
(100𝑑) number of features. Note that every dataset contains 1000
points. As illustrated in Figure 8 and Table 1, this split produced
datasets of increasing (i) data dimensionality (i.e., number of
features), (ii) number of relevant subspaces of different dimen-
sionality and (iii) contamination with outliers. In HiCS datasets,
the relevant subspaces and the outliers were given but there was
no association between them. To identify the relevant subspace
per outlier, we run LOF and keep the top-5 outliers with the
highest scores per relevant subspace. The so obtained ground
truth is aligned with the original contamination of the dataset
with 5 points deviating in each relevant subspace that can be
easily detected by LOF. An example of a 2𝑑 and a 3𝑑 relevant
subspace is illustrated in Figures 6-a) and -c).

Note that the vast majority (∼ 91%) of outliers in HiCS datasets
is explained by one subspace and few outliers (∼ 9%) by two dif-
ferent subspaces. These subspaces follow the properties: (i) they
are disjoint in terms of features, (ii) each subspace can explain
exactly five outlier points, (iii) they have highly correlated fea-
tures, (iv) outliers are identifiable by the detectors in augmented
subspaces, i.e., supersets of the relevant features (see example
of Figures 6-a) and -b) and (v) outliers are mixed with inliers in
lower dimensional projections of relevant subspaces (see example
of Figures 6-c) and -d). Note that all outliers in HiCS datasets can
be discovered by the three detectors used in our testbed.

3.3 Evaluation Metric
In this section we present the metric used to evaluate the ef-
fectiveness of the 12 pairs of outlier detection and explanation
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algorithms (see Figure 7). Although outlier explanations target hu-
man analysts, we have not conducted user studies as our datasets
are equipped with ground truth regarding which subspaces are
relevant to the outliers they contain.

We denote the set of points of interest as 𝑃 , the set of the rele-
vant subspaces per point 𝑝 ∈ 𝑃 as 𝑅𝐸𝐿𝑝 , and the returned sub-
spaces from an explanation algorithm 𝑎 to a point 𝑝 as 𝐸𝑋𝑃𝑎 (𝑝).
The first metric we used is Mean Recall (see Eq. ??) of an explainer
𝑎 for a set of points 𝑃 , assessing how many relevant subspaces
were returned on average by 𝑎 for every point 𝑝 ∈ 𝑃 . Note that a
subspace in 𝐸𝑋𝑃𝑎 (𝑝) is considered relevant only if it is a member
of 𝑅𝐸𝐿𝑝 . I.e., a subspace in 𝐸𝑋𝑃𝑎 (𝑝) is considered relevant for a
point 𝑝 only if it is identical with a subspace in 𝑅𝐸𝐿𝑝 . We con-
sider only the Recall (see Eq. ??) of points that are explained at a
given dimensionality according to the ground truth. As described
in Section 3.2, every point has very few relevant subspaces in
our datasets. Thus high Mean Recall means that the explainer
was able to exploit the relevant subspaces for the majority of the
points explained at a given dimensionality. As each outlier in our
datasets has very few relevant subspaces (specifically 1-3), we
selected the MAPmetric penalizing detectors that do not rank the
relevant subspace(s) for an outlier within the top positions [40].
To compute MAP of an explainer 𝑎 for a set of points 𝑃 , we ini-
tially compute the precision (see Eq. 1) which is used to compute
the Average Precision (see Eq. 2). 𝑃@𝑘 (𝑝) denotes the precision
up to a 𝑘-th position of the returned subspaces in 𝐸𝑋𝑃𝑎 (𝑝). The
Boolean function 𝑟𝑒𝑙 (𝑘) indicates whether a subspace at the 𝑘-th
position of 𝐸𝑋𝑃𝑎 (𝑝) is relevant or not. Then, MAP is computed
using the Average Precision of all points explained at a given
dimensionality (see Eq. 3) according to the ground truth. A high
MAP value indicates that for several points, the explainer was
able to find and highly score their relevant subspaces using an
outlier detector. Compared to other metrics such as accuracy,
precision or recall, MAP better captures the scoring nature of
outlier explanation algorithms: the discovered relevant subspaces
should be ranked at the top positions of the list of candidates
an algorithm considers. On the contrary, binary metrics like ac-
curacy, precision and recall do not account for the ordering of
the results. Note that [6, 8] use average precision to assess the
quality of the outlier detector while [28] uses precision and recall
to assess the explanation quality. To the best of our knowledge,
it is the first work that relies on MAP to assess effectiveness of
the subspace search strategies of different explainers.

Precision𝑎 (𝑝) =
|𝑅𝐸𝐿𝑝 ∩ 𝐸𝑋𝑃𝑎 (𝑝) |
|𝐸𝑋𝑃𝑎 (𝑝) |

(1)

AveP𝑎 (𝑝) =
∑ |𝐸𝑋𝑃𝑎 (𝑝) |
𝑘=1 P@k(𝑝) ∗ 𝑟𝑒𝑙 (𝑘)

|𝑅𝐸𝐿𝑝 |
(2)

MAP𝑎 (𝑃) =
1
|𝑃 |

∑
𝑝∈𝑃

AveP(𝑝) (3)

4 EXPERIMENTS AND INSIGHTS
In this section we present our experiments for comparing point
explanation and summarization algorithms. Our testbed includes
the real datasets used in the evaluation of RefOut [18] as well as
the synthetic datasets used in the evaluation of HiCS [17]. Both
types of datasets were originally used to assess the effectiveness
of detecting outliers hidden in subspaces rather than the suitabil-
ity of the subspaces that led to the detection of those outliers. To

the best of our knowledge, the only study investigating recall and
precision of the subspaces of varying dimensionality retrieved
by Beam was presented in [28] running on HiCS [17] datasets. In
our study, we incorporate three more explainers, namely RefOut
[18], HiCS [17] and LookOut [15], using also real world datasets.
Moreover, in contrast to [28] we formulate different trade-offs
by evaluating the pruning strategies under different explanation
sizes as well as full and sub-space outliers.

4.1 Evaluation of Point Explanation
Algorithms

The experiments of this section aim to answer two questions:
(a) Is it effective to combine any explanation algorithm with
any off-the-shelf outlier detector? (b) How is the behavior of
outlier detection and explanation pipelines affected by the num-
ber of features in a dataset? To answer these questions, we run
Beam and RefOut with LOF, Fast ABOD and iForest using the
settings described in Section 3.1 for the synthetic and real-world
datasets presented in Section 3.2. Figure 9 depicts for each dataset,
the MAP (y-axis) of different outlier detection and explanation
pipelines for explanations of increasing dimensionality (x-axis).

Figures 9-a) to -e) illustrate the MAP obtained in the five syn-
thetic datasets of our testbed. Starting from the 14 dimensions in
Figure 9-a), we observe that RefOut with LOF achieves optimal
MAP as it retrieves and gives the highest score to the relevant
subspaces for all the outliers, regardless of the explanation di-
mensionality. This is because (i) HiCS datasets contain highly
clustered anomalies, thus LOF is the most suitable detector and
(ii) the pool of RefOut contains low dimensional subspaces in
which outliers can be more easily detected. Note that Beam with
LOF has lower MAP for high explanation dimensionality since
it does not retrieve all the relevant subspaces. Passing to 23 di-
mensions in Figure 9-b), the effectiveness of every pipeline drops
especially for high dimensional explanations. RefOut with LOF
seems to not be affected up to 3𝑑 explanations. An interesting
behavior observed in this plot is that Beam is more effective with
Fast ABOD and iForest than with LOF. This is due to the fact
that the stage-wise strategy of Beam requires to collect lower
dimensional projections of the relevant subspaces, so they could
be formed in the final stage. Recall that in HiCS datasets, outliers
are not separated from inliers in lower projections of the relevant
subspaces (see Figure 6). According to complementary experi-
ments not presented here due to space restrictions, in the early
stages of Beam, the score distributions of outliers and inliers
overlap less when Fast ABOD and iForest is used instead of LOF.

While the dimensionality of datasets increases, the same trends
are observed in Figures 9-c) to -e). In general, Beam is able to
retrieve all relevant 2𝑑 subspaces with the three detectors due to
the exhaustive scoring of all feature pairs. However, its effective-
ness starts dropping when the dimensionality of explanations
increases. As the number of Beam stages increase, more sub-
spaces need to be collected stage-wise with smaller differences in
their score. RefOut proves to be more sensitive than Beam w.r.t.
the number of features in the dataset 𝐷 . As the dimensionality of
random subspace projections in the pool is proportional to 𝐷’s
dimensionality, it becomes more difficult for RefOut to identify
important features due to the less distinguishable score popula-
tions in subspaces. Observe that none of the algorithms seem to
work for 4𝑑 explanations from 70 dimensions and higher and for
5𝑑 explanations from 23 dimensions and higher. Note that we run
10 times iForest (see Section 3.1) for every subspace considered
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Figure 9: Mean Average Precision (MAP) of Beam and RefOut in HiCS synthetic datasets (a)-(e) and real-world datasets
(f)-(h) for explanations of increasing dimensionality (best viewed in color)

by Beam up to 4𝑑 explanations for 70𝑑 and 100𝑑 datasets and Fast
ABOD up to 4𝑑 explanations in 70𝑑 and up to 3𝑑 in 100𝑑 datasets.
Specifically, to explain 100 outliers with 5𝑑 explanations in a
70𝑑 dataset, Beam needs to assess approximately 2.2M subspaces.
In Section 4.3, we demonstrate that Beam requires an efficient
detector such as LOF to assess a significant amount of subspaces.

Figures 9-f) to -h) illustrate the MAP obtained in the three
real-world datasets of our testbed. Recall that in these datasets,
the majority of the outliers are identifiable even in the full feature
space. In general, Beam with LOF retrieves the optimal subspace
for every outlier point (MAP = 1), despite of the explanation
dimensionality. However, the effectiveness of Beam with Fast
ABOD and iForest is significantly lower. On the contrary, RefOut
seems to have very low MAP regardless of the employed detector.
This is because RefOut cannot distinguish which features of full
space outliers affect significantly the score populations generated
by the corresponding detector.

Lessons Learned. Depending on the dataset characteristics, out-
lier detectors behave differently, affecting the effectiveness of
explanation algorithms. A critical factor is whether outliers are
masked by inliers in lower dimensional projections of the rele-
vant subspaces (as in HiCS datasets). In this case, for datasets and
explanations of low dimensionality, RefOut’s random projection
technique along with a detector suitable for the nature of outliers
(e.g., LOF for clustered outliers) is preferred. For high dimensional
datasets and low explanation dimensionality, Beam’s stage-wise
technique along with iForest or ABOD can effectively capture
the small deviation of outliers in the subspaces considered by
early stages. None of the algorithms seems to work for high
explanation dimensionality (e.g., 4𝑑 and 5𝑑) and high dataset
dimensionality (e.g., 70𝑑 and 100𝑑). When outliers are also visible
in the full feature space (as in real-world datasets) the random
projection technique exhibits poor MAP as it fails to find relevant
features that significantly affect the score distributions. In this
case, a stage-wise technique coupled with a suitable detector
should be preferred regardless of the explanation dimensionality.

4.2 Evaluation of Summarization Algorithms
The experiments presented in this section aim to answer three
questions: (a) Is it effective to combine any explanation sum-
marization algorithm with any outlier detector?, (b) How is the
behavior of outlier detection and explanation pipelines affected
by the number of features or their correlation in a dataset?, and
(c) What is the quality of summaries in the presence of outliers
explained by subspaces of different dimensionality? To answer
these questions, we run HiCS and LookOut with LOF, Fast ABOD
and iForest using the settings described in Section 3.1 for the
synthetic and real-world datasets presented in Section 3.2. Figure
10 depicts per dataset the MAP (y-axis) of different pairs of outlier
detection and explanation algorithms for explanations of increas-
ing dimensionality (x-axis). Despite the fact that HiCS does not
use any detector to search candidate subspaces, it employs a
detector to rank the retrieved subspaces. Thus, its effectiveness
should be also evaluated for different detectors.

Figures 10-a) to -e) show the MAP of different algorithms
for the five synthetic datasets of our testbed. Starting from 14
dimensions in Figure 10-a), HiCS and LookOut with LOF achieve
optimal MAP regardless of the explanation dimensionality. As
dataset’s dimensionality and outlier ratio increase in Figures 10-
b) to -e), HiCS with LOF and Fast ABOD are the most effective
because (i) small groups of outliers are hidden within subspaces
with correlated features and (ii) outliers are highly clustered at the
borders of data distribution, allowing LOF and Fast ABOD to score
their relevant subspaces at the top positions. The lowest MAP
value of HiCS is observed in the 39 dimensional dataset where
some 4𝑑 relevant subspaces do not contain highly correlated
features. This drop clearly demonstrates the strong dependency
of HiCS on the feature correlation heuristic.

As we can see in Figures 10-b and -e) LookOut’s effectiveness
significantly drops as the explanation dimensionality increases
in higher dimensional datasets. One reason of this drop is related
to the lower scores returned by the detectors in high dimen-
sional subspaces. An additional reason stems from the existence
of points exhibiting high outlyingness also in their augmented
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Figure 10: Mean Average Precision (MAP) of HiCS and LookOut in HiCS synthetic datasets (a)-(e) and real-world datasets
(f)-(h) for explanations of increasing dimensionality (best viewed in color)

Figure 11: Runtime of detection and explanation pipelines (best viewed in color)
subspaces. According to complementary experiments not pre-
sented here due to space restrictions, detectors (especially LOF
and iForest) assign higher scores to outliers in their augmented
subspaces of dimensionality 𝑑 than to outliers explained exclu-
sively in 𝑑 . As the outlier ratio increases along with dataset’s
dimensionality, more outliers get high scores in their augmented
subspaces of a requested dimensionality. As a small fraction of
outliers is explained by high dimensional subspaces, LookOut
mainly retrieves augmented subspaces of outliers explained in
lower dimensions that provide higher marginal gain. Observe
that LookOut with Fast ABOD starts performing better than with
LOF for high dataset dimensionality. Note that we run LookOut
with LOF up to 4𝑑 explanations in 100 dimensions and Fast ABOD
and iForest only up to 3𝑑 explanations for 70 and 100 dimensions.
Specifically, to explain the outliers with 4𝑑 explanations in a 70𝑑
dataset, LookOut needs to assess 900K subspaces. In Section 4.3,

we demonstrate that LOF is the most efficient detector when a
significant amount of subspaces need to be assessed.

Figures 10-f) to -h) illustrate the MAP obtained in the 3 real-
world datasets of our testbed. HiCS has poor MAP regardless
of the explanation dimensionality or the detector used. This
is because outliers are not contained in subspaces with highly
correlated features. LookOut with LOF is the most effective as it
is able to retrieve almost all relevant subspaces even when they
maximally explain one outlier. On the contrary, LookOut with
iForest and Fast ABOD exhibit poor performance as they are not
able to highly score the relevant subspaces.

Lessons Learned. The fact that relevant subspaces may be
formed by highly correlated features could be exploited to avoid
a blind search of subspaces. When datasets exhibit strong feature
correlation in relevant subspaces, HiCS exploits this heuristic
and provides the best performance regardless of the dataset’s
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or explanation’s dimensionality. It only depends on the ability
of LOF or Fast ABOD to highly rank the retrieved subspaces.
LookOut is as effective as HiCS in the synthetic datasets for low
dataset dimensionality (e.g. 14𝑑). When subspaces are formed by
uncorrelated features, LookOut is a better alternative. However,
LookOut is heavily impacted by the varying dimensionality of
subspaces explaining different outliers. Indeed, the utility of sub-
spaces in LookOut is defined exclusively in terms of their scores,
without considering any semantic property of explanations such
as the coverage of the points to be explained, or the overlap or
the equivalence of subspaces in the explanation summaries.

4.3 Algorithms RunTime & Tradeoffs
In this section we report the execution time of the two point
explanation and the two summarization algorithms we evaluated
their effectiveness in Sections 4.1 and 4.2. In this respect, we are
using the same synthetic (up to HiCS 39𝑑) and real (Electricity
23𝑑) datasets containing a similar amount of samples (∼ 1000).
We report execution time only for Electricity as it contains the
highest number of samples exhibiting the same behavioral trends
as the other two real datasets. Recall that as we are looking for
explanations of fixed dimensionality (2-5𝑑) the ratio of relevant
features decreases as dataset’s dimensionality increases.

Outlier Detection. Unlike HiCS, subspace search in explanation
algorithms like Beam, RefOut and LookOut, heavily depends on
the efficiency (and effectiveness) of used off-the-self detectors.
According to the performance curves of detection and explana-
tion pipelines depicted in Figure 11, LOF is the fastest followed
by iForest and Fast ABOD across all datasets and explanation
algorithms. This is due to low number of samples (∼ 1000) despite
the fact that iForest has the lowest time complexity. A similar
result has been reported in [8] for the same hyper-parameter
settings as those used in our testbed (see Section 3.1). Note that
for iForest we report the average time out of 10 repetitions per
subspace. Specifically, to score a single subspace LOF needed 0.05,
iForest 0.2 and Fast ABOD 2 seconds approximately.

Point Explanation. The runtime of pipelines involving Beam,
RefOut are illustrated in Figures 11-a) to -d). Critical factors af-
fecting Beam’s efficiency are: (i) the requested explanation dimen-
sionality (more stages to be built), (ii) the dataset’s dimensionality
(more subspaces to be assessed per stage), (iii) the efficiency of
the employed detector and (iv) the number of outliers to explain
(the process is repeated per outlier). However, due to its random
sampling technique, RefOut’s runtime is relatively stable regard-
less of the explanation or dataset’s dimensionality. Note that up
to 39𝑑 datasets and 2𝑑 explanations, RefOut and Beam with LOF
need almost the same time to assess a similar amount of sub-
spaces. RefOut with LOF outperforms Beam with LOF from 1 (in
real datasets) up to 3 orders (in synthetic datasets) of magnitude
for 39𝑑 datasets and 5𝑑 explanations.

Explanation Summarization. The runtime of pipelines involv-
ing LookOut and HiCS are illustrated in Figures 11-e) to -h). The
critical factors affecting LookOut’s efficiency are: (i) dataset’s
and explanation dimensionality (exhaustive subspace search) and
(ii) the efficiency of the employed detector. On the other hand,
by decoupling subspace search from outlier scoring, the critical
factor of HiCS efficiency is only the explanation dimensionality
(more subspaces to be assessed per stage). Thus, HiCS exhibits
similar running times when executed with LOF, iForest and Fast

ABOD (used only to rank the discovered subspaces). Surpris-
ingly, LookOut with LOF7 outperforms all HiCS pipelines up to
4𝑑 explanations (by 1 order of magnitude in 2𝑑). For the size of
datasets used in our experiments, HiCS statistical tests to assess
feature correlation prove to be more costly than LOF distance
calculation of points to assess their outlyingness. Performance
gains of LookOut with LOF drop as we increase the number of
features along with explanation dimensionality, leading HiCS to
outperform LookOut in the 39𝑑 dataset for 5𝑑 explanations.

Table 2 demonstrates the point explanation and summariza-
tion algorithms along with their corresponding detector that
exhibit the best tradeoff between effectiveness (according to Fig-
ures 9 and 10) and efficiency (according to Figure 11) from 2𝑑
up to 5𝑑 explanations across decreasing relevant feature ratios.
For every cell we take the top pair of algorithms according to
their efficiency and effectiveness in pareto order. We prioritize
generic algorithms like LookOut over algorithms like HiCS that
work under specific conditions. For instance, LookOut with LOF
is slightly less effective than HiCS with LOF in Figure 10-c), while
they have the same execution time in Figure 11-g). In cells 2𝑑 and
3𝑑 with a 12% ratio, we consider that LookOut achieves a better
tradeoff since it is more generic than HiCS. When point expla-
nation or summarization algorithms exhibit zero effectiveness
in all executed pipelines for a particular dataset and explanation
dimensionality, no top pair is reported. For instance, for 5𝑑 and
21% or 12% ratios only one pair for detection and summarization
algorithms is reported (HiCS with LOF) as no point explanation
algorithm succeeds to return relevant 5𝑑 explanations. The main
conclusions drawn from Table 2 are:

1. State-wise subspace search employed by Beam achieves the
best tradeoff for full space outliers. Both its effectiveness and
efficiency significantly decrease for subspace outliers as the ratio
of relevant features decreases. However, it is the only option
for high explanation dimensionality (3𝑑 - 4𝑑) and low relevant
feature ratio (< 12%).

2. Random subspace projection employed by RefOut provides
a good tradeoff for subspace outliers with a medium ratio of
relevant features (35% and 21%). Its effectiveness drops to zero
as the explanation dimensionality becomes greater than 3𝑑 (for
21% ratio).

3. Exhaustive subspace search employed by LookOut exhibits
top effectiveness and efficiency for full space outliers regardless
of the explanation dimensionality, as well as, for subspace outliers
up to 3𝑑 . Its effectiveness significantly drops for subspace outliers
explained by subspaces greater than 3𝑑 (for 21% ratio).

4. Correlation heuristic exploited by HiCS achieves the best
tradeoff for 4𝑑-5𝑑 explanations especially when the relevant fea-
ture ratio is low. This heuristic however, strongly depends on the
data distribution as highly clustered outliers may are not always
be visible in correlated features.

5 RELATEDWORK
In this section we survey additional explanation algorithms for
data in rest (databases) or in motion (streams) and justify why
they have not included in our benchmark.

Explaining Black-Box Models. Several methods have been pro-
posed to explain why a supervised model predicted a particular
label for a particular example [10, 19, 24, 26, 33]. LIME [33] con-
structs a linear interpretable model that is locally faithful to the

7LookOut has been experimentally evaluated by its authors [15] only with iForest
and 2𝑑 explanations.
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Explanation
Dimensionality Relevant Features Ratio

100% 35% 21% 12%

2𝑑 Beam LOF
LookOut LOF

RefOut LOF
LookOut LOF

RefOut LOF
LookOut LOF

RefOut LOF
LookOut LOF

3𝑑 Beam LOF
LookOut LOF

RefOut LOF
LookOut LOF

RefOut LOF
LookOut LOF

Beam Fast Abod
LookOut LOF

4𝑑 Beam LOF
LookOut LOF

RefOut LOF
LookOut LOF

Beam iForest
HiCS LOF

Beam iForest
HiCS LOF

5𝑑 Beam LOF
LookOut LOF

RefOut LOF
LookOut LOF HiCS LOF HiCS LOF

Table 2: Tradeoffs of outlier detection and explanation algorithms

predictor. [10, 19] explain the model by perturbing the features
to quantify their influence on predictions. Other works aim to
produce explanations in the form of feature relevance scores by
comparing the difference between a classifier’s prediction score
and the score when a feature is assumed to be unobserved [34],
or by considering the local gradient of the classifier’s prediction
score with respect to the features for a particular example [4].
[38, 39] considered how to score features in a way that takes into
account the joint influence of feature subsets on the classification
score. This body of work requires as input a supervised model
rather than an unsupervised anomaly detector. However, in real
application settings it is difficult or even impossible to label data
as anomalous or normal examples [12].

Explaining Outliers in Query Answers. Scorpion [47] was the
first system for explaining outliers in the result of group-by
queries. Given a set of outliers spotted by analysts on the re-
sults of queries, the system searches for a logical formulae that
describes a set of tuples that contribute most to the excessively
high or low aggregate value of a specific group. It is hard to extend
this work for explaining outliers recognized by off-the-self de-
tectors. Furthermore, empirical explanations for data points that
violate specific data quality constraints (i.e., inconsistencies w.r.t.
domain-specific rules) have been studied in [7]. A glitch expla-
nation is a collection of values of features that have statistically
significant propensity signatures. In our work, we are interested
in a quantitative form of data anomalies frequently encountered
in transaction or measurement-based datasets, i.e., outliers in
numerical features for which quality constraints are difficult or
impossible to obtain. Finally, an interactive explanation discovery
system has been proposed [35]. It relies on a set of explanation
templates given by analysts that need to be precomputed per
dataset. Neither of the previous methods satisfy our requirements
for explaining data anomalies in a way that is both domain and
detector agnostic without making strong assumptions regarding
how the input datasets have been processed.

Explaining Outliers in Temporal Data.MacroBase [1] enables
efficient, accurate, and modular analyses that highlight and aggre-
gate important and unusual behavior in fast data. It introduces an
operator for explaining outliers in a data stream based on the cat-
egorical features rather than the numerical features used to actu-
ally detect outliers. In contrast to the notion of relevant subspaces,
the explanation of continuous outliers consists of conjunctions of
categorical features whose values cover most of the outliers de-
tected by a density-based method called MAD. ExplainIT [16] is a
recent system for unsupervised root-cause analysis of time series
that shares similar motivations with MacroBase. It empowers a
declarative interface (SQL based) for specifying a large number
of cause hypothesis that need to be tested and ranked to assist

analysts with a reduced number of causal dependencies that have
to exploit regarding an observed phenomenon. The use of causal
models for explaining data outlyingness is an interesting idea
that we plan to study in the future by leveraging our previous
work on scalable algorithms for causal feature discovery [45].
Finally, EXstream [49] is a system providing high-quality expla-
nations for anomalous behaviors of streaming data that analysts
annotate using CEP-based monitoring results. Explanations take
the form of logical formulae in CNF involving relational predi-
cates (i.e., =, <, ≤) over feature values computed for time series.
Authors formalize the problem of optimally explaining anomalies
in CEP as an information reward maximization problem. In this
respect, an entropy-based distance function of time series is used
to measure the contribution in the reward of each feature. As
the reward function is sub-modular, greedy approximation tech-
niques could be used as in the case of LookOut [15]. Computing
explanations based on single-feature rewards bears similarity
with the univariate feature selection problem while computing
subspace based outlier explanations is closer to the more complex
problem of multivariate feature selection [45].

6 CONCLUSIONS AND FUTUREWORK
In this experimental study, we addressed missing insights regard-
ing the performance of existing outlier explanation and summa-
rization algorithms under realistic settings. We underlined the
main challenge that stems from the lack of inherent pruning
properties to effectively search the exponential space. Existing
subspace search strategies exploit the distributional characteris-
tics either: (i) of data such as features’ correlation in subspaces
(HiCS [17]) or (ii) of scores given by an outlier detector in sub-
spaces (LookOut [15], Beam [28] and RefOut [18]). The former
strategy is effectivewhen highly clustered outliers over correlated
features are contained in datasets regardless of their dimensional-
ity, while the latter is effective in low explanation dimensionality
where the outlier detectors can discriminate accurately the out-
liers from the inliers. It remains open to assess whether the low
dimensional subspaces retrieved by an explainer are projections
of a high dimensional subspace fully explaining a specific point.

We should additionally note that the detection of outliers in
LOF, ABOD and iForest, is actually decoupled from the search of
subspaces likely to contain them. HiCS, RefOut and Beam instead
are explaining outlier detectors that rely on per-subspace mea-
sures to quantify the explanation quality of subspaces. We are
planning to extend our testbed with recent works [44] taking into
account the relationship between subspaces using a dimension-
based measure of their explanation quality. Moreover, in case
of recurring anomaly patterns, it is also interesting to bench-
mark group-based explanation summarization techniques [25].
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Another interesting aspect would be to investigate outlier expla-
nation in stream processing settings such as LODA [31].

We should finally stress that existing outlier explanation and
summarization algorithms actually provide descriptive explana-
tions. In essence, subspace explanations are verbose descriptions
of the decision boundary discovered by unsupervised detectors
to distinguish inliers from outliers. This is the reason why ex-
planation tasks should be re-executed for every new bunch of
data made available in ML pipelines even if they stem from the
same generative process. As summarization algorithms can only
exploit the subspaces which are assessed to be relevant to a given
set of points, they may result in summaries of very poor quality
when individual outliers are explained by disjoint feature subsets.
In this respect, we are planning to build a surrogate model to
predict the scores (or labels) of points produced by an unsuper-
vised outlier detector and approximate its decision boundary
using minimal predictive signatures. Such predictive explana-
tions overcome the high computation cost of subspace search per
point and provide formal guarantees regarding minimality in the
explanation dimensionality.

REFERENCES
[1] F. Abuzaid, P. Bailis, J. Ding, E. Gan, S. Madden, D. Narayanan, K. Rong, and

S. Sahaana. Macrobase: Prioritizing attention in fast data. ACMTrans. Database
Syst., 43(4):15:1–15:45, Dec. 2018.

[2] C. C. Aggarwal. An Introduction to Outlier Analysis, pages 1–40. Springer New
York, 2013.

[3] H. Aguinis, R. K. Gottfredson, and H. Joo. Best-practice recommendations for
defining, identifying, and handling outliers. Organizational Research Methods,
16(2):270–301, jan 2013.

[4] D. Baehrens, T. Schroeter, S. Harmeling, M. Kawanabe, K. Hansen, and
K. Müller. How to explain individual classification decisions. J. Mach. Learn.
Res., 11:1803–1831, 2010.

[5] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander. Lof: Identifying density-
based local outliers. In SIGMOD Conference, 2000.

[6] G. O. Campos, A. Zimek, J. Sander, R. J. Campello, B. Micenkova, E. Schubert,
I. Assent, andM. E. Houle. On the evaluation of unsupervised outlier detection:
Measures, datasets, and an empirical study. DataMin. Knowl. Discov., 30(4):891–
927, July 2016.

[7] T. Dasu, J. M. Loh, and D. Srivastava. Empirical glitch explanations. In
Proceedings of the 20th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’14, pages 572–581. ACM, 2014.

[8] R. Domingues, M. Filippone, P. Michiardi, and J. Zouaoui. A comparative
evaluation of outlier detection algorithms: Experiments and analyses. Pattern
Recognition, 74:406 – 421, 2018.

[9] D. Dua and C. Graff. UCI machine learning repository, 2017.
[10] R. C. Fong and A. Vedaldi. Interpretable explanations of black boxes by

meaningful perturbation. In ICCV, pages 3449–3457, 2017.
[11] J. Friedman. Greedy function approximation: A gradient boosting machine.

Annals of Statistics, 29:1189–1232, 2001.
[12] M. Goldstein and S. Uchida. A comparative evaluation of unsupervised anom-

aly detection algorithms for multivariate data. PLoS One, 11(4), 4 2016.
[13] X. Gu, L. Akoglu, and A. Rinaldo. Statistical analysis of nearest neighbor

methods for anomaly detection. In NeurIPS, pages 10921–10931, 2019.
[14] R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, F. Giannotti, and D. Pedreschi.

A survey of methods for explaining black box models. ACM Comput. Surv.,
51(5), Aug. 2018.

[15] N. Gupta, D. Eswaran, N. Shah, L. Akoglu, and C. Faloutsos. Beyond outlier
detection: Lookout for pictorial explanation. In ECML/PKDD, 2018.

[16] V. Jeyakumar, O. Madani, A. Parandeh, A. Kulshreshtha, W. Zeng, and N. Yadav.
Explainit! – a declarative root-cause analysis engine for time series data.
In Proceedings of the 2019 International Conference on Management of Data,
SIGMOD ’19, pages 333–348. ACM, 2019.

[17] F. Keller, E. Müller, and K. Böhm. Hics: High contrast subspaces for density-
based outlier ranking. ICDE, pages 1037–1048, 2012.

[18] F. Keller, E. Müller, A. Wixler, and K. Böhm. Flexible and adaptive subspace
search for outlier analysis. In CIKM, 2013.

[19] P. W. Koh and P. Liang. Understanding black-box predictions via influence
functions. In Proceedings of the 34th International Conference on Machine
Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, volume 70 of
Proceedings of Machine Learning Research, pages 1885–1894. PMLR, 2017.

[20] H.-P. Kriegel, P. Kröger, E. Schubert, and A. Zimek. Outlier detection in
axis-parallel subspaces of high dimensional data. In PAKDD, 2009.

[21] H.-P. Kriegel, M. Schubert, and A. Zimek. Angle-based outlier detection in
high-dimensional data. In KDD, pages 444–452. ACM, 2008.

[22] A. Lavin and S. Ahmad. Evaluating real-time anomaly detection algorithms –
the numenta anomaly benchmark. In 2015 IEEE 14th International Conference
on Machine Learning and Applications (ICMLA), pages 38–44, Dec 2015.

[23] F. T. Liu, K. M. Ting, and Z.-H. Zhou. Isolation forest. 2008 Eighth IEEE
International Conference on Data Mining, pages 413–422, 2008.

[24] S. M. Lundberg and S. Lee. A unified approach to interpreting model predic-
tions. In NeurIPS, pages 4765–4774, 2017.

[25] M. Macha and L. Akoglu. Explaining anomalies in groups with characterizing
subspace rules. Data Min. Knowl. Discov., 32(5):1444–1480, Sept. 2018.

[26] G. Montavon, W. Samek, and K. Müller. Methods for interpreting and under-
standing deep neural networks. Digit. Signal Process., 73:1–15, 2018.

[27] G. L. Nemhauser and L. A. Wolsey. Best algorithms for approximating the
maximum of a submodular set function. Math. Oper. Res., 3:177–188, 1978.

[28] X. V. Nguyen, J. Chan, S. Romano, J. Bailey, C. Leckie, K. Ramamohanarao,
and J. Pei. Discovering outlying aspects in large datasets. Data Mining and
Knowledge Discovery, 30:1520–1555, 2016.

[29] A. Nurunnabi and G. West. Outlier detection in logistic regression: A quest
for reliable knowledge from predictive modeling and classification. In 2012
IEEE 12th International Conference on Data Mining Workshops, pages 643–652,
Dec 2012.

[30] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. VanderPlas, A. Passos,
D. Cournapeau,M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn:Machine
learning in python. J. Mach. Learn. Res., 12:2825–2830, 2011.

[31] T. Pevný. Loda: Lightweight on-line detector of anomalies. Machine Learning,
102:275–304, 2015.

[32] N. Polyzotis, S. Roy, S. E. Whang, and M. Zinkevich. Data lifecycle challenges
in production machine learning: A survey. SIGMOD Rec., 47(2):17–28, 2018.

[33] M. T. Ribeiro, S. Singh, and C. Guestrin. "why should I trust you?": Explaining
the predictions of any classifier. In KDD, pages 1135–1144, 2016.

[34] M. Robnik-Sikonja and I. Kononenko. Explaining classifications for individual
instances. TKDE, 20:589–600, 2008.

[35] S. Roy, L. Orr, and D. Suciu. Explaining query answers with explanation-ready
databases. Proc. VLDB Endow., 9(4):348–359, Dec. 2015.

[36] S. Sathe and C. C. Aggarwal. Subspace outlier detection in linear time with
randomized hashing. ICDM, pages 459–468, 2016.

[37] E. Schubert and A. Zimek. Elki: A large open-source library for data analysis -
elki release 0.7.5 "heidelberg". ArXiv, abs/1902.03616, 2019.

[38] E. Strumbelj and I. Kononenko. An efficient explanation of individual classifi-
cations using game theory. J. Mach. Learn. Res., 11:1–18, 2010.

[39] E. Strumbelj and I. Kononenko. Explaining prediction models and individual
predictions with feature contributions. Knowl. Inf. Syst., 41(3):647–665, 2014.

[40] W. Su, Y. Yuan, and M. Zhu. A relationship between the average precision
and the area under the roc curve. In ICTIR ’15, 2015.

[41] A. Taha and A. S. Hadi. Anomaly detection methods for categorical data: A
review. ACM Comput. Surv., 52(2), May 2019.

[42] K. M. Ting, T. Washio, J. R. Wells, and S. Aryal. Defying the gravity of learning
curve: a characteristic of nearest neighbour anomaly detectors. Machine
Learning, 106:55–91, 2016.

[43] L. Tran, L. Fan, and C. Shahabi. Distance-based outlier detection in data
streams. Proc. VLDB Endow., 9(12):1089–1100, Aug. 2016.

[44] H. Trittenbach and K. Böhm. Dimension-based subspace search for outlier
detection. International Journal of Data Science and Analytics, 7(2):87–101,
Mar 2019.

[45] I. Tsamardinos, G. Borboudakis, P. Katsogridakis, P. Pratikakis, and
V. Christophides. A greedy feature selection algorithm for big data of high
dimensionality. Machine Learning, 108(2):149–202, 2019.

[46] B. L. Welch. The significance of the difference between two means when the
population variances are unequal. Biometrika, 29(3/4):350–362, 1938.

[47] E. Wu and S. Madden. Scorpion: Explaining away outliers in aggregate queries.
Proc. VLDB Endow., 6(8):553–564, June 2013.

[48] H. Xiong, G. Pandey, M. Steinbach, and V. Kumar. Enhancing data analysis
with noise removal. TKDE, 18(3):304–319, Mar. 2006.

[49] H. Zhang, Y. Diao, and A. Meliou. Exstream: Explaining anomalies in event
stream monitoring. In EDBT, pages 156–167, Mar. 2017.

[50] Y. Zhao, Z. Nasrullah, and Z. Li. Pyod: A python toolbox for scalable outlier
detection. J. Mach. Learn. Res., 20:96:1–96:7, 2019.

[51] A. Zimek and P. Filzmoser. There and back again: Outlier detection between
statistical reasoning and data mining algorithms. Wiley Interdiscip. Rev. Data
Min. Knowl. Discov., 8(6), 2018.

108



Scaling Density-Based Clustering to Large Collections of Sets
Daniel Kocher

University of Salzburg
Salzburg, Austria

dkocher@cs.sbg.ac.at

Nikolaus Augsten
University of Salzburg

Salzburg, Austria
nikolaus.augsten@sbg.ac.at

Willi Mann
Celonis SE

Munich, Germany
w.mann@celonis.com

ABSTRACT
We study techniques for clustering large collections of sets into
DBSCAN clusters. Sets are often used as a representation of
complex objects to assess their similarity. The similarity of two
objects is then computed based on the overlap of their set rep-
resentations, for example, using Hamming distance. Clustering
large collections of sets is challenging. A baseline that executes
the standard DBSCAN algorithm suffers from poor performance
due to the unfavorable neighborhood-by-neighborhood order in
which the sets are retrieved. The DBSCAN order requires the use
of a symmetric index, which is less effective than its asymmetric
counterpart. Precomputing and materializing the neighborhoods
to gain control over the retrieval order often turns out to be
infeasible due to excessive memory requirements.

We propose a new, density-based clustering algorithm that
processes data points in any user-defined order and does not
need to materialize neighborhoods. Instead, so-called backlinks
are introduced that are sufficient to achieve a correct clustering.
Backlinks require only linear space while there can be a quadratic
number of neighbors. To the best of our knowledge, this is the
first DBSCAN-compliant algorithm that can leverage asymmetric
indexes in linear space. Our empirical evaluation suggests that
our algorithm combines the best of two worlds: it achieves the
runtime performance of materialization-based approaches while
retaining the memory efficiency of non-materializing techniques.

1 INTRODUCTION
We consider the problem of partitioning large collections of sets
into DBSCAN [15] clusters. Our work is motivated by a pro-
cess mining use case at Celonis SE that models processes as
sets. A process is a sequence of timestamped activities. Large
companies store hundreds of millions of activities in millions
of processes. In order to analyze the processes, they should
be clustered into groups of similar activity sequences that can
be further explored [5, 22, 39]. To this end, a process is repre-
sented by the set of all its neighboring activity pairs, e.g., the
process with the activity sequence (S,O, P,H ,R, F , E) (Start, Or-
der, Pay, sHip, Return good, reFund, End) is represented by the set
{(S,O), (O, P), (P,H ), (H ,R), (R, F ), (F , E)}. The similarity of two
processes is then assessed by the Hamming distance1 of their set
representations.

Sets are used in many other applications [29] to represent
objects for the purpose of clustering, e.g., sales may be repre-
sented by sets of product categories, photos by sets of tags and
title words, user interactions on a website by sets of visited links,
users of a social network by their group memberships, or users
of a music streaming platform by sets of tracks they listen to.

1Hamming distance H (r , s) = |r ∪ s | − |r ∩ s | for two sets r and s .

© 2021 Copyright held by the owner/author(s). Published in Proceedings of the
24th International Conference on Extending Database Technology (EDBT), March
23-26, 2021, ISBN 978-3-89318-084-4 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.
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Figure 1: Symmetric candidates with ϵ-neighbors (blue);
asymmetric candidates with lookahead neighbors (red).

The popular DBSCAN (Density-Based Spatial Clustering of
Applications with Noise) algorithm [15] identifies clusters of ar-
bitrary shape without requiring the number of clusters as input.
Intuitively, DBSCAN finds dense regions that are separated by
regions of lower density. The density of a region (given a dis-
tance function between pairs of data points) is defined by two
parameters: the number of neighbors, minPts, and the radius,
ϵ , of the neighborhood. A data point is called core point (i.e., it
is at the core of a dense region) if it has at least minPts neigh-
bors (including itself) within radius ϵ ; a non-core point in the
ϵ-neighborhood of a core point is a border point (i.e., it is at the
border of a dense region); all other points are noise [37].

The runtime of the DBSCAN algorithm heavily depends on
the efficiency of the neighborhood computation. In our exper-
iments, the neighborhood computation accounts for up to 99%
of the overall runtime for some datasets. Therefore, in order
to efficiently cluster large collections of sets, effective indexing
techniques for sets are required.

Similarity indexes for sets have been proposed in the con-
text of ϵ-neighborhood joins, which are executed in an index
nested loop fashion. A prominent representative is the prefix in-
dex [1, 8], which is linear in size and has been shown to be highly
effective [29]. The symmetric prefix index returns the complete
ϵ-neighborhood for a given query point r . The asymmetric prefix
index assumes a processing order on the sets in R and retrieves
only the lookahead neighbors: the ϵ-neighbors that follow r in
processing order. A typical processing order for sets is based on
the set sizes (ties broken arbitrarily). The asymmetric prefix index
further leverages the length information to avoid many of the
candidates that the symmetric index must inspect (among the
unprocessed sets). Figure 1 illustrates the ϵ-neighborhood, the
lookahead neighbors, and the candidate regions of symmetric
and asymmetric index, respectively. The region above the gray
line represents the sets that have been processed before r , the
region below the gray line are unprocessed sets. The circles and
semicircles show subset relationships.

Clearly, the asymmetric prefix index is preferable in terms
of effectiveness over its symmetric counterpart. Unfortunately,
there is an inherent mismatch between the asymmetric index
and the DBSCAN algorithm. DBSCAN suffers from the following
issues when executed with the asymmetric index: (1) Core status
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problem: The lookahead neighbors of r are not sufficient to update
the core status of r . (2) Border vs. Noise problem: To distinguish
border points from noise, a border point must be visible from a
core point, which is not guaranteed by the asymmetric lookahead
neighborhood. (3) Disconnected clusters: To guarantee connected
clusters, DBSCAN imposes a (partial) processing order on the
neighborhood computations: all core points of the current cluster
must be expanded (i.e., their neighborhood must be computed)
before any point belonging to a different cluster is processed.

A well-known clustering approach [3] is based on a self-join
that precomputes and materializes all neighborhoods. The pre-
computed neighborhoods are then used while executing DB-
SCAN. This approach can leverage the asymmetric index and
is efficient in runtime. Unfortunately, this join-based technique
requires quadratic memory in the worst case and suffers from a
large memory footprint in practice. For example, for our social
media dataset (LIVEJ) that stores the interests of 3.1M users, this
approach requires almost 100GB of memory.

Summarizing, applications that must cluster large collections
of sets have two options, which we call Sym-Clust and Join-Clust.
(1) Sym-Clust: Retrieve the full ϵ-neighborhoods in the processing
order imposed by DBSCAN using the symmetric index. (2) Join-
Clust: Compute and materialize neighborhoods in a join using
the effective asymmetric index. None of the options is satisfying:
Sym-Clust runs almost up to an order of magnitude slower than
Join-Clust, while Join-Clust is infeasible for many datasets and
parameter settings due to its excessive memory usage.

We propose a new clustering algorithm, Spread, that computes
correct DBSCAN clusters using the asymmetric prefix index.
Spread runs in linear space and does not need to materialize the
(quadratic-size) neighborhoods. Spread avoids symmetric neigh-
bor computations, therefore reducing the number of neighbors
retrieved by Sym-Clust. So-called backlinks are introduced to
achieve a correct clustering. Backlinks are dynamically added
and removed as required and occupy only a small fraction of
the memory that is used by materialized neighborhoods. Spread
maintains a graph of subclusters in a disjoint-set data structure
and guarantees that connected components in the resulting graph
represent correct DBSCAN clusters.

In general, Spread can process data points in any user-defined
order given an index that retrieves the lookahead neighbors, i.e.,
all data points that follow the query point in the user-defined
processing order. In our usage scenario – set clustering – the
processing order is defined by the set sizes (ties broken arbitrarily)
and the asymmetric prefix index retrieves lookahead neighbors.

Summarizing, our contributions are the following:

• We propose Spread, a novel algorithm for partitioning
large collections of sets into DBSCAN clusters. To the best
of our knowledge, this is the first linear space DBSCAN-
compliant algorithm that leverages the asymmetric prefix
index for sets.
• We introduce the new concept of backlinks that keep suffi-

cient information to build correct clusters independently
of the processing order that the user imposes on Spread.
We prove invariants for backlinks and the correctness of
our approach.
• Our extensive empirical evaluation on 13 real-world datasets

suggests that Spread is as fast as Join-Clust (that material-
izes all neighborhoods) while being competitive in mem-
ory usage with Sym-Clust (that computes all neighbor-
hoods on the fly).

The remainder of this paper is organized as follows. In Sec-
tion 2, we cover the background on ϵ-neighborhood and set
similarity, indexing techniques for sets, and density-based clus-
tering, and we define the density-based set clustering problem.
Section 3 presents the two baseline approaches for density-based
set clustering, Join-Clust and Sym-Clust. In Section 4, we present
Spread, our time- and space-efficient solution for density-based
set clustering. We evaluate our solution against the baseline al-
gorithms and discuss the results in Section 5. Related work is
summarized in Section 6. Finally, Section 7 concludes this paper.

2 BACKGROUND & PROBLEM DEFINITION
We revisit set similarity indexes and density-based clustering,
and define our problem. To simplify the presentation, we focus on
prefix indexes for the Hamming distance. Our results, however,
extend to other distance and similarity measures (e.g., Jaccard
or Cosine) and the respective indexes [12, 29, 40]. The required
adaptations of the index that have been studied in the context of
set similarity joins [29, 49] (e.g., prefix length, size lower bound,
equivalent overlap) also apply to our scenario.

2.1 Set Similarity and ϵ-Neighborhood
R is a collection of n unique sets, each set r ∈ R consists of
unique tokens t1, . . . , tm , |r | = m. The processing order, ≻, is a
total order defined over R. The similarity between two sets r and
s is assessed by the Hamming distance, H (r , s) = |r ∪ s | − |r ∩ s |,
which counts the number of tokens that exist only in one of the
sets, e.g., H (r1, r2) = 4 and H (r2, r3) = 3 for the sets in Figure 2.

The ϵ-neighborhood of set r includes r and all sets within dis-
tance ϵ from r , Nϵ (r ) = {s ∈ R | H (r , s) ≤ ϵ}. A region query on
r computes Nϵ (r ). A set r splits its ϵ-neighborhood into two dis-
joint parts based on the processing order: the lookahead neighbors
that follow r in processing order, N ≻ϵ (r ) = {s ∈ Nϵ (r ) | s ≻ r }
and the preceding neighbors, N ≺ϵ (r ) = {s ∈ Nϵ (r ) | s ≺ r }.

2.2 Indexing Techniques for Sets
Prefix Filter and Inverted Index. A naive approach computes a

region query Nϵ (r ) by verifying the predicate H (r , s) ≤ ϵ for all
sets s ∈ R. An effective indexing technique, which was originally
developed for set similarity joins [2, 29], is based on the so-called
prefix filter. The prefix, πr , of a set r consists of the first π tokens
of r according to some total token order (which must be the same
for all sets). The prefix length depends on the distance function
and is π = ϵ + 1 for the Hamming distance. Figure 2 shows the
prefix of three sets for distance threshold ϵ = 3 and a numerical
token order. The prefix filter works best if the tokens in the prefix
are infrequent, thus the tokens are typically ordered by ascending
global token frequency.

A set s ∈ R can be in the ϵ-neighborhood Nϵ (r ) only if the
prefixes of r and s share at least one token, i.e., H (r , s) ≤ ϵ ⇒
πr ∩ πs , ∅ (assuming |r | + |s | > ϵ ; otherwise r and s are always
similar). Therefore, if two sets do not share a token in the prefix,
the pair can be safely pruned. If two sets r and s share a prefix
token, (r , s) is a candidate pair and must undergo verification, i.e.,
the predicate H (r , s) ≤ ϵ must be evaluated. Candidates that fail
verification are false positives. Mann et al. [29] discuss efficient
prefix-based verification.

Symmetric Prefix Index. An inverted index on the prefix tokens
is used to retrieve candidate pairs efficiently. The inverted index
maps prefix tokens to sets that contain that token in the prefix.
A lookup of set r retrieves all lists of the prefix tokens of r . The
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Figure 2: Symmetric and asymmetric prefix index, ϵ = 3.

union of these lists (except r itself) are the candidates of r . The
index is symmetric and returns the ϵ-neighborhood of r .

For example, the candidates for r2 returned by the symmetric
index, π = ϵ + 1 = 4, in Figure 2 are {r1, r3} (resulting from the
union of [r2, r3] for token 1, [r2, r3] for token 2, [r1, r2] for token
5, and [r1, r2] for token 6). Candidate r1 is a false positive since
H (r1, r2) > ϵ ; r3 is a true positive due to H (r2, r3) ≤ ϵ .

Asymmetric Prefix Index. We construct an asymmetric prefix
index that returns only the lookahead neighbors, N ≻ϵ (r ). To this
end, we define a length-based processing order on R (longest
to shortest): r precedes s if |r | > |s |, i.e., |r | > |s | ⇒ s ≻ r ; ties
(|r |= |s |) are broken by the lexicographic order of the sorted sets.

Since we are interested only in sets s ∈ Nϵ (r ) that are no
larger than r , |s | ≤ |r |, we need to index only a subset of the
prefix tokens: the tokens in the so-called indexing prefix [49]. The
so-called probing prefix of the lookup set, r , remains of length
π = ϵ + 1. For the Hamming distance, the indexing prefix is of
length π i =

⌊ ϵ
2 + 1

⌋
. For ϵ > 0, the probing prefix is always

longer than the indexing prefix, e.g., π = 4 and π i = 2 for
ϵ = 3. A shorter prefix results in fewer candidates and renders the
asymmetric index more effective than its symmetric counterpart.

In the case of r2, the asymmetric index, π i = 2, in Figure 2
returns only a true positive candidate, r3. The false positive can-
didate, r1, which is returned by the symmetric index, is avoided.

2.3 Density-Based Clustering
We formally define DBSCAN clusters and the related concepts.
A set r represents a point to be clustered. The density of r is the
number of ϵ-neighbors |Nϵ (r )| (cf. Section 2.1).

Core, Border, Noise. A set r is a core point iff the ϵ-neighborhood
of r contains at least minPts sets: r is core⇔ |Nϵ (r )| ≥ minPts. A
set s is a border point iff it is in the ϵ-neighborhood of a core point
r and s is not core: s is border⇔ s ∈ Nϵ (r )∧ |Nϵ (r ) | ≥ minPts∧
|Nϵ (s) | < minPts. All remaining sets in R are noise. We denote
the set of core and border points with C and B, respectively. The
set of noise points is N = R \ (C ∪ B).

Density-Reachability. Let r , s ∈ R and r is core: s is directly
density-reachable from r iff s is in the ϵ-neighborhood of r : r ▶
s ⇔ s ∈ Nϵ (r ). If there is a sequence of sets r1, r2, . . . , rk with
r1 = r and rk = s , ri ▶ ri+1 for 1 ≤ i < k , s is density-reachable
from r , denoted r ▶ . . . ▶ s . Two sets r , s are density-connected
if there is a set x s.t. both r and s are density-reachable from x .

A density-based cluster is a subset Ci ⊆ R that satisfies two
criteria [38]:

(1) Maximality M: For any two sets r , s ∈ R, r ∈ Ci . If s is
density-reachable from r , then s ∈ Ci . Formally,

∀r , s ∈ R : r ∈ Ci ∧ r ▶ . . . ▶ s =⇒ s ∈ Ci

Table 1: Notation overview.

Notation Description
R a collection of sets
r , s, x sets of R
|r | cardinality of set r
r ≺ s , r ≻ s r precedes/succeeds s (in R)
H (r , s) the Hamming distance of two sets r , s
π , π i probing/indexing prefix
ϵ distance threshold
minPts minimum density s.t. a set r is core
Nϵ (r ) full ϵ-neighborhood of r
N ≺ϵ (r ) ,N ≻ϵ (r ) preceding/lookahead neighbors of r
r ▶ s s is directly density-reachable from r

r ▶ . . . ▶ s s is density-reachable from r

C,B,N the set of core, border, and noise sets
Ci a density-based cluster with id i

(2) Connectivity C: For any two sets r , s in Ci , there is a set x
that density-connects r and s . Formally,

∀r , s ∈ R : r , s ∈ Ci =⇒ ∃x ∈ Ci : r ◀ . . . ◀ x ▶ . . . ▶ s

DBSCAN Clustering. A border point may be part of multi-
ple density-based clusters such that the clusters overlap. We
define the DBSCAN clustering that partitions the data into non-
overlapping clusters. The standard DBSCAN algorithm [15] pro-
duces a DBSCAN clustering.

Definition 2.1. Let R∗ = R \ N and C1,C2, . . . ,Ck be density-
based clusters such that

⋃k
i=1Ci = R∗. A DBSCAN clustering is a

partitioning Γ = {C ′1,C ′2, . . . ,C ′k }, C ′i ⊆ Ci , such that
⋃k
i=1C

′
i =

R∗, C ′i ∩C ′j = ∅ for i , j.

A subclustering of a cluster Ci ,ψi = {c1, c2, . . . , cl }, is a parti-
tioning of Ci into 1 ≤ l ≤ |Ci | non-empty, disjoint subclusters,
c j ⊆ Ci , such that

⋃l
j=1 c j = Ci , c j ∩ ck = ∅ for j , k .

A subcluster graph of R∗ is an undirected graph in which nodes
are subclusters and an edge between two nodes can only exist if
the respective nodes are in the same DBSCAN cluster.

2.4 The DBSCAN Algorithm
The standard DBSCAN algorithm [15] forms clusters by repeat-
edly picking a seed point from the set of unvisited data points
(initially all points are unvisited). If the seed is a core point, it
forms a new cluster with all points that are density-reachable
from the seed and are not yet assigned to a cluster. The set of
density-reachable points is computed by recursively adding the
ϵ-neighbors of all core points to the current cluster. The algo-
rithm terminates when all points have been visited. Points that
cannot be assigned to a cluster are noise.

2.5 Problem Statement
Definition 2.2 (Density-Based Set Clustering). Given a collec-

tion of sets R, a distance threshold ϵ , and the neighborhood
density minPts, the goal is to find a DBSCAN clustering Γ =
{C1,C2, . . . ,Ck } of R.

For sets, asymmetric indexes with a lookahead neighbor func-
tion N ≻ϵ (r ) promise the best performance (cf. Section 2.2). Given
an ordering ≻ on R, we strive for a time- and space-efficient algo-
rithm that solves the density-based set clustering problem with
an asymmetric index.
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Nϵ (r5)

Nϵ (r6)

Nϵ (r1)

r10

r2

r8
r6

r3r1

r7
r4

ϵ

. . . core set

. . . border set

Collection R:

r10 {1, 2, 3, 4}
r9 {2, 3, 4, 5}
r8 {3, 4, 7, 8}

r7 {7, 8, 10, 11}
r6 {1, 2, 4, 7, 8}
r5 {1, 3, 4, 5, 6}

r4 {7, 8, 9, 10, 11}
r3 {1, 4, 7, 8, 10, 11}

r2 {1, 3, 4, 5, 6, 12, 13, 14}
r1 {1, 4, 7, 8, 10, 11, 12, 13, 14}

Figure 3: Running example, ϵ = 3, minPts = 4.

Running Example. Figure 3 shows an example collection R of
ten sets, r1–r10, and their neighborhoods for Hamming distance
ϵ = 3. Sets r3, r5, r6, and r10, are core sets; all sets r1–r10 form a
single cluster.

3 BASELINE APPROACHES
This section presents two baseline solutions for the density-based
set clustering problem. (1) Sym-Clust is memory-efficient and fol-
lows the standard DBSCAN approach with the symmetric prefix
index to answer neighborhood queries on the fly. (2) Join-Clust
is speed-optimized and materializes all ϵ-neighborhoods using
a state-of-the-art set similarity join algorithm [2] (which lever-
ages the asymmetric prefix index) before the standard DBSCAN
algorithm is executed.

Both baselines leverage state-of-the-art set indexes. We are not
aware of other previous solutions that can outperform Sym-Clust
or Join-Clust for the density-based set clustering problem. Note
that using the standard DBSCAN [15] (rather than some advanced
techniques presented in later works, cf. Section 6) is not a limiting
factor: Most of the overall execution time is spent computing the
neighborhoods, and prefix-based indexes are highly efficient in
combination with efficient verification [29].

3.1 Sym-Clust: DBSCAN with Inverted Index
When the standard DBSCAN algorithm (cf. Section 2.4) picks a
seed point that is core, it forms a cluster with all points that are
density-reachable from the seed. The density-reachable points
are computed by pushing all core neighbors of the seed onto a
stack. Then, each point on the stack is processed in the same
manner (i.e., all its core neighbors are pushed onto the stack)
until the stack is empty. All neighbors of core points retrieved in
this process belong to the cluster.

The neighborhood queries will overlap to some extent. Assume
r is processed before s , s ∈ Nϵ (r ), then |Nϵ (s) ∩ Nϵ (r )| ≥ 2
(at least r and s are in both neighborhoods). Since r assigns all
its neighbors to the current cluster, only the non-overlapping
neighbors of s , Nϵ (s) \ Nϵ (r ), will further increase the cluster.

Figure 4 illustrates this observation for the neighborhoods of
two example points r (black circle) and s (red circle): only the
new, non-overlapping area of Nϵ (s) (shaded in red) is relevant
for expanding the cluster.

r ϵs r , s . . . core sets
. . . new part

Figure 4: Redundant neighborhood queries.
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Figure 5: Symmetric prefix index on r1-r10, ϵ = 3, π = 4.
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Figure 6: Asymmetric prefix index on r1-r10, ϵ = 3, π i = 2.

The standard DBSCAN algorithm requires the use of a sym-
metric index since it assumes to see all neighbors of a point s
when s is processed. The asymmetric index is not compatible with
the standard DBSCAN algorithm: We cannot impose an order on
the points such that all non-overlapping neighbors of s follow s
in the processing order. Further, the size of the neighborhood of
s , |Nϵ (s)|, is required to decide its core status.

Figure 5 shows the symmetric prefix index for our running
example, ϵ = 3, π = ϵ + 1 = 4. We probe r8 = {3, 4, 7, 8}.
The prefix of r8 consists of all tokens in r8 (due to |r8 | = π ).
The union of the respective index lists yields the candidates
{r2, r5, r9, r10, r1, r3, r6, r4, r7}. Note that the candidates include
both sets that are smaller and sets that are larger than r8.

The so-called length filter [2], an optimization of the symmet-
ric prefix index that also applies to its asymmetric counterpart,
prunes candidates r2 and r1. Due to their length difference to
r8, they cannot be in the ϵ-neighborhood of r8. By ordering the
lists in processing order (i.e., longer sets precede shorter sets, as
illustrated in Figure 5), the length filter can prune the head (sets
that are too long) and the tail (sets that are too short) of a list
without inspecting all elements in head and tail, respectively.

All candidates that are not pruned by the length filter must un-
dergo verification. Only r6 passes verification, therefore Nϵ (r8) =
{r8, r6}, and r8 is classified as non-core (minPts = 4).

Complexity Analysis. We probe each set r ∈ R against the
index once. With cost C for an index lookup and n = |R |, the
runtime is O(n ·C); C = O(n) since r may have O(n) neighbors,
thus the overall runtime of Sym-Clust is O(n2). The symmetric
index is of linear size leading to space complexity O(n).
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Algorithm 1: Materialize-Neighborhoods(R, ϵ)
Input: Collection of sets R, distance threshold ϵ
Result: Materialized neighborhoods of R w.r.t. ϵ

1 I ← Create-Index (R, ϵ);
2 pairs ← ∅ // Result set of similar pairs

3 foreach r ∈ R in processing order do
4 M ← Probe (r , I , ϵ) // candidates with prefix overlaps

5 foreach (s,po) ∈ M do // po . . . prefix overlap

6 if Verify-Pair (r , s, ϵ,po) then
7 pairs ← pairs ∪ {(r , s)}

8 neiдhborhoods ← new associative array of size |R |;
9 foreach (r , s) ∈ pairs do

10 neiдhborhoods[r ] ← neiдhborhoods[r ] ∪ {s};
11 neiдhborhoods[s] ← neiдhborhoods[s] ∪ {r };
12 return neiдhborhoods

Algorithm 2: Create-Index (R, ϵ)
Input: Collection of sets R, distance threshold ϵ
Result: Inverted index of R w.r.t. ϵ

1 I ← ∅ // inv. index of set prefixes, Ir [p] . . . list of token r [p]
2 foreach r ∈ R do
3 π ← ⌊ ϵ+2

2
⌋

// indexing prefix length of r

4 for p ← 1 to π do Ir [p] ← Ir [p] ∪ {r };
5 return I

3.2 Join-Clust: Materialized Neighborhoods
Join-Clust executes a set similarity self-join on R and materializes
the ϵ-neighborhoods in main memory. The self-join traverses all
sets of r ∈ R in processing order and computes their lookahead
neighbors, N ≻ϵ (r ). The lookahead neighbors of r are appended to
the list of r ’s neighbors, and r is appended to the neighborhood
lists of all s ∈ N ≻ϵ (r ). After processing all sets, the neighborhood
list of each set r ∈ R is complete and stores Nϵ (r ).

Next, standard DBSCAN (cf. Section 2.4) is executed to form
clusters using the materialized neighborhoods. Algorithms 1–4
implement the similarity join with neighborhood materialization,
index creation, probing, and efficient verification [29].

Mann et al. [29] found that the prefix-based index in combi-
nation with the length filter can be considered state of the art
given an efficient verification procedure (which we use).

Figure 6 shows the asymmetric prefix index for our running
example, ϵ = 3, π i = 2. We probe r8 = {3, 4, 7, 8} and look up the
lists of the tokens 3, 4, 7, and 8 (the length of the probing prefix is
π = 4). Since we are only interested in the lookahead neighbors,
i.e., all neighbors that follow r8 in processing order, we need to
inspect the lists only starting from the point where r8 or a set
ri ≻ r8 appears. The length filter does not prune any candidate
in this example, and the candidate set is {r9}. Since H (r8, r9) > ϵ ,
the lookahead neighborhood of r8 is empty, N ≻ϵ (r8) = ∅.

In the context of the self-join, r8 will be retrieved as a looka-
head neighbor of r6, which is processed before r8. Therefore, the
neighborhood list of r6 will store r8 and vice versa.

Join-Clust produces fewer candidates than Sym-Clust and is
therefore faster. However, the efficiency of Join-Clust comes at
the cost of a larger memory footprint since all neighborhoods
must be materialized.

Algorithm 3: Probe (r , I , ϵ)
Input: Probing set r , inv. index I , distance threshold ϵ
Result: Set of candidates for r w.r.t. ϵ
// M maps a candidate s to its prefix overlap with r

1 M ← new associative array // candidates

2 π ← ϵ + 1 // probing prefix length of r

3 lbr ← |r | − ϵ // size lower bound wrt. r

4 for p ← 1 to π do
5 foreach s ∈ Ir [p] in proc. order do // list of token r [p]
6 if |s | < lbr then break ;
7 else // add candidate

8 if s < M then M[s] ← 0; // init.

9 M[s] ← M[s] + 1 // incr. overlap of (r , s)

10 return M

Algorithm 4: Verify-Pair (r , s, ϵ,po)
Input: Probing set r , candidate set s , distance threshold ϵ ,

prefix overlap po
Result: True iff r and s are similar w.r.t. ϵ , false otherwise
// cf. Mann et al. [29] for prefixes, equiv. overlaps, and Verify proc.

1 πr , πs ← probing resp. indexing prefix length of r resp. s;
2 wr ,ws ← πr - resp. πs -th token in r resp. s;
3 t ← equivalent overlap for r , s , and ϵ ;
4 if wr < ws then
5 return Verify (r , s, t,po, πr + 1,po + 1)
6 return Verify (r , s, t,po,po + 1, πs + 1)

Complexity Analysis. A neighborhood query is a constant-time
lookup and a traversal of O (|Nϵ (r )|) neighbors. In the worst
case, the join reports O (

n2) pairs. Consequently, materializing
the neighborhoods takes O (

n2) time and space for n = |R |. The
asymmetric prefix index requires only O (n) space and does not
dominate memory usage.

4 THE SPREAD ALGORITHM
We present Spread, a novel time- and space-efficient solution
for the density-based clustering problem. Spread leverages the
effective asymmetric index and clusters all sets by traversing the
sets in processing order. We identify key challenges that must be
solved, discuss the algorithm, prove its correctness, analyze time
and space complexity, and sketch a multi-core extension.

4.1 Key Challenges
Since Spread uses an asymmetric neighborhood index, a process-
ing order, ≻, must be imposed on the data points, and an index
lookup of query point r retrieves only the lookahead neighbors,
N ≻ϵ (r ). To achieve a correct clustering without materializing the
neighborhoods, three key challenges must be solved.

In the following discussion, we assume that all sets of R are
processed in processing order. When the current set ri is to be
processed, we know the core status of all preceding sets, r j ≺ ri ,
but we do not know the core status of any unprocessed sets,
rk ≻ ri . We further assume that all sets r ∈ R that are directly
density-reachable from any r j that precedes ri (i.e., are neighbors
of a core point r j ≺ ri ) are assigned to the same cluster as the
core point r j ; this may also include sets rk ≻ ri that have not
been processed yet.
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Core Status. A set ri is core if |Nϵ (ri )| ≥ minPts. Sym-Clust
and Join-Clust have access to the full neighborhood, Nϵ (ri ), thus
deciding the core status of ri is trivial. In contrast, Spread sees
only the lookahead neighbors, N ≻ϵ (ri ). To identify the core sta-
tus of ri , however, additional knowledge about the size of the
preceding neighborhood, N ≺ϵ (ri ), is required.

Consider probing ri = r5 in our running example. According to
our assumptions, the core status of sets r1–r4 is known (only r3 is
core), and all neighbors of r3 are in clusterC3 = {r1, r3, r4, r6, r7}.
An index lookup of r5 returnsN ≻ϵ (r5) = {r9, r10}. Since

��N ≻ϵ (r5)
��+

1 = 3 < 4 = minPts we cannot decide if r5 is core. In fact, r5
should be classified core since the full neighborhood is Nϵ (r5) =
{r2, r5, r9, r10} (cf. red circle in Figure 3).

Border vs. Noise. Assume that the current set ri is a non-core
point that is not assigned to any cluster. We need to decide if ri is
border or noise. A border point has at least one core point in its
neighborhood. None of the preceding neighbors, r j ∈ N ≺ϵ (ri ), is
core, otherwise ri would be assigned to the cluster of r j . Thus, ri
is core iff one of the lookahead neighbors is core. Unfortunately,
we do not know the core status of the lookahead neighbors and
can therefore not label ri as border or noise.

Assume a core point, rk ∈ N ≻ϵ (ri ), among the lookahead
neighbors of ri . When rk is processed, rk will not see ri in its
lookahead neighborhood since ri ≺ rk . Therefore, ri will not
be included into the cluster of rk and will wrongly be classified
noise. The challenge is to correctly decide the border status of ri
despite seeing only the lookahead neighbors of ri and rk .

In our running example, r1 is processed first. Thus, no core
points are known and no clusters exist. N ≻ϵ (r1) = {r3} and r1
remains noise (cf. blue circle in Figure 3). When the neighbor r3
of r1 is processed, r3 will be detected as a core point and start a
new cluster. However, since r3 only sees its lookahead neighbors,
N ≻ϵ (r3) = {r4, r6, r7}, r1 is not included into the cluster and is
not detected as a border point.

Disconnected Clusters. Assume that the current set ri is core
and there is a core point r j ≺ ri in a cluster Cj , ri < Cj . The
current set ri will assign all its lookahead neighbors to its cluster,
Ci = Ci ∪ N ≻ϵ (ri ) (Ci can be a new cluster started by ri or an
existing cluster to which ri belongs). Unfortunately, we cannot
assume that Ci and Cj are indeed distinct clusters: there can be
a core point rk ≻ ri that density-reaches both ri and r j , i.e., Ci
and Cj should form a single cluster. In general, multiple subclus-
ters of the same DBSCAN cluster may grow independently. The
challenge is to identify subclusters that should be merged and to
merge them efficiently.

We process the current set ri = r6 in our running exam-
ple. According to our assumptions, we know that r3 and r5 are
core and we are aware of two clusters, C3 = {r1, r3, r4, r6, r7},
C5 = {r2, r5, r9, r10}. In addition, assume that we know that r6 is
core. Then, r6 extends its current cluster, C3, with its lookahead
neighbors N ≻ϵ (r6) = {r8, r10}. Note that r10 is already part of
cluster C5. Since we do not know the core status of r10, we can-
not decide if C5 and C3 should be merged into a single cluster. If
r10 is core, r5 and r3 are density-reachable from r10 and should be
in the same cluster. If r10 is a border point, however, the clusters
must not be merged, and r10 can be assigned to either C5 or C3.

4.2 Data Structures
Disjoint-Set. The disjoint-set (or union-find) data structure

maintains a dynamic collection of non-overlapping sets for n

objects in O (n) space [10, 41]. A typical use case is the efficient
computation of (minimum) spanning trees. It supports three
operations: (1) For a given element u, make_set (u) creates a new
(singleton) set that contains u. (2) The union (u,v) operation
merges the two sets that contain u resp. v into a new set. (3)
find_set (u) returns the representative for the set that contains u
or∞ if u is not found. The amortized worst-case time complexity
is Θ (α (n)) for all operations, α (.) being the inverse Ackermann
function. In practice, α (n) is considered a constant. In our setting,
set elements are subclusters, and the disjoint-set data structure
links subclusters that belong to the same DBSCAN cluster.

Backlinks. The backlinks data structure of a set r ∈ R is a
collection of unique references to other sets s that precede r ,
s ≺ r . The backlinks bl support the add operation, bl ∪ {s},
which adds a reference to a new set s in time O (1) (on average).
Depending on the type of sets that are referenced in the backlinks,
we distinguish core and non-core backlinks, denoted c_bl and
nc_bl , respectively. We implement backlinks as unordered sets
of integer identifiers.

4.3 The Algorithm
Algorithm 5 shows the pseudocode of Spread. We use the follow-
ing notation: r is the current probing set, s ≻ r is a lookahead
neighbor, and x ≺ r is a preceding neighbor. Initially, all sets are
noise, i.e., their cluster identifier is −∞, ∀r ∈ R : r .cid = −∞.
Although we initialize all sets in Algorithm 5 explicitly (lines
3–4), this can also be done during indexing (cf. Algorithm 2).

Algorithm Outline. Spread proceeds in three main steps: (1) A
counter and the processing order guarantee that the cardinality
of the ϵ-neighborhood is known when a set is processed despite
using the asymmetric prefix index. (2) Each set is assigned to
a subcluster solely based on its lookahead neighboorhood. Sub-
clusters of the same DBSCAN cluster are linked in a subcluster
graph. Backlinks ensure that we do not miss border sets or links
between subclusters. (3) Each connected component in the sub-
cluster graph represents a DBSCAN cluster.

Core Status. A set r is core if |Nϵ (r ) | ≥ minPts. In Spread,
however, only N ≻ϵ (r ) is computed. To capture the cardinality of
N ≺ϵ (r ), we store a density counter with each set r , denoted r .dens .
Initially, ∀r ∈ R : r .dens = 1. For every lookahead neighbor s ∈
N ≻ϵ (r ), r .dens and s .dens are incremented (due to the symmetry
of the distance). Core set identification is highlighted in green .

Border vs. Noise. A probing set r that is not core is a border
set iff ∃y ∈ Nϵ (r ) : y is core. Due to our processing order and
the fact that only N ≻ϵ (r ) is computed, the existence of a core
neighbor y may be unknown when r is probed. However, for
each s ∈ N ≻ϵ (r ), we know that r is part of N ≺ϵ (s). We store this
information by adding r to the non-core backlinks nc_bl[s] of
each s ∈ N ≻ϵ (r ) (lines 31–33). Then, the first s ∈ N ≻ϵ (r ) that
becomes core claims r (and all other unassigned sets in nc_bl[s])
as border point for its subcluster. If none of the neighbors s ∈
N ≻ϵ (r ) becomes core, then r remains noise. Lines 26–30 deal with
a special case: If any s ∈ N ≻ϵ (r ) is already core when r is probed,
then s claims r immediately without adding r to its non-core
backlinks. The relevant code lines are marked in red .

Subcluster Linkage. If the probing set r is core and a core neigh-
bory is part of another subcluster, the subclusters of r andy must
be linked in our subcluster graph. The subcluster graph repre-
sents all connected components of subclusters, each of which is
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a DBSCAN cluster. We use the disjoint-set data structure ds to
track the connected components. Two subclusters u,v are linked
by ds .union(u,v). We may not be able to determine if there is a
set s ∈ N ≻ϵ (r ) that is core before s is probed. We use the core
backlinks, c_bl , to book-keep potential subclusters for linkage: r
adds its subcluster identifier to c_bl[s] of each s ∈ N ≻ϵ (r ) (lines
22-23). After N ≻ϵ (r ) has been processed, a link between the sub-
cluster of r and every entry in c_bl[r ] is created (line 24). The
special case when s is already core allows us to create the link
immediately without using core backlinks (lines 20–21). Linkage
is only required if two subclusters coalesce (condition in line 19).
Otherwise, r simply claims s ∈ N ≻ϵ (r ) for its subcluster (lines
17–18). Linkage of subclusters is highlighted in blue .

All backlinks of r are released after r has been processed to
save memory (line 34). The subcluster graph in ds is used to
assign consistent cluster IDs in a final scan over R (lines 35–36).

4.4 Correctness
We show that Algorithm 5 partitions R into DBSCAN clusters (cf.
Definition 2.1). Set ri ∈ R is the i-th set of R in processing order.
We prove the correctness by induction over i and increasing
subsets Ri ⊆ R. R0 = ∅, Ri = Ri−1 ∪ {ri } ∪ N ≻ϵ (ri ) for 1 ≤ i ≤
n = |R |, thus Rn = R. Due to space constraints, we omit the full
proofs and only provide the invariants that must be shown.

Core Status. The core status of set ri is determined in the i-
th iteration of the main loop. ri is core if minPts ≤ |Nϵ (ri )| =
1+

��N ≺ϵ (ri )��+ ��N ≻ϵ (ri )��. In line 5, ri .dens = 1+
��N ≺ϵ (ri )��. Lines 6–

11 compute N ≻ϵ (ri ). The index lookup in line 6 returns candidate
set M , N ≻ϵ (ri ) ⊆ M ⊆ {s | s ≻ ri }. Every set s ∈ M is verified in
line 9 such that N ≻ϵ (ri ) is available starting from line 12.

Lemma 4.1. Algorithm 5 correctly identifies all core sets in R.

Proof Sketch. We show that at the start of the i-th itera-
tion in line 5, for all rk and r j , 1 ≤ k < i ≤ j the follow-
ing invariants hold: (I1) rk .dens = |Nϵ (rk )|; (I2) r j .dens = 1 +��{rk | r j ∈ N ≻ϵ (rk )}��, i.e., ri .dens = 1 +

��N ≺ϵ (ri )��. Further, (I3) in
line 12 of the i-th iteration, ri .dens = |Nϵ (ri )|, i.e., Algorithm 5
correctly identifies the core status of ri . □

Border vs. Noise. Lines 25–33 cover the case that ri is not core.
If any s ∈ N ≻ϵ (ri ) qualifies as core, s claims ri . Otherwise, ri is
stored in the non-core backlinks nc_bl[s] of every s ∈ N ≻ϵ (ri )
(lines 31–33). The next core neighbor in processing order claims
ri (lines 14–15) such that all border sets are assigned to a cluster.

Lemma 4.2. Algorithm 5 correctly clusters all border sets in R.

Proof Sketch. At the start of the i-th iteration, the following
invariant holds for all border sets rk ∈ B, 1 ≤ k < i: if rk is not
stored in nc_bl[s] for any s ∈ N ≻ϵ (rk ), s = ri or s ≻ ri , then rk is
assigned to the cluster of a core point in its neighborhood. □

Subcluster Linkage. Lines 12–24 cover the case that ri is core.
Each core point may form a subcluster on its own or together
with other core points. We must ensure that all subclusters of
the same DBSCAN cluster are linked in the disjoint-set, ds .

Lemma 4.3. Algorithm 5 correctly links all subclusters in R.

Proof Sketch. At the start of the i-th iteration, the following
invariant holds for all core neighors c ∈ CN (rk ) = Nϵ (rk ) ∩ C
of a core set rk ∈ C, 1 ≤ k < i: (a) c and rk have the same
cluster representative (in ds), or (b) c is stored in some c_bl[s],
s ∈ N ≻ϵ (rk ), s = ri or s ≻ ri . □

Algorithm 5: Spread(R, ϵ,minPts)
Input: Collection of sets R, distance threshold ϵ ,

min. density minPts
Result: A correct DBSCAN clustering of R w.r.t. ϵ , minPts

1 ds ← new disjoint-set; nc_bl, c_bl ← new backlinks;
2 I ← Create-Index (R, ϵ);
3 foreach r ∈ R do
4 r .dens ← 1; r .cid ← −∞; ds .make_set (r .id);
5 foreach r ∈ R in processing order do
6 M ← Probe (r , I , ϵ);
7 N ≻ϵ (r ) ← ∅;
8 foreach (s,po) ∈ M do // po ... prefix overlap

9 if Verify-Pair (r , s, ϵ,po) then
10 r .dens ← r .dens + 1; s .dens ← s .dens + 1;
11 N ≻ϵ (r ) ← N ≻ϵ (r ) ∪ {s};

12 if r .dens ≥ minPts then // r is core

13 if r .cid = −∞ then r .cid ← r .id ;
14 foreach x ∈ nc_bl[r ] do // claim border sets x ≺ r
15 if x .cid = −∞ then x .cid ← r .cid ;

16 foreach s ∈ N ≻ϵ (r ) do // s ≻ r
17 if s .cid = −∞ then // claim unclaimed s ≻ r
18 s .cid ← r .cid

19 else if r .cid , s .cid then // s already claimed

20 if s .dens ≥ minPts then // s is core

21 ds .union (r .cid, s .cid) // link subclusters

22 else // remember core neighbor r

23 c_bl[s] ← c_bl[s] ∪ {r .cid}

24 foreach x ∈ c_bl[r ] do ds .union (r .cid, x);
25 else // r is not core, i.e., r .dens < minPts

26 if r .cid = −∞ then // claim potential border set r

27 foreach s ∈ N ≻ϵ (r ) do
28 if s .dens ≥ minPts then // s is core

29 if s .cid = −∞ then s .cid ← s .id ;
30 r .cid ← s .cid ; break;

31 if r .cid = −∞ then // remember potential border set r

32 foreach s ∈ N ≻ϵ (r ) do
33 nc_bl[s] ← nc_bl[s] ∪ {r }

34 release c_bl[r ] and nc_bl[r ] // not needed anymore

35 foreach r ∈ R do // final assignment of cluster IDs

36 if r .cid , −∞ then r .cid ← ds .find_set (r .cid);

Theorem 4.4. Algorithm 5 returns a correct set clustering Γ =
{C1,C2, . . . ,Ck } of R according to Definition 2.1.

Proof Sketch. By Lemmata 4.1–4.3 and due to our final scan
over R (lines 35–36), x .cid = ds .find_set (x .cid) holds for all
x ∈ R. Initially, x .cid = −∞ for all x ∈ R. The cluster IDs are
updated only for border and core sets. Consequently, x .cid = −∞
holds for all x ∈ R \ (C ∪ B) ≡ N , i.e., also noise is correctly
identified. □
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4.5 Complexity Analysis
Memory. The asymmetric prefix index requires O (n) space. In
addition, Spread maintains the following data structures. (i) A
density counter for each set r ∈ R requires O (n) space. (ii) A
disjoint-set data structure with at most O (n) entries, i.e., the
disjoint-set structure requires O (n) space [41]. (iii) In the worst
case, we allocate two backlink structures for each r ∈ R, i.e.,
O (n) backlinks. We release c_bl[r ] and nc_bl[r ] after probing r .
Backlinks are only extended in lines 23 and 33. However, both
lines are executed iff � s ∈ N ≻ϵ (r ) : s is core. Set s is core iff
s .dens ≥ minPts, and the density is updated for every neighbor,
therefore any backlink holds at most minPts entries. As a result,
no more than O (n ·minPts) entries are allocated, thus requiring
O (n) space since minPts and ϵ are constants. Runtime. For each
r ∈ R, we process O (��N ≻ϵ (r )��) neighbors and the backlinks of r
if it is core. Recall that the disjoint-set operations take constant
time. Therefore, the final for-loop (lines 35–36) runs in O (n) time.
Overall, Spread runs in O (

n2) time and O (n) space.

4.6 Multi-core Extension
Spread is designed as a single-core algorithm. We sketch an exten-
sion to multi-core processors that requires little synchronization
between threads. Our extension is based on the observation that
Spread spends most of the runtime in neighborhood computa-
tions (lines 6-11). While for some datasets the neighborhood
computation accounts for only about half of the overall runtime
(e.g., 55% for ORKUT, ϵ = 3), for the configuration with the high-
est runtime in our experiments (CELONIS1, ϵ = 5), Spread spends
over 99% of the runtime in computing the neighborhoods.

We distribute the workload to k + 1 threads, T1,T2, . . . ,Tk+1.
Threads T1 −Tk are responsible for the neighborhood computa-
tions (lines 6-11),Tk+1 performs the actual clustering (lines 12-34).
The runtime of the other steps in the algorithm is negligible.

Neighborhood Computation. Let ri ∈ R, 1 ≤ i ≤ |R | be the i-th
set of R in processing order. Thread Tj , 1 ≤ j ≤ k , computes the
neighborhoods N ≻ϵ (ri ) of all ri with j = i mod k (i.e., round
robin). Each thread processes the assigned sets ri in processing
order (i.e., increasing values of i). The neighborhood computation
in Algorithm 5 is interleaved with updating the density counters
of ri and its neighbors. Only this step requires synchronization
(e.g., using atomic writes) since multiple threads may access the
same counter concurrently. We do not expect congestions since
the density updates are distributed over all neighbors.

Cluster Scan. Thread Tk+1 scans the sets in processing order
and performs the steps in lines 12-34 (maintain backlinks and
disjoint-set, assign preliminary cluster IDs). After processing a
set ri , the memory for the neighbors of ri is released.

Synchronization. We need to make sure that Tk+1 processes
set ri only after ri ’s neighbors have been computed. This can be
achieved with a lock (implemented as condition variable2) on ri
that is held byTj , j ≤ k , until the neighborhood of ri is computed.
Tk+1 needs to get the lock on ri before processing it.

Memory. Tk+1 releases the neighbors after processing them.
If the parallel neighborhood computation is faster than Tk+1,
the precomputed neighborhoods will fill up the memory. This
is avoided with a shared counter that is incremented by T1 −Tk
(when they process a new set ri ) and is decremented byTk+1 (after
processing ri ). The neighborhood computation of ri is postponed
until the counter is below some threshold that bounds the number
of concurrently materialized lookahead neighborhoods.
2A queue of threads waiting for a condition to become true.

Table 2: Characteristics of datasets.

Dataset Coll. Size Set Size Univ. Sizeavg. max.
BMS-POS4 3.2 · 105 9.3 164 1.7 · 103

FLICKR5 1.2 · 106 10.1 102 8.1 · 105

KOSARAK6 6.1 · 105 11.9 2.5 · 103 4.1 · 104

LIVEJ7 3.1 · 106 36.4 300 7.5 · 106

ORKUT7 2.7 · 106 119.7 4.0 · 104 8.7 · 106

SPOT8 4.4 · 105 12.8 1.2 · 104 7.6 · 105

CELONIS1 8.2 · 106 20.3 91 1.2 · 104

CELONIS2 2.6 · 106 22.1 130 3.5 · 103

5 EXPERIMENTAL EVALUATION
Algorithms. We compare our solution, Spread, against the two

baseline approaches Sym-Clust and Join-Clust (cf. Section 3).
All algorithms are single-threaded C++ implementations (2017
standard). Our implementations of Spread, Join-Clust, and the
index of Sym-Clust follow the guidelines by Mann et al. [29], e.g.,
regarding symmetric and asymmetric prefix index, candidate
generation, and optimized prefix-based verification.

Datasets. We execute all experiments on 13 real-world datasets:
(a) Nine of the datasets where previously used for benchmarking
set similarity joins [16, 29]: BMS-POS, DBLP, ENRON, FLICKR,
KOSARAK, LIVEJ, NETFLIX, ORKUT, and SPOT. For a descrip-
tion of the datasets and preprocessing instructions3 we refer to
Mann et al. [29]. (b) Four large real-world datasets from the pro-
cess mining domain, CELONIS1–4, that store one set per process.
Compared to most datasets of the join benchmark, the universe
size of these datasets is rather small. Table 2 summarizes impor-
tant characteristics of our benchmark data.

Due to space constraints we omit detailed results for the fol-
lowing datasets: (a) DBLP, ENRON, and NETFLIX show very
low runtimes (< 4s) and a small and stable memory footprint
(< 1GiB) for all algorithms and configurations. (b) CELONIS3–4
show results similar to the other process mining datasets.

Parameters. The algorithms take two parameters: the neigh-
borhood radius, ϵ , and the density, minPts. Typically, density-
based clustering is sensitive to ϵ and quite robust to minPts. In
our experiments, we vary both parameters: ϵ ∈ {2, 3, 4, 5} and
minPts ∈ {2, 4, 8, 16, 32, 64, 128} (defaults in bold font).

Environment. All experiments have been conducted on a 64-bit
machine with 2 physical Intel Xeon E5-2630 v3 CPUs, 2.40GHz, 8
cores each (i.e., 16 logical processors, hyper-threading disabled).
The cores share a 20MiB L3 cache and have another 256KiB of
independent L2 cache. The system has 96GiB of RAM and runs
Debian 10 Buster (Linux 4.19.0-12-amd64 #1 SMP Debian 4.19.152-
1 (2020-10-18)). Our code is compiled with clang9 version 7,
highest optimization level (-O3). The runtime is measured with
clock_gettime10 at process level, memory usage is the heap

3http://ssjoin.dbresearch.uni-salzburg.at/datasets.html
4BMS-POS: http://www.kdd.org/kdd-cup/view/kdd-cup-2000 [52]
5FLICKR: Bouros et al. [6]
6KOSARAK: http://fimi.uantwerpen.be/data/
7LIVEJ, ORKUT: http://socialnetworks.mpi-sws.org/data-imc2007.html [30]
8SPOT: Pichl et al. [33]
9https://releases.llvm.org/7.0.0/tools/clang/docs/ReleaseNotes.html
10https://man7.org/linux/man-pages/man2/clock_gettime.2.html
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Table 3: Index & cluster statistics for ϵ = 3, minPts = 16.

(a) BMS-POS.
Candidates True Positives Clusters

Sym-Clust 3.9 · 109 38.0 · 106 1
Join-Clust 640.0 · 106 38.0 · 106 1

Spread 640.0 · 106 38.0 · 106 1

(b) KOSARAK.
Candidates True Positives Clusters

Sym-Clust 40.7 · 109 2.8 · 109 5
Join-Clust 7.0 · 109 2.8 · 109 5

Spread 7.0 · 109 2.8 · 109 5

(c) CELONIS1.
Candidates True Positives Clusters

Sym-Clust 644.6 · 109 7.4 · 106 5,075
Join-Clust 131.5 · 109 7.4 · 106 5,075

Spread 131.5 · 109 7.4 · 106 5,075

peak of Linux memusage11 (using LD_PRELOAD). A single instance
is executed at a time with no other load on the machine.

5.1 Index & Cluster Statistics
We compare the number of candidates, true positives, and the
number of clusters. The numbers are sums over all region queries.
Table 3 shows the results obtained for BMS-POS, KOSARAK,
and CELONIS1. We observe that Spread produces exactly the
same number of candidates as Join-Clust since both solutions use
the asymmetric index. Sym-Clust generates significantly more
candidates due to the symmetric prefix index and the symmetric
distance computations. For CELONIS1, Spread and Join-Clust
verify about 5 times fewer candidates compared to Sym-Clust.

5.2 Runtime Efficiency
We measure the overall runtime, i.e., the CPU time that is re-
quired to cluster all sets into DBSCAN clusters (excluding the
time to load the data from disk). Figure 7 shows the results for
varying ϵ (minPts = 16). We observe that Sym-Clust is not com-
petitive in terms of overall runtime in most cases. For all datasets,
except KOSARAK and SPOT, the runtime of Sym-Clust increases
much faster with ϵ than observed for Join-Clust and Spread. This
is mainly due to the use of the symmetric prefix index (more
candidates) and redundant computations (symmetric pairs).

Our experiments reveal that Join-Clust suffers from the follow-
ing issues: (i) High runtimes for LIVEJ, ORKUT, and SPOT due to
the expensive neighborhood materialization. (ii) Join-Clust runs
out of memory for many instances (missing points in plots), in
particular for FLICKR (any ϵ), KOSARAK (ϵ ≥ 4), LIVEJ, ORKUT,
and SPOT (ϵ ≥ 3).

Spread outperforms its competitors in most settings and is
competitive with Join-Clust otherwise (cf. Figures 7a, 7g, and 7h).
For CELONIS1 and CELONIS2, Spread outperforms Sym-Clust by
almost an order of magnitude and is competitive with Join-Clust.

Figure 8 shows the runtime results for varying minPts values
(ϵ = 3). We observe that the runtime of all three solutions is quite
robust to minPts. The insights are similar for all datasets and
values of ϵ . We include the plots for BMS-POS and KOSARAK.

11https://man7.org/linux/man-pages/man1/memusage.1.html

5.3 Memory Efficiency
We study the memory usage of Join-Clust, Sym-Clust, and Spread.
All three solutions store (i) the collection, (ii) the inverted index,
(iii) the candidates, and (iv) the result of a region query on the
heap. The symmetric prefix index of Sym-Clust is larger than
the asymmetric index, but still linear in the collection size. Sym-
Clust generates more candidates than Join-Clust and Spread (cf.
Section 5.1), which both use the asymmetric prefix index . Join-
Clust materializes all neighborhoods in main memory. Sym-Clust
and Spread materialize only a single neighborhood at a time.
Spread stores also backlinks and the disjoint-set in main memory.

Figure 11 shows our results for varying ϵ (minPts = 16, y-axis
log scale). Join-Clust runs out of memory for many instances (cf.
Section 5.2). The neighborhood materialization in Join-Clust can
be memory intensive even for small values of ϵ . We observe dif-
ferent growth rates with increasing radius ϵ , which we attribute
to the different neighborhood sizes. The memory consumption of
Sym-Clust is significantly lower and robust to varying ϵ . Spread
shows a similar behavior. In some cases (e.g., LIVEJ, ORKUT),
Spread occupies even less memory than Sym-Clust. When few
backlinks are materialized, the smaller asymmetric prefix index
of Spread outweighs the storage overhead for the backlinks.

Figure 12 shows the memory usage over minPts (ϵ = 3, log-log
scale). The memory consumption of Sym-Clust and Join-Clust
is stable w.r.t. increasing values of minPts, while the memory
usage of Spread slightly increases. This is due to the number of
concurrently stored backlinks: the larger minPts, the higher the
chance that a succeeding core neighbor is not yet classified, which
triggers the creation of a backlink entry. The memory grows
slowly with increasing minPts and does not limit the scalability
of Spread. We include the results for BMS-POS and KOSARAK,
ϵ = 3; other datasets and ϵ values show similar results.

Backlinks Peak. We evaluate the effect of releasing the back-
links of a set in Spread after the set has been processed (cf. line
34, Algorithm 5). Figures 10 and 14 show the peak number of
allocated backlinks relative to the maximum number of backlinks
for varying ϵ (minPts = 16) and minPts (ϵ = 3), respectively. Since
two backlink structures, core (green) and non-core (orange), are
maintained for each set in R, at most 2 |R | backlinks can be al-
located (light blue). Deallocating the backlinks of probed sets is
highly effective: Only a small fraction of the maximum number of
backlinks is allocated at any point in time. For increasing values
of ϵ and minPts also the number of allocated backlinks grows.

5.4 Scalability
We evaluate the scalability of Spread and its competitors to in-
creasing data sizes. To this end, we increase the size of BMS-POS
and KOSARAK using the procedure of Vernica et al. [42]. This
approach does not affect the token universe, and the number of
similar pairs in the dataset increases linearly with the data size.

Figure 9 (runtime) and Figure 13 (main memory) report the
results for our default parameter setting. Spread shows runtimes
similar to Join-Clust and outperforms Sym-Clust by a factor of
about 12 (BMS-POS) resp. 5.7 (KOSARAK) on the largest dataset
(×16). As we increase BMS-POS by a factor of 16, the runtime
increases by a factor of 195 for Spread, 204 for Join-Clust, and
460 for SymClust. The memory grows linearly for all measured
data points and increases by a factor of about 2 when we double
the data size. Join-Clust requires 18-25 (BMS-POS) resp. 499-
569 (KOSARAK) times more memory than its competitors and
runs out of memory on KOSARAK except for the ×1 dataset.
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Figure 9: Runtime over data size, ϵ = 3, minPts = 16.
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Figure 10: Backlinks peak over ϵ , minPts = 16.
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Figure 12: Main memory over minPts, ϵ = 3.

×1 ×2 ×4 ×8 ×160.01
0.1

1
10

100

dataset size

m
em

or
y

[G
iB

]

(a) BMS-POS

×1 ×2 ×4 ×8 ×160.01
0.1

1
10

100

dataset size

m
em

or
y

[G
iB

]

(b) KOSARAK

Spread Join-Clust Sym-Clust

Figure 13: Main memory over data size, ϵ = 3, minPts = 16.
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Figure 14: Backlinks peak over minPts, ϵ = 3.
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Summarizing, Spread clearly outperforms Sym-Clust in runtime
(by a factor of 5-12) and Join-Clust in memory usage (by more
than an order of magnitude) as we increase the data size.

6 RELATED WORK
Indexes for Sets. Most set similarity joins operate on an in-

verted list index that maps signatures to candidate sets. Various
signatures have been proposed [2, 8, 40, 45]. Prefixes [8] in con-
junction with the length filter [1] have been shown to prune sets
effectively. More sophisticated filters include positional and suffix
filter [49], the removal filter [35], the position-enhanced length
filter [28], and the adaptive prefix filter [44]. Wang et al. [46]
leverage the similarity of the sets in an ϵ-neighborhood to reduce
the overall number of false positives. Dong et al. [13] propose a
size-aware algorithm that runs in o(n2) + O(k) time for k result
pairs. Qin and Xiao [34] propose the pigeonring, a generalization
of the pigeonhole principle that yields stronger constraints. In-
dexing and join techniques for sets have been studied extensively
in the single-machine [29] and the distributed context [16].

Most of these approaches focus on self-joins, which order the
sets and compute the lookahead neighborhood to avoid symmet-
ric distance computations. In our work, we use the prefix filter,
but any of the other asymmetric indexes is applicable.

Efficient Region Queries. Ester et al. [15] propose the first ex-
act DBSCAN algorithm with O (n logn) runtime for vectors of
arbitrary dimension. O (n logn) runtime holds for a small num-
ber of neighbors (compared to n) and an index with O (logn)
lookup time. Henceforth, efficient region query computation has
been of great interest and many improvements have been pro-
posed. Brecheisen et al. [7] use minPts-nearest neighbor queries
to identify core points and postpone the other distance computa-
tions until the distances are required to get a correct DBSCAN
clustering. The proposed Xseedlist data structure is designed for
expensive distance functions and assumes a cheap but selective
filter. These assumptions do not hold for sets: The verification
(i.e., distance computation) of candidate pairs has shown to be
highly efficient [29] (a small number of integer comparisons).
Brecheisen et al. must insert the candidates into the Xseedlist
data structure, which maintains sorted lists of candidates. Due
to the expensive sorting procedure, we do not expect Xseedlist
to improve the DBSCAN algorithm for sets. TI-DBSCAN [25] ex-
ploits the triangle inequality to reduce the search space of region
queries. The solution is not index-based, sorts the points w.r.t. a
reference point, and shifts a window of size 2ϵ over the sorted
points. The reference point is the point with minimal values in all
dimensions. This is equivalent to the empty set, and our process-
ing order in combination with the prefix index for sets subsumes
this technique. Patwary et al. [32] introduce PARDICLE, a paral-
lel approximate density-based clustering algorithm for Euclidean
space. Its aim is to reduce the neighborhood computation time by
sampling high-density regions. Kumar and Reddy [26] propose
a new graph-based index structure called Groups. It discovers
groups of patterns in two scans over the dataset and applies a
standard DBSCAN afterwards. Groups accelerates region queries
by pruning noise points effectively. This technique assumes Eu-
clidean distance and does not consider Hamming distance or
other set similarity measures. Recently, Jiang et al. [24] proposed
SNG-DBSCAN, which prevents the computation of the full ϵ-
neighborhood graph via subsampling its edges. This results in
O (

sn2)-time complexity with s being the sampling rate. Under
certain distribution assumptions, SNG-DBSCAN has been shown

to preserve the exact ϵ-neighborhood graph for s ≈ (logn) /n
with O (n logn) runtime.

DBSCAN Techniques. Yang et al. [51] propose the distributed
DBSCAN-MS clustering algorithm for metric spaces. DBSCAN-
MS uses pivots to map the data from metric space to vector space,
where it is partitioned in order to be distributed. A local DBSCAN
is then executed on each partition. Our solution does not rely
on the metric properties of set distances, but uses specialized
set indexes. However, our techniques may be leveraged in the
context of DBSCAN-MS, where the data points are ordered by
one of the dimensions for efficient neighborhood queries.

Patwary et al. [31] propose PDSDBSCAN, a parallel DBSCAN
algorithm that uses the disjoint-set data structure to connect data
points into clusters. We only insert links between subclusters
into the disjoint-sets structure, while PDSDBSCAN inserts a
link for each neighbor, rendering the number of required union
operations a bottleneck for this approach.

Böhm et al. [3] use a block-nested loop join and buffer the
join result to reduce the number of block accesses required to
compute ϵ-neighborhoods. CUDA-DClust [4] is a GPU-based
solution that splits clusters into chains that are expanded from
different starting points in parallel. In order to merge chains into
clusters, a quadratic-size bit matrix is used. We maintain only a
linear number of links and leverage disjoint-sets to merge clusters.
Incremental DBSCAN algorithms [14] deal with updates on an
existing clustering. Similar to our approach, these techniques may
need to merge clusters when new points are inserted. None of
the above solutions supports asymmetric neighborhood indexes.

Numerous parallel and distributed algorithms [9, 11, 18–21, 23,
36, 38, 47, 50] as well as approximations [17, 27, 43, 48] have been
proposed. We present an exact, single-core solution for sets.

7 CONCLUSION
In this paper, we have investigated clustering techniques for
large collections of sets. Our work was motivated by an appli-
cation in process mining that models processes as sets to assess
their similarity. We have shown that the solutions that are cur-
rently available, Sym-Clust and Join-Clust, are not satisfying:
Sym-Clust is slow since it cannot use effective asymmetric set
indexes, while Join-Clust is infeasible for many settings due to its
excessive memory usage. We introduced a novel, density-based
clustering algorithm, Spread, that can process data points in any
user-defined order and is therefore fit for the use with asym-
metric indexes. Spread combines the best of both worlds: It uses
the effective asymmetric index of Join-Clust, but like Sym-Clust
does not need to materialize the neighborhoods. We introduced
so-called backlinks to guarantee a correct DBSCAN clustering
and showed the correctness of our approach. To the best of our
knowledge, Spread is the first DBSCAN-compliant algorithm that
uses an asymmetric index and runs in linear space.

Spread uses the index as a black box and works with any
data type. Interesting future work includes evaluating the perfor-
mance of Spread for vector data, where candidates are generated
using a sliding window that is shifted along one dimension. The
data points in the window are candidates, i.e., the window simu-
lates an asymmetric index for Spread.
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ABSTRACT
Assessment is the process of comparing the actual to the expected
behavior of a business phenomenon and judging the outcome of
the comparison. In this paper we propose assess, a novel query-
ing operator that supports assessment based on the results of a
query on a data cube. This operator requires (1) the specification
of an OLAP query over a measure of a data cube, to define the
target cube to be assessed; (2) the specification of a reference cube
of comparison (benchmark), which represents the expected per-
formance of the measure; (3) the specification of how to perform
the comparison between the target cube and the benchmark, and
(4) a labeling function that classifies the result of this comparison
using a set of labels. After introducing an SQL-like syntax for
our operator, we formally define its semantics in terms of a set
of logical operators. To support the computation of assess we
propose a basic plan as well as some optimization strategies, then
we experimentally evaluate their performance using a prototype.

1 INTRODUCTION
Assume an analyst wants to assess the state of milk sales in France
for 2019. She will have to issue a query against an OLAP server to
obtain a cube, and then ask: “how good, normal, surprising, etc.
is the situation I observe for this particular cube as compared to
some reference data?”. Assessment, as a process, is about compar-
ing the actual to the expected behavior and judging, for instance
through a labeling, the outcome of the comparison. Examples of
how to assess the status of a cube (or of each single cell of a cube)
include its comparison to:

(1) . . . a predefined target goal for the sales, e.g., because of the
existence of a predefined KPI (Key Performance Indicator);

(2) . . . a predefined golden standard, acting as a reference
benchmark (e.g., comparing French milk sales against the
EU average) or, as an example in another domain, compar-
ing a stock value to the S&P 500 index);

(3) . . . sibling cells, i.e., cells describing a similar context and
sharing some dimension values (i.e., compare sales for
yogurt and ice-cream in Greece in 2019, or milk sales in
Spain and Italy for 2019);

(4) . . . the expected status of the cube as can be predicted from
the past (e.g., compare actual milk sales in December 2018
with those that can be predicted from the sales of the
previous six months).

© 2021 Copyright held by the owner/author(s). Published in Proceedings of the
24th International Conference on Extending Database Technology (EDBT), March
23-26, 2021, ISBN 978-3-89318-084-4 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

(5) . . . a new, derived measure produced via a function whose
formula involves other measures (e.g., profit=storeSales-
storeCost).

This kind of tabular data assessment is consistently reported
as a frequent activity of data explorers [3, 12, 23] who often use
SQL in combination with languages like Python and R. Notice-
ably, assessment is one of the user’s intentions considered in the
Intentional Analytics Model (IAM), which has been envisioned
as a way to tightly couple OLAP and analytics [4, 21]. The IAM
approach relies on two major cornerstones: (i) the user explores
the data space by expressing her analysis intentions rather than
by explicitly stating what data she needs, and (ii) in return she
receives both multidimensional data and knowledge insights in
the form of annotations of interesting subsets of data. Among
the five intention operators proposed, assess is meant to judge a
cube measure with reference to some baseline.

In this paper we adopt the OLAP-centered nature of the IAM
and operate in the context of a traditional OLAP environment
with cubes, dimensions, hierarchies, and measures. This allows
us to take advantage of the neat logical-level schema structure of
OLAP and focus on the essence of the paper, which is proposing
an assess operator to complement the traditional OLAP roll-up’s
and drill-down’s. The idea of how to perform an assessment for
the measure values of a cube encompasses (a) the specification
of another cube, called benchmark, that represents the expected
or desirable performance of the measure; (b) the comparison
of the measure under investigation to the benchmark measure
(for instance via a simple mathematical difference); and (c) the
characterization, or labeling, of the status of the original cell
based on the result of the comparison.

Example 1.1. Given a SALES cube, the user’s intention de-
scribed above can be expressed with this statement:

with SALES

for year = ’2019’, product = ’milk’
by year, product

assess quantity against 1000

using ratio(quantity, 1000)

labels {[0, 0.9): bad, [0.9, 1.1]: acceptable, (1.1,inf): good}

Intuitively, the total quantity of milk sold in France in 2019 is
labeled as bad/acceptable/good depending on the ratio with the
target value 1000. □

Summary of contributions. Our contributions can be listed
as follows:

• We introduce a novel operator, assess, that allows to au-
tomatically evaluate and characterize the result of a cube
query.
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• We introduce alternatives for specifying benchmarks, com-
parison, and labeling schemes against which the results
of a cube query can be compared and evaluated. For each
alternative we provide rigorous definitions and semantics,
based on a set of logical operators, as well an SQL-like
syntax for the specification of an assess statement.

• We discuss alternative plans for the execution of assess
statements and experimentally evaluate them for their
efficiency and scalability.

Roadmap. In Section 2 we formalize the involved concepts
and give definitions. In Section 3 we explain how assessments
are computed and introduce the alternatives of the assess opera-
tor, while in Section 4 we provide its syntax and semantics. In
Section 5 we present alternative strategies for query execution
and in Section 6 we experimentally evaluate them. In Section 7
we discuss the related work. Finally, in Section 8 we summarize
our findings and discuss our future work.

2 FORMALITIES
To simplify the formalization, we will restrict to consider linear
hierarchies.

Definition 2.1 (Hierarchy and Cube Schema). A hierarchy is a
triple ℎ = (𝐿, ⪰, ≥) where:
(i) 𝐿 is a set of categorical levels, each coupled with a domain

of values (a.k.a. as members), 𝐷𝑜𝑚(𝑙) ;
(ii) ⪰ is a roll-up total order of 𝐿; and
(iii) ≥ is a part-of partial order of

⋃
𝑙 ∈𝐿 𝐷𝑜𝑚(𝑙).

The part-of partial order is such that, for each couple of levels
𝑙 and 𝑙 ′ such that 𝑙 ⪰ 𝑙 ′, for each member 𝑢 ∈ 𝐷𝑜𝑚(𝑙) there is
exactly one member 𝑢 ′ ∈ 𝐷𝑜𝑚(𝑙 ′) such that 𝑢 ≥ 𝑢 ′.

A cube schema is a couple C = (𝐻,𝑀) where:
(i) 𝐻 is a set of hierarchies;
(ii) 𝑀 is a tuple1 of numerical measures, each coupled with one

aggregation operator 𝑜𝑝 (𝑚) ∈ {sum, avg, . . .}.

Example 2.2. As a working example we will use cube schema
SALES = (𝐻,𝑀), where

𝐻 = {ℎDate, ℎCustomer, ℎProduct, ℎStore},
𝑀 = ⟨quantity, storeSales, storeCost⟩,
date ⪰ month ⪰ year,

customer ⪰ gender,

product ⪰ type ⪰ category,

store ⪰ city ⪰ country

and 𝑜𝑝 (quantity) = 𝑜𝑝 (storeSales) = 𝑜𝑝 (storeCost) = sum. As
to the part-of partial order we have, for instance, Fresh Fruit ≥
Fruit and 1997-04-15 ≥ 1997. □

Aggregation is the basic mechanism to query cubes, and it
is captured by the following definition of group-by set. As nor-
mally done when working with the multidimensional model, if
a hierarchy ℎ does not appear in a group-by set it is implicitly
assumed that a complete aggregation is done along ℎ.

Definition 2.3 (Group-by Set and Coordinate). Given cube schema
C = (𝐻,𝑀), a group-by set of C is a tuple of levels, at most one
from each hierarchy of 𝐻 . The partial order induced on the set
of all group-by sets of C by the roll-up orders of the hierarchies
1When dealing with tuples we will write 𝑡1 = 𝑡2 |𝑠𝑜𝑟𝑡 (𝑡1 )

to denote that tuple 𝑡1 is
contained in tuple 𝑡2; (𝑡1, 𝑡2) to denote the tuple that concatenates 𝑡1 and 𝑡2; 𝑡 |𝑋
to denote the projection of tuple 𝑡 on its component(s) 𝑋 [1].

in 𝐻 , is denoted with ⪰𝐻 . A coordinate of group-by set 𝐺 is a
tuple of members, one for each level of 𝐺 . Given coordinate 𝛾 of
group-by set 𝐺 and another group-by set 𝐺 ′ such that 𝐺 ⪰𝐻 𝐺 ′,
we will denote with 𝑟𝑢𝑝𝐺′ (𝛾) the coordinate of 𝐺 ′ whose mem-
bers are related to the corresponding members of 𝛾 in the part-of
orders, and we will say that 𝛾 roll-ups to 𝑟𝑢𝑝𝐺′ (𝛾). By definition,
𝑟𝑢𝑝𝐺 (𝛾) = 𝛾 .

Definition 2.4 (Detailed Cube). Let𝐺0 be the top group-by set
in the ⪰𝐻 partial order (i.e., the finest one). A detailed cube over
C is a partial function 𝐶0 that maps the coordinates of 𝐺0 to a
numerical value for each measure𝑚 in𝑀 .

The function is partial since cubes are normally sparse: not
all possible business events actually occur, and a coordinate par-
ticipates in the function only if the event it describes took place.
Each coordinate𝛾 that participates in𝐶0, with its associated tuple
𝑡 of measure values, is called a cell of 𝐶0 and denoted 𝑐 = ⟨𝛾, 𝑡⟩.
With a slight abuse of notation, we will also consider a cube as
the set of the coordinates corresponding to its cells, so we will
write 𝛾 ∈ 𝐶0 to state that ⟨𝛾, 𝑡⟩ is a cell of 𝐶0.

Example 2.5. Three group-by sets of SALES are

𝐺0 = ⟨date, customer, product, store}⟩
𝐺1 = ⟨date, type, country⟩
𝐺2 = ⟨month, category⟩

where 𝐺0 ⪰𝐻 𝐺1 ⪰𝐻 𝐺2. 𝐺0 is the top group-by set. 𝐺1 ag-
gregates sales by date, product type, and store country (for all
customers), 𝐺2 by month and category (for all customers and
stores). Examples of coordinates of the three group-by sets are,
respectively,

𝛾0 = ⟨1997-04-15, Eric Long, Lemon, SmartMart⟩
𝛾1 = ⟨1997-04-15, Fresh Fruit, Italy⟩
𝛾2 = ⟨1997-04, Fruit⟩

where 𝑟𝑢𝑝𝐺1 (𝛾0) = 𝛾1 and 𝑟𝑢𝑝𝐺2 (𝛾1) = 𝛾2. An example of cell
of a detailed cube over SALES is ⟨𝛾0, ⟨quantity = 5, storeSales =
20, storeCost = 12⟩⟩. □

Definition 2.6 (Cube Query and Derived Cube). Given a detailed
cube 𝐶0 over schema C, a query over 𝐶0 is a quadruple 𝑞 =

(𝐶0,𝐺𝑞, 𝑃𝑞, 𝑀𝑞) where:
(i) 𝐺𝑞 is a group-by set of C;
(ii) 𝑃𝑞 is a (possibly empty) set of selection predicates each

expressed over one level of 𝐻 ;
(iii) 𝑀𝑞 ⊆ 𝑀 .
The result of 𝑞 is called a derived cube, i.e., a partial function that
assigns to each coordinate 𝛾 of 𝐺𝑞 satisfying the conjunction
of the predicates in 𝑃𝑞 and to each measure𝑚 in 𝑀𝑞 the value
computed by applying 𝑜𝑝 (𝑚) to the values of𝑚 for all the coor-
dinates of 𝐶0 that roll-up to 𝛾 , provided that such coordinates of
𝐶0 exist.

Like detailed cubes, even derived cubes can be sparse; a co-
ordinate 𝛾 does not participate in the function if there is no
coordinate in 𝐶0 that rolls-up to 𝛾 . Like for detailed cubes, we
will write 𝛾 ∈ 𝐶 to state that 𝛾 is a coordinate of the derived cube
𝐶 . Consistently with this, we will denote with |𝐶 | the number of
coordinates in 𝐶 .

Example 2.7. A cube query over SALES is 𝑞 = (𝐶0,𝐺𝑞, 𝑃𝑞, 𝑀𝑞)
where 𝐺𝑞 = ⟨product, country⟩, 𝑃𝑞 = {type = ’Fresh Fruit’,
country = ’Italy’}, and 𝑀𝑞 = ⟨quantity⟩. A cell of the resulting
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s e l e c t country , product , sum ( qu an t i t y ) as q u an t i t y
2 from s a l e s s

j o i n cus tomer c on c . ckey = s . ckey
4 j o i n p roduc t p on p . pkey = s . pkey

where type = ' Fre sh F r u i t ' and count ry = ' I t a l y '
6 group by country , p roduc t

Listing 1: Getting the sales of fresh fruit products in Italy
(Example 2.7)

cube is ⟨⟨Apple, Italy⟩, ⟨quantity = 100⟩⟩. The SQL formulation
of 𝑞 on a star schema is given in Listing 1. □

3 COMPUTING AN ASSESSMENT
Basically, the assessment of the values of a measure𝑚 in a cube
𝐶 (called target cube) is done in three steps:

(1) the specification of a benchmark, i.e., a cube 𝐵 such that
(i) its cells can be mapped one-to-one with the cells of 𝐶 ,
and (ii) it has a measure𝑚′ representing the expected/ac-
ceptable/normal performance of𝑚;

(2) the cell-wise comparison of𝑚 to𝑚′, which can be done
in a basic way (e.g., algebraic/absolute/normalized differ-
ence, percentage) or using more elaborate schemes (e.g.,
z-scoring), possibly after applying some transformations
to𝑚 and𝑚′ (e.g., to compute derived measures);

(3) the characterization, or labeling, of the status of each cell
of 𝐶 based on the result of the comparison; in the sim-
plest case, this is done using a set of rules that map the
result of the comparison to a set of predefined labels (e.g.,
“insufficient”, “excellent”, etc.).

3.1 Benchmarks
The specification of the benchmark is given by the analyst at the
posing of the query. Thus, the question is “tell me how we are
doing with respect to this benchmark”.

A thorough comparison of a target cube 𝐶 against a bench-
mark 𝐵 would require that the latter comes with the same level
members so that, for each cell of 𝐶 , we can map onto a cell of 𝐵.
However, in practical cases, due to cube sparsity, there is no guar-
antee that all cells can be mapped —especially if the benchmark
is retrieved from the web or other external data sources. Thus,
in the following we provide a broad definition of the conditions
under which two cubes are joinable, i.e., one of them can be used
as a benchmark to assess the other; in this definition, we will just
require that the two cubes have the same group-by set.

Definition 3.1 (Cube Joinability). Let a target cube𝐶 over cube
schema C and a benchmark 𝐵 over B (where possibly, but not
necessarily, B = C) be given. Let 𝑞 = (𝐶0,𝐺𝐶 , 𝑃𝐶 , 𝑀𝐶 ) and
𝑞′ = (𝐵0,𝐺𝐵, 𝑃𝐵, 𝑀𝐵) be the queries that resulted in 𝐶 and 𝐵,
respectively. We say that 𝐶 and 𝐵 are joinable if

𝐺𝐶 = 𝐺𝐵

In OLAP terms, two cubes are joinable if a drill-across is possible
between 𝐶 and 𝐵.

Let C = (𝐻,𝑀) be the schema of the target cube 𝐶 , and 𝐶0 be
the detailed cube from which 𝐶 is derived. There are four types
of benchmarks we consider in our approach:

• Constant benchmarks. Here the user simply wants to assess
the cells of the target cube 𝐶 against some fixed value, as
typically done with key performance indicators. In this
case, the benchmark 𝐵 has schema B = (𝐻, ⟨𝑚𝑐𝑜𝑛𝑠𝑡 ⟩);

its cells have exactly the same coordinates as 𝐶 , and all
of them store a constant value in𝑚𝑐𝑜𝑛𝑠𝑡 . The cell-to-cell
mapping is trivially based on equality of coordinates.

• External benchmarks. Here the user’s goal is to assess the
target cube against the data stored in a cube with schema
B = (𝐻 ′, 𝑀 ′). In principle, as long asB includes the group-
by of the target cube (which ensures joinability), it is not
necessary to impose further constraints on B. However,
for simplicity, in the following we will assume that the
external benchmark has been reconciled with the target
cube so that 𝐻 = 𝐻 ′ and that all necessary transcodings
to level members have been applied (see e.g. [10] for an
approach that can be pursued to this end). Thus, also in
this case, mapping is based on equality of coordinates.

• Sibling benchmarks. The idea here is to compare the values
of a measure in a slice on member 𝑢 ∈ 𝐷𝑜𝑚(𝑙) with the
values of the same measure in another slice of 𝐶 related
to a sibling member 𝑢𝑠𝑖𝑏 ∈ 𝐷𝑜𝑚(𝑙) (e.g., assess the sales
of fruit in Italy with reference to those in France). In this
case, the benchmark has the same schema C of the target
cube. Both cubes have the same group-by set, but while
the cells in 𝐶 are those obtained from 𝐶0 using predicate
𝑙 = 𝑢, those in 𝐵 are obtained from 𝐶0 using predicate
𝑙 = 𝑢𝑠𝑖𝑏 . Then the cell-to-cell mapping is established by
replacing 𝑢 with 𝑢𝑠𝑖𝑏 in each coordinate of 𝐶 .

• Past benchmarks. In this case the user wants to assess the
values taken by a measure𝑚 in some time slice with the
values that can be predicted for𝑚 based on a number of
past time slices. Like in the previous case, it is B = C. The
cells of 𝐵 have exactly the same coordinates as 𝐶 , but the
(actual) values of𝑚 are replaced with the predicted ones.

Example 3.2. Let𝐶 be the derived cube obtained by query 𝑞 in
Example 2.7 (total quantity sold by product and country for fresh
fruit products and Italy). An example of (joinable) sibling bench-
mark is 𝐵 returned by 𝑞′, being 𝑞′ obtained from 𝑞 by replacing
Italy with France. 𝐵 can be used to assess the sales of fresh fruit
in Italy against those in France. The cell-to-cell mapping is estab-
lished by replacing Italy with France; so, for instance, coordinate
⟨Apple, Italy⟩ is mapped onto ⟨Apple, France⟩. □

3.2 Comparison & Transformation
The essence of assessment is to contrast the actual performance
against its expected value. Thus, the goal of this step is to provide
the means to express and perform the evaluation of how far apart
the query result and the benchmark are. We refer to this action
as comparison to express the idea that this is not necessarily
a simple measure difference. Modeling-wise, we assume that a
library of comparison functions, all with signature 𝛿 : R × R→
R, is available to the users. Practically, a cell-wise comparison
between measures of the target and benchmark can be easily
implemented via different functions obeying the above signature,
the simplest choice being a difference (either algebraic, or absolute,
or normalized, etc.). In our examples, we will use two library
functions of our system, named difference and ratio.

One could possibly expect that, once the target cube and the
benchmark have been obtained, their comparison is immediately
applicable. Interestingly, this is not always the case, since the
comparison may require the computation of derived measures.
For instance, with reference to the SALES cube, comparing the
actual profit for some given sales requires to compute a derived
measure as profit = storeSales− storeCost. Clearly, this requires
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de f d i f f e r e n c e ( a , b ) :
2 r e t u r n a − b

4 de f minmaxnorm ( a ) :
minv = a . min ( )

6 maxv = a . max ( )
r e t u r n ( a − minv ) / ( maxv − minv )

Listing 2: Implementation of the difference and
minmaxnorm functions

that either of, or both, the target and the benchmark measures
pass through a set of transformations to be actually compara-
ble. The transformations that are applicable to target cubes and
benchmarks can be simple (like the above mentioned one, where
the measures are computed via simple per-cell arithmetic opera-
tions), or more complex ones (like ranking or z-scoring) which
require a holistic scan of the entire cube and cannot produce the
new value on a per-cell basis.

We forego the formalities of the computation of the derived
measures (to be discussed in Section 4.2) and simply mention
that we assume a functional-style composition of the invocation
of functions from our library of functions in a nestable way. For
example, the min-max normalization of the difference between
storeSales and target value 1000 is computed as

minMaxNorm(difference(storeSales,1000))

Listing 2 shows the implementation of these two functions in
Python using Pandas DataFrames.

3.3 Labeling
The goal of this step is to associate each cell of the target cube
with a label, taken from a predefined set, to express an evaluation
of that cell with reference to the benchmark. Clearly, ordinal
labeling will frequently be the case, however, for the sake of
generality we assume labels to be nominal, i.e., categorical. Given
a finite set of distinct values 𝐿, a labeling function has the form
𝜆 : R→ 𝐿. Each value resulting from the comparison of a target
cube cell with the corresponding benchmark cell is fed to the
labeling function, and assigned the appropriate label.

There are some properties of interest for a labeling function:
• The labeling of comparison values is generic enough to
also incorporate the labeling based on the actual value of
the cell, without the usage of any benchmark and com-
parison. One simply needs to assign a fixed benchmark of
zeros for all cells and a simple arithmetic difference as the
comparison function.

• A labeling function should partition the values of the com-
parison into equivalence classes, i.e., there must be a com-
plete mapping of the values of the domain of the compari-
son to a set of non-overlapping, disjoint labels. Thus, every
cell of the result is assigned to exactly one label.

• The labeling function does not necessarily have to be pre-
defined before the query. Assuming, for example, that a
Likert-like scale based on the absolute difference value
is to be adopted, the labeling function is produced after
the results are obtained and split into a fixed number of
groups (say 5).

With reference to the last point, in the sequel we introduce
and explain two cases of labeling functions.

3.3.1 Labeling based on explicit ranges. In this case, we label
each cell based on the result of the comparison between the

de f 5 s t a r s ( a ) :
2 r e t u r n pd . cu t ( a , [ −1 , −0 . 6 , −0 . 2 , 0 . 2 , 0 . 6 , 1 . 0 ] ,

i n c l u d e _ l owe s t = True ,
4 l a b e l s =[ " ∗ " , " ∗ ∗ " , " ∗ ∗ ∗ " , " ∗ ∗ ∗ ∗ " , " ∗ ∗ ∗ ∗ ∗ " ] )

Listing 3: Implementation of the 5stars function

measure values of (a) the target and (b) the benchmark cube, using
a set of explicitly-specified rules. This is the case, e.g., where the
organization has predetermined goals to achieve (expressed via
the benchmark), and the (positive or negative) deviation from
these goals characterizes the extent of success or failure.

Example 3.3. Let a query be given that computes the total
store sales by customer gender, returning a target cube 𝐶 with
two cells, say 𝐶 = {⟨male, 4400⟩, ⟨female, 6900⟩}. Assume that
we have specified an external benchmark with two cells also, 𝐵 =

{⟨male, 5400⟩, ⟨female, 6400⟩}. Finally, assume that we specify a
range-based labeling function called 5stars to be applied over
the min-max normalized difference 𝑥 of the target cube and the
benchmark:

𝜆5stars (𝑥) =



*, if − 1 ≤ 𝑥 ≤ −0.6
**, if − 0.6 < 𝑥 ≤ −0.2
***, if − 0.2 < 𝑥 ≤ 0.2
****, if 0.2 < 𝑥 ≤ 0.6
*****, if 0.6 < 𝑥 ≤ 1

Then, the two cells are labeled as ’*’ and ’*****’, respectively.
Listing 3 shows the implementation of the 5stars function in
Python using Pandas DataFrames; the cut function of Pandas
bins values into discrete intervals. □

3.3.2 Labeling based on the overall value distribution. Explic-
itly providing rules and ranges for the labels has the benefit that
the decision on which label to give to a cell of the target cube
is local, i.e., it depends only on the value of the cell’s measure,
the benchmark’s measure, and the result of their comparison.
However, the labeling function can also be based on a holistic
assessment of the overall distribution of the values of the compar-
ison function. In this case, the labeling function first groups the
cells of the target cube based on the result of their comparison
with their respective benchmark cell, and then gives a label to
each group. The simplest possibility would be to split the com-
parison value into quartiles or, more generally, into 𝑘 groups,
and label each group as ’top-1’, ’top-2’, . . . , ’top-k’. This involves
simply the ranking of the values and the splitting of the ordered
set of cells into 𝑘 groups. Assuming a fixed set of 𝑘 labels, the
label is then determined by the position of a cell in the ranking.

Overall, labels can be assigned either by fixing the number of
labels to a constant number and constructing equi-depth or equi-
width histograms, or by allowing the system to come up with the
optimal number of clusters and assign cells accordingly. More
simplistic schemes (e.g., rounding the z-score of the comparison
values) can also be devised. Overall, the idea of these labeling
schemes is to avoid predefining ranges, and allowing labels to
adapt to the distribution of the comparison values.

4 SYNTAX & SEMANTICS OF THE ASSESS
OPERATOR

In this section, we formally define the syntax and semantics of
the assess operator. We begin by introducing in Section 4.1 a
user-friendly SQL-like syntax, to facilitate end users in posing
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assessment queries with both expressive power and ease. Then,
we move on to define the semantics of the assess operator in
Section 4.3. To support this task, in Section 4.2 we preliminarily
define a set of logical operators.

4.1 Syntax
The general syntax for writing a statement based on the assess
operator includes three parts: one (consisting of the with, assess,
by, and for clauses) that specifies the target cube; one (consisting
of the against clause) that specifies the benchmark; one (consist-
ing of the using and labels clauses) that specifies the assessment
method. Importantly, as we will explain in Section 4.3, the bench-
mark specification drives the mapping of the assess syntax to the
logical operators defined in Section 4.2.

with 𝐶0 [ for 𝑃 ] by 𝐺

assess|assess*𝑚 [ against < 𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘 > ]

[ using < 𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛 > ] labels 𝜆

where 𝐶0 is a detailed cube (with schema C = (𝐻,𝑀)), 𝑚 is a
measure of 𝐶0, 𝑃 is a set of conjunctive selection predicates each
over one level of 𝐻 , 𝐺 is a group-by set of C, < 𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘 > is
the benchmark specification, < 𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛 > specifies what will
be compared and how, and 𝜆 is a labeling function (optional parts
of the syntax are in brackets). While in assess only the cells of
the target cube that have a match in the benchmark are returned,
in the assess* variant all the cells of the target cube are returned,
possibly completed with null labels.

The target cube, 𝐶 , is defined by aggregating 𝐶0 on 𝐺 and
selecting the cells that meet the conjunctive predicates in 𝑃 .

As to the benchmark, its specification can take different forms:

• For constant benchmarks, the against clause has the form

against 𝑣

where 𝑣 is a value compatible with𝑚. The benchmark 𝐵

is characterized by 𝐺𝐵 = 𝐺𝐶 , 𝑃𝐵 = 𝑃𝐶 . 𝐵 has a measure
𝑚𝑐𝑜𝑛𝑠𝑡 which takes value 𝑣 in all cells. A particular case
is when the user wants to directly assess the measure
value without using any specific value. In this case the
against clause is omitted; as mentioned in Section 3.3, this
practically corresponds to adopting a dummy benchmark
where all cells are zeros.

• For external benchmarks, the against clause takes the form

against 𝐵.𝑚𝑏

where 𝐵 is a cube and𝑚𝑏 is one of its measures. Note that
𝐶 and 𝐵 are joinable only if they have the same group-by
set.

• In a sibling benchmark, the for clause must include a pred-
icate which slices the target cube on member 𝑢 of level
𝑙𝑠 ∈ 𝐺𝐶 . In this case,𝑚 is assessed against a benchmark
related to a different member of 𝑙𝑠 , say 𝑢𝑠𝑖𝑏 :

with < 𝑐𝑢𝑏𝑒 > for 𝑝1, . . . , 𝑝𝑘 , 𝑙𝑠 = 𝑢 by 𝐺

assess𝑚 against 𝑙𝑠 = 𝑢𝑠𝑖𝑏

using < 𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛 > labels 𝜆

Here the benchmark is characterized by 𝐺𝐵 = 𝐺𝐶 and
𝑃𝐵 = 𝑃𝐶 \ {𝑝𝑠 } ∪ {(𝑙𝑠 = 𝑢𝑠𝑖𝑏 )}. In practice, the slicing on
𝑢 is replaced by one on 𝑢𝑠𝑖𝑏 .

• In a past benchmark the syntax takes the form

with < 𝑐𝑢𝑏𝑒 > for 𝑝1, . . . , 𝑝𝑘 , 𝑙𝑡 = 𝑢 by 𝐺

assess𝑚 against past 𝑘

using < 𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛 > labels 𝜆

where 𝑙𝑡 is a temporal level, 𝑙𝑡 ∈ 𝐺 , and 𝑘 is an integer.
Here the benchmark is isomorphic to 𝐶 , except that the
values of𝑚 are those predicted based on a time series of
length 𝑣 .

Finally, as to the assessment method, its specification is based
on the using and labels clauses.

• The using clause specifies a (nested) function that de-
scribes how the comparison is made, including possible
transformations to be made on measures (e.g., the compu-
tation of a derived measure). Here, a keyword benchmark
is used to distinguish, when necessary, the cells of the tar-
get cube from the corresponding ones in the benchmark.

• The labels clause specifies a labeling function, either based
on explicit ranges or on the overall value distribution, to
be applied to the result of the computation specified by
the using clause. A range-based labeling function can be
either predeclared by the user and given a name (e.g., 5star
in Example 3.3) or declared inline within the statement
by listing its set of ranges with the corresponding label;
the user is in charge of ensuring that the set of ranges is
complete and non-overlapping. A set of library labeling
function based on the value distribution (e.g., quartiles) is
also made available to users.

In all cases above, the result returned to the user includes, for
each cell, (i) its coordinate, (ii) the value of𝑚 for that coordinate,
(iii) the value of the benchmark measure, (iv) the value result-
ing from the comparison, and (v) the corresponding label. The
benchmark measure is𝑚𝑐𝑜𝑛𝑠𝑡 for constant benchmarks,𝑚 for
sibling and past benchmarks, and𝑚𝑏 for external benchmarks.

Example 4.1. The first example gives an absolute assessment
of the total monthly sales in terms of quartiles:

with SALES by month

assess storeSales labels quartiles

Similarly, sales can be assessed against a goal value, say 1000, via
a 5 star scale in the [0..1] range by first normalizing the difference
and then using the range-based labeling function specified in
Example 3.3:

with SALES by month

assess storeSales against 1000

using minMaxNorm(difference(storeSales,1000))

labels 5star

The following statement uses a sibling benchmark; for each prod-
uct of type fresh fruit, the total quantity sold in Italy is assessed
against the one in France. For each product, assessment is based
on the ratio between (i) the difference in quantities sold in Italy
and France, and (ii) the total sales of fresh fruit in Italy; this ratio
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is computed using library function 𝑝𝑒𝑟𝑐𝑂 𝑓𝑇𝑜𝑡𝑎𝑙 .

with SALES

for type = ’Fresh Fruit’, country =’Italy’
by product, country

assess quantity against country = ’France’
using percOfTotal(difference(quantity, benchmark.quantity))

labels {[-inf, -0.2): bad, [-0.2,0.2]: ok, (0.2, inf]: good},

Finally, in the next statement we use a past benchmark; specifi-
cally, we assess the sales of a specific store in July 1997 against
the past four months:

with SALES

for month = ’1997-07’, store = ’SmartMart’
by month, store

assess storeSales against past 4

using ratio(storeSales, benchmark.storeSales)

labels {[0, 0.9): worse, [0.9, 1.1]: fine, (1.1,inf): better}

□

4.2 Logical operators
This section introduces the logical aspects behind the different
steps of the evaluation of an assess statement, formulated as
logical operators. Note that our aim is not to propose a logical
language for manipulating cubes (such languages exist, see e.g.
[2]) but to describe specific cube manipulations required to logi-
cally optimize assess statements. In particular, we do not detail
the classical (roll-up, etc.) cube manipulations.

We recall from Section 2 that a cube is defined as a partial
function that maps coordinates into tuples of measures. For a
cube 𝐶 and a coordinate 𝛾 such that 𝐶 (𝛾) = 𝑡 , we denote with
𝑐 = ⟨𝛾, 𝑡⟩ the cell defined by 𝐶 (𝛾) and we abusively note 𝑐 ∈ 𝐶 .
We define operators that respect the closure property, in the sense
that they operate on cubes and specify cubes.

Get. The first basic operator consists of obtaining the result of
a cube query. Given a cube 𝐶 over a schema C = (𝐻,𝑀), a set of
selection predicates 𝑃 and a group-by set𝐺 of C, the get operator
corresponds to the cube query 𝑞 = (𝐶,𝐺, 𝑃,𝑀), is denoted by
[𝑞], and defines the derived cube being the result of 𝑞. Note that
[(𝐶,𝐺0, ∅, 𝑀)] is simply noted [𝐶] in what follows. Besides, the
derived cube returned by get can be renamed using the notation
[(𝐶,𝐺, 𝑃,𝑀)] → 𝑛𝑎𝑚𝑒 .

Join ⊠. The join operation is essential for putting together the
target cube (𝐶1) and the benchmark (𝐶2). In OLAP terms this is a
drill-across operation, or join applied to cubes.

Let 𝐶1 and 𝐶2 be two joinable cubes over schemas C1 and
C2. As already stated, we assume for simplicity that the two
cubes share the same hierarchies, so that C1 = (𝐻,𝑀1) and
C2 = (𝐻,𝑀2).

𝐶1 ⊠𝐶2 = {⟨𝛾, (𝑡, 𝑡 ′)⟩|⟨𝛾, 𝑡⟩ ∈ 𝐶1, ⟨𝛾, 𝑡 ′⟩ ∈ 𝐶2}
The schema of the resulting cube is (𝐻, (𝑀1, 𝑀2)).

We also define a version of join where we allow partial joining
in the sense that join is made on a subset of the levels of 𝐻 .
Formally:

𝐶1 ⊠𝑙1,...,𝑙𝑚 𝐶2 = {⟨𝛾, (𝑡, 𝑡1, . . . , 𝑡𝑝 )⟩|

⟨𝛾, 𝑡⟩ ∈ 𝐶1, ⟨𝛾 𝑗 , 𝑡 𝑗 ⟩ ∈ 𝐶2, 𝛾 |𝑙1,...,𝑙𝑚 = 𝛾
𝑗

|𝑙1,...,𝑙𝑚
, 𝑗 ∈ [1, . . . , 𝑝]}

Italy 

Apple ‹quan%ty	  = 100› 

Pear ‹quan%ty	  = 90› 

Lemon ‹quan%ty	  = 30› 

France 

Apple ‹quan%ty	  = 150› 

Pear ‹quan%ty	  = 110› 

Lemon ‹quan%ty	  = 20› 

Italy 

Apple ‹quan%ty	  = 100, benchmark.quan%ty = 150› 

Pear ‹quan%ty	  = 90, benchmark.quan%ty = 110› 

Lemon ‹quan%ty	  = 30, benchmark.quan%ty = 20› 

Italy 

Apple ‹quan%ty	  = 100, benchmark.quan%ty = 150, diff	  = −50› 

Pear ‹quan%ty	  = 90, benchmark.quan%ty = 110, diff	  = −20› 

Lemon ‹quan%ty	  = 30, benchmark.quan%ty = 20, diff	  = 10› 

Italy 

Apple ‹quan%ty	  = 100, benchmark.quan%ty = 150, diff	  = −50, 
percOfTotal	  = −0.23› 

Pear ‹quan%ty	  = 90, benchmark.quan%ty = 110, diff	  = −20, 
percOfTotal	  = −0.09› 

Lemon ‹quan%ty	  = 30, benchmark.quan%ty = 20, diff	  = 10, 
percOfTotal	  = 0.05› 

Italy France 

Apple ‹quan%ty	  = 100› ‹quan%ty	  = 150› 

Pear ‹quan%ty	  = 90› ‹quan%ty	  = 110› 

Lemon ‹quan%ty	  = 30› ‹quan%ty	  = 20› 

Italy 

Apple ‹quan%ty	  = 100, benchmark.quan%ty = 150, diff	  = −50, 
percOfTotal	  = −0.23, label = bad› 

Pear ‹quan%ty	  = 90, benchmark.quan%ty = 110, diff	  = −20, 
percOfTotal	  = −0.09, label = ok› 

Lemon ‹quan%ty	  = 30, benchmark.quan%ty = 20, diff	  = 10, 
percOfTotal	  = 0.05, label = ok› 

C B 

D 

E 

F 

G 

C' 

Italy 

Apple ‹quan%ty	  = 100, qtyFrance	  = 150› 

Pear ‹quan%ty	  = 90, qtyFrance	  = 110› 

Lemon ‹quan%ty	  = 30, qtyFrance	  = 20› 

D' 

Figure 1: Derived cubes resulting from the application of
logical operators for the sibling intention in Example 4.5

Note that, differently from the (natural) join defined above, this
partial join is not commutative.

Finally, the assess* syntactical variant (that also returns the
non-matching cells of the target cube) uses a left-outer join
𝐶1 ∗ ⊠ 𝐶2 where non-matching cells are completed with null
values.

Example 4.2. Figure 1 shows the results, 𝐶 and 𝐵, of the fol-
lowing get operations:

𝐶 =[(SALES, ⟨product, country⟩,
{type = ’Fresh Fruit’, country = ’Italy’},
⟨quantity⟩)]

𝐵 =[(SALES, ⟨product, country⟩,
{type = ’Fresh Fruit’, country = ’France’},
⟨quantity⟩)] → benchmark

(cube 𝐵 is given alias benchmark) and the result of their partial
join, 𝐷 = 𝐶 ⊠product 𝐵. □

Cell-Transform ⊟. This operator specifies a cell-at-a-time oper-
ation that takes a cube and a function, and outputs a cube where
a new measure is added, containing the value of the function
applied over the measure(s). Let C = (𝐻,𝑀) be the schema of
cube 𝐶 with group-by set 𝐺 , and𝑀 be a subtuple of𝑀 . Let 𝑓 be
a function defined on a tuple of parameters compatible with𝑀 ;
then the cell-transformation operation operated by 𝑓 returns a
cube defined by:

⊟
𝑓→𝑛𝑎𝑚𝑒,𝑀

(𝐶) = {⟨𝛾, (𝑡, ⟨𝑓 (𝑀)⟩)⟩ | ⟨𝛾, 𝑡⟩ ∈ 𝐶}

The schema of the resulting cube is (𝐻, (𝑀, ⟨𝑛𝑎𝑚𝑒⟩)), where
𝑛𝑎𝑚𝑒 is the derived measure returned by 𝑓 .
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Italy 

Apple ‹quan%ty	  = 100› 

Pear ‹quan%ty	  = 90› 

Lemon ‹quan%ty	  = 30› 

France 

Apple ‹quan%ty	  = 150› 

Pear ‹quan%ty	  = 110› 

Lemon ‹quan%ty	  = 20› 

Italy 

Apple ‹quan%ty	  = 100, benchmark.quan%ty = 150› 

Pear ‹quan%ty	  = 90, benchmark.quan%ty = 110› 

Lemon ‹quan%ty	  = 30, benchmark.quan%ty = 20› 

Italy 

Apple ‹quan%ty	  = 100, benchmark.quan%ty = 150, diff	  = −50› 

Pear ‹quan%ty	  = 90, benchmark.quan%ty = 110, diff	  = −20› 

Lemon ‹quan%ty	  = 30, benchmark.quan%ty = 20, diff	  = 10› 

Italy 

Apple ‹quan%ty	  = 100, benchmark.quan%ty = 150, diff	  = −50, 
percOfTotal	  = −0.23› 

Pear ‹quan%ty	  = 90, benchmark.quan%ty = 110, diff	  = −20, 
percOfTotal	  = −0.09› 

Lemon ‹quan%ty	  = 30, benchmark.quan%ty = 20, diff	  = 10, 
percOfTotal	  = 0.05› 

Italy France 

Apple ‹quan%ty	  = 100› ‹quan%ty	  = 150› 

Pear ‹quan%ty	  = 90› ‹quan%ty	  = 110› 

Lemon ‹quan%ty	  = 30› ‹quan%ty	  = 20› 

Italy 

Apple ‹quan%ty	  = 100, benchmark.quan%ty = 150, diff	  = −50, 
percOfTotal	  = −0.23, label = bad› 

Pear ‹quan%ty	  = 90, benchmark.quan%ty = 110, diff	  = −20, 
percOfTotal	  = −0.09, label = ok› 

Lemon ‹quan%ty	  = 30, benchmark.quan%ty = 20, diff	  = 10, 
percOfTotal	  = 0.05, label = ok› 

C B 

D 

E 

F 

G 

C' 

Italy 

Apple ‹quan%ty	  = 100, qtyFrance	  = 150› 

Pear ‹quan%ty	  = 90, qtyFrance	  = 110› 

Lemon ‹quan%ty	  = 30, qtyFrance	  = 20› 

D' 

Figure 2: Example of application of the pivot operator

H-Transform ⊡. This operator considers holistic (H) transfor-
mations, in the sense that computing a new measure value for
each cell of cube 𝐶 requires to know all the cells of 𝐶 .

Let again𝑀 be a subtuple of𝑀 as above. In this case, function
𝑓 operates on a tuple of parameters compatible with𝑀 and on a
set of tuples. The H-transformation of 𝐶 operated by 𝑓 returns a
cube defined by:

⊡
𝑓→𝑛𝑎𝑚𝑒,𝑀

(𝐶) = {⟨𝛾, (𝑡, ⟨𝑓 (𝑀,𝐶)⟩)⟩ | ⟨𝛾, 𝑡⟩ ∈ 𝐶}

The schema of the resulting cube is (𝐻, (𝑀, ⟨𝑛𝑎𝑚𝑒⟩)), where
𝑛𝑎𝑚𝑒 is the extra measure returned by 𝑓 .

Example 4.3. The following cell-transformation extends cube
𝐷 with a derived measure storing their difference:

𝐸 = ⊟𝑑𝑖 𝑓 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒→diff, ⟨quantity,benchmark.quantity⟩ (𝐷)
Then, cube 𝐹 is obtained from 𝐸 by applying an H-transformation
as follows:

𝐹 = ⊡𝑝𝑒𝑟𝑐𝑂𝑓𝑇𝑜𝑡𝑎𝑙→percOfTotal, ⟨diff,quantity⟩ (𝐸)
where holistic function 𝑝𝑒𝑟𝑐𝑂 𝑓𝑇𝑜𝑡𝑎𝑙 operates on a tuple of two
parameters 𝑎 and 𝑏 and computes, for each cell, the ratio between
𝑎 and the sum of 𝑏 over all cells. □

Pivot ⊞. This operator takes a cube including a set of 𝑘 slices
of some level 𝑙 (a cube slice is the set of cells corresponding to one
single member of a level), among which only one slice for a given
member 𝑢𝑘 ∈ 𝐷𝑜𝑚(𝑙) is returned. Each coordinate 𝛾 of this slice
in the returned cube is associated with its initial tuple of measures
𝑡 , concatenated with all the 𝑝 measures𝑀 = ⟨𝑚1, . . . ,𝑚𝑝 ⟩ of all
its 𝑘 − 1 neighbor coordinates 𝛾 ′ in the initial set of 𝑘 slices. The
new measures are renamed 𝑛𝑎𝑚𝑒1, . . . , 𝑛𝑎𝑚𝑒𝑝 . Formally, given
cube 𝐶 with schema C = (𝐻,𝑀), let 𝑢1, . . . , 𝑢𝑘 ∈ 𝐷𝑜𝑚(𝑙) be
the members of 𝑙 on which the slices are defined. Let 𝑢𝑘 be the
reference slice for pivoting. Then

⊞⟨𝑚1→𝑛𝑎𝑚𝑒1,...,𝑚𝑝→𝑛𝑎𝑚𝑒𝑝 ⟩,𝑙,𝑢𝑘 (𝐶) =

{⟨𝛾, (𝑡, ⟨𝑣11, . . . , 𝑣
1
𝑘−1, . . . , 𝑣

𝑝

1 , . . . , 𝑣
𝑝

𝑘−1⟩)⟩|
⟨𝛾, 𝑡⟩ ∈ 𝐶,𝛾 |𝑙 = 𝑢𝑘 , ⟨𝛾 ′, 𝑡 ′⟩ ∈ 𝐶,𝛾 ′|𝑙 = 𝑢𝑖 ,

𝛾 |𝐺\𝑙 = 𝛾 ′|𝐺\𝑙
, 𝑡 ′|

𝑚𝑗
= 𝑣

𝑗
𝑖
, 𝑖 ∈ [1, 𝑘 − 1], 𝑗 ∈ [1, 𝑝]}

where the 𝑡 ’s are tuples of measure values. The schema of the re-
sulting cube is (𝐻, (𝑀,𝑛𝑎𝑚𝑒1, . . . , 𝑛𝑎𝑚𝑒𝑝 )) where in turn𝑛𝑎𝑚𝑒 =

⟨𝑚1, . . . ,𝑚𝑘−1⟩.

Example 4.4. Figure 2 shows the result𝐶 ′ of the following get
operator:

𝐶 ′ =[(SALES, ⟨product, country⟩,
{type = ’Fresh Fruit’, country ∈ {’Italy’, ’France’}},
⟨quantity⟩)]

Cube 𝐶 ′ includes two slices for country. By applying the follow-
ing pivot operator:

𝐷 ′ = ⊞⟨quantity⟩→qtyFrance,country,’Italy’ (𝐶 ′)

a cube𝐷 ′ is obtained that includes only the reference slice (’Italy’),
with an extra measure qtyFrance. □

4.3 Semantics
Assume the expression of the assess operator as defined in Section
4.1:

with 𝐶0 [ for 𝑃 ] by 𝐺

assess𝑚 [ against < 𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘 > ]

[ using < 𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛 > ] labels 𝜆

In terms of the logical operators introduced in Section 4.2, let

(1) ⊡Δ, · (·) be the composition of the comparison/transforma-
tion functions denoted by the using clause.

(2) ⊡𝜆, · (·) be the transformation that applies the labeling func-
tion denoted by the labels clause.

Without loss of generalization, we assume that the functions that
are used for the comparison and the labeling are holistic. Clearly,
the application of cell-based functions is also possible (and most
welcome for efficiency and optimization purposes).

The semantics of an assess statement is defined as

⊡𝜆→𝑚𝜆,𝑚Δ (⊡Δ→𝑚Δ,𝑀
(𝐶))

where the definition of cube𝐶 depends on the type of benchmark
used, which in turn is determined by the form taken by the
against clause as explained in Section 4.1:

• Constant benchmark: 𝐶 = [(𝐶0,𝐺, 𝑃,𝑀)].
• External benchmark 𝐵: 𝐶 = [(𝐶0,𝐺, 𝑃,𝑀)] ⊠ [𝐵]
• Sibling benchmark:

𝐶 = [(𝐶0,𝐺, 𝑃,𝑀)] ⊠𝐺\𝑙𝑠 [(𝐶0,𝐺, 𝑃𝐵, 𝑀)] → benchmark

where 𝑃𝐵 = 𝑃 \ {(𝑙𝑠 = 𝑢)} ∪ {(𝑙𝑠 = 𝑢𝑠𝑖𝑏 )}.
• Past benchmark:

𝐶 = [(𝐶0,𝐺, 𝑃,𝑀)]
⊠𝐺\𝑙𝑡 (⊟𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛→𝑀′,𝑀 (⊞𝑀→𝑀′,𝑙𝑡 ,𝑢 (

[(𝐶0,𝐺, 𝑃𝐵, 𝑀)] → benchmark)))

where 𝑃𝐵 = 𝑃 \ {(𝑙𝑡 = 𝑢)}∪ {(𝑙𝑡 ∈ {𝑢1, . . . , 𝑢𝑘 }), members
𝑢1, . . . , 𝑢𝑘 are predecessors of𝑢 for level 𝑙𝑡 , and 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛
is a time series prediction function.

Note that, in the assess* variant, the inner join is replaced by
a left-outer join. In all cases, the resulting cube has schema
(𝐻, ⟨𝑚,𝑚𝐵,𝑚Δ,𝑚𝜆⟩) The benchmark measure𝑚𝐵 is𝑚𝑐𝑜𝑛𝑠𝑡 for
constant benchmarks,𝑚 for sibling and past benchmarks, and
𝑚𝑏 for external benchmarks.

Example 4.5. Consider again some of the statements of Exam-
ple 4.1. The first one relies on a constant benchmark:

with SALES by month

assess storeSales labels quartiles,

and corresponds to the logical expression:

⊡𝑞𝑢𝑎𝑟𝑡𝑖𝑙𝑒𝑠, ⟨storeSales⟩ ( [(SALES, ⟨month⟩, ∅, ⟨storeSales⟩)])
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The one based on a sibling benchmark,

with SALES

for type = ’Fresh Fruit’, country =’Italy’
by product, country

assess quantity against country = ’France’
using percOfTotal(difference(quantity, benchmark.quantity))

labels {[-inf, -0.2): bad, [-0.2,0.2]: ok, (0.2, inf]: good},

corresponds to the following plan (see Figure 1):
(1) get the target cube:

𝐶 =[(SALES, ⟨product, country⟩,
{type = ’Fresh Fruit’, country = ’Italy’},
⟨quantity⟩)]

(2) get the benchmark:

𝐵 =[(SALES, ⟨product, country⟩,
{type = ’Fresh Fruit’, country = ’France’},
⟨quantity⟩)] → benchmark

(3) (partially) join 𝐶 and 𝐵:

𝐷 = 𝐶 ⊠product 𝐵

(4) transform 𝐷 :

𝐸 = ⊟𝑑𝑖 𝑓 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒→diff, ⟨quantity,benchmark.quantity⟩ (𝐷)
(5) transform 𝐸:

𝐹 = ⊡𝑝𝑒𝑟𝑐𝑂𝑓𝑇𝑜𝑡𝑎𝑙→percOfTotal, ⟨diff,quantity⟩ (𝐸)
(6) transform 𝐹 :

𝐺 = ⊟𝑟𝑎𝑛𝑔𝑒 ( { [−inf,−0.2) :bad,

[−0.2,0.2]:ok,(0.2,inf]:good}), ⟨percOfTotal⟩ (𝐹 )
The last one uses a past benchmark:

with SALES

for month = ’1997-07’, store = ’SmartMart’
by month, store

assess storeSales against past 4

using ratio(storeSales, benchmark.storeSales)

labels {[0, 0.9): worse, [0.9, 1.1]: fine, (1.1,inf): better}

and corresponds to the following plan:
(1) get the target cube:

𝐶 =[(SALES, ⟨month, store⟩,
{month = ’1997-07’, store = ’SmartMart’},
⟨storeSales⟩)]

(2) get the data for the benchmark:

𝐵 =[(SALES, ⟨month, store⟩,
{month ∈ [’1997-03’; ’1997-06’], store = ’SmartMart’},
⟨storeSales⟩)] → benchmark

(3) pivot 𝐵:

𝐷 = ⊞⟨storeSales⟩→past,month,’1997-06’𝐵

(4) transform 𝐷 :

𝐸 = ⊟𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛→⟨storeSales⟩,past𝐷

(5) (partially) join 𝐶 and 𝐸:

𝐹 = 𝐶 ⊠store 𝐸

(6) transform 𝐹 :

𝐺 = ⊟𝑟𝑎𝑡𝑖𝑜→r, ⟨storeSales,benchmark.storeSales⟩𝐹

(7) transform 𝐺 :

⊟𝑟𝑎𝑛𝑔𝑒 ( { [0,0.9) :worse, [0.9,1.1]:fine,(1.1,inf) :better}), ⟨r⟩𝐺

5 OPTIMIZING ASSESS STATEMENTS
This section illustrates how the logical operators introduced
above allow to optimize the evaluation strategies of assess in
a rule-based fashion. We start by giving basic algebraic prop-
erties of the operators, and then present optimization schemes
exploiting these properties.

5.1 Basic properties
Commutativity of transform (𝑃1). An important feature of the

transform operators is that they preserve the set of coordinates of
the cube they are applied to, monotonically adding newmeasures
to it. In other words, the operators commute when one does not
need the result of the other. Formally,

⊟𝑓→𝑛𝑓 ,𝑀
′ (⊟𝑔→𝑛𝑔,𝑀 (𝐶)) = ⊟𝑔→𝑛𝑔,𝑀 (⊟𝑓→𝑛𝑓 ,𝑀

′ (𝐶))

if 𝑛𝑔 ∉ 𝑀 ′ and 𝑛𝑓 ∉ 𝑀 . The same property holds for ⊡, and for
combinations of ⊡ and ⊟.

Pushing join through transformation (𝑃2). A join can be pushed
before a cell-transformation, if the transformation is applied
to the measures of only one of the joined cubes, by applying
the transformation directly over that cube and removing the
pivot operation needed to guarantee the two cubes are joinable.
Formally,

(𝐶,𝐺, 𝑃,𝑀) ⊠𝐺\{𝑙 } (⊟𝑓→𝑛𝑓 ,𝑀2 ⊞𝑀1→𝑀2,𝑙,𝑢 (𝐶,𝐺, 𝑃 ′, 𝑀1))
= ⊟𝑓→𝑛𝑓 ,𝑀1 ((𝐶,𝐺, 𝑃,𝑀) ⊠𝐺\{𝑙 } (𝐶,𝐺, 𝑃 ′, 𝑀1))

where 𝑃 ′ = 𝑃 \ {(𝑙𝑠 = 𝑢)} ∪ {(𝑙𝑠 ∈ {𝑢1, . . . , 𝑙𝑛}).

Replacing join with pivot (𝑃3). Joining different slices of the
same cube can be done either by getting each slice individually
and partially joining them, or by getting the slices together and
pivoting all but one of them. Formally,

[(𝐶,𝐺, 𝑃,𝑀)]⊠𝐺\{𝑙 } [(𝐶,𝐺, 𝑃 ′, 𝑀)] = ⊞𝑀→𝑀′,𝑙,𝑢 [(𝐶,𝐺, 𝑃𝑎𝑙𝑙 , 𝑀)]

where 𝑀 ′ is a tuple of measure names not in 𝑀 , 𝑃 ′ = 𝑃 \ {(𝑙 =
𝑢)} ∪ {(𝑙 ∈ {𝑢1, . . . , 𝑢𝑛}) and 𝑃𝑎𝑙𝑙 = 𝑃 \ {(𝑙 = 𝑢)} ∪ {(𝑙 ∈
{𝑢,𝑢1, . . . , 𝑢𝑛})}.

5.2 Optimization strategies
In a classical interactive cube analysis, a user expresses high-
level manipulations through front-end applications over DBMSs.
We assume the same context, where cubes are accessed through
cube queries (our logical get operation), over an already properly
optimized DBMS. In this setting, we work under the following
hypotheses: (i) the get, join, and pivot logical operations can be
executed via SQL queries; (ii) the results of these SQL queries fit
in main memory; (iii) all transformations are seen as black-box
functions, thus they are not pushed to SQL. The optimization
opportunities of assess statements are then related to which
logical operators are pushed to SQL.

Following the above assumptions, for an assess statement
we consider three possible plans, based on different execution
strategies, as described in the following subsections.
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s e l e c t t 1 . country , t 1 . product ,
2 t 1 . quan t i t y , t 2 . q u an t i t y as b c _ qu an t i t y

from
4 ( s e l e c t country , product , sum ( qu an t i t y ) as q u an t i t y

from s a l e s s
6 j o i n cus tomer c on c . ckey = s . ckey

j o i n produc t p on p . pkey = s . pkey
8 where type = ' Fre sh F r u i t ' and count ry = ' I t a l y '

group by country , p roduc t ) t1 ,
10 ( s e l e c t country , product , sum ( qu an t i t y ) as q u an t i t y

from s a l e s s
12 j o i n cus tomer c on c . ckey = s . ckey

j o i n produc t p on p . pkey = s . pkey
14 where type = ' Fre sh F r u i t ' and count ry = ' France '

group by country , p roduc t ) t 2
16 where t 1 . p roduc t = t 2 . p roduc t

Listing 4: Getting the pivoted cube of the sibling intention
following JOP

5.2.1 Naive Plan. A Naive Plan (NP) faithfully reproduces the
sequences of operations shown in Section 4.3; only the get oper-
ations are pushed to SQL and all other operations are executed
in memory. NP is feasible for all benchmark types.

Example 5.1. Consider the sibling statement of Example 4.5.
Its NP consists in translating individually each get operation
into an SQL call, to retrieve the target and benchmark cubes.
Specifically, the first get operation is translated in the SQL query
of Listing 1; the second get operation consists of the same SQL
code where the selection is made on ’France’ instead of ’Italy’.
All other subsequent operations of that statement, i.e., the partial
join and the transformations, are done in memory.

5.2.2 Join-Optimized Plan. In a Join-Optimized Plan (JOP),
also the join is pushed to SQL to take advantage of the DBMS
optimizer. This requires that the plan starts with the subexpres-
sion 𝐶 ⊠ 𝐵, where 𝐶 and 𝐵 are two get operations, so that all
three operations can be pushed to SQL. JOP is not feasible for
constant benchmarks, since there is no join to be done; for the
other benchmark types, it may require property 𝑃2 to be applied
to NP to postpone cell-transformations after the join.

Example 5.2. Consider the sibling statement of Example 4.5,
and the subexpression of step (3): 𝐷 = 𝐶 ⊠product 𝐵. This subex-
pression is translated to the SQL query of Listing 4, with one
inner subquery for each get operation 𝐶 and 𝐵, and an outer
query for joining them. □

Example 5.3. As mentioned above, property 𝑃2 can be used
to put an assess statement in a form that allows pushing the
join to SQL. Consider for instance the five first steps of the past
statement of Example 4.5. Applying property 𝑃2 turns these steps
into the plan:

(1) get the target cube:

𝐶 =[(SALES, ⟨month, store⟩,
{month = ’1997-07’, store = ’SmartMart’},
⟨storeSales⟩)]

(2) get the data for the benchmark:

𝐵 =[(SALES, ⟨month, store⟩,
{month ∈ [’1997-03’; ’1997-06’], store = ’SmartMart’},
⟨storeSales⟩)] → benchmark

(3) (partially) join 𝐶 and 𝐵:

𝐷 = 𝐶 ⊠store 𝐵

(4) transform 𝐷 :

𝐸 = ⊟𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛→⟨storeSales⟩,benchmark.storeSales𝐷

The subexpression 𝐷 = 𝐶 ⊠store 𝐵 can be then pushed to SQL. □

5.2.3 Pivot-Optimized Plan. The goal of a Pivot-Optimized
Plan (POP) is to let the DBMS compute pivot operations. To this
end, whenever the plan starts with the subexpression𝐶⊠𝐵, where
𝐶 and 𝐵 are get operations on the same cube, the join operation
is replaced with the pivot operation using property 𝑃3, resulting
in a pivot operation for aligning the target and benchmark slices.
Both operations (get and pivot) are then pushed to SQL. POP is
feasible only for sibling and past intentions, which get multiple
slices from a single cube.

Example 5.4. Consider the sibling statement of Example 4.5.
Using property 𝑃3 allows to rewrite the plan to (see also Figures
1 and 2):

(1) get the (target+benchmark) cube:

𝐶 ′ =[(SALES, ⟨product, country⟩,
{type = ’Fresh Fruit’, country ∈ {’Italy’, ’France’},
⟨quantity⟩)]

(2) pivot 𝐶 ′:

𝐸 = ⊞⟨quantity→qtyFrance⟩,country,’Italy’ (𝐶 ′)

(3) transform 𝐷 ′:

𝐸 ′ = ⊟𝑑𝑖 𝑓 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒→diff, ⟨quantity,qtyFrance⟩ (𝐷 ′)

(4) transform 𝐸 ′:

𝐹 ′ = ⊡𝑝𝑒𝑟𝑐𝑂𝑓𝑇𝑜𝑡𝑎𝑙→percOfTotal, ⟨diff,quantity⟩ (𝐸 ′)

(5) transform 𝐹 ′:

𝐺 ′ = ⊟𝑟𝑎𝑛𝑔𝑒 ( { [−inf,−0.2) :bad, [−0.2,0.2]:ok,(0.2,inf]:good}),

⟨percOfTotal⟩ (𝐹 ′)

Listing 5 shows the resulting SQL query. Likewise, the past state-
ment, in the form given in Example 5.3, can be rewritten with 𝑃3
as:

(1) get (target+benchmark) cube:

𝐷 =[(SALES, ⟨month, store⟩,
{month ∈ [1997-03; 1997-07], store = ’SmartMart’},
⟨storeSales⟩)]

(2) pivot 𝐷 :

𝐸 = ⊞⟨storeSales⟩→past,month,’1997-07’ (𝐷)

(3) transform 𝐸:

𝐹 = ⊟𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛→benchmark.storeSales, ⟨past⟩ (𝐸)

(4) transform 𝐹 :

𝐺 = ⊟𝑟𝑎𝑡𝑖𝑜→r, ⟨storeSales,benchmark.storeSales⟩ (𝐹 )

(5) transform 𝐺 :

⊟𝑟𝑎𝑛𝑔𝑒 ( { [0,0.9) :worse, [0.9,1.1]:fine,(1.1,inf) :better}), ⟨r⟩ (𝐺)

Under this form, the first two steps of the plan can be transformed
into SQL calls. □
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s e l e c t ' I t a l y ' as country , product ,
2 quan t i t y , b c _ qu an t i t y

from
4 ( s e l e c t country , product , sum ( qu an t i t y ) as q u an t i t y

from s a l e s s
6 j o i n cus tomer c on c . ckey = s . ckey

j o i n produc t p on p . pkey = s . pkey
8 where type = ' Fre sh F r u i t '

and count ry in ( ' I t a l y ' , ' France ' )
10 group by country , p roduc t )

p i v o t (
12 sum ( qu an t i t y ) f o r count ry

in ( ' I t a l y ' as quan t i t y , ' France ' as b c _qu an t i t y )
14 )

where qu an t i t y i s not n u l l and b c _qu an t i t y i s not n u l l

Listing 5: Getting the pivoted cube of the sibling intention
following POP

Table 1: Formulation effort for different intentions

Constant External Sibling Past
SQL: 481 989 1169 1954

Python: 7006 6193 6309 7049
Total: 7487 7182 7478 9003
assess: 143 260 270 254

6 EXPERIMENTS
To test our approach, we implemented the assess operator relying
on the simple multidimensional engine described in [6], which
uses multidimensional metadata to rewrite OLAP queries on a
star schema stored in Oracle 11g DBMS. Post-processing of the
results (e.g., to apply transformations) is then done via off-the-
shelf Python Scikit-learn over Pandas DataFrames. All tests were
run on an Intel(R) Core(TM)i7-6700 CPU@3.40GHz CPU with
8GB RAM.

The prototype was tested against the Star Schema Benchmark
(SSB) cube, described by four hierarchies; please refer to [14]
for the logical schema of the SSB dataset. As commonly done
in OLAP settings, primary and foreign keys were indexed using
B-Trees, and materialized views were created to improve perfor-
mances. The experiments are focused on four assess statements
of different types, henceforth referred to as Constant, External,
Sibling, and Past, respectively.

6.1 Formulation effort
The first goal of our experiments is to evaluate the saving in user’s
effort when writing an assess statement over the one necessary
to obtain the same result using plain SQL and Python. To this
end we adopt the simple metric proposed in [11], where the
ASCII character length is used as as a proxy for the effort it takes
to craft a query. The results are shown in Table 1. For SQL and
Python we considered the code generated by our prototype when
following the less complex plan. Nevertheless, as expected, the
total formulation effort using SQL+Python is, for each intention
type, more than one order of magnitude larger than using assess
statements.

6.2 Efficiency and scalability
Our second experimental goal is to evaluate the efficiency of
our approach in executing (i) different types of intentions, (ii)
with different execution plans, and (iii) on cubes with different
cardinalities. To achieve (iii) we generated three detailed SSB

Table 2: Target cube cardinalities for each intention type
applied to each detailed cube

𝑆𝑆𝐵1 𝑆𝑆𝐵10 𝑆𝑆𝐵100
Constant 1.2 · 105 1.2 · 106 1.2 · 107
External 2.4 · 104 2.5 · 105 2.5 · 106
Sibling 2.4 · 104 2.5 · 105 2.5 · 106

Past 1.5 · 103 1.6 · 104 1.6 · 105

Table 3: Minimum execution times (in seconds) for differ-
ent intentions (in parentheses, the corresponding execu-
tion times for NP)

𝑆𝑆𝐵1 𝑆𝑆𝐵10 𝑆𝑆𝐵100
Constant 0.60 (0.60) 6.77 (6.77) 45.14 (45.14)
External 0.27 (0.31) 2.38 (2.60) 32.86 (35.60)
Sibling 0.32 (0.42) 3.69 (4.97) 49.61 (99.93)

Past 1.20 (3.21) 11.72 (30.93) 118.25 (321.11)

cubes, namely 𝑆𝑆𝐵1, 𝑆𝑆𝐵10, and 𝑆𝑆𝐵100, with different scale fac-
tors resulting in the following cardinalities:

|𝑆𝑆𝐵1 | =6 · 106

|𝑆𝑆𝐵10 | =6 · 107

|𝑆𝑆𝐵100 | =6 · 108

Note that the cardinality of each cube is equal to the number
of tuples in the corresponding fact table. Since the by and for
clauses of each assess statement are not changed, scaling up the
cardinality of the detailed cube implies that also the cardinality
of the target cube scales up as shown in Table 2. To reduce the
impact of caching, each assess statement was executed five times
on each detailed cube, and the execution times were averaged.

Figure 3 shows, on a logarithmic scale, the times in seconds for
executing the Constant, External, Sibling, and Past intentions us-
ing the NP, JOP, and POP plans, for increasing cube cardinalities.
As to Constant, assessing a target cube of 1.2 · 107 tuples (derived
by querying 𝑆𝑆𝐵100) takes about 45 seconds, mostly employed
to get the data from the DBMS. Note that, since this assessment
does not require the retrieval of a benchmark cube, only NP is
feasible. As to External, the only possible plans are NP and JOP
(POP is not feasible here), with JOP providing the best perfor-
mance. As to Sibling and Past, POP performs the best, taking
50 seconds and 118 seconds, respectively. Being based on the
pivot operator, POP gets in both cases the target cube and the
benchmark at once by retrieving the slices required together. In
other words, POP avoids the join between the target cube and the
benchmark, a time-consuming operation for NP and JOP. Overall,
NP has the worst performance, since (i) it requires to separately
get both cubes and join them into main memory, and (ii) it may
load into main memory unnecessary data (i.e., the tuples that
will not match in the join). Overall, we can conclude that (i) JOP,
when applicable, outperforms NP, and (ii) POP, when applicable,
outperforms JOP and NP. This is summarized in Table 3 which,
for each benchmark type, compares the best performance with
the one of the naive execution strategy. Remarkably, this table
also clearly shows that our approach scales linearly for all the
intentions.

Our last experimental goal is to understand which are the
most expensive execution steps, i.e., those for which there is
room for further optimizations. The overall execution time for
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Figure 3: Execution times for increasing cardinalities of the target cube 𝐶
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Figure 4: Breakdown of the execution time of the Past intention for increasing cardinalities of the target cube 𝐶

an intention can be broken down into the time necessary to (1)
get the target cube, (2) get the benchmark, (3) transform the
two cubes (e.g., to apply regression in past benchmarks), (4) join
them, (5) compute the comparison/transformation, and (6) label
the result. This breakdown is shown in Figure 4 for each plan and
with increasing cube cardinalities. We focus on the Past intention,
that is the most complex one since forecasting measure values
requires to compute a regression. First of all, we observe that
the execution times for comparison and labeling are in the order
of milliseconds. Thus, not surprisingly, they are negligible with
respect to the time necessary to get and join the cubes. For all
three plans, transformation is the most time-consuming step,
since linear regression has to be applied to huge numbers of
tuples. As to the time for accessing data, note that:

• NP brings both the target 𝐶 and benchmark 𝐵 cubes into
main memory to join them; the cost for this main-memory
join is lower than the ones for getting the two cubes, but
still not negligible. The cost for the pivot operation is
counted as transformation.

• JOP pushes the join to SQL; thus, in this case the cost for
the join is counted together with the one for getting𝐶 +𝐵.
The cost for the pivot operation is counted as transforma-
tion.

• POP replaces the join with a pivot operation and pushes
it to SQL, thus, the cost of pivot here is part of the cost for
getting 𝐶 + 𝐵.

7 RELATEDWORK
7.1 OLAP models and operators
OLAP comes with a large number of proposals on its foundations
and operators, all of which slowly converged towards the core
ideas of cubes, dimensions, dimension hierarchies, and levels as
well as operators like roll-up, drill-down, slice, drill-across during
the late ’90s. To avoid overcrowding the discussion, we refer the
interested reader to an excellent survey [16].

Over the years, several operators have been proposed to com-
plement the fundamental ones. The DIFF operator [17] returns
the set of tuples that most successfully describe the difference of
values between two cells of a cube that are given as input. The
same author also describes a method that profiles the exploration
of a user and uses the Maximum Entropy principle to recommend
which unvisited parts of the cube can be the most surprising in
a subsequent query [18]. Finally, the RELAX operator allows to
verify whether a pattern observed at a certain level of detail is
present at a coarser level of detail too [19].

In a different line of research, prediction cubes are proposed
with the characteristic property that each of the cells comes with
a model that is trained to produce a predictive model with data
that correspond to that cell [5]. Then, a comparison between
model and actual value is also possible, assessing the model’s
accuracy. Also, the Shrink operator [9, 15] has been proposed to
reduce the result size of a query with minimal loss of information
value via the calculated fusion of data slices.

Alternative operators have also been proposed in the Cinecubes
method [7, 8]. The goal of this effort is to facilitate automated
reporting, given an original OLAP query as input. To achieve this
purpose two operators (expressed as acts) are proposed, namely,
(a) put-in-context, i.e., compare the result of the original query
to query results over similar, sibling values; and (b) give-details,
where drill-downs of the original query’s groupers are performed.

Compared to the previous proposals, our work on the explicit
introduction of an assess operator differs in the fundamental
problem it addresses. The works of Sarawagi are mostly of ex-
planatory rather than assessment nature. Similarly, prediction
cubes are trying to assess the impact of a set of predictor at-
tributes on a class label in the context of a data cube, via an
introduced model for their relationship —again, the emphasis is
on trying to explain what we see rather than trying to provide
assessments and labels on the comparison of the assessment.
The Shrink operator is intended to compress without losing too
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much information. The Cinecubes approach introduces an auto-
matically invoked model of assessment in its put-in-context act;
this is indeed a first form of assessment, although not tunable or
explicitly invoked by the user.

7.2 The Intentional Analytics Model
The IAM for OLAP was introduced in [20]. Later this proposal
was significantly extended [21]. The main idea behind the inten-
tional model for OLAP is that OLAP models need to be extended
with (a) new operators, (b) altering of the definition of a query
result, (c) introducing highlights to annotate the answers. To
address the first requirement, the traditional roll-ups and drill-
downs operators were complemented with operators that pertain
to the intention of the user towards the data —i.e., what is the
reason why the user poses the query. The original, large set of
operators (including operators like verify and analyze) was later
solidified and formalized into five operators, namely, describe,
assess, explain, predict, and suggest [21]. The result of a query
is also redefined as a combination of data and KDD models that
are applied over the data. Also, the resulting data and models
are evaluated with respect to their interestingness to produce
highlights, i.e., subsets of the data that provide the most of novel
information to the user. The foundations of the model can be
linked to Bloom’s taxonomy and Anderson and Krathwohl’s re-
finement to it [13, 22], which organize cognitive tasks as: (a)
remembering, (b) understanding, (c) applying a procedure, (d)
analyzing (component interrelationships), (e) evaluating (with
respect to criteria and standards), and (f) creating.

Although the IAM acts as an all-encompassing framework for
defining new operators, results, and highlights for OLAP, the
goal of the previous works was not go down into the details
of each operator, but rather to dictate templates on what kind
of algebraic operators we can introduce. The particularities of
the describe operator (supporting the understanding process in
Bloom’s framework) were further explored [4]. The current paper
extends the originally proposed assess operator (in turn, inspired
by the put-in-context operator) in significantly deeper ways,
as it comes with several alternatives that were not obviously
expressed in the original work [21], as well as with the syntax of
an SQL-like language and optimization techniques.

8 CONCLUSIONS
In this paper we have introduced the assess operator to auto-
matically evaluate and characterize the result of a cube query in
terms of labels given to the single cells based on their compar-
ison with a benchmark. We have provided several alternatives
for specifying benchmarks, comparison, and labeling schemes.
Finally, we have discussed alternative plans for the execution of
assess statements showing that their performance is perfectly in
line with the right time requirement of analysis sessions.

Our future work on the assess operator will develop in differ-
ent directions:

• Consider cube schemas including descriptive properties
of levels (e.g., the population of a country). Introducing
properties will enable users to express more complex state-
ments, e.g., to compare per capita sales of different coun-
tries.

• Devise strategies for effectively completing partial assess
statements, for instance, ones where the against, using or

benchmark clauses are not specified by the user. Interest-
ingly, this could require different possibilities to be tested
and ranked based on their expected interest for the user.

• Enhance the expressiveness of the assess operator by con-
sidering more complex labeling functions (e.g., functions
based on ranges that depend not only on comparison val-
ues of cells, but also on their coordinates) and additional
types of benchmarks (for instance to let the sales of milk
be assessed against those of drinks, i.e., against an ancestor
of milk in the roll-up order).

• Investigate the relevant properties of our logical operators
and develop a cost-based optimization strategy.
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ABSTRACT
Today, advanced data analysts make use of both predictive mod-
els and optimization problem solving to build data-driven deci-
sion making applications, a combination of technologies recently
termed Prescriptive Analytics (PA). Current PA applications typ-
ically have multiple layers of poorly integrated components: a
relational DBMS for data storage/management, ML tools for pre-
diction, and specialized software packages for problem modeling
and optimization problem solving. This complex stack leads to
inefficient, labor-intensive, and error-prone PA workflows, block-
ing wider adoption of PA. In this paper, we present SolveDB+ –
an RDBMS for PA applications which supports all PA steps with
modeling, predictive, and optimization functionalities, and inte-
grates these in a common SQL-based framework.Major SolveDB+
novelties are 1) a powerful SQL-based approach for PA problem
specification and solving, 2) an extensible in-DBMS infrastruc-
ture for prediction and optimization solvers, and 3) in-DBMS
modeling and management of PA models. SolveDB+ significantly
improves both PA developer productivity and performance.

1 INTRODUCTION
As the next step after Predictive Analytics, Prescriptive Analytics
(PA) has recently emerged as a new frontier in analytics, com-
bining data management, predictive analytics and ML, and oper-
ations research [17]. PA provide a specific course of action for
questions such as "How should wemaximize our sales in Europe?”
PA systems are still in their infancy, typically glued together in
an ad-hoc system with separate analytics and optimization tools
on top of an RDBMS. There are no integrated PA platforms that
combine data management, predictive, and optimization function-
alities using a single language, e.g., the frequently used in-DBMS
analytics engines only support the first two.

As a running PA example, we consider renewable energy opti-
mization. In a building, PV panels produce intermittent, varying
electricity, to run its Heating, Ventilating, and Air Conditioning
(HVAC) system. We want to reduce energy costs by using more
PV electricity, which requires aligning HVAC operation to PV
supply ahead of time, taking forecasted prices and user comfort
into account. Table 1 shows a dataset for this case. Input data is
a multivariate time series of outdoor (OutTemp)/indoor (inTemp)
temperatures, HVAC consumption (hLoad), and PV production
(pvSupply) per hour. Rows 07:00 - 11:00 are historical data from
sensors. Rows 12:00 - 16:00 define future states: outTemp contains
forecasted outside temperatures; the unknown values of inTemp,
hLoad and pvSupply in 12:00 - 16:00 represent decision variables
for which PA should compute values by aligning hLoad with
pvSupply at the next 5 hours such that inTemp remains within the
20–24°C comfort range and HVAC power limits (0–17kW) are
respected. The workflow below exemplifies the 5 overall phases
of PA seen in Figure 1.

© 2021 Copyright held by the owner/author(s). Published in Proceedings of the
24th International Conference on Extending Database Technology (EDBT), March
23-26, 2021, ISBN 978-3-89318-084-4 on OpenProceedings.org.
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Figure 1: The 5 PA phases and the used software stacks

P1: Collect, clean, validate, and transform the input data.
P2: Predict PV supply given pvSupply and outTemp.
P3: Model inTemp dynamics in relation to inTemp and hLoad, which
requires tuning parameter values specific to this building.
P4: Find optimal hLoad values by minimizing electricity cost sub-
ject to initial conditions, pvSupply, hLoad, and comfort constraints,
applied over the calibrated model (P3).
P5: Analyze, visualize, and validate the results.

Traditionally, this PA workflow requires a complex software
stack with different tools for data management, forecasting, sys-
tem modeling, and optimization, leading to several problems:
Steep Learning Curve: Different tools have different usage and
modeling methodologies, making the learning curve for building
PA applications much steeper, which, in turn, leads to more errors
and misuse. Poor Developer Productivity: The tools are based
on different programming/query languages and have to be glued
together in ad-hoc ways to realize PA workflows, leading to poor
developer productivity, tool incompatibilities, and even more er-
rors [2]. Bad performance: Large amounts of data have to be
shipped back and forth between the many tools, leading to high
I/O and memory costs and long runtimes (see Sec. 5). To remedy
these problems,these research challenges (RCs) must be met:
RC1: Provide a concise yet powerful SQL-based syntax for PA
decision problems, supporting efficient query processing.

Table 1: Input dataset for campus energy management.

time outTemp inTemp hLoad pvSupply
2017/07/02 07:00 05 21 100 0
2017/07/02 08:00 06 20.5 250 0
2017/07/02 09:00 06 21 150 200
2017/07/02 10:00 07 23 120 254
2017/07/02 11:00 08 23 80 320
2017/07/02 12:00 09 ? ? ?
2017/07/02 13:00 11 ? ? ?
2017/07/02 14:00 12 ? ? ?
2017/07/02 15:00 11 ? ? ?
2017/07/02 16:00 11 ? ? ?
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RC2: Provide a concise yet powerful way to share optimization
models across sub-problems of the overall PA problem.
RC3: Provide a powerful, easy-to-use, and extensible way of
transparently integrating external prediction functionality into
PA workflows.
RC4: Seamlessly integrate RC1–RC3 in a SQL-based system.

To meet these challenges, we present SolveDB+. The fact that
most PA systems use an RDBMS for data storage [16, 17] com-
bined with the huge popularity of in-DBMS analytics (see Sec. 2),
motivates us to propose the first SQL-based in-DBMS platform for
PA applications, with these features (www.daisy.aau.dk/solvedb):

Supporting all PA phases: SolveDB+ integrates data man-
agement, prediction, system modeling, and optimization in a sin-
gle tool, yielding better PA productivity.Extensibility: SolveDB+
allows developers to add new functionalities for custom PA appli-
cations. Unified SQL-Based PA language: SolveDB+ extends
SQL with new declarative constructs for unified PA problemmod-
eling and analytical functionalities. An entire PA workflow, in-
cluding forecasting, simulation, and optimization models, can be
expressed in a single extended SQL query. High performance:
The built-in PA algorithms (and user extensions) run in-DBMS,
yielding more efficient execution and data exchange. Our experi-
ments show that SolveDB+ yields up to three orders of magnitude
better performance for individual PA steps, and up to 3.5 times
faster execution and 3 times smaller implementations for com-
plete PA workflows, compared to state-of-the-art baselines, thus
combining performance with usability/productivity.

The remainder of the paper is structured as follows. Section 2
discusses related work. Section 3 describes SolveDB+’s prediction
framework. Section 4 presents its new PA problem modeling
features. Section 5 provides the experimental evaluation. Finally,
Section 6 concludes and points out future work.

2 RELATEDWORK
A recent extensive survey [16] identifies major emerging trends,
remaining challenges, and available technology in the field of
PA. In the classification used in this survey, SolveDB+ falls in the
category of analytical DBMSes, where analytical functionality
is integrated directly within the DBMS back-end. Efforts within
this category can be classified into prediction DBMSes, for fore-
casting and probabilistic analysis, and optimization DBMSes, for
optimization problem solving. Table 2 summarizes and compares
essential relevant systems in these sub-categories. The systems
are compared in terms of: 1.What primary language is used for
data management (Data QL); 2.What primary language is used
to specify analytics (incl., prediction and optimization) tasks (Anl.
QL); 3. Does the system offer native support for predictions? (Pred);
4. Does the system offer native support for physical system models
and estimating their parameters? (Est), 5. Does the system support
optimization problem solving? (Opt); 6. Does the system support
optimization (sub-)models that can be stored natively and manip-
ulated as first-class citizens in the database, and re-used to forms
more complex models? (Mod). We now review these systems.

In-DBMS analytics is a major trend. Among prediction DBM-
Ses, forecasting and in-database ML is supported by the major
commercial DBMSes, Oracle [27], SQL Server [32], and Tera-
Data [13]. Recently, HyPEr [12] and DB4ML [10] provide in-
DBMS ML for main memory DBMSes. These systems provide
efficient in-DBMS forecasting/ML functions, but lack automatic
forecasting model selection, parameter estimation, optimization
problem solving, and model management, unlike SolveDB+. The

Table 2: Comparison between relevant tools and SolveDB+

System Data QL Anl. QL Pred Est Opt Mod
Oracle SQL SQL ✓ ✗ ✗ ✗

SQL Server SQL SQL ✓ ✗ ✗ ✗

TeraData[13] SQL SQL ✓ ✗ ✗ ✗

DB4ML[10] SQL SQL ✓ ✗ ✗ ✗

HyPer[12] SQL SQL ✓ ✗ ✗ ✗

MADlib[5] SQL SQL+UDF ✓ ✗ ✗ ✗

F2DB[15] SQL ext.SQL ✓ ✗ ✗ ✗

SystemML[1] R-like R-like ✓ ✗ ✗ ✗

MLbase[14] R-like R-like ✓ ✗ ✗ ✗

SciDB [11] SQL-like SQL-like ✓ ✗ ✗ ✗

pgFMU[28] SQL SQL+UDF ✓ ✓ ✗ ✗

Searchlight[19]SQL-like SQL-like ✗ ✗ ✗ ✗

PaQL[8] ext.SQL ext.SQL ✗ ✗ ✗ ✗

InezDB[21] ext.OCaml ext.OCaml ✗ ✗ ✓ ✗

Tiresias[23] SQL ext.Datalog ✗ ✗ ✓ ✗

LogicBlox[6] LogiQL LogiQL ✓ ✗ ✓ ✗

SolveDB[31] SQL ext.SQL ✗ ✗ ✓ ✗

SolveDB+ SQL ext.SQL ✓ ✓ ✓ ✓

open source alternative MADlib [5] extends PostgreSQL with
UDFs specialized for ML tasks like clustering, classification, and
forecasting. Similar to MADlib, pgFMU [28] offers PostgreSQL
UDFs for in-DBMS simulation and parameter estimation of Func-
tional Mock-up Units (FMUs). These are interoperable simulation
models that can define dynamic behaviour of complex physi-
cal systems. While FMUs are often used for predictions (P2, see
Figure 1), pgFMU does not support including FMUs into user-
defined optimization problems (P4). In comparison, SolveDB+
supports (less detailed) so-called grey-box models that can be
both simulated and optimized in the same environment. Among
stand-alone DBMSes, F2DB [15] focuses on time series forecast-
ing in an SQL-based environment. While F2DB specializes in, and
is highly optimized for, time series forecasting tasks and employ-
ing specific model reuse and maintenance techniques, it does not
support the development and integration of user-defined "do-it-
yourself" models and generic library models, unlike SolveDB+.
In the Big Data context, systems such as SystemML [1], MLBase
[14], and SciDB [11] integrate general-purpose declarative ma-
chine learning tools that offer scalable distributed computations.
In the context of PA, all systems (except pgFMU) in this category
only offer support for the predictive analytics phase (P2).

The optimization DBMSes have focused on advanced what-if
scenarios, in-DBMS optimization problem solving, and search
under advanced forms of constraints. Systems such as Search-
light [19] and PaQL [8] exploit powerful constraint solvers when
processing advanced data search queries. InezDB [21] proposes
a formal logic for the symbolic manipulation of optimization
models inside a DBMS. Tiresias [23] and LogicBlox [6] provide
users a Datalog-based language for what-if scenario analysis.
Being the predecessor of SolveDB+, SolveDB [31] is an extension
of PostgreSQL for in-DBMS optimization problem solving and
solver integration. SolveDB+ extends SolveDB in the directions
covering the highlighted PA phases in Figure 1. These new fea-
tures in SolveDB+, together with their impact (to be observed
in Section 5), are highlighted in Table 3. These correspond 1-1 to
the research challenges RC1–RC3 mentioned in Section 1, while
the integrated SolveDB+ system corresponds to RC4.
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Table 3: New features of SolveDB+ compared to SolveDB.

Feature Description Impact
In-DBMS
Predictive
Framework

Specialized forecasting mod-
els that are easy to install,
(auto)select, and use.

Forecasting eas-
ier to use and up
to 6 times faster.

Shared
Optimization
Models

Allow defining reusable
optimization (sub-)models
stored in-database with
their objective functions,
constraints, and data specs.

Up to: 2X less
code for P3-P4,
16% less code for
P1-P4, similar
performance.

New
Language
Features

Asterisk notation, common
decision table expressions,
model inlining allow specify-
ing PA problems more con-
cisely/efficiently.

Up to 5X less
code for P2-P4,
similar perfor-
mance.

In summary, Table 2 shows that while predictive and opti-
mization DBMSes offer some level of in-DBMS analytics support,
they do it only for some PA phases and do not offer "SQL for
all PA phases" like SolveDB+. In comparison, SolveDB+ is the
only system to combine and unify predictions and optimization
problem solving within a single SQL-based system.

Explainability, also called interpretability, of ML pipelines has
received much attention in recent years. It has been considered
both for specific categories of ML pipelines, e.g., user group
analytics [25] or data exploration [18], and more generally in
a survey of AutoML pipelines [33]. In comparison, SolveDB+
focuses on another category, PA pipelines, and supports explain-
ability in PA phases P1-P4. For P1, we do not claim any new
contributions, but simply offer the time-honored explainability
of SQL. For (external) Prediction methods (P2), we inherit their
existing explainability and add to it by declaratively specifying
input and output in the solver specs. For System Modeling (P3)
and for overall integration of the phases, our high-level declara-
tive SQL-based syntax and shared models allow a higher level of
abstraction which is more compact and explainable than a tradi-
tional imperative-style ML pipeline. For Optimization (P4), the
declarative specifications of objective functions are immediately
explainable. Section 5 provides more details.

Another key aspect of ML pipelines is their connectivity to
other components/frameworks [33]. As for the "inbound" connec-
tivity, external components are integrated for use in SolveDB+
in two ways. Like other in-DBMS analytics tools (see Tab. 2),
SolveDB+ uses UDFs to wrap external functions for direct use in
SQL queries, Specifically to SolveDB+, the solver concept is used
to integrate external prediction components in a seamless way
(see Sec. 3). As for the "outbound" connectivity, SolveDB+ can be
integrated in larger pipelines just like other SQL-based in-DBMS
analytics tools.

3 PREDICTION
The first phase in Figure 1 P1: Data Collection, Cleaning, and Trans-
formation is well supported by the SQL queries, built-in functions,
and UDFs of traditional RDBMSes [16], including SolveDB+. Since
PA applications need to look ahead in time, effectively supporting
the next phase P2: Prediction is a key research challenge (RC3).
This section describes how we meet RC3. While SolveDB+ can
accommodate different models and algorithms for prediction (us-
ing both built-in and external tools), it offers dedicated support

Figure 2: Prediction process + SolveDB+ implementation.

for time series forecasting methods. These are widely used for
data-driven prediction based on current and historical data.

3.1 Time series forecasting in SolveDB+

Following the energy planning example, the input to the predic-
tion phase is the time series shown in Table 1. The objective is to
predict the PV supply for the next 5 hours, by filling in the miss-
ing pvSupply values in Table 1. This is accomplished by a specific
time series forecasting method (e.g., regression) involving a num-
ber of steps, as shown in Figure 2: preparing – extracting and
formatting the data to fit forecasting models, training – fitting
the forecasting models on the dataset, validating – validating the
models using cross validation or other evaluation procedures,
and predicting – forecasting new values.

To support the user in using thesemethods, SolveDB+ provides
its in-DBMS Predictive Framework, which (1) exposes various
time-series forecasting methods through SQL ("transparently in-
tegrating" in RC3), (2) hides the complexity ("easy-to-use" in RC3)
of choosing and using these methods (the preparation, training,
validation, and prediction steps), and (3) offers different extensibil-
ity options when a new forecastingmethod needs to be integrated
("extensible" in RC3). For example, the prediction problem above
can be solved in two different ways, using:

Specific forecasting method The following example query
invokes the specific forecasting method ARIMA:

1 SOLVESELECT t(pvSupply) AS (SELECT * FROM input)

2 USING arima_solver(predictions := 5, time_window := 5,

3 features := outTemp)

To expose themethod, SolveDB+ uses the specialized SOLVESELECT
statement (extending the one from SolveDB [31]), to be described
in detail in Section 4. It invokes a SolveDB+-native solver (arima_-
solver) to derive a so-called output relation (a database table) from
a so-called input relation (SELECT * FROM input) by adding/delet-
ing rows or filling in values in the specified decision columns.
In this example, the decision column is pvSupply, the values of
which are requested to be populated by arima_solver. The output
relation has the same schema as the input relation, but with the
pvSupply column filled as shown in Table 4. To derive the output
relation from the input relation, arima_solver additionally takes
solver parameters: the number of predictions (predictions := 5),
the number of time steps to use for training (time_window:=5),
and the column (features:=outTemp) to use as a feature attribute.
The solver then performs the steps of preparation, training, val-
idation, and prediction (see Figure 2) using the ARIMA model
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Table 4: Output of the Prediction phase for the example.

time outTemp inTemp hLoad pvSupply
2017/07/02 07:00 05 21 100 0
2017/07/02 08:00 06 20.5 250 0
2017/07/02 09:00 06 21 150 200
2017/07/02 10:00 07 23 120 254
2017/07/02 11:00 08 23 80 320
2017/07/02 12:00 09 ? ? 200
2017/07/02 13:00 11 ? ? 220
2017/07/02 14:00 12 ? ? 260
2017/07/02 15:00 11 ? ? 140
2017/07/02 16:00 11 ? ? 0

trained on data from the input relation with the given param-
eters. Thus, SOLVESELECT allows the user to invoke any specific
predictive solver installed in SolveDB+, including solvers for Lin-
ear Regression, Logistic Regression, ARIMA, or the powerful
Predictive Advisor described next. The carefully designed use of
the solver ensures the transparency mentioned in RC3.

Predictive Advisor Users can get automated model selection
and configuration by using the Predictive Advisor, exposed as
predictive_solver. This solver hides model selection, feature se-
lection, and parameter fitting from the user, and transparently
performs preparation, training, validation, and prediction and fills
in the missing values in the input relation, thus ensuring "easy-
of-use" in RC3. Now, the prediction query above can be rewritten
as the following simpler query:
1 SOLVESELECT t(pvSupply) AS (SELECT * FROM input)

2 USING predictive_solver ()

The extensibility offered by SolveDB+ also allows for alternative
automated predictive frameworks to be integrated as part of the
SolveDB+ predictive advisor ("extensible" in RC3).

3.2 Steps of the Predictive Framework
In SolveDB+, the underlying steps of preparation, training, valida-
tion, and prediction are standardized and their common routines
are shared among different forecasting methods, (ensuring "easy-
of-use" in RC3.

P2.1 PreparingWhen the predictive solver (e.g., arima_solver)
is invoked, the input relation is first analyzed. The framework
extracts decision (i.e., to be populated with values) and feature (to
be used as features) columns specified by the user. After recog-
nizing the types of the input columns, it selects candidate solvers
from the pool of predictive solvers by comparing the set of de-
cision and features columns to those supported by the solvers.
The framework logically partitions the input relation into the
training, test, and validation segments by matching the schema
for each candidate solver. The selected solver(s) are then used
for the training step.

P2.2 TrainingNext, the model-specific parameters of the can-
didate solvers are tuned on the training segment of the input
relation. The predictive framework automatically generates a
SOLVESELECT query that specifies an optimization problem with
model parameters as decision variables to optimize. This opti-
mization problem is solved by utilizing the solving capabilities
of SolveDB+ (Section 4). For example, the ARIMA solver is in-
stalled with the standard ARIMA parameters ar, i, and ma, each
associated to the domain [0, 5]. Therefore, predictive_solver
described earlier automatically and transparently invokes the
following parameter estimation query:

1 SOLVESELECT p(ar, i, ma) AS

2 (SELECT NULL::int AS ar,NULL::int AS i,NULL::int AS ma)

3 MINIMIZE(SELECT arima_rmse(

4 ar:= SELECT ar FROM p,

5 i := SELECT i FROM p,

6 ma := SELECT ma FROM p))

7 SUBJECTTO (

8 SELECT 0 <= ar <= 5, 0 <= i <= 5, 0 <= ma <= 5

9 FROM p)

10 USING swarmops.pso()

The above SOLVESELECT query specifies a global black-box op-
timization problem, where the values of the parameters ar, i,
and ma are found by minimizing the RMSE between the train-
ing set and the ARIMA predictions, computed by the function
arima_rmse in the MINIMIZE clause (line 3). The SUBJECTTO clause
specifies the range in which the parameters can vary. The opti-
mization solver swarmops uses a built-in particle swarm optimiza-
tion method [20] to iteratively attempt to improve a candidate
solution with regards to RMSE.

P2.3 Validating Next, the candidate predictive solvers are
compared using cross validation. The solver/model leading to
the lowest error is selected. As a side effect, the calibrated model
instances are stored in a database as user-defined type (UDT)
entities for fast reuse of the solver result later.

P2.4 Predicting Finally, predictions are generated by the se-
lected best candidate solver and returned to the user in the form
of an output relation of SOLVESELECT (Table 4). As SOLVESELECT

expresses a view over the input relation (Table 1), no user tables
are modified in the database.

3.3 Developer Interface
SolveDB+ addresses the "extensible" in RC3 by providing the user
with a developer interface to install new in-DBMS predictive
solvers. There exists two categories of solvers: black box and
white box. Black box solvers are expected to manually handle
the steps of data preparation, feature selection, cross-validation,
etc., thus overriding the predictive framework functionalities. In
contrast, white box solvers expose the model specifics (e.g., model
parameters, their types, etc.) as well as model training and predic-
tion logic to the predictive framework. This way, the solvers may
use the functionalities (e.g., SOLVESELECT) provided by SolveDB+
for preparing, training, and validating. Such solvers use the solver
extensibility capabilities already present in SolveDB [31]. This
allows the developers to easily expand the system by taking
advantage of existing SolveDB+ solvers/functionality and inte-
grating new prediction models from existing frameworks, e.g.,
Scikit-Learn [3], Weka [9], MATLAB [22], Statsmodels [29], and
TensorFlow[7].

As we will show in Section 5, SolveDB+ is able to offer reduced
PA application development efforts and improved overall perfor-
mance after the integration of desired solvers, yielding up to 5
times more compact problem specifications and up to 6 times
reduced forecasting time, compared to SolveDB and commonly
used predictive frameworks.

4 OPTIMIZATIONS AND SYSTEM
MODELING

Optimization problem solving is essential in 3 of the 5 PA phases
(P2, P3, P4), and it therefore plays an essential role in SolveDB+.
To deal with optimization problems, SolveDB+ borrows a number
of solvers from SolveDB for the different classes of optimization
problems, including linear programming (LP), mixed-integer pro-
gramming (MIP), and blackbox global optimization (GO), some of
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Table 5: LR problem variable layout and a new c_mask col-
umn introduced during the CDTE rewrite

id pOTemp pMonth pEps error c_mask
1 𝑝𝑂𝑇𝑒𝑚𝑝 𝑝𝑀𝑜𝑛𝑡ℎ 𝑝𝐸𝑝𝑠 𝑒1 B’11’
2 𝑒2 B’01’
... ... B’01’
M 𝑒𝑀 B’01’

which were already demonstrated in Section 3. To address RC1,
SolveDB+ further extends the query syntax used for accessing
these solvers. We now elaborate on these new language features.

4.1 Model Specification Syntax
SolveDB+ uses the following syntax to interact with various (e.g.,
LP/MIP) solvers registered in the active database:

1 {SOLVESELECT | SOLVEMODEL}

2 [alias[( col_name [ ,...])] AS]( select_stmt)

3 [INLINE [alias AS]( select_stmt) [ ,...]]

4 [WITH [alias[( col_name [ ,...])] AS]( select_stmt) [ ,...]]

5 [MINIMIZE (select_stmt) [MAXIMIZE (select_stmt )] |

6 MAXIMIZE (select_stmt) [MINIMIZE (select_stmt )]]

7 [SUBJECTTO [alias AS] (select_stmt) [ ,...]]

8 [USING solver_name [. method_name ][( param [:= expr ][ ,...])]]

As shown earlier, the user can use SOLVESELECT to define a
model and pass it to SolveDB+-compliant solver solver_name

for evaluation using an optionally specified solving method,
method_name, all defined as follows.

A problem model 𝑚 is defined as a 4-tuple (𝐷, 𝑅, 𝑠,𝑚). 𝐷 is
the specification of data and decision variable columns (lines 2,4).
𝑅 is the specification of rules that define how the values of the
decision variable columns should be instantiated (lines 5-7). 𝑠
is the name of the solver (solver_name) that should evaluate the
rules 𝑅 on the given 𝐷 using some method𝑚 (method_name, line
8). Both 𝐷 and 𝑅 define two separate sets of specially annotated
database relations. Specifically, 𝐷 = (𝐷𝑎1

1 , 𝐷𝑎2 , . . . , 𝐷
𝑎𝑁
𝑁
) where,

∀𝑖 ∈ 1 : 𝑁 , 𝐷𝑎𝑖
𝑖

= (𝑐1, . . . , 𝑐𝑘 , 𝑐1, . . . , 𝑐𝑙 ) is a SELECT statement
(select_stmt) defining a database relation with the alias 𝑎𝑖 (alias)
assigned and defined by 𝑘 data columns 𝑐1, . . . , 𝑐𝑘 and 𝑙 so-called
decision columns 𝑐1, . . . , 𝑐𝑙 (col_name). Decision columns denote
that their rows are decision variables, the values of which should
be computed by 𝑠 . Here, 𝐷𝑎1

1 (line 2) is denoted as input relation.
In a similar way, 𝑅 = (𝑅𝑚𝑖𝑛

1 , 𝑅𝑚𝑎𝑥
2 , 𝑅

𝑎3
3 , . . . , 𝑅

𝑎𝑀
𝑀
) is a set of re-

lations that contain 𝑠-specific representations of rules defining
how decision column values in 𝐷 should be computed. For con-
venience, the aliases of 𝑅𝑚𝑖𝑛

1 and 𝑅𝑚𝑎𝑥
2 are fixed and they are

specified in the MINIMIZE and MAXIMIZE clauses, respectively (line
5-6). The remaining 𝑅

𝑎3
3 to 𝑅

𝑎𝑀
𝑀

are specified in the SUBJECTTO

block along with their respective aliases (line 7). This provides
powerful yet concise model specs for RC1.

A solver in SolveDB is a user-defined function (UDF) capable
of producing (a query for) a so-called output relation 𝑂 in the
schema of the input relation 𝐷

𝑎1
1 from a given problem model

instance (𝐷, 𝑅, 𝑠,𝑚) and additionally supplied solver parameters
param (line 8). SolveDB+ assumes the following standard scoping
rules within SOLVESELECT. Each 𝑑𝑎𝑖

𝑖
∈ 𝐷 may access a relation

𝑑
𝑎 𝑗

𝑗
∈ 𝐷 using the alias 𝑎 𝑗 if 𝑗 < 𝑖 , i.e., ∀𝑑𝑎𝑖

𝑖
∈ 𝐷 : 𝑠𝑐𝑜𝑝𝑒 (𝑑𝑎𝑖

𝑖
) =

{(𝑎 𝑗 ↦→ 𝑑
𝑎 𝑗

𝑗
|𝑑𝑎 𝑗

𝑗
∈ 𝐷, 𝑗 < 𝑖}. Each 𝑟

𝑎𝑖
𝑖
∈ 𝑅 may access all data

and decision variable tables, i.e., ∀𝑟𝑎𝑖
𝑖
∈ 𝑅 : 𝑠𝑐𝑜𝑝𝑒 (𝑟𝑎𝑖

𝑖
) = {(𝑎 ↦→

𝑑𝑎 |𝑑𝑎 ∈ 𝐷}.

For example, consider a predictive solver (for P2) based on lin-
ear regression (LR). In SolveDB+, LR model parameter estimation
is specified using the following SOLVESELECT:
1 SOLVESELECT p(pOTemp , pMonth , pEps) AS (SELECT * FROM pars)

2 WITH e(error) AS (SELECT *, NULL:: float8 AS error

3 FROM input)

4 MINIMIZE (SELECT sum(error) FROM e)

5 SUBJECTTO(SELECT -1*error <=

6 (pOTemp*outTemp + pMonth*month(time) +

7 pEps - pvSupply) <= error FROM e, p)

8 USING solverlp.cbc()

Here, lines 1-3 specify model data and decision columns. Lines
4-7 specify rules that define an objective function and constraints
that involve decision variables from the tables 𝑝 and 𝑒 . Finally,
line 8 specifies solverlp and cbc as a SolveDB+-compatible solver
and a solving method, respectively.

This general SOLVESELECT syntax based on standard SQL SE-
LECTs allows exposing different kinds of models and solvers to
user queries in a powerful yet concise way (RC1). Compared to
SolveDB, SolveDB+ uses a number of novel modeling features
unavailable in SolveDB. These are outlined in the remainder of
this section.

4.2 Asterisk notation
To support RC1’s need for concise and powerful syntax , SolveDB+
proposes the asterisk (*) notation for decision variable column
specification (col_name). Like SELECT * in the standard SQL, this
allows declaring all table columns as decision variables, thus of-
fering more compact problem specifications. Using asterisks, Line
1 in the above optimization problem can be concisely specified
as SOLVESELECT p(*) AS (SELECT * FROM pars).

4.3 Common Decision Table Expressions
In SolveDB, the WITH clause within SOLVESELECT is not supported.
Consequently, decision columns (variables) are only allowed in
a single (input) relation 𝐷

𝑎1
1 (i.e., 𝑁 = 1). Therefore, objective

and constraint (SELECT) expressions in the MINIMIZE/ MAXIMIZE
and SUBJECTTO blocks may become unnecessarily large and com-
plex. Consider the LR model fitting example. This problem uses
2 collections of decision variables: 𝑝𝑂𝑇𝑒𝑚𝑝 , 𝑝𝑀𝑜𝑛𝑡ℎ, 𝑝𝐸𝑝𝑠 as
model parameters and 𝑒1, 𝑒2, ..., 𝑒𝑀 (𝑀 >> 3) as prediction er-
rors. One of the most convenient ways to arrange these variables
in a single input relation in SolveDB is depicted in Table 5. Here,
𝑝𝑂𝑇𝑒𝑚𝑝 , 𝑝𝑀𝑜𝑛𝑡ℎ, 𝑝𝐸𝑝𝑠 are contained within a single row and 𝑒1,
..., 𝑒𝑀 contained within a single column, with many "empty cells"
representing unbound decision variables. When not referenced
within MINIMIZE/MAXIMIZE and SUBJECTTO expressions, such un-
bound variables are automatically excluded from computations
by SolveDB+. Still, referencing 𝑝𝑂𝑇𝑒𝑚𝑝 , 𝑝𝑀𝑜𝑛𝑡ℎ, 𝑝𝐸𝑝𝑠 in the
objective and constraint expressions is quite cumbersome - the
user is required to supply the predicate WHERE id=1 in all relevant
MINIMIZE/ MAXIMIZE, and SUBJECTTO expressions. This makes prob-
lem specifications complex and less readable, especially when
more than two variable collections are modeled.

Again meeting RC1’s need for concise and powerful syntax,
SolveDB+ proposes to extend the SOLVESELECT clause with
so-called Common Decision Table Expressions (CDTEs). As an ex-
tension of Common Table Expressions (CTEs, i.e. WITH queries),
these allow specifying additional temporary relations, 𝐷𝑎2

2 , ...,
𝐷
𝑎𝑁
𝑁

, with or without decision columns, where each relation
𝐷
𝑎𝑖
𝑖

can be accessed from SELECTs of 𝐷𝑎 𝑗

𝑗
, 𝑗 > 𝑖 , and in the
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MINIMIZE/MAXIMIZE and SUBJECTTO blocks (𝑅𝑚𝑖𝑛
1 , . . . ,𝑅𝑐𝑡𝑟𝑀

𝑀
) using

the alias 𝑎𝑖 . All decision variables of 𝐷𝑎1
1 , . . . , 𝐷

𝑎𝑁
𝑁

are solved
together in a single optimization problem. Note, when the list
of the decision columns is empty (|{𝑐 ∈ 𝐷

𝑎𝑖
𝑖
}| = 0), the CDTE

has the semantics of the standard CTE. As demonstrated earlier,
CDTEs in SolveDB+ allow conveniently modeling two or more
collections of decision variables, unlike SolveDB.

Efficient CDTE query evaluation ("efficient query process-
ing" in RC1): SolveDB+ efficiently evaluates SOLVESELECT queries
with CDTEs in two different ways. SolveDB+ either rewrites the
CDTEs to a single input relation and standard CTEs, or passes
them to a solver for specialized processing. The first approach
is preferred, as it is transparent and applicable to all registered
SolveDB+ solvers. Here, SolveDB+ first generates a new input
relation (𝐷 ′𝑎11 ) by joining all CDTEs with decision variables and
adding a special bit string attribute c_mask (see Table 5) to denote
CDTEs relevant to specific rows. Then, SolveDB+ generates and
processes a new SOLVESELECT without decision variables in
CDTEs, by using different projections over the new input relation:

1 SOLVESELECT l(pOTemp ,pMonth ,pEps ,error) AS

2 (SELECT * FROM input)

3 WITH p AS (SELECT pOTemp , pMonth , pEps FROM l

4 WHERE (c_mask & b'10') <> b'00'),

5 e AS (SELECT error FROM l

6 WHERE (c_mask & b'01') <> b'00')

7 MINIMIZE(SELECT sum(error) FROM e) ...

This syntactical extension does not increase the expressive
power of SOLVESELECT as the WITH sub-expressions can al-
ways be combined into a joint input relation. Instead, CDTEs
allow a more intuitive and comcise organization of decision vari-
ables in a SOLVESELECT query ("powerful yet concise" in RC1),
which is particularly useful when dealing with many auxiliary
variables in complex PA cases.

4.4 Shared Models and Model Management
PA applications often build (optimization) models by combining
several existing models, e.g. for P3 in our use-case we want to
use a generic linear time-invariant state-space model (LTI) for
capturing temperature dynamics of the HVAC-equipped campus
building, and then apply this model in two optimization problems
– LTI model parameter estimation and electricity cost optimization
– P3 and P4 in Figure 1. For the first problem, we want to use
our input data to estimate the parameters 𝑎1, 𝑏1, and 𝑏2 of the
following discrete LTI model for this specific building:

𝑥 [𝑛 + 1] =
[
𝑎1
]
x[𝑛] +

[
𝑏1, 𝑏2

]
u[𝑛]

𝑦 [𝑛] =
[
1
]
x[𝑛] +

[
0, 0

]
u[𝑛]

Here, x is the system 1× 1 state vector denoting the inside temper-
ature of the building; u is the system 2 × 1 input vector denoting
outside temperature and applied HVAC load, and y is the 1 × 1
output vector which just "feeds forward" the inside temperature.

In the second problem, we want to use this LTI model with in-
stantiated parameters 𝑎1, 𝑏1, and 𝑏2 inside the cost optimization
problem with additionally specified constraints on state variables
(inside temperature bounds) and input variables (HVAC power
bounds). Obviously, these two problems share the common speci-
fication of the generic LTI model (i.e., equations above). However,
the LTI model constraints have to be redefined in each of the
problems when using SolveDB, as there is no way to reuse them.

Algorithm 1: Problem model instantiation
Input:𝑚 - a generic model; Δ𝑚 - instantiation model
Output:𝑚′ - an instantiated model

1 𝐷 ← {𝑑𝑎𝑙𝑖𝑎𝑠 ∈𝑚.𝐷 |𝑎𝑙𝑖𝑎𝑠 ∉ {𝑎𝑙𝑖𝑎𝑠 |𝑑𝑎𝑙𝑖𝑎𝑠 ∈
Δ𝑚.𝐷}} ∪ Δ𝑚.𝐷

2 𝑅 ← {𝑟𝑎𝑙𝑖𝑎𝑠 ∈𝑚.𝑅 |𝑎𝑙𝑖𝑎𝑠 ∉ {𝑎𝑙𝑖𝑎𝑠 |𝑟𝑎𝑙𝑖𝑎𝑠 ∈
Δ𝑚.𝑅}} ∪ Δ𝑚.𝑅

3 return (D, R, m.s, m.m)

To address RC2, SolveDB+ proposes the concept of a shared
problem model. The shared problem model is a special user-
defined data type (UDT), which can be created via the SOLVEMODEL
clause sharing the same syntax as SOLVESELECT (see above). In-
stead of returning an output relation, this new clause returns
the UDT with the complete problem specification inside, i.e.,
(𝐷, 𝑅, 𝑠,𝑚). In SolveDB+, such UDTs can be transformed, used
in computations, or stored in a database using SolveDB+ queries.
The shared LTI model of the building inside temperature can be
specified, for example, as:
1 SELECT (SOLVEMODEL

2 pars AS (SELECT 0.0 AS a1 ,0.0 AS b1 ,0.0 AS b2)

3 WITH

4 data0 AS (SELECT 21.0 AS inTemp),

5 data AS (SELECT time ,outTemp ,inTemp ,hLoad FROM input),

6 simul AS (

7 WITH RECURSIVE t(time , x, inTemp) AS (

8 -- Initial data , for step 0

9 SELECT (SELECT min(ts) FROM data) AS time ,

10 (SELECT x0 FROM data0) AS x,

11 (SELECT intemp0 FROM data0) AS inTemp

12 UNION ALL

13 -- Computed data , for steps > 0

14 SELECT (SELECT time+interval '1 hour '),

15 (SELECT a1*x+b1*outTemp+b2*hLoad FROM pars),

16 n.inTemp

17 FROM t LEFT JOIN LATERAL

18 (SELECT time , inTemp , outTemp , hLoad

19 FROM data) AS n

20 ON t.time = n.time - interval '1 hour '

21 WHERE (time < (SELECT max(time) FROM data))

22 SELECT time , x, intemp FROM t)))

As seen in the example, this model is, essentially, a placeholder
with (dummy) relations for LTI model parameters (𝑝𝑎𝑟𝑠), initial
values of the state variables (𝑑𝑎𝑡𝑎0), and system inputs to be used
for model training or predictions (𝑑𝑎𝑡𝑎); and relations that repre-
sent simulated system states and outputs (𝑠𝑖𝑚𝑢𝑙 ). This model is
fairly useless without actual model parameters and data being
specified. Therefore, SolveDB proposes 3 specialized "conside yet
powerful" operations on shared problem models: instantiation,
evaluation, and inlining.

Model instantiation This operation instantiates a (generic)
model into a (specific) problem model instance. This is done by
allowing the user to redefine the input relation or any other
CDTE in the problem model, along with their decision column
list. For this, the operator << and another model are used, e.g.,
1 SELECT m << (SOLVEMODEL pars(b2) AS

2 (SELECT 0.995 AS a1, 0.001 AS b1, 0.2:: float8 AS b2))

3 FROM model

In this example, a generic LTI model m is first selected from the
table model. Then, m is instantiated using specifications of another
model (say Δ𝑚) that is generated with SOLVEMODEL in the same
query. Finally, the instantiation operator << replaces 𝑝𝑎𝑟𝑠 in𝑚
with 𝑝𝑎𝑟𝑠 in Δ𝑚 while denoting {𝑏2} as a sole decision column
with its initial value given in the table. The semantics of this
operator is seen in Algorithm 1.
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In general, as seen in Algorithm 1, model instantiation allows
transferring an input relation, objective functions, constraint
expressions, and any other CDTE expression from a source model
to a target model. All entities that cannot be found using an alias in
the target model are automatically added (instead of replaced) to
the target model. This gives the possibility to inject data, different
model parameters, objectives, constraints into a generic model.

Model Evaluation This operation allows accessing data from
the input relation or any other CDTE inside the model. For this,
SolveDB+ introduces a new MODELEVAL clause:
1 MODELEVAL ( select_stmt ) IN ( select_stmt )

This clause retrieves a model instance by evaluating the 2𝑛𝑑
SELECT expression (select_stmt), then turns this model into
a number of standard CTEs, and finally evaluates the 1𝑠𝑡 SE-
LECT expression in the context of these CTEs. Thus, the user
can retrieve and inspect data specified by the model, e.g.,
1 MODELEVAL (SELECT a1, b1, b2 FROM pars)

2 IN (SELECT m FROM model)

Model Inlining This operation allows embedding a model
instance into another model instance – specified either by SOLVE-
MODEL or SOLVESELECT. To inline the model, the INLINE clause
in SOLVESELECT or SOLVEMODEL is used, e.g.:
1 SOLVESELECT t(a1,b1 ,b2) AS

2 (SELECT 0.5 AS a1 ,0 AS b1 ,0.5 AS b2)

3 INLINE m AS (SELECT m <<

4 (SOLVEMODEL params AS (SELECT a1, b1, b2 FROM t)

5 WITH data0 AS (SELECT 25.0:: float8 AS inTemp),

6 data AS (SELECT * FROM input

7 WHERE hload IS NOT NULL )) FROM model)

8 MINIMIZE (SELECT sum((x-inTemp )^2) FROM m_simulation)

9 SUBJECTTO (SELECT 0<=a1 <=1, 0<=b1 <=1, 0<=b2 <=1 FROM t)

10 USING swarmops.sa()

This query specifies the problem of least squares to fit the LTI
model parameters 𝑎1, 𝑏1, 𝑏2 to the given data (Table 1). Here, the
INLINE clause specifies that this problem depends on the shared
problem model𝑚 from the table𝑚𝑜𝑑𝑒𝑙 . Before applying𝑚 to the
outer problem, the model𝑚 has to be first instantiated with new
LTI model parameters (line 4), a new initial value of the state
variable (line 5), and new training dataset (line 6-7). Note, the
decision columns (variables) from the outer problem (a1,b1,b2) are
passed to the inner model during the instantiation, so their values
can be used in computations defined by the inner model. Given
this query, SolveDB+ generates a new (outer) problem instance,
making all internal model relations (𝑚.𝐷 ,𝑚.𝑅) available to the
constraint expressions of the outer problem (lines 8-9) using the
prefix𝑚_, where𝑚 is the assigned model alias (line 3).

The injection of the decision variables throughmodel instantia-
tion is not the only way to interconnect inner and outer problems
in SolveDB+. Another way is to declare that some of the inner
model relations (CDTEs) contain decision columns. Consider
the optimization/scheduling step of the PA process (P4 in Fig-
ure 1). To solve the cost minimization problem, SolveDB+ allows
defining the following query:
1 SOLVESELECT t(hload , iTemp) AS

2 (SELECT time , outTemp , inTemp , hLoad , pvSupply

3 FROM input WHERE hload IS NULL)

4 INLINE m AS (SELECT m << (SOLVEMODEL

5 data AS (SELECT time ,outTemp ,0 AS inTemp ,hLoad FROM t)

6 WITH data0(inTemp) AS (SELECT NULL:: float8 AS itemp))

7 FROM model)

8 MINIMIZE (SELECT sum((hload - pvsupply )*0.12) FROM t)

9 SUBJECTTO

10 -- Bind inner and outer problem variables

11 (SELECT t.inTemp = m_simul.x FROM m_simul , t

12 WHERE t.time = m_simul.time),

13 -- Initial conditions

14 (SELECT iTemp =20 FROM m_data0),

15 -- Comfort and HP power constraints

16 (SELECT 20<=intemp <=25, 0<=t.hpload <=17000 FROM t)

17 USING solverlp.cbc();

As seen here, model instantiation is used to declare that the
attribute inTemp in the CDTE data0 of the model 𝑚 should be
treated as decision column (line 6). Thus, a new decision variable(-
s) will be introduced in the inner problem and made available to
the specification of the outer problem (line 14).

Algorithm 2 elaborates the semantics of this INLINE clause.
As seen in the algorithm, SolveDB+ imports the input relation,
CDTEs, and rule expressions from the inner model𝑚 into the
outer model 𝑜 . Each such expression receives a new prefixed
alias for use in the outer problem to prevent naming collisions
(lines 3,7). Further, table access scopes of these expressions are
reworked such that the new relations (with new aliases) in the
outer model can be accessed from the inner model expressions
using the initial aliases, and without the need to modify the actual
expressions (lines 5,9). In SolveDB+, this is done by introducing
additional CTEs in inner model expressions, e.g., WITH data0 AS

(SELECT * FROM m_data0), where𝑚_𝑑𝑎𝑡𝑎0 becomes a part of the
outer model, but 𝑑𝑎𝑡𝑎0 is used in the inner model instead.

Algorithm 2: Problem model inlining
Input: 𝑜 - a model instance before inlining;𝑚 - a model

instance to be inlined;𝑚𝑎 - a model alias;
Output: 𝑜 ′ - a model instance after inlining

1 𝑝𝑟𝑒 𝑓 𝑖𝑥 ←𝑚𝑎 +′ _′;
2 for 𝑖 ← 1 : |𝑚𝑖 .𝐷 | do
3 𝑑𝑝𝑟𝑒 𝑓 𝑖𝑥+𝑎 ← {𝑑𝑎

𝑖
|𝑑𝑎
𝑖
∈𝑚.𝐷};

4 𝑜.𝐷 ← 𝑜.𝐷 ∪ {𝑑𝑝𝑟𝑒 𝑓 𝑖𝑥+𝑎};
5 𝑠𝑐𝑜𝑝𝑒 (𝑑𝑝𝑟𝑒 𝑓 𝑖𝑥+𝑎) ← {𝑎 𝑗 ↦→ 𝑑𝑝𝑟𝑒 𝑓 𝑖𝑥+𝑎 𝑗 |𝑑𝑎 𝑗

𝑗
∈

𝑚.𝐷, 𝑗 < 𝑖, 𝑑𝑝𝑟𝑒 𝑓 𝑖𝑥+𝑎 𝑗 ∈ 𝑜.𝐷};
6 for 𝑖 ← 1 : |𝑚𝑖 .𝑅 | do
7 𝑟𝑝𝑟𝑒 𝑓 𝑖𝑥+𝑎 ← {𝑟𝑎

𝑖
|𝑟𝑎
𝑖
∈𝑚.𝑅};

8 𝑜.𝑅 ← 𝑜.𝑅 ∪ {𝑟𝑝𝑟𝑒 𝑓 𝑖𝑥+𝑎};
9 𝑠𝑐𝑜𝑝𝑒 (𝑟𝑝𝑟𝑒 𝑓 𝑖𝑥+𝑎) ← {𝑎 𝑗 ↦→ 𝑑𝑝𝑟𝑒 𝑓 𝑖𝑥+𝑎 𝑗 |𝑑𝑎 𝑗

𝑗
∈

𝑚.𝐷,𝑑𝑝𝑟𝑒 𝑓 𝑖𝑥+𝑎 𝑗 ∈ 𝑜.𝐷};
10 return (o.D, o.R, 𝑜 .s, 𝑜 .m)

Finally, as seen above, SolveDB+ can "seamlessly integrate"
the RC1-RC3 contributions of Sec. 3 and 4 and thus address RC4,
allowing the user o specify a complete PA workflow as an ex-
tended SQL query. SolveDB+ offers efficient in-DBMS processing
by optimally using the DBMS query optimization and execution
machinery for processing solver inputs and outputs, allowing for
integrated (cache-aware) and optimized processing of PA work-
flows. The effects of using SolveDB+ and its novel extensions are
evaluated next.

5 EXPERIMENTAL EVALUATION
In this section, we first present results from a SolveDB+ usability
study involving a group of data scientists. To support the end
user claims about SolveDB+, we also evaluated SolveDB+ on
two typical PA use-cases from the fields of energy and supply
chain management. Lastly, we used these use-cases to compare
SolveDB+ against SolveDB.
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Table 6: Strong and Weak Points of SolveDB+

Strong points
"Syntax very SQL-like, queries feel natural, intuitive from a SQL
users perspective. This also makes it **very** easy to pick up
for anyone familiar with basic SQL."
"I liked the syntax that makes you feel you are still working
inside the database sphere while solving optimization problems
without the need to jump between different solutions/languages"
"SolveDB+ is still a database system, meaning that it would be
possible to to use it even in legacy systems..."
"I think SolveDB+ is a great tool! ... For any professionals I see
this type of tool as the only tool for fast analytics."
"... great idea and great tool. I have already suggested one of my
students to check it out also...I am surprised how easy it was to
implement and solve problems - definitely not the last time I
will work with SolveDB+"
"Seems like a much more streamlined development experience."
"Easy to use in a database-context"
"I do think python is more intuitive, but SolveDB+ is very close."
"The simplicity, readability, easy to adapt and learn."
"Fewer lines of code needed to solve the same problem..."
"SolveDB+ was faster than MADlib+pIPython"
Weak points
"...for some optimization problems, we need to put some "extra"
effort to produce a good "representation" of the problem so it
that can be handled by SolveDB+ (e.g. Sudoku solver). SolveDB+
needs a big community, and more detailed documentations and
examples."
"Needs to be updated on every PostgreSQL release"
"Due to relational nature of SQL syntax, some expressions are
longer than they ideally should be"

5.1 Usability Study
We conducted a study where the usability of SolveDB+ was eval-
uated by a group of highly skilled data scientists, namely the 7
participants of the 2.5 day PhD course Aspects of Advanced Ana-
lytics, organized by Aalborg University in Dec. 2020. Each par-
ticipant pre-reported strong competences in SQL, Python, Post-
greSQL, and optimization problem solving. The participants used
SolveDB+ to solve their chosen subset of five simple optimization
problems (Knapsack, production planning, Sudoku, curve fitting,
and hypothetical DB deletes/inserts) and two more advanced
PA problems (demand and supply balancing, heat-pump power
optimization)[30]. In all cases, the initial data and the solution
had to be stored in a database. For comparison, the participants
had to use another in-DBMS analytics stack of their own choice
for solving these problems. They agreed to use the stack based
on PostgreSQL, the PyMathProg Python library for high-level op-
timization problem modeling, PL/Python language extension for
in-DBMS Python programming, and the widely used PostgreSQL
extensionMADlib[5] for in-DBMS machine learning. Afterwards,
the participants reflected on their experiences.

The study demonstrated that they solved their chosen prob-
lems with approx. 1.5-3.5 times less code and approx. 2 times
faster SolveDB runtimes when using SolveDB+. They identified a
number of strong andweak points of SolveDB+ - see Table 6. They
also reflected on the new SolveDB+ features, e.g., "The SolveDB+
shared model concept is interesting...", "I think it [shared models]
fits well with the rest of the system, ... can be incredibly useful in

specific use cases..." , "...it is a great idea to incorporate the oppor-
tunity to do simulation models within the dbms... however, when
doing this, my experience is that I need a lot of flexibility - and im
not sure the compact style of solveDB+ will benefit me there. At least
not yet". In summary, the study confirmed our expectations that
SolveDB+ has good usability, explainability, developer productiv-
ity, and performance, even for new users. The next subsections
dig deeper into these aspects.

5.2 Experimental Setup
To support the claims about SolveDB+ (Section 5.1), we further
evaluated SolveDB+ in two typical PA use-cases from the fields of
energy and supply chain management, covering the phases P1-P4
shown in Figure 1. For both use-cases, we implemented two PA
technology stacks: 1) a stack consisting of a standard DBMS and
relevant state-of-the-art PA tools and 2) a SolveDB+ stack with a
number of standard and specialized built-in solvers (used in place
of the PA tools). In both configurations, input data is read from
the database and the solution is stored back to the database. We
compared these two technology stacks bymeasuring the Effective
Lines of Code (eLOC)[24] (relevant since we are comparing high-
level languages and eLoc is used in similar comparisons [28, 31])
of the full implementations and their inherent P1-P4 parts. We
also compared them in terms of execution time, by encompass-
ing database I/O time as well as prediction, model fitting, and
optimization problem solving time. Lastly, these use-cases were
used to compare SolveDB+ against SolveDB by evaluating novel
SolveDB+ features, including CDTEs, shared models, and the pre-
dictive framework. In all experiments, we used SolveDB+/SolveDB
on top of PostgreSQL 11.2 in the default configuration and native
SolveDB solvers for LP/MIP/Blackbox problems [31].

5.3 Energy Planning (UC1)
We evaluated the impact of using SolveDB+ to solve the energy
planning problem from the running example, denoted as UC1,
using the NIST dataset [4] – containing 8737 hourly aggregates
from PV, HVAC, temperature sensors, all from a high precision
lab-home. We compared with two different PA technology stacks
using either specialized tools or general modeling tools.

Specialized toolsHere, we used standard PostgreSQL,Matlab
R2015b, and three powerful specialized libraries, Statistics andMa-
chine Learning Toolbox, System Identification Toolbox, and Multi-
Parametric Toolbox (MPT), for Linear Regression (LR) forecasting,
state-space (SS) model fitting, and dynamical system optimization,
respectively. Specifically, we used a Matlab implementation that
uses the following native library functions: fitlm to estimate the
LR model coefficients, predict to produce PV supply forecasts,
and ssest to fit HVAC state-space model parameters to the given
data. The implementation uses the outputs of these functions
to define an MPC (model-predictive control) controller with a
number of constraints on the system input and state variables
and the PV supply amounts used as a reference for minimizing
electricity cost. The size of this implementation in eLOC is given
in Figure 3(a) as Matlab-native. As this configuration is the most
comprehensive, it is used as a reference for this comparison.

General-purpose modeling tools In this configuration, we
utilized a standard DBMS, Matlab R2015b, and YALMIP – a Mat-
lab toolbox for rapid prototyping of optimization problems. Like
SolveDB+, YALMIP is provided with a variety of solvers for dif-
ferent problem classes. By using both YALMIP and SolveDB+,
we modeled LR model estimation (P2), state-space model fitting
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Figure 3: Implementation sizes (a) and run time (b) of UC1

(P3), and dynamical system optimization (P4) problems as ex-
plicit LP/nonlinear optimization problems using Matlab/YALMIP
programs and SolveDB+ queries, respectively. Specifically, P2
is modeled as an LP optimization problem by minimizing the
forecasting error to compute regression model parameters. To
solve this problem, SolveDB+ and YALMIP use the Coin-OR CBC
solver for the actual computations. Similarly, P3 is specified as
a non-linear problem (NLP) of minimizing prediction error of a
linear dynamical system using time domain data andHVAC power
levels and inside temperatures as decision variables. To solve this
problem, Matlab/YALMIP uses fminsearch and SolveDB+ uses
simulated annealing. These are two distinct NLP solvers that solve
the problem in a non-deterministic way. Since they typically give
different solutions each time, we only measure average time re-
quired for a single solving iteration (fitness function evaluation,
Figure 4(b)). Lastly, P4 is modeled as a linear cost minimization
problem, where the cost of electricity is minimized under a num-
ber of constraints on the HVAC system state and input, and by
taking PV supply forecasts into account (based on the LR model).
SolveDB+ and YALMIP use CBC to solve this problem. The size
of YALMIP implementation in eLOC is given in Figure 3(a) as
Matlab-YALMIP. In SolveDB+, the complete PA workflow, encom-
passing P2-P4, were implemented in 3 different ways:
-S-3SS P2-P4were implemented as three independent SOLVESELECTs
linked using temporary tables (P1).
-S-shared To be able to reuse the HVAC model parts repeating
in P3 and P4, we defined the complete PA problem as a single
SOLVESELECT using a SolveDB+ shared model. The model captures
indoor temperature dynamics, with P2 and P3 SOLVESELECT speci-
fications embedded into the model. Note, the size of the model is
equally shared by the respective parts in Figure 3(a).
-S-solvers To relieve the user from the need to specify detailed
SOLVESELECT queries for P2 and P3, we implemented two compos-
ite solvers which hide respective problem specification details. As
these solvers are conceptually similar to the library functions
(Matlab-native), the overall PA workflow is simplified to a single
SOLVESELECT invoking the composite solvers.

Comparison to specialized tools As seen in Figure 3, the
complete PA problem can be specified in just 41 lines of Matlab
code and solved in 6.5 secs using specialized tools (Matlab-native).
Here, around 40% of code and 18% of time is used for initializing
libraries and accessing the database, the rest is spent on forming
required inputs for, and invoking, the black-box library functions
(all considered as P1). As seen for S-solvers, this I/O overhead as
well as optimization time can be reduced by more than one order
of magnitude if all computations are pushed inside the DBMS.
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Figure 4: Scalability of prediction (P2) and model fitting
(P3) using general-purpose (YALMIP, SolveDB+) and spe-
cialized tools (P2: fitlm, P3: ssest)

This also reduces the PA problem (code) size when SolveDB+
with specialized (composite) solvers are used. As seen in Fig-
ure 5 (SolveDB+ vs. MPT), this optimization (P4) performance
improvement comes from the reduced model generation time –
time spent by MPT to translate the problem to YALMIP, and for
YALMIP to aggregate problem constraints and build an optimiza-
tion (P4) model instance in the binary representation (required
by CBC). However, as seen in Figure 3(b), native prediction (P2)
and SS model fitting (P3) functions are hard to outperform using
general-purpose solvers (Matlab-native v.s. S-solvers). Figure ??
hint that specialized SolveDB+ solvers for prediction and model
fitting are required for larger input datasets. Considering the
prediction alone, LR model fitting (P2) using the general-purpose
solvers scale linearly with respect to independent model count
and exponentially with respect to training and prediction input
size, and therefore might still be useful for some smaller PA cases.

Comparison to general-purpose toolsCompared to the na-
tive tools (Matlab-native), general modeling tools (Matlab-YALMIP,
S-3SS and S-shared – all using general-purpose solvers) offer a
single language and the full control of how the three PA sub-
problems P2-P4 are specified. However, explicitly specifying these
sub-problems requires up to 45% more code (see Figure 3(a)). Fur-
ther, computations are up to 3.6 times slower (see Figure 3(b)) and
they do not scale (linearly) as in the native case (see Figures 4–5).
Comparing YALMIP to SolveDB+, SolveDB+ solves the complete
PA problem 3.5 times faster due to significantly reduced data I/O
and HVAC optimization time. This can also be seen in Figure 5,
which shows that SolveDB+ exhibits up to 2 order of magnitude
less data I/O and up to 3 orders of magnitude less model genera-
tion time, which is spent translating high-level constraint and
objective function specifications into the binary format required
by CBC. Both YALMIP and SolveDB+ exhibit somewhat compara-
ble forecasting (P2) and model fitting performance (P3). In the P2
case, YALMIP model generation time is less significant as model
constraints can be vectorized (defined without "‘for"’ loops) and,
in the P3 case, just 3 decision variables (𝑎1, 𝑏1, and 𝑏2) are used.
Still, as shown in Figure 4(a), SolveDB+ implementation offers
up to 18% lower forecasting time for larger input dataset due to
more efficient processing of linear constraints. This difference is
less evident when several independent forecasting models need
to be estimated using smaller training datasets. Lastly, in addition
to these performance benefits, SolveDB+ offers up to 33% smaller
implementation sizes as shown in Figure 3(a).
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Figure 5: Scalability of HVAC energy optimization (P4)
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Comparison to in-DBMS analytics tools Next, we com-
pared SolveDB+ against the in-DBMS analytics stack from the
usability study (Section 5.1). We used MADlib’s in-DBMS lin-
ear regression (linregr_train UDF) for P2. Since MADlib alone
cannot be used to solve the HVAC model fitting and optimiza-
tion sub-problems (P3-4), we implemented two in-DBMS Python
(PL/Python) programs for HVAC model fitting (P3) and HVAC op-
eration optimization (P4) by utilizing the Swarmops and PyMath-
Prog Python libraries, respectively. These libraries offer high-level
optimization problem modeling capabilities (required for P3-4)
and, under the hood, invoke the low level solvers Differential Evo-
lution and GLPK, respectively. A SolveDB+ implementation uses
three SOLVESELECT statements that define the P2-P4 sub-problems
and invoke the (same) linear regression, Swarmops, GLPK low-
level solvers using SolveDB+’s high-level solvers (incl., solverlp
and swarmops – see Section 3.2 and Section 4.1). The SolveDB+
implementation also uses a PL/pgSQL UDF to compute prediction
error (being minimized) given (solver-)supplied candidate values
of the HVAC model parameters (P3). The goal of this experiment
was to compare implementation sizes and runtimes of individual
phases (P2-P4) when solving a number of UC1 instances using
the same set of low-level solvers (i.e., linear regression, differen-
tial evolution, GLPK) running inside a DBMS. Thus, we aimed
at comparing the two stacks in terms of how P2-P4 are specified
by the user, how well these (high-level) problem specifications are
translated to (low-level) solver inputs, and how fast data, solver
inputs and outputs are processed by the two in-DBMS stacks.

As seen in Figure 7(b), MADlib+Python required 64 eLOC of
mixed SQL and PL/Python code and SolveDB+ required 47 eLOC
of (extended) SQL and PL/pgSQL code. While implementation
sizes are somewhat comparable, SolveDB+ required very little
non-SQL code (15 lines of PL/pgSQL only) to specify the iterative
P3 computations. Note, we have also implemented UC1 using
pure (extended) SQL (in total 42 lines) with a recursive CTE
query for P3. However, this implementation with a recursive
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Figure 7: UC1 performance (a) and implementation sizes
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Figure 8: Scalability of In-DBMS UC1 implementations

query for HVAC simulations might be less intuitive for inexpe-
rienced users. In terms of performance, as seen in Figure 7(a), a
single instance of UC1 can be solved with SolveDB+ more than
twice as fast as with MADlib+Python (19.9 vs 42.7sec). Here,
significant gains are observed primarily for P3 (16.8 vs 29.3sec)
and P4 (0.13 vs 13.2 sec). For P3, SwarmOPS (in C++) was able
to reevaluate the fitness function specified as a SELECT expres-
sion from SOLVESELECT (that calls a PL/pgSQL function) approx. 1.7
time faster that pure Python implementation, where both the
solver (SwarmOPS) and the fitness function were implemented in
Python. For P4, SolveDB+ offers faster processing of P4 problem
symbolic descriptors (solverlp vs PyMathProg), to be consumed
by the same low-level solver (GLPK in C). As seen in Figure 8
(a-c), this gain is more significant when scaling the number of
UC1 instances to be solved, i.e., scaling the number of parameters
need to be estimated for P3, and predictions and optimization
(P2, P4) need to be made for multiple independent HVAC in-
stallations. Here, SolveDB+ offered 3.6x faster predictions (P2,
Figure 8(a)) since it did not need to create intermediate tables
for model parameters and summaries, unlike MADlib; 2.1x faster
model parameter estimation, primarily, due to faster evaluation
of the fitness function (P3, Figure 8(b)); and 161x faster optimiza-
tion (P4, Figure 8(c)) primarily due to efficient manipulation of
symbolic optimization models and automatic problem partition-
ing. All in all, SolveDB+ had 2.8x faster execution of the complete
PA workflow using less and less complex code, showing its clear
advantage over MADlib+Python and confirming the claims about
SolveDB+ usability (and performance, see Section 5.1).
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Figure 10: UC2 performance (a) and eLOC (b) comparison

5.4 Supply Chain Management (UC2)
As a second use case (UC2), we considered a common supply
chain management scenario. We used the TPC-H dataset [26]
containing production supply chain items with the information
associated to these items, e.g., orders in the last months, parts
needed to assemble the items, size of the parts, price, suppliers, etc.
The objective in this use case is to increase revenue by producing
in advance the items that will be the most profitable in the next
month. The warehouse of the production facility has a limited
volume capacity, so the decision on which items to produce and
store has to be optimized subject to this constraint. This PA
workflow requires predicting expected item demand for the next
month (P2), modeling expected profit for the items by weighting
item profit by the probability that the item is ordered in the next
month (P3), and solving a variant of the knapsack problem, where
the warehouse’s capacity constraint is respected (P4).

We compared PA stacks with SolveDB+ and both standalone
and integrated DBMS analytics tools. For SolveDB+, we used the
predictive framework with a built-in ARIMA solver based on
the Statsmodels 0.8.0 package [29] for P2, PL/pgSQL function
for P3, and a pre-installed MIP solver from the GNU Linear Pro-
gramming Kit (GLPK) v4.47 for P4. For standalone tools, we used
a configuration with a standard PostgreSQL 9.6.1 (P1, P3), an
ARIMA model in R 3.2.3 (P2), and a MIP solver in CPLEX 12.7.1
(P4). For the integrated DBMS analytics tools, we utilized Post-
greSQL 9.6.1(P1, P3) with the MADlib [5] extension for in-DBMS
machine learning using SQL (P2), and the same MIP solver in
CPLEX 12.7.1 (P4). We used 5 different UC2 sizes, scaling the
number of items in the dataset. Each item is associated with a
time series containing 80 rows of monthly orders.

Figure 10(a) shows the results on the UC2 instance with 100
items. In all implementations, the prediction process accounted
almost exclusively for the total execution time, as up to 10000
ARIMA models are trained: 100 per item in R and MADlib, 10

particles with 10 iterations per item in SolveDB+. However, the
SolveDB+ implementation was approximately 30% faster than
R, and 2 orders of magnitude faster than MADlib, thanks to
the efficient use of particle swarm optimization solver for cross
validation of the model parameters. Specifically, MADlib does
not provide efficient support for cross-validating the forecasting
models (ARIMA), with multiple write/read operations accounting
for as much as 60% of the total execution time. Figure 10(b) shows
the size for the three implementations (implementation size is
identical across instances), with SolveDB+ being approximately
50% smaller than the R/MADlib and CPLEX implementations.

The performance results for the different UC2 instances in
Figure 9, together with Figure 10(b), show that SolveDB+ allows
for a more compact problem definition and execution times that
are between 20% and 30% faster than the R configuration, and
orders of magnitude faster than the MADlib setup. SolveDB+
outperforms the other two systems thanks to a reduced number
of I/O operations and the use of the native local search solvers
for hyper-parameters optimization in the model training phase.
All in all, UC2 also confirms the end-user claims about SolveDB+
usability (and performance) (Section 5.1).

5.5 SolveDB+ Feature Evaluation
(Comparison to SolveDB)

SolveDB+ inherits features and advantages from SolveDB [31].
Specifically, both offer wider applicability and significantly in-
creased tool productivity and usability (order of magnitude less
code), while in most cases providing much (up to > 2 orders of
magnitude) better performance than systems such as LogicBlox
or Tiresias (seeSection 2). We now evaluated the novel SolveDB+
features that distinguish SolveDB+ from SolveDB using the en-
ergy and supply chain management use-cases, UC1 and UC2.

Common Decision Table Expressions (CDTEs) As explai-
ned in Section 4, CDTEs extend the SOLVESELECT clause like
Common Table Expressions (CTEs) extend the simple SELECT in
standard SQL. In contrast to CTEs, CDTEs allow annotating some
table attributes as decision columns, the values of which are eval-
uated as part of a (much better organized) single SOLVESELECT
problem. As seen in Figure 6, CDTEs have a major impact on
SolveDB+ usability. Specifying LR model estimation/prediction
problems and HVAC optimization problems from the energy plan-
ning use-case without CDTEs (SolveDB) requires up to 3 times
more SOLVESELECT code compared to using CDTEs (SolveDB+). In
this case, the HVAC model fitting problem does not benefit from
CDTEs, as it uses just a single collection of decision variables,
which can be well arranged in a single table. Our experiments also
showed that CDTEs do not introduce significant performance
overhead to the overall PA workflow.

Shared Optimization Models As explained in Section 4,
shared optimization models allow reusing data, objective, and
constraint specifications across several optimization problems.
UC1 can benefit from such models, by reducing the amount of
SOLVESELECT code 2 times (Figure 6) for HVAC model fitting and
optimization sub-problems alone, and 16% for the complete PA
application (see S-3SS and S-shared in Figure 3(a)), which also
includes the shared model specifications. As can be seen in Fig-
ure 3(b), shared models do not introduce significant performance
overhead to the overall PA workflow.

Predictive Framework As discussed in Section 4, the pre-
dictive framework of SolveDB+ offers two ways to integrate new
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Figure 11: LR code size (a) and execution time (b)

forecastingmodels. The user can either manually specify forecast-
ing models as SOLVESELECT queries and/or specialized solvers,
or install them as "wrappers" over third-party general purpose
forecasting libraries. We now compare these two approaches.

For this experiment, we developed the linear regression model
as a SOLVESELECT query a) with CDTEs, and b) with no CDTEs
wrapped into the respective solvers within the predictive frame-
work. Additionally, we c) installed a general purpose linear re-
gression model from the Sci-kit learn library [3] as a wrapper
in SolveDB+. Figure 11(a) shows the implementation size for
these three cases. While the size of the Sci-kit implementation
is approximately the same as the CDTE implementation, the no
CDTE implementation is approximately 30% larger than the other
two. Still, the Sci-kit solver implementation is conceptually sim-
pler as it just uses a library function. Furthermore, Figure 11(b)
shows that the specialized SolveDB+ implementation is almost
8 times faster than the manual SOLVESELECT implementation
(CDTEs do not affect performance), as it combines both in-DBMS
execution and a highly specialized machine learning library.

6 CONCLUSION AND FUTUREWORK
This paper presented SolveDB+, the first SQL-based DBMS to
provide an extensible and efficient eco-system for all Prescriptive
Analytics (PA) phases. SolveDB+ reduces the complexities and
inefficiencies of existing PA application stacks, which consist of
many specialized, independent, poorly connected systems with
different APIs and languages. SolveDB+ acts as a "swiss-army
knife" system for PA, effectively supporting all 5 phases of PA
development: P1: data management, P2: prediction/forecasting,
P3: system modeling, P4: optimization problem solving, and P5:
solution analysis. SolveDB+ provides extensibility, allowing de-
velopers to add new custom functionalities for specialized PA
cases. SolveDB+’s common SQL-based language can express an
entire PA workflow in a single SQL-based query. SolveDB+ offers
faster PA workflow execution due to its in-DBMS PA algorithms.

Compared to the earlier (SolveDB) tool, SolveDB+ provides a
number of novel modeling features, including common decision
table expressions and shared optimization models, enabling a sig-
nificant size reduction of complex PA problem specifications. It
also introduces a new predictive framework, which is a generic
and extensible in-DBMS platform for the use and development of
time series forecasting methods. With all its features, SolveDB+
offers convenient and efficient ways to use and extend the eco-
system of forecasting models and optimization problem solvers,
thus adapting the system to virtually unlimited PA scenarios.

Our experiments showed that the new SolveDB+ features yield
up to 5 times smaller problem specifications (better productivity

and explainability) and up to 6 times faster forecasting time, com-
pared to SolveDB. Overall, SolveDB+ offers up to three orders of
magnitude better performance for individual PA steps, and up to
3.5 times faster execution times and 3 times smaller implementa-
tion sizes for the full PA workflow, compared to state-of-the-art
baselines. SolveDB+ scales well in its chosen in-DBMS setting.

Future work will redesign SolveDB+ for distributed Big Data
processing and integrateWhat-If analysis for hypothetical scenar-
ios, and support more data formats, operators on shared models,
and further ML models.
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ABSTRACT
Influence Maximization (IM) is the problem of finding a set of

influential users in a social network, so that their aggregated

influence is maximized. The classic IM problem focuses on the

single objective of maximizing the overall number of influenced
users. While this serves the goal of reaching a large audience,

users often have multiple specific sub-populations they would

like to reach within a single campaign, and consequently multi-

ple influence maximization objectives. As we show, maximizing

the influence over one group may come at the cost of signifi-

cantly reducing the influence over the others. To address this,

we propose IM-Balanced, a system that allows users to explicitly

declare the desired balance between the objectives. IM-Balanced
employs a refined notion of the classic IM problem, called Multi-

Objective IM, where all objectives except one are turned into

constraints, and the remaining objective is optimized subject to

these constraints. We prove Multi-Objective IM to be harder to

approximate than the original IM problem, and correspondingly

provide two complementary approximation algorithms, each suit-

ing a different prioritization pertaining to the inherent trade-off

between the objectives. In our experiments we compare our so-

lutions both to existing IM algorithms as well as to alternative

approaches, demonstrating the advantages of our algorithms.

1 INTRODUCTION
Social networks attracting millions of people, such as Twitter

and LinkedIn, have emerged recently as a prominent marketing

medium. Influence Maximization (IM) is the problem of finding a

set of influential network users (termed a seed-set), so that their

aggregated influence is maximized [23]. IM has a natural applica-

tion in viral marketing, where companies promote their brands

through the word-of-mouth propagation. This has motivated ex-

tensive research [7, 26], emphasizing the development of scalable

algorithms [20, 33].

The classic IM problem focuses on the single objective of

maximizing the overall number of influenced users, given a bound

on the seed-set size. While this serves the goal of reaching a large

audience, IM algorithms may obliviously focus on certain well-

connected populations, at the expense of other demographics

of interest. Indeed, marketing campaigns often have multiple

objectives, and consequently multiple subpopulations they would

like to reach within a single campaign. In this paper we refer to

the subpopulations of interest as emphasized groups, and assume

the existence of boolean functions over user profile attributes,

which identify these groups. We introduce the Multi-Objective

IM problem, which refines the IM problem, handling multiple

emphasized groups.

Ideally, one would like to find a seed-set which simultaneously

maximizes the influence over all emphasized groups. However, as

we demonstrate, maximizing influence over one group may come
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at the cost of significantly reducing the influence over another

group. Hence, we devise a framework enabling users to explicitly

specify the desired trade-off. Concretely, our system, called IM-
Balanced, allows the user to prioritize the objectives and declare

what portion of the influence over specific groups she is willing

to compromise, in order to increase influence over the others.

For simplicity of presentation, we initially focus on the case

where the user has two (possibly overlapping) emphasized groups,

denoted as 𝑔1 and 𝑔2, and she is willing to compromise a certain

percentage of the maximal possible influence over one group

for an influence increase over the other. We then extend our

discussion to multiple groups, and shortly discuss alternative

problem definitions.

We illustrate the problem that we study in this paper via the

following two examples.

Example 1.1. Consider a government office aiming to spread

a message regarding a new vaccination policy, across a social

network. The main goal is to reach the largest possible number

of users, but at the same time, it is also desirable to maximize the

number of reached anti-vaccination users. Here 𝑔1 consists of all

users, and 𝑔2 is the group of anti-vaccination users. A standard

IM algorithm will maximize the overall influence (𝑔1), possibly

at the expense of not reaching sufficient 𝑔2 members. A partial

solution can be found in targeted IM algorithms (e.g., [9]), which

maximize the influence over a particular group (here - 𝑔2). But

if this (possibly small) group is somewhat socially isolated, the

message may not reach a sufficient number of users overall.

Example 1.2. Consider a tech company running a recruitment

campaign over a social network, with the goal of hiring both

engineers (𝑔1) and researchers (𝑔2). Assume that there are far

more engineers than researchers, and that the two groups are

not strongly connected socially (though some users may belong

to both groups). A targeted IM algorithm focusing, e.g., on users

belonging to the union of the groups, may fail to reach a suffi-

ciently large fraction of the researchers. On the other hand, a

targeted IM focusing on the researchers may result in too few

engineers being reached.

In both examples, there is a trade-off between the influence

over two groups of interest. One simple solution is to split the

budget (i.e., seed-set size) and run two separate (single-objective)

targeted IM algorithms. However, it is not clear how to split the

seed-set to obtain the desired balance between the objectives.

An alternative approach to tackle multi-objective optimization

problems is the weighted-sum approach, where the objectives

are combined into a single objective. In the IM setting this in-

volves assigning each user a weight depending on the groups(s)

to which she belongs (e.g. [26, 31]). A main difficulty in applying

this approach is assigning the weights that achieve a desired

influence balance [21]. Indeed, as we demonstrate in our exper-

iments, the exploration for the optimal weights results in poor

runtime performance.

Another more direct approach to multi-objective optimization

problems is the constraints method [12], where all objectives

except one are transformed into constraints, and the remaining
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objective is optimized subject to these constraints. Our work

employs this approach for IM. Concretely, in IM-Balanced users

can define the emphasized groups, and specify for each group

the fraction of its optimal influence that they are willing to com-

promise in order to increase influence over other groups. An

easily operated UI allows users to view the maximal possible

influence for each group (and what influence it entails over other

groups), specify the constraints, and view the corresponding

derived influence.

Continuing with Example 1.1, if the UI indicates that the over-

all number of users that can be influenced is rather high, one

may be willing to sacrifice a certain amount in order to increase

the influence over anti-vaccination users. In Example 1.2, assum-

ing that the company is interested in recruiting a small number

of researchers and a larger number of engineers, one can set a

constraint on the minimal number of researchers to be informed,

and maximize the influence over engineers under this constraint.

Next, we provide a brief overview of our contributions.

Multi-Objective IM. To allow users to balance the objectives

we formalize the Multi-Objective IM problem, which extends the

IM problem as follows. Given two emphasized groups 𝑔1 and 𝑔2
and a threshold 0 ≤ 𝑡 ≤ 1, we add a requirement that the solution

must exceed a 𝑡-fraction of the optimal influence over 𝑔2. Then,

subject to this constraint, we maximize the influence over 𝑔1. For

𝑡 = 0 one gets a single-objective targeted IM problem solely over

𝑔1 users, whereas for 𝑡 = 1 one gets a single-objective targeted

IM solely over 𝑔2 users (Section 3).

Approximation lower bound. We prove that, like IM, Multi-

Objective IM is 𝑁𝑃-hard. We show that when the constraint

threshold 𝑡 is > (1 − 1

𝑒 ), then no seed-set satisfying the con-

straint can be found in PTIME. Moreover, we prove that the

(1 − 1

𝑒 )-approximation factor for 𝑔1, which is optimal in the (un-

constrained) IM problem, is unattainable in our setting. We show

however that it can nevertheless be achieved if the constraint

imposed on 𝑔2 is also approximated by a (1 − 1

𝑒 ) factor. This
bound exposes the trade-off between the approximation factor

for the 𝑔1 users and the relaxation of the constraint imposed on

the𝑔2 users. We therefore provide two approximation algorithms,

each suiting a different prioritization pertaining to this trade-off.

The MOIM algorithm. Our first algorithm is simple yet highly

efficient. It follows the budget splitting approach mentioned

above, but rather than requiring the user to specify the parti-

tion, it derives it by itself. MOIM runs two single-objective tar-

geted IM algorithms, each focusing on a different group, and

combines their outputs. It guarantees that the constraint is fully

satisfied, while providing a (1 − 1

𝑒 · (1−𝑡 ) )-approximation for the

𝑔1 users, which equals 1− 1

𝑒 for 𝑡 = 0, but decreases as 𝑡 increases.

A key advantage of MOIM is its modularity: MOIM maintains

the properties of its input IM algorithm, carrying over all of its

optimizations, and therefore it achieves near linear time perfor-

mance. Such good performance is critical for scaling successfully

to massive networks (Section 4).

The RMOIM algorithm. To get a tighter approximation ratio

one needs to compromise on (i) how strictly the constraint is

maintained, and (ii) performance. The RMOIM algorithm relaxes

the constraint, allowing its approximation by a (1 − 1

𝑒 ) factor,
achieving in return near optimal approximation ratio for the

influence over 𝑔1. RMOIM extends a Linear program (LP) for

Maximum Coverage [38], and thus its performance becomes

polynomial (but still practical for real-life social networks includ-

ing tens of thousands users, as our experiments indicate). One

point to note is that building the LP assumes knowledge of the

optimal influence over the constrained 𝑔2 group. As this value is

incomputable in PTIME, we approximate it, and provide worst

case guarantees for this as well.

Implementation and Experimental study. We have imple-

mented our algorithms as part of the IM-Balanced system and ex-

perimentally compare our algorithms to (targeted) IM algorithm

and alternative approaches. We show that while the weighted-

sum approach, when assigned optimal weights, is able to achieve

results of quality close to ours, our algorithms are significantly

more efficient. In terms of runtime performance, we show that the

quality advantage comes with a reasonable performance cost for

MOIM, which scales well for massive networks. For RMOIM the

decrease in scalability turns out to be moderate, proving it practi-

cal for non-massive networks, while often exceeding worst-case

guarantees to satisfy the constraint (Section 6).

A demonstration of IM-Balanced’s usability and its suitabil-

ity to end-to-end employment was presented in [16]. The short

paper accompanying the demonstration provides only a brief,

high-level description of the system, whereas the present paper

provides the theoretical foundations and algorithms underlying

the demonstrated system, as well as the experimental study.

For space constraints, all proofs are deferred to our technical

report [3].

2 PRELIMINARIES
This section presents the standard IM problem, and introduces

the auxiliary problem of Group-Oriented IM. Our multi-objective

variant of the IM problem is then presented in the next section.

2.1 Influence Maximization
We model a social network as a weighted graph 𝐺=(𝑉 , 𝐸,𝑊 ),
where𝑉 is the set of nodes and every edge (𝑢, 𝑣)∈𝐸 is associated

with a weight𝑊 (𝑢, 𝑣)∈[0, 1], which models the probability that

𝑢 will influence 𝑣 . Given a function 𝐼 (·) dictating how influence

is propagated in the network, the IM problem [23] is defined as

follows.

Definition 2.1 (IM [23]). Given a weighted directed graph 𝐺

and a natural number 𝑘 ≤ |𝑉 |, find a set 𝑂 that satisfies: 𝑂 =

𝑎𝑟𝑔𝑚𝑎𝑥 {𝑇 :𝑇 ⊆𝑉 , |𝑇 |=𝑘 }𝐼 (𝑇 ), where 𝐼 (𝑇 ) is the expected number of

nodes influenced by the seed set 𝑇 .

Naturally, every node 𝑣 in a seed set 𝑇 is influenced by itself,

and hence, by definition, 𝑇 is influenced by 𝑇 with probability 1.

In what follows, we refer to influenced nodes as covered.
The function 𝐼 (·) is defined by the influence propagation

model. The majority of existing IM algorithms apply for the

two most researched models [7, 20], the Independent Cascade

(IC) and the Linear Threshold (LT) models. Both models define

the function 𝐼 (·) as non-negative, submodular and monotoni-

cally rising. Our results hold under both models. For simplicity

of presentation, in our numeric examples throughout the paper

we focus on the LT model.

In the LT model, each node 𝑣 chooses a threshold 𝜃𝑣∈[0, 1]
uniformly at random, which represents the weighted fraction of

𝑣 ’s neighbors that must become covered in order for 𝑣 to become

covered. Given a random choice of thresholds and an initial set

of seed nodes, the diffusion process unfolds deterministically

in discrete steps: in step 𝑡 , all nodes that were covered in step
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Figure 1: Example social network with two emphasized groups.

𝑡−1 remain covered, and we cover any node 𝑣 for which the

total weight of its covered neighbors is at least 𝜃𝑣 . To illustrate,

consider the example network presented in Figure 1, ignoring for

now the users’ border colors. For 𝑘=2, the optimal 2-size solution

is 𝑂={𝑒, 𝑔}, where 𝐼 (𝑂)=5. Throughout the paper, the threshold
for each node was sampled uniformly at random from [0, 1].

Existing IM algorithms. Selecting the optimal seed set is NP-

hard, and hard to approximate beyond a factor of (1− 1

𝑒 ) [23].The
subsequentwork on IM following [23], which had already achieved

the optimal approximation, has focused on scalability [7, 13, 29].

In what follows, whenever we refer to an IM algorithm, we in

fact refer to a probabilistic algorithm, which, given the param-

eters 0≤𝜖, 𝛿≤1, achieves, with probability ≥(1−𝛿), the optimal

approximation factor up to an additive error of 𝜖 . To ease the pre-

sentation, we omit the discussion of 𝜖 and 𝛿 whenever possible.

State-of-the-art IM algorithms are based on the Reverse In-

fluence Sampling (RIS) framework, achieving near optimal time

complexity [33] of Θ̃(𝑘 ·( |𝑉 |+|𝐸 |)). The RIS framework utilizes

sampling over the transpose graph, to reduce the problem to

an instance of the Maximum Coverage (MC) problem [38]. For

completeness of this paper, we formally define this problem.

Definition 2.2 (MC [38]). Given subsets 𝑆1, ..., 𝑆𝑚 of elements

from 𝑈 = {𝑢1, ..., 𝑢𝑛} and a natural number 𝑘 ≤ 𝑚, the goal is to

find 𝑘 subsets from 𝑆1, ..., 𝑆𝑚 so as to maximize the number of

covered elements in their union.

The well-known MC problem has a simple greedy approxima-

tion procedure [38], achieving an optimal approximation factor

of (1− 1

𝑒 ). The RIS framework consists of two steps: First, 𝜃 nodes

are sampled uniformly, then, for each sampled node 𝑢, a back-

ward influence propagation is simulated from it, with all nodes

covered in a simulation constituting a Reverse Reachability (𝑅𝑅)

set. This 𝑅𝑅 set plays the role of possible influence sources for 𝑢.

Next, each node is associated with the set of 𝑅𝑅 sets containing it,

then, using a greedy algorithm, 𝑘 nodes are selected with the goal

of maximizing the number of covered 𝑅𝑅 sets. The observation

underpinning this approach is that influential nodes will appear

more frequently in 𝑅𝑅 sets, and that the share of 𝑅𝑅 sets covered

by a seed set implies an unbiased estimator for its influence.

Example 2.3. Let𝑘=2, 𝜃=4 and four random𝑅𝑅 sets𝐺𝑑1={𝑏, 𝑑, 𝑓 },
𝐺𝑒={𝑒},𝐺𝑑2={𝑑, 𝑓 } and𝐺𝑏={𝑎, 𝑏, 𝑒} are generated from the graph

depicted in Figure 1 (𝑑 was sampled twice). The correspond-

ing MC instance is: 𝑆𝑏={𝐺𝑑1 ,𝐺𝑏 }, 𝑆𝑑={𝐺𝑑1 ,𝐺𝑑2 }, 𝑆𝑓 ={𝐺𝑑1 ,𝐺𝑑2 },
𝑆𝑒={𝐺𝑏 ,𝐺𝑒 }, 𝑆𝑎={𝐺𝑏 }. W.h.p. the sets 𝑆𝑒 , 𝑆𝑓 will be selected by

the greedy algorithm for MC, as they cover all 𝑅𝑅 sets, and hence

the nodes 𝑒, 𝑓 will be selected as the seed nodes.

Most recent works focused on optimizing this approach by

minimizing the number of sampled 𝑅𝑅 sets [20, 28, 34].

An important observation is that the second step of RIS can

also be achieved using Linear Programming (LP), yielding the

same guarantees. However, in terms of time complexity, IM algo-

rithms are nearly linear, compared to PTIME LP solvers [22].

2.2 Group-Oriented IM
In our setting users are associated with profile properties such

as their profession or political opinion. Characterized by these

properties, the end-user provides her emphasized groups, i.e.,
groups which she wishes to ensure are sufficiently covered. An

emphasized group may be defined using a boolean query over

(multiple) user profile attributes. Figure 1 depicts two emphasized

groups: the group of users with red border (𝑔1), and the group

of users with blue border (𝑔2). In this example, user 𝑑 belongs to

both groups and user 𝑏 to none.

Recall that 𝐼 (𝑆) denotes the expected number of nodes covered

by a seed-set 𝑆 . Let 𝑔⊆𝑉 be a group of emphasized users, and

𝐼𝑔 (𝑆) denote the expected number of 𝑔 members covered by 𝑆 , re-

ferred to as the 𝑔-cover. We present the auxiliary Group-Oriented
IM problem, denoted as 𝐼𝑀𝑔 , which instead of maximizing 𝐼 (·),
maximizes 𝐼𝑔 (·).

Definition 2.4 (The 𝐼𝑀𝑔 problem). Given a group 𝑔 ⊆ 𝑉 and a

number𝑘≤|𝑉 |, find a set𝑂𝑔 satisfying:𝑂𝑔 = 𝑎𝑟𝑔𝑚𝑎𝑥 {𝑇 :𝑇 ⊆𝑉 , |𝑇 |=𝑘 }𝐼𝑔 (𝑇 ).
To illustrate, consider the following example.

Example 2.5. Consider again Figure 1 and assume that 𝑘=2.

The optimal solution for𝑔2 is𝑂𝑔2={𝑑, 𝑓 }, where 𝐼 (𝑂𝑔2 )=𝐼𝑔2 (𝑂𝑔2 )=2
and 𝐼𝑔1 (𝑂𝑔2 )=0. The solution that maximizes the 𝑔1-cover is

𝑂𝑔1={𝑒, 𝑔}, where 𝐼𝑔1 (𝑂𝑔1 )=4 and 𝐼𝑔2 (𝑂𝑔1 )=0.5. Observe that cov-
ering a greater number of users from one group may come at

the cost of significantly reducing the cover size of users from

another group.

The hardness result of IM also applies to this variant, following

a straightforward reduction from IM, where 𝑔=𝑉 .

Proposition 2.6. The 𝐼𝑀𝑔 problem is hard to approximate
beyond a factor of (1 − 1

𝑒 ) in PTIME.

In Section 4.1 we explain how a given IM algorithm can be

adapted to its group-oriented version, retaining all its theoretical

properties. Note that this variant can be seen as a special case

of the Targeted IM problem [26], where the goal is to maximize

influence over a targeted group of users, with relevance of users

modeled by weights in [0, 1]. The 𝐼𝑀𝑔 problem is further im-

posing a dichotomy where the weights are in {0, 1}, modeling

discrete properties.

3 PROBLEM FORMULATION
As mentioned, our results support multiple, possibly overlapping,

emphasized groups. However, for simplicity, we initially focus

on the two groups scenario and imposed a size constraint on one

group. In Section 5.1we extend our results tomultiple emphasized

groups, and discuss alternative problem definitions.

3.1 Multi-Objective IM
Let 𝑔1, 𝑔2 to be two emphasized groups. Our goal is to assure the

obtained solution will ensure sufficient cover of the two groups.

To this end, we add a constraint on the 𝐼𝑀𝑔2 problem (pertaining

to the 𝑔2 group), which explicitly models how much the user is

willing to settle on the 𝑔2-cover, in order to increase the 𝑔1-cover.
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Definition 3.1 (Multi-Objective IM). Given a network 𝐺 , two

emphasized groups 𝑔1, 𝑔2 ⊆ 𝑉 , a threshold parameter 0 ≤ 𝑡 ≤ 1

and a number 𝑘 , find a 𝑘-size seed-set 𝑂∗ that maximizes the

𝑔1-cover size, subject to the constraint on the 𝑔2-cover being

above a 𝑡-fraction of its optimal size. Namely, find a set 𝑂∗ s.t:

𝑂∗ = 𝑎𝑟𝑔𝑚𝑎𝑥 {𝑇 : |𝑇 |=𝑘,𝐼𝑔
2
(𝑇 ) ≥𝑡 ·𝐼𝑔

2
(𝑂𝑔

2
) }𝐼𝑔1 (𝑇 )

where 𝐼𝑔1 (𝑇 ) (resp., 𝐼𝑔2 (𝑇 )) denote the expected size of the 𝑔1
(resp., 𝑔2) cover by𝑇 , and𝑂𝑔2 denotes the optimal 𝑘-size solution

for 𝑔2.

Throughout the paper, we refer to the expected 𝑔1 and 𝑔2
influences, resp., as the objective and the constraint. To illustrate,

in Example 1.1, one may wish to maximize the influence over the

anti-vaccination users, while ensuring that the influence over all

users is at least 60% of its optimal value. Alternately, continuing

with Example 1.2, a user may wish to maximize the influence over

engineers, while ensuring that the influence over researchers is

no less than 50% of its optimal value.

To illustrate how the constraint affects the selected seed-set,

consider the following example.

Example 3.2. Consider again Figure 1 and let 𝑘 = 2. For

𝑡 = 0.1 the optimal solution is 𝑆 = {𝑒, 𝑔} since 𝐼𝑔2 (𝑆) = 0.5 ≥
0.1 ·𝐼𝑔2 (𝑂𝑔2 ) = 0.2 (𝑂𝑔2 is the optimal solution for𝑔2), and among

all 2-size seed-sets satisfying the constraint, its 𝑔1-cover size is

maximal with 𝐼𝑔1 (𝑆) = 4. However, for 𝑡 = 0.5, 𝑆 no longer

satisfies the constraint, and 𝑆 ′ = {𝑒, 𝑑} becomes the optimal solu-

tion, with 𝐼𝑔1 (𝑆 ′) = 3.25 and 𝐼𝑔2 (𝑆 ′) = 1. This demonstrates that

higher values of 𝑡 put more emphasis on the 𝑔2-cover, possibly

at the expense of eliminating seed-sets with high approximation

factor for the 𝑔1-cover.

Recall that the IM problem is closely related to theMC problem,

as explained in Section 2.1. We define the Multi-Objective MC
problem, analogous toMulti-Objective IM, which will serve us for

deriving our lower bound and for devising the RMOIM algorithm.

Definition 3.3 (Multi-Objective MC). Given subsets 𝑆1, . . . , 𝑆𝑚
of elements from 𝑈 = {𝑢1, . . . , 𝑢𝑛}, two groups of elements

𝑔1, 𝑔2 ⊆ 𝑈 , a threshold parameter 0 ≤ 𝑡 ≤ 1, and a number

𝑘 ≤ 𝑚, a constraint is imposed on the number of covered ele-

ments from 𝑔2, requiring it to exceed a 𝑡-fraction of the optimal

cover size. The goal is to find, among all 𝑘 sets from 𝑆1, . . . , 𝑆𝑚
satisfying the constraint, the one covering a maximal number of

elements belong to 𝑔1.

The constraint threshold. Before presenting our algorithms, let

us highlight important properties of the constraint threshold

parameter 𝑡 .

First, consider again Example 3.2, demonstrating that setting

higher values for 𝑡 restricts the solution space and diminishes

the optimal value for the objective among remaining 𝑘-size seed-

set. This exposes the inherent trade-off between the objective

and the constraint threshold. A higher threshold is at odds with

optimizing the main objective.

We note that the actual value of the optimal 𝑔2-cover size,

𝐼𝑔2 (𝑂𝑔2 ), can only be approximated up to a (1 − 1

𝑒 ) factor in
PTIME. Thus, the exact value can only be referred to implicitly.

Hence, to allow the user to make an informed decision for the

value of 𝑡 , our system uses an 𝐼𝑀𝑔 algorithm (as we explain

in Section 4), yielding the optimal PTIME approximation for

𝐼𝑔2 (𝑂𝑔2 ).
Observe that setting 𝑡 to 0 nullifies the constraint, producing

the 𝐼𝑀𝑔 problem for 𝑔1. Therefore, we only examine cases where

𝑡 > 0. Moreover, it is easy to show that for 𝑡 > 1 − 1

𝑒 , following

the hardness results of IM [23], merely finding a single (not nec-

essarily optimal) 𝑘-size seed set satisfying the constraint cannot

be done in PTIME.

Corollary 3.4. A 𝑘-size seed set satisfying the constraint can
always be found in PTIME only if 0 ≤ 𝑡 ≤ (1 − 1

𝑒 ). For higher 𝑡
values, this claim no longer holds.

We therefore restrict our attention to cases where 0 ≤ 𝑡 ≤
(1 − 1

𝑒 ). In cases where the user is interested in higher values of

𝑡 , as no PTIME algorithm which satisfies the constraint exists,

one would need to employ an exhaustive search over the |𝑉 |𝑘
possible 𝑘-size seed-sets to find the optimal solution.

3.2 Approximation lower bound
In order to devise efficient algorithms for Multi-Objective IM,

it is useful to understand which properties are attainable for a

PTIME algorithm. We next formally define the solution space,

then present a lower bound for Multi-Objective IM.

The solution space. We generalize the solution space to bicrite-
ria approximation, where an algorithm approximates the objec-

tive andmay also approximate the constraint, up to multiplicative

factors of 𝛼 and 𝛽 , resp. For 𝛽=1 the solution strictly satisfies the

constraint. To accommodate practical algorithms we consider, as

in standard IM, randomized algorithms that may add an error

margin 𝜖 to the approximation factors, while requiring the stated

factors to holdwith probability ≥(1−𝛿). Formally, given 0≤𝜖, 𝛿≤1,
an algorithm computes a (𝛼, 𝛽)-solution 𝑆 , with 0≤𝛼, 𝛽≤1, if for
every instance (𝐺,𝑔1, 𝑔2, 𝑘, 𝑡) of Multi-Objective IM, the follow-

ing holds with probability ≥1−𝛿 : 𝐼𝑔2 (𝑆)≥(𝛽−𝜖) · 𝑡 · 𝐼𝑔2 (𝑂𝑔2 ) and
𝐼𝑔1 (𝑆) ≥ (𝛼−𝜖)𝐼𝑔1 (𝑂∗), where 𝑂∗ is the optimal constrained so-

lution w.r.t. Def. 3.1. We assume 𝜖 and 𝛿 are implicitly provided.

However, for simplicity, we omit discussions of these parameters

whenever possible.

We emphasize that 𝛼 is derived from comparing the returned

solution not to the optimal unconstrained solution, but rather to

an optimal solution which satisfies the constraint. This highlights

the difference between approximating the constraint by a factor

of 𝛽 and replacing 𝑡 with 𝛽 · 𝑡 , as the solution space is affected

only in the latter case. Namely, when examining a seed-set which

relaxes the constraint, the optimal value for the objective is still

taken only over the subset of solutions satisfying the constraint.

We refer to an algorithm as dominant over another algorithm if it

computes an approximated solution for higher values of at least

one parameter (𝛼, 𝛽), with the other parameter being at least

equal. We refer to a tuple (𝛼, 𝛽) as an optimum, if no (PTIME)

algorithm that generates an approximated solution dominant

over it exists. One immediate such optimum is (1 − 1

𝑒 , 1), which
follows directly from the hardness result of IM [23]. However, as

we prove, there exists no PTIME algorithm which can achieve

this bound. Moreover, we show that to achieve 𝛼 = (1 − 1

𝑒 ), 𝛽
must be reduced to (1 − 1

𝑒 ) as well.

Hardness of approximation. As mentioned, the optimal objec-

tive approximation of Multi-Objective IM is 𝛼=1− 1

𝑒 . We next

prove that in order to achieve this optimal 𝛼 value, a relaxation

of the constraint is necessary. Concretely, we prove that Multi-

Objective IM has no PTIME algorithm with approximation guar-

antees (even in expectation) dominant over (1 − 1

𝑒 , 1 −
1

𝑒 ), via a
reduction from MC. This result is independent of 𝑡 , yet, surpris-

ingly, holds for all its values in (0, 1 − 1

𝑒 ].

148



Theorem 3.5. Multi-Objective IM has no approximation factor
dominant over (1 − 1

𝑒 , 1 −
1

𝑒 ) (unless 𝑁𝑃 = 𝐵𝑃𝑃 ).

Next, we provide a proof sketch for Theorem 3.5 using a novel

reduction from MC.

Proof. (sketch). Given an MC instance along with 𝑘 and 𝑡 , let

𝑘𝑡 denote the smallest natural number s.t. 𝐼 (𝑂𝑘𝑡 ) ≥ 𝑡 · 𝐼 (𝑂𝑘 ). We

first fix any arbitrary𝑘 and 𝑡 ∈ (0, 1− 1

𝑒 ], then sample two disjoint

MC instances, I1 and I2, s.t. the seed set size requirements are

𝑘 − 𝑘𝑡 and 𝑘𝑡 , resp. We construct a Multi-Objective MC instance

by taking the union of both collection of sets, and defining the 𝑔1
and 𝑔2 groups as follows: 𝑔1 comprises of all elements of I1, and
𝑔2 comprises of all elements of I2. The cardinality constraint is 𝑘

along with threshold 𝑡 . This construction implies a dichotomy

where choosing sets from the 𝑔1 collection only affects the objec-

tive, while choosing sets from the 𝑔2 collection only affects the

constraint. We show that, in the worst case, one needs to choose

as many 𝑔2 sets as in the optimal solution (i.e. 𝑘𝑡 sets), up to a

𝑜 (1) factor, to achieve a (1 − 1

𝑒 ) approximation of the constraint,

and therefore with the remaining slots one cannot guarantee any

factor beyond (1 − 1

𝑒 ) for the objective.
Last, we extend this result to Multi-Objective IM via a reduc-

tion from Multi-Objective MC. In essence, we reduce a given

Multi-Objective MC instance to a graph s.t. each element is

mapped to a new node, carrying over any membership in 𝑔1
and 𝑔2 groups. Additionally, for each subset 𝑆𝑖 , we create a new

node, and add an edge from it into every nodes corresponding to

an element in this set, with the constant edge weight of 1. □

Note that this lower bound holds even for the easier version

of the problem, where explicit values are known for both the con-

straint threshold and the constrained optimum for the objective.

4 ALGORITHMS
As mentioned, the approximation factor of the objective depends

on how strictly the constraint is preserved. We, therefore, pro-

vide two complementary algorithms for Multi-Objective IM. Our

first algorithm, named the Multi-Objective IM (MOIM) algorithm,

finds a seed-set that strictly satisfies the constraint, at the cost

of influence decrease for the objective. Its key advantage is that

it achieves near-linear time complexity, which, as we show, is

critical for scaling successfully to massive networks. To get a

tighter approximation ratio for the objective, our second algo-

rithm, named the Relaxed Multi-Objective IM (RMOIM) algorithm,

relaxes the constraint, allowing its approximation by a (1− 1

𝑒 )-
factor, achieving in return near optimal approximation for the

objective. This however comes at the cost of performance - its

time complexity is polynomial.

4.1 The MOIM algorithm
MOIM is a simple yet efficient algorithm achieving state-of-the-

art performance by leveraging existing IM algorithms. Intuitively,

using a modular approach where given an IM algorithm, it gener-

ically modifies it to create two group-oriented versions of it, then

combines them together to produce a single seed set. We next

detail our modification of a given IM algorithm, followed by the

full algorithm scheme.

Given an IM algorithm A and an emphasized group 𝑔, we

define A𝑔 as its 𝐼𝑀𝑔 counterpart - an analogous algorithm that

maximizes 𝐼𝑔 (·) instead of 𝐼 (·). Any RIS-based algorithm, A,

can be adapted to A𝑔 via a single modification: the 𝑅𝑅 sets are

generated from nodes from 𝑔 only, independently and uniformly

as before. We can prove that A𝑔 outputs a seed-set covering at

least (1 − 1

𝑒 ) · 𝐼𝑔 (𝑂𝑔 ) nodes from 𝑔, which is optimal [23].

A method of weighted RIS sampling for solving Targeted IM

was presented in [26]. Concretely, instead of using the uniform

distribution, nodes are sampled according to their weights, which

model their relevance to a given context. Our adaptation for

𝐼𝑀𝑔 can be seen as a special case of this method with binary

weights. Nonetheless, the authors of [26] have focused in cases

where there is only one emphasized group. As we show in our

experiments, choosing the weights achieving sufficient covers

for more than one group requires further effort.

Algorithm 1 The MOIM algorithm.

1: Input: A network𝐺 ; emphasized groups 𝑔1, 𝑔2 ⊆ 𝑉 ; 𝑘 ∈ [𝑛];
𝑡 ≤ 1 − 1

𝑒 ; an IM algorithm A.

2: Output: A 𝑘-size seed set 𝑆 .

3: We run independently the following two procedures:

i 𝑆1 ← Run algorithm A𝑔2 , where the seed set size is

fixed to ⌈− ln (1 − 𝑡) · 𝑘⌉.
ii 𝑆2 ← Run algorithm A𝑔1 , where the seed set size is

fixed to ⌊(1 + ln (1 − 𝑡)) · 𝑘⌋.
4: 𝑆 ← 𝑆1 ∪ 𝑆2
5: if |𝑆 | < 𝑘 then
6: Run A𝑔1 on the residual network until enough seeds are

gathered.

7: end if
8: return 𝑆

The MOIM algorithm is depicted in Algorithm 1. MOIM runs

independently two procedures: The first ensures satisfaction of

the constraint (line 3.i), while the second maximizes the objective

(line 3.ii). We return the union 𝑆 of the selected seeds (line 4). If

𝑆 contains less than 𝑘 seeds, we runA𝑔1 on the residual problem

(by eliminating the respective sets of the seeds selected so far),

s.t. additional nodes are added to 𝑆 (lines 5-7). In practice, this

could be achieved by initially runningA. Note that this can only

improve the accuracy guarantees. In our analysis we assume that

the returned set is of size exactly 𝑘 .

We now state the approximation factor of MOIM.

Theorem 4.1. For 0 ≤ 𝑡 ≤ 1 − 1

𝑒 , MOIM provides a (1 −
1

𝑒 · (1−𝑡 ) , 1)-approximation to the Multi-Objective IM problem.

Example 4.2. Consider again Figure 1, and let 𝑘=2. Recall that

the optimal solution for 𝑔2 is 𝑂𝑔2={𝑑, 𝑓 }, with 𝐼𝑔2 (𝑂𝑔2 )=2. For
𝑡=1− 1

𝑒 , MOIM would be equivalent to running A𝑔2 with 𝑘=2. It

would w.h.p. output, if not𝑂𝑔2 , then a set 𝑆 , s.t. 𝐼𝑔2 (𝑆)≥2·(1− 1

𝑒 ) ≈
1.26, with no particular regard for𝑔1 cover, whichmay be as small

as 1.5 (for 𝑆={𝑐, 𝑓 }), or as high as 3 (for 𝑆={𝑒, 𝑓 }). For 𝑡=1− 1√
𝑒
,

MOIM runsA𝑔1 andA𝑔2 while setting𝑘=1 for both, whichwould

presumably output {𝑒} and {𝑓 } resp., combining for a seed set 𝑆

s.t 𝐼𝑔1 (𝑆)=3 and 𝐼𝑔2 (𝑆)=1.75. This approximated solution comes

close to both 𝑂𝑔1 and 𝑂𝑔2 , in terms of 𝑔1/𝑔2 cover size, resp.

The time complexity of MOIM depends only on that of its

input IM algorithmA, which is assumed to be near optimal [33].

4.2 The RMOIM algorithm
We first describe a theoretical algorithm which, given the optimal

cover size of 𝑔2, 𝐼𝑔2 (𝑂𝑔2 ), exactly matches our hardness bound.

We then discuss the practical case where 𝐼𝑔2 (𝑂𝑔2 ) is unknown
(and can only be approximated in PTIME), proving that the scale

of the reduction in the approximation factors is not too high.
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Theorem 4.3. There exists a PTIME randomized algorithm that,
given 𝐼𝑔2 (𝑂𝑔2 ), in expectation, outputs a (1− 1

𝑒 , 1−
1

𝑒 ) approxima-
tion for the Multi-Objective IM problem.

We described the reduction from IM to MC suggested in [7],

utilized by the RIS framework. We extend this reduction to the

multi-objective variants, implying that any algorithm for Multi-

objective MC can be extended to Multi-Objective IM, retaining

the same guarantees. Therefore, all that is left to prove is that one

can get a (1− 1

𝑒 , 1−
1

𝑒 )-approximation for Multi-Objective MC.

Given an instance I of Multi-Objective MC with𝑚 subsets

𝑆1, ..., 𝑆𝑚 and two groups 𝑔1, 𝑔2⊆𝑈 , we construct LP(I), the cor-
responding LP instance, where𝑌=|𝑔2\𝑔1 |, 𝑍=|𝑔1\𝑔2 |,𝑊 =|𝑔1∩𝑔2 |:
variables: 𝑥1, . . . , 𝑥𝑚, 𝑦1, . . . , 𝑦𝑌 , 𝑧1, . . . , 𝑧𝑍 ,𝑤1, . . . ,𝑤𝑊 (𝑥𝑖 is an

indicator for selecting 𝑆𝑖 , 𝑦𝑖 for covering element in 𝑔2\𝑔1, 𝑧𝑖
for covering element in 𝑔1\𝑔2, and𝑤𝑖 for covering elements in

𝑔1
⋃
𝑔2)

constraints:
∑𝑚
𝑖=1 𝑥𝑖 = 𝑘 (cardinality constraint)∑

𝑖:𝑢 𝑗 ∈𝑆𝑖
𝑥𝑖 ≥ 𝑦 𝑗 ,

∑
𝑖:𝑢 𝑗 ∈𝑆𝑖

𝑥𝑖 ≥ 𝑧 𝑗 ,
∑

𝑖:𝑢 𝑗 ∈𝑆𝑖
𝑥𝑖 ≥ 𝑤 𝑗 (coverage constraint)

(
𝑌 ′∑
𝑖=1

𝑦𝑖 ·
𝑌

𝑌 ′
+

𝑊 ′∑
𝑖=1

𝑤𝑖 ·
𝑊 ′

𝑊
) ≥ 𝑡 · 𝐼𝑔2 (𝑂𝑔2 ) (size constraint)

∀𝑖 ∈ {1, ...,𝑚}, 0 ≤ 𝑥𝑖 ≤ 1; ∀𝑖 ∈ {1, . . . ,𝑊 ′}, 0 ≤ 𝑤𝑖 ≤ 1

∀𝑖 ∈ {1, . . . , 𝑌 ′}, 0 ≤ 𝑦𝑖 ≤ 1; ∀𝑖 ∈ {1, . . . , 𝑍 ′}, 0 ≤ 𝑧𝑖 ≤ 1

objective: maximize

∑𝑍 ′
𝑖=1 𝑧𝑖 +

∑𝑊 ′
𝑖=1𝑤𝑖 .

where 𝐼𝑔2 (𝑂𝑔2 ) is the optimal 𝑔2-cover size and 𝑌
′, 𝑍 ′,𝑊 ′ are the

number of sampled nodes from 𝑔2\𝑔1, 𝑔1\𝑔2 and 𝑔1∩𝑔2, resp.
The solution is determined by the values of the variables 𝑥𝑖 ,

indicating the selected sets. This LP relaxes the Integer LP which

precisely models the Multi-Objective MC problem. We can com-

pute an optimal solution by using any LP solver, then apply

the following randomized rounding procedure [30]: (1) Interpret

the numbers
𝑥1
𝑘
, ..,

𝑥𝑚
𝑘

as probabilities corresponding to 𝑆1, .., 𝑆𝑚 ,

resp. (2) Choose 𝑘 sets independently w.r.t. the probabilities. By

adapting the proof in [32], we show that this procedure yields a

seed set whose cover, in expectation, for each group separately,

is at least a 1 − 1

𝑒 fraction of the corresponding optimal cover

size, thus proving Theorem 4.3.

Omitting the optimal-value knowledge assumption. As men-

tioned, the optimal value of the 𝑔2-cover is uncomputable in

PTIME. We, therefore, first run a 𝐼𝑀𝑔2 algorithm which outputs

a seed set 𝑆 , s.t. 𝐼𝑔2 (𝑂𝑔2 ) · (1 − 1

𝑒 ) ≤ 𝐼𝑔2 (𝑆) ≤ 𝐼𝑔2 (𝑂𝑔2 ). We then

set the constraint threshold in 𝐿𝑃 (I) to 𝑡 · (1 − 1

𝑒 )
−1 · 𝐼𝑔2 (𝑆) in-

stead of 𝑡 · 𝐼𝑔2 (𝑂𝑔2 ), with the rest of the algorithm remaining the

same. This substitution can only increase the constraint thresh-

old, which in turn, reduces the set of valid solutions, possibly

diminishing the objective value of the optimal solution subject

to the stricter constraint. However, as we prove, the scale of the

reduction in 𝛼 is not arbitrarily large.

The RMOIM algorithm is depicted in Algorithm 2. Given an IM

algorithmA, we first runA𝑔2 to estimate 𝐼𝑔2 (𝑂𝑔2 ) (line 3). Next,
usingA, we sample the𝑅𝑅 sets needed for constructing theMulti-

Objective MC instance, and build the corresponding LP (lines

4 − 5). Then, we employ an LP solver, obtaining the fractional

solution (line 6). Last, we employ the rounding procedure to

select 𝑘 sets for the Multi-Objective MC instance, and return

their corresponding nodes as the selected seed-set 𝑆 (lines 7 − 8).
Given an 𝐼𝑀𝑔 algorithm, let 𝑆 denote its output. We define

𝜆 ∈ [0, 1

𝑒−1 ] s.t. 𝐼𝑔 (𝑆) = (1 + 𝜆) · (1 −
1

𝑒 ) · 𝐼𝑔 (𝑂𝑔 ).

Algorithm 2 The RMOIM algorithm.

1: Input: A network𝐺 ; emphasized groups 𝑔1, 𝑔2 ⊆ 𝑉 ; 𝑘 ∈ [𝑛];
𝑡 ≤ 1 − 1

𝑒 ; an RIS-based IM algorithm A and an LP solver.

2: Output: A 𝑘-size seed set 𝑆 .

3: 𝐼𝑔2 ( ˜𝑂𝑔2 ) ← Run A𝑔2 on the input.

4: RR← Construct the 𝑅𝑅 sets using A.

5: LP(I)←Construct the LP from RR, replacing 𝑡 ·𝐼𝑔2 (𝑂𝑔2 ) with
𝑡 ·(1− 1

𝑒 )
−1·𝐼𝑔2 (�̃�𝑔2 ).

6:
®𝑋 ← Solve LP(I), and output the values for the 𝑥𝑖 variables.

7: 𝑆 ← Run the randomized rounding procedure on ®𝑋 .

8: return 𝑆

Theorem 4.4. The RMOIM algorithm provides, in expectation,
a ((1 − 1

𝑒 ) · (1 − 𝑡 · (1 + 𝜆)), (1 + 𝜆) · (1 −
1

𝑒 )) approximation to
Multi-Objective IM, where 𝜆 ∈ [0, 1

𝑒−1 ].
The time complexity of RMOIM is dominated by its input LP

solver, whose complexity is polynomial in the input size [22].

5 EXTENSIONS
We present an extension of our results to multiple groups, then

briefly discuss on alternative problem definitions. We conclude

with a discussion regarding a well-studied related problem.

5.1 Multiple Emphasized Groups
The Multi-Objective IM problem naturally extends to multiple

groups. Given𝑚 emphasized groups, the user can impose size

constraints on all but one groups, and subject to these constraints,

maximize the cover size of the remaining group. W.l.o.g. let us

assume that the user imposed size constraints on the last𝑚 − 1
groups. Given the𝑚−1 constraint threshold parameters 𝑡2, ..., 𝑡𝑚 ,

analogously to the binary scenario, we can show that a 𝑘-size

seed set satisfying all constraints can always be found in PTIME

if 0 ≤ ∑
𝑖 𝑡𝑖 ≤ (1 − 1

𝑒 ). We prove that in PTIME, one cannot

attain an approximation factor dominant over (1 − 1

𝑒 , . . . , 1 −
1

𝑒 ).
Moreover, our generalized random algorithm matches our lower

bound for multiple groups.

Both our algorithms can be generalized to solve the multiple

groups scenario. In MOIM we run (independently)𝑚−1 𝐼𝑀𝑔𝑖 , 𝑖 ∈
[2,𝑚] algorithms, where the seed set size in each algorithm is

fixed to ⌈− ln (1 − 𝑡𝑖 ) ·𝑘⌉, and run an IM𝑔1 algorithm, where the

seed set size is fixed to ⌊(1+ ln (1 −∑𝑖 𝑡𝑖 )) ·𝑘⌋. As in Algorithm 1,

we then return the union of the selected seeds. We can show that

this algorithm provides a (1− 1

𝑒 · (1−∑𝑖 𝑡𝑖 )
, 1, . . . , 1)-approximation

to Multi-Objective IM with𝑚 emphasized groups.

In RMOIM, we first estimate the 𝐼𝑔𝑖 (𝑂𝑔𝑖 ) values for the con-
strained 𝑚 − 1 groups, to include these values in the LP de-

scribed in Section 4.2. Given an 𝐼𝑀𝑔𝑖 algorithm, let 𝑆𝑖 denote

its output. Recall that 𝜆𝑖 ∈ [0, 1

𝑒−1 ] was defined s.t. 𝐼𝑔𝑖 (𝑆𝑖 ) =
(1 + 𝜆𝑖 ) · (1 − 1

𝑒 ) · 𝐼𝑔𝑖 (𝑂𝑔𝑖 ). We prove that RMOIM provides, in

expectation, a ((1 − 1

𝑒 ) · (1 −
∑
𝑖 𝑡𝑖 · (1 +

∑
𝑖 𝜆𝑖 )), (1 + 𝜆1) · (1 −

1

𝑒 ), . . . , (1 + 𝜆𝑚−1) · (1 −
1

𝑒 ))-approximation to Multi-Objective

IM with𝑚 emphasized groups.

5.2 Alternative problem definitions
We next briefly discuss alternative problem definitions. An alter-

native variant of Multi-Objective IM is where the user specifies

an explicit value constraint (rather than specifying a fraction of

the optimal possible value). For instance, continuing with Exam-

ple 1.2, one may request to maximize the cover over engineers,

subject to a constraint requiring that at least 1K researchers

150



are influenced. Both our algorithms support this variant as well.

Specifically, in MOIM, we can run an 𝐼𝑀𝑔2 algorithm until it

exceeds the constraint value, and with the remaining seeds we

run an 𝐼𝑀𝑔1 algorithm, which can only improve the guarantees

as we no longer overestimate the constraint. In RMOIM, the prob-

lem becomes much simpler, since now the exact value for the

size constraint is known. Therefore, here RMOIM is optimal as it

matches our lower bound (which holds here as well). We focus on

the implicit size constraint variant, as the analysis of the explicit

value constraint variant is contained in it as a simpler case.

Our definition provides cardinality guarantees over the em-

phasized groups. An alternative definition may be to constrain

the ratio of different cover cardinalities. We note that this defini-

tion is essentially different form our definition, as maximizing

the ratio between the cover cardinalities can dramatically reduce

the number of covered users from each group. Therefore, such

definition is ill-suited to our motivation where the underlying

goal is to reach as many as possible users from the emphasized

groups. We further note that the analysis of such ratio-based

definitions differs from the one we have provided, and therefore

we leave the study of ratio-based constraints for future research.

In our analysis so far the user imposes constraints on all but

one group. Our results also support the case where the user

imposes constraints on all emphasized groups (see details in [3]).

5.3 Connection to the RSOS problem
The closely related problem of multi-objective maximization of

monotone submodular functions subject to a cardinality con-

straint (known as the RSOS problem) was introduced in [24].

Given𝑚 monotone submodular functions 𝑓𝑖 (·), 𝑖 ∈ {1, ..,𝑚}
and a target value 𝑉𝑖 for each function 𝑓𝑖 , the goal in the RSOS

problem is to find a 𝑘-size set 𝐴 s.t. ∀𝑖 : 𝑓𝑖 (𝐴) ≥ 𝑉𝑖 , or provide

a certificate that there is no feasible solution. A solution 𝑆 is an

𝑎𝑙𝑝ℎ𝑎-approximation if ∀𝑖 : 𝑓𝑖 (𝑆) ≥ 𝛼 ·𝑉𝑖 .
In contrast to Multi-Objective IM, where users can specify for

each group the fraction of the optimal influence that they wish

to retain, in RSOS only explicit values can be used. Nonetheless,

we establish the connection between the two problems. Specif-

ically, we prove that the two problems are equally hard, and

that any algorithm solving RSOS, could in principle also solve

Multi-Objective IM. However, as we show in our experiments, top

performing RSOS algorithms can only process small networks.

We next briefly present our main results.We restrict our anal-

ysis of the RSOS problem to its applicability in an IM setting, s.t.

all functions are IM-functions. To simply the presentation, we

focus here on the two groups scenario, and defer the analogous

results regarding multiple groups to [3].

We reduce RSOS to Multi-Objective IM, showing that any

(𝛼, 𝛼)-approximation to Multi-Objective IM implies an

𝛼-approximation to RSOS. It follows that leveraging existing tech-

niques in RSOSworks yields at best an (1− 1

𝑒 , 1−
1

𝑒 )-approximation

for Multi-Objective IM, which is an optimum we have already

achieved with RMOIM.

Theorem 5.1. RSOS ≤𝑝 Multi-Objective IM.

We further provide a reduction in the other direction, showing

that any 𝛼-approximation algorithm for RSOS, implies an (𝛼, 𝛼)-
approximation algorithm for Multi-Objective IM.

Theorem 5.2. Multi-Objective IM ≤𝑝 RSOS.

Table 1: Datasets.

Datasets Dimensions Profile properties

Facebook |V|=4K, |E|=168K Gender, Education type.

DBLP |V|=80K, |E|=514K Gender, country, age, h-index.

Pokec |V|=1M, |E|=14M Gender, age, region

Weibo-Net |V|=1.5M, |E|=369M Gender, city.

YouTube |V|=1M, |E|=3M -

LiveJournal |V|=4.8M, |E|=69M -

However, to do so, we need to know both the optimal cover size

of the constrained group 𝐼𝑔2 (𝑂𝑔2 ) (as in RMOIM), and (addition-

ally) the constrained optimal objective value 𝐼𝑔1 (𝑂∗). 𝐼𝑔2 (𝑂𝑔2 )
may be estimated, as done in RMOIM, by running an 𝐼𝑀𝑔2 algo-

rithm. Here again, we may overestimate this value by a (1 − 1

𝑒 )
factor, yielding the same guarantees as RMOIM. To efficiently

estimate 𝐼𝑔1 (𝑂∗), we can examine only 𝑂 (𝑙𝑜𝑔(𝑛)) guesses for
𝐼𝑔1 (𝑂∗), which increases the time complexity of an RSOS algo-

rithm by an 𝑂 (𝑙𝑜𝑔(𝑛)) factor.
A state-of-the-art algorithm for RSOS, which achieves the

optimal (1− 1

𝑒 )-approximation, has been introduced in [36]. Aswe

show in our experiments, this algorithm can only process small

networks (even without the 𝑙𝑜𝑔(𝑛) multiplicative overhead).

6 EXPERIMENTAL STUDY
We have implemented our prototype in Python 2.7. We use as

the input IM algorithm, for both of our algorithms, 𝐼𝑀𝑀1
[33], a

top performing IM algorithm. We solve the LP in RMOIM using

Gurobi LP solver [2]
2
. We have conducted an experimental study

to evaluate (1) The quality of results achieved by our algorithms.

We demonstrate the advantages of our algorithms in multiple

scenarios over real-life datasets, compared to existing and alter-

natives approaches; (2) The performance of our algorithms in

terms of execution times and scalability.

6.1 Experimental setup
We conducted all experiments on a Linux server with a 2.1GHz

CPU and 96GBmemory. Next, we describe the examined datasets,

the considered emphasized groups, the competing algorithms,

and the parameters setup.

Datasets. We have focused on social networks which include

user profile properties, to characterize the emphasized groups.

We have examined 6 commonly used datasets: Facebook, DBLP,

Pokec, Weibo-Net, Twitter and Google+ (extracted from [4, 25]).

For space constraints, we omit the results over Twitter andGoogle+,

as they were similar to those obtained over the other 4 datasets

(depicted in Table 1). To further examine our algorithms scalabil-

ity, we considered two additional large-scale datasets: YouTube

and LiveJournal [25]. These datasets do not include user proper-

ties. To nevertheless examine them in our context, we randomly

assigned users to emphasized groups (see details below). Follow-

ing the conventional method as in [28, 34], we set the weight of

each edge (𝑢, 𝑣) as 𝑤 (𝑢, 𝑣) = 1

𝑑𝑖𝑛 (𝑣) , where 𝑑𝑖𝑛 (𝑣) denotes the
in-degree of 𝑣 . To ensure uniformity, undirected networks were

made directed by considering, for each edge, the arcs in both

directions (as was done in [5]).

1
We used the corrected version described in [10].

2
Our code will be publicly available upon acceptance.
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Emphasized groups. The benefit that our approach brings is in

particular critical for subpopulations that are typically not cov-

ered by standard IM algorithms. To identify such groups, we have

run, for each network, a grid search over the extracted profile

properties. We have considered all groups that are characterized

by a single or a combination of two profile properties. For each

such group 𝑔, we have examined the expected 𝑔-cover size of

standard IM algorithms, as well as the expected 𝑔-cover size of

their 𝐼𝑀𝑔 counterparts. We are focusing here only on groups

in which the results showed that standard IM algorithms tend

to overlook their users, while targeted IM algorithms showed

that a different choice of seed-set significantly increase their ex-

pected cover size. Interestingly, our experiments indicate that

all analyzed datasets include several such groups. For example,

female Indian researchers in DBLP and females over the age of

50 in Pokec, are typically neglected by standard IM algorithms.

Additional examples are provided in [3]. For YouTube and Live-

Jornal, we have considered random emphasized groups, defined

as follows. Given a number 𝑐 ∈ (0, 1] (sampled uniformly at ran-

dom), every node 𝑣 ∈ 𝑉 is a member of the emphasized group

with probability of 𝑐 . Note that this simple definition allows for

overlapping emphasized groups of different cardinalities.

Examined scenarios. We examine the following two scenarios:

Scenario I. In this scenario the user wishes to maximize the over-

all influence (𝑔1), subject to a constraint requiring that at least a

given portion of a group’s members (𝑔2) are influenced (a scenario

analogous to that of Example 1.1). We focus on this particular

scenario as it allows to compare, in a single setting, algorithms

for standard IM (that maximize the overall influence), targeted

IM (that maximize the influence solely over the 𝑔2 members), and

ours. We present the results while setting 𝑔2 to be a group which

is not covered by standard IM algorithms (see full details in [3]).

We have also run all experiments while choosing all possible

pairs of 𝑔1 and 𝑔2 to be groups that are typically not covered by

standard IM algorithms. We report that all experiments show sim-

ilar trends and therefore we omit from presentation these results.

Scenario II. Next we consider multiple-groups, to demonstrate

the effect of multiple objectives on performance. We present a

scenario where the user provides 5 emphasized groups, specifies

constraints on 4 of them, and asks to maximize the influence

over the remaining group, subject to these constraints. We have

also experimented with other numbers of emphasized groups

and report that all results have shown similar trends. In real-life

scenarios, the number of emphasized groups is typically small

[26, 36] and thus we focus on realistic number ranges (2 − 10).
Here again we have considered groups that are typically not

covered by standard IM algorithm.

Competing algorithms. We consider the following baselines.

Standard IM algorithms. We have examined the results of

𝐼𝑀𝑀 [33] and SSA [28], top preforming RIS-based algorithms, as

well as SKIM [13] and Celf++ [17], greedy-based IM algorithms.

As all algorithms demonstrated similar trends, we detail here

only 𝐼𝑀𝑀 .

(Single objective) Targeted IMalgorithms.Weexamine 𝐼𝑀𝑀𝑔 ,

a variant of 𝐼𝑀𝑀 (based on [26]) which maximizes exclusively

the cover of a given emphasized group 𝑔. In scenario 𝐼 𝐼 we have

defined the target group to be the union of all emphasized groups.

Weighted IM. An alternative is to assign different weights to

users, reflecting their relevance to the objectives. The authors of

[26] introduced a weighted RIS sampling method, that maximizes

the influence over a targeted group. We examined the results for

Weighted 𝐼𝑀𝑀 (𝑊𝐼𝑀𝑀), a variant of 𝐼𝑀𝑀 which is based on

a weighted RIS sampling method presented in [26]. We apply a

(multi-dimensional) binary search to find the optimal weights
3
.

We examined the results while substituting the weights of users

in the constrained group(s) and the objective group with 𝑐𝑖 and

1 −∑𝑖 𝑐𝑖 , resp
4
., for varying values of 𝑐𝑖 ∈ [0, 1].

We have also examined a variant of𝑊𝐼𝑀𝑀 that skips the search

and instead uses some default weights given as input. RSOS al-
gorithms.We examine the RSOS algorithm of [36] (used to solve

Multi-Objective IM). Additionally, the authors of [36] have stud-

ied the problem of fair resource allocation in IM, and proposed

two fairness concepts:𝑀𝑎𝑥𝑀𝑖𝑛, which maximizes the minimum

fraction of users within each group that are influenced, and Di-

versity Constraints (𝐷𝐶), which guarantees that every group

receives influence proportional to what it could have generated

on its own, based on a number of seeds proportional to its size.

They have shown that both fairness concepts can be reduced to

RSOS, for which they provided the state-of-the-art algorithm. For

completeness, we have included the𝑀𝐴𝑋𝑀𝐼𝑁 and𝐷𝐶 baselines.

As we show, all RSOS-based algorithms can only process small

networks. A more recent fairness-aware IM framework was pre-

sented in [15]. However, in this work as well, only small-size

networks were examined
5
.

Parameter Settings. Recall that RMOIM requires to estimate

𝐼𝑔𝑖 (𝑂𝑔𝑖 ), the optimal cover cardinality for all constrained groups

𝑔𝑖 . For that we use the following estimation strategy (as described

in Section 4.2): for each emphasized group 𝑔 we ran 𝐼𝑀𝑀𝑔 for 10

times, selecting the minimal obtained value to derive an estimate

for 𝐼𝑔 (𝑂𝑔 ). Unless mentioned otherwise, we set 𝑘 = 20, and

𝜖 = 0.1. In scenario 𝐼 we have set the threshold parameter 𝑡 = 0.5 ·
(1 − 1

𝑒 ), and in scenario 𝐼 𝐼 we have set the threshold parameters

𝑡𝑖 = 0.25 · (1− 1

𝑒 ),∀𝑖 ∈ 1, ..., 4. We also use, as a default setting, the

LT model (when setting uniformly random threshold for every

node). In all experiments, the time-out limit is 24 hours (or out of

memory exception). For the RSOS baselines, we use the default

parameters as provided in [1]. We report for each baseline the

averaged measurements of 10 runs.

6.2 Quality Evaluation
Scenario I results. The results are depicted in Figure 2, where

the 𝑥 and 𝑦 axes represent, resp., the 𝑔1 and 𝑔2 influences, and

red lines are the estimated constraint thresholds. A desirable

solution should be above (or near) the red lines (i.e., satisfying the

constraint), and, at the same time, the right as much as possible

(i.e., covering as many 𝑔1 users as possible). For 𝑊𝐼𝑀𝑀 , we

present the results obtained by selecting the optimal weights

for each dataset (pink points). We have also examined multiple

settings of default weights for𝑊𝐼𝑀𝑀 , however, none of these

options yielded satisfying results across all datasets. In particular,

the optimal weights per network were different, and to illustrate

that, we show how the optimal weights for DBLP operate on the

other datasets (yellow points).

In all cases, MOIM managed to match (and sometimes even

exceed) the results of𝑊𝐼𝑀𝑀 , which uses the optimal weights

for each dataset. For example, over Facebook, while𝑊𝐼𝑀𝑀 and

MOIM influenced almost the same number of 𝑔1 users (601 and

3
The optimal choice is the one that satisfies all constraints, while maximizing the

value for the objective.

4
Users belong to multiple groups are assigned with the sum of weights of their

groups.

5
In both [36] and [15], the largest examined network included 500 nodes.
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Figure 2: Expected influence with 2 emphasized groups. The red horizontal lines represent the estimated constraints.
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Figure 3: Expected influence with 5 emphasized groups. The red horizontal lines represent the estimated constraints.

599, resp.), MOIM succeeded in covering more 𝑔2 users (19 vs.

12 for MOIM and𝑊𝐼𝑀𝑀 , resp.). Observe that using the optimal

weights for DBLP over Pokec for𝑊𝐼𝑀𝑀 , result in not satisfying

the constraint. The exploration of𝑊𝐼𝑀𝑀 for optimal weights sig-

nificantly increases its runtime, making it impractical for massive

networks like Weibo-Net, YouTube and LiveJournal (exceeded

our time cutoff). In all cases, not only did MOIM satisfy the con-

straint, it also came very close to the results of 𝐼𝑀𝑀𝑔2 in terms

of covering 𝑔2 users, which returns the optimal solution. For

example, over Pokec, where 𝐼𝑀𝑀𝑔2 covered 189 𝑔2 users, MOIM

covers 159, as opposed to 𝐼𝑀𝑀 covering only 73 such users.

Although RMOIM allows for some relaxation of the constraint,

it in-fact fully satisfied it in most cases. Moreover, its overall influ-

ence was consistently higher than those of𝑊𝐼𝑀𝑀 and MOIM. In

particular, in all but one of the cases, the 𝑔1 influence of RMOIM

was very close to that of 𝐼𝑀𝑀 . For example, over DBLP, RMOIM

and 𝐼𝑀𝑀 covered 1, 661 and 1, 712 users, resp., with RMOIM

covering over 6 times more 𝑔2 members. RMOIM is incapable of

processing massive networks like Weibo-Net (out of memory).

Not surprisingly, the results RMOIM and 𝑅𝑆𝑂𝑆 were similar.

Nonetheless, as opposed to RMOIM, all RSOS-based baselines

were incapable of even processing medium-size networks (ex-

ceeded our time cutoff). Recall that𝑀𝐴𝑋𝑀𝐼𝑁 aims to maximize

the minimum influence over the emphasized groups, and there-

fore here it behaves similarly to 𝐼𝑀𝑀𝑔2 (as 𝑔2 ⊆ 𝑔1). As for 𝐷𝐶 ,

since it guarantees that every group receives influence propor-

tional to what it could have generated on its own, it ignores

the constraint. This demonstrates that 𝑀𝐴𝑋𝑀𝐼𝑁 and 𝐷𝐶 are

ill-suited for Multi-Objective IM.

Observe that the single objective algorithms were either far

from satisfying the constraint (𝐼𝑀𝑀) or covered significantly less

𝑔1 users (𝐼𝑀𝑀𝑔2 ). Contrarily, both our algorithms succeeded in

covering almost as many𝑔1 users as 𝐼𝑀𝑀 , and almost as many𝑔2
users as 𝐼𝑀𝑀𝑔2 . For example, over DBLP, 𝐼𝑀𝑀 covered only 2 𝑔2
users and 1, 712 users in total (𝑔1 users), whereas 𝐼𝑀𝑀𝑔2 covered

33𝑔2 users, and less than 155 in total. MOIM and RMOIM covered

20 and 13 𝑔2 users, resp., and covered each more than 1, 050 users

in total. This demonstrates the advantage of our approach over

solutions which are focused only on a single objective.

Last, consider Figures 2 (e) and (f). Among all competitors that

satisfy the constraints, MOIM has influenced the largest number

of users. Interestingly, even though the emphasized groups were

randomly generated, 𝐼𝑀𝑀 did not satisfy the constraints. As for

𝐼𝑀𝑀𝑔𝑖 , it influences significantly less users than MOIM. This

demonstrates that existing single-objective IM algorithms do not

ensure the desired balance between the objectives. Note that here

the differences in the cover cardinalities among all competitors
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were smaller than in other networks. This stems from the fact

that the benefit our approach provides is particularly critical for

groups that are typically not covered by standard IM algorithms

(which is mostly not the case in random emphasized groups).

Scenario II results. The results are depicted in Figure 3, where

the 𝑦-axis is the influence over the emphasized groups, and red

lines represent the estimated constraint thresholds. A desirable

solution should be above (or near) the red lines for the constrained

groups 𝑔1, . . . , 𝑔4 groups, and, at the same time, should be as

high as possible for 𝑔5 (i.e., maximizing the objective). For the

𝑊𝐼𝑀𝑀 baseline we only present the results obtained by using

default weights set to 0.2 for all 5 groups (we report that similar

results were obtained when using other weighting schemes), as

the search for the optimal weights was infeasible in all cases (it

exceeded our time cutoff).

MOIM is the only algorithm satisfying all constraints over each

dataset. On top of that, its 𝑔5 influence (i.e., objective value) com-

petes nicely with all competitors. For example, over Weibo-Net,

MOIM succeeded to cover the greatest number of 𝑔5 members,

while over YouTube it covered 510 𝑔5 members, compared with

the best competitor (here - 𝐼𝑀𝑀𝑔𝑖 ) that covered 810 𝑔5 users (yet

did not satisfy the constraints). In the datasets which RMOIM has

managed to process, its 𝑔5 influence was the best or slightly be-

low the best value achieved. E.g., over Pokec, RMOIM and 𝐼𝑀𝑀𝑔𝑖

covered 4036 and 4090 𝑔5 users, resp., while over Facebook and

DBLP RMOIM covered the greatest number of 𝑔5 users.

Here again, all RSOS baselines could only process the small

Facebook network (exceeded our time cutoff in other datasets),

and, as expected, the results of 𝑅𝑆𝑂𝑆 and RMOIM were similar.

Here,𝑀𝐴𝑋𝑀𝐼𝑁 also behaves similarly to RMOIM, however, as

noted above, in other scenarios it may behave differently. This

stems from the fact that 𝑀𝐴𝑋𝑀𝐼𝑁 optimizes for equality of

outcomes, which may be undesirable when some groups are

much better connected than others. For instance, if one group is

poorly connected,𝑀𝐴𝑋𝑀𝐼𝑁 would require that a large number

of seeds is “spent" on reaching it, even though these seeds may

have a relatively small impact on other groups. As the𝐷𝐶 baseline

ignores the constraints, it did not satisfy them.

As opposed to the binary scenario where the objective was to

maximize the overall influence, here 𝐼𝑀𝑀 has no advantage over

the competitors. Indeed, in all except one of the examined cases,

𝐼𝑀𝑀 ’s objective value was the lowest among all algorithms. Fur-

thermore, regarding 𝐼𝑀𝑀𝑔𝑖 , as can be seen, covering a greater

number of users from one group may come at the cost of signifi-

cantly reducing the cover sizes of users from other groups. For

example, in LiveJournal (Figure 3 (F)), while the 𝑔4 and 𝑔5 cover

sizes of 𝐼𝑀𝑀𝑔𝑖 were the largest, its 𝑔1 and 𝑔2 cover sizes were

significantly lower than the competitors (and below the required

constraints). This demonstrates that existing (single-objective)

IM algorithms do not ensure the desired balance between the

objectives.

6.3 Parameter Tuning
Next, we examine how varying the input parameters affects the

results. To illustrate, we present here the results using a range

of values for 𝑘 and 𝑡 over the DBLP dataset (the other datasets

show similar trends). We note that a desirable behavior of a

Multi-Objective IM algorithm is as follows. As 𝑘 increases, we

expect both the𝑔1 (i.e., overall) and the𝑔2 (i.e., emphasized group)

influences to increase as well. As 𝑡 increases, i.e., the constraint

threshold is elevated, the 𝑔2 influence should increase, possibly

at the cost of reducing the 𝑔1 (i.e., overall) influence. Naturally, as

only our algorithms and𝑊𝐼𝑀𝑀 take into account the parameter

𝑡 , other competitors are indifferent to it.

The results are depicted in Figure 4. We first examine Figure

4(a). Interestingly, for all examined 𝑘 values, the targeted IM

algorithm, 𝐼𝑀𝑀𝑔 , has shown almost no growth in the overall

number of influenced users (less than 400), compared to 𝐼𝑀𝑀

and RMOIM, which, already for 𝑘 = 10, are influencing twice

as many users (more than 800). Analogously, for all 𝑘 values,

there is almost no increase in the number of emphasized users

influenced by 𝐼𝑀𝑀 (8 such users at most), while 𝐼𝑀𝑀𝑔 , already

for 𝑘 = 10, influenced twice as many emphasized users (more

than 18 such users). Contrarily, MOIM, RMOIM and 𝑊𝐼𝑀𝑀

have demonstrated the desired behavior when 𝑘 increases. As

expected, MOIM, RMOIM and𝑊𝐼𝑀𝑀 , as 𝑡 increases, cover a

greater number of 𝑔2 users, and fewer users in total, as illustrated

in Figure 4(b). Note that in these experiments𝑊𝐼𝑀𝑀 exhibit the

desired behavior, almost identical to that of MOIM. However, as

we will see next, its execution times are significantly longer.

6.4 Performance Evaluation
We next measure the cost of enriching the IM problem by incor-

porating multiple objectives, studying how different parameters

affect running times of our algorithms. For brevity, we present

the results only for scenario 𝐼 𝐼 , as the results for scenario 𝐼 show

similar trends (see [3]).

Recall that MOIM runs targeted IM algorithms (i.e., 𝐼𝑀𝑀𝑔 )

as subroutines. As we show, the overhead for MOIM turns out

to be negligible compared to 𝐼𝑀𝑀𝑔 , and it can process massive

networks efficiently. Naturally, MOIM behaves similarly to its

current input algorithm 𝐼𝑀𝑀 , whose optimizations and short-

comings both carry over to MOIM. In particular, as mentioned

in [33], when 𝑘 decreases, so does the optimal expected influ-

ence, 𝐼 (𝑂) (resp. 𝐼𝑔 (𝑂𝑔 )), in which case it is more challenging for

𝐼𝑀𝑀 (resp. 𝐼𝑀𝑀𝑔 ) to estimate 𝐼 (𝑂) (resp. 𝐼𝑔 (𝑂𝑔 )). Contrarily, for
larger 𝑘 values, 𝐼𝑀𝑀 (resp. 𝐼𝑀𝑀𝑔 ) is optimized to reuse 𝑅𝑅 sets

produced in earlier stages. Thus, the two main factors affecting

𝐼𝑀𝑀 (resp. 𝐼𝑀𝑀𝑔 ) are 𝑘 and 𝐼 (𝑂) (resp. 𝐼𝑔 (𝑂𝑔 )). Consequently,
these factors have a similar effect on MOIM. Regarding RMOIM,

we show that solving an LP is indeed costlier than employing an

IM algorithm. We will see that when it comes to medium or large

scale networks, RMOIM’s overhead turns out to be moderate, but

when it comes to massive networks it is incapable of processing

them. We further show that RMOIM’s scalability is not affected

by the same factors as MOIM, and its running times are barely

affected by those of its input IM algorithm.

Network size. . We first report the running times for the cases

presented above in Figure 5(a). Naturally, all competitors’ run-

ning times increase for larger networks. Although we see that

MOIM and RMOIM are naturally slower than 𝐼𝑀𝑀 and 𝐼𝑀𝑀𝑔 ,

they run in approximately 2 and 7 minutes, resp., even on Pokec,

which includes 1M nodes and 14M edges. That is, both our al-

gorithms can process large-scale networks in feasible running

times. Importantly, note that the running times of MOIM are very

close to those of 𝐼𝑀𝑀𝑔𝑖 (i.e., MOIM and 𝐼𝑀𝑀𝑔𝑖 have processed

YouTube in 5.7 and 5.3 minutes, resp.). When it comes to mas-

sive networks such as Weibo-Net, while MOIM processed it in

less than 49 minutes (in comparison, 𝐼𝑀𝑀𝑔𝑖 processed it in 47

minutes), RMOIM can not process it, since the LP program was

too big for the LP solver to handle (out of memory). According

to our experiments, RMOIM is feasible for graphs including up
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Figure 4: The expected influence of different baselines on the DBLP network, using varying values of 𝑘 and 𝑡 .
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Figure 5: Averaged execution times (for scenario 𝐼 𝐼 ).

to 20M edges and nodes. Regarding𝑊𝐼𝑀𝑀 , as it searches for

optimal weights, its running times were significantly longer than

both our algorithms. For example, on Facebook, it took𝑊𝐼𝑀𝑀

16 seconds - almost 4 times slower than MOIM (which ended

after 4.5 seconds). Observe that all RSOS-based algorithms ran in

more than 6 hours, even on the small Facebook instance network.

In what follows we focus on the Pokec dataset, as this is the

largest dataset RMOIM can process. We omit the results of the

RSOS-based and𝑊𝐼𝑀𝑀 baselines, as they cannot process it.

Propagation model. We present the effect of the propagation

model on running times in Figure 5(b). As reported in [5], while

𝐼𝑀𝑀 scales well under the LT model, it shows inferior perfor-

mance under the IC model, as it samples more 𝑅𝑅 sets. Conse-

quently, all 𝐼𝑀𝑀 variants, MOIM included, run slower under the

IC model. Indeed, it took all 𝐼𝑀𝑀 variants almost twice the time

to process Pokec when using the IC model. Contrarily, as RMOIM

is less sensitive to the increase in the number of 𝑅𝑅 sets, and it

behaves similarly under both propagation models (the difference

was less than a minute). As explained in [5], besides 𝐼𝑀𝑀 , multi-

ple top performing IM algorithms are not robust across different

propagation models (e.g., [18], [34]). This property of 𝐼𝑀𝑀 is

naturally carried over to MOIM. In cases where the user is inter-

ested in a different propagation model, she can take a different

IM algorithm optimized for this model (e.g., [13] for IC) as an

input for MOIM.

Seed-set size. . In Figure 5(c) we examine the effect of the

parameter 𝑘 on running times. As mentioned, when 𝑘 increases

𝐼𝑀𝑀 employs an optimized computation and hence we observe

almost no change in running times for all 𝐼𝑀𝑀 variants, MOIM

included. This behavior of MOIM is a consequence of employing

𝐼𝑀𝑀 , and therefore using an alternative IM algorithm (e.g., [17])

could lead to a linear growth in running times. As expected,

RMOIM demonstrates nearly linear growth as a function of 𝑘 , as

more 𝑘-size seed sets are considered.

Constraint threshold parameter. . In Figure 5(d) we examine

how the parameters 𝑡𝑖 , 𝑖 ∈ [1, 4] affect performance. Here we

tested all 𝑡𝑖 values of the form 𝑡𝑖 = 0.25 · 𝑡 ′ · (1 − 1

𝑒 ), where
𝑡 ′ ∈ [0.1, 0.2, . . . , 1]. Note that this parameter only affects the

behavior of our algorithms. In MOIM it dictates the required

seed-set size for the procedures it employs. Observe that when

all 𝑡𝑖 = 0 MOIM only runs 𝐼𝑀𝑀𝑔5 , while for other 𝑡𝑖 values it

employs 5 versions of 𝐼𝑀𝑀𝑔𝑖 with smaller 𝑘 values, therefore it

cannot use 𝐼𝑀𝑀 optimizations for large 𝑘 values. On the other

hand, as the solution space becomes smaller for higher 𝑡𝑖 values

(i.e., less 𝑘-size seed-sets satisfy the constraint), the running time

of RMOIM decreases.

7 RELATEDWORK
The seminal work of [23], the first to formulate the IM problem,

has motivated extensive research [5, 13], which can be classified

into three main approaches: (i) The greedy framework [18, 23, 29],

which iteratively adds nodes to the seed-set, maximizing the ex-

pectedmarginal influence gain; (ii) The RIS framework [7], where,

while retaining optimal accuracy, running times were gradually

improved, resulting in highly scalable algorithms [20, 28, 33];

(iii) In cases where scalability is preferred over accuracy, there

are heuristic algorithms that have been shown to perform well

in practice (e.g., [11]), despite not having theoretical guaran-

tees. Any greedy or RIS-based IM algorithm can be embedded

in MOIM, retaining the same features and drawbacks. In our

experiments we have examined the results of top performing IM

algorithms (e.g., [17, 33]), showing them all to be ill-suited for

the Multi-Objective IM problem.

An extension of IM, which we also examined in our experi-

ments, is targeted IM, where the goal is to maximize the influence

over a target group of users [6, 9, 26]. As demonstrated, this ex-

tension as well is ill-suited for the Multi-Objective IM problem,

as maximizing the influence over one group of users may come at

the cost of influence decrease for other groups. Therefore, unlike

our solutions, it does not provide theoretical guarantees for the

influence over each emphasized group separately.

Multi-Objective optimization problems (also known as Pareto

optimization) involve several (possibly conflicting) objectives,

which are required to be optimized simultaneously. Such prob-

lems have been studied in numerous fields, including economics

[27], finance [35], social-network analysis [19] and engineering

[14]. A classic approach to tackle such problems, which was

adopted by targeted IM algorithms [26, 31]), is the weighted-sum

method (e.g., [21]), which scalarizes the objectives into a single

objective, by assigning to each objective a user-defined weight

(which is chosen in proportion to its relative importance). In the

IM setting, the relative weights of users in the overall influence

sum are altered in accordance with a context-based function
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[6, 9, 26]. The main disadvantage of this method is the difficultly

in setting the weights obtaining the desired trade-off between the

objectives. Indeed, as we show in our experiments, adopting the

weighted-sum approach for our context requires an exploration

for the optimal weights which strike the desired balance. Hence,

this solution results in poor performance.

An alternative, more direct approach to multi-objective op-

timization problems is the constraints method (e.g., [12]), that

transforms all except one objectives into constraints, optimizing

the remaining objective subject to these constraints. A typical

challenge when applying this method is that the constraints have

to be chosen within the minimum/maximum values of the indi-

vidual objectives (which are generally unknown). Our solution

follows this approach, which enables the user to prioritize her

objectives and provides lower bound guarantees for all of them.

As mentioned, to assist the user in choosing the minimum values

of the objectives, IM-Balanced indicates to the user the range of

possible constraints per objective.

We have discussed on the connection betweenMulti-Objective

IM and the RSOS problem [24]. The authors of [8] provided an

optimal (1− 1

𝑒 )-approximation algorithm for RSOS (assuming that

number of objectives is𝑚 = Ω(𝑘)), which runs in𝑂 (𝑛8). Udwani
[37] has recently introduced two more efficient algorithms. The

first is an optimal (1 − 1

𝑒 )-approximation algorithm, which runs

in �̃� (𝑚𝑛8). The second is a more efficient algorithm which runs

in 𝑂 (𝑛 log𝑚 log𝑛), yet achieves only a (1 − 1

𝑒 )
2
approximation.

More recently, the authors of [36] remedy this gap by providing

an optimal (1 − 1

𝑒 )-approximation algorithm, whose runtime is

comparable to the second algorithm of Udwani. Asmentioned, we

have included this algorithm in the experimental study, showing

that, unlike our algorithms, it fails to process large networks.

8 CONCLUSION AND FUTUREWORK
We have presented the IM-Balanced system, which employs

Multi-Objective IM, a refined notion of the IM problem, handling

multiple objectives. We motivate the practical relevance of this

problem, and propose two algorithms: MOIM and RMOIM. IM-
Balanced employs RMOIM for social networks including up to

20M users and links, and MOIM for larger networks. Our experi-

mental study demonstrates the advantages of our algorithms in

multiple real-life scenarios, compared to alternative approaches.

We are currently pursuing complementary Multi-Objective

IM definitions, e.g., definitions aiming to maximize the ratio of
different cover cardinalities, inspired by recent work on fairness-

aware IM [15, 36]. We identify several interesting directions for

future research, which include confirming the tightness of MOIM,

and identifying other optimum values for Multi-Objective IM.
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ABSTRACT
Online users are becoming increasingly dependent on Web ser-
vices in choosing among products and services. This recent trend
is motivated by the integration of conversational agents which
took the human-machine interaction to unprecedented levels of
ease, using natural language as a communication medium. Given
the success of these systems, users are constantly switching to
experiential search, providing utterances that are intrinsically
subjective such as looking for a restaurant with a romantic am-
biance, creative cooking or nice staff. Current Web services are
unfortunately unable to decipher the subjective signals present
in user utterances and only support objective attributes that are
listed in service descriptions (e.g., restaurant address, cuisine,
price range).

To make the most of dialog systems, they must be able to de-
tect subjective attributes in user utterances and filter responses
according to user subjective preferences. This paper presents a
framework and techniques that augment conversational search
services with capabilities to understand and reason about sub-
jective user utterances. We propose novel subjective tag-based
indexing of information services. We discuss automatic subjec-
tive tag extraction from both user utterances and online reviews
using state of the art machine learning techniques such as BERT,
adversarial training and data programming. Experiments show
that the proposed techniques outperform existing information
retrieval systems and the search mechanisms provided by well-
known web search services such as Yelp.

1 INTRODUCTION
Digital services and online reviews are widely used in day-to-day
decisions [14], such as providing recommendations or opinions
regarding which restaurant to eat, which research paper to read
or even who to vote for in elections. When we make decisions,
recent studies show that we are prone to lean toward subjective
data focusing on past experiences rather than relying solely on
objective information (e.g., type of food served by a restaurant
or an address of a restaurant) [31]. For example, when we set
out to choose between two restaurants, we are attracted by the
ones offering great experiences such as delicious food, brilliant
atmosphere, friendly staff or romantic ambiance in addition to
deciding based on factual information such as restaurant loca-
tions or specific types of cuisine [39]. Often, we find experiential

© 2021 Copyright held by the owner/author(s). Published in Proceedings of the
24th International Conference on Extending Database Technology (EDBT), March
23-26, 2021, ISBN 978-3-89318-084-4 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

and subjective information in online reviews because they reflect
user opinions and experiences [14]. Techniques from opinion
mining and information retrieval (IR) [32] can be used to extract
knowledge from reviews. However, such techniques usually lack
the necessary precision to obtain meaningful and accurate sub-
jective information due to their keyword-based search nature
[31]. On the other hand, online reviews are expressed in natural
language which is very nuanced and intricate, thus needing more
effective extraction techniques. In the same line of argument,
information retrieval systems are heavily manual for the users
given that users need to try different combinations of keywords
and query styles before having to compare between the results
in a manual and labor-intensive way. Hence, decisions made
through traditional information retrieval systems are generally
sub-optimal [14].

Capturing and reasoning about subjective information has
been explored at various levels [31]. Some techniques explored
ratings (e.g., star ratings) to represent aggregated user opinions
on entities or services [59]. Rating-based techniques do not con-
sider reviews content but they rather provide aggregated nu-
merical or symbolic values which are hard for users to express
accurately. For example, a star rating of three out of five might
give the impression that the restaurant is average in all aspects
but in reality, it may serve delicious food but employs unhelpful
waitstaff, which made the reviewer balance out her final rating.
Another line of subjectivity-related research translates numerical
attribute values to linguistic values (e.g., translation of prices to
linguistic values, such as {"cheap", "fair", "costly", "expensive"})
using insights from fuzzy logic [26]. Nonetheless, such methods
involve objective attributes, whose values are to be translated
into subjective linguistic variations, leaving the space of the in-
herently subjective attributes untouched.

More recently, [31] proposed techniques extending database
systems to account for both objective and subjective attributes
and support subjective database queries. Nevertheless, in order
to use [31], the database schema, and hence the subjective at-
tributes, must be defined beforehand. Unfortunately, it is not
always easy to identify which attributes to include in the schema
and what their precise meaning is [14]. Besides, while such exten-
sions [31] augment structured query languages with subjectivity
support, they presuppose technical expertise comparable to that
of professional database users, who can express (complex) SQL
queries. Therefore, there is a need for more advanced techniques
to empower all users to benefit from subjectivity-aware services
in performing their day-to-day activities in a digitally enabled
world.
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At the same time, conversational Artificial Intelligence (AI)
and its instantiation in the form of messaging or chat bots (also
called task-oriented conversational bots) emerged as a new par-
adigm to naturally access services and perform tasks through
natural language (text or voice) conversations with software ser-
vices and humans. Thousands of bots have already been used
in a variety of significant use cases, e.g. tourism, travel, office
tasks, healthcare, e-commerce, education, and e-government ser-
vices. On the downside, the current generation of conversational
bots does not handle subjective information users ought to in-
clude in their utterances and often ignores them, leading to user
dissatisfaction.

In this work, we propose 𝑆𝐴𝐶𝐶𝑆 (Subjectivity Aware Con-
versational Search Service), consisting of a Natural Language
Understanding (NLU) framework and techniques, that combine
the usefulness of including subjective information in the search
utterances and the flexibility of utilizing natural conversations
to interact with users. A key feature of 𝑆𝐴𝐶𝐶𝑆 is the ability to
automatically and dynamically extract subjective information
from user utterances and online reviews without explicitly defin-
ing them beforehand. Achieving such an objective faces several
difficult issues, the most challenging of which is due to the ex-
pressiveness and complexity of natural language, i.e. the same
subjective information can be expressed using various phrases.
For instance, both "The food is phenomenal", "Very tasty plates of
food" or "Really good food" denote the deliciousness of food. To
address this issue, we introduce the concept of subjective tags.
Briefly stated, a subjective tag denotes subjective information
in user utterances and online reviews. For example, the review
sentence "This restaurant serves really good food and the service
is really quick", is tagged with {delicious food, quick service} sub-
jective tags. The use of tags provides a powerful mechanism
to reason about subjective information in user utterances and
online reviews (e.g., organization, navigation, summarization,
matching and understanding of subjective information). Building
upon advances in opinion extraction, in our approach a subjec-
tive tag is represented as concatenation of an aspect term and
an opinion term [32]. The aspect term denotes the feature being
described and the opinion term characterizes this feature. For
example, delicious food is a subjective tag wherein food is the
aspect while delicious is the opinion. 𝑆𝐴𝐶𝐶𝑆 marks each review
with a corresponding set of subjective tags.

In this paper we make the following contributions to over-
come challenges related to extracting subjective tags from user
utterances and online reviews as well as using them to support
subjectivity-aware human-bot natural language conversations:

• We introduce a framework that augments task-oriented
dialog systems with subjective filters. Search services are
augmented with subjective tag based search and indexing
[36]. Each subjective tag in the index is mapped to a list
of reviews and entities (e.g. restaurants, books, hotels...).
• We provide a novel subjective tag extraction pipeline that
is robust against variations of natural language. Tagging
labels eachword in a natural language sentence as being ei-
ther an aspect, an opinion or neither. We train a subjective
tag extraction model (called extractor) in an adversarial
fashion, wherein the adversary [13, 38] adds informed per-
turbations to natural language sentences. This allows the
tag extraction model to learn the possible variations in
language and update its parameters accordingly.

• After the aspects and opinions have been extracted, there
is a need to pair each aspect with its corresponding opin-
ion in order to construct subjective tags. We propose two
novel heuristics for pairing an aspect to an opinion. These
heuristics aim to overcome the limitation of word-based
distance approaches for pairing an aspect term to an opin-
ion term [31, 56]. The first heuristic relies on the distance
between aspects and opinions in the review parse trees
[24, 25, 41]. For example, the opinion professional would
be wrongfully paired with the aspect decor in the review
"The staff is friendly, helpful and professional. The decor is
beautiful" when relying on word distance alone. However,
when using a parse tree to represent the above review,
the two sentences "The staff is friendly, helpful and profes-
sional" and "The decor is beautiful" belong to two separate
sub-trees. Consequently, the opinion professional will be
closer to the aspect staff than the aspect decor because
professional and staff belong to the same sub-tree. While
more effective than traditional word distance techniques,
this heuristic has the following limitations: (i) In long
sentences, the different aspects and opinions may not be
separated into their own sub-trees. In this case, this heuris-
tic provides the same result as word distance methods. (ii)
The generated parse tree will be incorrect when there are
typos or punctuation errors in the review. The second
heuristic is proposed to overcome these limitations. It re-
lies on attention mechanism [3, 17, 54] to distribute the
attention of an aspect term among the different opinion
terms. These heuristics are combined using a data pro-
gramming paradigm [2, 49] to : (i) pair opinion and aspect
terms in natural language sentences in an unsupervised
model, or (ii) automatically generate training data from
online reviews to build a supervised pairing model.
• We evaluate the performance of the proposed techniques
using crowd sourced data. Experiments show that 𝑆𝐴𝐶𝐶𝑆 pro-
vides better results than IR systems. Besides, the tagger
improves upon state of the art by up to 4.93% in F1 scores
while the supervised pairing method adds 3.03 points in
accuracy.

This paper is organized as follows: We first discuss related
work. We then introduce the architecture of 𝑆𝐴𝐶𝐶𝑆 in Section 3.
The extraction of subjective tags is discussed in Sections 4 and
5. Section 4 describes the tagging while Section 5 details pair-
ing. Finally, Section 6 discusses the evaluation of the proposed
techniques.

2 RELATEDWORK
Our work lies at the intersection of two areas: Subjectivity search,
and aspect/opinion extraction.

Subjectivity Search. Despite the overwhelming importance
of subjective information in the decision making process, rela-
tively little effort focused on understanding and measuring the
effect of subjectivity in user decisions [31]. This task has been
traditionally delegated to standard information retrieval systems
which provide a keyword-based search, and a synonym expan-
sion at best [36, 52]. Systems that incorporate subjective filters in
their data models attracted the attention of the research commu-
nity only recently. Perhaps the closest work to ours is [31] which
aimed to augment traditional database systems with subjective
attributes. Their approach is different from ours in that their
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subjective attributes are part of a database schema itself, which
should be explicitly defined by a database designer beforehand.
The query interfaces require the users to have precise knowledge
about source schemas too. In our approach, subjective tags are
dynamically extracted from user utterances as they interact with
the system, thus increasing flexibility and productivity.

[27] built a tunable high-precision knowledge base with both
factual and subjective attributes. To do so, they predefined a list of
attributes (e.g. GOOD_VIEW, KID_FRIENDLY, HAS_HIGH_CHAIRS)
and asked crowd workers to assess whether an entity (in their
case, they used locations in Google Maps) has each attribute or
not. They then modeled user consensus with Beta distributions.
The major limitation of this approach is the increasing cost of
crowd workers when adding new locations, new attributes or
even changing the domain. Besides, crowd-sourced data suffers
from data quality problems, mainly due but not limited to the
inherent subjectivity in the task at hand. Also, the subjective
attributes in [27] are set at design time and not learned from user
interactions as we do.

Prior works also tackled the problem of subjectivity and opin-
ions in various domains [29, 37, 59]. Most of them capture a
narrow aspect of subjectivity by prompting the reviewers to rate
the objects they write about. We often find these in e-commerce
services in the form of star ratings which aggregate opinions of
all sub-parts of the object and act as a proxy for the overall user
satisfaction. This suffers from coarse granularity because the star
rating skips the details we might be interested in and only gives
one global assessment of the reviewer’s true feeling.

Another body of research aims to translate objective facts into
subjective phrases [20, 26, 50, 60]. The dominant example is the
price which is mapped to a set of subjective phrases such as
{"cheap", "fair", "costly", "expensive"} depending on comparisons
between the price value and a set of thresholds. This approach
only deals with translating objective attributes whose values
are indisputable. It leaves the space of the inherently subjec-
tive attributes such as food deliciousness or room cleanliness
untouched.

Aspect Opinion Extraction. The problem of extracting as-
pects from review texts is a long standing one in the Natural
Language Processing (NLP) literature [32]. However, most previ-
ous work focused on identifying the aspects only and measuring
their quantitative sentiment polarity (as being positive, nega-
tive or somewhere in between). This task is often referred to as
Aspect-Based Sentiment Analysis (ABSA) [32].

Existing approaches include rule-based, feature-engineering-
based and deep-learning-based approaches [56]. In a rule-based
approach, to classify the aspect terms as positive or negative, a
lexicon is used along with handcrafted sentiment values [18, 19].
Feature-based approaches [22, 30] train a classifier to extract the
aspect terms with manually defined features. Both rule-based and
feature-based solutions are labor-intensive and highly demand-
ing in terms of effort and time. Deep-learning-based approaches
[33, 55, 56], aside from having superior performance than the
previous two methods, extend the extraction to opinion terms as
well. While [55] used recursive neural networks, [56] employed
an attention-based architecture. The motivation behind both
approaches is the necessity to link aspects to opinions. [31] em-
ployed BERT sentence embeddings [7] with a standard classifier
that classifies each word in the sentence into either Aspect, Opin-
ion or Other. In the same spirit, we use BERT as an embedding
layer along with a BiLSTM-CRF classification model. We also

Table 1: An example of an inverted index with degrees of
truth for each subjective tag and restaurant pair

Tag Restaurants

good food
Vue du Monde (0.89)
Anchovy (0.76)
Pizza Hut (0.82)

nice staff Vue du Monde (0.92)
Pizza Hut (0.63)

creative cooking
Anchovy (0.94)
Pizza Hut (0.34)
Kazuki’s (0.85)

fast delivery
Anchovy (0.13)
Pizza Hut (0.75)
McDonald’s (0.74)

leverage adversarial training to handle potential variations in
the language. Experiments show that 𝑆𝐴𝐶𝐶𝑆 ’s extractor yields
better performance in various test benchmarks.

3 SUBJECTIVE TAG BASED INDEXING AND
FILTERING IN CONVERSATIONAL
SEARCH SERVICES

To describe the pipeline of 𝑆𝐴𝐶𝐶𝑆 , we begin with illustrating
how subjective tags are used. We then move on to show how
𝑆𝐴𝐶𝐶𝑆 constructs these tags and how it uses them to answer
complex and subjective user utterances. It should be noted that,
while the proposed techniques are not domain specific, we choose
the restaurants domain as a use case in this paper in order to
illustrate the components of the proposed pipeline. We also as-
sume that the underlying dialog system is already equipped with
intent recognition [15, 23, 46] and slot filling techniques [4, 12].
Briefly stated, intent recognition allows the identification of user
intents from user utterances. For instance, from the following
user utterance: "I want to eat Italian food near Lyon in a romantic
ambiance", the dialog system identifies that the user is searching
for a restaurant. Once an intent is identified, the system also
extracts what is called slots (e.g., the type of cuisine (Italian), the
location of the restaurant (Lyon)). The chatbot then delegates the
search intent to a search API that retrieves a list of restaurants
filtered by objective criteria. The goal of 𝑆𝐴𝐶𝐶𝑆 is to re-filter this
list to only keep the restaurants which offer a romantic ambiance.

3.1 Subjective Tag Index
In order to use subjective tags, 𝑆𝐴𝐶𝐶𝑆 leverages an inverted index
data structure [36]. Table 1 shows a snippet of what the index
might look like 1. Each subjective tag points to a set of entities
(in this case restaurants) whose reviews include mentions of the
subjective tag. For example, good food in Table 1 points to Vue du
Monde, Anchovy and Pizza Hut, meaning that the reviews of these
restaurants mention the deliciousness of the food cooked there.
Also, every entity is accompanied by a degree of truth. Informally,
a degree of truth associated to a tag measures the degree of
certainty that 𝑆𝐴𝐶𝐶𝑆 exhibits when marking an entity with the
tag. In the case of Table 1, Vue du Monde is more likely to have
a nice staff than Pizza Hut (a degree of truth of 0.92 compared
to 0.63). The degrees of truth are computed automatically by
𝑆𝐴𝐶𝐶𝑆 .
1The degrees of truth reported in the table are for illustration only and do not reflect
the quality of these restaurants in the real world
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Figure 1: Architecture of 𝑆𝐴𝐶𝐶𝑆

After collecting the set of subjective tags, 𝑆𝐴𝐶𝐶𝑆 needs to
associate each tag with a set of entities, as depicted in Table 1.
Association, or mapping, between a tag and an entity is based on
similarity scores [53]: 𝑆𝐴𝐶𝐶𝑆 reads online reviews of the entity
and extracts all subjective mentions from it. It then proceeds to
compute similarities between the subjective tags in the index
with those extracted from the reviews. If the similarity exceeds a
predefined threshold, 𝑆𝐴𝐶𝐶𝑆 includes the corresponding entity
to the index. Figure 1 illustrates this process.

The index in Figure 1 contains two subjective tags: good food
and great atmosphere. Suppose we have three entities (E1, E3
and E5) each having only one review. The extractor component
extracts subjective tags from the reviews, in this case good food,
superb atmosphere, really good ambiance. In the next step, the
similarity checker computes similarity scores between the re-
view tags and the index tags. Each time a similarity exceeds a
specified threshold, the indexer adds the corresponding entity to
the appropriate subjective tag in the index. Following the same
example in Figure 1, E1 and E5 are both included as mappings
to the subjective tag good food because their reviews both men-
tion it (good food and amazing pizza for E1 and E5 respectively).
However, the review of E3 only mentions the ambiance; hence
𝑆𝐴𝐶𝐶𝑆 does not add it as a mapping to good food. We use concep-
tual similarity which, in addition to the individual meaning of
words, also considers their nature or concept, for example pizza
being a type of food 2. Conceptual similarity has been shown to
work better on short phrases such as subjective tags than cosine
similarity. When building the index, 𝑆𝐴𝐶𝐶𝑆 automatically com-
putes the degrees of truth of an entity e with respect to tag. The
exact formula is shown in Equation 1.

2Conceptual similarity is outside the scope of this paper and may be subject to
another submission

𝐷𝑒𝑔_𝑡𝑟𝑢𝑡ℎ(𝑡𝑎𝑔, 𝑒) = 𝑙𝑜𝑔( |𝑅𝑒 | + 1)
|𝑇 𝑡𝑎𝑔
𝑒 |

∗
∑

𝑡 ∈𝑇 𝑡𝑎𝑔
𝑒

𝑆𝑖𝑚(𝑡𝑎𝑔, 𝑡) (1)

Where 𝑅𝑒 is the set of entity e’s reviews and 𝑇 𝑡𝑎𝑔
𝑒 is the set

of subjective tags automatically extracted from 𝑅𝑒 and whose
similarity score exceeds a predefined threshold 𝜃𝑖𝑛𝑑𝑒𝑥 when com-
pared to the tag tag. |𝑅𝑒 | and |𝑇 𝑡𝑎𝑔

𝑒 | are the number of elements
in both 𝑅𝑒 and𝑇

𝑡𝑎𝑔
𝑒 respectively. Equation 1 finds all review tags

which are similar to tag and computes the arithmetic mean of
their similarity scores, weighted by the number of reviews. The
motivation of multiplying the mean with the number of reviews
for each entity is that the more reviews there are, the more sta-
tistically significant the degrees of truth become. That is why
𝑆𝐴𝐶𝐶𝑆 privileges the entities having more reviews.

Going back to the example in Figure 1, when the user submits
a new utterance "I want a restaurant with a romantic ambiance",
𝑆𝐴𝐶𝐶𝑆 extracts romantic ambiance from the utterance. Because
this tag is unknown to 𝑆𝐴𝐶𝐶𝑆 , it adds it to the user tag history.
Consequently, in the next indexing round, 𝑆𝐴𝐶𝐶𝑆 includes ro-
mantic ambiance to the index and computes its entity mappings
along with their degrees of truth as has been explained above.
This mechanism enables 𝑆𝐴𝐶𝐶𝑆 to adapt to new user needs.

3.2 Filtering
In this section, we provide details about how 𝑆𝐴𝐶𝐶𝑆 utilizes
subjective tags to answer users subjective utterances.

Processing user utterances. Suppose the user submits a new
utterance: "I want an Italian restaurant in Melbourne that serves
delicious food and has a nice staff". 𝑆𝐴𝐶𝐶𝑆 forwards this utterance
to the underlying dialog system which finds the user intent (in
this case searchRestaurant) and calls a corresponding search API
(e.g. TripAdvisor, Yelp...). In this example, 𝑆𝐴𝐶𝐶𝑆 expects the API
to return the set of restaurants that are in Melbourne and serve
Italian food. We call this set S𝑎𝑝𝑖 . As mentioned before, neither
the dialog system nor the search API understand subjective in-
formation in the utterance such as delicious food and nice staff,
thereby ignoring them completely. 𝑆𝐴𝐶𝐶𝑆 extracts these tags
from the utterance and use them to filter and rank S𝑎𝑝𝑖 before
showing the final results to the user.

Probing the index. If the subjective tags extracted from the
user utterance exist in the index, the corresponding entities with
their degrees of truth are directly taken from the index. For
instance, in the previous utterance, nice staff exists in the index
depicted in Table 1, and thus the matching set ("Vue du Monde",
0.92), ("Pizza Hut", 0.63) is extracted as is. We call this set S𝑡1,
where t1 = "nice staff".

On the other hand, if the subjective tag is not found in the
index, 𝑆𝐴𝐶𝐶𝑆 adds it to the user tag history as discussed in
Section 3.1 and Figure 1 for later indexing. However, in order to
provide a good answer to the user in real time, 𝑆𝐴𝐶𝐶𝑆 combines
mappings of similar tags which are already in the index. To
illustrate this, we go back to the previous example. Delicious food
does not exist in the index of Table 1, but is similar to good food
and creative cooking. In this case, 𝑆𝐴𝐶𝐶𝑆 calculates the union of
the mappings corresponding to these two tags and multiply their
degrees of truth by the similarity score of delicious food with each
of the two subjective tags. Assume that:
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𝑠1 = 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (delicious food, good food) (2)

𝑠2 = 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (delicious food, creative cooking) (3)
The set of entities that 𝑆𝐴𝐶𝐶𝑆 finds for delicious food is then

S𝑡2 = {("Vue du Monde", 𝑠1 × 0.89), ("Anchovy", 𝑠1 × 0.76 + 𝑠2 ×
0.94), ("Pizza Hut", 𝑠1 × 0.82 + 𝑠2 × 0.34), ("Kazuki’s", 𝑠2 × 0.85)}

After the construction of S𝑎𝑝𝑖 , S𝑡1 and S𝑡2, 𝑆𝐴𝐶𝐶𝑆 needs
to aggregate the entities coming from the search API, plus the
ones recovered from each subjective tag in the utterance. In
other words, 𝑆𝐴𝐶𝐶𝑆 computes the intersection of these sets
of entities according to Algorithm 1. It is worth noting that the
function search_api takes the user utterance as input parameter
and relies on the underlying dialog system and the search API
to provide results filtered by objective attributes alone. On the
other hand, the function extract_tags takes the user utterance as
input parameter and returns the list of subjective tags using the
extraction pipeline which we describe in Sections 4 and 5.

Algorithm 1 Filtering & Ranking
1: Let u be the user utterance
2: Let index be the inverted index
3: Let 𝜃 𝑓 𝑖𝑙𝑡𝑒𝑟 be the similarity threshold
4: S𝑎𝑝𝑖 ← 𝑠𝑒𝑎𝑟𝑐ℎ_𝑎𝑝𝑖 (𝑢)
5: 𝑡𝑎𝑔𝑠 ← 𝑒𝑥𝑡𝑟𝑎𝑐𝑡_𝑡𝑎𝑔𝑠 (𝑢)
6: for t in tags do
7: if 𝑡 ∈ 𝑖𝑛𝑑𝑒𝑥 .𝑘𝑒𝑦𝑠 then
8: S𝑡 ← 𝑖𝑛𝑑𝑒𝑥 [𝑡]
9: else
10: S𝑡 ← ⋃

𝑡𝑎𝑔∈𝑖𝑛𝑑𝑒𝑥.𝑘𝑒𝑦𝑠
{index[tag]} such that

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝑡, 𝑡𝑎𝑔) > 𝜃 𝑓 𝑖𝑙𝑡𝑒𝑟

11: R ← ⋂
𝑡 ∈𝑡𝑎𝑔𝑠

{S𝑎𝑝𝑖 ,S𝑡 }

12: Return 𝑠𝑜𝑟𝑡 (𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒_𝑠𝑐𝑜𝑟𝑒𝑠 (R))

3.3 Ranking
𝑆𝐴𝐶𝐶𝑆 ranks the filtered set of entities according to their degrees
of truth across all subjective tags. We identify two situations for
ranking.

One subjective tag. If the user expresses a single subjective
filter in her utterance, the ranking is straight forward. 𝑆𝐴𝐶𝐶𝑆 sorts
the entities according to their degrees of truth in descending or-
der, so that the top results are the ones whose reviews strongly
mention the subjective tag.

Many subjective tags. In this case, 𝑆𝐴𝐶𝐶𝑆 has a separate
set of entities with their degrees of truth for each subjective tag.
However, an entity can belong to many of such sets. Thus, before
ranking becomes feasible, 𝑆𝐴𝐶𝐶𝑆 must aggregate the degrees
of truth for each entity across all subjective tags. Aggregation
is done via computing the arithmetic mean over all tags. We
also experimented with other aggregation methods such as the
product or min operators, but the arithmetic mean works better
in practice. 𝑆𝐴𝐶𝐶𝑆 then sorts the entities in descending order.
Algorithm 1 combines the filtering and ranking stages. In line 12,
the function aggregate_scores computes the arithmetic mean of
degrees of truth across the tags.

Figure 2: Token Tagging and Pairing

As mentioned before, a subjective tag is the concatenation of
two terms: the aspect term and the opinion term. Following
previous effort [31], we formulate the task of extracting subjective
tags from a given input sentence as a two-stage process: tagging
and pairing, as illustrated in Figure 2. Each word in the sentence
is first tagged as being an aspect (AS), an opinion (OP) or neither
(O). Then, every aspect term gets paired with its corresponding
opinion term to build the set of subjective tags from the input
sentence. In the following, we describe the techniques we propose
for tagging and pairing tasks. We describe tagging in Section 4
and pairing in Section 5.

4 TAGGING
We denote by 𝑟𝑖 a review sentence which consists of a sequence of
tokens 𝑟𝑖 = {𝑤𝑖1,𝑤𝑖2, ...,𝑤𝑖𝑛}. We use the IOB encoding scheme
[47] with the following classes: B-AS (Beginning of Aspect), I-AS
(Inside of Aspect), B-OP (Beginning of Opinion), I-OP (Inside of
Opinion) and O (Outside). The set of tags is thus 𝐿 = {B-AS, I-AS,
B-OP, I-OP, O}. The objective of tagging is to classify each token
𝑤𝑖 𝑗 in the sentence 𝑟𝑖 , into a class 𝑐𝑖 𝑗 ∈ 𝐿. The components of
𝑆𝐴𝐶𝐶𝑆 ’s tagging model are detailed below.

4.1 Baseline for the Tagging Pipeline
Figure 3 depicts the base architecture for tagging words into
aspects and opinions. We use BERT [7], the recently-developed
language model, as the embedding layer thanks to its proven
superior quality when compared to other embedding models [7].
As illustrated in Figure 3, BERT embeddings serve as input to
the Bidirectional LSTM (BiLSTM) layer [16], which encodes the
past context (all words prior to any given word in the sentence)
and the future context (all words following a given word) of
each word. Following [8, 35], we encode the text sequence from
both left to right (forward) and right to left (backward). We then
concatenate the resulting representations to form the final output
of the BiLSTM.

Finally, the BiLSTM output flows to the Conditional Random
Field (CRF) layer [28], which is paramount to encode dependen-
cies between the different labels of 𝐿. For example, I-OP cannot
follow I-AS in the label sequence. More generally, I-AS (or I-OP)
must either follow B-AS or I-AS (B-OP or I-OP). Given an input se-
quence 𝑧 = {𝑧1, 𝑧2, ..., 𝑧𝑛}, CRFs effectively utilize correlations be-
tween labels to predict the best label sequence 𝑦 = {𝑦1, 𝑦2, ..., 𝑦𝑛}.
Formally, the conditional probability function of CRFs is given
by:

𝑃 (𝑦 |𝑧,𝑊 ,𝑏) =

𝑛∏
𝑖=1

𝜓𝑖 (𝑦𝑖−1, 𝑦𝑖 , 𝑧)∑
𝑦′∈𝑌 (𝑧)

𝑛∏
𝑖=1

𝜓𝑖 (𝑦′𝑖−1, 𝑦
′
𝑖
, 𝑧)

(4)

where𝑌 (𝑧) denotes the set of possible labels for the sequence z
and𝜓𝑖 (𝑦𝑖−1, 𝑦𝑖 , 𝑧) = 𝑒𝑥𝑝 (𝑊𝑇

𝑦′,𝑦𝑧𝑖 + 𝑏𝑦′,𝑦) are potential functions
to be learned with𝑊𝑦′,𝑦 and 𝑏𝑦′,𝑦 being the weight and bias
vectors respectively. Decoding (i.e. solving the tagging task using
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Figure 3: Sequence tagging model based on BERT + BiL-
STM + CRF

a CRF layer) consists in finding the best sequence of labels 𝑦 that
maximizes the log-likelihood given the input sequence z:

𝑦∗ = argmax
𝑦′∈𝑌 (𝑧)

𝑃 (𝑦′ |𝑧,𝑊 ,𝑏) (5)

In this work, we use linear-chain CRFs, where only interac-
tions between two successive labels are taken into consideration.
We also adopt the Viterbi algorithm [10] along with beam search
for efficient decoding of the label sequence.

4.2 Extending the Baseline with Domain
Adaptation

In "La carte of this restaurant is a killer", 𝑆𝐴𝐶𝐶𝑆 should be able
to tag la carte as an aspect and a killer as an opinion. However,
opinions are mostly adjectives whereas a killer is a noun, thereby
𝑆𝐴𝐶𝐶𝑆 might fail to recognize it as an opinion, or even mark
it as an aspect. Moreover, la carte is a rare word in the english
vocabulary, thus the tagger might not understand the word alto-
gether. This limitation is largely due to the fact that BERT has
been pre-trained on general Wikipedia articles [7]. As a conse-
quence, it does not know that a killer is a widely used idiom in
the restaurant jargon to characterize something as overly good.
It also ignores that la carte in this case means the menu, which
is an important aspect to be extracted. Hence, standard BERT
embeddings are blind to the domain and may hinder the tagging
performance of 𝑆𝐴𝐶𝐶𝑆 .

To make the embeddings more domain-aware, we follow the
guidelines of [58] who post-trained BERT on domain-specific
review corpora in order to make it understand opinion text rather
than genericWikipedia articles.We use reviews about restaurants
as a post-training dataset in our case. [58] also added another
fine-tuning iteration to make BERT aware of the task (e.g. as-
pect/opinion extraction), but on out-of-domain data. We find that
using domain knowledge alone works better in our case than
when leveraging both domain- and task-awareness. Experiments
show that domain adaptation adds up to 2.93 F1 score points over
the baseline.

4.3 Adversarial Learning for Dealing with
Language Expressiveness

Natural language is very nuanced, and introducing subtle changes
to the input sentences can change the meaning dramatically. For
example, adding not before the verb or changing always with
never reverse the meaning of the sentences completely. Unfortu-
nately, such changes happen frequently when using the trained
model with new sentences, unseen during training. This is par-
ticularly alarming when the changes are subtle, or insignificant
when assessed by a human evaluator, for example changing a
word with its synonym. However, word embeddings do not al-
ways align with human perception. For instance, two synony-
mous words might be far apart in the embedding space [9, 21, 40].
Even if they are close to each other, the tiny distance between
the embeddings can be enough to mislead the trained model
[38]. Adversarial examples have long been used to make trained
models robust against small input differences and perturbations
(noise). It has been shown to provide additional regularization
capabilities beyond that brought by the use of dropout alone [13].

We leverage adversarial learning to enhance the robustness
of 𝑆𝐴𝐶𝐶𝑆 ’s tagger against input noise. We generate adversarial
examples that are close to the original inputs and that should
share the same label sequence (i.e. aspect/opinion tags), yet are
specifically designed to fool the model into tagging them oth-
erwise. The creation of these adversarial inputs is enabled by
the introduction of small worst case perturbations bounded by a
chosen perturbation set, to decrease the model’s ability to pre-
dict correctly. The tagger is then trained on a mixture of clean
and adversarial examples to enhance its stability and robustness
against potential input perturbation. The objective function is
thus the following:

Min
𝜃
[𝛼.𝑙 (ℎ𝜃 (𝑥), 𝑦) + (1 − 𝛼). Max

𝛿 ∈Δ(𝑥)
𝑙 (ℎ𝜃 (𝑥 + 𝛿), 𝑦)] (6)

where ℎ𝜃 is the tagging model with 𝜃 being the corresponding
parameters. 𝑙 is the loss function and Δ(𝑥) is the set of pertur-
bations allowed for the input sequence x. In this work, we use
the 𝑙∞ ball: Δ(𝑥) = {𝛿 : | |𝛿 | |∞ < 𝜖} where 𝜖 is a hyperparameter
to be tuned. Equation 6 assumes the perturbations to be applied
directly on the embeddings as has been done in [38]. Solving
such an objective function exactly is intractable in complex net-
works. Consequently, by leveraging Danskin’s theorem [6], we
can first solve the inner maximization independently to find 𝛿∗
that maximizes the adversarial loss, and then adding 𝛿∗ to the
input to solve the outer minimization objective.

𝛿∗ = argmax
| |𝛿 | |∞<𝜖

𝑙 (ℎ𝜃 (𝑥 + 𝛿), 𝑦) (7)

Min
𝜃
[𝛼.𝑙 (ℎ𝜃 (𝑥), 𝑦) + (1 − 𝛼).𝑙 (ℎ𝜃 (𝑥 + 𝛿∗), 𝑦)] (8)

Finding an exact solution for 𝛿∗ is also an intractable problem
for complex models. We approximate 𝛿∗ by assuming a linear
tendency for the adversarial loss inside the norm-ball. We thus
use the Fast Gradient Sign Method (FGSM) suggested by [13] to
find a decent solution in an efficient way. The computation of 𝛿∗
is given by:

𝛿∗ = 𝜖.𝑠𝑖𝑔𝑛(𝑔) (9)
where 𝑔 = ∇𝛿 𝑙 (ℎ𝜃 (𝑥 + 𝛿), 𝑦). In Equation 8, the first loss is

the clean loss, while the second loss represents its adversarial
counterpart. The parameter 𝛼 denotes how much weight we
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Figure 4: Architecture for Adversarial learning using
BERT

give to the adversarial example with respect to the original one.
Figure 4 illustrates the entire adversarial learning component.

5 PAIRING
In Figure 2, food is paired with really good, and service with a bit
slow 3 in order to create the corresponding subjective tags. Most
previous work [55, 56] employ simple heuristics such as word dis-
tance to pair aspects and opinions. However, such techniques fall
short of the expected accuracy especially on complex and tricky
input sentences. For example, the opinion professional would be
wrongfully paired with the aspect decor in the review "The staff
is friendly, helpful and professional. The decor is beautiful" when
relying on word distance alone, because professional is closer to
decor than to staff.

In this section, we first describe the two novel heuristics that
we propose to pair aspects with opinions (Section 5.1). Although
these heuristics can be directly used as an unsupervised pair-
ing model, in Section 5.2, we discuss how they are used in a
supervised model.

5.1 Pairing Heuristics
We design two types of unsupervised heuristics for pairing. The
first category is based on constituency parse trees [24, 25, 41]
while the second utilizes the attention mechanism [17].

Heuristic based on parse trees. The first method is a rule-
based method. The intuition behind it is that associated aspects
and opinions should be close to each other in the parse tree of the
input sentence. We start by building the parse tree and then apply
a greedy strategy that maps every aspect term to the "closest"
opinion term in the parse tree. Given that a single aspect can
be mapped to multiple opinions 4, we use this heuristic twice:
from aspects to opinions and then from opinions to aspects. For
example, in "The staff is friendly and professional", friendly is
closer to staff than professional is in the parse tree. Hence, the
first version outputs the pair (staff, friendly). On the other hand,
the second run starts from opinions and looks for the closest
aspect. It would thus give the pairs (staff, friendly) and (staff,
professional).

Heuristic based on BERT attention heads. The idea be-
hind using BERT attention heads for pairing is motivated by the
need to assign relevance scores to aspects and opinions. Ideally,
we want each aspect term to focus more on its corresponding
opinion (high relevance score) and ignores the rest (low rele-
vance scores). Attention can be leveraged to approximate rele-
vance. First introduced to enhance neural machine translation
3A multi-word aspect (or opinion) is regarded as a single aspect (opinion) term
4The reverse also applies: An opinion term can be paired with multiple aspects as
well

Figure 5: BERT attention head for pairing aspect and opin-
ion terms

[3] and later adapted to nearly every other NLP task, attention is
a mechanism to assign importance values to every token in the
sequence given a query term. We say that the query term attends
to the tokens which have the highest attention scores. In our
case, the query term is the aspect term, and the sequence is the
input sentence. Using this method, the goal is to distribute the
attention of every aspect term so that it attends to the rightful
opinion (that of the highest attention).

Fortunately, BERT is an attention-based model, and we have
it already trained on aspect/opinion extraction as explained in
Section 4. We hypothesize that, while learning the downstream
task of tagging aspects and opinions, BERT leverages its attention
heads in a way that makes aspects attend to the rightful opinions,
and vice versa. Figure 5 confirms our hypothesis. It illustrates one
attention head of BERT. Each row in the figure is the attention
distribution of the corresponding word over the entire input
sequence; the darker the color, the higher the attention. In the
figure, food is darkest at delicious, meaning that food’s attention
to delicious is very high. In the same spirit, both staff and decor
attend to amazing. Thus, BERT attention heads act as simple no-
training-required classifiers that, given an aspect, output themost
attended to opinion. We find that BERT heads capture various
linguistic properties, some of which correspond remarkably well
to the notion of pairing aspects with opinions. The best head we
found for pairing has an accuracy of 82.62% on the pairing test
set (Section6.4), which is excellent given the quasi-none effort
this method needs.

5.2 Supervised Learning-based Approach for
Pairing

We also provide a supervised learning alternative to the problem
of pairing. We formulate our pairing objective as a classification
problem. Given an input sentence 𝑠𝑖 (e.g., "The food is delicious
and the staff are friendly") and a short phrase 𝑝𝑖 (e.g., "delicious
food")5, the classifier classifies 𝑝𝑖 as being a correct extraction
from 𝑠𝑖 or not. To use this classifier with 𝑆𝐴𝐶𝐶𝑆 , we first use the
tagger to extract aspects and opinions from 𝑠𝑖 . We then construct
all possible pairs from the sets of aspects and opinions regardless
of their soundness. For example, suppose we have food and staff
as aspects, and delicious and friendly as opinions. The list of
all possible pairings is: 𝑃𝑎𝑙𝑙 = ["delicious food", "delicious staff",

5In the context of this work, these short phrases are subjective tags
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Figure 6: Data Programming pipeline for pairing

"friendly food", "friendly staff"]. We feed 𝑠𝑖 with each pair from
𝑃𝑎𝑙𝑙 into the classifier, and consider it as a correct extraction if
the classifier returns a positive label.

We use data programming [2, 49] in order to create the dataset
necessary to train such a classifier. The entire pipeline is illus-
trated in Figure 6. First, a set of labeling functions [2, 48, 49] use
the heuristics described in Section 5.1 in order to independently
assign a label to every (𝑠𝑖 , 𝑝𝑖 ) pair. These labeling functions are
considered weak supervision sources.

The second step in the pipeline aggregates the labels from the
labeling functions to construct a single overall label for every
(𝑠𝑖 , 𝑝𝑖 ) pair, based on agreements and disagreements between
labeling functions. This is generally achieved with generative
models which, by aggregating enough datapoints, end up creating
a decent labeled training dataset. Finally, we use this dataset
to train a discriminative model. In our case, it’s the classifier
discussed above. It is important to note that, in our case, we have
a working solution for pairing aspects with opinions at each step
of the pipeline. However, experiments show that committing to
the entirety of the pipeline and using the discriminative model
(and thus the supervised model) drives a considerable boost in
pairing accuracy when compared to the unsupervised methods.

In the following, we describe the labeling functions, the genera-
tive and discriminative models we use in the supervised learning-
based pairing pipeline.

Labeling functions for the pairing pipeline. A labeling
function in 𝑆𝐴𝐶𝐶𝑆 ’s pairingmodule has the same interface as the
classifier, i.e. expects a sentence 𝑠𝑖 and a phrase 𝑝𝑖 as input, and
outputs a binary label telling whether 𝑝𝑖 is a legit extraction from
𝑠𝑖 . All labeling functions are based on the heuristics presented
in Section 5.1. To transform each heuristic 𝐻 𝑗 into a labeling
function 𝐿𝑗 , we follow the procedure below:

(1) Extract all aspects and opinions from 𝑠𝑖 using 𝑆𝐴𝐶𝐶𝑆 ’s
tagger.

(2) Use 𝐻 𝑗 to find the pairs 𝑃𝐻 𝑖
𝑗
as detailed in Section 5.1.

(3) If the short phrase 𝑝𝑖 belongs to the set of constructed
pairs 𝑃𝐻 𝑖

𝑗
, output 1. Otherwise, return 0.

We use seven different labeling functions: two are based on
the parse tree method (the first from aspects to opinions, the
second the other way around) while the remaining five rely on
BERT attention scores employing different heads. The choice of
attention heads has been made after a qualitative analysis.

Generative model for the pairing pipeline. We use the
generativemodel proposed by Snorkel [48] in our pipeline. Snorkel
is a data programming framework that integrates the noisy sig-
nals of multiple labeling functions to estimate the true label
class[48]. Snorkel offers two mechanisms for aggregation. The
simplest is a majority vote model where each labeling function is

regarded as an independent voter. The chosen label for each dat-
apoint is the most agreed upon by labeling functions. The other
method incorporates statistical properties of labeling functions
such as accuracies and correlations. Snorkel then trains a proba-
bilistic graphical model to generate the true labels without access
to ground truth data. Training is based on agreements and dis-
agreements between the different labeling functions as dictated
by data programming. Although the authors of Snorkel state that
the probabilistic generative model works better in practice than
the majority vote, we found the latter to be more accurate.

We can directly use the generative model to extract subjec-
tive tags from review sentences. However, a better use of data
programming lies in the automatic creation of labelled training
data to train a subsequent discriminative model. The advantages
of doing so are twofold: First, the discriminative model general-
izes beyond the scope of examples fed to the labeling functions.
Second, the discriminative model is faster to execute because
the generative model loops through all labeling functions and
aggregates their outputs, whereas the discriminative model only
uses one forward pass in case of neural networks.

Discriminative model for the pairing pipeline.We train
a simple two-layer neural network with a sigmoid activation
function. We encode 𝑠𝑖 and 𝑝𝑖 using BERT embeddings. We train
the classifier with the training data that has been automatically
created with the procedure explained in the previous sections.
Our experiments confirm that the discriminative model outper-
forms the generative one, as has been found in [48].

6 EXPERIMENTS
We first begin by showing our experimental settings before de-
scribing the experiments that we conducted. The first set of ex-
periments evaluates the overall performance of 𝑆𝐴𝐶𝐶𝑆 and com-
pares it to two baselines (Section 6.2). We then move to assess the
quality of 𝑆𝐴𝐶𝐶𝑆 components. We evaluate the sequence tagger
in Section 6.3 and the pairing mechanism in Section 6.4.

6.1 Experimental Settings
Datasets. We apply 𝑆𝐴𝐶𝐶𝑆 to the domain of restaurants whose
online reviews we get from the publicly available Yelp Dataset
[1]. Since it covers a wide array of businesses, we filter it to only
keep reviews about Italian restaurants in Montreal, resulting
in 280 entities (restaurants) with 7061 reviews. To train the as-
pect/opinion tagger, we use the training dataset created by [31]
that contains 800 sentences, wherein each token is accompanied
by its label. For pairing, we use the same training dataset as in
[31] but without the labels since we augment the data and infer
the labels with Snorkel [48].

Processing. We implemented 𝑆𝐴𝐶𝐶𝑆 in Python using stan-
dard packages such as PyTorch [42] for neural networks, Hug-
gingFace transformers library [57] for BERT, NLTK [34] for tex-
tual preprocessing and Scikit-Learn [43] for evaluation metrics.
In order to incorporate domain knowledge into BERT, we directly
use the models for restaurants published on Huggingface com-
munity hub by [58]. For adversarial training, we fix the value of
𝛼 to 0.5 (Equation 8) while we vary 𝜖 between {0.1, 0.2, 0.5, 1.0,
2.0}.
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6.2 Comparing 𝑆𝐴𝐶𝐶𝑆 with Baselines
In this experiment, we evaluate the overall performance of 𝑆𝐴𝐶𝐶𝑆 ,
and then compare it to two strong baselines. The evaluation
works as follows: we first prepare a set of subjective tags as a test
set. Each system that we want to evaluate takes the tags as input
and returns an ordered list of results, sorted by their degree of
relevance with respect to the subjective tags. The result of each
system is then compared to the ideal ordering of entities. The
system whose ordering is "closest" to the ideal one is deemed the
best. We apply this experiment to the domain of restaurants.

Preparing subjective tags. Since there is no benchmark for
subjective tags, we had to create our own. [39] identified the most
important features restaurant seekers consider when choosing
a restaurant. These features include "delicious food", "creative
cooking", "varied menu", "romantic ambiance"... We chose 18 of
them to serve as our subjective tags for testing purposes. We
then construct combinations of these tags by uniform random
sampling. Each combination will form a potential subjective user
utterance. For example, if random sampling puts together the
tags "clean plates" and "quick service", it works as if a user gave the
following utterance to the system: "I am looking for a restaurant
that delivers a quick service with clean plates.". The number of tags
per combination depends on the level of difficulty of the query
(utterance). In this experiment, we set 3 levels of difficulty: Short
with either 1 or 2 tags; Medium with 3 or 4; Long with 5 or 6 tags.
Each set (level of difficulty) contains 100 queries (combinations).

Evaluation metrics. To measure how well the entities re-
turned by 𝑆𝐴𝐶𝐶𝑆 and the baselines satisfy the queries in the test
set, we use the well-known Normalized Discounted Cumulative
Gain (NDCG) [5] which is a measure of ranking quality. Formally,
this metric computes the quality of a ranked list and divides it
by that of the ideal ordering, thus giving a score between 0 and
1, the higher the better. For illustration purposes, assume that
subjective query Q has n subjective tags: 𝑄 = {𝑞1, 𝑞2, ..., 𝑞𝑛} and
that we input Q to 𝑆𝐴𝐶𝐶𝑆 . The latter returns a list of top-k
entities 𝐸 = {𝑒1, 𝑒2, ..., 𝑒𝑘 }. We define 𝑠𝑎𝑡 (𝑞𝑖 , 𝑒 𝑗 ) ∈ [0, 1] as the
degree with which entity 𝑒 𝑗 satisfies the subjective tag 𝑞𝑖 . The
NDCG score is computed as follows:

𝐷𝐶𝐺 (𝑄, 𝐸) =
𝑘∑
𝑗=1
(2

1
𝑚

∑𝑚
𝑖=1 𝑠𝑎𝑡 (𝑞𝑖 ,𝑒 𝑗 ) − 1)/𝑙𝑜𝑔2 ( 𝑗 + 1) (10)

𝑁𝐷𝐶𝐺 (𝑄, 𝐸) = 𝐷𝐶𝐺 (𝑄, 𝐸)/𝑖𝐷𝐶𝐺 (𝑄) (11)
Intuitively, a highly relevant entity (that with 𝑠𝑎𝑡 (𝑞𝑖 , 𝑒 𝑗 ) scores

close to 1) should be at the top in order for the DCG to be high.
iDCG in Equation 11 corresponds to the DCG score of the ideal
ordering. It is fairly easy to get the iDCG as it is only a matter
of sorting the entities with respect to the sum of their 𝑠𝑎𝑡 (𝑞𝑖 , 𝑒 𝑗 )
scores and then computing the DCG. Finally, we take the arith-
metic mean over all queries to compute the quality of the entire
test set.

Ground truth. We obtain the ground truth 𝑠𝑎𝑡 (𝑞𝑖 , 𝑒 𝑗 ) of sub-
jective tag 𝑞𝑖 and entity 𝑒 𝑗 via crowdsourcing. We give each
worker a tag 𝑞𝑖 and one review 𝑟𝑘

𝑗
from the set of online reviews

corresponding to entity 𝑒 𝑗 . The crowdsourcing task is to inspect
the review 𝑟𝑘

𝑗
and tell whether it mentions the tag 𝑞𝑖 or not. The

worker must assign each pair of review/tag a relevance score

Table 2: Comparing 𝑆𝐴𝐶𝐶𝑆 to baselines

System Short Medium Long
IR 0.829 0.896 0.916

SIM - 1 att 0.828 0.886 0.907
SIM - 2 atts 0.837 0.891 0.909

𝑆𝐴𝐶𝐶𝑆 - 6 tags 0.815 0.874 0.896
𝑆𝐴𝐶𝐶𝑆 - 12 tags 0.825 0.882 0.902
𝑆𝐴𝐶𝐶𝑆 - 18 tags 0.854 0.911 0.928

among the following: 0 for no relevance, 13 for weak relevance, 23
for strong relevance and 1 for perfect relevance. As an example,
given the review sentence "The food is very delicious but the ser-
vice is terrible", the tag great food should be marked as perfectly
relevant, nice decor not relevant while slow service as weakly rel-
evant because the slowness of the service is somewhat related to
it being terrible. For each review/tag pair, we ask three different
workers to provide labels, from which we take the majority vote,
resulting in 𝑠𝑎𝑡 (𝑞𝑖 , 𝑟𝑘𝑗 ) relevance scores. To obtain 𝑠𝑎𝑡 (𝑞𝑖 , 𝑒 𝑗 ), we
take the mean of 𝑠𝑎𝑡 (𝑞𝑖 , 𝑟𝑘𝑗 ) across the reviews of the same en-
tity 𝑒 𝑗 . The crowdsourcing experiment has been conducted on
Yandex Toloka platform6.

Baselines. We compare 𝑆𝐴𝐶𝐶𝑆 to two baselines: an Informa-
tion Retrieval (IR) system and a custom simulation (SIM). The
IR baseline uses Okapi BM25 [5] retrieval model. We follow the
work of [11] and add the capability to expand the terms of the
query into synonymous and related terms, as well as select the
best query combinationmethod they found tomake the IR system
more competitive.

SIM represents what a determined and tireless user can get
from Yelp or other similar online services. Because these services
provide a set of queryable attributes (such as NoiseLevel, Am-
biance or GoodForGroups), the user might filter the search results
with the attributes she thinks closely resemble her subjective
preferences. For example, if she is interested in quiet restaurants,
she can set the attribute NoiseLevel to calm and the attribute
GoodForGroups to False in Yelp’s interface. She can also rank
the results by star rating. SIM is a simulation of such behavior.
We assume that the user can choose one or two attributes from
Yelp’s interface at a time. SIM computes all possible combina-
tions of attribute values and selects the one that maximizes the
NDCG score, thus finding the best top-k results that satisfy the
subjective queries. It’s needless to say that SIM constitutes a very
strong baseline to compare 𝑆𝐴𝐶𝐶𝑆 against.

Comparison and analysis. Table 2 reports the NDCG scores
of the three systems on the test set. Each column corresponds to
the level of difficulty, that is Short, Medium or Long. The first row
shows the quality of the IR system. The following two lines are
variations of SIM using only one attribute, or a combination of
two separate attributes. The last 3 rows describe the performance
of 𝑆𝐴𝐶𝐶𝑆 , each time with a different number of subjective tags
present in the index. This is to simulate the adaptive capability
of 𝑆𝐴𝐶𝐶𝑆 as interactions with users unfold.

In all difficulty levels, 𝑆𝐴𝐶𝐶𝑆 outperforms the information
retrieval system with a margin between 1.2% and 2.5%. This
is not surprising because the IR system is based on keywords
and looks for exact match whereas 𝑆𝐴𝐶𝐶𝑆 models subjective

6https://toloka.yandex.com
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Table 3: Dataset Descriptions with number of sentences
for train and test

Dataset Description Train Test Total
S1 SemEval-14 Restaurants 3041 800 3841
S2 SemEval-14 Electronics 3045 800 3845
S3 SemEval-15 Restaurants 1315 685 2000
S4 Booking.com Hotels 800 112 912

attributes with subjective tags. Table 2 shows that 𝑆𝐴𝐶𝐶𝑆 is
superior to keyword-based systems even when the latter are
bulked with query expansion and adequate predicate aggregation
techniques. On the other front, SIM simulates the behavior of a
determined user that runs through all possible combinations of
queryable attributes that online services such as Yelp offer. To
make the evaluation challenging, we take the combination that
maximizes the NDCG score, thus reflecting the best result a user
can have when interacting with Yelp’s interface. As shown on
the table, considering two attributes yields better results than
one attribute, but with diminishing returns. That is why we don’t
bother searching the space of more than two attributes, which
adds a non-negligible amount of computation. 𝑆𝐴𝐶𝐶𝑆 outruns
SIM with 2 attributes by a margin between 1.7% and 2.0%.

Evenwith a small number of tags in the index, the performance
of 𝑆𝐴𝐶𝐶𝑆 is comparable to that of IR or SIM. This is especially the
case at the initialization of the index, where it finds itself nearly
empty (in Table 2, the index contains 6 tags only). However, as
𝑆𝐴𝐶𝐶𝑆 interacts with users, it extracts new subjective tags from
user utterances and adds them to the index in a dynamic and
adaptive way. This experiment demonstrates that adding more
tags to the index improves the overall accuracy (improvement
between 3.2% and 3.9%), and confirms that 𝑆𝐴𝐶𝐶𝑆 adapts to new
user needs.

We also observe that, for all three systems, accuracy increases
with a higher number of subjective criteria. We hypothesize that
with more subjective tags, the list of restaurants which verify
all the subjective filters shrinks, leading to a lower margin for
error in all systems; thus a higher NDCG score. Nonetheless,
𝑆𝐴𝐶𝐶𝑆 is still the best no matter the number of subjective tags
to be considered. We also observe that the largest improvement
happens with short queries (1 or 2 subjective tags therein). This
result reinforces the integration of 𝑆𝐴𝐶𝐶𝑆 to task-oriented dialog
systems where utterances are short and usually span a small
number of subjective filters.

6.3 Sequence Tagging Evaluation
We show that the aspect and opinion tagger of 𝑆𝐴𝐶𝐶𝑆 is of better
quality than that of state of the art, especially when the train-
ing dataset is small. We evaluate the sequence tagging model
with 4 different datasets summarised in Table 3. The first three
datasets are from SemEval competitions: SemEval 2014 Task
4 (Restaurants and Electronics)[45] and SemEval 2015 Task 12
(Restaurants)[44]. Each dataset contains a set of sentences where
each token is labeled as being an aspect, an opinion or neither,
following IOB coding scheme [47]. The original SemEval datasets
contain labels for aspects only. However, we use the versions
of [31, 55, 56] who added labels for opinions to the original sen-
tences. The last dataset has been created and labeled by [31].
The goal of this experiment is to compare 𝑆𝐴𝐶𝐶𝑆 ’s tagger with
the strongest previous works in the literature, using datasets of
different sizes and domains as well.

Table 4: Evaluation of aspect/opinion tagger

Models S1 S2 S3 S4
OpineDB 81.82 75.44 72.30 67.41

OpineDB + DK 83.06 75.42 73.86 69.64
Adversarial (𝜖 = 0.1) 81.23 76.56 74.63 70.16
Adversarial (𝜖 = 0.2) 83.46 76.97 73.64 72.34
Adversarial (𝜖 = 0.5) 84.43 75.36 72.28 70.32
Adversarial (𝜖 = 1.0) 82.80 67.50 73.47 70.38
Adversarial (𝜖 = 2.0) 82.93 71.39 73.27 68.42

Other extraction tasks such as Named Entity Recognition
(NER) [51] employ F1 to measure the quality of tagging. In the
same spirit, Table 4 reports F1 scores of the extraction quality.
For an aspect (or opinion) to be counted as correctly extracted,
it needs to match the exact terms present in the ground truth.
We compare our tagger against two strong baselines: OpineDB’s
tagger [31] which is a BERT-based solution that outperformed
previous works in the literature [55, 56] and currently enjoys
state of the art performance. We also enhance OpineDB’s tag-
ger with the domain-specific fine-tuning strategy suggested by
[58] to make it even stronger (OpineDB + DK in Table 4). We
evaluate our adversarial tagging model with different sizes of
perturbations (𝜖 values) as shown in Table4, but we fix 𝛼 = 0.5
(Equation 8) across all runs. The models are trained for 15 epochs.

The adversarial tagging model beats state of the art perfor-
mance in all four datasets with an improvement ranging from
1.53% to 4.93%. As shown in the table, fine-tuning BERT with
domain knowledge (DK) improves the performance by up to
2.23%, confirming the findings of [58] on aspect-based sentiment
analysis. However, the boost of domain fine-tuning is not enough
to outperform the adversarial training component, motivating
the integration of adversarial examples in deep learning models.
We also note that the adversarial component works better for
smaller datasets (S4). We believe this is due to the regularization
capabilities adversarial training provides as a counter-measure
against overfitting beyond what is already ensured with dropout.
We also notice that the tagging model performs best with lower
perturbation sizes (𝜖 ∈ {0.1, 0.2, 0.5}), in which case the adversar-
ial examples remain "closer" to the original ones, in contrast to
large perturbation sizes (𝜖 ∈ {1.0, 2.0}) that can lead the model
to exhibit poor accuracy. The issue of large 𝜖 values is espe-
cially noticeable with the Electronics dataset (S2) where 𝜖 = 1.0
makes the adversarial model worse than OpineDB’s baseline. We
hypothesize that, since the Electronics dataset contains many
technical terms such as brand names and numerical references,
adding slight perturbations can change the meaning of terms
completely while keeping the same labels, leading to the model’s
poor performance.

These results are very promising in the context of task-oriented
dialog systems. Since chatbots should cover a wide array of do-
mains, they need to be trained and fine-tuned for every single
one of them. This task implies the creation of various datasets
that are large enough to ensure a decent learning. Fortunately,
Table 4 shows that our tagging model is efficient even with small
training data (S4), thus eliminating the need to build large and
costly datasets.
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Table 5: Evaluation of the pairing models

Models Accuracy Precision Recall F1
OpineDB 83.87 / / /

lf_bert_7:10 82.62 95.02 78.36 85.89
lf_bert_3:10 74.56 91.54 68.66 78.46
lf_bert_3:8 68.26 91.76 58.21 71.23
lf_bert_4:6 75.82 93.00 69.40 79.49
lf_bert_8:9 77.33 94.95 70.15 80.69
lf_tree_op 74.06 92.31 67.16 77.75
lf_tree_as 76.07 91.00 71.64 80.17

Majority Vote 84.10 97.20 78.70 87.00
Probablistic Model 82.40 98.10 75.40 85.20
Discriminative 86.90 92.52 87.69 90.04

6.4 Pairing Evaluation
In this section, we evaluate the accuracy of the pairing model. We
use the test benchmark created by [31] and employed to conduct
their own experiments. Each test example consists of a review
sentence (e.g., "The food is delicious and the staff is helpful"), a
tag ("delicious staff") and the label is whether the tag is a correct
extraction from the review sentence. The test set contains 397
sentences with a fairly equal amount of positive and negative
examples. We compare the accuracy of 𝑆𝐴𝐶𝐶𝑆 ’s pairing model
with that of [31] in Table 5. To highlight the effectiveness of data
programming in the context of pairing and motivate the use of
both generative and discriminative models, we also assess the
quality of every step in the data programming pipeline presented
in Section 5.2. Thus, Table 5 reports the accuracy, precision, recall
and F1 scores of all seven labeling functions that we used in our
solution, both types of generative models (Majority vote and the
probabilistic graphical model) and the supervised discriminative
classifier.

We take the accuracy score of OpineDB pairing method di-
rectly from their paper [31] as we use the same test set. However,
they do not report their precision, recall and F1 scores. In Table 5,
lf_bert_l:h corresponds to the labeling function that is based on
BERT using the attention head number h at layer l. lf_tree_op is
the labeling function that uses the parse tree and that goes from
each opinion to its closest aspect. lf_tree_as travels from aspects
to opinions. We train the model with Booking.com dataset for
hotels.

𝑆𝐴𝐶𝐶𝑆 ’s pairing model outperforms that of [31] by a margin
of 3.03% in accuracy. This result confirms the effectiveness of
data programming and weak supervision, and shows that really
robust and efficient deep learning models can be designed with
little effort and much less resources rather than relying on costly
manual annotation. In Table 5, the labeling functions have dif-
ferent accuracies but they all suffer from low recall. We believe
this phenomenon is due to the fact that labeling functions are
simple heuristics in the first place, and thus fail to cover the en-
tirety of the input space. On the other hand, they all enjoy very
high precision, ranging from 91.00% to 95.02%. This insight sheds
some light on the nature of our labeling functions and suggests
to direct future work on designing heuristics that are less-precise
but wide-reaching in order to balance precision and recall ratios.
The generative models in Table 5 inherit the high precision of the
labeling functions, with the probabilistic model scoring an out-
standing 98.10%. However, they also drag the low recall, but are
better in general than labeling functions when taken separately.
This is due to the nature of generative models which maximize

the benefits of labeling functions while minimizing their risk
by combining and integrating their respective labels. Our find-
ings support the original statements of [48]. Nevertheless, the
experiment shows that the majority vote model surpasses the
probabilistic graphical model in terms of accuracy, unlike what
[48] reported. One explanation for this is that our labeling func-
tions are already accurate enough and have comparable F1 scores,
leading to similar votes. Thus, consensus should be relatively
easier to reach, translating to better accuracy. Finally, we find
that the discriminative model is the top scoring model in both ac-
curacy, recall and F1, because it has been trained in a supervised
fashion. Rather than depending on labeling functions to provide
noisy labels, the discriminative model analyzes the feature space
and generalizes its classification decisions to new and potentially
unseen input; hence the high recall.

7 CONCLUSION
We proposed 𝑆𝐴𝐶𝐶𝑆 : a Natural Language Understanding mod-
ule for task-oriented dialog systems which allows to recognize
the subjective signals in user utterances and filter search re-
sults accordingly. 𝑆𝐴𝐶𝐶𝑆 is based on the inverted index data
structure and mines subjective information from online reviews.
We propose a novel subjective tag extraction pipeline that is
robust against variations of natural language. We also propose
two novel heuristics for pairing an aspect to an opinion. These
heuristics aim to overcome the limitation of word-based distance
approaches for pairing an aspect term to an opinion term.We also
performed extensive evaluation of the proposed subjective tag
extraction and pairing techniques. The performed experiments
show that these techniques outperform existing approaches.

The advancements brought by 𝑆𝐴𝐶𝐶𝑆 are promising, albeit
far from perfect. As future work, we plan to investigate the incor-
poration of search automata as a substitute for inverted indexes.
Subjective digital assistants should be able to take into account
user profiles and adjust their search and interaction behavior ac-
cordingly. We also plan to extend the robustness of the proposed
techniques to cater for biased or fraudulent online reviews. For
instance, a reviewer might have been paid by a business owner
to write positive reviews about it, or negative reviews about its
competitors. We have to differentiate between truthful and fake
reviews in order to provide a transparent search experience for
users. Finally, given the importance of thresholds in similarity
assessments, it would be useful for 𝑆𝐴𝐶𝐶𝑆 to adjust these dynam-
ically depending on the semantics of the subjective tags being
compared.
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ABSTRACT
As individual traffic and public transport in cities are changing,
city authorities need to analyze urban geospatial data to improve
transportation and infrastructure. To that end, they highly rely on
spatial aggregation queries that extract summarized information
from point data (e.g., Uber rides) contained in a given polygo-
nal region (e.g., a city neighborhood). To support such queries,
current analysis tools either allow only predefined aggregates
on predefined regions and are thus unsuitable for exploratory
analyses, or access the raw data to compute aggregate results
on-the-fly, which severely limits the interactivity. At the same
time, existing pre-aggregation techniques are inadequate since
they maintain aggregates over rectangular regions. As a result,
when applied over arbitrary polygonal regions, they induce an
approximation error that cannot be bounded.

In this paper, we introduce GeoBlocks, a novel pre-aggregating
data structure that supports spatial aggregation over arbitrary
polygons. GeoBlocks closely approximate polygons using a set
of fine-grained grid cells and, in contrast to prior work, allow
to bound the approximation error by adjusting the cell size. Fur-
thermore, GeoBlocks employ a trie-like cache that caches aggre-
gate results of frequently queried regions, thereby dynamically
adapting to the skew inherently present in query workloads
and improving performance over time. In summary, GeoBlocks
outperform on-the-fly aggregation by up to three orders of mag-
nitude, achieving the sub-second query latencies required for
interactive exploratory analytics.

1 INTRODUCTION
Nowadays, the amount of geospatial data collected in cities is in-
creasing rapidly, thanks to the widespread use of mobility applica-
tions such as Uber [53]. To analyze this data andmake data-driven
decisions, city officials and planners often rely on visualization
frameworks that allow users to visualize data of interest at differ-
ent spatial and temporal resolutions [4, 8, 41, 50, 53]. To generate
common visualizations, such as heatmaps, visual tools perform
spatial aggregation queries that partition the data over different
polygonal-shaped regions and then compute summarized aggre-
gate information for each region. To support exploratory analyses,
visual tools must provide interactive response times as high la-
tency reduces the rate at which users make observations, draw
generalizations, and generate hypotheses [22]. However, the
sheer size of the data combined with the complexity of spatial
queries prohibit interactivity, which severely limits analyses. As
shown in [28], current tools operating over raw geospatial data
cannot produce results fast enough for interactive analysis.

© 2021 Copyright held by the owner/author(s). Published in Proceedings of the
24th International Conference on Extending Database Technology (EDBT), March
23-26, 2021, ISBN 978-3-89318-084-4 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.
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Figure 1: Cell covering (blue) of the Lower East Side (bor-
der in orange) with bounded error (red), a cell aggregate
(green), and a cached commonly queried region (purple).

On the bright side, interactive analyses are often repetitive
in nature. Analysts, for example, typically run multiple aggre-
gate queries for the same area (e.g., the city center) in a sequence,
changing only the aggregate function (e.g., count, sum) or the data
attribute over which the aggregation is performed. Furthermore,
they often focus on certain geospatial regions during their analy-
sis. They might, for example, iteratively resize the boundary of
the spatial region of interest, extracting an aggregate every time,
or calculate aggregates for neighboring, potentially overlapping,
regions. Such analyses can greatly benefit from query-driven
materialization approaches that store and reuse intermediate or
even full query results.

Naturally, in classical OLAP settings, query-driven materi-
alization and result recycling are widely used and well under-
stood [24, 35, 42, 45]. However, these methods do not address
multi-dimensional spatial data. While methods have also been
proposed for spatio-temporal OLAP queries, such as nanocubes
[21] and the aR-tree [30, 31], these do not provide precision guar-
antees for spatial aggregation queries over arbitrary polygons.
Both nanocubes and the aR-tree store aggregate information in
a hierarchy of rectangles, maintained using a quadtree and an
R-tree, respectively. Therefore, they are designed for aggregate
queries over rectangular regions while their precision depends
on the granularity of the underlying index structure. Using them
to compute aggregates over polygonal regions introduces an ap-
proximation error, which cannot be bounded. There are also some
analysis tools, such as Uber Movement [53], that rely on pre-
computation to provide exact results for spatial aggregations
over polygons. However, they require the polygonal regions to
be pre-defined at aggregation time. This assumes a priori knowl-
edge of the workload and is thus not applicable in exploratory
analyses, where the query polygons are chosen ad-hoc.

We propose GeoBlocks, a novel pre-aggregating data structure
for geospatial point data that guarantees error-bounded results
for spatial aggregation queries over arbitrarily shaped polygons.
Essentially, GeoBlocks are materialized views on geospatial point
data that pre-compute filters and aggregations on pre-defined
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Figure 2: Problem overview: Calculating unknown aggre-
gates 𝑎 from known points 𝑃 contained within an un-
known query polygon 𝑅 (specified by its vertices 𝑙𝑞).

columns. Instead of pre-computing aggregates over a hierarchy of
rectangles as in prior work, GeoBlocks pre-compute aggregates
over fine-grained grid cells. As depicted in Figure 1, GeoBlocks sub-
divide the spatial domain into grid cells, keeping aggregates for
each individual cell. We allow the user to specify the geospatial
granularity, and thereby bound the spatial approximation error.
In addition, we propose a trie-like data structure that caches
aggregates for commonly queried regions in a compact manner,
enabling even faster response times. GeoBlocks are designed for
historical point data and are thus write-once/read-only. How-
ever, while GeoBlocks currently do not support updates, they
can be adapted to do so, as we briefly discuss in Section 5. Our
contributions are summarized as follows:

• We propose GeoBlocks, the first, to the best of our knowl-
edge, data structure that supports spatial aggregation over
arbitrary polygons, while guaranteeing a bounded error.

• We develop a query-driven caching mechanism that fur-
ther accelerates aggregate queries by leveraging the skew
commonly found in exploratory query workloads.

The advantages of our approach are amply clear from our
extensive experimental evaluation on real-world data. The results
show that GeoBlocks achieve up to three orders of magnitude
speedup compared to on-the-fly aggregation approaches and
support sub-second response times.

In the remainder of this paper, we first formalize the problem
in Section 2. Section 3 describes our approach, which we then
experimentally evaluate in Section 4. Section 5 summarizes the
key points discovered in the evaluation and discusses updates
for GeoBlocks. Finally, we present an overview of related work
in Section 6 before concluding in Section 7.

2 PROBLEM STATEMENT
In this paper, we propose a new data structure to speed up the
execution of spatial aggregation queries. Formally, the query can
be defined in SQL-like notation as follows:
SELECT AGG(P.𝑣0), . . . , AGG(P.𝑣𝑘) FROM P
WHERE P.𝑙 INSIDE R(𝑙𝑞1, 𝑙𝑞2, . . . , 𝑙𝑞𝑚) [AND filterCondition]*

Given a set of annotated points of the form P(𝑙 , 𝑣0, 𝑣1, . . . , 𝑣𝑛),
where 𝑙 = (𝑥𝑙 , 𝑦𝑙 ) is the location of the point and 𝑣𝑖 are numerical
or temporal attributes, this query extracts multiple aggregates
𝑎𝑖 = 𝐴𝐺𝐺 (𝑣𝑖 ) over all the points contained in a query region 𝑅.
The query region can be any arbitrary polygon, and its geometry is
defined by the locations of the polygon’s vertices 𝑙𝑞1, 𝑙𝑞2, . . . , 𝑙𝑞𝑚 .
The aggregates are non-holistic functions such as count, sum,
min, max, or average. Finally, the query can have zero or more
filterConditions on the attributes.

cell Rectangular area, hierarchically subdivid-
able into four children

cell level Number of subdivisions performed on the
spatial domain to obtain the cell

cell id/spatial key Unique one-dimensional identifier of a cell

block level Level of grid cells in a GeoBlock

cell aggregate Aggregates of all tuples of a grid cell

cell covering Error-bounded approximation of a poly-
gon using cells

Table 1: Terminology

00 11
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0000 0001 1110 1111

level i

level i+1

Figure 3: Hierarchical cell decomposition [16].

In exploratory interactive analyses, users can dynamically
and unpredictably change not only the filtering conditions and
the requested aggregates but also the polygonal query region.
The data points, on the other hand, are known a priori. Figure 2
presents an example of this scenario: The left-hand side shows the
input points that are located at (𝑙0, . . . , 𝑙7) and have five attributes
each. The right-hand side shows the query; the polygonal region
is marked in blue, while three different aggregates are extracted.
As can be seen in the figure, this query applies the aggregation
over the three points that are contained in the query region,
located at 𝑙5, 𝑙6, and 𝑙7.

Existing approaches for spatial aggregation queries, such as
the aR-tree [30, 31], are designed for rectangular regions, and thus
do not support arbitrary polygons. Applying them to the example
of Figure 2 requires to approximate the query polygon with a
minimum bounding rectangle, displayed in grey, over which the
aggregation is performed. This introduces an extra point in the
results, 𝑙3, which is outside the actual query region.

3 GEOBLOCKS
In this section, we first present the geospatial decomposition that
forms the basis of our approach. We then discuss how we can
quantify and bound the error that this decomposition introduces.
Next, we explain the core concepts of GeoBlocks, their storage
layout, and the efficient evaluation of spatial aggregation queries
using GeoBlocks. Finally, Section 3.6 outlines our query-driven
caching mechanism that further improves performance by lever-
aging the characteristics of the query workload. Table 1 provides
an overview of the concepts introduced in this section.

3.1 Geospatial Decomposition
GeoBlocks rely on a hierarchical, quadtree-based spatial decom-
position. In this decomposition, a given area (cf. the outer rec-
tangle in Figure 3) is recursively subdivided into equally-sized
smaller areas that we call cells. Each cell has four children, which
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leads to an exponentially growing number of 4𝑛 cells after re-
cursively subdividing a cell 𝑛 times. We encode each subdivision
using two bits, which allows us to uniquely identify a cell at level
𝑛 by concatenating the encoding of levels 0 to 𝑛. Equivalently, all
cells at a given level can be enumerated using an order-preserving
space-filling curve. Since children cells share a common prefix
with their parent cell, containment tests are reduced to efficient
bitwise operations. This encoding further allows storing cell ids
in prefix-encoded index structures such as radix trees [16, 17] or
in learned indices [52] to speed up containment queries. Figure 3
shows the decomposition of a cell in four (level 𝑖) and 16 (level
𝑖 + 1) sub-cells, and the corresponding enumeration with a Hil-
bert curve. Applying our decomposition strategy to the Earth’s
surface, we only need 64 bits to address every single square cen-
timeter. That way, we map two-dimensional geospatial locations
(lat/long coordinates) to one-dimensional 64-bit keys. In our im-
plementation, we use the Google S2 library [38] to perform the
spatial decomposition and cell enumeration. Note, however, that
our approach is not restricted to S2 or the Hilbert curve. Any
other framework that supports recursive geospatial subdivisions
and order-preserving cell enumerations can be used instead.
Point Approximation. We map locations (i.e., points) to the
smallest cell that contains them. The imprecision introduced by
this approximation (e.g., at most 6.1mm for any point in the US)
is negligible, as the imprecision of GPS data is often orders of
magnitude worse [54].
Polygon Approximation. Similarly, we approximate the query
polygons on-the-fly by mapping them to a set of cells, possibly
at different levels, as shown in Figure 4 (center and right). We
call this geometric approximation a cell covering. In our imple-
mentation, we calculate cell coverings using the S2 library.

3.2 Bounded Error
Similarly to all geometric approximations, our cell covering in-
troduces a spatial error. This is because all the cells that intersect
the polygon outline, even minimally, are considered to be part
of the polygon. However, in contrast to other coverings like the
widely used minimum bounding rectangle (MBR), our cell cov-
ering is much more fine-grained. As can be seen in Figure 4,
the cell covering approximates the polygon outline much more
closely compared to the MBR. More importantly, the introduced
approximation error can be bounded. In fact, any point on the cell
covering is within a distance

√
𝜖21 + 𝜖22 from the polygon outline,

where 𝜖1, 𝜖2 are the side lengths of the cell. Clearly, the smaller
the cell size, the smaller the approximation error. Consequently,
our cell covering can guarantee a user-defined error bound, i.e., a
bound on the spatial distance between the approximate and the
original polygon, by using an appropriately small cell size. The
MBR cannot guarantee such a bound, because its spatial extent,
and thus its distance from the polygon outline, depends on the
polygon’s minimum and maximum coordinates in each dimen-
sion and cannot be controlled [52]. The user can specify the error
bound by choosing an appropriate cell level1 so that the cell’s di-
agonal is not greater than her desired error. This user-controlled
and bounded spatial error is the only error in GeoBlocks. All
further operations are exact and do not introduce any additional
error. While the error bound should be the driving factor when
selecting a cell level, there are other points to consider: (1) The
cell diagonal is the maximum error, and the average error can

1From the table at https://s2geometry.io/resources/s2cell_statistics

Maximum Spatial Error

Figure 4: MBR (left) and two cell coverings with increas-
ingly fine-grained resolution.

Extract

Raw Data
Clean & Sort

Base Data

Filter & 
Aggregate

Build

GeoBlock

Figure 5: Creation of a GeoBlock in two phases. The ex-
tract phase is run once per dataset. The build phase is run
for each filter and error bound combination.

be expected to be lower. (2) The cost of reducing the error is not
linear. Per each level, the diagonal, and thereby the error bound,
reduces by a factor of 2. At the same time, the number of grid
cells, and thus the query input, grows by a factor of 4.

3.3 Preprocessing
In addition to transforming the two-dimensional input space to
one-dimensional spatial keys, we perform some additional pre-
processing steps on the known point data. Our process, outlined
in Figure 5, consists of two phases, extract and build, and is simi-
lar to the ETL process traditionally applied in OLAP settings. In
the first phase, we prepare the raw data by filtering outliers in
the often dirty datasets and limiting the columns to those rele-
vant and suitable for analysis. We furthermore sort the data by
the generated one-dimensional spatial key. This extract phase
is run exactly once per dataset and allows us to cheaply build
GeoBlocks from the extracted base data. The second phase, build,
utilizes the clean and sorted base data to generate a GeoBlock in
a single pass and thus in linear time.
Updates and Filters. An important part of data analysis is fil-
tering to gain insights into the desired subsets of the data. In
our process, we could apply filters either before or after sorting
the raw data. While the first option seems tempting, as it would
reduce the number of tuples over which the expensive sorting
has to be performed, we decided to filter the data in the build
phase. This way, we can utilize the sorted base data to quickly
build GeoBlocks for different filter predicates, aggregates, and
grid resolutions in a single pass. Building new GeoBlocks quickly
is especially useful in exploratory analyses, where the data and
filters of interest might not be fully known a priori. However, the
increased cost of sorting all data has to be amortized over mul-
tiple GeoBlocks and filter predicates. In reality, the sorting cost
might be amortized immediately, as some exploratory queries
might need to compare a subset of the data with the total. Con-
sider, for example, a query comparing the tip rate of expensive
taxi rides (WHERE fare_amount > 20) with that of all rides. In
this case, we would need to build a GeoBlock for all rides, and
therefore sort the entire dataset anyway.
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Given 𝑘 different filter predicates with average selectivity 𝑠

and a total input size of 𝑛 tuples, we can calculate the runtime
of building isolated GeoBlocks with filters before sorting, and
incremental builds from sorted base data as follows:

𝑘 ∗ (𝑂 (𝑛) +𝑂 (𝑠𝑛 ∗ 𝑙𝑜𝑔(𝑠𝑛)) +𝑂 (𝑠𝑛)) (1)

𝑂 (𝑛 ∗ 𝑙𝑜𝑔(𝑛)) + 𝑘 ∗𝑂 (𝑛) (2)
The isolated build (1) has three phases, cleaning and filtering
in 𝑂 (𝑛), sorting in 𝑂 (𝑠𝑛 ∗ 𝑙𝑜𝑔(𝑠𝑛)), and finally aggregating in
𝑂 (𝑠𝑛). Incremental builds (2) have a fixed component composed
of cleaning and sorting in 𝑂 (𝑛 ∗ 𝑙𝑜𝑔(𝑛)), followed by the incre-
mental filtering and aggregation of the GeoBlock in 𝑂 (𝑛). For
incremental builds to pay off, the sorting cost of the regular builds
(𝑘 ∗ (𝑂 (𝑠𝑛 ∗ 𝑙𝑜𝑔(𝑠𝑛))) has to outweigh the initial cost of the incre-
mental builds (𝑂 (𝑛 ∗ 𝑙𝑜𝑔(𝑛))). As we only have runtime classes
for each variant and de-facto runtimes will vary between systems
and datasets, we cannot determine when amortization is reached
solely depending on 𝑘 and 𝑠 . However, we provide an in-depth
experimental analysis of the amortization in Section 4.

3.4 Storage Layout
Once the filtering of the base data is completed, we can start
aggregating and building a GeoBlock. To build a GeoBlock, for
each grid cell in the decomposed space, we compute a number of
aggregates over all the tuples that it contains. Empty cells that
do not contain any tuples are omitted during aggregation as they
would needlessly consume space. We refer to the aggregates of
a grid cell as cell aggregates. A GeoBlock stores cell aggregates
in ascending order of the cell’s spatial key, which is the same
sorting order as the one applied to the base data. Moreover, a
GeoBlock maintains a global header that combines all cell ag-
gregates into a single GeoBlock-wide aggregate and contains
additional metadata required for querying, such as the minimum
and maximum cell id in the GeoBlock.
Cell Aggregate. Each cell aggregate stores pre-computed an-
swers for spatial aggregation queries at the grid cell level. A cell
aggregate consists of the cell’s spatial key, the base data offset of
the first tuple contained in the cell, and the number of contained
tuples. Furthermore, it maintains aggregates for all columns (both
numeric and temporal attributes) in the extracted data. The main-
tained aggregates are the minimum, maximum, and sum of all
values contained in the cell. Note that using the sum together
with the tuple count allows us to also compute the average as
sum/count. Furthermore, the cell aggregate stores the minimum
and maximum keys of the spatial column. The table in Figure 1
shows an example of a cell aggregate.
Aggregate Granularity. As described in Section 3.2, the block
level (i.e., the granularity of the space decomposition) is defined
by the user at build time. However, it is also possible to adapt
the granularity at a later time. Building a more coarse-grained
GeoBlock from an existing one is rather straightforward and does
not require re-scanning the base data. We can easily combine all
cell aggregates of the finer-grained GeoBlock corresponding to
a more coarse-grained grid cell in a single pass over the aggre-
gates. On the other hand, building a more fine-grained GeoBlock
requires scanning and further subdividing the base data.

3.5 Querying
GeoBlocks support two variants of spatial aggregation queries.
On the one hand, they support regular SQL SELECT queries that
take a query polygon and produce a user-defined subset of the

1 lastAgg = 0
2 def selectQuery(polygon):
3 queryCells = s2.coverPolygon(polygon)
4 # Prune search range
5 queryCells.pruneLess(globalHeader.minCell)
6 queryCells.pruneGreater(globalHeader.maxCell)
7
8 lastAgg = 0
9 resultAggregates = initial
10 for qcell in queryCells:
11 # Map qCell to smaller childCells at the block level
12 childCells = s2.childrenAtLvl(qcell, BLOCK_LVL)
13 for cell in childCells:
14 getAggregates(cell, resultAggregates)
15 return result
16
17 def getAggregates(cell, result):
18 # Check the last results successor
19 if lastAgg == 0:
20 # Search initial header
21 aggregate = allAggregates.upperBound(cell).prev
22 if aggregate.cell == cell:
23 combineAggergates(aggregate, result)
24 lastAgg = aggregate
25 else:
26 if lastAgg.next.cell == cell:
27 lastAgg = lastAgg.next
28 combineAggregates(lastAgg, result)

Listing 1: SELECT query

available aggregates. On the other hand, they support a special-
ized efficient implementation of COUNT queries that only report
the number of points contained in a query polygon. Such COUNT
queries are commonly used in analytics, especially in the context
of visualization. Figure 1 shows an example query that extracts
a set of aggregates over the Lower East Side region, which is
approximated by a cell covering (marked in blue). The answer is
calculated by extracting and combining all the aggregates con-
tained in the blue cells.

To answer a spatial aggregation query over a polygonal region
(Figure 6a), the polygon is approximated using a cell covering,
as discussed in Section 3.1. We compute a cell covering that con-
forms to the error bound (Figure 6b). Note that the cell covering
can have cells at different levels, and some of them might be
larger than our grid cells. Such larger cells can be easily mapped
to smaller grid cells (Figure 6c) in the GeoBlock and offer fur-
ther optimization potential, as discussed next. The cell covering,
however, cannot contain any cells smaller than the cells of the
GeoBlock. Once we obtain the cell covering, we query the Geo-
Block for each of the covering cells, as visualized for a SELECT
query in Figure 6d. We then combine these partial results to
compute the final result for the entire query polygon. In the
following, we describe the query process for each cell of the cov-
ering. First, we use the GeoBlock’s header to check if the cell
overlaps with the GeoBlock at all. Thanks to the prefix-based
containment checks, this is possible in constant time using the
minimum and maximum cell id in the GeoBlock. Only if there
is a possible overlap, we continue with the specific checks for
SELECT and COUNT queries as follows:
SELECT Queries. SELECT queries have to look at all cell aggre-
gates contained in the query cell. Listing 1 presents the pseudo-
code of the algorithm. After a query cell has passed the first
check, we try to further limit the search space to the overlapping
area (Lines 5 & 6). After splitting the query cell to smaller cells
that match the GeoBlock’s granularity if needed (Line 12), we
locate the first intersecting grid cell using an upper-bound binary
search (Lines 21 - 24). For all the following cells, we exploit the
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Figure 6: Query overview: Query polygon (a), cell covering
(b), grid-cell representation of covering (c), and subquery
for covering cell 1 in the cell aggregates (d, Listing 1 Line
12 and following).

1 def countQuery(polygon):
2 queryCells = s2.coverPolygon(polygon)
3 result = 0
4 for c in queryCells:
5 f_child = c.firstChildAtLvl(cell, BLOCK_LVL)
6 l_child = c.lastChildAtLvl(cell, BLOCK_LVL)
7 # Get first & last contained aggregate
8 first = allAggregates.lowerBound(f_child)
9 last = allAggregates.upperBound(l_child, first)
10
11 cnt = last.offset + last.count - first.offset
12 result += cnt
13 return result

Listing 2: COUNT query

fact that cell aggregates are stored contiguously in ascending
order. This allows us to iterate over the cell aggregates (Lines
25 - 28) until we reach a grid cell not contained in the query cell,
combining all cell aggregates along the way into the query result.
COUNT Queries. Intuitively, we can answer COUNT queries faster
than SELECT queries, as we can exploit the sorted order of the
cell aggregates to calculate the count without accessing the cell
aggregates of all grid cells that are contained in the query cell.
Specifically, COUNT queries can be answered using the count and
offset values of only the first and the last cell aggregates that
are contained in the query cell, as outlined in Listing 2. Note
that here we benefit from having larger query cells. The larger
the cells used in the covering, the fewer cell aggregates we need
to access overall. To find the first and last cell aggregates, we
calculate the id of the first and last child of the query cell at our
grid level. We then locate the first child in the aggregates using a
lower bound binary search (Line 8). Then, we use the position of
the first child as a search start to locate the last child, again with
a binary search (Line 9). Once we have located the aggregates of
the first and last contained child, we can calculate (Line 11) the
resulting count in a range-sum manner as:

childlast .offset + childlast .count − childfirst .offset

3.6 Query-Cache Acceleration
While our cell aggregates can speedup queries significantly, there
is further potential in pre-computing aggregates for frequently
queried areas. This is based on the following key observations:

(1) Exploratory analyses are often repetitive in nature. Ana-
lysts, e.g., may run consecutive queries for the same area
to extract different aggregates (i.e., using a different aggre-
gate function, or aggregating over a different attribute).

(2) Furthermore, analysts might only iteratively change the
shape or size of the query polygon. Consequently, part of
the polygon’s interior area remains unchanged.

(3) Lastly, analytical queries often focus on a geographic sub-
set of the whole data. For the analysis of the NYC taxi data,
e.g., the focus lies mostly on Manhattan, Brooklyn, and
the airport regions, ignoring most suburbs [40].

In all the above cases, it is reasonable to pre-aggregate small
grid cells that are often queried together to avoid costly scans
of individual cells. In our example in Figure 1, e.g., we want to
keep a single aggregate for the purple region, instead of having
to consult all 64 contained cell aggregates.
Determining Relevant Aggregates.Wewant to determine the
relevant areas that are worth being additionally pre-aggregated
and cached, without making any assumptions about the expected
query workload or the semantics of the indexed data. To achieve
that, we use all previously seen queries as hints. Precisely, to
determine whether an area is worth aggregating, we consider (i)
the number of times it was queried, and (ii) its cell level.

For each query cell that intersects with the GeoBlock, we keep
track of the number of times it was queried in a trie-like structure.
We then use these statistics to calculate cell scores. The score of a
cell is the sum of the cell’s hits and the hits of its parent. This score
takes into account that child cells can be used to speed up queries
for parent cells. We then sort all cells by descending score. When
scores are identical, we sort by ascending level (coarser-grained
cells come first). As the last criterion, to ensure determinism, we
sort by spatial key. We chose the above metric as it is sufficient to
properly and repeatably represent the skew in the experiments
in our evaluation while being easy to understand and implement.
However, we also identified some weaknesses of our metric:

• Smaller cells might overshadow slightly less frequently
queried bigger cells. Consider, for example, the green and
purple cells of Figure 1 and assume that the green cell is
queried just once more than the purple one. Based on our
metric, we would then aggregate the green cell even if the
purple cell could have an up to 64× bigger impact.

• The parent-child relationship is simplified: Children only
cover parts of their parent but are treated as equally useful.
Furthermore, we do not consider calculating aggregates
by combining the aggregates of the parent and siblings of
a cell. For example, the count for a cell could be calculated
by subtracting the count of its sibling cells from the count
of its parent cell.

Our evaluation showed that these shortcomings have a minor
impact, but we plan to investigate them further and address them,
if needed, in our future work.
Aggregate Storage. We cache aggregates in a trie-like cache,
which we call AggregateTrie. Further, we allow the user to control
the maximum size of the storage available for caching, and we
store the AggregateTrie in-place with our cell aggregates and the
filtered base data. As the cells are strictly ordered, we can simply
insert the most relevant unaggregated cell until the reserved area
is filled. Figure 7 shows an example AggregateTrie.

The storage for the aggregates is split into two parts. The first
part (up until 0x90) contains the trie structure, while the second
part stores the actual aggregates. The root of the trie corresponds
to the cell level that can enclose our input data, which is typically
just a small fraction of the possible earth-wide input space. Each
following trie-level encodes exactly one cell level, resulting in a
fanout of 4. Since we store the AggregateTrie in-place, we chose a
compact encoding storing all nodes contiguously. Nodes consist
of just two 32-bit integers. The first one is the pointer to the
first child in the AggregateTrie. The second one is the pointer
to the corresponding aggregate in the aggregate storage (e.g.,
0xb8). Pointers are encoded as 32-bit offsets from the start of
the allocated memory region. Both aggregates and nodes can
be sufficiently encoded with an offset, as they are of fixed size.
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Nodes occupy 8 bytes, while the size of the aggregates depends
on the schema. Since we store only the offset to the first child, we
need to always allocate space for all children in a node, even for
children that do not exist in the cache. This can be seen for the
node starting at 0x28, where only one child has an aggregate and
no other children or aggregates exist. While this seems wasteful
at first, the alternative would be to store four individual child
offsets per node. As children are only created and stored if they
are needed, our encoding never occupies more storage than this
alternative. In fact, our design is more space-efficient in all cases,
except for this worst-case in the example above, where only one
out of four children is required.
Adapted Query Algorithm. We integrate the cached aggre-
gates into the query algorithm (cf. Section 3.5). As the runtime
of COUNT queries is mostly independent of the cell level since
only the first and last grid cells are relevant, we do not expect
noticeable speedups for them. Therefore, the adapted process,
highlighted in Figure 8, is only used for SELECT queries.

Once the pre-query checks are completed, we first probe the
query cache and resort to the old algorithm only when necessary.
For each query cell, we traverse the AggregateTrie to locate the
corresponding node. If there is no node for this cell, we abort
probing and answer the query with the old algorithm. Once
the node corresponding to the cell is reached, there are two
possible ways forward. If the cell is cached, i.e., if it has a valid
aggregate offset, the aggregate is extracted as a result. If the
cell is not cached, there has to be at least one child at any level

residing in our cache, as nodes are only created on demand.
While, theoretically, all children could be used to reduce the
number of grid cells of the GeoBlock to query, the number drops
with each level, while keeping track of the missing children
gets increasingly expensive. Therefore, we only consider direct
children for this optimization. If some of the direct children are
cached, we combine their aggregates with the results of the old
algorithm for the non-aggregated ones to obtain the final result.

4 EXPERIMENTAL EVALUATION
We compare GeoBlocks with on-the-fly aggregation approaches
on real-world data. To show that our advantage is not dependent
on the indexing strategy, we use different strategies to index
the base data of the on-the-fly approaches. We also compare
GeoBlocks against a pre-aggregating approach, the aR-tree [30,
31]. However, we do not include the aR-tree in all experiments,
as it is designed for rectangular queries and does not directly
support polygonal ones.

4.1 Experimental Setup
Baselines. To keep the experiments as fair as possible, we use
the mapping from geospatial space to linear space for the base-
lines as an index key unless specified otherwise. Furthermore,
we keep all data in a columnar layout. Below, we describe the
three strategies that we use to index the raw data, as well as our
pre-aggregating baseline:
BinarySearch: This is the simplest baseline. Instead of indexing
the data, we use binary search to locate the first and last con-
tained raw tuple in the data. Afterward, we loop over all tuples
in between and compute the requested aggregates. GeoBlocks
use binary search to locate the cell aggregate in a similar way.
BTree: We use the BTree as a secondary index over the raw data.
For the experiments, we use an open-source B-tree implementa-
tion by Google [7]. We probe the tree for the first child and scan
the sorted raw data until no further tuple qualifies.2
PHTree: Our last non-aggregating baseline is a multidimensional
point index structure, the PH-tree [56]. Instead of the one-di-
mensional spatial key, we use the latitude and longitude of the
points to index the data. As the PH-tree only supports rectan-
gular range queries, we use S2 to get the interior rectangle of
the query polygon and use this as a query region. This way, we
hope to keep the comparison fair, if not favorable for the PHTree,
as this interior rectangle covers fewer points than our approach.
As a consequence, the PHTree’s query results differ from the
results of the other approaches. For the measurements, we use
an open-source C++ implementation [36].
aRTree: We implement the aR-tree [30, 31] based on the boost
R-tree [5]. To minimize overlaps between nodes and thereby
optimize the query performance, we use the 𝑅∗ algorithm. In
our implementation, each node covers a region 𝑟 and has up
to 16 child nodes, which further subdivide 𝑟 into smaller areas.
For each node, we store the aggregates in a cell aggregate cor-
responding to the region covered by the node, and reference it
with an offset (cf. Figure 9). That way, we can modify the RTree
query logic by adding early abortion exactly like in the aR-tree.
Given a search area 𝑠 and a node of the aR-tree that covers a
region 𝑟 , we distinguish three cases, as shown in Listing 3: (a) If
𝑠 is completely contained by the covered region 𝑟𝑐 of one of 𝑛’s
2We first tried the PointIndex of the S2 library (https://s2geometry.io/devguide/
cpp/quickstart.html#s2pointindex) that uses the same b-tree as point storage. Initial
measurements showed that our optimized BTree implementation outperformed the
PointIndex by 3×, so we opted for our implementation.

174



1 def queryARTree(node, searchArea, result):
2 partiallyOverlappingNodes = []
3
4 for child in node:
5 if child.contains(searchArea):
6 return queryARTree(child, searchArea, result)
7 if searchArea.contains(child):
8 result += child.aggregatedResult
9 else if searchArea.intersects(child):
10 partiallyOverlappingNodes.append(child)
11
12 for child in partiallyOverlappingNodes:
13 result += queryARTree(child, searchArea, result)
14 return result

Listing 3: aR-tree lookup query
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Figure 9: Illustration of aRTree with node size two and off-
sets into the cell aggregates.

child nodes, we recursively continue the search at the child node
and do not consider other overlapping child nodes as this would
result in counting values multiple times. (b) If the region covered
by a child node is completely contained within the search area,
we add its aggregated value to the overall result and continue
processing the next child node. (c) If 𝑠 and the child node region
intersect, we mark the child node to be processed later iff no
other child node fulfills criterion (a).

By accepting that points are counted multiple times in the
case of overlapping internal nodes, our aR-tree implementation
follows the query algorithm of the original aR-tree that does not
consider overlapping children.While the implementation delivers
an upper-bound of the result, it visits the internal nodes in the
same way the aR-tree does, thus achieving the same performance.
Implementation.We implement GeoBlocks in C++ as described
in Section 3. Our implementation, as well as that of all baselines,
is single-threaded. Throughout this section, especially in all fig-
ures, we will refer to GeoBlocks as Block. Furthermore, we will
differentiate between the regular Block and BlockQC. Block de-
notes GeoBlocks without query caching using the basic query
algorithm. BlockQC is GeoBlocks using query caching with the
AggregateTrie and adapted query process outlined in Figure 8.
Hardware. All experiments are run on a server machine with
two Intel Xeon E5-2680 v4 processors clocked at 2.4 GHz. The
machine is equipped with 256GiB of DDR4-2400 RAM. All per-
formed experiments fit entirely into main memory.
Dataset. The primary dataset used in the experiments is com-
posed of trip records from 12 million NYC yellow cab rides in
the time between January and March 2015, which we cleaned
of outliers. It is openly available for download from the NYC
Taxi and Limousine Commission (TLC) [49]. It contains data
from individual rides like pickup and drop-off location and time,
passenger count as well as trip distance.
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Figure 10: Runtimewith increasing number of aggregates.

Unless otherwise specified, the queries consist of polygons
representing NYC neighborhoods taken from [25]. As a base
workload, we build a query containing each polygon once. For
the skewed workload, we select 10% of neighborhoods uniformly
at random and query themmultiple times. We select 7 aggregates,
requesting each column at least once, as query output.

In addition, we use 8 million geotagged tweets from the con-
tiguous US and query them using polygons representing US
states. Finally, we use an extract of 389 million OpenStreetMap
(OSM) points in the Americas and query them with polygons
representing countries. Both these datasets have randomly gen-
erated integer values as payload. For both, we fix the level at 11
(~7km diagonal). Unless otherwise specified, all experiments are
conducted on the primary dataset only.

4.2 Baseline Comparison
Impact of Number of Aggregates. To show the impact of the
number of aggregates on the performance of the baselines and the
Blocks, we use a combined workload consisting of once the base
and four times the skewed workload. We query this workload
for 1, 2, 4, and 8 aggregates and report the results in Figure 10.

As one can easily see, GeoBlocks outperform both the BTree
and BinarySearch baseline in all cases. We omitted the PHTree
and aRTree from these experiments, as the imprecise rectangular
approximation of the skewed workload lead to a drastic increase
in their runtime. Even for the base workload, the PHTree was
slower by a factor of about 3× while covering fewer tuples.
Indexing Overhead.We compare the build time, i.e., the prepa-
ration time required prior to running any query, in Figure 11a,
with the block level set to 17 (~100m diagonal). The reported times
for sorting are measured once for the optimized out-of-place sort-
ing for the Blocks and reported for each baseline. This step is
completely identical in all sorting baselines. There is a notice-
able gap in the sorting phase between the BTree/BinarySearch
and the Block. This gap is caused by the collection of grid cell
ids to aggregate that we piggybacked on the sorting process to
save an additional pass on the data. Overall, the Block is built
faster than the BTree and the PHTree, and slightly slower than
the BinarySearch, which only needs to sort the input data. We
exclude the aRTree baseline from this experiment as we only op-
timized the implementation for query performance, and the build
time was multiple orders of magnitude slower than the others
described. Most notably, the majority of the Block preparation is
spent on sorting, indicating that once the data is sorted, building
additional Blocks with different filter sets is reasonably cheap.

The relative space overhead of each algorithm is depicted in
Figure 11b. BinarySearch was omitted as it does not require any
additional storage. One could argue that this is not a fair compar-
ison to the BTree and PHTree as they index individual points, but
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Figure 11: Index overhead in build time and space.
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as our goal is to provide approximate results, we wanted to show
that storing intermediate results is less space-consuming than
one would assume for such fine-grained aggregates. While the
aRTree is more space-saving when compared to the single-point
indices, it still introduces an order of magnitude higher storage
overhead than GeoBlocks.
Impact of Selectivity. Selectivity is usually defined based on
a single query, but in our context, it is hard to specify what a
single query is. We break down query polygons, e.g., the orange
bordered Lower East Side in Figure 1, to different-sized cells
covering the polygon (e.g., the purple cell), which in turn are
broken down into equally sized cells to query (blue cells). While
the intermediate cells of the query polygon’s covering are the
best representation of individual queries, as each index is probed
once for them, they are artificial concepts introduced by our
algorithm. Furthermore, these are hard to map to the rectangular
query regions of the PHTree and the aRTree. Therefore, we define
selectivity based on query polygons. For this experiment, we
artificially select polygons covering a part of NYC, which contains
a certain percentage of the total rides. Figure 12 reports the
runtime of the base workload at different selectivities using a
logarithmic scale. PHTree’s and aRTree’s measured selectivities
differ slightly from the reported ones due to the less precise
covering using an interior rectangle. As this covering contains
fewer points, this should slightly skew the experiment in favor
of the PHTree and aRTree. Even though GeoBlocks can handle
rectangular queries as well, since rectangles are just constrained
polygons, we opted for the most-precise covering where possible.

While runtime rises quickly for all baselines for selectivities
above 1%, the increase is much softer for both Block variants.
Even though the workload is not skewed, and we only use 2%
of additional storage for query caching, BlockQC still outper-
forms the non-caching Block across all selectivities. This is likely
explained by the shape of the polygons that are often simple
quadrilaterals or pentagons. These can be covered using few cells
and, therefore, most of these cells can be pre-aggregated. Binary-
Search can keep up with the BTree, reporting similar runtimes
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independent of selectivity, while the PHTree lags behind quickly.
Even if the relative runtime gap narrows for higher selectivity,
the absolute gap still favors GeoBlocks. The aRTree, our imple-
mentation of the aR-tree, outperforms the on-the-fly aggregating
benchmarks easily while staying behind GeoBlocks for lower
selectivities. However, it can catch up with Block at around 50%
selectivity. At 100% selectivity, the aRTree needs to only access
the root aggregate, explaining the sharp drop in runtime. Overall,
GeoBlocks outperform the non-aggregating baselines by at least
two and up to three orders of magnitude, performing on-par with
the aR-tree while delivering far more precise results.
Scalability.To study the performance for different-sized datasets,
we collect 100M taxi rides spanning all of 2015 and build and
query the approaches for an increasing subset of these rides. We
omit the aRTree as the build time exceeded reasonable limits up-
ward of 30 million points. As the build time is dominated by the
sorting process, which is shared and identical in all approaches,
they scale identically in build time. When comparing the size
overhead in Figure 13a, we can see that the BTree overhead is
constant as expected. For the PHTree, we see the positive impact
of the integrated compression strategies for bigger datasets. Still,
the near fixed-size grid aggregates - the size of a GeoBlock is
determined by the spatial distribution of points, not their num-
ber - enables even smaller overheads for GeoBlocks. To focus
on the individual scalability for queries, we analyze the query
runtime normalized to the runtime of each approach for one
million points. As shown in Figure 13b, both the BTree and the
BinarySearch scale linearly with the input size, as the on-the-fly
aggregation dominates the runtime. We expect a similar behav-
ior from the PHTree, but as the covering is less accurate and
chosen deliberately smaller, the increase is not fully linear. For
GeoBlocks, the runtime stays nearly constant, since it depends
on the number of maintained aggregates, and not on the number
of individual points. The number of aggregates is in turn deter-
mined by the spatial distribution of the input. Since one million
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Figure 14: Query runtime and relative error for varying
datasets.
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Figure 15: Query runtime and relative error for US states
and generated rectangles on the Twitter dataset.

points already cover most areas in NYC, the distribution does
not change when further increasing the number of points, i.e.,
the number of aggregates does not increase significantly. This
explains why query latency remains nearly constant for bigger
datasets.
Datasets. To show that our approach is not limited to the NYC
taxi dataset, we evaluate it on the two additional datasets in
Figure 14. We again query the whole area represented by the
individual polygons and report runtime, as well as the average
error defined as |# tuples in query result−# tuples in polygon |

# tuples in polygon . For the
OSM dataset, the aRTree again was excluded because of its ex-
cessive build time. As the Block, BinarySearch, and BTree use
the same covering, the result and error are identical. While the
aRtree and PHTree use an identical rectangular representation,
the pre-aggregated nodes of the aRTree lead to a different result,
and therefore error. Overall, the aRTree and Block are similarly
fast with a slight advantage for the aRTree, outperforming the
non-aggregating approaches easily. However, the error for Block
is far more stable.
Accuracy. Finally, we want to study the influence of smaller
individual polygons, as well as rectangular areas, on both run-
time and relative error. Therefore, we query all US states and
51 randomly generated rectangles within the US on the Twitter
dataset and report the average runtime and error in Figure 15.
In contrast to the previous experiment, we query all areas in-
dividually. For both polygons and rectangles, the same overall
trends are visible. The aRTree is slightly faster than Blocks as
the large polygons can be answered in the upper levels of the
tree. However, this leads to high imprecision even for rectangular
queries as partially overlapping internal nodes might be counted
multiple times. Besides, we see that the individual errors canceled
out in Figure 14, leading to a seemingly good error bound. While
the PHTree error also improves considerably for the rectangular
workload, we expected it to be exact. We suspect this is caused
by our transformation of the coordinates to integer space, which
is necessary for efficient queries. As expected, the performance
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Figure 16: Relative error and runtime at varying levels.

Level 13 14 15 16 17 18 19 20 21

Sorting 6020 6008 6317 6459 6633 6754 7028 7344 7666
Building 376 499 376 356 411 408 538 666 1025

Table 2: Index build times in ms at varying levels.

of Blocks and the other approximating baselines does not de-
grade for rectangular areas. The aggregating approaches again
far outperform the point indexing approaches in runtime.

4.3 Sensitivity Analysis
After showing that GeoBlocks easily outperform all baselines,
we study the impact that the configuration of GeoBlocks has on
throughput, as well as the impact of data skew on the adaptive
Block version. The Block configuration is specified by three pa-
rameters: The first setting we study is the level of the Block, i.e.,
the resolution of the grid overlying the spatial domain. Next, we
take a look at the impact of skew on both Block and BlockQC.
Finally, we examine how the size of the AggregateTrie influences
the runtime of unskewed and skewed workloads.
Impact of Block Level. We vary the block levels from 13 to
21 (between ~1.5km and ~6m diagonal) while keeping the other
configuration parameters fixed. From a runtime-only point of
view, lower-level (coarser-grained) blocks are always preferable,
as the query algorithm needs to take fewer cells into account.
However, this comes at the price of precision loss. Figure 16 il-
lustrates the connection between the block level, the runtime,
and the relative error introduced by the cell covering. The cell
covering can introduce only false positive results, i.e., some re-
ported results are not contained in the actual polygon. The figure
clearly shows the expected overall trend: the higher the level,
the lower the relative error and the higher the runtime. However,
after a certain point, decreasing the level further does not pay off.
Further, we see that the correlation between error and runtime is
not linear, as we already suspected in Section 3.2. The correlation
does not even follow the discussed influences completely, which
is likely caused by missing sparse children, and the non-uniform
distribution of points leading to a gap between the relative error
and the configurable spatial error.

The block level influences not only the relative error and the
runtime, but also the build time and size of GeoBlocks. Figure 11c
depicts the build time and size overhead for GeoBlocks from
levels 13 to 21. The build time seems to be only slightly affected
by the level, rising slowly with it. Table 2 splits the runtime into
two parts: sorting and building. There is a noticeable increase
in sort time along with the block level, in addition to the ex-
pected increase in build time. This increase in sorting can be
explained through our grid cell extraction that we piggybacked
to the sorting process, which has to extract more finer-grained
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Figure 18: Impact of threshold onworkload runtime (solid
line) and cache hit rate (dashed line).

cells. The size overhead, however, grows exponentially due to
the exponentially growing number of cells along with the level.
Impact of Skew. To study the impact of data skew on the effec-
tiveness of query caching, we measure the query runtime when
running the NYC workload once, and the skewed workload mul-
tiple times. The number of times we run the skewed workload
varies in each experiment.We fix the block level to 17 (~100m diag-
onal) and the size of the cache to 5% of the cell aggregates, which
roughly corresponds to aggregating all cells of the skewed work-
load. Figure 17 displays the absolute runtime for both the base
and the skewed part of the workload. One can see that after four
skewed runs, the cached aggregates start to pay off. With even
more skew in the total workload, our query-caching BlockQC
quickly starts to outperform Block. Furthermore, as expected,
the runtime for the base workload stays nearly constant, and is
always slightly faster for Block. This is easily explained by the
overhead of probing the AggregateTrie for each cell, regardless
of whether the cell is aggregated or not.
Impact of Aggregate Threshold. Having studied the impact
of skew, we want to examine how the aggregate threshold, and
thereby the size of the query cache (in BlockQC), influences the
runtime of the base and the skewed workload. The aggregate
threshold denotes the relative size overhead that the query cache,
the AggregateTrie, introduces compared to the size of the cell
aggregates in the regular GeoBlock. We again fix the block level
to 17, and the number of skewed runs to four. Figure 18 depicts
the measured runtimes and cache hit rates. The runtime of Block
is unaffected by the changed threshold and only acts as a baseline
to highlight the influence on BlockQC. Up until a threshold of
around 5%, only queries from the skewed workload can be an-
swered using the AggregateTrie. The small speedup in the base
workload can be explained by the inclusion of the skewed work-
load in the base workload. Once all cells in the skewed workload
are cached, and the cache hit rate for the skewed part reaches
100%, other query cells of the base workload start to get cached
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Figure 19: Payoff point: Number of incremental builds re-
quired to amortize the cost of sorting the raw data.

as well. While this, of course, leads to further runtime improve-
ments, it is undesirable, especially when memory is scarce. In our
experiments, at around 50%, the cache hit rate reaches 100% for
both workloads, and there is no further speedup, even when the
cache size is doubled. The cache hit rate, illustrated by the dashed
line and shown on the right axis, shows the desired effect. The
skewed part is cached almost immediately, and the hit rate for
the unskewed workload grows linear with increasing cache size.
The average lookup time slowly grows from 58ns at 1% to 81ns
at 100%. As the lookup time depends on the number of levels (30
in the maximum) and not on the size, this growth is attributable
to more complex access patterns for larger cache trees.

4.4 Changing Filters
Finally, we compare our process of Figure 5, wherein we build
multiple GeoBlocks from the sorted base data, against building
isolated GeoBlocks from scratch. We vary the block level from 15
to 19 (between ~420m and ~27m diagonal), and build 15 GeoBlocks
per level using three different predicates of varying selectivity:

• distance >= 4: Long taxi trips, selectivity of ~16%
• passenger_cnt == 1: Solo taxi trips, selectivity of ~70%
• passenger_cnt > 1: Shared taxi trips, selectivity of ~30%

For this, we want to analyze how many different filter and
level combinations are required to amortize the initial cost of
sorting. Figure 19 shows the payoff point of filter changes for
our three filter predicates. The payoff point is the number of
incremental builds required to be, in sum, faster by creating
incremental builds than building individual GeoBlocks from the
raw data and filtering before sorting. We omitted the individual
runtimes for the passenger_cnt == 1 predicate as they would
be too densely packed vertically.

As expected, themore selective the filter, the lower the speedup.
Once all tuples in the raw data have been filtered according to the
predicate, the qualifying tuples have to be sorted. More selective
predicates take longer to amortize as sorting few tuples is cheap ,
whereas for the 70% selectivity query passenger_cnt == 1, the
more expensive sorting is amortized almost immediately. There
is a correlation between the block level and amortization, most
notably for the most selective predicate distance >= 4. Given
that the payoff point drastically rises with lower selectivity, we
expect that incremental builds will only pay off when the new
filters are less selective. If only a few highly selective queries are
expected, building regular GeoBlocks directly from the raw data
will still be the fastest option. However, the time to switch to a
new filter, and therefore the individual query latency, will always
be lower for incremental builds.
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5 DISCUSSION
In this section, we discuss the takeaways of the evaluation as
well as updates for GeoBlocks.
Evaluation Summary. First, we showed that pre-aggregation
in a spatial context pays off when a limited and bounded spatial
error is acceptable, independently of the number of aggregates
queried and the selectivity of the query polygons. Furthermore,
GeoBlocks can be built fast, introducing only a small overhead
compared to the simple BinarySearch baseline. Even when the
data is already indexed with one of our baselines (i.e., without
taking the index build time into account), GeoBlock’s build time
of around 7 seconds can be amortized by fewer than 30 poly-
gon queries with a selectivity of 10% (cf. Figures 11a and 12). In
addition, building multiple GeoBlocks once the data is sorted is
possible within one second for our dataset, cf. Figure 11a. Build-
ing new GeoBlocks for different filters is even faster when using
sorted base data, often amortizing the initial extra cost of sorting
all data in less than 10 filter changes (cf. Figure 19). Even though
not all configurations are optimal for GeoBlocks, there are ac-
ceptable error-runtime trade-offs, in our case around levels 17
and 18. While the level does not significantly impact the index
build time, the size overhead growth is almost exponential, cf.
Figure 11c, indicating that it is wise to think about which error is
acceptable for the given query workload when memory is scarce.
Updates.Up until now, we considered GeoBlocks to be read-only
as they are designed for historical point data. However, the layout
of GeoBlocks allows us to integrate updates easily, as long as a cell
aggregate for the region of the newly arriving tuple already exists.
For the non-adaptive version, all we have to do is locate the cell
aggregate containing the tuple and update all stored aggregates.
In the adaptive version, we additionally need to update all cached
parents of the grid cell in the AggregateTrie as well. Thanks to
the prefix-based indexing property of the trie, we can do this
in a single depth-first traversal. Only if tuples arrive for a new,
previously unaggregated region, we have to rebuild the aggregate
layout, as we rely on the cell aggregates to be sorted. However, as
we have shown in the evaluation, recalculating the cell aggregates
is often possible within a second, so this operation would not
induce too much delay when updates are implemented in batches
instead of single tuples. Other indexing approaches on the cell
aggregates (e.g., a clustered B-tree) could eliminate the need to
rebuild by reserving storage for new aggregates. Preliminary
experiments using std::map and a B-tree as an index showed
similar lookup performance at the cost of increased size overhead.

6 RELATEDWORK
Our approach builds on seminal work from decades of research
on spatial indexing. Decomposing space into hierarchical grid
cells [1, 9, 39], as well as approximating polygons using simpler
shapes [18], are all well-known approaches. Likewise, enumerat-
ing cells using a space-filling curve such as Hilbert or Z order [26,
27] and storing aggregate information within cells [20, 30, 46] are
ideas that have been around for some time. However, while build-
ing on these established concepts, GeoBlocks present the first
pre-aggregating data structure that supports a bounded, distance-
based error on the results of polygonal queries. Specifically, prior
work on pre-aggregation [14, 30, 31, 34] is limited to rectangular
queries and requires an expensive post-processing (refinement)
step to answer polygonal queries. GeoBlocks, on the other hand,
yield error-bounded results and do not require expensive refine-
ment.

Spatial Aggregation. Past work has proposed several approach-
es for spatial aggregation queries [23]. These approaches mainly
rely on pre-aggregation [14, 34]: they pre-aggregate records at
various spatial resolutions and store this summarized information
in a hierarchy of rectangular regions, maintained using a spatial
index like the quadtree or the R-tree [19, 30–32]. For instance, the
aRtree [30, 31] enhances the R-tree by storing aggregate informa-
tion for each node. This allows to directly extract the aggregate
of all the records contained in a node, if the node’s MBR is fully
enclosed in the query region. Being a variant of the R-tree, the
aRtree constrains the supported queries to only rectangular re-
gions. Furthermore, the computed aggregates are approximate
and the error cannot be bounded, since the accuracy depends on
the resolution of the rectangular R-tree nodes. Providing preci-
sion guarantees for arbitrary polygons requires accessing the
raw data and involves additional processing. There are also ap-
proaches that store aggregates inside a data cube [6, 37], or using
sketches [48]. Nanocubes [21], for example, store the CUBE op-
erator for spatio-temporal datasets, and are specifically designed
for visualization systems. The data cube-based approaches suffer
from the same limitations as the aRtree, since they also rely on a
hierarchy of rectangular regions. Besides, accessing the raw data
to refine the aggregates might require additional indices, as the
cube does not store individual records. Vorona et al. [55] approxi-
mate the distribution of geospatial points with an autoregressive
deep learning model to answer arbitrary polygonal queries, but
they cannot provide any error bounds. Pandey et al. [29] pro-
pose to use learned indices for query-efficient spatial indexing,
albeit limited to range queries. Finally, Raster Join [51] uses GPU
rendering to compute aggregates over a point-polygon join. In
contrast, GeoBlocks support aggregation over spatial selections.

Prefix sums [10] can be used in addition to pre-aggregation
to enable fast range-sums. This is achieved by only inspecting
the aggregates in the two corners of a query region, rather than
every aggregate inside the query region. An example of this is
our COUNT algorithm. However, in contrast to our SELECT queries,
these range-sums are unable to extract min and max aggregates.
Materialized Views and OLAP Cubes. GeoBlocks are essen-
tially materialized views over geospatial data with support for
filters and aggregations. In contrast to regular views [12, 44],
GeoBlocks are designed for historical spatial data and can adapt to
the query workload at a fine-grained level using a trie-like cache.
Work on materialized view selection [2] also makes materializa-
tion decisions based on the query workload, but at a much coarser
granularity (e.g., what columns to aggregate). There has also been
a lot of work on data cubes and query caching [11, 15, 42], but
these do not support geospatial data as a first-class citizen.
Spatial Point Indexing. Spatial point indexing approaches typ-
ically index points using a hierarchy of MBRs, most notably the
R-tree [13], or by subdividing grid cells into equally-sized chil-
dren, e.g., the quadtree [9, 39]. Both of these index structures
are queried using the dimension-wise min/max values, i.e., the
query regions are rectangular. Other approaches, like the UB-
tree [3], assign univariate keys to the indexed regions first and
rely on these keys for data access. While the UB-tree does not
specify how these keys have to generated, most approaches use
space-filling curves like the Z order [26, 27].

Based on these concepts, more specialized indices have been
developed. The PH-tree [56] combines a quadtree with hyper-
cubes to allow splitting all dimensions in each node, providing
a space-efficient index structure for multidimensional data. The
space efficiency can be partly attributed to the utilization of prefix
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sharing, similar to the one used in our trie-like cache. Alternating
the indexed dimensions in an in-memory tree structure, the BB-
tree [47] offers fast point and range queries for multidimensional
data. While these structures require the index to be built a priori,
there are others like QUASII [33], where the index is built incre-
mentally as a side product of query execution. As a result, QUASII
can adapt to the query workload at runtime. However, QUASII
only supports spatial range (window) queries. Recently, Shin et
al. [43] proposed integrating grid indices into a tree structure to
achieve faster node accesses and point operations.

7 CONCLUSIONS
We have introduced GeoBlocks, a novel pre-aggregating data
structure for geospatial data. GeoBlocks pre-compute aggregates
over fine-grained grid cells, thereby supporting arbitrarily shaped
polygons. Using these aggregates, GeoBlocks can provide fast
query results with a user-controlled spatial error. Furthermore,
GeoBlocks can speed up aggregate queries for commonly queried
regions by dynamically adapting to any given workload using
limited additional storage.

Comparing GeoBlocks with on-the-fly aggregating indexing
baselines, we have shown that we can outperform them for any
number of aggregates, in parts by three orders of magnitude. The
introduced storage overhead is comparable, and often even lower,
to that of traditional indexing structures, while GeoBlocks can be
built equally fast. Looking at GeoBlocks’ configuration options,
we have shown how they can be adapted to the given dataset and
workload, and how they influence the runtime, the overhead, and
the error in the result. Overall, GeoBlocks are materialized views
over geospatial data that support filter predicates and aggregates
while enabling fine-grained adaptation to the query workload.
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ABSTRACT
To support indoor spatial queries and indoor location-based ser-
vices (LBS), multiple techniques including model/indexes and
search algorithms have been proposed. In this work, we con-
duct an extensive experimental study on existing proposals for
indoor spatial queries. We survey five model/indexes, compare
their algorithmic characteristics, and analyze their space and time
complexities. We also design an in-depth benchmark with real
and synthetic datasets, evaluation tasks and performance metrics.
Enabled by the benchmark, we obtain and report the performance
results of all model/indexes under investigation. By analyzing the
results, we summarize the pros and cons of all techniques and
suggest the best choice for typical scenarios.

1 INTRODUCTION
Indoor location-based services (LBS) are becoming increasingly
popular [6, 9]. Relevant applications, such as POI search [22, 28]
and routing [11, 13, 14], are often built on top of typical spatial
queries like range query, k nearest neighbor query, shortest path
query, and shortest distance query. Therefore, the efficiency of
processing such typical indoor spatial queries plays a key role in
the success of indoor LBS.

To facilitate query processing for indoor LBS, space models,
indexes and algorithms have been proposed. They all deal with
indoor entities, e.g., rooms, doors, walls and floors. These enti-
ties form distinct topology that determines indoor distances and
impacts indoor movement. As a result, the distances in indoor
spatial queries must be measured appropriately, e.g., without in-
volving straight line segments through walls. Also, indoor routing
in shortest path/distance queries must consider connectivity and
reachability between indoor locations.

To support indoor distance computation, existing models and in-
dexes [27, 31, 37, 38] employ different approaches to integrate the
geometry and topology information of an indoor space. Though
all these approaches can be used to process the aforementioned
indoor spatial queries, a comprehensive experimental study on all
these proposals is still missing. Consequently, indoor LBS appli-
cation developers inevitably encounter difficulties in choosing the
appropriate technique for a given indoor space scenario.

To bridge this gap for LBS application development and dis-
close insights for further research on indoor data management, we
conduct a comprehensive experimental study in this work. Our
study focuses on five existing model/indexes that support typi-
cal indoor spatial queries on static indoor objects (e.g., POIs) or
indoor shortest paths/distances. We compare the five proposals
theoretically and empirically. Our contributions are as follows.

© 2021 Copyright held by the owner/author(s). Published in Proceedings of the 24th
International Conference on Extending Database Technology (EDBT), March 23-26,
2021, ISBN 978-3-89318-084-4 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

• We survey the five proposals by scrutinizing their structures,
algorithmic characteristics, and space and time complexities.

• We design an in-depth benchmark with datasets, evaluation
tasks, and performance metrics. The datasets consist of real and
synthetic data characterized by distinctive indoor topology.

• Within the benchmark, we conduct extensive experiments to
evaluate the performance of the five proposals in terms of con-
struction cost and query efficiency.

• By analyzing the results, we disclose the pros and cons of
the proposals, analyze the impact of different conditions, and
recommend the best choice for typical application scenarios.
All code, data and test cases are open-sourced [1]. To the best of

our knowledge, this work is the first that comparatively analyzes
and evaluates the existing techniques under a unified framework.

The paper is organized as follows. Section 2 introduces indoor
spatial queries and related work. Sections 3 and 4 present the
indoor space model/indexes and query processing, respectively.
Section 5 details the experimentation benchmark. Section 6 reports
and analyzes the evaluation results. Section 7 concludes the paper.

2 INDOOR SPATIAL QUERIES
Table 1 lists the frequently used notations.

Table 1: Notations
Symbol Meaning
I An indoor space
p, q ∈ I Indoor points
o ∈ O A static indoor object
d ∈ D A door
v ∈ V An indoor partition
|p, q |I Indoor distance from p to q
⟨p, di , . . . , dj , q ⟩ An indoor path
L(ϕ) Length of a path ϕ

2.1 Indoor Space Concepts
Indoor space features distinct entities such as walls, doors, and
rooms, which altogether form complex indoor topology that en-
ables and constrains movements. Naturally, an indoor space is
divided by walls and doors into indoor partitions like rooms,
hallways or staircases. Two indoor partitions can be connected by
a door or an open segment between them. Referring to the exam-
ple floorplan in Figure 1, partitions 30 and 40 (denoted as v30 and
v40, respectively) are connected by an open segment d3, In this
paper, we refer to both doors and open segments as doors. We do
not consider the width of a door and represent a door by its center
point. In other words, each door can be generally regarded as an
indoor point. Furthermore, a door can be unidirectional such as a
security checkpoint at the airport. The door directionality makes
the indoor distance between two points asymmetric. Referring to
Figure 1, the shortest indoor path from p to p′ and that from p′ to
p are different due to the unidirectionality of d12.

Topology renders the indoor distance more complex than Eu-
clidean distance. In Figure 1, the indoor distance |p,o1 |I from p to
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o1 is not subject to the straight line segment between them; it is
the total length of the polyline p → d11 → o1.
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Figure 1: Example Floorplan

Lu et al. [27] proposes mappings to capture the relationships
between indoor partitions and doors. In particular, D2P⊐(di ) gives
the set of partitions that one can enter through doordi and D2P⊏(dj )
gives those that one can leave through door dj . Besides, D2P(di )
gives a set of a partition pair (vj ,vk ) such that one can go through
door di from partition vj to vk . Moreover, P2D⊐(vk ) gives the
set of enterable doors through which one can enter partition vk ,
and P2D⊏(vk ) gives the set of leaveable doors through which
one can leave partition vk . When doors are bidirectional, we use
P2D(vk )= P2D⊐(vk ) ∪ P2D⊏(vk ) to denote the set of doors asso-
ciated to partition vk .

Example 1. In Figure 1, given the unidirectional door d12,
we have D2P⊐(d12)= {v10}, D2P⊏(d12)= {v12}, and D2P(d12)=
{(v12,v10)}. Moreover, we have P2D⊐(v12)= {d15}, P2D⊏(v12) =
{d12}, and P2D(v12)= {d15,d12}.

2.2 Indoor Spatial Query Types
We focus on static indoor objects such as POIs and facilities. Our
study covers four fundamental indoor spatial query types.

Definition 1 (Range Query (RQ)). Given an indoor point p ∈

I, a set O of indoor objects, and a distance value r , a range query
RQ(p, r ) returns all indoor objects from O whose indoor distance
from p is within r . Formally, RQ(p, r )= {o | |p,o |I ≤ r ,o ∈ O}.

Definition 2 (k Nearest Neighbor Query (kNNQ)). Given
an indoor point p ∈ I, a set O of indoor objects, and an integer
value k, a k nearest neighbor query kNNQ(p) returns a set O ′ of
k indoor objects whose indoor distances from p are the smallest,
i.e., |O ′ | = k and ∀oi ∈ O ′,oj ∈ O \O ′, |p,oi |I ≤ |p,oj |I .

In Figure 1 where O = {o1, . . . ,o4}, a query RQ(p, 1.9m) re-
turns {o2,o3} since the distances from p to o1 and o4 both exceed
1.9m.1 Furthermore, a query 3NNQ(p) returns {o2,o3,o4}, since
o1’s distance from p is the longest among all.

Definition 3 (Shortest Path Query (SPQ)). Given a source
point p ∈ I, a target point q ∈ I, a shortest path query SPQ(p,q)
returns the shortest path ϕ = ⟨p,di , . . . ,dj ,q⟩ from p to q such
that 1) di , . . . ,dj are door sequences and each two consecutive
doors are associated to the same partition, 2) p is in the partition
having di as a leavable door, 3) q is in the partition having dj as
an enterable door, and 4) ∀ϕ ′ from p to q, L(ϕ)≤ L(ϕ ′).2

Definition 4 (Shortest Distance Query (SDQ)). Given a source
point p ∈ I, a target point q ∈ I, a shortest distance query
SDQ(p,q) returns the shortest indoor distance from p to q, i.e.,
the length of SPQ(p,q).
1Meter is the distance unit in all examples in this paper.
2L(ϕ)= Σk=jk=0 |dk , dk+1 |I where d0 = p and dj+1 = q.

As indicated by the red dashed polyline in Figure 1, a query
SPQ(p,q) returns ϕ = ⟨p,d1,d3,q⟩ as the shortest path from p to
q, and the result of SDQ(p,q) is 2.7m + 3.0m + 0.5m = 6.2m.

2.3 Related Work
Indoor Space Modeling. Many indoor space models [7, 15, 20,
35, 36] focus on symbolic modeling of topological relationships
between indoor partitions. Lacking of indoor distances, they can-
not support the aforementioned distance-aware queries.
Indoor Moving Objects. Alamri et al. [4] propose an index tree
for indoor moving objects based on connectivity between indoor
cellular units. Kim et al. [19] propose to index indoor moving
objects based on grid cells. Lin et al. [24] design an indoor mov-
ing object index to speed up complex semantic queries in multi-
floor spaces. In the context of RFID indoor tracking, Yang et al.
study continuous range monitoring queries [39] and probabilis-
tic k nearest neighbor queries [40]. To improve the query result,
Yu et al. [41] propose a particle filter-based method to infer the
undetected locations of indoor moving objects. Assuming a prob-
abilistic sample based location data format, Xie et al. [37, 38]
process kNN query and range query for indoor moving objects.
Considering uncertain object movements between observed time
and query time, Li et al. [22] study searching the current top-k in-
door dense regions. These works consider indoor moving objects
with uncertain positions at a particular time. Unlike all these works
on indoor moving objects, this study concerns spatial queries on
static indoor objects, e.g., printers or ATMs.
Indoor Trajectories. Jensen et al. [15] study historical trajecto-
ries of RFID-tracked indoor objects. Delafontaine et al. [12] find
sequential visiting patterns within historical Bluetooth tracking
data. Given a past time or a time interval, Lu et al. define spatio-
temporal joins [29] to find moving object pairs in the same indoor
partition, and top-k queries [28] to find the most frequently visited
indoor POIs. Ahmed et al. [2, 3] define threshold density query
to find dense indoor semantic locations in a historical time inter-
val. Assuming probabilistic sample based location records, Li et
al. [23] find the top-k most popular indoor semantic regions with
the highest object flow values. Jin et al. [17] study the similarity
search over indoor trajectories, considering both spatial and se-
mantic properties. By analyzing spatial constraints of indoor POIs,
Jiang et al. [16] study the restoration of indoor trajectories. Li et
al. [21] propose a coupled conditional Markov model to enrich
indoor uncertain trajectories with mobility events and stay regions.
Unlike these works, the queries studied in this paper focus on
static objects or indoor paths.
Indoor Path Planning. Goetz and Zipf [14] study user-adaptive
length-optimal indoor routing based on a weighted routing graph.
Salgado et al. [30] study indoor keyword-aware skyline route
query, considering the number of covered keywords and route
distances. Feng et al. [13] study indoor keyword-aware routing
queries to find shortest paths covering user-specified semantic
keywords. Costa et al. [11] propose the context-aware indoor-
outdoor path recommendation that minimizes the outdoor expo-
sure and path distance. To enable navigation through movable
obstacles, Sun et al. [33] study semantic assisted path planning
over a gridded map of an indoor environment. Wang et al. [34]
propose an obstacle-avoiding path planning algorithm to automate
indoor robots. These techniques consider additional query seman-
tics, and thus are different from the fundamental, pure shortest
path/distance queries studied in this paper.
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3 MODEL AND INDEXES
The aforementioned indoor spatial queries all involve indoor dis-
tances. To facilitate such queries, indoor distances must be consid-
ered in modeling and indexing indoor space.

3.1 Indoor Distance-Aware Model
Indoor distance-aware model [27] (IDMODEL) is a graph Gdist
(V , Ea, L, fdv, fd2d). The first three elements capture indoor topol-
ogy in an accessibility base graph Gaccs(V , Ea, L), where V is
the set of vertexes each referring to an indoor partition, Ea =
{(vi ,vj ,dk ) | dk ∈ D,vi ∈ D2P⊐(dk ) ∧ vj ∈ D2P⊏(dk )} is a set
of labeled, directed edges, and L is the set of edge labels each
corresponding to a door in D. The additional two are mapping
functions defined as follows.

fdv(di ,vj ) =

{
maxp∈vj | |di ,p | |vj , if vj ∈ D2P⊐(di );
∞, otherwise.

Here, | |p,q | |vj is the indoor distance from a point p to a point
q within the partition vj . Note that | |p,q | |vj is not necessarily a
Euclidean distance because even within the same partition there
may be obstacles in the line of sight between p and q. Specifically,
door-to-partition distance mapping fdv(di ,vj ) returns the longest
distance one can reach within partition vj from door di , if vj is an
enterable partition of di . Otherwise, it returns ∞.

fd2d(vj ,di ,dj ) =



| |di ,dj | |vj , if di ∈ P2D⊐(vj )
and dj ∈ P2D⊏(vj );

0, if di = dj
and di ,dj ∈ P2D(vj );

∞, otherwise.

The door-to-door distance mapping fd2d(vj ,di ,dj ) maps a par-
tition vj and two doors di and dj to a distance value. If both doors
are associated to vj , it returns the distance from di to dj within vj ,
i.e., | |di ,dj | |vj . If di and dj are identical and associated to vj , we
stipulate fd2d(vj ,di ,dj ) = 0. Otherwise, fd2d(vj ,di ,dj ) returns ∞,
indicating that one cannot go from di to dj via vj only.

Figure 2 illustrates the IDMODEL for the example shown
in Figure 1. The outdoor space is captured in a special graph
vertex v0. Two hashmaps implement the mappings fdv(di ,vj )
and fd2d(vj ,di ,dj ). With directed edges, IDMODEL can support
doors’ directionality and temporal variation when needed.
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Figure 2: An Example of IDMODEL

With the two mappings fdv(di ,vj ) and fd2d(vk ,di ,dj ), a graph
traversal algorithm [27] on IDMODEL is designed to compute
the shortest door-to-door distance d2d(ds ,dt ) from a source door
ds to a target door dt . The basic idea is to keep expanding to
unvisited doors based on the current shortest path until reaching
the target door. Further, the shortest indoor distance from any point
p to any point q can be computed by finding the minimum value
of the distance summation | |p,dp | |vp + d2d(dp ,dq ) + | |dq ,q | |vq ,

where vp and vq are the partitions that host p and q, respectively,
dp ∈ P2D⊏(vp ), and dq ∈ P2D⊐(vq ).

However, IDMODEL does not support fast determination of the
host partition of a query/source point. It boils down to sequential
scanning of all partitions if no additional index, e.g., R-tree, is
used for the partitions. Also, to manage indoor static objects,
IDMODEL needs additional object buckets each for a partition.

3.2 Indoor Distance-Aware Index
IDMODEL only captures the door-to-door and door-to-partition
distances within a local partition, which entails extra search to
compute the indoor distance for two points in different partitions.

To cut such costs, indoor distance-aware index [27] (IDINDEX)
stores extra information on top of IDMODEL, namely, precom-
puted global door-to-door distances and their ordering in two ma-
trices. The door-to-door distance matrix Md2d is an N-by-N ma-
trix where N = |D | is the total number of doors and Md2d[di ,dj ]
gives the precomputed shortest indoor distance from di to dj . The
distance index matrix Midx is also an N-by-N matrix such that
Midx[di ,k] gives the identifier of a door whose indoor distance
from di is the k-th shortest among all the N doors.

The IDINDEX matrices for the top-left part in Figure 1 is
illustrated in Figure 3. Here, we have Md2d[d1,d15] = 4.6m. The
first row of Md2d shows that d15 has the longest indoor distance
from d1. Accordingly, we have Midx[d1, 6] = d15 in Midx.

©«
d1 d11 d12 d13 d14 d15

d1 0 1.7 2.7 3.6 2.8 4.6
d11 1.7 0 1.9 3.6 2.8 4.6
d12 2.7 1.9 0 2.6 1.8 1.6
d13 3.2 3.4 2 0 2 1
d14 2.8 2.8 1.8 1 0 2
d15 4.3 3.5 1.6 1 2 0

ª®®®®¬
(a) Distance Matrix Md2d

©«
1 2 3 4 5 6

d1 d1 d11 d12 d14 d13 d15
d11 d11 d1 d12 d14 d13 d15
d12 d12 d15 d14 d11 d13 d1
d13 d13 d15 d12 d14 d1 d11
d14 d14 d13 d12 d15 d1 d11
d15 d15 d13 d12 d14 d11 d1

ª®®®®¬
(b) Distance Index Matrix Midx

Figure 3: An Example of IDINDEX

As the shortest indoor distances to all doors are precomputed
and sorted for each door in IDINDEX, it is faster to compute the
shortest indoor distance between any two points p and q in the
indoor space. To support the shortest path query, in addition to the
shortest distance value between any two points, IDINDEX also
keeps the first-hop door of the corresponding shortest path. In
this way, the complete shortest path between two points can be
constructed by recursively concatenating the first-hop doors.

3.3 Composite Indoor Index
Composite indoor index [37] (CINDEX) is a layered structure for
indexing indoor partitions and moving objects. It consists of three
layers: geometric layer, topological layer, and object layer. In this
study, we adapt the object layer to index static indoor objects. A
partial example CINDEX for Figure 1 is given in Figure 4.

The geometric layer uses an R*-tree [8] to index all indoor par-
titions, with an additional skeleton tier to maintain the distances
between staircases at different floors. To ease the geometrical
computations, it decomposes each irregular partition3 into regu-
lar ones using a decomposition algorithm [37]. Referring to the
bottom-right of Figure 4, the hallway v10 is divided into two reg-
ular indoor partitions v10a and v10b by a door d16. Afterwards,
each regular partition is represented by a Minimum Bounding Rec-
tangle (MBR). The MBRs are indexed by the R*-tree. As shown
in the top-left of Figure 4, a non-leaf node R1 is composed of six
partitions in the leaf level, i.e., v10a , v10b , and v11-v14.

3A partition is irregular if it is non-convex or imbalanced (long in one dimension but
short in the other).
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The topological layer stores the connectivity information among
indoor partitions, and it is integrated to the tree by inter-partition
links. In particular, a leaf node vi in the R*-tree is linked with
a pointer record (dk , ↑vj ) to indicate that one can move from a
partition vi to another partition vj through door dk . As shown in
the top-right of Figure 4, the two pointer records for v13 mean that
v13 is adjacent to v10b and v12 via d13 and d15, respectively.

The object layer maintains a number of object buckets each
for an indoor partition at the leaf node level of the R*-tree. Each
indoor object o is kept in the bucket of the partition in which o is
located. In addition, an object hashtable o-table : O → ∗V maps
each object to its host partition’s pointer. Unlike [37, 38], the
object buckets store static objects in this study. As shown in the
bottom-left of Figure 4, the leaf node v10a is linked to its object
bucket with two static objects o2 and o4. Also, two corresponding
records are kept in the object hashtable (o-table).
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Figure 4: CINDEX Example (Adapted from [37])

The R*-tree
in CINDEX or-
ganizes parti-
tions hierarchi-
cally, and thus
enables search
space pruning
for distance rel-
evant compu-
tations. As a
result, CINDEX

does not cache
the precomputed door-to-door distances as IDINDEX does. More-
over, as the topological layer maintains the links between parti-
tions and doors, which form an implicit graph structure, CINDEX

does not need an explicit graph model to keep connectivity in-
formation. The topological layer’s dynamic link updating makes
CINDEX adaptive to possible temporal variations of doors.

3.4 IP-Tree and VIP-Tree
Indoor partitioning tree [31] (IP-TREE) is a tree-based indoor
partition index with a number of matrices each materializing the
door-to-door distances within a local range. In particular, each leaf
node of IP-TREE covers a number of topologically adjacent indoor
partitions. The adjacent leaf nodes are combined to form a non-
leaf node, and adjacent non-leaf nodes are combined hierarchically
until a root node is formed. Each node N has a distance matrix
and a number of access doors. An access door is a border door
that connects N to its external space. AD(N ) denotes N ’s access
door set. The distance matrix for a leaf node stores the shortest
distance (as well as the first-hop door on the shortest path) between
every door of the leaf node to every access door of the leaf node.
The distance matrix for a non-leaf node only stores the shortest
distances and first-hop door between each pair of access doors of
its child nodes. To compute the indoor distance from a point p to a
point q, IP-TREE locates the lowest common ancestor of the leaf
nodes Leaf(p) and Leaf(q), finds the access doors constituting
the shortest path in that ancestor, and connects the materialized
indoor distances involving p, the found access doors, and q.

Figure 5 shows an example of IP-TREE corresponding to Fig-
ure 1. The topologically adjacent partitions v10-v14 form a leaf
node N1. Another leaf node N2 is composed of partitions v40 and
v50. As N1 and N2 are connected by a border door d1, d1 is put
into AD(N1) and AD(N2). For the leaf node N1, the distance ma-
trix stores the distances from each of its doors to the access door

d1 of N1. For instance, the distance from N1’s only door d15 to
access door d1 contained by N1 is 4.3m. Moreover, as the shortest
path from d15 to d1 is ⟨d15,d12,d1⟩, the first-hop door of the path
is kept as d12 in the matrix. Differently, for the non-leaf node N0,
the distance matrix only keeps the distances between each pair of
access doors. In the running example, each pair of access doors
are directly connected. Therefore, no first-hop door is recorded.
The storage space of each distance matrix will double when the
door directionality needs to be considered, i.e., both the distances
d2d(di ,dj ) and d2d(dj ,di ) are kept in each node.

As a variant of IP-TREE, vivid IP-Tree (VIP-TREE) [31] fur-
ther accelerates the distance computation by materializing more
precomputed information. Specifically, each leaf node N addition-
ally maintains the shortest distance between each door contained
by N and each access door in N ’s all ancestor nodes, along with
the corresponding first-hop door information.

IP-TREE and VIP-TREE materialize a small number of dis-
tances only related to access doors that are critical in the overall
topology of an indoor space. This design eases the on-the-fly
distance related computations in spatial query processing.

N0

d0

d0 d1 d2 d3
d0 0 1.4 2 3.9

d1 1.4 0 3 4

d2 3.9 4 4.4 0

d3 2 3 0 4.4

d1 d11 d12 d13 d14 d15
d1 0 1.7 2.7 3.2 2.8 4.3,

d12

Distance Matrix for N0 (a non-leaf node)

Distance Matrix for N1 (a leaf node)
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Figure 5: An Example of IP-TREE

4 QUERY PROCESSING
All the aforementioned model/indexes can be used to process
indoor spatial queries. Although query processing differs for dif-
ferent query types, all algorithms share a general paradigm as
follows. First, an algorithm finds the initial indoor partition for a
query. The initialization decides the indoor partition in which
the query (or source) point p is located for a given RQ(p, r )
(kNNQ(p), SPQ(p,q), or SDQ(p,q)). Subsequently, an algorithm
expands from the initial partition, searching adjacent partitions
via doors. Finally, the expansion stops when the search range
is beyond the query range r for a RQ(p, r ), or kNNs have been
found for a kNNQ(p), or the target point q is met for a SPQ(p,q)
or SDQ(p,q). Algorithms based on different model/indexes dif-
fer in their initializations and expansions. Below, we present a
comprehensive analytical comparison of all model/indexes.

4.1 Algorithmic Comparison
Table 2 summarizes the comparison.
Distance Precomputation. IDMODEL and CINDEX do not pre-
compute any indoor distances, whereas IDINDEX and IP-TREE/VIP-
TREE maintain some door-to-door distances before query pro-
cessing. In particular, IDINDEX precomputes the shortest indoor
distances between every pair of doors, but IP-TREE/VIP-TREE

only keeps a small number of distances in each tree node.
Model/Index Structure. IDMODEL is a labeled graph with dis-
tance mapping functions, whereas IDINDEX materializes two ma-
trices for global door-to-door distances. Employing a tree-based
structure, CINDEX keeps topological information incrementally
by maintaining inter-partition links, whereas IP-TREE/VIP-TREE

augments each tree node with a local distance matrix. More im-
portantly, CINDEX forms the non-leaf tree nodes according to the
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Table 2: Feature Comparison
Models Precompute Structure Initialization Expansion RQ kNNQ SPQ SDQ

IDMODEL No
Graph+
Mappings Sequential scan Dijkstra △ △ ✓ ✓

IDINDEX Yes Matrix Sequential scan Loop ✓ ✓ △ △

CINDEX No Tree+Links R*-Tree pruning Dijkstra ✓ ✓ △ △

IP-TREE Yes Tree+Matrix Sequential scan LCA ✓ ✓ ✓ ✓
VIP-TREE Yes Tree+Matrix Sequential scan LCA ✓ ✓ ✓ ✓

Table 3: Extensibility Analysis
IDMODEL IDINDEX CINDEX IP/VIP-TREE

Temporal
Variation ✓ X ✓ X

Moving
Objects ✓ ✓ ✓ ✓

Uncertain
Locations X X ✓ X

Keywords ✓ ✓ ✓ ✓

Table 4: Complexity Analysis

Space RQ kNNQ SDQ SPQ

IDMODEL O(V + D + 2Vd + Vd2) O(oV log D) O(oV log D) O(V log D) O(V log D + w)
IDINDEX O(2D2) O(od log D) O(od log D) O(d2) O(d2 + w)
CINDEX O(V + Vd + O) O(oV log D) O(oV log D) O(V log D) O(V log D + w)
IP-TREE O(ρ2f2L + ρD) O((ρ logf L)2(Vo/L + ρ)) O((ρ logf L)2(Vo/L + ρ)) O(ρ2 logf L) O((ρ2 + w) logf L)
VIP-TREE O(ρ2f2L + ρD logf L) O(ρ2 logf L(Vo/L + ρ)) O(ρ2 logf L(Vo/L + ρ)) O(ρ2) O(ρ2 + w)

geometrical proximity of partitions, whereas IP-TREE/VIP-TREE

do so based on the topological proximity of partitions.
Query Types. All model/indexes can support all the four query
types. However, IDMODEL [27] does not provide RQ and kNNQ
algorithms. Therefore, we implement the two algorithms and refer
readers to the appendix in [26]. Also, there are no off-the-shelf
SPQ/SDQ algorithms for IDINDEX and CINDEX. Nevertheless,
the global door-to-door distances and the corresponding last-hop
door information in IDMODEL can be used to expand path search-
ing in SPQ/SDQ algorithms for IDINDEX. For CINDEX, the
inter-partition links can be used for path expansion.
Initialization. To decide the initial indoor partition for a query,
IDMODEL and IDINDEX sequentially scan all partitions. Enabled
by the R*-tree indexing partitions, CINDEX can quickly find the
host partition of any indoor point. In contrast, IP-TREE and VIP-
TREE are based on pure topological relationships among partitions,
and thus they also sequentially scan all partitions.
Expansion. As a graph-based model, IDMODEL expands to the
next unvisited door in the spirit of Dijkstra’s algorithm [18]. CIN-
DEX does so as well since the next-hop doors are captured in the
inter-partition links on the topological layer. Instead of expand-
ing via directly connected doors, IP-TREE/VIP-TREE finds the
lowest common ancestor (LCA) node of p and q and locates the in-
termediate access doors on the shortest path straightforwardly. It is
noteworthy that IDINDEX alone cannot support topological door
expansion. Instead, IDINDEX relies on an underlying IDMODEL

to loop through relevant indoor partitions’ doors.

4.2 Complexity Analysis
Let V, D, O be the total number of indoor partitions, doors, and
indoor objects, respectively. Let d and o be the average door
number and average object number per partition, respectively. Let
w be the average number of door nodes on a shortest path. For
IP-TREE/VIP-TREE, we use f to denote the fan-out of the tree
node, ρ the average access door number per node, and L the total
number of leaf nodes. Table 2 summarizes the space complexity
of all model/indexes and their time complexity for queries.
Space Complexity. IDMODEL (V , Ea, L, fdv, fd2d)’s space com-
plexity is O(V + Vd + D + Vd + Vd2) = O(Vd2). IDINDEX’s space
complexity is O(2D2) = O(D2) as it consists of two door matrices.
CINDEX’s space complexity is O(V + Vd + O) = O(Vd + O) where
V, Vd, and O correspond to partition R*-tree, inter-partition links,
and object hashtable, respectively. IP-TREE’s space cost mainly
consists of the distance matrices for leaf nodes and those for non-
leaf nodes. The former’s complexity is O(ρD) and the latter’s is
O((ρf)2L) where ρf corresponds to the number of access doors
from a child node and L reflects the number of non-leaf nodes. In
contrast, VIP-TREE’s space cost on the distance matrices for leaf

nodes is O(ρD logf L), where logf L corresponds to the ancestor
number of each leaf node.
Time Complexity for RQ and kNNQ. RQ and kNNQ have sim-
ilar time complexity as they both prune objects based on shortest
distances. IDMODEL’s search expands via qualified doors by
graph traversal in O(V log D) and iterates on the objects in each
visited partition in O(o). Also based on graph traversal, the search
on CINDEX obtains a subgraph in O(V log D) and visits all objects
in each partition of the subgraph in O(o). IDINDEX’s search ex-
pands to the nearest partitions based on the sorted result in Midx,
and loops through each object in the expanded partition. So its
time complexity is O(od log D). The searches via IP-TREE and
VIP-TREE work similarly. They prune a tree node based on its
distance from the query point in O(logf L ·ρ ·c), where c is the unit
SDQ cost. Then, they qualify each object in the remaining nodes
in O(logf L · V/L · o · c). Given the SDQ complexity O(ρ2 logf L)
for IP-TREE and O(ρ2) for VIP-TREE (to be detailed below),
their RQ and kNNQ complexities are O((ρ logf L)2(Vo/L + ρ))
and O(ρ2 logf L(Vo/L + ρ)), respectively.
Time Complexity for SDQ and SPQ. For the graph traversal
algorithms of IDMODEL and CINDEX, the SDQ complexity is
O(V log D) and SPQ complexity is O(V log D + w) with additional
cost to backtrack the shortest path in w hops. For IDINDEX, the
only cost of SDQ is to loop through two door sets corresponding
to p and q by a complexity of O(d2). The extra cost of SPQ to
concatenate shortest path is of O(w). For IP-TREE, SDQ needs
to search the lowest common ancestor and then find a pair of
access doors from that ancestor node, resulting in a complexity
of O(ρ2 logf L). In contrast, VIP-TREE materializes the distances
from a leaf node to each access door in the ancestors. Its SDQ
complexity is O(ρ2). The additional cost to construct shortest path
in SPQ is O(w logf L) for IP-TREE and O(w) for VIP-TREE.

4.3 Extensibility Analysis
Table 3 summarizes the extensibility of all model/indexes.
Temporal Variation. Indoor topology may feature temporal vari-
ations, e.g., doors have open and close hours. To support indoor
spatial queries in such cases, temporal variations like open and
close time of doors can be maintained as a table attached to the
accessibility base graph of IDMODEL or the topological layer of
CINDEX [25]. However, frequent temporal variations are hard to
handle for IDINDEX and IP-TREE/VIP-TREE as they need to
precompute door-to-door distances globally or locally.
Moving Objects. CINDEX [37, 38] is designed for managing
indoor moving objects. It supports distance-aware queries like
kNNQ and RQ, and also distance-aware joins like semi-range
join and semi-neighborhood join. All other model/indexes can
also index moving objects by maintaining dynamic object buckets
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attached to indoor partitions in a way similar to how we handle
the static objects. Nevertheless, the buckets need to be updated
appropriately for indoor moving objects.
Uncertain Locations. In some settings, indoor points or objects
are represented as uncertain regions. To process indoor spatial
queries over uncertain locations, a model/index should support
geometric operations on partitions. As a result, only CINDEX with
partition R*-tree excels at handling uncertain locations [37, 38].
Keywords. A spatial keyword query [10] returns objects or paths
that are spatially and textually relevant to the user-specified loca-
tion(s) and keyword(s). Such queries can be supported if we ex-
tend the model/indexes by additionally maintaining mappings be-
tween partitions/objects and keywords. Especially, top-k keyword-
aware shortest path queries have been supported based on ID-
MODEL [13], and boolean kNN spatial keyword queries have
been supported based on VIP-TREE [32].

5 BENCHMARK
In this section, we detail the benchmark for evaluating the indoor
spatial query techniques (model/indexes and algorithms). All code,
data, and test cases are available online [1].

5.1 Datasets
We use four very different indoor space datasets, each featuring a
distinctive indoor topology. The floorplans are briefly represented
and illustrated in Figure 6. The data statistics are given in Table 5.

(a) SYN

(b) MZB

(d) CPH (c) HSM

Figure 6: Floorplan of Datasets.

Synthetic Building (SYN) is a n-floor building. Its each floor
is from a real-world floorplan 4 of 1368m × 1368m with 141
partitions and 216 doors. Its each two adjacent floors are connected
by four 20m long stairways. By default, we set n = 5 and get the
default dataset SYN5. To study the effect of topological changes,
from SYN5 we derived SYN5− with fewer doors and SYN5+ with
more doors. Note that varying the door number will significantly
change the connectivity and accessibility of the partitions, leading
to a major topological change. We also form SYN50 in which the
hallways are not decomposed 5.

Menzies Building (MZB) 6 is a landmark building at Clayton
campus of Monash University. Each floor takes approximately
125m × 35m and connects to adjacent floors by two or four stair-
ways each being 5m long. In total, there are 1344 partitions (includ-
ing 34 staircases and 85 hallways) and 1375 doors. By changing
the hallway decomposition, we form MZB0 in which the hall-
ways are not decomposed and MZB∆ in which the hallways are
decomposed into more partitions than default.

Hangzhou Shopping Mall (HSM) is a 7-floor mall in Hangzhou,
China, occupying 2700m × 2000m. Ten stairways connect each
two adjacent floors. Each floor contains 150 partitions and 299
doors on average. In total, there are 1050 partitions (including 70
staircases and 133 hallways) and 2093 doors.

4https://deviantart.com/mjponso/art/Floor-Plan-for-a-Shopping-Mall-86396406
5We precompute the door-to-door distance matrix for each hallway when it is not
decomposed. The hallways are of irregular and concave shapes, and thus the door-to-
door distance in a hallway can not use the Euclidean distance.
6https://www.monash.edu/virtual-tours/menzies-building

Copenhagen Airport (CPH) refers to the ground floor of Copen-
hagen Airport 7, taking around 2000m × 600m with 147 partitions
(including 25 hallways) and 211 doors.
Overall Analysis of Different Datasets. The statistics of the
datasets are given in Table 5. We use #dv to denote the num-
ber of doors in a partition, and conduct quartile statistics [5] on
#dv. In Table 5, Q1(#dv), Q2(#dv), and Q3(#dv) denote the first,
second, third quartiles of #dv, respectively, and max(#dv) denotes
the maximum value of #dv. In addition, we also plot the distribu-
tions of #dv over all partitions in each dataset in Figure 7.

Table 5: Statistics of Datasets

Datasets SYN MZB HZM CPH SYN5− SYN5+ SYN50 MZB0 MZB∆

Floors n 17 7 1 5 5 5 17 17
Doors 216n 1375 2093 211 840 1280 880 1308 1480
Partitions 141n 1344 1050 147 705 705 505 1276 1449
Hallways 41n 85 483 72 205 205 5 17 190
C-Pars 8n 52 133 20 20 40 5 19 157
Length(m) 1368 125 2700 2000 1368 1368 1368 125 125
Width(m) 1368 35 2000 600 1368 1368 1368 35 35

Q1(#dv) 2 1 2 1 1 2 1 1 1
Q2(#dv) 2 1 4 2 1 3 2 1 1
Q3(#dv) 4 1 5 4 3 4 3 1 1
max(#dv) 10 56 17 12 10 10 132 82 47

Based on the space scale information and door distribution
information from Table 5 and Figure 7, we summarize the charac-
teristics of each dataset as follows.
• SYN: The overall space is square and regular. The number of

doors and partitions in each floor is medium (216 doors and 141
partitions per floor). The door density within each partition is
small (with Q2 equals only 2).

• MZB: The overall space is long and narrow with large scale
crucial partitions (C-Pars for short). The number of doors and
partitions in each floor is relatively small (80.4 doors and 76.8
partitions on average), whereas the overall size of doors and
partitions is large due to the floor number. The planning of
doors is rather skewed in that most partitions have only 1 or 2
doors while there are some C-Pars that accommodate 56 doors
(as shown in Figure 7(b)).

• HSM: The overall space is long and relatively narrow. The
number of doors and partitions in each floor is medium and the
overall size of doors and partitions is large. The planning of
doors is regular and door density in each partition is medium
(Q2 and Q3 are equal to 4 and 5, respectively).

• CPH: The space is long, narrow yet open, resulting in a small
number of doors and partitions. The door distribution is regular
and door density in each partition is small (Q2 equals 2).

5.2 Object/Query Workload Generation
For each dataset, we randomly generated a set O of valid points
as static objects, each object in O falling in an indoor partition.
To test the effect of different object numbers, we vary |O | as 500,
1000, 1500, 2000 and 2500.

The augment generation for each query type is detailed below.
RQ(p, r ). We vary the range value r according to the predefined

values in Table 6 (default values in bold). For each r , we generate
ten RQ instances with a random p in the indoor space.

kNNQ(p). Similar to RQ generation, we generate ten random
kNNQ instances for each k value given in Table 6.

As SPQ and SDQ can be integrated into one search procedure,
we use SPDQ(p,q) to denote the integrated query that returns
the shortest path from p to q along with the corresponding short-
est distance value. In the following sections, we evaluate search
performance of SPDQ only.

7https://www.cph.dk/en/practical
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Figure 7: Distribution of #dv (number of doors in a partition) on (a) SYN5, (b) MZB, (c) HSM, and (d) CPH.

Table 6: Evaluation Settings (Default Parameters in Bold)

Symbol & Meaning Task Metrics Queries Dataset Parameter Setting

n floor number A a1, a2 - SYN 3, 5, 7, 9B1 b1, b2, b3 (only for SPDQ) RQ, kNNQ, SPDQ

|O | object number B2 b1, b2 RQ, kNNQ all 500, 1000, 1500, 2000, 2500

r range value B3 b1, b2 RQ SYN5, HZM, CPH 200, 400, 600, 800, 1000
MZB 20, 40, 60, 80, 100

k - B4 b1, b2 kNNQ all 1, 5, 10, 50, 100

s2t source-target
distance B5 b1, b2, b3 SPDQ SYN5, HZM, CPH 1100, 1300, 1500, 1700, 1900

MZB 30, 60, 90, 120, 150

- topological change B6 b1, b2, b3 (only for SPDQ) RQ, kNNQ, SPDQ SYN SYN5−, SYN5, SYN5+

- decomposition method B7 b1, b2, b3 (only for SPDQ) RQ, kNNQ, SPDQ SYN SYN50, SYN5
MZB MZB0, MZB, MZB∆

SPDQ(p,q). We use a parameter s2t to control the shortest
distance from the source p and target q. Its parameter values are
listed in Table 6. For each s2t, we generate ten different (p,q) pairs
to form SPDQ instances as follows. First, we randomly select an
indoor point p and find a door d whose indoor distance from p
approximates s2t. Next, we expand from d to find a random point
q whose indoor distance from p approximates s2t.

5.3 Model/Index Settings
IDMODEL. For each partition vi , we implemented the door-to-
door distance mapping fd2d(vi , ·, ·) as a 2D array, and door-to-
partition distance mapping fdv(·,vi ) as an 1D array. Besides, the
partition mappings P2D⊐(vi ) and P2D⊏(vi ) (cf. Section 2.1) were
implemented as lists associated to vi . Moreover, the door map-
pings D2P(di ), D2P⊐(di ), and D2P⊏(di ) were implemented as lists
associated to the door di .

IDINDEX. The distance matrix and distance index matrix were
implemented as 2D arrays.

CINDEX. Since the partitions in the datasets rarely intersect,
we used an R-tree instead of R*-tree to index partitions while
preserving roughly the same spatial search performance. We set
the tree fan-out to 20 as suggested in a previous work [37]. Each
partition’s inter-partition links were maintained in an inner list.

IP-TREE and VIP-TREE. We set the minimum fanout to 2
for non-leaf tree nodes, as suggested in [31]. As each leaf node
maintains the shortest distance for each pair of doors in it, the
computation will be complicated if a leaf node contains too many
C-Pars that each has many doors. Following work [31], we desig-
nate that each leaf node can only contain one crucial partition and
regard a partition as crucial partition if its door number exceeds
a threshold γ . Through tuning, we got optimal γ as 6, 4, 7, and 5
for SYN, MZB, HZM, and CPH, respectively.

5.4 Performance Evaluation Procedure
Concerning model construction and query processing, the follow-
ing tasks are implemented to evaluate each model/index. For each
task, a parameter is varied with others fixed to default. Table 6
lists all the evaluation settings. The code of following evaluation
procedures and their query instances are also available online [1].

A Model Construction. For each model/index, we evaluate its
(a1) model/index size and (a2) construction time. In this task,
we vary the number of floors in synthetic datasets.

B Query Processing. We evaluate the search efficiency of a given
query type. The metrics are (b1) running time, (b2) memory
use, and (b3) number of visited doors (NVD) for SPDQ.

B1 Effect of Floor Number n. Using SYN with floor number
n varied from 3 to 9, we test the search efficiency for each
indoor spatial query algorithm.

B2 Effect of Object Number |O |. To test RQ and kNNQ, we
vary |O | from 500 to 2500 in all datasets.

B3 Effect of Range Distance r . We vary and test the augment r
of RQ. In particular, we vary r from 200m to 1000m in SYN5,
HZM and CPH, and from 20m to 100m in MZB.

B4 Effect of k. We vary and test kNNQ’s augment k from 1 to
100 in all datasets.

B5 Effect of Source-Target Distance s2t. To test SPDQ, we
vary s2t from 1100m to 1900m in SYN5, HZM, and CPH, and
from 30m to 150m in MZB.

B6 Effect of Topological Change. We vary indoor topology by
changing the door number from 840 to 1280 in SYN5 and
obtain SYN5− and SYN5+.

B7 Effect of Hallway’s Decomposition Method. We use SYN5
and MZB with the derived datasets, SYN50, MZB0 and MZB∆.

6 RESULTS ANALYSIS
This section reports and analyzes the experimental results. All
experiments are implemented in Java and run on a MAC with a
2.30GHz Intel i5 CPU and 16 GB memory.

6.1 Model/Index Construction
We vary the floor number n on SYN and obtain four variants
SYN3, SYN5, SYN7, and SYN9. We construct the five model/indexes
(cf. Section 3) and report their size and construction time in Fig-
ures 8 and 9. The cost of maintaining static objects is excluded as
it is the same for all model/indexes.
• According to the results on SYN3 to SYN9 in Figure 8, each

model/index’s size increases steadily with a larger floor number.
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When there are more doors and partitions, more storage space
is needed to handle the indoor space.

• Among all, IDMODEL construction requires the least costs
on storage (Figure 8) and time (Figure 9). This is because
IDMODEL is extended based on a simple graph model and
maintains only a small amount of geometric information lo-
cally. For large-scale and complex-topology spaces (e.g., SYN9,
MZB, and HZM), IDMODEL has clearer advantages over the
tree-based indexes (i.e., IP-TREE and VIP-TREE).

• As expected, IDINDEX always takes much time and storage to
construct due to its global door-to-door distance precomputation.
When there are many doors, it is difficult to fit the corresponding
matrices in memory. In comparison, IP-TREE and VIP-TREE

precompute less information and therefore their consumptions
on time and storage are medium.

• In addition to maintaining the topology, CINDEX needs to con-
struct a partition R-tree. Therefore, it incurs extra time and
space overheads compared to IDMODEL.
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Figure 8: Model Size
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Figure 9: Construction Time

6.2 Query Processing
All results are averaged over 10 queries (cf. Section 5.2).
B1 Effect of Floor Number n (using SYN)
RQ and kNNQ: The query time and memory use for RQ are
reported in Figures 10 and 11, respectively, and those for kNNQ
are reported in Figures 12 and 13, respectively.
• For both query types, IDINDEX always runs fastest as shown

in Figures 10 and 12, unaffected by the varying floor number
n. The price behind this is to maintain the memory-resident
distance matrices, which increases rapidly with n. Referring to
Figures 11 and 13, when n grows to 9, IDINDEX requires up to
1600MB of memory on both queries.

• On each SYN dataset, IP-TREE and VIP-TREE need more time
to complete the two queries. Through analysis, we found that the
two indexes need to prune tree nodes when searching for qual-
ified objects. In the absence of global door-to-door distances,
they need a lot of on-the-fly calculations to get the shortest dis-
tance from a query point to a tree node. Being consistent with
the complexity analysis in Table 4, VIP-TREE outperforms
IP-TREE for both queries. However, due to the good scalability
of the tree structure, both indexes’ running time is relatively
stable as shown in Figures 10 and 12.

• IDMODEL and CINDEX perform similarly, and their execution
time increases with a larger n (Figures 10 and 12). When n
increases, IDMODEL has a slight advantage as CINDEX costs
more time in space pruning. In terms of memory overhead, the
two indexes are almost the same.
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Figure 10: RQ Time vs. n

3 5 7 9
0

2 0 0
4 0 0
6 0 0
8 0 0

1 0 0 0
1 2 0 0
1 4 0 0
1 6 0 0

Me
mo

ry (
MB

.)

n

 I D M o d e l   I D I n d e x
 C I n d e x     I P - T r e e
 V I P - T r e e

Figure 11: RQ Memory vs. n
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Figure 12: kNNQ Time vs. n
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Figure 13: kNNQ Memory vs. n

SPDQ: The running time, memory use, and number of visited
doors (NVD) are reported in Figures 14, 15, and 16, respectively.
• IDINDEX’s running time and NVD are insensitive to the increas-

ing floor number n. However, its memory use grows moderately
as n increases. In the case of SPQ and SDQ, we recommend
using IDINDEX when the door size is relatively small.

• In contrast to IDINDEX, the memory of IDMODEL and CIN-
DEX is relatively stable (Figure 15), and their query performance
deteriorates as the space scale increases (Figure 14).

• IP-TREE and VIP-TREE achieve clearly good performance on
SPDQ, in both running time and memory use. Unlike IDINDEX

that precomputes global door-to-door distances or IDMODEL

and CINDEX that compute distances on the fly, IP-TREE and
VIP-TREE cache relevant distance information only for those
access doors on shortest paths. Thus, without degrading query
performance, they only incur slightly more memory overhead
than IDMODEL and CINDEX (Figures 14 and 15).

B2 Effect of Object Number |O |

RQ: With different sizes of O , the running time and memory use
are reported in Figures 17 and 18, respectively.
• Algorithms based on different model/indexes are almost in-

sensitive to |O | in running time, implying that each can prune
irrelevant objects effectively and stop searching early. A larger
|O | results in higher object density. This tends to increase the
query processing time in general, as the query algorithms need
to process larger object buckets. However, this impact is negli-
gible according to the results in Figure 17. This implies that all
model/indexes are good at pruning indoor partitions and thus
object buckets when processing RQ.

• Referring to Figure 17, IDINDEX runs faster than others by
several orders of magnitude in all datasets, thanks to its precom-
puted global door-to-door distances. However, it also requires
memory an order of magnitude higher to store the distance ma-
trix (Figure 18). A special case occurs on CPH (Figure 18(d))
that IP-TREE and VIP-TREE consume more memory than oth-
ers. First, the door number of CPH is quite small such that the
matrices of IDINDEX are not large. Second, as there are fewer
access doors, IP-TREE/VIP-TREE involves heavy on-the-fly
computations on distances between doors and non-leaf nodes
and thus needs more memory for the intermediate results.

• On each dataset, IDMODEL and CINDEX incur almost the same
execution time (see Figure 17), as they both use graph traversal
to search for objects. Under complex indoor topology, CINDEX

using R-tree does not have much advantage in spatial pruning.
• IP-TREE and VIP-TREE perform differently on different datasets.

They outperform IDMODEL and CINDEX on MZB but are
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worse on the others (see Figure 17). Recall that MZB features
some C-Pars having up to 56 doors. In such a case, the effi-
ciency of graph traversal is much lower than searching on the
tree structure. On the contrary, when the number of candidate
doors for the next hop is relatively small, the graph-based search
algorithms are advantaged in range queries. Therefore, we rec-
ommend using IP-TREE/VIP-TREE to perform RQ in spaces
with very large main corridors.

• Referring to Figure 17, VIP-TREE is generally faster than IP-
TREE because of more cached distances. IP-TREE needs to
compute more intermediate results on the fly. However, memory
use is close between the two (see Figure 18).

kNNQ: Figures 19 and 20 report |O |’s impact on the time and
memory costs, respectively. In general, each model/index’s perfor-
mance on kNNQ exhibits similar trend as that on RQ.
• Referring to Figure 19, the time cost of each algorithm on each

dataset remains stable, showing that large object workloads
(and high object density) have little effect on all models.

• On datasets with relatively large numbers of doors and partitions
(i.e., SYN5, MZB, and HSM), IDINDEX runs faster by orders
of magnitude. However, its memory use is clearly larger.

• On one-floor CPH with small numbers of doors and partitions,
IP-TREE and VIP-TREE incur more running time as well as
higher memory use (Figures 19(d) and 20(d)). However, they
run faster on MZB (Figure 19(b)) in which many access doors
exist due to many C-Pars (see Table 5).

• IDMODEL and CINDEX perform comparably as shown in Fig-
ures 19 and 20. Without a specially designed partition R-tree,
IDMODEL achieves quite good object pruning due to the effi-
cient distance mapping maintained in its edges and vertexes.

B3 Effect of Range Distance r
RQ: The time and memory costs with respect to varied r are
reported in Figures 21 and 22, respectively.
• On SYN5, MZB, and HSM with complex indoor topology,

IDINDEX’s running time reported in Figure 21 increases slowly
with a growing r . In contrast, on the simple-topology CPH, the
advantage of IDINDEX over others is not marked.

• IDMODEL and CINDEX perform well on all datasets, except
on MZB (Figure 21(b)) that has a large number of C-Pars. This
again reflects the disadvantages of the graph-based traversal
algorithms when dealing with this particular topology type. Nev-
ertheless, through efficient node search and on-the-fly distance
computation, these two model/indexes always have the smallest
memory overhead.

• When increasing r , the running time of IP-TREE and VIP-
TREE in Figure 21 increase steadily on all datasets. A larger r
needs to consider a tree node farther from the node where the
query point is located, and thus introduces more computations
on the distance from a door to some non-leaf nodes. As the
distance to the access door of each ancestor node is materialized
at the leaf node, VIP-TREE runs faster than IP-TREE.

B4 Effect of k
kNNQ: The time and memory costs with respect to different k
values are reported in Figures 23 and 24, respectively.
• Similar to increasing r value in RQ, increasing k leads to more

search time by each model/index according to the results re-
ported in Figure 23. Among them, IDINDEX’s running time
increases slowest. In addition, IP-TREE/VIP-TREE show ex-
ponential growth on SYN, HSM, and CPH. This is because the
two indexes need to access the topologically far-away partitions
and compute the distances to them on the fly when k is large.

• Considering both time and memory costs, IDMODEL and CIN-
DEX achieve a good balance when searching for nearest neigh-
bor objects (see Figures 23 and 24).

B5 Effect of Source-Target Distance s2t
SPDQ: The time cost, memory use, and NVD for different s2t
values are reported in Figures 25, 26, and 27, respectively.
• IDINDEX runs the fastest and is not affected by s2t as reported

in Figure 25. As only a small number of doors are required
to process after the source point and before the target point,
its NVD is always small (Figure 27). Nevertheless, its global
distance matrix takes up a lot of memory (Figure 26).

• IDMODEL and CINDEX use the same graph search process.
Note that because the Euclidean distance is no larger than the in-
door distance, using R-tree to prune space by Euclidean distance
does not really reduce the number of doors to visit. Therefore,
the two models’ NVDs in Figure 27 are almost the same. Also,
as s2t increases, the candidate space becomes larger and the
running time of the two becomes longer (see Figure 25).

• On MZB and HSM (Figure 25(b) and (c)), VIP-TREE achieves
query performance comparable to IDINDEX that precomputes
door-to-door distances. Both MZB and HSM are large-scale
and have over 1000 doors. In the routing process based on VIP-
TREE, the precomputed distances in non-leaf nodes greatly
accelerate the expansion to the target point. Therefore, VIP-
TREE is particularly suitable for the shortest path search in
indoor spaces with complex structures.

Table 7: Results of RQ with Topological Change

Model Time (us.) Memory (MB.)
SYN5− SYN5 SYN5+ SYN5− SYN5 SYN5+

IDMODEL 11111 12770 19893 2 4 4
IDINDEX 308 417 910 289 520 809
CINDEX 13697 14877 19285 4 3 4
IP-TREE 29004 136600 574069 85 95 194
VIP-TREE 18008 58369 195583 75 171 220

Table 8: Results of kNNQ with Topological Change

Model Time (us.) Memory (MB.)
SYN5− SYN5 SYN5+ SYN5− SYN5 SYN5+

IDMODEL 5939 8180 10051 2 3 3
IDINDEX 165 146 181 469 573 1053
CINDEX 6865 8476 12998 4 4 4
IP-TREE 17341 36626 107798 74 89 139
VIP-TREE 14535 30145 75439 78 145 146

Table 9: Results of SPDQ with Topological Change

Model Time (us.) Memory (MB.) NVD
SYN5− SYN5 SYN5+ SYN5− SYN5 SYN5+ SYN5− SYN5 SYN5+

IDMODEL 23009 33213 35522 58 59 91 6946 10074 11426
IDINDEX 40 65 79 182 416 748 6 8 9
CINDEX 20219 31635 40408 51 63 99 6946 10074 11426
IP-TREE 3717 6398 7252 43 44 74 236 843 1455
VIP-TREE 2349 2369 2493 55 43 105 52 61 90

B6 Effect of Topological Change
RQ and kNNQ: The time cost and memory use with respect to
topology characteristics are reported in Tables 7 and 8 respectively.
• IDINDEX runs fastest, but it needs large memory to store the

door-to-door distance matrix. With increasing number of doors,
its time cost and memory use increase steadily.

• IDMODEL and CINDEX use the smallest memory when pro-
cessing RQ and kNNQ. Regarding the time cost, they perform
medium. When the topology becomes more complex, the mem-
ory use keeps stable and the time cost increases slightly.

• IP-TREE and VIP-TREE cost more time to process RQ and
kNNQ. Moreover, when the topology becomes more complex,
the time cost rises rapidly. E.g., RQ’s time cost using IP-TREE

grows nearly 20 times from SYN5− to SYN5+.
SPDQ: The time cost, memory use and NVD with respect to
different topology characteristics are reported in Table 9.
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Figure 14: SPDQ Time vs. n
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Figure 15: SPDQ Memory vs. n
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Figure 16: NVD in SPDQ vs. n
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Figure 17: RQ Time vs. |O |
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Figure 18: RQ Memory vs. |O |

5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 01 0 2

1 0 3

1 0 4

1 0 5
( a )  S Y N 5

Ru
nni

ng 
Tim

e (u
s.)

| O |

 I D M o d e l   I D I n d e x
 C I n d e x     I P - T r e e
 V I P - T r e e

5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 01 0 2

1 0 3

1 0 4

1 0 5 ( b )  M Z B

Ru
nni

ng 
Tim

e (u
s.)

| O |

 I D M o d e l   I D I n d e x
 C I n d e x     I P - T r e e
 V I P - T r e e

5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 01 0 2

1 0 3

1 0 4

1 0 5

1 0 6 ( c )  H S M

Ru
nni

ng 
Tim

e (u
s.)

| O |

 I D M o d e l   I D I n d e x
 C I n d e x     I P - T r e e
 V I P - T r e e

5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 00

3 k

6 k

9 k

1 2 k ( d )  C P H  

Ru
nni

ng 
Tim

e (u
s.)

| O |

 I D M o d e l   I D I n d e x
 C I n d e x     I P - T r e e
 V I P - T r e e

Figure 19: kNNQ Time vs. |O |
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Figure 20: kNNQ Memory vs. |O |
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Figure 21: RQ Time vs. r
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Figure 22: RQ Memory vs. r
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Figure 23: kNNQ Time vs. k
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Figure 24: kNNQ Memory vs. k
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Figure 25: SPDQ Time vs. s2t
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Figure 26: SPDQ Memory vs. s2t
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Figure 27: NVD in SPDQ vs. s2t

• Like in the other cases, IDINDEX performs best in terms of the
time cost but costs most memory compared with others. When
the topology becomes complex, IDINDEX’s time cost increases
relatively slightly, while the memory use grows fast.

• IP-TREE/VIP-TREE perform best with relatively less time cost
and smaller memory use. For time cost, VIP-TREE always
outperforms IP-TREE because of the extra precomputation, but
it needs more memory. With the doors increasing, their time
and memory costs rise slightly.

• IDMODEL and CINDEX performs worst in both time and mem-
ory costs because they have to visit many doors in search.

Table 10: Results of RQ with Decomposition Method

Model Time (us.) Memory (MB.)
SYN50 SYN5 MZB0 MZB MZB∆ SYN50 SYN5 MZB0 MZB MZB∆

IDMODEL 9695 14999 24065 23527 18917 13 3 12 7 5
IDINDEX 460 704 471 439 349 414 437 815 841 1855
CINDEX 11283 15859 21840 21351 20267 12 4 11 8 5
IP-TREE 8923 123076 7957 17215 26110 88 92 61 58 76
VIP-TREE 6808 57988 4476 11079 19181 111 150 62 59 78

Table 11: Results of kNNQ with Decomposition Method

Model Time (us.) Memory (MB.)
SYN50 SYN5 MZB0 MZB MZB∆ SYN50 SYN5 MZB0 MZB MZB∆

IDMODEL 4773 9240 14318 14224 12828 9 3 12 6 4
IDINDEX 143 160 180 185 197 461 457 679 796 974
CINDEX 4907 9294 13115 13328 13225 16 4 11 8 6
IP-TREE 7272 33693 3904 7315 10369 112 114 36 36 52
VIP-TREE 6877 24522 3556 5207 7502 117 139 43 55 59

B7 Effect of Decomposition Methods for Hallways
RQ, kNNQ and SPDQ: For RQ and kNNQ, their time cost and
memory use with respect to different decomposition methods are
reported in Tables 10 and 11. For SPDQ, its time cost, memory
use and NVD are reported in Table 12.

• IDINDEX runs fastest when processing RQ and kNNQ but
uses most memory. When hallways are decomposed into more
partitions, IDINDEX’s time cost keeps nearly stable but its
memory cost increases. This is because there are more doors
connecting increased numbers of partitions, which leads to more
door-to-door pairs stored in the distance matrix.

• IDMODEL and CINDEX use the least memory but runs slowest.
With more partitions, both time cost and memory use decrease
because hallways are decomposed into more partitions each
having less doors to process.

• IP-TREE and VIP-TREE perform best considering both time
cost and memory use. However, when hallways are decom-
posed into more partitions, the two methods need more time
and memory to process RQ and kNNQ. Regarding the perfor-
mance in RQ, IP-TREE and VIP-TREE cost more time than
IDMODEL. There are more nodes in IP-TREE and VIP-TREE

when hallways are decomposed into more partitions, which
entails more on-the-fly computations to prune tree nodes when
processing RQ and kNNQ. Moreover, the time cost of IP-TREE

and VIP-TREE rises faster when processing RQ and kNNQ
than processing SPDQ. That is because there is some extra cost
to prune nodes when processing RQ and kNNQ. As the nodes
increase, this extra cost increases fast.

6.3 Summary of Findings
We summarize all five model/indexes’ performance in Table 13
where more stars imply a better performance (lower cost). ID-
MODEL incurs minimum time and space costs in construction. It

191



Table 12: Results of SPDQ with Decomposition Method

Model Time (us.) Memory (MB.) NVD
SYN50 SYN5 MZB0 MZB MZB∆ SYN50 SYN5 MZB0 MZB MZB∆ SYN50 SYN5 MZB0 MZB MZB∆

IDMODEL 31242 31855 36220 33503 32396 44 63 54 73 92 82574 10074 24877 12718 4243
IDINDEX 138 75 71 69 73 388 396 1096 1273 1489 58 8 22 9 8
CINDEX 32823 26900 35307 33238 31806 43 65 52 97 110 82574 10074 24877 12718 4243
IP-TREE 1610 7523 1252 1893 3257 59 44 31 39 44 416 843 97 87 139
VIP-TREE 856 2379 1091 1126 1474 64 42 54 39 55 136 61 37 24 26

works well for RQ and kNNQ, and its performance for SPQ/SDQ
even improves when hallways are decomposed into more parti-
tions. IDINDEX runs fastest for all types of indoor spatial queries
while requiring significantly large time to construct offline and
high memory consumptions during search. CINDEX performs only
comparably to IDMODEL when processing the queries. IP-TREE

and VIP-TREE are optimized for SPQ/SDQ tasks—they stand
out when there are many C-Pars connected by so-called access
doors; they decline when decomposition reduces C-Pars.

In short, IDINDEX is preferred for small-scale spaces. VIP-
TREE is recommended if routing is the task or the space accom-
modates many C-Pars. Otherwise, IDMODEL is recommended
for non-routing queries due to its low construction cost and good
balance between storage and query time costs.

Table 13: Summary of Findings

Model Construction Cost RQ/kNNQ Search SPQ/SDQ Search
Model Size Time Memory Time Memory Time

IDMODEL ⋆⋆⋆⋆⋆ ⋆⋆⋆⋆⋆ ⋆⋆⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆⋆⋆ ⋆
IDINDEX ⋆ ⋆ ⋆ ⋆⋆⋆⋆⋆ ⋆ ⋆⋆⋆⋆⋆
CINDEX ⋆⋆⋆⋆ ⋆⋆⋆⋆ ⋆⋆⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆⋆⋆ ⋆
IP-TREE ⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆⋆ ⋆ ⋆⋆⋆⋆ ⋆⋆⋆
VIP-TREE ⋆⋆ ⋆⋆⋆ ⋆⋆⋆ ⋆⋆ ⋆⋆⋆ ⋆⋆⋆⋆

7 CONCLUSION AND FUTURE WORK
This work reports on an extensive experimental evaluation of five
indoor space model/indexes that support four typical indoor spatial
queries. Our evaluation concerns the costs in model/index con-
struction and query processing using a model/index. By analyzing
the results, we summarize the pros and cons of all techniques and
suggest the best choice for typical scenarios.

For future work, changes to existing methods may improve their
performance. First, heuristics like A∗ and IDA∗ algorithms can
replace the Dijkstra-based expansion in IDMODEL and CINDEX

to speed up SPDQ processing. Second, intra-partition indexes like
grids can be combined with CINDEX and IP-TREE/VIP-TREE to
achieve local object pruning in processing RQ and kNNQ. Third,
strategies to select crucial doors/partitions can be developed to
reduce the storage of door-to-door distances in CINDEX and IP-
TREE/VIP-TREE while preserving their search efficiency.
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ABSTRACT
Numerous data are stored in semi-structured �les with ad-hoc
layout. Such data are valuable digital assets for various data-
driven applications. This work introduces the notion of verbose
CSV �les. Verbose CSV �les include content serving di�erent
purposes in various positions. They are designed for human
visual inspection or statistical report collection. An important
preliminary task for extracting information from such �les is
structure detection, in particular classifying lines or cells by their
purpose. As manual e�orts are infeasible and error-prone for
large �les or large sets of �les, automatic approaches are desirable.

This work addresses both the line and the cell classi�cation
problems on verbose CSV �les. Strudel is a supervised learning
approach based on a random forest classi�er, combined with
a set of novel features that fall into three categories: content
features, contextual features, and computational features. We an-
notated �ve real-world datasets from various domains, on which
we tested our approach. Our in-depth experiments show the ad-
vantages of Strudel over baseline and state-of-the-art approaches
in both line and cell classi�cation tasks.

1 INTRODUCTION
The rapidly growing amount of data promises to be of great value
for everyone’s day-to-day life, for example, assisting doctors in
personalizing healthcare solutions to their patients, scientists
conducting open data-based citizen researches, and enterprises
making better business decisions. To enable such applications,
raw data must be properly processed and analyzed before gener-
ating insights. While some data are saved in well-de�ned formats,
such as relational tables or as key-value pairs, that can be readily
parsed by dedicated tools, a large quantity of other data are stored
in documents with unique structures, for example, CSV �les. CSV
�les are comma-separated values �les that provide a great num-
ber of data sources for various data-driven tasks, such as data
pro�ling [10, 24], data curation [22, 26, 30], and information ex-
traction [9, 16]. Although there is a standard1 that stipulates how
data shall be stored in CSV �les in theory, in practice users and
applications do not always conform to it, producing documents
with very unique structures.

This work addresses one such type of document: verbose CSV
�les. Later, we formally de�ne a comma-separated value �le as
verbose if its raw values serve various purposes, such as data,
metadata, group headers or notes, and appear in various positions.
An example of a real-world verbose CSV �le from the “Crime In
the US” (CIUS) dataset is given in Figure 1, where groups of cells
with di�erent roles are highlighted. This �le cannot be directly

1As decribed by RFC 4180: https://tools.ietf.org/html/rfc4180

© 2021 Copyright held by the owner/author(s). Published in Proceedings of the
24th International Conference on Extending Database Technology (EDBT), March
23-26, 2021, ISBN 978-3-89318-084-4 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Arrest Table
Arrests for Drug Abuse Violations
Percent Distribution by Region, 2007
Drug abuse violations United States totalNortheast Midwest South West
Total1 100 100 100 100 100
Sale/Manufacturing: Total 17.5 22.5 18.3 17.1 15

Heroin or cocaine 
and their derivatives 7.9 14.2 6.2 7.9 5.5
Marijuana 5.3 5.7 7.7 4.6 4.7
Synthetic or 
manufactured drugs 1.5 1.1 1.1 2.6 0.7
Other dangerous 
nonnarcotic drugs 2.8 1.6 3.3 2 4.2

Possession: Total 82.5 77.5 81.7 82.9 85
Heroin or cocaine 
and their derivatives 21.5 22.3 14.7 22.8 22.7
Marijuana 42.1 44.2 53.1 47.9 29.6
Synthetic or 
manufactured drugs 3.3 2.3 3.2 4.3 2.8
Other dangerous 
nonnarcotic drugs 15.6 8.6 10.7 7.8 29.9

1 Because of rounding, the percentages 
may not add to 100.0.
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Figure 1: A real-world verbose CSV �le with di�erent cell-
level and line-level content classes. Here, the line-class is
determined by the majority of its cell classes.

ingested by common RDBMS tools, as it contains much additional
information, aside from a table with its header and data rows.

While standard CSV �les contain data in the form of a struc-
tured table, a verbose CSV �le is more similar to a spreadsheet,
in terms of its �exible content layout. Researchers have sug-
gested that only a minority of spreadsheets (22% of 200 randomly
selected spreadsheets) can be directly converted to relational
tables [6]. A similar observation by Dong et al. states that less
than 3% of spreadsheet tables are “machine-friendly” [11]. Spread-
sheets are not the only source for verbose CSV �les. We randomly
selected 26,140 �les from data that we crawled from theMendeley
data portal2, and manually checked their �le types. We grouped
all �les into three broad categories: (i) application-speci�c �les,
such as Microsoft o�ce �les; (ii) plain-text �les; (iii) multi-media
�les. Amongst all plain-text �les, we are interested in those with
at least one table. Out of these �les with tabular structures, there
are 4,459 �les that are verbose, accounting for around 20% of all
inspected plain-text �les. These verbose plain-text �les can be
easily transformed to CSV �les by applying �le-speci�c delim-
iters. In our experiments, we tested our approach on verbose CSV
�les derived from both spreadsheets and arbitrary plain-text �les
that contain data lines/cells.

Verbose CSV �les are prevalent media to store data that aim
at aiding human visual inspection or collecting statistical reports.
These data often need to be shared amongst communities. There-
fore, plain-text �les, such as CSV �les, are favored due to their
generality over those with proprietary �le types, such as spread-
sheets, that are used by speci�c applications. However, compared
to application-speci�c �les, verbose CSV �les are harder to parse,
as they do not necessarily follow a speci�c format. Various open
data portals include such �les, sometimes labeled as ‘ASCII’ data3.

2https://data.mendeley.com
3https://data.gov.uk/, https://www.govdata.de/, https://data.europa.eu/euodp/en/
data/
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Figure 2: Architecture of the Strudel algorithm.

To obtain insightful information from these �les, the �rst step is
to understand their structure, i.e., detect the types of cells, lines,
or data blocks. In practice, this is a challenging task due to (i) the
wide range of ad-hoc layout variants that can be found and (ii) the
lack of rich stylistic features that have been exploited by previous
work [2, 11, 18]. Manual inspection to recognize �le structure
and acquire valuable information is extremely time-consuming
for many and large verbose CSV �les; automatic methods can
support this task.

Information in verbose CSV �les is usually organized in a
tabular fashion, where each cell is an atomic content unit. File
structure is often re�ected in the sequence of classes of horizontal
lines, as data organized in verbose CSV �les usually conforms to
the common top-to-bottom data presentation logic. For example,
consider the line class labels of the example �le in Figure 1. These
classes show a natural logic of organizing information: metadata,
such as captions, come �rst, followed by the main body of a table
incorporating table headers, derived (aggregated) lines and data
lines, and �nally a few footnote lines conclude the �le. In this
work, we aim at verbose CSV �le structure detection by means of
classifying �le content in two granularities: lines and cells.

Obtaining manually labeled datasets with known line and cell
annotations to evaluate an approach for the structure detection
problem is di�cult, as ascertaining these classes in a verbose
CSV �le is a di�cult task even for experienced practitioners. In
our study, even by using a tool with a sophisticated graphical
interface, practitioners 1) took on average of two minutes to
label the lines in a single �le, because they needed to spend a
lot of time understanding the unique structure of each �le; 2) at
times disagreed with each other on the annotations of individual
lines. These observations highlight the challenge of automatically
classifying lines and cells in verbose CSV �les.

To address the line/cell classi�cation problem, we propose
the Structure Detection in Verbose CSV Files (Strudel) approach,
which is grounded on a multi-class random forest classi�er. Fig-
ure 2 shows the architecture of the approach. It �rst detects the
dialect of a text �le, and creates a verbose CSV �le from it, based
on the dialect. Then Strudel classi�es �rst lines and then cells
therein with the proposed feature sets. Cells of di�erent types are
distinguished by colors. Sections 4 and 5 describe Strudel for line
and cell classi�cation, respectively. We propose sophisticated fea-
tures to model the individual classes for both classi�cation tasks.
The features can be categorized into three groups: 1) content fea-
tures parsing the values of cells or lines, such as cell length and
amount of words; 2) contextual features comparing the inspected
cell or line with its neighbors, such as the similarity of data types

between lines/cells; 3) computational features seeking to connect
lines/cells with each other by inspecting arithmetic correlations
between them. The contributions of this work are summarized
as follows:

(1) A supervised learning approach with novel features to
address the structure detection problem for verbose CSV
�les.

(2) A dataset with more than 97,000 annotated lines in 226
�les, reforged labels of datasets from related work based
on our perspective on cell classes, and a dataset with 62
�les transformed from plain-text �les.

(3) An experimental comparison of Strudel with baseline and
state-of-the-art approaches.

In the next section, we introduce the related work on line and
cell classi�cation tasks and other relevant areas. In Section 3, we
formally de�ne the classi�cation problem and introduce the set
of line and cell classes. Section 4 and 5 describe the core idea of
Strudel, followed by Section 6, where we present the results and
analysis of our experiments. We conclude in Section 7.

2 RELATEDWORK
Extracting information from semi-structured documents has been
a growing research �eld in recent years. Relevant research ques-
tions include how to locate tabular content in documents such
as PDF �les [20], and spreadsheets [12], how to distinguish rela-
tional tables from non-relational tables [4, 29], and how to extract
relational tables from heterogeneous sources [5, 13, 14, 25].

Prior to extracting information from a semi-structured docu-
ment, understanding its structure is necessary. Some techniques
have been proposed to address the structure detection problem on
various documents, such as web tables and spreadsheets, which
include tabular material and have �exible layout. We summarize
these works focusing on structure detection by classifying lines
or cells, respectively.

2.1 Line classi�cation
Pinto et al. suggest a conditional random �eld (CRF) learning
approach to predict the label for lines of plain-text documents
crawled from a open data portal [23]. For each document, a
sequence of features is computed for its lines. The sequences
of all documents are used by the CRF classi�er to infer the la-
bel. This approach was later adopted to infer spreadsheet table
schemata [28] and extract relational data from spreadsheets [5].
Moreover, it was extended by Adel�o et al. to recognize line
classes in web tables and spreadsheets [2]. The authors suggest
feature binning to generalize the training data and show the ef-
fectiveness of their approach on recognizing line classes in both
HTML tables and spreadsheets crawled from several open data
portals. However, the approach assumes the presence of stylis-
tic features, such as font styles, or built-in spreadsheet formula
features, which are not available in verbose CSV �les.

A recent work has proposed the rule-based approach Pytheas
for CSV �le line classi�cation [8]. To classify lines in a CSV �le,
the approach �rst determines for each line whether it is data or
non-data by consulting a set of fuzzy rules, whose weights have
been learned beforehand with a training dataset. These binary
results are then used to determine the top/bottom borders of
tables in the �le. Finally, the approach exploits additional class-
speci�c rules on the discovered table/non-table areas to further
ascertain the class of each line. The core of this approach is the
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design of the fuzzy rule set, which signi�cantly impacts the con-
sequences of table border discovery, and also line classi�cation.
However, such a �xed set of rules might fail to generalize to new
circumstances in unseen data.

2.2 Cell classi�cation
Finer-grained cell classi�cation in tabular documents has been
the subject of academic interest in recent years. Abraham et al.
developed the UCheck framework, which includes a component
to detect “cell roles”, such as header and footer, in spreadsheets
using several heuristics [1]. Cell roles are then used by the system
to detect spreadsheet errors. The goal of their approach is to
correlate cells in a table with their corresponding headers, thus
they assume spreadsheets with only table regions as input data.

Koci et al. suggest a supervised learning approach with a post-
processing component to repair classi�cation errors [19]. The
authors introduce �ve misclassi�cation patterns and suggest that
the occurrence of them in the results hints at a misclassi�cation.

To reduce the amount of manual annotation e�ort, Chen et
al. integrated an active learning technique into their spreadsheet
cell classi�cation approach [7]. In their iterative algorithm, a
sheet selector presents the most uncertain spreadsheet to human
labelers. The sheet is then labeled and included into a training
set that is used to train a spreadsheet property classi�er.

Ghasemi-Gol et al. suggest a recursive neural network (RNN)
architecture on two seperately trained cell embeddings that cap-
ture the contextual and the stylistic semantics of cells, respec-
tively [18]. Even though the authors mention the contextual
impact on a cell from both neighboring and distant cells, they
considered only the former ones in their approach. They built
the stylistic features upon those suggested by [19].

In summary, these works all make use of stylistic features of
their input. However, no such information can be obtained in
verbose CSV �les. In this work, we compare our approach with
the RNN-based approach of [18], as it was reported to outper-
form the other approaches. In spite of using stylistics features to
solve the task, the authors also reported the performance of their
algorithm without their usage, enabling a direct comparison to
our approach.

3 DEFINITIONS AND PROBLEM
STATEMENT

We �rst de�ne the notion of verbose CSV �les. Then, we present
the taxonomy of element classes used to label our datasets and
present the detailed de�nition of each class. Based on these con-
cepts, we formally state the problem addressed by our approach.

3.1 Verbose CSV �les
A standard CSV �le, according to RFC 4180, contains an optional
header line at the beginning of the �le, followed by a number
of data lines. In contrast to that, a verbose CSV �le may include
elements of heterogeneous classes (which will be introduced
in Section 3.2), possibly with empty visual separators. Here, an
element is either a non-empty cell or a line that includes at least
one non-empty cell.

Definition. A verbose CSV �le is a comma-separated values
�le with values including one or more of metadata, header, group,
data, derived, and notes at arbitrary positions. Each line of the �le
may be composed of cells of one or more classes. Empty cells may
represent either missing values or serve layout purposes.

A standard CSV �le stores a single table that is machine-
readable, whereas a verbose CSV �le may include multiple tables,
and make use of empty cells and further cell types to improve
human readability, leading to various con�gurations. Informa-
tion of di�erent kinds may be organized as connected clusters of
cells throughout the �le: each such cluster may include informa-
tion of di�erent types, such as data, metadata, or aggregations; a
table may be divided by blank visual separators into several table
fractions; etc.

3.2 Class taxonomy
Our taxonomy includes six semantic classes and is similar to that
of [2], which addressed the line classi�cation problem on web
tables and spreadsheets. While in principle content of any class
may appear at any location in a verbose CSV �le, we enforce
a few practical constraints on their possible position, re�ecting
the usual reading convention: from left to right and from top
to bottom, assuming that tables are stacked only vertically. We
describe in detail each class in the following list.

• metadata.Metadata are the descriptive text above a table. Such
text may include the title of a table, or additional information
on the content of the table. A metadata area may span across
one or more lines and columns.
• group. In verbose CSV �les, tables are often split into sev-
eral fractions, each including data of a particular group. A
group (a.k.a. group header) element serves as the label of such
a fraction. We have seen in our datasets the group elements
appearing both above and below header areas. Therefore, we
allow both cases in our de�nition. Group cell may also serve
as the leftmost string cells in a derived line, e.g., the ‘Sale/Man-
ufacturing:’ cell in Figure 1.
• header. Headers are the column labels in the top area of a
table (or table fraction). Headers may span multiple cells. In
our de�nition, the header elements are located above the data
area, and below any metadata block of the table.
• data. Data elements are the content of a table that cannot be
derived from any other elements. Because they constitute the
main body of a table, data elements of a section of a table are
always below header and group elements that indicate this
section.
• derived. A derived cell aggregates the values of some other
numeric cells in the same table. In verbose CSV �les, derived
cells are usually organized as the top- or bottom-most lines, or
the left/right-most columns of the data area of a table.
• notes. Notes are descriptive text that follow a table. They may
give explanations of particular parts of a table, explain the
meaning of marks used in the table, or indicate the data source
origin.

Any line or cell in a verbose CSV �le can be associated with
exactly one of the classes introduced above. We address the fol-
lowing problem: Given a verbose CSV �le and the group of pos-
sible element classes, how can we determine the classes of all el-
ements? We consider elements of two natures addressing two
sub-problems under the same problem de�nition: lines, re�ecting
the usual vertical arrangement within a �le, and cells, as the most
�ne-grained element of a structured �le.

4 LINE CLASSIFICATION
In this section, we describe Strudel! – the Strudel approach to
deal with the line classi�cation problem. Strudel! is based on a
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multi-class random forest classi�er. Its input includes a set of
features extracted from the two-dimensional tabular data.

Various kinds of features have been proposed by previous
work to address the line classi�cation problem, including content
features, contextual features, spreadsheet formula features, and
stylistic features [2]. In our case, formula and stylistic features
cannot be applied, as CSV �les do not preserve these rich-text
information. Instead, we design a set of content features, con-
textual features, as well as computational features. We build the
features of Strudel! on top of the applicable features from the
previous work [2]. Table 1 lists our complete set of features, di-
vided into the three groups. The context features can include
information from both the line above and the line below. Thus,
the features marked by a star are applied twice – once for the line
above and once for the line below. To distinguish derived cells
from data cells, we propose novel computational features that
check whether the value of a numerical cell can be calculated by
applying a speci�c aggregation function on the numbers in the
vicinity, i.e., the cells in the same row or column.

Table 1: Line classi�cation features: ‘∗’ marks contextual
features applied to both lines above and below the in-
spected line; ‘†’ are adapted from [19].

Category Feature Value

Content

EmptyCellRatio† [0.0, 1.0]
DiscountedCumulativeGain [0.0, 1.0]
AggregationWord† 0/1
WordAmount [0.0, 1.0]
NumericalCellRatio† [0.0, 1.0]
StringCellRatio† [0.0, 1.0]
LinePosition† [0.0, 1.0]

Contextual
DataTypeMatching* [0.0, 1.0]
EmptyNeighboringLines* [0.0, 1.0]
CellLengthDi�erence* [0.0, 1.0]

Computational DerivedCoverage [0.0, 1.0]

Here, we describe and explain only the novel features used in
our approach and refer to related work for the others.
• DiscountedCumulativeGain (DCG) calculates the discounted
cumulative gain on a vector created from the cells of a line.
The vector has the same length as the number of cells in a
line. An element is set to ‘1’ if the corresponding cell in the
line is non-empty, or ‘0’ if it’s empty. This feature is exploited
to model the pattern of empty cells. DCG gives more weight
to left-more positions than to right-more positions, modeling
users laying out data from left to right.
• AggregationWord checks whether a line contains any word
that belongs to a pre-made dictionary of terms associated
with aggregation in tables (case-insensitive): total, all, sum,
average, avg, mean, and median. An existence of any keyword
gives ‘1’ to this feature, otherwise ‘0’. Using a dictionary of
such kind of keywords proves to be e�ective [19].
• WordAmount calculates the number of words in all cells of a
line. A word is a sequence of alphanumeric characters. The
feature values are normalized per �le by using a min-max
normalization strategy.
• DataTypeMatching calculates the percentage of line cells whose
data types match with those of the adjacent line (above or be-
low). Note that some �les insert an empty line between every

pair of non-empty lines to visually highlight the content. How-
ever, comparing the data type of a line with an empty adjacent
line does not carry much information. Therefore, an adjacent
line refers to the closest non-empty line. Data and derived lines
tend to have numerical cells while header lines usually contain
alphanumeric values. Other functional lines, such as metadata,
notes, and group lines tend to have many empty cells, as they
often contain values for only the �rst cell in a line.
• EmptyNeighboringLines calculates the percentage of empty
lines in the �ve lines above or below the inspected line. Empty
lines are often used as visual separators in verbose CSV �les.
Using such a separator between data lines within a table is
uncommon, but placing them between two classes of lines,
such as header-data and derived-notes is more common.
• CellLengthDi�erence calculates the cell value length di�erence
between two adjacent lines by calculating the Bhattacharyya
histogram di�erence on the sequence of cell value length of the
two lines. When computing this feature, we compare only a
line with its closest non-empty neighboring line, similar to that
applied for the DataTypeMatching feature. While data lines
tend to have similar cell-wise value lengths, as they usually
describe the same property and thus draw values from the
same domain and range, non-data lines might have natural
language form values that are of arbitrary value lengths.
• DerivedCoverage counts the number of numeric cells that
are recognized as derived cells by the derived cell detection
Algorithm 2 in the next section. The feature is normalized by
the number of numeric cells in this line.

Note that these line classi�cation features are all local features,
i.e., describing the characteristics of individual lines. We have
tested a few global features that re�ect properties of the entire
�le, namely percentage of empty lines in a �le, width and length
of a �le, and the number of empty line blocks in a �le. However,
our experiments show no positive impact on the classi�cation
problem.

All features are normalized and passed to a random forest
classi�er that predicts one class for each line. When used as the
Line class probability feature in (CAD34;� (Section 5.4), the output
is a set of vectors, each of which stands for a probability vector
of all classes for a line.

5 CELL CLASSIFICATION
Our cell classi�cation approach Strudel� is, like Strudel! , based
on a multi-class random forest classi�er. For the input of this
classi�cation task, we have again constructed a set of features
that include both the e�ective ones from previous work, and
novel ones. The predictions for line classes are used as a set of
features in Strudel� . Therefore, the Strudel! approach is executed
beforehand to obtain the line prediction probabilities that are
then transformed into the features of Strudel� . We leave the
detailed description to Section 5.4.

5.1 Feature extraction
Previous work has proven the e�ectiveness of content features,
stylistic features, spreadsheet formula features, and contextual
features [18, 19]. We ignore spreadsheet-speci�c formula features
and stylistic features, as they cannot be constructed from verbose
CSV �les. Table 2 lists all features involved in our approach, which
fall into three groups: content, contextual, and computational
features.
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Table 2: Cell classi�cation features; ‘∗’ marks contextual
features applied to each of the eight surrounding cells of
the inspected cell; ‘†’ marks features from related work.

Category Feature Value

Content

ValueLength† [0.0, 1.0]
DataType† [0..4]
HasDerivedKeywords† 0/1
RowHasDerivedKeywords† 0/1
ColumnHasDerivedKeywords† 0/1
RowPosition† [0.0, 1.0]
ColumnPosition† [0.0, 1.0]
LineClassProbability (?1, ..., ?6)

Contextual

IsEmptyRowBefore 0/1
IsEmptyRowA�er 0/1
IsEmptyColumnLe� 0/1
IsEmptyColumnRight 0/1
RowEmptyCellRatio† [0.0, 1.0]
ColumnEmptyCellRatio† [0.0, 1.0]
BlockSize [0.0, 1.0]
NeighborValueLength* [0.0, 1.0]
NeighborDataType* [0..5]

Computational IsAggregation 0/1

The features marked with ‘†’ in Table 2 are based on those
used in [18, 19]. Some of the original features are integrated
in our feature set without modi�cation, such as ValueLength
and DataType, while others are adapted to a certain extent. For
instance, a Boolean feature used to mark the existence of derived
cell keywords is extended to a row or a column (RowHasDerived-
Keywords and ColumnHasDerivedKeywords), i.e., whether the
row or the column that contains the inspected cell contains any
derived cell keywords. Features without ‘†’ are new. ValueLength
counts the number of characters in the value of the cell.DataType
in this work has four possible values, corresponding to four
data types: int, �oat, string, and date. In the next subsections,
we explain the intuition and implementation of the four most
sophisticated of them.

5.2 Block size
A verbose CSV �le may contain multiple tables in various posi-
tions, rather than a single relational table. Apart from tables, a
verbose CSV �les may contain non-data regions composed of ag-
gregation cells, notes, or metadata cells. In our datasets, non-data
regions are usually smaller than tables.

To model this phenomenon, we create for each non-empty cell
a BlockSize feature, which is calculated as the size of the con-
nected component that contains this cell. A connected component
is composed of a group of connected, non-empty cells. Two cells
are connected if they are either vertically or horizontally adjacent
to each other, or there is at least one connective path between
them. Algorithm 1 describes how the value of this feature is
produced for each cell in a given verbose CSV �le. It takes all
non-empty cells in a table as input, and outputs key-value pairs
where keys are these non-empty cells and values are their respec-
tive block sizes. To obtain the block size for all non-empty cells,
the algorithm employs a depth-�rst strategy to iterate over all of
them in a given �le. It starts from a single cell block (line 4-7),
and continuously adds adjacent cells to expand the block until no
more non-empty adjacent cell can be found (line 8-13). The block
size is normalized to [0, 1] by the size of the �le (line 14). The

algorithm terminates once all cells have been touched. Regarding
the complexity of this algorithm, assume there are = non-empty
cells in a verbose CSV �le. On the one hand, each cell will be
visited once and only once, resulting a $ (=) complexity. On the
other hand, the four directions of a cell are checked once the cell
is visited, leading to a $ (4=) complexity. Therefore, the overall
algorithm complexity is $ (=) +$ (4=) = $ (=).

Algorithm 1: Block size calculation
Input: The set of non-empty cells in a table �
Output: The set of key-value pairs �( from cells to block

size
1 �( ← {};
2 + ← {} # visited cells ;
3 while � −+ ≠ ∅ do
4 2 ← random cell in � −+ ;
5 1B ← 1;
6 + ← + ∪ 2;
7 � ← {2};
8 while there exist cells in � −+ adjacent to � do
9 203 9 ← an adjacent cell in �;

10 1B ← 1B + 1;
11 + ← + ∪ 203 9 ;
12 � ← � ∪ {203 9 };
13 end
14 1B ← normalize(1B);
15 foreach 2 ∈ � do
16 �( ← �( ∪ {2 : 1B};
17 end
18 end
19 return �(

5.3 Neighbor pro�le
Cells of some classes may be likely to have particular kinds of
neighboring cells. For example, to highlight group header cells,
users often separate them from other cells with empty cells, or
they place derived cells at the margin of a table, as a way to
summarize data. These observations bring our focus on the adja-
cency context of a cell: for each cell, we gather the data types and
value lengths of all eight surrounding cells and present each as a
single feature in the feature vector. The neighbor pro�le of a cell
includes all these NeighborValueLength and NeighborDataType
features. For the cells on the margins of a �le, some adjacent
cells do not exist. We set a default value for these non-existent
adjacent cells, i.e., −1 for value length and data type.

5.4 Line class probability
Despite the possible �exible layout, verbose CSV �les are usually
organized in some structurally meaningful way. Lines tend to
organize mostly homogeneous types of cells to ease human un-
derstanding. For example, a data line contains mostly data cells,
while a header line contains mostly header cells. Table 3 displays
statistics about the cell class diversity degree of all lines in our
datasets. The cell class diversity degree of a line is its number
of distinct non-empty cell classes. We observe that most lines a
have diversity degree of 1: for the cells in these lines, their classes
are trivially determined by the class of the line. Therefore, when
determining the class of a cell, the class of the line it is located in
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is likely a useful feature. In fact, we use this feature alone as one
of our baselines.

Table 3: Percentage of lines under di�erent diversity de-
grees.

Diversity degree
Dataset 1 2 3 4 5
SAUS 86.3% 13.7% 0% 0% 0%
CIUS 88.7% 11.2% 0.1% 0% 0%
DeEx 95.3% 4.6% 0.1% 0% 0%

To obtain the line class information, we �rst run Strudel! to
obtain the prediction for each line. The result of this execution is,
however, a probability vector of all classes, instead of a single pre-
dicted class. We interpret this probability vector as the classi�er’s
con�dence for these classes. Each element of the 6-dimensional
vector accounts for a feature for the cell class detection.

5.5 Derived cell detection
If a cell is indeed a derived cell, it should be possible to derive
its value by aggregating values of some other neighboring cells.
This fact has not been considered by previous work, possibly
due to computational cost. We propose a derived cell detection
algorithm that seeks to identify derived cells by arithmetically
correlating their values with other numeric cells.

We made three observations while investigating the datasets:
(i) a derived cell usually aggregates the values of cells from its
own row or column; (ii) a derived cell tends to aggregate values
close to it; (iii) sum and mean are the two dominant aggregation
functions used in verbose CSV �les. We integrate these insights
into our Algorithm 2. For conciseness, it shows only the approach
for detecting derived sum cells.

The algorithm takes as input a table as a two dimensional array,
the derived keyword dictionary to look for anchoring cells, an
aggregation delta 3 to give some slack to aggregation results, and
a coverage threshold 2 that controls the generality of aggregation
results. Executing the algorithm produces all detected derived
cells.

We �rst determine derived cell candidates, as calculating all
aggregation possibilities for all numeric cells is prohibitively ex-
pensive. We found that some indicative words usually appear in
a cell in the same row or column where there exist many derived
cells. For example, for a row with many summing cells, words
such as ‘Total’ are likely to appear in a cell of this row. Therefore,
we mark those cells with any of our aggregation keywords (intro-
duced in Section 4) as anchoring cells (line 2). Based on our �rst
observation, only numeric cells in the same row or column as an
anchoring cell are treated as derived cell candidates (line 6-8).

For the candidates in the same row as the anchoring cell, the
algorithm looks �rst upwards and then downwards for possible
aggregating relationships (line 9-19), whereas for the candidates
in the same column as the anchoring cell, the algorithm looks
left or right (line 20-30). When looking upwards, the algorithm
adds numeric values of a row each time to the sum vector cor-
respondingly, and inspects whether the current sum vector is
element-wise close enough (according to 3) to the candidates.
If the coverage of the close enough elements in the sum vector
surpasses 2 , the candidate is treated as a derived cell (line 14-17).
Due to our second observation, a row closer to the row where
the candidates are is inspected earlier than a row farther away.

Algorithm 2: Derived cell detection
Input: Table) , keywords  , aggregation delta 3 , coverage 2
Output: All detected derived cell��

1 �� ← {};
2 �←getAnchoringCells(), ) ;
3 if � is empty then
4 return�� ;
5 foreach 0 in � do
6 80, 90 ← row index of 0, column index of 0;
7 �', 22ind ← the list of numeric cells in row 80 and their

column indices;
8 �� , A2ind ← the list of numeric cells in column 90 and their

row indices;
/* line 9-19 for upwards detection */

9 sum← (0...0) ;
10 for 8 = 1 to∞ do
11 if 80 − 8 < 0 then
12 break;
13 else
14 E> ← numeric values at 22ind in row (80 − 8);
15 BD< ← BD< + E> ;
16 if coverage of (�' − sum < 3) > 2 then
17 �� ← �� ∪�'

18 end
19 end

/* repeat line 9-19 for downwards detection */

/* line 20-30 for leftwards detection */

20 sum← (0...0) ;
21 for 8 = 1 to∞ do
22 if 90 − 8 < 0 then
23 break;
24 else
25 E> ← numeric values at A2ind in column (90 − 8);
26 BD< ← BD< + E> ;
27 if coverage of (�� − sum < 3) > 2 then
28 �� ← �� ∪��

29 end
30 end

/* repeat line 20-30 for rightwards detection */

31 end
32 return��

6 EVALUATION
In this section, we �rst describe the datasets and all algorithms
used in our experiments. After that, we present our experimental
evaluation on Strudel, including its comparison with referenced
approaches, analysis of feature importance and four advanced
features on cell classi�cation, and di�cult case study for both
line and cell classi�cation tasks.

6.1 Datasets and experimental setup
This section �rst lists the datasets used in our evaluations, and
the preprocessing steps applied thereon. In practice, verbose CSV
�les may have unique dialects. The dialect of a �le speci�es the
delimiter, quoting character, and escape character, enabling to
parse the lines and cells correctly. Therefore, as a general prepro-
cessing, we �rst applied dialect detection on each �le with the
approach of van den Burg et al. [27]. This approach takes a text
�le as input, and produces its detected dialect. The scope of each
cell or line is determined by that dialect. The second part of this
section describes the list of baseline and competing approaches,
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our Strudel approach, and their respective con�gurations for
evaluation.

6.1.1 Datasets. Our datasets with verbose CSV �les come
from various sources, as summarized in Table 4. Only non-empty
lines and cells are counted. The content of our datasets is given
in the English language and follows a top-bottom / left-right
organisation. Non-Western verbose CSV �les might organize
the content in a di�erent fashion, which could be an interesting
future work.

We created the dataset GovUK by crawling all data �les in
Microsoft Excel format (both in .xls and .xlsx) from an open
data portal4 and transforming them into corresponding CSV
format with the Apache POI library5. While converting them
to CSV �les, we omitted both �les that contain macros or were
not otherwise processable by the library and empty sheets. We
randomly selected a subset of 226 �les from the dataset, and
created a line-level ground truth for them. To perform the actual
annotation, we implemented a tool to annotate each line as one
of our element classes. Each line of each �le in the created dataset
was annotated by three human experts. In case of disagreement,
which a�ected only 1% of the annotated lines, we used majority-
vote to determine the annotation. For the lines with complete
disagreement (fewer than 250 lines in our dataset), we employed
an independent fourth annotator to determine which one of
the three answers to apply. In the end, we obtained the ground
truth for in total more than 110,000 annotated lines. We make all
datasets publicly available6.

Table 4: The dataset overview.

Dataset # �les # lines # cells
GovUK 226 97,212 1,382,704
SAUS 223 11,598 157,767
CIUS 269 34,556 367,172
DeEx 444 77,852 784,229
Mendeley 62 195,598 1,359,810
Troy 200 4,348 23,077

Three other datasets SAUS, CIUS, and DeEx were created and
annotated by Ghasemi-Go et al. for cell classi�cation [18]. The
�rst two are administrative datasets, while the last one is a busi-
ness dataset. More detailed descriptions of each dataset can be
found in their original paper. The datasets were annotated by the
original authors with a slightly di�erent taxonomy. To reconcile
their annotations to ours, we partly re-annotate their labels. In
summary, they annotated all left-most headers of a table as at-
tributes, while we consider them as data of their columns. In the
example of Figure 1, they treat the cells that indicate the drug
types in the second column as attributes, while we annotate them
as data, as we model them as a data column of the table without a
header. We also note that some clearly derived cells were marked
as data: understandable errors due to their similarity, which we
corrected. In many cases, derived cells form an entire line, with
the exception of the leading cell, which is usually textual. This
textual cell often includes keywords, such as ‘Total’, and is nei-
ther a derived cell nor a header cell. We treat it as group in our
system, because a derived line often serves as a section separator

4https://data.gov.uk/
5http://poi.apache.org/index.html
6https://hpi.de/naumann/projects/data-preparation.html

Table 5: The number of lines or cells per class in the
dataset SAUS, CIUS, and DeEx as a whole.

class # lines # cells
# cells
per line

metadata 2,213 2,479 1.12
header 2,232 19,047 8.53
group 1,767 6,143 3.48
data 114,354 1,202,058 10.51
derived 1,406 76,996 54.76
notes 2,036 2,445 1.20
Overall 124,006 1,309,168 -

in a table. Table 5 presents the class distribution of these three
datasets with the reforged annotations.

Our Mendeley data is a set of plain-text �les collected from
Mendeley’s data sharing platform7 of experimental data. These
data are stored in research projects. We crawled all 2,214 projects
whose data are stored on Mendeley’s own server and that contain
at least one plain-text �le, i.e., whose MIME type is “text/*”. This
MIME type corresponds to a wide variety of actual �le formats:
not only �les with table structures and verbose information, such
as verbose CSV �les, but also programming scripts, HTML pages,
etc. We randomly selected 100 projects that include at least one
suitable verbose text �le, and obtain one such �le from each
project. Given the intricate dialects of these plain-text �les, the
dialect detection approach of [27] cannot reliably discover the
correct dialect for all �les. A �le is parse-able if the dialect for the
table region (including header, data, group, and derived) is correct.
For our experiments, we kept the 62 parse-able verbose CSV �les.
Note that this dataset is used only to verify the performance of
our approach on verbose plain-text �les and is not part of. the
training set. We observe a high line-to-�le and cell-to-�le ratio,
because the �les of this dataset are mostly used to store data, e.g.,
experimental results, rather than presenting statistical tables.

The last dataset, Troy, contains 200 CSV �les collected from
various government websites [17]. Embley et al. used this dataset
in their work to convert di�erent statistical tables to relational
tuples [15]. We kept the dataset unseen during the design of Stru-
del to test the out-of-domain generalizability of our approach
with this dataset.

In our data preparation process, we cropped each �le by re-
moving the marginal empty lines or columns, as some of our
features are sensitive to the number of empty cells in the lines,
and leading/trailing empty lines are trivial cases. Values of span-
ning cells in original spreadsheets are copied only to the top-left
cell in the CSV �le, instead of to all covered cells for two reasons:
(i) the top-left is well-de�ned for all shapes of spanning cells and
(ii) copying the values to all covered cells creates too many re-
peated characters, confusing the models that cause unnecessary
over-�ttings towards these values. To ease future study on this
topic, we will publish all datasets and their annotations.

6.1.2 Setup of experiments. The list below contains all algo-
rithms used in the evaluation, along with their corresponding
con�gurations. All algorithms were implemented in Python with
the scikit-learn library8. The superscript in the name of an algo-
rithm indicates the type of elements detected by this algorithm,
i.e., ‘L’ and ‘C’ represent line and cell classi�cation, respectively.

7https://data.mendeley.com/, last crawled on 3. August 2020
8https://scikit-learn.org/stable/index.html
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Table 6: Per-class and overall F-1 score on each dataset for line classi�cation (top) and cell classi�cation (bottom).

metadata header group data derived notes accuracy macro-avg

GovUK
CRF! .789 .379 .898 .991 .339 .752 .979 .733

Pytheas! .446 .444 .172 .986 - .545 .970 .518
Strudel! .670 .774 .919 .989 .361 .797 .978 .751
# lines 878 519 850 93,584 665 716 - -

SAUS
CRF! .893 .651 .817 .963 .477 .980 .931 .797

Pytheas! .884 .768 .741 .973 - .814 .944 .836
Strudel! .984 .960 .882 .987 .599 .984 .976 .899
# lines 469 565 289 9,346 279 650 - -

CIUS
CRF! .994 .961 .992 .996 .749 .988 .992 .947

Pytheas! .988 .867 .000 .970 - .637 .943 .692
Strudel! .994 .972 .984 .996 .834 .978 .993 .960
# lines 1,034 435 1,074 30,890 449 674 - -

DeEx
CRF! .753 .373 .027 .970 .244 .480 .942 .475

Pytheas! .564 .406 .137 .980 - .433 .957 .420
Strudel! .797 .807 .357 .989 .548 .761 .976 .710
# lines 710 1,299 407 74,116 678 712 - -

metadata header group data derived notes accuracy macro-avg

SAUS

Line� .963 .915 .451 .970 .332 .888 .930 .753
RNN� .977 .925 .466 .956 .345 .902 .919 .762
Strudel� .987 .972 .752 .983 .689 .957 .968 .890
# cells 469 4,769 825 142,301 8,708 695 - -

CIUS

Line� .991 .973 .361 .929 .156 .937 .824 .725
RNN� .987 .976 .679 .904 .443 .963 .850 .825
Strudel� .993 .993 .916 .946 .465 .989 .895 .884
# cells 1,035 3,838 4,228 310,354 47,043 674 - -

DeEx

Line� .630 .625 .155 .981 .258 .520 .955 .528
RNN� .623 .772 .347 .952 .244 .413 .930 .559
Strudel� .689 .801 .444 .988 .683 .598 .977 .700
# cells 975 10,314 1,216 749,403 21,245 1,076 - -

• CRF! is a conditional random �eld-based learning approach
dedicated to line classi�cation from the work of Adel�o et
al. [2] as the current state of the art. We applied this approach
with the logarithmic binning technique introduced by the au-
thors, as this setting was reported to gain the best performance.
• Pytheas! is a rule-based approach that discover the locations
of tables, and further classi�es the lines in CSV �les [8]. We
use the parameter values introduced in the original paper for
our experiments.
• Strudel! is our proposed approach for line classi�cation. The
underlying random forest classi�er used the default settings
in the scikit-learn library.
• Line� is a baseline approach for cell classi�cation. This ap-
proach simply extends the predicted class of a line from the
result of a Strudel! execution to each non-empty cell in this
line.
• RNN� is based on the state of the art by Ghasemi-Gol et al.,
which classi�es cell types with a recursive neural network
using pre-trained cell embeddings [18]. For our experiment,
we used the same settings as introduced in the original paper.
• Strudel� is our approach for cell classi�cation. Again, we used
the default settings of the random forest classi�er in the scikit-
learn library. In our experiment, we do not observe a substantial
di�erence in the result with di�erent values of the aggregation
delta 3 and coverage 2 . We set them to 0.1 and 0.5, respectively.

Apart from using content and spatial features, both original
CRF! and RNN� applied stylistic or spreadsheet formula features.

Because the input data in our use-case are style-less, verbose CSV
�les, we remove all stylistic features from the two approaches so
as to conduct fair comparisons. Each algorithm is evaluated using
10-fold cross validation. When creating the folds, our process
ensures that all elements from a single �le appear in either the
training or the test set. We repeat the 10-fold cross validation ten
times to reduce bias leaning to particular fold splits. The results
of all repetitions are averaged to obtain the �nal score.

We have tested several classi�cation algorithms for Strudel,
including Naïve Bayes, KNN, SVM, and random forest. Random
forest consistently outperformed the other candidate algorithms
on our datasets for both classi�cation tasks. Therefore, we chose
it as the backbone supervised learning algorithm of Strudel. The
advantage of random forest over the other algorithms is that it
reduces the risk of over-�tting by considering the results from
multiple base classi�ers, which is crucial for unbalanced datasets,
such as verbose CSV �les.

6.2 Comparative evaluation
This section presents the comparative evaluation results between
Strudel and the referenced approaches. We use the F1 measure
to evaluate the classi�cation correctness of each approach for
both line and cell classi�cation tasks. When comparing the over-
all result amongst algorithms, we focus on the macro average,
which does not weigh the average score with the support of
individual classes, thus avoiding the bias from the number of

200



per-class instances, which is crucial for supervised learning tasks
on imbalanced data.

6.2.1 Line classification. We compared Strudel! with CRF!

and Pytheas! . CRF! uses a set of features, including content fea-
tures, contextual features, and stylistic features to train a con-
ditional random �eld based classi�er on web tables and spread-
sheets. Pytheas! uses a number ofweighted rules to decidewhether
a line is data or non-data. The binary results are used to draw
the table top/bottom boundaries, on top of which the approach
utilizes some additional rules to determine line classes.

Table 6 (top) reports the per-class andmacro-average F1 scores,
and accuracy for the three approaches. Note that Pytheas! can
classify a line as one of only �ve classes that correspond re-
spectively to ours, missing the derived class. Therefore, when
calculating the measurements for this approach, we leave out the
derived lines from our datasets. Overall, our approach leads on
macro-average for all datasets. Pytheas! does not perform well in
general on the minority classes in all but the SAUS datasets, as its
proposed rules are not suitable for these datasets: they produce
poor results already for the binary data/non-data classi�cation,
which disrupts the subsequent table discovery and line classi�ca-
tion. Group lines are particularly di�cult for Pytheas! : the scope
of group lines is constrained to lines between data lines and has
only the leftmost cell non-empty. While the group lines in SAUS
mostly follow this de�nition, those in the other datasets do not.
Most header lines of both SAUS and CIUS are across few lines
and with simple structures. Therefore, recognizing those headers
correctly is easier. Since the rule used to determine metadata
lines is dependent only on the positions of headers, it is also
easier to recognize metadata in these two datasets.

For CRF! and Strudel! , classifying header, group, derived and
notes correctly is in general more challenging, compared to meta-
data and data, according to the per-class scores. Both algorithms
perform better on CIUS than on the other datasets, because many
�les in this dataset are essentially the reports from di�erent years
on the same themes with the same templates – there are few �le
structure outliers. Both approaches do not work well on derived
in SAUS, because the dataset has many unanchored derived cells.
GovUK and DeEx are di�cult to both approaches, because they
both have many heterogeneous �les regarding their structures.

In summary, Strudel! outperforms CRF! without using its
stylistic features on our datasets, showing that our approach is
more e�ective when fewer assumptions can be made about the
input. Strudel! is also more �exible than rule-based approaches
such as Pytheas! in predicting cases that are not covered by the
given rule set.

6.2.2 Cell classification. For the cell classi�cation task, we
compare Strudel� with two aforementioned algorithms: (i) Line�
provides a reasonable baseline, as most lines have homogeneous
cells; (ii) RNN� is based on an advanced deep learning architec-
ture. The authors of RNN� evaluated their approach also without
stylistic features, which allows a fair comparison to Strudel� . Ta-
ble 6 (bottom) summarizes the comparative result in terms of the
per-class and macro-average F1 score, and accuracy. Strudel� sur-
passes its competitors . Meanwhile, the macro-average of RNN�
shows an advantage against the baseline approach, although the
per-class scores of the two approaches are on par with each other.
Even though cell classi�cation is a more imbalanced task than
line classi�cation, the performance of our Strudel� approach is
comparable to its line counterpart.

Similar to the line classi�cation problem, metadata, group,
derived and notes are the di�cult classes in general. Group cells
are challenging for all approaches, as cells of this class are partic-
ularly rare. However, unlike other rare classes, such as metadata
and notes, group cells are more likely to co-occur in the same
line with data cells. Line� reported low F1 score particularly on
group and derived cells across datasets. In fact, both group and
derived cells often co-occur with other types in the same lines:
some tables contain a group cell in a line with several derived
cells; other tables have derived columns rather than lines, there-
fore causing the few derived cells in a same line with multiple
data cells. Group and derived cells usually account for a minor
amount in these cases.

Line� applies a majority-take-all strategy to extend the line
prediction result of a line to all its non-empty cells, and therefore
causes false negative for group and derived cells in the above two
cases. RNN� shows a low F1 score on the group class, which is not
considered in the original paper [18], showing that the approach
cannot be directly adapted to it. The set of the reforged derived
cells, many of which were misplaced in the original annotations,
is also troublesome for RNN� , which does not involve value
calculation mechanisms to detect them.

6.3 Strudel performance evaluation
In this section, we present experimental results to gain insights
on the following questions: (i) When does Strudel mis-classify
an instance of a particular class, and which class is most likely to
be considered? (ii) Whether our approaches generalize to plain-
text �les that do not stem from spreadsheets? (iii) How do the
features exploited in this work a�ect performance? (iv) What are
the typical reasons that cause these incorrect predictions?

6.3.1 Line classification. Table 6 has introduced the per-class
and overall F1 results of Strudel! . In this section, we present our
analysis of the classi�cation results by using the confusionmatrix.
Figure 3 (top) shows the confusion matrix on executing Strudel!
per dataset. Due to space limitations, we leave out the matrix
for SAUS, which is very similar to that for GovUK. To create
a confusion matrix with the repeated 10-fold cross validation
setting, we concatenate for each line in the �les the predictions
of all repetitions, and construct an ensemble prediction for it with
the majority voting strategy. To resolve possible ties, we stipulate
that the fewer instances of a class included in the dataset, the
more prior the class is. We normalize the confusion matrix by
the number of instances with particular classes.

Correctly identifying derived lines is the most challenging
task across all datasets. These lines are mostly misclassi�ed as
data. The two main reasons for this are the lack of derived line
training instances and the high similarity between derived and
data lines, w.r.t. data types and spatial characteristics. Around
11.4% of the derived lines are treated as headers for GovUK. We
observed this to happen in many tables where derived lines are
between header and data areas and separated from these two
areas by empty lines. Note that when a line of a minority (non-
data) class is misclassi�ed, the wrong prediction tends to be ‘data’,
as the data class has much more instances than any other class.
Apart from derived lines, header, group, and notes lines in DeEx
also incorrectly lean towards the data class, because this dataset
contains many tables of complicated structures. We discuss the
kinds of mistakes in these categories in Section 6.3.6.
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Figure 3: Confusion matrices to describe the pair-wise performance of Strudel! (top) and Strudel� (bottom) on individual
datasets. The numbers are normalized by the amount of instances per class.

6.3.2 Cell classification. Similar to line classi�cation experi-
ments, we performed a set of experiments for evaluating Strudel�
and show the results in this section. Figure 3 (bottom) depicts the
per-dataset confusion matrix on executing Strudel� . To create
it, we applied on the repeated cross validation results the same
procedure used to create the confusion matrix for Strudel! .

Compared to the confusion matrix of Strudel! , more classes
have a higher mis-classi�cation ratio for all three datasets, show-
ing that cell classi�cation is a more challenging task than its
line counterpart. On the one hand, the tendency to mark the
instances of the minority classes as data is still prevalent. On the
other hand, as the complexity of the problem increases, we do
not observe many classi�cation errors between two non-data
classes, showing the e�ectiveness of our approach to distinguish
between pairs of elements belonging to minority classes. About
two-thirds of the derived cells are treated as data for CIUS. This
is because a number of �les share a �xed table schema that uses
no keywords to indicate derived columns. Therefore, they are
e�ectively ignored by the derived cell detection component.

6.3.3 Out-of-domain classification performance. To test the
out-of-domain classi�cation performance of Strudel, we kept the
Troy dataset unseen during its design. We used a model trained
on the collection of SAUS, CIUS, DeEx datasets to predict the line
and cell classes of each �le in this dataset.

The results in Table 7 show that group and derived cells are
challenging for Strudel. After inspection, we found out that most
of the derived cells lay in the lines that do not contain any derived
keyword, such as ‘total’. These derived cells are excluded from
the candidate set, because our derived cell detection algorithm
(Algorithm 2) relies on these keywords to anchor the candidates
in order to reduce the search space. A typical derived line contains
few group cells (usually the left-most) with indicative strings,
such as ‘total’ and a number of numerical derived cells. Many
of these derived lines are mis-classi�ed as data, leading to the
group cells therein also being mistaken.

6.3.4 Performance on plain-text files. To verify the e�ects of
our Strudel algorithms on more di�cult plain-text �les that are
not converted from spreadsheets, we tested the Strudel algorithm
on theMendeley dataset. We trained a model of our algorithm on

Table 7: Per-class and overall F1 score on the Troy dataset.

Strudel! # lines Strudel� # cells

metadata .935 317 .921 321
header .798 278 .840 1,341
group .667 42 .232 294
data .937 2,898 .936 18,600
derived .070 239 .216 1,935
notes .971 575 .952 592
macro-avg .730 4349 .683 23,083

the collection of SAUS, CIUS, and DeEx datasets, using the whole
Mendeley dataset for testing.

Table 8 displays the per-class and overall F1 score for this
experiment. As mentioned above, �les of the Mendeley dataset
are mostly used to store (tabular) data. Therefore, the minority
classes in the Mendeley dataset have very few instances.

While the overall F1 scores in this experiment are inferior to
the respective ones shown in Table 6, they do show that even for
such di�cult �les our approaches are well able to distinguish data
from non-data. The values in Mendeley’s plain-text �les show
properties di�erent from traditional spreadsheets, e.g., length of
metadata and notes areas, width of �les. The second reason is
that no data from Mendeley was included in the training phase.
Therefore, dataset-speci�c properties are not learned properly
by the classi�ers. Last but not least, di�erent areas in a plain-text
�le might have their own delimiters. As the delimiter of the table
areas is used across the �le, it is possible to destroy the intrinsic
structures of other areas, e.g., when using comma as the delimiter,
the value of a note line is split across multiple cells.

Regarding the results of individual classes, our model treats
quite a few metadata lines as data, as the delimiter of metadata
and data areas are di�erent. At times, the delimiter dilemma also
confuses our model of header lines in �les where these lines are
not split correctly. Out of the few derived cells, most are located
in a single �le, where the derived cells form a table by themselves,
and aggregate on the values from another table, which is not
recognizable by our model.

As the Mendeley dataset holds the biggest �les across all our
datasets, we also tested the scalability of our approach. The over-
all runtime on classifying cells of a �le includes that of dialect
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detection, feature creation, and cell class prediction. Our experi-
ments show that the overall runtime is linear to the �le size. For a
�le of around 10MB, the whole procedure takes around 256s on a
1.4 GHz MacBook Pro with 16GB RAM. Most of the time is spent
on creating the feature vectors, which could be easily parallelized
if possible. While we have few big �les of such size, most �les
are only several kilobytes, probably because �les with verbose
information are usually used to show limited key information,
rather than store a big amount of data.

Table 8: Per-class and overall F1 score for Mendeley.

Strudel! # lines Strudel� # cells

metadata .623 604 .245 2,152
header .406 86 .629 769
group .263 27 .303 44
data .999 194,786 .999 1,356,635
derived .364 9 .051 99
notes .448 86 .380 111
macro-avg .517 195,598 .435 1,359810

6.3.5 Feature analysis. To understand which features exert
more in�uence than others on particular classes, we calculated
the feature importance for both Strudel! and Strudel� models.
There are a variety of techniques to calculate feature impor-
tance [3, 21]. As many of our features are low-cardinality cate-
gorical features, we exploited permutation feature importance,
because it does not favor high cardinality features [3]. Permu-
tation feature importance indicates the ability of one feature to
distinguish instances of one class from those of another in a bi-
nary classi�cation scenario. To adapt this metric to our multiclass
classi�cation problem, we trained a model for each class in a one-
vs.-rest fashion, and use the permutation feature importance of
each such binary classi�er to represent the ability of our model
to detect instances of the particular class. The permutation of
each feature was repeated �ve times and averaged.

Figure 4 illustrates the per-class feature importance for Strudel!

(top) and Strudel� (bottom) with 100% stacked bars. The mod-
els are trained on the collection of SAUS, CIUS, and DeEx. We
grouped all neighbor pro�le features (Section 5.3) into neighbor
value length and neighbor data type to reduce the complexity of
the �gure, as each individual feature has little importance on the
cell classi�cation task. Up to �ve most important features whose
proportions are higher than 10% are highlighted.

The line type probability feature is the most crucial feature for
notes, metadata, and header. The percentage of empty cells in the
row is also quite useful for notes and metadata. The percentage
of empty cells in a column is most important to discover group
cells: many group cells are in the left-most column (also indicated
by the importance of the column position feature) of a �le and
span multiple rows. Neighbor pro�le features are most useful on
discovering group cells, proving that group cells tend to locate in
speci�c places. The novel feature signifying whether the value
of a cell is the aggregation of other cells in the same line or
column plays a great role in detecting derived cells, proving its
e�ectiveness. Besides that, the existence of derived keywords,
such as ‘total’ in the same column is also important, indicating
that users tend to use these words to mark the derived columns.
However, the existence of derived keywords in the same line
shows quite limited importance in our experiment, although we
expected similar importance of it as its column counterpart.

6.3.6 Analysis of di�icult cases. The confusion matrices shed
light on which classes are most commonly mis-predicted, either
in the line or cell classi�cation task. Here, we identify typical
causes of those errors. The list below describes the pairs of com-
mon mis-classi�cation cases (with > 10% incorrect classi�cation
in the class), e.g., mis-classifying ‘derived as data’, each followed
by an error analysis after manually inspecting the results.
• Derived as data. Errors of this type usually happen because
derived lines without keywords, such as ‘total’, in any of the
cells are ignored by the derived cell detection algorithm, which
uses these words to determine candidates, or because derived
lines aggregate values from non-consecutive lines, which are
ignored by the detection algorithm.
• Header as data. A header line with a number of non-textual
values adjacent to a data line may be mis-classi�ed as part of
the data area. Examples include numeric headers, such as year
and date. Files with multiple vertically-stacked tables may also
be a�ected by this sort of error, as the headers of the tables
towards the bottom of the stack have unusual line positions.
• Notes as data. Organizing notes as a small table is not uncom-
mon, particularly in DeEx. Therefore, these tables of notes are
likely to be treated as data. In some cases, authors place notes
to the right of a table. Therefore, they are likely to be treated
as data areas during cell classi�cation.
• Group as data. One reason for this type of error is that some
�les have multi-level group columns, such as ‘country-state-
city’, to the left of a table, followed by a number of data columns
to the right. As most tables have few group columns, the classi-
�er may mis-interpret these rare cases as data. Another reason
is that these group cells lay in the same lines as those derived
cells, who are not captured by the derived cell detection algo-
rithm, because there is no keyword in the same row or column.
• Metadata as data. Tables may have elaborate metadata or-
ganized as small tables. Due to the tabular features of these
metadata tables, Strudel tends to interpret them as data cells.
In summary, there are three aspects that mostly a�ect the

correctness of our approach: (i) the geographical characteristic of
vertically stacked multi-table �les; (ii) the arithmetic calculation
method for derived lines; (iii) the similarity between numeric
header lines and data lines. These facts o�er directions for im-
proving our approach in the future work.

7 CONCLUSIONS
Often, valuable data are stored in semi-structured documents and
cannot be directly parsed by common data management tools.
Prior to extracting information from these �les, it is necessary to
understand their structure, by means of element classi�cation,
at either line or cell level. Previous works have addressed the
line or cell classi�cation problem for style-enriched documents,
such as web tables or spreadsheets. In this work, we address both
tasks on verbose CSV �les that, similar to spreadsheets, organize
data in a �exible layout, yet lack rich-text features. We addressed
the two classi�cation problems separately and designed a set of
features for each of them, including content features, contextual
features, and computational features.

Based on the experimental evidence, we discovered that with
well-designed features, it is possible to reach decent performance
of classifying lines and cells in a verbose CSV �le and spread-
sheets even if the stylistic features are not available. To conduct
fair comparison between Strudel and related work, we use only
the non-stylistic features.We summarize a handful of reasons that
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Figure 4: Feature importance of Strudel! (top) and Strudel� (bottom) trained on the collection of SAUS, CIUS, and DeEx.
Several most important features for each class are highlighted.

cause common misclassi�cation cases, and recognize the e�ec-
tiveness of computational features that are neglected by former
studies, drawing key insights for further structure understanding
research: (i) how to improve the prediction quality with semantic
features; (ii) how can we extend the derived cell detection algo-
rithm by recognizing more aggregation functions; (iii) whether
column classi�cation can help boost the classi�cation quality.
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ABSTRACT
Performing non-aggregate range queries over encrypted data
stored on untrusted clouds has been considered by a large body
of work over the last years. However, prior schemes mainly con-
centrate on improving query performance while the scalability di-
mension still remains challenging. Due to heavily pre-processing
incoming data at a trusted component such as encrypting data
and building secure indexes, existing solutions cannot provide
a satisfactory ingestion throughput. In this paper, we overcome
this limitation by introducing a framework for secure range
query processing, FRESQUE, that enables a scalable consumption
throughput while still maintaining strong privacy protection for
outsourced data. Our experiments on real-world datasets show
that FRESQUE can support over 160 thousand record insertions in
a second, when running on a 12-computing node cluster. It also
significantly outperforms one of the most efficient schemes such
as PINED-RQ++ by 43 times on ingestion throughput.

1 INTRODUCTION
With the prosperity of online social networks and web-based
services, a large amount of personal data is collected every second.
To achieve analytical and administrative purposes, it becomes
increasingly desirable for modern systems to support not only
low-latency queries, but also intensive ingestion throughput over
incoming data. For instance, to reduce the impact of seasonal
epidemics (e.g., influenza), participatory surveillance systems,
to name few, have been deployed in recent years such as Flu
Near You [2] in North America, Influenzanet [16] in Europe,
and FluTracking [3, 9] in Australia and New Zealand. These
systems weekly collect symptoms from their participants to track
influenza nation-wide. Such systems are expected to receive a
huge number of records every second.
Due to the significant costs necessary for building and maintain-
ing such systems (e.g., computing and scalability requirements,
human resources), it may be worth to outsource user data to a
cloud service, that can provide lower costs and enable elastic
scaling [14]. However, parts of the data may be sensitive, e.g.,
participants’ symptoms, and sociodemographic data (age, gender,
etc.). Managing sensitive data on a public cloud increases the
risk of unauthorized disclosure since its infrastructure may be
compromised by an adversary. According to a recent survey, 52%
of companies use cloud services that have experienced a data
breach [18].
This paper considers the following cloud computing model (Fig-
ure 1): a collector receives data from multiple data sources and
stores them on a cloud while a client retrieves the data by using
queries. For a simple example, Flu survey participants submit
electronic medical records to a Center for Disease Control and
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Prevention (CDC) that stores the collected data on a cloud. An epi-
demiologist queries these records from the cloud. In this model,
only the cloud is untrusted while the others are trusted.

Figure 1: An architecture of cloud computing

Encryption is a standard technique to ensure the confidentiality
of data stored on untrusted environments like clouds [29, 32, 35].
In this study, we focus on non-aggregate range queries over
encrypted data since they are fundamental operations. For ex-
ample, a doctor, Alice, wants to get encrypted electric records
of the patients whose ages are between a and b. One example
of a range query (expressed with SQL) can be: SELECT * FROM
database WHERE age ≥ a AND age ≤ b.
Although many studies in this line of work have been done over
the last years [5–8, 10, 19, 20, 24, 26, 30, 31, 36], none of them
satisfies real-life scalability requirements. It is also non-trivial to
scale these schemes due to their own limitations. For instance,
Hidden Vector Encryption (HVE) methods [8, 36] use bilinear
groups equipped with bilinear maps and hide attributes in an
encrypted vector. However, they suffer from high latency because
it is extremely costly to compute exponentiation and pairing
in a composite-order group. Meanwhile, some recent schemes
[10, 23, 24] attempt to maintain secure indexes, that rely on
Searchable Symmetric Encryption, for efficiency. Unfortunately,
the secure indexes not only create high space overhead, but also
require at least hundreds of second for construction that may lead
to bottlenecks. Even though ArxRange [30] does not experience
long index building time, it incurs prohibitive storage overhead
and only supports a modest ingestion throughput, e.g., about
450 writes per second with caching. Recently, solutions based
on differential privacy [11], e.g., the PINED-RQ family [33, 34],
have been considered and achieve very good performance in
terms of computation and space requirements, however, they
do not render a satisfactory ingestion throughput. In particular,
PINED-RQ [33] incurs congestion as incoming data rate is high.
Meanwhile, PINED-RQ++ [34] experiences modest throughput,
∼46K records/s.
Therefore, we aim at developing a scalable ingestion framework
dedicated to secure range query processing. To the best of our
knowledge, this is the first paper about the architecture of such
system. Our solution is developed based on the PINED-RQ fam-
ily [33, 34]. This choice is motivated by the fact that this family
can achieve both fast range queries and provable security guaran-
tees while the secure index requires small space. More specifically,
we re-design the architecture of PINED-RQ++ [34] in order to
make it fully distributed. That is, we attempt to distributively
process all heavy tasks (e.g., parsing and encrypting data) on a
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set of shared-nothing machines1. By relying on such architecture,
the system can easily scale. Additionally, we introduce a data
representation and an asynchronous publishing method to de-
crease throughput degradation as much as possible. By precisely
coordinating all of them together, our framework can enable
intensive ingestion throughput. Experimental results show that
as compared to (non-)parallel PINED-RQ++ [34], the throughput
is improved by (∼43×) ∼5.6× respectively (NASA dataset [1]).
Furthermore, we also present a new noise management mech-
anism to cope with strong online attackers having background
knowledge about the time distribution of incoming data. This
method also improves the practicality of FRESQUE since it does
not require a pre-defined timestamp distribution as in PINED-
RQ++ (see Section 4.1). In this study, we develop FRESQUE, a
scalable ingestion framework for secure range query processing
on cloud, including the following contributions.

(1) We thoroughly analyze the architecture of the PINED-
RQ family [33, 34], and point out obstacles that prevent
the existing architecture from achieving a high ingestion
throughput. Also, we propose an approach to cope with
offline and online attackers while minimizing the required
knowledge of the collector.

(2) We design an ingestion architecture that enables to distrib-
ute all heavy jobs to multiple workers (computing nodes)
of a cluster. Besides, we present and integrate a data rep-
resentation and an asynchronous publishing method to
this architecture, mitigating throughput degradation.

(3) We extensively evaluate FRESQUE on real-world datasets
to demonstrate its scalability. Particularly, the throughput
of FRESQUE is about 43× higher than that of PINED-RQ++
and being at least one order of magnitude higher than that
of other efficient solutions such as [6, 30, 31].

(4) We formally analyze the security of FRESQUE.

The paper is structured as follows. In Section 2, we briefly intro-
duce the problem statement. Section 3 reviews the related work.
We analyze the architecture of the PINED-RQ family in Section 4.
We then describe our framework in Section 5. Section 6 gives se-
curity analyses while Section 7 presents our experimental results.
We discuss an application of our solution in Section 8. Section 9
concludes the paper and gives future work.

2 PROBLEM STATEMENT
We assume that data sources produce a set of records where all
records have the same number of attributes. These records are
immediately sent to the collector. The dataset stored at the collec-
tor is a relation D(A1, . . . ,An ), where Ai is an attribute. Queries
are non-aggregate one-dimensional range queries. A query Q is
evaluated over the attribute Aq of D, which contains numerical
values. Periodically, the collector pre-processes the dataset, e.g.,
building a secure index over the dataset and encrypting it, prior
to sending it to the cloud.
In this study, we concentrate on the scalability dimension of the
system in terms of ingestion throughput. This metric measures
how many records a system is able to consume within a time
period. The target solution should meet additional requirements,
namely formal security guarantees, supporting updates, and in-
curring practical storage overhead.

1We take the shared-nothing architecture into account since it is highly scalable.

2.1 Threat model
We consider the honest-but-curious model [15]. In this model, an
attacker examines data stored on the cloud to glean sensitive
information, but follows the protocol as specified and does not
change the datasets or query results. Also, we consider three
types of attackers : (1) the offline attacker is able to access a copy
of the encrypted datasets and secure indices (e.g., by stealing
the hard drives), (2) the online attacker is able to observe any
information available at the cloud or being exchanged between
the cloud and the trusted components, and (3) the informed on-
line attacker is an online attacker that further has background
knowledge about the data distribution of the incoming time of
real data.

2.2 Security
2.2.1 Differential privacy. The ϵ-differential privacy

model [11] requires that any possible individual record can
only have a limited impact on the output distribution of
an ϵ-differentially private function. This model considers a
very strong adversary that is not computationally-bounded
(information-theoretic guarantees). Definition 1 gives a formal
definition.
Definition 1 (ϵ-differential privacy [11, 13]): A randomized
mechanism M satisfies ϵ-differential privacy, if for any set
O ∈ Ranдe(M), and any datasets D and D ′ s.t. D is D ′ with
one record more or one record less,

Pr [M(D) = O] ≤ eϵ · Pr [M(D ′) = O]
where ϵ represents the privacy level. A smaller ϵ means stronger
privacy level. The Laplace mechanism is the most common
method to achieve ϵ-differential privacy.
Laplace Mechanism [12]: Let D and D ′ be two datasets such
that D is D ′ with one record more or one record less. Let
Lap(β) be a random variable that has a Laplace distribution
with the probability density function pd f (x, β) = 1

2β e
−|x |/β .

Let f be a real-valued function, the Laplace mechanism adds
Lap(max ∥ f (D)− f (D ′) ∥1 /ϵ) to the output of f , where ϵ > 0.
Theorem 1 (Sequential Composition [27]): LetM1,M2, . . . ,Mr
denote a set of mechanisms and eachMi gives ϵi -differential
privacy. LetM be another mechanism that executes the sequence
of M1(D),M2(D), . . . ,Mr (D). Then M satisfies (∑r

i=1 ϵi )-
differential privacy.

2.2.2 Semantic Security. Loosely speaking, a cryptosystem
is semantically secure if it is infeasible for a computationally-
bounded adversary, i.e., a probabilistic polynomial algorithm, to
derive significant information about plaintext from its cipher-
text and any auxiliary information, e.g., obtained from external
sources. Today, AES (in CBC mode) is the common instance of
efficient private key encryption schemes satisfying semantic se-
curity.
Definition 2 (Semantic security [15]): A private key encryption
algorithm Eχ , where χ is the secret key, is semantically secure if
for every probabilistic polynomial time algorithmA there exists a
probabilistic polynomial time algorithmA′ such that for every in-
put datasetD, every auxiliary background knowledge ζ ∈ {0, 1}∗,
every polynomially bounded functionд : {0, 1}∗ → {0, 1}∗, every
polynomial p(·), every sufficiently large n ∈ N , it holds that:

Pr [An (Eχ (D), |D|, ζ ) = д(D)] < Pr [A′n (|D|, ζ ) = д(D)]+
1

p(n)

206



2.2.3 Unified privacy model. Sahin et al. [33] is based on a
probabilistic relaxation of a variant of differential privacy that
considers computationally bounded adversaries [28] and that
considers the cryptographically-negligible leaks due to the use of
efficient real-world encryption schemes, i.e., AES in CBC mode.
Definition 3 is a simplification of ϵn-SIM-CDP, the simulation-
based computational differential privacy model proposed in [28].
Definition 3 (ϵn -SIM-CDP privacy [28]): The randomized function
fn provides ϵn -SIM-CDP if there exists a function Fn that satisfies
ϵn -differential-privacy and a polynomial p(·), such that for every
input dataset D, every probabilistic polynomial time adversary
A, every auxiliary background knowledge ζ ∈ {0, 1}∗, and every
sufficiently large n ∈ N , it holds that:

Pr [An (fn (D, ζ )) = 1] − Pr [An (Fn (D, ζ )) = 1] ≤ 1
p(n)

Definition 4 ((ϵ, δ )-Probabilistic-SIM-CDP [33]): A randomized
function fn satisfies (ϵ, δ )-Probabilistic-SIM-CDP, if it provides
ϵn-SIM-CDP to each individual with probability greater than or
equal to δ , where δ ∈ [0, 1].

3 RELATEDWORK
In this section, we briefly review prior schemeswith respect to the
target requirements. Table 1 gives the corresponding summary.
Table 1: Prior schemeswith respect to target requirements

Scheme
Formal
security

guarantees
Update
support

Low
latency

Small
storage
overhead

HVE [8, 36] ✓ ✓
Bucketization [17, 19, 20] ✓ ✓ ✓
OPE [5–7, 26, 31] ✓ ✓ ✓
PBtree [24] ✓ ✓
IBtree [23] ✓ ✓ ✓
ArxRange [30] ✓ ✓
Demertzis et al. [10] ✓ ✓ ✓
PINED-RQ family [33, 34] ✓ ✓ ✓ ✓

Hidden vector encryption (HVE) methods [8, 36] employ asym-
metric cryptography to conceal attributes in an encrypted vector.
A range predicate is privately evaluated on such vector. However,
these schemes incur prohibitive computation and storage costs.
Bucketization approaches [17, 19, 20] partition an attribute do-
main into a finite number of buckets. Each bucket is then assigned
by a random tag (bucket-id). When the client sends a range query
to the server, the buckets that intersect the query are determined
by using the index tag stored at the client. All contents of the
intersecting buckets are finally returned to the client. These ap-
proaches lack formal privacy guarantee.
Order-preserving encryption schemes (OPE) [5–7, 26, 31] trans-
form plaintexts into ciphertexts so that the relative order of their
plaintexts is preserved. This property enables to efficiently exe-
cute range predicate evaluation on encrypted data. Unfortunately,
OPE schemes disclose the underlying data distribution, and hence
they are vulnerable to statistical attacks.
Recently, a few works have taken indexing solutions into account
such as [10, 23, 24, 30, 33]. These schemes seek to maintain a se-
cure index over outsourced data for fast range query processing.
However, most of them [10, 23, 24, 30] suffer from prohibitive
storage overhead. On the other hand, Sahin et al. [33] introduce
an approach constructing clear secure indexes, called PINED-
RQ indexes, for serving efficient range queries. The efficiency is
enabled by the secure index while the security relies on computa-
tional differential privacy guarantees. Although PINED-RQ index
is small in space, this scheme publishes data in batches, hence
suffering from bottlenecks in the system as data arrives at high
speed. Tran et al. [34] later introduce an index template-based

approach, PINED-RQ++, to handle this limitation. Similar to prior
schemes, high ingestion throughput still remains challenging for
these solutions.
As shown in Table 1, the PINED-RQ family outperforms its coun-
terparts with regard to the target requirements. To achieve our
goal, we thus develop our solution based on this family. Particu-
larly, we address the drawback of modest throughput in PINED-
RQ.

4 ANALYSIS OF THE PINED-RQ FAMILY
This section gives thorough analyses of the PINED-RQ family [33,
34] and points out their drawbacks. Based on them, we develop
our solutions in the Section 5.

(a) Clear index (b) Perturbed index
Figure 2: Sample PINED-RQ index

4.1 Overview
Building index. There are two primary steps to build a secure
PINED-RQ index.
Step 1 - Building an index. PINED-RQ is inspired from B+Trees. In
PINED-RQ, the set of all nodes is defined as a histogram covering
the domain of an indexed attribute (e.g., the participants’ body
temperature (Temp)), as illustrated in Figure 2a. Each leaf node
has a count that represents the number of records falling within
its interval. It also keeps pointers to those records. Likewise, the
root and any internal node have a range and a count, combining
the intervals and the counts of their children, respectively.
Step 2 - Perturbing an index. All counts in the index are inde-
pendently perturbed by Laplace noise [12]. The noise may be
positive or negative, thereby after this step, the count of a node
may increase or decrease, respectively. As shown in Figure 2b,
the count of node 4 changes from 1 to -1 while the count of
node 6 changes from 1 to 2. Such changes consequently lead to
inconsistencies between the noisy count of a leaf node and the
number of pointers it holds. To address this issue, PINED-RQ
adds dummy records to the dataset when a leaf node receives
positive noise, otherwise, if a leaf node receives negative noise,
real records are removed from the dataset. The records removed
are then inserted into the corresponding overflow array which
is a fixed-size array. This overflow array is filled with dummy
records if it has free space. As illustrated in Figure 2b, the record
(David) belonging to node 4 is removed from the dataset while
one dummy record is added and linked to node 6. Lastly, the
perturbed index, the encrypted dataset, and the overflow arrays
are published to the cloud.
Query processing on indexed data. A range query will start
from the root of an index. It then traverses the child of any node
that has a non-negative count and intersects with the query
range. This is repeated recursively until the leaves of the index
are reached. At the leaves that overlap the query range, their
records and overflow arrays are returned.
Building index with index template. To adapt PINED-RQ to
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the context of high rate of incoming data, Tran et al. [34] have
previously developed PINED-RQ++ that builds a secure index
based on the notion of index template. In particular, the collec-
tor initially creates an index template and perturbs it by using
Laplace noise. This means that the count of bins at first contains
only noise. The real count of bins will be updated during a pub-
lishing time interval, which is defined as the period from when
an index template is created to when it is published. During a
publishing time interval, whenever a new record arrives, the
index template is updated with the record. Next, the collector
encrypts and forwards this record to the cloud. At the end of
each publishing time interval, the updated index template is pub-
lished, and the cloud associates it with earlier published records
to produce a secure index.
To manage positive noise, being represented by dummy records,
the collector can send dummy records to the cloud according to
the actual distribution of the sending time of the real records. On
the other hand, for negative noise, if a leaf node initially receives
negative noise c, the collector moves the first c records (when
they arrive) of that leaf node to the corresponding overflow array.

Figure 3: Perturbed index template and matching table
(the corresponding PINED-RQ index is presented in Fig-
ure 2b)
To privately keep the relationships between published records
and index template leaves, PINED-RQ++ utilizes a matching ta-
ble (see Figure 3). In particular, a record is tagged by a random
number instead of the real id of a leaf prior to being sent to the
cloud. When the matching table is published at the end of each
publishing time interval, the cloud uses it to reconstruct pointers
between leaves and published data.
Generally, the workflow at the collector starts with initiating
a new index template. When new data arrives, it sequentially
passes a series of components, as depicted in Figure 4.

Figure 4: Workflow at the collector of PINED-RQ++

• Parser transforms incoming data into a pre-defined for-
mat.
• Checker buffers the parsed record at the collector as its
indexed attribute belongs to a negative leaf. The index tem-
plate is then updated. Otherwise, that record is forwarded
to the next component.
• Enricher adds a random number (id) to the record.
• Updater updates the index template and matching table
based on the record.
• Encrypter encrypts the record and gets e-record (en-
crypted record). The encrypter finally sends a pair of <id,
e-record> to the cloud.

Parallel architecture of PINED-RQ++. Since the heavy work-
flow greatly degrades the throughput at the collector, Tran et al.
[34] have introduced a parallel version of PINED-RQ++. Its
overview architecture is depicted in Figure 5. Parallel PINED-
RQ++ distributively processes heavy tasks on a set of independent

Figure 5: Architecture of parallel PINED-RQ++

machines (e.g., computing nodes), namely updater and encrypter.
As a result, ingestion throughput exhibits a significant improve-
ment. Nonetheless, several challenges still remain in this archi-
tecture. We now identify the obstacles that hinder PINED-RQ++
from achieving a scalable solution.

4.2 Limitations
Partial parallelism. In PINED-RQ++, the index template is pro-
posed to temporarily store information that is necessary to build
the secure index later. By doing it, the count variables of the in-
dex template are updated and referenced by the updater and the
checker, respectively, during a publishing time interval. The index
template is thus considered as a shared data structure, that does
not run simultaneously in parallel PINED-RQ++. Furthermore,
the checker depends on the parser for the checking operation.
Hence, both parser and checker are organized to run in sequence
at the collector (see Figure 5). Unfortunately, the parsing task
usually takes time, especially in case of large record size. Thus,
the parser mainly makes the ingestion throughput of the parallel
PINED-RQ++ incredibly degraded. For instance, our experiments
shows that the parsing task reduces the throughput of the collec-
tor by over 50% when we use NASA dataset [1].
Heavily updating index template. Since PINED-RQ++ uses
the whole index template for updating and checking incoming
data, there are some unnecessary overheads at the collector in
terms of memory usage and computation. For example, an up-
date always requires traversing from the root to leaves of the
index template, having a complexity of O(logk n), where n is
the number of leaves and k is the branching factor. Likely, the
checker faces the same complexity for checking a record whether
it belongs to negative leaf or not. These tasks will take time to
process records and diminish the ingestion ability of the system,
especially when the domain of index template is huge. The sit-
uation is even worse when all tasks which reference the index
template have to be processed sequentially.
Synchronous publication. Both PINED-RQ++ and its parallel
version are designed to synchronously publish datasets to the
cloud. In other words, they will start a new publication only
if the current publication is sent to the cloud. This mechanism
may create congestion in some circumstances. For instance, at
the end of each publishing time interval, the collector needs to
generate overflow arrays whose size primarily relies upon sev-
eral configurable parameters, namely domain size, security level
(e.g., ϵ), and bin interval. These parameters vary for different
applications, thereby the size of overflow arrays will also change
accordingly. As the size of overflow arrays is large, the collector
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spends long time for generating overflow arrays, giving a heavy
burden on the ingestion performance or even bottlenecks at this
component.

5 INGESTION FRAMEWORK FOR SECURE
RANGE QUERY (FRESQUE)

Figure 6: Architecture of FRESQUE
We first present below the key design features of FRESQUE that
tackle the main limitations of PINED-RQ++ [34] (see Section 4.2).
Then we describe how FRESQUE copes with the informed on-
line attacker (see Section 2.1). Finally we present the complete
architecture of FRESQUE.

5.1 Key Design Features
(a) A fully parallel architecture. As stated earlier, partial
parallelism mainly causes low ingestion throughput in PINED-
RQ++. To deal with that, we aim at making the collector fully
distributed by parallelizing all heavy jobs (e.g., parser and en-
crypter) on a cluster of computing nodes.
The difficulty is that the checker, that resides between the parser
and the encrypter in the workflow, cannot be parallelized since it
relies not only on the parser but also on a shared data structure
(e.g., index template). This means that the checker should be
positioned after the parser and cannot be run in parallel. In fact,
we can run the parser and the encrypter on multiple computing
nodes while the checker runs sequentially at another node2. After
incoming records are parsed at the instances of the parser, they
are sent to the checker. These records are then checked by the
checker before being sent back to the instances of the encrypter.
Nevertheless, this approach would increase unnecessary commu-
nication overheads among components at the collector. Instead,
we position the checker after the parser and the encrypter in the
workflow, as illustrated in Figure 6. This approach allows to scale
the intake ability of the collector without creating unnecessary
transmission overheads. We then add additional information (e.g.,
leaf offset) to the ciphertext of the record so that the checker can
know which leaf the record belongs to.
(b) Array representation of Leaves (AL). To address the prob-
lem of heavily updating index template, we replace the index
template by an array representation of its leaves for the updating
and checking operations in our new architecture. Such array
representation is small to keeps in memory and accessing array
2The encrypter can further benefit from hardware cryptographic modules.

elements requires constant time, O(1). Particularly, the collector
maintains two arrays of integers, one with noise (ALN) and the
other without noise (AL). The former is used to check whether a
record falls within a negative leaf or not while the latter is mainly
used to count the number of real records passing the collector.
Each element of AL/ALN represents the true count/noise of a leaf,
respectively. The size of the two arrays is equal to the number of
leaves of the index template. Note that the AL contains the true
count of leaves while the IT only contains noise, thereby the two
components are sufficient to compute the secure index.
To integrate such data representation into the new architecture,
for a given value, the collector needs to know the leaf offset of
the corresponding element in AL(N). Thanks to the strongly con-
strained shape of the PINED-RQ index, the leaf offset of a record
can be easily obtained based on the configurable parameters of
the system. Given parameters, namely domain min (dmin ), do-
main max (dmax ), bin interval (Ib ), and an indexed attribute value
(v), the leaf offset (Ov ) of v can be achieved as follows.

Ov ←min(⌊(v − dmin )/Ib ⌋, ⌊(dmax − dmin )/Ib ⌋ − 1)
With such an approach, the checker is lightweight enough to
avoid performance bottlenecks even if it runs sequentially.
(c) Asynchronously publishing mechanism. To address the
issues of the synchronous publishing mechanism, we design
our new architecture to asynchronously publish datasets. To this
purpose, we add a new component to our architecture, named
merger, that runs independently of the ingestion component
(e.g., dispatcher), as depicted in Figure 6. The merger is only re-
sponsible for publishing tasks, namely building overflow arrays
and combining a secure index from the AL and the IT (Index
Templates). At the end of each publishing time interval, the pub-
lishing tasks are shifted to the merger, and a new publication is
immediately initiated at the dispatcher. With this approach, while
the dispatcher ingests data for a new publication, the merger per-
forms the publishing tasks for the previous one. This eliminates
the burden of the publishing tasks on the ingesting component
and prevents potential bottlenecks at the collector. More impor-
tantly, the asynchronous publishing method allows the system to
continuously consume incoming data with a very small latency
for starting a new publication. Such property partially improves
the ingestion throughput.
By using the asynchronous publication strategy, all components
in FRESQUE, including the dispatcher and the merger, run inde-
pendently. To ensure data consistency among publications, e.g.,
how a component determines to which publication a record be-
longs, wemark each publicationwith a uniquemonotonic number,
named publication number.

5.2 Upgrading PINED-RQ++ for Coping with
Informed Online Attackers

Information about the noise injected, e.g. dummy/removed
records of a publication, may be disclosed to the informed online
attacker if the order of the incoming data at the cloud is the
same as the order of the incoming data at the collector. Indeed,
since the informed online attacker has the time at which records
(dummy or true) arrive at the cloud, his background knowledge
on the time distribution of real data can enable him to distinguish
(probabilistically) between incoming true records and incoming
dummy records (positive noise), or to gain partial knowledge of
the number of removed records (negative noise). First, the records
removed by the checker at the collector (if they fall in the interval
of a negative leaf - see Section 4) do not leave the collector before
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the end of the publishing time interval. Their absence may reveal
to the informed online attacker information about the values of
negative noises. Second, the arrival of records at the cloud at
unexpected times makes them more likely to be dummy record
(information about positive noises). In PINED-RQ++, the collec-
tor releases dummy records according to the true distribution of
the incoming time of real data for confusing the informed online
attacker. This obviously requires to know the distribution in ad-
vance, which may be difficult to achieve in real-life applications.
We now seek to design a new noise management method that
mitigates privacy leaks against the informed online attacker and
does not depend on any pre-defined distribution of the incoming
time of real data.
To address this issue, we introduce a new component, called ran-
domer, to our architecture (see Figure 6). It aims at perturbing
the distribution of the incoming time of real data at the collector
so that the insertion of dummy records or the deletion of real
records are hidden from the adversary. The randomer consists
of a fixed-size buffer and a trigger function. The former is used
to mix incoming real and dummy records together while the
latter is used to control the size of the buffer. In particular, all
dummy records of a publication are first generated and are uni-
formly at random sent to the buffer of the randomer during a
publishing time interval. For example, suppose a publication has
100 dummy records, then 100 time points are chosen uniformly
at random over the current publishing time interval, and one
dummy record is released at each time point. When a record
(real/dummy) arrives at the randomer, it is buffered here. If the
randomer buffer is full, then the randomer randomly picks one
record in the buffer and releases it to the next component. Note
that at any time point when one record is picked and released, it
may be a real or dummy record. As a result, if a new record ar-
rives the cloud at an improbable time point, the adversary cannot
conclude with certainty whether it is dummy or not. Similarly,
when the adversary does not see any record at an expected time
point at the cloud, she/he cannot be sure it is removed or not due
to the uncertainty caused by the randomer. The leakage caused
by dealing naively with positive or negative noise (i.e., dummy
records or removed true records) is thus addressed by the ran-
domer. Moreover, FRESQUE does not require knowing in advance
any data distribution.

Figure 7: Randomer : Possible Issue of a Tiny Buffer
Challenges of randomer. One of the challenges of using ran-
domer is how to choose a right size for its buffer. Intuitively, a
large buffer gives high security. However, if the chosen size is too
big, the systemmay confront bottlenecks at collector, particularly
at the checking node. Otherwise, a tiny buffer may result above
leak (the extreme case being a buffer of size 1). As an example
depicted in Figure 7, we first assume that no real data is present
during the period between t0 and t1 (the publishing time interval
is [t0, tn ]) and the size of the buffer is much smaller than the
total number of dummy records. Since all dummy records are
randomly released over a publishing time interval, it may happen
that the buffer is full of dummy records, e.g., during the period
[t0, t1]. The trigger function is thus activated and dummy records

in the buffer are released before t1. These dummy records will
be recognized by the adversary who has prior knowledge about
real data distribution. Fortunately, such situation only happens
as the randomer buffer is much smaller than the total number
of dummy records. Otherwise, if the randomer buffer is large
enough, no record will appear at the cloud in that period. There-
fore, the buffer size must be chosen to be sufficiently larger than
the total number of dummy records of the publication.
A straightforward solution is to determine the buffer size by mul-
tiplying the actual number of the dummy records of a publication
by several times. However, since we will publish the whole buffer
at the end of the publishing time interval, the adversary may infer
the size of the buffer, and hence the actual number of dummy
records can be leaked. So the method of determining buffer size
must (*) not depend on the real number of dummy records and
(**) being larger than the number of the dummy records of a
publication.
Note that since dummy records are generated due to the Laplace
noise, the number of dummy records varies with each publication.
It is thus difficult to choose a right capacity for the randomer
buffer while meeting both (*) and (**). Fortunately, the noise
in FRESQUE is sampled from the Laplace distribution, we can
then choose buffer size based on the inverse CDF of the Laplace
distribution with a very high probability, δ ′. Intuitively, this
approach gives an upper bound on the number of dummy records.
Given a set ofm leaves, denoted L = {l1, ..., lm }, we probabilisti-
cally compute the maximum number of dummy records of leaf li
based on the inverse CDF of the Laplace distribution, considered
as si . Then, T =

∑m
i=1 si is viewed as the maximum number of

dummy records of an index. To guarantee the buffer size is larger
than T , we multiply it by a configurable coefficient, α . To ensure
the buffer size is larger than the total number of dummy records,
we suggest to set α ≥ 2. Then, the buffer size, S , of the randomer
is: S =

∑m
i=1 si × α (or S = T × α ), where α ≥ 2.

Finally, the position of the randomer within the architecture
of the collector is important as well: it must be put before the
checker and the updater (so that it processes all records, including
the removed ones) and after the parser and the encrypter (for
obvious latency reasons).

5.3 Architecture of FRESQUE
Following the key design features in Section 5.1, we now detail
our ingestion framework to support efficient range query process-
ing over encrypted data. Especially, we describe the orchestration
of different components in this architecture.
(a) Ingestion life cycle. The collector of FRESQUE runs on a
small cluster of commodity machines (see Figure 6). At the col-
lector, one (and only one) node runs the Dispatcher (D) and all
worker nodes in the cluster run a Computing Node (CN) while
the randomer, the checker, and the updater run on the same
Checking node (C).
When new records arrive to the dispatcher, they are immediately
sent to the computing nodes according to a round robbin ap-
proach. This approach is used for the sake of load balancing. The
computing node first pre-processes incoming data to get pairs of
<leaf offset, e-record>. These pairs are then sent to the checking
node. After being randomized and checked at the checking node,
such pairs are forwarded to the cloud or the merger. Note that
the dispatcher, the computing node, the merger, and the checking
node can coexist on the same node.
(b) Instantiation of FRESQUE. In order to demonstrate how data

210



(a) Initialization

(b) During a time interval

(c) At publishing time
Figure 8: An example demonstrating how FRESQUE processes incoming data by using two computing nodes. Assume that
the size of randomer buffer is 4 pairs of e-record.

is processed at the collector and transported to the cloud, Figure
6 shows the composition of FRESQUE running on five nodes at
the collector and Figure 8 gives a running example.
Dispatcher (D): At the beginning of a publishing time interval,
the dispatcher initiates an Index Template (IT), dummy records,
and a Publication Number (PN), as illustrated in Figure 8a. The
dispatcher then sends the IT, PN and all dummy records to the
checking node. During a publishing time interval, whenever the
dispatcher receives new data from data sources, it distributes
the data to the computing nodes in a round-robin fashion. As an
example shown in Figure 8b, there are three records, (Bob,37),
(Alice,39), (Diana,38), arriving in order at the dispatcher. These
records are then distributed to the two computing nodes. At
the end of each publishing time interval, the dispatcher sends
a publishing message to all available computing nodes and to
the checker. By using the asynchronous publishing method, a
new publication is immediately started after a publishing mes-
sage is sent instead of waiting for the publishing tasks to be
done. This allows the system to continuously ingest arrivals.
By completely removing heavy jobs (e.g., parsing, encrypting,
and checking) from the dispatcher and using the asynchronous
publishing method, throughput ingestion is maximized at this
component.
Computing Node (CN): During a publishing time interval,
when new data comes, the computing node parses the raw data
into a record, calculates the leaf offset, and encrypts it. Then, a
pair of <leaf offset, e-record> is transferred to the checking node.
As showed in Figure 8b, after passing the two computing nodes,
three records are now parsed, encrypted, and associated with the
corresponding leaf offsets, 0, 2, 1, respectively. When the com-
puting node receives a publishing message from the dispatcher,

it waits for a done message from the checking node. Notably,
during the meantime, all incoming data will be processed and
stored in local in-memory buffers at the computing nodes. By
doing it, the delay of performing heavy tasks on buffered data is
reduced when a new publication is started.
As mentioned earlier, the parser and the encrypter mainly cause
throughput degradation in the system. With the parallel ap-
proach, the degradation is reduced significantly and only relies
on the number of the computing nodes used. Interestingly, this
approach not only allows to easily scale the throughput up, but
also shortens the publishing time at the collector. For instance,
PINED-RQ++ has to sequentially encrypt removed records and
insert them into overflow arrays at the end of each publishing
time interval, whereas they are now encrypted in a parallel man-
ner by a set of networked machines during that period. As a
result, at the end of each publishing time interval, the collector
only randomly inserts removed encrypted records into the corre-
sponding overflow arrays before transferring them to the cloud,
reducing the publishing time in FRESQUE.
Checking node (C): At the beginning of a publishing time in-
terval, the checking node receives Index Template (IT) and Pub-
lication Number (PN) from the dispatcher. It first initiates the
corresponding AL and ALN (see Figure 8b). The checking node
then forwards the IT to the merger while the PN is sent to the
cloud. During a publishing time interval, when a pair of <leaf
offset, e-record> arrives, it stores that pair in the buffer of the
randomer. If the buffer is full, one of them is randomly picked
and passed to the checker. Next, the checker gets its leaf offset
(e.g., i) from the selected pair. If the ith element of ALN is less
than zero, the checker increases the value of the ith element of
both ALN and AL by one, and then sends that pair to the merger
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as removed. Otherwise, that pair is sent to the updater, and only
the value of the ith element of AL is increased by one. Finally,
that pair is sent to the cloud. As the example presented in Figure
8b, when the pair <0, (Bob,37)> comes to the checking node at
timestamp t0, it is inserted into the randomer’s buffer. When this
pair is released at timestamp t1, the 0th element of AL is increased
by one since the 0th element of ALN is positive. Otherwise, at
timestamp t2, when the pair <1, (Diana,38)> is considered, since
it belongs to a negative element of ALN, the 1st element of AL
and ALN are both increased by one and this pair is then sent to
the merger.
When the checking node receives publishing messages from all
available computing nodes, it will send the updated AL to the
merger (see Figure 8c). We emphasize that the condition of re-
ceiving publishing messages from all computing nodes needs to
be guaranteed so that the consistency of publications is achieved.
In other words, it makes sure that all (dummy/real) data of the
current publication, that are sent by the dispatcher, are received
by the checking node. The randomer buffer is then shuffled and
published to the cloud. Finally, the checking node sends a done
message back to the computing nodes.
It is worth noting that the checker and the updater will ignore the
dummy records when they pass the checking node. This means
that the counts of AL and ALN are independent of such dummy
data. To achieve it, the checker and the updater need to perceive
which incoming record is dummy in order to ignore it during
the updating process. Nonetheless, the difficulty is that they all
become ciphertexts after being encrypting by the computing
nodes. To address it, we add to dummy records a special flag
(e.g., -1) to distinguish them from real data. This straightforward
technique allows the checker and the updater to know which
record is dummy or real. As shown in Figure 8b, at timestamp
t0, a dummy pair is released by the checking node, and does not
lead to any update on AL and ALN.
Even if all tasks at the checking node are designed to run sequen-
tially such as the checker and the updater, they do not have much
impact on the ingestion throughput at the collector. Moreover,
thanks to the array representation, our architecture diminishes
the complexity of the updating and checking tasks fromO(logk n)
to O(1), and hence shortening the delay of processing a record
and boosting the consumption throughput.
Merger (M): At the beginning of each publishing time interval,
the merger receives IT and PN from the checking node, then
keeps them in memory. During a publishing time interval, the
mergermay receive removed records from the checker.Whenever
the merger receives the updated AL, it triggers a new merging
job that performs publishing tasks, e.g., combining IT and AL to
achieve the complete secure index, generating overflow arrays
(OAs) to conceal the removed records. Finally, the merger sends
them to the cloud with the corresponding PN, as shown in Figure
8c.
Cloud: When the cloud receives a new PN from the checking
node, it creates a new file for storing the incoming data. However,
when its secure index is published by the merger, the published
data will be read from the file on disk for a matching process and
finally written back to disk again. Such approach gives rise to
high I/O overhead. Instead, we keep small information about the
published data, e.g., metadata, that is used for the matching pro-
cess. Specifically, when a pair of <leaf offset, e-record> arrives,
the cloud writes the e-record to disk, gets its physical address,
and caches a pair of <leaf offset, physical location> in memory.

To boost the matching process, we organizemetadata in the form
of <leaf offset, list of physical locations>, as demonstrated in
Figure 8b. Such metadata is relatively small and independent of
the size of e-records. When a publication comes from the merger,
the matching process immediately associates the physical ad-
dress of e-records with leaves based on the cached metadata. The
metadata is finally destroyed (see Figure 8c).
(c) Query processing. In FRESQUE, when a query comes at the
cloud, it is evaluated on both indexed and unindexed data. With
regard to indexed data, the query processing strategy is applied
as in Section 4.1. Meanwhile, unindexed data are processed one
by one based on the query range. The (removed) records have a
range overlapping the query range at the cloud, the randomer,
and the merger are returned to the client.

6 SECURITY ANALYSIS
We develop FRESQUE that builds a PINED-RQ index [33] during
a publishing time interval. With such an approach, at the end
of each publishing time interval, all parts of the index (e.g., IT,
AL, and removed e-records) are combined at the merger to get a
secure index and overflow arrays. In other words, this process
only occurs at the trusted collector, and hence FRESQUE appar-
ently inherits the privacy protection level of the PINED-RQ index
and trivially satisfies (ϵ, δ )-Probabilistic-SIM-CDP against offline
attackers and (simple) online attackers.
The main difference between FRESQUE and PINED-RQ with re-
spect to the index creation function is that FRESQUE publishes
encrypted records immediately. Informed online attackers may
be able to gain information about positive or negative noises
based on the expected time distribution of incoming real records.
However, thanks to the randomer, this leakage is mitigated. The-
orem 2 claims the security of FRESQUE.
Theorem 2 (Security of FRESQUE): The index creation function
of FRESQUE satisfies (ϵ, δ )-Probabilistic-SIM-CDP [33] against
offline attackers and (simple) online attackers, and mitigates the
information leak against informed online attackers.

Proof. (Sketch) We only consider informed online attackers be-
cause the two other attackers are trivial.
Considering dummy records (information leak about pos-
itive noises). First, we consider the case where a record arrives
at the cloud at the time point at which there is real data. Since
real/dummy records are randomly mixed together before being
released, the adversary is unable to distinguish dummy records
from real ones and does not obtain additional useful information
about the values of the positive noises.
Second, we consider the case where a record arrives at the cloud
at an unlikely time point at which there is no real data. This
situation happens when a dummy record is inserted into a full
randomer buffer. This means that with high probability the ran-
domer buffer contains both real and dummy records. When re-
ceiving a record recently picked from the buffer, the cloud is thus
unable to distinguish dummy records from real ones and does
not learn additional information about the values of the positive
noises.
Third, we consider the case where the checking node sends the
full randomer buffer to the cloud at the end of a publishing time
interval. Dummy records are mixed with real ones at the ran-
domer during a publishing time interval. Additionally, the ratio
between real and dummy data at any time point is hidden from
the adversary (see Section 5.2), hence the adversary does not
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obtain additional useful information about the values of the posi-
tive noises from this case.
Fourth, we consider the case where the randomer contains only
dummy records and no real ones. Note that such situation only
occurs if all dummy records are released before real data arrives
at the collector. If the buffer of the randomer were allowed to be
smaller than or equal to the total number of dummy records, a
dummy record would be picked with certainty and released to the
cloud. As a result, the adversary would learn with certainty that
it is dummy. However, FRESQUE requires that the buffer of the
randomer is chosen to be much larger than the total number of
dummy records of a publication, with (tunable) high probability
(see Section 5.2). This makes this case highly improbable.
Considering removed records (information leak about
negative noises). Since dummy records will not be deleted by
the checking node, we only focus on real records. Recall that
the decision to remove a real record is taken by the checker, af-
ter the randomer, and that removed records are buffered by the
merger in order to be published within the overflow arrays at
the end of the publishing time interval. Without randomer, the
artificial removal of records due to negative noise may impact the
number of records sent to the cloud and thus, slightly, the time
distribution of the records sent to the cloud. However, first, the
additional dummy records mitigate the decrease in the number
of records overall (recall that the Laplace distribution used for
generating the noises is symmetric around 0), and second, with
the randomer, the delay introduced by the randomer buffer in
releasing both dummy and real records also impacts the time
distribution of records to the cloud, similar to the removal of true
records, which mitigates the information leak about the values
of the negative noises. □

Comparison with PINED-RQ [33]. The highest security of
FRESQUE is achieved when the coefficient α is chosen so that the
randomer buffer can contain the whole dataset and all dummy
records. In that case, at the end of each publishing time interval,
the randomer shuffles and sends the buffer to the cloud along
with a secure index and overflow arrays. It is easy to see that
this is exactly the publishing process of PINED-RQ. Thus, in that
case, FRESQUE has the same level of privacy against informed
online attackers as PINED-RQ, and thus also satisfies exactly
(ϵ, δ )-Probabilistic-SIM-CDP against all attackers.

7 EVALUATION
We evaluate FRESQUE against PINED-RQ++ due to its outperfor-
mance compared to other prior schemes (see Table 1). We mainly
focus on the metrics contributing to the scalability of the sys-
tem, namely ingestion throughput and publishing latency at the
collector as well as at the cloud.

7.1 Benchmark Environment
Table 2: Experimental environment

Component CPU (2.4 GHz) Memory (GB) Disk (GB)
Dispatcher 4 8 80
Merger 4 8 80
Checking node 4 8 80
Computing node 2 2 20
Data source 4 16 80
Cloud 16 64 160

We implemented FRESQUE in Java 1.8.03. Data was encrypted by
the Java package (javax.crypto). We ran our experiments on the
3The code is available at https://gitlab.inria.fr/vtran/fresque.git.
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Figure 9: Ingestion throughput of FRESQUE
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Figure 10: FRESQUE’s improvement compared to PINED-
RQ++

Galactica platform [4] and organized FRESQUE as a cluster of 17
nodes, including 12 computing nodes, running on Ubuntu 14.04.4
LTS. Each node was used to run one component of FRESQUE.
The configurations of nodes are detailed in Table 2. The TCP
socket was used for exchanging data among the components of
FRESQUE.
We evaluate our solution on two real datasets: NASA log [1]
(1, 569, 898 records, five attributes) and Gowalla [22] (6, 442, 892
records, three attributes). We use the reply byte and check-in
time as indexed attributes, respectively. Based on these datasets,
the domain of the reply byte is divided into 3421 bins and each
bin interval represents 1 KB. Meanwhile, the domain of the check-
in time is 626 bins and each bin interval implies one hour. The
fanout is set to 16. We use a publishing time interval of 60 seconds
and incoming data rate is 200k records per second. The initial
privacy budget and coefficient is set to 1 and 2, respectively, for
all experiments unless otherwise stated. Both δ and δ ′ are set to
99% and every experiment was run over ten minutes. Then, we
present the averaged results of ten publications in Section 7.2.

7.2 Results
Ingestion throughput. We first present the ingestion through-
put of FRESQUE with a varied number of computing nodes. Then
we compare its ingestion throughput to those of the (non-)parallel
PINED-RQ++. The results in Figure 9 show that the throughput
of FRESQUE significantly increases as the number of computing
nodes goes up. Especially, the highest throughput is reached
at ∼142k records/second (NASA) and at ∼165k records/second
(Gowalla) with 12 and 8 computing nodes respectively. As com-
pared to ArxRange [30], one of the state-of-the-art solutions,
FRESQUE reaches an ingestion throughput that is at least two
orders of magnitude higher.
(a) Comparison with non-parallel PINED-RQ++. With the given
settings, non-parallel PINED-RQ++ is able to ingest only 3,159
records/s in NASA and 13,223 records/s in Gowalla. Such inges-
tion throughputs are substantially lower than those of FRESQUE.
The results in Figure 10 demonstrate the outperformance of
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FRESQUE compared to non-parallel PINED-RQ++. The enhance-
ment goes up as the number of computing nodes grows. The
highest improvement can be seen as the collector is configured as
a 12-computing node cluster, and the ingestion throughput is im-
proved by ∼11× and ∼43× in Gowalla and NASA dataset, respec-
tively. Even if only two computing nodes are used, FRESQUE can
achieve the improvement of 7.61× (NASA) and 2.69× (Gowalla).
Compared to Gowalla, NASA always exhibits higher improve-
ment with the same number of computing nodes. The major
source of this gap comes from the fact that the record size and
the domain of NASA record are larger than those of Gowalla.
Based on such observation, we can conclude that FRESQUE would
be more beneficial as datasets have larger size and/or domain.
(b) Comparison with parallel PINED-RQ++. The throughput of
FRESQUE is always higher than that of parallel PINED-RQ++ as
we vary the number of computing nodes at the collector, as shown
in Figure 11. The setting of 12-computing node cluster gives the
biggest gap, the throughput of FRESQUE is ∼5.6× (NASA) and
∼2.2× (Gowalla) better than that of parallel PINED-RQ++. Noted
that since the throughput in FRESQUE reaches the peak as we use
8 computing nodes in Gowalla, the use of more computing nodes
does not bring more benefit.
Throughput degradation.We measure the throughput degra-
dation at the collector of the three prototypes. Such metric is
obtained by comparing their maximum ingestion throughput
with the maximum incoming throughput (without any process-
ing on incoming data) at the collector. As shown in Figure 12,
FRESQUE experiences the lowest throughput degradation among
the three prototypes, with a reduction of at least ∼3.9× (com-
pared to parallel PINED-RQ++) in NASA, and at most ∼7.9×
(compared to PINED-RQ++) in Gowalla.
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Figure 12: Throughput degradation at the collector
Publishing time. We now turn our attention to the publish-
ing time metric, i.e., the time required to publish a dataset with
FRESQUE and with parallel PINED-RQ++. Noted that FRESQUE
consists of the three main components, namely the dispatcher,
the checking node, and the merger which mainly decide the pub-
lishing time at the collector. We thus measure the delay of the
three components separately. Additionally, we consider the time
needed to perform a matching process at the cloud. This is be-
cause a long delay of this process might also lead to bottlenecks.
(a) Publishing time at the dispatcher. As shown in Figure 13, the
time is always lower than 520ms with NASA and 200ms with
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Figure 13: Publishing time in FRESQUE
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Figure 14: Comparison of publishing time at collector
with parallel PINED-RQ++
Gowalla. The delay even gradually decreases as the number of
computing nodes increases. In particular, the dispatcher takes
only 101ms (NASA) and 19ms (Gowalla) for performing the pub-
lishing tasks in a 12-computing node cluster.
(b) Publishing time at the merger. The results in Figure 13 indi-
cates that the time is virtually unchanged in the two datasets as
their size changes. Specifically, the time with NASA fluctuates be-
tween 149ms and 191ms while that with Gowalla varies between
18ms and 20ms. Since the domain size of NASA (3421 bins) is
larger than the one of Gowalla (626 bins), the NASA experiences
a higher publishing time than that of the Gowalla dataset.
(c) Publishing time at the checking node. In this study, we attempt
to design FRESQUE so that the checking node has a lightweight
publishing job and has a reduced impact on the ingestion per-
formance. In particular, the checking node only sends the buffer
of the randomer to the cloud and the updated AL to the merger
at the end of each publishing time interval. The results in Fig-
ure 13 show that the time is under 600ms with NASA and 80ms
with Gowalla. It can be understood that the publishing time at
the checking node is mainly represented by the time of sending
the randomer buffer that varies according to the required level
of security. A huge randomer buffer results in long publishing
time at this component. Fortunately, since the computing nodes
always process and cache incoming data during the meantime,
the impact on the ingestion throughput is negligible. We will
evaluate the randomer below in the latest part of this section.
(d) Matching time at the cloud. To show the efficiency of FRESQUE
at the cloud side, we measure the time required to associatemeta-
data (physical locations of records) with published index. As
depicted in Figure 13, the time in FRESQUE goes up according to
data size. Nonetheless, FRESQUE spends only 877ms and 837ms
on matching the large dataset of 8.1M records (NASA) and 9.8M
records (Gowalla), respectively. These performances come from
the deletion of the matching table from FRESQUE’s architecture.
(e) Comparison with parallel PINED-RQ++. We now compare pub-
lishing time at the collector between FRESQUE and parallel PINED-
RQ++. Since the different numbers of computing nodes used re-
sult in different publication sizes, we consider the time is required
to publish a record instead of a whole dataset. The results in Fig-
ure 14 show that parallel PINED-RQ++ (dispatcher) takes longer
delay than FRESQUE (dispatcher, checking node, and merger) for
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Figure 16: Publishing time with different privacy budgets

the two datasets used. Regarding the dispatcher, the publishing
time of FRESQUE is at most ∼62× and ∼127× lower with NASA
and Gowalla, respectively, compared to parallel PINED-RQ++.
Matching time. We also evaluate the matching time needed
to process a publication between parallel PINED-RQ++ and
FRESQUE. The results in Figure 15 show that the time of parallel
PINED-RQ++ increases when publications are larger. For exam-
ple, when a dataset of 5M records is used, the matching time in
parallel PINED-RQ++ reaches ∼78s (NASA) and ∼76s (Gowalla).
In contrast, FRESQUE constantly maintains a short time for pro-
cessing a publication at the cloud, with a maximum is ∼54ms
(NASA) and ∼43ms (Gowalla). The matching time of FRESQUE
is at least two orders of magnitude shorter than that of parallel
PINED-RQ++.
Impact of the randomer. For mitigating the information dis-
closed to the informed online attacker, the randomer maintains
a local buffer for perturbing incoming data. A large buffer may
introduce a bottleneck at the collector. We thus evaluate the im-
pact of this component here. Indeed, the buffer size is mainly
determined by two configurable parameters, namely privacy bud-
get ϵ and coefficient α . Hence, we run various experiments with
varied values of the two parameters to evaluate the impact of the
randomer. We use a configuration of 10 computing nodes.
(a) Privacy budget ϵ .We now consider the impact of the randomer
in terms of publishing time as we use different privacy budgets,
ranging from 0.1 to 2.0, for a publication. In these experiments,
we record the publishing time at the collector (dispatcher, check-
ing node, and merger), and the matching time at the cloud. The
results in Figure 16 show that the privacy budget influences the
publishing time at the three components. Indeed, as a smaller
privacy budget is used, their publishing time goes up. The high-
est increase is witnessed at the checking node, approximately 7s
(NASA) and about 0.8s (Gowalla) for the budget of 0.1. Similarly,
as the privacy budget declines, the size of overflow arrays and
the number of dummy/removed records go up, causing a slight
increase of the publishing time at the dispatcher and the merger.
(b) Coefficient α . We adjust the value of α to see the impact of
randomer on publishing time at the checking node, the merger
and the cloud. As expected, when we increase the value of α , the
publishing time grows (see Figure 17). However, even if α is set
to 20, the checking node only takes about 6s (NASA) and 0.8s
(Gowalla). Also, the time does not change much at the dispatcher,
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Figure 17: Publishing time with different coefficients
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Figure 18: Ingestion throughput of FRESQUE with ran-
domer
the merger and the cloud.
(c) Impact of the randomer on ingestion throughput.We also con-
sider the ingestion throughput at the collector as we vary the
two parameters ϵ and α . Although the publishing time at the
checking node goes up as we use smaller privacy budget and/or
larger coefficient, the ingestion throughput at the collector is rel-
atively stable. This is because while the checking node prepares
publish the current dataset, including the sending of randomer to
the cloud, incoming data of the new publication is still processed
and buffered at the computing nodes. As it can be seen in Figure
18a and Figure 18b, the results show that the throughput with
the NASA dataset fluctuates between ∼115k records/s and ∼134k
records/s while that of Gowalla ranges from ∼150k records/s to
∼166k records/s.

8 DISCUSSION
We present a possible real-life application of FRESQUE based on
the FluTracking use-case [3].
Flutracking is a web-based survey of influenza-like illness. This
system weekly sends a link via email to all participants who will
then submit required information via a web interface. The submit-
ted data can be managed in a cloud and accessed by authorized
users for analysis and prediction.
Although our description of FRESQUE focuses on the insertion
of one record per individual, it is simple to extend our approach
to the case of multiple records per individual. For example, in
Flutracking [3], an individual can submit personal data several
times to the database, at most once for a week. For such case,
an important question is how to manage privacy budget over
multiple insertions of the same individual.
In the targeted use case, it is unlikely to have multiple records
of the same individual over a short period (e.g., weekly). There-
fore, we can assume that a dataset of each period (e.g., week) is
published with a secure index, and this publication consists of at
most one record per individual. For each dataset, the system uses
a portion of the total privacy budget ϵtotal for constructing a
secure index. To determine how much budget is spent for a publi-
cation, an admin may necessarily determine how long the system
needs secure indices for fast range query processing. ϵtotal is
then divided according to the determined period. For instance, if
the system must maintain indices for one year (52 weeks), then
an admin can divide the total privacy budget ϵtotal into 52 equal
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portions, ϵ1, ..., ϵ52, so that ϵtotal =
∑52
i=1 ϵi . Each of which is

used to publish dataset of one week. Certainly, the system needs
to make sure that an individual contributes at most one record
per publication. Fortunately, thanks to the existing collecting
method of the Flutracking, this work can simply be achieved.
In particular, a unique link can be sent to all participants every
Monday. The link is set to expired and a dataset is published
before the next Monday. This ensures that a participant links to
at most one record per publication.

9 CONCLUSION
This paper presents FRESQUE, a scalable ingestion framework for
secure range query processing over encrypted data on clouds.
We thoroughly analyze and identify the problems of the-state-
of-the-art solutions related to the degradation of the ingestion
throughput, with a special focus on PINED-RQ++. To address
these drawbacks, we design a new architecture that is fully dis-
tributed at the collector. Additionally, we introduce a data rep-
resentation as well as an asynchronous publication mechanism.
All of them together allows FRESQUE to achieve intensive con-
sumption throughput, reaching over 160K records/s. Moreover,
we introduce and carefully integrate the randomer into our new
architecture to improve the practicality and security of FRESQUE
as compared to PINED-RQ++. We formally analyse the security
guarantees of FRESQUE. Lastly, we discuss a potential application
of FRESQUE based on a real-life example. Future works include
coping with multiple records per individual and designing al-
ternative indexes based on well-known highly concurrent data
structures (e.g., Masstree [25] and ART [21]).
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ABSTRACT
Distributed caches are widely deployed to serve social net-

works and web applications at billion-user scales. This paper
presents Cache-on-Track (CoT), a decentralized, elastic, and pre-
dictive caching framework for cloud environments. CoT proposes
a new cache replacement policy specifically tailored for small
front-end caches that serve skewed workloads with small update
percentage. Small front-end caches are mainly used to mitigate
the load-imbalance across servers in the distributed caching layer.
Front-end servers use a heavy hitter tracking algorithm to con-
tinuously track the top-k hot keys. CoT dynamically caches the
top-C hot keys out of the tracked keys. CoT’s main advantage
over other replacement policies is its ability to dynamically adapt
its tracker and cache sizes in response to workload distribution
changes. Our experiments show that CoT’s replacement policy
consistently outperforms the hit-rates of LRU, LFU, and ARC for
the same cache size on different skewed workloads. Also, CoT
slightly outperforms the hit-rate of LRU-2 when both policies are
configured with the same tracking (history) size. CoT achieves
server size load-balance with 50% to 93.75% less front-end cache
in comparison to other replacement policies. Finally, experiments
show that CoT’s resizing algorithm successfully auto-configures
the tracker and cache sizes to achieve back-end load-balance in
the presence of workload distribution changes.

1 INTRODUCTION
Social networks, the web, and mobile applications have at-

tracted hundreds of millions of users who need to be served in
timely personalized way [9]. To enable this real-time experience,
the underlying storage systems have to provide efficient, scalable,
and highly available access to big data.

Figure 1 presents a typical web and social network system
deployment [9] where user-data is stored in a distributed back-
end storage layer in the cloud. The back-end storage layer consists
of a distributed in-memory caching layer deployed on top of
a distributed persistent storage layer. The caching layer aims
to improve the request latency and system throughput and to
alleviate the load on the persistent storage layer at scale [44].
Distributed caching systems such asMemcached [3] and Redis [4]
are widely adopted by cloud service providers such as Amazon
ElastiCache [1] and Azure Redis Cache [2]. As shown in Figure 1,
hundreds of millions of end-users send streams of page-load and
page-update requests to thousands of stateless front-end servers.
These front-end servers are either deployed in the same core
datacenter as the back-end storage layer or distributed among
other core and edge datacenters near end-users. Each end-user
request results in hundreds of data object lookups and updates
served from the back-end storage layer. According to Facebook
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Figure 1: A typical web and social network system deploy-
ment

Tao [9], 99.8% of the accesses are reads and 0.2% of them are
writes. Therefore, the storage system has to be read optimized
to efficiently handle end-user requests at scale.

Redis andMemcached use consistent hashing [30] to distribute
keys among several caching servers. Although consistent hashing
ensures a fair distribution of the number of keys assigned to each
caching shard, it does not consider the workload per key in the
assignment process. Real-world workloads are typically skewed
with few keys being significantly hotter than other keys [25].
This skew causes load-imbalance among caching servers.

Load imbalance in the caching layer can have significant im-
pact on the overall application performance. In particular, it may
cause drastic increases in the latency of operations at the tail end
of the access frequency distribution [24]. In addition, the average
throughput decreases and the average latency increases when the
workload skew increases [11]. This increase in the average and
tail latency is amplified for real workloads when operations are
executed in chains of dependent data objects. A single page-load
results in retrieving hundreds of objects in multiple rounds of
data fetching operations [9, 38]. Finally, solutions that equally
overprovision the caching layer resources to handle the most
loaded caching server suffer from resource under-utilization in
the least loaded caching servers.

In this paper, we propose Cache-on-Track (CoT); a decentral-
ized, elastic, and predictive heavy hitter caching at front-end
servers. CoT proposes a new cache replacement policy specifi-
cally tailored for small front-end caches that serve skewed work-
loads with small update percentage. CoT uses a small front-end
cache to solve back-end load-imbalance as introduced in [20].
However, CoT does not assume perfect caching at the front-end.
CoT uses the space saving algorithm [37] to track the top-k heavy
hitters. The tracking information allows CoT to cache the exact
top-C hot keys out of the approximate top-k tracked keys pre-
venting cold and noisy keys from the long tail to replace hot keys
in the cache. CoT is decentralized in the sense that each front-end
independently determines its hot key set based on the key access
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distribution served at this specific front-end. This allows CoT
to address back-end load-imbalance without introducing single
points of failure or bottlenecks that typically come with central-
ized solutions. In addition, this allows CoT to scale to thousands
of front-end servers, a common requirement of social network
and modern web applications. Unlike traditional replacement
policies, CoT is elastic in the sense that each front-end uses its
local load information to monitor its contribution to the back-end
load-imbalance. Each front-end elastically adjusts its tracker and
cache sizes to reduce the load-imbalance caused by this front-end.
In the presence of workload changes, CoT dynamically adjusts
front-end tracker to cache ratio in addition to both the tracker
and cache sizes to eliminate any back-end load-imbalance.

In traditional architectures, memory sizes are static and caching
algorithms strive to achieve the best usage of all the available re-
sources. However, in cloud settings where there are theoretically
infinite memory and processing resources and cloud instance
migration is the norm, cloud end-users aim to achieve their SLOs
while reducing the required cloud resources and thus decreasing
their monetary deployment costs. CoT’smain goal is to reduce the
necessary front-end cache size independently at each front-end
to eliminate server-side load-imbalance. In addition, CoT strives
to dynamically find this minimum front-end cache size as the
workload distribution changes. Reducing front-end cache size is
crucial for the following reasons: 1) it reduces the monetary cost
of deploying front-end caches. For this, we quote David Lomet in
his recent works [33–35] where he shows that cost/performance
is usually more important than sheer performance: "the argu-
ment here is not that there is insufficient main memory to hold
the data, but that there is a less costly way to manage data.". 2)
In the presence of data updates and when data consistency is a
requirement, increasing front-end cache sizes significantly in-
creases the cost of the data consistency management technique.
Note that social networks and modern web applications run on
thousands of front-end servers. Increasing front-end cache size
not only multiplies the cost of deploying bigger cache by the
number of front-end servers, but also increases several costs in
the consistency management pipeline including a) the cost of
tracking key incarnations in different front-end servers and b) the
network and processing costs to propagate updates to front-end
servers. 3) Since the workload is skewed, our experiments clearly
demonstrate that the relative benefit of adding more front-end
cache-lines, measured by the average cache-hits per cache-line
and back-end load-imbalance reduction, drastically decreases as
front-end cache sizes increase.

CoT’s resizing algorithm dynamically increases or decreases
front-end allocated memory in response to dynamic workload
changes. CoT’s dynamic resizing algorithm is valuable in different
cloud settings where all front-end servers are deployed in the
same datacenter or in different datacenters at the edge. These
front-end servers obtain workloads of the same dynamically
evolving distributions or different distributions. In particular, CoT
aims to capture local trends from each individual front-end server
perspective. In social network applications, front-end servers that
serve different geographical regions might experience different
key access distributions and different local trends (e.g., #miami
vs. #ny).

We summarize our contributions in this paper as follows.

• Design and implement Cache-on-Track (CoT), a front-end
cache replacement policy specifically tailored for small

caches that serve skewed workloads with small update
percentages.

• Design and implement CoT’s resizing algorithm. The resiz-
ing algorithm dynamically minimizes the required front-
end cache size to achieve back-end load-balance. CoT’s
built-in elasticity is a key novel advantage over other re-
placement policies.

• Evaluate CoT’s replacement policy hit-rates to the hit-
rates of traditional as well as state-of-the-art replacement
policies, namely, LFU, LRU, ARC, and LRU-2. In addition,
experimentally show that CoT achieves server size load-
balance for different workload with 50% to 93.75% less
front-end cache in comparison to other replacement poli-
cies.

• Experimentally evaluate CoT’s resizing algorithm showing
that CoT successfully adjust its tracker and cache sizes in
response to workload distribution changes.

• Report a bug at YCSB’s [15] ScrambledZipfian workload
generator. This generator generates workloads that are
significantly less-skewed than the promised Zipfian distri-
bution.

The rest of the paper is organized as follows. The related
work is discussed in Section 2. In Section 3, the data model is
explained. Section 4 further motivates CoT by presenting the
main advantages and limitations of using LRU, LFU, ARC, and
LRU-k caches at the front-end. We present the details of CoT
in Section 5. In Section 6, we evaluate the performance and the
overhead of CoT and the paper is concluded in Section 7.

2 RELATEDWORK

Distributed caches are widely deployed to serve social net-
works and the web at scale [9, 38, 44]. Load-imbalancing among
caching servers negatively affects the overall performance of
the caching layer. Therefore, significant research has addressed
the load-imbalacing problem from different angles. Solutions
use different load-monitoring techniques (e.g., centralized track-
ing [6, 7, 26, 43], server-side tracking [11, 24], and client-side
tracking [20, 28]). Based on the load-monitoring, different solu-
tions redistribute keys among caching servers at different gran-
ularities. The following summarizes the related works under
different categories.

Centralized load-monitoring: Slicer [7] and Centrifuge [6]
are examples of centralized load-monitoring where a centralized
control plane is separated from the data plane. Centrifuge uses
consistent hashing to map keys to servers. However, Slicer propa-
gates the key assignments from the control plane to the front-end
servers. Slicer’s control plane collects metadata about shard ac-
cesses and server workload. The control plane periodically runs
an optimization algorithm that decides to redistribute, repartition,
or replicate slices of the key space to achieve better back-end
load-balance. Also, Slicer replicates the centralized control plane
to achieve high availability and to solve the fault-tolerance prob-
lem in both Centrifuge [6] and in [11]. CoT is complementary to
systems like Slicer and Centrifuge since CoT operates on a fine-
grain key level at front-end servers while solutions like Slicer [7]
operate on coarser grain slices or shards at the caching servers.
Our goal is to cache heavy hitters at front-end servers to reduce
key skew at back-end caching servers and hence, reduce Slicer’s
initiated re-configurations. Also, CoT is distributed and front-end
driven that does not require any system component to develop a
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global view of the workload. This allows CoT to scale to thou-
sands of front-end servers without introducing any centralized
points of failure or bottlenecks.

Server side load-monitoring: Another approach to load-
monitoring is to distribute the load-monitoring among the caching
shard servers. In [24], each caching server tracks its own hot-
spots. When the hotness of a key surpasses a certain threshold,
this key is replicated to 𝛾 caching servers and the replication deci-
sion is broadcast to all the front-end servers. Any further accesses
on this hot key shall be equally distributed among these 𝛾 servers.
Cheng et al. [11] extend the work in [24] to allow moving coarse-
grain key cachelets (shards) among threads and caching servers.
Our approach reduces the need for server side load-monitoring.
Instead, load-monitoring happens at the edge. This allows in-
dividual front-end servers to independently identify their local
trends and cache them without adding the monitoring overhead
to the caching layer, a critical layer for the performance of the
overall system.

Client side load-monitoring: Fan et al. [20] use a distributed
front-end load-monitoring approach. This approach shows that
adding a small perfect cache in the front-end servers has sig-
nificant impact on solving the back-end load-imbalance. Fan et
al. theoretically show through analysis and simulation that a
small perfect cache at each front-end solves the back-end load-
imbalance problem. Following [20], Gavrielatos et al. [21] propose
symmetric caching to track and cache the hot-most items at every
front-end server. Symmetric caching assumes that all front-end
servers obtain the same access distribution and hence statically
allocates the same cache size to all front-end servers. However,
different front-end servers might serve different geographical
regions and therefore observe different access distributions. CoT
discovers the workload access distribution independently at each
front-end server and adjusts the cache size to achieve some tar-
get load-balance among caching servers. NetCache [28] uses
programmable switches to implement heavy hitter tracking and
caching at the network level. Like symmetric caching, NetCache
assumes a fixed cache size for different access distributions. To
the best of our knowledge, CoT is the first front-end caching al-
gorithm that exploits the cloud elasticity allowing each front-end
server to independently reduce the necessary required front-end
cache memory to achieve back-end load-balance.

Other works in the literature focus on maximizing cache hit
rates for fixed memory sizes. Cidon et al. [12, 13] redistribute
available memory among memory slabs to maximize memory
utilization and reduce cache miss rates. Fan et al. [19] use cuckoo
hashing [41] to increase memory utilization. Lim et al. [32] in-
crease memory locality by assigning requests that access the
same data item to the same CPU. Bechmann et al. [8] propose
Least Hit Density (LHD), a new cache replacement policy. LHD
predicts the expected hit density of each object and evicts the
object with the lowest hit density. LHD aims to evict objects that
contribute low hit rates with respect to the cache space they
occupy. Unlike these works, CoT does not assume a static cache
size. In contrast, CoTmaximizes the hit rate of the available cache
and exploits the cloud elasticity allowing front-end servers to
independently expand or shrink their cache memory sizes as
needed.

3 DATA MODEL
We assume a typical key/value store interface between the

front-end servers and the storage layer. The API consists of the
following calls:

• v = get(k) retrieves value v corresponding to key k.
• set(k, v) assigns value v to key k. set(k, null) to delete k.

Front-end servers use consistent hashing [30] to locate keys
in the caching layer. Consistent hashing solves the key discovery
problem and reduces key churn when a caching server is added
to or removed from the caching layer. We extend this model by
adding an additional layer in the cache hierarchy. As shown in
Figure 1, each front-end server maintains a small cache of its hot
keys. This cache is populated according to the accesses that are
served by each front-end server.

We assume a client driven caching protocol similar to the
protocol implemented byMemcached [3]. A cache client library
is deployed in the front-end servers. Get requests are initially
attempted to be served from the local cache. If the requested key is
in the local cache, the value is returned and the request is marked
as served. Otherwise, a null value is returned and the front-end
has to request this key from the caching layer at the back-end
storage layer. If the key is cached in the caching layer, its value is
returned to the front-end. Otherwise, a null value is returned and
the front-end has to request this key from the persistent storage
layer and upon receiving the corresponding value, the front-end
inserts the value in its front-end local cache and in the server-
side caching layer as well. As in [38], a set, or an update, request
invalidates the key in both the local cache and the caching layer.
Updates are directly sent to the persistent storage, local values
are set to null, and delete requests are sent to the caching layer
to invalidate the updated keys. The Memcached client driven
approach allows the deployment of a stateless caching layer. As
requests are driven by the client, a caching server does not need
to maintain the state of any request. This simplifies scaling and
tolerating failures at the caching layer. Although, we adopt the
Memcached client driven request handling protocol, our model
works as well with write-through request handling protocols.

Our model is not tied to any replica consistency model. Each
key can have multiple incarnations in the storage layer and the
caching layer. Updates can be synchronously propagated if strong
consistency guarantees are needed or asynchronously propagated
if weak consistency guarantees suffice. Since the assumed work-
load is mostly read requests with very few update requests, we
do not address consistency of updates in this paper. Achieving
strong consistency guarantees among replicas of the same ob-
ject has been widely studied in [11, 24]. Ghandeharizadeh et
al. [22, 23] propose several complementary techniques to CoT
to deal with consistency in the presence of updates and configu-
ration changes. These techniques can be adopted in our model
according to the application requirements. We understand that
deploying an additional vertical layer of cache increases potential
data inconsistencies and hence increases update propagation and
synchronization overheads. Therefore, our goal in this paper is
to reduce the front-end cache size in order to limit the incon-
sistencies and the synchronization overheads that result from
deploying front-end caches, while maximizing their benefits on
back-end load-imbalance.

4 FRONT-END CACHE ALTERNATIVES
Fan et al. [20] show that a small perfect cache in the front-

end servers has big impact on the caching layer load-balance. A
perfect cache of 𝐶 cache-lines is defined such that accesses to
the 𝐶 hot-most keys always hit the cache while accesses to any
other keys alwaysmiss the cache. The perfect caching assumption
is impractical especially for dynamically changing and evolving
workloads. Several replacement policies have been developed to
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approximate perfect caching for different workloads. This section
discusses the workload assumptions and various client caching
objectives. This is followed by a discussion of the advantages and
limitations of common caching replacement policies.

Workload assumptions: Real-world workloads are typically
skewed with few keys being significantly hotter than other keys.
In this paper, we assume skewed mostly read workloads with
periods of stability (where hot keys remain hot during these
periods).

Client caching objectives: Front-end servers construct their
perspective of the key hotness distribution based on the re-
quests they serve. Front-end servers aim to achieve the following
caching objectives:

• The cache replacement policy should prevent cold keys
from replacing hotter keys in the cache.

• Front-end caches should adapt to the changes in the work-
load. In particular, front-end servers should have a way
to retire hot keys that are no longer accessed. In addition,
front-end caches should have a mechanism to expand or
shrink their local caches in response to changes in work-
load distribution. For example, front-end servers that serve
uniform access distributions should dynamically shrink
their cache size to zero since caching is of no value in this
situation. On the other hand, front-end servers that serve
highly skewed Zipfian (e.g., s = 1.5) should dynamically ex-
pand their cache size to capture all the hot keys that cause
load-imbalance among the back-end caching servers.

A popular policy for implementing client caching is the LRU
replacement policy. Least Recently Used (LRU) costs O(1) per
access and caches keys based on their recency of access. This
may allow cold keys that are recently accessed to replace hotter
cached keys. Also, LRU cannot distinguish well between fre-
quently and infrequently accessed keys [31]. Alternatively, Least
Frequently Used (LFU) can be used as a replacement policy. LFU
costs 𝑂 (𝑙𝑜𝑔(𝐶)) per access where 𝐶 is the cache size. LFU is
typically implemented using a min-heap and allows cold keys
to replace hotter keys at the top levels of the heap. Also, LFU
cannot distinguish between old references and recent ones. This
means that LFU cannot adapt to changes in workload. Both LRU
and LFU are limited in their knowledge to the content of the
cache and cannot develop a wider perspective about the hotness
distribution outside of their static cache size.

Adaptive Replacement Cache (ARC) [36] tries to realize the
benefits of both LRU and LFU policies bymaintaining two caching
lists: one for recency and one for frequency. ARC dynamically
changes the number of cache-lines allocated for each list to either
favor recency or frequency of access in response to workload
changes. In addition, ARC uses shadow queues to track more
keys beyond the cache size. This helps ARC to maintain a broader
perspective of the access distribution beyond the cache size. ARC
is designed to find the fine balance between recent and frequent
accesses. As a result, ARC pays the cost of caching every new
cold key in the recency list evicting a hot key from the frequency
list. This cost is significant especially when the cache size is much
smaller than the key space and the workload is skewed favoring
frequency over recency.

LRU-k [39] tracks the last k accesses of each cached key, in
addition to a pre-configured manually fixed size history that
includes the access information of the recently evicted keys from
the cache. New keys replace the cached keywith the least recently
𝑘𝑡ℎ access. The evicted key is moved to the history, which is

typically implemented using LRU. LRU-k is a suitable strategy to
mock perfect caching of periodically stable skewed workloads
when its cache and history sizes are perfectly pre-configured
for this specific workload. However, due to the lack of LRU-k’s
dynamic resizing and elasticity of both its cache and history
sizes, we choose to introduce CoT that is designed with native
resizing and elasticity functionality. This functionality allows
CoT to adapt its cache and tracker sizes in response to workload
changes.
5 CACHE ON TRACK (COT)

Front-end caches serve two main purposes: 1) decrease the load
on the back-end caching layer and 2) reduce the load-imbalance
among the back-end caching servers. CoT focuses on the latter
goal and considers back-end load reduction a complementary
side effect. CoT’s design philosophy is to track more keys beyond
the cache size. This tracking serves as a filter that prevents cold
keys from populating the small cache and therefore, only hot
keys can populate the cache. In addition, the tracker and the
cache are dynamically and adaptively resized to ensure that the
load served by the back-end layer follows a load-balance target.

The idea of tracking more keys beyond the cache size has been
widely used in replacement policies such as 2Q [29], MQ [45],
LRU-k [39, 40], and ARC [36]. Both 2Q and MQ use multiple
LRU queues to overcome the weaknesses of LRU of allowing
cold keys to replace warmer keys in the cache. All these policies
are desgined for fixed memory size environments. However, in
a cloud environment where elastic resources can be requested
on-demand, a new cache replacement policy is needed to take
advantage of this elasticity.

CoT presents a new cache replacement policy that uses a
shadow heap to track more keys beyond the cache size. Previ-
ous works have established the efficiency of heaps in tracking
frequent items [37]. In this section, we explain how CoT uses
tracking beyond the cache size to achieve the caching objectives
listed in Section 4. In particular, CoT answers the following ques-
tions: 1) how to prevent cold keys from replacing hotter keys in
the cache?, 2) how to reduce the required front-end cache size that
achieves lookup load-balance?, 3) how to adaptively resize the cache
in response to changes in the workload distribution? and finally 4)
how to dynamically retire old heavy hitters?.
5.1 Notation

The key space, denoted by 𝑆 , is assumed to be large in the scale
of trillions of keys. Each front-end servermaintains a cache of size
𝐶 <<< 𝑆 . The set of cached keys is denoted by 𝑆𝑐 . To capture the
top-𝐶 hottest keys, each front-end server tracks 𝐾 > 𝐶 keys. The
set of tracked key is denoted by 𝑆𝑘 . Front-end servers cache the
top-𝐶 hottest keys where 𝑆𝑐 ⊂ 𝑆𝑘 . A key hotnessℎ𝑘 is determined
using the dual cost model introduced in [18]. In this model, read
accesses increase a key hotness by a read weight 𝑟𝑤 while update
accesses decrease it by an update weight 𝑢𝑤 . As update accesses
cause cache invalidations. Therefore, frequently updated keys
should not be cached and thus an update access decreases a key’s
hotness. For each tracked key, the read count 𝑘.𝑟𝑐 and the update
count 𝑘.𝑢𝑐 are maintained to capture the number of read and
update accesses of this key. Equation 1 shows how the hotness
of key 𝑘 is calculated. We use 𝑟𝑤 = 𝑢𝑤 = 1 in our experiments.

ℎ𝑘 = 𝑘.𝑟𝑐 × 𝑟𝑤 − 𝑘.𝑢𝑐 × 𝑢𝑤 (1)
ℎ𝑚𝑖𝑛 refers to the minimum key hotness in the cache. ℎ𝑚𝑖𝑛

splits the tracked keys into two subsets: 1) the set of cached keys
(also tracked) 𝑆𝑐 of size𝐶 and 2) the set of tracked but not cached
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𝑆 key space
𝐾 number of tracked keys at the front-end
𝐶 number of cached keys at the front-end
ℎ𝑘 hotness of a key k
𝑘.𝑟𝑐 read count of a key k
𝑘.𝑢𝑐 update count of a key k
𝑟𝑤 the weight of a read operation
𝑢𝑤 the weight of an update operation
ℎ𝑚𝑖𝑛 the minimum hotness of keys in the cache
𝑆𝑘 the set of all tracked keys
𝑆𝑐 the set of cached keys (these keys are also tracked)
𝑆𝑘−𝑐 the set of tracked but not cached keys
𝐼𝑐 the current local lookup load-imbalance
𝐼𝑡 the target lookup load-imbalance
𝛼 the average hit-rate per cache-line in an epoch
𝐸 Epoch: a configurable number of accesses

Table 1: Summary of notation.

keys 𝑆𝑘−𝑐 of size 𝐾 −𝐶 . The current local load-imbalance among
caching servers lookup load is denoted by 𝐼𝑐 . 𝐼𝑐 is a local variable
at each front-end that determines the current contribution of
this front-end to the back-end load-imbalance. 𝐼𝑐 is defined as
the workload ratio between the most loaded back-end server
and the least loaded back-end server as observed at a front-end
server. For example, if a front-end server sends, during an epoch,
a maximum of 5K key lookups to some back-end server and,
during the same epoch, a minimum of 1K key lookups to another
back-end server then 𝐼𝑐 , at this front-end, equals 5. 𝐼𝑡 is the target
load-imbalance among the caching servers. 𝐼𝑡 is the only input
parameter set by the system administrator and is used by front-
end servers to dynamically adjust their cache and tracker sizes.
Ideally 𝐼𝑡 should be set close to 1. 𝐼𝑡 = 1.1 means that back-end
load-balance is achieved if the most loaded server observes at
most 10% more key lookups than the least loaded server. Finally,
we define another local auto-adjusted parameter 𝛼 . 𝛼 is the
average hits per cache-line and it determines the quality of the
cached keys. A cache-line, or entry, contains one cached key and
its corresponding value and 𝛼 determines the average hits per
cache-line during an epoch. For example, if a cache consists of 10
cache-lines and they cumulatively observe 2000 hits in an epoch,
we consider 𝛼 to be 200. 𝛼 helps detect changes in workload and
adjust the cache size accordingly. Note that CoT automatically
infers the value of 𝛼 based on the observed workload. Hence, the
system administrator does not need to set the value of 𝛼 . 𝐸 is an
epoch parameter defined by a configurable number of accesses.
CoT runs its dynamic resizing algorithm every 𝐸 accesses. Table 1
summarizes the notation.

5.2 Space-Saving Tracking Algorithm
CoT uses the space-saving algorithm introduced in [37] to

track the key hotness at front-end servers. Space-saving uses a
min-heap to order keys based on their hotness and a hashmap to
lookup keys in the tracker in O(1). The space-saving algorithm
is shown in Algorithm 1. If the accessed key 𝑘 is not in the
tracker (Line 1), it replaces the key with minimum hotness at the
root of the min-heap (Lines 2, 3, and 4). The algorithm gives the
newly added key the benefit of doubt and assigns it the hotness
of the replaced key. As a result, the newly added key gets the
opportunity to survive immediate replacement in the tracker.
Whether the accessed key 𝑘 was in the tracker or is newly added
to the tracker, the hotness of the key is updated based on the

access type according to Equation 1 (Line 6) and the heap is
accordingly adjusted (Line 7).

Algorithm 1 The space-saving algorithm: track_key( key k, ac-
cess_type t).
State: 𝑆𝑘 : keys in the tracker.
Input: (key k, access_type t)
1: if 𝑘 ∉ 𝑆𝑘 then
2: let 𝑘

′
be the root of the min-heap

3: replace 𝑘
′
with 𝑘

4: ℎ𝑘 := ℎ𝑘′
5: end if
6: ℎ𝑘 := update_hotness(k, t)
7: adjust_heap(k)
8: return ℎ𝑘

5.3 CoT: Cache Replacement Policy
CoT’s tracker captures the approximate top 𝐾 hot keys. Each

front-end server should cache the exact top 𝐶 keys out of the
tracked 𝐾 keys where 𝐶 < 𝐾 . The exactness of the top 𝐶 cached
keys is considered with respect to the approximation of the top
𝐾 tracked keys. Caching the exact top 𝐶 keys prevents cold and
noisy keys from replacing hotter keys in the cache and achieves
the first caching objective. To determine the exact top 𝐶 keys,
CoT maintains a cache of size C in a min-heap structure. Cached
keys are partially ordered in the min-heap based on their hotness.
The root of the cache min-heap gives the minimum hotness,ℎ𝑚𝑖𝑛 ,
among the cached keys. ℎ𝑚𝑖𝑛 splits the tracked keys into two
unordered subsets 𝑆𝑐 and 𝑆𝑘−𝑐 such that:

• |𝑆𝑐 | = 𝐶 and ∀𝑥 ∈𝑆𝑐ℎ𝑥 ≥ ℎ𝑚𝑖𝑛
• |𝑆𝑘−𝑐 | = 𝐾 −𝐶 and ∀𝑥 ∈𝑆𝑘−𝑐ℎ𝑥 < ℎ𝑚𝑖𝑛

Figure 2: CoT: a key is inserted to the cache if its hotness
exceeds the minimum hotness of the cached keys.

For every key access, the hotness information of the accessed
key is updated in the tracker. If the accessed key is cached, its
hotness information is updated in the cache as well. However, if
the accessed key is not cached, its hotness is compared against
ℎ𝑚𝑖𝑛 . As shown in Figure 2, the accessed key is inserted into the
cache only if its hotness exceeds ℎ𝑚𝑖𝑛 . Algorithm 2 explains the
details of CoT’s cache replacement algorithm.

For every key access, the track_key function of Algorithm 1 is
called (Line 1) to update the tracking information and the hot-
ness of the accessed key. Then, a key access is served from the
local cache only if the key is in the cache (Lines 3). Otherwise,
the access is served from the caching server (Line 5). Serving an
access from the local cache implicitly updates the accessed key
hotness and location in the cache min-heap. If the accessed key

221



Algorithm 2 CoT’s caching algorithm
State: 𝑆𝑘 : keys in the tracker and 𝑆𝑐 : keys in the cache.
Input: (key k, access_type t)
1: ℎ𝑘 = track_key(k, t) as in Algorithm 1
2: if 𝑘 ∈ 𝑆𝑐 then
3: let v = access(𝑆𝑐 , k) // local cache access
4: else
5: let v = server_access(k) // caching server access
6: if ℎ𝑘 > ℎ𝑚𝑖𝑛 then
7: insert(𝑆𝑐 , k, v) // local cache insert
8: end if
9: end if
10: return v
is not cached, its hotness is compared against ℎ𝑚𝑖𝑛 (Line 6). The
accessed key is inserted to the local cache if its hotness exceeds
ℎ𝑚𝑖𝑛 (Line 7). This happens only if there is a tracked but not
cached key that is hotter than one of the cached keys. Keys are
inserted to the cache together with their tracked hotness informa-
tion. Inserting keys into the cache follows the LFU replacement
policy. This implies that a local cache insert (Line 7) would result
in the replacement of the coldest key in the cache (the root of
the cache heap) if the local cache is full.
5.4 CoT: Adaptive Cache Resizing

This section explains CoT’s resizing algorithm. This algorithm
reduces the necessary front-end cache size that achieves back-
end lookup load-balance. In addition, this algorithm dynamically
expands or shrinks CoT’s tracker and cache sizes when the served
workload changes. Also, this algorithm detects changes in the
set of hot keys and retires old hot keys that are not hot any
more. As explained in Section 1, reducing the front-end cache size
decreases the front-end cachemonetary cost, limits the overheads
of data consistency management techniques, and maximizes the
benefit of front-end caches measured by the average cache-hits
per cache-line and back-end load-imbalance reduction.
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Figure 3: Reduction in relative server load and load-
imbalance among caching servers as front-end cache size
increases.

TheNeed forCacheResizing: Figure 3 experimentally shows
the effect of increasing the front-end cache size on both back-
end load-imbalance reduction and decreasing the workload at
the back-end. In this experiment, 8 memcached shards are de-
ployed to serve back-end lookups and 20 clients send lookup
requests following a significantly skewed Zipfian distribution (s
= 1.5). The size of the key space is 1 million and the total num-
ber of lookups is 10 millions. The front-end cache size at each
client is varied from 0 cachelines (no cache) to 2048 cachelines
(≈0.2% of the key space). Front-end caches use CoT’s replacement
policy and a ratio of 4:1 is maintained between CoT’s tracker

size and CoT’s cache size. We define back-end load-imbalance
as the workload ratio between the most loaded server and the
least loaded server. The target load-imbalance 𝐼𝑡 is set to 1.5. As
shown in Figure 3, processing all the lookups from the back-end
caching servers (front-end cache size = 0) leads to a significant
load-imbalance of 16.26 among the caching servers. This means
that the most loaded caching server receives 16.26 times the
number of lookup requests received by the least loaded caching
server. As the front-end cache size increases, the server size load-
imbalance drastically decreases. As shown, a front-end cache
of size 64 cache lines at each client reduces the load-imbalance
to 1.44 (an order of magnitude less load-imbalance across the
caching servers) achieving the target load-imbalance 𝐼𝑡 = 1.5.
Increasing the front-end cache size beyond 64 cache lines only
reduces the back-end aggregated load but not the back-end load-
imbalance. The relative server load is calculated by comparing
the server load for a given front-end cache size to the server
load when there is no front-end caching (cache size = 0). Fig-
ure 3 demonstrates the reduction in the relative server load as
the front-end cache size increases. However, the benefit of dou-
bling the cache size proportionally decays with the key hotness
distribution. As shown in Figure 3, the first 64 cachelines reduce
the relative server load by 91% while the second 64 cachelines
reduce the relative server load by only 2% more.

The failure of the "one size fits all" design strategy suggests
that statically allocating fixed cache and tracker sizes to all front-
end servers is not ideal. Each front-end server should indepen-
dently and adaptively be configured according to the key access
distribution it serves. Also, changes in workloads can alter the
key access distribution, the skew level, or the set of hot keys.
For example, social networks and web front-end servers that
serve different geographical regions might experience different
key access distributions and different local trends (e.g., #miami
vs. #ny). Therefore, CoT’s cache resizing algorithm learns the
key access distribution independently at each front-end and dy-
namically resizes the cache and the tracker to achieve lookup
load-imbalance target 𝐼𝑡 . CoT is designed to reduce the front-end
cache size that achieves 𝐼𝑡 . Any increase in the front-end cache
size beyond CoT’s recommendation mainly decreases back-end
load and should consider other conflicting parameters such as
the additional cost of the memory cost, the cost of updates and
maintaining the additional cached keys, and the percentage of
back-end load reduction that results from allocating additional
front-end caches.

Cache Resizing Algorithm (parameter configuration):
Front-end servers use CoT tominimize the cache size that achieves
a target load-imbalance 𝐼𝑡 . Initially, front-end servers are config-
ured with no front-end caches. The system administrator con-
figures CoT by an input target load-imbalance parameter 𝐼𝑡 that
determines the maximum tolerable imbalance between the most
loaded and least loaded back-end caching servers. Afterwards,
CoT expands both tracker and cache sizes until the current load-
imbalance achieves the inequality 𝐼𝑐 ≤ 𝐼𝑡 .

Algorithm 3 describes CoT’s cache resizing algorithm. CoT
divides the timeline into epochs and each epoch consists of 𝐸
accesses. Algorithm 3 is executed at the end of each epoch. The
epoch size 𝐸 is proportional to the tracker size 𝐾 and is dynami-
cally updated to guarantee that 𝐸 ≥ 𝐾 (Line 3). This condition
helps ensure that CoT does not trigger consecutive resizes before
the cache and the tracker are warmed up with keys. During each
epoch, CoT tracks the number of lookups sent to every back-end
caching server. In addition, CoT tracks the total number of cache
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hits and tracker hits during this epoch. At the end of each epoch,
CoT calculates the current load-imbalance 𝐼𝑐 as the ratio between
the highest and the lowest load on back-end servers during this
epoch. Also, CoT calculates the current average hit per cached
key 𝛼𝑐 . 𝛼𝑐 equals the total cache hits in the current epoch divided
by the cache size. Similarly, CoT calculates the current average
hit per tracked but not cache key 𝛼𝑘−𝑐 . CoT compares 𝐼𝑐 to 𝐼𝑡
and decides on a resizing action as follows.

(1) 𝐼𝑐 > 𝐼𝑡 and 𝛼𝑐 ≥ 𝛼𝑘−𝑐 (Line 1), this means that the target
load-imbalance is not achieved and cached keys observe
more hits than the keys in the tracker. CoT follows the bi-
nary search algorithm in searching for the front-end cache
size that achieves 𝐼𝑡 . Therefore, CoT decides to double the
front-end cache size (Line 2). As a result, CoT doubles the
tracker size as well to maintain a tracker to cache size ratio
of at least 2, 𝐾 ≥ 2 ·𝐶 (Line 2). The cache and tracker sizes
are doubled until either 𝐼𝑡 is achieved or a configurable
upper limit cache size is hit. In addition, CoT uses a local
variable 𝛼𝑡 to capture the quality of the cached keys when
𝐼𝑡 is first achieved. Initially, 𝛼𝑡 = 0. CoT then sets 𝛼𝑡 to the
average hits per cache-line 𝛼𝑐 during the current epoch
(Line 4). In subsequent epochs, 𝛼𝑡 is used to detect changes
in workload.

(2) 𝐼𝑐 ≤ 𝐼𝑡 (Line 5), this means that the target load-imbalance
has been achieved. However, changes in workload could
alter the quality of the cached keys. Therefore, CoT uses
𝛼𝑡 to detect and handle changes in workload in future
epochs as explained below.

Algorithm 3 CoT’s elastic resizing algorithm.
State: 𝑆𝑐 : keys in the cache, 𝑆𝑘 : keys in the tracker, C: cache
capacity, K: tracker capacity, 𝛼𝑐 : average hits per key in 𝑆𝑐 in the
current epoch, 𝛼𝑘−𝑐 : average hits per key in 𝑆𝑘−𝑐 in the current
epoch, 𝐼𝑐 : current load-imbalance, and 𝛼𝑡 : target average hit per
key
Input: 𝐼𝑡
1: if 𝐼𝑐 > 𝐼𝑡 && 𝛼𝑐 >= 𝛼𝑘−𝑐 then
2: resize(𝑆𝑐 , 2 ×𝐶) , resize(𝑆𝑘 , 2 × 𝐾 )
3: E := max (E, 𝐾 )
4: Let 𝛼𝑡 = 𝛼𝑐
5: else
6: if 𝛼𝑐 < (1 − 𝜖).𝛼𝑡 and 𝛼𝑘−𝑐 < (1 − 𝜖) .𝛼𝑡 then
7: resize(𝑆𝑐 , 𝐶2 ), resize(𝑆𝑘 ,

𝐾
2 )

8: else if 𝛼𝑐 < (1 − 𝜖) .𝛼𝑡 and 𝛼𝑘−𝑐 > (1 − 𝜖).𝛼𝑡 then
9: half_life_time_decay()
10: end if
11: end if

𝛼𝑡 is reset whenever the inequality 𝐼𝑐 ≤ 𝐼𝑡 is violated and
Algorithm 3 expands cache and tracker sizes. Ideally, when the
inequality 𝐼𝑐 ≤ 𝐼𝑡 holds, keys in the cache (the set 𝑆𝑐 ) achieve 𝛼𝑡
hits per cache-line during every epoch while keys in the tracker
but not in the cache (the set 𝑆𝑘−𝑐 ) do not achieve 𝛼𝑡 . This happens
because keys in the set 𝑆𝑘−𝑐 are colder than keys in the set 𝑆𝑐 .
𝛼𝑡 represents a target hit-rate per cache-line for future epochs.
Therefore, if keys in the cache do not meet the target 𝛼𝑡 in a
following epoch, this indicates that the quality of the cached
keys has changed and an action needs to be taken as follows.

(1) Case 1: keys in 𝑆𝑐 , on the average, do not achieve 𝛼𝑡 hits
per cacheline and keys in 𝑆𝑘−𝑐 do not achieve 𝛼𝑡 hits as

well (Line 6). This indicates that the quality of the cached
keys decreased. In response. CoT shrinks both the cache
and the tracker sizes (Line 7). If shrinking both cache and
tracker sizes results in a violation of the inequality 𝐼𝑐 < 𝐼𝑡 ,
Algorithm 3 doubles both tracker and cache sizes in the
following epoch and 𝛼𝑡 is reset as a result. In Line 6, we
compare the average hits per key in both 𝑆𝑐 and 𝑆𝑘−𝑐 to
(1 − 𝜖) · 𝛼𝑡 instead of 𝛼𝑡 . Note that 𝜖 is a small constant
<<< 1 that is used to avoid unnecessary resizing actions
due to insignificant statistical variations.

(2) Case 2: keys in 𝑆𝑐 do not achieve 𝛼𝑡 while keys in 𝑆𝑘−𝑐
achieve 𝛼𝑡 (Line 8). This signals that the set of hot keys
is changing and keys in 𝑆𝑘−𝑐 are becoming hotter than
keys in 𝑆𝑐 . For this, CoT triggers a half-life time decay-
ing algorithm that halves the hotness of all cached and
tracked keys (Line 9). This decaying algorithm aims to
forget old trends that are no longer hot to be cached (e.g.,
Gangnam style song). Different decaying algorithms have
been developed in the literature [14, 16, 17]. Therefore,
this paper only focuses on the resizing algorithm details
without implementing a specific decaying algorithm.

(3) Case 3: keys in 𝑆𝑐 achieve 𝛼𝑡 while keys in 𝑆𝑘−𝑐 do not
achieve 𝛼𝑡 . This means that the quality of the cached keys
has not changed and therefore, CoT does not take any
action. Similarly, if keys in both sets 𝑆𝑐 and 𝑆𝑘−𝑐 achieve
𝛼𝑡 , CoT does not take any action as long as the inequality
𝐼𝑐 < 𝐼𝑡 holds.

6 EXPERIMENTAL EVALUATION
This section evaluates both CoT’s caching and adaptive resiz-

ing algorithms. We choose to compare CoT to traditional and
widely used replacement policies like LRU and LFU. In addition,
we compare CoT to both ARC [36] and LRU-k [39]. As stated
in [36], ARC, in its online auto-configuration setting, achieves
comparable performance to LRU-2 (which is the most responsive
LRU-k) [39, 40], 2Q [29], LRFU [31], and LIRS [27] even when
these policies are perfectly tuned offline. Also, ARC outperforms
the online adaptive replacement policy MQ [45]. Therefore, we
compare with ARC and LRU-2 as representatives of these dif-
ferent polices. Section 6.1 explains the experimental setup. First,
we compare the hit rates of CoT’s cache algorithm to LRU, LFU,
ARC, and LRU-2 hit rates for different front-end cache sizes
in Section 6.2. Then, we compare the required front-end cache
size for each replacement policy to achieve a target back-end
load-imbalance 𝐼𝑡 in Section 6.3. In Section 6.4, we provide an
end-to-end evaluation of front-end caches comparing the end-to-
end performance of CoT, LRU, LFU, ARC, and LRU-2 on different
workloads with the configuration where no front-end cache is
deployed. Finally, CoT’s resizing algorithm is evaluated in Sec-
tion 6.5.
6.1 Experiment Setup

We deploy 8 instances of memcached [3] on a small cluster
of 4 caching servers (2 memcached instance per server). Each
caching server has an Intel(R) Xeon(R) CPU E3-1235 (8MB Cache
and 16GB RAM) with 4GB RAM dedicated to each memcached
instance. Caching servers and clients run ubuntu 18.04 and con-
nected to the same 10Gbps Ethernet network. No explicit network
or OS optimization are used.

A dedicated client machine with Intel(R) Core(TM) i7-6700HQ
CPU and 16GB of RAM is used to generate client workloads.
The client machine executes multiple client threads to submit
workloads to caching servers. Client threads use Spymemcached
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2.11.4 [5], a Java-based memcached client, to communicate with
memcached cluster. Spymemcached provides communication ab-
stractions that distribute workload among caching servers using
consistent hashing [30]. We slightly modified Spymemcached to
monitor the workload per back-end server at each front-end.
Client threads use Yahoo! Cloud Serving Benchmark (YCSB) [15]
to generate workloads for the experiments. YCSB is a standard
key/value store benchmarking framework. YCSB is used to gen-
erate key/value store requests such as Get, Set, and Insert. YCSB
enables configuring the ratio between read (Get) and write (Set)
accesses. Also, YCSB allows the generation of accesses that fol-
low different access distributions. As YCSB is CPU-intensive, the
client machine runs at most 20 client threads per machine to
avoid contention among client threads. During our experiments,
we realized that YCSB’s ScrambledZipfian workload generator
has a bug as it generates Zipfian workload distributions with
significantly less skew than the skew level it is configured with.
Therefore, we use YCSB’s Zipfian generator instead of YCSB’s
ScrambledZipfian. Figure 4 shows the hits per key generated for
the top 1024 out 1 million keys and 100 million samples of a zip-
fian 0.99 distribution from YCSB-Zipfian, YCSB-ScambledZipfian,
and theoretical zipfian generators. As shown, YCSB-Zipfian gen-
erator (CDF 0.512) is almost identical to the theoretical generator
(CDF 0.504) while YCSB-ScrambledZipfian generator (CDF 0.30)
has much less skew than the theoretical zipfian generator (40%
less hits in the top 1024 keys than the theoretical distribution).
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Our experiments use different variations of YCSB core work-
loads. Workloads consist of 1 million key/value pairs. Each key
consists of a common prefix "usertable:" and a unique ID.We use a
value size of 750 KB making a dataset of size 715GB. Experiments
use read intensive workloads that follow Tao’s [9] read-to-write
ratio of 99.8% reads and 0.2% updates. Unless otherwise specified,
experiments consist of 10 million key accesses sampled from
different access distributions such as Zipfian (s = 0.90, 0.99, or 1.2)
and uniform. Client threads submit access requests back-to-back.
Each client thread can have only one outgoing request. Clients
submit a new request as soon as they receive an acknowledge-
ment for their outgoing request.

6.2 Hit Rate
The first experiment compares CoT’s hit rate to LRU, LFU,

ARC, and LRU-2 hit rates using equal cache sizes for all replace-
ment policies. 20 client threads are provisioned on one client
machine and each cache client thread maintains its own cache.
Configuration: The cache size is varied from a very small cache
of 2 cache-lines to 2048 cache-lines. The hit rate is compared
using different Zipfian access distributions with skew parame-
ter values s = 0.90, 0.99, and 1.2 as shown in Figures 5(a), 5(b),
and 5(c) respectively. In addition, 14 days of Wikipedia’s real

traces, collected by [42], are used to compare CoT to other re-
placement policies, including LHD [8], as shown in Figure 5(d).
CoT’s tracker to cache size ratio determines how many tracking
nodes are used for every cache-line. CoT automatically detects
the ideal tracker to cache ratio for any workload by fixing the
cache size and doubling the tracker size until the observed hit-
rate gains from increasing the tracker size are insignificant i.e.,
the observed hit-rate saturates. The tracker to cache size ratio
decreases as the workload skew increases. A workload with high
skew simplifies the task of distinguishing hot keys from cold keys
and hence, CoT requires a smaller tracker size to successfully
filter hot keys from cold keys. Note that LRU-2 is also config-
ured with the same history to cache size as CoT’s tracker to
cache size. In this experiment, for each skew level, CoT’s tracker
to cache size ratio is varied as follows: 16:1 for Zipfian 0.9 and
Wikipedia, 8:1 for Zipfian 0.99, and 4:1 for Zipfian 1.2. Note that
CoT’s tracker maintains only the meta-data of tracked keys. Each
tracker node consists of a read counter and a write counter with
8 bytes of memory overhead per tracking node. In real-world
workloads, value sizes vary from tens of KBs to few MBs. For
example, Google’s Bigtable [10] uses a value size of 64 KB. There-
fore, a memory overhead of at most 1

8 KB (16 tracker nodes * 8
bytes) per cache-line is negligible (0.2%).

In Figures 5, the x-axis represents the cache size expressed as
the number of cache-lines. The y-axis represents the front-end
cache hit rate (%) as a percentage of the total workload size. At
each cache size, the cache hit rates are reported for LRU, LFU,
ARC, LRU-2, and CoT cache replacement policies. In addition,
TPC represents the theoretically calculated hit-rate from the
Zipfian distribution CDF if a perfect cache with the same cache
size is deployed. For each experiment, the TPC is configured with
the same key space size N = (1 million keys), the same sample
generated size (10 million samples), the same skew parameter s
(e.g., 0.9, 0.99, 1.2) of the experiment, and k equals to the cache
size (ranging from 2 – 2048). For example, a perfect cache of
size 2 cache-lines stores the top-2 hot keys and hence any access
to these 2 keys results in a cache hit while accesses to other
keys result in cache misses. For Wikipedia traces, the TPC is the
cumulative accesses of the top-C keys.

Analysis: As shown in Figure 5(a), CoT surpasses LRU, LFU,
ARC, and LRU-2 hit rates at all cache sizes. In fact, CoT achieves
almost similar hit-rate to the TPC hit-rate. In Figure 5(a), CoT
outperforms TPC for some cache size which is counter intuitive.
This happens as TPC is theoretically calculated using the Zipfian
CDF while CoT’s hit-rate is calculated out of YCSB’s sampled dis-
tributions which are approximate distributions. In addition, CoT
achieves higher hit-rates than both LRU and LFU with 75% less
cache-lines. As shown, CoT with 512 cache-lines achieves 10%
more hits than both LRU and LFU with 2048 cache-lines. Also,
CoT achieves higher hit rate than ARC using 50% less cache-
lines. In fact, CoT configured with 512 cache-lines achieves 2%
more hits than ARC with 1024 cache-lines. Taking tracking mem-
ory overhead into account, CoT maintains a tracker to cache
size ratio of 16:1 for this workload (Zipfian 0.9). This means that
CoT adds an overhead of 128 bytes (16 tracking nodes * 8 bytes
each) per cache-line. The percentage of CoT’s tracking memory
overhead decreases as the cache-line size increases. For example,
CoT introduces a tracking overhead of 0.02% when the cache-line
size is 750KB. Finally, CoT consistently achieves 8-10% higher
hit-rate than LRU-2 configured with the same history and cache
sizes as CoT’s tracker and cache sizes.
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Figure 5: Comparison of LRU, LFU, ARC, LRU-2, LHD, CoT and TPC’s hit rates using various Zipfian andWikipedia traces

Similarly, as illustrated in Figures 5(b) and 5(c), CoT outpaces
LRU, LFU, ARC, and LRU-2 hit rates at all different cache sizes.
Figure 5(b) shows that a configuration of CoT using 512 cache-
lines achieves 3% more hits than both configurations of LRU and
LFU with 2048 cache-lines. Also, CoT consistently outperforms
ARC’s hit rate with 50% less cache-lines. Finally, CoT achieves
3-7% higher hit-rate than LRU-2 configured with the same history
and cache sizes. Figures 5(b) and 5(c) highlight that increasing
workload skew decreases the advantage of CoT. As workload
skew increases, the ability of LRU, LFU, ARC, LRU-2 to distin-
guish between hot and cold keys increases and hence CoT’s
preeminence decreases.

In addition to YCSB synthetic traces, Wikipedia real traces
show in Figure 5(d) that CoT significantly outperforms other
replacement policies at every cache size. This Wikipedia real
traces comparison includes LHD [8], a recently proposed caching
policy specifically for cloud applications. As Figure 5(d) shows,
CoT is the only replacement policy that achieves almost the same
hit rate of the cumulative top-C keys beating LRU, LFU, ARC,
LRU-2, and LHD by 23-84%, 14-51%, 9-42%, 37-58%, and 4-24%
respectively for different cache sizes.

6.3 Back-End Load-Imbalance
In this section, we compare the required front-end cache sizes

for different replacement policies to achieve a back-end load-
imbalance target 𝐼𝑡 .Configuration:Different skewed workloads
are used, namely, Zipfian s = 0.9, s = 0.99, and s = 1.2. For each
distribution, we first measure the back-end load-imbalance when
no front-end cache is used. A back-end load-imbalance target 𝐼𝑡
is set to 𝐼𝑡 = 1.1. This means that the back-end is load balanced
if the most loaded back-end server processes at most 10% more
lookups than the least loaded back-end server. We evaluate the
back-end load-imbalance while increasing the front-end cache

size using different cache replacement policies, namely, LRU, LFU,
ARC, LRU-2, and CoT. In this experiment, CoT uses the same
tracker-to-cache size ratio as in Section 6.2. For each replacement
policy, we report the minimum required number of cache-lines
to achieve 𝐼𝑡 .

Dist. Load-
imbalance
No cache

Number of cache-lines
to achieve 𝐼𝑡 = 1.1
LRU LFU ARC LRU-2 CoT

Zipf 0.9 1.35 64 16 16 8 8
Zipf 0.99 1.73 128 16 16 16 8
Zipf 1.20 4.18 2048 2048 1024 1024 512

Table 2: Theminimum required number of cache-lines for
different replacement policies to achieve a back-end load-
imbalance target 𝐼𝑡 = 1.1 for different workload distribu-
tions.

Analysis: Table 2 summarizes the reported results for dif-
ferent distributions using LRU, LFU, ARC, LRU-2, and CoT re-
placement policies. For each distribution, the initial back-end
load-imbalance is measured using no front-end cache. As shown,
the initial load-imbalances for Zipf 0.9, Zipf 0.99, and Zipf 1.20 are
1.35, 1.73, and 4.18 respectively. For each distribution, the min-
imum required number of cache-lines for LRU, LFU, ARC, and
CoT to achieve a target load-imbalance of 𝐼𝑡 = 1.1 is reported. As
shown, CoT requires 50% to 93.75% less cache-lines than other
replacement policies to achieve 𝐼𝑡 . Since LRU-2 is configured with
a history size equals to CoT’s tracker size, LRU-2 requires the
second least number of cache-lines to achieve 𝐼𝑡 .
6.4 End-to-End Evaluation

In this section, we evaluate the effect of front-end caches
using LRU, LFU, ARC, LRU-2, and CoT replacement policies on
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the overall running time of different workloads. This experiment
also demonstrates the overhead of front-end caches on the overall
running time. Configuration: This experiment uses 3 different
workload distributions, namely, uniform, Zipfian (s = 0.99), and
Zipfian (s = 1.2) distributions as shown in Figure 6. For all the
three workloads, each replacement policy is configured with 512
cache-lines. Also, CoT and LRU-2 maintain a tracker (history) to
cache size ratio of 8:1 for Zipfian 0.99 and 4:1 for both Zipfian
1.2 and uniform distributions. In this experiment, a total of 1M
accesses are sent to the caching servers by 20 client threads
running on one client machine. Each experiment is executed 10
times and the average overall running time with 95% confidence
intervals are reported.
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Figure 6: Front-end caching effect on the end-to-end over-
all running time using different workload distributions.

In this experiment, the front-end servers are allocated in the
same cluster as the back-end servers. The average Round-Trip
Time (RTT) between front-end machines and back-end machines
is 244𝜇s. This small RTT allows us to fairly measure the overhead
of front-end caches by minimizing the performance advantages
achieved by front-end cache hits. In real-world deployments
where front-end servers are deployed in edge-datacenters and
the RTT between front-end servers and back-end servers is in
order of milliseconds, front-end caches achieve more significant
performance gains.

Analysis: The uniform workload is used to measure the over-
head of front-end caches. In a uniform workload, all keys in the
key space are equally hot and front-end caches cannot take any
advantage of workload skew to benefit some keys over others.
Therefore, front-end caches only introduce the overhead of main-
taining the cache without achieving any significant performance
gains. As shown in Figure 6, there is no significant statistical dif-
ference between the overall run time when there is no front-end
cache and when there is a small front-end cache with different
replacement policies. Adding a small front-end cache does not
incur run time overhead even for replacement policies that use a
heap, e.g., LFU, LRU-2, and CoT.

The workloads Zipfian 0.99 and Zipfian 1.2 are used to show
the advantage of front-end caches even when the network delays
between front-end servers and back-end servers are minimal. As
shown in Figure 6, workload skew results in significant over-
all running time overhead in the absence of front-end caches.
This happens because the most loaded server introduces a per-
formance bottleneck especially under thrashing (managing 20
connections, one from each client thread). As the load-imbalance
increases, the effect of this bottleneck is worsen. Specifically, in
Figure 6, the overall running time of Zipfian 0.99 and Zipfian 1.2
workloads are respectively 8.9x and 12.27x of the uniform work-
load when no front-end cache is deployed. Deploying a small

front-end cache of 512 cachelines significantly reduces the effect
of back-end bottlenecks. Deploying a CoT small cache in the
front-end results in 70% running time reduction for Zipfian 0.99
and 88% running time reduction for Zipfian 1.2 in comparison to
having no front-end cache. Other replacement policies achieve
running time reductions of 52% to 67% for Zipfian 0.99 and 80%
to 88% for Zipfian 1.2. LRU-2 achieves the second best average
overall running time after CoT with no significant statistical dif-
ference between the two policies. Since both policies use the same
tracker (history) size, this again suggests that having a bigger
tracker helps separate cold and noisy keys from hot keys. Since
the ideal tracker to cache size ratio differs from one workload to
another, having an automatic and dynamic way to configure this
ratio at run-time while serving workload gives CoT a big leap
over statically configured replacement policies.

 512

 1024

 2048

zipf-0.99

O
ve

ra
ll 

R
un

ni
ng

 T
im

e 
(S

ec
)

Workload Distribution

No Cache
LRU
LFU
ARC

LRU-2
CoT

Figure 7: Front-end caching effect on the end-to-end over-
all running time in Amazon EC2 cloud.

Similar results have been observed in a cloud setup as well.
We run the same end-to-end evaluation on Amazon EC2’s cloud.
20 client threads run on a t2.xlarge machine in California to send
1M requests following zipfian 0.99 distribution to 8 m3.medium
ElastiCache cluster in Oregon. Front-end cache and tracker sizes
are similar to the local experiments configuration. The key space
consists of 1M keys and each key has a value of 10KB (smaller
values are used since network latency is large in comparison to
local experiments). As shown in Figure 7, a small front-end cache
of 512 cache-lines has significant performance gains in compar-
ison to the setup where no front-end cache is deployed. Also,
both CoT and LRU-2 outperform other front-end cache replace-
ment policies. Also, CoT slightly outperforms LRU-2 achieving
2% performance gain on the average. The main advantage of
CoT over LRU-2 is its ability to dynamically discover the ideal
cache and tracker sizes that achieve backend load-balance as the
workload distribution changes. The following section illustrates
CoT’s performance in response to workload changes.
6.5 Adaptive Resizing

This section evaluates CoT’s auto-configure and resizing al-
gorithms. Configuration: First, we configure a front-end client
that serves a Zipfian 1.2 workload with a tiny cache of size two
cachelines and a tracker of size of four tracking entries. This
experiment aims to show how CoT expands cache and tracker
sizes to achieve a target load-imbalance 𝐼𝑡 as shown in Figure 8.
After CoT reaches the cache size that achieves 𝐼𝑡 , the average
hit per cache-line 𝛼𝑡 is recorded as explained in Algorithm 3.
Second, we alter the workload distribution to uniform and mon-
itors how CoT shrinks tracker and cache sizes in response to
workload changes without violating the load-imbalance target
𝐼𝑡 in Figure 9. In both experiments, 𝐼𝑡 is set to 1.1 and the epoch
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size is 5000 accesses. In both Figures 8a and 9a, the x-axis repre-
sents the epoch number, the left y-axis represents the number of
tracker and cache lines, and the right y-axis represents the load-
imbalance. The black and red lines represent cache and tracker
sizes respectively with respect to the left y-axis. The blue and
green lines represent the current load-imbalance and the tar-
get load-imbalance respectively with respect to the right y-axis.
Same axis description applies for both Figures 8b and 9b except
that the right y-axis represents the average hit per cache-line
during each epoch. Also, the light blue and the dark blue lines
represent the current average hit per cache-line and the target
hit per cache-line at each epoch with respect to the right y-axis.
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imbalance 𝐼𝑐 over epochs.
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cacheline 𝛼𝑐 over epochs.

Figure 8: CoT adaptively expands tracker and cache sizes
to achieve a target load-imbalance 𝐼𝑡 = 1.1 for a Zipfian 1.2
workload.

Analysis: In Figure 8a, CoT is initially configured with a cache
of size 2 and a tracker of size 4. CoT’s resizing algorithm runs in
2 phases. In the first phase, CoT discovers the ideal tracker-to-
cache size ratio that maximizes the hit rate for a fixed cache size
for the current workload. For this, CoT fixes the cache size and
doubles the tracker size until doubling the tracker size achieves
no significant benefit on the hit rate. This is shown in Figure 8b in
the first 15 epochs. CoT allows a warm up period of 5 epochs after
each tracker or cache resizing decision. Notice that increasing
the tracker size while fixing the cache size reduces the current
load-imbalance 𝐼𝑐 (shown in Figure 8a) and increases the current
observed hit per cache-line 𝛼𝑐 (shown in Figure 8b). Figure 8b
shows that CoT first expands the tracker size to 16 and during
the warm up epochs (epochs 10-15), CoT observes no significant
benefit in terms of 𝛼𝑐 when compared to a tracker size of 8. In
response, CoT therefore shrinks the tracker size to 8 as shown
in the dip in the red line in Figure 8b at epoch 16. Afterwards,
CoT starts phase 2 searching for the smallest cache size that
achieves 𝐼𝑡 . For this, CoT doubles the tracker and caches sizes

until the target load-imbalance is achieved and the inequality
𝐼𝑐 ≤ 𝐼𝑡 holds as shown in Figure 8a. CoT captures 𝛼𝑡 when 𝐼𝑡 is
first achieved. 𝛼𝑡 determines the quality of the cached keys when
𝐼𝑡 is reached for the first time. In this experiment, CoT does not
trigger resizing if 𝐼𝑐 is within 2% of 𝐼𝑡 . Also, as the cache size
increases, 𝛼𝑐 decreases as the skew of the additionally cached
keys decreases. For a Zipfian 1.2 workload and to achieve 𝐼𝑡 = 1.1,
CoT requires 512 cache-lines and 2048 tracker lines and achieves
an average hit per cache-line of 𝛼𝑡 = 7.8 per epoch.
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Figure 9: CoT adaptively shrinks tracker and cache sizes
in response to changing the workload to uniform.

Figure 9 shows howCoT successfully shrinks tracker and cache
sizes in response to workload skew drop without violating 𝐼𝑡 .
After running the experiment in Figure 8, we alter the workload
to uniform. Therefore, CoT detects a drop in the current average
hit per cache-line as shown in Figure 9b. At the same time, CoT
observe that the current load-imbalance 𝐼𝑐 achieves the inequality
𝐼𝑐 ≤ 𝐼𝑡 = 1.1. Therefore, CoT decides to shrink both the tracker
and cache sizes until either 𝛼𝑐 ≈ 𝛼𝑡 = 7.8 or 𝐼𝑡 is violated or until
cache and tracker sizes are negligible. First, CoT resets the tracker
to cache size ratio to 2:1 and then searches for the right tracker
to cache size ratio for the current workload. Since the workload
is uniform, expanding the tracker size beyond double the cache
size achieves no hit-rate gains as shown in Figure 9b. Therefore,
CoT moves to the second phase of shrinking both tracker and
cache sizes as long 𝛼𝑡 is not achieved and 𝐼𝑡 is not violated. As
shown, in Figure 9, CoT shrinks both the tracker and the cache
sizes until front-end cache size becomes negligible. As shown in
Figure 9a, CoT shrinks cache and tracker sizes while ensuring
that the target load-imbalance is not violated.
7 CONCLUSION

Cache on Track (CoT) is a decentralized, elastic and predictive
cache at the edge of a distributed cloud-based caching infrastruc-
ture. CoT’s novel cache replacement policy is specifically tailored
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for small front-end caches that serve skewed workloads. Using
CoT, system administrators do not need to statically specify the
cache size at each front-end. Instead, they specify a target back-
end load-imbalance 𝐼𝑡 and CoT dynamically adjusts front-end
cache sizes to achieve 𝐼𝑡 . Our experiments show that CoT’s re-
placement policy outperforms the hit-rates of LRU, LFU, ARC,
and LRU-2 for the same cache size on different skewed workloads.
CoT achieves a target server size load-imbalance with 50% to
93.75% less front-end cache in comparison to other replacement
policies. Finally, our experiments show that CoT successfully
auto-configures the size of front-end caches in the presence of
workload distribution changes.
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ABSTRACT
Edge computing emerges as an innovative platform for services
requiring low latency decision making. Its success partly depends
on the existence of efficient data management systems. We con-
sider that knowledge graph management systems have a key role
to play in this context due to their data integration and reasoning
features. In this paper, we present SuccinctEdge that can answer
SPARQL queries, including those requiring reasoning services
associated to some ontology. We provide details on its design and
implementation before demonstrating its efficiency on real-world
and synthetic data sets.

1 INTRODUCTION
Edge computing[2] corresponds to a processing paradigm that
brings storage, management, and processing of huge amounts
of data closer to the location where it needs to be performed. As
such, this emerging trend complements a cloud computing ap-
proach by supporting the design of highly local context aware and
responsive services, hence eliminating round trips to the Cloud,
as well as mask cloud computing outages. A key challenge for
systems designed for edge computing is an efficient data man-
agement in the context of mobile devices and sensors/actuators
which generally have stringent requirements on energy consump-
tion as well as memory, CPU usages and network bandwidth.

Our prototype system, SuccinctEdge1, has been designed for
edge computing from the get go and adopts the Resource De-
scription Framework (RDF). The adoption of this data model
is motivated by the data integration and reasoning facilities it
provides. Considering the former, the Linked Data principles2
together with the large set of Knowledge Graphs (KGs) available
via the Linked Open Data initiatives3 ease the design of Internet
of Things (IoT) applications. For instance, ontologies such as
the Sensor, Observation, Sample, Actuator (SOSA 4), Quantities,
Units, Dimensions, and Types (QUDT) 5 or Smart Applicances
Reference (SAREF)6 considerably simplify the task of describ-
ing, manipulating and connecting sensors and actuators. These
ontologies also serve smart measure management when reason-
ing services are introduced in SPARQL queries to infer implicit
consequences from explicitly represented knowledge.

SuccinctEdge favors a compressed, single index storage ap-
proach to a solution based on multiple indexes that could poten-
tially improve query execution but at the cost of a higher memory

1https://github.com/xwq610728213/SuccinctEdge
2https://www.w3.org/wiki/LinkedData
3https://lod-cloud.net/
4http://www.w3.org/TR/ns/sosa
5http://qudt.org/schema/qudt
6https://ontology.tno.nl/saref.ttl
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footprint. The applications we are targeting with SuccinctEdge
are the processing of a flow of RDF graphs (sent from sensors or
actuators) which are sharing a common topology. These graphs
are continuously queried by a set of SPARQL queries. In a typical
use case, these queries are searching for anomalies occurring over
a network of sensors (see Section sec:example for a motivating
example). As a result, these queries are executed once per graph
instance.

Our system makes an intensive use of succinct data structures
(SDS)[8], a family of data structures that adopts a compression
rate close to theoretical optimum, but simultaneously allows
efficient decompression-free query operations on the compressed
data. Together with our single index approach, SDS guarantees
a low memory footprint that fits with an in-memory storage
approach. The decompression-free aspects also tends to reduce
the number of CPU cycles on standard queries and inferences.

SuccinctEdge’s reasoning services are based on the LiteMat
encoding solution[4]. This approach prevents inference material-
ization and reduces the cost of the SPARQL query rewriting task,
the two most frequent reasoning solutions in RDF stores. As a
result of encoding most triple entries with integer values, this
approach improves the efficiency of graph pattern matching and
compresses RDF data sets, thus limiting the memory footprint of
a given graph.

SuccinctEdge is addressing the compact storage and efficient
querying of RDF data via SPARQL queries in the presence of
RDFS reasoning in an edge computing environment. The main
contributions of this paper are to (i) present a self-index, compact,
in-memory storage layout based on the bitmap and wavelet tree
SDSs, (ii) propose a decompression-free (i.e., the SDS compressed
graph does not need any decompression step to enable query ex-
ecution), efficient query processing and optimization of SPARQL
BGPs which are transformed into access, rank and select SDS
operations, (iii) support reasoning during query processing using
a smart encoding approach and (iv) propose a simple and auto-
matic approach to express complex queries requiring inferences
by preventing end-users to learn the details of used ontologies
and ontology annotations used at each sensor.

We demonstrate the efficiency of our implementation on an
evaluation conducted on real-world and synthetic data sets. This
paper is organized as follows. In Section 2, we motivate our
approach with a real-world example in an industrial setting. In
Section 3, we provide some background knowledge. Section 4
presents the overall architecture of SuccinctEdge. The query
optimizer and processor is presented in Section 5. Section 6 relates
our research to existing work and Section 7 provides a detailed
experimentation. We conclude the paper and present directions
for future work in Section 8.

2 MOTIVATING EXAMPLE
In this paper, we consider an upcoming deployment of Succinct-
Edge at some of ENGIE’s buildings where an IoT network is
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deployed. ENGIE is a multinational company operating in fields
such as energy transition, generation and distribution.

Our running example focuses on data harvested from a build-
ing management system with a first focus on potable water dis-
tribution. Intuitively, a flow of measures are obtained from a
network of sensors. A thorough analysis permits to detect anom-
alies such as leaks or other abnormal situations from, for instance,
pressure and flow measurements. The measures are usually rep-
resented as text files (e.g., CSV) but, thanks to some mapping
assertions and dedicated digital services deployed through APIs,
are transformed into a form of RDF graph (to be detailed later
in this paper) and annotated with concepts and properties of a
domain ontology.

Figure 1 presents an extract of such a graph which concerns
pressure and chemistry measures related to the water distribu-
tion management. Given such graph instances, our SuccinctEdge
system executes queries that can detect some patterns such as
anomalies linked to the water management system, e.g., incorrect
chemistry properties, network leak, etc. In a non edge computing
context, each measure would transit on a computing network
to a more powerful machine that could process the anomaly
detection. Such an approach as several drawbacks: (i) it makes
an intensive use of the computing and communication network
which can rapidly be overloaded, e.g., devices on the edge of
the network generally have low bandwidth, (ii) the high-end
computing machine also risks to be overcharged and stressed
from the amount of data received (potentially from hundreds to
thousands of sensors) and (iii) sending these data packets over
the network is not cost-free for these sensors, e.g., in terms of
energy consumption.

In a context where anomalies are the exception, it makes sense
to detect anomalies as close as possible to the sensors since it
would require to (i) send fewer data over the computing network
as that would occur only in anomaly cases, (ii) reduce decision la-
tency and (iii) keep the high-end computing machine unstressed.

In our experimentation at ENGIE, we are designing a query-
based anomaly detection approach that does not require from
the end-users a high level of expertise on the underlying domain
ontologies and its reasoning services. Hence these users only
express queries in relatively high concept terms and do not have
to worry about the inferences which are handled automatically
by the system. Expressing a query with abstract concepts, i.e.,
high in the concept hierarchy, permits to write a single query
that can tackle sensors performing similar measures but anno-
tated with different concepts and possibly with different measure
units. This is an important requisite for our use case where dif-
ferent sensor brands and types can coexist in a given network.
The simplicity of this approach was expected from ENGIE for
productivity reasons. In fact, it enables its sensor personnel to
concentrate on their tasks and not on adapting a given query
to the potentially large number of sensors in an industrial set-
ting. For instance, in the following real-world example, 2 sen-
sor platforms are measuring similar values, e.g., pressure and
chemistry-related, but each sensor annotates them with different
concepts. Considering Station1 the pressure and chemistry are
respectively annotated with 𝑞𝑢𝑑𝑡 : 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒𝑂𝑟𝑆𝑡𝑟𝑒𝑠𝑠𝑈𝑛𝑖𝑡 and
𝑞𝑢𝑑𝑡 : 𝐶ℎ𝑒𝑚𝑖𝑠𝑡𝑟𝑦, while for Station2, it is resp. 𝑞𝑢𝑑𝑡 : 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒
and 𝑞𝑢𝑑𝑡 : 𝐴𝑚𝑜𝑢𝑛𝑡𝑂 𝑓 𝑆𝑢𝑏𝑠𝑡𝑎𝑛𝑐𝑒𝑈𝑛𝑖𝑡 . Moreover, the pressure
value in Station1 is expressed in Bar while it is measured in
HectoPascal in Station2.

Since, the QUDT ontology7 states that:
𝑞𝑢𝑑𝑡 : 𝐴𝑚𝑜𝑢𝑛𝑡𝑂 𝑓 𝑆𝑢𝑏𝑠𝑡𝑎𝑛𝑐𝑒𝑈𝑛𝑖𝑡 ⊑ 𝑞𝑢𝑑𝑡 : 𝐶ℎ𝑒𝑚𝑖𝑠𝑡𝑟𝑦 ⊑

𝑞𝑢𝑑𝑡 : 𝑆𝑐𝑖𝑒𝑛𝑐𝑒𝑈𝑛𝑖𝑡 and 𝑞𝑢𝑑𝑡 : 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒𝑂𝑟𝑆𝑡𝑟𝑒𝑠𝑠𝑈𝑛𝑖𝑡 ⊑ 𝑞𝑢𝑑𝑡 :
𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒𝑈𝑛𝑖𝑡 ⊑ 𝑞𝑢𝑑𝑡 : 𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑠𝑈𝑛𝑖𝑡 , a single SPARQL query
can be written to address the peculiarities of each sensor at these
2 stations. The following query detects anomalies related to an
incorrect pressure value (either expressed in Bar or HectoPascal)
for sensors of stations 1 and 2:
SELECT ?x ?s ?ts ?v1 WHERE {
?x a sosa:Platform; sosa:hosts ?s.
?s sosa:observes ?o; a sosa:Sensor.
?o sosa:hasResult ?y; a sosa:Observation;
sosa:resultTime ?ts. ?y a sosa:Result;
qudt:numericValue ?v1; qudt:unit ?u1.
?u1 a qudt:PressureUnit. FILTER (?newV<3.00 || ?newV>4.50)
BIND(if(regex(str(?u1),"http://qudt.org/vocab/unit/BAR"),?v1,
if(regex(str(?u1),"http://qudt.org/vocab/unit/HectoPA")
,?v1/1000,0)) as ?newV) }

3 BACKGROUND KNOWLEDGE
3.1 Semantic Web standards
RDF is the W3C recommendation schema-free data model that
supports the description of data on the Web. It takes the form of
a graph consisting of a set of triples. Each triple is composed of
a subject, a predicate and an object. Properties can be qualified
as object or datatype. They both related a URI (or blank node) to
respectively a URI (or blank node) and a literal. SPARQL, another
W3C recommendation, enables to express queries over RDF data.
The syntax is inspired by SQL’s SELECT-FROM-WHERE but it
uses an approach based on matching a BGP, i.e., a set of triple
patterns (TP), on an RDF graph to retrieve query answer sets.
Finally, RDF Schema (RDFS) andWebOntology Languages (OWL)
enable the description of vocabulary semantics used in RDF data
sets. They support inference services based on their respective
expressiveness.

3.2 LiteMat
LiteMat is a semantic-aware encoding scheme that compresses
RDF data sets and supports reasoning services associated to the
RDFS ontology language. In this work, we focus on the 𝜌df[7]
subset of RDFS, i.e., inferences associated to the rdfs:range,
rdfs:domain, rdfs:subClassOf and rdfs:subPropertyOf prop-
erties. To address inferences drawn from these last two RDFS
predicates, we attribute numerical identifiers to ontology terms,
i.e., concepts and predicates, that are supporting the semantics.
This is performed by prefixing the encoding of a term with the
encoding of its direct parent. This encoding is computed using a
binary representation and all binary encoding entries are all of
the same length. The encoding is performed using a top-down
approach, e.g., starting from the most specific concept of the
hierarchy (typically owl:Thing, owl:topObjectProperty and
owl:topDataProperty for respectively the concept, object prop-
erty and datatype property hierarchies), until all leaves are pro-
cessed. Then a normalization is performed to guarantee that all
encoding entries have the same length, i.e., by setting right-most
bits to 0.

We now provide an example on a concept hierarchy (a sim-
ilar approach is used for property hierarchies). In Figure 2, we
consider a small ontology extract containing the following ax-
ioms: 𝐴 ⊑ 𝑇ℎ𝑖𝑛𝑔, 𝐵 ⊑ 𝑇ℎ𝑖𝑛𝑔, 𝐶 ⊑ 𝐵 and 𝐷 ⊑ 𝐵. Figure 2a

7https://qudt.org/
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Figure 1: Graph extract of our use-case (green nodes are blank nodes)

Figure 2: LiteMat encoding example

highlights the top-down encoding approach with (1) setting the
local identifier of𝑇ℎ𝑖𝑛𝑔, (2) its direct sub-concepts (𝐴 and 𝐵) and
𝐵’s sub-concepts in (3). Then, in (4) the normalization step is
performed, i.e., added right-most bits are written in red. Column
(5) provides the integer values attributed to each concept.

The mapping between URIs and their identifiers are stored in
dictionaries, two for the concepts and two for the properties to
support a bidirectional retrieval, i.e., from a URI to its identifier
and from an identifier to its URI. Moreover, in the former dic-
tionaries, additional identifier metadata are stored. For instance,
the local length (binary length before the normalization phase)
of each dictionary entry is stored along the final identifier entry.

Figure 2(b) emphasizes the different metadata of the LiteMat en-
coding for the 𝐵 concept: super concept identifier part, start of
local encoding and start of the normalization part.

The semantic encoding of concepts and predicates supports
reasoning services usually required at query processing time. For
instance, consider a query asking for the pressure value of sensors
of type S1. This would be expressed as the two following TPs: ?x
pressureValue ?v. ?x type S1. In the case sensor concept S1
has n sub-concepts, then a naive query reformulation requires
to run the union of n+1 queries. With LiteMat’s semantic-aware
encoding, we are able, using two bit-shift operations and an
addition, to compute the identifier interval, i.e., [lowerBound, up-
perBound), of all direct and indirect sub-concepts of S1. And thus
we can compute this query with a simple reformulation: (i) replac-
ing the concept S1 with a new variable : ?x type ?newVar and
(ii) introducing a filter clause constraining values of this variable:
FILTER (?newVar>=lowerBound && ?newVar<upperBound).

Considering the instance dictionary, each distinct entry is
assigned an arbitrary unique integer value.

3.3 Succinct Data structures
SDS represents a family of data structures that stores data in a
compact way, but still allows some efficient data access opera-
tions without decompression. There are different types of SDS,
among which we consider Wavelet Tree (WT) and BitMap (BM).
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Figure 3: Wavelet Tree example with its dictionary

SuccinctEdge represents an RDF graph into a combination of
these two structures to reach a very compact size without loss of
query efficiency.

BM is the most basic SDS we are using in SuccinctEdge. It is
a sequence of bits with some extra information to support the
efficient execution of SDS operations. BM is the basic building
block of WT’s nodes (as each node in the tree is a BM), but it
also relates different WTs in SuccinctEdge’s triple representation
(further details in Section 4).

WT [8], whose name reveals some affinity with the idea of the
wavelet packet decomposition in signal processing, refers to a
data structure which decomposes a data sequence into a set of
nodes of a balanced binary tree. An example of a WT is given in
Figure 3b. Suppose that we have a sequence 𝐴𝐵𝐹𝐸𝐶𝐵𝐶𝐶𝐴𝐷𝐸𝐹 ,
where each letter is mapped with an identifier in an incremental
order, e.g.,𝐴 is denoted with 0, 𝐵 is denoted with 1 (see dictionary
in Figure 3a. A tree structure is constructed from this sequence
as follows: each level of this tree divides the sequence of previous
nodes into two sub-sequences by the corresponding bit. For exam-
ple, from root to the first level, 𝐴𝐵𝐹𝐸𝐶𝐵𝐶𝐶𝐴𝐷𝐸𝐹 is divided into
𝐴𝐵𝐶𝐵𝐶𝐶𝐴𝐷 and 𝐹𝐸𝐸𝐹 by the first bit of each identifier entry.
This strategy is applied recursively until each leaf is computed.

SDS support three operations to access data: 𝑅𝑎𝑛𝑘 , 𝑆𝑒𝑙𝑒𝑐𝑡 and
𝐴𝑐𝑐𝑒𝑠𝑠 . Given a sequence 𝑆 , the operation 𝑆 . 𝐴𝑐𝑐𝑒𝑠𝑠 (𝑖) (also de-
noted as 𝑆 [𝑖]) refers to the (𝑖 + 1)𝑡ℎ element in 𝑆 . 𝑆.𝑅𝑎𝑛𝑘 (𝑖, 𝑐)
returns the number of occurrences of 𝑐 from 𝑆 ’s beginning to in-
dex 𝑖 . Finally, 𝑆.𝑆𝑒𝑙𝑒𝑐𝑡 (𝑖, 𝑐) returns the index of 𝑖𝑡ℎ occurrence of
element 𝑐 in 𝑆 . These operations can be computed in O(1) for BM
and O(log n) for WT where n is the size of the vocabulary. Figure
3c provides an example over a simple BM. Dedicated algorithms
permit to compute these 3 operations over WT.

4 ARCHITECTURE OVERVIEW
Before providing an overview of the SuccinctEdge RDF store,
we describe a standard running setting at an ENGIE building.
Typically, the person responsible for the building maintenance
supervises a set of IoT devices from a SuccinctEdge server. From
this central computer, the administrator is able to register new
IoT devices installed in this set of buildings. Each IoT device
typically runs a SuccinctEdge instance (client) which can exe-
cute many SPARQL queries. The administrator receives alerts
from SuccinctEdge instances has abnormal sensor measures are
occurring. Hence, each sensor modification (e.g., a sensor is re-
placed due to a failure, a sensor data schema is modified) must go
through an administration step which is performed on a central
computer. Apart from such maintenance operations, this server
also performs the pre-processing task consisting of encoding
ontologies using the LiteMat scheme. In this context, and we

consider in a large number of industrial settings, the ontologies
are stable and thus rarely change. As explained previously, in
SuccinctEdge, these ontologies take the form of a set of dictio-
naries (since their semantics are encoded via the use of LiteMat).
These dictionaries are broadcasted to the different SuccinctEdge
instances running at the edge.

An overview of SuccinctEdge’s architecture is presented in
Figure 4. Like most RDF stores, all triples are encoded according
to some dictionaries. The underlying basic concept of a dictio-
nary is to provide a bijective function mapping long terms (e.g.,
URIs, blank nodes or literals) to short identifiers (e.g., integers).
More precisely, a dictionary should provide two basics opera-
tions : string-to-id and id-to-string (also referred in the
literature as locate and extract operations). In a typical use of
SuccinctEdge, the query engine will call the locate operation to
rewrite the query into a list to match the data encoding, while
the extract operation will be called to translate the result into
the original format. In our case, we are using LiteMat (see Section
3.2) to generate the concept, property and individual dictionaries.

The Triple store component adopts a single index based on
the predicate, subject, object (PSO) triple permutation. That is,
the triples of the graph are sorted in ascending order over the P,
S and O values of our dictionaries. The PSO order is motivated
by the fact that the basic graph pattern of queries submitted to
SuccinctEdge have predicates filled in with URIs (as opposed
to variables). This corresponds to typical IoT use cases where
queries are retrieving information from measures rather than
serving to discover patterns in the graphs. In fact, there is no
need for discovery since the graph patterns are well known in
advance and are very rarely modified (i.e., mostly due to sensor
failure in industrial use-cases).

The Triple store component also highlights that we make
a distinction between object (expect rdf:type) and datatype
properties. In the former, objects are individuals and thus encoded
with the respective instance dictionary while in the latter, objects
are literals and stored using a flat data structure to store literals.
This last data structure is motivated by the fact that it is not
reasonable to create an entry in the instance dictionary for each
new literal value. Intuitively, a sensor generally sends numerical
values corresponding to physical measurement at a given time.
Depending on the precision of these measures, the amount of
different values to store in the instance dictionary is potentially
infinite. So, we prefer to store the values as they have been sent
by sensors, possibly with some redundancy, in order to prevent
a complex and costly individual dictionary management.

In terms of data structures, WTs are used for the property and
subject layers as well as the object layer for object properties.
In order to relate a WT of one layer to another, we are using
a BM. Figure 5b represents the triple set of Figure 5a where
a WT corresponds to balanced tree of BMs. Intuitively the PS
(respectively SO) bitmap permits to link a given P (resp. S) to
several S (resp. O) values. In Figure 5b, p1 is connected to s1,
s2 and s4 because the PS bitmap starts with a 100 sequence: ’1’
states that the sequence of p1 starts with a given subject (s1) and
the ’00’ states that 2 other subjects are linked to p1. Moreover,
the 4th bit in the PS BM (i.e., set to ’1’) starts the sequence of the
second property entry in the P WT (i.e., p2).

Finally, triples containing a rdf:type property are stored in
the RDFType store layout. These triples generally represent an
important proportion of the triple set in real-world RDF data sets.
We simply store them in a red-black tree in order to maintain the
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Figure 4: Architecture overview of SuccinctEdge

Figure 5: RDF graph representation: (a) as a PSO-based forest and (b) in SuccinctEdge as a combination of wavelet trees
and bitmaps (only considering object properties)

search complexity to O(log(n)) while being fast when we insert
rdf:type triples during database construction.

5 QUERY PROCESSING AND
OPTIMIZATION

In this section, we present the query optimization and process-
ing solutions developed for SuccinctEdge. Their main goals are
respectively to define an efficient TP join ordering, by combining
heuristic and cost-based approaches, and to generate a physical
plan composed of SDS operations (i.e., access, rank and select).

5.1 Query Optimization
The design of our query optimizer considers the limitations of
the devices on which SuccinctEdge is running on, i.e., limited
memory space and computing power. Due to these constraints,
our system only generates left-deep join trees which generally
reduce the amount of memory used by the search process.

As stated in [10], join ordering is the most crucial issue in
SPARQL query optimization. This is mainly due to the potentially
high number of triple patterns and thus of join operations that

one can find in BGPs. For instance, in our IoT building manage-
ment experimentation, we have frequently encountered queries
in the range of 10 joins.

In order to optimize a given SPARQL query, our query engine
constructs a query graph where each TP of the SPARQL query
corresponds to a node of the query graph. Each query graph
node is also annotated to state whether its property is rdf:type
or not. The nodes in this graph are connected if they share a
common variable, hence forming a join. Moreover, the edges of
this query graph are labeled with a join type, either SO or SS for
respectively subject-object and subject-subject joins.

Example 5.1. Figure 6b displays the query graph associated
with the SPARQL query presented in Figure 6a. This query con-
tains 7 TPs, denoted tp1 .. tp7. The dotted nodes in the query
graph correspond to rdf:type TPs.

Given a query graph, our optimizer uses Algorithm 1 to pro-
duce a join order. Intuitively, starting from a given TP, it invokes
an overloaded 𝑔𝑒𝑡𝑀𝑜𝑠𝑡𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑒 method to search for the next
TP to join with. This method uses a set of static rules together
with some data statistics. In terms of the former, we have been
influenced by Heuristic 1 of [12] which defines an execution

233



Figure 6: Query, query graph and join ordering

order for the 8 possible TP combinations. In the context of Suc-
cinctEdge, we do not need to consider all combinations since TPs
with either zero or three variables, i.e., (𝑠, 𝑝, 𝑜) and (?𝑠, ?𝑝, ?𝑜),
are highly unlikely to occur in a real-world IoT SPARQL query.
Intuitively, this heuristic states that TPs with the fewest variables
should be executed first. Our adaptation re-orders the original
proposition by taking into account the fact that our access paths
are limited to PSO for non rdf:type properties and to SO/OS
paths for rdf:type triples. As presented in Section 4, the latter
access path (SO/OS on rdf:type) is more efficient than the one
based on the SDS structures. Our TP order is thus:

(s,rdf:type,?o)>(?s,rdf:type,o)>(s,p,?o)>(?s,p,o)>(?s,p,?o), where
p denotes any property different from rdf:type and the relation
tp1 > tp2 states that tp1 should be executed before tp2. The
(s,p,?o)>(?s,p,o) order is due to the navigation mode in our multi-
layer SDS triple representation which is PSO based, i.e., it is more
efficient to retrieve objects given a subject/property pair than to
compute subjects from a property/object pair. The (?s rdf:type
?o) TP is not considered relevant in a practical IoT context.

This first heuristic is generally not sufficient to decide which
TP to execute first among a set of other TPs. Hence, we are
considering a second heuristic that takes into consideration the
linearity required by a left-deep join tree and examines the types
of join possible between TPs. Due to the PSO self-index SDS
structure used for non-rdf:type triples, SS joins are preferred
over SO joins, i.e., 𝑆 ⊲⊳ 𝑆 > 𝑆 ⊲⊳ 𝑂 . Other forms of joins, i.e., SP,
OP, PP have a lower priority since they are rarely encountered
in the setting where SuccinctEdge is relevant.

In order to minimize intermediate results, the optimizer also
relies on a set of statistics computed at dictionary creation-time.
Intuitively, each dictionary persists the number of occurrences of
each of its entries, i.e., concept, property and non-literal individ-
uals. Our statistic approach considers the hierarchy position of a
given concept or property when computing the total number of
triples it is involved in. For example, with the following concept
hierarchy 𝐶2 ⊑ 𝐶1 ⊑ 𝐶0 and 𝐶3 ⊑ 𝐶0, the set of triples involving
instances of concept 𝐶0 will be the set of instances of type 𝐶𝑖
with i ∈ (0, 1, 2, 3). A similar process is applied to get the correct
statistics for properties involved in a property hierarchy. Finally,
some statistics are also computed at run-time, e.g., the BM and
WT data structures facilitate the computation of certain statis-
tics. For instance, Algorithm 2 computes the number of triples
containing a certain property.

Algorithm 1 first starts with the identification of the most
selective rdf:type TP with an SS join. In the case it does not find
an rdf:type TP or finds only rdf:type TP connected with SO joins,
it then selects a non-rdf:type TP to start with. In the case several
TPs satisfy our constraint, the statistics permit to take a decision.

That first TP is appended to our 𝑡𝑝𝑂𝑟𝑑𝑒𝑟 sequence. We then loop
over the remaining nodes of the query graph until all TPs have
been added to the sequence. At each iteration of the loop, the
𝑔𝑒𝑡𝑀𝑜𝑠𝑡𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑒 method considers TPs in the 𝑡𝑝𝑂𝑟𝑑𝑒𝑟 sequence
and searches for the next TP to append to this sequence. This
search is again based on our two heuristics and the usage of
statistics.

Example 5.2. The left-deep join tree displayed in Figure 6c
has been defined using Algorithm 1 considering that tp2 is more
selective than tp1, i.e., the number of occurrences of C2 is lower
than the one of C1. Once tp2 has been selected, the optimizer has
the choice to join it with tp6 or tp7. tp7 is chosen since a SS join
is preferred to a SO join. At this stage, the number of occurrences
of concept C3, i.e., tp3, can be lower than the number of already
computed binding for ?x, and thus tp3 is selected. Given that
tp2, tp7 and tp3 have already been considered, tp6 is the only
alternative that can be considered and similarly for the remaining
TPs, i.e., tp5, tp4 and tp1.

Algorithm 1: Computation of a TP order
Input: query graph G
Output: ordered sequence of TPs

1 𝑡𝑝𝑂𝑟𝑑𝑒𝑟 ← ∅;
2 𝑛 ← 𝑔𝑒𝑡𝑀𝑜𝑠𝑡𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑒 (𝑟𝑑 𝑓 : 𝑡𝑦𝑝𝑒);
3 𝑡𝑝𝑂𝑟𝑑𝑒𝑟 ← 𝑡𝑝𝑂𝑟𝑑𝑒𝑟 + 𝑛;
4 while not all G nodes are in tpOrder do
5 𝑛 ← 𝑔𝑒𝑡𝑀𝑜𝑠𝑡𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑒 (𝑡𝑝𝑂𝑟𝑑𝑒𝑟 );
6 𝑡𝑝𝑂𝑟𝑑𝑒𝑟 ← 𝑡𝑝𝑂𝑟𝑑𝑒𝑟 + 𝑛;
7 end
8 return tpOrder;

5.2 Query processing
Once an order is defined by SuccinctEdge’s query optimizer, our
system translates TPs into SDS’s standard operations: access,
rank and select. We are using an additional function, namely
𝑟𝑎𝑛𝑔𝑒𝑆𝑒𝑎𝑟𝑐ℎ(𝑎, 𝑏, 𝑐), which finds all the occurrences of value 𝑐 in
the interval (𝑎, 𝑏). It uses a binary search, i.e., due to the ordering
imposed on subjects for a given property, and returns the indexes
of matching values. The use of this function speeds up query
execution since it efficiently prunes searches by just computing
the boundaries of the Subject WT, i.e., first and last subject values
of a given property, instead of scanning all values of that interval.
A similar optimization is used when searching objects of given
property/subject pair, i.e., using the boundary of Object WT.
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Algorithm 2: Compute the number of triples corre-
sponding to a certain predicate.
Input: Predicate p
Output: Number n

1 𝑖𝑑𝑝 ← 𝐹𝑖𝑛𝑑𝐼𝑑𝐹𝑟𝑜𝑚𝐷𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑟𝑦 (𝑝);
2 𝑖𝑛𝑑𝑒𝑥𝑝 ← 𝑤𝑡𝑝 .𝑠𝑒𝑙𝑒𝑐𝑡 (1, 𝑖𝑑𝑝 );
3 𝑖𝑛𝑑𝑒𝑥𝑠𝐵𝑒𝑔𝑖𝑛 ← 𝑏𝑖𝑡𝑚𝑎𝑝𝑝𝑠 .𝑠𝑒𝑙𝑒𝑐𝑡 (𝑖𝑛𝑑𝑒𝑥𝑝 + 1, 1);
4 𝑖𝑛𝑑𝑒𝑥𝑠𝐸𝑛𝑑 ← 𝑏𝑖𝑡𝑚𝑎𝑝𝑝𝑠 .𝑠𝑒𝑙𝑒𝑐𝑡 (𝑖𝑛𝑑𝑒𝑥𝑝 + 2, 1);
5 𝑖𝑛𝑑𝑒𝑥𝑜𝐵𝑒𝑔𝑖𝑛 ← 𝑏𝑖𝑡𝑚𝑎𝑝𝑠𝑜 .𝑠𝑒𝑙𝑒𝑐𝑡 (𝑖𝑛𝑑𝑒𝑥𝑠𝐵𝑒𝑔𝑖𝑛 + 1, 1);
6 𝑖𝑛𝑑𝑒𝑥𝑜𝐸𝑛𝑑 ← 𝑏𝑖𝑡𝑚𝑎𝑝𝑠𝑜 .𝑠𝑒𝑙𝑒𝑐𝑡 (𝑖𝑛𝑑𝑒𝑥𝑠𝐸𝑛𝑑 + 2, 1);
7 𝑛 ← 𝑖𝑛𝑑𝑒𝑥𝑜𝐸𝑛𝑑 − 𝑖𝑛𝑑𝑒𝑥𝑜𝐵𝑒𝑔𝑖𝑛 ;
8 return n;

We now present two translation examples in Algorithm 3 and
4 for resp. the (𝑠, 𝑝, ?𝑜) and (?𝑠, 𝑝, 𝑜) TPs. Algorithm 3 shows how
to retrieve an answer set with a (𝑠, 𝑝, ?𝑜) TP. The idea is to first
compute an interval of object values related to a given predicate
and subject pair. This is performed by navigating through our BM
and WT structures. All the objects in this interval are the results
of this TP. Algorithm 4 retrieves all the subjects of a (?𝑠, 𝑝, 𝑜) TP.
Unlike Algorithm 3, we can not locate all the subjects directly. So
our strategy is to get the interval of all the objects corresponding
to the known predicate top-down, after which we locate the
object in this interval (there may be multiple appearances) and
get the corresponding subjects.

Algorithm 3: Search the triple pattern (𝑠, 𝑝, ?𝑜)
Input: Predicate s,p
Output: Results res

1 𝑖𝑑𝑝 ← 𝐹𝑖𝑛𝑑𝐼𝑑𝐹𝑟𝑜𝑚𝐷𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑟𝑦 (𝑝);
2 𝑖𝑑𝑠 ← 𝐹𝑖𝑛𝑑𝐼𝑑𝐹𝑟𝑜𝑚𝐷𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑟𝑦 (𝑠);
3 𝑖𝑛𝑑𝑒𝑥𝑝 ← 𝑤𝑡𝑝 .𝑠𝑒𝑙𝑒𝑐𝑡 (1, 𝑖𝑑𝑝 );
4 𝑖𝑛𝑑𝑒𝑥𝑠𝐵𝑒𝑔𝑖𝑛 ← 𝑏𝑖𝑡𝑚𝑎𝑝𝑝𝑠 .𝑠𝑒𝑙𝑒𝑐𝑡 (𝑖𝑛𝑑𝑒𝑥𝑝 + 1, 1);
5 𝑖𝑛𝑑𝑒𝑥𝑠𝐸𝑛𝑑 ← 𝑏𝑖𝑡𝑚𝑎𝑝𝑝𝑠 .𝑠𝑒𝑙𝑒𝑐𝑡 (𝑖𝑛𝑑𝑒𝑥𝑝 + 2, 1);
6 for 𝑖𝑛𝑑𝑒𝑥𝑠 in

𝑤𝑡𝑠 .𝑟𝑎𝑛𝑔𝑒𝑆𝑒𝑎𝑟𝑐ℎ(𝑖𝑛𝑑𝑒𝑥𝑠𝐵𝑒𝑔𝑖𝑛, 𝑖𝑛𝑑𝑒𝑥𝑠𝐸𝑛𝑑 , 𝑖𝑑𝑠 ) do
7 𝑖𝑛𝑑𝑒𝑥𝑜𝐵𝑒𝑔𝑖𝑛 ← 𝑏𝑖𝑡𝑚𝑎𝑝𝑠𝑜 .𝑠𝑒𝑙𝑒𝑐𝑡 (𝑖𝑛𝑑𝑒𝑥𝑠𝐵𝑒𝑔𝑖𝑛 + 1, 1);
8 𝑖𝑛𝑑𝑒𝑥𝑜𝐸𝑛𝑑 ← 𝑏𝑖𝑡𝑚𝑎𝑝𝑠𝑜 .𝑠𝑒𝑙𝑒𝑐𝑡 (𝑖𝑛𝑑𝑒𝑥𝑠𝐸𝑛𝑑 + 2, 1);
9 for 𝑖𝑛𝑑𝑒𝑥𝑜 ← 𝑖𝑛𝑑𝑒𝑥𝑜𝐵𝑒𝑔𝑖𝑛 to 𝑖𝑛𝑑𝑒𝑥𝑜𝐸𝑛𝑑 do
10 𝑖𝑑𝑜 ← 𝑤𝑡𝑜 [𝑖𝑛𝑑𝑒𝑥𝑜 ];
11 add (𝑖𝑑𝑠 , 𝑖𝑑𝑝 , 𝑖𝑑𝑜 ) into res;
12 end
13 end
14 return res;

In cases where reasoning services are necessary to provide an
exhaustive answer set, we can replace 𝑖𝑛𝑑𝑒𝑥𝑝 with a continuous
interval corresponding to a LiteMat interval. This interval is
efficiently computed given the order imposed on leaves of a
certain WT, e.g., Property WT for the property hierarchy. The
larger and deeper a property hierarchy, the more efficient this
optimization approach since it prevents from navigating in the
complete tree of a given WT.

TPs containing rdf:type are processed differently using the
RDFType store component, where some simple structure look-
ups permit to efficiently retrieve to subjects of a given concept
or the concepts of a given subject.

Figure 7: Merge join example

The next step corresponds to joining the results obtained from
the execution of TPs. This occurs when different TPs share a
common variable. One of our joining approach amounts to prop-
agate variable assignments from one TP to another. Consider the
triple set of Figure 5a and TPs (?𝑠, 𝑝1, 𝑜1) and (?𝑠, 𝑝2, ?𝑜). The
first TP gets the following assignments: ?𝑠 : {𝑠1, 𝑠2} which will
serve to dynamically generate (𝑠1, 𝑝2, ?𝑜) and (𝑠2, 𝑝2, ?𝑜) for the
second triple.

During the join operation, we can benefit from a merge join
(due to the original PSO value order) in certain cases when the
values assigned to a joining variable to the TP are kept in order.
For instance, in the case of a star-shaped BGP, e.g., (?𝑠, 𝑝1, 𝑜1) and
(?𝑠, 𝑝2, ?𝑜), thanks to the facts that all the subjects connected to
a certain predicate are ordered and that all the objects connected
to one certain subject are also ordered, we can perform a merge
join on the subject variable. Figure 7 provides a graph pattern
(on the right side) and an RDF Graph (left side). From the first
TP, we can retrieve {(𝑝1, 𝑠1, 𝑜1), (𝑝1, 𝑠2, 𝑜1)} as the answer set.
Clearly, since the subjects are ordered for a given predicate, the
system can easily use a merge join with the 2nd TP of the query.
In cases where the order is not guaranteed, we use nested loop
joins.

Algorithm 4: Search the triple pattern (?𝑠, 𝑝, 𝑜)
Input: Predicate p
Output: Results res

1 𝑖𝑑𝑝 ← 𝐹𝑖𝑛𝑑𝐼𝑑𝐹𝑟𝑜𝑚𝐷𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑟𝑦 (𝑝);
2 𝑖𝑛𝑑𝑒𝑥𝑝 ← 𝑤𝑡𝑝 .𝑠𝑒𝑙𝑒𝑐𝑡 (1, 𝑖𝑑𝑝 );
3 𝑖𝑛𝑑𝑒𝑥𝑠𝐵𝑒𝑔𝑖𝑛 ← 𝑏𝑖𝑡𝑚𝑎𝑝𝑝𝑠 .𝑠𝑒𝑙𝑒𝑐𝑡 (𝑖𝑛𝑑𝑒𝑥𝑝 + 1, 1);
4 𝑖𝑛𝑑𝑒𝑥𝑠𝐸𝑛𝑑 ← 𝑏𝑖𝑡𝑚𝑎𝑝𝑝𝑠 .𝑠𝑒𝑙𝑒𝑐𝑡 (𝑖𝑛𝑑𝑒𝑥𝑝 + 2, 1);
5 𝑖𝑛𝑑𝑒𝑥𝑜𝐵𝑒𝑔𝑖𝑛 ← 𝑏𝑖𝑡𝑚𝑎𝑝𝑠𝑜 .𝑠𝑒𝑙𝑒𝑐𝑡 (𝑖𝑛𝑑𝑒𝑥𝑠𝐵𝑒𝑔𝑖𝑛 + 1, 1);
6 𝑖𝑛𝑑𝑒𝑥𝑜𝐸𝑛𝑑 ← 𝑏𝑖𝑡𝑚𝑎𝑝𝑠𝑜 .𝑠𝑒𝑙𝑒𝑐𝑡 (𝑖𝑛𝑑𝑒𝑥𝑠𝐸𝑛𝑑 + 2, 1);
7 for 𝑖𝑛𝑑𝑒𝑥𝑜 in

𝑤𝑡𝑜 .𝑟𝑎𝑛𝑔𝑒𝑆𝑒𝑎𝑟𝑐ℎ(𝑖𝑛𝑑𝑒𝑥𝑜𝐵𝑒𝑔𝑖𝑛, 𝑖𝑛𝑑𝑒𝑥𝑜𝐸𝑛𝑑 , 𝑖𝑑𝑜 ) do
8 𝑖𝑛𝑑𝑒𝑥𝑠 ← 𝑏𝑖𝑡𝑚𝑎𝑝𝑠𝑜 .𝑟𝑎𝑛𝑘 (𝑖𝑛𝑑𝑒𝑥𝑜 + 1, 1) − 1;
9 𝑖𝑑𝑠 ← 𝑤𝑡𝑠 [𝑖𝑛𝑑𝑒𝑥𝑠 ];

10 add (𝑖𝑑𝑠 , 𝑖𝑑𝑝 , 𝑖𝑑𝑜 ) into res;
11 end
12 return res;

Previous executions steps are repeated until all the TPs have
been processed. Then the answer set of the query is translated
using our dictionaries and presented to the end-user or applica-
tion.

6 RELATEDWORK
Header Dictionary Triples (HDT)[6] is a compact data structure
and binary serialization for RDF data. The Triples component of
HDT requires that triples are sorted in a specific order, e.g., SPO.
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The triples are stored in so-called Bitmap Triples which repre-
sents a forest of RDF trees, e.g., each tree is rooted with a given
subject value. The remaining tree layers, e.g., for P andO, each cor-
respond to a sequence of identifiers and a bit sequence which con-
nects layers like our BMs. LikeHDT, SuccinctEdge represents RDF
triples as trees but it makes an extensive use of WTs and depends
on three different storage approaches, namely Object-triple-store,
Datatype-triple-store and RDFType-store. Moreover, Succinct-
Edge is equipped with a full-fledged query processing component
and supports RDFS reasoning within SPARQL queries.

In [11], a so-called Semantic Index is proposed for Ontology-
Based Data Access (OBDA) systems. In this approach, each entity
(concept or property) in the corresponding hierarchy is assigned
a numerical value according to a breadth-first search traversing of
the hierarchy. Provided with this assignment, one is ensured that
any sub-hierarchy is associated to a consecutive set of numeri-
cal values (i.e., an interval). Intuitively, each entity is associated
to an interval covering the indices of all its sub-entities. This
approach is related to the LiteMat encoding scheme but the inte-
gration in SuccinctEdge permits a high compression rate with a
decompression-free approach at query execution time. Moreover,
Semantic Index is just an encoding scheme for a knowledge base
and is not a complete query processor.

WaterFowl[3] was designed as a first attempt to use SDS for
RDF storage and query processing. Although its compactness
can be used in an edge computing setting, it lacks the different
object storage implementation and query processing (including
optimization) features of SuccinctEdge.

RDF4Led is an RDF store designed for edge computing. Com-
pared to our system, RDF4led is disk-based, i.e., it stores data
on a SD card, and depends on multiple indexes which imply a
high memory footprint. Moreover, it doesn’t support reasoning
services nor SPARQL’s UNION clause which prevents to apply a
query rewriting in order to support reasoning services.

ZipG[5] is a distributed graph store designed for the property
graph data model. Hence it does not provide support for SPARQL
(or any declarative query language) or reasoning services. Its
storage layout is based on the Succinct[1] system and is mainly
composed of flat binary unstructured files. ZipG is not compatible
with devices located at the edge of a network. In fact, it thrives
in a cloud computing setting.

TerminusDB8 is an open-source general-purpose graph data-
base. It aims to store very large graphs inmainmemory by scaling
vertically. Such an approach is not compatible with the edge com-
puting ecosystem that we are targeting. Moreover, TerminusDB
does not support Semantic Web standards and hence can not
benefit from the existence of a large set of available ontologies to
support data integration or support reasoning services associated
to RDFS or OWL ontology languages.

7 EVALUATION
7.1 Experimental setting
Our experimentation is conducted on a Raspberry Pi 3B+ which
can be considered as a typical edge computing device on which
we can run some sophisticated programs. This small computer is
equipped with a Cortex-A53 (ARMv7l) 32-bit SoC 1.4GHz CPU
and 1GB LPDDR2 SDRAM. A SD-card, a widely used memory
solution on such devices, of 8GB is used as persistent storage.

Considering the evolution of technology, it is widely accepted
that edge computing devices will be more and more powerful
8https://terminusdb.com/

in the near future. Hence, it is quite obvious that devices with
sufficient calculation power and memory, e.g., Raspberry Pis,
Odroids, etc. , will be deployed at the edge of networks.

SuccinctEdge is implemented in C++14 and the SDS-lite C++
library9 is required during compilation. More details can be found
on github10.We are comparing SuccinctEdge against RDF4Led[13],
two Apache Jena11 (version 3.15) database implementations and
RDF4J’s Memory Store12 (version 3.4.0) . RDF4Led is to the best of
our knowledge the only RDF store specifically designed for edge
computing. It is characterized by a small memory footprint, al-
though the database system does not reside in the main-memory.
The two Apache Jena stores are TDB2 and the in-memory store.
They are both open-source relatively lightweight and robust
RDF stores. RDF4J (originally Sesame) is an open-source Java
Framework for managing RDF data. The core RDF4J databases
are mainly intended for small to medium-sized data sets and thus
it makes sense to consider them for Edge computing. We also
considered RDFox [9], a main-memory, centralized RDF store
that is designed on a shared-memory architecture, but could not
make it work on our raspberry Pi 3B+ since we only had access to
a 64-bit pre-compiled version. Systems like Ontotext GraphDB13,
Stardog14, MarkLogic15, AllegroGraph16, AWS Neptune17 have
not been considered since they have been designed for massive
loads and scalability on high-end servers or Cloud computing.

7.2 Datasets and queries
The experimentation uses both synthetic and real-world data sets.
This duality is motivated by the current lack of large graphs emit-
ted from sensors at our industrial partner. In fact, our real-world
data sets, which correspond to the water management distribu-
tion in ENGIE’s building, consist of 250 and 500 triples. They are
denoted with their number of triples in this experimentation.

Due to these size limitations, it is not possible to stress Suc-
cinctEdge in terms of graph sizes. Hence, we are also experiment-
ing with the synthetic Lehigh University Benchmark (LUBM)18
which can be easily configured to produce large data sets. Start-
ing from a LUBM with one university, i.e., composed of over
103.000 triples (denoted 100K), we created several triple subsets
of 1.000, 5.000, 10.000, 25.000 and 50.000 triples which are respec-
tively denoted as 1K, 5K, 10K, 25K and 50K in the remaining of
this section. They are used to evaluate the behaviors of the five
evaluated data management systems. Note that some of these
synthetic data sets have triple set size way beyond what most
sensors are currently emitting in real-world industrial use-cases.
All submitted queries are detailed in Section A and data sets are
available on the system’s Github page.

7.3 Experimentation results
In this section, we are aiming to compare the previously men-
tioned RDF stores (i.e., Jena TDB, Jena in-memory, RDF4Led,
RDF4J and SuccinctEdge) on the following dimensions: graph
construction time, memory footprint (i.e., the storage space taken

9https://github.com/simongog/sdsl-lite
10https://github.com/xwq610728213/SuccinctEdge
11https://jena.apache.org/
12https://rdf4j.org/
13https://www.ontotext.com/products/graphdb/
14https://www.stardog.com/
15https://www.marklogic.com/
16https://allegrograph.com/
17https://aws.amazon.com/fr/neptune/
18http://swat.cse.lehigh.edu/projects/lubm/
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Figure 8: Construction time comparison

by different systems with the previous data sets), query execu-
tion performances on different triple patterns and basic graph
patterns. Lastly, we evaluate the performance (duration time)
of queries which necessitate reasoning services to produce an
exhaustive answer set.

7.3.1 Back-end construction time. The back-end construction
time corresponds to the time taken by each system to read the
data set file and to construct its proper storage layout (including
indexes in the case of all systems except SuccinctEdge which is
self-index) on which queries can be asked.

In order to fully evaluate the performances of all the systems,
we compare the back-end construction time of these systems
with data sets ranging from 250 to over 100.000 triples. Figure 8
provides details on this experimentation. SuccinctEdge doesn’t
show much advantage when data set is rather small (up to 1.000
triples). We attribute this to the fact that the SDS-Lite library
which is responsible for creating SuccinctEdge’s BMs and WTs
has an important start-up overhead that is relatively important
compared to the effective duration of the structures. We consider
that this may be optimized in future work, but it is out of the
scope of this paper. However, as the data sets grow larger, our
system outperforms all other systems.

7.3.2 Storage size. As SuccinctEdge is an in-memory RDF
system, it is difficult to directly compare the memory occupation
against Jena TDB and RDF4Led (which are both disk-based RDF
stores). We persisted all the data structures existing in Succinct-
Edge to disk in order to make a fair comparison.

We separately consider the dictionary and triple storage spaces.
Figure 9 provides the three systems’ dictionary sizes for all 8 data
sets. In all cases, Jena TDB requires the largest memory footprint
and SuccinctEdge takes about half of the size of RDF4Led.

Considering the triple storage space, displayed in Figure 10,
SuccinctEdge consumes much smaller space thanks to its SDS-
based storage implementation and self-index approach. This en-
ables to reach one of our goal which is to store as much data as
possible in a given amount of RAM.

We are also comparing themain-memory footprint of Succinct-
Edge with the in-memory systems, i.e., RDF4J and Jena_InMem.
In this evaluation, it is not possible to distinguish between the
space used for the dictionaries and the data sets. So we provide
the total space amount. Figure 11 yields the experiment results.
We can see that as the amount of data grows, SuccinctEdge grad-
ually shows its strength in saving memory space. We mainly

Figure 9: Dictionary size comparison

Figure 10: Storage size without dictionary comparison

Figure 11: RAM footprint comparison

attribute this to the size of the indexes stored by both RDF4J and
Jena_InMem.

7.3.3 Triple pattern query. Considering query processing, we
start the evaluation with single triple patterns,i.e., excluding the
cost of join operations, in order to directly compare the perfor-
mance of data retrieval in different systems.

We first consider the two interesting triple patterns containing
a single variable in the context of SuccinctEdge: S,P,?o (queries
S1 to S5) and ?s,P,O (queries S6 to S10) . Moreover, we consider
these two triple patterns with different selectivity, i.e., result sets
ranging from 4 to 521 tuples. Table 1 and 2 provide the results
of this experimentation for the LUBM1 dataset (over 100.000
triples).
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Table 1: Data retrieval for a single S,P,?o TP. The first row
represents the number of triples in the answer set. All
times in ms. Bold times are a column’s most efficient.

Query performance
Query name S6 S7 S8 S9 S10
Selectivity 4 66 129 257 513

SuccinctEdge 0.3 3.5 6.2 10.9 23.3
RDF4Led 12 28 33 47 84
Jena TDB 7 16 22 27 33

Jena_InMem 5 11 15 19 29
RDF4J 3 6 10 11.1 13

Table 2: Data retrieval for a single ?s,P,O TP. The first row
represents the number of triples in the answer set. All
times in ms. Bold times are a column’s most efficient.

Query performance
Query name S1 S2 S3 S4 S5
Selectivity 5 17 135 283 521

SuccinctEdge 0.7 1.5 10.1 20.7 32.0
RDF4Led 6 9 51 71 81
Jena TDB 7 8 30 32 41

Jena_InMem 7 8 15 21 27
RDF4J 3 3 11 16 21

As said previously, in an IoT setting, we are mainly interested
in executing a query on the freshest data and such a query is
generally execute only once per graph instance. Hence, we are
only considering hot runs.

SuccinctEdge outperforms other systems on almost all query
selectivity. It is only on relatively non-selective, at least consider-
ing an IoT context, that SuccinctEdge gets beaten by RDF4J (S4,
S5 and S10). Considering our potable water distribution running
example, the answer set of each query is clearly very selective.
That is only a small set of tuples are retrieved from a specific
query out of a given measure. We consider that this will be the
case for many industrial situations. Thus, high selective queries
is clearly the main playground for RDF stores running in Edge
computing. In the case of selective queries, SuccinctEdge can be
up to one order of magnitude faster than its RDF4J most direct
competitor, e.g., Table 1 S6 with a result set of size 4.

Figure 12 shows the results of several randomly picked ?s,P,?o
queries (triple patterns with a constant predicate and variable
subject and object, denoted S11 to S15). We can see from the
results that SuccinctEdge outperforms the other systems. Clearly,
the conclusion obtained on single triple patterns with a single
variable that the more selective, the more efficient SuccinctEdge
is compared to the other systems, is confirmed. We attribute this
to SuccinctEdge’s in-memory approach and structure which is
?s,P,?o-friendly due to its PSO self-index approach. Moreover
Jena TDB and RDF4Led also have PSO or POS indexes but are disk-
based database, for whom, loading data from disk takes a non-
negligible time. The numbers of triples in the answer sets of our
single variable TP experimentation are much smaller than that of
the ?s,P,?o. This leads to greater differences between the different
systems. This is again due to the fact that RDF4Led and Jena
TDB are loading data from disk. Nevertheless, we can consider
that retrieving over 500 tuples at a time from a single sensor
is already quite unusual for an IoT use case. The comparison

Figure 12: Data retrieval of queries with only one triple
pattern of type ?s,P,?o, the x-axis represents the number
of triples in the answer set.

with in-memory stores (RDF_InMem and RDJ4) highlights that
SuccinctEdge is faster for answer sets lower than 10.000 tuples.
At 16.000 result set tuples, The three systems behave similarly.
Again, from the point of view of our experimentation partner,
this is currently unusual for real-world industrial IoT use cases.

7.3.4 Graph pattern query. We now compare performances
over queries containing multiple triple patterns, i.e., requiring
joins. Four queries with different selectivity values (answer sets
ranging from 540 to close to 8.000 tuples) have been executed.
They are denoted M1 to M5 and contain up to 10 TPs in the
BGP. We can see in Figure 13 that RDF4Led and SuccinctEdge
are always outperforming Jena TDB. SuccinctEdge is either more
efficient than RDF4Led or slightly less efficient that RDF4Led.
This showcases that in some cases RDF4Led finds a better TP
query ordering strategy than SuccinctEdge and/or benefits from
its large set of available indexes. Considering the latter, it is a price
we are willing to pay for a lower memory footprint. Nevertheless,
the former reason emphasizes that we can improve our query
optimizer.

The comparison with the in-memory RDF stores emphasizes
that the three systems behave similarly except for highly selective
queries where SuccinctEdge is again more efficient. The differ-
ences between the query executions depend on the patterns used
in the BGP of these five queries. Overall, we are satisfied that our
system, with a single index, is at least at the same level than the
two other systems.

7.3.5 Queries with RDFS reasoning. Our final experimentation
concerns queries requiring some reasoning services. We have
generated six queries (denoted R1 to R6) containing a mixture
of RDFS:subClassOf and RDFS:subPropertyOf inferences. These
queries present different selectivity characteristics, ranging from
15 to 8.345 tuples in the answer sets and contain up to 10 TPs in
the BGP.

For SuccinctEdge, the reasoning service is automatically sup-
ported by LiteMat’s encoding and is hence native in the system.
This is not the case for the other systems for which we have
rewritten each query as the union of all the possible sub-queries.
Since RDF4Led doesn’t support the SPARQL UNION clause no
results are presented in Figure 14 for this system. Obviously, Suc-
cinctEdge is much more efficient than Jena TDB. It is quite logical
that the more entailments the query requires, the more efficient
SuccinctEdge is compared to a system like Jena TDB.
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Figure 13: Queries with multiple triple pattern (x-axis cor-
responds to the number of tuples in the answer set)

Figure 14: Queries with RDFS reasoning (x-axis corre-
sponds to the number of tuples in the answer set)

As for Jena_InMem, it performs better than Jena TDB while
still falling behind SuccinctEdge. When compared with RDF4J,
SuccinctEdge performs better or similarly depending on the com-
plexity of the reasoning services, i.e., number of SPARQL UNION
clauses. Note that we provide manual query rewriting to the Jena
and RDF4J systems while these systems could implement the
reasoning task with their APIs. In doing so, we provide a clear
advantage to these systems since they do not have to load the
ontology to perform the reasoning. Moreover, the extra cost of
computing the UNION rewriting is not considered in the times
of the Jena and RDF4J executions.

8 CONCLUSION
We have presented the first, to the best of our knowledge, KG
inference-enabled data management system designed for Edge
computing. Due to its unique index, compact, in-memory ap-
proach, we have demonstrated that SuccinctEdge outperforms
its direct competitors on the following dimensions: query per-
formance on different query patterns, efficiency of reasoning
services, back-end size and creation time. The system is currently
being deployed at some large building facilities at ENGIE and
should help in detecting anomalies in water distribution and
energy consumption. Due to its generic nature, SuccinctEdge is
relevant for many IoT use cases such as anomaly and risk de-
tection, supervising energy production and distribution. In the
future, we are aiming to improve the query optimizer and sup-
port queries ranging several graphs. We are also considering to
design a more efficient management of objects linked to datatype

properties and to increase the expressiveness of supported on-
tology languages, e.g., RDFS++ and OWL2RL. Moreover, we are
considering the possibility of exchanging information with a
larger graph portion that would reside in a cloud store.
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A QUERIES
A total of 26 queries have been evaluated over a LUBM data set
consisting of over 100.000 triples. They can be dispatched into 2
groups: whether their contain a single triple pattern or multiple
ones. In this section, we list only the most prominent queries and
provide templates for the other ones. Moreover, we present their
main characteristics. The interested reader can access all of them
on the paper companion GitHub page19. The following prefixes
apply to all queries: lubm <http://swat.cse.lehigh.edu/onto/univ-
bench.owl#>, rdf <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

19https://github.com/xwq610728213/SuccinctEdge
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Table 3: Query summary with the following notations: ’SS’ and ’OS’ respectively correspond to subject, subject and ob-
ject,subject joins; ’Co’ for concept hierarchy inferences, ’Pr’ for property hierarchy inferences

Query performance
Systems S1-5 S6-10 S11-15 M1 M2 M3 M4 M5 R1 R2 R3 R4 R5 R6
TP number 1 1 1 2 3 5 3 11 5 5 3 6 3 11
TP type(s) sp? ?po ?p? ?p? ?p? ?p? ?p? ?p? ?p? ?p? ?p? ?p? ?p? ?p?

?po ?po ?po ?po ?po ?spo ?po ?po ?spo
sp?o sp?

Join type - - - SS SS SS,OS OS SS,OS SS,OS SS,OS SS SS,OS OS SS,OS
OO OO

Join number 0 0 0 1 2 4 4 10 4 2 2 5 2 10
Path length 1 1 1 1 1 3 3 4 3 3 1 3 3 4
Selectivity [4,513] [5,521] [540,15972] 540 1874 1874 7790 33 15 555 1874 1874 8345 34
Derived 0 0 0 0 0 0 0 0 15 540 1874 1874 555 1
triples

Reasoning - - - - - - - - Co Co Co Co Pr Pr
type Pr Pr Pr

A.1 Single triple pattern queries
This first set of queries contain a single triple pattern in the
WHERE clause. We distinguish between queries with a single
variable, either at the object (denoted sp?) or subject (denoted
?po) position, from queries with two variables (denoted ?p?). As
explained in the paper, we do not consider that variables at the
property position make sense in SuccinctEdge’s use cases.

A.1.1 SP?o queries. The identification of these 5 queries range
from S1 to S5. We used the following query template:
SELECT ?X WHERE {X1 P1 ?X}

For S1, P1 binds to the lubm:takesCourse property and X1 is an
undergraduate student constant. For queries S2 to S5, P1 binds to
lubm:publicationAuthor and the X1 bind to different publication
instances. The selectivity of these queries are in Table 1.

A.1.2 ?sPO queries. These queries are identified from S6 to
S10 and correspond to the following query template:
SELECT ?X WHERE { ?X P1 O1 }

P1 and O1 correspond to property and individual constants which
for S6 to S10 respectively take the values (all properties are
in the lubm namespace) : advisor/assistant professor constant,
takesCourse/ course constant, worksFor/department constant,
name/ publication constant, memberOf/ department constant.

A.1.3 ?sP?o queries.

S11: SELECT ?X ?Y ?Z WHERE { ?X lubm:worksFor ?Z }
S12: SELECT ?X ?Y ?Z WHERE { ?X lubm:teacherOf ?Y}
S13: SELECT ?X ?Y ?Z WHERE {

?X lubm:undergraduateDegreeFrom ?Y .}
S14: SELECT ?X ?Y ?Z WHERE { ?X lubm:emailAddress ?Y }
S15: SELECT ?X ?Y ?Z WHERE { ?X lubm:name ?Y }

A.2 Multiple triple patterns queries
In this set of queries, the BGP is composed of several triple pat-
terns. The 11 queries in this category can be decomposed into
those requiring or not some reasoning services (either based on
concept or property hierarchies).

A.2.1 Non-inference queries. All prefixed with ’M’.
M1: SELECT ?X ?Y ?Z WHERE { ?X lubm:worksFor ?Z .
?X lubm:name ?Y .}

M2: SELECT ?X ?Y ?Z WHERE { ?X lubm:memberOf ?Z .
?X rdf:type lubm:GraduateStudent .
?X lubm:undergraduateDegreeFrom ?Y .}
M3: SELECT ?X ?Y ?Z WHERE { ?X lubm:memberOf ?Z .
?X rdf:type lubm:GraduateStudent .
?Z rdf:type lubm:Department .
?Z lubm:subOrganizationOf ?Y .
?Y rdf:type lubm:University .}
M4: SELECT ?X ?Y ?Z WHERE { ?X lubm:memberOf ?Z .
?Z lubm:subOrganizationOf ?Y .
?Y rdf:type lubm:University }
M5: SELECT * WHERE {
<http://www.Department0...Publication14>
lubm:publicationAuthor ?p. ?st lubm:memberOf ?o2.
?p a lubm:AssociateProfessor. ?p lubm:worksFor ?o.
?o a lubm:department. ?o lubm:subOrganizationOf ?u.
?u a lubm:University. ?p lubm:teacherOf ?te.
?te a lubm:Course. ?st lubm:takesCourse ?te.
?st a lubm:UndergraduateStudent. }

A.2.2 Inference queries. The identifier of these queries is pre-
fixed with an ’R’ since they involve a form of reasoning.
R1: SELECT ?X ?Y ?Z WHERE { ?X rdf:type lubm:Person .
?Z rdf:type lubm:Department . ?X lubm:headOf ?Z .
?Z lubm:subOrganizationOf ?Y .
?Y rdf:type lubm:University .}
R2: SELECT ?X ?Y ?Z WHERE { ?X rdf:type lubm:Person .
?Z rdf:type lubm:Department . ?X lubm:worksFor ?Z .
?Z lubm:subOrganizationOf ?Y .
?Y rdf:type lubm:University .}
R3: SELECT ?X ?Y ?Z WHERE { ?X lubm:memberOf ?Z .
?X rdf:type lubm:Student .
?X lubm:undergraduateDegreeFrom ?Y .}
R4: SELECT ?X ?Y ?Z ?N WHERE { ?X rdf:type lubm:Person .
?Z rdf:type lubm:Department . ?X lubm:memberOf ?Z .
?Z lubm:subOrganizationOf ?Y . ?Y lubm:name ?N.
?Y rdf:type lubm:University . }
R5: identical to M4 but computes inferences over the
memberOf property
R6: identical to M5 but computes inferences over the
memberOf and worksFor properties.
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ABSTRACT
Range aggregate queries find frequent application in data ana-

lytics. In many use cases, approximate results are preferred over

accurate results if they can be computed rapidly and satisfy ap-

proximation guarantees. Inspired by a recent indexing approach,

we provide means of representing a discrete point dataset by

continuous functions that can then serve as compact index struc-

tures. More specifically, we develop a polynomial-based indexing

approach, called PolyFit, for processing approximate range ag-

gregate queries. PolyFit is capable of supporting multiple types

of range aggregate queries, including COUNT, SUM, MIN and

MAX aggregates, with guaranteed absolute and relative error

bounds. Experimental results show that PolyFit is faster andmore

accurate and compact than existing learned index structures.

1 INTRODUCTION
A range aggregate query [38] retrieves records in a dataset that be-
long to a given key range and then applies an aggregate function

(e.g., SUM, COUNT, MIN, MAX) to an attribute of those records. Range

aggregate queries are used in OLAP [38, 69] and data analytics

applications, e.g., for outlier detection [72, 74], data visualization

[24], and tweet analysis [54]. For example, network intrusion

detection systems [74] utilize range COUNT queries to monitor a

network for anomalous activities. Furthermore, applications with

huge numbers of users are expected to receive queries frequently.

For instance, Foursquare, with more than 50 million monthly

active users [4], helps users find the number of specific POIs

(e.g., restaurants) within given regions [3]. In many application

scenarios, users accept approximate results provided that (i) they

can be computed quickly and (ii) they are sufficiently accurate

(e.g., within 5% error). We target such applications and focus on

error-bounded evaluation of range aggregate queries.

A recent indexing approach represents the values of attributes

in a dataset by continuous functions, which then serve to enable

compact index structures [28, 44]. When compared to traditional

index structures, this approach is able to yield a smaller index

size and faster response time. The existing studies [28, 44] focus

on computing exact results for point and range queries on 1-

dimensional data. In contrast, we conduct a comprehensive
study of approximate range aggregate queries, supporting
many aggregate functions and multi-dimensional data.

The idea that underlies our proposal for using functions to

answer approximate range aggregate queries may be explained

as follows. Consider a stock market index (e.g., the Hong Kong

Hang Seng Index) at different times as a dataset D consisting of

records of the form (index value, timestamp), where the former is

our measure and the latter is our key that is used for specifying
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query ranges—see Figure 1(a). A user can find the average stock

market index value in a specified time range [lq ,uq ] by issuing

a range SUM query (and divide by uq − lq + 1). We propose to

construct the cumulative function ofD as shown in Figure 1(b). If

we can approximate this function well by a polynomial function

P(x) then the range SUM query can be approximated as P(uq ) −
P(lq ), which takes O(1) time. As another example, the user may

wish to find the maximum stock market index in a specified

time range. The timestamped index values in D can be modeled

by the continuous function shown in Figure 1(c). Again, if we

can approximate this function well using a polynomial function

P(x) then the range MAX query can be answered quickly using

mathematical tools, e.g., by applying differentiation to identify

maxima in P(x).
Regarding the two-dimensional case, consider the dataset of

tweets’ locations as shown in Figure 9(a) in Section 6, where

each data point has a longitude (as key 1) and a latitude (as key

2). Suppose that the user wishes to count the number of tweets

in a geographical region. Our idea is to derive the cumulative

count function shown in Figure 9(b), and then approximate this

function with a polynomial function P(x1, x2) (of two variables).

This enables us to answer a two-dimensional range COUNT query

in O(1) time.

Another difference between our work and existing studies [28,

44] is the types of functions used for approximation. Our proposal

uses piecewise polynomial functions, rather than piecewise linear

functions [28, 44]. As we will show in Section 4, using polynomial

functions yields lower fitting errors than using linear functions.

Thus, our proposal leads to smaller index sizes and faster queries.

The key technical challenges are as follows. (1) How to find

polynomial functions with low approximation error efficiently?

(2) How to answer range aggregate queries with error guarantees?

(3) How to support common aggregate functions (e.g., COUNT, SUM,
MIN, MAX) and multi-dimensional data?

To tackle these challenges, we develop a polynomial-based

indexing approach (PolyFit) for processing approximate range

aggregate queries. Our contributions are summarized as follows.

• To the best of our knowledge, this is the first study that

utilizes polynomial functions to learn indexes that support

approximate range aggregate queries.

• PolyFit supports multiple types of range aggregate queries,

including COUNT, SUM, MIN and MAX with guaranteed deter-

ministic absolute and relative error bounds.

• Experiment results show that PolyFit achieves significant
speedups, comparedwith the closest relatedworks [28, 44],

and traditional exact/approximate methods. For instance,

for the OpenStreetMap dataset with 100M records, our in-

dex occupies only 4 MBytes and offers 5 µs query response
time (per 2-dimensional range COUNT query).

The rest of the paper is organized as follows. We first review

the related work in Section 2. Next, we introduce preliminaries in

Section 3. Then, we present our index construction techniques in

Section 4 and cover how to answer approximate range aggregate
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Figure 1: Stock market index values, 1-dimensional keys: discrete data points vs. continuous function

queries in Section 5. Next, we extend our proposal to datasets

with two keys in Section 6. Lastly, we present experiments in

Section 7 and conclude in Section 8.

2 RELATEDWORK
Range aggregate queries are used frequently in analytics applica-

tions and constitute important functionality in OLAP and data

warehousing [11, 12, 20, 23, 38, 40, 56, 69]. Exact solutions are

based on prefix-sum arrays [38] or aggregate R-trees [59]. Due

to the need for real-time performance in some applications (e.g.,

µs-level response time [74]), many proposals exist that aim to im-

prove the efficiency of range aggregate queries. These proposals

can be classified as being either data-driven or query-driven. In

addition, we also review some other studies, including learned

indexes, and time series databases, which are also related to this

work.

Data-driven proposals build statistical models of a dataset

for estimating query selectivity or the results of range aggregate

queries. These models employ multi-dimensional histograms [39,

52, 57, 68], data sampling [9, 34, 36, 51, 60, 65], or kernel density

estimation [32, 33, 37]. Although such proposals that compute

approximate results are much faster than exact solutions, e.g.,

achieving ms (10
−3
) level response time [61], they still do not of-

fer real-time performance (e.g., µs level [74]). Furthermore, these

proposals do not offer theoretical approximation error guaran-

tees.

The query-driven approaches utilize query workloads to

build statistical models of datasets. Typical methods include error-

feedback histograms [8, 10, 49], max-entropy histograms [55,

64], and learning-based models [53, 66]. In addition, Park et al.

[61] explore the approach of using mixture probabilistic models.

These methods assume that new queries follow historical query

workload distributions. However, as one study [13] observes, this

assumption may not always hold in practice. Further, even when

this assumption is valid, the number of queries that are similar to

those used for training may be much smaller if the queries follow

a power law distribution [73], which can cause poor accuracy

and may render it impossible to obtain useful approximation

error guarantees for range aggregate queries.

Recently, learning-based methods have been used to con-

struct more compact and effective index structure, that hold

potential to accelerate database operations. Kraska et al. [44]

propose the RMI index, which incorporates different machine

learning models, e.g., linear regression and deep-learning, to

improve the efficiency of range queries. Galakatos et al. [28]

develop the FITing-tree, which is a segment-tree-like structure

[22, 71] that can significantly improve the efficiency of exact

point queries. Ferragina et al. [27] further support efficient up-

date operations for range queries. Wang et al. [70] extend this

learning-based approach to the spatial domain with their learned

Z-order model that aims to support fast spatial indexing. How-

ever, there are two main differences between these proposals and

our proposal. First, they either support range queries [27, 44, 70]

or point queries [28], but not range aggregate queries. Second,

we are the first to exploit polynomial functions to build index

structures for approximate range aggregate queries.

In the time series database community, some research stud-

ies utilize mathematical models to approximate time series data.

Representative approaches include piecewise linear approxima-

tion [25, 41–43, 50], discrete wavelet transform [15, 62], discrete

Fourier transform [26, 63], and their combinations [40, 58]. How-

ever, these studies focus on either time series similarity search

(e.g., range or nearest neighbor queries) or time series compres-

sion and they are not designed to answer the range aggregate

queries we target. Some of these studies also utilize piecewise

linear approximation [25, 41, 42, 50] to approximate time-series,

which we also do. In contrast, we achieve better performance

by utilizing nonlinear (polynomial) functions to approximate

curves, which can reduce the number of segments dramatically.

Furthermore, we can also support the segmentation of surfaces

(e.g., Figure 9(b)), rather than only 1-D curves.

3 PRELIMINARIES
First, we define range aggregate queries and their approximate

versions in Section 3.1. Then, we discuss the baselines for an-

swering exact range aggregate queries in Section 3.2. Table 1

summarizes frequently used symbols in this paper.

Table 1: Symbols

Symbol Description

D dataset

n number of records in D

Rcount range COUNT query

Rsum range SUM query

Rmin range MIN query

Rmax range MAX query

CFsum cumulative function for range SUM query

DFmax key-measure function for range MAX query

P(k ) polynomial function

I interval

deд degree of polynomial function

3.1 Problem Definition
We focus on the setting that a range aggregate query specifies

a key attribute (for range selection) and ameasure attribute for
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aggregation. We shall consider the setting of two keys in Sec-

tion 6. As such, the dataset D is a set of (key,measure) records,
i.e., D = {(k1,m1), (k2,m2), ..., (kn,mn )}. For ease of discussion,

we assume that key values are distinct and measure values are

numerical. We leave the discussion of repeated keys and negative

measure values in Appendices A.3 and A.4 [48]. Then we define

a range aggregate query as follows.

Definition 3.1. Let G be an aggregate function (e.g., COUNT,
SUM, MIN, MAX) on a measure attribute. Given a dataset D and a

key range [lq ,uq ], we define V as the following multi-set

V = {m | (k,m) ∈ D ∧ lq ≤ k ≤ uq }

and then define the result of the range aggregate query as

RG(D, [lq ,uq ]) = G(V ). (1)

We aim to develop efficient methods for obtaining an approx-

imate result of RG(D, [lq ,uq ]) with two types of error guaran-

tees [29, 30], namely the absolute error guarantee (cf. Problem 1)

and the relative error guarantee (cf. Problem 2).

Problem 1 (Qabs ). Given an absolute error εabs and a range
aggregate query, we ask for an approximate result Aabs such that:

|Aabs − RG(D, [lq ,uq ])| ≤ εabs (2)

Problem 2 (Qr el ). Given a relative error εr el and a range ag-
gregate query, we ask for an approximate result Ar el such that:����Ar el − RG(D, [lq ,uq ])RG(D, [lq ,uq ])

���� ≤ εr el (3)

3.2 Baselines: Exact Methods
We proceed to discuss exact methods for answering range SUM
queries and range MAX queries. These methods can be easily

extended to support COUNT and MIN, respectively.

3.2.1 Exact method for range SUM queries. First, we de-
fine the key cumulative function as CFsum (k):

CFsum (k) = Rsum (D, [−∞,k]). (4)

The additive property of CFsum enables us to compute the

exact result of the range SUM query as:

Rsum (D, [lq ,uq ]) = CFsum (uq ) −CFsum (lq ). (5)

Then, we discuss how to obtain the terms CFsum (lq ) and
CFsum (uq ) efficiently. Although CFsum is a continuous func-

tion, it can be expressed by a discrete data structure in finite

space. Specifically, we presort dataset D in ascending key order

and then follow this order to construct a key-cumulative array of

entries (k,CFsum (k)). At query time, the terms CFsum (lq ) and
CFsum (uq ) are obtained by performing binary search on the

above key-cumulative array. This step takes O(logn) time.

As a remark, this key-cumulative array is similar to the prefix-

sum array [38]. The difference is that our array allows floating-

point search keys, while the prefix-sum array does not.

3.2.2 Exact method for range MAX queries. First, we de-
fine the key-measure functionDFmax (k) in Equation 6 to capture
the data distribution in the dataset D. In the definition, we as-

sume that each pair (ki ,mi ) in D is arranged in ascending order

by the key.

DFmax (k) =



m1 if k1 ≤ k < k2
...

...

mi if ki ≤ k < ki+1
...

...

mn if k = kn

−∞ otherwise

(6)

Figure 2(a) exemplifies the function DFmax (k).
An aggregate max-tree [59] (cf. Figure 2(b)) can be built to

answer range MAX queries. In this tree, each internal node stores

two entries, where each entry stores an interval and the maxi-

mum measure within that interval (e.g., (I1,m6) and (I2,m7) are

two entries of the root node Nroot ). We then explain how to

process the query Rmax (D, [lq ,uq ]), whose query range is indi-

cated by the red line in Figure 2(a). In Figure 2(b), we start from

the root of the tree. If the interval of an entry intersects with

the query range (e.g., I1 and I2 in Figure 2(a)), we visit its child

nodes (e.g., N1 and N2). When the interval of an entry (e.g., I4
and I5 in Figure 2a) is covered by the query range, we directly

use its stored aggregate value without visiting its child nodes

(e.g., yellow nodes in Figure 2b). During the traversal, we keep

track of the maximum measure seen so far. This procedure takes

O(logn) time as we check at most two branches per level.

𝐼3 𝐼4 𝐼5 𝐼6

𝐼1 𝐼2

𝑫𝑭𝒎𝒂𝒙(𝒌)

key

𝑁𝑟𝑜𝑜𝑡
(a) (key, measure)-pairs,

red line denotes the max query

𝑅𝑚𝑎𝑥(𝒟, [𝑙𝑞 , 𝑢𝑞])
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yellow nodes are skipped during traversal
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Figure 2: Aggregate MAX tree

4 INDEX CONSTRUCTION
Traditional index structures (e.g., B-tree [21]) need to store n
keys, where n is the cardinality of the datasetD. Thus, the index

size grows linearly with the data size. To reduce the index size

dramatically, we plan to index a limited number of functions

(instead of n keys).

As a case study, we compare existing fitting functions [28, 44]

with our fitting function (polynomial) on a real dataset (the Hong

Kong 40 Index in 2018 [5]) in Figure 3. The exact key-measure

function DFmax (k) exhibits a complex shape. Observe that linear

functions, e.g., linear regression LR(k) [44] and linear segment

FIT (k) [28], cannot accurately approximate the exact function. In

this paper, we adopt the polynomial function P(k), which captures
the nonlinear property

1
and achieves a better approximation of

DFmax(k). In this example, P(k) is a degree-4 polynomial function

(blue dotted line).

We introduce our indexing framework in Figure 4. First, we

convert the dataset into the following exact function F (k) based

1
As a remark, other types of nonlinear functions (e.g., logarithmic and trigonometric

functions) require higher computation cost than polynomial functions. Thus, we

leave other types of nonlinear functions as future work.
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Figure 3: Curve fitting of the HKG 40 Index in 2018 [5]

on the aggregate function G and the functions in Section 3.2.

F (k) =

{
CFsum (k) if G = SUM

DFmax (k) if G = MAX
(7)

We plan to compute an error-bounded approximation of F (k)
by using a sequence of polynomial functions. In Section 4.1, we

examine how to find the best polynomial fitting of F (k) in a given

key interval I . Then, in Section 4.2, we propose a segmentation

method for F (k) in order to minimize the index size subject to a

given deviation threshold. Finally, in Section 4.3, we discuss how

to build an index for a sequence of polynomial functions.

4.1 Polynomial Fitting in a Key Interval
We discuss how to find the best fitting polynomial function of

F (k) in a given key interval I . First, we express a polynomial

function P(k) as follows:

P(k) =

deд∑
j=0

ajk
j , (8)

where deд is the degree and each aj is a coefficient. Note that

the choice of deд entails tradeoffs between the fitting error and

the online query evaluation cost. We discuss the choice of deд in

Section 5.3.

We formulate the following optimization problem in order to

minimize the fitting error between P(k) and F (k).

Definition 4.1. Let F (k) be the exact function and I be a given
key interval. Let k1,k2, · · · ,kℓ be the keys ofD in interval I . We

aim to find polynomial coefficients, a0,a1, · · · ,adeд that mini-

mize the following error:

E(I ) = min

a0,a1, ...,adeд ∈R
max

1≤i≤ℓ
|F (ki ) − P(ki )| (9)

This is equivalent to the following linear programming prob-

lem, where the coefficients a0,a1, · · · ,adeд and t are variables.

minimize t

subject to:

−t ≤ F (k1) − (adeдk
deд
1
+ ... + a2k

2

1
+ a1k1 + a0) ≤ t

−t ≤ F (k2) − (adeдk
deд
2
+ ... + a2k

2

2
+ a1k2 + a0) ≤ t

...

−t ≤ F (kℓ) − (adeдk
deд
ℓ
+ ... + a2k

2

ℓ
+ a1kℓ + a0) ≤ t

∀ai ∈ R

(10)

It takes O(ℓ2.5) time to solve the above linear programming

problem (Equation 10) [46]. In our experimental study, we adopt

the IBM CPLEX linear programming library as the LP Solver,

which is believed to be the most reliable and efficient among

other implementations [31]. We discuss some subtle issues like

precision limitations in Section 5.3.

4.2 Minimal Index Size with Bounded Error
To support approximate query evaluation (in Section 5), we re-

quire that the fitting polynomial functions should satisfy a given

error constraint. However, a single polynomial function is un-

likely to fit accurately for the entire key domain. Thus, we pro-

pose to partition the key domain into intervals I1, I2, · · · , Ih so

that each interval Ii satisfies the following requirement:

E(I ) ≤ δ ,

where δ is a given deviation threshold. For instance, in Figure 5,

the key domain is partitioned into two intervals I1 and I2 so that

the best fitting polynomial function in each interval satisfies the

error requirement.

To achieve a small index size, we aim to minimize the number

of intervals (i.e., h in Figure 4). An existing dynamic program-

ming (DP) approach [47], though designed for piecewise linear

functions, can be adapted to solve our partitioning problem of

F (k). However, this method takes O(n2 × ℓ2.5max ) time
2
, where

ℓmax is the maximum number of keys covered by any interval.

Obviously, this method does not scale well with the data size n.
In Section 4.2.1, we present a more efficient method, called

greedy segmentation (GS), to segment the exact function F (k). As
we show later, the time complexity of GS is O(n × ℓ2.5max ), which

scales well with the data size n. Then, in Section 4.2.2, we show

that GS is guaranteed to return the optimal solution.

4.2.1 Greedy Segmentation (GS) Method. We present the

pseudo-code of the Greedy Segmentation (GS) method in Algo-

rithm 1. It examines the key domain from left to right (line 2).

In each iteration, it expands the interval I by including the next

key (line 3), calls an LP solver on the interval I to obtain a fitting

function Pnow (line 4), and tests whether it fulfills the error re-

quirement. When this test fails (i.e., E(I ) > δ ), we conclude that
the previous interval is a maximal interval and thus insert its

corresponding fitting function Pprev into the result. The above

procedure is repeated until all keys are covered.

Algorithm 1 Greedy Segmentation (GS)

Input: function F (k ), degree deд, deviation threshold δ
Output: sequence of polynomial functions SeqP

1: SeqP ← ∅; l ← 1; Pprev ← null
2: for u ← 2 to n do
3: I ← [kl , ku ] ◃ the interval for polynomial function P

4: Pnow ← call LP solver on I ◃ Equation 10

5: if E(I ) > δ or u = n then ◃ Equation 9

6: insert Pprev into SeqP

7: l ← u
8: Pprev ← Pnow

9: return SeqP

The time complexity of GS is O(nℓ2.5max ) because it invokes

O(n) calls to the LP solver, where each call takesO(ℓ2.5max ) time [46].

We further accelerate GS by applying an existing exponential

search technique [14], which can reduce the number of LP calls

per interval by
ℓ

log ℓ times. With this technique, GS takes only 70

seconds (cf. Section 7.2.2) to complete for a real dataset with 1

million data points. This is acceptable for many data analytics

tasks (with static datasets) in OLAP. In our experiments, we find

that ℓmax usually ranges between hundreds and thousands, thus

2
Recall that the state-of-the-art linear programming solver [46] takes O (ℓ2.5max )

time for each curve-fitting problem (cf. Equation 10).
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the termO(ℓ2.5max ) is acceptable in practice. In Appendix [48], we

discuss how to utilize parallel computation to further improve

the construction time.

4.2.2 GS is Optimal. We first prove the following property

(Lemma 4.2) of our curve fitting problem (cf. Definition 4.1).

Lemma 4.2. Let Il and Iu be two intervals, which contain two
sets of keys Sl and Su , respectively. If Sl ⊆ Su , then E(Il ) ≤ E(Iu ).

Proof. Recall that the value of E(I ) (cf. Equation 9) is equal

to the minimum value of the optimization problem (Equation 10).

Since Sl is a subset of Su , the set of constraints for solving E(Il )
is also the subset of constraints for solving E(Iu ). Thus, for the
minimization problem in Equation 10, the possible solution space

for Sl is a superset of the possible solution space for Su . Therefore,
we conclude that E(Il ) ≤ E(Iu ). �

Based on Lemma 4.2, we then show that GS produces the

fewest polynomial functions (cf. Theorem 4.3), i.e., the optimal

solution.

Theorem 4.3. GS always produces the optimal number of func-
tions (with respect to the given parameters deд and δ ).

Proof. We denote the minimum key and the maximum key

of an interval I by I .min and I .max, respectively.

Let I∗
OPT
= (I

(1)

OPT
, I
(2)

OPT
, · · · ) and I∗

GS
= (I

(1)

GS
, I
(2)

GS
, · · · ) be two

ascending sequences of intervals for the optimal solution and

our GS method, respectively (i.e., I (i).max < I (i+1).min for i =
1, 2, ...,n−1). Every interval I inI∗

OPT
andI∗

GS
must satisfy E(I ) ≤

δ . We now prove the theorem by mathematical induction.

In the base step, we consider the first interval in each sequence.

Since both GS and OPT must cover the key domain, we have:

I
(1)

GS
.min = I

(1)

OPT
.min

According to GS, the first interval I
(1)

GS
is maximal, because a

longer interval would violate the deviation threshold δ . Thus, we
have:

I
(1)

GS
.max ≥ I

(1)

OPT
.max (11)

In the inductive step, assume that the first ℓ intervals of the

two sequences satisfy the following property:

I
(ℓ)
GS
.max ≥ I

(ℓ)
OPT
.max (12)

SinceI∗
OPT

andI∗
GS

are ascending sequences of intervals, Equa-

tion 12 implies the following:

I
(ℓ+1)
GS

.min ≥ I
(ℓ+1)
OPT

.min (13)

Now, we consider two cases for comparing I
(ℓ+1)
GS

and I
(ℓ+1)
OPT

.

Case 1:
I
(ℓ+1)
GS

.max ≥ I
(ℓ+1)
OPT

.max

In this case, the first ℓ + 1 intervals of GS cover all keys in the

first ℓ + 1 intervals of OPT.

Case 2:
I
(ℓ+1)
GS

.max < I
(ℓ+1)
OPT

.max (14)

Consider the interval I ′ = [I
(ℓ+1)
GS

.min, I
(ℓ+1)
OPT

.max]. By using

Equations 13 and 14, we obtain: I ′ ⊂ I
(ℓ+1)
OPT

. By Lemma 4.2, we

get: E(I ′) ≤ E(I
(ℓ+1)
OPT
). Since E(I

(ℓ+1)
OPT
) ≤ δ , we get: E(I ′) ≤ δ .

Observe that I ′ has the same minimum key as I
(ℓ+1)
GS

but a

larger maximum key than I
(ℓ+1)
GS

. Since I ′ does not pass the error
test in GS, we get E(I ′) > δ . This contradicts the statement

E(I ′) ≤ δ .
Therefore, only the first case is true, and we have:

I
(ℓ+1)
GS

.max ≥ I
(ℓ+1)
OPT

.max

This means GS always covers no fewer keys than OPT with

the same number of intervals. Thus, GS produces the optimal

number of functions. �

4.3 Indexing of polynomial functions
In our experimental study, the number of intervals (for poly-

nomial functions) ranges from 100 to 1000. We adopt existing

index structures on these intervals to support fast query eval-

uation. Specifically, we employ an in-memory index called the

STX B-tree [6] to index intervals. In each internal node entry, we

maintain an additional attribute to store the aggregate value of

its subtree. In each leaf node entry, we store an interval and its

corresponding polynomial model (in the form of coefficients). In

summary, this index is similar to the aggregate tree exemplified

in Figure 2(b), except that we store polynomial models in leaf

nodes.

5 APPROXIMATE QUERY EVALUATION
We present our framework for answering approximate range

aggregate queries in Figure 6. The first step is to compute an

initial approximate result quickly by using our index (PolyFit).
Then, we check whether the error condition is satisfied and refine

the approximate result if necessary. We discuss how to answer
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the approximate range SUM query and the approximate range MAX
query in Sections 5.1 and 5.2, respectively. Finally, in Section 5.3,

we discuss how to tune our index parameters (e.g.,deд, δ ) in order
to optimize the query response time.

5.1 Approximate range SUM Query
Given the query range [lq ,uq ], we propose to compute the ap-

proximate result as:

Ãsum = PIu (uq ) − PIl (lq ), (15)

where Il and Iu denote the intervals of P that contain the values

lq and uq , respectively.
Then, we show the error conditions for Qabs (cf. Problem 1)

and Qr el (cf. Problem 2).

Error condition for Qabs
Given the absolute error εabs , we recommend to use the

deviation threshold δ = εabs
2

in constructing PolyFit. With this

setting, the following lemma offers the absolute error guarantee

for the approximate result Ãsum (in Equation 15).

Lemma 5.1. If δ = εabs
2

, then Ãsum (in Equation 15) satisfies
the absolute error guarantee with respect to εabs .

Proof. Let Il and Iu be two intervals (in PolyFit) which con-

tain lq and uq (of the query range [lq ,uq ]), respectively. Based
on the deviation threshold guarantee in Section 4.2.2, we obtain:

|CFsum (lq ) − PIl (lq )| ≤ δ

|CFsum (uq ) − PIu (uq )| ≤ δ

By combining them, we have:

CFsum (uq )−CFsum (lq )−2δ ≤ Ãsum ≤ CFsum (uq )−CFsum (lq )+2δ

By using Equation 5, we have:

Rsum (D, [lq ,uq ]) − 2δ ≤ Ãsum ≤ Rsum (D, [lq ,uq ]) + 2δ

Since δ = εabs
2

, Ãsum satisfies the absolute error guarantee εabs .
�

Error condition for Qr el
In this scenario, there is no specific preference for setting the

deviation threshold δ when constructing PolyFit. The following
lemma suggests a condition to test whether Ãsum satisfies the

relative error guarantee. If this test fails, we resort to the exact

method (cf. Section 3.2.1) to obtain the exact result.

Lemma 5.2. If Ãsum ≥ 2δ (1+ 1

εr el
), then Ãsum (in Equation 15)

satisfies the relative error guarantee with respect to εr el .

Proof. Like in the proof of Lemma 5.1, we can derive Equa-

tions 16 and 17.

|Ãsum − Rsum (D, [lq ,uq ])| ≤ 2δ (16)

which also implies (by simple derivations):

Rsum (D, [lq ,uq ]) ≥ Ãsum − 2δ (17)

Since δ and εr el must be positive, the given condition Ãsum ≥

2δ (1 + 1

εr el
) implies that Ãsum > 2δ and

2δ
Ãsum−2δ

≤ εr el .

Dividing Equation 16 by Equation 17, we obtain the following

inequality (under the condition Ãsum > 2δ ).

|Ãsum − Rsum (D, [lq ,uq ])|

Rsum (D, [lq ,uq ])
≤

2δ

Ãsum − 2δ

This completes the proof because
2δ

Ãsum−2δ
≤ εr el . �

The overall query algorithm
We summarize the query algorithm for both types of error

guarantees in Algorithm 2. The processing forQabs is composed

of two parts: index search T1 (i.e., Lines 1-2) and function eval-

uation T2 (i.e., Line 3). The processing for Qr el includes T1, T2,
and possible refinement T3 (i.e., Lines 4-6). The time complex-

ity of T1,T2, and T3 are O(log(|SeqP |)), O(deд), and O(log |D|)
respectively.

Algorithm 2 Query Processing for SUM (or COUNT)

Input: SeqP (output from Algorithm 1), lq , uq , D, δ , Qtype
Output: Approximate query result A

1: PIl ← index search P from SeqP that includes lq
2: PIu ← index search P from SeqP that includes uq
3: Ãsum ← PIu (uq ) − PIl (lq )
4: if Qtype = Qr el then
5: if Ãsum fails the error condition of Lemma 5.2 then
6: Ãsum ← perform refinement on D ◃ Section 3.2.1

7: return Ãsum

5.2 Approximate range MAX Query
The query method described in Section 3.2.2 can be applied here,

except that we employ the index described in Section 4.3.

Given the query range [lq ,uq ], we propose to compute the

approximate result as:

Ãmax = max{ max

k ∈Il ,k≥lq
PIl (k), max

k ∈Iu ,k≤uq
PIu (k),

max

Nj .I ⊆[lq ,uq ]
Nj .max}

(18)

where Nj denotes an internal node of the index built on top of

SeqP. Il and Iu denote the intervals of P that contain the values

lq and uq , respectively.
The error conditions for Qabs and Qr el are presented in Lem-

mas 5.3 and 5.4 respectively.We omit their proofs; they are similar

to the proofs of Lemmas 5.1 and 5.2.

Lemma 5.3. If δ = εabs , then Ãmax (in Equation 18) satisfies
the absolute error guarantee εabs .

Lemma 5.4. If Ãmax ≥ δ (1+ 1

εr el
), then Ãmax (in Equation 18)

satisfies the relative error guarantee εr el .

We now discuss how to evaluate Equation 18 in greater detail.

The third term is contributed by the inner nodes of the aggregate

R-tree whose intervals are covered by [lq ,uq ]. Regarding the first
two terms, it suffices to find the maximum values for PIl (k) and
PIu (k) in regions [lq ,UIl ] and [LIu ,uq ], as shown in Figure 7,

whereUIl (LIu ) is the upper (lower) end of the leaf node interval

that lq (uq ) overlaps. These values (i.e., red dots) can be calculated
by checking the border points and the zero derivative points.

The overall query algorithm
We conclude the query algorithm for both types of error guar-

antees in Algorithm 3. The processing for Qabs consists of two

parts: index search T1 (i.e., Line 3) and function evaluation T2
(Lines 8-9). The processing for Qr el includes T1,T2, and possi-

ble refinement T3 (i.e., Lines 10-12). The time complexities of T1
and T3 are still O(log(|SeqP |)) and O(log |D|). However, for T2,
this includes calculating the zero derivative points within the

intersection region. If the degree is between 1 and 5, closed-form

equations exist, where the number of arithmetic operations in

these cases are summarized in Table 2. Starting from degree 6,

there is no closed-form equations, and thus require expensive
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Figure 6: Querying framework for PolyFit
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Figure 7: The maximummeasure values (red dots) for two
leaf nodes, which include lq and uq

numerical evaluation methods like gradient descent [67]. In prac-

tice, we recommend to use degrees up to 3 for the approximate

range MAX query.

Algorithm 3 Query Processing for MAX (or MIN)

Input: Aggregate R-tree N on SeqP, lq , uq , D, δ , Qtype
Output: Approximate query result A

1: Ãmax ← −∞

2: if N is an internal node then
3: update Ãmax based on aggregate R-tree’s mechanism

4: else
5: for leaf element P in N do
6: if P.I ∩ [lq , uq ] , ∅ then ◃ the interval P covered

7: I ∗ ← P.I ∩ [lq , uq ]
8: β ← {x ∈ I ∗ | P′(x ) = 0} ◃ zero derivative points

9: Ãmax ← max(Ãmax ,maxx∈β P(x ), P(I ∗ .l ), P(I ∗ .u)))

10: if N is root node and Qtype = Qr el then
11: if Ãmax fails the error condition of Lemma 5.4 then
12: Ãmax ← perform refinement on D ◃ Section 3.2.2

13: return A

Table 2: Number of arithmetic operations for calculating
zero derivative points

degree 1 2 3 4 5

operations 0 2 up to 18 up to 261 up to 1612

5.3 Tuning deд and δ
We discuss the effect of our index parameters (i.e., deд, δ ) on the

query response time and examine how to tune them.

How to tune the degree deд?
The exact function F (k) is approximated by different polyno-

mial functions with different degrees. For instance, in Figure 8,

the exact function F (k) is approximated, among others, by the

following functions (within the deviation threshold δ ): (i) a piece-
wise functionG(k)with four pieces of degree-1 functions, or (ii) a
single-piece function H (k) of degree-4. Based on our experimen-

tal findings (cf. Section 7.2.1), we recommend to set the degree

-30

-20
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 40

-4 -3 -2 -1  0  1  2  3  4

va
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e

key k

F(k)

G(k): piecewise degree-1

H(k): piecewise degree-4

Figure 8: An example of degree selection

to 2 or 3. In general, one could generate a random workload of

queries to measure the performance of an index, and then test

the performance of index structures using different degrees (e.g.,

from 1 to 4).

As a remark, it is not practical to use large degree, due to

the limited precision of numeric data types in both the linear

programming solver and the programming language [1, 2]. For

example, IBM CPLEX uses κ (kappa) as a statistical measurement

of numerical difficulties. In our experiments, the κ value of a

degree-4 polynomial (1E+10) is much higher than that of a degree-

1 polynomial (1E+05).

How to tune δ?
The tuning of δ depends on the most frequent query type

used in the given application. For Qabs (i.e., Problem 1), if all

users share the same absolute error threshold εabs , then it is

used to derive the value of δ , according to Lemmas 5.1 and 5.3.

Otherwise, we can select the value of δ such that it satisfies the

error requirements for the majority of users (e.g., 80%).

ForQr el (i.e., Problem 2), the processing includes three phases:

index search, function evaluation, and refinement (cf. Algorithms

2 and 3). A large δ leads to fast index search but high refinement

probability. In contrast, a small δ leads to slow index search

but low refinement probability. Observe that refinement is often

more expensive than index search. We recommend to pick a

small δ such that most users avoid the refinement phase. In our

experiments, we examine different values of δ (e.g., 25, 50, 100,

200, 500, and 1000) to identify the best setting in terms of the

query response time.

6 EXTENSIONS: QUERIES WITH TWO KEYS
Previous sections consider range aggregate queries with a single

key (cf. Definition 3.1). We now discuss how to support range

aggregate queries with two keys (cf. Definition 6.1). Due to the

space limit, we only consider the COUNT query. In Appendix A.5

[48], we discuss the case of more than two keys.
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Definition 6.1. Let D be a set of records (u,v,w), where u, v ,
andw are the first key, the second key, and the measure, respec-

tively. Given the query ranges [l
(1)
q ,u

(1)
q ] and [l

(2)
q ,u

(2)
q ] for u and

v , respectively, we define the COUNT query as:

Rcount (D, [l (1)q , u (1)q ][l
(2)
q , u (2)q ]) = COUNT(V ) (19)

where V is the multi-set of measure values defined below:

V = {m : (k(1),k(2),m) ∈ D, l
(1)
q ≤ k(1) ≤ u

(1)
q , l

(2)
q ≤ k(2) ≤ u

(2)
q }

We build the following key-cumulative function to represent

the surface (cf. Figure 9), which is formulated in Definition 6.2.

Definition 6.2. The key-cumulative function with two keys for

COUNT query is defined as CFcount (u,v), where:

CFcount (u,v) = Rcount (D[−∞,u][−∞,v]) (20)
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Figure 9: Tweet locations, 2-dimensional keys: discrete
data points vs. continuous function

The following equation enables us to answer the COUNT query

quickly.

Rcount (D[l
(1)
q , u (1)q ][l

(2)
q , u (2)q ]) = CFcount (u

(1)
q , u (2)q ) −CFcount (l

(1)
q , u (2)q )

−CFcount (u
(1)
q , l (2)q ) +CFcount (l

(1)
q , l (2)q )

Then, we follow an idea similar to that used in Section 4.1

and utilize the polynomial surface P(u,v) to approximate the key

cumulative function CFcount (u,v) with two keys, where:

P(u,v) =

deд∑
i=0

deд∑
j=0

ai ju
iv j

By replacing F (ki ) and P(ki ) in Equation 9 with F (ui ,vi ) and
P(ui ,vi ), respectively, we obtain a similar linear programming

problem for obtaining the best parameters ai j . However, unlike

the one-dimensional case, it takes at least O(n2) to obtain the

minimum number of segmentations when using the GS method

(cf. Section 4.2.1), which is infeasible even for small-scale datasets

(e.g., 10000 points). Instead, we propose a heuristics-based solu-

tion that performs quad-tree-like segmentations. As illustrated

in Figure 10, when a region does not fulfill the error guarantee

δ (e.g., white rectangles), it is decomposed into four smaller re-

gions. This procedure terminates when all regions satisfy the

error guarantee δ .

1st iteration 2nd iteration 3rd iteration

…
> 𝛿

> 𝛿< 𝛿

< 𝛿 < 𝛿

< 𝛿

< 𝛿 < 𝛿

Figure 10: Quad-tree based approach for obtaining the seg-
mentation

After building the PolyFit index structure, we utilize a similar

approach in Section 5 to answer range aggregate queries with

theoretical guarantees (cf. Lemmas 6.3 and 6.4).

Given the query range [l
(1)
q ,u

(1)
q ] for u and [l

(2)
q ,u

(2)
q ] for v , we

propose to compute the approximate result as:

Ãcount = PIuu (u
(1)
q ,u

(2)
q ) − PIlu (l

(1)
q ,u

(2)
q )

−PIul (u
(1)
q , l

(2)
q ) + PIl l (l

(1)
q , l

(2)
q )

(21)

where Iuu , Ilu , Iul , and Il l denote the coverage regions of

P that (u
(1)
q ,u

(2)
q ), (l

(1)
q ,u

(2)
q ), (u

(1)
q , l

(2)
q ), and (l

(1)
q , l

(2)
q ) overlap, re-

spectively. These regions could be efficiently found with the same

quad-tree index used in construction.

Lemma 6.3. If we set δ = εabs
4

, then Ãcount satisfies the absolute
error guarantee εabs .

Lemma 6.4. If Ãcount ≥ 4δ (1+ 1

εr el
), then Ãcount satisfies the

relative error guarantee εr el .
The proofs of Lemma 6.3 and 6.4 are similar to those of Lemmas

5.1 and 5.2, respectively.

7 EXPERIMENTAL EVALUATION
We introduce the experimental setting in Section 7.1. Then, we

investigate the performance of PolyFit in Section 7.2. Next, we

compare PolyFit and error-bounded competitors on real datasets

in Section 7.3. After that, we compare the response time of PolyFit
with other heuristic methods in Section 7.4. Lastly, we compare

the construction times of all methods in Section 7.5.

7.1 Experimental Setting
We use three real large-scale datasets (0.9M to 100M records) to

evaluate the performance. They are summarized in Table 3. For

each dataset, we randomly generate 1000 queries. In the single-

key case, we randomly choose two key values in the datasets as

the start and end points of each query interval. In the two-key

case, we randomly sample rectangles from the dataset as query

regions. In our experiments, we focus on COUNT and MAX queries.

Nevertheless, our methods are readily applicable to SUM and MIN
queries.

Table 3: Datasets

Name Size Key(s) Measure Aggregate function

HKI [5] 0.9M timestamp index value MAX

TWEET [19] 1M latitude # of tweets COUNT

OSM [7] 100M latitude, longitude # of records COUNT

Table 4 summarizes different methods for supporting range ag-

gregate queries. We classify these methods based on five features:

(i) whether it provides absolute error guarantees (cf. Problem

1 (Qabs )), (ii) whether it provides relative error guarantees (cf.

Problem 2 (Qr el )), (iii) whether it supports queries with two keys

(cf. Section 6), (iv) whether it supports the COUNT query, and (v)

whether it supports the MAX query.
We first introduce the methods that can satisfy deterministic

error guarantees (i.e., those with X or △ in the Qabs and Qr el
columns in Table 4). The aR-tree [59] is a traditional tree-based

method for answering exact COUNT and MAX queries. The MRTree

[45] extends the aR-tree by utilizing progressive lower and up-

per bounds to answer approximate COUNT and MAX queries with
error guarantees. In addition, both the aR-tree and the MRTree

can support the range aggregate queries with two keys. With

simple modifications, the learned-index methods, including RMI

[44], FITing-tree [28], and PGM [27], can be extended to support

range aggregate queries with both absolute and relative error

guarantees. However, they are unable to support queries with

two keys and the MAX query. Due to the space limitation, we cover

the modifications and parameter tuning in our technical report

(cf. Appendix in [48]). PolyFit supports all these five features. By
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Table 4: Methods for range aggregate queries
X Directly support △ Extend to support × Cannot support

Method Qabs Qr el 2 keys COUNT MAX

aR-tree [59] X X X X X
MRTree [45] X X X X X
RMI [44] △ △ × X ×

FITing-tree [28] △ △ × X ×

PGM [27] △ △ × X ×

PolyFit (ours) X X X X X

Hist [68] × × × X ×

S-tree [6] × × × X ×

S2 [35] × × X X ×

VerdictDB [60] × × X X ×

DBest [53] × × X X ×

PLATO [50] × × × X ×

default, we follow Lemmas 5.1, 5.3, and 6.3 to set the δ values in

Problem 1 (Qabs ), for different absolute error threshold εabs . In
addition, we adopt δ = 100 in PolyFit for the experiments with

two keys in Problem 2 (Qr el ).

We then discuss the methods that are unable to fulifll the de-

terministic error guarantee (i.e., the methods with × in the Qabs
andQr el columns in Table 4). Hist [68] adopts the entropy-based

histogram for answering the COUNT query. The S-tree prebuilds
the STX B-tree [6] on top of a sampled subset of each dataset. S2

[35] and VerdictDB [60] are sampling-based approaches that can

only provide probabilistic error guarantees. By default, we set the

probability to 0.9 in our experiments. Both DBest [53] and PLATO

[50] are the state-of-the-art methods in approximate query pro-

cessing and time series databases, respectively, that can be also

adapted to answer approximate range aggregate queries. Since

these methods cannot provide deterministic error guarantees, we

regard them as heuristic methods.

We implemented all methods in C++ and conducted experi-

ments on an Intel Core i7-8700 3.2GHz PC using WSL (Windows

10 Subsystem for Linux).

7.2 PolyFit Tuning
In this section, we investigate two research questions for PolyFit,
namely (1) how does the degree deд affect the query response

time of PolyFit? (2) how does the degree deд affect the construc-

tion time of PolyFit?
7.2.1 Effect of deд on the query response time. Recall

that we need to select the degree deд in order to build PolyFit.
It is thus important to understand how this parameter affects

the query response time. Here, we use the form PolyFit-deд to

represent the degreedeд of PolyFit. Figure 11 shows the trends for
the query response time for both COUNT (one key and two keys)

and MAX (one key) queries, using the absolute error threshold

εabs = 100. When we choose a larger degree deд, the polynomial

function can provide better approximation for F (k), and thus

reduce the index size, which can reduce the response time for

each query. However, the larger the degree deд, the larger the
computation time for each node in PolyFit. Therefore, we can
find that the response time increases (e.g., deд = 3 and 4 in Figure

11a), once we utilize a high degree deд. By default, in subsequent

experiments, we choose deg = 2 for the COUNT query with a

single key, and deg = 3 for the COUNT query with two keys and

for the MAX query.

7.2.2 Effect of deд on the construction time. We further

examine the construction time for PolyFit, varying the highest
degree deд from 1 to 4 in the polynomial function (cf. Figure 12).

Since a polynomial function with a higher degree can produce

error guarantee for a longer interval I , i.e., E(I ) ≤ δ , the GS

method needs to call the LP solver with longer intervals (cf. line 4

in Algorithm 1), which can increase the construction time when

using polynomial functions with higher degree deд.

7.3 Comparing with Error-Bounded Methods
In this section, we test the response time of the different meth-

ods that can fulfill the absolute and relative error guarantees.

Here, we adopt the default settings for these methods (cf. Section

7.1) and use the datasets HKI, TWEET, and OSM for testing the

performance of COUNT (single key), MAX (single key), and COUNT
(two keys) queries, respectively. For Problem 1 (Qabs ), we fix the

absolute error εabs = 100 and εabs = 200 for the experiments

with one key and two keys, respectively. For Problem 2 (Qr el ),

we fix the relative error εr el = 0.01. Table 5 shows the response

time of different methods. Observe that PolyFit achieves the best
performance for all the types of queries. For the COUNT query

with two keys, PolyFit can achieve a speedup of at least two

orders of magnitude over the existing methods.

Table 5: Response time (nanoseconds) for all methods
with error guarantees

Error guarantee Qabs Qr el
Query type COUNT MAX COUNT COUNT MAX COUNT

# of keys 1 1 2 1 1 2

aR-tree 590 3592 357457 590 3592 357457

MRTree 565 182 385391 335 138 98919

RMI 568 n/a n/a 579 n/a n/a

FITing-tree 135 n/a n/a 147 n/a n/a

PGM 104 n/a n/a 118 n/a n/a

Polyfit 68 63 5274 79 65 5299

Sensitivity of εabs for COUNT query. We investigate how

the absolute error εabs affects the response times of different

methods. For the COUNT query with single key, we choose five

absolute error values for testing, which are 100, 200, 400, 1000,

and 2000. Observe from Figure 13a that since PolyFit, FITing-
tree, and PGM can provide more compact index structures for the

datasets, these methods can significantly improve the efficiency,

compared with the traditional index structures, i.e., the aR-tree

and theMRTree. In addition, due to the better approximationwith

nonlinear polynomial functions (deд = 2), PolyFit can achieve

1.33x to 6x speedups, over the existing learned-index structures,

including RMI, FITing-tree, and PGM. For the COUNT query with

two keys, we choose 200, 400, 800, 2000, and 4000 as the absolute

error values for testing. Since the state-of-the-art learned index

structures (RMI, FITing-tree, and PGM) can only support queries

with a single key, we omit these methods in this experiment.

Figure 13b shows that PolyFit achieves at least one order of

magnitude speedups compared with the existing methods (aR-

tree and MRTree), which is due to its compact index structure

and query processing method.

Sensitivity of εr el for COUNT query.We proceed to test how

the relative error εr el affects the response time of the different

methods. In this experiment, we choose five relative error values,

which are 0.005, 0.01, 0.05, 0.1, and 0.2. Based on themore compact

index structure, PolyFit is able to achieve better performance,

compared with the existing methods (cf. Figure 14a). For the

COUNT query with two keys, PolyFit significantly outperforms

the existing methods, i.e., the aR-tree and the MRTree, by at least

one order of magnitude (cf. Figure 14b).

Sensitivity of εabs and εr el for MAX query. In this experi-

ment, we proceed to investigate how the absolute error εabs and
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Figure 11: Running time for COUNT (single key), COUNT (two keys), and MAX queries on TWEET, OSM, and HKI datasets,
respectively, varying the degree deд of PolyFit
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Figure 12: Index construction time of PolyFit for COUNT
query with single key (using TWEET dataset) and two
keys (using OSM dataset), varying the degree deд
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Figure 13: Response time for COUNT query in TWEET
dataset (for single key) and OSM dataset (for two keys),
varying the absolute error εabs
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Figure 14: Response time for COUNT query in TWEET
dataset (for single key) and OSM dataset (for two keys),
varying the relative error εr el
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Figure 15: Response time for MAX query in HKI dataset
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Figure 16: Response time for COUNT query in TWEET
dataset (for single key) and OSM dataset (for two keys),
varying the selectivity of the query
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Figure 17: Response time for COUNT query in OSM dataset,
varying the dataset size
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index size of COUNT query (single key) in TWEET dataset,
for Qr el with εr el = 0.01, varying δ from 25 to 1000

methods. Observe from Figure 15, PolyFit can achieve at least 2x

speedup, compared with other methods, even though the selected

error is small.

Sensitivity of the selectivity for COUNT query. We further

test the response time of the different methods, varying the selec-

tivity of the COUNT query. Figure 16 shows that when we increase

the selectivity of the COUNT query (i.e., each query covers a larger

region), the query response time normally increases in different

methods. Since all methods for the COUNT query with a single

key have logarithmic time complexity, they are not sensitive to

the selectivity (cf. Figure 16a). Unlike the single key case, both
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the existing methods aR-tree and MRTree are sensitive to the

selectivity, compared with PolyFit (cf. Figure 16b).
In both cases, PolyFit achieves better performance across dif-

ferent selectivities. Since the methods MRTree, aR-tree, and RMI

always provide inferior efficiency in the single key case (cf. Fig-

ures 13a, 14a and 16a), compared with FITing-Tree, PGM and

PolyFit, we omit their results in subsequent experiments.

Scalability to the dataset size.We proceed to test how the

dataset size affects the efficiency of PolyFit and other methods. In

this experiment, we choose the largest dataset OSM (with 100M

records) for testing. Here, we focus on solving Problem 1 (Qabs )

for COUNT query, in which we adopt the default absolute errors,

i.e., εabs = 100 and εabs = 200 for the cases in single key and

two keys, respectively, and choose the latitude attribute as the

key. To conduct this experiment, we choose five dataset sizes,

which are 1M, 10M, 30M, and 100M. Figure 17 shows that PolyFit
scales well with the dataset size and outperforms other methods.

Trade-off between the query response time and index
size. We proceed to investigate the trade-off between the query

response time and index size of the different indexing methods.

To conduct this experiment, we focus on Problem 2 (Qr el ) and

choose 25, 50, 100, 200, 500, and 1000 as values of δ for testing. In

Figure 18, since the changes to δ cannot affect the index construc-

tion methods of the aR-tree and MRTree, parameter δ cannot

affect the index sizes of these two methods. We also notice that

these index structures consistently provide inferior performance

in terms of index size and query response time, compared with

the FITing-tree, PGM, and the PolyFit methods. For the other

methods, we can observe that the smaller the δ , the larger the
index size and query response time. The reason is that smaller

δ values lead to more leaf nodes in the index structures in the

different methods (e.g., more intervals are generated by the GS

method (cf. Algorithm 1) in PolyFit). On the other hand, if δ is too

large, it is easier for an online query to violate the error condition

for Qr el (i.e., Lemma 5.2), and thus the query response time can

also be larger. As such, all curves (except for the MRTree and

aR-tree methods) in Figure 18 resemble the “C”-shape. In general,

PolyFit-2 offers a better trade-off compared with other methods.

7.4 Comparing with Heuristic Methods
We compare the response time of PolyFit with other heuristic

methods, which cannot fulfill deterministic error guarantees, i.e.,

Qabs (cf. Problem 1) and Qr el (cf. Problem 2). In this experiment,

we adopt the default setting for the method PLATO [50], vary

the bin size for the method Hist and vary the sampling size for

the sampling-based methods, including S-tree, S2, VerdictDB,

and DBest. Since S2 cannot achieve less than 100000ns query

response time with 10% measured relative error, we omit the

result of S2 in Figure 19a. In addition, we only report the results

of the heuristic methods DBest and VerdictDB in Figure 19b, as

the other heuristic methods cannot support COUNT queries with
two keys (cf. Table 4). In these two figures, PolyFit yields the
smallest query response time with similar relative error.

7.5 Comparing the Construction Time of All
Methods

We proceed to investigate further how the construction times

of all methods change across different dataset sizes. Here, we

adopt the default degrees, i.e., deд = 2 and deд = 3, for the

polynomial functions in the COUNT query with a single key and

two keys, respectively. In Figure 20, PolyFit consistently achieves
faster construction time than Hist and DBest. Although PolyFit
may not achieve the fastest construction time, compared with
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Figure 19: Response time between PolyFit and the heuris-
tic methods for COUNT query with single key and two keys
in TWEET and OSM datasets, respectively

some methods (e.g., the aR-tree and the MRTree), PolyFit takes
less than 150s and 2500s (with default deд) in the construction

stage with 1 million (TWEET) and 30 million records (OSM),

respectively, which are acceptable in practice where the datasets

are static during data analytics tasks.
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Figure 20: Index construction time of methods for COUNT
query with single key and two keys (using OSM dataset
for both settings), varying the dataset size

8 CONCLUSION
In this paper, we study the range aggregate queries with two

types of approximate guarantees, which are (1) absolute error

guarantees (cf. Problem 1 (Qabs )) and (2) relative error guarantees

(cf. Problem 2 (Qr el )). Unlike the existing methods, our work can

efficiently support the most commonly used range aggregate

queries (SUM, COUNT, MIN, MAX), fulfill the error guarantees, and
support the setting of two keys.

In order to improve the efficiency of computing these queries,

we utilize several polynomial functions to fit the data points and

then build the compact index structure PolyFit on top of these

polynomial functions. An experimental study shows that PolyFit
can achieve significant speedups compared with existing learned-

index methods and other traditional exact/ approximate methods

for different query types. In particular, we can achieve at most

5µs query response time in a dataset with 30 million records,

which cannot be achieved by the state-of-the-art methods.

In the future, we plan to further develop advanced techniques

to improve the efficiency of constructing PolyFit, in order to

handle updates of records in large-scale datasets. In addition,

we aim to extend our methods to support other fundamental

analytics operations, including standard deviation, median, etc.

Moreover, we plan to investigate how to utilize the idea of PolyFit
to further improve the efficiency of other types of statistics and

machine learning models, e.g., kernel density estimation [16, 18],

and support vector machines [17, 18].
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ABSTRACT
Indexing large-scale databases in main memory is still challeng-

ing today. Learned index structures — in which the core com-

ponents of classical indexes are replaced with machine learning

models — have recently been suggested to significantly improve

performance for read-only range queries.

However, a recent benchmark study shows that learned in-

dexes only achieve limited performance improvements for real-

world data on modern hardware. More specifically, a learned

model cannot learn the micro-level details and fluctuations of

data distributions thus resulting in poor accuracy; or it can fit to

the data distribution at the cost of training a big model whose

parameters cannot fit into cache. As a consequence, querying a

learned index on real-world data takes a substantial number of

memory lookups, thereby degrading performance.

In this paper, we adopt a different approach for modeling a

data distribution that complements the model fitting approach

of learned indexes. We propose Shift-Table, an algorithmic layer

that captures the micro-level data distribution and resolves the

local biases of a learned model at the cost of at most one memory

lookup. Our suggested model combines the low latency of lookup

tables with learned indexes and enables low-latency processing of

range queries. Using Shift-Table, we achieve a speedup of 1.5X to

2X on real-world datasets compared to trained and tuned learned

indexes.

1 INTRODUCTION
Trends in new hardware play a significant role in the way we

design high-performance systems. A recent technological trend is

the divergence of CPU and memory latencies, which encourages

decreasing random memory access at the cost of doing more

compute on cache-resident data [25, 42, 44].

A particularly interesting family of methods exploiting the

memory/CPU latency gap are learned index structures. A learned

index uses machine learning instead of algorithmic data struc-

tures to learn the patterns in data distribution and exploits the

trained model to carry out the operations supported by an al-

gorithmic index, e.g., determining the location of records on

physical storage [7, 12, 18, 24, 25, 29]. If the learned index man-

ages to build a model that is compact enough to fit in processor

cache, then the results can ideally be fetched with a single access

to main memory, hence outperforming algorithmic structures

such as B-trees and hash tables.

In particular, learned index models have shown a great poten-

tial for range queries, e.g., retrieving all records where the key is

in a certain range 𝐴 < key < 𝐵. To enable efficient retrieval of

range queries, range indexes keep the records physically sorted.

Therefore, retrieving the range query is equivalent to finding

the first result and then sequentially scanning the records to
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retrieve the entire result set. Therefore, processing a range query

𝐴 < key < 𝐵 is equivalent to finding the first result, i.e., the

smallest key in the dataset that is greater than or equal to 𝐴 (sim-

ilar to lower_bound(A) in the C++ Library standard). A learned

index can be built by fitting a regression model to the cumulative

distribution function (CDF) of the key distribution. The learned

CDF model can be used to determine the physical location where

the lower-bound of the query resides, i.e., pos(A) = 𝑁 × 𝐹𝜃 (A)
where N is the number of keys and 𝐹𝜃 is the learned CDF model

with model parameters 𝜃 .

Learned indexes are very efficient for sequence-like data (e.g.,

machine-generated IDs), as well as synthetic data sampled from

statistical distributions. However, a recent study using the Search-

On-Sorted-Data benchmark (SOSD) [22] shows that for real-

world data distributions, a learned index has the same or even

poorer performance compared to algorithmic indexes. For many

real-world data distributions, the CDF is too complex to be learned

efficiently by a small cache-resident model. The data distribution

of real-world data has "too much information" to be accurately

represented by a small machine-learning model, while an accu-

rate model is needed for an accurate prediction. One can of course

use smaller models that fit in memory with the cost of lower pre-

diction accuracy, but will end up in searching a larger set of

records to find the actual result which consequently increases

memory lookups and degrades performance. Alternatively, a

high accuracy can be achieved by training a bigger model, but

accessing the model parameters incurs multiple cache misses

and also increases memory lookups, reducing the margins for

performance improvement.

In this paper, we address the challenge of using learned models

on real-world data and illustrate how the micro-level details

(e.g., local variance) of a cumulative distribution can dramatically

affect the performance of a range index. We also argue that a

pure machine learning approach cannot shoulder the burden of

learning the fine-grained details of an empirical data distribution

and demonstrate that not much improvement can be achieved

by tuning the complexity or size thresholds of the models.

We suggest that by going beyond mere machine learning mod-

els, the performance of a learned index architecture can be sig-

nificantly improved using a complementary enhancement layer

rather than over-emphasizing on the machine learning tasks. Our

suggested layer, called Shift-Table is an algorithmic solution that

improves the precision of a learned model and effectively acceler-

ates the search performance. Shift-Table, targets the micro-level

bias of the model and significantly improves the accuracy, at the

cost of only one memory lookup. The suggested layer is optional

and applied after the prediction; it can hence be switched on or

off without re-training the model.

Our contributions can be summarized as follows:

• We identify the problem of learning a range index for real-

world data, and illustrate the difficulty of learning from

this data.
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• We suggest the Shift-Table approach for correcting a learned

index model, which complements a valid (monotonically

increasing) CDF model by correcting its error.

• We show how, and in which circumstances, the suggested

methods can be used for best performance.

• We suggest cost models that determine whether the Shift-

Table layer can boost performance.

• The experimental results show that our suggested method

can improve existing learned index structures and bring

stable and almost-constant lookup time for real-world

data distributions. Our enhancement layer achieves up

to 3X performance improvement over existing learned

indexes. More interestingly, we show that for non-skewed

distributions, the Shift-Table layer is effective enough to

help a dummy linear model outperform the state of the

art learned indexes on real-world datasets

2 MOTIVATION
2.1 Lookup Cost for Learned Models
In modern hardware, the lookup times of in-memory range in-

dexes and the binary search algorithm are mainly affected by

their memory access pattern, most notably by how the algorithm

uses the cache and the Last-Level-Cache (LLC) miss rate.

Processing a range query in a learned index has two stages:

1) Prediction: Running the learned model to predict the location

of the first result for the range query; and 2) Local search (also

known as last-mile search): searching around the predicted loca-

tion to find the actual location of the first result. Figure 1a shows

common search methods for the local search. If the learned model

can determine a guaranteed range area around the predicted po-

sition, one can perform binary search. Otherwise, exponential or

linear search should be used, starting from the predicted position.

A cache miss in a learned index can occur in the first stage

for accessing the parameters of the model (if the model is too

big to fit in cache), or in stage two for the local search. Key in

understanding the cost of a learned index is that local search is

done entirely over non-cached blocks of memory. A learned index

built over millions of records could predict the location of records

with an error of, say, 1000 records and yet achieve no performance

gain over binary search algorithms or algorithmic indexes. This

is because while the learned index fits the models in cache, its

algorithmic competitors also fit the frequently-accessed parts of

the data in cache, which limits the potential for improvement for

a learned index.

2.2 Lookup Cost for Algorithmic Indexes
Classical algorithms, such as binary search, can be seen as a hi-

erarchy of [non-learned] models, which take the middle-point

as its parameter and predicts (accurately) which direction the

search should follow. Specifically for the first few steps of binary

search where the middle-points usually reside in cache, the func-

tionality of binary search is the same as a learned model from a

performance point of view.

In a pure binary search on the entire data, the first set of mem-

ory locations accessed by the algorithm (i.e., the median, quarters,

etc.) will already be in the CPU cache after a few lookups. There-

fore, the major bottleneck in binary search is for the latter stages

of search where the middle elements are not in cache, causing

last-level-cache (LLC) misses. Figure 1b shows a schematic illus-

tration of how caching accelerates binary search.

In basic implementations of binary search, the “hot keys” are

cached with their payload and nearby records in the same cache

line, which wastes cache space. Binary search thus uses the cache

poorly and there are more efficient algorithmic approaches whose

performance is not sensitive to data distributions.

Cache-optimized versions of binary search, e.g., a binary search

tree such as FAST [21], a read-only search tree that co-locates

the hot keys but still follows the simple bisecting method of bi-

nary search, are up to 3X faster than binary search [22]. This

is because FAST keeps more hot keys in the cache and hence it

needs to scan a shorter range of records in the local search phase

(cache-non-resident iterations of the search).

2.3 Preliminary Experimental Analysis
For a tangible discussion and to elaborate on the real cost of a

learned model, we provide a micro-benchmark that measures

the cost of errors in a learned index. We use the experimental

configuration used in the SOSD benchmark [22], i.e., searching

over 200M records with 32-bit keys and 64-bit payloads. Figure 2a

shows the lookup time of the second phase (local search) in a

learned model for different prediction errors. We include the

lookup times for binary search, as well as FAST [21], over the

whole array of 200M keys.

We are interested to see that if the position predicted by a

learned index, say predicted_pos(𝑥), has an error Δ, then how

long does it take in the local phase to find the correct record. Thus,

for each query 𝑥𝑖 , we pre-compute the ‘output’ of the learned

index with error Δ, i.e., [predicted_pos(𝑥𝑖 ) ± Δ], and then run

the benchmark given {𝑥𝑖 , [predicted_pos(𝑥𝑖 ) ± Δ]} tuples.
As shown in Figure 2a, if the error of the model is more than

∼300 records on average, then FAST outperforms the learned

model (with linear or exponential local search). Even if the learned

model can give a guaranteed range around the predicted point

to guide the local search and enable binary search, FAST outper-

forms it if the error exceeds 1000 records. The same trend can be

seen for the LLC miss rates in Figure 2b.

Note that this micro-benchmark over-estimates the maximum

error that the learned index can have because we only compare

the time of local search phase in a learned index with the total
search time of FAST and binary search. Considering the time

taken to execute the model for predicting the location, a learned

model needs to have a much lower error to compete with the

generic, reliable, and distribution-independent algorithms such

as binary search and FAST. For example, FAST takes 200 nanosec-

onds to search a key in the entire 200M-key dataset. If a learned

index takes, say, 120 nanoseconds to run (for accessing model

parameters and computing the prediction), then the local search

can take at most 80 nanoseconds so that the learned index can

outperform FAST, which means that the prediction error (Δ) must

be less than 16 records (based on Figure 2a).

Tuning the learned index for a balance of model size and ac-

curacy is a challenging task. Improving the local search time

requires using a more accurate model with a higher learning

capacity and more parameters. However, accessing such a big

model typically incurs further cache misses during model exe-

cution, and consequently the lookup time. Therefore, if the data

distribution cannot be learned efficiently with a small memory

footprint (fitting into cache), outperforming cache-efficient al-

gorithmic indexes is very challenging. This is indeed the case

for most real-world datasets that cannot be modelled accurately

with a small-sized model.
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Figure 1: Comparison of patterns in binary search (partially cached) and local search in learned indices (non-cached).

2.4 Difficulty of Learning Real-world Data
To use a learned index in a production system, it is essential to

identify when learned indexes fail to achieve superior perfor-

mance and what aspects of the data distribution contributes to

the performance of a learned index model. We realized that a

major challenge in understanding learned indexes is that the

common practices of performance evaluation for indexing al-

gorithms are misleading for learned indexes. For example, it is

common to use the uniform and skewed distributions (such as

log-normal) as arguably the two best- and worst-case extremes

for a search task [25]. However, for evaluating search over sorted

read-only data, the difficulty of the task is determined by the

unpredictability of the data, which is not necessarily a factor of

skewness or shape parameter of the data distribution. As we will

show in this section, most statistical distributions are much easier

to model than real-world data.

Distributions that matter. An interesting observation from the

SOSD benchmark results is that even for datasets that have the

same background distribution, e.g., both closely match a uniform

distribution, the performance of a learned model can vary signif-

icantly, depending on the fine-grained details in the empirical

CDFs. For example, consider Figures 3a and 3b, which repre-

sent two CDFs that are both close to uniform. The uniform data

(uden64 [22]) is comprised of dense integers that are synthetically

sampled from a uniform distribution, and Facebook (face64 [22])
is a Facebook user ID dataset. While both datasets match closely

with the uniform distribution, face64 is significantly harder to

model due to its fine-grained details in the CDF. The lookup time

of learned indexes (both RMI and Radix-Splines) for face64 is

6-7× higher than that of uden64 (see Table 2) because there are

many micro-level details (unpredictability) in the CDF, hence a

huge model with a high learning capacity is needed to fit the CDF

accurately. Using the RMI learned index, for example, the uden64

data is easily modelled with a simple line (two parameters) with

near-zero error, while the best architecture found by the SOSD

benchmark for modelling the face64 data is a hierarchy of two

linear models, a huge model (136MB), with an average error of

202 records.

Generally speaking, real-world datasets are more difficult to

learn compared to synthetic ones and the learned index built

over them is not significantly faster than the algorithmic rivals.

The main question remains what distinguishes a real-world data

from a synthetic one? Consider the four distributions in Figure 3,

where Figures 3a, 3c are synthetic (generated from uniform and

log-normal distributions), and Figures 3b, 3d are real-world data.

The mini-chart inside each CDF highlights the distribution in

a small sub-range, i.e., a “zoomed-in” view of the CDF. For the

synthetic data, the CDF is very smooth in any short sub-range

of the whole CDF. Synthetic data (such as uniform, normal and

log-normal) are built using a cumulative density function that

is derivable, meaning that the at any small sub-range, the shape

of the CDF is close to a straight line with a slope that is close

to the derivation of the underlying CDF in that range. Such a
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Figure 2: Cost of local search in a learned index

smooth CDF has less information to be compressed into a model.

For example, a learned index model based on linear splines can

accurately fit the whole CDF by fitting each part of the CDF to a

line. Even for very skewed distributions, such as log-normal, the

data is so predictable that it can be easily fitted to simple, linear

models.

Real-world data, however, is much less predictable and has

a much higher level of complexity in its patterns. Even if an

ideal learning algorithm is used to model the real-world data, the

model itself needs to be very big because the compressed version

of the CDF (to be stored as a model) is still very big.

This explains why state-of-the-art learned indexes perform ex-

tremely well for datasets that are synthetically generated from a

statistical distribution (such as uniform, normal, and log-normal),

but perform comparably poor for real-world data that even al-

most match (shapewise) with those synthetic distributions [22].

On real-world datasets, learned indexes have a high cache miss

rate and lookup time, contrary to their primary goal of having

fewer cache misses.

Using learned models is beneficial when they are 1) accurate

enough to predict a position within the same cache line that con-

tains the data point, otherwise the lookup time will be adversely

affected due to multiple cache misses, and 2) compact enough to

fit in cache and not to cause LLC misses. With this in mind, we

can argue that a pure machine-learning approach might fail to

“learn the data perfectly” and “fit the model in cache” simultane-

ously, specifically in case of real-world datasets that contain a lot

of underlying patterns like spikes and generally noise.

As a consequence, learned models are crucial to indexing but

they cannot shoulder the burden of indexing the data alone. We

hence suggest an algorithmic layer that can mitigate the difficulty

(a) uniform (b) Facebook

(c) Lognormal (d) OSMC

Figure 3: Example distributions with different complexi-
ties in micro and macro levels
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Figure 4: Leveraging correction layers to a learned index

of learning the data distribution. In this approach, the learned

model is allowed to learn an semi-accurate, small model that

learns the holistic shape of the distribution, and the fine-tuned

modelling is provided by the algorithmic layers.

2.5 Model Correction
While learned index models are powerful tools for describing a

data distribution in a compact representation, merely focusing

on learning a highly-accurate model does not necessarily lead

to a high-performance index. In this paper, we suggest a new

approach for boosting existing learned models with additional

layers, specifically developed with hardware costs in mind.

The suggested helping layers add a small overhead when exe-

cuting queries, but significantly reduce the overall lookup time

of the learned index. The suggested layers are very powerful

and consequently allow for using more lightweight models, yet

ideally avoid computationally-expensive algorithms for training.

As Figure 4 illustrates, in addition to the learned index model

we add a correction layer, an optional component, that can be

added to improve the performance. We explore the potential of

correction layers in the next sections.

3 SHIFT-TABLE
A learned model predicts a relative position 𝐹𝜃 (𝑥) for a given
query 𝑥 . To calculate the position of the result, the estimated
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relative position is multiplied by the number of keys, and trun-

cated to an integer (the index), hence the predicted position is

[𝑁𝐹𝜃 (𝑥)]. The actual position of the record, however, is 𝑁𝐹 (𝑥)
where 𝐹 (𝑥) is the empirical CDF of the data points, and 𝑁 is

the data size. Therefore, the result is 𝑁𝐹 (𝑥) − [𝑁𝐹𝜃 (𝑥)] records
ahead of the predicted position.We identify𝑁𝐹 (𝑥)−[𝑁𝐹𝜃 (𝑥)] as
the drift of 𝐹𝜃 at key 𝑥 , which is the signed error of the prediction,
as opposed to the absolute error.

The idea of the Shift-Table layer is to have a lookup table that

contains the drift values so that the drift of the prediction can

be corrected. Capturing the drift for every value of 𝑥 requires an

auxiliary index, which is not feasible. However, we can use the

output of the learned index model ([𝑁𝐹𝜃 (𝑥)]), which is in the

range of [0, 𝑁 ], and we construct a mapping from each possible

output of themodel, say𝑘 , to “how far ahead is the actual record if

model predicts k’s record”, so that we can correct the predictions

using this mapping. This means that for each prediction, we only

need an extra lookup of 𝑘 in a fixed array of size 𝑁 .

To build the Shift-Table layer, we first partition the keys𝑥0, · · · , 𝑥𝑁−1

into 𝑁 partitions. We define 𝑃𝑘 as the set of keys for which the

model predicts 𝑘 as the position:

𝑃𝑘 = {𝑥 | [𝑁𝐹𝜃 (𝑥)] = 𝑘} (1)

Each of the indexed keys in 𝑃𝑘 has an index, say 𝑁𝐹 (𝑥) and
a prediction 𝑘 = [𝑁𝐹𝜃 (𝑥)]. For each partition, we extract two

parameters that specify the range for local search, namely Δ𝑘
and 𝐶𝑘 . Δ𝑘 is defined as:

Δ𝑘 = min (𝑁𝐹 (𝑥) − 𝑘]) ∀𝑥 ∈ 𝑃𝑘 (2)

which indicates that if the predicted location is 𝑘 , the search

should be started at point 𝑘+Δ𝑘 . Also,𝐶𝑘 = |𝑃𝑘 | is the cardinality
of 𝑃𝑘 , i.e., the number of indexed keys for which the prediction

predicts the 𝑘’th record, in other words, the length of the area

that has to be searched in the local search phase.

To correct the prediction, we first compute the predicted posi-

tion 𝑘 = [𝑁𝐹𝜃 (𝑥)], and then perform local search in the range

of [𝑘 + Δ𝑘 , 𝑘 + Δ𝑘 +𝐶𝐾 − 1].
The number of partitions depends on the range of the output of

the learned index, which should be 0, 𝑁 ). Therefore, The <Δ𝑘 ,𝐶𝑘>
pairs: pairs are stored in a single array of size 𝑁 , so that the

correction can be done using a single lookup into the array of

pairs.

A Shift-Table layer is depicted in Figure 5. The index contains

100 elements in range [0,999]. The CDF model is a simple model:

𝐹𝜃 (𝑥) = 𝑥/1000, hence the prediction is simply 𝑘 = [𝑥/10]. If the
query is 771, for example, the prediction of the model is 𝑘 = 77.

The correction information are Δ77 = −41 and 𝐶77 = 2, which

indicates that the result is -41 records ahead of the prediction,

and the search area is of length 2. Therefore, the local search is

performed on the indexes of range [36, 37].
Algorithm 1 shows how Shift-Table is used to accelerate query

processing. The Shift-Table layer reduces the prediction error of

the model, but incurs an additional memory lookup.

3.1 Querying non-indexed keys
If the query is on the indexed keys, the result is in range [𝑘 +
Δ𝑘 , 𝑘 +Δ𝑘 +𝐶𝐾 − 1]. In Figure 5, for example, querying 771 and

782 points to the correct range that contains the result. However,

if the query is not among the indexed keys, then the query is

either within the range, or in the position just after the range (at

data[𝑘+Δ𝑘+𝐶𝐾 ]. For example, in Figure 5, the record correspond-

ing to queries 778 and 781 is the same, though the aforementioned

Algorithm 1 Search with direct-mapped learned index

1: procedure FIND_LOWER(𝑞, model, Shift-Table)

2: pos = model.predict(q)

3: pos = Shift_Table.mapping[pos].startPoint

4: range = Shift_Table.mapping[pos].range

5: if range < linear_to_binary_threshold then
6: pos = LinearSearch(start=data[pos],range)

7: else
8: pos = BinarySearch(start=data[pos],range)

9: end if
10: return pos

11: end procedure

model (𝑘 = [𝑞/10]), maps 778 to range [36, 37], and 781 to [38, 39].
In both cases, however, the local search algorithm (either binary

or linear search) within the range computes the correct position

of the result (i.e., 38). Notably for 𝑞 = 778, a typical local search

implementation realizes that the query is greater than the largest

value in range and returns the first index right after the range of

[36, 37], which is 38.

Another issue that can arise for non-indexed keys is when the

predicted position 𝑃𝑘 has an empty partition that none of the

indexed keys belongs to. In Figure 5, if the query is 15, then the

predicted position is 𝑘 = [15/10] = 1, but 𝑃1 is empty because

the model does not predict position 1 for any of the indexed

keys. If the query is predicted to be in an empty partition, the

result is the first record in the next non-empty partition, e.g.,

the result of query=15 is record 3. To make the Shift-Table layer

consistent for the empty partitions, we put pseudo values for

Δ,𝐶 in the mapping layer such that they refer to the same range

as the next existing partition. If 𝑃𝑘∅ is an empty partition and

𝑃𝑘 is the first non-empty partition after 𝑃𝑘∅ , then𝐶𝑘∅ = 𝐶𝑘 and

Δ𝑘∅ = Δ𝑘 + (𝑘 −𝑘∅). The pseudo Δ,𝐶-values are depicted using
dashed arrows in Figure 5.

3.2 CDF and duplicate values
It should be noted that the empirical CDF function, i.e., 𝐹 (𝑋 ) =
𝑃 (𝑋 ≤ 𝑥) does not exactly identify the result of a range query

on x. In this paper, we use the CDF (F(x)) notation as the index of

the result corresponding to 𝑥 . We consider range queries of type

(key <= query), hence the CDF for a point 𝑥 is the relative posi-

tion of the first key in the indexed keys, as the range is scanned

towards the right. More precisely, we assume that 𝑁𝐹 (𝑥0) = 0

and 𝑁𝐹 (𝑥𝑁−1) = 𝑁 − 1 (for the last key).

A range learned index built for a specific comparison operator,

say 𝑥 ≤ 𝑞, can be used for other operators (≥, >,, etc.) with a

brief left/right scan. However, if there are too many duplicates

in the indexed data, then the the performance of the learned

index will be worse for queries that do not match the presumed

definition of F(X). In such cases, it is more efficient to use the

specific definition of 𝐹 (𝑥) that reflects the position of the result of
the query in the most common type of constraint in the queries.

For example, if most of the queries are of type 𝑥 >= 𝑞, then 𝐹 (𝑥)
should be defined such that 𝑁𝐹 (𝑥) identifies the index of the last
key among the duplicate values.

3.3 Building the Shift-Table layer
Algorithm 2 describes how the mapping of the Shift-Table layer

is built. In the first stage, it computes the Δ,𝐶 values and updates

for the non-empty partitions, i.e., 𝑃𝑘s for which at least one of
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Figure 5: Shift-Table

the indexed keys is mapped to 𝑘 . In the second stage, a backward

traversal is performed on the Shift-Table layer and the compute

the pseudo-values for the empty partitions (Algorithm 2, lines

10–14). Starting from the last entry, a pseudo-partition has the

same count (𝐶) as the first non-empty partition on its right side,

but the shift Δ is adjusted so that they both point the the same

region for local search.

The computational complexity of building the Shift-Table layer

is𝑂 (𝑁 ) ×𝑂 (𝐹𝜃 ) to compute the drifts and updating the mapping,

as it only traverses the data and the Shift-Table layer once. In

case that running the model is expensive, model executions can

be parallelized for faster execution.

Algorithm 2 Building the Shift-Table layer

1: procedure Shift-Table_Build(model (𝐹𝜃 ), data)

2: Shift-Table = Array of tuples <Δ,𝐶>, all set to zero

3: for all x ∈ data do
4: 𝑝𝑜𝑠 = 𝑁𝐹 (𝑥) ⊲ Position of x (sec 3.2)

5: 𝑘 = [𝑁𝐹𝜃 (data[i])]
6: Δ = 𝑝𝑜𝑠 − 𝑘
7: Shift_Table[k].Δ = min(Shift_Table[𝑘] .Δ,Δ)
8: Shift-Table[k].C += 1

9: end for
10: for 𝑘 ← 𝑁 − 1 · · · 0 do
11: if Shift_Table[k].C = 0 then ⊲ Empty partitions

12: Shift_Table[k].C = Shift_Table[k-1].C

13: Shift_Table[k].Δ = Shift_Table[k-1].Δ + 1

14: end if
15: end for
16: return Shift_Table

17: end procedure

3.4 Compressing the Shift-Table layer
Correcting the prediction of the model using the Shift-Table layer

takes a single DRAM lookup irrespective of the size of the index.

However, it might be of interest to reduce the size of the layer.

The Shift-Table layer is an array of size N, containing <Δ,𝐶>
tuples. Further compression can be used to decrease the memory

footprint of the Shift-Table layer.

One approach is to keep a single parameter instead of the

<Δ,𝐶> tuples. In this regard, a predicted position 𝑘 should be

mapped to the key that is in the median point among the keys in

𝑃𝑘 , which is

Δ̄𝑘 =

[
Δ𝑘 +

𝐶𝑘

2

]
(3)

To correct using the Δ̄𝑘 values, the final position is computed

as 𝑝𝑜𝑠 = 𝑘 + Δ̄𝑘 , which indicates where the search should be

started without specifying the guaranteed range that should be

searched. Therefore, search algorithms that require the bound-

aries specified such as binary search cannot be used for local

search. As discussed in section 2.4, linear or exponential search

can be used for local search without boundaries, but they are

slightly slower if the error is considerable after the correction.

A second approach that complements the first one, is to shrink

the size of the Shift-Table layer by merging nearby partitions.

We can extend the definition of P = {𝑃1, · · · , 𝑃𝑁 } to allow

partitions that have a size of 𝑀 < 𝑁 . We define 𝑀 partitions

P𝑀 =
{
𝑃𝑀

1
, · · · , 𝑃𝑀

𝑀

}
where each partition is defined as:

𝑃𝑀
𝑘

= {𝑥 | [𝑀𝐹𝜃 (𝑥)] = 𝑘} (4)

Similarly, Δ𝑀
𝑘

is the minimum "move to the right" shifts that

each of the keys in 𝑃𝑀
𝐾

need:

Δ𝑀
𝑘

= min (𝑁𝐹 (𝑥) − [𝑁𝐹𝜃 (𝑥)]) ∀𝑥 ∈ 𝑃𝑀𝑘 (5)

and 𝐶𝑘 should be defined such that the boundary is valid for

all keys in 𝑃𝑀
𝐾
, which is:

𝐶𝑀
𝑘

= max(𝑁𝐹 (𝑥) − ([𝑁𝐹𝜃 (𝑥)] + Δ𝑀𝑘︸              ︷︷              ︸
start of the search window

)) ∀𝑥 ∈ 𝑃𝑀
𝑘

(6)

To combine approaches to compact the Shift-Table layer, we

can use average drifts Δ̄𝑀
𝑘

instead of the <Δ𝑀
𝑘
,𝐶𝑀
𝑘
> pairs:

Δ̄𝑀
𝑘

=


1

|𝑃𝑀
𝑘
|

∑
𝑥 ∈𝑃𝑀

𝑘

(𝑁𝐹 (𝑥) − [𝑁𝐹𝜃 (𝑥)])
 (7)

and then use [𝑁𝐹𝜃 (𝑥)]+Δ̄𝑀[𝑀𝐹𝜃 (𝑥) ] as the corrected prediction.
Suppose the same data as in Figure 5, but instead of a Shift-Table

layer of size N, we use only M=30 partitions. Table 1 shows how

a compact Shift-Table layer is built and used for correction, on

a portion of the index. We use the same model (𝐹𝜃 = [𝑥/1000]),
hence the prediction is 𝑁𝐹𝜃 (𝑥) = [0.1𝑥], and the partition cor-

responding to a key is 𝑁𝐹𝜃 (𝑥) = [0.03𝑥]. All of the records

from data[35..39] are assigned to the same partition 𝑃30

23
and their

predictions are shifted 40 records backwards. Note that when
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𝑀 ≠ 𝑁 , a partition does not specify a single point (or range) for

all of the keys in the partition. Instead, the position of a key af-

ter correction depends on both 𝑁𝐹𝜃 (𝑥) (prediction) and𝑀𝐹𝜃 (𝑥)
(partition number). For example, all keys belonging to 𝑃30

23
, i.e.,

data[35 · · · 39] have the same correction of Δ̄30

23
= −40, but their

final predictions are different. Therefore, the correction error of

a compact Shift-Table layer is less than the number of elements

in the partitions.

Table 1: Illustration of Shift-Table with 𝑀 = 30 mapping
entries on an index with 𝑁 = 100 keys

Index 34 35 36 37 38 39 40 41

key (x) 752 769 770 771 782 785 820 830

Predicted index= [0.1 x] 75 76 77 77 78 78 82 83

Error before correction -41 -41 -41 -40 -40 -39 -42 -42

Partition (k) = [0.03 x] 22 23 24

Δ̄30

𝑘
-41 -40 -42

Prediction after correction 34 36 37 37 38 38 40 41

Error after correction 0 1 1 0 0 -1 0 0

The drift of 𝑃𝑀
𝑘
, namely Δ̄𝑀

𝑘
is the index of the median key

among themembers of 𝑃𝑀
𝑘
. This means that if the key is predicted

to be in the 𝑘’th partition (among the 𝑀 partitions), the local

search is done around [𝑁𝐹𝜃 (𝑥)] + Δ̄𝑀𝑘 .

Using a Shift-Table layer of size 𝐾 < 𝑁 does not affect the

complexity of building the layer, which is𝑂 (𝑁 ) ×𝑂 (𝐹𝜃 ) +𝑂 (𝑀).
However, if the midpoint-values are used (correction without

specifying the boundary), it is possible to construct the map

using a sample of the indexed keys, which comes at the cost of

the accuracy. Using a sample of size 𝑆 < 𝑁 , the layer can be built

in 𝑂 (𝑆) ×𝑂 (𝐹𝜃 ) +𝑂 (𝐾) time.

Nonetheless, keep in mind that the Shift-Table layer is de-

signed for applications that favour latency to memory footprint,

hence reducing the memory footprint of the Shift-Table layer

by a large factor will limit its margin for improvement as the

fine-grained details of the empirical CDF will be lost to some

extent.

3.5 Measuring the error
Since the Shift-Table layer specifies a range for local search,

the notion of error is not trivial. However, we can use the es-

timates without range Δ̄), for which the correction picks the

median value among the keys in the 𝑃𝑘 . The error for the keys

in each partition is

{
[𝐶𝑘

2
], · · · , 0, · · · , [𝐶𝑘

2
]
}
if 𝐶𝑘 is odd, and{

[𝐶𝑘

2
] − 1, · · · , 0, · · · , [𝐶𝑘

2
]
}
if 𝐶𝑘 is even. The average error is

approximately 𝐶𝑘/4.
In a learned index without Shift-Table, the error is the distance

between 𝐹 (𝑥) and 𝐹𝜃 (𝑥). After correcting the model with the

Shift-Table, however, the error only depends on the𝐶𝑘 values, i.e.,

a prediction error only occurs when [𝐹𝜃 (𝑥)] predicts the same

position for multiple keys. Therefore, the local search range and

the error are combinations of multiple step functions over the

𝑃𝑘 s with 𝐶𝑘 > 1.

The average error depends on the data distribution in the

query workload. If the queries are uniformly sampled from the

keys, then the average error is:

𝑒 =
1

2𝑁

∑
𝑘∈P

𝐶2

𝑘
(8)
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Figure 6: Error correction using the Shift-Table layer

3.6 Behaviour of the Shift-Table layer
Figure 6 illustrates how the Shift-Table layer corrects the error of

a linear interpolation model on the OSMC data. While the model

is too simple to capture the patterns in data, the Shift-Table layer

alone is effective for correcting the predictions.While the average

error of the model is 28 million keys, Shift-Table reduces the error

to only 129 keys.

Shift-Table corrects two types of error. First, when the model

has a considerable local bias, which means that 𝑁𝐹 (𝑥) diverges
significantly from 𝑁𝐹𝜃 (𝑥) in a sub-range of the data distribution.

The second type of error is the fluctuations of the distribution

between the nearby keys, for most of which the Shift-Table layer

is very effective. The only type of error that can degrade the

performance of the Shift-Table layer is when there is a congestion

of keys in a small sub-range of values, leading to many of the

keys being classified in a single layer, and hence having some

partitions with high 𝐶𝑘 .

The behavior of the Shift-Table layer and its error estimate

indicates that it can be effective in eliminating different types

of errors that models have. One common type of error is the

local bias in the model, i.e., when the error of the model, i.e.,

𝑁𝐹𝜃 (𝑥) − 𝑁𝐹 (𝑥) has a considerable bias in some sub-ranges of

the distribution, meaning that the 𝐹 and 𝐹𝜃 diverge at some point.

This happens when the model cannot capture the CDF in a local

neighborhood. Table 2 shows that even if a single line is used as

a model, which has a huge bias in most areas of the distribution,

the Shift-Table layer can efficiently eliminate the huge bias of a

fully linear model (a single line as a model), and reduces the error

significantly such that the linear model outperforms all other

algorithms for the real-world datasets, as well as the uspr dataset

(sparse uniformly-distributed integers) which has a significantly

higher variance than uniformly-distributed dense integers.

Another type of error that the Shift-Table layer eliminates is

the local variance in the data, which is the fluctuations of the

values between nearby keys. This type of error is very common

in real-world data. For example, the face, uspr, and uden datasets

all follow a uniform distribution, but they have different local

variances, which is the amount of fluctuations in the nearby keys.

The uden dataset is very easy to model using the learned indexes

and does not require a helping layer such as Shift-Table. The

other two datasets, however, are very hard to model using the

learned index structures. This is because the Shift-Table model

can easily correct the fluctuations of values (different increments

between each two points), as long as the model does not predict

a single record for a lot of nearby keys (resulting in a high 𝐶𝑘
value).
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3.7 Cost model of the Shift-Table layer
The accuracy of the model after correction with Shift-Table de-

pends on the cardinalities of the partitions (𝐶𝑖 values). Ideally,

if the records of each partition reside on a single cache line, the

results will be retrieved in a single memory lookup. The cost

of local search, i.e., the mapping between the accuracy in each

partition and the latency to do local search depends on the hard-

ware. As discussed in section 2.1, the latency of search for various

ranges can be measured by a micro-benchmark over non-cached

regions with different sizes. Let 𝐿(𝑠) be the measured latency of

non-cached search over a range containing 𝑠 records. The latency

for looking up a key in a region of size 𝑠 is 𝐿(𝐶𝑘 ). Assuming that

the queries have the same distribution as the data points, the

average lookup latency for the index is:

Latency with Shift-Table = Latency(𝐹𝜃 ) +
1

𝑁

∑
𝑘∈P

𝐶𝑘𝐿(𝐶𝑘 ) (9)

The cost model can also be used to estimate which of the

local search algorithms should be used, by substituting in equa-

tion 9 the local search cost of each local search algorithm, i.e.,

𝐿(𝑠) mappings for linear, binary, and exponential search; and for

and their different implementations. Branch-optimized binary

search would be the natural choice if the Shift-Table model can

determine the boundary (if using the Δ𝑘 ,𝐶𝑘 pairs), otherwise

either linear or exponential search should be chosen based on

the latency estimate.

Taking the cost of running the Shift-Table layer into account,

we should consider how much the correction improves the accu-

racy of the learned index model and hence estimate the speedup.

The lookup time of themodel without using the Shift-Table model

can be estimated once the Shift-Table model is built, without run-

ning a speedup benchmark. The model error for each key is

Δ̄𝑘 = Δ𝑘 + 𝐶𝑘

2
, therefore the estimated runtime of the index

without correction is:

Latency without Shift-Table = Latency(𝐹𝜃 ) +
1

𝑁

∑
𝑘∈P

𝐶𝑘𝐿(Δ̄𝑘 )

(10)

3.8 CDF model validity constraint
The correction layer requires the learned model to be a valid

CDF function, i.e., 𝐹𝜃 (𝑥) should be monotonically increasing:

𝑥𝑖 > 𝑥 𝑗 −→ 𝐹𝜃 (𝑥𝑖 ) >= 𝐹𝜃 (𝑥 𝑗 ). Among our baselines, the RadixS-

plines learned index always produces a valid (increasing) CDF,

but the RMI index does not always produce monotonically in-

creasing predictions. In RMI, for example, the CDF model might

decrease when using cubic models [30] or on the edge point

between two models in the second-level. If 𝐹𝜃 (𝑥) is not mono-

tonically increasing, then the correction layer could identify a

range that does not include the query result, because the values

of 𝑥 for which the learned model predicts 𝑘’th record are not in

a contagious memory block.

A learned index model that is non-monotonic can still use the

Shift-Table layer, as the output of the Shift-Table layer would still

predict a position but it is not guaranteed that the position is in

the predicted range. Therefore, the local search algorithm should

check if the query is in the predicted range and perform a search

outside of the range. Another hack for non-monotonic model is

to use the Δ̄ midpoint-values instead of the Δ𝑘 ,𝐶𝑘 pairs, which

predicts a location (instead of a range) to start the local search.

If the Shift-Table layer uses the <Δ𝑀
𝑘
,𝐶𝑀
𝑘
> pairs, it can deter-

mine the range for local search and we can apply either linear or

binary search, depending on the error range. We do linear search

if the range is smaller than a threshold (8 keys, in our experi-

ments), otherwise a binary search is performed. However, if it

only contains the average shift values (Δ̄𝑘 , it predicts a position
without specifying the boundaries that contain the record; hence

either linear or exponential search can be performed depending

on the average error rate and performance objectives (average or

worst-case latency).

3.9 Tuning the system
The Shift-Table layer is optional and adds overhead to the search.

Therefore, enabling Shift-Table is only worthwhile if it can even-

tually accelerate the original learned index structure. An effective

configuration of the index is a choice between 1) Using the model

alone, 2) model + Shift-Table. Note that the Shift-Table layer is

optional and can be deactivated with zero cost. The output of the

model and the Shift-Table layer are of the same type and both

represent a prediction of the records, hence if the Shift-Table

layer is disabled, we can easily use the model alone for prediction

of the records.

While tuning the system, the performance of each configu-

ration can be directly measured using performance tests, or by

measuring the model error and then using the cost model of the

Shift-Table model on the bottom of the architecture (section 3.7).

The parameters of the architecture, i.e., the Shift-Table array

size 𝑀 and the parameters of the learned CDF model, can be

tuned by computing the error estimate using Shift-Table’s cost

model, or alternatively, by running a performance tests on the

built architecture. Our suggested default value for the Shift-Table

layer is𝑀 = 𝑁 , because using a mapping layer that has the same

number of entries as the keys will ensures that the layer can

exhibit its ultimate effect to eliminate the signed error, and does

not have more latency compared to using smaller𝑀 values.

An advantage of Shift-Table is that the learned model does

not need to be very accurate, as a correction will be applied

anyway. Therefore, a more relaxed measure can be used instead

of least-square error. In this paper, however, we do not learn the

model w.r.t. the Shift-Table layer, for the sake of simplicity and

to keep the Shift-Table layer detacheable (optional), preserving

the assumption that the Shift-Table layer can be disabled to free

up memory space on run-time while the model can still be used.

The accuracy of the learned model also determines the size of

the entries of the Shift-Table layer. Each mapping entry should

at most fit a Δ value of Δ𝑀𝐴𝑋 , which is the maximum error of

the model. If, for example, the error is smaller than 2
1
6/2, then a

16-bit integer (short type) can be used.

4 EVALUATION
In this section, we compare the performance of our proposed

method with the SOSD benchmark
1
, which is a recent bench-

mark for search on sorted data. The benchmark includes learned

indexes, classical indexes, and no-index search algorithms.

Experimental Setup. The algorithms are implemented in C++

and compiled with GCC 9.1. The experiments are performed on

a system with 16 GB of memory and Intel Core i7-6700 (Skylake),

which has four cores and is running at 3.4 GHz with 32 KB L1,

256 KB L2, and 8 MB L3 caches. The operating system is Ubuntu

18.04 with kernel version 4.15.0-65. In our setup, the LLC miss

1
https://github.com/learnedsystems/SOSD/tree/mlforsys19
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penalty measured by Intel Memory Latency Checker
2
is 36 ns,

which is the minimum lookup time of an ideal index.

Note that all data resides in main memory. The range index

finds the first indexed key that is equal to or bigger than the

lookup key. Also, the keys on the physical layout are sorted

(i.e., it is a clustered index), so that the entire result set of the

range query can be returned once the first key is found. Similar

to [22, 25], we only report the lookup time for the first result

and do not include the scan times in our experiments because all

indexes use the same layout for the data records.

Datasets. For the sake of reproducibility, we used the same

datasets as in the SOSD benchmark, which contains four datasets

synthetically generated from known distributions and four real-

world ones. The synthetic data are generated from different distri-

butions, namely logn: lognormal distribution (0, 2), norm: normal

distribution, uden: uniformly-generated dense integers, and uspr :
uniformly-generated sparse integers. The real-world datasets

are face: Facebook user IDs [42], amzn: book sale popularity

from Amazon sales rank data
3
, osmc: uniform sample of Open-

StreetMap locations
4
, and wiki: timestamps of edit actions on

Wikipedia articles
5
. All datasets contain 200M unsigned integers.

Implementation details. Our experiments are based on the

SOSD benchmark [22]. The baseline includes two learned indexes,

namely RadixSpline [33] (RS), which uses linear splines; and Re-

cursive Model Index (RMI), which uses a hierarchy of models.

Note that RMI has a choice of different models and SOSD [22]

specifically handpicked the best models for each of the datasets

in the benchmark
6
. SOSD also includes no-index search algo-

rithms such as binary search (BS), linear interpolation search (IS),

and the recently suggested non-linear triple-point interpolation

(TIP) [42]. We also compare against algorithmic index structures

such as ART: Adaptive Radix Tree [26], FAST [21], RBS (Radix

Binary Search): a two-stage algorithm in which a radix struc-

ture that maps a fixed-length key prefix to the range of all keys

having that prefix and then a binary search is performed on the

range [22], and STX implementation of B+tree [1]. Finally, we

included four On-the-fly search algorithms, namely BS: Binary

search (STL implementation), TIP: three-point interpolation [42],

Interpolation search, which is similar to binary search but uses

interpolated positions in each iteration, and IM: Interpolation as
a Model: a dummy model that interpolates the key between the

minimum and maximum value of the keys and then performs

exponential search around the predicted key.

The experiments use either 32- or 64-bit unsigned integer

IDs for the key (depending on the dataset), and 64-bytes for the

payload.

4.1 The SOSD benchmark
To test the effectiveness of the suggested layers compared to

learned indexes, we use a simple interpolation model (IM), i.e.,

𝐹𝜃 (𝑥) = (𝑥−𝑚𝑖𝑛𝑉𝑎𝑙)/(𝑚𝑎𝑥𝑉𝑎𝑙−𝑚𝑖𝑛𝑉𝑎𝑙). Such a dummymodel

is deliberately chosen to purely delegate the burden of data mod-

elling to the correction layers.

2
https://software.intel.com/en-us/articles/intelr-memory-latency-checker

3
https://www.kaggle.com/ucffool/amazon-sales-rank-data-for-print-and-kindle-books

4
https://aws.amazon.com/public-datasets/osm

5
https://dumps.wikimedia.org

6
The architectures and parameters of the RMI models used for each dataset is spec-

ified at https://github.com/learnedsystems/SOSD/blob/mlforsys19/scripts/build_

rmis.sh

The Shift-Table layer has the same number of entries as the

actual data, i.e., 𝑀 = 𝑁 . We followed the tuning procedure dis-

cussed in section 3.9: we start from the model (IM and RS) and

consequently evaluate IM+Shift-Table and RS+Shift-Table. The

cost of running the Shift-Table layer is around 40ns, which pays

off by reducing the prediction error and thus lookup time. There-

fore, based on the cost model of the Shift-Table layer (Section 3.7)

and the error-to-latency micro-benchmark (Figure 2a), we should

not add the Shift-Table layer if the error before adding the con-

figuration is less than a threshold (10 records), or 2) the error of

the index after adding the Shift-Table layer does not decrease

by a factor of 10 (roughly equivalent to the 50-nanoseconds

latency the additional layer, according to the error-to-latency

micro-benchmark).

Table 2 compares the lookup times (nanoseconds per lookup)

of the baseline algorithms with our dummy interpolation model

(IM), and the two corrected versions, i.e., IM+Shift-Table and

RS+Shift-Table. Note that ART does not support data with dupli-

cate keys, and FAST does not support 64-bit keys. Also, interpo-

lation search (IS) takes too much time on some datasets, because

the execution time of interpolation search highly depends on the

uniformity of data distribution, varying from O(loglogN) + O(1)

iterations on uniform distributions, to O(N) iterations for very

skew ones [42].

For the synthetic datasets, the difficulty of the datasets for

our dummy linear interpolation model varies from very easy

(uden64) to extremely hard (logn64). While the Shift-Table layer

significantly improves a dummy layer on non-uniform data dis-

tributions, it cannot outperform the learned index models. This

is not surprising, as all synthetic datasets (uniform, lognormal,

and uniform) have a pattern derived from continuously differ-

entiable density functions, hence the distribution is similar to

a straight line on smaller sub-ranges as we "zoom in" the data

distribution (e.g., see Figure 3c). Therefore, a learned index struc-

ture composed of linears at the bottom (including both RMI and

RS) can effectively model the distribution using a very compact

representation.

For the real-world data, however, the fluctuations in data se-

verely affect both RMI and RS learned indexes. The Shift-Table

layer, effectively corrects a highly inaccurate dummy IM model,

such that it outperforms the RMI learned index by 1.5X to 2X on

all datasets, while RS falls behind both. Keep in mind that RMI

requires to be tuned with the best architecture and parameters,

while Shift-Table does not require a manual training process and

can even work with a simple model such as IM that is not trained,

and yet deliver a lower latency.

Figure 7 shows the average build times of the indexes, along

with the standard deviation bars indicating how the build time

varies for different distributions. Please note that the RMI imple-

mentation used in the SOSD benchmark needs to be compiled for

faster retrievals, however we did not include RMI’s extra over-

head for compiling the code and only reported the build time.

IM+Shift-Table, the winner method latency-wise, also takes ei-

ther the same or even less build time than the competing learned

indexes.

4.2 Explaining the performance
The latencies reported in Table 2 present the fastest configuration

for each learned index. In this section, we present the details of the

tuning process to see the optimum performance of each learned

index.
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Table 2: Comparison of lookup times (nanoseconds per lookup) with the SOSD benchmark. The red box indicates the base
model (IM) and the enhanced versions.

Dataset ART FAST RBS B+tree BS TIP IS IM IM
+ Shift-Table

RMI RS RS
+ Shift-Table

logn32 N/A 230 385 375 624 551 N/A 1384 166 73.9 83.9 143.5

norm32 173 197 267 390 655 671 N/A 1479 88.2 51.5 60.3 96.4

uden32 99.4 196 235 389 654 126 32.3 38.6 67.5 38.1 47.8 72.3

uspr32 N/A 198 230 390 654 298 321 425 89.7 141 166 153.5

logn64 238 N/A 622 427 674 377 N/A 1075 376 132 109 151.0

norm64 214 N/A 317 427 672 705 N/A 1615 88.6 51.7 61.8 93.2

uden64 104 N/A 255 428 670 142 34.8 40.4 67.4 39.8 47.9 71.8

uspr64 216 N/A 244 427 673 329 338 472 92.8 145 182 154.6

amzn32 N/A 208 243 393 658 569 3228 1524 99.5 185 236 110.8

face32 179 203 238 388 654 717 792 861 103 213 310 142.8

amzn64 N/A N/A 284 428 676 578 3510 1575 105 189 238 119.3

face64 290 N/A 257 427 671 925 1257 918 149 247 344 204.1

osmc64 N/A N/A 410 428 675 4617 N/A 1462 194 297 339 177.2

wiki64 N/A N/A 271 437 686 767 5867 1687 94.2 172 191 124.1
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Figure 7: Build times (average time for all datasets)

For those indexes that have a parameter affecting the index

size (such as the branching factor in B+tree, and the number of

radix bits in ART, RS, and RBS), the performance can be tuned

by evaluating the latency for different index sizes.

Figure 8 shows the latencies of the indexes for the face64 and

osmc64 datasets, along with the average Log2 error, CPU instruc-

tions, and L1/LLC cache misses. IM+Shift-Table and RS+Shift-

Table achieve faster lookup times on both datasets. For most in-

dexes, except RMI and RBS, the latency does not improve beyond

a certain optimum index size, after which the latency increases

again. RBS has a much larger latency than both [IM/RS]-Shift-

Table indexes of the same size, and extrapolating the RMI laten-

cies also suggest that if we could extend RMI size to 1400MB

(equal to Shift-Table’s size), it could not achieve a game-changing

performance on either of the datasets. Note that we could not run

RMI with larger models because RMI embeds the parameters into

the code, and the compile times for models larger than 400MB

were astonishingly high.

Average Log2 errors indicate the average number of iterations

in binary search for the last-mile search stage. Larger models

result in lower Log2 errors in all indexes and lead to faster last-

mile search, however, once themodel exceeds the LLC cache sizes,

cache-miss rate increases (when running the model), and hence

the prediction time worsens. For RS, ART, and B+tree, the cache

misses and extra overhead of running the models increases either

the number of instruction, the cache misses, or both, enough

to prevent the index from improving latency by increasing the

footprint.

4.3 Layer size
As discussed in section 3.4, the Shift-Table layer can be com-

pressed by merging multiple entries, hence reducing its footprint.

Figure 9 shows the effect of the Shift-Table layer size on lookup

time and prediction error. Shift-Table can operate in two modes:

R-1: a full layer containing <Δ𝑀
𝑘
,𝐶𝑀
𝑘
> pairs similar to Figure 5

that indicates the exact range for local search (hence enabling

binary search); and S-X: a compressed single-entry map similar

to Table 1 containing one Δ̄𝑀
𝑘

entry per 𝑋 records. Thus, S-X

contains 𝑀 = 𝑁 /𝑋 entries; and the memory footprint of S-1 is

half the size of R-1.

The error of the S-1 Shift-Table is slightly more than that of

R-1. This is due to the fact that S-1 is designed to draw boundaries

for binary search; hence it always points to the first record of

each partition; while R-1 always points to the middle of the parti-

tion and almost half the error of S-1. Performance-wise, however,

S-1 always has the lowest latency, because its boundaries for the

last-mile search operation do not need to be discovered using

additional boundary-detection algorithms such as exponential

search. As expected, compressing the Shift-Table by allocating

one entry per 𝑋 records increases the error and hence degrades

262



10
5

10
8

200

400

600

800

1000

Lo
ok

up
 ti

m
e 

(n
s)

Lookup time , face64

10
5

10
8

0

5

10

15

20

Lo
g2

 e
rr

or

Log2 error , face64

10
5

10
8

2 × 10
2

3 × 10
2

4 × 10
2

# 
C

P
U

 In
st

ru
ct

io
ns

Instructions , face64

10
5

10
8

20

40

60

80

LL
C

 c
ac

he
 m

is
se

s

L1-misses , face64

10
5

10
8

0.1

0.2

0.3

0.4
LLC-misses , face64

10
4

10
6

10
8

Index size

500

1000

Lo
ok

up
 ti

m
e 

(n
s)

Lookup time , osmc64

10
5

10
8

Index size

0

10

20

Lo
g2

 e
rr

or

Log2 error , osmc64

10
5

10
8

Index size

2 × 10
2

3 × 10
2

4 × 10
2

# 
C

P
U

 In
st

ru
ct

io
ns

Instructions , osmc64

10
5

10
8

Index size

25

50

75

100

125

LL
C

 c
ac

he
 m

is
se

s

L1-misses , osmc64

10
5

10
8

Index size

0.1

0.2

0.3

0.4
LLC-misses , osmc64

RS RMI ART B+tree RBS IM+ShiftTable RS+ShiftTable

Figure 8: Analysis of the effect of index size on performance

amzn64
face32

logn32
norm64

osmc64
uden32

uspr32
wiki64

102

103

Lo
ok

up
 ti

m
e 

(n
s)

R 1
S 1

S 10
S 100

S 1000
Without Shift-Table

(a) Latency

amzn64
face32

logn32
norm64

osmc64
uden32

uspr32
wiki64

101

103

105

107

Av
g 

er
ro

r (
re

co
rd

s)

(b) Error

Figure 9: Analysis of the effect of Shift-Table layer size

the performance. This is due to the fact that with higher com-

pression ratios, the ability of Shift-Table to "memorize" the fine-

grained details of the data distribution degrades due to the loss

of information after merging.

5 RELATEDWORK
On-the-fly search on sorted dataA fundamental problem that

is studied for decades is how to find a key among a sorted list

of items. The classic approach is binary search and numerous

extensions have been suggested to improve it for special cases,

most notably interpolation search [35] and exponential search [3].

For data distributions that are close to uniform, interpolation-

search is shown to be very effective [13, 36, 42]. Due to the

growing gap between CPU power andmemory latency in the past

decade, more advanced interpolation techniques such as three-

point interpolation are becoming viable onmodern hardware [42].

Exponential search enables binary search over an unbounded list.

Exponential search is also extensively used in learned indexes

when the key is more likely to be near a "guessed" location, but

a guaranteed boundary around the guessed point that contains

the data is not known [7, 25, 32].

Range indexes An alternative to on-the-fly binary search

over sorted data is to keep the data in an index structure. Nonethe-

less, indexes that are built to answer range queries (such as B-

trees) are similar to the binary search in that they need to keep

the data sorted internally. Common index structures for range

index include skiplists, B+trees, and radix-trees. The B+-tree is

cache-efficient, but requires pointer chasing, which incurs multi-

ple cachemisses [14]. There has been a tremendous effort to make

binary search trees and B+-trees efficient on modern hardware.

For example, FAST [21] organizes tree elements efficiently to ex-

ploit modern hardware features such as the cache line and SIMD.

Another common solution is to use compression techniques on

the indexed keys, most notably as a radix-tree. Modern radix

trees exploit hardware-efficient heuristics for fitting a distribu-

tion in memory (usually by building a heuristically-optimized

compressed trie), such as adaptive radix index (ART) [5, 26], and

Succinct Range Filter (SuRF) [44]. Skiplist is specifically efficient

for concurrent updates workloads [41, 43].

Learned index structures Learned range indexes [7, 12, 25,

29, 33] have recently been suggested as an alternative to range

indexes. In this approach, a model is trained from the data with

the intent of capturing the data distribution and processing the

queries more efficiently. We refer to the paper by Kraska et

al. [25], which introduced the idea of the learned index. In a

learned index, the CDF of the key distribution is learned by fit-

ting a model, and the learned model is subsequently used as a

replacement of the index (B+-trees or similar) for finding the lo-

cation of the query results on the storage medium. Index learning

frameworks such as the RMI model [25, 30] can learn arbitrary

models [30], although a further theoretical study [9] as well as

a recent experimental benchmark [22] have shown that simple
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model like linear splines are very effective for datasets. Spline-

based learned indexes include Piecewise Geometric Model index

(PGM-index) [11], Fiting-tree [12], Model-Assisted B-tree (MAB-

tree) [19], Radix-Spline [23], Interpolation-friendly B-tree (IF-

Btree) [18] and some others [29, 40]. We refer to [10] for an exten-

sive comparison of learned indexes. Recently, there has been nu-

merous theoretical works [4, 27, 38, 39] on learned indexes. Also,

numerous efforts have been made to handle practical challenges

around using a learned index, including update-handling [7, 17]

and designing a learned DBMS [24]. The idea of using a model

of the data to boost an existing algorithmic index has been the

center of focus in the past few years [14, 17, 19, 37]. In the multi-

variate area, learning from a sample workload has also shown

interesting results [8, 20, 28, 32]. Aside from the main trend in

learned indexes, which is on range indexing, machine learning

has also inspired other indexing and retrieval tasks. This includes

bloom filters [6, 31], multidimensional indexing on datasets with

correlated attributes [15], and other applications [2, 16, 34].

6 CONCLUSION AND FUTUREWORK
Learning and modeling data distributions via machine learn-

ing approaches is a great idea for managing and analyzing data

management systems. However, the approaches and objective

functions that are common in machine learning problems are

not necessarily optimal choices when the ultimate target is per-

formance improvement. Instead of pushing machine learning

model algorithm to its limits for highly accurate modeling of

data distributions, it is more efficient if we only use ML models

to approximate the high-level, generalizable "patterns" in data

distribution (the holistic shape), and handle the fluctuations and

fine-grained details of the distribution using a more hardware-

efficient approach, outperforms learned models as well as algo-

rithmic index structures even if a simple or somewhat dummy

model such as min/max linear interpolation is used. The Shift-

Table layer is effective in learning almost all distributions even

without using models that require training from data, and takes

only a single pass over the data points to build the layer. Our

results show that even a simple linear model equipped with the

Shift-Table enhancement layer outperforms trained and tuned

learned indexes by 1.5X to 2X on real-world datasets.

Our current work only considers read-only workloads. We

leave it as future work to adapt Shift-Table with workloads having

updates. One idea is to capture the drifts in data distribution using

update-tracking segments [17], and use Fenwick trees to estimate

and correct the drifts in both the model and the Shift-Table.
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ABSTRACT
Location data are widely used in mobile apps, ranging from

location-based recommendations, to social media and naviga-

tion. A specific type of interaction is that of location-based alerts,
where mobile users subscribe to a service provider (SP) in order

to be notified when a certain event occurs nearby. Consider, for

instance, the ongoing COVID-19 pandemic, where contact trac-

ing has been singled out as an effective means to control the virus

spread. Users wish to be notified if they came in proximity to an

infected individual. However, serious privacy concerns arise if

the users share their location history with the SP in plaintext.

To address privacy, recent work proposed several protocols

that can securely implement location-based alerts. The users up-

load their encrypted locations to the SP, and the evaluation of

location predicates is done directly on ciphertexts. When a cer-

tain individual is reported as infected, all matching ciphertexts

are found (e.g., according to a predicate such as “10 feet prox-

imity to any of the locations visited by the infected patient in

the last week”), and the corresponding users notified. However,

there are significant performance issues associated with existing

protocols. The underlying searchable encryption primitives re-

quired to perform the matching on ciphertexts are expensive, and

without a proper encoding of locations and search predicates, the

performance can degrade a lot. In this paper, we propose a novel

method for variable-length location encoding based on Huffman

codes. By controlling the length required to represent encrypted

locations and the corresponding matching predicates, we are able

to significantly speed up performance. We provide a theoreti-

cal analysis of the gain achieved by using Huffman codes, and

we show through extensive experiments that the improvement

compared with fixed-length encoding methods is substantial.

1 INTRODUCTION
Location-based alerts are an emerging area of mobile apps that

are very relevant to domains such as public safety, healthcare

and transportation. For instance, users may want to subscribe to

services that notify them whether an imminent danger exists in

their close proximity (e.g., an active shooter situation). Or, in the

recent context of COVID-19, mobile users wish to be notified if

they came in close proximity to an individual who was diagnosed

with the disease. While the advantages of location-based alerts

are undeniable, they also introduce serious privacy concerns: in

order to benefit from such services, users periodically upload

their locations to a service provider (SP). The SP monitors large

number of individuals, and evaluates spatial predicates to deter-

mine which individuals should be alerted. Disclosing individual

locations can leak sensitive personal details to the SP, which

© 2021 Copyright held by the owner/author(s). Published in Proceedings of the

24th International Conference on Extending Database Technology (EDBT), March

23-26, 2021, ISBN 978-3-89318-084-4 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons

license CC-by-nc-nd 4.0.

may in turn share the data with third parties. And even in cases

where the SP is fully trusted, it can be subject to cyber-attacks,

or subpoenas by governments, resulting in the users’ moving

history being exposed.

Movement data can disclose sensitive details about an individ-

ual’s health status, political orientation, alternative lifestyles, etc.

Therefore, it is crucial to support location-based alerts while at

the same time protecting user privacy. This problem has been

recently studied in literature, and formulated in the context of

secure alert zones [14, 21, 23], where users report their encrypted
locations to the SP, and the SP evaluates alert predicates on

encrypted data. These approaches require a special kind of en-

cryption that allows predicate evaluation on ciphertexts, namely

searchable encryption (SE) [5, 19, 24]. However, the SE primitives

are not specifically designed for geospatial queries, but rather

for arbitrary keyword or wildcard queries. As a result, a data

mapping step must transform spatial queries to the primitive

operations supported on ciphertexts. Due to this translation, the

performance overhead can be significant.

Some solutions use Symmetric Searchable Encryption (SSE)
[11, 19, 24], where a trusted entity knows the secret key of the

transformation, and collects the location of all users before en-

crypting them and sending the ciphertext to the service provider.

While the performance of SSE can be quite good, the system

model that requires mobile users to share their cleartext locations

with a trusted service is not adequate from a privacy perspective,

since it still incurs a significant amount of disclosure.

Prior work in secure alert zones [14, 21, 23] uses Hidden Vector
Encryption (HVE) [5], which is an asymmetric type of encryption
that allows direct evaluation of predicates on top of ciphertexts.

Each user encrypts her own location using the public key of the

transformation, and no trusted component that accesses locations

in clear is required. However, the performance overhead of HVE

in the spatial domain remains high.

In existing HVE work for geospatial data [14], [21], the data

domain is partitioned into a hierarchical data structure, and each

node in this structure is assigned a binary string identifier. The

binary representation of each node plays an important part in

query encoding, and it influences the amount of computation that

needs to be executed when evaluating predicates on ciphertexts.

In [14], the earliest solution for secure alert zones, the impact

of the specific encoding is not evaluated in-depth. In [23], the

geospatial data domain is embedded to a high-dimensional hy-

percube, and then graph embedding [7] is applied to reduce the

computation overhead in the predicate evaluation step.

However, all previous solutions use fixed-length encoding of

locations and alert zones, meaning that the same number of bits

is used to represent each location. In cases where the distribution

of alert zones and/or locations is not uniform, using fixed-length

encoding can introduce unnecessary overhead. Motivated by

this fact, we propose techniques to reduce the computational

overhead of HVE by using variable-length encoding. Specifically,
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Figure 1: Location-based alert system.

(a) Match (b) Nonmatch

Figure 2: HVE evaluation
we use Huffman compression codes to represent both user lo-

cations and alert predicates. Areas of the domain that are more

popular, or more likely to result in a secure alert being triggered,

are encoded with fewer bits than less popular areas. This allows

us to perform spatial query execution on ciphertexts in a less

computationally-intensive manner.

Our specific contributions are:

• We consider for the first time the use of variable-length

encoding, specifically Huffman compression codes, for the

problem of secure alert zones on encrypted location data;

• We devise specialized domain encoding techniques for

both user locations and alert zones that take into account

location popularity;

• We provide algorithms to evaluate the secure alert zone en-

closure predicates directly on ciphertexts when both user

locations and alert zones are represented using variable-

length encoding;

• We perform an extensive experimental evaluation which

shows that the proposed approach reduces considerably

the performance overhead of secure alert zones compared

to fixed-length encoding approaches.

The rest of the paper is organized as follows: Section 2 intro-

duces necessary background and the system model. Section 3

provides the details of the proposed variable-length encoding

techniques for user locations and alert zones. Section 4 general-

izes our solution to non-binary identifiers. Section 5 analyzes the

overhead of variable-length encoding on ciphertext size. Section

6 provides a security discussion, followed by evaluation of the

proposed approach on both real and synthetic datasets in Section

7. We survey related work in Section 8 and conclude in Section 9.

2 BACKGROUND
Consider a map divided into a set of 𝑛 non-overlapping partitions

V = {𝑣1, , 𝑣2, ..., 𝑣𝑛}. (1)

Each partition 𝑣𝑖 represents a spatial area on the map referred to

as cell. Cells are identified by a unique binary code called index,
and can have arbitrary shapes and sizes (although equal-size

square cells are most likely in practice). We refer to the parti-

tioning as a grid. The assignment of indexes to cells is referred

to as grid encoding. All indexes must have the same length for

security purposes (to prevent an adversary from distinguishing

cells based on length). Fig. 1 shows a sample grid with five cells,

each associated with an index of length three.

When an event of interest occurs, an alert zone is created,
which spans a number of grid cells. We refer to such cells inter-

changeably as alert cells or alerted cells. In Fig. 1, cells 𝑣3 and 𝑣2
associated with the indexes 100 and 000 (shown highlighted) are

alert cells. We denote the likelihood of cell 𝑣𝑖 being alerted by

𝑝 (𝑣𝑖 ), or alternatively 𝑝𝑖 . Our goal is to exploit alert cell likeli-

hoods in order to choose an encoding that reduces the computa-

tional complexity of HVE.

2.1 Hidden Vector Encryption
Hidden Vector Encryption (HVE) [5] is a searchable encryption sys-
tem that supports predicates in the form of conjunctive equality,

range and subset queries. Search on ciphertexts can be performed

with respect to a number of index attributes. HVE represents an

attribute as a bit vector (each element has value 0 or 1), and the

search predicate as a pattern vector where each element can be

0, 1 or ’*’ that signifies a wildcard (or “don’t care”) value. Let 𝑙

denote the HVEwidth, which is the bit length of the attribute, and
consequently that of the search predicate. A predicate evaluates

to𝑇𝑟𝑢𝑒 for a ciphertext𝐶 if the attribute vector 𝐼 used to encrypt

𝐶 has the same values as the pattern vector of the predicate in

all positions that are not ’*’ in the latter. Fig. 2 illustrates the two

cases of Match and Non-Match for HVE.

HVE is built on top of a symmetrical bilinear map of composite

order [5], which is a function 𝑒 : G×G→ G𝑇 such that ∀𝑎, 𝑏 ∈ 𝐺
and ∀𝑢, 𝑣 ∈ Z it holds that 𝑒 (𝑎𝑢 , 𝑏𝑣) = 𝑒 (𝑎, 𝑏)𝑢𝑣 . G and G𝑇 are

cyclic multiplicative groups of composite order 𝑁 = 𝑃 ·𝑄 where

𝑃 and 𝑄 are large primes of equal bit length. We denote by G𝑝 ,
G𝑞 the subgroups of G of orders 𝑃 and 𝑄 , respectively. Let 𝑙

denote the HVE width, which is the bit length of the attribute,

and consequently that of the search predicate. HVE consists of

the following phases:

Setup. The public/private (𝑃𝐾/𝑆𝐾 ) key pair has the form:

𝑆𝐾 = (𝑔𝑞 ∈ G𝑞, 𝑎 ∈ Z𝑝 , ∀𝑖 ∈ [1..𝑙] : 𝑢𝑖 , ℎ𝑖 ,𝑤𝑖 , 𝑔, 𝑣 ∈ G𝑝 )

To generate 𝑃𝐾 , we first choose at random elements 𝑅𝑢,𝑖 , 𝑅ℎ,𝑖 ,

𝑅𝑤,𝑖 ∈ G𝑞,∀𝑖 ∈ [1..𝑙] and 𝑅𝑣 ∈ G𝑞 . Next, 𝑃𝐾 is determined as:

𝑃𝐾 = (𝑔𝑞, 𝑉 = 𝑣𝑅𝑣, 𝐴 = 𝑒 (𝑔, 𝑣)𝑎,

∀𝑖 ∈ [1..𝑙] : 𝑈𝑖 = 𝑢𝑖𝑅𝑢,𝑖 , 𝐻𝑖 = ℎ𝑖𝑅ℎ,𝑖 , 𝑊𝑖 = 𝑤𝑖𝑅𝑤,𝑖 )
Encryption uses 𝑃𝐾 and takes as parameters index attribute

𝐼 and message 𝑀 ∈ G𝑇 . The following random elements are

generated: 𝑍, 𝑍𝑖,1, 𝑍𝑖,2 ∈ G𝑞 and 𝑠 ∈ Z𝑛 . Then, the ciphertext is:

𝐶 = (𝐶
′
= 𝑀𝐴𝑠 , 𝐶0 = 𝑉

𝑠𝑍,

∀𝑖 ∈ [1..𝑙] : 𝐶𝑖,1 = (𝑈 𝐼𝑖
𝑖
𝐻𝑖 )𝑠𝑍𝑖,1, 𝐶𝑖,2 =𝑊

𝑠
𝑖 𝑍𝑖,2)

Token Generation. Using 𝑆𝐾 , and given a search predicate

encoded as pattern vector 𝐼∗, a search token 𝑇𝐾 is generated
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as follows: let 𝐽 be the set of all indexes 𝑖 where 𝐼∗ [𝑖] ≠ ∗. We

randomly generate 𝑟𝑖,1 and 𝑟𝑖,2 ∈ Z𝑝 ,∀𝑖 ∈ 𝐽 . Then

𝑇𝐾 = (𝐼∗, 𝐾0 = 𝑔𝑎
∏
𝑖∈𝐽
(𝑢𝐼∗ [𝑖 ]

𝑖
ℎ𝑖 )𝑟𝑖,1𝑤𝑟𝑖,2

𝑖
,

∀𝑖 ∈ [1..𝑙] : 𝐾𝑖,1 = 𝑣𝑟𝑖 ,1, 𝐾𝑖,2 = 𝑣
𝑟𝑖 ,2)

Query is executed at the service provider, and evaluates if the

predicate represented by 𝑇𝐾 holds for ciphertext 𝐶 . The server

attempts to determine the value of𝑀 as

𝑀 = 𝐶
′
/(𝑒 (𝐶0, 𝐾0)/

∏
𝑖∈𝐽

𝑒 (𝐶𝑖,1, 𝐾𝑖,1)𝑒 (𝐶𝑖,2, 𝐾𝑖,2) (2)

If the index 𝐼 based on which 𝐶 was computed satisfies 𝑇𝐾 , then

the actual value of 𝑀 is returned, otherwise a special number

which is not in the valid message domain (denoted by ⊥) is
obtained.

The HVE query, or matching, is the most important operation

in a location-based alert system, because it is executed every time

an alert occurs, and it requires processing of a large number of

ciphertexts. Our goal is to reduce the overhead of matching, and
the most direct way to do so is by reducing the number of non-star
bits in a token, since the number of expensive bilinear maps is
proportional to the count of non-star bits.

2.2 System Model
The architecture of location-based alert systems is shown in Fig. 1.

There are three types of entities: mobile users, a service provider

(SP) and a trusted authority (TA).

Mobile users subscribe to the location-based alert system and

periodically submit their encrypted location updates. Users want

to be notified when they are in an alert cell, without their privacy

being compromised. They the public key (PK) of the HVE cryp-

tosystem to encrypt their locations before sending them to the

SP. For example, users A and B on the grid encrypt their indexes

110 and 000, generating two ciphertexts 𝐶𝐴 and 𝐶𝐵 , respectively.

The Trusted Authority (TA) has the secret key (SK) of the

HVE cryptosystem. In practice, the TA role could be played by

a reputable organization such as a law enforcement agency, or

the center for disease control, who issue HVE search tokens corre-
sponding to alerts. The TA does not have access to user locations,
and is assumed not to collude with the SP. The TA is acting in the

interest of the general public, but does not have the infrastructure

to run a complex alert system, which is why this service is out-

sourced to the SP. One important aspect when generating tokens

is to minimize the number of non-star bits in a token, in order

to reduce the computational overhead of matching. A common

approach is to use binary minimization on the cell identifiers.

For example, the two alerted indexes 100 and 000 are combined

using binary expression minimization to obtain *00, then, the

new index is encrypted using the SK to create a token with two

non-star bits, instead of two tokens with three non-star bits each.

The overhead is reduced from six sets of bilinear pairings to two.

The SP implements the alert service. It receives encrypted

updates from users and tokens from the TA, and performs the

matching to decide whether encrypted location 𝐶𝑖 of user 𝑖 falls

within alert zone 𝑗 represented by token 𝑇𝐾𝑗 . If the matching
outcome is positive, the SP learns that the user is inside the alert

zone, and notifies the user. For a matching process to result in

a positive outcome, all the token’s non-star bits should exactly

match the user index. Star bits (’don’t care’ bits), as the name

suggests, match with either a zero or one bit in the user index.

Note that all received information from users and the TA is

Table 1: Summary of notations.

Symbol Description

𝑛 Number of cells

V = {⋃ 𝑣𝑖 } Set of all cells

𝑝 (𝑣𝑖 ) Probability of cell 𝑣𝑖 becoming alerted

𝐶 𝑗 Encrypted location of user 𝑗

𝑇𝐾𝑗 Token 𝑗

𝑀𝑗 Message of user 𝑗

RL Depth of prefix tree (reference length)

𝑟𝑖 𝑖th internal node of tree

Pois(𝜆) Poisson distribution; occurrence rate 𝜆

Σ Identifier symbol alphabet

𝛾 Euler-Mascheroni constant
𝜙 Golden ratio

𝑎[𝑖 : 𝑗] Returns elements 𝑖 to 𝑗 − 1 of array 𝑎
𝑥1𝑥2 ...𝑥𝑙 Concatenation of symbols 𝑥1 to 𝑥𝑙

encrypted in the matching process, and the search happens over

encrypted data only.

Revisiting the example in Fig. 1, the outcome of matching

between token *00 and user B’s ciphertext corresponding to index

000 is positive (all the non-star bits match); however, thematching

outcome between *00 and 110 (user A) is negative as the second

bits do not match. From the mathematical derivation of HVE (2.1),

the HVE system’s computation complexity is proportional to the

number of non-star bits in the tokens. Therefore, a good grid

encoding reduces the overall number of non-star bits in tokens

to minimize the HVE computational overhead.

2.3 Motivation and Scope
While prior work made important steps toward secure and scal-

able location-based alert systems, important performance issues

still need to be addressed. The pioneering work in [14] was the

first to use searchable HVE encryption in the context of locations,

but assumed that all data domain regions are equally likely to be

part of an alert zone. Later in [23], it was shown that if there are

significant differences in likelihood of distinct regions to be part

of an alert zone, then performance can be significantly boosted.

However, both [14] and [23] use fixed-length encoding, i.e., the

same number of bits are used to represent each cell. Hence, their

performance overhead depends entirely on their ability to aggre-

gate search tokens. When alert zones consist of a relatively large

number of co-located alert cells, fixed-length encoding methods

are able to perform effectively binary minimization of identifiers,

and reduce overhead. This may be sufficient in some scenarios

such as an active shooter, or a gas leak, where there is an epicen-

ter of the event, and a range around the epicenter (often circular)

within which users must be alerted. The range can be large, for

instance in the order of hundreds of meters.

However, in other applications, alert zones may be compact

and sparse. For instance, consider the case of contact tracing –

an important task in controlling pandemics, such as COVID-19.

In this case, there will be a number of distinct alert zones, corre-

sponding to the set of locations visited by a COVID-19 patient.

For each individual site, the range of the query is relatively small,

for instance, several meters around the patient location for direct

spread. Or, in the case of surface spread or aerosol transmission,

the query may be restricted to a room, or a store, which may be

in the order of 10 − 20 meters in size. There are insufficient cells

in the alert zones to allow for effective token aggregation with

fixed encoding, and the performance obtained may be poor.
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Our goal is to address this latter case, and we do so by using a

novel variable-length encoding approach. In this case, it is impor-

tant to use fewer representation bits for high-probability regions.

While our advantage is greatest for small, sparse alert zones,

we show in our empirical evaluation in Section 7 that variable-

length encoding can outperform fixed-length approaches for a

wide choice of alert zone sizes, and mixed-size workloads.

Normalizing the cell probability values over the domain space

reveals how likely a cell is to be alerted compared to others. A

typical stochastic distribution used to model sporadic events is

Poisson distribution, characterized as follows.

Theorem 1. If a random variable 𝑌 represents the number of
alert cells on the grid, then, it approximately follows Poisson distri-
bution (Pois(𝜆)) with the occurrence rate of one (𝜆 = 1).

Proof. An alert zone event on the map is a subset of cells

𝑣1, , 𝑣2, ..., 𝑣𝑛 , where 𝑛 is a large value and each probability 𝑝 (𝑣𝑖 )
is relatively small. Moreover, the events are either independent

or weakly dependent of each other. Let

𝑌 =

𝑛∑
𝑖=1

𝐼 (𝑣𝑖 ) (3)

count howmany of the cells are alerted, in which 𝐼 is an indicator

random variable having a value of one when the cell is alerted and

zero otherwise. Based on the Poisson distribution, the random

variable 𝑌 can be approximated with rate 𝜆 =
∑𝑛
𝑖=1 𝑝 (𝑣𝑖 ) = 1.

Therefore, the probability of having 𝑘 alert cells is given by

𝑝 (𝑌 = 𝑘) = 𝑒−1

𝑘!
. (4)

□

One can see from the Poisson distribution that the likelihood

of having a large number of alert cells is low. The maximum

probability corresponds to having only a single alert cell in a

zone, and then it drops significantly. This motivates our technique

for dealing effectively with cases where alert zones are compact.

3 LOCATION-BASED ALERTS WITH
VARIABLE-LENGTH ENCODING

In Section 3.1 we provide an overview of Huffman codes; Sec-

tion 3.2 presents the proposed location encoding scheme; Sec-

tion 3.3 introduces the token minimization process.

3.1 Prefix and Huffman Codes
Generally, any uniquely-decodable representation used to trans-

mit information is a prefix code, i.e., it follows the prefix property,
which requires that no whole code can be part of any other code.

For example, [000, 001, 01, 10, 11] is a prefix code as no code starts
with any other code in the set. A well-known theorem based on

Kraft inequality [10] states that any prefix over an alphabet of

size two with string lengths of 𝑙1 to 𝑙𝑛 must satisfy the inequality

𝑛∑
𝑖=1

1

2
𝑙𝑖
− 1 ≤ 0, (5)

and conversely, given a set of string lengths that satisfies the Kraft

inequality, there exists a prefix code with these string lengths.

Let the tuple P = (𝑝1, 𝑝2, ..., 𝑝𝑛) defined over space partitioning

V indicate the likelihood of cells 𝑣1, · · · 𝑣𝑛 becoming alert cells.

Furthermore, suppose that the function 𝑓 (𝑙1, 𝑙2, ..., 𝑙𝑛) returns the
average symbol length with no minimization, and 𝑓𝑀 (𝑙1, 𝑙2, ..., 𝑙𝑛)

returns the average reduction in number of bits in the mini-

mization process. Given the tuple of cells and probabilities, the

objective of a minimal encoding is to generate a prefix code

C(P) = (𝑐1, 𝑐2, ..., 𝑐𝑛) as follows:

minimize 𝐿(C(P)) =
𝑛∑
𝑖=1

𝑝 (𝑣𝑖 ) × 𝑙𝑒𝑛𝑔𝑡ℎ(𝑐𝑖 )

subject to 𝐿(C(P)) ≤ 𝐿(T (P)) for any code T (P)

Note that 𝑓𝑀 , which indicates the amount of minimization,

is not necessarily a function. For example, a previously used

minimization approach based on Karnaugh maps [14] does not

always result in a unique output. The NP-hardness of the above

problem based on fixed-length codes is shown in [23].

The most well-known prefix code is the Huffman encoding,
widely used in communication systems as it results in optimal

decodable average code length. The main idea behind Huffman

codes is that more common symbols are represented with fewer

bits compared with the less common symbols. In grid encoding,

it is desirable to encode symbols that have higher probabilities

of being in alert zones with fewer bits than the less likely ones.

Given the tuple of cells and probabilities, the objective of Huffman

encoding is to generate a prefix code that minimizes the average

length of codewords:

minimize 𝑓 (𝑙1, 𝑙2, ..., 𝑙𝑛) − 𝑓𝑀 (𝑙1, 𝑙2, ..., 𝑙𝑛)

subject to

𝑛∑
𝑖=1

1

2
𝑙𝑖
− 1 ≤ 0

𝑙𝑖 > 0, ∀𝑖 = 1, .., 𝑛

(6)

Prefix Trees. An intuitive way to discover whether the prefix

property holds for a code is to draw its associated binary tree,

called prefix tree. The prefix tree is constructed by assigning an

empty character to the root and descending through the tree. At

each branching point, we either choose to go left by adding a

zero character or move to the right child by adding a character

’1’ to the root string. We call the tree’s depth reference length (RL).
This number also indicates the maximum length of a prefix code.

Moreover, the subtree roots are referred to as interior nodes of the
prefix tree, and the leaf nodes are the prefix codes. Fig. 4b, shows
a prefix tree with an RL of three. As an example, the prefix code

’001’ is generated by traversing nodes 𝑟4, 𝑟2, and 𝑟1.

3.2 Proposed Coding Scheme
The focus of prior work on secure alert zones [14, 23] has been on

fixed-length codes. Such codes are indeed a special case of prefix

codes, in which the tree is balanced, and no assigned code can

start with another. Next, we show how variable-length codes can

be used in conjunction with HVE. An overview of the proposed

approach is presented in Fig. 3. Based on a given prefix code, the

TA generates grid indexes where each index is a unique identifier

of a cell in the grid. In addition to grid indexes, a coding tree

is generated for the purpose of token minimization. Given the

set of indexes associated with the alert cells, the TA applies the

proposed minimization algorithm and transmits the encrypted

tokens to the SP. Fig. 4 serves as a running example.

Our approach consists of four steps:

I. Generation of Probabilities: Our coding scheme relies on a set

of probabilities for each cell of the location domain to be part of

an alert zone. This step is a prerequisite to our approach, and thus

performed independently of the encoding. Such probabilities are

application dependent, and can be generated based on a trained
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Figure 3: Overview of HVE with variable-length codes.
machine learning model. In the example of Fig. 4a, we have five

cellsV = (𝑣1, 𝑣2, 𝑣3 𝑣4, 𝑣5) with alert probabilities of

P=(𝑝 (𝑣1)=0.1, 𝑝 (𝑣2)=0.2, 𝑝 (𝑣3)=0.5, 𝑝 (𝑣4)=0.4, 𝑝 (𝑣5)=0.6).
For grids entailing a high correlation between alert probabili-

ties of cells, the setting in [23] or deep learning models such as [2]

can be used to find the stationary distribution of probabilities,

leading to a more accurate probabilistic model.

II. Prefix tree : An arbitrary prefix code defined over alphabet

Σ = {0, 1} can be represented by a binary tree with the prefix

codes located on the leaves of the tree. We are not just interested

in the generated prefix codes, but also in the codes associated

with the internal nodes of the tree. Therefore, internal nodes are

also stored as well as the generated prefix codes.

The topology of the tree is stored by recording five attributes

of each node: left child (leftChild), right child (rightChild), parent

node (parentNode), weight, and the associated code. The weight

of a node represents its frequency. The leaf nodes have a fre-

quency equal to their probability, and the weight of a parent

node is found by the addition of its immediate children’s weights

(i.e., Huffman mechanism). The prefix tree is not used directly in

the prefix coding scheme, but two sets of codes are generated

based on the prefix tree; one is used for identifying grid cells

referred to as cell indexes, and another is used by the TA to per-

form token minimization. Once the base codes are assigned for

each node of the tree, two sets of padding are conducted, one

for indexes assigned to the cells, and one used as a guideline for

the token generation. The padding leads to a length of RL (i.e.,

equal length) for all codewords and indexes. Recall that equal

ciphertext lengths is a requirement for security. However, the

variable-length codes affect the ciphetexts and token contents

in a way that allows fast processing. Furthermore, the padding

prevents an adversary from distinguishing among ciphertexts.

III. Grid indexes: the prefix codes (leaves on the prefix tree)

are padded from the right-hand side with zeros if they have a

length less than RL. In our example, the generated prefix codes

are {𝑣1 : 001, 𝑣2 : 000, 𝑣3 : 10, 𝑣4 : 01, 𝑣5 : 11} which are trans-

formed to {𝑣1 : 001, 𝑣2 : 000, 𝑣3 : 100, 𝑣4 : 010, 𝑣5 : 110} after
padding with zeros. We refer to zero-padded prefix codes as in-
dexes. Once codes are created, they are assigned to corresponding
cells identified by their probabilities. The assigned indexes to the

sample grid are shown in Fig 4c. These are the indexes utilized

by users to identify the cell they are enclosed by.

Algorithm 1 Coding Scheme

Input: Root;V;

1: //Root traversal to generate codes

2: function Traverse(Root)
3: if Root has no children then
4: return True

5: else
6: Root.leftChild = Root.code + ’0’

7: Root.rightChild = Root.code + ’1’

8: Traverse(leftChild)

9: Traverse(rightChild)

10:

11: 𝑇𝑟𝑎𝑣𝑒𝑟𝑠𝑒 (𝑅𝑜𝑜𝑡)
12: //Generate indexes assigned to cells

13: 𝑅𝐿 ← depth of tree

14: for all leaf nodes do
15: 𝑖𝑛𝑑𝑒𝑥 = 𝑛𝑜𝑑𝑒 .code

16: while 𝑙𝑒𝑛(𝑛𝑜𝑑𝑒.code) < 𝑅𝐿 do
17: 𝑖𝑛𝑑𝑒𝑥 = 𝑖𝑛𝑑𝑒𝑥 +′ 0′
18: Assign index to 𝑣𝑖 that has 𝑝 (𝑣𝑖 ) = 𝑛𝑜𝑑𝑒.weight
19:

20: //Generate coding tree

21: for all nodes do
22: while 𝑙𝑒𝑛(𝑛𝑜𝑑𝑒.code) < 𝑅𝐿 do
23: 𝑛𝑜𝑑𝑒 .code = 𝑛𝑜𝑑𝑒 .code + ’*’

24: //codingTree is the set of all nodes, alternatively Root can be

returned

25: return codingTree

IV. Coding tree: the coding tree is used by the trusted authority
to generate tokens. The coding tree is constructed by adding star

bits on the right side of the prefix codes as well as the internal

nodes on the prefix tree if they have a length less than RL. The

padding for the sample grid is shown in Fig. 4d. The codes on

the coding tree are referred to as codewords.

Algorithm 1 formally presents how indexes and the coding tree

are generated for a given prefix tree. The inputs to the algorithm

are the tree root, grid cells, and their probabilities. The tree root

is sufficient for reconstructing the tree as children and parents

are presumed to be recorded. The algorithm traverses through

nodes to generate the prefix tree. Next, indexes of the grid are

generated and assigned to the grid cells, and finally, the coding

tree is completed and returned as the output of the algorithm.

Algorithm 2 presents how the Huffman tree is generated. The

algorithm starts by creating a node (leaf node) for each cell of

the grid, sorting them in ascending order based on their weights,

and placing them in a priority queue. Recall that the weights of

the leaf nodes are the probability of cells becoming alerted. Next,

while the length of the queue is greater than one, the algorithm

extracts two nodes with the minimum weights and creates a new

internal node (newNode) with a weight equal to the addition

of two extracted nodes. The new node is assigned as the parent

of extracted nodes, and the extracted nodes are assigned as left

and right children of the parent node. The new node’s weight

is inserted in the queue, and the process continues until only

a single weight remains in the queue. The last node is the root

of the tree and the output of the algorithm. The root node is

used as input to Algorithm 1 to generate the coding tree and grid
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Algorithm 2 Huffman Tree

Input: V; P
1: //Generate tree nodes

2: for 𝑣𝑖 ∈ V do
3: Create a newNode(leftChild=None, rightChild = None,

4: parent = None, weight = 𝑝 (𝑣𝑖 ), code = ’ ’)

5: Insert nodes into priority queue 𝑄

6: while len(𝑄)>1 do
7: Sort 𝑄 in ascending order of weights

8: (𝑛𝑜𝑑𝑒1, 𝑛𝑜𝑑𝑒2) ← Extract first two nodes in 𝑄

9: Create a newNode(leftChild= 𝑛𝑜𝑑𝑒1, rightChild = 𝑛𝑜𝑑𝑒2,

10: parent = None,

11: weight = 𝑛1 .𝑤𝑒𝑖𝑔ℎ𝑡 + 𝑛2 .𝑤𝑒𝑖𝑔ℎ𝑡 , code = ’ ’)

12: 𝑛1.parent, 𝑛2.parent= newNode

13: Insert newNode into 𝑄

14: //The last nodes in 𝑄 is the tree root

15: return root

indexes. The algorithm is executed with the time complexity of

O(𝑛(log
2
𝑛)).

The following steps illustrate the generation of Huffman tree

for the example presented in Fig. 4.

1. One node is generated for each cell (𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5) and
their probabilities are inserted in a priority queue

𝑄=(𝑝 (𝑣1)=0.2, 𝑝 (𝑣2)=0.1, 𝑝 (𝑣3)=0.5, 𝑝 (𝑣4)=0.4, 𝑝 (𝑣5)=0.6) .
2. The queue is sorted in an ascending order:

𝑄=(𝑝 (𝑣2)=0.1, 𝑝 (𝑣1)=0.2, 𝑝 (𝑣4)=0.4, 𝑝 (𝑣3)=0.5, 𝑝 (𝑣5)=0.6)
3. The two nodes with the minimum weights (𝑣1 and 𝑣2) are

extracted from the queue and a new parent node 𝑟1 is generated

with the weight of 𝑝 (𝑣2) + 𝑝 (𝑣1) = 0.3 and inserted into the

queue:

𝑄=(𝑝 (𝑟1)=0.3, 𝑝 (𝑣4)=0.4, 𝑝 (𝑣3)=0.5, 𝑝 (𝑣5)=0.6)
4. Similarly 𝑟2, 𝑟3, and 𝑟4 are generated as

𝑄=(𝑝 (𝑟2)=0.7, 𝑝 (𝑣3)=0.5, 𝑝 (𝑣5)=0.6),
𝑄=(𝑝 (𝑟2)=0.7, 𝑝 (𝑟3)=1.1),
𝑄=(𝑝 (𝑟4)=1.8) .

Another prefix tree evaluated in the experiments is called

balanced tree. This prefix tree is used as a baseline to understand

the improvement made by the Huffman tree. The balanced tree is

a complete binary tree constructed in 𝑙𝑜𝑔2 (𝑛) steps. Given a tuple
of probabilities corresponding to grid cells, they are sorted in

ascending order and placed in a priority queue, i.e., 𝑄 . In the 𝑗th

step, nodes𝑄 [2𝑖] and𝑄 [2𝑖+1] are paired for 𝑖 = 0, 1, ...,
⌊
𝑛/2𝑗

⌋
−1,

and each pair is replaced with a parent node in the queue. The

weight of a parent is the addition of its immediate children’s

weights. The final remaining node in the queue is the tree’s root.

3.3 Token Generation and Minimization
Prior work [14, 23] showed how the process of token generation

for an alert zone can considerably improve the computation over-

head, if the process of token aggregation is performed. Specifically,

the binary codes corresponding to different regions of an alert

zone can be aggregated to yield tokenswith few non-star symbols,

which in turn reduces the HVE overhead. Binary minimization on

fixed-length codes is used for this purpose. For instance, suppose

that the alert zone contains cells 0000, 0010, 0110, 0100,. Instead

of separately encrypting the cell indexes and generating four

(a) Sample grid.

(b) Coding tree generated based on Huffman encoding.

(c) Assigned grid indexes.

(d) Coding tree.

Figure 4: Sample variable-length coding scheme

tokens, the TA uses binary minimization to generate a single

token 0 ∗ ∗0, and the cost is reduced from twelve HVE operations

to two. Binary minimization works when there are many cells

in the alert zone, and when the placement of these cells permits

code minimization. This approach is suitable when the number

of alert cells is significant; however, in practice, alert zones may

have cell configurations that do not permit efficient aggregation.

We propose a different token generation approach, where

instead of performing binary minimization on fixed-length codes,

we control the configuration of tokens based on the assignment

of variable-length codes to cells. Algorithm 3 summarizes this

process. Inputs to the algorithm are a set of alert cells and the

coding tree. In the initialization phase, the algorithm defines:
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• a dictionary of parent nodes (parentDict) with the number

of leaf nodes in the corresponding subtree. This is done by

traversing through children of parent nodes and counting

the number of leaves located in that subtree. For the sample

example, we have the dictionary as

[00∗ : 2, 0∗∗ : 3, 1∗∗ : 2, ∗∗∗ : 5]
• a list of leaf nodes denoted by leaves, ordered as they

appear on the tree while traversing; no two edges of the

tree cross path. Such a list for the sample tree is:

[𝑣2 : 000, 𝑣1 : 001, 𝑣4 : 01∗, 𝑣3 : 10∗, 𝑣5 : 11∗] .
The algorithm continues by converting alert cell indexes to

codewords on the tree and recoding their associated codeword

and the corresponding index in leaves. By default, the mapping

process splits codewords into clusters that are located consec-

utively in leaves. It is important to note that mapping of alert

cell indexes to codewords is unique, as demonstrated in Theo-

rem 2. The theorem proves a bijective mapping between grid

indexes and coding tree codewords. For instance, if the alert

cells are [001, 100, 110], then the mapping would result in leaves

[001, 10∗, 11∗] for the sample example. Next, the minimization

process based on the coding scheme is conducted. The minimiza-

tion’s main idea is to find the common subtree roots that have

maximum depths and use them as tokens. All leaves under a com-

mon subtree root must be alerted; otherwise, if a user is located

in such a leaf node it will be falsely notified to be in an alert zone.

Continuing with the example and alert cells [001, 10∗, 11∗], the
algorithm generates two clusters [10∗, 11∗] and [001], and aims

to identify the common subtree roots with the maximum depths

in each cluster. This is done heuristically in lines 23- 37. Suppose

that a cluster’s length is 𝐿, the common left-hand side code in all

𝐿 codewords is calculated and padded with ’*’ bits to ensure that

the codeword length is RL. If the common codeword exists in

the dictionary and the number of its children is 𝐿, the codeword

is chosen as representative of its descendent leaves; otherwise,

𝐿 is decremented by one, and now the first 𝐿 − 1 members are

checked to see if there exists a common root associated with them.

The process continues until the first subtree root is found. For

the remaining codewords in the cluster, the algorithm is applied

again until all tokens representing codewords in the cluster are

selected. A similar approach is repeated for all clusters.

Theorem 2. There exists a bijective function between grid in-
dexes and the leaf nodes of the coding tree.

Proof. We start by proving that for each index on the grid

there exists a unique leaf node (codeword) on the tree. Let𝑥1𝑥2 ...𝑥𝑙
denote an arbitrary index on the map. There exists at least one

leaf on the tree with the codeword 𝑦1𝑦2 ...𝑦𝑟1 ∗ ...∗ such that

𝑥1𝑥2 ...𝑥𝑟1 = 𝑦1𝑦2 ...𝑦𝑟1 , as indexes have been generated from leaf

nodes of the prefix tree. Suppose that there exist at least two leaf

nodes with the codewords𝑦1𝑦2 ...𝑦𝑟1 ∗ ...∗ and 𝑧1𝑧2 ...𝑧𝑟2 ∗ ...∗ cor-
responding to the index 𝑥1𝑥2 ...𝑥𝑙 . Hence, we have the following

relationship between the index and codewords on the tree.

𝑥1𝑥2 ...𝑥𝑟1 = 𝑦1𝑦2 ...𝑦𝑟1 (7)

𝑥1𝑥2 ...𝑥𝑟2 = 𝑧1𝑧2 ...𝑧𝑟2 (8)

Without loss of generality, assume that 𝑟2 ≥ 𝑟1. Hence, equa-
tions 7 and 8 result in

𝑦1𝑦2 ...𝑦𝑟1 = 𝑧1𝑧2 ...𝑧𝑟1 . (9)

However, this contradicts the prefix property of the codes. Hence,

there is a unique leaf node corresponding to each cell index. As

Algorithm 3 Deterministic Minimization

Input: alertCells; codingTree;
1: parentDict = {}
2: for node ∈ codingTree do
3: parentDict[node.code] = # descendent leaves

4: indexHolder, codewordHolder = []

5: leaves← list of leaf codewords

6: for 𝑖 ∈ alertCells do
7: memCodeword←Map 𝑖 to a codeword in leaves
8: codewordHolder = codewordHolder ∪{𝑚𝑒𝑚𝐶𝑜𝑑𝑒𝑤𝑜𝑟𝑑}
9: memIndex← index of memCodeword in leaves
10: indexHolder = indexHolder ∪{𝑚𝑒𝑚𝐼𝑛𝑑𝑒𝑥}
11: // Generate a two dimensional list of clusters

12: Clusters, c = []

13: 𝑐 = 𝑐 ∪ 𝑐𝑜𝑑𝑒𝑤𝑜𝑟𝑑𝐻𝑜𝑙𝑑𝑒𝑟 [0]
14: for 𝑖 ∈ [1 : 𝑙𝑒𝑛(𝑐𝑜𝑑𝑒𝑤𝑜𝑟𝑑𝐻𝑜𝑙𝑑𝑒𝑟 )] do
15: if 𝑖𝑛𝑑𝑒𝑥𝐻𝑜𝑙𝑑𝑒𝑟 [𝑖] = 𝑖𝑛𝑑𝑒𝑥𝐻𝑜𝑙𝑑𝑒𝑟 [𝑖 − 1] + 1 then
16: 𝑐 = 𝑐 ∪ 𝑐𝑜𝑑𝑒𝑤𝑜𝑟𝑑𝐻𝑜𝑙𝑑𝑒𝑟 [𝑖]
17: else
18: clusters = clusters ∪ 𝑐
19: 𝑐 = []

20: 𝑐 = 𝑐 ∪ 𝑐𝑜𝑑𝑒𝑤𝑜𝑟𝑑𝐻𝑜𝑙𝑑𝑒𝑟 [𝑖]
21: tokens = []

22: 𝑅𝐿 ← depth of tree

23: for cluster ∈ clusters do
24: 𝐿 = 𝑙𝑒𝑛(𝑐𝑙𝑢𝑠𝑡𝑒𝑟 )
25: while 𝐿 > 1 do
26: 𝑐𝑜𝑑𝑒 ← common bits in 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 [1 : 𝐿]
27: if 𝑙𝑒𝑛(𝑐𝑜𝑑𝑒) < 𝑅𝐿 then
28: Pad with 𝑅𝐿 − 𝑙𝑒𝑛(𝑐𝑜𝑑𝑒) star bits
29: if 𝑐𝑜𝑑𝑒 ∈ 𝑝𝑎𝑟𝑒𝑛𝑡𝐷𝑖𝑐𝑡 & 𝑝𝑎𝑟𝑒𝑛𝑡𝐷𝑖𝑐𝑡 [𝑐𝑜𝑑𝑒] = 𝐿 then
30: 𝑡𝑜𝑘𝑒𝑛𝑠 = 𝑡𝑜𝑘𝑒𝑛𝑠 ∪ 𝑐𝑜𝑑𝑒
31: 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 = 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 [𝐿 : 𝑙𝑒𝑛(𝑐𝑙𝑢𝑠𝑡𝑒𝑟 )]
32: 𝐿 = 𝑙𝑒𝑛(𝑐𝑙𝑢𝑠𝑡𝑒𝑟 )
33: else
34: 𝐿 = 𝐿 − 1
35: if 𝐿 = 1 then
36: 𝑡𝑜𝑘𝑒𝑛𝑠 = 𝑡𝑜𝑘𝑒𝑛𝑠 ∪ 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 [𝐿]
37: 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 = 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 [𝐿 : 𝑙𝑒𝑛(𝑐𝑙𝑢𝑠𝑡𝑒𝑟 )]
38: return tokens

there are an equal number of indexes and codewords, there exists

a bijective mapping between indexes and codewords. □

4 EXTENSION TO NON-BINARY CODES
So far, we considered the alphabet of HVE operations to be limited

to Σ = {0, 1} and the extended alphabet as Σ∗ = Σ∪{∗}. This is an
intuitive way of looking at indexes as they are a series of zeros and

ones. However, by extending the alphabet to Σ = {0, 1, ..., 𝐵 − 1}
for an arbitrary integer 𝐵 ∈ {2, ..., 𝑛 − 1}, we could obtain more

compact representations. The special character is also added as

Σ∗ = Σ∪{∗}. We re-visit the operations from the previous section

for the extended alphabet with 𝐵 symbols.

1. Prefix tree: We incorporate an extension of Huffman coding

referred to as 𝐵-ary Huffman to generate the prefix tree. The

main idea is to group 𝐵 least probable symbols (instead of 2) at

each substitution stage of the algorithm. The construction of the

prefix tree for our running example grid is shown in Fig. 6a in

which a 3-ary or Huffman code is used. Initially, the algorithm
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(a) (b)

Figure 5: Expansion process.
starts by combining nodes 𝑣2, 𝑣1, and 𝑣4, as they correspond to a

group of three nodes with the minimum total weight, generating

the node 𝑟1. Next, the nodes 𝑟1, 𝑣3, and 𝑣5 are combined, and the

root node 𝑟2 is generated. The weights and other characteristics

of the nodes are stored and calculated in the same way as the

binary Huffman tree. The codes associated with the tree are

generated by assigning an empty character to the root node and

then traversing the tree. At each branching node, when following

the 𝑖th child edge, character 𝑖 − 1 is added to the root string. As

an example, prefix code ’02’ is generated by adding character ’0’

at 𝑟1, and character ’2’ by moving to node 𝑣4. As in the case of

the binary case, we are interested in codes assigned to internal

nodes as well as the prefix codes generated at the leaves.

2. Coding tree: The generation of the coding tree requires an

additional step compared to the binary Huffman tree. In the first

step, codes are padded with star characters until they reach the

same length as the RL. The padded prefix tree for our running

example is shown in Fig. 6b. Next, we expand each character

to an array of 𝐵 bits. The character 𝑖 ∈ Σ is converted to 𝐵 bits

with the (𝑖+1)-th bit set to 1 and star bits otherwise. The only

exception is the star character, which will be mapped to a string

of length 𝐵 with all bits set to ’*’. As an example, the expansion

of 2∗ is shown in Fig. 5a.

Each original character essentially works as a placeholder for

the expanded representation. The final coding tree generated for

our example is shown in Fig. 6c.

3. Indexes:We generate indexes by padding the leaves in the

prefix tree by zeros, and then expanding the codes. An interesting

case occurs that gives the TA the opportunity to increase the

grid’s granularity further if desired. Consider the prefix code

’2’, which will be zero-padded to generate ’20’. The expansion

process requires two steps: (i) zeros generated by the padding

process are mapped to 𝐵 bits; (ii) each character 𝑖 ∈ Σ is expanded

to 𝐵 bits with the (𝑖+1)-th bit set to 1, and star bits otherwise. The

expansion of ’20’ is demonstrated in Fig. 5b.

The additional star bits in the index are converted to zeros.

The advantage of the approach is revealed when we increase

the granularity of a grid cell in a later stage in time. This can

be done by exploiting the star bits generated in the last step

without violating the structure of the grid or the coding tree.

Consider the index ’20’ corresponding to cell 𝑣5 one more time.

This string was first converted to ’**1000’ and then to ’001000’.

Suppose, later on, the TA decides to increase the granularity of

𝑣5 to four cells. This can simply be done by using four indexes

’001000’, ’011000’, ’101000’, ’111000’ generated based on star bits

with all of them lying under character ’2’. The coding tree is

also updated accordingly via placeholders for the character ’2’

without violating the tree’s prefix property.

5 ENCRYPTION OVERHEAD
Employing variable-length codes into HVE can significantly im-

prove the computation complexity at the SP, but there is a a trade-

off with respect to increased encryption time. When variable-

length encoding is used, all ciphertexts submitted by the mobile

users to the SP must have the maximum length of any existing

code. Otherwise, the length of the ciphertext would enable the

SP to pinpoint the location of the submitting user to one of the

cells that are assigned a code with bit length equal to the one

submitted. To thwart such attacks, all codes are padded before en-

cryption to the maximum possible length, i.e. RL. In this section,

we analyze this additional encryption overhead, and we show

that it is not significant, especially compared to the savings at the

SP. Furthermore, the additional computational load is spread over

the user population, since each user encrypts its own location

independently, and no bottleneck is created (as opposed to the

alert matching overhead which is centrally incurred at the SP).

In our analysis, we make use of the following result:

Theorem 3. The depth of a B-ary Huffman tree (RL) with 𝑛

leaves is less than or equal to ⌈𝑛 − 1
𝐵 − 1 ⌉.

Proof. The theorem can be proved by counting the number

of internal nodes in a B-ary Huffman tree. Consider a tree with

𝑛 leaves generated by the Huffman mechanism. At every run of

the algorithm, 𝐵 less likely remaining nodes in the priority queue

are combined, and a new internal node is inserted. Suppose that

the Huffman mechanism is conducted 𝑥 times over the priority

queue until a single node, i.e. root node, is left in the queue. The

maximum value of integer 𝑥 can be derived as:

𝑚𝑎𝑥
𝑥
{𝑛 − 𝑥 (𝐵 − 1) ≥ 1} → 𝑥 = ⌈𝑛 − 1

𝐵 − 1 ⌉ (10)

Therefore, the maximum possible depth of a B-ary Huffman tree

is ⌈𝑛 − 1
𝐵 − 1 ⌉. □

Let 𝐿𝐸 denote the difference between the RL of an encoding

grid with 𝑛 cells generated by Huffman coding and fixed-length

codes. We start by deriving an upper bound for 𝐿𝐸 when Σ∗ =
{0, 1} ∪ {∗}, and then extend the upper bound for an arbitrary

size alphabet. Without loss of generality, consider that RL in the

binary Huffman tree is 𝑙𝑛 . The minimum possible value for 𝑙𝑛 is

(a) Ternary Huffman coding tree. (b) Placeholders. (c) Coding tree.

Figure 6: Sample coding tree for extended framework.
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Figure 7: Upper bound of 𝐿𝐸 for Binary Huffman codes.
⌈log

2
𝑛⌉. Based on Theorem 3, 𝐿𝐸 can be written as:

𝐿𝐸 (𝐵 = 2, 𝑛) = 𝑙𝑛−⌈log2 𝑛⌉ ≤ ⌈
𝑛 − 1
2 − 1 ⌉−⌈log2 𝑛⌉ = 𝑛−1−⌈log2 𝑛⌉

(11)

A tighter upper-bound for RL in a binary Huffman tree can be

derived based on the following theorem proven in [6] (we omit

the proof for brevity):

Theorem 4. Let 𝑝𝑛 and 𝑙𝑛 denote the minimum probability and
its corresponding length existing on the Huffman tree. Then,

𝑙𝑛 ≤ 𝑙𝑜𝑔𝜙
1

𝑝𝑛
(12)

where 𝜙 denotes the golden ratio, i.e., 𝜙 = (1 +
√
5)/2.

Therefore, a tighter upper-bound for 𝐿𝐸 can be written as

𝐿𝐸 (𝐵 = 2, 𝑛) ≤ 𝑙𝑜𝑔𝜙
1

𝑝𝑛
− ⌈log

2
𝑛⌉ (13)

The numerical and analytical values of 𝐿𝐸 are verified
1
for

binary Huffman coding in Fig. 7.

Now let us extend the approach for B-ary Huffman codes

generated with the alphabet Σ∗ = {0, 1, ..., 𝐵 − 1} ∪ {∗}. Based
on information theory, the minimum length of RL corresponding

to fixed-length codes is derived as ⌈log𝐵 𝑛⌉. Therefore, the upper-
bound for 𝐿𝐸 can be computed as:

𝐿𝐸 (𝐵, 𝑛) = 𝐵(𝑙𝑛 − ⌈log𝐵 𝑛⌉) ≤ 𝐵(⌈
𝑛 − 1
𝐵 − 1 ⌉ − ⌈log𝐵 𝑛⌉) (14)

≤ 𝐵( 𝑛 − 1
𝐵 − 1 + 1 − ⌈log𝐵 𝑛⌉) (15)

The multiplier 𝐵 is required to map the alphabet to 0s and 1s,

used in the encryption.

𝐸 [𝐿𝐸 (𝑛)] ≤
1

𝑛 − 1 (
𝑛∑
𝑖=2

𝑖 (𝑛 − 1)
𝑖 − 1 +

𝑛∑
𝑖=2

𝑖 −
𝑛∑
𝑖=2

𝑖 ⌈log𝑖 𝑛⌉) (16)

The first and second summation in the upper-bound of𝐸 [𝐿𝐸 (𝑛)]
can be further simplified as

𝑛∑
𝑖=2

𝑖 (𝑛 − 1)
𝑖 − 1 =(𝑛 − 1) × (𝑛 − 1 +

𝑛∑
𝑖=2

1

𝑖 − 1 ) (17)

≈ (𝑛 − 1) × (𝑛 − 2 + ln(𝑛 − 1) + 1

2(𝑛 − 1) + 𝛾)

(18)

and,

𝑛∑
𝑖=2

𝑖 =
𝑛2 + 𝑛 − 1

2

(19)

1
Grid probabilities are generated with the parameters of sigmoid function set to

𝑎 = 0.95 and 𝑏 = 20. Please refer to Section 6 for details.

where 𝛾 ≈ 0.577 is the Euler-Mascheroni constant. The approx-
imation for the 𝑛th Harmonic can be derived by its asymptotic

expansion in the Hurwitz zeta function [8].

6 SECURITY DISCUSSION
Our proposed technique uses as building block HVE primitives

as introduced in [5], and hence inherits the security properties

of HVE, namely IND-CCA under the bilinear Diffie-Hellman

assumption. In terms of ciphertext processing semantics, the

security achieved by our technique is similar to existing work

in the area of secure computation, namely the only leakage that

occurs as part of ciphertext matching is the evaluation outcome.

Specifically, the SP learns only whether the user is included in

the alert zone (which is a necessary condition for correctness),

and no other information. The SP does not learn where exactly

the user is located within the alert zone, if the match is successful;

conversely, if the match is not successful, the SP learns only that

the user is not inside the alert zone, but cannot further narrow

down the user within the data domain.

Furthermore, our technique is guided by statistical information

that is derived solely from public data. Namely, the heuristic on

how to encode cells does not use any user location data, but

strictly likelihood scores that are assigned to grid cells, based

on public knowledge regarding the alert zone properties, such as

site popularity, etc. No private information regarding any system

user is included in the encoding process (not even aggregate data,

such as user distribution, etc).

Finally, the encryption strength achieved by HVE depends on

the underlying bilinear pairing curve used [5]. Modern elliptic-

curve pairing-based cryptography can easily provide 128-bit se-

curity, which is on par with commercial database applications

such as banking, or heathcare data security standards.

7 EXPERIMENTAL EVALUATION
We conduct our experiments on a 3.40GHz core-i7 Intel proces-

sor with 8GB RAM running 64-bit Windows 7 OS. The code is

implemented in Python. We evaluate our methods on both real

and synthetic datasets, as follows:

• Chicago Crime Dataset. This dataset is provided by the

Chicago Police Department’s CLEAR (Citizen Law En-

forcement Analysis and Reporting) system [1]. The dataset

consists of reported incidents of crime that occurred in

the city of Chicago in 2015. We consider four categories of

crime: homicide, sexual assault, sex offense, and kidnap-

ping. Fig. 8 shows data statistics. A 32× 32 grid is overlaid
on top of the dataset, and a logistic regression model is

trained with the crime data from January to November

2015, and tested on the December data. The accuracy of

the model is 92.9% and the generated likelihood scores

based on the model are used as input to our techniques.

• Synthetic data. We generate the likelihood of grid cells to

be part of an alert zone using a sigmoid activation function

S(𝑋 = 𝑥) = 1/(1+ exp−𝑏 (𝑥−𝑎) ), where 𝑎 and 𝑏 are param-

eters controlling the function shape. For each data point

(i.e., cell) 𝑥 , a uniformly random number between zero and

one is generated, i.e., 𝑥 ∈ 𝑋 ∼ uniform(0, 1). Then, the
number is fed into the sigmoid activation function. The

output is a value between zero and one indicating the like-

lihood of the cell to be inside an alert zone. The sigmoid

function is a frequent model used in machine learning, and
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Figure 8: Chicago crime dataset statistics.

(a) (b)

Figure 9: Evaluation on Chicago crime dataset.
we choose it because we expect that, in practice, the prob-

ability of individual cells becoming part of an alert zone

can be computed using such a model built on a regions’

map of features (e.g., type of terrain, building designation,

etc.). Parameter 𝑎 of the sigmoid controls the inflection
point of the curve, whereas 𝑏 controls the gradient.

We compare our proposed variable-length encoding scheme

with the state-of-the-art fixed-length approach scaled gray opti-

mizer (SGO) from [23], which uses graph embedding to reflect

cell probabilities in the way cell codes are chosen. We also con-

sider as a second benchmark an approach that uses balanced

trees, as opposed to Huffman trees.

We use as performance metric the number of HVE bilinear

map pairing operations incurred by each technique (which are

the most expensive component of the overhead). We present both

absolute counts, as well the percentage of improvement compared

to the original fixed-length encoding HVE approach introduced

in [14] (which assumes all cells are equally likely to be alerted).

7.1 Evaluation on Real Dataset
Fig. 9 shows the performance results obtained on the real dataset.

The 𝑥-axis in each graph indicates the size of the alert zone

(expressed as radius). For low radii values, the SGO algorithm fails

to provide significant improvement, due to the fact that the binary

minimization process used by fixed-length encoding approaches

is unable to aggregate tokens. In contrast, the proposed variable-

length technique using Huffman encoding is able to provide gains

of up to 15% compared to the baseline. In practice, we expect

alert zones to be relatively compact compared to the data domain,

hence this case is frequently occurring in practice. Furthermore,

the results show the superiority of the Huffman code compared to

generic variable-length encodings, as the balanced-tree approach

benchmark does not produce any improvement.

As the size of alert zone increases, SGO improves, whereas

the gain of Huffman encoding decreases. This is expected, since

with very large alert zones, it is easy to aggregate tokens, by

grouping together cells with low Hamming distance between

their codes. However, such an improvement can only be reached

when the alert zones are very large, which is not a realistic sce-

nario in practice. In general, the size of alert zones is expected

to be small, and their distribution in the data domain sparse,

which would further diminish the potential of SGO (and other

binary minimization approaches) to produce performance gains,

as aggregation requires clustered cells with similar binary codes.

7.2 Evaluation on Synthetic Dataset
Performance evaluation results for synthetic data are summarized

in Fig. 10. We use two inflection points for the sigmoid function

𝑎 = 0.90, 0.99, as well as three gradient values 𝑏 = 10, 𝑏 = 100

and 𝑏 = 200. A similar trend to the real dataset is observed. The

Huffman tree approach achieves significantly better performance

when the alert zones are compact, which is the expected case in

practice.

Two other trends can be observed with respect to the param-

eters of the sigmoid function. First, a higher inflection point

setting results in a more skewed distribution probability on the

grid, and leads to a higher performance gain for Huffman en-

coding compared to competitor approaches. The performance

gain can be as high as 50%. This is a positive aspect, since in real

life one expects alert cell probabilities to be quite skewed, where

more popular areas are visited by more individuals, hence there is

more potential for alert events (e.g., public-safety alerts, or visits

of a COVID-infected patient to points of interest). Second, an

increase in the gradient of initial probabilities (𝑏) also improves

the performance gain of Huffman encoding.

We also conducted an experiment under mixed-workload con-

ditions. We consider several mixes between short-radius (20 me-

ters) and long-radius (300meters) alert zones:W1 (90% short-10%

long); W2 (75% short-25% long); W3 (25% short-75% long); and

W4 (10% short-90% long). Results are summarized in Fig. 11. Our

proposed technique outperforms SGO for all considered cases.

For mostly-compact alert zones (W1), the improvement is much

higher than that of SGO, with absolute values of up to 40%.

On the synthetic data, we are also able to perform more in-

depth tests where we vary the parameter settings of our proposed

approach. In Fig. 12, we vary the grid granularity. The results are

obtained for 𝑎 = 0.95 and 𝑏 = 20. The results show that higher

grid granularities lead to higher performance overhead, which

is expected, since more cells need to be encoded and encrypted,

and thus code lengths increase. We also observe an interesting

trend: the improvement for a low number of alert cells decreases

at higher granularity levels. As the number of grid cells grow, and

considering the same sigmoid activation function parameters,

there will be more cells with low probabilities of becoming an

alert cell. Therefore, the Huffman tree tends to have higher depths.

This can be observed more accurately in Fig. 13, where we show

the ratio of average length to themaximum length of the Huffman

tree for various grid sizes. Hence, the improvement achieved by

deterministic minimization lags behind the logic minimization

approach, leading to a smaller improvement percentage.

Finally, we present the run time required to generate indexes

and the coding tree in Fig. 14. Note that, this is a one-time setup

cost, as the process is only run when initializing the system, and

has no effect on run-time performance. In the worst case, the

process takes minutes for larger-granularity grids.

8 RELATED WORK
Location Privacy. Early works on location data privacy piv-

oted around the 𝑘-anonymity [25] model. The main idea is to

hide users’ location among at least k-1 other users to protect

user privacy. A preliminary approach to achieve 𝑘-anonymity

274



(a) a=0.9, b=10 (b) a=0.9, b=10 (c) a=0.9, b=100 (d) a=0.9, b=100

(e) a=0.9, b=200 (f) a=0.9, b=200 (g) a=0.99, b=10 (h) a=0.99, b=10

(i) a=0.99, b=100 (j) a=0.99, b=100 (k) a=0.99, b=200 (l) a=0.99, b=200

Figure 10: Performance evaluation on synthetic dataset.

(a) a=0.9, b=100 (b) a=0.99, b=100

Figure 11: Mixed workloads, synthetic dataset.

(a) (b)

Figure 12: Varying grid granularity, synthetic dataset.

was focused on the generation dummy (fake) locations for data

points [18]. Unfortunately, dummy generation algorithms are

shown to be susceptible to inference attacks [22].

An alternative proposed method to achieve 𝑘-anonymity has

been focused on the concept of Cloaking Regions (CRs) [15].
Most approaches in this category take advantage of a trusted

anonymizer to generate a cluster of𝑘 user locations and query the

Figure 13: Average-to-maximum code length ratio.

Figure 14: System Initialization Time

area locations are enclosed by, achieving𝑘-anonymity [13, 17, 20].

Approaches based on CRs are effective in a single snapshot [17];

however, once users are considered in trajectories, requiring con-

tinuous queries, privacy concerns are posed on the system by

inference attacks. Moreover, large CRs are needed in trajectories,

significantly reducing the utility of data [9] as well as posing

privacy risks due to inference attacks. The authors in [12, 16]
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aim at providing privacy by distinguishing between sensitive and

non-sensitive locations based on user preferences.

Searchable Encryption The main motivation behind search-

able encryption techniques is outsourcing the data management

to a third party, such as cloud providers without the third party

learning about data or queried information by users. The use of a

searchable encryption was initially proposed in [24] for a secure

cryptographic search of keywords. The approach supports com-

parison queries [4] as well as subset queries and conjunctions

of equality [5]. The concept of HVE used in this paper was first

proposed in [5] and later extended in [3]. The authors in [14]

proposed the use of HVE to guarantee user privacy in location-

based alert systems. Despite promising results of the approach,

a major challenge is reducing the computation complexity of

HVE at the server where the matching process is conducted. The

work in [23] represents the current state-of-the art in location-

based alerts with searchable encryption, and it takes into account

probabilities of cells being part of an alert zone. A graph embed-

ding technique is used to assign codes to cells in a manner that

is aware of their likelihood of becoming alerted. The approach

achieves significant improvement in performance compared to

[14]. However, as our experimental evaluation shows, such im-

provements are reached only when a relatively large number of

alert cells are part of an alert zone. For alert zones with few cells,

our approach clearly outperforms that of [23].

9 CONCLUSIONS AND FUTURE WORK
We proposed a technique for secure location-based alerts that

uses searchable encryption in conjunction with variable-length

location encoding. Specifically, usingHuffman compression codes,

we showed that it is possible to significantly reduce the overhead

of searchable encryption for cases where alert zones are compact

and sparse, which is the case we believe to be most likely in prac-

tice. Extensive analytical and empirical evaluation results prove

that our proposed approach significantly outperforms existing

fixed-length encoding techniques, with only a small overhead in

terms of additional encryption time.

In some cases, our approach may be limited by the lack of a

systematic way of obtaining the probability values for various

data domain regions. While having accurate probabilities is a

plus, we do not require high accuracy in the actual values. In fact,

in our design it is often the relative ordering of the probabilities

that matters, and not necessarily the exact values. In practice,

one can produce a relatively stable and representative ordering of

types of features based on their popularity. Even without precise

probability values, one can still obtain significant gains.

In future work, we plan to investigate more advanced stochas-

tic models that capture correlations between cells in an alert

zone, as well as cases when the alert zone evolution over time

can be estimated by a spread model (e.g., a chemical gas leak).

Significant performance gains can be achieved in such scenarios.

One possibility is to model the space and time based on a Markov

model. For a grid with 𝑛 cells, the model would consist of 2
𝑛

states, each representing a unique subset of grid cells. Next, one

can determine a stationary distribution of probabilities over cells,

and derive the values required to reach equilibrium.

Finally, while ourwork focuses on location data, our design can

be extended to benefit other types of data as well. Our assumed

semantics for ciphertext processing is that of range queries, and

numerous other data types can benefit from secure range queries.

However, one has to devise specific encodings and optimizations

for each type of data, as straightforward application of HVE to

generic data types may lead to high performance overhead, as

illustrated in our earlier work [14].
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ABSTRACT
This paper proposes a system, entitled Concealer that allows

sharing time-varying spatial data (e.g., as produced by sensors)

in encrypted form to an untrusted third-party service provider

to provide location-based applications (involving aggregation

queries over selected regions over time windows) to users. Con-

cealer exploits carefully selected encryption techniques to use

indexes supported by database systems and combines ways to

add fake tuples in order to realize an efficient system that pro-

tects against leakage based on output-size. Thus, the design of

Concealer overcomes two limitations of existing symmetric

searchable encryption (SSE) techniques: (i) it avoids the need

of specialized data structures that limit usability/practicality of

SSE in large scale deployments, and (ii) it avoids information

leakages based on the output-size, which may leak data distribu-

tions. Experimental results validate the efficiency of the proposed

algorithms over a spatial time-series dataset (collected from a

smart space) and TPC-H datasets, each of 136 Million rows, the

size of which prior approaches have not scaled to.

1 INTRODUCTION
We consider the problem wherein trusted data producers (DP)

share users’ spatial time-series data in the encrypted form with

untrusted service providers (SP) to empower SP to build value-

added applications for users. Examples include a cellular com-

pany sharing data about the cell tower a user’s mobile phone is

connected to, or an organization/university providing WiFi con-

nectivity data about the access point a user’s device is connected

to, for applications such as building dynamic occupancy maps

[1]. We classify applications supported by SP using user’s data

into two classes, as follows:

(1) Aggregate Applications that aggregate data of multiple users

to build novel applications. Examples include occupancy of dif-

ferent regions, heat maps, and count of distinct visitors to a given

region over a period of time. Such applications are already sup-

ported by several service providers, e.g., Google Maps supports

information about busy-status and wait times at stores such as

restaurants and shopping malls.

(2) Individualized Applications that allow users to ask queries

based on their own past movements, e.g., locations a person

spent the most time during a given time interval, finding the

number of people came in contact with, and/or other aggregate

operations on user’s data. Such applications can be useful for

This material is based on research sponsored by DARPA under Agreement No. FA8750-16-2-

0021. The U.S. Government is authorized to reproduce and distribute reprints for Governmental

purposes notwithstanding any copyright notation thereon. The views and conclusions contained
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several contexts including exposure tracing in the context of

infectious diseases [37].

Implementing applications at the (untrusted) SP requires: (i)

DP to appropriately encrypt data prior to sharing with SP,

(ii) SP to be able to execute queries on behalf of the user over

the encrypted data, and (iii) the user to be able to decrypt the

encrypted answers returned by 𝑆𝑃 . Realizing such a data-sharing

architecture leads to the following three requirements, (of which

the first two are relatively straightforward, while the third re-

quires a careful design of a new cryptographic technique that

this paper focuses on):

R1: Query formulation by the user. Given that data is en-

crypted by DP and is hosted at SP, the user needs to formulate

the query to enable SP to execute it over encrypted data. The

users can formulate an appropriate encrypted query, if they know

the key used for encryption by DP. However, DP cannot share

the key with users to prevent them from decrypting the entire

dataset. A trivial way to overcome this problem is to involveDP

in processing queries. Particularly, a user can submit queries to

DP that converts the query into appropriate trapdoors to be ex-

ecuted on encrypted data at SP, fetches the partial results from

SP, and processes the fetched rows, before producing the final

answer to users. Such an architecture incurs significant overhead

at DP and requires DP to mediate each user query, (pushing

DP to act as a surrogate SP). Thus, the first requirement

is how users can formulate appropriate encrypted queries

without involvingDP in query processing.

We can overcome this requirement trivially by using secure

hardware (e.g., Intel Software Guard eXtensions1 (SGX) [9]) at

SP that works as a trusted agent of DP. SGX receives queries

encrypted using the public key of SGX (which we assume to

known to all) from users, decrypts the query, converts the query

into appropriate secure trapdoors, and provides the answer.

R2: Preventing SP from impersonating a user. Since we do

not wish to involve DP during query processing, all users ask

queries directly to SP. Such query representations should not

empower SP to mimic/masquerade as a legitimate user to gain

access to the cleartext data from the answers to the query. Thus,

the second requirement is how will the system prevent SP
to mimic as a user and execute a query.

We overcome this requirement trivially by building a list of

registered users, who are allowed to execute queries on the en-

crypted data (after a negotiation between users and DP) at DP

and provides it in encrypted form to SP. The registry contains

credential information (e.g., public/private key and authentica-

tion information of users) about the users who are interested

1Recent Intel CPUs introduced SGX that allows us to create a small trusted execution environ-
ment, called enclave that is isolated and protected from the rest of the system. SGX protects
computations from the operating system (controlled by the third-party) and from numerous
applications/system-level attacks. Unfortunately, existing implementations of SGX are prone
to side-channel attacks that exploit one of the microarchitectural components of CPUs, e.g.,
cache-lines, branch execution, page-table access [20, 39, 40], and power attacks. Nevertheless,
systems T-SGX [34] and Sanctum [10] have evolved to overcome such attacks, and it is believed
that future versions of SGX will be resilient to those attacks.
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Techniques Frequent and fast insertion Fast query execution DBMS supported index Preventing attacks
Data distribution Output-size Access-patterns

DET (Always Encrypt [3]) 1 1 Yes No No No
NDET (Arx [32] or Always Encrypt [3]) 2 2 or 3 Yes Yes No No
Indexable-SSE (PB [22]- or IB [23]-Tree) 4 2 No∗ No No No
Indexable-SSE with ORAM (Blind Seer [30]) 4 4 No∗ No No Yes
Non-indexable-SSE [11, 35] 2 4 No No No No
SGX system (Opaque [42]) 2 3 No No No No
MPC or SS (Jana [4]) 4 4 No Yes No Yes
Concealer 1 1 Yes Yes Yes Yes (partial)

Table 1: Comparing different techniques vs Concealer. Note: 1: Very fast, 2: Fast, 3: Slow. 4: Very slow. ∗: Indexable SSEs

build their own indexes and their index traversal techniques are not in-built in existing commercial DBMS.

in SP applications. Thus, before generating any trapdoor by

SGX, it first authenticates the user and provides the final answers

encrypted using the public key of the user.

R3: Selecting the appropriate encryption technique. Spatial

time-series data brings in new challenges (as compared to other

datasets) in terms of a large-amount of the dataset and dynami-

cally arriving data. Also, spatial time-series data show new op-

portunities in terms of limited types of queries (i.e., not involving

complex operations such as join and nested queries). Particularly,

the data encryption and storage must sustain the data generation

rate, i.e., the encryption mechanism must support dynamic inser-

tion without the high overhead. Further, cryptographic query exe-

cution time should scale to millions of records. Finally, the system

must support strong security properties such that the ciphertext

representation and query execution do not reveal information

about the data to SP. Note that ciphertext representation leaks

data distribution only when deterministic encryption (DET) is

used. Query execution leaks information about data due to search-

and access-patterns leakages, and volume/output-size leakage.

In §1.1, we discuss these leakages and argue that none of the ex-

isting cryptographic query processing techniques satisfy all the

above requirements. Thus, the third requirement is how to de-

sign a system that has efficient data encryption and query

execution techniques, and not prone to such leakages.

Concealer. We design, develop, and implement a secure

spatial time-series database, entitled Concealer. This paper fo-

cuses on how Concealer addresses the above-mentioned third

requirement, and below, we briefly discuss the proposed solution

to the requirement R3. Concealer is carefully designed to sup-

port a high rate of data arrival, and large data sets, but it only

supports a limited nature of spatial time-series queries required

by the domain of interest. To a degree, Concealer can be consid-

ered more of a vertical technology compared to general-purpose

horizontal solutions, which as will be discussed in §1.1, lack the

ability to support application/data that motivates Concealer.

Concealer, for fast data encryption and minimum crypto-

graphic overheads on each tuple, uses a variant of deterministic

encryption that produces secure ciphertext (that does not reveal

data distribution) and is fast enough to encrypt tuples (≈37,185

tuples/min). Further, Concealer exploits the index supported

by MySQL. Note that we do not use any specialized index (e.g.,

PB-tree [22] and IB-Tree [23]) and do not require to build the en-

tire index for each insertion at the trusted side. Since Concealer

users an index supported by DBMS, it supports efficient query

execution. For a point query on 136M rows, Concealer needs

at most 0.9s. Thus, our implementation of DET and the use of

indexes supported by DBMS satisfy the requirements of fast data

insertion and fast query execution.

To address the security challenge during query execution, Con-

cealer (i) prevents output-size by fixing the unit of data retrieval

of the form of bins, formed over the tuples of a given time period;

care is taken to ensure that each bin must be of identical size (by

implementing a variant of bin-packing algorithm [8]), and (ii)

hides partial access-patterns, due to retrieving a fixed bin having

different tuples corresponding to different sensor readings (with

different location/time/other values) for any query correspond-

ing to the element of the bin. That means the adversary observes:

which fixed tuples are fetched for a set of queries including the

real query posed by the user. However, the adversary cannot find

which of the fetched tuples satisfy the user query. Since our focus

is on practical system implementation, we relax the complete

access-pattern hiding requirements. The exact security offered

by Concealer will be discussed in §7.

Since we fetch a bin of several tuples, to filter the useless

tuples that do not meet the query predicates, SGX at SP filters

them, (while also hides complete access-patterns inside SGX by

performing oblivious operations). Further, to verify the integrity

of the data before producing the answer, Concealer provides a

non-mandatory hash-chain-based verification.

Evaluation. We evaluate Concealer on a real WiFi dataset col-

lected from at UCI. To evaluate its scalability, we executed the

algorithms on 136M rows, the size that previous existing crypto-

graphic techniques cannot support. We also compare Concealer

against SGX-based Opaque [42]. To the best of our knowledge,

there is no system that supports identical security properties

(hiding output-size and hiding partial access-patterns, while sup-

porting indexes for efficient processing). Our algorithms can be

used to deal with non-time-series datasets also; thus, to evalu-

ate algorithms’ practicality, we evaluate aggregation queries on

136M rows LineItem table of TPC-H benchmark.

1.1 Comparison & Advantages of Concealer
We discuss common leakages from cryptographic solutions, ar-

gue that they do not satisfy the requirements of fast data inser-

tion, fast query execution, and/or security against information

leakages (see Table 1 for a comparison).

Leakages. Cryptographic techniques show following leakages:

(1) Data distribution leakage from the storage [7]: allows an adversary

to learn the frequency-count of each value by just observing

ciphertext. DET reveals such information.

(2) Search- and access-patterns leakages [7, 16]: occur during query

execution. Search-pattern leakages allow an adversary to learn

if and when a query is executed, while access-patterns leakage

allows learning which tuples are retrieved (by observing the

(physical) address/location of encrypted tuples) to answer a query.

Practical techniques (e.g., order-preserving encryption (OPE) [2],

DET, symmetric searchable encryption (SSE) [22, 23], and secure

hardware-based techniques [3, 33, 42]) reveal access-patterns. In

contrast, non-efficient techniques (e.g., secret-sharing [4, 6] or

oblivious RAM (ORAM) based techniques) hide access-patterns.

(3) Volume/output-size leakage [7]: allows an adversary (having some

background knowledge) can deduce the data by simply observing

the size of outputs (or the number of qualifying tuples). [7, 16, 26]

showed that output-size may also leak data distribution. Access-

patterns revealing techniques implicitly disclose the output-size.

Moreover, the seminal work [19] showed that the output-size

revealed even due to access-pattern hiding techniques enables

the attacker to reconstruct the dataset. A possible solution is

adding fake tuples with the real data, thereby each value has
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an identical number of tuples and using indexable SSEs. How-

ever, [26] showed that it will be even more expensive than simply

scanning the entire database in SGX (or download the data at

DP to execute the query locally). Existing output-size prevent-

ing solutions, e.g., Kamara et al. [18] or Patel et al. [31], suffer

from one major problem: [18] fetches 𝛼 × max, 𝛼 > 2, rows,

while [31] fetches 2 ×max rows with additional secure storage

of some rows (which is the function of DB size), where max is

the maximum number of rows a value can have. Thus, both [18]

and [31] fetch more than the desired rows, i.e., max. Moreover,

both [18] and [31] cannot deal with dynamic data.

Existing techniques in terms of data insertion, query ex-

ecution, and leakages. Existing encrypted search techniques

differ in their support for dynamic data, efficient query execution,

and offered security properties. For instance, DET supports very

efficient insertion and query processing, while its ciphertext data

leaks data distribution.

Non-indexable techniques/systems (e.g., SSE [11, 35], secret-

sharing (SS) [4, 6], secure hardware-based systems [42]) allow fast

data insertions by just encrypting the data, but have inefficient

query response time, due to unavailability of an index, and hence,

reading the entire data. SS hides search- and access-patterns,

while others reveal. Moreover, all such techniques are prone to

output-size leakage.

In contrast, indexable techniques/systems (e.g., indexable SSEs

(such as PB-Tree [22], IB-Tree [23]) and secure hardware-based

index [25]) have faster query execution, but show slow data inser-

tion rate, due to building the entire index at the trusted side for

each data insertion; e.g., [30] showed that creating a secure index

over 100M rows took more than 1 hour. Moreover, these index-

able techniques use specialized indexes that require specialized

encryption and tree traversal protocols that are not supported in

the existing standard database systems. This, in turn, limits their

usability in dealing with large-scale time-series datasets. All such

indexable solutions reveal output-size. While indexable solutions

mixed with ORAM (e.g., [30]) hide search- and access-patterns,

they are not efficient for query processing (due to several rounds

of interaction between the data owner and the server to answer

a query). In summary, spatial time-series data adds complexity

since (i) it can be very large, and (ii) arrives dynamically (possibly

a high velocity). Existing techniques, as discussed above, are not

suitable to support secure data processing over such data.

Advantages of Concealer. (i) Frequent data insert. We deal

with frequent bulk data insertions (which is a requirement of

spatial time-series datasets). (ii) Deal with large-size data. We

handle large-sized data with several attributes and large-sized

domain efficiently, as our experimental results will show in §8.

(iii) Output-size prevention. While Concealer satisfies the stan-

dard security notion (supported by existing SSEs), i.e., indistin-

guishability under chosen keyword attacks (IND-CKA) [11], it

also prevents output-size attacks, unlike IND-CKA. (iv) Oblivious

processing in SGX. As we use the current SGX architecture, suf-

fering from side-channel attacks (e.g., cache-line, branch shadow,

and page-fault attack [20, 39, 40]) that enable the adversary to

deduce information based on access-patterns in SGX. Thus, we

incorporate techniques to deal with these attacks.

1.2 Scoping the Problem
There are other aspects, for them either solutions exist or this

paper does not deal with them, as: (i) Key management. We

do not focus on building/improving key infrastructure for pub-

lic/private keys, as well as, key generation and sharing between

Figure 1: Concealer model.

SGX and DP. Further, changing the keys of encrypted data and

re-encrypting the data is out of the scope of this paper, though

one may use the recent approach [17] to do so. Also, we do not

focus on SGX remote attestation. (ii) Man-in-the-middle (MiM)

or replay attacks. There could be a possibility of MiM and replay

attacks on SGX during attestation and query execution. We do

not deal with both issues, and techniques [13] can be used to

avoid such attacks. (iii) Inference from the number of rows. Since

we send data in epochs, different numbers of tuples in different

epochs (e.g., epochs for day vs night time) may reveal information

about the user. This can be prevented by sending the same num-

ber of rows in each epoch (equals to the maximum rows in any

epoch). The current implementation of Concealer does not deal

with this issue. (iv) Inference from occupancy count. Occupancy

information mixed with background knowledge reveals the pres-

ence/absence of a person at a location (e.g., offices). We do not

deal with these inferences, and differential privacy techniques

mixed with SGX [41] can be used to deal with such issues.

2 CONCEALER OVERVIEW
This section provides an overview of entities involved in Con-

cealer and its architecture with an overview of algorithms.

2.1 Entities and Assumptions
Concealer consists of the following three entities:

• Data providerDP: is a trusted entity that collects user’s spatial

time-series data as part of its regular operation (e.g., providing

cellular service to users). DP shares such data in encrypted

form with service providers SP. DP, also, maintains a registry,

one per SP, that contains a list of identification information

of users, who have registered to use the application provided

by the corresponding SP (i.e., can run queries at that SP). As

will be clear, this registry helps to restrict the users to request

individualized applications about other users.

• Service provider SP: is an untrusted entity that develops

location-based applications (as mentioned in §1) over encrypted

data. To do so, SP hosts secure hardware, SGX, that works as a

trusted agent of DP.2 SGX and DP share a secret key 𝑠𝑘 (used

for encryption/ decryption of data), and the key 𝑠𝑘 is unknown

to all other entities.

An untrusted SP may try to learn user’s data passively by either

observing the data retrieved by SGX or exploiting side-channel

attacks on SGX during query execution. SP may, further, learn

user’s data by actively injecting the fake data into the data-

base and then observing the corresponding ciphertext and query

access-patterns. We assume that SP knows background infor-

mation, e.g., metadata, the schema of the relation, the number of

tuples, and the domain of attributes. However, the adversarial

SP cannot alter anything within the secure hardware and can-

not decrypt the data, due to the unavailability of the encryption

key. Such assumptions are similar to those considered in the past

2The assumption of secure hardware at untrusted third-party machines is consis-

tent with emerging system architectures; e.g., Intel machines are equipped with

SGX (see https://newsroom.intel.com/newsroom/wp-content/uploads/sites/11/2017/09/

8th-gen-intel-core-product-brief.pdf).
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L T O
𝑟1 𝑙1 𝑡1 𝑜1
𝑟2 𝑙1 𝑡2 𝑜2
𝑟3 𝑙2 𝑡3 𝑜2
𝑟4 𝑙1 𝑡4 𝑜1
𝑟5 𝑙2 𝑡5 𝑜3
𝑟6 𝑙3 𝑡6 𝑜2

(a) A relation 𝑅 in

cleartext at DP.

{ , } = { 4, 6} { , } = { 5}{ , } = { 1, 2} { , } = { 3}
1, 3 2_ [] = { 1, 2, 1, 3} _ [] = {4, 1, 1}1, 2, 3

4 5, 6

(b) The grid created at DP for rows of Table 2a.

L O Tuple Index(L, T)
𝑟 ′1 E𝑘 (𝑙1 | |𝑡1) E𝑘 (𝑜1 | |𝑡1) E𝑘 (𝑙1 | |𝑡1 | |𝑜1) E𝑘 (cid1 | |1)
𝑟 ′7 End (fake) End (fake) End (fake) E𝑘 (f | |1)
𝑟 ′2 E𝑘 (𝑙1 | |𝑡2) E𝑘 (𝑜2 | |𝑡2) E𝑘 (𝑙1 | |𝑡2 | |𝑜2) E𝑘 (cid1 | |2)
𝑟 ′3 E𝑘 (𝑙2 | |𝑡3) E𝑘 (𝑜2 | |𝑡3) E𝑘 (𝑙2 | |𝑡3 | |𝑜2) E𝑘 (cid3 | |1)
𝑟8 End (fake) End (fake) End (fake) E𝑘 (f | |2)
𝑟 ′4 E𝑘 (𝑙1 | |𝑡4) E𝑘 (𝑜1 | |𝑡4) E𝑘 (𝑙1 | |𝑡4 | |𝑜1) E𝑘 (cid1 | |3)
𝑟 ′5 E𝑘 (𝑙2 | |𝑡5) E𝑘 (𝑜3 | |𝑡5) E𝑘 (𝑙2 | |𝑡5 | |𝑜3) E𝑘 (cid2 | |1)
𝑟 ′6 E𝑘 (𝑙3 | |𝑡6) E𝑘 (𝑜2 | |𝑡6) E𝑘 (𝑙3 | |𝑡6 | |𝑜2) E𝑘 (cid1 | |4)

Ecell_id [2, 2] = End ( {cid1, cid2, cid1, cid3 })
Ec_tuple [3] = End ( {4, 1, 1})

(c) Encrypted data with encrypted counters at SP.

Table 2: Input time-series relation and output of data encryption algorithm.

work related to SGX-based computation [33, 42], work on attacks

based on background knowledge in [19, 27].

• User or data consumerU: that uses the services of DP (such

as cellular or WiFi connectivity) and queries to SP. We assume

that U have their public and private keys, which are used to

authenticate U at SP (via SGX against registry). As mentioned

in §1, U can request both aggregate and individualized queries.

WhileU is trusted with the data that corresponds to themselves,

they are not trusted with data belonging to other users. Finally,

we assume that while U can execute the aggregation queries,

they do not collude with SP, i.e., they do not share cleartext

results of any query with SP.

2.2 Architecture
Concealer (Figure 1) consists of the following phases:

Phase 0: Preliminary step: Announcement of SP by DP.

As a new SP is added into the system,DP announces about the

SP to all their users. Only interested users inform toDP if they

want to use SP’s application. Information of such users, their

device-ids, and authentication information is stored by DP in

the registry.

Phase 1: Data upload byDP.DP collects spatial time-series

data of the form 〈𝑙𝑖 , 𝑡𝑖 , 𝑜𝑖 〉 ( 1 ), where 𝑙𝑖 is the location, 𝑡𝑖 is the
time, and 𝑜𝑖 is the observed value at 𝑙𝑖 and 𝑡𝑖 . For instance, in
the case of WiFi data, the location may correspond to the region

covered by a specific WiFi access-point, and the observation

corresponds to a particular device-id connected to that access-

point at a given time.DP encrypts the data using the mechanism

given in §3 and provides the encrypted data to SP ( 2 ) along

with encrypted registry and verifiable tags (to verify the data

integrity at SP by SGX).

Concealer considers the data as a relation 𝑅 with three at-

tributes: T (time), L (location), and O (observation). Table 2a

shows an example of the cleartext spatial time-series data, (which

will be used in this paper to explain Concealer). In Table 2a, we

have added a row-id 𝑟𝑖 (1 ≤ 𝑖 ≤ 6) to refer to individual rows

of Table 2a. Table 2c shows an example of the encrypted spatial

time-series data as the output of Concealer.

Phase 2:Query generation atU.A query𝑄 = 〈qa, att〉, where
qa is an aggregation (count, maximum, minimum, top-k, and

average) or selection operation for a given condition, and att is a

set of attributes with predicates on which query will be executed,

is submitted to SP ( 3 ). qa is always encrypted to prevent SP

to know the query values.

Phase 3:Query processing atSP.SP holds encrypted spatial

time-series dataset and the user query (submitted to the secure

hardware SGX). SGX, first, authenticate the user, and then, trans-

lates the query into a set of appropriate secured query trapdoors

to fetch the tuples from the databases ( 4 ). Note that since the in-

dividualized application is executed for the user itself, trapdoors

are only generated if the authentication process succeeds to find

that the user is wishing to know his past behavior.

The trapdoors are generated by using the methods of §4 for

point queries or of §5 for range queries. On receiving encrypted

tuples from the database ( 5 ), the secure hardware, first, option-

ally checks their integrity using verifiable tags, and if find they

have not tampered, decrypts them (if necessary), obliviously pro-

cesses them, and produces the final answer to users ( 6 ).

Phase 4: Answer decryption at U. On receiving the answer,

U decrypts them.

2.3 Algorithm Overview
Before going into details of Concealer’s data encryption and

query execution algorithms, we, first, provide their overview.

Data encryptionmethod atDP: partitions the time into slots,

called epochs, and for each epoch, it executes the encryption

method that consists of the following three stages:

Stage 1: Setup. Assume that we want to deal with two attributes

(𝐴 and 𝐵), (e.g., location and time). This stage: (i) creates a grid of

size, say 𝑥 ×𝑦, (ii) sub-partitions the time into 𝑦 subintervals, e.g.,

for an epoch of 9-10am, creates 𝑦 subintervals as: 9:00-9:10, 9:11-

9:20, and so on, and (iii) using a hash function, say H, allocates

𝑥 values of 𝐴 attributes over 𝑥 columns, allocates 𝑦 values (or 𝑦
subintervals) of 𝐵 attribute to 𝑦 rows, and allocates some cell-ids

< 𝑥 × 𝑦 (each with their counters initialized to zero) over the

grid cells. (Such grid-creation steps can be used for more than

two columns trivially and extended for non-time-series dataset.)

Stage 2: Encryption: In this stage, each sensor reading is en-

crypted and a verifiable tag is produced for integrity verification,

as: (i) a tuple 𝑡𝑖 is allocated to a grid cell corresponding to its de-

sired column (e.g., location and time) values using a hash function,

the counter value of the cell-id is increased by one and attached

with the tuples, and the tuples is encrypted to produce secure

ciphertext with the encrypted counter value as a new attribute

value, (ii) a hash-chain is created over the encrypted tuple values

of the same cell-id for integrity verification (and verify false data

injection or data deletion by SP, and (iii) encrypted fake tuples

are added (to prevent output-size leakage at SP).

Stage 3: Sharing: This stage sends encrypted real and fake tuples

with encrypted verifiable tags and encrypted cell-id, counter

information to SP.

Example. Table 2a shows six cleartext rows of an epoch. A

2 × 2 grid with three cell-ids cid1, cid2, and cid3 is shown in

Table 2b. Six cleartext rows are distributed over different cells of

the grid. Table 2c shows the output of the encryption algorithm

with fake tuples to prevent the output-size attack at SP and

an index column created over the cell-ids. Encrypted Table 2c

with counters and cell-ids (written below Table 2b) in encrypted

form is given to SP. Details of the encryption method and

example will be given in §3.�

Data insertion intoDBMS atSP:On receiving encrypted data

from DP, SP inserts the data into DBMS that creates/modifies

the index based on the counters associated with each tuple.

Query execution atSP:As a pre-processing phase, the enclave

at SP, first, authenticates the user, as mentioned in Phase 3

of §2.3, and then, executes the query, as follows:

Point queries. Consider a query on a location 𝑙 and time 𝑡 . For

answering this, the enclave at SP executes the following steps:
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(i) first execute the hash function H on query predicate 𝑙 and 𝑡
to know the cell-id, say cid𝑧 , that was allocated by DP to 𝑙 and
𝑡 , (ii) using the information of cell-id and counter information,

which was sent byDP, create static bins of a fixed size (to prevent

output-size leakage), (iii) among the created bins, find a bin, say

𝐵𝑖 that has the cell-id cid𝑧 that was obtained in the first step above,
and (iv) fetch data from DBMS corresponding to the bin 𝐵𝑖 , and
(v) verify the integrity of data (if needed), obliviously process the

data against query predicate in the enclave, and decrypt only the

desired data.

Range queries.A range query, of course, can be executed by using

the above point query method by converting the range query

into several point queries, but will incur the overhead. To avoid

the overhead of several point queries, we create static bins of

fixed size over the fixed-sized groups of subintervals and fetch

such bins to answer the query by following point queries’ step (v).

Following §3,§4,§5 will describe these algorithms in details,

and then §8 will compare these algorithms on different datasets

and against different systems.

Example. Underlying DBMS at SP creates an index over

Index column of Table 2c. SGX creates two bins over cell-ids’s

as 𝐵1 : 〈cid1〉, 𝐵2 : 〈cid2, 𝑓 | |1, 𝑓 | |2〉. Note that both bins corre-

sponds to four rows—𝐵1 will fetch 𝑟1, 𝑟2, 𝑟4, 𝑟6, and 𝐵2 will fetch
𝑟3, 𝑟5, 𝑓 | |1, 𝑓 | |2 rows. Thus, the output size will be the same. Now,

consider a query 𝑄 = 〈count, (𝑙2, 𝑡5)〉 over Table 2c. Here, SGX
will know that it needs to fetch rows corresponding to the bin hav-

ing cid2, by generating four trapdoors: E𝑘 (cid2 | |1), E𝑘 (cid3 | |1),

E𝑘 (𝑓 | |1), and E𝑘 (𝑓 | |2). Finally, based on the retrieve rows, SGX

produces the final answer.�

3 DATA ENCRYPTION AT DATA PROVIDER
Concealer stores data in discredited time slots, called epochs

or rounds. Epoch duration is selected based upon the latency re-

quirements of SP. Executing queries over multiple epochs could

lead to inference attacks, and for dealing with it, we will present

a method in §6. This section describes Algorithm 1, which is

executed at DP, for encrypting time-series data (assuming with

three attributes location L, time T , and object O) belonging to

one epoch. (In our experiments §8, we will consider different

datasets with multiple columns.) Algorithm 1 uses determin-

istic encryption (DET) to support fast query execution. Since

DET produces the same ciphertext for more than one occurrence

of the same location and object, to ensure ciphertext indistin-

guishability, we concatenate each occurrence of the location and

observation values with the corresponding timestamp.

In Concealer, queries retrieve a subset of tuples based on

predicates specified over attributes, such as L, O, or both.

Queries, further, are always associated with ranges over time (see

Table 4). Thus, to support the efficient execution of such queries,

Concealer creates a cell-based index over query attributes (e.g.,

L and/or O) along with time. For simplicity, Algorithm 1 illus-

trates how a cell-based index is created for location and time

attributes, Index(L,T). Similar indexes can also be created for

other attributes, such as Index(O,T) and Index(L,O,T). De-

tails of Algorithm 1 is given below:

Key generation (Lines 2). Since using a single key overmultiple

epochs results in the identical ciphertext of a value, Concealer

produces a key for encryption for each epoch, as: 𝑘 ← 𝑠𝑘 | |eid,
where 𝑠𝑘 is the secret key shared between SGX and DP, eid is

the epoch-id (which is the starting timestamp of the epoch), and

| | denotes concatenation. Thus, encrypting a value 𝑣 using 𝑘 in

two different epochs will produce different ciphertexts. (Only the

Algorithm 1: Data encryption algorithm.

Inputs: 𝑅: a relation. H: a hash function. E() : an encryption function. 𝑠𝑘 : secret key.
Outputs: 𝐸 (𝑅) : the encrypted relation.

1 Variables: ∀𝑐𝑡 ← 0, where 1 ≤ 𝑡 ≤ 𝑟 . 𝑥 ← #H(Domain(L)) ,

𝑦 ← #H(Domain(T)) , cell_id [𝑥, 𝑦 ] ← 0, c_tuple [𝑢 ] ← 0.
2 Function key_gen(sk) begin
3 𝑘 ← (𝑠𝑘 | |eid)

4 Function encrypt_data(R) begin
5 for 𝑗 ∈ (0, 𝑛 − 1) do
6 Eo 𝑗 ← E𝑘 (𝑜 𝑗 | |𝑡 𝑗 ) , El 𝑗 ← E𝑘 (l𝑗 | |𝑡 𝑗 ) , Er 𝑗 ← E𝑘 (𝑣𝑗 | |𝑙 𝑗 | |𝑡 𝑗 )

7 Function Cell-Formation(𝒋th tuple) begin

8 𝑝 ← H(𝑙 𝑗 ) , 𝑞 ← H(𝑡 𝑗 ) , cid
{𝑝,𝑞}
𝑧 ← cell_id [𝑝,𝑞 ]

9 𝑐𝑡 ← c_tuple [cid
{𝑝,𝑞}
𝑧 ] ← c_tuple [cid

{𝑝,𝑞}
𝑧 ] + 1

10 Ec 𝑗 ← 𝐸𝑘 (cid
{𝑝,𝑞}
𝑧 | |𝑐𝑡 )

11 return 𝐸 (𝑅) ← 〈Eo 𝑗 , El 𝑗 , Er 𝑗 , Ec 𝑗 〉
12 Function add_fake_tuples() begin
13 for 𝑗 ∈ (0, 𝑛 − 1) do
14 Generate fake Eo 𝑗 , El 𝑗 , and Er 𝑗 , and Ec 𝑗 ← E𝑘 (𝑓 | | 𝑗)

15 Append the 𝑗 th fake tuple to the relation 𝐸 (𝑅)
16 Function HashChain(c_tuple[𝒖], 〈Eo, El, Er〉) begin
17 for 𝑗 ∈ 𝑐_𝑡𝑢𝑝𝑙𝑒 [], ∀𝑝 tuples with same cell-id do

18 ℎ
𝑗
𝑙
← 𝐻 (𝐸𝑙𝑝 ) | | (𝐻 (𝐸𝑙𝑝−1) | | (. . . | | (𝐻 (𝐸𝑙2) | |𝐻 (𝐸𝑙1))) . . .)))

19 ℎ
𝑗
𝑜 ← 𝐻 (𝐸𝑜𝑝 ) | | (𝐻 (𝐸𝑜𝑝−1) | | (. . . | | (𝐻 (𝐸𝑜2) | |𝐻 (𝐸𝑜1))) . . .)))

20 ℎ
𝑗
𝑟 ← 𝐻 (𝐸𝑟𝑝 ) | | (𝐻 (𝐸𝑟𝑝−1) | | (. . . | | (𝐻 (𝐸𝑟2) | |𝐻 (𝐸𝑟1))) . . .)))

21 𝐸ℎ𝑙 𝑗 ← 𝐸 (ℎ
𝑗
𝑙
) , 𝐸ℎ𝑜 𝑗 ← 𝐸 (𝑜

𝑗
𝑙
) , 𝐸ℎ𝑟 𝑗 ← 𝐸 (ℎ

𝑗
𝑟 )

22 Function Transmit (𝑬 (𝑹), cell_id[𝒙, 𝒚], c_tuple[𝒖]) begin
23 Ecell_id [𝑥, 𝑦 ] ← End (cell_id [𝑥, 𝑦 ]) , Ec_tuple [𝑢 ] ← End (c_tuple [𝑢 ])
24 Permute all the tuples of the encrypted relation 𝐸 (𝑅)

25 Send 𝐸 (𝑅) , Ecell_id [𝑥, 𝑦 ], Ec_tuple [𝑢 ], 𝐸ℎ𝑙 𝑗 , 𝐸ℎ𝑜 𝑗 , 𝐸ℎ𝑟 𝑗

first eid and epoch duration is provided to SGX to generate other

eids to decrypt the data during query execution.)

Tuple encryption (Lines 4-11). As the tuple arrives, it got ap-

propriately encrypted (Line 6) usingDET. Note that by encryption

over the concatenated time with location and object values, re-

sults in a unique value in the entire relation. Now, in order to

allocate the cell value to be used as the index, we proceed as

follows: Let |L| be the number of locations and |T | be the dura-

tion of the epoch. Concealer maps the set of location |L| into a

range of values from 1 to 𝑥 ≤ |L| using a simple hash function.

It, furthermore, partitions |T | into𝑦 > 1 subintervals of duration,

|T |/𝑦, which are then mapped using a hash function into 𝑦 > 1

values. Thus, all tuples of the epoch are distributed randomly

over the grid of 𝑥 × 𝑦 (see Example 3 below). Then, 𝑢 cell-ids

(𝑢 < 𝑥 × 𝑦) are allocated to grid cells. To refer to the cell-id of a

cell, we use the notation cid
{𝑝,𝑞 }
𝑧 that shows that the cell {𝑝, 𝑞}

is assigned a cell-id cid𝑧 . In Step 3 of query execution §4.2, it will

be clear that we will fetch tuples to answer any query based on

cell-ids, instead of directly using query predicates.

Here, we keep two vectors: (i) cell_id of length 𝑥 × 𝑦 to keep

the cell-id allocated to each cell of the grid, and (ii) c_tuple of

length 𝑢 to store the number of tuples that have been allocated

the same cell-id. During processing a 𝑗 th tuple, we increment the

current counter value of the number of tuples that have the same

cell-id by one using c_tuple, and encrypts it. This value will be

allocated to Index(L,T)〉 attribute of the 𝑗 th (Lines 9-10).

Allocating fake tuples (Lines 12 -15). Since SP will read the

data from DBMS into the enclave, different numbers of rows

according to different queries may reveal information about the

encrypted data. Thus, to fetch an equal number of rows for any

query,DP needs to share some fake rows. There are twomethods

for adding the fake rows:

(i) Equal number of real and fake rows: This is the simplest method

for adding the fake rows. Here, DP adds ciphertext secure fake

tuples. The reason of adding the same number of real and fake

rows is dependent on the property of the bin-packing algorithm,
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which we will explain in §4.2 (Theorem 4.1).3 In Index attribute,

a 𝑗 th fake tuple contains an encrypted identifier with the tuple-id

𝑗 , denoted by E𝑘 (𝑓 | | 𝑗), where 𝑓 is an identifier (known to only

DP) to distinguish real and fake tuples.

(ii) By simulating the bin-creation method: To reduce the number

of fake rows to be sent, we use this method in which DP simu-

lates the bin-packing algorithm (as will be explained in §4.2) and

finds the total number of fake rows required in all bins such that

their sizes must be identical. Then, DP share such ciphertext

secure fake tuples with their Index values, as in the previous

method. As will be clear soon by Theorem 4.1 in §4.1, in the

worst case, both the fake tuple generation methods send the

same number of fake tuples, i.e., an equal number of real and

fake tuples.

Hash-chain creations (an optional step) Line 16-21. DP

creates hash chains over encrypted tuples allocated the same cell-

id, as follows: let 𝑝 be the numbers of tuples with the same cell-

ids and 𝑝 encrypted location ciphertext as: 𝐸 (𝑙1), 𝐸 (𝑙2), . . . , 𝐸 (𝑙𝑝 ).
Now, DP executes a hash function as follows:

ℎ𝑙1 ← 𝐻 (𝐸 (𝑙1))
ℎ𝑙2 ← 𝐻 (𝐸 (𝑙2) | |ℎ𝑙1)

. . .
ℎ𝑙 ← 𝐻 (𝐸 (𝑙𝑝 ) | |ℎ𝑙 (𝑝−1) )

In the same way, hash digests for other columns are computed,

and the final hash digest (i.e., ℎ𝑙 ) is encrypted that works as a

verifiable tag at SP.

Sending data (Line 22-25). Finally,DP permutes all encrypted

tuples of the epoch to mix fake and real tuples in the relation

and sends them with the two encrypted vectors Ecell_id [] and

Ec_tuple[] and encrypted hash digests.4

Example 3. Now, we explain with the help of an example how

encryption algorithm works. Consider six rows of Table 2a as the

rows of an epoch, and we wish to encrypt those tuples with index

on attributes L and T . Assume that Algorithm 1 creates a 2 × 2

grid (see Table 2b) with three cell-ids: cid1, cid2, and cid3. Ta-

ble 2b shows two vectors cell_id [] and c_tuple[] corresponding

to L and T attributes. Values in c_tuple[] show that the num-

ber of tuples has been allocated the same cell-id. For instance,

c_tuple[1] = 4 shows that four tuples are allocated the same

cell-id (i.e., cid1). In Table 2b, for explanation purposes, we show

which rows of Table 2a correspond to which cell; however, this

information is not stored, only information of vectors cell_id []

and c_tuple[] is stored.

The complete output of Algorithm 1 is shown in Table 2c

for cleartext data shown in Table 2a, where Index(L,T) is the

column on which DBMS creates an index. In Table 2c, E refers to

DET, End refers to a non-deterministic encryption function, and

𝑘 be the key used to encrypt the data of the epoch. In addition,

we create three hash chains, one hash chain per cell-id. Also, note

that this example needs only 2 fake tuples to prevent output-size

leakage at SP.�

4 POINT QUERY EXECUTION
This section develops a bin-packing-based (BPB) method for

executing point queries. Later, §5 will develop a method for range

queries. The objectives of BPB method are twofold: first, create

identical-size bins to prevent leakages due to output-size, (i.e.,

when reading some parts of the data from disk to the enclave),

and second, show that the addition of at most 𝑛 fake tuples is

enough in the worst case to prevent output-size leakage, where 𝑛

3For 𝑛 real tuples, we add a little bit more than 𝑛 fake tuples in the worst case (Theorem 4.1).
4The size of both vectors is significantly smaller (see experimental section §8.1).

is the number of real tuples. BPB method partitions the values of

c_tuple[] into almost equal-sized bins, using which a query can

be executed. Note that bins are created only once, prior to the

first query execution. This section, first, presents the bin-creation

method, and then, BPB query execution method.

4.1 Bin Creation
Bins are created inside the enclave using a bin-packing algorithm,

after decrypting vector Ec_tuple[].

Bin-packing algorithms. A bin-packing algorithm places the

given inputs having different sizes to bins of size at least as big as

the size of the largest input, without partitioning an input, while

tries to use the minimum number of bins. First-Fit Decreasing

(FFD) and Best-Fit Decreasing (BFD) [8] are the most notable

bin-packing algorithms and ensure that all the bins (except only

one bin) are at least half-full.

In our context, 𝑢 cell-ids (cid1, cid2, . . . , cid𝑢 ) are inputs to

a bin-packing algorithm, and the number of tuples having the

same cell-id is considered as a weight of the input. Letmax be the

maximum number of tuples having the same cell-id cid𝑖 . Thus,

we create bins of size at least |𝑏 | = max and execute FFD or BFD

over 𝑢 different cell-ids, resulting in |Bin| bins as an output of

the bin-packing algorithm.

The minimum number of bins. Let 𝑛 be the number of real

tuples sent by DP, i.e., 𝑛 =
∑𝑖=𝑢
𝑖=1 c_tuple[𝑖]. Let |𝑏 | be the size

of each bin. Thus, it is required to divide 𝑛 inputs into at least

�𝑛/|𝑏 |� bins.

Theorem 4.1. (Upper bounds on the number of bins and

fake tuples) The above bin-packing method using a bin size |𝑏 |
achieves the following upper bounds: the number of bins and the

number of fake tuples sent by DP are at most 2𝑛
|𝑏 | and at most

𝑛 +
|𝑏 |
2 , respectively, where 𝑛  |𝑏 | is the number of real tuples

sent by DP.

In the full version (https://arxiv.org/abs/2102.05238), we will

provide the proof of this theorem.

Equi-sized bins. The bins produced by FFD/BFD may have dif-

ferent numbers of tuples. Thus, we pad each bin with fake tuples,

thereby all bins have |𝑏 | tuples. Let tuple𝑏𝑖 < |𝑏 | be the number

of tuples assigned to an 𝑖th bin (denoted by 𝑏𝑖 ). Here, the ids (i.e.,
the value of Index column) of fake tuples allocated to the bin 𝑏𝑖
will be |𝑏 | − tuple𝑏𝑖 , and all these fake tuple ids cannot be used for
padding in any other bin. Thus, for padding, we create disjoint

sets of fake tuple ids (see the example below to understand the

reason).

Example 4.1. Assume five cell-ids cid1, cid2, . . . , cid5 having the
following number of tuples c_tuple[5] = {79, 2, 73, 7, 7}. Here,
cid1 has the maximum number of tuples; hence, the bin-size

is at least 79. After executing FFD bin-packing algorithm, we

obtain three bins, each of size 79: 𝑏1: 〈cid1〉, 𝑏2: 〈cid3, cid2〉, and
𝑏3: 〈cid5, cid4〉. Here, bins 𝑏2 and 𝑏3 needs 4 and 65 fake tuples,

respectively. One can think of sending only 65 fake tuples to

access bins 𝑏2 and 𝑏3 to have size 79. However, in the absence

of access-pattern hiding techniques, the adversary will observe

that any 4 tuples out of 65 fake tuples are accessed in both bins.

It will reveal that these four tuples are surely fake, and thus, the

adversary may deduce that the bin size of 𝑏2 is 75. Thus, DP

needs to send 69 fake tuples in this example.�

4.2 Bin-Packing-based Query Execution
We develop bin-packing-based (BPB) method (see pseudocode in

Algorithm 2) based on the created bins (over location and time
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Algorithm 2: Bin-packing-based query execution

method.
Inputs: 〈qa, (L = 𝑙, T = 𝑡 ) 〉: a query 𝑞𝑎 involving predicates over L and T
attributes. cell_id [𝑥, 𝑦 ], c_tuple [𝑢 ], H: A hash function, E𝑘 () : An encryption
function using a key 𝑘 .

|Bin |: the number of bins. b [𝑖 ] [ 𝑗 ]: 𝑖th bin having 𝑗 cell-ids, where 𝑗 > 0.
Outputs: A set of ciphertext queries.

1 Function Query_Execution(〈qa, (L = l, T = t) 〉) begin
2 Function Find_cell(l, t) begin
3 𝑝 ← H(𝑙) , 𝑞 ← H(𝑡 ) , cid𝑧 ← cell_id [𝑝,𝑞 ]
4 return cid𝑧 ; break

5 Function Find_bin(cidz , |Bin |, b[∗][∗]) begin
6 for desired ∈ (0, |Bin | − 1) do
7 if cid𝑧 ∈ b [desired ] [∗] then
8 return b [desired ] [∗]; break

9 Function Formulate_queries(b[desired][∗]) begin
10 for ∀𝑗 ∈ (b [desired ] [ 𝑗 ]) do
11 cell_id ← b [desired ] [ 𝑗 ], counter ← c_tuple [cell_id ]

12 ∀counter , generate ciphertexts E𝑘 (cell_id | |counter)

attributes). A similar method can be extended for other attributes.

BPB method contains the following four steps:

Step 0: Bin-creation. By following FFD or BFD as described

above, this step creates bins over cell-ids (c_tuple[]), if bins do

not exist.

Step 1: Cell identification (Lines 2-4). The objective of this

step is to find a cell of the grid corresponding to the requested

location and time. A query𝑄𝑒 = 〈qa, (L = 𝑙,T = 𝑡)〉 is submitted

to the enclave that, on the query predicates 𝑙 and 𝑡 , applies the
hash function H, which was also used by DP (in Cell-Formation

function, Line 8 of Algorithm 1). Thus, the enclave knows the cell,

say {𝑝, 𝑞}, corresponds to 𝑙 and 𝑡 . Based on the cell {𝑝, 𝑞} and
using the vector cell_id [], it knows the cell-id, say cid𝑧 , allocated

to the cell {𝑝, 𝑞}.
Step 2: Bin identification (Lines 5-8). Based on the output

of Step 1, i.e., the cell-id cid𝑧 , this step finds a bin 𝑏𝑖 that con-
tains cid𝑧 . Bin 𝑏𝑖 may contain several other cell-ids along with

identities of the first and the last fake tuples required for 𝑏𝑖 .
Step 3: Query formulation (Lines 9-12). After knowing all

cell-ids that are required to be fetched for bin 𝑏𝑖 , the enclave

formulates appropriate ciphertexts that are used as queries. Let

the set of cell-ids in 𝑏𝑖 be𝐶1,𝐶2, . . . ,𝐶𝛼 , containing #1, #2, . . . , #𝛼
records, respectively. Let the fake tuple range for 𝑏𝑖 be 𝑓𝑙 and
𝑓ℎ (let #𝑓 = 𝑓ℎ − 𝑓𝑙 be the number of fake tuples that have to be

retrieved for 𝑏𝑖 ). The enclave generates #𝑖 number of queries, as:

E𝑘 (𝐶𝑝 | | 𝑗), where 1 ≤ 𝑗 ≤ #𝑖 for each cell𝐶𝑝 corresponding to 𝑏𝑖
and 𝑘 is the key obtained by concatenating 𝑠𝑘 and epoch-id (as

mentioned in Line 2 of Algorithm 1). Also, it generates #𝑓 fake

queries, one for each of the fake tuples associated with 𝑏𝑖 .
Advantage of cell-ids. Now, observe that a bin may contain sev-

eral locations and time values (or any desired attribute value).

Fetching data using cell-id does not need to maintain fine-grain

information about the number of tuples per location per time.

Step 4: Integrity verification and final answers filtering.

We may optionally verify the integrity of the retrieved tuples.

To do so, the enclave, first, creates a hash chain over the real

encrypted tuples having the same cell-id, by following the same

steps as DP (Lines 16 of Algorithm 1). Then, compares the final

hash digest with the decrypted verifiable tag, provided by DP.

Now, to answer the query, the enclave, first, filters those tuples

that do not qualify the query predicate, since all tuples of a bin

may not correspond to the answer. Thus, decrypting each tuple to

check against the query 𝑄𝑒 = 〈qa, (L = 𝑙,T = 𝑡)〉 may increase

the computation cost. To do so, after implementing the above-

mentioned Step 3, the enclave generates appropriate filter values

(E𝑘 (𝑙𝑖 | |𝑡𝑖 ) or E𝑘 (o𝑖 | |𝑡𝑖 ), which are identical to the created by

DP using Algorithm 1); while, at the same time, DBMS executes

queries on the encrypted data. On receiving encrypted tuples

max(int x,int y){
bool getX = ogreator(x, y),
return omove(getX, x, y)
}

(a) Oblivious maxi-

mum.

mov rcx, x
mov rdx, y
cmp rcx, rdx
setg al
retn

(b) Oblivious com-

pare: ogreator.

mov rcx, cond
mov rdx, x
mov rax, y
test rcx, rcx
cmovz rax, rdx
retn

(c) Oblivious

move: omove.

Figure 2: Register-oblivious operators [28].

from DBMS, the enclave performs string-matching operations

using filters and decrypts only the desired tuples, if necessary.

Example 4.2. Consider the cells created in Example 3.1, i.e.,

cell_id [] = cid1, cid2, cid1, cid4 and c_tuple[] = {4, 1, 1}. Now,
assume that there are two bins, namely b1: 〈cid1〉 and b2:

〈cid2, cid3〉. Consider a query 𝑄 = 〈count, (𝑙2, 𝑡5)〉, i.e., find the

number of people at location 𝑙2 at time 𝑡5 on the data shown in

Table 2c. Here, after implementing Step 1 and Step 2 of BPB

method, the enclave knows that cell-id cid2 satisfies the query,

and hence, the tuples corresponding to bin 𝑏2 are required to be

fetched. Thus, in Step 3, the enclave generates the following four

queries: E𝑘 (cid2 | |1), E𝑘 (cid3 | |1), E𝑘 (𝑓 | |1), and E𝑘 (𝑓 | |2). Finally,
in Step 4, the filtering via string matching is executed over the re-

trieved four tuples against E𝑘 (𝑙2 | |𝑡5). Since all the four retrieved
tuples have a filter on location and time values, here is no need

to decrypt the tuple that does not match the filter E𝑘 (𝑙2 | |𝑡5).�

4.3 Oblivious Trapdoor Creation & Filtering
Steps for generating trapdoor (Step 3) and answer filtering (Step

4), in §4.2, were not oblivious due to side-channel attacks (i.e.,

access-patterns revealed via cache-lines and branching opera-

tions) on the enclave. Thus, we describe how can the enclave

produce queries and process final answers obliviously for pre-

venting side-channel attacks.

Step 3. Let #𝐶𝑚𝑎𝑥 be the maximum cells required to form a

bin. Let #𝑚𝑎𝑥 be the maximum tuples with a cell-id. Let #𝑖 be

the number of tuples with a cell-id 𝐶𝑖 . For a bin 𝑏𝑖 , the enclave
generates #𝐶𝑚𝑎𝑥 × #𝑚𝑎𝑥 numbers of queries: E𝑘 (𝐶𝑖 | | 𝑗, 𝑣), where
1 ≤ 𝑗 ≤ #𝑚𝑎𝑥 ,𝐶𝑖 ≤ #𝐶𝑚𝑎𝑥 , and 𝑣 = 1 if 𝑗 ≤ #𝑖 and𝐶𝑖 is required
for 𝑏𝑖 ; otherwise, 𝑣 = 0. Note that this step produces the same

number of queries for each cell and each bin.

Let #fmax be the maximum fake tuples required for a bin. Let

#fb𝑖 be the maximum fake tuples required for 𝑏𝑖 . The enclave
generates #fmax number of fake queries: E𝑘 (𝑓 | | 𝑗, 𝑣), where 1 ≤

𝑗 ≤ #fmax and 𝑣 = 1 if 𝑗 ≤ #fb𝑖 ; otherwise, 0. This step produces

the same number of fake queries for any bin. Finally, the enclave

sorts all real and fake queries based on value 𝑣 using a data-

independent sorting algorithm (e.g., bitonic sort [5]), such that all

queries with 𝑣 = 1 precede other queries, and sends only queries

with 𝑣 = 1 to the DBMS.

Step 4. The enclave reads all retrieved tuples and appends 𝑣 = 1

to each tuple if they satisfy the query/filter; otherwise, 𝑣 = 0.

Particularly, an 𝑖th tuple is checked against each filter, and once

it matches one of the filters, 𝑣 = 1 remains unchanged; while

the value of 𝑣 = 1 is overwritten for remaining filters checking

on the 𝑖th tuple. It hides that which filter has matched against

a tuple. Then, based on 𝑣-value, it sorts all tuples using a data-

independent algorithm.5 (After this all tuples with 𝑣 = 1 are

decrypted and checked against the query by following the same

procedure, if needed.)

Branch-oblivious computation. Note that after either generating

an equal number of queries for any bin or filtering the retrieved

tuples using a data-oblivious sort, the entire computation is still

5If all tuples can reside in the enclave, then bitonic sort is enough. Otherwise, to obliviously sort

the tuples, we use column sort [21] instead of the standard external merge sort.
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𝑇4 cid
{1,1}
1 = 40 cid

{1,2}
6 = 30 cid

{1,2}
7 = 2 cid

{1,4}
11 = 9

𝑇3 cid
{2,1}
2 = 50 cid

{2,2}
7 = 50 cid

{2,3}
6 = 21 cid

{2,4}
9 = 60

𝑇2 cid
{3,1}
3 = 60 cid

{3,2}
11 = 40 cid

{3,3}
4 = 45 cid

{3,4}
8 = 48

𝑇1 cid
{4,1}
3 = 40 cid

{4,2}
10 = 50 cid

{4,3}
10 = 10 cid

{4,4}
5 = 50

𝑙1 𝑙2 𝑙3 𝑙4

Table 3: A 4 × 4 grid.

vulnerable to an adversary that can observe conditional branches,

i.e., an if-else statement used in the comparison. To overcome

such an attack, we use the idea proposed by [28] that suggested

that any computation on registers cannot be observed by an

adversary since register contents are not accessible to any code

outside of the enclave; thus, register-to-register computation

is oblivious. For this, [28] provided two operators: omove and

ogreater, see Figure 2. For any comparison in the enclave, we use

these two operators; readers may find additional details in [28].

5 RANGE QUERY EXECUTION
This section develops an algorithm for executing range queries,

by modifying BPB method, given in §4.2. For simplicity, we con-

sider a range condition on time attribute. For illustration pur-

poses, this section uses a 4×4 grid (see Table 3, which was created

by DP using Algorithm 1, §3) corresponding to location and

time attributes of a relation. In this grid, 11 cell-ids are used, and

a number in a cell shows the number of tuples allocated to the

cell. The notation𝑇𝑖 shows an 𝑖
th sub-time interval (after creating

a grid using Algorithm 1 §3).

5.1 Enhanced Bin-Packing-Based (eBPB)
Method

eBPB method requires DP to send the number of tuples

in each cell of the grid with the vector cell_id []. Thus, it

avoids sending the vector c_tuple[]. For example, for the

grid shown in Table 3, cell_id [4, 4] = {(1, 40), (6, 30), (7, 2),
(11, 9), (2, 50), (7, 50), (6, 21), (9, 60), (3, 60), (11, 40), (4, 45),
(8, 48), (3, 40), (10, 50), (10, 10), (5, 50)}. This information helps

us in creating bins more efficiently for a range query, as follows:

Step 1: Preliminary step. The enclave decrypts the encrypted

vector Ecell_id [].

Step 2: Finding top-ℓ cell-ids. Find top-ℓ cells having the max-

imum number of tuples in one of the locations, where ℓ is the
number of cells required to answer the range query. Say, loca-

tion 𝑙𝑖 has top-ℓ cells that have the maximum number of tuples,

denoted by bsize tuples.

Step 3: Create bins. Execute this step either if ℓ cells required
for the current query are more than the cells required for any

previously executed query or it is the first query. Fix the bin size

to bsize and execute FFD that takes cid
{𝑝,𝑞 }
𝑧 as inputs and the

number of tuples having cid
{𝑝,𝑞 }
𝑧 as the weight of the input. If

the bin does not have bsize number of tuples, add fake tuples to

the bin. It results in |𝐵𝑖𝑛 | number of bins and then, use all such

bins for answering any range covered by ℓ cells.
Step 4:Query formulation andfinal answers filtering. Find

the desired bin satisfying the range query and formulate appro-

priate queries, as we formed in Step 3 of BPB method §4.2. The

DBMS executes all queries and provides the desired tuples to

the enclave. The enclave executes the final processing of the

query, likewise Step 4 of BPB method §4.2. Note that for oblivious

query formulation and result filtering, we use the same method as

described in §4.3.

Example 5.1.1. Consider a query to count the number of tuples

at the location 𝑙1 during a given time interval that is covered by

𝑇2 to 𝑇4. This query spans over three cells; see Table 3. Here, the

maximum number of tuples in any three cells at locations 𝑙1, 𝑙2,
𝑙3, and 𝑙4 are 60+50+40 = 150, 50+50+40 = 140, 45+21+5 = 71,

and 60 + 50 + 48 = 158, respectively. Thus, the bin of size 158 can

satisfy any query that spans over any three cells (arranged in a

column) of the grid. �

Example 5.1.2: attack on eBPB. Consider the following queries

on data shown in Table 3: (𝑄1) retrieve the number of tuples

having location 𝑙1 during a given time interval that is covered

by 𝑇1 and 𝑇2, and (𝑄2) retrieve the number of tuples having

location 𝑙1 during a given time interval that is covered by 𝑇2 and
𝑇3. Answering𝑄1 and𝑄2 may reveal the number of tuples having

𝑇1, 𝑇2, and 𝑇3, as: in answering 𝑄2 we do not retrieve 40 tuples

(corresponding to {4, 1} cell) that were sent in answering 𝑄1

and retrieve 50 new tuples (corresponding to {2, 1} cell). It, also,
reveals that 60 tuples (corresponding to {3, 1} cell) belong to 𝑇2.
Note that all such information was not revealed, prior to query

execution, due to the ciphertext indistinguishable dataset.�

5.2 Highly Secured Range Query:
winSecRange Method

We, briefly, explain a method to prevent the above-mentioned at-

tacks on a range query. Particularly, we fix the length of a range,

say 𝜆 > 1, and discretize 𝑛 domain values, say 𝑣1, 𝑣2, . . . , 𝑣𝑛 ,
into �𝑛𝜆 � intervals (denoted by I𝑖 , 1 ≤ 𝑖 ≤ �𝑛𝜆 �), as: I1 =
{𝑣1, 𝑣2, . . . , 𝑣𝜆}, . . ., I�𝑛𝜆 � = {𝑣𝑛−𝜆, . . . , 𝑣𝑛−1, 𝑣𝑛}. Here, the bin

size equals to the maximum number of tuples belonging to an

interval, and bins are created for each interval only once. For

example, consider 12 domain values: 𝑣1, 𝑣2, . . . 𝑣12, and 𝜆 = 3.

Thus, we obtain intervals: I1 = {𝑣1, 𝑣2, 𝑣3}, I2 = {𝑣4, 𝑣5, 𝑣6},
I3 = {𝑣7, 𝑣8, 𝑣9}, and I4 = {𝑣10, 𝑣11, 𝑣12}. Here, four bins are cre-
ated, each of size equals to the maximum number of tuples in

any of the intervals. Now, we can answer a range query of length

𝛽 by using one of the following methods:

(i) 𝛽 ≤ 𝜆 and 𝛽 ∈ I𝑖 : Here, the entire range exists in I𝑖 ; hence,

we retrieve only a single entire bin satisfying the range. E.g., if a

range is [𝑣1, 𝑣2], then we need to retrieve the bin corresponding

to I1. (ii) 𝛽 ≤ 𝜆 and 𝛽 ∈ {I𝑖 ,I𝑗 }: It may be possible that 𝛽 ≤ 𝜆 but
the range 𝛽 lies in I𝑖 and I𝑗 , 𝑖 ≠ 𝑗 . Thus, we need to retrieve two
bins that cover I𝑖 and I𝑗 , and hence, we also prevent the attack

due to sliding the time window (see Example 5.1.2). E.g., if a range

is [𝑣2, 𝑣4], then we need to retrieve the bins corresponding to I1
and I2. (iii) 𝛽 = 𝑧 × 𝜆: Here, a range may belong to at most 𝑧 + 2

intervals. Thus, we may fetch at most 𝑧 + 1 bins satisfying the

query. E.g., if a range is [𝑣3, 𝑣8], then this range is satisfied by

intervals I1, I2, and I3; thus, we fetch bins corresponding to I1,

I2, and I3.

6 SUPPORTING DYNAMIC INSERTION
Dynamic insertion in Concealer is supported by batching up-

dates into rounds/epochs, similar to [12]. Tuples inserted in an

𝑖th period are said to belong to the round rd𝑖 or epoch eid𝑖 . The

insertion algorithm is straightforward. Concealer applies Algo-

rithm 1 on tuples of epochs prior to sending them to SP. Note

that since Algorithm 1 for distinct rounds is executed indepen-

dently, the tuples corresponding to the given attribute value (e.g.,

location-id) may be associated with different bins in different

rounds. Retrieving tuples of a given attribute value across dif-

ferent rounds needs to be done carefully, since it might result in

leakage, as shown next.

Example 6.1. Consider that the bin size is three, and we have

the following four bins for each round of data insertion, where a

bin 𝑏𝑖 stores tuples of a location 𝑙 𝑗 :
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Queries Execution (filtering, decryption, and final processing) by the secure hardware

Location and time attributes

Q1: # observations at 𝑙𝑖 during time 𝑡1 to 𝑡𝑥 SM using the filters 𝐸𝑙1 ← 𝐸𝑘 (𝑙𝑖 | |𝑡1) , 𝐸𝑙2 ← E𝑘 (𝑙𝑖 | |𝑡2) , . . ., 𝐸𝑙𝑘 ← E𝑘 (𝑙𝑖 | |𝑡𝑥 ) . No decryption needed.

Q2: Locations that have top-k observations during 𝑡1 to 𝑡𝑥 SM using the filters 𝐸𝑙𝑚 ← E𝑘 (𝑙𝑖 | |𝑡 𝑗 ) where 𝑖 ∈ Domain(L) and 𝑗 ∈ {𝑡1, 𝑡𝑥 }, and then, decrypt E𝑘 (𝑙 | |𝑡 | |𝑜)
of qualified tuples only for final processing.Q3: Locations that have at least 10 observations during 𝑡1 to 𝑡𝑥

Observation and time attributes

Q4: Which locations have an observation 𝑜𝑖 during 𝑡1 to 𝑡𝑥 SM using Eo 𝑗 ← E𝑘 (𝑜𝑖 | |𝑡 𝑗 ) , 𝑗 ∈ {𝑡1, 𝑡𝑥 }, and then, decrypt E𝑘 (𝑙 | |𝑜 | |𝑡 ) of qualified tuples to know locations.

Observation, location, and time attributes

Q5: # an observation 𝑜𝑖 has happened at 𝑙𝑖 during 𝑡1 to 𝑡𝑥 SM using Eo 𝑗 ← E𝑘 (𝑜𝑖 | |𝑡 𝑗 | |𝑙𝑖 ) , where 𝑗 ∈ {𝑡1, 𝑡𝑥 }. No decryption needed.

Table 4: Sample queries. Notation: SM: String matching.

rd1 : 𝑏1 : 〈𝑙1, 𝑙2, 𝑙3〉 𝑏2 : 〈𝑙4, 𝑙4, 𝑙4〉 𝑏3 : 〈𝑙5, 𝑙5, 𝑙5〉 𝑏4 : 〈𝑙6, 𝑙6, 𝑙6〉
rd2 : 𝑏 ′1 : 〈𝑙1, 𝑙1, 𝑙1〉 𝑏 ′2 : 〈𝑙2, 𝑙2, 𝑙2〉 𝑏 ′3 : 〈𝑙3, 𝑙3, 𝑙3〉 𝑏 ′4 : 〈𝑙4, 𝑙5, 𝑙6〉

Now, answering a query for 𝑙1 fetches bins 𝑏1 and 𝑏
′
1; a query

for 𝑙2 fetches 𝑏1 and 𝑏
′
2; and a query for 𝑙3 fetches 𝑏1 and 𝑏

′
3. Here,

𝑏1 is retrieved with three new bins (𝑏 ′1, 𝑏
′
2, 𝑏

′
3); it reveals that 𝑏1

has three distinct locations. Similarly, 𝑏 ′4 will be retrieved with

three older bins (𝑏2, 𝑏3, and 𝑏4). Thus, the query execution on

older and newer data reveals additional information.�
To prevent such attacks, we need to appropriately modify our

query execution methods. In our technique, we will assume that

bins across all rounds are of a fixed size, |𝑏 |,6 and the number of

tuples for a given attribute value (i.e., location) fits within a bin

(i.e., ≤ |𝑏 |). Our idea is inspired by Path-ORAM [36], while we

overcome the limitation of Path-ORAM that achieves indistin-

guishability for query execution by keeping a meta-index struc-

ture at the trust entity. Note that Path-ORAM builds a binary tree

index on the records. To retrieve a single record, Path-ORAM

fetches O(log𝑛) records and rewrites them under a different

encryption. Since Path-ORAM uses an external data structure,

it cannot be used for our purpose as argued in §1. Below, we

provide our modified query execution strategy.

Executing queries. Let 𝑟𝑑𝑖 , 𝑟𝑑 𝑗 , 𝑟𝑑𝑘 , and 𝑟𝑑𝑙 be four consecutive
rounds of data insertion. Let 𝑞 be a query that spans over 𝑟𝑑 𝑗 , 𝑟𝑑𝑘 ,
and 𝑟𝑑𝑙 rounds; however, only rounds 𝑟𝑑 𝑗 and 𝑟𝑑𝑙 have bins that
satisfy query 𝑞. For answering 𝑞, the modified query execution

method takes the following three steps: (i) The enclave fetches the

desired bin from 𝑟𝑑 𝑗 and 𝑟𝑑𝑙 rounds by following methods given

in §4.2 and §5, with randomly selected log |Bin| − 1 additional

bins from each 𝑟𝑑 𝑗 and 𝑟𝑑𝑙 round, where |Bin| are created for

each round using Algorithm 2. (ii) The enclave fetches log |Bin|

bins from round 𝑟𝑑𝑘 , to hide the fact that 𝑟𝑑𝑘 does not satisfy

the query. (iii) For round 𝑟𝑑𝑥 , 𝑥 ∈ { 𝑗, 𝑘, 𝑙}, the enclave, first,

permutes the retrieved data of 𝑟𝑑𝑥 and encrypts with a new key.7

The newly encrypted data replaces the older data of 𝑟𝑑𝑥 .
Aside.We rewrite tuples of fetched bins, when asking a query for

another value belonging to the previously fetched bin (e.g., query

for 𝑙2 in Example 6.1). The adversary cannot link bins of different

rounds of data insertion based on attribute values in bins.

7 SECURITY PROPERTIES
This section presents the desired security requirements, discusses

which requirements are satisfied by Concealer, and information

leakages from the algorithms. To develop applications on top of

spatial time-series dataset at an untrusted SP, a system needs

to satisfy the following security properties:

Ciphertext indistinguishability: property requires that any

two or more occurrences of a cleartext value look different in

the ciphertext. Thus, by observing the ciphertext, an adversary

cannot learn anything about encrypted data. Concealer satisfies

this property by producing unique ciphertext for each tuple using

Algorithm 1 (Line 7).

6We are not interested in hiding different numbers of tuples in different rounds, but using fake

tuples it can be prevented, if desired.
7The key 𝑘 for re-encryption is generated as: 𝑘 ← 𝑠𝑘 | |eid | |counter , where SGX maintains a
counter for each round, and increments it by one whenever the data of a round is read in SGX
and rewritten.

Data integrity: property requires that if the adversary injects

any false data into the real dataset, it must be detected by a trusted

entity. Concealer ensures integrity property by maintaining

hash chains over the encrypted tuples and sharing encrypted

verifiable tags, which helps SGX to detect any inconsistency

between the actual data shared byDP and the data SGX accesses

from the disk at SP.

Query execution security: requires satisfying output-size pre-

vention, indistinguishability under chosen keyword attacks (IND-

CKA), and forward privacy.

Output-size prevention: property requires that the number of

tuples corresponding to a value, e.g.,L, (or a value corresponding

to a combination of attributes, e.g., L and T ) i.e., the volume

of the value, is not revealed, and only the maximum output-

size/volume of the value is revealed. Concealer ensures this

property by retrieving a fixed-size bin from DBMS into SGX,

regardless of the query predicates.

IND-CKA. IND-CKA [11] prevents leakages other than what an

adversary can gain through information about (i) metadata, i.e.,

size of database/index, known as setup leakage 𝔏𝑠 in [11], and

(ii) query execution that results in query leakage 𝔏𝑞 in [11] and

includes search-patterns and access-patterns. Again, note that

by revealing the access-patterns, IND-CKA is prone to attacks

based on the output-size.

While Concealer leaks 𝔏𝑠 by the size of database/index and

𝔏𝑞 by fetching data in the form of a bin, it does not reveal infor-

mation based on the output-size, except a constant output-size

for all query predicates. (Also, since by fetching a bin, it does

not reveal which rows of the bin satisfy the answer, it hides par-

tial access-patterns.) Thus, Concealer improves the security

guarantees of IND-CKA.

Forward privacy: property requires that newly inserted tuples

cannot be linked to previous search queries, i.e., the adversary

that have collected trapdoors for previous queries, cannot use

them to match newly added tuples. Concealer ensures forward

privacy by, first, producing a different ciphertext of an identical

value over two different epochs using two different keys (as

mentioned in §3), and then, re-encrypting the tuples of different

epochs using different keys during query execution spanning

over multiple epochs (as mentioned in §6).

Now,we discuss information leakages from different the above-

mentioned query execution methods.

BPB information leakage discussion. BPB method prevents

the attacks based on output-size by fetching an identical number

of tuples for answering any query. It reveals the dataset and index

sizes stored in DBMS (as 𝔏𝑠 condition of IND-CKA [11]). BPB

method, also, reveals partial access- and search-patterns, which

means that for a group of queries it reveals a fixed bin of tuples,

and thus, hides which of the tuples of bin satisfy a particular

query (𝔏𝑞 conditions of IND-CKA). Recall that an index, e.g.,

B-tree index, on the desired attribute is created by the underlying

DBMS. To show that the index will not lead to additional leakages

other than 𝔏𝑠 and 𝔏𝑞 , we follow the identical strategy to prove a

technique is IND-CKA secure or not. In short, we need to show

that a simulator not having the original data can also produce the
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Figure 3: Exp 2: Range queries on 26M tuples.
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Figure 4: Exp 2: Range queries on 136M tuples.

index attribute based on 𝔏 = {𝔏𝑠 , 𝔏𝑞}, i.e., BPB method is secure

if a “fake” attribute can mimic the real index attribute, (and hence,

mimic the real index). Note that like SSEs, the simulator having

only 𝔏 can generate a fake dataset, and hence, the index attribute

can mimic the real index attribute; thus, the adversary cannot

deduce additional information based on 𝔏.
Also, note that in oblivious Step 3, the enclave generates the

same number of real/fake queries regardless of a bin and sorts

them using a data-independent algorithm, which hides access-

patterns in SGX. Also, it processes all retrieved tuples against

the query and does oblivious sorting in Step 4. Thus, it also does

not reveal access-patterns (by missing any tuple to process).

eBPB and winSecRange information leakage discussion.

eBPB method incurs leakages 𝔏𝑠 and 𝔏𝑞 . Based on 𝔏𝑞 , we may

reveal that a range query is spanning over at most ℓ cells. Hence,
it may also reveal the exact data distribution, by fetching the same

real tuple multiple times for multiple range queries, which we

illustrated in Example 5.1.2. To overcome such information leak-

age, winSecRange fetches a fixed size interval, regardless of the

query range. Thus, while winSecRange reveals 𝔏𝑠 and 𝔏𝑞 , it does
not reveal any information based on the output-size.

Insert operation information leakage discussion. Our in-

sert operation satisfies forward privacy property. Since for en-

crypting tuples of an epoch, we generate a key that is unique

among all keys generated for any epoch. Thus, based on the pre-

vious query trapdoors, the adversary cannot use them to link new

tuples. Furthermore, our insert operation hides the distribution

leakage due to executing queries over multiple epochs, since we

fetch additional tuples from each epoch that lies in the query

range and re-write all tuples.

8 EXPERIMENTAL EVALUATION
This section shows the experimental results of Concealer under

various settings and compares them against prior cryptographic

approaches.

8.1 Datasets, Queries, and Setup
Dataset 1: Spatial time-series data generation. To get a real

spatial time-series dataset, we took our organization WiFi user

connectivity dataset over 202 days having 136M(illion) rows.

The IT department manages more than 2000 WiFi access-points

(AP) by which they collect tuples of the form 〈𝑙𝑖 , 𝑡𝑖 , 𝑜𝑖 〉 on which

they implemented Algorithm 1 prior to sending WiFi data to us.

In this data, each of 2000+ APs is considered as a location. We

created two types ofWiFi datasets: (i) a small dataset of 26MWiFi

connectivity rows collected over 44 days, and (ii) a large dataset

of 136M rows (of 14GB) collected over 202 days. For Concealer

Algorithm 1, which produces encrypted data as shown in Table 2c,

we fixed a grid of 490 × 16, 000 and allocated 87,000 cell-ids that

resulted in two vectors cell_id [] and c_tuple[] of size 31MB. Data

was encrypted using AES-256. This dataset has also skewed over

the number of tuples at locations in a given time. For example,

the minimum number of rows at all locations in an hour was

≈6,000, while the maximum number of rows at all locations in

an hour was ≈50,000.

Dataset 2: TPC-H dataset. Since WiFi dataset has only three

columns, to evaluate Concealer’s practicality in other types

of data with more columns, we used 136M rows of LineItem ta-

ble of TPC-H benchmark. We selected nine columns (Orderkey

(OK), Partkey (PK), Suppkey(SK), Linenumber (LN), Quantity,

Extendedprice, Discount, Tax, Returnflag). This dataset contains

large domain values, also; e.g., in OK column, the domain value

varies for 1 to 34M. We created (i) two indexes on attributes

〈OK, LN〉 and 〈OK, PK, SK, LN〉, (ii) two filters on concatenated

values of 〈OK, LN〉 and 〈OK, PK, SK, LN〉, and (iii) one value

that is the encryption of the concatenated values of all remain-

ing five attributes. We used a 112, 000 × 7 grid for index 〈OK,

LN〉 and a 1500 × 100 × 10 × 7 grid for index 〈OK, PK, SK, LN〉.

Each grid was allocated 87,000 cell-ids. The size of cell_id [] and

c_tuple[] vectors for both grids was 54MB. Data is encrypted

using Algorithm 1 and AES-256.

Queries. Table 4 lists sample queries supported by Concealer

on spatial time-series data. These queries as mentioned in §2.1

provide aggregate (Q1-Q3) and individualized (Q4-Q5) applica-

tions. On TPH-C data, we executed count, sum, min/max queries.

Setup. The IT department (worked as DP) had a machine of

16GB RAM. Our side (worked as SP) had a 16GB RAM Intel

Xeon E3 machine with Intel SGX. At SP, MySQL is used to store

data, and ≈8,000 lines of code in C is written for query execution.

We evaluate both versions of Concealer depending on the

security of SGX: (i) one that assumes SGX to be completely secure

against side-channel attacks, denoted byConcealer, and (ii) an-

other that assumes SGX is not secure against side-channel attack

(cache-line, branch shadow, page-fault attacks) and hence per-

forms the oblivious computation in SGX (given in §4.3). denoted

by Concealer+. In all our experiments, we show the overhead

of preventing the side-channel attacks using red color.

8.2 Concealer Evaluation
This section evaluates Concealer on different aspects such as

scalability, dynamic data insertion, the impact of the range length,

and the number of cell-ids.

Exp 1: Throughput. Since Concealer is designed to deal with

data collected during an epoch arriving continuously over time,

we measured the throughput (rows/minute) that Concealer can

sustain to evaluate its overhead at the ingestion time. Algorithm 1

can encrypt ≈37,185 WiFi connectivity tuple per minute. Also, it

sustains our organization-level workload on the relatively weaker

machine used for hosting Concealer.

Exp 2: Scalability of Concealer. To evaluate the scalability

of Concealer, we compare the five queries as specified in Table 4

on the two WiFi datasets.

Point query. For point query, we executed a variant of Q1 when

the time is fixed to be a point (instead of a range). Table 5 shows

the average time taken by 5 randomly selected point queries

(each executed 10 times). Note that, in Concealer, since the time

taken by point queries is dependent upon the number of tuples

allocated to the same cell-id (i.e., the bin size) that was 2,378 rows
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Figure 5: Exp 3: Range length impact.

2D-Count 4D-Count 2D-Sum 4D-Sum 2D-Max 4D-Max 2D-Min 4D-Min
Queries

0.0

0.5

1.0

1.5

2.0

2.5

A
vg

. E
xe

cu
. T

im
e 

(S
ec

on
ds

)

Figure 6: Exp 5: Query performance on TPC-H data.

from small and 6,095 rows from large datasets. Table 5 shows

that Concealer with secure SGX using BPB method took 0.23s

on small and 0.90s on large datasets, while Concealer+ with the

current non-secure SGX using BPB method took 0.37s on small

and 1.38s on large datasets. Time in Concealer+ increases

compared to Concealer, since we need to obliviously form

the queries and obliviously filter the tuples in Concealer+, (and

that implements a data-independent sorting algorithm; see §4.3).

Here, executing the same query on cleartext data took 0.03s on

small and 0.05s on large datasets.
Small dataset (26M) Large dataset (136M)

Cleartext processing 0.03s 0.05s

Concealer (secure SGX) 0.23s 0.90s

Concealer+ (non-secure SGX) 0.37s 1.38s

Table 5: Exp 2: Scalability of point query.

Range queries. To evaluate range queries, we set the default

time range for queries Q1-Q5 specified in Table 4 to 20min (Exp 4

will study the impact of different range lengths). Figures 3 and 4

show the results as an average over 5 queries (each executed 10

times). We compare BPB, eBPB (§5.1), and winSecRange (§5.2)

with both Concealer and Concealer+.

Recall that BPBmethod answers a range query by converting it

into many point queries and fetches bins corresponding to each

point query; while eBPB method fetches rows corresponding

to top-ℓ cells, which cover the given range. In Concealer, a

cell covers ≈18min. Thus, for a range of 20min, BPB and eBPB

methods fetch at most 3 bins and at most 3 cells, respectively,

for query Q1. Thus, for answering Q1, BPB fetches ≈6K rows

from small and ≈18K rows from large datasets, and eBPB fetches

≈1.5K rows from small and ≈3K rows from the large dataset.

Since eBPB retrieves few numbers of rows compared to BPB,

in sSGX, eBPB performs better than BPB (see Figures 3 and 4).

Concealer+ again takes more time compared to Concealer for

both eBPB and BPB, due to oblivious operations. Note that in

queries Q2-Q5, we use more locations; thus, the number of rows

retrieved changes accordingly, and hence, the processing time

also changes, as shown in Figures 3 and 4.

For winSecRange, we set the range length on the time attribute

to 8 hours in case of small and ≈1-day in case of large datasets.

Thus, by fetching data for 1-day in the case of the large dataset,

the enclave can execute any range query that is of a smaller time

length. As expected, winSecRange took more time to execute

range queries on both datasets, since it fetches and processes

more rows (≈70K rows from small and ≈400K from large dat-

sets). While it takes more time compared to BPB and eBPB, it

prevents the attack by sliding the time window (as shown in

Example 5.1.2), thereby, prevents revealing output-size attacks

due to the sliding time window. Further, winSecRange under

Concealer+ took more time compared to winSecRange under

Concealer, due to oblivious operations. Recall that under Con-

cealer, SGX architecture is vulnerable to side-channel attacks.

Exp 3. Impact of range length. Figure 5 shows the impact of

the length in a range query on Concealer, by executing Q1

(see Table 4) with different time lengths over the large dataset

and compares three approaches BPB, eBPB, and winSecRange. In

Concealer, a cell covers ≈18min. Thus, for instance, for a range

of 100min, BPB and eBPBmethods fetch atmost 7 bins and atmost

7 cells, respectively. As expected, as the length of range increases,

the number of rows to be fetched from the DBMS also increases,

thereby, the processing time at secure hardware increases. As

mentioned in Exp 2, for the large dataset, the range length is set

to ≈1-day for winSecRange method; hence, fetching/processing

more tuples takes more time and remains almost constant for the

given length of queries.

Exp 4. Impact of dynamic insertion. We also investigated

how does Concealer support dynamic insertion of WiFi dataset.

We initiated Algorithm 1 for an hour of WiFi data at the peak

hour, which included ≈50K tuples. For each insertion round, the

grid size was 20 × 1, 250 with 400 allocated cell-ids, and vectors

cell_id [] and c_tuple[] of size ≈100KB were generated. In non-

peak hours, we received at least ≈6K real rows. Recall that we

are not interested in hiding peak vs non-peak hour data. Thus,

all rows of each hour were sent using Algorithm 1. The query

execution performance on dynamically inserted data depends

on the number of rounds over which a query spans. For each

round, we need to load the two vectors and fetch log |Bin| bins, as

described in §6. For peak hour data, we obtained 146 bins storing

≈400 tuples, in each, using BPB method (§4.2) that resulted in

≈3K row retrieval. On this data, it took at most ≈4s to execute a

query, re-encrypting tuples, and writing them, for Concealer.

Exp 5. Concealer on TPC-H data. To evaluate Con-

cealer’s practicality in other types of queries, we executed two-

dimensional (2D) and four-dimensional (4D) count, sum, maxi-

mum, and minimum queries on LineItem table using Concealer.

2D (and 4D) queries involved OK and LN (and OK, PK, SK and LN)

attributes. Similar to the point query execution on WiFi dataset,

2D and 4D queries on TPC-H data require to fetch tuples allo-

cated the same cell-id (in the same bin) according to Algorithm 2.

Thus, the query execution performance is dependent on the bin

size, which was 400 rows for 2D grid and 6,258 for 4D grid. The

query execution results are shown in Figure 6.

Figure 6 shows that Concealer using BPBmethod took ≈1s to

2s on TPC-H dataset. Also, observe that the performance of count

queries is ≈36%–40% better than the others queries, since count

queries do not need to decrypt retrieved rows and it executed

string matching on the filter column to produce the answer. In

contrast, other queries that require exact values of the attributes

decrypt retrieved rows, and hence, incur the overhead.

8.3 Other Cryptographic Techniques
Since in our setting SP uses secure hardware, we need to com-

pare Concealer against a system that supports database opera-

tions using SGX. Thus, we selected an open-source SGX-based

system: Opaque [42].

Comparison between Opaque and Concealer. Opaque sup-

ports mechanisms to execute databases queries on encrypted

data by first reading the entire data in the enclave, decrypting

them, and then providing the answer. Note that both Opaque
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System Q1 Q2 Q3 Q4 Q5

Opaque >10 m >10 m >10 m >10 m >10 m

Concealer eBPB 3.6 s 2.8 s 3.4 s 3 s 4s

Concealer winSecRange 70 s 67.2 s 71.9 s 70.2 s 68.9 s

Table 6: Exp 7: Range queries: Opaque vs Concealer.

and Concealer assume that SGX is secure against side-channel

attacks, and hence, both reveal access-patterns. Thus, this is a

fair comparison of the two systems, while Concealer avoids

reading the entire dataset due to using the index and pushing

down the selection predicate. Under this comparison, we execute

point and range queries using Opaque and Concealer.

Further, note that since Concealer+ completely hides access-

patterns inside SGX and partially hides access-patterns when

fetching data in the form of fixed-size bins from the disk, we do

not directly compare Concealer+ and Opaque due to different

level of security offered by two systems.

Exp 6: Point queries on WiFi data. Opaque took more than

10min on both WiFi datasets for executing a variant of Q1 when

the time is fixed to be a point, since Opaque requires reading the

entire dataset. For the same query, Concealer took at most 0.23s

on 26M and 0.9s on 136M rows.

Further, to execute the same query, Concealer+ took ≈1.4s.

Thus, it shows that Concealer+, which hides access-patterns

inside the enclave and prevents the output-size attack, is signifi-

cantly better than Opaque.

Exp 7: Range queries onWiFi data. In all range queries Q1-Q5

on WiFi data, Concealer’s eBPB and winSecRange algorithms

take at most 4s and 71.9s over the large dataset compared to

Opaque that took at least 10min in any query; see Table 6.

Further, to execute the same queries, Concealer+ takes at

most 90s over the large dataset, which shows better performance

of Concealer+ than Opaque in the case of range queries also.

Note. Except for Opaque, we did not experimentally compare

Concealer against cryptographic techniques, since such tech-

niques either offer different security levels [12, 22, 23], or do not

scale to large data (e.g., [4, 15]) for which we have designed Con-

cealer, or are not publicly available. Thus, we decide to compare

Concealer results with the reported result in different papers.

Previous works on secure OLAP queries either support limited

operations, reveal data due to DET or OPE, or scale to a smaller

dataset. For example, Monomi [38], Seabed [29], [14], and [24]

reveal data due to DET or OPE. Nevertheless, Seabed supports a

huge dataset (≈1.75B rows). Novel SSEs, e.g., [12, 22, 23], are very

efficient, as given in their experiments; however, over 5M rows

and susceptible to output-size attacks. We also checked access-

pattern-hiding cryptographic work (e.g., DSSE [15] and Jana [4])

that are prone to output-size attacks; however, as expected, these

systems are slow due to using highly secure cryptographic tech-

niques that incur overheads and/or do not support a large dataset.

E.g., an industrial MPC-based system Jana took 9 hours to insert

1M LineItem rows, while executing a simple query took 532s.

9 CONCLUSION
This paper proposed Concealer that blends a carefully chosen

encryption method with mechanisms to add fake tuples and ex-

ploits secure hardware to efficiently answer OLAP-style queries.

We applied Concealer to real spatial time-series datasets, as well

as, synthetic TPC-H data, and demonstrated scalability to large-

sized data. Since Concealer allows indexing, its performance

is similar to SSEs.Concealer offers two key advantages over

existing SSEs: first, it does not require new data structures to in-

corporate into databases and leverages existing index structures

of modern databases. Second (and perhaps more importantly),

Concealer offers a higher level of security, in addition to being

IND-CKA, which existing SSEs are, by preventing leakage of data

distributions via output-size. Due to space restrictions, we omit the

query workload handling method, proof of Theorem 4.1, and exper-

iments related to the overhead of verification, impact of the number

of cells, and impact of different bin-sizes from this paper, and will

be given in the full version (https://arxiv.org/abs/2102.05238).
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ABSTRACT

Privacy-preserving record linkage aims at integrating person-

related data from different sources while protecting the privacy of

individuals by securely encoding and matching quasi-identifying

attributes, like names. For this purpose Bloom-filter-based en-

codings have been frequently used in both research and practical

applications. Simultaneously, however, weaknesses and attack

scenarios were identified emphasizing that Bloom filters are in

principal susceptible to cryptanalysis. To counteract such attacks,

various encoding variants and tweaks, also known as hardening

techniques, have been proposed. Usually, these techniques bear

a trade-off between privacy (security) and the linkage quality

outcome. Currently, a comprehensive evaluation of the suggested

hardening methods is not available. In this work, we will there-

fore review and categorize available Bloom-filter-based encoding

schemes and hardening techniques. We also comprehensively

evaluate the approaches in terms of privacy (security) and link-

age quality to assess their practicability and their effectiveness

in counteracting attacks.

1 INTRODUCTION

Linking records from different independent sources is an essen-

tial task in research, administration and business to facilitate

advanced data analysis [6]. In many applications, these records

are about individuals and thus contain sensitive information, e. g.,

personal, health, criminal or financial information. Due to several

laws and regulations, data holders have to protect the privacy of

individuals [33]. As a consequence, data holders have to ensure

that no sensitive or confidential information is revealed during a

linkage process.

Privacy-preserving record linkage (PPRL) addresses this prob-

lem by providing techniques for linking records referring to the

same real-world entity while protecting the privacy of these en-

tities. In contrast to traditional record linkage [6], PPRL encodes

sensitive identifying attributes, also known as quasi-identifiers,

for instance, names, date of birth or addresses, and then conduct

the linkage on the encoded attribute values.

Over the last years, numerous PPRL approaches have been

published [33]. However, many approaches are not suited for real-

world applications as they either are not able to sufficiently han-

dle dirty data, i. e., erroneous, outdated or missing values, or do

not scale to larger datasets. More recent work mainly focuses on
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encoding techniques utilizing Bloom filters [2] as error-tolerant

and privacy-preserving method to encode records containing

sensitive information. While Bloom-filter-based encodings have

become the quasi-standard in PPRL approaches, several stud-

ies analyzed weaknesses and implemented successful attacks on

Bloom filters [7, 8, 18, 20, 21, 24]. In general, it was observed that

Bloom filters carry a non-negligible re-identification risk because

they are vulnerable to frequency-based cryptanalysis. In order to

prevent such attacks, various Bloom filter hardening techniques

were proposed [7, 25]. Such techniques aim at reducing patterns

and frequency information that can be obtained by analyzing the

frequency of individual Bloom filters or (co-occurring) 1-bits.

Previous studies on Bloom filter hardening techniques only

consider individual methods and do not analyze the effects of

combining different approaches. Moreover, many of the proposed

hardening techniques have received only limited evaluation on

small synthetic datasets making it hard to assess the possible

effects on the linkage quality.

The aim of this work is to review hardening techniques pro-

posed in the literature and to evaluate their effectiveness in terms

of achieving high privacy (security) and linkage quality.

In particular, we make the following contributions:

• We survey Bloom filter variants and hardening techniques

that have been proposed for use in PPRL scenarios to allow

secure encoding and matching of sensitive person-related

data.

• We categorize existing hardening techniques to generalize

the Bloom filter encoding process and thus highlight the

different possibilities for building tailored Bloom filter en-

codings that meet the privacy requirements of individual

application scenarios.

• We explore additional variants of hardening techniques,

in particular salting utilizing blocking approaches and

attribute-specific salting on groups of attributes.

• Wepropose and analyzemeasures that allow us to quantify

the privacy properties of different Bloom filter variants.

• We comprehensively evaluate different Bloom filter vari-

ants and hardening techniques in terms of privacy (secu-

rity) and linkage quality using two real-world datasets

containing typical errors and inconsistencies.

2 BLOOM FILTER

The use of Bloom filters [2] for PPRL has been proposed by

Schnell and colleagues [26] and has become the quasi-standard

for recent PPRL approaches in both research and real applications

[33].
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2.1 Basics

A Bloom filter (BF) is a space-efficient probabilistic data structure

for representing a set 𝐸 = {𝑒1, . . . , 𝑒𝑛} of 𝑛 elements or features

and testing set membership. Therefore, a bit vector of fixed size

𝑚 is allocated and initially all bits are set to zero. A set of k hash

functions is selected where each function 𝐻1, . . . , 𝐻𝑘 outputs a

value in [0,𝑚 − 1]. To represent the set 𝐸 in the BF, each element

is (hash) mapped to the BF by using each of the 𝑘 hash functions

and setting the bits at the resulting positions to one.

To check the membership of an element, the same hash func-

tions are calculated and the bits at the resulting positions are

checked. If all bits are set to one, the element probably is in the

set. Due to collision, i. e., two or more elements may set the same

bit position for the same or different hash functions, BFs have

a false-positive probability that is fpr = (1 − 𝑒
𝑘 ·𝑛
𝑚 )𝑘 [3]. On the

other hand, if at least one bit is zero, the element is definitively

not in the set.

Union and intersection of BFs with the same size and set of

hash functions can be implemented with bit-wise or and and

operations respectively. While the union operation is lossless,

i. e., the resulting BF will be equal to a BF that was build using

the union of the two sets, the intersection operation produces a

BF that may have a larger false-positive probability [3].

By using BF union and intersection, set-based similarity mea-

sures can be used to calculate the similarity of two BFs. Here the

Jaccard coefficient is frequently used as a similarity measure.

Given two BFs 𝑥,𝑦 the Jaccard coefficient is defined as

𝐽 (𝑥,𝑦) = |𝑥 ∩ 𝑦 |
|𝑥 ∪ 𝑦 | =

|𝑥 and 𝑦 |
|𝑥 or 𝑦 |

For instance, given the BFs 𝑥 = [10011001] and 𝑦 = [00011001]
the Jaccard coefficient is 3/4. The BF similarity is an approxima-

tion of the similarity of the underlying (represented) sets.

2.2 Utilization in PPRL

The main idea for utilizing BFs in PPRL scenarios is to use a BF to

represent the records attribute values, i. e., all quasi-identifying

attributes of a person that are relevant for linkage, e. g., first

name, last name and date of birth. The BFs hash functions need

to be cryptographic (one-way) hash functions that are keyed

(seeded) with a secret key S, i. e., keyed-hash message authenti-

cation codes (HMACs) like MD5 or SHA-1 [23]. For approximate

matching, the granularity of the record attributes is increased by

segmentation into features. A widely used approach is to split

the attribute values into small substrings of length q, called q-

grams, typically setting 1 ≤ 𝑞 ≤ 4. Consequently, in PPRL a BF

represents a set of attribute value segments, that we term record

(attribute) features. Thus, the number of common 1-bits of two

BFs approximates the number of common (overlapping) features

between two records.

2.2.1 Types. There are two ways of encoding records into

BFs: either one BF is built for each record attribute, which is

known as field- or attribute-level BF, or a single BF is built for

all relevant attributes, which is known as record-level BF. For

constructing record-level BFs there are two approaches: The first

approach [27] builds a single BF in which all record attributes are

hashed. The second approach [9] first constructs field-level BFs

and then selects bits from these individual BFs according to the

weight of the respective attribute. In this work, we will focus on

the first approach since it is heavily used in literature and practice

[33]. We illustrate the basic BF building process in Fig. 1. By using
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1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 0
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Figure 1: Basic Bloom filter building process.

the first name attribute the figure shows how an attribute value

(’John’) is segmented into q-gram segments (here 𝑞 = 2), which

are then mapped to the bit vector using the 𝑘 hash functions.

Other attributes are mapped in the same way, although a different

segmentation strategy can be used. The advantage of using field-

level BFs is that individual BFs are produced allowing the use

of sophisticated matching techniques known from traditional

record linkage, e. g., classification based on attribute weights and

attribute error rates, as well as approaches for handling composite

fields, for instance, name attributes with compounds (multiple

given names). However, as we discuss in the next section, field-

level BFs fulfill much weaker privacy properties compared to

record-level BFs.

2.2.2 Privacy Properties. The privacy-preserving property of

BFs rely on the following aspects:

(1) An adversary has no information on how the record fea-

tures are obtained, e. g., selected attributes or length of

substrings (q-grams).

(2) The selected hash functions, the secret key S and thus

the hash mapping of record features to bit positions is

unknown to an adversary. In particular, the use of keyed

hash functions is essential to prevent dictionary attacks.

(3) Due to collisions multiple record features will map to a

single bit position in general. Keeping the BF size𝑚 fixed,

the more hash functions are used and the more features

are mapped to the BF, the higher will be the number of

collisions and thus the confusion.

(4) There is no coherence or positional information: Since a

BF encodes a set of record features, it is not obvious from

where features were obtained, i. e., within an attribute and

for record-level BF even from which attribute.

However, BFs are susceptible to frequency attacks as the fre-

quencies of set bit positions correspond to the frequencies of

record features. Thus, frequently (co-)occurring record features

will lead to frequently set bit positions or even to frequent BFs

in the case of field-level BFs. By using publicly available datasets

containing person-related data, e. g., telephone books, voter reg-

istration databases, social media profiles or databases about per-

sons of interests like authors, actors or politicians, an adversary

can estimate the frequencies of record features and then try to

align those frequencies to the BFs bit frequencies.

A successful re-identification of attribute values encoded in

BF is a real threat as shown by several attacks proposed in the

literature. Earlier attacks, namely [18, 20, 21, 24], often exploit

the hashing method used in [27], the double-hashing scheme,

that combines two hash functions to implement the 𝑘 BF hash
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Table 1: Overview of surveyed Bloom filter hardening techniques.

Subject of

modification
Technique Reference Description

Bloom filter

input

Avoidance of padding [24, 25] No use of padded q-grams as BF input due to their higher frequency.

Standardization of at-

tribute lengths

[24, 25] The length of attribute values is unified to avoid exceptionally short or long values.

Hashing

mechanism

Increasing the number

of hash functions (k)

[26, 27]

Using more hash functions (k) while keeping the Bloom filter size (m) fixed will lead to more collisions and

thus a higher number of features that are mapped to each position.

Random hashing [24] Replacement for the double-hashing scheme [26] which can be exploited in attacks [24].

Attribute weighting [9, 32]

Record features are hashed with a different number of hash functions (k) depending on the weight of the

attribute from which they were obtained.

Salting [24, 27] Record features are hashed together with an additional attribute specific and/or record specific value.

Output

Bloom filter

Balancing [28] Each Bloom filter is concatenated with a negative copy of itself and then the underlying bits are permuted.

xor-folding [29] Each Bloom filter is split into halves which are then combined using the bit-wise xor-operation.

Re-hashing [25] Sliding window approach where the Bloom filter bits in each window are used to generate a new set of bits.

Rule90 [30] Each Bloom filter bit is replaced by the result of xor-ing its two neighbouring bits.

Random noise [1, 24–26, 28] Bloom filter bits are changed randomly.

Fake injections [16] Addition of artificial records and thus Bloom filters.

functions. This hashing method can easily be replaced by using

independent hash functions or other techniques as discussed in

Sec. 3.2.1. Furthermore, these attacks rely on many unrealistic

assumptions, for instance, that the encoded records are a random

sample of a resource known to the adversary [20, 24] or that

all parameters of the BF process, including used secret keys for

the hash functions, are known to the adversary [21]. However,

recent frequency-based cryptanalysis attacks, namely [7] and in

particular [8], are able to correctly re-identify attribute values

without relying on such assumptions. These attacks are the more

successful, the fewer attributes are encoded in a BF and the larger

the number of encoded records. Overall, the attacks show the

risk of re-identification when using BFs, especially field-level BFs.

In this work, we will focus only on record-level BFs.

3 BLOOM FILTER VARIANTS AND

HARDENING METHODS

In the following, we review different variations within the BF

encoding process. In general, these variations will affect both

the BFs privacy and similarity-preserving (matching) properties.

Approaches that try to achieve a more uniform frequency distri-

bution of individual BFs or set bit positions are also known as

hardening techniques as they are intended to make BF encodings

more robust against cryptanalysis. An overview of these tech-

niques is given in Tab. 1. We divide the approaches into three

categories: (A) approaches that alter the way of selecting features

from the records attributes values, (B) approaches that modify

the BFs hashing process and (C) approaches that modify already

existing BFs by changing or aggregating bits. In the following

subsections, we will describe the approaches of each category.

3.1 Record Feature Selection

We will first focus on how features are selected from the record’s

attributes. In the encoding process, at first, all attribute values

are pre-processed to bring them into the same format and to re-

duce data quality issues. After that, all linkage-relevant attributes,

i. e., the quasi-identifiers of a person, are transformed into their

respective feature set. Such features are pieces of information

that are usually obtained by segmenting the attribute values into

chunks or tokens. This is necessary because instead of a binary

decision for equality (true/false), approximate linkage is desired

resulting in similarity scores ranging from zero (completely dif-

ferent) to one (equal).

3.1.1 Standardization of Attribute Lengths. Quasi-identifiers,

such as names and addresses, show high variation and skew-

ness leading to significant differences in the length of attribute

values [11]. For instance, multiple given names, middle names

or compound surnames (e. g., ’Hans-Wilhelm Müller-Wohlfahrt’)
will lead to exceptionally long attribute values and consequently

a comparatively large amount of 1-bits in the resulting BF. The

same applies for very short names (e. g., ’Ed Lee’) resulting in

very few 1-bits in the BF. By analyzing the number of 1-bits in a

set of BFs, an adversary can gain information on the length of

encoded attribute values. To address this problem, the length of

the quasi-identifiers should be standardized by sampling, dele-

tion or stretching of the attribute values [25]. Stretching can be

implemented by concatenating short attribute values with (rarely

occurring) character sequences.

3.1.2 Segmentation Strategy. The standard segmentation strat-

egy adopted from traditional record linkage is to transform all

quasi-identifiers into their respective q-gram set. A q-gram set

is a set of all consecutive character sequences of length q that can

be built from the attribute’s string value by using a sliding win-

dow approach. For instance, setting 𝑞 = 3 the value ’Smith’ will
produce the q-gram set {Smi,mit, ith}. The idea behind building

these q-gram sets is that they allow approximate string com-

parisons by calculating the number of q-grams two sets have

in common. To directly obtain a similarity value, any set-based

similarity measure, e. g., Jaccard coefficient, can be used.

The choice of 𝑞 is important since it can affect the linkage

quality. Usually, 𝑞 is selected in the range [1..4] while most ap-

proaches setting 𝑞 = 2. In general, larger values for 𝑞 are more

sensitive to single character differences, e. g., the values ’Smith’
and ’Smyth’ will have two bigrams (𝑞 = 2), i. e., ’Sm’ and ’th’, but
zero trigrams (𝑞 = 3) in common. However, choosing a larger 𝑞

also increases to number of possible q-grams, e. g., for 𝑞 = 2 at

maximum 26
2 = 676 while for 𝑞 = 3 at maximum 26

3 = 17 576

are possible. Overall, larger values for 𝑞 tend to be less error-

tolerant and thus possibly lead to missing matches. On the other

hand, larger q’s are more distinctive and thus tend to reduce

false-positives.

As can be seen from the example above, for 𝑞 > 1 each char-

acter will contribute to multiple q-grams except the first and

last character. Thus, a common extension is to construct padded

q-grams by surrounding each attribute value with 𝑞 − 1 special

characters at the beginning and the end. For our example the
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padded q-gram set will be {++S, +Sm, Smi,mit, ith, th-, h- -}. By
using padded q-grams strings with the same beginning and end

but variations in the middle will reach larger similarity values,

while strings with different beginning and end will produce lower

similarity values compared to standard q-grams [6]. It is impor-

tant to note, that padded q-grams are among the most frequent

q-grams and thus can ease any frequency alignment attacks.

There are several other extensions for generating q-grams,

two of which have been used in traditional record linkage, but

so far not for PPRL: positional q-grams and skip-grams [6].

Positional q-grams add the information from which position the

q-gram was obtained. For our running example, the positional

q-gram set for 𝑞 = 3 is {(Smi, 0), (mit, 1), (ith, 2)}. When deter-

mining the overlap between two positional q-gram sets, only

the q-grams at the same position or within a specific range are

considered. Positional q-grams will be more distinctive and thus

tend to reduce false-positives and even the frequency distribu-

tion. The idea of skip-grams is to not only consider consecutive

characters but to skip one or multiple characters. Depending on

the defined skip length multiple skip-gram sets can be created

and used in addition to the regular q-gram set.

So far, only a few alternatives to q-grams have been investi-

gated. In [17] and [31] the authors explore methods for handling

numerical attribute values. Besides, arbitrary substrings of indi-

vidual length or phonetic codes, such as Soundex [6], are possible

approaches that can be used for feature extraction.

3.2 Modification of the Hashing Mechanism

After transforming all quasi-identifiers in their respective feature

set, the features of each set are hashed into one record-level BF.

As discussed in Sec. 2.2.2, we do not further consider field-level

BFs due to their vulnerabilities. For PPRL several modifications of

the standard hashing process of BFs have been proposed which

we will discuss below.

3.2.1 Hash Functions. As described in Sec. 2.2, by default 𝑘

independent (cryptographic) hash functions are used in conjunc-

tion with a private key S to prevent dictionary attacks. However,

the authors of [27] proposed the usage of the so-called double-

hashing scheme. This scheme only uses two independent hash

functions 𝐺1,𝐺2 to implement the BFs 𝑘 hash functions. Each

hash function is then defined as𝐻𝑖 (𝑥) = (𝐺1 (𝑥) + (𝑖 − 1) ·𝐺2 (𝑥))
mod 𝑚,∀𝑖 ∈ {1, . . . , 𝑘}. The attacks described in [18, 24] showed

that this specific scheme can be successfully exploited. As a con-

sequence, an alternative method, called random hashing, was

proposed [24] that utilizes a pseudo-random number generator

to calculate the hash values. Therefore, the random number gen-

erator is seeded with the private keyS and the actual input of the

hash function, i. e., a certain record feature. No attacks against

this method are known at present.

3.2.2 Salting. Salting is a well-known technique in cryptog-

raphy that is often used to safeguard passwords in databases [22].

The idea is to use an additional input, called salt, for the hash

functions to flatten the frequency distribution. Already in [27]

it is mentioned that a different cryptographic secret key S𝑎 can

be used for each record attribute 𝑎. We term such kind of key

as attribute salt. By using this approach, the same feature will

be mapped to different positions if it originates from different

attributes. For instance, given the first name ’thomas’ and the

last name ’smith’ the bigram ’th’ will produce different positions.
This approach will smoothen the overall frequency distribution

and also reduce false-negatives since features from different at-

tributes will not produce common 1-bits (except due to collision).

However, the BF’s ability to match exchanged attributes, e. g.,

transposed first and middle name, is lost. If such errors occur

repeatedly this will lead to missing matches. As a compromise,

we propose to define groups of attributes, where transpositions

are expectable. Then, the same key is used for each attribute from

the same group. For instance, all name-related attributes (first

name, middle name, last name) could form a group.

Another salting variant is proposed in [24], where for each
record a specific salt is selected and then used as key for the

BFs 𝑘 hash functions. Therefore, we term such keys as record

salt, since they depend on a specific record. Record salts can

also be combined with the aforementioned attribute salts. Only

if the record salt is identical for two records, the same feature

(q-gram) will set the same bit positions in the corresponding BFs.

However, if the record salts are different, then the probability that

the same bit positions are set in the corresponding BFs is very low.

Thus, if the attributes (from which the record salts is extracted)

contain errors, this will lead to many false-negatives. For this

reason only commonly available, stable and small segments of

quasi-identifiers, such as year of birth, are suitable as salting key.

Consequently, this technique is only an option in PPRL scenarios

where the attributes used for salting are guaranteed to be of very

high quality which might be rarely the case in practice.

To reduce the aforementioned problem of salting with record-

specific keys, we propose to generate the salt by utilizing blocking

approaches. Blocking [6] is an essential technique in (privacy-

preserving) record linkage to overcome the quadratic complexity

of the linkage process since in general each record must be com-

pared to each record of another source. The idea of blocking is

to partition records into small blocks and then to compare only

records within the same block to reduce the number of record

pair comparisons. For this purpose, one or more blocking keys

are defined, where each blocking key represents a specific, poten-

tially complex criterion that records must meet to be considered

as potential matches. For example, the combination of the first

letter of the first and last name and the year of birth might be

used as a blocking key. If the attributes used for blocking con-

tain errors, then also the blocking key will be affected leading

to many false-negatives, in particular if the blocking key is very

restrictive. Hence, often multiple blocking keys are used to in-

crease the probability for records to share at least one blocking

key. However, this will lead to duplicate candidates since very

similar records will share most blocking keys. The challenge of

both, salting and blocking, is to select a key that is as specific as

possible (to increase privacy, or to reduce the number of record

pair comparisons respectively) and at the same time not prone to

errors. For record-dependent salting, only the use of attribute seg-

ments was suggested. In contrast, for blockingmore sophisticated

approaches have been considered, in particular using phonetic

codes, e. g., Soundex, or locality-sensitive hashing schemes, e. g.,

MinHash [4].

3.2.3 Dependency-based Hashing. In traditional record link-

age, sophisticated classificationmodels are used to decidewhether

a record pair represents a match or a non-match. Often these

models deploy an attribute-wise or rule-based classification con-

sidering the discriminatory power and expected error rate of

the attributes [6]. In contrast, PPRL approaches based on record-

level BFs only apply classification based on a single similarity

threshold since all attributes values are aggregated (encoded) in
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a single BF. However, as discussed in Sec. 2.2.1, the record-level

BF variant proposed in [9] also considers the weight of attributes

by selecting more bits from the field-level BFs of attributes with

higher weights. In [32] the authors proposed an extension to the

approach of [27] to allow attribute weighting. While also only a

single BF is constructed, a different number of hash functions is

selected for different attributes according to their weights. Con-

sequently, the higher the weight of an attribute, the more hash

functions will be used and thus the more bits the attribute will

set in the BF. The idea of varying the number of hash functions

can be generalized to dependency-based hashing. For instance,

not only the weights of attributes can be considered but instead

also the frequency of input features or their position within the

attribute value (positional q-grams).

3.3 Bloom Filter Modifications

While the methods described so far modify the way BFs are

created, the following approaches are applied directly on the

obtained BFs (bit vectors).

3.3.1 Balanced Bloom Filters. Balanced BFs were proposed

in [28] for achieving a constant Hamming weight over all BFs.

A constant Hamming weight should make the elimination of

infrequent patterns more difficult. Balanced BFs are constructed

by concatenating a BF with a negative copy of itself and then

permuting the underlying bits. For instance, the BF [10011001]
will give [10011001] · [01100110] = [1001100101100110] before
applying the permutation. Since the size of the BFs is doubled,

balanced BFs will increase computing time and required memory

for BF comparisons.

3.3.2 xor-Folding. xor-folding of bit vectors is a method orig-

inating from chemo-informatics to speed up databases queries.

In [29] the authors adopted this idea for Bloom-filter-based PPRL

for preventing bit pattern attacks. To apply the xor-folding a

BF is split into halves and then the two halves are combined

by the xor-operation. For instance, the BF [11000101] will give
[1100] ⊕ [0101] = [1001]. The folding process may be repeated

several times. Since the size of the BFs is halved, xor-folding

will decrease computing time and required memory for BF com-

parisons. The initial evaluation in [29] using unrealistic datasets

with full overlap and low error-rates shows that one-time folding

does not significantly affect linkage quality. However, n-time

folding drastically increases the number of false-positives.

3.3.3 Rule90. In [30] the use of the so-called Rule90 was sug-
gested to increase the resistance of BFs against bit-pattern-based

attacks. The Rule90 is also based on the xor-operation which

is applied on the two neighboring values of each BF bit. Conse-

quently, there are 8 possible combinations (patterns), which are

listed in Tab. 2. So each bit 𝑏𝑖 (0 ≤ 𝑖 ≤ 𝑚 − 1) is replaced by the

result of xor-ing the two adjacent bits at positions (𝑖 − 1) mod𝑚

and (𝑖 + 1) mod𝑚. By using the modulo function the first and

the last bit are treated as if they were adjacent. For example,

applying Rule90 to the BF [11000101] will lead to the following

patterns 111, 110, 100, 000, 001, 010, 101, 011 where the middle

bit corresponds to the bit at position 𝑖 ∈ {0,𝑚−1} of the BF. After
applying the transformation rules (Tab. 2) we obtain [01101001].

Table 2: Transformation rules for Rule90.

Pattern 111 110 101 100 011 010 001 000

New Bit Value 0 1 0 1 1 0 1 0

3.3.4 Re-hashing. The idea of re-hashing [25] is to use con-

secutive bits of a BF to generate a new bit vector. Therefore, a

window of width𝑤 bits is moved over the BF where in each step

the window slides forward 𝑠 positions (step size). At first, a new

bit vector 𝑣 of size𝑚′
is allocated. Then, the 𝑤 bits, which are

currently covered by the window, are represented as an integer

value. The integer value is then used in combination with a secret

key as input for a random number generator (RNG). With that,

𝑟 new integer values are generated with replacement, each in

the range [0,𝑚′ − 1]. Finally, the bits at these 𝑟 positions are set
to one in the bit vector 𝑣 . For example, given the BF [11000101]
and setting 𝑤 = 4, 𝑠 = 2 will lead to three windows, namely

𝑤1 = [1100],𝑤2 = [0001],𝑤3 = [0101]. By transforming the

bits in each window into an integer value we obtain the seeds

12, 1 and 5. Setting 𝑟 = 2 the RNG might generate the positions

(4, 2), (2, 5), (8, 6) for the respective seeds which finally results

in the bit vector [001011101]. The evaluation in [28] uses very

unrealistic datasets (full overlap, no errors) and shows no clear

trend. However, this technique is highly dependent on the choice

of the parameters𝑚′,𝑤, 𝑠 and 𝑟 as well as on the original BFs, in

particular the average fill factor (amount of 1-bits).

3.3.5 Random Noise. In order to make the frequency distri-

bution of BFs more uniform, random noise can be added to the

BFs [25, 28]. Trivial options are to randomly set bits to one/zero

or to flip bits (complement). Additionally, the amount of random

noise can depend on the frequency of mapped record features.

For instance, for BFs containing frequent q-grams more noise can

be added. In [1] a 𝜖-differential private BF variant, called BLoom-

and-flIP (BLIP), based on permanent randomized response is

proposed. Each bit position 𝑏𝑖 ,∀𝑖 ∈ {0, . . . ,𝑚 − 1} is assigned a

new value 𝑏 ′
𝑖
based on the probability 𝑓 such that

𝑏 ′𝑖 =


1 with probability

1

2
𝑓

0 with probability
1

2
𝑓

𝑏𝑖 with probability 1 − 𝑓 .

3.3.6 Fake Injections. Another option tomodify the frequency

distribution of BFs is to add artificial records or attribute values

[16]. By inserting random strings containing rarely occurring

q-grams the overall frequency distribution will become more

uniform making any frequency alignment less accurate. The

drawback of fake records is that they produce computational

overhead in the matching process. Moreover, it is possible that

a fake record will match with another record by chance. Thus,

after the linkage, fake records need to be winnowed.

4 BLOOM FILTER PRIVACY MEASURES

Several attacks on BFs have been described in the literature (see

Sec. 2.2.2), which show that BFs carry the risk of re-identification

of attribute values and even complete records. Currently, the

privacy of BF-based encoding schemes is mainly evaluated by

simulating attacks and inspecting their results, i. e., the more

attribute values and records can be correctly re-identified by an

attack, the lower is the assumed degree of privacy of the encod-

ing scheme. However, this way of measuring privacy strongly

depends on the used attacks, their assumptions and the used refer-

ence dataset. Besides, only a few studies investigated evaluation

measures for privacy [33]. These measures are either calculating

the probability of suspicion [32] or are based on entropy and

information gain between masked and unmasked data [28]. The

disadvantage of these measures is that they strongly depend on

293



the reference data set used. In the following, we therefore propose

privacy measures that solely depend on a BF dataset.

To evaluate the disclosure risk of BF-based encoding schemes

we propose to analyze the frequency distribution of the BF 1-bits.

As described in Sec. 2.2.2, attacks on BFs mostly try to align the

frequency of frequent (co-occuring) bit patterns to frequent (co-

occuring) record features (q-grams). Thus, the more uniform the

frequency distribution of 1-bits is, the less likely an attack will

be successful. To measure the uniformity of the bit frequency

distribution of a BF dataset 𝔅, we calculate for each BF bit posi-

tion (column) 0 ≤ 𝑖 < 𝑚 − 1 the number of 1-bits, given as c𝑖 =∑
Bf∈𝔅 Bf(𝑖), where Bf(𝑖) returns the BFs bit value at position

𝑖 . The total number of 1-bits is then b =
∑𝑚−1
𝑖=0 𝑐𝑖 =

∑
Bf∈𝔅 |Bf|

where |Bf| denotes the cardinality of a BF (number of 1-bits). We

can then calculate for each column its share of the total num-

ber of 1-bits, i. e., p𝑖 = 𝑐𝑖/𝑏. Ideally, for a perfect uniform bit

distribution, 𝑝𝑖 will be close to 𝑏/𝑚 for all 𝑖 ∈ {0,𝑚 − 1}.
In mathematics and economics there are several measures

that allow to assess the (non-) uniformity of a certain distribu-

tion. Consequently, we are adapting the most promising of these

measures to our problem. At first, we consider the Shannon en-

tropy H(𝔅) = −∑𝑚−1
𝑖=0 𝑝𝑖 · log2 (𝑝𝑖 ) since uniform probability

will yield maximum entropy. The maximum entropy is given

as H𝑚𝑎𝑥 (𝔅) = log
2
(𝑚). We define the normalized Shannon en-

tropy ranging from 0 (high entropy - close to uniform) to 1 (low

entropy) as

H̃ (𝔅) = 1 − 𝐻 (𝔅)
𝐻𝑚𝑎𝑥 (𝔅) (1)

Next, we consider the Gini coefficient [5, 15], which is well-

known in economics as a measure of income inequality. The Gini

coefficient can range from 0 (perfect equality – all values are the

same) to 1 (maximal inequality – one column has all 1-bits and

all others have only 0-bits) and is defined as

G(𝔅) =
∑𝑚−1
𝑖=0

∑𝑚−1
𝑗=0 |𝑐𝑖 − 𝑐 𝑗 |
2𝑚 · 𝑏 (2)

Moreover, we calculate the Jensen-Shannon divergence (JSD)

[14] which is a measure of similarity between two probability

distributions. The JSD is based on the Kullback-Leibler diver-

gence (KLD) [19], but has better properties for our application:

In contrast to the KLD, the JSD is a symmetric measure and the

square root of the JSD is a metric known as Jensen-Shannon

distance (𝐷 𝐽 𝑆 ) [10]. For discrete probability distributions 𝑃 and

𝑄 defined on the same probability space, the JSD is defined as

JSD(𝑃 | | 𝑄) = 1

2

KLD(𝑃 | | 𝑀) + 1

2

KLD(𝑄 | | 𝑀) where

KLD(𝑃 | | 𝑄) =
∑
𝑠∈S

𝑃 (𝑠) · log
2

(
𝑃 (𝑠)
𝑄 (𝑠)

)
and 𝑀 =

1

2

(𝑃 +𝑄) .

The JSD also provides scores between 0 (identical) to 1 (maximal

different). Since we want to measure the uniformity of the bit

frequency distribution of a BF dataset𝔅, we calculate the Jensen-

Shannon distance given as

DJS (𝔅) =
√
JSD(𝔅) (3)

where

JSD(𝔅) =1
2

(
𝑚−1∑
𝑖=0

1

𝑚
· log

2

(
1

𝑚

1

2
· (𝑝𝑖 + 1

𝑚 )

))
+

1

2

(
𝑚−1∑
𝑖=0

𝑝𝑖 · log2

(
𝑝𝑖

1

2
· (𝑝𝑖 + 1

𝑚 )

))

Finally, wemeasure howmany different record features (q-grams)

are mapped to each bit position, which we denote as feature

ratio (fr). The more features are mapped to each position, the

harder becomes a one-to-one assignment between bit positions

and record features which will limit the accuracy of an attack.

5 EVALUATION SETUP

Before presenting the evaluation results we describe our experi-

mental setup as well as the datasets and metrics we use.

5.1 PPRL Setup

We implement the PPRL process as a three-party protocol assum-

ing a trusted linkage unit [31]. Furthermore, we set the BF length

𝑚 = 1024. To overcome the quadratic complexity of linkage, we

use LSH-based blocking based on the Hamming distance [13].

We empirically determined the necessary parameters leading to

high efficiency and effectiveness. As a result, we set Ψ = 16 (LSH

key length) and Λ = 30 (number of LSH keys) as default. Finally,

we calculate the Jaccard coefficient to determine the similarity

of candidate record pairs. We classify every record pair with a

similarity equal or greater than 𝑡 as a match. Finally, we apply a

one-to-one matching constraint, i. e., a record of one source can

match to at maximum one record of another source, utilizing a

symmetric best match approach [12].

5.2 Datasets

For evaluation, we use two real datasets that are obtained from

the North Carolina voter registration database (NCVR) (https:

//www.ncsbe.gov/) and the Ohio voter files (OHVF) (https://www.

ohiosos.gov/). For both datasets, we select subsets of two snap-

shots at different points in time. Due to the time difference

records contain errors and inconsistencies, e. g., due to mar-

riages/divorces or moves. Please note that we do not insert artifi-

cial errors or otherwise modify the records. We only determine

how many attributes of a record have changed and use this in-

formation to construct subsets with a specific amount of records

containing errors. An overview of all relevant dataset characteris-

tics is given in Tab. 3. Each dataset consists of two subsets, 𝑆𝐴 and

𝑆𝐵 , to be linked with each other. The two subsets are associated

with two data owners (or sources) 𝐴 and 𝐵 respectively.

Table 3: Dataset characteristics

Characteristic

Dataset

N O

Type Real (NCVR) Real (OHVF)

|𝑆𝐴 | 50 000 120 000

|𝑆𝐵 | 50 000 80 000

|𝑆𝐴 ∩ 𝑆𝐵 | 10 000 40 000

Attributes

{First, middle, last} name,

year of birth (YOB), city

{First, middle, last} name,

date of birth (BD), city

|Errors|/record

0 (40 %), 1 (30 %),

2 (20 %), 3 (10 %)

0 (37.5 %), 1 (55 %),

2 (6.875 %), 3 (0.625 %)

5.3 Metrics

To assess the linkage quality we determine recall, precision and

F-measure (F1-score). Recall measures the proportion of true-

matches that have been correctly classified as matches after the

linkage process. Precision is defined as the fraction of classified

matches that are true-matches. F-measure is the harmonic mean

of recall and precision. To assess the privacy (security) of the
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Figure 2: Relative bigram frequencies for used

datasets.
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Figure 3: Comparison of Lorenz curves for plaintext and Bloom filters.

different Bloom-filter-based encoding schemes, we analyze the

frequency distribution of the BF’s 1-bits in order to determine

the normalized Shannon entropy, the Gini coefficient and

the Jensen-Shannon distance (see Sec. 4). Furthermore, we

calculate the feature ratio (fr) that determines howmany record

features are mapped on average to each bit position.

5.4 Q-Gram Frequencies

Before we begin our evaluation on BFs, we analyze the plaintext

frequencies of our datasets𝑁 and𝑂 as well as the complete NCVR

and OHVF datasets. At first, we measure the relative bigram fre-

quencies as shown in Fig. 2. What can be seen in this figure is the

high dispersion of bigrams. For the complete NCVR and OHVF

the non-uniformity is a bit higher than in our datasets which is

mainly due to the larger number of infrequent bigrams. Since

our datasets are only subsets from the respective voter registra-

tions (NCVR/OHVF), some of these rare bigrams do simply not

occur in our dataset subsets. In Fig. 3 we plot the Lorenz curves

[15] for the plaintext datasets as well as BFs (see Sec. 6). These

diagrams again illustrate the high dispersion for the plaintext

values. Comparing bigrams and trigrams, it can be seen that the

non-uniformity for trigrams is even higher than for bigrams. Our

observations are confirmed by our uniformity (privacy) measures

(see Sec. 4) which we calculate for the datasets as listed in Tab. 4.

We use these values as a baseline for the BF privacy analysis. The

closer the values for a set of BFs are to these values, the more

likely a frequency alignment will be successful. On the other

hand, the larger the difference between the values for plaintext

and BFs, the better the BFs can hide the plaintext frequencies and

thus the less likely a successful frequency alignment becomes.

Comparing our three measures, it can be seen that the values

for the normalized Shannon entropy (H̃ ) are much lower than

the values for the Gini coefficient (𝐺) and the Jensen-Shannon

distance (𝐷JS). However, all measures clearly indicate the dif-

ferences in the frequency distribution of bigrams and trigrams.

Comparing both datasets, it can be seen that the non-uniformity

of bi- and trigrams is slightly higher for the NCVR than for the

OHVF dataset.

6 RESULTS AND DISCUSSION

In this section, we evaluate various BF variants and hardening

techniques in terms of linkage quality and privacy (security).

6.1 Hash Functions and Fill Factor

In the following, we evaluate the linkage quality outcome and

the privacy properties of basic BFs by inspecting the frequency

Table 4: Analysis of q-gram frequency distribution.

Datasets

Bigrams Trigrams
Mea-

sure

N NCVR O OHVF N NCVR O OHVF

H̃ 0.1848 0.2497 0.1670 0.2027 0.2151 0.2781 0.2142 0.2491

𝐺 0.7709 0.8728 0.7466 0.8047 0.8705 0.9425 0.8729 0.9189

𝐷JS 0.6315 0.7516 0.6107 0.6724 0.7340 0.8392 0.7362 0.8007

distribution of the BF 1-bits compared to the q-gram frequen-

cies. At first, we vary the number of hash functions (𝑘), selecting

𝑘 ∈ {15, 20, . . . , 40} and bigrams (𝑞 = 2), to adjust the fill fac-

tor (amount of 1-bits) of the BFs. The results for dataset 𝑁 are

depicted in Fig. 4. The results show, that for the high similarity

thresholds of 𝑡 = 0.8, all configurations achieve high precision

≥ 96.58%, but low recall ≤ 60.19%, leading to a max. F-measure

of 74.16%. For lower similarity thresholds (𝑡 = {0.7, 0.6}), pre-
cision is reduced drastically the more hash functions are used.

For instance, setting 𝑡 = 0.6 and 𝑘 = 15, the highest precision of

75.93 % is achieved, while for 𝑘 = 40 the precision is only 45.74 %.

In contrast, the higher the number of hash functions, the higher

the recall. For instance, setting 𝑡 = 0.6 and 𝑘 = 15, the recall is

73.28%, while for 𝑘 = 40 it increases to 78.51%. However, the

impact on precision is much higher (difference of around 34%)

than on recall (difference of around 5%). Overall, the configu-

ration with 𝑡 = 0.7 and 𝑘 = 25 achieves the best F-measure of

76.89%. However, the other configuration except those with a

fill factor over 50% (𝑘 ∈ {35, 40}) achieve only slightly less F-

measure. When averaging precision and recall for each k over

all thresholds, the configurations with 𝑘 ≤ 25 achieve a mean

F-measure of over 75 %, while for larger 𝑘 it declines from around

74 % for 𝑘 = 30 to around 71 % for 𝑘 = 40.

Next, we analyze our privacy measures, which are depicted

in Fig. 4(b). The figure shows that the more hash functions are

used (and thus the higher the fill factor of the BFs) the higher

is the avg. number of features that are mapped to each bit posi-

tion. Even for the lowest number of hash functions, on average

around 10 different bigrams are mapped to each individual bit

position. Compared to the plaintext frequencies (see Tab. 4), we

see that basic BFs have a significantly more uniform frequency

distribution than the original plaintext dataset. For instance, us-

ing 𝑘 = 25 hash functions, we obtain a Gini coefficient of 0.2443

and a Jensen-Shannon distance of 0.1891 compared to 0.7709

and 0.6315 for the unencoded dataset. Although for the Shannon

entropy also a difference is visible, i. e., from 0.1848 for plaintext

to 0.0137 for BFs setting 𝑘 = 25, the values are in general much
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Figure 4: Evaluation of standard Bloom filters using bigrams without padding for varying number of hash functions (𝑘)

on dataset 𝑁 .

closer to zero and thus less intuitive to compare. As a conse-

quence, in the following, we will focus on the other two privacy

measures. Finally, the privacy measures indicate, that the more

hash functions are used, the more closer the 1-bit distribution

will get to uniform. However, the effect is not linear, such that

the privacy gain is continuously getting lower, in particular for

𝑘 ≥ 30.

Table 5: Comparison of Bloom filter encodings using bi-

and trigrams with and without padding for dataset 𝑁 .

q Pad. k t

Recall

[%]
Prec.

[%]
F-

Meas.

[%]

Mean

Recall

[%]

Mean

Prec.

[%]

Mean

F-Meas.

[%]

2

No

15

0.6 77.34 74.58 75.93

85.21 67.09 75.07

0.7 63.27 94.12 75.67

0.8 54.96 99.36 70.77

20

0.6 78.71 69.54 73.84

0.7 65.21 91.75 76.24

0.8 55.64 99.19 71.29

25

0.6 79.51 64.58 71.27

0.7 67.71 88.95 76.89

0.8 56.50 98.81 71.89

30

0.6 78.68 58.51 67.11

0.7 70.14 84.80 76.78

0.8 57.43 98.37 72.52

Yes

10

0.6 81.48 84.06 82.75

90.21 69.20 78.32

0.7 64.56 97.71 77.75

0.8 55.08 99.67 70.95

15

0.6 83.77 76.18 79.79

0.7 68.46 96.17 79.98

0.8 56.02 99.53 71.69

20

0.6 83.66 66.15 73.88

0.7 72.33 93.07 81.40

0.8 57.42 99.37 72.78

3

No

15

0.6 69.83 86.85 77.42

91.12 63.28 74.69

0.7 59.49 96.99 73.75

0.8 53.71 99.57 69.78

20

0.6 72.30 83.38 77.45

0.7 60.71 96.19 74.44

0.8 54.30 99.54 70.27

25

0.6 73.53 79.83 76.55

0.7 62.08 94.93 75.07

0.8 54.76 99.41 70.62

30

0.6 74.18 75.71 74.94

0.7 63.64 93.34 75.68

0.8 55.30 99.15 71.00

35

0.6 74.25 71.66 72.93

0.7 65.22 91.43 76.13

0.8 55.96 98.86 71.47

Yes

10

0.6 79.17 91.99 85.10

93.93 67.30 78.42

0.7 61.77 98.91 76.05

0.8 53.87 99.70 69.95

15

0.6 80.87 86.61 83.64

0.7 66.74 98.00 79.40

0.8 54.82 99.63 70.72

20

0.6 80.31 75.42 77.79

0.7 71.96 95.60 82.11

0.8 56.20 99.48 71.82

6.2 Choice of q and the Impact of Padding

In Tab. 5 we compare the linkage quality of BFs using different

configurations for 𝑞 ∈ {2, 3} and padding for dataset 𝑁 . Without

the use of padding the best configuration for bigrams, i. e., 𝑘 = 25

and 𝑡 = 0.7, achieves a slightly less F-measure of 76.89 % than the

best configuration for trigrams, i. e., 𝑘 = 20 and 𝑡 = 0.6, of 77.45 %.

However, considering the mean over all configurations, using

bigrams achieves a slightly higher F-measure of 75.07 % compared

to 74.69 % for trigrams. Surprisingly, using trigrams results in an

overall higher recall but lower precision if we average the results

over all configurations. Moreover, the use of padding leads to a

higher linkage quality, i. e., the best configurations for bigrams

achieves a F-measure of 82.75 % while for trigrams even 85.10 %

is attained. Averaged over all configurations, by using padding

recall is increased about 5% for bigrams and around 2.8% for

trigrams. Interestingly, also precision is increased by around

2.11 % for bigrams and around 4.02 % for trigrams. Thus, for both

bigrams and trigrams, the mean F-measure can be increased

by padding by more than 3%. We repeat the experiments on

dataset𝑂 and report the best configurations in Tab. 6. The results

Table 6: Comparison of Bloom filter encodings using bi-

and trigrams with and without padding for dataset 𝑂 .

q Padding k t Recall [%] Precision [%] F-Meas. [%]

2

No 25 0.7 68.17 88.32 76.95

Yes 10 0.6 93.99 83.17 88.25

3

No 15 0.6 72.68 82.76 77.39

Yes 10 0.6 95.49 90.14 92.74
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Figure 5: Comparison of Bloom filter privacy for bigrams

and trigrams with and without using padding for datasets

𝑁 and 𝑂 .
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Figure 6: Impact of attribute salting.

confirm our previous observation that trigrams with padding

lead to the highest linkage quality. Here, the best configuration

using trigrams and padding outperforms that with bigrams and

padding even slightly more than for dataset 𝑁 , i. e., F-measure

increases 2.35 % for 𝑁 and 4.49 % for 𝑂 .

Fig. 5 shows our privacy measures for the best configuration

in each group. In general, the use of bigrams leads to a less

uniform distribution of 1-bits and thus lower privacy. Also, the

use of padding leads to a higher dispersion of the BFs 1-bits.

However, even the worst configuration, namely bigrams using

padding, leads to a significantly less Gini coefficient as for the

plaintext datasets. For 𝑁 , for instance, the Gini coefficient is

reduced from 0.7709 to 0.3801 (see Tab. 4 and Fig. 3). Also the

Jensen-Shannon distance reduces drastically, e. g., for dataset 𝑁

from 0.6315 for the plaintext dataset to 0.3045 for the BF dataset

using bigrams with padding. In contrast, the use of trigrams leads

to amore even distribution of 1-bits, so that despite using padding,

a slightly more uniform frequency distribution is achieved than

with bigrams and without using padding.

To summarize, the highest linkage quality is achieved by using

padding which indeed leads to less uniform 1-bit distribution

making frequency-based cryptanalysis more likely to be suc-

cessful. However, this can be compensated by using trigrams

leading even to a slightly better linkage quality than for bigrams.

Consequently, for our following evaluation, we select the best

configuration using trigrams and padding with 𝑘 = 10 as a base-

line for our experiments.

6.3 Salting and Weighting

In this section, we evaluate the impact of methods that alter the

BFs hashing process by varying the number of hash functions

and using salting keys to modify the hash mapping.

6.3.1 Attribute Salts. Fig. 6 depicts the results for BFs where

the used hash functions are keyed (seeded) with a salt depending

on the attribute a feature belongs to. For dataset 𝑁 we observe

that using an individual salt for each attribute increases precision

from 91.99 % to 94.69 % but also decreases recall from 79.17 % to

75.26 % leading to a F-measure loss of around 1.2 %. Surprisingly,

for dataset 𝑂 precision increases from 90.14% to 93.93% while

recall remains stable. Simultaneously, the average number of

features that are mapped to each bit position increases by more

than a factor of two for both datasets (Fig. 6 (b)/(d)). Furthermore,

also the Gini coefficient and the Jensen-Shannon distance are sig-

nificantly decreased and thus indicating an additional smoothing

of the 1-bit distribution.

To be tolerant of swapped attributes, we build groups contain-

ing name-related attributes, i. e., one group for first name (FN)

and last name (LN), one for first name and middle name (MN) and

one for all three name components. Additionally, for dataset 𝑂 ,

we build a group containing day and month of birth (DOB, MOB).

For all attributes within one group, the same attribute salt is used.

For dataset 𝑁 we observe that all groups can slightly increase

F-measure, while the group (FN,MN,LN) performs best and can

increase F-measure to 84.48 %. Compared to the variant without

using attribute salts, F-measure is therefore only decreased by

0.6%. On dataset 𝑂 , all groups achieve similar results, whereby

precision and thus F-measure is always slightly lower than with-

out using groups. Accordingly, swapped attributes seem to occur

only rarely in dataset 𝑂 . Using attribute salt groups also reduce

the feature ratio and are also less effective in flattening the 1-

bit distribution. Overall, however, the use of attribute salts can

significantly reduce the dispersion of 1-bits while maintaining a

high linkage quality. Building attribute salt groups can be benefi-

cial for linkage quality, namely for applications where attribute

transpositions are likely to occur. In the following, we include

attribute salting as a baseline for our experiments, where for

dataset 𝑁 the group (FN,MN,LN) is used.

6.3.2 Impact of Attribute Weighting. In the following, we eval-

uate the impact of attribute weighting. Therefore, the number of

hash functions is varied for each attribute depending on attribute

weight. We tested several configurations and report the results in

Fig. 7. The number of hash functions for each attribute is denoted
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Figure 7: Evaluation of varying number of hash functions based on attribute weights.
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Figure 8: Impact of record salting.

in the order (FN,LN,MN,YOB/BD,City). We observe that using

attribute weighting strongly affects the linkage quality. All con-

figurations that use a lower number of hash functions to map the

attribute city can significantly increase both recall and precision.

As a consequence, F-measure is improved by more than 6% to

over 91 % for dataset 𝑁 and by around 2 % to over 96 % for dataset

𝑂 . Analyzing the privacy results depicted in Fig. 7 (b)/(d), we ob-

serve that most weighting configurations can slightly increase the

feature ratio and also slightly decrease the non-uniformity of 1-

bits. By comparatively analyzing linkage quality and privacy, we

select the configuration (15,10,15,15,5) as new baseline since

it achieves the highest privacy while F-measure is only minimal

less than for (14,10,12,8,4) (dataset𝑁 ) and (15,10,12,12,4)
(dataset 𝑂).

6.3.3 Record Salts. We now evaluate the approach of using

a hash function salt that is individually selected for each record.
The record salt is used in addition to the attribute salt we selected

in the previous experiment. We tested several configurations

using different attributes (year of birth, first name, last name). As

Fig. 8(a)/(c) illustrate, record salts highly affect the linkage quality

outcome. If we use the person’s year of birth (YOB) as record-

specific salt for the BFs hash function, recall drops drastically

from 89.20 % (baseline) to only 63.58 % for dataset 𝑁 . Apparently,

in this dataset, this attribute is often erroneous and thus not

suitable as record salt. In contrast, applying this configuration

on dataset 𝑂 , recall is only slightly reduced while precision is

slightly increased, resulting in nearly the same F-measure. In or-

der to compensate erroneous attributes, we test two techniques

that are often utilized as blocking approaches, namely Soundex

and MinHashing that we apply on the first and/or last name

attribute. All tested approaches can slightly increase precision as

they make the hash-mapping of the record features more unique.

However, the Soundex and MinHash-based approaches also de-

crease recall, depending on the attribute(s) used. For instance,

using Soundex on last name leads to relatively low recall in both

datasets indicating many errors, e. g., due to marriages or di-

vorces. Nevertheless, with the approaches using the first name, a

similar high F-measure (loss ≤ 1%) can be achieved as with the

baseline.

Inspecting the privacy results depicted in Fig. 8 (b)/(d), we

observe that the number of features that are mapped to each

individual bit position is greatly increased by at least a factor of

10. At the same time, using record salts leads to a much more

uniform 1-bit distribution. For instance, the Gini coefficient can

be reduced from 0.1772 (baseline dataset 𝑁 ) and 0.1549 (baseline

dataset 𝑂) to less than 0.04 for all tested approaches. The most

uniform 1-bit distribution is achieved by using Soundex applied

on last name, which leads to a Gini coefficient of less than 0.02.

This implies that the 1-bit distribution is almost perfectly uniform

which will make any frequency-based attack very unlikely to

be successful. By analyzing privacy in relation to quality, we

conclude that for both datasets Soundex applied to the first name

performs the best and is able to achieve high linkage quality

while effectively flattening the 1-bit distribution.

6.4 Modifications

In the following, we evaluate hardening techniques that are ap-

plied directly on BFs (bit vectors).

6.4.1 Adding RandomNoise. There are several ways of adding

random noise to a BF (see Sec. 3.3.5). We compare the random-

ized response technique (RndRsp), random bit flipping (BitFlip)

and randomly setting bits to one (RndSet) with each other. We

vary the probability for changing an individual bit by setting

𝜌 = {0.01, 0.05, 0.1}. The results are depicted in Fig. 9. As ex-

pected, recall and F-measure decrease with increasing 𝜌 . While

for 𝜌 = 0.01 the loss is relatively small, it becomes significantly

large for 𝜌 = 0.1, in particular for the bit flip approach where

recall drastically drops below 20% for 𝑁 and below 40% for 𝑂 .

Interestingly, precision can be raised for all approaches and con-

figurations up to 4.7% (for 𝜌 = 0.1). Overall, the bit flipping

approach leads to the highest loss in linkage quality.
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Figure 9: Evaluation of random noise approaches.
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Figure 10: Evaluation of re-hashing.

By analyzing the privacy results shown in Fig. 9 (b)/(d), it is ev-

ident that all random noise approaches can reduce the frequency

information only a little. Only at a high 𝜌-value of 0.1 the Gini co-

efficient can be reduced by up to 4.81 % and the Jensen-Shannon

distance up to 3.65%. Analyzing the trade-off between linkage

quality and privacy, we observe that a high value for 𝜌 leads to

an unacceptable loss in linkage quality. For lower 𝜌-values both

techniques, randomized response and randomly setting bits to

one, lead to relatively small losses in linkage quality. However,

they are not able to significantly flatten the 1-bit distribution.

Nevertheless, hardening techniques based on random noise may

impede deterministic attacks by increasing the number of unique

bit patterns.

6.4.2 Re-Hashing. To evaluate re-hashing, we tested several

configurations regarding window size𝑤 , step size 𝑠 and the num-

ber of re-hashed values 𝑟 . In Fig. 10 we report the best configu-

rations which are denoted in the order (w,s,r) setting𝑚′ =𝑚.

The results regarding linkage quality show that re-hashing in-

creases precision but in contrast drastically decreases recall. In

general, the larger the window size 𝑤 the lower the recall that

can be achieved. This effect is due to the fact that with larger

windows there is a higher probability that a bit in the window is

different for two similar BFs. This will result in another integer

value (seed) on which the re-hashed 1-bit positions are selected.

Even for the configuration with the smallest window size𝑤 = 5,

recall decreases by more than 16 % for both datasets. We could not

further decrease the window size, as with𝑤 = 4 only 16 different

bit patterns are possible, so the re-hashed values will be often the

same. This observation is confirmed by inspecting the privacy

measures illustrated in Fig. 10 (b)/(d). Surprisingly, several config-

urations, namely (5,3,2), (6,4,2) and (6,6,3), will increase
the non-uniformity of 1-bits. This is because the re-hashed val-

ues will be mapped only to a small range and thus increase the

frequencies of these bits. In contrast, the configuration (6,4,3)
and those with𝑤 = 8 can flatten the similarity distribution mod-

erately. At the same time, however, these configurations will lead

to an unacceptable low recall, e. g., for dataset 𝑁 to only 61.66 %

for (6,4,3) or even less then 50 % for (8,8,4). As illustrated by
the two configurations (8,8,4) and (8,4,4), a reduction of the

step size can increase recall since configurations with 𝑠 < 𝑤 will

lead to overlapping windows and thus a higher chance of finding

overlapping bit patterns between two BFs. However, this again

increases the unequal distribution of 1-bits. To summarize, we

observe that re-hashing will decrease linkage quality while being

not effective in increasing the uniformity of 1-bits. Therefore, we

can not recommend this method for practical applications.

6.4.3 Balanced Bloom Filter, xor-folding and Rule90. Finally,

we evaluate balanced BFs, xor-folding and applying Rule90 in

terms of linkage quality and privacy. The results are depicted

in Fig. 11. The results indicate that balancing reduces precision.

While for dataset 𝑂 precision decreases moderately by 6.93%,

for dataset 𝑁 it drops drastically by 45.19%. In contrast, recall

remains stable for dataset 𝑂 whereas it is slightly increased for

dataset 𝑂 . We found that changing our basic similarity thresh-

old from 0.6 to 0.7 can significantly improve linkage quality for

balancing. This might be due to the fact that balancing doubles

the size of the BFs. Thus, we included the starred version of bal-

ancing indicating that a different threshold was used. With this

configuration, balancing reduces F-measure only slightly for both

datasets. For dataset 𝑁 this is due to a little less precision and a

little higher recall than for the baseline. For dataset 𝑂 , however,

it is the other way around, i. e., less recall and higher precision.

xor-folding also causes a reduction in linkage quality for both

datasets. Since xor-folding halves the size of the BFs, LSH-based

blocking is affected in such a way that the amount of bits selected

for the LSH keys is comparatively large. We therefore reduced

the LSH key length from Ψ = 16 to Ψ = 10 and indicate this

configuration with a dagger (†). By using this configuration and

setting 𝑡 = 0.7, for both datasets xor-folding results in a mi-

nor loss of F-measure of less than 1 % compared to the baseline.

Primarily accountable for the high F-measure is the high preci-

sion, which is slightly increased. Furthermore, we observe that
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Figure 11: Evaluation of balanced Bloom filters, xor-folding and Rule90.
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applying Rule90 also leads to a relatively high loss of recall of

around 12.5 % for datast 𝑁 and 7.6 % for dataset𝑂 . Again, Rule90

increases precision slightly thus leading to a moderate loss of

F-measure of around 5.5 % for dataset 𝑁 and 3.2 % for dataset 𝑂 .

Examining Fig. 11 (b)/(d), we can see that balancing inter-

estingly increases the dispersion of 1-bits. For dataset 𝑁 , for

instance, the Gini coefficient is increased by around 4.8% and

the Jensen-Shannon distance by around 4%. In contrast, xor-

folding and Rule90 lead to a more uniform distribution of 1-bits.

Both approaches reduce the Gini coefficient by about 10% and

the Jensen-Shannon distance by more than 7.5%. Considering

both, linkage quality and privacy, we conclude that xor-folding

performs the best by maintaining high linkage quality while

effectively flattening the 1-bit distribution.

7 CONCLUSION

Bloom filters are frequently used in both research and practice

for PPRL applications. In this paper, we reviewed and classified

various BF variants and hardening techniques that aim at making

Bloom filters more robust against cryptanalysis. Currently, no

privacy measure exists that allows comparison of different en-

coding schemes in terms of privacy (security) and is independent

of any reference dataset. We therefore proposed three privacy

measures that allow assessing the privacy properties of Bloom fil-

ter encodings. These measures are based solely on a set of Bloom

filters and do not need any reference dataset or other informa-

tion. Moreover, we comprehensively evaluated the Bloom filter

variants and hardening techniques in terms of both linkage qual-

ity and privacy. The evaluation showed that multiple hardening

techniques drastically reduce linkage quality and are thus not

applicable in real-world scenarios. However, in particular two

techniques, namely salting and xor-folding, drastically reduce

any frequency information while maintaining high linkage qual-

ity. Carefully selected Bloom filter parameters in combination

with these techniques will make any frequency-based cryptanal-

ysis very unlikely to be successful.

For future work, we aim to evaluate these approaches against

modern Bloom filter attacks described in the literature to further

verify our findings.
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ABSTRACT

Multi-party data management and blockchain systems require
data sharing among participants. To provide resilient and consis-
tent data sharing, transactions engines rely on Byzantine Fault-
Tolerant consensus (bft), which enables operations during fail-
ures and malicious behavior. Unfortunately, existing bft proto-
cols are unsuitable for high-throughput applications due to their
high computational costs, high communication costs, high client
latencies, and/or reliance on twin-paths and non-faulty clients.

In this paper, we present the Proof-of-Execution consensus pro-

tocol (PoE) that alleviates these challenges. At the core of PoE are
out-of-order processing and speculative execution, which allow
PoE to execute transactions before consensus is reached among
the replicas. With these techniques, PoE manages to reduce the
costs of bft in normal cases, while guaranteeing reliable con-
sensus for clients in all cases. We envision the use of PoE in
high-throughput multi-party data-management and blockchain
systems. To validate this vision, we implement PoE in our effi-
cient ResilientDB fabric and extensively evaluate PoE against
several state-of-the-art bft protocols. Our evaluation showcases
that PoE achieves up-to-80% higher throughputs than existing
bft protocols in the presence of failures.

1 INTRODUCTION

In federate data management a single common database is man-
aged by many independent stakeholders (e.g., an industry con-
sortium). In doing so, federated data management can ease data
sharing and improve data quality [17, 32, 48]. At the core of fed-
erated data management is reaching agreement on any updates
on the common database in an efficient manner, this to enable
fast query processing, data retrieval, and data modifications.

One can achieve federated data management by replicating

the common database among all participant, this by replicat-
ing the sequence of transactions that affect the database to all
stakeholders. One can do so using commit protocols designed
for distributed databases such as two-phase [22] and three-phase
commit [49], or by using crash-resilient replication protocols
such as Paxos [39] and Raft [45].

These solutions are error-prone in a federated decentralized

environment in which each stakeholder manages its own replicas
and replicas of each stakeholder can fail (e.g., due to software,
hardware, or network failure) or act malicious: commit protocols
and replication protocols can only deal with crashes. Conse-
quently, recent federated designs propose the usage of Byzantine
Fault-Tolerant (bft) consensus protocols. bft consensus aims at
ordering client requests among a set of replicas, some of which could

be Byzantine, such that all non-faulty replicas reach agreement on

a common order for these requests [9, 21, 29, 38, 51]. Furthermore,
bft consensus comes with the added benefit of democracy, as

© 2021 Copyright held by the owner/author(s). Published in Proceedings of the
24th International Conference on Extending Database Technology (EDBT), March
23-26, 2021, ISBN 978-3-89318-084-4 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

bft consensus gives all replicas an equal vote in all agreement
decisions, while the resilience of bft can aid in dealing with the
billions of dollars losses associated with prevalent attacks on data
management systems [44].

Akin to commit protocols, the majority of bft consensus pro-
tocols use a primary-backup model in which one replica is des-
ignated the primary that coordinates agreement, while the re-
maining replicas act as backups and follow the protocol [46].
This primary-backup bft consensus was first popularized by the
influential Pbft consensus protocol of Castro and Liskov [9]. The
design of Pbft requires at least 3f +1 replicas to deal with up-to-f
malicious replicas and operates in three communication phases,
two of which necessitate quadratic communication complexity.
As such, Pbft is considered costly when compared to commit or
replication protocols, which has negatively impacted the usage
of bft consensus in large-scale data management systems [8].

The recent interest in blockchain technology has revived in-
terest in bft consensus, has led to several new resilient data
management systems (e.g., [3, 18, 29, 43]), and has led to the
development of new bft consensus protocols that promise effi-
ciency at the cost of flexibility (e.g., [21, 28, 38, 51]). Despite the
existence of these modern bft consensus protocols, the majority
of bft-fueled systems [3, 18, 29, 43] still employ the classical
time-tested, flexible, and safe design of Pbft, however.

In this paper, we explore different design principles that can
enable implementing a scalable and reliable agreement protocol
that shields against malicious attacks. We use these design princi-
ples to introduce Proof-of-Execution (PoE), a novel bft protocol
that achieves resilient agreement in just three linear phases. To
concoct PoE’s scalable and resilient design, we start with Pbft
and successively add four design elements:

(I1) Non-Divergent Speculative Execution. In Pbft, when
the primary replica receives a client request, it forwards that
request to the backups. Each backup on receiving a request from
the primary agrees to support by broadcasting a preparemessage.
When a replica receives prepare message from the majority of
other replicas, it marks itself as prepared and broadcasts a commit
message. Each replica that has prepared, and receives commit
messages from a majority of other replicas, executes the request.

Evidently, Pbft requires two phases of all-to-all communica-
tion. Our first ingredient towards faster consensus is speculative
execution. In Pbft terminology, PoE replicas execute requests
after they get prepared, that is, they do not broadcast commitmes-
sages. This speculative execution is non-divergent as each replica
has a partial guarantee–it has prepared–prior to execution.

(I2) Safe Rollbacks and Robustness under Failures. Due
to speculative execution, a malicious primary in PoE can en-
sure that only a subset of replicas prepare and execute a request.
Hence, a client may or may not receive a sufficient number of
matching responses. PoE ensures that if a client receives a full
proof-of-execution, consisting of responses from a majority of the
non-faulty replicas, then such a request persists in time. Other-
wise, PoE permits replicas to rollback their state if necessary. This
proof-of-execution is the cornerstone of the correctness of PoE.
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(I3) Agnostic Signatures andLinearCommunication. bft
protocols are run among distrusting parties. To provide secu-
rity, these protocols employ cryptographic primitives for signing
the messages and generating message digests. Prior works have
shown that the choice of cryptographic signature scheme can
impact the performance of the underlying system [9, 30]. Hence,
we allow replicas to either employ message authentication codes

(MACs) or threshold signatures (TSs) for signing [36]. When few
replicas are participating in consensus (up to 16), then a single
phase of all-to-all communication is inexpensive and using MACs
for such setups can make computations cheap. For larger setups,
we employ TSs to achieve linear communication complexity. TSs
permit us to split a phase of all-to-all communication into two

linear phases [21, 51].
(I4) Avoid Response Aggregation. SBFT [21], a recently-

proposed bft protocol, suggests the use of a single replica (desig-
nated as the executor) to act as a response aggregator. In specific,
all replicas execute each client request and send their response to
the executor. It is the duty of the executor to reply to the client
and send a proof that a majority of the replicas not only executed
this request, but also outputted the same result. In PoE, we avoid
this additional communication between the replicas by allowing
each replica to respond directly to the client.

In specific, we make the following contributions:
(1) We introduce PoE, a novel Byzantine fault-tolerant con-

sensus protocol that uses speculative execution to reach
agreement among replicas.

(2) To guarantee failure recovery in the presence of specu-
lative execution and Byzantine behavior, we introduce a
novel view-change protocol that can rollback requests.

(3) PoE supports batching, out-of-order processing, and is
signature-scheme agnostic and can be made to employ
either MACs or threshold signatures.

(4) PoE does not rely on non-faulty replicas, clients, or trusted
hardware to achieve safe and efficient consensus.

(5) To validate our vision of using PoE in resilient federated
data management systems, we implement PoE and four
other bft protocols (Zyzzyva, Pbft, SBFT, andHotStuff)
in our efficient ResilientDB1 fabric [23–25, 27, 29, 30, 47].

(6) We extensively evaluate PoE against these protocols on
a Google Cloud deployment consisting of 91 replicas and
320 k clients under (i) no failure, (ii) backup failure, (iii)
primary failure, (iv) batching of requests, (v) zero payload,
and (vi) scaling the number of replicas. Further, to prove
the correctness of our results, we also stress test PoE and
other protocols in a simulated environment. Our results
show that PoE can achieve up to 80% more throughput
than existing bft protocols in the presence of failures.

To the best of our knowledge, PoE is the first protocol that
achieves consensus in only two phases while being able to deal
with Byzantine failures and without relying on trusted clients
(e.g., Zyzzyva [38]) or on trusted hardware (e.g.,MinBFT [50]).
Hence, PoE can serve as a drop-in replacement of Pbft to improve
scalability and performance in permissioned blockchain fabrics
such as our ResilientDB fabric [27–31], MultiChain [20], and
Hyperledger Fabric [4]; in multi-primary meta-protocols such as
RCC [26, 28]; and in sharding protocols such as AHL [15].

2 ANALYSIS OF DESIGN PRINCIPLES

To arrive at an optimal design for PoE, we studied practices fol-
lowed by state-of-the-art distributed data management systems

1ResilientDB is open-sourced at https://github.com/resilientdb.

Protocol Phases Messages Resilience Requirements
Zyzzyva 1 O(n) 0 Reliable clients and unsafe
PoE (our paper) 3 O(3n) f Sign. agnostic
Pbft 3 O(n + 2n2) f
HotStuff 8 O(8n) f Sequential Consensus
SBFT 5 O(5n) 0 Optimistic path

Figure 1: Comparison of bft consensus protocols in a sys-

tem with n replicas of which f are faulty. The costs given

are for the normal-case behavior.

and applied their principles to the design of PoE where possi-
ble. In Figure 1, we present a comparison of PoE against four
well-known resilient consensus protocols.

To illustrate the merits of PoE’s design, we first briefly look at
Pbft. The last phase of Pbft ensures that non-faulty replicas only
execute requests and inform clients when there is a guarantee
that such a transaction will be recovered after any failures. Hence,
clients need to wait for only f + 1 identical responses, of which
at-least one is from a non-faulty replica, to ensure guaranteed
execution. By eliminating this last phase, replicas speculatively
execute requests before obtaining recovery guarantees. This im-
pacts Pbft-style consensus in two ways:

(1) First, clients need a way to determine proof-of-execution
after which they have a guarantee that their requests are
executed and maintained by the system. We shall show
that such a proof-of-execution can be obtained using nf ≥
2f + 1 identical responses (instead of f + 1 responses).

(2) Second, as requests are executed before they are guaran-
teed, replicas need to be able to rollback requests that are
dropped during periods of recovery.

PoE’s speculative execution guarantees that requests with a proof-
of-execution will never rollback and that only a single request
can obtain a proof-of-execution per round. Hence, speculative
execution provides the same strong consistency (safety) of Pbft
in all cases, this at much lower cost under normal operations.
Furthermore, we show that speculative execution is fully com-
patible with other scalable design principles applied to Pbft, e.g.,
batching and out-of-order processing to maximize throughput,
even with high message delays.

Out-of-order execution. Typical bft systems follow the
order-execute model: first replicas agree on a unique order of
the client request, and only then they execute the requests in
order [9, 21, 29, 38, 51]. Unfortunately, this prevents these sys-
tems from providing any support for concurrent execution. A
few bft systems suggest executing prior to ordering, but even
such systems need to re-verify their results prior to commit-
ting changes [4, 35]. Our PoE protocol lies between these two
extremes: the replicas speculatively execute using only partial
ordering guarantees. By doing so, PoE can eliminate communi-
cation costs and minimize latencies of typical bft systems, this
without needing to re-verify results in the normal case.

Out-of-order processing. Although bft consensus typically
executes requests in-order, this does not imply they need to
process proposals to order requests sequentially. To maximize
throughput, Pbft and other primary-backup protocols support
out-of-order processing in which all available bandwidth of the
primary is used to continuously propose requests (even when
previous proposals are still being processed by the system). By
doing so, out-of-order processing can eliminate the impact of high
message delays. To provide out-of-order processing, all replicas
will process any request proposed as the 𝑘-th request whenever
𝑘 is within some active window bounded by a low-watermark

and high-watermark [9]. These watermarks are increased as the
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system progresses. The size of this active window is—in practice—
only limited by the memory resources available to replicas. As
out-of-order processing is an essential technique to deliver high
throughputs in environments with high message delays, we have
included out-of-order processing in the design of PoE.

Twin-path consensus. Speculative execution employed by
PoE is different that the twin-path model utilized by Zyzzyva [38]
and SBFT [21]. These twin-path protocols have an optimistic fast
path that works only if none of the replicas are faulty and require
aid to determine whether these optimistic condition hold.

In the fast path of Zyzzyva, primaries propose requests, and
backups directly execute such proposals and inform the client
(without further coordination). The client waits for responses
from all n replicas before marking the request executed. When
the client does not receive n responses, it timeouts and sends
a message to all replicas, after which the replicas perform an
expensive client-dependent slow-path recovery process (which is
prone to errors when communication is unreliable [2]).

The fast path of SBFT can deal with up to c crash-failures
using 3f + 2c + 1 replicas and uses threshold signatures to make
communication linear. The fast path of SBFT requires a reliable
collector and executor to aggregate messages and to send only
a single (instead of at-least-f + 1) response to the client. Due
to aggregating execution, the fast path of SBFT still performs
four rounds of communication before the client gets a response,
whereas PoE only uses two rounds of communication (or three
when PoE uses threshold signatures). If the fast path timeouts (e.g.,
the collector or executor fails), then SBFT falls back to a threshold-
version of Pbft that takes an additional round before the client
gets a response. Twin-path consensus is in sharp contrast with
the design of PoE, which does not need outside aid (reliable
clients, collectors, or executors), and can operate optimally even
while dealing with replica failures.

Primary rotation. To minimize the influence of any single
replica on bft consensus, HotStuff opts to replace the primary
after every consensus decision. To efficiently do so, HotStuff
uses an extra communication phase (as compared to Pbft), which
minimizes the cost of primary replacement. Furthermore, Hot-
Stuff uses threshold signatures to make its communication lin-
ear (resulting in eight communication phases before a client gets
responses). The event-based version of HotStuff can overlap
phases of consecutive rounds, thereby assuring that consensus of
a client request starts in every one-to-all-to-one communication
phase. Unfortunately, the primary replacements require that all
consensus rounds are performed in a strictly sequential manner,
eliminating any possibility of out-of-order processing.

3 PROOF-OF-EXECUTION

In our Proof-of-Execution consensus protocol (PoE), the primary
replica is responsible for proposing transactions requested by
clients to all backup replicas. Each backup replica speculatively
executes these transactions with the belief that the primary is
behaving correctly. Speculative execution expedites processing
of transactions in all cases. Finally, when malicious behavior is
detected, replicas can recover by rolling back transactions, which
ensures correctness without depending on any twin-path model.

3.1 System model and notations

Before providing a full description of our PoE protocol, we present
the system model we use and the relevant notations.

A system is a set ℜ of replicas that process client requests.
We assign each replica r ∈ ℜ a unique identifier id(r) with
0 ≤ id(r) < |ℜ|. We write F ⊆ ℜ to denote the set of Byzantine

replicas that can behave in arbitrary, possibly coordinated and
malicious, manners. We assume that non-faulty replicas (those in
ℜ\F ) behave in accordance to the protocol and are deterministic:
on identical inputs, all non-faulty replicas must produce identical
outputs.We do notmake any assumptions on clients: all client can
be malicious without affecting PoE. We write n = |ℜ|, f = |F |,
and nf = |ℜ\F | to denote the number of replicas, faulty replicas,
and non-faulty replicas, respectively. We assume that n > 3f
(nf > 2f).

We assume authenticated communication: Byzantine replicas
are able to impersonate each other, but replicas cannot imper-
sonate non-faulty replicas. Authenticated communication is a
minimal requirement to deal with Byzantine behavior. Depend-
ing on the type of message, we use message authentication codes
(MACs) or threshold signatures (TSs) to achieve authenticated com-
munication [36]. MACs are based on symmetric cryptography in
which every pair of communicating nodes has a secret key. We
expect non-faulty replicas to keep their secret keys hidden. TSs
are based on asymmetric cryptography. In specific, each replica
holds a distinct private key, which it can use to create a signature
share. Next, one can produce a valid threshold signature given at
least nf such signature shares (from distinct replicas). We write
𝑠 ⟨𝑣⟩𝑖 to denote the signature share of the 𝑖-th replica for signing
value 𝑣 . Anyone that receives a set 𝑇 = {𝑠 ⟨𝑣⟩𝑗 | 𝑗 ∈ 𝑇 ′} of signa-
ture shares for 𝑣 from |𝑇 ′ | = nf distinct replicas, can aggregate
𝑇 into a single signature ⟨𝑣⟩. This digital signature can then be
verified using a public key.

We also employ a collision-resistant cryptographic hash function
D(·) that can map an arbitrary value 𝑣 to a constant-sized digest
D(𝑣) [36]. We assume that it is practically impossible to find
another value 𝑣 ′, 𝑣 ≠ 𝑣 ′, such that D(𝑣) = D(𝑣 ′). We use notation
𝑣 | |𝑤 to denotes the concatenation of two values 𝑣 and𝑤 .

Next, we define the consensus provided by PoE.

Definition 3.1. A single run of any consensus protocol should
satisfy the following requirements:
Termination. Each non-faulty replica executes a transaction.
Non-divergence. All non-faulty replicas execute the same trans-

action.
Termination is typically referred to as liveness, whereas non-
divergence is typically referred to as safety. In PoE, execution is
speculative: replicas can execute and rollback transactions. To
provide safety, PoE provides speculative non-divergence instead
of non-divergence:
Speculative non-divergence. If nf − f ≥ f +1 non-faulty repli-

cas accept and execute the same transaction 𝑇 , then all
non-faulty replicas will eventually accept and execute 𝑇
(after rolling back any other executed transactions).

To provide safety, we do not need any other assumptions on
communication or on clients. Due to well-known impossibility
results for asynchronous consensus [19], we can only provide
liveness in periods of reliable bounded-delay communication dur-
ing which all messages sent by non-faulty replicas will arrive at
their destination within some maximum delay.

3.2 The Normal-Case Algorithm of PoE

PoE operates in views 𝑣 = 0, 1, . . . . In view 𝑣 , replica r with
id(r) = 𝑣 mod n is elected as the primary. The design of PoE
relies on authenticated communication, which can be provided
using MACs or TSs. In Figure 2, we sketch the normal-case working
of PoE for both cases. For the sake of brevity, we will describe PoE
built on top of TSs, which results in a protocol with low—linear—
message complexity in the normal case. The full pseudo-code for
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(a) PoE using MACs
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propose support certify inform

(b) PoE using TSs.

Figure 2: Normal-case algorithm of PoE: Client 𝑐 sends its

request containing transaction 𝑇 to the primary p, which

proposes this request to all replicas. Although replica b is

Byzantine, it fails to affect PoE.

this algorithm can be found in Figure 3. In Section 3.6, we detail
the minimal changes to PoE necessary when switching to MACs.

Consider a view 𝑣 with primary p. To request execution of
transaction 𝑇 , a client 𝑐 signs transaction 𝑇 and sends the signed
transaction ⟨𝑇 ⟩𝑐 to p. The usage of signatures assures that mali-
cious primaries cannot forge transactions. To initiate replication
and execution of 𝑇 as the 𝑘-th transaction, the primary proposes
𝑇 to all replicas via a propose message.

After the 𝑖-th replica r receives a propose message𝑚 from
p, it checks whether at least nf other replicas received the same
proposal 𝑚 from primary p. This check assures r that at least
nf − f non-faulty replicas received the same proposal, which
will play a central role in achieving speculative non-divergence.
To perform this check, each replica supports the first proposal
𝑚 it receives from the primary by computing a signature share
𝑠 ⟨𝑚⟩𝑖 and sending a support message containing this share to
the primary.

The primary p waits for support messages with valid sig-
nature shares from nf distinct replicas, which can then be ag-
gregated into a single signature ⟨𝑚⟩. After generating such a
signature, the primary broadcasts this signature to all replicas
via a certify message.

After a replica r receives a valid certify message, it view-
commits to 𝑇 as the 𝑘-th transaction in view 𝑣 . The replica logs
this view-commit decision as VCommitr (⟨𝑇 ⟩𝑐 , 𝑣, 𝑘). After r view-
commits to 𝑇 , r schedules 𝑇 for speculative execution as the
𝑘-th transaction of view 𝑣 . Consequently, 𝑇 will be executed
by r after all preceding transactions are executed. We write
Executer (⟨𝑇 ⟩𝑐 , 𝑣, 𝑘) to log this execution.

After execution, r informs the client of the order of execution
and of execution result 𝑟 (if any) via a message inform. In turn,
client 𝑐 will wait for a proof-of-execution for the transaction 𝑇

it requested, which consists of identical inform messages from
nf distinct replicas. This proof-of-execution guarantees that at
least nf − f ≥ f + 1 non-faulty replicas executed 𝑇 as the 𝑘-th
transaction and in Section 3.3, we will see that such transactions
are always preserved by PoE when recovering from failures.

If client 𝑐 does not know the current primary or does not get
any timely response for its requests, then it can broadcast its
request ⟨𝑇 ⟩𝑐 to all replicas. The non-faulty replicas will then for-
ward this request to the current primary (if𝑇 is not yet executed)
and ensure that the primary initiates successful proposal of this
request in a timely manner.

To prove correctness of PoE in all cases, we will need the
following technical safety-related property of view-commits.

Client-role (used by client 𝑐 to request transaction𝑇 ) :
1: Send ⟨𝑇 ⟩𝑐 to the primary p.
2: Await receipt of messages inform( ⟨𝑇 ⟩𝑐 , 𝑣, 𝑘, 𝑟 ) from nf replicas.
3: Considers𝑇 executed, with result 𝑟 , as the 𝑘-th transaction.

Primary-role (running at the primary p of view 𝑣, id(p) = 𝑣 mod n) :
4: Let view 𝑣 start after execution of the 𝑘-th transaction.
5: event p awaits receipt of message ⟨𝑇 ⟩𝑐 from client 𝑐 do

6: Broadcast propose( ⟨𝑇 ⟩𝑐 , 𝑣, 𝑘) to all replicas.
7: 𝑘 := 𝑘 + 1.
8: end event

9: event p receives nf message support(𝑠 ⟨ℎ⟩𝑖 , 𝑣, 𝑘) such that:
(1) each message was sent by a distinct replica, 𝑖 ∈ {1, . . . , 𝑛}; and
(2) All 𝑠 ⟨ℎ⟩𝑖 in this set can be combined to generate signature ⟨ℎ⟩ .

do

10: Broadcast certify( ⟨ℎ⟩,𝑣, 𝑘) to all replicas.
11: end event

Backup-role (running at every 𝑖-th replica r.) :
12: event r receives message𝑚 := propose( ⟨𝑇 ⟩𝑐 , 𝑣, 𝑘) such that:

(1) 𝑣 is the current view;
(2) 𝑚 is sent by the primary of 𝑣; and
(3) r did not accept a 𝑘-th proposal in 𝑣

do

13: Compute ℎ := D( ⟨𝑇 ⟩𝑐 | |𝑣 | |𝑘) .
14: Compute signature share 𝑠 ⟨ℎ⟩𝑖 .
15: Transmit support(𝑠 ⟨ℎ⟩𝑖 , 𝑣, 𝑘) to p.
16: end event

17: event r receives messages certify( ⟨ℎ⟩,𝑣, 𝑘) from p such that:
(1) r transmitted support(𝑠 ⟨ℎ⟩𝑖 , 𝑣, 𝑘) to p; and
(2) ⟨ℎ⟩ is a valid threshold signature

do

18: View-commit𝑇 , the 𝑘-th transaction of 𝑣 (VCommitr ( ⟨𝑇 ⟩𝑐 , 𝑣, 𝑘)).
19: end event

20: event r logged VCommitr ( ⟨𝑇 ⟩𝑐 , 𝑣, 𝑘) and
has logged Executer (𝑡 ′, 𝑣′, 𝑘′) for all 0 ≤ 𝑘′ < 𝑘 do

21: Execute𝑇 as the 𝑘-th transaction of 𝑣 (Executer ( ⟨𝑇 ⟩𝑐 , 𝑣, 𝑘)).
22: Let 𝑟 be the result of execution of𝑇 (if there is any result).
23: Send inform(D( ⟨𝑇 ⟩𝑐 ), 𝑣, 𝑘, 𝑟 ) to 𝑐 .
24: end event

Figure 3: The normal-case algorithm of PoE.

Proposition 3.2. Let r𝑖 , 𝑖 ∈ {1, 2}, be two non-faulty replicas

that view-committed to ⟨𝑇𝑖 ⟩𝑐𝑖 as the 𝑘-th transaction of view 𝑣

(VCommitr (⟨𝑇 ⟩𝑐 , 𝑣, 𝑘)). If n > 3f , then ⟨𝑇1⟩𝑐1 = ⟨𝑇2⟩𝑐2 .

Proof. Replica r𝑖 only view-committed to ⟨𝑇𝑖 ⟩𝑐𝑖 after r𝑖 re-
ceived certify(⟨ℎ⟩, 𝑣, 𝑘) from the primary p (Line 17 of Figure 3).
This message includes a threshold signature ⟨ℎ⟩, whose construc-
tion requires signature shares from a set 𝑆𝑖 of nf distinct replicas.
Let 𝑋𝑖 = 𝑆𝑖 \ F be the non-faulty replicas in 𝑆𝑖 . As |𝑆𝑖 | = nf and
|F | = f , we have |𝑋𝑖 | ≥ nf − f . The non-faulty replicas in 𝑋𝑖 will
only send a single support message for the 𝑘-th transaction in
view 𝑣 (Line 12 of Figure 3). Hence, if ⟨𝑇1⟩𝑐1 ≠ ⟨𝑇2⟩𝑐2 , then 𝑋1
and 𝑋2 must not overlap and nf ≥ |𝑋1 ∪ 𝑋2 | ≥ 2(nf − f) must
hold. As n = nf + f , this simplifies to 3f ≥ n, which contradicts
n > 3f . Hence, we conclude ⟨𝑇1⟩𝑐1 = ⟨𝑇2⟩𝑐2 . □

We will later use Proposition 3.2 to show that PoE provides
speculative non-divergence. Next, we look at typical cases in
which the normal-case of PoE is interrupted:

Example 3.3. A malicious primary can try to affect PoE by not
conforming to the normal-case algorithm in the following ways:

(1) By sending proposals for different transactions to different
non-faulty replicas. In this case, Proposition 3.2 guarantees
that at most a single such proposed transaction will get
view-committed by any non-faulty replica.

(2) By keeping some non-faulty replicas in the dark by not
sending proposals to them. In this case, the remaining
non-faulty replicas can still end up view-committing the
transactions as long as at least nf − f non-faulty replicas
receive proposals: the faulty replicas inF can take over the
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role of up to f non-faulty replicas left in the dark (giving
the false illusion that the non-faulty replicas in the dark
are malicious).

(3) By preventing execution by not proposing a 𝑘-th transac-
tion, even though transactions following the 𝑘-th transac-
tion are being proposed.

When the network is unreliable and messages do not get deliv-
ered (or not on time), then the behavior of a non-faulty primary
can match that of the malicious primary in the above example.
Indeed, failure of the normal-case of PoE has only two possi-
ble causes: primary failure and unreliable communication. If
communication is unreliable, then there is no way to guarantee
continuous service [19]. Hence, replicas simply assume failure
of the current primary if the normal-case behavior of PoE is
interrupted, while the design of PoE guarantees that unreliable
communication does not affect the correctness of PoE.

To deal with primary failure, each replica maintains a timer
for each request. If this timer expires (timeout) and it has not
been able to execute the request, it assumes that the primary
is malicious. To deal with such a failure, replicas will replace
the primary. Next, we present the view-change algorithm that
performs primary replacement.

3.3 The View-Change Algorithm

If PoE observes failure of the primary p of view 𝑣 , then PoE will
elect a new primary and move to the next view, view 𝑣 + 1, via
the view-change algorithm. The goals of the view-change are

(1) to assure that each request that is considered executed by
any client is preserved under all circumstances; and

(2) to assure that the replicas are able to agree on a new view
whenever communication is reliable.

As described in the previous section, a client will consider its
request executed if it receives a proof-of-execution consisting
of identical inform responses from at-least nf distinct replicas.
Of these nf responses, at-most f can come from faulty replicas.
Hence, a client can only consider its request executed whenever
the requested transaction was executed (and view-committed) by
at-least nf − f ≥ f + 1 non-faulty replicas in the system. We note
the similarity with the view-change algorithm of Pbft, which
will preserve any request that is prepared by at-least nf−f ≥ f +1
non-faulty replicas.

The view-change algorithm of PoE consists of three steps.
First, failure of the current primary p needs to be detected by all
non-faulty replicas. Second, all replicas exchange information to
establish which transactions were included in view 𝑣 and which
were not. Third, the new primary p′ proposes a new view. This
new view proposal contains a list of the transactions executed in
the previous views (based on the information exchanged earlier).
Finally, if the new view proposal is valid, then replicas switch to
this view; otherwise, replicas detect failure of p′ and initiate a
view-change for the next view (𝑣 + 2). The communication of the
view-change algorithm of PoE is sketched in Figure 4 and the
full pseudo-code of the algorithm can be found in Figure 5. Next,
we discuss each step in detail.

3.3.1 Failure Detection and View-Change Requests. If a replica
r detects failure of the primary of view 𝑣 , then it halts the normal-
case algorithm of PoE for view 𝑣 and informs all other replicas
of this failure by requesting a view-change. The replica r does
so by broadcasting a message vc-reqest(𝑣, 𝐸), in which 𝐸 is
a summary of all transactions executed by r (Figure 5, Line 1).
Each replica r can detect the failure of primary in two ways:

b
r2
r1
p′

vc-reqest
(detection)

vc-reqest
(join)

nv-propose Enter view 𝑣 + 1

Figure 4: The current primary b of view 𝑣 is faulty and

needs to be replaced. The next primary, p
′
, and the replica

r1 detected this failure first and request view-change via

vc-reqestmessages. The replica r2 joins these requests.

vc-request (used by replica r to request view-change) :
1: event r detects failure of the primary do

2: r halts the normal-case algorithm of Figure 3 for view 𝑣.
3: 𝐸 := {(certify( ⟨ℎ⟩,𝑤,𝑘), ⟨𝑇 ⟩𝑐 ) |

𝑤 ≤ 𝑣 and Executer ( ⟨𝑇 ⟩𝑐 , 𝑤, 𝑘) and ℎ = D( ⟨𝑇 ⟩𝑐 | |𝑤 | |𝑘) }.
4: Broadcast vc-reqest(𝑣, 𝐸) to all replicas.
5: end event

6: event r receives f + 1 messages vc-reqest(𝑣𝑖 , 𝐸𝑖 ) such that
(1) each message was sent by a distinct replica; and
(2) 𝑣𝑖 , 1 ≤ 𝑖 ≤ f + 1, is the current view

do

7: r detects failure of the primary (join).
8: end event

On receiving nv-propose (use by replica r) :
9: event r receives𝑚 = nv-propose(𝑣 + 1,𝑚1,𝑚2, ...,𝑚nf ) do
10: if𝑚 is a valid new-view proposal (similar to creating nv-propose) then
11: Derive the transactions 𝑁 for the new-view from𝑚1,𝑚2, . . . ,𝑚nf .
12: Rollback any executed transactions not included in 𝑁 .
13: Execute the transactions in 𝑁 not yet executed.
14: Move into view 𝑣 + 1 (see Section 3.3.3 for details).
15: end if

16: end event

nv-propose (used by replica p′ that will act as the new primary) :
17: event p′ receives nf messages𝑚𝑖 = vc-reqest(𝑣𝑖 , 𝐸𝑖 ) such that

(1) these messages are sent by a set 𝑆 , |𝑆 | = nf , of distinct replicas;
(2) for each𝑚𝑖 , 1 ≤ 𝑖 ≤ nf , sent by replica q𝑖 ∈ 𝑆 , 𝐸𝑖 consists of a

consecutive sequence of entries (certify( ⟨ℎ⟩,𝑣, 𝑘), ⟨𝑇 ⟩𝑐 ) ;
(3) 𝑣𝑖 , 1 ≤ 𝑖 ≤ nf , is the current view 𝑣; and
(4) p′ is the next primary (id(p′) = (𝑣 + 1) mod n)

do

18: Broadcast nv-propose(𝑣 + 1,𝑚1,𝑚2, ...,𝑚nf ) to all replicas.
19: end event

Figure 5: The view-change algorithm of PoE.

(1) r timeouts while expecting normal-case operations toward
executing a client request. E.g., when r forwards a client
request to the current primary, and the current primary
fails to propose this request on time.

(2) r receives vc-reqest messages, indicating that the pri-
mary of view 𝑣 failed, from f + 1 distinct replicas. As at
most f of these messages can come from faulty replicas, at
least one non-faulty replica must have detected a failure.
In this case, r joins the view-change (Figure 5, Line 6).

3.3.2 Proposing the New View. To start view 𝑣 + 1, the new
primary p′ (with id(p′) = (𝑣 + 1) mod n) needs to propose a new
view by determining a valid list of requests that need to be pre-
served. To do so, p′ waits until it receives sufficient information.
In specific, p′ waits until it received valid vc-reqest messages
from a set 𝑆 ⊆ ℜ of |𝑆 | = nf distinct replicas.

An 𝑖-th view-change request 𝑚𝑖 is considered valid if it in-
cludes a consecutive sequence of pairs (𝑐, ⟨𝑇 ⟩𝑐 ), where 𝑐 is a valid
certify message for request ⟨𝑇 ⟩𝑐 . Such a set 𝑆 is guaranteed to
exist when communication is reliable, as all non-faulty replicas
will participate in the view-change algorithm. The new primary
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collects the set 𝑆 of |𝑆 | = nf valid vc-reqest and proposes them
in a new view message nv-propose to all replicas.

3.3.3 Move to the New View. After a replica r receives a nv-
propose message containing a new-view proposal from the new
primary p′, r validates the content of this message. From the set
of vc-reqest messages in the new-view proposal, r chooses,
for each 𝑘 , the pair (certify(⟨ℎ⟩,𝑤,𝑘), ⟨𝑇 ⟩𝑐 ) proposed in the
most-recent view𝑤 . Furthermore, r determines the total number
of such requests 𝑘max. Then, r view-commits and executes all
𝑘max chosen requests that happened before view 𝑣 + 1. Notice
that replica r can skip execution of any transaction it already
executed. If r executed transactions not included in the new-view
proposal, then r needs to rollback these transactions before it can
proceed executing requests in view 𝑣 + 1. After these steps, r can
switch to the new view 𝑣 + 1. In the new view, the new primary
p′ starts by proposing the 𝑘max + 1-th transaction.

Whenmoving into the new view, we see the cost of speculative
execution: some replicas can be forced to rollback execution of
transactions:

Example 3.4. Consider a system with non-faulty replica r.
When deciding the 𝑘-th request, communication became unreli-
able, due to which only r received a certifymessage for request
⟨𝑇 ⟩𝑐 . Consequently, r speculatively executes 𝑇 and informs the
client 𝑐 . During the view-change, all other replicas—none of
which have a certify message for ⟨𝑇 ⟩𝑐—provide their local state
to the new primary, which proposes a new view that does not
include any 𝑘-th request. Hence, the new primary will start its
view by proposing client request ⟨𝑇 ′⟩𝑐′ as the 𝑘-th request, which
gets accepted. Consequently, r needs to rollback execution of 𝑇 .
Luckily, this is not an issue: the client 𝑐 only got at-most f+1 < nf
responses for request, does not yet have a proof-of-execution,
and, consequently, does not consider 𝑇 executed.

In practice, rollbacks can be supported by, e.g., undoing the
operations of transaction in reverse order, or by reverting to an
old state. For the correct working of PoE, the exact working of
rollbacks is not important as long as the execution layer provides
support for rollbacks.

3.4 Correctness of PoE

First, we show that the normal-case algorithm of PoE provides
non-divergent speculative consensus when the primary is non-
faulty and communication is reliable.

Theorem 3.5. Consider a system in view 𝑣 , in which the first

𝑘 − 1 transactions have been executed by all non-faulty replicas, in

which the primary is non-faulty, and communication is reliable. If

the primary received ⟨𝑇 ⟩𝑐 , then the primary can use the algorithm

in Figure 3 to ensure that

(1) there is non-divergent execution of 𝑇 ;

(2) 𝑐 considers 𝑇 executed as the 𝑘-th transaction; and

(3) 𝑐 learns the result of executing 𝑇 (if any),

this independent of any malicious behavior by faulty replicas.

Proof. Each non-faulty primary would follow the algorithm
of PoE described in Figure 3 and send propose(⟨𝑇 ⟩𝑐 , 𝑣, 𝑘) to
all replicas (Line 6). In response, all nf non-faulty replicas will
compute a signature share and send a support message to the
primary (Line 15). Consequently, the primary will receive signa-
ture shares from nf replicas and will combine them to generate a
threshold signature ⟨ℎ⟩. The primary will include this signature
⟨ℎ⟩ in a certify message and broadcast it to all replicas. Each
replica will successfully verify ⟨ℎ⟩ and will view-commit to 𝑇
(Line 17). As the first 𝑘 − 1 transactions have already been exe-
cuted, every non-faulty replica will execute 𝑇 . As all non-faulty

replicas behave deterministically, execution will yield the same
result 𝑟 (if any) across all non-faulty replicas. Hence, when the
non-faulty replicas inform 𝑐 , they do so by all sending identical
messages inform(D(⟨𝑇 ⟩𝑐 ), 𝑣, 𝑘, 𝑟 ) to 𝑐 (Line 20–Line 23). As all nf
non-faulty replicas executed𝑇 , we have non-divergent execution.
Finally, as there are at most f faulty replicas, the faulty replicas
can only forge up to f invalid inform messages. Consequently,
the client 𝑐 will only receive the message inform(D(⟨𝑇 ⟩𝑐 ), 𝑣, 𝑘, 𝑟 )
from at least nf distinct replicas, and will conclude that 𝑇 is exe-
cuted yielding result 𝑟 (Line 3). □

At the core of the correctness of PoE, under all conditions,
is that no replica will rollback requests ⟨𝑇 ⟩𝑐 for which client 𝑐
already received a proof-of-execution. We prove this next:

Proposition 3.6. Let ⟨𝑇 ⟩𝑐 be a request for which client 𝑐 al-

ready received a proof-of-execution showing that 𝑇 was executed

as the 𝑘-th transaction of view 𝑣 . If n > 3f , then every non-faulty

replica that switches to a view 𝑣 ′ > 𝑣 will preserve 𝑇 as the 𝑘-th

transaction of view 𝑣 .

Proof. Client 𝑐 considers ⟨𝑇 ⟩𝑐 executed as the 𝑘-th transac-
tion of view 𝑣 when it received identical inform-messages for 𝑇
from a set 𝐴 of |𝐴| = nf distinct replicas (Figure 3, Line 3). Let
𝐵 = 𝐴 \ F be the set of non-faulty replicas in 𝐴.

Now consider a non-faulty replica r that switches to view
𝑣 ′ > 𝑣 . Before doing so, rmust have received a valid proposal𝑚 =

nv-propose(𝑣 ′,𝑚1, ...,𝑚nf ) from the primary of view 𝑣 ′. Let𝐶 be
the set of nf distinct replicas that provided messages𝑚1, . . . ,𝑚nf
and let 𝐷 = 𝐶 \ F be the set of non-faulty replicas in 𝐶 . We
have |𝐵 | ≥ nf − f and |𝐷 | ≥ nf − f . Hence, using a contradiction
argument similar to the one in the proof of Proposition 3.2, we
conclude that there must exists a non-faulty replica q ∈ (𝐵 ∩ 𝐷)
that executed ⟨𝑇 ⟩𝑐 , informed 𝑐 , and requested a view-change.

To complete the proof, we need to show that ⟨𝑇 ⟩𝑐 was pro-
posed and executed in the last view that proposed and view-
committed a 𝑘-th transaction and, hence, that q will include ⟨𝑇 ⟩𝑐
in its vc-reqest message for view 𝑣 ′. We do so by induction
on the difference 𝑣 ′ − 𝑣 . As the base case, we have 𝑣 ′ − 𝑣 = 1,
in which case no view after 𝑣 exists yet and, hence, ⟨𝑇 ⟩𝑐 must
be the newest 𝑘-th transaction available to q. As the induction
hypothesis, we assume that all non-faulty replicas will preserve
𝑇 when entering a new view𝑤 , 𝑣 < 𝑤 ≤ 𝑤 ′. Hence, non-faulty
replicas participating in view𝑤 will not support any 𝑘-th trans-
actions proposed in view𝑤 . Consequently, no certify messages
can be constructed for any 𝑘-th transaction in view 𝑤 . Hence,
the new-view proposal for𝑤 ′ + 1 will include ⟨𝑇 ⟩𝑐 , completing
the proof. □

As a direct consequence of the above, we have

Corollary 3.7 (Safety of PoE). PoE provides speculative non-
divergence if n > 3f .

We notice that the view-change algorithm does not deal with
minor malicious behavior (e.g., a single replica left in the dark).
Furthermore, the presented view-change algorithm will recover
all transactions since the start of the system, which will result
in unreasonable large messages when many transactions have
already been proposed. In practice, both these issues can be re-
solved by regularly making checkpoints (e.g., after every 100
requests) and only including requests since the last checkpoint
in each vc-reqest message. To do so, PoE uses a standard fully-
decentralized Pbft-style checkpoint algorithm that enables the
independent checkpointing and recovery of any request that is
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executed by at least f + 1 non-faulty replicas whenever communi-
cation is reliable [9]. Finally, utilizing the view-change algorithm
and checkpoints, we prove

Theorem 3.8 (Liveness of PoE). PoE provides termination in

periods of reliable bounded-delay communication if n > 3f .

Proof. When the primary is non-faulty, Theorem 3.5 guar-
antees termination as replicas continuously accept and execute
requests. If the primary is Byzantine and fails to guarantee ter-
mination for at most f non-faulty replicas, then the checkpoint
algorithm will assure termination of these non-faulty replicas.
Finally, if the primary is Byzantine and fails to guarantee termi-
nation for at least f +1 non-faulty replicas, then it will be replaced
using the view-change algorithm. For the view-change process,
each replica will start with a timeout 𝛿 after it receives nf match-
ing vc-reqests and double this timeout after each view-change
(exponential backoff). When communication becomes reliable,
this mechanism guarantees that all replicas will eventually view-
change to the same view at the same time. After this point, a
non-faulty replica will become primary in at most f view-changes,
after which Theorem 3.5 guarantees termination. □

3.5 Fine-Tuning and Optimizations

To keep presentation simple, we did not include the following
optimizations in the protocol description:

(1) To reach nf signature shares, the primary can generate one
itself. Hence, it only needs nf − 1 shares of other replicas.

(2) The propose, support, inform, andnv-proposemessages
are not forwarded and only need MACs to provide message
authentication. The certify messages need not be signed,
as tampering them would invalidate the threshold signa-
ture. The vc-reqest messages need to be signed, as they
need to be forwarded without tampering.

Finally, the design of PoE is fully compatible with out-of-order

processing as a replica only supports proposals for a 𝑘-th trans-
action if it had not previously supported another 𝑘-th proposal
(Figure 3, Line 12) and only executes a 𝑘-th transaction if it has
already executed all the preceding transactions (Figure 3, Line 20).
As the size of the active out-of-order processing window deter-
mines how many client requests are being processed at the same
time (without receiving a proof-of-execution), the size of the
active window determines the number of transactions that can
be rolled back during view-changes.

3.6 Designing PoE using MACs

The design of PoE can be adapted to only use message authen-
tication codes (MACs) to authenticate communication. This will
sharply reduce the computational complexity of PoE and elim-
inate one round of communication, this at the cost of higher
quadratic overall communication costs (see Figure 2).

The usage of only MACs makes it impossible to obtain threshold
signatures or reliably forward messages (as forwarding replicas
can tamper with the content of unsigned messages). Hence, us-
ing MACs requires changes to how client requests are included
in proposals (as client requests are forwarded), to the normal-
case algorithm of PoE (which uses threshold signatures), and to
the view-change algorithm of PoE (which forwards vc-reqest
messages). The changes to the proposal of client requests and to
the view-change algorithm can be derived from the strategies
used by Pbft to support MACs [9]. Hence, next we only review
the changes to the normal-case algorithm of PoE.

Consider a replica r that receives a propose message from
the primary p. Next, r needs to determine whether at least nf
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Figure 6: Multi-threaded Pipelines at different replicas.

other replicas received the same proposal, which is required to
achieve speculative non-divergence (see Proposition 3.2). When
using MACs, r can do so by replacing the all-to-one support and
one-to-all certify phases by a single all-to-all support phase. In the
support phase, each replica agrees to support the first proposal
propose(⟨𝑇 ⟩𝑐 , 𝑣, 𝑘) it receives from the primary by broadcast-
ing a message support(D(⟨𝑇 ⟩𝑐 ), 𝑣, 𝑘) to all replicas. After this
broadcast, each replica waits until it receives support messages,
identical to the message it sent, from nf distinct replicas. If r
receives these messages, it view-commits to𝑇 as the 𝑘-th transac-
tion in view 𝑣 and schedules 𝑇 for execution. We have sketched
this algorithm in Figure 2.

4 RESILIENTDB FABRIC

To test our design principles in practical settings, we imple-
ment our PoE protocol in our ResilientDB fabric [27–31]. Re-
silientDB provides its users access to a state-of-the-art replicated
transactional engine and fulfills the need of a high-throughput
permissioned blockchain fabric. ResilientDB helps us to realize
the following goals: (i) implement and test different consensus
protocols; (ii) balance the tasks done by a replica through a paral-
lel pipelined architecture; (iii) minimize the cost of communication
through batching client transactions; and (iv) enable use of a se-
cure and efficient ledger. Next, we present a brief overview of
our ResilientDB fabric.

ResilientDB lays down a client-server architecture where
clients send their transactions to servers for processing. We use
Figure 6 to illustrate the multi-threaded pipelined architecture
associated with each replica. At each replica, we spawn multiple
input and output threads for communicating with the network.

Batching. During our formal description of PoE, we assumed
that the propose message from the primary includes a single
client request. An effective way to reduce the overall cost of
consensus is by aggregating several client requests in a single
batch and use one consensus step to reach agreement on all these
requests [9, 21, 38]. To maximize performance, ResilientDB
facilitates batching requests at both replicas and clients.

At the primary replica, we spawn multiple batch-threads that
aggregate clients requests into a batch. The input-threads at the
primary receive client requests, assign them a sequence number
and enqueue these requests in the batch-queue. In ResilientDB,
all batch-threads share a common lock-free queue. When a client
request is available, a batch-thread dequeues the request and con-
tinues adding it to an existing batch until the batch has reached
a pre-defined size. Each batching-thread also hashes the requests
in a batch to create a unique digest.

All other messages received at a replica are enqueued by the
input-thread in the work-queue to be processed by the single
worker-thread. Once a replica receive a certify message from
the primary, it forwards the request to the execute-thread for
execution. Once the execution is complete, the execution-thread
creates an inform message, which is transmitted to the client.

Ledger Management. We now explain how we efficiently
maintain a blockchain ledger across different replicas. A block-
chain is an immutable ledger, where blocks are chained as a
linked-list. An 𝑖-th block can be represented as 𝐵𝑖 := {𝑘, 𝑑, 𝑣,
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𝐻 (𝐵𝑖−1)}, in which 𝑘 is the sequence number of the client re-
quest,𝑑 the digest of the request, 𝑣 the view number, and𝐻 (𝐵𝑖−1)
the hash of the previous block. In ResilientDB, prior to any
consensus, we require the first primary replica to create a gen-
esis block [31]. This genesis block acts as the first block in the
blockchain and contains some basic data. We use the hash of the
identity of the initial primary, as this information is available to
each participating replicas (eliminating the need for any extra
communication to exchange this block).

After the genesis block, each replica can independently create
the next block in the blockchain. As stated above, each block
corresponds to some batch of transactions. A block is only created
by the execute-thread once it completes executing a batch of
transactions. To create a block, the execute-thread hashes the
previous block in the blockchain and creates a new block. To
prove the validity of individual blocks, ResilientDB stores the
proof-of-accepting the 𝑘-th request in the 𝑘-th block. In PoE, such
a proof includes the threshold signature sent by the primary as
part of the certify message.

5 EVALUATION

We now analyze our design principles in practice. To do so, we
evaluate our PoE protocol against four state-of-the-art bft pro-
tocols. There are many bft protocols we could compare with.
Hence, we pick a representative sample: (1) Zyzzyva—as it has
the absolute minimal cost in the fault-free case, (2) Pbft—as it is a
common baseline (the used design is based on BFTSmart [7]), (3)
SBFT—as it is a safer variation of Zyzzyva, and (3)HotStuff—as
it is a linear-communication protocol that adopts the notion of
rotating leaders. Through our experiments, we want to answer
the following questions:
(Q1) How does PoE fare in comparison with the other protocols

under failures?
(Q2) Does PoE benefits from batching client requests?
(Q3) How does PoE perform under zero payload?
(Q4) How scalable is PoE on increasing the number of replicas

participating in the consensus, in the normal-case?
Setup. We run our experiments on the Google Cloud, and

deploy each replicas on a 𝑐2machine having a 16-core Intel Xeon
Cascade Lake CPU running at 3.8GHz with 32GB memory. We
deploy up to 320 k clients on 16 machines. To collect results after
reaching a steady-state, we run each experiment for 180 s: the
first 60 s are warmup, and measurement results are collected over
the next 120 s. We average our results over three runs.

Configuration and Benchmarking. For evaluating the pro-
tocols, we employed YCSB [13] from Blockbench’s macro bench-
marks [16]. Each client request queries a YCSB table that holds
half a million active records. We require 90% of the requests to be
write queries as the majority of typical blockchain transactions
are updates to existing records. Prior to the experiments, each
replica is initialized with an identical copy of the YCSB table. The
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Figure 8: System performance using three different signa-

ture schemes. In all cases, n = 16 replicas participate in

consensus.

client requests generated by YCSB follow a Zipfian distribution
and are heavily skewed (skew factor 0.9).

Unless explicitly stated, we use the following configuration
for all experiments. We perform scaling experiments by varying
replicas from 4 to 91. We divide our experiments in two dimen-
sions: (1) Zero Payload or Standard Payload, and (2) Failures or
Non-Failures. We employ batching with a batch size of 100 as the
percentage increase in throughput on larger batch sizes is small.

Under Zero Payload conditions, all replicas execute 100 dummy
instructions per batch, while the primary sends an empty pro-
posal (and not a batch of 100 requests). Under Standard Payload,
with a batch size of 100, the size of Propose message is 5400 B,
of Response message is 1748 B, and of other messages is around
250 B. For experiments with failures, we force one backup replica
to crash. Additionally, we present an experiment that illustrates
the effect of primary failure. We measure throughput as trans-
actions executed per second. We measure latency as the time
from when the client sends a request to the time when the client
receives a response.

Other protocols: We also implement Pbft, Zyzzyva, SBFT
and HotStuff in our ResilientDB fabric. We refer to Section 2
for further details on the working of Zyzzyva, SBFT, and Hot-
Stuff. Our implementation of Pbft is based on the BFTSmart [7]
framework with the added benefits of out-of-order processing,
pipelining, and multi-threading. In both Pbft and Zyzzyva, digi-
tal signatures are used for authenticating messages sent by the
clients, while MACs are used for other messages. Both SBFT and
HotStuff require threshold signatures for their communication.

5.1 System Characterization

We first determine the upper bounds on the performance of
ResilientDB. In Figure 7, we present the maximum throughput
and latency of ResilientDB when there is no communication

among the replicas. We use the term No Execution to refer to the
case where all clients send their request to the primary replica
and primary simply responds back to the client. We count every
query responded back in the system throughput. We use the term
Execution to refer to the case where the primary replica executes
each query before responding back to the client.

The architecture of ResilientDB (see Section 4) states the use
of one worker thread. In these experiments, we maximize system
performance by allowing up to two threads to work indepen-
dently at the primary replica without ordering any queries. Our
results indicate that the system can attain high throughputs (up
to 500 ktxn/s) and can reach low latencies (up to 0.25 s). Notice
that if we employ additional worker-threads, our ResilientDB
fabric can easily attain higher throughput.

5.2 Effect of Cryptographic Signatures.

ResilientDB enables a flexible design where replicas and clients
can employ both digital signatures (threshold signatures) and
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message authentication codes. This helps us to implement PoE
and other consensus protocols in ResilientDB.

To achieve authenticated communication using symmetric
cryptography, we employ a combination of CMAC and AES [36].
Further, we employ ED25519-based digital signatures to enable
asymmetric cryptographic signing. For generating efficient thresh-
old signature scheme, we use Boneh–Lynn–Shacham (BLS) sig-
natures [36]. To create message digests and for hashing purposes,
we use the SHA256 algorithm.

Next, we determine the cost of different cryptographic signing
schemes. For this purpose, we run three different experiments in
which (i) no signature scheme is used (None); (ii) everyone uses
digital signatures based on ED25519 (ED); and (iii) all replicas use
CMAC+AES for signing, while clients sign their message using
ED25519 (MAC). In these three experiments, we run Pbft consen-
sus among 16 replicas. In Figure 8, we illustrate the throughput
attained and latency incurred by ResilientDB for the experi-
ments. Clearly, the system attains its highest throughput when
no signatures are employed. However, such a system cannot han-
dle malicious attacks. Further, using just digital signatures for
signing messages can prove to be expensive. An optimal config-
uration can require clients to sign their messages using digital
signatures, while replicas can communicate using MACs.

5.3 Scaling Replicas under Standard Payload

In this section, we evaluate scalability of PoE both under backup
failure and no failures.

(1) Single Backup Failure. We use Figures 9(a) and 9(b) to
illustrate the throughput and latency attained by the system on
running different consensus protocols under a backup failure.
These graphs affirm our claim that PoE attains higher throughput
and incurs lower latency than all other protocols.

In case of Pbft, each replica participates in two phases of
quadratic communication, which limits its throughput. For the
twin-path protocols such as Zyzzyva and SBFT, a single failure
is sufficient to cause massive reductions in their system through-
puts. Notice that the collector in SBFT and the clients in Zyzzyva
have to wait for messages from all n replicas, respectively. As
predicting an optimal value for timeouts is hard [11, 12], we
chose a very small value for the timeout (3 s) for replicas and
clients. We justify these values, as the experiments we show later
in this section show that the average latency can be as large
as 6 s. We note that high timeouts affect Zyzzyva more than
SBFT. In Zyzzyva, clients are waiting for timeouts during which
they stop sending requests, which empties the pipeline at the
primary, starving it from new request to propose. To alleviate
such issues in real-world deployments of Zyzzyva, clients need
to be able to precisely predict the latency to minimize the time
the clients needs to wait between requests. Unfortunately, this is
hard and runs the risk of ending up in the expensive slow path of
Zyzzyva whenever the predicted latency is slightly off. In SBFT,
the collector may timeout waiting for threshold shares for the
𝑘-th round while the primary can continues propose requests
for future round 𝑙 , 𝑙 > 𝑘 . Hence, in SBFT replicas have more
opportunity to occupy themselves with useful work.

HotStuff attains significantly low throughput due to its se-
quential primary-rotation model in which each of its primaries
has to wait for the previous primary before proposing the next
request, which leads to a huge reduction in its throughput. In-
terestingly, HotStuff incurs the least average latency among
all protocols. This is a result of intensive load on the system
when running other protocols. As these protocols process several
requests concurrently (see the multi-threaded architecture in Sec-
tion 4), these requests spend on average more time in the queue

before being processed by a replica. Notice that all out-of-order
consensus protocols employ this trade off: a small sacrifice on
latency yields higher gains on system throughput.

In case of PoE, its high throughputs under failures is a result
of its three-phase linear protocol that does not rely on any twin-
path model. To summarize, PoE attains up to 43%, 72%, 24× and
62×more throughputs than Pbft, SBFT, HotStuff and Zyzzyva.

(2) No Replica Failure. We use Figures 9(c) and 9(d) to il-
lustrate the throughput and latency attained by the system on
running different consensus protocols in fault-free conditions.
These plots help us to bound the maximum throughput that can
be attained by different consensus protocols in our system.

First, as expected, in comparison to the Figures 9(a) and 9(b),
the throughputs for PoE and Pbft are slightly higher. Second,
PoE continues to outperform both Pbft and HotStuff, for the
reasons described earlier. Third, both Zyzzyva and SBFT are
now attaining higher throughputs as their clients and collector
no longer timeout, respectively. The key reason SBFT’s gains
are limited is because SBFT requires five phases and becomes
computation bounded. Although Pbft is quadratic, it employs
MAC, which are cheaper to sign and verify.

Notice that the differences in throughputs of PoE and Zyzzyva
are small. PoE has 20% (on 91 replicas) to 13% (on 4 replicas) less
throughputs than Zyzzyva. An interesting observation is that on
91 replicas, Zyzzyva incurs almost the same latency as PoE, even
though it has higher throughput. This happens as clients in PoE
have to wait for only the fastest nf = 61 replies, whereas a client
for Zyzzyva has to wait for replies from all replicas (even the
slowest ones). To conclude, PoE attains up to 35%, 27% and 21×
more throughput than Pbft, SBFT and HotStuff, respectively.

5.4 Scaling Replicas under Zero Payload

We now measure the performance of different protocols under
zero payload. In any bft protocol, the primary starts consensus
by sending a Propose message that includes all transactions. As
a result, this message has the largest size and is responsible for
consuming the majority of the bandwidth. A zero payload ex-
periment ensures that each replica executes dummy instructions.
Hence, the primary is no longer a bottleneck.

We again run these experiments for both Single Failure and
Failure-Free cases, and use Figures 9(e) to 9(h) to illustrate our
observations. It is evident from these figures that zero payload
experiments have helped in increasing PoE’s gains. PoE attains
up to 85%, 62% and 27× more throughputs than Pbft, SBFT and
HotStuff, respectively. In fact, under failure-free conditions,
the throughput attained by PoE is comparable to Zyzzyva. This
is easily explained. First, both PoE and Zyzzyva are linear pro-
tocols. Second, although in failure-free cases Zyzzyva attains
consensus in one phase, its clients need to wait for response from
all n replicas, which gives PoE an opportunity to cover the gap.
However, SBFT being a linear protocol does not perform as good
as its other linear counterparts. Its throughput is impacted by
the delay of five phases.

5.5 Impact of Batching under Failures

Next, we study the effect of batching client requests on bft pro-
tocols [9, 51]. To answer this question, we measure performance
as function of the number of requests in a batch (the batch-size),
which we vary between 10 and 400. For this experiment, we use a
system with 32 available replicas, of which one replica has failed.

We use Figures 9(i) and 9(j) to illustrate, for each consensus
protocol, the throughput and average latency attained by the sys-
tem. For each protocol, increasing the batch-size also increases
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Figure 9: Evaluating system throughput and average latency incurred by PoE and other bft protocols.

throughput, while decreasing the latency. This happens as larger
batch-sizes require fewer consensus rounds to complete the exact
same set of requests, reducing the cost of ordering and executing
the transactions. This not only improves throughput, but also
reduces client latencies as clients receive faster responses for
their requests. Although increasing the batch-size reduces the
number of consensus rounds, the large message size causes a
proportional decrease in throughput (or increase in latency). This
is evident from the experiments at higher batch-sizes: increas-
ing the batch-size beyond 100 gradually curves the throughput
plots towards a limit for PoE, Pbft and SBFT. For example, on
increasing the batch size from 100 to 400, PoE and Pbft see an
increase in throughput by 60% and 80%, respectively, while the
gap in throughput reduces from 43% to 25%. As in the previous
experiments, Zyzzyva yields a significantly lower throughput as
it cannot handle failures. In case of HotStuff, an increase in
batch size does increases its throughput but due to high scaling
of the graph this change seems insignificant.

5.6 Disabling Out-of-Ordering

Until now,we allowed protocols like Pbft, PoE, SBFT andZyzzyva
to process requests out-of-order. As a result, these protocols
achieve much higher throughputs than HotStuff, which is re-
stricted by its sequential primary-rotation model. In Figures 9(k)
and 9(l), we evaluate the performance of the protocols when there
are no opportunities for out-of-ordering.

In this setting, we require each client to only send its request
when it has accepted a response for its previous query. As Hot-
Stuff pipelines its phases of consensus into a four-phase pipeline,
so we allow it to access four client requests (each on a distinct
subsequent replica) at any time. As expected,HotStuff performs
better than all other protocols at the expense of a higher latency
as it rotates primaries at the end of each consensus, which allows
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Figure 10: System throughput under instance failures (n =

32). (a) replicas detect failure of primary and broadcast

vc-reqest; (b) replicas receives vc-reqest from oth-

ers; (c) replicas receives nv-propose from new primary;

(d) state recovery;

it to pipeline four requests. However, notice that once out-of-
ordering is disabled, throughput drops from 200 ktransactions/s
to just under a few thousand transactions/s. Hence, from a prac-
tical standpoint, out-of-ordering is simply crucial. Further, the
difference in latency of different protocols is quite small, and
the visible variation is a result of graph scaling while the actual
numbers are in the range of 20ms–40ms.

5.7 Primary Failure–View Change

In Figure 10, we study the impact of of a benign primary failure on
PoE and Pbft. To recover from a primary failure, backup replicas
run the view-change protocol. We skip illustrating view-change
plots for Zyzzyva and SBFT as they already face severe reduction
in throughput for a single backup failure. Further, Zyzzyva has
an unsafe view-change algorithm and SBFT’s view-change algo-
rithm is no less expensive than Pbft. For HotStuff, we do not
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Figure 11: System throughput and average latency in-

curred by PoE and Pbft in a WAN deployment of five re-

gions under a single failure. In the largest deployment, we

have 140 replicas spread equally over these regions.

show results as it changes primary at the end of every consen-
sus. Although single primary protocols face a momentary loss
in throughput during view-change, these protocols easily cover
this gap through their ability to process messages out-of-order.

For our experiments, we let the primary replica complete con-
sensus for 10 s (or around a million transactions) and then fail.
This causes clients to timeout while waiting for responses for
their pending transactions. Hence, these clients forward their
requests to backup replicas.

When a backup replica receives a client request, it forwards
that request to the primary and waits on a timer. Once a replicas
timeouts, it detects a primary failure and broadcasts a vc-reqest
message to all other replicas—initiate view-change protocol (a).
Next, each replica waits for a new view message from the next
primary. In the meantime, a replica may receive vc-reqestmes-
sages from other replicas (b). Once a replica receives nv-propose
message from the new primary (c), it moves to the next view.

5.8 WAN Scalability

In this section, we use Figure 11 to illustrate the throughputs and
latencies for different PoE and Pbft deployments on a wide-area
network in the presence of a single failure. In specific, we deploy
clients and replicas across five locations across the globe: Oregon,
Iowa, Montreal, the Netherlands, and Taiwan. Next, we vary the
number of replicas from 20 to 140 by equally distributing these
replicas across each region.

These plots affirm our existing observations that PoE out-
performs existing state-of-the-art protocols and scales well in
wide-area deployments. In specific, PoE achieves up to 1.41×
higher throughput and incurs 28.67% less latency than Pbft. We
skip presenting plots for SBFT, HotStuff and Zyzzyva due to
their low throughputs under failures.

5.9 Simulating bft Protocols

To further underline that the message delay and not bandwidth
requirements becomes a determining factor in the throughput
of protocols in which the primary does not propose requests
out-of-order, we performed a separate simulation of the maxi-
mum performance of PoE, Pbft, and HotStuff. The simulation
makes 500 consensus decisions and processes all message send
and receive steps, but delays the arrival of messages by a pre-
determined message delay. The simulation skips any expensive
computations and, hence, the simulated performance is entirely
determined by the cost of message exchanges. We ran the sim-
ulation with n ∈ {4, 16, 128} replicas, for which the results can
be found in Figure 12, first three plots. As one can see, if band-
width is not a limiting factor, then the performance of protocols
that do not propose requests out-of-order will be determined by

the number of communication rounds and the message delay.
As both Pbft and PoE have one communication round more
than the two rounds of HotStuff, their performance is roughly
two-thirds that of HotStuff, this independent of the number of
replicas or the message delay. Furthermore, doubling message de-
lay will roughly half performance. Finally, we also measured the
maximum performance of protocols that do allow out-of-order
processing of up to 250 consensus decisions. These results can be
found in Figure 12, last plot. As these results show, out-of-order
processing increases performance by a factor of roughly 200,
even with 128 replicas.

6 RELATED WORK

Consensus is an age-old problem that received much theoretical
and practical attention (see, e.g., [34, 39, 45]). Further, the use
of rollbacks is common in distributed systems. E.g., the crash-
resilient replication protocol Raft [45] allows primaries to re-
write the log of any replica. In a Byzantine environment, such an
approach would delegate too much power to the primary, as they
can maliciously overwrite transactions that need to be preserved.

The interest in practical bft consensus protocols took off
with the introduction of Pbft [9]. Apart from the protocols that
we already discussed, there are some interesting protocols that
achieve efficient consensus by requiring 5f + 1 replicas [1, 14].
However, these protocols have been shown to work only in the
cases where transactions are non-conflicting [38]. Some other bft
protocols [10, 50] suggest the use of trusted components to reduce
the cost of bft consensus. These works require only 2f+1 replicas
as the trusted component helps to guarantee a correct ordering.
The safety of these protocols relies on the security of trusted
component. In comparison, PoE does (i) not require extra replicas,
(ii) not depend on clients, (iii) not require trusted components,
and (iv) not need the two phases of quadratic communication
required by Pbft.

As a promising future direction, Castro [9] also suggested ex-
ploring speculative optimizations for Pbft, which he referred
to as tentative execution. However, this lacked: (i) formal de-
scription, (ii) non-divergence safety property, (iii) specification
of rollback under attacks, (iv) re-examination of the view change
protocol, and (v) any actual evaluation.

Consensus for Blockchains: Since the introduction of Bit-
coin [42], the well-known cryptocurrency that led to the coining
of the term blockchain, several new bft consensus protocols
that cater to cryptocurrencies have been designed [33, 37]. Bit-
coin [42] employs the Proof-of-Work [33] consensus protocol
(PoW), which is computationally intensive, achieves low through-
put, and can cause forks (divergence) in the blockchain: separate
chains can exist on non-faulty replicas, which in turn can cause
double-spending attacks [31]. Due to these limitations, several
other similar algorithms have been proposed. E.g., Proof-of-Stake
(PoS) [37], which is design such that any replica owning 𝑛% of
the total resources gets the opportunity to create 𝑛% of the new
blocks. As PoS is resource driven, it can face attacks where repli-
cas are incentivized to work simultaneously on several forks of
the blokchain, without ever trying to eliminate these forks.

There are also a set of interesting alternative designs such as
ConFlux [40], Caper [3] and MeshCash [6] that suggest the use of
directed acyclic graphs (DAGs) to store a blockchain to improve
the performance of Bitcoin. However, these protocols either rely
on PoW or Pbft for consensus.

Meta-protocols such as RCC [28] and RBFT [5] run multiple
Pbft consensuses in parallel. These protocols also aim at re-
moving dependence on the consensus led by a single primary.
A recent protocol, PoV [41], provides fast bft consensus in a
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Figure 12: The simulated number of consensus decisions PoE, Pbft, andHotStuff can make as a function of the latency.

Only the protocols in the right-most plot and marked with ∗ process requests out-of-order processing.

consortium architecture. PoV does this by restricting the ability
to propose blocks among a subset of trusted replicas.

PoE does not face the limitations faced by PoW [33] and
PoS [37]. The use of DAGs [3, 6, 40], and sharding [15, 52] is or-
thogonal to the design of PoE. Hence, their use with PoE can reap
further benefits. Further, PoE can be employed by meta-protocols
and does not restrict consensus to any subset of replicas.

7 CONCLUSIONS

We present Proof-of-Execution (PoE), a novel Byzantine fault-
tolerant consensus protocol that guarantees safety and liveness
and does so in only three linear phases. PoE decouples ordering
from execution by allowing replicas to process messages out-of-
order and execute client-transactions speculatively. Despite these
properties, PoE ensures that all the replicas reach a single unique
order for all the transactions. Further, PoE guarantees that if a
client observes identical results of execution from a majority of
the replicas, then it can reliably mark its transaction committed.
Due to speculative execution, PoE may require replicas to revert
executed transactions, however. To evaluate PoE’s design, we
implement it in our ResilientDB fabric. Our evaluation shows
that PoE achieves up-to-80% higher throughputs than existing
bft protocols in the presence of failures.
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ABSTRACT
Arrays are very important data structures for many data-centric
and scientific applications. One of the most effective represen-
tations of large dense arrays in a distributed setting is a block
array, such as a tiled matrix, which is a distributed collection of
non-overlapping dense array blocks. Although there are many
linear algebra libraries for machine learning that support dis-
tributed block arrays and provide an optimal implementation for
many array operations, these libraries do not support ad-hoc ar-
ray programming and customized storage structures. Imperative
programs with loops and array indexing, on the other hand, are
more powerful as they allow arbitrary array computations but
are hard to parallelize and convert to distributed programs.

Our goal is to provide an SQL-like abstraction for data-parallel
distributed array computations that is expressive enough to cap-
ture a large class of array computations and can be compiled to
efficient data-parallel distributed code. Our abstraction is a mono-
lithic array construction in the form of an array comprehension
that is as expressive as SQL by supporting a group-by syntax
that allows us to capture many array computations in declarative
form. We present rules for translating array comprehensions on
block arrays to data-parallel distributed code that can run on
Apache Spark. We describe a comprehensive set of effective op-
timizations that can produce very efficient translations, such as
the optimal block matrix multiplication algorithm, even though
they are oblivious to linear algebra operations. Finally, we justify
our claims by evaluating the performance of our generated code
on Apache Spark relative to Spark MLlib.

1 INTRODUCTION
Much of the data used in data-centric applications come in the
form of arrays, such as vectors, matrices, and tensors. In the early
days of numerical computing, most of the array programming
was done in an imperative loop-based language, such as Fortran
or C, using array indexing to access and update array elements
incrementally, one at a time. Although loop-based programs are
efficient when they run on a single processor, they are hard to
parallelize and reason about. Currently, most array program-
ming is done using vectorization languages, such as MATLAB, R,
and NumPy, that allow programmers to write high-level array
code that closely resembles mathematical formulas. These lan-
guages provide highly tuned array operations that are applied to
whole arrays instead of individual elements, thus making loops
inessential. Moreover, they hide the implementation details and
optimize performance by choosing an implementation (a kernel)
for an array operation from a variety of build-in array storages
and algorithms. Internally, these languages rely on numerical
libraries, such as BLAS [9], for efficient linear algebra computa-
tions. These libraries, which are also an integral part of many
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machine learning (ML) sytems, such as TensorFlow [1], PyTorch,
and MLlib [5], implement basic array operations efficiently using
multicore parallelism and GPU acceleration. Many array oper-
ations provided by the vectorization languages are overloaded
to work on a variety of array storage structures, thus offering
an implementation-independent view to the programmer. Given
that there are numerous storage structures for arrays, such as
dense, tiled, and compressed sparse matrices, each library op-
eration must have numerous implementations, especially those
operations that operate on multiple arrays, such as matrix mul-
tiplication. As a result, this code specialization based on array
implementation is hard to extend with user-defined storage struc-
tures and algorithms. This is particularly true for distributed
arrays, which have to be partitioned into blocks and distributed
across compute nodes. In that case, not only there are numerous
ways to implement these blocks as arrays, but there are also nu-
merous ways to partition the arrays into blocks. A better solution
would have been to express array computations in a high-level
declarative language for array computations that is expressive
enough to capture most array programs and is supported by
a translation scheme that separates the specification from the
implementation and generates high-quality code.

This problem of sacrificing expressiveness and extensibility for
efficiency incurred from the library approach is exacerbated by
the need to process large arrays that do not fit in memory. Given
that the accuracy of the data analysis and ML models depends
on the data size, current data-centric applications must analyze
enormous amounts of array data using complex mathematical
data processing methods. In recent years, new frameworks in
distributed Big Data analytics have become essential tools for
large-scale machine learning and scientific discoveries. These
systems, which are also known as Data-Intensive Scalable Com-
puting (DISC) systems, have revolutionized our ability to analyze
Big Data. Unlike High-Performance Computing (HPC) systems,
which are mainly designed for shared-memory architectures,
DISC systems are distributed data-parallel systems on clusters
of shared-nothing computers connected through a high-speed
network. Compared to low-level distributed-memory communi-
cation paradigms, such as MPI, DISC systems automate many
aspects of distributed computing, such as fault tolerance, which
is important for long-running Big Data analysis on thousands of
computers, scalability, data partitioning and distribution, and task
scheduling and management. One of the earliest DISC systems is
Map-Reduce [8], which was introduced by Google and later be-
came popular as an open-source software with Apache Hadoop.
Recent systems, such as Apache Spark [4] and Apache Flink [3],
go beyond Map-Reduce by maintaining dataset partitions in the
memory of the compute nodes. All these systems use data shuf-
fling to exchange data among compute nodes, which takes place
implicitly between the map and reduce stages in Map-Reduce
and during group-bys and joins in Spark and Flink. Essentially,
all data exchanges across compute nodes are done in a controlled
way using special operations, which implement data shuffling by
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distributing data based on some key, so that data associated with
the same key are processed together by the same compute node.

The goal of this paper is to provide a well-formed abstraction
for data-parallel distributed array computations “without regret”,
that is, an abstraction that is declarative so that we can reason
about it, is expressive enough to capture a large class of array
computations, and can be compiled to efficient data-parallel dis-
tributed code. Our main construct is the array comprehension,
which is a monolithic array construction in the form of a list
comprehension. List comprehensions are found in many mod-
ern programming languages, such as Python, Scala, and Haskell.
Unlike regular list comprehensions though, our array comprehen-
sions are as expressive as SQL queries by supporting a group-by
syntax that allows us to capture many array computations in
declarative form without using array indexing which is hard to
reason about. An array comprehension can access and correlate
multiple arrays by traversing their elements one-by-one and can
construct a new array in one shot by mapping array indices to
values, which are derived from the elements of the input arrays.
Array comprehensions can capture many linear algebra oper-
ations, including inner and outer products of vectors, matrix
addition and multiplication, matrix rotation and transpose, array
slicing and concatenation. More complex array operations, such
as matrix inverse and LU decomposition, can be coded using
array comprehensions inside loops.

1.1 Highlights of our Approach
This paper presents a generic and customizable system that trans-
lates abstract array programs to high-performance distributed
code that can run on current DISC platforms. When designing
storage structures for arrays in a distributed setting, there are
many choices to consider, each exhibiting different performance
characteristics for various array computations. One example
of such a storage method is organizing contiguous array ele-
ments into dense non-overlapping blocks of fixed capacity. Our
framework uses a two-layer approach where array programs
are expressed in a powerful high-level syntax on abstract arrays,
while these abstract arrays are mapped to customized storage
structures based on user-defined type mappings, thus separating
specification from implementation.

An abstract array with dimensionality 𝑖 in our framework
has type array𝑖[T], for an arbitrary type 𝑇 . The most common
abstract arrays are vector[T], equal to array1[T], and matrix[T],
equal to array2[T]. An abstract array is represented as an associ-
ation list of key-value pairs in which the key contains the array
indices. This array representation is also known as a sparse rep-
resentation or a coordinate format. For example, a matrix 𝑀 of
type matrix[Double] is represented as an association list of type
List[((Int,Int),Double)] so that an element𝑀𝑖 𝑗 is represented by
the key-value pair ((𝑖, 𝑗), 𝑀𝑖 𝑗 ), which associates the indices 𝑖
and 𝑗 with the value𝑀𝑖 𝑗 . This association list can be sparse (i.e.,
some elements may be missing) if the array is sparse. A concrete
implementation of an array (i.e., its storage structure) is specified
by two customized functions: the sparsifier, which converts the
storage structure to an association list, and the builder, which
constructs the storage structure from the association list. These
two functions, which are inverse of each other, are used by our
translator to transform any operation 𝑓 (𝑥1, . . . , 𝑥𝑛) on abstract
arrays 𝑥𝑖 to an operation on their concrete storage structures
𝑐𝑖 by up-coercing the storages 𝑐𝑖 using the sparsifiers 𝑠𝑖 and
down-coercing the abstract result using the builder 𝑏, that is,

Array Comprehension� �
V = [ (i,+/m) | ((i,j),m)←M,

group by i ]
 	
𝑖 𝑗 𝑀𝑖 𝑗

M

𝑖 𝑉𝑖

V

M: List[((Int,Int),Double)]
V: List[(Int,Double)]

⇒

Spark Code� �
V = M.map { case ((I,J),A)

⇒ { val B = Array.fill(N)(0.0);
for { i← (0 until N).par;

j← 0 until N }
B(i) += A(i,j);

(I,B) } }
.reduceByKey( addVectors )
 	

M: RDD[((Int,Int),Matrix[Double])]
V: RDD[(Int,Vector[Double])]

Figure 1: Code generation for 𝑉𝑖 =
∑

𝑗 𝑀𝑖 𝑗

𝑏 (𝑓 (𝑠1 (𝑐1), . . . , 𝑠𝑛 (𝑐𝑛))). This layered approach introduces levels
of indirection and generates superfluous intermediate structures
(the abstract arrays 𝑥𝑖 ) that need to be removed. In our frame-
work, this is accomplished by fusing these functions into one
function that represents the concrete code so that the resulting
program builds the output structures directly and works on the
storage structures 𝑐𝑖 without creating the association lists 𝑥𝑖 .

Our language for expressing abstract array programs uses a
monolithic array construction in the form of an array comprehen-
sion that is as expressive as SQL by supporting a group-by syntax
that allows us to capture many array computations in declarative
form. Comprehensions with a group-by syntax were first intro-
duced by Wadler and Peyton Jones [24] and have been used as
the formal calculus for the DISC query languages MRQL [10] and
DIQL [12]. For example, the following comprehension returns
the number of employees in each department:

[ (d.name,count(e)) | e← Employees, d← Departments,
e.dno == d.dnumber, group by d.name ].

The formal semantics of comprehensions, the translation of com-
prehensions to an algebra, and a query optimization framework
are described in our earlier work [10, 12]. Array comprehensions
are actually list comprehensions in which the array storages used
in a comprehension are implicitly converted to association lists
by array sparsifiers and the list returned by the comprehension
is converted to an array storage by an array builder.

Consider for example the following array comprehension that
constructs a vector𝑉 of size 𝑛 from a matrix𝑀 of size 𝑛×𝑚 such
that 𝑉𝑖 =

∑
𝑗 𝑀𝑖 𝑗 , where both the matrix 𝑀 and the resulting

vector 𝑉 are stored in memory:

V = vector(n)[ ( i, +/m ) | ((i,j),m)←M, group by i ], (1)

which constructs the entire array V in one shot. The matrix M
of type matrix[Double] is implicitly converted to an association
list of type List[((Int,Int),Double)]. The generator ((i,j),m)←M
traversesM one element at a time and each time the traversed
element is pattern-matched with the pattern ((i,j),m), which binds
the pattern variables i, j, and m to the the corresponding compo-
nents of this element. A group-by operation in a comprehension
lifts each pattern variable defined before the group-by (except
the group-by keys) from some type 𝑡 to a bag of 𝑡 , indicating that
each such variable must now contain all the values associated
with the same group-by key value. Consequently, after we group
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by i, the pattern variables that are not used in the group-by key,
j and m, are now lifted to lists that contain all their values asso-
ciated with a certain group-by key i. The term +/m adds up all
the bindings of the variable m associated with the key i. That is,
it calculates

∑
𝑗 𝑀𝑖 𝑗 . Finally, the array builder, vector(n)(L), con-

verts the association list L of type List[(Int,Double)] to a vector
of type vector[Double] of size n.

In Query (1), both matrix𝑀 and the query result 𝑉 are stored
in memory. However, in our framework, the storage of these
arrays can be customized by using a different sparsifier for 𝑀
and a different builder for the result. More specifically, we want
to translate array comprehensions to efficient distributed pro-
grams over block arrays, which are distributed bags of dense
array chunks. In Spark [4], we can implement a tiled matrix
as a distributed collection (an RDD) of fix-sized square tiles
of type RDD[((Int,Int),Array[Double])], where each tile ((i,j),A)
has coordinates i and j and values stored in the dense matrix
A, which has a fixed size N∗N, for some constant N. Similarly,
we can implement the query result 𝑉 as a block vector of type
RDD[(Int,Array[Double])], where each block (i,B) has a coordi-
nate i and values stored in the vector B of size N. Then, Query (1)
can be rewritten as:

V = tiled[ ( i, +/m ) | ((i,j),m)←M, group by i ]. (2)

For this query, the implicit sparsifier that converts a tiled matrix
M of type RDD[((Int,Int),Array[Double])] to an association list
of type List[((Int,Int),Double)] is:

[ ( ( ii∗N+i, jj∗N+j ), A(i,j) )
| ((ii,jj),A)←M, i← 0 until N, j← 0 until N ],

where the index variable i in ‘i← 0 until N’ iterates from 0 to
N−1. Here, ii and jj are tile coordinates, and i and j are indices
within a tile. That is, for each tile A with coordinates ii and jj
read from the tiled matrix M, this list comprehension constructs
𝑁 ∗ 𝑁 elements from the data stored in A, so that each element
has row coordinate ii∗N+i, column coordinate jj∗N+j, and value
A(i,j). On the other hand, the builder tiled(L), which constructs a
block array of type RDD[(Int,Array[Double])] from the list L of
type List[(Int,Double)], is:

rdd[ ( i/N, vector(N)(w) )
| (i,v)← L, let w = ( i%N, v ), group by i/N ],

where the builder rdd builds an RDD from a list. That is, this
comprehension groups the elements (i,v) of L by i/N (the tile
coordinate) so that all N pairs (i,v) with the same i/N go into
the same tile. After the group-by, the value of w is lifted to a
list that contains all the values (i%N,v) that belong to the same
tile at location i/N. The builder vector(N)(w), used in Query (1),
converts the list w to a vector, which is an array block of size N.

Like array queries, sparsifiers and builders are expressed as
comprehensions, but unlike array queries, they use efficient ar-
ray indexing. This implicit coercion from stored arrays to lists
and the building of stored arrays from the results of a compre-
hension introduce levels of indirection and generate superfluous
intermediate structures that need to be removed. This is done by
unnesting nested comprehensions into flat comprehensions. As
we will show in this paper, after some simple transformations,
Query (2) is optimized to the Spark code shown on the right of
Figure 1. That is, from every tile A inM with tile coordinates I
and J, a new vector block B with a coordinate I is constructed.
The tile processing, which takes place at each compute node, is

parallelized using the the Scala’s par method [20]. Finally, vec-
tor blocks with the same coordinate are reduced pairwise using
vector addition, addVectors.

In this paper, we present a small set of generic rules for trans-
lating array comprehensions to efficient Spark RDD programs
that operate on block arrays. These rules are not based on spe-
cific array operations but can apply to many array processing
programs that can be expressed as array comprehensions. Matrix
multiplication, for example, is translated to an optimal block ma-
trix multiplication algorithm by one generic rule that recognizes
a certain class of group-by-joins (joins between two datasets fol-
lowed by a group-by and an aggregation), and translates them to
a special block group-by-join algorithm. Our system, called SAC
(Scalable Array Comprehensions), has been implemented using
Scala’s compile-time reflection and macros. It translates array
comprehensions to Scala code that calls Spark RDD operations
whose functional arguments use the Scala’s Parallel Collections
library for multicore parallelism [20].

In an earlier work [13], we have presented a framework, called
DIABLO (a Data-Intensive Array-Based Loop Optimizer), for
translating array-based loops to array comprehensions, which
in turn are translated to Spark programs expressed in the Spark
Core API. The DIABLO input language resembles the syntax
of some loop-based imperative languages, such as C and Java.
DIABLO can translate any array-based loop expressed in this
loop-based language to an equivalent Spark program as long
as this loop satisfies some simple syntactic restrictions, which
are more permissive than the recurrence restrictions imposed
by many current systems. Unlike SAC, DIABLO generates Spark
programs that operate on arrays in the coordinate format. In a
distributed setting, arrays stored in the coordinate format are
known to be less efficient than block arrays because 1) they oc-
cupy more space and therefore require more data shuffling to
evaluate complex array operations, and 2) they are less amenable
to multicore parallelism at each compute node since they store
the array elements in random order. Furthermore, the focus of
DIABLO is in the translation of imperative programs to array
comprehensions, while the focus of SAC is in the translation
of array comprehensions to efficient code on customizable ar-
ray storages, with an emphasis on block arrays. That is, SAC
supplements DIABLO and can be used as a drop-in back-end
replacement for DIABLO to make it able to work on block arrays.
Finally, the work reported in this paper generalizes our earlier
work on extending MRQL with array-based computations [11].
It extends the MRQL query optimizer with a GroupByJoin physi-
cal operator that generalizes the SUMMA parallel algorithm for
matrix multiplication [14], an idea also used in Section 5.4 in the
context of block arrays. However, unlike our current framework,
this system too is based on arrays stored in the coordinate format.

The contributions of this paper are summarized as follows:

• We introduce a novel comprehension syntax for array
computations that can capture many array computations
in declarative form and is independent of array storage.
• We describe a translation scheme that translates array
comprehensions to efficient imperative programs with
memory effects (Sections 2 and 3).
• We extend this translation scheme to generate efficient
Spark code from array comprehensions (Section 4).
• We introduce special type transformations to translate
comprehensions on block arrays to efficient Spark code
that reduces the amount of data shuffling (Section 5).
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Expression:
𝑒 ::= [ 𝑒 | 𝑞 ] comprehension
| ⊕/𝑒 reduction using ⊕
| 𝑣 [𝑒1, . . . , 𝑒𝑛] array indexing 𝑛 ≥ 1
| . . . other expression

Qualifiers:
𝑞 ::= 𝑞1, . . . , 𝑞𝑛 𝑛 ≥ 0

Qualifier:
𝑞 ::= 𝑝 ← 𝑒 generator

| let𝑝 = 𝑒 local declaration
| 𝑒 filtering
| group by𝑝 [ : 𝑒 ] group-by

Pattern:
𝑝 ::= 𝑣 pattern variable

| (𝑝1, . . . , 𝑝𝑛) tuple 𝑛 ≥ 0

Figure 2: Language syntax

[ 𝑒1 | 𝑝 ← 𝑒2, 𝑞 ] = 𝑒2 .flatMap(𝜆𝑝. [ 𝑒1 | 𝑞 ]) (4)
[ 𝑒1 | let 𝑝 = 𝑒2, 𝑞 ] = let 𝑝 = 𝑒2 in [ 𝑒1 | 𝑞 ] (5)

[ 𝑒1 | 𝑒2, 𝑞 ] = if (𝑒2) then [ 𝑒1 | 𝑞 ] else Nil (6)
[ 𝑒 | ] = [ 𝑒 ] (7)

Figure 3: Desugaring rules

• We evaluate the performance of our system relative to
Spark’s MLlib.linalg library (Section 6). Based on these
results, SAC is up to 6 times faster than MLlib for matrix
multiplication and up to 3 times faster than MLlib for
matrix factorization.

2 SYNTAX AND SEMANTICS OF ARRAY
COMPREHENSIONS

Figure 2 describes the syntax of our language and Figure 3 gives
the desugaring rules, which are based on standard methods for
translating list comprehensions [23]. The meaning, desugaring
rules, and code generation for the group-by syntax are given in
Section 3.

Flattening nested comprehensions that do not have a group-by
qualifier is done using the following rule:

[ 𝑒1 | 𝑞1, 𝑝 ← [ 𝑒2 | 𝑞3 ], 𝑞2 ]

= [ 𝑒1 | 𝑞1, 𝑞3, let 𝑝 = 𝑒2, 𝑞2 ] (3)

for any sequence of qualifiers 𝑞1, 𝑞2, and 𝑞3. It may require re-
naming the variables in [ 𝑒2 | 𝑞3 ] before we apply this rule to
prevent variable capture.

As explained in Section 1.1, abstract arrays in our framework
are represented as association lists that uniquely map array in-
dices to values. These abstract representations are mapped to
concrete storage structures with the help of a pair of customized
functions, a sparsifier and a builder. Then, array comprehensions
on abstract arrays are translated to efficient concrete programs
on storage structures based on these type mappings. In this and
the following section, we describe this program translation in
more detail using one specific type mapping that stores a ma-
trix in a flat vector in row-major order. Although this storage

structure is not a distributed tiled array, which is the focus of
this paper, this example is important for two reasons: First, it
illustrates our program translation process in detail using a sim-
pler storage. Second, it is useful for translating comprehensions
on block arrays to Spark code (described in Sections 4 and 5)
because it shows how the code for tile operations is generated,
given that a tile is a matrix.

Consider a matrix 𝑀 of type Matrix[T] stored in row-major
order as a triple (n,m,V) of type (Int,Int,Array[T]), where n and
m are the matrix dimensions and V is the vector that contains
the matrix elements in row-major order. The following sparsifier
converts the storage S of type (Int,Int,Array[T]) to the abstract
representation of the matrix𝑀 , which is of type List[((Int,Int),T)]:

def sparsify[T] ( S: (Int,Int,Array[T]) ): List[((Int,Int),T)]
= [ ((i,j),A(i∗n+j)) | let (n,m,A) = S, i← 0 until n, j← 0 until m ],

where A(i) is array indexing in Scala. The builder matrix(n,m) L
takes two groups of parameters. The n and m parameters spec-
ify the matrix dimensions, while L is the association list to be
converted to a flat vector that contains the matrix values in row-
major order:

def matrix[T] ( n: Int, m: Int )
( L: List[((Int,Int),T)] ): (Int,Int,Array[T])

= { val V = Array.ofDim[T](n∗m);
[ V(i∗n+j) = v | ((i,j),v)← L, i≥0, i<n, j≥0, j<m ];
(n,m,V) },

whereArray.ofDim[T](n) creates a new array of size n andV(i) = a
is an assignment that updates V(i). The sparsifier function is al-
ways named ‘sparsify’ because, as we will see next, it is implicitly
embedded in the code by the compiler by looking at the code type,
while the builder must have a unique name or type signature
since all builders transform association lists. Nevertheless, the
builder too can be inferred by the compiler in certain assignments,
such as in the following example. In the following declaration:

var M: matrix[Double]
= matrix(n,m)[ ((i,j),random()) | i← 0 until n, j← 0 until m ];

the builder matrix(n,m) is required because the M declaration
specifies the abstract type, matrix[Double], but not the storage.
However, in the following assignment:

M = [ ((j,i),m+1) | ((i,j),m)←M, m > 10 ];

the builder can be inferred to be matrix(n,m), since the compiler
can infer the storage type ofM.

As a running example to illustrate code generation, consider
the addition of two matricesM and N of size 𝑛 ×𝑚, expressed as
follows using array comprehensions:

matrix(n,m)[ ((i,j),a+b) | ((i,j),a)←M, ((ii,jj),b)← N, (8)
ii == i, jj == j ].

This query can also be expressed as:

matrix(n,m)[ ((i,j),a+N[i,j]) | ((i,j),a)←M ],

which is translated to Query (8). Basically, an array indexing
𝑉 [𝑒1, . . . , 𝑒𝑛] in a comprehension is transformed by adding the
qualifiers ((𝑘1, . . . , 𝑘𝑛), 𝑘0) ← 𝑉 , 𝑘1 == 𝑒1, . . . , 𝑘𝑛 == 𝑒𝑛 to
the comprehension, where 𝑘0, 𝑘1, . . . , 𝑘𝑛 are fresh variables, and
by replacing 𝑉 [𝑒1, . . . , 𝑒𝑛] with 𝑘0. Without such translation,
array indexing would not be able to map to operations on the
underlying array storage.

Given a generator 𝑝 ← 𝑒 in a comprehension, the compiler
will infer the type of 𝑒 using standard type inference. Then, it will
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search all defined sparsifiers to find one, if exists, that applies to
the type of 𝑒 , and will embed this sparsifier by replacing 𝑒 with
sparsify(𝑒). For Query (8), the compiler will infer the storage
type ofM and N to be (Int,Int,Array[Float]) and then will embed
the right sparsifiers to convert them to association lists, which
for these matrices is the sparsify function defined earlier. Then, it
will inline the code of the sparsifiers and builder and will optimize
the resulting program. This can be done effectively when these
functions are expressed as comprehensions. By expressing these
functions as comprehensions, the optimizer can fuse them with
the array comprehension of the query, resulting to a comprehen-
sion that traverses the array storage directly, without creating the
intermediate lists. Furthermore, unlike array comprehensions,
these functions can and must use array indexing so that the fused
comprehension results to efficient array operations.

In addition to flattening nested comprehensions using Rule (3),
the only optimizations needed are those related to index traver-
sals. More specifically, if two index generators i← 0 until n and
j← 0 until m are related with i==j, then they are fused to one
generator and a let-binding: i← 0 until min(n,m), let j = i.

For Query (8), if for simplicity, the inequalities in thematrix(n,m)
builder are ignored, we have:

matrix(n,m)[ ((i,j),a+b) | ((i,j),a)← sparsify(M),
((ii,jj),b)← sparsify(N),
ii == i, jj == j ]

(if we inline the array builder without the inequalities)
= { val V = Array.ofDim[T](n∗m);
[ V(i∗n+j) = v
| ((i,j),v)← [ ((i,j),a+b) | ((i,j),a)← sparsify(M),

((ii,jj),b)← sparsify(N),
ii == i, jj == j ] ];

(n,m,V) }
(if we unnest the comprehension using Rule (3))

= { val V = Array.ofDim[T](n∗m);
[ V(i∗n+j) = v
| ((i,j),a+b) | ((i,j),a)← sparsify(M),

((ii,jj),b)← sparsify(N),
ii == i, jj == j ];

(n,m,V) }
(if we inline the sparsifiers and rename their variables)

= { val V = Array.ofDim[T](n∗m);
[ V(i∗n+j) = v
| ((i,j),a+b) | ((i,j),a)← [ ((i1,j1),A(i1∗n1+j1))

| let (n1,m1,A) = M,
i1← 0 until n1,
j1← 0 until m1 ],

((ii,jj),b)← [ ((i2,j2),B(i2∗n2+j2))
| let (n2,m2,B) = N,
i2← 0 until n2,
j2← 0 until m2 ],

ii == i, jj == j ];
(n,m,V) }
(if we unnest the comprehension using Rule (3))

= { val V = Array.ofDim[T](n∗m);
[ V(i∗n+j) = v
| let (n1,m1,A) = M,
i1← 0 until n1, j1← 0 until m1,
let (n2,m2,B) = N,

i2← 0 until n2, j2← 0 until m2,
i2 == i1, j2 == j1,
let ((i,j),v) = ((i1,j1),A(i1∗n1+j1)+B(i2∗n2+j2)) ];

(n,m,V) }
(if we merge the array index bounds)

= { val V = Array.ofDim[T](n∗m);
[ V(i∗n+j) = A(i1∗n1+j1)+B(i1∗n2+j1))
| let (n1,m1,A) = M, let (n2,m2,B) = N,
i1← 0 until min(n1,n2), j1← 0 until min(m1,m2) ];

(n,m,V) }

Given that comprehensions over arrays are translated to array in-
dex traversals of type scala.collection.immutable.Range in Scala,
to parallelize the code, the only transformation needed is to
convert the outer index traversal to a parallel traversal of type
scala.collection.parallel.immutable.ParRange. This is done by ap-
plying par, such as i1← (0 until min(n1,n2)).par in our example.

Comprehensions can also be used along with total aggrega-
tions, such as for checking whether a vector V is sorted:

&&/[ v <= w | (i,v)← V, (j,w)← V, j == i+1 ],

which checks if all consecutive elements of V (i.e., 𝑉𝑖 and 𝑉𝑖+1)
are ordered. The builder of ⊕/𝑒 is:
{ var b = 1⊕ ; [ b = (b ⊕ v) | v← 𝑒 ]; b },

where 1⊕ is the zero value of the monoid ⊕. Similar to the matrix
sparsifier, the vector sparsifier is:

def sparsify[T] ( V: Array[T] ): List[(Int,T)]
= [ (i,V(i)) | i← 0 until V.length ].

If we embed the sparsifiers, unfold the builder code, and unnest
the list comprehensions, the array comprehension becomes:

{ var b = true;
[ b = (b && (V(i) <= V(j))) | i← 0 until V.length,

j← 0 until V.length, j == i+1 ];
b },

which is further optimized to:

{ var b = true;
[ b = (b && (V(i) <= V(i+1))) | i← 0 until V.length−1 ];
b },

given that min(V.length,V.length−1) = V.length−1.

3 COMPREHENSIONS WITH A GROUP-BY
Consider the product of two matrices𝑀 and 𝑁 with dimensions
𝑛 × 𝑙 and 𝑙 ×𝑚, respectively, which is equal to a matrix 𝐶 so that
𝐶𝑖 𝑗 =

∑
𝑘 𝑀𝑖𝑘 ∗ 𝑁𝑘 𝑗 . Using our array comprehensions enhanced

with a group-by syntax, matrix multiplication can be expressed
as follows:

matrix(n,m)[ ((i,j),+/v) | ((i,k),a)←M, ((kk,j),b)← N,
kk == k, let v = a∗b, (9)
group by (i,j) ].

This comprehension retrieves the values𝑀𝑖𝑘 and 𝑁𝑘 𝑗 and sets
𝑣 = 𝑀𝑖𝑘 ∗ 𝑁𝑘 𝑗 . After we group the values by the matrix indices 𝑖
and 𝑗 , the variable 𝑣 is lifted to a bag of numerical values𝑀𝑖𝑘 ∗𝑁𝑘 𝑗 ,
for all 𝑘 . Hence, the aggregation +/𝑣 sums up all the values in the
bag 𝑣 , deriving

∑
𝑘 𝑀𝑖𝑘 ∗ 𝑁𝑘 𝑗 for the 𝑖 𝑗 element of the resulting

matrix.
Another example of a group-by comprehension is matrix

smoothing for a matrix 𝑀 , which is a matrix 𝐶 such that 𝐶𝑖 𝑗 =
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1
9
∑
𝑖−1≤𝐼 ≤𝑖+1

∑
𝑗−1≤𝐽 ≤ 𝑗+1𝑀𝐼 𝐽 . That is, 𝐶𝑖 𝑗 is the average value

in the neighborhood of𝑀𝑖 𝑗 :

matrix(n,m)[ ((ii,jj),(+/a)/a.length)
| ((i,j),a)←M,
ii← (i−1) to (i+1), jj← (j−1) to (j+1),
ii >= 0, ii < n, jj >= 0, jj < m,
group by (ii,jj) ],

which also takes care of the boundary cases.
Given a pattern 𝑝 that consists of bound pattern variables,

the qualifier group by 𝑝 in [ 𝑒 | 𝑞1, group by𝑝, 𝑞2 ] groups
every pattern variable in 𝑞1 (except the variables in 𝑝) by the
group-by key 𝑝 into a list that contains all the values of this
variable associated with this group-by key. Furthermore, the
qualifier group by 𝑝 : 𝑒 is syntactic sugar for the qualifiers
let 𝑝 = 𝑒, group by 𝑝 . Group-by qualifiers may appear in mul-
tiple places in a comprehension. For all these cases, only the
pattern variables that precede the group-by qualifier in the same
comprehension must be lifted to lists, and if multiple group-by
qualifiers exist, these variables will have to be lifted multiple
times to nested lists.

Group-by qualifiers are translated to groupBy operations be-
fore a comprehension is translated by the rules in Figure 2. Given
a list 𝑠 of type List[(𝐾,𝑉 )], the operation groupBy(𝑠) groups
the elements of 𝑠 by their first component (the group-by key)
and returns an association list of type Map[𝐾, List[𝑉 ]], which is
implemented as a hash table:

def groupBy[K,V] ( s: List[(K,V)] ): Map[K,List[V]]
= { val m = Map[K,List[V]();
[ m(k) = if (m.contains(k)) m(k):+v else List(v) (10)
| (k,v)← s ];
m }.

Let 𝑣 = (𝑣1, . . . , 𝑣𝑛) be the pattern variables in the sequence
of qualifiers 𝑞1 that are used in the rest of the comprehension
[ 𝑒 | 𝑞2 ] but do not appear in the group-by pattern 𝑝 . Then, the
group-by syntax is translated as follows:

[ 𝑒 | 𝑞1, group by𝑝, 𝑞2 ]
= [ 𝑒 | (𝑝, 𝑠) ← groupBy([ (𝑝, 𝑣) | 𝑞1 ]), (11)

let 𝑣 = unzip(𝑠), 𝑞2 ],

where unzip(𝑠) = ([ 𝑣1 | 𝑣 ← 𝑠 ], . . . , [ 𝑣𝑛 | 𝑣 ← 𝑠 ]). That is,
each pattern variable 𝑣𝑖 in 𝑣 is lifted to a list that contains all the
values of 𝑣𝑖 in the current group.

For example, the matrix multiplication in Query (9) has the
following meaning:

matrix(n,m)[ ((i,j),(+/v)) | ((i,j),s)← groupBy(S), let v = s ],

where S is:

[ ((i,j),v) | ((i,k),a)←M, ((kk,j),b)← N, kk == k, let v = a∗b ]

since the only variable lifted is v with v = [ v | v← s ], which is
equal to s.

Array comprehensions with a group-by syntax allow more
array operations to be expressed declaratively without having to
use array indexing and loops. They also make comprehensions
equivalent to basic SQL queries. As we will show, although it has
pure semantics, the group-by syntax makes it easier to recognize
certain code patterns in a comprehension and translate them
to efficient code. For example, we will see next that the matrix
multiplication in Query (9) is translated to the following code,

which is as efficient as a program hand-coded in an imperative
language:

{ val V = Array.ofDim[T](n∗m)(0.0);
[ V(i∗n+j) += A(i∗n+k)∗B(k∗l+j)
| let (n,l,A) = M, let (ll,m,B) = N,
i← 0 until n, k← 0 until l, j← 0 until m ];

(n,m,V) },

which is equivalent to a triple loop with body 𝑉𝑖 𝑗 += 𝐴𝑖𝑘 × 𝐵𝑘 𝑗 .
Consider the general comprehension [ 𝑒 | 𝑞1, group by 𝑝, 𝑞2 ].

To simplify our translation rules, we rewrite this term to
[ 𝑧 | 𝑞1, group by 𝑝, 𝑧 ← [ 𝑒 | 𝑞2 ] ]. Let V = {𝑣1, . . . , 𝑣𝑛}
be the set of variables that are lifted by the group-by but are not
lifted or redefined in 𝑞2 and let 𝑣 = (𝑣1, . . . , 𝑣𝑛). Recall that these
variables are lifted to lists that contain all the values of these
variables associated with the group-by key 𝑝 . A lifted variable
may occur any number of times in the rest of the comprehension,
[ 𝑒 | 𝑞2 ]. Let𝑤1, . . . ,𝑤𝑚 be the occurrences of the lifted variables
in [ 𝑒 | 𝑞2 ]. A lifted variable𝑤𝑖 ∈ V may occur in [ 𝑒 | 𝑞2 ] as a
term that takes one of the following forms:
• ⊕𝑖/𝑤𝑖 , for some monoid ⊕𝑖 , or
• ⊕𝑖/𝑤𝑖 .map(𝑔𝑖 ), for some monoid ⊕𝑖 and a function 𝑔𝑖 , or
otherwise
• 𝑤𝑖 , which is equal to ++/𝑤𝑖 .map(𝑥 ⇒ 𝐿𝑖𝑠𝑡 (𝑥)),

where the last case is used when the first two do not match.
All these cases can be generalized to ⊕𝑖/𝑤𝑖 .map(𝑔𝑖 ), for some
monoid ⊕𝑖 and function 𝑔𝑖 . Hence, we can represent the term
after group-by as follows:

[ 𝑒 | 𝑞2 ] = 𝑓 (⊕1/𝑤1 .map(𝑔1), . . . , ⊕𝑛/𝑤𝑚 .map(𝑔𝑚))
= 𝑓 (⊗/zip(𝑤) .map(𝑔)),

for some term function 𝑓 , where 𝑤 = (𝑤1, . . . ,𝑤𝑚), 𝑔 = 𝑔1 ×
· · · × 𝑔𝑚 , and ⊗ = ⊕1 × · · · × ⊕𝑚 (a product of monoids1). Then,
based on the Rule (11) and the implementation of groupBy in
definition (10), we have:

[ 𝑒 | 𝑞1, group by 𝑝, 𝑞2 ]
= [ 𝑧 | 𝑞1, group by 𝑝, 𝑧 ← 𝑓 (⊗/zip(𝑤) .map(𝑔)) ]
= { val𝑀 = Map(); (12)
[𝑀 (𝑝) = if (𝑀 .contains(𝑝))𝑀 (𝑝) ⊗ 𝑔(𝑤) else 𝑔(𝑤) | 𝑞1 ];
[ 𝑧 | 𝑝 ←𝑀 .keys, 𝑧← 𝑓 (𝑀 (𝑝)) ] }

Consider now an array comprehension of the form:

matrix(𝑛,𝑚)[ ((𝑖, 𝑗), 𝑒) | 𝑞1, group by (𝑖, 𝑗), 𝑞2 ],
Notice that, here, the matrix index (𝑖, 𝑗) in the comprehension
head is the group-by key. In the implementation (12) of an array
comprehension with group-by, we can now use arrays of size
n∗m, one array for each aggregation, instead of a Map:

matrix(𝑛,𝑚)[ ((𝑖, 𝑗), 𝑒) | 𝑞1, group by (𝑖, 𝑗), 𝑞2 ]
= matrix(𝑛,𝑚)[ 𝑧 | 𝑞1, group by (𝑖, 𝑗),

𝑧 ← 𝑓 (⊕1/𝑤1 .map(𝑔1), . . . , ⊕𝑛/𝑤𝑛 .map(𝑔𝑛)) ]
= { val 𝑉1 = Array.fill(𝑛 ∗𝑚) (1⊕1 );

. . .

val 𝑉𝑛 = Array.fill(𝑛 ∗𝑚) (1⊕𝑛 );
[ { 𝑉1 (𝑖 ∗ 𝑛 + 𝑗) = 𝑉1 (𝑖 ∗ 𝑛 + 𝑗) ⊕1 𝑔1 (𝑣1);

. . .

𝑉𝑛 (𝑖 ∗ 𝑛 + 𝑗) = 𝑉𝑛 (𝑖 ∗ 𝑛 + 𝑗) ⊕𝑛 𝑔𝑛 (𝑣𝑛) } | 𝑞1 ];
matrix(𝑛,𝑚)[ z | ((𝑖, 𝑗),_)← 𝑉1,

1That is, the monoid ⊗ with identity 1⊗ = (1⊕1 , . . . , 1⊕𝑚 ) and (𝑥1, . . . , 𝑥𝑚) ⊗
(𝑦1, . . . , 𝑦𝑚) = (𝑥1 ⊕1 𝑦1, . . . , 𝑥𝑚 ⊕𝑚 𝑦𝑚) .
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z← 𝑓 (𝑉1 (𝑖 ∗ 𝑛 + 𝑗), . . . ,𝑉𝑛 (𝑖 ∗ 𝑛 + 𝑗)) ] }.
Notice that, the final result is a matrix constructed using the
matrix(𝑛,𝑚) builder, and is made out of the arrays that hold the
aggregation results. This matrix though does not have a group-by
and can be translated using the methods given in Section 2.

For example, the matrix multiplication in Query (9) is trans-
lated as follows:

matrix(n,m)[ ((i,j),+/v)
| ((i,k),a)← sparsify(M), ((kk,j),a)← sparsify(N),
kk == k, let v = a∗b, group by (i,j) ],

(after unfolding the sparsifiers for M and N)
= matrix(n,m)[ ((i,j),+/v)

| let (n,l,A) = M, i← 0 until n, k← 0 until l,
let (ll,m,B) = N, kk← 0 until ll, j← 0 until m,
kk == k, let v = A(i∗n+k)∗B(kk∗ll+j), group by (i,j) ]

(after merging the array index kk with k)
= matrix(n,m)[ ((i,j),+/v)

| let (n,l,A) = M, i← 0 until n, k← 0 until l,
let (ll,m,B) = N, j← 0 until m,
let v = A(i∗n+k)∗B(k∗ll+j), group by (i,j) ]

(by translating the group-by qualifier)
= { val V = Array.fill(n,m)(0.0);
[ V(i∗n+j) = V(i∗n+j) + A(i∗n+k)∗B(k∗ll+j)
| let (n,l,A) = M, i← 0 until n, k← 0 until l,
let (ll,m,B) = N, j← 0 until m ];

matrix(n,m)[ v | ((i,j),_)← V, v← [ ((i,j),V(i∗n+j)) |] ] }
= { val V = Array.fill(n,m)(0.0);
[ V(i∗n+j) = V(i∗n+j) + A(i∗n+k)∗B(k∗ll+j)
| let (n,l,A) = M, i← 0 until n, k← 0 until l,
let (ll,m,B) = N, j← 0 until m ];

matrix(n,m)[ ((i,j),V(i∗n+j)) | ((i,j),_)← V ] }
(since the last term is equal to (n,m,V))

= { val V = Array.fill(n,m)(0.0);
[ V(i∗n+j) = V(i∗n+j) + A(i∗n+k)∗B(k∗ll+j)
| let (n,l,A) = M, i← 0 until n, k← 0 until l,
let (ll,m,B) = N, j← 0 until m ];

(n,m,V) }

which is equivalent to the desired efficient loop-based program.

4 TRANSLATING QUERIES ON SPARK
In this section, we translate array comprehensions to distributed
programs that can run on Apache Spark [27]. Distributed datasets
in Spark are represented as Resilient Distributed Datasets (RDDs),
which support a functional API that is very similar to that for
Scala collections. Most RDD operations are second-order, in
which the functional argument is evaluated sequentially while
the operation itself is evaluated in parallel, in a distributed mode.
Unlike Scala collections, Spark does not allow nested RDDs and
will raise a run-time error if the functional parameter of an RDD
operation accesses another RDD. That is, Spark does not support
nested parallelism because it is hard to implement efficiently
in a distributed setting. However, instead of using nested RDD
operations, one may use joins, cogroups, and cross products to
correlate RDDs. Consequently, RDD comprehensions require spe-
cial translation rules to derive joins, instead of nested flatMaps.

The RDD builder, rdd, that converts a List[T] to an RDD[T]
can be implemented by applying the Spark method ‘parallelize’
on this list. However, RDD comprehensions must be translated

to RDD operations in a special way to avoid generating nested
operations. A group-by qualifier can be translated to the Spark
groupByKey operation of type RDD[(K,V)]⇒RDD[(K,List[V])]
using Equation (11). However, groupByKey is an expensive oper-
ation because it collects the grouped values into a list, shuffles
these lists to the reducers, and finally reduces them by some ag-
gregation. Instead, we want to generate calls to the more efficient
reduceByKey(⊗), for some monoid ⊕, that reduces the values of
type V using the monoid ⊗, instead of placing them into a list.
That way, grouped values are partially reduced before they are
shuffled. To generate these reduceByKey calls, we consider the
group-by qualifier in combination with the aggregations in the
comprehension. Recall that, based on the discussion in Section 3
and on Equation (12), any comprehension with a group-by can
be put into the following form:

rdd[ 𝑒 | 𝑞1, group by 𝑝, 𝑞2 ]
= rdd[ 𝑧 | 𝑞1, group by 𝑝, 𝑧 ← [ 𝑒 | 𝑞2 ] ]
= rdd[ 𝑧 | 𝑞1, group by 𝑝,

𝑧 ← 𝑓 (⊕1/𝑤1 .map(𝑔1), . . . , ⊕𝑚/𝑤𝑚 .map(𝑔𝑚)) ],

for some variables𝑤𝑖 lifted by group-by, some monoids ⊕𝑖 , and
some functions 𝑔𝑖 and 𝑓 . Then, the group-by comprehension can
be translated to a reduceByKey operation:

rdd[ 𝑒 | 𝑞1, group by 𝑝, 𝑞2 ]
= rdd[ (𝑝, (𝑔1 (𝑤1), . . . , 𝑔𝑚 (𝑤𝑚))) | 𝑞1 ]

.reduceByKey(⊗) (13)

.map{ case (𝑝, (𝑎1, . . . , 𝑎𝑚)) ⇒ 𝑓 (𝑎1, . . . , 𝑎𝑚) },

where ⊗ = ⊕1 × · · · × ⊕𝑚 .
The following rule identifies and generates joins between the

RDDs 𝑋 and 𝑌 , instead of nested flatMaps, when vars(𝑒1) ⊆
vars(𝑝1) and vars(𝑒2) ⊆ vars(𝑝2), where function ‘vars’ returns
the free variables in a pattern or expression:

rdd[ 𝑒 | 𝑞1, 𝑝1 ← 𝑋, 𝑞2, 𝑝2 ← 𝑌, 𝑞3, 𝑒1 == 𝑒2, 𝑞4 ]

= rdd[ 𝑒 | 𝑞1, (_, (𝑝1, 𝑝2)) ← 𝑍,𝑞2, 𝑞3, 𝑞4 ], (14)

where 𝑍 = 𝑋 .map(𝜆𝑝1 . (𝑒1, 𝑝1)).join(𝑌 .map(𝜆𝑝2 . (𝑒2, 𝑝2))).
One way to represent arrays in a distributed setting is to store

them as coordinate arrays, similar to the array representation
used in Section 2. For instance, a matrix can be defined in Spark
as an RDD of type RDD[((Long,Long),Double)], while matrix
multiplication of two RDD matrices A and B, which was defined
in (9), will be translated to the following program using Rules (14)
and (13):

A.map{ case ((i,k),a)⇒ (k,((i,k),a)) }
.join( B.map{ case ((kk,j),b)⇒ (kk,((kk,j),b)) } )
.map{ case (_,(((i,k),a),((kk,j),b)))⇒ ((i,j),a∗b) }
.reduceByKey(_+_).

Although correct, this Spark program has a high cost: it shuffles
the matrices A and B across the compute nodes to perform the
join, and then it shuffles all the products 𝐴𝑖𝑘 ∗ 𝐵𝑘 𝑗 to perform
the reduceByKey. Since data shuffling is the main cost factor
for a distributed program, instead of fully sparse matrices in the
coordinate format, we want to use a more compact representation
for matrices by partitioning amatrix into tiles, which are unboxed
arrays of type Array[Double] in which indices are calculated, not
stored. The sparse matrix representation, on the other hand, is
preferable when both dimensions of the matrix are large and the
matrix is very sparse.
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5 TRANSLATING BLOCK ARRAY QUERIES
A more effective way of representing an array in a distributed
setting is to encode it as a distributed bag of non-overlapping
blocks, where each block is a fix-sized chunk of the distributed
array. A block is the unit of data distribution. Our goal in this
section is to translate RDD comprehensions over block arrays
to Spark’s distributed data-parallel programs whose functional
parameters will process the blocks very efficiently using multi-
core parallelism and array indexing. Given that data partitioning
is necessary for data-parallel distributed processing, blocks are
a natural way to partition large arrays and at the same time to
minimize space overhead, compared to fully sparse arrays in
coordinate format, in which the indices are stored along with a
matrix element. This small space footprint translates to less data
to shuffle across nodes and faster time to process each partition.
Spark actually uses thread-level parallelism at each compute node
to process the elements of each RDD partition in parallel using
multicore parallelism, but the unit of parallelism for a block array
is the entire block, which is likely to be one block for each com-
pute node. Consequently, in addition to generating distributed
operations from array comprehensions on block arrays, our goal
is to process the data inside blocks using multicore parallelism.

In this paper, we focus on tiled matrices but our work can be
easily extended to handle other block arrays too. We represent a
tiled matrix using the following Scala class:

case class Tiled[T] ( rows: Long, cols: Long,
tiles: RDD[((Long,Long),Array[T])] ),

where rows is the number of rows, cols is the number of columns,
and tiles is an RDD of fix-sized square tiles, where each tile ((i,j),A)
has coordinates i and j and values stored in the array A. The array
A has a fixed size N∗N, for some constant N which is the same
for all tiles. The coordinates i and j of a tile are unique, that is,
tiles is an association list. A matrix element with indices 𝑖 𝑗 is
stored in the tile that has coordinates (𝑖/𝑁, 𝑗/𝑁 ) at the location
(𝑖%𝑁 ) ∗𝑁 + ( 𝑗%𝑁 ) inside the tile. The tile sparsifier is as follows:

def sparsify[T] ( S: Tiled[T] ): List[((Long,Long),T)]
= [ ( ( ii∗N+i, jj∗N+j ), a(i∗N+j) )
| ((ii,jj),a)← S.tiles,
i← 0 until N, j← 0 until N ],

where ii and jj are the tile coordinates, and i and j are indices
within a tile. The tiled builder uses the rdd and the array builders:

def tiled[T] ( n: Long, m: Long )
( L: List[((Long,Long),T)] ): Tiled[T]

= Tiled( n, m, rdd[ ( (ii, jj), array(N∗N)(w) )
| ((i,j),v)← L, let ii = i/N, let jj = j/N,
let w = ( (i%N)∗N+(j%N), v ),
group by (ii,jj) ] ),

where the group-by collects all tile elements into an array. The
group-by comprehension is in an RDD comprehension, which
means that it will be translated to a groupByKey operation in
Spark, which requires data shuffling across the compute nodes.
However, in some cases, this group-by qualifier can be eliminated,
as in the case of a map over a matrix. Such an optimization
is actually a general optimization over comprehensions with
a group-by. A group-by qualifier in a comprehension can be
eliminated if the group-by key is unique, that is, when the group-
by function is injective. Although it is in general undecidable to
prove whether a group-by key is unique, it is easy to do so for

special cases, such as when the group-by key consists of array
indices that are bound through an array traversal. For an array
or map 𝐴, and the pattern variables 𝑣𝑖 in 𝑞1 or 𝑞2, we have:

[ 𝑒 | 𝑞1, (𝑘, 𝑣) ← 𝐴, 𝑞2, group by 𝑘 ] (15)
= [ 𝑒 | 𝑞1, (𝑘, 𝑣) ← 𝐴, let 𝑣 = unzip([ 𝑣 | 𝑞2 ]) ],

since the generator (𝑘, 𝑣) ← 𝐴 for an array or map 𝐴 indicates
that 𝑘 is unique. That is, this group-by is removed and every
pattern variable 𝑣𝑖 in 𝑞1 or 𝑞2 is lifted to a bag that contains
all its values in the group. A similar rule exists for a generator
𝑘 ← 𝑒1 until 𝑒2, since every value of 𝑘 is unique.

Although correct, unfolding and normalizing tiled array com-
prehensions based on the tiled sparsifier and builder do not al-
ways result to optimal translations. In the rest of this section, we
present special rules to translate tiled array comprehensions to
efficient Spark programs.

5.1 Queries that Preserve Tiling
Consider the block comprehension without a group-by:

tiled(𝑑)[ (𝑘𝑒𝑦, 𝑒) | 𝑞 ] (16)

where 𝑑 is the tile dimensions (e.g., (𝑚,𝑛) for a matrix), 𝑘𝑒𝑦 is
the tile indices (e.g., (𝑖, 𝑗) for a matrix) and 𝑒 is the associated
value. Let (𝑘𝑖 , 𝑣𝑖 ) ← 𝑋𝑖 be a generator over a tiled array 𝑋𝑖 in 𝑞,
where 𝑘𝑖 is a tuple of index variables, such as ((𝑖, 𝑗), 𝑣) ← 𝑋 for
a tiled matrix 𝑋 . We say that this tiled comprehension preserves
tiling if 𝑘𝑒𝑦 is a tuple𝑤 that consists of variables that are defined
in the tuples 𝑘𝑖 . The rest of the variables in the tuples 𝑘𝑖 (not in
𝑤 ) must be related to the variables in𝑤 with equality predicates
in 𝑞, so that the index of the constructed array is unique. For
example, matrix addition and matrix diagonal preserve tiling:

tiled(n,m)[ ((i,j),a+b) | ((i,j),a)← A, ((ii,jj),b)← B,
ii == i, jj == j ],

tiled(n)[ (i,a) | ((i,j),a)← A, i == j ].

A comprehension that preserves tiling is translated to an RDD
comprehension that does not need a group-by to shuffle tiles.
More specifically, the comprehension (16) is translated to:

Tiled(𝑑, rdd[ (𝑤, array(𝑁 ∗ 𝑁 )[ (𝑤, 𝑒) | 𝑞2 ]) | 𝑞1 ]), (17)

where the qualifiers in 𝑞1 are those from 𝑞 that do not refer to
the tile values and each tiled generator (𝑘𝑖 , 𝑣𝑖 ) ← 𝑋𝑖 has been
modified to be (𝑘𝑖 , _𝑣𝑖 ) ← 𝑋𝑖 .tiles (given the pattern variable 𝑣𝑖
bound to an array value, _𝑣𝑖 is bound to the entire tile in 𝑞1). The
qualifier list 𝑞2 is equal to 𝑞 but each tiled generator (𝑘𝑖 , 𝑣𝑖 ) ← 𝑋𝑖

in 𝑞 has been modified to be (𝑘𝑖 , 𝑣𝑖 ) ← _𝑣𝑖 . For example, matrix
addition:

tiled(n,m)[ ((i,j),a+b) | ((i,j),a)← A, ((ii,jj),b)← B,
ii == i, jj == j ]

is translated to:

Tiled( n, m, rdd[ ( (i,j), V(_a,_b) )
| ((i,j),_a)← A.tiles, ((ii,jj),_b)← B.tiles,
ii == i, jj == j ] ),

where V(_a,_b) is:

array(N∗N)[ ((i,j),a+b) | ((i,j),a)← _a, ((ii,jj),b)← _b,
ii == i, jj == j ],

which is a regular array comprehension in which the tiles _a and
_b will be lifted using the following array sparsifier for a tile A:
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[ ((i,j),A(i∗N+j)) | i← 0 until N, j← 0 until N ].

Based on the translation of RDD and array comprehensions,
matrix addition is translated to the following Spark code:

Tiled( n, m, A.tiles.join(B.tiles)
.map{ case ((ii,jj),(_a,_b))⇒ ((ii,jj),V(_a,_b)) } ).

After optimizations similar to those for matrix addition for regu-
lar matrices, we get the following code for V(_a,_b):

{ val V = Array.ofDim[Double](N∗N);
[ V((i%N)∗N+(j%N)) = _a( (i%N)∗N+(j%N) )

+ _b( (i%N)∗N+(j%N) )
| i← (0 until N).par, /∗ multicore parallelism ∗/
j← 0 until N ];

V }.

5.2 Queries that do not Preserve Tiling
For those array comprehensions that do not have a group-by and
do not preserve tiling, we need to shuffle only the relevant tiles
to the appropriate reducers. The array indices𝑤 in the result of
the tiled comprehension

tiled(𝑑)[ (𝑤, 𝑒) | 𝑞 ] (18)

may now be arbitrary expressions that depend on the indices of
the tiled generators in 𝑞.

Let 𝑓 (𝑘) be a term that depends on the array indices 𝑘 =

𝑘1, . . . , 𝑘𝑚 from the tiled generators in 𝑞. The tiles accessed from
the tiled generators 𝑞 will have tile coordinates 𝐾 , where 𝐾𝑖 =
𝑘𝑖/𝑁 . Given the tile coordinates 𝐾 of the input tiles, the tile coor-
dinate returned by 𝑓 (𝑘) would be equal to 𝑓 (𝐾1 ∗𝑁 + 𝑗1, . . . , 𝐾𝑚 ∗
𝑁 + 𝑗𝑚)/𝑁 , for 𝑗𝑖 ∈ [0, 𝑁 ) (the tile dimensions). We define,I𝑓 (𝐾)
to be the set of all such tile coordinates:

set[ 𝑓 (𝐾1 ∗ 𝑁 + 𝑗1, . . . , 𝐾𝑚 ∗ 𝑁 + 𝑗𝑚)/𝑁 |
𝑗1 ← 0until𝑁, . . . , 𝑗𝑚 ← 0until𝑁 ],

where set(𝑠) returns the distinct values of 𝑠 . For example, if
𝑓 (𝑘) = 𝑘+1, then I𝑓 (𝐾) = set[ 𝑓 (𝐾 ∗𝑁 + 𝑗)/𝑁 | 𝑗 ← 0until𝑁 ],
which is equal to the set {𝐾,𝐾 + 1} since 𝑓 (𝐾 ∗ 𝑁 + 𝑗)/𝑁 =

(𝐾 ∗𝑁 + 𝑗 +1)/𝑁 = 𝐾 + ( 𝑗 +1)/𝑁 . On the other hand, if 𝑓 (𝑘) = 𝑘 ,
then I𝑓 (𝐾) = {𝐾}.

Based on this definition, comprehension (18) can be trans-
formed to:

Tiled(𝑑, rdd[ (𝐾,𝑉 ) | 𝑞1, 𝐾1 ← I𝑤1 (𝑘), . . . , 𝐾𝑚 ← I𝑤𝑚
(𝑘),

group by𝐾 ]), (19)

where 𝑉 is:

array[ (𝑤, 𝑒) | 𝑞2,
∧

𝑖 𝐾𝑖 == 𝑤𝑖 (_𝑘 ∗ 𝑁 + 𝑘)/𝑁 ].

The qualifiers in𝑞1 are those from𝑞 that do not refer to the tile val-
ues and each tiled generator (𝑘𝑖 , 𝑣𝑖 ) ← 𝑋𝑖 has been transformed
to the two qualifiers (𝑘𝑖 , _𝑣𝑖 ) ← 𝑋𝑖 .tiles and let __𝑣𝑖 = (𝑘𝑖 , _𝑣𝑖 )
(given the pattern variable 𝑣𝑖 bound to an array value, _𝑣𝑖 is
bound to the entire tile in 𝑞1, while __𝑣𝑖 is bound to the index-
tile pair). The group-by operation shuffles all the required tiles
to the reducers to compute the resulting tiles. The qualifier list
𝑞2 in 𝑉 is equal to 𝑞 but each tiled generator (𝑘𝑖 , 𝑣𝑖 ) ← 𝑋𝑖 in 𝑞
has been transformed to the two qualifiers (_𝑘𝑖 , _𝑣𝑖 ) ← __𝑣𝑖 and
(𝑘𝑖 , 𝑣𝑖 ) ← _𝑣𝑖 . The guards 𝐾𝑖 == 𝑤𝑖 (_𝑘 ∗ 𝑁 + 𝑘)/𝑁 selects only
the proper tiles from all those shuffled by group-by.

For example, the following comprehension rotates the rows
so that the first row is moved to the second, the second to third,
etc, and the last to the first:

tiled(n,m)[ ( ( (i+1)%m, j ), v ) | ((i,j),v)← X ].

The shuffled tiles for a tile in X with coordinates (i,j) have row
coordinates from set[ (i∗N+_i+1)%m/N | _i← 0 until N ], which
will be evaluated to List(i,i+1) for i < n/N and to List(i,0) for
i = n/N, and column coordinates from List(j). That is, for each tile
with coordinates (i,j) such that i < n/N, we require two tiles: the
tile itself and its row successor with coordinates (i+1,j). Hence,
the row rotation is translated to:

Tiled(n,m,rdd[ ( (K1,K2), V )
| ((i,j),_a)← X.tiles, let __a = ((i,j),_a),
K1← set[ (i∗N+_i+1)%m/N | _i← 0 until N ],
K2← List(j),
group by (K1,K2) ] ),

which is translated to a Spark groupByKey operation. V is:

array(N∗N)[ (((i+1)%m,j),a) | ((_i,_j),_a)← __a, ((i,j),a)← _a,
K1 == (_i∗N+i+1)%m/N, K2 == (_j∗N+j)/N ] ),

which is translated to an efficient array-based program over the
list of tiles __a.

5.3 Queries with a Group-By
Tile comprehensions with a group-by do not preserve tiling. They
can be translated in a way similar to that for comprehension (18),
but we can do better by using the RDD operation reduceByKey
instead of the RDD operation groupByKey, because a group-by
in a group-by comprehension is often followed by aggregation.
A reduceByKey(⊕) operation, for some monoid ⊕, is equivalent
to a groupByKey followed by reduction of each group using
⊕. Although functionally equivalent, reduceByKey is far more
efficient than groupByKey in a distributed setting because it
partially reduces the groups locally before they are shuffled to the
reducers for the final reduction, resulting to less data shuffling.

Before we describe the general translation scheme, we explain
the key idea using the example of matrix multiplication of the
tiled matrices A and B:

tiled(n,m)[ ((i,j),+/v)) | ((i,k),a)← A, ((kk,j),a)← B,
kk == k, let v = a∗b,
group by (i,j) ].

We want to translate it to the reduceByKey operation:

Tiled( n, m, rdd[ ((i,j),V(_a,_b))
| ((i,k),_a)← A.tiles, ((kk,j),_a)← B.tiles,
kk == k ].reduceByKey(⊕) ),

where the tile V(_a,_b) is the tile _a multiplied by _b:

array(N∗N)[ ((i,j),+/v)) | ((i,k),a)← _a, ((kk,j),a)← _b,
kk == k, let v = a∗b,
group by (i,j) ]

and the monoid ⊕ over the tiles _x and _y adds the tiles pairwise:

_x⊕_y = array(N∗N)[ ((i,j),x+y) | ((i,j),x)← _x, ((ii,jj),y)← _y,
ii == i, jj == j ].

That is, the rdd comprehension calculates the partial sum of
products of all matching tiles and the reduceByKey calculates
the final sums by adding the tiles pairwise. Then, after translating
the rdd and array comprehensions, we will get:
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Tiled(n,m,A.tiles.map{ case ((i,k),_a)⇒ (k,((i,k),_a)) }
.join( B.tiles.map{ case ((kk,j),_a)⇒ (kk,((kk,j),_a)) } )
.map{ case (_,(((i,k),_a),((kk,j),_a)))⇒ ((i,j),V(_a,_b)) }
.reduceByKey(⊕))

where V(_a,_b) is translated to efficient code that multiplies the
tiles _a and _b:

{ val V = Array.ofDim[Double](N∗N);
for { i← 0 until N; j← 0 until N; k← 0 until N }

V(i∗N+j) += _a(i∗N+k)∗_b(k∗N+j);
V },

and _x⊕_y is pairwise addition:

{ val V = Array.ofDim[Double](N∗N);
for { i← 0 until N; j← 0 until N }

V(i∗N+j) = _x(i∗N+j)+_y(i∗N+j);
V }.

To generate these reduceByKey calls, we consider the group-by
qualifier in combination with the aggregations in the compre-
hension. Recall that, based on the discussion in Section 3 and on
Equation (12), any tiled comprehension with a group-by can be
put into the following form:

tiled(𝑛,𝑚)[ (𝑝, 𝑒) | 𝑞, group by 𝑝, 𝑞′ ]
= tiled(𝑛,𝑚)[ (𝑝, 𝑧) | 𝑞, group by 𝑝, 𝑧 ← [ 𝑒 | 𝑞′ ] ]
= tiled(𝑛,𝑚)[ (𝑝, 𝑧) | 𝑞, group by 𝑝,

𝑧 ← 𝑓 (⊕1/𝑤1 .map(𝑔1), . . . , ⊕𝑚/𝑤𝑚 .map(𝑔𝑚)) ],

for some variables𝑤𝑖 lifted by group-by, some monoids ⊕𝑖 , and
some functions 𝑔𝑖 and 𝑓 . That is, we abstract all reductions
⊕𝑖/𝑤𝑖 .map(𝑔𝑖 ) from the term [ 𝑒 | 𝑞′ ]. Notice that, here, the
key of the tiled comprehension is equal to the group-by key,
𝑝 . Then, the group-by comprehension can be translated to the
following reduceByKey operation:

Tiled(𝑛,𝑚, rdd[ (𝑝, (array(𝑁 ∗ 𝑁 )[𝑔1 (𝑤1) | 𝑞2 ], . . . ,
array(𝑁 ∗ 𝑁 )[𝑔𝑚 (𝑤𝑚) | 𝑞2 ]))

| 𝑞1 ]
.reduceByKey(⊗′) .mapValues(𝑓 ′))

Like in (17), the qualifiers in 𝑞1 are those from 𝑞 that do not refer
to the tile values and each tiled generator (𝑘𝑖 , 𝑣𝑖 ) ← 𝑋𝑖 has been
modified to be (𝑘𝑖 , _𝑣𝑖 ) ← 𝑋𝑖 .tiles. The qualifier list 𝑞2 is equal
to 𝑞 but each tiled generator (𝑘𝑖 , 𝑣𝑖 ) ← 𝑋𝑖 in 𝑞 has been modified
to be (𝑘𝑖 , 𝑣𝑖 ) ← _𝑣𝑖 . The monoid ⊗′ is:

(𝑥1, . . . , 𝑥𝑚) ⊗′ (𝑦1, . . . , 𝑦𝑚) = (𝑥1 ⊕′1 𝑦1, . . . , 𝑥𝑚 ⊕
′
𝑚 𝑦𝑚)

where 𝑥𝑘 ⊕′𝑘 𝑦𝑘 applies ⊕𝑘 to the tile elements pairwise:

array(𝑁 ∗ 𝑁 )[𝑎 ⊕𝑘 𝑏 | ((𝑖, 𝑗), 𝑎) ← 𝑥𝑘 , ((𝑖𝑖, 𝑗 𝑗), 𝑏) ← 𝑦𝑘 ,

𝑖𝑖 == 𝑖, 𝑗 𝑗 == 𝑗 ]

Finally, 𝑓 ′(𝑥1, . . . , 𝑥𝑚) is:

array(𝑁 ∗ 𝑁 )[ 𝑓 (𝑎1, . . . , 𝑎𝑚)
| ((𝑖1, 𝑗1), 𝑎1) ← 𝑥1, . . . , ((𝑖𝑚, 𝑗𝑚), 𝑎𝑚) ← 𝑥𝑚,

𝑖1 == · · · == 𝑖𝑚, 𝑗1 == · · · == 𝑗𝑚 ]

For thematrix multiplication example, there is only one reduction
with ⊕1 = + and 𝑓 is identity, which means that mapValues(𝑓 ′)
is identity too.

5.4 Using a Group-By-Join
There is a special class of tiled comprehensions with a group-
by that can be translated to more efficient code. Consider the
following comprehension:

tiled(n,m)[ (k,⊕/c) | ((i,j),a)← A, ((ii,jj),b)← B,
kx(i,j) == ky(ii,jj), let c = h(a,b),
group by k: ( gx(i,j), gy(ii,jj) ) ],

for some arbitrary term functions kx, ky, gx, gy, and h, and some
aggregation ⊕. Notice that the key k of the output matrix is
the group-by key, which must be a pair where one component
depends on i,j and the other on ii,jj only. This is called a group-
by-join because it is a join between A and B, followed by a group-
by with aggregation. Matrix multiplication, defined in (9), is an
example of a group-by-join. Many group-by comprehensions can
be put in the group-by-join form by combining generators in
pairs forming joins until we are left with two generators and
a group-by. A group-by-join can be evaluated very efficiently
by joining each row of tiles from A with each column of tiles
from B, which requires that we replicate every tile from A and
B. When applied to the matrix multiplication, this algorithm is
equivalent to the block matrix multiplication implemented using
the SUMMA algorithm [14]. The group-by-join is translated to
the following Spark RDD code:

Tiled( n, m, rdd[ (k,V) | (k,(__a,__b))← As.cogroup(Bs) ] ),

where As, Bs, and V are

As = A.tiles.flatMap{ case ((i,j),a)
⇒ (0 until B.cols/N).map(k⇒ ((gx(i,j),k),(kx(i,j),a))) }

Bs = B.tiles.flatMap{ case ((ii,jj),b)
⇒ (0 until A.rows/N).map(k⇒ ((k,gy(ii,jj)),(ky(ii,jj),b))) }

V = array(N∗N)[ (k,⊕/c)
| (k1,_a)← __a, (k2,_b)← __b, k2 == k1,
((i,j),a)←_ a, ((ii,jj),b)← _b, kx(i,j) == ky(ii,jj),
let c = h(a,b), group by k: (gx(i,j),gy(ii,jj)) ].

That is, the tiles in A are replicated B.cols/N times and the tiles
in B are replicated A.rows/N times.

6 PERFORMANCE EVALUATION
Our system, SAC, has been implemented using Scala’s compile-
time reflection and macros. Our code generator uses the Scala
typechecker to infer the types of the generator domains to select
the appropriate sparsifiers based on these types. It translates array
comprehensions to Scala code that calls Spark RDD operations
whose functional arguments use the Scala’s Parallel Collections
library [20] for multicore parallelism. The produced Scala code
is embedded in the rest of the Scala code generated at compile-
time. The source code of our system is available on GitHub at
https://github.com/fegaras/array.

We have evaluated the performance of our system relative to
the Spark MLlib.linalg library [5]. MLlib uses the linear algebra
package Breeze, but in our experiments, instead of using a native
Breeze library implementation, such as OpenBLAS, we used the
pure JVM implementation of this library. Although there are
many linear algebra libraries that support distributed tiled arrays,
MLlib is the closest to our work since it is built on top of Spark
and has a Scala API.

The platform used for these evaluations was a small cluster
of 4 nodes, where each node has one Xeon E5-2680v3 at 2.5GHz,
with 24 cores, 128GB RAM, and 320GB SSD. For our experiments,
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Figure 4: Performance evaluation of matrix addition, multiplication, and factorization of tiled matrices on Apache Spark

we used Apache Spark 3.0.0 running on Apache Hadoop 2.7.0.
Each Spark executor was configured to have 11 cores and 60GB
RAM. Consequently, there were 2 executors per node, giving a
total of 8 executors. Each program was evaluated over 5 datasets
and each evaluation was repeated 4 times, so each data point
in the plots in Figure 4 represents the mean value of these 4
evaluations.

The matrices used in our experiments were tiled matrices
where each tile had size 1000*1000. We implemented these dis-
tributed tiled matrices in MLlib.linalg as instances of BlockMatrix,
where each tile was an instance of DenseMatrix. The matrices
used for addition andmultiplication were pairs of square matrices
of the same size filled with random values between 0.0 and 10.0.
The largest matrices used in matrix addition had 40000 × 40000
elements and size 12GB each, while those used in matrix multi-
plication had 20000 × 20000 elements and size 3GB each. Matrix
multiplication was translated in two different ways in SAC: as a
join followed by a group-by, and using a special group-by join
(see Section 5.4 for a discussion). The results are shown in Fig-
ure 4.A and B. We can see that, for matrix addition, SAC performs
a bit faster than MLlib. For matrix multiplication though, SAC
(that uses a join followed by a group-by) is up to 3 times slower
than MLlib, while MLib is up to 6 times slower than SAC GBJ
(that uses the special group-by join).

The third program to evaluate was one iteration of matrix
factorization using gradient descent [16]. The goal of this compu-
tation is to split a matrix 𝑅 of dimension 𝑛 ×𝑚 into two low-rank
matrices 𝑃 and 𝑄 of dimensions 𝑛 × 𝑘 and 𝑚 × 𝑘 , for small 𝑘 ,
such that the error between the predicted and the original rat-
ing matrix 𝑅 − 𝑃 ×𝑄𝑇 is below some threshold, where 𝑃 ×𝑄𝑇

is the matrix multiplication of 𝑃 with the transpose of 𝑄 and
‘−’ is cell-wise matrix subtraction. Matrix factorization can be
implemented by repeatedly applying the following operations:

𝐸 ← 𝑅 − 𝑃 ×𝑄𝑇

𝑃 ← 𝑃 + 𝛾 (2𝐸 ×𝑄 − 𝜆𝑃)
𝑄 ← 𝑄 + 𝛾 (2𝐸𝑇 × 𝑃 − 𝜆𝑄)

where𝛾 is the learning rate and 𝜆 is the normalization factor used
in avoiding overfitting. For our experiments, we used 𝛾 = 0.002
and 𝜆 = 0.02. The matrix to be factorized, R, was a square sparse
matrix𝑛∗𝑛 with random integer values between 0 and 5, in which
only the 10% of the elements were non-zero. The dimension 𝑘
was set to 1000. The derived matrices P and Q had dimension
𝑛 ∗ 1000 and were initialized with random values between 0.0
and 1.0. The largest matrix 𝑅 used had 20000 × 20000 elements
and size 3GB. The results are shown in Figure 4.C. We can see
that SAC (using GBJ) is up to three times faster than MLlib.

7 RELATEDWORK
Many array-processing systems use special storage techniques,
such as regular tiling, to achieve better performance on certain
array computations. TileDB [19] is an array data storage man-
agement system that performs complex analytics on scientific
data. It organizes array elements into ordered collections called
fragments, where each fragment is dense or sparse, and groups
contiguous array elements into data tiles of fixed capacity. Unlike
our work, the focus of TileDB is on the I/O optimization of ar-
ray operations by using small block updates to update the array
stores. SciDB [22] is a large-scale data management system for
scientific analysis based on an array data model with implicit
ordering. The SciDB storage manager decomposes arrays into a
number of equal sized and potentially overlapping chunks, in a
way that allows parallel and pipeline processing of array data.
Like SciDB, ArrayStore [21] stores arrays into chunks, which are
typically the size of a storage block. One of their most effective
storage method is a two-level chunking strategy with regular
chunks and regular tiles. SciHadoop [7] is a Hadoop plugin that
allows scientists to specify logical queries over arrays stored in
the NetCDF file format. Their chunking strategy, which is called
the Baseline partitioning strategy, subdivides the logical input
into a set of partitions (sub-arrays), one for each physical block of
the input file. SciHive [15] is a scalable array-based query system
that enables scientists to process raw array datasets in parallel
with a SQL-like query language. SciHive maps array datasets in
NetCDF files to Hive tables and executes queries via Map-Reduce.
Based on the mapping of array variables to Hive tables, SQL-
like queries on arrays are translated to HiveQL queries on tables
and then optimized by the Hive query optimizer. SciMATE [25]
extends the Map-Reduce API to support the processing of the
NetCDF and HDF5 scientific formats, in addition to flat-files.
SciMATE supports various optimizations specific to scientific
applications by selecting a small number of attributes used by an
application and perform data partition based on these attributes.
TensorFlow [1] is a dataflow language for machine learning that
supports data parallelism on multi-core machines and GPUs but
has limited support for distributed computing. Linalg [26] (now
part of Spark’s MLlib library) is a distributed linear algebra and
optimization library that runs on Spark. It consists of fast and
scalable implementations of standard matrix computations for
common linear algebra operations, such as matrix multiplication
and factorization. One of its distributed matrix representations,
BlockMatrix, treats the matrix as dense blocks of data, where
each block is small enough to fit in memory on a single machine.
Linalg allows matrix computations to be pushed from the JVM
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down to hardware via the Basic Linear Algebra Subprograms
(BLAS) interface. SystemML [6] is a machine learning (ML) li-
brary built on top of Spark. It supports a high-level specification
of ML algorithms that simplifies the development and deploy-
ment of ML algorithms by separating algorithm semantics from
underlying data representations and runtime execution plans.
Distributed matrices in SystemML are partitioned into fixed size
blocks, called Binary Block Matrices. Although many of these
systems support block matrices, their runtime systems are based
on a library of build-in, hand-optimized linear algebra operations,
which is hard to extend with new storage structures and algo-
rithms. Furthermore, many of these systems lack a comprehen-
sive framework for automatic inter-operator optimization, such
as finding the best way to form the product of several matrices.
Like these systems, our framework separates specification from
implementation, but, unlike these systems, our system supports
ad-hoc operations on array collections, rather than a library of
build-in array operations, is extensible with customized storage
structures, and uses relational-style optimizations to optimize
array programs with multiple operations.

There has also been some recent work on combining linear
algebra with relational algebra to let programmers implement ML
algorithms on relational database systems [2, 17, 18]. The work
by Luo et al. [18] adds a new attribute type to relational schemas
to capture arrays that can fit in memory and extends SQL with
array operators. Although their system evaluates SQL queries in
Map-Reduce, the arrays are not fully distributed. Instead, large
matrices must be split into multiple rows as indexed tiles while
the programmer is expected to write SQL code to implement ma-
trix operations by correlating these tiles using array operators in
SQL. That is, SQL queries on distributed arrays are customizable
but the array operators used in correlating tiles are build-in from
a library. However, even if these tile operations were customiz-
able, this system would differ from ours since it does not separate
specification from implementation, thus making hard to change
the array storage, and requires programmers to write explicit
code to correlate tiles.

8 CONCLUSION AND FUTUREWORK
Our performance results show that SAC can be as efficient as
a highly optimized array library when applied to certain dis-
tributed operations on tiled arrays. The same layered approach
can also be used for translating comprehensions on other types
of array storage, such as on tiled arrays where each tile is stored
in the compressed sparse column format. As future work, we
plan to look at operations that are hard to express using compre-
hensions, such as inverting a matrix, which requires a special LU
decomposition algorithm.We believe that such operations should
be coded as black-box library functions in a high-performance
array library, such as BLAS or LAPACK. Such operations would
require special optimizations to fuse them with general array
comprehensions and with each other. Furthermore, our frame-
work cannot directly generate calls to a high-performance array
library, such as BLAS or LAPACK, or to GPU libraries, such as
CUDA or OpenGL, but it can be improved to recognize certain
patterns in a comprehension that are translatable to such calls.
Finally, we would like to investigate general methods to optimize
storage, such as unboxing arrays where vectors of tuples are
mapped to tuples of vectors, and to parallelize irregular struc-
tures using nested parallelism.
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ABSTRACT
The paper studies the application of automated machine learn-
ing approaches (AutoML) for addressing the problem of Entity
Matching (EM). This would make the existing, highly effective,
Machine Learning (ML) and Deep Learning based approaches
for EM usable also by non-expert users, who do not have the
expertise to train and tune such complex systems. Our experi-
ments show that the direct application of AutoML systems to
this scenario does not provide high quality results. To address
this issue, we introduce a new component, the EM adapter, to
be pipelined with standard AutoML systems, that preprocesses
the EM datasets to make them usable by automated approaches.
The experimental evaluation shows that our proposal obtains the
same effectiveness as the state-of-the-art EM systems, but it does
not require any skill on ML to tune it.

1 INTRODUCTION
Machine Learning (ML) has significantly advanced over the past
ten years [1]. On one side, the research on Big Data let emerge
new challenges and made available scenarios and datasets where
to experiment and improve ML techniques. On the other side,
the increase of computer processing power, thanks in particular
to the use of graphic processing units, enabled ML approaches
running in commodity hardware. This led to the development of
new ML algorithms and their implementations through frame-
works and libraries is extensive and growing [17]. Thus the ML
technology moved from an R&D phase, for the exclusive use
of specialized laboratories, to a mature phase where it can be
adopted in business applications.

Mature technologies have to be easy to use for both non-
experts and professionals. One of the main bottlenecks towards a
large use of the ML technology is related to the configuration of
the systems, where experts are typically needed to set the large
number of hyper-parameters. Furthermore, the selection of the
algorithm that best performs in a given ML task is based on an
experimental evaluation in which the performances of compet-
ing approaches are compared. This requires a time-consuming
and expensive iterative process in which multiple alternative
solutions are tested until an optimal result is achieved.

To address these issues, automatedmachine learning (AutoML)
tools have been proposed. These are user-friendly and easy-to-
use systems that provide a unified interface for the automatic
selection of the most appropriate MLmodel/algorithm for a given
task and its automatic configuration. Some examples are Auto-
WEKA [12], AutoSklearn [9], AutoGluon [8], Auto-Keras [11],
H20 AutoML [10], and many other.

This paper analyzes the application of AutoML systems to
Entity Matching (EM), i.e. the task of identifying which records
in a dataset refer to the same real-world entity [5]. Applications

© 2021 Copyright held by the owner/author(s). Published in Proceedings of the
24th International Conference on Extending Database Technology (EDBT), March
23-26, 2021, ISBN 978-3-89318-084-4 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

addressing EM tasks are becoming mature technologies and Au-
toML can promote this maturation for three main reasons. First
of all, the state of the art EM systems are based on complex and
advanced neural architectures [2, 7, 13, 16, 25] which require
a non-trivial configuration process performed by expert users.
Therefore, AutoML can make the application of EM techniques
possible also to less experienced users. Secondly, the implemen-
tation of an EM system based on ML is expensive since it is
performed through a time-consuming process that requires the
active involvement of domain experts for evaluating the model.
Introducing a form of automation would reduce the cost and
time for the model deployment. Finally, in business scenarios
where annotating data for the training process is costly and the
performance evaluation is a critical task, the results obtained
with an AutoML system represent a low-cost baseline.

Our experiments showed that the direct application of AutoML
systems to the EM task was not effective. One of the main reasons
is that such systems have been designed to solve generic ML tasks.
Therefore, they are ineffective in dealing with the peculiarities of
EM, characterized by an "unusual" data format, where each record
is a description of pairs of entities, and there is a high imbalance
between the “match" and “non-match" classes to predict.

For this reason, we introduce in this paper a software com-
ponent, the EM adapter, encoding the datasets used in the EM
task into a numerical form that make them to be effectively
processed by AutoML systems. The EM adapters rely on the
most recent transformer architectures, such as BERT and vari-
ants [6, 14, 19, 24], whose out of the box application to the EM
problem has proved to be particularly effective [2]. We show in
our experiments that EM adapters pipelined with AutoML sys-
tems are able to ensure quality performance comparable with the
one of EM approaches parametrized by ML experts, thus making
possible the use of complex ML techniques to non-expert users.

Summarizing, the main contributions of our paper are:

• An analysis about the application of AutoML systems to
the EM task;

• The design of EM adapters, components based on pre-
trained transformer architectures, to be pipelined with
AutoML systems for making them able to effectively per-
form the EM task;

• An extensive experimentation (including a comparison
with other state of the art EM tools) to evaluate the effec-
tiveness of our proposal in different scenarios (reduced
training times and different types of data).

The rest of the paper is organized as follows. Section 2 intro-
duces the state-of-the-art techniques developed in the AutoML
and EM fields. Section 3 describes the main features of the EM
adapters, the components we developed for making AutoML
systems addressing EM tasks, and Section 4 presents the imple-
mentation we developed. Our approach has been experimented
as described in Section 5. Finally, in Section 6 we sketched out
some conclusions and future work.
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2 RELATEDWORK
Entity Matching. Despite the effort put by the research commu-
nity for more than thirty years, EM is still an open challenge.
Several techniques have been proposed: they range from rules-
based approaches [18, 20, 22] to ML models, that conceive EM
as a binary classification problem [4] applied on datasets whose
records describe pairs of entities. Recently, Deep Learning (DL)
approaches (DeepER [7] and DeepMatcher [16] are the first pro-
posals) have proved to be very effective. They suffer from two
main problems: 1) the need for a significant amount of labeled
data for their training and 2) a non-trivial configuration. To ad-
dress the first problem, approaches based on transfer learning
and fine-tuning techniques relying on architectures pre-trained
on large generalist corpus have been proposed [2, 13, 25]. [25]
presents a transfer learning approach to EM leveraging on pre-
trained models from large-scale, production knowledge bases.
[13] applies a fine-tuning process based on a pre-trained Bert
architecture [6] using a limited number of labeled data, whose
performance is further improved through the exploitation of data
augmentation techniques. An analogous approach is described
in [2], in which a larger collection of transformer architectures
(Bert, XLNet [24], DistilBERT [19] and RoBERTa [14]) are applied
to the EM problem.

Although these systems address the problem of the need for
a significant number of labeled data, they require specific skills
in modifying, training, and configuring complex neural architec-
tures. In this work, we aim to make an EM architecture accessible
also to non-expert users and to generate low-cost baselines for
EM tasks.
AutoML AutoML is a recent research topic and consists in the
automatic identification of the most effective algorithms to make
ML inference requiring minimal human intervention and exploit-
ing a limited computational budget (e.g. in terms of use of CPU
and RAM).

The first definition of this problem is given in [12], where Au-
toML is formalized as a Combined Algorithm Selection and Hyper-
parameter optimization (CASH) problem. The solution proposed
in this work is Auto-WEKA: a system designed to automatically
select and configure, using methods based on Bayesian optimiza-
tion, the classification models available within the WEKA1 ML
library. Starting with this pioneering work, numerous AutoML
systems have been developed. Among them, AutoSklearn [9]
combines a meta-learning technique, to boost a Bayesian opti-
mization, with an ensemble method applied to the models se-
lected in the previous step. AutoGluon [8] uses ensembling and
multi-layer stacking techniques to combinemultiplemodels (such
as LightGBM boosted trees, CatBoost boosted trees, Random
Forests, Extremely Randomized Trees, and k-Nearest Neighbors).
In the context of neural networks, the main exponent is Auto-
Keras [11], which applies Bayesian optimization in the search
for the most efficient neural architecture (the so-called Neural
Architecture Search - NAS). Another promising AutoML system
is H2OAutoML [10], which, in place of Bayesian optimization,
uses a combination of fast random search with ensemble staking
techniques. Finally, a comparison of state-of-the-art approaches
is provided in [21].

To the best of our knowledge, no study has been proposed for
the application of AutoML systems to the EM task.

1https://www.cs.waikato.ac.nz/~ml/weka/index.html

3 DESIGNING AUTOML FOR EM TASKS
AutoML systems could largely support the application of ML and
DL approaches to EM tasks by selecting the best classification
models for given datasets and providing the tuning of the pa-
rameters. Nevertheless, our experiments (partially reported in
Section 5) showed that AutoML systems are not effective in this
scenario.

To investigate the reasons for such behavior, we considered
AutoML systems as black-box tools and we analyzed if there are
peculiarities that make EM, conceived as ML task, a hard issue
for these approaches. Firstly, we observed that the datasets used
for representing EM tasks describe pairs of entities. The insight
that an ML model can learn from them is mainly obtained by
comparing the values assumed by pairs of attributes describing
the same feature in different entities. Since an entity is described
through several features, and pairs of attributes describing the
same features have value distributions clearly close, selecting
and tuning an ML model can be a complex task. Secondly, the
classification problem is highly imbalanced, due to the very large
number of unmatching entities with respect to the matching
ones.

In this paper, we address the first issue by developing and
experimenting with a component, the EM adapter, which pro-
vides an encoding of EM datasets that effectively supports the
training of AutoML systems. We consider the second issue as
future work that we intend to address designing data augmenta-
tion techniques for building a more balanced dataset to train the
AutoML system.

The existing AutoML systems provide limited pre-processing
and feature extraction capabilities. Our approach represents a
first attempt towards the development of a new generation of
AutoML systems able to operate in specific scenarios thanks to
data transformation capabilities. The design of the EM adapter
was based on a preliminary analysis of the main features im-
plemented in the existing approaches. This allowed us to get
insights into the design choices to adopt in the creation of the
component.

The existing state-of-the-art approaches for solving EM tasks
are typically based on neural architectures, and in particular on
recurrent neural networks (RNNs), as DeepER and DeepMatcher.
The RNN (e.g., a bi–directional recurring network made up of
LSTM cells in DeepER) is trained to encode the pairs of entities,
input of the network, into multi-dimensional vectors. The appli-
cation of some similarity function to these vectors makes them
a training dataset for a binary classifier. The systems based on
these architectures are highly effective thus demonstrating their
ability in managing the particular schemas adopted by datasets
describing EM tasks.
Insight#1: RNNs are an effective means to represent in a single
multi-dimensional vector the values of the attributes describing
the same feature of pairs of entities.

Training models based on RNN requires large datasets, thus
preventing their use in several business scenarios. To address
this issue, approaches have been experimented RNNs trained on
large “external" knowledge bases and applied to in-production
systems via transfer learning techniques. Transfer learning has
been successfully applied to several ML applications, and to tasks
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related to the EM as in [25] where the problem was recognizing
categories where entity features belong to.
Insight#2: External knowledge-bases can be effectively exploited
in ML architectures addressing EM tasks to reduce the need for
annotated data.

Transformers [23] have recently gained large popularity in the
NLP field. They are deep neural networks that, once trained on a
large corpus, are able to learn the semantics of words better than
conventional word embedding techniques (e.g., Word2vec [15]).
They have also been proved effective in EM tasks [2, 13]. In [13],
for example, a fine-tuning process is applied to a pre-trained Bert
transformer architecture. The dataset is completely denormalized
and, in the resulting text fields, meta-tokens are inserted not to
lose the semantics of the schema. In this way, the knowledge
through which an ML algorithm learns to discriminate between
pairs of matching/non-matching entities is no longer obtained by
comparing the values assumed by pairs of attributes, but emerges
from the analysis of the record as a whole. A broad experimen-
tation of transformers approaches in the field of EM performed
in [2] let emerge two main findings: 1) the transformers can be
used for EM out of the box, without the need for a task-specific
architecture, and 2) fine-tuning a transformer on an EM task
takes relatively little time and requires no particularly capable
hardware.
Insight#3: Transformers serialize in numerical vectors the fields
of EM datasets describing pairs of entities by exploiting a highly-
contextualized analysis of EM data. Their use in EM tasks is a
good compromise between simplicity and performance, and their
fine-tuning does not require high training times and expensive
hardware.

4 IMPLEMENTING AUTOML FOR EM TASKS
The EM adapter is the component in charge of computing an
encoding of a dataset representing EM to be effectively exploited
by an AutoML system. Its functional architecture is based on
the insights defined in Section 3 and consists of three main com-
ponents: the Tokenizer which tokenizes the dataset records into
one or more token sequences; the Embedder which transforms
the token sequences into embeddings; and the Combiner which
generates a single multi-dimensional vector from all embeddings
associated the same dataset entry.
Tokenizer. This component transforms an entity pair (𝑒1, 𝑒2),
described in the records of the EM dataset as a series of attributes
𝑎11, ..., 𝑎1𝑀 , 𝑎21, ..., 𝑎2𝑀 , where 𝑎𝑖 𝑗 is the attribute 𝑗 of the entity
𝑒𝑖 , into one or more token sequences. The component defines
how to combine the values of the records to obtain tokens that en-
able the automatic learning of deep relations between attributes
describing the same features of different entities. There are three
alternative ways for performing this operation: the unstructured,
attribute-based, and hybrid tokenization mode. In the unstruc-
tured mode, all fields describing the entities are concatenated
into a unique sentence and any reference to the dataset schema
is lost. In the attribute-based mode, the dataset entry is tokenized
at the attribute level and the values of the same attribute for
the considered pair of entities are coupled. Through this kind of
tokenization, the records in the EM datasets describing pairs of
entities are broken down into multiple sub-pairs, one for each
attribute. Finally, in the hybrid mode, partial and / or incremental
concatenations of the attribute values are performed. A hybrid
strategy can for example apply an attribute-level tokenization
and then incrementally combine the sub-pairs so that the 𝑖 − 𝑡ℎ

Dataset Type Datasets Size % Match

S-DG

Structured

DBLP-GoogleScholar 28,707 18.63
S-DA DBLP-ACM 12,363 17.96
S-AG Amazon-Google 11,460 10.18
S-WA Walmart-Amazon 10,242 9.39
S-BR BeerAdvo-RateBeer 450 15.11
S-IA iTunes-Amazon 539 24.49
S-FZ Fodors-Zagats 946 11.63
T-AB Textual Abt-Buy 9,575 10.74
D-IA

Dirty

iTunes-Amazon 539 24.49
D-DA DBLP-ACM 12,363 17.96
D-DG DBLP-GoogleScholar 28,707 18.63
D-WA Walmart-Amazon 10,242 9.39

Table 1: Magellan Benchmark

pair contains the values of the first 𝑖 attributes, and the last one
compares the entire original matching pair. The aforementioned
hybrid technique and the attribute-based technique have been
experimented in the paper.

Regardless of the specific implementation, the result of this
step consists of one or more token sequences for each entry of
the original EM dataset.
Embedder. The goal of the Embedder is to encode a token se-
quence into a multi-dimensional vector, i.e., an embedding. The
approach usually adopted in the literature starts from a pre-
trained word embedding deep learning architecture which is
experimented with some token sequences. The embeddings are
generally then extracted from these architectures by averaging
the last hidden layer for each token, but other techniques have
been experimented (the concatenations of the last 4 hidden lay-
ers for each token in [6]). In the paper, we experimented five
embedders: Bert, DistilBert (DBert), Albert, Roberta and XLNET.

The Embedder outputs an embedding for each input token
sequence. Recall that, according to the tokenization strategy
adopted, an entry in the dataset can generate from one to many
embeddings.
Combiner. The embeddings generated from each entry in the
EM dataset are summarized in a single multi-dimensional vec-
tor by the Combiner. The standard approach, experimented in
the paper, for performing this task is to calculate an average
embedding.

5 EXPERIMENTAL EVALUATION
This section aims to provide an experimental answer to three
main questions: 1) How effective are standard AutoML systems
in solving EM tasks (Section 5.1); 2) To which extent the perfor-
mance of AutoML systems applied to the EM task benefit from
data preprocessing techniques (Section 5.2); and 3) How much
AutoML systems pipelined with the EM adapters outperform the
current state-of-the-art EM models (Section 5.3).
Datasets.The experiments have been performed against the datasets
provided by the Magellan library2 which are considered as a stan-
dard benchmark for the evaluation of EM tasks. In Table 1we sum-
marize with some statistic measures the 12 datasets analyzed, re-
porting for each of them the total number of records representing
matching entities (fourth column) and the percentage of records
associated with a matching label (last column). Each dataset is
divided into training, validation, and test sets which were created
with 60-20-20 proportions. The code used in the experiments is
available at https://github.com/softlab-unimore/automl-for-em.

2https://github.com/anhaidgroup/deepmatcher/blob/master/Datasets.md
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AutoSklearn AutoGluon H2OAutoML DeepMatcher

F1 Training
time (h) F1 Training

time (h) F1 Training
time (h) F1 Training

time (h)
S-DG 50.65 1.00 77.85 4.42 64.74 0.97 94.70 8.50
S-DA 92.79 1.00 97.62 2.06 92.51 0.94 98.40 8.50
S-AG 44.10 1.00 23.28 1.57 36.88 0.96 69.30 1.50
S-WA 29.28 1.00 19.12 2.48 31.07 0.94 66.90 2.17
S-BR 40.00 1.00 0.00 0.07 43.24 0.74 72.70 0.08
S-IA 53.33 1.00 50.00 0.13 59.09 0.87 88.00 0.25
S-FZ 100.00 1.00 71.11 0.10 61.90 0.86 100 0.17
T-AB 26.47 1.00 11.41 1.63 27.36 0.94 62.80 3.50
D-IA 64.00 1.00 60.87 0.15 62.75 0.87 74.50 0.17
D-DA 54.74 1.00 89.44 3.07 67.92 0.94 98.10 4.00
D-DG 46.79 1.00 69.05 4.96 43.01 0.97 93.80 8.50
D-WA 25.75 1.00 14.12 2.10 26.31 0.97 46.00 2.50

Table 2: Effectiveness of AutoML systems in EM tasks.

5.1 AutoML systems solving EM tasks
The experiment shows the application of standards AutoML sys-
tems in solving EM tasks. We selected three well-known ap-
proaches, AutoSklearn, AutoGluon, and H2OAutoML. We evalu-
ated their performance as binary classifiers against the chosen
datasets. The AutoML systems have been experimented with
their default configuration, no parameter tuning has been per-
formed. Only the AutoSklearn system required the application
of a data pre-processing step to transform categorical features
(which are not managed by this system) into numerical values.
We performed this operation via a standard Word2Vec embed-
ding, where the average Word2Vec embedding for each token
of non-numeric attributes has been computed and concatenated.
The results of this experiment are shown in Table 2, reporting the
F1 score and the training time of each AutoML system for each
dataset. The last column in the Table shows the scores achieved
by DeepMatcher, in the Hybrid configuration, which we consider
as a baseline3.
Discussion. The AutoML systems are not effective in solving EM
tasks as DeepMatcher. They perform close to DeepMatcher (and
with an average F1 score greater than 75%) in two datasets only (S-
DA and S-FZ). Even if there are small variations among the perfor-
mance achieved, there is no AutoML system that clearly outper-
forms the others: the average F1 scores along all the datasets are
close, ranging from 48.66% for AutoGluon, to 51.4% for H2OAutoML,
and 52.33% for AutoSklearn. Nevertheless, the time required for
training the models was largely varying. H2OAutoML took 1
hour maximum to finalize the training in all the datasets; Au-
toSklearn limits the training time to one hour by default; the
time required for training AutoGluon was larger, more than four
hours for the S-DG and D-DG datasets. We performed a further
experiment, limiting the training time of AutoGluon to 1 hour.
The quality of the results largely decreased and the average F1
score across all datasets dropped to 42.4%.
Lesson Learned. AutoML systems are not competitive when ad-
dressing binary classification problems associated with EM tasks.

5.2 AutoML systems pipelined with EM
adapters

In this section, we evaluate the effectiveness of AutoML systems
coupled with an EM adapter. For this reason, we experimented

3We used the implementation available at https://github.com/anhaidgroup/
deepmatcher

several adapters, obtained by combining possible implementa-
tions for their constituting modules, the tokenizer, the embed-
der and the combiner, introduced in Section 4. In the following,
we report the effectiveness measured in adapters implementing
attribute-based and hybrid tokenizers, where the best results are
obtained. For each kind of tokenizer, five standard transformer
architectures, namely Bert, DistilBert (DBert), Albert, RoBERTa
and XLNET have been evaluated4. For sake of simplicity, we
only consider combiners generating the embeddings from the
last hidden layer for each token and averaging it with the layers
referring to the other tokens. Tables 3 shows the results of this
evaluation for AutoSklearn, AutoGluon and H2OAutoML respec-
tively. The scores of the EM adapters were grouped according
to the tokenization technique (attribute-based vs hybrid). The
F1 scores in bold represent the best result per dataset obtained
for the category of tokenizer considered. The values in bold and
underlined represent the results of the most effective EM adapter
for the considered dataset.
Discussion. We observe that (1) the EM adapters implementing
hybrid tokenizers typically obtain the best performance (only in
3/12 datasets, i.e. S-DA, S-WA and S-FZ, the results are worse);
(2) the Albert embedder achieves the best results (i.e., EM adapter
implementing an Albert embedder is the best solution for 7/12
datasets considering the AutoSklearn system and 8/12 consid-
ering AutoGluon and H2OAutoML). Finally, Table 4 reports an
overall evaluation of the impact of an EM adapter as a prepro-
cessing component for an AutoML system in solving EM tasks.
For each dataset and AutoML system, the F1 scores obtained in
the absence and presence of an EM adapter are reported. The
“No EM-Adapter" column is the reference column showing the
F1 scores obtained by AutoML systems with no EM adapter. The
remaining columns show the average F1 score (through the 5
transformer architectures considered) obtained by the adapters
implementing attribute-based and hybrid tokenizers. Finally, for
each AutoML system, the delta column shows the difference be-
tween the F1 score obtained with no EM adapter and the average
of the two versions including the EM adapters. The experiments
show that adapters significantly improve the effectiveness of
AutoML systems in solving EM tasks in almost all datasets (the
datasets S-FZ for AutoSklearn and S-DA for AutoGluon show
an anomaly result). The average F1 score increases of 24.96%,
28.02% and 23.6% for AutoSklearn, AutoGluon and H2OAutoML
respectively.
Lesson Learned. EM adapters largely improve the effectiveness
of AutoML systems in addressing EM tasks. The experiments
were not able to show a clear winner among the approaches
tested. This is a positive result since it means that the AutoML
technology can benefit from the application of EM adapters.

5.3 EM adapters pipelined with AutoML
systems vs ad hoc solutions

The aim of this experiment is to evaluate if an AutoML system
pipelined with an EM adapter can obtain competitive results with
respect to other state-of-the-art EM models. For this evaluation,
we consider an AutoML system with an EM adapter consisting
of a hybrid tokenizer and an Albert embedder, whose combina-
tion provided the best performances in the previous experiments.

4No fine-tuning technique was applied in the experiments.
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(a) EM-Adapter with AutoSklearn

Attr-EM-Adapter Hybrid-EM-Adapter

Bert DBert Albert Roberta XLNET Bert DBert Albert Roberta XLNET
S-DG 92.70 90.49 92.85 92.11 91.65 93.76 91.92 93.56 92.59 92.77
S-DA 98.10 95.74 96.54 97.89 96.76 96.90 95.73 96.64 96.12 96.22
S-AG 62.11 59.59 66.67 60.07 51.38 66.67 62.60 68.41 61.25 58.74
S-WA 58.05 55.73 67.18 55.21 56.36 56.93 52.36 62.17 48.00 46.92
S-BR 66.67 68.75 73.33 70.97 66.67 64.52 78.79 74.29 74.29 68.97
S-IA 88.46 88.89 83.64 80.77 90.20 83.64 87.27 85.71 88.46 96.30
S-FZ 97.67 97.78 95.24 100.00 93.02 97.67 97.67 95.24 97.67 97.67
T-AB 58.44 57.08 66.37 56.68 54.65 66.97 58.23 76.92 66.36 61.01
D-IA 56.52 58.82 67.92 51.85 64.52 80.70 77.97 91.23 79.25 87.72
D-DA 92.90 91.58 96.30 91.71 93.20 96.58 95.41 96.36 95.20 96.00
D-DG 86.73 85.63 90.29 86.22 86.67 93.00 91.39 93.12 92.76 92.25
D-WA 39.82 45.71 56.02 39.17 37.99 51.38 51.10 62.80 46.23 44.23

(b) EM-Adapter with AutoGluon

Attr-EM-Adapter Hybrid-EM-Adapter

Bert DBert Albert Roberta XLNET Bert DBert Albert Roberta XLNET
S-DG 93.35 91.88 93.53 92.19 92.76 94.30 92.83 94.37 93.25 93.56
S-DA 98.19 97.31 96.85 98.31 97.64 96.67 96.31 96.75 96.32 96.21
S-AG 57.78 50.14 64.61 54.04 45.39 58.06 58.55 64.89 53.40 55.83
S-WA 54.07 58.13 67.04 52.04 52.34 55.46 49.52 64.67 47.88 42.99
S-BR 64.29 66.67 80.00 63.64 64.29 64.29 64.29 81.25 71.43 75.86
S-IA 84.62 88.46 85.19 85.19 79.17 86.79 86.79 92.59 86.79 98.18
S-FZ 97.67 100.00 97.67 97.67 95.24 97.67 100.00 95.24 100.00 100.00
T-AB 58.49 58.72 70.95 56.55 56.76 60.18 64.22 73.97 63.69 59.71
D-IA 69.39 61.90 63.83 58.33 50.00 80.00 77.55 87.27 81.48 82.35
D-DA 93.00 93.12 96.02 91.05 92.97 96.54 95.58 96.76 96.00 95.88
D-DG 88.78 87.78 91.73 87.86 88.45 92.51 92.35 93.10 93.16 92.58
D-WA 32.47 44.52 56.89 33.79 33.55 51.55 49.35 65.56 43.29 39.13

(c) EM-Adapter with H2OAutoML

Attr-EM-Adapter Hybrid-EM-Adapter

Bert DBert Albert Roberta XLNET Bert DBert Albert Roberta XLNET
S-DG 91.52 90.23 92.25 90.08 90.86 92.41 91.87 93.78 92.29 92.16
S-DA 98.08 96.44 96.72 96.57 96.15 96.03 94.45 96.96 94.77 95.58
S-AG 55.02 52.61 61.86 59.11 52.81 61.96 59.19 66.54 60.32 46.51
S-WA 55.07 53.61 65.49 48.28 53.22 49.47 47.89 59.08 46.53 45.49
S-BR 70.97 69.23 78.79 72.00 52.63 66.67 58.33 86.67 70.97 74.07
S-IA 84.62 86.79 84.62 87.27 82.61 80.70 92.00 90.57 86.79 94.34
S-FZ 87.18 92.68 97.67 90.00 84.21 92.68 95.24 92.68 100.00 100.00
T-AB 50.36 50.11 65.88 52.58 51.92 56.19 55.76 70.53 57.01 55.50
D-IA 51.16 56.60 70.37 58.18 80.00 76.67 80.85 80.77 78.43 82.35
D-DA 87.02 89.83 95.02 88.86 90.18 94.41 95.51 96.32 94.55 94.83
D-DG 83.83 84.10 89.85 84.48 83.92 89.87 87.53 92.34 91.90 91.93
D-WA 33.40 38.99 55.37 30.03 33.59 46.60 47.90 61.06 42.79 40.96

Table 3: EM-Adapter effectiveness for AutoML systems.

AutoSklearn AutoGluon H2OAutoML

No
EM-Adapter

Attr-
EM-Adapter

Hybrid-
EM-Adapter Δ

No
EM-Adapter

Attr-
EM-Adapter

Hybrid-
EM-Adapter Δ

No
EM-Adapter

Attr-
EM-Adapter

Hybrid-
EM-Adapter Δ

S-DG 50.65 91.96 92.92 41.79 77.85 92.74 93.66 15.35 64.74 90.99 92.50 27.00
S-DA 92.79 97.01 96.32 3.87 97.62 97.66 96.45 -0.56 92.51 96.79 95.56 3.66
S-AG 44.10 59.96 63.53 17.65 23.28 54.39 58.15 32.98 36.88 56.28 58.90 20.71
S-WA 29.28 58.50 53.28 26.61 19.12 56.72 52.10 35.30 31.07 55.13 49.69 21.34
S-BR 40.00 69.28 72.17 30.72 0.00 67.77 71.42 69.60 43.24 68.72 71.34 26.79
S-IA 53.33 86.39 88.28 34.00 50.00 84.52 90.23 37.38 59.09 85.18 88.88 27.94
S-FZ 100.00 96.74 97.19 -3.04 71.11 97.65 98.58 27.01 61.90 90.35 96.12 31.33
T-AB 26.47 58.64 65.90 35.80 11.41 60.29 64.36 50.92 27.36 54.17 59.00 29.23
D-IA 64.00 59.93 83.37 7.65 60.87 60.69 81.73 10.34 62.75 63.26 79.81 8.79
D-DA 54.74 93.14 95.91 39.79 89.44 93.23 96.15 5.25 67.92 90.18 95.13 24.74
D-DG 46.79 87.11 92.50 43.01 69.05 88.92 92.74 21.78 43.01 85.23 90.71 44.96
D-WA 25.75 43.74 51.15 21.69 14.12 40.24 49.78 30.89 26.31 38.27 47.86 16.76

Table 4: Impact of EM-Adapter on AutoML performance. Bold values indicate the best configuration for a specific AutoML
system; underlined values the best results for the considered dataset.

This system was then compared with the Hybrid variant of Deep-
Matcher. Table 5 reports the results of this comparison. We per-
formed two experiments, in the first we limited the training time
of the AutoML systems to 1 hour. In the second experiment, we
set that time to 6 hours. The offset between the average effec-
tiveness of AutoML systems and DeepMatcher is shown for each
configuration.
Discussion. AutoML systems limited to 1 hour of training show
better effectiveness than DeepMatcher in 5/12 datasets (i.e. S-BR,
S-IA, T-AB , D-IA and D-WA, with an average increase of F1
equal to 9%). In the remaining cases, they generate slightly lower
results, with an average F1 difference of 3.2%. However, we notice
that AutoSklearn used the entire training time budget, but Auto-
Gluon and H2OAutoML took on average a training time of 0.61
h and 0.76 h respectively. Furthermore, DeepMatcher has been
trained for less than 1 hour in only 4/12 datasets. If we consider a

tolerance threshold of 2%, the EM-adapted AutoML systems are
comparable or outperform DeepMatcher in 9/12 datasets. This
trend is further confirmed when we limit the training time to 6
hours. The average F1 score increases of 12% in the 5 datasets
where the AutoML systems obtain the best results. Assuming as
before a 2% tolerance threshold in F1 scores, EM-adapted AutoML
systems are comparable or outperform DeepMatcher in 11/12
datasets. Also in this case, only AutoSklearn used the entire time
budget for training, while AutoGluon and H2OAutoML took an
average of 3.68 hours and 3.24 hours respectively (compared to
2.92 hours of DeepMatcher).
Lesson Learned. AutoML systems pipelined with EM adapters per-
form as or greater than state-of-the-art EM tools.
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DeepMatcher (Hybrid) EM-Adapted AutoMLs (1h time budget) EM-Adapted AutoMLs (6h time budget)

F1 Time (h) AutoSklearn AutoGluon H2OAutoML Δ AutoSklearn AutoGluon H2OAutoML Δ
S-DG 94.70 8.50 93.56 92.98 93.78 -1.26 94.02 94.16 93.82 -0.70
S-DA 98.40 3.75 96.64 96.75 96.96 -1.62 97.08 96.85 97.08 -1.40
S-AG 69.30 1.50 68.41 59.03 66.54 -4.64 68.41 64.53 69.24 -1.90
S-WA 66.90 2.17 62.17 58.01 59.08 -7.15 65.16 66.12 63.50 -1.97
S-BR 72.70 0.08 74.29 81.25 86.67 8.03 76.47 81.25 86.67 8.76
S-IA 88.00 0.25 85.71 92.59 90.57 1.62 91.23 92.59 94.12 4.65
S-FZ 100.00 0.17 95.24 95.24 92.68 -5.61 97.67 97.67 95.24 -3.14
T-AB 62.80 3.50 76.92 69.83 70.53 9.63 76.92 76.88 77.06 14.16
D-IA 74.50 0.17 91.23 87.27 80.77 11.92 91.23 91.23 82.35 13.77
D-DA 98.10 4.00 96.36 97.12 96.32 -1.50 96.36 97.12 97.33 -1.16
D-DG 93.80 8.50 93.12 92.59 92.34 -1.12 93.53 93.38 93.21 -0.43
D-WA 46.00 2.50 62.80 57.05 61.06 14.30 67.77 62.50 65.44 19.23

Table 5: Effectiveness of EM-Adapter with AutoML systems compared to DeepMatcher. Values in bold indicate the best
configuration for a training time budget configuration.

6 CONCLUSION
The adoption of AutoML systems would make machine learning
and deep learning based approaches for addressing EM tasks us-
able also for non-expert people. The direct application of AutoML
systems to the EM problem is not possible. The reason is mainly
due to the schema adopted by the datasets representing EM tasks
whose records encode pairs of entities, and to the classification
problemwhich is highly imbalanced. In this paper, we address the
first problem, by introducing the EM adapter component which
transforms the records of datasets representing entity pairs into
a form which is effectively processable by AutoML systems. Our
experiments show that this approach achieves a performance
similar to the one of EM-task specific systems (but it does not
require expert users to tune it). The future work will try to im-
prove the performance (1) by introducing data augmentation
techniques for creating more balanced training datasets for the
AutoML systems; (2) by experimenting techniques for improving
the embeddings (via "local embeddings" [3], generated taking
into account the current dataset, and/or performing a fine-tune
of the existing techniques).
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ABSTRACT

Calculating correlation coefficients is one of the most used mea-
sures in data science. Although linear correlations are fast and
easy to calculate, they lack robustness and effectiveness in the
existence of non-linear associations. Rank-based coefficients such
as Spearman’s are more suitable. However, rank-based measures
first require to sort the values and obtain the ranks, making their
calculation super-linear. One of the use-cases that is affected by
this is data enrichment for Machine Learning (ML) through fea-
ture extraction from large databases. Finding the most promising
features from millions of candidates to increase the ML accu-
racy requires billions of correlation calculations. In this paper,
we introduce an index structure that ensures rank-based corre-
lation calculation in a linear time. Our solution accelerates the
correlation calculation up to 500 times in the data enrichment
setting.

1 INTRODUCTION

The correlation coefficient is one of the extensively used statisti-
cal measures in data science. Data scientists use the correlation
coefficient to find dependencies in the data and identify possible
causal relationships. In machine learning (ML) tasks, correlations
can be used to evaluate the relevance of features. Correlating
features expose redundancy. Thus, one can remove redundant
features to avoid the curse of dimensionality. Also, a correlation
between a feature and a target value can serve as a heuristic
for the importance of a feature. This is exactly what filter-based
feature selections are aiming for [4]: They leverage correlation
to find informative and drop redundant features to achieve high
accuracy in the following ML task.

Various correlation coefficients can be used to identify correla-
tions between features in datasets. The most prominent one is the
Pearson Correlation Coefficient (Pcc). Although calculating the
Pcc is fairly simple and linear in the size of the compared datasets,
there are several situations where a non-linear coefficient, such
as the Spearman’s correlation coefficient (Scc) is preferred.
Robustness. Linear correlations such as Pcc are very sensitive
to outliers. As an example, Table 1 compares robustness of Pcc
and Scc. Although there is no clear correlation between the two
columns, the calculated Pcc identifies them as correlated, because
of one outlier point (shown in red). A correlation of 1.0 is clearly
misleading. Scc shows a more fitting correlation of only 0.1. This
robustness makes Scc to be a better fit for noisy and dirty data
such as webtables that are likely to contain outliers [7, 14].
Effectiveness. Linear correlations are not effective in capturing
more complex dependencies. They are only able to find linear
associations between two features. This can be useful in the
case of feature selection for linear models such as linear regres-
sion. However, for complex ML models such as Random Forest

© 2021 Copyright held by the owner/author(s). Published in Proceedings of the
24th International Conference on Extending Database Technology (EDBT), March
23-26, 2021, ISBN 978-3-89318-084-4 on OpenProceedings.org.
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Table 1: Correlation in the existence of outlier.

Area (Million sq. miles) Calling Code

0.29 56
0.3 90
3.8 1
0.5 51
600 9800
Pearson = 1.0 Spearman’s = 0.1

or Neural Network that can train non-linear patterns, linear
correlation-based feature selections can miss features with non-
linear dependencies harming the achievable accuracy [23].

The disadvantage of non-linear approaches, such as Scc and
Kendall tau [13] is that they are rank-based and as such require
a sortation of values, which poses a higher time complexity, i.e.
𝑂 (𝑚 · log(𝑚)) where𝑚 is the size of the variable, for calculation
than their linear counterparts. The time complexity increases
when we want to calculate non-linear correlation for categorical
columns. The Rank-biserial correlation coefficient Rbc can be ap-
plied on one-hot encoded columns, so Rbc has a time complexity
of 𝑂 (𝑚2) [7, 14]. This computation overhead negatively impacts
the analysis pipeline when a large number of features have to be
analyzed. For instance, to detect the redundant features, the corre-
lation computation between each possible pair is required, which
inherently leads to 𝑂 (𝑁 2) correlation computations for 𝑁 differ-
ent features [23]. For datasets with several hundreds of potential
features, the runtime overhead impedes live analysis and fast
model building. For example in data enrichment [2, 17, 22, 24, 26],
one aims to detect features that correlate to the given target fea-
ture from millions of extracted candidates. At this scale, runtime
overhead for rank-based correlations becomes evidently a hurdle.

In this paper, we introduce a light-weight indexing structure
to compute the non-linear correlation coefficient in a linear time
for large-scale data enrichment tasks. It avoids the𝑂 (𝑚 · log(𝑚))
sorting operation for numerical columns, benefiting the Scc cal-
culation, and avoiding the 𝑂 (𝑚2) complexity of dealing with
the one-hot encoding of categorical columns for Rbc. Our light-
weight index also enables Cocoa (our system) to scale to the
massive number of external tables. Furthermore, the nature of
the correlation calculation also enables Cocoa to perform light-
weight joins instead of full materialization of joins with candidate
columns. In summary, we make three major contributions:

(1) We introduce a new index structure that enables us to com-
pute the non-linear correlation coefficient in linear time and gen-
eralizes also for enrichment through partial joins where ranks
are missing and have to be adapted.
(2) We propose algorithms that leverage our index structure to
detect correlations between numerical and categorical columns
to a target column in linear time.
(3) We introduce a correlation-based data enrichment solution
that increases the accuracy of the ML model for a user-defined
task compared to other enrichment solutions.
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2 PROBLEM STATEMENT

Given an input dataset 𝐷 with𝑚 rows, two explicitly selected
columns 𝑞 and 𝑡 from 𝐷 , so-called query and target columns
respectively, and a corpus of external tables 𝑇 = {𝑇1, ...,𝑇𝑛},
the goal is to enrich 𝐷 with the top-𝑘𝑐 columns from any table
𝑇𝑖 ∈ 𝑇 that correlate with 𝑡 . As we focus on regression tasks, 𝑡
is a numerical column while features can be either numerical or
categorical. The query column 𝑞 is used to find the related tables,
i.e., tables that are joinable with 𝐷 on 𝑞. Ideally, 𝑞 is an identity
exposing column, such as name or ID. Without loss of generality,
we thus assume 𝑞 is selected explicitly by the user.

Depending on whether an extracted feature is numerical or
categorical, one has to use Scc or Rbc, respectively. Equation 1
shows the formula of Sccwhere 𝑥𝑖 and𝑦𝑖 are the 𝑖𝑡ℎ values in the
first and second column respectively. Both columns are of size
𝑚. 𝑅(𝑥𝑖 ) represents the rank of value 𝑥𝑖 . For instance, 𝑅(8) = 2
in list [8, 11, 4, 9] because the value 8 is second in the sorted list
[4, 8, 9, 11]. 𝑅(𝑥) and 𝑅(𝑦) represent the average of ranks in the
first and the second column respectively.

Scc =

∑𝑚
𝑖=1 (𝑅(𝑥𝑖 ) − 𝑅(𝑥)) (𝑅(𝑦𝑖 ) − 𝑅(𝑦))√∑𝑚
𝑖=1 (𝑅(𝑥𝑖 ) − 𝑅(𝑥))2 (𝑅(𝑦𝑖 ) − 𝑅(𝑦))2

(1)

The Scc calculation for numerical columns is in 𝑂 (𝑚 · log𝑚)
because one has to obtain the ranks through sortation.

To compute the correlation between categorical columns and
𝑡 , the Rbc calculates the Scc between each one-hot feature of the
categorical column and 𝑡 [3, 9, 18]:

Rbc =
𝑀1 −𝑀0

𝑠𝑡𝑑

√
𝑛1𝑛0
𝑚2 (2)

𝑀1 and𝑀0 represent the average target rank for 1s and 0s in a
one-hot feature, 𝑛0, 𝑛1 are the number of ones and zeros in the
one-hot feature, and 𝑠𝑡𝑑 and𝑚 define the standard deviation of
target ranks and the number of values in columns, respectively.
In our case,𝑚 is the number of rows in the input dataset. The
overall correlation is then the maximum Rbc between each one-
hot feature and 𝑡 Based on Equation 2, we can calculate the Rbc
in 𝑂 (𝑚) time complexity per one-hot feature. As a column can
have up to𝑚 unique values, thus the overall complexity is𝑂 (𝑚2).

If the join operation is implemented as a hash-based join, the
join task has a time complexity of 𝑂 (𝑚) per table. The follow-
up correlation calculation per column has either a complexity
of 𝑂 (𝑚 · log𝑚) or 𝑂 (𝑚2) depending on whether the feature is
numerical or categorical. In retrieval tasks with large databases,
we can observe the runtime is dominated by the correlation
calculation.
Problem We are thus looking for an index structure that allows
us to calculate both Scc and Rbc in linear time. To be able to index
data repositories in the scale of web tables, our index structure
should be simple and light-weight.

3 COCOA SYSTEM

Figure 1 depicts the abstract view of the components designed
in our system Cocoa. The main components are Table Finder,
Join Mapper, and Data Augmenter. A user provides Cocoa with a
dataset 𝐷 and specifies its query column 𝑞 and ML target column
𝑡 . At last, it returns the top-𝑘𝑐 most correlating columns as the
output of the system. Now, we describe each of these components.

Table Finder. This component uses 𝑞 and the inverted index
of the DataXformer system [1] to obtain top-𝑘𝑡 joinable tables.

JoinMaps

Table 
Finder

Join 
Mapper

+
T'  T⊂D

Data 
Augmenter

Order 
Index

Inverted 
Index

Q = { D, qc, tc, kt, kc}

D+

T

Table 
Corpus 

COCOA

Figure 1: The overall architecture of Cocoa

A table is joinable if it contains at least one column that over-
laps values with 𝑞. For each value 𝑣𝑖 in external tables, the in-
verted index lists the coordinates of its containing tables: 𝑣𝑖 ↦→
{(𝑇𝑖1, 𝐶𝑖1, 𝑃𝑖1), (𝑇𝑖2, 𝐶𝑖2, 𝑃𝑖2), ...}, where 𝑇𝑖 𝑗 , 𝐶𝑖 𝑗 , and 𝑃𝑖 𝑗 are
identifiers of tables, columns, and rows in the table corpus, re-
spectively. We store the inverted indices inside a column store
and generate a SQL query to find joinable external tables in paral-
lel and using database-level optimizations. This approach allows
to push the process of finding the joinable tables down to the
database itself. The SQL query calculates the overlap between
each external column and 𝑞 and then selects the top-𝑘𝑡 tables by
sorting them based on the overlap score.

Running example Figure 2(a) depicts a user-provided dataset
𝐷 for the task of predicting the population of a country. The
column with the country names will serve as the query column 𝑞
and the population as the ML target column 𝑡 . Figure 2(b) depicts
an external table (𝑇1) that contains three columns: Country, Area,
and Calling Code. In our example, the index entry for the values
“Germany” in Country would be:𝐺𝑒𝑟𝑚𝑎𝑛𝑦 ↦→ {(𝑇1,𝐶𝑜𝑢𝑛𝑡𝑟𝑦, 5)}.

Join Mapper. The Join Mapper receives a set of joinable tables
𝑇 ′ as input and virtually joins them with the input dataset 𝐷 . To
enrich the input dataset with external tables, we have to apply a
LEFT JOIN because we need to keep information in 𝐷 and add
only overlapping information from the external tables [6]. Instead
of a complete materialized LEFT JOIN, our Join Mapper generates
a lightweight JoinMap, which is inspired by P.Valduriez’s “Join
Indices” [19]. Using our Order index, we can use the light-weight
join to also calculate the correlations before materializing the
join. Thus we limit the join materialization for relevant columns
with high correlation and further speed up the process.

Figure 3 depicts the JoinMap for the example in Figure 2. Coun-
try column in 𝑇1 is overlapping with 𝑞 in 𝐷 . The corresponding
map shows which row in Country has the same respective value
in 𝑞. As it is shown, the value “Switzerland” in row 2 of Country
appears in row 3 of 𝑞. In the case of duplicates in 𝑞, respective
cells in the JoinMap will contain more than one value.

Data Augmenter. This component receives the JoinMaps as
input and uses a novel structure, called Order index, to efficiently
compute the Scc and Rbc. It evaluates the external columns based
on their correlation with 𝑡 and enriches the input dataset 𝐷 with
the top-𝑘𝑐 correlating columns to generate the final dataset 𝐷+.
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Figure 2: Running example: (a) Input dataset 𝐷; (b) External table 𝑇1; (c) Joined result of 𝐷 and 𝑇1

row in 𝐶1 1 2 3 4 5 6 7 8 9

row in q ∅ 3 ∅ ∅ ∅ 5 1 4 2

Figure 3: An example of JoinMap

4 CORRELATION CALCULATION

The main goal of the Data Augmenter is to calculate the Scc and
Rbc between each provided external column and the target col-
umn 𝑡 in𝑂 (𝑚). Thus, we want to refrain from sorting the values
of every potential numerical column and the generation of one-
hot encodings for every categorical column during the extraction
time. One might think of a simple solution that calculates the
ranks and one-hot encodings offline and maintains them as part
of the inverted index. However, maintaining the ranks will lead
to calculation errors of the Scc when related tables are only par-
tially joinable. Columns Area (Rank) and Calling Code (Rank) in
Figure 2(c) show this error in obtaining the ranks after the partial
join. Non-consecutive ranks lead to incorrect Scc. For instance,
the correct Scc between Calling Code and 𝑡 is −0.1, but using the
incomplete ranks returns the Scc of +0.117. Furthermore, storing
the one-hot encoding of all columns would unnecessarily blow
up the index size. Therefore, we propose algorithms based on a
new Order index that keeps track of the order of each value in the
numerical columns and efficiently generates one-hot encodings
for categorical columns.

4.1 Order Index Structure

We now introduce the simple, yet effective, Order index structure.
Instead of the actual ranks, it stores the relative order of column
values enabling the system to compute Scc and Rbc in a linear
time. Keeping track of the order of values enables us to calculate
the correct ranks on-demand despite partial joins. Also, keeping
relative orders enables us to walk through all non-zero values
in one-hot features in the right order to calculate the Rbc for
categorical columns. To maintain the order information in a
concise way, the Order index maps each pair of a table identifier
𝑇𝑖𝑑 and a column identifier 𝐶𝑖𝑑 to the column values as follows:

𝑇𝑖𝑑 ,𝐶𝑖𝑑 ↦→ {𝑠, (𝑜1, ..., 𝑜𝑟 ), (𝑏1, ..., 𝑏𝑟 )} (3)

𝑠 ← 𝛼, 𝑤ℎ𝑒𝑟𝑒 𝑅(𝑣𝛼 ) = 1 (4)

𝑏𝑖 =

{
𝐹𝑎𝑙𝑠𝑒, 𝑅(𝑣𝑖 ) = 𝑅(𝑣𝑜𝑖 )
𝑇𝑟𝑢𝑒, 𝑅(𝑣𝑖 ) ≠ 𝑅(𝑣𝑜𝑖 )

(5)

Each entry in the Order index consists of the starting point 𝑠 ,
which represents the row id of the minimum value in the column
(𝛼 in Equation 4). 𝑣𝑖 is the value located in the 𝑖𝑡ℎ row. The rank
of the minimum value is always 1. In categorical columns, the
minimum is the first value in the alphabetically sorted list. The
second item (order list), contains a list of values where 𝑜𝑖 is the

row id of the next greater value than 𝑣𝑖 . In case of having repet-
itive values, 𝑜𝑖 is the row id of the next equal value. If 𝑣𝑖 is the
last value in the sorted list, 𝑜𝑖 = −1. The item 𝑏𝑖 denotes whether
𝑣𝑜𝑖 is greater than its predecessor 𝑣𝑖 or not (Equation 5). We use
the same index for both numerical and categorical columns. To
distinguish the numerical and categorical columns during the
correlation calculation, we use a simple heuristic: a column is
considered as categorical if it contains at least one non-numeric
value. We store it as an additional bit per column. The Order index
of the column Area in our running example in Figure 2(b) would
be:
{2, (9, 5, 4, 6, 8, 7, −1, 1, 3), (𝑇, 𝑇 , 𝑇 , 𝑇 , 𝑇 , 𝑇 , ∅, 𝑇 , 𝑇 )}

In column Area, the minimum is located in row 2 (0.01), so, 𝑠 = 2.
The second element of the index represents a list of pointers to
the next greater (or equal) values. The first item in this list 𝑜1
points to row id 9 and it means that the next greater value “0.3”
after the first value “0.29” is stored in the 9𝑡ℎ row. Likewise, the
9𝑡ℎ pointer 𝑜9 in the order list is 3, which means that the next
greater value “0.5” is located in row 3. Notice that as there are
no repetitive values in column Area, all of the binary values in
the third index element, except for the maximum value pointer,
are True.

Figure 4 shows the visualized representation of the Order index
for the columnArea in𝑇1. Each square represents one value in the
external column. The blue square represents the minimum value
and the red one shows the maximum. Each edge that connects
one square to another depicts the relative order 𝑜𝑖 . Small numbers
in the circles are the row ids of the values in the column Area.
Each value has an outgoing edge except the maximum value.
Labels on each edge represent the index values stored for the
source value. For example, the outgoing edge from the 4𝑡ℎ item
in the list, is [6,𝑇 ], which translates to 𝑜4 = 6 and 𝑏4 = 𝑇 .

The Order index is the most basic index structure that supports
correlation calculation in 𝑂 (𝑚). A more complex B+ tree adapta-
tion can be used if frequent corpus updates are expected. Here,
we exclude the tree benefits for a more space-efficient index.

4.2 SCC for Numerical Columns

We use an example to describe how we leverage the underlying
Order index to calculate the Scc between numerical columns of
an external table and 𝑡 . Figure 4 shows the Order index of the
Area column and the JoinMap of the table 𝑇1 from our running
example. Assume that p is a pointer and in the beginning, p
references the minimum value in the column. In each iteration,
p traverses through the available links until it reaches the red
square which means that the ranking process is finished.

Starting from the minimum value “0.01”, the algorithm checks
the JoinMap for any mapping from the value in Area to a value in
𝑞. There is a mapping from “0.01” to the value in the 3𝑟𝑑 row of
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Figure 4: Visual representation of the Order index for the

column Area from the running example in Figure 2.

𝑞. Therefore, initial rank, which is 1, is assigned to the 3𝑟𝑑 value
of Area (see Area (Correct Rank) in Figure 2(c)). Then, p will be
updated to the next greater value. Here, “0.01” is linked to the 5𝑡ℎ
value, which is “0.14”. However, there is no map from “0.14” to
any value in 𝑞. Thus, pwill be updated based on the outgoing link
from “0.14” to the next greater value located in the 8𝑡ℎ square
with the value of “0.17”. There is a mapping from the value “0.17”
to the row with id 4, so the next rank, which currently is 2, will
be assigned to the 4𝑡ℎ value in Area. This process continues until
the pointer p reaches the 7𝑡ℎ and the maximum value. Since there
are no outgoing links, the iteration is finished. The ranks for both
Area and Calling Code columns are shown in the Figure 2(c) as
Area (Correct Rank) and Calling Code (Correct Rank), respectively.

According to Equation 1, we can indeed compute the Scc in
𝑂 (𝑚) by having correct ranks. Obtaining the ranks is now also
possible in 𝑂 (𝑚). The algorithm iterates over the values in the
ordered list only once. Therefore, if the time complexity of the
operations per value is constant and the path from the minimum
to the maximum value is cycle-free, we conclude that the Scc
calculation is done in 𝑂 (𝑚). First, all operations of reading the
JoinMap, assigning/updating current rank, and updating p to the
next value are done in a constant time because the JoinMap and
the Order index items are implemented using array structure and
accessing the array cells is performed in a constant time using
the available cell index. We also know that each 𝑜𝑖 value, which
is represented by an edge, refers to a unique row id even in the
existence of repetitive values. Thus, the path from the minimum
to the maximum value is cycle-free. The path length is 𝑟 , i.e.,
the average number of rows in the external columns. External
tables are often smaller than the input datasets (𝑟 << 𝑚), e.g., the
average external table size is 10 for DWTC and 1540 for open
data [26]. Thus, the complexity is typically bound by𝑚.

4.3 RBC for Categorical Columns

To calculate the dependency between external categorical columns
and 𝑡 , we have to generate the one-hot features of the column and
calculate the Rbc between each generated feature and the target
rank column. Using our index we can avoid this and simulate
the calculation in linear time. The Order index allows us to walk
through the non-zero values in the one-hot features, one feature
at a time. By iterating non-zero values of each one-hot feature
consecutively we can compute the Rbc for all possible feature in
one pass of reading the categorical column using the following
derived Equation 6, which is obtained by replacing𝑀0 and 𝑛0 in
Equation 2 with 𝑆−𝑀1𝑛1

𝑛0
and𝑚 −𝑚1 respectively:

Rbc =
𝑚 · 𝑠1 − 𝑛1 · 𝑆

𝑠𝑡𝑑 ·𝑚 ·
√
𝑛1 (𝑚 − 𝑛1))

(6)

In Equation 6, 𝑆 is the sum of all the ranks in the target column
and 𝑠1 the sum of the ranks where the corresponding one-hot

Row Candiate Column Target Rank

1 Asia 1.1 5

2 Europe 9.6 8

3 Europe 0.08 1

4 Asia 0.3 3

5 South_America 1.2 6

6 South_America 0.1 2

7 South_America 3.2 7

8 Europe 0.75 4

Min

Figure 5: Categorical candidate column example.

value is one. Using Equation 6, variables𝑚, 𝑆 , and 𝑠𝑡𝑑 are calcu-
lated once. To compute the Rbc between each one-hot feature
and 𝑡 , it is enough to compute 𝑠1 and 𝑛1 for each one-hot feature.

Cocoa uses the Order index to iterate over the sorted list of
categorical values. It is able to compute 𝑠1 and 𝑛1 per one-hot
feature without generating the features because the Order index
allows to read the repetitions of the values consecutively. Once
the iteration reaches a different value,𝑏𝑖 announces the end of the
current one-hot feature. At this point, the Rbc is calculated based
on Equation 6. In the end, the maximum Rbc will be reported.

Figure 5 shows an example for Rbc calculation. It depicts a
categorical column “Candidate Column” and the target column
“Target”. Wewould like to compute the Rbc of all one-hot features
in one pass of reading the values. The ranks of the target values
are shown in the “Rank” column. The location of the minimum
value is represented in blue and each link depicts the location of
the next value. The red-colored links show that the next value
is greater, i.e., different, than the current value. Obtaining the
standard deviation of the “Rank” column and𝑚, we only need to
calculate 𝑠1 and 𝑛1 for each unique value.

Starting with the minimum value, as long as the followed
arrow is not red, we continue reading rank values and adding
them to 𝑠1, increasing 𝑛1 by 1 in each iteration. After reading the
value in row number 1, 𝑠1 and 𝑛1 are equal to 5 and 1 respectively.
Following the links gets us to the 4𝑡ℎ row. Reading the rank value,
𝑠1 is increased to 5+3 = 8 and𝑛1 to 1+1 = 2. The next arrow is red
and it means that the following value is different from the current
one. Therefore, we calculate the correlation using Equation 6.
Repeating this process, another correlation is calculated in row
number 7. Reaching the last row, we compute the final correlation
and report the maximum Rbc. Rbc calculation is done in 𝑂 (𝑚)
as the algorithm iterates over the ordered list only once.

5 EXPERIMENTS

We carried out a series of experiments to evaluate Cocoa with
the following questions in mind: (i) What is the performance
gain through Order index for calculating feature correlations on
large corpora? (ii) How efficient is the light-weight virtual join?
(iii) How scalable is Cocoa? Before we delve into the detail, we
first describe the setup of our experimental evaluation.

5.1 Data and Experimental Setup

We tested our approach on top of several open databases. The
Dresden webtable corpus (DWTC)1 contains more than 145𝑀
tables and 870𝑀 unique columns. The Canada, US, and Uk Open
Data corpus used in prior work [26] contains more than 745,000
columns and 14,000 tables. It is noteworthy that the Open Data

1https://wwwdb.inf.tu-dresden.de/misc/dwtc/
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Table 2: Experimental datasets.

Dataset Query Column Target Instances

Kaggle Open Food Facts Product Name Energy per 100g 356,000
Kaggle NYC Airbnb Place Name Price 48,000
Cities City Name Population 40,000
Kaggle Video Game Sales Game Global Sales 16,599
PageView Name Visit 11,000
Kaggle IMDB Movie Title IMDB Score 5,043
Presidential County Votes 3,000
Kaggle Craft Beers Name Alcoholic content 2,400
Kaggle Human Freedom Index Country Homicide Index 1,450
Kaggle World Happiness Report Country/Region Score 157
University Name World Ranking 100

corpus only contains numerical data. We ran our experiments
on a server with 28 CPU cores and 250GBs of main memory.
We implemented our solution in Python 3.7 and used Vertica
v9.1.1-0 [16] as the storage. Implementations and datasets are
available in our GitHub repository2. All compared approaches
use the same table retrieval module. They only differ with regard
to the join, filtering, and correlation calculation steps.

Table 2 shows the datasets that we chose from different do-
mains as query datasets. For the Open Data corpus, we use the
benchmark query columns provided in the Josie paper [26].
Baselines. For these experiments, we compare Cocoawith three
baselines and two combined versions of Cocoa:
(1) Sort-based enrichment (Sbe). Sbe calculates the Scc and
Rbc without using the provided order index. It has to sort online
and create one-hot encoding of categorical columns. The com-
parison with this baseline allows us to evaluate the efficiency of
the Order index in the enrichment pipeline.
(2) TR. It is a rule-based method that skips joins with non-
informative tables before any further calculation [15].
(3) TR+Cocoa. TR is a complementary approach to Cocoa. TR
drops the non-informative tables before joining. Then, Cocoa
extracts the correlating columns from the tables.
(4) RF. Here, we apply the random forest feature selection (RF)
on top of the overlap-based enrichment method [26]. In this
method, we join 𝑘𝑡 related tables and RF picks the most informa-
tive features with respect to the ML task.
(5) Cocoa+RF. Here, Cocoa enriches the input data with the
top 100 correlated columns and delivers to RF.

5.2 Results

We start with the DWTC experiments. Figure 6(a) shows the
average runtime of Cocoa, Sbe, and TR applied on all query
datasets. The average runtime is shown for varied 𝑘𝑡 values. In
this experiment, we drop the break-down based on 𝑘𝑐 because
it has only a negligible improvement on the runtime of Cocoa
and no impact on the other approaches. The depicted runtime
includes the time for joining tables and calculating the Scc/Rbc.
In the case of TR, runtime represents joining and rule validation
time. Note that the runtime is depicted in logarithmic scale.

Cocoa outperforms Sbe on all datasets and for all different
𝑘𝑡 values and ultimately, we see better performance on average.
Cocoa can be up to 520𝑋 faster than Sbe using the introduced
Order index. Cocoa, on average, is slower than TR. TR applies a
rule-based table filter before joining the tables. It computes the
cardinality of the tables and decides whether the join is safe to
skip or not. Rules in TR - unlike Cocoa- are applied per external
table and not per columns. Therefore, the rule verification in TR
is computationally less expensive. The coarse-granular filtering
comes at the cost of effectiveness [6]. According to Figure 6(a),
the runtime of all approaches increases with 𝑘𝑡 because more
external tables have to be processed for the Scc calculation.
2https://github.com/BigDaMa/COCOA

Figure 6(b) shows the runtime experiment on Open Data. Here,
𝑘𝑡 has a lower impact compared to the DWTC corpus, because
of the small number of tables. So, we consider all tables that have
overlap with 𝑞 as candidate join tables. As expected, similar to
the DWTC, Cocoa is faster than Sbe due to the fast correlation
calculation through our introduced index structure. However, TR
is surprisingly slower than the other two systems. The reason
is that in comparison to DWTC, the tables in the Open Data
benchmark, are not sparse and yield higher overlap between
queries and the tables. Therefore, the TR rule is passed and most
of the tables are joint. In this case not only does TR not provide
any additional runtime benefits but also it introduces cardinality
calculation overhead with almost zero pruned external table.

Figure 6(c) compares Cocoa to three hybrid system on DTWC
with 𝑘𝑡 = 1000. We build these hybrid systems to evaluate the im-
pact of the feature pre-filtering on the runtime of the systems and
determine the fastest system combination that considers feature-
target association for the ML task. The combination TR+Cocoa
results in better performance than every other strategy. TR drops
the non-informative tables and reduces the search space for Co-
coa to find the correlating features in a faster way. This experi-
ment shows that although TR does not perform well with regard
to effectiveness [6], it can be a complementary heuristic for Co-
coa to reduce the search space and enrich the input dataset much
faster than any other solutions at hand.

RF is the slowest approach on all datasets except the University
dataset. This is due to the tremendous number of features that
are delivered to RF. Note that experiments that are not finished
within 8 hours are underestimated with 8 hours in the runtime.
RF fails to terminate for 4 datasets: Cities, IMDB, Food, and NYC
Airbnb. Pruning the search space using Cocoa improves runtime
for RF. Cocoa +RF only fails to finish on the Food dataset.

We notice that TR+Cocoa performs even better than TR on
larger datasets, such as Food. The reason is that TR materializes
all joins but Cocoa uses the light-weight virtual joins that are
much faster because only the top-𝑘𝑐 columns are materialized.
Scalability. To better evaluate the scalability of Sbe- and Co-
coa-based solutions with regard to the dataset size, we measure
the average runtime for a single correlation calculation in both
approaches. Figure 7 shows this experiment on the City dataset
scaling the number of rows. The average calculation time in-
creases much faster for Sbe than for Cocoa. On a dataset with
1𝑀 rows, the runtime difference between the two approaches
for one correlation calculation is about 118 seconds. This differ-
ence is crucial in the scale of thousands of external tables. In our
experiments, for the City dataset the number of correlation cal-
culations easily exceeds 52, 000 calculations to enrich the dataset,
thus this scalability issue will lead to serious runtime problems.
In this case, Sbe would need 71 days to complete the task while
Cocoa would require only 9.5 minutes. Notably, the variances in
the graph are negligible and at most 0.0001 milliseconds.
Index Size. We only store the row ids and bits instead of actual
values, therefore, indexing the DWTC corpus requires less than
12GB disk storage compared to almost 300GB database size.

6 RELATEDWORK

Data enrichment It is referred to the line of research that ex-
pands an input dataset using external sources such as webta-
bles [11, 22, 24], Open data [17, 26], or knowledge bases [5].

Most pieces of work from the database community focus on
finding joinable tables. For this purpose, some heuristics, such as
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overlap similarity [21, 25, 26] or a combination of the coverage
and value consistency [8, 11] is used to find candidate tables for
enrichment. These works do not consider the downstream ML
task for the retrieval process and only rely on the joinability of
the extracted tables. Furthermore, they assume that the exter-
nal tables can fit in the main memory. Kumar et al. address the
problem of data enrichment by defining a set of decision rules
to prevent the joins that will not contribute to higher accuracy
in the downstream ML models [15]. Their approach skips the
joins to achieve the minimum information loss. Therefore, the
dropping rate is quite low and in the scale of a large corpus of ta-
bles, the final enriched dataset will still contain a large number of
columns, that have to be handled in the time-consuming feature
selection process [23]. In Cocoa, we propose an ML-aware data
enrichment solution. It leverages the Scc/Rbc to find the most
promising columns for the downstream ML task. ARDA [6] is an
enrichment system that leverages sampling techniques to find
the informative joins and then uses an ensemble feature selection
method to select the best features. Its feature selection algorithm
RF focuses on accuracy and is not efficient when it comes to a
large number of external tables.
Feature Selection Feature selection algorithms [6, 10, 12, 20]
are designed to find the best feature set for a specific ML task
after the enrichment process. In this paper, we aim to blend the
feature selection with the extraction phase that can speed up
the traditional Extract-Then-Select pipeline. We also discussed a
combination of Cocoawith the most promising feature selection
method [6] in our experiments.

7 CONCLUSION

We presented Cocoa, a new data enrichment system. It enables
the efficient calculation of non-linear correlation coefficients to
select the most correlating features for a user-defined ML task. In
particular, we introduced an index structure that allows to calcu-
late non-linear correlation coefficients in linear time complexity.
Cocoa is designed to be general and hence it can be comple-
mented with other table-based filters or used for any analytic
task that depends on value rankings and rank-based scores.
Acknowledgements. This project has been supported by the
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ABSTRACT
Clustering is a fundamental primitive for exploratory data analy-
ses. Yet, finding valuable clustering results for previously unseen
datasets is a pivotal challenge. Analysts as well as automated
exploration methods often perform an exploratory clustering
analysis, i.e., they repeatedly execute a clustering algorithm with
varying parameters until valuable results can be found. 𝑘-center
clustering algorithms, such as 𝑘-Means, are commonly used in
such exploratory processes. However, in the worst case, each sin-
gle execution of 𝑘-Means requires a super-polynomial runtime,
making the overall exploratory process on voluminous datasets
infeasible in a reasonable time frame. We propose a novel and ef-
ficient approach for approximating results of 𝑘-center clustering
algorithms, thus supporting analysts in an ad-hoc exploratory
process for valuable clustering results. Our evaluation on an
Apache Spark cluster unveils that our approach significantly out-
performs the regular execution of a 𝑘-center clustering algorithm
by several orders of magnitude in runtime with a predefinable
qualitative demand. Hence, our approach is a strong fit for clus-
tering voluminous datasets in exploratory settings.

1 INTRODUCTION
Clustering is a fundamental primitive for exploratory tasks. Jain
identified three main general purposes of clustering, which em-
phasize the exploratory power of clustering analyses [15]: (1)
Assessing the structure of the data. Here, the goal is to exploit
clustering to gain a better understanding of data, to generate
hypotheses or to detect anomalies. (2) Grouping entities. Clus-
tering aims to group similar entities into the same cluster. Thus,
previously unseen entities can be assigned to a specific cluster.
(3) Compressing data, i.e., to use clusters and their information
as summary for further steps.

Due to their runtime behavior, 𝑘-center clustering algorithms,
such as 𝑘-Means [16], 𝑘-Medians [6] or 𝑘-Mode [14] are com-
monly used [18], especially on voluminous data. However, the
expected number of clusters 𝑘 has to be provided prior to their
execution. Particularly for previously unknown datasets, choos-
ing this parameter is a tremendous pitfall and requires particular
caution: Wrong values lead to bad results regarding the above-
mentioned purposes, i.e., imprecise structurings, groupings or
compressions are performed, thus making the clustering results
unusable in the worst case.

In order to achieve valuable clustering results, 𝑘-center cluster-
ing algorithms are typically executed with varying values for 𝑘 .
This can be performed manually by analysts or in an automated
manner by exploration methods, which perform an automated
exploratory process in order to find valuable clustering results [9].

© 2021 Copyright held by the owner/author(s). Published in Proceedings of the
24th International Conference on Extending Database Technology (EDBT), March
23-26, 2021, ISBN 978-3-89318-084-4 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

However, as these approaches require several complete runs of
a clustering algorithm, they tend to be very time-consuming, in
particular when the clustering algorithm is repeatedly executed
on voluminous datasets [11].

Regarding 𝑘-Means as instantiation of a 𝑘-center clustering
algorithm, the runtime for a single execution is O(𝑘𝑛𝑑𝜔) [13],
where 𝑘 is the number of clusters, 𝑛 is the number of entities in
a dataset, 𝑑 is the number of dimensions, and 𝜔 is the number
of clustering iterations performed. In the worst case, i.e., when
performing 𝑘-Means until convergence, 𝜔 is super-polynomial
regarding 𝑛 [3], i.e., a single execution of the clustering algorithm
on large datasets is already very time-consuming. However, for
exploratory clustering analyses, where clustering results of sev-
eral parameter values are of interest, analysts typically require
fast, yet adequately accurate approaches that can be used to gain
a fundamental understanding of the results. As we show in this
paper, efficient exploratory clustering analyses are possible by
controlling the number of clustering iterations in the exploration
process for promising parameter values.

Many implementations, such as sklearn1 or Spark’s MLlib2,
allow to reduce the runtime of clustering algorithms by setting a
fixed threshold for the number of clustering iterations. However,
it is not clear how to set this threshold such that a valuable clus-
tering result can be achieved, since this choice highly depends on
dataset characteristics and the initialization of a clustering algo-
rithm. Hence, too few clustering iterations lead to an imprecise
clustering result, whereas too many clustering iterations lead to
an unacceptable runtime. In this work, we introduce a novel ap-
proach to efficiently terminate 𝑘-center clustering algorithms as
soon as a predefined qualitative demand is met, thus reducing the
number of clustering iterations and therefore also the runtime.

Our contributions include the following:
• We propose our novel approach to terminate 𝑘-center
clustering algorithms based on a predefined qualitative
demand, which is typically defined by analysts.
• We show, that our approach (i) provides negligible runtime
overhead for its calculations, and (ii) can be seamlessly
integrated into exploratory clustering analyses.
• The results of our comprehensive evaluation on a dis-
tributed Spark cluster unveil that our approach outper-
forms a regular execution of a 𝑘-center clustering algo-
rithm with speedups of several orders of magnitude, while
the given qualitative demand is met in most cases.

The remainder of this paper is structured as follows: We present
related work in Section 2. In Section 3, we analyze advantages
and pitfalls of a closely related approach to reduce the number of
clustering iterations. Subsequently, we present our novel generic
qualitative approximation approach for 𝑘-center clustering algo-
rithms in Section 4. In Section 5, we summarize the results of a
comprehensive evaluation unveiling the benefits of our method.
Finally, we conclude this work in Section 6.
1 https://git.io/Jt8lJ 2 https://git.io/Jt8lt
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2 RELATEDWORK
All 𝑘-center clustering algorithms proceed in an iterative man-
ner, i.e., the same sequence of steps is repeated until a given
convergence criterion is met. Each clustering iteration comprises
the following three steps: (1) initialize or change the position of
the centroids, which are centers of gravity for a specific cluster,
(2) improve the clustering by (re-)assigning entities to the clos-
est centroid, and (3) check for convergence. Eventually, many
clustering algorithms terminate when no entities change their
membership anymore. As mentioned above, 𝑘-Means as concrete
instantiation of such an algorithm has the runtime complexity
of O(𝑘𝑛𝑑𝜔) [13]. Since clustering results for several values for
𝑘 are at the core of exploratory processes, we focus on related
work, which addresses the remaining influencing factors.

In order to reduce the number of entities 𝑛 in a dataset, sam-
pling or coresets [4] can be used to ultimately reduce the runtime
of a clustering algorithm. Similar observations apply to (i) dimen-
sionality reduction techniques, e.g., PCA or SVD, (ii) embeddings,
or (iii) sketches, which all together aim to reduce the number of
dimensions 𝑑 of the dataset [1].

Regarding the number of clustering iterations 𝜔 , there are
three categories of related work, which address the internals of a
clustering iteration: (a) It has been shown that the initialization of
𝑘-center clustering algorithms is crucial to reduce the number of
clustering iterations [5, 10]. The initial centroids of state-of-the-
art initialization techniques are close to their optimum position,
therefore requiring less clustering iterations until convergence.
(b) Several works address how a single clustering iteration can
be accelerated, i.e., by making distance calculations faster [7] or
by caching previously calculated distances [12]. (c) Undoubtedly,
reducing 𝜔 is crucial since it subsumes approaches from (a) and
(b). Therefore, the “check for convergence” step is of paramount
interest when reducing 𝜔 and thereby reducing the runtime of
the clustering algorithm.

As each iteration comprises costly distance calculations, it is
practically not feasible to perform a clustering algorithm on large
datasets until convergence due to the excessive runtime. Hence,
the question arises when to terminate the algorithm earlier than
convergence. An easy approach to reduce the runtime of the
clustering algorithm is to allow a fixed number of clustering
iterations. However, it is challenging to choose a promising value
for this threshold: Too few iterations lead to an imprecise result,
whereas too many iterations lead to a high runtime. A generic
threshold for all datasets is not feasible, because of too many
influencing factors, such as the feature space or data distribution.

3 META-LEARNING TERMINATION (MTL)
In a previous work [8], we proposed a generic meta-learning
approach to terminate 𝑘-center clustering algorithms early based
on an arbitrary definable qualitative demand 𝑞 ∈ [0; 1]. This ap-
proach relies on a correlation between the quality of intermediate
clustering results throughout several clustering iterations and cor-
responding clustering validity measures (CVMs). To this end, the
meta-learning procedure requires an offline phase, which gath-
ers the necessary meta-knowledge, and an online phase, which
applies the meta-knowledge on previously unseen datasets.

In the offline phase, a clustering algorithm is executed with
varying parameter values on datasets with different character-
istics. Throughout these executions, values of selected CVMs
are recorded for each clustering iteration. The resulting values
of these CVMs are often not normalized, i.e., the value ranges

can be unbounded. In order to make these values tangible for
analysts, we introduced the notion of quality 𝑞 ∈ [0; 1]. That is,
𝑞 indicates the quality of the intermediate clustering result after
a certain clustering iteration in contrast to the quality of the last
clustering iteration, which only becomes available after conver-
gence. Hence, the clustering quality for each clustering iteration
can only be investigated in retrospective after convergence. We
proposed to create a correlation between the quality 𝑞 and the
CVMs, e.g., with a regression function that is trained during the
offline phase based on several executions.

In the online phase, the analyst defines the expected qualitative
demand 𝑞 for the clustering result of a previously unseen dataset.
Subsequently, the above-mentioned correlation is exploited to ter-
minate the clustering algorithm earlier than convergence, while
aiming to achieve the desired qualitative demand.

We showed that considerable runtime savings are possible,
while regularly meeting the qualitative demand for several CVMs.
However, we face two pitfalls regarding this method: (1) In order
to exploit the correlation, it is first necessary to perform the of-
fline phase. Since the offline phase comprises several executions
of a 𝑘-center clustering algorithm, the high runtimes are solely
moved from the online phase to the mandatory offline phase. (2)
Creating a sound correlation between the quality and the corre-
sponding CVM is an optimization problem. Influencing factors
are for example datasets and their characteristics, the selected
CVM, or chosen parameter values in the offline phase. Further-
more, formalizing the correlation itself, i.e., choosing a promising
correlation method, poses another optimization problem.

To the best of our knowledge, this proposed approach is
nonetheless currently the only one to limit the number of cluster-
ing iterations 𝜔 based on an arbitrarily predefinable qualitative
demand. In the next section, we propose a novel method to re-
duce the number of clustering iterations based on a qualitative
demand, which avoids the two mentioned pitfalls, yet still pro-
vides a tangible notion of quality for analysts.

4 GENERIC QUALITATIVE
APPROXIMATION TERMINATION (GQA)

Before detailing on our new approach, we briefly summarize the
basics of 𝑘-center clustering algorithms. Let X be a dataset with
𝑛 entities and 𝑑 dimensions, i.e., X ⊂ R𝑑 . The goal of 𝑘-center
clustering algorithms is to group X into 𝑘 disjoint clusters, such
that each entity is assigned to the closest centroid 𝑐 ∈ C. As this
problem is NP-hard [2], several heuristics exist, which aim to
approximate the solution. One of these heuristics is the 𝑘-Means
algorithm [16]. The goal of 𝑘-Means is to find the set C of 𝑘
centroids which minimizes the objective function in Equation 1.

𝜙X (C) =
∑
𝑥 ∈X

min
𝑐∈C
∥𝑥 − 𝑐 ∥2 (1)

Here, the Euclidean distance from an entity 𝑥 ∈ X to the closest
centroid 𝑐 ∈ C is calculated. 𝜙X (C) denotes the sum of these
distances over all entities in X and is also called sum of squared
errors (SSE) for 𝑘-Means or variance for all 𝑘-center clustering
algorithms.𝑘-center algorithmsminimize their notion of variance
bymoving these 𝑘 centroids to a better position in each clustering
iteration until a certain convergence criterion is met.

4.1 Intuition of our Approach
The goal of our approach is to exploit a tangible qualitative de-
mand 𝑞 in order to terminate the clustering algorithm as soon
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as 𝑞 is met. In contrast to MTL [8], we explicitly aim for no
preparations, e.g., no prior meta-learning step.

Our novel approach GQA draws on two properties, which
are valid independent of datasets and eventualities of 𝑘-center
clustering algorithms, thus preserving generality.

Property 1: Monotonically decreasing variance. According to
the objective function in Equation 1, the variance 𝜙 decreases
throughout each clustering iteration, which is applicable for all 𝑘-
center clustering algorithms. Manning et al. discuss this property
for 𝑘-Means in detail [17], which can be transferred to other
𝑘-center clustering algorithms analogously.

Since 𝜙 is monotonically decreasing, we derive that the quality
of the clustering is becoming better in each iteration (cf. Equa-
tion 1). Hence, we can formulate the gain in quality as changes
of the variance between two subsequent iterations. To this end,
we focus on the quotient 𝜎𝑖 of the variance between two subse-
quent clustering iterations 𝑖 − 1 and 𝑖 , i.e., 𝜎𝑖 = (𝜙𝑖−1/𝜙𝑖 ). Finally,
𝑘-center clustering algorithms converge as soon as 𝜙𝑖−1 = 𝜙𝑖 ,
hence 𝜎𝑖 = 1, i.e., the variance cannot be reduced any further. As
𝜎𝑖 typically becomes smaller per iteration and since we do not
make any further assumptions on the dataset X and its variance
in order to preserve generality, we can conclude that 𝜎𝑖 ∈ [1;∞].

Property 2: Notion of quality. Similarly to MTL, we also draw
on a qualitative demand 𝑞 ∈ [0; 1] of the approximated clustering
result, yet in a different way. That is, 𝑞 can be specified by an
analyst, where the choice of 𝑞 has impact on the clustering result:
If a very accurate clustering result is of interest, 𝑞 should be set
larger than for exploratory purposes, where already potentially
moderate results may lead to valuable insights.

Yet, the question remains how to combine the qualitative de-
mand 𝑞 ∈ [0; 1] of the approximated clustering result with 𝜎𝑖 ∈
[1;∞], while avoiding time-consuming preparations. Putting
both above-mentioned properties together, we can formalize our
approach as follows: During each clustering iteration, 𝜎𝑖 (and
therefore 𝜙𝑖 ) has to be calculated. Subsequently, terminate the
𝑘-center clustering algorithm as soon as Inequality 2 is satisfied.

1 − 𝑞 ≥ 𝜎𝑖 − 1 (2)

Inequality 2 denotes that further clustering iterations would typi-
cally reduce𝜎𝑖−1 less than 1−𝑞. Note, that our approach preserves
generality, since both properties are generally valid regarding
dataset characteristics or 𝑘-center clustering algorithms.

4.2 Algorithm
Algorithm 1 outlines howGQA can be incorporated in the generic
procedure of 𝑘-center clustering algorithms. The algorithm pro-
ceeds in four steps: (1) The centroids are initialized in line 1 ac-
cording to a specific initialization, e.g., random, or 𝑘-Means∥ [5].
(2) The clustering is improved, i.e., the entities are assigned to
the closest centroid (cf. lines 4-6). (3) The centroids are moved
to the center of the cluster. To this end, the new position of the
centroids 𝑐 ∈ C and the corresponding variance for each cluster
are determined according to an objective function (cf. line 9). (4)
Finally, the algorithm converges in line 16.

Changes in contrast to the regular procedure of 𝑘-center clus-
tering algorithms are depicted underlined. As the variance for
each single cluster is calculated in line 9, the overall variance
for the current iteration 𝜙𝑖 is the sum of these individual values.
Subsequently, 𝜎𝑖 is calculated in line 13, if a previous iteration
was already performed. It is necessary to check this state, since
our approach draws on the change of 𝜙 between two subsequent

Algorithm 1: 𝑘-center clustering algorithms with GQA.
Input: X - dataset, 𝑘 - number of clusters, 𝑞 - qualitative

demand
Output: K - a combination (◦) between X and the assigned

centroid for each entity
/* initialize centroids */

1 C ← initialize a set of 𝑘 centroids;
2 𝑖 ← 0;
3 repeat

/* improve clustering */

4 for ∀𝑥 ∈ X do
5 K ← {𝑥 ◦ 𝑐 }, where 𝑐 denotes the closest centroid to 𝑥

according to an objective function;
6 end
7 𝜙𝑖 (C) ← 0;

/* change centroids */

8 for ∀𝑐 ∈ C do
9 𝑐, 𝜙 (𝑐) ← new 𝑐 and its corresponding variance

according to an objective function, where {𝑥 ◦ 𝑐 } ∈ K ;
10 𝜙𝑖 (C) ← 𝜙𝑖 (C) + 𝜙 (𝑐) ;
11 end
12 if 𝑖 > 0 then
13 𝜎𝑖 ← 𝜙𝑖−1 (C)/𝜙𝑖 (C) ;
14 𝜙𝑖−1 (C) ← 𝜙𝑖 (C) ;
15 𝑖 ← 𝑖 + 1;
16 until 𝑖 > 1 and 1 − 𝑞 ≥ 𝜎𝑖 − 1; // check for convergence

17 return K ;

iterations. After 𝜎𝑖 is calculated, 𝜙 is adjusted properly for the
next iteration, i.e., 𝜙 of the previous iteration is set as 𝜙 of the cur-
rent iteration. Finally, the convergence criterion is set according
to Inequality 2 in line 16. Note however, that this convergence
criterion can only be met after at least 2 clustering iterations are
performed, since 𝜎𝑖 draws on the variance 𝜙 of two subsequent
iterations. Hence, we introduce the additional check for 𝑖 > 1 in
the convergence criterion in line 16.

4.3 Analysis and Discussion
The goal of our approach is to keep additional calculations as
cheap as possible. As already mentioned, the computations re-
quired by our approach are underlined in Algorithm 1. The com-
putations rely on (a) allocations of variables (lines 7, 10, 13 and
14), (b) comparisons (lines 12 and 16), as well as (c) arithmetic
operations (lines 10, 13, 16). Allocations and comparisons can be
performed in O(1). For the arithmetic operations, we reuse by-
products of the 𝑘-center clustering algorithm, such as 𝜙𝑖 . These
values are used throughout several iterations with simple ad-
ditions (line 10) or divisions (line 13). Therefore, the runtime
complexity for the arithmetic operations is O(1). Concluding,
the overall runtime complexity of our approach is O(1), thus pre-
serving the runtime complexity of a𝑘-center clustering algorithm
without a significant runtime overhead.

In contrast to MTL, our novel approach GQA (i) can be used for
ad-hoc exploratory clustering analyses, since it does not rely on
a time-consuming meta-learning step, (ii) preserves generality
regarding dataset characteristics, which may not be the case
for MTL, since it obeys an optimization problem (cf. Section 3),
and (iii) directly addresses the objective function of 𝑘-center
clustering algorithms instead of additional CVMs as MTL does.
As discussed above, addressing the objective function can be
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Dataset n d c

I - III 10,000 10 {10; 50; 100}
IV - VI 10,000 50 {10; 50; 100}
VII - IX 10,000 100 {10; 50; 100}
X - XII 100,000 10 {10; 50; 100}
XIII - XV 100,000 50 {10; 50; 100}
XVI - XVIII 100,000 100 {10; 50; 100}
XIX - XXI 1,000,000 10 {10; 50; 100}
XXII - XXIV 1,000,000 50 {10; 50; 100}
XXV - XXVII 1,000,000 100 {10; 50; 100}

Table 1: 27 synthetic datasets for the evaluation.

done very efficiently, whereas using an additional CVM in each
clustering iteration may require noticeable runtime overhead [8].

Furthermore, it should be emphasized that GQA can be easily
used by analysts and automated exploration methods due to its
striking resemblance to the regular procedure of 𝑘-center cluster-
ing algorithms. Because solely 𝑞 should be defined, the additional
complexity of our novel approach is clearly manageable.

5 EVALUATION
In our evaluation, we investigate the benefits of our proposed
approach for exploratory clustering analyses. To this end, we will
compare our novel approach GQA with its closest competitor
MTL [8] and a regular execution of a 𝑘-center clustering algo-
rithm. We present the setup for our evaluation, before presenting
the runtime and quality results.

5.1 Experimental Setup
Hardware and Software. We conducted all of our experiments

on a distributed Apache Spark cluster. This cluster consists of one
master node and six worker nodes. The master node has a 12-core
CPU with 2.10 GHz each and 192 GB RAM. Each worker has a
12-core CPU with 2.10 GHz each and 160 GB RAM. Each node
in this cluster operates on Ubuntu 18.04. We installed OpenJDK
8u191, Scala 2.11.12, Hadoop 3.2.0 as well as Spark 2.4.0.

Synthetic Datasets. We implemented a synthetic dataset gener-
ator in order to perform a systematic evaluation with controlled
dataset characteristics. This tool generates datasets based on the
following input parameters: The number of entities in the dataset
(𝑛), the number of dimensions (𝑑) and the number of clusters in
a dataset (𝑐), where each cluster contains 𝑛/𝑐 entities. Our tool
generates datasets with values that lie within the range [−10; 10]
for each dimension. Each cluster has a Gaussian distribution with
the mean at the center and a standard deviation of 0.5. The 𝑐 cen-
ters are randomly chosen and the clusters are non-overlapping.
Table 1 depicts the characteristics of the 27 synthetic datasets.

Real-World Datasets. We use the same datasets as in our prior
work for MTL [8], which are publicly available3. Table 2 summa-
rizes the characteristics of these 10 datasets. Note, that not all of
them have class labels, i.e., the number of classes is unknown for
some datasets (indicated by “-” in Table 2).

Implementation. We base our implementation on Apache
Spark. We focus on 𝑘-Means as instantiation of a 𝑘-center clus-
tering algorithm due to its overwhelming popularity [18]. To this
end, we implemented several methods to terminate 𝑘-Means.
3 https://archive.ics.uci.edu/ml/datasets.php

Dataset Name 𝑛 𝑑 𝑐

i Skin segmentation 245,057 3 2
ii Poker hand 1,025,010 10 10
iii Individual household electric power consumption 2,049,280 7 -
iv US census data (1990) 2,458,285 68 -
v KDD Cup 1999 data 4,898,431 33 23
vi SUSY 5,000,000 18 2
vii Gas sensor array under dynamic gas mixtures 8,386,765 19 -
viii HEPMASS 10,500,000 28 2
ix HIGGS 11,000,000 28 2
x Heterogeneity activity recognition 33,741,500 5 6

Table 2: 10 real-world datasets as used in the work of
MTL [8], where 𝑐 denotes #classes, if available.

The baseline (BASE) for this experiment is Spark’sMLlib imple-
mentation of 𝑘-Means. This implementation uses k-Means∥ [5]
for the initialization step and terminates after 20 clustering itera-
tions at most. We explicitly remove the threshold for the number
of clustering iterations, since we want to highlight the differences
in quality when performing 𝑘-Means until convergence.

For MTL, it should be noted that this obeys an optimization
problem regarding (i) the used datasets and their characteristics,
and (ii) the choice of the used correlation technique. However,
for synthetic datasets, we have closely followed the approach
described in our previous work [8]. For the offline phase, we
used datasets from Table 1 where 𝑑 = 50. We clustered these
datasets with 𝑘 in 11 equidistant values in [2; 2𝑐] and let each
clustering run until Spark’s convergence criterion is met. We
performed three runs per value of 𝑘 . For each clustering iteration,
we measured the SSE as well as the separation (SEP) between
the centroids, since we achieved the best results with the SEP
metric in our previous work [8]. Subsequently, we trained a
second-degree polynomial regression between the change rate
of SEP in contrast to the relative error of the SSE regarding the
current clustering iteration and the final clustering iteration. The
whole process took 11.17 hours and is thus not feasible for ad-
hoc exploratory clustering analyses. Regarding the real-world
datasets, we use the same ones as in [8], i.e., we also use the
same regression function. The meta-learning process on those
real-world datasets required several days, which emphasizes the
impractical runtime for the offline phase ofMTL. Furthermore, we
implemented our novel GQA approach as described in Section 4.

For MTL and GQA, we set the respective qualitative demands
to 90 % and 99 % in order to achieve valuable results. Hence, we
compare Spark’s implementation (BASE) to MTL-90, MTL-99,
GQA-90 and GQA-99 on synthetic and real-world datasets.

Furthermore, we use different initialization techniques in order
to investigate the differences in the results. We run 𝑘-Means with
𝑘 = 𝑐 for each dataset, where 𝑐 is known. For each method, we
performed three runs and present median values.

5.2 Runtime Results
Figure 1 summarizes the results regarding the speedups in con-
trast to the baseline, where Figure 1a focuses on the results with
random initialization and Figure 1b addresses the results with
the initialization via k-Means∥. While both of them show the
results on synthetic datasets, Figure 1c unveils the results with
k-Means∥ initialization on real-world datasets.

It can be seen that for random initialization, speedups can
be achieved for all datasets in contrast to the initialization via
k-Means∥. Since k-Means∥ initializes centroids closer to their
optimum, less clustering iterations are necessary than for random
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Figure 1: Speedup of MTL and GQA in contrast to BASE for all synthetic and real-world datasets where 𝑘 = 𝑐.

initialization. Hence, MTL and GQA lead to remarkable speedups
for random initialization of up to 190.3 (MTL) and 134.7 (GQA).

On the other hand, k-Means∥ provides an O(𝑙𝑜𝑔 𝑘)-
approximation to the final clustering result [5]. Therefore, some
speedups of 1 are observed, i.e., BASE terminates 𝑘-Means as
early as MTL and GQA. However, as shown in Figure 1b, MTL
and GQA still provide strong speedups in many cases, such as
for datasets XIX and XXVII. We observe speedups of roughly
up to 164.6. When comparing dataset IX with dataset XXVII,
it is evident that the latter has 100× more entities, where the
remaining dataset characteristics, such as 𝑑 and 𝑐 , remain un-
changed. As k-Means∥ does not select promising initial centroids
for dataset XXVII, several clustering iterations are necessary for
BASE. Yet, MTL and GQA terminate 𝑘-Means earlier than con-
vergence, thus achieving significant speedups. More generally
speaking, k-Means∥ can only select promising initial centroids,
if the underlying dataset characteristics and number of clusters
are a strong fit for its procedure.

Regarding the results of the real-world data (cf. Figure 1c),
we make very similar observations. Here, even more significant
speedups of up to 669.0 (MTL) and 444.7 (GQA) can be observed
for the largest real-world dataset x.

In general, MTL and GQA achieve similar speedups, however
MTL is faster in some cases. Note, that MTL addresses the SEP,
whereas GQA addresses the variance (= SSE for 𝑘-Means) in order
to approximate clustering results. Since the SEP typically changes
more significantly in the first few iterations than the SSE, we
argue that GQA requires a few additional clustering iterations.

Regarding the different qualitative demands, we observe only
small deviations in the resulting speedups. These differences
mostly occurred on real-world datasets (cf. Figure 1c). Here, the
higher qualitative demand of 99 % requires more iterations and
therefore leads to lower speedups.

We conclude that both approaches are well-suited for rather
voluminous datasets, since 𝑘-center clustering algorithms require
more clustering iterations on these datasets until convergence,
which is explicitly addressed by MTL and GQA.

5.3 Quality Results
Since MTL and GQA are able to speedup the execution of a clus-
tering algorithm significantly, the question remains how these
approximations affect the clustering quality.

As clustering aims to provide compact and well-separated clus-
ters, we focus on the compactness and the separation (SEP) of
the centroids. We use the sum of squared errors (SSE) as instanti-
ation of the compactness, since the smaller the SSE for 𝑘-Means,
the less variance in the clusters, i.e., the more compact are the
clusters. For a better comparison, we focus on the relative error
𝛿 of SSE and SEP of the clustering results of MTL and GQA in
contrast to the baseline, i.e., the smaller the better.

Figure 2 summarizes the results for MTL and GQA. Note the
different y-axes throughout the figures. The results unveil that
the qualitative demands of 90 % and 99 % are mostly met in av-
erage for MTL and GQA. It should be noted, that the qualitative
demand of GQA addresses the SSE (left), whereas the qualitative
demand of MTL addresses the SEP (right). A more detailed in-
vestigation of the results unveiled that for all synthetic datasets,
the respective qualitative demands are always met. Regarding
the real-world datasets, MTL and GQA rarely terminated the
clustering algorithm too early, thus omitting better clustering
results. This happened for both approaches only once for a quali-
tative demand of 90 % and twice for a qualitative demand of 99 %.
This observation supports the practical feasibility of our novel
approach GQA, i.e., addressing the decreasing trend of 𝜎𝑖 leads
to satisfying clustering results in practice.

The quality of the clustering results achieved byMTL and GQA
differ onlymarginally from the baseline, i.e., the regular execution
of 𝑘-Means. Furthermore, the initialization via k-Means∥ leads
to more compact and better separated clustering results than
initializing at random, since the values for 𝛿𝑆𝑆𝐸 and 𝛿𝑆𝐸𝑃 are
mostly smaller (cf. Figure 2a and b). Hence, this initialization is
better suited for exploratory clustering analysis, since it allows
more correct insights into clustering results.

Moreover, the results achieved by GQA are always better than
the corresponding pendant of MTL in terms of 𝛿𝑆𝑆𝐸 and 𝛿𝑆𝐸𝑃 .
The reason can be found in the additional clustering iterations
that GQA performed in contrast to MTL (cf. Section 5.2).

Concluding, MTL and GQA perform similar in terms of run-
time, yet GQA does not rely on a previously conducted offline
phase for meta-learning. Remember, that MTL required several
executions of a 𝑘-center clustering algorithm on several datasets,
which required more than 11 hours for synthetic datasets and
several days for real-world datasets in our scenario. In addition,
MTL and GQA lead to compact and well-separated clustering
results. However, GQA achieves better clustering results, because
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Figure 2: Relative error 𝛿 of SSE and SEP compared to the baseline. Average values are depicted per error bar. Smaller
values indicate more similar clustering results w.r.t. the baseline, i.e., they show better clustering results.

it typically requires a few more clustering iterations than MTL.
Therefore, our novel approach GQA is well-suited for ad-hoc ex-
ploratory clustering analyses, especially on voluminous datasets,
since it provides very accurate results in a short time period.

6 CONCLUSION
In this work, we proposed a novel approach to terminate 𝑘-center
clustering algorithms as soon as a predefined qualitative demand
of the clustering results is met. Our approach aims to trade off
quality of clustering results, while achieving them in a short time
frame. We showed that our approach is generic, i.e., it can be
used with several 𝑘-center clustering algorithms and initializa-
tion strategies. In our comprehensive evaluation, we unveiled
that our approach significantly outperforms state-of-the-art ex-
ecutions of 𝑘-center clustering algorithms in terms of runtime,
yet achieves very similar clustering results. Therefore, it is of
particular interest for exploratory clustering analyses. Future
work will address to what extent automated exploration methods
benefit from our novel approach.
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ABSTRACT
Data analysis is a highly iterative process. In order to achieve
valuable analysis results, analysts typically execute many config-
urations, i.e., algorithms and their hyperparameter settings, based
on their domain knowledge. While experienced analysts may be
able to define small search spaces for promising configurations,
especially novice analysts define large search spaces due to their
lack of domain knowledge. In the worst case, they perform an
exhaustive search throughout the whole search space, resulting
in infeasible runtimes. Recent advances in the research area of
AutoML address this challenge by supporting novice analysts in
the combined algorithm selection and hyperparameter optimiza-
tion (CASH) problem for supervised learning tasks. However, no
such systems exist for unsupervised learning tasks, such as the
prevalent task of clustering analysis. In this work, we present
our novel AutoML4Clust approach, which efficiently supports
novice analysts regarding CASH for clustering analyses. To the
best of our knowledge, this is the first thoroughly elaborated
approach in this area. Our comprehensive evaluation unveils
that AutoML4Clust significantly outperforms several existing
approaches, as it achieves considerable speedups for the CASH
problem, while still achieving very valuable clustering results.

1 INTRODUCTION
Data analysis is a crucial discipline to extract knowledge and
insights from data. Therefore, analysts apply data mining tech-
niques, typically machine learning algorithms, to extract patterns
from data and to gain insights about data. A fundamental primi-
tive in data mining is clustering analysis, which is an unsuper-
vised machine learning task being used in various application
domains, e.g., computer vision, document clustering, for business
purposes, or to study genome data in biology [11].

Throughout these manifold fields of application domains, ana-
lysts typically struggle with the selection of a promising cluster-
ing configuration, i.e., a clustering algorithm and its correspond-
ing hyperparameter settings, that achieves valuable clustering
results. Hence, analysts typically define a configuration space,
i.e., a search space of clustering algorithms and their hyperpa-
rameter settings, in which they expect promising configurations.
Yet, novice analysts lack in-depth domain knowledge and hence
define very large configuration spaces. In the worst case, novice
analysts cannot limit configuration spaces at all and perform an
exhaustive search throughout all possible configurations. Since
this exhaustive search is very time-consuming, novice analysts
often explore only a few configurations, e.g., randomly selected,
from the configuration space, which often leads to solely mod-
erate results. Hence, novice analysts require support to achieve
valuable clustering results in a reasonable amount of time.

© 2021 Copyright held by the owner/author(s). Published in Proceedings of the
24th International Conference on Extending Database Technology (EDBT), March
23-26, 2021, ISBN 978-3-89318-084-4 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

For supervised learning tasks, recent advances in the re-
search area of AutoML are able to support novice analysts in the
combined algorithm selection and hyperparameter optimization
(CASH) problem in an automated and efficient manner [5, 18].
These approaches greedily explore large configuration spaces by
trading off exploration and exploitation strategies, thus avoiding
a time-consuming or even infeasible exhaustive search.

In this work, we propose AutoML4Clust, an efficient AutoML
approach to support novice analysts in the CASH problem for
clustering analyses. To the best of our knowledge, this is the first
thoroughly elaborated AutoML approach for efficient clustering
analyses, capable of automatically selecting promising clustering
algorithms and their hyperparameters in combination.

Our contributions include the following:
• We introduce AutoML4Clust, our novel approach to ef-
ficiently support novice analysts in the prevalent CASH
problem for clustering analyses.
• We reveal that AutoML4Clust is generic, i.e., it can be
instantiated with different AutoML concepts, clustering
algorithms and clustering metrics.
• In our evaluation, we unveil that AutoML4Clust signif-
icantly outperforms several existing approaches, as it
achieves speedups of up to 437x for the CASH problem,
while still achieving valuable clustering results. Hence,
AutoML4Clust efficiently supports novice analysts in the
CASH problem for clustering analyses.

The remainder of this paper is structured as follows: We present
related work in this area in Section 2. In Section 3, we present
AutoML4Clust, our novel AutoML approach for clustering analy-
ses. In Section 4, we unveil the results of our evaluation. Finally,
we conclude this work in Section 5.

2 RELATEDWORK
Based on the generally accepted separation of machine learn-
ing tasks, we separate related work into support for the CASH
problem regarding supervised and unsupervised learning tasks.
We distinguish two important groups of related work to support
analysts regarding the CASH problem: (1) AutoML systems for
supervised learning, and (2) methods for unsupervised cluster-
ing analyses that either explore the algorithm selection or the
hyperparameter optimization.

We define a configuration 𝑐 as the combination of an algo-
rithm 𝑎 ∈ A and its hyperparameters ℎ ∈ H . Hence, we define
the configuration space as CS = A ×H . In the following, we
investigate related work based on the machine learning task and
its ability to explore CS.

2.1 AutoML Systems for Supervised Learning
AutoML systems arose in the area of supervised machine learning
to support novice analysts in the combined algorithm selection
and hyperparameter optimization problem [5, 18]. As class labels
are already available in the datasets, CS = A×H can be explored
automatically. The common underlying procedure of existing
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AutoML systems is as follows: Given a budget, training data and
an optimization metric, they execute and evaluate different con-
figurations from CS, i.e., they execute classification algorithms
with the specified hyperparameter settings, and return the con-
figuration that yields the best value for the optimization metric.
In order to steer the exploration towards valuable results, several
hyperparameter optimization techniques are proposed, such as
Bayes [1], Hyperband [13], or BOHB [3]. These optimization
techniques proceed in a greedy manner, since they define a spe-
cific trade-off between exploration, i.e., exploring new regions
in the CS, and exploitation, i.e., exploiting regions in the CS,
where already executed configurations performed well.

2.2 Algorithm Selection and Hyperparameter
Optimization for Clustering Analyses

Related work that supports novice analysts regarding CASH for
clustering analyses can be divided into methods that consider
algorithm selection and methods that consider hyperparameter
optimization.

Algorithm Selection. For unsupervised learning tasks, sev-
eral approaches were developed to support novice analysts with
the selection of a promising clustering algorithm, i.e., CS = A
for certain problems [4, 16]. These methods are based on meta-
learning, i.e., they learn from past experiences in order to select
the most promising algorithm on a previously unseen dataset.

Existing approaches differ in the used (a) implementation of
the meta-learning steps, (b) clustering algorithms, and (c) metrics
for evaluating the clustering results. However, these approaches
solely focus on the clustering algorithm, yet completely ignore
the corresponding hyperparametersH .

Hyperparameter Optimization. Regarding the hyperpa-
rameter optimization, i.e., CS = H of clustering algorithms,
two types of approaches exist [7]: While exhaustive methods ex-
ecute all configurations from CS, non-exhaustive methods only
execute some configurations. However, non-exhaustive methods
are designed to optimize the hyperparameters of specific algo-
rithms, e.g., k-Means. Exhaustive methods could also be applied
for CS = A ×H , though this results in tremendous runtime as
the whole configuration space has to be explored.

Summary. Summarizing related work, existing AutoML sys-
tems only focus on supervised learning algorithms, yet can ex-
plore valuable results, where CS = A ×H . For clustering analy-
ses, there are approaches that either conduct an exploration for
valuable clustering algorithms (CS = A) or their hyperparame-
ters (CS = H ). However, they do not address the combination
of both, i.e., the CASH problem for clustering analyses, where
CS = A × H , which is a crucial problem for novice analysts.
We identified only some experimental implementations1 2 that
address this problem, however they use (a) one specific opti-
mization technique, or (b) one specific clustering metric, without
explaining, evaluating or justifying their choice regarding (a)
and (b). In addition, they miss a clear scientific elaboration and a
systematic evaluation in comparison to existing approaches in
this area.

3 AUTOML4CLUST
In this section, we introduce our generic AutoML4Clust approach
to support novice analysts regarding the CASH problem for clus-
tering analyses, where we apply concepts from existing super-
vised AutoML systems on clustering. Existing AutoML systems
1 https://git.io/JUNKu 2 https://git.io/JUNKz

solely focus on supervised learning tasks, whereas we focus on
clustering analysis, which is an unsupervised learning task. The
key difference between supervised and unsupervised learning
tasks is that the input datasets for unsupervised learning tasks do
not contain ground-truth labels. Therefore, it is not possible to
evaluate the result based on an external metric. Consequently, ex-
isting AutoML systems and their components cannot be applied
per se for clustering analyses.

Figure 1 presents the procedure of our AutoML4Clust ap-
proach. Similar to supervised AutoML systems, it draws on a
configuration space CS, which defines the set of configurations
that can be selected, executed and evaluated during the optimizer
loop, which is at the core of existing hyperparameter optimiza-
tion techniques. To this end, we rely on the configuration space
CS = A ×H . When considering different families of clustering
algorithms, e.g., 𝑘-center and density-based ones, CS has to be
defined in a hierarchical way, i.e., by defining the algorithm as
conditional root-level hyperparameter [18]. Our AutoML4Clust
procedure is structured into three parts (cf. Figure 1): The in-
puts, the optimizer loop, and return best configuration. In the
following, we present these three parts in detail and subsequently
discuss the benefits of AutoML4Clust.

3.1 Inputs
AutoML4Clust requires three inputs prior to execution. These are
a dataset D, an internal metricM, and a budget 𝑙 . Here, D does
not contain any additional information, e.g., class labels. Hence,
M is an internal metric that evaluates the internal structure of a
clustering result. In the literature, many different internal metrics
with different objectives are proposed [11, 14]. Most of themmea-
sure the compactness and the separation of clusters in different
variations. Subsequently, they consider a quotient of both. The
budget 𝑙 defines the resources that can be used by the system.
A common choice for the budget is a time constraint to limit
the runtime or the number of configurations to execute. In this
work, we use the number of optimizer loops that are performed
as budget. However, we note that choosing an appropriate kind of
budget and also an appropriate value for the budget is a difficult
task. A too large value may lead to a long runtime, whereas a too
small one can lead to solely moderate results.

3.2 Optimizer Loop
In the optimizer loop, an optimizer such as Random [1], Bayes
[18], Hyperband [13], or BOHB [3] is used to findwell-performing
configurations efficiently. Here, the optimizer performs 𝑙 loops,
where each loop consists of three steps:

i) Selection: 𝑐 ∈ CS, where the optimizer selects a configu-
ration 𝑐 from the configuration space CS. The different afore-
mentioned optimizers mostly differ in their greedy procedure,
i.e., trading off exploration and exploitation, in order to select a
configuration 𝑐 ∈ 𝐶𝑆 in each optimizer loop 𝑙𝑖 . Yet, all optimiz-
ers require the definition of a black-box function 𝑓 : CS → R,
which is subject to optimization. This function 𝑓 assigns each
configuration 𝑐 ∈ CS a metric value and is implemented with
the following steps ii) and iii).

ii) Execution: R ← 𝑐 (D). Here, the previously selected con-
figuration 𝑐 is executed on D. The result of the execution is R,
which can be any kind of clustering result, e.g., the resulting
labels or the final centroids.
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Figure 1: Procedure of AutoML4Clust.

iii) Evaluation:𝑚 ←M(R,D), where the clustering result is
evaluated. This means that the metricM is calculated based on
the clustering result R and on the dataset D.

3.3 Return Best Configuration
In the third step, the best configuration from all considered con-
figurations is chosen. This is the configuration that achieves the
best metric value regardingM from all configurations that are
selected, executed and evaluated during each optimizer loop. This
configuration is applied on the dataset D to finally obtain the
best clustering result that is found by AutoML4Clust.

3.4 Discussion
Existing AutoML systems solely focus on supervised learning
tasks in order to achieve valuable results, where CS = A×H , i.e.,
CS is typically very large. In contrast, AutoML4Clust addresses
this problem for the prevalent unsupervised task of clustering
analyses, where ground-truth labels are missing. Therefore, es-
pecially novice analysts are supported, which can neither limit
A nor H to a manageable size and thus perform in the worst
case an exhaustive exploration throughout CS. Our proposed
procedure draws on the latest fundamental concepts of exist-
ing AutoML systems, yet remains generic regarding the used
clustering algorithms, metrics, and optimizers.

Regarding possible clustering algorithms, AutoML4Clust can
use any kind of clustering algorithm by defining CS in a hierar-
chical way, similar to existing AutoML systems for supervised
learning tasks. Regarding the metrics, AutoML4Clust draws on
an internal metrics to asses the internal structure of a cluster-
ing result. Furthermore, several optimizers can be used, which
follow the three steps (1) select a configuration, (2) execute the
configuration, and (3) evaluate the result of the configuration.

Especially the combination of an internal metric and the used
optimizer is of paramount importance: Since optimizers proceed
in a greedy manner by defining a trade-off between exploration

and exploitation throughout CS, it is per se not clear which in-
ternal metric supports their behavior best. Yet, as prior work in
the area of supervised learning has shown, these optimizers are
able to efficiently explore large configuration spaces, while still
achieving valuable results [3, 5, 18]. Therefore, we assume that
AutoML4Clust similarly benefits from these optimizers. That is,
we argue that AutoML4Clust is able to efficiently achieve valuable
results within a predefined budget 𝑙 . However, it is a very chal-
lenging task for novice analysts to specify such a suitable budget,
since a too small budget leads to imprecise results, whereas a
too large budget leads to long runtimes. Furthermore, it is not
clear at all, if the used metric supports the greedy behavior of
the optimizers within a reasonable budget.

4 EVALUATION
Since analysts are interested in fast and valuable results, the ques-
tion remains how well different instantiations of our approach,
i.e., combinations of optimizers and metrics, perform in order to
achieve this goal. To this end, we compare in our evaluation how
our novel AutoML4Clust approach performs (i) with different
instantiations of optimizers and metrics for clustering analyses,
and (ii) in contrast to existing approaches in this area. We first
discuss the setup of our evaluation, before we investigate the ac-
curacy of the results of different instantiations of AutoML4Clust
in contrast to existing approaches. Subsequently, we analyze
the runtime of AutoML4Clust in contrast to existing approaches.
Finally, we show the practical feasibility of AutoML4Clust on
real-world datasets regarding accuracy and runtime.

4.1 Setup
In the following, we describe the setup of our experiments. We
focus on (i) the used hard- and software, (ii) the synthetic and
real-world datasets that we use, (iii) the implementation details,
and (iv) the performed experiment with its baselines.
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Dataset 𝑛 𝑑 𝑘𝑎𝑐𝑡

Statlog (Landsat Satellite) 6,435 35 7
ISOLET 7,797 617 26

Motion Capture Hand Postures 7,805 34 5
Avila 10,430 10 12

Pen-Based Recognition
of Handwritten Digits 10,992 16 10

Table 1: Real-world datasets with their corresponding
dataset characteristics 𝑛, 𝑑 and 𝑘𝑎𝑐𝑡 .

4.1.1 Hard- and Software. The experiments are performed
on a virtual machine, which operates on Ubuntu 18.04. It has a
6-core CPU with 2.5 GHz and 32 GB RAM. Our implementation
is based on Python 3.6 and on scikit-learn3.

4.1.2 Datasets. We draw our evaluation on synthetically gen-
erated and real-world datasets. Regarding the synthetic datasets,
we use the dataset generation tool from [7–9]. This tool generates
datasets based on these four input characteristics:

1) 𝑛, which describes the number of entities, 2) 𝑑 , which de-
notes the number of dimensions, where the values in each di-
mension lie in the interval [−10, 10], 3) 𝑘𝑎𝑐𝑡 , which is the actual
number of clusters, where each cluster contains 𝑛

𝑘𝑎𝑐𝑡
entities and

4) 𝑟 , which is the ratio of noise, i.e., 𝑟
100 · 𝑛 additional entities are

added uniformly at random to the dataset.
We generate datasets with 𝑛 ∈ [2,500; 7,500], 𝑑 ∈ [20; 40],

𝑘𝑎𝑐𝑡 ∈ [25; 75], and 𝑟 ∈ [0; 17; 50]. We generate these datasets as
a cross product of the above-mentioned characteristics, i.e., 24
synthetic datasets are used within our evaluation.

For the real-world datasets, we use 5 classification datasets
from the UCI machine learning repository4 with different dataset
characteristics regarding 𝑛, 𝑑 and 𝑘𝑎𝑐𝑡 . Here, 𝑘𝑎𝑐𝑡 describes the
number of classes in the dataset.We removed the class labels from
these datasets when applying instantiations of our AutoML4Clust
approach and solely used them to evaluate the accuracy of our
approach. In order to use these datasets for clustering, we re-
moved any non-numeric and symbolic values, IDs, timestamps,
class labels and empty values. Table 1 summarizes the datasets’
characteristics. Note, that these datasets exhibit similar or even
larger characteristics as the synthetic datasets regarding 𝑛 and 𝑑 .

4.1.3 Implementation. We evaluate AutoML4Clust with over-
all 12 instantiations, i.e., four optimizers and three internal met-
rics to unveil the best-performing combinations thereof. We pro-
vide our prototypical implementation of all AutoML4Clust in-
stantiations in Python5 with all versions of the used libraries6.

Optimizers: We use the following four frequently used op-
timizers from the area of hyperparameter optimization (cf. Sec-
tion 2.1): Random Search (RS) [1], Bayesian Optimization (BO) [1],
Hyperband (HB) [13], and the combination of Bayesian Optimiza-
tion and Hyperband (BOHB) [3]. We define the budget as number
of optimizer loops that each optimizer performs.

Clustering algorithms:We focus on 𝑘-center clustering al-
gorithms, due to their appealing runtime behavior and their pop-
ularity across researchers and practitioners [20]. We note that
other kind of clustering algorithms, e.g., density-based ones like
DBSCAN, have a runtime complexity of O(𝑛2) or even higher,
which makes them infeasible in practice for large datasets [10].
3 scikit-learn.org 4 https://archive.ics.uci.edu/ml/datasets.php
5 https://git.io/JTeix 6 https://git.io/JTeXG

Therefore, we use 𝑘-Means [15], MiniBatch 𝑘-Means [17], 𝑘-
Medoids [12], and GMM [2] as concrete instantiations of 𝑘-center
clustering algorithms. We set the maximum number of clustering
iterations for each algorithm to ten since Fritz et al. showed that
even a few iterations already lead to valuable results [6].

Internal metrics: For the evaluation of the clustering result
in each optimizer loop, we use three commonly used internal
metrics that are implemented in scikit-learn: Calinski-Harabasz
(CH), the Davies-Bouldin Index (DBI), and the Silhouettte (SIL).

4.1.4 CASH Experiment and Baselines. Based on CS = A×H ,
we define the CASH experiment analogue to related work in the
area of AutoML [18]. We set A as described in Section 4.1.3. We
set the search space H for the hyperparameter 𝑘 of 𝑘-center
clustering algorithms to H = {2, . . . , 𝑛

10 }, i.e., the maximum 𝑘

value is set in relation to the number of entities in the dataset.
Since analysts perform in the worst-case an exhaustive search
throughout CS due to the lack of more efficient approaches, we
compare AutoML4Clust to an exhaustive search.

4.2 Accuracy Evaluation
In this section, we investigate the accuracy obtained by differ-
ent instantiations of AutoML4Clust in contrast to the baselines.
Therefore, we explain how we (i) examine a suitable budget to
achieve valuable clustering results, (ii) compare the accuracy
with the baselines, and (iii) discuss the effect of noisy data.

Since the actual labels of the datasets are known in our experi-
ments, we use an external clustering metric to asses the accuracy
of the achieved clustering result, similar to the accuracy from
classification tasks. Therefore, we use the adjusted mutual infor-
mation (AMI) [19], which is limited to [0; 1], while values closer
to one indicate a better matching of the predicted labeling with
the actual labeling of the dataset.

4.2.1 Time to Accuracy. Figure 2 summarizes the accuracy re-
sults of the AutoML4Clust instantiations, i.e., the four optimizers
and the three internal metrics at each optimizer loop 𝑙𝑖 .

Budget: After about 60 optimizer loops, i.e., 𝑙𝑖 = 60 (which is
marked by the vertical line), the accuracy of AutoML4Clust does
not further improve significantly for all instantiations. Hence,
we argue that 𝑙 = 60 is a suitable budget for AutoML4Clust to
support novice analyst in achieving valuable results efficiently.

AutoML4Clust accuracy: AutoML4Clust achieves with ev-
ery optimizer very accurate results, i.e., AMI values over 90%.
Furthermore, we observe that more optimizer loops increase the
accuracy.

AutoML4Clust instantiations: The AutoML4Clust instan-
tiations with the CH metric achieve the highest accuracy. The
reason for this is that the CH metric focuses on the intra- and
inter-cluster compactness. Therefore, in contrast to DBI, it is less
sensitive to sub-clusters, i.e., two or more clusters in a dataset
that are very close to each other [14]. The most inaccurate re-
sults are obtained by instantiations with the SIL metric. This can
be explained by the calculation of the SIL, as it can be highly
influenced by the position of single entities. Due to its impre-
cise results, we do not present results for the SIL metric in the
remaining experiments.

4.2.2 Accuracy Comparison. Figure 3 unveils the accuracy
of AutoML4Clust in comparison to the respective baselines. We
present the results of the AutoML4Clust instantiations with the
four optimizers, the budget of 𝑙 = 60, and the CH and DBI metrics.
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Figure 2: Accuracy of the AutoML4Clust instantiations over all synthetic datasets at each optimizer loop 𝑙𝑖 for the CASH
experiment. The vertical line at 𝑙𝑖 = 60marks where the accuracy does not further improve significantly.
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Figure 3: Accuracy of AutoML4Clust over synthetic
datasets in contrast to exhaustive search (ES) with CH and
DBI. Median values are shown at each box plot.
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Figure 4: Comparison of the impact of noise (𝑟 ) for Au-
toML4Clust and the baselines regarding the AMI results.
Median values are shown at each box plot.

AutoML4Clust achieves similarly accurate results as the ex-
haustive search (ES), i.e., HB with CH achieve higher accuracy
than ES (CH) and only deviates 3% from ES (DBI). Hence, the best
result of AutoML4Clust deviates only 3% from the best result of
ES. Therefore, AutoML4Clust supports novice analysts nearly as
good as an exhaustive search, while being more efficient since
it does not execute all configurations in CS. Furthermore, we
emphasize that AutoML4Clust achieves higher accuracy when
using the CH metric. Regarding optimizers, we observe that Au-
toML4Clust achieves in most cases the best results with the HB
optimizer and the CH metric. One possible reason is that BO and
BOHB are more effective in higher dimensional configuration
spaces. Yet, it achieves higher accuracy than RS since it discards
poorly performing configurations early on [3].

4.2.3 Effect of Noisy Data. Throughout our experiments, we
observed that noisy data have a significant impact on the base-
lines. However, noisy data are prevalent in real-world scenarios
and should therefore be considered specifically. Figure 4 unveils
the results for three different noise ratios 𝑟 ∈ [0; 0.17; 0.5]. It can
be seen that AutoML4Clust is robust against noise, i.e., it achieves
AMI values typically over 85% even for 𝑟 = 0.5 and can therefore
almost compete with a time-consuming exhaustive search, which
achieves an AMI value of 93.9% for DBI. The ES (CH) achieves
accurate results for 𝑟 = 0 and 𝑟 = 0.17, while it performs poorly
for 𝑟 = 0.5. Hence, it is most affected by noise for 𝑟 = 0.5. We
observe a similar behaviour for the AutoML4Clust instantiations
with the CH metric. The reason for the bad performance is that
the calculation of the CH metric is essentially based on the com-
pactness. Therefore, it is less robust against noise than the DBI
metric [14]. However, we note that the results of AutoML4Clust
with the CH metric (cf. Section 4.2.2) are still very accurate for
𝑟 ∈ [0; 0.17] and are only imprecise for 𝑟 = 0.5, i.e., for highly
noisy datasets.

4.3 Runtime Evaluation
Besides an accurate clustering result, the runtime is also crucial
for analysts. Figure 5 summarizes the runtime results for all
investigated AutoML4Clust instantiations for 𝑙 = 60 and the
corresponding baselines.

AutoML4Clust exhibits the highest runtimes with the SIL met-
ric, since this metric has a runtime complexity of𝑂 (𝑛2) [14]. The
runtimes of the CH and DBI metrics differ only marginally, while
the CH metric has the lower runtime in most cases. Regarding
the optimizers, AutoML4Clust achieves faster results with the HB
and BOHB optimizers than with the RS and BO optimizers. The
reason is that HB and BOHB execute optimizer loops in parallel,
while RS and BO execute them sequentially [3].

The results clearly show that AutoML4Clust is orders of mag-
nitude faster than the time-consuming ES. It achieves the fastest
results in 57 seconds, while the fastest results for the ES require
roughly 6 hours. In comparison to ES (DBI), we even observe
speedups of more than 437×. Hence, AutoML4Clust provides an
efficient support for novice analysts regarding the CASH problem
for clustering analyses.

4.4 Results on Real-World Datasets
In order to assess the practical feasibility of AutoML4Clust, we
perform the same experiments as for the synthetic datasets, yet
use real-world datasets. We focus on the CH and the DBI metric
for these experiments, since the results on the synthetic datasets
clearly showed that the SIL metric does not achieve valuable
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dian values are shown at each box plot.

Approach Optimizer Metric AMI (%) Runtime (s)

AutoML4Clust

RS CH 45.4 781
DBI 28.5 791

BO CH 22.5 879
DBI 33.6 1,305

HB CH 38.5 420
DBI 33.9 604

BOHB CH 22.0 276
DBI 33.7 598

Baseline ES CH 13.8 76,211
ES DBI 33.5 77,196

Table 2: Median results on real-world datasets regarding
AMI and the runtimes. We indicate the top-3 results for
AMI and runtime in bold.

results and furthermore exhibits high runtimes. Table 2 summa-
rizes the results on the real-world datasets, which are mostly
very similar to the results on the synthetic datasets. We indicate
the top three results for AMI and runtime in bold.

AutoML4Clust achieves higher accuracy than an exhaustive
search, while also significantly outperforming it regarding run-
time. The fastest results of AutoML4Clust requires less than 5
minutes, while the ES required with both metrics roughly 21
hours, i.e., AutoML4Clust achieves speedups of up to 276×. Fur-
thermore, AutoML4Clust achieves with HB and CH up to 5%
higher AMI values than the ES. The reason that AutoML4Clust
can be more accurate than ES is that both optimize the inter-
nal metric value of CH or DBI and do not directly address the
external metric AMI. Therefore, both approaches return the con-
figuration with the best metric value, but not necessarily with
the best accuracy, i.e., AMI value. We argue that HB and CH
is a well-performing instantiation of AutoML4Clust, since it is
the only instantiation that achieves one of the top-3 results with
both, AMI and runtime.

Combining these observations with the results from synthetic
datasets, we can state that the instantiation of the HB optimizer
and the CH metric achieves in most cases the best results regard-
ing accuracy and runtime.

5 CONCLUSION
In this work, we propose AutoML4Clust, an AutoML approach to
support novice analysts efficiently with the combined algorithm
selection and hyperparameter optimization (CASH) problem for
clustering analyses. To the best of our knowledge, this is the first
thoroughly elaborated AutoML approach for clustering analy-
ses. AutoML4Clust remains generic, i.e., it can be instantiated
with different optimizers and internal metrics. However, the con-
crete instantiation is crucial for an efficient exploration of large
configuration spaces. Our evaluation reveals that specific instan-
tiations of AutoML4Clust achieve similar or even more accurate
results, while tremendously outperforming existing approaches
regarding runtime on synthetic and real-world datasets.

Future work will address how clustering ensembles can be
exploited to achieve even more valuable clustering results.
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ABSTRACT
The problem of clustering time series has several applications in

real-life contexts, especially in data science and data analytics

pipelines. Existing time series clustering algorithms are ineffec-

tive for feature-rich real-world time series since they only com-

pute the similarity of time series based on raw data or use a fixed

set of features. In this paper, we develop a feature-based semi-

supervised clustering framework addressing the above issues for

variable-length and heterogeneous time series. Specifically, we

rely on a graph encoding of the time series that is obtained by

considering a high number of significant extracted features. We

then employ community detection and leverage a co-occurrence

matrix in order to group together all the best clustering results.

Our extensive experimental assessment shows the scalability and

robustness of our approach along with its superiority against

state of the art clustering algorithms on both real-world health-

care data and UCR benchmark data.

1 INTRODUCTION
The goal of clustering is to organize unlabeled data objects into

homogeneous groups while minimizing intra-cluster dissimilar-

ity and maximizing inter-cluster dissimilarity [9]. In this paper,

we present FeatTS, a Semi-Supervised Clustering method that

leverages features extracted from the raw time series to create

clusters that reflect, as much as possible, the original time se-

ries. The FeatTS algorithm leverages the concepts of Constrained

Clustering, more specifically Clustering by Seeding. The most

prominent approach in this category is Seeded kMeans [3], which

relies on a small amount of labels of the original dataset in order

to create two kinds of links, i.e. Must Link and Cannot Link. Must

links are connections between two data points that represent a

“constraint of belonging”. This means that the data points (or time

series at large) should be clustered together. Cannot links do the

opposite thus leading to separate data points. Leveraging these

two kinds of links, Seeded kMeans allows to discover clusters

that respect them.

Our approach differs from existing methods in the literature

since it employs the features of the time series, whereas existing

methods focus on the similarity of the time series themselves

[20]. The novelty of FeatTS consists in automatically selecting

the most appropriate statistical features based on the dataset

provided as input, the latter characteristic being relevant for

data science and data analytics pipelines. In fact, not all the

features have the same quality and choosing a subset of high-

quality features for each dataset is beneficial for the clustering

step. Moreover, the features of time series are interpretable by

humans, thus leading to a more transparent and human-centric

clustering process. To the best of our knowledge, FeatTS is the

© 2021 Copyright held by the owner/author(s). Published in Proceedings of the

24th International Conference on Extending Database Technology (EDBT), March
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first feature-based semi-supervised clustering framework with

these characteristics.

In designing our approach, we were inspired by the peculiari-

ties of real-life time series, in particular those found in the time

series of patients suffering from end-stage kidney diseases. These

time series describe the change over time of the Glomerular

Filtration Rate(GFR) signal, estimating how much blood passes

through the glomeruli each minute. How GFR changes is crucial

for the patient’s survival, since rapidly descending values of GFR

over time indicate a dangerous condition that might lead to kid-

ney failure and even death. A more stable evolution of GFR over

time is less worrisome for the concerned patient, thus guiding an

appropriate treatment. The key question to tackle is how to select

the subset of features that help medical doctors to discriminate

the patients based on the label while performing clustering.

Once the features are selected, FeatTS computes the global

relationships between the time series based on their statistical

features. We use graph networks to obtain such an encoding.

Indeed, FeatTS converts each time series into nodes and creates

weighted edges. Each edge represents the distance between the

connected nodes of the edge, i.e. the difference between the values

of two different time series using the selected feature. FeatTS
prunes the graphs based on a threshold and applies a Community

Detection algorithm in order to obtain the global relationship

among time series. As a final step, FeatTS will holistically merge

the results of the communities into a Co-Occurrence matrix, on

which clustering (K-Medoid) is applied. Figure 1 depicts at a high

level the various steps of our proposed algorithm, while a detailed

explanation is provided in the rest of the paper.

As already observed, in the supervised feature selection step,

FeatTS allows to select the most appropriate statistical features

based on the labels of the time series. The selected features are

then used to cluster the entire dataset, including the time series

that may have unknown labels. Using Figure 2(a) as a running

example on GFR data, our algorithm allows us to obtain the

resulted clusters for the four time series reported in Figure 2 (d)

even with missing labels for 𝑇𝑆2 and 𝑇𝑆4.

An observant reader may question how this clustering task

is different from classification, in which features are selected

to build classifiers separating the time series based on the class

labels. The key advantage of the clustering task we perform here

is that the number of clusters to be formed can be arbitrarily

different from the number of classes. For instance, in our kidney

failure example, medical researchers may want more clusters to

be formed than the two classes of kidney failures or not. Notice

that the same separation cannot be achieved with classification

[2] as a classifier cannot "sub-divide" the "kidney failure" label.

We summarize our main contributions as follows:

(1) We introduce a novel semi-supervised clustering method

leveraging themost discriminating features extracted from

the time series. We treat the time series similar to each

other as communities and we encode the different com-

munities into a co-occurrence matrix, allowing to obtain

a unified similarity value for the time series.
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[𝑇𝑆1,...,𝑇𝑆𝑚]

1) Extraction and

Selection

of 𝑛 Features

2) PFA Feature

Selection

3) Creation of Graphs

and Application of

Community Detection

4) Create the
Co Occurrence Matrix

5) Compute Clustering

on Matrix

Quality Evaluation

and Comparison

Figure 1: The algorithmic pipeline of FeatTS.

(2) Contrarily to previous work, our method allows to treat

at par all the features of a given dataset instead of pre-

selecting a fixed number of them for all datasets or just

leveraging the similarity of raw data.

(3) Our method achieves more high-quality results compared

with the latest baselines (among which Seeded kMeans [3]

and k-Shape [17]) on the literature datasets. In addition, it

obtains excellent results in terms of scalability.

The paper is organized as follows. Section 2 discusses the re-

lated work. In Sections 3, we describe in detail the steps of our

clustering framework. In Section 4, we describe our experimental

setup on real-life and on benchmarking data. Section 5 presents

the various results of our experimental assessment. Finally, Sec-

tion 6 concludes our work and discusses future directions.

2 RELATEDWORK
Semi-supervised learning is a combination of supervised and un-

supervised learning. It uses a small amount of labeled data and a

large amount of unlabeled data in order to train a model. As such,

it avoids the problem of finding a large amount of labeled data. A

subcategory of semi-supervised clustering is Constrained Clus-

tering, that enables the creation of Must Link and Cannot Link,

as already explained in Section 1. There exist various methods

to create these constraints; among which active learning [19] by

relying on the user to provide such constraints. Another method

would exploit the labelled data provided on input, as done by

Seeded KMeans[3]. The latter uses the labels provided as input to

find the constraints among the data and the centroids and then

applies the kMeans algorithm to find the clusters.

In the literature, approaches similar to ours exist that perform

time series clustering. However, other feature-based approaches

[15, 21] only consider a predefined set of features that are limited

with real-life time series exhibiting a richer number of features.

Among the unsupervised clustering algorithms [1], kShape[17]

can be considered as the state of the art algorithm. It computes

the most representative time series in a given cluster and inserts

each new time series into one of these clusters based on distance.

The problem with this approach is that it can often lead to assign-

ing spurious time series to clusters. As shown in the literature

[7], the usage of raw time series can spur high noise levels.

3 A FULL-FLEDGED PIPELINE
The pipeline of FeatTS as illustrated in Figure 1 is a combination

of steps that contribute to the quality of the clustering results.

We describe these steps in detail in the following.

3.1 Feature Extraction and Selection
The first step of the pipeline is the feature extraction step from

the time series corresponding to step 1) in Figure 1. We consider

feature extraction methods available in the literature and in read-

ily predefined libraries [5]. Formally, given a vector of features

[𝑓1, 𝑓2, . . . , 𝑓𝑛] extracted, we construct a table containing the

value of each feature, thus having as columns the features and

having the time series [𝑇𝑆1, 𝑇𝑆2, . . . ,𝑇𝑆𝑚] as rows. As a simple

example, in Figure 2(a), we show an instance of the table for 4

time series and 6 features. Moreover, each time series is displayed

with its corresponding label.

The features shown in Figure 2(a) represent only a tiny subset

of the set of features that can be extrapolated from the time series.

Indeed, the tsfresh[5] library allows us to extract a significantly

higher number of features. Therefore, feature selection becomes

pivotal in our setting, since not all the features have the same

relevance for the subsequent clustering steps. In particular, we

compute the relevance of the extracted features by solely using

the feature values corresponding to the class label of the time

series (e.g. in Figure 2(a) the class ‘Kidney Failure’ or ‘ No Kidney

Failure’).

The Benjamini-Yekutieli is a supervised procedure [4] that

allows us to identify the relevance of the features, based on the

label associated with the time series. It computes the p-value

of each feature provided as input based on their relevance. The

p-value is an important metric that allows us to quantify the

significance of each feature. The output of Benjamini-Yekutieli

procedure is a list of features ranked by their p-values. Among

these features, usually only a subset of them have an acceptable

relevance. From our empirical study, it has been evinced that

the top-20 features in order of relevance are sufficient to obtain

high-quality clustering.

Usually, one of themain problemswhen computing the p-value

is that the redundancy of the obtained features. It is desirable

to find a duplicate-free combination of the features that is still

quality preserving and small in number. Therefore, once we select

the 20 features from the list produced by Benjamini-Yekutieli, we

need an algorithm that allows us to find a minimum number of

features that is representative of the other features not included

in the analysis.

To do so, we apply a technique called Principal Feature Analy-

sis (PFA) [12]. PFA is a variation of Principal Component Analysis

(PCA). The key difference is that PFA preserves the original val-

ues of the features and thus the distance between them. Thus,

we can leverage the concept of explained variance, represent-

ing the ratio between the variance of one single feature and the

sum of variances of all individual features. We fix a value 𝑡 of

the explained variance, which is in our experiments equal to 0.9.

That is, out of the 20 features selected in the Benjamini-Yekutieli

procedure, we choose the minimum number of features for which

the sum of their variance covers the 90% of the information pro-

duced by the rest of the features. This value is the best result

produced empirically with various values of the threshold 𝑡 . In

our example, among all the features presented in Figure 2(a), we

have selected only 𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒, 𝑡𝑟𝑒𝑛𝑑_𝑠𝑡𝑑𝑒𝑟𝑟 and 𝑡𝑟𝑒𝑛𝑑_𝑟𝑣𝑎𝑙𝑢𝑒 , as

shown in Figure 2(b).

3.2 Graph Rendering and Community
Detection

We convert the time series and their relationships into edge-

weighted graphs. The encoding of time series into edge-weighted

graphs allows us to represent our clustering problem in another

dimension space without loss of information. This operation is

crucial in order to be able to capture the global relationships

among the raw time series samples.

Suppose we have a feature 𝐹𝑖 (as selected by PFA in the pre-

vious step) and a set of 𝑛 time series {𝑇𝑆1, ..,𝑇𝑆𝑛}. Let 𝑇𝑆𝑖 be a
node 𝑣𝑖 in the set of vertices 𝑉 of a graph𝐺 . Let 𝐸 be the set of
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Time Series 𝑚𝑒𝑎𝑛 𝑡𝑟𝑒𝑛𝑑_𝑠𝑡𝑑𝑒𝑟𝑟 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑝𝑒𝑎𝑘𝑠 𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒 𝑡𝑟𝑒𝑛𝑑_𝑟𝑣𝑎𝑙𝑢𝑒 Length Label

𝑇𝑆1 51.3 3.51 788.56 8 57 -0.94 89 No Kidney Failure

𝑇𝑆2 40.6 4 128.9 5 43 -0.55 206

hhhhhhhNo Kidney Failure

𝑇𝑆3 74.3 17 296.8 10 106 0.01 159 Kidney Failure

𝑇𝑆4 95.8 9.4 783.3 10 85 0.43 139
hhhhhhKidney Failure

𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒

𝑡𝑟𝑒𝑛𝑑_𝑠𝑡𝑑𝑒𝑟𝑟

𝑡𝑟𝑒𝑛𝑑_𝑟𝑣𝑎𝑙𝑢𝑒

Dataset 𝑇𝑆1 𝑇𝑆2 𝑇𝑆3 𝑇𝑆4

𝑇𝑆1 1
1 + 0.5

0.66 + 1 + 0.5
0.5

0.66 + 1 + 0.5
0.5

0.66 + 1 + 0.5

𝑇𝑆2
1 + 0.5

0.66 + 1 + 0.5 1
0.5

0.66 + 1 + 0.5
0.5

0.66 + 1 + 0.5

𝑇𝑆3
0.5

0.66 + 1 + 0.5
0.5

0.66 + 1 + 0.5 1
0.66 + 1 + 0.5
0.66 + 1 + 0.5

𝑇𝑆4
0.5

0.66 + 1 + 0.5
0.5

0.66 + 1 + 0.5
0.66 + 1 + 0.5
0.66 + 1 + 0.5 1

Dataset 𝑇𝑆1 𝑇𝑆2 𝑇𝑆3 𝑇𝑆4

𝑇𝑆1 1 0.69 0.23 0.23

𝑇𝑆2 0.69 1 0.23 0.23

𝑇𝑆3 0.23 0.23 1 1

𝑇𝑆4 0.23 0.23 1 1

𝑎

𝑏 𝑐 𝑑

Figure 2: A running example on real-world healthcare data.

𝑇𝑆1

𝑇𝑆2 𝑇𝑆3

𝑇𝑆4
𝑉1

𝑉2 𝑉3

𝑉4

14

63

21

28

4
9

4
2

(a) Edge-weighted graph with distances as weights.

𝑉1

𝑉2 𝑉3

𝑉4

14

28

21

𝑉1 𝑉2 14
𝑉3 𝑉4 21
𝑉1 𝑉4 28
— — —

𝑉2 𝑉3 42

𝑉1 𝑉3 49

𝑉2 𝑉4 63

(b) The graph for a single feature after application of the threshold
Figure 3: Encoding from time series to graph.

edges of graph 𝐺 , where each edge 𝑒𝑖 connects two nodes in 𝐺

representing two distinct time series. Let𝑤 : 𝐸 → R be an edge-

based weight function. Each edge 𝑒𝑖 is thus assigned a weight

𝑤 (𝑒𝑖 ) representing the distance between the connected nodes of

the edge, i.e. the difference between the values of two different

time series using the feature 𝐹𝑖 . In order to capture similarity,

we only retain in 𝐺 the edges whose weight is less than a given

threshold distance 𝑡ℎ.

Example 3.1. As an example, let us consider the four time series
as in Figure 2(a), each of which has the values of 𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒 ; we will
compute all the distances between these values. Figure 3a shows the
graph encoding of these time series where the weights on the edges
represent the distance between the time series, based on 𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒 .

One immediate question is the choice of the threshold 𝑡ℎ.

Given 𝑛 nodes in 𝐺 corresponding to the 𝑛 time series, there are

𝑁 ∗(𝑁−1)
2

distances between all pairs of nodes. To capture simi-

larity, we use a simple heuristic of a percentage 𝑥 that represents

the proportion of the smallest distances to be kept. The threshold

𝑡ℎ is thus selected based on this 𝑥 percentage.

Example 3.2. For instance, for the graph in Figure 3a, the array
in Figure 3b contains the distances between the vertices in ascending

𝑉1

𝑉2 𝑉3

𝑉4

14

28

21

𝑓 𝑒𝑎𝑡1

𝑉1

𝑉2 𝑉3

𝑉4

30 70 80

𝑓 𝑒𝑎𝑡20

. . .

Figure 4: Application of Community Detection algorithm
for each feature.

order. Suppose that the user specifies as percentage 50% of the vector.
This implies that the distance boundary will be 28 and the distances
higher than 28 will be discarded (i.e. the corresponding edges in the
graph will be ignored). Once we have chosen the boundary distance,
we can create the corresponding graph as depicted in Figure 3b.

Notice that a higher threshold would consider lower signifi-

cance edges and thus weaker similarities between the times series.

On the other hand a lower threshold may cut important edges.

In our empirical evaluation, we used a threshold determined by

a user-specified percentage of 80%, which works well in practical

scenarios as we will see in the remainder of the paper. The chosen

threshold will be used for all features selected by PFA and thus

for all graphs created.

Note that each graph is created based on one selected feature

from PFA in the previous step. Thus, if PFA selects 𝑘 features,

there will be 𝑘 graphs, each corresponding to one notion of simi-

larity between a pair of time series. The intention is to combine

these different notions of similarity in time series clustering, by

leveraging the structures of connectivity in the various graphs.

To this purpose, we apply a community detection (CD) algo-

rithm in order to search for groups of densely connected vertices

forming communities. Among the different tested algorithms,

we have opted for the Greedy Modularity Algorithm [16] in the

NetworkX library [8]. This algorithm turns out to strike a bal-

ance between speed and robustness and does not require any

additional input parameter other than the graphs.

In Figure 4, we show an example of clustering obtained by

applying this algorithm to a family of graphs. We can notice that

the clustering varies from one graph to another graph. A natural

question is how we can unify the different clusters in order to

obtain understandable results.

3.3 Creation of the Co-Occurrence Matrix
The underlying intuition is that if two time series are similar, they

will be similar for the majority of their discriminating features.
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We employ a co-occurrence matrix [14] to put this in practice. The

matrix consists of recording for each pair of time series howmany

times they are grouped within the same community. Intuitively,

the more times they are placed within the same community, the

more similar the time series are.

Co-OccurrenceMatriceswithoutweights.Assumingwe have

𝑀 time series and 𝐿 features, we know that, once applied the CD

algorithm on the 𝐿 graphs, we will obtain the following result:

𝐹𝑒𝑎𝑡𝑢𝑟𝑒1 = {(𝑇𝑆1,𝑇𝑆3, ...,𝑇𝑆𝑠 ), ..., (𝑇𝑆2,𝑇𝑆4, ...,𝑇𝑆𝑝 )}
𝐹𝑒𝑎𝑡𝑢𝑟𝑒2 = {(𝑇𝑆2,𝑇𝑆3, ...,𝑇𝑆𝑡 ), ..., (𝑇𝑆1,𝑇𝑆4, ...,𝑇𝑆𝑖 )}

...

𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑛 = {(𝑇𝑆2,𝑇𝑆1, ...,𝑇𝑆𝑚), ..., (𝑇𝑆3,𝑇𝑆4, ...,𝑇𝑆𝑞)}

where for each feature 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑖 selected by the PFA, we obtain

different communities (𝑇𝑆1, ...,𝑇𝑆𝑖 ) composed by the time series.

We can now create a matrix in which the rows and columns

contain all the time series of the dataset. Each cell 𝑥𝑖 𝑗 in the

matrix corresponds to the similarity between time series 𝑇𝑆𝑖 (in

row 𝑖 of the matrix) and 𝑇𝑆 𝑗 (in column 𝑗 of the matrix).

Next we convert the counts in the Co-Occurrence matrix into

a similarity metric for the eventual clustering. We consider the

number of times that a pair of time series is present in all possible

communities where at least one of the two time series belongs.

That is, given the time series 𝑇𝑆𝑖 ,𝑇𝑆 𝑗 , the communities 𝐶 and

the set of all the time series 𝑀 , the similarity between 𝑇𝑆𝑖 and

𝑇𝑆 𝑗 will be as follows.

∀𝑇𝑆𝑖 ,𝑇𝑆 𝑗 ∈ 𝑀, ∀𝑐 ∈ 𝐶 𝑥𝑖 𝑗 =
��{ 𝑐 ∈ 𝐶 | 𝑇𝑆𝑖 ∈ 𝑐 & 𝑇𝑆 𝑗 ∈ 𝑐

}
|

|{𝑐 ∈ 𝐶 | 𝑇𝑆𝑖 ∈ 𝑐}|
(1)

That is, the number of times that the two time series 𝑇𝑆𝑖 and

𝑇𝑆 𝑗 fall within the same community divided by the number of

times that 𝑇𝑆𝑖 is found within any community.

Notice that (1) is completely symmetrical. Indeed, the commu-

nities found for each feature are considered as hard clustered,

i.e. a time series 𝑇𝑆𝑖 cannot be part of two communities of the

same feature and must necessarily belong to one community.

Thus, if𝑇𝑆𝑖 and𝑇𝑆 𝑗 are within the same community of a specific

feature, neither of them can be part of other communities of the

same feature. Therefore, the value 𝑥𝑖 𝑗 , given by the number of

times 𝑇𝑆𝑖 and 𝑇𝑆 𝑗 are in the same community, will be equal to

𝑥 𝑗𝑖 , because 𝑇𝑆 𝑗 and 𝑇𝑆𝑖 must also be in the same community.

Co-Occurrence Matrices with Weights. The application of

the CD algorithm and its processing with co-occurrence matrices

without weights might incur the problem of community frag-

mentation. More precisely, the CD algorithm might lead to the

formation of a high number of communities each of which con-

tains a few time series. This is due to the fact that some features

are often not discriminatory enough for that dataset.

To overcome this problem, we assign an approximate weight

to each feature, based on the number of communities that the CD

algorithm derives from the graph. Again, to correctly determine

the weights, we require the input of the user on the expected

number of clusters.

Let𝑤𝑖 be a weighting function defined on each feature 𝐹𝑖 as

follows:


𝑤𝑖 =

𝐶
𝑂𝑖
, 𝑖 𝑓 𝑂𝑖 > 𝐶

𝑤𝑖 =
𝑂𝑖

𝐶
, 𝑖 𝑓 𝐶 > 𝑂𝑖

𝑤𝑖 = 1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(2)

Dataset 𝑇𝑆1 𝑇𝑆2 𝑇𝑆3 𝑇𝑆4
𝑇𝑆1 0 0.64 1.36 1.36

𝑇𝑆2 0.64 0 1.36 1.36

𝑇𝑆3 1.36 1.36 0 0

𝑇𝑆4 1.36 1.36 0 0

Table 1: Co-Occurrence Matrix with weights.

where 𝐶 is the number of clusters expected by the user and

𝑂𝑖 is the number of communities extracted by means of the CD

algorithm. Hence, the weights will be higher if the number of

obtained communities 𝑂 is equal or sufficiently close to 𝐶 and

lower otherwise.

The weights will be propagated to the similarity matrix, which

will now reflect the importance of each feature from a user view-

point. Not surprisingly, instead of simply counting the number

of times that the time series 𝑇𝑆𝑖 and 𝑇𝑆 𝑗 co-occur in the same

community, we now sum their weights and divide by the sum of

the weights of all time series, as also shown in the following.

Example 3.3. As shown in Figure 2(b), the PFA feature selec-
tion has chosen three features, namely [𝑡𝑟𝑒𝑛𝑑_𝑠𝑡𝑑𝑒𝑟𝑟 , 𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒 ,
𝑡𝑟𝑒𝑛𝑑_𝑟𝑣𝑎𝑙𝑢𝑒] . After applying the CD algorithm, we obtained the
following communities (per feature) among the 4 Time Series in
Figure 2(a):

𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒 = {(𝑇𝑆1,𝑇𝑆2), (𝑇𝑆3,𝑇𝑆4)}
𝑡𝑟𝑒𝑛𝑑_𝑠𝑡𝑑𝑒𝑟𝑟 = {(𝑇𝑆1), (𝑇𝑆2), (𝑇𝑆3,𝑇𝑆4)}
𝑡𝑟𝑒𝑛𝑑_𝑟𝑣𝑎𝑙𝑢𝑒 = {(𝑇𝑆1,𝑇𝑆2,𝑇𝑆3,𝑇𝑆4)}

Assume now that the user specified an expected number of
clusters equal to 2. 𝑇𝑟𝑒𝑛𝑑_𝑠𝑡𝑑𝑒𝑟𝑟 and 𝑡𝑟𝑒𝑛𝑑_𝑟𝑣𝑎𝑙𝑢𝑒 do not satisfy
the number of clusters expected by the user. Therefore, 𝑡𝑟𝑒𝑛𝑑_𝑠𝑡𝑑𝑒𝑟𝑟
will have a weight of 2

3
(0.66), while 𝑡𝑟𝑒𝑛𝑑_𝑟𝑣𝑎𝑙𝑢𝑒 will have a

weight of 1

2
(0.5), and 𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒 we will have 1 as weight. We report

the intermediate computation of the co-occurrence matrix with
weights for this example in the Table in Figure 2(c) and the final
result in the Table in Figure 2(d).

3.4 Clustering the Co-Occurrence Matrix
The co-occurrence matrix obtained in the previous step allows us

to quantify the similarity between two time series. In order to be

prepared for the creation of the time series clusters, we need one

more intermediate step, i.e. to compute the distances between

the rows of the Co-Occurrence Matrix. We employ a standard

Euclidean distance to perform the row comparison.

As an example, applying the Euclidean distance between the

rows of the table in Figure 2(d), we obtain Table 1. For instance,

the value of the cell𝐶3,4 of the Table 1 is 0 because the row 3 and

4 of the Table in Figure2(d) are equal. As a consequence, the time

series 3 and 4 are always together in each cluster discovered by

the CD algorithm.

Finally, we apply the standard K-Medoid algorithm [10] on

the distances computed above. K-Medoid allows us to extract the

time series that have the smallest distance among them.

To complete our running example, applying the K-Medoid

algorithm to Table 1 requiring 2 clusters as the input parameter,

we obtain two clusters𝐶𝑙1 = {𝑇𝑆1,𝑇𝑆2} and𝐶𝑙2 = {𝑇𝑆3,𝑇𝑆4}, as
shown in the Table in Figure 2(d).

The time complexity of the FeatTS is summarized in Lemma

3.4. The proof of the Lemma is available in the online repository
1
.

Lemma 3.4. Let 𝐷 a dataset composed by𝑚 time series and let
𝐿 the number of features chosen by PFA among the 𝑁 features

1
https://github.com/DonaTProject/FeatTS
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extracted and 𝑘 the number of requested clusters. A dataset 𝐷 is
evaluated by FeatTS in time 𝑂 (𝐿(𝑚2) +𝑚2 + 𝑘 (𝑚 − 𝑘)2 + 𝑛 · 𝑡𝑓 )
and in space 𝑂 (𝑛 + 𝐿(𝑚 + 𝐸) +𝑚2).

4 EXPERIMENTAL SETUP AND A CLINICAL
CASE STUDY

We use real-life time series courtesy of the Personalized Medicine

Department at the European Hospital George Pompidou in Paris.

These time series contain signals from patients suffering from

kidney diseases. As a background, the human kidney has a lot

of functions including maintenance of acid-base balance. Proper

function of the kidney requires that it receives and adequately

filters blood. This is performed at the microscopic level by many

hundreds of thousands of filtration units called renal corpuscles,

each of which is composed of a glomerulus. A global assessment

of renal function is often ascertained by estimating the rate of

filtration, called the glomerular filtration rate (GFR). GFR esti-

mates howmuch blood passes through the glomeruli eachminute.

Kidney failure occurs when GFR is under 90𝑚𝐿/𝑚𝑖𝑛/1.73𝑚2
,

whereas when it drops to 15𝑚𝐿/𝑚𝑖𝑛/1.73𝑚2
, it means that the

patient needs dialysis or a transplant. Thus, it is very important

to understand when a patient needs medical treatment before the

GFR reaches its lowest possible value. Moreover, since dialysis

is an invasive operation, it is important to understand if a sud-

den drop in the GFR occurs. In this case, medical doctors might

recommend urgent surgery or to resort to dialysis depending on

the GFR values over time.

We ran experiments on two variants of this dataset. The first

variant named 𝐾𝑖𝑑𝑛𝑒𝑦3𝑌𝑟 contains 222 patients (one time series

per patient) and spans 1 to 3 years with a variable length between

90 and 230 data points in the time series. The second variant

called 𝐾𝑖𝑑𝑛𝑒𝑦5𝑌𝑟 is composed of 278 patients spanning 5 years

with time series having roughly 100 data points. In both cases,

we ran our experiments using only the 20% of the labeled time

series in order to compute the set of features necessary to run

the clustering algorithm and to emulate the real-world scenario

where not all the labels of the data points are available. The

features thus being ordered based on their relevance have been

employed to cluster the entire unlabeled dataset into those with

GFR signals concerning high-risk patients and those containing

GFR for patients with lower risk.

UCR datasets.We also used 64 benchmark datasets belonging

to the UCR collection[6], including both real-life and synthetic

datasets. The entire list of datasets used for benchmark is avail-

able online
2
. For consistency, we also used only 20% of the labeled

time series during feature extraction during the clustering step

in all experiments.

Implementation and reproducibility. Our code base is avail-
able online

2
with more details about the reproducibility.

5 EXPERIMENTAL RESULTS
For each dataset, we consider 20 as the upper bound of the number

of features we consider in the analysis. A higher number of

features are supported by our method but not indispensable to

obtain better accuracy. Moreover, a higher number of features

deteriorates the performance. Furthermore, we chose 80% as the

threshold value of the percentage of features selected by the

user. We used the AMI [18] metric, which is a well-established

2
https://github.com/DonaTProject/FeatTS

Dataset FeatTS kShape SeededKMeans

Adiac 0,31 0,39 0,52
MoteStrain 0,48 0,01 0,02

TwoLeadECG 0,88 0,10 0,07

ECG200 0,34 0,11 0,06

Computers 0,09 0,06 0,01

Coffee 1 0,35 0,88

GunPoint 0,52 0 0

Arrowhead 0,29 0,26 0,27

ItalyPowerDemand 0,54 0,39 0

Meat 0,4 0,64 0,75
OliveOil 0,27 0,52 0,53
Trace 0,74 0,52 0,69

Wine 0,12 0 0,01

Worms 0,16 0,06 0,12

ShapesAll 0,08 0,62 0,45

Table 2: Results showing the values of AMI for UCR
datasets
measurement of the quality of clustering. We adopt the same

metric for our comparisons as well.

We consider twomain baselines, the first being the state-of-the-

art algorithm for time series clustering, i.e. KShape[17], and the

second being the state-of-the-art algorithm for Semi Supervised

time series clustering i.e. Seeded kMeans [3], sharing the same

category of our approach (as detailed in Section 2). KShape[17]

could not be used on the real-world GFR time series as it cannot

process variable-length time series. Hence, we limit the compari-

son with KShape to the UCR datasets.

Other baselines of semi-supervised clustering algorithms such

as SSSL[20] (Self Labeling Algorithm) and SUCCESS[13] (Cluster

then Label Algorithm) could not be used in our study due to the

lack of available source code.

All experiments have been executed on a Server running Linux

with 64GB of RAM, Intel Xeon CPU Skylake,IBRS @ 2.6GHz.

5.1 UCR Dataset
The results in Table 2 are an excerpt of the entire results obtained

by our algorithm and its baselines for various UCR datasets. It

can be observed that FeatTS obtains the best results among all.

Indeed, out of 64 datasets used for the comparison, FeatTS per-
formed better on 37 datasets. In addition, kShape performed well

only on 15 datasets (out of 64) and Seeded kMeans outperformed

the others in only 12 datasets (out of 64).

5.2 Kidney Case Study
As shown in Table 3, the results obtained by FeatTS are signif-

icantly more accurate than Seeded kMeans on the clinical case

study. For the patients under medical supervision for 5 years, as

shown in Table 3, we have obtained results following a similar

trend.

Dataset FeatTS SeededKMeans

Kidney3Yr 0.56 0.44

Kidney5Yr 0.58 0.48

Table 3: Results on Kidney 3Yr and 5Yr Datasets
5.3 Scalability
We have assessed the scalability of our method by increasing

both the number and length of time series in a dataset. In this

experiment, we have used synthetic time series generated with

GRATIS [11]. This tool allows a controlled generation of time

series by using diverse characteristics as spectral entropy, trend,

seasonality, stability, etc.

In our case, in the synthetic generation we have opted for

spectral entropy and trend as the underlying characteristics since

they reflect the real-life time series we have used in the rest of

our experimental assessment. The spectral entropy allows to
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(a) Time vs. dataset size (b) Time vs. TS length

(c) % Time of each compo-
nent vs. dataset size.

(d) % Time of each component vs
TS length.

Figure 5: Scalability Results.

measure the “forecastability” of a time series. It has a range of

values between 0 to 1 and a low value of entropy indicates a

high signal-to-noise ratio, while large values occur when a time

series is difficult to forecast. For this characteristic, we have fixed

a value of spectral entropy equal to 0.6. Conversely, the trend

allows to represent the occurrence of low-frequency variations

in the time series and as such it is opposite to seasonality. It has

a range of values between 0 to 1 and we have chosen a value of

0.9 for this experiment.

In the first experiment, we increase the number of time series

for each tested dataset while the the length of the time series is

fixed and equal to 60. Figure 5a shows the results obtained on

datasets consisting of 100, 200, 500, 1000, 2000, 4000 time series,

respectively. The results show the scalability of the method in

terms of time performance, while an important increase can be

observed when shifting to more than 2000 time series. The times

in Figure 5a are in logarithmic scale for clarity of exposition.

In order to better understand the results, we have studied

the percentage of time due to each component of our pipeline

as shown in Figure 5c. Upon increasing the size of the dataset,

the component that is computationally more demanding is the

creation of the co-occurrence matrix. Obviously, since the Co-

Occurrence Matrix depends on the number of time series, the

time required for its creation increases as the size increases.

In the second experiment, we have increased the length of

the time series while fixing to 500 the number of time series

belonging to each dataset. Figure 5b shows the results obtained

increasing the length of the time series between 120 and 4000.

The figure shows the scalability of the approach for time series

under 2000 and a sudden increase of the time beyond this value.

Also in this case, the times in Figure 5b are in logarithmic scale

for better clarity. The time breakdown in Figure 5d shows that

the more expensive step of the pipeline for this experiment is the

feature extraction step.

6 CONCLUSION AND FUTUREWORK
Our work on clustering of time series shows that there is no

one-size-fits-all solution regarding the set of features to use. In

fact, we leveraged the features drawn from the data itself rather

than taking a predefined set of features for all the datasets. Our

flexible graph encoding allows us to process the most significant

features in parallel and the further steps of our method allow us

to combine the results.

This work could be improved by rendering the entire pipeline

unsupervised instead of the current semi-supervised approach.

This requires non-trivial extensions in order to be able to cluster

the time series without loss of performance. Another improve-

ment would be to dynamically choose the threshold for graph

creation based on the processed features. Finally, the weights

of the community detection algorithm could be combined with

relevance degrees of the features.
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ABSTRACT
Main Memory Database Systems (MMDBSs) may significantly
increment IOPS (Input/Output Operations per Second) rates by
avoiding access to secondary memory. This occurs because they
maintain the database in Random Access Memory (RAM). Similar
to traditional Disk-Based Database Systems (DBSs), MMDBSs are
expected to trigger recovery activities after system failures to
restore the database to its last consistent state before the failure.
Nonetheless, MMDBSs executes the recovery process in an offline
way, thus the database becomes available for new transactions
only after the full recovery process has been performed. Systems
can keep database replicas for high availability. However, replica-
tion is not immune to some failure sources that can causemultiple
and shared malfunctions. Therefore, software techniques are re-
quired to prevent failures and repair crashed systems as soon as
possible. This work proposes a novel MMDBS instant recovery
process which makes MMDBS able to schedule new transactions
simultaneously with the recovery activities. In order to validate
this new approach, simulations with a prototype implemented
on Redis have been conducted over Memtier benchmark. The
achieved results evidence the suitability of the proposed recovery
mechanism.

1 INTRODUCTION
Main Memory Databases (MMDBs), or In-Memory Databases
(IMDBs), can provide very high throughput rates given that the
primary data are located in memory. In that manner, MMDB re-
duces secondary memory I/O bottleneck, and can consequently
speed up data access. Moreover, the development of new mem-
ory technologies has provided a larger storage capacity with
lower costs. The fact that the database resides in volatile storage
influences the design approaches adopted by MMDBs, such as
query processing, concurrency control, recovery after crashes,
data storage, and indexing. For this reason, these systems are de-
signed to optimize access to main memory instead of secondary
memory, as with traditional disk-resident systems [7, 21, 24].

MMDBs provide very high IOPS given that the primary data-
base is handled in volatile storage. However, the database residing
in a volatile memory makes these systems much more sensitive
to system failures than conventional disk-resident database sys-
tems. The recovery mechanism is responsible for restoring the

© 2021 Copyright held by the owner/author(s). Published in Proceedings of the
24th International Conference on Extending Database Technology (EDBT), March
23-26, 2021, ISBN 978-3-89318-084-4 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

database to the most recent consistent state before a system fail-
ure has occurred. In this way, after a system crash, the recovery
manager loads the last valid checkpoint (a prior database backup
copy) and then starts to execute all actions recorded in the log
file forward from the checkpoint record [10, 12, 13].

Accordingly, the recovery process for most MMDBs is per-
formed offline, meaning that the database and its applications
only become available for new transactions after the full recov-
ery process is completed. One may claim that systems can keep
database replicas for high availability. In fact, with the advent of
high-availability infrastructure, recovery speed has become sec-
ondary in importance to runtime performance for most MMDBs
[7, 12, 22]. Nevertheless, replication is not immune to human er-
rors and unpredictable defects in software and firmware that are
a source of failures and can cause multiple and shared problems
[18, 21].

In this sense, this paper proposes an instant recovery approach
for OLTPMMDBs. Said approach allowsMMDBs to schedule new
transactions immediately after the failure during the recovery
process, giving the impression that the system was instantly
restored. The main idea of instant recovery is to organize the log
file in a way that enables efficient on-demand and incremental
recovery of individual database tuples.

It is important to note that the existing MMDBs recovery strat-
egy has two deficiencies that make instant recovery impossible.
First, the recovery process uses a sequential log file. The recovery
in the sequential log is not incremental and requires full recovery
before any tuple can be accessed. This scenario does not allow
the system to execute an on-demand transaction during recovery,
which means that new transactions can only start executing after
the recovery process has finished. The second problem is the
random access pattern in the sequential log for restoring tuples
individually. The sequential log has efficient record writes, but
it has inefficient reads for individual log records. A full log scan
must be done to restore a given tuple individually [12, 18].

The instant recovery technique presented in this work builds
the log file as an index structure. This log organization enables an
efficient restoration of a tuple. A single fetch on the indexed log
can restore one tuple. Thus, the system can use the indexed log
to recover a database by restoring tuple by tuple incrementally.
This technique naturally supports database availability because a
new transaction can access a tuple immediately after the tuple is
restored, i.e., transactions do not have to wait for a full recovery
to access restored tuples. We have empirically evaluated the
proposed instant recovery approach in order to show its efficiency
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and suitability to be implemented in MMDBs. The workload used
for the experiments belongs to Memetier benchmark.

The remainder of this paper is organized as follows. Session
2 provides an overview of MMDB recovery. Section 3 discusses
related work. Section 4 presents the proposed approach for data-
base instant recovery. Section 5 discusses the results of empirical
experiments. Finally, Section 6 concludes this paper.

2 BACKGROUND
Most main memory database systems implement logical logging
technique which records higher-level database operations, such
as inserting a record in a table. MMDBSs do not record Before im-
ages of modified tuples, i.e., they produce only Redo log records
to reduce the amount of data written to secondary storage. The
commit processing uses group commit, i.e., it tries to group multi-
ple log records into one large I/O. SSD is the log device of choice
for almost all systems in order to increase the I/O performance
[12, 22, 26].

The recovery component of most MMDBs asynchronously
produces a consistent checkpoint, commonly called snapshot.
Snapshot is equivalent to a materialized database state in an
instant of time by means of a Copy-on-Update method (COU,
for short) [4, 6]. At the checkpoint beginning, MMDBS enters
into a COU mode. Thereafter, the recovery component starts to
scan all tuples in database tables at system run-time. Three bits
are used to identify if a row was inserted, deleted, or updated
after the checkpoint generation has begun. Inserted tuples are
disregarded. Before an update or delete, the original content of a
tuple is copied to a shadow table. The shadow version is removed
after it is scanned. A background process serializes the snapshot
to secondary memory until the checkpoint ends [2, 12].

Whenever a system crash occurs in an MMDB, the primary
copy of the database is lost. In this case, MMDBs recover the
database by loading the last valid checkpoint. Thereafter, the
recovery component starts to execute the actions recorded in
the log file forward from the checkpoint record. The recovery
component activities are briefly illustrated in Figure 1. All actions
of committed transactions are flushed to the log file on secondary
memory by the Logger component. Periodically, the Checkpoint
component produces a snapshot on secondary storage. After a
failure, the Restorer component loads the snapshot into mem-
ory and then replay the log file. After the recovery process has
finished, the database is available for new transactions [7, 22].

Figure 1: MMDBS recovery component architecture.

3 RELATEDWORK
Hekaton [5], VoltDB [20], HyPer [9], SAP HANA [8] and SiloR
[26] are examples of modern MMDBSs that perform the recovery
activities discussed in Section 2. Nevertheless, those systems do
not execute new transactions until the full recovery is completed.

PACMAN [22] and Adaptive Logging [23] utilize a dependency
graph between transactions performed to identify opportunities

for database recovery in parallel. After a failure, they use a depen-
dency graph to generate a scheduled execution to replay the log
records. The schedule allows transactions to be executed in par-
allel, following the constraints of the dependency graph. Those
systems must wait for the full database recovery to service new
transactions.

The Log-Structured Merge tree (LSM-tree) [15] provides low-
cost indexing for a file that has a high rate of record insertions
and deletions. However, the LSM-tree access method uses a buffer
to avoid multiple I/Os in secondary memory for frequently refer-
enced pages. This approach is not suitable for writing log records
since they require immediate and atomic persistence during com-
mit processing.

FineLine [17–19] presents an instant database restoration tech-
nique. This technique uses a partitioned index in the log to write
records efficiently. The partition index may search for multiple
partitions to retrieve a page. After a crash, the recovery process
loads pages incrementally from a backup device. While a set of
pages is loaded, the records in the log file that are related to
that set are probed. This approach also can recover pages on-
demand for transactions. New transactions can perform as soon
as necessary pages are restored.

4 A NOVEL INSTANT RECOVERY
MECHANISM

In this section, firstly the architecture of the proposed instant
recovery mechanism is described. Thereafter, the proposed log
data structure is discussed. Finally, the recovery algorithm based
on the proposed indexed log structure is detailed.

4.1 The Architecture
Figure 2 proposes an architecture to implement our MMDB in-
stant recovery approach, which uses an indexed log structure.
This section provides an overview of the main components that
comprise the architecture and their interactions.

Figure 2: Architecture for in-memory database instant re-
covery using an indexed log.

Below, we present a brief description of the main components
of the architecture discussed in the following subsections.

• Logger: writes transaction update actions in a log file on
secondary memory. The records are flushed sequentially
in an append-only file whose writes must be synchronized
to transaction commit.

• Indexer: indexes records from sequential log to indexed
log. The records are indexed in a B-tree asynchronously
to transaction commit.

• Restorer: restores tuples from a failed database by re-
playing records from indexed log. Tuples can be restored
incrementally and on-demand.

• Scheduler: during the recovery process, requests the Re-
storer component for tuples (that have not yet been re-
stored into memory) requested by new transactions.
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4.2 The Logging Strategy
The proposed approach for MMDB instant recovery uses two
logs: a sequential log (Figure 3 (a)), and an indexed log (Figure 3
(b)). Each record in the sequential log represents an update per-
formed on a tuple by a transaction. During transaction processing,
transaction update records are appended to the sequential log
file by the Logger component. Each transaction generates Redo
records that are kept in a thread-local. During the commitment,
all log records generated by a transaction are appended atomi-
cally on the sequential log. This scheme ensures log consistency
to recover the database.

Figure 3: Sequential log (a), and indexed log (b).

The proposed recovery scheme requires efficient log reading
to fetch the records to redo a given tuple during recovery. For
this reason, the logging strategy implements an indexed log. The
index structure is a B-tree in which each node contains a tuple
ID and the update records generated by transaction updates in
the tuple. Only one probe on B-tree can retrieve all the neces-
sary records to restore a single tuple. The Indexer component is
responsible for indexing records from the sequential log to the
indexed log. The indexing is asynchronous to transaction commit,
i.e., a transaction does not need to wait for the log indexing to
confirm its writing in the data. Records can be removed from
the sequential log after they are indexed in the B-tree. However,
the sequential log is maintained to ensure consistent database
recovery in the event of index corruption. In this case, the sys-
tem must build a new indexed log from the sequential log. This
process will delay the start of recovery.

The primary purpose of instant recovery is to restore the data-
base efficiently, without degrading the transaction throughout
provided by the system. The indexed log requires random writes,
while a sequential log has a sequential write pattern. Writing
records to a sequential log file is potentially faster than doing so
to an indexed log file. For this reason, in our approach, log records
are written to the sequential file and, periodically, flushed to the
indexed log file. The indexing process occurs asynchronously
to the transaction commit operation so as not to degrade the
transaction processing. It is important to highlight that restoring
an individual tuple by indexed log requires only one fetch on
B-Tree, while restoring a single tuple by sequential log requires
a full scan of the log file. Therefore, our recovery technique only
uses the indexed log to recover the database after a failure.

FineLine [17–19] uses an instant recovery technique that al-
lows efficient write of log records by a partitioned index. However,

probes on log require inspecting multiple partitions to restore a
page. This approach can delay recovery. The number of partitions
can be reduced by intermediate merges. However, this process
can interfere with the transaction processing performance. Our
log organization is simpler and writes/reads records efficiently.
Transactions must wait only for writes on the sequential log to
commit. The log indexing does not interfere with transaction
processing since records are indexed asynchronously to trans-
action commit. During recovery, only one fetch on B-tree can
restore a tuple individually.

As it was exemplified in Figure 3, transactions Tx1, Tx2, and
Tx3 generated log records for updates performed in tuples Tp1,
Tp2, and Tp3. Sequential log (Figure 3 (a)) stores the records
flushed by the three transactions. The log records with LSN 11,
13, 16, and 19 represent the last update performed in tuple Tp1,
for example. A fetch on the indexed log can retrieve the records
of LSN 11, 13, 16, and 19 to redo the tuple Tp1. The absence of
an index implies the necessity of a full scan on the sequential log
to restore Tp1.

4.3 The Recovery Algorithm
After a system failure, the system should initiate the database
recovery by restoring tuples through the indexed log. However,
the record indexing process is asynchronous to the transaction
commit. As a result, some records on the sequential log may not
have been indexed before a failure. Therefore, immediately before
starting recovery, the system must verify if any records have not
yet been indexed. Indexer component must index those records
to ensure the recovery consistency. When this process ends, re-
covery can begin and new transactions can be performed. Thus,
the Restorer component begins redoing tuples by traversing the
indexed log B-Tree. Each visit to a B-Tree node can retrieve the
update records to redo a tuple. After visiting all B-Tree nodes,
all database tuples are restored, and the recovery process is com-
pleted.

The indexed log recovery scheme can naturally support avail-
ability since new transactions can be executed immediately af-
ter restoring their required tuples. Furthermore, this recovery
scheme can service new transactions whose necessary tuples
have not yet been loaded into memory during recovery. When a
transaction requires tuples, the system checks if the tuples are
stored in memory. If they are not in memory, the Scheduler com-
ponent must request the Restorer for these tuples on-demand.
Then, the recovery manager should pause the incremental recov-
ery (the traversing in B-tree) and begin fetching the necessary
tuples for the transaction from the indexed log. After the trans-
action’s tuples are restored, they are marked as restored, the
transaction can run, and the system can continue the incremen-
tal recovery.

4.4 The Evaluation Prototype
The instant recovery approach proposed in this paper was imple-
mented in Redis 5.0.7 [16] to evaluate the feasibility of indexing
for log replay. The evaluation prototype can be downloaded1.
Redis is an open-source in-memory data structure store used as
an in-memory key-value database. Redis is written in ANSI C.

Persistence in Redis can be achieved through snapshotting
and logging. In snapshotting, the database is asynchronously
transferred from memory to secondary storage at regular inter-
vals as a binary dump using the Redis RDB Dump File Format.
1https://drive.google.com/drive/folders/1LTbtY36O0kWIpxZBM-hc1BPvIjICuy2F
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In logging, a record of each operation that modifies the database
is added to an append-only file (AOF). Redis can automatically
rewrite the AOF in the background when it gets too big [16].
Our prototype uses only the AOF, i.e., the RDB was disabled.
Moreover, the system does not rewrite the log.

During transaction performing, each update operation gener-
ates a log record that contains basically its command, key, and
value. For example, the operation SET(K1, V1) stores the value
V1 with the key K1 and generates the log record fields SET, K1,
and V1. Each record is written in the AOF atomically only at a
committed time and at the same order each in which the com-
mand was performed. Our prototype uses the AOF from Redis,
i.e., we did not need to implement a sequential log.

The records must be copied from the sequential log to the
indexed log periodically. The indexed log is a B-tree implemented
in Berkeley DB 4.8 [14]. Berkeley Database (Berkeley DB or BDB)
is a software library intended to provide a high-performance
embedded database for key/value data.

5 EVALUATION
We have empirically evaluated the instant recovery approach
proposed in this research. We used the Memtier Benchmark to
perform the tests in Redis. All experiments shown in this paper
were executed with 4 worker threads on Intel Core i7-9700k CPU
3.60GHz x 8. The system has 64GB of RAM and 400GB of SSD
Kingston SA400S37 as a persistent storage device. The operating
system was Ubuntu Linux 18.04.2 LTS.

5.1 Mentier Benchmark
Memtier is a high-throughput benchmarking tool for Redis devel-
oped by Redis Labs. This tool has a command-line interface that
provides a set of customization and reporting features to generate
various workload patterns. It can launch multiple worker threads,
with each thread driving a configurable number of clients. The
tool can control the ratio between read and write operations.
Moreover, it offers control over the pattern of keys used by the
operations (e.g., random and sequential patterns). Memtier pro-
vides options to set the number of total requests per client or the
number of seconds to run a test. The tool offers other options for
configuring custom workloads [1, 11]. Memtier has already been
used in several scientific works, such as in [25] and [3].

5.2 Recovery Experiments
The first group of experiments was focused on measuring the
time to fully recover a database, availability to process trans-
actions after a system failure, time to run a workload entirely,
and logging overhead. These experiments were performed on
a database containing 99, 507 kyes that generated an 11.8GB se-
quential log file containing 160 million records. Additionally, an
indexed log was generated along with this sequential log using
the recovery technique proposed in this work. For each exper-
iment, the system was shut down to simulate a failure. At the
database restart, as soon as the recovery process was been trig-
gered, a workload would be submitted. Thus, one could measure
transaction throughput and recovery time from system restart.

The key goal was to compare the proposed instant recovery
approach to the traditional main memory database recovery.
However, we also tested our instant recovery scheme in differ-
ent scenarios to confirm the following expectations about our
technique: (1) an indexed log must be employed to incremen-
tally and on-demand recover the database, and (2) asynchronous

indexing of log records must be used to avoid transaction pro-
cessing overhead. Thus, the experiments have been conducted
in the three following scenarios: (i) Sequential Log Recovery -
SLR; (ii) Asynchronous Indexed Log Instant Recovery - AILIR;
(iii) Synchronous Indexed Log Instant Recovery - SILIR.

The SLR scenario (traditional recovery) uses only a sequential
log. In this scenario, transaction update records are written to
a sequential log file during transaction processing. The recov-
ery process recovers the database by scanning the entire log file.
Transactions can be performed only after the recovery is com-
plete. The AILIR scenario (our approach) uses a sequential log +
indexed log. In AILIR, transaction update records are written in
a sequential log during transaction processing and stored asyn-
chronously to transaction commit in an indexed log. The SILIR
scenario (scenario derived from AILIR) uses only an indexed log.
In SILIR, transaction update records are written directly to an
indexed log synchronously to the transaction commit. After a
failure, for both scenarios ii (AILIR) and iii (SILIR), the recov-
ery manager must traverse the B-tree to recover the database,
and transactions can perform during recovery. The SILIR sce-
nario was created to measure the log indexing overhead during
transaction processing and instant recovery processing.

For each scenario mentioned above, three experiments were
performed by different types of workload: (i) read-only workload
that contains only read operations, (ii) read-write workload that
has read and write operations in the 5:5 ratio, and (iii) write-only
workload that has only write operations. These three workloads
were simulated using Memtier benchmark that used 4 worker
threads, with each thread driving 50 clients. Each client made
170,000 requests in a random pattern.

Figure 4 shows the results of recovery experiments for the
three scenarios (SLR, AILIR, and SILIR) performing the read-only
workload, denoted Scenarios Read-Only. The vertical dashed lines
in the figure indicate the final recovery time of the respective
color approach. AILIR and SILIR recovered the database at the
same time interval (85 seconds) since both techniques use the
same algorithm to recover the database. They recovered before
SLR which took 91 seconds to recover. In addition, they were
available for new transactions since the database restart and be-
fore SLR which can execute transactions only after full recovery.
Those two approaches had a quite similar throughput during the
workload performing. Moreover, after the recovery, the three
scenarios had a similar throughput. This was because there were
no records to flush to the log file. AILIR and SILIR had a slightly
lower throughput during recovery due to access to the indexed
log. AILIR and SILIR performed the entire workload before SLR,
as they can process new transactions during recovery.

Figure 4: Recovery experiments - Scenarios Read-Only.
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The results of recovery experiments for the three scenarios
mentioned in this paper performing the read-write workload (de-
noted Scenarios Read-Write) are in Figure 5. The vertical dashed
lines in the figure indicate the final recovery time of the respective
color approach. The AILIR approach did not overload the through-
put of transactions since its throughput was similar to that of
the default approach (SLR). This result was already expected
because AILIR and SLR flush log records to secondary memory
in a similar manner, except that AILIR additionally indexes the
log records. However, the indexing did not interfere with the
transaction throughput because it is performed asynchronously
to transaction commit. SILIR had the worst performance due
to its synchronous log indexing, i.e., a transaction must wait
for indexing to confirm its writes. Although SLR recovered the
database before AILIR, AILIR was the fastest approach to finish
the workload execution. This result was achieved because AILIR
has asynchronous indexing and can process transactions while
the system is recovering. In addition, the client application did
not notice the AILIR recovery, giving the impression that the
recovery was instantaneous.

Figure 5: Recovery experiments - Scenarios Read-Write.

Figure 6 presents the results of recovery experiments for the
three scenarios performing the write-only workload (denoted
Scenarios Write-Only). These results are similar to those in Fig-
ure 5. Except for the fact that SILIR recovered the database faster
than AILIR. However, this fact did not influence AILIR’s perfor-
mance. The AILIR approach had better performance since it was
the fastest approach to finish the workload execution without
overloading the transaction throughput. It had a very similar
throughput to default recovery.

Figure 6: Recovery experiments - Scenarios Write-Only.

5.3 Scalability Experiments
We ran further experiments in which the proposed recovery
strategy deals with different log file sizes. The goal is to observe

the behavior and performance of the recovery strategy when the
log file increases in size. These experiments were performed on
the following four databases:

(1) DB1: containing 49, 866 kyes that generated a 5.9GB se-
quential log file containing 80 million records.

(2) DB2: containing 99, 507 kyes that generated an 11.8GB
sequential log file containing 160 million records.

(3) DB3: containing 198, 067 kyes that generated a 23.6GB
sequential log file containing 320 million records.

(4) DB4: containing 392, 041 kyes that generated a 47.3GB
sequential log file containing 640 million records.

These four databases mentioned above have a ratio of approx-
imately 1:1600 between keys and log records. Each sequential
log was generated along with an indexed log using the recov-
ery technique proposed in this work. The experiments used the
same scenarios handled in the previous section (Section 5.2): (i)
Sequential Log Recovery - SLR; (ii) Asynchronous Indexed Log
Instant Recovery - AILIR; (iii) Synchronous Indexed Log Instant
Recovery - SILIR. An experiment was performed for each of the
four databases (DB1, DB2, DB3, and DB4) in each scenario (SLR,
AILIR, and SILIR). For each experiment, the system was shut
down to simulate a failure. At the database restart, as soon as
the recovery process was been triggered, a workload would be
submitted. The workload was simulated using Memtier bench-
mark that used 4 worker threads, with each thread driving 50
clients. Each client made 300,000 requests. The workload had 5:5
read and write operations in a random pattern. From the system
restart, we measured the average transaction throughput during
the execution of the workload, the recovery time, and the total
workload execution time.

Figure 7 presents the recovery time obtained in each test. As
expected, these results show that the number of database keys
and log records can delay the recovery process in all approaches,
as the recovery time increases with the size of the database. The
instant recovery approaches (AILIR and SILIR) had a similar
recovery time because they use the same recovery technique.
However, AILIR was slightly faster than SILIR in all tests. This
is because the weight of synchronous indexing by SILIR influ-
ences the overall performance of the system. SLR recovered the
database faster than AILIR and SILIR.

Figure 7: Scalability experiments - Recovery time.

Figure 8 shows that AILIR interferes very little in the through-
put of transactions. This is evidenced by the fact that the AILIR
average throughput, for the execution of a given workload, re-
mained similar to that of the standard approach (SLR) in all
experiments. On the other hand, SILIR’s average transaction
throughput was much lower than that of AILIR, proving that
asynchronous indexing is essential for a better performance of
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the instant recovery technique. The throughput difference be-
tween AILIR and SLR may occur because the Indexer component
blocks the sequential log to read it. In the meantime, transactions
must wait for the lock to be released before writing records to the
log. Nevertheless, the approach proposed in this paper has the
advantage of high availability. It can perform new transactions
since the system restart, while the standard approach must wait
for full database recovery to perform new transactions.

Figure 8: Scalability experiments - Average throughput.

The results of the experiments in Figure 9 show that the ex-
ecution time of AILIR’s workload is slightly longer than that
of SLR. Although the experiments in Figures 4, 5, and 6 have
shown that AILIR performed the workload faster than SLR, the
experiments in Figure 9 show that this behavior changes with
higher workloads. The workload of the experiments in Figure
9 (300,000 operations) is 1.7x greater than the workload of the
experiments in Figures 4, 5, and 6 (170,000 operations). This is
because SLR’s transaction throughput is slightly higher than that
of AILIR, as shown in Figure 8.

Figure 9: Scalability experiments - Total workload execu-
tion time.

6 CONCLUSION
This paper proposed an instant recovery approach for main mem-
ory database systems. The proposed approach allows new trans-
actions to run concurrently to the recovery process. Our approach
implements an indexed log to fetch tuples directly on the log to
restore data incrementally. Consequently, new transactions are
scheduled as soon as required tuples are restored into the main
memory database. Furthermore, the proposed recovery mecha-
nism restores data on-demand since it restores tuples for new
transactions whose data has not yet been restored.

The results show that instant recovery reduces the perceived
time to repair the database since transactions can be performed
since the system is restarted. In other words, it can effectively
deliver tuples that new transactions need during the recovery

process. The experiments also analyzed the impact of using a log
indexed structure on transaction throughput rates in an OLTP
workload benchmark.
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ABSTRACT
The rising popularity of data science has resulted in a chal-
lenging interplay between traditional declarative queries
and numerical computations on the data. In this paper, we
present and evaluate the advanced analytical system Horse-
Power that is able to combine and optimize both program-
ming styles in a holistic manner. It can execute traditional
SQL-based database queries, programs written in the statis-
tical language MATLAB, as well as a mix of both by support-
ing user-defined functions within database queries. Horse-
Power exploits HorseIR, an array-based intermediate rep-
resentation (IR), to which source programs are translated,
allowing to combine query optimization and compiler opti-
mization techniques at an intermediate level of abstraction.

1 INTRODUCTION
Complex data analytics has become the cornerstone of our
data-driven society. Although the amount of data stored
in traditional relational database systems (DBS) has been
growing rapidly, the by far most common current approach
is to take the data first out of the DBS and load it into
stand-alone analytical tools, which are based on languages
such as Python, or the statistical languages MATLAB [1],
and R [3]. However, as the size of the data increases, the
expensive data movement between DBS and analytics tools
can become a severe bottleneck.

Integrating analytical capabilities into the DBS avoids
such expensive data exchange. A common approach is to
use user-defined functions (UDFs) that are embedded in
SQL queries [13]. For example, MonetDB supports UDFs
written in Python, that are executed by a Python language
interpreter that is embedded inside the DBS engine.

While no data transfer is needed with this approach, there
are still two separate execution environments, one being the
SQL execution engine, the other the programming language
execution environment. This can lead to costly data format
conversion. Furthermore, the SQL and the UDF compo-
nents of the query are each individually optimized by their
respective execution environments, without the considera-
tion of any holistic optimization across the entire task.

To address these issues, we propose HorsePower, an ad-
vanced analytical SQL system, which provides a holistic
solution to integrate UDFs in SQL queries. The system is
based on HorseIR [5], an array-based intermediate represen-
tation (IR) language which was developed to explore the
usage of compiler optimizations for query execution. Chen
et al. [5] translated the execution plans of standard SQL
queries into HorseIR and compiled the generated HorseIR
code using various compiler optimization strategies devel-
oped for array-based languages. Using arrays to represent

© 2021 Copyright held by the owner/author(s). Published in Proceed-
ings of the 24th International Conference on Extending Database
Technology (EDBT), March 23-26, 2021, ISBN 978-3-89318-084-4
on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0.

database columns, HorseIR follows conceptually the data
model of column-based DBS, which has been proven to be
effective for data analytics tasks.

HorsePower extends the idea to a full-fledged execution
environment for data analytics. Additionally to support-
ing plain SQL queries, HorsePower also supports functions
written in MATLAB, a popular high-level array language
widely used in the field of statistics and engineering. Horse-
Power can take stand-alone functions written in MATLAB
and translate them to HorseIR, of have these functions be
embedded in SQL queries and then translate all into a sin-
gle HorseIR program, before optimizing and compiling the
code in a holistic manner.

As such HorsePower avoids the overhead of inter-system
data movements as it has a single execution environment,
and eliminates the barriers between SQL queries and an-
alytical functions allowing optimizations across both the
declarative and functional parts of the query.

The contributions of this paper are thus as follows:
• We present HorsePower, an advanced analytical system,

that extends the approach proposed in [5] to not only offer
a compiler-based execution environment for SQL queries,
but also for programs written in the array-based language
MATLAB and for SQL queries with embedded UDFs.

• HorsePower uses a holistic approach of exploiting array-
based compiler optimization techniques for both SQL and
MATLAB taking advantage of the conceptual similarities
of columns and arrays.

• The performance of HorsePower is shown through an ex-
tensive set of experiments on programs written in MAT-
LAB, and SQL queries with embedded UDFs.

2 BACKGROUND
2.1 HorseIR: an Array-based IR for SQL
Recent years have seen the development of modern query
compilers that translate an SQL query into an intermediate
representation (IR) before target code is generated from the
IR, making it possible to leverage any existing code opti-
mizations available within the IR platform.

In this context, HorseIR [5] was developed as a high-level
IR specifically for database applications [7]. Being an array-
based IR, it is relatively straightforward to generate basic
HorseIR code following the execution plans developed by
column-based DBS, as the operators executing on entire
columns can be translated to functions executing on vectors
in HorseIR. In fact, Chen et al. [5] took the execution plans
generated by the column-based database system HyPer [11],
that incorporate a wide range of traditional DBS optimiza-
tions, as the input for generating HorseIR programs.

In this regard, HorseIR provides a rich set of array-based
built-in functions to which one can map the standard data-
base operations. Moreover, the HorseIR compiler provides
vital optimizations over these array-based operations. For
example, loop fusion merges multiple loops into one loop,
allowing for an intuitive merge of chained operations and
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1 SELECT SUM(l_price * l_discount) AS RevenueChange
2 FROM lineitem WHERE l_discount >= 0.05;

1 module ExampleQuery{
2 def main(): table{
3 ...
4 // assume t1 , t2 are references to l_price/l_discount columns
5 t3:bool = @geq(t2, 0.05);
6 t4:f64 = @compress(t3, t1);
7 t5:f64 = @compress(t3, t2);
8 t6:f64 = @mul(t4, t5);
9 t7:f64 = @sum(t6);

10 ...}}

Figure 1: Example query and its HorseIR program

thus, avoiding intermediate results. Thus, optimizations de-
veloped for array-based programming languages can be ex-
ploited to improve query performance.
Example The top of Figure 1 shows a simplified version
of Query 6 of the TPC-H benchmark [16] computing the
change in total revenue given prices and discounts from
the table lineitem. A basic translation into a HorseIR pro-
gram prior to performing any optimizations is shown at
the bottom of Figure 1, outlining only the part of the code
that performs the actual relational operators. We assume
that arrays t1 and t2 represent the price and discount
columns. The program computes the WHERE condition
(@geq), which returns a boolean vector of the same length
as t2 with true values in all rows that fulfill the condition.
The function @compress then extracts from both t1 and t2
the rows for which the boolean vector has a true value. The
output are “compressed” vectors with relevant rows, over
which then the aggregation is performed in two steps.
HorseIR Optimizations As can be seen, such an approach
can generate a fair amount of intermediate results (arrays t3
to t6 in the example). If lines 5 to 9 are translated to lower-
level code independently, each of them generates its own for
loop over the corresponding arrays. However, array-based
optimization techniques, including loop fusion, and some
pattern-based optimizations developed specifically for the
operator sequences found in SQL statements, allow the Hor-
seIR compiler to fuse these loops to just one loop to avoid
materializing these intermediate vectors. To do such fusion,
HorseIR first builds a data dependence graph across all the
statements. Statements which can be fused or follow a pat-
tern, are then identified by a well-defined data flow analysis,
and compiled together to efficient C code. For our example,
the resulting sequential C code would look similar to

1 ...
2 revenue = 0;
3 for(i = 0; i < numRows; i++)
4 { if(t2[i] >= 0.05) revenue += t1[i] * t2[i]; }
5 ...

Although the example C code does not convey it explicitly,
behind the scenes, HorseIR uses OpenMP to compile the
program into a parallel implementation, as outlined in [5].

2.2 Traditional Database UDFs
A UDF is a high-level language function embedded within
an SQL statement, and is used to offload partial computa-
tion into are more concise language than SQL, or provide
additional functionality. To support UDFs, the database
system integrates the language runtime environment into
the DBS (such as the Python interpreter in MonetDB [13]).
We will focus only on Scalar UDFs and Table UDFs, as

1 FUNCTION RevChangeSclr(price,discount)
2 RETURN price * discount;
3 END

1 SELECT SUM(RevChangeSclr(l_price,l_discount)) AS RevChange
2 FROM lineitem WHERE l_discount >= 0.05;

Figure 2: Rewriting the example query with a scalar UDF

these are the most commonly employed types of UDFs and
also the ones supported presently in HorsePower.

A scalar UDF returns a single value per row (which could
be a vector) and can be therefore essentially used wherever
a regular table column is used, such as the SELECT or the
WHERE clause of SQL queries. Figure 2 shows a scalar UDF
which performs the multiplication that was originally part
of the SELECT clause in Figure 1. In a column-based data-
base system, the execution of such a query first evaluates
the WHERE clause on l_discount, returning a boolean vec-
tor. Then, the database applies the corresponding boolean
selection on columns l_discount and l_extendedprice, re-
turning compressed vectors containing the rows where the
boolean vector was true. These columns are then given to
the UDF as arrays, and the UDF performs an element-wise
multiplication on them and produces a result array. This is
then the input to the SUM operator. Thus, the UDF is only
called a single time and works on entire arrays.

A table UDF returns a table-like data structure, and thus,
is typically called within the FROM clause of an SQL state-
ment, similar to regular database tables. For an example of
a table UDF, we refer to a technical report [6].

Introducing UDFs into queries can bring performance is-
sues. If the data types used by the two execution environ-
ments are different, this can introduce a conversion over-
head when exchanging data. Further, as UDF languages
are typically black-boxes to the database engine, cross op-
timization attempts are minimal, resulting in sub-optimal
execution plans.

3 HORSEPOWER
In this section we present HorsePower, a system designed
for the code generation and optimization of HorseIR gener-
ated from (1) SQL queries, (2) MATLAB programs, and (3)
SQL queries with analytical functions written in MATLAB.

3.1 SQL to HorseIR
While prior work used HyPer’s execution plans [11] to trans-
late SQL to HorseIR, HorsePower uses MonetDB’s execu-
tion plans, as MonetDB supports UDFs and the execution
plans contain the relevant UDF information. Our implemen-
tation first translates the tree-based plans to JSON objects
that are then translated to HorseIR1.

Furthermore, HorsePower supports a wider range of SQL
queries than [5], which did not properly support multi-join
queries. This includes all queries of the TPC-H benchmark [16].

3.2 MATLAB to HorseIR
MATLAB is a sophisticated dynamic language which pro-
vides numerous flexible language features. In order to trans-
form MATLAB code to HorseIR, as an intermediate step,
1HorsePower could generate it own execution plans. However, as the
traditional query optimization techniques are not the focus of our
research, we preferred to integrate the already optimized execution
plans generated by existing DBS.
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HorsePower calls upon the McLab framework [2] which
translates MATLAB programs to its own internal IR, called
TameIR, handling MATLAB’s many dynamic features and
lack of strict typing. Type and shape information for all
variables in the program are automatically derived. Fur-
thermore, class program analysis steps, such as constant
propagation, are performed to produce optimized TameIR
code [9]. TameIR can represent MATLAB’s matrix and
high-dimension arrays, and currently supports an essential
subset of MATLAB array operations.

HorsePower then translates TameIR code to HorseIR. So
far, this translator supports a core subset of MATLAB fea-
tures and built-in functions. It preserves MATLAB pass-
by-value semantics but automatically switches to pass-by-
reference when it determines that the input parameters are
not modified, avoiding data copies. It supports the com-
mon control structures if-else and while with a restric-
tion on the condition which must be a single boolean ele-
ment. While explicit loop iteration is not supported, MAT-
LAB’s array-based built-in functions (which have implicit
loop execution) are translated in a straightforward way as
similar functions exist in HorseIR. All types supported by
TameIR are also supported by HorseIR, however, due to
type rule mismatches, input types for some operators are
restricted (e.g. because integer + double returns integer in
MATLAB, but double in HorseIR). Finally, the translator
requires MATLAB arrays to have the data layout of 1-by-N
instead of N-by-1, as the former one is more cache-friendly
in MATLAB.

3.3 SQL and UDF to HorseIR
HorsePower supports SQL queries with embedded UDFs
written in MATLAB. As described in Section 3.1, Horse-
Power uses execution plans generated by MonetDB, which
contain hooks into UDFs with their names, and input and
output parameters, but otherwise treat the UDFs as a black-
box. HorsePower translates such a plan to HorseIR, where
the invocation of the UDF is translated to a method in-
vocation in HorseIR. Next, we generate a separate piece
of HorseIR code by translating the UDF written in MAT-
LAB using the MATLAB-to-HorseIR translator introduced
in Section 3.2. Finally, the two segments of code for SQL
and UDFs are integrated into a single HorseIR program.

HorsePower supports both scalar and table UDFs. In or-
der to make the MATLAB functions conform to the seman-
tic form expected of these types of UDFs, we enforce some
restrictions on the MATLAB functions. For instance, we re-
quire a function to have one return statement with either a
single vector (for scalar UDFs) or a table-like data structure
(for table UDFs).

Figure 3 shows the HorseIR program for the example
query in Figure 2 with a scalar UDF. The HorseIR code con-
sists of a module with two methods: the SQL component is
translated to the main method, and the UDF is translated
to the method RevChangeSclr which takes two arrays of
type float as input and returns the resulting product. This
method is called by the main method, which otherwise is
the same as we have already seen in Figure 1.

3.4 Holistic HorsePower Optimizations
HorsePower performs compiler-based optimizations when
translating a HorseIR program to target C code. We have
discussed in Sec. 2.1, how automatic loop-fusion and pattern-
based, as introduced in [7] lead to efficient parallel C code.

1 module ExampleQuery{
2 def RevChangeSclr(price:f64, discount:f64): f64{
3 x0:f64 = @mul(price, discount); // S5
4 return x0;
5 }
6 def main(): table{
7 ...
8 // compute revenue change
9 t3:bool= @geq(t2, 0.05:f64); // S0

10 t4:f64 = @compress(t3, t1); // S1
11 t5:f64 = @compress(t3, t2); // S2
12 t6:f64 = @RevChangeSclr(t4,t5); // S3
13 t7:f64 = @sum(t6); // S4
14 ...
15 }}

Figure 3: HorseIR code for the Query in Figure 2
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Figure 4: Dependence graphs for the example in Figure 3

However, such optimizations require all statements to be
in one method. But when SQL statements have embedded
UDFs, the HorseIR code has at least two methods, with a
main method calling the method representing the UDF as
shown in our example in Figure 3.

If we were to optimize both parts independently using
loop fusion and pattern-based fusion, the overall result would
be sub-optimal. In fact, if we look at the dependence graph
for this program on the left side of Figure 4 (with S0 to
S4 depicting the statements in the code), we can see that
the optimization opportunities are now separated into three
snippets: before, after, and in the method being called in the
statement S3. The snippets have to be optimized individu-
ally because the content of the statement S3 is invisible to
the rest of the code. Thus, statements S1 and S2 of the main
method need to be evaluated and intermediate results t4
and t5 cannot be eliminated as the method RevChangeSclr
requires their actual values to be passed as parameters. Fur-
thermore, the return value of the method needs to be mate-
rialized to be assigned to t6 which is then the input of the
statement S4. This means the potential scope for fusion is
significantly reduced leading to more intermediate results.

In order to enable a more holistic cross-optimization, we
use the concept of inlining. This involves replacing the method
calls within the main method with the corresponding code
segments that constitute the method that is being called.
For our example program in Figure 3 this means the code of
RevChangeSclr can be inlined into the main method with
the generated HorseIR being almost the same as the one
in Figure 1 except for possibly different variable names. As
a result, a dependence graph can be built across the main
method, as illustrated on the right side of Figure 4, allowing
for loop fusion across all statements and generating a single
loop of all tasks as outlined in Section 2.1, and avoiding the
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materialization of any intermediate results introduced by
UDF invocations.

In some scenarios method inlining offers additional opti-
mization opportunities, such as the elimination of unused
computations. For example, consider a scenario where a ta-
ble UDF computes and returns two columns as part of its
invocation, but the enclosing SQL query itself uses only one
of those two columns. HorsePower will employ the backward
slicing technique [15] to avoid the computation of the un-
used column in the table UDF.

While performing inlining, to respect the pass-by-value
convention for parameter passing, a copy of the object used
as the parameter will be generated if the parameter is found
to be modified inside the original callee method. This en-
sures that inlining does not result in any unintended data
modifications to the objects inside the method that was
making the call. Further, if inlining results in any variable
name conflicts, they are resolved by assigning new but unique
variable names. Finally, an inlined method is removed if it
can be inlined in all the code locations where it is called.

4 EVALUATION
In this section we present the evaluation result of our frame-
work for pure MATLAB programs, and for SQL queries
with analytical UDFs written in MATLAB. For the latter,
we compare it with MonetDB.

The experiments are conducted on a server equipped with
4 Intel Xeon E7-4850 2.00GHz (total 40 cores with 80 threads,
and 24 MB of shared L3 CPU cache) and 128 GB RAM
running Ubuntu 18.04.4 LTS. We use GCC v8.1.0 to com-
pile HorseIR source code with optimization options -O3 and
-march=native; MonetDB version v11.35.9 (Nov2019-SP1)
and NumPy v1.13.3 along with Python v2.7.17 interpreter
for embedded Python support in MonetDB; and MATLAB
version R2019a.

The response time is measured only for the core compu-
tation, and excludes the overhead for parsing SQL, plan
generation, compilation, and serialization for sending the
results to the client. We only consider execution time once
data resides in the main memory. We run each test 15 times
but only measure the average execution time over the last
10 times. Scripts and data used in our experiments can be
found in our GitHub repository2.

4.1 MATLAB Benchmarks
We first evaluate MATLAB programs in order to under-
stand the performance of using HorsePower for executing
non-SQL based data analytics, and use the following bench-
marks: the Black-Scholes algorithm from the PARSEC
benchmark suite v3.0 [4] having two UDFs BlackScholes and
CNDF, and the Morgan algorithm [8] from a finance applica-
tion having a main function morgan and another function
msum. Both contain several element-wise functions and are
fully vectorizable.

In our experiments, we compare the following:
• We execute the original MATLAB program using the

MATLAB interpreter with default settings.
• We compile the HorseIR program generated from the

MATLAB code into C code without any of the optimiza-
tions that we mentioned in Section 3.4. We refer to this
version as HorsePower-Naive. As such, it is likely to pro-
duce a similar amount of intermediate results as the MAT-
LAB interpreter.

2https://github.com/Sable/edbt21-analysis

Table 1: Speedup of HorsePower over MATLAB in execu-
tion time using Black-Scholes (in milliseconds)

Size MATLAB HorsePower
Naive Speedup Opt. Speedup

1M 61 66 0.92x 7 9.34x
2M 145 137 1.06x 14 10.17x
4M 491 463 1.06x 49 10.12x
8M 1009 1384 0.73x 117 8.60x

• We compile the HorseIR code into C code with all opti-
mizations enabled, referred to as HorsePower-Opt.
Table 1 shows the execution times for MATLAB and

for the two HorsePower versions with different sizes of the
Black-Scholes tables. We also indicate the speedup of Horse-
Power over MATLAB in execution time. Note that the
MATLAB interpreter uses all physical threads. For Horse-
Power, we used 40 threads.

The execution times for MATLAB and HorsePower-Naive
are similar, with slightly better performance for MATLAB,
probably due to MATLAB having more efficient library
functions. When comparing with HorsePower-Opt, MAT-
LAB is significantly slower. The reason is that HorsePower-
Opt optimizations, in particular loop fusion, are able to
avoid many intermediate results. We also observe that the
size of the data set plays a minor role.

For Morgan (no table shown due to space limitations) we
run experiments up to 8 million rows as well. HorsePower-
Naive also provides similar performance to MATLAB with
smaller data sizes, but already has a speedup of 2 with 8
million rows. We believe the reason is our efficient parallel
implementation of built-in functions, such as the cumula-
tive sum. Again, the optimized version is significantly faster,
with a speedup of 7 with 8 million rows.

In summary, HorsePower can execute data analytics tasks
in an efficient manner due to its data-centric IR and com-
piler optimization techniques.

4.2 SQL and UDF Benchmarks: TPC-H
This is the first of two sections to evaluate the performance
of HorsePower in executing SQL statements with embedded
UDFs, and comparing it with MonetDB.

Froid [14] proposed a whole range of queries derived from
the TPC-H benchmark in which part of the SELECT or
WHERE clauses, e.g., to check certain conditions, are out-
sourced into a UDF. In all cases, these are scalar UDFs. For
instance, they propose a variation of the q6 of the TPC-H
benchmark, which is very similar to our example query of
Figure 1, simply containing more conditions.

For MonetDB, we rewrote the queries to use Python-
based UDFs, for HorsePower, the UDFs are written in MAT-
LAB. The structure of the programs is very similar for both
languages. Some of the proposed UDFs have embedded SQL
statements which are currently not supported by the McLab
framework that we use. Thus, we excluded those unsup-
ported queries and present results only for queries q1, q6,
q12, q14, and q19.

Table 2 shows the execution times of these queries with
a different number of threads using HorsePower and Mon-
etDB. When first looking only at MonetDB we can see that
execution times are relatively low for some queries and im-
prove with an increasing number of threads considerably
(q1 and q14), but are high for others with little benefit of
parallelization (q6, q12, q19). The reason is that in these
queries, the UDF is in the WHERE clause and MonetDB
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Table 2: Speedup (SP) of HorsePower over MonetDB in execution time using the modified TPC-H benchmarks with UDFs

Thread MonetDB (ms) HorsePower (ms)
q1 q6 q12 q14 q19 q1 SP q6 SP q12 SP q14 SP q19 SP

T1 16853 48832 137195 1040 69045 3799 4.44x 392 125x 900 152x 904 1.15x 858 80.5x
T8 5724 47775 143714 773 72124 3316 1.73x 56 853x 300 479x 396 1.95x 364 198x

T32 2502 44636 140438 750 64267 1883 1.33x 45 1000x 170 826x 216 3.48x 209 307x

has to perform costly data conversion when sending the en-
tire database columns as arrays to the Python interpreter
in order to execute the UDF. MonetDB is able to use zero-
copy transfer for data types where the database system uses
the same main-memory representation as Python. But for
strings, it needs to convert the data to a different format
as the database internal and the Python formats are incom-
patible. This data conversion seems to not be parallelized
to multiple threads, making it the predominant factor of
the execution. In q1 and q14, the UDFs are in the SELECT
clause (where data sizes are smaller as they got reduced
due to the selection that was already executed), and do not
require any string conversions.

HorsePower has overall much better performance for all
queries, being under 1 second for all queries except q1, and
can always improve execution times by increasing the num-
ber of threads. As no data conversion is necessary it is orders
of magnitude faster than MonetDB for queries q6, q12, and
q19. We observe the advantage of having a unified execution
environment that has translated both the UDF part and the
SQL part to a single HorseIR program with its own data
structures. But we also observe significant improvements
for q1 and q14. These are due to the unified optimization
across the HorseIR code generated from SQL and UDF.

4.3 SQL and UDF Benchmarks: MATLAB
In this second experiment, we embed the Black-Scholes al-
gorithm in form of UDFs into SQL queries.

We again have a HorsePower version, with the Black-
Scholes UDF implemented in MATLAB, and a MonetDB
version, with the UDF implemented in Python UDF using
the NumPy library and the same array programming style
as the MATLAB UDF.

In order to understand the implication of having the UDFs
written in different programming languages, we first com-
pared the execution time of Black-Scholes written in Python
and using HorseIR (both naive and optimized). Execution
is in one thread because NumPy does not support multi-
threading. Similar to what we have seen with our analysis
with MATLAB, a naive usage of HorseIR provides similar
execution time as Python (around 500 ms); performing op-
timizations achieves a speedup of 2.

In order to look at the impact of embedding this UDF into
SQL statements, we created both scalar and table UDF vari-
ations as well as designed several enclosing SQL statements
that offer different potential for optimizations. In particu-
lar, we created a scalar UDF that returns just the computed
optionPrice to the calling SQL.

1 CREATE SCALAR UDF bScholesUDF(spotPrice, ..., optionType)
2 {
3 import blackScholesAlgorithm as bsa
4 return bsa.calcOptionPrice(spotPrice, ..., optionType)
5 };

Furthermore, we implemented the solution as a Table
UDF, which returns in table form the computed optionPrice
along with the associated spotPrice and optionTypewhich
are columns from the original input table.

In order to have a broad set of tests and comparisons, we
first integrated these two UDF versions into a straightfor-
ward base query. From there we created three significant
variations of this base query that had different columns in
the SELECT and WHERE clauses. Furthermore, the selectivity
of WHERE clause can be high (returning few records) or
low (having many qualifying records).

Table 3 shows the result of all the variations for MonetDB
and HorsePower for 1 thread (T1) and 64 threads (T64).
Base query. The base query bs0_base selects all the data
from the database table and passes it to the UDF and re-
turns all the data produced by the UDF.

1 −− Base query , bs0_base , Scalar UDF
2 SELECT spotPrice, optionType,
3 bScholesUDF(spotPrice,...,optionType) AS optionPrice
4 FROM blackScholesData;
5
6 −− Base query , bs0_base , Table UDF
7 SELECT spotPrice, optionType, optionPrice
8 FROM bScholesTblUDF ((SELECT * FROM blackScholesData));

We first observe that for MonetDB multi-threading has
little impact on its performance while HorsePower benefits
a lot. As Python is not multi-threaded, the Black-Scholes
UDF in MonetDB runs always in a single thread even if 64
threads are enabled, while HorsePower creates optimized
parallel also for the Black-Scholes part. But HorsePower is
already significantly better with a single thread. We then
find that HorsePower has even significant benefits with a sin-
gle thread. In fact, HorsePower’s execution time for the en-
tire query is nearly the same as executing the Black-Scholes
algorithm alone, while MonetDB takes nearly double the
time (> 900 ms) to execute the entire query than the time
used by the Python interpreter to execute Black-Scholes
(around 500 ms). The reason for this performance penalty
in MonetDB must be the communication between its SQL
engine and the Python UDF interpreter.
Variation 1. The first variation bs1_* applies a predicate
condition on spotPrice, a column which is actually part of
the input database table. The objective of this test case is to
analyze if the systems can intelligently avoid performing the
UDF computation on records that will not be in the result
set. As can be seen, for one thread, HorsePower’s speedup
over MonetDB is at least 3.5x for both scalar and table
UDFs, and for 64 threads at least 50x. MonetDB follows
the traditional database optimization technique of apply-
ing high selectivity operations first, discarding the records
that do not qualify before processing the UDFs. As Horse-
Power relies on MonetDB for database execution plans, it is
similarly impacted by the plans generated by MonetDB for
table UDF based queries. This results in HorsePower’s own
table UDF based queries costing more than its scalar ver-
sions. However, unlike MonetDB, HorsePower benefits from
being able to avoid data copies and conversions as well as
from generating parallelized code for UDFs, thus expanding
this performance gap when the number of threads increases.
Variation 2. In the next variation, bs2_*, the SQL does
not include the computed column optionPrice in the final
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Table 3: Performance comparison between HorsePower (HP) and MonetDB (MDB) for variations in Black-Scholes.

UDF Selectivity
Table UDF (ms) Scalar UDF (ms)

T1 T64 T1 T64
MDB HP Speedup MDB HP Speedup MDB HP Speedup MDB HP Speedup

bs0_base 100.0% 927.5 249.8 3.71x 774.0 7.09 109x 670.0 249.5 2.69x 696.5 7.06 98.6x
bs1_high 0.2% 926.4 256.2 3.62x 818.0 7.62 107x 6.10 0.32 19.1x 6.55 0.13 50.4x
bs1_low 99.8% 929.7 266.4 3.49x 832.9 14.6 57.0x 725.4 169.6 4.28x 645.4 4.90 132x
bs2_high 0.2% 895.6 4.67 192x 791.5 0.70 1131x 4.29 4.59 0.93x 3.52 0.63 5.59x
bs2_low 99.8% 916.4 11.0 83.7x 820.4 6.64 124x 15.9 10.95 1.45x 5.11 5.95 0.86x
bs3_high 10.0% 911.8 259.0 3.52x 824.4 10.1 81.6x 673.8 179.3 3.76x 623.2 7.69 81.0x
bs3_low 90.0% 879.1 262.5 3.35x 793.6 13.7 57.8x 685.4 182.6 3.75x 641.7 12.8 50.1x

result. A smart system should be able to analyze the se-
mantics of the request and avoid processing the UDF both
together. MonetDB is able to do the optimization when the
SQL query is using the scalar UDF, avoiding the computa-
tion of the optionPrice column that is not included in the
final result. Similarly, HorsePower, being an integrated sys-
tem, can avoid the computation of optionPrice by using
a backward slice. As both avoid executing the UDF, Horse-
Power has only moderate speedup over MonetDB due to
other optimizations. However, with a table UDF, MonetDB
is unable to avoid this computation as there is no way for
it to pass this optimization information to the UDF inter-
preter. On the other hand, HorsePower uses method inlining
and backward slicing to remove this computation, offering
a huge advantage.
Variation 3. The last variation, bs3_* applies a predicate
condition on optionPrice. As this is a column computed
by the UDFs, both the systems have to process the UDFs
across all input records before discarding records that do
not qualify, providing limited opportunities for optimiza-
tion. As can be seen, HorsePower has speedups of around
3.5x for both scalar and table UDFs with one thread and be-
tween around 50x and 80x for 64 threads. HorsePower has
better performance than MonetDB simply because Horse-
Power can avoid the data movement between the UDF.
With more threads, HorsePower’s speedup is even better
as the data movement in MonetDB is not parallelized and
takes most of the time in the whole execution pipeline.

In summary, HorsePower avoids the problems of a black-
box integration of programming language execution envi-
ronments as used in current DBS. As such, it avoids expen-
sive data conversions, can optimize in a holistic manner and
provides full support for parallelization, leading to signifi-
cant speedups.

5 RELATED WORK AND CONCLUSIONS
Intermediate representations and compiler techniques have
been applied by others to improve the performance of data-
base queries. However, there is little research in these sys-
tems extending to support UDFs within the database queries.

Froid [14] shows a holistic optimization solution by trans-
forming simple UDF to relational code. Thus, the existing
query optimizer can be utilized for the optimizations of the
execution plan. However, this approach is limited as not all
UDFs are translatable to a relational operator.

Weld [12] presents its IR (WeldIR) to support the code
generation from various source languages. WeldIR is able
to handle database queries and call UDFs written in C code.
However, in contrast to HorsePower that automatically op-
timizes across different source languages, such capabilities
have not been implemented by Weld.

Lara [10] is a domain-specific language tailored for rela-
tional algebra and UDFs. Its code is first compiled to an IR

which is able to inspect UDFs by collecting necessary infor-
mation from UDFs. Thus, Lara can optimize such transpar-
ent UDFs together with its IR code. This is different from
our HorsePower which compiles database queries and UDFs
to its common IR with holistic optimizations enabled.

In conclusion, HorsePower differs from previous work in
that it is a compiler-based approach exploiting array-based
optimizations to support database queries, MATLAB pro-
grams and database queries with analytical UDFs in a holis-
tic framework. Given the very promising evaluation results,
future work will integrate different programming languages,
and enhance our relational operators.
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ABSTRACT
Database replication and query load-balancing are mechanisms
to scale query throughput. The analysis of workloads allows load-
balancing queries to replica nodes according to their accessed
data. As a result, replica nodes must only store and synchronize
subsets of the data. However, balancing the load of large-scale
workloads evenly while minimizing the memory footprint is
complex and challenging. State-of-the-art allocation approaches
are either time consuming or the resulting allocations are not
memory-efficient. Further, partial replication approaches usu-
ally optimize only against a single fixed workload. If the actual
workload deviates from this expected one, load-balancing can be
highly skewed, resulting in severe performance degradation.

This paper proposes a novel approach to compute memory-
efficient fragment allocations that enable balancing multiple po-
tential future workloads. Applied on the TPS-DS benchmark and
a large-size enterprise workload, we show that, compared to
state-of-the-art allocations, our solutions are (i) more flexible, (ii)
require up to 50% less data, (iii) have competitive runtimes, and
(iv) are more robust against uncertain out-of-sample workloads.

1 INTRODUCTION
Increasing demand for database processing capabilities can be
managed by scale-out approaches, using additional servers. Anal-
yses of enterprise workloads have shown that both OLTP and
OLAP are read-dominant [9]. Database replication is an approach
to scale-out read-only queries, which can be executed on snap-
shots of a primary server without violating consistency [4].

Given that most queries require only a limited set of tuples
and attributes, partial replication is an efficient approach: In-
stead of duplicating all data to all replica nodes, partial replicas
store only a subset of the data while being able to process a
large workload share. Thereby, splitting the overall workload
evenly among the replica nodes is essential to scale the query
throughput linearly with the number of nodes. Partial replication
consists of two steps, which are typically separated from each
other to better deal with the problem complexity [11]. First, the
data set is partitioned horizontally and/or vertically into disjoint
data partitions/fragments. Second, the individual fragments are
allocated to one or multiple nodes.

This paper addresses the second step, i.e., a fragment allocation
problem (given a fixed data partitioning). Calculating efficient
fragment allocations that minimize the replicas’ memory con-
sumption while evenly balancing the query load is challenging,
because the data allocation and the workload distribution are
mutually dependent. As the calculation of optimal allocations
is an NP-hard problem, heuristic approaches have to be used
∗Both authors contributed equally to this research.
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for large problem sizes. Rabl and Jacobsen propose a greedy al-
location approach with short computation times [12]. We have
previously proposed a decomposition approach [5] based on lin-
ear programming (LP), which calculates allocations with up to
23% lower memory consumption for the TPC-H benchmark.

Allocations for larger workloads are harder to solve, but typ-
ically offer greater potential for sophisticated approaches com-
pared to simple heuristics. However, when using the LP-based
decomposition approach for larger problems, computation times
increase, and problemsmay finally become practically intractable,
e.g., for an application in dynamic settings, in which model inputs
change and quick recalculations are required. Considering mul-
tiple potential workloads to increase an allocation’s robustness
increases the problem complexity even further. However, such
robustness is necessary in practice, when workloads fluctuate,
and query costs or frequencies cannot be predicted precisely.

The goal of this paper is to overcome the limitations of existing
allocation approaches. Applied to TPC-DS and a real-world ac-
counting workload, we show that the greedy rule-based heuristic
[12] is not memory-efficient, while the solver-based solution [5]
provides low robustness against diversified workloads and has
unacceptable runtimes to be used in practice. To fill this gap, we
propose a heuristic LP-based clustering approach to flexibly com-
bine robustness, memory-efficiency, and a short calculation time
for large-scale problems. Our contributions are the following:

First, we derive robust and memory-efficient fragment allo-
cations, which enable an even load balancing against multiple
potential future workloads. Second, exploiting the skewness of
workloads, we use partial clustering techniques to compute solu-
tions for large-scale workloads quickly. Third, for the TPC-DS
and a large real-world workload, we show that, with our tech-
niques, the trade-off between memory-efficiency, robustness, and
a short calculation time can be smoothly balanced in a targeted
way. Fourth, we verify the robustness of our allocations by con-
fronting them with unseen out-of-sample workloads.

2 FRAGMENT ALLOCATION PROBLEM
AND LIMITS OF EXISTING APPROACHES

2.1 Problem Description and Difficulty
The scale-out of workloads to partially replicated databases leads
to a coupled data assignment and workload distribution problem.
We consider a horizontally and/or vertically partitioned database
consisting of 𝑁 disjoint fragments.

The workload input can be described as follows. We consider
the case where data (fragments) can be stored on 𝐾 nodes to
distribute a given workload. The size of a fragment 𝑖 is 𝑎𝑖 , 𝑖 =
1, ..., 𝑁 . Further, we consider a set of𝑄 queries 𝑗 , characterized by
fragments accessed, i.e., 𝑞 𝑗 ⊆ {1, ..., 𝑁 }, 𝑗 = 1, ..., 𝑄 . We assume
that the costs of queries 𝑗 are independent of the executing node
𝑘 , 𝑘 = 1, ..., 𝐾 , and determined by 𝑐 𝑗 , 𝑗 = 1, ..., 𝑄 . Query costs are
numerical and can, e.g., be modeled as average processing times.
We assume that the queries 𝑗 occur with a given frequency 𝑓𝑗 ,
𝑗 = 1, ..., 𝑄 . The total workload costs 𝐶 are 𝐶 :=

∑
𝑗=1,...,𝑄 𝑓𝑗 · 𝑐 𝑗 .
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The allocation problem can be described as follows. The goal is
to decide (i) on which node to put which fragments and (ii) which
query is executed at which node to which extent (workload share).
Our objective is to minimize the total amount of data at all nodes
such that the workload can be evenly distributed between them.
Further: (i) A query 𝑗 can only be executed at node 𝑘 if all relevant
fragments are stored on node 𝑘 . (ii) For each of the𝑄 queries, the
workload shares, assigned to the different nodes, have to sum up
to one. (iii) At each of the 𝐾 nodes, the workload share has to be
1/𝐾 such that the overall query throughput can be scaled. (iv)
Further, as high calculation times may limit the applicability in
practice, we want to compute optimized allocations quickly. (v)
The allocation should work for multiple givenworkload scenarios
and should be robust against new unseen ones.

2.2 Existing Fragment Allocation Approaches
2.2.1 Optimal Solution via Linear Programming. For a single

givenworkload, the described fragment allocation problem can be
formulated as a linear mixed integer problem, cf. [5, 12]. However,
the complexity of the linear program quickly increases with the
number of queries (𝑄), fragments (𝑁 ), and nodes (𝐾). For this
reason, the optimal solution can only be derived as long as the
size of the problem is sufficiently small.

2.2.2 Greedy Heuristic. Rabl and Jacobsen [12] start to assign
queries with the largest workload share and accessing the most
data. Queries are ordered by the product of the workload share
and the total size of accessed fragments. A query is assigned to
the node with the largest overlap of already allocated fragments
and those accessed by the query. Nodes with no assigned queries
are thereby treated as if they have a complete overlap. If a query’s
workload share exceeds the assigned node’s load capacity, the
node is filled up to its limit. The query with its remaining work-
load is merged back into the list of queries and assigned later.

2.2.3 LP-Based Decomposition. We proposed to iteratively
split the workload into smaller workload packages (chunks) such
that the data redundancy is minimized in each step [5]. In a
split with 𝐵 subnodes, each subnode 𝑏 represents 𝑛𝑏 final nodes,
𝑏 = 1, ..., 𝐵, and takes the workload share𝑤𝑏 := 𝑛𝑏/𝐾 . The special
case 𝐵 = 𝐾 corresponds to the optimal solution, cf. Section 2.2.1.
The workload splits are obtained using small-sized LP subprob-
lems similar to the LP structure of optimal solutions. In the LP, the
following variables are used: The binary variables 𝑥𝑖,𝑘 ∈ {0, 1},
𝑖 = 1, ..., 𝑁 , 𝑘 = 1, ..., 𝐾 , indicate whether fragment 𝑖 is allo-
cated to node 𝑘 (1) or not (0). The binary variables 𝑦 𝑗,𝑘 ∈ {0, 1},
𝑗 = 1, ..., 𝑄 , 𝑘 = 1, ..., 𝐾 , indicate whether query 𝑗 can run on node
𝑘 (1) or not (0). The continuous variables 𝑧 𝑗,𝑘 ∈ [0, 1], 𝑗 = 1, ..., 𝑄 ,
𝑘 = 1, ..., 𝐾 , represent the workload share of query 𝑗 executed at
node 𝑘 . The sum of shares has to sum up to one for all queries.
Further, by𝑊 /𝑉 , the replication factor is denoted, where the total
amount of data used

𝑊 :=
∑

𝑖=1,..,𝑁 ,𝑘=1,...,𝐾
𝑥𝑖,𝑘 · 𝑎𝑖 (1)

is normalized by the amount of overall accessed data

𝑉 :=
∑

𝑖∈⋃𝑗=1,...,𝑄 :𝑓𝑗>0 {𝑞 𝑗 }
𝑎𝑖 . (2)

2.3 Large and Skewed Workloads
The results of [5] and [12] were shown for the TPC-H benchmark,
which consists of𝑄 = 22 queries and 𝑁 = 61 fragments/columns.
We use the more complex TPC-DS benchmark (𝑄 = 99, 𝑁 = 425)
and a real-world enterprise workload (𝑄 = 4 461, 𝑁 = 344).
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(a) TPC-DS
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(b) Accounting workload

Figure 1: Distribution of top 50 query workload shares in
decreasing order, cf. (a) Section 2.3.1 and (b) Section 2.3.2.

2.3.1 TPC-DS Workload. To obtain model inputs, we loaded
the tables with scale factor 1 into a PostgreSQL 12.2 database
system. We use vertical partitioning with each column as an
individual fragment. We deployed single column indices on all
primary key columns. Fragment sizes 𝑎𝑖 , 𝑖 = 1, ..., 425, are mod-
eled by using the function pg_column_size() to calculate the
pure value sizes, abstracting from the PostgreSQL page layout
with meta-information and padding. In case the column is part
of a primary key, the index size increases the associated frag-
ment size. We use the command pg_table_size(index_name)
to calculate index sizes. We derived query costs 𝑐 𝑗 as average
execution time for query template 𝑗 with varying parameters. For
TPC-DS queries 1, 4, 6, 11, and 74, the set timeout of 120 s was
exceeded. Thus, we omitted them in our experiments, resulting
in 𝑄 = 94 queries.

2.3.2 Real-World AccountingWorkload. Wegot access tometa-
data of an enterprise’s central accounting table and a summary
of a workload trace against this table in the form of query tem-
plates and statistics. The metadata enabled us to derive all re-
quired model inputs for calculating fragment allocations using
vertical partitioning. The anonymized workload metadata and
source code to reproduce the allocations are publicly available
online [1]. The analyzed table stores accounting information and
has 𝑁=344 columns. The summary of the workload trace consists
of 𝑄=4 461 SQL templates with aggregated execution properties
of individual queries. Thereby, the most important properties for
our research are query frequencies 𝑓𝑗 (occurrences) and costs 𝑐 𝑗 ,
i.e., the average execution time per query (template).

2.3.3 Workload Skewness. Figure 1 shows the distribution of
and cumulative query workload shares 𝑓𝑗 · 𝑐 𝑗 , 𝑗 = 1, ..., 𝑄 . For
both workloads, the distribution is highly skewed: The queries
with the 50 highest workload shares account for more than 97%
of the TPC-DS and more than 92% of the real-world workload.

2.4 Limitations of Existing Approaches
To study the suitability of existing approaches, we calculated allo-
cations for TPC-DS and a real-world workload, cf. Section 2.3. For
different numbers 𝐾 , Table 1 summarizes memory consumption
and runtime of existing allocations approaches. We used 𝑓𝑗 := 1,
for all 𝑗 = 1, ..., 𝑄 . The LP-results of [5] were achieved using the
Gurobi solver (version 9.0.0) (single-threaded). For the compari-
son with [12]’s approach, we implemented their algorithms in
Python 3, and declare the runtime as an upper limit (<).

The upper part of both subtables shows the memory consump-
tion (𝑊 /𝑉 ) and required runtime for the optimal solution, cf.𝑊𝐷

without chunking, for up to 𝐾 = 6 (TPC-DS) and 𝐾 = 5 (account-
ing workload) nodes compared to the greedy heuristic, cf.𝑊𝐺 .
We could not compute optimal allocations for larger numbers of
nodes 𝐾 within 8 hours. The optimal replication factors provide
a useful reference to verify the quality of heuristic approaches.
In this context, we observe that the greedy heuristic requires up
to 100% more data than the optimal solution.
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Table 1: Advantages and disadvantages of existing ap-
proaches: the greedy heuristic [12] (𝑾𝑮 ), cf. Sec. 2.2.2, vs.
the decomposition heuristic [5] (𝑾𝑫 ), cf. Sec. 2.2.3, includ-
ing optimal solutions, cf. Sec. 2.2.1, (∗no decomposition).

(a) TPC-DS; 𝑲 = 2, ..., 12, 𝑵 = 425, 𝑸 = 94.

𝑲 chunks 𝑾𝑫

𝑽 solve time𝑾𝑫
𝑾𝑮

𝑾𝑫 solve time𝑾𝑮

2 2 1.126∗ 1 s +1% <0.1 s
3 3 1.205∗ 9 s +53% <0.1 s
4 4 1.298∗ 43 s +94% <0.1 s
5 5 1.393∗ 407 s +88% <0.1 s
6 6 1.457∗ 1074 s +100% <0.1 s
4 2+2 1.310 2 s +93% <0.1 s
5 3+2 1.466 14 s +79% <0.1 s
6 3+3 1.519 14 s +92% <0.1 s
8 4+4 1.874 122 s +65% <0.1 s
10 5+5 2.076 517 s +61% <0.1 s
12 6+6 2.201 2 146 s +60% <0.1 s

(b) Real-world workload; 𝑲 = 2, ..., 12, 𝑵 = 344, 𝑸 = 4 461, cf. source [1].

𝑲 chunks 𝑾𝑫

𝑽 solve time𝑾𝑫
𝑾𝑮

𝑾𝑫 solve time𝑾𝑮

2 2 1.322∗ 179 s +51% <3 s
3 3 1.775∗ 6 236 s +50% <3 s
4 4 2.104∗ 9 356 s +74% <3 s
5 5 2.473∗ 13 738 s +57% <3 s
3 2+1 1.811 384 s +47% <3 s
4 2+2 2.126 225 s +72% <3 s
5 2+2+1 2.499 5 922 s +55% <3 s
6 3+3 2.855 778 s +59% <3 s
8 3+3+2 3.499 8 859 s +87% <3 s
10 4+3+3 4.462 49 233 s +74% <3 s
12 4+4+4 5.162 47 207 s +82% <3 s

The lower part of the subtables shows the results of the de-
composition heuristic compared to the greedy heuristic. The
decomposition and greedy approach make it possible to solve
the problem for larger 𝐾 heuristically. We observe that the de-
composition approach (𝑊𝐷 ) yields better replication factors than
the greedy approach (𝑊𝐺 ), which requires up to 93% and 87%
more data for TPC-DS and the accounting workload, respectively.
Further, the decomposition approach performs close to optimal
compared to the optimal solution results (for 𝐾 ≤ 6, see Table 1a
and for 𝐾 ≤ 5, see Table 1b). However, the decomposition ap-
proach requires high computation times if the problem becomes
large, e.g., in the case of the accounting workload. In contrast,
the greedy approach is fast and requires only seconds.

2.5 Uncertain Future Workloads
In general, future workloads are not entirely predictable. Thus,
a further weakness of existing approaches is that they are only
optimized for a single workload and can perform poorly if actual
workloads differ. Hence, it is crucial to take potential workload
scenarios into account to obtain a robust performance. Poten-
tial future workload scenarios can be determined, e.g., based on
previously observed (seasonal) workloads or forecasts. In this
context, fragment allocations should be such that the workload
can be successfully balanced in any scenario. We assume that a
workload scenario is characterized by a set of queries with given
frequencies and costs within a certain time span.

In [12], Rabl and Jacobsen also describe an extension of their
approach to cope with multiple workload scenarios. They pro-
pose to calculate a separate allocation for each scenario indepen-
dently. Individual allocations are merged pairwise, mapping each
node of the first allocation to a node of the second allocation.

A merged allocation enables an even load balancing for both
input allocations. The Hungarian method allows calculating an
optimal mapping, which minimizes the memory consumption of
the merged allocation (in polynomial time). However, because
entire nodes are merged, optimization potential is given away.

Overall, we observe that existing approaches have different
strengths and weaknesses (runtime vs. memory-efficiency). Fur-
ther, from a practical perspective, solutions are required that can
provide a reasonable combination of (i) memory-efficiency, (ii)
robustness against different workloads, and (iii) short runtimes.
Our goal is to design a heuristic approach that is of that kind.

3 ROBUST FRAGMENT ALLOCATION FOR
MULTIPLE POTENTIAL WORKLOADS

3.1 LP-Based Robust Solution Approach
In the following, we consider 𝑆 potential workload scenarios.
Each scenario 𝑠 , 𝑠 = 1, ..., 𝑆 , is characterized by query frequencies
𝑓𝑗,𝑠 and associated workload costs 𝐶𝑠 :=

∑
𝑗=1,...,𝑄 𝑓𝑗,𝑠 · 𝑐 𝑗 , cp.

Section 2.1. Note, in this framework, also uncertain query costs
𝑐 𝑗 can be expressed similarly by using potential scenario-based
costs 𝑐 𝑗,𝑠 without increasing the model’s complexity.

The core idea is finding a single allocation that enables an even
load balancing for all 𝑆 potential workloads scenarios. Further, by
enabling an even load balance for specific diversified scenarios,
such enriched allocations also allow improved load balancing
for unseen scenarios, which may be similar to mixtures of input
scenarios. Thereby, an allocation’s robustness can be increased
by choosing a larger number of diverse scenarios.

Our robust multi-scenario model is an extension of the LP-
based decomposition approach, cf. Section 2.2.3, which considers
one deterministic workload, cf. 𝑆 = 1. Compared to [5], we use
extended variables (cf. 𝑧), to model workload shares for each
scenario 𝑠 , 𝑠 = 1, ..., 𝑆 . Based on the decomposition concept of
[5], we propose the following extended LP model to allocate data
fragments and to distribute workload shares to multiple nodes
in the presence of multiple potential workloads:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
𝑥𝑖,𝑏 , 𝑦 𝑗,𝑏 ∈ {0, 1}, 𝑧 𝑗,𝑏,𝑠 ∈ [0, 1], 0 ≤ 𝐿 ≤ 1, (given 𝑥𝑖 , 𝑦 𝑗 , 𝑧 𝑗,𝑠 )
𝑖 = 1, ..., 𝑁 , 𝑗 = 1, ..., 𝑄, 𝑏 = 1, ..., 𝐵, 𝑠 = 1, ..., 𝑆

1
𝑉

·
∑

𝑖=1,...,𝑁 ,𝑏=1,...,𝐵:𝑥𝑖=1
𝑥𝑖,𝑏 · 𝑎𝑖 + 𝛼 · 𝐿 (3)

𝑠 .𝑡 . 𝑦 𝑗,𝑏 · |𝑞 𝑗 | ≤
∑

𝑖∈𝑞 𝑗
𝑥𝑖,𝑏 ,

𝑗 = 1, ..., 𝑄 : 𝑦 𝑗 = 1
𝑏 = 1, ..., 𝐵 (4)

𝑧 𝑗,𝑏,𝑠 ≤ 𝑦 𝑗,𝑏 ,
𝑗 = 1, ..., 𝑄 : 𝑦 𝑗 = 1
𝑏 = 1, ..., 𝐵, 𝑠 = 1, ..., 𝑆 (5)∑

𝑗=1,...,𝑄 :𝑦 𝑗=1
𝑓𝑗,𝑠 · 𝑐 𝑗/𝐶𝑠/𝑤𝑏 · 𝑧 𝑗,𝑏,𝑠 ≤ 𝐿,

𝑏 = 1, ..., 𝐵
𝑠 = 1, ..., 𝑆 (6)∑

𝑏=1,...,𝐵
𝑧 𝑗,𝑏,𝑠 = 𝑧 𝑗,𝑠 ,

𝑗 = 1, ..., 𝑄 : 𝑦 𝑗 = 1
𝑠 = 1, ..., 𝑆 (7)

The overall idea is that the model allocates the fragments such
that the workload can be distributed evenly for all workload
scenarios 𝑠 , 𝑠 = 1, ..., 𝑆 . Note, scenario probabilities are not used
and thus do not have to be quantified in advance.

The objective (3) minimizes the replication factor𝑊 /𝑉 , cp.
(1) - (2). Constraint (4) guarantees that a query 𝑗 can only be
executed on node 𝑏 if all relevant fragments are available, see
Section 2.1. The cardinality term |𝑞 𝑗 | expresses the number of
fragments used in query 𝑗 . Constraint (5) ensures that a query 𝑗
can only have a positive workload share on node 𝑏 in scenario 𝑠
if it can be executed on node 𝑏. Constraint (6) guarantees that,
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in all scenarios 𝑠 , all nodes 𝑏 do not exceed the workload limit 𝐿.
Here the workload is normalized by the total workload cost 𝐶𝑠
of scenario 𝑠 and the workload share 𝑤𝑏 := 𝑛𝑏/𝐾 , cf. Sec. 2.2.3.
Finally, (7) ensures that a query’s workload shares on nodes 𝑘
sum up to the shares assigned to the chunk, cf. 𝑧. To minimize
the worst-case workload share over all nodes and scenarios, in
(6) we use a continuous variable 𝐿 and add a penalty term 𝛼 · 𝐿
in the objective (3). Hence, to achieve an even load balance, the
parameter 𝛼 has to be sufficiently large compared to 𝐾 (e.g., 𝛼 =

1 000); note, the factor𝑊 /𝑉 is bounded by 𝐾 , cf. full replication.
The recursive decomposition principle of the LP (3) - (7) works

as follows. Let 𝑥∗, 𝑦∗, and 𝑧∗ denote the optimal solution of the
LP (3) - (7) for a certain split. Then, for each subnode 𝑏, the input
for its associated subproblem on the next level is characterized by
the selected fragments (i.e., where 𝑥𝑖 := 𝑥∗

𝑖,𝑏
is 1), the executable

queries (i.e., where 𝑦 𝑗 := 𝑦∗
𝑗,𝑏

is 1), and the assigned workload
shares (i.e., where 𝑧 𝑗,𝑠 := 𝑧∗

𝑗,𝑏,𝑠
is positive). In this context, the

top node represents the total workload, initially characterized
by 𝑥𝑖 := 1, 𝑦 𝑗 := 1, 𝑧 𝑗 := 1, for all 𝑖 = 1, ..., 𝑁 and 𝑗 = 1, ..., 𝑄 . On
the next decomposition level, the LP (3) - (7) is applied again for
the new input. Recall, that for 𝐵 = 𝐾 and𝑤𝑏 = 1/𝐾 , i.e., without
using chunks, the LP guarantees an optimal allocation.

3.2 Heuristic Relaxation: Partial Clustering
The complexity of the LP (3) - (7) grows with the number of
queries 𝑄 , fragments 𝑁 , nodes 𝐾 , and considered scenarios 𝑆 .
As a result, runtimes can get too large when considering huge
workloads with thousands of queries and dozens of scenarios.
While the decomposition heuristic allows dealing with larger
numbers 𝐾 , this does not solve the issue. As 𝑆 can be chosen
in a targeted way, the main limitation of our LP-based concept
are large 𝑄 and 𝑁 as they appear in real-world workloads (cf.
𝑄 = 4 461, Section 2.3.2). Particularly 𝑄 is critical for the LP’s
complexity as the variables 𝑦 and 𝑧 as well as constraints (4), (5),
and (7) are involved; instead,𝑁 is only relevant for 𝑥 and does not
affect the number of constraints. To still allow for short runtimes,
we seek to address this problem by heuristically relaxing our LP.

The analysis of real-world workloads reveals, cf. Section 2.3,
that the workload distribution of queries and accessed fragments
is highly skewed (see Figure 1). Exploiting this property, we clus-
ter queries and, in turn, simplify the complexity of the allocation
problem as follows: (i) The majority of queries that represent
only a small share of the workload are clustered within a set
denoted by 𝑄𝐹 and assigned to the same node. (ii) The set of
remaining (costly) queries denoted by, cf. (i),

𝑄𝑅 := {1, ..., 𝑄} \𝑄𝐹 (8)
are used as (a smaller) input for the fragment allocation problem
with 𝐾 nodes, including the replica used for step (i). Following
this concept, we propose the following approach.

Partial Clustering Approach: Order the queries according to
their expected loads over all scenarios 𝑠 = 1, ..., 𝑆 , cf. 𝐸 (𝑓𝑗,𝑠 ) · 𝑐 𝑗 (if
no distribution for 𝑠 is given, we use uniform probabilities). Then,
assign the 𝐹 queries with the smallest (expected) workload share,
i.e., 𝑄𝐹 := {1, ..., 𝐹 }, to one (e.g., the first) of the 𝐾 nodes. Note,
the number 𝐹 has to be sufficiently small such that the workload
share of the queries assigned to𝑄𝐹 is (significantly) smaller than
1/𝐾 . The remaining workload 𝑄𝑅 := {𝐹 + 1, ..., 𝑄}, cf. (8), has to
be allocated to the other 𝐾 − 1 nodes and the residual resources of
the first cluster node (𝑘 = 1). The approach can be directly included
in our LP model (3) - (7) via the additional constraints

𝑧 𝑗,1 = 1 ∀𝑗 ∈ 𝑄𝐹 . (9)

Note, the constraints (9) imply 𝑦 𝑗,1 = 1 for all 𝑗 ∈ 𝑄𝐹 , cf. (5),
as well as the allocation of all required fragments to the cluster
node 1, cf. (4). If chunks are used, (9) is only active for the parent
chunk 𝑏 = 1 that is associated to the leaf node 𝑘 = 1. Leaving
some space on the cluster node allows the LP to assign other data-
intensive queries to that node. Naturally, the LP’s complexity
decreases in 𝐹 as we have fewer flexible queries (𝑄 − 𝐹 ).

4 NUMERICAL EVALUATION
4.1 Results for a Single Fixed Workload
In this section, we compare the memory consumption and run-
time of our partial clustering heuristic, cf. (3) - (9), against existing
allocation approaches (see Section 2.2) for a single fixed workload
scenario (𝑆 = 1) with 𝑓𝑗,1 := 1, 𝑗 = 1, ..., 𝑄 , for all queries.

4.1.1 TPC-DS Workload. For different numbers of nodes 𝐾 ,
Table 2a summarizes the replication factor 𝑊

𝑉
and runtime of our

partial clustering heuristic (3) - (9). We used the penalty factor
𝛼 := 1 000 and the Gurobi solver (version 9.0.0) (single-threaded).

The partial clustering approach allows reducing runtimes (by
𝐹 via |𝑄𝐹 | = 𝐹 and |𝑄𝑅 | = 𝑄 − 𝐹 ) and is compatible with the
decomposition approach. The results (Table 2a) show that our
approach exploits both heuristics in a mutually supportive way.
For instance, while for 𝐾=6 (TPC-DS), the optimal solution yields
𝑊 /𝑉 = 1.457 in 1074 s, cp. Table 1a, our heuristic solution obtains
𝑊 /𝑉 = 1.584 in 6 s. Compared to [12] (𝑊𝐺 ) and [5] (𝑊𝐷 ) we ob-
serve that via 𝐹 we obtain a convenient mix of memory-efficiency
and runtime, which has not been possible before.

4.1.2 Real-World Accounting Workload. We also applied our
partial clustering approach for the real-world workload, cf. Sec-
tion 2.3.2. For the example of 𝐹 = 4 361 fixed and 𝑄 − 𝐹 = 100
flexibly assignable queries (being responsible for about 95% of
the workload), Table 2b presents the results of our approach
compared to the heuristics [5] and [12]. Compared to Table 1b,
our partial clustering heuristic yields a competitive memory-
efficiency (cf.𝑊 /𝑊𝐷 < +7%) and runtimes below 10 s. Overall,
we find that our approach can address both the performance
limitations of [12] and the runtime limitations of [5].

Table 2: Best of both worlds: Memory-efficiency vs. run-
time results achieved by partial clustering (𝑺 = 1): Our so-
lution (𝑾 ) with 𝑭 fixed queries vs. [5] (𝑾𝑫 ) and [12] (𝑾𝑮 ).

(a) TPC-DS; 𝑲 = 4, ..., 12, 𝑵 = 425, 𝑸 = 94

𝑲 𝑭 chunks 𝑾
𝑽 solve time𝑾 𝑾

𝑾𝑫
𝑾
𝑾𝑮

4 36 4 1.314 1.3 s +1.2% -47.9%
5 47 5 1.501 2.0 s +7.8% -42.7%
6 4 3+3 1.584 5.5 s +4.3% -45.7%
8 15 4+4 1.957 2.6 s +4.4% -36.9%
10 47 5+5 2.330 5.0 s +12.2% -30.4%
12 15 4+4+4 2.416 7.0 s +9.8% -31.2%

(b) Real-world workload; 𝑲 = 4, ..., 12, 𝑵 = 344, 𝑸 = 4 461, cf. source [1]

𝑲 𝑭 chunks 𝑾
𝑽 solve time𝑾 𝑾

𝑾𝑫
𝑾
𝑾𝑮

4 4 361 4 2.124 3.8 s + 0.9% -41.9%
5 4 361 5 2.492 8.9 s + 0.8% -35.8%
6 4 361 3+3 2.942 0.9 s + 3.0% -35.1%
8 4 361 4+4 3.534 2.1 s + 1.0% -45.9%
10 4 361 5+5 4.638 4.0 s + 3.9% -40.2%
12 4 361 6+6 5.226 25.2 s + 1.2% -44.5%
12 4 361 4+4+4 5.489 3.3 s + 6.3% -41.7%
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With decreasing 𝐹 , the memory𝑊 decreases (improves), be-
cause the allocation gets more flexible. However, the runtime
increases due to the larger remaining problem size. We observe
that if the number of flexibly assigned queries |𝑄𝑅 | is large, the
performance increase due to additional flexible queries is dimin-
ishing and does not justify the higher runtimes anymore.

Remark 1 The partial clustering heuristic, cf. (3) - (9), is ef-
fective and flexible as it combines: (i) the reduction of problem
complexity with workload knowledge and (ii) the possibility to ex-
ploit decomposition techniques (cf. Section 2.2.3). Combining these
techniques allows balancing the solution quality and computation
time in a targeted way such that memory-efficient solutions can be
computed within short and plannable response times. Compared
to the greedy heuristic (𝑊𝐺 ), we find that the combined LP-based
approach (𝑊 ) requires (up to 48%) less data (within a similar com-
putation time). Compared to the decomposition approach (𝑊𝐺 ), we
obtain solutions orders of magnitude (up to ×10 000) faster (using
only slightly more memory).

4.2 Multiple Workloads and Robustness
In this section, we compare fragment allocations for multiple
scenarios, cf. 𝑆 > 1. For workload scenario 𝑠 = 1, we again let
𝑓𝑗,1 := 1 for all queries 𝑗 . For all other scenarios, we consider
randomly generated query frequencies 𝑓𝑗,𝑠 via 𝑓𝑗,𝑠 := if𝑈 (0, 1) <
𝑝 then 1/𝑝 · 𝑈 (0, 2) else 0, i.e., each query occurs only with
probability 𝑝 (cf. workloads with different queries, ad-hoc queries,
etc.) and, on average, we have 𝐸 (𝑓𝑗,𝑠 ) = 1, 𝑗 = 1, ..., 𝑄 , 𝑠 = 2, ..., 𝑆 .
In our examples, we use 𝑝 = 0.75. Out-of-sample workloads, cf.
𝑠 = 1, ..., 𝑆 , for verification purposes are generated in the same
way. Scenario-specific input details are available online [1].

4.2.1 TPC-DS Workload. Table 3a shows the results of our
combined approach (3) - (9), cf. 𝑊 (𝑆), for different numbers
𝐹 = 0, 15, 47, 62 of fixed queries and different numbers of seen
scenarios 𝑆 (up to 100). While our approach without fixed queries
(𝐹 = 0) is time-consuming, the partial clustering approach is
again effective and allows deriving allocations for dozens of sce-
narios 𝑆 quickly. We find that the required amount of data 𝑊

𝑉
is

overall (concave) increasing in 𝑆 . Our replication factor is still
significantly below 𝐾 (cf. full replication) and (for the same 𝑆) far
better than those of [12]’s merge approach, cf.𝑊𝐺 (𝑆), Section 2.5.

Moreover, we compared the robustness of our approach to the
merge approach of [12] by analyzing the allocations’ performance
for unseen workloads. To calculate the worst (highest) workload
share over all nodes (denoted by �̃�) for a given scenario 𝑠 , we
can directly use the LP (3) - (7) without chunking (𝐵 = 𝐾) to
evaluate a given fragment allocation ®𝑥 𝑓 𝑖𝑥 by fixing the variables
®𝑥 := ®𝑥 𝑓 𝑖𝑥 ; (this also determines 𝑦, cf. (4)). When solving the LP
for a new (randomly generated) workload scenario 𝑠 , 𝑠 = 1, ..., 𝑆 ,
the remaining variables 𝑧 and 𝐿 are then chosen such that 𝐿 is as
small as possible and coincides with �̃�. The average worst-case
workload share over all 𝑆 unseen scenarios is denoted by 𝐸 (�̃�).

Table 3a shows the results for 𝑆 = 100 unseen randomly gener-
ated workload scenarios. If more scenarios are taken into account,
cf. 𝑆 , the robustness improves, while the required amount of data
and runtime increase. We observe that the average difference
of 𝐸 (�̃�) and 1/𝐾 over all unseen (out-of-sample) scenarios is
(concave) decreasing in the number of seen scenarios 𝑆 . In our
example, considering 𝑆 = 10 (randomly chosen) scenarios were,
on average, enough to obtain a fragment allocation that is robust
against various unseen workloads by achieving an optimality gap
for a node’s highest workload share of 𝐸 (𝑆) (�̃�) − 1/𝐾 ≤ 0.0089,

Table 3: Adding Robustness: Performance comparison
with �̃� = 100 random unseen workloads for different num-
bers seen workloads 𝑺. Memory vs. average out-of-sample
workload limits �̃� of our partial clustering (𝑾 (𝑺)) com-
pared to the greedy merge approach [12] (𝑾𝑮 (𝑺)).

(a) TPC-DS; 𝑲 = 8 = 4 + 4, 𝑵 = 425, 𝑸 = 94, 𝑭 fixed queries, cf. (9)

Approach 𝑺 𝑭 𝑾
𝑽 solve time 𝑬 (�̃�) − 1

𝑲 𝑬
(

1/𝑲
�̃�

)

𝑊 (𝑆) 1 0 1.874 110.5 s 0.0641 0.693
𝑊 (𝑆) 3 0 2.208 175.7 s 0.0538 0.736
𝑊 (𝑆) 5 0 2.702 345.6 s 0.0305 0.834
𝑊 (𝑆) 7 0 2.756 286.0 s 0.0342 0.823
𝑊 (𝑆) 10 0 2.721 561.8 s 0.0073 0.953
𝑊 (𝑆) 1 47 2.079 1.8 s 0.0681 0.679
𝑊 (𝑆) 3 47 2.455 2.9 s 0.0537 0.732
𝑊 (𝑆) 5 47 3.016 2.9 s 0.0388 0.798
𝑊 (𝑆) 7 47 3.057 6.3 s 0.0325 0.828
𝑊 (𝑆) 10 15 2.958 42.0 s 0.0089 0.945
𝑊 (𝑆) 10 47 3.145 20.2 s 0.0037 0.974
𝑊 (𝑆) 20 47 3.212 11.9 s 0.0037 0.975
𝑊 (𝑆) 50 47 3.275 36.7 s 0.0015 0.990
𝑊 (𝑆) 100 47 3.600 331.5 s 0.0010 0.994
𝑊 (𝑆) 100 62 4.039 112.5 s 0.0005 0.997
𝑊𝐺 (𝑆) 1 / 3.101 <1 s 0.0654 0.689
𝑊𝐺 (𝑆) 2 / 3.589 <1 s 0.0414 0.782
𝑊𝐺 (𝑆) 3 / 3.747 <1 s 0.0155 0.904
𝑊𝐺 (𝑆) 5 / 4.162 <1 s 0.0041 0.973
𝑊𝐺 (𝑆) 10 / 4.372 <2 s 0.0017 0.989
𝑊𝐺 (𝑆) 20 / 4.596 <3 s 0.0005 0.996
𝑊𝐺 (𝑆) 50 / 5.528 <6 s 0.0000 1.000

(b) Real-world workload; 𝑲 = 8 = 4 + 4, 𝑵 = 344, 𝑸 = 4 461, cf. source [1]

Approach 𝑺 𝑭 𝑾
𝑽 solve time 𝑬 (�̃�) − 1

𝑲 𝑬
(

1/𝑲
�̃�

)

𝑊 (𝑆) 1 4 361 3.534 2.1 s 0.0435 0.769
𝑊 (𝑆) 3 4 361 3.906 2.8 s 0.0308 0.830
𝑊 (𝑆) 5 4 361 3.953 6.8 s 0.0264 0.851
𝑊 (𝑆) 10 4 361 5.008 7.7 s 0.0141 0.921
𝑊 (𝑆) 10 4 411 5.593 3.8 s 0.0048 0.971
𝑊 (𝑆) 20 4 361 5.505 8.7 s 0.0007 0.995
𝑊 (𝑆) 50 4 361 5.743 28.4 s 0.0001 0.999
𝑊 (𝑆) 100 4 361 5.847 93.7 s 0.0001 0.999
𝑊 (𝑆) 100 4 411 6.183 23.7 s 0.0000 1.000
𝑊𝐺 (𝑆) 1 / 6.536 <3 s 0.0040 0.971
𝑊𝐺 (𝑆) 3 / 6.792 <10 s 0.0013 0.991
𝑊𝐺 (𝑆) 5 / 6.913 <16 s 0.0013 0.991
𝑊𝐺 (𝑆) 10 / 7.040 <34 s 0.0000 1.000

which is by far better than the standard 𝑆 = 1 solution (cf.
𝐸 (𝑆) (�̃�) − 1/𝐾 = 0.0641 for 𝐹 = 0) that optimizes only against the
expected load. Naturally, the higher robustness with 𝑆 = 10 is
achieved by using more data, i.e., a higher replication factor of
2.721 (in 562 s, 𝐹 = 0) and 3.145 (in 20 s, 𝐹 = 47), instead of 1.874
(𝐹 = 0) and 2.079 (𝐹 = 47) when using only one scenario (𝑆 = 1).
Note, compared to achieving robustness via full replication (with
𝑊 /𝑉 = 𝐾 = 8), this is a remarkable result.

Further, we evaluated the robustness of the merge approach,
cf.𝑊𝐺 (𝑆), for the same (𝑆) unseen workloads. For 𝑆 = 5, we
obtained the average worst-case workload limit 𝐸 (𝐺) (�̃�) − 1/𝐾 =

0.0041 and replication factor𝑊𝐺 (𝑆)/𝑉 = 4.162. Compared to
that, our 𝑆 = 10 solution with 𝐹 = 47 fixed queries obtains a better
robustness (cf. 𝐸 (𝑆) (�̃�) − 1/𝐾 = 0.0037) and requires clearly less
memory𝑊𝐺 (𝑆)/𝑉 = 3.145. The better combinations of memory
(𝑊 /𝑉 ) and robustness can be observed over the full range of 𝑆 .
Figure 2a visualizes this result: For selected 𝑆 , the figure shows the
expected throughput (average over 𝑆 = 100 unseen workloads)

371



1 2 3 4 5 6 7 8
memory consumption W/V

0.0

0.2

0.4

0.6

0.8

1.0

av
er

ag
e 

re
la

tiv
e 

th
ro

ug
hp

ut

full replication
merge approach (S=1, 2, 3, 4, 5, 10)
partial clustering (S=1, 3, 5, 10, 100)

(a) Memory consumption vs. average rela-
tive throughput over 100 unseen scenarios.
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(b) Relative throughput for all 100 unseen scenarios.

Figure 2: Performance of allocation approaches for �̃� = 100 unseen workload scenarios based on TPC-DS; 𝑲 = 8.

permemory consumption for full replication, themerge approach,
and our partial clustering. For merged allocations with 𝑆 = 2
and our partial clustering with 𝑆 = 10 input scenarios, Figure 2b
shows the expected throughput (1/𝐾)/�̃� for all 𝑆 = 100 individual
unseen scenarios.

Naturally, the specific results depend on underlying random
numbers. However, using repeated simulations, we verified that
the overall properties remain.

4.2.2 Real-World Accounting Workload. The results for the
real-world workload (see Table 3b) show that our solution also
remains applicable for larger workloads. The number of fixed
queries 𝐹 can be chosen such that for up to 20 scenarios, the run-
time is below 10 s. A good trade-off (depending on the targets in
practice) between robustness, runtime, and memory is achieved
for 5 to 20 in-sample scenarios, cf. 𝑆 .

Compared to the merge approach, cf.𝑊𝐺 (𝑆), we again obtain
that our approach clearly outperforms their combinations of
memory and throughput robustness against uncertain workloads.
Moreover, our approach provides the flexibility to tune results by
adjusting 𝑆 and 𝐹 according to a decision-maker’s preferences.

Compared to TPC-DS, we find that, for all 𝑆 , the optimality
gap 𝐸 (𝑆) (�̃�) − 1/𝐾 is on average lower, while replication fac-
tors are higher. This difference indicates that, in such cases, a
smaller number of scenarios might be necessary to obtain a cer-
tain robustness. It can be explained by the fact that the workload
is distributed over a higher number of queries 𝑄 , making the
impact of single query frequencies, on average, less important.

Remark 2We find that optimizing the memory for an expected
workload only is not robust against unseen workloads. Less memory-
efficient approaches as [12] and particularly its merge extension
are (indirectly) more robust against out-of-sample workloads as
they systematically allocate more data. However, our approach to
directly minimize required memory for multiple seen workloads,
yields a better robustness using the same or even less data. The
memory-efficiency of our LP-based approach allows including more
scenarios within a certain memory budget than the merge approach
[12]. Being able to deal with more representative workload scenarios,
in turn, allows to better deal with altered unseen ones.

5 RELATEDWORK
Database replication is a means to improve availability and in-
crease processing capabilities, and is supported in many systems,
e.g., in HANA [10], Postgres-R [8], and as replication middle-
ware [3]. Thereby, most systems implement full replication.

To calculate partial allocations, Rabl and Jacobsen propose
a greedy algorithm (Section 2.2.2). For the same problem, we
propose an LP-based decomposition approach [5] (Section 2.2.3).
In both papers, the authors only consider a comparably small
benchmark workload (TPC-H) and do neither (i) derive results for

large-size workloads, (ii) study techniques to reduce the computa-
tion time for allocations, nor (iii) evaluate robustness against un-
certain workloads. In [6], we visualize calculated allocations and
investigate the intermediate steps taken by different algorithms.
In [7], we visualize the load balancing behavior of allocations.

Özsu and Valduriez present a general overview of allocation
problems in the field of distributed database systems [11]. They
point out that allocation problems differ in constraints and opti-
mization goals, such as performance, costs, and dependability.

Archer et al. [2] address an allocation problem, which is sim-
ilar to ours. They evenly load-balance queries for web search
containing multiple terms, which correspond to the fragments
in our model. They cluster queries with a distributed balanced
graph partitioning tool.

6 CONCLUSIONS
To overcome the limitations of existing allocation approaches
[5, 12], we proposed a novel heuristic that combines different con-
cepts. First, to achieve memory-efficiency, instead of rule-based
heuristics, we leverage the power of LP techniques. Second, for
short calculation times, we exploit that (real-world) workloads are
skewed and reduce the problem complexity by a partial cluster-
ing approach that assigns a majority of queries with comparably
small workload shares to a fixed node. Third, to add robustness,
we force the allocation to be prepared against multiple diver-
sified workloads. Moreover, we are able to balance the three
target dimensions of the problem flexibly. Using TPC-DS and a
large real-world workload, we verified the applicability and effec-
tiveness of our approach, which clearly outperformed existing
approaches regarding the mix of the three key dimensions.
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ABSTRACT

This paper introduces an effective algorithm, called TD-AC, for

the truth discovery problem in scenarios where data attributes

are correlated by distinct levels of reliability of the sources. TD-

AC is built on an abstract representation of the truth in the data

to automatically find an optimal partitioning of the input data us-

ing the k-means clustering technique and the silhouette measure.

Such a data partitioning strategy ensures to maximize the accu-

racy of any base truth discovery process when executed on each

partition. The intensive experiments conducted on synthetic and

real datasets show that TD-AC outperforms baseline approaches

with a more reasonable running time. It improves on synthetic

datasets the accuracy of standard truth discovery algorithms by

1% at least and by 14% at most and also significantly when the

data coverage rate is high for the other types of datasets.
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1 INTRODUCTION

Dealing with contradictory claims about the same facts is a real

concern in many real-world applications such as Web data in-

tegration systems [3], online crowdsourcing platforms, online

news Websites, social media, etc. Truth discovery resolves such

a issue by predicting which of the values provided by conflict-

ing sources is true with no prior knowledge about the level of

reliability of the sources. Many approaches [1, 2, 5, 7, 12] for

truth discovery have been proposed based on an estimation of

the reliability of sources by corroborating their claims under

various settings. As in [2], we investigate in this work the truth

discovery with attribute partitioning problem that may occur in

cases where the attributes over data are structurally correlated

so that sources exhibit different levels of reliability on distinct

groups of data attributes, as in the setting given in Table 1. Table

1 shows conflicting claims about facts (or data attributes) on two

distinct topics (Table 1b) from three sources as depicted in Table

1a. Given the correct answers inside red ellipses, we note that

the sources present different levels of reliability according to

distinct subsets of facts. For instance, Source 1 is good on Q1 and

Q3 while being bad on Q2. Meanwhile Source 2 is good on Q2

and bad on Q1 and Q3. We say that Q1 and Q3 are about data

attributes that are correlated according to the sources’ reliability

levels ; capturing these unknown groups of correlated attributes
may help to avoid having a biased truth discovery process.

The approach in [2] finds the set of correlated data attributes

for truth discovery as an optimal partitiioning of the set of input

data attributes using various weighting functions over sources’

reliability levels themselves estimated by the truth discovery
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Football (FB) Q1 - Which country won the 2019 Africa Cup of

Nations?

Q2 - In which year did Benin reach the quarter-

finals for the first time in the Africa Cup of Nations?

Q3 - How many players are there per team in a

football-game?

Computer science

(CS)

Q1- Who created the kernel of the linux system?

Q2- In which year did he create it?

Q3 -What does this python code display? print(3+4)

(a) Several facts about two different topics

Sources Topic Q1 Q2 Q3

Source 1 FB
Algeria

2000 12

Source 2 FB Senegal 2019 11

Source 3 FB
Algeria

1994 12

Source 1 CS Linux Torvalds 1830 7

Source 2 CS Bill Gate 1991 8

Source 3 CS Steve Jobs 1991 10

(b) Source claims about those facts

Table 1: Example with sources having different levels of

reliabilitywith respect to distinct groups of data attributes

algorithm. However, the different exploration strategies intro-

duced in [2] are time-consuming and error-prone. In addition, its

different weighting functions do not give any guarantees about

the correctness of the returned optimal partition.

This paper revisits [2] and proposes a new more effective

and efficient approach to the problem of truth discovery with

attribute partitioning. The presented approach, called TD-AC,

is based on an abstract representation of the truth in the data

using the new concept of attribute truth vector. Given the set of

attribute truth vectors, we rely on k-means clustering technique

from machine learning domain to find the optimal partitioning of

the data attributes. To determine the optimal number of clusters,

we assess the homogeneity of the individuals in a clustering

result with the help of the silhouette measure. This methodology

guarantees to find an optimal partition or a near-optimal one

maximizing the accuracy of any base truth discovery process,

without an exploration of all the possible partitions. The results

of our intensive experiments on synthetic, semi-synthetic and

real datasets show that TD-AC outperforms approaches in [2],

with a more reasonable time cost. On synthetic data, it improves

the accuracy of standard algorithms at least by 1% and at most
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by 14% and also significantly when the data coverage is high for

the other types of datasets.

The remainning of this paper is organized as follow. First, we

give some preliminaries and define the studied problem in Sec-

tion 2. Then, we detail our proposed approach by providing its

different building blocks in Section 3. In order to validate our

approach, we present in Section 4 the results of our intensive ex-

periments conducted on various types of datasets and a thorough

analysis of the obtained results. We briefly review the state-of-

the-art truth discovery algorithms in Section 5 before concluding

in Section 6 with some research perspectives.

2 CONCEPTS AND STUDIED PROBLEM

This section resumes the key concepts of the truth discovery

problem and informally introduces the studied problem.

2.1 DEFINITION OF CONCEPTS

A typical truth discovery process usually assumes a structured
world where input data consist of a set𝑂 of objects corresponding

to real world entities. Each object is characterized by a set 𝐴

of attributes (or properties) with values in 𝑉 coming from a

collection 𝑆 of data sources. In a one-truth setting, every attribute

for each object has one true value and several possible false

values. Thus, the notion of value confidence 𝐶𝑣 is used to assess

the level of veracity of every value 𝑣 . Meanwhile, the level of

reliability 𝑇𝑠 of a source 𝑠 (or source accuracy) models its ability

to provide true values for given real-world object attributes. In

real applications, the confidence scores over provided values

and the reliability levels of sources are both often unknown and

initialized to default values depending on the setting before being

updated during the execution of the truth discovery algorithm.

This work considers groups of attributes over data to be structurally
correlated if every source has the same reliability level on these
latter.

2.2 PROBLEM STATEMENT

Given the triplet (𝑆 , 𝐴,𝑂) in a one-truth setting in which a given

source may not cover all the objects or attributes, the truth dis-

covery problem is commonly defined as follows.

Problem 1. Find, for each object 𝑜 in 𝑂 , the true value of
every attribute 𝑎 in 𝐴𝑜 amongst its set 𝑉𝑜−𝑎 of possible values by
corroborating claims from sources in 𝑆𝑜 where 𝐴𝑜 and 𝑆𝑜 are the
set of attributes of 𝑜 and the set of sources providinng values for 𝑜 .

We informally introduce the truth discovery with attribute

partitioning problem as follows.

Problem 2. Find an optimal partitioning 𝑃 of 𝐴 that maxi-
mizes the accuracy of any solution for Problem 1 where each parti-
tion in 𝑃 contains correlated data attributes according to sources’
reliability levels.

In next, we propose an efficient clustering based approach to

solve Problem 2 when data attributes are structurally correlated.

3 TRUTH DISCOVERY WITH CLUSTERING

This section presents our proposed algorithm, called TD-AC,

that discovers the truth by data partitioning. TD-AC, that stands

for Truth Discovery with Attribute Clustering, applies k-means
to find optimal clusters of structurally correlated data attributes

based on sources’ reliability level by relying on attribute truth
vectors and the silhouette index, as we detail it below.

3.1 DATA ATTRIBUTE TRUTH VECTORS

We define and use the concept of data attribute truth vectors as
an abstract representation of the precision (or quality) of a given

truth discovery algorithm using attributes as dimensions. To build

such vectors, we firstly apply a base truth discovery algorithm
(e.g. majority voting) on input data to obtain a reference truth.
Then, for each attribute of an object and every source we verify

whether or not the value given by the source is true regarding the

reference truth; we set the value for each rank of any attribute

truth vector according to Equation 1.

∀𝑎 ∈ 𝐴,∀𝑜 ∈ 𝑂,∀𝑠 ∈ 𝑆 ;𝑥 (𝑎, 𝑜, 𝑠) =
{

1 𝑖 𝑓 𝜌 𝑖𝑠 𝑡𝑟𝑢𝑒

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(1)

where 𝜌 = (𝑣 (𝑎, 𝑜, 𝑠) exists ∧ 𝑣 (𝑎, 𝑜, 𝑠) = 𝑣𝐹 (𝑎, 𝑜)) with 𝑣 (𝑎, 𝑜, 𝑠)
representing the value given by 𝑠 about 𝑎 of 𝑜 , 𝑣𝐹 (𝑎, 𝑜) is the true
value of 𝑎 of 𝑜 predicted by the base algorithm and 𝑥 (𝑎, 𝑜, 𝑠) is a
binary value of our truth vector. Table 2 sketches the matrix of

attribute truth vectors obtained on our running example in Table

1 by applying the procedure described above and Equation 1.

- FB CS FB CS FB CS

Q1 1 0 0 0 1 1

Q2 0 0 1 1 0 1

Q3 1 0 0 0 1 1

Table 2:Matrix of attribute truth vectorswith data inTable

1 using TruthFinder as base algorithm

3.2 GROUPING CORRELATED ATTRIBUTES

We find and group correlated data attributes by assessing the sim-

ilarity distance of their corresponding truth vectors. Given two

distinct attributes 𝑎1, 𝑎2 and their truth vectors (𝑎1
1
, 𝑎2

1
, . . . , 𝑎𝑙

1
)

and (𝑎1
2
, 𝑎2

2
, . . . , 𝑎𝑙

2
), we define the similarity between 𝑎1 and 𝑎2

using the Hamming distance as : 𝑑 (𝑎1, 𝑎2) =
∑𝑙
𝑖=1 |𝑎𝑖1 − 𝑎

𝑖
2
| (2).

To automatically devise the threshold value for grouping the at-
tributes based on our similarity measure, we rely on k-means and
its optimization strategy in order to provide a domain-independent

clustering process in practical cases. The k-means clustering

approach [8] uses a similarity distance metric between data

points to group them in 𝑘 clusters. Given a set of observations

(𝑎1, 𝑎2, ..., 𝑎𝑛), where every observation is an attribute truth vec-

tor having 𝑙 dimensions, we define the partitioning of these at-

tributes using k-means algorithm as the clustering of the 𝑛 obser-

vations in 𝑘 (𝑘 ≤ 𝑛) disjoint sets (or clusters) 𝐶 = {𝑔1, 𝑔2, ..., 𝑔𝑘 }
in such a way that the sum of the squares (i.e. the Inertia) within

each cluster is minimized. Formally, the goal is to find:

𝑎𝑟𝑔𝑚𝑖𝑛𝐶
∑𝑘
𝑖

∑
𝑎∈𝑔𝑖 | |𝑎 − 𝜇𝑖 | |

2 = 𝑎𝑟𝑔𝑚𝑖𝑛𝐶
∑𝑘
𝑖 |𝑔𝑖 |𝐼𝑛𝑒𝑟𝑡𝑖𝑎(𝑔𝑖 ) (3)

where 𝜇𝑖 is the centroid of the points in 𝑔𝑖 . This corresponds to

minimize the squared deviations of the points in the same clus-

ter: 𝑎𝑟𝑔𝑚𝑖𝑛𝐶
∑𝑘
𝑖

∑
𝑎1∈𝑔𝑖

1

2 |𝑔𝑖 |
∑
𝑎1,𝑎2∈𝑔𝑖 | |𝑎1 − 𝑎2 | |

2
(4). K-means

requires to specify the value of 𝑘 in input. We find the optimal 𝑘

using the silhouette index as described next.

3.3 ESTIMATION OF k WITH SILHOUETTE

The silhouette index [11] evaluates the quality of a clustering

result with the help of the separation criteria 𝛽 and the cohe-

sion criteria 𝛼 . Consider two attributes 𝑎1 and 𝑎2 that belong

to clusters 𝑔(1) and 𝑔(2), respectively. Formally, the silhouette

coefficient 𝐶𝑆 (𝑎1) of the attribute 𝑎1 is defined as: 𝐶𝑆 (𝑎1) =
𝛽 (𝑎1)−𝛼 (𝑎1)

max(𝛼 (𝑎1),𝛽 (𝑎1)) with 𝛼 (𝑎1) = 1

|𝑔 (1) |−1
∑
𝑎 𝑗 ∈𝑔 (1) ;𝑎 𝑗≠𝑎1 𝑑 (𝑎1, 𝑎 𝑗 )

and 𝛽 (𝑎1) = min𝑎1≠𝑎2
1

|𝑔 (2) |
∑
𝑎𝑘 ∈𝑔 (2) 𝑑 (𝑎1, 𝑎𝑘 ) (5). If 𝐶𝑆 (𝑎1) <
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0, 𝑎1 is badly classified. Conversely, if 𝐶𝑆 (𝑎1) > 0 𝑎1 is well clas-
sified. Finally, if 𝐶𝑆 (𝑎1) = 0 then 𝑎1 is between two clusters.

The silhouette coefficient 𝐶𝑆 (𝑔) of a cluster 𝑔 is thus given by:

𝐶𝑆 (𝑔) = 1

|𝑔 |
∑
𝑎∈𝑔𝐶𝑆 (𝑎) (6).

The silhouette value of a partition 𝑃 is the average of the silhou-

ette coefficients of all its clusters: 𝐶𝑆 (𝑃) = 1

|𝑃 |
∑
𝑔∈𝑃 𝐶𝑆 (𝑔) (7).

The optimal 𝑘 is the one associated to the partition having the

highest silhouette coefficient amongst all the possible partitions.

3.4 TD-AC TRUTH DISCOVERY APPROACH

As depicted by Algorithm 1, our proposed algorithm TD-AC

runs as follows: (i) considers a base truth discovery algorithm and

input data (𝐴,𝑂, 𝑆); (ii) computes the matrix of attribute truth

vectors from input data using the base algorithm and Equation 1;

(iii) efficiently clusters the data attributes by applying k-means

combined with the silhouette index ; and (iv) executes the input

base truth discovery algorithm on each data partition, and then

aggregates the partial results to generate the entire result.

Algorithm 1 TD-AC(𝐹,𝐴,𝑂, 𝑆) – Truth discovery with Attribute clustering

using k-means and silhouette coefficient

Require: Set of observations (𝐴,𝑂, 𝑆) , Base algorithm 𝐹

Ensure: results // Truth predicted by TD-AC

1: results← []
2: truth_vector_matrix← buildTruthVectors(𝐹,𝐴,𝑂, 𝑆)

3: // Find the optimal partition with k-mean and silhouette

4: indice_silhouette← 0

5: opt_partition← []

6: for all 𝑘 ∈ [2, |𝐴 | − 1] do
7: partition=kmeansAttClustering(truth_vector_matrix,k)
8: silhouette_index_tmp← CS(partition)
9: if 𝑘 == 2 then

10: silhouette_index← silhouette_index_tmp
11: opt_partition← partition
12: else

13: if 𝑖𝑛𝑑𝑖𝑐𝑒_𝑠𝑖𝑙ℎ𝑜𝑢𝑒𝑡𝑡𝑒 < 𝑖𝑛𝑑𝑖𝑐𝑒_𝑠𝑖𝑙ℎ𝑜𝑢𝑒𝑡𝑡𝑒_𝑡𝑚𝑝 then

14: silhouette_index← silhouette_index_tmp
15: opt_partition← partition
16: end if

17: end if

18: end for

19: // Truth discover on the optimal partition found

20: for each g ∈ opt_partition do

21: 𝐴𝑝 ,𝑂𝑝 , 𝑆𝑝 ← getData(g)
22: partial_result← 𝐹 (𝐴g,𝑂g, 𝑆g)
23: Add partial_result in results
24: end for

4 EXPERIMENTS AND RESULTS

In this section, we demonstrate the efficiency of our approach

on various datasets, proving that it outperforms approaches pro-

posed in [2] and standard truth discovery algorithms in the lit-

erature in the presence of structurally correlated data attributes.

We also show that its execution time is similar to that of stan-

dard algorithms unlike partitioning strategies in [2]. We start by

presenting the experiment setting up and performed tests.

4.1 EXPERIMENTATION SETTING UP

For the comparison purposes, we have implemented the different

analyzed algorithms using Python programming language. The

following standard truth discovery algorithms have been imple-

mented: MajorityVote,TruthFinder [14], DEPEN, Accu and

AccuSim [4]. We have compared ourselves to these algorithms

because they are amongst the best in terms of efficiency and

effectiveness for solving the truth discovery problem in various

settings. In addition we have also implemented AccuGenPar-

tition in [2] along with the different weighting functions to

DS1 DS2 DS3

𝑚1 1.0 1.0 1.0

𝑚2 0.0 0.0 0.2

𝑚3 1.0 0.8 0.8

Table 3: Average accuracy values for the various configu-

rations of the synthetic datasets

compute the optimal partition. The source codes of the tested

algorithms are all available at https://github.com/osiastossou/

ProjetTD-AC.git.

We have conducted all our experiments on a Intel Core i5

2.6GHz laptop computer with 8GB of RAM, 250GB of hard disk

space, and 1.5GB of graphics memory. The implemented algo-

rithms here require all hyper-parameters in input whose values

have been fixed for the various tests according to [12]. At last, we

have relied on usual metrics such as precision, recall, F1-measure,
accuracy, and execution time to evaluate and compare the perfor-

mance of our tested algorithms.

4.2 EXPERIMENTS ON SYNTHETIC DATA

We detail here the results of our experiments on synthetic data

which simulate conditions where data attributes are structurally

correlated.

We have used and re-implemented in Python the synthetic

data generator in [2] to produce our synthetic data sets; we defer

to [2] for the details. For the evaluation process, we have then

generated three synthetic datasets (DS1, DS2 and DS3) of 6 at-

tributes, 1000 objects, 10 sources and 60, 000 observations with

three different configurations as depicted in Table 3; DS1 meets

the seeting of this work while DS3 relaxes the assumptions to

test the robustness of our approach. The partition selected for

each configuration is given in Table 5.

Tables 4a, 4b and 4c respectively present the performances

of each algorithm on DS1, DS2 and DS3. For the tests, we used

Accu as our base algorithm similarly to the approaches in [2].

We observe that the attribute partitioning truth discovery al-

gorithms perform better than the standard ones on all three

synthetic datasets, proving the importance of partitioning when

data attributes are structurally correlated. Specifically, TD-AC

is the only partitionning strategy with a precision comparable

to the real world (i.e. an Oracle) without a blowup of the run-

ning time. Table 5 reports the partitions returned by the different

partitioning approaches.

4.3 TESTS ON SEMI-SYNTHETIC DATA

The semi-synthetic datasets have been generated from a real

dataset called Exam. This real dataset comes from [2] and has

been used in that paper to validate the proposed approaches.

The Exam dataset has been obtained by aggregating the anony-

mous results of admission examinations. Unfortunately, it cannot

be redistributed for privacy reasons. We had access to answers

from 248 students (sources) to 124 questions (attributes) in total,

from 9 different domains: Math 1A, Chemistry 1, Math 1B,

Physics, Electrical Engineering, Computer Science, Chem-

istry 2, Science of life, and Math 2. We also know the correct

answer to each question. Math 1A and Physics were only manda-

tory with the choice of an additional domain between Chemistry

1 and Math 1B. The five remaining domains were completely

optional and wrong answers were penalized. As a result, all the

attributes were not covered (missing data). For each unanswered
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Dataset Algorithm Precision Recall Accuracy F1-measure Time(s) #Iteration

DS1

MajorityVote 0.602 0.667 0.806 0.633 75 1

TruthFinder 0.568 0.624 0.787 0.595 1261 3

DEPEN 0.551 0.611 0.778 0.580 1492 3

Accu 0.667 0.712 0.838 0.689 6495 9

AccuSim 0.662 0.705 0.836 0.683 5580 11

AccuGenPartition

Max 0.691 0.724 0.849 0.707 757230 -

Avg 0.682 0.725 0.846 0.703 757230 -

Oracle 0.997 0.998 0.999 0.998 757230 -

TD-AC (F=Accu) 0.853 0.870 0.930 0.861 3410 1

(a) Performance measures on DS1

Dataset Algorithm Precision Recall Accuracy F1-measure Time(s) #Iteration

DS2

MajorityVote 0.741 0.834 0.884 0.785 99 1

TruthFinder 0.736 0.819 0.880 0.775 2276 3

DEPEN 0.735 0.828 0.881 0.779 1459 3

Accu 0.659 0.663 0.828 0.661 11263 18

AccuSim 0.467 0.388 0.734 0.424 9996 20

AccuGenPartition

Max 0.738 0.810 0.879 0.773 861697 -

Avg 0.867 0.904 0.940 0.885 861697 -

Oracle 0.985 0.992 0.994 0.989 861697 -

TD-AC (F=Accu) 0.985 0.992 0.994 0.989 3783 1

(b) Performance measures on DS2

Dataset Algorithm Precision Recall Accuracy F1-measure Time(s) #Iteration

DS3

MajorityVote 0.847 0.891 0.918 0.869 112 1

TruthFinder 0.838 0.875 0.910 0.856 2762 3

DEPEN 0.833 0.876 0.909 0.854 1732 3

Accu 0.873 0.918 0.934 0.895 3478 7

AccuSim 0.808 0.822 0.886 0.815 7171 15

AccuGenPartition

Max 0.872 0.884 0.925 0.878 675078 -

Avg 0.938 0.958 0.968 0.948 675078 -

Oracle 0.965 0.976 0.982 0.970 675078 -

TD-AC (F=Accu) 0.965 0.976 0.982 0.970 2491 1

(c) Performance measures on DS3

Table 4: Performance of all tested algorithms on the syn-

thetic datatsets DS1, DS2 and DS3

DS1 DS2 DS3
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Figure 1: Comparison of the accuracy of all tested algo-

rithms on DS1, DS2 and DS3

DS1 DS2 DS3

Synthetic data generator [(1, 2), (4, 6), (3), (5)] [(2, 5), (1, 4), (3, 6)] [(1, 6, 3), (2, 4, 5)]
AccuGenPartition (Max) [(3, 4), (5), (1, 2, 6)] [(2), (1, 4, 3, 5, 6)] [(1), (5, 2, 4, 3, 6)]
AccuGenPartition (Avg) [(3, 6), (1, 2, 5, 6)] [(2), (5), (1, 4, 3, 6)] [(1, 5), (2, 4, 3, 6)]
AccuGenPartition (Oracle) [(1), (2), (3), (4, 6), (5)] [(2, 5), (1), (4), (3, 6)] [(1, 5), (2, 4), (3, 6)]
TD-AC (F=Accu) [(1, 2), (4, 6), (3, 5)] [(2, 5), (1, 4), (3, 6)] [(1, 5), (2, 4), (3, 6)]

Table 5: Partitions chosen by the generator and returned

by the different partitioning algorithms

question we have synthetically chosen a false answer, randomly

in a range of false values of size equal to 25, 50, 100 or 1000.

Tables 6 and 7 respectively present the different results of these

tests on the semi-synthetic data of 62 and 124 attributes, each

with configurations on ranges of false values of size 25, 50, 100,

and 1000. The tests compare the performances of Accu and TD-

AC+Accu on the one hand and on the other hand TruthFinder

and TD-AC+TruthFinder. In general, we note that combining

a base algorithm with TD-AC does not highly deteriorate the

performance of the standard algorithm whatever the configura-

tion considered, and even improves it in some cases, for example

for the dataset with 124 attributes (see Figures 2 and 3).

Dataset Algorithm Precision Recall Accuracy F1-measure Time(s) #Iteration

Range 25

Accu 0.929 0.896 0.938 0.912 4386 8

TD-AC (F=Accu) 0.920 0.883 0.931 0.901 10256 1

TruthFinder 0.894 0.917 0.931 0.905 85 6

TD-AC (F=TruthFinder) 0.897 0.920 0.933 0.908 62 1

(a) Range 25

Dataset Algorithm Precision Recall Accuracy F1-measure Time(s) #Iteration

Range 50

Accu 0.946 0.912 0.951 0.928 4615 8

TD-AC (F=Accu) 0.963 0.970 0.976 0.966 18233 1

TruthFinder 0.915 0.934 0.946 0.924 80 4

TD-AC (F=TruthFinder) 0.915 0.934 0.946 0.924 81 1

(b) Range 50

Dataset Algorithm Precision Recall Accuracy F1-measure Time(s) #Iteration

Range 100

Accu 0.988 0.983 0.990 0.985 4017 7

TD-AC (F=Accu) 0.972 0.982 0.984 0.977 7684 1

TruthFinder 0.924 0.943 0.954 0.933 134 3

TD-AC (F=TruthFinder) 0.925 0.944 0.955 0.935 121 1

(c) Range 100

Dataset Algorithm Precision Recall Accuracy F1-measure Time(s) #Iteration

Range 1000

Accu 0.989 0.984 0.991 0.986 4186 7

TD-AC (F=Accu) 0.972 0.982 0.984 0.977 8467 1

TruthFinder 0.927 0.946 0.956 0.936 258 4

TD-AC (F=TruthFinder) 0.927 0.946 0.956 0.936 241 1

(d) Range 1000

Table 6: Performance of Accu, TruthFinder, TD-

AC(F=Accu), and TD-AC(F=TruthFinder) on semi-

synthetic datasets with 62 attributes

Dataset Algorithm Precision Recall Accuracy F1-measure Time(s) #Iteration

Range 25

Accu 0.847 0.739 0.904 0.789 7805 9

TD-AC (F=Accu) 0.852 0.744 0.906 0.794 12432 1

TruthFinder 0.894 0.919 0.954 0.906 104 3

TD-AC (F=TruthFinder) 0.894 0.919 0.954 0.906 157 1

(a) Range 25

Dataset Algorithm Precision Recall Accuracy F1-measure Time(s) #Iteration

Range 50

Accu 0.885 0.806 0.931 0.844 10680 11

TD-AC (F=Accu) 0.928 0.916 0.964 0.922 10456 1

TruthFinder 0.906 0.931 0.962 0.918 278 4

TD-AC (F=TruthFinder) 0.904 0.929 0.961 0.916 276 1

(b) Range 50

Dataset Algorithm Precision Recall Accuracy F1-measure Time(s) #Iteration

Range 100

Accu 0.905 0.822 0.943 0.862 8516 10

TD-AC (F=Accu) 0.953 0.955 0.980 0.954 10196 1

TruthFinder 0.905 0.918 0.961 0.911 597 5

TD-AC (F=TruthFinder) 0.909 0.934 0.965 0.921 460 1

(c) Range 100

Dataset Algorithm Precision Recall Accuracy F1-measure Time(s) #Iteration

Range 1000

Accu 0.930 0.913 0.966 0.921 11951 12

TD-AC (F=Accu) 0.934 0.927 0.970 0.931 9222 1

TruthFinder 0.921 0.941 0.970 0.931 1626 4

TD-AC (F=TruthFinder) 0.909 0.933 0.965 0.921 1401 1

(d) Range 1000

Table 7: Performance of Accu, TruthFinder, TD-

AC(F=Accu), and TD-AC(F=TruthFinder) on semi-

synthetic datasets with 124 attributes

4.4 EXPERIMENTS ON REAL DATA

To end our performance evaluation, we present in this section the

results of the experimentation of our approach and the existing

algorithms on real data. The evaluation on real data sets enables

to validates our approach against practical applications. For this

purpose, we have considered and used the real datasets Exam

[2], Stocks and Flights [9]. Real data contain missing values that
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Figure 2: Study of the impact of TD-AC on Accu and

TruthFinder by pairwise comparison of the accuracy val-

ues on semi-synthetic datasets with 62 attributes
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Figure 3: Study of the impact of TD-AC on Accu and

TruthFinder by pairwise comparison of the accuracy val-

ues on semi-synthetic datasets with 124 attributes

may impact the performance of truth discovery algorithms. We

assess the Data Coverage Rate (DCR) of each dataset with: 𝐷𝐶𝑅 =(
1 −

∑
𝑜∈𝑂 ( |𝑆𝑜 |× |𝐴𝑜 |−

∑
𝑠∈𝑆𝑜 |𝐴𝑜−𝑠 |)∑

𝑜∈𝑂 ( |𝑆𝑜 |× |𝐴𝑜 |)

)
× 100 (7). Table 8 presents the

details of the three real data sets after pre-processing; for Exam

we have considered three configurations.

Stocks Exam 32 Exam 62 Exam 124 Flights

Number of sources 55 248 248 248 38

Number of objects 100 1 1 1 100

Number of attributes 15 32 62 124 6

Number of observations 56992 6451 8585 11305 8644

Data Coverage Rate (%) 75 81 55 36 66

Table 8: Statistics about the different real datasets

Table 9 presents the performance measures of Accu, TD-

AC+Accu, TruthFinder, and TD-AC+TruthFinder. We have

also reported in Figures 4 and 5 the comparative study of the

accuracy values of Accu and TD-AC+Accu on the one hand and

TruthFinder and TD-AC+TruthFinder on the other hand on

real datasets with data coverage greater than 66% and less than

55% respectively. We observe that Accu and TruthFinder out-

perform when used with our TD-AC approach, especially when

the data coverage rate is greater than 66%. We also remark that

the execution time of TD-AC is very close to that of standard

algorithms on real data, unlike AccuGenPartition.

4.5 Analysis of the results and discussion

The analysis of the presented intensive performance evaluation

carried out on several datasets yields to three main observations.

Dataset Algorithm Precision Recall Accuracy F1-measure Time(s) #Iteration

Exam 32

Accu 0.607 0.837 0.658 0.704 4059 11

TD-AC (F=Accu) 0.614 0.912 0.679 0.734 4075 1

TruthFinder 0.540 0.772 0.570 0.636 6.66 5

TD-AC (F=TruthFinder) 0.533 0.733 0.558 0.617 13.7 1

(a) Exam with 32 attributes

Dataset Algorithm Precision Recall Accuracy F1-measure Time(s) #Iteration

Exam 62

Accu 0.955 0.962 0.944 0.959 4877 10

TD-AC (F=Accu) 0.926 0.944 0.911 0.935 2789 1

TruthFinder 0.937 0.955 0.926 0.945 16.2 5

TD-AC (F=TruthFinder) 0.898 0.885 0.854 0.891 24.3 1

(b) Exam with 62 attributes

Dataset Algorithm Precision Recall Accuracy F1-measure Time(s) #Iteration

Exam 124

Accu 0.951 0.969 0.947 0.960 3662 9

TD-AC (F=Accu) 0.917 0.938 0.904 0.927 3733 1

TruthFinder 0.924 0.949 0.916 0.936 23.5 5

TD-AC (F=TruthFinder) 0.907 0.906 0.878 0.907 79 1

(c) Exam with 124 attributes

Dataset Algorithm Precision Recall Accuracy F1-measure Time(s) #Iteration

Stocks

Accu 0.847 0.877 0.809 0.862 2753 4

TD-AC (F=Accu) 0.886 0.956 0.887 0.920 4169 1

TruthFinder 0.860 0.700 0.718 0.772 629 5

TD-AC (F=TruthFinder) 0.887 0.862 0.832 0.875 446 1

(d) Stocks

Dataset Algorithm Precision Recall Accuracy F1-measure Time(s) #Iteration

Flights

Accu 0.958 0.968 0.957 0.963 390 7

TD-AC (F=Accu) 0.969 0.987 0.974 0.978 452 1

TruthFinder 0.859 0.900 0.857 0.879 22.3 3

TD-AC (F=TruthFinder) 0.848 0.885 0.842 0.866 33 1

(e) Flights

Table 9: Performance of Accu, TruthFinder, TD-AC+Accu,

and TD-AC+TruthFinder on real datasets
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Figure 4: Study of the impact of TD-AC on Accu and

TruthFinder by pairwise comparison of the accuracy val-

ues on real datasets Exam with 32 attributes, Stocks and

Flights (DCR ≥ 66)
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Figure 5: Study of the impact of TD-AC on Accu and

TruthFinder by pairwise comparison of the accuracy val-

ues on the real datasets Exam with 62 and 124 attributes

(DCR ≤ 55)

TD-ACoutperforms baseline partitioning approaches. TD-

AC highly improves the accuracy of AccuGenPartition by 1%

at least and by 14% at most (see Figure 1) with a time complexity
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around 200 less significant (see Tables 4a, 4b and 4c). AccuGen-

Partition is our baseline brute force approach proposed in [2] for

the truth discovery with attribute partitioning problem with two

weighting functions:Max andAvg. To discover the optimal parti-

tion, k-means combined with thesilhouette index has been shown

in Table 5 to be better thanMax and Avg because: (i) k-means

is a robust partitioning technique with a well-defined optimiza-

tion strategy; and (ii) silhouette returns the most structurally

homogeneous existing clusters. This explains the effectiveness of

TD-AC. The drastic reduction of the running time with TD-AC

is because it only requires one iteration to last without exploring

all the possible partitions.

TD-AC improves the accuracy of base algorithms. When

data attributes are structurally correlated, TD-AC significantly

enhances the accuracy (from 5 to 35%) of standard algorithms (see

Tables 4a, 4b, 4c, 9 and Figure 3). Standard algorithms alone do

not capture the structural correlations between attributes leading

to biased results. In the cases where the conditions do not match

our working setting, TD-AC does not degrade the performances

of the standard algorithms (see Tables 6 and 7). The impact of

TD-AC is more important for Accu than TruthFinder because

the former captures better the different levels of reliability of the

sources. Such a impact introduces, however, a surplus in terms

of execution time which is fortunately reasonable.

Correlation between coverage and TD-AC accuracy. The

main observation is that TD-AC is more efficient when the data

coverage is very high, i.e. DCR ≥ 66% (see Figure 4) because

more one has in terms of information the better is the clustering

with k-means. Lot of missing values, i.e. very sparse truth vectors

affect both the quality of the clustering and the truth discovery

process (see Figure 5).

5 RELATEDWORK

A significant effort has beenmade in truth discovery area over the

past years which has led to several approaches [12, 15]. The sim-

plest approach is the majority vote which considers the truth said

by the majority of sources. More elaborated approaches try to

model the different levels of reliability of the sources and domain-

specific aspects of the truth. For instance, TruthFinder[14], one

of the first proposed standard algorithms, is a probabilistic model

based on Bayesian analysis with similar values supporting each

others in vote counts. Methods such as DEPEN, Accu and Ac-

cuSim[4] take into consideration copy relationships that may

exist between sources by penalizing the vote of a source if it is

detected as a copy of another source. DART (Domain-AwaRe

Truth Discovery) [10] is both a probabilistic and a bayesian model

which integrates the domain expertise level. Very recent methods

such as [6, 15] capture the correlations between objects in the

domain of Mobile Crowd Sensing.

The research works that are connexe to our studied problem

are [2] and [13]. The proposal in [2] is a brute force approach that

explores all the possible partitions of a given set of attributes in

order to discover the one maximizing the precision of a standard

truth discovery algorithm. The goodness of a partition in this

case is based on a weighting function over sources’ reliability

levels. The work in [13] focuses on object partitioning based on

domain knowledge and some additional constraints.

6 CONCLUSION AND PERSPECTIVES

In this work, we have studied the truth discovery problem in a

setting where the attributes of the data are structurally correlated.

As a solution, we have proposed a new approach, called TD-AC,

built on an abstract representation of the truth in the data, the

k-means clustering technique and the silhouette measure to au-

tomatically find an optimal partitioning of the input data (or a

near-optimal) maximizing the accuracy of any base truth dis-

covery process. Through an intensive experimental evaluation

over various types of datasets, we have then shown the effective-

ness and efficiency of TD-AC compared to existing partitioning

strategies and its positive impact to the accuracy of any standard

truth discovery process.

Despites of that, we have noticed that when the dataset con-

tains lot of missing values, the impact of our approach is less

significant. This can be explained by the use of sparse truth vec-

tors in the clustering step, making the finding of the optimal

partition hard. Moreover, even if the running time of our ap-

proach and standard algorithms is reasonable in the presence

of small size datasets, it become important when the number of

attributes, objects and sources is very large. As research perspec-

tives, we plan to (i) improve our approach to better account for

data with lot of missing values on the one hand; and (ii) on the

other hand, to propose an optimization of the running time of

our approach, in particular the optimal partition computation, by

using parallel computation. We also plan to compare ourselves

to a larger set of standard truth discovery algorithms and the

partitioning approach in [13].
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ABSTRACT
Currently, deep learning models have been widely used in dif-
ferent application domains due to their notable performance. Ex-
plaining the decisions made by deep learning models is important
for end-users to enable them to comprehend and diagnose the
trustworthiness of the model. Most of the current interpretability
techniques provide explanations in the form of importance score
for the input pixels or features. However, summarizing such im-
portance scores for input features to provide human-interpretable
explanations is challenging. To this end, we propose Automated
Concept-based Decision Tree Explanations (ACDTE), a novel lo-
cal explanation framework that provides human-understandable
and concept-based explanations for classification networks. Our
framework provides end users with the flexibility of customiz-
ing the explanations by allowing users to provide the dataset in
which visual human-understandable concepts are automatically
extracted. Then, such concepts are interpreted through a shallow
decision tree that includes concepts that are deemed important
to the model in predicting the decision of specific instance. In
addition, ACDTE generates counterfactual explanations, suggest-
ing the the minimum changes in the instance’s concept-based
explanation that lead to a different prediction. Our experiments
demonstrate that such a shallow decision tree is faithful to the
original neural network at low tree depth. The human inter-
pretability of the explanations provided from our framework is
evaluated through humans experiments, showing that our frame-
work generates faithful and interpretable explanations.

1 INTRODUCTION
Since deep learning (DL) models have been achieving remarkable
success over the last years in different application domains [1, 3],
gaining insights into such models’ predictions has received great
attention over the last few years and in some cases, there is also
a legal requirement to do so [7]. Among the various DL models,
convolution neural networks (CNN) achieve remarkable perfor-
mance in different computer vision tasks including self-driving
cars and medical diagnoses. A main drawback for DL models,
that prevents their wide adoption in critical domains, is their
inscrutable nature of their prediction process that makes them
black-boxes. Explaining the behaviour of DL models enables hu-
mans to understand the model behaviour, and hence, can increase
their trust in the model if the decisions made by the model appear
reasonable to humans.

There is no agreement among researchers about what would
constitute a satisfactory explanation [13]. However, recent stud-
ies over 250 papers have concluded that explanations are coun-
terfactual [12, 13]. Techniques for explaining DL models can be

© 2021 Copyright held by the owner/author(s). Published in Proceedings of the
24th International Conference on Extending Database Technology (EDBT), March
23-26, 2021, ISBN 978-3-89318-084-4 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

broadly partitioned into two main approaches. The first approach
is to identify the evidence that the network uses tomake a specific
prediction by creating a heatmap that identifies the main parts
of the image, which are salient to the prediction [16, 19, 21]. The
second approach focuses on providing explanations in the form
of human-understandable concepts [5, 6, 20]. Instead of assigning
an importance score for each pixel or input feature, the expla-
nation comes in the form of important human-understandable
concepts that contribute toward the prediction. Understanding
how concepts affect a particular model prediction may reveal
potential unwanted bias learned by the model.

In this paper, we describe a framework called Automated
Concept-based Decision Tree Explanations (ACDTE) to auto-
matically identify high-level human-understandable concepts
which are important for the machine learning model for pre-
dicting the decision of a specific instance by aggregating related
local image segments (concepts) across diverse data and then
decompose the evidence for a prediction for image classification
into such concepts through an interpretable shallow decision tree.
The explanation provided by the ACDTE framework is expres-
sive and provides not only succinct evidence why a particular
image has been assigned to a particular class, but also counter-
factuals suggesting what is the least number of concepts needed
to be changed are, in an instance’s explanation, to change the
predicted outcome. We summarize our contributions as follows:
1) A novel local explanation framework to provide automatically
extracted concept-based explanations for CNNs in the form of
important concepts for the prediction of specific instance pre-
sented as a shallow interpretable decision tree that is faithful to
the black-box model, 2) A counterfactual explanation, suggesting
the changes in the important concepts for the prediction of a
specific image that lead to a different outcome, 3) Evaluation of
the faithfulness of the explanations provided by ACDTE to the
black-box model and the quality of the provided explanations.
For ensuring repeatability as one of the main targets of this work,
we provide access to the source codes and the detailed results for
the experiments of our study1.

The remainder of this paper is organized as follows. In Sec-
tion 2, we present our proposed technique, ACDTE. We present
a detailed experimental evaluation for our proposed techniques
in Section 3 before we finally conclude the paper in Section 4

2 METHODS
In the following, we present ACDTE which is a local explana-
tion technique that explains the prediction of a particular image.
ACDTE takes a trained classifier, an image to be explained, and a
set of images from user-specified dataset as input. It then extracts
concepts presented in these images and interpret these concepts
through a shallow decision tree that identifies the main concepts

1https://github.com/DataSystemsGroupUT/ACDTE
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(a) Segmentation of
images similar to the

image to being explained 

(b) Clustering similar segments and 
removing outliers

(d) Extracting concept data from images 
similar to the image being explained

(e) Build decision tree using extracted
concept data along their predication from the

black-box modelConcept
Models

(c)  Learning interpretable concept models
on clusters segments

Stage 1: Concept extraction

Stage 3: Building explanation decision tree

Image to be
explained

Images similar to
the image to be

explained

Wall

Bed Building

Bedroom Living
room

No Yes

No Yes

0101.......

0111.......

1101.......

Stage 2: Learning interpretable concept
and extracting concept data

Figure 1: ACDTE pipeline (a) Extract a set of similar images to the image to be explained either from themain task dataset
or related dataset. Each image in the selected images is segmented. (b) Segments are clustered in the activation space and
outliers are removed to form coherent clusters that represent concepts. (c) Training a linear model for each concept to act
as a concept detector. (d) For each image in the activation space, use concepts detectors to form a binary feature vector. (e)
Feature vectors along with the prediction of the target network are used to train a shallow decision tree. The decision tree
provides a natural explanation for the contributing concepts for the prediction, in addition to counterfactual explanation.
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that have deemed important for the prediction of the image be-
ing explained, in addition to the minimum number of concepts
that need to be changed to alter the prediction of the image to
be explained. Figure 1 summarizes the general pipeline for the
proposed framework consists of three main phases concept ex-
traction, learning interpretable concept models and extracting
concept data, and building explanation decision tree in which
explanation based on both decision and counterfactuals, is ex-
tracted.

2.1 Phase 1: Concept Extraction
Given a pretrained image classification model𝑚, and the image
to be explained 𝐼 , our framework provides end users with the
flexibility of extracting concepts either from the dataset used in
the classification task or from a related dataset to the main task
dataset. To extract concepts, we choose the top𝑘 images similar to
𝐼 , denoted 𝑆 . Similarity between 𝐼 and the set of provided images
is defined to be the Euclidian distance between their correspond-
ing activation maps obtained from an intermediate layer from𝑚.
In this paper, we use a constant value for 𝐾 = 100, leaving the
exploration of different values to future work. To extract concept
data, each of the images in 𝑆 is segmented using semantic image
segmentation technique, see Figure 1(a). In order to automate the
process of concept extraction, a significant number of studies in
literature focused on semantic segmentation algorithms that aim
to assign a meaningful class to each pixel [9, 11, 14, 18]. ACDTE
uses DeepLabv3+ [2] segmentation technique which has been
widely used due to its superior performance on dense datasets
(after examining several segmentation techniques). To ensure
meaningfulness of the extracted concepts, we cluster segments
into a number of clusters such that segments of the same cluster
represent a particular concept. In order to automate the process
of clustering segments, we define the similarity between seg-
ments to be the euclidian distance between their corresponding
activation maps obtained from the intermediate layer of model𝑚.
Each segment was resized to the original size of𝑚. All segments
were then passed through𝑚 to obtain their layer presentations.
All segments are then clustered using K-means clustering al-
gorithm [10], see Figure 1(b). To ensure meaningfulness of the
extracted concepts, we exclude the following two types of clus-
ters: 1) Clusters that have segments that only coming from a
single image or a very few number of images. 2) Clusters with
segments less than 𝑁 segments. In this work, we use a constant
value for 𝑁 equals 0.4√𝑛𝑐 , where 𝑛𝑐 is the number of segments
in cluster 𝑐 , leaving the exploration of different values for 𝑁 to
future work. The main problem with clusters of few segments is
that the concepts they present are uncommon in the neighbor-
hood of the image being explained. For example, bed segments
are present in almost every bedroom image and therefore, are
expected to form a coherent cluster while lamp segments are
presented in very few bedroom images and hence lamp cluster
should be removed. The output of this phase is the final set of
clusters representing the learnt concepts denoted 𝐶 = {𝑐1, ...𝑐𝑛},
where 𝑛 is the number of clusters after the exclusion criteria.

2.2 Phase 2: Learning Interpretable Concept
Models and Extracting Concept Data

For each segment 𝑥 ∈ 𝑐 , the hidden layer activations 𝑎 =𝑚𝑙 (𝑥) at
layer 𝑙 are extracted and stored along its corresponding concept
label. For each candidate concept 𝑐 ∈ 𝐶 , we train a logistic binary
classifier ℎ𝑐 to detect the presence of concept 𝑐 , see Figure 1(c).

Training each concept 𝑐 is done on dataset𝐷𝑐 , which is mix of seg-
ments balancing the presence and absence of concept 𝑐 . We define
𝐷𝑐 = 𝐷+

𝑐 ∪𝐷−
𝑐 , where𝐷+

𝑐 = {(𝑚𝑙 (𝑥1), 𝑦1𝑐 ), ...., (𝑚𝑙 (𝑥 |𝑐 |), 𝑦
|𝑐 |
𝑐 ) |𝑦𝑐=1}

and 𝐷−
𝑐 = {(𝑚𝑙 (𝑥1), 𝑦1𝑐 ), ...., (𝑚𝑙 (𝑥 |𝑐 |), 𝑦

|𝑐 |
𝑐 ) |𝑦𝑐=0}, where 𝑦 ∈

{0, 1} indicates the absence or the presence of concept 𝑐 in a
segment. Negative examples 𝐷−

𝑐 for each concept 𝑐 are selected
randomly from other cluster concepts such that the number of ex-
amples in 𝐷+

𝑐 and 𝐷−
𝑐 are equal. We use these concept classifiers

for each image 𝑠 ∈ 𝑆 to create a binary vector 𝑣 = (𝑟1, 𝑟2, ..., 𝑟𝑛)
representing the presence or absence of each concept 𝑐 ∈ 𝐶 in
𝑠 , where 𝑟𝑖 = ℎ𝑐𝑖 (𝑠), 𝑟𝑖 ∈ {0, 1}. For each image 𝑠 ∈ 𝑆 , we store
its class prediction from model𝑚 along with its binary concept
vector 𝑣 for training a decision tree, see Figure 1(d).

2.3 Phase 3: Building Concept Decision Tree
Concept vector 𝑣 predicted for each image 𝑠 ∈ 𝑆 along with the
corresponding prediction𝑚(𝑠) are used to train a decision tree
𝑇 which is intended to mimic the behavior of𝑚 locally in the 𝑆
neighborhood, see Figure 1(e). We use the default implementation
of decision tree from scikit-learn [15]. The ACDTE approach
considers decision tree classifier due to its interpretable nature
that allows concept rules to be derived from a root-leaf path
in the decision tree, in addition to counterfactuals that can be
extracted by symbolic reasoning over a decision tree. Increasing
the depth of a decision tree increases the prediction accuracy
which leads to less interpretable results as the number of nodes
increases exponentially with depth. Thus, a shallow decision is
favourable as it is more comprehensible by humans. In this work,
we use a fixed depth leaving the exploration of dynamic depth
to future work. In order to guarantee fast and easy search for
counterfactuals, we consider all possible paths in the decision tree
leading to a decision that is not equal to the decision of 𝐼 . Among
all these paths, we only consider the one with the minimum
number of spilt conditions that are not satisfied by instance 𝐼 . As
an example, consider the decision tree in Figure 2 explaining the
prediction from ResNet50 pretrained on places dataset [22] of an
image as a coast. The concepts used in building the decision tree
is based on selecting the top 100 images from a random selection
of 1000 images from the ADE20k dataset [23]. The left branch of
the tree indicates the presence of a concept while the right branch
indicates the absence of that concept. The tree gives insights into
the main human-understandable concepts from ADE20K dataset
that appear important for ResNet50 in predicting the coast image.
The decision tree provides a natural explanation for each path.
It is clear from the explanation tree that the image has been
predicted as a coast because of the existence of the concepts
’mountain’ and ’sea’. As a further output, ACDTE computes a
counterfactual; we have two counterfactual paths in the decision
tree shown in Figure 2. The first one is the presence of ’mountain’,
absence of ’sea’, presence of ’tree’ that leads to the prediction
of class ’snowy mountain’, while the second is the presence of
’mountain’, absence of ’sea’, absence of ’tree’ that leads to the
prediction of class ’highway’, as shown in Figure 2. Figure 3
shows sample segments of concepts along the explanation path
of the coast image shown in Figure 2.

3 EXPERIMENTS AND RESULTS
In this section, we evaluate the meaningfulness of the explana-
tions provided by our framework. In addition, we evaluate the
faithfulness of the proposed framework to the black-box model.
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Figure 2: Shallow concept-based explanation decision tree of depth 4 explaining the prediction of coast image.

Mountain SeaTree

Figure 3: Sample segments of concepts along the explana-
tion path of the coast image shown in Figure 2. Text below
each group of images describes its original class of the ex-
tracted concepts.

3.1 Experiment Setup
As an experimental example, we use ACDTE to explain the pre-
dictions of the widely-used Resnet50 that has been pre-trained
on the places dataset. We select a subset of 30 classes out of the
365 classes from places dataset. We experimented extracting the
concepts from ADE20K dataset. More specifically, to explain the
prediction of an instance from places dataset, we randomly select
1000 images from ADE20K dataset and extract concepts from the
nearest 100 images. To evaluate the performance of the ACDTE,
we randomly select 1000 images, denoted 𝑋 , from the 30 selected
classes of the places dataset.

3.2 Are ACDTE Explanations Faithful to the
Black-box Model?

We consider the following metrics in evaluating how well the
decision tree inferred by ACDTE and the explanations returned
mimic the black-box model.

• fidelity ∈ [0, 1]: It compares the prediction of the decision
tree 𝑇 and the black-box model𝑚 on the set of images 𝑆
used to train the decision tree [4].

• hit ∈ {0, 1}: It compares the prediction of the decision
tree 𝑐 and the black-box model𝑚 on the instance to be
explained 𝐼 [8]. It returns 1 if𝑚(𝐼 ) = 𝑇 (𝐼 ), and 0 otherwise.

We measure the fidelity by F1-measure [17] and report the
aggregated values of the F1 measure across all instances in 𝑋 at
tree depth of 5, 10, 15 and 20, see Figure 4(a). We report hit by
averaging its values across the instances in 𝑋 at tree depth of 5,
10, 15 and 20, see Figure 4(b). The results show that fidelity and
hit increases as the tree depth increases, however tree depth of
10 is able to achieve reasonable fidelity of 0.87 and hit of 0.91.

3.3 Examining the Significance of the
Extracted Concepts from ACDTE

To confirm the importance of the formed concepts of ACDTE,
we run ACDTE on each of the images in 𝑋 and return the set of
clusters obtained from the concept extraction phase. We rank the
returned clusters for each image in 𝑋 according to their compact-
ness that is captured by calculating the average distance between
cluster center and each point in the same cluster. The smaller
the average distance indicates that the cluster is tightly formed
and shows a motion coherent view. The intuition behind that
ranking is that compact clusters most likely represent a concept
that is frequently present in the neighbourhood of the image to
be explained, and hence, have a significant role in forming the
decision boundary between classes. For each image in𝑋 , we build
different decision trees based on excluding the top 𝑘 concepts
obtained from the concept extraction phase, where 𝑘=0, 2, 5, 8
and 10. Figure 5 shows the prediction accuracies on the set of
images used to train the decision tree when removing the most
important 𝑘 concepts aggregated across all the instances in 𝑋 .
The results show that accuracy decreases significantly from 92.4%
to 75.3% when removing the 10 most important concepts which
reflects the variable significance of the automatically extracted
concepts.

3.4 Concept Classifier Prediction
Performance

Concept models performance vary across the different layers of
the main task model (ResNet50). In order to identify the best
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Figure 4: Fidelity and hit at different tree depth

Figure 5: Prediction accuracy of decision tree as removing
the top 𝑘 important concepts aggregated across all the in-
stances in 𝑋 .

layer to extract feature vectors used to train concept classifiers,
we compare the average accuracy of the concept models built on
vectors extracted from the major layers of Resnet50 and report
this average accuracy averaged over all instances in𝑋 . Major lay-
ers refer to the conv2 x (layer1), conv3 x (layer 2), conv4 x (layer
3), and conv5 x (layer 4) blocksections of sublayers of Resnet50.
Figure 6 shows that all layers have high average accuracy and
the deeper the extraction layer, the higher the accuracy. Figure 6
shows that the average classifiers accuracy was the highest at
the fourth layer, achieving an accuracy of 0.97.

3.5 Decision Tree Performance
Figure 7 shows how the accuracy of the decision tree obtained
from ACDTE responds to the changes in the maximum tree depth
and the layer from which deep features are extracted, to train
the concept models. We incrementally increase the depth of the
decision tree obtained from ACDTE for each instance in 𝑋 and
change the layer in which features from ResNet are extracted
to train the concept models. Then, we measure the prediction
accuracy of the instances used to train the decision tree and
report this accuracy averaged over all instances in𝑋 . Result show
that the accuracy improves significantly as more concepts are
added and then slightly flatten out as depth increases beyond 15.
The results also demonstrates that layer 4 of ResNet50 achieves
the best performance in terms of the decision tree prediction
accuracy.

Figure 6: Average accuracy of all concept classifiers
trained for the main layers of ResNet50

Figure 7: Decision tree accuracy vs. decision tree depth

3.6 Human Evaluation of the Visual
Explanations

To measure the meaningfulness of the extracted concepts, we
randomly select 50 instances from𝑋 and get the concepts used in
their explanations. We ask 30 human participants to identify that
segments belong to a concept versus a random set of segments.
The evaluation interface is shown in Figure 8. Results show that
87% of participants choose the concept segments. To measure the
significance of the important concepts extracted from the ACDTE,
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Figure 8: Human evaluation interface for identifying
meaningful concepts

Which of the images below highly contribute to 
the prediction of the image above as a street?

Which of the images below highly contribute to 
the prediction of the image above as a park?

Figure 9: Sample examples of human experiments for
choosing the most contributing concept to their predic-
tions

we ask the 30 participants to select the most meaningful concept
that contributes to a particular prediction made by ResNet50
for 30 different images. In each task, participants are shown the
image to be explained along with its prediction and four concepts
in which one of them represents the top concept identified by
ACDET for explaining this image and the other three concepts
are randomly chosen. Participants are asked to select the most
meaningful concept that contribute to the prediction. Figure 9
shows two sample images along with four different concepts in
which participants are asked to choose the most contributing
concept for the prediction of these images. On average, 85% of
the participants chose the concept obtained by ACDTE as the
most important concept.

4 CONCLUSION
We introduced ACDTE, a post-training local explanation tech-
nique that automatically extract groups of input features from
images similar to the images to be explained and group these
features into high-level human-understandable concepts.We veri-
fied the meaningfulness and coherence of these concepts through
human experiments and further validated that these concepts
carry some signals indicating to the correct prediction class for
the instance to be explained. Representing these concepts in a
shallow decision tree allows users to infer which concepts are

significant in the prediction of the image to be explained. A future
direction of automated concept-based explanation is to consider
other types of data such as texts.
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ABSTRACT

Finding the shortest path distance between an arbitrary pair of

vertices is a fundamental problem in graph theory. A tremen-

dous amount of research has been successfully attempted on

this problem, most of which is limited to static graphs. Due to

the dynamic nature of real-world networks, there is a pressing

need to address this problem for dynamic networks undergoing

changes. In this paper, we propose an online incremental method

to efficiently answer distance queries over very large dynamic

graphs. Our proposed method incorporates incremental update

operations, i.e. edge and vertex additions, into a highly scalable

framework of answering distance queries. We theoretically prove

the correctness of our method and the preservation of labelling

minimality. We have also conducted extensive experiments on

12 large real-world networks to empirically verify the efficiency,

scalability, and robustness of our method.

1 INTRODUCTION

Given a very large graph with billions of vertices and edges, how

efficiently can we find the shortest path distance between any

two vertices? If such a graph is dynamically changing over time

(e.g. inserting edges or vertices), how can we not only efficiently

but also accurately find the shortest path distance between any

two vertices? These questions are intimately related to distance

queries on dynamic graphs. As one of the most fundamental oper-

ations on graphs, distance queries have awide range of real-world

applications that operate on increasingly large dynamic graphs,

such as context-aware search in web graphs [19], social network

analysis in social networks [5, 20], management of resources in

computer networks [6], and so on. Many of these applications use

distance queries as a building block to realise more complicated

tasks, and require distance queries to be answered instantly, e.g.

in the order of milliseconds.

Previous studies have primarily focused on distance queries

on static graphs [1–3, 10, 11, 13, 22], with little attention be-

ing paid to dynamics on graphs. To speed up query response

time, a key technique is to precompute a data structure called

distance labelling that satisfies certain properties such as 2-hop

cover [8], and then use this data structure to answer distance

queries efficiently. However, when a graph dynamically changes,

its distance labelling needs to be changed accordingly; otherwise,

distance queries may yield overestimated distances. Although it

is possible to recompute a distance labelling from scratch, this

leads to inefficiency. As shown in Figure 1, the percentage of

affected vertices by a single change often ranges from 10
−5
%

to 10% in various real-world networks, recomputing distance

labelling from scratch for each single change not only wastes
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Figure 1: Distribution of affected vertices by a single graph

change in various networks, where the results for 1000

graph changes are sorted in the descending order.

computing resources, but also may generate inaccurate query

results during recomputing process. The question arising is thus

how to efficiently and accurately change distance labelling on

dynamic graphs in order to support distance queries?

In this paper, we aim to develop an online incremental method

that can dynamically maintain distance labelling on graphs being

changed by edge and vertex insertions. Typically, real-world dy-

namic networks are more vulnerable to insertions than removals

and a plethora of such real-world networks are large and fre-

quently updated, primarily accommodating insertions [15, 21].

Thus, an online incremental method for dynamic graphs should

possess the following desirable characteristics: (1) time efficiency

- It can answer distance queries and update distance labelling

efficiently (in the order of milliseconds); 2) space efficiency - It

guarantees the minimum size of distance labelling to reduce stor-

age costs; (3) scalability - It can scale to very large networks with

billions of vertices and edges.

Challenges. Designing online incremental methods for distance

queries on dynamic graphs is known to be challenging [4]. When

an edge or a vertex is inserted into a graph, outdated and redun-

dant entries of distance labelling may occur. It was reported that

removing such entries is a complicated task [4] because affected

vertices need to be precisely identified so as to update their labels

without violating the original properties of a distance labelling

such as minimality. Further, although query time and update

time are both critical for answering distance queries on dynamic

graphs, it is not easy (if not impossible) to design a solution that

is efficient in both. This requires us to find new insights into

dynamic properties of a distance labelling, as well as a good

trade-off between query time and update time. Last but not least,

scaling distance queries to dynamic graphs with billions of nodes

and edges is hard. Previous work [4, 12] mostly considered 2-hop

labelling, which has very high space requirements and index con-

struction time; as a result, their query and update performance
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are dramatically degraded on large-scale dynamic graphs. Ide-

ally, the labelling size of a graph should be much smaller than

its original size. However, the state-of-the-art distance labelling

technique, i.e. pruned landmark labeling method (PLL) [4], still

yields a distance labelling whose size is 20-30 times larger than

the original size of a dataset.

Contributions. Our contributions are summarised as follows:

• Our method overcomes the challenge of eliminating out-

dated and redundant distance entries. None of the previous

studies have addressed this challenge because detecting

those entries is too costly [4, 9]. When an edge or a ver-

tex is inserted, previous studies only add new distance

entries or modify existing distance entries. This would

however lead to an ever increasing size of labelling, partic-

ularly when a graph is frequently updated by newly added

edges or vertices. Accordingly, both query performance

and space efficiency would deteriorate over time.

• We prove the correctness of our proposed method and

show that it preserves the desirable property of minimality

on our distance labelling. Due to a property called highway

cover [10], the minimal size of a distance labelling in this

work is much smaller than the size of a 2-hop labelling in

previous work [4, 12]. Preserving minimality on a distance

labelling thus improves space efficiency and query perfor-

mance, as well as update performance. We also provide a

complexity analysis of our proposed method.

• We conducted experiments using 12 real-world large net-

works across different domains to show the efficiency,

scalability and robustness of our method. Particularly, our

method can perform updates under one second, on aver-

age, even on billion-scale networks, while still answering

queries efficiently in the order of milliseconds and guar-

anteeing the labelling size of a graph to be much smaller.

2 RELATEDWORK

Answering shortest-path distance queries in graphs has been an

active research topic for many years. Traditionally, a distance

query can be answered using Dijkstra’s algorithm [18] on posi-

tively weighted graphs or Breadth-First Search (BFS) algorithm

on unweighted graphs. However, these traditional algorithms

fail to achieve desired response time for distance queries on large

graphs. Later, labelling-based methods have emerged as an at-

tractive way of accelerating response time to distance queries

[1–3, 8, 10, 11, 13], among which Akiba et al. [3] proposed a

pruned landmark labeling (PLL) to precompute a 2-hop cover

distance labelling [8]. This method serves as the state-of-the-art

for labelling-based distance queries and can handle graphs with

hundreds of millions of edges.

So far, only a few attempts have been made to study distance

queries over dynamic graphs [4, 12], which are all based on the

idea of 2-hop distance labelling or its variants. Akiba et al. [4]

studied the problem of updating a pruned landmark labelling for

incremental updates (i.e. vertex additions and edge additions).

This work however does not remove redundant entries in dis-

tance labels because the authors considered that detecting such

outdated entries is too costly. This inevitably breaks the mini-

mality of pruned landmark labelling, leading to an ever increase

of labelling size and deteriorated query performance over time.

To accelerate shortest-path distance queries on large networks,

another line of research is to combine a partial distance labelling

with online shortest-path searches. Hayashi et al. [12] proposed

a fully dynamic approach that selects a small set of landmarks 𝑅

and precompute a shortest-path tree (SPT) rooted at each 𝑟 ∈ 𝑅.
Then, an online search is conducted on a sparsified graph under

an upper distance bound being computed via the SPTs. Neverthe-

less, this method still fails to construct labelling on networks with

billions of vertices. Following the same line, a recent work by

Farhan et al. [10] introduced a highway-cover labelling method

(HL), which can provide fast response time (milliseconds) for

distance queries even on billion-scale graphs. However, this ap-

proach only works for static graphs.

3 PROBLEM FORMULATION

Let𝐺 = (𝑉 , 𝐸) be an undirected graph where𝑉 is a set of vertices

and 𝐸 is a set of edges. We denote by 𝑁 (𝑣) the set of neighbors of
a vertex 𝑣 ∈ 𝑉 , i.e. 𝑁 (𝑣) = {𝑢 ∈ 𝑉 | (𝑢, 𝑣) ∈ 𝐸}. Given two vertices

𝑢 and 𝑣 in𝐺 , the distance between𝑢 and 𝑣 , denoted as 𝑑𝐺 (𝑢, 𝑣), is
the length of the shortest path from 𝑢 to 𝑣 . If there does not exist

a path from 𝑢 to 𝑣 , then 𝑑𝐺 (𝑢, 𝑣) = ∞. We use 𝑃𝐺 (𝑢, 𝑣) to denote

the set of all shortest paths between 𝑢 and 𝑣 in 𝐺 . Given a graph

𝐺 = (𝑉 , 𝐸), an edge insertion is to add an edge (𝑎, 𝑏) into𝐺 where

{𝑎, 𝑏} ⊆ 𝑉 and (𝑎, 𝑏) ∉ 𝐸. Accordingly, a node insertion is to add

a new node into 𝐺 together with a set of edge insertions that

connect 𝑣 to existing vertices in𝐺 . The following fact is critical

for designing algorithms for an edge insertion.

Fact 3.1. Let𝐺 ′ = (𝑉 , 𝐸∪{(𝑢, 𝑣)}) be the graph after inserting
an edge (𝑢, 𝑣) into 𝐺 = (𝑉 , 𝐸). Then for any two vertices 𝑠, 𝑡 ∈ 𝑉 ,
𝑑𝐺 (𝑠, 𝑡) ≥ 𝑑𝐺′ (𝑠, 𝑡).

That is, the distance between any two vertices never increases

after inserting edges or vertices in a graph.

Highway cover labelling. Unlike the previous work [4, 9, 12]

that uses 2-hop cover labelling [8], we develop our method us-

ing a highly scalable labelling approach, called highway cover

labelling [10]. Let 𝑅 ⊆ 𝑉 be a small set of landmarks in a graph

𝐺 = (𝑉 , 𝐸). For each vertex 𝑣 ∈ 𝑉 , the label of 𝑣 is a set of distance

entries 𝐿(𝑣) = {(𝑟1, 𝛿𝐿 (𝑟1, 𝑣)), . . . , (𝑟𝑛, 𝛿𝐿 (𝑟𝑛, 𝑣))}, where 𝑟𝑖 ∈ 𝑅

and 𝛿𝐿 (𝑟𝑖 , 𝑣) = 𝑑𝐺 (𝑟𝑖 , 𝑣). We call 𝐿 = {𝐿(𝑣)}𝑣∈𝑉 a distance la-

belling over 𝐺 whose size is defined as: 𝑠𝑖𝑧𝑒 (𝐿) = ∑
𝑣∈𝑉 |𝐿(𝑣) |.

A highway 𝐻 = (𝑅, 𝛿𝐻 ) consists of a set 𝑅 of landmarks and a

distance decoding function 𝛿𝐻 : 𝑅 × 𝑅 → N+ such that, for any

two landmarks 𝑟1, 𝑟2 ∈ 𝑅, 𝛿𝐻 (𝑟1, 𝑟2) = 𝑑𝐺 (𝑟1, 𝑟2) holds.
Definition 3.2. A highway cover labelling is a pair Γ = (𝐻, 𝐿)

where 𝐻 is a highway and 𝐿 is a distance labelling s.t. for any

vertex 𝑣 ∈ 𝑉 \𝑅 and 𝑟 ∈ 𝑅, we have:
𝑑𝐺 (𝑟, 𝑣) = min{𝛿𝐿 (𝑟𝑖 , 𝑣) + 𝛿𝐻 (𝑟, 𝑟𝑖 ) | (𝑟𝑖 , 𝛿𝐿 (𝑟𝑖 , 𝑣)) ∈ 𝐿(𝑣)}. (1)

Highway cover labelling enjoys several nice theoretical prop-

erties, such as minimality and order independence. A minimal

highway cover labelling can be efficiently constructed, indepen-

dently of the order of applying landmarks [10].

Given a highway cover labeling Γ = (𝐻, 𝐿), an upper bound on
the distance between any two vertices 𝑢, 𝑣 ∈ 𝑉 \𝑅 is computed:

𝑑⊤𝑢𝑣 = min{𝛿𝐿 (𝑟𝑖 , 𝑢) + 𝛿𝐻 (𝑟𝑖 , 𝑟 𝑗 ) + 𝛿𝐿 (𝑟 𝑗 , 𝑣) |
(𝑟𝑖 , 𝛿𝐿 (𝑟𝑖 , 𝑢)) ∈ 𝐿(𝑢), (𝑟 𝑗 , 𝛿𝐿 (𝑟 𝑗 , 𝑣)) ∈ 𝐿(𝑣)} (2)

An exact distance query 𝑄 (𝑢, 𝑣, Γ) can be answered by con-

ducting a distance-bounded shortest-path search over a sparsified

graph 𝐺 [𝑉 \𝑅] (i.e., removing all landmarks in 𝑅 from 𝐺) under

the upper bound 𝑑⊤𝑢𝑣 such that:

𝑄 (𝑢, 𝑣, Γ) =
{
𝑑𝐺 [𝑉 \𝑅 ] (𝑢, 𝑣) if 𝑑𝐺 [𝑉 \𝑅 ] (𝑢, 𝑣) ≤ 𝑑⊤𝑢𝑣,

𝑑⊤𝑢𝑣 otherwise.
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Problem definition. In this work, we study the problem of

answering distance queries over a graph that is dynamically

changed by edge and vertex insertions over time. Since a vertex

insertion can be treated as a set of edge insertions, without loss of

generality, below we define the problem based on edge insertions.

Definition 3.3. Let 𝐺 ↩→ 𝐺 ′ denote that a graph 𝐺 is changed

to a graph𝐺 ′ by an edge insertion. The dynamic distance querying

problem is, given any two vertices 𝑢 and 𝑣 in the changed graph

𝐺 ′, to efficiently compute the distance 𝑑𝐺′ (𝑢, 𝑣).

4 ONLINE INCREMENTAL ALGORITHM

In this section, we propose an algorithm IncHL
+
to incrementally

update labelling to reflect graph changes. Algorithm 1 describes

the main steps of IncHL
+
. Below, we discuss them in detail.

4.1 Finding Affected Vertices

When an update operation occurs on a graph𝐺 = (𝑉 , 𝐸), there
exists a subset of “affected” vertices in𝑉 whose labels need to be

updated as a consequence of this update operation on the graph.

Definition 4.1. A vertex 𝑣 ∈ 𝑉 is affected by 𝐺 ↩→ 𝐺 ′ iff
𝑃𝐺 (𝑣, 𝑟 ) ≠ 𝑃𝐺′ (𝑣, 𝑟 ) for at least one 𝑟 ∈ 𝑅; unaffected otherwise.

We use Λ𝑟 to denote the set of all affected vertices w.r.t. a

landmark 𝑟 and Λ =
⋃

𝑟 ∈𝑅 Λ𝑟 the set of all affected vertices.

Example 4.2. Consider Figure 2(a) in which 0 and 10 are two

landmarks. After inserting an edge (2, 5), Λ0 = {5, 8, 9, 10, 13, 14}
in Figure 2(b) and Λ10 = {0, 1, 2} in Figure 2(d).

The following lemma states how affected vertices relate to an

edge being inserted.

Lemma 4.3. When𝐺 ↩→ 𝐺 ′ for an edge insertion (𝑎, 𝑏), a vertex
𝑣 ∈ Λ𝑟 iff there exists a shortest path between 𝑣 and 𝑟 in𝐺 ′ passing
through (𝑎, 𝑏).

Following Lemma 4.3, we can reduce the search space of

affected vertices by eliminating landmarks 𝑟 with 𝑑𝐺 (𝑟, 𝑎) =

𝑑𝐺 (𝑟, 𝑏) since Λ𝑟 = ∅ in such a case. Thus, we assume that

𝑑𝐺 (𝑟, 𝑏) > 𝑑𝐺 (𝑟, 𝑎) w.r.t. a landmark 𝑟 in the rest of this section

w.l.o.g. Further, by the lemma below, we can also reduce the

search space by “jumping” from the root of a BFS to vertex 𝑏.

Lemma 4.4. When 𝐺 ↩→ 𝐺 ′ with an inserted edge (𝑎, 𝑏), we
have 𝑑𝐺 (𝑣, 𝑟 ) ≥ 𝑑𝐺 (𝑎, 𝑟 ) + 1 for any affected vertex 𝑣 ∈ Λ𝑟 .

Proof. By Lemma 4.3, there exists a shortest path from any

affected vertex 𝑣 to 𝑟 going through the edge (𝑎, 𝑏) and thus

through 𝑎. Since 𝑎 is unaffected and the distance from 𝑎 to 𝑣 is

equal to or greater than 1, 𝑑𝐺 (𝑣, 𝑟 ) ≥ 𝑑𝐺 (𝑎, 𝑟 ) + 1 thus holds. □

Algorithm 2 describes our algorithm for finding affected ver-

tices. Given a graph𝐺 with an inserted edge (𝑎, 𝑏) and a highway
cover labelling Γ = (𝐻, 𝐿) over 𝐺 , we conduct a jumped BFS

w.r.t. a landmark 𝑟 starting from the vertex 𝑏 with its new depth

𝜋 = 𝑄 (𝑟, 𝑎, Γ) + 1 (Lines 3-4). For every (𝑣, 𝜋) ∈ Q, we enqueue
all the neighbors of 𝑣 that are affected into Q with new distances

𝜋 + 1 (Lines 7-8) and add 𝑣 to Λ𝑟 as affected vertex (Line 9). This

process continues until Q is empty.

Example 4.5. Figure 2 illustrates how our algorithm finds af-

fected vertices as a result of inserting an edge (2, 5). The BFS
rooted at landmark 0 is depicted in Figure 2(b), which jumps to

vertex 5 and finds six affected vertices {5, 8, 9, 10, 13, 14}. Simi-

larly, the BFS rooted at landmark 10 is depicted in Figure 2(d),

which jumps to vertex 2 and finds three affected vertices {0, 1, 2}.

Algorithm 1: Incremental algorithm (IncHL
+
).

Input: 𝐺 , 𝐺 ′, (𝑎, 𝑏), Γ = (𝐻, 𝐿)
Output: Γ′ = (𝐻 ′, 𝐿′)

1 foreach 𝑟 ∈ 𝑅 do

2 Λ𝑟 ← FindAffected(𝐺, (𝑎, 𝑏), 𝑟 , Γ)
3 RepairAffected(𝐺 ′, (𝑎, 𝑏),Λ𝑟 , 𝑟 , Γ)

Algorithm 2: Finding affected vertices.

1 Function FindAffected(𝐺 , (𝑎, 𝑏), 𝑟 , Γ)
2 Q ← ∅, Λ𝑟 ← ∅
3 𝜋 ← 𝑄 (𝑟, 𝑎, Γ) + 1
4 Enqueue (𝑏, 𝜋) to Q
5 while Q is not empty do

6 Dequeue (𝑣, 𝜋) from Q
7 foreach𝑤 ∈ 𝑁 (𝑣) s.t. 𝑄 (𝑟,𝑤, Γ) ≥ 𝜋 + 1 do
8 Enqueue (𝑤, 𝜋 + 1) to Q
9 Λ𝑟 = Λ𝑟 ∪ {𝑣}

10 return Λ𝑟

4.2 Repairing Affected Vertices

Now we propose a repair strategy to efficiently update the labels

of affected vertices in order to reflect graph changes. The key

idea is that, instead of conducting a full BFS on all vertices, we

conduct a partial BFS from 𝑏 only on affected vertices. Further,

to avoid unnecessary computations, we distinguish two kinds of

affected vertices: (1) affected vertices that are covered by other

landmarks and can thus be easily repaired by removing an entry

from their labels; (2) affected vertices whose labels need to be

repaired with accurately calculated distances on a changed graph.

The following lemma characterizes the first kind according to

the definition of highway cover labelling.

Lemma 4.6. An affected vertex 𝑣 ∈ Λ𝑟 is covered by a land-

mark 𝑟 ′ ∈ 𝑅\{𝑟 } iff 𝑟 ′ exists in 𝑃𝐺′ (𝑣, 𝑟 ). If an affected vertex

𝑣 ∈ Λ𝑟 is covered by 𝑟
′
, then any affected vertex 𝑣 ′ ∈ Λ𝑟 satisfying

𝑑𝐺′ (𝑟, 𝑣 ′) = 𝑑𝐺′ (𝑟, 𝑣) + 𝑑𝐺′ (𝑣, 𝑣 ′) must also be covered by 𝑟 ′.

By Lemma 4.6, we can efficiently repair affected vertices 𝑣 ∈ Λ𝑟

as follows. If 𝑣 is covered by a landmark 𝑟 ′ ∈ 𝑅\{𝑟 } (i.e., one of the
unaffected parents of 𝑣 does not contain 𝑟 in its label) and is also

a landmark, we only update the highway; otherwise, we remove

the entry of 𝑟 from 𝐿(𝑣). If 𝑣 is not covered by any 𝑟 ′ ∈ 𝑅\{𝑟 }, we
add/modify the entry of 𝑟 in 𝐿(𝑣). If 𝑣 is a descendant of covered
vertices, we simply remove the entry of 𝑟 from 𝐿(𝑣) (if exists).

Algorithm 3 describes our algorithm for repairing affected

vertices. Given a graph𝐺 with an inserted edge (𝑎, 𝑏) and a set of
affected vertices Λ𝑟 , we conduct a BFS w.r.t. a landmark 𝑟 starting

from the vertex 𝑏 with its new distance 𝜋 = 𝑑𝐺 (𝑟, 𝑎) + 1 (Lines
3-4). We use two queues Q𝑢𝑛𝑐𝑜𝑣𝑒𝑟𝑒𝑑 and Q𝑐𝑜𝑣𝑒𝑟𝑒𝑑 to process

uncovered and covered vertices, respectively. If 𝑏 is covered, we

enqueue (𝑏, 𝜋) to Q𝑐𝑜𝑣𝑒𝑟𝑒𝑑 and remove the entry of 𝑟 from the

labels of affected vertices (Line 25). Otherwise, we enqueue (𝑏, 𝜋)
to Q𝑢𝑛𝑐𝑜𝑣𝑒𝑟𝑒𝑑 and start processing vertices in Q𝑢𝑛𝑐𝑜𝑣𝑒𝑟𝑒𝑑 (Line

5). For each vertex 𝑣 ∈ Q𝑢𝑛𝑐𝑜𝑣𝑒𝑟𝑒𝑑 at depth 𝜋 , we examine its

affected neighbors 𝑤 at depth 𝜋 + 1. If 𝑤 is covered, then if 𝑤

is a landmark, we update the highway (Line 10); otherwise we

remove the entry of 𝑟 from 𝐿(𝑤) (Line 12) because there must

exist another landmark in the shortest path from𝑤 to 𝑟 and add
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Figure 2: An illustration of our online incremental algorithm IncHL

+
: (a) a graphwith three landmarks 0, 4 and 10 (colored

in yellow); (b) and (d) the BFSs for finding affected vertices (colored in green) w.r.t. landmarks 0 and 10, respectively; (c)

and (e) the BFSs for repairing affected vertices w.r.t. landmarks 0 and 10, respectively, where vertices with added/modified

entries are colored in blue, and vertices with removed entries are colored in red.

Algorithm 3: Repairing affected vertices.

1 Function RepairAffected(𝐺 ′, (𝑎, 𝑏), Λ𝑟 , 𝑟 , Γ)
2 Q𝑢𝑛𝑐𝑜𝑣𝑒𝑟𝑒𝑑 ← ∅, Q𝑐𝑜𝑣𝑒𝑟𝑒𝑑 ← ∅
3 𝜋 ← 𝑑𝐺 (𝑟, 𝑎) + 1
4 Enqueue (𝑏, 𝜋) to Q𝑐𝑜𝑣𝑒𝑟𝑒𝑑 if covered; otherwise to

Q𝑢𝑛𝑐𝑜𝑣𝑒𝑟𝑒𝑑
5 while Q𝑢𝑛𝑐𝑜𝑣𝑒𝑟𝑒𝑑 is not empty do

6 while (𝑣, 𝜋) ∈ Q𝑢𝑛𝑐𝑜𝑣𝑒𝑟𝑒𝑑 at depth 𝜋 do

7 forall𝑤 ∈ 𝑁 (𝑣) s.t.𝑤 ∈ Λ𝑟 at depth 𝜋 + 1 do
8 if 𝑐𝑜𝑣𝑒𝑟𝑒𝑑 (𝑤, 𝜋 + 1) then
9 if 𝑤 is a landmark then

10 𝛿𝐻 (𝑟,𝑤) ← 𝜋 + 1
11 else

12 Remove 𝑟 from 𝐿(𝑤)
13 Enqueue (𝑤, 𝜋 + 1) to Q𝑐𝑜𝑣𝑒𝑟𝑒𝑑
14 else

15 Add/Modify {(𝑟, 𝜋 + 1)} in 𝐿(𝑤)
16 Enqueue (𝑤, 𝜋 + 1) to Q𝑢𝑛𝑐𝑜𝑣𝑒𝑟𝑒𝑑
17 Remove𝑤 from Λ𝑟

18 Dequeue (𝑣, 𝜋) from Q𝑢𝑛𝑐𝑜𝑣𝑒𝑟𝑒𝑑
19 while (𝑣, 𝜋) ∈ Q𝑐𝑜𝑣𝑒𝑟𝑒𝑑 at depth 𝜋 do

20 forall𝑤 ∈ 𝑁 (𝑣) s.t.𝑤 ∈ Λ𝑟 at depth 𝜋 + 1 do
21 Remove 𝑟 from 𝐿(𝑤)
22 Remove𝑤 from Λ𝑟

23 Enqueue (𝑤, 𝜋 + 1) to Q𝑐𝑜𝑣𝑒𝑟𝑒𝑑
24 Dequeue (𝑣, 𝜋) from Q𝑐𝑜𝑣𝑒𝑟𝑒𝑑

25 Remove entry 𝑟 from remaining vertices in Q𝑐𝑜𝑣𝑒𝑟𝑒𝑑

(𝑤, 𝜋 + 1) to Q𝑐𝑜𝑣𝑒𝑟𝑒𝑑 (Line 13). Otherwise, we add/modify the

entry of 𝑟 with the new distance 𝜋 + 1 in 𝐿(𝑤) and enqueue 𝑤

to Q𝑢𝑛𝑐𝑜𝑣𝑒𝑟𝑒𝑑 (Lines 15-16). After that, we remove 𝑤 from Λ𝑟

(line 17). Then, for each (𝑣, 𝜋) ∈ Q𝑐𝑜𝑣𝑒𝑟𝑒𝑑 , we remove 𝑟 from the

labels of affected neighbors of 𝑣 , remove these affected vertices

from Λ𝑟 and enqueue them to Q𝑐𝑜𝑣𝑒𝑟𝑒𝑑 (Lines 19-24). We process

these two queues, one after the other, until Q𝑢𝑛𝑐𝑜𝑣𝑒𝑟𝑒𝑑 is empty.

Finally, we remove the entry of 𝑟 from the labels of the remaining

vertices in Q𝑐𝑜𝑣𝑒𝑟𝑒𝑑 (Line 25).

Example 4.7. Figure 2 illustrates how our algorithm repairs

labels as a result of inserting an edge (2, 5). The BFS for landmark

0 is depicted in Figure 2(c), which jumps to vertex 5 and repairs

three affected vertices {5, 9, 10}. The vertices {8, 13, 14} are cov-
ered by landmarks 4 and 10. Similarly, the BFS for landmark 10 is

depicted in Figure 2(e), in which vertices {0, 2} are repaired and

vertex 1 is covered by landmarks 0 and 4.

5 THEORETICAL RESULTS

Proof of correctness. For 𝐺 ↩→ 𝐺 ′ where our method IncHL
+

updates a highway cover labelling Γ over𝐺 into a highway cover

labelling Γ′ over 𝐺 ′, we consider IncHL+ to be correct iff, when-

ever 𝑄 (𝑢, 𝑣, Γ) = 𝑑𝐺 (𝑢, 𝑣) holds for any two vertices 𝑢 and 𝑣 in

𝐺 , then 𝑄 (𝑢 ′, 𝑣 ′, Γ′) = 𝑑𝐺′ (𝑢 ′, 𝑣 ′) also holds for any two vertices

𝑢 ′ and 𝑣 ′ in 𝐺 ′. We prove the theorem below for IncHL
+
.

Theorem 5.1. IncHL
+
is correct.

Proof. First, we prove that FindAffected returns the set of
all affected vertices Λ𝑟 as a result of an edge insertion. IncHL

+

(Lines 7-8 of Algorithm 2) guarantees that any vertex being added

to Q has one shortest path to a landmark 𝑟 which goes through

the inserted edge (𝑎, 𝑏). By Lemma 4.3, such vertices are affected

vertices, and thus a vertex 𝑣 is added toQ in Algorithm 2 iff 𝑣 ∈ Λ𝑟 .

Then, we prove that RepairAffected repairs Γ = (𝐻, 𝐿) s.t. (1)
(𝑟, 𝑑𝐺′ (𝑟, 𝑣)) ∈ 𝐿(𝑣) for 𝑣 ∈ Λ𝑟 , iff 𝑃𝐺′ (𝑟, 𝑣) contains only one

landmark 𝑟 ; (2) 𝛿𝐻 (𝑟, 𝑟 ′) = 𝑑𝐺′ (𝑟, 𝑟 ′) for any 𝑟 ′ ∈ 𝑅\{𝑟 }. Starting
from 𝑏 with new distance 𝜋 , the distances of affected vertices in

Λ𝑟 are iteratively inferred on𝐺
′
and reflected into their labels via

Q𝑢𝑛𝑐𝑜𝑣𝑒𝑟𝑒𝑑 if these affected vertices are not covered (Lines 15-16

of Algorithm 3). If an affected vertex 𝑣 is covered, it is kept in

Q𝑐𝑜𝑣𝑒𝑟𝑒𝑑 ; if 𝑣 is also a landmark, 𝛿𝐻 (𝑟, 𝑣) in 𝐻 is updated (Lines

9-10). Thus, the distance entry of 𝑟 is removed from the labels

of affected vertices appearing in Q𝑐𝑜𝑣𝑒𝑟𝑒𝑑 , whereas any vertex 𝑣

appearing in Q𝑢𝑛𝑐𝑜𝑣𝑒𝑟𝑒𝑑 must have (𝑟, 𝑑𝐺′ (𝑟, 𝑣)) ∈ 𝐿(𝑣). □

Preservation of minimality. It has been reported in [10] that,

given a graph 𝐺 , a minimal highway cover labelling Γ = (𝐻, 𝐿)
of 𝐺 can be constructed using an algorithm proposed in their

work, i.e., 𝑠𝑖𝑧𝑒 (𝐿′) ≥ 𝑠𝑖𝑧𝑒 (𝐿) holds for any Γ′ = (𝐻, 𝐿′) of𝐺 . For

𝐺 ↩→ 𝐺 ′ where IncHL+ updates Γ over 𝐺 into Γ′ over 𝐺 ′, we
prove that IncHL

+
preserves the minimality of labelling.

Theorem 5.2. If Γ is minimal on 𝐺 , then Γ′ is minimal on 𝐺 ′.

Proof. By Lemma 4.6, (𝑟, 𝑑𝐺′ (𝑟, 𝑣)) ∈ 𝐿(𝑣) for 𝑣 ∈ Λ𝑟 iff

𝑃𝐺′ (𝑟, 𝑣) does not contain any other landmark 𝑅\{𝑟 }; otherwise
we remove the entry of 𝑟 from the label of 𝑣 (Line 12, 21 and

25 of Algorithm 3). Thus, the labels of all affected vertices must

be minimal after applying IncHL
+
. For unaffected vertices, their

labels should remain unchanged. Hence, Γ′ must be minimal. □

Complexity analysis. Let 𝑚 be the total number of affected

vertices, 𝑙 be the average size of labels (i.e. 𝑙 = 𝑠𝑖𝑧𝑒 (𝐿)/|𝑉 |), and
𝑑 be the average degree of vertices. For a landmark, Algorithm

2 takes 𝑂 (𝑚𝑑𝑙) time to find all affected vertices and Algorithm

3 takes 𝑂 (𝑚𝑑) to repair the labels of all affected vertices. We

omit 𝑙 from 𝑂 (𝑚𝑑) for Algorithm 3 because distances for all

unaffected neighbors of affected vertices are stored in Algorithm

2. Therefore, IncHL
+
has time complexity 𝑂 ( |𝑅 | ×𝑚𝑑𝑙). In our
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Table 1: Comparing the update time, query time and labelling size of our method with the baseline methods.

Dataset

Update Time (ms) Query Time (ms) Labelling Size

IncHL
+

IncFD IncPLL IncHL
+

IncFD IncPLL IncHL
+

IncFD IncPLL

Skitter 0.194 0.444 2.05 0.027 0.019 0.047 42 MB 153 MB 2.44 GB

Flickr 0.006 0.074 1.73 0.007 0.012 0.064 34 MB 152 MB 3.69 GB

Hollywood 0.031 0.101 48 0.027 0.037 0.109 27 MB 263 MB 12.58 GB

Orkut 2.026 2.049 - 0.101 0.103 - 70 MB 711 MB -

Enwiki 0.134 0.163 5.91 0.054 0.035 0.071 82 MB 608 MB 12.57 GB

Livejournal 0.245 0.268 - 0.044 0.046 - 122 MB 663 MB -

Indochina 5.443 158 2018 0.737 0.839 0.063 81 MB 838 MB 18.64 GB

IT 95.92 224 - 1.069 1.013 - 854 MB 4.74 GB -

Twitter 0.027 0.134 - 0.863 0.177 - 1.14 GB 3.83 GB -

Friendster 0.159 0.419 - 0.814 0.904 - 2.43 GB 9.14 GB -

UK 11.49 384 - 3.443 5.858 - 1.78 GB 11.8 GB -

Clueweb09 40.68 - - 16.93 - - 163 GB - -

Table 2: Summary of datasets.

Dataset Network |𝑉 | |𝐸 | avg. deg avg. dist

Skitter comp (u) 1.7M 11M 13.081 5.1

Flickr social (u) 1.7M 16M 18.133 5.3

Hollywood social (u) 1.1M 114M 98.913 3.9

Orkut social (u) 3.1M 117M 76.281 4.2

Enwiki social (d) 4.2M 101M 43.746 3.4

Livejournal social (d) 4.8M 69M 17.679 5.6

Indochina web (d) 7.4M 194M 40.725 7.7

IT web (d) 41M 1.2B 49.768 7.0

Twitter social (d) 42M 1.5B 57.741 3.6

Friendster social (u) 66M 1.8B 55.056 5.0

UK web (d) 106M 3.7B 62.772 6.9

Clueweb09 web (d) 1.7B 7.8B 9.27 7.4

experiments, we notice that𝑚 is usually orders of magnitudes

smaller than |𝑉 | and 𝑙 is also significantly smaller than |𝑅 |.

Directed and weighted graphs. For directed graphs, we can

store sets of forward and backward labels, namely 𝐿𝑓 (𝑣) and
𝐿𝑏 (𝑣), for each vertex 𝑣 which contain pairs (𝑟𝑖 , 𝛿𝑟𝑖 𝑣) from for-

ward and backward BFSs w.r.t. each landmark. Accordingly, we

can store forward and backward highways 𝐻𝑓 and 𝐻𝑏 . Then, we

conduct two BFSs to update these labels and highways: one in

the forward direction and the other in the backward direction.

Our method can also be easily extended to handling weighted

graphs by using Dijkstra’s algorithm instead of BFSs.

6 EXPERIMENTS

We have evaluated our method to answer the following questions:

(Q1) How efficiently can our method perform against state-of-the-

art methods? (Q2) How does the number of landmarks affect the

performance of our method? (Q3) How does our method scale to

perform updates occurring rapidly in large dynamic networks?

Datasets.We used 12 large real-world networks as detailed in Ta-

ble 2. These networks are accessible at Stanford Network Analysis

Project [16], Laboratory for web Algorithmics [7], Koblenz Net-

work Collection [14], and Network Repository [17]. We treated

these networks as undirected and unweighted graphs.

Updates and queries. For each network, we randomly sampled

1,000 pairs of vertices as edge insertions, denoted as 𝐸𝐼 , where

𝐸𝐼 ∩ 𝐸 = ∅ to evaluate the average update time. Further, we

evaluate the average query time with 100,000 randomly sampled

pairs of vertices from each network and report the labelling size

after reflecting all the updates.

Baseline methods. We compared our method (IncHL
+
) with

the state-of-the-art methods: (1) IncPLL: an online incremental

algorithm proposed in [4] which is based on the 2-hop cover

labelling to answer distance queries; (2) IncFD: an online incre-

mental algorithm proposed in [12] which combines a 2-hop cover

labelling with a graph traversal algorithm to answer distance

queries. The codes of these methods were provided by their au-

thors and implemented in C++. We used the same parameter

settings for these methods as suggested by their authors unless

otherwise stated. For a fair comparison, following [12] we set

|𝑅 | = 20 for IncFD and our methods, except for Clueweb09 which

has |𝑅 | = 150 due to its billion-scale vertices. Our methods were

implemented in C++11 and compiled using gcc 5.5.0 with the -O3

option. We performed all the experiments using a single thread

on Linux server (Intel Xeon W-2175 with 2.50GHz and 512GB of

main memory).

6.1 Performance Comparison

6.1.1 Update Time. Table 1 shows that the average update
time of our method IncHL

+
outperforms the state-of-the-art

methods IncFD and IncPLL on all datasets. This is due to a novel

repair strategy utilized by IncHL
+
. Further, only IncHL

+
can

scale to very large networks with billions of vertices and edges.

IncFD fails to scale to Clueweb09, and IncPLL fails for 7 out of

12 datasets due to very high preprocessing time and memory

requirements.

6.1.2 Labelling Size. From Table 1, we see that IncHL
+
has

significantly smaller labelling sizes than IncFD and IncPLL.When

updates occur on a graph, the labelling sizes of IncFD and IncHL
+

remain stable because their average label sizes are bounded by the

size of landmarks set (i.e. |𝑅 |). Moreover, IncFD stores complete

shortest path trees w.r.t. landmarks; while IncHL
+
stores pruned

shortest-path trees which lead to labelling of much smaller sizes

than IncFD. For IncPLL, the labelling sizes may increase because

IncPLL does not remove outdated and redundant entries.

6.1.3 Query Time. In Table 1 the query times of IncHL
+
are

comparable with IncFD and IncPLL. It has been shown in [9] that

query time depends on labelling size. As discussed in Section 6.1.2,

the update operations do not considerably affect the labelling

sizes of IncFD and IncHL
+
, and thus their query times remain

stable. However, the query times for IncPLL may increase over

time because of the presence of outdated and redundant entries,

which result in labelling of increasing size.
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Figure 3: Average update time of our method IncHL
+
(in colored bars) and the baseline method IncFD (in colored plus

grey bars) under 10-50 landmarks. There are no results of IncFD for Clueweb09 due to the scalability issue.
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Figure 4: Update time of IncHL
+
for performing up to 10,000 updates against construction time of labelling from scratch.

6.2 Performance with Varying Landmarks

Figure 3 shows the average update time of our method IncHL
+

against the baseline method IncFD under varying landmarks,

i.e., |𝑅 | ∈ [10, 20, 30, 40, 50]. As we can see, IncHL
+
outperforms

IncFD on all the datasets against almost every selection of land-

marks. We can also see the performance gap remains stable for

most of the datasets when increasing the number of landmarks.

This empirically verifies the efficiency of our repair strategy.

6.3 Scalability Test

We conducted a scalability test on the update time of our method

IncHL
+
, by starting with 500 updates and then iteratively adding

500 updates each time until 10,000 updates. Figure 4 shows the

results. We observe that the update time of IncHL
+
on almost

all the datasets is considerably below the construction time of

labelling. On Indochina and IT, IncHL
+
performs relatively worse

because these networks have large average distances as depicted

in Table 2, which lead to high percentages of affected vertices as

shown in Figure 1. In contrast, IncHL
+
performs well on graphs

with small average distances such as Twitter. Overall, IncHL
+

can scale to perform a large number of updates efficiently.

7 CONCLUSION

This paper has studied the problem of answering distance queries

on large dynamic networks. Our proposed algorithm exploits

properties of a recent labelling technique called highway cover

labelling [10] to efficiently process incremental graph updates,

and can preserve the minimality property of labelling after each

update operation. We have empirically evaluated the efficiency

and scalability of the proposed algorithm. The results show that

our proposed algorithm outperforms the state-of-the-art methods.

In future, we plan to further investigate the effects of decremental

updates on graphs since they are also commonly used in practice.
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ABSTRACT
In high-dimensional datasets some dimensions or attributes can
be more important than others. Whereas most algorithms neglect
one or more dimensions for all points of a dataset or at least for all
points of a certain cluster together, our method KISS (𝒌NN-based
Importance Score of Subspaces) detects the most important di-
mensions for each point individually. It is fully unsupervised and
does not depend on distorted multidimensional distance mea-
sures. Instead, the 𝑘 nearest neighbors (𝑘NN) in one-dimensional
projections of the data points are used to calculate the score for
every dimension’s importance. Experiments across a variety of
settings show that those scores reflect well the structure of the
data. KISS can be used for subspace clustering. What sets it apart
from other methods for this task is its runtime, which is linear
in the number of dimensions and 𝑂 (𝑛 log(𝑛)) in the number of
points, as opposed to quadratic or even exponential runtimes for
previous algorithms.

1 INTRODUCTION
As sensors in fields like biology and chemistry become more and
more sophisticated, websites collect more and more data about
their users, and IoT and manufacturing devices get equipped with
sensors that allow for predictive maintenance, the amount, granu-
larity and dimensionality of data increases. In order to still be able
to analyze the data in a meaningful way and in a reasonable time,
one often needs to reduce at least one of the three; this paper will
focus on the dimensionality. The more dimensions there are, the
more of them are not important and distort further data mining
tasks. The more dimensions, the longer it takes to process them
all: the running time of many algorithms increases exponentially
with the number of dimensions, especially of those designed for
fewer dimensions. But not only that: many distance measures
become more and more useless with an increasing number of di-
mensions [4]. Thus, instead of dragging along all dimensions of a
point, many methods focus on working on only a small subset of
the dimensions. The dimensions that a point is reduced to should,
of course, be the ones that capture the most relevant information
that this point contains. But to learn those important dimensions
proves difficult: users do not want to waste time studying the
data and its features thoroughly before applying a data mining
algorithm. However, most algorithms still require user input that
needs expert knowledge, or even require the user to label data by
hand. In addition, the number of possibly important subspaces is

© 2021 Copyright held by the owner/author(s). Published in Proceedings of the
24th International Conference on Extending Database Technology (EDBT), March
23-26, 2021, ISBN 978-3-89318-084-4 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Figure 1: For different objects, different attributes or sub-
spaces can be relevant: texture, number of corners, color,
or a subset of those dimensions may be important.

exponential, making it a complex and time-consuming task to
find the most important one. As datasets grow in size and contain
data from different sources, one part of a dataset might differ a lot
from a different part. Nonetheless, methods for dimensionality
reduction typically try to find a common subspace for all data
points, which can potentially be completely unsuited for hetero-
geneous data. Often, every single point has its own properties
and thus the importance of a subspace may vary for each point,
as shown in Fig. 1: for objects 1,4,7 in the first column the texture
may be relevant, whereas it does not seem to be important for the
other objects, since every other texture only occurs once. Also,
for objects 1,2,3 in the first row and the quadrangles 4 and 5 in the
second row the number of corners may be important. The color
could be the best attribute to distinguish objects 1,5, and 9 in the
diagonal from the others. Thus, for object 1 all three considered
dimensions — number of corners, color, and texture — may be
relevant, while there are other objects in the same dataset for
which not all of those dimensions are important, e.g., for object
7 only the texture is relevant.

A method to score the importance and expressiveness of each
dimension for every point of a dataset individually without re-
quiring any user input that scales to high dimensionalities would
solve the problems mentioned above. In this paper, we develop
KISS, a 𝒌NN-based Importance Score of Subspaces, which fulfills
all of these requirements. KISS can detect the most important
subspace for a point fast and reliably in highly noisy data and
data where only few dimensions are important per point.

One of the fundamental considerations that led to KISS is that
those dimensions are most expressive for a point whose values lie
in a cluster. We use the observation that if a point lies in a cluster
in a certain subspace, the𝑘NNof the projections of this point onto
each dimension of this subspace intersect heavily. Since 𝑘NN in
one-dimensional projections of the data can be computed fast, we
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can efficiently calculate a score indicating the likelihood of the
point lying in a cluster in the considered dimension. Usage of the
𝑘NN prevents relying on non-expressive distance measures, and
there is no need for the users to know the data beforehand. KISS
is deterministic, simple, fully unsupervised, and scalable w.r.t.
the number of points as well as to the number of dimensions. It
is easy to implement and reliably detects important dimensions
for individual points fast. Our main contributions are as follows:

• We develop KISS, an importance scoring for every dimen-
sion for each individual point.

• KISS is fast w.r.t. both the number of points as well as the
number of dimensions.

• KISS is fully unsupervised
• KISS does not rely on any multidimensional distance mea-
sure that gets useless for a high number of dimensions.

2 RELATEDWORK
The problem of finding a global important subspace for all points
has been addressed in previous work, which we introduce in
Section 2.1. We restrict ourselves to algorithms that, like KISS
(and contrary to, e.g., PCA or FOSSCLU), work in the standard
basis of the vector space, as it simplifies getting insights into the
data, which KISS was developed for.

2.1 Subspace Search
There exists some work on scoring of dimensions, where RIS,
SURFING, and SCHISM are some of the most common algorithms.

RIS [6] produces a ranked list of all dimensions using a density-
based quality criterion (“interestingness") that requires multiple
parameters, which are set based on heuristic methods. The rating
is only a relative comparison between different dimensions of
the same dataset and is the same for all points.

SURFING [3] is a bottom-up approach that also returns the
most “interesting" subspaces of a dataset. It is, like KISS, based
on 𝑘NN, declaring subspaces as interesting in which "the k-nn-
distances of the objects differ significantly from each other" [3].
The 𝑘NN distances are computed w.r.t. the subspaces, making
their expressiveness dependent on the dimensionality of the
subspaces. The algorithm has a runtime complexity of 𝑂 (𝑚𝑛2),
where 𝑛 is the number of points and𝑚 is the number of different
subspaces analyzed, which is 2𝐷 in the worst case, making it
much less scalable regarding both the number of points as well
as the number of dimensions. Additionally, the minimum cluster
size 𝑘 has to be specified by the user.

SCHISM [8] extends the CLIQUE [2] principle and looks at the
density of grid cells using an adaptive threshold function 𝜏 given
by the user and applying the Chernoff-Hoeffding bound. It uses
several preprocessing steps and requires three user given param-
eters 𝑢, 𝜏 , and 𝜉 . Like RIS, and in contrast to KISS, it calculates
a global score for “interesting" subspaces that is not adapted to
individual points.

Although the dimension weightings at first glance seem to
be suitable for comparing with KISS, such a comparison proves
difficult: These dimension scoring methods do not return impor-
tant subspaces for each point individually, or require at least two
parameters set by the user, making it hard to objectively evalu-
ate without overoptimism. But most notably, they are far more
complex: The fastest of them, RIS, has runtime at least quadratic
in the number of dimensions as well as the number of points.
SCHISM is only linear in the number of points, but exponential in

the number of dimensions. SURFING is quadratic in the number
of points and exponential in the number of dimensions.

2.2 Subspace Clustering
We do not perform any clustering in this paper, but since we
define “important dimensions” as dimensions in which a point
lies in a cluster, there is a relation to the field of subspace clus-
tering. Even though subspace clustering algorithms also deliver
important dimensions in a way, their focus is different from KISS.
Whereas those algorithms often need to perform a complete
clustering of the dataset, we aim to get the relevant subspaces
directly, individually for every point. We do not need to know
the precise clusters to find important dimensions. Also, most of
those algorithms rely on parameters that are not easy to set. We
found that especially our first two goals, being fully unsuper-
vised, and returning individual scores for different points, are to
the best of our knowledge not achieved simultaneously by any
other algorithm in this field. COSA and DISH are most related
to our work, since they both consider subspaces for individual
points:

COSA [5] finds important subspaces individually for each point
using the 𝑘NN. A hierarchical clustering is applied based on a
dimension weighting matrix and the relevant dimensions can
be calculated based on the dimension weights of the respective
cluster members. Despite the similarities to KISS, there are two
major differences: First, users need to set a not quite intuitive
parameter 𝜆, which gives the “strength of incentive for clustering
on more dimensions" [7]. Second, the 𝑘NN are calculated in the
full-dimensional space, making COSA vulnerable to the loss of
expressiveness of distance measures in high dimensions.

DiSH [1] is a density-based algorithm that finds cluster hier-
archies and nested clusters. It has two parameters: a smoothing
factor 𝜇 representing the minimum number of points in a clus-
ter and 𝜀 for 𝜀-range queries. Even though DiSH also uses only
one-dimensional range queries and delivers subspace preference
vectors for every point, the nesting of subspaces makes it impos-
sible to determine the distinctly important subspaces. Also, the
vectors are only calculated in an intermediate step, and depend
on the parameter choices.

2.3 Possible Competitors
Finding suitable methods to compare KISS to is difficult: there are
a number of subspace clustering algorithms, but they perform
clustering, and not detection of the most important subspaces.
For some algorithms one could extract the important subspaces
of a point by looking at the subspace of the cluster the point was
assigned to. This assignment, however, can only be obtained after
an expensive clustering of the complete dataset. Some algorithms
like, e.g., RIS or SURFING rank the subspaces in a similar way as
KISS scores them, but they deliver one ranking for the complete
dataset, not for each point individually. To the best of our knowl-
edge, there is no algorithm yet that fulfills all of the requirements
we impose. In particular, returning individual dimension ratings
for each point and being completely unsupervised are very rare
properties. Nevertheless, to at least have some point of reference,
we exemplarily compare against CLIQUE, which is a grid-based
bottom-up approach for subspace clustering. It requires two pa-
rameters, 𝜉 and 𝜏 , which determine the number of intervals every
dimension is partitioned into and the density threshold. We try
out different parameter settings, showing that the results are very
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Figure 2: Projections of a 2-dimensional resp. 3-
dimensional cluster. Blue crosses are projections onto the
2-dimensional subspace, red triangles projections onto
one dimension.

sensitive to the parameter choices, whereas for KISS no parame-
ters need to be tuned. In addition, we use the quality criterion
of SURFING to obtain scores for every dimension and compare
KISS to them. However, those are global scores for all points and
not individual ones like those computed by KISS.

3 KISS
This section presents our newly developed dimension score KISS.
We first describe the basic idea to use the 𝑘 nearest neighbors
in one-dimensional projections of the 𝑛 data points to be able
to compute KISS, which gives a scoring for the importance of
every dimension for each individual point. Section 3.2 motivates
our idea mathematically. In Section 3.3 we develop the exact
formula of KISS, and present the complete KISS-based algorithm
to obtain the most important subspace of a point. We analyze the
complexity of our algorithm in Section 3.4.

3.1 Idea: Using One-dimensional 𝑘NN
If a point lies in a cluster in a 𝑑-dimensional subspace, most of
the 𝑘NN of this point in the projection of the dataset onto those
𝑑 dimensions will be members of that cluster, too. If we look at
only one of those 𝑑 dimensions (cf. the red triangles in Fig. 2),
we still see the cluster structure: the cluster on the left lies in
dimensions 𝑋 and 𝑌 , and the red triangles on the according axes
show a clear cluster structure. Projected onto those axes, most of
the one-dimensional 𝑘NN of a point will lie in the same (original)
𝑑-dimensional cluster as the point itself.

Following this observation, for a given point 𝑝 , we count for
every other point 𝑞 in how many dimensions it belongs to the
one-dimensional 𝑘NN of 𝑝 , giving us a Point Score 𝑃𝑆 (𝑝, 𝑞). A
high Point Score means that𝑞 is likely to be contained in the same
(higher-dimensional) cluster as 𝑝 , meaning that the dimensions
that they share carry more importance for 𝑝 than the others.
Summing up the Point Scores for each dimension individually
gives us a measure for the importance of each dimension, where
we account for outliers by incorporating the one-dimensional
distances to the 𝑘NN of a point.

3.2 Mathematical Perspective
In the following we give some theoretical insights which support
our idea.We denote cluster indices by superscripts and dimension
indices by subscripts, and see clusters as collections of points
drawn from a common probability distribution over R𝐷 .

Consider a cluster 𝐶1 with center 𝑐1 in dimensions {1, . . . , 𝑙}
(without loss of generality). We will consider the neighborhood of
points in dimension 1. Let𝐶2 be a different cluster with center 𝑐2

that overlaps with cluster𝐶1 in dimension 1, and assume that for
all points 𝑟1 ∈ 𝐶1 and all 𝑟2 ∈ 𝐶2 we have Pr( |𝑟11 − 𝑐1 | ≤ 𝜀) ≥ 𝛿
and Pr( |𝑟21 − 𝑐1 | ≤ 𝜀) ≥ 𝛿 , respectively, where 𝜀 > 0 and 𝛿 is
a value close to 1. Furthermore, 𝐶1 and 𝐶2 should not overlap
and be sufficiently far apart in the dimension that they share:
|𝑐11 − 𝑐

2
1 | ≤ 4𝜀 + 𝜀 ′ for an arbitrarily small 𝜀 ′ > 0. This is, e.g., the

case for all shared dimensions with high probability if 𝑐1 and 𝑐2
are uniform samples from a sufficiently large set in R𝐷 .
Let 𝑝1, 𝑝1 ∈ 𝐶1, and 𝑝2 ∈ 𝐶2. In addition, let 𝑞 be a point that
does not lie in any cluster in dimension 1 and is drawn from
a somewhat uniform distribution on a large enough interval.
Precisely, we require it to fulfill Pr( |𝑞 − 𝑐1,2 | ≤ 3𝜀) ≤ 𝛿 ′, where
𝛿 ′ is close to 0.
We now consider the distance of 𝑝1 to the other three points in
dimension 1.
For the point from the same cluster, we get

Pr( |𝑝11 − 𝑝
1
1 | ≤ 2𝜀) ≥ Pr( |𝑝11 − 𝑐

1
1 | + |𝑐11 − 𝑝

1
1 | ≤ 2𝜀)

≥ Pr( |𝑝11 − 𝑐
1
1 | ≤ 𝜀) Pr( |𝑐

1
1 − 𝑝

1
1 | ≤ 𝜀) ≥ 𝛿

2 ≈ 1.
The point from the other cluster yields

Pr( |𝑝11 − 𝑝
2
1 | ≤ 2𝜀) ≤ Pr( |𝑝11 − 𝑐

2
1 | > 𝜀 or |𝑝

2
1 − 𝑐

1
1 | > 𝜀)

≤ Pr( |𝑝11 − 𝑐
2
1 | > 𝜀) + Pr( |𝑝21 − 𝑐

1
1 | > 𝜀) = 2(1 − 𝛿) ≈ 0,

where for the first step we observed that at least one of 𝑝11, 𝑝
2
1

needs to lie outside of the 𝜀-interval around its cluster’s center,
and applied a simple union bound to obtain the second inequality.
Finally, for the point that does not lie in any cluster in dimension
1, we have, using the same arguments as above,

Pr( |𝑝11 − 𝑞1 | ≤ 2𝜀) ≤ Pr( |𝑝11 − 𝑐
1
1 | > 𝜀 or |𝑞1 − 𝑐

1
1 | ≤ 3𝜀)

≤ Pr( |𝑝11 − 𝑐
1
1 | > 𝜀) + Pr( |𝑞1 − 𝑐11 | ≤ 3𝜀) ≤ (1 − 𝛿) + 𝛿 ′ ≈ 0.

Thus, if 𝑘 is chosen smaller than the size of 𝐶1, the 𝑘NN of 𝑝11
will almost exclusively consist of points from 𝐶1. Thus,

E( |{𝑖 ∈ {1, . . . , 𝑙} | 𝑝1𝑖 is part of the 𝑘-NN of 𝑝1𝑖 }|) ≈ 𝑙
𝑘

|𝐶1 |
> 𝑙

𝑘

𝑛
,

where the last quantity corresponds to a uniform distribution of
points.

3.3 The Full Algorithm
KISS, the score indicating the importance of a dimension 𝑑 for
a point 𝑝 in a dataset 𝐷𝐵, depends on the 𝑘 nearest neighbors
(𝑘NN) of 𝑝 in the one-dimensional projection onto 𝑑 : 𝑘𝑁𝑁𝑝 (𝑑).
Note that their number can be larger than 𝑘 in case of ties, since
we chose the deterministic variant of 𝑘NN.

The more often a point occurs in the sets of one-dimensional
nearest neighbors of 𝑝 , the closer related it is to 𝑝 , which we cap-
ture in the Point Score 𝑃𝑆 (𝑝, 𝑞), where 1 is the indicator function:
𝑃𝑆 (𝑝, 𝑞) = ∑𝐷

𝑑=1 1{𝑞 ∈ 𝑘𝑁𝑁𝑝 (𝑑)}.
Higher values for 𝑘 lead to more accurate scores, as shown in

Fig. 3. However, the runtime of our algorithm depends on 𝑘 and
we would like to keep it𝑂 (𝑛 log(𝑛)) in the number of points (see
our complexity analysis in Section 3.4). For this reason, 𝑘 is set
to

√
𝑛, which is also in line with previous literature [5].

The importance a dimension 𝑑 has for a point 𝑝 depends not
only on the intersection of the 𝑘NN in this dimension with the
𝑘NN in the other dimensions, but also on the distance of those
𝑘NN. Otherwise, the important dimensions for outliers would
be distorted. Thus, the farther away a point in the 𝑘NN is, the
less influence it should have on the importance of the respec-
tive dimension, which is why we divide the Point Score of each
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Figure 3: Results for different values of 𝑘 . _𝑠1, _𝑠2, and _𝑐
denote different binarization methods, see Sec. 4.

𝑞 ∈ 𝑘𝑁𝑁𝑝 (𝑑) by the distance between the corresponding pro-
jections of 𝑞 and 𝑝 . Additionally, the computed value is divided
by the neighborhood size to account for ties among the nearest
neighbors:

𝐾𝐼𝑆𝑆 ′(𝑝,𝑑) = 1
|𝑘𝑁𝑁𝑝 (𝑑) |

∑
𝑞∈𝑘𝑁𝑁𝑝 (𝑑)

1
𝑑𝑖𝑠𝑡 (𝑝𝑑 , 𝑞𝑑 )

𝑃𝑆 (𝑝, 𝑞) (1)

Finally, KISS is normalized for every point by dividing every
value by the highest KISS occurring for the respective point:

𝐾𝐼𝑆𝑆 (𝑝, 𝑑) = 𝐾𝐼𝑆𝑆 ′(𝑝,𝑑)
max𝑒∈{1,...,𝐷 } 𝐾𝐼𝑆𝑆 ′(𝑝, 𝑒)

. (2)

This gives a value between 0 and 1 and allows for a meaningful
comparison between different points of a dataset.

3.4 Complexity
The calculation of the 𝑘NN of all points in all dimensions needs
𝑂 (𝐷 ∗ 𝑘 ∗ 𝑛 + 𝐷 ∗ 𝑛 ∗ log(𝑛)) steps, where 𝐷 is the number of
dimensions in the data set DB of size |𝐷𝐵 | = 𝑛. Computing the
𝑘NN in one dimension can be performed efficiently by sorting
the points w.r.t. this dimension and going to the left and right
of the query point in the sorted list. Given the 𝑘NN of every
point for every dimension, all Point Scores 𝑃𝑆 (𝑝, ·) w.r.t. a point
𝑝 can be calculated in𝑂 (𝐷 ∗𝑘) by iterating through the 𝑘 nearest
neighbors of 𝑝 in all 𝐷 dimensions, keeping track of the scores
via a hashmap where they get continuously updated. This has to
be done for all 𝑛 points, resulting in𝑂 (𝑛 ∗𝐷 ∗ 𝑘). For calculating
the KISS for a point 𝑝 and a dimension 𝑑 , we need to sum up
the Point Scores of all of 𝑝’s 𝑘NN in 𝑑 divided by their (one-
dimensional) distance in this dimension, which can be done in
𝑂 (1). The summation can be performed in 𝑂 (𝑘). We want to
compute the KISS for all points and all dimensions, thus we get
𝑂 (𝑛 ∗ 𝐷 ∗ 𝑘).

The KISS for all dimensions and all points can hence be com-
puted in time𝑂 (𝐷 ∗𝑘 ∗𝑛 +𝐷 ∗𝑛 ∗ log(𝑛) +𝑛 ∗ 𝐷 ∗ 𝑘 +𝑛 ∗𝐷 ∗𝑘) =
𝑂 (𝐷∗𝑛∗(𝑘+log(𝑛)), which is linear in the dimension𝐷 and close
to linear in the size of the dataset 𝑛. Runtime experiments con-
firmed this behavior, but were omitted due to space constraints.

4 EXPERIMENTAL EVALUATION
In Section 4.1 we introduce a technical tool that is needed to
validate our method against a ground truth. In Section 4.2 we de-
scribe our experiments, and summarize the results in Section 4.3.

Figure 4: Typically distributed scores for different dimen-
sions for a point 𝑝, sorted by descending normalized score.

Figure 5: Precision and recall using simple binarization
with different thresholds.

4.1 Binarization
To be able to validate our results and because for certain applica-
tions a division of the dimensions into important and unimpor-
tant ones can be needed, we suggest two possibilities to binarize
the values obtained by KISS. Ordered by score value, a typical
distribution of the scores for a point is shown in Fig. 4. If a point
lies in a cluster, the KISS of the according dimensions clearly
differs from the KISS of unimportant dimensions.

The naïve approach “simple binarization” of using a fixed
threshold for the normalized score based on which we set the
score to either 0 or 1, already delivers good results, as we show
in Section 4.2. Fig. 5 shows recall and precision for our base
case experiment and different values for the threshold, where 0.2
offers a good trade-off between the two. We performed the other
experiments with the thresholds 0.5 and 0.2, denoted by _𝑠1 and
_𝑠2, respectively.

Additionally, we developed a more sophisticated approach —
“complex binarization” —, which comes with an only negligable
increase in runtime, to improve our results even further. Here,
we look for the most appropriate cut position in the ranked
scores: e.g., for the KISS distribution depicted in Fig. 4 it could
be dimension 12 since the scores for all dimensions to the right
of it are significantly lower than the ones to the left of it. Our
approach for detecting this cut position in the score ranking
consists of first setting the importance of each dimension to 1
and then lowering it to 0 if its KISS lies below one of the three
thresholds described below.

We set all parameters required for the complex binarization
to the same reasonable values we give below for all experiments.
Both strategies are introduced mainly to be able to validate our
results against a binary ground truth. Note that the parameter
values rely on the data being scaled to the 𝐷-dimensional unit
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Figure 6: Transpose of the binary matrix for the base case
dataset computed using KISS with complex binarization.
The subspace boundaries are depicted as black lines.

hypercube. The three thresholds for the complex binarization
are:
(1) normalized threshold 𝑡𝑛 : If 𝐾𝐼𝑆𝑆 (𝑝, 𝑑) < 𝑡𝑣 = 0.1, then

𝐾𝐼𝑆𝑆 (𝑝, 𝑑) is set to 0.
(2) unnormalized threshold 𝑡𝑢 : Because we normalize the KISS

of each dimension by dividing by the largest KISS for this
point, even a point that is just random noise has at least one
dimension with score 1. However, the unnormalized value of
dimensions with a high normalized KISS for this noise point
will be significantly lower than the unnormalized values of
dimensions with a high normlized KISS for a point that lies
in a cluster. Thus, in addition to setting a threshold for the
normalized KISS, we also set one for the unnormalized KISS’
(cf. Equation 1): if 𝐾𝐼𝑆𝑆 ′(𝑝,𝑑) < 𝑡𝑢 , the score for 𝑑 is set to 0,
where 𝑡𝑢 equals the difference between mean and minimum
of all unnormalized scores.

(3) descent threshold 𝑡𝑑 : The descent threshold controls the de-
cline between consecutive KISS values. If
𝐾𝐼𝑆𝑆 (𝑝,𝑒)−𝐾𝐼𝑆𝑆 (𝑝,𝑑)

𝐾𝐼𝑆𝑆 (𝑝,𝑒) > 𝑡𝑑 = 0.7, where 𝐾𝐼𝑆𝑆 (𝑝, 𝑒) is the next
largest KISS value of 𝑝 , then all KISS values smaller than or
equal to 𝐾𝐼𝑆𝑆 (𝑝, 𝑑) become 0.
The result of the binarization can be expressed in a binary

matrix as in Fig. 6.
Empirically, setting 𝑡𝑛 significantly lower than 0.5 and 𝑡𝑑 rather

high allows for detecting more relevant dimensions and therefore
detecting subspaces of higher dimensionality. 𝑡𝑢 affects mostly
how well outliers are detected. However, setting this parameter
too high leads to very restricted binarized scores and can possi-
bly decrease the detection rate of the important dimensions of
the cluster points. In general, the parameters allow us to trade
precision for recall. KISS is supposed to be used in settings where
working with the original data without a significant reduction
of the dimensionality is infeasible, either due to limited human
capacity when manually analyzing the data or due to non-fa-
vorable dependence of a downstream task’s performance on the
number of dimensions. Hence we can live with a mediocre recall
if in return the precision is high, allowing us to get rid of many
dimensions, which is why we mainly focus on achieving a high
precision.

In real-world settings where one needs a binary division of
the dimensions, one typically has a (computational or storage)
budget of dimensions one can deal with in the downstream task,
and would binarize in a way so that exactly this many dimensions
are labeled as important.

4.2 Experiments
We test with both the simple and complex binarization of KISS
and denote the corresponding values with the abbreviations _𝑠
and _𝑐 , respectively. To have ground truth values for the impor-
tance of all dimensions, we generated data containing subspace
clusters with possibly overlapping subspaces. The clusters are

Figure 7: Average KISS for all points, partitioned accord-
ing to ground-truth based important subspaces. Red bars
show dimensions containing clusters.

Gaussians with mean randomly drawn from the uniform distri-
bution on the 𝐷-dimensional unit hypercube. The values for the
dimensions of a point that do not lie in a cluster are uniformly
distributed in the hypercube 1.

Looking at the distribution of KISS per important (accord-
ing to the ground truth) subspace in Fig. 7, we already see the
correlation to the cluster subspaces: the average scores for the
important dimensions (red bars) are visibly higher than those for
unimportant dimensions (blue bars). Noise points that do not lie
in any cluster are shown in the lower right diagram: the average
KISS values do not differ much. The precision we achieve for
both types of binarization are good, as can be seen in Fig. 8.

To the best of our knowledge there are no alternatives yet to
KISS (see Section 2.3). However, with CLIQUE and SURFING we
compare KISS to representative algorithms for subspace cluster-
ing and for subspace search. The comparison makes the disad-
vantages of having to set parameters as well as the benefit of
individual scores in contrast to a global ranking clear.

Among others, Fig. 8 shows results obtained with CLIQUE
for different parameter configurations. Even though CLIQUE
was able to obtain high recall values, the precision was even for
the best parameter settings much lower than for KISS (for both
binarizationmethods).We also see that the results heavily depend
on the choice of CLIQUE’s parameters, with precision ranging
from 35% to 77% and recall from 53% to 87%. Fig. 8 further includes
the results obtained by binarizing the “quality” of each particular
dimension as computed by SURFING for different values of 𝑘 (in
the same way as we binarize the KISS values). The classification
performance of SURFING is very dependent on the parameter
choice as well. With a good choice, it is able to achieve a high
recall, but, as expected, the precision values are rather low, since
the quality assignments are the same for all points, which does
not match the ground truth.

Starting from this base case, we altered one parameter of the
data in each of the following subsections to investigate KISS’
behaviour w.r.t. this parameter.

4.2.1 Number of points. Changing the number of points 𝑛 did
not affect the precision, recall or accuracy of KISS significantly.

1The settings for our base case dataset are as follows: number of points 𝑛 = 10000,
dimensionality of point 𝑝 : 𝑑𝑖𝑚 (𝑝) = 20, percentage of noise 𝑛𝑜𝑖𝑠𝑒 = 0.1, set of
dimensions in subspace 𝑆𝑖 : 𝑆0 = {0 . . . 3}, 𝑆1 = {14 . . . 19}, 𝑆2 = {2, 5, 10, 16, 18},
percentage of points w.r.t.𝑛 lying in subspace𝑆𝑖 : |𝑆𝑖 | = [0.3, 0.3, 0.3], dimensional-
ity of 𝑆𝑖 :𝑑𝑖𝑚 (𝑆𝑖 ) = [4, 6, 5], number of clusters in subspace 𝑆𝑖 :𝑛𝑐 (𝑆𝑖 ) = [1, 2, 1],
variance of cluster𝐶𝑖 : 𝑣𝑎𝑟 (𝐶𝑖 ) = [1.5, 1.0, 1.3].
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Figure 8: Results for KISS, SURFING, and CLIQUE for the
base case dataset and different parameters 𝜉 and 𝜏 resp. 𝑘 .
Same color indicates same parameters.

The three values deviated by at most 3% for 𝑛 ∈ {5 000, 10 000,
25 000, 50 000, 75 000, 100 000}.

4.2.2 Number of dimensions. With growing number of dimen-
sions (while keeping the ratio of dimensions lying in important
subspaces the same) the recall decreases, but the precision, which
we put more emphasis on, stays high.

4.2.3 Noise. Increasing the percentage of pure noise points
leads to less points in each cluster, thus precision drops. Nev-
ertheless, the decrease of quality is slow, and up to 50% of data
can be pure noise points before precision falls below 75% (for the
complex binarization).

4.2.4 Number of subspaces. We examine KISS for up to 10
different subspaces and obtain good results with precisions above
73% in all cases. Additionally, recall as well as accuracy diminish
only slightly with increasing number of subspaces.

4.2.5 Subspace size ratio. We tested several size ratios be-
tween the three base case subspaces our dataset consists of. In
our base case, every subspace contains one third of the non-noise
data points. We set the share of instances in the first subspace to
values {0.4, 0.5, 0.6, 0.7, 0.8}, while dividing the remaining points
equally among the other two subspaces (and additionally keeping
the 10% noise of the base case). The quality of the scores hardly
changed: we received precision values for the simple binarization
between 83% and 85%, and between 84% and 86% for the complex
binarization. Recall values ranged between 39% and 41%, and 47%
and 49%, respectively, showing that the size ratio of the subspaces
does not constitute a problem for KISS. Thus, even subspaces
containing only very few points of the complete dataset can be
found as easily as bigger subspaces.

4.2.6 Number of clusters per subspace. With an increasing
number of clusters, precision as well as recall decrease, since
there are fewer points per cluster that could help identify a point
in the cluster.

4.2.7 Density of clusters. We tested several density settings
for the clusters. When all subspaces contain similarly dense clus-
ters, the quality decreaseswith lower density (i.e., higher standard
deviation). If each subspace contains differently dense clusters,
the results are rather determined by the average density than by
the lowest or highest occurring density. Thus, a large difference
in cluster density does not influence the results negatively.

1When adding more subspaces to the base case dataset, we use the same settings
as for the original subspaces: the points are evenly distributed among the sub-
spaces, and the cluster settings of the clusters lying in subspaces 𝑆0+3𝑖 , 𝑆1+3𝑖 , 𝑆2+3𝑖
correspond to the settings of the clusters lying in subspaces 𝑆0, 𝑆1, 𝑆2 .

4.3 Summary of Results
Our experiments show that KISS achieves a high precision and
reasonable recall across a wide range of settings. With a high
number of subspaces or clusters the performance starts to de-
grade, but KISS is robust to noise and can deal with high numbers
of points as well as clusters of different density. We would like
to point out that the experiments only show a small part of KISS’
capabilities, since the original KISS is a continuous value, which
we just binarized here, and likely not even optimally.

5 CONCLUSION AND FUTUREWORK
We developed KISS, a scoring that assigns an importance value to
each dimension of each point of a dataset. It is scalable, does not
suffer from the curse of dimensionality, since it replaces multi-
dimensional distance measures by one-dimensional ones, and
does not require significant user involvement to set parameters.
Its runtime is linear in the dimensionality and close to linear in
the number of points, setting it apart from similar methods.

KISS has numerous applications, both as a tool to get an insight
into datasets as well as a foundation for data mining applications,
in particular to accelerate downstream tasks or to make them
more robust to noise. We are currently working on some of the
most immediate extensions: (1) performing clustering using espe-
cially the most relevant dimensions for each point; and (2), using
KISS for outlier and noise detection, following the observation
that points that have a low KISS in every dimension are typically
in none of those in a cluster. We encourage the usage of KISS for
preprocessing data and gaining knowledge in an early stage of a
data anlysis process, since it is simple, fast, delivers good results
and does not require parameter tuning.
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ABSTRACT
Collaborative filtering has been largely used to advance modern
recommender systems to predict user preference. A key compo-
nent in collaborative filtering is representation learning, which
aims to project users and items into a low dimensional space to
capture collaborative signals. However, the scene information,
which has effectively guided many recommendation tasks, is
rarely considered in existing collaborative filtering methods. To
bridge this gap, we focus on scene-based collaborative recom-
mendation and propose a novel representation model SceneRec.
SceneRec formally defines a scene as a set of pre-defined item
categories that occur simultaneously in real-life situations and
creatively designs an item-category-scene hierarchical structure
to build a scene-based graph. In the scene-based graph, we adopt
graph neural networks to learn scene-specific representation on
each item node, which is further aggregated with latent repre-
sentation learned from collaborative interactions to make recom-
mendations. We perform extensive experiments on real-world
E-commerce datasets and the results demonstrate the effective-
ness of the proposed method.

1 INTRODUCTION
Recommender systems have become increasingly important to
address the information overload problem and have been widely
applied in many different fields, such as social networks [22] and
news websites [24]. To predict a user’s preference, an extensive
amount of collaborative filtering (CF) methods have been pro-
posed to advance recommender systems. The basic idea of CF is
that user behavior would always be similar and a user’s interest
can be predicted from the historical interactive data like clicks
or purchases. A key component of CF is to learn the latent repre-
sentation, which usually projects users and items into a lower
dimensional space. A variety of CF models, including matrix fac-
torization [8], deep neural networks [7] and graph convolutional
networks [16], are adopted to capture collaborative signals from
a user-item matrix or a user-item bipartite graph.

In the meantime, recommender systems that integrate scene
information are attracting more and more attention. For exam-
ple, predictive models are able to recommend substitutable or
complementary items [9, 10, 13] that visually match the scene
which is represented in an input image. The image data contains
rich contextual information like background color, location, land-
scape, etc., which may be ignored by conventional CF methods.
However, the input image could reveal no scene information or

© 2021 Copyright held by the owner/author(s). Published in Proceedings of the
24th International Conference on Extending Database Technology (EDBT), March
23-26, 2021, ISBN 978-3-89318-084-4 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

even becomes unavailable in many recommendation scenarios.
For example, in E-commerce systems, most thumbnail images
only contain product pictures which are embedded in the white
background. In such circumstances, scene-based recommenda-
tion becomes infeasible because the scene definition is not clear.

To address this issue, this work investigates the utility of incor-
porating scene information into CF recommendation. However,
this study brings two challenges. First, a formal definition on
scene is essential to this problem. Without image data, how to
formally define a scene becomes a problem. Second, how to incor-
porate scene information into existing CF models should also be
taken into account. Keeping these two key points in mind, we pro-
pose SceneRec, a novel method for scene-based collaborative fil-
tering. Specifically, we propose a principled item-category-scene
hierarchical structure to construct the scene-based graph (Figure
1). In particular, a scene is formally defined by a set of fine-grained
item categories that could simultaneously occur in real-life situa-
tions. For example, the set of item categories {Keyboard, Mouse,
Mouse Pad, Battery Charger, Headset} represents the scene “Pe-
ripheral Devices”. This can be naturally applied to a situation
where a user has already bought a PC and many different types
of supplementary devices are recommended. Moreover, SceneRec
applies graph neural networks on the scene-based graph to learn
the item representation based on the scene information, which is
further aggregated with the latent representation learned from
user-item interactions to make predictions.

To the best of our knowledge, SceneRec is among the first
to study scene-based recommendation with a principled scene
definition and our main contributions are summarized as follows:
(1) We study the problem of scene-based collaborative filtering
for recommender system where a scene is formally defined as a
set of item categories that could reflect a real-world situation.
(2)We propose a novel recommendation model SceneRec. It lever-
ages graph neural networks to propagate scene information and
learn the scene-specific representation for each item. This rep-
resentation is further incorporated with a latent representation
from user-item collaborative interactions to make predictions.
(3) We conduct extensive experiments to evaluate the perfor-
mance of SceneRec against 9 other baseline methods. We find
that our method SceneRec is effective. Specifically, SceneRec on
average improves the two metrics (NDCG@10, HR@10) over the
baselines by (14.8%, 12.1%) on 4 real-world datasets.

2 RELATEDWORK
Collaborative filtering has been widely applied in modern rec-
ommender systems. One class of CF methods try to build explicit
models on the user-item interactions. For example, matrix factor-
ization [2, 8, 12, 14] maps the representation of each user and each
item into a lower dimensional space and calculates inner product
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between vector representations to make predictions. To enhance
recommendation, various contextual information has been incor-
porated into CF, such as user review [21], social connections [22]
and item side information [17]. Different from existing works
that rely on linear predictive function, many recent efforts apply
deep learning techniques [7] to learn non-linearities between
user embedding and item embedding.

Another line of CF methods take user-item interactions as a
bipartite graph. For example, some early efforts [5] conduct label
propagation, which essentially searches neighborhood on the
graph, to capture collaborative signals. Inspired by the success
of graph neural networks (GNN) [6, 11] that directly conduct
convolutional operations on the non-grid network data, a series
of GNN-based recommendation methods have been proposed
on an item-item graph [23] or a user-item graph [16] to learn a
vector embedding for each item or user. The general idea is the
representation of one graph node can be aggregated and com-
bined by the representation of its neighbor nodes. NGCF [20]
extends GNN to multiple depths to capture high-order connectiv-
ities that are included in user-item interactions. KGAT [19] and
KGCN [18] investigate the utility of incorporating knowledge
graph (KG) into CF by projecting KG entities to item nodes.

Our work is also related to the application of scene information
in recommender systems. For example, given the scene in the
form of an input image, recommendation methods are capable
of providing substitutable [10, 13] or supplementary[9] products
that visually match the input scene. However, in these tasks, the
scene is represented by image data, which is not readily available
in many recommendation scenarios. In such cases, scene-based
recommendations become difficult or even impossible because
the scene has not been well defined. In this paper, we aim to
integrate scene information into CF where each scene is define
by a set of fine-grained item categories. By exploiting the scene-
specific representation into conventional CF signals, the model
can potentially improve predictions on user preference.

3 PROBLEM FORMULATION
Definition 3.1. Scene. A scene is defined as a set of item cat-

egories that occur simultaneously and frequently in a real-life
situation, denoted as 𝑠 = {𝑐1, 𝑐2, · · · , 𝑐 |𝑠 | |𝑐𝑖 ∈ C, 1 ≤ 𝑖 ≤ |𝑠 |},
where C is the set of item categories and |𝑠 | ≥ 1. The item cate-
gory is one of a item’s attributes and 𝑠 ⊂ C.

Definition 3.2. User-ItemBipartiteGraph.The user-item in-
teractions can be represented as a bipartite graph G = {(𝑢, 𝑥𝑢𝑖 , 𝑖) |
𝑢 ∈ U, 𝑖 ∈ I}, where U and I are the set of users and items
respectively, and the edge 𝑥𝑢𝑖 indicates the occurrence or fre-
quency with that the user 𝑢 has interacted with the item 𝑖 , such
as clicking and purchasing.

Definition 3.3. Scene-based Graph. The scene-based graph
H is a hierarchical network with three layers: the item layer,
the category layer, and the scene layer as shown in Figure 1.
The item layer consists of items and is denoted as L𝑖𝑡𝑒𝑚 =

{(𝑖𝑝 , 𝑦𝑝𝑞, 𝑖𝑞) |𝑖𝑝 , 𝑖𝑞 ∈ I}, where the edge 𝑦𝑝𝑞 represents the simi-
larity between two items 𝑖𝑝 and 𝑖𝑞 . The category layer is denoted
as L𝑐𝑎𝑡𝑒 = {(𝑐𝑝 , 𝑧𝑝𝑞, 𝑐𝑞) |𝑐𝑝 , 𝑐𝑞 ∈ C}, where the edge 𝑧𝑝𝑞 rep-
resents that the category 𝑐𝑝 has relevance to the category 𝑐𝑞 .
The interaction between the item layer and the category layer
is described by L𝑖𝑐 = {(𝑖𝑝 , 𝑎𝑝𝑞, 𝑐𝑞) |𝑖𝑝 ∈ I, 𝑐𝑞 ∈ C}, where
the edge 𝑎𝑝𝑞 connects an item 𝑖𝑝 to a pre-defined item cate-
gory 𝑐𝑞 . The scene layer is composed of scenes, where a scene
𝑠 is formally defined as a set of item categories {𝑐1, 𝑐2, · · · , 𝑐 |𝑠 |}.
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Figure 1: An illustrative example of the scene-based graph
that consists of the item layer, the category layer and the
scene layer. Each item is associated with a category. In
the item layer and the category layer, the set of edges rep-
resent the item-item relations and the category-category
relations. There are connections between categories and
scenes, which indicates that a category belongs to a scene.

The relation between categories and scenes is illustrated by
L𝑐𝑠 = {(𝑐𝑝 , 𝑏𝑝𝑞, 𝑠𝑞) |𝑐𝑝 ∈ C, 𝑠𝑞 ∈ S}, where the edge 𝑏𝑝𝑞 indi-
cates that a category 𝑐𝑝 belongs to a scene 𝑠𝑞 andS = {𝑠1, 𝑠2, · · · }
is the set of scenes. For simplicity, we set the weights of edges in
the scene-based graphH to be 1; otherwise, 0.

Definition 3.4. Scene-basedRecommendation.Given a user-
item bipartite graph G recording interaction history, the goal of
the scene-based recommendation is to predict the probability r𝑢𝑖
that the user 𝑢 has potential interest in the item 𝑖 with the help
of scene information from a scene-based graphH .

4 FRAMEWORK
In this section, we will first give an overview about the proposed
framework, then introduce each model component in detail.

4.1 Architecture Overview
The architecture of the proposed model is shown in Figure 2.
There are three components in the model: user modeling, item
modeling, and rating prediction. User modeling aims to learn
a latent representation for each user. To achieve this, we take
user-item interaction as input and aggregate the latent represen-
tation of items that the user has interacted with to generate the
user latent factor. Item modeling aims to generate the item latent
factor representation. Since each item exists in both user-item
bipartite graph and the scene-based graph, SceneRec learns item
representations in each graph space, i.e., item modeling in the
user-based space and item modeling in the scene-based space.
In the user-based space, we take a similar strategy which aggre-
gates the representation of all users that each item has interacted
with to generate vector embedding. In the scene-based space,
we exploit the hierarchical structure of the scene-based graph
where the information is propagated from the scene layer to
the category layer and from the category layer to the item layer.
Then we concatenate two item latent factors for the general rep-
resentation. In the last component, we integrate item and user
representations to make rating prediction.

4.2 User Modeling
In the user-item graph, a user 𝑢𝑝 is connected with a set of items
and these items directly capture the user’s interests. We thus
learn user 𝑢𝑝 ’s embedding m𝑢𝑝 by aggregating the embeddings
of item neighbors, which is formulated as,

m𝑢𝑝 = 𝜎 (Wu ·


∑
𝑖𝑞 ∈𝑈 𝐼 (𝑢𝑝 )

e𝑖𝑞

 + bu), (1)
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Figure 2: The illustration of SceneRec architecture (the arrowed lines present the bottom-up information flow). The em-
beddings of users and items are learned by user modeling and item modeling, respectively.

where𝑈 𝐼 (𝑢𝑝 ) denotes the set of items that are connected to user
𝑢𝑝 , e𝑖𝑞 is the embedding vector of item 𝑖𝑞 , and 𝜎 is the nonlinear
activation function. Wu and bu are the weight matrix and the
bias vector to be learned.

4.3 Item Modeling
The general representation m𝑖𝑝 for item 𝑖𝑝 can be further split
into two parts: the embedding m𝑈

𝑖𝑝
in the user-based space and

the embedding m𝑆
𝑖𝑝

in the scene-based space.

4.3.1 User-based embedding. In the user-item graph, an item
𝑖𝑝 has connections with a set of users. We learn its embedding
m𝑈
𝑖𝑝

by aggregating the embedding of these engaged users:

m𝑈
𝑖𝑝

= 𝜎 (Wiu ·


∑
𝑢𝑞 ∈𝐼𝑈 (𝑖𝑝 )

e𝑢𝑞

 + biu), (2)

where 𝐼𝑈 (𝑖𝑝 ) denotes the set of users that are connected to item
𝑖𝑝 , e𝑢𝑞 is the embedding vector of user𝑢𝑞 ,Wiu and biu are param-
eters to be learned. Since m𝑈

𝑖𝑝
is aggregated from user neighbors,

m𝑈
𝑖𝑝

represents the user-based embedding of item 𝑖𝑝 .

4.3.2 Scene-based embedding. In the scene-based graph, each
item is connected to both other items and its category. So, the
scene-based embedding m𝑆

𝑖𝑝
for item 𝑖𝑝 is composed of represen-

tation that is specific to item neighbors and category neighbors.
For the category-specific representation, we should first gener-

ate the latent factor of each category. Since one category node can
connect to both scene nodes and other related category nodes,
the category representation can be further split into two types:
the scene-specific and category-specific representation.

Given a category 𝑐𝑝 , it may belong to a set of scenes and its
scene-specific embedding vector h𝑆𝑐𝑝 can be updated as follows:

h𝑆𝑐𝑝 =
∑

𝑠𝑞 ∈𝐶𝑆 (𝑐𝑝 )
e𝑠𝑞 , (3)

where𝐶𝑆 (𝑐𝑝 ) is the set of scenes that category 𝑐𝑝 belongs to and
e𝑠𝑞 is the embedding vector of scene 𝑠𝑞 .

Besides the connection between scene nodes and category
nodes, our model also captures the interactions between differ-
ent category nodes. Each category contributes to the category-
specific representation but categories do not always affect each

other equally. Therefore, we apply the attention mechanism to
learn the influence between different item categories. In this way,
the category-specific representation h𝐶𝑐𝑝 of the category 𝑐𝑝 can
be aggregated as follows:

h𝐶𝑐𝑝 =
∑

𝑐𝑞 ∈𝐶𝐶 (𝑐𝑝 )
𝛼𝑝𝑞e𝑐𝑞 , (4)

where 𝐶𝐶 (𝑐𝑝 ) is the set of neighbor categories, e𝑐𝑞 is the em-
bedding vector of 𝑐𝑞 , and 𝛼𝑝𝑞 is the attention weight. For a pair
of categories, the more scenes they share, the higher relevance
between them. Therefore, we propose a scene-based attention
function to compute 𝛼𝑝𝑞 . Specifically, we calculate the attention
score by comparing the sets of scenes that 𝑐𝑝 and 𝑐𝑞 belong to:

𝛼∗𝑝𝑞 = 𝑓
©«

∑
𝑠𝑎 ∈𝐶𝑆 (𝑐𝑝 )

e𝑠𝑎 ,
∑

𝑠𝑏 ∈𝐶𝑆 (𝑐𝑞 )
e𝑠𝑏

ª®¬ , (5)

where 𝑓 (·) is an attention function tomeasure the input similarity.
For simplicity, we use cosine similarity as 𝑓 (·) in this work. 𝛼𝑝𝑞
is obtained by further normalizing 𝛼∗𝑝𝑞 via the softmax function:

𝛼𝑝𝑞 =

exp
(
𝛼∗𝑝𝑞

)
∑

{𝑞 |∀𝑐𝑞 ∈𝐶𝐶 (𝑐𝑝 ) } exp
(
𝛼∗𝑝𝑞

) . (6)

Finally, we generate the overall representation m𝑐𝑝 of cate-
gory 𝑐𝑝 by integrating the scene-specific representation and the
category-specific representation:

m𝑐𝑝 = 𝜎

(
Wic · [h𝑠𝑐𝑝 ∥h

𝑐
𝑐𝑝
] + bic

)
, (7)

where ∥ denotes the concatenation operation, Wic and bic are
parameters to be learned.

For item 𝑖𝑝 , it is only connected to one pre-defined category
and thus its category-specific representation h𝐶

𝑖𝑝
is denoted as:

h𝐶𝑖𝑝 = m𝐶 (𝑖𝑝 ) , (8)

where 𝐶 (𝑖𝑝 ) indicates the category of 𝑖𝑝 .
We continue to learn the item-specific representation h𝐼

𝑖𝑝
since

there exist connections between different item nodes. Similar to
category-category relations, items do not always affect each other
equally and we apply the attention mechanism to learnh𝐼

𝑖𝑝
:

h𝐼𝑖𝑝 =
∑

𝑖𝑞 ∈𝐼 𝐼 (𝑖𝑝 )
𝛽𝑝𝑞e𝑖𝑞 , (9)
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Table 1: Statistics of JD datasets. Each relation A-B has three parts: number of A, number of B, and number of A-B.

Relations (A-B) Baby & Toy Electronics Fashion Food & Drink

User-Item 4,521-51,759 (481,831) 3,842-52,025 (539,066) 3,959-53,005 (541,238) 3,236-47,402 (463,391)
Item-Item 51,759-51,759 (3,002,806) 52,025-52,025 (2,992,333) 53,005-53,005 (2,750,495) 47,402-47,402 (2,606,003)

Item-Category 51,759-103 (51,759) 52,025-78 (52,025) 53,005-91 (53,005) 47,402-105 (47,402)
Category-Category 103-103 (1,791) 78-78 (825) 91-91 (1,058) 105-105 (1,628)
Scene-Category 323-103 (1,370) 54-78 (281) 438-91 (1,646) 136-105 (630)

where 𝛽𝑝𝑞 denotes the attention weight. Since items that belong
to the same category share similarity, we leverage scene infor-
mation to calculate 𝛽𝑝𝑞 by comparing their categories via the
scene-based attention mechanism:

𝛽∗𝑝𝑞 = 𝑓
©«

∑
𝑠𝑎 ∈𝐼𝑆 (𝑖𝑝 )

e𝑠𝑎 ,
∑

𝑠𝑏 ∈𝐼𝑆 (𝑖𝑞 )
e𝑠𝑏

ª®¬ , (10)

𝛽𝑝𝑞 =

exp
(
𝛽∗𝑝𝑞

)
∑

{𝑞 |∀𝑖𝑞 ∈𝐼 𝐼 (𝑖𝑝 ) } exp
(
𝛽∗𝑝𝑞

) , (11)

where 𝐼𝑆 (𝑖𝑝 ) is the set of scenes that contain item 𝑖𝑝 ’s category.
In the end, we concatenate the category-specific representa-

tion h𝐶
𝑖𝑝

and the item-specific representation h𝐼
𝑖𝑝

to derive the

overall representationm𝑆
𝑖𝑝

of the item 𝑖𝑝 in the scene-based space:

m𝑆
𝑖𝑝

= 𝜎

(
Wii · [h𝐶𝑖𝑝 ∥h

𝐼
𝑖𝑝
] + bii

)
, (12)

where Wii and bii are parameters to be learned.

4.3.3 The general item embedding. The item embedding m𝑈
𝑖𝑝

in the user-based space learns the collaborative signals from user-
item interactions, while the item embedding m𝑆

𝑖𝑝
in the scene-

based space provides additional information from the scene-based
graph. These two types of representations could be complemen-
tary to each other, and they are combined by a multilayer percep-
tron (MLP) to generate the general item embedding as follows:

m𝑖𝑝 = F
(
Wi · [m𝑈

𝑖𝑝
∥m𝑆

𝑖𝑝
] + bi

)
, (13)

where F(·) is a MLP network,Wi and bi are parameters.

4.4 Model Optimization
Given the representation of user 𝑢𝑝 and the general representa-
tion of item 𝑖𝑞 , the user preference is obtained via a MLP network:

r′𝑝𝑞 = F
(
Wr · [m𝑢𝑝 ∥m𝑖𝑞 ] + br

)
, (14)

whereWr and br are parameters to be learned.
To optimize the model parameters, we apply the pairwise BPR

loss [14], which takes into account the relative order between ob-
served and unobserved user-item interactions and assigns higher
prediction scores to observed ones. The loss function is as follow:

Ω(Θ) =
∑

(𝑝,𝑥,𝑦) ∈O
− ln𝜎

(
r′𝑝𝑥 − r′𝑝𝑦

)
+ 𝜆∥Θ∥22, (15)

where O =
{
(𝑝, 𝑥,𝑦) | (𝑝, 𝑥) ∈ R+, (𝑝,𝑦) ∈ R−} denotes the pair-

wise training data, R+ and R− are the observed and unobserved
user-item interactions, respectively.Θ denotes all trainable model
parameters and 𝜆 controls ℓ2 regularization to prevent overfitting.

To sum up, we have different entity types, i.e., user, item,
category and scene, in the user-item bipartite graph and the scene-
based graph. In the learning process, the user representation is
learnt from interactions between users and items. The item latent
factor is generated from two components: the representation in
the user-based space and the representation in the scene-based
space. Then the user embedding and the item embedding are
integrated to make prediction via pairwise learning.

5 EXPERIMENTS
In this section, we evaluate SceneRec on 4 real-world E-commerce
datasets and focus on the following research questions:
RQ1: How does SceneRec perform compared with state-of-the-
art recommendation methods?
RQ2: How do different key components of SceneRec affect the
model performance?
RQ3: How does the scene information benefit recommendation?

5.1 Datasets
To the best of our knowledge, there are no public datasets that de-
scribe scene-based graph for recommender systems. To evaluate
the effectiveness of SceneRec, we construct 4 datasets, namely,
Baby & Toy, Electronics, Fashion, and Food &Drink, from JD.com,
one of the largest B2C E-commerce platform in China. In each
dataset, we build the user-item bipartite graph and the scene-
based graph from online logs and commodity information. Statis-
tics of the above datasets are shown in Table 1 and more details
are discussed next. We have released the codes and datasets (avail-
able at https://github.com/e09b47e1/Scene-Based_Recommendation).

We first build the user-item bipartite graph that by randomly
sampling a set of users and items from online logs. A user is then
connected to an item if she or he clicked the item.

Next we build the scene-based graph where three different
nodes, i.e., item, category and scene, are taken as input. We
first consider connections between different item nodes. In E-
commerce systems, users perform various behaviors such as
“view” and “purchase”, which can be further used to construct
item-item relations. In this work, we choose “view” to build the
item-item connections. A view session is a sequence of items that
are viewed by a user within a period of time and it is intuitive
that two items should be highly relevant if they are frequently
co-viewed. In the item layer, two items are linked if they are co-
viewed by a user within the same session where the weight is the
sum of co-occurrence frequency within 2 months. For each item,
we rank all the connected items by the edge weight and at most
top 300 connections are preserved. All time period and numbers
of connection are empirically set based on the trade-off between
the size of datasets and co-view relevance between items.

We then connect each item to its pre-defined category to build
the item-category relations. We also consider connections be-
tween different category nodes as shown in the second layer
of the scene-based graph. For example, in E-commerce systems,
the category “Mobile Phone” is strongly related to the category
“Phone Case” but has little relevance to the category “Washing
Machine”, and thus the first two categories are linked. To achieve
this, we compute the co-view frequency within six months be-
tween each pair of category node, and only top 100 connections
of each category is preserved. In the end, each pair is further
labeled as 0 or 1 from consensus decision-making by three data
labeling engineers to indicate if there exists relevance or not.

The last step of building the scene-based graph is to link cate-
gory nodes to scene nodes. Each scene consists of a set of selected
categories which can be manually coded by human experts (scene
mining is our future work). Specifically, this procedure consists
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Table 2: Comparisons with baselines and model variants.

Baby & Toy Electronics Fashion Food & Drink
NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10 HR@10

BPR-MF 0.3117 0.5213 0.4005 0.6082 0.3142 0.5294 0.3663 0.5445
NCF 0.2232 0.3800 0.3324 0.5364 0.1518 0.3090 0.3068 0.4628
CMN 0.2136 0.3840 0.4447 0.6725 0.2616 0.4516 0.4028 0.5854

PinSAGE 0.2124 0.4145 0.2954 0.5200 0.1770 0.3724 0.2791 0.4798
NGCF 0.3679 0.6000 0.4308 0.6559 0.3361 0.5749 0.3487 0.5228
KGAT 0.3055 0.5421 0.3616 0.6172 0.3115 0.5580 0.3221 0.5093

SceneRec-noitem 0.3977 0.6475 0.4748 0.7007 0.3936 0.6454 0.4080 0.6029
SceneRec-nosce 0.4193 0.6617 0.4715 0.7156 0.3933 0.6499 0.4156 0.6074
SceneRec-noatt 0.3950 0.6357 0.4665 0.7053 0.3953 0.6410 0.4138 0.6154

SceneRec 0.4298 0.6771 0.4926 0.7524 0.4220 0.6763 0.4266 0.6211

of two steps. First, an expert team (about 10 operations staff)
edits a set of scene candidates based on the corresponding do-
main knowledge. Then, a data labeling team which consists of 3
engineers refines the generated scenes based on the criteria that
whether each scene is reasonable to reflect a real-life situation.

To sum up, there is a user-item bipartite graph and a scene-
based graph in the constructed E-commerce datasets where we
have different types of nodes, i.e., user, item, category and scene.
The scene-based graph presents a 3-layer hierarchical structure.
There exist multiple relations among items, categories and scenes
that are derived from user behavior data, commodity information
and manual labeling. Thus, the datasets have all the characteris-
tics of networks we want to study as described in Section 3.

5.2 Baselines
SceneRec leverages scene information to learn the representation
vector of users and items in recommendation. Therefore, we
compare SceneRec against various recommendation methods or
network representation learning methods.
(1) BPR-MF [14] is a benchmark matrix factorization (MF) model
which takes the user-item graph as input and BPR loss is adopted.
(2)NCF [7] leveragesmulti-layer perceptron to learn non-linearities
between user and item interactions in the traditional MF model.
(3) CMN [3] is a state-of-the-art memory-based model to capture
both global and local neighborhood structure of latent factors.
(4) PinSAGE [23] learns node representations on the large-scale
item-item network where the representation of one item can be
aggregated by the representation of its neighbor nodes. Here, we
directly apply PinSAGE on the input user-item bipartite graph.
(5) NGCF [20]: This is a state-of-the-art GNN-based recommen-
dation method, which learns the high-order connectivities based
on the network structure.
(6) KGAT [19] investigates the utility of KG into GNN-based
collaborative filtering where each item is mapped to an entity
in KG. In our experiments, we regard each scene as a special
type of KG entity and link it to item nodes via the category node
connection. In such cases, the scene-based graph is degraded to
the one that contains only item-scene connections. The graph
contains two types of relations: an item belongs to a scene and a
scene includes an item.
(7) SceneRec-noitem is a variant of SceneRec by removing item-
item interactions in the scene-based graph.
(8) SceneRec-nosce is a variant of SceneRec by removing both
category and scene nodes, and thus the scene-based graph only
includes relations between items.
(9) SceneRec-noatt is another variant of SceneRec by remov-
ing the attention mechanism between item-item relations and
category-category relations.

5.3 Experimental Settings
We evaluate the model performance using the leave-one-out
strategy as in [1, 7]. For each user, we randomly hold out one
positive item that the user has clicked and sample 100 unobserved
items to build the validation set. Similarly, we randomly choose
another positive item along with 100 negative samples to build
the test set. The remaining positive items form the training set.

In our experiments, we choose Hit Ratio (HR) and Normalized
Discounted Cumulative Gain [15] (NDCG) as evaluation metrics.
HR measures whether positive items are ranked in the top 𝐾
scores while NDCG focuses more on hit positions by assigning
higher scores to top results. For both metrics, a larger value indi-
cates a better performance. We report the average performance
over all users with 𝐾 = 10.

The hyper-parameters of SceneRec are fine-tuned using the
validation set. We apply RMSProp [4] as the optimizer where the
learning rate is determined by a grid search among {10−4,10−3,10−2,10−1}
and the ℓ2 normalization coefficient 𝜆 is determined by a grid
search among {0, 10−6, 10−4, 10−2}. For fair comparisons, the em-
bedding dimension 𝑑 is set to 64 for all methods except NCF. For
NCF, 𝑑 is set to 8 due to the poor performance in higher dimen-
sional space. For NGCF and KGAT, the depth 𝐿 is set to 4 since it
shows competitive performance via the high-order connectivity.

5.4 Experimental Results
5.4.1 Performance Comparison (RQ1). Table 2 reports com-

parative results of SceneRec against all 6 baseline methods, and
we have the following observations:
(1) In general, NGCF achieves better results than baselinemethods
that take the user-item bipartite graph as input. There are two
main reasons. First, GNN can effectively capture the non-linearity
relations from user-item collaborative behaviors via information
propagation on the graph. Second, NGCF learns the high-order
connectivities between different types of nodes as shown in [20].
(2) KGAT further adds KG information into recommender sys-
tems, but it does not obtain the best result. Note that the KG
quality is essential to the model performance. In our work, there
are no available KG attributes that match our datasets, so there
is no additional information to describe network items. Further-
more, the simple item-scene connection loses rich relations, e.g.
category-category interactions and item-item interactions, in the
scene-based graph, and may not advance model prediction.
(3) The proposed framework SceneRec obtains best overall perfor-
mance using different evaluation metrics. Specifically, SceneRec
boosts (16.8%, 10.8%, 25.6%, 5.9%) for NDCG@10, and (12.9%,
11.9%, 17.6%, 6.1%) for HR@10 on datasets (Baby & Toy, Electron-
ics, Fashion, and Food & Drink), compared with the best baseline.
There are several main reasons. First, SceneRec considers mul-
tiple types of entity nodes. To be specific, SceneRec generates
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Figure 3: A real example on the Electronics dataset.

embedding representations of users and items from the user-item
bipartite graph while it learns complementary representations
of items from the scene-based graph, which is not accessible in
baseline methods. Second, SceneRec creatively designs a prin-
cipled hierarchical structure in the scene-based graph where
additional scene-guided information is propagated into collabo-
rative filtering. Third, SceneRec leverages GNN which captures
local network structure to learn non-linear transformation of
different types of graph nodes. Fourth, SceneRec adopts attention
mechanism to attentively learn weighting importance among
item-item connections and category-category connections.

5.4.2 Key Component Analysis (RQ2). Table 2 also reports
comparative results against 3 variants and it is observed that:
(1) SceneRec-noitem obtains better experimental results than
other baseline methods, and this indicates that the hierarchi-
cal structure of the scene-based graph can effectively propagate
information and generate complementary scene-based represen-
tations. Moreover, SceneRec outperforms SceneRec-noitem and
this verifies the effectiveness of incorporating item-item sub-
network into the scene-based graph.
(2) SceneRec-nosce outperforms all baselines because the item-
item connections provide additional knowledge into conventional
collaborative filtering. Comparing to SceneRec-nosce, SceneRec
achieves better performance on both datasets and this indicates
that, by leveraging scene information, SceneRec is capable of
learning complementary representations beyond CF interactions.
(3) The prediction result of SceneRec is consistently better than
that of SceneRec-noatt, and this verifies that the attention mech-
anism does benefit the recommendation by learning weights of
1-hop neighbors for each item node or each category node.

5.4.3 Case Study (RQ3). Finally, we use a case study to show
the effects of integrating scene-specific representations into col-
laborative filtering in Figure 3. From the Electronics dataset, we
randomly select a user 𝑢1428, a set of items that the user has
interacted with and a set of candidate items (whose prediction
scores are given above item nodes). It is noted that we espe-
cially compute the average attention score (below the category
node) between the candidate item and each item that the user
has interacted with by the scene-based attentive mechanism.

The higher average attention score means more shared scenes
between the candidate item and the user’s interacted items. There-
fore, the candidate item is more likely to occur in the scene de-
rived from user interests, which could boost recommendation
prediction. From this case study, we see that the average atten-
tion score does relate to the prediction result. For example, the
positive sample of item 𝑖14778 that the user has interacted with
has the highest prediction score and the largest average attention
weight. Similar results can be also observed from other users.
The item 𝑖14778 is recommended because its category “Keyboard”
complements the user-interacted items’ categories in the same
scene “Peripheral Devices”.

6 CONCLUSIONS
In this paper, we investigate the utility of integrating the scene
information into recommender systems using graph neural net-
works, where a scene is formally defined as a set of pre-defined
item categories. To integrate the scene information into graph
neural networks, we design a principled 3-layer hierarchical
structure to construct the scene-based graph and propose a novel
method SceneRec. SceneRec learns item representation from the
scene-based graph, which is further combined with the conven-
tional latent representation learned from user-item interactions
to make predictions. We conduct extensive experiments on four
datasets that are collected from a real-world E-commerce plat-
form. The comparative results and a case study demonstrate the
rationality and effectiveness of SceneRec.
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ABSTRACT
The problem of studying the effective contact between different
moving objects (MOs) has received great interest in recent years.
However, the uncertain nature of trajectory data poses significant
challenges for the researchers. Most of the existing studies focus
on range query or similarity join. But they cannot find MOs who
may contact each other for a long enough time in the same loca-
tion. In this paper, we study how to evaluate the effective contact
amongMOs. More specifically, we provide a purposeful definition
for measuring the contact effectiveness, called Contact Simi-
larity. Based on this notion, we introduce a novel query called
Contact Similarity Query (CSQ). A necklace-based model is
used for representing uncertain trajectories, in which a bead (or
an ellipse) indicates the possible locations of an object in-between
two successive trajectory observations. To enable efficient query
processing, we design a novel data structure called UTM-tree (i.e.,
Uncertain Trajectory M-tree) for indexing the necklace-based
trajectories. Experiments have been conducted on a real-world
dataset, and the results demonstrate that our proposed solution
significantly outperforms the baseline approaches.

1 INTRODUCTION
With the increasing availability and rapid development of global
positioning technologies, moving objects (MOs)’ trajectories can
be utilized by Location-Based Services (LBS) in many applica-
tions, such as vehicle navigation, traffic management, and co-
occurrence analysis. However, due to sensor devices’ physical
and resource limitations or privacy considerations, MOs’ trajec-
tories are often captured at low sampling rates, and the time
interval between two consecutive observations is quite long. In
such uncertain courses, no information can be found about the
whereabouts of MOs in-between two successive points. Recently,
the problem of querying uncertain trajectory has been studied
by many works, e.g., [1, 2, 5, 6, 10, 13]. However, most of them
focused on retrieving qualified results regarding either probabilis-
tic range query or similarity join. The existing approaches are
not applicable to the problem of modeling the effective contact
among individuals, which is a research topic of great importance.
As follows, a real-world example is presented to describe a moti-
vational scenario.
Example 1. Fig. 1 shows the uncertain trajectories of three vis-
itorsm1,m2, andm3 in one day. They are equipped with a GPS
device in their car, and they periodically reported their real-time
locations along their trajectories. But we don’t know where they
are in-between two consecutive reports. We can see thatm1 andm3
may have a very high trajectory similarity since the spatial and
temporal distance between their observations can be very small.
However,m1 andm3 may never come in contact with each other.
On the other hand, assume that along the trip,m1 parked the car at

© 2021 Association for Computing Machinery. Published in Proceedings of the 24th
International Conference on Extending Database Technology (EDBT), March 23-26,
2021, ISBN 978-3-89318-084-4 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

location A, disembarked the car, walked into the Park and stayed
there for a while. Then m1 went back to A to board the car and
continued with the trip. Perhapsm2 can take similar action at loca-
tion B, i.e.,m2 may also stay in the Park for a while during his/her
trip. Therefore, even thoughm1 andm2 have very low trajectory
similarity, they may have an effective contact either in the Park or
in the Shopping District. But such a result can never be captured
by the traditional trajectory similarity query. Besides, assume that
several days later,m1 found him/herself as an infected individual
of a highly contagious disease (e.g., Covid 19). To help determine
other susceptible persons who might be infected,m1 provided more
details about his/her trajectory to an authorized third-party, such
as a local public health agency (LPHA). For example,m1 stayed in
the Park from 10:00 am to 10:50 am, and then went to the Shopping
District from 11:35 am to 12:30 pm. Next, given this information,
LPHA discovered thatm1 andm2 may have possible contact with
each other, and may like to know the effectiveness of their contact
(e.g., the chance of their contact and how long they may contact
with each other). Moreover, hundreds of people may have visited
the neighboring areas on the same day. LPHA wants to find the
susceptible individuals from the big group of candidates who may
have effective contact withm1.

Shopping
district

Park

𝑚"

𝑚#

𝑚$

Nanjing road

Hangzhou road

Shanghai street

Tongliao street

ShijiazhuangChen
gdu

 roa
d

Suzhou road

Virtual Landmark
Possible Movement

Uncertain Trajectory

Reported Location𝐵

𝐴

A possible contact 
between  𝑚" and 𝑚$

Figure 1: An real-world example of possible contacts be-
tween MOsm1,m2, andm3

To address the problem described above, it is important to
answer the following questions successively:

Q1: How to calculate the potential contact area and the possible
longest contact time duration betweenm1 andm2?

Q2: How to measure the effective contact betweenm1 andm2?
Q3: How to efficiently retrieve the qualified results from a large

number of people who visited the park on the same day asm1?
To the best of our knowledge, little or no systematic and theo-

retical study has been conducted to address the abovementioned
questions. Aiming to fill this research gap, we propose a study
on analyzing the effective contact between MOs over uncertain
trajectories. Specifically, the main contributions of this work are
three-fold as follows.

• We propose a definition of Contact Similarity over uncer-
tain trajectories and a novel query called Contact Similarity
Query (CSQ). With CSQ, we can assess the effectiveness of con-
tact between MOs in free space.
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Figure 2: An example of bead Bi given the information of oi ,oi+1, and vmax .

Table 1: The summary of notations

Notation Definition
Trajectory Notations

MO Moving object
T = {o1, o2, ..., on } An uncertain trajectory
ti /(xi , yi ) Timestamp/coordinates of oi in T
vmax The maximum speed of a MO
Tneck The necklace of T
Bi A bead in Tneck
P A virtual landmark
t s /t e The arrival/departure time of P

Query Notations
Rint The intersection area ratio
τ (P, Bi ) The possible longest time duration
SimP∩Bi

cont Contact similarity at bead level
D A MO database
SimP∩T

cont Contact similarity at trajectory level
t̄ s The earliest arrival time
t̄ e The latest departure time

•We design a novel data structure called UTM-tree (Uncertain
Trajectory M-tree) for indexing uncertain trajectories, which
significantly improves the efficiency for processing CSQ.

•We conduct an extensive experimental evaluation of the pro-
posed approaches, demonstrating the effectiveness and efficiency
of the methodology proposed in this work.

The rest of this paper is organized as follows. In Section 2, we
introduce the preliminaries and problem definition. In Section 3,
we propose the novel indexing structure for managing uncertain
trajectories. In Section 4, we present the details of our experi-
ments and the evaluation results, followed by the related works
in Section 5. Finally, we recap the conclusions in Section 6.

2 PRELIMINARIES
In this section, we briefly introduce the preliminaries of this work.
The frequently used notations are listed in Table 1.

2.1 Trajectories, Beads, and Necklaces
We first introduce the definitions of trajectory, beads, and neck-
laces. A trajectory is defined as follows.

Definition 1. A trajectory T of a MO is defined as finite, time-
ordered observations T = {o1,o2, ...,on }, where oi = (xi ,yi , ti ) for
i ∈ [1,n], with (xi ,yi ) being a sample point in Euclidean space,
and ti being a timestamp.

The possible locations of a MO in-between two observations
can be defined by a bead (or ellipse) [10] as follows.

Definition 2. Letvmax denote the maximum speed that an object
can take betweenoi andoi+1. A bead Bi = {(xi ,yi , ti ), (xi+1,yi+1, ti+1)}

is defined as all points (x ,y, t ) that satisfy the following constraints:
ti ≤ t ≤ ti+1
(x − xi )

2 + (y − yi )
2 ≤ (t − ti )

2 ×v2
max

(x − xi+1)2 + (y − yi+1)2 ≤ (ti+1 − t)2 ×v2
max .

(1)

From Fig. 2 (a), we can see that from time ti to tcurr (tcurr >
ti ), the MO’s possible travel area is a circle with (xi ,yi ) being the
center and ri = (tcurr − ti ) × vmax being the radius. Similarly,
from time tcurr to ti+1 (tcurr < ti+1), the possible locations are
included in a circle centered at (xi+1,yi+1) with radius ri+1 =
(ti+1 − tcurr ) ×vmax . So, the overlapped area in Fig. 2 (a) of the
two circles includes MO’s possible locations at current time tcurr .
Based on [8], all the possible locations from time ti to ti+1 form
an ellipse (or bead) with foci at (xi ,yi ) and (xi+1,yi+1) (see in
Fig. 2 (b)). According to [10], the equation of the bead B is:

(x − xe )
2/a2 + (y − ye )

2/b2 = 1, (2)

where (xe ,ye ) is the center of the ellipse; a and b represents the
semi-major axis and semi-minor axis of the ellipse, as follows.

xe =
xi + xi+1

2 , ye =
yi + yi+1

2 , a =
vmax × (ti+1 − ti )

2

b =

√
v2
max × (ti+1 − ti )2 − (xi+1 − xi )2 − (yi+1 − yi )2

2 .

(3)

Definition 3. A trajectory T = {o1,o2, ...,on } can be represented
as a sequence of beads, which is called a necklace and denoted as
Tn = {B1, B2, ..., Bn−1} (see an example in Fig. 2 (c)), such that oi
and oi+1 form the bead Bi for i ∈ [1,n − 1].

2.2 Contact Similarity
In this section, we introduce the essential definitions for contact
similarity.

Definition 4. A virtual landmark P is a place where two MOs
can contact with each other. P can be either meaningful locations
(e.g., a shopping district or a park) or non-meaningful locations (e.g.,
a crossroad). For simplicity sake, any P in this work is considered
as a circle that is centered at Oc = (xc ,yc ) with a given radius rc .
Hence, the equation of P is (x − xc )

2 + (y − yc )
2 = r2

c .

Definition 5. For a MOm1, he/she stayed at P for a certain period
time. For anotherMOm2, his/her necklace is Tn = {B1, B2, ..., Bn−1}.
If P spatially overlaps with one bead Bi for i ∈ [1,n − 1] (denoted
as P ∩S Bi , ∅), then the intersection area ratio Rint is

Rint = Areaint /AreaP , (4)

where Areaint is the intersection area between the P and Bi , and
AreaP is the area of P.
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Figure 3: Examples of overlap between a virtual landmark and a bead with different intersection points

Fig. 3 shows different scenarios that P (the circle) overlaps
with a bead B (the ellipse), with two, three, and four intersection
points, respectively. Then, we difine the possible longest contact
time duration between MOs as follows.

Definition 6. ForMOm1, he/she stayed at P from time ts to te . For
another MOm2, his/her necklace Tn = {B1, B2, ..., Bn−1}. Moreover,
if one of the beads Bi (for i ∈ [1,n − 1]) temporally overlaps with P
(denoted as P∩T Bi , ∅), then the possible longest time duration
τ (P, Bi ) betweenm1 andm2 can be calculated as

τ (P, Bi ) = min{te , t̄e } − max{ts , t̄s }, (5)

where t̄s means the possible earliest time form2 to arrive at P, and
t̄e means the possible latest time form2 to leave P.

Example 2. Ifm1 stayed at P from ts = 10:00 am and te = 10:50
am. For m2, t̄s = 10:05 am and t̄e = 10:35 am, then τ (P, Bi ) =
min{10:50, 10:35} -max{10:00, 10:05} = 30 min.

Next, inspired by [7], we formally propose the definition of
contact similarity as below.

Definition 7. Form1, he/she stayed at P from time ts to te . For
m2, his/her necklace is Tn = {B1, B2, ..., Bn−1}. If ∀Bi ∈ Tn for
i ∈ [i,n − 1] such that P ∩S Bi , ∅ and P ∩T Bi , ∅, then the
contact similarity at bead level SimP∩Bi

cont betweenm1 andm2
at P in terms of Bi can be calculated as:

SimP∩Bi
cont = 1 − (1 − Rint )

τ (P,Bi ) (6)

We assume that the intersection area ratio Rint indicates the
possible opportunities thatm1 may be in contact withm2 at P
per unit time. Therefore, (1 − Rint )

τ (P,Bi ) denotes the probability
thatm1 andm2 have no effective contact during the time period
τ (P, Bi ). Consequently, SimP∩Bi

cont (m1,m2) = 1 − (1 − Rint )
τ (P,Bi ).

A larger value of SimP∩Bi
cont (m1,m2) indicates a higher probability

that an effecitive contact may happen betweenm1 andm2 at P.

Definition 8. Let B denote a set of beads in Tn , such that for
∀Bi ∈ B, P ∩S Bi , ∅ and P ∩T Bi , ∅. Then, the contact
similarity at trajectory level SimP∩T

cont can be calculated as:

SimP∩T
cont =

∑
Bi ∈B Sim

P∩Bi
cont

|B|
. (7)

Here, |B| denotes the number of beads in B.

2.3 Problem Definition
Definition 9. For m1, the query trajectory Tq is defined as a
sequence of P(s) thatm1 visited, i.e., Tq = {P1, P2, ..., Pd }. Pk =
(xck ,y

c
k , r

c
k , t

s
k , t

e
k ) for k ∈ [1,d]. Here,m1 stayed at Pk from tsk to

tek , (x
c
k ,y

c
k ) and r

c
k are the center and radius of Pk , respectively.

Definition 10. Given a query trajectory Tq = {P1, P2, ..., Pd }, a
MO databaseD that contains s necklaces (e.g.,D = {Tn1, Tn2, ..., Tns }),
and a predefined threshold α , for each Pk ∈ Tq where k ∈ [1,d], the
Contact Similarity Query (CSQ) finds all the necklaces Tnj ∈ D

for j ∈ [1, s], such that SimPk∩Tnj
cont ≥ α .

Example 3. In Fig. 1, Tq ism1’s query trajectory. For example,m1
stayed in the park P1 from 10:00 to 10:50 am, thenm1 went to the
shopping district P2 and stayed there from 11:35 am to 12:30 pm. D
is a MO database that contains 1000 people’s trajectory necklaces
who visited the neighboring areas on the same day, and let α = 0.8.
For every virtual landmark Pk thatm1 visited, the CSQ finds all
the trajectory necklaces Tnj ∈ D such that SimPk∩Tnj

cont ≥ 0.8.

2.4 Calculation of Areaint and τ (P, Bi )
In this section, we discuss how to calculate Areaint and τ (P, Bi ),
followed by the workflow for CSQ.

Given the Pwith equation (x −xc )
2+ (y−yc )2 = r2

c and the Bi
with equation (x−xe )2/a2+(y−ye )2/b2 = 1, it is straightforward
to calculate Areaint as follows.

• There are two or three intersection points between the vir-
tual landmark P and the bead Bi (see Fig. 3 (a) and (b)).

Areaint =

∫ xA

xB
(
b

a

√
a2 − (x − xe )2+ye+

√
r2
c − (x − xc )2−yc )dx

(8)
• There are four intersection points between the virtual land-

mark P and the bead Bi (see Fig. 3 (c)).

Areaint =πr
2
c −

∫ xA

xB
(

√
r2
c − (x − x2

c ) + yc −
b

a

√
a2 − (x − xe )2 − ye )dx

−

∫ x
′

A

x ′

B

(ye −
b

a

√
a2 − (x − xe )2 +

√
r2
c − (x − xc )2 − yc )dx

(9)
In Fig. 3, we can easily know that S is the earliest point that

oneMO can arrive at P, and E is the latest point that MO can leave
P. Therefore, given the maximum speed vmax , we can calculate
t̄s and t̄e as follows.

t̄s = ti +
|oiS |

vmax
, t̄e = ti+1 −

|oi+1E |
vmax

(10)

Based on t̄s and t̄e , we can calculate τ (P, Bi ) by Eq. (5). Af-
ter calculating Rint and τ (P, Bi ), given an uncertain trajectory
necklace database D and a trajectory query Tq , we can com-
pute SimP∩Bi

cont and SimP∩T
cont by Eq. (6) and (7), respectively. If

SimP∩T
cont ≥ α , the result should be returned. We repeat the above

mentioned process untill all the necklaces have been visited.
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3 THE INDEXING STRUCTURE FOR CSQ
M-tree [4] is a popular indexing structure for efficient range query
and k-nearest neighbor query. But we cannot directly adopt it in
this work, because M-tree cannot handle entries like ellipse or
beads. Therefore, based on M-tree, we propose a novel indexing
structure called Uncertain Trajectory M-tree (UTM-tree), which
is discussed next.

3.1 Decomposing the Necklace
First, we decompose the necklaces into beads. After decompo-
sition, we use a circle to approximate each bead, and the circle
is centered at the center of the bead (x ,y) with radius r = a/2
(see in Fig. 4). Each circle is considered an individual entry and
is stored independently in the leaf node of the UTM-tree.

Algorithm 1: The Inserion Algorithm: Insert(Ei ,Nj )
Input :A new entry Ei = [ei , ri , ti , ti+1, TID, Ptr(Ep ), Ptr(En )], a

tree node Nj = [Ej , Rj , tmin, tmax , ptr]
Output :A UTM-tree with Ei added

1 if Nj is not a leaf node then
2 for all the child nodes N sub

j of Nj do
3 Let Rsubj denote the covering radius of N sub

j , calculate
d (Ei , N sub

j );
4 if ∃ at least one N sub

j s.t. d (Ei , N sub
j ) + ri ≤ Rsubj then

5 Insert(Ei , N sub
j ) where d (Ei , N sub

j ) is minimun;

6 else
7 Insert(Ei , N sub

j ) where d (Ei , N sub
j ) + ri − Rsubj is

minimum;

8 else
9 if Nj is not full then
10 Add Ei into Nj , update tmin and tmax ;
11 if d (Ei , Nj ) + ri > Rj then Rj = d (Ei , Nj ) + ri ;
12 else Split(Ei , Nj ) ;
13 return An updated UTM-tree after inserting Ei into Nj

3.2 Building the UTM-tree
Next, we describe how to construct a UTM-tree, including the
format of an entry/node, entry insertion, splitting policy, selec-
tion of routing objects, and query processing. An illustration of
the UTM-tree is shown in Fig. 5.

3.2.1 Format of the entry. Same as the M-tree, in a UTM-tree,
all the entries are stored in the leaf nodes. And also, each node
in the tree can store at mostM entries, which is also called the
capacity of the tree. Specifically, we consider each circle as the
entry of the UTM-tree, and each entry is in format of Ei . Here,
Ei = [ei , ri , ti , ti+1, TID, Ptr(Ep ), Ptr(En )], where ei = (xi ,yi )
and ri are the center and radius of the approximating circle, ti and
ti+1 are the observation timestamps from the original trajectory
that form the bead, TID is the trajectory identifier which the
bead belongs to, and Ptr(Ep ) and Ptr(En ) are doubly linked list

pointers for the previous/next entry that corresponding to beads
in the original trajectory.

In the UTM-tree, each node selects an entry from the leaf node
as its routing object (similar to M-tree). The format of a node
is represented as Nj = [Ej ,Rj , tmin , tmax , ptr(N

sub
j )], where

Ej is its routing object, Rj is the covering radius that covers all
the entries stored in Nj . tmin and tmax are the minimum and
maximum time for all the entries stored inNj , and ptr is a pointer
pointing to its child node N sub

j if Nj is a non-leaf node.

3.2.2 Insert an Entry. First, we define the distance between an
entry Ei and a node Nj as d(Ei ,Nj ) =

√
(xi − x j )2 + (yi − yj )2,

where (xi ,yi ) is the center of Ei , and (x j ,yj ) is the center of the
rounting object of Nj . The insert algorithm recursively descends
the tree to locate the most suitable leaf node for Ei . We first find
the leaf node such that after adding Ei , no enlargement of the
covering radius is needed, i.e., d(Ei ,Nj ) + ri ≤ Rj . If more than
one child nodes are found, then the node that is closest to Ei
will be chosen. However, if no such node exists, the choice is to
minimize the increase of the covering radius, i.e.,d(Ei ,Nj )+ri−Rj
is minimum. After inserion, if d(Ei ,Nj )+ri > Rj , then we update
Rj = d(Ei ,Nj )+ri . Besides, tmin and tmax for all the visited nodes
should be updated as well. After inserting all the entries into the
UTM-tree, we use a doubly linked list to connect those from
the same trajectory (see in Fig. 5). The details of the insertion
algorithm is shown in Algorithm 1.

Algorithm 2: The Split Algorithm: Split(Ei ,Nj )
Input :An entry Ei = [ei , ri , ti , ti+1, TID, Ptr(Ep ), Ptr(En )], a leaf

node Nj = [Ej , Rj , tmin, tmax , ptr]

Output :A UTM-tree that splits Nj into N 1
j and N 2

j
1 Let Nj be the set of all Nj ’s entries plus Ei ;
2 Select two routing objects E1

j and E
2
j from Nj based on m_RAD algorithm

[4], and then partition Nj into two sets, N1
j and N2

j ;
3 Allocate a new node N ′

j , store N
1
j in Nj and N2

j in N ′
j ;

4 Replace Nj ’s rounting object Ej with E1
j , update Nj ’s Rj ;

5 Set E2
j as N

′
j ’s rounting object, and update N ′

j ’s R
′
j ;

6 if Nj is not the root of the tree (N
par
j is Nj ’s parent) then

7 if N par
j is full then Split(N ′

j , N
par
j ) ;

8 else add N ′
j into N

par
j ;

9 else Allocate a new root node Nr , set Nr as parent node for Nj and N ′
j ;

10 Update tmin and tmax for all the visited nodes;
11 return An updated UTM-tree after spliting Nj by Ei

3.2.3 Split a Node. Ei cannot be inserted into a leaf node Nj
if there areM entries in Nj . we need to split Nj into two nodes.
Particularly, let Nj denote the set of all Nj ’s entries plus Ei . We
find two rounting objects E1

j and E
2
j fromNj and partitionNj into

two nodes N 1
j and N 2

j based on the m_RAD algorithm [4]. After
partitioning, the sum of the covering radius R1

j + R
2
j is miminum.

The split algorithm is shown in Algorithm 2.

3.2.4 Data Filtering for CSQQuery. In this part, we discuss
how to filter qualified candidates for CSQ using UTM-tree.

Given a root nodeNr and a query trajectory Tq = {P1, P2, ..., Pd }
where Pk = (xck ,y

c
k , r

c
k , t

s
k , t

e
k ) for k ∈ [1,d], we can first filter all

the entries Ei = [ei , ri , ti , ti+1, TID, Ptr(Ep ), Ptr(En )] such that
(1) d(ei , (xck ,y

c
k )) ≤ ri + r

c
k and (2) ti ≤ tsk and ti+1 ≥ tck for all

pairs of (Nr , Pk ). Next, based on the filtered entries, we can get a
list of trajectory identifiers TID (s). For each trajectory T from this
list, we can calculate SimPk∩T

cont , and then check if SimPk∩T
cont ≥ α .

The UTM-tree indexing structure can significantly reduce the
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Figure 5: An example of the UTM-tree with capacity of 5

number of trajectories to be visited, thus it can greatly increase
the performance of theCSQ query. The details of the data filtering
algorithm is shown in Algorithm 3.

Algorithm 3: The filtering algorithm: Filter(Nr , Pk )
Input :A root node Nr , and Pk where Pk = (xck , y

c
k , r

c
k , t

s
k , t

e
k )

Output :A list of the trajectories IDs that satisfy the query
1 if Nr is not a leaf node then
2 for all the children nodes N sub

r in Nr where

N sub
r = [Esubr , Rsubr , t submin, t

sub
max , ptr(N

sub(sub)
r )] do

3 if (t submin, t
sub
max ) ∩ (t sk , t

e
k ) , ∅ then

4 if d (Esubr , (xck , y
c
k )) ≤ r ck + R

sub
r then

Filter(N sub
r , Pk );

5 else Prune N sub
r ;

6 else Prune N sub
r ;

7 else
8 for every Ei = [ei , ri , ti , ti+1, TID, Ptr(Ep ), Ptr(En )] in Nr do
9 if (ti , ti+1) ∩ (t sk , t

e
k ) , ∅ then

10 if d (ei , (xck , y
c
k )) ≤ r ck + ri then Add TID into an ID list;

11 else Prune Ei ;
12 else Prune Ei ;

13 return The ID list

4 EXPERIMENTAL EVALUATION
We implemented the systemswith Python on an Intel(R) Core(TM)
i7-6700 CPU @3.60GHz running Windows 64-bit OS with 32 GB
RAM. The details of experimental settings and the performance
evaluation are discussed as follows.

4.1 Settings
In this part, we discuss the datasets, experimental settings, and
the basic approaches in this work.

• Beijing Taxi Dataset: This dataset [12] contains the GPS
trajectories of 10357 taxis from Feb. 2 to Feb. 8, 2008 in Beijing.
The total number of points in this dataset is about 15 million,
and the total distance traversed by the trajectories is 9 million
kilometers. The average sampling interval is 177 seconds, with
an average length of 623 meters.

Table 2: The summary of simulation settings

Parameters Settings
# of observations in one trajectory (Numo ) 30
# of trajectories (NumT) 25K, 50K, 100K, 250K, 500K
Radius of each virtual landmark (r ck ) 5m, 10m, 15m, 20m, 25m
# of virtual landmark in a query (NumP) 20, 25, 30, 35, 40
Query time interval (τq ) 1h, 2h, 4h, 6h, 8h

• Experimental Settings: There are two metrics for evaluating
the performance of the proposed UTM-tree, they are (1) running
time and (2) the number of visited trajectories. Table 2 shows all
the parameter settings in the experiment. Specifically, for a vir-
tual landmark Pk = (xck ,y

c
k , r

c
k , t

s
k , t

e
k ) ∈ Tq , query time interval

equals τq = tek − tsk . Moreover, considering a day with 24 hours,
τq is randomly selected from 8:00 am to 6:00 pm in the same day.
For each Pk , its coordinates (xck ,y

c
k ) are randomly selected such

that xck ∈ (116.1650, 116.6201) and yck ∈ (39.7133, 40, 0070). Be-
sides, the maximum speed vmax in-between any two continuous
observations is set to a random number in [10 km/h, 50 km/h].

• Other approaches evaluated: To evaluate the performance of
the UTM-tree, we implemented two other approaches for compar-
ison purposes, they are (1) baseline method and (2) temporal-first
matching (TF-matching). In the baseline method, we do not index
the trajectories at all. More specifically, we evaluate every pair of
(Bi , Pk ) for the CSQ query. In the TF-matching method, we follow
the steps in [9] to build a temporal filtering tree. Specifically, we
split a day into 12 time slots by considering every two hours as a
time slot. And then, we store each trajectory into the correspond-
ing nodes. In the TF-matching method, all the trajectories are
processed by the temporal filtering tree.
4.2 Performance Evaluation
This section compares the proposed UTM-tree with the baseline
and the TF-matching in terms of query running time and the
number of visited trajectories. The number of visited trajectories
means howmany trajectories from the original database still need
to be considered after using the UTM-tree for spatial filtering
and temporal filtering.

First of all, for the three approaches, the query running time
(in Fig. 6 (a)) and the number of visited trajectories (in Fig. 7
(a)) are increasing as NumT increase. Second, we can see that
the UTM-tree is much faster than the baseline method and the
TF-matching method. For instance, the UTM-tree is 6.9× faster
than the baseline method and 3.5× faster than the TF-matching
method with 500K trajectories. Third, we found that for the UTM-
tree, as NumT becomes larger, the increase for the query running
time and the number of visited trajectories is not significant.

Next, the comparison results for three approaches under the
different NumP are shown in both Fig. 6 (b) and Fig. 7 (b). We can
see that NumP has the least influence on the performance of the
UTM-tree. In contrast, the performance of the baseline method
and the TF-matching approach is degraded dramatically.

The influence of τq on the three approaches under different ex-
perimental settings are shown in both Fig. 6 (c) and 7 (c). The run-
ning time and the number of visited trajectories in TF-matching
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Figure 6: The comparison of baseline method, TF-matching, and UTM-tree for query running time
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Figure 7: The comparison of baseline method, TF-matching, and UTM-tree for number of visited trajectories

approach increase significantly when τq becomes wider. How-
ever, the UTM-tree is more stable against the changes in τq .

Last, Fig. 6 (d) and 7 (d) compare the performance of the three
approaches under different rck . Both the three approaches do
not change significantly with different rck . Overall speaking, the
UTM-tree is more efficient and stable than the baseline method
and the TF-matching approach in terms of running time and the
number of visited trajectories under different experiment settings.
Specifically, the UTM-tree runs faster than other approaches and
is less sensitive to query time intervals, virtual landmark radius,
and the number of virtual landmarks in each query.

5 RELATEDWORK
(1) Indexing uncertain trajectories. There are a number of index-
ing structures, which have been proposed for uncertain spatio-
temporal data, such as UTH [13], Grid-based indexing [3], and
UST-tree [5]. However, UTH-tree was used for indexing uncer-
tain trajectories on the road network. UST-tree was used for
approximating diamond-based moving objects that follow the
Markov-chain model. Grid-based approach was not efficient for
indexing beads and necklaces since it is time-consuming to com-
pute the overlapped region between grids and ellipses. Therefore,
we devise a novel indexing structure called UTM-tree, which
is based on the classic M-tree and is efficient for indexing the
uncertain trajectories in the form of beads.

(2) Queries for uncertain trajectories. There are many studies
that were proposed for querying uncertain trajectories, such as
spatio-temporal similarity join [9], semantic similarity join [3],
nearest-neighbor queries [11], and top-k similarity query [6].
However, most of them retrieved qualified trajectories based on
some spatial/temporal criteria. None of the previous works study
the problem of contact similarity in terms of spatial intersection
and longest contact time duration among trajectories. This work
is the first research to formally define the problem of contact
similarity and propose the corresponding CSQ for the problem.

6 CONCLUSION
In this work, we have formally defined the concept of contact
similarity and proposed a novel query, called CSQ. Next, we de-
signed a novel indexing structure called UTM-tree, for managing
and querying uncertain trajectories. Besides, we conducted exten-
sive experiments on the Beijing Taxi dataset. The experimental
results demonstrated the efficiency and stability of the UTM-tree
on CSQ. There are many interesting future directions, e.g., (1) con-
tact modeling between MOs on road networks, (2) indoor contact
modeling between MOs, (3) CSQ in terms of contact frequency,
(4) second-generation contact between MOs, and (5) performance
evaluation with more real-world datasets.
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ABSTRACT
Continuous applications such as device monitoring and anomaly
detection often require real-time aggregated statistics over un-
bounded data streams. While existing stream processing systems
such as Flink, Spark, and Storm support processing of stream-
ing aggregations, their optimizations are limited with respect
to the dynamic nature of the data, and therefore are suboptimal
when the workload changes and/or when there is data skew.
In this paper we present AdCom, which is an adaptive combiner
for stream processing engines. The use of AdCom in aggregation
queries enables pre-aggregating tuples upstream (i.e., before data
shuffling) followed by global aggregation downstream. In con-
trast to existing approaches, AdCom can automatically adjust the
number of tuples to pre-aggregate depending on the data rate
and available network. Our experimental study using real-world
streaming workloads shows that using AdCom leads to 2.5–9×
higher sustainable throughput without compromising latency.

1 INTRODUCTION
Continuous or real-time applications often require real-time ag-
gregated statistics over an unbounded stream of events or tuples.
For example, ride-sharing platforms such as Uber and Lyft utilize
real-time aggregated statistics about traffic conditions to provide
suggestions on trip routes [1, 27]. As another example, interac-
tive entertainment platforms such as King.com provide their data
science teams with real-time aggregated statistics over billions
of user events from different games and systems [11].

To efficiently process continuous streams of data in real-time,
applications rely onDistributed StreamProcessing Engines (SPEs)
such as Spark Streaming [29], Apache Flink [5], Apache Samza [19],
or Apache Storm [24]. These systems enable data stream pro-
cessing with low-latency and high throughput, and can scale by
distributing computations among a cluster of machines.

In the particular case of streaming aggregations, which are
groupBy-aggregation queries on continuous data, query exe-
cution involves shuffling of data stream tuples among compute
machines of the cluster. This data shuffling involves communica-
tion between machines via network, which incurs a performance
overhead in terms of a decrease in throughput and an increase
in end-to-end latency. The shuffling overhead—of which the net-
work bandwidth between machines is an important factor—also
increases as the degree of parallel processing increases. There-
fore, it is essential to reduce the shuffling overhead to improve
the overall performance of SPEs for streaming aggregations.

Current SPEs optimize data shuffling by extending the “com-
bine plus reduce” pattern of MapReduce (batch) to streaming. In
particular, SPEs first pre-aggregate upstream (i.e., locally aggre-
gate tuples in each partition before shuffling over the network)
and then perform a global aggregation operation downstream.
To cater to the needs of continuous applications, the number

© 2021 Copyright held by the owner/author(s). Published in Proceedings of the
24th International Conference on Extending Database Technology (EDBT), March
23-26, 2021, ISBN 978-3-89318-084-4 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

of input tuples accumulated prior to applying local aggregation
is based on a pre-configured mini-batch interval (e.g., for every
1000 tuples or every 5 seconds).

While SPEs allow configuring the mini-batch interval, its fixed
size during query execution is not ideal for real-time applications.
This is because, it lacks adaptability to the dynamic nature (w.r.t.
data rate changes and/or data skew) of datastreams. For example,
if the throughput of a data stream suddenly increases to what the
SPE cannot sustain (i.e., when the network gets saturated), SPE
inflicts a “backpressure” on the upstream operators. Backpressure
leads to an increase in the system’s latency. Likewise, if there is
(sudden) data skew in the stream, some instances of the (down-
stream) aggregation operation will process more records than
others leading to saturation of network buffers and consequently
affecting latency. One way to deal with the unpredictable nature
of datastreams is to re-configure the size of the network buffers
and/or mini-batch intervals to pre-aggregate. However, this re-
quires re-starting the query, which is expensive and undesirable
for continuous applications.

In this paper, we propose AdCom, which is an adaptive combiner
for SPEs. In contrast to pre-aggregating tuples based on a fixed
mini-batch interval, AdCom uses dynamic mini-batch intervals.
This allows “on-the-fly” adjusting of the number of tuples to pre-
aggregate. To deal with sudden changes in data rate, AdCom uti-
lizes a feedback mechanism consisting of a proportional-integral
controller that continuously monitors its network buffers, and
an actuator that signals AdCom to adjusts its mini-batch interval.
Thus, a high network usage results in pre-aggregating more num-
ber of tuples and vice-versa. This allows SPEs to adapt to sudden
data rate changes and/or skew, and achieve a higher sustainable
throughput without compromising latency.

We implemented AdCom in Apache Flink1, which we consid-
ered as a representative SPE, and performed an extensive evalu-
ation using real-world and synthetic datasets. Our results indi-
cate that with AdCom, Flink can autonomously adapt to data rate
changes and can execute aggregation queries with higher sustain-
able throughput (up to 2.5×) compared to existing approaches.

2 BACKGROUND
We start with a discussion on streaming aggregations that we
consider in this paper. We then describe the limitations of SPEs
in execution aggregation queries. We use Apache Flink as a rep-
resentative SPE to explain key concepts. These concepts also
generalize to other SPEs like Spark Streaming or Apache Storm.

2.1 Streaming Aggregations
We focus on the computing of streaming aggregates that are most
common in stream analytics applications. More specifically, we
consider unbounded aggregations on continuous queries that
have the following general form:

dataStream.groupBy(. . . ).aggregate(. . . )

In the above general form, the groupBy(. . . ) transformation
first groups elements of the data stream by the specified key(s).

1https://github.com/TU-Berlin-DIMA/AdCom
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Figure 1: Illustration of executing a groupBy-max query.

Then, the aggregate(. . . ) transformation computes a “rolling”
aggregate as an output data stream. Such queries are the backbone
of many common data analytic tasks such as retrieving, gathering,
and organizing data. Common aggregate functions supported by
SPEs include sum(), min(), max(), and avg() among others.
SPEs also support parameterizing aggregate transformationswith
User Defined Functions (UDFs).

As an example, consider a weather analytics dashboard that
continuously updates the maximum temperature of all regions
in a neighborhood. The application receives as an input, a data
stream S of <timeStamp,regionId,temperature> events, and
executes the aggregation query2:

S.groupBy(regionId).max(temperature)

For a given stream such as:
[1,A, 23], [2,A, 25], [1,B, 19], [1,C, 28], [2,B, 18], . . .

the aggregation query produces the following resulting stream:
[A, 23], [A, 25], [B, 19], [C, 28], [B, 19], . . .

Figure 1 gives a high level overview of executing such an
aggregation query on a Flink cluster. It includes two tasks A and B
with their respective subtasks running in parallel. In this example,
subtasks A.1 and A.2, which perform the groupBy transformation,
communicate with the two instances of task B, which perform
the max() transformation. The groupBy() operations leads to
shuffling of stream elements over the network3. Before shuffling,
the output of the upstream (or sender) task is first queued in a
(network) buffer at 1 . The events, which are already grouped
by key, are then flushed on to the network after a pre-configured
timeout (e.g., 100ms) or when the buffers are full. Likewise, on
the receiver side, the data is first queued in a buffer at 2 , which
is then consumed by the downstream subtasks.

2.2 Limitations of SPEs
SPEs strive to achieve a high sustainable throughput and low end-
to-end latency. In real-world workloads, however, SPEs have to
deal with two scenarios that affect its throughput and latency: (1)
When the data stream’s arrival rate increases towhat a system can
not handle, and (2) when there is data skew, which causes some
instances of the aggregation tasks to process many more records
than others. In both these scenarios, SPEs exhibit a backpressure
mechanism, where the stream of events is queued up in network
buffers before being processed. This leads to an increase in end-
to-end latency, and in the worst case stalls the dataflow.

In the case of aggregation queries, backpressure on the sender
tasks, either due to a high arrival rate or data skew, can be miti-
gated to some extent by first locally aggregating. This is akin to
the use of a combiner in MapReduce [8]. In the context of data

2for brevity, we suppress the map() (or project()) transformation to project out
the timeStamp attribute
3Other similar transformation are keyBy() and reduceByKey().
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Figure 2: Limitations of SPE w.r.t. data rate changes when
executing a groupBy-sum query.

streaming, SPEs pre-aggregate records based on small mini-batch
interval (e.g., for every 5 seconds) before shuffling them over the
network. However, this pre-aggregation is suboptimal as using a
fixed mini-batch interval leads to an increased end-to-end latency
when workload changes and/or when there is skew.

We illustrate this limitation with an experiment that we per-
formed using Apache Flink. We considered a groupBy-sum query
and a setup comprising four local (pre-) aggregation tasks and
four global aggregation tasks. The mini-batch interval to pre-
aggregate was set to 5s and 5K records. Figure 2 shows the sys-
tem’s throughput (in blue; left axis) and its end-to-end latency
(in orange; right axis).

As we observe in Figure 2, the end-to-end latency remains
constant (∼0.5s) as the data rate increases from 200 records/s
to 5K records/s. Also, the system achieves its highest sustain-
able throughput of ∼8K records/sec. Note that when the arrival
rate further increases to 15K records/s, we see a spike in end-to-
end latency. This is because, the system exhibits a backpressure
mechanism and consequently an increased (up to 60s) end-to-end
latency when it can no longer cope with the arrival rate.

Oneway to deal with the changes inworkload is to re-configure
the number of tuples to pre-aggregate and/or the size of the net-
work buffers. However, this requires restarting the query each
time the workload changes, which is expensive and undesirable
for real-time applications.

3 ADAPTIVE COMBINER
We now present AdCom, an adaptive combiner for SPEs that over-
comes the limitations mentioned above. The use of AdCom aids in
optimizing aggregation queries in SPEs by dynamically adjusting
the mini-batch interval to pre-aggregate prior to data shuffling,
which enables the SPE to constantly achieve the highest sustain-
able throughput without compromising latency.

The key challenge in designing AdCom is to determine when to
emit locally aggregated tuples. As discussed above, using a fixed
mini-batch interval is useful, but when the arrival rate of records
is higher than what the network can handle, the backpressure
mechanism is activated and leads to high latency. On the other
hand, if the arrival rate is too low, then a large mini-batch interval
will diminish the lowest achievable latency for the query.

3.1 The Feedback Mechanism
We tackle the above challenge by making use of a feedback mech-
anism, which comprises (1) a controller and (2) an actuator. The
controller continuously monitors the network buffers and com-
putes an optimal mini-batch interval for the current workload.
The actuator periodically sends “signals” (i.e., the new config-
uration for the mini-batch interval) to the parallel instances of
AdCom. This feedback mechanism allows AdCom to dynamically
adjust the time (and/or number of tuples) for which it should
locally aggregate tuples.
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Figure 3 gives an overview of executing an aggregate query
using AdCom. Before we delve into its details, recall that back-
pressure is inflicted when the incoming arrival rate of records
surpasses what the system can handle. In the context of query
execution, this happens when the (sender’s) network buffer is
queued up with records that it cannot flush to the network (i.e.,
shuffle). More formally, denote by λ the rate at which a pre-
aggregation task writes records to its buffer (i.e., the mini-batch
interval) and by µ the rate at which the records are flushed out
from the buffer. Further, let ρ = λ

µ denote the fraction of buffer
utilized. Intuitively, a backpressure situation arises when ρ ≥ 1.
The key idea of our approach is to always keep ρ < 1 by contin-
uously updating λ, which translates to adapting the mini-batch
interval to pre-aggregate4.

3.2 AdCom’s Controller and Actuator
We now detail the working of the controller and actuator. As
shown in Figure 3, the controller and the actuator are part of
Flink’s job manager. This allows us to globally control all (par-
allel) AdCom instances (i.e., pre-aggregation subtasks) that are
executed in the same phase. This is crucial for preserving the
query semantics with respect to the order inwhich the records are
processed downstream. Otherwise, having a controller for each
of AdCom’s parallel instance would result in writing records (to
its buffers) at different time intervals. This may lead to a change
in the order that records are processed downstream, which may
be undesirable depending on the application.

We use a proportional-integral (PI) controller to continuously
compute the optimal λ. PI controllers have been widely used in
control systems and applications that require continuous modu-
lated control5. We refer interested readers to [12] for a compre-
hensive overview. In what follows, we discuss how we use a PI
controller in the context of performing streaming aggregations.

At high level, and as illustrated in Figure 3, the controller
continuously calculates an error value e(t) for each time t , which
is the difference between the desired value ρd of the network
buffer utilization and the measured current buffer utilization ρ.
Based on the error value, it updates λ based on a proportional (KP )
and integral (KI ) terms. The proportional control term determines
the correction in λ, which is proportional to e(t). The integral
term further applies a correction based on past values of e(t), to
diminish the residual error (i.e., when e(t) > 0 or e(t) < 0 after
applying the proportional correction).

Inmore detail, we compute e(t) as follows. Denote byA1, . . . ,An
the parallel instances of AdCom, and by ρAi the buffer utilization
for instance Ai . Since we want to globally control all instances
(as mentioned above), we compute the error value as:

e(t) = −

{
ρd − avg(ρA1 , . . . , ρAn ) if � Ai s.t. ρAi=1
ρd − 1 otherwise

In other words, we compute e(t) using the average buffer utiliza-
tion across AdCom’s parallel instances. To cope with data skew,
we compute e(t) as ρd − 1, i.e., when there is at least one AdCom
instance with 100% buffer utilization. The desired value ρd is
set based on the Service-Level Objective (SLO) to keep low or
medium backpressure on the upstream operators, which usually
corresponds to 50–80% usage of the network buffers.

When e(t) > 0, the ρ signals are too high, then the controller
produces an input signal that decreases ρ. This materializes by

4Alternatively, one can continuously update µ or both.
5Some control systems additionally make use of a derivative component, i.e., a PID
controller; we do not use it as it is suitable only for slow moving loops.
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increasing the pre-aggregating time (and decreasing λ) at AdCom.
Vice-versa, when e(t) < 0, the controller produces an input
signal that increases the usage of the buffers. This leads to “less
aggregation” and increase in λ at AdCom. Finally, based on the
e(t), the controller applies a correction based on proportional
(KP ) and integral (KI ) terms, which we explain next.

Proportional Factor (KP ). It is crucial for any controller to
let the magnitude of the corrective action depend upon the mag-
nitude of the error. This states how quickly AdCom responds to er-
rors. For instance, small errors lead to small adjustments, whereas
larger errors result in greater corrective actions. This is accom-
plished by the proportional factor KP (Equation 1). It helps the
controller apply the largest control action if e(t) is large and not
making the system unstable if e(t) is small. The next proportional
parameter (i.e., the mini-batch interval) to pre-aggregate records
is denoted by λ(t + 1) and it is computed based on the current
parameter λ(t) summed with the proportional factor KP times
the error t(e), as follows:

λ(t + 1) = λ(t) + [KP .e(t)] (1)
The controller estimates a proportional correction if e(t) is

within the desired min and max values of ρd . However, since
we consider average buffer utilization, it may be possible that
e(t) becomes zero. Therefore, no correction is taken in this case.
One way to fix this is to reduce the desired range or increase
KP . However, this leads to AdCom making rapid and unstable
adjustments, which is very undesirable. Therefore, we further
use an integral factor KI to determine the corrective action.

Integral Factor (KI ). The integral factor makes the controller
not react only based on the momentary e(t) but also based on
its previous values. It provides a way to amplify small errors
and keep adding them up over time. The accumulated values
provide a significant control signal and help the system not oscil-
late when it reaches the optimal time to locally aggregate tuples.
We compute the integral factor based the three last values of
e(t) with a sliding window-based histogram that implements the
reservoir algorithm. In our experiments, this window size was
enough to achieve a steady-state on the pre-aggregation parame-
ter of AdCom (see Section 4). Equation 2 composes the AdCom’ PI
controller with its proportional and integral factors that we use
to calculate the new pre-aggregation parameter λ.

λ(t + 1) = [λ(t) + (KP .e(t))] + [λ(t) + (KI .
(t−3)
∫
t

e(τ ).dτ )] (2)

3.3 Using AdCom in Flink
One can make use of AdCom at the API level, by parameterizing
it with the groupBy() key and a query specific UDF for pre-
aggregation. For example, our modifications to Flink allow us to
write the example aggregate query of Section 2 as:

S.adcom(regionId, max(temperature))
.groupBy(regionId).max(temperature)
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4 EXPERIMENTS
We conducted an experimental study using a real-world dataset
in the context of a ride-sharing application. Our goal was to
compare the performance of Flink when using AdCom and other
existing optimizations. In particular, we investigated: (i) how well
AdCom adapts when data rate changes; (ii) how well AdCom fares
when there is data skew; (iii) AdCom’s resource efficiency, and; (iv)
how distributive and user-defined aggregate functions affect its
performance. We found that:

• Flink+AdCom achieved up to 2.5−9× higher sustainable through-
put when data rate increased by 4×.

• AdCom is competitive to state-of-the-art when handling skew.
• Flink+AdCom with 8 reducers achieved 9× higher throughput
than Flink+noOptimization, and 3× higher throughput than
state-of-the-art.

• Flink+AdCom achieved similar throughput but lower latency
when using distributive and user-defined aggregate functions.

4.1 Experimental Setup
Implementation and cluster.We implemented AdCom as a new
operator in Apache Flink. The PI controller and the actuator are
implemented as components of Flink’s job manager and use
Flink’s job monitoring API to monitor network buffer usage of
AdCom. All of our experiments were run on a local Flink cluster
consisting of fourmachines, eachwith 16GB ofmainmemory, one
hard disk of 2TB, one Intel Xeon 2.66GHz 64-bit 8 core CPU, and
Ubuntu 16.04.6 (kernel GNU/Linux 4.4.0) as the operating system.
The machines in the cluster are connected via 1 Gbps Ethernet.
We used Apache Flink 1.11.2 and Java 1.8 for our implementation.
We configured the Flink cluster with four Task Managers and
one Job Manager, and set the maximum sub-task parallelism to 8
per node (i.e., the same number of CPU cores).

Datasets and aggregation queries.We used the New York
City Taxi and Limousine Commission (TLC) [22] dataset. It con-
sists of three million taxi trip records with fields capturing pick-
up and drop-off dates/times, pick-up and drop-off locations, trip
distances, itemized fares, rate types, payment types, and driver-
reported passenger counts. We additionally considered the TPC-
H benchmark dataset [4] with scale factor 5.

For the TLC dataset, we considered queries with algebraic and
distributive aggregate functions. In particular: (i) we considered
an event-count query (which we denote by Q1 in the text below)
that sums the number of passengers for each taxi driver, and
(ii) and an aggregation query that computes for each taxi driver
the average number of passengers, trip distance, and trip time
(denoted by Q2). For the TPC-H data we considered the TPC-
H query 1, which is an aggregation query over a single table
(lineitem) consisting of COUNT, SUM, and AVG aggregate functions.

We followed Karimov et al. [15] to generate on-the-fly data
streams for benchmarking streaming applications. In particular,
we load the datasets in memory and implement a streaming data
source that can emit events with different characteristics (see
Sections 4.2 and 4.3 below).

Baseline. To evaluate the performance of AdCom, we compare
it with no pre-aggregation, and with the state-of-the-art stream-
ing aggregation optimizations available in Flink [13]. In more
detail, we compare against (i) MiniBatch, which buffers input
records before the shuffle phase, and (ii) Local-Global Aggre-
gation, which executes the MiniBatch and then pre-aggregates
records locally (akin to Combine plus Reduce in MapReduce).
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Figure 4: Effect of change in data rate.

We set the maximum latency and the maximum number of in-
put records that can be used for MiniBatch and Local-Global
aggregation to 3 seconds and 3K events, respectively.

4.2 Effect of Change in Data Rate
We first study how well Flink adapts to a sudden surge in data
arrival rate when using AdCom and compare its performance with
the baseline approaches. We consider the TLC dataset, and a
stream data source that for the first 60 mins generates events at
50K records/sec, then for the next 100 mins at 200K records/sec,
and finally again reverts to a rate of 50K records/sec. We consid-
ered the aggregation query Q1 and measured its throughput and
latency, for which the results are shown in Figure 4.

We observed that Flink+AdCom achieved a higher throughput
than Flink+MiniBatch and Flink+LocalGlobal (see Figure 4(a)).
More specifically, when the input throughput is 50K rec/sec,
AdCom achieved an optimal mini-batch interval of 3.5s (starting
from the default value of 500ms) compared to a fixed interval
(of 3s and 3K events) for Flink+LocalGlobal. This allows us to
obtain a slightly higher throughput for the first 60mins. As the
input rate surges to 200K records/sec, AdCom further adapts its
mini-batch interval (from 3.5s to 8.5s), which allows Flink+AdCom
to achieve much higher throughput (from 3.6× up to 9×).

Figure 4(b) also shows the percentage of Flink’s network buffer
utilization for such a workload, which correlates to its latency.
High buffer utilization indicates high backpressure and increased
latency, whereas a lower buffer utilization indicates a low back-
pressure and lower latency. We observed that with AdCom, Flink
had an overall lower buffer utilization due to AdCom constantly
adjusting its mini-batch interval. When the workload suddenly
surges to 200K records/sec, AdCom had a buffer utilization (up
to 80%) but stabilizes after it reaches a sustainable throughput
of 18K records/sec per subtask (see Figure 4(a)) pre-aggregating
records every 8.5s. With baseline approaches, we observe that
pre-configured mini-batch intervals are not ideal for dynamic
workloads and lead to high buffer usage with surges in data rate.

Our results indicate that AdCom allows Flink to adapt to data
rate changes and achieve a higher sustainable throughput.

4.3 Effect of SkewWorkloads
We now proceed to evaluate how well Flink performs in the
presence of skew workloads. We consider the TLC dataset, and a
stream data source at 50K records/sec that for the first 60 mins
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generates tuples following a uniform key distribution, then for
the next 70 mins following a skewed distribution, and finally
again reverts to a normal distribution. We considered the ag-
gregation query Q1 and measured its throughput and Flink’s
network buffer utilization, for which the results are shown in
Figure 5.

We observed that the LocalGlobal optimization allowed Flink
to reduce the network shuffle and cost of global aggregation in the
presence of skew. However, as shown in Figure 5(a), we observed
that throughput across subtasks had some variation. Flink+AdCom
also responded well to skew as it also first locally aggregates, and
achieved a slightly higher throughput with negligible variation.
This is because, AdCom adjusted its mini-batch interval to 3.5s
compared to (pre-configured) 3s of LocalGlobal. We also show
the network buffer utilization for this setting in Figure 5(b). Note
that different subtasks have different buffer utilization, and hence
we show two lines (one for the overloaded task and other for
remaining tasks). As observed in Figure 5(b), AdCom leads to lower
buffer utilization and hence lower backpressure.

Overall, our experiments indicate that AdCom is competitive
to LocalGlobal aggregation in dealing with data skew.

4.4 Resource Efficiency
We now evaluate the resource efficiency of Flink when using
AdCom for data streams with high arrival rate. A common strat-
egy to cope with high arrival rate is to add more resources, i.e.,
increase the degree of parallelism. When we add more global (i.e.:
reducer) subtasks after the shuffle phase, it helps the query to
avoid backpressure. Hence, it can sustain a higher throughput.

We consider the TLC dataset and a streaming source that gen-
erates events at a fixed rate of 200K rec/sec and process query Q1
with different aggregation optimizations. To deal with a higher
workload, we set the maximum latency and the maximum num-
ber of input records that can be used for MiniBatch and Local-
Global aggregation to 7 seconds and 7K events, respectively.

Figure 6 shows the throughput of the query for different strate-
gies. We observed that Flink+AdCom with 8 reducers achieved 9×
higher throughput than Flink+noOptimization, and 3× higher
throughput than Flink+MiniBatch and Flink+LocalGlobal. Fur-
ther, Flink+AdCom required only 8 reducers to achieve the same
throughput that Flink+LocalGlobal achieves with 24 reducers.
This is because the MiniBatch and the LocalGlobal approaches
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first accumulates (mini-batches) records every 7 seconds, and
then aggregate every 7K tuples. In contrast, AdCom leverages
a hash-based data structure, which allows us to consume and
pre-aggregate tuples in a single pass and hence requires less
resources.

Based on these experiments, we conclude that AdCom is more
resource efficient compared to MiniBatch and LocalGlobal.

4.5 Results for User-defined and Distributive
Aggregate Functions

Lastly, we evaluate the performance of AdCom for aggregation
queries with both distributive and algebraic aggregate functions.
We considered queries Q2 (on the TLC dataset) and TPC-H Q1
and set the maximum latency and the maximum number of input
records that can be used for MiniBatch and LocalGlobal aggrega-
tion to 1s and 1K events, respectively. The arrival rate for each
stream was 50K records/sec. The results are shown in Figure 7.

We first discuss the results for TPC-H query Q1. We observed
that Flink achieves the same throughput when using either of
AdCom, MiniBatch, or LocalGlobal. This is because the config-
ured maximum latency of 1s and the maximum number of input
records of 1K events that configured for MiniBatch and Local-
Global aggregation was sufficient to handle the workload and the
user-defined aggregate function. Although Flink+AdCom achieved
a similar throughput, it adapts its mini-batch interval from 1s to
50ms, and thus achieving a lower latency than Flink+MiniBach
and Flink+LocalGlobal (not shown here).

For query Q2, which involves an algebraic aggregate, we ob-
served that Flink+AdCom again achieves a higher throughput than
Flink+MiniBatch and Flink+LocalGlobal.We note that, other than
AVG(), Flink+LocalGlobal cannot optimize queries with algebraic
aggregate functions. In contrast, AdCom allows specifying any
UDF for pre-aggregating which makes it suitable to aggregation
queries that accept a “useful” combiner.

Overall, we found that Flink+AdCom achieves a higher through-
put without compromising on latency even for distributive aggre-
gate functions. We also performed experiments (not shown here
due to space constraints) considering queries involving other
distributive and algebraic aggregate functions such (e.g., sum,
max, min, and top-k) and observed similar performance.
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5 RELATEDWORK
We now discuss how ideas presented in this paper are related
to prior work on adaptive stream processing. Due to space con-
straints, we discuss works that are most related.

Das et al. [7] studied the effect of batch sizes on throughput and
latency, and proposed a control algorithm based on fixed point it-
eration. Their work focuses on determining the optimal batch size
for ingesting the data into SPE and relies on past queries. Zhang
et al. [31] proposed Dynamic Block and Batch Sizing (DyBBS)
using an online control algorithm integrated with isotonic regres-
sion. Besides adjusting the micro-batch size, DyBBS also adjusts
the execution parallelism (i.e., batch size/block size in Spark).
Instead of adapting the batch size, Drizzle [26] focuses on opti-
mally scheduling multiple batches (or a group), and automatically
tunes the group size. A-scheduler [6] further extended this ap-
proach by dynamically changing the batch sizes using an expert
fuzzy control mechanism. Wu et al. [28] studied the impact of
batch size on Kafka streams that are then ingested into SPEs,
and proposed a reactive batching strategy to cope with variable
network conditions. Lohrmann et al. [17] proposed strategies
to switch between adaptive buffer (re-)sizing and dynamic task
chaining to optimize execution plans. All these approaches focus
on adjusting the batch size w.r.t. the entire query or prior to
ingesting the data stream into the SPE. In contrast, we focus on
the batch size specific to an (aggregation) operator. AdCom is thus
complementary to the above approaches.

Apart from dynamically configuring the batch size, many
works have also focused on adapting the execution plan.WASP [14]
uses a network-aware framework that is able to adapt the query
plan to the resources available in run-time via task re-assignment,
operator scaling, and query re-planning. Nasir et al. [18] proposed
a hash-based algorithm to partition data that optimizes network
shuffle and deals with skew workloads. While [3, 16, 20, 25] have
studied eliminating redundant computations via dynamically
sharing of data and/or compute, [10, 21] focused on adaptability
via query complication. Eddies [2] also tackled the problem of
unpredictable workloads by reordering operators at runtime.

Feedback mechanisms have been a central component in en-
abling adaptive stream processing. FAST [9] uses adaptive sam-
pling methods based on a PID controller to adjust the sampling
rate for processing streams. Tolosana-Calasanz et al. [23] uses a
feedback mechanism based solely on proportional factor to mini-
mize resource utilization. In AdCom, we leverage a PI controller,
which is specific to optimizing local-aggregations.

6 CONCLUSION AND FUTUREWORK
Adaptability of SPEs to varying workloads is important for real-
time applications. In this paper, we considered streaming aggre-
gations, which are the backbone of many real-time applications.
We have proposed AdCom, an adaptive combiner for SPEs, which
improves the performance of aggregation queries under variable
workloads. We have proposed a lightweight feedback mecha-
nism that continuously monitors the network buffers, and allows
AdCom to autonomously adapt to varying workloads. In our ex-
perimental evaluation using a real-world dataset, we have shown
that AdCom achieves a higher sustainable throughput (up to 9×)
without compromising latency, is resilient to data skew, and is
resource efficient when compared to existing optimizations.

As future work, we plan to extend our work to fog and edge
computing environments [30]. In particular, we plan to study
how to adapt AdCom for nodes that are resource (e.g., memory)

constrained. We also plan to make AdCom adaptive to hybrid en-
vironments that include unreliable compute nodes and network
channels. Lastly, we plan to extend existing optimizers to cre-
ate the AdCom UDF during compile time, so it can relieve the
developers of this task.
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ABSTRACT
With the ever-increasing urbanization, managing tra�c and

avoiding congestion becomes more and more challenging.

Analysing the dynamics of vehicles is a crucial aspect of alle-

viating the problem of tra�c congestion. One key aspect in as-

sessing the tra�c situation is to identify dominant �ows, which
are subject to high tra�c volumes, and hence, are most prone to

generate congestion. Real-world tra�c data tracking vehicles in

an urban network are proved to be extensive, subject to incon-

sistencies, and often detections are missing. These render many

of the prior techniques inapplicable, highlighting the need for a

novel robust and scalable technique. In this paper, we propose

IST, an indexing technique for real-life tra�c data, a scoring

function for identifying the dominant �ows and Flow-Scan, an

algorithm for querying the dominant �ows from the proposed

index. Our experimental results demonstrate the e�ciency and

e�ectiveness of the presented method. Robustness and e�ective-

ness were tested querying top-: dominant �ows on a real-life

dataset. In addition, with synthetic data, we demonstrate that

our method is scalable while comparing it to related existing

methods.

1 INTRODUCTION
Predicting and preventing tra�c congestion is important for

multiple reasons, such as reducing the driving time from place to

place, reducing pollution, reducing waste of fuel, and in general

improving the e�ciency of urban mobility. In order to prevent

tra�c congestion in urban roads, it is necessary to analyse the

tra�c dynamics and identify the areas where tra�c jams are

more likely to happen. Identifying these potentially problematic

areas is the �rst step to pursue solutions alleviating the issue

using tra�c optimization techniques.

Dominant �ows refer to the longest possible sequences of

road segments where a signi�cant number of vehicles travel in

a given time window. They are crucial information to enable

regional tra�c optimization techniques and to coordinate tra�c

light plans in order to calibrate the capacity of roads. Detecting

dominant �ows enables smart tra�c light plans optimization,

allowing on the one hand to increase the throughput of vehicles

crossing intersections in the directions a�ected by the dominant

�ows (tra�c throttling), and on the other hand slow down tra�c

along with the dominant �ows when road capacity cannot be

further extended and backpressure must be applied to avoid

saturation of road edges, i.e., congestions. Congestions can be

interpreted as multiple overlapping �ows that constrain each

other and so creating tra�c jams. In addition, the longer the
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Figure 1: Example of dominant �ows in an area during
three di�erent times of a day.

dominant �ows are the more areas they a�ect. Thus, detecting

these �ows allows adjusting the tra�c light plans to avoid these

tra�c jams. Once the dominant �ows are detected, dedicated

analytics can be applied to them for further tra�c and movement

pattern analysis and for understanding macroscopic tra�c trends.

Additionally, knowing the dominant �ows can be a powerful

analytical tool for de�ning strategies for tra�c management and

control of tra�c authorities.

As vehicles are used by people, it is not always straightforward

to model their behaviour and moving patterns. For example,

Figure 1 presents the dominant �ows in an area at three di�erent

times of a day. As we can see, the �ows are con�icting, especially

between the one from 03:00-04:00 that goes from intersection

A to intersection H and the one from 08:00-09:00 where it goes

from intersection H to intersection A. The most common tra�c

light systems allow tra�c engineers to adjust tra�c light plans

during the day to accommodate di�erent �ows. Thus, existing

adaptive tra�c light systems seek dominant �ow information

during the day to avoid tra�c jams and shorten commute time.

Our case study concerns an area in one of the largest Chi-

nese metropolis where installed cameras allow to monitor tra�c

at intersections. Automated video processing allows detecting

trajectories of vehicles across intersections, while detecting and

tracking their plate number. Summaries of the information ex-

tracted from videos are made available for tra�c optimization

processes at 1 second frequency. The inherent complexity of real-

life environment, video processing and software pipelines make

the process prone to errors and failures that must be accounted

for. This work is part of a solution combining cloud technologies

and AI which strives for analysing and coordinating the tra�c

in the city to alleviate the tra�c congestion.

Working with real-life data is a challenging task. Real-life data

can be highly incomplete, with respect to missing values, and

high noise. Our case study uses data from camera sensors that
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cover only certain parts of the road network, leading to missing

information. For example, in Figure 1, there are no camera sensors

located in intersection B, so if multiple vehicles traveling from

intersection D to intersection B create a dominant �ow, this �ow

will be probably missed. Furthermore, camera sensors might

su�er from various problems during their lifetime. Malfunction,

bad visibility due to the weather or dirt may prevent precise

detection of plate numbers. The aforementioned issues generate

various types of inconsistencies in the detection data, and thus

making the dominant �ow identi�cation more challenging.

The top-: dominant �ow extraction is not a new problem. Yet,

the previous work [1–3, 6, 9] is considering only the frequency

of the �ows and not their length. However, if the length of the

�ows are ignored, single very frequent road segment �ows would

dominate the top-: results and not allow the longer and more im-

portant �ows to be identi�ed and analysed. The PSSS method [3]

suggests the use of a variant of a fundamental sequential pattern

mining method [5, 8]. However, this technique is not applicable

in our context due to our challenging real-life data where missing

values in the detections are not rare. The method proposed in [3]

is using the successor list of each sensor in order to �nd “hot

routes”, but in our setting where missing values are common

and not all road edges are monitored, the successor lists will not

achieve the desired outcome and end up giving wrong results.

This work is focused on identifying dominant �ows in given

time windows during the day, to support an adaptive tra�c light

system aimed at optimizing tra�c by controlling road capacity

and prevent congestion of vehicles on urban roads. In this paper,

we aim to discover dominant �ows occurring during ad-hoc time

windows based on the frequency and length of the �ow. The

approach we are presenting in this work enables to overcome

the issues that the previous methods have with the imperfect

real-life data. Furthermore, we consider not only the frequency

of a �ow, but also its length. The main idea of this work is to

use simple data structures to store all the vehicle detections from

the camera sensors based both on their timestamps and their

location. We adopt a combination of an inverted index and su�x

trees to index only the necessary vehicle trip detections. From

the index, we are then able to identify the most dominant �ows

very e�ciently in multiple ad-hoc time windows.

Contributions and Outline. In summary, in this work we

make the following contributions:

• We introduce a novel scoring function to determine the

�ows based on a weighted factor between their frequency

and length.

• We propose a simple indexing technique for vehicle detec-

tions on road networks.

• We propose an e�cient algorithm to identify dominant

�ows on multiple ad-hoc time windows from the proposed

index.

• With thorough experiments, we demonstrate that our in-

dexing and querying methods are e�cient and viable so-

lutions to our case study.

The rest of the paper is organised as follows. Section 2 reviews

the related work, while in Section 3 the problem of �nding the

top-: dominant �ows is introduced. Then, Section 4 describes the

indexing function for detecting the dominant �ows. We evaluate

our approach with the state-of-the-art approaches in Section 5.

Finally, Section 6 concludes the paper with the �nal remarks and

provides directions for future work.

2 RELATEDWORK
A vehicle trip can be seen as an ordered sequence of detections

where each detection represents a single itemset of the sequence.

Thus, the identi�cation of dominant �ows can be abstracted,

and therefore, can be related to the frequent sequential pattern

mining topic. One of the early works on this topic is [10] in which

the authors made a generalization of a sequential pattern and

proposed the GSP algorithm to discover the frequent patterns.

Later, two di�erent methods, SPADE [12] and Pre�xSpan [5, 8],

were proposed that outperformed the GSP method. SPADE [12]

was introduced as a method of frequent sequence mining using

a lattice structure. Pre�xSpan [5, 8] algorithm was later used in

other works [3] for various applications like ours.We chose to use

this method as our baseline, and not SPADE since this method

was used in other works as well, even though none of them

perfectly apply in our application, as described in the following

Section 5.

An adaptation of Pre�xSpan algorithm, the PSSS [3] method

was proposed in order to mine hot routes on a road network using

private vehicle Electronic Registration Identi�cation data. The

problem addressed in [3] can be considered similar to our work

and we use the PSSS method as a baseline in our experiments.

However, there are two main di�erences which make PSSS not

applicable for our case. First, only the frequency of a route is

considered; in our method we use a combination of the frequency

and the length of a �ow to de�ne it as “hot” or dominant. Second,

in PSSS method successor lists for each road node are introduced

that determine the neighbouring road nodes where a following

detection could happen. These successor lists are used to restrict

the search of hot �ows only on the neighbouring road edges.

Although this makes PSSS method more e�cient compared to the

Pre�xSpan, it cannot be applied in our case. In a real case scenario,

we have missing data and gaps in the detections that prevent the

successor list of each road node to bene�t the identi�cation of hot

�ows. For example, in Figure 1, the successor list of intersection

A includes intersections B and C. If a dominant �ow is from

intersection A to intersection E through intersection C, and the

camera on intersectionC is temporarily not giving any detections,

this �ow would be missed since the search from intersection A
will be stopped once there won’t be any detections in intersection

C. Furthermore, in our case study scenario, there are intersections

that do not have detectors and thus by default there are detections

missing. The adjacency property of the road network detections

is also utilized in the GBM method [6], where it is assumed

that the objects are moving in a grid space and each next move

is happening to adjacent grid cells. Again, this property is not

true for the real case scenarios with incomplete vehicle detection,

that, as mentioned before, are due to factor like missing detectors,

faulty hardware, poor weather conditions or network failure and

the inherent complexity of real-time image processing.

Other works related to the frequent pattern on trajectories

include [1, 2, 9] focus on detecting frequent patterns on trajec-

tories that are based on GPS coordinates. These problems are

incomparable to ours, with their biggest di�erence being their

use of coordinates �oating point data instead of �xed road net-

work point data. Furthermore, only the frequency of the patterns

is considered, in contrast to the combination of the length and

the frequency that our work adopts.
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3 PRELIMINARIES
Let � = (* , �) be a directed unweighted graph that represents

a road network. A node D8 ∈ * represents a road intersection

and a directed edge 48 = (DG , D~) ∈ � represents a road segment

that starts from intersection DG and ends in intersection D~ . In

each edge of an intersection a detector is located, which gives

information as a tuple in the form of (2, C, 4), where 2 is the vehicle
id or vehicle plate number, C is the timestamp of the detection

and 4 is the directed road edge where the detection happened.

In a real setting where each detector sends data every 1B42 , we

can create sequences of detections for each vehicle, de�ned as

vehicle trips.

De�nition 3.1 (Trip). A vehicle trip ) is an ordered sequence

of >8 = (C8 , 48 ), where C8 is the timestamp and 48 is the road edge

of a detection that the vehicle moved on. To be considered part

of the same trip, the time di�erence between two sequential

entries must be less than a manually-de�ned time threshold

C<8= . Hence, we de�ne a trip as ) = {>1, >2, . . . , > |) |}, where
C8+1 − C8 ≤ C<8=∀8, 1 ≤ 8 ≤ |) |.

A �ow B = {41, 42, . . . , 4 |B |} is an ordered sequence of road

edges and its length is de�ned as the number of road edges that

it contains, i.e. ;4=(B) = |4 ∈ B |. A trip ) contains a �ow B at

time window, = [C0, C1 ], denoted as (B,, ) v ) if and only if

the trip ) has at least one index 8 where the sequence of road

edges starting at 8 is the same sequence of ordered road edges

during that time window, . More formally ∃8, 1 ≤ 8 ≤ |) | :
4 9 = >8+9−1 .4 ∀1 ≤ 9 ≤ |B | and [>8 .C, >8+|B | .C] ⊆, and >8+9−1 ∈ )
and 4 9 ∈ B . Given a time window, and a set of trips �) , we can

de�ne the frequency of a �ow as the number of trips in which it

is contained, i.e. 5 A4@(B,, ) = |)8 v B |.
In order to avoid considering not useful �ows, we use min-

imum length, ;<8= , and minimum frequency, 5<8= , limits. If a

�ow has less frequency or less length than the minimum, we

ignore it. In addition, we consider only maximal �ows, where

a �ow is considered maximal if there are no sub-�ows with the

same frequency. A score can get assigned to a �ow, based on its

frequency and length. In this work the score is the following:

De�nition 3.2 (Flow Score). Given a �ow B , a time window, ,

a set of trips �) , and a parameter 0 ≤ U ≤ 1, the score of the

�ow is the weighted combination of its frequency and length, i.e.

B2>A4 (B,, , U) = U ∗ 5 A4@(B,, ) + (1 − U) ∗ ;4=(B)
Given a number : ≥ 1, a set of trips �) , a time window,

and a parameter U , the :−Flows problem is to identify all the :

�ows with the highest score.

4 METHOD FLOW-SCAN
The main idea of the proposed method is based on two obser-

vations. First, we need to identify the �ows, or sub-trips, from

the vehicle trips based on their frequency and length. For this

purpose, we adopt a structure that utilizes a variant of the su�x

tree [11]. Second, we don’t need to maintain all the trips from

the vehicles, but only the ones that are candidates for the results.

In other words, we can discard the trips that have less than the

required ;<8= . The trips with less than the required 5<8= need to

get retained, since their sub-trips could potentially have more

than the required 5<8= .

IST Index. The main data structure of the method is an in-

verted index. The keys of the inverted index store all the sub-�ows

with ;<8= that appear in the data. The values of the inverted index

are su�x trees with all the sub-�ows longer than ;<8= having

ID Path Vehicle Timestamps

t1 abcdef A1 2020/03/20 07:12 − 2020/03/20 07:28
t2 abcg A2 2020/03/20 07:25 − 2020/03/20 07:41
t3 hdebc A3 2020/03/20 08:03 − 2020/03/20 08:23

Figure 2: IST index example using ;<8= = 2.

the key as pre�x. The adopted su�x tree, is a compact version of

the known su�x tree. Essentially, the nodes that have only one

sub-tree are merged with the root of their sub-tree. In this way,

the su�x tree has less nodes without loss of the necessary infor-

mation. In addition, each node of the su�x tree has a pointer to a

list of all the trip ids that contain the sub-�ow of the node. Using

this list, the frequency of the sub-�ow can be easily determined.

An auxiliary data structure is used to store the information

of all the trips; trip id, vehicle id that made the trip, and the

starting and ending timestamps. This data structure is a simple

list that is used as supplementary information of the main index.

By scanning this list, the trips inside the time window can be

identi�ed.

Example 4.1. An example is shown in Figure 2 where the IST

index is visualized for three vehicle trips. For this example, we

use ;<8= = 2. All the sub-�ows with length = 2 are indexed

as keys in the IST, depicted as rectangles. Each key of the IST

index is pointing to a su�x tree, depicted as circles, where all

the sub-�ows that have the certain keys as pre�x are indexed.

Furthermore, in the nodes of the su�x trees there are the pointers

to the trip ids lists, depicted as hexagons. The IST index is not

fully illustrated for presentation reasons. As seen in the �gure the

sub-�ows bcdef, bcg and bc are indexed in the second key of the

IST index bc. The su�x tree from that key includes the su�xes

of the mentioned sub-�ows def and g. The root of the tree is

pointing to the list with the trip ids {C1, C2, C3}, since the sub-�ow
bc is contained in all the trips of our example. Accordingly, the

other nodes of the su�x tree contain the respected trip ids in

their id lists.

Flow-Scan Query Method. By indexing the trips using the

IST data structure, we make sure that no unnecessary trips will

become candidates for the dominant �ows result and that no

information of the trips is lost. In order to query the desired

dominant �ows, the Flow-Scan process of reading the data from

the IST data structure is divided into four steps, shown in Algo-

rithm 1. The �rst step is the identi�cation of the trips that happen

inside the time window, (line 3). This step uses the auxiliary

data structure where all the trips are stored is used. Once the

trips inside the time window, are retrieved, the keys from the

IST inverted index are selected (line 4). This step is important in

order to avoid traversing all the data in the IST data structure,

but only the elements that could give candidate �ows for the

result. The third step is to retrieve all the maximal sub-�ows that

are longer than the ;<8= and more frequent than the 5<8= from
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the su�x trees of the keys (lines 5-7). Lastly, the fourth step is

to score the retrieved sub-�ows using the scoring function from

the De�nition 3.2 (lines 8-9) and return the : sub-�ows with the

highest scores.

Algorithm 1 Flow-Scan Algorithm

1: function Query(IST index, query parameters U, :,, )

2: �;>FB ← ∅
3: �),, ← FindTripsInWindow(IST,, );

4:  �.( ← FindIndexKeys(IST, �),, );

5: for each :4~ ∈  �.( do
6: � ← from :4~.Su�xTree �nd all maximal �ows with

more than 5<8=

7: add all � in �;>FB

8: for each B ∈ �;>FB do
9: score(B)

return<0G: [�;>FB]

5 EXPERIMENTS
In this section, we report the experimental evaluation of the

proposed method, especially for what concerns e�ciency and

scalability. We �rst describe the experimental setup, the base-

line methods and the datasets used for the evaluation. Then, we

describe each experiment, report and discuss the results.

5.1 Environment and Setup
Hardware and Implementation. Our experiments were eval-

uated on a machine with 24 cores 3.40GHz Intel(R) Core(TM)

i7-6700 CPUs, with 16GB memory, using Ubuntu 18.04.4 LTS,

and all algorithms are implemented in Java 8.

Compared Algorithms. In our experiments, we use a Naive

baseline algorithm to evaluate the e�ciency of the Flow-Scan

algorithm proposed in this work. The baseline method, Naive,

utilizes the structure of the road network to store a list of de-

tections in each road edge 4 of the network. The list consists of

tuples (C, 2, ?) representing a detection of a vehicle 2 at time C at

the given road edge 4 . The last, ? , is a pointer to the next data

point (detection) of the same vehicle 2 within the same trip ) ,

i.e. the two consequent detections occurred within C<8= . In this

way, the vehicle’s trip can be recreated by traversing the vehicle’s

detections following the pointers ? . During the query process,

the algorithm scans all the road edges 4 for detections that occur

inside the time window, and it constructs �ows by traversing

the detections using the pointers ? . After identifying all �ows,

it calculates a score for each �ow and returns the : �ows with

the highest score. The Naive method can handle the missing data

from the detections since it uses the road network only to store

the detections and not to extract the �ows from it, as opposed

to the PSSS method [3]. In the Naive method, the search of the

�ows is happening by following the pointers of the tuples and

not following the road network structure.

Additionally with the baseline Naive, we compare the pro-

posed method Flow-Scan with the Pre�xSpan method described

in [5, 8] and with the PSSS method described in [3]. Since the

Pre�xSpan and the PSSS methods identify the dominant �ows

based only on their frequency, we use U = 1 for the Naive and

Flow-Scan methods in the experiments that all four algorithms

are present. Furthermore, since the Pre�xSpan and the PSSS

methods were proposed for applications that didn’t use incom-

plete data, we use these algorithms only in the experiments with

the synthetic datasets as described in the following sections.

Datasets. For the evaluation of the aforementioned methods,

we use four di�erent datasets [4], two including real-life data

and two synthetic data. The �rst dataset, RM, is a real-life dataset

collected in a period of a month from tra�c detectors in an area

of a Chinese city. The detectors were located in 6 intersections

monitoring the tra�c on 44 road edges. Each detector was col-

lecting data every 1 second for all the road edges in its radius. In

total, 2894174 detections were collected, from 337089 di�erent

vehicles. The second dataset, RD, includes the data from RM for

one of the days in that month. The data from that day include

116268 detections from 44643 vehicles.

As already mentioned, these real-life data are incomplete and

the PSSS method [3] is not suitable for identifying the dominant

�ows over them. In order to be able to apply the PSSS and the

Pre�xSpan [5, 8] algorithms and to experiment with the scala-

bility of the proposed algorithm Flow-Scan we use two datasets,

with synthetic data. The synthetic data COM were generated in

the same road network as the real-life data RM and RD, with

the di�erence that we included detectors in the 2 intersections

where the real scenario was missing. Then we generated equally

random trips over the road network. In total we generated 18910

detections from 7500 vehicles. In order to evaluate the scalabil-

ity of the methods in bigger road networks, we generated the

synthetic data GRID using the SUMO Simulation of Urban Mo-

bility [7]. We randomly generated trips on a 10G10 intersections

grid road network (having 100 intersections and 360 road edges)

using a utility from SUMO that equally generates trips over the

road network. Then, running the simulation and using TraCI

Tra�c Control Interface library
1
we read the simulation data

and collect the detections. The simulation collected data include

1806141 detections from 135618 di�erent vehicles.

5.2 Results and Discussion
Following, the experimental analysis is reported. We show the

performance of themethods described based on their building and

querying times, and discuss the e�ect that the various parameters

have on the running time of the algorithms. The building time

for each algorithm depends on the nature of the algorithm. For

all of them the building time includes the reading of the data

into memory. For Naive and Flow-Scan it also includes the time

for building their respective index. The query time is the time

used for each algorithm in order to retrieve the dominant �ows

from the data or the index. For all algorithms this time includes

also the scoring of each �ow. For PSSS algorithm the time for

creating the successor list only for the road edges used in the

dominant �ows detection is measured in the query time. Note

that the experimental results reported are the ones we believe

are representative and not the exhaustive set of experiments

performed.

Dataset Size Scalability. For testing the scalability, we run

the four algorithms, Pre�xSpan, PSSS,Naive, Flow-Scan, using

the two synthetic datasets COM and GRID for di�erent number of

detections and vehicles. All algorithms were run with C<8= = 200

sec, U = 1, : = 1, ;<8= = 2 and 5<8= = 2.

Figure 3 shows the scalability of the building and query times

for the four algorithms by changing the number of vehicles in

the COM dataset. As expected, the more vehicles there are in

1
https://sumo.dlr.de/docs/TraCI.html
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Figure 3: Running times for the COM dataset changing
the number of vehicles.
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Figure 4: Running times for the GRID dataset changing
the number of detections.

the dataset, the more time the algorithms need for their building

step. Method Pre�xSpan and PSSS have the same performance on

their building phase since they only read the data into memory in

this step. On the other hand, the query time does not get a�ected

by the number of the vehicles, excepting the Pre�xSpan method

that has to iterate multiple times through the vehicle trips to �nd

the candidates for the result.

In Figure 4, the building and query times for the

Naive, Flow-Scan and PSSS algorithms are shown by changing

the number of detections in the GRID dataset. This dataset was

too large for the Pre�xSpan method and so we do not report run-

ning times for it. Similarly as the COM dataset, with the increase

of the number of detections in the data, the building time of the

methods is increased. For bigger scale of data, such as the GRID

dataset, the building of the IST index is as e�cient as the reading

of the data into memory that the PSSS method is using, while in

the query time the performance is also similar.

Value of TimeWindowW. The time window, is the query

parameter that a�ects the query time. It is used to restricts the

dominant �ows in the result, so that they are happening during

the time window period. Intuitively, when the time window is in

a rush hour period of the day, a signi�cant number of vehicles

will travel in the road edges, more �ows will become candidates

for the result and so, more time will be necessary for the query

process. Figure 5a shows a histogramwith the number of vehicles

per hour for the RD dataset. The peak rush hours are 08:00-09:00

and 18:00-19:00 and the hours with the least tra�c are 01:00-06:00.

We run the Naive and the Flow-Scan algorithms for �ve dif-

ferent time windows that had di�erent number of vehicles. In

this experiment we don’t use the Pre�xSpan and PSSS algorithms

since we use the real-life RD dataset that is incomplete. The rest of

the parameters were C<8= = 200 sec, U = 0.5, : = 10, ;<8= = 1 and

0
–1 1
–2

2–
3

3–
4

4
–5

5–
6

6–
7

7
–8

8–
9

9–
10

10
–1

1
11

–1
2

12
–1

3
13

–1
4

14
–1

5
15

–1
6

16
–1

7
17

–1
8

1
8–

19
19

–2
0

20
–2

1
21

–2
2

22
–
23

23
–2

4

0

2,000

4,000

6,000

8,000

N
u
m
b
er

of
ve
h
ic
le
s

(a) Histogram of number of ve-
hicles per hour.

Naive Flow-Scan

0 2,000 4,000 6,000 8,000
0

0.2

0.4

0.6

0.8

1

1.2

Number of vehicles

Q
u
er
y
ti
m
e
in

se
c

(b) Query time for changing
time window, .

Figure 5: Time window analysis for the RD dataset.
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Figure 6: Query time for Flow-Scan method using the RM
dataset.

5<8= = 1. Figure 5b shows the query times in respect to the num-

ber of vehicles that were in each time window. We can see that

with more vehicles in the time window, the query time increases.

Furthermore, Naive algorithm is a�ected more by the number

of vehicles in the time window, while Flow-Scan algorithm can

handle better the increase.

In addition, for validating our method Flow-Scan over one

month of data, we run the algorithm for the same time windows

for all the days of a month using the RM dataset. The number

of vehicles for each hour for all the di�erent days of the month

follow the same trend as in Figure 5a. Figure 6 shows the query

times for each time window for 30 days. As seen in the �gure,

the di�erent tra�c conditions in the di�erent days do not a�ect

the time windows with small number of vehicles, like the time

windows of 04:00-05:00 and 00:00-01:00. As the number of ve-

hicles increases in the time window, the query time di�erences

also increase.

Value of Time Threshold tmin. The time threshold a�ects

the indexing time because the higher it is, the more detections

will be connected into a single trip. Figure 7 shows the run-

ning times for the Naive and Flow-Scan algorithms, run for the

RD dataset. Again, the Pre�xSpan and PSSS algorithms are not

present because of the incomplete real-life dataset. We chose

as time window, the period between 07:00-08:00 since this

is the period with average number of vehicles. The rest of the

parameters were U = 0.5, : = 10, ;<8= = 1 and 5<8= = 1.

When the time threshold C<8= is increased, the building time

for the Naive index is not a�ected compared to the building time

for the IST index.When the C<8= is increased, as mentioned, more

detections get connected into single trips and the trips grow in

length. However, since the vehicle detections stay the same, we

get less trips in total, and so the building of the IST index is

decreased.
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Figure 7: Running times for the RD dataset changing the
C<8= parameter.
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Figure 8: Running times for the RD dataset changing the
;<8= of the trips.

On the contrary, the query time the Naive algorithm gets more

a�ected by the increase of the C<8= since the trips become longer.

The Naive query phase needs to iterate more times in the length

of the trips than the Flow-Scan algorithm, and so the increase of

the C<8= increases the query time of Naive.

Value of Minimum Length lmin. The ;<8= of the trips con-

trols the length of the �ows that can be candidates as dominant

�ows and thus, indirectly can control how many trips can be

considered from the dataset. If a �ow is shorter than the ;<8=

then it is ignored in the result. In addition, the ;<8= is the value

that controls the length of the sub-�ows stored as inverted index

keys in the IST index. For evaluating how the value of the ;<8=

is a�ecting the Naive and the Flow-Scan methods, we run the al-

gorithms for the RD dataset, with C<8= = 500 sec, U = 0.5, : = 10,

5<8= = 1 and time window, = 07:00-08:00. As mentioned be-

fore, the Pre�xSpan and PSSS algorithms are not included in this

experiment because of the use of the real-life dataset.

Figure 8 shows the running times for the Naive and the

Flow-Scan algorithms. When ;<8= = 1, all the �ows and sub-

�ows are considered as candidates to be dominant, but when the

;<8= increases, the number of �ows longer than the threshold

decrease, thus reducing the candidate �ows. This shows in the

query time for both Naive and Flow-Scan algorithms. For both

algorithms as the ;<8= is increasing, the query time is decreasing

since less �ows needs to be analysed. The IST index stores only

the trips that have more than the ;<8= , and when the ;<8= is

increasing, the index building time is decreasing. The Naive algo-

rithm has more stable building time with the change of the ;<8=

and that is because it does not check for ;<8= of the trips before

indexing them. However, Naive needs more time for querying

than the Flow-Scan, approximately 30%more time, since it keeps

all trips and not only the ones longer than ;<8= .

Values of k, U and fmin. The parameters : , U and 5<8= a�ect

which of the �ows will be detected as the result dominant �ows,

but do not a�ect the running time of the algorithms. The param-

eter : does not a�ect the algorithms’ running times, since the

algorithms do not use any pruning or early stopping condition.

Similarly, changing U and 5<8= a�ect only the scoring function

of the �ows and not the query process of the algorithms.

6 CONCLUSIONS
In this paper, we focused on the real-life scenario of identifying

dominant tra�c �ows, which is crucial for tra�c optimization

techniques, such as avoiding tra�c congestion on urban road

networks. We introduced a scoring function that ranks the �ows,

proposed a simple data structure called IST, and proposed the

Flow-Scan algorithm to identify the highest-ranking �ows by

utilizing the proposed IST index. Our experimental evaluation

shows that the Flow-Scan method is e�cient and scalable. It is

equally e�cient on the synthetic datasets with the state-of-the-

art PSSS method while at the same time our method enables

to overcome the limitations of the PSSS method that does not

consider the length of a �ow as an important factor and is inca-

pable to handle missing values of the real-life data. Furthermore,

although the Flow-Scan method uses more time to build the IST

index compared to the Naive method, it outperforms the baseline

in the query time and thus, it is a viable solutions for the large

scale real-life urban road network scenario studied in this paper.
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ABSTRACT
Driven by the exponential growth in data volume and complexity,
and the increasing demand to extract concealed value from it,
interactive data exploration (IDE) approaches have recently re-
ceived a great amount of attention in both industry and academia.
To achieve interactiveness, most existing active learning-based
IDE systems operate on main-memory databases, which inher-
ently limits the scalability of these IDE systems. In this paper, we
propose a novel indexing mechanism, called Uncertainty Estima-
tion Index (UEI), which supports the interactivity and scalability
of the active learning-based IDE systems. UEI combines hierar-
chical in-memory indexing with columnar and inverted-indexing
based secondary storage mechanism. It achieves scalability and
efficiency through a dynamic estimation of the set of data that
are most beneficial to the current exploration. By intelligently
manage the in-memory cache, UEI enables active learning-based
IDE systems to scale beyond the main memory restriction, while
maintains the desired accuracy and convergency speed. We exper-
imentally evaluated UEI using a state-of-the-art IDE system with
two schemes, one incorporating UEI, and one utilizing a standard
DBMS. We measure the efficiency of the proposed solution using
a large real-world dataset placed on the secondary storage. Our
experiments show that (1) UEI version outperforms the DBMS
one by providing more than 50x runtime efficiency when the size
of the dataset exceeds the main memory capacity, and (2) is capa-
ble of achieving sub-second interactive response time for data that
is 100 times larger than the available memory while achieving the
desired exploration accuracy and effectiveness.

1 INTRODUCTION
In recent years, as the data has grown rapidly in both complexity
and volume, the traditional search methods relying on explicit key-
words or queries can quickly lose their effectiveness. As reported
in previous studies [15], it is often difficult for users to construct
precise articulations that describe their interests. In such cases,
traditional search methods usually fail to deliver satisfying results,
and the user often needs to deal with results that are too big in size
due to loose queries or keywords. Consequently, to obtain a satis-
fying result, users need to execute numerous ad-hoc queries with
tightened conditionals to reduce the search space, which requires a
considerable amount of time and human effort. Thus, novel inter-
active data exploration (IDE) techniques that aim to assist users
in finding their intended items has generated a significant amount
of interest in research communities [2, 7, 9, 10, 12, 13, 16].

One of the core features of these IDE systems is to employ
human-in-the-loop (HIL) exploration processes to minimize the
overall user effort and time in finding the relevant data items. In-
stead of providing inaccurate results with one generic predictive
model (i.e., engine), by leveraging human-in-the-loop, a uniquely

© 2021 Copyright held by the owner/author(s). Published in Proceedings of the 24th
International Conference on Extending Database Technology (EDBT), March 23-26,
2021, ISBN 978-3-89318-084-4 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

learned predictive model can be created rapidly for each indi-
vidual user and task. To do so, a common solution to support
effective human-in-the-loop operations is to leverage active learn-
ing techniques [20]—active learning refers to a set of machine
learning approaches that aim to learn an accurate predictive model
with minimum labeled data for regression and classification tasks.
Clearly, the goal of active learning naturally aligns with the needs
of many human-in-the-loop techniques as they seek to quickly
and accurately deliver the results that the user needs with a per-
sonalized, predictive model.

In previous works, numerous active learning techniques [5, 8,
14, 20–22] have been proposed to boost the convergence of train-
ing a predictive model. Among these query strategies, uncertainty
sampling is the most commonly used one because of its simplic-
ity and efficiency, as pointed out in [20]. Uncertainty sampling
trains each predictive model in an iterative fashion, wherein each
iteration, it identifies the unlabeled items that are closest to the
current decision boundary of the predictive model as these items
are believed to be most uncertain. Uncertainty Sampling then
solicits the user’s label on the identified sample and utilizes it in
the training of the predictive model.

Although uncertainty sampling is more efficient than alterna-
tive active learning methods, in order to find the most uncertain
object, it still needs to perform an exhaustive search over the entire
database. Therefore, in the case where the size of the data is larger
than the main memory capacity, those data that resides on the
secondary storage must be loaded into memory at each interation.
Due to the limitation imposed by physical I/O of the secondary
storages, it takes a significant amount of time for active learning
techniques to scan datasets that are considerably larger than the
main memory. This essentially makes it impossible for any active
learning-based IDE system to explore datasets that are larger than
the available memory. As pointed in [15], run time efficiency is
critical for the IDE systems as any response time excesses 500ms
will severely impact the user’s engagement, and hence hinders
the usability of the system. Moreover, as the exploration could
occur on any subset of the attributes of the dataset, it is nearly
impossible to apply any typical indexing in advance to support the
exploration task over any arbitrary combination of the attributes.

In order to achieve interactiveness, existing uncertainty sampling-
based IDE systems rely on main memory to cache the entire
dataset. For datasets that are larger than the main memory, a sub-
set of data objects will need to be sampled from the original dataset
on secondary storage (e.g., [7]). While simple and intuitive, this
approach could easily lead to very inaccurate results and a waste
of user effort since the boundaries of the interesting data regions
in the sampled space is likely to be different from the original
space [9]. Moreover, small sets of relevant data regions may even
be ignored in the resulting sample set.

To overcome this problem, we propose a novel indexing mech-
anism coined Uncertainty Estimation Index (UEI), to facilitate
the interactivity and scalability of active learning-based IDE sys-
tems. To our knowledge, UEI is the first approach in extending
the scalability of active learning-based IDE systems beyond the
main memory capacity.
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Instead of relying solely on the main memory to cache the
whole dataset during the exploration, UEI enables caching in
memory only the necessary subsets of the data that are needed by
the current stage of the exploration. This is achieved through the
combination of an effective estimation of the uncertainty of each
data object and an efficient data storage mechanism. The essential
observation that UEI is based on is that data objects often have
additional information that can be used to infer their relationship
with other objects, one of which is the similarity among data
objects. Since the uncertainty essentially represents its distance
to the current decision boundary in the high-dimensional data
space, thus the uncertainty of an object x is strongly related to
the uncertainty of the surrounding objects [14]. This observation
allows UEI to informatively select the set of highly uncertain
data objects to be loaded into memory before it is needed by the
predictive model. Hence, the amount of memory needed to explore
a dataset in real-time is significantly reduced.

To evaluate UEI, we employed a state-of-the-art data explo-
ration system REQUEST [9], and compare the performance of
UEI against MySQL, which is used by the existing interactive data
exploration systems [7, 12]. Our results using a large real-world
dataset, namely the Sloan Digital Sky Survey (SDSS) [1], show
that UEI outperforms existing solutions by more than 50X in run-
time efficiency when the size of the dataset goes beyond the main
memory capacity. Furthermore, UEI is well capable of meeting
the sub 500 millisecond interactive response time requirement
for data that is at least 100 times larger than the main memory
capacity, while achieving minimum impact on the convergence of
the predictive model.

It should be noted that even though UEI is designed for the IDE
systems, where response time and run time efficiency is critical, it
can also be used in combination with any active learning-based
human-in-the-loop (HIL) applications. Examples of such human-
in-the-loop applications including but not limited to: record match-
ing [3], entity resolution [18, 19], and facts checking [4].

2 BACKGROUND
In this section, we provide the necessary background of our UEI.

2.1 Active Learning
Active learning refers to a set of approaches that aim to learn
an accurate model with minimum labeled data for regression
and classification tasks. One key component of active learning is
the query strategy that sequentially selects the most informative
unlabeled sample (i.e., data object) from the entire database to be
labeled by the user.

In previous works, a number of active learning techniques
have been proposed to define the “informativenes” of samples
[20], including: Uncertainty Sampling [14], Query-By-Committee
[21], Expected Model Change [5], Expected Error Reduction [22],
and Expected Model Output Change [8]. These techniques are
often interchangeable, providing the applications the flexibility to
choose the most appropriate query strategy that fits their needs.
Among the query strategies, Uncertainty Sampling [14] is the
most commonly used because of its simplicity and efficiency [20].

Uncertainty Sampling is a query strategy that can be used
with any probability-based predictive model (e.g., Naive Bayes,
SVM, etc.). The intuition of Uncertainty Sampling is that patterns
with high uncertainty are hard to classify, and thus, if the labels
of those patterns are obtained, they can boost the accuracy of the
classification models. Particularly, in binary classification models
(e.g., with class labels 0 and 1), the most uncertain example x
is the one which can be assigned to either class label z (x) with

Algorithm 1 Typical Workflow of Active Learning-based IDE

Require: The raw data set D; Batch Size B
Ensure: A set of results R

1: Labeled set L ← ∅
2: Unlabeled set U ← D
3: M ← initialize query strategy
4: while user continues the exploration do
5: for i = 1 to B do
6: Choose one x from U using M
7: Solicit user’s label on x
8: L ← L ∪ {x }
9: U ← U − {x }

10: end for
11: M ← trained with L to update M .
12: end while
13: Return the set of results R classified as positive by M .

probability 0.5. Inspired by the idea of uncertainty, also known as
least confidence (lc), [14] proposes a measurement of uncertainty
for binary classification models:

u (lc ) (x) = 1 − p (ŷ |x) (1)

where u (lc ) (x) is the uncertainty score with the least confidence
measurement of x, and ŷ is the predicted class label of the un-
labeled x. Accordingly, after measuring the uncertainty of each
unlabeled sample, the unlabeled sample with highest uncertainty
is selected:

x∗ = argmaxxu (x) (2)
where u (x) can be any other measurement of informativeness over
the unlabeled sample x.

2.2 Interactive Data Exploration
Active learning-based IDE systems can effectively find relevant
items that are often undiscoverable using traditional search meth-
ods [7, 9, 10, 12]. In particular, active learning-based IDE systems
do not require users to formulate any complex queries, nor does
it need any form of description of the target items. The entire
exploration can be done by answering simple binary (i.e., yes
or no) questions. More importantly, active learning-based IDE
systems can further be used to enhance traditional search results.
For instance, they can be used to address the problem of having
overwhelming results due to a broad query or search conditions.

As shown in Algorithm 1, a typical active learning-based IDE
system works in the following steps: first it incorporates a query
strategy (e.g., uncertainty sampling), which is used for selecting
the example objects to be presented to the user for labeling (line
3). As long as the user is willing to label more examples (line 4),
active learning-based IDE system will keep invoking the query
strategy M to select a new example object x from D, and present
it to the user to label it as relevant or irrelevant (lines 5-9). Once
the amount of labeled samples received from the user reaches a
sample batch size (denoted as B), which is a tunable parameter
of the active learning-based IDE balancing the effectiveness and
efficiency, then the classifier model employed by the query strategy
will be updated according to the label assigned to x (line 11).
In particular, the label assigned to x will be used for retraining
the classifier model, which is an essential step towards selecting
the object presented to the user in the next iteration. Once the
iterative labeling process is completed, the obtained results will
be presented to the user (line 13).
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Figure 1: Illustrates UEI with a 2D data space, each grid rep-
resents a subspace, the dot in the center of each grid repre-
sents a symbolic pointp. With chunks stored as separated files
on the secondary storage.

3 UNCERTAINTY ESTIMATION INDEX
Maintaining interactive response time for large datasets that are
beyond the main memory capacity has always been one of the ma-
jor challenges of active learning-based IDE systems. In tackling
this problem, we focused our efforts on uncertainty sampling and
proposed a novel index approach coined Uncertainty Estimation
Index (UEI). Our UEI can be easily incorporated in any existing
systems that leverage the uncertainty sampling and can be used in
conjunction with any probabilistic-based classifiers as discussed
in [14]. In the next section (Section 3.1) we provide the details
of UEI’s main component, and discuss how UEI leverages the
inverted index-based data secondary storages to support scalable
exploration. Following that, in Section 3.2, we provide a walk-
through of a complete example to illustrate how a typical active
learning-based IDE workflow (i.e., Algorithm 1) performs when
enhanced with UEI.

3.1 UEI Components
A key observation underlying UEI is that data objects often have
additional information that can be used to inference their rela-
tionship with other objects, one of which is the similarity (i.e.,
distance) between data objects [14]. In other words, the uncer-
tainty value of an object x is strongly related to the uncertainty
of the surrounding objects. For example, if x is located near to
one of the current decision boundaries, then x would have higher
uncertainty due to a mixed set of relevant and irrelevant neighbors.
Such continuity between data points is also generally assumed in
both supervised and semi-supervised learning algorithms where
data points that are closer to each other are more likely to share a
label [23]. More precisely, we observed that the uncertainty of a
data object x can be approximated through its spatial relationships
with the labeled data objects. UEI explores this spatial relation-
ship to load into memory the set of highly uncertain data objects
before they are needed by the query strategy.

Specifically, as illustrated in Figure 1, the main idea of UEI is
to divide the exploration space D into equal-size subspaces (i.e., d-
dimensional grids) дi ’s of D (дi ∈ D), and build a set of symbolic
(virtual) index points P = {p1, ...pc }, such that each index point
pi represents a subspace дi . In each iteration, UEI estimates the
uncertainty of each subspace based on the uncertainty of its corre-
sponding index point p, then loads only the data in the subspace
that is predicted to be most uncertain into memory. Conceptually,
UEI is based on the same principle as hash-based multidimen-
sional indexing, such as the traditional grid file structures, which
splits the space into a non-periodic grid where one or more cells

Figure 2: Before storing the data, UEI vertically decompose
the data into an inverted index form, and then store them in
separate chunks.

of the grid refer to a small set of points. As opposed to a grid file,
designed to efficiently reference a single value with multiple keys,
UEI is designed to scale out the uncertainty sampling by estimat-
ing the distribution of the uncertainty of data objects through the
set of symbolic index points.

To do so, UEI comprises five components: 1) an index set P of
symbolic index points pi ; 2) a mapping methodm : p 7−→ C that
maps each index point p to a set of data chunk C; 3) a data cache
U that caches a subset of uniformly sampled unlabeled data; 4) a
set of labeled data L that contains all data that has been labeled by
the user, and 5) the exploration dataset D stored in a fully inverted
columnar format on a hard drive. The first four components reside
in the main memory.
UEI divides the operation of exploration into two phases: an

Index Initialization phase, and Interactive Exploration phase. The
first phase only needs to be executed once per each new dataset.
The second phase is specific to each exploration and discussed in
the next section (Section 3.2).

Index Initialization Phase: As illustrated in Algorithm 2, to
work with a new dataset, UEI first vertically (i.e., attribute-wise)
decompose the whole data set and sort each dimension (i.e., at-
tribute) based on the values in ascending order (lines 2 - 4). Since
each dimension of a typical exploratory dataset (e.g., scientific,
business analysis) can contain values of an arbitrary length, and
one specific value for a dimension may appear multiple times,
we compress the data by organizing it in a key-value fashion
(< key, {values} >), where each value of the dimension would be
used as a key and the ids of the corresponding objects asvalues (as
illustrated in Figure 2). Note that for each exploration task, UEI
stores all needed data in one location, thus when exploring data
that are distributed in multiple locations (e.g., tables, files), the
data needs to be merged before being utilized in the exploration.

During the process of storing the data, UEI splits the distinct
values of each dimension d into a set of equal-sized data chunks
Cd = {cd i , ...,c

d
u }, where each chunk will be stored as a separate

file on the disk, and the size of each chunk can be adjusted based
on the size of the data and the available hardware resources (line
5). UEI also ensures that the values of each dimension are stored
in a sequential order, meaning values stored in each subsequence
chunk cd i+1 will be larger than the values that have been stored
in cd i for efficient lookup.

Once the data are partitioned and stored on the disk, UEIwould
start construct the set of symbolic index points P by divide the orig-
inal data space D into a set of equilateral d-dimensional subspaces
G = {дi , ...,дj }, where |G | = |P |, then for each subspace дi , UEI
constructs a symbolic index point pi that represents дi by using
the coordinates of the “virtual” center point of дi (lines 7-11). To
ensure UEI can be deployed in resource restricted environments,
the number of symbolic index point can be adjusted based on the
size of the dataset and the available hardware resources.

In order to construct and load each subspace дi into memory,
UEI employed a hash-based mapping methodm that records for
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Algorithm 2 Typical Exploration Flow with UEI
Require: The raw data set D
Ensure: Result set T

1: P ← ∅, L ← ∅, U ← ∅
2: DC ← ver t icalDecompose (D )
3: for d = 1 to |DC | do
4: sor t (DCd )
5: C ← split IntoChunks (DCd )
6: end for
7: G ← split IntoSubspaces (D )
8: for each grid дi ∈ G do
9: pi ← computeCenter (дi )

10: P ← P ∪ {pi }
11: end for
12: U ← sample (D, γ )
13: M ← initialize predictive model for uncertainty estimation
14: while user continues the exploration do
15: drop any previously loaded data regions from U
16: M ← trained with L to update M
17: P ← updateUncer tainty (P,M )
18: p∗i ← choose the most uncertainty index point from P
19: д∗i ← load data region with m (p∗i )
20: U ← U ∪ дi
21: choose one x from U using M
22: solicit user’s label on x
23: L ← L ∪ {x }
24: U ← U − {x }
25: end while
26: T ← r esultRetr ieval (L)
27: Return the set of interesting data objects T

each symbolic index point pi , the set of chunks that are needed
to construct дi . As chunks are stored separately on the disk, this
approach allows UEI to quickly identify the data that needs to
be loaded. Since each data subspace д is stored as series of one-
dimensional data chunks, to reconstruct each д when needed, UEI
utilizes a hash table for efficiently merge of those data chunks.
During the merge process, UEI iterates through each dimension
and loads the corresponding chunks to the memory one at a time,
and each entry in the chunk would be visited in a sequential
manner. For each object ID that is recorded in a loaded data
chunk ci , the value associated with the ID will be inserted into
the corresponding entry in the hash table. Once a chunk has been
examined, UEI will release the memory space used to hold the
data chunk and reuse the space for the subsequent chunk.

3.2 UEI in Action
In the previous section, we have discussed the components of
UEI, as well as how the data are being stored and indexed, which
essentially covers the first half (i.e., lines 1 - 11) of the exploration
workflow, shown in Algorithm 2. In this section, we will discuss
the interactive exploration phase of UEI, which illustrates how a
typical active learning-based IDE task (i.e., Algorithm 1) can be
performed when incorporating UEI (lines 12 - 27, Algorithm 2).

Interactive Exploration Phase: After the index set has been
constructed, UEI begins the exploration by filling the unlabeled
set U . Specifically, for the original data space D, UEI would
uniformly sample a set of data from the underlying dataset (line
12), where the size of the samples γ can be adjusted based on
the system hardware specs (e.g., available main memory size).
As a result, a set of unlabeled objects U would be sampled and
cached in the main memory. These unlabeled objects will then be
used in the acquisition of the set of initial examples that will be

labeled by the user to construct the initial predictive model M0
for uncertainty estimation. Query strategy will randomly sample
examples from U until the set of initial examples contains at least
one positive example and one negative example (line 13).

In each iteration, UEI updates the uncertainty of all index
points pi ∈ P based on the most recently trained predictive model
Mt−1 (line 17), which serves as the uncertainty estimator. Here the
uncertainty of a data object is essentially equals to the probability
of one object being either positive or negative class, with a value
that equal to 50% being the most uncertain. Then, the index point
p∗i for which the current exploration model is most uncertain, will
be chosen (line 18), such that:

p∗i = Argmax
pi ∈P

Mt−1 (Y |pi ) (3)

where Y = {0,1} is set of binary labels.
Based on the chosen p∗i , UEI uses the mapping method m to

identify and load (into the memory) all data chunks that corre-
spond to the subspace д∗i , which was represented by p∗i (line 19).
As mentioned earlier, the mapping method m is simply a hash
table that maps a single index point p into a set of data chunks
located on the disk. Later, the data of subspace д∗i together with
the unlabeled dataset U will be used by the query strategy (i.e.,
uncertainty sampling) in the selection of the example to be labeled
in the current iteration (lines 20 - 22). To reduce memory usage, by
default UEI kept only one uncertain data region д∗i in the memory
at any given time. Once the user is satisfied with the exploration
result, the resultRetrieval method will be invoked to retrieve the
exploration results and present them to the user (lines 26 - 27).

Tuning Interactive Exploration: In addition to the above typ-
ical exploration flow, UEI further allows the user to specify a
response latency threshold σ that determines the latency between
each exploration iteration (i.e., two subsequent examples). Us-
ing the user-specified σ , UEI determines whether or not to defer
the swap between the current in-memory uncertain region д∗i and
the next uncertain region д∗i+1, when д∗i is no longer the most
uncertain region.

In the case when an extremely low σ is specified that makes
it impossible for the system to load the entire subspace д∗i into
main memory, UEI would start fetching the corresponding data
chunks that associated with д∗i+1 (in the background) θ iterations
before д∗i+1 is loaded into the memory. Here, θ is a tunable variable
that can also be inferred based on the average loading time τ of
data regions, and the configurable latency threshold σ , such that
θ =

⌈
τ
σ

⌉
.

3.3 Time Complexity of UEI
Clearly, the time complexity of UEI is dominated by the inter-
active exploration phase. As discussed in Section 3.1, the initial-
ization phase is done once for each dataset and the time required
for UEI to prepare and store a dataset D on secondary storage is
simply linear with respect to the number items n stored in D.

As discussed in Section 3.2, each iteration of the interactive
exploration phase in UEI is dominated by the time taken to load
the data from the chunks stored on the disk into the memory,
which is linear with respect to the number of dimensions k and
the number entries e stored in the loaded chunks. In contrast, each
iteration in the current IDE approaches needs to load and examine
all data items n (e <<< n).

Therefore, the time complexity of the UEI-enhanced data ex-
ploration generally is reduced from O (kn) where n is the number
of data objects to O (ke ) where e is the number entries associated
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Figure 3: UEI Accuracy (Small
Target Region).

Figure 4: UEI Accuracy
(Medium Target Region).

Figure 5: UEI Accuracy (Large
Target Region).

Figure 6: UEI Response Time.

Table 1: PARAMETERS

Number of runs per result 10
Number of dimensions (D) 5
Number of relevant regions 1
Cardinality of relevant regions 0.1% (S), 0.4% (M), 0.8% (L)
Uncertainty Estimator DWKNN [11]
Label Type Binary
Data Storage Engine UEI, MySQL
Size of Individual Data Chunk 470KB
Number of Symbolic Index Points 3125
Latency Threshold 500ms
Performance Measurement F-Measure (Accuracy)

with the loaded chunks for the current most uncertain subspace
д∗i .

4 EXPERIMENTAL EVALUATION
In our experimental evaluation of our UEI, we use REQUEST [9],
a state-of-the-art IDE system, with two schemes, one incorporating
UEI, and one utilizing MySQL, used in the existing IDE systems
[7, 12]. After describing our experimental setup in Section 4.1, we
present the findings of our experimental evaluation in Section 4.2.

4.1 Experiment Setup
Dataset: We used 40 GB of real-world dataset from Sloan Digital
Sky Survey (SDSS) [1] that consists of 10 × 106 tuples.

IDE System: In our experiments, we employed our REQUEST
[9] with traditional uncertainty sampling and the dual weighted
k-nearest neighbor (DWKNN) [11] as the uncertainty estimator.

Environment: We implemented both REQUEST and UEI with
Java JRE 1.7. All the experiments were run on a machine with Intel
Core i7 Processor, 32 GiB RAM and 2 TB of NVMe SSD. The fast
NVMe SSD was used to eliminate any potential bottleneck due to
physical IO limitation. All experiments reported are averages of
10 complete runs. We have considered five numerical attributes
rowc, colc, ra, dec and field of the PhotoObjAll table.

Target Interest Regions: The exploration task characterizes user
interests and eventually predicts the relevant regions by iteratively
gathering user labeled tuples. We experimented with 1 region per
each exploration task. In addition, we vary the single region com-
plexity based on the data space coverage of the relevant regions.
Specifically, we categorize relevant regions to small, medium and
large. Small regions have cardinality with an average of 0.1% of
the entire experimental dataset, medium regions a cardinality of
0.4%, and large regions a cardinality of 0.8%. Furthermore, the
dimensionality of the target interest regions is the same as the
dimensionality of the dataset across the entire experiment.

User Simulation For experiment evaluation purpose, we simulate
the user behavior using the following method. For each target in-
terest region, we simulate the user by executing the corresponding
range query to collect the exact target set of relevant tuples. We
rely on this “oracle" set to assign confidence score p to the tuples
we extract in each iteration based on their location in the data
space against the target region.

More specifically, for each relevant region, there is a region
center and a set of region widths, one for each dimension. We
define the maximum relative distance d of an example against the
region center as:

d =maxi=1..l ( |xi − ci |/wi ) (4)

where l is the dimension number, | · | is the absolute value operator,
xi , ci and wi are the attribute value of the example, of the center
and region width in each dimension.

Parameters: Table 1 summarizes the important settings in the
experiments.

4.2 Experiment Results
In our experiments we aimed to test UEI’s ability to provide an
interactive response time for datasets that are beyond the size of
main memory capacity, and to illustrate the benefit of searching
only a small set of cached objects with UEI against performing
an exhaustive search over the entire dataset. In our experiments,
we stored 10 million data items with both UEI and MySQL, and
restricted the memory footprint for both UEI and MySQL to be
within 400MB, which is ∼ 1% of the entire dataset. Figures 3 to 6
illustrates the effectiveness and efficiency of our proposed UEI.

UEI Accuracy (Figures 3 to 5): Compared to MySQL, we have
noticed that our proposed UEI requires more labeled examples in
the early stage of the experiment (e.g., below 70% of accuracy).
This is due to the fact that in the early stage, the classifier does
not have enough training samples to learn an accurate uncertainty
estimator (i.e., DWKNN classifier) that captures precisely the
user’s interesting regions. This causes the predictive model to
select less informative examples to be labeled by the user. Since
UEI uses uncertainty as the criteria for both the example selection
and the loading of data regions (i.e., subspaces), therefore the
negative effect of an inaccurate classifier has been magnified.

However, as the accuracy of the uncertainty estimator improves
with more labeled examples, we observed a significant boost in
performance of UEI in the later stages (e.g., above 80% accuracy)
of the exploration. This is expected as the the predictive model gets
more and more accurate with respect to the decision boundaries,
and thus can estimate more accurate uncertainties. Since UEI
rely on the uncertainty estimation for both the query strategy and
cache management, therefore, it benefits more noticeably than
the MySQL, which only rely on uncertainty estimation for query
strategy.
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UEI Response time (Figure 6): Finally, we have measured the
response time for both UEI and MySQL based schemes. As shown
in Figure 6, UEI achieves 50x faster response time than MySQL,
and ensures the sub-second interactive response time across all
data region sizes. Note the response time remains the same across
all three target interest regions sizes, which is as expected because
the runtime complexity of the uncertainty sampling-based systems
only depends on the size of the dataset and not the size of the
target interest regions.

From the experiments, it is clear that due to the fact that uncer-
tainty sampling requires an exhaustive search over the entire data
spare, thus the physical bandwidth of the secondary storage has
become the major bottleneck that severely limits the scalability of
active learning-based IDE systems.

Even though in our experiments, we have used NVMe based
SSD with I/O throughput of around 3.4GB/s, the uncertainty sam-
pling still takes over 12 seconds to complete the exhaustive search
in each iteration. Therefore, it is still impossible to explore datasets
that exceed the main memory capacity without UEI.

5 RELATED WORK
Traditionally, indexing has been the core technique for optimiz-
ing response time in database systems. Recently, main-memory
indexing and specialized access methods have been proposed
to support domain-specific query processing and analytics (e.g.,
[6, 17]). UEI is based on similar principles as these specialized
access methods. However, UEI, to the best of our knowledge,
is the first domain-specific access method with in-memory and
disk components that support interactivity and scalability of active
learning-based IDE systems.

The active learning-based IDE systems that can leverage our
proposed UEI for better scalability includes REQUEST [9], the
first active learning-based IDE system, and the two more recently
proposed systems, Dual-Space Model [12] and ExNav [10]. RE-
QUEST utilizes a two stages approach; a data reduction stage
aims to selectively reduce the search space while keeping all rel-
evant data regions, and a query selection stage that utilizes an
active learning-based predictive model to iteratively improve the
accuracy of the constructed exploratory query through interactions
with the user. Dual-Space Model uses a new uncertainty sampling-
based predictive model and a new dual-space pruning technique
that focuses solely on exploration tasks with a single relevant
region. It also optimizes these tasks for faster model convergence.
ExNav is the first uncertainty sampling-based IDE system that
specializes in exploring a variety of unstructured data sets by
leveraging the corresponding data embedding methods for each
unstructured data type [10].

In addition to the active learning-based IDE systems, UEI can
also be utilized in other active learning-based Human-in-the-loop
(HIL) systems. For example, in [18], the authors have proposed an
active learning-based HIL system, called SystemER, for learning
Entity Resolution models through user interactions. Another ex-
ample of an active learning-based HIL application is fact-checking.
In [4], the author has proposed an effective active learning-based
HIL system for identifying various types of potentially misleading
or false information for news contents. Most recently, [19] has
proposed to use active learning for learning the implicit struc-
tured representations of entity names, which can be useful for
many entity-related tasks such as entity normalization and variant
generation. To facilitate the process of learning such structured
representations, a user-friendly interface called PARTNER has
been designed to enhance the user’s interaction experience.

6 CONCLUSION
In this paper, we present the Uncertainty Estimation Index (UEI),
the first indexing mechanism that enables active learning-based
IDE systems to explore datasets that exceed the main memory
capacity. Instead of requiring all data to be loaded into the main
memory as in existing active learning-based IDE systems for sub-
second respond times, UEI enables the scalability by dynamically
identify and caching the set of objects that are most uncertain to
the current stage of the exploration. It achieves this by maintaining
a small in-memory index that estimates the aggregated uncertainty
value of the data items in the entire data subspaces. UEI also
employees columnar-based secondary storage and combines it
with an inverted index to support efficient loading of the necessary
data items at each iteration.

Our experimental evaluation using real-world data show that
a state-of-the-art IDE systems using UEI greatly outperforms a
DBMS-based version of the same IDE system by provide more
than 50x runtime efficiency when the size of the dataset exceed
the main memory capacity, and is capable of achieving sub-second
response time for data that is 100 times larger than the available
memory while achieving the desired exploration accuracy and
effectiveness. In conclusions, UEI can be used not only with
existing active learning-based IDE but with other active learning-
based Human-in-the-loop systems as well to achieve significantly
higher scalability by removing the main memory restriction.
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ABSTRACT
Order dependencies (ODs) capture relationships between ordered
domains of attributes. Approximate ODs (AODs) capture such re-

lationships even when there exist exceptions in the data. During

automated discovery of dependencies, validation is the process

of verifying whether a dependency holds. We present an algo-

rithm for validating AODs with significantly improved runtime

performance over existing methods, and prove that it is mini-
mal and has optimal runtime. By replacing the validation step

in a recent algorithm for AOD discovery with ours, we achieve

orders-of-magnitude improvements in performance.

1 INTRODUCTION
1.1 Motivation
Functional dependencies (FDs) specify that the values of given

attributes functionally determine the value of a target attribute.
Order dependencies extend FDs to state that, additionally, the order
of tuples with respect to the values from the domains of given

attributes determines the order of the values from the domain

of the target attribute. Table 1 shows a dataset with employee

salaries. In this table, the OD that sal orders taxGrp holds. If one

sorts the table by sal, it is sorted by taxGrp as well.

An OD implies the corresponding FD; e.g., that sal orders
taxGrp implies that sal functionally determines taxGrp. Order
compatibility (OC) captures the co-ordering aspect of an OD
without the corresponding FD. Two lists of attributes are order
compatible if there exists an arrangement for the tuples in the

table in which the tuples are sorted according to both. Any OD
can thus be equivalently represented by a pair of an OC and an

FD [13]. In Table 1, that taxGrp is order compatible with sal holds.
Note that taxGrp does not order sal, as an FD does not hold.

There has been recent work to automate the discovery of ODs
from data [1, 4, 6, 10, 11]. In practice, however, constraints rarely

hold perfectly in the data. Real data are dirty, containing wrong

and inconsistent values that may violate semantically valid de-

pendencies. This motivates the need for discovering approximate
ODs (AODs), ODs that hold in the data but with exceptions. Dis-
covered ODs deemed semantically valid can be used for data

cleaning, to detect erroneous tuples, where measures are then

taken to repair the errors [8]. AODs are useful even when the data
are not dirty, as there can be exceptions to general rules. AODs
help avoid overfitting by discovering more general dependencies.

In Table 1, tax is a fixed percentage of salary in each tax group;

i.e., one, three, or eight percent. However, perc includes a con-
catenated zero in some rows due to data entry errors (e.g., 10%
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Table 1: Employee salaries
# pos exp sal taxGrp perc tax bonus
t1 sec 1 20K A 10% 2K 1K

t2 sec 3 25K A 10% 2.5K 1K

t3 dev 1 30K A 1% 0.3K 3K

t4 sec 5 40K B 30% 12K 2K

t5 dev 3 50K B 3% 1.5K 4K

t6 dev 5 55K B 30% 16.5K 4K

t7 dev 5 60K B 3% 1.8K 4K

t8 dev -1 90K C 8% 7.2K 7K

t9 dir 8 200K C 8% 16K 10K

instead of 1% in t1). Because of this, the OC that salary is order

compatible with tax does not hold, even though this OC is in-

tended. Similarly, the FD that pos, exp functionally determines

sal does not hold, due to the exception of tuples t6 and t7, two
employees with the same position and years of experience but

having different salaries. With approximate ODs, we can still

discover such concise and meaningful rules in these instances.

Approximate ODs were introduced in [10]. Their definition

of AODs, as is ours herein, is based on the concept of “tuple

removal.” Given a table and an OD, a removal set is a set of tuples
which, if removed from the table, results in the OD holding. A

minimal removal set is one with the smallest cardinality. An

approximation factor can be defined with respect to a table and

an OD, as the ratio of the size of a minimal removal set over the

size of the table. For instance, for Table 1 and theOC that pos, exp
is order compatible with pos, sal, the minimal removal set and

the approximation factor are {t8} and 1/9 ≈ 0.11, respectively.

Given a table r and an approximation threshold 0 ≤ 𝜖 ≤ 1, the

discovery problem for AODs is to find the complete set of minimal

valid AODs in r w.r.t. 𝜖 . Exact ODs are a special case of AODs
with an approximation factor of zero. Given a table r, an OD 𝜑 ,

and a threshold 𝜖 , the problem of validating the candidate OD as

an AOD involves verifying whether the approximation factor of

𝜑 , denoted by 𝑒 (𝜑), is less than or equal to 𝜖 .

1.2 Contributions
The extension for AOD discovery in [10, 11], however, is impracti-

cal due to its performance. While the approximate FD component

can be validated in linear time [3, 10], to validate the approximate

OC (AOC) component in the search, they iteratively remove the

tuple—or one of the tuples, in the case of a tie—that causes the

largest number of violations. This has two weaknesses: the run-

time is quadratic in the number of tuples, and it is not guaranteed

to find a minimal removal set.

That it is quadratic makes it prohibitively expensive to run

on larger datasets. (The validation step for a candidate exact

OD has a linear runtime in the number of tuples.) So while the

OD discovery algorithm in [10, 11] is shown to scale to datasets

with millions of tuples, it is infeasible to run their adapted AOC
discovery algorithm over even moderately sized datasets. During
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benchmarking, we found in some discovery runs that more than

99% of the running time is spent on validating AOC candidates.

That it deliberately does not guarantee finding a minimal

removal set means that the algorithm may overestimate the ap-

proximation factor of an AOC candidate. Thus, true AOCs with
respect to the approximation threshold can be eliminated (while

the exact OD discovery algorithm is complete).

In this paper, we resolve this major bottleneck in AOD dis-

covery via an algorithm with optimal runtime and guaranteed

minimal removal set for validating AOC candidates. This brings

performance of AOD discovery on par with that of OD discovery,

while making the AOD discovery complete.

The paper is structured as follows, with the following key con-

tributions. In Sec. 2, we provide background and discuss related

work. In Sec. 3.1, we illustrate the established OD and AOD dis-

covery framework—which we then adapt herein—and, in Sec. 3.2,

the iterative validation algorithm [10, 11] it employs. In Sec. 3.3,

we contribute a minimal and optimal validation algorithm based

on longest increasing subsequences that decreases the runtime

from quadratic to log-linear. In Sec. 4, we present our experimen-

tal results, with the following contributions. We demonstrate that

AOD discovery using our validation algorithm scales to datasets

with millions of tuples and tens of attributes (Exp-1 and Exp-2).

We compare our adapted AOC discovery against the previous

approach and demonstrate that ours is orders of magnitude faster

(Exp-3). As discovering AODs enables the application of pruning

rules earlier than for discoveringODs, AOD discovery can be just

as efficient, if not more so. Our AOD discovery algorithm gains

up to 76% improvement in runtime compared against the (exact)

OD discovery algorithm (Exp-5). Given our AOD discovery al-

gorithm is complete, we discover more AODs, and semantically
more general AODs (thus, of higher quality). We show that we

find more AODs, both due to our better scalability and the mini-

mality of our removal sets (Exp-4 and Exp-6). Finally, in Section

5, we conclude with suggestions for future work.

2 PRELIMINARIES AND RELATED WORK
2.1 Definitions and Notation
R denotes a relational schema, r represents a table instance, and
s and t denote tuples. A and B denote individual attributes and

X and Y sets of attributes. Lists of attributes are presented using

X and Y; [] denotes the empty list and [A | T] denotes a list with
head attribute A and tail list T. Tuples tA and tX denote the

projections of tuple t on A and X, respectively. Wherever a set

is expected but a list appears, the list is cast to a set; e.g., tX is

equivalent to tX . X′
represents an arbitrary permutation of the

values of a list X or set X.

Definition 2.1. (nested order) Let X be a list of attributes where

X ∈ R. Given two tuples, s and t, s ⪯X t iff
• X = [ ]; or
• X = [A | T] and sA < tA; or
• X = [A | T], sA = tA, and s ⪯T t.

Let s ≺X t iff s ⪯X t but t ⪯̸X s.

Next, we define order dependencies [1, 4, 6, 10, 11, 13].

Definition 2.2. (order dependency) Let X and Y be lists of at-

tributes where X,Y ⊆ R. X ↦→ Y denotes an order dependency,
read as X orders Y. Table r satisfies X ↦→ Y (r |= X ↦→ Y) iff, for
all s, t ∈ r, s ⪯X t implies s ⪯Y t. X and Y are order equivalent
(denoted as X ↔ Y), iff X ↦→ Y and Y ↦→ X.

Definition 2.3. (order compatibility) Let X and Y be lists of

attributes whereX,Y ⊆ R.X andY are order compatible, denoted
as X ∼ Y, iff XY ↔ YX.

The order dependencyX ↦→ Ymeans thatY’s values are mono-

tonically non-decreasing with respect to X’s values. Therefore, if
one orders the tuples by X, they are also ordered by Y. The order
compatibility (OC) X ∼ Y means that there exists a total order of

the tuples in which they are ordered according to both X and Y.

Example 2.4. In Table 1, the OD sal ↦→ taxGrp holds. The OC
taxGrp ∼ sal holds, even though the OD taxGrp ↦→ sal does not.

ODs have a strong correspondence withOCs and FDs. AnOD
X ↦→ Y holds iff X ∼ Y (OC) and X → Y (FD) hold. This gives
two sources of violations for ODs: swaps and splits [13].

Definition 2.5. (swap) A swap with respect to OC X ∼ Y is a

pair of tuples s and t such that s ≺X t but t ≺Y s.

Definition 2.6. (split) A split with respect to FD X → Y is a

pair of tuples s and t such that sX = tX but sY ≠ tY

Example 2.7. In Table 1, given the OD pos, exp ↦→ pos, sal,
tuples t7 and t8 constitute a swap (the OC pos, exp ∼ pos, sal),
and tuples t6 and t7 constitute a split (the FD pos, exp → pos, sal).

Definition 2.8. tuples s and t are equivalent w.r.t. set of at-
tributes X iff sX = tX . An attribute set X partitions tuples into

equivalence classes [3]. The equivalence class of tuple t ∈ r w.r.t.
X is denoted by E(tX); i.e., E(tX) = {s ∈ r | sX = tX}. Given a

set of attributes X, a partition of the table with respect to X is

the set of all equivalence classes; i.e., ΠX = {E(tX) | t ∈ r}.
Example 2.9. In Table 1, E(t1 {pos}) = E(t2 {pos}) = E(t4 {pos})

= {t1, t2, t4}, and Πpos = {{t1, t2, t4}, {t3, t5, t6, t7, t8}, {t9}}.

2.2 A Canonical Mapping
A natural representation of ODs relies on lists of attributes, as in

the ORDER BY statement in SQL, where the order of attributes in

the list matters; e.g., the OD pos, sal ↦→ pos, exp is different than

the OD pos, sal ↦→ exp, pos. This is unlike FDs, where the order
of attributes does not matter, as with the GROUP BY statement in

SQL. Working within this list-based representation, however, has

led to discovery frameworks with factorial worst-case runtimes

in the number of attributes [6]. Fortunately, lists are not inher-
ently necessary to express ODs. In [10, 11], the authors rely on

a polynomial mapping of list-based ODs into a logically equiva-
lent collection of set-based canonical ODs to devise a discovery

framework with exponential worst-case runtime in the number

of attributes and linear in the number of tuples.

Definition 2.10. (canonical order compatibility) Given a set of

attributes X, X′A ∼ X′B is the OC that states that attributes A
and B are order compatible within each equivalence class of X.

We write this as X: A ∼ B in the canonical notation, factoring

out the common prefix, and refer to this as a canonical OC.

Definition 2.11. (order functional dependency) Given a set of at-

tributesX, the FD that states that an attributeA is constant within
each equivalence class of X is equivalent to the list-based OD
X′ ↦→ X′A. We write this as X: [] ↦→ A in the canonical notation,

and refer to this as an order functional dependency (OFD).

Given a canonical OC of X: A ∼ B or an OFD of X: [] ↦→ A,
the set X is referred to as the context of the respective canonical
OC or OFD. Intuitively, the context is the common prefix on the

left- and right-side of the corresponding list-based OC or OD.
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Canonical OCs and OFDs constitute the canonical ODs; i.e.,
OD ≡ OC +OFD. The OD of X′A ↦→ X′B is logically equivalent

to the canonical OC of X: A ∼ B and OFD of XA: [] ↦→ B. This
is X: A ↦→ B written in the canonical form.

Example 2.12. In Table 1, sal and bonus are order compatible

w.r.t. the context pos; i.e., {pos}: sal ∼ bonus. In the same table,

bonus is constant w.r.t. the context pos, sal; i.e., {pos, sal}: [] ↦→
bonus. Therefore, sal orders bonus w.r.t. the context pos; i.e.,
{pos}: sal ↦→ bonus.

This mapping generalizes: an OD X ↦→ Y holds iff X ↦→
XY and X ∼ Y. These can be encoded into an equivalent set

of canonical OFDs and OCs as follows. In the context of X, all

attributes in Y must be constants. In the context of all prefixes

of X and of Y, the trailing attributes must be order compatible:

R |= X ↦→ XY iff ∀A ∈ Y. R |= X : [] ↦→ A and

R |= X ∼ Y iff ∀𝑖, 𝑗 . R |= [X1, . . . , Xi−1] [Y1, . . . , Yj−1] : Xi ∼ Yj.

Thus, list-based ODs can be polynomially mapped to a set of

equivalent canonical ODs; i.e., canonical OCs and OFDs [10, 11].
In this work, we refer to canonical OCs simply as OCs.

Example 2.13. TheOD [A,B] ↦→ [C,D] is equivalent to the fol-
lowing canonical ODs: {A,B}: [] ↦→ C, {A,B}: [] ↦→ D, {}: A ∼
C, {A}: B ∼ C, {C}: A ∼ D, and {A,C}: B ∼ D.

While various algorithms have been proposed for discovering

ODs, most are not complete. The algorithm described in [6] relies

on the list-based definition and employs aggressive pruning rules

to compensate for its factorial time complexity, but which make

it deliberately incomplete. The authors in [4] claim completeness

but their algorithm misses ODs in which the same attributes are

repeated on the left- and right-hand side. A similar completeness

claim has been made in [1], which was shown to be incorrect

in [12]. The set-based OD discovery algorithm proposed in [10]

does offer a sound and complete discovery of ODs. Thus, we
build our algorithm atop the framework introduced in [10].

2.3 Definition of Approximate ODs
We refer to canonical AOCs and approximate OFDs (AOFDs)
collectively as AODs. We define AODs based on the fewest tu-

ples that must be removed from a table for an OD to hold. This

definition was used for AODs in [10]; their AOC validation step

(for the only currently existing AOD discovery algorithm) has a

quadratic runtime. For AOFDs, validation takes linear time [3].

Definition 2.14. Given a table r and anOD 𝜑 , a set of tuples s is
a removal set w.r.t. 𝜑 iff r\ s |= 𝜑 . Let |r| denote the cardinality of

r, the number of tuples in r. A removal set s is aminimal removal

set iff it has the smallest cardinality over all removal sets; i.e.,

|s| = min({|s| | s ⊆ r, r \ s |= 𝜑}). Given s, the approximation
factor 𝑒 (𝜑) is defined as |s|/|r|.

Example 2.15. Consider Table 1 and the OC of sal ∼ tax. Here,
s = {t1, t2, t4, t6} and 𝑒 (sal ∼ tax) = 4/9 ≈ 0.44, as r \ s =

{t3, t5, t7, t8, t9} does not contain any swaps with respect to sal ∼
tax and no smaller set s′ exists such that r \ s′ |= sal ∼ tax.

Given a table r and an approximation threshold 𝜖 , 0 ≤ 𝜖 ≤ 1,

the problem of discovering AODs involves finding all minimal

(non-redundant that follow from others) ODs 𝜑 such that 𝑒 (𝜑) ≤
𝜖 . In this work, we focus on the problem of validating AODs; i.e.,
verifying whether the approximation factor of a given AOD is

less than or equal to a provided threshold. We present an optimal
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Figure 1: System framework.

algorithm for doing so and incorporate it into an existing OD
discovery framework.

As discussed in Sec. 2.2, OCs and OFDs constitute canonical
ODs; i.e., OD ≡ OC + OFD. There already exists an efficient

linear-time algorithm for validating AOFDs, as described in [3].

In this work, we present an optimal validation algorithm for

AOCs. Note that when discovering approximate OCs and OFDs
given an approximation threshold 𝜖 , AOD ≡ AOC + AOFD does

not necessarily hold. If AOC X: A ∼ B and AOFD XA: [] ↦→ B
hold with approximation factors 𝑒1, 𝑒2 ≤ 𝜖 , respectively, it is not
guaranteed for the corresponding AOD of X: A ↦→ B to also hold

with respect to 𝜖 . As to be discussed in Sec. 3.3, however, our

validation algorithm can easily be extended to validate list-based

approximate ODs as well.

3 DISCOVERING APPROXIMATE OD’S
In Sec. 3.1, we describe our framework to discover set-based

canonical AODs. In Sec. 3.2, we describe the iterative validation

algorithm proposed in [10, 11], analyze its runtime, and provide

an example of it failing to find a minimal removal set and thus

overestimating the number of tuples that must be removed. In

Sec. 3.3, we present our efficient validation algorithm, based on

the longest increasing subsequence (LIS) problem, analyze its

runtime, and prove its minimality and optimality.

3.1 Discovery Framework
The algorithm starts the search from singleton sets of attributes

and proceeds to traverse the set-based attribute lattice in a level-

wise manner [10, 11]. At each level, and when processing the

attribute set X, the algorithm verifies AOCs of the form X \
{A,B}: A ∼ B for which A,B ∈ X and A ≠ B, and AOFDs of the
form X \ {A}: [] ↦→ A for which A ∈ X.

Figure 1 illustrates the framework. Candidate AODs are gener-
ated based on the attribute sets at the current level of the lattice.

Using the dependencies found in previous levels of the lattice,

these candidates are then pruned by axioms to avoid redundant

dependencies that follow from already discovered ones [10]. Our

algorithm validates whether each candidate dependency holds

approximately, given the approximation threshold as input. Valid

AODs are then scored and ranked, using the measure of interest-

ingness introduced in [10]. These discovered AODs can then be

manually verified by domain experts, to be then used for tasks

such as error repair or outlier detection, which is an easier task

than manual specification.

3.2 The Iterative Validation Algorithm
We first discuss the algorithm described in [10, 11] to validate

an AOC given a threshold 𝜖 . To validate an AOC, the authors
compute a removal set s by iteratively removing a tuple with the

largest number of swaps, which does not guarantee to produce

the minimal removal set. This is repeated until either the OC
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Algorithm 1 Approx-OC-iterative

Input: Table r, OC X: A ∼ B, and approximation threshold 𝜖 .

Output: Approximation factor 𝑒 and removal set s, or “INVALID”

1: s = {}
2: for all E ∈ ΠX do
3: t = order E by [A ASC, B ASC]
4: tswapCnt = countInversions(tB)
5: order t by swapCnt ASC
6: while t is not empty do
7: t = t.dropLast()
8: if tswapCnt == 0 then break
9: for all s ∈ t do
10: if sA,B and tA,B are swapped then sswapCnt −= 1

11: end for
12: order t by swapCnt ASC
13: add t to s
14: if |s | > 𝜖 |r | then return “INVALID”

15: end while
16: end for
17: return |s |/ |r |, s

holds or the number of removed tuples crosses the threshold 𝜖 |r|,
in which case the AOC candidate is considered invalid. Note that

after removing each tuple, the number of swaps for the remaining

tuples must be updated.

Algorithm 1 validates a candidate using the iterative approach.

The steps in Lines 3 to 15 are repeated on tuples within each

equivalence class with respect to the context. Line 4 uses a variant

of merge sort to count the number of inversions in the projection

of sorted tuples over B, which is equivalent to the number of

swaps for each tuple. Line 7 removes a tuple with the most swaps

and Lines 9 to 11 update the number of swaps for the remaining

tuples. Line 14 exits if the approximation threshold is crossed.

Example 3.1. Consider Table 1 and the OC sal ∼ tax. Tuple t7
has swaps with tuples t1, t2, t4, and t6, which is more than any

tuple in the table, and is thus removed. In following steps, tuples

t5, t3, t6, and t4 are removed. Therefore, s = {t3, t4, t5, t6, t7} is
reported as a removal set for this AOC, and the approximation

factor is computed as 5/9 ≈ 0.56. This is larger than the actual

approximation factor for this AOC; i.e., 0.44.

Let 𝑚 denote the number of tuples in an equivalence class.

Lines 3 to 5 have runtime O(𝑚 log𝑚). Lines 7 to 14 inside the

loop take O(𝑚) time. Note that since the value of swapCnt for
each tuple is bounded by𝑚, sorting the tuples in Line 12 (as well

as Line 5) can be done in O(𝑚) time using counting sort. In the

worst case, this loop is repeated 𝜖𝑛 times, where 𝜖 and 𝑛 denote

the approximation threshold and the number of tuples in the

table, respectively. Therefore, in the worst case, where𝑚 = 𝑛,

the runtime of this algorithm is O(𝑛 log𝑛 + 𝜖𝑛2).

3.3 Our Optimal Validation Algorithm
We now present Algorithm 2 based on the longest increasing sub-
sequence (LIS) problem to validate an AOC candidate. Lines 3 to 5

are repeated for the tuples in each equivalence class with respect

to the context. Line 3 orders the tuples by [A,B] in ascending

order. Next, Line 4 finds a longest non-decreasing subsequence

(LNDS) of the projection of tuples over B. (AsOCs are symmetric,

we can also sort by [B,A] and find a LNDS of projections over

A.) Line 5 adds the tuples that are not in the LNDS to the removal

set. Finally, Line 7 checks whether the OC holds approximately

with respect to the threshold, and returns the appropriate output.

Algorithm 2 Approx-OC-optimal

Input: Table r, OC X: A ∼ B, and approximation threshold 𝜖 .

Output: Approximation factor 𝑒 and removal set s, or “INVALID”

1: s = {}
2: for all E ∈ ΠX do
3: t = order E by [A ASC, B ASC]
4: 𝐿 = computeLNDS(tB)
5: s = s ∪ (tB \ 𝐿)
6: end for
7: if |s | ≤ 𝜖 |r | then return |s |/ |r |, s else return “INVALID”

Example 3.2. Consider Table 1 and the OD sal ∼ tax. After
ordering the tuples according to sal and breaking ties by tax, the
projection of the tuples over tax is the list [2𝐾, 2.5𝐾, 0.3𝐾, 12𝐾,
1.5𝐾, 16.5𝐾, 1.8𝐾, 7.2𝐾, 16𝐾]. The LNDS of this list is [0.3𝐾, 1.5𝐾,
1.8𝐾, 7.2𝐾, 16𝐾] and thus, the removal set is s = {t1, t2, t4, t6}.
Thus, the approximation factor is 4/9 ≈ 0.44.

Again, let𝑚 denote the number of tuples in an equivalence

class. Sorting the tuples in each equivalence class takesO(𝑚 log𝑚)
time (Line 3). To compute a LNDS of a list with length𝑚, a dy-

namic programming algorithm from [2] with small modifications

and with runtime O(𝑚 log𝑚) is employed (Line 4). In Line 5,

since 𝐿 is a subsequence of tB, tB \ 𝐿 can be computed in O(𝑚)
time by traversing both lists once. Therefore, the worst case run-

time of this algorithm, which occurs when𝑚 = 𝑛, is O(𝑛 log𝑛).
We now prove minimality and optimality of our algorithm.

1

Theorem 3.3. The set s generated using Algorithm 2 is a mini-
mal removal set with respect to the given AOC.

Theorem 3.4. Algorithm 2 has the optimal runtime for validat-
ing an AOC candidate.

Our validation algorithm easily extends to AODs of the form
X: A ↦→ B. We again use Algorithm 2, but in Line 3, tuples are

ordered according to the ascending order over A, but ties are
broken according to the descending order over B. Intuitively, this
forces the solution to the LNDS problem in Algorithm 2 to remove

all splits in the table (removal of swaps is already ensured similar

to Algorithm 2 for AOCs).2

4 EXPERIMENTS
We implemented our approximate OC validation algorithm on

top of a Java implementation of the set-basedOD discovery frame-

work from [10]. We implemented our new LIS-based algorithm

as well as the iterative algorithm using the same technologies

to ensure that the improvements in runtime are not due to im-

plementation differences. Unless mentioned otherwise, we set

the approximation threshold to 10% and use ten attributes. We

run our experiments on a machine with Xeon CPU 2.4GHz with

64GB RAM, and use datasets from the Bureau of Transportation

Statistics and the North Carolina State Board of Elections:

(1) flight contains information such as date, origin, destina-

tion, and airline about flights in the United States and has

1M tuples and 35 attributes (https://www.bts.gov).

(2) ncvoter contains information such as registration number,

age, and address about voters in North Carolina and has

5M tuples and 30 attributes (https://www.ncsbe.gov).

1
Due to space limits, proofs of theorems can be found in the technical report [5].

2
This idea can be extended to list-based AODs of the form X ↦→ Y, by ordering

tuples in ascending order of X and breaking ties using the descending order over Y.
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OD AOD (optimal) AOD (iterative) TANE FASTOD ORDER old LIS old greedy

200K 209.00 228.00 72832.00 29 387 387 266 0.8571429 41947.25 44155

400K 553.00 686.00 291328.00 19 329 700 0.98

600K 938.00 1126.00 655488.00 13 301 1180 0.9542373

800K 1497.00 1768.00 1165312.00 23 307 1822 0.9703622

1M 1989.00 2379.00 1820800.00 18 288 2410 0.9871369

old LIS old greedy

100K 141 123 34,935 18 129 129 123 129 0.778481 24454.5 158 11165

1M 3,261 2,554 40 145 2554 145 0.779134 3278
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Figure 3: Scalability in |R|.

4.1 Scalability
Exp-1: Scalability in |r|. We measure the runtime (in seconds)

of the AOD discovery framework that uses our validation algo-

rithm by varying the number of tuples in our datasets, as reported

in Figure 2. For now, ignore the curves labeled “OD” and “AOD (it-

erative)”, as well as the numbers next to the datapoints. The AOD
discovery framework implemented using our optimal algorithm

scales up to millions of tuples.

Exp-2: Scalability in |R|. Next, we measure the runtime of the

discovery framework in milliseconds, by varying the number

of attributes in our datasets, as illustrated in Figure 3. We use

1K tuples of our datasets (to allow experiments with a large

number of attributes in reasonable time) and vary the number

of attributes in multiples of five. In this experiment, the runtime

has an exponential growth (the Y-axis in Figure 3 is in log scale).

This is expected since the number ofODs increases exponentially
with the number of attributes.

4.2 Comparison with the Iterative Algorithm
Exp-3: Runtime comparison with the iterative algorithm.
As discussed in Section 3, our AOC validation algorithm has time

complexity O(𝑛 log𝑛), while the iterative algorithm proposed in

[10, 11] has time complexity O(𝑛 log𝑛 + 𝜖𝑛2). Figures 2, 3, and
4 illustrate the running times of the AOD discovery framework

when using these two validation algorithms.
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0 9.50 20.90 78 78

5 4.90 113.10 455 456

10 4.40 157.80 501 502
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Figure 4: The effect of the approximation threshold.

As shown in Figure 2, while when using our algorithm, the

framework can discover AOCs in datasets with up to millions of

tuples, when using the iterative algorithm, it does not terminate

within 24 hours on 400K and 1M tuples of the flight and ncvoter
datasets, respectively (the running times for the flight dataset
have been projected with dashed lines for better comparison). In

cases where the framework equipped with the iterative algorithm

terminates within the time limit, it is orders of magnitude slower.

In Figure 3, while the differences are not as pronounced (as the

number of tuples is too small), using our validation algorithm

still makes the framework almost an order of magnitude faster.

We next experiment with the approximation threshold, by

using 10K tuples from our datasets and setting the approximation

threshold to 0, 5, 10, 15, 20, and 25 percent. As Figure 4 illustrates,

while a larger approximation threshold does not increase the

runtime of our algorithm, (the runtime decreases in some cases

due to better pruning opportunities), it increases the runtime of

the iterative approach at an almost linear rate. This aligns with

the time complexity of these algorithms, as analyzed in Section 3.

As mentioned in Section 1, validating AOCs becomes the bot-

tleneck of theAOD discovery frameworkwhen using the iterative

algorithm. This is verified in our experiments, as up to 99.6% of

the total runtime is spent on validation. Using our LIS-based

validation algorithm, we reduce the time spent on validating

AOCs by up to 99.8%, which results in the orders-of-magnitude

improvement in runtime discussed before.

Exp-4: Removal sets and validating AOCs using the iter-
ative algorithm. While our validation algorithm guarantees

finding a minimal removal set for a given OC (as is proved in

Section 3.3), the iterative algorithm may overestimate the size of
a minimal removal set. This results in removal sets which are on

average around 1% larger than the true minimal removal set.

Overestimating the approximation factor may result in miss-

ing valid AOCs if the true approximation factor is close to the

input threshold. In Fig. 2, 3, and 4, the numbers inside the plots

indicate the number of OCs or AOCs found by an algorithm. We

have not listed the number of AOFDs since this work focuses on

discovering AOCs. (Wherever the plots for our algorithm and

the algorithm for exact ODs overlap, the numbers on the bottom

correspond to our approach.) The iterative approach misses up

to 2% of the valid AOCs found using our optimal approach.

Missing these AOCs could have potentially severe consequen-

ces. For instance, in the flight dataset, the AOC of arrivalDelay ∼
lateAircraftDelay holds with an approximation factor of 9.5%.
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Level FASTOD Time (ms) #set-based ODs (#FDs + #OCDs)

1 9/.81

2 20/.78

3 21/.51

4 5 5/.20

5 31 4/.00

6 25 0/NA

7 6 0/NA

8 2

9 1

1 9/.94

2 3 8/.82

3 64 2/.21

4 101 3/.14

5 87 2/.007

6 23 2/.00

7 6 0/NA

8 0 0/NA

9 0 0/NA
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Figure 5: Number of discovered OCs/AOCs in each level.

This AOC points out that generally, delays in arrival are due to

the aircraft and not other causes; e.g., security or weather delays.

However, the iterative algorithm overestimates the approxima-

tion factor as 10.5%. This results in the framework missing this

valid AOC when using an approximation threshold of 10%. Note

that missing some AOCs results in different pruning opportuni-

ties, and, as a result, the set of discovered AOCs, which explains

why the iterative algorithm discovers more AOCs in some cases.

Furthermore, as has been discussed for Exp-3, the running

time of the iterative algorithm on larger datasets is prohibitively

long. On such datasets, using the iterative algorithm results in

missing all valid AOCs. For instance, in the ncvoter dataset with
5M tuples and with the approximation threshold set to 20%, the

AOC of municipalityAbbrv ∼ municipalityDesc is discovered,

which points to exceptions in creating abbreviations for munici-

palities; e.g., “Raleigh” is abbreviated as “RAL”, while “Charlotte”

is abbreviated as “CLT”. However, this AOC does not hold in our

100K sample of tuples when using this threshold. Therefore, this

dependency would have been missed by using the iterative vali-

dation algorithm, as it exceeds the time limit on the full dataset.

4.3 Comparison with Exact OD Discovery
Exp-5: Lattice level of AOCs and runtime improvements.
AOCs tend to reside in lower levels of the lattice (with smaller

contexts). In our scalability experiments in the number of tuples

(Exp-1), the AOCs are on average 1.2 levels lower on the lattice.

Similarly, in experiments in the number of attributes (Exp-2),

the AOCs are on average 0.5 levels lower on the lattice. Figure 5

shows the number of OCs or AOCs found at each level of the

lattice, when using 5M tuples and 10 attributes of the ncvoter
dataset. On this dataset, the average lattice level of the discovered

dependencies drops from 5.6 to 4.3 when using our approximate

algorithm. As discussed in [10, 11], dependencies found in lower

levels of the lattice are likely to be more interesting.

Furthermore, as discussed in Section 3.1, our discovery frame-

work first validates candidates on lower levels of the lattice, and

then applies pruning rules to generate the candidates on higher

levels of the lattice (step 3 in Figure 1). Therefore, by finding

AOCs in lower levels, the algorithm can use pruning rules more

effectively earlier in the discovery process, resulting in pruning

some candidates on higher levels of the lattice and validating

fewer candidates in total. The effects of such pruning opportuni-

ties are not noticed when using the iterative validation algorithm,

due to its prohibitively long running time. However, we optimally

reduce the runtime of the validation step, resulting in runtime

improvements for the discovery framework.

Figures 2 and 3 show the running times of the algorithms

for discovering exact and approximate ODs. Even though val-

idation of AOCs has a worse runtime compared to exact OCs,
i.e., O(𝑛 log𝑛), as opposed to O(𝑛), due to the extra pruning

opportunities described above, the total runtime of the discov-

ery framework for AODs can even be lower than the discovery

framework for exact ODs; i.e., up to 34% and 76% faster in exper-

iments in the number of tuples and attributes, respectively. The

pronounced effect in the experiments in the number of attributes

is due to having a smaller number of tuples.

Exp-6: Discovered AOCs compared to OCs. The exact algo-
rithm fails to discover meaningful OCs in presence of anomalies,

or even if a single value is erroneous. However, valid AOCs may

hold in such instances. Other than the AOCs discussed in Exp-4,

in the flight dataset, we discovered the AOC city ∼ airportName
with a 27% approximation factor, which indicates that the names

of airports usually begin with the name of the corresponding

cities. Furthermore, the AOC streetAddress ∼ mailAddress holds
in the ncvoter dataset with an approximation factor of 18%. These

AOCs can point to anomalies and data quality issues, e.g., wrong

address formats, misaligned mailing and residence addresses, and

non-standard / erroneous airport names.

As shown in Figures 2 and 3, by discovering AOCs, we can
find more dependencies in the data. Even if there are fewer AOCs
than OCs (e.g., the flight dataset in Exp-2), the discovered de-

pendencies are on lower levels of the lattice, as shown in Exp-5,

which makes them more interesting [10, 11]. If the number of

discovered dependencies is too large, the interestingness measure

proposed in [11] can be used to rank the AOCs. In fact, the exam-

ple AOCs that we have identified in Exp-4 and in this experiment,

were all ranked as the most interesting AOCs.

5 CONCLUSIONS
We proposed a new validation algorithm for approximate ODs
and proved its minimality and runtime optimality. We then im-

plemented our approach in an existing canonical OD discovery

framework and demonstrated significant gains compared to ex-

isting frameworks for discovering exact and approximate ODs.
In future work, we will study new approaches for discovering ap-

proximate ODs, such as hybrid sampling, as done in [7] for FDs.
We will also extend our approximate OD discovery framework

to distributed settings, similar to the work in [9].
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ABSTRACT
We study the problem of discovering joinable datasets at scale.We
approach the problem from a learning perspective relying on pro-
files. These are succinct representations that capture the under-
lying characteristics of the schemata and data values of datasets,
which can be efficiently extracted in a distributed and parallel
fashion. Profiles are then compared, to predict the quality of a
join operation among a pair of attributes from different datasets.
In contrast to the state-of-the-art, we define a novel notion of join
quality that relies on a metric considering both the containment
and cardinality proportion between join candidate attributes. We
implement our approach in a system called NextiaJD, and present
experiments to show the predictive performance and compu-
tational efficiency of our method. Our experiments show that
NextiaJD obtains similar predictive performance to that of hash-
based methods, yet we are able to scale-up to larger volumes
of data. Also, NextiaJD generates a considerably less amount of
false positives, which is a desirable feature at scale.

1 INTRODUCTION
Data discovery requires to identify interesting or relevant datasets
that enable informed data analysis [2, 9]. Discovery and integra-
tion of datasets is nowadays a largely manual and arduous task
that consumes up to 80% of a data scientists’ time [19]. This only
gets aggravated by the proliferation of large repositories of het-
erogeneous data, such as data lakes [15] or open data-related
initiatives [14]. Due to the unprecedented web-scale volumes of
heterogeneous data sources, manual data discovery becomes an
unfeasible task that calls for automation [11]. Hence, we focus on
the very first task of data discovery: the problem of discovering
joinable attributes among structured datasets in a data lake. We
distinguish three approaches: comparison by value, comparison by
hash and comparison by profile. Table 1, overviews recent contri-
butions. Comparison by value relies on auxiliary data structures
such as inverted indices or dictionaries to minimize the lookup
cost. Alternatively, the comparison by hash approach expects
that similar values will collision in the same bucket, also employ-
ing index structures for efficient threshold index. Comparison by

Search accuracy
Exact . . . . . . . . . . . . . . . . . . . . . . . . Approximate

Comp. by value
[6, 20, 22]

Comp. by hash
[4, 10, 21, 23]

Comp. by profile
[5, 7, 8, 12]

Expensive . . . . . . . . . . . . . . . . . . . . . . . . . Efficient
Algorithmic complexity

Table 1: Overview of approaches by technique, arranged
according to accuracy and algorithmic complexity

© 2021 Copyright held by the owner/author(s). Published in Proceedings of the
24th International Conference on Extending Database Technology (EDBT), March
23-26, 2021, ISBN 978-3-89318-084-4 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

profile methods leverage on profiles extracted from datasets and
their attributes. These are compared to predict whether a given
pair of attributes will join.

1.1 Data discovery at scale
Unfortunately, as we experimentally show in Section 3, the state-
of-the-art in data discovery does not meet the expectations for
web-scale scenarios. Unlike traditional relational databases, these
are characterized by a) a wide heterogeneity among datasets
(e.g., large differences on the number of attributes and / or their
cardinalities); b) massive volumes of data; and c) the presence
of a variety of topics, or domains. Overall, these distinguishing
features deem current solutions ineffective due to their inability
to scale-up as well as the low precision of the results obtained.

Inability to scale-up. Solutions that yield exact results or with
a bounded error (i.e., comparison by value and hash) require the
construction and maintenance of index structures for efficient
lookup. This is a task that becomes highly demanding in terms of
computing resources on large-scale datasets. In fact, as we have
empirically observed, the available implementations fail to handle
datasets of few GBs. Furthermore, most available approaches do
not allow incremental maintenance.

Low precision. Comparison by hash solutions employ either
containment or Jaccard distance as similarity measures to decide
joinability among pairs of attributes. It has been reported, how-
ever, that the estimation of such measures is highly imprecise
when the cardinality (i.e., the number of distinct values) of an
attribute is comparatively larger than the other’s [16], which is
a common characteristic in real-world web-scale applications.
As result, the precision of current approaches is highly affected
due to the large number of false positives. To showcase this fact,
we designed an experiment collecting 138 datasets from open
repositories such as Kaggle and OpenML1. Precisely, we devised
an heterogeneous collection of datasets ranging different top-
ics, which yielded a total of 110, 378 candidate pairs of string
attributes, where 4, 404 of those have a containment higher or
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equal than 0.1. Indeed, as shown in Figure 1, even for very high
containment values (i.e., above 0.75), the number of irrelevant re-
sults (i.e., false positives) represents 40% of the total. Such results
were obtained by manually analyzing the proposed candidate
pairs. However, this approach is unfeasible for large scenarios
and better join metrics are needed.

1.2 Profile-based methods to the rescue
The above discussion highlights the limitations of value and
hash-based data discovery over web-scale scenarios. Alterna-
tively, the comparison by profile approach suits betters for large
scale scenarios as they rely on the detection of similarities or
discrepancies between profiles. Working with summaries instead
of data values is much more efficient from a complexity point of
view. Yet, despite the clear performance benefits of profile-based
approaches, there is nowadays a large gap in the trade-off re-
garding the quality of their results mainly due to the adoption of
rather basic profiles (e.g. [8]) that do not accurately describe the
underlying data or representative profiles (e.g. [5]) that are used
to discover a binary class (e.g. joinable or non-joinable). To that
end, we propose a novel approach to data discovery which aims
to cover the gap generated by the low predictive performance
of profile-based methods, as well as the limited precision and
scalability of hash-based systems on large data lakes.

We, first, propose a novel metric to denote the quality of a join.
Opposite to the related work, mostly focused on containment
or Jaccard distance, we also consider the cardinality proportion
between attributes as an indicator of a higher join quality. This
allows us to get rid of a substantial amount of false positives,
reducing the number of pairs to analyze. This is specially rel-
evant in large-scale settings, where as shown in Figure 1, the
number of candidate pairs is too large to manually disregard false
positives. Second, we propose a novel learning-based method
based on profiles to discover joinable attributes for large-scale
data lakes. Our assumptions apply to scenarios where data is
typically denormalized and file formats embed tabular data (i.e.,
not nested). We rely on state-of-the-art relational data profil-
ing techniques [1] to compute informative profiles for datasets.
This task, which can be done offline and parallelized over dis-
tributed computing frameworks (e.g., Apache Spark), allows us
to extract and model the underlying characteristics of attributes.
Next, profiles are compared in order to predict their expected
join quality. The predictive model is based on random forest clas-
sifiers, which are highly expressive and robust to outliers and
noise [3]. Additionally, such models can be trained and evaluated
in a distributed fashion [17], thus yielding a fully distributed end-
to-end framework for data discovery. We show that our method
is generalizable and that proposes a meaningful ranking of pairs
of attributes based on the predicted join quality.

Contributions.We summarize our contributions as follows:

• We introduce a qualitative metric for join quality, which consid-
ers containment and cardinality proportion between attributes.

• We learn a model based on random forest classifiers to effi-
ciently rank candidate pairs of joinable attributes.

• We show that our approach is scalable and outperforms the cur-
rent state of the art, yielding higher predictive performance re-
sults than profile-based solutions and similar quality (𝐹1-score)
to hash-based ones. Yet, our approach yields better precision
than hash-based approaches and produce less false positives.

2 MEASURING THE QUALITY OF A JOIN
Unlike the state-of-the-art, which mainly uses containment and
Jaccard similarities to decide the degree of joinability among
pairs of attributes, we define a qualitative metric to measure the
expected join quality. We consider containment as a desirable
metric to maximize. Yet, wemake the observation that datasets on
a data lake do not relate to each other as in a relational database.
In such scenarios, it is common to find datasets with few data
values in common that, in turn, may represent different seman-
tic concepts. In order to exemplify this idea, let us consider the
datasets depicted in Table 2. In this example, the reference dataset
𝐷𝑟𝑒 𝑓 might be joined with any of the two candidate datasets 𝐷1
(at the EU level) and 𝐷2 (worldwide). Current approaches would
propose both as joinable pairs, since they yield the same contain-
ment. However, we aim at distinguishing the join quality between
them and use their cardinality proportion for that purpose. Let
us consider the following cardinalities corresponding to the city
attributes: |𝐷𝑟𝑒 𝑓 | = 8124, |𝐷1| = 54500 and |𝐷2| = 982921. We use
the cardinality proportion as a measure to infer whether their
data granularities are similar. In this sense, the third dataset is
much larger than |𝐷𝑟𝑒 𝑓 | and yield a worse proportion and there-
fore we rank it worse. Importantly, we assume these datasets
store independently generated events and such big difference
in their cardinality most probably mean they embed different
semantics or sit at different granularity levels. In general, such
situations are a source of false positives for current solutions,
specially, when considering small tables.

2.1 Join quality
We now formalize the metric for join quality as a rule-based mea-
sure combining both containment and cardinality proportion. We
define a totally-ordered set of quality classes 𝑆 = {None, Poor,
Moderate, Good, High} as indicator of the quality of the resulting
join. Indeed, we advocate not to define a binary class (i.e., either
joinable or not), since we would not be able to rank the posi-
tive ones. As experienced with the state-of-the-art, in realistic
large scenarios, a binary class yields a long list of results, which

(a) 𝐷𝑟𝑒𝑓 – Tourism income in Spain

City Seaside Amount
Barcelona Y 350M
Girona Y 110M
Lleida N 75M

Tarragona Y 83M
. . . . . . . . .

(b) 𝐷1 – EU demographic data

Unit Population Avg. salary Cost of living
Antwerp 1,120,000 44,000€ 2,896€
Barcelona 1,620,343 31,000€ 2,422€
Berlin 4,725,000 49,000€ 2,737€
Bristol 1,157,937 30,000£ 2,397£
. . . . . . . . . . . .

(c) 𝐷2 – Worldwide demographic data

Name Country Population
Barcelona Spain 1,620,343
Canberra Australia 426,704
Chicago United States 2,695,598
Curitiba Brasil 1,908,359

. . . . . . . . .

Table 2: A reference dataset (𝐷𝑟𝑒 𝑓 ) and two candidate datasets to be joined. 𝐷1 is curated with extensive data at european
level, while 𝐷2 is curated at the worldwide level with less details
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are difficult to explore and compare. Therefore, we propose the
following multi-class join quality metric.

Definition 2.1. Let 𝐴, 𝐵 be sets of values, respectively the ref-
erence and candidate attributes. The join quality among 𝐴 and 𝐵
is defined by the expression

𝑄𝑢𝑎𝑙𝑖𝑡𝑦 (𝐴, 𝐵) =



(4) High, 𝐶 (𝐴, 𝐵) ≥ 𝐶𝐻 ∧ |𝐴 |
|𝐵 | ≥ 𝐾𝐻

(3) Good, 𝐶 (𝐴, 𝐵) ≥ 𝐶𝐺 ∧ |𝐴 |
|𝐵 | ≥ 𝐾𝐺

(2) Moderate, 𝐶 (𝐴, 𝐵) ≥ 𝐶𝑀 ∧ |𝐴 |
|𝐵 | ≥ 𝐾𝑀

(1) Poor, 𝐶 (𝐴, 𝐵) ≥ 𝐶𝑃
(0) None, otherwise

The rationale behind the quality metric is to constrain the can-
didate pairs of attributes to two thresholds per class: containment
(𝐶𝑖 ) and cardinality proportion (𝐾𝑖 ). Precisely, we fix that for any
pair of classes 𝑆𝑖 , 𝑆 𝑗 ∈ 𝑆 where 𝑆𝑖 > 𝑆 𝑗 , the containment and
cardinality proportion must be higher (i.e.,𝐶𝐻 > 𝐶𝐺 > 𝐶𝑀 > 𝐶𝑃
and 𝐾𝐻 > 𝐾𝐺 > 𝐾𝑀 ). Intuitively, a larger containment and a
similar cardinality proportion guarantees that the two attributes
share common values and their cardinalities are alike. Conse-
quently, most probably, they have a semantic relationship. We
consider the values 𝐶𝐻 = 3/4 = 0.75,𝐶𝐺 = 2/4 = 0.5,𝐶𝑀 =

1/4 = 0.25,𝐶𝑃 = 0.1 for containment, and 𝐾𝐻 = 1/4 = 0.25, 𝐾𝐺 =

1/8 = 0.125, 𝐾𝑀 = 1/12 = 0.083 for cardinality proportion. These
have been empirically defined from our training set, yet, as we
show in Section 3 they are generalizable to other datasets.

To demonstrate the benefits of the proposed metric, we ran an
experiment following the same methodology as that depicted in
Section 1.1. Using the same collection of 110, 378 candidate pairs,
we evaluated their join quality. As a result, in Figure 2 we depict
the distribution of the join quality distinguishing relevant and
irrelevant results. There are two key observations to be made. On
the one hand, the number of results labeled with higher quality
classes is considerably smaller than those for high containment
values. Thus, the largest number of observations are labeled as
of Poor quality or None. On the other hand, the proportion of
relevant cases is, in general, much larger than irrelevant ones but
specially significative for higher quality classes. As expected, the
lower the quality class, the more irrelevant cases will be found.
Drilling down in the obtained results, we have manually studied
these irrelevant cases where the quality class is High. We have
observed that these situations occur when the proposed pairs do
not have a semantic relationship but they share a syntactic one
(e.g., some artists use a country name). Thus, it would only be
possible to disregard them considering semantics.
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Figure 2: Distribution of relevant and irrelevant results for
different quality classes on a web-scale repository

2.2 A learning approach to join discovery
Here, we describe our approach and present the process of build-
ing profiles and the predictive model.

Attribute profiling. Profiles are composed of meta-features that
represent the underlying characteristics of attributes. Such pro-
files are the key ingredient for high accuracy predictions, thus
we require an exhaustive summary of attributes. To this end, we
base our profiling on state-of-the-art relational data profiling
techniques [1]. We distinguish meta-features corresponding to
unary and binary profiles. We further distinguish the former
into meta-features modeling cardinalities, value distribution and
syntax. Before comparing profiles and due to the fact attribute
meta-features are represented in different magnitudes, we nor-
malize them to guarantee a meaningful comparison using the
Z-score. Finally, once meta-features have been normalized we
compute the distances among pairs of attributes. Here, we also
compute binary meta-features. The result of this stage is a set of
distance vectors 𝐷 where, for each 𝐷𝑖 , values closer to 0 denote
high similarities.

Predictive model. Once distance vectors are computed, we can
train the predictive model. Precisely, the goal is to train a model
that, for a pair of attributes𝐴, 𝐵, its prediction is highly correlated
to the true class (i.e., 𝑄𝑢𝑎𝑙𝑖𝑡𝑦 (𝐴, 𝐵)). The training process was
performed using the collection of datasets discussed in Section
1.1. The ground truth was labeled using the newly proposed qual-
ity metric (Definition 2.1), which served as training dataset for
the random forest classifiers. In order to reduce the false positive
rate, the different classifiers are connected in a classifier chain
architecture. This is an effective approach for multi-label classifi-
cation [18]. Each classifier predicting the probability of class 𝑖 is
trained with the set of distance vectors 𝐷 and the probabilities of
classes 0, . . . , 𝑖 − 1, improving the predictive accuracy of the clas-
sifier. Figure 3 depicts a high-level overview of the architecture
used for training. Then, the prediction returned by the classifier
is the one with highest probability from each 𝑅𝐹𝑖 . To assign the
predicted quality class to a candidate attribute, we assign the
label considering the highest probabilities from all classifiers.

𝐷

𝑅𝐹0

𝐷, 𝑝0

𝑅𝐹1

𝐷, 𝑝0, 𝑝1

𝑅𝐹2

𝐷, 𝑝0, 𝑝1, 𝑝2

𝑅𝐹3

𝐷, 𝑝0, 𝑝1, 𝑝2, 𝑝3

𝑅𝐹4

Figure 3: Chain of 5 random forest classifiers, each 𝑅𝐹𝑖 is
fedwith the distances vectors𝐷 and the probabilities from
the previous classifiers 𝑝0, . . . , 𝑝𝑖−1

3 EVALUATION
In this section, we present the evaluation of our approach. On the
one hand, we evaluate the ability of the model to discover quality
joins through several experiments as well as its generalizability.
On the other hand, we compare its performance with represen-
tative state-of-the-art solutions. In order to present transparent
experiments and guarantee the reproducibility of results, we
created an informative companion website2.
2https://www.essi.upc.edu/dtim/nextiajd/
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Implementation. NextiaJD is implemented as an extension of
Apache Spark. The classification model was trained using its dis-
tributed machine learning library MLlib. The runtime methods
(i.e., profiling and ranking) are implemented as new operators
over the structured data processing library SparkSQL. We lever-
age on the Catalyst optimizer to efficiently compute the profiles
and compare them. Our implementation supports two modes of
operation discovery-by-attribute and discovery-by-dataset. The
former receives as input a reference Spark dataframe (i.e., a
dataset) and one of its attributes, and generates a ranking against
a collection of dataframes (i.e., other datasets). The discovery-
by-dataset mode does not receive as input a reference attribute,
so it runs the discovery process for all attributes from the refer-
ence dataframe. Notably, implementing NextiaJD on top of Spark
brings many other benefits. Firstly, we can benefit from many
source connectors and we can easily ingest the most common
data formats (e.g., CSV, JSON, XML, Parquet, Avro, etc.). Secondly,
our extension benefits from the inherent capacity of Spark to
parallelize tasks on top of distributed data.

Test set. For evaluation purposes, we collected 139 independent
datasets from those used for the ground truth. We further divided
such datasets into 4 testbeds (extra-small, small, medium and
large) according to their file size. Table 3 shows the characteristics
of each testbed.

Testbed 𝑿𝑺 𝑺 𝑴 𝑳
File size 0 − 1 MB 1 − 100 MB 100 MB −1 GB > 1 GB
Datasets 28 46 46 19
Attributes 159 590 600 331

Table 3: Characteristics per testbed

Alternatives. We compare our approach with the following
state-of-the-art data discovery solutions representatives of, re-
spectively, hash-based and profile-based methods whose source
code is openly available: LSH Ensemble [23] and FlexMatcher [5].
No fine tuning was performed in such systems, running the code
as provided out-of-the-box. These systems differ in their mode
of operation, the former being an approach based on comparison
by hash, while the latter on comparison by profile. Note that,
for computational performance reasons, we rule out approaches
based on comparison by value. Such solutions are not comparable
to ours, since their kind of search accuracy is exact and by nature
they are not suitable for large-scale scenarios.

3.1 Predictive performance
Here we assess the classifier’s predictive performance evaluating
the ranking of candidate equi-join predicates for each testbed.

Methodology.We depict a confusion matrix to capture the rela-
tionship between the true and predicted classes. We also provide
performance metrics for the classifier such as precision, recall
and 𝐹1 score. We first discuss the experiment for all testbeds
together, and later do a fine-grained discussion for each testbed.

Results. Figure 4 and Table 4, show, respectively, the confu-
sion matrix and performance metrics for all testbeds. Overall,
we evaluated 467, 965 attributes pairs. We can validate the good
performance of the proposed approach by the fact that class 4,
denoting the highest quality joins, has the best precision. Our
method aims at proposing a ranking according to the predicted
join quality, which for the highest value it has almost no false

positives. It is also relevant to note that the prediction for class
0, denoting the no join quality, also has both high precision and
recall. This is particularly relevant to filter out irrelevant results,
and thus reduce the search space when presenting a ranking to
the user. We additionally note that, as depicted by the precision
and recall measures, predictions corresponding to classes 1 and
2 are highly inaccurate. Nevertheless, NextiaJD is prepared to be
used as an interactive tool. Thus, if we analyze these results from
the point of view of a user, most misclassifications are between
similar classes and thus irrelevant. NextiaJD shows the results in
strict order. First, classes 4 and 3, and then classes 2 and 1 on de-
mand. In this sense, a binary classification meaning likely relevant
or likely irrelevant would be a fairer way to evaluate NextiaJD.
When considering these results as a binary problem (relevant:
classes 3-4; irrelevant: classes 0-2), the evaluated metrics improve
considerably, as shown in Figure 9 and Table 5. Relevantly, we
note that NextiaJD generates very few false positives; a desirable
property for large-scale data discovery problems. We neverthe-
less highlight the relevance of distinguishing classes 1 and 2 from
0, either for advanced users or because NextiaJD could be used for
other automatic data discovery problems where such distinction
would be relevant.
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3 7 7 151 348 4
2 92 17 312 98 1
1 6903 737 349 1 0
0 455084 2370 660 56 1

0 1 2 3 4
Predicted class

Figure 4: Confusion matrix for all testbeds (clearer cells
denote a closer proximity w.r.t. the true class)

Precision Recall 𝑭1 score
(0) None 0.9848 0.9933 0.9890
(1) Poor 0.2352 0.0922 0.1325

(2) Moderate 0.2025 0.6000 0.3029
(3) Good 0.4339 0.6731 0.5276
(4) High 0.9849 0.5123 0.6740

Table 4: Performance metrics per class for all testbeds

3.2 Comparison with the state-of-the-art
In this experiment we aim at comparing our approach to other
data discovery approaches. We perform such evaluation by mea-
suring and comparing their computational complexity and pre-
dictive performance.

Methodology. All systems under evaluation, including ours,
implement data discovery in two steps. The first step, which
we denote pre, builds the core data structures from the datasets.
For hash-based methods, such as LSH Ensemble, building the
index, while profile-based methods, such as FlexMatcher and
ours, create the profiles. Additionally, FlexMatcher will create
the predictive models for each new data discovery task. Then, the
second step, which we denote as query, consists of computing
the prediction leveraging on the previously built data structures.
Whenever possible, we decouple both steps and thus read the
data structures from disk. This is, however, not the case for LSH
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Ensemble, as it does not offer any resources to store the index
on disk, forcing us to maintain it in memory.

The three systems analyzed have slightly different objectives.
In order to perform a fair comparison, we analyze the results from
the user perspective. That is, the number of results provided and
its degree of relevantness. For that, we use a binary scale, which
maps to the output obtained in LSH Ensemble and FlexMatcher.
For NextiaJD, wewill reuse the relevantnessmapping discussed in
the previous experiment: we map classes {0, 1, 2} to the irrelevant
class, and classes {3, 4} to the relevant one. Applying the same
rationale, in LSH Ensemble we consider relevant those pairs with
a containment above 50% (i.e., the threshold we considered for
our class 3). Finally, FlexMatcher is not parameterizable with a
quality threshold and already provides a binary output (i.e., non-
joinable/joinable). In this case, non-joinable maps to irrelevant
and joinable to relevant.

Results. We evaluated the performance of NextiaJD, LSH En-
semble and FlexMatcher on each testbed. Both LSH Ensemble
and FlexMatcher suffered from scalability issues and were not
able to execute testbed 𝐿. Figure 6, depicts the runtime of the pre
phase for each testbed. We can observe that the runtime of all
systems is in the same orders of magnitude, however our pre is
larger than the rest. This is mainly due to the fact that, to ensure
a fair comparison, we did not set Spark on cluster mode. It is well-
known that using Spark on centralized mode adds extra overhead
of tasks when generating the required data structures, managing
partitions, etc. This is not the case for the other systems, which
are provided as standalone programs. Nevertheless, NextiaJD ben-
efits from Spark’s robustness and it is the only approach, even in
centralized mode, capable of dealing with a large-scale testbed.
Furthermore, we note that NextiaJD is the only solution able to
precompute its pre step (except for binary meta-features).
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Figure 6: Pre runtime

Regarding the computational performance of the query phase,
we distinguish the discovery-by-attribute and discovery-by-dataset
scenarios, respectively in Figures 7 and 8. Note that discovery-by-
attribute is not available in FlexMatcher. LSH Ensemble excels in
both query tasks. This is due to the fact there is no mechanism
to persist the index and this task is reduced to an in-memory
lookup. FlexMatcher also benefits from fully running in memory
but, in this case, the query step suffers from the need to compute
some on-the-fly learning models. As general observation, both
approaches are thought to compute their core structures and run
in memory, which is the main reason hindering their ability to
scale-up. Overall, NextiaJD shows a good behaviour in the query
step. Importantly, NextiaJD is not affected by the dataset cardi-
nality at query time. Indeed, the runtime is directly proportional
to the number of attributes, or profiles, to compare.

We now put the focus on comparing the predictive perfor-
mance of the three approaches. Figure 9 and Table 5, depict,

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

XS S M L

s
e

c
o

n
d

s

file size category

LSH Ensemble
FlexMatcher

NextiaJD

Figure 7: Query runtime (discovery-by-dataset)
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respectively, the confusion matrices and performance metrics us-
ing the binary class mapping. Relevantly, the predictive quality of
NextiaJD and LSH Ensemble are comparable. While LSH Ensem-
ble finds more true positives, it generates much more false posi-
tives. As result, NextiaJD precision is better. Finally, and aligned
with our claim that contemporary profile-based data discovery
methods fall short in terms of quality, FlexMatcher generates an
extremely large number of false positives reducing its overall
quality and making it unfeasible for large-scale scenarios.

(a) NextiaJD
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0 419119 129
0 1

Predicted class

(b) LSH Ensemble
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0 418338 910
0 1
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(c) FlexMatcher
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Figure 9: Combined confusion matrices for each system
on testbeds 𝑋𝑆, 𝑆,𝑀

Precision Recall 𝑭1 score
NextiaJD 0.8764 0.8464 0.8611

LSH Ensemble 0.5299 0.9491 0.6800
FlexMatcher 0.0133 0.4708 0.0258

Table 5: Performance metrics using binary classes for
each system under evaluation on testbeds 𝑋𝑆, 𝑆,𝑀

Then, Figure 10 drills deeper into the comparison between
NextiaJD and LSH Ensemble. We assigned a quality class to LSH
Ensemble by running it several times and using a different con-
tainment threshold each time, as defined in our quality classes
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(i.e., 0.75, 0.5, 0.25 and 0.1). There, we observe relevant differences
on the predictions computed. In general, our approach is more
conservative, in the sense that we produce less false positives
at expenses of sacrificing some true positives. Overall, this im-
proves the precision of our approach by reducing the number of
false positives shown to the user. As general observation, both
approaches follow slightly different objectives and NextiaJD is
more suitable for large-scale scenarios, both for its scale-up ca-
pacity and high precision, which guarantees the user will not be
overwhelmed with large rankings including false positives.

(a) NextiaJD (𝑋𝑆, 𝑆,𝑀)
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(b) LSH Ensemble (𝑋𝑆, 𝑆,𝑀)
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Figure 10: Confusion matrices using 5 quality classes for
NextiaJD and LSH Ensemble

4 CONCLUSIONS AND FUTUREWORK
We have presented a novel learning-based approach for data
discovery on large-scale repositories of heterogeneous, indepen-
dently created datasets. Our work is motivated by (i) the poor
predictive performance of current profile-based solutions, and
(ii) the inability to scale-up and low precision of hash-based ones,
which is undesirable for large-scale scenarios. In order to over-
come these limitations, we propose a scalable method yielding
good precision, and grounded on a novel qualitative definition
of join quality. We implemented our approach in a tool called
NextiaJD. We have experimentally shown that despite being a
profile-based approach, NextiaJD presents a similar predictive
performance to that of hash-based solutions, yet better adapted
for large-scale scenarios, while benefiting from linear scalability.

We do believe profile-based solutions are the right way to go
at scale. However, there are some open problems that should
be addressed in the future. First, a better join definition metric
able to discriminate semantic joins. Current metrics are based
on containment / Jaccard similarity and, as previously discussed,
these metrics have a very good recall but very low precision.
Annotating the required ground truth based on these metrics
bias the learning due to the amount of false positives. Current
annotated semantic ground truths are unfortunately too small
(e.g., Valentine [13]), or generated from approximate metrics
like ours, which smoothes the problem but still suffers from it.
Last, but not least, profile-based approaches are promising to
detect non-syntactic (i.e., with a different encoding per value)
semantic join relationships. These are pairs of attributes that

maintain the same underlying data distribution but require some
transformation in order to join. Based on such predictions, it
should be possible to propose such required transformations to
join.
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ABSTRACT
Mainstream DBMSs provide hundreds of knobs for performance
tuning. Tuning those knobs requires experienced database ad-
ministrators (DBA), who are often unavailable for owners of
small-scale databases, a common scenario in the era of cloud
computing. Therefore, algorithms that can automatically tune
the database performance with minimum human guidance is of
increasing importance. Developing an automatic database tuner
poses a number of challenges that need to be addressed. First,
out-of-the-box machine learning solutions cannot be directly
applied to this problem and, therefore, need to be modified to
perform well on this specific problem. Second, training samples
are scarce due to the time it takes to collect each data point and
the limited accessibility to query data submitted by the database
users. Third, databases are complicated systems with unstable
performance, which leads to noisy training data. Furthermore,
in a realistic online environment, workloads can change when
users run different applications at different times. Although there
are several research projects for automatic database tuning, they
have not fully addressed this challenge, and they are mainly de-
signed for offline training where the workloads do not change.
In this paper, we aim to tackle the challenge of online tuning in
evolving workloads environment by proposing a multi-model
tuning algorithm that leverages multiple Deep Deterministic Pol-
icy Gradient (DDPG) reinforcement learning models trained on
varying workloads. To evaluate our approach, we have imple-
mented a system for tuning a PostgreSQL database. The results
show that we can automatically tune a PostgreSQL database and
improve its performance on OLTP workloads and can adapt to
changing workloads using our multi-model approach.

1 INTRODUCTION
Modern DBMSs have hundreds of configuration knobs that affect
their performance. A DBMS that is not configured properly for
the current workload may lead to sub-optimal performance and
inefficient usage of system resources that may result in hundreds
of users that are not getting the performance they need for their
applications. The role of monitoring and configuring a DBMS
was traditionally done by a database administrator (DBA), an
expert dedicated to this task. However, nowadays, multiple DMBS
instances are deployed on the cloud and each instance could host
hundreds of databases, therefore, the task of monitoring and

© 2021 Copyright held by the owner/author(s). Published in Proceedings of the
24th International Conference on Extending Database Technology (EDBT), March
23-26, 2021, ISBN 978-3-89318-084-4 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

configuring a large-scale database infrastructure requires a large
number of DBAs, which would lead to high operation costs.

Over the last few years, several database vendors have identi-
fied the potential of using machine learning to automate different
database tasks on the cloud, such as automatic indexing, configu-
ration, and provisioning. A few examples include the autonomous
database from Oracle [11] and the self-driving database from
Alibaba [1]. The study of autonomous databases using AI is a
very active research area that already yielded a large number of
papers, where the most popular machine-learning paradigm in
recent works is reinforcement-learning [7, 9, 14, 18]. Born as a
machine-learning branch for solving complex control problems,
reinforcement learning is a natural choice the automatic database
tuning tasks.

One of the main challenges of operating an automatic DBMS
tuning system on the cloud is the fact that the database environ-
ment is dynamic: system resources, workloads, and database size
could change in the course of the day, therefore, a system for au-
tomatic tuning needs to be flexible and adapt to these changes to
provide the optimal performance for a given environment state.
In this paper, we address the problem of changing workloads in
an online tuning setting, and we employ reinforcement learning
for this task. While query-aware formulations for tuning were
previously proposed [7, 16], the problem of changing workloads
in an online tuning setting was not fully addressed.

Our main contributions in this paper are as follows:

• We propose a multi-model online tuning algorithm, sensi-
tive to workload changes, that leverages multiple DDPG
reinforcement learning models and selects the optimal
model for evolving workloads.

• We propose a simple reward function formulation for of-
fline and online tuning and show that it yields a more
stable learning curve compared to previous art [18].

• We demonstrate the offline and online tuning algorithms
on a PostgreSQL database and show that the performance
of the database can be significantly improved over the
baseline default performance.

2 RELATEDWORK
In recent years, multiple studies have addressed the problem of
automatic DBMS tuning using various machine-learning tech-
niques. In [5] a method called adaptive sampling was used to
automate the knob configuration selection by sampling from
past experience and in OtterTune [16] Gaussian Process (GP)
regression was used to recommend the best knob settings. Rein-
forcement learning over continuous action configuration space
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using the DDPG algorithm was utilized in CDBTune [18]. This
method was further extended in QTune [7] where a new algo-
rithm dubbed DS-DDPGwas introduced together with a database
state change predictor and a query classification algorithm. The
approach in this paper also uses DDPG to learn a policy func-
tion for the tuning agent, but instead of one model, uses multiple
DDPG models for evolving workloads in an online tuning setting.

Reinforcement learning is not limited to database automatic
tuning. In several papers, problems such as query optimization [9,
10, 12], index tuning [2, 14] and data partitioning [17] are also
solved using this machine learning paradigm.

3 RL FOR DATABASE TUNING

Figure 1: Reinforcement learning applied to database tun-
ing.

A reinforcement learning system is composed of an agent and
an environment. The agent takes an action on the environment
and the action changes the state of the environment and generates
a reward. The state and the reward are fed back into the agent
that uses this input to compute the next action. The agent tries
to increase the reward in every feedback loop. Reinforcement
learning gained its popularity from video games, where the agent
simulates a player that takes actions in the game environment
and tries to win the game by maximizing a reward function.

As shown in Figure 1, in a database setting, the DBMS repre-
sents the environment and the agent represents the DBA. The
state at time 𝑡 , 𝑠𝑡 , is described by a set of pre-selected database
monitors (statistics collectors) and the reward, 𝑟𝑡 , is a function
of the database performance metrics (such as throughput and
latency). Finally, the action 𝑎𝑡 is the change in the configuration
knobs selected for automatic tuning. The agent seeks to improve
the performance of the database by changing the knob values
and sensing the database state and reward.

3.1 DDPG: Knobs tuning in continuous
action space

There are many algorithms for reinforcement learning, and each
one of them has different variations. One criterion for choosing
the right algorithm is whether the action space is discrete or
continuous. In discrete action space, the agent selects one action
out of a pre-defined set of actions, whereas in the latter case,
the agent can pick any action from a continuous action space
(e.g., a continuous value). In our case, there are potentially hun-
dreds of knobs to be tuned, and many of them can be tuned to

any value in the allowed range of the knob. Therefore, similarly
to previous works [7, 18], we selected the Deep Deterministic
Policy Gradient (DDPG) RL algorithm, which was developed to
tackle the challenge of control problems with a continuous action
space [8]. As shown in Figure 2, the agent in the DDPG frame-
work is composed of actor and critic neural networks. Based on
the state and reward observations from the environment, the
critic estimates a 𝑄-value using the Bellman equation and target
networks, and the actor computes the tuning action based on
the estimated 𝑄-value. In every tuning iteration, the actor and
critic networks are updated 𝑛 times using batches of samples
from a replay buffer that stores the (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1) experience
tuples. The batch size and the number of update iterations are
hyperparameters determined by the user of the algorithm.

Here we describe the selections we made for the key elements
of the algorithm:

Reward function. To train the agent, one must define a mean-
ingful reward function to model the database performance. Differ-
ent reward function formulations had been proposed in previous
works [7, 18]. These formulations take into account the initial
throughput and latency and the throughput and latency in the
previous iteration. In this work, we rely on these formulations,
but we use a simpler function that only represents a change in
the performance relative to an initial throughput and latency.
Our reward function is defined as follows:

𝑟𝑇,𝐿 = 𝑐𝑇

(
𝑇

𝑇0
− 1

)
+ 𝑐𝐿

(
𝐿0
𝐿

− 1
)

(1)

where 𝑇 and 𝐿 stands for throughput and latency, respectively,
and 𝐶𝑇 + 𝐶𝐿 = 1. Improvement in the throughput and latency
yields positive reward values, whereas negative values indicate
a decline in the database performance. 𝑇0 and 𝐿0 are set up as
baseline performance values, for example, the throughput and
latency obtained by the DBMS default configuration. Due to the
typical oscillatory behavior of an RL training process, omitting
the dependency on previous iterations adds stability to the tun-
ing process. As will be shown in the experiments section, this
formulation together with the selection of 𝛾 = 0 (discount factor)
results in a more stable tuning curve compared to [18].

Replay buffer. In a traditional replay buffer, the order in which
the experience tuples are saved in the buffer has no importance,
and the batch of samples is selected randomly. In this work, we
use a prioritized replay buffer in which tuples are prioritized
based on the agent’s training loss error, therefore, samples are
selected based on their importance, and the ones that are more
valuable for the learning process would be selected more fre-
quently. It was shown in [8] that prioritized replay buffers lead
to a more efficient learning process.

Finally, we followed the idea proposed in [8] and added Gauss-
ian action space exploration noise using the Ornstein-Uhlenbeck
process [15].

3.2 Offline training
In offline training, the RL agent is trained using databases built
specifically for this task and the workloads that are being sub-
mitted are configured by the user. The offline training process
allows us to generate preliminary models and knob settings for
specific workloads, and to tune the algorithm hyperparameters
in a controlled environment.

The workload in offline training can be generated and submit-
ted using a benchmarking tool for example, such as Sysbench
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Figure 2: Database tuning with model training using the
DDPG reinforcement learning algorithm.

and OLTPBench [4, 6], and the throughput and latency measures
can be retrieved from the output log files generated by the tool.
Once a workload is chosen, it will not be modified during the
training phase. When the training phase is completed, a trained
DDPG model for the workload is generated and this model can
be used as a starting point for training on a different workload
(transfer learning), or as a preliminary model for online tuning,
a process we will describe in the next section.

The process of offline training is described in Figure 2. A
submitted workload and a change in the knob settings by the
action 𝑎𝑡 cause a change in the database state and yield 𝑠𝑡+1. The
throughput and latency measured over a certain time interval
obtain 𝑟𝑡 using the reward function defined in Eq. 1. The state
𝑠𝑡+1 and 𝑟𝑡 form a state transition tuple with the action 𝑎𝑡 and
the previous state 𝑠𝑡 , and this transition tuple is added to the
replay buffer. Then, a batch from the replay buffer is sampled
and used to update the actor and critic networks for 𝑛 iterations.
Finally, a new knob settings action 𝑎𝑡+1 is computed. As part of
this process, the batch sample priorities are updated based on the
critic loss function. The training process continues for a number
of iterations that is determined by the time it takes the learning
curve to stabilize.

Offline training was used in previous works for building pre-
liminary machine learning tuning models [7, 16, 18].

3.3 Model deployment
When a trained model is deployed, the algorithm described in
Figure 4 is used to recommend the knob settings. When the agent
receives the database state and performance metrics, the actor
predicts an action that is being translated to knob settings after
a Gaussian noise is generated using the OU process and added to
the action. These knob settings are then applied to the database.

4 ADAPTIVE MULTI-MODEL ALGORITHM
FOR ONLINE TUNING

Tuning online is a challenging task, sinceworkloads can change at
anytime. Suppose that a database runs OLAP queries at night and
OLTP queries during the daytime, its optimal memory allocation
strategy would be different for each workload. Therefore, the
training data from an OLAP workload cannot be used for training
a model for an OLTP workload, and if the tuning system cannot
detect workload changes and adapt, it would perform poorly on
new workloads.

To deal with the challenge of changing workloads, we have
developed a system for adaptive online tuning based on a multi-
model algorithm. This algorithm tracks the database state and
performance and the agent uses a set of pre-trained models and
dynamically creates new models to tune the knobs if required.
The performance measures (latency, throughput) in this case can

be computed using database views such as pg_stat_activity in
PostgreSQL.

Figure 3: Themulti-model database online tuning system.

The main components of our system described in Figure 3
are the tuner and the RL model repository. The tuner refers to
the DDPG reinforcement learning algorithm presented in Sec-
tion 3. The repository of model contains a collection of RLmodels,
pre-trained on workloads that are as similar as possible to the
workloads in the deployment environment, as well as models
that are created during online tuning. The models in this reposi-
tory are persisted with their weights, replay buffer, and a log file
that contains the knob settings that resulted in the best database
performance during training. In addition, each model is accompa-
nied by a workload representation vector that allows to retrieve
the most similar models in Algorithm 1. The last component is a
web-based app we implemented using Bokeh [3] that uses the log
files created during training to display in real-time the database
performance measures and the values of the knobs being tuned.

Figure 4: Knobs recommendation in deployment environ-
ment using DDPG. 1. The agent receives state and perfor-
mance metrics. 2. The actor network predicts an action
based on this input. 3. Exploration noise is added to the
action using the Ornstein-Uhlenbeck process and a new
knobs configuration is recommended.

4.1 Workload representation vectors
To generate the workload representation vectors we used an au-
toencoder neural network. We generated training data of state
vectors that combine the database state metrics, latency, through-
put, and queries per second (qps): 𝑉 = (𝑀0, 𝑀1, . . . , 𝑀𝑖 ,𝑇 , 𝐿,𝑄).
These vectors were collected at different time points and for dif-
ferent workloads. Then, we reduced their dimension by training
a simple 3-layer autoencoder and used the compressed represen-
tation from the hidden layer as the new state vectors. Since these
vectors were often sparse, this procedure allowed us to obtain a

441



compact workload representation. The autoencoder architecture
is shown in Figure 5.

Figure 5: Workload representation dimensionality reduc-
tion using an autoencoder. 𝑉 and 𝑉 represents the orig-
inal and reconstructed vectors, respectively. We used
a 25-dimensional state vector compressed to a three-
dimensional representation.

4.2 Multi-model tuning algorithm
For a given workload, Algorithm 1 selects from the 𝑁 models
in the repository, 𝑀𝑖 , the ones that have high cosine similarity
between the workload representation vector of the current work-
load, 𝑉𝑤 and the vectors persisted with the models, 𝑉𝑖 , and form
a set of models, 𝑆 . The similarity threshold is denoted by 𝑇 , and
was set empirically to 𝑇 = 0.8.

Given �̃� models in 𝑆 , we use an algorithm denoted as Best(S)
to select the model for recommending the knob settings in every
tuning iteration. The model that has the highest probability for
increasing the reward (improving the database performance) is
chosen to recommend the knob settings. Model selection prob-
abilities are assigned by generating random numbers from the
Beta distribution:

𝑓 (𝑥 ;𝛼, 𝛽) = 𝐶𝑥𝛼−1 (1 − 𝑥)𝛽−1 (2)

where 𝐶 is a normalization constant and 𝛼, 𝛽 are the distribution
shape parameters. For values of 𝛼 = 𝛽 , the distribution is symmet-
ric and the mean is at the center of the distribution. When 𝛼 > 𝛽 ,
the mean moves to the right side of the axis, and the random
generator has a higher probability of yielding values larger than
0.5. We use 𝛼 and 𝛽 to compare the performance of the models,
such that the model that performs better, has a higher 𝛼 value,
and therefore a higher probability to be selected in the next tun-
ing iteration. When comparing two models, 𝛼 and 𝛽 counts the
number of times each model produced a reward higher than the
average reward from the beginning of the workload cycle to the
point of measurement.

Themodels from the repository would always compete against
a model trained from scratch (fresh model) to guarantee that the
best model is being selected in cases where the model retrieved
from the repository does not perform optimally. If a model 𝑀
from the repository was selected and fine-tuned during the online
tuning process, its fine-tuned version 𝑀 ′ would be persisted
instead of model𝑀 . The process continues as long as the online
tuning phase runs. If a workload shift is detected, the model that
was selected the highest number of times to predict the action
within the workload cycle is persisted in the models’ repository.

Amodel selected from the repository and updated during training
will be persisted with the compressed workload representation
vector, the updated weights, the replay buffer experience, and
the best knob settings.

Algorithm 1 Adaptive multi-model algorithm for online tuning

while Tune do
𝑆 = []
for i=0 to N do

if cos(𝑉𝑖 ,𝑉𝑤) > 𝑇 then
𝑆.𝑎𝑝𝑝𝑒𝑛𝑑 [𝑀𝑖 ]

end if
end for
𝑆.𝑎𝑝𝑝𝑒𝑛𝑑 [𝑀𝑛𝑒𝑤]
while True do

Compute 𝑎𝑡 using 𝐵𝑒𝑠𝑡 (𝑆) and apply it
Wait
Collect 𝑠𝑡+1 and 𝑟𝑡 and update the models in 𝑆

if workload shift then
Persist 𝐵𝑒𝑠𝑡 (𝑆)
Break

end if
end while

end while

5 EXPERIMENTS
In the following section, we evaluate the offline tuning algorithm
and our online tuning algorithm on PostgreSQL. In the offline
phase, we use the Sysbench benchmarking tool [6] to submit
queries and measure the throughput and latency. Sysbench is a
multi-threaded configurable benchmarking tool for OLTP work-
loads, where the major ones are OLTP Read/Write (R/W), OLTP
Read-Only (R/O) and OLTP Write-Only (W/O). The workloads
are composed of SELECT, INSERT, DELETE and UPDATE queries,
where the number and mixture of the queries in each workload
can be modified via command line or by modifying a Lua script
that defines the workload. In addition, Sysbench allows the user
to control the benchmarking duration time, the size of the data-
base, and the number of workers.

5.1 Single-model: Static workload
In this case, a single RL model is trained and is responsible for
tuning the database, regardless of the workload that is being sub-
mitted to the database. This approach works well if the database
environment is relatively stable and workloads are not changing.
However, if workloads are changing, the model needs to adapt
to a new workload when a workload shift occurs, and it uses its
past experience to recommend knobs for the new workload.

In the first experiment, we demonstrate the performance of the
RL agent using the DDPG algorithm described in Figure 2. This
experiment demonstrates offline training using OLTP R/W work-
load. We ran the algorithm for 150 episodes with the main hyper-
parameters setup as follows: 𝛾 = 0 (discount factor), 𝜎 = 0.2
(OUProcess noise variance), and replay buffer sampling batch
size of 32 samples. To represent the DBMS state we picked 22 Post-
greSQLmetrics from 3 different views that provide statistics at the
instance and database levels: pg_stat_bgwriter, pg_stat_database,
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and pg_stat_database_conflicts. These viewsmonitor various data-
base elements such as checkpoints, buffers, deadlocks, and trans-
actions’ activity. To get the reward in the offline tuning stage, we
used the throughput and latency calculated by Sysbench.

Based on experiments with different number of knobs, and ex-
pert blogs on tuning PostgreSQL (e.g., [13]), we have selected for
tuning 16 knobs that had the most impact on the database perfor-
mance. These knobs control various aspects of the database, such
as working memory (e.g., work_mem, maintenance_work_mem),
checkpoints (e.g., checkpoint_segments, checkpoint_timeout), dead-
locks (deadlock_timeout), and auto_vaccum (autovacuum_cost_delay,
vacuum_cost_limit). They do not require database restart to be
updated, one of the criteria for selecting them.

Figure 6: Reward function comparison for the OLTP R/W
workload experiment. The green reward curve was ob-
tained using the CDBTune reward [18] with 𝛾 = 0.99. The
blue reward curve was obtained using our simplified re-
ward function with 𝛾 = 0.

In all the experiments described in this section, the tuning
starting point was the database default configuration. As Figure 7
shows, the default performance for OLTP R/W was a throughput
of approximately 2000 TPS and a latency of 80 ms. As the agent
explored different knob settings, we observed a 5x improvement
in throughput and 8x improvement in latency. In the first itera-
tions, the performance significantly oscillated, but the magnitude
of the oscillation decreased as the agent learned the right policy
for tuning the knobs. In the OLTP R/W experiment, we also com-
pared the simplified formulation of the reward function (Eq. 1)
to the formulation and 𝛾 parameter setup in [18] and observed
that the simplified formulation with 𝛾 = 0 resulted in a more
stable learning curve and a higher reward value (better database
performance). The reward curves of the first 100 iterations are
shown in Figure 6.

The offline tuning process can be repeated with any workload,
such as OLTP W/O, and the models trained in the offline training
phase can be used as initial pre-trained models in the multi-model
online tuning experiment we describe next.

5.2 Single and multi-model approach:
Changing workloads

In this experiment, we used the same knobs selected for tuning
in the offline training experiment and the same 22 database met-
rics were used as state indicators. We created an environment in
which two alternating Sysbench workloads are submitted to the
database: R/W and W/O workloads and we compared the single-
model, multi-model, and default database performance over 3
alternating workload cycles. At each time point in Figure 8, a
workload is submitted, the state and performance metrics are
collected, the RL models are updated, and finally, a knob chang-
ing action is computed by the agent to update the knobs using
Algorithm 1. Each time point takes approximately 60 seconds to

(a) Throughput

(b) Latency

Figure 7: Offline training: Throughput and latency plots
of a PostgreSQL database tuned on an OLTP R/W work-
load.

complete, hence, workloads are changing approximately every
60 minutes. We used a three-dimensional compressed represen-
tation of the workload vectors, obtained by the autoencoder, to
detect workload changes by measuring the distance between vec-
tors at adjacent time points and identifying large deviations. This
representation was also used to select the most similar models
using cosine similarity. The knob settings saved with the most
similar model were applied to the database and used as a starting
point for tuning.

As shown in Figure 8, the multi-model algorithm performed
far better than the baseline default configuration performance,
increasing the throughput of the R/Wworkload by a factor 2x and
the throughput of the W/O by a factor of 5x. The single-model
approach, on the other hand, produced inferior performance com-
pared to the multi-model approach and was less stable. In the
second cycle, for instance, presumably due to bad knob settings,
the throughput dropped to approximately 300 TPS, and the la-
tency jumped to very high values. We assume that this is related
to the fact that the replay experience (state, action, reward transi-
tions) collected in the first cycle could not be properly leveraged
by the agent for learning a good configuration in the next cycle.
This could be related to the fact that the single model approach
uses a single replay buffer for multiple workloads, therefore, ex-
periences from different workloads with different reward scales
are mixed, and similar experiences are mapped to completely
different rewards. Therefore, the agent cannot learn a good policy
for tuning the knobs. In the multi-model approach, each model
was trained on a different workload and used experiences unique
to the workload it was trained on. This models’ separation helps
the agent learn the right policy for a particular workload.
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(a) Throughput

(b) Latency

Figure 8: Online tuning: Throughput and latency plots of a
PostgreSQL database in changingworkloads environment.
The tuning results were obtained using the one- andmulti-
model tuning algorithms, and the default knob settings.
The workloads alternate between OLTP R/W and OLTP
W/O.

A potential pitfall of the multi-model algorithm is the fact
that many new models can be created and lead to models’ explo-
sion and a large number of competing models for every work-
load. However, what we observed in our experiments, is that the
pre-trained models were superior to newly created models, and
therefore, new models were not persisted. Therefore, we believe
that eventually, the number of models in the repository would
be similar or very close to the number of different workloads the
agent is tuning.

6 DISCUSSION
Automatically tuning a database on-premise or in cloud environ-
ment using reinforcement learning, or a different AI technique,
poses multiple challenges. One of these challenges is the fact that
the database environment is constantly changing, often in the
course of the day. Changes in the database size, available system
resources, and workloads may affect the performance of the data-
base at any given time point and require an adaptive algorithm
that is able to sense these changes and yield optimal performance
for a given environment state. In this work, we explored the effect
of changing workloads on database performance and proposed an
adaptive algorithm that leverages multiple DDPG reinforcement
learning models to optimize the performance for each workload.
Preliminary results presented in this paper on a PostgreSQL data-
base showed that the multi-model approach has an advantage
over the single-model approach in which one model is continu-
ously trained and needs to adapt to new workloads, similar to
the approach presented in [18]. Using the multi-model approach,
the algorithm was able to utilize past experiences from models
trained on similar workloads and improved the database default

configuration throughput by a factor of 2x when tested on an
OLTP R/W workload and a factor of 5x when tested on an OLTP
W/O workload.

In future work, we will explore other workload types (e.g.,
OLAP), and we will address the problem of fluctuating perfor-
mance due to other factors, such as resource elasticity.
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ABSTRACT
Improvingmachine learningmodels’ fairness is an active research
topic, with most approaches focusing on specific definitions of
fairness. In contrast, we propose ParDS, a parametrised data
sampling method by which we can optimise the fairness ratios
observed on a test set, in a way that is agnostic to both the specific
fairness definitions, and the chosen classification model. Given
a training set with one binary protected attribute and a binary
label, our approach involves correcting the positive rate for both
the favoured and unfavoured groups through resampling of the
training set. We present experimental evidence showing that the
amount of resampling can be optimised to achieve target fairness
ratios for a specific training set and fairness definition, while
preserving most of the model’s accuracy. We discuss conditions
for the method to be viable, and then extend the method to
include multiple protected attributes. In our experiments we use
three different sampling strategies, and we report results for
three commonly used definitions of fairness, and three public
benchmark datasets: Adult Income, COMPAS and German Credit.

1 INTRODUCTION
The increasing presence of automated decisions in our lives has
led to a rising concern about the way in which these decisions
are taken, spurring research into the fairness of predictive mod-
els. These models are often learnt from biased data, reflecting
historical disparities and discrimination [27]. We propose ParDS,
a fairness-definition and classifier agnostic resampling method,
which may be easily implemented on top of existing ML solutions
and can satisfy specific classification model requirements. ParDS
is modulated through the continuous parameter 𝑑 , which deter-
mines the amount of resampling introduced into the training
data, and has two possible use cases: to find the optimal amount
of correction for a specific fairness/classifier combination and to
control a classifier’s fairness/accuracy trade-off.

Standard data preparation techniques may be used to correct
the fairness behaviour of a classification model [29]. ParDS is
based on data resampling, which is well understood and part
of the typical data management pipeline [23]. Being a prepro-
cessing operator, ParDS may easily be incorporated along data
cleaning into existing database solutions. Like other resampling
techniques, ParDS can be computationally inexpensive and yield
reduced classifier learning times, as shown in Subsection 4.2.
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Our method offers the versatility of using both generic (ran-
dom undersampling, random oversampling and SMOTE [6]) and
fairness-specific (preferential sampling [20]) methods.

Multiple definitions of fairness have been proposed [25], which
are sometimes in contrast with one another. A decision rule that
satisfies one of the definitions may well prove to be very unfair
for a different one [10]. For example, determining university
admissions through gender quotas may achieve demographic
parity, but it makes the acceptance rates for good students of
different genders disparate.

A common resampling problem is the loss of predictive ac-
curacy caused by such interventions [3]. In our setting, such
loss can also be controlled through parameter 𝑑 , allowing for a
decision in the amount of accuracy/fairness trade-off the user
is willing to accept. Furthermore, our experiments in Section 4
show that even at high correction levels, the accuracy loss for
ParDS is relatively low.

1.1 Related Work
A classifier’s fairness may be corrected by preprocessing the train-
ing data, in-processing the learning algorithm [1, 5, 30–32] or
post-processing a classifier’s predictions [18]. Our method be-
longs to the group of preprocessing solutions.

Fairness-aware preprocessing is defined [14] as a set of tech-
niques that modify input data so that any classifier trained on
such data will be fair. There are four main ways in which to make
appropriate adjustments to data in order to enforce fairness [21]:
suppressing certain features, also known as fairness through
unawareness (FTU) [15], massaging variable values [4, 9, 13],
reweighing features [19, 24], and resampling data instances [8,
20, 28, 29].

Data resampling, the category of ParDS, is less invasive in na-
ture than FTU or massaging, since the original data is preserved
and only the frequency with which the instances are represented
is modified. In contrast, FTU disposes of large amounts of data
without a guarantee on the effect of said intervention andmassag-
ing effectively creates synthetic data, which does not necessarily
reflect the ground truth.

Preferential Sampling (PS) [20] is a similar method to ParDS,
in the sense that it resamples the favoured/unfavoured and pos-
itive/negative combinations separately in order to equalise the
favoured and unfavoured groups’ positive ratios. We empirically
show that the optimal fairness correction depends on the selected
sampling method, classifier and fairness definition. Equalising
the positive ratios across protected attribute groups is not neces-
sarily the best approach, hence we modulate our corrections via
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parameter 𝑑 . When using PS to resample, ParDS generalises it,
with the unmodified PS corresponding to the 𝑑 = 0 case.

SMOTEBoost [8] oversamples the minority group through syn-
thetic data based on real data instances, with a focus on improved
minority predictions and indirectly improving fairness.

Other related methods include Capuchin [29], a causal-fairness
centric, non-parametrised resampling method and Feldman et al.
[13], a massaging method where parameter 𝜆 is used to create
linear interpolations of the original dataset and a repaired copy
to find the optimal combination.

1.2 Contributions
We introduce ParDS, a parametrised resampling-based fairness-
correcting method. ParDS is fairness-definition and classifier
agnostic, and achieves close to optimal fairness correction with
a small loss in predictive performance. We present extensive
experiments to benchmark the effectiveness of the method using
the Adult Income, COMPAS and German Credit datasets, and our
implementation is available as a collection of Jupyter Notebooks at
https://github.com/vladoxNCL/fairCorrect. This is a substantial
extension of our preliminary workshop paper [17], presented
at the 2019 KDD XAI Workshop. Its additional contributions are
four-fold:

(1) We estimate the optimal fairness correction using Bayesian
optimisation.

(2) We present experimental evidence on synthetic datasets
of our method’s viability and effectiveness with respect to
the linear separability of the training set.

(3) Wemake an initial investigation into extending themethod
to multiple protected attributes.

(4) We benchmark and compare our work with several exist-
ing fairness-correction methods.

2 DEFINITIONS
We will say a binary classifier’s label can be positive or nega-
tive referring to the desirable and non-desirable outcome of a
prediction, respectively.

A dataset’s protected attribute (PA) refers to a variable that may
be object of discrimination, due to historical bias or otherwise.
In our particular case we will be dealing with a single binary PA.

We will call the ratio of the number of positive instances
divided by the total number of instances in a specific group the
positive ratio (PR) of the group.

Among the two PA groups, the one having the highest PR will
be referred to as the favoured group 𝐹 , while the other one will
be referred to as the unfavoured group 𝑈 . When required, we
will refer to the positive and negative instances of 𝐹 and𝑈 as 𝐹+,
𝐹−,𝑈 + and𝑈 −, respectively.

We based our analyses on three ratios, Demographic Parity
Ratio (DPR), Equality of Opportunity Ratio (EOR) and Proxy Fair-
ness Ratio (PFR), associated to their respective fairness defini-
tions [22, 25]. In these definitions, the positive label is identified
with 𝑌 = 1 and the negative label with 𝑌 = 0.

Definition 2.1 (Fairness Ratios).

DPR B
P(𝑌 = 1 | PA = 𝑈 )
P(𝑌 = 1 | PA = 𝐹 )

,

EOR B
P(𝑌 = 1 | PA = 𝑈 ,𝑌 = 1 )
P(𝑌 = 1 | PA = 𝐹,𝑌 = 1 )

,

PFR B
P(𝑌 = 1 | do (PA = 𝑈 ) )
P(𝑌 = 1 | do (PA = 𝐹 ) )

.

For DPR and EOR, we evaluate the ratio of the positive classifi-
cation probabilities for 𝑈 and 𝐹 . PFR is computed by intervening
on the test set 𝑇 twice, assigning every individual in 𝑇 the PA-
values𝑈 and 𝐹 , resulting in 𝑇PA=𝑈 and 𝑇PA=𝐹 , respectively. We
then evaluate the quotient of the intervened sets’ classification
PRs; in all cases, the ratios quantify how close the classifier comes
to optimal fairness.

3 METHODOLOGICAL APPROACH
Wehave focused on datasets with both binary protected attributes
and labels. The plots in this section result from applying ParDS
to the Adult Income (Income) dataset [12].

We introduce the disparity correction parameter 𝑑 ∈ [−1, 1],
which may be used for two different objectives:

• To modulate a classifier’s fairness/accuracy trade-off.
• To optimise a classifier with respect to a fairness definition.

Our main objective will be the third one, to estimate the 𝑑-
value optimising a classifier’s predictions with respect to a fair-
ness definition. We summarise the method as follows:

(1) Define PR-correcting functions for 𝐹 and𝑈 .
(2) Select a sampling strategy to correct the training set.
(3) Estimate the fairness-specific optimal 𝑑-value.

Details on each of these steps now follow.

3.1 Parametrising Correction
The first step is to define linear functions that will yield corrected
PRs for both PA groups. These functions, which we will call
f + (𝑑) and u+ (𝑑), should satisfy the constraints: f + (1) = PR(𝐹 ),
f + (−1) = PR(𝑈 ) and u+ (𝑑) = f + (−𝑑).

The equations for these two linear functions are

f + (𝑑) =𝑚𝑑 + 𝑏, u+ (𝑑) = −𝑚𝑑 + 𝑏,

with coefficients

𝑚 =
PR(𝐹 ) − PR(𝑈 )

2
, 𝑏 =

PR(𝐹 ) + PR(𝑈 )
2

.

3.2 Sampling Strategies
In the second step, we use the resulting corrected ratios f + (𝑑)
and u+ (𝑑) to produce a resampled training set {𝑈 , 𝐹 } satisfying
these ratios. The required amount of resampling for 𝐹 and𝑈 will
depend on 𝑑 and the selected strategy.

ParDS can use one of four different sampling methods, modi-
fied to work on specific PA-label subgroups: random undersam-
pling (Under), random oversampling (Over), SMOTE [7] and pref-
erential sampling (PS) [20]. Depending on the sampling method,
the following subgroups will be modified:
Under: Undersample 𝐹+ and𝑈 −.
Over: Oversample 𝐹− and𝑈 +.
SMOTE: Oversample 𝐹− and𝑈 +.
PS: Undersample 𝐹+ and𝑈 −, oversample 𝐹− and𝑈 +.
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Figure 1: Correcting functions f + (𝑑) and u+ (𝑑) applied to
Income and their effect on the test set. The 𝑑-axis is re-
versed, going from 1 (no correction) to −1 (maximum cor-
rection). Note that the test-set PRs do not intersect at𝑑 = 0.

The resampled 𝐹 must satisfy

|𝐹+ |
|𝐹+ | + |𝐹− |

= 𝑓 + (𝑑),

which may be rewritten as

|𝐹+ |
|𝐹− |

=
𝑓 + (𝑑)

1 − 𝑓 + (𝑑) . (1)

The selected strategy will determine whether 𝐹+ or 𝐹− will
be resampled to satisfy (1). Using Under, for example, 𝐹+ results
from undersampling 𝐹+, while 𝐹− = 𝐹−. In contrast, using Over
produces 𝐹− from oversampling 𝐹− while 𝐹+ = 𝐹+. An analogous
equation to (1) is used to resample𝑈 onto𝑈 .

After the training-set has been resampled, a classifier learnt
from the corrected training-set will display an improvement in
fairness with respect to a classifier learnt from the original data.
An example of the produced PR-correcting functions and their
effect over Income is shown in Figure 1.

3.3 Finding the Optimal Amount of Sampling
Finally, the third step is to estimate the optimal correction for
a specific fairness definition. As classification algorithms usu-
ally display non-linear—and sometimes unexpected—behaviours,
it is not possible to deduce a closed-form solution to this opti-
misation problem. Hence, it becomes necessary to numerically
approximate a solution.

A naïve approach is to compare the resulting fairness ratios
for different values of 𝑑 , and select the one producing the ratio
closest to 1. As we will see on Section 4.2.1, it is easy to find
𝑑-values close to the optimal by trial and error, yet this optimal
𝑑-value will usually be different for distinct fairness definitions.

A more systematic way to approximate the optimal value of 𝑑
is to use Bayesian optimisation [16]. This technique estimates the
objective function on candidate values obtained from previous
function estimations. The main reasons for choosing Bayesian
over other optimisation methods are that every fairness ratio
evaluationwill be different due to the randomness in the sampling
process and that Bayesian optimisation is good when estimating
the objective function is expensive, e.g. our setting, since we work
on large datasets and take the average over many estimations.

We have implemented a simple fairness optimiser using the
GPyOpt [2] package, with a standard Gaussian process using 𝑑
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Figure 2: Plot of GPyOpt’s approximation of DPR as func-
tion of 𝑑 for Income. The bottom red curve displays the
resulting distribution for the optimal 𝑑-value.

as the only parameter and the distances of the different fairness
ratios to 1 as objective functions, e.g. estimate the𝑑-value yielding
the fairest DPR expectation:

argmin
𝑑

|1 − E[DPR(𝑑)] | subject to − 1 ≤ 𝑑 ≤ 1.

An example run, used to approximate the optimal correction
for Demographic Parity on Income may be seen in Figure 2.

3.4 Multiple Protected Attributes
We have generalised ParDS to multi-class PAs, as well as to
multiple PA variables. In some cases, this could be addressed
by binning several PA labels into just two categories, 𝑢 and 𝑓 .
However, these arbitrary assignments would imply a loss of gran-
ularity in any subsequent fairness analysis. As an alternative, we
have chosen to consider a combined PA, which may be obtained
for every datapoint 𝑝 ∈ train as follows:

(1) Evaluate PR(𝐷) for the training set 𝐷 .
(2) Define a set of PAs: {PA1, PA2, . . . , PA𝑘 }.
(3) Evaluate

PR𝑖 (𝑝) = PR (PA𝑖 (𝑝)) − PR(𝐷)

for 𝑖 ∈ { 1, 2, . . . , 𝑘 }.
(4) Aggregate the partial PRs to obtain a combined value

PR∗ (𝑝) =
𝑘∑
𝑖=1

PR𝑖 (𝑝) .

(5) Define the combined PA of 𝑝 as

PA∗ (𝑝) =
{
𝐹 if PR∗ (𝑝) > 0,
𝑈 if PR∗ (𝑝) ≤ 0.

This solution allows for a much more granular approach on
determining a datapoint’s relative “prosperity” with respect to
every PA, as some PA attributes may prove to be more determin-
ing of disparate treatment than others, and the effects of several
PAs may cancel each other out.

Our experiments, carried out on Income, provide positive re-
sults, as described next. Figure 3 compares the effects—for un-
favoured groups of different PAs (Gender, Nationality, Race and
Age)—of applying disparity correction based on a single PA (Gen-
der) to doing it based on a combined PA aggregating Gender, Age,
Race and Country for Income. As can be seen, when correcting
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Figure 3: Positive ratios for the different PAs’ unfavoured
groups on Income, correcting for (a) one PA and (b) multi-
ple PAs.

for Gender alone, the other unfavoured groups’ PR remains rela-
tively constant or gets worse. Likewise, the overall PR shows a
drop on its PR as more correction is applied. When correcting
for the combined PA, on the other hand, all of the unfavoured
PRs improve at a similar rate, whilst the overall PR remains rel-
atively constant across different correction levels. In short, this
extension provides ParDS with the capability to correct for mul-
tiple biases simultaneously, at the individual level with similar
optimal 𝑑-values across PAs. This method for combining several
PAs into a single combined one, though, is not unique, and could
further be improved by adding weights to the different PAs set
as hyperparameters by experts.

4 EXPERIMENTAL EVALUATION
This section reports the effectiveness of ParDS regarding sep-
arability in Subsection 4.1, comparing sampling strategies and
fairness definitions in Subsection 4.2 and benchmarking ParDS
with existing fairness-correcting methods, in Subsection 4.3.

4.1 Separability
To verify the effect of separability on ParDS’ effectiveness, we
created 11 simple datasets, consisting of one continuous feature
𝑓 and one binary label 𝑙 . These datasets were created using the
scikit-learn’s [11] make_classification function, with varying lev-
els of class separability 𝑠 , ranging from 0 (completely mixed up)
to 2 (over 95% probability of complete separation). What this
function does is sample feature values from normal distributions
centered at 𝑠 and −𝑠 for the two classes, respectively. A PA was
then randomly added, ensuring a fixed 50/50 proportion of 𝐹 vs
𝑈 datapoints, with PRs of 0.9 and 0.1 for 𝐹 and𝑈 , respectively.

As may be seen in Figure 4a, the greater separability data has,
the less effective our correcting method becomes (represented
by a near-flat demographic parity ratio curve as a function of 𝑑).
However, adding random noise to a linearly separable dataset (ef-
fectively rendering it inseparable again) restores the effectiveness
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Figure 4: Correction effectiveness by separability. (a):
On close-to-linearly separable data, the method becomes
highly inefficient, or even stops working at all. (b): Intro-
ducing random noise into a separable dataset lets correc-
tion become effective again.

of ParDS. To test this, we created a linearly separable dataset
with 𝑠 = 2, and gradually introduced noise through parameter 𝑛
taking values from 0 to 1, the proportion of randomly-assigned la-
bels. As shown in Figure 4b, this intervention can render fairness
correction effective again, even with a small amount of added
noise.

4.2 Method Validation
We tested ParDS on three datasets commonly used in ML fairness
research literature: Adult Income (Income) [12], COMPAS [26] and
German Credit [12].

For every dataset, we performed the following experiment 50
times, and then averaged the results for robustness:

(1) Random train/test split the data with 90/10 proportion.
(2) For Proxy Fairness checking, make two copies of the test

set 𝑇 and intervene PA as either𝑈 or 𝐹 , obtaining 𝑇PA=𝑈
and 𝑇PA=𝐹 , respectively.

(3) For each sampling function, obtain 11 training sets, corre-
sponding to 𝑑 ∈ {1, 0.8, 0.6, . . . ,−1}.

(4) For each of these training sets, fit a classifier.
(5) For every model, get predictions for 𝑇 , 𝑇PA=𝑈 and 𝑇PA=𝐹 .
(6) Compute metrics for accuracy, DPR, EOR and PFR, as well

as the model coefficients.
We then proceeded to analyse the resulting fairness metrics, and
compared our results with PS.

4.2.1 Results. As expected, fairness correction has an impact
over a classifier’s predictive performance. Figure 5 shows the
fairness-accuracy trade-off for the different sampling strategies
for the three fairness ratios over Income. As may be seen, the
trade-off is similar across the different sampling strategies, and
the loss in predictive performance for optimal fairness will be
definition dependant.
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Figure 5: Fairness-accuracy trade-off for DPR, EOR and PFR on Income.

Table 1 shows diverse performance metrics for ParDS using
the different sampling strategies to correct γ𝑠𝑟 on Income. The
presented means and confidence intervals (CIs) result from 100
independent train/test splits, then using each sampling strategy
with the optimal 𝑑-value for each estimated through Bayesian op-
timisation. As may be seen, there is a big difference in computing
time across strategies, with SMOTE being over 10 times slower
than Under. On the other hand, SMOTE produced the best scores
for most performance metrics. Optimal fairness correction was
achieved within the CIs for all methods, with roughly the same
accuracy loss trade-off. Interestingly, running Under before train-
ing the classifier was 35% faster than just training the classifier
over the full dataset. This would provide an additional advantage
for Under-corrected training sets when learning models from
large-scale datasets.

4.3 Comparison with Other Methods
An intrinsic advantage of ParDS is that it can optimise a clas-
sifier with respect to different group fairness definitions. Three
definitions: γ𝑠𝑟 [5], discrimination (disc) [21] and equalised odds
(eOdds) [19] were used for our comparisons.

Tables 2 and 3 compare ParDS with a variety of preprocess-
ing [4, 8, 19, 20, 24, 29], in-processing [1, 5, 30–32] and post-
processing [18] fairness-correcting methods.

Since four different classification algorithms were used on the
papers we compared with—AdaBoost (AB), decision trees (DT),
Gaussian naïve Bayes (GNB) and logistic regression (LR)—we
present ParDS’ results using all three of them. We optimised our
classifiers to compare with the state-of-the-art methods, hence
three of our presented methods are optimised for DPR and two
are optimised for eOdds. We evaluated our metrics using the
same classification algorithms as the ones used in the papers we
compare with. The objective functions to optimise were |1−DPR|
and |1− eOdds | for DPR and eOdds, respectively, with 0 being the
best value the objective function may take in both cases.

For every tested 𝑑-value we averaged the resulting DPR of 50
random 90/10 train/test splits, finding optimal𝑑-values of {0.8338,
-0.1803, -1.1528, -0.6083} for AB, DT, GNB and LR, respectively.
All of the classifiers were trained using the default scikit-learn
hyper-parameter values; using these parameter values, we ran
ParDS 10 times and averaged the resulting metrics. The fairness
and accuracy metrics for the compared methods refer to the
best reported values in [5, 19, 20, 29, 32]. Likewise, for methods
evaluated on more than one classifier, we present the best one.

Our eOdds-optimised AdaBoost classifier produced the best
overall accuracy (86%), while showing an eOdds value within 3%
of the best performingmethod [24]. Regarding ourDPR optimised
classifiers, although LR performed the best overall, both ParDS’

DT and GNB performed better than the other methods’ DTs and
GNBs, respectively. Interestingly, ParDS’ LR produced the fairest
classifiers with respect to definitions γ𝑠𝑟 and disc, even though
they were actually optimised for DPR. While the accuracy of
DPR-optimised ParDS LR was not the best (83%), it came within
1% of the best performing classifiers (ParDS’ DT, Kamiran and
Calders [20] and Zafar et al. [30], with an accuracy of 84%).

5 CONCLUSION
In this paper we define ParDS, a parametrised fairness optimi-
sation method agnostic to both fairness definitions and classifi-
cation models. Correcting through training set resampling, we
have shown that ParDS produces fairness-optimal predictions
with a small loss in predictive power. When compared with the
existing methods, in most cases ParDS produces the best fairness
performance.

In future work we intend to further improve our data resam-
pling methods, in order to optimise for different fairness defini-
tions at once. Although ParDS shows a relatively low impact on
prediction performance and its main objective is to estimate the
optimal amount of correction with respect to fairness, we would
like to find a way to consider predictive performance as well,
either in the form of a restriction—e.g. a maximum loss in accu-
racy or a minimum level of fairness—or by setting an acceptable
trade-off rate between both metrics.
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ABSTRACT
The state of the art approaches for performing Entity Matching
(EM) rely on machine & deep learning models for inferring pairs
of matching / non-matching entities. Although the experimental
evaluations demonstrate that these approaches are effective, their
adoption in real scenarios is limited by the fact that they are
difficult to interpret. Explainable AI systems have been recently
proposed for complementing deep learning approaches. Their
application to the scenario offered by EM is still new and requires
to address the specificity of this task, characterized by particular
dataset schemas, describing a pair of entities, and imbalanced
classes.

This paper introduces Landmark Explanation, a generic and
extensible framework that extends the capabilities of a post-hoc
perturbation-based explainer over the EM scenario. Landmark
Explanation generates perturbations that take advantage of the
particular schemas of the EM datasets, thus generating explana-
tions more accurate and more interesting for the users than the
ones generated by competing approaches.

1 INTRODUCTION
Despite the effort put in the past 30 years, Entity Matching (EM),
the task that identifies data items that refer to the same real-
world entity, is still an open challenge. State of the art approaches
(e.g., DeepER [7], DeepMatcher [12], DITTO [10], and many oth-
ers [2, 19]), based on Machine Learning (ML) and Deep Learning
(DL) models, have been demonstrated to be effective in the ex-
perimental datasets. Nevertheless, their adoption in real business
scenarios is hampered by several factors, including the need for
large amounts of training data, the need for expert users for
the configuration of their hyper-parameters and the inability to
easily interpret how the models make their decisions.

Explaining the behavior of ML and DL models is now a chal-
lenging research topic [5]. Its application to EM could facilitate
the adoption of EM techniques in business scenarios. An im-
proved ability to interpret the models would increase 1) user con-
fidence in the adoption of ML and DL techniques, 2) the ability
to debug erroneous behaviors and diagnose unexpected results,
and 3) improve the functionality of the approaches. Moreover,
it would decrease the need for domain experts to evaluate the
effectiveness of EM approaches, task that is typically executed
through manual, expensive, and time-consuming processes.

Although several explanation systems have already been pro-
posed in the literature (e.g., LIME [14], Shapley [8], Anchor [15],
and Skater1) , their application to EM tasks is not straightforward
and only few approaches have partially addressed it [4, 6, 11, 17].

1https://github.com/oracle/Skater
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Figure 1: Example of EM record to explain.

The main motivation is that EM is conceived by ML and DL sys-
tems as a binary classification problem, where the class shows if
the pairs of entities described in the dataset records are matching,
and the dataset entry is composed of pairs of attributes describing
the same feature of different entities. This structure is "unusual"
in ML and DL, where the records conversely describe single evi-
dence. Moreover, the datasets are usually imbalanced: the number
of records belonging to the matching class is far less than the
non matching ones. Finally, the attributes describing the same
features of different entities have close statistical distributions
(or close word distributions in case of categorical attributes) even
when they refer to different entities.

In this paper, we present Landmark Explanation a system for
explaining EM model predictions, that extends the capabilities of
a post-hoc perturbation-based local explainer over this specific
scenario. Post-hoc perturbation-based explainers analyze the
records to explain and build a surrogate linear model where
the features are the tokens (e.g., the words in case of textual
attributes) composing the attribute values. The explanation is
directly generated from the surrogatemodel: its linear coefficients
represent the importance of the tokens. This model is trained
with synthetic data, generated via a two-step approach where
the values of the records to explain are properly altered (in the
perturbation phase) and then passed to the original model to get
their class (in the reconstruction phase).

Example 1.1. Figure 1 shows an example of a record describing
a pair of entities. A suffix is added to the attribute names to show
which entity they are describing. The application of a DL based
model to the record (e.g. DeepMatcher) let us know that the enti-
ties in the record do not refer to the same real-world entity. This
is evident for a human person, being clear from the attributes
that the left entity is a digital camera and the right entity is a
leather case. But the EM model is not able to explain the reasons
for its choice. This is the task for an explainer which takes the
record to explain, transforms it into tokens (we create a token for
each space-separated term), generates a number of perturbations
(typically performed by casually dropping tokens), passes each
perturbation to the model to get the class, and exploits the so
generated dataset to train a linear model. The coefficients asso-
ciated to the linear model are the ones explaining the behavior
of the EM model on the target record. The tokens sony, lens,
dsira200w can be considered by an explainer as an evidence of
the fact that the record is describing a non-matching entity.

The direct application of a perturbation mechanism based on
token removals is not effective for the dataset used in EM. The
reason is that removing random tokens is likely to affect both the
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entities represented by the dataset item. The generated synthetic
records may then contain null perturbations where the same to-
kens referring to the different entities are removed. Moreover,
since the EM datasets are largely imbalanced, perturbations fre-
quently lead to records belonging to the non-matching class. To
solve this issue, Mojito [4] introduces the "COPY" perturbation
mechanism, where attribute values describing one of the entities
in a record are substituted to the corresponding attribute val-
ues of the second entity. The aim is to introduce a perturbation
that increases the match probability between pairs of entities.
The aim is to create records representing matching entities. But
duplicating entire attribute values does not allow the approach
to discriminate among the tokens that, thanks to the copy, will
provide the same contribution in the explanation.

Landmark Explanation addresses these issues by introducing
two main innovations. The first is the generation of two expla-
nations for each dataset entry, each one explaining the model
decision from the perspective of one of the two entities described
in the record. These explanations are generated by selecting one
of the entities constituting a dataset entry in turn as a landmark.
The landmark is preserved from the perturbation, which is sub-
jected to the other entity (the varying entity). The second is
a mechanism for computing explanations for records belong-
ing to non-matching classes. Before the perturbation, we inject
additional tokens extracted from the landmark entity into the
varying entity. The perturbation of the varying entity with in-
jected tokens produces a set of synthetic entities. These will all be
concatenated with the landmark entity to generate the synthetic
EM dataset used to train the surrogate model. The idea is to con-
trast the asymmetric nature of the problem: an explanation of a
matching pair is always composed of "interesting" tokens since
they express the reason why the entities have been considered as
matching. The same does not happen for non-matching entities,
since non-matching entities have many reasons to be different. So
it is difficult to generate an explanation with interesting tokens
for non-matching pairs. Therefore the problem is to generate
the most interesting explanations. These are the ones involving
tokens from one entity that if used to describe the second en-
tity would have brought the EM model to classify the record as
matching. Thanks to the injection described above non-matching
pairs are pushed to be match and the resulting explanation will
be more interesting.

Example 1.2. To explain the inference of an EM model applied
to the record in Figure 1 , Landmark Explanation generates two
explanations. The top 3 tokens generated by the explanation with
the left entity as a landmark are leather, nikon and 5811. These
tokens are the ones that best differentiate entities. This means
that if the left entity were described by these tokens, the record
would probably be classified in the matching class by the EM
model. The top 3 tokens generated by the second explanation
with the right entity as a landmark are dsira200w, lens and 849.99.

We evaluate Landmark Explanation coupled with LIME. The
results of the experiments show that the explanations generated
outperform the ones of the competing approaches in accuracy
and "interest" for the users.

Summarizing, the main contributions of this paper are: (1)
the introduction of Landmark Explanation, a tool that extends
the capability of a generic post-hoc perturbation-based explainer
to generate accurate local explanations of EM models; (2) the
realization of an extensive experimentation of Landmark Expla-
nation coupled with the LIME explainer [14] to demonstrate the

effectiveness and the quality of the approach in comparison with
different competitor systems.

The rest of the paper is organized as follows. Section 2 in-
troduces some related work. Section 3 introduces our approach
that is evaluated in Section 4. Finally, in Section 5 we sketch out
conclusion and future work.

2 RELATEDWORK
Explaining AI. The interpretation of machine learning tech-
niques represents a hot topic and two main approaches for its
resolution can be identified [5]. On the one hand, there are intrin-
sically interpretable models, such as decision trees, rule-based
and linear models, which rely on structures that can be directly
interpreted by humans. On the other hand, there are techniques
that analyze the behavior of black-box machine learning meth-
ods via a second intermediate model built from the first. These
post-hoc interpretation methods are model-agnostic (i.e. they are
applicable to any ML / DL model), however they provide less
faithful explanations than intrinsically interpretable models.

Regardless of the explanation technique adopted, it is fur-
ther possible to distinguish between global and local interpreta-
tions [5]. In the first case, the entire functioning of an ML / DL
model is examined, while in the second its behavior is studied
only locally (i.e. by explaining its logic on individual predictions).

The main exponent of the category of local post-hoc interpre-
tation techniques is LIME [14], which exploits an interpretable
linear surrogate model (e.g. Lasso) to evaluate the behavior of the
original model in the neighborhood of a specific data instance.
It will be used in our experiments, and an extension of it is An-
chor [15], which generates explanations based on if-then rules.
Some examples of global explanation systems are BRL [9] and
Skater2. Similar techniques are permutation feature importance
and drop-column importance [1], which can be used to detect the
global relevance of features in any model.

In this paper we focus exclusively on local post-hoc interpre-
tation techniques (for simplicity in the rest of the paper they
will also be identified as generic "explanation systems") and we
propose their adaptation, through Landmark Explanation, to the
Entity Matching problem.
Explainable Entity Matching. Entity matching, that is the
task that identifies the records that refer to the same real-world
entity in multiple datasets, represents one of the main steps
of data integration and has been under study for several years.
Many techniques have been proposed: from the more traditional
rule-based approaches to the most modern machine learning
and deep learning methods. Some examples of the first category
are [16, 18]. They are intrinsically interpretable, however, the
identification of the most effective set of matching rules is a
complex and non-trivial task [13].

Recently, several approaches based on Deep Learning have
proved particularly effective in solving this task. Some exam-
ples are DeepER [7], DeepMatcher [12], DITTO [10] and many
others [2, 19]. In addition to requiring a significant amount of
annotated data and a complex configuration, the main problem
with these systems is the inability to interpret their behavior,
affecting their usability in business environments [3].

This motivated the realization of several studies on the use of
interpretation techniques in the entity matching area [11, 17], and

2https://github.com/oracle/Skater

452



Figure 2: A generic post-hoc perturbation based explanation system (at the top of the image) compared with its extension
with the Landmark Explanation Framework (at the bottom).

tools, like Mojito [4] and Explainer [6], have been proposed. Ex-
plainER provides a unified interface for applying well-known in-
terpretation techniques (e.g., LIME, Shapley, Anchor, and Skater)
in the EM scenario. Mojito adapts LIME for the explanation of
single EM predictions and represents the work closer to our ap-
proach. It extends LIME in two ways: 1) it exploits the subdivision
of EM data into attributes, 2) it introduces a new form of data per-
turbation, called LIME-COPY3, which allows generating match
elements starting from non-match elements. Unlike Landmark
Explanation, Mojito treats attributes atomically, distributing its
impact equally to its constituent tokens. Furthermore, Landmark
Explanation analyzes the diversified impact that the same token
can generate depending on the entity considered as a landmark
for the explanation.

3 THE LANDMARK
EXPLANATION APPROACH

Landmark Explanation is a generic and extensible framework
that can extend a generic local post-hoc and model-agnostic
perturbation based explanation systems to the interpretation of
EM model predictions. The main assumption of these generic
systems is that the prediction of a model computed on a given
instance can be approximated by a linear function of the predic-
tions calculated in the neighborhood of that input instance. Their
functional architecture is shown at the top of Figure 2 and can be
schematized in 3 main blocks: the component for the Perturbation
generation, for the Dataset reconstruction and for the Surrogate
Model Creation.

The Perturbation generation component takes the record to
analyze as input and generates a number of perturbations from
it. These perturbations constitute a new features space, defined
in the neighborhood of the record, which, once integrated by
the Dataset reconstruction component with the predictions of
the original model, can be used by the Surrogate Model creation
component to infer its behavior in the locality of the record.

Landmark Explanation extends the generic explanation sys-
tem to improve its effectiveness on datasets representing EMs.
In particular, as shown at the bottom, of Figure 2, Landmark
Explanation adds the Landmark generation component before the
perturbation. This component generates for the record to explain

3In Section 4 we refer to this technique as Mojito Copy to emphasize that this
technique is part of the Mojito tool.

two representations, where only one of the two entities compos-
ing the item will be subject to the perturbation and the other one
will be kept fixed as a landmark. This constitutes the input for
the Perturbation generation component that will be called twice,
once for each representation. In this way, each perturbation ob-
tained with this process will involve the attributes of one entity.
The tokens of the second entity (the landmark entity) will be
added by the Pair reconstruction component before the Dataset
reconstruction. This allows Landmark Explanation to perturb the
information of one entity at a time while preserving the pair-
wise structure of the EM data. A perturbation of the input entity
pair is generated by varying only one of the two entities while
preserving the pairwise structure of the EM data.

Note that the component performs differently when the record
to explain is referring to a non-matching class. In this case, the to-
kens of both entities are concatenated into the varying entity and
passed to the Perturbation generation component. The behavior
of the Pair reconstruction component does not change, by concate-
nating after the perturbation the contribution of the landmark
entity. This mechanism has been implemented to contrast the
dataset imbalance and to generate explanations that can be more
interesting for the users since based on a richer set of tokens. Fi-
nally, as for the generic explanation system, the synthetic dataset
just created is used to train a linear model whose coefficients
constitutes the explanation. These coefficients can be positive
or negative thus indicating which tokens should be added (the
one with a positive score) and which should be removed (the one
with negative score) to create a description that is closed to the
reference entity.

The yellow-shadowed components in the Figure are the ones
provided by the explanation system we are extending. In our
experiments, these components are provided by the LIME ex-
plainer. Since Landmark Explanation conceives them as black
box modules, other explanations systems can be easily coupled
with our approach.

3.1 Landmark Explanation components
Landmark Explanation is composed of three main components
for the Landmark generation, the Pairs reconstruction and the
Dataset reconstruction.
Landmark generation component. The goal of this component is
to generate input for the Perturbation generation component. A
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Dataset Type Datasets Size % Match

S-BR

Structured

BeerAdvo-RateBeer 450 15.11
S-IA iTunes-Amazon 539 24.49
S-FZ Fodors-Zagats 946 11.63
S-DA DBLP-ACM 12,363 17.96
S-DG DBLP-GoogleScholar 28,707 18.63
S-AG Amazon-Google 11,460 10.18
S-WA Walmart-Amazon 10,242 9.39
T-AB Textual Abt-Buy 9,575 10.74
D-IA

Dirty
iTunes-Amazon 539 24.49

D-DA DBLP-ACM 12,363 17.96
D-DG DBLP-GoogleScholar 28,707 18.63
D-WA Walmart-Amazon 10,242 9.39

Table 1: Magellan Benchmark

Tokenizer is firstly needed to transform the dataset entry in a
format suitable for generating meaningful explanation. We im-
plement a tokenization mechanism similar to the one adopted
in other systems as Mojito [4] that preserves the structure of
the pair of entities described in the record. A token is generated
for each space-separated term in the attribute values. A prefix is
introduced to each token to indicate the attribute where the orig-
inal value is located in the entity schema. The prefix enumerates
the tokens, to manage multiple occurrences of the same word in
an attribute value.

After the tokenization, Landmark Explanation implements
two mechanisms for performing this task. With the single-entity
generation, the tokens composing the entities are separated and
the perturbation component is called twice, each time with the
element of a different entity. The output for each execution are
the tokens of one entity (the landmark) and a number of pertur-
bations for the second entity. This technique generates a pertur-
bation that highlights the differences of one entity with respect
to the other. It is then particularly effective when the record to
explain is belonging to the matching class.

With the double-entity generation, the perturbation component
receives as input the tokens of an artificial entity created by
concatenating, for each attribute, the tokens of both the entities.
The output for each execution are then the tokens of one entity
(the landmark) and a number of perturbations of the artificial
entity created by the concatenation. The idea of this technique
is to generate the perturbation of a more extensive set of tokens
(obtained by the union of the tokens of both the entities) that
is effective for generating explanations for records classified as
non-matching items.
Pair reconstruction component. The component receives as input
the landmark entity and a number of perturbations of the tokens
of the varying entity and "reconstructs" the corresponding pairs
of entities (one for each perturbation). The prefixes introduced
by the Tokenizer are exploited for this purpose and removed from
the generated records.
Dataset reconstruction component. This component generates the
synthetic dataset to be used for training the surrogate linear
model. This is obtained by passing each pair of entities recon-
structed by the previous component to the original EM model
for getting the predicted class.

4 EXPERIMENTAL EVALUATION
We evaluated the explanations generated by Landmark Expla-
nation according to two main perspectives: their reliability in
representing the EM Model (in Section 4.2) and the "quality" of
the explanation provided (in Section 4.3).

(a) Matching label.

Single Double LIME
Accuracy MAE Accuracy MAE Accuracy MAE

S-BR 0.923 0.121 0.796 0.136 0.830 0.147
S-IA 0.940 0.226 0.793 0.251 0.847 0.240
S-FZ 0.934 0.228 0.841 0.237 0.865 0.236
S-DA 0.887 0.171 0.894 0.164 0.573 0.337
S-DG 0.836 0.196 0.823 0.196 0.757 0.200
S-AG 0.896 0.074 0.903 0.112 0.698 0.148
S-WA 0.954 0.071 0.928 0.115 0.659 0.228
T-AB 0.908 0.066 0.854 0.146 0.758 0.118
D-IA 0.899 0.090 0.975 0.112 0.780 0.156
D-DA 0.942 0.030 0.979 0.041 0.940 0.025
D-D 0.929 0.107 0.963 0.152 0.891 0.115
D-WA 0.916 0.045 0.901 0.090 0.813 0.074

(b) Non-matching label.

Single Double LIME Mojito Copy
Accuracy MAE Accuracy MAE Accuracy MAE Accuracy MAE

S-BR 0.747 0.092 0.927 0.037 0.843 0.100 0.011 0.369
S-IA 0.669 0.248 0.736 0.127 0.624 0.267 0.022 0.569
S-FZ 0.811 0.188 0.853 0.134 0.953 0.189 0.032 0.681
S-DA 0.975 0.021 0.590 0.287 0.985 0.066 0.005 0.574
S-DG 0.895 0.086 0.660 0.306 0.935 0.107 0.005 0.504
S-AG 0.835 0.107 0.895 0.056 0.905 0.097 0.010 0.445
S-WA 0.990 0.028 0.955 0.217 0.890 0.352 0.000 0.746
T-AB 0.860 0.076 0.680 0.047 0.795 0.092 0.045 0.328
D-IA 0.874 0.019 0.291 0.070 0.390 0.129 0.242 0.191
D-DA 0.615 0.071 0.300 0.027 0.690 0.036 0.010 0.173
D-DG 0.540 0.305 0.375 0.118 0.640 0.235 0.040 0.437
D-WA 0.500 0.184 0.785 0.078 0.500 0.192 0.005 0.380

Table 2: Token-based evaluation.

4.1 Experimental setup
We run the experiments on a VM deployed on Google Cloud with
12 GB of RAM, GPU K80, and Intel(R) Xeon(R) CPU @ 2.30GHz.
Dataset and Model. The EM model explained in the experiments
is a Logistic Regression Classifier. We experimented Landmark
Explanation against the datasets provided by the Magellan li-
brary4 which is considered as a standard benchmark for the
evaluation of EM tasks. The datasets are listed in Table1, where
the size and the percentage of records representing matching
entities are shown. The records in all datasets represent pairs of
entities described with the same attributes. A label is provided to
express if the record represents a matching / non-matching pair
of entities. In the experiments, we sampled 100 records per label
and we computed their explanations. Note that all records are
sampled when the dataset contains less than 100 records (see for
example the dataset S-BR which contains only 68 records labeled
as matching entity).

4.2 Reliability of the explanations
The goal of the experiment is to evaluate the reliability of the
explanations generated by Landmark Explanation in interpreting
the behavior of an EM model through single predictions. An
explanation is considered reliable if it is able to consistently
recognize the importance of the features with the EM model.
To evaluate this, we performed two kinds of experiments, one
analyzing the weights assigned by Landmark Explanation to the
tokens it generates, the second the weights assigned by the EM
model to the dataset attributes.

4.2.1 Token-based evaluation. Through this first kind of ex-
periment, we evaluate if the weights assigned by Landmark Ex-
planation to the tokens generate a surrogate model consistent
with the EM model. We performed an experiment that is similar
4https://github.com/anhaidgroup/deepmatcher/blob/master/Datasets.md
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to the one proposed in the evaluation of LIME: 25% of tokens
are randomly selected and removed from the record to explain,
defining a new item. We then compared the probability score
obtained passing the new item to the EM model with the one of
the original record, where we have subtracted the sum of the co-
efficients associated with the removed tokens. If the explanation
model correctly represents the EMmodel these two values should
be close. We repeated the experiment 100 times for each class (see
the beginning of Section 4), and we measured the performance
obtained by means of two metrics: the mean average error (MAE)
and the accuracy on the predicted class. We performed the exper-
iments for all datasets and testing all techniques for generating
the perturbations as reported in Table 2. Note that column LIME
shows the results obtained with LIME / Mojito Drop5 with the
same setting. Non-matching settings also include a comparison
with the Mojito Copy technique, which has been designed for
this kind of record.
Discussion. Table 2a shows that Landmark Explanation, applied
to records labeled as matching entity, performs better than LIME
in the datasets when the perturbation is generated with the single-
entity technique (it obtains better accuracy in all datasets and low
MAE in 11/12 datasets). The double-entity generation technique
performs slightly worse: in 9/12 it obtains better accuracy and in
6/12 lower MAE). Nevertheless, the scores, when worst, are very
close to LIME. Note that in some datasets there is some small
contradiction between accuracy and MAE scores computed for
the same dataset. For example, we observe that Landmark Expla-
nation applied to the S-BR dataset with the double-generation
configuration has a better MAE score than LIME/Mojito Drop.
This is not the same for the accuracy value, where LIME per-
forms better. This is motivated by the fact that the probability
scores generated by the model are close to the decision threshold
(fixed to 0.5). Then, small fluctuations in the surrogate model
can generate mismatches in the class predicted by the explained
model for the records, even if the EM model and the surrogate
model are very close. Table 2b shows the accuracy and the MAE
obtained analyzing records referring to non-matching labels. In
this scenario, the double entity perturbation obtains the best
scores with an accuracy better than LIME/Mojito Drop in 4/12
datasets and a lower MAE in 10/12 datasets. The reason is due to
the effect of the duplicated tokens inserted in the dataset used for
training the surrogate model. These tokens, being similar to the
ones of the entities described in the record, push the EM model
to classify the record towards a matching label even in the case
of an imbalanced dataset. By using the same tokens, the entities
will likely be considered by the model as similar. Conversely, the
perturbations generated by LIME / Mojito drop are subsets of the
original record, which, in this case, was classified as non-match.
By removing tokens from descriptions of entities classified as
non-matching, the probability score of the EM model usually de-
creases and it is unlikely to obtain descriptions of entities that a
classifier evaluates as matching. If we pushed the decision thresh-
old to 0.4 (instead of 0.5), Landmark Explanation would obtain a
better performance than LIME/Mojito drop in 10/12 datasets.

Note that the copying technique introduced by Mojito to man-
age records associated with non-matching labels does not show
high performance. The reason is that Mojito generates a pertur-
bation by duplicating entire attributes.

The result of this operation is that the tokens of the replaced at-
tribute have the same weights, thus decreasing the performance.

5the Mojito Drop technique implements the LIME approach

(a) Matching label.

Single Double LIME

S-BR 1.000 1.000 1.000
S-IA 0.261 0.538 0.495
S-FZ 0.592 0.592 0.143
S-DA 0.520 0.520 0.200
S-DG 1.000 1.000 1.000
S-AG 1.000 0.545 0.545
S-WA 0.901 1.000 0.544
T-AB 0.545 0.545 0.545
D-IA 0.892 0.939 0.848
D-DA 1.000 1.000 1.000
D-DG 1.000 1.000 1.000
D-WA 0.526 0.681 0.526

(b) Non-matching label.

Single Double LIME Mojito
Copy

S-BR 0.733 1.000 1.000 1.000
S-IA 0.312 0.538 0.687 0.756
S-FZ 0.333 0.518 0.864 0.414
S-DA 0.200 1.000 0.200 0.520
S-DG 1.000 0.520 1.000 0.333
S-AG 1.000 0.545 0.545 0.545
S-WA 0.573 1.000 0.872 1.000
T-AB 0.545 0.545 0.545 1.000
D-IA 0.925 0.899 0.776 0.939
D-DA 0.813 1.000 1.000 1.000
D-DG 1.000 1.000 1.000 0.813
D-WA 0.681 0.681 0.681 0.681

Table 3: Attribute-based evaluation (weighted Kendall
measure applied on the ranked list of attributed as gen-
erated by the EM and the surrogate model).

Lesson learned. The surrogate model built by Landmark Expla-
nation with the single-entity perturbation is an accurate repre-
sentation of the EM model for records representing matching
pairs of entities. The model built with the double-entity pertur-
bation is an accurate representation of the EM model for record
representing non-matching pairs of entities.

4.2.2 Attribute-based evaluation. The attribute-based evalua-
tion proceeds in the opposite direction: it starts from the internal
structure of the EM model and evaluates if the weights it gives
to the attributes are close to the ones we can derive from the
tokens obtained by Landmark Explanation. For this reason, we
have analyzed the weights given to the dataset attributes by the
Logistic Regression model used as EM model in the experiments
and ranked the attributes according to their absolute values. We
have done a similar operation with the surrogate model, where
the weights of the attributes have been computed by summing
the absolute weights of their composing tokens. The idea is that
the order of the attributes computed on the basis of their weights
should be the same in both models. In Table 3, we measured
the correlation computed by applying the weighted Kendall tau
correlation measure, between the ranked list of attributes of the
EM and surrogate model.
Discussion. Table 3a shows the experiments on the records rep-
resenting matching entity pairs. The correlation scores achieved
by Landmark Explanation with the double-entity perturbation
approach are better or equal to the ones achieved by LIME/Mojito
for all dataset. Table 3b shows the experiments on the records rep-
resenting non-matching entity pairs. In this case, the single-entity
configuration obtained better/equal results than LIME/Mojito
Drop in 7/12 datasets (4/12 against Mojito Copy); the double-
entity configuration obtained better/equal results than LIME/Mojito
drop in 9/12 datasets (the same against Mojito Copy). Note that
Mojito Copy, that has been explicitly designed for non-matching
entities, performs better than LIME/Mojito Drop in 5/12 datasets
only and equal/close to LIME/Mojito Drop in 4/12 datasets and
worst in the remaining 3 datasets.
Lesson learned. Landmark Explanation creates surrogate models
that maintain a relative importance of the attributes similar to
the ones of the EM model to explain.

4.3 Quality of the explanations
To introduce this experiment, let us consider an application that
aims to provide the explanation for a record labeled as a non-
matching entity. The tokens of non-matching are "less polarized":
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(a) Matching label.

Single Double LIME

S-BR 0.643 0.593 0.686
S-IA 0.652 0.404 0.702
S-FZ 0.606 0.447 0.612
S-DA 1.000 0.940 0.965
S-DG 0.660 0.610 0.925
S-AG 0.955 0.800 0.990
S-WA 1.000 0.785 0.870
T-AB 0.985 0.575 0.995
D-IA 0.561 0.278 0.311
D-DA 0.695 0.715 0.800
D-DG 0.635 0.530 0.735
D-WA 0.915 0.545 0.880

(b) Non-matching label.

Single Double LIME Mojito
Copy

S-BR 0.298 0.927 0.331 0.011
S-IA 0.545 0.736 0.393 0.000
S-FZ 0.079 0.853 0.047 0.000
S-DA 0.000 0.030 0.000 0.005
S-DG 0.020 0.545 0.020 0.000
S-AG 0.075 0.895 0.070 0.010
S-WA 0.015 0.955 0.000 0.000
T-AB 0.305 0.680 0.340 0.045
D-IA 0.670 0.291 0.379 0.027
D-DA 0.205 0.300 0.125 0.000
D-DG 0.200 0.375 0.160 0.030
D-WA 0.190 0.785 0.130 0.005

Table 4: Evaluation of the interest associated to the com-
puted explanations.

there are many reasons to be dissimilar for two entities. For this
reason, it is easy for this application to say why two entities
do not match, since there is plenty of tokens that do not match
between the entities in the record. Nevertheless, the explanation
would be more interesting if the tokens returned would be the
ones changing class of the record from non-matching tomatching.
In other words, we claim that an interesting explanation for non-
matching entities should return the tokens that, if shared by the
second entity, would make the record classified as matching.

In this section, we describe the evaluations we performed
to evaluate the aforementioned situation. The experiments are
similar to the first experiments described in Section 4.2, but in this
case we select the tokens to remove. For sake of completeness,
we performed a similar experiment with records classified as
matches even if this evaluation is less meaningful. When the
record is associated with a matching label, we remove all positive
tokens (all tokens that contribute to the decision). The negative
tokens are removed when the label represents a non-matching
record. In Table 4 to evaluate the experiment we measure the
interest, which is the accuracy computed on the records where
the removal of the tokens was able to generate a change in the
label.
Discussion. Table 4a shows that Landmark Explanation is good
but slightly worse than LIME in terms of interest, when the
records are labeled as matching class. This happens even if the
surrogate model is really accurate (the MAE score is the lowest
for all experiments with the single-entity configuration). The
problem is that in most of the cases, even removing all tokens,
the explanation created by Landmark Explanation belongs to
the same class as before the token removal. Note that if we set
a decision threshold to 0.4, our approach has the best results
in all datasets. Table 4b shows that the explanations of non-
matching entities generated by Landmark Explanation in the
setting double-entity outperform the ones of Lime/Mojito Drop
and Mojito Copy.
Lesson learned. Landmark Explanation generates interesting ex-
planations, and the perturbation made with the double-entity
generation technique effectively increases "the interest" of non-
matching record explanations.

5 CONCLUSION
This paper introduces Landmark Explanation a tool that makes
a post-hoc perturbation-based explainer able to deal with ML
and DL models describing EM datasets. The approach has been
experimented coupled with the LIME explainer, which is one of

the most used state of the art approaches. The results show that
the explanations generated by Landmark Explanation outperform
the ones generated by the competing approaches in accuracy.
Moreover, the explanations generated by Landmark Explanation
have been experimented to be "more interesting" for the users.

Future work includes the study of techniques for summarizing
the explanations to facilitate the interpretation of the EM model
as an whole.
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ABSTRACT
Anomaly detection in time series is a widely studied issue inmany
areas. Anomalies can be detected using rule-based approaches
and human-interpretable rules for anomaly detection refer to
rules presented in a format that is intelligible to analysts. Learning
these rules is a challenge but only a fewworks address the issue of
detecting different types of anomalies in time-series. This paper
presents an extended decision tree based on patterns to generate
a minimized set of human comprehensible rules for anomaly
detection in univariate times-series. This method uses Bayesian
optimization to avoid manual tuning of hyper-parameters. We
define a quality measure to evaluate both the accuracy and the
intelligibility of the produced rules. Experiments show that our
approach generates rules that outperforms the state of- the-art
anomaly detection techniques.

1 INTRODUCTION
Anomaly detection in time series is a widely studied issue in
many areas such as financial markets, sensor networks, habitat
monitoring, network intrusion, web traffic [1], and many others.
Time series are often affected by unusual events or untimely
changes (e.g., measurement error or faulty sensors) that need to
be detected and processed by users for analysis and exploration
[7].
In a real context, experts may observe some interesting local
phenomena, which can be seen as remarkable points in time
series. Using their domain knowledge, the experts investigate
sequences of remarkable points to detect and locate anomalies.
Experts can also build decision rules manually to detect future
occurrences of these anomalies. However, as the amount of col-
lected data is increasing, the decision rules become more complex
to define which makes the analysis more difficult. Automatic rule
extraction and detection of different types of anomalies can be of
considerable interest to an expert, leading to appropriate action
that can save a lot of time and value. To overcome this challenge,
rule learning algorithms have been proposed [2, 12]. Deploying
such systems might reveal comprehensible information to the
users to explain the root cause of anomalies better than black-box
algorithms.

To address these challenges, we provide a machine learning
method to generate human-interpretable rules for anomaly de-
tection in time-series, called Composition-based Decision Tree

© 2021 Copyright held by the owner/author(s). Published in Proceedings of the
24th International Conference on Extending Database Technology (EDBT), March
23-26, 2021, ISBN 978-3-89318-084-4 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

(CDT) 1. This method uses patterns to identify remarkable points.
The compositions of remarkable points existing into time-series
are learned through a specific decision tree that finally produces
intelligible rules. To avoid manual tuning, we use Bayesian hyper-
parameter optimization to get the best hyper-parameters for our
model. The approach aims at finding the best compromise be-
tween a high accuracy during anomaly detection and aminimized
set of easily human-interpretable rules. We conduct experiments
on three real-world datasets and three synthetic datasets. The
results show the effectiveness of our method compared to both
pattern-based methods and rule-based methods for anomaly de-
tection.

2 RELATEDWORK
Numerous works on anomaly detection in time-series had been
covered under various surveys and reviews [3, 13]. Several fields
of study are related to pattern-based time-series data mining
and rule-learning methods for anomaly detection. Pattern-based
methods aim to discover frequent [4, 5] or infrequent sub-sequences
[16] from a time-series. In contrast to our method, these methods
are less suitable for detecting multiple anomalies and can only
find a specific type of anomaly. Rule-learning methods aim to
find regularities in data that can be expressed in the form of
IF-THEN-like rules [2, 9, 11]. In general, the rules are evaluated
based on accuracy or the number of rules produced by these al-
gorithms. In this paper, instead of only evaluating the rules based
on these criteria, we introduce a quality measure, which takes
into account the number of used patterns as well as the length
of rules, to make the rules simpler to interpret. We also propose
a function that seeks a compromise between the interpretability
of the rules and their precision.

3 METHODOLOGY
In this section, we describe our Composition-based Decision Tree
(CDT) method for anomaly detection and rule extraction.

3.1 Time-Series Preprocessing
Definition 1.Anunivariate time-series is defined as𝑇𝑠 = {𝑥1, ..., 𝑥𝑛}
where∀𝑖 ∈ [1..𝑛], 𝑥𝑖 ∈ R such that values 𝑥𝑖 are uniformly spaced
in time and 𝑛 is the size of 𝑇𝑠 .

The time series are collected from different sensors and the
values of measures are on different ranges. To achieve scale and
offset invariance, we normalize each continuous time-series𝑇𝑠 to
values within the range [0, 1]. Resampling could also be used to
provide additional structure or to smooth time series and remove

1https://github.com/IBK-TLS/CDT
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any noise; e.g., downsampling reduces the frequency of time-
series observations.

3.2 Time-Series Labeling
To detect anomalies, experts first analyze the neighborhood of
a point (unusual variations) such as the point which precedes it
and follows it to decide if is a remarkable point. Based on this
idea, we label each point of the time series by checking every
three successive points using patterns.

Let us considers three successive points such as 𝑥𝑖−1, 𝑥𝑖 , 𝑥𝑖+1
of a time-series. Considering all possible variations between these
three points, we define nine possible variations, which can occur
between successive points, as listed in Table 1 namely, PP (Pos-
itive Peak), PN (Negative Peak), SCP (Start Constant Positive),
SCN (Start Constant Negative), ECP (End Constant Positive), ECN
(End Constant Negative), CST (Constant), VP (Variation Positive)
and VN (Variation Negative). Each of these variations can have
different magnitudes into [-1,1]. To identify fine variations of
values between three points, we refine each variation by defining
intervals of variations into [-1,1].

Hyper-parameter (𝛿).We denote𝛿 the hyper-parameter used
to distinguish the different magnitudes considered for each of the
nine variations (PP, PN, SCP, SCN, ECP ECN, CP, VN, and CST).
𝛿 allows the introduction of fine amplitude shifts in the varia-
tions to capture the shape complexity in time-series, typically
small or large amplitudes. 𝛿 represents the number of disjointed
sub-intervals considered in [-1,1] and will be determined automat-
ically using Bayesian optimization. For a given 𝛿 , we construct
2𝛿 + 1 intervals : i) 𝛿 sub-intervals for positive variations in ]0, 1],
ii) 𝛿 intervals for negative variations in [−1, 0[, and iii) 1 special
case for the absence of variation (equal to 0).

For the sake of simplicity, in the rest of the paper, we only
consider notation with 𝛿 = 2 (other values of 𝛿 will only result in
a larger variety of intervals and patterns), and we denote the 5
resulting intervals as follows: Low (L) = ]0,0.5], High (H) = ]0.5,1],
-Low (-L) = [-0.5,0[, -High (-H) = [-1,-0.5[, and the special case,
Zero (Z) = 0.

Definition 2.We define a pattern annotated 𝑃 = (𝑙 , 𝛼 , 𝛽) where
𝑙 is a name (or label) identifying the pattern, and 𝛼 and 𝛽 are
two possible intervals from [-1,1]. For each successive points
𝑥𝑖−1, 𝑥𝑖 , 𝑥𝑖+1, the point𝑥𝑖 is checked by a pattern only if𝑥𝑖−𝑥𝑖−1 ∈
𝛼 ∧ 𝑥𝑖 − 𝑥𝑖+1 ∈ 𝛽 . In this case, 𝑥𝑖 is labeled with 𝑙 . For the rest of
the paper, labels are denoted by the name of the variation (PP,
PN, etc.).

Fig. 1 (left) illustrates an example of a pattern 𝑃𝑃𝐿,𝐻 that helps
us to find one remarkable point from a time-series. This time-
series represents the consumption data of a building’s calorie
sensor. Fig. 1 (right) shows examples of different magnitudes of
pattern such as 𝑃𝑃𝐿,𝐻 , 𝑃𝑃𝐿,𝐿 and 𝑃𝑃𝐻,𝐻 . Using these patterns,
we can automatically label each point in time series.

Figure 1: Example of different magnitudes of a pattern.

Definition 3.A labeled times-series annotated𝑇𝑠𝑏 = {𝑙1, ..., 𝑙𝑁 }
with 𝑁 = 𝑛 − 2 where each 𝑥𝑖 point of the initial time-series (𝑇𝑠)
is replaced by the label of its corresponding pattern.

Table 1: Types of variation for labelling.

3.3 Composition-based Decision Tree
Given the time series labeling, we built an extension of the deci-
sion tree based on pattern compositions to produce rules able to
detect anomalies.

Classically, a decision tree is induced from observations com-
posed of feature values and a class label. It is built by splitting
the training data into subsets by choosing the feature which best
partitions the training data according to an evaluation criterion
(e.g., Shannon’s entropy, Gini index). This criterion characterizes
the homogeneity of the subsets obtained by division of the data
set. This process is recursively repeated on each derived subset
until all instances in a subset belong to the same class label [10].

The classical decision tree considers features without any or-
der when splitting the datasets. Conversely, in our approach, we
would like to keep the order of the time series. Thus, our deci-
sion tree is built, by considering nodes as pattern compositions
(ordered sequences of remarkable points) with the highest in-
formation gain. These compositions are calculated from a set of
observations (sub-sequences of labeled time-series). The input of
the tree is constructed by creating fixed sized sliding windows.

Definition 4. A set of observations annotated 𝐷 = {𝑑1, 𝑑2, ...,
𝑑𝑁−𝜔+1} = {{𝑙1, ..., 𝑙𝜔 }, {𝑙2, ..., 𝑙𝜔+1},..., {𝑙𝑁−𝜔+1, ..., 𝑙𝑁 }} repre-
sents the result of cutting 𝑇𝑠𝑏 by a sliding window of size 𝜔 ,
and using a fixed step size equal to one. Let M be the number of
classes of observations. In our context, we consider two classes
(M = 2): the abnormal class (observation with anomaly), or the
normal class (observation without anomaly). Each 𝑑𝑖 observation
is associated with only one class annotated 𝑐𝑙𝑎𝑠𝑠 (𝑑𝑖 ).
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To determine a probability distribution of the observations
over the classes, we introduce an impurity measure of a set of
observations 𝐷 𝑗 ⊆ 𝐷 . In our method, we opt to the Gini index.
The Gini impurity index, annotated𝐺 (𝐷 𝑗 ), provides a measure of
the quality of𝐷 𝑗 according to the distribution of the observations
into the classes. The impurity metric is minimal (equal to 0) if
a set contains only observations of one class, and it is maximal
(equal to 0.5) if the set contains equally observations of all classes.

Hyper-parameter (𝜔). We denote 𝜔 <= 𝑁 /2 the window
size to define observations. This hyper-parameter will be deter-
mined automatically using Bayesian optimization.

From an observation with anomaly we can define a composition
used to split a node into two sub-nodes.

Definition 5. A composition annotated 𝑐 is a sub-sequence of
labels of an observation 𝑑𝑖 . We denote 𝑐 ⊆𝑜 𝑑𝑖 .

Example. Considering 𝑑 = {𝑙1, 𝑙2, 𝑙3, 𝑙4, 𝑙5, 𝑙6}, some compo-
sitions are 𝑐 = {𝑙2, 𝑙3, 𝑙4} ⊆𝑜 𝑑 , 𝑐 = {𝑙3, 𝑙2, 𝑙4} ⊈𝑜 𝑑 , and 𝑐 =

{𝑙1, 𝑙2, 𝑙3, 𝑙4, 𝑙5, 𝑙6} ⊆𝑜 𝑑 .
We also introduce additional notations: 𝑐 ∈𝑜 𝐷 when ∀𝑑 ∈
𝐷, 𝑐 ⊆𝑜 𝑑 , and 𝑐 ∉𝑜 𝐷 when ∀𝑑 ∈ 𝐷, 𝑐 ⊈𝑜 𝑑 .

A decision tree is built based on features that have the highest
Information Gain [10]. In CDT, the compositions are compared
according to the information gain, noted 𝐼𝐺 , they provide.

The entire flow of the CDT approach we proposed is described
by Algorithm 1. This algorithm builds a decision tree; we de-
fine a tree node as a quadruplet: observations (the set of obser-
vations considered in this node), a composition (used to split
observations in two child nodes), childTrue (the node of obser-
vations satisfying the composition), and childFalse (the node of
observations that do not satisfy the composition). An example
corresponding to the root node is given in line 1. We introduce
a function 𝑙𝑖𝑠𝑡_𝑜 𝑓 _𝑎𝑙𝑙_𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒_𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠 () to compute all
compositions deduced from a set 𝐷 𝑗 (line 6). For each composi-
tion, we calculate the information gain to split a node (line 7–15).
At line 16, if𝐺 (𝐷 𝑗 ) ≠ 0 means that the set of observations of the
node is impure (observations are of different classes). Moreover,
𝑚𝑎𝑥𝐺𝑎𝑖𝑛 ≠ 0 means that a composition that splits the set of
observations has previously been found: in this case, we create
a node 𝑁𝑖𝑛𝑐 that will determine the positive branch of the node
(𝑐 ∈𝑜 𝐷 𝑗 ), whereas 𝑁𝑒𝑥𝑐 will be the negative one (𝑐 ∉𝑜 𝐷 𝑗 ) (line
16–25). We repeat these steps until there are no more nodes to
process (line 3–26).

Example. Fig. 2 illustrates an example of CDT result. The
root-node is 𝐷1, and it represents the whole training set of obser-
vations used for the construction of the CDT. The leave-nodes
represent class labels and branches represent conjunctions of
compositions that lead to those class labels. As shown in Fig. 2,
the CDT is composed of 3 splits constructing a set of 3 leaves
S = {𝑆1, 𝑆2, 𝑆3}.

3.4 Rule Generation for Anomaly Detection
We convert the CDT into a set of decision rules. We only consider
“pure leaf-nodes” leading to the anomaly class.

Definition 6. A rule predicate, annotated 𝑅𝑠 is a branch of the
decision tree leading to the anomaly class. It is constructed by
combining (conjunction) the successive compositions 𝑐𝑖 or ¬𝑐𝑖
from the leaf-node to the root-node. For each positive branch
(𝑐𝑖 ∈𝑜 𝐷 𝑗 ), the positive composition 𝑐𝑖 is deduced whereas a
negative composition ¬𝑐𝑖 is deduced from a negative branch
(𝑐𝑖 ∉𝑜 𝐷 𝑗 ).

Algorithm 1 CDT: Composition-based Decision Tree

Input: 𝐷 = {𝑑1, 𝑑2, ..., 𝑑𝑁−𝜔+1} a set of observations
Output: 𝑁𝑟𝑜𝑜𝑡 the root node of CDT
1: 𝑁𝑟𝑜𝑜𝑡 ← 𝑁𝑜𝑑𝑒 (𝐷,𝑛𝑢𝑙𝑙, 𝑛𝑢𝑙𝑙, 𝑛𝑢𝑙𝑙)
2: 𝑞 ← [𝑁𝑟𝑜𝑜𝑡 ] // construct the queue of nodes to split
3: while 𝑞 ≠ ∅ do
4: 𝑁 𝑗 ← 𝑞.𝑝𝑜𝑝 () // dequeue the first node from the queue
5: 𝐷 𝑗 ← 𝑁 𝑗 .𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠

6: 𝐶 𝑗 ← 𝑙𝑖𝑠𝑡_𝑜 𝑓 _𝑎𝑙𝑙_𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒_𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠 (𝐷 𝑗 )
7: 𝑚𝑎𝑥𝐺𝑎𝑖𝑛 ← 0
8: 𝑐𝑏𝑒𝑠𝑡 ← 𝑛𝑢𝑙𝑙

9: // Choose the composition that has the best Gain
10: for all 𝑐 ∈ 𝐶 𝑗 do
11: if 𝐼𝐺 (𝐷 𝑗 , 𝑐) > 𝑚𝑎𝑥𝐺𝑎𝑖𝑛 then
12: 𝑚𝑎𝑥𝐺𝑎𝑖𝑛 ← 𝐼𝐺 (𝐷 𝑗 , 𝑐)
13: 𝑐𝑏𝑒𝑠𝑡 ← 𝑐

14: end if
15: end for
16: if 𝐺 (𝐷 𝑗 ) ≠ 0 and𝑚𝑎𝑥𝐺𝑎𝑖𝑛 ≠ 0 then
17: 𝐷𝑖𝑛𝑐 ← {𝑑 ∈ 𝐷 𝑗 |𝑐𝑏𝑒𝑠𝑡 ∈𝑜 𝑑}
18: 𝐷𝑒𝑥𝑐 ← {𝑑 ∈ 𝐷 𝑗 |𝑐𝑏𝑒𝑠𝑡 ∉𝑜 𝑑}
19: 𝑁𝑖𝑛𝑐 ← 𝑁𝑜𝑑𝑒 (𝐷𝑖𝑛𝑐 , 𝑛𝑢𝑙𝑙, 𝑛𝑢𝑙𝑙, 𝑛𝑢𝑙𝑙)
20: 𝑁𝑒𝑥𝑐 ← 𝑁𝑜𝑑𝑒 (𝐷𝑒𝑥𝑐 , 𝑛𝑢𝑙𝑙, 𝑛𝑢𝑙𝑙, 𝑛𝑢𝑙𝑙)
21: 𝑞.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑁𝑖𝑛𝑐 ) // enqueue child nodes
22: 𝑞.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑁𝑒𝑥𝑐 )
23: 𝑁 𝑗 .𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ← 𝑐𝑏𝑒𝑠𝑡
24: 𝑁 𝑗 .𝑐ℎ𝑖𝑙𝑑𝑇𝑟𝑢𝑒 ← 𝑁𝑖𝑛𝑐

25: 𝑁 𝑗 .𝑐ℎ𝑖𝑙𝑑𝐹𝑎𝑙𝑠𝑒 ← 𝑁𝑒𝑥𝑐

26: end if
27: end while
28: return 𝑁𝑟𝑜𝑜𝑡
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Figure 2: Illustration of a Composition-based Decision
Tree (CDT).

Example. Three rules predicate are produced from the CDT
in Fig. 2.
• 𝑅𝑆1 : 𝑐1 = [𝑃𝑁−𝐻,−𝐿, 𝑆𝐶𝑃𝐿,0]
• 𝑅𝑆2 : 𝑐2 ∧ ¬𝑐1 = [𝐸𝐶𝑃0,−𝐿, 𝑃𝑃𝐿,𝐻 ] ∧ ¬[𝑃𝑁−𝐻,−𝐿,
𝑆𝐶𝑃𝐿,0]
• 𝑅𝑆3 : 𝑐3∧¬𝑐2∧¬𝑐1 = [𝐸𝐶𝑁0,𝐻 , 𝑃𝑁−𝐻,−𝐻 ] ∧¬[𝐸𝐶𝑃0,−𝐿,
𝑃𝑃𝐿,𝐻 ] ∧ ¬[𝑃𝑁−𝐻,−𝐿, 𝑆𝐶𝑃𝐿,0].

Using abusive notations, 𝑐𝑖∧¬𝑐 𝑗 means that for an observation
𝑑 on a time-series, we check 𝑐𝑖 ⊆𝑜 𝑑 ∧ 𝑐 𝑗 ⊈𝑜 𝑑 .
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Definition 7. A rule, annotated R, is a disjunction of rule
predicates. For instance, as shown in Fig. 2, R = 𝑅𝑆1 ∨𝑅𝑆2 ∨𝑅𝑆3 =
(𝑐1) ∨ (𝑐2 ∧ ¬𝑐1) ∨ (𝑐3 ∧ ¬𝑐2 ∧ ¬𝑐1).

Rule Simplifications. One way to minimize CDT’s rules is to
post-process the produced rules through Boolean algebra sim-
plifications. We aim to minimize the “sum-of-products” forms of
Boolean functions. In our approach, this inter-branch simplifica-
tion is applied until there is no longer any simplification to be
made. This allows us tominimize the number of compositions in a
rule. Using Boolean algebra, we can simplify the rule R generated
from the tree in Fig. 2 as R = (𝑐1)∨ (𝑐2∧¬𝑐1)∨ (𝑐3∧¬𝑐2∧¬𝑐1) =
(𝑐1) ∨ (𝑐2) ∨ (𝑐3).

3.5 Quality Measure
We aim to generate rules that are both accurate and comprehensi-
ble. According to experts opinion, a comprehensible rule should
be short [2, 9] and should contain a minimized number of various
labels. Therefore, we defined the following criteria to evaluate a
quality of rules:
• I(𝑐) to characterize the quality of a composition 𝑐 depend-
ing on its length and the number of patterns used;
• M(𝑅𝑆 ) to characterize the quality of a rule predicate 𝑅𝑆
depending on the number of compositions and the quality
of each one (I(𝑐));
• Q(R) to characterize the quality of a rule R depending on
the quality of rule predicate and its support.

We first calculate the interpretability of a composition as:

I(𝑐) = 1 − 𝐿𝑐 .𝑁𝐿

𝜔.𝑀𝑎𝑥𝐿
(1)

where 𝐿𝑐 = |𝑐 | denotes the length of a composition 𝑐 , 𝑁𝐿 is
the number of unique labels used in a composition, 𝜔 is the
maximum window size, and𝑀𝑎𝑥𝐿 is the total number of labels.
Then, we calculate the average interpretability of a rule predicate
(conjunction of compositions) as:

M(𝑅𝑆 ) =
1
𝑁𝑐

𝑁𝑐∑︁
𝑘=1
I(𝑐𝑘 ) (2)

where 𝑁𝑐 is the number of compositions in a rule predicate 𝑅𝑆 .
Finally, extracted rules’ quality is calculated as:

Q(R) = 1
𝑆

𝑁𝑅𝑠∑︁
𝑖=1

𝑆𝑅𝑆𝑖
.M(𝑅𝑆𝑖 ) (3)

where 𝑁𝑅𝑠 is the number of rule predicates in R, 𝑆𝑅𝑆𝑖
is the

support of rule predicate (true positive) and 𝑆 is the support of all
rules predicates (true positive and true negative). A rule predicate
with high support is considered more important. Therefore, we
multiplicate the average interpretability of a rule predicate with
its support.

3.6 Hyper-Parameters selection
The manual tuning of hyper-parameters requires a prior knowl-
edge. Automatic search algorithms such as grid search and ran-
dom search could give good results. However, grid search is time
consuming and random search might not find the optimal set.
To address this problem, we use Bayesian Optimization [14] to
efficiently get the best hyper-parameters (𝛿 , 𝜔) for our model.
Indeed, we aim to find a configuration (that is, a set of parame-
ters) that maximizes a performance metric or an objective func-
tion. Hence, we defined a search space and we try to find the
hyper-parameters values of CDT that yield the highest result as

measured on a validation set. Hyper-parameter optimization is
presented as:

ℎ∗ = argmax
ℎ∈𝐻

𝐹 (ℎ) (4)

where 𝐹 (ℎ) represents an objective function to maximize, ℎ∗ is
the set of optimized hyper-parameters (𝛿 , 𝜔) and ℎ can take any
value in search space 𝐻 .

To optimize the trade-off between detection performance and
good quality of rules, we defined the objective function 𝐹 (ℎ) as
the F-measure weighted by our Q(R) rules’ quality measure.

𝐹 (ℎ) = 𝐹1(ℎ).Q(R) (5)

where 𝐹1(ℎ) is the F-measure (the harmonic mean of the preci-
sion and recall) of the classification performance obtained with
the set of parameters (ℎ).

4 EXPERIMENTS
For our evaluation, we use real-world datasets from the Manage-
ment and Exploitation Service (SGE) [6], and data from the Yahoo
datasets [8].We compare CDTwith state-of-the-art pattern-based
as well as rule-based methods for anomaly detection.

In SGE data sets, we aim to handle anomalies on calorie and
electric consumption datasets. Calorie data consists of 25 con-
sumption datasets from sensors deployed in different buildings
managed by the SGE. These measurements are daily data for
more than three years, about 33536 observations in total and they
contain 586 anomalies. Electricity measurements are collected
hourly for 10 years from one sensor (96074 in total). There are in
total 10343 anomalies in the electricity dataset.

The Webscope S5 dataset, which is publicly available in [8],
consists of 371 files divided into four categories, namedA1/A2/A3/
A4, each one containing respectively, 67/100/100/100 files. A1
Benchmark is based on real production traffic from actual web
services while classes A2, A3, and A4 contain synthetic anomaly
data. These datasets are represented by time-series in one-hour
units. There are a total of 94778 traffic values in 67 different files
and 1669 of these values are abnormal. The anomalies in the syn-
thetic datasets are inserted at random positions. A2 Benchmark
contains 142002 values with 466 anomalies while 168000 values
exist in A3 and A4 Benchmarks with respectively 943 and 837
anomalies.

4.1 Evaluation Process and Metrics
The performance of all the methods is compared based upon
the F1 score, the rules’quality metric Q, and the objective func-
tion 𝐹 (ℎ) used as defined in equation (5). We use the 𝐹1 score
and Q score to compare the accuracy of our method against
pattern-based methods. We use the 𝐹 (ℎ) score to evaluate both
the accuracy and the interpretability of the rules generated by
our CDT method compared to those of rule learning methods.
For evaluation, we split every dataset into three subsets: training
set (60%), validation set (20%), and testing set (20%) ratio. We
use the train and validation set to optimize the model’s hyper-
parameter values using Bayesian optimization. Then, we evaluate
the optimized model on testing set.

Hyper-Parameters Optimization. To limit the search space
of the Bayesian optimization, we constrained the parameter 𝜔
within [3,31] and 𝛿 within [1,21]. Table 2 shows the optimal
hyper-parameters found with the Bayesian optimization. As we
can see in Table 2, optimization on 𝐹 (ℎ) tends to favors a small
number of splits (𝛿) for patterns when compared to the 𝐹1 score
optimization. This is due to the quality measure of rules Q(R),

460



which looks for short rules that include a minimum number
of labels (𝛿). However, the size of observations (𝜔) needed to
construct an optimal CDT remains to be comparable for 𝐹1 and
𝐹 (ℎ) suggesting the need for presence of neighbors surrounding
an anomaly to achieve good anomaly detection with CDT.

Table 2: Parameters of CDT for experiments.

Evaluation F1-score F(h)-score
Dataset 𝜔 𝛿 𝜔 𝛿

SGE_Electricity 27 2 27 2
SGE_Calorie 5 4 21 1
Yahoo_A1 27 16 25 1
Yahoo_A2 17 2 17 1
Yahoo_A3 29 12 17 1
Yahoo_A4 25 8 21 1

4.2 Experiments with Pattern-based
Algorithms

We employ the following three approaches as baseline methods
to compare with our approach:
• Pattern-Based Anomaly Detection (PBAD) is an anom-
aly detection method based on frequent pattern mining
techniques in mixed-type time-series [4].
• Matrix Profile (MP) is an anomaly detection method based
on similarity-join to detect time series discords [15].
• Pattern Anomaly Value (PAV) is an anomaly detection
algorithm based on pattern anomaly value. The anomalies
are the infrequent linear pattern [16] .

To evaluate these methods, we used the implementation avail-
able in [4]. These algorithms are window-based approaches.
Hence, we used the recommended settings for each of them. We
split the time series into sliding windows of length 12 with a step
size 6. These anomaly detection algorithms provide an anomaly
score for each window. As these algorithms are unsupervised,
we build the anomaly detection model on the full-time series
data and we evaluate it using 𝐹1 score. For CDT, we used the
appropriate values of hyper-parameters calculated using F1-score
as provided in Table 2. All the data sets are normalized between
0 and 1 during the pre-processing phase. For Yahoo datasets and
SGE-Electricity we downsampled these datasets from hours to
days.

Result Analysis. Table 3 provides the 𝐹1 score obtained by
each algorithm on each of the six univariate time-series datasets.
The maximum values of 𝐹1 score for each dataset are given in

Table 3: Evaluation of Anomaly Detection using F1-score
for CDT and Pattern-based algorithms.

Dataset
Algorithm CDT PBAD PAV MP

SGE_Electricity 0.76 0.70 0.74 0.70
SGE_Calorie 0.85 0.80 0.88 0.91
Yahoo_A1 0.92 0.72 0.75 0.76
Yahoo_A2 0.99 0.65 0.99 0.76
Yahoo_A3 1.0 0.73 0.99 0.70
Yahoo_A4 0.98 0.75 0.93 0.96
Average 0.92 0.72 0.88 0.80

bold type. We also calculate the average rank of each method.
CDT outperforms the existing baselines in five of the six datasets.
It can be observed in Table 3 that our method is more stable for
different datasets than baselines. Note that for the competing
algorithms, the data should be balanced otherwise, the detection
results are poor. We have tested PBAD, PAV and MP on our initial
datasets and on a balanced version and we have noticed that its
performance highly degrades on the first case. In fact, they tend
to focus on the accuracy of predictions from the majority class
(normal class) which generates poor precision for the minority
class (anomaly class). Therefore, the results of PBAD, PAV and
MP in Table 3 are obtained on the balanced data.

4.3 Experiments with Rule Learning
Algorithms

We compare our CDT method with the following state-of-the-art
rule learning algorithms:
• PART is a combination of C4.5 and RIPPER rule learning
to produce rules from partial decision trees using C4.5
algorithm [9].
• JRip implements a rule learner and incremental pruning to
produce error reduction (RIPPER) [12]. Rules are formed
by greedily adding conditions to the antecedent of a rule.

We compare CDT with PART and JRip based on 𝐹1 score,
Q(R) and 𝐹 (ℎ) score (Table 4) and the number of rules produced
by the classifiers (Figure 3). We evaluated these methods using
WEKA. We use 10-fold cross validation to test and evaluate the
PART and JRip with the standard default setting of WEKA. For
CDT and each competitor, we use the hyper-parameters values
obtained to maximize 𝐹 (ℎ) − 𝑠𝑐𝑜𝑟𝑒 as provided in Table 2.

Result Analysis. Table 4 shows the comparison results for
each algorithm in the six datasets using 𝐹1, Q(R) and 𝐹 (ℎ) score.
Note that the results of the F1 score for CDT in Table 4 are
different from those in Table 3 because they are not evaluated
with the same hyperparameter values (Table 2).

Overall, the average scores show that our approach has got
the first position in ranking followed by PART and JRip. CDT
outperforms PART and JRip in all datasets in the 𝐹1 score, in
three of the six datasets in the Q(R) score and all datasets in
the 𝐹 (ℎ) score. We can observe from the Table 4 that JRip has
a high quality of rules Q(R) in three datasets as well as CDT.
This is due to the size of its generated rules that are quite short.
However, it is less accurate than CDT and PART in almost all
datasets. We can also see that none of the baseline algorithms
has good 𝐹 (ℎ) overall data sets. While CDT has the best tradeoff
between 𝐹1 score and Q(R) score.

Fig. 3 shows a summary of the number of rules produced by
each method. CDT produces a fewer number of rules between 5
and 16 rules. It is followed by JRip that produced reasonably few
rules between 15 and 30 rules. However, PART highly produces
rules that are between 24 and 142. This is due to the specificity
of the rules generated that have low support.

We present some examples of the generated rules by our CDT
algorithm from SGE data sets to detect multiple anomalies in
Table 5. As we can see, the rules with visualized patterns are
easy to intuitively understand and can be easily interpreted by
users. The experts give the following comments: the negative
peak is considered an anomaly because the energy consumption
in a building cannot be negative. The positive peak has occurred
following overconsumption in the building. The collective anom-
alies present abnormal variations in successive points. This is
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Table 4: Evaluation of anomaly detection using the 𝐹1 score, the quality measure Q(R) and the objective function 𝐹 (ℎ).

Evaluation F1-score Q(R) F(h)-score

Dataset
Algorithm CDT PART JRip CDT PART JRip CDT PART JRip

SGE_Electricity 0.76 0.71 0.72 0.67 0.67 0.70 0.51 0.48 0.50
SGE_Calorie 0.99 0.80 0.79 0.61 0.65 0.69 0.60 0.52 0.54
Yahoo_A1 0.91 0.70 0.69 0.48 0.50 0.56 0.43 0.35 0.39
Yahoo_A2 0.99 0.80 0.77 0.69 0.68 0.65 0.68 0.54 0.50
Yahoo_A3 0.98 0.78 0.71 0.77 0.69 0.70 0.75 0.54 0.50
Yahoo_A4 0.97 0.73 0.75 0.70 0.70 0.68 0.68 0.51 0.51
Average 0.93 0.75 0.74 0.65 0.64 0.64 0.61 0.49 0.49

Figure 3: The number of rules generated for anomaly de-
tection.

due to a fault in the reading of the meters. Finally, the constant
anomaly illustrated a stop of the meter.

Table 5: Example of rules generated for anomaly detection
in the SGE_Calorie datasets.

5 CONCLUSION
We propose a machine learning method, CDT, that generates
human-interpretable rules based on a formalisation of 9 gen-
eral patterns of variations for multiple anomaly detection in
time-series. The approach is based on a modified decision tree
which considers nodes as pattern compositions. Using Bayesian
Optimization, we optimized the hyper-parameters such that it
maximizes both the rules’quality and the classification perfor-
mances. The performance of the presented method was tested
using the SGE and Yahoo datasets. Our approach appeared as
robust compared to the existing algorithms in conducted experi-
ments where their model accuracy decreases in case of multiple
anomalies and in generating few interpretable rules.

Future work will concern the improvement of the generated
rules. For instance, combine rules by a generalization and elimi-
nate redundant rules. Moreover, we could investigate other hyper-
parameters such as the size of down-sampling to improve the
quality of the generated rules. We could also expand our method
to suit multivariate time-series.
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ABSTRACT
Database management systems traditionally provide user-, table-,
index-, and schema-level monitoring. For cloud-deployed applica-
tions, the research reported herein provides preliminary evidence
that transaction cluster-level monitoring simplifies performance
troubleshooting—especially for online transaction processing
(OLTP) applications. Specifically, problematic rollbacks, perfor-
mance drifts, system-wide performance problems, and system
bottlenecks can be more easily debugged. The DBSCAN algo-
rithm identifies transaction clusters based on transaction features
extracted directly from a DBMS server—a job previously done
using SQL log-mining. DBSCAN produces more accurate clus-
ters when inter-transaction distances are computed using the
angular cosine distance function (ACD) rather than the usual Eu-
clidean distance function. Choice ofACD also simplifies DBSCAN
parameter tuning—a task known to be nontrivial.

1 INTRODUCTION
A user books air tickets for himself and family members using
an online web portal—front-end to a prototypical online trans-
action processing (OLTP) application. He makes several flight
searches, books tickets, and provides frequent flyer numbers of
the passengers. The airline reservation system implements this
activity using a transaction. A second user performs different
flight searches before booking a ticket for herself, but does not
provide a frequent flyer number because it is not handy. The two
transactions have both similarities and differences. Because they
access the same tables in similar fashions, there may be a reason
to believe that their performances are similar—a hypothesis that
can be exploited if found true.

A study of the various applications contained in two popular
OLTP benchmarking toolkits OLTP-Bench [2] and Sysbench [6]
reveals that each application contains transactions that can be
neatly divided into a small number of non-overlapping transac-
tion clusters (between 1 and 10 for the two toolkits).

Self-similar transactions within a cluster differ in parameter
values, statement orders, statement counts, statement types, rows
read or updated, and so on. Nevertheless, this research shows
that each cluster has a characteristic performance profile—termed
its signature—at the level of which an OLTP application can be
monitored. Sample cluster-levels metrics are average values of:
transactions/sec (TPS); number of rows (read, updated, or sent
to client); locking time; and so on.

Cluster-level monitoring is much simpler than transaction- or
statement-level monitoring, and cluster count is independent of
an OLTP application’s load. Benefits of clustering multiply when
that OLTP application is deployed in cloud where DBA’s have to

© 2021 Copyright held by the owner/author(s). Published in Proceedings of the
24th International Conference on Extending Database Technology (EDBT), March
23-26, 2021, ISBN 978-3-89318-084-4 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

monitor performance of many applications simultaneously [17].
This paper demonstrates how transaction clustering helps a cloud
DBA simplify debugging of several performance problems: identi-
fication of problematic transaction rollbacks; performance bottle-
necks; system-wide performance issues; performance drifts; and
so on. The cluster-level performance monitoring is not meant
to replace existing tools: table-level and index-level data will
continue to provide the necessary drill-downs, but help in deter-
mining where to drill-down should be valuable.

The DBSCAN algorithm [3] determines transaction clusters.
DBSCAN is usually run with the Euclidean distance function, but
this research demonstrates that when used with a normalized dis-
tance function called the angular cosine distance (ACD), DBSCAN
finds more accurate clusters, and DBSCAN parameter tuning
becomes easier—welcome news for a cloud DBA who cannot
hand-tune the parameters for each OLTP application. DBSCAN
parameter tuning is a known difficult task [4, 15], and therefore,
suitability of ACD is a research contribution.

To calculate inter-transaction distances, transaction attributes
are extracted into feature vectors. Previous research has relied on
SQL log-mining for transaction feature extraction, whereas this
research proposes to use simple server-side extensions instead.
Regular-expression based SQL log mining is error-prone, and
parsing SQL text may require parser duplication. Using server-
side extensions, no (re)parsing of a SQL statement is required be-
yond the one initiated upon a statement’s submission. A MySQL
implementation demonstrates that server-side feature extraction
is feasible. Similar infrastructure already exists in most modern
DBMS engines (Oracle, SQL Server, PostgreSQL, and so on), and
hence the solution has wider applicability.

2 SQL TRANSACTION CLUSTERS
SQL transactions within a cluster are similar (but not identical),
and transactions in different clusters are dissimilar. Cluster de-
termination is a three-step process. First, certain distinguishing
attributes (called features) are extracted from a transaction, and an
𝑛-element feature vector (FV) is formed. Second, the distance be-
tween two transactions—defined to be the distance between their
feature vectors—is computed using a distance function. Third, a
clustering algorithm uses the feature vectors and the distance
function to determine clusters.

2.1 Feature vector construction
In this research, extracting the following transaction features
proved adequate.

(1) Statement type: SELECT, INSERT, UPDATE, DELETE, COMMIT,
ROLLBACK, BEGIN, and so on.

(2) Table name(s)—possibly empty—referenced in the state-
ment in ‘schema.table’ format.

(3) Counts associated with table names indicating frequency.

Short Paper

 

 

Series ISSN: 2367-2005 463 10.5441/002/edbt.2021.52

https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2021.52


For other applications, different or additional features may
need to be extracted.

A transaction 𝑋 ’s feature vector 𝐹𝑉 (𝑋 ) is a concatenation of
four sub-vectors 𝐹𝑉𝑆 , 𝐹𝑉𝐼 , 𝐹𝑉𝑈 , and 𝐹𝑉𝐷 for the four major SQL
statement types SELECT, INSERT, UPDATE, and DELETE, respec-
tively. All of the four sub-vectors are computed similarly, and
therefore, only the construction of 𝐹𝑉𝑆 is described.

𝐹𝑉𝑆 is of length 𝑛—the total number of tables in the OLTP
system’s schema, where each table is schema-qualified, and oc-
cupies a specific position in the vector to enable cross-feature
vector comparisons. If a table𝑇 is referenced by all of the SELECT
statements in a transaction a total of 𝑘 times (𝑘 ≥ 0), then the
vector element for 𝑇 inside 𝐹𝑉𝑆 has value 𝑘 .

𝐹𝑉𝐼 , 𝐹𝑉𝑈 , and 𝐹𝑉𝐷 are computed similarly from all of the
INSERT, UPDATE, and DELETE statements in a transaction.1

Listing 1: Transaction 𝑋1
SELECT C_ID FROM Customer WHERE C_ID_STR = ' 50665 '
SELECT ∗ FROM Customer WHERE C_ID = 50665
SELECT ∗ FROM Airpor t , Country WHERE AP_ID = 180 AND

AP_CO_ID = CO_ID
SELECT ∗ FROM F r e qu en t _ F l y e r WHERE FF_C_ID = 50665
UPDATE F r e qu en t _ F l y e r SET FF_IATTR00 = −14751 ,

FF_IATTR01 = 8902 WHERE FF_C_ID = 50665 AND
FF_AL_ID = 1075

UPDATE Customer SET C_IATTR00 = −14751 , C_IATTR01 =
89025 WHERE C_ID = 50665

COMMIT

Consider the transaction 𝑋1—taken from the SEATS workload
of [2]—shown in Listing 1.

• 𝐹𝑉𝑆 (𝑋1) = [2, 1, 1, 1] because SELECT statements in 𝑋1
refer to Customer table twice, and the other three tables
once each.

• 𝐹𝑉𝑈 (𝑋1) = [1, 1] because UPDATE statements in 𝑋1 refer
to two tables once each.

• 𝐹𝑉𝐼 (𝑋1) = 𝐹𝑉𝐷 (𝑋1) = [ ] because there are no UPDATE or
DELETE statements in 𝑋1.

• 𝐹𝑉 (𝑋1) = [2, 1, 1, 1] + [ ] + [1, 1] + [ ] = [2, 1, 1, 1, 1, 1]
Imagine a second transaction 𝑋2 similar 𝑋1 that references

Customer only once. 𝐹𝑉 (𝑋2) will be [1, 1, 1, 1, 1, 1].

2.2 Angular cosine distance
Angular cosine distance, henceforth ACD, measures the distance
between two transactions—in particular, between their feature
vectors. For two𝑛-dimensional vectorsA andB, each with indices
0, 1, · · ·𝑛 − 1, and with non-negative values, ACD is defined as
follows [21].

𝐴𝐶𝐷 (A,B) = 2
𝜋

©«cos−1
©«

∑𝑛−1
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𝑖=0 A2
𝑖
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𝑖

ª®®¬
ª®®¬ (1)

ACD is a distance measure or metric, and furthermore is uni-
tary or normalized: 0.0 ≤ 𝐴𝐶𝐷 (A,B) ≤ 1.0. Because ACD dis-
tances are unitary, a closeness threshold Eps (for example, 0.2)
can be defined so that two transactions at most Eps apart are
considered ‘close’; otherwise, they are declared ‘far’. Normalized
distance functions enable easy similarity definition: 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =

1.0 − 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 . ‘Close’ transactions have 0.8 (or 80%) similarity—
something even a non-expert can understand.

For 𝑋1 and 𝑋2 of Section 2.1, 𝐴𝐶𝐷 (𝑋1, 𝑋2) =
𝐴𝐶𝐷 ( [2, 1, 1, 1, 1.1], [1, 1, 1, 1, 1, 1]) = 0.197, or they are 1.0 −
0.197 = 0.803 (80.3%) similar which seems intuitively correct.
1INSERT, UPDATE, and DELETE statements can also have embedded SELECT queries,
and those are handled similarly to the way 𝐹𝑉𝑆 is.

Let 𝐹𝑉 (𝑋3) = [1, 1, 1, 1, 1, 0]. 𝑋3 does not update the Customer
table, and hence the 0. 𝑋3 is somewhat dissimilar to 𝑋1 and 𝑋2,
and indeed, 𝐴𝐶𝐷 (𝑋1, 𝑋3) = 0.295, or they are only 70.5% similar
which again seems intuitive. With the closeness threshold Eps
set to 0.2, 𝑋1 and 𝑋2 will be considered close, and may end up in
the same cluster, whereas 𝑋1 and 𝑋3 will not belong to the same
cluster.

2.3 DBSCAN parameter tuning
An open-source DBSCAN implementation [16]—instrumented
to use ACD—performs transaction clustering. (By default, it uses
the Euclidean distance function.) The author did not consider
other clustering algorithms because DBSCAN has been found
adequate for transaction clustering previously [11, 23].

DBSCAN’s two tunable parameters Eps and minPts define
density. A hyper-sphere of radius Eps with at least minPts points
inside is considered dense. ACD does not eliminate hand-tuning
DBSCAN parameters, but provides twofold help.

• Eps = 0.2 means that independent of workload, two trans-
actions have to be at least 80% similar before they can
belong to the same cluster. With such unnormalized dis-
tance functions as the Euclidean, Eps values are workload
dependent.

• For many workloads, ACD-based DBSCAN clustering is
not very sensitive to the two parameter values, and a good
starting point is (Eps, minPts) = (0.2, 10). (Section 5.2.)

3 MySQL EXTENSIONS FOR TRANSACTION
FEATURE EXTRACTION

Feature extraction uses the data from three in-memory tables
shown in Fig. 1 that contain transaction-level, statement-level,
and table-level information. The three tables will henceforth be
referred to by the acronyms e_t_h, e_s_h, and e_s_t.

Figure 1: Relationships between the three tables.

Each completed transaction appears as a row in e_t_h, and
the statements within are captured in e_s_h (1:N relationship).
The newly added e_s_t table contains zero or more rows for each
statement present in e_s_h—one for each distinct table reference
in that statement (another 1:N relationship). Such statements
as COMMIT and ROLLBACK do not refer to any tables, and
therefore, have no presence in e_s_t. The columns in Fig. 1 only
capture inter-table relationships. The other columns added to the
three tables—not explicitly shown in Fig. 1—capture transaction-,
statement-, and table-level statistics.

Using a SELECT query involving multi-way joins among e_t_h,
e_s_h, and e_s_t tables, such information as transaction text;
statement type; statement text; statement run-time; transaction
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run-time; table names appearing in statement and their counts;
number of rows examined; locking times; and so on is easily
extracted.

Tables similar to the ones depicted in Fig. 1 already preexist
(or can be easily created) in SQL Server [10], Oracle [12], and
PostgreSQL [13], and therefore, server instrumentation of the
kind described in this section is possible in those products.

4 SYSTEM ARCHITECTURE
A prototype SQL transaction clustering system has been imple-
mented as depicted in Fig. 2. The Linux KVM virtual machine
represents a hosted environment running a customer application
(OLTP-Bench and Sysbench workloads during experimentation).
The top MySQL instance within the Linux KVM has been in-
strumented as described in Section 3 to enable transaction-level
data collection and feature extraction. The Windows 10 machine
contains data processing components, including those perform-
ing transaction clustering and classification. (A second hosted
application would require its own data processing node.)

Figure 2: Architecture of a transaction clustering system.

A SQL query runs every 5 seconds on the Linux machine,
and performs data collection. (The interval ensures minimal data
collection overhead, but is a system parameter.) Each 5-second
chunk includes feature and non-feature data: SQL statements;
statement types; table names; table counts; statement durations;
transaction duration; lock times; and rows examined by state-
ments. An epoch-style Linux timestamp is associated with each
chunk, and the resulting time-series is shipped to the data pro-
cessing node where chunk-based iterators process it.

The first 𝑡 chunks are used to perform transaction clustering.
During experimentation, the first 30 seconds worth of trans-
actions (𝑡 = 6) were found adequate to determine transaction
clusters, but 𝑡 is a system parameter. OLTPworkloads do not have
ad-hoc queries, and so clusters, once formed, should not change.
If that assumption is violated, DBSeer’s online implementation
of DBSCAN can be used [5], but we leave that for future work.

Once clusters form, the rest of the streaming transactions are
simply classified. The average distance (computed using ACD)
from a transaction 𝑋 to a cluster’s exemplars is calculated, and
𝑋 is assigned to the cluster for which that average distance is
minimum, as long as that minimum value is no more than a
threshold (say 0.2). If the threshold is exceeded, 𝑋 is declared an
outlier.

Simple roll-up operations compute cluster-level statistics from
transaction statistics as long as transactions are not outliers. If

necessary, data about outliers can be captured and processed
similarly.

5 CLUSTERING EXPERIMENTS
These experiments demonstrate that ACD-based DBSCAN is ef-
fective at finding transaction clusters, and is not very sensitive
to Eps and minPts parameter values. Workload consists of OLTP-
Bench [2] and Sysbench [6]. Out of OLTP-Bench’s 15 workloads,
the author was able to run 11.2 Clustering effectiveness requires
expected cluster counts which OLTP-Bench already provides, and
were manually determined for Sysbench. In Tables 1 and 2, ex-
pected cluster counts are indicated in brackets after the workload
names. Actual cluster counts are not always integral because each
value is an average of 5 runs, and DBSCAN sometimes produces
slightly different cluster counts for different samples.

5.1 ACD-based DBSCAN
ACD-based DBSCAN with (Eps, minPts) = (0.2, 10)—henceforth,
ACD(0.2, 10)—is an excellent starting point for clustering data-
base transactions. Table 1 captures ACD(0.2, 10)’s performance
against a baseline provided by the well-known Euclidean distance
function. In the Euclidean baseline, Eps and minPts values are set
using a heuristic provided by the DBSCAN authors in a subse-
quent paper [14]. We will term the resulting baseline SEKX after
the author names. The heuristic itself works as follows. Let the
dimensionality of a workload—defined to be maximum feature
vector length—be DIM. Then:

• Heuristic value of Eps = (2 ∗ 𝐷𝐼𝑀) − 1
• Heuristic value of minPts = (2 ∗ 𝐷𝐼𝑀)

ACD(0.2, 10) handily outperforms SEKX in 8 out of 13 work-
loads, and equally important, is never worse than SEKX in the
remaining 5 workloads. For 9 workloads, SEKX puts all of the
transactions into single clusters, and hence is ineffective.

The following observations—cross-referenced in the ‘Com-
ments’ column of Table 1—provide reasons why ACD(0.2, 10)’s
cluster counts are slightly off in a few cases.

(1) Epinions cluster count is off by 1 because a transaction
type selects from Review and Trust tables separately, and
another type selects from their joined version. Both end up
in the same cluster because the feature vector construction
in Section 2.1 currently does not distinguish them.

(2) YCSB cluster count is off by 1 because two of the transac-
tion types have point and range selects, but are otherwise
identical, and that difference is currently not captured as
a feature.

(3) AuctionMark and SEATS produced the correct cluster
counts withACD(0.15, 10) andACD(0.15, 15), respectively.

Observations 1 and 2 suggest possible features that can be
extracted, and added to the feature vector.

5.2 Sensitivity analysis of ACD
When used along with ACD, DBSCAN is not very sensitive to
various Eps andminPts values. Table 2 captures ACD results for 6
sets of parameters. Approximately, cluster membership criterion
becomes more stringent as one reads across a row, and hence clus-
ter counts can be expected to diminish from left to right. As can
be seen, ACD is not very sensitive to parameter values for most of

2Wikipedia turns out to be hard to cluster because two of the transaction types
have frequencies of only 0.07% each, and are rarely present in samples. One can
ignore ‘Wikipedia’ results, but they are included for completeness.
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Table 1: ACD (0.2, 10) versus SEKX (2 ∗ 𝐷𝐼𝑀 − 1, 2 ∗ 𝐷𝐼𝑀)

Workload & DIM Avg. cluster Comments
expected cluster count
count ACD SEKX

AuctionMark (9) 9 9.4 1 Observation 3
Epinions (9) 2 8 1 Observation 1
SEATS (6) 8 7 1 Observation 3
SIBench (2) 1 2 2
SmallBank (6) 5 6 1
sysbench_ro (10) 1 10 10
sysbench_rw (10) 5 10 10
TATP (7) 3 7 1
TPC-C (5) 10 5 1
Twitter (5) 2 5 1
Voter (1) 4 1 1
Wikipedia (5) 7 2 1 Footnote 2
YCSB (6) 2 5 1 Observation 2

the workloads. Even when it is (AuctionMark and sysbench_rw;
and to a lesser extent SEATS and TPC-C), graceful degradation is
observed. Therefore, it is not crucial for a DBA to get the values
of Eps and minPts spot on, and any reasonable values should
perform respectably well. ‘Sysbench_rw’ is tricky to cluster for
its highly symmetrical transactions—all of the transactions are
roughly equidistant from all of the other transactions—but two
ACD configurations perform well.

Table 2: ACD with different Eps andminPts values.

Workload & Avg. cluster count
expected ACD ACD ACD ACD ACD ACD
cluster count (.20,10) (.15,10) (.15,15) (.10,10) (.10,15) (.05,20)

AuctionMark (9) 9.4 9.4 5.4 8.2 5.4 4
Epinions (9) 8 8 8 8 8 8
SEATS (6) 7 7.4 6 8.4 7 5.2
SIBench (2) 2 2 2 2 2 2
SmallBank (6) 6 6 6 6 6 6
sysbench_ro (10) 10 10 10 10 10 10
sysbench_rw (10) 10 9 0.6 0 0 0
TATP (7) 7 7 7 7 7 7
TPC-C (5) 5 6 5.8 6 5.8 4.8
Twitter (5) 5 5 5 5 5 5
Voter (1) 1 1 1 1 1 1
Wikipedia (5) 2 2 2 2 2 2
YCSB (6) 5 5 5 5 5 5

6 PERFORMANCE TROUBLESHOOTING
USING TRANSACTION CLUSTERING

Experiments in this section demonstrate how cluster-level perfor-
mance monitoring simplify debugging of several real-life prob-
lems faced by cloud DBA’s.

6.1 Cluster signatures
OLTP-Bench’s SmallBank workload simulates some operations of
a bank, and produces the cluster signatures shown in Fig. 3 with
10-terminal workload, and scale-factor of 1. The three sub-plots
capture the average values of the three transaction-cluster-level
metrics: lock time (in ms); number of rows examined; and TPS

Figure 3: SmallBank’s cluster signatures (10-terminal workload).

(transactions/sec). Each sub-plot contains six lines—one for each
of the transaction clusters identified.3

From SmallBank cluster signatures, a cloud DBA can learn
several things about the workload. First, six clusters means that
there are six types of transactions in SmallBank—as OLTP-Bench
confirms. Second, cluster signatures are discernible. Third, small
signature variations exist because each data point aggregates 5
seconds worth of transactions (which themselves execute in a
multi-tasking environment). Fourth, all of the transactions in a
given cluster examine the same number of rows—a SmallBank pe-
culiarity. Fifth, cluster exemplars reveal that the only cluster with
read-only transactions is cluster 1—explaining its its highest TPS
values. Sixth, when 100 terminals generate workload, the same
six clusters form (graphs not included to save space), thereby con-
firming that clusters are load independent—a practically useful
promise of clustering.

6.2 Identification of transaction rollbacks
Transaction rollbacks are normal DBMS occurrences, but some-
times their frequencies become problematic. If rollbacks are lim-
ited to a transaction type, cluster-level monitoring helps because
unexpected additional clusters form.

The TPC-C benchmark [20] has five well-known transaction
types. Rollbacks are demonstrated using the Payment transaction
by modifying its code such that after submitting 2 out of its
7 statements, it rolls back with 20% probability—simulating a
problematic high-frequency rollback. To make example even
more realistic, a second rollback—simulating a normal and rare
DBMS occurrence—happens after the sixth statement with 0.1%
probability (overall probability 0.8 × 0.1 = 0.08%). Because the
problematic rollbacks are numerous, they should form their own
cluster, whereas the normal rollbacks should not.

Figure 4: Payment transaction rolls back with 20% probability
causing an unexpected sixth cluster (Cluster 1) to appear.

3The second subplot contains only five lines because clusters 1 and 3 examine 3
rows each, and the plotting software cannot distinguish two overlapping lines.
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Themodified TPC-C benchmark produces the results shown in
Fig. 4. Usually, TPC-C produces five clusters, but six are found. A
sample exemplar from Cluster 1 reveals the ‘incomplete’ Payment
transaction with a telltale rollback issued after two statements.
UPDATE WAREHOUSE SET W_YTD = W_YTD + 1704 . 6 8 9 9 4 1 4 0 6 2 5

WHERE W_ID = 2
SELECT W_STREET_1 , W_STREET_2 , W_CITY , W_STATE , W_ZIP ,

W_NAME FROM WAREHOUSE WHERE W_ID = 2
rol lback

The normal (rare) DBMS rollbacks (0.08% probability) do not
form a cluster because they do not meet DBSCAN’s density re-
quirement mentioned in Section 2.3. High-frequency rollbacks
are difficult to identify if cluster-level statistics are not kept. Ap-
plications often resubmit transactions in case of rollbacks, and
users only notice andwonder about degraded performance. An in-
cident report would cause DBA’s or programmers to dig through
voluminous logs to even begin suspecting a culprit.

6.3 Performance drift
Performance drift refers to a situation in which one (or just a
few) cluster’s performance drifts from its norm. Many situations
can cause performance drifts. Here is a typical one: A DBA might
forget to reinstate an index that (s)he deliberately dropped during
a bulk load operation.

Figure 5: An index made invisible during [615, 685].

To simulate a performance drift, a secondary index (used by
two out of the five TPC-C transactions) on the CUSTOMER table
is made invisible4 to the query optimizer during a portion of the
run. When the index is made unavailable, the query optimizer
has to use table scans instead of index seeks. As can be seen in
Fig. 5, average row counts show dramatic increases (drifts) for
clusters 0 and 2 during the interval [615, 685].5

When the performance of only one cluster drifts, objects re-
lated to only that cluster (e.g., tables, indexes, statistics) are good
starting points for debugging. Without cluster-level statistics,
such a diagnosis may require considerably more work.

6.4 System-wide performance problem
System-wide performance problems are caused by such things as
a failed network card, operating system reboot, failed disk, and
runaway process hogging CPU’s. If all of the clusters experience
simultaneous degraded performances, a system-wide issue may
be the cause. One such situation is created using a CPU-hogging
program that spawns as many processes as the number of CPU
cores on the computer (8), and then making them run infinite
‘while’ loops—thereby creating a CPU bottleneck.
4MySQL command used was: ALTER TABLE CUSTOMER ALTER INDEX
IDX_CUSTOMER_NAME INVISIBLE;
5As an aside, if an invisible index makes no difference to any cluster’s performance,
it might be safe to drop—the reason why that feature was added to MySQL.

Figure 6: Average durations increase during [300, 375].

In the resulting graphs shown in Fig. 6, during the interval
[300, 375], average durations of all of the clusters show unmistak-
able jumps. After about 375, when the offending program is killed,
all five average durations return to their baseline values. Interest-
ingly, average lock times are largely unaffected, indicating that
for the few transactions that did manage to execute during CPU
saturation, lock time did not take a hit. Such observations should
provide the DBA a good starting point to formulate a hypothesis
before beginning a detailed investigation.

6.5 Bottleneck analysis
Cloud applications run on pre-provisioned VM’s. Because applica-
tion behaviour is relatively unknown, a bottleneck may develop—
in CPU, memory, disk I/O, network I/O, and so on. Furthermore,
bottlenecks may vary by transaction types. Non-cloud DBA’s
are used to monitoring such operating system-level performance
counters as vmstat, iostat, and netstat in Linux for bottleneck
identification, but cluster-level statistics offer a complementary
method that can provide additional help.

To study whether a VM has sufficient memory, its memory is
reduced on the fly from 16 GB to 3 GB while TPC-C workload
runs. Such a drastic change in memory allocation is only for
demonstration: typical changes should be much smaller.

Figure 7: Memory reduces from 16 GB to 3 GB at timestamp 120.

In the results captured in Fig. 7, memory reduction happens at
timestamp 120 onward. The average TPS values before and after
that interval show no discernible changes. There is a noticeable
drop at 120 as the operating system seems to adjust to the new
memory setting, but soon, normal service resumes. The ‘Avg.
lock time’ metric is also mostly unaffected, and therefore, one
can conclude that this VM is well-provisioned for memory.

In the next variation, CPU is constrained. Changing CPU count
in KVM requires a machine restart, and therefore, an approach
similar to the one in Section 6.4 is taken, except that 7 out of the
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8 cores are kept busy running infinite ‘while’ loops. The results
appear in Fig. 8.

Figure 8: CPU saturation during the interval [3960, 4025].

The CPU bottleneck spans the interval [3960, 4025] during
which reduced ‘Avg. TPS’ values are visible. The highest ‘Avg.
TPS’ values are for clusters 2 and 4 (read-only transactions Stock-
Level and Order-Status, respectively). Outside of the CPU bottle-
neck, those values are somewhat close, but during the bottleneck,
Order-Status transaction’s performance takes a bigger hit (Y-axis
is log-scale) suggesting Order-Status is much more sensitive to
CPU than Stock-level is in this environment. If Order-Status is
deemed important (say because customers check statuses their
orders often), it may make sense to over-provision for CPU rather
than for memory if a choice is to be made between the two.

7 RELATEDWORK
Identifying transaction clusters from SQL text arriving at a data-
base server is important for two reasons. First, applications de-
ployed in cloud environments are often web-applications [17]
using object-relational mappings to submit SQL queries, and
do not use stored procedures. Second, as noted by Stonebraker
et al. [19], because of SQL’s ‘one language fits all’ approach,
transaction code may use a mix of stored procedures, prepared
statements, and Java/C++/C# code.

Clustering itself is a broad and well-studied topic [22]. SQL
query clustering and classification has been studied under two
granularities: query-level and transaction-level. SQL query fea-
tures previously tried include terms in SELECT, JOIN, FROM, GROUP
BY, and ORDER BY clauses, table names, column names, normal-
ized estimated execution costs [7, 9]; and features have been
converted into vectors, graphs, or sets [7, 18]. As a general ob-
servation, fewer features suffice in self-similar OLTP workloads;
ad-hoc workloads require more features. Such distance functions
as cosine, Jaccard, and Hamming have been tried for clustering
SQL queries [1, 9, 18], although only the Euclidean has been tried
at the transaction level before [5]. Before this research, feature ex-
traction has mined SQL text from DBMS logs [9, 18], or MaxScale
proxy server [11]; server-side feature extraction is novel.

8 CONCLUSIONS AND FUTURE WORK
This research makes a case that in addition to user, table, index,
and schema level monitoring provided, DBMS’s should start to
provide transaction-cluster-level monitoring. In applications de-
ployed in the cloud, and for OLTPworkloads, that additional level
simplifies debugging of performance problems: unexpected trans-
action rollbacks, performance drifts, bottleneck identifications,
and so on. Angular cosine distance-based DBSCAN is an improve-
ment over Euclidean-based DBSCAN with SEKX heuristic [14]
(better clusters and simplified DBSCAN parameter tuning).

Future work may investigate the following features for trans-
action clustering: column names to possibly identify index issues;

predicate types (point queries vs. range queries) and counts; ac-
cess paths used; isolation level; number of sorts; join tables; and so
on. Multiple cluster-level signatures may help because an applica-
tion may have distinct ‘peak’ and ‘off-peak’ behaviours. Whether
ACD is suitable with such clustering algorithms as BIRCH [24]
and 𝑘-means [8] remains to be seen. Server-side feature extrac-
tion can be attempted in other modern database systems using
minor extensions to preexisting scaffoldings.
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ABSTRACT
Modern applications require managing large data in main mem-
ory. Adaptive indexing allows for building an index incremen-
tally in response to queries, rather than upfront; in its default
form, it treats each attribute independently. However, several
data exploration tasks involve multidimensional range queries.
Two recent proposals, CKD and QUASII, address the need for
multidimensional (especially spatial) adaptive indexing. Both
adaptively build an augmented KD-Tree. Still, no previous work
has compared these two methods to each other. We conduct the
first experimental comparison of CKD and QUASII. Further, we
propose a lightweight variant of CKD, the Lazy CKD, which per-
forms data-driven along with query-driven actions for the sake
of robustness, and a set of hybrid strategies that combine good
convergence and low initialization cost. Our study on synthetic
and real data and workloads shows that the enhanced variants
of CKD have an advantage in terms of speed of convergence, yet
QUASII may eventually achieve lower response times.

1 INTRODUCTION
Scientists and analysts need to query and explore large amounts
of data in dynamic environments where new data arrive contin-
uously, without building a full index in advance. This need calls
for self-organizing DBMSs that eschew human administration.
Adaptive indexing [8], such as database cracking [4, 6], accommo-
dates this need by building and refining a main-memory index
incrementally, in response to queries and arriving data. Cracking
is applied within the select operator in a column-oriented data-
base [7, 10]. A stochastic alternative [4] creates random cracks so
as to perform robustly on skewed workloads.

Despite the intense interest in adaptive indexing, suchmethods
for multidimensional data have been examined scantily. Recently,
two solutions appeared: the QUery-Aware Spatial Incremental
Index [12] (QUASII) and the Cracking KD-Tree (CKD) [5] (CKD).
Both incrementally build an augmented KD-tree [1]; both con-
clude that their query response times converges to that of static
approaches after processing a sufficient amount of queries; how-
ever, no comparison among these two works has been attempted.

In this paper, we conduct the first comparison of these two
approaches [5, 12]; we also propose a lightweight CKD variant,
the Lazy CKD (LCKD), incorporate stochastic cracking [4] strate-
gies to improve robustness, and propose hybrid strategies that
combine desirable traits of different solutions. We evaluate all
methods on both synthetic and real datasets and workloads.

∗The two first authors contributed equally to this work.
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2 1D ADAPTIVE INDEXING
Cracking [6] progressively partitions and sorts a column by
quicksort while answering range queries. A partition containing
one or both query range bounds is further split, or cracked, up
to a minimum size. A partition containing the entire interval is
split into three. Cracking directly into three partitions is possi-
ble [6], yet cracking into two partitions twice instead yields better
results [13]. Listing 1 presents the basic cracking algorithm.

Listing 1: Crack in two [6].
1 def crack_in_two(pivot 𝑝 , value 𝑙𝑜𝑤, value ℎ𝑖𝑔ℎ):
2 𝑥1 ← point at position 𝑙𝑜𝑤
3 𝑥2 ← point at position ℎ𝑖𝑔ℎ
4 while ( position (𝑥1) < position((𝑥2)):
5 if (value (𝑥1) < 𝑝):
6 𝑥1 ← point at next position
7 else :
8 while (value (𝑥2) ≥ 𝑝 &&
9 position (𝑥2) > position(𝑥1)):
10 𝑥2 ← point at previous position
11 exchange(𝑥1 , 𝑥2)
12 𝑥1 ← point at next position
13 𝑥2 ← point at previous position

Stochastic Cracking [4] adds data driven cracking actions
to standard query driven ones, which may perform poorly on
skewed workloads. The Data Driven Center (DDC) algorithm
cracks the partition where a query bound lies at the median recur-
sively, until obtaining a sufficiently small partition, whereupon
it cracks at the query bound. Data Driven Random (DDR) avoids
median-finding by choosing a random pivot. The DD1C and
DD1R variants perform only one median or random crack. Still,
these strategies retain the overhead of query-driven cracking. To
ameliorate it, Materialization-based DD1R (MDD1R) [4] cracks
the piece in which a query bound lies only on a single random
pivot and materializes the result. Progressive MDD1R [4] shares
the burden across queries, allowing crackin to be partially com-
pleted. Refined variants use the median of a sample set instead
of a single random pivot, with performance gains [18].

Adaptive Merging [2] splits the data into arbitrary initial
partitions, from which it progressively extracts query results into
to a final sorted partition by incremental mergesort; it achieves
faster convergence than cracking at the cost of high initialization
cost [8]. A hybrid combination of the two [8] applies cracking
on initial partitions and sorting on the final one to achieve both
lightweight initialization and quick convergence.

Multidimensional Cases. A first study in adaptive multidi-
mensional index structures [16] was about reorganizing, rather
building, data-oriented hierarchical indexes, in response to a
workload, so as to improve performance. Recently, QUASII [12]
and CKD [5] extended adaptive indexing to the multidimensional
case, by applying cracking on one dimension per tree level to con-
struct a KD-tree-like structure. To our knowledge, these works
have not been compared. Next, we discuss them in detail.

3 MULTI-D ADAPTIVE INDEXING
Augmented KD-tree. BothQUASII [12] andCKD [5] build their
indexes on top of an augmented KD-tree [1], progressively re-
distributing data from the root node to newly created children

Short Paper

 

 

Series ISSN: 2367-2005 469 10.5441/002/edbt.2021.53

https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2021.53


EDBT 2021, March 23-26, 2021, Nicosia, Cyprus Aarup and Hammershøj, et al.

nodes while processing queries, allowing for a variable number
of children per node. As new children nodes are added irregularly,
the tree may lose the property of being balanced.

Listing 2: QUASII query [12].
1 def query(query 𝑞, data 𝐷 , slices 𝑆 , result 𝑅):
2 𝑆′ ← ∅ // to store newly created (refined) slices
3 𝑑𝑖𝑚 ← 𝑆 [0] .𝑙 // current level/dimension of slices in S
4 𝑖 ← binarySearch(𝑆 , 𝑙𝑜𝑤𝑒𝑟 (𝑞 [𝑑𝑖𝑚]))
5 while (𝑖 < |𝑆 | and 𝑙𝑜𝑤𝑒𝑟 (𝑆 [𝑖 ] .𝑏𝑜𝑥 [𝑑𝑖𝑚]) ≤ 𝑢𝑝𝑝𝑒𝑟 (𝑞 [𝑑𝑖𝑚])):
6 if 𝑞 ∩ 𝑆 [𝑖 ] .𝑏𝑜𝑥 = ∅ then continue
7 𝑆′′ = refine(𝑆 [𝑖 ], 𝑞, 𝐷)
8 for each 𝑠 ∈ 𝑆′′:
9 if 𝑞 ∩ 𝑠.𝑏𝑜𝑥 ≠ ∅:
10 if 𝑠.𝑙 is the bottom level :
11 for 𝑗 ∈ 𝑠.𝑖𝑑𝑠 :
12 if 𝐷 [ 𝑗 ] ∩ 𝑞 ≠ ∅ :
13 𝑅 ← 𝑅 ∪ 𝐷 [ 𝑗 ]
14 else :
15 if |𝑠.𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 | == 0 :
16 createDefaultChild (𝑠)
17 query(𝑞, 𝐷 , 𝑠.𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛, 𝑅)
18 𝑆′ ← 𝑆′ ∪ 𝑆′′
19 𝑖 ← 𝑖 + 1
20 𝑆 ← 𝑆 ∪ 𝑆′
21 sort (𝑆 )

QUASII [12] comprises a hierarchical index structure of depth
equal to the dimensionality 𝑑 ; the index starts off as a root node
containing all data objects, unsorted, and grows while process-
ing range select queries. A bottom-level node may be split if it
contains more than 𝜏 objects; thus, QUASII slices a space with
𝑛 objects up to 𝑟 =

⌈
𝑑
√

𝑛/𝜏
⌉
times in each dimension; at level ℓ

above the bottom the threshold becomes 𝜏 [ℓ] = 𝑟 ℓ𝜏 . Listing 2
shows how QUASII processes a multidimensional range query
𝑞; it finds the first slice hitting 𝑞 by binary search (Line 4) along
dimension (tree level) 𝑑𝑖𝑚, on which slices are sorted along. It
then scans and refines (i.e., slices further) all slices intersecting 𝑞
(Lines 5–7), cracking them up to size 𝜏 , by both query bounds
and artificial cracks. If a resulting slice at the bottom level inter-
sects 𝑞 (Line 9), qualifying data objects therein are appended to
the result 𝑅 (Lines 10–13); in case the slice is at an internal level,
QUASII recursively queries that slice’s children (Lines 15–17).
After refining all relevant slices in level (dimension) 𝑑𝑖𝑚, QUASII
resorts the slices therein (Line 21) with respect to the lower bound
of their bounding boxes. After recursively traversing, cracking,
and resorting slices as needed, it returns the range query result 𝑅.

Listing 3: Refine [12].
1 def refine ( slice 𝑠 , query 𝑞, data 𝐷):
2 if ( |𝑠 | ≤ 𝜏 [𝑠.𝑙]):
3 return {𝑠}
4 𝑆 ← ∅
5 𝑡 ← determineSliceType(𝑠 ,𝑞)
6 switch(𝑡 ):
7 case both: 𝑆′ ← sliceThreeWay(𝑠 , 𝑞, 𝐷)
8 case one: 𝑆′ ← sliceTwoWay(𝑠 , 𝑞, 𝐷)
9 default: 𝑆′ ← sliceArtificial(𝑠 , 𝑞, 𝐷)
10 for each 𝑠 ∈ 𝑆′:
11 if ( |𝑠 | > 𝜏 [𝑠.𝑙 ] and 𝑞 [𝑠.𝑙 ] ∩ 𝑠.𝑏𝑜𝑥 [𝑠.𝑙 ] ≠ ∅):
12 𝑆′′ ← sliceArtificial(𝑠 , 𝑞, 𝐷)
13 𝑆 ← 𝑆 ∪ 𝑆′′
14 else :
15 𝑆 ← 𝑆 ∪ 𝑠
16 return 𝑆

Listing 3 illustrates the process that refines each slice 𝑠 that
intersects the query 𝑞 along the examined dimension 𝑠 .𝑙 and
exceeds the size threshold 𝜏 [𝑠 .𝑙]. QUASII cracks on any bound
of 𝑞 along dimension 𝑠 .𝑙 that lies within 𝑠 (Lines 7–8); otherwise,
if𝑞 contains 𝑠 along 𝑠 .𝑙 (i.e., both bounds of𝑞 lie outside 𝑠), it slices
based on an artificially introduced coordinate 𝑐 = ⌊ (𝑥𝑙 + 𝑥𝑢 )/2⌋
(Line 9), where 𝑥𝑙 (𝑥𝑢 ) is the lower (upper) bound of 𝑠 along 𝑠 .𝑙 ; it
recursively slices further each produced slice that exceeds the 𝜏
size threshold and overlaps with𝑞 (Lines 11–12), otherwise adds it
to the output (Line 15). Listing 4 presents the recursive procedure
for such artificial slicing, which configured to handle multiple
points having the same coordinate when cracking (Line 5).

Listing 4: Artificial slicing.
1 def sliceArtificial ( slice 𝑠 , query 𝑞, data 𝐷):
2 if |𝑠 | ≤ 𝜏 [𝑠.𝑙 ]:
3 return [𝑠 ]
4 𝑐 = ⌊ (𝑥𝑙 + 𝑥𝑢 )/2⌋
5 slices = crack(𝑠 , 𝑐 , 𝑠.𝑙 )
6 𝑟𝑒𝑡 = []
7 for 𝑠′ ∈ slices:
8 𝑟𝑒𝑡 = 𝑟𝑒𝑡 ∪ sliceArtificial(𝑠′, 𝑞, 𝐷)
9 return 𝑟𝑒𝑡

QUASII represents each spatial data object using its lower
coordinate only along any dimension. A slice is first defined by
its cracking coordinates, or cuts, yet obtains its own minimum
bounding box (MBB) embracing the spatial extent of each object
therein, with overlapping among slice MBBs allowed. To avoid
the MBB computation overhead, QUASII computes MBB bounds
for a slice 𝑠 only on the dimensions 𝑠 has been fully refined
along. During slice refinement and binary search, to capture any
result whose representative corner point lies in an unrefined slice
outside the query range, QUASII extends the lower coordinate
of 𝑞 by the maximum object extent in each unrefined dimension,
as in [15]. QUASII was designed as an adaptive spatial index
for data in 2 or 3 dimensions; in our experiments we test its
performance on higher dimensionality too.

Cracking KD-Tree (CKD) [5] also lets an augmented KD-
Tree grow through queries, and uses a minimum node size thresh-
old 𝜏 . However, it assigns dimensions to tree levels in round-robin
fashion by amodulo operation, allowing for multiple levels crack-
ing on the same dimension. Listing 5 shows howCKD processes a
multidimensional range query 𝑞 on a slice 𝑠 ; if 𝑠 is fully contained
within 𝑞 (Line 2), it extracts the contents of the given slice 𝑠 , oth-
erwise traverses any children of 𝑠 (Lines 4–5); if 𝑠 has no children
and contains fewer than 𝜏 elements, a check of those vs. 𝑞 yields
the result (Lines 6–7). If none of the above is the case, CKD cracks
the slice; it further queries resulting slices lying outside the query
bounds on 𝑑𝑖𝑚, to refine the index on other dimensions (Line 13),
and those within the query bounds, to obtain results (Line 16).

Listing 5: CKD query.
1 def query(query 𝑞, slice 𝑠 , dimension 𝑑𝑖𝑚):
2 if ( isIncluded (𝑠 , 𝑞)):
3 return extractPoints (𝑠 , 𝑞)
4 if (𝑠.𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 > 0):
5 return traverseTree (𝑠 , 𝑞, 𝑑𝑖𝑚)
6 if ( |𝑠 | ≤ 𝜏 ):
7 return extractPoints (𝑠 , 𝑞)
8 𝑠𝑙𝑖𝑐𝑒𝑠 ← crack(𝑠 , 𝑞, 𝑑𝑖𝑚)
9 𝑛𝑒𝑥𝑡𝐷𝑖𝑚 ← 𝑑𝑖𝑚 + 1 mod 𝑞.𝑚𝑎𝑥𝐷𝑖𝑚
10 for 𝑠′ in 𝑠𝑙𝑖𝑐𝑒𝑠 :
11 s . add_slice (𝑠′)
12 if (𝑠′ ∩ 𝑞 == ∅):
13 query(𝑞, 𝑠′, 𝑛𝑒𝑥𝑡𝐷𝑖𝑚)
14 else
15 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡𝑆𝑙𝑖𝑐𝑒 ← 𝑠′
16 return query(𝑞, 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡𝑆𝑙𝑖𝑐𝑒 , 𝑛𝑒𝑥𝑡𝐷𝑖𝑚)

Listing 6 shows the tree taversal procedure. CKD finds the
first slice within the bounds of 𝑞 by binary search (Line 3) and
examines all slices within those bounds (Line 4–8), adjusting
query bounds for the current dimension to fit the data in the slice
(Line 6) and builds the result by querying those slices (Line 7).

Listing 6: CKD and LCKD traverse tree.
1 def traverseTree ( slice 𝑠 , query 𝑞, dimension 𝑑𝑖𝑚):
2 𝑟𝑒𝑠 ← []
3 𝑖 ← binarySearch(𝑆 , 𝑙𝑜𝑤𝑒𝑟 (𝑞 [𝑑𝑖𝑚]))
4 while (𝑖 < |𝑠 | and 𝑙𝑜𝑤𝑒𝑟 (𝑠 [𝑖 ]) ≤ 𝑢𝑝𝑝𝑒𝑟 (𝑞 [𝑑𝑖𝑚])):
5 𝑠′ ← 𝑠 [𝑖 ]
6 𝑞′ ← adjustQueryToSliceBoundaries(𝑞, 𝑠′, 𝑑𝑖𝑚)
7 𝑟𝑒𝑠 ← 𝑟𝑒𝑠 ∪ query(𝑞′, 𝑠′, 𝑛𝑒𝑥𝑡𝐷𝑖𝑚)
8 𝑖 ← 𝑖 + 1
9 return 𝑟𝑒𝑠
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4 DISCUSSION AND ENHANCEMENTS
Lazy Cracking KD-Tree. The CKD [5] gratuitously refines all
resulting slices after a crack on the query range according to
query bounds. This gratuitous refinement is redundant; as it suf-
fices to crack the pieces overlapping the query. We propose a
variant that does so, the Lazy Cracking KD-Tree (LCKD). List-
ing 7 displays how LCKD processes a query, the change seen
in Lines 10–13. In each dimension, LCKD only cracks partitions
between query bounds, rather than cracking all pieces in excess.

Listing 7: LCKD query.
1 def query(query 𝑞, slice 𝑠 , dimension 𝑑𝑖𝑚):
2 if ( isIncluded (𝑠 , 𝑞)):
3 return extractPoints (𝑠 , 𝑞)
4 if (𝑠.𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 > 0):
5 return traverseTree (𝑠 , 𝑞, 𝑑𝑖𝑚)
6 if ( |𝑠 | ≤ 𝜏 ):
7 return extractPoints (𝑠 , 𝑞)
8 𝑠𝑙𝑖𝑐𝑒𝑠 ← crack(𝑠 , 𝑞, 𝑑𝑖𝑚)
9 𝑛𝑒𝑥𝑡𝐷𝑖𝑚 ← 𝑑𝑖𝑚 + 1 mod 𝑞.𝑚𝑎𝑥𝐷𝑖𝑚
10 for 𝑠′ in slices :
11 s . add_slice (𝑠′)
12 if (𝑠′ ∩ 𝑞 ! = ∅):
13 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡𝑆𝑙𝑖𝑐𝑒 ← 𝑠′
14 return query(𝑞, 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡𝑆𝑙𝑖𝑐𝑒 , 𝑛𝑒𝑥𝑡𝐷𝑖𝑚)

Intuitive ComparisonWe now now have three strategies to
compare: QUASII, CKD, and LCKD. All start with a tree consist-
ing of a single node, and progressively build a hierarchical index
while answering queries. In QUASII, the tree height is equal to
the number of dimensions. In CKD and LCKD, the maximum
tree height is determined by the size threshold 𝜏 for cracking
a partition. Figure 1 sketches the tree structures resulting after
processing a single query under these strategies in the two di-
mensions; each tree layer corresponds to a different dimension.
In CKD, there is an initial three-way crack along dimension 𝑥 ,
followed by cracking all resulting pieces along query bounds on𝑦.
LCKD only cracks the 𝑥-partition relevant to the query along
the bounds on 𝑦. The tree LCKD builds is less balanced than that
of CKD, as successive queries may refine the index in the same
region. Lastly, QUASII fully refines the entire part of the index
relevant to the query in each dimension, making the tree wider,
down to the minimal partition size 𝜏 [12]; CKD cracks the chunk
relevant to the query, as well as pieces irrelevant to the query,
on all dimensions according to query bounds, yet not necessarily
down to final partitions; LCKD refines only the relevant part of
the data along the query bounds in each dimension.
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Figure 1: Three cracking strategies in action.
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Figure 2: QUASII rigidity; Q1[(2,4)–(5,7)], Q2[(3,6)–(6,9)]
Figure 2 illustrates the problem that would arise in caseQUASII

did not perform full refinement. Assume a query on the range
defined by lower left coordinates (2, 4) and upper right coordinate
(5, 7), triggering a cracking of the 𝑥 dimension on range [2, 5]

and the 𝑦 dimension on range [4, 7]. Consider two points, (4, 2)
and (2, 8), which belong in the 𝑥-range [2, 5], but get separated
by the𝑦-interval [4, 7]. If a subsequent query requested the range
from (3, 6) to (6, 9), we should crack the 𝑥 dimension at 3, hence
swap points (2, 8) and (4, 2), destroying the sorted order on 𝑦. To
prevent such an eventuality, QUASII cracks exhaustively upon
the first query on any data range. Given this rigidity of QUASII,
we discuss stochastic cracking on LCKD only.

X:

Y:

kd-R
l h r

r l h

Figure 3: kd-R in action.
Multidimensional stochastic crackingAs described in Sec-

tion 2, we may spur query-driven cracking via data-driven cracks,
to achieve faster convergence with a slight initialization over-
head [4]. In [4], the DD1R strategy emerged as most commend-
able. We mend LCKD using DD1R in the multidimensional case;
we call the resulting method kd-R, where R stands for random.
In each dimension, when cracking a data segment, kd-R cracks
at a random point in addition to the query bounds, as Figure 3
shows. Next, we examine other ways to improve upon LCKD.

Hybrid crackingWe propose kd-HR, a hybrid strategy that
aims to combine the fast convergence of QUASII and the low
initialization cost of LCKD; kd-HR initially behaves as kd-R, yet
switches to QUASII and stops creating new levels once the tree
reaches a specified threshold. We design two kd-HR variants,
depending on the nature of the threshold: kd-HR𝑠 , with a thresh-
old on node size, and kd-HRℓ , with a threshold on tree height.
Figure 4 shows the operation of kd-HR on the last level before
switching to QUASII. kd-HR postpones QUASII-like operation
until the data becomes sufficiently small (kd-HR𝑠 ) or the area in
question has been refined enough times (kd-HRℓ ); this precaution
should bring about faster convergence, as the tree stops growing
further on branches switching to QUASII.
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Figure 4: kd-HR in action.

5 EXPERIMENTAL STUDY
Here, we present our experimental study featuringQUASII, CKD,
and their stochastic and hybrid variants. We implemented all
methods1 in C++ and compiled in g++ 7.4.0, and conducted ex-
periments on a 10-core Intel Xeon CPU E5-2687W v3 machine at
3.10GHz with 396G RAM running Ubuntu 18.04.3 LTS.

ID Name Size Distribution
0 Random 240000 Uniform distribution
1 Skyserver full 722711000 Skyserver data
2 Neuroscience 1000000 Neuronal data

Table 1: Datasets
Data. Table 1 lists our data sets. Random is a synthetic con-

taining points distributed uniformly at random between 0 and
1 in each dimension; the default dimensionality is 2. The Sky-
server data are downloaded from [14], a public astronomical data
repository, by the CasJobs functionality. We chose two attributes,
declination, dec, and right ascension, ra. To experiment with data

1The code is available at https://github.com/MULTIDAI/MultiDAI
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of varying size, we construct trunacted versions of this data, se-
lecting every 𝑖th point, 𝑖 ∈ {2, 4, 8, . . . , 512}. The Neuroscience
dataset consists of 3-dimensional model of a neocortical column
in a brain tissue with MBBs matched to neuronal axons.

Name Size Distribution
Random 10000 Random distribution
Sequential 1000 Queries along diagonal
Skyserver chronological 1000000 Skyserver workload
Random clusters 50000 Synthetic normal clusters

Table 2: Workloads
Workloads. Table 2 lists our query workloads. The first syn-

thetic workload, Random, issues range queries at locations se-
lected uniformly at random, with extent 1% of the value domain
per dimension. The second synthetic workload, Sequential, is-
sues a non-overlapping sequence of consecutive range queries
along the diagonal of the domain of celestial coordinates, again
with extent 1% of the value domain per dimension; as this work-
load explores the data space incrementally in small steps, the
index constructed under its guidance never gets an opportunity
to exploit previous indexing. Skyserver workloads derive from
the SqlLog table [14], containing queries executed by scientists
in nonrandom patterns, focusing on one sky area at a time [4].
We filtered the range selection predicates on declination dec
and right ascension ra. We use three versions of this workload:
chronological preserves the original order of queries; sorted on
x contains the same queries, sorted on lower dec coordinate;
sorted on size sorts them on total area of query range. The latter
two workloads present a skewed pattern resembling the skewed
sequential workload we apply on synthetic data. The Random
cluster workload is synthetically generated for use with the Neu-
roscience data; queries belong to Gaussian clusters surrounding 5
randomly chosen centers in the range of the data values, with a
maximum query volume of 0.01% of the whole data volume.

Compared methods. We juxtapose QUASII [12]; CKD [5];
LCKD; kd-R; kd-HR𝑠 switching to QUASII when nodes that are
smaller than 𝑠 = 1000; kd-HRℓ switching to QUASII after ℓ = 6
levels; kd-C, a variation of kd-R that performs data-driven cracks
on the center of the value domain; Static, a static implementation
of a KD-tree. Previous works have already comparedQUASII [12]
to a static R-tree [3] and CKD [5] to a static KD-tree [1].

Tree Synthetic Skyserver Neuroscience
QUASII 400 40 200
CKD 1000 170 400
LCKD 400 90 200
kd-R 400 80 200
kd-C 400 70 200
kd-HR 400 80 200

Table 3: Chosen 𝜏 values for synthetic and real data.
Parameter tuning. All methods require a 𝜏 parameter — the

minimal cardinality of a data slice thatmay be further cracked.We
conducted a series of experiments on the Random data (Table 1),
with the Random and Synthetic workloads (Table 2). For each
method, we chose as default the value of 𝜏 for which we observed
best performance. Table 3 presents those choices. In size-based
hybrid, kd-HR𝑠 , we chose 𝑠 through experimentation with several
values; 𝑠 = 1000 yielded the best performance.

Random workload.We first examine the Random data with
the Random workload. Figure 5a presents time per query. Eval-
uating the first query with Static counts for full index building.
CKD is the slowest among adaptive methods in the first query, as
it scans all data twice: once to crack on the first dimension, and
again to crack the three resulting slices on the second dimension.
QUASII comes second, while LCKD is the fastest. The initializa-
tion costs of stochastic and hybrid structures are almost identical,
and slightly lower than that of QUASII. After the first query,CKD

variants reduce time per query, yet LCKD converges faster than
CKD. The time of QUASII falls intermediately, yet keeps falling
further than LCKD. QUASII performs more work in early stages,
yet achieves fast response times later on, traversing a shallower
tree. As the workload evolves, fewer queries require additional
indexing actions in QUASII, letting time per query fall to even
less than that of Static. Figure 5b presents cumulative running
time; the divergence between QUASII and the others is conspicu-
ous; Static is much slower than the adaptive approaches; CKD
incurs higher cumulative runtime than other adaptive structures.
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Figure 5: Results on Random workload.

A main takeaway from this experiment is that, over time,
QUASII starts reaping the fruits of the index is has built more
than other methods. We found this trend to be the same regard-
less of dataset: LCKD outperforms QUASII in the first queries at
the expense of the quality of the index it builds, yet later queries
do not benefit as much from the work done previously as they do
with QUASII, and QUASII eventually outperforms LCKD. Unfor-
tunately, the kd-HR hybrids present response times worse than
LCKD, kd-R, and kd-C. We infer that the combination of kd-R
and QUASII leads to a poor structure. Stochastic variants, kd-R
and kd-C, present similar runtimes to LCKD, with an advantage
in the long term, as data-driven cracks show their benefit.
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Figure 6: Results on sequential workload.

Sequential workload.Nowwe turn to the Random data with
the Sequential workload. Figure 6 shows our results. Unsurpris-
ingly, CKD performs poorly. More surprisingly, in contrast to the
preceding experiment, QUASII also performs poorly compared
to LCKD; the thorough index refinement QUASII performs is
a liability with the sequential workload. LCKD benefits from
its lazy nature. This experiment reveals that the order of query
execution has a significant effect on running time, due to the
query-driven nature of these data structures: on a sequential
workload, each new query processes an unindexed data region.
Notably, kd-R performs best; its data-driven operation confers
an advantage on this workload. The spikes in the plot arise when
entering a region refined by data-driven cracks to a lesser extent.
Interestingly, kd-C does not match the performance of kd-R: its
center-based cracks prove to be insufficiently robust, vindicating
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our choice to build hybrids on top of kd-R rather than kd-C.
Yet those hybrids do not match the performance of kd-R either;
their QUASII component appears to be a liability; this effect is
apparent on kd-HR𝑠 and even more consequential in kd-HRℓ .

Effect of dimensionality. We now evaluate the impact of
data dimensionality on the Random dataset and the Random
workload. Figure 7 depicts our results in two plots for the sake
of readability. As dimensionality grows, the cumulative time of
QUASII rises drastically, due to the thorough refinement per-
formed on each dimension. CKD and LCKD are less affected by
dimensionality growth. LCKD presents a modest runtime growth
with dimensionality. Surprisingly, the cumulative runtime of the
KD-tree variants initially drops as dimensionality increases, as
they gain from the indexing they perform. In the global trend,
CKD incurs a heavier cumulative runtime burden, as additional
dimensions beget a higher overhead than the benefit of cracking.
QUASII, which performs well on random workloads on data of
dimensionality 2, forfeits this advantage in higher dimensions.
QUASII and QUASII-based hybrids, especially kd-HR𝑠 , are af-
fected by data dimensionality to a greater extent than LCKD,
kd-R, and kd-C. We deduce that the QUASII strategy is detrimen-
tal on an increasing number of dimensions. Interestingly, the
gap between LCKD and kd-R grows slightly with dimensionality,
due to the additional random cracks performed by kd-R. On a
random query workload, such random cracks bring little benefit,
while incurring an overhead that rises with dimensionality.
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Figure 7: Effect of dimensionality.

Henceforward, we use only LCKD and its stochastic and hy-
brid variants as representatives of cracking KD-trees and drop
Static from figures for the sake of readability.
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Figure 8: Skyserver 1/4, chronological order.

Skyserver workload, chronological. Now we apply the
Skyserver chronologically ordered workload on Skyserver data.
Figure 8 shows our results with the Skyserver 1/4 dataset. In the
first 500 queries, QUASII occasionally reaches response times
comparable to the other methods, which should correspond to
accessing already indexed data areas; progressively expensive

queries become rarer, and eventually QUASII converges to re-
sponse times lower than those of other methods. This converged
response time of QUASII does not render its cumulative time
lower than those of others for the entire workload in this configu-
ration; kd-C and kd-R achieve the best cumulative times. Still, as
Figure 9 shows, as we reduce the data size (10 for full, 1 for 1/512)
under the same workload so as to render the workload to data
ratio larger, eventually QUASII becomes the fastest.
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Figure 9: Skyserver; regular workload, variable data sizes.

Figure 11 presents cumulative times with the same workload
and four different Skyserver sizes. As data size falls, the time of
QUASII approaches and supersedes, those of kd-HR, kd-R, and
LCKD; still, kd-R and kd-C remain better options than QUASII
for workloads reasonably large compared to the data.
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Figure 10: Skyserver 1/64, sequential workload.

Skyserver workload, sequential. We now assess perfor-
mance on the Skyserver 1/64 data against the sequential Sky-
server workload, sorted by the dec celestial coordinate. Figure 10
presents our results. Despite the smaller data size compared to
those we examined previously, the sequential nature of the work-
load bears uponQUASII, which presents the worst result in cumu-
lative time. LCKD achieves better cumulative time than QUASII,
yet its response time does not converge as well; the tree it builds
grows progressively higher in a lopsided manner. The stochastic
variants, kd-C and kd-R, eschew the deficiencies of query-driven
methods and attain best performance, while kd-HR𝑠 follows suit.
On the other hand, kd-HRℓ , which resorts to QUASII quite early,
inherits the liability of QUASII. This result reconfirms that the
QUASII strategy is a liability more than an asset in hybrids.

Skyserver workload sorted by size Now we apply the Sky-
server workload ordered by query size on the Skyserver 1/4 data.
Figures 12 and 13 show the results for ascending and descending
order, respectively. On the ascending order, as expected, QUASII
is initially slower, but achieves better query response times later.
In cumulative time, kd-C performs best, closely followed by kd-R;
kd-HR𝑠 does not gain from its hybrid character, while kd-HRℓ has
a clear disadvantage. LCKD is superseded by kd-Rand kd-HR. On
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Figure 11: Skyserver, regular workload, datasets: 1/8, 1/16, 1/32, 1/64.
the descending order, time per query is initially higher, as queries
of larger extent require more indexing work; cumulative time
grows more steeply in the early stage than with the ascending
order, yet performance resembles the ascending case.
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Figure 12: Skyserver 1/2, workload sorted on size (asc.).
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Figure 13: Skyserver 1/2, workload sorted on size (desc.).

Figure 14: Neuroscience data, random cluster workload.

Neuroscience data.We now assess performance on the Neu-
roscience data with the random clustered workload. This dataset
contains objects with spatial extent rather than points; thus, we
employ query window extension [15], as in [12]: we represent
shapes by their lower coordinates per dimension and extend
query ranges by the maximum object extent towards the lower
side of each dimension, to hit the lower coordinates of any object

overlapping the query’s range; we filter false hits in a refinement
step. Figure 14 presents our results. No method converges as
robustly as with point data, due to the overhead caused by query
extension. Still, QUASII converges more robustly than others.

6 CONCLUSION
We conducted a comparative experimental evaluation of works
on multidimensional adaptive indexing and enhancements lever-
aging stochastic and hybrid strategies. We found that adaptations
of the Cracking KD-tree achieve better performance compared
to QUASII in terms of initialization and with short workloads,
while QUASII yields attractive performance with long-running
workloads. We combined the Cracking KD-Tree with stochastic
measures that ameliorate the sensitivity to the order in which
queries are posed. Further research is needed on multidimen-
sional adaptive indexing of objects with spatial extent and ac-
commodating updates; we also aim to investigate the adaptive
indexing of graph structures with privacy constraints [11, 17]
and adaptive multidimensional synopses [9].
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ABSTRACT
We address the problem of subsequence search in time series us-

ing Chebyshev distance, to which we refer as twin subsequence

search. We first show how existing time series indices can be ex-

tended to perform twin subsequence search. Then, we introduce

TS-Index, a novel index tailored to this problem. Our experi-

mental evaluation compares these approaches against real time

series datasets, and demonstrates that TS-Index can retrieve twin

subsequences much faster under various query conditions.

1 INTRODUCTION
Given a time series 𝑇 and a query sequence 𝑄 (|𝑄 | ≪ |𝑇 |), sub-
sequence search finds subsequences in 𝑇 that are similar to 𝑄 .

Although most works rely on Euclidean distance or Dynamic

Time Warping (DTW) (e.g., [17, 19]), different L𝑝 norms or other

similarity measures are also useful for capturing different pat-

terns of similarity or achieving higher classification accuracy

in certain datasets [6, 22]. In this work, we use the Chebyshev
distance (i.e., L∞ norm) between two subsequences, which is

the maximum difference of their values across their entire dura-

tion. We call two subsequences twins with respect to a distance

threshold 𝜖 , if their Chebyshev distance is not greater than 𝜖 . This

kind of similarity search can be useful is various applications:

finding doublet earthquakes in seismology, identifying similar

traffic patterns in road networks, or detecting irregular patterns

in medical applications like Electroencephalography (EEG) or

Electrocardiography (ECG) sequences, etc.

The following indicative experiment on an EEG time series [12]

with length of 1,801,999 timestamps provides some insight on the

different results obtained using Chebyshev distance as opposed

to Euclidean. Considering a query sequence 𝑄 and a Chebyshev

distance threshold 𝜖 , we identify all twin subsequences, obtaining

1,034 results in total. We then attempt to retrieve the same results

by subsequence search using Euclidean distance. To avoid any

false negatives, as will be shown later in Section 3.1, we need

to set the Euclidean distance threshold to 𝜖 ′ = 𝜖 ×
√
|𝑄 |. The

latter produces 127,887 results. Figure 1 exemplifies the intuition

behind matches obtained with Chebyshev distance compared to

those with Euclidean, for two different queries. Assume a query

sequence 𝑄 and two matches, 𝑇 and 𝑇 ′, obtained under Cheby-

shev and Euclidean distance, respectively. As shown, 𝑇 closely

matches the query in all timestamps. Instead, 𝑇 ′ either lacks a
spike that is present in the query (Fig. 1a) or exhibits one that is

not present in the query (Fig. 1b).

© 2021 Copyright held by the owner/author(s). Published in Proceedings of the

24th International Conference on Extending Database Technology (EDBT), March

23-26, 2021, ISBN 978-3-89318-084-4 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons

license CC-by-nc-nd 4.0.

(a) Absence of desired spike (b) Presence of undesired spike

Figure 1: Examples of false positives obtained with Eu-
clidean distance compared to results with Chebyshev dis-
tance on subsequences of the EEG dataset.

Given a query sequence𝑄 and a time series𝑇 , a naïve process

for finding twin subsequences of 𝑄 across 𝑇 is by performing a

sweepline scan. This scans 𝑇 using a sliding window of length

|𝑄 |, comparing at each timestamp the query with the current

subsequence extracted from 𝑇 , and adding it to the results if it

satisfies the given threshold 𝜖 on Chebyshev distance. However,

this is clearly inefficient for long time series.

In this work, we investigate index-based methods for twin

subsequence search. First, we show how two state-of-the-art

time series indices, namely KV-Index [19] and 𝑖SAX [18] can be

adapted for this task. Then, we introduce a novel index, called

TS-Index, which is tailored to this problem. TS-Index is a tree

structure that summarizes the subsequences contained within

each node using Minimum Bounding Time Series (MBTS) [4],

consisting of an upper and lower bounding sequence. Our experi-

mental evaluation shows that executing twin subsequence search

using TS-Index is significantly faster compared to adapting the

query execution over other indices.

Specifically, our main contributions are as follows:

• We introduce the problem of twin subsequence search and

propose a filter-verification algorithm that can be applied

on state-of-the-art time series indices.

• We then introduce TS-Index, a tree-based index tailored

to twin subsequence search, which utilizes appropriate

bounds in its nodes to prune the search space.

• We experimentally evaluate our proposed methods using

real-world datasets in terms of query execution, memory

footprint and index construction time.

The remainder of the paper is organized as follows. Section 2

reviews related work. Section 3 formally defines the problem. Sec-

tion 4 presents how it can be addressed based on existing indices.

Section 5 presents the proposed TS-Index. Section 6 reports our

experimental results. Finally, Section 7 concludes the paper.
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2 RELATEDWORK
Subsequence search can be performed with a sweepline approach

that scans the time series using a sliding window. Various opti-

mizations can be found in UCR suite [17] and Matrix Profile [21].

However, these optimizations are specific to Euclidean distance

and thus cannot be applied to twin subsequences. Also, the lack

of an index poses efficiency and scalability limitations.

A survey of time series indices for similarity search can be

found in [7]. Several methods use Discrete Wavelet Transform

to reduce dimensionality and then generate an index based on

the transformed sequences (e.g., [3, 16]). More recent approaches

are based on the Symbolic Aggregate Approximation (SAX) repre-

sentation of time series [10]. A SAX word is a multi-resolution

summary of a time series quantized on the value domain. It is

derived from the Piecewise Aggregate Approximation (PAA) [8],

which segments a time series on the time axis and approximates it

by retaining only the mean value per segment. This has led to the

𝑖SAX index [18], a tree-based structure built over the SAX words

of a set of time series. Each node in 𝑖SAX contains a SAX word

that guarantees a lower bound in terms of Euclidean distance

for all the time series indexed by it. To answer similarity search

queries, the index is traversed in a top-down fashion, comparing

at each step the SAX representation of the query against the ones

contained in each visited node. Several extensions to 𝑖SAX have

been proposed [13]. 𝑖SAX 2.0 [1] and 𝑖SAX2+ [2] enable bulk load-

ing, while ADS+ [23] builds the index adaptively, based on the

query workload. DP𝑖SAX [20] is a distributed index. ParIS [14]

and MESSI [15] take advantage of modern multi-core architec-

tures. Coconut [9] introduces sortable SAX representations and

builds an index in a bottom-up fashion. Finally, ULISSE [11] an-

swers queries of varying length.

Another recentmethod for subsequence search is KV-Index [19].

After extracting all subsequences of a given length from a time

series and deriving their corresponding mean values, it generates

an index containing key-value pairs. Each key represents a range

of mean values for a group of subsequences, pointing to starting

positions of these subsequences along the original time series.

As we show in Section 4, it is possible to execute twin subse-

quence search queries using 𝑖SAX or KV-Index. However, since

these indices are tailored to similarity search using Euclidean

distance, this approach is suboptimal, as indicated also in our

experiments in Section 6.

An index for arbitraryL𝑝 norms is described in [22]. It divides

each sequence into a fixed number of equi-sized segments, and

takes the mean of each segment to form a feature vector. Such

a generic approach favors flexibility; instead, our focus in this

paper is on optimizing performance specifically for queries using

Chebyshev distance.

Finally, in a previous work [5], we have studied the problem

of discovering pairs and bundles of similar time-aligned subse-

quences within a collection of time series, based on Chebyshev

distance, using a sweepline approach. In this paper, we focus

on searching for twin subsequences in an input time series 𝑇

that are similar to a query subsequence 𝑄 , which is a different

problem, and we propose an index-based approach. Furthermore,

in another previous work [4], we have developed a hybrid index,

called BTSR-Tree, which also employs the concept of Minimum

Bounding Time Series (MBTS) to prune the search space. How-

ever, this is a spatial-first index specifically tailored to queries

over geo-located time series, and it is based on Euclidean distance

instead of Chebyshev.

3 PROBLEM DEFINITION
Next, we formally introduce the problem of twin subsequence

search and describe a generic filter-verification approach.

3.1 Problem Statement
A time series is a time-ordered sequence 𝑇 = {𝑇1,𝑇2,...,𝑇𝑛}, where
𝑇𝑖 is the value at the 𝑖-th timestamp and 𝑛 = |𝑇 | is the length of

the series (i.e., number of timestamps). We use 𝑇𝑝,𝑙 to denote the

subsequence {𝑇𝑝 , ...,𝑇𝑝+𝑙−1} starting at timestamp 𝑝 and having

length 𝑙 , where 1 ≤ 𝑝 ≤ 𝑝 + 𝑙 − 1 ≤ 𝑛. For brevity, we also use 𝑆

to generally refer to a (sub)sequence.

Given two sequences 𝑆 and 𝑆 ′ of equal length 𝑙 , we call them
twins if their Chebyshev distance is not greater than a given

threshold 𝜖 . The Chebyshev distance of two vectors is their maxi-

mum difference along any dimension. Hence, if 𝑆 and 𝑆 ′ are twin
sequences with respect to 𝜖 , their values at any timestamp should

not differ by more than 𝜖 . Formally:

Definition 1 (Twin Seqences). Two sequences 𝑆 and 𝑆 ′ of
equal length 𝑙 are called twins with respect to a given threshold 𝜖 ,
denoted as 𝑆1 ∼𝜖 𝑆2, if their Chebyshev distance 𝑑 is not greater

than 𝜖 , i.e., 𝑑 (𝑆, 𝑆 ′) := 𝑙−1
max

𝑖=0
( |𝑆𝑖 − 𝑆 ′𝑖 |) ≤ 𝜖 .

We can now formally define the problem:

Problem 1 (Twin Subseqence Search). Given a query se-
quence𝑄 of length 𝑙 , a time series𝑇 of length 𝑛 ≫ 𝑙 , and a distance
threshold 𝜖 , find all subsequences 𝑆 in𝑇 (|𝑆 | = 𝑙) such that 𝑄 ∼𝜖 𝑆 .

We note two important observations below. Given two twin se-

quences 𝑆 ∼𝜖 𝑆 ′ of length 𝑙 , their Euclidean distance is 𝐸𝐷 (𝑆, 𝑆 ′)
=

√∑
𝑖 (𝑆𝑖 − 𝑆 ′𝑖 )2 ≤

√∑
𝑖 𝜖

2
= 𝜖 ×

√
𝑙 . This establishes a relation

between a given Chebyshev distance threshold and a correspond-

ing Euclidean distance threshold. Moreover, from Definition 1, it

follows that any pair of time-aligned subsequences across two

twin sequences are also twins, i.e., if 𝑇 ∼𝜖 𝑇 ′, then 𝑇𝑝,𝑙 ∼𝜖 𝑇 ′𝑝,𝑙
for any 𝑙 ∈ [1, |𝑇 |] and 𝑝 ∈ [1, |𝑇 | − 𝑙].

Often, 𝑧-normalization is applied when comparing time se-

ries. Throughout the paper, we consider various possibilities: (a)

working with the raw values, (b) 𝑧-normalizing the entire time

series, (c) 𝑧-normalizing each individual subsequence. We discuss

the implications of each case where relevant.

3.2 Filter-Verification Approach
We can detect twin subsequences following a filter-verification

framework: the first step (filtering) generates candidate subse-
quences, which are then evaluated in the second step (verification)
to identify those satisfying the Chebyshev distance threshold. A

straightforward approach for generating candidates is to scan

the entire time series 𝑇 with a sweepline and consider each sub-

sequence 𝑇𝑝,𝑙 for 𝑝 ∈ [1, |𝑇 | − 𝑙] as a candidate.
Verification is done by checking all pairwise value differences

between 𝑄 and 𝑇𝑝,𝑙 . If the difference found at a timestamp ex-

ceeds 𝜖 , then candidate 𝑇𝑝,𝑙 is rejected, otherwise it is accepted.

Verification can be accelerated by detecting false positives as

early as possible. If the values are 𝑧-normalized, we can prioritize

those points in 𝑄 having the highest absolute value, since these

are less likely to have a match with the respective points in 𝑇𝑝,𝑙 .

This optimization is also used in UCR Suite [17], and is known as

reordering early abandoning.
The drawback of this sweepline approach is that it generates

an excessive number of candidates (specifically, |𝑇 | − 𝑙), thus
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incurring a prohibitive cost when dealing with long series. To

filter candidates more effectively, in the following sections we

present methods based on indexing the subsequences of 𝑇 . First,

we address the problem using state-of-the-art indices; then, we

introduce a novel index tailored to twin subsequence search.

4 TWIN SUBSEQUENCE SEARCHWITH
EXISTING INDICES

Next, we focus on two representative state-of-the-art indices for

time series similarity search, namely KV-Index [19] and 𝑖SAX [2],

showing how they can be used for twin subsequence search

without altering their structure.

4.1 KV-Index
Given a time series 𝑇 , KV-Index [19] is built by considering all

its subsequences of a pre-defined length 𝑙 . Each subsequence 𝑆 is

represented by a pair (𝑝, 𝜇), where 𝑝 is its starting position (i.e.,

timestamp) in𝑇 and 𝜇 is its mean value over the next 𝑙 timestamps.

KV-Index is an inverted index constructed over these pairs. Each

key is a range of mean values, whereas each inverted list entry

contains intervals of positions.

Twin subsequence search can be performed with KV-Index

based on the following observation. If two subsequences 𝑆 and

𝑆 ′ of length 𝑙 are twins with respect to 𝜖 , i.e., 𝑆 ∼𝜖 𝑆 ′, then
their mean values 𝜇 and 𝜇 ′ cannot differ by more than 𝜖 , i.e.,

|𝜇−𝜇 ′ | ≤ 𝜖 . Based on this, we can use a KV-Index built over a time

series 𝑇 to generate candidates for detecting twin subsequences.

Specifically, assume a query sequence𝑄 with mean value 𝜇𝑞 . The

candidate subsequences in 𝑇 are those included in the inverted

lists with keys [𝜇𝑚𝑖𝑛, 𝜇𝑚𝑎𝑥 ], such that 𝜇𝑚𝑖𝑛 −𝜖 ≤ 𝜇𝑞 ≤ 𝜇𝑚𝑎𝑥 +𝜖 .
Then, the obtained candidates must be verified to derive the final

results. Notice that this property is not effective if each individual

subsequence has been 𝑧-normalized, because then all mean values

are zero. Hence, KV-Index is applicable when working with raw

values or if the entire sequence is 𝑧-normalized.

4.2 𝑖SAX Index
𝑖SAX is a tree index structure for time series similarity search [2].

Time series are 𝑧-normalized and indexed using their Symbolic
Aggregate approXimation (SAX) [18]. The SAX representation

of a series is derived in two steps. The first applies Piecewise
Aggregate Approximation (PAA) [8], which splits the series in a

specified number𝑚 of segments and approximates each one with

the mean value over the corresponding time interval. The second

step applies quantization to assign each mean value to a discrete

SAX symbol. Hence, each SAX symbol𝑋 corresponds to a range of

mean values [𝜇𝑋𝑚𝑖𝑛
, 𝜇𝑋𝑚𝑎𝑥

). The SAX representation of a series

is a sequence of𝑚 SAX symbols (one symbol per segment), and is

called SAX word. Notice that, by default, SAX words are derived

using precomputed breakpoints that are selected assuming 𝑧-

normalized values; nevertheless, non-normalized values can also

be handled by adjusting the breakpoints accordingly.

Twin subsequence search can be enabled over 𝑖SAX by rea-

soning as follows. Assume two subsequences 𝑆 and 𝑆 ′ of length 𝑙 ,
and their SAX representations 𝑆𝐴𝑋 (𝑆) = {𝑋1, 𝑋2, ..., 𝑋𝑚} and
𝑆𝐴𝑋 (𝑆 ′) = {𝑋 ′

1
, 𝑋 ′

2
, ..., 𝑋 ′𝑚}. As we have observed earlier, (a) if

two sequences are twins with respect to a threshold 𝜖 , then the

difference between their mean values is also bounded by 𝜖 , and

(b) any pair of time-aligned segments across two twin sequences

are also twins. Combining these two properties, we can see that

if 𝑆 ∼𝜖 𝑆 ′, then for each pair of symbols 𝑋𝑖 and 𝑋 ′
𝑖
in the re-

spective SAX representations, the mean values denoted by these

symbols must not differ by more than 𝜖 . Hence, if 𝑆 ∼𝜖 𝑆 ′, then
𝜇𝑋𝑖𝑚𝑎𝑥

≥ 𝜇𝑋 ′
𝑖𝑚𝑖𝑛
− 𝜖 and 𝜇𝑋𝑖𝑚𝑖𝑛

≤ 𝜇𝑋 ′
𝑖𝑚𝑎𝑥

+ 𝜖 for any 𝑖 ∈ [1,𝑚].
Consequently, we can perform twin subsequence search using

𝑖SAX as follows. Given a time series 𝑇 , we construct an 𝑖SAX

index over all its 𝑙-length subsequences. Then, for a query se-

quence 𝑄 , we traverse the 𝑖SAX index starting from its root. At

each node, we check the SAX word of𝑄 against the SAX word of

that node, applying the property mentioned above. If the check

fails, the node and its subtree can be safely pruned; otherwise,

the search continues at the node’s children. Once a leaf node is

reached, and qualifies according to this check, all subsequences

indexed therein are retrieved as candidates for verification.

5 THE TS-INDEX
As discussed in Section 4, it is possible to use KV-Index or 𝑖SAX

to identify candidates for twin subsequence queries. However,

since these indices are not tailored to the matching criterion, they

tend to generate a large number of false positives, incurring a sig-

nificant verification cost, as confirmed in our experiments. In the

following, we introduce TS-Index, which is specifically designed

for twin subsequence search. First, we provide an overview of

its structure and explain how it is constructed. Then, we present

an algorithm to evaluate twin subsequence queries specifying a

distance threshold.

5.1 Index Structure
The core concept in TS-Index is that of Minimum Bounding Time
Series (MBTS) [4]. An MBTS is a pair of sequences that fully

encloses a set of time series T by indicating the maximum and

minimum values at each timestamp. Figure 2a depicts an example

of an MBTS enclosing a set of four time series. Formally:

Definition 2 (MBTS). Given a set T of time series with equal
length 𝑙 , its MBTS 𝐵 = (𝐵⊓, 𝐵⊔) consists of an upper bounding

time series 𝐵⊓ and a lower bounding time series 𝐵⊔, constructed
by respectively selecting the maximum and minimum values at
each timestamp 𝑖 ∈ {1, . . . , 𝑙} among all time series in T as follows:

𝐵⊓ = {max

𝑇 ∈T
𝑇1, . . . ,max

𝑇 ∈T
𝑇𝑙 }

𝐵⊔ = {min

𝑇 ∈T
𝑇1, . . . ,min

𝑇 ∈T
𝑇𝑙 }

(1)

The TS-Index has a tree structure. Each internal node points

to a set of children nodes, whereas each leaf node points to a

set of subsequences (more specifically, to the starting positions

of its indexed subsequences along the input time series 𝑇 ). All

leaf nodes are at the same level. Each node is associated with an

MBTS, which encloses all the sequences indexed therein. Clearly,

MBTS get tighter when descending from the root to the leaf

level. Figure 3a illustrates an example of TS-Index for nine input

sequences. The MBTS of each node is depicted as a grey band.

5.2 Index Construction
Assume an input time series 𝑇 and a subsequence length 𝑙 . The

TS-Index over𝑇 is constructed in a top-down fashion, by sequen-

tially inserting all 𝑙-length subsequences of 𝑇 . When inserting

a sequence 𝑆 , we traverse the index from the root, selecting at

each level the node whose MBTS has the smallest distance from

𝑆 , until a leaf node is reached. The distance between a sequence

𝑆 and an MBTS 𝐵 is calculated using the following formula:
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(a) (b) (c)

Figure 2: (a) MBTS enclosing a set of 4 time series. Distance between (b) a sequence 𝑆 and an MBTS 𝐵, (c) MBTS 𝐵1 and 𝐵2.

(a) (b)

Figure 3: (a) TS-Index for 9 input sequences. (b) Inserting 𝑝10 causes a split at leaf 𝐴3 and splits propagate upwards.

𝑑 (𝑆, 𝐵) = max

𝑖


𝑆𝑖 − 𝐵⊓𝑖 if 𝑆𝑖 > 𝐵⊓

𝑖

𝐵⊔
𝑖
− 𝑆𝑖 if 𝑆𝑖 < 𝐵⊔

𝑖

0 otherwise

(2)

where𝐵⊓
𝑖
and𝐵⊔

𝑖
are the 𝑖𝑡ℎ values of the upper and lower bounds

of the MBTS 𝐵, respectively.

Each node has aminimum capacity 𝜇𝑐 and amaximum capacity
𝑀𝑐 , specifying the minimum and maximum number of children it

can point to. Once a node exceeds𝑀𝑐 , it is split in two nodes. This

may cause the parent node to also exceed the maximum capacity

𝑀𝑐 , in which case it is split too. Hence, this process recursively

propagates upwards until no further splits occur. This procedure

ensures that all leaves are placed on the same level of the tree.

During node splitting, the goal is to make the MBTS of each

new sibling node as tight as possible. If this is a leaf node, we

identify the two subsequences within the original node having

the highest Chebyshev distance and use them as seeds for the

two sibling nodes. Each remaining subsequence is assigned to the

node where it causes the smallest expansion of its MBTS, which

gets updated accordingly. For an internal node, the process is

similar. Yet, adjusting its MBTS in this case involves the MBTS of

children nodes instead of individual sequences. To accommodate

this, the distance between two MBTS 𝐵1 and 𝐵2 is defined as:

𝑑 (𝐵1, 𝐵2) = max

𝑖


𝐵⊔
1,𝑖
− 𝐵⊓

2,𝑖
if 𝐵⊔

1,𝑖
> 𝐵⊓

2,𝑖

𝐵⊔
2,𝑖
− 𝐵⊓

1,𝑖
if 𝐵⊓

1,𝑖
< 𝐵⊔

2,𝑖

0 otherwise

(3)

where 𝐵⊔
1,𝑖
, 𝐵⊓

1,𝑖
and 𝐵⊔

2,𝑖
, 𝐵⊓

2,𝑖
are the 𝑖𝑡ℎ values of the upper and

lower bounds of the MBTS 𝐵1 and 𝐵2, respectively. Figures 2b

and 2c exemplify the calculation of the distance of a sequence

𝑆 to an MBTS 𝐵 and the calculation of the distance between

two MBTS (𝐵1, 𝐵2) respectively; in both cases, the distance is the

length of the dashed red line.

Figure 3b depicts an example where inserting subsequence 𝑝10
into leaf node 𝐴3 of the TS-Index in Figure 3a, causes it to split

into two new nodes, 𝐴′
3
and 𝐴4 (we assume 𝜇𝑐 = 2 and 𝑀𝑐=3).

This process is then propagated upwards, splitting the root into

𝐵1 and 𝐵2. To keep the MBTS tight –according to Equation 3–,

nodes 𝐴1, 𝐴4 have become children of 𝐵1 and 𝐴2, 𝐴
′
3
are now

children of 𝐵2. Finally, a new root is added, increasing the index

height by one.

5.3 Query Execution
Twin subsequence search can be performed with TS-Index based

on the following lemma.

Lemma 1. Assume a query sequence 𝑄 and a node 𝑁 of the
TS-Index with MBTS 𝐵. If there exists a sequence 𝑆 indexed at 𝑁
such that 𝑄 ∼𝜖 𝑆 , then 𝑑 (𝑄, 𝐵) ≤ 𝜖 .

Proof. Assume that 𝑄 ∼𝜖 𝑆 for a sequence 𝑆 indexed by

node 𝑁 . From Definition 2, it follows that 𝑆𝑖 ∈ [𝐵⊔𝑖 , 𝐵
⊓
𝑖
] for

each timestamp 𝑖 . Moreover, from Definition 1, it follows that

|𝑄𝑖 −𝑆𝑖 | ≤ 𝜖 . Hence, from Equation 2, we derive 𝑑 (𝑄, 𝐵) ≤ 𝜖 . □

Given a query sequence 𝑄 , we traverse the index in a top-

down fashion, starting from its root. For each visited node 𝑁 ,

we compare 𝑄 against 𝑁 ’s MBTS, applying Lemma 1 to prune

its subtree. Note that this check can be accelerated, since it is

not necessary to fully compute distance 𝑑 (𝑄, 𝐵); instead, if the
indexed values have been 𝑧-normalized, we apply early aban-

doning (see Section 3.2) to prune the node as soon as the value

difference exceeds 𝜖 in at least one timestamp. Multiple paths

starting from the root may need to be explored, depending on

the query and the tightness of the bounds in the visited nodes.

Algorithm 1 describes the search process. The input includes

the query sequence 𝑄 , the constructed TS-Index 𝐼 , the given

time series 𝑇 and the threshold 𝜖 . We start by initializing a list 𝐿

with the root’s children (Line 2). Then, we traverse the index by

iterating over this list (Lines 3-12). For each node 𝑁 currently in

the list, we obtain its MBTS (Lines 4-5). Then, we check whether

the distance between this MBTS and the query is higher than

the specified threshold 𝜖 (Line 6). If so, the subtree under the

current node 𝑁 is pruned; otherwise, it is examined as explained

next. If 𝑁 is not a leaf node, we insert its children in list 𝐿 for

probing (Lines 7-8). Once a leaf node is reached, we iterate over

all the subsequence positions it contains and check whether each

corresponding subsequence is a twin of 𝑄 with respect to 𝜖 . If

so, we add this subsequence to the final results (Lines 9-12). The

results are returned once all candidate nodes in list 𝐿 have been

either probed or pruned (Line 13).
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Algorithm 1: TwinSubsequenceSearch
Input :Time series𝑇 , TS-Index 𝐼 , query𝑄 , threshold 𝜖

Output :List 𝑅 of twin subsequences to𝑄

1 𝑅 ← ∅
2 𝐿 ← 𝐼 .𝑟𝑜𝑜𝑡 .getChildren()
3 while 𝐿 ≠ ∅ do
4 𝑁 ← 𝐿.getNext()
5 𝐵 ← 𝑁 .𝑀𝐵𝑇𝑆

6 if d( (𝑄, 𝐵) ≤ 𝜖 then
7 if 𝑁 is not leaf then
8 𝐿 ← 𝐿 ∪ {𝑁 .getChildren() }
9 else
10 foreach 𝑝 ∈ 𝑁 .getPositions() do
11 if d( (𝑄,𝑇𝑝,𝑙 ) ≤ 𝜖 then
12 𝑅 ← 𝑅 ∪𝑇𝑝,𝑙

13 return R

Table 1: Datasets and distance thresholds.
Dataset 𝒏 𝝐 (norm) 𝝐 (non-norm)
Insect 64,436 0.5,0.75,1,1.25,1.5 50, 100,150,200,250
EEG 1,801,999 0.1,0.2,0.3,0.4,0.5 20, 40,60,80,100

Table 2: Other parameters.
Parameter Value
Number𝑚 of segments 5, 10, 20, 25, 50
Sequence length 𝑙 50, 100, 150, 200, 250

6 EXPERIMENTAL EVALUATION
Next, we present an experimental evaluation of our methods

against two real-world datasets.

6.1 Experimental Setup
We performed experiments against two real-world time series

(see Table 1), which contain diverse patterns and differ in their

total duration. In particular, the Insect Movement [12] series

contains 64,436 insect telemetry readings spanning around 30

minutes (36 readings/sec), whereas the Electroencephalography
(EEG) [12] series comprises 1,801,999 EEG readings at 500Hz last-

ing one hour. Unless stated otherwise, we 𝑧-normalize the time

series to facilitate selection of distance thresholds.

Table 1 indicates the different values for the distance threshold

𝜖 used in the experiments against each dataset, for 𝑧-normalized

(norm) or original values (non-norm). Table 2 contains the values

for subsequence length 𝑙 and number of segments𝑚, which are

common in the experiments on both datasets. In both tables,

default values are in bold. These values have been selected after

running several preliminary tests, which also guided selection

of other parameters. Specifically, for 𝑖SAX, the maximum node

capacity is set to 10,000 to enable index construction in reasonable

time even for larger datasets. The default values for minimum

and maximum node capacity in TS-Index are set to 𝜇𝑐 = 10 and

𝑀𝑐 = 30, respectively.

For each dataset, we randomly picked 100 subsequences, each

of length 𝑙 = 100 points, and used them as the query workload in

all tests against that dataset. We report average response time per

query (in milliseconds). We implemented all methods, including

KV-Index, 𝑖SAX, and TS-Index, in Java. In all implementations,

the structure of the index is kept in memory, while the original

input dataset is stored on disk. Leaf nodes in the index contain

the starting positions of the subsequences in the input time series.

Thus, when a leaf is reached at query time, its corresponding

subsequences are obtained from the input time series file using

random access. All experiments were conducted on a server with

(a) Insect Dataset (b) EEG Dataset

Figure 4: Varying distance threshold 𝜖.

(a) Insect Dataset (b) EEG Dataset

Figure 5: Varying subsequence length 𝑙 .

(a) Insect Dataset (b) EEG Dataset

Figure 6: Varying 𝜖 on 𝑧-normalized subsequences.

4 CPUs, each equipped with 8 cores clocked at 2.13GHz, and 256

GB RAM running Debian Linux.

6.2 Performance
We compare the average execution time per query for varying

values of each parameter, setting the rest to their default values.

6.2.1 Varying threshold 𝜖 . Figure 4 depicts query execution

time (in logarithmic scale) for varying threshold 𝜖 . As expected,

searching with the Sweepline approach has a fixed cost per

dataset regardless of 𝜖 , since it needs to scan all subsequences ex-

tracted from the input time series. Relaxing the threshold incurs

an overhead when an index is involved. Queries against KV-Index

perform poorly compared to other indices, since filtering based

on mean values achieves less pruning. Searching with TS-Index

outperforms the rest in every setting for both tested datasets.

Overall, TS-Index is at least an order of magnitude more effi-

cient in twin subsequence search compared to the KV-Index and

Sweepline approaches. It is also consistently better than 𝑖SAX as

it is less susceptible to fluctuations in the input sequences.

6.2.2 Varying Subsequence Length. Figure 5 plots performance

results with a varying length 𝑙 for subsequences obtained from

the input time series. Increasing 𝑙 seems to slightly negatively

affect all approaches, except for TS-Index. Since longer subse-

quences are extracted, more checks are required, both in nodes (in

case of 𝑖SAX) and raw subsequences during verification. Instead,

TS-Index is faster when longer subsequences are specified, as it

becomes less likely to findmatching twins. In particular, TS-Index

has higher pruning capability and can skip non-qualifying sub-

trees earlier at higher levels in the tree hierarchy. Thus, fewer
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(a) Insect Dataset (b) EEG Dataset

Figure 7: Varying 𝜖 on non-normalized data.

(a) Memory Footprint (b) Build Time

Figure 8: Memory footprint and build time per index.

leaf nodes are accessed and need to be verified, saving much of

the verification cost for checks per timestamp.

6.2.3 Searching over 𝑧-normalized subsequences. We repeat

the experiment for varying distance threshold 𝜖 , this time apply-

ing 𝑧-normalization over each individual subsequence, before in-

serting it in the index. As mentioned in Section 4.1, KV-Index can-

not be built on such data since the mean value per subsequence

would always be zero; thus, we only compare TS-Index with

𝑖SAX. The results are depicted in Figure 6. Clearly, 𝑧-normalizing

the subsequences separately has no significant effect on the per-

formance of TS-Index; the results are similar to those in Figure 4,

with TS-Index outperforming 𝑖SAX in all cases.

6.2.4 Searching on Non-Normalized Data. Query execution

cost for identifying twin subsequences against the raw (non-

normalized) time series is depicted in Figure 7. Overall, TS-Index

copes better than all the rest even for raw data, confirming its

suitability for twin subsequence search in various settings.

6.2.5 Index Size. Figure 8a presents the memory footprint of

TS-Index, 𝑖SAX and KV-Index for each dataset. KV-Index requires

less space than TS-Index and 𝑖SAX, as it only keeps in memory

the mean value and position range per subsequence. Instead,

TS-Index and 𝑖SAX occupy more space due to their more complex

structures. Specifically, 𝑖SAX requires two to three times less

space than TS-Index. Indeed, 𝑖SAX needs to store one SAX word

per node, whereas a node in TS-Index is represented by an MBTS,

hence its increased memory footprint. Nevertheless, all indices,

including TS-Index, have sizes that easily fit in main memory.

6.2.6 Build Time. Similarly to the index size, and due to the

significantly less required calculations (i.e., only subsequence

mean values need be calculated and no node splitting is needed),

KV-Index requires significantly less time to be constructed than

𝑖SAX and TS-Index (Figure 8b). 𝑖SAX is the slowest index to

be built, since it needs to additionally convert the PAA of each

subsequence to a SAX word for each extracted subsequence.

7 CONCLUSIONS
In this paper, we have introduced the twin subsequence search

problem. Given a query sequence 𝑄 , an input time series 𝑇 and

a distance threshold 𝜖 , this task retrieves all subsequences in

𝑇 with Chebyshev distance to 𝑄 not higher than 𝜖 . To answer

this query efficiently, we have introduced the TS-Index. We have

described the index structure and proposed algorithms for effi-

cient index construction and query answering. Our experimental

evaluation assesses the TS-Index in terms of construction cost

and confirms its superiority for twin subsequence search queries

when compared to the state-of-the-art.
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ABSTRACT
Interactive exploratory data analysis consists of workloads that
are composed of filter-aggregate queries with highly selective
filters [1]. Hence, their performance is dependent on how much
data they can skip during their scans, with indexes being the
most efficient technique for aggressive data-skipping. Progressive
Indexes are the state-of-the-art on automatic index creation for
interactive exploratory data analysis. These indexes are partially
constructed during query execution, eventually refining to a full
index. However, progressive indexes have been designed for static
databases, while in exploratory data analysis updates — usually
batch-appends of newly acquired data — are frequent.

In this paper, we propose Progressive Mergesort, a novel merg-
ing technique to make Progressive Indexes cope with updates.
Progressive Mergesort differs from other merging techniques
for partial indexes as it incorporates the index budget strategy
design from Progressive Indexing. It follows the same three prin-
ciples as Progressive Indexes: (1) fast query execution, (2) high
robustness,(3) guaranteed convergence.

Our experimental evaluation demonstrates that Progressive
Mergesort is capable of achieving a 2x speedup when merging
updates and up to 3 orders of magnitude lower variance than the
state of the art.

1 INTRODUCTION
Data scientists perform interactive exploratory data analysis to
discover unexpected patterns in large collections of data. This pro-
cess is done using hypothesis-driven trial-and-error queries [10].
Given the result of a query, the data scientists refine their original
hypothesis and either zoom in on the same data segment or move
to a different one depending on the insights gained.

In the typical interactive exploratory data analysis workload,
the data scientist inspects a massive amount of data by issuing
selective analytical queries (usually via a visualization tool) to
test their hypothesis. Battle et al. [1] depict that the most demand-
ing type of interactive queries are cross filter applications (i.e.,
grouping data after applying selective filters). In these workloads,
users expect almost immediate responses from the system, and
each movement on the visualization tool will immediately submit
another query to the database system.

Figure 1 depicts an example of a cross filter application. Here
the data scientist uses a dataset that contains multiple attributes
of flight information. The user visualizes each attribute as one
histogram figure (e.g., departure time or airtime in minutes). The
range slider on the top of the figure allows the users to change
the filter used to construct these histograms, and the graphs are
automatically updated depending on the new filter input.

© 2021 Copyright held by the owner/author(s). Published in Proceedings of the
24th International Conference on Extending Database Technology (EDBT), March
23-26, 2021, ISBN 978-3-89318-084-4 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Figure 1: Interactive Data Analysis Example [1]

Since these workloads are dependent on a filter, when these
filters are selective (e.g., wanting to know the information of a
small number of flights), aggressive data skipping techniques can
significantly improve the query performance.

Index structures are frequently used to boost workloads that
depend on data skipping. There are two main strategies that
automatically create indexes for interactive data analysis.

(1) Adaptive Indexing [6, 9] automatically creates indexes
based on query predicates of range queries. They perform quick-
sort iterations with query predicates as pivots, indexing the ac-
cessed pieces during query execution, efficiently smearing out
the index creation cost over a workload.

Adaptive Indexing follows a philosophy of only indexing the
minimum amount of data necessary to the currently executing
query. Although this strategy allows for fast convergence on
skewed workloads (i.e., workloads where the same piece is fre-
quently accessed), it has no control over the amount of indexing
that one query can perform. When accessing pieces with differ-
ent levels of refinement, query execution time spikes, resulting
in a highly unpredictable query cost, which is undesirable for
interactive data analysis since the user expects the query to be
executed within a time limit.

(2) Progressive Indexes [3, 5, 8] are designed to be highly ro-
bust, have a predictable convergence, and present a low total
cost during the entire workload execution. Their main difference
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from Adaptive Indexing is the introduction of an indexing bud-
get 𝛿 . With this indexing budget, the data scientist sets a value
for 𝛿 , and the index invests a fixed amount of time into per-query
index creation, being the state-of-the-art algorithm developed
for interactive exploratory data analysis.

The major drawback of Progressive Indexes is that they are
only designed for static-databases. However, in the interactive
data analysis scenario, the data is not static but rather frequently
updated with batches of data that must be appended. As an ex-
ample, in our flight dataset we can consider the scenario where
batches of data are regularly appended since new flights hap-
pen all the time (e.g., either data is appended every few minutes,
hours, days, depending on how critical is to analyze recent data).

One way of adapting the current Progressive Indexing strat-
egy to support updates is to use the techniques developed for
merging updates on Adaptive Indexes since they produce simi-
lar partial-indexes up-to full index convergence. However, these
merging techniques follow Adaptive Indexing’s philosophy of
lazy query execution, drastically decreasing robustness (i.e., it
creates performance spikes that vary the per-query response
time in orders of magnitudes up and down), with no guaranteed
convergence and high penalties for larger batches of appends.

In this paper, we introduce Progressive Mergesort. Progressive
Mergesort is designed to efficiently merge batches of appends
while following the core design decisions of progressive index-
ing. It presents a low-query impact even for large batches, high
robustness, and guaranteed convergence (i.e., all elements are
merged into one array).

2 RELATEDWORK
In this section, we will cover how Progressive Indexing, in partic-
ular progressive quicksort, works and will present the Adaptive
Merges algorithms that merge updates into Adaptive Indexing.

2.1 Progressive Indexing
Progressive Indexes are inspired by Adaptive Indexes. Both tech-
niques perform index creation during query execution, aiming
to smear out the index creation cost over the workload. Conse-
quently, the indexes produced by both techniques have a similar
format (i.e., both are partial indexes), except that once fully con-
verged, progressive indexing turns into a standard B-tree. One
major difference between Progressive Indexes and Adaptive In-
dexes is that Progressive Indexes use an index budget constraint 𝛿
that indicates the amount of data that can be indexed, in one sort-
ing iteration, per query, while Adaptive Indexes only performs
full sorting iterations (e.g., adaptive indexing will fully parti-
tion one column around a pivot in one query, while progressive
indexing will partition a 𝛿 fraction of the column.).

Progressive Indexes come in two flavors, the fixed-𝛿 where the
user picks a fraction of the data, and the same fraction is indexed
per query, and a greedy version, where the user sets a desired
query execution time. The greedy algorithm uses a cost-model
to select a suitable 𝛿 tailored for each query automatically. In
this paper, we will focus on the fixed-𝛿 version of Progressive
Indexing and will leave the greedy version as future work.

Figure 2 depicts an example of Progressive Quicksort with
𝛿 = 0.5 (i.e., half the data is pivoted in each query), a progressive
indexing technique inspired by the quicksort algorithm. Progres-
sive quicksort is triggered when a filter is executed on a column.
In its first phase (Initialize), an uninitialized array is allocated

with the same space as the original column. A pivot is then se-
lected, and the data is copied to either the bottom or the top of
the new array considering the pivot. The subsequent step (Ini-
tialize 2) can already take advantage of this information and only
scan the necessary parts (either top, bottom, neither, or both)
relevant to the query. It also continues the copy process until our
progressive indexing array is completely populated. At the end
of the initialize phase, the column is partitioned into two pieces.
In the example ≤ 10 and > 10. We now start the refinement phase
where pivots are selected for each piece, and they are ordered
in-place. When pieces are sufficiently small, we fully sort them.
This phase results in a completely sorted array. When reaching a
completely sorted array, the consolidation phase starts building a
bottom-up B-Tree on top of the array.
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Figure 2: Progressive Quicksort [5]

2.2 Adaptive Merges
There are three main algorithms designed to efficiently merge
appends into adaptive indexes [7], the Merge Complete, Merge
Gradual, and Merge Ripple, and we will refer to these algorithms
as Adaptive Merges from now on. They follow the same phi-
losophy of Adaptive Indexing by only merging appends when
necessary. They differ from each other in terms of what data they
will merge and how they merge it. In the following subsections,
we overview each algorithm and present an example of their ex-
ecution. Besides the strategies to efficiently merge appends into
the index’s column, Holanda et al. [4] present a strategy to prune
cold data from the cracker index to boost updates. However, we
do not explore this strategy in this paper since it directly goes
against our full convergence philosophy.

Merge Complete (MC) This algorithm completely merges
the full Appends vector into the Cracker Column (i.e., the cracker
column is a full copy of the original column owned by the adap-
tive indexing structure) as soon as a query requests data that is
also present in the Appends vector.

Merge Gradual (MG) Merge Gradual differs from Merge
Complete with respect to the amount of data merged per query. It
only merges items that qualify for the currently executing query.

Merge Ripple (MR) Like Merge Complete, the Merge Ripple
algorithm only merges the elements that qualify for the query
predicates. They differ on how they merge them. In the Merge
Ripple, instead of resizing the Cracker Column and appending
the element to its end as its first step, it starts by swapping the
to-be inserted element with the first element in the next greater-
neighboring piece from its correct piece.
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Figure 3: Merge Ripple on query A < 8

Figure 3 depicts an example of Merge Ripple executing the
query 𝐴 < 8. In our example, the column is already partitioned
around three pivot points (8, 10, 14) and the appends array con-
tains four values (6, 8, 11, 17). Sincewe only need to insert element
6 from the appends array, we perform a cracker index lookup
and identify the element’s piece (i.e., the first piece holding 6, 4,
2, and 7). We then go to the successor piece (i.e., piece 2 with
elements 8 and 9) and swap the first element of that piece (8)
with the element in our appends (6). After that, we only need
to update the cracker index node that points to the value 8. In
this case, we only had to perform 1 swap and update 1 node in
the cracker index to merge 25% of our appends. Merge Ripple
performs fewer swaps and updates than the previous algorithms
while merging the necessary amount of data to our index.

3 PROGRESSIVE MERGESORT
Progressive Mergesort is a progressive indexing technique in-
spired by the mergesort algorithm [2] and used for merging ap-
pends into the main progressive indexing structure. It follows the
three pillars of progressive indexes: (1) low impact on query exe-
cution, (2) robust performance, and (3) guaranteed convergence.
It relies on an index-budget 𝛿 that represents the percentage of
the data that is indexed per-query, guaranteeing that the same
amount of effort will be distributed for the entire workload.

In practice, during query execution, the 𝛿 defined for our
Progressive Indexing algorithm is used for both the main index
structure and progressive mergesort.

Progressive mergesort follows two distinct canonical phases,
the refinement phase, and the merge phase, which are described
in this section.

Refinement. In the refinement phase, we can use any of the
other proposed progressive indexing algorithms, getting the most
performance depending on data distribution and workload. Our
budget is used as described in the original Progressive Indexing
paper [5] depending on the algorithm executing the refinement.
In this paper, we decided to experiment with Progressive Quick-
sort as our algorithm of choice. Utilizing the other algorithms is
left as an engineering exercise for future work.

Merge. At the end of the refinement phase of any progressive
indexing algorithm, the result is a sorted list. When all merge
chunks are fully sorted, we progressively merge them into one
sorted chunk. We perform a progressive two-way-merge in order
to merge said chunks.

Figure 4: Progressive Mergesort

Figure 4 depicts a high-level concept of Progressive Mergesort.
In this figure, red vectors are completely unsorted vectors, yellow
are partially sorted vectors, and green are completely sorted. We
start with our main index structure only partially sorted and with
a new batch of appends.

It starts with the refinement phase. At this step, any Progres-
sive Indexing technique can be used and will continue their exe-
cution until reaching completely sorted lists. When all chunks are
entirely sorted, the second phase of Progressive Mergesort starts.
Here, the Appends arrays are progressively merged into one ar-
ray. One might note that new batches can be introduced while
other batches are already being refined. In this case, a Progressive
Mergesort run will be initiated to newly appended chunks. All
these chunks use the same 𝛿 as our main progressive index but
normalized to the chunk size. Only when the original Progressive
Indexing column and the appends are fully sorted (i.e., we have
one sorted column for the Progressive Indexing and one sorted
column for all the appends) and the appends have the same or
bigger size as the Progressive Indexing column we merge them.

Figure 5: Progressive Mergesort Example (𝛿 = 0.5)

Figure 5 depicts an example of Progressive Mergesort with
delta = 0.5. We start with two batches of updates. In the initial
iterations, we execute Progressive Quicksort as the refinement
phase. In Refine (1), a Progressive Quicksort iteration is initiated
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for each chunk, since 𝛿 = 0.5 both iterations index half of each
chunk around one pivot. In Refine (3) both Progressive Quicksort
iterations ended, and both chunks are fully sorted. Hence we will
start the merge phase of Progressive Mergesort in the following
query. In Merge (1) we start to merge both lists using a two-way
merge algorithm, and we stop when the resulting list is half
complete due to our 𝛿 . For the chunks that are being merged,
we must store the offsets where we stopped merging. Finally, in
Merge (2) we end the merge phase with one completely sorted
append list and delete the previous chunks.

Query Processing. When executing a query on a column
with progressive indexing, we might encounter several arrays
(i.e., the original Progressive Indexing column and batches of
appends that started to be refined but are not yet merged) with
different levels of refinement.

During the query execution, each array must be checked to
return the elements that fit the query predicates. If the array is
already fully sorted, a binary search will be executed to return the
result. Otherwise, the array will be at some step of the refinement
phase. Hence a lookup on the binary tree is necessary to return
the offsets that match the query predicates.

When to Merge. In this paper, we decided to first completely
merge all appends into one, fully sorted, append array. If this
array has a size equal to or bigger than the current Progressive
Indexing column, we merge both. This decision was made to
avoid frequent resizes of large arrays (e.g., if we merged the
Progressive Indexing column with every append first, this would
result in a resize for the progressive column at every batch, which
would be prohibitively expensive).

However, this decision is not necessarily optimal for all work-
loads. Having multiple arrays increase the random access to
respond to the workload while diminishing the merge costs cre-
ating a trade-off depending on when and how these merges are
performed. Creating an algorithm that decides when is the appro-
priate moment to merge these different arrays and which arrays
should be merged is out of this paper’s scope, and we leave it as
future work.

4 EXPERIMENTAL ANALYSIS
This section provides an experimental evaluation of Progressive
Mergesort and compares it with the Adaptive Merges techniques.

4.1 Setup
We implemented the Progressive Mergesort algorithm and the
Adaptive Merges in a stand-alone program written in C++. The
Progressive Mergesort uses Progressive Quicksort in its refine-
ment phase.

Compilation. This application was compiled with GNU g++
version 7.2.1 using optimization level -O3.

Machine. All experiments were conducted on a machine
equipped with 256GB main memory and an 8-core Intel Xeon
E5-2650 v2 CPU @ 2.6GHz with 20480 KB L3 cache.

Appends. All experiments have 3 parameters regarding the
appends, (1) the batch_size that represents the size of a batch of
appends, (2) the frequency which represents an interval of queries
where a new batch of appends is executed, and (3) start_after
that describes how many queries need to be executed before
the first append happens. With these 3 parameters we calculate
the number of appends that will be executed 𝑡𝑜𝑡𝑎𝑙_𝑎𝑝𝑝𝑒𝑛𝑑𝑠 =
𝑡𝑜𝑡𝑎𝑙_𝑞𝑢𝑒𝑟𝑖𝑒𝑠−𝑠𝑡𝑎𝑟𝑡_𝑎𝑓 𝑡𝑒𝑟

𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦
∗ 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 , and divide our data set

into the original_column set that represents our initially loaded

column and the appends set that represent the appends that will
be inserted.

Data set.We generate a synthetic data set composed of 𝑁 +
𝑡𝑜𝑡𝑎𝑙_𝑎𝑝𝑝𝑒𝑛𝑑𝑠 unique 8-byte integers, with 𝑁 ∈ {107, 108, 109}
and representing the original column size. After generating the
data set, we shuffle it following a uniform-random distribution
and divide it into our original column and a list of appends.

Workload. Unless stated otherwise, all experiments consist
of a synthetic workload with 104 queries in the form SELECT
SUM(R.A) FROM R WHERE R.A BETWEEN 𝑉1 AND 𝑉2. A random
value is selected for 𝑉1 and 𝑉2 = 𝑉1 + (𝑁 + 𝑡𝑜𝑡𝑎𝑙_𝑎𝑝𝑝𝑒𝑛𝑑𝑠) ∗ 1%.

Configuration.We experiment with 3 main configurations.

• High Frequency Low Volume (HFLV): A batch of appends
with 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 = 0.001% ∗ 𝑁 executed every 10 queries.

• Medium Frequency Medium Volume (MFMV): A batch of
appends with 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 = 0.01% ∗ 𝑁 executed every 100
queries.

• Low Frequency High Volume (LFHV): A batch of appends
with 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 = 0.1% ∗ 𝑁 executed every 1000 queries.

4.2 Performance Comparison
In this paper, we decided to use the Adaptive Merges algorithms
only with Adaptive Indexing due to the increased complexity
of implementing them to work with Progressive Indexing and
leave this task as an engineering exercise for future work. Since
the base indexing algorithm is different for the Adaptive Merges
and Progressive Mergesort, we decided to start appending data
after 1000 queries to have refined indexes and better isolate the
actual append cost from early index creation. Hence we avoid the
noise of partitioning the original_column and focus on the actual
merges from the appends. Our Progressive Mergesort uses a fixed
𝛿 of 0.1 in all experiments. It is also important to notice that our
Progressive Indexing implementation stops its convergence when
it becomes a fully sorted list. We leave merging appends into the
concise B+-Tree format as future work.

Figure 6 depicts a per-query performance comparison of Pro-
gressive Mergesort and Adaptive Merges. In this experiment, we
use a data set with 𝑁 = 107 and run all 3 configurations described
in the previous section. We continue this section by describing
two observations present in all experiments, (1) regarding the
column resizes and (2) an overall analysis of query robustness.

Resizes. In all three configurations, HFLV, MFMV, and LFHV,
we can notice that all three Adaptive Merges present a perfor-
mance spike right after the start of the updates around query
1000. The main reason for this spike is the need to resize the
Cracker Column when appending new data. Since this resize re-
serves 2 times the space of the original Cracker Column, it only
happens once. It is also possible to notice that with Merge Ripple,
the spike occurs 100 queries later than with Merge Complete
and Merge Gradual. This is because Merge Ripple avoids resizing
the Cracker Column by swapping the data from the Appends and
the Column with the actual resize only happening when we are
in the last piece. This problem does not exist with Progressive
Mergesort since we perform a vector.reserve() to allocate memory
to the merge vector, and filling out the merge vector is completed
over multiple queries.

Robustness. The Merge Complete presents the lowest ro-
bustness from all algorithms. Whenever a merge happens, it has
a big spike upwards since it completely merges it. Merge Gradual
is the second-worst. Since it completely merges all elements that
qualify the predicate, it does not have one big performance spike,
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(a) HFLV (b) MFMV (c) LFHV

Figure 6: Progressive Mergesort and Adaptive Merges (𝑁 = 107 and 𝑠𝑡𝑎𝑟𝑡_𝑎𝑓 𝑡𝑒𝑟 = 1000)

spreading those merges through many queries. This is partic-
ularly visible in Figure 6c that depicts the low-frequency high
volume experiment (i.e., at every 1000 queries, a batch of size 104
is inserted. One can see that at every 1000 queries, there is an
upwards spike that slowly decreases for 500 queries, and then
has a slop down since most of the Appends array was merged by
that point. From the Adaptive Merges, the Merge Ripple presents
the least variance. All queries slightly increase their cost with
increasing updates. Finally, the Progressive Mergesort presents
the lowest variance, with no performance spikes up.

One can notice that all algorithms present downwards spikes
at the same queries overall 3 configurations. These are caused by
noise due to the way we select our query predicates to fix our
workload selectivity. Since we create our second query predicate
as 𝑉2 = 𝑉1 + (𝑁 + 𝑡𝑜𝑡𝑎𝑙_𝑎𝑝𝑝𝑒𝑛𝑑𝑠) ∗ 1%. Queries might not have
exactly 1% selectivity if the data is not completely merged in
the column. Since the figures are with the y-axis in log scale,
small differences in the selectivity produce these downwards
performance spikes.

4.3 Varying Data Sizes

Workload MC MG MR PM

10
7

HFLV 2.72 3.52 2.57 1.07
MFMV 2.18 3.39 2.45 1.07
LFHV 2.00 2.55 2.34 1.06

10
8

HFLV 22.76 26.16 26.61 10.64
MFMV 20.25 26.14 25.19 10.72
LFHV 22.14 22.42 23.89 10.63

10
9

HFLV 209.25 221.67 295.39 104.77
MFMV 206.39 219.39 267.94 104.96
LFHV 197.89 200.62 250.62 103.95

Table 1: Cumulative Time (s)

Table 1 depicts the total execution cost for the workload, ex-
cluding the initial 1000 queries. On all experiments, Progressive
Mergesort presented approximately 2x better performance than
the best performing Adaptive Merge algorithm. The main reason
for this performance difference is that all Merge Adaptive algo-
rithms must keep the appends sorted to merge them efficiently.
This problem impacts Merge Ripple the most since it tends to
keep a larger appends array due to its lazier merging property.
That means that a larger array must be re-sorted at every append
insertion. One might notice that the results of Adaptive Merges
seem to directly contradict Idreos et al. [7], where Merge Ripple
was the best performing algorithm of the three. The HFLV with
𝑁 = 107 is the only experiment with the same parameters as the
original paper and showcases a similar result, with Merge Ripple

being the fastest of the Adaptive Merges. However, as discussed
before, with larger appends Merge Ripple starts to lose its benefit
of fewer swaps to keep the append vector sorted.

One other interesting result is the variance in the total cost
depending on the configuration of the workload. The Adaptive
Merges algorithms present a much higher variance than Progres-
sive Mergesort for the same data size. This is more prominent
with larger data sizes. Taking 𝑁 = 109 as an example, Merge
Complete presents a variance of 11.36s, Merge Gradual of 21.05s,
Merge Ripple of 44.72s, and Progressive Mergesort of 1.01s.

Compared to the Adaptive Merges algorithms, Progressive
Mergesort has a very low variance from configurations at the
same data size. This is due to the ProgressiveMergesort algorithm
not performing a complete sort in the append list but rather
properly refining and merging it depending on their data size.

Workload MC MG MR PM

10
7

HFLV e-07 e-07 e-07 e-10
MFMV e-06 e-07 e-07 e-10
LFHV e-06 e-07 e-07 e-10

10
8

HFLV e-05 e-05 e-05 e-07
MFMV e-05 e-05 e-05 e-07
LFHV e-04 e-05 e-05 e-07

10
9

HFLV e-03 e-03 e-03 e-06
MFMV e-03 e-03 e-03 e-06
LFHV e-02 e-03 e-03 e-06

Table 2: Robustness (Orders of Magnitude)

Table 2 depicts the order of magnitude of the query variance
of each workload on all 3 data sizes. We only calculate the query
variance after executing the first 1000 queries. Note that the lower
the variance the more robust the algorithm is. As expected, Merge
Complete presents the lowest robustness since it completely
merges the Appends array to the Cracker Column causing a huge
performance spike. The Merge Gradual/Ripple are better than
the Merge Complete, since it only merges that tuples that qualify
the query predicates. Progressive Mergesort present the highest
robustness due to its indexing budget, effectively offering a more
fine-grained control over the stream of queries.

4.4 Appends during Index Creation
To perform a fair comparison of the AdaptiveMerges and Progres-
sive Mergesort, we only initiated the updates after 1000 queries
to minimize the initial index creation cost of Adaptive Indexing
and Progressive Indexing. However, after 1000 queries, the pro-
gressive indexing is already fully converged (i.e., the main index
is a sorted list).

In this experiment, we want to evaluate Progressive Merge-
sort’s impact during Progressive Indexing’s creation phase (i.e.,

485



Initialization and Refinement phases). In our setup, we use a
dataset with 𝑁 = 107, a workload with 1% selectivity and 200
queries, and three different update setups. All update setups start
at the first query and perform appends at every 10 queries, they
differ on the size of the batches, with batches of size 100, 1000
and 10000.

Figure 7: ProgressiveMergesort before index convergence.

Figure 7 depicts the per-query cost for the 200 queries. The
height of the performance spikes are strongly correlated to the
batch sizes, with larger batches introducing a higher spike. This
happens due to our strategy using a fixed 𝛿 (i.e., a % of the total
size of the data that is indexed per-query) for the entire workload.
Hence the more data we ingest, the actual per-query cost will
increase since the data size increases. One way of minimizing
this issue is to extend the cost models proposed in Holanda et
al. [5] to automatically generate a value for 𝛿 to reduce query
variance. We leave that algorithm as an exercise for future work.

5 CONCLUSION & FUTURE WORK
In this paper, we introduce the Progressive Mergesort, a novel
progressive algorithm used to merge batches of appends. We
compare it to the state-of-the-art merging algorithms from adap-
tive indexing techniques and show how they perform under
multiple synthetic benchmarks. Our solution is more robust and
faster than the state-of-the-art.

We point out the following as the main aspects to be explored
in Progressive Mergesort’s future work:

• Integrating Merge Ripple With Progressive Index-
ing. In our experiments we compare against adaptive
indexing using the merge gradual/complete/ripple algo-
rithms. However, this comparison would be even more
significant if these algorithms were implemented directly
into progressive indexing. For example, if the main index
algorithm is Progressive Quicksort, by using an AVL-Tree,
similar merge algorithms could be used.

• Refinement Method. In this paper, we only use Pro-
gressive Quicksort as our refinement strategy within Pro-
gressive Mergesort. However, in the Progressive Indexing
work, it is demonstrated that different progressive index-
ing algorithms can present better performance depending
on the data distribution and workload.With mergesort, we
also have the opportunity of selecting a different algorithm
for each chunk in the refinement step. Deciding which
algorithm to use could drastically improve performance.

• Merge Strategy. Deciding when to merge and which ar-
rays to merge can be beneficial to the cumulative cost
of the workload since there is a trade-off on the random

access vs merging costs (i.e., keeping many smaller arrays
or frequently merging them in order to maintain only a
small number of bigger arrays). Designing an algorithm
that takes that this trade-off into consideration is left as
future work.

• Greedy Progressive Mergesort. Our current implemen-
tation of progressive mergesort relies on a fixed 𝛿 for
the entire workload. The development of a cost-model to
the merge phase will allow it to also be integrated with
progressive indexing algorithms that use an interactivity
threshold and automatically adapt the 𝛿 value to boost
robustness. Hence, as future work, a greedy version of our
progressive mergesort can bring even fewer performance
spikes to our algorithm.

• Handling Updates. In this paper, we describe how to ef-
ficiently merge appends, since these are the most common
types of updates in interactive data analysis. However,
although deletes and updates are not frequent, they might
still occur, therefore progressive mergesort must be capa-
ble of properly handling them.

• Multidimensional Updates.Until now, we only focused
on unidimensional progressive indexing. However, mul-
tidimensional progressive indexing [8] was recently pro-
posed to efficiently index columns for queries with multi-
ple selective filters. In this algorithm, a KD-Tree is used to
store and navigate the partitions created by progressive
indexing. To support updates on this structure, progres-
sive mergesort must be extended to consider the KD-Tree
nodes to merge multiple batches of updates correctly.

• Real Benchmarks. The Sloan Digital Sky Survey 1 is an
open-source project that maps the universe with an open
data set and interactive-exploratory query logs. Capturing
the updates on this database can depict a good representa-
tion of real patterns of updates on interactive data.
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ABSTRACT

Context-Free Path Querying (CFPQ) allows one to express path

constraints in navigational graph queries as context-free gram-

mars. Although there are many algorithms for CFPQ developed,

no graph database provides full-stack support of CFPQ. The Azi-

mov’s CFPQ algorithm is applicable for real-world graph analyses,

as shown by Arseniy Terekhov. In this work we provide a modi-

fication to Azimov’s algorithm for multiple-source CFPQ which

makes the algorithmmore practical and eases the integration into

RedisGraph graph database. We also implement a Cypher graph

query language extension for context-free constraints. Thus we

provide the first full-stack support of CFPQ for graph databases.

Our evaluation shows that the provided solution is suitable for

real-world graph analyses.

1 INTRODUCTION

Language-constrained path querying [2] is a way to search for

paths in edge-labeled graphs where constraints are formulated

in terms of a formal language. The language restricts the set of

accepted paths: the sentence formed by the labels of a path should

be in the language. Regular languages are the most popular class

of constraints used as navigational queries in graph databases.

In some cases, regular languages are not expressive enough and

context-free languages are used instead. Context-free path query-

ing (CFPQ), can be used for RDF analysis [23], biological data

analysis [18], static code analysis [16, 24], and in other areas.

CFPQ have been studied a lot since the problemwas first stated

by Mihalis Yannakakis in 1990 [22]. Jelle Hellings investigates

various aspects of CFPQ in [6ś8]. A number of CFPQ algorithms

were proposed: (G)LL and (G)LR-based algorithms by Ciro M.

Medeiros et al. [12], Fred C. Santos et al. [17], Semyon Grigorev et

al. [5], and Ekaterina Verbitskaia et al. [20]; CYK-based algorithm

by Xiaowang Zhang et al. [23]; combinators-based approach to

CFPQ by Ekaterina Verbitskaia et al. [21]. Nevertheless, the appli-

cation of context-free constraints for real-world data analysis still

faces many problems. The first problem is bad performance of

the proposed algorithms on real-world data, as shown by Jochem

© 2021 Copyright held by the owner/author(s). Published in Proceedings of the
24th International Conference on Extending Database Technology (EDBT), March
23-26, 2021, ISBN 978-3-89318-084-4 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Kuijpers et al. [11]. The second problem is that no graph data-

base provides full-stack support of CFPQ, since most effort was

made in developing algorithms and researching their theoretical

properties. This fact hinders research of problems which can

be reduced to CFPQ, thus it hinders the development of new

solutions for them. For example, graph segmentation in data

provenance analysis was recently reduced to CFPQ [14], but the

evaluation of the proposed approach was complicated by the fact

that no graph database supported CFPQ.

Rustam Azimov proposed a matrix-based algorithm for CFPQ

in [1]. This algorithm provides a solution performant enough

for real-world data analyses, as shown by Nikita Mishim et al.

in [15] and Arseniy Terekhov et al. in [19]. This algorithm com-

putes reachability and provides a single path which satisfies

constraints for every vertex pair in the graph. Namely it solves

all-pairs context-free path querying problem. In many real-world

scenarios it is redundant to handle all possible pairs, instead one

can provide one or a relatively small set of start vertices.

While all-pairs context-free path querying is a problem well

studied, best to our knowledge, there is no solutions for the single-

source and multiple-source CFPQ. In this work we propose a

matrix-based multiple-source (and single-source as a partial case)

CFPQ algorithm and provide full-stack support of CFPQ based

on the proposed algorithm.

To sum up, we make the following contributions in this paper.

(1) We modify the Azimov’s matrix-based CFPQ algorithm

and provide a multiple-source matrix-based CFPQ algo-

rithm. As a partial case, it is possible to use our algorithm

in a single-source scenario. Our modification is still based

on linear algebra, hence it is simple to implement and

allows one to use high-performance libraries and utilize

modern parallel hardware for queries evaluation.

(2) We provide full-stack support of CFPQ by extending the

RedisGraph1 [3] graph database. To do it, we implement a

Cypher query language extension2 that makes it possible

to use context-free constraints, implemented the proposed

algorithm in a RedisGraph backend, and supported the

1RedisGraph graph database Web-page: https://redislabs.com/redis-enterprise/
redis-graph/. Access date: 19.07.2020.
2Proposal which describes path patterns specification syntax for Cypher
query language: https://github.com/thobe/openCypher/blob/rpq/cip/1.accepted/
CIP2017-02-06-Path-Patterns.adoc. The proposed syntax allows one to specify
context-free constraints. Access date: 19.07.2020.
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new syntax in the RedisGraph query execution engine. As

far as we know, it is the first full-stack implementation

of CFPQ. Finally, we evaluate the proposed solution and

show that it is performant and memory-efficient enough

to be applicable for real-world graph querying.

2 PRELIMINARIES

In this section we introduce common definitions in graph theory

and formal language theory which are used in this paper. Also,

we provide a brief description of Azimov’s algorithm which is

used as a base of our solution.

2.1 Basic Definitions of Graph Theory

In this paper we use a labeled directed graph as a data model and

define it as follows.

Definition 2.1. Labeled directed graph is a tuple of six elements

𝐷 = (𝑉 , 𝐸, Σ𝑉 , Σ𝐸 , 𝜆𝑉 , 𝜆𝐸 ), where

• 𝑉 is a finite set of vertices. For simplicity, we assume that

the vertices are natural numbers ranging from 0 to |𝑉 | − 1.

• 𝐸 ⊆ 𝑉 ×𝑉 is a set of edges.

• Σ𝑉 and Σ𝐸 are sets of labels of vertices and edges respec-

tively, such that Σ𝑉 ∩ Σ𝐸 = ∅.

• 𝜆𝑉 : 𝑉 −→ 2Σ𝑉 is a function that maps a vertex to a set of

its labels, which can be empty.

• 𝜆𝐸 : 𝐸 −→ 2Σ𝐸 \ {∅} is a function that maps an edge to

a non-empty set of its labels, so each edge must have at

least one label.

Labeled graph is the basis of the widely-used property graph

data model and allows one to use not only edge labels but also

vertex labels in navigation queries.

An example of the labeled directed graph 𝐷1 is presented in

figure 1. Here the sets of labels Σ𝑉 = {𝑥,𝑦} and Σ𝐸 = {𝑎, 𝑏, 𝑐, 𝑑}.

We omit the sets of vertex labels whenever they are empty.

0 : {𝑥,𝑦} 1

2 : {𝑥}3

5

4 : {𝑦}

{𝑎} {𝑏}

{𝑎, 𝑏}

{𝑐}

{𝑐}

{𝑐}

{𝑑}{𝑑}

Figure 1: The input graph 𝐷1

Definition 2.2. Path 𝜋 in the graph 𝐷 = (𝑉 , 𝐸, Σ𝑉 , Σ𝐸 , 𝜆𝑉 , 𝜆𝐸 )

is a finite sequence of vertices and edges (𝑣0, 𝑒0, 𝑣1, 𝑒1, ..., 𝑒𝑛−1, 𝑣𝑛),

where ∀𝑖, 0 ≤ 𝑖 ≤ 𝑛 : 𝑣𝑖 ∈ 𝑉 ; ∀𝑗, 1 ≤ 𝑗 ≤ 𝑛 : 𝑒 𝑗 = (𝑣 𝑗 , 𝑣 𝑗+1) ∈ 𝐸.

Definition 2.3. An adjacency matrix 𝑀 of the graph 𝐷 is a

matrix of size |𝑉 | × |𝑉 |, such that

𝑀 [𝑖, 𝑗] =

{
𝜆𝐸 ((𝑖, 𝑗)) , (𝑖, 𝑗) ∈ 𝐸

∅ , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

The adjacency matrix𝑀 of the graph 𝐷1 (fig. 1) is the follow-

ing:

𝑀 =

©«

∅ {𝑎} ∅ ∅ ∅ ∅
∅ ∅ {𝑎, 𝑏} ∅ ∅ {𝑏}
∅ ∅ ∅ ∅ {𝑐} ∅
∅ ∅ {𝑐} ∅ ∅ ∅
∅ ∅ ∅ {𝑐} ∅ {𝑑}
∅ ∅ ∅ ∅ {𝑑} ∅

ª®®®®¬
.

Definition 2.4. Let 𝑀 be an adjacency matrix of the graph

𝐷 . Then the adjacency matrix of label 𝑙 ∈ Σ𝐸 of graph 𝐷 is a

matrix E𝑙 of size |𝑉 | × |𝑉 |, such that

E𝑙 [𝑖, 𝑗] =

{
1 , 𝑙 ∈ 𝑀 [𝑖, 𝑗]

0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Definition 2.5. A boolean decomposition of adjacency matrix 𝑀

of the graph 𝐷 is a set of Boolean matrices E = {E𝑙 | 𝑙 ∈ Σ𝐸 },

where E𝑙 is the adjacency matrix of label 𝑙 .

For example, the boolean decomposition of the adjacency ma-

trix𝑀 of the graph 𝐷1 is the set of matrices E𝑎, E𝑏 , E𝑐 , E𝑑 :

E𝑎 =

©«
. 1 . . . .
. . 1 . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .

ª®®¬
, E𝑏 =

©«
. . . . . .
. . 1 . . 1
. . . . . .
. . . . . .
. . . . . .
. . . . . .

ª®¬
,

E𝑐 =

©«

. . . . . .

. . . . . .

. . . . 1 .

. . 1 . . .

. . . 1 . .

. . . . . .

ª®®¬
, E𝑑 =

©«

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . 1

. . . . 1 .

ª®®¬
.

Definition 2.6. A vertex label matrix 𝐻 of the graph 𝐷 is a

matrix of size |𝑉 | × |𝑉 |, such that

𝐻 [𝑖, 𝑗] =

{
𝜆𝑉 (𝑖) , 𝑖 = 𝑗

∅ , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑧𝑒

The vertex label matrix 𝐻 of the example graph 𝐷1 is

𝐻 =

©«

{𝑥,𝑦} ∅ ∅ ∅ ∅ ∅
∅ ∅ ∅ ∅ ∅ ∅
∅ ∅ {𝑥} ∅ ∅ ∅
∅ ∅ ∅ ∅ ∅ ∅
∅ ∅ ∅ ∅ {𝑦} ∅
∅ ∅ ∅ ∅ ∅ ∅

ª®®®¬
.

Definition 2.7. Let 𝐻 be a vertex label matrix of graph 𝐷 . Then

the vertices matrix of label 𝑙 is a matrixV𝑙 of size |𝑉 | × |𝑉 |, such

that

V𝑙 [𝑖, 𝑗] =

{
1 , 𝑙 ∈ 𝐻 [𝑖, 𝑗]

0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Definition 2.8. A boolean decomposition of vertex label matrix

𝐻 of the graph 𝐷 is the set of Boolean matricesV = {𝑉 𝑙 | 𝑙 ∈ Σ},

whereV𝑙 is a vertices matrix of label 𝑙 .

Vertex label matrix𝐻 of the graph 𝐷1 can be decomposed into

a set of the following Boolean matrices:

V𝑥
=

©«
1 . . . . .
. . . . . .
. . 1 . . .
. . . . . .
. . . . . .
. . . . . .

ª®®¬
, V𝑦

=

©«
1 . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . 1 .
. . . . . .

ª®®¬
.

2.2 Basic Definitions of Formal Languages

We use context-free grammars as paths constraints, thus in this

subsection we define context-free languages and grammars.

Definition 2.9. A context-free grammar 𝐺 is a tuple (𝑁, Σ, 𝑃, 𝑆),

where

• 𝑁 is a finite set of nonterminals

• Σ is a finite set of terminals, 𝑁 ∩ Σ = ∅

• 𝑃 is a finite set of productions of the form 𝐴→ 𝛼 , where

𝐴 ∈ 𝑁, 𝛼 ∈ (𝑁 ∪ Σ)∗

• 𝑆 is the start nonterminal
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Definition 2.10. A context-free language is a language gener-

ated by a context-free grammar 𝐺 : 𝐿(𝐺) = {𝑤 ∈ Σ∗ | 𝑆
∗

==⇒
𝐺

𝑤}

Where 𝑆
∗

==⇒
𝐺

𝑤 denotes that a string𝑤 can be generated from a

starting non-terminal 𝑆 using a sequence of productions from 𝑃 .

Definition 2.11. A context-free grammar 𝐺 = (𝑁, Σ, 𝑃, 𝑆) is in

weak Chomsky normal form (WCNF) if every production in 𝑃 has

one of the following forms:

• 𝐴→ 𝐵𝐶 , where 𝐴, 𝐵,𝐶 ∈ 𝑁

• 𝐴→ 𝑎, where 𝐴 ∈ 𝑁, 𝑎 ∈ Σ

• 𝐴→ 𝜀, where 𝐴 ∈ 𝑁

Note that weak Chomsky normal form differs from Chomsky

normal form in the following:

• 𝜀 can be derived from any non-terminal;

• 𝑆 can occur in the right-hand side of productions.

The matrix-based CFPQ algorithms process grammars only

in weak Chomsky normal form, but every context-free grammar

can be transformed into the equivalent grammar in this form.

Consider the context-free grammar 𝐺1 = ({𝑆}, {𝑐, 𝑑,𝑦}, 𝑃, 𝑆),

where 𝑃 contains two rules: 𝑆 → 𝑐 𝑆 𝑑 ; 𝑆 → 𝑐 𝑦 𝑑 .

This grammar generates the context-free language:

𝐿(𝐺1) = {𝑐
𝑛𝑦𝑑𝑛, 𝑛 ∈ N}.

The following grammar 𝐺wcnf
1 is a result of the transformation

of 𝐺1 to weak Chomsky normal form:

𝑆 → 𝐶 𝐸 𝐸 → 𝑌 𝐷 𝐶 → 𝑐 𝐷 → 𝑑

𝑆 → 𝐶 𝑆1 𝑆1 → 𝑆 𝐷 𝑌 → 𝑦

2.3 Context-Free Path Querying

Definition 2.12. Let 𝐷 = (𝑉 , 𝐸, Σ𝑉 , Σ𝐸 , 𝜆𝑉 , 𝜆𝐸 ) be a labeled

graph,𝐺 = (𝑁, Σ𝑉 ∪ Σ𝐸 , 𝑃, 𝑆) be a context free grammar. Then a

context free relation with grammar 𝐺 on the labeled graph 𝐷 is

the relation 𝑅𝐺,𝐷 ⊆ 𝑉 ×𝑉 :

𝑅𝐺,𝐷 = {(𝑣1, 𝑣𝑛) ∈ 𝑉 ×𝑉 | ∃𝜋 = (𝑣1, 𝑒1, 𝑣2, . . . , 𝑒𝑛, 𝑣𝑛) ∈ 𝜋 (𝐷) :

𝑙 (𝜋) ∩ 𝐿(𝐺) ≠ ∅},

where 𝑙 (𝜋) ⊂ (Σ𝑉 ∪ Σ𝐸 )
∗ is the set of labels along the path 𝜋 :

𝑙 (𝜋) = 𝜆𝑉 (𝑣1)
∗ · 𝜆𝐸 (𝑒1) · 𝜆𝑉 (𝑣2)

∗ · . . . · 𝜆𝐸 (𝑒𝑛) · 𝜆𝑉 (𝑣𝑛)
∗

For example, 𝜋 is a path from vertex 2 to vertex 5 in the labeled

graph presented in figure 1: 𝜋 = 2 : {𝑥}
{𝑐 }
−−−→ 4 : {𝑦}

{𝑑 }
−−−→ 5.

Labels along 𝜋 form the set of sequences 𝑙 (𝜋) = {𝑥𝑚𝑐𝑦𝑛𝑑 |

𝑛 ≥ 0,𝑚 ≥ 0}. Only one of these sequences satisfies context-free

constraints of the grammar𝐺1: 𝑐𝑦𝑑 . Hence 𝑙 (𝜋) ∩𝐿(𝐺1) ≠ ∅ and

the pair (3, 6) ∈ 𝑅𝐺1,𝐷 .

Note that the definition of path labels allows for zero or more

repetitions of a label of each vertex. This makes it possible to omit

vertex labels or, if there are many vertex labels, to use them in an

arbitrary order. It also permits to write a query which uses one

vertex label multiple times. This definition may appear strange in

some cases, but it depends on the semantics of the graph query

language. Semantics formalization is planned for a future work,

so we will stick to this definition in this paper.

Finally, we can define context-free path querying problem.

Definition 2.13. Context-free path querying problem is the prob-

lem of finding context-free relation 𝑅𝐺,𝐷 for a given directed

labeled graph 𝐷 and a context-free grammar 𝐺 .

In other words, the result of context-free path query evaluation

is a set of vertex pairs such that there is a path between them

and this path forms a word from the given language.

The context-free relation 𝑅𝐺1,𝐷1
for the graph 𝐷1 and the

context-free free grammar 𝐺1 is the following:

𝑅𝐺1,𝐷1
= {(2, 4), (2, 5), (3, 4), (3, 5), (4, 4), (4, 5)}.

Note that any relation 𝑅𝐺,𝐷 can be represented as a Boolean

matrix: 𝑇 [𝑖, 𝑗] = 1 ⇐⇒ (𝑖, 𝑗) ∈ 𝑅𝐺,𝐷 . In our example, 𝑅𝐺1,𝐷1

can be represented as follows:

𝑇 =

©«

. . . . . .

. . . . . .

. . . . 1 1

. . . . 1 1

. . . . 1 1

. . . . . .

ª®®¬
.

Definition 2.14. Suppose 𝑆𝑟𝑐 is a given set of start vertices,

then multiple-source context-free path querying problem for the

given 𝑆𝑟𝑐 , directed labeled graph 𝐷 and context-free grammar 𝐺

is to find a context-free relation 𝑅𝑆𝑟𝑐
𝐺,𝐷
⊆ 𝑆𝑟𝑐 ×𝑉 ⊆ 𝑅𝐺,𝐷 . Thus

we restrict start vertices of the paths of interest to be vertices

from the given set.

As a special case, a single-source CFPQ is when 𝑆𝑟𝑐 is a sin-

gleton set. If we set 𝑆𝑟𝑐 = {2} in the previous example, then the

result is: 𝑅
{2}
𝐺1,𝐷1

= {(2, 4), (2, 5)}.

2.4 Matrix-Based Algorithm

Our algorithm is based on the Azimov’s CFPQ algorithm [1]

which is based onmatrix operations. This algorithm reduce CFPQ

to operations over Boolean matrices and as a result allows one to

use high-performance linear algebra libraries and utilize modern

parallel hardware for CFPQ. Moreover, utilization of Boolean

matrices simplifies the implementation of the algorithm.

Note, that the algorithm computes not only the context-free

relation 𝑅𝐺,𝐷 but also a set of context-free relations 𝑅𝐴,𝐷 ⊆

𝑉 ×𝑉 for every 𝐴 ∈ 𝑁 . Thus it provides information about paths

which form words derivable from any nonterminal in the given

grammar. Also, this algorithm handles only the edge labels.

Aswas shown byNikitaMishin et al. [15] andArseniy Terekhov

et al. [19], this algorithm can be implemented using various high-

performance programming techniques (including GPGPU uti-

lization), and it is applicable for real-world graph analysis. But

this algorithm solves all-pairs version of CFPQ: it finds all pairs

of vertices in the given graph, such that there exist a path be-

tween them which forms a word in the given language. Thus

it is impractical in cases when we are only interested in paths

which start from the specific set of vertices, especially if this set

is relatively small. Moreover, Azimov’s algorithm operates over

an adjacency matrix of the whole input graph, and as a result it

requires a huge amount of memory which may be a problem for

a real-world graph database.

3 MATRIX-BASED MULTIPLE-SOURCE

CFPQ ALGORITHM

In this sectionwe introduce amultiple-sourcematrix-based CFPQ

algorithm. This algorithm is a modification of Azimov’s matrix-

based algorithm for CFPQ and its core idea is to cut off those

vertices which are not in the selected set of start vertices.

Let 𝐺 = (𝑁, Σ, 𝑃, 𝑆) be the input context-free grammar, 𝐷 =

(𝑉 , 𝐸, Σ𝑉 , Σ𝐸 , 𝜆𝑉 , 𝜆𝐸 ) be the input graph and 𝑆𝑟𝑐 be the input set

of start vertices. The result of the algorithm is a Boolean matrix

which represents relation 𝑅𝑆𝑟𝑐
𝐺,𝐷

.
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Algorithm 1Multiple-source CFPQ algorithm

1: function MultiSrcCFPQNaive(

𝐷 = (𝑉 , 𝐸, Σ𝑉 , Σ𝐸 , 𝜆𝑉 , 𝜆𝐸 ) ,

𝐺 = (𝑁, Σ, 𝑃, 𝑆) , ⊲ Grammar in WCNF

𝑆𝑟𝑐)

2: 𝑇 ← {𝑇𝐴 | 𝐴 ∈ 𝑁,𝑇𝐴 [𝑖, 𝑗 ] ← false, for all 𝑖, 𝑗 }

3: 𝑇𝑆𝑟𝑐 ← {𝑇𝑆𝑟𝑐𝐴 | 𝐴 ∈ 𝑁,𝑇𝑆𝑟𝑐𝐴 [𝑖, 𝑗 ] ← false, for all 𝑖, 𝑗 }

4: for all 𝑣 ∈ 𝑆𝑟𝑐 do ⊲ Input matrix initialization

5: 𝑇𝑆𝑟𝑐𝑆 [𝑣, 𝑣 ] ← 𝑡𝑟𝑢𝑒

6: 𝑀𝑆𝑟𝑐 ← 𝑇𝑆𝑟𝑐𝑆

7: for all 𝐴→ 𝑥 ∈ 𝑃 | 𝑥 ∈ Σ𝐸 do ⊲ Simple rules initialization

8: for all (𝑣, 𝑡𝑜) ∈ 𝐸 | 𝑥 ∈ 𝜆𝐸 (𝑣, 𝑡𝑜) do

9: 𝑇𝐴 [𝑣, 𝑡𝑜 ] ← 𝑡𝑟𝑢𝑒

10: for all 𝐴→ 𝑥 ∈ 𝑃 | 𝑥 ∈ Σ𝑉 do

11: for all 𝑣 ∈ 𝑉 | 𝑥 ∈ 𝜆𝑉 (𝑣) do

12: 𝑇𝐴 [𝑣, 𝑣 ] ← 𝑡𝑟𝑢𝑒

13: while𝑇 𝑜𝑟 𝑇𝑆𝑟𝑐 𝑖𝑠 𝑐ℎ𝑎𝑛𝑔𝑖𝑛𝑔 do ⊲ Algorithm’s body

14: for all 𝐴→ 𝐵𝐶 ∈ 𝑃 do

15: 𝑀 ← 𝑇𝑆𝑟𝑐𝐴 ∗𝑇𝐵

16: 𝑇𝐴 ← 𝑇𝐴 +𝑀 ∗𝑇𝐶

17: 𝑇𝑆𝑟𝑐𝐵 ← 𝑇𝑆𝑟𝑐𝐵 +𝑇𝑆𝑟𝑐𝐴

18: 𝑇𝑆𝑟𝑐𝐶 ← 𝑇𝑆𝑟𝑐𝐶+ getDst(𝑀)

19: return𝑀𝑆𝑟𝑐 ∗𝑇𝑆

20: function getDst(𝑀)

21: 𝐴 [𝑖, 𝑗 ] ← false

22: for all (𝑣, 𝑡𝑜) ∈ 𝑉 2 | 𝑀 [𝑣, 𝑡𝑜 ] = 𝑡𝑟𝑢𝑒 do

23: 𝐴 [𝑡𝑜, 𝑡𝑜 ] ← 𝑡𝑟𝑢𝑒

24: return A

In order to solve the single-source and multiple-source CFPQ

problem, we modified the Azimov’s algorithm. Each time, when

a grammar rule is applied, only vertices of interest should be

stored. To do it, we added one more matrix multiplication: 𝑇𝐴
=

𝑇𝐴 + (𝑇𝑆𝑟𝑐𝐴 ·𝑇𝐵) ·𝑇𝐶 , where𝑇𝑆𝑟𝑐𝐴 is a matrix of start vertices

for the current iteration (lines 15-16 of the Algorithm 1). In the

end of each iteration of the for loop, it is necessary to update the

set of source vertices. To do it, we call the function getDst (see

lines 20-24), in line 18. Thus, the modified algorithm supports

the frontier of the vertices of interest and updates it on each

iteration. Thus, it only computes the paths which start from the

small set of selected vertices.

4 CFPQ FULL-STACK SUPPORT

To provide full-stack support of CFPQ, it is necessary to choose an

appropriate graph database. It was shown by Arseniy Terekhov

et al. [19] that matrix-based algorithm can be naturally inte-

grated into RedisGraph because the algorithm and the database

both operate over a matrix representation of graphs. Moreover,

RedisGraph supports Cypher as a query language and there is

a proposal which describes Cypher extension for context-free

constraints. Thus we chose RedisGraph as a base for our solution.

4.1 Cypher Extension

The first thing to do is to extend the Cypher parser to support the

context-free constraints. Tobias Lindaaker proposed an extension

for context free constraints to the Cypher syntax3, which is not

implemented in the Cypher parsers yet.

This extension introduces path patterns, which are a powerful

alternative to the original Cypher relationship patterns. Path

patterns allow one to express regular constrains over the basic

3Formal syntax specification: https://github.com/thobe/openCypher/blob/rpq/cip/1.
accepted/CIP2017-02-06-Path-Patterns.adoc#11-syntax. Access date: 19.07.2020.

Listing 2 Query based on the example grammar 𝐺1 written in

Cypher with path patterns

1: PATH PATTERN S = ()-/ [:c ∼S :d] | [:c (:y) :d] /->()

2: MATCH (v:x)-[:a | :c]->()-/ :b ∼S /->(to)

3: RETURN v, to

patterns such as relationship and node patterns. Like relationship

patterns, they can be specified in the MATCH clause.

The feature which allows one to specify context-free con-

straints is named path patterns: a path pattern can be assigned

a name which can be used in other patterns or within the same

pattern. Named patterns is defined in the PATH PATTERN clause.

Using this feature, the structure of queries is pretty similar to a

grammar in the Extended Backus-Naur Form (EBNF) [9].

An example of a query which uses named path patters is

presented in listing 2. This query is based on the context-free

grammar 𝐺1. Namely, the path pattern S specifies exactly the

same constraint as the grammar𝐺1. The MATCH clause consists of

the relation pattern [:a | :c] and the path pattern /:b ∼S/, and

this path pattern references the named pattern S. The constraint

specifies that a path of interest starts in a vertex labelled x, goes

through an edge labelled either a or c, then the rest of the path

is constrainted by a path pattern which starts with an edge b and

follows with a path matched with S. The RETURN clause specifies

what the result of the query is supposed to be. For the example

graph 𝐷1, this query returns the set of vertex pairs {(0, 4), (0, 5)}.

RedisGraph database supports a subset of the Cypher language

and uses libcypher-parser4 library to parse queries. We extend

this library with the new syntax described in the proposal. Note

that we implement5 the complete syntax extension, not only the

part necessary for simple CFPQ.

4.2 RedisGraph Extension

We implemented the multiple-source algorithm in the Redis-

Graph. We partially supported the proposed syntax extension in

RedisGraph query execution engine so that one can specify the

labels of edges and vertices and use named path patterns.

Processing the input as a whole may require a lot of mem-

ory. RedisGraph implements lazy evaluation: it creates execution

strategy in terms of elementary operations each of which pro-

cesses the input sequentially in chunks. This reduces memory

consumption so that it does not depend on the input size which

is crucial when dealing with big real-world graphs. However

processing chunks comes with a time overhead. By changing the

size of a chunk, a developer may adjust the ratio between the

time and memory consumption so that it fits their needs.

We use subsets of the start vertices as chunks since it is most

natural in the multiple source algorithm. We study how the size

of a chunk affects the performance in the evaluation.

4.3 Evaluation

For RedisGraph evaluation, we used a PC with Ubuntu 18.04

installed. It has Intel Core i7-6700 CPU, 3.4GHz, and DDR4 64Gb

RAM. RedisGraph with our extensions is installed6.

4The libcypher-parser is an open-source parser library for Cypher query
language. GitHub repository of the project: https://github.com/cleishm/
libcypher-parser. Access date: 19.07.2020.
5The modified libcypher-parser library with support of syntax for path patterns:
https://github.com/YaccConstructor/libcypher-parser. Access date: 19.07.2020.
6Sources of RedisGraph database with full-stack CFPQ support:https://github.com/
YaccConstructor/RedisGraph/tree/path_patterns_dev. Access date: 19.07.2020.
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4.3.1 Data Preparation. We use the graphs and respective

queries 𝑔1 and 𝑔𝑒𝑜 from [19] to evaluate the RedisGraph-based

solution. The graphs are loaded into the RedisGraph database so

that each vertex has a unique property id in the range [0, . . . , |𝑉 |−

1], where |𝑉 | is a number of vertices in the graph to load. This

allows us to generate queries for a start vertex set with specific

size using templates. The template for the 𝑔1 query is provided

in listing 3. Here {id_from} and {id_to} are placeholders for

the lower and the upper bounds for id.

Listing 3 Cypher query pattern for 𝑔1

1: PATH PATTERN S =

()-/ [<:SubClassOf [∼S | ()] :SubClassOf]

| [<:Type [∼S | ()] :Type] /->()

2: MATCH (src)-/ ∼S /->()

3: WHERE {id_from} <= src.id and src.id <= {id_to}

4: RETURN count(*)

We implemented a query generator for the queries 𝑔1 and 𝑔𝑒𝑜

to create concrete queries for all the start sets which are used in

the previous experiment.

4.3.2 Evaluation Results. We use 𝑔𝑒𝑜 query for geospecies

graph as one of the hardest queries, and𝑔1 query for other graphs.

We measure time and memory consumption for each start set.
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Figure 2: RedisGraph performance on geospecies graph
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Figure 3: RedisGraph performance on eclass_514en graph

The execution time for all sets, except the set of size 10 000

for geospecies graph (fig. 2), is less than 1 second. Moreover, for

smaller graph (eclass_514en), processing time is less than 0.2

second for all chunks (fig. 2).
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Figure 4: Memory consumption on eclass_514en
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Figure 5: Memory consumption on geospecies

Memory consumption for the big graphs eclass_514en and

geospecies is presented in figures 4 and 5 respectively. The amount

of memory used depends on the graph and the query, but Re-

disGraph uses less that 50Mb of RAM to process graphs with

relatively small chunks (≤ 1000). Note that RedisGraph includes

memory management system, thus we measured all allocated

memory, not only the memory really used for the query eval-

uation. As a result, we can conclude that the multiple-source

CFPQ is significantly more memory efficient than creation of the

complete reachability index and its filtering: processing the set of

size 10 000 on geospecies graph requires less than 200Mb, while

full index creation requires 16Gb [19].

We also evaluate how chunking affects the performance on

the all-pairs reachability problem. We fix the size of a chunk

to be 1000 for graphs of different sizes and measure time and

memory required to process queries. Namely, we evaluate the

query which is similar to the query from the previous scenario,

but it does not constraint vertices ids (it does not have the WHERE

clause). We measure total processing time (in seconds) and total

required memory (in Mb). Also, we compare our solution with

the results of Arseniy Terekhov et al. from [19] in which the

Azimov’s algorithm was naively integrated with RedisGraph

without support of lazy query evaluation and query language.

Similar hardware and the same input graphs and queries were

used. Results are provided in table 1.

Although chunk-by-chunk processing is slower, it still requires

reasonable time. Moreover, if the chunk size is comparable with

the graph size (core and pathways graphs), then the execution

time is comparable with the monolithic processing. Thus one

can decrease execution time by increasing the chunk size. On

the other hand, even with relatively small chunks (eclass_514, go

and geospecies graphs), when for chunk-by-chunk processing is
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Table 1: Full graph processing with chunks of size 1000

Graph #V #E Q
Chunks Mono [19]

T (sec) Mem (Mb) T (sec)

core 1323 4342 𝑔1 0.003 2 0.004

pathways 6238 18 598 𝑔1 0.031 6 0.011

gohierarchy 45 007 980 218 𝑔1 0.847 62 0.091

enzyme 48 815 109 695 𝑔1 0.698 13 0.018

eclass_514en 239 111 523 727 𝑔1 18.825 35 0.067

geospecies 450 609 2 311 461 𝑔𝑒𝑜 80.979 196 7.146

go 272 770 534 311 𝑔1 72.034 40 0.604

100 times slower, our results are still reasonable for some cases.

For example, it requires over 70 times less time for geospecies

graph processing than the solution of Jochem Kuijpers et al. [11]

which is based on Neo4j and requires more than 6000 seconds.

Moreover, while the solution from [19] requires huge amount of

memory (more than 16Gb for geospecies graph and 𝑔𝑒𝑜 query),

our solution requires only 196Mb. We argue, that our solution is

more suitable for general-purpose graph databases. First of all,

the core scenario when the set of start vertices is relatively small

can be handled efficiently. Second, all-pairs reachability, which

is not a massive case, can be solved in reasonable time with low

memory consumption. One can easily tune our solution to get the

optimal time and memory consumption for their specific case.

5 CONCLUSION AND FUTUREWORK

In this paper we propose a multiple-source modifications of Azi-

mov’s CFPQ algorithm and utilize it to provide full-stack support

of CFPQ. For our solution, we implement a Cypher extension as

a part of libcypher-parser, integrate the proposed algorithm

into RedisGraph, and extend RedisGraph execution plan builder

to support the extended Cypher queries. We demonstrate that

our solution is applicable for real-world graph analyses.

In the future, it is necessary to provide formal translation of

Cypher to linear algebra, or to determine a maximal subset of

Cypher which can be translated to linear algebra. There is a num-

ber of works on the translation of a subset of SPARQL to linear

algebra, such as [4, 10, 13]. Most of them are practical-oriented

and do not provide full theoretical basis to translate querying

language to linear algebra. Others discuss only partial cases and

should be extended to cover real-world query languages. Deep

investigation of this topic can help to determine the restrictions

of linear algebra utilization for graph databases.
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ABSTRACT

Our answer-graphmethod to evaluate SPARQL conjunctive queries
(CQs) finds a factorized answer set first, an answer graph, and
then finds the embedding tuples from this. This approach can
reduce greatly the cost to evaluate CQs. This affords us a second
advantage: we can construct a cost-based planner. We present
the answer-graph approach, and overview our prototype sys-
tem, Wireframe. We then offer proof of concept via a micro-
benchmark over the YAGO2s dataset with two prevalent shapes
of queries, snowflake and diamond. We compareWireframe’s
performance over these against PostgreSQL, Virtuoso,Mon-
etDB, and Neo4J to illustrate the performance advantages of our
answer-graph approach.

1 INTRODUCTION

Science is, of course, driven by observation. It is now becoming
also ever more driven by data. Some of the datasets involved
are unimaginably large. The data is often wildly heterogeneous,
and rarely well structured as in business applications. This de-
mands new skills, methods, and approaches of scientists, and
challenges computer scientists with devising new data models,
query languages, systems, and tools that better support this.

Graph-like data has become prevalent among scientific data
stores and elsewhere. The data-science research community has
begun to focus on how best to support the management of graph
data and its analysis. One data model for graph databases is
the Resource Description Framework (RDF) [18], paired with the
query language SPARQL [8]. These have evolved as W3C stan-
dards, initially for addressing the Semantic Web. An RDF store
conceptually consists of a set of triples to represent a directed,
edge-labeled multi-graph. The triple ⟨s, p, o⟩ represents the di-
rected, labeled edge from subject node “s” to target node “o” with
label (predicate) “p”. In RDF, nodes have unique identity. The
semantics, however, is carried by the labels and how the nodes
are connected. The UniProt [16] SPARQL Endpoint (dataset)
[17], for example, consists of 63,376,853,475 RDF triples as of
this writing. UniProt (Universal Protein resource) is a freely
accessible, popular repository of protein data.

The SPARQL query language provides a formal way to query
over such graph databases. Types of SPARQL queries can be
thought about as small graphs themselves, so-called query graphs.
In a SPARQL conjunctive query (CQ), the “nodes” are the query’s
binding variables and the “edges” between these are the labels

© 2021 Copyright held by the owner/author(s). Published in Proceedings of the
24th International Conference on Extending Database Technology (EDBT), March
23-26, 2021, ISBN 978-3-89318-084-4 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.
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Figure 1: Example of an answer graph (shaded red).

to be matched. An “answer” to a CQ over a data graph G (that
is, the graph database), denoted as JCQKG, is a homomorphic
embedding of the query graph into the data graph that matches
the query’s labels to the data graph’s labeled edges. An answer
is then a tuple of node ID’s as a binding of the query’s node
variables. As such, each answer can be considered as a sub-graph
matched in the data graph.

A CQ can be quite expensive to evaluate and may require
extreme resources, given both the potentially immense size of the
data graph and the relative complexity of the CQ’s query graph.
The challenge is to reduce the expense and neededmachinery.We
present a novel approach to query optimization and evaluation for
CQs that we callWireframe. A set of embeddings is the CQ’s
answer; this in itself is not a graph. InWireframe’s approach, as
an intermediate step, we instead find the answer graph, the subset
of edges from the data graph that suffices to compose the CQ’s
embeddings. This affords us powerful advantages: the answer
graph is essentially the ideal factorization of the embeddings;1 and
we can find a best plan by estimated cost to evaluate this answer
graph by cost-based plan enumeration via dynamic programming.

Wireframe’s runtime evaluation employs two reductionmech-
anisms over the accumulating answer graph—node burnback and
edge burnback—to guarantee a minimal factorized edge set. Given
this evaluation paradigm, it is possible to devise a cost-based
planner. Wireframe’s optimization and evaluation is implemen-
tation agnostic; it can be easily implemented on any RDF-system
architecture.

We presented the vision of Wireframe’s approach in [9]. We
have since developed and implemented the approach. Herein, we
demonstrateWireframe’s key advantages via a prototype imple-
mentation, and compare its performance over amicro-benchmark
against competing approaches.

1Wireframe can guarantee the minimum answer graph for acyclic CQs, and the
minimum answer graph modulo the choice of triangulation of the CQ for cyclic
CQs.
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Figure 2: An example of the evaluation model for the answer graph generation.

2 RELATEDWORK

RDF Systems. Over the past decade, a number of RDF systems
have been developed. We can categorize them into: triple stores;
property tables; column-based stores; and graph-based stores.

In triple stores, RDF data is stored in a long, but slim table
with three columns where each row is a triple, ⟨s, p, o⟩, of RDF
data [12]. For conjunctive queries (CQs), this single long, slim
table approach requires self-joins over the table many times,
which can lead to bad query performance. Large table scans
and index look-ups can also lead to bad selectivity estimation,
and, therefore, poor query optimization [1]. To overcome this,
an index over the triple store for each of the six permutations
over S, P, and O is often maintained [12, 24]. RDF-3x uses this
approach by building a clustered B++ trees for each permutation
of ⟨s, p, o⟩: ⟨s, p, o⟩, ⟨s, o, p⟩, ⟨p, s, o⟩, ⟨p, o, s⟩, ⟨o, s, p⟩, and ⟨o, p, s⟩
[12, 13]. It also maintains additional nine aggregate indexes to
include the six binary and three unary projections of ⟨s, p, o⟩,
which is useful for selectivity estimation. The aggregate indexes
eliminate the need for expensive self-joins, therefore, improving
query performance. TripleBit [26] constructs a compact triple
matrix to minimize the use of indexes during query evaluation.

In contrast to triple stores, property tables use a flat but fat
table where each row represents a subject value with columns for
distinct property values [20]. In large, sparse RDF data, many cells
of this single flat-fat table can be null, due to the absence of object
values for the given subjects and predicates. To overcome this,
Jena [20] clusters properties into different groups, and creates
multiple property tables accordingly. BitMat [3] proposed a 3-D
bit cube to represent subjects, predicates, and objects.

In column-based stores, RDF data is stored using multiple two-
column tables [1]. There is a table for each unique property, with
one column for the subject, and the other for the object. The tables
can be stored using either physical row-store or column-store.
This approach provides superior performance whenever there
are value-based restrictions on properties. It can scale poorly,
however, when the size of tables varies [15].

Graph-based stores are designed to handle graphmanipulation
over RDF data generally outside of the scope of SPARQL queries
[6, 11]. These systems focus on specialized graph operations over
RDF data [19]. For better performance, gStore [27] constructs
VS-tree and VS*-tree index to evaluate both exact and wildcard
SPARQL queries using subgraph matches. In [2], a compressed
𝑘2-triples technique is used to run SPARQL queries in memory.
Factorization and Join Algorithms. Factorized databases are
compact representations of relational tables [4]. They not only
reduce the memory footprint while evaluating queries, but also
reduce the query processing time by avoiding redundancy. This

idea is even more effective for graph databases and queries, as
we can show that our answer graph is an ideal factorization.

The semijoin operator can improve performance by ensuring
everything in the outer (left) table joins with the inner (right)
table. Wireframe’s burnback mechanisms implement a form of
semijoin, in a way. We likely could re-engineer our Wireframe
burnback mechanisms via semijoin, were we to implement atop
a platform providing a highly efficient semijoin.2

Worst-case optimal join algorithms use query decompositions
for joins, accounting for the structural properties of the query
along with the input relation statistics. This is in contrast to a
traditional database where joins are evaluated “one join at a time”
without taking the structure of the query into account [14].

Work that is related to ours in its mechanics is that of [25].
In [25], they reduce the transmission cost in distributed envi-
ronments by generating a plan—i.e., a sequence of semijoins—to
evaluate acyclic conjunctive queries over datasets partitioned
across different servers. Of course, our objectives in Wireframe
and that of [25] are different, necessitating different methodolo-
gies. That said, our approach has advantages. Their algorithm
for an acyclic CQ requires traversing the query tree twice. Wire-
frame does not need to. Their work does not apply to cyclic
queries, whereasWireframe does.

3 THE ANSWER-GRAPH APPROACH

In [4], the authors introduce the concept of factorization as a
query-optimization technique for relational databases. Their tech-
nique is designed, and works exceptionally well, for schema and
queries for which cross products of projections of the answer
tuples all show up as answer tuples. This happens, for instance, in
schema not in fourth normal form. Evaluating for these projected
tuples first and then cross-producting them later can be a much
more efficient strategy. Deciding how best to factorize—how to
project into sub-tuples—is difficult, however.

For CQs, this last part is trivial: the factorization of the embed-
ding tuples is fully down to component node pairs, corresponding
to the labeled edges. This is our answer graph.3 Factorization is
sometimes a significant win for evaluating relational queries; it is
virtually always a win for evaluating graph CQs.

An answer graph, AG, for a CQ is a subset of the data graph
G that suffices to compute the embeddings for the CQ . We call
theminimum such subset the ideal answer graph, iAG. The iAG is
often quite small, significantly smaller than the set of embeddings,
and extremely much smaller than G. Thus, we evaluate a CQ’s
embeddings in two steps: first, we find its iAG; then we compose
2This is future work of ours.
3This is demonstrably true when the CQ is tree shaped. This is arguable when
the CQ has cycles. In the latter case, the factorization can be characterized as
projections to tuples of node pairs and node triples (triangles).
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Figure 3:Wireframe: a two-phase cost-based optimizer for conjunctive queries.

the embeddings, which we call defactorization, from the iAG,
rather than from G. This two-step approach can be significantly
more efficient.

Consider the data graph G and the chain query CQ𝐶 in Fig. 1.
The query finds all tuples of nodes ⟨w, x, y, z⟩ from G such that
⟨w, x⟩ is connected by an edge labeled A, ⟨x, y⟩ by B, and ⟨y, z⟩ by
C. Due to multiplicity from A-edges fanning in to, and C-edges
fanning out of, B values, the embedding set is twelve tuples. Our
answer graph consists of just eight labeled node pairs (in red).
Such differences are greatly magnified when on a larger scale.

Our answer-graph approach affords us a second key advantage.
We can devise a cost-based query optimizer based on dynamic
programming to construct a query plan. A plan for us is simply a
specified order of the CQ’s query edges with which to evaluate
to matching answer-graph edges. Our evaluation strategy for
such plans is explained next, and ourWireframe optimizer for
choosing plans is presented in Section 5.

4 THE EVALUATION MODEL

Our evaluation model for CQs then becomes two phase: answer-
graph generation and embedding generation.
Answer-graph generation. For each query edge of the plan,
in turn, our answer graph (AG) is populated with the matching
labeled edges from G that meet the join constraints with the
current state of the AG. Call this an edge-extension step. Then
nodes in the AG that failed to extend are removed, and this “node
burnback” cascades.

Consider the CQ with query edges ⟨?w,A, ?x⟩, ⟨?x, B, ?y⟩, and
⟨?y,C, ?z⟩ in Fig. 2. Assume that the state of the AG after evaluat-
ing for query edges ⟨?w,A, ?x⟩ and ⟨?x, B, ?y⟩ is as shown in the
figure, and that the next query edge to be evaluated is ⟨?y,C, ?z⟩.
This next edge is connected to the previously evaluated edges by
the node variable ?𝑦. When retrieving data edges from G with

label C (the query edge’s label), one needs to ensure that the
sources of retrieved data edges match to one of nodes bound to
?𝑦 in AG. After populating AG thusly, many nodes of ?𝑦 in AG
may be “unattached” to any of the new edges; these nodes are
marked to be removed during the node burnback procedure. In
Fig. 2, the new answer graph has an unattached node, 10. Dur-
ing node burnback, this node is removed along with all of its
edges, ⟨5, 10⟩ and ⟨6, 10⟩. Removing these edges can result in
more unattached nodes, such as node 6, which no longer has any
edge with the label 𝐴 (contrasted with node 5). Thus, in the next
iteration, node 6 is removed with all of its edges, ⟨1, 6⟩, ⟨2, 6⟩,
⟨3, 6⟩, and ⟨4, 6⟩. The node burnback procedure then terminates,
as no further unattached nodes result.
Embedding generation. The embedding tuples are then gener-
ated over the answer graph by joining the answer edges appro-
priately. Given the ideal answer graph iAG and an acyclic CQ ,
the order in which we join is immaterial. No 𝑘-ary tuple is ever
eliminated during a join with a next query edge from the iAG.
This step is often quite fast, given the iAG is small. Evaluating
this directly from the data graph G, on the other hand—which is
what other evaluation methods for CQs do—can be exceedingly
expensive. Fig. 3 illustrates, comparing a standard evaluation
with our two-phase answer-graph approach.

5 THE PLANNERS

5.1 The Answer-Graph Planner

Plan Cost. The edge walk is our unit for estimating a plan’s cost:
the retrieval of a matching edge from G. To estimate the number
of edge walks, node and edge cardinality estimations are made
for each successive edge extension. Note that the cost of node
burnback is amortised: every edge added that does not survive
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Figure 4: Triangulating a cyclic CQ using a mesh plan

Figure 5: A running example of edge burnback procedure

to the iAG is, at some point, removed.Wireframe employs car-
dinality estimators drawn from a catalog consisting of 1-gram
and 2-gram edge-label statistics computed offline [7, 10, 22, 23].
The Edgifier. A plan is a sequence of the CQ’s query edges to
be materialized. We employ a bottom-up, dynamic-programming
algorithm to construct the edge order based on cost estimation
(which relies upon the cardinality estimations).

When the query graph of a CQ has cycles—a cyclic query—
there is an additional part to planning. Node burn-back suffices
to generate the ideal answer graph for acyclic queries, but not for
cyclic. The example in Fig. 4(I) illustrates why. Spurious edges (in
red)—e.g., ⟨𝑥3, 𝑧6⟩ and ⟨𝑥4, 𝑧5⟩—can remain that do not participate
in any final embeddings—i.e., ⟨𝑥3, 𝑧5, 𝑦7, 𝑒1⟩ and ⟨𝑥4, 𝑧6, 𝑦8, 𝑒2⟩.
Nevertheless, one can still use this non-ideal answer graph to
generate the embeddings using defactorization.

Even so, it is possible to reduce significantly further the an-
swer graph. To cull spurious edges requires an edge burnback
procedure in addition to node burnback. This requires the CQ’s
cycles have been triangulated; node triples are materialized in
addition to the node doubles (the AG edges) during evaluation.
Triangulation is the choice of which additional “query edges”,
which we call chords, to add.

The Triangulator. For cyclicCQs, in addition to the query-edge
enumeration, cycles in the query graph of length greater than
three are triangulated by adding chord edges. During evaluation,
a chord is maintained as the intersection of the materialized joins
of the opposite two edges for each triangle in which it participates.
There are many different ways one can triangulate a CQ; the
materialization cost depends on the order and choice of chord
bisection of cycles (down to triangles). We employ a bottom-up
dynamic programming algorithm to generate a bushy plan—we
call this a mesh plan—that dictates such an order and choices.

The mesh plan, when executed with node burnback but not
edge burnback, guarantees that the node sets, but not necessarily
the edge sets, will always be minimal. A correct answer graph,
AG, will be found, but it is no longer guaranteed to be ideal. as
spurious edges may remain in the AG, as demonstrated in Fig. 4(I).
The embeddings can, of course, be found from this non-ideal AG.
Edge Burnback.With the addition of edge burnback mechanism
at runtime, we can guarantee again that we find the idealAG (iAG)
when answering cyclic CQs, modulo the choice of chords that
were added. This works by checking the chords’ materializations
to chase what needs to be removed on cascade. This ensures that
spurious edges are removed.
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Fig. 4(II) shows a mesh plan which establishes as sequence
of chords to triangulate the given query graph 𝐶𝑄𝐷 . At the bot-
tom of the plan, the first chord ⟨?𝑒, ?𝑧⟩ is added, which creates
the triangle

a
?𝑒,?𝑥,?𝑧 by joining two query edges ⟨?𝑥, ?𝑧⟩ and

⟨?𝑥, ?𝑒⟩ on their common node ?𝑥 . At the next step up, a second
chord ⟨?𝑒, ?𝑦⟩ is added to create a triangle

a
?𝑒,?𝑧,?𝑦 by joining

the previous chord ⟨?𝑒, ?𝑧⟩ and the query edge ⟨?𝑧, ?𝑦⟩ on their
common node ?𝑧. At the root of the plan, a “seal” process occurs
between the chord ⟨?𝑒, ?𝑦⟩ of the left subplan and the query edge
⟨?𝑒, ?𝑦⟩ of the right subplan, where it constructs the full cycle of
the query graph. Each time we triangulate, we record the node
triples (as triangles) drawn accordingly from G in the Triangle
table, and the data chords in the Answer Graph table. We also
record in the support column of the Answer Graph table the
number of different triangles that each data edge (or data chord)
participate, grouped by its opposite node label (which we call the
pivot). For example, in the Answer Graph table, the edge ⟨𝑥3, 𝑒1⟩
has a support of 2 with the pivot of 𝑧; that is, it is part of two
triangles where the opposite node is of the label 𝑧. We can find
these from the Triangle table:

a
𝑒1𝑧5𝑥3

and
a

𝑒1𝑧6𝑥3
.

The seal process marks all uncommon data edges and data
chords between the right and left subplans—we call these unsealed
edges—by updating their supports in the Answer Graph table
to 0. Unsealed edges represent the arcs that are not part of any
cycle. Data edges that reside only on such arcs cannot be part of
the ideal AG. The task of edge burnback is to remove these edges.
It begins by removing all unsealed edges, along with triangles in
which they participate. Removing a triangle involves removing all
its data edges, which might also belong to other triangles in the
query graph, thereby removing those triangles too. This process
cascades until no unsupported triangle is left to be removed.
Whenever we remove a triangle, we decrease the support of all of
its constituent edges by one in the Answer Graph table. When the
support of any data edge or chord in the Answer Graph becomes
0, then it is safe to remove it along with the triangles in which it
participates. The process cascades until there are no edges with
zero-support remaining in the Answer Graph table.

Fig. 5 demonstrates the process of edge burnback. After the
sealing process, the unsealed set of edges are {⟨𝑒1, 𝑦8⟩, ⟨𝑒2, 𝑦7⟩},
as shown in the Answer Graph table of Fig. 4(II). We next update
the support of these two edges to 0 in the Answer Graph table.
We then call the edge burnback procedure. This first removes
the zero-support edges from the Answer Graph table. Next, this
deletes triangles

a
𝑒1𝑦8𝑧6

and
a

𝑒2𝑦7𝑧5
which those edges partici-

pated from the Triangle table. The support for each of the edges
in the Answer Graph table that was part of a recently deleted tri-
angle is decremented by 1. For example, for the removed trianglea

𝑒1𝑦8𝑧6
, the support is decremented for edges ⟨𝑧6, 𝑦8⟩ and ⟨𝑒1, 𝑧6⟩.

For the removed triangle
a

𝑒2𝑦7𝑧5
, the support is decremented for

edges ⟨𝑒2, 𝑧5⟩ and ⟨𝑧5, 𝑦7⟩. In the next iteration, the zero-support
edges are removed from the Answer Graph table, which leads,
in turn, to triangles

a
𝑒1𝑧6𝑥3

and
a

𝑒2𝑧5𝑥4
being deleted from the

Triangle table. The support is then decremented for the edges
that participated in those deleted triangles. And so forth. This
process halts once there is no edge left with zero-support in the
Answer Graph table. The resulting answer graph is then the ideal
AG (iAG).

The overhead of edge burnback must be balanced off against
the benefit of obtaining the iAG versus a larger, non-ideal AG.
This is work in progress. In our experiments, our evaluation over
cyclic CQs is without edge burnback.

5.2 The Embedding Planner

Plan Cost. When generating the embeddings for an acyclic CQ
from its iAG, the order in which we join (connected) answer edges
is immaterial. As the 𝑘-ary tuples are extended, no intermediate
results are ever lost. Thus, for this, no planning is required.
The Defactorizer. On the other hand, when the CQ is cyclic,
or when the AG provided is non-ideal, intermediate results can
be lost. The join order then matters. We call this process defac-
torization. Alternative plans for embedding materialization are
synonymous with choosing this join order. It is possible to do
this again via a cost-based approach via a bottom-up, dynamic
programming algorithm, using our catalog statistics.

6 EXPERIMENTS

Prototype.We have implemented a prototype,Wireframe, that
runs on top of PostgreSQL, a popular relation database system.
Wireframe implements the two phases described in Section 5,
each with a separate planner and evaluator. The planner for the
first phase outputs an optimal left-deep tree plan that indicates
the execution order of the query edges. The evaluator then takes
the tree plan to evaluate the query edges in sequence. For the
second phase, we presently use a greedy approach to generate a
tree plan based on the available statistics from the AG phase. The
node burnback procedure is implemented via procedural SQL.
Environment. To evaluateWireframe’s performance, we use
the YAGO2s dataset [21] containing 242M triples with 104 distinct
predicates. With a select set of 10 acyclic and 10 cyclic CQs,
we compare query execution times against PostgreSQL v11.0
(PG), Virtuoso v6.01 (VT),MonetDB v11.31 (MD), and Neo4J
v.3.5 (NJ). All experiments were conducted on a server running
Ubuntu 18.04 LTS with two Intel Xeon X5670 processors and
192GB of RAM.
Micro-benchmark. For the queries, we implemented a query
miner that generates valid, non-empty queries over a dataset
using query templates (with placeholders for edge labels). For
our experiments, we use two templates,𝐶𝑄𝑆 and𝐶𝑄𝐷 , as shown
in Figures 3 and 4, respectively. With these two templates, we
mined 218,014 snowflake-shaped queries and 18,743 diamond-
shaped queries. For our preliminary experimental study, we chose
top ten queries in the size of final embeddings for each shape.

While in [5], it is argued that there are no use cases for cyclic
queries, many, including us, have argued there certainly are. In
[14], they discuss how triangle queries, the simplest of cyclic,
have become increasingly popular for social networks, biological
motifs, and graph databases. And that cyclic queries have not
been used much yet in practice has been due in large part to that
they have been too expensive to evaluate.
Comparators. For PostgreSQL andMonetDB, the dataset was
imported as a triple store, with indexes on the string dictionary,
and six composite indexes over the permutations of subject, pred-
icate, and object. We set the size of the memory pool to eight GB
for all of the systems, except forMonetDB (which sets its own
resource allocations based on the server). We repeat execution
of each query five times, taking the average of the last four runs
(i.e., warm cache), as reported in Table 1. The execution time is
the time spent to retrieve all the result tuples for a query.
Results.One can observe from Table 1 that the size of the answer
graph is exceedingly smaller than the number of embeddings. For
instance, for the second snowflake-shaped query, the AG is 2,867
times smaller than the number of embeddings. It is no surprise,
therefore, thatWireframe (WF) achieves good performance; it
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CQ𝑆 Snowflake-shapedQueries (1/2/3/4/5/6/7/8/9) PG WF VT MD NJ |iAG| |Embeddings|

1 diedIn/influences/actedIn/owns/wasCreatedOnDate/actedIn/created/hasDuration/wasCreatedOnDate 66 4 * * * 1660 2931986
2 hasChild/influences/actedIn/actedIn/wasBornIn/created/actedIn/hasDuration/wasCreatedOnDate 63 3 246 * * 993 2847184
3 isCitizenOf/influences/actedIn/exports/wasCreatedOnDate/actedIn/created/hasDuration/wasCreatedOnDate 37 7 287 * * 1140 2670339
4 isMarriedTo/influences/actedIn/actedIn/wasBornOnDate/created/actedIn/hasDuration/wasCreatedOnDate 59 3 286 * * 3317 2569017
5 isMarriedTo/influences/actedIn/wasBornOnDate/isMarriedTo/actedIn/created/wasCreatedOnDate/hasDuration 57 17 268 * * 3580 2127992
6 isMarriedTo/influences/actedIn/hasGender/isMarriedTo/actedIn/created/hasDuration/wasCreatedOnDate 57 12 268 * * 3580 2123951
7 diedIn/isMarriedTo/actedIn/owns/wasCreatedOnDate/actedIn/created/hasDuration/wasCreatedOnDate 30 15 266 * * 10761 2111948
8 isMarriedTo/influences/actedIn/hasFamilyName/isMarriedTo/created/actedIn/hasDuration/wasCreatedOnDate 32 14 261 * * 3580 2102297
9 isMarriedTo/hasChild/actedIn/wroteMusicFor/created/created/actedIn/hasDuration/wasCreatedOnDate 35 9 256 * * 7330 1786626
10 isMarriedTo/influences/actedIn/actedIn/created/created/directed/hasDuration/wasCreatedOnDate 39 4 237 * * 3317 1533188

CQ𝐷 Diamond-shaped Queries (1/2/3/4) PG WF VT MD NJ |AG| |Embeddings|

11 isLocatedIn/linksTo/isCitizenOf/livesIn * 39 * * * 813311 59695937
12 livesIn/isCitizenOf/isLocatedIn/linksTo * 81 * * * 833355 58785214
13 isCitizenOf/wasBornIn/linksTo/diedIn * 12 * * 297 132961 3141996
14 isCitizenOf/diedIn/linksTo/wasBornIn * 21 * * 296 251054 3124213
15 wasBornIn/isAffiliatedTo/linksTo/playsFor * 37 * * * 470196 2310680
16 wasBornIn/playsFor/linksTo/isAffiliatedTo * 39 * * * 471520 2299729
17 isConnectedTo/linksTo/extractionSource/byTransport * 33 67 * 140 112040 1312372
18 created/rdfs:label/linksTo/isPreferredMeaningOf * 264 65 203 130 772994 169380
19 linksTo/isPreferredMeaningOf/created/skos:prefLabel * 114 22 111 135 766785 169324
20 diedIn/linksTo/wasBornIn/graduatedFrom * 12 92 * 195 68720 106214

Table 1: Query execution time (sec) in different systems (* denotes terminating the query after 300 seconds).

avoids the redundant edge-walks that arise from many-many
joins. While the second snowflake-shaped query took 63 seconds
on PostgreSQL, it only took three seconds on Wireframe. The
AG approach requires a much smaller memory footprint, which
can be beneficial for traditional database systems that heavily
use secondary storage. The approach also competes well against
main-memory intense systems such as Neo4J and Virtuoso. For
the cyclic, diamond-shaped queries, employing only node burn-
back does not guarantee the ideal answer graph, as discussed
above. We have found that the resulting AGs can be significantly
larger than the ideal, sometimes close to the number of embed-
dings. For this reason,Wireframe was slower for some of the
cyclic queries, notably 18 and 19. Even so, its performance over
cyclic queries is quite good. With further plan- and run-time
optimization with edge burnback, we believe that the perfor-
mance will be stellar. One can view our approach as an additional
optimization technique on top of traditional databases to han-
dle SPARQL CQs or to boost the performance of existing RDF
systems.

7 CONCLUSIONS

We have clear objectives for our next steps. First, one has a richer
plan space when considering bushy plans for both our first and
second phases. The challenge is to devise a suitable cost model
for searching the bushy-plan space via dynamic programming.
Second, when the size of an answer graph is distant from the
ideal, generating the embeddings can be costly. Triangulation
promises to reduce this significantly. This requires investigat-
ing the trade-offs between the added cost for maintaining the
triangle materializations and the reduced cost from generating
the embeddings from the significantly smaller ideal AG. Lastly,
we are to explore further optimizations within this space. Large
graphs are meant to be queried.
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relational databases. VLDB, 5(11):1232–1243, 2012.

[5] A. Bonifati, W. Martens, and T. Timm. An analytical study of large sparql
query logs. The VLDB Journal, 29(2):655–679, 2020.

[6] V. Bonstrom, A. Hinze, and H. Schweppe. Storing rdf as a graph. In Proceedings
of the IEEE/LEOS 3rd International Conference on Numerical Simulation of
Semiconductor Optoelectronic Devices, pages 27–36, 2003.

[7] S. Christodoulakis. On the estimation and use of selectivities in database perfor-
mance evaluation. CS Dept., U. of Waterloo, 1989.

[8] A. S. Eric Prud’hommeaux. SPARQL query language for RDF. W3C recom-
mendation, 15 january, 2008.

[9] P. Godfrey, N. Yakovets, Z. Abul-Basher, and M. H. Chignell. Wireframe:
Two-phase, cost-based optimization for conjunctive regular path queries. In
AMW, 2017.

[10] M. V. Mannino, P. Chu, and T. Sager. Statistical profile estimation in database
systems. ACM Computing Surveys (CSUR), 20(3):191–221, 1988.

[11] A. Matono, T. Amagasa, M. Yoshikawa, and S. Uemura. A path-based relational
rdf database. In Proceedings of the 16th Australasian Database Conference -
Volume 39, ADC ’05, pages 95–103, Darlinghurst, Australia, Australia, 2005.

[12] T. Neumann and G. Weikum. Rdf-3x: a risc-style engine for rdf. Proceedings
of the VLDB Endowment, 1(1):647–659, 2008.

[13] T. Neumann and G. Weikum. x-rdf-3x: Fast querying, high update rates, and
consistency for rdf databases. Proc. VLDB Endow., 3(1-2):256–263, Sept. 2010.

[14] H. Q. Ngo, C. Ré, and A. Rudra. Skew strikes back: New developments in the
theory of join algorithms. ACM SIGMOD Record, 42(4):5–16, 2014.

[15] L. Sidirourgos, R. Goncalves, M. Kersten, N. Nes, and S. Manegold. Column-
store support for rdf data management: Not all swans are white. Proc. VLDB
Endow., 1(2):1553–1563, Aug. 2008.

[16] The UniProt consortium (author notes), UniProt: a worldwide hub of protein
knowledge. Nucleic Acids Research, 47(D1):D506–D515, January 2019.

[17] UniProt SPARQL endpoint. https://sparql.uniprot.org/,2020.
[18] W3C: Resource description framework (rdf). http://www.w3.org/TR/

rdf-concepts/,2004.
[19] C. Weiss, P. Karras, and A. Bernstein. Hexastore: Sextuple indexing for se-

mantic web data management. Proc. VLDB Endow., 1(1):1008–1019, Aug. 2008.
[20] K. Wilkinson and K. Wilkinson. Jena property table implementation, 2006.
[21] YAGO2s: A high-quality knowledge base. http://yago-

knowledge.org/resource/. Max Planck Institut Informatik.
[22] N. Yakovets. Optimization of Regular Path Queries in Graph Databases. PhD

thesis, York University, 2016.
[23] N. Yakovets, P. Godfrey, and J. Gryz. Query planning for evaluating SPARQL

property paths. In SIGMOD, pages 1–15. ACM, June 2016.
[24] Y. Yan, C. Wang, A. Zhou, W. Qian, L. Ma, and Y. Pan. Efficiently querying

rdf data in triple stores. In Proceedings of the 17th international conference on
World Wide Web, pages 1053–1054. ACM, 2008.

[25] M. Yannakakis. Algorithms for acyclic database schemes. In VLDB, volume 81,
pages 82–94, 1981.

[26] P. Yuan, P. Liu, B. Wu, H. Jin, W. Zhang, and L. Liu. Triplebit: a fast and
compact system for large scale rdf data. Proceedings of the VLDB Endowment,
6(7):517–528, 2013.

[27] L. Zou, J. Mo, L. Chen, M. T. Özsu, and D. Zhao. gstore: Answering sparql
queries via subgraph matching. Proc. VLDB Endow., 4(8):482–493, May 2011.

498



Schema Inference for Property Graphs
Hanâ Lbath

Lyon 1 University, ENS Lyon
France

hana.lbath@ens-lyon.fr

Angela Bonifati
Lyon 1 University

France
angela.bonifati@univ-lyon1.fr

Russ Harmer
CNRS, ENS Lyon

France
russ.harmer@ens-lyon.fr

Abstract

Graphs are pervasive in many applications in which intercon-
nected data are used to represent, explore and predict digital and
real-world phenomena. Oftentimes, graph data comes without a
predefined structure and in a constraint-less fashion, thus leading
to inconsistency and poor quality. In this paper, we present a
novel end-to-end schema inference method for property graph
schemas that tackles complex and nested property values, multi-
labeled nodes and node hierarchies. Our method consists of three
main steps, the first of which builds upon Cypher queries to
extract the node and edge serialization of a property graph. The
second step builds over a MapReduce type inference system,
working on the serialized output obtained during the first step.
The third step analyzes subtypes and supertypes to infer node
hierarchies. We present our schema inference pipeline under two
variants, namely a label- and a property-oriented variant. Finally,
we experimentally evaluate and compare its scalability and accu-
racy on several real-life datasets. To the best of our knowledge,
our work is the first to address schema inference for property
graphs.

1 Introduction

Over the past decade, graph-based knowledge representation
has been becoming increasingly popular, be it with the advent
of graph databases [4] as an alternative to relational databases,
or to model complex systems, from social and fraud detection
networks to smart city grids or neuronal networks. Graphs are
applicable to all settings in which interconnected data are used
to represent, explore and predict digital and real phenomena.
Understanding the connections in the data is fundamental for
companies to carry out analytical and machine learning tasks.

Oftentimes, graph data comes without a structure and in a
constraint-less fashion, thus leading to inconsistency and poor
quality. According to a recent survey [12], the most recurrent
task for users of real-world graphs is data integration. As a matter
of fact, graphs naturally lend themselves to information reconcil-
iation and integration. However, the integration of large-scale
graphs, e.g. in knowledge bases such as DBPedia, Wikipedia or
the more recent CovidGraph, might turn out to be incorrect and
error-prone if not guided by means of schema constraints. These
constraints are also important pillars for query optimization
and metadata management, the latter being unexplored topics
in graph databases. There are several models for representing
graphs. Among the most popular is the property graph (PG) data
model, which is a multigraph with both labeled nodes and edges,
along with property value pairs associated to both. It has gained
adoption with systems such as ArangoDB, HANA Graph, Neo4j,
Oracle PGX, TigerGraph, Titan, etc.
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However, due to the lack of a standard schema, PG instances
are typically built without a predefined schema. Although it en-
sures great flexibility, it can also become a great impediment,
notably whenever the structure of the underlying instance has
to be stabilized as in many data management settings. Indeed,
schemas succinctly represent the structure of the PG instances
and allow to set constraints, such as the types of nodes, edges and
properties as well as the cardinality of a relationship or property
value data types. Moreover, schemas can be used to build rele-
vant graph features based on types as needed in many Machine
Learning pipelines [3]. Yet, given that PG instances usually exist
prior to the schema definition, extracting a schema from those
instances in a principled way might become a non-trivial and
challenging task. Existing PG schema inference methods in avail-
able graph databases (such as Neo4j) are simplistic in that they
can only output basic edge types and node types and do not take
into account the complexity of the PG data model. In particular,
they cannot handle complex data types, overlapping node types
or node hierarchies. A principled approach to PG schema infer-
ence is currently missing and highly desirable given the interest
in an ongoing ISO SC32/ WG3 standardization process of PG
schemas, involving people from academia and industry in the
LDBC community1.

In this work, we address this problem and present a novel end-
to-end schema inference method covering the entire spectrum
of features of the PG data model. Our method tackles complex
and nested property values, multi-labeled and unlabeled nodes,
node hierarchies and overlapping node types as well as edge
cardinality constraints and optionality of properties. We also
introduce two variants of our method, a label-oriented and a
property-oriented one and investigate their pros and cons.

To enable scalability, our method leverages a MapReduce ap-
proach [2] developed for schema inference from JSON datasets,
which both aggregates types and identifies data types. However,
the JSON data model and the PG data model are significantly
different. While the former can be seen as an edge-labeled tree-
structured data model, the latter is more expressive as it is a
multi-graph with novel schema components such as subtyping
and edge cardinality constraints. Because of that, schema infer-
ence for property graph is a challenging and non-trivial problem
that we tackle in this paper for the first time.

The schema inference pipeline we designed2 can be divided
into three main steps. First, we employ Cypher queries to ex-
tract and serialize the nodes and edges of the input PG, in addi-
tion to gathering information needed to infer edge cardinality
constraints. Cypher3 is an open-source graph query language
developed by Neo4j, inspired from SQL and adopted by several
graph database vendors. Afterward, we infer node and edge types,
together with the property value data types, using the output
from the first step to input the MapReduce algorithm. The last
step consists in analyzing subtypes and supertypes to infer node

1More information can be found at: https://www.gqlstandards.org
2The source code is available at: https://gitlab.com/Hgit/pgsinference
3http://www.opencypher.org
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hierarchies. Our schema inference method is generic and can be
adapted to other graph database platforms, insofar as the input
PG can be appropriately serialized to JSON. Furthermore, our
work can serve as a basis to inform the ongoing discussion of
the working groups within the ISO SC32/ WG3 standardization
process about the impact of the schema inference process on the
PG schema design choices. After describing our schema inference
method, we experimentally evaluate the accuracy and scalability
of our schema inference method on real-life datasets.

2 Related Work

Several vendors propose graph databases supporting the PG data
model, such as Neo4j, Oracle PGX, TigerGraph, RedisGraph and
GraphQL. Neo4j offers a limited possibility to view a schema of
the database via a Cypher query that outputs a single-labeled
directed graph displaying which types of nodes can be connected
together and through which types of edges. However, there is a
lack of support of the PG data model in its full potential [4]. In
particular, multi-labeled nodes in the graph instance are dupli-
cated in the graph schema so that each node is assigned a single
label, hence loosing label co-occurrence information, which is a
crucial capability of the PG data model. Furthermore, properties,
edge cardinality constraints and node type hierarchies are disre-
garded. Nonetheless, other Cypher queries output for each node
(or edge) type its corresponding properties and their data types,
in addition to whether or not they are mandatory. Nevertheless,
in the case of multi-valued or nested properties, only the data
type of the data structure containing them is inferred. In addition,
GraphQL schemas can be inferred from Neo4j databases [7] via
a Neo4j Desktop GraphQL plugin or neo4j-graphql-js. Node and
edge types and node properties data types are inferred, unlike
overlapping types, node hierarchies and nested property values—
in contrast with our method. Furthermore, some Neo4j-specific
data types, such as Locations or Dates, produce an error.

Many schema inference approaches consist in identifying
structural graph summaries by grouping equivalent nodes to-
gether [10]. Typical examples are clustering techniques, like [9]
and [6], which infer types in RDF datasets. Both are based on
the assumption that the more properties two entities share, the
likelier they belong to the same type. To this end, they group
entities according to a similarity metric. They also both handle
hierarchical and overlapping types. In [6], a density-based clus-
tering method, DBSCAN, is adopted. In [9] a faster and more
accurate clustering method, called StaTIX, is proposed. It uses
the cosine similarity metric and is based on community detection.
However, none of these techniques are suitable for PGs.

In [2], the authors propose a scalable MapReduce approach for
schema inference in JSON datasets, which infers all data types
before merging types according to an equivalence relation. Our
pipeline repurposes it for PG type inference. However, in JSON,
type hierarchies only exist in a very limited capacity and [2] does
not tackle explicitly the problem of overlapping types. Due to
the remarkable differences between the JSON data model and the
PG data model, their method is not directly applicable to PGs.

In summary, none of the above approaches fully satisfy our
criteria for PG schema inference: inference of types, basic and
complex data types, overlapping types and node hierarchies, and,
to the best of our knowledge, ours is the first work presenting a
schema inference method specifically tailored to PGs.

3 Preliminaries

In this section, we recall the definition of property graphs [1, 4, 5]
and extend a PG schema definition to best fit the schema inference
process presented in this paper.

Let O be a set of objects, L be a finite set of labels, K be a set
of property keys, and N be a set of values. We assume these sets
to be pairwise disjoint.

Definition 3.1. A property graph is a structure (𝑉 , 𝐸, 𝜂, 𝜆, 𝜈)
where
• 𝑉 ⊆ O is a finite set of objects, called vertices;
• 𝐸 ⊆ O is a finite set of objects, called edges;
• 𝜂 : 𝐸 → 𝑉 × 𝑉 is a function assigning to each edge an
ordered pair of vertices;
• 𝜆 : 𝑉 ∪ 𝐸 → P(L) is a function assigning to each object
a finite set of labels (i.e., P(𝑆) denotes the set of finite
subsets of set 𝑆); and,
• 𝜈 : (𝑉 ∪𝐸) ×K → N is a partial function assigning values
for properties to objects;

such that 𝑉 ∩ 𝐸 = ∅ and the domain of 𝜈 is finite.

In [5], a Data Definition Language (DDL) for PGs is proposed
where the obtained schema is a PG itself. We expand it to intro-
duce edge cardinality, subtypes and supertypes and the concept
of inheritance edge type. All these are key concepts to make our
inferred PG schemas as expressive and accurate as possible.

Definition 3.2. (Property Graph Schema) A Property Graph
Schema is a Property Graph Type, which is a triple (BT ,NT , ET)
with BT a set of element types, NT a set of node types, ET a
set of edge types.
• Property type: A property type is a pair (𝑘, 𝑡), where
𝑘 ∈ K is the property key and 𝑡 ∈ T is its data type.
• Element type: An element type 𝑏 ∈ BT is a quadruple
(𝑙, 𝑃, 𝑀, 𝐸), where 𝑙 ∈ L is a label, 𝑃 is a set of property
types,𝑀 ⊆ 𝑃 is a subset of mandatory property types and
𝐸 ⊆ BT is the set of element types that 𝑏 extends.
• Subtypes: A subtype is an element type such that it in-
herits from another element type—called the supertype.
• Node Type: A node type is a pair (𝑏, 𝐻 ), with 𝑏 ∈ BT ,
𝐻 ⊆ BT the set of supertypes 𝑏 inherit from.
• Inheritance Edge Type: An inheritance edge type is a
triple (𝑠, 𝑒, 𝑡), where 𝑠 = (𝑏, 𝐻 ) ∈ NT , 𝑡 ∈ 𝐻 , 𝑒 ∈ BT
with a label that we denote "SubtypeOf". Inheritance edge
types do not have any cardinality.
• Ordinary Edge Type: An ordinary edge type is a quadru-
ple (𝑠, 𝑒, 𝑡, 𝑐), with 𝑠 ∈ NT the source node, 𝑡 ∈ NT the
target node, 𝑒 ∈ BT , 𝑐 = ((𝑖, 𝑘), ( 𝑗, 𝑙)) ∈ ({0, 1}×{1, 𝑁 })2
the cardinality.
• Edge Type: the disjoint union of ordinary edge and in-
heritance edge types.

In the remainder of the paper, unless stated otherwise, edge
type refers to ordinary edge type. Let us define overlapping types:

Definition 3.3. (Overlapping Type) An overlapping type is
an element type which is a subtype of two or more supertypes.

4 Inferring Property Graph Schemas

In this section we present our method to infer a PG schema. We
assume all nodes and edges in the PG are labeled. Nodes are of
the same type if and only if they have the same set of labels, while
edges are of the same type if and only if they share their set of
source nodes, target nodes and edge labels. These assumptions
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may be too strong in some cases. We will present in Section 4.4
an alternative that deals with some of its shortcomings.

Our PG schema inference pipeline can be divided into three
main steps (cf. Fig. 1).

Figure 1: Schema inference main steps.

4.1 Step 1: Preprocessing

To begin with, the input PG needs to be serialized into JSON—
the format required by the MapReduce algorithm. To this end,
the graph is queried to match nodes and edges. To infer edge
cardinality constraints, statistics are also collected. Then, the
matched nodes and edges are serialized in such a way that proper
node and edge type inference is guaranteed. From there, they are
stored in jsonline files that will be input into the next step.
4.1.1 Preprocessing Queries. First, nodes are matched ac-
cording to their labels via Cypher queries. Similarly, edges are
matched according to their source, target node and edge labels.
Node and edge types such that none of their instances have prop-
erties are stored separately. As there is no need to infer their
property data types, the MapReduce step can be skipped in these
cases and they can be directly processed by the third step.
4.1.2 Edge Cardinalities. Edge cardinality constraints are
then inferred using rules comparing the number of instances of
the source nodes, target nodes and a given edge type. These are
collected by the preprocessing queries. Let us denote this edge
type 𝐸 = (𝑠, 𝑒, 𝑡, 𝑐), with 𝑠, 𝑡 ∈ NT , 𝑒 ∈ BT and 𝑐 the cardinality.
For instance, if there are more target nodes than source nodes
and there are as many target nodes as edges of type 𝐸, then the
cardinality of 𝐸 is one-to-many. This means that an instance of
the source node type 𝑠 can be linked to many instances of the
target node type 𝑡 via the edge type 𝐸 but that an instance of 𝑡
can only be linked to one instance of 𝑠 via 𝐸. These rules can be
similarly declined for one-to-one,many-to-one andmany-to-many
relationships. The cardinality constraints can be further refined
to take into account optional relationships. For the given edge
type 𝐸, if there are fewer instances of source nodes than of its
corresponding node type, 𝑠 , then this edge type is optional for
the source node type 𝑠 (otherwise, the edge type is mandatory
for 𝑠). This means that there may be nodes of type 𝑠 that are not
linked to nodes of type 𝑡 via an edge of type 𝐸. The same rule
can be applied for target nodes.

In our pipeline, the cardinality constraint information is stored
as an edge property with the key meta_cardinality and a string
data type (e.g., meta_cardinality : "0..1:1..*" encodes a one-to-
many relationship with the edge type optional for the source
node type and mandatory for the target node type).
4.1.3 Serialization to JSON. The Cypher queries output
node and edge neo4j objects where property values are some-
times incorrectly stored (e.g., a dictionary as a string). They are
identified and converted accordingly to ensure a correct data type
inference. Nodes and edges are then converted to dictionaries
that are stored in jsonline files in such a way that correct type
inference by the MapReduce method is guaranteed (cf. Section
4.2). The nodes file contains a single dictionary where each key-
value pair represents a node. The key corresponds to its labels,

sorted in alphabetical order and separated by colons. The value is
a dictionary storing the properties as key-value pairs. Similarly,
the edges file contains a single dictionary where each key-value
pair represents an edge, with the value a dictionary storing the
properties as key-value pairs. This time, the key corresponds to
its starting node labels, its own labels and its target node labels,
all separated by colons.

4.1.4 Example. Let us set a PG instance 𝐺 of a social net-
work of patients and doctors who can create and like posts and
comments as well as reply to them. This is partially inspired by
the LDBC Social Network Benchmark database [8]. Listings 1
and 2 are dictionaries encoding a node and edge instance.
{'Patient:Person': {

'name': 'Alice',
'birthday': {'day':29,

'month':'May',
'year':2000},

'StudentNumber': 42,
'address': ['Market Street', 'Lyon'] }}

Listing 1: Dictionary storing a node instance.
{'Patient:Person::KNOWS::Doctor:Person':

{'date': '1993-06-02' }}

Listing 2: Dictionary storing an edge instance.

At the end of Step 1, we have two jsonline files ready to be
input into the MapReduce algorithm, a list of node types with no
properties and a list of all edge types containing edge cardinality
information but no properties (they will be added in Step 2).

4.2 Step 2: Types and Data Types Inference (MapReduce)

In this step, we aggregate nodes and edges by type and infer
the property data types by relying on MapReduce [2]. It can be
summarized in two steps : i) a Map phase where all property
value data types are inferred (cf. Listing 3) and ii) aReduce phase
where types are fused according to an equivalence relation. Here,
we use the kind-equivalence relation described in [2] (cf. Listing
4). It fuses recursively types of the same kind, i.e. records with
records, arrays with arrays and basic types (String, Number and
Boolean) with basic types. The fusion of two basic types produces
their union. The fusion of arrays outputs an array containing the
fusion of their content. In the case of records, the different values
of the two records are fused if and only if they share the same
key. If one of the records contains keys that are not present in
the other, then this particular key-value pair is deemed optional.
Therefore, nodes will have their properties merged if and only if
they share the same set of labels. Additionally, edges will have
their properties merged if and only if they share the same set
of source node, target node and arc labels. This complies with
our assumption stated at the beginning of Section 4. The fusion
function is recursively called so as to handle nested values.

The output of the algorithm, which is a JSON record, is then
parsed and stored in a human-readable dictionary where question
marks are affixed to optional properties’ data types. A property
"meta_mandatory : False" is instead added to optional records. Next,
the dictionary is merged with the node types with no properties
and the list of edge types containing cardinality constraints. Thus,
the output of this step is a preliminary PG schema of the input
PG, but it is still missing subtyping information.

4.2.1 Example. Listing 3 and 4 illustrate the fusion of two
{Person, Patient} nodes using the kind-equivalence detailed above.
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{'Patient:Person': {
'name': STRING,
'birthday':{'day': NUMBER,

'month': STRING,
'year': NUMBER},

'StudentNumber': NUMBER
'address': [STRING] }}

{'Patient:Person': {
'name': STRING,
'address': [NUMBER] }}

Listing 3: Two JSON record
types corresponding to two
nodes present in 𝐺 .

{'Patient:Person': {
'name': STRING,
'birthday':

{'day': NUMBER,
'month': STRING,
'year': NUMBER,
'meta_mandatory': FALSE},

'address': [NUMBER + STRING],
'StudentNumber': NUMBER ? }}

Listing 4: Fusion of the two
JSON record types on the
left-hand side using the
kind-equivalence.

4.3 Step 3: Inference of Node Hierarchies

The final step is to infer node type hierarchies so as to obtain
a schema satisfying Definition 3.2. Inferring edge hierarchies is
unnecessary in Neo4j graphs, since edges can only be associated
with a single label. Nevertheless, we expect our hierarchy infer-
ence technique to straightforwardly extend to edge hierarchies.

Algorithm 1: Node Hierarchy Inference (Label-
Oriented Variant)

input : schema nodes and edges dictionaries from Step 2
output :updated schema nodes and edges dictionaries and schema file

1 ⊲ Identify supertypes
2 𝑠𝑢𝑝𝑒𝑟𝑡𝑦𝑝𝑒𝑠 = list of the pairwise intersections of the node label sets
3 for 𝑠𝑡𝑦𝑝𝑒 in 𝑠𝑢𝑝𝑒𝑟𝑡𝑦𝑝𝑒𝑠 do
4 add stype to nodes if needed

5 ⊲ Identify subtypes
6 𝑛𝑜𝑑𝑒𝐿𝑎𝑏𝑒𝑙𝑠 = list of node label sets
7 for 𝑖 ← 0 to length(nodeLabels) −1 do
8 𝑛𝑠𝑒𝑡0 = 𝑛𝑜𝑑𝑒𝐿𝑎𝑏𝑒𝑙𝑠 [𝑖 ]
9 for 𝑗 ← 0 to length(nodeLabels[𝑖 :]) −1 do
10 ⊲ Two given node types are compared only once
11 𝑛𝑠𝑒𝑡1 = 𝑛𝑜𝑑𝑒𝐿𝑎𝑏𝑒𝑙𝑠 [ 𝑗 ]
12 if 𝑛𝑠𝑒𝑡0 ≠ 𝑛𝑠𝑒𝑡1 then
13 if 𝑛𝑠𝑒𝑡0 ⊂ 𝑛𝑠𝑒𝑡1 then
14 add 𝑛𝑠𝑒𝑡1::SubtypeOf::𝑛𝑠𝑒𝑡0 edge
15 else if 𝑛𝑠𝑒𝑡1 ⊂ 𝑛𝑠𝑒𝑡0 then
16 add 𝑛𝑠𝑒𝑡0::SubtypeOf::𝑛𝑠𝑒𝑡1 edge

First, node supertypes corresponding to subsets of labels
present in two or more node type label sets are inferred (l. 1-4).
To this end, we take the pairwise intersection of the label sets of
all node types inferred during Step 2. For instance, let us consider
a {Person, Doctor} and a {Person, Patient} node type. The node
type labeled {Person} is thus identified as a supertype.

The second step is to identify all subtypes (l. 5-16). We as-
sumed earlier that node types are characterized by their labels.
We thus consider a node type (with label set 𝐴) to be a subtype of
a distinct node type (with label set 𝐵) if 𝐵 ⊊ 𝐴. This enables us to
automatically handle overlapping types and hierarchies of arbi-
trary depths, as long as they are reflected in the labels. Thus, the
label sets of all node types, including those inferred previously,
are compared in pairwise fashion to identify subtypes. For exam-
ple, {Person, Patient, Doctor} is a subtype of {Person, Doctor}. The
corresponding inheritance edges are then created and added to
the schema. The time complexity of the node hierarchy inference
is quadratic in the number of node types inferred in the previ-
ous steps. However, since the number of node types is typically
smaller than the size of the PG, this complexity remains bearable
in practice, as also shown by our evaluation.

With the node type hierarchy inferred, the PG schema is com-
plete. It is stored in a JSON file using the format described earlier.
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month: STRING,
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Figure 2: An excerpt of the PG schema inferred from the
PG 𝐺 using our label-oriented variant.
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Figure 3: An excerpt of the PG schema inferred from the
PG 𝐺 using our property-oriented variant.

4.4 Method Variant: Labels as Properties

So far, we have assumed that all nodes in the input PG are labeled
and that node labels characterize node types. However, these
assumptions may sometimes be unsuitable. Indeed, some graphs
may contain unlabeled nodes and information provided by the
properties may be lost when only taking labels into account. For
example, let us consider the PG 𝐺 (cf. Example 4.1.4) and as-
sume that the nodes labeled {Person, Patient} can be partitioned
into two groups: those with a StudentNumber property key, corre-
sponding to patients who are students, and those without one.
With the previous approach, we had missed this subtlety and only
identified a single {Person, Patient} node type with an optional
StudentNumber key (cf. Listings 3 and 4 and Fig. 2). Therefore, we
propose to consider labels as properties with a Void data type
and to use property key sets (which now include labels) instead
of label sets to characterize node types and thus identify node
types and hierarchies. To merge nodes, we hence use L-driven
reduction [2], which fuses two records if and only if they share
the same property key sets. As a result, no optional property
can be inferred but rather property key co-occurrence informa-
tion is identified. Moreover, unlabeled nodes can henceforth be
considered on the same level as labeled nodes. In Neo4j, edges
must have exactly one label. So, all the input PGs we considered
contain single-labeled edges. We thus continue to utilize our
label-oriented approach to handle them. If the source node or
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target node is unlabeled, it is referred to by its property keys in
place of labels. Our PG schema inference pipeline in this para-
digm is very similar to the former and can be divided into the
same three steps.
4.4.1 Example. Fig. 2 and 3 depict the schemas inferred
from the PG 𝐺 using both variants. As discussed above, the first
approach overlooks the information provided by the properties,
resulting in missing node types (e.g., a supertype of the Post and
Comment nodes could not be inferred). This is resolved with the
property-oriented variant where an unlabeled supertype could
be inferred (the unlabeled orange node in Fig. 3).

5 Evaluation
Our method is implemented in Python 3 and is based on Neo4j 3.5.
The graphs are queried with Cypher through the Neo4j Python
driver. The MapReduce step is based on the implementation in
[2], which runs with Spark 2.4.5. All experiments were performed
on an Openstack Virtual Machine with twelve 2GHz 64-bits Intel
Xeon CPUs, 62 GB of memory and a 1.5 TB hard drive.

5.1 Datasets and Metrics
We have used several datasets in our experimental study (cf. Ta-
ble 1). We evaluated our schema inference method on the LDBC
Social Network Benchmark (LDBC) [8], a synthetic social
network. It contains single-labeled nodes and comes equipped
with a ground truth schema incorporating node hierarchies. We
also used two Neuprint datasets, corresponding to neuronal
networks of different parts of the fruit fly brain: i) the mush-
roombody (mb6) [14] and ii) the medulla (fib25) [13]. Accom-
panied by a ground truth schema, they contain multi-labeled
nodes (as opposed to LDBC) and a large diversity of property
value data types, such as JSON records or neo4j cartesian 3D
points. We tested as well our pipeline on a Covid-19 graph
(covid19) (https://covidgraph.org/). This graph is being assem-
bled by the CovidGraph project, which is currently ongoing.
The graph is continuously evolving and hence so are the cor-
responding schemas. The results presented in this paper are
those obtained with the April 2020 version, which notably holds
multi-labeled nodes and five unlabeled nodes. No ground truth
is available for the schema of the latter graph.

To assess the quality of our schema inference, we have used
the precision, recall and F1-score of the node types and edge
types. We consider an inferred type that is (not) present in the
ground truth schema as a True Positive (TP) (False Positive (FP),
respectively). A type that is present in the ground truth but not
in the inferred schema is considered as a False Negative (FN).
Precision accounts for the proportion of identified types that are
present in the ground truth, while the recall gives the proportion
of ground truth types that were inferred. The F1-score provides
an average of precision and recall.

5.2 Experimental Results and Discussion
In this section, we present and discuss the results of our evalua-
tion (cf. Table 2 and 3). We recall edge type refers to the union of
ordinary and inheritance edge types (cf. Definition 3.2).
5.2.1 Quality of the Schema Inference. In both the Ne-
uprint and LDBC datasets, the property value data types, as well
as the edge cardinality constraints of the correctly identified edge
types, have been inferred accurately. The precision, recall and
F1-score of the node and edge types (cf. Table 4) demonstrate the
overall good quality of the types inferred with our label-oriented
approach. We could not compute these metrics for the Covid19
dataset due to the lack of a ground truth on this schema.

Dataset Nodes Edges Node Labels Edge Labels Unlabel.
Nodes

Nested or
Multiple
Values

mb6 486,267 961,571 10 3 0 Yes
fib25 802,479 1,625,439 10 3 0 Yes

covid19 10,447,251 25,340,047 60 73 5 Yes
LDBC 1,577,397 8,179,418 7 14 0 No

Table 1: Characteristics of the datasets used in the study.

Baseline label-oriented-variant
Dataset Node

Types
Edge
Types

Node
Types

Edges
Types

Inheritance
Edges Types

Max Node
Hierarchies
Depth

Overlapping
Types

mb6 10 64 5 10 1 1 No
fib25 10 64 5 10 1 1 No

covid19 60 75 77 159 43 1 Yes
LDBC 7 21 7 21 0 0 No

Table 2: Inferred types with the label-oriented variant.

Dataset Node
Types

Edge
Types

Inheritance
Edges Types

Max Node
Hierarchies
Depth

Overlapping
Types

mb6 68 795 786 9 Yes
fib25 47 427 418 8 Yes
LDBC 17 72 51 5 Yes

Table 3: Inferred typeswith the property-oriented variant.

Label-oriented Property-oriented
Precision Recall F1 Precision Recall F1

Dataset N E N E N E N E N E N E
mb6 0.80 0.83 0.80 0.83 0.80 0.83 0.29 0.01 0.80 0.83 0.43 0.01
fib25 0.80 0.83 0.80 0.83 0.80 0.83 0.09 0.01 0.80 0.83 0.15 0.27
ldbc 1.00 1.00 0.54 0.70 0.70 0.82 0.47 0.47 0.62 0.75 0.53 0.58

Table 4: Precision, recall and F1 of the inferred types (N is
for node types, E is for edge types).

Baseline Comparison. We first compare the schemas inferred
by our label-oriented approach with a baseline, the schemas re-
turned by the Neo4j call db.schema query (cf. Table 2). The lat-
ter outputs many spurious types as it only targets single-labeled
node types, even in the presence of multi-labeled node instances.
Moreover, no property types or cardinality constraints can be
captured, as opposed to our proposed method. As a result, the
baseline schema is not accurate and error-prone.

Label-Oriented Approach. All three metrics—notably the pre-
cision, with a 0.80 to 1.00 range—are reasonably high. They are
identical for both Neuprint datasets (mb6 and fib25), as they share
both the ground-truth and inferred types. Only one node type
and its corresponding inheritance edge type absent in the ground-
truth schema have been mistakenly identified. This is due to an
inconsistency in the labeling of this particular node type where
some of its instances have more labels than others. Hence, our
algorithm incorrectly aggregated them into distinct node types.
This highlights the sensitivity of our method to noisy labels. A
statistical approach to the type inference, such as clustering meth-
ods [9], would allow to group together nodes that share similar,
but not identical, label sets. Combining it with graph embedding
[15], which maps the input graph to a low-dimension space while
preserving the inherent characteristics of the graph to the best
possible extent, like in [11], could also emerge as a promising
solution. Data types and node hierarchies would still need to
be inferred, possibly by integrating such approaches with our
schema inference method.

In the LDBC graph, all inferred types exist in the ground-truth
schema but none of the ground-truth hierarchies were discovered.
Indeed, they were either defined via a type property, instead of
labels, or identifiable only through properties in common. The
former might be addressed with a semantic approach, while the
latter is partially overcome with our property-oriented variant.

Property-Oriented Approach. The low precision and F1 scores
obtained with the property-oriented approach may stem from
the inference of numerous spurious types—in addition to the
correct ones. For instance, in the mushroombody dataset (mb6)
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(a) Step 1: PreprocessingQueries.

0 500000 1000000 1500000 2000000 2500000

12

13

14

15

16

17

18

PG Size (Number of Nodes + Edges)

R
u
n
n
in

g
 T

im
e
 [
s
]

covid19

fib25

mb6

ldbc

(b) Step 2: Types inference.
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(c) Step 3: Node hierarchy infer-
ence.

Figure 4: Average running times for various graphs.

63 additional node types were inferred. Indeed, since we are
considering property sets to infer node types, for a given label
set, we infer as many node types as there are combinations of
properties—although in some cases, this behavior is expected
(cf. Example 4.4.1). Furthermore, different node types may have
common property keys even if they are not subtypes of a common
supertype. For example, in the LDBC graph, the node types Place
and Person both hold a property with the key name.

Nonetheless, in the Neuprint graphs, the number of TPs and
FPs remain unchanged from one variant to the other. The recall
remains thus constant. Evenmore remarkably, in the LDBC graph,
more types present in the ground-truth are identified than with
the label-oriented variant. They correspond to supertypes that
could not be inferred using solely the node labels. This is reflected
in the recall scores, which increase from 0.54 to 0.62, for nodes,
and from 0.70 to 0.75, for edges.

Label-Oriented vs Property-Oriented Approaches. To summa-
rize, the label-oriented variant outputs schemas with a very good
precision. However, it is missing node types that can only be
inferred through property-related information. This is partially
overcome by the property-oriented variant, which is marked
by an improved recall. Nonetheless, since many spurious types
are inferred as well, this is done at the expense of the preci-
sion. Hence, the label-oriented variant should be preferred, either
when the node hierarchies in the input PG are defined through
labels, or when there are no hierarchies—such as in the Neuprint
graphs. On the other hand, the property-oriented variant should
be picked when properties are crucial to the inference process,
such as in the presence of unlabeled nodes or when hierarchies
are determined by property co-occurrence information.
5.2.2 Scalability We obtained the average running times of
our schema inference pipeline for portions of different sizes of the
datasets. The times discussed in this section were acquired with
our label-oriented implementation. Those from our property-
oriented implementation are of the same order of magnitude.
The first step (cf. Fig. 4a), where we match every single node
and edge of the input PG, brings to light the problem of the
overhead caused by the Cypher queries, which increases with
the size of the input PG. Indeed, the running times can go up
to about 1900s for the complete covid19 dataset, with its 10M
nodes and 25M edges (this data point is not represented in Fig.
4a to improve legibility). As such, the pipeline running time is

dominated by this step. Still, it seems that it is at worst linear
in the input size. Fig. 4b displays the sublinear behavior of the
running times of Step 2, which is as expected with regards to
[2]. Moreover, our parsing function has an average running time
smaller than 2ms, which is satisfactory. On average, Step 3 (cf.
Fig. 4c) runs in less than 5ms and is constant when the input PG
size increases, which comforts our complexity analysis carried
out in Section 4.3. Additionally, Step 2 and 3 are not sensitive to
the heterogeneity in the complexity of data types and structures
displayed in the different datasets.

6 Conclusion and Future Work
We have presented a novel end-to-end schema inference method
for PGs that handles complex and nested property values, multi-
labeled nodes, node hierarchies overlapping node types, edge
cardinality constraints and optionality of properties.

We have proposed and empirically evaluated two variants that
both scale well. The label-oriented variant provides an inferred
schema of good quality. One of itsmain shortcomings is the loss of
property co-occurrence information that could lead to additional
supertype identification. This is resolved by our property-oriented
approach, which concurrently improves recall scores. However,
in the process, many extraneous types are inferred. A solution
worth exploring in future work would be to find a non-trivial
way to combine the outputs of these two variants to exclusively
retain the wanted node types.

Our schema inference method remains sensitive to variation
in the labels and property keys, be it due to inconsistent or mul-
tilingual naming. To overcome this, it would be interesting to
consider a clustering step on the nodes and edges of the input
instances, possibly combined with graph embeddings taking into
account semantic information to simplify graph representations.
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ABSTRACT
With the growing popularity of storing data in native RDF, we

witness more and more diverse use cases with complex SPARQL

queries. As a consequence, query optimization – and in partic-

ular cardinality estimation and join ordering – becomes even

more crucial. Classical methods exploit global statistics covering

the entire RDF graph as a whole, which naturally fails to cor-

rectly capture correlations that are very common in RDF datasets,

which then leads to erroneous cardinality estimations and subop-

timal query execution plans. The alternative of trying to capture

correlations in a ne-granular manner, on the other hand, re-

sults in very costly preprocessing steps to create these statistics.

Hence, in this paper we propose shapes statistics, which extend

the recent SHACL standard with statistic information to capture

the correlation between classes and properties. Our extensive ex-

periments on synthetic and real data show that shapes statistics

can be generated and managed with only little overhead with-

out disadvantages in query runtime while leading to noticeable

improvements in cardinality estimation.

1 INTRODUCTION
Driven by diverse movements, such as Linked Open Government

Data, Open Street Map, DBpedia [3], and YAGO [21], more and

more data is being published in RDF [7] capturing a multitude

of diverse information. Along with the growing popularity, in-

creasingly complex queries formulated in SPARQL [6] are being

executed over such data to answer business and research ques-

tions. Query logs of the public DBpedia SPARQL endpoint, for

instance, contain SPARQL queries with up to 10 joins [4] and

analytic queries in the biomedical eld can involve more than

50 joins per query [9]. Therefore, the need for high-performance

SPARQL query processing is now more pressing than ever.

Existing approaches for query optimization in RDF stores of-

ten adapt techniques from relational databases modeling an RDF

dataset as a single large table with three column [5, 16] (one

column for each of the components of an RDF triple: subject,

predicate, and object). Nevertheless, accurate cardinality estima-

tion is at the heart of any query optimizer that does not rely on

heuristics but instead uses a cost model to nd the best query ex-

ecution plan for a given query. Cardinality estimation then relies

on the availability of statistics describing the characteristics of the

data to estimate the sizes of intermediate results produced while

query execution. However, general statistics typically result in

highly imprecise estimations since they are mostly gathered on

the RDF graph as a whole, in contrast to the relational case where

it is possible to create such statistics with higher precision since

data is separated into multiple tables [15]. Furthermore, assum-

ing independence when joining parts of SPARQL queries (triple

patterns) leads to erroneous estimations [9] as co-occurrences of

certain predicates are highly correlated [19].
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Hence, exploiting more ne-grained statistics capturing corre-

lations among RDF triples leads to more accurate join cardinality

estimations [19]. However, creating such statistics comes at the

price of a very time and resource-intensive preprocessing step.

On the other hand, the alternative of online, query-dependent,

sampling [20] results in overheads during query optimization.

Instead, what we propose in this paper is to better exploit the

information that is often provided along with an RDF dataset:

SHACL (Shapes Constraint Language) [14] constraints, which is

a recent standard for validating RDF datasets that are becoming

more and more popular. SHACL denes so-called shapes describ-

ing the relationships between entities of a specic class, their

properties, and their connections to other classes of entities. Al-

though they are currently only used for validation purposes, we

show in this paper that by slightly extending them with basic sta-

tistics, they can also be exploited for join cardinality estimation.

In summary, this paper makes the following contributions.

First, we extend the SHACL denition to capture statistical infor-

mation to replace the need for creating complex (and expensive)

statistics over RDF datasets. To the best of our knowledge, this is

the rst proposal of this kind. Second, we introduce an algorithm

to enhance SHACL shapes with statistical information and to

exploit these statistics for join cardinality estimation and query

optimization. Third, we study the impact of our approach using

both synthetic (LUBM [10], WatDiv [2]) and real (YAGO-4 [21])

datasets, demonstrating that shapes statistics can provide higher

precision for query optimization with only a little overhead.

This paper is structured as follows. While Sections 2 and 3 dis-

cuss related work and introduce preliminaries, Section 4 formally

denes the problem. Section 5 then describes our proposed exten-

sion of the SHACL standards, and Section 6 presents techniques

to exploit the additional information for cardinality estimation

and query optimization. Section 7 discusses the results of our

extensive experimental study, and Section 8 concludes the paper

with an outlook to future work.

2 RELATEDWORK
Cardinality estimation has been studied extensively in the con-

text of relational databases [20]. For SPARQL queries, existing

techniques adapt relational approaches [13, 24] and focus mostly

on specic type of queries [19]. Usually, these approaches con-

struct dierent kinds of single or multidimensional synopses

over databases that can be used to estimate cardinalities [23].

While algorithms designed to generate synopsis for unlabelled

graphs are not applicable here (as the edges in RDF graphs are

labeled), consequently approaches to generate RDF summaries

either produce very large summaries [23], have very high com-

putational complexities, or they are unable to preserve the RDF

schema while constructing the summaries [23]. Therefore, the

most promising approaches aim at using statistics computed di-

rectly from edge label frequencies. In particular, RDF-3X proposes

a histogram-based technique for cardinality estimation based on

edge label frequencies. This technique was later extended by

exploiting the statistical information of Characteristic Sets [19],

which compute frequencies of sets of predicates sharing the same
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subject to estimate the cardinalities. This approach shows high

performance for star-shaped queries while it suers from signi-

cant underestimation due to the independence assumption in the

general case [20]. This approach was extended as Characteristic

Pairs [18] to overcome this limitation, but it could only support

multi-chain star queries. Moreover, extracting Characteristic Sets

from large heterogeneous graphs is computationally expensive.

SumRDF [23] is another cardinality estimation approach based

on a graph summarization. It fails to handle large queries due to

a prohibitive computation cost, and it is costly to construct such

summaries over large RDF graphs [20].

A recent benchmark, G-CARE [20], analyzed the performance

of existing cardinality estimation techniques for subgraph match-

ing. This analysis revealed that the techniques based on sampling

and designed for online aggregation outperform the cardinality

estimation techniques for RDF graphs. This calls for a more in-
depth study on how to perform cardinality estimation for SPARQL
query optimization appropriately.

In a recent work, Shape Expressions (ShEx) [22] have been

used to reorder triple patterns to enable SPARQL query opti-

mization [1], i.e., it estimates an order of execution for the triple

patterns based on some heuristic inference on which triples are

more selective. For instance, if a shape denition says that every

instructor has one or more courses, but every course has exactly

one instructor, it infers that the cardinality of courses is at least

the same as the cardinality of instructors and probably larger.

Hence, this optimization procedure is not based on actual data.

Therefore, contrary to existing works, we aim at exploiting

ne-grained statistics based on shapes to produce more precise

cardinality estimations for query planning. This will allow us to

overcome the limitations of existing methods that only use the

global-statistics [11]. To this end, instead of creating large expen-

sive summaries and characteristic sets over the RDF graphs to

estimate the cardinalities, we exploit SHACL shapes constraints

(which are as expressive as ShEx [22]) and annotate the Node
and Property Shapes with the statistics of the input RDF graph.

Compared to other solutions, it requires a lightweight prepro-

cessing and retains the structure of original RDF and SHACL

shapes graphs. Moreover, this allow us to study more closely the
eect of more ne-grained statistics, and more accurate cardinality
estimation for the task of SPARQL query optimization.

3 PRELIMINARIES
RDF Graphs: RDF graphs model entities and their relationships

in the form of triples consisting of SPO <subjects, predicates,
objects>. We present a simplied example of an RDF graph 𝐺

based on the LUBM [10] dataset in Figure 1, where oval and

rectangular shapes represent IRIs and literal nodes, respectively.

An RDF graph is formally dened as:

Denition 3.1 (RDF Graph). Given pairwise disjoint sets of IRIs

𝐼 , blank nodes 𝐵, and literals 𝐿, an RDF Graph𝐺 is a nite set of

RDF triples 〈𝑠, 𝑝, 𝑜〉 ∈ (𝐼 ∪ 𝐵) × 𝐼 × (𝐼 ∪ 𝐵 ∪ 𝐿).
SPARQL: SPARQL [6] is a standard query language for RDF. A

SPARQL query consists of a nite set of triple patterns (known

as basic graph pattern, BGP) and some conditions that have to

be met in order for data to be selected and returned from an

RDF graph. Each SPO position in a triple pattern can be concrete

(i.e., bound) or a variable (i.e., unbound). The variable names in a

SPARQL query are prexed by a ‘?’ symbol, e.g., ?X. To answer

a BGP, we require a mapping between variables to values in an
RDF graph, all the resulting triples existing in the RDF graph

Figure 1: An RDF Graph 𝐺

Figure 2: Query 𝑄 and its Graph 𝑄𝐺

obtained by replacing the variables with values are answers to

the BGP. Figure 2 shows an example SPARQL query (𝑄) and its

query graph 𝑄𝐺 on the graph of Figure 1. A BGP is dened as:

Denition 3.2 (BGP). Given a set of IRIs 𝐼 , literals 𝐿, and vari-

ables 𝑉 , a BGP is dened as 𝑇⊆(𝐼∪𝐿∪𝑉 ) × (𝐼∪𝑉 ) × (𝐼∪𝐿∪𝑉 ),
whose elements are called triple patterns.

Shapes Graphs: Several schema languages have been proposed

for RDF in the past, where the most common are RDF Schema

(RDFS
1
) and OWL [17]. RDFS is primarily used to infer im-

plicit facts, and OWL is an extension of RDF and RDFS to rep-

resent ontologies. The declarative Shapes Constraint Language

(SHACL) [14] became a W3C standard recently. SHACL schema

provides high-level information about the structure and con-

tents of an RDF graph. It allows to dene and validate structural

constraints over RDF graphs. SHACL models the data in two

components: the data graph and the shape graph. The data graph
contains the actual data to be validated, while the shape graph
contains the constraints against which resources in the data
graph are validated. These constraints are modeled as node and

property shapes, which consist of attributes encoding the con-

straints. The node shapes constraints are applicable on nodes

that are instances of a specic type in the data graph while the

property shapes constraints are applicable to predicates associ-

ated with nodes of specic types. We dene a SHACL shapes

graph as follows:

Denition 3.3 (SHACL Shapes Graph). A SHACL shapes graph

𝐺𝑠ℎ is an RDF graph describing a set of node shapes 𝑆 and a set of

property shapes 𝑃 , such that 𝑡𝑎𝑟𝑔𝑒𝑡𝑆 : 𝑆 ↦→𝐼 and 𝑡𝑎𝑟𝑔𝑒𝑡𝑃 : 𝑃 ↦→𝐼

are injective functions mapping each node shape 𝑠𝑖∈𝑆 and each

property shape 𝑝𝑖∈𝑃 to the IRI of a target class and a target

predicate in𝐺 respectively, and 𝜙 : 𝑆 ↦→2
𝑃
is a surjective function

assigning to each node shape 𝑠𝑖 a subset 𝑃𝑖⊆𝑃 of property shapes.

For example in Figure 3, node shape constraints are appli-

cable on node ub:GraduateStudent and its property shapes

constraints are applicable on predicates like takesCourse, and
advisor. This information is declared with attributes sh: target-
Class for node shapes and sh:path for property shapes. Note that

the attributes in the dark shaded boxes are part of our extension

of the SHACL denition, explained in Section 5.

1
https://www.w3.org/TR/rdf-schema/
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Figure 3: SHACL Shapes Graph

The Shapes Expression (ShEx [22]) language also serves a

similar purpose as SHACL to validate RDF graphs. Nonetheless,

the two formulations diverge mostly at the syntactic level [12],

and our approach can be extended to work using ShEx or other

constraints languages as well without the loss of generality.

4 PROBLEM FORMULATION
Given an input query 𝑄 , a query optimizer has the goal to nd

a query plan expected to answer 𝑄 in the minimum amount of

time [15]. Constructing a SPARQL query plan includes nding a

join ordering between triple patterns of its BGPs. In this paper,

we focus on the join ordering of BGPs dened as follows:

Denition 4.1 (Join Ordering). Given a set of triple patterns

𝑇={𝑡𝑝1, 𝑡𝑝2, ..., 𝑡𝑝𝑛} ⊆ (𝐼∪𝐿∪𝑉 ) × (𝐼∪𝑉 ) × (𝐼∪𝐿∪𝑉 ), the join

order O for BGPs is dened as a total ordering O of T so that for

every 𝑡𝑖 , 𝑡 𝑗∈𝑇 either 𝑡𝑖≺O𝑡 𝑗 or 𝑡 𝑗≺O𝑡𝑖 .

To nd an optimal plan, a query optimizer needs to explore the

search space of semantically equivalent join orders and choose

the optimal (cheapest) plan according to some cost function. It

is crucial to accurately estimate the join cardinality between

triple patterns of a given query to construct a query plan with

an ecient join ordering [9]. In line with the related work [20],

we neglect other cost factors and focus on join cardinality as the

most dominant cost factor to nd a join ordering. We formally

dene the problem of estimating join cardinalities as follows:

Problem 1 (Join Cardinality Estimation). Given a set of
triple patterns𝑇={𝑡𝑝1, 𝑡𝑝2, ..., 𝑡𝑝𝑛}, apply a cardinality estimation
function 𝐽 : 𝑇×𝑇 ↦→ N such that for every pair of triple patterns
(𝑡𝑝𝑖 , 𝑡𝑝 𝑗 )∈𝑇 , 𝐽 (𝑡𝑝𝑖 , 𝑡𝑝 𝑗 ) ≈ |𝑡𝑝𝑖Z𝑡𝑝 𝑗 |.

We extend the above estimation problem also to the case of

joining a triple pattern with the intermediate results of prior join

operations, e.g., to estimate the total cardinality 𝐽 ((𝑡𝑝𝑖Z𝑡𝑝 𝑗 ), 𝑡𝑝𝑘 )
≈ |(𝑡𝑝𝑖Z𝑡𝑝 𝑗 )Z𝑡𝑝𝑘 |. Then, given such estimates, an optimal query

plan minimizes the total number of operations to compute, i.e.,

the execution costs 𝐶𝑜𝑠𝑡 (𝑇,O) of the order O for the set 𝑇 . In

practice, this total join cost is obtained by summing up the inter-

mediate cardinalities of each join operation in their respective

join order. Hence, we formalize the problem of join order opti-

mization as follows:

Problem 2 (Join Order Optimization). Given a set of triple
patterns 𝑇={𝑡𝑝1, 𝑡𝑝2, ..., 𝑡𝑝𝑛} and a join cardinality estimation
function 𝐽 , nd the join order O obtained as argminO 𝐶𝑜𝑠𝑡 (𝑇,O).

5 EXTENDING SHACLWITH STATISTICS
To compute more accurate join cardinality estimations (Prob-

lem 1), we capture the correlations between RDF triples by ex-

tending SHACL’s node and property shapes with ne-grained

statistics of the RDF graph. We denote these statistics as shapes
statistics. These include the total triple count (sh:count), minimum

(sh:minCount) and maximum (sh:maxCount) number of triples

for each instance, and the number of distinct objects for property

instantiations (sh:distinctCount). The attributes shown in the dark
shaded boxes in Figure 3 are the annotated statistical attributes

of their respective node and property shapes. These statistics

are computed by executing analytical SPARQL queries over the

RDF graph. For instance, to compute the number of instances of

GraduateStudent in the dataset, i.e, the value of attribute sh:count
of node shape GraduateStudent, the annotator issues the SPARQL
query: SELECT COUNT(*) WHERE {?x a ub:GraduateStudent}.

Along with shapes statistics, we also dene global statistics by
extending VOID

2
statistics with more precise statistics of RDF

properties, i.e., the distinct subject count (DSC) and distinct object

count (DOC) of each property of the RDF graph.

6 QUERY PLANNING
In this section, we present our approach to exploit global and

shapes statistics to obtain more accurate join cardinality esti-

mates (Problem 1). These estimates, in turn, are used for join

order optimization (Problem 2).

6.1 Cardinality Estimation of Triple Patterns
A SPARQL query contains joins between multiple triple patterns.

Hence, the rst step is to estimate how many triples match every

triple pattern individually. We exploit the statistical information

contained in the extended SHACL shapes graph (Section 5) to

obtain this estimate. Hence, for each triple pattern, we obtain

their corresponding node or property shapes using the values of

the sh:targetClass and sh:path attributes.

First, all triples of the type <?x, a, [Class]> (i.e., instances with
rdf:type [Class]) are mapped to the node shape having that class

as the value of the attribute sh:targetClass. Then, triples having
variable ?x as a subject are also assigned to that node shape. The

triple predicate determines instead its corresponding candidate

property shapes, i.e., those with a matching value for sh:path.
For example, given triples 𝑡𝑝1=<?x, rdf:type, ub:GraduateStudent>
and 𝑡𝑝2=<?x, ub:name, ?n>, the subject ?x is assigned to node

shape:GraduateStudent, while the predicate in 𝑡𝑝2 matches shape:
name (Figure 3, top left and top right).

Once the candidate shapes for all the triple patterns are iden-

tied, their statistical information combined with the distinct

subject and object count (DSC & DOC) from the global statistics
are used in combination with the formulas shown in Table 1 to

compute their expected cardinality. These formulas, inspired by

a previous work [11], cover all possible types of triple patterns.

The term 𝑐𝑋 in the formulas denotes the count of 𝑋 in the RDF

graph; 𝑐𝑡𝑟𝑖𝑝𝑙𝑒𝑠 denotes the count of all triples and 𝑐𝑜𝑏 𝑗𝑒𝑐𝑡𝑠 the

count of all objects. Similarly, 𝑐𝑋𝑌
represents the count of 𝑋 hav-

ing 𝑌 . This can be used, for instance, to derive that there are

∼ 85K triples matching <?x, rdf:type, ub:FullProfessor> (Table 2a).
While both global and shapes statistics can be used to estimate

the cardinality of triple patterns using these formulas, they can

lead to dierent estimated cardinalities. When the query does not

contain any type-dened triple, only global statistics are used.

2
Vocabulary of Interlinked Datasets: https://www.w3.org/TR/void/

507



EDBT 2021, March 23-26, 2021, Nicosia, Cyprus

Triple Pattern Cardinality Triple Pattern Cardinality

?s ?p obj

𝑐𝑡𝑟𝑖𝑝𝑙𝑒𝑠

𝑐𝑜𝑏 𝑗𝑒𝑐𝑡𝑠
?s ?p ?o 𝑐𝑡𝑟𝑖𝑝𝑙𝑒𝑠

subj ?p obj

𝑐𝑡𝑟𝑖𝑝𝑙𝑒𝑠

𝑐𝑑𝑖𝑠𝑡𝑆𝑢𝑏 𝑗 × 𝑐𝑑𝑖𝑠𝑡𝑂𝑏 𝑗

subj ?p ?o

𝑐𝑡𝑟𝑖𝑝𝑙𝑒𝑠

𝑐𝑑𝑖𝑠𝑡𝑆𝑢𝑏 𝑗

?s pred obj

𝑐𝑝𝑟𝑒𝑑

𝑐𝑝𝑟𝑒𝑑𝑜𝑏 𝑗
?s pred ?o 𝑐𝑝𝑟𝑒𝑑

subj pred obj

𝑐𝑝𝑟𝑒𝑑

𝑐𝑑𝑖𝑠𝑡𝑆𝑢𝑏 𝑗 × 𝑐𝑑𝑖𝑠𝑡𝑂𝑏 𝑗

sub pred ?o

𝑐𝑝𝑟𝑒𝑑

𝑐𝑝𝑟𝑒𝑑𝑠𝑢𝑏
?s rdf:type obj 𝑐𝑒𝑛𝑡𝑖𝑡𝑖𝑒𝑠𝑟𝑑 𝑓 :𝑡𝑦𝑝𝑒𝑜𝑏 𝑗

?s rdf:type ?o 𝑐𝑟𝑑 𝑓 :𝑡𝑦𝑝𝑒

subj rdf:type obj 1 𝑜𝑟 0 subj rdf:type ?o

𝑐𝑟𝑑 𝑓 :𝑡𝑦𝑝𝑒

𝑐𝑟𝑑 𝑓 :𝑡𝑦𝑝𝑒𝑠𝑢𝑏

Table 1: Cardinality estimation of triple patterns
6.2 Cardinality Estimation of Joins
The join operation is performed on a common variable between

two triple patterns. We consider three possible types of joins

between two triple patterns based on the position of the common

variable, namely: Subject-Subject (SS), Subject-Object (SO), and

Object-Object (OO). If there is no common variable between

two triple patterns, the join will result in a Cartesian product.

Inspired by related work [8], we estimate the SS, SO, and OO join

cardinalities using the formulas stated in Equations 1, 2, and 3.

Note that 𝐷𝑆𝐶𝑖 and 𝐷𝑂𝐶𝑖 in the formulas represent the distinct

subject and object count of triple pattern 𝑖 respectively.

�𝑐𝑎𝑟𝑑 (𝑡𝑝𝑖 Z𝑆𝑆 𝑡𝑝 𝑗 ) =
𝑐𝑎𝑟𝑑𝑖 × 𝑐𝑎𝑟𝑑 𝑗

𝑚𝑎𝑥 ( 𝐷𝑆𝐶𝑖 , 𝐷𝑆𝐶 𝑗 )
(1)

�𝑐𝑎𝑟𝑑 (𝑡𝑝𝑖 Z𝑆𝑂 𝑡𝑝 𝑗 ) =
𝑐𝑎𝑟𝑑𝑖 × 𝑐𝑎𝑟𝑑 𝑗

𝑚𝑎𝑥 ( 𝐷𝑆𝐶𝑖 , 𝐷𝑂𝐶 𝑗 )
(2)

�𝑐𝑎𝑟𝑑 (𝑡𝑝𝑖 Z𝑂𝑂 𝑡𝑝 𝑗 ) =
𝑐𝑎𝑟𝑑𝑖 × 𝑐𝑎𝑟𝑑 𝑗

𝑚𝑎𝑥 ( 𝐷𝑂𝐶𝑖 , 𝐷𝑂𝐶 𝑗 )
(3)

6.3 Join Ordering
Given an RDF graph 𝐺 , its shapes statistics graph (𝐺𝑠ℎ), and
global statistics graph (𝐺𝑔𝑠 ), we propose an algorithm to com-

pute the join ordering for an input query 𝑄 (Algorithm 1). In

the rst step, the triple patterns of 𝑄 are sorted in ascending

order of their estimated cardinalities using only global statis-

tics. The algorithm starts with the triple pattern having the least

cardinality and then estimates its join cardinality with the rest

of the triple patterns using the formulas from Section 6.2. The

algorithm iterates over all the triple patterns and chooses a triple

pattern with the least estimated join cardinality (size of interme-

diate result) given the triple already selected. This produces a

rst join ordering based on global statistics. In the second step,

shapes statistics are taken into account, and both the estimated

cardinalities and the join ordering proposed in the rst step are

revised using these shapes specic ne-grained statistics. The

algorithm also computes the cost of each join ordering by adding

the estimated join cardinalities in each iteration. Its complexity

is cubic to the number of triple patterns in the query, i.e., 𝑂 (𝑛3).
Given our example query 𝑄 , and the cardinalities of its triple

patterns𝑇={𝑡𝑝1, 𝑡𝑝2, ..., 𝑡𝑝9} estimatedwith both global and shape

statistics, Tables 2a and 2b show the join ordering computed only

using global statistics (O𝑔𝑠 ) and via shapes statistics (O𝑠𝑠 ), respec-
tively. There is a signicant dierence between the estimated and

true join cardinalities and their nal total cost. The estimated

join cardinalities for O𝑠𝑠 are much closer to the true cardinalities

of the query than the estimates for O𝑔𝑠 with two exceptions for

𝑡𝑝5 and 𝑡𝑝8 where shapes statistics largely overestimate their

cardinalities due to skewed distribution of data.

Algorithm 1 Join Ordering

Input:𝑄 ,𝐺 ,𝐺𝑠ℎ ,𝐺𝑔𝑠

Output: Join order O of𝑄
1: 𝑝← [] ; 𝑟 ← [] ; ⊲ p: processed, r: remaining

2: 𝑐𝑜𝑠𝑡 ← 0 ; 𝑐𝑎𝑟𝑑 ← 0 ; 𝑞𝑢𝑒𝑢𝑒 ← 𝑞𝑢𝑒𝑢𝑒.𝑖𝑛𝑖𝑡 () ;
3: 𝑡𝑝𝑠← 𝑔𝑒𝑡𝑇𝑃𝑠 (𝑄) ;
4: 𝑡𝑝𝑠4 ← 𝑔𝑒𝑡𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑆ℎ𝑎𝑝𝑒𝑠(𝑄 ,𝐺 ,𝐺𝑠ℎ ,𝐺𝑔𝑠 ) ;

5: 𝑡𝑝𝑠′← 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝐶𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑖𝑒𝑠 (𝑡𝑝𝑠4) ; ⊲ Table 1

6: 𝑠𝑜𝑟𝑡 (𝑎𝑠𝑐, 𝑡𝑝𝑠′.𝑐𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦) ;
7: 𝑝.𝑎𝑑𝑑 (𝑡𝑝𝑠′

0
) ; 𝑟 .𝑎𝑑𝑑𝐴𝑙𝑙 (𝑡𝑝𝑠′ − 𝑡𝑝𝑠′

0
) ;

8: 𝑐𝑜𝑠𝑡 = 𝑡𝑝𝑠′
0
.𝑐𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦 ;

9: 𝑞𝑢𝑒𝑢𝑒.𝑎𝑑𝑑 (𝑡𝑝𝑠′
0
.𝑖𝑛𝑑𝑒𝑥) ;

10: for 𝑡𝑝𝑖 ∈ 𝑡𝑝𝑠′ do ⊲ i > 0

11: 𝑖𝑛𝑑𝑒𝑥 = 𝑡𝑝𝑖 .𝑖𝑛𝑑𝑒𝑥 ; 𝑐𝑜𝑠𝑡𝑙𝑜𝑐𝑎𝑙 = 𝑐𝑜𝑠𝑡 ;

12: 𝑞𝑢𝑒𝑢𝑒′ = 𝑞𝑢𝑒𝑢𝑒 ;

13: while !𝑞𝑢𝑒𝑢𝑒′.𝑖𝑠𝐸𝑚𝑝𝑡𝑦 do
14: 𝑡𝑝𝑎 = 𝑞𝑢𝑒𝑢𝑒′.𝑝𝑜𝑙𝑙 () ;
15: for 𝑡𝑝𝑏 ∈ 𝑟 do
16: 𝑐 = 0 ;

17: if tp𝑎 Z𝑇 tp𝑏 then ⊲ 𝑇 ∈ {𝑆𝑆, 𝑆𝑂,𝑂𝑆,𝑂𝑂 }
18: c = 𝐽 (𝑡𝑝𝑎 , 𝑡𝑝𝑏 ) ; ⊲ 𝐽 : 𝑇×𝑇 ↦→ N (Prob 1)

19: else𝑐 = 𝑐𝑝 (𝑡𝑝𝑎 , 𝑡𝑝𝑏 ) ; ⊲ Cartesian Product

20: if 𝑐 < 𝑐𝑜𝑠𝑡𝑙𝑜𝑐𝑎𝑙 then
21: 𝑐𝑜𝑠𝑡𝑙𝑜𝑐𝑎𝑙 = 𝑐 ; 𝑖𝑛𝑑𝑒𝑥 = 𝑡𝑝𝑏 .𝑖𝑛𝑑𝑒𝑥 ; 𝑐𝑎𝑟𝑑 = 𝑐 ;

22: 𝑐𝑜𝑠𝑡+=𝑐𝑜𝑠𝑡𝑙𝑜𝑐𝑎𝑙 ;

23: 𝑞𝑢𝑒𝑢𝑒.𝑎𝑑𝑑 (𝑖𝑛𝑑𝑒𝑥) ; 𝑝.𝑎𝑑𝑑 (𝑡𝑝𝑠′.𝑔𝑒𝑡 (𝑖𝑛𝑑𝑒𝑥)) ;
24: 𝑟 .𝑟𝑒𝑚𝑜𝑣𝑒 (𝑡𝑝𝑠′.𝑔𝑒𝑡 (𝑖𝑛𝑑𝑒𝑥)) ;
25: O ← 𝑞𝑢𝑒𝑢𝑒.𝑝𝑜𝑙𝑙 () ;

7 EXPERIMENTAL EVALUATION
We investigated the performance of query plans proposed using

our algorithm (with global and shapes statistics) compared to the

plans proposed by two state-of-the-art query engines (Apache

Jena ARQ
3
and GraphDB

4
) as well as two state-of-the-art RDF

cardinality estimation approaches (Characteristic Sets [19] and

SumRDF [23]). All experiments are performed on a single ma-

chine with Ubuntu 18.04, having 16 cores and 256GB RAM.

Datasets: We used LUBM [10], WatDiv [2], and YAGO-4 [21]

to study various query plans on dierent datasets and sizes (Ta-

ble 3). In particular, we used LUBM-500, two variants of WatDiv

datasets (WATDIV-S (Small) with ~108.9 M triples andWATDIV-L

(Large) with 1 billion triples), and for YAGO-4 we used the subset

containing instances that have an English Wikipedia article.

Implementation: Nowadays, constraints languages are having
widespread application to validate RDF graphs [21]. We assume

the availability of SHACL shapes graph with the dataset and

provide a Shapes Annotator to extend it with statistics of the graph.
For cases where they are not present, the SHACLGEN

5
library is

commonly used to generate shapes graphs and we also use it in

our case (e.g., for YAGO-4). All shapes are then extended with the

required statistics using our Shapes Annotator (implemented in

Java). The SHACL shapes graph for LUBM, for instance, is 45 KB,

and the size of extended shapes is 68 KB. The time required to

extend the SHACL shapes depends on the number of its nodes and

property shapes. The process of extending LUBM shapes graph

took 16 minutes, WATDIV-S took 8 minutes, and for YAGO-4

(which consists of 8888 nodes and 80831 property shapes) it took

62 minutes. We implemented our join ordering algorithm in Java

using Jena
3
. The source code is available on our website

6
.

We loaded all three datasets and their relevant SHACL shapes

graphs into Jena TDBs
3
. We used our join ordering algorithm

to construct query plans using global and shapes statistics. For

Jena, we used its ARQ query engine to obtain the query plans.

For GraphDB, we loaded all datasets in GraphDB and used its

onto:explain feature to obtain the query plans. For Characteris-

tic Sets [19] approach, we generated characteristic sets of each

3
https://jena.apache.org/documentation/

4
https://graphdb.ontotext.com

5
https://pypi.org/project/shaclgen/

6
https://relweb.cs.aau.dk/rdfshapes/
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Triple Pattern (TP) DSC DOC E𝑇𝑃 Card EZ Card TZ Card
1: ?A 𝑟𝑑 𝑓 :𝑡𝑦𝑝𝑒 :FullProfessor 85, 006 85, 006 85, 006

2: ?A :𝑛𝑎𝑚𝑒 ?N 10, 696, 541 1, 480 10, 696, 541 85, 006 85, 006

3: ?A :𝑡𝑒𝑎𝑐ℎ𝑒𝑟𝑂 𝑓 ?C 359, 795 1, 079, 580 1, 079, 580 8, 579 255, 148

4: ?C :𝑎𝑑𝑣𝑖𝑠𝑜𝑟 ?A 2, 052, 228 299, 177 2, 052, 228 1, 646 2, 055, 430

5: ?X 𝑟𝑑 𝑓 :𝑡𝑦𝑝𝑒 :GraduateCourse 539, 467 539, 467 539, 467 822 1, 027, 909

6: ?X 𝑟𝑑 𝑓 :𝑡𝑦𝑝𝑒 :GraduateStudent 1, 259, 681 1, 259, 681 1, 259, 681 504 630, 419

7: ?X :𝑑𝑒𝑔𝑟𝑒𝑒𝐹𝑟𝑜𝑚 ?U 1, 619, 476 1, 000 2, 337, 985 575 630, 419

8: ?Y :𝑡𝑎𝑘𝑒𝑠𝐶𝑜𝑢𝑟𝑠𝑒 ?C 5, 220, 814 1, 074, 409 14, 405, 077 7, 674 2, 964, 894

9: ?Y 𝑟𝑑 𝑓 :𝑡𝑦𝑝𝑒 :GraduateStudent 1, 259, 681 1, 259, 681 1, 259, 681 1, 851 2, 964, 894∑
=106, 657

∑
=10, 614, 119

(a) Join ordering using Global Statistics (O𝑔𝑠 )

Triple Pattern (TP) DSC DOC E𝑇𝑃 Card EZ Card TZ Card
1: ?A 𝑟𝑑 𝑓 :𝑡𝑦𝑝𝑒 :FullProfessor 85, 006 85, 006 85, 006

2: ?A :𝑛𝑎𝑚𝑒 ?N 85, 006 10 85, 006 85, 006 85, 006

3: ?A :𝑡𝑒𝑎𝑐ℎ𝑒𝑟𝑂 𝑓 ?C 85, 006 255148 255, 148 85, 006 255, 148

4: ?C 𝑟𝑑 𝑓 :𝑡𝑦𝑝𝑒 :GraduateCourse 539, 467 539, 467 539, 467 255, 148 255, 148

5: ?X :𝑎𝑑𝑣𝑖𝑠𝑜𝑟 ?A 2, 052, 228 299, 177 2, 052, 228 1, 750, 207 127, 523

6: ?X 𝑟𝑑 𝑓 :𝑡𝑦𝑝𝑒 :GraduateStudent 1, 259, 681 1, 259, 681 1, 259, 681 1, 074, 297 1, 027, 909

7: ?X :𝑑𝑒𝑔𝑟𝑒𝑒𝐹𝑟𝑜𝑚 ?U 1, 259, 681 1, 000 1, 259, 681 659, 416 630, 419

8: ?Y :𝑡𝑎𝑘𝑒𝑠𝐶𝑜𝑢𝑟𝑠𝑒 ?C 5, 220, 814 1, 074, 409 5, 220, 814 8, 841, 082 2, 964, 894

9: ?Y 𝑟𝑑 𝑓 :𝑡𝑦𝑝𝑒 :GraduateStudent 1, 259, 681 1, 259, 681 1, 259, 681 2, 133, 181 2, 964, 894∑
=14, 883, 343

∑
=8, 310, 941

(b) Join ordering using Shapes Statistics (O𝑠𝑠 )

Table 2: This table shows the statistics (distinct subject count (DSC) and distinct object count (DOC)) of each triple pattern,
the estimated cardinality of each triple pattern (E𝑇𝑃 ), the estimated join cardinality (EZ Card) and the true join cardinality
(TZ Card) for the ordered triple patterns of example query 𝑄 computed over LUBM dataset.

LUBM WATDIV-S WATDIV-L YAGO-4
# of triples 91M 108M 1,092M 210M

# of distinct objects 12M 9M 92M 126M

# of distinct subjects 10M 5M 52M 5M

# of distinct RDF type triples 1M 25M 13M 17M

# of distinct RDF type objects 39 46 39 8,912

Table 3: Size and characteristic of the datasets

dataset and used Extended Characteristic Sets [18] to optimize

query plans for non-star type queries. Generating characteristic

sets for large RDF graphs is computationally expensive. For in-

stance, it took 6.2 hours to generate Characteristic Sets for LUBM,

1.2 hours for WATDIV-S, and 8.2 hours for YAGO-4.

For SumRDF [23], we generated the summaries of each dataset

and adapted our join ordering algorithm to exploit their estimates.

Similar to Characteristic Sets, the generated summaries require

a few GBs of memory and their generation time depends on the

size and heterogeneity of the dataset, e.g., it took 4.5 minutes to

generate the summary for the LUBM, 14 minutes for WATDIV-S,

and 4.3 hours for YAGO-4. We use the same size of LUBM and

WatDiv datasets as used in SumRDF [23]. Hence, we used the

same parameters to generate their summaries. It is suggested

that a reasonable default size for the target SumRDF’s summary

should be in the order of tens of thousands [23]. Therefore, for

YAGO-4, to generate the summary in a reasonable amount of

time, we chose 100K as the target size of the summary.

All query plans obtained using these approaches are executed

10x in Jena TDB and each query is interrupted after a timeout of

10 minutes. Since for some approaches the order in which triples

are stated in the querymatters we shue the triple patterns in the

BGPs randomly in each iteration before proceeding with query

optimization. As the query planning time is always less than 20

milliseconds for all approaches and queries, in the following we

focus on analyzing the precision of the cardinality estimation

and the resulting query performance.

Queries: We distinguish complex (C), snowake (F), and star (S)

queries. LUBM provides 14 default queries that have relatively

simple structures. Therefore, we selected queries Q2, Q4, Q8, Q9,

Q12 and then created a few additional queries for each category

C, F, and S. The WatDiv benchmark includes 3 C, 7 S, and 5

F queries. For YAGO-4 there are no available standard queries

or query logs available for benchmarking. Therefore, we have

handcrafted 13 queries following the C, F, and S graph patterns

from the WatDiv Benchmark. These queries are available on our

website
6
.

Query Runtime: Due to space constraints, here we only report

our ndings on LUBM and YAGO-4, results on WatDiv datasets

are discussed in the appendix of the extended version
6
. These

experiments oer analogous insights to those obtained from the

other datasets. Figure 4a shows the query runtime analysis for

query plans proposed using the SS approach (plans constructed by
our join ordering algorithm using shapes statistics), GS approach

(plans constructed by our join ordering algorithm using global
statistics), Jena, GraphDB (GDB), Characteristic Sets (CS), and

SumRDF on LUBM queries. The query runtime shows that: (i) the

plans proposed by the SS approach are more ecient than those

obtained with GS for queries having at least one type-dened

triple pattern, (ii) the plans proposed by the GS approach are

competitive in comparison to the plans of GDB, CS, and SumRDF,

(iii) the CS approach is not well suited for large snowake queries

(e.g., F1, F2 (timeout), & F5), and (iv) the plans proposed by Jena

are often suboptimal and non-deterministic (shown in the size of

the error bars) as it is based on a heuristics-based query optimizer

that takes into account the given order of triple patterns in the

input query.

Similarly, Figure 4b shows the query runtime for queries on

YAGO-4. The query runtime for complex queries (C1, C2, C3)

using SS and GS are competitive to the plans proposed by GDB,

CS, and SumRDF. Snowake queries provide interesting insights

where each approach behaves dierently for every single query.

For instance, CS could not nd the optimal query plan for queries

F1, F3, F4, F5, and SS and GS could not nd the most ecient

query plan for query F4 due to underestimation of the join car-

dinalities. However, GDB and SumRDF found almost optimal

query plans for all snowake queries except F1 (GraphDB) and

F4 (SumRDF). For star queries, almost all approaches identify

plans with comparable good performances. Similar to LUBM, the

plans proposed by Jena are rarely the most ecient.

In addition to query runtime, we also report the q-error, which

is used to measure the precision of the nal query result car-

dinality estimates [19]. It quanties the ratio between the esti-

mated (𝑐) and true result cardinality (𝑐) and is computed as the ra-

tio𝑚𝑎𝑥 (𝑚𝑎𝑥 (1, 𝑐)/𝑚𝑎𝑥 (1, 𝑐),𝑚𝑎𝑥 (1, 𝑐)/𝑚𝑎𝑥 (1, 𝑐)). Ideally, the
lower the value of the q-error, the better the estimates are. We

analyze the q-error values for SS, GS, GDB, CS, and SumRDF.

Figure 4c shows the q-error analysis for LUBM queries. For SS,

15 queries have q-errors lower than 15, 8 queries have q-errors

lowever than 250, and only 3 queries have q-errors greater than

250. For GS, 14 queries have q-errors lowever than 15, 8 queries

have q-errors lower than 250, and only 4 queries have q-errors

greater than 250. Overall, the q-errors for GS and SS are com-

petitive to GDB and CS with few exceptions. However, overall

the q-error is very low for SumRDF except queries Q9 and C5.

Figure 4d shows the q-error analysis for YAGO-4. For GS and SS,

14 queries have q-errors lower than 15, 2 queries have q-errors

lowever than 250, and only 4 queries have q-errors greater than

250. Similar to LUBM, the q-errors of GS and SS are competitive

with GDB, CS, and SumRDF with few exceptions.

Finally, Figure 4e and 4f present the analysis between actual

and true costs of query plans produced by SS and GS on the

LUBM and YAGO-4 datasets. For LUBM, the cost estimated by SS

is closer to the actual cost for Q4, Q9, C0, C1, C5, F7, F8, and all
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(a) Query runtime in LUBM (b) Query runtime in YAGO-4

(c) q-error in LUBM (d) q-error in YAGO-4

(e) Cost in LUBM (f) Cost in YAGO-4

Figure 4: Query runtime, q-error, and cost analysis on LUBM and YAGO-4

star queries. However, for YAGO-4, the cost estimated by SS is

closer to the true cost for almost all queries except C2, F4, and S4.

Summary: Our results showed that, with only a few exceptions,

the query plans proposed using SS and GS are competitive with

the other tested approaches on both the synthetic and real data.

Overall, the results revealed that our approach is ecient for all

examined types of SPARQL queries while requiring only very

little overhead to extend SHACL graphs with statistics, which is

more ecient and feasible than generating extensive summaries

or Characteristic Sets. On average, our approach nds the best

query plans for 75% cases on both datasets. For the remaining

cases, our approach proposes query plans having an overhead

from 14% to 30% on average query runtime w.r.t. the best query

plan. Our approach requires 2-4x less preprocessing time, this

implies 2 to 6 hours less preprocessing time in our experiments,

and 2 orders of magnitude less space.

8 CONCLUSION AND FUTUREWORK
In this paper, we have presented an alternative approach to car-

dinality estimation for SPARQL query optimization. In particular,

we have proposed novel light-weight statistics to capture the

correlation in RDF graphs, a cardinality estimation approach,

and a join ordering algorithm. We have performed extensive

experiments on synthetic and real data to show our approach’s

eectiveness against two SPARQL query engines and two state-

of-the-art RDF cardinality estimators. The results revealed that

our approach is ecient in terms of both the preprocessing steps

to generate statistics and the cardinality estimation to optimize

query plans. Going forward, we plan to integrate our approach

with one of the state-of-the-art query engines and enable the

support of additional SPARQL query operators.
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ABSTRACT
Recent privacy legislation has aimed to restrict and control the
amount of personal data published by companies and shared with
third parties. Much of this real data is not only sensitive requiring
anonymization but also contains characteristic details from a vari-
ety of individuals. This diversity is desirable in many applications
ranging from Web search to drug and product development. Un-
fortunately, data anonymization techniques have largely ignored
diversity in its published result. This inadvertently propagates un-
derlying bias in subsequent data analysis. We study the problem
of finding a diverse anonymized data instance where diversity is
measured via a set of diversity constraints. We formalize diversity
constraints, and present a clustering-based algorithm for finding
a diverse anonymized instance. We show the effectiveness and
efficiency of our techniques against existing baselines. Our work
aligns with recent trends towards responsible data science by
coupling diversity with privacy-preserving data publishing.

1 INTRODUCTION
Organizations often share user information with third parties to
analyze collective user behaviour and for targetedmarketing. Pro-
tecting user privacy is critical to safeguard personal and sensitive
data. The European Union General Data Protection Regulation
(GDPR), and variants such as the California Consumer Protec-
tion Act (CCPA) aim to control how organizations manage user
data. For example, a major tenet in GDPR is data minimization
that states companies should collect and share only a minimal
amount of personal data sufficient for their purpose. Given the
impossibility of knowing how a published data instance will be
used in the future, determining a minimal amount of personal
data to share is a challenge.

Privacy-preserving data publishing (PPDP) safeguards individ-
ual privacy while ensuring the published data remains practically
useful for analysis. Anonymization is the most common form
of PPDP, where quasi-identifiers and/or sensitive values are ob-
fuscated via suppression or generalization [11]. As anonymized
instances are shared with third parties for decision making and
analysis, there is growing interest to ensure that data (and the
algorithms that generate and use the data) are diverse and fair.
Diversity is a rather established notion in data analytics that
refers to the property of a selected set of individuals. Diversity
requires the selected set to have a minimum representation from
each group of individuals [9, 23] while determining the minimum
bound for each group is often domain and user dependent.

To avoid biased decision making, incorporating diversity into
computational models is essential to prevent and minimize dis-
crimination against minority groups. In this paper, we focus on
diversity, and study how diversity requirements can be modeled
and satisfied in PPDP. In PPDP, non-diverse data instances that

© 2021 Copyright held by the owner/author(s). Published in Proceedings of the
24th International Conference on Extending Database Technology (EDBT), March
23-26, 2021, ISBN 978-3-89318-084-4 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

obfuscate characteristic attributes of a minority group give an
inaccurate representation of the population in subsequent data
analysis. Unfortunately, early PPDP work [11, 22, 24], and recent
work on PPDP for graphs [12, 13], and interactive settings [14, 15]
have not considered diversity in published instances.

Example 1.1. Table 1 shows relation 𝑅 containing patients’
medical records describing gender (GEN), ethnicity (ETH), age
(AGE), province (PRV), city (CTY), and diagnosed disease (DIAG).
Third-parties such as pharmaceuticals, insurance firms are in-
terested in an anonymized 𝑅 containing patients from diverse
geographies, gender, and ethnicities. Let GEN, ETH, AGE, PRV,
CTY be quasi-identifier (QI) attributes, and let DIAG be a sen-
sitive attribute. Existing PPDP methods such as 𝑘-anonymity
prevent re-identification of an individual along the QI attributes
from 𝑘 − 1 other tuples. Table 2 shows a 𝑘-anonymized instance
for 𝑘 = 3 where tuples are clustered along the QI attributes via
value suppression [22, 24].

The 𝑘-anonymization problem is to generate a 𝑘-anonymous
relation through an anonymization process, such as generaliza-
tion and suppression, while incurring minimum information loss.
Suppression replaces some QI attribute values with★s to achieve
𝑘-anonymity, and is often considered to be a maximal form of
generalization that obscures a value completely. There are several
measures of information loss [7, 11], e.g., counting the number
of ★s. Existing 𝑘-anonymization techniques do not preserve di-
versity in 𝑅 since these measures do not capture diversity. □

Unfortunately, existing methods fail to provide any diversity
guarantees in published, privatized data instances, leading to in-
accurate and biased decision making. For example, in Table 2, we
have lost the African and Caucasian ethnicity from the (second)
group ofMale, and the Female gender from the (first) group of
Caucasian. These records, which exclude characteristic features
of minority groups, misrepresent the true patient population.
Efforts to obtain a diverse instance of patients, for example, to
obtain minimum proportions of patients along GEN and ETH
attributes, are hindered due to these missing values.

To model diversity, existing work has proposed declarative
methods in the form of diversity constraints, which define the
expected frequencies that characteristic values (of a group) must
satisfy [23]. Similar to previous work, we consider one or more
discrete value attributes to be of particular concern, and we de-
fine diversity with respect to the values of these attributes. Using
𝑘-anonymity as our privacy definition, and given a relation 𝑅,
constant 𝑘 , and a set of diversity constraints Σ, we study the
problem of publishing a 𝑘-anonymized and diverse instance 𝑅∗.
An example of a diversity constraint 𝜎1 = (𝐸𝑇𝐻 [Asian], 2, 5)
requires an anonymized instance to contain between two and
five Asian individuals, which is satisfied by Table 1 and Table 2.
Diversity constraints provide a declarative definition of the min-
imum and maximum frequency bounds that specific attribute
domain values should appear in 𝑅∗ [23].
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ID GEN ETH AGE PRV CTY DIAG
𝑡1 Female Caucasian 80 AB Calgary Hypertension
𝑡2 Female Caucasian 32 AB Calgary Tuberculosis
𝑡3 Male Caucasian 59 AB Calgary Osteoarthritis
𝑡4 Male Caucasian 46 MB Winnipeg Migraine
𝑡5 Male African 32 MB Winnipeg Hypertension
𝑡6 Male African 43 BC Vancouver Seizure
𝑡7 Male Caucasian 35 BC Vancouver Hypertension
𝑡8 Female Asian 58 BC Vancouver Seizure
𝑡9 Female Asian 63 MB Winnipeg Influenza
𝑡10 Female Asian 71 BC Vancouver Migraine

Table 1: Medical records relation (𝑅)

ID GEN ETH AGE PRV CTY DIAG
𝑟1 ★ Caucasian ★ AB Calgary Hypertension
𝑟2 ★ Caucasian ★ AB Calgary Tuberculosis
𝑟3 ★ Caucasian ★ AB Calgary Osteoarthritis
𝑟4 Male ★ ★ ★ ★ Migraine
𝑟5 Male ★ ★ ★ ★ Hypertension
𝑟6 Male ★ ★ ★ ★ Seizure
𝑟7 Male ★ ★ ★ ★ Hypertension
𝑟8 Female Asian ★ ★ ★ Seizure
𝑟9 Female Asian ★ ★ ★ Influenza
𝑟10 Female Asian ★ ★ ★ Migraine

Table 2: Anonymized relation with 𝑘 = 3

ID GEN ETH AGE PRV CTY DIAG
𝑔1 Female Caucasian ★ AB Calgary Hypertension
𝑔2 Female Caucasian ★ AB Calgary Tuberculosis
𝑔3 Male Caucasian ★ ★ ★ Osteoarthritis
𝑔4 Male Caucasian ★ ★ ★ Migraine
𝑔5 Male African ★ ★ ★ Hypertension
𝑔6 Male African ★ ★ ★ Seizure
𝑔7 ★ ★ ★ BC Vancouver Hypertension
𝑔8 ★ ★ ★ BC Vancouver Seizure
𝑔9 Female Asian ★ ★ ★ Influenza
𝑔10 Female Asian ★ ★ ★ Migraine

Table 3: Anonymized relation with 𝑘 = 2.

We define the (𝑘, Σ)-anonymization problem, which seeks
an optimal 𝑘-anonymous instance 𝑅∗ that satisfies a set of di-
versity constraints Σ. We propose the DIVA algorithm to com-
pute a DIVerse and Anonymized 𝑅∗. DIVA integrates anonymiza-
tion with diversity by applying value suppression to find a 𝑘-
anonymous instance satisfying a set of diversity constraints.
Contributions.We make the following contributions:
(1) We formalize diversity constraitns in PPDP, and we define

the (𝑘, Σ)-anonymization problem that seeks a 𝑘-anonymous
relation with value generalization that satisfies Σ.

(2) We introduce DIVA, a clustering-based algorithm that solves
the (𝑘, Σ)-anonymization problem with minimal suppression.

(3) We evaluate the effectiveness and efficiency of our selection
strategies over the basic version of DIVA. We show that DIVA
achieves improved performance over existing baselines.

2 PRELIMINARIES
Basic Notations. A relation 𝑅 with a schema R = {𝐴1, ..., 𝐴𝑛}
is a finite set of 𝑛-ary tuples {𝑡1, ..., 𝑡𝑁 }. 𝐴, 𝐵,𝐶 refer to single
attributes and 𝑋,𝑌, 𝑍 as sets of attributes.
Privacy-Preserving Data Publishing. 𝑘-anonymity prevents
re-identification of an individual in an anonymized data set [22,
24]. Attributes in a relation are either identifiers such as SSN that
uniquely identify an individual, quasi-identifier (QI) attributes
such as ethnicity, address, age that together can identify an indi-
vidual, or sensitive attributes that contain personal information.

Definition 2.1 (QI-group and 𝑘-anonymity). A relation 𝑅 is 𝑘-
anonymous if every tuple in 𝑅 is in a QI-group with at least 𝑘
tuples. A QI-group is a set of tuples with the same values in the
QI attributes. □

For example, {𝑟1, 𝑟2, 𝑟3}, {𝑟2, 𝑟3}, {𝑟4, 𝑟5}, and {𝑟10} are QI-
groups in Table 2, and the table is 3-anonymous since every tuple
in the table is in one of the QI-groups {𝑟1, 𝑟2, 𝑟3}, {𝑟4, 𝑟5, 𝑟6, 𝑟7},
and {𝑟8, 𝑟9, 𝑟10} with at least 3 tuples. Extensions of 𝑘-anonymity
include 𝑙-diversity, 𝑡-closeness, and (𝑋,𝑌 )-anonymity, which pro-
vide improved privacy confidence (cf. [11] for a survey). We apply
𝑘-anonymity for its ease of presentation, however, our definitions
and techniques are extensible to include recent PPDP models.
Suppression. Suppression generates an anonymized relation 𝑅′

from a relation 𝑅 by replacing some QI values in 𝑅 with ★. We
denote this by 𝑅 ⊑ 𝑅′. Suppression clearly causes information
loss which is typically measured by the number of ★s in 𝑅′.

Definition 2.2 (𝑘-anonymization problem [24]). Given 𝑅, the
𝑘-anonymization problem is to find 𝑅∗ such that (1) 𝑅 ⊑ 𝑅∗; (2)
𝑅∗ is 𝑘-anonymous; and (3) 𝑅∗ has minimum information loss. □

Diversity Constraints. Diversity constraints are originally pro-
posed for the set selection problem defined as follows [23]. Given
a set of 𝑁 items, each associated with a characteristic attribute
and a utility score, the set selection problem is to select𝑀 items

to maximize a utility score subject to diversity constraints. The
utility score is the sum of scores of each selected item. Let there
be 𝑑 distinct values of the characteristic attribute and𝑚𝑖 with
𝑖 ∈ [1, 𝑑] be the number of selected items with each distinct value
such that𝑚𝑖 ∈ [0, 𝑀] and ∑

𝑖 (𝑚𝑖 ) = 𝑀 . A diversity constraint
𝜙 of the form floor𝑖 ≤ 𝑚𝑖 ≤ ceiling𝑖 specifies upper and lower
bounds on𝑚𝑖 , i.e. the number of items with the 𝑖-th character-
istic value. These constraints ensure representation from each
category known as coverage-based diversity. To avoid tokenism,
where there is only a single representative from each category,
we can increase the lower bound, e.g.,𝑚𝑖 > 1.
Problem Definition. We apply the concept of diversity con-
straints as proposed by Stoyanovich et. al [23], and introduce a
formal definition of diversity constraints in relational data.

Definition 2.3 (Diversity Constraints). A diversity constraint
over a relation schema R is of the form 𝜎 = (𝐴[𝑎], 𝜆𝑙 , 𝜆𝑟 ) in
which 𝐴 ∈ R, 𝑎 ∈ dom(𝐴) and 𝜆𝑙 , 𝜆𝑟 are non-negative integers.
The diversity constraint 𝜎 is satisfied by a relation 𝑅 of schema
R denoted 𝑅 |= 𝜎 if and only if there are at least 𝜆𝑙 and at most
𝜆𝑟 occurrences of the value 𝑎 in attribute 𝐴 of relation 𝑅. We
call [𝜆𝑙 , 𝜆𝑟 ] the frequency range and 𝐴[𝑎] the characteristic (or
target) value of 𝜎 . A set of diversity constraints Σ is satisfied by
𝑅, denoted by 𝑅 |= Σ, iff 𝑅 satisfies every 𝜎 ∈ Σ. □

Diversity constraints can be extended to multiple attributes by
replacing 𝐴[𝑎] with 𝑋 [𝑡], where 𝑋 is a set of attributes and 𝑡 is a
tuple with values from these attributes. This extended diversity
constraint 𝜎 = (𝑋 [𝑡], 𝜆𝑙 , 𝜆𝑟 ) is satisfied by 𝑅 if there are at least
𝜆𝑙 and at most 𝜆𝑟 tuples in 𝑅 with the same attribute values in 𝑡 .
To validate that 𝑅 satisfies 𝜎 , we can run a query that counts the
number of occurrences of the target values 𝑡 in attributes 𝑋 of 𝑅
and then check if this number lies in the frequency range [𝜆𝑙 , 𝜆𝑟 ].
Given a set of diversity constraints Σ, we define our problem.

Definition 2.4 (Problem Statement ((𝑘, Σ)-anonymization)). Con-
sider a relation 𝑅, a constant 𝑘 , a set of diversity constraints Σ.
The (𝑘, Σ)-anonymization problem is to find a relation 𝑅∗ where:
(1) 𝑅 ⊑ 𝑅∗, (2) 𝑅∗ is 𝑘-anonymous, (3) 𝑅∗ |= Σ, and (4) 𝑅∗ has
minimal information loss, i.e., a minimum number of ★’s. □

3 THE DIVA ALGORITHM
We present the DIVersity and Anonymization algorithm (DIVA)
that solves the (𝑘, Σ)-anonymization problem. DIVA takes as
input a relation 𝑅, a set of diversity constraints Σ, constant 𝑘 ,
and returns a 𝑘-anonymous and diverse relation 𝑅′ that satisfies
Σ. DIVA work in two phases: (i) clustering, by partitioning 𝑅

into disjoint clusters of size greater than or equal to 𝑘 , while
considering Σ; and (ii) suppression, by suppressing a minimal
number of QI values in each cluster such that they have the
same QI values, and form a QI-group of size ≥ 𝑘 . The result is a
𝑘-anonymous relation, as every QI-group is of size ≥ 𝑘 .
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Figure 1: DIVA overview.
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Figure 2: Graph representation of constraints.

3.1 Overview
Figure 1 presents an overview of DIVA. The algorithm begins in
DiverseClustering, which generates a diverse clustering SΣ that
clusters tuples in 𝑅 such that each 𝜎 ∈ Σ is satisfied. We note that
the clustering SΣ may involve a subset of tuples in 𝑅, which are
necessary to satisfy Σ. In Suppress, DIVA anonymizes the tuples
in SΣ using value suppression. The result is a relation 𝑅Σ that
satisfies Σ and is 𝑘-anonymous, however, may not represent all
tuples in 𝑅. In the Anonymize step, DIVA runs an existing off-the-
shelf anonymization algorithm to generate 𝑅𝑘 by anonymizing
the tuples of 𝑅 that do not exist in SΣ and 𝑅Σ. Lastly, the Integrate
phase integrates𝑅Σ and𝑅𝑘 to validate that𝑅Σ∪𝑅𝑘 doesn’t violate
the constraints’ upper bounds.

Algorithm 1 presentsDIVA details.DiverseClustering is a search
algorithm that generates the diverse clustering SΣ. For each
diversity constraint 𝜎 ∈ Σ, it computes a clustering that ensures
the satisfaction of 𝜎 . If no diverse clustering exists, i.e., there is
no diverse 𝑘-anonymous relation 𝑅′, DiverseClustering returns
SΣ := ∅, andDIVA returns an error. Algorithm 2 provides Suppress
details that takes a clustering S and returns a relation 𝑅𝑠 . For
every tuple 𝑡 in a cluster C ∈ S, there is a corresponding tuple
𝑟 ∈ 𝑅𝑠 with the same sensitive values as 𝑡 . For every QI attribute
𝐴𝑖 , 𝑟 [𝐴𝑖 ] is suppressed, i.e. 𝑟 [𝐴𝑖 ] = ★, if the tuples in C have
different values of 𝐴𝑖 (Line 4). Due to this value suppression, 𝑅𝑠
contains QI groups corresponding to the clusters in S. In Line 3,
we call Suppress with input SΣ and output 𝑅Σ.

Returning to Algorithm 1, there may be tuples of 𝑅 that do not
exist in SΣ. The Anonymize routine anonymizes these remaining
tuples by applying an existing𝑘-anonymization algorithm to com-
pute 𝑅𝑘 . In our evaluation, we use the 𝑘-member algorithm [6],
but DIVA is amenable to any 𝑘-anonymization algorithm. Lastly,
Integrate computes 𝑅′ = 𝑅Σ ∪ 𝑅𝑘 and checks whether 𝑅′ |= Σ.
If there exists a violation, 𝑅′ falsifies the upper bound of some
constraint(s) in Σ due to 𝑅𝑘 . Integrate resolves this by suppressing
minimal values in 𝑅′ to satisfy Σ. We return 𝑅′ as the final output.

Example 3.1. Consider an execution of DIVA with relation 𝑅

in Table 1, 𝑘 = 2, and Σ = {𝜎1, 𝜎2, 𝜎3}, where 𝜎1 = (𝐸𝑇𝐻 [Asian],
2, 5), 𝜎2 = (𝐸𝑇𝐻 [African], 1, 3), 𝜎3 = (𝐶𝑇𝑌 [Vancouver], 2, 4).
DiverseClustering returns SΣ = {𝐶1,𝐶2,𝐶3} where𝐶1 = {𝑡9, 𝑡10},
𝐶2 = {𝑡5, 𝑡6}, and 𝐶3 = {𝑡7, 𝑡8}. 𝑅Σ contains suppressed tuples
𝑔5, ..., 𝑔10 in Table 3with QI groups {𝑔5, 𝑔6}, {𝑔7, 𝑔8}, and {𝑔9, 𝑔10}
that correspond to the clusters inSΣ. 𝑅Σ satisfies Σwhere each QI
group satisfies a constraint. The Anonymize procedure generates

Algorithm 1: DIVA (𝑅, Σ, 𝑘)
Output: 𝑘-anonymous and diverse relation.

1 SΣ := DiverseClustering(𝑅, Σ, 𝑘);
2 if SΣ = ∅ then return “relation does not exist” ;
3 𝑅Σ := Suppress(SΣ);
4 foreach C𝑖 ∈ SΣ do 𝑅 := 𝑅 \ C𝑖 ;
5 𝑅𝑘 := Anonymize(𝑅, 𝑘);
6 return Integrate(𝑅Σ, 𝑅𝑘 );

Algorithm 2: Suppress(S)
Input: A clustering S of tuples with schema R.
Output: Relation 𝑅𝑠 (initialized to ∅.

1 foreach C ∈ S and 𝑡 ∈ C do
2 𝑟 := 𝑡 ; 𝑅𝑠 := 𝑅𝑠 ∪ {𝑟 };
3 foreach QI Attribute 𝐴𝑖 ∈ R do
4 if |C[𝐴𝑖 ] | > 1 then 𝑟 [𝐴𝑖 ] := ★;
5 return 𝑅𝑠 ;

𝑅𝑘 = {𝑔1, ..., 𝑔4}, and the Integrate procedure returns𝑅′ = 𝑅𝑘∪𝑅Σ
(Table 3) which is 𝑘 = 2-anonymous and satisfies Σ. □

3.2 Diverse Clustering
We describe how DiverseClustering computes a clustering SΣ

that satisfies Σ. We first define the semantics of how a clustering
satisfies a diversity constraint.

Definition 3.2. Given 𝜎 defined over 𝑅, and a clustering S, S
satisfies 𝜎 , denoted as S ⊩ 𝜎 , if Suppress(S) |= 𝜎 . The clustering
S satisfies a set of constraints Σ, if S ⊩ 𝜎𝑖 for every 𝜎𝑖 ∈ Σ. □

Intuitively, S ⊩ 𝜎 if the relation returned from Suppress(S) in
Algorithm 2 satisfies 𝜎 according to Definition 2.3. In Example 3.1,
SΣ = {{𝑡5, 𝑡6}, {𝑡7, 𝑡8}, {𝑡9, 𝑡10}} ⊩ Σ because Suppress(SΣ) =

{𝑔5, ..., 𝑔10} |= Σ.
DiverseClustering finds SΣ ⊩ Σ by computing clusterings S𝜎𝑖

that satisfy each diversity constraint 𝜎𝑖 ∈ Σ and merging them
to generate SΣ. In Example 3.1, S𝜎1 = {𝐶1} = {𝑡9, 𝑡10} ⊩ 𝜎1,
S𝜎2 = {𝐶2} = {𝑡5, 𝑡6} ⊩ 𝜎2, S𝜎3 = {𝐶3} = {𝑡7, 𝑡8} ⊩ 𝜎3, and
SΣ = S𝜎1 ∪ S𝜎2 ∪ S𝜎3 = {C1, C2, C3} ⊩ Σ. Two conditions must
hold while we search for S𝜎𝑖 . First, the clusters in S𝜎𝑖 must
be disjoint, unless they are equal. Specfically, for every pair of
clusters C ∈ S𝜎𝑖 and C′ ∈ S𝜎 𝑗

, either C′ ∩ C = ∅ or C′ = C. For
overlapping cluster pairs, the result of Suppress will not form QI
groups. If we merge the clusters, then the result may not satisfy
the conditions. For example, if S𝜎2 = {{𝑡5, 𝑡6}}, S𝜎3 = {{𝑡6, 𝑡7}},
and Σ = {𝜎2, 𝜎3}, and we merge them into SΣ = {{𝑡5, 𝑡6, 𝑡7}},
then SΣ ⊮ Σ, although S𝜎2 ⊩ 𝜎2 and S𝜎3 ⊩ 𝜎3. Second, we select
each S𝜎𝑖 such that it does not falsify the upper bounds of other
constraints. In Example 3.1, consider Σ = {𝜎2, 𝜎4} with a new
constraint 𝜎4 = (𝐺𝐸𝑁 [Male], 1, 3), which requires at least one
but not more than 3 men. Then, {{𝑡5, 𝑡6}} ⊩ 𝜎2, and {{𝑡3, 𝑡4}} ⊩
𝜎4, but {{𝑡5, 𝑡6}, {𝑡3, 𝑡4}} ⊮ {𝜎2, 𝜎4} since the upper bound of 𝜎4
is falsified. The clustering S𝜎2 preserves two moreMale values,
and falsifying the upper bound in 𝜎4. This means we cannot
build the S𝜎𝑖 separately, and we must consider the interactions
between the constraints. This is clearly a local condition where
choosing each S𝜎𝑖 , we consider the related constraints that have
overlapping tuples with 𝜎𝑖 , and use this property to convert
diverse clustering to graph coloring.
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Figure 3: Graph coloring for diverse clustering. Nodes are colored in the order 𝑣1, 𝑣3, 𝑣2.

Algorithm 3: DiverseClustering(𝑅, Σ, 𝑘)
Output: Clustering SΣ.

1 𝐺 := BuildGraph(𝑅, Σ); 𝑉 := ∅;SΣ := ∅;
2 if Coloring(𝐺,𝑉 , 𝑅) then
3 foreach ⟨𝑣𝑖 , 𝑐𝑖 ⟩ ∈ 𝑉 do SΣ := SΣ ∪ 𝑐𝑖 .clustering;
4 return SΣ;

Algorithm 4: Coloring(𝐺,𝑉 , 𝑅)
Output: true if there is a coloring of 𝐺 , otherwise false.

1 if 𝑉 contains all nodes of 𝐺 then return true;
2 𝑣 := NextNode(𝐺,𝑉 );
3 foreach S ∈ Clusterings(𝑣 .constraint, 𝑅) do
4 if IsConsistent (S, 𝑣) then
5 𝑐 := new color with clustering S;
6 𝑉 := 𝑉 ∪ {⟨𝑣, 𝑐⟩};
7 if Coloring(𝐺,𝑉 , 𝑅) then return true ;
8 𝑉 := 𝑉 \ {⟨𝑣, 𝑐⟩};
9 return false

3.3 Modeling as Graph Coloring
Given an undirected graph𝐺 = (Γ, 𝐸), where Γ and 𝐸 denote the
set of nodes and edges, respectively, and𝑚 distinct colors, the
graph coloring problem is to color all nodes subject to certain
constraints, e.g., no two adjacent nodes can have the same color.
For relation 𝑅 and diversity constraints Σ, we model each diver-
sity constraint 𝜎𝑖 ∈ Σ as a node 𝑣𝑖 ∈ Γ. We use 𝑣𝑖 .constraint to
refer to 𝜎𝑖 . An undirected edge 𝑒𝑖 𝑗 = {𝑣𝑖 , 𝑣 𝑗 } ∈ 𝐸 exists between
nodes 𝑣𝑖 and 𝑣 𝑗 if 𝜎𝑖 and 𝜎 𝑗 have overlapping target tuples, i.e.,
𝐼𝜎𝑖 ∩ 𝐼𝜎 𝑗

, where the target tuples of a constraint 𝜎𝑖 , denoted by
𝐼𝜎𝑖 , is the set of tuples in 𝑅 that have the target values in 𝜎𝑖 .

Example 3.3. Figure 2 shows𝐺 with three nodes corresponding
to 𝜎1, 𝜎2, 𝜎3, and each of their neighboring constraints modeled
via edges 𝐸 = {{𝑣1, 𝑣3}, {𝑣2, 𝑣3}}. The edge labels show the non-
empty intersections between their target tuple sets. The sets of
target tuples are 𝐼𝜎1 = {𝑡8, 𝑡9, 𝑡10}, 𝐼𝜎2 = {𝑡5, 𝑡6}, and 𝐼𝜎3 = {𝑡6, 𝑡7, 𝑡8,
𝑡10}, which means 𝜎1, 𝜎3 and 𝜎2, 𝜎3 are neighboring constraints,
but there is no edge between 𝑣1 and 𝑣2 because 𝐼𝜎1 ∩ 𝐼𝜎3={𝑡8, 𝑡10}
and 𝐼𝜎2 ∩ 𝐼𝜎3 = {𝑡6}, and 𝐼𝜎1 ∩ 𝐼𝜎2 = ∅. Beside each node, we show
the clusterings that satisfy the corresponding constraint.

Choosing a color for node 𝑣𝑖 is analogous to finding a cluster-
ing S𝜎𝑖 for 𝜎𝑖 . The goal is to color all nodes, while the color of
each node is consistent with the color of its neighboring nodes.
This means the corresponding clusterings must satisfy the two
conditions that we mentioned earlier. For a color 𝑐 , 𝑐.clustering
refers to its corresponding clustering.

Algorithm 3 presents the details of DiverseClustering. We build
the graph𝐺 for Σ and 𝑅 (Line 1). We then initialize the clustering

SΣ and a mapping 𝑉 that stores the color (assigned clustering)
for each node, and check if a coloring exists via Coloring.

Algorithm 4 presents the recursive function, Coloring, that
takes a graph 𝐺 , the mapping 𝑉 (specifying the colored nodes),
relation 𝑅, and returns true if the remaining nodes of 𝐺 can be
colored; otherwise it returns false. Note that choosing a color for
a node, can restrict the choice of colors for neighboring nodes
when the clusterings have overlap. Coloring iterates over every
uncolored node and assigns a color (clustering) that is consistent
with its neighboring nodes (constraints). Specifically, we check
that the two search conditions mentioned earlier are satisfied.
We propose three versions of DIVA: (1) DIVA-Basic: Coloring ran-
domly selects an uncolored node (Line 2) to color using NextNode;
(2) MaxFanOut: selects constraints with a minimal number of
clusterings; and (3) MinChoice: selects constraints with a maxi-
mal overlap with neighboring constraints. We describe the latter
two versions later in this section.

Given a node 𝑣 , we color 𝑣 by checking whether its candidate
clustering, and its adjacent nodes are consistent (Alg. 4, Lines 3-
8). The Clusterings routine returns minimal clusterings S that
satisfy 𝑣 .constraint (Suppress(S) ⊩ 𝑣 .constraint). For example,
Clusterings(𝜎1, 𝑅) contains four clusterings {{𝑡8, 𝑡9}}, {{𝑡8, 𝑡10}},
{{𝑡9, 𝑡10}}, {{𝑡8, 𝑡9, 𝑡10}}, while Clusterings(𝜎2, 𝑅) contains one
clustering {{𝑡5, 𝑡6}}. In Lines 4-8, we check whether S is consis-
tent with the clusterings of the neighboring constraints. If so, we
assign a new color 𝑐 to the clusteringS, and we temporarily color
𝑣 with 𝑐 by adding ⟨𝑣, 𝑐⟩ to𝑉 . We then recursively call Coloring to
check whether the remaining nodes in 𝐺 can be colored. If color
𝑐 does not work, i.e. Coloring returns false, we remove ⟨𝑣, 𝑐⟩ from
𝑉 , and try another color. If all clusterings are inconsistent, i.e.,
there is no successful coloring of 𝑣 , we return false (Line 9), to
backtrack and evaluate a different node. To compute a satisfying
clustering depends not only on 𝑘 , and the frequency of charac-
teristic values in 𝑅 with respect to [𝜆𝑙 , 𝜆𝑟 ] in 𝜎 , but also on the
distribution of these characteristic values. We empirically study
the impact of data distribution on accuracy in Section 4.

Example 3.4. Figure 3 shows an execution of Coloring over
graph 𝐺 with nodes {𝑣1, 𝑣3, 𝑣2}. Figure 3(a) initializes nodes as
uncolored. We first consider 𝑣1, and select 𝑆𝜎1 = {{𝑡9, 𝑡10}} (Fig-
ure 3(b)). We color nodes 𝑣2 and 𝑣3 by recursively calling Coloring.
Coloring one node may restrict the color choice of neighboring
nodes, e.g. after we select {{𝑡9, 𝑡10}} for 𝑣1, we cannot select
{{𝑡6, 𝑡7, 𝑡10}} for 𝑣3 due to the overlapping tuple 𝑡10. For node 𝑣3,
we have several choices including {{𝑡6, 𝑡7}} and {{𝑡7, 𝑡8}}. In Fig-
ure 3(c), we assume the coloring algorithm chooses {{𝑡6, 𝑡7}} for
𝑣3. As a result, {{𝑡5, 𝑡6}}, which was the only choice for 𝑣2, cannot
be used due to the overlapping tuple 𝑡6. This leads the algorithm
towards an unsatisfying clustering (Figure 3(d)). DIVA backtracks
its last decision for 𝑣3 by selecting a different color, {{𝑡7, 𝑡8}} for
𝑣3 in Figure 3(e). In this case, the clustering {{𝑡5, 𝑡6}} for 𝑣2 does

514



Table 4: Data characteristics.

Pantheon Census Credit Pop-Syn

|𝑅 | 11,341 299,285 1000 100,000
𝑛 17 40 20 7
|Π𝑄𝐼 (𝑅) | 5,636 12,405 60 24,630
|Σ | 24 21 18 10

not overlap with {{𝑡7, 𝑡8}}. Since we have found a clustering that
satisfies all the constraints (i.e., a coloring of all nodes), Color-
ing returns true with 𝑉 containing the nodes and their colors
(i.e., clusterings). DiverseClustering uses 𝑉 to compute the final
clustering as SΣ = {{𝑡5, 𝑡6}, {𝑡7, 𝑡8}, {𝑡9, 𝑡10}}. □

DIVA runs in polynomial time w.r.t. the size of 𝑅. The run-
time is split between DiverseClustering and Anonymize. Diver-
seClustering runs in polynomial time as the number of clusters
considered in coloring for each constraint is polynomial w.r.t. 𝑅.
Anonymize runs an off-the-shelf algorithm.We use the 𝑘-member
anonymization algorithm, which runs in polynomial time [6].
Selection Strategies. In the basic version of DIVA, we randomly
select a constraint and a clustering to evaluate. These choices im-
pact performance as poor initial selections can lead to increased
backtracking operations downstream. We selectively order the
constraints (nodes) and clusterings (colors) that most likely lead
to a graph coloring while minimizing the need to backtrack.
MinChoice: We select the most restrictive constraints first, i.e., in
Nextnode, we select 𝑣 withminimum |Clusterings(𝑣 .constraint, 𝑅) |.
As we visit nodes and assign (colors) clusterings, we update the
candidate clusterings for their neighbors.
MaxFanOut: We select constraints with maximum overlap with
other constraints, i.e, nodes with the maximum number of un-
colored neighbors. We preferentially select these constraints due
to their high number of interactions, which lead to an increased
number of target attributes, and bounds that the relevant tuples
must satisfy. This heuristic aims to prune unsatisfiable clusterings
early to reduce the number of clustering evaluations downstream.

4 EXPERIMENTS
We evaluate the accuracy and performance of DIVA, and compare
against three 𝑘-anonymization baselines to evaluate the cost of
incorporating diversity constraints.
Experimental Setup. We implement DIVA using Python 3.6
on a server with 32 Core Intel Xeon 2.2 GHz processor with
32GB RAM. We use three real datasets: (1) Pantheon describes
individuals on Wikipedia [1]; (2) Census from the U.S. Census
Bureau describes population data [3]; and (3) German Credit de-
scribes credit risk according to demographic attributes [3]. We
also generate a synthetic population dataset, Pop-Syn to specify
population characteristics using Synner.io [18]. Table 4 summa-
rizes the dataset characteristics. We implement three notions
of diversity via three classes of diversity constraints, namely,
minimum frequency, average, and proportional representation
from the attribute domain [23]. We found proportion constraints
capture the relative distribution in the attribute domain with less
sensitivity than average, and run our experiments using propor-
tion constraints. The set of defined constraints, datasets and our
source code are available at [2, 19].
Metrics and Parameters. We compute the average runtime
over five executions. To quantify accuracy, we seek anonymiza-
tions with indistinguishable tuples, and minimize information
loss. We use the discernibility metric, 𝑑𝑖𝑠𝑐 (𝑅′, 𝑘), which assigns a

Table 5: Parameter values (defaults in bold)
Symbol Description Values
|𝑅 | #tuples 60k, 120k, 180k, 240k, 300k
|Σ | #constraints 4, 8, 12, 16, 20
cf (Σ) conflict rate 0, 0.2, 0.4, 0.6, 0.8, 1
𝑘 minimum cluster size 10, 20, 30, 40, 50
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Figure 4: DIVA efficiency and effectiveness.

penalty to each tuple based on the number of tuples that are indis-
tinguishable from it in 𝑅′ for a given 𝑘 , reflecting its information
loss [4]. We measure the conflict rate between a pair of diversity
constraints as the number of overlapping relevant tuples, and
we extend this definition to a set of diversity constraints. Con-
flict values range from [0,1], where 0 indicates no overlap. The
discernibility metric and conflict rate definitions can be found
in [19]. Table 5 lists parameter ranges and default values.

4.1 Accuracy and Performance
Figure 4a and 4b show DIVA runtime and accuracy, respectively,
as we vary |Σ|. DIVA-Basic shows exponential growth in runtime
since we can assign𝑂 ( |𝑅 |) different clusterings to each constraint.
Our selection strategies to restrict clusterings and perform early
pruning, MinChoice and MaxFanOut, show linear scale-up. Fig-
ure 4b shows as |Σ| increases, we see accuracy decline at a linear
rate. As new 𝜎 ∉ Σ are added, we observe new relevant tuples join
existing clusters of relevant tuples from Σ leading to a smaller
decline in accuracy. This occurs with multi-attribute constraints
that share target attributes with single attribute constraints. The
alignment of QI and target attribute values between new and
existing tuples influence the rate of decline.

Figure 4c shows DIVA accuracy as we vary conflict rate, cf . As
expected, accuracy declines for increasing cf , with MaxFanOut
and MinChoice outperforming DIVA-Basic by +17% and +9%,
respectively. MaxFanOut outperforms MinChoice since targeting
constraints with a high number of interactions eliminates unsatis-
fying clusterings sooner, while satisfying dependent constraints.

To measure accuracy for different data distributions, we gen-
erate attribute values according to the Zipfian, uniform, and
Gaussian distributions with |𝑅 | = 100𝑘 , |Σ| = 8. Figure 4d shows
that MaxFanOut performs best across all distributions by 8% and
17% over MinChoice and DIVA-Basic, respectively. The target
uniform distribution performs best as domain values are spread
evenly across the tuples, avoiding contention among a small set
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Figure 5: Comparative study: anonymization baselines.

of tuples. This conflict occurs more often in the Zipfian case than
the Gaussian, leading to lower accuracy.

4.2 Baseline Comparison
Figure 5a and Figure 5b show the comparative accuracy and run-
time, respectively, ofDIVA against three baseline𝑘-anonymization
algorithms: 𝑘-member [6], OKA [17], and Mondrian [16]. Min-
Choice and MaxFanOut incur higher runtimes reflecting the cost
of computing a diverse data instance. We expect this to be accept-
able in practice since constraint validation and anonymization is
often done offline. As 𝑘 increases, we expect more tuples to be
anonymized leading to higher penalty costs. We note that run-
times decrease for increasing 𝑘 as more values are suppressed to
satisfy 𝑘-anonymity on each cluster. This improves the efficiency
of consistency checking in the coloring algorithm since we can
prune clusterings with size less than 𝑘 during backtracking.

Figures 5c and 5d show that DIVA and the baselines are sensi-
tive to |𝑅 |. Figure 5c shows thatDIVA achieves improved accuracy
over the baseline algorithms, in addition to satisfying diversity
constraints. As new attribute values are introduced, they may
not align with existing values in the clusters, requiring further
suppression, and decreasing accuracy. In Figure 5d, all techniques
incur increased runtimes due to evaluating a larger number of
clusters. For DIVA, a larger number of tuples and clusters also
increases the likelihood of potential conflicts among clusterings.

5 RELATEDWORK
PrivacyPreservingData Publishing. Extensions of𝑘-anonymity
include 𝑙-diversity, 𝑡-closeness, and (X,Y)-anonymity with tighter
privacy guarantees [11]. DIVA is extensible to re-define the clus-
tering criteria according to these privacy semantics. Our empiri-
cal study has shown that DIVA generates anonymized instances
comparable to existing baselines, but also guarantees diversity
requirements are satisfied.
Fairness and Diversity. Data sharing of private data has been
studied along two primary lines. First, causality reasoning aims to
recognize discrimination to achieve algorithmic transparency and
fairness. Recent techniques have proposed influence measures to
identify correlated attributes [8], and statistical reasoning about
discrimination [20]. Secondly, recent work have studied variants

of DP to release synthetic data with similar statistical properties
to the input data [5], and studying the impact of DP algorithms on
equitable resource allocation [21]. Our work is complementary
but with a different goal; to publish diverse and anonymized
versions of the original data with minimal information loss for
applications where statistical summaries, synthetic data, and
aggregate queries are inadequate. Recent work by Stoyanovich
et. al., study diversity in the set selection problem and introduce
diversity constraints to guarantee representation in the selected
set [23, 25]. We build upon this work, and are the first to formalize
diversity constraints. Our algorithms couple diversity with data
anonymization, a problem not considered in existing work.

6 CONCLUSION AND FUTURE WORK
We formalize diversity constraints, and introduceDIVA, a DIVersity-
driven Anonymization algorithm that computes a privatized data
instance satisfying a set of diversity constraints. Our evalua-
tion show the performance benefits of our optimizations, and
the overhead of enforcing diversity constraints over baselines.
As future work, we intend to study privacy extensions beyond
𝑘-anonymity, e.g. randomization algorithms to satisfy both diver-
sity constraints and Differential privacy (DP) to provide a higher
level of protection for individuals [10]. We also intend to ex-
plore a distributed version of the coloring algorithm to improve
scalability by satisfying constraints in parallel.
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ABSTRACT
The Internet of Things provides applications with data streams
frombillions of sensor devices in real-time. Usually, sensor devices
servemultiple queries simultaneously despite having limited com-
putational capabilities. This paper presents a solution for reducing
the number of data reads and transmissions by increasing the
potential for sharing reads among concurrent streaming queries.
Existing read-scheduling techniques on sensor nodes dynami-
cally adjust the data-acquisition rate depending on the data’s
variability. However, they leave the definition of read-time toler-
ances to the user. Such read-time tolerances are crucial for sharing
reads among queries. We extend previous work by presenting a
generally-applicable algorithm that defines read-time tolerances
and adapts them on-the-fly depending on observed data charac-
teristics. We evaluate our solution on real-world data and show
that it reduces the sensing error by up to 60% compared to existing
approaches with the same number of data reads. Respectively, our
technique reduces the number of data reads to achieve the same
sensing error as existing techniques. To the best of our knowledge,
we are the first to automatically set and tune read-time tolerances
to reduce sensor readings and data transmissions on sensor nodes.

1 INTRODUCTION
With the advance in communication and information technolo-
gies, we can easily access the internet with laptops, tablets, smart-
phones, and other mobile devices. The network of smart devices,
vehicles, and other network-attached sensors forms the Internet
of Things (IoT) [16]. In a general IoT setup, multiple sensors are
attached to a single device, the sensor node. The sensor node
gathers data from the attached sensors and then transmits them
to the Stream Processing Engine, enabling it to answer queries.

IoT applications make decisions in real-time based on dynam-
ically changing surroundings. With a vast amount of sensors and
the need for real-time data processing, several efficient data ac-
quisition and transmission techniques are proposed to provide
data streams to applications [8, 11, 21, 22, 26].

There exist several solutions for making data acquisition and
transmission from sensor nodes more efficient. These solutions
aim at reducing the number of sensor reads conducted (adaptive
sampling) or values transmitted (adaptive filtering) [8]. The key
idea of adaptive sampling is to modify the read-time frequency
based on the recent history of sensor readings. If the values read
from the sensor behave unexpectedly (i.e., have a high variability),
samples are collected at a higher rate. In contrast, if values barely

© 2021 Copyright held by the owner/author(s). Published in Proceedings of the
24th International Conference on Extending Database Technology (EDBT), March
23-26, 2021, ISBN 978-3-89318-084-4 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

change, the sampling rate is reduced.Adaptivefiltering techniques
reduce the number of transmitted values by discarding values
that evolve predictably. Adaptive sampling and adaptive filter-
ing usually operate on a per-query basis. Instead, multi-query
read-sharing saves transmissions by scheduling reads that satisfy
multiple concurrent queries simultaneously.
Adaptive sampling and adaptive filtering techniques have to be
selected and configured in accordance with the corresponding
query’s data demand, i.e., reflecting the consumer’s sensitivity to
observing changes in the data. It is crucial to note that queries
may possess different data demands. For example, the adaptive
sampling technique AdaM [23] reacts very fast to abrupt value
changes, while FAST [6] incorporates differential privacy features.
This is where multi-query optimization becomes necessary.
In previous works, we propose considering the queries’ data de-
mand during multi-query optimization by combining adaptive
sampling and filtering techniques with multi-query read sharing
in a unified framework [9, 20]. User-defined stateful functions
(e.g., adaptive sampling techniques) iteratively suggest a query’s
read-times, and a multi-query read-scheduler exploits read-time
tolerances around suggested read-times for sharing reads among
queries respecting their data demand.

Figure 1 shows an overview of these two steps of read-time sug-
gestion and read-fusion. Aswe can see from steps 2 and 3 , spec-
ifying read-time tolerances is essential to read-fusion. However,
it is hard for users to manually specify and tune such tolerances.
While well-known adaptive sampling techniques provide the de-
sired read-time, they do not define tolerances. Ideally, tolerances
for each read request should adjust automatically based on cur-
rent data characteristics. Intuitively, tolerances should increase
if values remain constant or follow an expected trend. Tolerances
should shrink if sensor values change rapidly.

In this paper, we introduce an Adaptive Read-Time Tolerance
Controller (ARTC), a general algorithm that adjusts read-time
tolerances on-the-fly, based on the recent history of sensor read-
ings. ARTC enhances arbitrary adaptive sampling techniques
with automated control of read-time tolerances. Such read-time
tolerances enable the sharing of sensor values among multiple
queries on the same sensor node and thus lead to reading and
transmission savings in distributed sensor networks. We design
our solution to be generally applicable – independent of the al-
gorithm defining the desired read-times. Therefore, we divide
the task of setting read-time tolerances into two parts: Iteratively
adapting the read-time tolerance’s diameter, and shifting the read-
time tolerance interval around the desired read-time: We capture
statistics on the data’s variability based on which we adapt the
read-time tolerance. We use a proportional-integral-derivative
controller (PID controller) [2, 3], which is a commonly used form
of feedback control [4] to shift the read-time tolerance.
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Figure 1: Overview of Optimized On-Demand Data-Streaming from Sensor Nodes [20]: 1 The sensor node’s scheduler re-
ceives the data demand of new queries. 2 A query’s data demand defines the next (desired) read-time at which it requires
thenext sensor readingandoptionally, a read-time tolerance. 3 The schedulerdetermines the time for thenext sensor read-
ing , fusing requests, if possible. Thedevicewakesup to 4 read a value from the sensor, and 5 transmits it to the receivers.

Our implementation is available as an open-source project1.
We evaluate our solution by simulating sensor sharing based
on multiple real-world IoT datasets. We analyze the error and
the read-time tolerance induced by read-sharing for different
configurations of our algorithm, compare it to setups with fixed
read-time tolerances, and show that our solution outperforms
fixed read-time tolerance specifications.

The remainder of this paper is structured as follows: We first
present our solution in Section 2, which we evaluate in Section 3
on three real-world datasets. After discussing Related Work in
Section 4 we conclude in Section 5.

2 ADAPTIVE READ-TIME TOLERANCE
This section explains how our adaptive read-time tolerance con-
troller ARTC adapts the read-time tolerance to the sensed data’s
variability. We first showcase how to use ARTC in Section 2.1 and
subsequently present our solution’s internals in Section 2.2.

2.1 The User’s Perspective
The user configures ARTC with two parameters: Firstly, 𝐸, in-
dicating the permissible inaccuracy in the data-representation
relative to the data’s average magnitude. Secondly, the optional
parameter dMax, which specifies a maximal read-time tolerance.

It is essential to highlight that the complexity of using ARTC is
transparent to users. They can define streaming queries in declar-
ative languages to the Stream Processing Engine (SPE). The user
parametrizes ARTC as part of the query as sketched below:

SELECT [t, speed, position] // SENSOR IDENTIFIERS
FROM [bus 1] // SENSOR NODE IDENTIFIER
USING [AdaM] // READ-TIME SUGGESTION ALGORITHM
WITH [ARTC(E=0.1)] ON [speed] // CONFIGURATION ARTC

As outlined in Figure 1, users can submit queries to the SPE,
which then forwards the data demand specification and involved
sensors to the specified sensor device 1 . The device can thus
schedule reads according to the specified data-requirements 3
and to dispatch the data stream to the user 5 . The user receives a
data stream

(
𝑡𝑖 ,speed𝑖 ,position𝑖

)
𝑖∈N until terminating the query.

2.2 Architecture
We first show how our solution integrates within the multi-query
read-scheduling framework executed on the sensor device [20]
and then present the internals of ARTC. Table 1 summarizes the
newly introduced nomenclature.

1https://github.com/TU-Berlin-DIMA/ARTC

Internal Architecture. Once the sensor device receives at least
one query from the SPE, it schedules reads, as shown in Algo-
rithm 1. For each new query, the sensor device first performs a
read in Line 4. The sensor device then reports the value 𝑣 gathered
from the sensor at time 𝑡 back to the client who issued the query. It
then feeds the read-time and value into the read-time suggestion
algorithm (Line 7), which generates the next desired read-time 𝑡𝐷 .
In the example query in Section 2.1, the read-time suggestion is
performed through the adaptive sampling algorithmAdaM. Then,
we forward the desired read-time and the last sensor reading to
the read-time tolerance algorithm (Line 7), which computes a
read-time tolerance by specifying interval boundaries 𝑡𝑠 and 𝑡𝑒
that enclose the desired read-time. Together with the desired read-
time 𝑡𝐷 , the interval boundaries constitute the next read request
of the query. Lastly, the multi-query read-scheduler schedules
reads according to all read requests.We refer the reader to our pre-
vious work for details on the optimizations the multi-query read
scheduler performs anddifferent optimization objectives [20]. The
sensor device reduces its energy consumption by then sleeping
until the next read is due. The process of updating the read request
is repeated for all queries which received the last sensor reading.

Adaptive Read-Time Tolerance Controller (ARTC). A read-time
tolerance algorithmhas tomeet the following requirements: (i) De-
spite advances in hardware technologies, sensor devices are still
restricted in computational capabilities compared to sinks. As
they need to schedule reads very precisely and are often bat-
tery-powered, the algorithm has to be energy-efficient. (ii) The
algorithm has to adapt to changes in the distribution of the data
quickly. Otherwise, the user misses important events. (iii) The
algorithm has to be easy to configure and should not be entirely
dependent on the read-time suggestion algorithm.

As a lightweight means of keeping track of the distribution of
gathered sensor values, we use the iterative Probabilistic Expo-
nentiallyWeightedMoving Average (PEWMA) algorithm.We use
two instances of PEWMA; firstly, we monitor the distribution of
the magnitude of sensor readings ∥𝑣 ∥2. We refer to the probabilis-
tic moving average by 𝜇𝑣 and to the estimated standard deviation
of the used normal distribution by 𝜎𝑣 . We use the second instance
of PEWMA tomonitor moving average 𝜇𝛿 and standard deviation
𝜎𝛿 of the difference between consecutive read-times 𝛿 := ∥𝑣−𝑣𝑙 ∥2.
In order to be less dependent on the read-time suggestion algo-
rithm, we divide our solution into two parts: (1) the adaptation of
the read-time tolerance Δ based on the predictability of the data
distribution and (2) shifting of the read-time interval 𝑠 ∈ [−0.5,0.5]
based on the value deviation between consecutive sensor readings
as shown in Equation 1:
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Algorithm 1:Multi-query read-sharing algorithm.
1 𝑡 = now(); involvedQueries = newQueries; u = {};
2 while running do
3 sleepUntil(𝑡 );
4 v = sensor.read();
5 involvedQueries.forwardToSink(𝑡 , v);
6 while query in involvedQueries do
7 𝑡𝐷 = readTimeSuggestion.next(𝑡 , 𝑣);
8 𝑡𝑠 , 𝑡𝑒 = readTimeToleranceAlgorithm.next(𝑡 , 𝑣 , 𝑡𝐷 );
9 u[query] = (𝑡𝑠 , 𝑡𝐷 , 𝑡𝑒 );

10 end
11 𝑡 , involvedQueries = mqrs.select(u);
12 end

𝑡𝑠 =𝑡𝐷 +Δ ·
(
𝑠− 1

2

)
, 𝑡𝑒 =𝑡𝐷 +Δ ·

(
𝑠+ 1

2

)
(1)

In the next sections, we discuss separately how read-time toler-
ances Δ and shifts 𝑠 are computed.

Adaptation of read-time tolerance. We use the variation of 𝛿
to assess the predictability of the distribution. If the variation
exceeds the threshold 𝐸 specified by the user,

𝜎𝛿 >𝐸 ·𝜇𝑣
⇔ 𝜎𝛿−𝐸 ·𝜇𝑣 >0, (2)

we reduce the read-time tolerance Δ by the damping factor in
Equation 3. This way, it decreases exponentially in the number
of consecutive times that the variation exceeds 𝐸.

Δ←Δ · 1
2
. (3)

Otherwise, we increase the read-time tolerance by a value pro-
portional to the difference between the user-indicated deviation
𝐸 and 𝜎𝛿 , which we denote the step-size 𝛿𝐸 . In order to make the
step-size independent of the magnitude of both 𝐸 and the sensor
values, we scale the threshold by the multiplicative inverse of 𝐸
and 𝜇𝑣 and define the step size in Equation 4.

𝛿𝐸 :=
𝜎𝛿−𝐸 ·𝜇𝑣
𝐸 ·𝜇𝑣

=
𝜎𝛿

𝐸 ·𝜇𝑣
−1. (4)

Shifting of read-time interval. We shift the read-time interval
around the desired read-time 𝑡𝐷 to reduce the algorithm’s depen-
dence on the read-time suggestion algorithm’s performance. We
use a PID controller with setpoint 𝐸 to assess whether the de-
viation between consecutive sensor readings is within the range
specified by the user. That way, we obtain a long-term estimation
of the read-time suggestion algorithm’s performance and exert
limited control over the read-time difference. We scale the con-
troller’s output with a factor of 0.1 we determined empirically,
which achieves good results for all evaluated datasets.

Complete Algorithm. The overall algorithm is summarized in
Algorithm 2:We restate Condition 2 in terms of𝛿𝐸 and also ensure
the user-defined boundaries of Δ and the range of 𝑠 .

3 EXPERIMENTAL EVALUATION
In this section, we evaluate ARTC on three real-world IoT datasets.
We picked the different datasets to portray various data character-
istics, which we lay out in Section 3.1. We then introduce our ex-
perimental setup in Section 3.2, present the experiments and their
results in Section 3.3, and close with a discussion in Section 3.4.

Variable Description
𝑡,𝑡𝑙 ,𝑣,𝑣𝑙 Current / last sensor reading (time and value).
𝑡𝑠 ,𝑡𝑒 Read-time tolerance interval boundaries.
𝑡𝐷 ∈ [𝑡𝑠 ,𝑡𝑒 ] Desired read-time.
𝛿 eukl. distance between consecutive values.
𝜇𝑣,𝜎𝑣
𝜇𝛿 ,𝜎𝛿

PEWMA and estimated standard deviation of
the magnitude of 𝑣 , respectively 𝛿 .

Table 1: Overview of subsequently used nomenclature.

PEWMA AdaM PID Controller ARTC
𝛼 =0.5, 𝛽 =0.5,

𝑑init=20
𝛾 =0.2 𝑃 =2, 𝐼 =2𝑒-3,

𝐷 =0.3
dMax=175

Table2:ConfigurationofAdaM’sandARTC’s components.

3.1 Datasets
We evaluate our solution on three IoT sensor datasets [17]. We
provide a brief description for each dataset and state which of the
multiple sensors in the dataset we use for our experiments.

The football monitoring dataset [14] provided within the
scope of the ACM DEBS 2013 Grand Challenge consists of data
gathered during a football training game at the Nuremberg Sta-
dium in Germany. We replay the football’s absolute velocity in
𝑚/𝑠 , which is available at 2000 Hz for the match’s first half-hour.
We evaluate our solution on this dataset as it is very volatile, and
the speed of the football spikes abruptly when kicked by a player.

Thedailyandsportsactivitiesdataset [1] containsmultiple
time-series, constituting different individuals performing a total
of 19 activities such as sitting, standing, and jumping. We replay
data from the torso acceleration sensor in𝑚/𝑠2, which is available
at 25Hz frequency for 5minutes per person and activity.We select
two daily activities sitting and standing, and two sports activities
descending stairs and exercising on a stepper, and concatenate
the corresponding time-series. As different activities alternate
in the resulting time series, we can observe a drastic shift in the
distribution of values each time the performed activity changes.

The gas dataset [7] holds concentration levels of dynamic gas
mixtures. The data is collected continuously at a frequency of 100
Hz, and we use the first hour of the available data. We replay the
gas mixture of ethylene and CO, and the unit of the measurement
is parts per million (ppm). The variability in this dataset is low, as
the distribution of the different chemicals only changes gradually.

3.2 Evaluation Setup
In a production setup, a read-sharing algorithm’s performance
on a sensor device is measured by counting the number of saved
reads of the corresponding query under heavy load. However,
this quantity largely depends on the configuration and number
of concurrent queries. To assess the performance of read-sharing
more objectively, we measure the suggested read-time tolerance
Δ instead, while operating only a single query.We simulate heavy
load by sampling at random within the proposed read-time tol-
erance to obtain a realistic view of the induced error. For each
experiment, we conduct multiple runs and combine the results.

We record two performancemeasures during the conducted ex-
periments to evaluate the functionality and effectiveness of ARTC.
Firstly,we keep track of the average read-time tolerance 𝜇Δ, which
indicates the read-sharing potential enabled by the algorithm for a
total of𝑀 suggested read-time tolerances Δ𝑖 : Secondly, we record
the induced error for each point in time 𝑡 , i.e., the distance between
the last performed sensor reading 𝑣 prior to 𝑡 and the actual sensor
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Algorithm 2: ARTC.next
Parameters :setpoint 𝐸, maximal interval diameter 𝑑𝑀𝑎𝑥

State :shift 𝑠 =0, diameter Δ=0, last value 𝑣𝑙
Input: read-time t, value v, desired read-time t𝐷
Output: next interval borders [𝑡𝑠 ,𝑡𝑒 ],

1 𝜇𝑣 = pewma.next(∥𝑣 ∥2);
2 if 𝑣𝑙 is set then
3 𝜇𝛿 , 𝜎𝛿 = pewmaDiff.next(∥𝑣−𝑣𝑙 ∥2);
4 s += pid.next

(
𝜇𝛿
𝜇𝑣

)
·0.1;

5 𝛿𝐸 = 𝜎𝛿
𝜇𝑣 ·𝐸 −1;

6 if (𝛿𝐸 >0)Δ·= 1
2 else Δ−=𝛿𝐸 ;

7 ensure s ∈
[
− 1
2 ,

1
2
]
and Δ∈ [0,dMax];

8 else
9 Δ=0;

10 end
11 𝑡𝑒 ,𝑡𝑠 =𝑡𝐷 +Δ · (𝑠± 1

2 );
12 𝑣𝑙 = v;
13 return 𝑡𝑠 ,𝑡𝑒 ;

value 𝑣𝑖 at time 𝑡 . We label 𝜖 the average error over the entire
experiment trace, and denote the error’s moving average with
window size 𝑘 in percent of the data’s average magnitude via 𝜖𝑘 .

During all conducted experiments, we compare the induced
error 𝜖 of ARTC to the error of fixed read-time tolerance algo-
rithms that we configured to achieve the same average read-time
tolerance 𝜇Δ as ARTC.We use the read-time suggestion algorithm
AdaM throughout the experiments, and only vary the parameter𝐸
of ARTC and the fixed read-time tolerance algorithm accordingly.
The parameters that are fixed throughout the experiments are
provided in Table 2.

3.3 Experimental Evaluation
We first present the evaluation on an experiment trace on an
excerpt from the activities dataset and then provide quantitative
results for all three datasets.

Experiment Trace. Figure 2 shows the performance of ARTC
through an experiment trace excerpt from the activities dataset.
We execute a total of three query-configurations on the dataset
(i) A baseline query without read-sharing, which executes only
the read-time suggestion algorithm AdaM, (ii) ARTC configured
with 𝐸 = 0.05, and (iii) A fixed read-time tolerance algorithm
configured with Δ=0.4 seconds (s).

In Figure 2a, we visualize the raw sensor data at the highest
possible rate as black dots. The representation of the sensor pro-
vided through configurations (ii) and (iii) is visualized as solid
lines, which indicate the last performed sensor reading 𝑣𝑖 at any
given point in time. At any point in time, the difference between
the solid lines and the data points is the error induced by the
respective query. Figure 2b visualizes the moving average of the
relative error over one second and the read-time tolerance Δ𝑖 .

During the visualized experiment trace, a person performs
three operations: standing in an elevator still until A , exercising
on a stepper until B , and sitting. Every time the performed activ-
ity changes, we observe a dramatic change in the distribution of
the replayed data.While exercising, the variability of the replayed
torso acceleration measurements increases significantly.
At the beginning of the experiment, the variability of the data is
relatively low. Both the fixed read-time tolerance algorithm and
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(b) Diameter Δ and 1-second moving average of the error 𝜖 induced
by ARTC, the fixed read-time tolerance algorithm, and without
read-sharing (black) altogether. During volatile phases, ARTC
decreases Δ and thus reduces 𝜖 to the error without read-sharing.

Figure 2: Experiment trace of ARTC and baselines.

ARTC achieve a similar error 𝜖 of less than 5%. However, during
this low variability phase, ARTC enables a read-time tolerance
larger than 2.4s, which is more than six times larger than those
achieved by the fixed read-time tolerance algorithm.
A brief spike in the torso acceleration precedes the individual’s
exercising routine at the 5-second mark, which leads to ARTC
reducing the read-time tolerance. Once the torso acceleration
starts to oscillate ( A ), ARTC reduces the read-time tolerance to
a minimum, such that the error levels with those induced by the
read-time tolerance algorithm AdaM. During this phase, the read-
time tolerance proposed by the fixed algorithm is higher than
those proposed by ARTC at the cost of an error 𝜖 of approximately
50% of the data’s magnitude, while ARTC causes no additional
error. Once the individual sits ( B ), ARTC increases the read-time
tolerance again.

By controlling the read-time tolerance based on the data’s vari-
ability, ARTC is able to outperform the fixed read-time tolerance
algorithm in both depicted performance metrics: When consider-
ing the entirety of the depicted trace, the read-time tolerance of
the fixed read-time tolerance algorithm is approximately doubled
by ARTC, while ARTC can reduce the average error by 75%.

Quantitative Experiments. To assess the performance of ARTC
under different circumstances, we run multiple experiments on
the gas, activities, and football datasets. We compare ARTC to
fixed read-time tolerance algorithms achieving the same average
read-time tolerance Δ in Figure 3. Throughout the experiments,
we observe that ARTC outperforms or at least levels the fixed
read-time tolerance algorithm. Overall, ARTC outperforms the
fixed read-time tolerance algorithm by the largest margin on the
activities dataset: on average, it reduces the error by 31% com-
pared to approximately 15% on the other two datasets. However,
the additional error induced by ARTC for enabling read-sharing is
smallest on the gas dataset (1.3 percentage points for Δ>4s). This
relatively small induced error reflects the relatively steady nature
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Figure 3: Performance of queries with different configurations of ARTC and the two baselines on the introduced datasets.

of the gas data. We discuss the experimental results in detail for
each dataset in the following paragraphs.

The gas dataset (Figure 3a) contains sensor values with the low-
est variability of all three datasets. The error of the read-time sug-
gestion algorithm AdaM without read-sharing is approximately
1.4% of the data’s average magnitude. With the configurations of
ARTC visualized in Figure 3, large read-time tolerances of up to
4.75s are possible.
While small deviations on the dataset can only be captured when
enabling read-sharing only to a limited extent of 6ms, we observe
that ARTC is able to allow for large read-time tolerances of 2−5s
without a significant increase in the average error. On the other
hand, the fixed read-time tolerance algorithm’s performance de-
teriorates, such that the error of the fixed algorithm is 30% larger
than those caused by ARTC for a read-time tolerance of 4.75s.
The additional error of read-sharing through ARTC stays below
the error induced by the read-time suggestion algorithm for all
executed configurations.

The football dataset (Figure 3b) has the highest variability of
all presented datasets. The error of the read-time suggestion al-
gorithm alone is 13% of the data’s average magnitude. As most of
the configurations of ARTC indicate an average error below or at
the same level as the error of the read-time suggestion algorithm,
read-sharing is only enabled to a very limited extent, up to 3ms.
On this dataset, we observe that ARTC is able to reduce the error
of the read-time tolerance algorithm slightly by up to 13% when
enabling read-sharing to a limited extent. For read-time tolerances
of 1.5ms, the error of the query configured with ARTC (15.8%)
draws nearer to those of the fixed algorithm (16.7%). For a read-
time tolerance of 3ms, the performance of both algorithms levels.

The read-time suggestion algorithm on the activities dataset
(Figure 3c) has an error of 4.4%, matched for ARTC up to a read-
time tolerance of 280ms. The executed configurations of ARTC
achieve a read-time tolerance of up to 1.5s. On this dataset, ARTC
outperforms the fixed read-time suggestion algorithm by the
largest margin. ARTC is able to adapt to changes in the variabil-
ity of the data during the experiment that occur whenever the
individuum starts performing a different activity. While the error
of the fixed read-time tolerance algorithm is approximately 90%
larger than those of ARTC for a read-time tolerance of 280ms,
the margin between the performance of both algorithms contin-
uously shrinks to 20% for a read-time tolerance of 1.5s. This is
because the algorithm misses small fluctuations in the data and
takes a long time to adapt to brief periods of activity, which only
last for several seconds.

3.4 Discussion
The evaluation of the single trace experiment executed on the
activities dataset shows that ARTC can quickly adapt to a change
in the distribution of values gathered from the sensor. During the
quantitative analysis conducted on the three different datasets,
ARTC outperforms the corresponding fixed configuration. For
our experiment configurations, it is even possible to enable read
sharing to a limited extent without a detrimental effect on the
accuracy of the data representation altogether.

4 RELATEDWORK
To the best of our knowledge, we are the first to propose a general,
adaptive demand-based read-time tolerance controller. However,
the underlying problem of reducing the number of reads and
transmissions has been studied from various angles. Therefore,
we first present existing work on read- and transmission sharing.
We then present adaptive sampling techniques, as they are an
integral building block of ARTC and share a similar objective.

Read- and transmission sharing. TinyDB [12] introduces the
concept of acquisitional query processing (ACQP) to control the
sampling frequency during Single-Query Optimization. ACQP
arranges database operators and sensor readings in a common
processing pipeline. Operators with low selectivity reduce the
acquisition frequency by filtering out sensor readings before suc-
ceeding read operations. However, TinyDB only allows for peri-
odic sampling algorithms at the processing pipeline’s source.

Multiple approaches known from the literature conduct spa-
tial resource sharing, i.e., optimize the set of deployed queries
through a global view into a single query. Li et al. [10] allow the
user to define query priorities and -deadlines. They fuse aggre-
gate queries accordingly, perform utility-driven compression, and
global transmission-scheduling to save reads and transmissions.
However, they do not adapt to the variability of the distribution
in scheduling and fusing sensor readings.

As opposed to spatial resource sharing, data sharing techniques
perform local optimizations using a single sensor reading for mul-
tiple queries [13, 24, 25]. Tavakoli et al. [18] model the overlaps
of tolerance intervals in an online evolving interval-cover graph,
which they use to determine read-times. All four approaches
are unable to adapt to changes in the distribution of the data
both in scheduling reads and in computing read-time tolerances.
We advanced data sharing in the context of adaptive sampling
techniques [19, 20]. To that end, we proposed to combine demand-
based adaptive read-time suggestion and read-time fusion in a
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single framework. We were able to report savings of 87% in reads
and transmissions, which we further increase through ARTC.

Adaptive sampling tailors the sampling frequency to the dis-
tribution of the data [8]. Padhy et al. propose a confidence-based
adaptive sampling method called Utility-based Sensing and Com-
munication (USAC) [15]. They apply linear regression to predict
the next sensor value with a bounded error-range, the so-called
confidence interval (CI). If a value is outside the CI, the sensor
starts sampling at maximal frequency. Otherwise, the frequency
decreases exponentially by a factor 𝛼 ∈ [0,1] until it reaches the
minimum sampling frequency.

Aiming to provide an energy-efficient solution in the realm of
Big Data and IoT, Trihinas et al. propose the Adaptive Monitoring
Framework (AdaM) [23]. They use an ad-hoc forecasting method
called PEWMA to produce one-step forecasts, which they then
use to compute the metric stream’s variability.

Fan et al. propose Filtering and Adaptive sampling for Differ-
entially Private Time Series Monitoring (FAST) [6]. They define
a so-called privacy budget to add Laplace noise to the original
observations to achieve differential privacy. Then they generate
estimates, the quality of which is then used by the sampling com-
ponent to adjust the sampling rate using a PID controller. Com-
pared to AdaM and USAC, FAST is slower to adapt to changes in
the distribution of the data but achieves comparable results.

We design our adaptive read-time tolerance controller ARTC
using ideas from all three of the aforementioned adaptive sam-
pling algorithms. We use a PID controller [3] in order to assess
whether the read-time suggestion algorithm achieves the data-
quality ARTC targets. Similar to AdaM, we use PEWMA [5] in
order to monitor the distribution of samples. We use the idea
presented by Padhy et al. of decreasing tolerances rapidly if the
desired data accuracy is missed, which enables us to adapt to
changes in the distribution quickly.

5 CONCLUSION
We previously developed a multi-query read-scheduling algo-
rithm that enables adaptive sampling in a sensor network [20].
In this paper, we now extend our work by proposing the easy
to configure adaptive read-time tolerance controller ARTC. Our
experimental evaluation shows that ARTC tailors the extent of
read-sharing to the data-accuracy demands of end-applications.
ARTC is generally-applicable for defining read-time tolerances
when scheduling sensor read-times. Thus, it enables multi-query
optimization through sharing sensor readings for arbitrary adap-
tive sampling techniques. We evaluate ARTC on three real-world
IoT datasets with different data characteristics and shifts in the
data distribution. Our solution reduces the error in the repre-
sentation by up to 60% compared to fixed read-time tolerance
algorithms by adapting to the sensed data’s variability. ARTC not
only reduces the number of reads and transmissions while achiev-
ing the same sensing error as existing techniques, but also enables
multi-query read-sharing for queries issued by users without
domain-knowledge. We make our code and evaluation available
open-source. We also provide detailed instructions on how to
execute custom experiments. In our previous work, we allow the
user to define a so-called penalty-function [20] to further increase
the read-sharing potential under specific circumstances. We plan
to extend our solution to adaptively tune such penalty-functions
based on the data’s variability as well.
Acknowledgements: This work has been supported by German
Ministry for Education and Research as BIFOLD (01IS18025A,
01IS18037A).
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ABSTRACT
The join is a fundamental and widely used operation in data
analytics but equally, it is also one of the most expensive ones.
Considerable work has been carried out to improve and evaluate
join approaches based on popular distributed processing systems
such as Spark and Hadoop, however, it has not been widely
studied on MPI.

In this paper, we first implement, analyse and compare existing
algorithms for the common small-large outer join operation and
develop a novel approach, the swap-based outer join algorithm
(SOJA). SOJA is designed to minimise the expensive communica-
tion between the distributed nodes while also reducing the cost
of the local join operations. We demonstrate the benefits of SOJA
experimentally, showing that it achieves at worst an execution
time similar to its competitors. More importantly, SOJA requires
substantially less memory (typically half the memory compared
to the best competitor) and that memory usage scales very well.

KEYWORDS
Outer Joins, Algorithm, Parallel Processing, MPI

1 INTRODUCTION
Collecting and storing data has never been as easy and as cheap as
today. It comes as no surprise that vast amounts of data are being
stored today and it is predicted that all known data worldwide
will grow to 250 Zettabytes by 2025. Many real-world applications
benefit from the efficient analysis of large amounts of data, be it
for medical applications [1, 2, 13], scientific applications [11] or
commercial applications such as traffic analysis [7] and others.
Analysing this data efficiently and at scale has thus never been
more important than today and is also a considerable challenge.

Crucial in the analysis of large amounts of data is the combi-
nation of multiple datasets before analysis. One central operation
thus is the join operation which combines multiple datasets (or
one with itself) by matching tuples with a shared attribute. More
specifically, a join on datasets 𝑅 and 𝑆 based on equality (or a dif-
ferent relationship) will pair tuples 𝑟 ∈ 𝑅 and 𝑠 ∈ 𝑆 if 𝑟 .𝑐1 = 𝑠 .𝑐2
where 𝑐1 and 𝑐2 are attributes of the tuples. The operation is
frequently used but very costly due to computational overhead
but also because of I/O.

In this paper, we develop the swap-based outer join algorithm
(SOJA), a new approach to the specific problem of the small-
large outer join where a small and a large dataset are joined.
We develop SOJA for Message Passing Interface (MPI) on HPC
infrastructure as such large-scale parallel infrastructure is one of
the few efficient ways to join large datasets [3]. MPI is a message-
passing standard which is widely used in high performance ap-
plications [10]. The standard defines the syntax and semantics of
approximately 250 library routines that allow users to develop
a wide variety of communication operations on different types

© 2021 Copyright held by the owner/author(s). Published in Proceedings of the
24th International Conference on Extending Database Technology (EDBT), March
23-26, 2021, ISBN 978-3-89318-084-4 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

of parallel computing infrastructure[8, 9]. Point to point com-
munication between two MPI processes (ranks) and collective
communication among MPI processes are most commonly used.
For each of them, MPI also provides multiple communication
modes that fall into either blocking or non-blocking communica-
tion according to whether constituent operations of the commu-
nication complete synchronously. Additionally, MPI supports a
derived datatype and a virtual topology which allows users to
control data movement among processes efficiently and flexibly.
MPI thus is a promising tool to design and implement algorithms
to handle and analyze massive amounts of data efficiently.

We use MPI running on HPC infrastructure to efficiently exe-
cute a small-large left outer join. The small-large left outer join
can be denoted as 𝑅 ⊲⊳ 𝑆 with |𝑅 | << |𝑆 | where |𝑅 | and |𝑆 | are
number of tuples in tables or, more generally, datasets 𝑅 and 𝑆 . In
the query below, 𝑅 and 𝑆 represent the left table and right table,
and a join is performed between 𝑅 and 𝑆 based on join keys 𝑅.𝑎
and 𝑆.𝑏:

SELECT * FROM R LEFT OUTER JOIN S ON R.a = S.b;

For parallelising the left outer join, we assume that 𝑅 and 𝑆
are distributed among the 𝑁 processes in a round-robin fashion.
Each partition 𝑅𝑖 is assigned to the 𝑖 − 𝑡ℎ process, and has the
same number of elements |𝑅𝑖 | = |𝑅 |

𝑁
. The same applies to all 𝑆𝑖 .

The parallel left outer join with partitioned data then has two
goals: (1) find all matching tuples from the two tables; (2) find
all dangling tuples from the left table and output them with no
matching tuple from the right table.

Existing approaches mainly adopt two methods, redistribution
and broadcast, to produce the entire join results while guaran-
teeing data locality. Redistribution refers to redistributing both
tables among all processes to make tuples such that the same join
keys are placed in the same process. Broadcast, in this context,
means the left table in each process is duplicated and sent to
all other processes, so that each process holds the complete left
table. These two methods either lead to inevitable skewness or
duplication. SOJA adopts a novel method, swap, to ensures tuples
in the left table can join all possible matching tuples in the right
table by swapping the left table among processes. Based on the
swap method, SOJA can also perform other types of parallel joins
such as inner or right outer joins by replacing local join methods.

As our extensive set of experiments shows, SOJA in many
cases outperforms its competitors and at worst has an execution
time similar to its competitors. Most importantly, however, SOJA
requires substantially less memory which in a supercomputing
environment is crucial (as data cannot easily be swapped to
disk). SOJA typically requires only half the memory and, as our
experiments show, scales extremely well.

In the remainder of this paper we first review the state of the
art in Section 2, present our approach SOJA in Section 3.1, analyse
SOJA experimentally in Section 4 and conclude in Section 5.

2 RELATEDWORK
In this section, we first describe four related parallel outer join
algorithms (Figure 1) and then discuss their limitations and com-
munication implementations on MPI .
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Figure 1: Illustration of ROJA, DOJA, DER and DDR

2.1 Redistribution Outer Join Algorithm
(ROJA)

ROJA uses the redistribution approach to execute the local outer
join, it has two steps, redistribution and local outer join, which
can be considered as an extension of a typical re-partition join
algorithm [4, 12]. The only difference to a typical re-partition
join algorithm is that ROJA adopts the local outer join in the
second step instead of local inner join. ROJA proceeds as follows:
(1) all tuples of 𝑅𝑖 and 𝑆𝑖 in each process are redistributed based

on the join keys (𝑅𝑖 .𝑎 and 𝑆𝑖 .𝑏).
(2) each process performs a local outer join between reallocated

two tables denoted as 𝑅𝑟𝑒𝑑𝑖𝑠
𝑖

and 𝑆𝑟𝑒𝑑𝑖𝑠
𝑖

.

2.2 Duplication Outer Join Algorithm (DOJA)
DOJA is a variation of the broadcast join algorithm [4, 12]. It
obtains inner join results by performing inner join after broad-
casting the tables similar to broadcast join algorithms. However,
DOJA needs to execute two additional steps to identify dangling
tuples:
(1) each process broadcasts the smaller left table 𝑅𝑖 to all other

processes, which results in each process now having an entire
table 𝑅 denoted as 𝑅𝑏𝑐𝑎𝑠𝑡

𝑖
.

(2) local inner join in each process between 𝑅𝑏𝑐𝑎𝑠𝑡
𝑖

and 𝑆𝑖 outputs
inner join results stored in 𝑇𝑖 .

(3) 𝑇𝑖 and 𝑅𝑖 are redistributed based on join keys (𝑇𝑖 .𝑎 and 𝑅𝑖 .𝑎).
(4) after receiving redistributed 𝑇 𝑟𝑒𝑑𝑖𝑠

𝑖
and 𝑅𝑟𝑒𝑑𝑖𝑠

𝑖
, each process

executes local outer join to output complete result.

2.3 Duplication and Efficient Redistribution
(DER)

DER [14] improves DOJA by reducing the size of the redistributed
data. DER executes as follows:

(1) this step is same as step 1 for DOJA with the only difference
being the addition of ids. DDR needs to add keys to tuples, if
there is no global identifier in 𝑅𝑖 .

(2) a local outer join between 𝑅𝑏𝑐𝑎𝑠𝑡
𝑖

and 𝑆𝑖 generates inner join
results (𝑇𝑖 ) as well as non-matching tuples.

(3) each process in DER redistributes ids (𝐾𝑖 ) extracted from
non-matching tuples (𝐷𝑖 ).

(4) after redistribution, 𝐾𝑟𝑒𝑑𝑖𝑠
𝑖

is filtered so that only keys that
appear 𝑁 times are stored, because a dangling tuple in 𝑅 will
not be matched in all 𝑁 processes. The result is in 𝐾 𝑓 𝑖𝑙𝑡𝑒𝑟

𝑖
.

(5) truly dangling tuples 𝑂𝑖 in the left table can be retrieved by
a local inner join between 𝐾 𝑓 𝑖𝑙𝑡𝑒𝑟

𝑖
and 𝑅𝑏𝑐𝑎𝑠𝑡

𝑖
.

(6) the union of 𝑂𝑖 and 𝑇𝑖 in each process is the final results.

2.4 Duplication and Direct Redistribution
(DDR)

DDR [5] is a broadcast-based outer join algorithm focusing on
optimizing the identification of dangling tuples. Its steps are:
(1) the first two steps of DDR are identical to DER.
(2) each process outputs matched join results (𝑇𝑖 ) and redis-

tributes non-matching results (𝐷𝑖 ).
(3) similar to step 4 of DER, dangling tuples after redistribution

(𝐷𝑟𝑒𝑑𝑖𝑠
𝑖

) are kept if they occur 𝑁 times. The results 𝑂𝑖 is
directly outputted.

2.5 Discussion
We will compare the communication cost and local execution
cost between the different approaches.

2.5.1 Communication. The two main methods for commu-
nicating among processes are: (1) redistributing where the tu-
ples are categorized and sent to their respective destinations;
(2) broadcasting, where a table is duplicated across all of the
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processes. Redistribution requires additional calculation of desti-
nation, thus, the redistribution cost is higher than broadcast cost
(𝑡𝑟𝑒𝑑𝑖𝑠 > 𝑡𝑡𝑟𝑎𝑛𝑠 ). To compare communication cost of algorithms,
we develop a simple cost model.

𝑐𝑜𝑚𝑚


(𝑅 + 𝑆) × 𝑡𝑟𝑒𝑑𝑖𝑠 (ROJA)
𝑅 × (𝑁 − 1) × 𝑡𝑡𝑟𝑎𝑛𝑠 + (𝑅 +𝑇 ) × 𝑡𝑟𝑒𝑑𝑖𝑠 (DOJA)
𝑅 × (𝑁 − 1) × 𝑡𝑡𝑟𝑎𝑛𝑠 +𝐾 × 𝑡𝑟𝑒𝑑𝑖𝑠 (DER)
𝑅 × (𝑁 − 1) × 𝑡𝑡𝑟𝑎𝑛𝑠 +𝐷 × 𝑡𝑟𝑒𝑑𝑖𝑠 (DDR)

(1)

In small-large joins, based on the above equation, the commu-
nication cost of ROJA can be very high, since each process in
ROJA has to redistribute the large right table 𝑆𝑖 . The other three
algorithms share a similar broadcast cost. The cost may appear
low initially, but with an increase in the number of processes 𝑁
and the size of left table (|𝑅 |), the cost can grow significantly. The
difference in communication cost between the three broadcast-
based algorithms is that they redistribute different intermediate
data. DOJA redistributes the left table 𝑅 and the inner join result
𝑇 (the size of 𝑇 depends on the selectivity ratio 𝜎 𝑗 ). With an
increasing 𝜎 𝑗 , the redistribution cost will increase significantly,
thereby dominating the overall performance of DOJA. As a conse-
quence, two improved methods, DDR and DER, were developed
to optimize this stage by redistributing dangling results. DER
uses ids of dangling tuples (𝐾) and DDR uses dangling tuples
(𝐷). The number of dangling ids (|𝐾 |) is the same as the number
of dangling tuples (|𝐷 |), however, the storage size of 𝐾 may be
smaller than 𝐷 . Thus, from the perspective of communication,
DER can outperform DDR. The overall redistribution cost of DDR
and DER is not significant. However, the number of dangling
tuples will increase when the number of processes (𝑁 ) increase
simply due to the fact that the𝑅 is duplicated in more processes. It
is worth mentioning that redistributing may potentially result in
an unbalanced workload due to skewness. In the presence of data
skew, the overall performance is adversely impacted by the re-
distribution stage as well as subsequent operations. Additionally,
both redistribution and broadcast require more memory.

2.5.2 Local Execution. The existing algorithm mainly involve
two local operations: join (inner join and outer join) and filter.
Their time costs are denoted as 𝑡 𝑗𝑜𝑖𝑛 and 𝑡 𝑓 𝑖𝑙𝑡𝑒𝑟 .

𝑙𝑜𝑐𝑎𝑙


(𝑅𝑟𝑒𝑑𝑖𝑠

𝑖
+ 𝑆𝑟𝑒𝑑𝑖𝑠

𝑖
) × 𝑡 𝑗𝑜𝑖𝑛 (ROJA)

(𝑅 + 𝑆𝑖 + 𝑅𝑟𝑒𝑑𝑖𝑠𝑖
+𝑇 𝑟𝑒𝑑𝑖𝑠

𝑖
) × 𝑡 𝑗𝑜𝑖𝑛 (DOJA)

(2𝑅 + 𝑆𝑖 +𝐾 𝑓 𝑖𝑙𝑡𝑒𝑟

𝑖
) × 𝑡 𝑗𝑜𝑖𝑛 +𝐾𝑟𝑒𝑑𝑖𝑠

𝑖
× 𝑡 𝑓 𝑖𝑙𝑡𝑒𝑟 (DER)

(𝑅 + 𝑆𝑖 ) × 𝑡 𝑗𝑜𝑖𝑛 +𝐷𝑟𝑒𝑑𝑖𝑠
𝑖

× 𝑡 𝑓 𝑖𝑙𝑡𝑒𝑟 (DDR)

(2)

As we mentioned before, the skewness in the data can result
in an unbalanced workload in subsequent operations and the
performance of ROJA is highly affected by data skew (as data
in some processes after redistribution (𝑅𝑟𝑒𝑑𝑖𝑠

𝑖
, 𝑆𝑟𝑒𝑑𝑖𝑠
𝑖

) may be
significantly bigger than the initial placement (𝑆𝑖 , 𝑅𝑖 )). DOJA
not only needs to perform a local join after the broadcast to
compute all inner join results but also needs to identify non-
matching tuples in the left table by joining the redistributed left
table (𝑅𝑟𝑒𝑑𝑖𝑠

𝑖
) and inner join results (𝑇 𝑟𝑒𝑑𝑖𝑠

𝑖
). The cost of a second

join strongly depends on the inner join ratio (𝜎 𝑗 ) and skewness
degree (𝜃 ). For DER and DER, a filter step is required after the
local join. DER needs to filter keys which may have a smaller
size in bytes than the tuples filtered by DDR. Thus, in terms of
cost of the filter stage, DER has an advantage. However, after the
filter stage, DDR can directly output dangling tuples while DER

has to retrieve dangling tuples by performing an additional join.
In addition, DER has extra local update costs (𝑅𝑖 × 𝑡𝑢𝑝𝑑𝑎𝑡𝑒 ) if no
ids are assigned to the left table 𝑅𝑖 .

2.6 Broadcast and Redistribution on MPI
Both broadcast and redistribution are collective communication
in which all processes are participating. For broadcasting in
DOJA, DER and DDR, all processes need to send their partic-
ipating partitions to all other processes. From the point of view
of the receiver, all processes gather data from all other processes,
which can be achieved by the MPI routine MPI_Allgather. Dif-
ferent processes may hold data of different size, we implement
the broadcast by using MPI_Allgatherv which allows each pro-
cess to contribute different amounts of data. As for redistribution,
all processes could be the destination of the redistributed data in
all processes. Such a communication pattern can be supported
by MPI_Alltoall and MPI_Alltoallv which send data from all
processes to all processes. To implement hash redistribution, be-
fore calling these routines, the data needs to be reorganized based
on its corresponding destinations which is determined by the
hash function.

3 SWAP-BASED OUTER JOIN ALGORITHM
(SOJA)

3.1 Approach & Design of SOJA
Compared to existing algorithms that mainly uses redistribution
and broadcasting, SOJA adopts a novel swap approach using a
ring topology to perform the parallel outer join. Additionally,
SOJA decomposes the traditional local outer hash join operations
to hash (create hash table from right table) and lookup (loop over
tuples in 𝑅𝑖 to look up the hash table). Hashing the right table
allows the dangling tuples in the left table to be determined with
a single loop for a left outer join. The steps for SOJA are:
(1) each process creates a hash table (𝐻𝑆𝑖 ) for the right table

(𝑆𝑖 ). It then loops over the tuples in the left table (𝑅𝑖 ) to
query the hash table 𝐻𝑆𝑖 , meanwhile marking non-matching
tuples in the 𝑅𝑖 as candidates for dangling tuples. Finally, the
intermediate inner join results will be directly returned.

(2) each process sends the updated 𝑅𝑖 to the next process (𝑖 + 1)
in the ring topology. Note, the (𝑁 − 1) − 𝑡ℎ process will send
𝑅𝑁−1 to process 0.

(3) a lookup would be carried out on the new set of 𝑅𝑖 and 𝐻𝑆𝑖 ,
and the intermediate results would be outputted. The non-
matching mark will be removed if the candidate tuple is able
to find a match.

(4) repeat steps 2 & 3 𝑁 − 1 times, and output the tuples in each
of the 𝑅𝑖 with marks as dangling tuples in the last iteration.
The cost model of the iterative operations is the following:

𝑆𝑂𝐽𝐴

{
𝑅 × (𝑁 − 1) × 𝑡𝑡𝑟𝑎𝑛𝑠 (comm)
(𝑅 + 𝑆𝑖 ) × 𝑡 𝑗𝑜𝑖𝑛 + 𝑅 × 𝑡𝑢𝑝𝑑𝑎𝑡𝑒 (local)

(3)

From perspective of cost model, the communication cost is
the same as the broadcast operation, the total join cost of SOJA is
also the same as outer join after the broadcast in DER and DDR.
However, no redistribution, filter, or additional joins are required
by SOJA. It identifies non-matching tuples in the left table and
updates the left table 𝑅 while looping. Additionally, the cost of
𝑡𝑢𝑝𝑑𝑎𝑡𝑒 is not significant, due to the left table being small.

Further, compared to existing methods, SOJA saves memory
for the following reasons: (1) directly outputs of the intermediate
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results after each iteration, (2) no duplication of tables, and (3)
no temporary dangling data as the size of temporary data can
increase with the number of processes as well as with the se-
lectivity ratio in the left table 𝜎𝑅 . In addition, SOJA can easily
be extended to perform other types of joins such as inner join
or right outer joins. For example, inner join is executed by per-
forming a local lookup without marking and updating dangling
tuples in the left table. For right outer joins, SOJA simply flips the
operation by creating a hash table for the left table and updating
the marks on the right table.

Although, there is no redistribution in SOJA, its performance
is still sensitive to an imbalanced workload among processes, es-
pecially due to imbalanced initial placement as there are synchro-
nization costs for communication. Therefore, for SOJA, initially
placing partitions of equal size is a prerequisite for achieving
ideal performance.

3.2 Swap of SOJA on MPI
We use Cartesian topology routines MPI_Cart_create with 1-
dimension to construct SOJA’s ring topology in which each pro-
cess is logically connected to two other processes (𝑙𝑒 𝑓 𝑡 and 𝑟𝑖𝑔ℎ𝑡
process) in a circle. In the ring topology, point to point commu-
nication routines (MPI_Send and MPI_Recv) can be used to swap
data between adjacent processes. To reduce the synchronization
costs, we use non-blocking mode (MPI_Isend and MPI_Irecv)
to transfer data that can overlap other local operations, such as
result output or other operations based on intermediate results.
The swap stage of SOJA is shown in Algorithm 1.

Algorithm 1: Swap in SOJA
1: Require: 𝑅𝑖 , 𝑁 , left and right neighbour 𝑙𝑒 𝑓 𝑡 and 𝑟𝑖𝑔ℎ𝑡
2: 𝑟𝑒𝑐𝑣_𝑏𝑢𝑓 𝑓 𝑒𝑟 = 𝑅𝑖
3: for 𝑖 = 1 to 𝑖 = N-1 do
4: 𝑠𝑒𝑛𝑑_𝑏𝑢𝑓 𝑓 𝑒𝑟 = lookup_and_update(𝑟𝑒𝑐𝑣_𝑏𝑢𝑓 𝑓 𝑒𝑟 )
5: MPI_Isend(𝑠𝑒𝑛𝑑_𝑏𝑢𝑓 𝑓 𝑒𝑟 , dest = 𝑙𝑒 𝑓 𝑡 , 𝑠𝑒𝑛𝑑_𝑅𝑒𝑞𝑢𝑒𝑠𝑡 )
6: MPI_Irecv(𝑟𝑒𝑐𝑣_𝑏𝑢𝑓 𝑓 𝑒𝑟 , source = 𝑟𝑖𝑔ℎ𝑡 , 𝑟𝑒𝑐𝑣_𝑅𝑒𝑞𝑢𝑒𝑠𝑡 )
7: overlapping: output result
8: MPI_Wait(𝑠𝑒𝑛𝑑_𝑅𝑒𝑞𝑢𝑒𝑠𝑡 )
9: MPI_Wait(𝑟𝑒𝑐𝑣_𝑅𝑒𝑞𝑢𝑒𝑠𝑡 )
10: end for
11: 𝑟𝑒𝑠𝑢𝑙𝑡 = lookup_and_update(𝑟𝑒𝑐𝑣_𝑏𝑢𝑓 𝑓 𝑒𝑟 )

4 EXPERIMENTAL EVALUATION
In the following section, we analyse SOJA using experiments
with changing the size of left table (|𝑅 |), selectivity ratio of left
table (𝜎𝑅 ), and skewness degree (𝜃 ). We focus on execution time
and memory usage.

4.1 Setup
4.1.1 Platform. We use an HPC cluster with Intel E5-2680 v3

@ 2.50GHz running Centos 8. The MPI version is 3.3.2.

4.1.2 Datasets. The experiments are based on customer and
supplier tables from the TPC-H benchmark [6]. For simplicity
and consistency of presentation, we use 𝑅 and 𝑆 to represent
customer and supplier respectively. To test the algorithms with
different scenarios, we modify the data in two ways: first, we
scale up or scale down the table size (|𝑅 | and |𝑆 |) by sampling data
from the two initial tables (uniform with replacement). Second,
we vary the selectivity ratios, i.e., the join selectivity ratio (𝜎 𝑗 )

and the selectivity ratio in the left table (𝜎𝑅 ). The selectivity
ratio affects the number of join results (|𝑇 |) and can be roughly
controlled by the sample population of join key 𝑛 with uniform
distribution, which can be explained using Equations 4 to 6.

The definition of 𝜎 𝑗 is:

𝜎 𝑗 =
|𝑇 |

|𝑅 | × |𝑆 | (4)

If we sample the join key from a population that contains 𝑛
values and denote the probability of choosing 𝑖 − 𝑡ℎ item as 𝑝𝑖 ,
then:

𝜎 𝑗 =

∑𝑛
𝑖=1 𝑝𝑖 × |𝑅 | × 𝑝𝑖 × |𝑆 |

|𝑅 | × |𝑆 | =

𝑛∑
𝑖=1

𝑝2𝑖 (5)

If 𝑝𝑖 is a uniform distribution, 𝑝𝑖 = 1
𝑛 , then:

𝜎 𝑗 =
1
𝑛

(6)

The selectivity ratio in the left table (𝜎𝑅 ) determines the number
of dangling tuples in the left table. With the involvement of 𝜎𝑅 ,
the number of results can be estimated by Equation 7.

|𝑇 | = |𝑅 | × 𝜎𝑅 × |𝑆 | × 𝜎 𝑗︸                  ︷︷                  ︸
inner join results

+ (1 − 𝜎𝑅) × |𝑅 |︸           ︷︷           ︸
dangling results

(7)

If 𝜎𝑅 equals to 0, this means no tuples in table 𝑅 are selected
to perform the join with table 𝑆 . Therefore, table 𝑅 will be the
result. As 𝜎𝑅 increases, the number of matching results increases
whereas the non-matching results decrease until all tuples in
𝑅 are involved in the join when 𝜎𝑅 equals to 1. We assign a
negative join key to number of tuples in table 𝑅 based on 1 - 𝜎𝑅
[5]. Therefore, any tuple with a negative key in the left table (𝑅)
will not have any matching results. Both 𝜎 𝑗 and 𝜎𝑅 can influence
|𝑇 |, but in outer joins, 𝜎𝑅 will provide more insights (dangling
tuples), so our experiments focus on 𝜎𝑅 to study changes of |𝑇 |
and only use 𝜎 𝑗 to keep the number of potential inner join results
(when 𝜎𝑅 = 1) unchanged when varying the input data size.

To achieve the parallel IO, we split the data into 𝑁 partitions
and processes load their partition from disk in parallel.

4.2 Impact of the Size of the Left Table
To examine how the performance of approaches changes when
the size of left table increases, we conduct the experiment in
which we vary |𝑅 | and keep all other parameters such as |𝑆 |, 𝜎𝑅 ,
fixed. All five algorithms are executed on 32 cores and 64 cores
and we measure execution time and memory usage.

In this experiment, we set |𝑆 | to 5×107, 𝜎𝑅 to 0.5, and increase
|𝑅 | with a coarser granularity (10×) from 103 to 107. Figure 2
shows that all algorithms maintain a stable performance until
|𝑅 | reaches 106. We further explored changes of the performance
with a fine-grained increase of |𝑅 | (increment of 106 tuples) in
the interval between 106 and 107. The result from 32 processes
and 64 processes (Figure 2 A & C) shows that the execution time
of ROJA is steady whereas execution time of all other algorithms
has a clear upward trend. Figures 2 B & D indicate that SOJA has
an advantage in terms of memory usage across all experiments.
Although ROJA has the highest memory usage when |𝑅 | is small,
the memory usage level stays quite constant with increasing |𝑅 |.
The other three broadcast-based algorithms show that their mem-
ory usage increases significantly, particularly DDR. It is worth
pointing out that when |𝑅 | is relatively large, the performance of
DDR on 64 processes is worse than itself on 32 processes.
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Figure 2: Execution time and memory usage against |𝑅 |, wide ranges |𝑅 | from 103 to 107, narrow is from 106 to 107. (A) time
vs 𝑁 for 32; (B) memory usage vs 𝑁 for 32; (C) time vs 𝑁 for 64; (B) memory usage vs 𝑁 for 64;

Figure 3: Execution time against selectivity ratio of left table over varying number of processes: (A - D): execution time
for 𝑁 = 4, 32, 64, 512; (E - H): memory usage for 𝑁 = 4, 32, 64, 512;

Figure 4: Execution time and memory usage ratio against skewness degree: (A) execution time for 𝑁 = 32; (B) memory
usage ratio 𝑁 = 32; (C) execution time for 𝑁 = 64; (D) memory usage ratio for 𝑁 = 64;

Both execution time and memory usage in ROJA are not con-
siderably affected by changes in |𝑅 |, because the cost of ROJA is
dominated by the large table (although 𝑅 increases, it is still at
least 5 times smaller than |𝑆 |). The broadcast cost and subsequent
local join between 𝑅 and 𝑆𝑖 in DOJA, DER and DDR increases

with the growth of 𝑅, increasing both execution time and mem-
ory usage. Furthermore, dangling tuples candidates after the
first local outer join will also increase as 𝑅 increases. Therefore,
DER and DDR have to redistribute and filter more data to iden-
tify non-matching tuples. The number of candidates is roughly
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|𝑅 | × (1−𝜎𝑅) ×𝑁 . Unlike DER which use ids, DDR directly works
with tuples; therefore, its execution time and memory usage in-
creases dramatically with an increase of |𝑅 | and 𝑁 . As for SOJA,
the swap step becomes more expensive with the growth of |𝑅 |.
Overall, we can see that when |𝑅 | is 10 times less than |𝑆 |, DER,
DDR and SOJA outperform ROJA in both time and memory.

4.3 Effect of Selectivity Ratio of Left Table
These experiments examine the algorithms’ performance with
different 𝜎𝑅 from 0.0 to 1.0 using a varying number of processes
(4, 32, 64, 512). We set |𝑅 | to 105 and |𝑆 | as 5 × 107, and the 𝜎 𝑗 to
10−5.

The results in Figure 3 (A - D) show that the overall execution
time has an upward trend with an increase of 𝜎𝑅 as a high 𝜎𝑅
leads to an increase of the result size and thereby increasing IO
costs. The execution time of DOJA increases dramatically since
DOJA has to redistribute and perform a second local join based on
increasing inner join results. Overall, DER, DDR and SOJA share
a similar performance which outperform the two conventional
algorithms. The upward trend stabilizes with increasing number
of processes due to reduction of local IO costs. Figure 3 (E - H)
shows the change of memory usage with increase of 𝜎𝑅 . When
𝜎𝑅 is small, the redistribution cost in ROJA takes a considerable
amount of memory, and it require even more memory to hold
join results as 𝜎𝑅 increases. DOJA uses more memory compared
to the other two broadcast algorithms because it redistributes
the inner join results rather than the dangling tuples.

4.4 Effect of Data Skewness
To test the effect of skewness, we use the Zipf distribution model
and the number of tuples for both tables after redistribution in
the 𝑖 − 𝑡ℎ process (|𝑅𝑟𝑒𝑑𝑖𝑠

𝑖
| and |𝑆𝑟𝑒𝑑𝑖𝑠

𝑖
|) is the following:

|𝑅𝑟𝑒𝑑𝑖𝑠𝑖 | = |𝑅 |
𝑖𝜃 ∗∑𝑁𝑗=1 1

𝑗𝜃

(8)

To generate data with skew, we sample multiple datasets with
the join key using a Zipfian distribution with different degrees
𝜃 from 0.1 to 0.9. We set |𝑅 | as 105, |𝑆 | as 2 ×107, and 𝜎𝑅 as 0.5.
In this experiment, we examine how execution time as well as
memory usage changes on 32 and 64 processes with an increase
of 𝜃 . In case of skewness, the execution time is determined by
the process with the biggest workload. To make the memory
usage results meaningful, we use a memory usage ratio, which is
the maximum memory usage among all processes over the total
memory usage, instead of total memory usage.

Experiments on both 32 and 64 processes (Figure 4) show that
the degree of skewness has a significant impact on execution time
and memory usage ratio of ROJA and DOJA due to unbalanced
workload caused by the redistribution step. Although DER and
DDR also feature a redistribution operation, their performance
remains stable as 𝜃 changes. This is because, in this experiment,
the number of dangling tuples/ids to redistribute is relatively
small due to the small |𝑅 |. The memory ratio in Figure 4 (B & D)
also reflects that both DER and DDR have a relatively balanced
memory usage. Since this skewness is about data skew in the
join key rather than the initial placement, both memory and
execution performance of SOJA are not much affected by 𝜃 .

4.5 Discussion
ROJA, as a general-purpose outer join algorithm, does not have
an outstanding performance when the left table’s size is very

small. Although ROJA is less affected by changes in the selectiv-
ity ratio in the left table, its performance with high data skew
drops dramatically. Another conventional algorithm, DOJA, has
no outstanding performance inmost cases because it has to broad-
cast the entire left table and redistribute the entire inner results,
which is particularly bad when the join selectivity ratio is large.

In small-large outer joins, DER shows an outstanding per-
formance over most cases as it optimizes the redistribution by
focusing on ids to identify dangling tuples. Using ids of dangling
tuples makes DER less affected by the selectivity ratio and skew-
ness. As a DER competitor, DDR adopts a simpler procedure,
directly redistributing and filtering based on the dangling tuples
itself. DER and DDR share the core methodology and their per-
formance in both time and memory aspects is also similar in
most cases. However, when the number of the tuples in the left
table increases, the performance of DDR becomes the worst since
the size of candidates of dangling tuple in bytes increases both
computation and memory costs.

SOJA achieves a similar (sometimes better) performance than
DER and DDR in terms of time costs in most cases and outper-
forms all competitors in terms of memory usage. Additionally,
SOJA is less affected by data skewness and selectivity ratio since
there is no redistribution operation in SOJA.

5 CONCLUSIONS
In this paper, we implemented four existing parallel outer join
algorithms in MPI and proposed a new algorithm SOJA. SOJA
does not simply optimize one specific part of existing algorithms;
it provides an entirely novel approach, swap, to perform outer
joins. The experiment based onHPC infrastructure shows that the
performance of SOJA is outstanding, especially in memory usage.
Further, we will investigate whether SOJA can be used in other
joins, such as inner join, with the same benefits. Additionally, the
feasibility of the swap approach in parallel spatial joins will be
explored in future works.
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ABSTRACT
Machine learning (ML) is increasingly used to automate deci-
sion making in various domains. Almost all common ML models
are susceptible to data errors in the serving data (for which the
model makes predictions). Such errors frequently occur in prac-
tice, caused for example by program bugs in data preprocessing
code or non-anticipated schema changes in external data sources.
These errors can have devastating effects on the prediction qual-
ity of ML models, and are, at the same time, hard to anticipate
and capture.

In order to empower data scientists to study the impact as well
as mitigation techniques for data errors in ML models, we pro-
pose Jenga, a light-weight, open source, experimentation library.
Jenga allows its users to easily test their models for robustness
against common data errors. Jenga contains an abstraction for
prediction tasks based on a dataset and a model, an easily extend-
able set of synthethic data corruptions (e.g., for missing values,
outliers, typos and noisy measurements) as well as evaluation
functionality to experiment with different data corruptions.

Jenga supports researchers and practitioners in the difficult
task of data validation for ML applications. As a showcase for
this, we discuss two use cases of Jenga: studying the robustness
of a model against incomplete data, as well as automatically
stress testing integrity constraints for ML data expressed with
tensorflow data validation.

1 INTRODUCTION
Many companies and organisations are moving to a data-driven
approach, where machine learning (ML) is used to assist and
automate decisionmaking in various domains. Yet the application
of ML in production settings often faces a number of pitfalls.
Almost all common ML models are susceptible to data errors
in the serving data (for which the model makes predictions).
Such errors frequently occur in practice, caused for example
by program bugs in data preprocessing code or non-anticipated
schema changes in external data sources. These errors can have
devastating effects on the prediction quality of ML models [12],
and are, at the same time, hard to anticipate and capture. While
many aspects of the impact of data changes on ML models are
studied in the ML literature [1, 7, 9], it can be difficult to relate
this research to the errors occurring in practical ML applications,
as these approaches all require distributional assumptions about
the change.
Data errors in productionmachine learning. Frequently, the
errors in production deployments do not originate from changes
∗work done while at New York University
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in the data generating real-world processes, but from program-
ming errors in the data pipelines constructing the serving data [4]
or from errors during data integration from different sources [6,
21]. Such errors often only become apparent once models are
deployed in complex production use cases [16].

We have come across several real world instances of such
data errors. In one case, a linear model had been trained on de-
mographic data (including a person’s age), and the age value
had been missing for some records for which the model should
supply predictions. A software engineer (without knowledge of
the model intricacies) then wrote preprocessing code to replace
all missing age values with zeroes, the default value for initial-
ising integers in many programming languages. This led to a
unwanted misbehavior of the model, which effectively treated all
these records as “toddlers”. In another case, we learned about an
ML model where the pipelines for training and serving data were
running in different cloud environments. As a result, the code
bases for data preparation on the training and serving side acci-
dentally diverged, which introduced hard to detect data errors.
Such errors can have devastating impact, as all guarantees about
the reliability of the predictions of the ML model may be lost,
which can lead to monetary losses (e.g., if buying decisions are
made based on the predictions of a forecasting model) and bad
user experiences (e.g., if users are presented with non-sensical
recommendations in an online shop).
Evaluating the robustness ofmodels against common data
errors. These examples show the need for testing the robustness
of ML models to data errors before they are deployed to produc-
tion. Recent research focuses on detecting and handling such
data errors, e.g., by proposing unit tests and integrity constraints
for ML data [4, 17], ML-based missing value imputation [2] and
validating the predictions of black box models [19]. In our experi-
ence, it is difficult to provide broadly valid empirical evaluations
of these approaches, and to generate synthetically corrupted data
that represents the scenarios that we encounter in the real world.

To address this need, we design the Jenga library, which we
present in this paper. Jenga enables data scientists to study the
robustness of their models against errors commonly observed
in production scenarios. Based on the findings from experiment-
ing with Jenga, users can take appropriate measures to protect
their deployed models against impactful data errors, e.g., with
custom integrity constraints implemented via tensorflow data
validation [4].

In summary, this paper provides the following contributions.
• We introduce our open source framework Jenga to study the
impact of data errors on ML models (Section 2).
• We describe how to implement custom prediction tasks and
synthetic data corruptions in Jenga (Section 3).
• Wediscuss two use cases for Jenga: studying the robustness of a
model against incomplete data, and automatically stress testing
integrity constraints for ML data expressed with tensorflow
data validation (Section 4).
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Jenga is publicly available under an open source license at
https://github.com/schelterlabs/jenga.

2 FRAMEWORK DESIGN
We introduce the design of Jenga. The goal of Jenga is to enable
data scientists to evaluate the impact of data errors on their
models, and to evaluate techniques that make these models more
robust. We design Jenga around three core abstractions: (i ) tasks
contain a raw dataset, an ML model, and represent a prediction
task; (ii ) data corruptions take raw input data and randomly apply
certain data errors to them (e.g., missing values); (iii ) evaluators
take a task and data corruptions, and execute the evaluation by
repeatedly corrupting the test data of the task, and recording the
predictive performance of the model on the corrupted test data.

We provide three sample tasks (Section 2.1), several data cor-
ruptions (Section 2.2) and two different evaluators (Section 2.3)
as part of the framework.

2.1 Example Tasks
We provide three exemplary prediction tasks in Jenga. Note that
users can define and implement their own custom tasks with low
effort (see Section 3 for details). We choose simple binary classifi-
cation tasks for product review classification (predicting whether
the review of a video game was deemed helpful), income estima-
tion (predicting whether a person earns more than $50,000 per
year based on demographic data) and image recognition (distin-
guishing sneakers from ankle boots), which resemble real world
use cases, and leverage publicly available datasets and widely
used ML models. We focus on relatively small-scale problems,
which do not require costly infrastructure (e.g., the models can
be trained in a couple of minutes on a multicore CPU), in order to
allow users to rapidly experiment and play with our framework.
These tasks are meant as examples to enable users to test our
data corruptions and evaluators, and serve as a template for our
users to integrate Jenga with their own custom prediction tasks.

2.2 Data Corruptions
In the following, we describe the types of data corruptions avail-
able in Jenga. Each error type requires the specification of a col-
umn c to be affected by the error and a fraction of rows r ∈ [0, 1]
that should be affected.
Corruption sampling.: Whether or not a value is affected by a
corruption is often the result of errors in complex preprocessing
pipelines. In order to account for realistic corruption patterns we
model the fraction of rows affected by a corruption as follows.
A value xc in column c is corrupted (i ) independent of other
values (corrupted values are sampled completely at random), (ii )
dependent on values in columns other than c (corrupted values
are sampled at random), or (iii ) dependent on values in column
c (corrupted values are sampled not at random). This modelling
is inspired by literature on missing value imputation, where
three types of missingness are commonly distinguished [10]. As
these three sampling procedures a can capture the complex error
patterns often observed in practice we chose to make it applicable
not only to missing value corruptions, but to all other error types
as well.
Missing values. Missing values are amongst the most common
data errors in practice. Missing values can have devastating
effects on training and prediction, depending on how a data
pipeline deals with missing values before feeding the data to a

downstream ML model. An important factor for the impact of
missing values are the missingness patterns, described in the pre-
vious paragraph, missing completely at random (MCAR), missing
at random (MAR) and missing not at random (MNAR).

We additionally support the injection of missing values based
on "prediction difficulty", where we consider the fact that there
MLmodel downstream that is affected by missing data. This error
type considers the entropy of the ML model predictions for the
data rows and discards values based on their difficulty for the
model, akin to uncertainty sampling in active learning.
Swapped values. We replace a specified ratio of values in one
column with values in another column. This corruption mimics
users mixing up entries in input forms [6] or programming errors
in data preparation code, where a programmer accidentally swaps
target columns to write to.
Scaling. We randomly scale a subset of the values by 10, 100
or 1000. This perturbation mimics cases where the scale of an
attribute is accidentally changed in preprocessing code (e.g., be-
cause a developer accidentally changes the code to record dura-
tions in milliseconds instead of seconds).
Noise. We corrupt a fraction of a column’s values by adding
gaussian noise centered at the data point with a standard devia-
tion randomly selected from the interval of 2 to 5. This corruption
is intended to mimic measurement errors.
Encoding errors. This corruption replaces certain characters in
string attributes (e.g., a with á), and is meant to simulate encoding
errors, e.g., for data retrieved from web pages which indicate a
false encoding.
Image corruptions. Dealing with corrupted training images is
a well studied problem in computer vision [3] for which a lot
of tooling exists already. We therefore integrate existing image
corruptions from the augmentor1 library into jenga.

2.3 Evaluators
Finally, Jenga provides so-called evaluators, which measure the
impact of data corruptions on themodel’s predictive performance.
Jenga currently features two evaluators: The CorruptionImpactEvaluator
takes a provided task, a trained model and a manually specified
list of corruptions. It applies each data corruption to the held-out
test set of the task and computes the predictive performance of
the model in light of the data corruption. We show how to use
this evaluator with a few lines of code in Section 3.1, and discuss
a detailed example of measuring the impact of missing values on
a task in Section 4.1.

The second evaluator allows users to additionally integrate a
data validation schema into the evaluation. In many cases, it is
not possible to make an MLmodel completely robust against data
errors [19]. A common approach to prevent feeding corrupted
data to deployed ML models is to run data validation checks
on the serving data on which the model is applied. Popular li-
braries for this task are tensorflow data validation (TFDV)2 [4]
or Deequ3 [18]. They allow users to define a schema and con-
straints for the serving data (e.g., that a given attribute must
not contain missing values), and efficiently execute this check
before passing the data to an ML model. Jenga contains a custom
SchemaStresstestEvaluator for feature data validation with a
TFDV schema. This evaluator works analogous to the previous

1https://github.com/mdbloice/Augmentor
2https://www.tensorflow.org/tfx/guide/tfdv
3https://github.com/awslabs/deequ
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one, but additionally records whether the check of a provided
data validation schema would have correctly detected the neg-
ative impact of the data corruption. We provide an extensive
example for this evaluator in Section 4.2.

3 USAGE AND CUSTOMISATION
We implement Jenga based on several popular open source ML
frameworks in python. We leverage pandas for data wrangling,
and numpy for numerical computations. We implement feature
extraction and preprocessing via scikit-learn’s pipeline abstrac-
tion, and also use classical ML models from this library. We rely
on keras and tensorflow for defining and training neural networks.

In the following we first give an example of how to use Jenga
to evaluate the impact of data corruptions (Section 3.1), and
subsequently discuss how to implement custom tasks and data
corruptions in Jenga’s API in Section 3.2.

3.1 Evaluating the Impact of Data Errors
The core use case of jenga is to evaluate the impact of certain
data corruptions on a prediction task. This can be implemented
with a few lines of code: We have to instantiate the task and data
corruptions that we want to evaluate, and can execute the eval-
uation with Jenga’s CorruptionImpactEvaluator. This allows
us to measure the impact of a predefined list of data corruptions
on the predictive performance of a model.

# Create the prediction task
task = IncomeEstimationTask ()
# Train a baseline model
model = task.fit_model(task.train_data ,
task.train_labels)

# Specify the data corruption to test
corruption = MissingValues(column='age',
missingness='mcar', fraction=0.05)

# Create the evaluator
evaluator = CorruptionImpactEvaluator(task)
# Run the evaluation with 10 repetitions
result = evaluator.evaluate(model ,
num_repetitions=10, corruption)

# Impact on predictive performance
print(f""" Score on

clean data: {result.baseline_score}
corrupted data: {result.corrupted_scores} """)

Here, we setup a task, train the corresponding model and define
the corruption that we are interested in. We provide these to
the evaluator together with the specification of the number of
repetitions to execute for each corruption. The evaluator repeat-
edly corrupts the (copied) test data of the task, computes the
prediction quality of the model on the corrupted data and finally
provides a result object with the corresponding scores for each
corruption to investigate. Note that we could also have specified
more than one data corruption to evaluate.

3.2 Custom Tasks and Data Corruptions
We design Jenga with the goal to make it easy for data scientists
to wrap their existing code as a prediction task, which allows
them to reuse our data corruptions and evaluators. In addition, we
also make it easy to design custom data corruptions. Therefore,
we next describe how to implement the two basic building blocks
of Jenga, a Task and a DataCorruption.
Implementing a custom task. Jenga allows data scientists to
implement custom tasks with low effort. We provide an abstract
base class ClassificationTask with two methods that users
must implement. In the constructor, users have to load the input
data for the task. Next, they have to implement the fit_model

method, which trains the accompanying prediction model for
the task from training data provided in a pandas dataframe. The
model produced by this must support scikit-learns predictor API.
Finally, the score_on_test_data must be implemented, which
computes the desired metric for the task (e.g., ROC AUC) from
the predicted label probabilities of the model.
Implementing a customdata corruption. At the core of Jenga
are data corruptions, whose impact on the predictive performance
of a model we want to investigate. Data corruptions transform
a dataframe into another dataframe with potentially corrupted
values. We provide an abstract base class, DataCorruption, that
users can extend by providing only a singlemethod, called transform.
In the following listing, we implement a data corruption that mim-
ics a case where duration that needs be expressed in seconds is
accidentally recorded in milliseconds (e.g., scaled by a factor of
1000) in a fraction for the rows.

class MillisInsteadOfSeconds(DataCorruption):
...
def transform(self , data):
# Operate on a copy of the data
corrupted_data = data.copy(deep=True)
# Pick a random fraction of the rows
rows = np.random.uniform(len(data)) < self.fraction
# Multiply the column values of the chosen rows
corrupted_data.loc[rows , self.column] *= 1000
return corrupted_data

We first conduct a deep copy of the input data, which we will
corrupt later on. Then, we randomly pick the indexes of the rows
that we want to corrupt, and finally mulitply their values by a
1000 to mimic milliseconds. Note that tasks and data corruptions
implemented with our API can be readily used in the existing
evaluators from Jenga, as outlined in Section 3.1.

4 EXAMPLE USE CASES
We discuss two examplary use cases of our framework that re-
semble real world problems which we encountered in production
ML applications. Note that we provide implementations (in the
form of Jupyter notebooks) for all these use cases in our github
repository at https://github.com/schelterlabs/jenga.

4.1 Measuring the Robustness of a Model
against Incomplete Data

Overview. In our first experiment, we showcase how to study
the impact of missing values on the predictions of a model. This
targets a common usage scenario, where data scientists, who
have a trained model in production (or ready for production),
want to study its robustness towards incomplete data with Jenga.
They want to reach a conclusion on how well the model itself (in
combination with different missing value imputation methods)
can mitigate the impact of missing values in the serving data. In-
complete data is a very common issue in real world deployments,
where data is often missing as a result of programming errors,
data integration issues or unanticipated schema changes in an
external data source.
Setup. We experiment with a logistic regression model for our
income estimation task from Section 2.1. The goal of this task is to
predict from demographic data whether an individual has a high
income. We train a model on clean training data, and evaluate
its predictive performance (in terms of ROC AUC) on test data
with synthetically injected missing values. We focus on four
categorical attributes in the data: education, marital_status,
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Figure 1: Evaluation of the robustness of amodel for the income estimation task against incomplete data.We plot the AUC
score achieved with different missing value imputation strategies (placeholder,mode and datawig) against the fraction of
injected missing values. The impact differs by attribute and there is no clear dominating imputation strategy, indicating
that it is difficult to make the model fully robust against this type of data error.

workclass, and occupation, and inject missing values into 1%,
10%, 50% and 99% of randomly chosen values of a given attribute.

We repeat this process for all three kinds of missing values
(“missing completely at random” (MCAR), “missing at random”
(MAR), “missing not at random” (MNAR)) as discussed in Sec-
tion 2.2. We repeat each individual configuration ten times, and
report the performance on corrupted test data (in comparison
to the performance on clean data), where we differentiate be-
tween three different ways to make the model handle the missing
values:
• First, we replace missing values with a constant placeholder
symbol.
• Secondly, we replace missing values with the mode (the most
frequent value in the column) via scikit-learn’s SimpleImputer
• Thirdly, we train a dedicated ML model to impute missing val-
ues based on the structure present in the complete records [2].
We leverage the datawig library4, which automatically fea-
turises tabular data and trains a neural network to predict the
missing values.

Results. The experimental results are shown in Figure 1. We
find that the impact of the missing values is highly dependent on
the attribute we target. There is nearly no impact for workclass,
a very minor impact for occupation for less than 50% missing
values, a much stronger impact for education, and we encounter
the highest impact for missing values in marital_status. We
additionally see that the impact is in some cases different for
different types of missing values, e.g., values “missing not at
random” in the marital_status attribute seem to be easier to
handle than the other types of missingness.

In summary, we find no clear dominating strategy for handling
the missing values in this particular task. Having the model deal
4https://github.com/awslabs/datawig

with the missing values via a placeholder symbol is simple and
works well in many cases. However, there are some setups where
leveraging a dedicated missing value imputation strategy helps,
e.g., datawig for a high fraction of missing values in education
or for occupation. We conclude that the model itself cannot
handle missing values reliably in all cases, even in combination
with imputation. Thus, the data scientists need to put checks in
place to safeguard the serving data on which the model is applied.

4.2 Stresstesting Integrity Constraints
for ML data

Overview. Our next experiment shows how to put safeguards
in place for an ML model. This experiment applies a schema and
constraints for ML data, and executes a stresstest for them, as
discussed in Section 2.3. We leverage the product review classifi-
cation task discussed in Section 2.1, where the goal is to predict
whether uses found the review of a videogame helpful or not.

We train a model for this task, and additionally create a schema
with integrity constraints for the test data in TFDV. Next, we
run Jenga’s SchemaStresstest which generates random data
corruptions for the test data, and determines whether our schema
catches these errors, and what the impact of these on the pre-
diction quality of the model (in terms of ROC AUC) would have
been.

In real world use cases, it is difficult for data scientists to come
up with an appropriate schema and constraints for their data,
and we develop our stresstest to uncover errors which are not
caught by the current schema. As a consequence, data scientists
can iteratively improve their integrity constraints until they pass
the stresstest.
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from jenga.tasks.reviews import VideogameReviewsTask
from jenga.evaluation.schema import SchemaStresstest
import tensorflow_data_validation as tfdv
# Setup task
task = VideogameReviewsTask ()
# Create a schema to test
train_data_stats =
tfdv.generate_statistics_from_df(task.train_data)

# Auto -infer schema from training data
schema = tfdv.infer_schema(statistics=train_data_stats)
# Manually adjust schema
review_date_feature =
tfdv.get_feature(schema , 'review_date ')

review_date_feature.distribution_constraints
.min_domain_mass = 0.0

# Define model to include in stress test
model = task.fit(task.train_data , task.train_labels)
# Run stress test with 250 randomly generated
# data corruptions
stress_test = SchemaStresstest ()
results = stress_test.run(task , model , schema ,
num_corruptions=250 , performance_threshold=.03)

Setup. The code above shows the setup of the experiment. We
generate a schema for the feature data of the task, with a semi-
automatic approach, where we first have TFDV automatically
infer a schema for the data (via tfdv.infer_schema).

The schema correctly identifies the data types and categori-
cal domains of most of the attributes of the data. It is too strict
however, as it does not account for the fact that all the values in
the review_date column will change for future data. We manu-
ally adjust the schema for this attribute by setting the minimum
domain mass that must be shared between the values found at
schema inference time and the future values to zero, allowing
new values to appear in the column. The following listing shows
an excerpt of the schema and constraints for the data, containing
type information, completeness requirements and domain values
for the data attributes.

...
feature {
name: "star_rating"
type: INT
presence { min_fraction: 1.0 } }

feature {
name: "verified_purchase"
type: BYTES
domain: "verified_purchase"
presence { min_fraction: 1.0 } }

feature {
name: "review_date"
type: BYTES
domain: "review_date"
presence { min_fraction: 1.0 }
distribution_constraints { min_domain_mass: 0.0 } }

...
string_domain {
name: "verified_purchase"
value: "N"
value: "Y"

}
...

We evaluate the schema with a stress test which applies 250
randomly generated data corruptions to the serving data of the
model and measures their impact on the prediction quality.
Results. The model achieves an AUC of 0.78828 on clean data,
and we consider all predictions on corrupted data with more
than 3% decrease in prediction performance as failures. Jenga
categorizes the results as following:

• True positives, where TFDV reports a schema violation and
the prediction quality on the corrupt test data drops below the
threshold.
• True negatives, where TFDV reports no schema violation and
the prediction quality on the corrupt test data is within the
threshold.
• False positives, where TFDV reports a schema violation, but the
prediction quality on the corrupt test data does not drop below
the threshold. Note that it might still make sense to capture
and investigate these data errors, as they can be indicators of
problems in preprocessing code or external data sources.
• False negatives, where TFDV reports does not report a schema
violation, but the prediction quality on the corrupt test data
does drop below the threshold. These are the most important
findings from a stress test as they indicate data errors to which
the model would be vulnerable in production. It is imperative
to adjust the schema to catch these errors.
In the following, we list several findings from our stress test

example in Table 1 and discuss them.
True positives. Out of the 250 corruptions, we find 88 true posi-
tives. For example, we find that the model crashes for missing
values in the numeric star_rating column, and that the pre-
diction quality drops more than 3% for gaussian noise in this
column and for a large number of swapped values between the
verified_purchase and title column. Note that all of these
errors are correctly detected by TFDV.

error type column(s) frac comment

True positives

missing values star_rating .25 crash
swapped values review_body, vine .75 unseen values
swapped values verified_purchase,

title
.45 unseen values

missing values vine .53 incompleteness
gaussian noise star_rating .25 type (int to float)

True negatives

encoding vine .72 no changes
encoding review_id .83 column not used
swapped values review_id,

product_parent
.17 columns not used

missing values product_id .27 column not used

False positives

missing values vine .93 unseen values
gaussian noise star_rating .16 type (int to float)
swapped values product_id,

marketplace
.35 unseen values

encoding marketplace .72 unseen values

False negatives

scaling star_rating .92 range check missing
encoding title_and_review .76 no encoding checks
missing values title_and_review .80 no length checks
swapped values title_and_review,

review_headline
.75 no length checks

Table 1: Results found by the schema stress test for detect-
ing impactful data errors on the product review task.

True negatives. We additionally find 75 true negatives, which
mostly include cases where a textual column is being corrupted
which is ignored by TFDV, but also not used by the model, whose
prediction quality is therefore not affected by the corruption.
False positives. We encounter 39 false positives. We for example
see that even a high number of missing values in the vine column
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do not strongly affect the prediction quality, as well as a low
number of noisy values in the star_rating column or encoding
errors in the marketplace column, which is not used by the
model.
False negatives. The most important results from the stress test
are false negatives, e.g., data corruptions that are not detected
by our TFDV schema, but strongly affect the prediction quality
of the model. In a real world use case, we need to extend our
schema to catch all these errors. We see that scaling values in
the star_rating column strongly affects the prediction qual-
ity. This is an indicator that we should add a range check for
this column to our schema. Furthermore, all kinds of errors in
the title_and_review column negatively affect the prediction
quality. This is a textual column for which TFDV does not gen-
erate constraints automatically. Checks for both the length and
encoding of the values in that column are required to capture the
outlined errors.

We argue that it should become a best practice to execute
such stresstests for data errors before putting ML models into
production, and we think that such testing capabilities should be
integrated into common ML deployment pipelines.

5 RELATEDWORK
Addressing the challenges in productionizingMLmodels is a field
with growing interest in recent years [2, 8, 12, 16, 20]. Several
solutions were proposed for validating ML models and their
predictions. Most of these originate from a statistical ML or a data
management perspective. Approaches from the ML community
are based on distributional assumptions about the data shift, such
as label shift [13], and covariate shift [1]. These assumptions
often seem inapt to describe practically relevant data changes
for engineers, such as the errors described above. Moreover, the
proposed methods often limit themselves to adapting a particular
model or learning paradigm.

There exist several approaches from the data management
community to validate the input data of ML pipelines. For exam-
ple, Google’s TFX platform [4] offers validation for input data
via a feature schema, and Deequ [17] enables unit tests for data,
but both of them do not quantify the potential impact of errors
on the model predictions. On a related note, there is a growing
body of work on model monitoring [19], model diagnosis [5] and
model unit testing for neural networks [11].

6 LEARNINGS & CONCLUSION
During our work on real world ML deployments, we have repeat-
edly come across scenarios where data errors heavily impacted
deployed models and applications.

Missing values in data can in some cases, propagate through
various connected pipelines until a customer facingmodel crashes,
and it is very tedious to trace these errors back to the original data
source which introduced the missing values. In internationalised
applications, which operate on text in non-western languages,
it is common to encounter encoding issues which are often in-
troduced by a wrongly configured intermediate data store, and
are again very hard to pinpoint and fix. Another common source
of errors is calendar-related data, where dates and durations are
often incorrect, e.g., due to movable holidays. Furthermore, often
ML models are trained by specialised teams, and then handed
over to business teams. In such cases, we often experienced that
the data provided to the ML experts had not been sampled in a
representative way by the business team, and as a consequence,

the resulting model will not perform well later on due to the
dataset shift introduced by the non-representative sampling.

These experiences motivate our presented library Jenga, which
enables data scientists to evaluate the performance of ML models
under data errors. Jenga builds on existing ML libraries, and
allows practitioners and researchers to quickly build ML testing
suites for their models with a broad range of data errors that we
observed over several years of maintaining ML applications. We
think that is is necessary to establish a set of best practices for
testing ML models, analogous to established best practices like
unit testing and integration test in software engineering. The
goal of Jenga is to collect a huge library of data corruptions that
occur in the real world, and uses these to automate the testing of
ML models, ideally with an integration into upcoming systems
for continuous integration for ML [14].

In the future, we aim to extend Jenga to extend more diverse
tasks (e.g., regression problems or ranking problems). We will
continue to work on Jenga as part of our recently proposed vision
for automated ML model monitoring with respect to data qual-
ity [15]. We hope that Jenga can contribute to future research on
data governance for end-to-end management platforms for ML.
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ABSTRACT
Many distributed databases deploy primary-copy asynchronous
replication, and offer programmer control so reads can be directed
to either the primary node (which is always up-to-date, but may
be heavily loaded by all the writes) or the secondaries (which
may be less loaded, but perhaps have stale data). One example is
MongoDB, a popular document store that is both available as a
cloud-hosted service and can be deployed on-premises. The state-
of-practice is to express where the reads are routed directly in
the code, at application development time, based on the program-
mers’ imperfect expectations of what workload will be applied
to the system and what hardware will be running the code. In
this approach, the programmers’ choice may perform badly un-
der some workload patterns which could arise during run-time.
Furthermore, it might not be able to utilize the given resources
to their full potential – meaning database customers pay more
money than needed.

In this paper, we present Decongestant: a system which will
automatically and dynamically, as the application is running,
choose where to direct reads, sending enough reads to secon-
daries when this will reduce load on a congested primary and
boost the performance of the database as a whole, but without
exceeding the maximum data staleness that the clients are willing
to accept. A central insight is to use measured latency of read
operations on primary and secondaries to determine whether the
primary is congested.

In an experimental evaluation, we demonstrate our system
adapts well to dynamically changing workloads, obtaining perfor-
mance benefits when they can arise from use of the secondaries,
while ensuring that returned values are fresh enough given client
requirements. Our approach is decentralised and can be used
by both cloud-consumers and on-premises users: it uses only
client observations and the limited diagnostic data provided by
the database to its clients.

1 INTRODUCTION
Distributed databases have become a popular offering due to their
scalability and elasticity. Distributed databases typically deploy
a combination of data sharding and replication over multiple
nodes to provide both scalability and availability. Thus, there are
typically multiple copies of data, and some distributed database
offerings expose those to programmers via a performance tuning
parameter where one can decide to which node (primary or sec-
ondary) the read requests should get routed. The challenge is to

© 2021 Copyright held by the owner/author(s). Published in Proceedings of the
24th International Conference on Extending Database Technology (EDBT), March
23-26, 2021, ISBN 978-3-89318-084-4 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

use this tuning knob wisely to balance the load, for good perfor-
mance, while minimizing its pitfalls, namely access to potentially
stale data. One typical example in this space is MongoDB, a pop-
ular NoSQL distributed database management system. MongoDB
Atlas1 is the corresponding cloud-hosted MongoDB service.

MongoDB internally is a classic log-based, primary-copy repli-
cation system. It is usually run as a replica set, where each node
keeps a logical copy of the database [35]. Each replica set is a
log-replicated state machine [34]. In cloud settings, all nodes
are usually placed within one geographical region, but spread
in different availability zones. There is one primary copy which
processes all write operations. Each secondary copy pulls the
updated log from the primary and then replays it to keep up
with the primary. Thus, data on the secondary copies might be
stale compared to that on the primary copy in a workload with
frequent write operations. During a fail-over, one secondary copy
is elected as the new primary.

Clients can direct read operations to either the primary copy
or to a secondary copy (this is called Read Preference [24] and is
indicated in the API as an optional parameter of a read request
call). When reading from the primary copy on a healthy cluster
with default settings, fresh data is returned. But if the primary
copy is saturated, the read latency can be huge. In that case, a user
can gain larger throughput and lower read latency by reading
from secondary copies; however, data returned might be stale.

The state-of-the-art practice is to "hard-code" the Read Pref-
erence, making a choice explicitly when writing the application
program. This is not ideal for several reasons. Firstly, developers
may have insufficient information about workload and hardware
capabilities for them to make a sensible choice when the code is
written. Also, the "sensible" choice may differ over time as work-
load changes, but hard-coding is not able to adapt dynamically.
Furthermore, the standard Read Preference options are limited
to either primary or secondary, so that the nodes in a MongoDB
cluster will never do the heavy-lifting together.

This paper shows how to capture knowledge at run-time of the
current condition, and change the Read Preference dynamically,
so that the overall performance of MongoDB can be improved.
We adjust the proportion of secondary reads sent, in order to
distribute work among the nodes of a MongoDB cluster. Our
goal is to gain extra performance by reducing problems of con-
gested nodes, so that the database can serve more clients without
upgrading its hardware. This should help lower the cost of Mon-
goDB for users. But we need to ensure each client sees data values
that are "fresh enough" for the client’s requirements, so we must
avoid directing reads to a secondary when that node is too stale.

Achieving this is not easy. We must make the decision on
where to direct a read on client-side information. Our approach

1https://www.mongodb.com/cloud/atlas
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aims at both MongoDB cloud-consumers and on-premises users
– there is no need to alter server code, or monitor the database’s
internal state. We only take measurements from the outside, as
operations are submitted, or call the service API for the limited
statistics it provides on the current status of servers. Our key
insight to overcome this challenge is to measure the latency of
read operations that were recently submitted by the client, for
those sent to the primary and also for those sent to the secondary.
In this paper we look at reads individually; if the client also needs
session properties such as read-your-own-writes, or transaction-
respecting snapshots, those can be obtained through capabilities
of MongoDB, e.g. causal consistency[37].

Our key contributions are

• A mechanism to determine at run-time as either a cloud-
consumer, or an on-premises user, whether the primary, or
the secondaries, are currently congested with reads. This
uses client-side measurements of the latency of recent
read operations with each Read Preference, estimates the
server-side component of that by subtracting network
round-trip latency, and compares these estimates from the
primary versus from the secondaries. This ratio is used
in a simple feedback control. A high ratio indicates too
much load on the primary, so more reads should go to the
secondaries as long as those are not too stale. On a low
ratio, indicating too much load on the secondaries, fewer
reads should be sent to the secondaries in future.
• A system design and prototype implementation, called
Decongestant, which uses this mechanism. It chooses at
run-time to send a client’s reads to primary or secondary
as appropriate, for good performance while respecting
a client-assigned limit on acceptable staleness of values
returned.
• Experimental evaluation of Decongestant, to show that it
maintains good performance while workloads vary (and it
can do better than either hard-coded approach), and that
it respects a client-assigned limit on staleness.

Our earlier poster paper [21] presented initial ideas in this
direction. Here we adapt some of the text from there, describing
motivation, background, and related work. Novel features of De-
congestant, compared to [21], are: avoiding use of a secondary
when it would give values that are too stale for client require-
ments (and never send reads to the secondaries when the clients
can not tolerate any stale reads); capability to deliberately, in a
controlled way, mix use of primary and secondaries in the same
period, in order to outperform either hard-coded approach; im-
proved latency estimate that separates network effects from those
of server congestion; evaluations that show run-time adaptation
to workloads that change in various aspects; a new S workload
we use to demonstrate the validity of staleness reports from the
servers (which Decongestant uses) as estimate of client-observed
staleness.

The remainder of the paper is structured as follows. Section 2
introduces relevant concepts in MongoDB. Section 3 presents the
design of Decongestant. We provide an evaluation of Deconges-
tant in Section 4. Section 5 highlights, and contrasts with, related
work. We conclude in Section 6.

2 BACKGROUND
Some text in this section already appeared in [21].

2.1 A brief overview of MongoDB and
MongoDB-as-a-Service

As we have already discussed in section 1, MongoDB internally
uses asynchronous primary-copy replication for fault-tolerance.
This means it usually runs as a replica set. Fail-overs are rare [35].
This justifies our approach that exploits some of the capacity of
the secondary nodes.

MongoDB also provides a sharding mechanism to enable hor-
izontal scaling [22]. The entire database can be sharded into a
number of shards, where each shard is a distinct subset of the
whole database. Each shard can be deployed as a replica set, geo-
graphically far away from one another. MongoDB sharding is not
used in this paper but the techniques we describe can be applied
to sharded clusters, which support the same Read Preference API
as standalone replica sets.

MongoDB Atlas is a "containerized" version of MongoDB,
provided as a service. MongoDB Atlas has the same core as the
open source Community Server, but with some additional, closed
source functionality (e.g., security features). Customers are able
to use MongoDB Atlas in a pay-as-you-go model. MongoDB
Atlas is hosted on diverse cloud service platforms: Amazon Web
Service (AWS), Microsoft Azure, or Google Cloud Platform (GCP).
Customers can select the service locations, memory and storage
size, number of vCPUs, etc. The database can be deployed with
a few clicks. It is also trivial to scale-up if more computational
power or storage are needed. MongoDB Atlas has various APIs
for different programming languages and applications.

The main source of operational metrics offered by both Mon-
goDB and MongoDB Atlas is via calling MongoDB serverSta-
tus command. The MongoDB metrics can be queried frequently,
but these deal only with internal properties, and do not report on
hardware/OS/network aspects. MongoDB Atlas provides extra
sources of operational metrics through MongoDB Atlas web API.
This supplies some hardware metrics. However, those metrics
only update once per minute, and can only be queried at a limited
rate (100 requests per minute per project).

2.2 Read Preference
The Read Preference setting on read operations determines where
they will be sent by MongoDB clients [24]. Read Preference op-
tions include primary (default), primaryPreferred, sec-
ondary, secondaryPreferred, and nearest. If the Read
Preference primary, or secondary, is selected, then the read-
ing request is directed to the primary copy, or to one of the
secondary copies, respectively. Note that in MongoDB the users
can not specify which of the secondary copies a read request
will be sent to. PrimaryPreferred and secondaryPre-
ferred provide users the option that in most cases the reads
are sent to the primary or the secondary copies. However, in the
situations where the preferred copy is not available, the reads
are routed to the other option. When Read Preference near-
est is chosen, the reading requests are directed to the nearest
copy to the client based on client-measured network latency. The
MongoDB client libraries periodically check which node is near-
est. In our research, we use options primary and secondary to
balance the workload among all MongoDB nodes.

When requesting a read on secondary copies, the clients can
include a maxStalenessSeconds value to specify the maxi-
mum data staleness the client is happy to accept [25]. However,
the maxStalenessSeconds value must be set to 90 seconds
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or larger. As we will show later, Decongestant is able to bound
the data staleness to substantially lower levels (eg 10 seconds).

The client driver randomly chooses a secondary copy to route
a secondary read, as long as the latency between the secondary
nodes do not differ by more than 15 milliseconds [28]. In our
experiments, all secondary reads are directed to one secondary
copy randomly.

There is another tuning knob in MongoDB called Read Con-
cern which determines the durability, consistency, and isolation
properties of the data read from MongoDB [23]. We use local
Read Concern, which is the default setting, in all our experiments.

2.3 Data staleness in MongoDB
Let’s first look at how MongoDB performs a write operation.
When a write request reaches the primary copy of MongoDB,
there will be an atomic transaction issued doing two things:
1) applying the database operation to the primary; 2) record-
ing operations on the primary’s operation log (called oplog).
Once that transaction commits on the primary (and after wait-
ing for any other transactions with earlier oplog entries to
also commit), the oplog entry is visible to secondaries, and
it will then be pulled by the secondaries and written to their
oplog. After that the secondaries will apply the operations.
Each node records the timestamp of the latest oplog applied
(called lastAppliedOpTime). The lastAppliedOpTime
of each node are known by all others.

By calculating the difference between the lastAppliedOp-
Time of a secondary node and the lastAppliedOpTime of
the primary node, we can estimate the data staleness of the sec-
ondary node. Since the lastAppliedOpTime of one node is
known by all other nodes, the comparison can take place at any
of the MongoDB copies. This information can be provided to a
client in the serverStatus command.

There is a potential source of error here. ThelastAppliedOp-
Time for a secondary copy as recorded on the primary copy,
might be earlier than the truth. This is because that the latest
lastAppliedOpTime of the secondary copies might not yet
have been transmitted to the primary copy. So the data staleness
of the secondary, when calculated using statistics reported by
the primary copy, might be larger than reality. Similarly, the
lastAppliedOpTime of the primary copy as known on some
secondary copy may be earlier than the current truth. So data
staleness as calculated from the status at a secondary node can
be smaller than reality. In Decongestant, we use the server-
Status information from the primary for this calculation, to be
conservative in enforcing a client-requested limit on staleness.

3 DESIGN OF DECONGESTANT
In this section, we describe the design of Decongestant, an au-
tomated system to direct the reads dynamically for MongoDB
during run-time of the application.

Our design needs to overcome some challenges. The foremost
challenge is to have a single mechanism that can detect a vari-
ety of congestion situations. The bottleneck resource of a node
of MongoDB, when it saturates, varies with different DBMS’s
hardware, configurations, and workload. It may be CPU usage,
memory usage, even having a large number of Write Ahead
Logs (WAL) waiting to be flushed to the disk. We also need a
mechanism to detect when a secondary is too stale to be usable,
considering the client’s freshness requirement. An important
challenge is that our mechanisms need to use only information

Figure 1: A simplified architecture of Decongestant

readily available to the consumers of the MongoDB, as we do
not do any modification of the server. On the client-side, we
can observe requests and responses for the operations submitted
to the service, and we also have some limited access to server
information through available status reports (but this is much
less detailed than what a server-side design could exploit).

In this section, we first present an overview of Decongestant
and we briefly introduce the decision-making component of the
system, called Read Balancer. Then, we describe how the client
application works in Decongestant. After that, we depict how
Read Balancer does its job. Finally, we discuss some of the design
details and considerations of Decongestant.

3.1 System Architecture
Figure 1 shows a simplified architecture of Decongestant. A com-
ponent called Read Balancer resides on each client system where
(maybe multiple) client applications are executing. The Read Bal-
ancer decides the percentage of read operations to be sent to
the secondary copies. This percentage is to be chosen so as to
improve the overall performance, by redirecting reads when one
of the servers is congested, but not using secondaries at all if their
data would be too stale to meet the client’s specified demand for
data freshness. The Read Balancer communicates with the clients
via a few shared variables:

• The latest decision for each client on what percentage
of the read-only transaction should be directed to the
secondary copies, called Balance Fraction. The range of
the Balance Fraction is between 10% to 90%, inclusive;
or 0%. Balance Fraction is set to 0 when Decongestant
estimates some secondary’s data staleness exceeds the
client’s limit, so they will stop sending any read requests
to the secondaries till this is remedied. The clients can
express that they are not willing to accept any stale data,
by setting the data staleness limit to 0.
• Two lists which keep track of client-observed transaction
latencies (for reads that were sent to Primary and to Sec-
ondaries, respectively).
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3.2 How do the client applications work in
Decongestant?

In Decongestant, a client is expected to cooperate with the Read
Balancer, as follows. Before invoking any read-only transaction
call, the client first examines the most recent decision on the
Balance Fraction from the Read Balancer. Then the client should
flip a biased coin, and with a probability equal to the Balance
Fraction, the call should to be directed the secondary copies of
MongoDB. The clients keep track of the latency of their read-only
transactions, and report them to the Read Balancer through one
of the shared queues (depending on which Read Preference was
actually used in the call).

3.3 How does the Read Balancer work?
In this section, we show how the Read Balancer acts. We first
provide a high level overview of the Read Balancer and how it
changes the Balance Fraction. Then, we discuss some technical
details and considerations. Algorithm 1 shows the pseudo code
for Read Balancer.

The Read Balancer periodically updates suggestions on the
Balance Fraction, i.e. the percentage of read-only transactions
that should go to the secondary copies. On system start up, the
Read Balancer initializes the Balance Fraction as 10%. The Balance
Fraction will be updated periodically (every 10 seconds in our
implementation). We keep the Balance Fraction so it is never 0,
except when this is needed because a secondary is too stale to use
given the client-defined limit, or when the clients are not willing
to accept any stale data. Similarly, Balance Fraction is never 100%.
The reason to exclude the extreme values is to ensure that some
reads are regularly using each server, so that the system has
up-to-date data on the situation of the servers.

Within each period (when there is no need for the Read Bal-
ancer to recalculate its recommended fraction), the Read Balancer
pings all nodes of the MongoDB cluster regularly, in order to
record the Round Trip Time (RTT) between the client system
and each node. In addition, the Read Balancer queries the pri-
mary node of the MongoDB replica set once per second, using
the serverStatus command to get the latest data staleness
estimation of each secondary node. Whenever the data stale-
ness estimation on any secondary node exceeds the maximum
data staleness the clients are willing to except, the recommended
Balance Fraction will become 0, and so all read requests will
be directed to the primary, until the data staleness situation on
secondary nodes improves. (See detailed discussions in section 4.)

By the end of each period, the Read Balancer retrieves, from
the shared lists, the recorded latencies of those read-only trans-
actions that were sent to the primary during the period, and it
calculates the median ("P50") value of these latencies; similarly
it takes the list of latencies for read-only transactions sent to
the secondaries, and determines the median of those. The Read
Balancer then calculates a value called Server-Side Latency, for
the reads on primary and secondaries, respectively. Server-Side
Latency for a corresponding Read Preference option equals the
median ("P50") latency of the read requests with that Read Pref-
erence option minus the median ("P50") Round Trip Time (RTT)
of all MongoDB nodes corresponding to that the Read Preference
option. See subsubsection 3.3.1 for details. These numbers act
as estimates for the delay experienced by operations as they are
performed on the server, including time spent within executing
the MongoDB instance and also delays in the operating system
or disk. The intuition here is that when a node is congested, this

Algorithm 1: Algorithm for Read Balancer
SharedVars: StaleBound - Client-set limit on data

staleness
𝐿𝑐𝑙𝑖𝑒𝑛𝑡,𝑝𝑟𝑖𝑚𝑎𝑟𝑦 - list of client-observed
latencies of primary-sent ops
𝐿𝑐𝑙𝑖𝑒𝑛𝑡,𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 - list of client-observed
latencies of secondary-sent ops
Bal - current Balance Fraction; initially
LOWBAL

PrivateVars: RecentBal - list of 4 recent periods’ Balance
Fractions; initially all LOWBAL
Staleness - array of staleness reported by
primary for each secondary
RTT - array of round-trip times to each
server

Constants: DELTA - one-period change in Balance
Fraction (10%)
LOWBAL - lowest value for non-zero
Balance Fraction (10%)
HIGHBAL - highest value for Balance
Fraction (90%)
LOWRATIO - latency ratio above which we
increase Balance Fraction (0.75)
HIGHRATIO - latency ratio below which we
decrease Balance Fraction (1.3)

1 Function Rcv-ServerStatus():
2 Update Staleness from ServerStatus
3 if (StaleBound == 0) or (max(Staleness) > StaleBound)

then
4 Bal← 0
5 else
6 Bal← RecentBal.latest()
7 end
8 end
9 Function OnPeriodEnd():
10 𝐿𝑠𝑠,𝑝𝑟𝑖𝑚𝑎𝑟𝑦 ← 𝑃50 (𝐿𝑐𝑙𝑖𝑒𝑛𝑡,𝑝𝑟𝑖𝑚𝑎𝑟𝑦) -

𝑃50 (𝑅𝑇𝑇𝑝𝑟𝑖𝑚𝑎𝑟𝑦)
11 𝐿𝑠𝑠,𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 ← 𝑃50 (𝐿𝑐𝑙𝑖𝑒𝑛𝑡,𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦) -

𝑃50 (𝑅𝑇𝑇𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦)
12 𝑅𝑎𝑡𝑖𝑜 ← 𝐿𝑠𝑠,𝑝𝑟𝑖𝑚𝑎𝑟𝑦 / 𝐿𝑠𝑠,𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦
13 if 𝑅𝑎𝑡𝑖𝑜 > HIGHRATIO then
14 𝑁𝑒𝑤𝐵𝑎𝑙 ←𝑚𝑖𝑛(RecentBal.latest() + DELTA,

HIGHBAL)
15 else if 𝑅𝑎𝑡𝑖𝑜 < LOWRATIO then
16 𝑁𝑒𝑤𝐵𝑎𝑙 ←𝑚𝑎𝑥 (RecentBal.latest() - DELTA,

LOWBAL)
17 else if All RecentBal entries are the same then
18 𝑁𝑒𝑤𝐵𝑎𝑙 ←𝑚𝑎𝑥 (RecentBal.latest() - DELTA,

LOWBAL)
19 else
20 𝑁𝑒𝑤𝐵𝑎𝑙 ← RecentBal.latest()
21 end
22 RecentBal.dequeue().enqueue(𝑁𝑒𝑤𝐵𝑎𝑙)
23 if (StaleBound == 0) or (max(Staleness) > StaleBound)

then
24 Bal← 0
25 else
26 Bal← RecentBal.latest()
27 end
28 end
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figure will increase, no matter whether the bottleneck resource
is in MongoDB or elsewhere on the server.

The Read Balancer uses the ratio of the Server-Side Latency
of reads on the primary, to the Server-Side Latency of reads on
the secondary. To achieve the maximum performance possible
of the MongoDB Cluster, all the nodes in the cluster should
do the heavy-lifting together, sharing the work. This means,
ideally, the ratio should be close to 1. If the ratio is much larger
than 1, it means the primary copy is congested compared to the
secondary copies. In this case, the Read Balancer increases the
Balance Fraction for the next period, directing more reads to
the secondary nodes. On the other hand, if the ratio of Server-
Side Latency is much less than 1, indicating that the secondary
nodes are congested more than the primary nodes, then the Read
Balancer would decrease the Balance Fraction, sending less reads
to the secondary copies in the next period. If the ratio is close
to 1 and it has been close to 1 for quite a while, Read Balancer
would also decrease the Balance Fraction to explore "downward".
This is to make sure the reads go to the primary node as much
as possible, in order to improve the data freshness and avoid
potential stale reads [26]. Unlike our previous work [21], the
Read Balancer does not look for one "correct" Read Preference in
each period. Instead, it tries to balance the workload among all
the nodes to achieve the best performance possible.

3.3.1 Server-Side Latency. As discussed before, the Read Bal-
ancer utilises Server-Side Latency to make decisions. Server-Side
Latency of a Read Preference option is found as follows: we take
the median latency of all read-only invocations with that Read
Preference as observed on the client side in the previous period,
minus the median Round Trip Time (RTT) of all MongoDB nodes
corresponding to that Read Preference choice.

𝐿𝑠𝑠 = 𝑃50 (𝐿𝑐𝑙𝑖𝑒𝑛𝑡 ) − 𝑃50 (𝑅𝑇𝑇 )
In MongoDB, all nodes are spread across different availability

zones within a region as much as possible, when deployed in
a public cloud. The Round Trip Time (RTT) between a certain
client and nodes in different availability zone varies. Although
the difference is usually less than 2 milliseconds, it is enough to
impact the latency observed on the client side for those work-
loads with light read-only transactions, such as YCSB, where the
latencies themselves are sometimes only 1 to 2 milliseconds.

3.3.2 Bounded Data Staleness. The Read Balancer also talks
to the primary node of the MongoDB replica set several times
each period, to call serverStatus at the primary. It uses this
information as described in subsection 2.3 to conservatively esti-
mate the data staleness of each secondary node.

The clients can tell the Read Balancer the maximum data
staleness they are happy to accept. As we have explained before,
the MongoDB clients can only choose to read from either the
primary node or from any secondary node, they can not specify
which secondary node they would like the read requests to be
sent to. So, as long as the Read Balancer finds the estimated data
staleness of any secondary node is larger than the threshold
set by the clients, the Read Balancer immediately notifies every
client, that all future read requests should only be sent to the
primary copy - the Balance Fraction is set to be zero. The Read
Balancer resumes a non-zero Balance Fraction once themaximum
estimated data staleness of the secondary copies drops below the
threshold set by the clients.

One concern may be raised here. The Read Balancer restarts
sending read requests to the secondary nodes once the maximum

data staleness of all secondary nodes drops below the threshold.
Would that extra work cause the data staleness to quickly go
beyond the limit again? We had the same concern. Our empirical
study shows that in MongoDB, data staleness increases gradually
on the secondaries, but when it goes down, it drops swiftly, to
nearly zero. The high-level idea is that the gradually increasing
data staleness is caused by a congested primary node, which is
too busy processing data requests so it is not able to provide the
oplog to the secondary copies. But once the oplog is sent, the
secondary nodes catch up quickly. See Section 4.5.

The data staleness for secondaries which is estimated by this
method may be larger than what a client actually observes. As
well as the possible overestimate from the primary copy not yet
knowing very recent activity updating the secondary, there is
also the possibility that there are oplog entries not yet applied
to the secondary copies but these might not modify the particular
data the MongoDB client queries. We are conservative, and avoid
using a secondary if our (perhaps over-) estimate breaches the
client-set limit on staleness. Section 4.5 reports experiments to
check the alignment between the data staleness estimate used in
our decision, and measurements in a targeted S-workload that
observes latency at clients.

4 EVALUATION
In the following, we present an evaluation of Decongestant. We
first introduce the methodology and settings we use in Section 4.1.
We then demonstrate Decongestant’s ability to detect and adapt
to variation of workloads in Section 4.2. We explore Deconges-
tant’s ability of balancing the load among all MongoDB nodes
to achieve better performance than using current practice in a
read-intensive workload (Section 4.3), and Decongestant’s capa-
bility of trading data freshness for performance in the workloads
with a mixture of reads and writes (Section 4.4). Section 4.5 cov-
ers Decongestant’s competence of bounding the data staleness.
Finally, we show that running S workload concurrently has low
impact on performance measurements of standard workloads, in
Section 4.6.

4.1 Method
4.1.1 Platform. The experiments are executed on AWS. The

MongoDB clients are on an AWS c4.4xlarge instance (16 vCPUs
and 30 GB RAM), located in the region ap-southeast-2.

We deploy our own MongoDB cluster on AWS, in order to
maintain consistent results independent of infrastructure and
software version changes that are out of our control in MongoDB
Atlas. We replicate the configurations from MongoDB Atlas in
June 2020. The MongoDB version is 4.2.6. A 3-node MongoDB
cluster is deployed on 3 AWS r4.2xlarge instances, which has 8
vCPUs and 61 GB RAM, located in the same region as the clients
but different Availability Zones: ap-southeast-2a, ap-southeast-
2b, and ap-southeast-2c, respectively.

4.1.2 Decongestant settings. In all following experiments, De-
congestant considers the ratio of Server-Side Latency of the reads
on the primary to the Server-Side Latency of the reads on the
secondaries as being normal when the value ranges from 0.75 to
1.30. When the ratio is greater than 1.30, Decongestant considers
that the primary is congested, and thus it increases the percent-
age of reads sent to the secondaries in the next period by 10%. A
ratio less than 0.75 leads Decongestant to send 10% fewer reads
to the secondary nodes in the next period, as it shows that the
secondaries are more congested. Balance Fraction starts at 10%
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Table 1: Percentage of transactions in the original TPC-C
workload versus the read-write TPC-C workload used in
the experiments.

TPC-C Read-Write TPC-C

Stock Level 4% 50%
Delivery 4% 4%

Order Status 4% 4%
Payment 43% 20%
New Order 45% 22%

and is capped at 90%. Decongestant revisits the Balance Fraction
decision every 10 seconds. In our experiments, unless stated ex-
plicitly, the maximum data staleness the clients are willing to
accept is set to be 10 seconds.

Read Balancer keeps the four previous records of the Balance
Fraction. If they remains the same, Read Balancer pushes down
the Balance Fraction by 10% in the next round.

4.1.3 Baselines. As well as showing the performance of our
prototype system Decongestant, we also look at two baselines
corresponding to current practice. In these, the clients run against
MongoDB, without any Read Balancer installed, or any of the
possible overheads of communicating with it; in the baseline
Primary, each read is hard-coded with Read Preference set to
primary. In baseline Secondary, each read is hard-coded with
Read Preference as secondary.

4.1.4 Workloads. Two different sets of transactions are used
here to evaluate the performance of Decongestant. We use YCSB
[12] with varying read-write percentage: YCSB-A (50% reads
and 50% writes) and YCSB-B (95% reads and 5% writes). YCSB
represents a light-weight workload, with simple get and put
operations. As a more demanding workload, we also use a variant
of TPC-C (we call it read-write TPC-C). This uses the transactions
from TPC-C, but unlike write-heavy traditional TPC-C, we aim
here for a balance between read-only and update transactions. To
do so, the percentage of Stock Level transaction, which represents
a read-only transaction, is set to 50%. Table 1 shows the detailed
breakdown of the read-write TPC-C workload as compared to
standard TPC-C. The TPC-C queries are implemented by Kamsky
[29] who has adapted the TPC-C benchmark to the MongoDB
query language and transaction semantics, as well as adapting it
to MongoDB’s best practices.

4.1.5 S workload to monitor data staleness. In order to check
whether Decongestant keeps themaximumdata staleness promise,
we need amethod to sample the data staleness from the client side.
While Decongestant uses estimates for staleness based on Mon-
goDB’s internal information on the status of oplog application,
we want to validate our system’s success using real measure-
ments. So, we propose S workload (S stands for staleness). The S
workload could be run standalone, but, in all our experiments2,
we generate this S workload alongside the main performance-
focused OLTP workloads, such as YCSB, TPC-C.

The high-level idea of S workload is similar to our previous
work [20, 40]. The S workload includes two workers (each worker
can be implemented as a separate process or a thread): one writer
and one reader. The job of the writer is to keep writing the current
timestamp to a dedicated item in the database at a high frequency.

2except in one experiment of Section 4.6.

It is not necessarily to write as fast as possible, but it should work
at least as fast as the reader does.

Periodically, the reader probes the contents from the various
copies of the dedicated cell. In each probe, the reader sends out
two read requests: one with the Read Preference Primary and the
other with the Read Preference Secondary. The reader records
the results. Then, in the analysis phase (after the experiment),
we can determine the freshness of the data returned from the
secondary reads by comparing the results between the primary
read and the secondary read. A slight variation is done at times
when the main application is not using the secondaries at all (and
so clients will see no staleness at these times): the second read in
each probe of S workload can be simply directed to the primary
copy again.

The staleness monitoring approach used by S workload is a bit
different from the one used by [20, 40]. In those prior works, the
reader only sends one read request in each probe, with the Read
Preference Secondary; during the analysis phase, the timestamp
when the read is sent and the read value are compared, to deter-
mine the staleness gap. The assumption in their approach was
that the timestamp in the dedicated cell in the object database
keeps advancing smoothly. This assumption doesn’t always hold
when monitoring is run together with another existing OLTP
workload. There are times when a write takes a long time to
finish, causing the value in the dedicated cell of the primary
copy to be unchanged for a while. By definition, the value in the
primary copy is fresh. However, the timestamp when the read
request is sent keeps going forward as the S-reads are generated
continuously. So, if the approach described in [20, 40] is used,
fake staleness might be reported.

Note that the data stalenessmeasured by this Sworkloadmight
be larger than the data staleness seen by any given application
client, as S workload frequently updates the item being read,
while some application read may be on slowly-changing data,
where the returned value is correct even if the secondary is far
behind in applying the oplog. Still, if we succeed in bounding
staleness seen in S reads, we can be sure that any other application
also has data that is at least this fresh.

4.1.6 Measurements. The experiments have two distinct styles.
In some, we report on the time-varying properties through a run
of a system when a workload is applied (perhaps the workload
changes at specific points during the run). In those experiments,
we report for each separate 10 second period on throughput of
appropriate transactions during the period, 𝑃80 latency (that is,
the time within which were completed 80% of reads of the period),
the percentage of reads that were sent with Read Preference Sec-
ondary during the period, and sometimes data staleness, either
as measured by S workload, or as estimated conservatively us-
ing reports from the primary of the max difference between any
secondary’s lastAppliedOpTime and that of the primary.
Although Server-Side Latency is used by Read Balancer to make
decisions, all latency reported in the following figures are end-to-
end latency observed by the clients. Measuring the actual percent
of reads sent to the secondary copies is done by counting the read
operations which were sent to the primary copy and those sent
to secondary nodes; we do not simply echo what Decongestant
suggests through Balance Fraction.

Other experiments give a single data point for overall per-
formance (throughput, latency or staleness) for runs in some
situation, typically shown in a figure where some important pa-
rameter of the workload (eg number of clients) varies along the
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x-axis. In these experiments, except where stated explicitly, each
data point is taken from the average over 3 runs; in each run,
measurements exclude the first 100 seconds, which is treated as
a warm-up period.

4.2 Adapting to dynamic workload
We first claim that Decongestant is able to adapt well to variation
of workloads. We compare it to the outcomes for the two baseline
systems, where all reads have hard-coded read preference setting,
so either all go to the primary, or all to the secondaries.

Figure 2 shows the throughput of read operations, 80-percentile
latency (end-to-end) of read operations, and the actual percent-
age of reads which are sent to the secondary copies, during a run
with a dynamically-changing workload. The workload in this
run starts with YCSB-A (50% reads) with 180 clients, and swaps
to YCSB-B (95% reads) at the 620th second. S workload is run-
ning as well, throughout. For the first 90 seconds, Decongestant
warms up shifting from its initial setting with 10% of reads on
secondaries, over time sending more and more read operations to
the secondaries (Figure 2 (c)), until the highest amount we allow
(90%) of the reads are secondary ones. During this period, the
throughput increases (Figure 2 (a)) and the 80-percentile latency
drops (Figure 2 (b)). From the 90th second to the 620th second,
the percentage of reads sent to the secondary copies stabilises at
90%. This is the same performance we achieved in previous work
[21]. At the 620th second, the workload shifts from YCSB-A (50%
reads) to a read-dominated YCSB-B (95% reads). Decongestant
quickly responds by sending less reads to the secondary. The
percentage of reads routed to the secondary nodes stables at 70%
under this workload. The intuition is that the primary node deals
with 5% writes and a bit less than 1/3 of reads, and two secondary
nodes process between them a bit more than 2/3 of the reads.
Recall that our MongoDB cluster is a three-node cluster with
the same capacity in each node. This shows that Decongestant
successfully balances the read load proportionally to the capacity
behind each Read Preference option. As a result, the throughput
(Figure 2 (a)) of the read operations is higher than either baseline
(only sending read requests to the primary or secondaries); and
the 80-percentile (Figure 2 (b)) latency is better than baselines.

Once the system has adjusted to the changed workload, the
ratio of Server-Side Latency of the reads on the primary to the
Server-Side Latency of the reads on the secondaries remains
between 0.75 to 1.30. During this period, Read Balancer tries to
push more reads to the primary on every fifth period. But as the
Read Balancer finds it does not work well, the Read Balancer
bring the Balance Fraction back to 70%.

Figure 3 is another example showing that Decongestant suc-
cessfully notices and adjusts to the workload shifts; here both
read-intensity and total load change. At the beginning the work-
load is YCSB-B (95% reads) with 180 clients. Then, after 230
seconds, it shifts to YCSB-A with 20 clients. On system start
up, Decongestant increases the percentage of reads sent to the
secondaries (Figure 3 (c)). The percentage soon reaches an opti-
mised state at 70%. During this period, the throughput of read
operations in Decongestant is higher (Figure 3 (a)) and the 80-
percentile latency of those reads (Figure 3 (b)) is lower than when
the Read Preference is hard-coded as Primary or Secondary. At
the 230th second, the workload switches to YCSB-A (50% reads)
with 20 clients. Decongestant quickly decreases the percentage
of reads sent to the secondary, as the primary can now handle
all the load. The allocation becomes stable at the minimum we

allow (10%), to make sure Read Balancer keeps getting enough
recent information on the state of the secondaries, so we will
detect future congestion if it were to happen.

Figure 4 shows the performance of Decongestant with the dy-
namic read-write TPC-C workload. Unlike previous experiments
on YCSB, the throughput and 80-percentile latency (end-to-end)
here are reported for each 1 minute interval, and the actual per-
centage of secondary Stock Level transactions are recorded every
10 seconds. The workload starts with 20 clients, and then at the
5th minutes the client number increases to 200. After 5 more
minutes, it goes down to 20 clients. Figure 4 (c) shows the ac-
tual percentage of secondary Stock Level transactions. It starts
at around 10%. From the 5th minute, Read Balancer is able to
notice the high contention environment, and quickly pushes up
the percentage of secondary Stock Level transactions. This soon
brings the throughput (Figure 4 (a)) and 80-percentile latency
(Figure 4 (b)) of Decongestant to a level similar to the situation
where the Read Preference is "hard-coded" as Secondary. During
the 5th minute to the 10th minute, there are a few downward
spikes in the actual percentage of secondary Stock Level trans-
actions. They are caused when the maximum data staleness on
the secondary copies exceeds the clients’ threshold, which is 10
seconds; this is detected by Read Balancer, so we stop sending
Stock Level transactions to the Secondary copies. The measured
percentage is not 0, as the staleness check is run once per second,
while the percentage reported here is taken over 10 seconds. The
pink vertical lines in the figure shows the seconds where all reads
are directed to the primary, due to exceeding data staleness. After
the 10th minute, the number of clients drops to 20. Read Balancer
gradually brings back most of the Stock Level transactions to the
now-uncongested primary node, to provide lower staleness.

4.3 Achieving better performance by sharing
load in read intensive workloads

In this section, we show how Decongestant’s capability of bal-
ancing the read load among all the nodes of MongoDB cluster,
achieves a better peak performance for read-intensive workloads,
compared to hard-coding Read Preference as either Primary or
Secondary. Each hard-code approach leaves some node under-
loaded. Decongestant does not try to specially identify whether
the workload is read intensive; instead, the exact same approach
is used throughout. Each data point in a plot is the average over
three runs, excluding the warm-up period.

Figure 5 shows the throughput of reads, 80-percentile latency
(end-to-end) of reads, and the actual percentage of reads sent
to the secondary copies, plotted against number of clients, in
YCSB-B (95% reads). We first discuss the actual percentage of
reads sent to the secondary copies (Figure 5 (c)) over a varying
number of clients. We can see with a low load of between 10 to
50 clients, Decongestant sends most read requests to the primary
node. Decongestant sends more reads to the secondary copies,
with the percentage growing corresponding to client number, in
the range between 50 to 100 clients. The percentage of secondary
reads is roughly stable at around 70% when the number of clients
ranges from 120 to 200. This means, in a MongoDB cluster with
3 nodes of the same capacity, the primary nodes deals with 5%
write operations and around 30% read operations; while the two
secondary nodes between them process 70% read requests. This
shows that all three nodes do the heavy-lifting together.

When the client number is between 120 to 200, all three nodes
work together, instead of the primary node or the secondary
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Figure 2: Decongestant’s ability to respond to sudden increase of the read-write ratio in YCSB. The plots show the through-
put of read operations, 80-percentile latency (end-to-end) of read operations, and the actual percentage of reads sent to
the secondary copies, in a dynamic workload. The dynamic workload starts with YCSB-A (50% reads) with 180 clients, and
swaps to YCSB-B (95% reads) at the 620th second. The vertical dotted line shows the time when the variation happens.

Figure 3: Decongestant’s ability to respond to sudden decrease of both the read-write ratio and the number of clients, at
the same time, in YCSB. The plots show the throughput of reads, 80-percentile latency (end-to-end) of reads, and the actual
percentage of reads sent to the secondary copies, in a dynamic workload. The dynamic workload starts with YCSB-B (95%
reads) with 180 clients, and swaps to YCSB-A (50% reads) with 20 clients at the 230th second (indicated by the vertical dotted
line).

Figure 4: Decongestant’s response to variations of client number in read-write TPC-C. The client number starts at 20. It
bursts to 200 clients at the 5th minute. The client number drops back to 20 at the 10th minute. The black vertical dotted
lines show the times when the variations of the client number happen. The plots display the throughput of Stock Level
transactions, their 80-percentile latency (end-to-end), and the actual percentage of Stock Level transactions sent to the
secondary copies. The throughput and the 80-percentile latency (end-to-end) are reported on per-minute bases, while the
actual percentage of secondary Stock Level transactions are recorded once per 10 seconds. The pink vertical dotted line
shows the seconds where all reads are directed to the primary, due to exceeding data staleness.

nodes only, so it is not surprising that Decongestant is able to
achieve a throughput (Figure 5 (a)) that is around 30% higher
than only routing the read requests to the secondary copies, and
around 2.5 times than only sending read operations to the primary
node. We also see that the 80-percentile latency for Decongestant
is lower that the two hard-coded systems when the load is high.

We do not plot data staleness for YCSB-B (95% reads) here.
The 80-percentile data staleness, measured both by S workload
and Decongestant, for YCSB-B are constantly zero in all our
experiments. This situation is not very surprising, as there are
only 5% of writes in the workload. There are occasionally one

or two data staleness values observed to be one second by the S
workload, when the Read Preference is "hard-coded" as Secondary.
Since the granularity for the data staleness is one second, we do
not feel it is very meaningful.

4.4 Trading data freshness for performance
In this section, we show that Decongestant is able to trade data
freshness for performance when needed in the workloads with a
mixture of reads and writes. Again, we point out that Deconges-
tant never tries to identify whether a workload has a mixture of
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Figure 5: Performance trends with increasing client count. The plots show the throughput of reads, their 80-percentile
latency (end-to-end), and actual percentage of reads sent to the secondary copies, against the number of clients in YCSB-B
(95% reads).

Figure 6: Performance and 80-percentile data staleness
trade-off in YCSB-A for read operations. (a) shows the
trade-off between the throughput and the 80-percentile
data staleness of the read requests. The number above the
marks and the size of them indicates the number of clients.
The upper left corner is the desired area for Decongestant,
with large throughput and small data staleness. (b) shows
the trade-off between 80-percentile latency (end-to-end)
and 80-percentile data staleness for read operations. The
lower left corner is the target zone for Decongestant, with
small latency and data staleness.

reads and writes or it is a read-intensive one: the same method
works for either scenario. The experiments in this section are
each run three times for each setting, and the average value is
taken and shown as a point in the charts.

Figure 6 shows the performance and the data staleness trade-
off for YCSB-A (50% reads). To avoid the figures being too clut-
tered, we only include 3 groups of data points here. The number
above the marks and the size of them indicates the number of

clients. Three client numbers are chosen: 20, 100, and 180, repre-
senting light, medium, and heavy load, respectively. Figure 6 (a)
demonstrates the trade-off between the throughput of reads and
the 80-percentile data staleness of them. The upper left corner
is the desired zone in Figure 6 (a), with small data staleness and
large throughput. When the load is low (20 clients), the data
points for the three situations, whether always directed to either
the primary or secondary nodes or with Decongestant, are close.
When the load is medium (100 clients) and large (180 clients), De-
congestant is able to push the data point close to the desired zone
while the baselines are far away (Primary having low throughput,
and Secondary seeing high staleness).

Similar conclusions can be reached for the trade-off between
latency and data staleness from Figure 6 (b). The lower left corner
is now the ideal area, as it shows small values in both latency
and data staleness. The advantage of using Decongestant is clear,
offering a sweet spot in terms of 80-percentile latency and 80-
percentile staleness.

Figure 7 shows the performance and the data staleness trade-
off in a read-write TPC-C workload (50% reads). Figure 7 (a)
reports the trade-off between the throughput of the Stock Level
transaction and the data staleness, where the upper left corner
is desirable. Figure 7 (b) depicts the trade-off between latency of
Stock Level transactions and data staleness, where the lower left
corner is the target. Decongestant is able to push the data points
toward the desired zone.

4.5 Bounding data staleness
In this section, we discuss the data staleness issue. We make two
claims here:
• Decongestant’s estimation of data staleness, fromserver-

Status reports, closely aligns with the data staleness
seen by the clients.
• When the maximum data staleness of a secondaries copy
exceeds the threshold set by the clients, the clients of
Decongestant will not see this.

The largest data staleness the clients are willing to accept is
set to 10 seconds, and we measure the staleness seen by clients,
with S workload from Section 4.1.5.

Figure 8 compares the data staleness from serverStatus
to the one seen by the clients, against time elapsed. The work-
load is one run of YCSB-A together with S workload, with. 100
clients. This figure shows that maximal data staleness known by
the Decongestant via MongoDB serverStatus (and used by
Decongestant to detect cases where excessive staleness means
that reads should avoid the secondary nodes), aligns quite well
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Figure 7: Performance and 80-percentile data staleness
trade-off for Stock Level transacts with read-write TPC-C.
(a) shows the trade-off between throughput of Stock Level
transacts and 80-percentile data staleness. The number
above the marks and the size indicates the number of
clients. The upper left corner is the desired area for Decon-
gestant with both large throughput and small data stale-
ness. (b) shows the trade-off between 80-percentile latency
(end-to-end) of Stock Level transactions, and 80-percentile
data staleness. The lower left corner is the target zone for
Decongestant with both small latency and data staleness.

with the data staleness seen by the clients. In some cases, we
can see that the data staleness estimated by the Decongestant
is larger than the ones seen by the clients. This is acceptable, as
the Decongestant records the maximum data staleness among all
secondaries, while the S workload measures the data staleness
on an arbitrary secondary node.

Figure 9 shows that when data staleness of a secondary copy
exceeds the threshold set by the clients, the clients of Decon-
gestant will not see this: Decongestant reacts in time and sends
their reads to the primary. The workload used here is read-write
TPC-C with S workload, on 60 clients. The blue horizontal dashed
line shows the data staleness limit set by the clients, which is 10
seconds. The red squares in the figure depict the maximum data
staleness of the secondaries, which sometimes goes beyond the
threshold. However, the Decongestant clients are protected from
this — all green circles are below their data staleness limit.

We have done a more detailed analysis on the MongoDB inter-
nal diagnostic data, trying to understand what happens behind
this data staleness pattern (Figure 9). The high-level idea is that
when the primary is overloaded, the secondaries trying to read
the oplog from the primary can stall. That is, a secondary has a
cursor open on the primary’s oplog and calls the "getMore" oper-
ation. When the primary is overloaded, it can take a long time to

Figure 8: The maximum data staleness of the secondaries
estimated by the Decongestant versus the one seen by the
clients, against time elapsed. The workload is YCSB-A to-
gether run with S workload, from 100 clients. The data
staleness estimated by Decongestant is good as long as it
is not smaller than the one seen by the clients.

Figure 9: Data staleness measured by S workload versus
the max data staleness of the secondaries in Deconges-
tant, with the data staleness limit set to be 10 seconds. The
workload used here is read-write TPC-C with 60 clients.

service this operation, and during that time, the secondary can’t
move forward because it does not know about the newer opera-
tions (i.e., it gets more and more stale). Eventually the primary
gets around to servicing the "getMore" request and sends a large
batch of operations to the secondary. Since the secondary isn’t
overloaded, it can apply the operations quickly and catch up.

Now we discuss how the primary is stalled. During this period,
several checkpoints completed on the primary and the disk of it
was 100% utilised. The checkpoints took a long time to complete
(around 30 seconds on average). During that time the latency
grows. MongoDB had noticed the lag and was deliberately throt-
tling update operations via a mechanism called "flow control"
[27]. This might be part of the reason for the throughput of read-
write TPC-C workload being unstable (Figure 4 (a)). Once the
flush completes, the primary comes back to life and serves a batch
of "getMore" operations quickly.

Our method to bound the data staleness still works reasonably
well when the clients set the data staleness limit to a very low
value, such as 3 seconds (see Figure 10). Such a low data stale-
ness limit is challenging, as the granularity of the data staleness
reported by MongoDB serverStatus is one second. So a sys-
tem has little time to react to increasing staleness before the limit
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Figure 10: Data staleness measured by S workload in De-
congestant with the data staleness limit set to be 3 sec-
onds. The workload used here is read-write TPC-C with
200 clients.

Figure 11: Throughput of Stock Level transactions when
running the read-write TPC-C workload, with or without
S workload.

is breached. The workload used in Figure 10 is read-write TPC-C
with 200 clients. We can see, in most cases, the client-observed
data staleness are bounded as requested, though two data points
have staleness value 4 seconds.

4.6 Impact of S workload
Lastly, we claim that running Sworkload alongside a performance
benchmark (such as read-write TPC-C), causes little distortion
on the results recorded for performance. Figure 11 shows the
throughput of Stock Level transactions, when running the read-
write TPC-C workload with the S workload (as it does in our
previous experiments), compared to what is measured when
the read-write TPC workload is run alone. The Read Preference
used here is Primary. We can see that the throughput of the
performance benchmark remains at a similar level when running
with or without the S workload.

5 RELATEDWORK
Some text in this section already appeared in [21].

The trade-off between performance and consistency in dis-
tributed storage system has been studied for a very long time.
This body of work is profoundly influenced by CAP theorem [9]
and its later PACELC formulation [1].

Various storage systems offer different consistency properties.
Some make the choice for the users, such as BigTable [10] and
Spanner [13], which guarantee some form of strong consistency.
Others give users some freedom to make their own decisions,
including Amazon Dynamo [16], Cassandra [30], as well as Mon-
goDB. There is also a trend that Database-as-a-Service is hosted
on top of shared-disks systems (usually provided by large cloud
computing vendors), such as Amazon Aurora [39] and Microsoft
Socrates [3], whose features usually impact on the exposed con-
sistency characteristics of these Database-as-a-Service.

There is a huge amount of work evaluating the behaviour of
distributed storage systems, in order to help users make more
informed choices. Wada et al and Bermbach et al benchmark a
large variety of distributed storage systems from the customers’
view [5–8, 40]. These works treat the distributed storage system
as a black-box, and send read and write requests to it, just like nor-
mal customers would do. Our previous work [20] measured the
inconsistency window between the primary copy and secondary
copies of MongoDB Atlas at around 25 ms.

There are works which, rather than comparing the read and
write results (as client-centric methods do), capture the trace
of operations on various entities (chosen by the user), and then
post-execution analysis determines whether an equivalent serial
execution would give the same result in each read; if not an
anomaly is reported [2, 17, 31].

Trading performance for data freshness for read-only transac-
tions / queries has been explored [11, 18, 33]. For example [33]
applied this idea to mix OLAP and OLTP workloads in a data-
base cluster providing freshness guarantees, though requiring
a central coordinator which sees all transactions. In contrast,
our proposed Decongestant is decentralised, which can be used
both by on-premises and cloud users, and can deduce overload
situations by probing rather than seeing the complete workload.

Pileus is a self-configuring system based on a Service Level
Agreement (SLA) [36]. Within one SLA, there are a few sub-
SLAs. Each subSLA includes a consistency requirement, a latency
bound, and a utility score. Similar to our work, Pileus has "moni-
tors" residing on the client nodes (each client has one monitor),
and these probe periodically to decide which node a reading
request should be directed to, so that the highest utility score
among all subSLAs is achieved. Tuba [4] is an extension for
Pileus. Tuba is a DBMS which is able to reconfigure itself, based
on the observed latency and subSLA hit and miss ratio from
all clients. Possible reconfiguration includes: changing primary
replica, adding or removing secondaries, and varying synchro-
nization periods between the primary and secondary copies.

Some recent work for self-configuring database applies ma-
chine learning technologies. There are automated systems able
to tune large number of database knobs [38], adding and deleting
indices [14], forecasting workloads [32], scaling resources [15],
providing advice on partitioning [19], etc.

6 CONCLUSION
We presented the design and evaluation of Decongestant, a sys-
tem which is able to automatically and dynamically determine
Read Preference settings for read operations in MongoDB, in or-
der to get good performance while delivering fresh-enough data
to clients. Our solution works for both on-premises MongoDB
deployments and MongoDB-as-a-Service. The key innovation is
a client-based way to detect when either the primary, or one of
the secondaries, are congested, by comparing estimates of the
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time taken on the relevant server for performing recent read op-
erations. When congestion is detected through these estimates,
the system shifts reads away from the congested server; however,
this decision is also constrained by estimates of the current data
staleness on the secondaries.

This design avoids the need in current practice for application
programmers to hard-code the decision of whether reads should
go to primary or to secondaries (and thus risk seeing stale val-
ues). Instead the decision is made dynamically at run time by
Decongestant, adapting to the recent situation in the servers.

Our experimental evaluation is done with YCSB-A, YCSB-B,
and with workloads that run TPC-C transactions with a balance
between read-only and updating transactions. We showed that
Decongestant is able to adapt to workload shifts as they occur,
and that it delivers good performance that respects client-chosen
limits on data staleness. Indeed, in read-intensive workloads such
as YCSB-B, we can outperform both hard-coded alternatives.

In future work, we plan to look at more sophisticated feedback
control when adjusting read preference, and to support richer
client SLAs as well as maximum staleness. We will explore the
possibility of extending Decongestant to other database systems,
which have a leader-follower architecture similar to MongoDB.
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ABSTRACT
Many big data systems employ LSM (Log-Structured Merge)-
tree-based key-value stores, such as RocksDB and Cassandra.
LSM-tree has a multi-level data structure and can transform
random writes into sequential ones by compaction operations.
However, the compaction operations in LSM-tree introduce the
read/write amplification issue, which will increase the processing
latency and incur throughput drops. In this paper, to eliminate
the impact of compaction on the throughput stability and latency
of LSM-tree, we propose a new compaction method called DLC
(Delay Level-0 Compaction). We notice that workloads like OLTP
are periodically high. For example, an electronic business plat-
form may have high requests at noon and night but have few
requests in the early morning. When the workload becomes high,
many data will be flushed to Level-0 of LSM-tree from memory,
which will trigger frequent Level-0 compaction and lower the
system’s throughput. The main idea of DLC is to delay Level-0
compaction at a high load and resume compaction when the
system becomes low-loaded. As the low-loaded system generally
has enough free CPU cores and I/O bandwidths, performing the
delayed compaction will not affect the system’s overall perfor-
mance. Therefore, we can maintain stable throughput even when
the system is high-loaded. To implement DLC, we first define a
new I/O estimation model to characterize the workload. Then, we
determine whether to delay Level-0 compaction according to the
characteristics of the current workload. Moreover, to deal with
sustained high workloads, we invent a burst compaction strategy
to reduce throughput dropping and present two implementations
for the bursty compaction. We implemented DLC on Myrocks
and experimentally compared DLC with the original MyRocks
and a state-of-the-art scheme called SILK under various OLTP
workloads. The results show that DLC outperforms MyRocks
and SILK in both latency and throughput stability.

1 INTRODUCTION
LSM-tree (Log-Structure Merge tree)[17] has been widely used
in key-value stores, such as RocksDB and Cassandra. LSM-tree
maintains a multi-level data structure, and all data in each level
are stored using Sorted String Tables (SSTables), in which all
key-values are sorted in order. Data are flushed from memory
to the SSTables in the first level (Level-0, or L0 for simplicity)
through sequential writes. As sequential writes are much faster
than randomwrites, LSM-tree can offer highwriting performance.
However, when the SSTables in Level-0 exceeds a threshold, LSM-
tree performs a compaction operation to merge the SSTables in

© 2021 Copyright held by the owner/author(s). Published in Proceedings of the
24th International Conference on Extending Database Technology (EDBT), March
23-26, 2021, ISBN 978-3-89318-084-4 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Figure 1: Throughput drops of RocksDBwhen running on
the default OLTP workload generated by sysbench.

Level-0 with those in Level-1. If Level-1 also exceeds the thresh-
old, next compaction will also be triggered to merge SSTables
in Level-1 with those in Level-2. During a compaction process,
both CPU and the I/O bandwidth will be highly used, resulting in
the decrease of the overall throughput. To validate the influence
of the compaction in LSM-tree, we ran the default OLTP work-
load in sysbench[13] (see Section 6.1 for the detailed settings) on
RocksDB and tested the system’s throughput. As shown in Fig.
1, there are periodical throughput-drops when the system has
been running for a long time, because the system has to perform
periodical compaction to merge up-level data into low levels.

The stability of throughput is critical to many applications.
For example, an online short-video social network platform like
TikTok can not tolerate periodical high latency when playing
videos. To improve the throughput stability of LSM-tree, various
solutions [3, 6, 16, 18] have been proposed. Among them, the
state-of-the-art method is SILK [3], which won the best paper of
ATC 2019. The experimental results of SILK showed that it can
maintain stable throughput for about 2500 seconds. However,
we experimentally found that when SILK kept running for 3500
seconds, it had dramatic throughput drops and the throughput be-
came unstable. This is mainly because the compaction scheduling
in SILK can not adapt to the workload changes well.

The compaction operations in LSM-tree are known as back-
ground operations (also called internal operations), because they
are scheduled on background periodically. A compaction oper-
ation consumes a great number of I/O bandwidths because it
has to read and write a large amount of data. This is the main
reason that affects the throughput stability of LSM-tree. The key
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challenge to keep throughput stability is how to schedule com-
paction when the I/O bandwidth is used heavily. An intuitive
solution is to reserve some I/O bandwidths for compaction op-
erations, but different levels in LSM-tree have different needs of
I/O bandwidths. Therefore, it is hard to reserve appropriate I/O
bandwidths for LSM-tree to maintain throughput stability.

Basically, we can roughly divide workloads into two types,
namely write-intensive workloads and read-intensive workloads.
For write-intensive workloads, the competition for disk I/O be-
tween parallel compaction operations is the main reason causing
the instability of throughput. In such cases, write stalls may occur
and lower the throughput [16]. For this reason, most of exist-
ing studies[1, 3, 16, 18] were toward optimizing compaction for
write-intensive workloads. However, so far, there is no solution
that can offer continuously stable throughput for LSM-tree.

In this paper, we also focus on write-intensive workloads and
aim to improve the throughput stability of LSM-tree and lower
the processing latency. We propose a new compaction scheme
named DLC (Delay Level-0 Compaction). DLC aims to achieve
three goals. First, it should have a more stable throughput than
RocksDB and SILK [3] when running for a long time. Second,
it is expected to have lower latency. Third, it should adapt to
periodically varying workloads, i.e., the arriving rate of requests
is high for a period and then becomes low. The basic idea of
DLC is to delay L01 compaction at a high load and to resume L0
compaction at a load load. Thus, DLC canworkwell onworkloads
with periodically varying workloads[3]. Briefly, we make the
following contributions in this study:

(1) We propose a new I/O model to estimate the I/O band-
width of the current workload effectively and precisely.
Our I/O model is inspired by the model proposed by SILK
[3], but we devise new estimation functions. Differing
from the I/O model of SILK that simply summarizes the
data size of all read and write operations, our I/O model
introduces two new ideas. First, we remove the data size
of write operations, because LSM-tree always writes data
to in-memory Memtables, meaning that write operations
will not occupy I/O bandwidths. Thus, it is not reasonable
to include the written-data size in I/O bandwidth estima-
tion. Second, we divide read operations into Get and Scan
because these two read operations have different I/O costs
in LSM-tree. We demonstrate that our model is more accu-
rate than the SILK model and can allocate I/O bandwidths
for background compaction more effectively.

(2) Based on the proposed I/O model, we present a new com-
paction scheme called DLC that delays L0 compaction at
a high load and resumes L0 compaction at a load load. We
use the new I/O model to characterize the I/O bandwidth
need of the current workload, and determine whether the
workload is high or low. When the workload is high, we
delay L0 compaction. This differs from the compaction
schemes in RocksDB and SILK. RocksDB uses a threshold-
based compaction scheme and will trigger many com-
paction operations at a high load, leading to frequent
throughput drops. SILK also claims to delay compaction,
but it delays the bottom level2.

(3) Although DLCworks well for periodically high workloads,
the SSTables in L0 may accumulate under sustained high

1𝐿𝑖 means Level-i in this paper.
2Here, Level-0 is the top level, and Level-i with the biggest i is the bottom level.

load, leading to write stalls/stops and serious through-
put drops. Thus, we devise a bursty compaction strategy
to make DLC suitable for sustained high workloads. We
present two implementations for the bursty compaction,
namely "resume full compaction" and "resume part com-
paction". The former is to compact all the SSTables in L0,
while the latter is to compact selected part SSTables in L0.

(4) We implemented DLC inMyRocks (MySQLwith RocksDB)
and evaluated DLC using the sysbench tool. We gener-
ate various OLTP workloads, including periodically vary-
ing workloads, workloads with different read-write ratios,
workloads with a long time of a high load, and sustained
high workload. We compare DLC with MyRocks and SILK
(with the DLC I/O estimation model). The results in terms
of throughput and latency show that DLC achieves the
best throughput stability and the lowest latency in all
experiments.

The remainder of the paper is structured as follows. Section 2
introduces the background and related work. Section 3 presents
the I/O estimation model. Section 4 details the DLC strategy. Sec-
tion 5 discusses the bursty compaction policy. Section 6 reports
experimental results. And finally, in Section 7, we conclude the
paper and discuss future work.

2 BACKGROUND AND RELATEDWORK
2.1 LSM-tree
The basic client operations of LSM-tree are the same as the other
NoSQL key-value databases[14, 23], which include Insert, Delete,
Update, Get, and Scan. For convenience, we call Insert, Delete, and
Update as write operations and Get and Scan as read operations.
We take RocksDB as an example to introduce the LSM-tree struc-
ture. The RocksDB storage engine mainly consists of two part,
Memtable and Immutable Memtables in memory and SSTables
in the disk.

LSM-tree uses the Sorted String Table (SSTable) as the basic
data structure, which stores key-value pairs in the disk. SSTable
is a sorted table which mainly consists of data blocks and meta
blocks. Meta blocks store indexes about data block and Bloom
filter[5] for read. Data blocks store key-value pairs in sequence for
quickly visited by read operations. SSTables are grouped by levels.
We call the levels as L0, L1, ..., 𝐿𝑛 in short from top to bottom. We
call the levels near to the memory as up levels, e.g., L0, and the
other levels as low levels. The SSTables in L0 are mainly flushed
from Immutable Memtables in memory. The SStables in L1 and
low levels are generated by major compaction.

There is one Memtable and one or more Immutable Memtables
in memory. Memtable uses Skiplist as its structure. Skiplist is a
data structure that uses probabilistic balancing. Its algorithms
for insertion and deletion are much simpler and significantly
faster than equivalent algorithms for balanced trees[19]. We can
consider Memtable as an in-memory buffer for inserting, deleting,
and updating. When Memtable reaches its capacity threshold, it
will be transformed into Immutable Memtable, which cannot be
modified by any (write) operations, and a new Memtable will be
created for writing new key-value pairs. When a new Immutable
Memtable is created, a background thread would be scheduled to
flush the Immutable Memtable to disk as one SSTable, in which
all the flushed key-value pairs are stored. The flush operation is
also called minor compaction.
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With SSTables being accumulated in the same level and reach-
ing the threshold of the level, a major compaction will be trig-
gered (in this paper, we simply use the term "compaction" to
represent "major compaction" by default) and may schedule com-
paction for garbage collection to reduce disk usage and read
cost[9][8]. Different levels have different thresholds for com-
paction, and when the SSTables in 𝐿𝑖 or low levels reach the
threshold of the level, compactionwill be triggered. A compaction
operation fetches one SSTable in the level, which triggers the
compaction and the SSTables in the next level that have over-
lapping keys with the SSTable in the up level, then merges sort
all key-value pairs in sequence. The merged key-value pairs are
then written to new SSTables in the next level. When the flush
and compaction of LSM-tree happen in the background, the sys-
tem can answer write and read requests normally. The new data
inserted by write operations can be put into Memtable directly,
while read operations will visit Memtable, Immutable Memtables,
and SSTables in all levels[9].

2.2 Compaction Optimizations for LSM-tree
2.2.1 Reducing Compaction Cost. There have been a lot of

studies toward optimizing the compaction for LSM-tree. One
idea is to reduce compaction cost. WiscKey[15] and HashKV[7]
separate keys from values to maintain a smaller LSM-tree that
contains keys and the pointer to the values, which is effective for
large keys and write-intensive workloads. But their optimizations
are not suitable for range scans. MonKey[9], Dostoevsky[10]
change the structure of LSM-tree by tuning related parameters
for different demands, and LSM-Bush[11] proposes a more gen-
eral structure for more demands. Ahmad and Kemme[1] cope
with spike caused by compaction by offloading compaction to a
dedicated compaction server, and it solve the cache avalanche by
smart warm-up strategy, which is a good method for a distributed
database like HBase or Cassandra.

Some people proposed efficient scheduling algorithms to op-
timize compaction for LSM-tree. bLSM[20] bounds the write
latency by using the spring-and-gear merge scheduler, which is
not suitable for partitioning structure. Luo and Carey[16] suggest
using 95% maximum throughput to run the experiments, which is
adjusted to 90% in DLC experiments. dCompaction[18] proposes
delayed compaction mainly for low-level compaction, which is a
lazy compaction mechanism for write-intensive workloads. Chen
et al.[8] uses a priority and fairness mixed compaction scheduling
mechanism to reduce write amplification and read amplification.

LDC[6] decreases the tail latency and reduces write ampli-
fication by a novel Lower-level Driven Compaction, which is
orthogonal to DLC. Most of them concentrate on low-level com-
paction and pay little attention to up-level compaction.

Other optimizations of compaction include LSbM-tree and
TRIAD. LSbM-tree[21] adds one buffer for every level to de-
crease block cache miss and improve read performance after
compaction, which concentrates on reducing cache miss after
compaction. TRIAD[2] is designed for skewed workloads. It also
delays L0 compaction until there is enough key overlap in L0 to
be compacted. However, DLC delays L0 compaction according
to the workload.

2.3 State-of-the-Art Optimization: SILK
SILK[3, 4] is the state-of-the-art optimization for the compaction
in LSM-tree. In this paper, we mainly focus on improving SILK.
Thus, in this section, we briefly introduce the details of SILK.

Figure 2: SILK’s throughput drops and latency increasing.

SILK proposed an effective way to prevent latency spikes
in RocksDB. It used an I/O scheduler for background analysis,
paused scheduling low-level compaction when in high loads. The
I/O scheduler in SILK can dynamically allocate bandwidth be-
tween client operations, so it can allocate more bandwidth to
compaction during a low-loaded period.

2.3.1 Compaction of SILK. SILK puts forward two main meth-
ods to reduce the compaction cost in RocksDB, namely priori-
tizing and preempting internal operations. SILK maintains two
internal thread pools, one with high priority is for flush and an-
other with low priority is for compaction. According to the SILK
I/O scheduler, when the computed bandwidth of client operations
exceeds the threshold, SILK will pause compaction. As a result,
only up-level compaction can be scheduled and low-level com-
paction will be delayed during the pausing time. Furthermore,
the up-level compaction will be scheduled in the high-priority
thread pools, meaning that the compaction may preempt the
low-level compaction scheduled in the low-priority thread pool.
The preempted compaction will recover compaction work when
the thread pool is free. By this way, compaction from L0 can
be scheduled along with other compaction paused, and the re-
maining I/O bandwidths (allocated to flush and compaction) can
be allocated to the compaction from L0. When the computed
bandwidth of client operations is over the threshold, SILK will
resume compaction. More bandwidth will be allocated to internal
operations, and parallel compaction can be scheduled. In short,
SILK pauses low-level compaction at a high load and resume
them at a load load.

2.3.2 Problems. As reported in the original SILK paper [3],
SILK can maintain stable throughput for 2000 seconds. However,
if a high workload lasts for a longer time than 2000 seconds, SILK
will incur dramatic throughput drops and latency increasing. We
ran SILK to see its performance and found that SILK has periodical
throughput drops and latency increasing after running for more
than 3500 seconds, as shown in Fig. 2. This is mainly because
after a long-time running, the frequent compaction operations in
SILK will consume a large amount of I/O bandwidths. In addition,
the I/O analyzer of SILK fails to estimate the workload level
accurately. This results in inappropriate compaction scheduling,
which will finally trigger write stalls or write stops to delay
writing or stop writing to the memory. For example, SILK will
resume compaction even when the system runs at a high load.
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Although SILK proposed to delay the low-level compaction at a
high load, if the up-level compaction cannot finish in time during
a load load, SSTables will accumulate in up-levels, which will
incur the file retention of LSM-tree [8]. With the increasing of the
number of the SSTables to be merged, SILK will finally reach the
threshold of write stall or stop, resulting in throughput dropping
and latency increasing.

3 I/O ESTIMATION MODEL
In this section, we propose an I/O estimation model inspired by
the SILK I/O scheduler [3]. By this model, we can compute the I/O
bandwidth taken by client operations more accurately than SILK.
Note that the I/O bandwidth estimation is critical to compaction
scheduling. If we fail to estimate the bandwidth of the current
workload, we may resume compaction at a high load, like SILK,
and lead to throughput drops.

3.1 The I/O Estimation Model of SILK
SILK monitors the bandwidth used by client operations and al-
locates the available I/O bandwidth to internal operations. It
realizes its I/O scheduler by setting a separate thread on client
load (which is db_bench on RocksDB actually). The I/O sched-
uler can get actual numbers of client operations what client has
accomplished last time interval and computes client’s I/O band-
width according to Eq. 1, where 𝑁𝑟𝑒𝑎𝑑 and 𝑁𝑤𝑟𝑖𝑡𝑒 are the read
times and write times in the last time interval, 𝐵𝑘𝑣_𝑝𝑎𝑖𝑟𝑠 is the
Bytes of key and value, 𝑇𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 is the last time interval. SILK
sets the limit of total bandwidth 𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝑙𝑖𝑚𝑖𝑡 , so it can dy-
namically allocate left bandwidth to internal operations easily
using rate limiter according to Eq. 2, where 𝜀 is a small buffer
which are not significant enough to adjust internal operation
bandwidth.

𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝑐𝑙𝑖𝑒𝑛𝑡 = (𝑁𝑟𝑒𝑎𝑑 + 𝑁𝑤𝑟𝑖𝑡𝑒 ) ∗ 𝐵𝑘𝑣_𝑝𝑎𝑖𝑟𝑠/𝑇𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 (1)

𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 = 𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝑙𝑖𝑚𝑖𝑡 −𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝑐𝑙𝑖𝑒𝑛𝑡 −𝜀 (2)

3.2 The I/O Estimation Model of DLC
SILK has many restrictions so that it can not be applied to the
OLTP workload directly. DLC optimizes the SILK I/O scheduler
to make the model suit for the OLTP workload.

The separate thread used by SILK to monitor the bandwidth
cannot be used for OLTP workloads.This is because SILK is to-
ward the workloads generated by db_bench. But the OLTP work-
load is generated by sysbench. Therefore, we can not monitor the
bandwidth of OLTP workloads with the same method as SILK.
DLC uses a separate thread on RocksDB to monitor the band-
width so that it can work on any workloads independently. Other
than getting the specific counts of all client operations every time
interval, which is proposed by SILK, DLC gets data from Statistics,
which is a statistical tool provided by RocksDB. In this way, we
can get the concrete counts of every client operation. As we can
see in Table 1, we can get total counts of client operations ac-
cording to ticker name (which is added like ticker) from Statistics.
Based on the SILK’s I/O scheduler and the total counts of client
operations, we construct the I/O estimation model for DLC. This
model is workload-sensitive and it can classify the current load
into high or low quickly. This model has two functions, namely
computation and analyzing.

3.2.1 Computation. The I/O estimationmodel of DLC summa-
rizes a universal I/O cost analyzing equation based on Eq. 1 and

Table 1: Some related statistical data in Statistics.

Ticker name Description
NUMBER_KEYS_READ Total counts of get (k)
NUMBER_KEYS_WRITTEN Total counts of write (k, v)
NUMBER_DB_SEEK Total counts of scan(𝑘1 , 𝑘2)

Eq. 2. DLC computes new I/O bandwidth according to Eq. 3. In
contrast to SILK, DLC adds scan s for the client bandwidth estima-
tion because there are some scan operations on OLTP workloads.
We also add weights for all client operations so as to estimate
the actual I/O cost precisely. It is necessary to add weights for
client operations because there exists read amplification[15]. If a
Get operation is missed in the block cache, it will fetch at least
one block from the disk. Thus, one Get operation will read more
than one key-value pairs on average. Meanwhile, DLC ignores
to compute write cost for I/O bandwidths, because write opera-
tions insert key-value pairs into memory directly, which do not
consume I/O bandwidths. When flush and compaction opera-
tions happen, the bandwidth required for writing data to disk
belongs to 𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 . Though it is possible to compute
the actual value of all weights for client operations, e.g., by a
linear programming method, it is inconvenient in practical ap-
plications. DLC changes Eq. 3 on the basis of OLTP workloads
to make it suitable for other workloads. As OLTP workloads
have only one type of transaction with ten Get operations, four
Scan operations, and four Write operations, we change Eq. 3 into
Eq. 4, 𝑁𝑡𝑟𝑎𝑛𝑠 is the numbers of the committed transactions in the
last time interval. Though there exists delay between operations
execution and transaction commits, it is reasonable to assume
that 𝑁𝑔𝑒𝑡 = 10 ∗ 𝑁𝑡𝑟𝑎𝑛𝑠 and 𝑁𝑠𝑐𝑎𝑛 = 4 ∗ 𝑁𝑡𝑟𝑎𝑛𝑠 . Eq. 4 shows
that for OLTP with one type of transaction, all operations in
the transaction have the same proportion. We only need to use
one operation (Get or Scan) to compute the real client operation
bandwidths. Taking the Get operation as an example, we can
compute 𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝑐𝑙𝑖𝑒𝑛𝑡 easily using Eq. 5. DLC allocates the
bandwidth to internal operations by using Eq. 2, which is the
same as SILK.

𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝑐𝑙𝑖𝑒𝑛𝑡 = (𝜔𝑔𝑒𝑡 ∗ 𝑁𝑔𝑒𝑡 +𝜔𝑠𝑐𝑎𝑛 ∗ 𝑁𝑠𝑐𝑎𝑛) ∗
𝐵𝑘𝑣_𝑝𝑎𝑖𝑟𝑠

𝑇𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙
(3)

𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝑐𝑙𝑖𝑒𝑛𝑡 = (𝜔𝑔𝑒𝑡 ∗ 10 ∗ 𝑁𝑡𝑟𝑎𝑛𝑠 +𝜔𝑠𝑐𝑎𝑛 ∗ 4 ∗ 𝑁𝑡𝑟𝑎𝑛𝑠 ) ∗
𝐵𝑘𝑣_𝑝𝑎𝑖𝑟𝑠

𝑇𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙

= 𝑁𝑠𝑐𝑎𝑛 ∗ (𝜔𝑔𝑒𝑡 ∗ 2.5 +𝜔𝑠𝑐𝑎𝑛) ∗ 𝐵𝑘𝑣_𝑝𝑎𝑖𝑟𝑠/𝑇𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙
= 𝑁𝑔𝑒𝑡 ∗ (𝜔𝑔𝑒𝑡 +𝜔𝑠𝑐𝑎𝑛 ∗ 0.4) ∗ 𝐵𝑘𝑣_𝑝𝑎𝑖𝑟𝑠/𝑇𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙

(4)

𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝑐𝑙𝑖𝑒𝑛𝑡 = 𝑁𝑔𝑒𝑡 ∗𝜔
′
𝑔𝑒𝑡 /𝑇𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 (5)

Though Eq. 5 is easy to compute the actual bandwidth for
client operations, there is still a problem that we must compute
𝜔

′
𝑔𝑒𝑡 every time when we change the workload or the parame-

ters of LSM-tree. It is difficult to change 𝜔
′
𝑔𝑒𝑡 when running for

changeable workloads or auto-tuning LSM-tree3. DLC proposes
a new idea to compute the actual I/O bandwidth, which is suit-
able for any workloads and any structures of LSM-tree. As we
know, a Get operation gets data from the block cache and block
cache gets blocks from the disk when a cache miss occurs, so
the actual I/O bandwidth is consumed when the block cache gets
blocks from the disk. DLC computes the actual I/O bandwidth by

3Changeable workload means the proportion of operations can change, auto-tuning
LSM-tree means that the parameters of LSM-tree can be changed when running.
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Figure 3: Comparison of various I/O estimation models
(using iostat on RocksDB).

counting the number of the blocks added to the block cache in
the time interval, as we can see from Eq. 6, where 𝛾 is the com-
pression ratio of SSTable4, 𝑆𝑢𝑚𝑏𝑙𝑜𝑐𝑘_𝑐𝑎𝑐ℎ𝑒_𝑎𝑑𝑑𝑒𝑑 is the number
of the blocks added to the block cache, and 𝐵𝑏𝑙𝑜𝑐𝑘 is the bytes
within one block.

𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝑐𝑙𝑖𝑒𝑛𝑡 = 𝛾 ∗ 𝑆𝑢𝑚𝑏𝑙𝑜𝑐𝑘_𝑐𝑎𝑐ℎ𝑒_𝑎𝑑𝑑𝑒𝑑 ∗ 𝐵𝑏𝑙𝑜𝑐𝑘/𝑇𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙
(6)

We conducted an experiment on RocksDB to compare different
I/O estimation models with the actual I/O bandwidth. The results
are shown in Fig. 3. We can see that the SILK I/O estimation
model can not suit for the workload while the DLC I/O scheduler
and the SILK I/O scheduler with weights can estimate the actual
I/O bandwidth with a little tolerable error, both of which can be
applied to our experiments. The DLC I/O scheduler is easier to
use than the SILK I/O scheduler with weights.

3.2.2 Analyzing. SILK uses a simple threshold of bandwidth
to distinguish between a high load and a load load. It computes
𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝑐𝑙𝑖𝑒𝑛𝑡 every 10ms and allocates the remaining band-
width to flush and compaction. DLC adds some parameters for
tuning the model, which we can see in Table 2. DLC uses these
parameters to distinguish a high load and a load load . For every
time_interval, DLC computes the bandwidth of client operations
according to Eq. 5. If the bandwidth exceeds the io_high_limit,
DLC will regard the workload as a high load. However, low band-
width is not a sufficient condition of a load load because there
are many reasons like flush and compaction that will lead to
low bandwidth over a period of time. Thus, even if the client
bandwidth is inferior to io_low_limit, we can not judge that it
is a low load. DLC uses softness to determine the sensitivity of
the model. Only when we get several continuous times of low
bandwidth can we conclude that the current workload is a low
load. By using these parameters, DLC can classify the current
workload more correctly than SILK.

4Because data in SSTable is compressed while data in the block cache is
uncompressed.

4 DESIGN OF DLC
DLC is an improved version of SILK (also an optimization of
RocksDB), which optimizes the I/O scheduler of SILK and pro-
poses to delay L0 compaction, which differs from SILK that delays
low-level compaction.

4.1 DLC’s Compaction Policy
DLC proposes a novel idea to reduce the compaction impact to
the throughput stability. The main idea of DLC is to delay L0
compaction5 at a high load, and to resume L0 compaction when
workload is low. DLC uses the I/O estimation model discussed in
Section 3.2 to compute the I/O bandwidth, analyze the workload,
and decide whether to delay or resume L0 compaction. As we
described before, the DLC I/O estimation model can judge the
workload more correctly than SILK. First, in the case of fluctu-
ation of workload, DLC sets the time_interval to 1s by default,
which can fit most workloads (including OLTP) because many of
them also conclude and summarize the statistical data every one
second by default. The other parameters in DLC are set according
to the workload so that DLC can distinguish the actual high or
low workload correctly. Second, on the basis of the actual work-
load, DLC gives two optional policies for scheduling compaction
in a sustained high load, namely delay full L0 compaction or
delay part L0 compaction.

To delay full L0 compaction means to delay compaction from
L0 to both L0 and L1 under a high load and to resume compaction
under a load load. Other than changing the threshold of L0, DLC
changes the scheduling mechanism so that it can really delay
compaction. Because of the compaction mechanism of RocksDB,
up-level compaction will be triggered unexpectedly. Increasing
the threshold of L0 can only delay compaction temporarily but the
compaction will still be triggered, which is almost uncontrollable.
DLC proposes a controllable delay mechanism so that it can delay
compaction at a high load and resume compaction at a load load.

To delay part L0 compaction means DLC only delays com-
paction from L0 to L1. It is a trade-off between read performance
and throughput stability. With the accumulation of the SSTables
in L0, the read latency will increase and the throughput will de-
crease. Thus, DLC allows compaction to be scheduled from L0 to
L0, which will impact the temporary throughput in a short time
but is helpful for future performance. To delay part L0 compaction
is suitable for a high load with a relatively long time, which also
needs a longer low load to resume compaction. However, this
method can not stop L0 compaction fully, so the throughput may
drop when compaction from L0 to L0 happens. Therefore, we
take "delay full L0 compaction" as the default policy. For both
policies, we allow only one low-level compaction under a high
load being scheduled.

DLC assumes that there are only a few bandwidths that can
be allocated to internal operations at a high load and the flush
operations from Immutable Memtable to L0 is unstoppable. Thus,
there must be some bandwidths allocated to flush, which may
cause a small fluctuation when flush happens. Compared to flush
operations and low-level compaction, up-level compaction will
cause longer time and bigger fluctuation. The reasons are as
follows. First, up-level compaction will merge more SSTables
than flush. Second, the key range of up-level compaction is wider
than low-level compaction, and the access frequency of the up-
level SSTtables is higher than the low-level files[9].

5We also call L0 compaction as up-level compaction in this paper.
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Table 2: Some parameters added by DLC.

Parameter name Description Default Value
io_low_limit The limitation of io bandwidth to confirm the low load 180MB/s
io_high_limit The limitation of io bandwidth to confirm the high load 300MB/s
io_limit The io bandwidth of disk 350MB/s
softness The sensitivity of DLC to confirm low or high low 3
time_interval The time interval to compute and allocate the bandwidth 1000ms
𝜔

′
𝑔𝑒𝑡 The modified weight of get operation 16000

The throughput will decrease if up-level compaction is sched-
uled at high load. Because up-level compaction will occupy a
large quantity of I/O bandwidths, client operations cannot get
enough bandwidths, yielding the drops of throughput. Thus, DLC
delays up-level compaction until the next low load is detected.
When there are plenty of bandwidths allocated to compaction
at a load load, DLC resumes compaction to make full use of the
bandwidth.

4.2 Rate Limiter for DLC
When flush happens, it merge-sorts key-value pairs in all Im-
mutable Memtables (if only one Immutable Memtable, no merge-
sort will happen) and writes them to a new SSTable in L0, so flush
consumes disk I/O write bandwidth only. But when compaction
happens, it first reads related SSTable from disk, merge-sorts
them and writes them to a few SSTables in the corresponding
level, so compaction consumes both disk I/O write and read band-
width. Rate limiter is designed to throttle the maximum write
speed within a certain limit for lots of reasons. For example, flash
writes cause terrible spikes in read latency if they exceed a certain
threshold. In other words, the rate limiter is to limit the speed of
the data written to the disk. And the rate limiter can be modified
for throttling the maximum sum speed of both read and write
easily, which is used in DLC. By dynamically allocating left band-
width is available for flush and low-level compaction but cannot
quite effective for up-level compaction because bandwidth is not
the only reason for the fluctuation of throughput[1, 21]. The
bandwidth exceeds the limit of speed to cause terrible spikes,
leads to terrible fluctuation and long latency. So to delay L0 com-
paction under high load may be the best for OLTP workload to
maintain both high throughput and low latency and to resume
L0 compaction under a load load to achieve minimal losses of
throughput and latency.

5 BURSTY COMPACTION FOR DLC
DLC is mainly designed for the OLTP workload with periodical
high and low loads. By delaying L0 compaction at high load and
resuming L0 compaction at a load load, we can make full use of
the I/O bandwidth with the least throughput loss. However, if the
workload becomes continuously high, which is called a sustained
high load in this paper, the SSTables in L0 will become more and
more, leading to write stalls or stops. When running under a
sustained high load, DLC will keep delaying L0 compaction to
maintain throughput. The read performance will become worse
and the throughput will decrease gradually as time goes. There
is no time and bandwidth for compaction at a sustained high
load; all read operations amortize the influence of delaying L0
compaction. This problem could be solved when the workload
changes into a load load and DLC resumes L0 compaction. How-
ever, when running with a sustained high load, the workload will

Figure 4: DLC running on the sustained high workload.

not change into a load load, which will gradually affect through-
put of DLC, and cause some other unavoidable result such as
write stall or write stop[8].

Generally, the system will not always be at a high load. Thus,
we can assume that the system’s throughput is limited by the
number of the accumulated SSTables in L0. However, if the work-
load keeps high for a long time, we can infer that the system’s
throughput will finally decrease because more and more SSTables
will be accumulated in L0. To verify our analysis, we tested DLC
under a sustained high workload and the result is shown in Fig.
4, which shows that the throughput decreases with time. If we
do not take any action, the sustained high workload will finally
trigger write stalls or stops, which will worsen the performance
of DLC.

To make DLC suitable for sustained high workload, we fur-
ther propose a bursty compaction policy, which can avoid the
throughput drops of DLC under the sustained high workload.
The idea of bursty compaction is to compact selected SSTables
in L0 to avoid the continuous accumulation of SSTables and trig-
gering write stalls or stops. This is implemented by monitoring a
threshold representing the number of accumulated SSTables in
L0.

Figure 5: Bursty compaction from Immutable Memtable
to L0.
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Resume Full Compaction. To resume full L0 compaction is that
when the amount of SSTables in L0 gets the threshold, or the
total size of SSTables in L0 gets the threshold, DLC stops delaying
and resumes compaction from L0 to L1, this cumulatively bursty
compaction would consume plenty of time and I/O bandwidth,
causing an inevitable degradation of throughput and increase
in latency. As we can see in Fig. 4, we could not maintain high
throughput all the time and we should schedule compaction in
time to keep high throughput and low latency by sacrificing
performance for a period of time.

Resume Part Compaction. To resume part L0 compaction is that
when the number of the SSTables in L0 flushed from MemTable
gets the threshold, DLC resumes compaction from Immutable
Memtable to L0. The difference between resume part L0 com-
paction in the bursty compaction and normal compaction from
Immutable Memtable to L0 in MyRocks is that our bursty com-
paction only merges and sorts the SSTables flushed from Im-
mutable MemTable but normal compaction will merge and sort
all SSTables in L0. As compaction will produce a big SSTable
that reserves in L0, the bursty compaction does not merge all
SSTables to reduce disk I/O bandwidth. Figure 5 shows the idea
of the bursty compaction. The SSTable generated from the bursty
compaction will not be scheduled again in future bursty com-
paction.

By controlling the parameters of the threshold, DLC can sched-
ule both two policies easily or only one policy according to the
need. Bursty compaction is a new compaction mechanism for
sustained high workload, which permits schedule up-level com-
paction temporarily for future throughput and latency with an
inevitable fluctuation for a period of time.

6 PERFORMANCE EVALUATION
6.1 Experimental Setting
We conducted experiments on the Elastic Cloud Server of Huawei
Cloud running Linux CentOS 7.6. The server has four Intel Xeon
4-core CPUs with 3.0GHz and 32GB of DRAM. It has one 128GB
super-high SSD for storing logs and another 640GB super-high
SSD (350MB/s approximately) for storing the MyRocks data.

We use 64 tables in the experiment and each table has 107
records. Each key-value pair has a 16B key and a 184B value. We
set a 128MBMemTable and only one ImmutableMemtable.We set
the threshold of L1 to 2GB, the size of SSTable to 64MB, the size-
ratio of each adjacent levels to 10, the level of LSM-tree to 5, the
block-cache size to 12GB, and the block size to 64KB. The database
size is nearly 140GB.We set level0_slowdown_writes_trigger and
level0_stop_writes_trigger to 100 both to avoid write stalls or
write stops too early.

We compare DLC with two competitors, including MyRocks
(MySQL 5.7.26-29 with RocksDB) and SILK. To make the com-
parison fair, we replace the I/O estimation model of SILK with
the DLC I/O estimation model, and we use SILK∗(SILK with the
DLC I/O estimation model) to indicate this modification.

We use OLTP in sysbench [13] as the basic benchmark. The
OLTP (Online Transaction Processing) workload in sysbench [13]
is a SQL workload that can be adjusted to read-intensive or write-
intensive. The OLTP workload in sysbench has only one type
of transaction, which has ten point queries, four range queries,
two update queries, one delete query, and one insert query. By
using sysbench, we can generate OLTP workloads with periodic
high and a load loads, which can satisfy most experiments in this
paper.

Figure 6: MyRocks, SILK* and RocksDB running on the
default OLTP workload.

To make the workload not overwhelm the maximum capacity
of the system, in our experiments, we first run the workload to
measure the maximum throughput of the system, then we set
90% maximum throughput as the threshold to ensure that the
workload will not overwhelm the capability of the system. We
mainly evaluate two metrics, namely throughput and latency. We
use transactions per second to represent throughput, and use the
P99 latency to represent latency. The P99 latency refers to the 99th
latency percentile, meaning that 99% of requests(transactions)
will be faster than the given latency number, and only 1% of the
requests will be slower than the P99 latency. These metrics have
also been used in prior work like SILK[3][4].

6.2 OLTP with Periodically Varying
Workloads

Both DLC and SILK are designed toward periodically varying
workloads, i.e., the arriving rate of requests is high for a period
and then becomes low. Note that a continuously-high workload
will overwhelm the maximum capacity of the system. In this
situation, all approaches will fail to keep a stable throughput.
On the other hand, most big-data applications like E-commerce
platforms have the feature of periodically varying workloads.
Another assumption of DLC and SILK is that the workload is
write-intensive. This is because only frequent writes can trigger
frequent compaction operations, which can be utilized to evaluate
the performance of DLC and SILK. How to avoid throughput
drops caused by compaction is more challenging that other issues
in current LSM-tree-based systems. Although it is important to
optimize the read performance of LSM-tree, e.g., under read-
intensive workloads, it is orthogonal to this study. An intuitive
way to improve read performance is to enlarge the block cache.

To generate appropriate workloads for DLC and SILK, we
run the default OLTP workload (each transaction has ten point
queries, four range queries, two update queries, one delete query,
and one insert query.) in sysbench with a high arriving rate for
500s, followed by a low arriving rate for 100s. The high arriving
rate is set to 1,200 transaction per second, and the low arriving
rate is 300 transactions per second. Note that the two rates and the
time period for high/low should be set according to the maximum
capacity of the system to be evaluated. In our experiment, the
time interval of two up-level compactions is between 400s and
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(a) R:W = 5:5

(b) R:W = 1:9

Figure 7: MyRocks, SILK*, and DLC under different read-
write ratios.

600s. We list the parameters of the DLC’s I/O analyze model on
Table 2. We execute the workload on MyRocks, SILK∗, and DLC
and calculate the throughput and latency continuously. Since at
the beginning there is no compaction triggered, we only report
the results of all systems between 3,300s and 4,300s. When each
system has been running for over 3,000s, we notice that there will
be frequent compaction triggered by the insertions of key-value
pairs.

6.2.1 Under the Default OLTP Workload. Figure 6 shows the
throughput and latency of MyRocks, SILK∗, and DLC under the
default OLTP workload. In this experiment, the threshold of the
maximum capacity of the system is set to 1,200 tps. When the
throughput is high (about 1,200 tps in the figure), the system
runs at a high load. When the throughput is low (about 300
tps), the system runs at a load load. This is consistent with the
periodically varying feature of the workload. MyRocks shows the
worst performance. It can not keep stable throughput at a high
load because it has to perform up-level compaction at a high load,
which will consume additional system resources (I/O bandwidth,
CPU, and memory) and lower the throughput. This also leads
to the high latency of MyRocks. The throughput stability and
latency of SILK∗ is better than MyRocks, owing to the delay
of low-level compaction in SILK∗. However, SILK∗ has a lot of

throughput drops during the high-load period. We can see in Fig.
6 that there are serious throughput drops near 3,500s and 4,100s.
This is mainly because when the high load runs for a long time,
many up-level compactions have been triggered, but SILK∗ has
to perform those up-level compactions even when the system
runs at a high load, which also leads to the increasing of the
latency of SILK∗. On the contrary, DLC exhibits the most stable
throughput and the lowest latency compared to MyRocks and
SILK∗. When the system runs at a high load, DLC can always
keep the throughput around 1,200 tps, which is the arriving rate
of the high load. When the system runs at a load load, DLC can
keep the throughput around 300 tps, which is the arriving rate
of the low load. We can see in the figure that DLC has no serious
throughput drop. Moreover, the latency of DLC is much lower
than others, because it always performs up-level compaction at
a load load. In summary, DLC achieves a more stable throughput
and higher time performance than its competitors.

6.2.2 Varying the Read-Write Ratio. In this experiment, we
test the performance of DLC under OLTP workloads with dif-
ferent ratios of read and write requests. As DLC is proposed
for write-intensive workloads, we prepare two types of OLTP
workloads with a read-write ratio of 5:5 and 1:9. Note that in
this experiment, we remove the range and update queries from
the OLTP workloads to make the workload easier to be gener-
ated. When the read-write ratio is set to 5:5, the threshold of the
maximum capacity is set to 2,500 tps, which is determined by
running the workload before the experiment. When the read-
write ratio is 1:9, the threshold is set to 2,350 tps. Figure 7 shows
the throughput and latency of MyRocks, SILK∗, and DLC under
the two read-write ratios. We can see that DLC performs better
under the 1:9 read-write ratio, showing that DLC is more effi-
cient for write-intensive workloads. For the workload with the
5:5 read-write ratio, DLC also achieves the best stable throughput
and the lowest latency than MyRocks and SILK∗.

6.2.3 High Load with a Long Time. Next, we evaluate the
performance of DLC under a long period of a high load. This
experiment is to show whether DLC can still keep high perfor-
mance under a long time of a high load. For this sake, we also
use the default OLTP workload but shorten the time period of
a load load to only 50s, which means that we leave little time
for DLC to perform delayed up-level compaction. In addition,
we change the time period of a high load to 550s and 1,100, re-
spectively. Consequently, we get two workloads, one is with 550s
high load followed by 50s low load, and the other is 1,100s high
load followed by 50s low load.

Figure 8 shows the throughput and latency of DLC under
the two kinds of workloads. We can see that DLC maintains
a stable throughput even when the high-load period increases
from 550s to 1,100s, indicating that DLC can adapt to workloads
with varying periods of a high load. This also shows that the
compaction scheduling cost of DLC is relatively low and DLC can
quickly detect the status change of the workload and perform
the delayed up-level compaction. Note that DLC has periodic
high latency arising under the 1,100s high load, as shown in Fig.
8(b). This is because there are more accumulated SSTables in L0,
which cost more time of DLC to complete the compaction.

6.3 Performance of Bursty Compaction
In this experiment, we verify the efficiency of the bursty com-
paction of DLC. When the workload becomes continuously high
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(a) 550s high load

(b) 1100s high load

Figure 8: DLC under high load with a long time.

(which is named sustained high load), the accumulated SSTables
in L0 will become more and more, which will worsen the read
performance and lower the throughput. DLC monitors the num-
ber of the accumulated SSTables in L0, and if the number exceeds
a threshold, DLC will perform the bursty compaction to merge
selected SSTables in L0 to L1.

To generate a sustained high load, we run the default OLTP
workload continuously at the high arriving rate (1,200 tps), and
let the system run for a long time to make the number of the
SSTables in L0 increase to the threshold (which is set to 20 in
this experiment). Figure 9 shows the throughout and latency
trend of DLC under a sustained high load. Figure 9(a) shows
the result of the "resume full compaction" policy, which is to
resume full L0 compaction when the number of SSTables flushed
from MemTable exceeds the threshold. Figure 9(b) shows the
result of the "resume part and full compaction" policy, which
is to resume part L0 compaction when the number of SSTables
flushed from MemTable reaches the threshold and to resume full
L0 compaction when part compaction has been scheduled for
four times.

Figure 9 shows that both the two policies can maintain stable
throughput for about 2,550s with a short time of throughput
degradation (about 60s for the "resume full compaction" and
about 40s for the "resume part compaction"). The "resume full
compaction" policy can quickly resume high throughput after

(a) resume full compaction only

(b) resume part and full compaction

Figure 9: Performance of DLC on a sustained high load.

bursty compaction, but it has to compact all SSTables in L0, which
is time-consuming. We can see in Fig. 9(a) that the latency of the
"resume full compaction" becomes extremely high when DLC
performs the full compaction. On the other hand, the "resume
part compaction" policy only compact selected partial SSTables
for maintaining a stable throughput of DLC. Thus, the cost of
part compaction is lower than that of full compaction. As shown
in the figure, the latency of part compaction is lower than that
of full compaction. However, the "resume part compaction" pol-
icy sacrifices part of the read performance (read requests still
need to read many SSTables in L0), resulting slightly dropping of
throughput. To avoid continuous throughput-drops caused by the
accumulation of the SSTables in L0 (even after part compaction),
the "resume part compaction" in DLC performs full compaction
when part compaction has been scheduled for four times. As
shown in Fig. 9(b), the throughput slightly drops with time but
resume to a high level after four part compactions (each serious
drop in the figure indicates part compaction).

6.4 Impact on Read Performance
In this experiment, we measure the impact of DLC on the read
performance. Basically, as DLC delays the up-level compaction,
there may be accumulated SSTables in L0, which will worsen the
read performance under read-intensive workloads.
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Figure 10: MyRocks, SILK*, and DLC under read-intensive
workload with 90% reads and 10% writes.

We first modify the OLTP workload used in Fig. 7 by changing
the read-write ratio to 9:1, preparing a read-intensive workload.
Then, we run MyRocks, SILK∗, and DLC to compare the through-
put and latency. The results are shown in Fig. 10. Although DLC
shows worse performance compared to its performance under
write-intensive workloads (see Fig. 7), it still has comparable
throughput stability with SILK∗, and its latency is lower than
that of SILK∗ and MyRocks. Thus, DLC can also work for read-
intensive workloads.

Further, to measure the number of the SSTables in L0, we
conduct an additional experiment to see the change of the number
of L0 SSTables in DLC. In this experiment, we use the default
benchmark tool db_bench in RocksDB and simply run DLC on
RocksDB to calculate the number of the SSTables in L0 while
DLC is running. We set one thread for inserting key-value pairs
and thirty threads to perform Get operations. Figure 11 shows
the change of the number of the SSTables in L0 as well as the read
performance (in terms of QPS, because db_bench does not support
multi-transaction processing). We can see that the number of L0
SSTables increases with time stably. Note such increase is not a
linear function. We explicitly show a part of the enlarged curve in
the figure, indicating that the increasing of SSTables is step-wise.
This is because only when we flush Immutable Memtable to L0,
the number of SSTables in L0 can increase.With the accumulation
of the SSTables in L0, QPS slightly decreases while the read
latency increases. Figure 12 shows the change of the number of
the SSTables in L0 as well as the read performance when we use
Scan operations and other settings remain unchanged, which
shows similar results as Fig. 11.

In summary, DLC is especially suitable for write-intensive
workloads, but it can also maintain comparable performance with
SILK∗ under read-intensive workloads. Although the delay of
up-level compaction results in the accumulation of the SSTables
in L0, DLC can merge them to L1 at a load load or by performing
bursty compaction.

Figure 11: Accumulation of L0 SSTables and its impact on
Get performance.

Figure 12: Accumulation of L0 SSTables and its impact on
Scan performance.

7 CONCLUSION AND FUTUREWORK
LSM-tree has been widely used in many key-value stores, due
to its high writing performance. However, the compaction op-
erations in LSM-tree highly impact the throughput of LSM-tree,
especially when LSM-tree runs under write-intensive workloads.
Prior work has shown that compaction will result in serious
throughput drops and increasing in processing latency. In this
paper, aiming to provide stable high throughput and low latency,
we proposed to delay the L0 compaction in LSM-tree when the
system is at a high load and perform the delayed L0 compaction
at a load load. With such a mechanism, the system’s through-
put can maintain a high level at a high load because no up-level
compaction will be executed. On the other hand, performing
compaction at a load load has little impact on the throughput
because the system’ resources, including I/O bandwidth and CPU,
are not fully used.

Following the idea of delaying L0 compaction, we presented
the DLC approach to optimize the compaction scheme in LSM-
tree. We first proposed a new model to estimate the I/O band-
width that is needed by the workload. Based on the I/O estimation
model, DLC decided whether to delay the up-level compaction or
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to perform the delayed compaction. DLC is especially designed
for periodically varying workloads, i.e., the arriving rate of re-
quests is high for a period and then becomes low. By scheduling
up-level compaction appropriately, DLC can main stable through-
put and latency. Further, to solve the problem that the workload
is continuously high for a long time, which is called a sustained
high load in the paper, we proposed the bursty compaction pol-
icy to perform mandatory compaction of the SSTables in L0, so
as to avoid the drops of the throughput. We designed two poli-
cies to implement the bursty compaction, namely "resume full
compaction" and "resume part compaction". The difference be-
tween the two policies lies in the range of the L0 SSTables to be
compacted.

Finally, we implemented DLC on RocksDB and compared DLC
with MyRocks and SILK* (SILK with the DLC I/O estimation
model), which is the state-of-the-art optimization of the com-
paction in LSM-tree. The experimental results under different
kinds of OLTP workloads suggest that DLC has the best through-
put stability and the lowest latency. We also demonstrated that
DLC can achieve comparable performance with SILK* under
read-intensive workloads.

In the future, we will consider optimizing the read perfor-
mance of LSM-tree and building a read/write-optimized tree
structure[12]. The current design of DLC is not read-friendly,
making it more suitable for write-intensive workloads. We will
focus on improving the block cache management scheme[22] and
the Bloom filter to reduce the read amplification and block-cache
miss in LSM-tree.
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ABSTRACT
Confidentiality is a crucial requirement in financial data exchange
processes. On the one hand, rich microdata is needed for most
AI applications, including banking supervision, anti-money laun-
dering, etc. On the other hand, organizations may not be legally
authorized to see particular data, e.g., personal data. Striking the
right balance provides a number of challenges.

Motivated by our experience with the Central Bank of Italy,
in this work we present Vada-SA, a reasoning-based framework
for financial data exchange with statistical confidentiality. We
present a production-ready and fully engineered framework,
adopting a reasoning approach. The framework includes explicit
consideration of the reasoning process, the business context and
declarative transparency that puts the user in control. We show
and discuss a number of risk measures and anonymization crite-
ria, implemented and operated in practice.

1 INTRODUCTION
Confidentiality in financial data exchange has multiple facets and
touches different business segments of the FinTech area. In open
banking settings, where the increasingly frequent interactions
between financial intermediaries motivated by the unbundling
and rebundling of the banking process sees the interplay of many
actors, each interested in utilizing the data about a specific por-
tion of the process, but with limited or no access-rights to the
identity of the involved customers; in European-level banking
supervision, where data exchange between the European Central
Bank and the National Central Banks needs to reveal situations
that are highly critical in terms of the “financial health” of the
banks, while the identity of the involved customers tends to be
irrelevant; in anti-money laundering, where most modern ap-
proaches pinpoint fraudulent or collusive cases by inspecting
high-level features of the considered actors, without accessing
their identity before any judicial or law-enforcement action au-
thorizes it; in statistical and economic research, with the more and
more common establishment of national “Research Data Centers”,
data archives used by financial authorities that wish to share rele-
vant financial data with universities and research institutes while
keeping personal data reserved. Moreover, it goes without saying
that the GDPR regulation makes the attention to the confidential
transfer of personal data a central topic in Europe.

As a matter of fact, financial and statistical authorities and
intermediaries look at solutions to share their own microdata,
i.e., non-aggregated data at the finest level of granularity, while
striking a good balance between their statistical relevance and the
∗The views and opinions expressed in this paper are those of the authors and do
not necessarily reflect the official policy or position of Banca d’Italia.
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need to eliminate any possible trace of personal identities. Many
situations arise in the financial segment in which a counterparty
must at the same time see parts of the data (to carry out a portion
of the process) and must not see other parts which they are not
legally authorized to see, e.g., personal data.

This paper is motivated by our experience with the Central
Bank of Italy, which, in its capacity of national central bank,
banking supervision and oversight authority and Financial Intel-
ligence Unit for Italy, is touched by the problem of confidential
financial data exchange in all its perspectives. In this work, we
present Vada-Sa, the joint effort of the Applied Research Team of
the Bank of Italy, TU Wien and the University of Oxford towards
a reasoning-based approach to the problem.

The desiderata. We start by laying out the main desiderata for
a state-of-the-art financial data exchange solution with confiden-
tiality: (i) It should be context aware and take into consideration
the specific business domain and the characteristics of the in-
volved entities and features to evaluate the risk of a breach of
confidentiality; (ii) At the same time it should be schema inde-
pendent, and operate regardless of the specific dataset structure;
(iii) It should be preemptive, in the sense that it should be able to
analyze a given dataset to be exchanged and provide a confiden-
tiality score beforehand, so that analysts can evaluate the risk
of sharing it; (iv) It should be active, in the sense that whenever
the confidentiality score is over a certain threshold (e.g., statis-
tically inferred or defined by the domain experts), the solution
should be able to alter the data and anonymize them so that the
threshold is respected; (v) It should embody a statistics-preserving
anonymization logic, by removing the minimum amount of in-
formation needed to guarantee confidentiality, while preserving
the statistical soundness and relevance of data; (vi) It should
be fully explainable, meaning that the confidentiality score of a
candidate dataset as well as the reasons for specific anonymiza-
tion choices should be completely understandable to domain
experts; plus it should have a transparent semantics of confiden-
tiality; (vii) It should be business friendly, by being extensible,
IT-independent and at business level, i.e., domain experts should
operate autonomously in defining new scoring criteria as well as
anonymization logic in a high-level non-technical language; (viii)
It should be scalable and able to handle increasing data volumes.

Statistical Disclosure Control. The area of Statistical Disclo-
sure Control [26, 35, 37] (SDC) represents a relevant yardstick for
our work. The SDC approach concentrates on re-identification,
i.e., the possibility for an attacker to cross-link information it
rightfully retains, in particular, every single tuple of a legiti-
mately owned database, with other data sources so as to find
out the underlying identities (of the involved people, companies
and stakeholders in general). SDC adopts quantitative indicators
to take decisions on data sharing by evaluating the risk of re-
identification and balancing it with the measure of the statistical
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relevance of the data, so as to minimize the risk while maximiz-
ing the statistical utility. SDC also studies solutions to transform,
namely anonymize, the data to be shared, balancing confiden-
tiality and statistical relevance. Commonly adopted techniques,
featured by widespread tools such as sdcMicro [9], µ-ARGUS [27],
and ARX [33], aim at removing potential identifiers (sometimes
known as quasi-identifiers) of the disclosed tuples and include
value suppression, aggregation, and generalization.

Unfortunately, the approaches and the tools offered so far
by the SDC community do not fulfill the desiderata of a full-
fledged solution needed by the processes of financial companies
and organizations, like the Bank of Italy. First, to the best of
our knowledge, all the existing SDC techniques are schema de-
pendent and anonymization risk assessment and anonymization
programs are tightly coupled to the dataset structure. Then, SDC
techniques are only based on value statistics within the dataset
to be anonymized and are not context-aware, while it is our
experience that the risk of disclosure highly depends on the char-
acteristics of the source and target databases [18] as well as the
surrounding business information, e.g., availability of specific
cross-linking data, even at tuple level. As a consequence, SDC
techniques tend to fall short of accuracy in this respect. Although
the anonymization techniques of SDC put into action interesting
ideas and, in general, preserve statistical relevance of the datasets,
to the best of our knowledge, all of them lack full explainability,
unacceptable for financial organizations with strong account-
ability constraints. The lack of explainability prevents effective
feedback-based adaptivity and the improvement of disclosure
control proceeds by trial and error. Furthermore, all the existing
tools tend to be not business friendly: they adopt a technology-
and IT-dependent language (e.g., R libraries or Java), often lack
clear semantics (typically only informally explained in the doc-
umentation), require adopters to have a technical background
and are hardly extensible. Finally, such tools are data-scientist
oriented libraries and, while showing good performance, do not
have formal scalability guarantees.
Contribution. In this work we present Vada-Sa, a reasoning-
based framework for financial data exchange with statistical
confidentiality. It is based on our long-term experience in de-
veloping AI-enhanced data-driven solutions revolving around
logic-based reasoning. In particular, this work builds on the Vada-
log System [6], a state-of-the-art reasoning system leveraging
the Vadalog language, a member of the Datalog± family [12],
exhibiting very good characteristics of scalability and expressive
power. In particular, we contribute as follows.
• We present a production-ready and fully engineered frame-
work, Vada-Sa, for financial data exchange with confidential
privacy, adopting a reasoning approach. The enterprise data to
be shared, along with the metadata, are modeled as the exten-
sional component of the reasoning process, whereas standard
risk measures and anonymization methods are modeled as the
intensional component of the process, i.e., a set of Vadalog rules.
The activation of the rules upon the extensional component
—i.e., the reasoning process— produces the derived extensional
component, which is either a fully explained risk measure for a
given dataset to be exchanged or its anonymized version.

• We show and discuss (and through Vada-Sa ship off-the-shelf)
a number of risk measures and anonymization criteria and
illustrate how they can be managed in Vadalog.

• We suggest that the surrounding business context relevant for ac-
curate risk measures is awarely modeled within the intensional
component in terms of Vadalog rules, which are at the same

time schema independent w.r.t. the structure of the datasets.
Although the framework targets financial data as a primary
application, the techniques we present are general and can be
applied in any context requiring statistical confidentiality.

• We envision that the SDC techniques can be used as a solid
theoretical basis to craft a statistically preserving anonymiza-
tion logic, yet, unlike existing approaches, we model in a purely
declarative way in terms of Vadalog rules.

• We embrace a user-delegation approach, in the sense that by
means of a semantically clear, fully declarative, non-technical
and IT-independent language (i.e., characteristics that Vadalog
embodies by design [6]), we delegate specific users to writing
their own criteria and encoding the business knowledge, with
cost and operational savings.

• In our framework, we inherit a set of benefits from logic-based
reasoning. In particular, we refer to the pros of declarative
approaches that, unlike procedural programming, relieve the
users from the need to understand the internals of anonymiza-
tion methods when adopting it. Full explainability is guaran-
teed by standard logic entailment semantics, enforced with
chase-based procedures [20] embodied in Vada-Sa. Finally, the
ideal balance between computational complexity and expres-
sive power inherited from Vadalog, allows Vada-Sa to achieve
very good scalability.

• We discuss an interesting set of real-world risk measures and
anonymization criteria, implemented and operated in practice.

Overview. The remainder of the paper is organized as follows. In
Section 2 we pursue the industrial setting at the Bank of Italy. In
Section 3 we introduce the background about Vadalog. Section 4
presents the Vada-Sa framework and Section 5 shows it in action
in relevant cases from the Bank of Italy. In Section 6 we discuss
some related work and Section 7 concludes the paper.

2 INDUSTRIAL SETTING
The Bank of Italy has recently set up a Research Data Center
(RDC).1 At its core, there are a set of relational databases that
store the microdata, i.e., the operational finest-grained data, from
many core business applications such as the credit risk register,
payment systems, balance of payments, banking supervision
indicators, etc. The ultimate goal of RDC is sharing statistically
relevant information with other cooperating institutions such as
the National Statistical Office, other central banks, the European
Central Bank, universities and research centers. While all these
counter-parties operate within a “circle of trust”, and can thus
access the mentioned microdata, the identities of the involved
entities, be they companies, banks or people, should remain of
the sole responsibility (and therefore visibility) of the Bank of
Italy, which is legally in charge of the respective processing.

The microdata that the RDC deals with regard different busi-
ness processes and originate from multiple sources, usually ex-
ternal to the Bank of Italy. These data are collected with a variety
of methods such as statistical surveys or data flows and are orga-
nized into several microdata DBs, by business domain. The RDC
aims at including 65 microdata DBs with operational data from
1977 to 2020 and expected size of 30-50TB, with a 1TB/month
growth. The RDC currently stores 14 microdata DBs, about fami-
lies and individuals, firms, and historical data, including:

• Household income and wealth
• Household finance and consumption

1The RDC is part of the INEXDA initiative (http://www.inexda.org/) for the ex-
change of granular statistical data.
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I Q Q Q Q Q A A W
Id Area Sector Employees Residential Rev. Export Rev. Exp. to DE Grwth 6mos W

1 612276 North Public Service 50-200 0-30 0-30 30-60 2 230
2 737536 South Commerce 201-1000 0-30 90+ 0-30 -1 190
3 971906 Center Commerce 1000+ 0-30 30-60 0-30 4 70
4 589681 North Textiles 1000+ 90+ 0-30 0-30 30 60
5 419410 North Construction 1000+ 90+ 0-30 0-30 300 50
6 972915 North Other 1000+ 0-30 0-30 30-60 50 70
7 501118 North Other 201-1000 60-90 90+ 90+ -20 300
8 815363 North Textiles 201-1000 60-90 30-60 90+ 2 230
9 490065 South Public Service 50-200 0-30 0-30 0-30 12 123
10 415487 South Commerce 1000+ 0-30 0-30 90+ 3 145
11 399087 South Commerce 50-200 30-60 0-30 30-60 2 70
12 170034 Center Commerce 1000+ 60-90 0-30 0-30 45 90
13 724905 Center Construction 201-1000 0-30 30-60 0-30 2 200
14 554475 Center Other 50-200 0-30 90+ 0-30 0 104
15 946251 Center Public Service 201-1000 30-60 90+ 90+ 150 30
16 581077 North Textiles 50-200 0-30 60-90 30-60 -20 160
17 765562 South Textiles 50-200 0-30 60-90 0-30 -7 200
18 154840 Center Commerce 201-1000 0-30 60-90 0-30 4 220
19 600837 Center Construction 50-200 0-30 60-90 0-30 20 190
20 220712 Center Financial 1000+ 30-60 60-90 30-60 -30 90

Figure 1: Microdata DB about inflation and growth.

• Financial literacy data
• Business outlook of industrial and service firms
• Italian housing market
• Inflation growth and expectations
• Historical archive of Italian credit.

Microdata DBs contain business data, including attributes that
may disclose, directly or indirectly, the identity of the involved
subjects; let us call these subjects respondents, by some abuse of
the terminology adopted for statistical surveys. The risk for a
tuple of a microdata DB to be associated (i.e., “linked”) to the
respective real-world identity of the respondent is named risk of
re-identification. Indeed, the notion of re-identification revolves
around the (realistic) assumption that an external data source
containing all the identities of the respondents exists; let us call
identity oracle such database. The challenge here consists in mit-
igating the risk that an attacker could be able to link the value
of some attributes of a tuple of the microdata DB, with those of
a single tuple (or a very small set thereof) of the identity oracle
and therefore disclose the respondent’s identity.

2.1 Setting Foundations
Let us frame our industrial context with the needed foundations.
Relational Foundations. Let C, N, and V be disjoint countably
infinite sets of constants, (labelled) nulls and (regular) variables,
respectively. A (relational) schema S is a finite set of relation
symbols (or predicates) with associated arity. A term is either
a constant or variable. An atom over S is an expression of the
form 𝑅(𝑣), where 𝑅 ∈ S is of arity 𝑛 > 0 and 𝑣 is an 𝑛-tuple of
terms. A database instance (or simply database) over S associates
to each relation symbol in S a relation of the respective arity over
the domain of constants and nulls. The members of relations are
called tuples. By some abuse of notations, we sometimes use the
terms tuple and fact interchangeably.
The Microdata DB and the Identity Oracle. A microdata DB
is a relation of schema 𝑀 (𝑖, 𝑞, 𝑎,𝑊 ), where 𝑖 is an 𝑛-tuple of
attributes defined as direct identifiers, 𝑞 is an n-uple of quasi-
identifiers, 𝑎 is a set of non-identifying attributes and𝑊 is a sam-
pling weight. An identity oracle is a relation of schema𝑂 (𝑖 ′, 𝑞′, 𝐼 ),

where 𝑖 ′ is a set of direct identifiers, 𝑞′ is a set of quasi-identifiers
and 𝐼 is the identity of the respondent.

• Direct identifiers are attributes s.t. their values (of each single
attribute, separately) allow to determine the identity of the
respondent, that is, for a given tuple of𝑀 , the join between𝑀

and 𝑂 on an attribute of 𝑖 equated to an attribute of 𝑖 ′ selects a
single tuple from 𝑂 and therefore the resulting tuple discloses
the respondent’s identity 𝐼 . Observe that a direct identifier is
a key attribute for 𝑂 and it is assumed that 𝑖 ⊆ 𝑖 ′. Examples
of direct identifiers are the social security number, the Italian
fiscal code, the driving licence number, etc.

• Quasi-identifiers are attributes s.t. the values of two or more of
them, jointly, are likely to disclose the identity of the respondent,
that is, for a given tuple of𝑀 , the join between𝑀 and𝑂 on two
or more attributes of 𝑞 equated to attributes of 𝑞′ selects a small
set of tuples of𝑂 and therefore likely discloses the respondent’s
identity 𝐼 . In other terms, quasi-identifiers are features that
in specific combinations are enough selective to endanger the
respondent’s confidentiality. This selectivity depends on the
attribute (as some are intrinsically more specific) and, of course,
on the combination of values, which can be more or less specific
for a given context. For example, the joint use of age and address
can be quite selective if we refer to a context of small dwellings,
whereas gender and address would be less selective. On the
other hand, occupation-gender is in general not very selective,
whereas it can be extremely discriminating if we are referring
to a context of a survey about gendered jobs in some country.

• Non-identifying attributes are those that do not fall in the two
previous categories. These attributes are not critical because
neither individually nor in combination with others, allow to
disclose the identity of the respondent, i.e., re-identification is
not possible. On the one hand, this can depend on an intrinsic
scarce selectivity of the attribute like in the case of age in a given
context, on the other hand, a non-identifying attribute can be
even intrinsically identifying, yet its value certainly unknown
to the identity oracle. This is the case, for instance, of internal
system identifiers which are useless for re-identification.
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• Context and sampling weight. We have touched on the notion of
context when discussing quasi-identifiers, which are more or
less selective depending on the domain of discourse. The context
can be seen as a selection of tuples from𝑂 based on the domain
of interest. For instance, if we were surveying the population of
Milan, the only tuples of 𝑂 referring to people living in Milan
could be used to attempt re-identification of tuples of𝑀 , thus
making it easier. The sampling weight accounts for the context
by measuring the representativeness of a tuple 𝑡 of𝑀 w.r.t. the
entire context C to which𝑀 refers. In this sense, 𝑅 is a sample
from 𝑂 , and𝑊𝑡 is the tuple sampling weight.
There are different options for defining the sampling weight [7,
22]. The one we take inspiration from is the expected value
of the number of entities having the same characteristics as 𝑡
(according to a similarity function 𝜙) in the sample distribution
of 𝑂 according to a given context C. Given 𝑀 , the weight𝑊𝑡

can be estimated for each tuple 𝑡 from the posterior distribution
of values for 𝑞 among the tuples. Many options are also possible
for 𝜙 and the simplest one just uses equality of quasi-identifiers
attributes. Higher weights denote statistically relevant tuples,
likely carrying scarcely selective attributes; lower weights de-
note statistically less relevant tuples (outliers, as a limit case),
likely with highly selective attributes.

• Identity. The value of such attribute stands for some universally
recognized representation of one respondent’s identity.

In our experience with the Bank of Italy, the categorization of
microdata DB attributes as direct, quasi- and non-identifiers as
well as weight estimation is a hybrid process involving human
experience-based evaluation, learning from training sets, and
domain-based reasoning, as we shall see.

2.2 Towards a Reasoning Framework for
Statistical Disclosure Control

With the depicted context, we can achieve a straightforward
definition of re-identification risk as the probability 𝜌𝑡 = 1/𝑊𝑡 of
re-identifying 𝑡 given the value of all its quasi-identifiers 𝑞. We
can say that, in some sense, provided that𝑂 is an abstraction, the
sampling weight𝑊𝑡 is an estimator for the cardinality of the join
|𝜎𝑡 (𝑀) ⊲⊳𝑞′ 𝑂 |, where 𝜎 denotes the selection and ⊲⊳ the join.

However, re-identification risk is an upper bound for the real
disclosure risk, in the assumption that all quasi-identifiers are
known to a potential attacker. As amatter of fact, for a given tuple
we may be interested in evaluating the risk only wrt a subset
𝑞 ⊂ 𝑞 of quasi-identifiers, the ones we suppose the attacker is
aware of or are more selective. Moreover, we may want to apply
an arbitrary risk weight function 𝜆, which takes as input𝑊𝑡 as
well as the values for quasi-identifiers of 𝑡 . Whence, the following
definition of a general statistical disclosure risk:

𝜌q̂ = 1/𝜆(𝜎𝑞=q̂𝑀) (1)

The function 𝜆 computes an aggregate weight over the tuples se-
lected by q̂ and generalizes many different riskmeasurement tech-
niques, as we shall see, including the re-identification-based risk
(for which 𝜆(𝜎𝑞=q̂𝑅) =

∑
𝜎𝑡∈�̂�=q̂ (𝑅)𝑊𝑡 ), but also k-anonymity [34],

individual risk [7], and SUDA [19].

Use cases. Our industrial goal consists in: 1. evaluating the statis-
tical disclosure risk and, 2. if unacceptable, take actions to counter-
act possible information disclosure, while preserving statistical
significance (anonymization). The joint performance of the two
mentioned actions is known as statistical disclosure control [18].

Figure 2: The attack strategy in action: by querying the
identity oracle along Area, Sector and number of Employ-
ees, an attacker can narrow the search to few candidates
and make a plausible guess about respondents’ identity.

Figure 1 reports a fragment of a microdata DB of the Bank of
Italy RDC, whose data derive from an Inflation and Growth Sur-
vey. This microdata DB shows the percentage growth in the
last 6 months of Italian companies, spanning various sectors,
with a different number of employees, different composition in
revenue (residential viz. export) and a different percentage of
export to Germany. The attributes of the microdata DB are the
direct identifier 𝑖 = {Id}, where 𝐼𝑑 is a unique identifier for a com-
pany, the quasi-identifiers𝑞 = {Area, Sector, Employees, Residenti-
alRevenue, ExportRevenue}, the non identifying attributes 𝑎 =

{ExportToDE,Growth6mos}, and the weight𝑊 = {Weight}.
Re-identification risk is highest for tuple 15 (0.03) and lowest

for tuple 7 (0.003). Extending to general (re-identification-based)
statistical disclosure risk, we have that 𝜌q̂ of a given tuple clearly
coincides with re-identification risk if 𝑞 includes the Id. It is also
the case when 𝑞 includes an n-uple of quasi-identifiers that hap-
pens to be unique. For example, tuple 4 is the only one located
in the North, dealing in the Textiles sector, with more than 1000
employees; therefore, its re-identification and statistical disclo-
sure risk coincide and amount to 0.016. Notice that its weight
(60) witnesses the presence of multiple companies in the identity
oracle having the same characteristics as tuple 4 according to the
similarity function 𝜙 , e.g., the same/similar quasi-identifiers.

In another perspective, we are outlining a possible attack strat-
egy to attempt re-identification of a given tuple 𝑡 (Figure 2): 1.
filter out a set of tuples 𝐶 from 𝑂 that match 𝑡 on the values of
attributes in 𝑞; 2. choose the tuple 𝑟 ∈ 𝐶 that best fits 𝑡 w.r.t. the
other attributes; 3. return 𝑟 with an associated probability/score.
To put the attack strategy into action, the entire toolbox from
the record linkage literature can be adopted [13]. Efficient record
linkage techniques typically operate in two steps: blocking, when
restricting the cohort of candidate matches (step 1 of the attack
strategy); matching, when evaluating the actual correspondences
(step 2). Anonymization techniques aim at making blocking com-
putationally expensive, by suppressing or modifying (as we shall
see) selective values, which would make blocking effective re-
stricting the cluster of candidate matches. With large clusters,
exhaustive comparison is both computationally expensive, and
yields an overly uncertain result, making the attack ineffective.

It is interesting to observe that the sampling weights can be
used as a predictor of the effectiveness of a re-identification at-
tack: tuples with higherweights in𝑀 will be in clusters withmore
candidates and thus less likely be identified, though statistically
relevant; tuples with lower weights will be in smaller clusters
and then will be more easy to re-identify. This gives an optimistic
angle on the problem, as anonymization techniques can try to
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operate on less representative tuples so as to increase overall
confidentiality without hampering the statistical significance.

3 VADALOG REASONING
Vada-Sa, the statistical disclosure control framework we intro-
duce in this paper, is based on the Vadalog system, a state-of-
the-art logic-based reasoner [6] whose core revolves around the
Vadalog language, a member of the Datalog± family [12, 23]. The
disclosure riskmeasurement techniques as well as the anonymiza-
tion logic are expressed in Vadalog.

Datalog± generalizes Datalog with existential quantification in
the rule conclusion, making it suitable for ontological reasoning.
A rule is a first-order sentence of the form ∀𝑥∀𝑦 (𝜑 (𝑥,𝑦) →
∃𝑧𝜓 (𝑥, 𝑧)), where 𝜑 (the body) and𝜓 (the head) are conjunctions
of atoms. For brevity, we omit universal quantifiers and denote
conjunction by comma. As usual in this context, the semantics of
a set of rules is operationally defined by the well-known chase
procedure. Intuitively, the chase satisfies the rules by generating
new head facts for bindings of the body, possibly introducing
new variable symbols in the data, in the form of labelled nulls, in
the presence of existentially quantified head variables [21].

The core of Vadalog is based on Warded Datalog± [6], a syn-
tactic restriction to Datalog± that guarantees decidability and
tractability in the presence of recursion and existential quantifi-
cation. In terms of expressive power, Warded Datalog± captures
full Datalog and OWL 2 direct semantics entailment regime for
OWL 2 QL. The language underpinnings are exploited by the rea-
soner to allow for efficient execution of reasoning tasks. Vadalog
augments Warded Datalog± with supplementary features such
as aggregation, algebraic operations, and stratified negation. As
we shall see, Vadalog is sufficiently expressive to support our
anonymization reasoning scenarios and comprises all the needed
features such as joint use of full recursion, existential quantifi-
cation and aggregation, to model propagation of the disclosure
risk and anonymize values. These requirements are not met by
the standard relational/SQL systems, which in particular offer
inefficient or no support for recursion and existentials.

4 THE VADA-SA FRAMEWORK
While statistical disclosure control has traditionally followed a
procedural approach, we propose a shift towards a fully declara-
tive one, and look at state-of-the-art reasoners, leveraging our
experience on Vadalog and Knowledge Graphs applied to differ-
ent problems in the financial realm e.g., link prediction [2] as well
as schema-independent approaches to model management [3].
The Vada-Sa framework, whose architecture is sketched in Fig-
ure 3, lies on the following basic pillars:
• A structuring of the statistical disclosure control process in the
form of an anonymization cycle.

• The construction of a Vadalog-based enterprise Knowledge
Base (KB) encompassing the patterns and techniques for statis-
tical disclosure risk assessment and anonymization as well as
all the surrounding business knowledge to be leveraged.

• The formulation of risk assessment and anonymization phases
in the form of reasoning tasks upon the KB. In such reason-
ing tasks, the extensional component comprises the microdata
DB as well as their basic metadata, such as schema-level in-
formation. Much care is devoted to the intensional component,
encoding reasoning rules for: attribute categorization, risk as-
sessment and anonymization. The intensional component is at
high level of abstraction, composed of pluggable Vadalogmod-
ules, some of which are provided off-the-shelf while others can

Figure 3: The Vada-Sa architecture.

be autonomously developed by business experts. The overall
statistical disclosure control process is a reasoning task itself,
which relies on the mentioned ones and adaptively chooses the
actions to be performed. The derived extensional component, i.e.,
the results of the reasoning process, contains the outcome of
risk analysis and the anonymized microdata DBs.

In this section, we first illustrate the anonymization cycle and
the metadata dictionary, at the basis of our schema-independent
approach (Section 4.1), we then focus on the evaluation of statis-
tical disclosure risk (Section 4.2) and anonymization (Section 4.3).
Finally, we show extensions and advanced applications involving
complex business knowledge (Section 4.4).

4.1 The Anonymization Cycle and the
Metadata Dictionary

When a microdata DB needs to be shared, it undergoes the
anonymization cycle at the core of the Vada-Sa architecture,
shown in Figure 3. It consists of an iterative application of disclo-
sure risk evaluation and anonymization until the risk is under a
given threshold. Each iteration removes a minimum amount of
information, and checks whether confidentiality requirements
are fulfilled, in a statistics-preserving fashion.

In particular, risk evaluation takes as input a microdata DB.
Based on its category, each attribute has a different treatment.
Direct identifiers must not be disclosed and non-identifying at-
tributes are not needed in the risk evaluation process, thus both
are dropped. Quasi-identifiers and the sampling weight are used
for disclosure risk estimation. Anonymization is activated until
the disclosure risk is acceptable. In so doing, we aim at a trade-off
between statistical preservation and disclosure risk, as captured
by the threshold 𝑇 , determined on the basis of user experience.

Metadata Dictionary and Attribute Categorization. In or-
der to achieve schema and data independence, in Vada-Sa we
follow ameta-level approach and include ametadata dictionary in
the KB. Facts of the form MicroDB(name), Att(microDB, name,
description), Category(microDB,att,cat) are used to reason upon
microdata DBs, their attributes and their categories, respectively.
Figure 4 shows the portion of Vada-Sa dictionary for the “I&G”
(Inflation and Growth) microdata DB. Facts for MicroDB and
Attribute are part of the extensional component and change
when new microdata DBs are added into Vada-Sa. Facts for
Category are part of the derived extensional component: they
are the product of a reasoning process that, for each microdata
DB and each attribute, infers the most suitable category. In fact,
before entering the anonymization cycle, the attributes of the mi-
crodata DB need to be categorized as identifiers, quasi-identifiers
or non-identifying attributes, as we have seen in Section 2.1.
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Algorithm 1 Attribute categorization
(1) Att(𝑀,𝐴) → ∃𝐶 Cat(𝑀,𝐴,𝐶) .

(2) Att(𝑀,𝐴), ExpBase(𝐴1,𝐶), 𝐴 ∼ 𝐴1 → Cat(𝑀,𝐴,𝐶) .
(3) Cat(𝑀,𝐴,𝐶) → ExpBase(𝐴,𝐶) .

(4) Cat(𝑀,𝐴,𝐶1),Cat(𝑀,𝐴,𝐶2) → 𝐶1 = 𝐶2 .

Attribute

Microdata DB Attribute Name Description

I&G Id Company Identifier
I&G Area Geographic Area
I&G Sector Product Sector
I&G Employees Num. of employees
I&G Residential Rev. Rev. from internal market
I&G Export Rev. Rev. from external market
I&G Export to DE Rev. from DE market
I&G Growth Rev. growth last 6 mths
I&G Weight Sampling Weight

Category

Microdata DB Attribute Name Category

I&G Id Identifier
I&G Area Quasi-identifier
I&G Sector Quasi-identifier
I&G Employees Quasi-identifier
I&G Residential Rev. Quasi-identifier
I&G Export Rev. Non-identifying
I&G Export to DE Quasi-identifier
I&G Growth Quasi-identifier
I&G Weight Sampling Weight

Figure 4: Metadata Dictionary: Attribute and Category.

Algorithm 1 shows the Vadalog program adopted for this pur-
pose. It features a recursive application of experience: ExpBase
is the extensional component and stores for an attribute name 𝐴,
a known category 𝐶 , according to available experts’ knowledge.
Assuming one category per attribute (Rule 1), if our attribute
is sufficiently similar (according to a pluggable set of similarity
functions or denoted by the ∼ symbol) to another attribute 𝐴1 of
the experience base for which the category is known, we borrow
that category (Rule 2), and recursively feed the conclusion back
into the experience base (Rule 3), so as to aid other decisions.
Rule 4, technically an equality-generating dependency (EGD),
guarantees that each attribute is assigned one single category.
This Vada-Sa module lends itself to human-in-the-loop inter-
vention in two points: when deciding whether to consolidate a
decision of Rule 2 with Rule 3, as the user may consider a decision
to be use-case specific, and when violations of EGD 4 arise, to
allow for manual inspection of doubtful cases.
Anonymization Cycle. The interplay between evaluation of
statistical disclosure risk and anonymization is at the core of our
framework. Given the input microdata DB, the direct identifiers
are removed and all the potentially harmful combinations of
quasi-identifiers are evaluated to take countermeasures.

Algorithm 2 Anonymization cycle
(1) Val(𝑀, 𝐼,𝐴,𝑉 ),Cat(𝑀,𝐴,𝐶),𝐶 in {Quasi-identifier,Weight},

VSet = munion((𝐴,𝑉 )) → Tuple(𝑀, 𝐼,VSet) .
(2) Tuple(𝑀, 𝐼,VSet), #risk(𝐼 , 𝑅), 𝑅 > 𝑇 → #anonymize(I) .

(3) Tuple(𝑀, 𝐼,VSet), #risk(𝐼 , 𝑅), 𝑅 ≤ 𝑇 → Tuple𝐴 (𝑀, 𝐼,VSet).

The set of Vadalog rules of Algorithm 2 compactly represents
this logic. Rule (1) creates Tuple facts for each tuple of the mi-
crodata DB𝑀 , identified by an artificial identifier 𝐼 , and collects
all the name-value pairs for quasi-identifiers and sample weights
into the VSet variable. Val facts are part of the extensional com-
ponent and store the value 𝑉 for an attribute 𝐴 of the microdata
DB𝑀 . The identifiers of𝑀 are implicitly dropped. Observe that
munion performs such aggregation, for each microdata DB𝑀 and
VSet is a set-type variable. Whenever a specific tuple 𝐼 violates
a [0, 1] risk threshold 𝑇 , a fact anonymize is produced for 𝐼 , in
Rule 2. Both risk and anonymize are atoms defined in external
libraries, in Vadalog (denoted by the “#” prefix). In particular,
risk returns the risk 𝑅 associated to a given tuple 𝐼 ; it is a com-
pact form for the join “#riskInput(𝐼 ), #riskOutput(𝐼 , 𝑅)”, where
riskInput is a fact triggering a Vadalog program producing
facts of riskOutput for 𝐼 . More simply, anonymize produces new
facts for Tuple. This mechanism embeds a recursion on Rule 2,
to anonymize tuples that still do not pass the risk evaluation.
Only those facts for Tuple that pass the risk validation of Rule 3
are copied to Tuple𝐴 , which can be considered anonymized.

The anonymization cycle in Algorithm 2 makes the approach
fully explainable in the sense that each anonymization decision
taken by Rule 2 is motivated by the specific binding of its body.
It is also preemptive and active, in the sense that for each thresh-
old violation, greedily applies a single anonymization step, at
the same time minimizing the amount of suppressed statistical
information. It is schema independent, as only atoms of the meta-
data dictionary are used and there is no specific reference to
either schema or instance objects of the single microdata DBs.
We shall see how specific values are bound to the attributes as a
responsibility of risk and anonymize implementations. Finally,
the algorithm offers multiple degrees of freedom: different risk
and anonymization techniques can be used, and our risk and
anonymize and polymorphic, in this sense; specific optimiza-
tions and execution heuristics can be adopted to choose which
tuples to anonymize first (by controlling the activation order
of Rule 2 against its possible bindings), and to choose which
quasi-identifiers to anonymize first.

4.2 Statistical Disclosure Risk Estimation
Our risk atom in Algorithm 2 is polymorphic. Vada-Sa fea-
tures a plug-in mechanism to opt for specific implementations at
runtime. While the high-level characteristics of the Vadalog lan-
guage allow to delegate users to specify their own risk logic, with
extensive use of business knowledge, a number of techniques are
provided off-the-shelf. In this section, we introduce the main risk
disclosure evaluation techniques offered by Vada-Sa.
Re-identification-based.We start in Algorithm 3with re-identi-
fication-based risk evaluation, that we have defined in Section 2.2.

Algorithm 3 Re-identification-based risk evaluation
(1) Tuple(𝑀, 𝐼,VSet), riskInput(𝐼 ),Cat(𝑀,𝑊 ,Weight),

𝑅 = 1/msum(VSet[𝑊 ], ⟨𝐼 ⟩) → TupleA(𝑅, ∗VSet[AnonSet]).
(2) Tuple(𝑀, 𝐼,VSet),TupleA(𝑅,VSet∗) → riskOutput(𝐼 , 𝑅) .

Whenever a tuple 𝐼 needs to be evaluated (riskInput atom), in
Rule 1, the name𝑊 of the weight atom is retrieved from the
metadata dictionary and used to extract the weight value from
VSet, with the access operator denoted by [𝑋 ], where 𝑋 can be
either a single attribute name or a collection thereof. Weights are
summed (msum) and the risk score 1/𝑅 is computed. TupleA has
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variable arity, and its terms are the computed risk 𝑅 and the set
of quasi-identifiers to group by when forming the summation.
The expression ∗VSet[AnonSet] has the following meaning: the
prefix operator “*” is collection unpacking and turns each element
of the argument collection into a term of TupleA, essential for
grouping along quasi-identifiers. Note that VSet is filtered by a
set AnonSet of attribute names —the order is irrelevant in this
context— that selects those that are considered of interest by
business experts w.r.t. risk evaluation. Rule 2 finds those tuples 𝐼
for which the risk has been computed and returns it. It uses the
packing operator, denoted by the suffix operator “*”, which packs
a sequence of terms of TupleA into the set variable VSet. In this
way, by joining on VSet, we can identify all the tuples to which
the risk computation applies. We have already seen examples of
re-identification-based risk estimation in Section 2.2.
k-anonymity is a commonly used threshold approximation of
re-identification risk estimation [34]. For a given set of quasi-
identifiers, whenever the number of occurrences is less than a
fixed threshold 𝑘 , it is considered dangerous; it is safe otherwise.
For instance, in the microdata DB of Figure 1, considering the
quasi-identifiers Area and Sector , we notice, e.g., that there is
only one occurrence for “North” and “Public Service” (tuple 1).
We say the set of pairs {⟨Area,North⟩, ⟨Sector, Public Service⟩}
is a sample unique for tuple 1. The Vadalog reasoning rules for
k-anonymity are reported in Algorithm 4.

Algorithm 4 k-anonymity
(1) Tuple(𝑀, 𝐼,VSet), riskInput(𝐼 ),

𝑅 = mcount (⟨𝐼 ⟩) → TupleA(𝑅, ∗VSet[AnonSet]).
(2) Tuple(𝑀, 𝐼,VSet),TupleA(𝑅1,VSet∗)

𝑅 = case 𝑅1 < 𝑘 then 1 else 0 → riskOutput(𝐼 , 𝑅).

Individual Risk. In the re-identification model the simplifying
assumption is made that the sampling weight𝑊𝑡 corresponds to
the frequency (number of occurrences) 𝐹𝑘 of a given combination
𝑘 of quasi-identifiers in the total population from which the
microdata DB has been sampled; therefore we can compute the
combination risk as 1/𝐹𝑘 . Yet, frequencies 𝐹𝑘 are unknown and
in general different from𝑊𝑡 . A further inferential step is then
required. The typical approach [7, 22, 38] is accounting for 𝐹𝑘
in a Bayesian fashion, by considering the distribution of the
population frequencies given the sample frequencies 𝐹𝑘 |𝑓q̂ and
obtaining 1/𝐹𝑘 as the posterior mean. In our setting, the sample
frequency is the sample count in the microdata DB. Different
assumptions can be made on the posterior distribution of 𝐹𝑘 |𝑓q̂,
with different techniques to accordingly estimate 𝜌q̂. The one we
adopt here is considering such distribution a negative binomial
and thus we pose 𝜆 =

∑
𝑊𝑡/𝑓q̂ to estimate risk in Equation 1

of Section 2.2. Indeed, other distributions can be adopted. The
individual risk estimation is formalized in Algorithm 5.

Algorithm 5 Individual risk
(1) Tuple(𝑀, 𝐼,VSet), riskInput(𝐼 ),Cat(𝑀,𝑊 ,Weight),

𝐹 = mcount (⟨𝐼 ⟩), 𝑅 = msum(VSet[𝑊 ], ⟨𝐼 ⟩) →
TupleA(𝐹/𝑅, ∗VSet[AnonSet]).

(2) Tuple(𝑀, 𝐼,VSet),TupleA(𝑅,VSet∗) → riskOutput(𝐼 , 𝑅).

While scanning through the tuples having a given combination
VSet, used as a group-by key thanks to the unpacking operator,
Rule 1 counts the occurrences of each combination (frequency)
and sums the contributor weights. Facts for TupleA are produced

only once all the contributors are available. The risk is then
estimated for each combination and finally returned by Rule 2.
SUDA. With k-anonymity, we have introduced the concept of
sample unique, i.e., a set of quasi-identifiers —name-value pair—
that identify a tuple of a given microdata DB, i.e., they are unique.
A sample unique is not the same as a database key, because it
expresses a property that holds at tuple level and not at schema
level. Alongside the schema-level distinction between superkey
and key (a minimal superkey) in relational theory [1], here, at
data level, we introduce the minimal sample unique (MSU) 𝜇𝑡 for
a given tuple, that is a sample unique for which there exists no
other sample unique 𝜇 ′𝑡 for the same tuple, s.t. 𝜇 ′𝑡 ⊂ 𝜇𝑡 . The Special
Unique Detection Algorithm (SUDA) is a heuristic technique that
estimates the statistical disclosure risk of a given tuple based on
the size and the number of its MSUs.

Consider for example the set 𝜇1
20 = {⟨Area,Center⟩, ⟨Sector,

Financial⟩, ⟨Employees, 1000+⟩, ⟨Res. Rev., 30-60⟩} for the micro-
data DB in Figure 1 for tuple 20. It is sample unique though
not MSU, since the set 𝜇2

20 = {⟨Sector, Financial⟩} is sample
unique and s.t. 𝜇2

20 ⊂ 𝜇1
20. Moreover, 𝜇2

20 is MSU. Similarly,
𝜇3

20 = {⟨Employees, 1000+⟩, ⟨Res. Rev., 30-60⟩} is another MSU.
In total, tuple 20 has 2 MSUs.

Algorithm 6 encodes the Vada-Sa version of SUDA.

Algorithm 6 SUDA
(1) Tuple(𝑀, 𝐼,VSet), riskInput(𝐼 ) → TupleI(𝑀, 𝐼,VSet) .

(2) TupleI(𝑀, 𝐼,VSet),Cat(𝑀,𝐴,Quasi-identifier),
𝐴 ∈ VSet → ∃𝑍 Comb(𝑍, 𝐼 ), In(𝐴,𝑍 ) .

(3) Comb(𝑍1, 𝐼 ), TupleI(𝑀, 𝐼,VSet),Cat(𝑀,𝐴,Quasi-identifier),
𝐴 ∈ VSet, not In(𝐴,𝑍1) →

∃𝑍 Comb(𝑍, 𝐼 ), InComb(𝑍, 𝑍1), In(𝐴,𝑍1).
(4) InComb(𝑋,𝑌 ), In(𝐴,𝑋 ) → In(𝐴,𝑌 ).

(5) Comb(𝑍, 𝐼 ), In(𝐴,𝑍 ),TupleI(𝑀, 𝐼,VSet),
ASet = munion(𝐴) → TupleC(𝐼 , ∗VSet[ASet]) .

(6) TupleC(𝐼 ,VSet∗),mcount (⟨𝐼 ⟩) = 1 →
∃𝑆 Su(𝑆,VSet),HasSu(𝐼 , 𝑆).

(7) Su(𝑆,VSet),HasSu(𝐼 , 𝑆), not HasSu(𝐼 , 𝑆1),
Su(𝑆1,VSet′),VSet′ ⊂ VSet → MSU(𝐼 , 𝑆) .

(8) TupleI(𝑀, 𝐼,VSet),MSU(𝐼 , 𝑆), Su(𝑆,VSet),
𝑅 = case size(VSet) < 𝑘 then 1 else 0 → riskOutput(𝐼 , 𝑅) .

After restricting the focus on input tuples (Rule 1), for each tu-
ple we generate all the combinations of quasi-identifiers, first
by introducing a combination 𝑍 for each of them (Rule 2), and
then by constructing all the possible extensions that can be ob-
tained by adding other quasi-identifiers (Rules 3 and 4). Then,
for each combination of quasi-identifiers, generated by unpack-
ing (Rule 5), we generate sample unique facts for Su, denoting
those combinations that exactly identify one single tuple. The
predicate HasSu is needed since every tuple 𝐼 can have multi-
ple sample unique sets, while the mcount aggregation needs to
group by VSet. Rule 7 creates facts for MSU, filtering only those
sample unique sets that are minimal. Finally, Rule 8 implements
the logic to handle minimal sample unique sets. In this case, we
evaluate the size of every MSU and if it is above a given threshold
𝑘 , we consider the input tuple dangerous and thus return 1. The
assumption here is that we cannot accept that the number of
quasi-identifiers that can disclose the identity is too small. Clearly,
more sophisticated checks could be implemented, possibly also
including an overall evaluation of all the MSUs for a given tuple,
for example by comparing the average size of MSUs against a
threshold.
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(a)

I Q Q Q Q
Id Area Sector Employees Residential Revenue F

1 099876 Roma Textiles 1000+ 0-30 1
2 765389 Roma Commerce 1000+ 0-30 2
3 231654 Roma Commerce 1000+ 0-30 2
4 097302 Roma Financial 1000+ 0-30 2
5 120967 Roma Financial 1000+ 0-30 2
6 232498 Milano Construction 0-200 60-90 1
7 340901 Torino Construction 0-200 60-90 1

(b)

I Q Q Q Q
Id Area Sector Employees Residential Revenue F

1 099876 Center ⊥1 1000+ 0-30 5
2 765389 Center Commerce 1000+ 0-30 3
3 231654 Center Commerce 1000+ 0-30 3
4 097302 Center Financial 1000+ 0-30 3
5 120967 Center Financial 1000+ 0-30 3
6 232498 North Construction 0-200 60-90 2
7 340901 North Construction 0-200 60-90 2

Figure 5: Local suppression and global recoding.

4.3 Smart Anonymization
In Algorithm 2 we have introduced the anonymization cycle,
where Rules 2 and 3 show the interaction between risk estima-
tion, with the main techniques introduced in Section 4.2, and
anonymization, the object of this section. Tuples whose risk is
considered over a given threshold𝑇 , produce facts for anonymize,
which polymorphically triggers dedicated Vadalog programs:
for each tuple 𝐼 having statistical disclosure risk 𝑅 > 𝑇 , a new fact
for Tuple is produced, with the same identifier 𝐼 and statistical
disclosure risk 𝑅′ < 𝑅. The process continues recursively, until
there is no tuple violating the threshold.

All the statistical disclosure evaluation techniques of Sec-
tion 4.2 compute the risk associated to each tuple with monotonic
aggregations, which play an important role here. In particular,
all of them (e.g., msum in Algorithm 3, mcount in Algorithm 4,
etc.) take as input the aggregation contributor, denoted by ⟨𝐼 ⟩.
According to the monotonic aggregation semantics [6], whenever
two or more tuple tuples having the same value for the contrib-
utor 𝐼 are aggregated (e.g., summed, counted, etc.) within the
same group (defined by the bindings of head variables), only the
tuple providing the least risk contribution is considered, while
the others are neglected. This implies that, whenever a tuple
𝐼 is replaced by a “more anonymous version”, for example by
suppressing a quasi-identifier, as we shall see, as the two are seen
as the same contributor (they have the same value for 𝐼 ), only
the anonymized one will be accounted for in the aggregation, so
that more anonymized tuples incrementally replace the others
and reduce risk, until convergence is achieved. We anonymize
tuples with two main techniques: introducing labelled nulls to
replace selective values, applying a global recoding.
Local Suppression with Labelled Nulls. Labelled nulls are a
powerful tool from logic-based reasoning, which we effectively
apply in the anonymization context. Consider the microdata DB
in Figure 5a, where all the attributes are assumed to be quasi-
identifiers, the sampling weight is omitted for simplicity, and
the frequency of the n-uple of quasi-identifiers is showed on the
right. For tuple 1 the set {⟨Area, Roma⟩, ⟨Sector,Textiles⟩,
⟨Employees, 1000+⟩, ⟨Resid. Rev., 0-30⟩} is sample unique. What
if we replace the value “Textiles” for Sector with a labelled null
⊥1? As we are not aware of the underlying value of ⊥1, the
combination of quasi-identifiers at hand may match with any
among tuples 2-5, thus leading to a total frequency of 5. Likewise,
tuples 2-5 see their frequency increased to 3. In total, by adding a
single labelled null and hence introducing some degree of uncer-
tainty, we have highly decreased the statistical disclosure risk of
the microdata DB, as it can be seen in Figure 5b. In fact, a tuple

containing one or more nulls may match with different tuples of
the microdata DB, or even with none of them, depending on the
specific assignment for those nulls.

Going back to what introduced in Section 2.2, in our frame-
work in order to estimate the statistical disclosure risk, we need
to compute 𝜆(𝜎𝑞=q̂𝑀) over a selection of the microdata DB 𝑀 ,
based on an n-uple of values q̂ for quasi-identifiers. The risk esti-
mation techniques of Section 4.2 apply 𝜆 to the entire microdata
DB and the selection is implicit in the grouping performed by
the aggregations, in the sense that, for each tuple, the aggrega-
tion forms the group by selecting only those tuples having the
same values for quasi-identifiers (or subset of interest, thereof).
So, 𝑀 (𝑖 ′, 𝑞′, . . .) is included in the selection induced by tuple
𝑀 (𝑖, 𝑞, . . .) iff (𝑞′1, . . . , 𝑞

′
𝑛) = (𝑞1, . . . , 𝑞𝑛), and, by construction,

the groups form a partition of the microdata DB. If we allow 𝑞𝑖
to be a labelled null, a new semantics must be adopted to define
whether 𝑞𝑖 = 𝑞′

𝑖
and thus form the aggregation groups.

The introduction of nulls raises non-trivial semantic issues
when aggregations are involved, and theoretical work is still
needed to achieve sound characterizations [25]. In Vada-Sa, for
the construction of aggregation groups, we adopt a null-tolerant
semantics inspired by the so-called maybe-match approach [14],
and assume that 𝑞𝑖 =⊥ 𝑞′

𝑖
holds if: (i) 𝑞𝑖 and 𝑞′𝑖 have the same con-

stant value, or (ii) either 𝑞𝑖 or 𝑞′𝑖 is a labelled null. Consequently,
(𝑞′1, . . . , 𝑞

′
𝑛) =⊥ (𝑞1, . . . , 𝑞𝑛) holds iff 𝑞𝑖 =⊥ 𝑞′

𝑖
holds for every

1 ≤ 𝑖 ≤ 𝑛. The =⊥ relation is therefore used, instead of standard
equality, to form groups. A tuple containing null quasi-identifiers,
as a result of anonymization steps, is assigned tomultiple aggrega-
tion groups (which do not partition the microdata DB anymore),
increasing their cardinality and so anonymity.

We now have all the ingredients ready to encode local sup-
pression, an anonymization method where quasi-identifiers are
replaced by labelled nulls to reduce the statistical disclosure risk.
The technique is expressed by Algorithm 7.

Algorithm 7 Local suppression
(1) Tuple(𝑀, 𝐼,VSet), anonymize(𝐼 ),Cat(𝑀,𝐴,Quasi-identifier),
VSet[𝐴] is not null → ∃𝑍 Tuple(𝑀, 𝐼, (𝐴,𝑍 ) ∪ (VSet \ (𝐴, _))).

For a tuple 𝐼 that needs to be anonymized, as witnessed by the
predicate anonymized, for a not null quasi-identifier 𝐴, we gen-
erate a new tuple, where it is replaced by a labelled null 𝑍 .
Global Recoding. While local suppression introduces nulls, an-
other technique to control statistical disclosure risk consists in
decreasing the granularity of the values on the basis of domain
knowledge. Consider again Figure 5a. Tuples 6 and 7 have the
following sample unique sets, respectively: {⟨Area,Milano⟩ ,
⟨Sector,Construction⟩},{⟨Area,Torino⟩, ⟨Sector,Construction⟩}
and therefore have high disclosure risk. Besides the basic meta-
data dictionary we have seen in Section 4.1, the Vada-Sa KB
contains knowledge about the attribute domains as well as the
mutual relationship between their values. For instance, for the
attribute Area, the KB comprises the following information:
Att(I&G,Area). TypeOf (Area,City) . SubTypeOf (City, Region).
InstOf (Milano,City) . InstOf (Torino,City) .
InstOf (North, Region) . IsA(Milano,North) . IsA(Torino,North).

The Area attribute is known to be of Type “City”, which in
turn is a SubtypeOf “Region”. Moreover we know that Milano
and Torino are instances of cities and North is an instance of
region. Finally, we now that both Milano and Torino are in the
North. Similar knowledge is present for the entire geography.
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Algorithm 8 Global recoding
(1) Tuple(𝑀, 𝐼,VSet), anonymize(𝐼 ),Cat(𝑀,𝐴,Quasi-identifier),

TypeOf (𝐴,𝑋 ), subTypeOf (𝑋,𝑌 ), isA(VSet[𝐴], 𝑍 ),
TypeOf (𝑍,𝑌 ) → Tuple(𝑀, 𝐼, (𝐴,𝑍 ) ∪ (VSet \ (𝐴, _))) .

The logic for global recoding is in Algorithm 8. For a tuple that
needs to be anonymized, we consider a quasi-identifier 𝐴. Based
on its type, we climb the hierarchy up to its direct super-type
𝑌 . Then for the value VSet[𝐴] of 𝐴, we use the corresponding
value 𝑍 of 𝑌 to replace VSet[𝐴]. This form of suppression can be
effectively applied to the entire microdata DB (and in this sense
it is “global”) and is inherently recursive as multiple hierarchical
roll-ups may be needed to guarantee anonymity.

4.4 Enhancing Anonymization
We conclude the section by discussing two advanced topics: em-
bedding of complex business knowledge, where we showcase the
use of domain experience for context aware anonymization, and
implementation of runtime heuristics, to maximize the statistical
effectiveness of our approach.
Embedding complex business knowledge. The overall ano-
nymization process can largely benefit from the surrounding
business knowledge, an aspect often neglected by dedicated tools.
Thanks to reasoning, we can inject business representations into
different phases of Algorithm 2: in risk estimation modules, to
craft ad-hoc methods; into anonymization techniques, e.g., to opt
for specific values for global recoding, and so on. The setting we
show here, motivated by our experience in the Bank of Italy with
financial networks, consists of taking into account the relation-
ships that exist between the respondents, say 𝑋 and 𝑌 . It is in
fact common that the statistical disclosure risk propagates along
linked entities, e.g., companies or people, so that being able to
re-identify one, makes it easier to re-identify others. In essence,
all the linked entities of a given cluster, have the same disclosure
risk, obtained as the probability that at least one entity of the
cluster is re-identified: 1 −∏

𝑐 (1 − 𝜌𝑐 ), where 𝜌𝑐 is the risk of
an entity, calculated with one of the techniques in Section 4.2.
Here, along the lines of what usually done to estimate the risk of
households and hierarchical structures [26], re-identification risk
is interpreted as the re-identification probability.

Now, types of links that can be considered are arbitrarily com-
plex: finding members of the same family, companies of the same
company group are examples. The latter, e.g., could be encoded
by the following Vadalog rules: (1) Own(𝑋,𝑌,𝑊 ),𝑊 > 0.5 →
rel(𝑋,𝑌 ). (2) rel(𝑋,𝑍 ),Own(𝑍,𝑌,𝑊 ),msum(𝑊, ⟨𝑍 ⟩) > 0.5 →
rel(𝑋,𝑌 ). Clusters of companies (rel(𝑋,𝑌 ) holds where 𝑋 and
𝑌 are in the same cluster) are defined by company control rela-
tionships: if 𝑋 owns more than 50% of the shares of 𝑌 (Rule 1) or
controls a set of companies 𝑍 that jointly own more than 50% of
𝑌 , than 𝑋 controls 𝑌 and thus 𝑋 and 𝑌 are in the same cluster.

Algorithm 9 shows an enhanced version of Algorithm 2, where
the risk for a tuple 𝐼2 is estimated as explained. Specifically, Rule 2
uses #rel (and we assume here rel(𝑋,𝑋 ) holds) to compute the
risk for 𝐼1 as the combined risk of the entities in the same clus-
ter. The aggregation mprod is the monotonic product, which
considers, for each contributor 𝐼2, the maximum contribution
it provides, so as to account for the new less risky anonymized
tuples produced by Rule 3, and eventually triggering Rule 4.
Runtime heuristics. We have seen how Vada-Sa operates in-
crementally and applies anonymization steps, only when tuples
exhibit an overly high statistical disclosure risk. However, there

Algorithm 9 Enhanced anonymization cycle
(1) Val(𝑀, 𝐼,𝐴,𝑉 ),Cat(𝑀,𝐴,𝐶),𝐶 in {Quasi-identifier,Weight},

VSet = munion((𝐴,𝑉 )) → Tuple(𝑀, 𝐼,VSet).
(2) Cat(𝑀,𝐴,𝐶),𝐶 = Identifier,Tuple(𝑀, 𝐼1,VSet1),

Tuple(𝑀, 𝐼2,VSet2), #rel(VSet1 [𝐴],VSet2 [𝐴]), #risk(𝐼1, 𝑅),
𝑅clust = 1 − #mprod (1 − 𝑅, ⟨𝐼2⟩) → Risk(I1, Rclust) .

(3) Tuple(𝑀, 𝐼,VSet), Risk(𝐼 , 𝑅), 𝑅 > 𝑇 → #anonymize(I) .
(4) Tuple(𝑀, 𝐼,VSet), Risk(𝐼 , 𝑅), 𝑅 ≤ 𝑇 → Tuple𝐴 (𝑀, 𝐼,VSet) .

are still various open questions to be addressed, which corre-
spond to specific degrees of freedom in anonymizing microdata.
If there are two or more tuples that violate the risk threshold,
which ones should be anonymized first? Moreover, if there are
two or more quasi-identifiers of the same tuple, which one should
be suppressed or recoded first?

As for the first question, in Vada-Sa, we adopt a greedy ap-
proach and choose to anonymize first the tuples that carry less
statistical significance (namely, data utility), which can be es-
timated on the basis of the sampling weight. We exploit the
so-called routing strategies [5] of the underlying Vadalog sys-
tem to decide which bindings of the rule body to privilege when
multiple possibilities arise. The approach here is quite intuitive:
a “less significant first” strategy sorts the bindings of Rule 2 by
risk and guides the anonymization accordingly.

The second question, namely the prioritization of quasi-identi-
fiers, requires more care. We have seen in Algorithms 7 and 8 that
either an existential or a higher-level domain value is used to re-
place quasi-identifiers and the specific attribute to consider is cho-
sen as a consequence of the binding ofCat(𝑀,𝐴,Quasi-identifier).
Also in this case, we can prioritize bindings by adopting a Vada-
log routing strategy and the greedy approach. In particular, a
“most risky first” strategy would first bind the rules against the at-
tributes that affect more the tuple-level disclosure risk. So, in this
case, the strategy itself would rely on a Vadalog program com-
puting the risk, in order to take informed decisions. For instance,
consider the problem of anonymizing tuple 1 of Figure 5a. Apply-
ing local suppression on Sector removes any sample unique of
the tuple, which then occurs with frequency 5; instead, applying
local suppression on Area, e.g., would leave the value “Textiles”
for Sector, and would then require further local suppressions un-
til such attribute is removed, with a consequential loss of data
utility. In other terms, a greedy approach to local suppression or
global recoding sustains the preservation of data utility.

5 EXPERIMENTS
Vada-Sa has been fully implemented and engineered in the Vada-
log System. Towards a production application of the framework
for the Research Data Center of the Bank of Italy, the system
has been extensively experimented on real-world datasets from
the Bank of Italy and synthetic ones to assess its anonymization
capability (Section 5.1) and scalability (Section 5.2). The schema
independent approach makes the framework general purpose
and suitable for treating datasets in any domain.

Datasets. The microdata DBs used in the experimental analysis
are reported in Figure 6. The real-world and realistic datasets
derive from the Inflation and Growth Survey of the Bank of Italy,
whose schema is shown in Figure 1. The synthetic datasets have
been generated by fitting the real-world distribution (denoted
by “W” in the figure) or by inducing specific unbalanced or very
unbalanced distributions (denoted by “U” and “V”). Unbalanced
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Dataset No. Att. No. Tuples Dist. Data
R6A4U 4 6k U Synth
R12A4U 4 12k U Synth
R25A4W 4 25k W Real-world
R25A4U 4 25k U Realistic
R25A4V 4 25k V Realistic
R50A4W 4 50k W Synth
R50A4U 4 50k U Synth
R50A5W 5 50k W Synth
R50A6W 6 50k W Synth
R50A8W 8 50k W Synth
R50A9W 9 50k W Synth
R100A4U 4 100k U Synth

Figure 6: Datasets used in the experimental settings.

distributions comprise many tuples with very selective combina-
tions of quasi-identifiers, which exhibit high disclosure risk.
Hardware. We employed a memory-optimized virtual machine
with 16 cores and 128 GB RAM on an Intel Xeon architecture.

5.1 Testing Anonymization Capability
We analyzed the capability of the system to detect tuples that
need to be anonymized (i.e., the “risky” tuples).

Reduction of risk vs. loss of information. We applied the
Vada-Sa anonymization cycle to the real-world dataset 𝑅25𝐴4𝑊
with the k-anonymity risk evaluation technique (Section 4.2) and
choosing a risk threshold𝑇 = 0.5. We employed local suppression
anonymization (Section 4.3), with a less significant first runtime
heuristic (Section 4.4). We varied the anonymity threshold 𝑘 from
2 to 5. We adopted two metrics to evaluate the capability of the
system to detect risky tuples: we counted the number of nulls
injected by the local suppression as a result of risk evaluation,
so analyzing how many values the system was able to erase
(Figure 7a); we estimated the loss of information by weighing the
number of erased values (i.e., the injected nulls) by the maximum
total number of values, those of quasi-identifiers of the risky
tuples w.r.t. 𝑇 , that can be theoretically removed (Figure 7b) to
satisfy the k-anonymity requirement. For both the measurements,
we also evaluated the robustness of the approach, by applying the
anonymization cycle to artificial but realistic datasets (𝑅25𝐴4𝑈
and 𝑅25𝐴4𝑉 ) having the same distribution of quasi-identifiers of
𝑅25𝐴4𝑊 , but with an increased number of risky tuples.

The results in Figure 7a confirm what expected: when the
k-anonymity threshold is increased, the anonymization cycle
becomes less tolerant, and more redundancy is required to guar-
antee anonymity, therefore, in absolute terms, more and more
labelled nulls need to be added to suppress specific values. We
also observe that the number of needed nulls linearly grows with
the tolerance threshold, as a consequence of an overall uniform
distribution of values in the adopted combination of 4 quasi-
identifiers. While an average real-world dataset requires less
than 50 labelled nulls for 25𝑘 tuples with a 5-tuples tolerance
threshold, more unbalanced versions require more, while con-
firming the trend. Figure 7b witnesses very good behaviour of
Vada-Sa in terms of statistical preservation. For the real-world
and the mildly unbalanced dataset, the loss of information is
constantly below 20%, in particular between 12% (lower bound
of 𝑅25𝐴4𝑊 ) and 17% (upper bound of 𝑅25𝐴4𝑈 ). For these two
datasets, the constant trends show that when the number of risky
tuples increases, the greedy approach succeeds in removing the
values with a wider risk reduction effect. The loss of information
for the very unbalanced dataset 𝑅25𝐴4𝑉 is clearly higher, 37%,
but it interestingly drops to 13% with less tolerant runs, because

the high number of tuples that are considered risky on differ-
ent combinations of values of quasi-identifiers, collapse in the
k-anonymity comparison, when labelled nulls are introduced: so,
while the number of nulls is high in absolute terms, the loss of
information decreases. This result turns out to be an extremely
positive guarantee of the anonymization capability of Vada-Sa.

Maybe-matching labelled nulls. In this experiment, we want
to assess the effectiveness of the maybe-match semantics, which
we use to compare labelled nulls with one another (and has been
described in Section 4.3), as opposed to the standard semantics of
labelled nulls, such as that adopted in chase-based procedures
(e.g., Skolem chase [11]). According to the standard semantics,
for a quasi-identifier 𝑞𝑖 , we have that 𝑞𝑖 =⊥ 𝑞′

𝑖
holds if: (i) 𝑞𝑖

and 𝑞′
𝑖
have the same constant value, or (ii) both 𝑞𝑖 and 𝑞′𝑖 are

labelled with the same null symbol. We plugged this semantics
into Vada-Sa, used the same real-world and realistic datasets of
Figure 7b and report the number of injected nulls by k-anonymity
threshold in Figure 7c. Also here, the risk threshold 𝑇 = 0.5 has
been used. The figure highlights the proliferation of symbols (the
red lines) that takes place with the standard semantics, which
is in fact unusable in this setting. By contrast, the probabilistic
interpretation of nulls we foster, minimizes the number of labelled
nulls (the light-blue lines, whose zoomed version is in Figure 7a).

Using business knowledge. We show the results of anonymiza-
tion in a real-world setting where anonymization cycle is com-
plemented with a set of Vadalog rules that produce derived
extensional knowledge about control relationships between com-
panies. The rules and the setting have been presented in detail in
Section 4.4. For the test, we adopt the real-world dataset 𝑅25𝐴4𝑊
and its tweaked unbalanced versions, 𝑅25𝐴4𝑈 and 𝑅25𝐴4𝑉 . We
anonymize each of the datasets by estimating the risk with k-
anonymity with 𝑘 = 2 and 𝑇 = 0.5. We measure the number of
nulls injected by local suppression in 5 settings, with increasing
number of inferred control relationships, from 0 to 400.

The results are shown in Figure 7d. With all the datasets, the
number of injected nulls grows with the number of relationships
between entities, which induce bigger and more risky clusters.
The three distributions of the quasi-identifier values differently
interact with the derived relationships: the more unbalanced the
dataset is, the more tuples will be affected by the propagation of
risk of the outliers, resulting into a globally risky dataset, to be
severely anonymized. In real-world tests, relationships disclose
many cases that deserve anonymization (from 9 in the case of
100 relationships to 38 for 400), while the propagation effect is
maximized in the 𝑅25𝐴4𝑉 dataset with an upper bound of 323
injected nulls for 300 relationships.

5.2 Testing Scalability
Given the characteristics of the data at hand to be anonymized,
we need to make sure that our approach scales well. Although
the anonymization cycle, risk estimation and anonymization of
Vada-Sa are expressed in Vadalog, where reasoning is PTIME in
data complexity [6], here we want to investigate on the specific
runtime of the system in different settings.

By dataset size. We tested the scalability of Vada-Sa by increas-
ing volumes, with 4 synthetic datasets (from 𝑅6𝐴4𝑈 to 𝑅100𝐴4𝑈 ),
unbalanced and having a high number of risky tuples. We mea-
sured the elapsed time for the entire anonymization cycle and
also pointed out the sole risk estimation component, with 3 dif-
ferent risk estimation techniques (individual risk, k-anonymity,
SUDA). We used 𝑘 = 2 for k-anonymity, 3 as the MSU threshold
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Figure 7: (a) Number of nulls injected by k-anonymity threshold. (b) Information loss by k-anonymity threshold. (c) Num-
ber of nulls injectedwithmaybe-matching viz. standard labelled null semantics. (d) Number of nulls injected by increasing
number of relationships in settings with explicit modeling of business knowledge. (e) Execution time by dataset size and
risk estimation technique. (f) Execution time by number of quasi-identifiers and risk estimation technique.

for SUDA (see Section 4.3) and 𝑇 = 0.5. We executed each run 5
times and averaged the measurements, for a total of 60 runs.

The results are shown in Figure 7e. All the three groups of
trends confirm that the risk estimation component (dotted lines)
dominate the elapsed time. This is reasonably expected, as the
convergence of our anonymization cycle depends on a positive
evaluation of risk estimation, which is then the bottleneck. The
linear trend confirms the applicability of the approach. In partic-
ular, k-anonymity exhibits a very good behaviour, with elapsed
time between 6 and 192 seconds for 100𝑘 tuples. The limited
cost of estimation can be ascribed to the adoption of monotonic
aggregations, which adopt incremental updates and need not be
recomputed from time to time. Whilst in Algorithm 5 we have
made a simple assumption to estimate the risk from the posterior
distribution 𝐹𝑘 |𝑓q̂ (which would have led to elapsed times similar
to those for k-anonymity), for this experiment we plugged into
Vada-Sa an off-the-shelf statistical library and sampled from the
actual negative binomial distribution. The costly trend is moti-
vated by the interaction overhead between the native Vadalog
component and the library. The trend for SUDA is less than lin-
ear, with, e.g., 727 seconds for 50𝑘 and 1344 seconds for 100𝑘
tuples since the potential blowup on the number of examined
combinations of quasi-identifiers is controlled by the Vadalog
optimizations.

By number of quasi-identifiers. To investigate more the de-
pendence of performance on the number of quasi-identifiers, we
stressed Vada-Sa by anonymizing 6 datasets 𝑅50𝐴4𝑊 -𝑅50𝐴9𝑊 ,
so with increasing number of attributes and fixed number of
tuples, 50𝑘 , and real-world-like distribution. We used the same
thresholds for k-anonymity, SUDA, and 𝑇 . We measured elapsed

time and the risk estimation component. We executed each run
5 times averaging the results, for a total of 90 runs.

Figure 7f reports the results. As expected, individual risk and k-
anonymity are only marginally affected by the increased number
of quasi-identifiers, as they do not consider all the combinations
with at most 𝑘 attributes, but only those with exactly 𝑘 . Instead,
we may expect a much worse trend for SUDA, where for each
tuple, all the combinations of at most 𝑘 attributes are inspected
to detect potential MSU. Remarkably, no combinatorial blowup
appears in the figure, witnessing a very effective behaviour of
the Vadalog execution optimization: while the activation of
Rules 2-5 of Algorithm 6 could in theory cause a blowup w.r.t. 𝑘 ,
it does not happen in practice because the greedy activation of
Rule 7 performed by Vadalog to detect the MSUs preempts the
generation of redundant combinations of quasi-identifiers.

6 RELATEDWORK
Statistical disclosure control is a broad topic to which many have
contributed, especially from the Statistics community, whose
work can be considered related to ours.

The concept of Sample Uniqueness (SU) to measuring the
risk of data disclosure was introduced by Skinner [35], while
k-anonymity, was first presented by Sweeney [37], along with
the first methods of anonymization by generalization (our global
recoding) and local suppression. The measure of individual risk in
our contribution is inspired by the work of Benedetti and Fran-
coni [7] who proposed to compute the risk of data disclosure
with the sampling weights of data records.

The topic of data anonymization is related to the area of differ-
ential privacy [17], where an interesting concept may be adopted
in our approach so as to develop a new family of risk measures,
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based on the idea that an individual’s privacy may be violated
even knowing the absence of the individual from the microdata.
Investigating such direction will be matter of future work.

While the foundations of our work are set in the theory of
statistical disclosure control, our contribution is concerned with
providing an industrial production ready solution for the Bank
of Italy, conveying a set of properties that derive from a fully
declarative reasoning approach. In this sense, we combine our
experience in logic-based reasoning [6] and schema-independent
solutions to model management problems [3]. None of the exist-
ing dedicated software solutions for statistical disclosure control
offers the mentioned set of properties. The software pack AR-
GUS [27] aims at local suppression and coding, as does the Datafly
system [36]. Manning et al. introduce SUDA2 (Special Unique
Detection Algorithm) [29], whose objective is to detect the risk
in certain unique combinations of variables. Recently, the R pack-
age sdcMicro has implemented many of the risk measures and
anonymization approaches of our interest [9]. Likewise, ARX
is a solution for data anonymization that has been proposed
as a practical approach to Statistical disclosure control [33]. A
comprehensive survey of the statistical approaches has been
provided by Matthews and Harel [30]. Recent work on the risk
of information disclosure in linked data, and, more in general,
ontology-based data, has formalized the problem and defined its
logical foundations [8], with an interest in the concept of linkage
safety in RDF graphs [24]; a declarative framework for linked
data anonymization has also been proposed [15]. The problem
of preserving privacy in data exchange has been analyzed also
in the context of information integration systems [31] where a
practical solution is represented by MapRepair [10] and in the
cryptography community, with homomorphic encryption [28].

In the AI literature, statistical disclosure control has been
mostly considered within machine learning [16] and deep learn-
ing approaches [4]. Yet, they have a different focus and aim at
generating anonymized clones of existing datasets while respect-
ing the original statistical properties. An interesting deductive
proposal by Øhrn and Ohno-Machado uses Boolean reasoning for
data anonymization in databases [32], which however remains
purely theoretical and just considers the combinatorial aspect.

7 CONCLUSION
In this paper, we presented Vada-Sa, a declarative statistical
disclosure control framework. We demonstrated the anonymiza-
tion workflow, metadata dictionary, and statistical disclosure
risk estimation. Utilizing these components, we introduced the
anonymization cycle. To maximize the statistical effectiveness of
our approach, we also presented two enhancements, namely em-
bedding of complex business knowledge and runtime heuristics.
We validated the approach on real-world central bank data. As
future work, we plan to further enhance the framework, and test
it in a variety of other real-world scenarios.
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ABSTRACT
The detection of duplicates is an essential task in data cleaning
and integration and has steadily gained importance especially for
researchers and practitioners that need to process and integrate
large volumes of potentially unclean data on a daily basis. To
evaluate the quality and performance of duplicate detection al-
gorithms, labeled test data are required that provide information
on the contained duplicates. Current approaches for generating
test data, however, are either not scalable (and therefore limited
to small datasets) or not able to generate realistic data values
and errors, especially outdated values. In this paper, we propose
a scheme for generating test datasets that addresses both these
issues and present a test dataset generated with it. Our approach
relies on using historical data from the North Carolina voter
register which (1) is realistic as it contains actual voter data and
(2) facilitates generating realistic duplicates through the fact that
current data values were collected at every election through man-
ually filled out applications. The generated test dataset comprises
more than 120 million records with up to 90 attribute values
each. To the best of our knowledge, we are the first who provide
realistic test data for duplicate detection at this scale.

1 INTRODUCTION
Duplicates are data records (e.g., tuples in the relational case) that
refer to the same real-world object. They can result from errors in
data management, but also occur because separately developed
data sources overlap in their universes of discourse (e.g., many
actors and movies are stored in both IMDB1 and TMDb2). The
detection of duplicates is an important task in data cleaning [12,
16] and integration [8, 9]. Detecting duplicates is quite simple
when they are exact, i.e. they agree in all of their values. However,
it can be extremely difficult if some of their values disagree due
to typos, phonetic or transformation errors, heterogeneous forms
of presentation as well as missing or outdated values [14].

The challenge of detecting such so-called fuzzy duplicates has
opened up its own field of research and has since been studied
intensively [4, 7, 23, 31]. However, the best approach to find
them strongly depends on (i) the considered domain (e.g., movies,
persons, or proteins), (ii) the characteristics of the given data

1Internet Movie Database: https://www.imdb.com
2The Movie Database: https://www.themoviedb.org

© 2021 Copyright held by the owner/author(s). Published in Proceedings of the
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(e.g., volume, data model and heterogeneity), and (iii) the quality
and cost requirements of the user (e.g., good results vs. short
runtimes and recall vs. precision). Due to the resulting diversity
of use cases, none of the existing algorithms has turned out to
be a generally applicable and superior solution. Instead, in every
use case, it remains a difficult (and expensive) task to choose and
configure them so that they provide adequate results.

Such a configuration process requires the evaluation and com-
parison of different algorithms and parameter settings. This in
turn requires test datasets that do not only provide a gold stan-
dard (a.k.a. ground truth) labeling the dataset’s duplicates [21],
but resemble the required real-life properties as well as possible.
Current approaches to test data generation either (i) struggle
with the generation of realistic data values and errors (especially
outdated values), (ii) cannot guarantee the soundness of the gold
standard3, or (iii) scale badly and thus can only be used to gener-
ate small datasets. However, realistic values and errors as well as
correctly labeled duplicates are an important prerequisite for a
test dataset. Moreover, in times of big data many duplicate detec-
tion algorithms focus on scalability (e.g., [13, 17, 30]) so that an
evaluation of their key functionalities requires large test datasets
with millions of records.

Using a historical dataset to generate test data seems to be a
straightforward solution to some of the aforementioned problems,
because the mapping between records and real-world objects is
part of the data so that the duplicates are already labeled. Thus,
it scales much better than, for example, labeling the duplicates in
an unclean dataset manually. In addition, historical datasets are
perfectly suited to generate outdated values, because these values
are an inherent part of the data. One of these historical datasets
is provided by the State of North Carolina (short NC) [26]. This
dataset contains information on voters registered to the individ-
ual elections and – at the time of our study – consisted of 45
snapshots covering a time period of 16 years with a total number
of over 500 million records and a large schema with 90 attributes.
These numbers make it a perfect candidate to evaluate the suit-
ability of the aforementioned idea, because the large number of
records allows us to generate a test dataset of large size and the
large time span provides us many outdated values (even more
than one for the same object property). Furthermore, since voters
often have to re-register at regular intervals by manually filled
out forms4, the registration data contain typos, values confused
between attributes, heterogeneous forms of presentation and
missing values which makes this dataset particularly useful for

3To clearly distinguish between errors in the duplicate labels and the operational
data, we use the term soundness w.r.t. the correctness of the gold standard.
4https://dl.ncsbe.gov/?prefix=Voter_Registration/
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the generation of fuzzy duplicates. Finally, its large size gives
us the opportunity to customize the test data to different user
requirements by selecting a suitable subset of all records (the
more data available, the more flexible the selection process). How-
ever, the big amount of redundant data as well as the ongoing
publication of new snapshots also pose some challenges to the
generation process making it a non-trivial task.

The contributions of this paper can be summarized as:
(i) A comprehensive list of desiderata for test datasets for

duplicate detection.
(ii) An approach for generating and storing test data based

on the historical voter register from North Carolina.
(iii) A realistic test dataset generated with our approach.
(iv) An extensive experimental evaluation to analyze the qual-

ity and prove the usability of the generated test dataset.
We provide the generated dataset to other researchers5. It will

help them to evaluate their algorithms (such as runtime behavior
or robustness against a varying number of data errors) and to
compare them with those of other research projects. It is particu-
larly valuable to the research community through a combination
of properties that is unique to the best of our knowledge:

• It contains more than 120 million records and 640 million
duplicate pairs making it suitable to evaluate duplicate
detection algorithms at scale,

• it contains real-life errors of various types including typos,
abbreviations, phonetic errors and outdated values,

• its large size qualifies it to customize the test data to differ-
ent user requirements without losing necessary volume,

• it provides precalculated plausibility and heterogeneity
scores, which support the user to remove (or repair) po-
tentially unsound duplicate clusters and adapt the datas’
heterogeneity to her own requirements, and

• it provides meta information that allows the user to repro-
duce experiments using previous versions of this dataset.

The rest of this paper is structured as follows: In Section 2, we
describe the input to our study, i.e. the voter register from North
Carolina. Thereafter, in Section 3, we discuss several aspects
affecting the test datas’ quality, usability and reproducibility. In
Sections 4 and 5, we describe our approach for using the historical
voter data for test data generation. In Section 6 we present an
experimental study that evaluates the quality and usability of
the generated test dataset. Finally, we discuss related work in
Section 7 before we conclude the paper and give an outlook on
future research in Section 8.

2 NORTH CAROLINA VOTER REGISTER
The voter register from North Carolina was created and is still
maintained by the North Carolina State Board of Elections6 accord-
ing to the Help America Vote Act (HAVA) of 2002. The provided
voter records are considered public information per NC General
Statutes (§132-1, §163-82.10) [1, 25], but do not include dates
of birth, driver’s license numbers and social security numbers
because they are confidential under state law [1, 20, 26].

In addition to current data, the register provides a voter his-
tory in the form of a series of snapshots [24]. The first publicly
available snapshot is from 2005-11-25. New snapshots were (and
still are) created at every New Year’s Day and the date of every
election (general, primary and municipal) [26]. At the time of
our study, the register contained 45 snapshots. The schema of

5Please write an email to dbis-research@informatik.uni-hamburg.de.
6https://www.ncsbe.gov/

Table 1: Overview of the snapshots included in this study

#snap- #total #new rate of new
year shots records records objects records objects

2008 1 9.7 M 9.7 M 9.4 M 100% 96.8%
2009 1 9.7 M 0.7 M 37 K 6.8% 5.6%
2010 2 20.2 M 13.1 M 189 K 64.9% 1.4%
2011 1 10.3 M 2.3 M 225 K 22.2% 9.9%
2012 4 41.8 M 19.9 M 820 K 47.6% 4.1%
2013 1 11.4 M 11.1 M 41 K 97.1% 0.4%
2014 4 47.3 M 7.5 M 432 K 15.8% 5.8%
2015 4 49.0 M 6.6 M 223 K 13.5% 3.4%
2016 4 50.9 M 7.7 M 587 K 15.1% 7.6%
2017 4 54.1 M 3.6 M 245 K 6.7% 6.7%
2018 3 41.7 M 23.7 M 374 K 56.9% 1.6%
2019 7 99.8 M 5.5 M 354 K 5.5% 6.5%
2020 4 60.8 M 8.0 M 596 K 13.1% 7.4%
2021 1 15.9 M 0.8 M 62 K 5.1% 7.6%
total 41 522.5 M 120.8 M 13.57 M 23.1% 11.2%
M = million, K = thousand

these snapshots evolved over time, but was consistent for the
last 41 snapshots. Since the first four snapshots are missing nec-
essary information to clearly identify a voter, we excluded them
from our study. The characteristics of the remaining snapshots
are presented (in an aggregated form) in Table 1. The whole
voter history contains 522,463,029 records representing a total of
13,569,512 distinct persons.

Each snapshot corresponds to a large tab-separated values
(TSV) file. As it turned out during data profiling, these files are
formatted differently. While the older files (if not updated later)
are in UTF-8, the newer files are in UTF-16. Since none of the
provided attributes is expected to contain characters that are not
part of the UTF-8 character set, we converted all files to UTF-8 be-
fore importing them into our dataset. Here it is important to note
that occasional conversion errors do not spoil our test dataset,
since they also happen in real-life, as long as they do not corrupt
the correct mapping between records and objects required for
the gold standard (i.e., they do not concern the NCIDs).

Every record in the snapshot files specifies an entry to the
voter register and consists of 90 attributes. We grouped these
attributes into four semantic categories:

• personal information (38 attributes) such as names, age,
address data, phone number, race code and sex,

• information on the districts the voter is registered in (38
attributes), such as school, water and fire district,

• information on the voter that is closely related to the
election she is registered to (11 attributes), such as voter
status and registration date, and

• meta data for administrating the snapshots and identifying
voters/records within them (3 attributes), which are the
NCID as well as the snapshot and load date.

The NCID is a unique number for each voter currently or
previously registered in North Carolina. A voter’s NCID will
follow him from one county to another when she migrates within
the state of NC. Thus, the NCID can be used to uniquely identify
the individual voters and therefore can serve as an object-id. To
our surprise, we discovered that in every snapshot many voters
are represented by more than one record. A closer look revealed
that at most only one of them has not the voter status removed
(and hence is not outdated). This means that every snapshot
already corresponds to a historical dataset.
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3 TEST DATA DESIDERATA
Before we describe in which way we used the history of the NC
voter register to generate test data in Section 4, we will take a
closer look on the desired properties of such a test dataset. A
suitable test dataset has to ensure a high

• quality, i.e., the test data should enable meaningful evalu-
ation results,

• usability, i.e., the user should be able to customize the test
data according to her requirements, and

• reproducibility, i.e., the user should be able to reproduce
the results of past evaluations that used previous versions
of this dataset in order to achieve adequate comparability.

In the rest of this section, we will discuss these requirements
and the problems that are related with them in more detail. The
way we handled them in our generation process will be described
in the remaining course of this paper.

3.1 Quality
A test dataset is of good quality if its gold standard is sound, its
data contain real(istic) errors of different types and it contains
only few exact duplicates.

3.1.1 Soundness of the Gold Standard. A test dataset for dupli-
cate detection consists of a set of data records and the correspond-
ing gold standard that specifies the duplicate status between the
individual records. While errors in the actual data are quite de-
sirable (see Section 3.1.2), it is extremely important that the gold
standard is sound, because even a small number of incorrectly
labeled record pairs (i.e., false positives and/or false negatives) can
render evaluation results completely useless.

In a perfect world, the mappings between the voter records
and actual voters are sound. However, almost no dataset is free of
errors. Thus, it make sense to perform a soundness check on the
test data because, aswe illustrate in Figure 3, theremay be clusters
whose records do not seem to represent the same voter although
they share the same NCID. Marking those clusters allows the
user to remove or repair them before using the test dataset. Since
we often cannot distinguish between sound and unsound clusters
with absolute confidence, it does not seem wise to use a Boolean
flag as a marker, but to compute similarities which reflect a kind
of likelihood that these clusters are sound (i.e., all their records
represent the same voter). The user can then use these similarities
to decide which risk she wants to take to include unsound clusters
into her test data. We refer to this similarity as plausibility in the
rest of this paper and discuss a calculation of plausibility scores
for the NC test dataset in Section 6.2.

3.1.2 Error Diversity. The results of an evaluation with a test
dataset are only representative if this dataset contains real-life (or
at least realistic) data values and errors. In our case, both are real
because they originate from a real-life dataset. Moreover, users
want to evaluate algorithms that should later be applied to error-
prone data. This requires that the test dataset contains errors of
various kinds and not only outdated values. This includes typos,
abbreviations, invalid values, inconsistencies and different forms
of representation. In other words a test dataset of high quality
has to contain several problems of data quality.

3.1.3 Amount of Exact Duplicates. Another aspect that affects
the usefulness of evaluation results is the number of exact dupli-
cates contained in the test data. The detection of such duplicates
is rather simple and every duplicate detection algorithm – no
matter how primitive – should be able to detect them. Thus if

this number dominates the number of fuzzy duplicates by far, an
accurate detection of the latter becomes less relevant in order to
achieve a good evaluation result. For example, if 90% of all du-
plicate pairs are exact, even the most primitive algorithm would
achieve a recall of 0.9 or higher if it is able to compare values
on equivalence. Moreover, an algorithm that classifies only the
exact duplicates as such and all other pairs as non-duplicates
(precision is 1.0) would even achieve a 𝐹1-score of 0.9 which is
a pretty good result. However those algorithms are completely
useless when it comes to real-life use cases where fuzzy dupli-
cates need to be detected. While this aspect is of little relevance
in many approaches to test data generation (the number of exact
duplicates is usually very small there), it is of great importance
when using historical data, since many of the given snapshots
overlap to a large extent, so that their combination leads to many
exact duplicates. As we will see in Section 4, by simply combining
the individual snapshots of the NC voter register we produced a
relative amount of exact duplicates of over 90%.

The actual definition of an exact duplicate pair is that both
records share the exact same value in every attribute. However,
in the case of the NC voter data, solely removing those duplicates
which are completely identical does not solve this problem, be-
cause often many of the remaining duplicate records only differ
in some minor aspects, such as:

• Meta Data Attributes: Many duplicate records only differ
in some date values, such as snapshot or registration date,
that are less relevant for the duplicate detection process.

• Time-related Attributes: The voters’ age values increase by
one every year and thus cause that some duplicates are no
longer exact, although none of the other characteristics of
the corresponding person changed.

• Whitespaces: Many values contain leading and trailing
whitespaces that are simply to detect and remove by trim-
ming all data values in an initial preparation step.

We describe how we addressed this problem in Section 4.

3.2 Usability
Since we aim to provide test data for duplicate detection at scale,
the resulting dataset should contain several million records. Be-
sides size, the requirements of the individual users can vary from
one evaluation to another. Therefore it is advantageous if the
test data can be adapted to the needs of the respective use case
in terms of several data characteristics, such as the number of
clusters, the cluster sizes, or the degree of heterogeneity (a.k.a.
dirtiness). This can be accomplished by applying a postprocess-
ing step, which selects a subset of all data carefully. Further op-
tions for customization are the removal and merge of attributes,
changing the character of the attributes’ values. A flexible and
unconstrained customization requires that the test dataset con-
tains (i) many duplicate clusters of various sizes and (ii) duplicate
records of different degrees of heterogeneity, so that the user
has a large set to choose from. In addition, it requires that the
user can adjust the characteristics of the test data with relative
ease. This can be supported by storing all records of one cluster
together and providing precalculated heterogeneity scores.

The heterogeneity of the individual duplicate clusters (or du-
plicate pairs) represents the degree to which the duplicate records
differ from each other. At the same time, it can be considered as a
measure on the difficulty of detecting the fuzzy duplicates within
this dataset because duplicates are usually the more difficult to
detect, the more their values differ. Thus, this information does
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Table 2: Statistical results of the generation process

duplicate cluster size #removed
removal #records #dupl. pairs avg. max. records pairs

no 522.5 M 12,108.2 M 38.50 399 0% 0%
exact 166.3 M 1,225.0 M 12.26 104 68.2% 89.9%
trimming 120.8 M 648.2 M 8.90 77 76.9% 94.6%
person data 58.7 M 136.7 M 4.33 51 88.8% 98.9%
∗The number of objects (i.e., clusters) was always 13.57 M.

not only provide interesting insights into the nature of the test
data, but also allows the user to customize the level of difficulty
of her test dataset individually by filtering out clusters/records
whose heterogeneity is not within a requested range. This can be
useful when the user wants to test her algorithms with datasets
of different degrees of dirtiness. It is important to note that such
filtering can theoretically be performed on any test dataset. How-
ever, only a large number of clusters and records allows the user
to compose arbitrary subsets without running into the problem
of producing a too small output.

3.3 Reproducibility
The NC voter register is subject to constant change and new
snapshots are published regularly. This gives the opportunity to
extend the generated test dataset on a regular basis, too, which
does not only provide data on new voters (i.e., more duplicate
clusters), but also new data on already existing voters (i.e., larger
duplicate clusters and higher degrees of duplicate heterogeneity).
In general, the longer the time span covered by a test dataset,
the more outdated values it contains. Moreover, a longer time
span increases the chance of obtaining outdated values even for
attributes that do not change very frequently (e.g., the last name).

In performance and quality evaluation, reproducibility [27]
(a.k.a. repeatability [28]) is an important aspect because it is
necessary to enable a fair comparison between (the evaluation
results of) different algorithms especially if they are evaluated at
different times by different parties. In this context, reproducibility
means that another evaluation process (or at least its experimen-
tal setting) can be reproduced exactly. This includes the use of
the same test data. Thus, test datasets that change over time pose
a problem for reproducibility, especially if their size does not
allow a separate storage of every intermediate version. To solve
this problem, the datasets must be enriched by information that
allows the user to reconstruct any of the old versions on request.
It is important to note that such a reconstruction does not only
apply to the actual records, but also all meta data (e.g., statistics
and similarities) that are stored to describe them. We discuss how
we ensure reproducibility for our test dataset in Section 5.1.

4 TEST DATA GENERATION
Since every snapshot of the voter register already contains out-
dated records and we wanted to reduce execution time as well as
the number of exact duplicates as much as possible, we started to
experiment with a single snapshot. Because we planned to use as
much data as possible and the size of the snapshots grew mono-
tonically over time, we used the most recent one. At the time of
our analysis, this was the one created at 2021-01-01 and indeed,
among all available snapshots, it contains themost records having
the voter status removed (and thus are potentially outdated). The
total number of records in this snapshot is 15,863,484 (8,308,925 re-
moved) which corresponds to 3.04% of all voter records. However,

the experiments showed that the amount of historical informa-
tion stored in the individual snapshots is rather low compared
to the whole history and thus only provides small clusters (see
Figure 1a). Therefore, we also evaluated the entire voter history
containing all snapshots available. By doing so, we examined a
total of 522,463,029 records.

One of our goals was to analyze the amount of (near) exact
duplicates within the resulting test data. Moreover, we think that
most potential users are only interested in the personal data of
the voters, since the election and district attributes are very case-
specific. Therefore, we executed our approach four times: (i) one
time without removing any duplicates, (ii) one time with remov-
ing all exact duplicates, (iii) one time with removing all duplicates
that were exact after their values have been trimmed (i.e., leading
and trailing whitespaces were deleted), and (iv) one time with
removing all duplicates whose personal data were equivalent
(after trimming attribute values). To check the equivalence of
duplicate records efficiently, we used the Message-Digest Algo-
rithm 5 (short MD5) to calculate a hash value for each record.
A record was then not imported into the test dataset when it
already contained a record with the same hash value. Of course,
collisions between non-exact records cannot be excluded for sure,
but such a collision only means that the test dataset loses a du-
plicate record and thus does not have severe consequences if
it happens a few times7. The input to the hash function is the
concatenation of the values of all relevant attributes to a sin-
gle large string. As mentioned in Section 3.1.3, some meta data
and time-related attributes can reduce the number of near exact
duplicates drastically and therefore were not included into the
concatenation. These attributes are the different dates (snapshot,
load, registration and cancellation) and the age8.

The number of resulting objects (i.e., duplicate clusters), records,
duplicate pairs, the average and maximal number of records per
object (i.e., duplicate cluster size), as well as the number of re-
moved records and duplicate pairs are listed in Table 2. The
number of distinct duplicate clusters (i.e., objects) per cluster
size (i.e., number of records per object) is presented in Figure 1b
(one time for all attributes and one time for the personal data
only). Using a single snapshot did not produce any exact du-
plicate which was even less than expected. In contrast, using
all snapshots produced hundred of millions of exact duplicates.
Obviously, the average number of records per voter decreased
when these exact duplicates were removed (e.g., 8.90 without
whitespaces) and decreased further on when we restricted the
data to the personal attributes (4.33), but was still large compared
to the single-snapshot approach (1.18). In total, the number of
records that were removed because of being exact duplicates was
up to 76.9% and the number of removed duplicate pairs was up
to 94.6% when all attributes where taken into account and up to
88.8% and 98.9% if only person data was considered. These large
amounts of exact duplicates illustrate the importance of their
removal, because otherwise every evaluation of duplicate detec-
tion algorithms using these data would suffer from the effects
described in Section 3.1.3.

To estimate the value of future snapshots, we counted the
number of new clusters (i.e., the snapshot contains an NCID that
7MD5 produces 128 bit hashes, which means that it is relatively unlikely that the
hash values of two different inputs collide.
8In the case of age values, the most obvious solution is to transform them into
years of birth because the latter do not change. However, such a calculation would
enclose a part of the dates of birth, which were originally removed from the data
due to privacy reasons. We have therefore decided to use them only for internal
calculations (e.g., plausibility) and not to store them in the resulting test data.
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Figure 1: Distribution of the number of records per object (i.e., cluster size) after removing exact duplicates (trimming)

was never used before) and new records (i.e., the snapshot con-
tains a record that was not part of any of the previous snapshots)
per snapshot-year. These numbers are presented in Table 1 (note
that the second includes the first). The last two columns show
the percentage of rows that result in a new record (new record
rate) and the percentage of new records that lead to a new cluster
(new object rate). As expected, the number of new clusters and
new records is the highest for the first snapshot. Surprisingly,
the numbers of the following snapshots vary enormously (we ex-
pected an almost constant number). Investigations revealed that
in some snapshots the formats of one or two attributes changed
(e.g., from ‚64TH HOUSE‘ to ‚NC HOUSE DISTRICT 64‘) so that
each of their records were considered to be ‚new‘ even if – apart
from that – they were identical with one of the already existing
ones. This again shows us the importance of providing the user
with an instrument that allows her to filter out records based
on their similarities (see Section 6.5). However, as one can see,
even the last five snapshots contributed a significant amount of
new clusters and records to the test data. Thus, we can expect
the same for future snapshots.

5 TEST DATA STORAGE
The voter history is originally given as a set of TSV files. However,
we want to store our test dataset by using a data model that
is more suitable with respect to its later usage, i.e. to evaluate
duplicate detection algorithms as well as potential extensions
with data from new snapshots. As a consequence, the data model
has to satisfy three essential requirements:

• To customize the test data, we need to select and reduce
duplicate clusters based on user-defined specifications.
Moreover, when we integrate additional snapshot data,
we need to calculate statistics by comparing duplicate
records (e.g., plausibility and heterogeneity). Both require
fast and collective access to all records of the same cluster.

• Every record of the voter data has 90 attributes, but only
a few records have values for district-related attributes.
This means that millions of records have missing values
in at least 38 attributes. Thus, we require the underlying
data model to provide an efficient handling of sparse data.

• Working on hundreds of gigabytes requires scalable soft-
ware solutions.

Schemaless NoSQL data models are much better suited to
store sparse data than the relational model which requires the
definition of a rigid schema. Moreover, many NoSQL data stores

are designed to handle aggregates each of which is a collection of
related data that we wish to treat as a unit [29]. Thus, they allow
an easy and efficient way to access all the records of a certain
person as we need it for customization and future extensions.
Among all the available NoSQL data stores, we decided to use
the document store MongoDB [22]. In contrast to the relational
data model which is aggregate-ignorant, document stores are
strongly aggregate-oriented [29] because they allow to (i) group
records by storing them within the same document and (ii) nest
different documents hierarchically. Furthermore, MongoDB is
highly scalable. Besides its schemaless structure, MongoDB has
three features that are especially helpful for this work [22]:

• Indexes: Since our test dataset contains millions of nested
documents, indexes are very important to efficiently select
those documents from the dataset.

• Aggregation Pipeline: Multi-stage pipelines can be used to
transform documents into an aggregated result. Available
pipeline stages provide tools for filtering, transformation,
grouping and sorting. These pipelines enable users to ex-
tract relevant subsets of the data and thus to customize
their own test datasets.

• Compass:MongoDB has a powerful GUI called Compass. It
enables the user to easily interact with the stored data with
full CRUD functionality. It is very helpful for exploring,
generating, adjusting and using the test data. Moreover, it
allows to monitor load jobs of new snapshots and helps to
identify mistakes at an early stage.

In our case, we created one document for every person (i.e.,
duplicate cluster) that in turn contains a document for every
record of this person (which are grouped into an array) and in
addition a document containing some relevant meta data includ-
ing the hash values of the stored records. Since most users will
be interested in the personal data only, we split every record into
four parts (person, district, election and meta) and stored them
into different subdocuments.

5.1 Future Updates & Reproducibility
The NC State Board of Elections publishes a new snapshot at
every election and every New Year’s Day. Moreover, we have
observed that they published some old snapshots belatedly (e.g.,
the snapshot from 2010-11-02 was first published in May 2019).
To improve our test dataset both in size and heterogeneity, we
will update it regularly.
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Figure 2: Update process for new snapshots and statistics

5.1.1 Update Process. The update process is depicted in Fig-
ure 2 and consists of three steps. The first step corresponds to a
(parallel or sequential) import of one or more new snapshots. In
the second step, current statistics are updated and (if required)
new statistics are calculated. In the last step, a new version num-
ber is associated to the test data, versioning-related meta data
are updated and the new version is published. As illustrated by
this figure, the update process (and thus the creation of a new
version) can be triggered by two reasons:

• new snapshots are available, or
• new statistics are required.

Logically, in the second case, the first step is skipped and the
update process starts immediately with the second one.

5.1.2 Reproducibility. As described in Section 3.3, the import
of new data poses some challenges to the repeatability of eval-
uation processes that were using previous versions of our test
dataset. Since no record is ever removed from the test dataset,
it grows monotonically, which means that the set of all records
of the current version will always be a subset of all records of
every future version. Thus, theoretically, it is sufficient to add
a field to every record which is monotonically increasing with
every new update. This field can be the date of import or the
number of the first version containing this record (the snapshot
date is not suitable because it is not monotonically increasing
due to belatedly published snapshots). To reconstruct an earlier
version, the user can use this field to filter out all records whose
field value is greater than the value of the desired version.

However, we also want to allow users to limit their evaluation
to an arbitrary subset of snapshots (e.g., a certain time interval).
For doing this, we additionally store an array with the dates of
all snapshots containing the corresponding record.

To reconstruct statistics, such as the number of records or
snapshots per cluster, we enriched the meta data of every dupli-
cate cluster by a map that counts how many new records were
inserted per snapshot. The reconstruction of similarity scores is
discussed in Section 5.2.

5.2 Storing Similarity Scores
To support users in customizing their data by (i) removing further
near exact duplicates, (ii) repairing potentially unsound clusters,
and (iii) restricting the data to a certain range of heterogeneity,
we associate every record with three version-similarity maps
(one for plausibility and two for heterogeneity). Every value of
each of these maps corresponds to another map that assigns a
similarity score to each of the previously existing records of the
same cluster. Since the order of these records never change, this
approach does not only avoid expensive recalculations, it also en-
ables reproducibility because existing similarity scores are never
updated or deleted. While the first heterogeneity map takes all
attributes into account, the second is limited to the personal at-
tributes in order to facilitate a customization of personal data9. In
9Note, the plausibility is already limited to personal attributes (see Section 6.2) and
thus does not need to be stored twice.

NCID † last_name first_name midl_name sex age year ⋄

𝑟1 XX001 LARRELL LEWIS ANTWAN MALE 17 2014
𝑟2 XX001 LEWIS LARRELL ANTAWN MALE 18 2015
𝑟3 XX001 LEWIS LARRELL A MALE 22 2018
𝑟4 ZZ002 FIELDS MARY ELIZABETH FEMALE 62 2012
𝑟5 ZZ002 BETHEA JOSHUA ELIZABETH MALE 92 2014

†The NCIDs are pseudonymized for data privacy reasons.
⋄The snapshot year in which this record was collected.

Figure 3: Examples of erroneous and unsound clusters

addition every cluster is associated with three version-similarity
maps storing the aggregated values of their records.

Our understanding of plausibility and heterogeneitymay change
over time and/or we just may want to use other similarity mea-
sures to compute them. The versioning of the similarity scores
protects reproducibility against such future changes, because we
create a new version every time we use a new measure.

6 EXPERIMENTAL EVALUATION
When we explored the snapshots, we noticed several errors
within the data. Some records contain typos, abbreviations, or
have values confused between attributes. Moreover, some no-
tations have changed over time (e.g., ‚1ST CONGRESSIONAL‘
vs. ‚CO. DISTRICT 1‘ or ‚66 AND ABOVE‘ vs. ‚Age Over 66‘).
One example is presented in Figure 3. The first and last names
of at least one record of voter XX001 got mixed up. In addition,
either the middle name of 𝑟1 or 𝑟2 contains a typo (‚ANTWAN‘ vs.
‚ANTAWN‘) and the middle name of 𝑟3 is abbreviated. Remem-
ber that a proper evaluation of duplicate detection algorithms
requires errors of many different types and not just outdated val-
ues. Thus, such real-life data errors are very welcome in our test
dataset, since they challenge the detection of duplicates, but do
not corrupt the gold standard. However, we also detected some
duplicate clusters that contain records that hardly refer to the
same person. An excerpt of one of those examples is depicted in
Figure 3 where the two records 𝑟4 and 𝑟5 share the same NCID,
but obviously describe different persons. Such unsound clusters
are a real threat to the quality of our test data because they spoil
the gold standard and thus will negatively affect every future
evaluation if they remain in the dataset.

In order to evaluate the quality and usability of our test dataset
beyond these first impressions, we conducted a series of experi-
ments, which are described in the rest of this section.

6.1 Evaluated Datasets
To better understand the results of the evaluation of our test
dataset, we compare them with those of three manually labeled
test datasets that are commonly used in the literature. We ac-
quired all three datasets as TSV files10 from the dataset repository
of the Hasso Plattner Institute11.

• Cora: This dataset contains bibliographical information
on scientific papers including title, authors, publisher and
year. The schema of the TSV file consists of 17 attributes
including an artificial id. The file contains 1,878 records
which form 182 clusters.

• Census: This dataset contains personal information includ-
ing name values (first, middle and last), an address and a
zip code per person (6 attributes in total). It contains 841
records which form 483 clusters.

10We used the non-prepared versions where special characters are not removed.
11http://hpi.de/naumann/projects/repeatability/datasets
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Table 3: Characteristics of evaluated datasets

Cora Census CDDB NC1 NC2 NC3
#records 1,879 841 9,763 24,761 22,739 25,530
#attributes 17 6 7 38 38 38
#duplicate pairs 64,578 376 300 19,916 15,993 22,735
#clusters 182 483 9,508 10,000 10,000 10,000
#non-singletons 118 345 221 10,000 10,000 10,000
max. clustersize 238 4 6 7 7 8
avg. clustersize 10.32 1.74 1.03 2.45 2.27 2.55
max. heterog.† 0.63 0.46 0.65 0.25 0.43 0.72
avg. heterog.† 0.171 0.15 0.217 0.106 0.305 0.433
†The presented heterogeneity scores are pair-based.

• CDDB: This dataset includes information on 9,763 music
CDs randomly extracted from freeDB12. In the TSV version
of this dataset, all tracks of a CD are concatenated to a
single string by using the pipe symbol as a delimiter. After
doing so, the schema of this file consists of 7 attributes.
The 9,763 records form 9,508 clusters.

For all three datasets the duplicate information is provided
by a list of pairs. Several characteristics of these datasets are
presented in Table 3. Interestingly, the duplicate distributions of
these sets are quite different. Whereas the Cora dataset contains
very large clusters (up to 238 records) and its average cluster size
is 10.32, the maximal and average cluster sizes of the Census and
CDDB datasets are quite small (1.74 or 1.03 respectively). The
three datasets NC1 to NC3 are described in Section 6.5.

6.2 Plausibility Check
As we have explained in Section 3.1.1, it is very important that
the gold standard of the test data is sound. However, as shown
in Figure 3, we have also seen that this does not always seem
to be the case. To keep the threat of an unsound gold standard
to a minimum, we performed a quality check by calculating a
plausibility score for every pair of duplicate records.

In this plausibility check, we have the basic assumption that all
records of the same cluster are duplicates and the similarity scores
should only reflect (significant) contradictions to this assumption.
Consequently, the similarity measure should compensate simple
errors and differences in data representation as we know it from
duplicate detection algorithms. Due to our basic assumption, this
compensation can be even stricter. Therefore, word confusions
within an single attribute value or between different values as
well as missing or abbreviated values should not reduce similar-
ity at all, because they are more an indication of unknown or
erroneous values than a clear sign of a non-duplicate. Moreover,
to compensate outdated values we should only use attributes
whose values rarely change and that are either very identifying
(i.e., two records with the same value are likely duplicates) or
discriminating (i.e., two records with different values are likely
no duplicates). In our use case, we decided to use:

• the three name values (first, middle and last),
• the sex code,
• the year of birth (which we derived from the snapshot-date
and the age value), and

• the place of birth.
It is not uncommon that values are confused between the three

name attributes. Thus, we computed a single name similarity be-
fore combining it with the similarity scores of the other attributes.
12http://www.freedb.org/

To compensate errors in the name order, but also within the indi-
vidual name values (e.g., typos), we computed the name similarity
by using the hybrid Generalized Jaccard Measure [8] with an ex-
tended version of the Damerau-Levenshtein Similarity [4] as the
internal token similarity measure, i.e.:

𝑠𝑖𝑚name (𝑜𝑖 , 𝑜 𝑗 ) = 𝐺𝑒𝑛𝐽𝑎𝑐𝑐𝐷𝑎𝑚𝐿𝑒𝑣 (𝑛𝑎𝑚𝑒𝑠 (𝑜𝑖 ), 𝑛𝑎𝑚𝑒𝑠 (𝑜 𝑗 )) (1)

where 𝑛𝑎𝑚𝑒𝑠 (𝑜𝑖 ) = {fname(𝑜𝑖 ),mname(𝑜𝑖 ), lname(𝑜𝑖 )}.
The Damerau-Levenshtein Similarity was extended to a proper

handling of missing and abbreviated values. The comparison to
a missing value results in a similarity of 1. The same holds true
if one token is a prefix of the other because in both cases we
do not have any evidence to mistrust the given data. In the case
of the sex code, typos and different representations can almost
be excluded for sure. Thus there are actually only four possibili-
ties: The compared values agree (i.e., 𝑠𝑖𝑚sex = 1), disagree (i.e.,
𝑠𝑖𝑚sex = 0), one of them is undesignated (i.e., it has the value ‚U‘)
or missing. Since we do not have any contradiction in the later
two cases, we set the similarity to 𝑠𝑖𝑚sex = 1, too.

We computed the year of birth (short YoB) as snapshot-date −
𝑎𝑔𝑒 . Since the actual YoB can be one year earlier if the person has
not yet had birthday when the snapshot was made, we introduced
a tolerance of 1. Moreover, we assumed a similarity of 0 if the age
difference was 10 or greater. This led to the following formula:

𝑠𝑖𝑚YoB (𝑜𝑖 , 𝑜 𝑗 ) = 1−min
(
1,
max(0, |YoB(𝑜𝑖 ) − YoB(𝑜 𝑗 ) | − 1)

10

)
(2)

In the case of the place of birth we simply computed the ex-
tended Damerau-Levenshtein Similarity between the two values.
The final similarity score was then calculated as the weighted
average of the previously presented scores where we considered
the name similarity to be more important (weight 0.55) than the
others (each 0.15). A cluster is already unsound, if only one of
its records refers to another voter regardless of how plausible
the other records are actually duplicates. Thus, we computed the
plausibility of a cluster as the minimal plausibility of its records.

We performed our plausibility check on the dataset with 120
million records (exact duplicates were removed after trimming).
The results show that only a few clusters of this dataset are highly
suspicious to be unsound. The average cluster plausibility is 0.988.
91.7% of all clusters (and 93.3% of all duplicate pairs) have the
maximum possible value 1.0. The distribution of the remaining
8.3% (or 6.7% resp.) are presented in Figure 4a. The minimal
plausibility of all clusters (and pairs) is 0.06. 6.4% of all clusters
have a plausibility lower than 0.9, 0.47% (=61,548 clusters) lower
than 0.8 and only 0.0049% (=641 clusters) lower than 0.5. The
pair-based values are similar. As a comparison, the two clusters
from Figure 3 have a plausibility of 0.82 (XX001) and 0.33 (ZZ002)
respectively which matches our intuition that the differences in
the first cluster are probably the result of data errors in the name
values while the second cluster contains obvious non-duplicates.

An appropriate scoring of plausibility heavily depends on the
domain of the data, since we should only use attributes that are
less volatile and are either very identifying or discriminating.
Moreover, it also depends on the quality of the data, since typical
error patterns (e.g., an incorrect encoding of special symbols)
are no significant evidence for an unsound cluster and should
therefore be compensated in the scoring process. It is therefore
difficult to make comparisons between the plausibility of datasets
defined on different schemas without creating any noticeable
bias. For this reason, we decided not to include such a plausibility
calculation for the Cora, Census and CDDB datasets.

576



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

plausibility

[%] cluster
pair

(a) Plausibility of NC test dataset

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

5

10

15

20

25

heterogeneity

[%] cluster
pair

(b) Heterogeneity of NC test dataset

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

2

4

6

8

10

heterogeneity (pair-based)

[%] NC
Cora
Census
CDDB

(c) Heterogeneity of NC, Cora, Census and CDDB

Figure 4: Plausibility and heterogeneity distributions of clusters and duplicate pairs for different datasets

6.3 Duplicate Heterogeneity
To score the heterogeneity between two duplicate records we
want to take all their differences into account and thus do not
actually want to apply measures that compensate them. At the
same time, there are differences that should cause a larger hetero-
geneity than others. For example, difference in upper and lower
case or confusions of tokens are less significant than replacing
the original strings with completely different letters or tokens.

To address the problem resulting from uppercase letters, we
decided to compare every two values one time with and one
time without lowercasing them. To address the problem of to-
ken confusions, we decided to compare every two values one
time with a sequential and one time with a hybrid similarity
measure. Together this results in four comparisons for every
two values. We used the average of the four resulting scores as
final similarity. As the sequential similarity measure, we chose
Damerau-Levenshtein. Since the Generalized Jaccard Measure is
computationally too expensive when working on 90 attributes,
we used the Monge-Elkan Similarity13 [23] as the hybrid mea-
sure instead (using Damerau-Levenshtein as the internal token
similarity measure)14. To calculate the heterogeneity between
two records, we used the weighted average of their inverse value
similarities (i.e., the records are the more heterogeneous, the less
similar they are).

If the resulting heterogeneity scores should reflect any kind of
difficulty to detect the corresponding fuzzy duplicates, identifying
attributes, such as names, should be weighted higher than others.
At the same time and in contrast to plausibility, we want to
compare the heterogeneity (i.e., dirtiness) of different datasets
in order to enable an evaluation of algorithms with respect to
a varying dirtiness of the data. To ensure a fair comparison, no
context knowledge and external expertise should be included
into the scoring process and all necessary information should be
taken from the dataset itself. To accomplish this, we used the same
similarity measure for all attributes and weighted every attribute
by its uniqueness15, where we quantified this uniqueness by
the attribute’s entropy [19]. Since duplicate records distort these
uniqueness scores (e.g., an otherwise unique id can occurmultiple

13Since this measure is non-symmetric, we computed it in both directions and used
the average as final score.
14There are millions of possible similarity measures (including various settings)
and we had to choose one even though this could possibly generate a bias in the
evaluation processes using this test data. However, as illustrated in Section 6.5, this
bias was almost not existing in our experiments.
15To ensure reproducibility, these weights must not change although the dataset
will grow with future updates. We therefore limited their computation to the first 5
million clusters and then hard-coded them into the source code.

times), we initially created a canonical record16 per duplicate
cluster and used them to compute the weights. The heterogeneity
of a cluster was then computed as the average heterogeneity of its
records. Since a consideration of clusters of size one is pointless,
we restricted our analyses to clusters with at least two records.

The results of our analysis are depicted in Figure 4b. They
show that – despite of outdated values and other data errors –
most of the duplicate records are very similar and the dataset as
a whole is quite clean and homogeneous. However, since we re-
moved exact duplicates, almost none of the clusters is completely
homogeneous and most of them have a heterogeneity of around
0.03 (21.6%). In the case of the duplicate pairs, we do not have
such a large peak, but also here you can see, that most values
are in the range between 0.02 and 0.06. Considering this fact, the
average heterogeneity (0.13 for clusters and 0.218 for pairs) is
surprisingly large. The maximal heterogeneity (0.79 for clusters
and 0.88 for pairs) is also very high. As a comparison, the two
clusters from Figure 3 have a heterogeneity of 0.395 (XX001) and
0.366 (ZZ002) respectively. Interestingly, the less plausible cluster
is more homogenous. That is because although cluster ZZ002 con-
tains records referring to different persons, these records form
two very homogenous groups (one with six records similar to 𝑟4
and one with four records similar to 𝑟5).

To score the heterogeneity of the Cora, Census and CDDB
datasets, we used the same settings (i.e., the same similarity
measures and all attributes are weighted based on their entropy).
The pair-based distributions of all three datasets are depicted
in Figure 4c. The heterogeneity scores of the Cora dataset are
almost normally distributed. Most of them have a value of 0.15,
the maximal value is 0.63 and the average is 0.171. The Census
dataset has three peaks at 0, 0.07 and 0.1, a maximal heterogeneity
of 0.46 and an average of around 0.15. In general, except of the
large number of very homogenous pairs, its distribution has
some similarity to this of the Cora dataset, but is less regular. The
CDDB dataset is the dirtiest of them. Its maximal heterogeneity
is 0.65 and its average is 0.217. The high heterogeneity results
primarily from the fact that many language-specific symbols,
such as accents, were incorrectly converted when the dataset
was created. Thus, many duplicate records are very dissimilar
if we do not compensate those irregularities in the matching
process or repair it during preparation.

If we compare these distributions with the one from the NC
dataset, we see that there is only little resemblance to our voter
data although the average of the NC dataset is very close to that

16These records are built by using the most frequent value per attribute.
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Table 4: Statistics of different irregularities within the NC, the Cora and the Census datasets

NC (total 137 M pairs) Cora (total 65 K pairs) Census (total 376 pairs)
most frequent frequency most frequent frequency most frequent frequency

error type example† attribute total in % attribute total in % attribute total in %

si
ng
le
to
n
⋄ outlier age = 5091 age 280 K 0.48 year 20 1.06 last_name 5 0.59

abbreviation midl_name = A. midl_name 7.4 M 12.6 booktitle 1 0.05 middle_name 671 79.8
missing mail_addr3 = null mail_addr3 58.7 M 100 institution 1.7 K 86.8 middle_name 170 20.2

pa
ir
-b
as
ed

★

typo ADELL↔ ADELE midl_name 1.2 M 0.87 title 15 K 22.6 last_name 243 64.6
OCR-error DICOL3↔ DICOLE last_name 1.3 K 0.00 - - - - - -
phonetic WHITE ↔WYATT midl_name 1 M 0.75 title 29 K 44.4 last_name 200 53.2
prefix KIM↔ KIMBERLY midl_name 5.4 M 3.94 volume 19 K 29.1 first_name 65 17.3
postfix BRAGG↔ FORT BRAGG last_name 230 K 0.17 pages 5 K 8.03 street_address 5 1.33
formatting JRS RIDGE ↔ J.R.S RIDGE midl_name 208 K 0.15 title 27 K 42.4 street_address 20 5.32
transp. tokens KIM DUC↔ DUC KIM race_desc 748 K 0.55 authors 202 0.31 - - -
confused values (LUKE, HAL) ↔ (HAL, LUKE) first/midl_name 21 K 0.02 title/booktitle 20 0.03 - - -
integrated value (SUE ANN, null)↔ (SUE, ANN) midl/last_name 244 K 0.18 title/year 4 0.01 - - -
scattered values (NGAN HA, THI) ↔ (NGAN, HA THI) midl/last_name 24 K 0.02 - - - - - -
†Selected from any attribute of the NC dataset.
⋄Singletons are normalized using the total number of records (NC = 58.7 M, Cora = 1,879, Census = 841).
★Pair-based irregularities are normalized using the total number of duplicate pairs (NC = 136.7 M, Cora = 65 K, Census = 376).

of the CDDB dataset. Interestingly, the majority of pairs of the
NC dataset is much cleaner than those of the other three datasets,
but it has also a higher percentage in the range between 0.4 and
0.7. Thus, our dataset contains many homogenous records, which
may need some additional pollution (see Section 8). However, as
we will show in Section 6.5, its large dispersion allows us to easily
achieve an average heterogeneity of 0.433 (which is significantly
higher than this of the CDDB dataset) by adjusting the voter data
based on the precalculated heterogeneity scores.

6.4 Diversity of Error Types
To allow an extensive evaluation of the capabilities of duplicate
detection algorithms, we chose source data whose collection pro-
cess promises many different types of errors. To test this assump-
tion, we conducted a statistical analysis on the personal attributes
of our test dataset by searching for several kinds of irregularities
within these data (see Table 4). Here, we distinguished between
irregularities that can be identified by analyzing single records
(so-called singletons) and ones that can only be detected by com-
paring two duplicate records (so-called pair-based irregularities).
In the first case, we evaluated every record individually leading
to a frequency that can be normalized using the total number of
records. In the second case, we compared every two duplicate
records, counted the number of times the individual irregularities
occur and normalized them using the total number of duplicate
pairs. Moreover, we distinguished between irregularities that con-
cern a single attribute and those that concern multiple attributes
(record-level). We evaluated the following singletons:

• outlier: A value that is outside a predefined range (e.g.,
age > 110) or contains a character that is unusual for its
associated domain (e.g., the first name ‚X ÆA-12‘)17.

• abbreviation: A value that consists of a single letter, possi-
bly followed by a punctuation mark.

• missing: A value that is null, an empty string or any other
value indicatingmissing information (e.g., ‚-‘ or ‚unknown‘).

As pair-based irregularities, we analyzed:
• typo: Two values whose lowercase versions differ only in
one character or contain a character transposition. These

17Note that not every outlier corresponds to an actual data error.

are exactly those values having a Damerau-Levenshtein
distance of 1. In order not to interpret a complete replace-
ment of one value by the other as a typing error, we only
considered values longer than two characters.

• OCR-error: Two distinct string values which only differ
at those positions where one of them has a digit. If both
characters are digits, they need to be identical.

• phonetic error : Two values that are not identical after re-
moving non-letter characters, are both longer than two
and have the same Soundex code.

• prefix/postfix: Two values where one of them is a prefix/-
postfix of the other after removing a potential punctua-
tion mark from the end of the shorter value. Such pre-
and postfix situations indicate abbreviations or forgotten
token/characters.

• different formatting: Two values that only differ in non-
alphanumerical characters (e.g., a hyphen, space or punc-
tuation mark between tokens).

• transposed tokens: Two values whose token sets are identi-
cal, but their token order is different.

• confused values: Two records whose values are confused
between two different attributes (e.g., the first and last
name of one record are transposed).

• integrated value: Two records where in one of them the
value of one attribute is integrated into another (e.g., a
middle name stored as a second token in the first name).

• scattered values: Two records having the same set of tokens
assigned differently to two attributes. To avoid possible
overlaps with the previous two types, we only counted
scattered values that are not integrated or confused.

Obviously some of these irregularities overlap (or sometimes
even include each other) so that we counted some errors for
more than one type. For example, some OCR-errors are also
typos. Moreover, it is important to note that we consider these
irregularities as indications of particular error types, but cannot
always classify them with absolute confidence. For instance, not
every two distinct values that have the same Soundex code are
an actual phonetic error. This also applies to irregularities on
record-level. Not every assignment of the same value to different
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attributes corresponds to a mistake. For example, in the U.S., it is
not atypical to take the old last name as the middle name when
getting married. Such a constellation can therefore also indicate
an outdated record instead of a data entry error. Nevertheless, the
errors are real even if their assignment to the individual typesmay
be disputed. It should also bementioned that our definitions of the
individual error types do not cover them completely so that our
analysis was not able to find every actual error. For example, OCR
errors that do not contain digits (e.g., ‚Tim‘ vs. ‚Tirn‘) were not
recognized as such. However, despite these minor inaccuracies,
we think that our experiment provides a good overview of the
wide variety of different error types contained in the voter data.

The results of this analysis are presented in Table 4 (grouped
by singletons and pair-based irregularities), were we list the
absolute values in combinationwith their percentages. To achieve
greater comparability, we also evaluated the Census and the Cora
datasets. We selected the Census dataset because it has a similar
domain as our voter data and selected the Cora dataset because
it has similarly large clusters. As we can see, the percentages of
the Census and the Cora datasets are much higher than those
of the NC dataset. For example, the percentage of typos in the
attribute last_name of the Census dataset is 65%. This means
that out of 376 duplicate pairs, 243 differed in this attribute by
only one character or had two consecutive characters transposed.
Although the percentages of the NC dataset are much smaller
than those of the Cora and the Census datasets, the absolute
numbers are many times larger. This shows the potential for
customizing smaller datasets with higher error percentages, but
still containing million of records. Moreover, the NC dataset
contains irregularities that are (almost) not contained in the Cora
and Census datasets. Examples are OCR-errors or errors that
affect more than one attribute.

6.5 Usability
There are various ways to customize a test dataset by using
the precalculated heterogeneity scores. In our experiments, we
sketched a very simple approach and let the development of more
sophisticated approaches to the user (or future research resp.).
This approach consists of three steps. In the first step, we defined
a lower and an upper bound ℎ⊥ and ℎ⊤ for the heterogeneity
scores. In the second step, we randomly selected 100,000 clus-
ters from our whole dataset, scanned over all records of every
cluster in their sorting order and removed every record whose
heterogeneity to its preceding (not removed) records was not
in the requested range [ℎ⊥, ℎ⊤]. In the third step, we sorted the
reduced clusters by their size and selected the 10,000 largest clus-
ters as test input. We applied this approach for the three settings
(ℎ⊥, ℎ⊤) ∈ {(0.06, 0.2), (0.2, 0.4), (0.3, 0.7)} while restricting the
schema to the personal attributes. The result are the three test
datasets NC1, NC2 and NC3. The characteristics of these datasets
are depicted in Table 3. As these numbers show, even though we
only used 0.07% of all clusters as input, these datasets are larger
than the Cora, Census and CDDB datasets.

To evaluate the difficulty of detecting fuzzy duplicates within
the individual datasets, we applied three duplicate detection al-
gorithms each using another similarity measure18 (the same for
all attributes). The first measure (short ME/DL) was the same
combination of the Monge-Elkan and the Damerau-Levenshtein
Similarity as we used it to calculate the heterogeneity scores

18Here, we tried to cover a wide range of measures by using a hybrid, a sequential,
and a token-based measure.

(see Section 6.3). The other two measures were the Jaro-Winkler
Similarity (sequential) and the Jaccard Similarity using trigrams
(token-based) [8]. The similarity of two records was always com-
puted as the weighted average similarity of their values. Since we
observed that the name values are sometimes confused between
the individual attributes, we matched every combination of them
and used the 1:1 matching with the highest similarity for aggre-
gation. To weight the individual attributes we used again their
entropy. In this case, however, we calculate it using all records
(i.e., including the duplicates), since the user does not know these
duplicates in advance. In addition, the entropy was calculated
solely based on the records of the customized datasets. Thus, the
resulting weights differed from the ones we used to calculate the
heterogeneity scores (e.g., 0.66 vs. 0.48 for the first name). In the
case of the larger datasets (CDDB and NC1-NC3), we reduced
the initial search space by applying a multi pass of the Sorted
Neighborhood Method [23] where we conducted one pass for
each of the five most unique attributes and used a window of
size 𝑤 = 20. Since a few true duplicate pairs were lost through
this reduction (always less than 1%), we added them back to the
search space before starting the actual matching process.

The results of these duplicate detection algorithms applied to
the different test datasets are depicted in Figure 5. As we can
see in Figure 5a to 5c, the quality of the duplicate detection algo-
rithms decreased when we increased the heterogeneity of the test
data, since the more difficult it was to separate the duplicate from
the non-duplicate pairs. In the first case, the test dataset was very
clean and we could achieve almost a perfect 𝐹1-score for all three
measures. Moreover, for two out of three measures, this score
was high for every threshold between 0.65 and 0.85, which made
it easier to select an appropriate value for this threshold without
knowing these numbers. In the case of the second dataset, the
maximal 𝐹1-score was still pretty solid (i.e., close to 0.8), but the
threshold had to be set much more carefully and the quality of a
setting already depended on the individual measures. For exam-
ple, for Jaccard the best threshold was 0.57, but for Jaro-Winkler
it was 0.75 and there was no threshold that worked well for all
measures. Finally, in the case of the last dataset, the maximal
𝐹1-score decreased significantly and even a score of 0.4 was hard
to achieve. All this shows that the precalculated heterogeneity
scores can be perfectly used to adjust the test data to increase the
difficulty of detecting fuzzy duplicates. Moreover, as we can see,
the ME/DL Similarity did not perform better than the Jaccard Sim-
ilarity which shows that using this measure to calculate the test
datas’ heterogeneity scores has not produced any noticeable bias.
Finally, when we compare the results of the three customized
test datasets NC1 to NC3 with the results of the Cora, Census
and CDDB datasets, we see that they show similar patterns as
NC2 in terms of the maximally achieved 𝐹1-score and the shapes
and positions of the individual graphs. Only the Census dataset
differs a little bit, because here Jaro-Winkler scored much better
than for the other datasets and the single graphs correspond less
to a bell shape. In summary, this shows that the sheer amount of
data of our original test dataset enables us to create test data that
are cleaner (NC1), equally clean (NC2) and dirtier (NC3) than
these real-life use cases giving us the opportunity to design our
test data in the way our evaluation goals require. We repeated
this experiment with different parts of our original test dataset
as input. Since the compositions of the generated datasets differ
slightly, there were also slight differences in the resulting graphs,
but the findings were always the same.
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Figure 5: 𝐹1-scores in relation to similarity thresholds for several similarity measures and test datasets

7 RELATEDWORK
Almost all existing test datasets have been either artificially gen-
erated (e.g., by using an automatic generation tool) or been man-
ually labeled. While artificial datasets have the obvious disad-
vantage of not containing actual real-life duplicates and errors
(including outdated values), labeling duplicates manually is ex-
tremely expensive so that this approach is only an option for very
small datasets. For example, the commonly used Cora, Census
and CDDB datasets contain less than 10,000 records each (see Sec-
tion 6.1). The essential shortcoming of an automatic labeling ap-
proach [32] is that the resulting gold standard is often not sound
and biased towards the used algorithms, which can significantly
distort evaluation results. One example of artificially created test
data is the ERIQ dataset [31] which contains 100,000 records of
customer data. Although this number is much larger than those
of the manually labeled datasets, it is still small compared to
typical big data applications. Further test datasets (manually la-
beled or artificially generated) can be found on the websites of
the Hasso Plattner Institute11, the University of Leipzig19, and
the Magellan project20. To the best of our knowledge, none of
the existing test datasets provides precalculated similarity scores
that help users to customize datasets on their basis.

Automatic test data generation tools can be divided into two
classes: Data synthetization tools that generate all data values
– including duplicates and errors – from scratch and data pol-
lution tools that get a clean dataset as input and pollute it with
duplicates, errors and inhomogeneities. Data synthetization tools,
such as DBGen [14] or the Febrl Data Set Generator [3], are very
efficient so that large datasets can be generated in short time
[15]. However, since every data value is fictional, it is almost
impossible to guarantee that the resulting values patterns are

19https://dbs.uni-leipzig.de/en/research/projects/object_matching/benchmark_
datasets_for_entity_resolution
20https://sites.google.com/site/anhaidgroup/useful-stuff/data

Table 5: Previous usage of North Carolina voter data

number of cluster sizes†

paper records attr. clusters dupl. pairs avg max
[18] 14,183 25 ? ? ? ?
[5, 10] 8,261,838 19 8,110,137 155,469 2.02 6
[11] 200,000 6 100,000 200,000 2 2
[30] 5,000,000 4 3,500,840 3,331,384 4 5
[30] 10,000,000 4 6,625,848 14,995,973 7.7 10
†of non-singletons

realistic. Data pollution tools, such as GeCo [6], TDGen [2], or
DaPo [15], are the best option to generate test data with real-
istic value patterns because real-life data can be used as input.
Moreover, if a broad spectrum of error types is supported they
are nearly domain-independent. Except DaPo, however, existing
pollution tools are strongly limited with respect to their scala-
bility so that generating large datasets is either impossible or
extremely time consuming [15]. A major problem that all these
tools have in common is an appropriate simulation of outdated
values and the complex error patterns that result from them.

Data of the NC voter register have been already used as test
data in several works (see Table 5). Alas most of these uses are
not fully documented and/or the provided links are outdated21.
Thus, we cannot say exactly which data were used as input. The
small size of the first dataset indicates that only a small portion
of the voter register was used. The second dataset was created
by Christen [5] in an earlier attempt to use the temporal changes
of the voter data for generating test data with realistic outdated
values. He regularly downloaded the current voter registration
file on a bi-monthly basis over a time period of three years and
combined these self-made snapshots after removing exact du-
plicates. However, instead of using the inherent gold standard

21ftp://www.app.sboe.state.nc.us [10, 11] and ftp://alt.ncsbe.gov/data/ [5]
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provided by the NCID, he created it artificially by applying a
rule-based duplicate detection approach. Thus, this gold standard
is not guaranteed to be sound and biased towards algorithms
using a similar detection approach.

Durham et al. [11] randomly selected 100,000 records from the
voter register and generated polluted versions of these records by
artificially introducing typos, semantic and phonetic errors. The
last two datasets were created similarly by artificially polluting a
randomly selected set of voter records with duplicates and errors
using the GeCo tool [6]. Thus, these three datasets do not contain
real-life errors and especially lack in realistic outdated values.

Except the last one, the sizes and duplicate distributions of
these five datasets are nowhere near the numbers of the test
dataset we generated in our study. Moreover, none of these au-
thors enhanced their data with useful statistics, such as plausi-
bility and heterogeneity scores, as we did in this study. Finally,
to the best of our knowledge, we are the first who discuss the
aspects of quality, usability and reproducibility in the context of
test data for duplicate detection in such a depth.

8 CONCLUSION & FUTURE WORK
In this paper, we presented a large-scale dataset for evaluating
duplicate detection algorithms and the approach behind its gen-
eration. Extracted from an historical voter register from North
Carolina, our test dataset contains more than 120 million records
and 640 million duplicate pairs making it uniquely suitable for
evaluating duplicate detection at scale. Besides the dataset’s size,
our study focused on its quality, usability and reproducibility.
The records’ historical nature means that they contain many
outdated values and – since data was often entered manually –
also a large variety of other error types, such as typos, phonetic
errors or confusions between attributes. While the data values
themselves contain many errors, the underlying gold standard is
largely error-free which is a mandatory requirement to ensure
meaningful evaluation results. In general, its large size as well
as its large number of different data errors makes the dataset
perfectly suitable for users who want to customize their own
datasets based on the requirements of their respective evaluation
goals. To support such customizations, we equipped the indi-
vidual records with similarity scores modeling their plausibility
and heterogeneity. Finally, we integrated several mechanisms to
ensure reproducibility when the dataset is growing with future
updates. In summary, our approach enables generating large-
scale test datasets with realistic errors including outdated values
(which are hard to synthesize) and without the need for labeling
duplicates manually (which is extremely labor-intensive).

Our plans for future work targets two different ways to ex-
tend our approach. First, we intend to generalize the procedure
described here and apply it to historical corpora from other do-
mains. This will provide the research community with large-scale
test datasets beyond use cases that revolve around personal data.
Second, we plan to combine our approach with a scalable data
pollution tool, such as DaPo, to unite the strengths of having
real outdated values and being able to inject additional errors at
will. Our goal here is to increase the flexibility for customization
and thereby facilitate generating test datasets geared for specific
user demands. We think our presented work is useful to other
researchers and we hope that our current line of research will
pave the way for novel solutions that combine approaches using
historical data with methods of data pollution in creative ways.
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ABSTRACT
We investigate how a state of the art path index can be integrated

into the Cypher query pipeline of the industrial Neo4j graph data-

base. We identify the characteristics of practical use-cases where

application of path indexes is beneficial to query evaluation and

performance of index maintenance. Through in-depth empiri-

cal evaluation, we conclude that path indexes are most effective

when used on selective patterns that allows the query planner to

avoid high intermediate state cardinality and thus significantly

accelerate query performance. As such patterns arise naturally

in querying on real graphs, we can conclude that path indexes

are a valuable method for improving the performance of graph

database systems in practice.

1 INTRODUCTION
A common operation in graph databases is pattern query eval-

uation, i.e., looking for all matches of a query graph in a data

graph [1]. This operation searches for sub-graphs in the data with

a structure that is constrained by the query. A state of the art

index on paths has been introduced in prior work [7, 17]. It has

been shown that this index can be effective in accelerating query

evaluation by multiple orders of magnitude and can be effectively

maintained as the underlying data graph is updated [4, 12]. Cur-

rent graph databases struggle with scalability, as graphs continue

to grow in size and complexity [14]. Path indexes are a promising

technique to help address query performance in practice.

In this short paper, we present experiences gained from the

practical integration of a path index into the Cypher query pipeline

of the Neo4j graph database management system. Cypher is a

de facto industry standard query language for graph databases;

Neo4j is one of the most popular and widely-deployed graph

databases in industry [8]. We explore practical use-cases where

path indexes can significantly improve query processing perfor-

mance, and analyse scenarios when this query acceleration is

achieved through an in-depth empirical evaluation. We conclude

that path indexes are most effective when used on selective pat-
terns that allow the query planner to avoid high intermediate

state cardinality and thus significantly accelerate query perfor-

mance. This result is not immediately obvious for contemporary

graph database systems, and to our knowledge has not been ob-

served before. As such patterns arise frequently in applications

due to correlations in the structure of real world graphs, we can

conclude that path indexes are indeed a valuable and practical

method for scaling graph data management in industrial systems.

While our experiments were made using Neo4j, the results

are immediately applicable to any graph database management
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Figure 1: Example of a simple property graph. Nodes la-
beled P represent Person nodes. The node labeled L repre-
sents a Location. Shaded paths represent path indexes.

system that implements Cypher or any other graph query lan-

guage such as SPARQL or G-CORE that supports matching path

patterns comprising a sequence of node and edge labels [1].

2 BACKGROUND
Property Graphs. Neo4j uses the property graph data model

[1, 8]. A property graph is a graph where: every node can have

an arbitrary number of labels; every relationship is directed be-

tween two nodes and has exactly one type; there may be multiple

relationships of the same type between the same nodes, i.e. it is a

multi-graph; and, every node and relationship can have an arbi-

trary number of associated attribute-value pairs. As an example,

Figure 1 shows a property graph (suppressing attribute-value

pairs) representing a small social network.

Cypher Query Language. Cypher is a declarative graph query

language that is loosely based on SQL [8]. It contains familiar

SQL keywords such as WHERE that function essentially the same

by allowing users to apply predicates to filter the results of the

query. However, in Cypher, the primary way to retrieve data

is using the MATCH-clause. Such a clause contains one or more

pattern expressions. A pattern expression is an alternating se-

quence of nodes and relationships, starting and ending with a

node. Nodes are expressed using parentheses while relationships

are expressed as arrows. Query variables are declared by their

inclusion in one or more pattern expressions and can be used

in other clauses. For example, (x:Person) matches all nodes x
with label Person and (p:Person)-[r:Lives_In]->(c:City)
matches all directed relationships r from nodes p to nodes c, with
labels Lives_In, Person, and City, resp.

Path Patterns. A path pattern is a sequence of alternating node

labels and relationship patterns starting and ending with a node

label. A relationship pattern contains both a relationship type and

its direction (either forward,→, or reversed,←). E.g., given the

node labels {𝐴, 𝐵} and the relationship type 𝑅, the following nota-
tion describes a path pattern of length 2: ⟨𝐴, (𝑅,→), 𝐵, (𝑅,←), 𝐵⟩,
counting relationships to determine the length.

A path pattern describes a set of constraints that can be ap-

plied to paths of the same length. Given a 𝑘-length path pattern
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⟨𝑁0, (𝑅1, 𝐷1), . . . , (𝑅𝑘 , 𝐷𝑘 ), 𝑁𝑘 ⟩, then a path ⟨𝑛0, 𝑟1, . . . , 𝑟𝑘 , 𝑛𝑘 ⟩ in
the graph satisfies the pattern if and only if all nodes 𝑛𝑖 have

a 𝑁𝑖 label for 0 ≤ 𝑖 ≤ 𝑘 and all relationships 𝑟𝑖 are of type

𝑅𝑖 and direction 𝐷𝑖 for 1 ≤ 𝑖 ≤ 𝑘 . As an example, the pattern

⟨𝑃, (FriendOf ,→), 𝑃, (LivesIn,→), 𝐿⟩ would yield one query re-

sult on the graph in Figure 1.

Prior Work on Path Indexing. Querying graph databases us-

ing indexes is a complex field of study. A detailed contemporary

survey of existing techniques can be found in [1]. The 𝑘-path
index, introduced by Fletcher et al. [7, 13, 16, 17], demonstrated

that significant orders-of-magnitude query performance improve-

ments are possible with path indexing. Here, the intuition is to

index all, or a selected subset of all, paths of length up to 𝑘 , where

𝑘 is the count of relationships in the indexed paths. Fletcher et

al. built the 𝑘-path index by concatenating edges in the graph

and storing the resulting paths in a relational database [7]. The

resulting table was indexed and used to speed up path queries.

Sumrall et al. [17] engineered a 𝑘-path index directly imple-

mented using a B
+
-tree and demonstrate the potential for acceler-

ated query processing. Sumrall also studied how one could index

paths with specific patterns (e.g., as given in a workload) rather

than all paths of length 𝑘 .

Persson [12] utilized the path index concept to speed up dense

network data retrieval by indexing all paths of length 1. This

index was called a Shortcut Index. Persson intentionally limited

his work to indexes with a single relationship to avoid expensive

maintenance computations on graph updates, which could not

be afforded in the described use-case.

De Jong [4] demonstrated how indexes can be more efficiently

maintained bymaintaining sub-patterns as separate indexes. This

allows for a significant speed-up of index maintenance, at the

expense of increased storage overhead.

Boncz et al. [3] and Luo et al. [10] give a broader overview

of graph query processing with indexes, both in contemporary

systems and in research, as well as the role of query selectivity

in effective graph query processing. To our knowledge, ours is

the first study of path indexing in industrial systems.

Path Indexes. A path index is a data structure that indexes all

paths in the data graph which satisfy a chosen path pattern. This

path pattern is called the indexed pattern. The paths are not stored
directly in the path index, instead a sequence of references is

stored. For every indexed 𝑘-length path ⟨𝑛0, 𝑟1, . . . 𝑟𝑘 , 𝑛𝑘 ⟩, the
index stores references to the nodes and relationships of the

matching paths as a sequence of identifiers: ⟨𝑛id
0
, 𝑟 id
1
, . . . , 𝑟 id

𝑘
, 𝑛id

𝑘
⟩,

where 𝑛id
𝑖
and 𝑟 id

𝑖
are the 𝑖-th identifiers of nodes and relation-

ships in the path respectively.

These sequences of references are converted into a single key

by concatenating the fixed-width identifiers (8 bytes each), which

are stored in a B
+
-tree. This allows logarithmic-time location,

insertion and deletion of entries in the index. Since the identifiers

are concatenated, the B
+
-tree also supports prefix searches. Given

the first𝑚 elements of a path, we can locate the first entry that

starts with this prefix, and scan all paths that match the prefix in

linear-time with respect to the number of results returned. The

worst-case space complexity for the index is O(𝐸𝑘 ) where 𝐸 is

the number of edges in our graph and 𝑘 the length of the path

pattern that is indexed. While the size of the index is linear to the

number of identifiers in the key, each index is defined for a fixed

size key which keeps the size bounded. It is also worth noting

that when indexes are chosen to represent selective patterns, the

size of the index will naturally remain small.

Query Parser

Planner

Runtime

Cost

Estimator

Graph Store

Index Store

Result

Sub-query

Transaction Appliers

Transaction

successful close

Figure 2: An overview of the query pipeline architecture.
Shaded boxes represent our changes, while dashed out-
lines represent a new component.

The shaded parts on Figure 1 represent path indexes. An in-

dex on ⟨𝑃, (FriendOf ,→), 𝑃, (LivesIn,→), 𝐿⟩ (shaded grey) con-

tains just the single path through nodes ⟨1, 3, 7⟩, an index on

⟨𝑃, (FriendOf ,→), 𝑃⟩ (yellow) will contain the paths through

nodes {⟨1, 2⟩, ⟨1, 3⟩, ⟨1, 4⟩} and an index on ⟨𝑃, (LivesIn,→), 𝐿⟩
(purple) will contain the paths through nodes {⟨3, 7⟩, ⟨5, 7⟩, ⟨6, 7⟩}.

3 USING PATH INDEXES
Our Extensions.We next discuss the modifications and exten-

sions to the query pipeline architecture necessary to support

path indexes (Figure 2). Firstly, path index operators have been

added to the Planner component which can scan or selectively

read paths from path indexes. This also requires new costing

heuristics in the Cost Estimator for these operators. The new

operators are also implemented in the Runtime component as

runtime-specific operators that perform the read operations on

the path index store. Further the Index Store was modified to hold

the new type of path index.

When a transaction is committed, the update commands are

translated into paths that have to be added to or removed from

the path indexes through sub-queries on the path patterns of

those indexes. These sub-queries are inserted into the query

pipeline as normal and might use other path indexes to resolve

the query, depending on the context. Full details can be found in

the extended report [9].

4 IMPLEMENTATION
We next discuss integrating the path index into the database

code-base. We will start with an overview of all components

that required modifications in Section 4.1. Section 4.1.1 describes

query-based path index maintenance. Then Section 4.1.2 provides

information on path index initialization.

4.1 Modified Pipeline Components
The implementation of our path index into the query pipeline

required modifications in several components. Figure 2 shows an

overview of the components, where a shaded background means

the component required some modification. The dashed block

“Sub-query” represents a new component.

The cost estimator is extended to estimate a cost for path

index operators. We re-used the existing cardinality estimator
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due to scoping constraints which assumes that all filtering and

combining operations behave according to global data statistics.

4.1.1 Query-based path index Maintenance. De Jong [4] ob-
served that, as a consequence of the policy in the Neo4j database

to never allow the deletion of a connected node, we only ever

need to look for relationship updates in the graph in order to

update the path index. De Jong describes two methods for trans-

lating graph updates into path index updates.

(1) Traversal-based translation: starting from the updated re-

lationship, traverse the indexed pattern on the data graph

and make note of all the paths encountered. If the rela-

tionship was added, then add all these paths to the index.

Otherwise, remove all these paths from the index.

(2) Self-maintaining translation: maintain a path index for all

sub-patterns of the index pattern. Some of the sub-patterns

need to be reversed in order to do prefix-scans on these

indexes. Then, when handling an updated relationship,

simply do a prefix search on the largest index that contains

the changed relationship in both directions, and combine

the two resulting sets created by these actions. Then add

or remove these paths from the index.

The first method is a naive graph traversal. The secondmethod

requires all sub-patterns to be indexed. We introduce the follow-

ing maintenance method, which uses the query pipeline itself to

find the most effective way to search for updated paths:

(3) Query-based translation: query the index pattern with an

additional predicate that the modified relationship must

be part of the resulting paths. This query then returns all

paths through the updated relationship. We can then add

or remove these paths from the index.

The last approach is far more flexible in terms of which pat-

tern indexes are allowed to exist, compared to self-maintaining

translation. However, it requires executing new queries while

processing transactions. This broke some assumptions about the

way transactions are handled in Neo4j, namely one transaction

per execution thread. As a result, our prototype does not support

concurrent updates. Another issue was that we needed to by-pass

the query cache, otherwise we had no control over which indexes

would be used in the maintenance queries.

When a relationship is modified, added or removed in the

graph, this could mean entries need to be added or removed from

the path indexes. To find out which paths have been changed, a

query is executed that contains the pattern of the index and an

additional constraint that the relationship in the pattern must

match the updated relationship from the transaction. This is

described in Algorithm 1.

There are some important things to consider. Firstly, Neo4j 3.5
1

binds a transaction along with its transaction state to the thread

that opened the transaction. That means that, while we are ap-

plying the outer transaction, the inner query we want to execute

is filtered through the transaction state during maintenance. As

a work-around to this behavior, we store the transaction state of

the outer transaction and reset it for the maintenance queries.

After processing the updates, we restore the old transaction state

such that other Neo4j operations are not affected.

Further, since we are in the middle of applying a transaction,

some of the path indexes might not be up-to-date while other

path indexes may already have been updated. We introduce a

sort order of path indexes by length, small-to-large, to ensure

1
Transactions no longer bind to threads in Neo4j 4.0

Algorithm 1 Maintenance

Input Modified relationship 𝑟 in graph 𝐺 .

1: 𝑏 := the label of the start node of 𝑟

2: 𝑒 := the label of the end node of 𝑟

3: 𝑡 := the type of 𝑟

4: 𝐼 := a list of path indexes with patterns that contain

...(:b)-[:t]->(:e)...
5: Sort 𝐼 by pattern length, ascending.

6: 𝑇old := the committed transaction state.

7: Reset the transaction state.

8: if 𝑟 is a removed relationship then
9: for all index in 𝐼 do
10: 𝑃 := the pattern of index containing relationship 𝑟

11: 𝑅 :=Query(𝑃 , 𝐺)

12: Remove all entries 𝑅 from index.
13: Process all other transaction appliers for 𝑟 .

14: if 𝑟 is an added relationship then
15: for all index in 𝐼 do
16: 𝑃 := the pattern of index containing relationship 𝑟

17: 𝑅 :=Query(𝑃 but avoid using index, 𝐺)
18: Add all entries 𝑅 to index.
19: Set the transaction state to 𝑇old .

Algorithm 2 Index initialization

Input index pattern 𝑃 , data graph 𝐺

Output initialized index 𝐼

1: 𝐼 := a new path index

2: Result_Iterator := Query(𝑃 , 𝐺)

3: while Result := Result_Iterator .next do
4: Add Result to 𝐼

that any maintenance query plan for a path of length 𝑘 will itself

only include path indexes of lengths smaller than 𝑘 , which by

then have already been updated. When we remove a relationship

from the graph, we want the maintenance query results to still

include it so we know which paths to remove from the index.

That is why the query for removals is done before modifying

the underlying data. For relationship additions, the reverse holds.

We want to include it in the maintenance query results in order

to add these paths to the index, therefore we must query these

after the underlying data has been updated.

Similar maintenance steps can be applied for node label up-

dates. Node additions and removals can be ignored, as those are

only allowed for disconnected nodes, making it impossible to

affect path index maintenance.

4.1.2 Initialisation. A small but important aspect is being able

to create indexes on existing data: index initialization. This is

done by querying the pattern on the existing data graph and

adding the result set to the new index in a single transaction.

Other indexes that have already been initialized may be used at

this point. Index initialization thus follows the simple procedure

described in Algorithm 2.

Sumrall [16] proposed constructing a B
+
-tree directly from

a sorted list of query results in order to speed up the B
+
-tree

construction, though this was not practical to achieve in our

implementation since the B
+
-tree memory layout is abstracted in

the code base. As index initialization was not the primary focus

of this study, we used our more naive approach, which increases

the one-time construction cost of any path index.
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5 EXPERIMENTAL SETUP
Baseline Planner Extension. The planning model used by

Neo4j is node-centric. There exist a number of ways to selec-

tively scan or seek nodes by their node labels and indexes exist

on node properties, but there are few ways to selectively scan or

seek based on relationship types. Our path index implementation

will have these abilities. Therefore we apply an extension to the

baseline planner which includes an operator that scans relation-

ships by type. It is introduced with the same cost heuristics as the

most similar node-based operator. Our path index query plans

are compared with this extended baseline.

Hardware and Software. Our experiments were performed

on a server with four Intel Xeon E5-4610 v2 CPUs running at

2.30GHz, 500GB of DDR3 RAM at 1600MHz. We used its 260GB

NVMe SSD for data storage. The server ran Ubuntu 16.04.3 LTS

and the Oracle Java (TM) SE Runtime Environment (version 1.8.0-

151). We prototype on the Neo4j 3.5 community code base [11].

Methodology.Our experiments ran with a pre-allocated heap of

100GB. Each experiment ran until running time converges, which

indicates that hot code paths were optimized by the JVM. Then

we ran the experiment five times, triggering a garbage collection

cycle between each run and flushing the data from memory

without restarting the JVM as this would lose hot code path

optimizations. We then discarded the highest and lowest running

time and averaged the remaining three results. For data set sizes,

we summed the total data file sizes on disk. Path index stores

were measured separately and transaction logs were excluded.

Datasets.We use four data sets in our experiments: two synthet-

ically generated and two real-world data sets. The first synthetic

data set is referred to as the correlated data set, as it has high

structural correlation. It has 125K nodes and 12.6M relationships

and was created by interconnecting 25 000 copies of the same

path, making it a highly selective pattern. The second synthetic

data set is referred to as the independent data set as there are no
structural correlations in the connections between nodes. It has

250K nodes and 5M relationships. The first real-world data set

is the YAGO data set [15], containing 77M nodes and 100M rela-

tionships. The second real-world dataset is the GeoSpecies data

set [5], containing 225K nodes and 1.5M relationships. Coming

from distinct application domains, these graphs allow us to gain

practical insights into the robustness of our methods.

6 RESULTS
Our hypothesis is that our path index is not suited for application

on high-cardinality path patterns, since the worst-case space

requirement is exponential in path length. Indeed, we observe

that path indexes are especially useful for highly selective paths

on correlated data, as the cost of the path index is very low

compared to the computation of intermediate state that can be

skipped by using the index.

To test this hypothesis, we first run two controlled scenarios of

queries on highly correlated and uniformly distributed synthetic

data sets. We generate our own data sets, rather than using a

benchmark such as LDBC SNB [6], so as to finely control the

structure of the data. This was sufficient for our goals here, but

we note that off-the-shelf generators such as gMark could also

have been used [2]. Then, we verify our findings by applying our

path index to two real-world scenarios: a selective, correlated

path query and a high-cardinality path query.

Finally, we show that path indexes can be applied to index

maintenance in some cases, and the effect of selective, correlated

index path patterns.

6.1 Synthetic Query Benchmarks
Our first experiments show that choosing the right path index can

significantly improve query performance. The available indexes

on this data set are described in Figure 3 (Correlated synthetic).
The query pattern matches that of the full index. The result of

this query when planned with different indexes can be seen in

Figure 4 (Correlated synthetic). The full index is clearly the best

as it essentially pre-computes the answer. However, sub-index

𝑆1 has similar performance for a smaller index, which may offer

more re-use capabilities.

The second experiment, illustrated in Figure 4 (Independent
synthetic), shows the same technique applied to a uniformly

distributed data set. The indexes available here are described in

Figure 3 (Independent synthetic). Because there is no selective,

structural correlation in this data set, the query produces many

more results. Indexing these results, even in sub-indexes, provides

no significant speed improvement.

Both of these experiments show dependency between the

running time and the maximum intermediate cardinality. This

indicates that indexing selective patterns can significantly reduce

the maximum intermediate cardinality during query evaluation,

and thus the running time of the query.

6.2 Real-world Query Benchmarks
After findings on synthetic datasets, we applied our technique

to real-world data sets. Our first dataset, YAGO [15], has a file

containing query workloads. We used the cardinality estimation

model of the Neo4j planner that assumes independence between

elements to find the query that was most mis-predicted, as our

assumption was that this query would be highly correlated, since

this is exactly the type of query that will yield mis-predictions

by this cardinality estimation model.

We then applied path indexes that matched parts of the query

to speed up query evaluation [9]. The heuristic cost estimator

we used was built on the assumption of independence. For the

YAGO experiments, the resulting query plans were of insufficient

quality. We have manually created better query plans to show

what an improved cost estimator could achieve with our indexes.

The indexes are described in Figure 3 (YAGO dataset) and the

benchmark results are shown in Figure 4 (YAGO).
The full index on the query pattern significantly speeds up

query evaluation time compared to our manually optimized base-

line. The plans using smaller sub-indexes further improve per-

formance, even though it requires more steps to fully answer

the query in these plans. This can be explained by the reduction

of intermediate cardinality in later stages of the operator tree.

The high cardinality of the 𝑆2 and 𝑆3 plans is caused by the first

node scan operator which is reduced early on in the execution of

the query plans, this explains the faster execution time despite

the initially higher cardinality compared to the 𝐹 plan. The path

index efficiently produces the full path on this reduced state,

achieving fast total execution times.

We have also applied this to another data set with a less se-

lective query, expecting our path index would not be able to

speed up query evaluation performance as much. And indeed,

our experiment results (shown in Figure 3 and Figure 4 under
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)BM(eziSytilanidraCnrettapdexednIemaN

G - – 413.97
F (:A)-[:X]->(:A)-[:X]->(:A)-[:Y]->(:B)-[:X]->(:A) 25 000 3.92
S1 (:A)-[:X]->(:A)-[:X]->(:A)-[:Y]->(:B) 25 000 3.17
S2 (:A)-[:X]->(:A)-[:Y]->(:B)-[:X]->(:A) 25 000 3.17
S3 (:A)-[:X]->(:A)-[:X]->(:A) 12 524 000 970.56
S4 (:A)-[:X]->(:A)-[:Y]->(:B) 25 000 2.39
S5 (:A)-[:Y]->(:B)-[:X]->(:A) 6 274 500 471.59
S6 (:A)-[:X]->(:A) 6 299 500 364.95
S7 (:A)-[:Y]->(:B) 6 274 500 250.27
S8 (:B)-[:X]->(:A) 25 000 1.55

Correlated synthetic
)BM(eziSytilanidraCnrettapdexednIemaN

G - – 171.24
F (:A)-[:V]->(:B)-[:W]->(:C)-[:X]->(:D)-[:Y]->(:E) 862 345 97.92
S1 (:A)-[:V]->(:B)-[:W]->(:C)-[:X]->(:D) 280 050 33.97
S2 (:B)-[:W]->(:C)-[:X]->(:D)-[:Y]->(:E) 295 337 35.55
S3 (:A)-[:V]->(:B)-[:W]->(:C) 111 532 10.42
S4 (:B)-[:W]->(:C)-[:X]->(:D) 102 812 9.72
S5 (:C)-[:X]->(:D)-[:Y]->(:E) 129 410 8.70
S6 (:A)-[:V]->(:B) 40 039 2.45
S7 (:B)-[:W]->(:C) 40 227 2.47
S8 (:C)-[:X]->(:D) 40 613 1.97
S9 (:D)-[:Y]->(:E) 40 220 1.84

Independent synthetic

)BM(eziSytilanidraCnrettapdexednIemaN

G - – 20 947.05
F (a)-[w]->(b)-[v]->(c)-[x]->(d)-[y]->(e)-[z]->(f) 2 320 0.45
S1 (a)-[w]->(b)-[v]->(c)-[x]->(d) 7 < 0.01
S2 (b)-[v]->(c)-[x]->(d)-[y]->(e) 12 323 1.58
S3 (c)-[x]->(d)-[y]->(e)-[z]->(f) 366 0.01

YAGO dataset

Name Indexed pattern Cardinality Size (MB)

G - – 117.99
F (a)-[x]->(b)<-[y]-(a)-[x]->(b) 334 126 32.13
S (a)-[x]->(b) 24 814 1.54

GeoSpecies dataset

Figure 3: The available indexes on the benchmarked datasets with their cardinality and storage size. Here, G denotes the
size of the whole graph, F the index for the full path, and S indexes for sub-paths.

maximum intermediate cardinalitytime

Figure 4: Benchmark results on the data sets. B denotes the baseline, F indexing the full path, and S indexing sub-paths.

(a) Correlated data (b) Independent data

Figure 5: Results of the maintenance experiment on correlated (left) and independent (right) data. The rows show the
amount of time required to update the index, given the presence of a sub-pattern index named in the left-most column.

GeoSpecies) show that, because the result cardinality is the high-

est cardinality in the query evaluation, our path index was not

able to skip over large intermediate cardinalities, and thus no real

performance gain was achieved.

6.3 Maintenance Using Sub-Indexes
Not only can sub-pattern indexes provide performance benefits

during query execution. As De Jong [4] showed, sub-patterns

can also be used to speed up the maintenance of the full index.

Where the self-maintaining translation introduced by De Jong

exhaustively provides all sub-patterns such that no data has to be

read from the graph, our approach simply defers this decision to

the query planner, as maintenance is performed using a specific

query on the indexed pattern. This allows us to pick an arbitrary

set of path indexes, which may then also be used to speed up

maintenance when applicable.

In this experiment, we first look at the performance benefits

on our synthetic correlated data set for index maintenance, as we

provide one of the sub-pattern indexes from Table 3 alongside the

Full index. The graph is updated to remove one of the Y-labeled
relationships in a transaction, after which this same relationship

is added again in a new transaction. Fig. 5 (a) shows the results of

this experiment. The first row contains the maintenance perfor-

mance of just the Full index and the subsequent rows contain the
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performance of using a maintenance plan that includes the sub-

pattern index. Further, the sub-pattern index itself may also need

to be maintained, thus these measurements are also included.

For this experiment, the query planner is forced to use a plan

that uses the sub-pattern index for the Full index maintenance.

This sometimes results in a slower maintenance plan as only

some query plans are considered. We may assume that the plan-

ner would not use the sub-index for maintenance in that case,

if given the choice, though the figures give an indication of the

effect on maintenance of the sub-index. The average speed-up re-

ported is the factor of performance increase of both maintenance

operations for the removal and addition of a relationship.

Interestingly, both Sub1 and Sub4, the indexes that provided
the most performance increase during query execution, do not

speed up the maintenance operations of changes to this specific

relationship. Sub3 provides a moderate performance increase for

maintenance computations, while it was the worst performing

index in the previous query execution experiment.

We then perform the same set of transactions, by removing

an Y-labeled relationship in a transaction and adding it in an-

other transaction, leading to index maintenance on the synthetic

independent data set. We observe that similar modest speed im-

provements can be achieved the sub-pattern indexes on the full

index maintenance in Fig. 5 (b), while the forced plans for some

sub-indexes perform considerably worse as well.

7 LESSONS LEARNED
Indexing paths in graphs often makes sense in practice.
Since the number of (potential) paths in a graph grows exponen-

tially with path length, it might seem too prohibitive (wrt. worst-

case space complexity) to index path patterns in large graphs.

In this work, on the contrary, we found out that, in practice,

indexing strategically-chosen path patterns can, in fact, greatly

improve query performance in both synthetic and real datasets

at a small storage overhead. The practicality of this approach is

underscored by our integration of our work in the Neo4j system.

Patterns with high structural correlation are most benefi-
cial to index. Patterns where there is high correlation in the

connections between the nodes in the data will result in a rela-

tively low number of paths matching the pattern. The number of

edges that have to be explored to match the same pattern through

direct traversal of the graph would be substantially larger. In such

situations the cardinality of the intermediate result is substan-

tially larger than cardinality of matches to the whole pattern. Our

experiments show that when correlated patterns are indexed, this

high cost of computing these intermediate results of high cardi-

nality is avoided. Furthermore the size of the index for such a

highly selective pattern over correlated data is small as well. This

turns out to be a sweet spot for path indexes, where the benefit

of the index is high and the overhead of the index is low.

In contrast, for patterns matching uncorrelated data, the size

of the index is proportional to the cardinality of the intermediate

result, which in many cases grow exponentially in the size of

the underlying graph. In these cases we experience not only a

prohibitively large storage overhead for the index, but also no

tangible performance benefit, since enumerating the paths from

the index is proportional to enumerating the paths by direct

traversal of the underlying graph.

Patterns to be indexed should be chosen with care. Hence,
one should take advantage of structural correlations which natu-

rally occur in graphs in order to choose path patterns that have

(1) low cardinality and (2) help to cut down on the cardinality

of intermediate results during the evaluation of queries in the

workload. Finding path patterns that satisfy both (1) and (2) is

not trivial and is ultimately a constrained optimization on the

given workload and usable storage.

8 CONCLUSIONS
We have reported on our practical experiences integrating a

state of the art path index into the query processing pipeline of

Neo4j, a popular industrial graph database. Through extensive

empirical study, we found that selective path indexes can greatly

accelerate query evaluation performance. This is especially true

in those cases where the query engine would otherwise require

computations on large intermediate state to arrive at a relatively

small result set. In these scenarios, which arise commonly in

practice due to correlations in the structure of real world graphs,

we have shown that even though path indexes in the worst case

require exponential storage, these selective path indexes can

be very small relative to the total graph size. These are optimal

scenarios for path indexes since the path index is able to provide a

significant performance improvement with a low space overhead.

Our extended report [9] contains further details and results, such

as technical aspects of the integration into Neo4j, the technical

challenges encountered, and the engineering lessons learned.

Looking ahead, there are several interesting directions for fur-

ther research. We close by indicating two of these: (1) investigate

more deeply query planning in the presence of path indexes,

including cardinality estimation and costing techniques for path

indexes; and, (2) study methods for selecting which patterns to

index, balancing space costs and performance benefit, e.g., with

respect to a given query workload.
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ABSTRACT
Personalized social media offer communication opportunities
that mass media could not afford, yet also raise novel challenges.
A prime challenge arising from this shift in digital communication
is to detect topics and events of interest. In this paper, we propose
and deploy a novel Deep Learning architecture that predicts if a
news topic becomes viral by analyzing social media diffusion and
audience interest in current news events. The proposed solution:
(i) analyzes news articles, (ii) extracts associated topics and
events, (iii) matches the topics and events to filter and extract
developing topics, (iv) extracts current events from Twitter
and matches them to the filtered news topics, and (v) predicts
audience interest in news topics using Twitter likes and retweets.
We employ several feature engineering techniques to improve
prediction by integrating user metadata into the training set. In
our experiments, we correlate two datasets collected over several
months in the same time period. The first dataset contains news
articles collected from different news venues, while the second
one contains tweets regarding the news. The experimental results
from our real-world deployment prove that the proposed system
achieves high accuracy when integrating influencers metadata
and the day of theweek. Thus, proving that the news topics virality
prediction is improved under the assumptions that spreaders and
the day of the week play a huge role in information diffusion.

KEYWORDS
audience interest prediction, social media, news diffusion, topic
modeling, event detection, neural networks

1 INTRODUCTION
The internet age has brought new ways of sharing information
that changed the way the general public consumes media content.
Physical newspapers moved to a digital form in a few years. With
this migration to the virtual world, the number of news sources
increased, and consumers gained a wide variety of options from
where to choose their daily news using their preferred content.
∗Corresponding Author
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Users have two methods at their disposal to stay up to date with
current news events:

(1) buy a subscription to news publisher that provides in-app
or email news content, or

(2) follow the content of news outlets or influencers on social
media [30], where influencers are users that manage to
sway a target audience.

An emerging and growing social media platform is Twitter.
Twitter provides users a venue where they can share their
thoughts, discuss, and forward various kinds of information [29].
The subjects are diverse, from daily local events to important
global issues. The ever-growing number of users around the
world tweeting makes Twitter a valuable source for real-time
information. Thus, many consumers spend time on their news
feeds to catch up with everything around them.

News outlets and publishers also embraced Twitter to update
followers by regularly posting tweets that contain short news
headlines and including direct links to full articles. Thus, news
outlets reach large audiences and increase their reader base. Yet,
to predict the audience’s interest in a news topic, we should
determine the underlying social structures and relationships
between Twitter users [14], and utilize the network graph
structure modelling the relationships between members of
different social groups [18]. Nodes in a group’s center are called
influencers as they have a huge role in spreading the information.
Nodes that like or retweet content are known as spreaders, as
they propagate the information further in the network.

Our proposed solution is motivated by the recent negative
impact viral Fake News has on society at large and the current
need for systems that can help in stopping the viral spreading of
such news. Knowing the veracity, determining the propagation
patterns, and predicting the influence of news articles in social
media, new strategies for mitigating harmful misinformation
can be developed. Thus, the main objective of this paper is to
determine if a news topic becomes viral on social media. We
tackle this issue by predicting the audience in order to facilitate
the development of new network immunization strategies.

The research questions we are trying to answer are:

(Q1) Do the current events presented in mass media also gain
traction on social media?

(Q2) Does the diffusion of news articles on social media
influence the trending topic of current events?
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(Q3) Can we predict the audience interest in a news topic by
analysing the retweets and likes received by news articles
belonging to the topic on social media?

(Q4) Does the network-related metadata improve the audience
interest prediction?

To answer (Q1) and (Q2), we first extract the news topics using
Non-Negative Matrix Factorization (NMF) [2] and the news events
using Mention-Anomaly-Based Event Detection (MABED) [15].
Second, we correlate the news topics and news events to extract
trending news topics by employing the cosine similarity. Finally,
we extract Twitter events also using MABED. For answering
(Q1), we analyze the correlation results of trending news topics
→ Twitter events. Whereas, for answering (Q2), we analyse the
reverse correlation results, i.e., Twitter events→ trending news
topics.

To answer (Q3), we consider that the correlated < trending
news topics, Twitter events > pair reveals insights in the audience
interest through likes and retweets. Thus, we train two Deep
Learning models on the Twitter events to predict their likes and
retweets on Twitter. The high accuracy of the models proves
that we can correctly predict the audience interest in trending
news topics using social media information and determine if they
become viral.

Finally, to answer (Q4), we enhance the training dataset with
metadata containing information regarding each tweet’s author
and its number of followers as well as the day of the week when
the tweet was posted online. We base this approach on two
assumptions. First, that influencers (users with a high number
of followers) have a huge role in spreading the information and
making news articles topics viral. Second, that user behaviour
posting patterns, as well as media consumption, are influenced
by the day of the week, as also empirically proven in [3]. We
retrain our Deep Learning models and manage to obtain better
accuracy results, thus showing that the assumptions stand for
our use case.

We use Twitter’s graph structure to extract events and to
predict the audiences’ interest by analyzing the textual and
metadata content (e.g., retweets, likes, user followers, etc.) of
each post. Thus, we propose and deploy a novel architecture that
incorporates topic modeling, event detection, and Deep Learning
classification. Our system:

(1) analyzes news articles,
(2) extracts their topics and associated events,
(3) matches these topics and events to filter and extract

developing topics,
(4) extracts current events from Twitter and matches them

with the filtered news topics, and
(5) predicts audience interest in the news topics using Twitter

likes (formally known as favorites) and retweets by
enhancing the dataset with metadata, i.e., the tweet author
and its number of followers, as well as the day when the
tweet was posted.

The novelty of our proposed architectures is threefold:

(1) we correlate and discover new insights between the
relation of trending news topics and Twitter events in both
directions, i.e., trending news topics→ Twitter events and
Twitter events→ trending news topics;

(2) we manage to create accurate models that predict the
audience interest in trending news topics on social media
and determine if they become viral;

(3) we improve the model’s performance by incorporating
in our document embeddings and learning models the
assumption that influencers play an important role in the
spreading as well as the day when the tweet was posted,
thus making trending news topics to become viral.

Experimental results show that all trending news topics are
correlated to at least one Twitter event, whereas the reverse is not
true. Furthermore, we obtain better audience interest prediction
by enhancing the dataset with metadata.

The rest of this paper is structured as follows. Section 2
presents a survey of state-of-the-art-methods for analyzing news
diffusion on social media. In Section 3, we discuss the models and
techniques used in our deployed solution. Section 4 presents the
architecture of our system and discusses each module in detail.
Section 5 showcases and discusses the obtained results. Lastly,
in Section 6 we conclude and we present several new directions
and improvements for the proposed solution.

2 RELATEDWORK
Online media content shapes people’s perceptions regarding
ongoing social, political, and economical changes around them.
In the literature, the relevance of the story selection correlated
to a specific audience, done by editors or by algorithms, has
been analyzed to find better ways to get news online and explore
the relationships that exist between individuals’ characteristics
and their interests. The results show that the audience’s interest
can be determined by context-specific characteristics [34].
Furthermore, the prediction of the audience’s interest in a news
topic can help publishers to create recommendation systems for
social platforms that leverage tailor-made latent features [5].

One solution for building better recommendation systems
for targeting the interested audience proposes to analyse the
content of posts to detect bursty topics. The analysis predicts
the emergence of current events that are of interest to multiple
groups of people who discuss and share the content online [1,
15, 31]. Furthermore, community-based probabilistic algorithms
can be used to model the spreading of news events on social
networks [25]. Therefore in this paper, we use event detection
techniques to match news topics with news events and extract
trending news topics. Then, we correlate the trending news topics
with Twitter events using the same time frame to determine the
spread of current news topics on the social media platform and
determine viral topics.

The visibility of news on social media also depends on the
actions of a diverse set of actors, e.g., the users, their friends,
content publishers such as news organizations, advertisers, and
algorithms [33]. Thus, we propose a new feature construction
method that incorporates metadata into the features of the
training set.

Deep Learning architectures have been successfully used for
predicting the trend of stocks [19], financial time series [28],
marketing [26], etc. Deep Learning architectures have also
been used to predict information diffusion in social media.
Recurrent Neural Networks (RNN) architecture is a popular
deep learning-based model used to model information diffusion,
obtaining promising performance. In [36], the authors explore
the advantages of using an RNN-based model enhanced
with reinforcement learning in order to predict information
diffusion in social media. In their work, they tackle diffusion
prediction both at the user level (microscopic), i.e., the next
influenced user, and at the network level (macroscopic). The
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proposed solution, FOREST (reinFOrced REcurrent networks
with STructural context), consists of two models: the microscopic
and macroscopic cascade models. The microscopic model
employs a Gated Recurrent Unit architecture and a structural
context extraction algorithm based on neighborhood sampling.
This model is fed to the macroscopic model that also applies
a reinforcement learning based cascade simulation process.
For experiments, they used three datasets, each from different
social media platforms. FOREST is compared with other
state of the art solutions that employ Long Short-Terms
Memory, attention layers, and Convolutional or Recurrent Neural
Nentwork architectures. The authors use the Mean-Square Log-
Transformed Error (MSLE) metric for comparison. FOREST
outperforms all the baseline solutions. In comparison with our
work, FOREST does not detect news topics and does not analyze
from this point of view the spread of information. Also, their
models ignore the timestamp information. A similar solution
to [36] that, in contrast, considers the temporal information, but
which still does not address audience prediction on particular
topics, is proposed in [6]. Their proposed method, called CasCN
(Recurrent Cascades Convolutional Networks), is also based
on an RNN architecture. CasCN predicts cascades through
learning the latent representation of both structural and temporal
information.

To the best of our knowledge, there are no current solutions
that connect news articles and social media events in order to
predict the spread of certain news topics in social media. To
address this shortcoming, we analyze both news articles and
tweets in order to correlate the events from the two type of
sources and employ Deep Learning architectures together with
our feature engineered training set for an accurate audience
interest prediction on particular news topics.

3 METHODOLOGY
In this section, we discuss the core components of our solution.

3.1 TermWeighting Schemes
In Information Retrieval and Text Mining, a weighting scheme
is a statistical measure to evaluate how important a term is to a
document in a collection or corpus. Weighting schemes are the
basis for many document vectorization techniques, such as the
vector space model where each feature is a word (term), and the
feature’s value is a term weight.

For a corpus of documents𝐷 = {𝑑1, 𝑑2, ..., 𝑑𝑛}, where 𝑛 = | |𝐷 | |
is the total number of documents in the dataset, a document 𝑑𝑖
is defined as a sequence of terms 𝑡𝑖 𝑗 , 𝑑𝑖 = {𝑡𝑖1, 𝑡𝑖2, ..., 𝑡𝑖𝑚} where
𝑚 is the length of the vocabulary. The vocabulary is the set of
distinct words that appear in the corpus of documents. The term
frequency 𝑇𝐹 (𝑡𝑖 𝑗 , 𝑑𝑖 ) of a term 𝑡𝑖 𝑗 is equal to the number of co-
occurrences of that term in a document 𝑑𝑖 (Equation (1)).

𝑇𝐹 (𝑡𝑖 𝑗 , 𝑑𝑖 ) = 𝑓𝑡𝑖 𝑗 ,𝑑𝑖 (1)

The inverse-document frequency 𝐼𝐷𝐹 (𝑡𝑖 𝑗 , 𝐷) is a statistical
measure of the importance of a term in a text document collection
(Equation (2)), where 𝑡𝑖 𝑗 is the term,𝐷 is the corpus of documents,
𝑛 = | |𝐷 | | is the number of documents in the corpus, and 𝑛𝑖 𝑗 is
the number of documents where term 𝑡𝑖 𝑗 appears. Terms with a
low document frequency add more information than terms with
a high frequency. Thus, the more frequently the term appears in
the collection, the less informative the term is.

𝐼𝐷𝐹 (𝑡𝑖 𝑗 , 𝐷) = log2
𝑛

𝑛𝑖 𝑗
(2)

Term frequency-inverse document frequency
(𝑇𝐹𝐼𝐷𝐹 (𝑡𝑖 𝑗 , 𝑑𝑖 , 𝐷)) is a statistical measure used to determine the
importance of a word regarding its frequency in a document
relative to the entire corpus. The term importance is proportional
to the number of times a word appears in the document, although
it is counterbalanced by the frequency of that word in the corpus
(Equation (3)).

𝑇𝐹𝐼𝐷𝐹 (𝑡𝑖 𝑗 , 𝑑𝑖 , 𝐷) = 𝑇𝐹 (𝑡𝑖 𝑗 , 𝑑𝑖 ) · 𝐼𝐷𝐹 (𝑡𝑖 𝑗 , 𝐷) (3)
The normalized term frequency-inverse document frequency

𝑇𝐹𝐼𝐷𝐹𝑁 (𝑡𝑖 𝑗 , 𝑑𝑖 , 𝐷) (Equation (4)) uses the ℓ2-norm (Equation (5))
to normalize the values of 𝑇𝐹𝐼𝐷𝐹 (𝑡𝑖 𝑗 , 𝑑𝑖 , 𝐷), for each term 𝑡𝑖 𝑗 in
each document 𝑑𝑖 , in the [0, 1] interval.

𝑇𝐹𝐼𝐷𝐹𝑁 (𝑡𝑖 𝑗 , 𝑑𝑖 , 𝐷) =
𝑇𝐹𝐼𝐷𝐹 (𝑡𝑖 𝑗 , 𝑑𝑖 , 𝐷)

ℓ2 (𝑑𝑖 )
(4)

ℓ2 (𝑑𝑖 ) =
√ ∑

𝑡𝑖 𝑗 ∈𝑑𝑖

(
𝑇𝐹𝐼𝐷𝐹 (𝑡𝑖 𝑗 , 𝑑𝑖 , 𝐷)

)2 (5)

Using the weights, we construct document-term matrices
𝐴 ∈ R𝑛×𝑚 to describe the frequency of terms that occur in the
dataset. By considering this representation, rows correspond to
documents and terms to columns.

3.2 Topic Modeling
Topic modeling is a statistical unsupervised machine learning
method used to extract hidden latent semantic patterns within
a corpus of documents. Topic modeling algorithms use either
statisical models, i.e., Probabilistic Latent Semantic Indexing
(PLSI) [17], generative statistical models, i.e., Latent Dirichlet
allocation (LDA) [4], or matrix factorization, e.g., Non-Negative
Matrix Factorization (NMF) [2], Latent Semantic Analysis [9]
(LSA). Experimental results prove that NMF is the best choice for
extracting topics [7].

Non-Negative Matrix Factorization. NMF is an algorithm that
factorizes a matrix 𝐴 ∈ R𝑛×𝑚 into two non-negative matrices
𝑊 ∈ R𝑛×𝑘 and 𝐻 ∈ R𝑘×𝑚 . In the case of topic modeling, the
matrices have the following signification:

(1) 𝐴 is a document-term matrix constructed using weighted
term frequencies for a corpus containing 𝑛 documents and
a vocabulary of size𝑚 terms;

(2) 𝑊 is the document-topic matrix that assigns a document
membership to each topic 𝑘 ;

(3) 𝐻 is the topic-term matrix that assigns to each topic 𝑘 the
importance of a term.

To determine𝑊 and 𝐻 , the objective function 𝐹 (𝑊,𝐻 ) must
be minimized by respecting the constraint that all the elements
of𝑊 and 𝐻 are non-negative. Equation (6) presents the objective
function, where | | · | |𝐹 is the Frobenius norm.

𝐹 (𝑊,𝐻 ) = | |𝐴 −𝑊𝐻 | |2𝐹 =

𝑛∑
𝑖=1

𝑚∑
𝑗=1
(𝐴𝑖 𝑗 − (𝑊𝐻 )𝑖 𝑗 )2 (6)

Tominimize the objective function (Equation (7)), the values of
𝑊 and𝐻 are updated iteratively (with 𝑡 the index of the iteration)
until they stabilize (Equation (8)).

min
𝑊 ≥0,𝐻 ≥0

𝐹 (𝑊,𝐻 ) = min
𝑊 ≥0,𝐻 ≥0

| |𝐴 −𝑊𝐻 | |2𝐹 (7)
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𝐻𝑡+1
𝑖 𝑗 ← 𝐻𝑡

𝑖 𝑗

((𝑊 𝑡 )𝑇𝐴)𝑖 𝑗
((𝑊 𝑡 )𝑇𝑊 𝑡𝐻𝑡 )𝑖 𝑗

𝑊 𝑡+1
𝑖 𝑗 ←𝑊 𝑡

𝑖 𝑗

(𝐴(𝐻𝑡+1)𝑇 )𝑖 𝑗
(𝑊 𝑡𝐻𝑡+1 (𝐻𝑡+1)𝑇 )𝑖 𝑗

(8)

3.3 Information Diffusion
Information diffusion in social media studies the data propagation
to find events and forecast their spreading [13]. Event detection
is a subdomain of information diffusion that aims to discover
real-world events from the social media [38]. We choose Mention-
Anomaly-Based Event Detection (MABED) [15] as the Twitter
event detection algorithm. MABED is a statistical event detection
on social media method immune to the topic bias added by the
texts unrelated to the event.

Mention-Anomaly-Based Event Detection. MABED is an
efficient method for event detection that filters irrelevant content
and successfully removes spam messages with no actual intent,
posted around certain hours.

To identify a bursty topic and detect an event for a period of
time 𝐼 = [𝑎;𝑏] and a main word 𝑡 (event label) with MABED,
a weight 𝑤𝑡 ′𝑞 is computed for each candidate word 𝑡 ′𝑞 (event
keywords) in the time slice 𝑖 (Equation (9)). The weight is
computed using the affine function 𝜌𝑂𝑡,𝑡′𝑞

(Equation (10)) that
corresponds to the first order auto-correlation of the time-series
for 𝑁 𝑖

𝑡 (number of tweets in the time-slice 𝑖 that contain the main
word 𝑡 ) and 𝑁 𝑖

𝑡 ′𝑞
(number of tweets in the time-slice 𝑖 that contain

the candidate word 𝑡 ′𝑞 ) [12].

𝑤𝑡 ′𝑞 =

𝜌𝑂𝑡,𝑡′𝑞
+ 1

2
(9)

𝜌𝑂𝑡,𝑡′𝑞
=

∑𝑏
𝑖=𝑎+1𝐴𝑡,𝑡 ′𝑞

(𝑏 − 𝑎 − 1)𝐴𝑡𝐴𝑡 ′𝑞
(10)

Where:
(1) 𝐴𝑡,𝑡 ′𝑞 = (𝑁 𝑖

𝑡 − 𝑁 𝑖−1
𝑡 ) (𝑁 𝑖

𝑡 ′𝑞
− 𝑁 𝑖−1

𝑡 ′𝑞
);

(2) 𝐴2
𝑡 =

∑𝑏
𝑖=𝑎+1 (𝑁 𝑖

𝑡 −𝑁 𝑖−1
𝑡 )2

(𝑏−𝑎−1) ;

(3) 𝐴2
𝑡 ′𝑞

=

∑𝑏
𝑖=𝑎+1 (𝑁 𝑖

𝑡′𝑞
−𝑁 𝑖−1

𝑡′𝑞
)2

(𝑏−𝑎−1) .

3.4 Text Representation using Embeddings
Before using machine learning models for classification,
prediction, or clustering, the documents must be transformed
from textual data to numerical data.

Word Embedding. The Word to Vector model (Word2Vec) is
a shallow neural architecture that produces a vector space for
a textual dataset using the values of the neural network hidden
layer [27]. There are two approaches proposed in the literature:

(1) Continuous Bag-Of-Wordsmodel (CBOW)which accounts
for the textual dataset vocabulary and represents
documents as a set of continuous word-multiplicity pairs.
The input to the hidden layer connections is replicated by
the number of context words, and the context is preserved
through the use of multiple words that target a given word.

(2) Skip-gram model which represents documents as
sequences of words with gaps between them. The input to
the neural network is the target word, and the output layer
is replicated multiple times to accommodate the chosen

number of context words. Thus, this model manages to
embed in the word representation its linguistic context.

The twomodels mirror each other while both preserve context.
The CBOW model uses multiple neighbouring words to preserve
the context for a target word, while the Skip-gram model uses a
word to preserve the context for multiple targeted neighbouring
words.

Document Embedding.
The Document to Vector (Doc2Vec) model learns continuous

distributed vector representations for textual data [23]. The
text dimension may vary from phrases and sentences to large
documents. The model is similar to the Word2Vec model which
maps words into the vector space maintaining the semantic
similarities by using a given word’s context. There are two
approaches in the literature [23]:

(1) The Paragraph Vectors Distributed Memory (PVDM)
model [23] extends the CBOW architecture by mapping
each document to a vector via an additional document-to-
vector matrix and concatenating this vector to the word
vectors in order to predict the central word.

(2) The Paragraph Vectors Distributed Bag of Words
(PVDBOW) predicts the central word using the same
mechanism as PVDM model but does not preserve the
word order and ignores the context.

Similarity. Using word or document embeddings together with
the cosine similarity [24], the semantic similarity between two
words or documents can be computed [20]. This method assumes
that two embeddings have a non-zero norm and measures their
orientation instead of their magnitude, as in the case of the
Euclidean distance. Equation (11) presents the cosine similarity
for two 𝑝-dimensional vectors 𝑥 and 𝑦.

𝑐𝑜𝑠 (𝜃 ) =
∑𝑝

𝑖=1 𝑥𝑖 · 𝑦𝑖√∑𝑝

𝑖=1 𝑥
2
𝑖
·
√∑𝑝

𝑖=1 𝑦
2
𝑖

(11)

3.5 Deep Learning Architectures
Artificial neural networks (ANNs) use processing units to predict
an output 𝑦 ∈ R𝑛×𝑘 for an input dataset 𝑋 ∈ R𝑛×𝑚 . For the
given input containing feature vectors 𝑥𝑖 ∈ 𝑋 , the processing
unit will try to predict an output 𝑦𝑖 = 𝛿 (∑𝑚

𝑗=1 (𝑤𝑖 𝑗 · 𝑥𝑖 𝑗 ) + 𝑏)
using a weight vector𝑤𝑖 𝑗 , the bias 𝑏, and the activation function
𝛿 (·). The activation function has different forms depending on
the processing unit (Table 1).

Table 1: Activation functions

Name Function
Sigmoid 𝛿 (𝑧) = 𝜎𝑔 (𝑧) = 1

1+𝑒−𝑧
Hyperbolic 𝛿 (𝑧) = tanh(𝑧) = 𝑒𝑧−𝑒−𝑧

𝑒𝑧+𝑒−𝑧
ReLU 𝛿 (𝑧) = max(0, 𝑧)
Softmax 𝛿 (𝑧) = 𝑒𝑧∑𝑚

𝑖=1 𝑒
𝑧𝑖

(𝑚 = 𝑑𝑖𝑚(𝑧))

To accurately predict the output 𝑦, the ANN models minimize
the loss or cross entropy function (Equation (12)) by adjusting
the weights after a specified finite number of iterations or when
the function stabilizes.

𝐿(𝑦,𝑦) = −(𝑦 log𝑦 + (1 − 𝑦) log(1 − 𝑦)) (12)
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Stochastic gradient descent (SGD) (Equation (13)) is used
to update the weight vector at iteration 𝑡 using the weights
computed during the previous iteration. Equation (14) presents
the weigths update function, where 𝜂 is the global learning rate
and 𝛼 ∈ [0; 1] is the exponential decay factor.

𝛾𝑡 = ▽𝒘 (𝑡 ) 𝐿(𝑦,𝑦) (13)

△𝒘 (𝑡 ) = 𝛼 △𝒘 (𝑡−1) − 𝜂𝛾𝑡 (14)
ADAGRAD is a method used to improve SGD by increasing

the learning rate when the 𝒘 weight vectors are sparse [11].
Equation (15) presents update rule used by ADAGRAD, where
| |𝛾 | |2 is the ℓ2-norm of all previous gradients on a per-dimension
basis.

△𝒘 (𝑡 ) = − 𝜂

| |𝛾 | |2
𝛾𝑡 (15)

ADAGRAD has two problems :
(1) the continual decay of learning rates throughout training,

and
(2) the need for a manually selected global learning rate.
ADADELTA [39] solves these two problems by using the Root

Mean Square (𝑅𝑀𝑆) to update the weights (Equation (16)).

△𝒘 (𝑡 ) = −𝑅𝑀𝑆 [△𝒘]𝑡−1
𝑅𝑀𝑆 [𝛾]𝑡

𝛾𝑡 (16)

Two Deep Learning Architectures used successfully in
classification [21] are Multi-Layer Perceptron and Convolutional
Neural Network.

Multi-Layer Perceptron. One of the basic processing units is
the perceptron, which maps its input 𝑥𝑖 to a single binary value
𝑦𝑖 ∈ {0, 1}. The perceptron can generalizes naturally to a multi-
class perceptron to predict 𝑦 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑦 𝑓 (𝑥,𝑦) · 𝒘 by using a
feature representation function 𝑓 (𝑥,𝑦) that maps each possible
input/output pair to a finite-dimensional real-valued feature
vector and multiplies it by a weight vector𝒘 .

The Multi-Layer Perceptron (MLP) is a feed-forward ANN
architecture that stacks perceptron units into three fully
connected weighted directed layers:

(1) the input layer,
(2) the hidden layer, and
(3) the output layer.
The MLP becomes a Deep Feed-Forward Neural Network

architecture by adding multiple hidden layers
Convolutional Neural Network. A Convolutional Neural

Network (CNN) is an ANN architecture similar to theMLP, except
it contains multiple hidden layers. These hidden layers consist of
a series of convolutional layers that apply a filter to the activation
function. They include the following types of layers: pooling, fully
connected, and normalization layers. The pooling layer is used
to reduce the dimensions of the data by combining the outputs
of one layer into a single neuron in the next layer.

3.6 Evaluation Methods
Multi-class classification models assign a data point to one and
only one non-overlapping class 𝑐𝑖 (𝑖 = 1, 𝑘) [32]. To evaluate
the quality of the model we can use the average accuracy
(Equation (17)) where:
• 𝑇𝑃𝑖 (True Positive) is the number of data points correctly
classified with class 𝐶𝑖 ;

• 𝐹𝑁𝑖 (False Negative) is the number of data points
incorrectly classified with a class 𝐶 𝑗 ( 𝑗 ≠ 𝑖);
• 𝐹𝑃𝑖 (False Positive) is the number of data points incorrectly
classified with class 𝐶𝑖 ;
• 𝑇𝑁𝑖 (True Negative) is the number of data points correctly
classified with a class 𝐶 𝑗 ( 𝑗 ≠ 𝑖).

𝐴 =
1
𝑘

𝑘∑
𝑖=1

𝑇𝑃𝑖 +𝑇𝑁𝑖

𝑇𝑃𝑖 + 𝐹𝑁𝑖 + 𝐹𝑃𝑖 +𝑇𝑁𝑖
(17)

4 PROPOSED SOLUTION
Figure 1 presents the architecture of the proposed solution. The
architecture is modular and each module is described in the
following paragraphs. The code is publicly available on GitHub1.

4.1 Data Collection and Storage Modules
To collect the News corpus we have used two APIs (Application
Programming Interface): News River API2 and NewAPI3. News
River API returns the latest 100 news based on a given subject,
e.g., politics, brexit, etc. NewAPI is a public and free API for news
that contains news from many sources and can be configured to
request the latest 100 news from the most popular news publisher,
e.g., The New York Time, Reuters, The Washington Times, etc.
Although, NewsAPI provides multiple metadata about each news
article, e.g., title, description, online location, etc, the content
is reduced to the first paragraph. We developed a scrapper to
obtain the entire content of the article. To collect tweets, we
used the Twitter API to request tweets with specific keywords
and usernames. Besides the content of the tweet, we also store
likes, retweets, and creation time for each tweet. The datasets
are stored in a MongoDB4 database.

4.2 Preprocessing Modules
Text preprocessing is done differently depending on the task, i.e.,
Topic Modeling or event detection, and type of corpus, i.e., News
or Tweets. Thus, we create three preprocessed corpora:

(1) NewsTM with news articles for topic modeling,
(2) NewsED with news articles for event detection, and
(3) TwitterED with tweets for event detection.
To create the NewsTM corpus, we employ the following

perprocessing steps:
(1) extract named entities to treat them as concepts and not

as simple terms,
(2) extract lemmas to minimize the vocabulary and store only

the base root, and
(3) remove punctuation and remove stop words because they

do not add any information gain.
Both NewsED and TwitterED corpora are created using two

preprocessing steps:
(1) removal of punctuation, and
(2) tokenization.
We choose this simple preprocessing pipeline to replicate the

text preprocessing done originally for theMABED algorithm. The
preprocessing pipeline is implemented in SpaCy5. The results
are stored in the MongoDB database.
1https://github.com/cipriantruica/news_diffusion
2https://newsriver.io/
3https://newsapi.org/
4https://www.mongodb.com/
5https://spacy.io/
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Figure 1: Architecture

4.3 Topic Modeling Module
Topic modeling is used to create an overview of the current and
of interest subjects in the media. We use the NMF algorithm to
extract the main topics from the NewsTM corpus. A document-
term matrix is constructed from the NewsTM corpus after each
document is vectorized using the 𝑇𝐹𝐼𝐷𝐹𝑁 weight. We use the
Scikit-learn6 implementations for 𝑇𝐹𝐼𝐷𝐹𝑁 and NMF.

4.4 Event Detection Modules
For both news articles and tweets, we use the MABED algorithm
to detect trending topics.We enhance the NewsED and TwitterED
datasets with the creation time of each record. MABED detects
events defined by three characteristics:

(1) a set of main words,
(2) a set of related words, and
(3) the period of time when the topic is of interest.

We use the original implementaion of MABED7.

4.5 Trending News Module
To correlate the news topics to the news events, we use the
Doc2Vec model to encode the topic keywords (NewsTopic2Vec)
and the news events’ main and related terms (NewsEvent2Vec).
Using the cosine similarity (Equation (11)) implemented in SpaCy,
we score the match between each topic and each event. We
extract the best matches for each topic, and with the help of
each matching event, we determine how topics are diffused in
mass media.

4.6 Correlation Module
The news events are correlated to the Twitter events to determine
how current information is propagated on social media. As
in the case of the news event, we use Doc2Vec to encode
each Twitter events’ main and related terms into one vector
(TwitterEvent2Vec). We correlate the news and Twitter events
that appear in the same time interval and extract candidate
correlations. The cosine similarity implemented in SpaCy is used
to find the best matches from the candidate correlations. Using
this method we determine how news is propagated in social
media.

6https://scikit-learn.org/stable/
7https://github.com/AdrienGuille/pyMABED

4.7 Feature Creation Module
Using the Twitter events detected by the Correlation Module, we
extract the tweets that belong to each event. We consider that a
tweet is part of an event if both of the following conditions are
true:

(1) it was posted during the event’s period of time, and
(2) its textual content contains at least one main word and

20% of the related words.

An event is considered of interest if there are at least 10
records associated to it. We constructed a new sub-dataset
using this criteria. We encode each tweet belonging to an event
using Word2Vec on the tweet’s terms present in the vocabulary
containing the main and related terms of that event. We use
the Gensim8 Word2Vec implementation. We then create three
custom Doc2Vec embeddings for each tweet by averaging the
Word2Vecs as follows:

(1) SW_Doc2Vec: only Word2Vecs found in the pre-trained
model are considered in computing the document
embedding;

(2) RND_Doc2Vec: random vectors with values in the
range [−1, 1] for terms that are not found in the pre-
trained model are added before computing the document
embedding;

(3) SWM_Doc2Vec: Word2Vecs found in the pre-trained
model are multiplied by the word’s magnitude in the
context of the event before computing the document
embedding.

Before creating the datasets for predictions, we also
incorporate metadata into the representation of each record.
The metadata vector incorporates a one-hot-encoder vector that
embeds the author of each tweet, its number of followers, and
the day of the week. We added these features because it was
proven empirically that i) the number of followers influences
the propagation of news in social media [16], and ii) the media
consumption is influenced by the day of the week [3].

We also create a feature that represents the number of
followers, during the period of the event, for each user. The likes
and retweets classes used for predicting the events interest on
social media are constructed similarly to the feature that encodes
the user’s number of followers. Table 2 presents the encoding
for the number (#) of user followers, tweet likes, and retweets,
respectively.

8https://radimrehurek.com/gensim/
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Table 2: Features Encoding

Feature # < 100 # ∈ [100, 1 000] # > 1 000
followers 0 1 2
likes 0 1 2

retweets 0 1 2

4.8 Audience Interest Prediction Module
To predict the audience interest in a news topic, we analyze
the retweets and likes received by the tweets that discuss the
news articles belonging to that topic. We use two Deep Neural
Networks architectures for our prediction module:

(1) a Multi Layer Perceptron (Figure 2), and
(2) a Convolutional Deep Learning architecture (Figure 3).
The first architecture uses only perceptron units that can easily

generalize a wide variety of problems. The second architecture
uses a convolution layer and amax pooling layer.We use accuracy
to evaluate the networks’ performance and classification’s
quality.

4.9 Design choices
We decided to fetch the latest tweets and news every 2 hours.
Thus, we leave a large enough time window to manage to collect
a representative number of new tweets and news articles. The
algorithms are executed, from checkpoints or from scratch, after
each dataset update, and the models are replaced with the new
ones as soon as they finish. Thus, multiple instances of the same
algorithm may run at the same time on different datasets. Also,
we choose to use NMF instead of LDA [4] as it provides similar
results on both small and large length texts in less time [35].

For training the word embeddings and then vectorizing the
textual data to extract Doc2Vec, we choose a pretrained word2vec
on the Google News corpus9. This dataset contains 3 million 300-
dimension English word vectors. We made this design choice
because this dataset is larger than the datasets we collected and
manages to provide better word representations on which to
construct our Doc2Vec embeddings. In contrast, the PVDM and
PVDBOW models are not good for our study because they will
not find good document representations since they can be trained
by us only on the collected datasets. Thus, these models do not
manage to generalize the document representation.

To alleviate the need to train the neural models each time
the datasets are updated, we use checkpoints to continue the
training as new data is added in real time. Furthermore, the most
demanding networks are trained in less than 7 minutes. Thus,
the models can be build again if all data is new.

5 EXPERIMENTAL RESULTS
We apply our method on a real-world data, aiming to eventually
predict user interest.

5.1 Datasets
We have collected 261 052 news articles, and 80 569 tweets for a
period of 5 months. Both datasets contain records from different
news venues and are all written in English. For the Twitter corpus,
we also collected statistics for both tweets, i.e., likes and retweets,
and users, i.e., number of followers, the friends count, and the
retweets count.
9https://code.google.com/archive/p/word2vec/

5.2 News Topics
The first set of experiments uses the NewsTM corpus together
with NMF algorithm to extract the most relevant 100 topics from
all the news articles. This process takes 19.01 minutes. Table 3
presents a subset of 10 news topics (NT) extracted for the entire
period. These news topics are used to showcase the correlation
with the corresponding Twitter events.

Table 3: News topics

#NT Keywords

1 party election vote seat poll voter conservative win
european brexit

2 tariff import billion chinese good impose 25
consumer product percent

3 company business market industry customer
service growth product year technology

4 trade deal market war global economy talk
agreement tension china

5 huawei company google ban smartphone android
chinese network security technology

6 iran iranian tehran sanction nuclear drone tension
deal gulf tanker

7 israel gaza israeli palestinian hamas rocket militant
palestinians jerusalem netanyahu

8 japan abe japanese emperor tokyo naruhito shinzo
visit imperial meet

9 impeachment pelosi democrats impeach nancy
inquiry speaker house proceeding congress

10 derby horse kentucky race win belmont maximum
winner security racing

5.3 News Events
For our experiments, we extract the top 1 000 news events from
the NewsED corpus, using the MABED algorithm. We use a time
frame of 60 minutes. The extraction of news events takes 17.08
hours: 177.41 seconds to load the corpus, 1.3 hours to partition
the news into time-slices, and 15.73 hours to extract events.
Table 4 presents a subset of the news events (NE) detected by
MABED. These news events are some of the trending news articles
determined during the correlation with the news topics.

5.4 Twitter Events
Using MABED, we identified the top 5 000 events on the
TwitterED corpus collected for a period of 5 months that have
at least 10 tweets associated to it. We use a time window of
30 minutes. The extraction of Twitter events takes 11.74 hours:
1.61 seconds to load the corpus, 70.42 seconds to partition the
news into time-slices, and 11.72 hours to extract events. Table 5
presents some of the detected Twitter events (TE) that we use
to exemplify the correlation between trending news topics and
Twitter events.

5.5 Correlation Results
We use cosine similarity to correlate the news topics (NT) with
news event (NE) to extract trending news topics. Then, we correlate
trending news topics with Twitter events (TE), i.e., trending news
topics→ Twitter events . First, we correlate each news topics with
each news event and extract the ones with the highest similarity.
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Figure 2: The MLP Network Architecture

Figure 3: The CNN Network Architecture

Table 4: News events

#NE Start Date Start Date Label Keywords
1 2019-05-11 03:05:40 2019-05-26 13:05:40 politics political european eu current election vote campaign voters
2 2019-05-11 03:05:40 2019-05-26 13:05:40 reached current developing socialnews future 2019 group march company
3 2019-05-11 05:05:40 2019-05-26 13:05:40 plans current prime group future business company vote european
4 2019-05-11 05:05:40 2019-05-26 13:05:40 comes current future business part week north company american political
5 2019-05-11 05:05:40 2019-05-26 13:05:40 mobile huawei current developing socialnews future chinese gopi adusumilli
6 2019-05-05 23:05:40 2019-05-26 13:05:40 threats iran nuclear washington waters foreign american
7 2019-05-03 19:05:40 2019-05-11 11:05:40 conflict military gaza israeli killed group hamas islamic political
8 2019-05-21 09:05:40 2019-05-26 13:05:40 japanese japan abe tokyo north prime huawei tariffs american visit donald
9 2019-05-09 17:05:40 2019-05-22 01:05:40 familiar white democrats committee administration congress
10 2019-05-02 19:05:40 2019-05-07 19:05:40 bob derby security win mueller kentucky times

Table 5: Twitter events

#TE Start Date End Date Label Keywords
1 2019-04-29 20:01:30 2019-07-10 02:01:30 conservative party theresa brexit leader mps prime minister leadership
2 2019-05-06 02:01:30 2019-06-27 14:01:30 fresh goods tariffs threaten china trade good escalation import stock
3 2019-05-01 02:01:30 2019-08-09 02:01:30 improving retail conservative taking actions people life growth online
4 2019-05-08 14:01:30 2019-07-31 08:01:30 war brand big tax trade us-china markets billion conservative companies
5 2019-05-14 20:01:30 2019-07-12 14:01:30 networks trump declare national emergency protect computer foreign web
6 2019-04-17 08:01:30 2019-07-25 02:01:30 muslim aide biden hill bombshell betting handle joe contempt capitol
7 2019-04-19 20:01:30 2019-07-26 08:01:30 impeachment democrats trump mueller pelosi testimony politically voted
8 2019-04-06 02:01:30 2019-05-22 08:01:30 woods tale tiger victory roll lawsuit nationals back-to-back grand horse
9 2019-05-09 20:01:30 2019-05-21 02:01:30 senate alabam passed effectively abortion ban bill committee
10 2019-05-07 08:01:30 2019-08-12 20:01:30 english fans football manchester club everton fantasy clubs playing

The pairs < news topics, news event > are the trending news
topics. We extracted 83 trending news topics that have a similarity
of over 0.7. Then, for each trending news topics, we extract
the Twitter events in the same time window with the highest
Doc2Vec similarity. Given the start date (𝑆𝑇𝑇 ) of a trending news
topics (TT), the constraint of the Twitter events (TE) start date is
𝑆𝑇𝐸 ∈ [𝑆𝑁𝐸 ; 𝑆𝑁𝐸 + 5𝑑𝑎𝑦]. We choose this start interval because
a Twitter event can appear on social media as soon as the news
appears in the mass media, but it can also be some delay between
the appearance time on the two platforms. The end date is not
significant as a Twitter event can be prolonged even though the
mass media stops releasing new content. We determined a total of
421 < trending news topics, Twitter events > pairs that respect the
time constraint and have a similarity of over 0.65. This process
takes 31.2 minutes: 17.41 minutes to extract trending news topics
and 13.79 minutes to determine the < trending news topics, Twitter
events > pairs.

Table 6 showcases a subset of the correlation between the
selected news topics, news events, and Twitter events, where the
topic and event numbers can be found in Tables 3, 4, and 5. As we

extract 1 000 news events, in Table 6 the news events also represent
trending news topics. The presented correlations also include the
best and the worst similarities.

Table 6: Correlation between topics and events

#NT #NE #TE Sim NT NE Sim NE TE
1 1 1 0.87 0.88
2 2 2 0.73 0.79
3 3 3 0.86 0.89
4 4 4 0.78 0.85
5 5 5 0.77 0.78
6 6 6 0.84 0.75
7 7 7 0.90 0.79
8 8 8 0.78 0.77
9 9 9 0.82 0.81
10 10 10 0.77 0.69

The matching between the pair < news topics, news events >
and Twitter events shows that the news articles that appear in
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Table 7: Unrelated Twitter Events

#TE Start Date End Date Label Keywords
1 2019-03-08 08:01:30 2019-07-12 14:01:30 cartoon matt cartoonist telegraph side bobs cartoons
2 2019-04-12 08:01:30 2019-05-03 14:01:30 social media whatsapp facebook videos mark zuckerberg user
3 2014-10-30 08:01:30 2019-05-21 02:01:30 game of thrones spoilers season episode missed review sunday
4 2019-08-02 20:01:30 2019-08-14 02:01:30 sleep coffee news lovers tea studying perfect ashes
5 2019-04-13 14:01:30 2019-07-20 02:01:30 rice delicious perfectly sandwiches fried dish cheeses

mass media are discussed in detail during their publication on
social media. Although not all news topics are directly related
to a Twitter events, e.g., NT #9 discussed Trump’s impeachment,
and TE #9 discusses the abortion law passed in Alabama, the
correlation between news topics and news events is high. Thus,
these topics are considered trending news topics. Furthermore,
some trending news topics match generalized Twitter events, e.g.,
NT #10 is related to the Kentucky derby, where the winning
horse named Maximum Security was disqualified, while TE #10
is related to Manchester football clubs, but both talk about sports.
Other matches are quite specific, e.g., NT #1 and TE #1, which
both are related to European politics and Brexit.

In conclusion, a similarity over 0.77 between news topics and
news events shows that the topics and events are consistent, while
a similarity over 0.69 between news events and Twitter events
denotes a generalization tendency of events for trending news
topics. Furthermore, we found that all the trending news topics
have correlations with at least one Twitter event and that some
trending news topics are correlated to the same Twitter events.

We also analyzed the reverse correlation, i.e., Twitter events→
trending news topics, by applying the same steps as for trending
news topics→ Twitter events but in reverse. We observe that the
set given by the correlation Twitter events→ trending news topics
is the same as the one given by trending news topics→ Twitter
events.

However, as Twitter is a social media platform for generic
discussion, some events discovered by MABED within the tweets
collected are not related to the current news events. Thus, we can
conclude that some thread discussions present generic topics.
They spam for longer periods of time and the keywords are
more generic. These events are related to common discussions
regarding food, social media in general, television shows, etc.
Table 7 presents some of the tweeter events that are not related
to any of the news articles topics and do not match any trending
news topics using our matching condition.

5.6 Audience Interest Prediction
Using the correlation between trending news topics and Twitter
events we want to predict the interest of twitter users in news
topics on social media usingmetadata, i.e., the user and its number
of followers, and determine if a news topic becomes viral. We
employ the MLP and CNN architectures to predict the audience
interest in the trending news topic. The interest is given by both
the number of retweets and likes received by the Twitter Events
correlated to the trending news topics. We train each network on
a machine with a 3.5GHz quad-core processor and 16GB RAM,
using the Keras10 library with TensorFlow11 as backend.

Each network is trained until it converges, using an Early
Stopping mechanism that checks if there are any changes in

10https://www.keras.io/
11https://www.tensorflow.org/

the loss function from one epoch to the next. We used the
optimizers SGD and ADADELTA and different leaning rates (𝑙𝑟 ).
After hyperparameter tuning and cross validation, we obtain the
following configurations which have the best results:
• MLP 1 uses the MLP architecture with the SGD optimizer
and a 𝑙𝑟 = 0.5,
• MLP 2 uses the MLP architecture with the ADADELTA
optimizer and a 𝑙𝑟 = 2,
• CNN 1 uses the CNN architecture with the SGD optimizer
and a 𝑙𝑟 = 0.5, and
• CNN 2 uses the CNN architecture with the ADADELTA
optimizer and a 𝑙𝑟 = 2.

The input of the networks contains the document embeddings
(Doc2Vec) for each tweet belonging to a Twitter event determined
by the correlation < Twitter events, trending news topics >. Thus,
as some tweets can belong to multiple events, the size of the
Twitter dataset increases. The label for a tweet is determined
by the number of likes and retweets, respectively, as presented
in Table 2. We create 8 datasets using the custom document
embeddings and the metadata vector, as presented in Section 4
as follows:
• A1 uses the SW_Doc2Vec model;
• A2 uses the SW_Doc2Vec model concatenated with the
metadata vector;
• B1 uses the RND_Doc2Vec model;
• B2 uses the RND_Doc2Vec model concatenated with the
metadata vector;
• C1 uses the SWM_Doc2Vec model;
• C2 uses the SWM_Doc2Vec model concatenated with the
metadata vector;
• D1 uses the SW_Doc2Vec model;
• D2 uses the SW_Doc2Vec model concatenated with
the metadata vector and the tweet’s author number of
followers.

We set the document embedding size to 300. The metadata
vector has a size 8 which includes an one-hot-encoding vector
for the tweets’ author, i.e., the influencer and the its number of
followers, of length 7 and one element for the day of the week.
Thus, we include two behaviour factors in our embedding:

(1) a temporal one given by the day which incorporate user
behaviour patterns, i.e., the patterns users have to post
online;

(2) a global one given by the authormetadatawhich integrates
the impact of influencers on the virality of trending news
topics.

For each experiment, the behavior of the network is described
by the reduction slope of the loss function and the increasing
slope of the accuracy function over the training dataset. Table 8
presents the measured accuracy results over our validation sets
on predicting likes, while Table 9 presents the accuracy for
predicting retweets. We define accuracy in terms of correct
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Figure 4: Likes accuracy comparison: without metadata (A1, B1, C1, and D1) vs. with metadata (A2, B2, C2, and D2)
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Figure 5: Retweets accuracy comparison: without metadata (A1, B1, C1, and D1) vs. with metadata (A2, B2, C2, and D2)

prediction in one of the 3 encoded classes for likes and retweets.
Note that our accuracy results also reflect the error rate, since
ErrorRate = 1 − Accuracy. As our results show, we successfully
achieve low error rates by virtue of utilizing terms extracted
using MABED and NMF; this success is based on the fact that
similar topics/events have high similarity scores, while dissimilar
ones have low similarity scores.

Table 8: Likes accuracy of correlated results

Dataset MLP 1 MLP 2 CNN 1 CNN 2
A1 0.74 0.75 0.76 0.76
A2 0.83 0.83 0.82 0.84
B1 0.74 0.75 0.75 0.73
B2 0.83 0.84 0.82 0.83
C1 0.77 0.74 0.78 0.78
C2 0.83 0.82 0.83 0.83
D1 0.73 0.74 0.75 0.74
D2 0.82 0.83 0.82 0.83

Table 9: Retweets accuracy of correlated results

Dataset MLP 1 MLP 2 CNN 1 CNN 2
A1 0.77 0.78 0.78 0.79
A2 0.84 0.84 0.85 0.84
B1 0.75 0.74 0.73 0.73
B2 0.84 0.84 0.83 0.83
C1 0.76 0.77 0.79 0.80
C2 0.82 0.82 0.84 0.84
D1 0.74 0.74 0.76 0.79
D2 0.82 0.82 0.82 0.84

We observe that both networks reach good results in terms
of predicting the audience interest in specific news topics on
social media, ranging from 0.73 to 0.85 accuracy, and accurately
predict whether the news topic becomes viral. Furthermore, both
architectures achieve similar accuracy scores regardless of the
optimizer.

We conclude that these results are highly impacted by the
MABED algorithm because by detecting the most trending topics
and identifying the event for a tweet afterward, it basically
extracts required features to predict a range of likes and retweets.

Interestingly, both architectures reach a prediction score of
0.75 after only a few epochs are finished. After these epochs,
the learning process is slow and not very stable, exhibiting
fluctuations between 0.78 and 0.90.

The high results are influenced by the metadata used to
enhance the training corpus. We observe that the accuracy
improves over the baseline with more 0.05 in some cases. This
proves that the influencer role in spreading the news as well as
the behaviour patterns of posting depending on the day have a
huge impact on predicting the virality of a trending news topic.

The popularity of a person inside a group determines
the spread of its messages, thus proving that the influencers
assumption also holds for determining trending news topics on
social media. In conclusion, a user that has many followers
or tweets with many likes and retweets will maintain the
ascending trend for future tweets with high probability. Also, we
conclude that using the metadata vector improves the accuracy
of prediction for all our experiments (Figures 4 and 5).

5.7 Scalability
To evaluate scalability, we extract 500, 2 500, and 5 000 Twitter
events. We determine and encode using Doc2Vec the tweets
for each event and train the networks. Table 10 presents the
runtime evaluation for the networks using a batch size of 5 000
and 500 epochs. Early Stopping mechanism is used to stop the
training. All the experiments are performed using the CPU. The
training process for one epoch takes on average 1 second and
13/14 milliseconds for the MLP architectures (Figure 6), while
the CNN architectures have a linear time increase from 1 second
71 millisecond to 6 seconds 83 milliseconds w.r.t. the number of
events and the Doc2Vec size (Figure 7). This extra time is added
by the complexity of the convolution layer and the number of
kernel filters applied to the input vector. The CNN architectures
maintain a much lower number of epochs than the MLP ones,
regardless of the number of events or the Doc2Vec size. The
difference between optimizers is not obvious at the batch level as
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time performance and accuracy remains the samew.r.t. number of
events and Doc2Vec size. We observe a difference in the number
of batches, as the ADADELTA optimizer, on average, requires
more batches until it converges than the SGD optimizer. We note
that these results may vary, depending on the hardware used.

Table 10: Runtime evaluation

No. Twitter
Events

Doc2Vec
Size Network No.

Epochs
Milliseconds

Epoch
Runtime
(Seconds)

500

300

MLP1 113 1013 119.51
MLP2 119 1014 121.87
CNN1 6 1071 6.67
CNN2 7 1073 7.75

308

MLP1 143 1013 154.53
MLP2 162 1014 177.37
CNN1 6 1073 7.16
CNN2 8 1074 8.97

2 500

300

MLP1 316 1013 331.15
MLP2 363 1014 381.52
CNN1 6 3078 25.08
CNN2 7 3079 26.95

308

MLP1 319 1013 337.27
MLP2 375 1014 392.24
CNN1 6 4081 28.09
CNN2 12 4082 52.69

5 000

300

MLP1 289 1013 334.76
MLP2 305 1014 348.27
CNN1 6 5097 31.85
CNN2 7 5098 37.41

308

MLP1 328 1013 351.87
MLP2 368 1014 379.09
CNN1 6 6081 38.49
CNN2 14 6083 87.13
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Figure 6: Performance time for 300-dimensions Doc2Vec
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Figure 7: Performance time for 308-dimensions Doc2Vec

5.8 Discussion
Correlation between Trending News Topics and Twitter Events.

To determine the trending news topics, we correlated the news
topics with news events. Then, we correlated the trending news
topics with the Twitter events that have a high cosine similarity
and are in the same time window. We observe that for the same
trending news topics, we can match multiple Twitter events using
the imposed constraints. Thus, we can conclude that the events

generated by posts on social media about trending news topics
are intertwined. Therefore, we can conclude that some important
news topics appear in multiple discussion and that users make
connections between them in their discussion. Furthermore, all
the trending news topics have at least one matching Twitter event.

We also applied the reverse correlation, by matching Twitter
events to trending news topics. We discovered that we obtain the
same set of pair for Twitter events→ trending news topics as for
trending news topics→ Twitter events. During this analysis, we
also discovered that multiple Twitter events have no correlated
trending news topics. We attribute these results to the fact that
Twitter is a generalized discussion forum. Thus, users do not
address in their post only current news events but also discuss
other events that impact their life but do not appear in mass
media.

Audience interest prediction in Trending News Topics. We
predict the audience interest in trending news topics by
constructing two Deep Learning models to determine if they
become viral. Thus, a trending news topic has a high probability
of becoming viral if the posts that belong to the Twitter event
correlated with it has a high number of likes and retweets.

For our experiments, we embedded the tweets by combining
document embeddings with a metadata vector that contains the
user’s tweets and its number of followers as well as the day
of the week. This enhanced tweet embedding feature adds two
new dimension within the learning model: a temporal one given
by the day and a global one given by the user metadata. The
experimental results show that the two models determine with
high accuracy if a trending news topic becomes viral for both the
datasets constructed using only documents embeddings and the
ones that also use the metadata vector.

Through the use of the metadata vector, we incorporate in our
training set two assumptions. The first assumption is a global
one and introduces the concept of influencers (users with a high
number of followers) in the learning model. The influencers have
a huge role in spreading the information and making trending
news topics to become viral. The second assumption is a temporal
one which introduces the user behavior based on the day of
the week, as behaviour patterns can change from one day to
another. Using the assumption, the neural networks learn to
determine patterns in the way users post on social media and
integrate them in the final prediction model. The experimental
results prove that this assumption stands for our use case. Both
Deep Learning models achieve an improved accuracy when the
metadata vector is concatenated to the document embedding.
Thus, we can conclude that the influencers metadata manages to
create models that better generalize while improving the overall
performance.

Fake news mitigation considerations. The spread of
misinformation in social media has the effect of polarizing
opinions and misleading readers by presenting alleged,
imaginary facts about social, economic, and political subjects
of interest [16]. Our method manages to predict the virality of
news content and the interest the public at large has in different
news topics. These findings can prove useful in designing new
mitigation algorithms that take into account both textual content
and network metadata. Thus, we consider that the presented
system manages to determine what topics are important and
can be a starting point to develop new strategies for network
immunization in the fight against misinformation.
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6 CONCLUSIONS
In this work, we introduce and deploy an architecture for
predicting whether a trending news topic becomes viral on social
media. We employ NMF topic modeling to extract news topics and
MABED event detection to extract news events and Twitter events.
We correlate news topics to news events by document embedding
cosine similarity to extract trending news topics, match trending
news topics to Twitter events in the same time window, and
thereby extract likes, retweets, and user followers. We propose a
new metadata-based document embedding for tweets associated
to an event that encodes influencers information. Using the
new document embeddings, we prepare a training corpus to
predict audience interest in a trending news topic, using two Deep
Learning architectures.

The similarity between news topics and news events in our
data is over 0.77, while that between trending news topics and
Twitter events is over 0.69. Our results show that the trending
news topics and the news events are consistent, while the proposed
architectures predict audience interest in a news topic, with
accuracy over 0.82 in the metadata enhanced dataset.

In the future, we plan to use other matching techniques,
e.g., Minimum Cost Flow, to correlate news topics, news events,
and Twitter events, and use topic modeling [7] to see if we can
extract more coherent topics from news. We also plan to employ
word, sentence, and document level transformers (BERT [10],
XLNet [37], ALBERT [22], ELECTRA [8]) as embeddings to
take advantage of contextual information extracted using these
models. Further, our solution can be included in larger solutions
for fake news mitigation and misinformation immunization
strategies for social media.

This work was done in collaboration with RoNews, a start-up
offering news media content, which was interested in detecting
article topics and verifying content veracity. Hootsuite and
Sprinklr have also presented interest in this solution.
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ABSTRACT
This work introduces and aim to overcome the potential chal-
lenges while deploying automated tuning of relational database
as a service for a Platform as a Service (PaaS) provider. Some of
the major challenges identified in this work include (i) automated
detection of performance throttling (figure out when the perfor-
mance of the system is affected due to incorrect configurations
of knobs) of a database and identify potential points where a
database requires a tuning, (ii) scalability and accuracy of tuning
service and (iii) applying the recommendations obtained from
tuning services wherein applying an obtained recommendation
might require a database restart.

In this work, we present a generic tuning service architec-
ture for PaaS providers. To deal with the above challenges, we
introduce performance throttling engine which is responsible
to detect potential points when a relational database actually
needs a knob tuning, which helps in increasing the scalability
and accuracy of the tuner deployments (responsible for tuning
production landscapes). This work also proposes approaches that
facilitate efficiently applying the recommendations without caus-
ing much disruption in Quality of Service (QoS) of the underlying
database system. Lastly, the results are obtained by evaluation
of the proposed methods and modules on multiple cloud native
provisioners against various set of metrics.

1 INTRODUCTION
The PaaS customers do not have access to tune the configura-
tion knobs of database/backing services as the service configu-
rations are often abstracted. Tuning of the offered data services
often requires DBAs to pitch in, observe/monitor and then, tune
the service-instances. This often adds more complexity, as PaaS
providers needs to have a DBA for each customer group, where
each service offered has tens to hundreds of knobs to be tuned.
In literature, there exists a set of various auto-tuners [1], [2]
and [3] that aim to automate the tasks of a DBA. These tools
are not holistic in nature and are limited to specific classes of
parameters.

∗Produces the permission block, and copyright information
†The full version of the author’s guide is available as acmart.pdf document
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24th International Conference on Extending Database Technology (EDBT), March
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This work introduces challenges and requirements for intro-
ducing generic tuner as a service (AutoDBaaS), which can tune
the configuration knobs of the relational data services as per re-
quirement and thus, in-turn reduce the performance dependency
on a DBA. In this work we evaluate already existing tuners and
try to see how they can be used to tune live production systems. In
literature there exists multiple style of tuners, broadly classified
as search based [16] and learning based. This work specifically
considers learning based tuners (as they can easily tune multiple
types of databases and more suitable for PaaS service providers):
bayesian optimization (BO) style tuners (like Ottertune [4]) and
reinforcement learning (RL) tuners [18] and [17]. We discuss the
pros and cons of both RL and BO style tuners for tuning live pro-
duction systems in coming sections. Potentially, the challenges
that drive the design and deployment of a tuning service as per
PaaS architecture have been identified as follows:

• Scalability of Tuners
• High Quality Samples
• Metrics for Tuner Evaluation

Scalability of Tuners. As per the architecture of a BO style,
it uses previously observed workloads to train a Gaussian Process
(GP) regression (or a surrogate model), which recommends a new
set of configs. The workload in Ottertune (any large scale ma-
chine learning tuner which tries to leverage previous experiences)
is a collection of different knob values, obtained with respect to
observed database metrics. The workload should contain enough
data, where sufficient metric variations are observed across differ-
ent variations in values of knobs. Or in another sense, a BO stlye
tuner like Ottertune needs high volume of high quality samples.
With the high volume samples, the Ottertune’s workload size
increases and causes a GPR training to take a time of around 100
to 120 seconds. Then if the underlying services, asks for recom-
mendation with a high frequency of 5 mins (a typical monitoring
time for a transactional data), one Ottertune deployment can be
bound to a maximum of 3 to 4 service instances. This can also be
inferred as a cost for a BO style tuners - ’recommendation-cost’
to service-provider. In this aspect the RL style tuners do pretty
well, as they do not need high volume of high quality samples.
However, the pros and cons of BO style tuners and RL style tuners
are discussed in comming sections.

High Quality Samples. Both RL and BO style tuners need
to capture delta metrics (after execution of a workload) from the
underlying database to be tuned. The quality of the captured
metrics (or the quality of the samples) depends solely on the
workload executed on the database. For example - when a client
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executes TPCC queries to a database, continuously for 10 minutes
with 3000 requests per second, will generate a high quality sample.
However, in production systems, the throughput of the executing
workload is often low (or for most of the time, the production
database does not needs a tuning), which cannot produce enough
variations in the delta metrics (or often a low quality sample).
In production systems, the spikes in throughput graph is seen
at specific time-intervals only. In many cases, it is observed that
even if there is high throughput, only a certain set of metrics show
good variations and rest do not [4]. The quality of samples highly
impacts the performance of both RL and BO style tuners. And,
in production systems capturing high quality samples is very
difficult (or atleast there exists no such way to do so in literature).
In a nutshell, the main problem is that a production/live database
tuner faces corruption of learning model when it trains over such
samples (or collected metrics) which sometimes does not requires
any tuning (and this is very much seen on production workloads).
However, an offline tuner (which is expected to tune a staging,
development, testing landscape database) does not face this issue.
This is because in these database the all the queries are batched
to form a workload and the workload gets executed for a time
frame which generates a high quality sample.

Metrics for Tuner Evaluation. The tuner service the knobs,
metrics and provides recommendations for performance improve-
ments. As an end user, the expectations will be to get recommen-
dations when the workload pattern changes in real time and
the recommendation should actually improve performance. Cur-
rently there are ways in literature which can suggest changes
in workload patterns [8], [19]. This works use templates (from
queries) and cluster them. However, still there is no such infor-
mation that with change in workload does the database actually
needs a tuning. Secondly, just an increase in throughput cannot
be a qualifier to suggest performance improvements. The rea-
son for this is that in production systems, the workload pattern
always changes i.e. say the throughput was measured when a
query set was executed on a production database. Now after ap-
plying the recommendations, the next query set will get changed
(or the workload gets changed) and the new throughput cannot
be compared with the previous one. Hence, measuring perfor-
mance based on recommendations on production system is also
challenging.

A unifying theme to the above challenges is to identify the
actual performance throttling on a database system. With respect
to changing workload pattern of users SQL workload, perfor-
mance throttling detection will help in predicting the incorrect
knobs.

The paper makes the following novel contributions:

• Identifying Performance throttling: The performance
throttling is responsible for identifying the database in-
sufficiency to process SQL queries due to incorrectness
of configured knobs. It classifies the knobs into different
classes and then, for each class of knobs, it predicts throt-
tling. This module increases the scalability of the tuner
deployment by reducing the number of recommendation
requests (when compared with the periodic nature of mak-
ing tuning requests). The underlying services request for
recommendation only when a performance throttling is
detected. Thus, this module acts as a DBA and identifies
when a database requires an actual tuning in real-time.
This module identifies performance throttles from rela-
tional databases only.

• ApplyingRecommendations in an effectiveway: The
tuning agent running on the database VM/Container as
an plugin process, applies the recommendation on service-
instance by re-loading the configs. The same plugin is also
responsible for tuning of knobs that require a restart of
the database.

• Evaluation: In production systems as the throughput
varies, we need to identify new performance metrics to
compare the effectiveness of obtained recommendations.
To achieve this, we introduce the number of throttles trig-
gered by the performance throttling module, as a metric.

2 SYSTEM DESIGN
This work presents a generic architecture, which can be easily
integrated with any available cloud platform provisioners. As
shown in Figure 1, the overall deployment of database tuning
service, in an abstract form, is divided into two parts: (i) tuner
instances - responsible for executing the ML pipeline to generate
new config recommendations and (ii) config director instances -
responsible for managing all available customer service-instances.
The tuner instances can be spawned via either containers or
VMs. There can be more than one tuner instances (also depends
upon tuner scalability), where each tuner stores a workload𝑊
in a database, where a workload is combination of knob config
parameters and metrics observed against those parameters (also
called as training samples). Technically as described in [4], a tuner
workload𝑊 is a set 𝑆 of 𝑁 matrices 𝑆 : {𝑋0, 𝑋1, 𝑋2, ..., 𝑋𝑁−1},
where 𝑋𝑚,𝑖,𝑗 is the value of a metric𝑚 observed when executing
a user SQL workload on database having configuration, 𝑗 and the
workload identifier, 𝑖 . The tuner service uses the workload𝑊 for
initial training of both BO and RL style tuners. These workloads
are stored in database which is present on a different instance.
This database acts as a common central data repository for all
tuner instances. Tuning agent runs on the same database (and
communicates to DB using Domain Sockets) which is responsible
for identifying new workloads and uploads new workloads data
periodically to the central data repository. The tuning services
running on different IaaS’es, fetch the new workloads from the
central data repository. This helps all tuning services to get the
new unknown workloads, which might have been observed on a
different IaaS, and create a better ML model.

Themetric readings and recommendation request calls (we call
it something like a tuning request) are event-based and triggered
from the performance Throttling Detection Engine (TDE). The
TDE gets periodically executed on the database master VM (like
a plugin) and triggers recommendation requests to the config
director. The TDE runs periodically on the master VM of the un-
derlying database service and is responsible for figuring out per-
formance throttling due to incorrect knob values with respect to
current executing user workload. The config director receives the
metric data (or queries in case of a RL based tuner) from service in-
stances and triggers recommendation requests to tuner instances.
The config director performs load balancing of recommendation
request tasks across multiple tuner instances. The Service Or-
chestrator agent running on database services, is responsible
for performing all life-cycle operations of service instances and
maintains credentials. When the config director receives a new
recommendation for a database service instance from a tuner,
the config director passes the new configs synchronously to Data
Federation agent (DFA) and Service-Orchestrator, while simul-
taneously storing it into the config data repository. The DFA
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Figure 1: AutoDBaaS architecture.

fetches the credentials from Service Orchestrator layer and hits
the APIs of TDE to apply configs to all nodes of the database
service (such as all VMs/Containers of the service-instance). The
DFA has multiple adapter implementations to get connected to
various kinds of database services. As per the architecture, the
tuner deployment is capable to tune multiple databases instances
(one to many).

2.1 Tuner Instances
The tuner instances as shown in Fig. 1, can be any type BO or RL
style tuners. Or can even be a hybrid combination. RL vs BO style
tuners is offcourse a debatable topic as both have their pros and
cons. BO style tuners when fully tuned with high volume of high
quality samples can tune an underlying database in just two to
three recommendations, where as RL style tuners need to experi-
ence large number of recommendations over the database (as per
try-and-error strategy) to learn good configurations for the new
workload pattern. At the same time, RL style tuners are highly
sclable as they can quickly generate new configurations when
properly trained (RL style tuners do not need high volume of high
quality samples). Both BO and RL style tuners learning model
relay on captured metrics when database actually needed tuning.
And metrics/samples captured from database when database did
not needed any throughput tuning (this is the often production
system case), this corrupts the learning models of tuners. With
such wrongly captured metrics BO style tuners face a cascading
style corruption and RL style tuners face corrupting the current
learning model. This problem of both RL and BO style tuner does
not enable them to tune live production workloads, which are
often characterized by low throughput or when the database
does not needs any tuning. Well this is the major motivation for
driving this work.

3 IDENTIFYING PERFORMANCE
THROTTLES IN DATABASE

One of the crucial initial steps that the DBA performs before tun-
ing is, monitoring the database to identify whether the database
actually needs tuning or not. This module executes periodically
as a part of TDE, gathers statistics based on the metrics/features
collected using a rule-based approach and identifies potential

points when a database needs a recommendation for tuning its
configs. As per the proposed performance throttling approach,
the config knobs of a relational database can be categorised, based
on their properties, into three classes:

• Memory knobs
• Background writer knobs
• Async/Planner estimate knobs

The working of each sub-module is different and is explained as
follows:

3.1 Memory Knobs
Memory knobs are the set of knobs which are dependent upon the
resource (VM or container) hardware limits. The major portion
of memory used by the database is utilised to keep the data in
buffer. One of the approaches for identifying throttles could be
to find out the actual working database size. To identify this, we
use the algorithms proposed by authors in [5] where the authors
use gauging techniques to identify the actual working page set.
However, the major challenge with this knob is encountered
while attempting to update this knob, since it requires a restart
of the database. The TDE, collects this information and keeps
on sending it to config director instances, where config-director
collects the number of throttles and checks the size of theworking
page set and adjusts this knob value only during the scheduled
maintenance downtime.

The other knobs belonging to this segment are related to work-
ing area of the database. The knobs related to the working area
of memory depends upon the total number of active connec-
tions and if it is found to be in-sufficient, then database uses disk
or system swap space to perform work operations like sorting,
or maintenance operations like index-creation, storing tempo-
rary tables, table alter, etc. To get the memory usage details
probes needs to be created in the codebase, which is arduous
and dependent on freedom given from vendors. Alternatively,
figuring out the disk usage while query execution, the query
plans can be used as a potential source of information. We use
query templating as described in [6], to reduce the total queries
(to be examined in production systems), where the queries are
converted to a template having a template-id. The queries col-
lected from streaming logs are pre-processed and then converted
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to generic templates (having no actual parameters/arguments).
The final template selection takes place from the pool of queries
by reservoir sampling (for capturing samples from streaming
logs) [7]. The selected query templates undergoes execution plan
evaluation by substituting the actual (most frequent) parameters
to the template. From the plans/streaming logs, it can be easily
inferred how much memory/disk the query is going to take. If
any of the selected templates (from reservoir sampling) uses disk
while execution, signifies that the memory is in-sufficient for
execution of queries and now the TDE triggers a memory based
throttle signal and asks for knob recommendation from a tuning
service (raises a tuning request to the tuner).

However, there can be potential cases when the memory al-
located for the buffer is maximum (which means the memory
left for other processes becomes less), it is observed that TDE
un-necessarily triggers throttle signals. This is a case, where the
underlying instance configuration limit is in-sufficient (or the
usage has reached the caps limit). When the size of the database is
sufficiently higher than the actual memory allocated to database
process, it is observed that the TDE frequently triggers throttle
signals and is unable to understand that the throttles are being
caused because of limited hardware resources. To deal with this
cases, we need filtration approach, which identifies such situation
and stops the un-necessary throttles (one potential case is the
underlying VM hardware resource is in-sufficient and customer
needs to upgrade to another plan or ask for more resources for
the VM). We face the following challenges when designing such
filters:

• There are a specific set of queries which trigger consec-
utive throttles from one memory knob (like use of ag-
gregate queries triggers a throttle from working memory
in PostgreSQL). Situations like this can cause increasing
working memory continuously with each recommenda-
tion obtained and hence decreasing other knobs (to make
room for increase of working memory). However, even
after increasing the knob values to the maximum, throttles
can get triggered. This situation can easily be captured by
rule-based engine and throttles can be filtered.

• For a certain query, consecutive throttles are observed
intermittently against different knobs. For example the
first two throttles came from working memory and next
two throttles came from𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒_𝑤𝑜𝑟𝑘_𝑚𝑒𝑚. This
becomes very difficult to manage and identify with a rule
based approach especially when number of knobs are high.

• There are a specific set of queries which triggers consecu-
tive throttles from more than one set of knobs at a time
(like use of aggregate queries, index creation queries, temp
table creation queries, etc causes trigger of throttle from
multiple knobs). Situations like this are difficult to be cap-
tured by rule based engine (becomes more complex when
knob numbers increases or is already high) and needs a
different approach.

We observed and collected such queries and table shown in
Fig. 2 shows the same. In PostgreSQL, working memory is used
by the execution engine to perform internal-sorting, joins, hash-
tables, etc. We evaluated amount of working memory used by
TPCC and CH-Bench, YCSB and Wikipedia bench in absence of
indexes. We observed that Wikipedia and YCSB queries do not
use working memory (due to absence of complex queries like
aggregate, joins, and order-by). The table illustrates the actual

working memory allocated and the amount of disk and memory
used by queries.

Figure 2: Queries and Memory statistics observed on Post-
greSQL running on AWS VM, type-t3.x_large

Figure 3: Entropy variation with 80% adulteration proba-
bility on Production SQL Workload

Figure 4: Entropy variation with 50% adulteration proba-
bility on Production SQL Workload

In this case, a probabilistic approach is needed to predict the
pattern of SQL queries which can cause a potential throttle in per-
formance. The queries which cause more use of working memory
are mostly Join, aggregate queries, sorting queries (ORDER BY).
On production systems, the frequency of rest queries like index
creation or alter table is comparatively lesser. The worst-case
scenarios could be all queries are fired with similar proportion.
To deal with such cases, or to identify such randomness/query
proportion, (to measure the probability distribution) entropy is
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used. Entropy of a discreet variable X with possible outcomes
𝑥1, 𝑥2, 𝑥3, ..., 𝑥𝑛 can be defined as:

𝐻𝑛 (X) = −
𝑛∑
𝑖=1

𝑝 (𝑥𝑖 )𝑙𝑜𝑔(𝑝 (𝑥𝑖 )) (1)

where 𝑝 (𝑥𝑖 ) is the probability of the 𝑖𝑡ℎ outcome of X. With a
more abstract approach, a generalized entropy can be defined as:

𝜂 (X) = −
𝑛∑
𝑖=1

𝑝 (𝑥𝑖 )𝑙𝑜𝑔(𝑝 (𝑥𝑖 ))
𝑙𝑜𝑔(𝑛) (2)

Value of 𝜂 (X) can range from 0 to 1 i.e. 𝜂 (X) ∈ [0, 1]. This
helps in determining the threshold value of entropy, as for any
number of classes the normalized entropy ranges between 0 and
1.

The queries are grouped into specific categories (grouping of
obtained query templates), such as Join queries, Select queries,
Alter-table queries, Update queries, etc and a hash table is built
for each category. The classification of queries is done based on
the trigger of throttle from knobs, for example - complex aggre-
gation queries are grouped to one class which triggers throttles
to working memory knob. Similarly, we create individual class
for each given knob. From the generated logs, we create a hash
table containing the class of queries and its frequency. Once the
entropy value is evaluated, it can be inferred from multiple ob-
servations, that the entropy value is less when high randomness
is present or all queries are fired with similar proportion (the
query frequency from classes are evenly distributed). This, thus,
indicates the SQL queries will, probably, again trigger a throttle
(when underlying instance configuration is in-sufficient). How-
ever, if the entropy value is high, the degree of randomness is
quite less or probability is quite evenly distributed. Thus, pro-
vided, if the query class, which is constrained by throttles, has
less frequency, it can be concluded that in future, the throttles will
not be triggered (as here the limits have not reached the caps and
the underlying database depends on the tuner recommendation
for knob optimization).

As part of the proposed flow, if more than 8 throttles are trig-
gered consecutively, the entropy value is evaluated, and if the
entropy value is higher along-with the memory-knobs reaching
maximum cap value, the TDE triggers a plan update (increas-
ing the hardware limits of instance) request to customer and
recommendation requests are not sent to config director. Else,
it is estimated that the throttles will soon reduce and the same
job waits for next 8 throttles before calculating the next entropy
value. The graphs shown in Fig. 3 and 4 shows the calculated
entropy values while executing TPCC and an adulterated TPCC
workload. The TPCC workload was adulterated with index cre-
ation, index drop, complex-joins, temp-table creation, order-by
and aggregate queries.

In order to showcase the entropy variation, we loaded TPCC
with a scale-factor of 18 (which loads around 21GB of data) to
Postgresql. However the queries fired mostly hit the working
memory and wal-memory knobs
(𝑠𝑜𝑟𝑡_𝑏𝑢𝑓 𝑓 𝑒𝑟_𝑠𝑖𝑧𝑒 in MySQL). The amount of working memory
used by TPCC as shown in Fig. 2 is around 0.5 MB, which is quite
less to generate a throttle from memory based knobs. Hence now
we add complex aggregation queries to TPCC (like queries having
heavy sorts), which requires nearby 350 MB. Still we are able to
trigger throttle for only working memory using TPCC. Now in
order to design such a workload which triggers throttles from
all defined classes/knobs, we started adding more queries and

procedures, the following queries (analysing from production
level performance bottlenecks faced earlier) were added to TPCC
bucket:

• complex sorts/aggregation queries - To trigger throttle
from Postgresql -𝑤𝑜𝑟𝑘_𝑚𝑒𝑚, MySQL - 𝑠𝑜𝑟𝑡_𝑏𝑢𝑓 𝑓 𝑒𝑟_𝑠𝑖𝑧𝑒
and 𝑗𝑜𝑖𝑛_𝑏𝑢𝑓 𝑓 𝑒𝑟_𝑠𝑖𝑧𝑒

• create/delete indexes - To trigger throttle from
Postgresql -𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒_𝑤𝑜𝑟𝑘_𝑚𝑒𝑚, MySQL -
𝑘𝑒𝑦_𝑏𝑢𝑓 𝑓 𝑒𝑟_𝑠𝑖𝑧𝑒 and 𝑠𝑜𝑟𝑡_𝑏𝑢𝑓 𝑓 𝑒𝑟_𝑠𝑖𝑧𝑒

• delete queries: To trigger throttle from
Postgresql -𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒_𝑤𝑜𝑟𝑘_𝑚𝑒𝑚

• creating temporary tables and firing complex aggrega-
tion queries on it to trigger throttle from Postgresql -
𝑡𝑒𝑚𝑝_𝑏𝑢𝑓 𝑓 𝑒𝑟𝑠 and MySQL - 𝑡𝑒𝑚𝑝_𝑡𝑎𝑏𝑙𝑒_𝑠𝑖𝑧𝑒

Now the new queries are always added to the actual TPCC bucket
based on probability as given in Fig. 3 and Fig. 4 (80% and 50%).
With the adulterated TPCC workload, we were able to simulate
throttles from all set of classes/knobs. The probably distribution
with TPCC varies hugely with the probability distributions of
adulterated TPCC due to absence of the new queries and results
in entropy difference.

3.2 Background writer knobs
The background writer knobs control the writing of dirty pages
from buffer, back to the disk. This write process is triggered by
background writer processes or periodic checkpointing processes.
However, if the checkpointing process is triggered too often and
the amount of data written is high, then it leads to higher values
in consumption of I/O throughput and disk latency resulting
a decrease in throughput of the database. The other processes
involved in writing dirty pages back to disk (background writer)
helps in mitigating the same problem, with the aim to reduce the
amount of data written by a checkpointing process. Usually the
background process writes a fixed number of pages back to disk
and the left pages are taken care by checkpointing process. In
case of write heavy workloads, the background process writes
fixed amount of data causing uncertain amount of data written
by a checkpointing process. Given a discrete configuration for
the set of knobs, for identifying throttles the following set of
challenges needs to be overcome:

• To find out optimal value of checkpointing triggered per
unit time. This parameter helps in understanding the over-
all period till which there can be a surge in disk latency,
IO, etc.

• To find out optimal value of data written to disk with
trigger of a checkpoint. This parameter helps in under-
standing the max surge the disk IO and latency parameters
can go for write operations.

• There are various processes which write back to disk,
for example - WAL writer, statistics writer, log writer,
archiver, garbage collector, vacuum. This makes it difficult
to figure out holistically the exact amount of data written
by checkpointing process.

In order to figure out the exact amount of data written by
a specific process requires use of user-level statically defined
tracing probes (USDT probes). Where, any low-overhead tracing
tool like ebpf or dtrace (Linux Foundation - IO Visor project)
can use the probes to get information. The other option is to
use kernel-probes (uprobes) for tracing, but this is also indepen-
dent of the database process levels. Hence the safest way to get
this data is to move writing of majority of processes to another
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disk. In our experimentation, we changed the disk for storing of
WAL, statistics, logs, etc. Now only background writer processes
or checkpointing processes and vacuum/garbage-collector pro-
cesses are responsible for writing on the current disk (where the
production database files are located). This strategy also guaran-
tees SLA for minimum IOPS for a disk which stores the actual
database and at the same time increases cost of extra hardware
and operations. Still the checkpointing process can be interpreted
with the vacuum/garbage collector processes which is responsi-
ble for updating indexes for dead tuples and defragmenting pages
on disk. The frequency of this process can easily be controlled
and the left slots can be utilised for monitoring of checkpointing
processes. During experimentations, we increased the frequency
of vacuum/garbage collector to substantially a higher value and
neglect themonitoring of checkpointing during the interval when
vacuum/garbage collectors are triggered.

To predict/evaluate the values of optimal checkpointing and
optimal amount of data written per checkpoint, the proposed
approach uses the historic data of the workloads stored in the
tuner’s database or in short leverages the tuners experiences of
tuning write oriented workloads. The workloads which are gen-
erated for tuner, are often pre-generated offline or it considers
newer workloads as well (workloads from live database systems).
The tuner service for recommending new knob values selects a
target workload, and then uses the target workloads data to train
the GPR. However, in all cases we monitor the disk latency from
external monitoring agents such as Dynatrace. The throttling
point for these knobs depends upon the disk latency as the per-
formance degrades when the disk latency increases. In order to
figure the optimal checkpoint per unit time with amount of data
written to disk, the time difference between peaks in disk-latency
is observed and averaged out for consecutive peaks. We define
checkpointing per unit time based on the same observations. The
checkpointing per unit time is calculated only for the highest
observed throughout point in mapped workload.

Each database service in order to get the optimal parameters
uses the best information seen/tried by tuner in past. Now, when
a throttle is triggered, the tuner maps the current workload ′𝐴′

(workload representing a target underlying database service)
to a target workload ′𝐵′ which had shown similar features in
the past, with respect to the current workload. Now, for 𝐵, the
timestamp value for the most optimal points observed (with
respect to maximum throughput) are captured and passed on to
the Dynatrace agent and the disk latency readings are collected.
The points are the best recommended knob sets obtained using
a trained GPR. From this data point, for the entire duration of
workload execution on database, the checkpointing per unit time
and respective disk latency is observed. Now on live/production
systems, the checkpointing per unit time for𝐴 is calculated based
on the baseline of disk-latency defined (obtained from tuner)
earlier. If in ′𝐴′ the ratio of checkpointing per unit time and
disk latency is more than the ratio of checkpointing per unit
time and disk latency for 𝐵, then the throttle-detection scripts
trigger a throttle signal. However, there could still be scenarios,
when the workload 𝐴 has very less data points (config values
vs metrics) and for such a scenario, the mappings are initially
incorrect for target workloads. Then for that scenario, the number
of throttles could be either more or less, however, with each
throttle signal that is triggered, the workload size increases and
probability of getting mapped to an optimal workload increases.
Thus, the proposed approach eventually improves in efficiency
with passing time.

Figure 5: Disk Latency graph for TPCC execution.

The graph, as shown in Figure 5, represents the disk latency
incurred when TPCC is executed on PostgreSQL with default
knob config values and compared with when it is executed with
optimal knob config values. The readings observed from 11:45
to 12:05, show the disk latency values for TPCC execution with
default knob values and readings observed from 12:10 to 12:25,
show the disk latency values for TPCC execution with optimal
config values on PostgreSQL. Here, the TPCC execution on tuned
PostgreSQL gives an average disk-write latency of around 6.5 ms
and based on this the checkpointing per unit time is obtained. So,
this becomes the base line for anyworkload on live systemswhich
is mapped to the TPCC workload. Here, the major constraint is
also that the underlying hardware (storage type as SSD or HDD)
should be the same for all systems (databases used for training
tuner and live systems).

3.3 Async/Planner estimate knobs
The async knobs are based on the ability of the database to par-
allelise the query execution, whereas the planner estimate knobs
helps the query execution planner to estimate the best route.
Most of the database recommends to statically set the planner
estimate knobs (random page cost, effective cache size. etc) based
on the underlying hardware capabilities. Still it is often seen
that increasing/decreasing the values of such knobs (from the
recommended values) improves the overall query execution. The
async knobs are often defined by the number of parallel worker
processes supported per relation by the database. During query
execution, the parallel workers are taken from a pool of all de-
fined workers. Often, it happens that the requested workers are
not available or it could also happen that setting a higher value
for these knobs affects the planner estimates. Thus, it always
depends upon the nature of query and to what degree it can
support parallel executions.

As this categories of knobs directly or indirectly impacts the
planner estimates, it is often required to check the planners
cost/benefit optimizations. The straight forward way to trigger a
throttle would be to manually increase/decrease the knob values
and check the overall cost/benefit optimizations. However, to au-
tomate this, the TDE needs to carefully take decision on whether
to increase or decrease the value and by how much the value
should be increased or decreased. Assuming at a given instance
of time, for a given production workload, there exists an optimal
values of this knobs. And the optimality does not depends on the
underlying hardware (as per recommendations), making this a
stochastic environment use case. Reinforcement learning is often
seen as the best way for analysing the cost/benefit optimizations
of query execution planner [8] [9] [10]. Hence, we model this
problem as sequential decision problem and address it by using
reinforcement learning.
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Hence, we use a very basic Markov Decision Process (MDP)
as a very basic RL model to solve the above sequential decision
problem. In order tp minimise the uncertainty, the MDP starts
with random set of actions and with course of time the action
probabilities are adjusted, based on the response from the envi-
ronment. The RL algorithm tries to optimize an agents returns
when the episodes are restricted/limited. The RL engine captures
all the queries in a time frame (typically a day or two based on
the length of the workload). One episode comprises of atleast 350
to 400 steps (set of actions), where the knob values are changed
as per policies (policies are random model initialization) and
planner cost/benefit estimates are captured for all queries. The
cost benefit estimates are then converted to rewards or penalties.

The TDE uses a MDP to trigger a throttle from this category
of knobs. A MDP is represented by {𝑄,𝐴, 𝐵, 𝑁 , 𝐻 }. For all given
knob in this category, a MDP is given as follows:

• 𝑄 is the finite set of internal states given by𝑄 = {𝑞1, 𝑞2, 𝑞3,
..., 𝑞𝑛}, where 𝑞𝑛 represents a specific knob value tried
before or in current usage.

• 𝐴 = {𝛼1, 𝛼2, 𝛼3, ..., 𝛼𝑛} is the set of actions performed by
the automata (increase/decrease the knob value) where
each action has its own probability distribution.

• 𝐵 = {𝛽1, 𝛽2, 𝛽3, ..., 𝛽𝑛} is the response from the environ-
ment (cost/benefit calculated from query planner)

• 𝑁 is a mapping function responsible to map current state
and input to the next state and

• 𝐻 is a mapping function responsible to current state and
response to figure out the action to be performed.

The TDE triggers the MDP at interval of 2 to 4 minutes, where
theMDP performs cost/benefit analysis by fetching all the queries
from log, performing reservoir sampling as described above (in
throttling detection for memory knobs). For a given knob value
(represented by 𝑞𝑛), based on the action probability, the MDP
increases/decreases the knob value by unit step (defined stati-
cally). Later the TDE calculates the loss/profit in execution time
against the sampled queries with respect to the new knob value
and old knob value. If there is a loss, which signifies the action is
misleading and the MDP penalises the respective action (which
adjusts the probability of the given action 𝛼𝑛) and vice-versa.
However if a profit is seen with the change of the knob, the TDE
triggers a throttle to get a recommendation from the tuner. The
graphs in Fig. 6 presents the learning progress for a production
workload as shown in Fig. 8. In the initial episodes, it is observed
that the learning is less as the agent is suppose to do more and
more exploration of knob configs. However, as the iterations
continues, we observe more and more learning (as the episodic
rewards increases). This draws a balance between exploration
and exploitation.

One can argue that if with the course of time the MDP learns
about the optimal/sub-optimal values of the knobs, is it really
necessary to go and again ask the tuner to get recommenda-
tion. Yes, the tuner needs to be asked as the optimality changes
with respect to change in workload pattern and secondly the
tuners learning models predict best values for the given knobs by
utilising the past seen experiences from set of other production
systems.

4 APPLYING RECOMMENDATIONS
The potential challenges in this job could be designing the overall
orchestration mechanism for applying these configs, considering
the prevalent architecture of the database system like multi-node,

(a) Learning progress of proposed policy (b) Average accuracy of learning process

Figure 6: Measuring Reinforcement Learning accuracy on
production workload

high-availability constraints, etc. The configs need to be persisted
too such that a database reset or re-deployment doesn’t over-
write the settings. Additionally, concerns like how to apply the
recommendations without causing a downtime of the running
database system, must also be addressed.

Generic Approach. An orchestration approach had to be
formulated in-order to apply the recommendations, taking into
consideration the above-mentioned challenges. As per the archi-
tecture explained in Figure 1, the service-orchestrator is responsi-
ble for spawning of database system instances for a customer. The
config of the spawned database system is generated and applied
initially to the database, by the service-orchestrator. If for any
reason (like updating the system, applying security patch, etc.),
the database system needs a re-deployment, then the service-
orchestrator must re-deploy the system with the updated config
of the database.

As per the architecture, the Data Federation Agent (DFA) hits
API endpoints of TDE to apply the config recommendations. In
case of multiple nodes maintaining high availability, the recom-
mendations are first applied to the Slave node(s). If the process
crashes in the Slave node, the config recommendations are re-
jected. Thus, it is ensured that the Master node is up and the
process is still able to serve requests. After the config recommen-
dations are applied to the Master node, the recommendations are
stored in the persistence storage used by the service-orchestrator.
Thus, whenever the service-orchestrator re-deploys the database
system in the future, it retrieves the updated config from the
persistence storage. An additional concern here could be the fail-
ure in one of the intermediate steps. Since, all of the operations
are not atomic, but eventually are expected to yield consistent
data (i.e., configs must be same for all master/slave nodes and
persistence storage used by service-orchestrator), a reconciler
process is defined. The reconciler keeps a watch on config of
the database system running on the Master node. If the differ-
ence in config is observed for a threshold time-period (watcher
timeout), the reconciliation occurs and the config stored in the
persistence storage is applied to all nodes. Thus, this eventually
leads to rejection of the config recommendation due to error in
the intermediate process.

For changing the knobs values, one of the efficient methods is
to use Socket Activation (using sockets via 𝑠𝑦𝑠𝑡𝑒𝑚𝑑). This also
makes possible to restart the DB since the socket is up and keeps
on accepting the incoming requests. However this method only
caches the requests but causes a lot of jitter and performance
degradation. Another method is to use linux reload signals, upon
evaluating this method, we observe very minimal jitter in the
performance of the database. A comparative analysis has been
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presented in graphs in Figure 7 where the performance of the
database is observed under identical load conditions.

Figure 7: IOPS graph for TPCC execution.

The graphs shown in Figure 7, the TPCC workload is executed
with tuned MySQL. Readings during 15:08 to 15:23, shows the
TPCC execution without triggering any config reload signals,
where as readings between 15:38 to 15:54, shows the TPCC exe-
cution which was accompanied by a config signal reload with a
frequency of 20 seconds (even with this high frequency of reloads,
the performance is not compromised).

Applying Non-tunable Knobs. ’Non-tunable knobs’ has
been used as a term to categorise such knobs that cannot be
applied/tuned without causing a restart of the database process.
Since, the restart of database can only be performed during sched-
uled downtime window (a pre-announced time-period where a
re-deployment of database occurs), an approach had to defined
for the tuning of such knobs. The design of the approach can
be considered for memory-related knobs (as non-tunable knobs
are majorly memory knobs). For a non-tunable memory related
knob, like buffer-pool’s size, the optimum value of this parameter
can be obtained from the working set [5]. Once this optimum
value is determined, the database system is initially set up with
the same value. However, there could be other memory-related
knobs that are dependent on such a non-tunable knob. The value
of all such knobs must be within the total memory allocated
to the database process. Let us consider the following equation.
𝐴 + 𝐵 + 𝐶 + 𝐷 < 𝑋 Here, 𝐴 could be assumed to be a non-
tunable knob like 𝑏𝑢𝑓 𝑓 𝑒𝑟_𝑐𝑎𝑐ℎ𝑒 size. 𝐵,𝐶, 𝐷 could be other tun-
able memory knobs like 𝑤𝑜𝑟𝑘_𝑚𝑒𝑚, 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒_𝑤𝑜𝑟𝑘_𝑚𝑒𝑚

and 𝑡𝑒𝑚𝑝_𝑏𝑢𝑓 𝑓 𝑒𝑟𝑠 , where 𝑋 is the total memory allocated to DB
process.

There is always an upper limit on buffer-pool knob out of
the total memory pool. This knob is changed only during the
scheduled downtimes. During the downtime, if the total working
page set size is greater than the maximum limit, then we find
out the 99𝑡ℎ percentile of this knob obtained during all last rec-
ommendations before the last scheduled downtime. If the new
averaged value is lesser than the current value accompanied by
at-least one entropy hit, then this knob value is reduced. The
entropy hit indicates that the other tunable knobs have already
raised many throttles and now it is mandatory to create more
room for tunable knobs by reducing the buffer knob value.

Now when the memory for buffer value is reduced with re-
spect to the current knob value, it increases more room for other
memory related tunable knobs. So if the cost on throughput for
tunable knobs is more, tuning services rotates around nearly
same values for buffer knob, else in the next iteration it increases

the value of buffer knob (average value of buffer knob obtained
till last last scheduled downtime encountered.)

5 PERFORMANCE EVALUATION
The experiments were conducted on AWS instances, where cloud
resources is provisioned by cloud-foundry managed by Bosh. The
tuner deployment consists of 12 tuner instances with Ottertune
and CDBTune (we do not go for QTune due to unavailability of
its codebased in opensource) - m4.xlarge with 4vCPU and 16GB
memory, 5 config-director instances - m4.xlarge. We connected a
total of 80 live-database deployments (spawned through t2.small,
t2.medium, m4.large, t2.large and m4.xlarge VM types) to the tun-
ing. For evaluating the experiments, we used PostgreSQL (v9.6)
and MySQL (v5.6). All the tuner instances collected data from one
common data-repository (m4.xlarge VM plan) which is shared
by all tuner instances. The bare-service-replicas were created:
one for each plan and were used to test the recommendations
obtained. A real-time customer workload (activity for 33 days) is
captured for the purpose of some of the below experiments. The
SQL workload has 132 tables, 42.13M queries per day (average),
71K Select queries, 41M Insert queries, 34K Update queries and
0.8K Delete queries with a DB size of 59GB. The query arrival
rate is shown in Fig. 8

Figure 8: Production workload query arrival rate

Before evaluating the AutoDBaaS on live systems, we perform
training of the tuners as per their standard ways [4] [18]. The
first experiment we design is to measure the tuning requests
per second on production landscape where both ottertune and
CDBTune is being used for tuning. Figure 9 showcases one such
outcome to illustrate the impact on scalability challenges of a BO
style tuner. When comparing scalability of BO vs RL style tuners,
a RL style tuner generates new configs very fast (but sometimes
takes a long time to come around a good configuration). As per
the BO approach, generating a new configuration takes around
200 seconds (which is assumed to be a good configuration). Both
the RL or BO style tuners follow periodic approach (with a pe-
riodic length of nearly 5 to 10 minutes). In this case we bring
in TDE which breaks down the periodic tuning approach. We
measure the requests per second for live databases on production
landscape where we compare requests per seconds generated
when TDE checks in, periodic approach with a period of 5 min
and periodic approach with a period of 10 mins. In both the cases
it seems like the TDE approach gives a reduction and comes to
peak when the workload pattern changes a lot like say morning
8AM to 11AM (when most of the microservice usages surge). The
tuning requests per seconds when TDE checks in also directly
gets impacted by the efficiency of tuner being used. If the tuner
generates good configuration, in the next upcoming iterations,
there are pretty less chances of a throttle getting detected.
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As the proposed work largely reduces the tuning requests per
minute, this evidence seems to directly impact the scalability of
the tuning services and specifically the BO style tuners.

Figure 9: Requests per minute graph for 80 live connected
databases

Next we measure the performance throttles due to incorrect
knobs for some standard and production workloads. The param-
eters for the standard workloads was for (1) tpcc, 3300 requests
per second with 26 GB of database size, (2) wikipedia, 1000 re-
quests per second with 12 GB of database size (3) twitter, 10000
requests per second with 22 GB of database size and (4) ycsb, 5000
requests per second with a database size of 20 GB. We used oltp-
bench to do the benchmarking on postgresql (Fig. 10) and mysql
(Fig. 11) on m4-large instances. In order to purely measure the
performance throttles, we do not go for a tuning session. These
throttles presents averaged score for nearly 20 to 25 iterations.
However, for production systems (as described above), we do not
run iterations, rather they are actually captured from live systems
directly for the workload described above and measured at differ-
ent timestamps. We observe that for both postgresql and mysql,
the write heavy workloads raise more throttles for background
writter knobs, read-heavy/mix workloads raise more throttles for
memory and async/planner knobs and for production workload
it seem like a mix of ratios.

The next crucial metric for evaluation is Performance. There
could be two metrics for measuring the performance of the pro-
posed approach: (i) the throughput of the database system and
(ii) the number of throttles encountered by the database system.

In Fig. 12, we measure the average throughput on live database
using (1) Ottertune and (2) Ottertune with TDE (i.e. Ottertune
only captures high quality samples from TDE). Ottertune uses
samples from both production-workloads and offline-workloads
(like executing tpcc offline) to train GPR. As per the tuning
pipeline of Ottertune, it bootstraps with offline-workloads and
starts tuning live systems. It separately captures each experiences
from each workload (i.e. eiter live or offline). There is no chances
of training model corruption with offline workloads as samples
from offline workloads are captured are always of high quality
(i.e. there is no such point when a offline workload does not re-
quires a tuning). So when new batches of production system are
hooked with the same ottertune instances, ottertune’s through-
put is roughly the same as compared with Ottertune + TDE as
initially Ottertune uses offline samples (i.e. samples taken from
offline workloads) to train GPR. However, the samples captured
from the first batch of productions systems causes corruption
to GPR (with high probability). Hence, when such samples are

Experimental Setup
Variable used workload Metrics window knobs
in Fig. 14 length class

#1 YCSB to TPCC 5 min background writter,
async/planner

#2 TPCC to YCSB 5 min memory,
async/planner

#3 YCSB to Wiki 7 min async/planner
#4 Wiki to YCSB 5 min NA
#5 TPCC to twitter 6 min memory,

async/planner
#6 Twitter to TPCC 5 min background writter

Table 1: Experimental parameters and values

utilized to tune other set of production systems, the accuracy of
GPR recommendations is extremely low. Hence, in Fig. 12 we
hook in the 40𝑡ℎ database instance and measure the throughput.
As shown in the graphs the proposed approach seems to per-
form well and the main reason for that is there is no possible
learning corruption in learning. For the workload executing in
this database, we observed that Ottertune mapped the workload
(with high mapping scores) to nearly 14 different workloads (to
leverage tuning experiences) where only 4 of them were offline
workloads. Similarly, we measure the same set of throughput
when CDBTune is used as tuner. Here as CDBTune does not
so much utilizes past learning experiences or atleast the way
Ottertune does it. CDBTune minimally utilizes offline training
but for sure does not uses learning from other production tuning
experiences. Therefore in the case of CDBTune, this problem
happens directly from the first hooked/subscribed database. The
graph shown in Fig. 13 presents the throughput measured on the
first database connected to CDBTune.

We also measure the effectiveness of performance throttling
with changing of workload pattern by execution of standard
workloads. The graph shown in Fig. 14 presents the same. This ex-
periment is designed to measure how throttling detection helps to
quickly capture workload change. In this experiment, we loaded
22GB of TPCC data, 24GB of TPCH data, 18.34 GB of YCSB data,
16 GB of twitter data and 20.2GB of wikipedia data on a m4-xlarge
instance of postgresql. And we measure the throttles detected
upon change of queries (i.e. from one workload to another). We
present the details of experiment done here in the below table 1:

In this experiment we also observe and present the class of
throttles. The tuner has a direct impact on the total number of
throttles. This is because a single throttle triggers a tuning request
and tuner recommends back a good configuration. Hence, in case
of a very idealistic tuner the underlying database should not
trigger more than one throttle as the idealistic tuner is expected
to get the best config which would cause no throttles in the next
iteration.

Lastly we tried measuring the accuracy of the throttling de-
tection engine for all the classes of knobs what we presented. To
evaluate the accuracy of throttles raised, either we could have
used the human knowledge, where an administrator would have
verified each throttles manually. But, this approach could have
been time-consuming and could might result with a biased deci-
sion of the administrator. So another way to evaluate the throttles
was to use the tuning of an already trained tuner. We trained
Ottertune with offline workloads like TPCC, YCSB, Wikipedia
and Twitter and then observed the throttles classes and con-
figurations generated by Ottertune. If Ottertune recommends a
majority of knob (say out of top 5 ranked knobs) whose class is
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(a) write-heavy workload (b) mix/read-heavy workload (c) production workload

Figure 10: Performance Throttles detected on postgresql for varied set of workloads

(a) write-heavy workload (b) mix/read-heavy workload (c) production workload

Figure 11: Performance Throttles detected on mysql for varied set of workloads

(a) Average throughput per hour on Post-
gresql

(b) Average throughput per hour on
MySQL

Figure 12: Throughput graph for live production database
with Ottertune

(a) Average throughput per hour on Post-
gresql

(b) Average throughput per hour on
MySQL

Figure 13: Throughput graph for live production database
with CDBTune

same as the class of throttle, then the throttle was accurate else
we consider the throttle to be not accurate. This is specifically
tested on the same workload with which Ottertune was trained
i.e. TPCC, YCSB, Wikipedia and Twitter (as for the same trained

Figure 14: Throttles captured when tuner is Ottertune

data accuracy would be very high). Ottertune recommendations
sometimes perform exploration for the Gaussian Models better
training. We minimize this exploration by setting appropriate
hyper parameters manually. With this settings, Ottertune’s rec-
ommendation should least explore and only aim to maximize
the throughput. We loaded similar amount of data on a Post-
gresql m4-xlarge instance as done in the previous experiment.
The graph shown in Fig. 15 presents the same. We observed high
accuracy for memory and background writter knobs and a lower
accuracy for planner/async knobs. However, we are confident
more for planner/async knobs as the throttle points clearly shows
improvement as per cost-benefit analysis of planner estimates.
However, we observed ottertune fails to understand such throt-
tles mainly because of absence of planner estimates in the metric
set that it captures for postgresql.

6 RELATEDWORK
Facebook introduced Pressure Stall Information (PSI) [11] for
evaluation and control of computational resources across large
data centers. It is one of the first canonical ways of measuring re-
source pressure increase as it develops based on pressure metrics
such as memory, CPU and I/O using 𝑐𝑔𝑟𝑜𝑢𝑝2 and 𝑜𝑜𝑚𝑑 . There
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Figure 15: Accuracy of performance throttles on Post-
gresql

are many methods which exists in literature which try to capture
similar pressure on computational resources. However in case of
databases these approach seems to be in-efficient in figuring out
pressure on individual database knobs. This is also because of the
reasons that database knobs are mostly indirectly-non-linearly
dependent on the computational resources.

Oracle came up with a database internal monitoring mecha-
nisms [14] and [15] to identify the bottlenecks in performance
due to misconfigurations in internal components or knobs. Here,
authors propose ’database time’ of query as a parameter to fig-
ure out performance bottlenecks. Later this information is given
to DBA’s for tuning of knobs. The system uses heuristics from
performance measurements for tuning of memory knobs and
however does not tunes all set of knobs.

In literature, there are many knob tuning approaches [12]
and [13], which are either specific to specific databases or tune
only a subset of knobs. Other PaaS providers like AWS RDS ser-
vice, gives freedom to consumers to tune it based on the workload.
The architecture of Ottertune seems to meet the requirements
of PaaS tuning offerings to customers, based on its capabilities
to tune multiple databases by leveraging the workloads seen by
tuner in the past. Oracle came up with autonomous database, a
similarly solution came from Microsoft, however the approaches
does not tune more than one database (unable to leverage experi-
ence gained by another system) and is only coupled to tune one
database at a time (and thus increasing cost of tuning).

Also there exists multiple works that have focused on tun-
ing database knobs. However, there exists two main classes: (1)
Search basedmethods like BestConfig [16] and (2) Learning based
methods which includes BO style learning or RL style. We do not
consider Search based methods for tuning production systems
as it expects the user to execute the workload on staging land-
scapes and tries tuning it. However, it cannot tune live systems
as it takes huge amount of time to get to a good configuration.
This is because for every tuning from scratch they again start
the searching process from scratch. This work mainly focuses to
solve specific problems of learning based methods like Ottertune
and CDBTune.

7 CONCLUSION
We presented a generic tuning architecture for tuning services
to be provisioned by any PaaS model. In this work, we bring in
the challenges and drive them to make the AutoDBaaS more ro-
bust for production environments. To take up all the challenges,

this work presented (1) methods to monitor database and de-
tect performance throttling, which helps the database to trigger
recommendation requests only when potentially required and
calculating the monitoring/observation time, (2) methods for
applying and validating the obtained recommendations on pro-
duction systems. Lastly we evaluate the proposed architecture
on cloud-foundry managed by Bosh running on AWS. With our
approach of detecting performance throttling, we were able to
achieve better scalability. On Production systems, due to vary-
ing load - throughput, we measure the performance of tuning
recommendations in terms of performance throttles hit on pro-
duction systems. As the existing learning based method needs
high quality samples from production system, proposed throt-
tling detection engine enables it to do so. Hence, in this work we
also achieve better throughput as throttling detection approach
reduces corruption of learning methods.

In the coming future, we would like to explore more on us-
ing reinforcement learning methods to capture the performance
throttles and making the current TDE free from static rules.
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ABSTRACT
In this paper, we provide an in-depth study of the performance
of spatio-temporal queries in document-oriented NoSQL stores.
Existing NoSQL stores provide limited support for spatial data
and (quite often) no native support for spatio-temporal data. As
a result, the performance of query execution over large collec-
tions of spatio-temporal data is often suboptimal. We present
an approach for indexing spatio-temporal data, which is applica-
ble to any NoSQL store that provides key-based access to data
without modifications to its code, and we show how to generate
data partitions that preserve data locality. Moreover, we show
the impact of indexing and partitioning on the number of cluster
nodes that serve a query, and we discuss the advantages and dis-
advantages for different applications. We adopt a methodology
for the evaluation of spatio-temporal range queries, which can
serve as a benchmark. In our experiments, we focus on MongoDB
(as a representative NoSQL store that provides spatial support)
and we study the impact of indexing spatio-temporal data on
performance, using both real-life and synthetic data sets in a
medium-sized cluster.

1 INTRODUCTION
Big spatio-temporal data sets are collected every day at unprece-
dented rates [15, 17], due to emergent applications, such as fleet
management solutions, surveillance systems in maritime and
aviation, human and animal tracking, IoT sensor feeds, location-
based web search, and social networks with geotagged content.
These applications generate huge volumes of positional infor-
mation represented as points, which require scalable storage
and retrieval, so that data analysis techniques can be applied
to discover hidden spatio-temporal patterns. As a result, scal-
able spatio-temporal data management is a challenging research
topic, and efficient solutions are required for storage, indexing
and querying.

NoSQL stores [4, 7] comprise the state-of-the-art in scalable
storage to date. However, while support for spatial data is pro-
vided recently by an increasing number of NoSQL stores, this
is seldom the case for spatio-temporal data. In fact, even spa-
tial data access methods are not always optimized in today’s
mainstream NoSQL stores. While most relational DBMSs have
adopted R-trees [11] (or its variants [2, 16]) for efficient spatial
indexing, NoSQL stores with spatial support adopt GeoHashes to
map spatial data to one-dimensional (1D) values, which is then
indexed using traditional 1D indexes, such as B-trees [6] (see
Table 1). Our conjecture is that this decision relates to the cost of
building and maintaining a distributed R-tree. Consequently, the

© 2021 Copyright held by the owner/author(s). Published in Proceedings of the
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Database Spatial Indexing

RD
BM

S

PostgreSQL (PostGIS extension) R-Tree
MySQL R-tree
Oracle R-tree

MariaDB R-tree
SQL Server B-tree

SQLite (SpatiaLite extension) B-tree

N
oS
Q
L

MongoDB B-tree
Redis (Geo API) Sorted Set
DynamoDB B-tree
Elasticsearch BKD-tree

Neo4J B+Tree
Table 1: Spatial support in most popular relational and
NoSQL data stores

performance of existing solutions is suboptimal, when faced with
the challenge of efficient and scalable retrieval of spatio-temporal
data.

Our work is motivated by real-life applications, revolving
around fleet management operators in the urban domain, which
collect large volumes of positional data from GPS-equipped vehi-
cles daily. The specific use-cases that are supported by our work
relate to exploratory analysis of historical routes, using multiple
spatio-temporal queries of varying granularity. The retrieved
trajectories are analyzed for fleet cost reduction (by analyzing
the fuel consumption of historical routes), intelligent routing, as
well as for discovering movement patterns. The challenge is to
provide a scalable storage and spatio-temporal querying solution
for large volumes of historical mobility data. Unfortunately, ex-
isting industrial solutions are not optimized for spatio-temporal
querying at scale, thus fleet management operators apply data
analysis techniques only on recent subsets of their historical
database, while older data is kept in cold storage.

Motivated by these limitations, in this application paper, we
provide an in-depth study of querying spatio-temporal data at
scale, focusing on a document-oriented NoSQL store, namely
MongoDB. The choice of MongoDB is justified due to its wide
popularity among big data developers, and its maturity compared
to other competitive technologies. We explain the internal de-
tails of indexing and sharding, focusing on how spatial data is
supported, and eventually design a solution for spatio-temporal
data using the built-in indexes of MongoDB. Then, we propose
an alternative approach that uses the Hilbert space-filling curve
(which has been shown to have nice clustering properties [14])
to generate one-dimensional (1D) keys, which facilitates index-
ing of spatio-temporal data, and allows to preserve data locality
in the nodes of the MongoDB cluster. Moreover, this approach
can be implemented on top of MongoDB (and other key-based
NoSQL stores), thus being directly applicable for any application.
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In particular, our approach has an effect on sharding, essentially
creating spatio-temporal data partitions that preserve data local-
ity. As we demonstrate in our empirical evaluation, this has a
profound impact on performance.

Our contributions can be summarized as follows:
• We propose an approach for efficient storage and querying
of spatio-temporal data based on Hilbert encoding, which
can be applied to any NoSQL store that supports key-based
access to data.

• We show that our approach achieves spatio-temporal data
locality across the distributed data partitions, and we dis-
cuss the advantages and disadvantages for different appli-
cations.

• We present a methodology for evaluating the impact of
spatio-temporal access to data at scale, which can also
serve as a benchmark for spatio-temporal queries inNoSQL
stores.

• We perform extensive experiments over a MongoDB in-
stallation on a public cloud, and we study the effect of
different metrics (such as keys and documents accessed,
nodes involved in query execution) on execution time
using both real and synthetic data.

The remainder of this paper is structured as follows: In Sec-
tion 2, we review related research efforts. Then, in Section 3,
we present the internal mechanisms of MongoDB for indexing
and handling spatial data. Section 4 outlines our approach for
indexing spatio-temporal data. Section 5 presents the results of
our empirical evaluation, and Section 6 concludes the paper.

2 RELATEDWORK
Spatial data indexing is a long-studied topic, with R-tree [11]
and its variants [2, 3, 16] being a prominent data structure in
centralized databases. Even though approaches for distributed
R-trees have been proposed [8], they have not been adopted by
today’s NoSQL stores, probably due to the high maintenance
cost in distributed settings and due to the gradually diminishing
performance after many inserts/updates.

2.1 One-dimensional Indexing of Spatial Data
Space-filling curves have extensively been used in spatial databases
in order to map high-dimensional data to one-dimensional val-
ues, which can be indexed using standard data structures, such
as the B-tree. Although many variants exist, notable examples
include the z-order and the Hilbert curve (depicted in Fig. 1). In
the context of data management and indexing, the objective of
all space-filling curves is to preserve data locality in the one-
dimensional space, so that spatial range queries can be trans-
formed to one-dimensional intervals of small length, in order to
reduce the number of false positives.

Even though the idea of GeoHashes was first proposed by
G.Niemeyer in 2008, it bears similarities with space-filling curves
(in particular with z-order), which have been known for decades.
MongoDB uses GeoHashes to store spatial data efficiently. The
idea of GeoHashing is to use a hierarchical subdivision of the
2D spatial domain, which uses multiple layers, with each layer
divided in a set of cells (or buckets). At the top layer, four buckets
exist which are derived by splitting each dimension in the mid-
dle. Then, each bucket at the top layer can be represented by 2
bits: 00, 01, 10, and 11. The hierarchical subdivision is performed
recursively, so at the next layer sixteen buckets exist and four
bits are used to address a bucket. As a result, any 2D spatial point
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Figure 1: Illustration of the Hilbert and z-order space fill-
ing curves

is assigned into a lower-level bucket uniquely, and the bit repre-
sentation of the bucket can be used as an indication about the
location of the point in the 2D space. The more layers, the higher
the precision of the respective location. Finally, GeoHashes use
a base32 String representation, instead of a bit representation,
which uses a 32-character set comprising the twenty-six letters
a–z, and the digits 2–7. As an example, Athens (Greece) has coor-
dinates (37.983810, 23.727539) which is represented as a GeoHash
of “swbb5ftzes” for precision of 10 characters. If we used lower
precision, the corresponding prefix would be obtained. For in-
stance, the GeoHash of Athens for precision of 5 characters is
“swbb5”.

2.2 Spatial and Spatio-temporal Queries in
MongoDB

NoSQL systems are widely used by modern applications for scal-
ability and high performance. For a recent survey on NoSQL
stores, we refer to [7] and also to the early work of Cattell [4].

There exists some work on studying the performance of built-
in mechanisms for spatial query support in MongoDB. Duan and
Chen [9] compare MongoDB against ArcGIS, in order to assess
the performance of the spatial extension of MongoDB against
a well-established GIS. More recently, Bartoszewski et al. [1]
compare MongoDB against PostGIS for spatial data. However,
both studies evaluate the systems on a single machine, which is
a limitation because it hides the impact of distributed storage on
query execution.

In [13], an experimental evaluation of MongoDB against Post-
greSQL is performed for spatio-temporal data. This is one of
the few studies that try to evaluate MongoDB’s capability in
terms of querying spatio-temporal data. However, their study
has some limitations, most notably the lack of data partitioning
in evaluation. Instead, a small cluster is used and all machines
contain replicas of the data set. In contrast, our work provides
an in-depth investigation of different aspects of spatio-temporal
data management, including indexing, data partitioning and load
balancing, in a much larger deployment of MongoDB in a sharded
cluster.

ST-Hash [10] follows an approach for spatio-temporal index-
ing on top of MongoDB. The main idea is to extend GeoHashes
in a way that time is also incorporated in a string representa-
tion of a one-dimensional value. This value can be decomposed
to obtain the corresponding spatial and temporal information.
Hence, a one-dimensional index is built on this string value, in
order to support efficient point and range searches. However,
the resulting encoding uses the year as a prefix, which is not
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effective for certain query types. For example, queries with high
spatial selectivity but low temporal selectivity cannot exploit the
encoding, in order to efficiently identify which data blocks need
to be accessed.

SIFT [12] is an implementation of a distributed spatial index
upon MongoDB. The study focuses on the ingestion, indexing
and querying of highly-skewed spatial data. The basic data struc-
ture of SIFT is based on a tree where the spatial objects are
represented by their minimal bounding boxes. The tree structure
follows an approach so as to avoid any rebalancing, splitting and
merging operations when spatial objects are inserted to the index.
Nonetheless, the index is limited only to spatial queries.

3 BACKGROUND ON MONGODB
MongoDB [5] is a popular document-oriented NoSQL store that
stores data in the form of documents in collections. Documents are
binary JSON objects (BSON) that consist of a set of fields with
associated values. Values can be simple or complex, e.g., an array
or even a nested document. Each document is typically associated
with a key that uniquely identifies it. Collections are containers
for conceptually similar documents, however no restrictions are
imposed to the schema of each document. In MongoDB, collec-
tions are stored in databases which are namespaces for physical
grouping of collections.

3.1 Indexing in MongoDB
The main indexing structure used in MongoDB is the B-tree [6],
which supports both point and range queries. Apart from single
field indexes, which index documents based on a single field, a
compound index can be used to combine multiple fields (up to
32 fields), thus supporting queries with predicates on multiple
fields.

Compound indexes are organized hierarchically based on the
declared order of the index keys. In the case of two fields A and
B, the compound index first organizes the sorted values of A
in buckets, and then these buckets keep references to buckets
that hold the sorted values of B. An example is depicted in Fig. 2,
where A=hotelName and B=price, denoted as {hotelName:1,
price:1} in MongoDB. This indexing scheme has some impor-
tant consequences on performance. First, only queries with a
predicate on A can benefit from this index, since the value of the
predicate is necessary to start the traversal of the index and locate
buckets with relevant keys efficiently. Second, it is beneficial to
use as first index key a field that has many distinct values, in
order to effectively narrow down a search to few buckets only. As
a result, the order of index keys in a compound index determines
the performance of searches.

MongoDB holds by default a field for each document, called
_id. The field represents the identifier of a document and is
unique, acting as a primary key. The default type of its value is
ObjectId with 12 bytes. Its length consists of 4-byte timestamp
value based on ObjectId’s generation, a 5-byte random value and
a 3-byte incrementing counter which is initialized to a random
value. For the _id field, MongoDB maintains a single-field index
which cannot be dropped.

3.2 Indexing Spatial and Spatio-temporal
Data

Two variants of spatial indexes are supported in MongoDB; a 2d
index, which manages data on a two-dimensional plane, and a
2dsphere, which calculates geometries on the surface of the earth.

{hotelName:1, price:1}

Aurora
Classio 
Hotel

70 200

Derbin 
Hotel

Elite 
Peak

120 240

Aurora
Felicity 
Resort

20 300

. . .

. . .

Figure 2: Example of a compound index on fields
hotelName (string) and price (integer). The documents are
organized based on hotelName and then based on price.

Both of them are applied on fields whose values hold spatial data.
The values must be either GeoJSON objects or legacy coordinate
pairs which is a representation of the longitude and latitude val-
ues either with the usage of two-sized array or by embedding the
elements in a document. The spatial indexing mechanism in Mon-
goDB is based on GeoHash1, where a hierarchical subdivision
of the 2D spatial domain using multiple layers takes place. The
cells that result from the division of the space are represented
by bits. The more bits that represent a space, the higher the pre-
cision of the respective location. The GeoHash values that are
stored in the index consist of 26 bits by default. They can be set
up to 32 bits, performing better for spatial queries, but at the
expense of occupying more space in memory. A spatial index
can be combined with another field by means of the compound
index.

Unfortunately, indexing spatio-temporal data is not directly
supported inMongoDB. As a result, our premise would be to build
a compound index over the fields storing the spatial information
and the temporal information respectively.

3.3 Sharding
Sharding refers to data partitioning and assigning the obtained
partitions to MongoDB servers, also called shards. Specifically,
when sharding a MongoDB collection, its documents are dis-
tributed across shards based on a shard key. When defining a
shard key, MongoDB separates the range of shard key values into
smaller non-overlapping ranges with continuous keys. Each of
these ranges are associated with a chunk and contain a subset
of the sharded collection. Also, a chunk has a configurable size
which is 64MB by default, and if exceeded, it is split.

The configuration of small-sized chunks leads to a more even
distribution of data. However, migrations become more frequent,
adding overhead to the network and to the query routing layer
(known asmongos). Large-sized chunks enforce fewer migrations
at the expense of a less even distribution of data. MongoDB
achieves load balancing through the (re-)distribution of chunks
among shards. The Balancer runs in the background so as to
migrate chunks across the shards, targeting to achieve an even
distribution of chunks in the cluster.

Apart from the definition of the shard key, the sharding op-
eration of a collection requires the strategy type which can be
either range or hashed. With range sharding, it is highly proba-
ble that documents with similar shard keys will be in the same
chunk or shard, as depicted in the example in Fig. 3. This enables

1https://docs.mongodb.com/manual/core/geospatial-indexes/
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Shard 3

47 78 95 100

Shard 1

87 95

1 14 14 32

Shard 2

80 87

78 8032 47

Figure 3: Instance of chunks’ distribution that result from
a range sharded collection, on a field that contains values
from 1 to 99.

routing range queries to specific shards only. On the other hand,
in hashed sharding, chunks or shards are unlikely to contain doc-
uments with similar shard key values. This may serve well for
cases where broadcast operations are preferable.

Shard 1

32 44

1 14 14 32

Shard 2

80 85

78 8044 78

Shard 3

85 95 95 100

Zone1 – [1, 44) Zone2 – [44, 85)

Zone3 – [85, 100)

Figure 4: Instance of chunks’ distribution that result from
the definition and assignments of zones: [1, 44), [44, 85),
and [85, 100) on the shard key.

Sharding imposes the creation of a single or a compound index
on each shard, based on the field/s of the shard key. MongoDB
supports manual grouping of documents based on ranges of shard
key values through the concept of zones. A zone can be associated
with any shard. Similar to chunks, zones have lower inclusive
and upper exclusive boundaries and their covering ranges do
not overlap. By associating a zone with a shard or shards in an
already sharded collection, the cluster migrates the affected data
to the respective zones, if a collection is already sharded. Division
of chunks may occur so as to follow the data distribution scheme
determined from zone(s). If zones are set up before sharding a
collection, chunks are created for the defined zone ranges (and

additional chunks if necessary) to cover the entire range of the
shard key values. Fig. 4 shows an instance of storing the data
using zones. In the figure, each shard is assigned with one zone,
thus shards maintain more contiguous key ranges.

4 INDEXING AND PARTITIONING
SPATIO-TEMPORAL DATA

In this section, we present two alternative approaches for index-
ing spatio-temporal data, with different implications on parti-
tioning and eventually on the performance of query execution.
Our work focuses on point data, which covers many life real-
applications, and we leave other data types (such as polylines and
polygons) for future work. The first approach relies on the built-
in features of the spatial extension of MongoDB for indexing
and time-based sharding, therefore we consider it as a baseline
solution. Then, we propose an alternative approach that adopts
the Hilbert curve to map data to 1D values that will be stored
and indexed as a single field, also enabling sharding based on
spatio-temporal criteria.

4.1 Baseline Solution
4.1.1 Indexing. The baseline solution for efficient querying

of spatio-temporal data stored in MongoDB is via the usage of a
compound index that is built on the spatial and temporal fields
of the documents. Consider the following document structure:
{

"_id": 1,
"location": {

"type": Point,
"coordinates": [37.983810, 23.727539]

},
"date": ISODate("2018-10-01T08:34:40.067Z"),
...

}

The spatial field (location) is supported by the built-in 2dSphere
index, and is combined under the Compound index with the date
field. As a result, two possible solutions for spatio-temporal in-
dexing can be designed by exploiting directly the built-in features
of MongoDB, which differ on the order of fields: ({location,
date} and {date, location}). The former approach favors the
spatial dimension and organizes the buckets of the temporal
dimension under the ranges encoded by GeoHash values. The
latter approach favors the temporal dimension and organizes
the buckets of the encoded GeoHash values under the ranges
of the temporal values. As a result, the first approach works
well for queries with high selectivity in the spatial dimension,
whereas the second approach is more suitable for queries with
high selectivity in the temporal dimension.

4.1.2 Sharding. In order to adapt the baseline solution to a
distributed environment, a sharding key needs to be defined. We
opt for setting as shard key the date field. In this way, the spatio-
temporal queries are expected to access only specific shards based
on the temporal constraint, thus avoiding broadcasting, i.e., rout-
ing the query to all shards. In MongoDB, broadcast operations
occur if a query’s field constraints are not found in the shard key2.
It should be mentioned that the spatial field cannot participate
in the definition of the shard key, since the current version (4.4)
of MongoDB does not support a 2dsphere indexed field to be a
shard key or part of it.
2Broadcast operations may occur also for queries that include the shard key, de-
pending on factors such as the data distribution on nodes and the query selectivity.
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By setting the date field as the shard key, it is very likely that
the documents will be distributed evenly among the shards, thus
resulting in a load-balanced cluster. Chunks are unlikely to be-
come jumbo (i.e., this refers to chunks that cannot be split, despite
becoming too large), because the values of the documents that
represent the temporal information ordinarily are of high cardi-
nality. However, it is still disturbing that the spatial dimension
cannot be used for sharding, since this would benefit queries with
spatial constraints. Instead, such queries will inevitably be routed
to all nodes that contain data that overlap with the temporal
constraint of the query.

It should also be noted that an index is automatically con-
structed on the shard key in MongoDB. Thus, the choice of the
date field for shard key results in two indexes: an index on the
temporal information and the compound index on space time.
During query processing, the query optimizer is responsible for
deciding which index is going to be used.

4.1.3 Data locality and zones usage. The baseline solution can
only guarantee data locality at the temporal level. This means that
documents associated with locations that exist near in space will
only be stored on the same node if they have similar timestamps.
Still, neighboring temporal intervals (corresponding to chunks)
may be stored in different nodes, due to the allocation of chunks
to nodes. To improve this shortcoming, we can define zones on
the sharding key (date), which will force neighboring temporal
intervals to be stored on the same node, thus improving data
locality with respect the temporal dimension.

In summary, sharding on the date field has the following two
drawbacks: (i) spatio-temporal queries may be routed to nodes
that fulfill the temporal range constraint but do not contain any
data that satisfy the spatial constraint, and (ii) queries that are
selective in the spatial dimension but refer to a large temporal
interval are forwarded to many of nodes of the cluster.

4.2 Solution based on Hilbert SFC
4.2.1 Indexing. Instead of relying on the built-in spatial in-

dexes, our approach is based on the 1Dmapping of data by means
of the Hilbert space-filling curve. Specifically, for each document,
the 1D Hilbert value is determined given its longitude and lati-
tude value, and then it is included as a new field (hilbertIndex)
that stores this value (of type long), as shown in the example
below.
{

"_id": 1,
"hilbertIndex": NumberLong(2345),
"location": {

"type": Point,
"coordinates": [37.983810, 23.727539]

},
"date": ISODate("2018-09-12T12:15:17.777Z"),
...

}

Even though any 1D mapping could be employed, we se-
lect the 1D mapping values based on the Hilbert space-filling
curve, as it has been shown to exhibit nice clustering and locality
properties [14]. This means that two documents with values of
hilbertIndex that differ slightly correspond to objects that are
spatially close to each other.

4.2.2 Sharding. Given this new spatial field (hilbertIndex)
and the date field, we set the shard key as {hilbertIndex,
date}, thus imposing spatio-temporal partitioning of data to

nodes. Consequently, the formation of the chunks is based both
on spatial and temporal information and each of them contains
documents that exist in specific spatial cells (1D values) for a cer-
tain time period. In case of spatio-temporal skewness in the data,
chunks are unlikely to become jumbo because of the cardinality
of the temporal field. The hilbertIndex field is more prone to
skewness, as it consists of finite long values and some of them
may appear with high frequency (i.e., correspond to frequently
visited locations). Thus, when a chunk surpasses its configured
size due to a unique hilbertIndex value, it is split on the tem-
poral dimension. The two new chunks will refer to the same 2D
region, covering different and non-overlapping time spans. The
definition of {hilbertIndex, date} as the shard key creates
by default a compound index for these fields on each shard. The
index constitutes a spatio-temporal index that uses the spatial
field first and then the temporal.

When querying such an index, not only the expected spatial
and temporal constraints are included in the query as in the base-
line approach, but also a constraint is added on the hilbertIndex
field. This constraint practically includes the set of spatial cells
that need to be examined, because they intersect with the query.
More concretely, such a query has the following document rep-
resentation in MongoDB:
{ $and: [

{ location: { $geoWithin: { $geometry: { type : Polygon,
coordinates: [ [ [23.7397867, 37.9698929],
[23.7492228,37.9698929], [23.7492228, 37.9761557],

[23.7397867,37.9761557 ], [23.7397867, 37.9698929] ] ]
} } } },
{date: { $gte: ISODate("2019-04-18T12:15:14.002Z") } },
{date: { $lte: ISODate("2019-04-24T07:34:43.777Z") } },
{ $or: [

{ hilbertIndex: { $gte: 7865, $lte: 12869 } },
{ hilbertIndex: { $gte: 13192, $lte: 13210 } },

{ hilbertIndex: { $in : [7794, 7799, 7856, 12911] } }
] }

] }

Similarly to the baseline approach, the spatio-temporal query
uses the MongoDB $geoWithin operator on the field that stores
the location as GeoJSON object. Also, the query specifies a spe-
cific temporal range using the $gte and $lte operators on the
temporal field. However, in the Hilbert-based approach, an addi-
tional constraint is posed on the specific spatial cells. Consecutive
values of cells are expressed as ranges, whereas non-consecutive
cell values are included as individual values. For this purpose,
an additional disjunctive operator ($or) is used in the query that
contains $gte and $lte operands to represent the ranges, and an
$in operator to include the individual cells.

4.2.3 Data locality and zones usage. The exploitation of both
spatial and the temporal information of documents for sharding
leads to a distribution of data to nodes that preserves the spatio-
temporal data locality. It is highly probable for the documents that
are both spatially and temporally near to be stored on the same
node. However, as already explained, this is not guaranteed for
data that belong to different chunks. This is because MongoDB
does not guarantee (by default) for each of the shards to store
chunks with continuous ranges.

Thus, data locality can be improved by defining zones. With
zones, documents with consecutive Hilbert values (disregarding
the temporal dimension) are likely to be placed in the same
shard; this is applied by defining and assigning zones to shards,
handling documents with specific ranges of Hilbert values. The
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fact that the zones are defined only on the spatial information
of the documents cannot guarantee temporal locality, but only
for documents with nearby spatial locations. In contrast to the
baseline solution, in this approach, the spatial dimension affects
the number of the nodes that are to be accessed during query
processing.

4.2.4 Zones configuration. In order to assign a pre-defined
range of key values to a shard, a zone is specified by means
of a range of shard key values or a prefix of shard key values.
Zones are then assigned to certain nodes. This enables manual
partitioning of data in a controlled manner. In order to achieve
data locality regarding the spatio-temporal information of the
documents, we define as many zones as the number of available
shards, and assign one zone per shard.

The configuration of zones for the Hilbert-based approach is
performed on the hilbertIndex field (whereas the shard key
consists of the spatial and temporal field). Specifically, by using
the $bucketAuto aggregation pipeline stage of MongoDB, we get
the ranges of 𝑛 buckets, where 𝑛 is the number of shards. The
boundaries of buckets are formed with the goal of even distribu-
tion of documents to buckets. The ranges of the zones contain
documents that have a specific Hilbert value, without taking
account its temporal part. In other words, the zones contain doc-
uments that are located in specific cells for the whole timespan
in which they belong to. The resulting zones may not contain
exactly the same number of documents due to spatial data skew,
but we manage to preserve spatial locality.

For the baseline approach, the configuration of zones is per-
formed on the date field that constitutes the shard key, using
again the $bucketAuto aggregation pipeline stage. Each of the
buckets, contains the same number of documents. Based on these
ranges, the respective zones are created, and each one is assigned
to a single shard.

5 EXPERIMENTAL EVALUATION
In this section, the results of the experimental evaluation using
both real-life and synthetic data are presented.

5.1 Experimental Setup
Platform.All experimentswere performed inOkeanos-Knossos3,
an IaaS platform which is built and supported by GRNET4 for
research purposes. Okeanos-Knossos is a cloud service that pro-
vides virtual computing and storage services to the Greek re-
search and academic community. We have engaged from the
cloud service the following resources: 17 virtual machines, 68
CPUs, 136GB RAM, and 2.00 TB disk space.

MongoDB deployment. We deployed MongoDB (v 4.0.12)
on 17 virtual machines. From this set of nodes, 12 of the VMs
were used as (primary) shards, 3 of them as configuration servers
and the remaining 2 as query routers. Replica shards were not
used since the availability feature which mainly relates to node
failures is beyond the scope of this experimental study.

Each VM is equipped with 8GB RAM, x4 CPU cores and 30GB
system disk, running Ubuntu 16.04.6 LTS operating system. The
VMs that serve as shards have a mounted disk drive of 102GB
size. The VMs that serve as query routers have a mounted disk

3https://okeanos-knossos.grnet.gr/
4https://grnet.gr/

drive of 145GB size. The offered attachable disk of Okeanos-
Knossos platform is based on the Ceph5 storage system, which
is a distributed block level storage.

By default, MongoDB uses the WiredTiger storage engine that
integrates compression for collections and indexes. The compres-
sion on the collections is achieved through block compression,
supported through the snappy library. At the level of indexes,
prefix compression is used.

Data sets. Two types of data sets are used for the experimental
evaluation; real-life (R) and synthetic (S). The R set used in the
experimental evaluation is a subset of a proprietary data set that
is provided from a fleet management provider in Greece. The
subset used in our experiments is 13.7GB in the form of CSV files,
containing 15, 210, 901 records in total. The data set contains
trajectories of vehicles within Greece for a period of five months
(July to November 2018). Particularly, each record constitutes
a GPS trace of a specific vehicle and is comprised of 75 values.
The values represent information about the vehicle, its position
in space and time, the prevailing weather conditions, the road
network and the nearest points of interest. The coordinates of
the minimum bounding rectangle of the data set are: [(19.632533,
34.929233), (28.245285, 41.757797)]. We also use larger portions
of the same data set for our scalability study in Section 5.4, by
including more vehicles in the same spatio-temporal bounding
box.

The S set is a synthetic spatio-temporal data set, which con-
tains twice as many records as the R data set. It consists of two
CSV files where each one contains 4 columns (id, longitude,
latitude and date). The values of each column are generated
at random within predefined ranges and following the uniform
distribution. Its size is 1.6GB. The timespan of the synthetic data
set is the half of the covering time period of the R data set (i.e.,
it spans 2.5 months) and covers spatially a smaller area than R.
Specifically, the minimum bounding rectangle of the synthetic
data set is approximately 1.54% of the minimum bounding rec-
tangle area of the R set. The lower and upper coordinates of this
rectangle are: [(23.3, 37.6), (24.3, 38.5)].

Queries. In order to assess the performance of the approaches,
two categories of spatio-temporal queries are specified; those
with small and big spatial constraint, respectively. The categories
will be stated henceforth as 𝑄𝑠 (small) and 𝑄𝑏 (big) correspond-
ingly. Each category contains 4 queries with increasing temporal
constraint:𝑄𝑥

1 covers 1 hour,𝑄𝑥
2 1 day,𝑄𝑥

3 1 week and𝑄𝑥
4 covers

1 month, where 𝑥 ∈ {𝑠, 𝑏}. The queries do not overlap on the
temporal dimension; instead, each one pertains to a discrete time
span.

The spatial constraint of the small queries category is de-
fined as a rectangle with the following lower and upper bounds;
[(23.757495, 37.987295), (23.766958, 37.992997)]. The spatial rec-
tangle covers 526km2. The spatial constraint of the big queries
category is also defined as a rectangle, approximately 2, 603 times
larger than the covering area of the small queries category. Its
lower and upper bound coordinates are [(23.606039, 38.023982),
(24.032754, 38.353926)], covering 1, 369, 107km2.

Tables 2 and 3 report the number of retrieved documents for
each small and big queries, respectively. Clearly, small queries are
selective and retrieve relatively few documents. This corresponds
to queries for constrained space and time dimensions, aiming
at retrieval of very specific records. Instead, big queries, return
large result sets, and correspond to analytic queries that retrieve

5https://ceph.io/
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Number of retrieved documents
Data set Q𝑠

1 Q𝑠
2 Q𝑠

3 Q𝑠
4

R 2 34 877 3,829
S 3 22 239 783

Table 2: The results of small queries for the real and the
synthetic data set

Number of retrieved documents
Data set Q𝑏1 Q𝑏2 Q𝑏3 Q𝑏4

R 580 5,640 113,890 431,788
S 2,575 61,193 608,685 1,891,291

Table 3: The results of big queries for the real and the syn-
thetic data set

large portions of the data set in order to perform some large-scale
data analysis task.

Metrics. The evaluation of the performance of the approaches
is based on the following metrics;

• Average execution time: corresponds to the execution time
required for processing the query and returning the query
result (averaged over queries).

• Documents examined: corresponds to the maximum num-
ber of documents that were accessed on any node during
query processing. This indicates the number of documents
that need to be fetched from disk during query processing.
We use the maximum as it corresponds to the highest cost
induced on any node, so it affects the execution time.

• Keys examined: shows the maximum number of keys ex-
amined in the underlying index over all nodes, in order to
find the necessary documents on disk. This indicates the
cost paid during query processing induced by accessing
the index.

• Nodes: reports the number of nodes that were accessed
during the execution of a query. This corresponds the
subset of nodes that participated in query processing.

Methodology. Based on the description of the subsections 4.1
and 4.2, we evaluate the following individual approaches which
cover variants both for indexing and partitioning:

• bslST : sharding based on time, and local indexing on shards
using compound index (location, date), where location
is based on 2dsphere index.

• bslTS: sharding based on time, and local indexing on shards
using compound index (date, location), where location
is based on 2dsphere index.

• hil: range sharding based on Hilbert curve in 2D (with
13-bit precision) and on time. The applied Hilbert curve
covers the entire globe. For local indexing on shards, a
compound index (hilbertIndex, date) is used for each
node.

• hil*: range sharding based on Hilbert curve in 2D (with
13-bit precision) and on time. The applied Hilbert curve
is limited to the spatial region of the data set. For local
indexing on shards, a compound index (hilbertIndex,
date) is used for each node.

With the bsl term we will refer to the sharding of the bslST
and bslTS approaches which is common for both of them. These
approaches differ only on their indexing part. Furthermore, the
hil method competes on equal terms bslST and bslTS approaches,

by taking account of the same spatial extent (whole world) and
by using 26 bits for storing the geospatial information of each
document on the respective indexes. We also tried hil* to investi-
gate if the use of a curve with the same number of bits but on
restricted spatial extent has any notable effect on performance.

The evaluation methodology followed in this experimental
study is described as follows. Each of the queries of the two
categories are executed 30 times, so as to ensure that the mea-
surements of the performance time of queries are in warm state
(where indexes have been already loaded in-memory). The exe-
cution time is calculated by averaging the last 10 executions of
each query.

When switching from one approach to the other, MongoDB is
re-installed from scratch so as to have a new deployment which
will contain only one sharded collection. For each approach, data
loading takes place. Both of the query routers are exploited for
this purpose and perform bulk insertion.

The approaches are tested under range sharding with different
settings: (i) with the default formation of the chunks, without
intervening on the distribution of the data over the shards (Sec-
tion 5.2, Figs. 5–8), and (ii) with the definition of zones where
data is grouped to shards given some pre-determined ranges
(Section 5.3, Figs. 9–12).

5.2 Evaluation of Approaches
hil vs. bsl. For both of the baseline variants (bslST and bslTS),
the number of nodes to which a query is routed increases when
the temporal constraint of a spatio-temporal query is increasing,
regardless of its spatial extent (Fig. 5c, 6c, 7c, 8c). This is not
effective for big queries that cover a large spatial area and refer
to a short time period (such as 𝑄𝑏

1 and 𝑄𝑏
2 in Fig. 6d and Fig. 8d).

In that case, a small number of nodes are burdened with search
operations, as a result of the multiple 1D mapping values that
represent the area. This is reflected in Figs. 6a, 6b, 8a and 8b
where the maximum number of examined keys and documents
are many more than in hil. The same applies for the 𝑄𝑏

3 query,
served by 2 and 6 nodes in the R and S set respectively, fewer
than the exploited nodes of hil method. The query𝑄𝑏

4 uses in the
baseline approaches 3 nodes more than in hil for both sets, with
more maximum examined keys and documents. In summary, hil
outperforms the baseline methods in terms of execution time in
the case of big queries.

Concerning the small queries, 𝑄𝑠
1 and 𝑄

𝑠
2 perform better for

hil in R set, since the maximum examined keys are fewer than in
bslST and bslTS (Fig. 5a). The same applies for the S set in terms
of the performance, but for the 𝑄2, a few more documents are
examined in hil than bslST (Fig. 7a). Still, 𝑄𝑠

2 performs a little
better in hil than bslST, as 1 node is used, thus without having
the small overhead of merging the results from the shards. The
opposite happens for the maximum examined documents (Fig. 5b
and 7b) for the same queries on the two sets, but the differences
are smaller than the respective cases of the examined keys. For
queries 𝑄𝑠

3 and 𝑄
𝑠
4, bslST outperforms hil. This happens because

more nodes contribute to the execution of the queries. Since
the queries are spatially small, fewer nodes are used in the hil
method.

hil vs. hil*. The performance of hil and hil* methods differ
in favor of hil for the big queries in both sets (Fig. 6d and 8d).
The same does not apply for the small queries (Fig. 5d and 7d),
excluding 𝑄1 for both sets and 𝑄2 for S set. In practice, hil* uses
higher precision in the spatial domain than hil, having more
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Figure 5: Default sharding ranges: Results for small queries and real (R) data
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Figure 6: Default sharding ranges: Results for big queries and real (R) data
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Figure 7: Default sharding ranges: Results for small queries and synthetic (S) data
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Figure 8: Default sharding ranges: Results for big queries and synthetic (S) data

indexed values on its spatial part. This results to a compound
index with more buckets but with fewer elements on each bucket.
It is expected, that such an index will perform better for spatio-
temporal queries that cover a small area, than an index with fewer
values on the spatial part. The difference in the performance is
greater when the temporal dimension is increasing, since many
of the buckets of the hil* that fulfill the spatial criteria will not
be accessed, because of their temporal boundaries, thus resulting
to fewer examined documents.

Discussion. In general terms, our experiments with the de-
fault distribution settings validate our intuition that the integra-
tion of the spatial information on the sharding offers performance
gain. This is especially evident for big queries where hil outper-
forms bsl. In the case of small queries, bsl performs better but at

the expense of using more nodes for query execution due to the
lack of data locality. This is going to have a negative effect in a
real system that processes thousands of queries at the same time,
since it would require that all nodes need to participate in the
execution of each query, which is not scalable.

5.3 Evaluation of Approaches with Zones
In this set of experiments, we only use hil (not hil*) since we
did not observe significant performance improvements. Many
of the experimental observations of Section 5.2 stand also for
the case of grouping data via zones. For instance, for all of the
big queries (Figs. 10d and 12d), hil outperforms both bslST and
bslTS, because the maximum number of examined documents is
smaller. Moreover, the required execution time of small queries
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Figure 9: Zone ranges: Results for small queries and real (R) data
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Figure 10: Zone ranges: Results for big queries and real (R) data
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Figure 11: Zone ranges: Results for small queries and synthetic (S) data
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Figure 12: Zone ranges: Results for big queries and synthetic (S) data

with a large timespan (𝑄3 and𝑄4) is smaller for the bslST than hil,
since more nodes are exploited, resulting to a smaller number of
maximum examined keys and documents for both sets (Figs. 9a,
9b, 11a and 11b).

It should be underlined that in the cases in which more than
two node were exploited for the performance of a query in the
experiments of Section 5.2, their corresponding application over
of the pre-defined zones use fewer nodes. This is expected because
of the grouping of zones on shards. For those cases, the query
performance drops to a small degree. Additionally, better data
locality is offered via zones as data is moved to specific shards,
adhering to the specified ranges.

Discussion. The usage of zones for each of the approaches
confirms that data locality is better than in the case of default

distribution of the documents among the shards. This is demon-
strated by the fact that fewer (or, in some cases, the same number)
of nodes take part in the processing compared to the case of no
zones.

In the baseline approaches, the 𝑄4 big queries in both R and S
data sets consume more time for their execution, as fewer nodes
are involved in query processing. The performance degradation
is also noticed for the𝑄𝑏

2 and𝑄𝑏
3 in the S set, whereas the respec-

tive queries gain performance in the R data set. Query 𝑄𝑏
1 gains

slightly in performance in all cases. Regarding the small queries,
in the bslST approach, query execution remains practically the
same. In the bslTS approach, the performance of 𝑄𝑠

4 gets worse
for both R and S data sets. The same applies for𝑄𝑠

3 and𝑄
𝑠
2, but in
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Figure 13: Scalability study for default sharding ranges: Results for Q𝑏
2 query on real data

the S data set. The performance of the remaining queries remains
the same.

For the Hilbert-based approach, the usage of zones affects
only the execution of𝑄𝑏

2 ,𝑄
𝑏
3 and𝑄𝑏

4 big queries, increasing their
execution time as a smaller number of nodes are involved in
query processing. An extra number of keys and documents have
to be searched. This is validated in both R and S data sets. The
remaining queries have similar performance, except for small
queries 𝑄𝑠

3 and 𝑄𝑠
4 in the R data set. Their execution time is

slightly decreased despite that the same number of nodes (namely
one node) is still exploited with zones. These queries have been
favored due to the change in the distribution of data by using
zones.

5.4 Scalability Study
In this experiment, we study the scalability of our approach for
larger data sets. For this purpose, we use larger portions of the
real R data set. In particular, we use 𝑅1 to denote the data set
used so far, whereas 𝑅2, 𝑅3, and 𝑅4 correspond to larger data sets,
by a scale factor of x2, x3, and x4 respectively. Table 4 reports the
size (in GB) and number of documents for each data set. Notice
that we keep the same spatio-temporal bounding box for the
data set, and we obtain larger instances of the data set by adding
data from more vehicles. We select query Q𝑏

2 in order to study
its performance when the size of the data set is increased. Also,
Table 5 reports the number of results for Q𝑏

2 for the different
data sets (𝑅1 – 𝑅4), showing that the same query retrieves more
results as the scale factor of the data set increases.

Data sets with scale factor
Data set info 𝑅1 𝑅2 𝑅3 𝑅4

Size (GB) 40.8 83.87 127.27 171.59
#documents (M) 15.2 31.4 47.7 63.9

Table 4: Information for instances 𝑅1 – 𝑅4 of the real data
set for different scale factor

Data sets with scale factor
Query 𝑅1 𝑅2 𝑅3 𝑅4
Q𝑏2 5,640 11,792 17,840 23,854

Table 5: Number of results for query Q𝑏
2 per scale factor of

the real data set

Fig. 13 demonstrates that our approach scales gracefully as
the size of the data is increased. This is particularly evident when

considering the execution time in Fig. 13d. Perhaps more im-
portantly, the gain of hil over the baseline methods increases
with the size of the data, which favors the performance of hil for
larger data collections. Figs. 13a and 13b show that hil needs to
access 1-2 orders of magnitude fewer documents and 2 orders
of magnitude fewer keys respectively. When comparing the two
baselines, bslTS performs better than bslST, since fewer docu-
ments are examined in the query’s refinement phase. Recall that
query Q𝑏

2 is selective on its temporal dimension (covering only
one day) and thus it is expected that bslTS will perform better
than bslST.

Discussion. This experiment demonstrates that the proposed
approach (hil) sustains its benefits over the baseline methods
when the size of the underlying data set is increased. This indi-
cates that our approach is scalable with data size.

6 CONCLUSIONS
In this paper, we provide an in-depth study of spatio-temporal
query execution in NoSQL stores, focusing on MongoDB due
to its popularity and support for spatial data. Our study indi-
cates that existing NoSQL stores do not natively support spatio-
temporal data, despite the ever-increasing number of applications
that produce massive spatio-temporal data daily. We also show
that a baseline approach based on built-in spatial indexes leads to
suboptimal performance in several cases. More importantly, we
investigate on the underlying reasons for this impact on perfor-
mance, and we elaborate on indexing and sharding techniques.
Furthermore, we propose an alternative approach which exploits
the Hilbert curve to map data to 1D values, which are then: (a)
indexed using a standard B-tree, and (b) used for partitioning
the data in a way that preserves spatio-temporal data locality
in shards. We conclude that this has an effect on the number
of nodes storing data that participate in query execution. Our
extensive experiments using both real-life and synthetic data in
a cluster of nodes support our conclusions.

With respect to future work, we believe that big data devel-
opers that work on spatio-temporal data will find interest in our
work, especially towards optimizing the performance of their ap-
plications. Also, we expect that future releases on NoSQL stores
will provide support for spatio-temporal data, therefore our work
is a small contribution in this direction. As a result, we intend
to extend our approach and investigate other methods for index-
ing and partitioning spatio-temporal data in distributed NoSQL
systems. Also, extending our work towards supporting more
complex data types (polylines and polygons) is of interest. Last,
but not least, we would like to expand our study using a workload
of queries, and propose an adaptive, workload-aware mechanism
for indexing and partitioning.
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A ADDITIONAL EXPERIMENTAL RESULTS
We provide additional details on the empirical evaluation, in-
cluding the bulk loading technique that we use, details on index

usage, as well as information of query distribution to nodes and
index size.

A.1 Data Loading
Data Loading. Both of the nodes that act as query routers, store
half of the CSV files of the data sets on their disks. Data loading
to the MongoDB store is carried out by accessing the CSV files
record-by-record and converting them directly to documents (bi-
nary JSON - BSON format). The conversion process does include
the formation of a GeoJSON object as a value of the location
field based on the longitude and latitude columns of the CSV
datasource files. It also includes the addition of the fields with
its respective values for all of the rest columns of the CSV files,
and the addition of the _id field which is handled automatically
by the MongoDB client driver. Note that for the Hilbert-based
approaches, a further action takes place, related to the calculation
of the 1D value. When a document is formed, it is added to a list.
The list is used for bulk insertion of documents for performance
reasons. The insertion is triggered after a specific batch of ele-
ments has been placed in the list, and we use 15K documents as
batch size in our experiments.

The size of the R and S set is a marginally smaller in the bsl
method than hil and hil* (Table 6), since its documents do not
integrate the hilbertIndex field, as hil and hil* do. Also, the
sizes of the methods in R set are much larger than S set because
they incorporate much more information due to the extra fields.

Approach
Data set bsl hil(*)

R 40.54 40.8
S 3.62 4.13

Table 6: Data size of real and synthetic data set in Mon-
goDB (in GB)

A.2 Querying the Data
The bslST and the bslTS approaches use as a sharding key the
date field which results to an additional index per node, apart
from the compound index. As a result, there are some cases where
the query optimizer chooses to process the spatio-temporal query
at hand using the index on date, rather than using the compound
index. This occurs only in the bslST approach, whereas in the
bslTS approach all queries are processed using the compound
index. Table 7 reports which index was used during query pro-
cessing for the bslST approach for all queries and both data sets.

Querying under the hil and hil* approaches, requires the de-
termination the cell of the indexes that cover the queries’ spatial
extent. Table 8 shows the average time execution of the Hilbert
algorithm for the identification of the cell indexes. When ap-
plying the hil* methodology, it is reasonable that the algorithm
requires more time than hil for specifying the 1D values, as the
total searching space is limited to a smaller surface, resulting to
increased precision. Furthermore, the execution time in the 𝑆
data set is increased when comparing the respective approaches
(except for𝑄𝑠 for hil) to the 𝑅 set, since the data exists in a smaller
2D space which increases the precision. This adds a burden to the
algorithm’s operation for identifying the 1D values. The figures
that follow in the next subsections, showing query execution
time, do not include the time for the determination of the 1D
values through the space filling curve.
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Figure 14: Total size of indexes for R and S set with default distribution settings and zones

Distribution Data set 𝑄𝑥 𝑄𝑥
1 𝑄𝑥

2 𝑄𝑥
3 𝑄𝑥

4

D
ef
au
lt R

𝑄𝑠     
𝑄𝑏 # #  G#𝑎

S
𝑄𝑠     
𝑄𝑏 # # # #

Zo
ne
s R

𝑄𝑠     
𝑄𝑏 # #  G#𝑏

S
𝑄𝑠    G#𝑐

𝑄𝑏 # # # #
Table 7: Usage of indexes for the bslST approach

 The used nodes exploit the compound index,#the used nodes exploit the date
index,G#mixed usage of the two indexes among the used nodes - the most delayed

node uses the compound index
𝑎 3 of the 11, 𝑏 3 of the 4 and 𝑐 5 of the 6 used nodes exploit the compound index

Methodology
hil hil*

Data set Q𝑠 Q𝑏 Q𝑠 Q𝑏

R 0.05 0.2 0.1 1.8
S 0.05 0.3 0.6 7.6

Table 8: Average time of Hilbert algorithm performance
in ms, for finding which 1D values should be searched on
the index

A.3 Index Size
The baseline methods have a few more main memory resources
requirements than hil for maintaining the indexes among the
shards. This is indicated in Figs 14a, 14b, 14c and 14d. Except
for the spatio-temporal indexes, bslST and bslTS maintain addi-
tionally two indexes which are created by default; one for the
_id field of every document, and the other for the date field, as it
acts as the sharding key. Whereas, hil and hil* methods maintain
as an additional index apart from the spatio-temporal, only the
one that is used for the _id field. Their spatio-temporal indexes
preexist by default due to the fact that its fields constitute the
sharding key. This, favors especially the hil method, since in all

cases, less memory is required for handling all the indexes than
bslST and bslTS.

For each of the methods, both in R and S set, the total size of
indexes among the shards increases when transiting from the
default data distribution to zone ranges. The change in size is af-
fected by the indexes’ size that handle the _id field. The insertion
of the documents in MongoDB database, takes place under the
default distribution settings, and the documents with similar con-
struction time have a larger common prefix part on the _id field.
Documents created in similar timestamps that get inserted in the
same shard contribute to the occupation of less main memory by
the _id index, since MongoDB uses prefix compression. With the
definition of zones, the documents that have been already stored
in the shards, are shuffled around the cluster, resulting to shards
with documents that have a smaller common part. This makes
the compression less effective and thus the sizes of _id indexes
are increased.

Moreover, the total size of the spatio-temporal indexes does
not change significantly when shifting from the default data
distribution state to zone ranges. The indexes have approximately
the same size. The same applies for the date indexes that exist in
bslST and bslTS methods; their size remains approximately the
same for both default distribution and zone ranges.

Comparing the hil and hil* total size of indexes, it is noticed
that in R set less main memory is required for hil* method
(Fig. 14a), whereas the opposite is true for the S set (Fig. 14c).
This is reasonable because for the S set, the cardinality of the 1D
values for hil* is much greater than hil method when contrasting
the same methods for the R set. In R set, many are the documents
that have the same 1D value as they are spatially skewed. The
values are grouped to buckets, covering each one a specific time
period. This saves memory especially when having smaller buck-
ets that still cover a specific time period; this is achieved through
hil*. On the other side, in S set, hil* is less efficient in terms of
memory occupation than hil because the 1D hilbert values that
are handled, are many more as the data is distributed uniformly
all over their minimum bound box. This makes the compression
less effective either, thus increasing the size of the hil* index.
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ABSTRACT
Massive data processing infrastructures are commonplace in
modern data-driven enterprises. They facilitate data engineers
in building scalable data pipelines over shared datasets. Unfortu-
nately, data engineers often end up building pipelines that have
portions of their computations common across other pipelines
over the same set of shared datasets. Consolidating these data
pipelines is therefore crucial for eliminating redundancies and
improving production efficiency, thus saving significant opera-
tional costs. We had built CloudViews for automatic computation
reuse in Cosmos big data workloads at Microsoft. CloudViews
added a feedback loop in the SCOPE query engine to learn from
past workloads and opportunistically materialize and reuse com-
mon computations as part of query processing in future SCOPE
jobs — all completely automatic and transparent to the users.

In this paper, we describe our production experiences with
CloudViews. We first describe the data preparation process in
Cosmos and show how computation reuse naturally augments
this process. This is because computation reuse prepares data
further into more shareable datasets that can improve the perfor-
mance and efficiency of subsequent processing. We then discuss
the usage and impact of CloudViews on our production clusters
and describe many of the operational challenges that we have
faced so far. Results from our current production deployment
over a two month window show that the cumulative latency
of jobs improved by 34%, with a median improvement of 15%,
and the total processing time reduced by 37%, indicating bet-
ter customer experience and lower operational costs for these
workloads.

1 INTRODUCTION
Modern data-driven enterprises rely on large-scale data process-
ing infrastructures for deriving business insights. As a result, over
the last decade, a plethora of tools have been developed that have
democratized scalable data processing for data engineers and data
scientists. Examples include MapReduce [14], Spark [5], Hive [4],
Presto [34], BigQuery [19], Athena [6], and SCOPE [9, 47]. How-
ever, the large-scale data processing infrastructures also incur
massive operational costs and therefore improving their effi-
ciency becomes very important in production. Interestingly, easy
access to large scale infrastructure often leads data engineers to
quickly build data processing pipelines that later end up having

© 2021 Copyright held by the owner/author(s). Published in Proceedings of the
24th International Conference on Extending Database Technology (EDBT), March
23-26, 2021, ISBN 978-3-89318-084-4 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

portions of computations repeated across one another. Further-
more, these redundancies are hard to discover in large enterprises
with thousands of developers spread across different business
units. Thus, we need automated tools to consolidate these data
pipelines and improve operational efficiency, without impeding
the developer productivity in quickly going all the way from raw
data to actionable insights.

We see two key challenges when considering approaches for
automatic compute reuse. First, it is very tedious to automatically
detect the common computations in large volumes of complex an-
alytical queries that are declarative and often include custom user
code. Our analysis over a large window of production workloads,
consisting of 67 million jobs and 4.3 billion sub-computations
(referred to as query subexpressions), show that more than 75% of
the query subexpressions are repeated. However, not all of the
common computations are going to be viable candidates for reuse,
e.g., due to very large storage overheads. Therefore, carefully
detecting and selecting the common computations for reuse is a
challenge. And second, there is a shift towards serverless query
processing infrastructures [6, 9, 19], also sometimes referred to
as job services, where users simply submit their declarative SQL-
like queries without provisioning any infrastructure. As a result,
users do not have any spare offline cycles for materializing the
common computations before running their actual data analysis.
In fact, users want to get started with their analysis quickly and
they would rather have any optimizations applied in an online
and adaptive manner.

We also see two key opportunities. First, there is a presence of
large volumes of shared datasets in enterprises. This is because
raw logs and telemetry coming in from various products are
extracted and preprocessed into a shape and form that could be
easily consumed by thousands of downstream developers. The
resulting shared datasets are written once and read many times.
Furthermore, they get regenerated periodically without requiring
any fine-grained updates. As a result, the shared computations
also do not need to be maintained with updates. And second,
computation reuse holds the promise of significantly improving
both the job performance and the operational efficiency, which
are crucial in speeding up the time to insights and to enable
developers to do more with the same set of resources (that are
likely to have longer procurement cycles).

To address the above computation reuse problem, we had built
CloudViews for automatic computation reuse in big data work-
loads at Microsoft [26]. Specifically, CloudViews optimizes the
SCOPE query workloads in Cosmos big data analytics platform,
that is used in various business, such as Bing, Windows, Office,
Xbox, etc., across the whole of Microsoft. CloudViews identi-
fies the common computations (query subexpressions) across
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different SCOPE jobs, selects the ones that could lead to more
efficiency, materializes them as part of query processing with
minimal overhead, reuses them in future jobs — all completely au-
tomatic and transparent for the users. In contrast to prior works
on materialized views [20] and multi query optimizations [37],
CloudViews materializes common query subexpressions as part
of query processing, i.e., does not require any offline cycles, and
automatically replaces older materialized views with newer ones
when the shared datasets are bulk updated, i.e., no update main-
tenance. Production experiences with Cosmos showed that bulk
updates are a significant part of the workload, incremental up-
dates if required can be handled using techniques proposed by
Wang, et al.[42]. CloudViews considers only the same logical
query subexpressions (with some normalization) for reuse, i.e., it
does not consider view containment [21]. Although this is help-
ful in getting more accurate statistics for estimating the utility
and cost of reusing different candidate subexpressions. Cloud-
Views uses these estimates to select the set of subexpressions to
materialize such that they provide the maximize reuse within a
given storage budget [24]. We plan to add query containment to
CloudViews as part of future work.

In this paper, we describe our production experiences with
CloudViews. We delve deeper into the data preparation process
in Cosmos, referred to as data cooking, and discuss how compu-
tation reuse naturally augments data cooking by creating more
shareable datasets that can boost the performance and efficiency
of further downstream processing. While we previously showed
the impact of CloudViews on TPC-DS workloads and a small set
of production queries in pre-production environment, we now
analyze the usage of CloudViews in production and compare the
impact along several performance metrics. Apart from perfor-
mance improvements, CloudViews also introduced an automated
feedback loop in the SCOPE query engine, i.e., moving towards a
self-tuning model [25, 26]. As a result, there were several opera-
tional challenges that we have faced and valuable lessons learned
along the way. We discuss these challenges and also reflect back
on our journey from research to product.

In summary, we make the following key contributions in this
paper:

(1) We provide a detailed description and analysis of data
cooking in Cosmos and reason about how compute reuse
with CloudViews helps augment the data cooking process.
We also discuss the impact of various design decisions that
were made in CloudViews. (Section 2)

(2) We present an analysis of the usage and impact of Cloud-
Views on our production workloads. Results from our
production deployment show that over a two month win-
dow the cumulative latency of jobs improved by 34%, the
total processing time reduced by 37%, and the total num-
ber of containers used for processing dropped by 36%. We
also highlight some of the other non-obvious implications,
including smaller inputs (by 36%), less data read (by 39%),
and shorter queue lengths (by 13%). (Section 3)

(3) We discuss several operations challenges faced, includ-
ing challenges in view selection when considering job
scheduling, correctness guarantees, dependencies with
other components, customer on-boarding, customer ex-
pectations, and quantifying the impact over constantly
changing workloads. (Section 4)

(4) Finally, we reflect back on the journey from taking a re-
search prototype to production, describe how the ability

Telemetry

Shared Datasets

Data Cooking
Extract, Transform, Correlate

Batch Analytics SQL DBs

PowerBI
Excel, etc.

Load

Interact

Cosmos
Report/Visualize

Ingest

Figure 1: Illustrating typical data cooking in Cosmos.

to create derived data as part of query processing is a
powerful mechanism in general, and present insights for
many of the open opportunities that we see going forward
(Section 5).

2 DATA COOKING
Cosmos powers the internal big data analytics atMicrosoft, with a
massive infrastructure consisting of multiple 50k+ node analytics
clusters [35], and processing declarative analytical queries using
the SCOPE query engine. Cosmos runs hundreds of thousands
of batch SCOPE jobs per day, consuming millions of containers
and crunching over several petabytes of data generated per day.
Almost 80% of the SCOPE workloads are recurring in nature [28],
i.e., similar jobs templates are executed periodically at regular
intervals over new data sets and parameters. Furthermore, SCOPE
jobs have dependencies across each other. In fact, 80% of the jobs
depend on at least one other job, while 68% have dependencies in
a recurring fashion [12]. This is because of the presence of large
volumes of shared data sets in Cosmos. Below we describe this
enterprise pattern in more detail.

2.1 An Enterprise Pattern
Figure 1 illustrates the typical data cooking pipeline in Cosmos,
where the raw telemetry data from different Microsoft products
and services are ingested into the Cosmos store. Thereafter, the
data cooking process extracts the structured data, transforms it
into better representation, and correlates across multiple sources.
The resulting shared datasets are generated periodically and
consumed in multiple downstream batch-oriented analytics. Ag-
gregated data is then loaded into interactive query processing
systems like SQL databases for interactive analysis, reporting,
and visualization using tools such as PowerBI or Excel. We can
see that data cooking and the ability to collect and process large
volumes of shared datasets across various developers and even
business units is at the core of the above pipeline.

Figure 2 shows cumulative distributions of shared data sets
and their consumers in five of our production clusters over a one-
week window. We can see that more than half of the datasets are
shared across multiple distinct consumers. Furthermore, several
datasets are consumed tens to hundreds of times, with few getting
reused thousands of times as well. Cluster1 in particular sees
more shared data sets since that feeds into the Asimov platform
that implements a new mechanism for user feedback, allow for the
testing of new features to gauge user acceptance, track bugs, and
easily roll out new functionality and fixes [33]. In fact, 10% of the
inputs on this cluster get reused by more than 16 downstream
consumers. For other clusters, 10% of the inputs are consumed
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Figure 2: Shared data sets in five production clusters.
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Figure 3: Overlaps in production clusters.

by 7 or more downstream consumers. Thus, we see that shared
data sets are prevalent in Cosmos.

2.2 Augmented Data Cooking
We saw that enterprise data analytics involves cooking mas-
sive volumes of data into a form that is consumable by several
users. The shared datasets are therefore also a natural habitat for
shared data analytics. Furthermore, it turns out that computation
reuse is a natural problem in shared data analytics since often
there are same sets of transformations that are applied repeat-
edly by analysts over the same shared datasets. Ideally, these
shared computations could be captured in the cooking process
itself. However, that is hard practically due to the lack of vis-
ibility into the downstream analytics (e.g., by different teams
or business units consuming the shared datasets), complexity
of SCOPE queries where it is non-trivial to identify the shared
computations (portions of declarative large queries, including
user defined functions, that may end up getting compiled to the
same query sub-plan), or even due to the evolving nature of the
analytics (new reports or dashboards being created). In a way,
computation reuse can augment the handcrafted data cooking
process by further fine-tuning the shared datasets with reusable
views that are automatically identified, adapted, and created just
in time, based on the workloads. Thus, we argue for computation
reuse to be a first-class citizen in conjunction with data cooking
for shared data analytics.

We analyzed the overlaps in our workloads in five of our
production clusters over a 10-month window (January–October,
2020). Overall, there were 67 million jobs consisting of 4.3 billion
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Figure 4: Illustrating computation reuse across three ana-
lysts working on the same datasets.

query subexpressions from 2.5𝐾 users and 776 virtual clusters1.
Figure 3 shows that more than 75% of query subexpressions are
consistently overlapping over the 10-month window. Further-
more, the average repeat frequency consistently hovers around
5, indicating that materializing and reusing could be helpful for
many of these overlapping computations. We refer interested
readers to [26] for more fine-grained analysis of overlaps over a
single day window.

In summary, computation reuse can fill the gaps in data cook-
ing, and we see significant opportunities for computation reuse
in our production workloads.

2.3 CloudViews Overview
Figure 4 illustrates an example scenario of computation reuse
across three different users who are analyzing the same shared
datasets (which include Customer, Sales, and Parts tables) and
analyzing the sales behavior in the same Asia region. We can see
how the insights that they are looking for is expressed as SQL
queries that get compiled into query plans, and even though the
user queries might appear very different, their query plans turn
out to have significant portions in common (shown in orange
and blue boxes). The analysts may identify that they are all ana-
lyzing the same market segment, i.e., the plain sentence version
of the insights they are looking for has “In Asia" in common. This
may lead them to create indexes or vertical partitions on the cus-
tomer table. However, the query plans in the bottom of Figure 4a
1A virtual cluster represents a sub-cluster that is dedicated for one particular
customer or business unit.
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shows much large computations, called query subexpressions, are
shared across them. Furthermore, different sets of computations
are shared across different sets of users. To really discover these
opportunities, the analysts would have to understand their an-
alytics more deeply and then coordinate amongst themselves
to manually share the common computations, requiring a lot of
manual effort that is simply not possible at enterprise scale.

CloudViews addresses the above challenges by introducing
automatic computation reuse in an online fashion. Figure 5 shows
the overall system architecture of CloudViews and the various
steps involved. We briefly summarize them below. CloudViews
leverages the presence of large workloads in modern clouds [25].
It extracts the query workload into a denormalized subexpres-
sions table that pre-joins the logical query subexpressions with
their runtime metrics as seen in the history. Thereafter, we iden-
tify the common subexpressions across queries using a strict
subexpression hash, known as signature, that uniquely captures
a subexpression instance including its inputs used. From the set
of all common subexpressions, we select the useful set of ex-
pressions to materialize and reuse. Some of the considerations
for reuse include storage cost for materialization, processing
time saved when reused, saving opportunities per customer, and
the presence of concurrent queries that may not benefit from
materialization-based reuse. Users can provide storage and other
constraints (e.g., maximum number of views to create) for view
selection. The view selection output is also made available to cus-
tomers for insights and expected overall benefits. For the selected
views, we collect their corresponding recurring signatures that
discard time varying attributes like parameter values and input
GUIDs, and are likely to remain the same in future instances
of the recurring workloads. For easier lookup and control, we
generate tags for each of the signatures that help fetch relevant
signatures for a given SCOPE job and could also be used for ac-
cess control. These tagged signatures are then polled by insights
service and stored using Azure SQL databases. We also generate
a query annotations file with the selected signatures that could
be used for quickly debugging any job. For instance, in case of a
customer incident, we can reproduce the compute reuse behavior
by compiling a job with the annotations file.

At query time, for an incoming SCOPE job, the compiler ex-
tracts its tags and fetches the annotations from the insights ser-
vice. These annotations are then parsed and stored in the opti-
mizer context. During core search, the optimizer tries to match
top down (match larger subexpressions first) whether any of
the query subexpressions is already materialized. If yes, then
it modifies the query plan to reuse the common subexpression
with scan over previously materialized subexpression, updates
more accurate statistics, and inserts the modified plan into the
memo for overall costing. The plan using a materialized subex-
pression is chosen only if its cost is lower than the plan without
the materialized subexpression. In either case, there is a follow-up
optimization phase to check (in bottom-up manner) if any of the
subexpressions are candidates for materialization. If yes, then an
exclusive lock is obtained from the insights service and a spool
operator with two consumers is added to that subexpression:
one feeds into the rest of the query processing while the other
materializes the common subexpression to stable storage. During
execution, the job manager makes the view available even before
the query finishes (referred to as early sealing in Cosmos), and
notifies the insight service to release the view creation lock and
start reusing it wherever possible. The modified query plans are

surfaced to the users in the query monitoring tool and also logged
into the telemetry for future analyses.

We refer interested readers to [26] for more details on each of
the components in the above architecture.

2.4 Design Decisions and Limitations
We now highlight some of the key decisions that have served our
workloads well while discussing some of the key limitations of
our approach. The key things that worked well include:

• Preserving query boundaries. One way to reuse com-
putation could be to combine query plans of overlapping
SCOPE jobs into merged query plans. However, this is in-
convenient since it requires changes to submission system
and hard to explain the cost of merge query to different
users. Also, fault tolerance becomes more intertwined due
to the hard dependency between multiple jobs. Cloud-
Views keeps job boundaries intact while opportunistically
reusing computations wherever possible.

• Online materialization. CloudViews materializes com-
mon computations in an online manner as part of query
processing, i.e., it does not require any offline cycles forma-
terialization. As a result, CloudViews is easier to manage
operationally without requiring uses to submit additional
queries while also hiding the materialization latencies in
large complex query DAGs.

• Just-in-time views. CloudViews are also materialized
just-in-time when the first query hits a particular query
subexpression instance. This means that: (i) the storage
space for materialized views is consumed only when the
views are about to be reused, and (ii) if the workload
changes and a selected subexpression is no longer found
in the workload then it will automatically stop being ma-
terialized.

• Accurate cost estimates. Traditional view selection ap-
proaches suffer from poor cardinality and cost estimates
in query optimizers [40, 43] since they explore alternate
query plan expressions that may not have been executed
in the past. However, by considering only the same logical
subexpressions for reuse, CloudViews is able to leverage
the actual runtime statistics seen in the past instances of
those subexpressions. As a result, it can make better de-
cisions about the views that could improve performance
when reused and the storage costs associated with them.

• Scalable view selection. View selection over large work-
loads is non-trivial since it explodes the search space ex-
ponentially. This is because traditional view selection al-
gorithms consider more generalized sets of views, ones
that may not have appeared in past query executions, and
select the most useful ones from them. However, by re-
stricting to common subexpressions, CloudViews can run
subexpressions selection to Cosmos scale by running it as
a label propagation problem in a distributed manner [24].

• Lightweight view matching. Traditional view match-
ing require expensive containment checks during query
optimization to determine whether a query could be an-
swered from a view or not. CloudViews replaces that with
lightweight hash equality checks that only require to re-
cursively compute a signature for each subexpression and
then match them with the signatures of one or more avail-
able views.

Some of the limitations of our approach are as follows:
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Figure 5: The CloudViews architecture for computation reuse in Cosmos.

• Exact logical subexpression match. The most obvious
limitation of CloudViews is that it can only reuse the
exact same logical query subexpressions, although they
can have different physical implementations. While there
are numerous opportunities for such reuse, there is even
more potential for creating more generalized views and
reusing them in queries that are contained in those views.
We discuss this further in Section 5.

• Concurrent queries. CloudViews requires materializ-
ing common subexpressions before they can be reused in
subsequent queries. Although the materialized views are
made available as soon as the subexpression portion of the
first query finishes (early sealing), still CloudViews cannot
help queries that are submitted concurrently unless their
submission schedule is altered, which is typically harder
in production environments.

• Not maintained. CloudViews are treated as cheap throw-
away views that are recreated whenever the inputs change.
While this eradicates the need for viewmaintenance strate-
gies, it also results in recreating views over sets of inputs
where most have remained unchanged. This is particularly
true for recurring queries with a sliding window, e.g., last
seven days, where all except the most recent input in the
window might remain same.

• No DDL for user visibility or tuning. CloudViews are
created transparently to the users without registering
them as any DDL statements. As a result, users do not
have direct visibility into the catalog of available views
at any given point nor can they reason about them. They
can, however, see the CloudViews-generated files, given
that they are stored in user-specified location, and even
purge views whenever necessary.

• User expectations. CloudViews causes the first query
hitting a common subexpression to slow down due to
additional materialization overhead. Therefore, the users

Jobs 257,068
Pipelines 619
Virtual Clusters 21
Runtime Versions 12
Views Created 58,060
Views Used 344,966
Latency Improvement 33.97%
Processing Time Improvement 38.96%
Bonus Processing Time Improvement 45.01%
Containers Count Improvement 35.76%
Input Size Improvement 36.38%
Data Read Improvement 38.84%
Queuing Length Improvement 12.87%

Table 1: Production Impact Summary

need to be informed about some queries getting impacted
for overall workload efficiency.

3 PRODUCTION IMPACT
In this section, we describe the impact of CloudViews when de-
ployed for several customers over a two-monthwindow (February–
March 2020). Table 1 shows the summary of workload and the
performance impact. Below we discuss them in more detail.

3.1 Usage
Let us first look at the usage numbers. Our current deployment
strategy was opt-in, i.e., the feature was made available for cus-
tomers and they can choose to enable it on their virtual clusters.
Overall, we see more than 250k analytical SCOPE jobs across
21 virtual clusters using CloudViews. These jobs were from 619
unique data pipelines and ran over 12 different SCOPE runtime
versions. Figure 6a shows the number of views materialized and
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Figure 6: The usage and impact of CloudViews on production workloads.

reused over a two-month window. After an initial customer on-
boarding period, we see a periodic view creation and reuse pat-
tern. Naturally, much more views are reused than created every
day. Overall, approximately 58k views were created and they
were reused 350k times, each view being reused almost 6 times
on average. Our current eviction policies expire each of the views
after one week of creation, thus consuming a fixed amount of stor-
age (that is configured by the customers and affects the number
of views selected for reuse) in the stable state.

3.2 Latency
Latency is a crucial metric for customers and so we next explore
the impact of CloudViews on job latencies. Figure 6b shows the
daily cumulative latencies of jobs when CloudViews was enabled,
compared to if it was not enabled, over the same two-month win-
dow. We can see that even though view materialization incurs
an overhead, overall there is a gain in cumulative latencies of
the jobs. This is because we materialize CloudViews in an online
fashion in a separate stage that runs in parallel and hence the
impact of latency is typically less. At the same time, we also see
that the latency improvements are staggered and minimal on
several days. This is because computation reuse could only im-
prove latency if the portions of the query graph that was reused
lies on the critical path of the job. Given that our view selection
strategies do not optimize for that (since the objective function
is to maximize for total compute), latency improvements are not
guaranteed, especially with large query DAGs where overlap-
ping computations may not be on the critical path. Still, we see

a median per-job latency improvement of 15% and a cumula-
tive overall improvement of close to 34%, that is significant for
improving the customer experience in production workloads.

3.3 Processing Time
We now look at the impact on total processing time (i.e., the sum
of processing time of all the containers used in the jobs) which is
often considered a better measure of compute efficiency. Figure 6c
shows the cumulative processing costs per day when CloudViews
was enabled compared to if it was not enabled. Indeed, in contrast
to latency, we can see more distinct change in processing time,
with close to 39% improvement overall. This is because processing
time savings do not depend on the critical path and any reuse in
the query graph contributes to some savings, modulo the time
spent in reading the materialized shared computation. Strictly
speaking we also need to discount the extra processing time
spent in writing the shared computation in the first job. Since we
look at the observed processing times in the cluster all of these
overheads automatically get accounted for. The processing time
savings validate the utility of CloudViews to improve cluster
efficiency and to free up spare resources that will let developers
do more with the same set of resources.

3.4 Bonus Processing Time
Cosmos employs an opportunistic resource allocation policy to
improve cluster utilization [8]. The idea is to allocate unused re-
sources opportunistically to jobs in case they could use them, e.g.,
one or more stages in a job has more partitions than the number
of containers available to the job or stages that could start making
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Figure 7: Other non-obvious impact of CloudViews on production workloads.

progress in parallel. We record the processing time using oppor-
tunistic resources as bonus processing time, and this is helpful to
not only improve the utilization but to also improve SCOPE job
performance by dynamically leveraging unused cluster capacity.
Unfortunately, bonus processing also leads to unpredictability
in performance, i.e., the job runtimes may vary a lot based on
the unused capacity at any given time in the cluster. Therefore,
reducing the reliance on bonus processing is desirable for more
predictable job behavior. Interestingly, it turns out that by shar-
ing common computations and not re-executing them with a lot
of variance each time, CloudViews can reduce the reliance on
bonus processing and hence improve job predictability. Figure 6d
shows the reduction in bonus processing time with CloudViews.
We can see a significant change in bonus processing time with
an overall reduction of 45%, which is important for improving
the overall system reliability.

3.5 Containers
While latency and processing are expected to be impacted by
computation reuse in CloudViews, we also discover other rather
unexpected implications. In particular, the total number of con-
tainers used in each SCOPE job is an important measure of re-
source consumption and computation reuse can also help im-
prove that. Figure 7a shows the change in the cumulative number
of containers used with CloudViews. We can see that similar to
the total processing time, total number of containers also show
significant improvement both for each day (and also for each
job) and also overall (36% fewer containers used). This is because
eliminating re-computation of large expensive chunks of query
DAGs also eliminates the corresponding set of resources used to

process those computations. Furthermore, due to the challenges
in estimating cardinality over big data workloads, SCOPE query
engine often ends up overestimating cardinalities and thus over-
partitioning the intermediate outputs, leading to many more
containers getting instantiated and each processing relatively
smaller amounts of data [43]. Computation reuse automatically
circumvents this issue by avoiding re-execution of such common
computations in the first place and thus saving resources that
would been otherwise be consumed due to mis-estimation. In
fact, computation reuse further helps feed more accurate statis-
tics from the previously materialized subexpressions to the rest
of the query plan.

3.6 Input
Another less anticipated effect of computation reuse is the size
of the input read. Figure 7b shows a sizeable reduction in the
total inputs sizes read by all queries in that workload. This is
because quite often the inputs datasets are filtered, selectively
joined, or aggregated before they are materialized as common
subexpressions, which end up being much smaller than the ini-
tial input sizes. Smaller input sizes not only reduce IO but also
improve the container efficiency since SCOPE jobs are widest
at the beginning (due to very large input sizes) and then their
width drops significantly, causing lots of allocated containers
remaining unused in a large portion of the query [7]. Smaller
input sizes avoid such extreme container usage over the course
of a job execution. Furthermore, it also eases the pressure on
the storage layer, which is increasingly disaggregated from the
compute in modern clouds [35], and thereby helps in reducing
the throttling during peak load conditions.
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3.7 Data Read
Apart from the input data read, let us also look at the total data
read. Figure 7c shows the change in the overall data read and it
is very similar to the trend of input read, although overall, data
read improves by 39%, which is more than the improvements
in input read. Reducing data reads eases the overall IO pressure
including both the persistent store and also the local temporary
store that is used to write intermediate outputs for each of the
SCOPE jobs. This is significant because there could be hotspots
with significant intermediate IO for large SCOPE DAGs and fewer
data read can alleviate some of these hotspots.

3.8 Queue Lengths
SCOPE jobs are processed in a job service form factor, where
users submit their jobs and they are queued until there are enough
resources available for them to be scheduled. Interestingly, com-
putation reuse can even help reduce the queue length due to
less computations being done by each job which causes them
to finish faster. Figure 7d shows the cumulative queue lengths
seen by all jobs for each day in the workload, with a reduction
in queue lengths on several days and an overall reduction of 13%.
Shorter queue lengths improve the user experience and reduces
their time to insights, enabling tighter SLAs in many cases. It
also helps execute queries with more recently optimized query
plans, e.g., leveraging more recently generated CloudViews, that
would otherwise be missed by jobs sitting in longer queues.

4 OPERATIONAL CHALLENGES
In this section, we describe some of the operational challenges
that we have faced. Note that these exclude the multiple rounds
of customer feedback and feature improvements we did before
deploying CloudViews in production.

• Schedule-aware views. Cosmos customers have built
several workflow tools to schedule and monitor SCOPE
jobs periodically. In some cases, these tools trigger all jobs
at the start of every period, with the goal of finishing
them before the period ends and to avoid missing their
SLAs. Given that CloudViews requires materializing the
common computation before it can be reused, jobs that
get scheduled (and thus compiled) at the same time can-
not benefit from such reuse. One option could be to alter
the job submission and add a little lag to jobs that could
reuse common computations. However, it turned out to
be very hard to convince customers to change their job
submission schedules. Instead, we modified our view selec-
tion algorithms to account for concurrent job submissions;
specifically, we only consider subexpressions that could
finish materializing before the start of other consuming
jobs.

• Per-customer view selection. The data cooking pro-
cess could create shared datasets across multiple customer
virtual clusters (VCs), leading to computation reuse oppor-
tunities across multiple VCs as well. However, customers
often care about the reuse and performance improvements
in each of their individual VCs. This is because they want
to benefit from better SLAs and do more processing on
a per-VC basis. Furthermore, the cost of storing the com-
mon computations could be significant (depending on how
much reuse is done) and customers often want to keep it
separate for each VC. This means that selecting the views
to materialize globally is not enough but rather we need

to select them for each virtual cluster. Given that there
are thousands of virtual clusters in Cosmos, it is not pos-
sible to run view selection separately for each of them.
At the same time, a single view selection script that parti-
tions workloads by virtual clusters needs to also consider
the constraints per VC (see top left in Figure 5). It also
makes it hard to maintain the single script with evolving
requirements for different customers.

• Signature correctness. The core of CloudViews relies on
a signature (i.e., a hash) to identify logical subexpressions.
While this is trivial for native operators in the SCOPE
engine, things can get murky with the user defined oper-
ators (UDOs) and the libraries used in it. In particular, it
could be very difficult to compute the signatures in user
code that involves recursively dependent libraries (there
are extreme cases in Cosmos with very deep dependency
chains). Traversing these long chains could slow down the
entire compilation process. Furthermore, in some extreme
cases, the UDOs may even contain non-determinism by
design, e.g., DateTime.Now, UTCNow, Guid.NewGuid(), or
new Random().Next(). It is not clear what the correct se-
mantics are when computing signatures over such UDOs.
Our approach is to exclude such extreme cases to avoid
failures or incorrect results, i.e., we skip any computation
reuse if the dependency chain is too long or if a UDO is
found to contain non-determinism.

• Impact of changed signatures.While it is understood
that the signatures will change with the workloads, some-
times they also evolve with new SCOPE runtime (due to
changes in compilation, optimizer representation, or other
code changes). As a result, all existing materialized views
get invalidated. Thus, evolving signatures is very tricky
since we need to keep track of changes that can affect
signatures and re-run any prior workload analysis.

• Other dependencies. From Figure 5, we can see that
CloudViews depends on other components, such as the of-
fline workload analysis, insights service, the job manager
to seal the view early, and the various customer interac-
tions. However, these components often evolve indepen-
dently and so they need to be kept in sync. For instance,
the early sealing had to be ported to new job manager
versions, the view storage locations need to be migrated
to ADLS [13], and the insights service had to be scaled.

• Handling GDPR requirements. The emergence of new
privacy regulations, such as [16], mean that we cannot sim-
ply look at the input paths but need to also keep track of
when the inputs have changed due to forget requests and
automatically stop consuming them henceforth. When in-
puts change, Cosmos handles updates as incremental files
or delta updates. We handled input changes by ensuring
that the input GUIDs are updated both with recurring up-
dates and with GDPR related updates, which are handled
separately in our storage layer.

• Opt-in vs opt-out. Given that CloudViews trades compu-
tation reuse for storage costs (and some latency overheads
in the first job that hits the common computation), we
need to make customers aware of the expected costs and
benefits. As a result, we adopted an opt-in model of de-
ployment where only the customers who bought in were
onboarded. This also helped us address bug fixes and other
deployment issues more gradually. However, opt-in also
requires significant customer interaction eating up a lot
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of program manager time. As a result, it is not scalable
to large number of customers. Therefore, after sufficient
hardening of the CloudViews feature in production, we
have now started enabling it using an opt-outmodel, where
virtual clusters are grouped into tiers (based on business
importance) and they are automatically onboarded tier by
tier, starting with the lowest tier.

• Multi-level control. We ended up placing several lev-
els of control to enable or disable CloudViews. These in-
clude job-level control for individual developers to toggle
CloudViews in their jobs, VC-level control for enabling or
disabling specific VCs once they decide to onboard or opt-
out, cluster-level to make the feature enabled or disabled
across the board for the entire cluster instead of doing
it for each of the thousands of VCs on each cluster, and
insight service level control as the uber control for gate
keeping and toggling during customer incidents.

• Measuring impact. Finally, while it is easy to measure
performance improvements in a pre-production environ-
ment by re-running both the baseline and the modified
version, it is less simple to measure performance once a
feature is deployed in production. This is because it is very
difficult to draw the baseline in a constantly changing pro-
duction environment, e.g., when input sizes in recurring
jobs change significantly [40]. It is also not possible to
re-run all production jobs with CloudViews disabled to
establish a baseline. Therefore, we took the following ap-
proach to identify baseline performance: we took previous
instances of the queries that qualified for CloudView opti-
mization and collected four weeks’ worth of observations
before enabling CloudViews on them. Thereafter, we took
the 75th percentile value of each of the performance met-
rics, such as latency and processing time, and compared
them with each of the newer instance of that query once
CloudViews was enabled.

5 LOOKING BACK AND FORTH
We now reflect back on our journey from research to production
and discuss many of the next set of problems we see in the area
of computation reuse.

5.1 From Research to Production
CloudViews has come a long way from research to production,
starting from our initial research ideas in 2015 and then us spend-
ing the next five years for prototyping in the SCOPE codebase,
rallying product team support around it, getting valuable cus-
tomer feedback, fixing many of the bugs that were discovered, on-
boarding customers first by opt-in and later by opt-out approach,
and finally addressing many of the operational challenges. More
significantly, however, CloudViews introduced a self-tuning feed-
back loop to the SCOPE query engine, a significant departure
from using just the compile-time estimates to leveraging how
things went in the past for query optimization. Along the way, we
also learned valuable lessons for doing applied research within a
product group setting [23]. A key amongst them is the realization
that productization of research ideas is often a much longer and
sometimes even a painful journey, that requires perseverance and
willingness to adapt. This is because production features need
to consider a lot of corner cases. The new DevOps model where
there is no dedicated testing team anymore, combined with the
cloud service form factor of modern software, acts as a forcing

Figure 8: Opportunities for more generalized views: the
x-axis shows the subexpressions that join the same sets
of inputs, and the y-axis shows their corresponding fre-
quency.

function for product teams to put all requisite safeguards for
a consistent user experience and lower maintenance overhead.
Finally, applied research turns out to be a highly collaborative
endeavor, right in the trenches of product teams, and therefore it
needs to be appreciated as such.

5.2 Towards Broader Workload Optimization
CloudViews helped open up the area of workload optimization
for cloud query engines, leveraging the large workload telemetry
that are visible, with appropriate anonymizations, in modern
cloud environments [25]. This resulted in a mindset change from
optimizing just a query at a time to also consider optimizing the
entire workload, something which customers care a lot in order
to manage their total cost of ownership (TCO). Specifically, the
notion of signatures to uniquely identify query subexpressions
turned out to be very helpful not just for computation reuse,
but also for applications such as discovering interesting query
patterns in the workload, learning high accuracy micro-models
for specific portions of the workload [27], compressing work-
loads into a representative set for pre-production evaluation, and
surfacing data and job dependencies for interesting pipeline opti-
mizations. Likewise, the insights service evolved into an indepen-
dent component that could serve many different kinds of insights,
e.g., cardinality [43], cost [40], or resources [39]. The insights
could be scaled and bulk loaded upfront to the SCOPE optimizer,
with an end to round trip latency of around 15 milliseconds. All
of the above resulted in common pieces of infrastructure that
could be leveraged across several new optimizations in SCOPE,
and even for other query engines like Spark.

5.3 Generalized Reuse
CloudViews identifies view candidates using per-operator signa-
ture matching, which establishes syntactic equivalence but does
not consider views that differ syntactically but are otherwise logi-
cally equivalent (e.g., SELECT * FROM Sales WHERE CustomerId > 5

and SELECT * FROM Sales WHERE 2 * CustomerId > 10). However,
while relaxing this constraint may offer additional performance
improvements by enabling the reuse of more views, comput-
ing logical equivalence is expensive and in general undecidable.
Nonetheless, recent work has pushed down this cost to the point
where exploiting these opportunities may be feasible for many
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Figure 9: Concurrently executing joins on a Cosmos cluster
occurring in a single day. This workload contained two
outliers that were concurrently executed 2016 and 23,040
times.

queries [10, 11, 38, 48, 49]. Evaluating this precise trade-off, and
quantifying the number of materialized views that more general
logical equivalence would allow, remains a ripe avenue for future
research.

Similarly, equivalence itself (logical or otherwise) is more re-
strictive than necessary for view reuse, and in many cases con-
tainment may offer similar opportunities for reusing computation
(e.g., materializing SELECT * FROM Sales WHERE CustomerId > 5

and using it to answer the query SELECT * FROM Sales WHERE

CustomerId > 6). Like logical equivalence, containment is a hard
problem (in general NP-complete, although polynomial-time al-
gorithms exist for some subproblems), has been extensively ex-
plored in the literature, and is expensive to compute. Nonetheless,
some recent work has used machine learning to evaluate contain-
ment rates [22], and many techniques used to efficiently compute
logical equivalence may be applicable to containment as well.

Figure 8 shows the reuse opportunity when considering one
kind of generalization: subexpressions that join the same sets of
inputs. These subexpressions could still have different projections,
selections, or group by operations, which could be merged to
create more general materialized views and then later query
could be rewritten using containment checks. Figure 8 shows the
opportunity over the same five clusters as in Figures 2 and 3, and
we see lots of generalized subexpressions with frequencies on
the order of 10s to 100s.

5.4 Reuse in Concurrent Queries
CloudViews materializes views for reuse in subsequent queries,
which is necessary for queries that are temporally non-overlapping.
However, opportunities for reuse exist for concurrent queries,
which does not require pre-materialization since intermediate
results may be directly pipelined. While at first this might seem
like an infrequent occurrence, we observed thousands of such
opportunities per day in our production workloads. Figure 9 il-
lustrates these opportunities for concurrently-executing joins
within a single Cosmos cluster over a single day. We see that
several join instances that are found to be concurrent hundreds
to thousands of times.

Extending CloudViews to support concurrently executing
queries and extending its feedback loop to efficiently learn the

trade-offs between immediate reuse and materialization remains
a ripe direction for future exploration.

5.5 Reuse in Other Engines
The idea of computation reuse goes beyond the SCOPE query en-
gine. In fact, we adapted the computation reuse ideas to the Spark
query engine as part of the SparkCruise project [36]. SparkCruise
selects high utility common computations and performs auto-
matic materialization and reuse for Spark SQL queries. Like
CloudViews, SparkCruise analyzes past application workload
logs to select common subexpressions for reuse. The list of com-
mon subexpressions is provided to the Spark query optimizer for
future materialization and reuse. All these actions are performed
automatically without any active involvement from the customer.
On TPC-DS benchmarks, SparkCruise can reduce the running
time by approximately 30% [36].

Even though both CloudViews and SparkCruise share the
same ideas, there are differences in the target systems and the
deployment environments. SCOPE query engine is developed
by Microsoft and we added the signatures and optimizer rules
deep inside the query optimizer. However, Spark is an open-
source project and making any code changes in Spark will tie
us to a specific version and delay the upgrade process in the
future. Therefore, we use the optimizer extensions API in Spark
to add two additional rules to the query optimizer — first for
online materialization, and second for computation reuse. We
also implemented an event listener for Spark SQL that can log
query plans and compute signature annotations on the logical
query plan object. The user simply needs to add SparkCruise
library and set a couple of configuration parameters. With these
changes, we can provide computation reuse in Spark without
modifying its code.

Currently, SparkCruise is deployed on Azure HDInsight [32].
Azure HDInsight offers Spark cluster-as-a-service. Users can
spin up ephemeral Spark clusters, run their query workloads, and
delete the cluster after the job has finished. This scenario requires
a fast workload-based feedback loop. To enable this fast feedback
loop, we gave the control of the workflow to the end users or the
data engineers. The users can schedule the workload analysis
and view selection job periodically, or as often as the changes
in the query workload. To help users understand their query
workloads and decide whether SparkCruise will benefit their
workload or not, we provide an interactive Workload Insights
Notebook in Python [31]. The Workload Insight Notebook shows
the workload statistics in aggregate as well as the redundancies
in the workload. The results from the notebook can convince the
users to enable the computation reuse feature on their workloads.

CloudViews and SparkCruise show that the benefits of com-
putation reuse are not limited to a specific query engine. We
believe that computation reuse should be a fundamental prin-
ciple, like data locality and fault tolerance, when designing big
data processing systems.

5.6 Other Applications of Reuse
The CloudViews mechanism of producing artifacts as part of
query execution is useful in many other related applications:

• Checkpointing.Computation reuse can be applied for au-
tomatic checkpoint and restart in large analytical queries.
The idea is to select intermediate subexpressions in a job’s
query plan to materialize and reuse them in case the job is
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restarted after a failure. Job failures are common in produc-
tion clusters, with a small fraction failing every day. There
are many reasons for failures including but not limited
to storage errors, lack of compute capacity, missing input
files, and network timeouts [46]. These transient errors
are especially problematic for long running jobs that run
for hours and fail towards the end. Typically, the failed
jobs are resubmitted after a short delay. However, these
jobs execute from the start all over again, thus wasting
valuable compute resources and also delaying the final
results. CloudViews can be used in this scenario to re-
cover quickly from failures. During the compilation phase,
we use query history to find which operators are more
likely to fail and add a checkpoint just before them [50].
Then, during the resubmission, CloudViews can load the
last available checkpoint thereby avoiding re-computation.
Going forward, it would be interesting to select views that
increase cluster utilization by maximizing the reuse across
queries and minimizing the recovery time at the same
time.

• Pipeline Optimization. Enterprise data analytics con-
sists of data pipelines where analytical queries are inter-
connected by their outputs and inputs. Furthermore, the
output of each producer query in the pipeline is typically
consumed by multiple downstream queries. Unfortunately,
the producers are not aware of the right data representa-
tions, or physical designs, required by their consumers.
As a result, downstream queries need to prepare the data
before they can run the actual processing. Therefore, it is
crucial to leverage the data dependencies for creating the
right physical designs tailored to the downstream queries.
This can be done by producing the right physical design
as part of query execution of producer job, i.e., a Cloud-
Views that captures the required physical designs needed
by downstream jobs.

• Sampling. Sampling is a powerful technique used for ap-
proximate query execution. Approximate query execution
helps lower the latency and cost of running complex an-
alytical queries on large datasets [29]. CloudViews style
computation reuse can be applied for reducing the cost
of approximate query execution even further. This can be
achieved by sampling the views created by CloudViews.
Sampled views will particularly help reduce query latency
and cost in queries where substantial work happens af-
ter the sampler. Likewise, we could create statistics on
the common subexpressions to provide insights to data
scientists and analysts.

• Bit-vector Filtering. Bit-vector filters such as bitmap fil-
ters, Bloom filters and similar variants have been proposed
by both industry and academia to perform semi-join reduc-
tions [15]. Semi-join reductions help filter rows which do
not qualify join condition early-on in the query execution
plan. Bit-vector filters have a low storage and compute
overhead. They are commonly used in hash joins during
query processing. CloudViews style computation reuse
can be applied for generating bit-vectors during query
execution as well. During query execution, a spool opera-
tor could be used for generating the bit-vector filter from
right child of hash join and reuse it in subsequent queries.

6 OTHER RELATEDWORK
Compute reuse is a hot topic in industry and we discuss some of
the trends in other major companies below.

Snowflake is a cloud-based data warehouse company. The
Snowflake design caches results of every query executed in the
past 24 hours [41]. Users can then postprocess the cached result
for further analysis. However, caching only the final results has
limited applicability. CloudViews on the other hand reuses com-
putation at any point in the query plan and is thus a superset of
result set caching performed by Snowflake.

Google BigQuery is an interactive big data system that sup-
ports different kinds of caching and computation reuse. In par-
ticular, similar to Snowflake, it also supports caching arbitrary
query results [18]. However, same as Snowflake, users have to
manually rewrite their queries against the cached query results.
BigQuery also supports materialized views that are maintained
and support automatic query rewriting [17]. However, it only
supports queries with aggregate function to simply the query
rewriting problem.

Amazon Redshift is cloud data warehouse product from
Amazon. Redshift enables materialized views to be automati-
cally refreshed with automatic query rewrites [3]. However, the
materialized views are still created manually and unlike online
materialization in CloudViews, the responsibility of creating ma-
terialized views in Redshift lies with the user.

Alibaba [2] allows users to create materialized views. Once
created, the materialized views could be used in queries. How-
ever, Alibaba’s data warehouse engine requires manual re-writes
to reuse materialized views. Again, unlike the automatic materi-
alization and reuse in CloudViews.

Oracle deploys an algorithm called extended covering sub-
expressions (ECSE) to select materialized views for reuse [1].
It performs pairwise selection of ‘join sets’ and deploys other
heuristics to reduce the search space to polynomial size. The
authors test ECSE against a two-node configuration against a
small number of queries, and intend to deploy the technique to
their cloud in the future. By contrast, CloudViews is not restricted
to this smaller class of candidate materialized views and has
been continuously executing at extreme scale over hundreds of
thousands of queries per day.

Finally, there are several other works that apply computa-
tion reuse in other settings. Yuan et al. [45] apply computation
reuse on query workloads from Alibaba. Inspired by BigSubs
algorithm [24] of CloudViews, they formulate the subexpression
selection problem as ILP (Integer Linear Programming) and use
deep reinforcement learning to solve the ILP. AStream [30] is
a shared computation reuse framework for streaming queries.
AStream can dynamically adapt to changing streaming query
workloads without affecting the query execution topology. Com-
putation reuse was also applied on Machine Learning workloads
by Helix [44]. Helix finds common intermediate computation
between iterations and automatically materializes some of them
for future iterations.

7 CONCLUSION
Large-scale data processing infrastructures are key to data-driven
decisions in modern enterprises. Unfortunately, the scale and
complexity of these infrastructures could also make them un-
wieldy and highly inefficient. In this paper, we describe how
large scale data preparation, also referred to as data cooking, in
the Cosmos big data infrastructure at Microsoft often leads to
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redundant computations across different data pipelines and how
computation reuse naturally augments the data cooking process-
ing by fine-tuning the cooked datasets with more shareable ones.
We show the impact of CloudViews, an automatic computation
reuse infrastructure that we had build in the SCOPE query engine,
over large production workloads and discuss many of the opera-
tional challenges that we faced. CloudViews has not only helped
improve operational efficiency (37% less aggregated processing
time) and customer experience (34% less aggregated latency), but
it has also opened up new avenues and reusable infrastructure
for a broad range of feedback-driven workload optimizations —
the stepping stones towards a self-tuning intelligent cloud.
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ABSTRACT
Major news media frequently uses the method of news timeline
summarization to summarize important daily news over major
events across the timeline. While various sophisticated meth-
ods have been proposed to generate both concise and complete
news timelines, in practice, generating timelines from a large
number of news articles not only faces quality issues but also
encounters the challenge of generation speed, which all existing
methods have neglected. To mitigate these issues, in this work,
we propose to speed up timeline generation by dividing the whole
summarization task into sub-summarization tasks, adopting the
“divide and conquer" philosophy: (1) date selection and (2) text
summarization.

Furthermore, since existing methods in news timeline summa-
rization pay less attention to the date selection than text summa-
rization, in this paper, we re-examine the role of date selection in
news timeline summarization and demonstrate that accurate date
selection “alone" can significantly contribute to the task of news
timeline summarization. Leveraging on the explicit date selec-
tion, then, we propose a simple yet fast and effective news time-
line summarization method, named WILSON (neWs tImeLine
SummarizatiON). Experimented on two widely used timeline
summarization benchmark datasets, timeline17 and crisis, empir-
ical evaluation shows that WILSON outperforms state-of-the-art
approaches in both speed and ROUGE scores, significantly im-
proving ROUGE-2 F1 scores by 9.5%∼17.7% and reducing genera-
tion time by two orders of magnitude. A further user study with
professional journalists also validates the superiority ofWILSON.
Finally, we build a real-time news timeline summarization system
and achieve encouraging results on an industrial-level corpus.

1 INTRODUCTION
Along with the rapid development of web services, an increasing
number of news articles are published daily, describing both ma-
jor and minor events worldwide. Due to the tremendous amount
of news articles being produced every day, readers easily get
lost in this information flood. Fortunately, news timeline, which
summarizes each event with primary messages in a chronological
order, makes it easy for readers to gain key insights and under-
stand the evolution of news events. As such, many major news
media has adopted the idea and have frequently produced news
timelines of major news events. For example, Table 1 describes
how 2018 North Korea-United States Singapore summit finally
became a reality. Note that as the example illustrates, creating
a news timeline requires the resolution of two sub-problems:
(1) choosing of an ideal number of days among hundreds or

© 2021 Copyright held by the owner/author(s). Published in Proceedings of the
24th International Conference on Extending Database Technology (EDBT), March
23-26, 2021, ISBN 978-3-89318-084-4 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Feb. 25, 2018
North Korea is “willing to have talks” with the United States,
South Korea says, as the PyeongChang Winter Olympics close
in a burst of fireworks and diplomacy.
Mar. 8, 2018
Trump agrees to meet Kim for talks, an extraordinary devel-
opment after months of heightened tension. Kim commits to
stopping nuclear and missile testing.
Mar. 27, 2018
Kim makes a clandestine visit to Beijing to discuss the negoti-
ations with South Korea and the United States.
...
Jun. 1, 2018
Trump says the summit will take place June 12 as planned.
During a visit to the White House, a North Korean hands
Trump a large letter from Kim.

Table 1: An example timeline by The Washington Post
about the summit between United States and North Ko-
rea.1

thousands of candidate days, and (2) generating succinct text
summaries per days.

1.1 Industrial Use Case
Combined with visual or interactive interfaces, news timelines
can provide a convenient way to compress overloaded news
to audience. Figure 1 illustrates two real timeline example on
two major US newspapers. Figure 1 (a) is an interactive time-
line summarization about Trump-Russia investigation from The
Washington Post, while Figure 1 (b) is a text-based timeline sum-
marization about China-US TradeWar from The New York Times.
To help readers better understand the evolution of each news
event, journalists take time to collect and organize related news
articles, figure out major events and story lines, and “manually"
summarize them in a chronological order. As events such as nat-
ural disasters and political issues can span from several months
to multiple years and involve thousands of news articles, such a
manual process cannot scale well. As this process is both time-
consuming and labor-intensive, currently, despite the popularity
of the concept, not all newspapers are able to quickly produce
such news timelines.

To address this challenge, several automatic news timeline
summarization methods have emerged in recent years [4, 12, 21,
22, 25, 27, 29]. By and large, there are mainly two categories of
news timeline generation methods. One is aimed at separating

1https://www.washingtonpost.com/graphics/2018/national/
trump-kim-jong-un-timeline/
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(a) Trump-Russia investigation (The Washington Post) (b) China-US Trade War (The New York Times)

Figure 1: News timeline summarization examples on major news media
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Figure 2: Running times over varying corpus sizes us-
ing 𝑇𝑖𝑚𝑒𝑙𝑖𝑛𝑒17 and 𝐶𝑟𝑖𝑠𝑖𝑠. ASMDS and TLSCONSTRAINTS
are the two state-of-the-art methods that use submodular
framework. Note that, as both of them are not sufficiently
scalable to the large corpus, we followed [12] to use a re-
duced corpus here.

different stories from a whole news corpus, such as using vari-
ants of topic modeling [8, 31] and neural networks [30]. Another
category focuses on generating a series of chronological sum-
maries for one specific event from only relevant news articles
[12, 22, 28], where the first categories can serve as pre-processing
to find relevant news articles for each event. In this paper, our
focus is on the latter category in an unsupervised manner.

However, majority of existing methods focus only on the qual-
ity of generated timelines and neglect the generation speed. For
example, the state-of-the-art unsupervised approach adopts sub-
modular framework [12] and requires the pairwise similarities
for all tokenized sentences, which could be over 100,000 per
timeline. This yields extremely slow running time, as clearly
demonstrated in the comparison of running times in Figure 2.
As the compression rates of timeline summarization vary with
events and journalists may not know the exact value beforehand,
iterative trials with different values are necessary, which makes
faster timeline generation even more important. Therefore, in
this work, we are greatly motivated by real industrial use cases
to speed up the timeline generation by dividing the whole sum-
marization tasks into multiple small summarization tasks by date
separation.

News timelines are composed of both salient dates and daily
summaries, but previous studies mainly focus on modeling re-
lationships among article contexts while paying less attention

to date selection. For example, some models [14, 24, 26, 27] just
treat date information the same as text information and include
it as one of the features, while others [4, 19] simply use date
frequency to resolve events. Although simply modeling text cor-
relation shows good performance on both timeline summariza-
tion and date selection [12], it is not clear how date selection
will contribute to news timeline summarization. In addition, ex-
isting state-of-the-art unsupervised approaches mostly include
global optimization, which helps daily summaries to be relevant
to the topic. However, using global optimization also makes daily
summaries less specific per each day and very time-intensive
to generate timelines. Therefore, considering both the quality
and speed of news timeline summarization, this paper makes the
following main contributions:

(1) We re-examine the role of date selection in timeline sum-
marization and show that, even without considering con-
textual correlation across different dates, accurate date
selection is sufficient to generate high-quality news time-
lines. More importantly, although ignoring contextual
correlation across dates leads to a lower empirical upper
bound than other models, all of the previous approaches
still fail to reach this lower upper bound, and they are not
even close.

(2) Leveraging the explicit date selection, we propose a simple
but fast and effective unsupervised news timeline summa-
rization method, namedWILSON. Experimented on two
widely used timeline summarization datasets, WILSON
outperforms state-of-the-art approaches in both speed
and ROUGE scores, significantly improving ROUGE-2 F1
score by 9.5%∼17.7% and reducing generation time by two
orders of magnitude.

(3) To our best knowledge, WILSON is the first work to in-
clude an evaluation by professional journalists in news
timeline summarization. Through manually comparing
the machine-generated news timelines with correspond-
ing human-generated ones, journalists confirm that our
approach produces better timelines than competing meth-
ods.

(4) Based on the proposed WILSON, we build a real-time
news timeline summarization system on an industrial-
level news corpus.

2 THE PROPOSED METHOD:WILSON
In this section, we introduce our proposed method, named WIL-
SON (neWs tImeLine SummarizatiON), also illustrated in Figure
3. Besides the pre-processing modules such as temporal tagging
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Figure 3: Workflow of our proposed method–WILSON.

and search engine indexing, WILSON mainly consists of two
components – explicit date selection and text summarization for
each selected date.

2.1 Problem Formulation
A news timeline can be viewed as a series of chronologically
ordered daily summaries over main events, denoted by (𝑑𝑖 , 𝑆𝑖 ),
where 𝑑𝑖 and 𝑆𝑖 stand for 𝑖𝑡ℎ date and 𝑖𝑡ℎ summary. Thus, news
timeline summarization can be formulated as:

Definition 1 (News Timeline Summarization). Given a
corpus of articles𝐶𝑞 , which is associated with a topic query 𝑞 and a
time window [𝑡1, 𝑡2], the process of automatic timeline generation
is to produce a series of daily summaries (𝑑1, 𝑆1), ..., (𝑑𝑇 , 𝑆𝑇 ), where
𝑡1 ≤ 𝑑𝑖 ≤ 𝑡2.

For both readability and reliability of generated news timelines,
we follow existing works and utilize extractive summarization,
which directly selects sentences from the corpus as summaries.
More specifically,

Definition 2 (Extractive News Timeline Summarization).
Given a corpus of articles𝐶𝑞 , which is associated with a topic query
𝑞 and a time window [𝑡1, 𝑡2], the corpus is first tokenized to dated
sentences {(𝑑𝑎𝑡𝑒𝑖 , 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝑖 ) |𝑑𝑎𝑡𝑒𝑖 ∈ [𝑡1, 𝑡2], 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝑖 ∈ 𝐶𝑞} by
a date expression in the sentence and/or by the publication date, then
the timeline generation is to produce a series of daily summaries
(𝑑1, 𝑆1), ..., (𝑑𝑇 , 𝑆𝑇 ), where 𝑡1 ≤ 𝑑𝑖 ≤ 𝑡2
and 𝑆𝑖 = (𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝑖1, ..., 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝑖𝑁 ).

The number of selected dates 𝑇 and sentences 𝑁 are hyper-
parameters and chosen by users to control the compression rate
of the generated timelines. Date selection is evaluated by f1 scores
and summaries are evaluated by ROUGE [10].

2.2 Date Selection
We use HeidelTime [20] to tag temporal expressions in sentences
during pre-processing stage and start with an unsupervised date
selection algorithm [23] to select the most salient dates: (1) we
build a date reference graph with dates as nodes and reference
relationships as edges; (2) then, we run the PageRank algorithm
[16] on the graph and select the top 𝑇 ranked nodes as the most
salient dates. Date references refer to the sentences 𝑠𝑖 𝑗 that are
published on 𝑑𝑎𝑡𝑒𝑖 while mentioning 𝑑𝑎𝑡𝑒 𝑗 . We experiment with
4 types of edge weights as follows:
• W1: the number of reference sentences |𝑠𝑖 𝑗 |
• W2: temporal distance |𝑑𝑎𝑡𝑒 𝑗 − 𝑑𝑎𝑡𝑒𝑖 | in days

Edge Weight Date F1 Rouge-1 F1 Rouge-2 F1
timeline17

W1 0.5512 0.3905 0.0969
W2 0.5528 0.4029 0.1002
W3 0.5628 0.4009 0.0995
W4 0.5068 0.3934 0.0934

crisis
W1 0.3022 0.3476 0.0715
W2 0.2838 0.3604 0.0715
W3 0.2710 0.3575 0.0738
W4 0.2925 0.3509 0.0726

Table 2: Performance of different edge weights

• W3: W1 ∗W2, which considers both frequency and tem-
poral distance.
• W4: We adopt BM25 [18] to estimate the relevance of
sentences to the query, and use max𝐵𝑀25(𝑠𝑖 𝑗 , 𝑞) as edge
weight for each reference.

For example, considering 𝑑𝑎𝑡𝑒𝑖=2018-06-01, 𝑑𝑎𝑡𝑒 𝑗=2018-06-12,
and 𝑠𝑖 𝑗 composed of only two sentences, i.e. Trump says summit
with North Korea will take place on June 12 and The summit will
take place on June 12. Then, W1 is the number of sentences and
equals 2, while W2 is the difference between 2018-06-01 and
2018-06-12 in days and equals 11. Accordingly, W3 equals W1 ∗
W2 and is 22. For W4, we treat each sentence as a document, use
topic query 𝑞 to score each document with BM25, and take the
maximum BM25 score as W4.

As Table 2 shows that all four edge weights yield comparable
results, date reference relationship alone can extract as accurate
date selections as topical information. Since constructing topical
relationships across dates takes extra time, we finally adopt W3
as the edge weight to select the most salient dates in the rest of
this paper. Note that, for completeness, we also generate daily
summaries to obtain a complete news timeline per each date
selection and evaluate the summaries by ROUGE scores in Table
2. The details about daily summarization is introduced in the
next subsection.

Although the occurrence of an event signals its importance
within the news timeline [4] and is well leveraged in existing
timeline summarization algorithms, we note that the occurrence
of events is also correlated with the recency of events, where past
events occur earlier and are more heavily reported than recent
events. Consequently, existing approaches may suffer from this
issue. For example, approaches that optimize the summaries to

637



Date Selection Date Coverage (±3) Date F1 ROUGE-1 ROUGE-2 ROUGE-S*
Timeline17

Uniform 0.8398 0.4475 0.3896 0.0917 0.1598
W3 0.7828 0.5668 0.4000 0.0995 0.1676

W3 + Recency 0.8111 0.5542 0.4036 0.1005 0.1702
Crisis

Uniform 0.5932 0.1325 0.3387 0.0570 0.1138
W3 0.5459 0.2726 0.3573 0.0738 0.1246

W3 + Recency 0.5885 0.2748 0.3597 0.0760 0.1270

Table 3: Performance on date coverage

recover the whole corpus, such as ETS [29] and TILSE [12], will
generate more summaries on past events.

In addition, as most references in articles refer to past events,
the current date selection algorithm tends to give too much
weight on old dates and will also result in timelines that lack
recent dates. For a better illustration, we present the Cumula-
tive Distribution Function (CDF) of the date duration between
selected dates and the start date in Figure 4. As expected, both
TILSE (Submodular) and date selection via PageRank (Tran et
al.) tends to select more old dates, while the date distribution of
ground-truth timelines is generally more uniform. Thus, we use
the standard deviation of differences between consecutive dates
to measure the uniformity of date distribution:

Definition 3 (Uniformity of Date Selection). Given a
series of selected dates {𝑑1, 𝑑2, ..., 𝑑𝑇 } in chronological order, we
regard the differences between consecutive dates as {𝑑𝑖 𝑓 𝑓𝑖 = 𝑑𝑖+1 −
𝑑𝑖 }, then define its standard deviation𝜎 =

√
1
𝑇

∑𝑇
𝑖=1 (𝑑𝑖 𝑓 𝑓 𝑖 − ¯𝑑𝑖 𝑓 𝑓 )2,

as the uniformity of date selection.

2.2.1 Recency Adjustment. To add more weights on recent
dates, we leverage the Personalized PageRank algorithm [1],
where the restart distribution is not uniform. More specifically,
we weight each date node 𝑑𝑎𝑡𝑒𝑖 by 𝑊𝑖 = 𝛼−𝑑𝑖 , where 𝑑𝑖 =

|𝑑𝑎𝑡𝑒𝑖 −𝑑𝑎𝑡𝑒𝑠𝑡𝑎𝑟𝑡 |. 𝛼 ranges from 0 to 1 and is used to control the
restart distribution. In practice, we use a grid search to find the
𝛼 that gives the most uniform distribution in the date selection,
then use the chosen dates for news timeline generation.

2.2.2 Date Coverage. To better check the coverage of gener-
ated timelines, besides f1 score on date selection, we also measure
the date coverage, e.g., if any day of ground-truth date 𝑔𝑖 ±3 days
lies in the generated timeline, 𝑔𝑖 will be considered to be covered
and we will measure what percentage of ground-truth dates are
covered per timeline. For comparison, we also generate news
timelines on truly uniformly distributed dates and present the
results in Table 3. As we can see, although truly uniformly dis-
tributed dates cover the most ground-truth dates, due to the low
accuracy in the date selection, the generated daily summaries are
poor. However, adding recency adjustment with uniformity con-
tributes to date selection in coverage, thus yields better timeline
summarization.

2.3 Daily Summarization
Having selected the most salient dates, next, we divide timeline
summarization into sub-summarization tasks. Although daily
summarization tasks can be accomplished by any supervised
or unsupervised document summarization algorithms, we in-
tend to use a simple daily summarization method to validate
the effectiveness of our explicit date selection, as complicated
summarization techniques may introduce extra improvements
in the performance. Specifically, we utilize the classic TextRank
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Figure 4: Distribution of selected dates among different ap-
proaches.

[13] to generate daily summaries. Similar to the task of date se-
lection, TextRank constructs a sentence graph with sentences
as nodes and similarity scores as edge weights. In particular, we
use BM25 [18] to compute edge weights [2] and run PageRank
on this directed graph to select the most important sentences as
daily summaries.

2.3.1 Post-processing. Dividing large text summarization tasks
into smaller ones greatly speeds up timeline generation, and
these sub-tasks can naturally be further accelerated through par-
allel processing. Conducting text summarization on a daily basis
rather than on the whole corpus, however, ignores temporal
correlation and thus introduces redundancy in summarization.
To remove redundancy across dates, therefore, we incorporate
post-processing to re-rank daily summaries based on the whole
summarization. Similar to MMR [3], instead of directly using
daily summaries, we add sentences into timeline summarization
by their daily ranks and only accept sentences whose maximum
cosine similarity with selected ones is smaller than a threshold
(e.g., < 0.5).

2.4 News Timeline Generation Algorithm
The generation algorithm of WILSON is summarized in Algo-
rithm 1. First, we build a date reference graph based on the date
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Algorithm 1: Algorithm forWILSON
Input : temporally tagged sentences𝐶 = {(𝑑𝑎𝑡𝑒𝑖 , 𝑠𝑒𝑛𝑡𝑖 )}

preset number of dates 𝑇
preset number of daily sentences 𝑁

Output :a series of daily summaries (𝑑1, 𝑆1), ..., (𝑑𝑇 , 𝑆𝑇 )
1 Build a date reference graph based on date co-occurrence
{(𝑑𝑎𝑡𝑒𝑖 , 𝑑𝑎𝑡𝑒 𝑗 ) | (𝑑𝑎𝑡𝑒𝑖 , 𝑠𝑒𝑛𝑡𝑘 ) ∈ 𝐶 & (𝑑𝑎𝑡𝑒 𝑗 , 𝑠𝑒𝑛𝑡𝑘 ) ∈ 𝐶} ;

2 Compute edge weight according to W3 in Section 2.2 ;
3 selected_dates← ∅ ;
4 for Grid search 𝛼 ∈ (0, 1) do
5 Compute personalized node weight for each date 𝑑𝑎𝑡𝑒𝑖

using𝑊𝑖 = 𝛼−|𝑑𝑎𝑡𝑒𝑖−min𝑘 (𝑑𝑎𝑡𝑒𝑘 ) | ;
6 Run personalized PageRank to select the top 𝑇 ranked

dates as a date selection candidate ;
7 Based on Definition 3, compute the uniformity score of

this date selection candidate ;
8 selected_dates← save the date selection with the best

uniformity score as (𝑑1, 𝑑2, ..., 𝑑𝑇 ) ;
9 end for

10 for 𝑑𝑖 ∈ selected_dates do
11 Find all sentences on 𝑑𝑖

𝐶𝑖 ← {𝑠𝑒𝑛𝑡𝑘 | (𝑑𝑎𝑡𝑒𝑘 , 𝑠𝑒𝑛𝑡𝑘 ) ∈ 𝐶 & 𝑑𝑎𝑡𝑒𝑘 = 𝑑𝑖 } ;
12 Run TextRank on 𝐶𝑖 to rank all sentences by importance

score in a max heap 𝐻𝑖 ;
13 Initialize selected sentences 𝑆𝑖 ← ∅ ;
14 end for
15 repeat
16 Currently selected sentences 𝑆 ← ⋃𝑇

𝑖=1 𝑆𝑖 ;
17 Top ranked sentence per day 𝐻 ← ⋃𝑇

𝑖=1 𝐻𝑖 [0] ;
18 Remove top sentences: heap_pop(𝐻𝑖 ) for i ∈ [1, T];
19 Remove sentences from 𝐻 that have maximum

similarity > 0.5 with existing sentences in 𝑆 ;
20 Add remaining sentences in 𝐻 to the corresponding

daily summary 𝑆𝑖 only if |𝑆𝑖 | < 𝑁 ;
21 until (all |𝑆𝑖 | = 𝑁 ) or (all |𝐻𝑖 | = 0);
22 return (𝑑1, 𝑆1), ..., (𝑑𝑇 , 𝑆𝑇 )

pairs that appear in the same sentences. Second, we extract fea-
tures to compute weights for the graph edges and run personal-
ized PageRank to pick the most salient𝑇 dates. More specifically,
we include the recency adjustment strategy to improve the date
coverage of selected dates. Then, we use TextRank to rank all
sentences on each selected date. According to the sentence ranks
per selected date, we post-process the sentences in batch and
remove sentences that could introduce redundant information
on existing selections. Finally, our algorithm produces a series
of compact daily briefs as the summarized news timeline to help
people better understand the evolution of the corresponding
news event.

2.5 Complexity Analysis
In this section, we briefly provide a time complexity analysis of
our approach with a comparison to the submodular framework.
Denote 𝑇 as the total number of dates, 𝑁 as the average number
of sentences per date, 𝑡 as the desired number of dates and𝑛 as the
desired number of sentences per date in the summarized timeline.
According to PageRank on the dense graph, date selection takes

Dataset # of topics # of timelines average per timeline
# of doc # of sents duration days

Timeline17 9 19 739 36,915 242
Crisis 4 22 5,130 173,761 388

Table 4: Dataset overview

𝑂 (𝑇 2) while 𝑡 daily summarization tasks take 𝑂 (𝑡 ∗ 𝑁 2). Thus
the total time complexity ofWILSON is 𝑂 (𝑇 2 + 𝑡 ∗ 𝑁 2).

For submodular framework [12], which conducts global sum-
marization, it takes𝑂 ((𝑇𝑁 )2) to obtain pair-wise similarities for
all sentences and takes𝑂 (𝑡 ∗𝑛 ∗𝑇 ∗𝑁 ) to iterate 𝑡 ∗𝑛 times to se-
lect each individual sentence in a greedy manner. Therefore, the
total time complexity is𝑂 ((𝑇𝑁 )2 + 𝑡 ∗𝑛 ∗𝑁 ∗𝑇 ). In Figure 2, the
corpus size is defined as the total number of sentences (i.e.𝑇 ∗𝑁 ).
As expected, the submodular frameworks show quadratic growth
with a time complexity 𝑂 ((𝑇𝑁 )2), while our approach is almost
linear to the corpus size with a time complexity 𝑂 (𝑇 2 + 𝑡 ∗ 𝑁 2).

Given the approximation that 𝑇 and 𝑁 are in the same order
of magnitude (based on Table 4),WILSON runs faster than the
submodular framework by a factor of 𝑂 (𝑇 2

𝑡 ). Given around 10%
date compression rate ( 𝑡

𝑇
) and 𝑇 in hundred level, theoretically,

our approach could gain over three orders of magnitude improve-
ment in generation speed. Note that, due to the scalability issue
of the submodular framework, [12] filtered sentences with pre-
defined keywords to reduce 𝑁 by over one order of magnitude,
reducing the time complexity in practice. Given ∼10% filtering
rate, our approach could still gain about two orders of magnitude
in generation speed, which is consistent with experiments in
Table 7.

3 EMPIRICAL VALIDATION
3.1 Set-Up

3.1.1 Datasets. We run experiments on timeline17 [24, 25]
and crisis [22]. Both datasets2 consist of journalist generated
timelines from major news media such as CNN, BBC and Reuters,
and a corresponding corpus of articles per topic (e.g. H1N1 flu and
Egypt war). More specifically, timeline17 contains 19 timelines
from 9 topics, while crisis involves 22 timelines from 4 topics. An
overview of the two datasets is shown at Table 4.

3.1.2 Competing methods.

• Random: The system generates daily summaries by ran-
domly selecting sentences from the corpus.
• MEAD [17]: a classic centroid-basedmulti-document sum-
marization system.
• Chieu et al. [4]: a multi-document summarization system
that uses date related TFIDF scores to measure sentence
importance among corpus.
• ETS [29]: an unsupervised timeline summarization algo-
rithm via simultaneously optimizing multiple heuristic
metrics, including relevance, coverage, coherence, and di-
versity.
• Tran et al. [25]: a supervised timeline summarization
algorithm, which extracts various features from sentences
and leverages learning to rank techniques.
• Regression [26]: a supervised approach that formulates
sentence selection as a linear regression problem.
• Wang et al. [27]: a supervised approach that formulates
sentence selection as a matrix factorization problem.

2http://l3s.de/~gtran/timeline/
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Methods ROUGE-1 ROUGE-2 ROUGE-S*
Random 0.128 0.021 0.026
Chieu et al. 0.202 0.037 0.041
MEAD 0.208 0.049 0.039
ETS 0.207 0.047 0.042
Tran et al. 0.230 0.053 0.050
Regression 0.303 0.078 0.081
Wang et al. (Text) 0.312 0.089 0.112
Wang et al. (Text + Vision) 0.331 0.091 0.115
Liang et al. 0.334 0.105 0.103
WILSON (Ours) 0.370 0.083 0.141

Table 5: Results on Timeline17

• Liang et al. [9]: a dynamic evolutionary framework lever-
aging distributed representation for timeline summariza-
tion.
• ASMDS (TILSE) [12]: TILSE is a state-of-the-art unsuper-
vised timeline summarization approach, which incorpo-
rates submodularity-based multi-document summariza-
tion framework with temporal criteria.
• TLSCONSTRAINTS (TILSE) [12]: as a variant of TILSE,
this method uses the same objective funtion as ASMDS
but adopt different temporal constraints.

3.1.3 Measurement. Among all the baselines, TILSE is the
only one with source code available. Consequently, for all the
other baselines, we follow the existing works [9, 25, 27], which
conduct experiments on 𝑡𝑖𝑚𝑒𝑙𝑖𝑛𝑒17 with settings mentioned at
the beginning of Section 5.2 in [25] and directly report the base-
line results from previous papers. More specifically, in the gener-
ated timeline, the number of selected dates𝑇 is set to the number
of dates in each ground-truth timeline, while the number of sen-
tences per day 𝑁 is forced to be the rounded value of the average
number of sentences per date from the ground-truth timeline.

To fairly compare with TILSE, we re-run the their code, follow
all their pre-processing, including text cleaning and keywords
filtering, and conduct experiments on exactly the same sentence
corpus per timeline generation. Note that, [12] used a slightly
different setting from previous papers: 1) for Timeline17 dataset,
theymixed articles of the same topic from different news agencies
together, which yields a bit higher ROUGE scores in timeline
generation; 2) it suffers from the scalability issue and thereby
uses filtered sentence corpus for both datasets. Thus, we followed
their settings for a fair comparison with TILSE in Table 7. Wall
time is measured on a 24-core 128GB machine.

3.1.4 Evaluation Metrics. The commonly used summariza-
tion metrics, ROUGE scores [10], including ROUGE-1, ROUGE-2
and ROUGE-S* F1 scores, are adopted to evaluate the agreement
between machine-generated and journalist generated timelines.
Moreover, to be consistent with TILSE comparison, we also in-
clude time-sensitive ROUGE scores as additional measurements
[11]. More specifically, concat ROUGE scores totally ignore the
time information by directly concatenating all texts together,
while agreement ROUGE scores only consider the generated
daily summaries on the groundtruth dates, and align ROUGE
scores discount the quality of generated daily summaries by their
distance to the corresponding groundtruth date. Last but not
least, we test for significant improvements using an approximate
randomization test [15] with a p-value of 0.05.

Methods ROUGE-1 ROUGE-2 ROUGE-S*
Regression 0.207 0.045 0.039
Wang et al. (Text) 0.211 0.046 0.040
Wang et al. (Text + Vision) 0.232 0.052 0.044
Liang et al. 0.268 0.057 0.054
WILSON (Ours) 0.352 0.074 0.123

Table 6: Results on Crisis
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Figure 5: Concat Rouge 2 f1 scores when adding more sen-
tences on each date on Crisis.

3.2 Performance Comparison
Table 5 and 6 shows that our unsupervised approachWILSON
outperforms all baselines in ROUGE-1 and ROUGE-S* f1 scores
by a significant margin, and is only second to [27], a supervised
approach, and [9] in ROUGE-2 f1 score on Timeline17 dataset.

In addition, Table 7 illustrates that WILSON outperforms the
state-of-the-art unsupervised framework TILSE in all ROUGE
metrics. Averagely, our method outperforms the submodular
approaches by 12.9% in concatenate ROUGE-2 scores, by 58.3% in
agreement ROUGE-2 scores, and by 40.1% in alignment ROUGE-2
scores. More importantly, our method also gains two orders of
magnitude improvement in generation speed, making it possible
to generate news timelines in a real-time manner.

In Table 7, We also include multiple variants ofWILSON for
ablation analysis. WILSON-uniform simply adopts uniform date
selection, while WILSON-Tran directly uses W3 as edge weight
without recency adjustment. As expected, selecting uniformly
distributed dates results in the worst summarization, while in-
cluding recency adjustment improves time-sensitive ROUGE-2
scores by 9.0%∼21.6%.

Overall, comparing with all competing approaches, the per-
formance improvement of our method is higher in Crisis dataset.
One explanation is that Crisis dataset contains more articles and
spans a longer period, making it difficult for those competing ap-
proaches to correctly identify the long-term event dependencies,
while our method mainly focuses on local dependencies.

3.2.1 Effectiveness of Post-processing. In Table 7, we observed
that considering correlation across different dates and reduc-
ing redundant daily summaries are seemingly minor, especially
on Crisis datasets. Different from Timeline17 datasets, Crisis
datasets consist of more compact daily summaries, where more
than 90% dates contain only 1 sentence. Although reducing re-
dundancy across dates is not necessary for timelines with com-
pact daily summaries, we intend to verify the effectiveness of
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concat agreement align+ m:1 Date Running Time
Model Rouge 1 Rouge 2 our impr. Rouge 1 Rouge 2 our impr. Rouge 1 Rouge 2 our impr. F1 Per timeline (sec.)

Timeline17
ASMDS 0.3452 0.0890 13.8% 0.0913 0.0270 20.0% 0.1047 0.0299 17.1% 0.5437 338.68

TLSCONSTRAINTS 0.3685 0.0916 10.6% 0.0912 0.0242 33.9% 0.1049 0.0270 29.6% 0.5127 560.24
WILSON-uniform 0.3659 0.0848 19.5% 0.0754 0.0191 69.6% 0.0924 0.0218 60.6% 0.4366 1.97
WILSON-Tran 0.4007 0.0993 2.0% 0.1035 0.0293 10.6% 0.1181 0.0321 9.0% 0.5668 2.12

WILSON w/o Post 0.4036 0.1005 0.8% 0.1057 0.0318 1.9% 0.1202 0.0344 1.7% 0.5542 5.63
WILSON 0.4075★† 0.1013★† 0.1065★† 0.0324† 0.1211★† 0.0350† 0.5542 7.59

Crisis
ASMDS 0.3066 0.0645 17.7% 0.0415 0.0091 123.1% 0.0658 0.0135 71.9% 0.2435 3055.96

TLSCONSTRAINTS 0.3307 0.0693* 9.5% 0.0564 0.0130 56.2% 0.0764 0.0166 39.8% 0.2739 4098.07
WILSON-uniform 0.3314 0.0551 37.7% 0.0235 0.0059 244.1% 0.0392 0.0080 190.0% 0.1251 4.68
WILSON-Tran 0.3575 0.0739 2.7% 0.0621 0.0167 21.6% 0.0798 0.0202 14.9% 0.2726 5.69

WILSON w/o Post 0.3600 0.0756 0.4% 0.0677 0.0201 1.0% 0.0843 0.0230 0.9% 0.2748 22.95
WILSON 0.3605★† 0.0759★† 0.0679★ 0.0203★† 0.0846★ 0.0232★ 0.2748 30.14

Table 7: Comparison with TILSE. We indicate our improvement on Rouge 2 f1 score for different metrics. ForWILSON, we
use an approximate randomization test to test the significance of its improvement over ASMDS and TLSCONSTRAINTS,
and denote the significant improvement by ★ and † respectively.

Method ROUGE-1 ROUGE-2
timeline17

Submodularity framework [12] 0.50 0.18
Ground-truth date + Daily summary 0.41 0.11

Crisis
Submodularity framework [12] 0.49 0.16

Ground-truth date + Daily summary 0.42 0.10
Table 8: Empirical upper bound of submodularity frame-
work and our two-stage method

post-processing for timelines with abundant daily summaries.
Instead of using the exact number of sentences per date in the
ground-truth timelines, we generate timelines with more sen-
tences per date, which is more practical as the true numbers
are unknown. As demonstrated in Figure 5, simply adding daily
summaries together suffers from the redundancy issue and using
post-processing indeed helps. Note that we use the ROUGE-2 f1
score, so the overall scores going down with more sentences is
because more generated texts lead to lower ROUGE accuracy.

3.2.2 Empirical Bounds. Empirical bounds of our two-stage
method are given in Table 8, where we use ground-truth dates
as date selections for daily summarization. Note that, besides
using ground-truth dates, the upper bounds of the submodularity
framework [12] also employ ground-truth summaries and are
obtained by directly optimizing ROUGE f1 scores in a supervised
way, but we only use ground-truth dates and never touch ground-
truth summaries, making us aware of how date selection will
contribute to news timeline summarization. As demonstrated,
even without considering contextual correlation across different
dates in text summarization, it is still possible to generate reason-
able news timelines with accurate date selection. Although the
upper bound of our two-stage framework is much lower than
that of the submodular framework, it is worth mentioning that
all existing approaches fail to reach our upper bound, not even
close on the Crisis dataset.

3.2.3 Automatic Date Compression. As defined in Section 2.1,
existing news timeline summarization works only use a preset
number of dates and length of daily summaries to generate news
timelines. Unlike the length of daily summaries, which only im-
plies the compression rate for a single day and is usually set
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Figure 6: Mean Absolute Percentage Error (MAPE) of pre-
dicted number of date selection

to 2 or 3 sentences, determining the number of dates requires
understanding for the whole corpus, making it difficult to select.
To solve this issue, we aim at automatically detecting the number
of dates for news timelines. Motivated by the fact that news time-
lines consist of major events within the duration, we propose to
consider major event coverage to determine the number of dates.
Specifically, we use the daily summarization to generate major
events for each date and encode daily summaries with BERT
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rank
Method 1st 2nd 3rd MRR DCG
ASMDS 4 3 3 0.72 7.39

TLSCONSTRINTS 1 6 3 0.56 6.29
WILSON (Ours) 5 1 4 0.76 7.63

Table 9: Results of journalist evaluation on the quality of
machine-generated timelines. Best and second best scores
are highlighted by bold and underscore respectively.

[5] into embedding vectors. Then, we use Affinity Propagation
[6] to cluster encoded daily summaries into event clusters, and
adopt the detected cluster number as date selection number. We
compared our methods with fixed compression rates for date
selection and presented the results in Figure 6. As shown, our
automatic date compression method generally performs well on
both datasets.

3.3 Evaluation by Journalists
In addition to ROUGE scores, we also consult two professional
journalists at the Washington Post, which is one of the leading
daily American newspapers, to manually evaluate the quality of
machine-generated news timelines. Among 41 timelines from
the two datasets, we sample 10 timelines (20%) from 6 topics, in-
cluding H1N1 flu, BP oil spill, Egypt crisis, Libya war, Yemen war,
and Syria war. For each sampled timeline, we present the human-
generated ground-truth timeline and three machine-generated
timelines from ASMDS, TLSCONSTRINTS, and WILSON (Ours)
to journalists. The ground-truth timeline is labeled as a reference,
while the other three are given in random order and the order is
independent for each evaluation. The evaluation is based on the
comprehensiveness and readability of the generated timelines
compared with the ground-truth timelines.

For each evaluation, the two journalists are asked to review
∼ 80 daily summaries from ∼ 50 distinct dates, which adds up
to ∼ 800 daily summaries from ∼ 500 distinct dates in total, and
collaborate to provide one final ranking of the three machine-
generated timelines. To measure the ranking performance of each
method, we adopt two common rank-aware measurements, Mean
Reciprocal Rank (MRR) and Discounted Cumulative Gain (DCG),
and present the results in Table 9. As shown, when evaluated by
professional journalists, our method outperforms the state-of-
the-art unsupervised framework TLSCONSTRAINS and achieves
slightly better or comparable results with ASMDS. Considering
ourmethod gains two orders of magnitude improvement in gener-
ation speed, the results are very encouraging. More interestingly,
although TLSCONSTRAINS generally achieves higher ROUGE
scores than ASMDS in table 7, TLSCONSTRAINS receives unex-
pectedly lower rank scores than ASMDS in this evaluation by
journalists. This may imply a warning that automated measures
may not be enough for news timeline summarization and human
evaluation could be beneficial at times.

4 A CASE STUDY
In this section, we perform a qualitative analysis of the generated
timelines of our approach. Since TILSE [12] is the only baseline
with source code available, we also include its output in compar-
ison. Table 10 presents a subset of timelines about the lawsuit
of Michael Jackson’s death in the Timeline17 dataset, where the

manually generated timeline was collected from BBC3. As differ-
ent approaches generate timelines with different date selections,
we only consider the dates that appear in all 4 timelines and
show the first a few dates and their summaries in chronological
order. We highlight the overlaps between manually generated
and automatic generated timelines in colors and observe that the
output of our approach is aligned better with the handcrafted
one.

Interestingly, more summaries of our outputs are closer to the
main events on each date than those of TILSE’s, though they are
all relevant to this topic. We think it may be because more impor-
tant daily events are reported more heavily on each date, while
existing models try but fail to effectively capture the evolution
clues across dates, thus simple daily summarization can work
well. Apparently, how to balance local and global summarization
and effectively capture event evolution could be one potential
direction for news timeline summarization.

5 REAL-TIME SYSTEM FRAMEWORK

Tokenizing and temporal tagging

...

Date selection

...

Daily summarization

the summit will take place June 12.
publication date: 2018-06-01

referred date: {2018-06-12}

Search Engine Indexing

Event

𝑛𝑒𝑤𝑠 𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 →

𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝑖 𝑝𝑢𝑏_𝑑𝑎𝑡𝑒𝑖 = 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑_𝑑𝑎𝑡𝑒} → 𝑑𝑎𝑖𝑙𝑦 𝑠𝑢𝑚𝑚𝑎𝑟𝑦

e.g.

→ 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑑𝑎𝑡𝑒𝑠

Figure 7: Framework for Real-Time News Timeline Sum-
marization

The framework of our real-time news timeline generation
system is shown in Figure 7. This framework applies our proposed
methodWILSON on a 4-year news corpus of over 1 million news
articles4 from the Washington Post and can generate timelines
by event keywords in seconds. Firstly, we tokenize all the news
articles into sentences and conduct temporal tagging to label
each sentence. Then, to query relevant news content in real-time,
we build a search engine on tagged sentences and index both date
and content information. Specifically, we use ElasticSearch [7]
as our backend search engine. Note that, we can easily include
newly published news articles into our system by inserting them
into the existing search engine. Finally, given both the keywords
and duration time of a query event, our system will fetch related
news sentences and runWILSON to generate a complete news
timeline.

For example, we can generate a timeline about how the United
States and North Korea reached the summit in seconds by setting
query keywords to "trump, north korea, kim, summit, united
states" and time duration between 2018-01-02 to 2018-06-12. We
set the timeline length to 10 and present the output in Table 11.
Taking journalist generated timeline5 as a reference, we highlight
3https://www.bbc.com/news/entertainment-arts-15060651
4We excluded all news articles containing the keyword "timeline".
5https://www.washingtonpost.com/graphics/2018/national/
trump-kim-jong-un-timeline/

642



Groundtruth (From BBC) TILSE (TLSCONSTRAINTS) TILSE (ASMDS) WILSON (Ours)
2009-06-25 2009-06-25 2009-06-25 2009-06-25
Dr Murray finds Jackson unconscious in
the bedroom of his Los Angeles mansion
.
Paramedics are called to the house while
Dr Murray is performing CPR , accord-
ing to a recording of the 911 emergency
call .
He travels with the singer in an ambu-
lance to UCLA medical center where
Jackson later dies .

Jackson died at his Los Angeles home
on 25 June aged 50 .
Jackson died at his home on 25 June last
year at the age of 50 .

Michael Jackson died on 25 June 2009
from an overdose of the powerful anes-
thetic propofol .

Same drug class as morphine Given by
tablets or injection Used post-surgery
or for childbirth High doses can stop
breathing or lead to delirium and
seizures Jackson , who had a history of
health problems , collapsed at his Los
Angeles home around midday on Thurs-
day .
Mr Martinez , who interviewed Dr Mur-
ray two days after Jackson ’s death on
25 June 2009 , said the doctor told him
the singer had stopped breathing shortly
after 1100 .

2009-06-28 2009-06-28 2009-06-28 2009-06-28
Los Angeles police interview Dr Murray
for three hours .
His spokeswoman insists he is " not a
suspect ” .

Jackson ’s body was released to the fam-
ily on Friday night .
Jackson ’s body was released to the fam-
ily on Friday night .

Jackson family left ’ speechless and dev-
astated ’ by star ’s death Relatives of
Michael Jackson will seek a second au-
topsy on the star because they still have
unanswered questions about his death ,
family friends say .

Michael Jackson ’s family are said to be
seeking a second autopsy because they
still have questions about his death .
Earlier , veteran politician Rev Jesse Jack-
son , who has been counselling the fam-
ily , said they had a flurry of questions
of their own for Dr Murray .

2009-07-28 2009-07-28 2009-07-28 2009-07-28
Dr Murray ’s home is also raided .
The search warrant allows " authorised
investigators to look for medical records
relating to Michael Jackson and all of his
reported aliases ” .
A computer hard drive and mobile
phones are seized , and a pharmacy in
Las Vegas is later raided in connection
with the case .

Dr Conrad Murray , who police say is
not a suspect , was at Jackson ’s mansion
and tried to revive him before he died .
Police raid Jackson doctor ’s home Drug
police are searching the Las Vegas home
of Michael Jackson ’s doctor as part of
a manslaughter investigation into the
singer ’s death .

On Tuesday , police searched the Las Ve-
gas home and offices of Jackson ’s doctor
, ConradMurray , as part of amanslaugh-
ter investigation into the singer ’s death
.

Police raid Jackson doctor ’s home Drug
police are searching the Las Vegas home
of Michael Jackson ’s doctor as part of
a manslaughter investigation into the
singer ’s death .
On Tuesday , police searched the Las Ve-
gas home and offices of Jackson ’s doctor
, ConradMurray , as part of amanslaugh-
ter investigation into the singer ’s death
.

2010-06-25 2010-06-25 2010-06-25 2010-06-25
Michael Jackson ’s father , Joseph , files
a wrongful death lawsuit against the
physician .

Randy Jackson recently succeeded in
stopping an unapproved tribute show
to his brother Michael in Rome , which
had been scheduled for 25 June , the an-
niversary of his death .
The suit was filed as fans around the
world marked the first anniversary of
Jackson ’s death at the age of 50 .

Jackson died of a cardiac arrest at his
home on 25 June last year .

25 June 2010 Michael Jackson ’s father
, Joseph , files a wrongful death lawsuit
against the physician .
Fans sing outside the Jackson family
home .

2011-07-25 2011-07-25 2011-07-25 2011-07-25
Rehearsal footage from Michael Jackson
’s This Is It tour can not be used as evi-
dence , the judge rules .

JudgeMichael Pastor concluded onMon-
day that it would not help the defense
and that " it was a waste of my time . "
25 July 2011 Rehearsal footage from
Michael Jackson ’s

But Judge Michael Pastor ruled on Mon-
day that the film would not help the de-
fense team and was a waste of his time
.

JudgeMichael Pastor concluded onMon-
day that it would not help the defense
and that " it was a waste of my time .
25 July 2011 Rehearsal footage from
Michael Jackson ’s

2011-08-30 2011-08-30 2011-08-30 2011-08-30
Michael Jackson ’s dermatologist is
barred from giving evidence at the trial .
Dr Murray ’s lawyers had planned to ar-
gue that Arnold Klein had administered
the singer with painkillers for " no valid
reason ” but prosecutors said they were
attempting to transfer responsibility for
his death away from Dr Murray .
Testimony from five other doctors who
treated Jackson is also disallowed .

Janet Jackson to miss concert Janet Jack-
son said she would find it " difficult "
to attend the tribute concert in Cardiff
Janet Jackson will not be attending her
brother Michael Jackson ’s tribute con-
cert in Cardiff .
Because of the trial , the timing of this
tribute to our brother would be too diffi-
cult for me , " Ms Jackson said in a state-
ment .

Janet Jackson to miss concert Janet Jack-
son said she would find it " difficult "
to attend the tribute concert in Cardiff
Janet Jackson will not be attending her
brother Michael Jackson ’s tribute con-
cert in Cardiff .

But Superior Court Judge Michael Pas-
tor ruled that Arnold Klein would not
be called to testify after prosecution
lawyers said the defensewanted to trans-
fer responsibility for Jackson ’s death to
the dermatologist .
Because of the trial , the timing of this
tribute to our brother would be too diffi-
cult for me , " Ms Jackson said in a state-
ment .

2011-09-29 2011-09-29 2011-09-29 2011-09-29
Jackson ’s bodyguard , Alberto Alvarez ,
testifies that on the night Jackson died ,
Dr Murray ordered him to pick up vials
of medicine before phoning for an am-
bulance .
“ In my personal experience , I believed
Dr Murray had the best intentions for
Mr Jackson , ” Mr Alvarez said .

29 September 2011 Last updated at 15:44
GMT Help Live coverage of the trial of
Michael Jackson ’s personal physician ,
Dr ConradMurray , who is charged with
involuntary manslaughter of the singer
.
29 September 2011 Last updated at 04:16
GMT Help A key aide and a security
guard have told the manslaughter trial
of Michael Jackson ’s doctor of events
on the day the superstar died .

However , Jermaine and Randy Jackson
said it should not go ahead because it
would clash with the trial of Conrad
Murray , the singer ’s former doctor ac-
cused of his involuntary manslaughter
.

Jackson ’s bodyguard Alberto Alvarez
claims Dr Murray " grabbed a handful
of vials " and told him to put them in a
bag Michael Jackson ’s doctor told the
performer ’s bodyguard to pick up vials
of medicine before phoning for help on
the day he died , his trial has heard .
29 September 2011 Last updated at 04:16
GMT Help A key aide and a security
guard have told the manslaughter trial
of Michael Jackson ’s doctor of events
on the day the superstar died .

Table 10: Summary examples on the Death of Michael Jackson. To save space, we only select the first a few dates in chrono-
logical order, which appear in all 4 timelines. Main coverage with groundtruth is colored: red texts highlight the overlaps
between groundtruth and TILSE/ours while blue texts highlight the distinct overlaps between groundtruth and ours. Note
that all summarization approaches use exactly the same sentence candidates pool.
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2018-03-08 2018-04-01
Jason Aldag The Post reports : North
Korea ’s belligerent leader , Kim Jong
Un , has asked President Trump for
talks and Trump has agreed to meet
him " by May , ...

CIA Director Mike Pompeo , left , and
North Korean leader Kim Jong Un
shake hands during a meeting in in
Pyongyang , North Korea on Easter
Weekend .

2018-04-16 2018-04-20
The only way the United States can
persuade North Korea to peacefully
give up its pursuit of these weapons
is if Kim believes Trump ’s threat of
military force is credible .

7:30 a.m. Friday North Korea ’s state
media reports that leader Kim Jong
Un has left Pyongyang for the North
- South summit meeting with South
Korean President Moon Jae - in .

2018-04-27 2018-05-09
... North Korean leader Kim Jong Un
on Friday morning ... walking into
South Korea for a historic summit
with President Moon Jae - in that will
lay the groundwork for a meeting be-
tween Kim and President Trump .

Their release came as Secretary of
State Mike Pompeo visited North Ko-
rea onWednesday to finalize plans for
a historic summit meeting between
Trump and the North ’s leader , Kim
Jong Un .

2018-05-16 2018-05-24
North Korea has taken repeated ... and
threatening to scrap next month ’s
planned summit between Kim and U.S.
President Donald Trump , saying it wo
n’t be unilaterally pressured into re-
linquishing its nuclear weapons .

After weeks of receiving and even
appearing to encourage chants of “
Nobel ” ahead of a planned historic
meeting with North Korea dictator
Kim Jong Un , President Trump on
Thursday abruptly canceled the June
12 summit .

2018-06-05 2018-06-12
... Donald Trump cast his Tuesday
summit with North Korea ’s Kim Jong
Un as a “ one - time shot ” for the
autocratic leader to ditch his nuclear
weapons and enter the community of
nations ...

President Trump said the U.S. will end
its " war games " with South Korea
after the historic summit with North
Korean leader Kim Jong Un on June
12 .

Table 11: WILSON generated output of the timeline about
how the U.S. and North Korea finally had the summit.
Main coverage with journalist generated timeline is color-
coded blue, and some trivial contexts are omitted by ellip-
sis for space.

the coverage between our generated news timeline with the
journalist-generated timeline in blue color and demonstrate that
our output is aligned well with the journalist-generated timeline,
showing the effectiveness ofWILSON in practice.

6 RELATEDWORK
Existing works in summarizing timelines for a specific topic from
relevant news articles include both supervised and unsupervised
approaches. As representatives of supervised approaches, [25]
leverages learning to rank techniques based on sentence features,
while [27] proposes a matrix factorization framework to pre-
dict importance scores of sentences. Unsupervised approaches
usually optimize task-specific heuristic object functions, which
measure relevance, coverage and diversity of daily summaries.
For example, [28] solves the optimization problem by iteratively
substituting sentences in summaries, while the state-of-the-art
framework TILSE adapts the sub-modularity framework from
multi-document summarization domains to optimize timeline
summarization [12].

In addition to extractive methods, some recent works also uti-
lize abstractive summarization methods to generate more com-
pact sentences as daily summaries [19]. Although the generated
sentences are empirically proved to be readable, the reliability
of generated summaries are not guaranteed, probably leading to
false information. Extractive summarization methods, however,
directly borrow sentences from original news articles and do
not encounter reliability issue. Thus, in this paper, we utilize
extractive summarization for both readability and reliability of
generated timelines.

Besides ROUGE scores, [19] is the only existing work to in-
clude human in the evaluation, but they just assess the readability
of daily summaries as they utilize the abstractive summarization.
Since none of the previous studies utilize user study to measure
the generation quality of the whole news timelines, we are the
first work to include user study in timeline evaluation and con-
sult journalists to assess the generation quality of the entire news
timelines.

7 CONCLUSION
This paper shows that, with accurate date selection, we can gener-
ate high-quality news timelines without considering the temporal
correlation of text summarization. Leveraging the explicit date
selection, we propose a fast and effective unsupervised time-
line summarization method namedWILSON. Specifically,WIL-
SON outperforms state-of-the-art approaches in both ROUGE
scores and speed, significantly improving concatenate ROUGE-2
F1 scores by 9.5%∼17.7%, time-sensitive ROUGE-2 F1 scores by
17.1%∼123.1% and reducing generation time by two orders of
magnitude, which allows us to develop a real-time news timeline
generation system for the news room. More importantly, a user
study with professional journalists also confirms that the outputs
of WILSON are closer to human-generated ones than outputs of
other methods. Last but not least, this work also suggests two
potential directions for future works, i.e. considering both occur-
rence and recency of events for better salient date selection and
reducing contextual correlation across dates by balancing local
and global summarization to improve daily summarization.
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A REPRODUCTION
We present the experiment details to reproduce our results.

Datasets and pre-processing. Both timeline17 and crisis are
available at http://l3s.de/~gtran/timeline/. We use spaCy 6 to tok-
enize news articles into sentences. For temporal tagging, we use
HeidelTime 7 to detect all temporal expressions in each sentence.

6https://spacy.io
7https://github.com/HeidelTime/heideltime

If one sentence contain multiple date expressions, we consider
all distinct date-sentence pairs in generating dated sentences
{(𝑑𝑎𝑡𝑒𝑖 , 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝑖 )}. Besides, each sentence is also paired with
the publication date of the article it appears in.

Evaluation. As suggested at the beginning of Section 5.2 in
[25], we set the number of selected dates𝑇 to the number of dates
in each ground-truth timeline, and the number of sentences per
day 𝑁 to the rounded value of the average number of sentences
per date from the corresponding ground-truth timeline. In Table
4 and Table 5, we follow existing works and use ROUGE-1.5.5 to
get concatenate ROUGE scores, including ROUGE-1, ROUGE-2
and ROUGE-S*, which ignores date selection in the generated
summarization and concatenate all daily summaries together.
For comparison with TILSE, we use the evaluation library from
the authors 8 for time-sensitive ROUGE scores in Table 6. But
different from previous papers, for Timeline17 dataset, TILSE [11]
mixed articles of the same topic from different news agencies
together and uses filtered sentence corpus for both datasets. Thus,
for a fair comparison, we dump their sentence candidate pool
through TILSE code and run our daily summarization on the same
sentence candidate pool for each timeline. In speed evaluation, we
do not consider the temporal tagging in the pre-processing, and
only measure the speed of generation on the tagged sentences
for both TILSE and WILSON. The wall time is measured on a
24-core machine.

Implementation details of WILSON. For daily summariza-
tion, we group dated sentences {(𝑑𝑎𝑡𝑒𝑖 , 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝑖 )} by the date to
obtain the sentence candidates for each date. Since one sentence
can have multiple paired dates, it may appear in multiple daily
summaries. When utilizing TextRank [13] to generate daily sum-
maries, we use BM25 [18] scores as edgeweight. More specifically,
when calculating the edge weight of one sentence to other sen-
tences, we treat the source sentence as query and other sentences
as documents, and use its BM25 relevance scores as edge weights.
BM25 weights are unsymmetrical, so we build a directed graph
for each date and then run the PageRank algorithm to select top
sentences as daily summaries. For PageRank algorithm in both
date selection and daily summarization, we use the implemen-
tation of NetworkX 9 with default damping parameter 𝛼 = 0.85.
Code is available at https://github.com/wilson-nts/WILSON.

Implementation details of baselines. Among all the base-
lines, TILSE is the only one with source code available. Therefore,
for all the other baselines, we follow the existing works [9, 25, 27],
adopt the conventional experiment setting and directly report
the results from previous papers. For the news timeline outputs
of TILSE [12] (both TLSCONSTRAINTS and ASMDS), we use the
author implementation 10 and their provided configurations 11.
Note that, the TILSE implementation uses the same processing
(e.g. caches sentence similarity calculation) to generate multi-
ple timelines that use the same news corpus, therefore, we add
the processing time back in measuring the generation time per
timeline.

8https://github.com/smartschat/tilse/tree/master/tilse/evaluation
9https://networkx.github.io/
10https://github.com/smartschat/tilse
11https://github.com/smartschat/tilse/tree/master/configs
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ABSTRACT
The democratization of data access and the adoption of OLAP in
scenarios requiring hand-free interfaces push towards the cre-
ation of smart OLAP interfaces. In this demonstration we present
COOL, a tool supporting natural language COnversational OLap
sessions. COOL interprets and translates a natural language dia-
logue into an OLAP session that starts with a GPSJ (Generalized
Projection, Selection and Join) query. The interpretation relies
on a formal grammar and a knowledge base storing metadata
from a multidimensional cube. COOL is portable, robust, and
requires minimal user intervention. It adopts an n-gram based
model and a string similarity function to match known entities
in the natural language description. In case of incomplete text
description, COOL can obtain the correct query either through
automatic inference or through interactions with the user to dis-
ambiguate the text. The goal of the demonstration is to let the
audience evaluate the usability of COOL and its capabilities in
assisting query formulation and ambiguity/error resolution.

1 INTRODUCTION
Following the spreading of analytic tools, a heterogeneous plethora
of data scientists is accessing data. However, the gap between data
scientists and analytic skills is growing since different types of
data require to learn specialized metaphors and formal tools (e.g.,
SQL language to query relational data). Natural language inter-
faces are a promising bridge towards the democratization of data
access [13]. Rather than demanding vertical skills in computer sci-
ence and data architectures, natural language is a native “tool” to
organize and provide meaningful questions/answers. Interfacing
natural language processing (either written or spoken) to data-
base systems opens to new opportunities for data exploration and
querying [9]. Actually, in the area of data warehouse, OLAP (On-
Line Analytical Processing) is an “ante litteram” smart interface,
since it supports the users with a “point-and-click” metaphor to
avoid writing well-formed SQL queries. Nonetheless, the pos-
sibility of having a conversation with a smart assistant to run
an OLAP session (i.e., a set of related OLAP queries) opens to
new scenarios and applications. It is not just a matter of fur-
ther reducing the complexity of posing a query: a conversational
OLAP system must also provide feedback to refine and correct
wrong queries, and it must have memory to relate subsequent
requests. A reference application scenario is augmented business
intelligence [6], where hand-free interfaces are mandatory.

In this demo paper, we propose COOL to convert natural
language into COnversational OLap sessions composed of GPSJ
queries and analytic operators. GPSJ [8] is the main class of
queries used in OLAP since it enables Generalized Projection,
Selection and Join operations over a set of tables. Although some

© 2021 Association for Computing Machinery. Published in Proceedings of the 24th
International Conference on Extending Database Technology (EDBT), March 23-26,
2021, ISBN 978-x-xxxx-xxxx-x/YY/MM on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.
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natural language interfaces to databases have already been pro-
posed [3], this is the first proposal addressing a full-fledged im-
plementation for OLAP analytical sessions that is:

• Automated and portable: by reading metadata (e.g., hier-
archy structures, measures, attributes, and aggregation
operators) from a ROLAP engine, COOL automatically
builds the minimal lexicon involved in the translation.

• Robust to user inaccuracies in syntax, OLAP terms, and
attribute values, by exploiting metadata and implicit in-
formation.

• Extendable and easily configurable on a data warehouse
(DW) without a heavy manual definition of the lexicon.
The minimal lexicon is extendable by importing known
ontologies in the Knowledge Base.

COOL’s initial proposal in [4] has been now extended by (1) im-
plementing a full-fledged application that supports a complete
OLAP session rather than a single query; and (2) providing a
visual metaphor based on the Dimensional Fact Model (DFM)
[7] to guide user interaction (Figure 2 conceptualizes a multidi-
mensional cube with the DFM formalism). Noticeably, the user
interface’s effectiveness has been assessed with 40 users, includ-
ing data scientists and master students with varying skill levels.

The goal of the demonstration is to let the audience evaluate
the usability of COOL and its capabilities in assisting query for-
mulation and ambiguity/error resolution. The system is publicly
available at https://big.csr.unibo.it/cool.

2 SYSTEM OVERVIEW
Figure 1 sketches a functional view of the architecture. Given
a set of multidimensional cubes (DW), we distinguish between
an offline phase (to initialize and configure the system) and an
online phase (to enable the user interaction). We refer the user
to [7] for an explanation of the DW terminology.

Demo
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2.1 The offline phase
The offline phase automatically extracts the set of entities E, i.e.,
the DW-specific terms used to express the queries. Such informa-
tion is stored in the knowledge base (KB), which relies on the DFM
expressiveness [7]. This phase runs only when the DW undergoes
modification (e.g., cube schemas or data instances) and extracts
all multidimensional metadata. A cube modeled as a star schema
in a ROLAP engine consists of dimension tables (DTs: the cube
hierarchies) and a fact table (FT: the cube). The Automatic KB
feeding extracts measures (FT columns not included in the pri-
mary key), attributes (DT columns), values (distinct instances of
the DT columns), and hierarchies (either coded in a specific table
or inferred [10]). These elements represent the lexicon necessary
to translate natural language into conversational sessions. COOL
supports lexicon extension with external synonyms that can be
automatically imported from open data ontologies (e.g., Wordnet
[11]) to widen the understood language. Besides the domain-
specific terminology, the KB also includes the set of standard
terms that are domain independent and that do not require any
feeding (e.g., group by, where, select). Further enrichment can
be optionally carried out manually when the application domain
involves a non-standard vocabulary (e.g., the physical names of
tables and columns do not match a standard vocabulary).

2.2 The online phase
The online phase runs every time a natural language query is
issued. In a hand-free scenario (e.g., [5]), the spoken query is
initially translated to text by the Speech-to-text software mod-
ule. Since this task is out of our research scope, we exploited the
public Web Speech API (https://wicg.github.io/speech-api/). The
uninterpreted text is then analyzed by the Interpretation step,
refined in the Disambiguation & Enhancement step, translated
by the SQL generation step, and finally executed and visualized
by the Execution & Visualization step.

2.2.1 Interpretation. Interpretation consists of two alter-
native steps. Full query interprets the texts describing full
queries (which happens when an analytic session starts). OLAP
operatormodifies the latest query when the user states an OLAP
operator along a session (i.e., roll-up, drill-down, and slice&dice).
The switch between the two steps to manage the conversation
(i.e., a dialog between the user and COOL) is modeled by two
states: engage and navigate.

• Engage: this is the initial state, in which the system ex-
pects a full query to be issued and whose interpretation
is demanded to Full query. When COOL achieves a suc-
cessful interpretation (i.e., it is able to run the query) it
switches to the navigate state.

• Navigate: the dialogue evolves by iteratively applying
OLAP operators that refine the query (e.g., by aggregat-
ing by different levels or narrowing the query selectiv-
ity). The management of these steps is demanded to OLAP
operator until the user resets the session, making COOL
return to the engage state.

Full query and OLAP operator follow these steps: (i) Tokenization
& Mapping, (ii) Parsing, and (iii) Checking & Annotation.

Tokenization & Mapping. A raw text 𝑇 is a sequence of
single words 𝑇 = ⟨𝑡1, ..., 𝑡𝑧⟩. The goal of this step is to identify
the entities in𝑇 , i.e., the only elements that will be involved in the
Parsing step. Turning a text into a sequence of entities means
finding a mapping between words in 𝑇 and E.

Definition 2.1 (Mapping & Mapping function). Amapping func-
tion𝑀 (𝑇 ) is a partial function that associates sub-sequences (or
𝑛-grams)1 from 𝑇 to entities in E such that:

• sub-sequences of 𝑇 have length 𝑛 at most;
• the mapping function determines a partitioning of 𝑇 ;
• a sub-sequence 𝑇 ′ = ⟨𝑡𝑖 , ..., 𝑡𝑙 ⟩ ∈ 𝑇 (with |𝑇 ′ | ≤ 𝑛) is
associated to an entity 𝐸 if and only if 𝑆𝑖𝑚(𝑇 ′, 𝐸) > 𝛼

(where 𝑆𝑖𝑚() is a similarity function, later defined) and
𝐸 ∈ 𝑇𝑜𝑝𝑁 (E,𝑇 ′) (where 𝑇𝑜𝑝𝑁 (E,𝑇 ′) is the set of 𝑁 en-
tities in E that are the most similar to 𝑇 ′ according to
𝑆𝑖𝑚(𝑇 ′, 𝐸)).

The output of a mapping function is a sequence𝑀 = ⟨𝐸1, ..., 𝐸𝑙 ⟩
on E that we call a mapping.

The similarity function 𝑆𝑖𝑚() is based on the Levenshtein dis-
tance and keeps token permutation into account to make similar-
ity robust to token permutations (e.g., sub-sequences ⟨𝑃 ., 𝐸𝑑𝑔𝑎𝑟 ⟩
and ⟨𝐸𝑑𝑔𝑎𝑟,𝐴𝑙𝑙𝑎𝑛, 𝑃𝑜𝑒⟩ must result similar).

Several mappings might exist between 𝑇 and E since Defini-
tion 2.1 admits sub-sequences of variable lengths (corresponding
to different partitionings of 𝑇 ) and associates the top similar
entities to each sub-sequence. This increases the interpretation
robustness since COOL chooses the best mapping through a
scoring function. Given a mapping 𝑀 = ⟨𝐸1, ..., 𝐸𝑚⟩, its score
𝑆𝑐𝑜𝑟𝑒 (𝑀) (i.e., the sum of entity similarities) is higher when𝑀 in-
cludes several entities with high similarity values. Intuitively, the
higher the mapping score, the higher the probability to determine
an optimal interpretation.

Parsing. Parsing validates the syntactical structure of a map-
ping against a formal grammar and outputs a data structure called
parse tree that is later used to translate a mapping into SQL.

In Full query, Parsing is responsible for the interpretation of
a complete GPSJ query stated in natural language. A GPSJ query
contains a measure clause (MC) and optional group-by (GC) and
selection (SC) clauses. Parsing a full query means searching in a
mapping the complex syntax structures (i.e., clauses) that build-
up the query. Given a mapping 𝑀 , the output of the parser is
a parse tree 𝑃𝑇𝑀 , i.e., an ordered tree that represents the syn-
tactic structure of a mapping according to the grammar from
Figure 3. To the aim of parsing, entities are terminal elements in
the grammar.

In OLAP operator, Parsing is responsible for searching the
syntactic structures of the OLAP operators that build-up the
conversation. The grammar is described in Figure 4. Our conver-
sation steps are inspired to well-known OLAP visual interfaces
(e.g., Tableau2). To apply an OLAP operator, COOL must be in the
state navigate, i.e., a full GPSJ query has been already successfully
interpreted and translated into a parse tree 𝑃𝑇𝐶 that acts as a
context for the operator. The output of the parser is a parse tree
𝑃𝑇𝑀 that is used to update 𝑃𝑇𝐶 (see Section 2.2.3).

Both GPSJ grammars are LL(1)3 [2], not ambiguous (i.e., each
mapping admits, at most, a single parse tree 𝑃𝑇𝑀 ), and can be
parsed by an LL(1) parser with linear complexity [2]. If the input
mapping𝑀 is fully parsed, 𝑃𝑇𝑀 includes all the entities as leaves.
Conversely, if only a portion of the input belongs to the gram-
mar, an LL(1) parser produces a partial parsing, meaning that it
returns a parse tree including the portion of the input mapping

1The term 𝑛-gram is used as a synonym of sub-sequence in the area of text mining.
2https://www.tableau.com/
3The rules presented in Figure 3 do not satisfy LL(1) constraints for readability
reasons. It is easy to turn such rules in an LL(1) complaint version, but the resulting
rules are much more complex to be read and understood.
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⟨GPSJ⟩ ::= ⟨MC⟩ ⟨GC⟩ ⟨SC⟩ | ⟨MC⟩ ⟨SC⟩ ⟨GC⟩ | ⟨SC⟩ ⟨GC⟩ ⟨MC⟩ | ⟨SC⟩ ⟨MC⟩ ⟨GC⟩
| ⟨GC⟩ ⟨SC⟩ ⟨MC⟩ | ⟨GC⟩ ⟨MC⟩ ⟨SC⟩ | ⟨MC⟩ ⟨SC⟩ | ⟨MC⟩ ⟨GC⟩
| ⟨SC⟩ ⟨MC⟩ | ⟨GC⟩ ⟨MC⟩ | ⟨MC⟩

⟨MC⟩ ::= ( ⟨Agg⟩ ⟨Mea⟩ | ⟨Mea⟩ ⟨Agg⟩ | ⟨Mea⟩ | ⟨Cnt⟩ ⟨Fct⟩ | ⟨Fct⟩ ⟨Cnt⟩
| ⟨Cnt⟩ ⟨Attr⟩ | ⟨Attr⟩ ⟨Cnt⟩)+

⟨GC⟩ ::= “𝑔𝑟𝑜𝑢𝑝 𝑏𝑦” ⟨Attr⟩+
⟨SC⟩ ::= “𝑤ℎ𝑒𝑟𝑒” ⟨SCA⟩

⟨SCA⟩ ::= ⟨SCN⟩ “𝑎𝑛𝑑” ⟨SCA⟩ | ⟨SCN⟩
⟨SCN⟩ ::= “𝑛𝑜𝑡” ⟨SSC⟩ | ⟨SSC⟩
⟨SSC⟩ ::= ⟨Attr⟩ ⟨Cop⟩ ⟨Val⟩ | ⟨Attr⟩ ⟨Val⟩ | ⟨Val⟩ ⟨Cop⟩ ⟨Attr⟩ | ⟨Val⟩ ⟨Attr⟩ | ⟨Val⟩
⟨Cop⟩ ::= “ = ” | “ <> ” | “ > ” | “ < ” | “ ≥ ” | “ ≤ ”

⟨Agg⟩ ::= “𝑠𝑢𝑚” | “𝑎𝑣𝑔” | “𝑚𝑖𝑛” | “𝑚𝑎𝑥” | “𝑠𝑡𝑑𝑒𝑣”
⟨Cnt⟩ ::= “𝑐𝑜𝑢𝑛𝑡” | “𝑐𝑜𝑢𝑛𝑡 𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡”
⟨Fct⟩ ::= Domain-specific facts

⟨Mea⟩ ::= Domain-specific measures

⟨Attr⟩ ::= Domain-specific attributes

⟨Val⟩ ::= Domain-specific values

Figure 3: Backus-Naur representation of the Full query
grammar. Entities from the KB are terminal symbols.
⟨OPERATOR⟩ ::= ⟨DRILL⟩ | ⟨ROLLUP⟩ | ⟨SAD⟩ | ⟨ADD⟩ | ⟨DROP⟩ | ⟨REPLACE⟩

⟨DRILL⟩ ::= “𝑑𝑟𝑖𝑙𝑙” ⟨Attr⟩𝑓 𝑟𝑜𝑚 “𝑡𝑜” ⟨Attr⟩𝑡𝑜 | “𝑑𝑟𝑖𝑙𝑙” ⟨Attr⟩
⟨ROLLUP⟩ ::= “𝑟𝑜𝑙𝑙𝑢𝑝” ⟨Attr⟩𝑓 𝑟𝑜𝑚 “𝑡𝑜” ⟨Attr⟩𝑡𝑜 | “𝑟𝑜𝑙𝑙𝑢𝑝” ⟨Attr⟩

⟨SAD⟩ ::= “𝑠𝑙𝑖𝑐𝑒” ⟨SSC⟩
⟨ADD⟩ ::= “𝑎𝑑𝑑” ( ⟨MC⟩ | ⟨Attr⟩ | ⟨SSC⟩)

⟨DROP⟩ ::= “𝑑𝑟𝑜𝑝” ( ⟨MC⟩ | ⟨Attr⟩ | ⟨SSC⟩)
⟨REPLACE⟩ ::= “𝑟𝑒𝑝𝑙𝑎𝑐𝑒” ( ⟨MC⟩𝑜𝑙𝑑 “𝑤𝑖𝑡ℎ” ⟨MC⟩𝑛𝑒𝑤 | ⟨Attr⟩𝑜𝑙𝑑 “𝑤𝑖𝑡ℎ” ⟨Attr⟩𝑛𝑒𝑤

| ⟨SSC⟩𝑜𝑙𝑑 “𝑤𝑖𝑡ℎ” ⟨SSC⟩𝑛𝑒𝑤 )

Figure 4: Backus-Naur representation of the OLAP
operator grammar. We omit ⟨MC⟩, ⟨Attr⟩, ⟨SSC⟩ in
common with Figure 3.

that belongs to the grammar (i.e., the 𝑃𝑇 rooted in ⟨GPSJ⟩). The
remaining entities can be either singleton or complex clauses that
could not be connected to the main parse tree. We will call parse
forest 𝑃𝐹𝑀 the union of the parse tree with residual clauses. Obvi-
ously, if all the entities are parsed, it is 𝑃𝐹𝑀 = 𝑃𝑇𝑀 . Considering
the whole forest rather than the simple parse tree enables disam-
biguation and errors to be recovered in the Disambiguation &
Enhancement step. Henceforth, we refer to the parser’s output as
a parse forest independently of the presence of residual clauses.

2.2.2 Disambiguation & enhancement. Due to natural lan-
guage ambiguities, speech-to-text inaccuracies, and wrong query
formulations, parts of the text can be misunderstood. The reasons
behind the misunderstandings are manifold, including (but not
limited to) a wrong usage of aggregation operators (e.g., sum-
ming non-additive measures), inconsistencies between attributes
and values in selection predicates (e.g., filtering on product “New
York” ), or grouping by a descriptive attribute. Such parts of the
parse forest are annotated as ambiguities. The Disambiguation
& Enhancement step solves ambiguities (if any) automatically
whenever possible (by exploiting implicit information) or by ask-
ing appropriate questions to the user. Through disambiguation,
the parse forest 𝑃𝐹𝑀 is reduced to a single parse tree 𝑃𝑇𝑀 .

2.2.3 SQL generation. SQL generation translates a full-query
parse tree into an executable SQL query. If an OLAP operator
has been submitted, the context parse tree 𝑃𝑇𝐶 must be up-
dated according to the OLAP operator parse tree 𝑃𝑇𝑀 . All the
OLAP operators can be implemented atop the addition/removal
of new/existing nodes in 𝑃𝑇𝐶 . We apply a depth-first search algo-
rithm to retrieve the clauses interested by the OLAP operator. We

recall that adding a new clause to ⟨GPSJ⟩ (e.g., “add city" requires
to add the attribute City) requires to append the new clause to
the existing ⟨MC⟩/⟨GC⟩/⟨SC⟩ (and to create it if it does not exist
in ⟨GPSJ⟩). Given a full query parse tree 𝑃𝑇𝑀 , the generation
of its corresponding SQL requires to fill in the SELECT, WHERE,
GROUP BY and FROM statements. The SQL generation applies to
both star and snowflake schemas [7] and is done as follows:

• SELECT: measures and aggregation operators from ⟨MC⟩
and attributes in the group by clause ⟨GC⟩;

• WHERE: predicates from the selection clause ⟨SC⟩;
• GROUP BY: attributes from the group by clause ⟨GC⟩;
• FROM: measures, attributes, and values identify fact and
dimension tables. The join path is identified by following
the referential integrity constraints.

3 VISUALIZATION METAPHOR
The obtained query is run on the DW and the results are reported
to the user by the Execution & Visualization software mod-
ule. The visual interaction relies on the DFM [7] (Figures 5 and 6),
which natively provides a graphical representation for multidi-
mensional cubes and queries: such representation is conceptual
and user-oriented, and its effectiveness is confirmed by its adop-
tion in commercial tools (e.g., https://www.indyco.com/) for both
modeling and descriptive purposes. With reference to Figure 2,
the DFM explicitly represents the cube as a rectangle (i.e., Sales)
including the measure names (e.g., StoreSales) surrounded by
hierarchies organized in many-to-one acyclic graphs (e.g., Prod-
ucts are grouped in Types). This representation includes all the
elements necessary to formulate a GPSJ query, namely measure
clauses, group-by clauses, and selection clauses on both measures
and dimensional attributes.

At first, users are asked to submit the natural language descrip-
tion of a full query (e.g., “return the medium costs for Beer and
Wine by gender” ). Once COOL interprets the natural language
query, it shows in green the entities that are fully-understood
(product_category=Beer and Wine, store_cost(avg), and
gender in Figure 5) and, if no ambiguities exist, it also returns
the query result. If some ambiguities exist, COOL shows in yellow
the ambiguous elements on the DFM one by one. For instance,
when users ask for “average costs in the USA” (Figure 6), COOL
shows that store_cost(avg) is correctly understood, while USA
is ambiguous since it belongs to both attributes store_country
and country. In the case of ambiguities, besides color codes,
COOL notifies the user of the encountered ambiguity and en-
ablesmultiple resolutions (e.g., either picking the correct attribute
or dropping the clause). COOL also shows the parse tree on re-
quest, enabling more skilled users to understand how natural
language is interpreted. After issuing a full query, the conver-
sational session proceeds by describing further analytic steps
(e.g., “generalize product subcategory to category” or more briefly
“generalize product subcategory” ).

We tested COOL against the Foodmart [1] cube with 40 users,
mainly master students in data science, with basic or advanced
knowledge of business intelligence and data warehousing. On
a scale from 1 (very poor) to 5 (very high), on average, users
scored 3.60 +− 0.7 their familiarity with the English language,
and 3.28 +− 1.1 their familiarity with the OLAP paradigm. Users
evaluated the responsiveness and user-friendliness of COOL as
4.09 +− 0.85, and the overall user experience (e.g., the perceived
translation accuracy) as 3.82 +− 0.91, confirming a good — or even
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Figure 5: COOL returns the results for a fully-interpreted query.

Figure 6: COOL shows a hint to disambiguate themember “USA”.

optimal — experience. Finally, the average response time is less
than 1 second for mappings including up to 9 entities.

4 DEMO PROPOSAL
In the demonstration, we develop an experience to showcase the
translation of natural language dialogues into analytical sessions.
In particular, we consider the usability criteria of a visual interface
from [12]. Usability is assessed by learnability (how easily novel
users accomplish basic tasks), efficiency (how quickly users can
perform tasks), error recovery (how many errors users make and
how easily can they recover from these errors), and satisfaction
(how pleasant it is to use the interface). Two distinct scenarios
are proposed to assess these functionalities.

In the guided scenario, we drive the formulation of analytic
sessions on the Sales cube. In particular, we provide users with
three formal definitions of GPSJ queries in the format 𝐺𝑃𝑆 𝐽 =

{{𝐺𝐶}, {𝑆𝐶}, {𝑀𝐶}}; users interact with the system by formu-
lating such queries in natural language. Once the query descrip-
tion is submitted (spoken or written), COOL drives users in the
resolutions of ambiguities, if any, through a question-answer ap-
proach. Then, further analytics steps are shown to the user, who
is required to abstract and describe the operators necessary to
accomplish such steps. In such a way, we address learnability and
efficiency, allowing users to approach COOL in a user-friendly
manner.

In the following unguided scenario, users are to freely interact
with COOL starting only with a generic analytic task (e.g., “Inves-
tigate sales drop. This might depend on examining products sales
over time” ). This requires to formulate custom analytic goals and
sessions toward such goals (e.g., sales drop for the category “Beer
and Wine” might be caused by a drop in “Wine” sales). As we

expect users to encounter ambiguities while freely navigating the
cube (e.g., in case of homonyms and synonyms), we address the
robustness of COOL through its error recovery capability. Also,
we assess user satisfaction by understanding how easy it is for
the user to accomplish their analytic goal (i.e., how many steps
it takes).
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ABSTRACT
Urban conditions are monitored by a wide variety of sensors
that measure several attributes, such as temperature and traffic
volume. The correlations of sensors help to analyze and under-
stand the urban conditions accurately. The correlated attribute
pattern (CAP) mining discovers correlations among multiple at-
tributes from the sets of sensors spatially close to each other and
temporally correlated in their measurements. In this paper, we
develop a visualization system for CAP mining and demonstrate
analysis of smart city data. Our visualization system supports
an intuitive understanding of mining results via sensor locations
on maps and temporal changes of their measurements. In our
demonstration scenarios, we provide four smart city datasets
collected from China and Santander, Spain. We demonstrate that
our system helps interactive analysis of smart city data.

1 INTRODUCTION
Many cities have started smart city initiatives and installed a wide
variety of sensors that measure several attributes, such as traffic
volume and temperature. The collected data from smart cities
is used for continuously and cooperatively monitoring urban
conditions, such as the distribution of air pollution, the transition
of traffic volume, and the change of citizen activity. Researchers
and municipalities analyze smart city data and make a decision
for urban planning. For example, environmental researchers in
Shanghai Jiao Tong university analyze the relationships between
traffic and air pollution [5, 7]. Santander, Spain monitors the
traffic volumes within the city and informs people of the real-time
traffic information [6]. They work on obtaining useful patterns
in cities by using database and data mining techniques.

Smart city data has spatial and temporal information. For
analysing spatio-temporal data, we proposed correlated attribute
pattern (CAP) mining [2, 3]. CAP mining aims to find correlated
attributes of sensors that are spatially close to each other and
whose measurements temporally co-evolve. We developed an ef-
ficient algorithm for CAP mining, called Miscela and presented
that the correlated attribute patterns can discover useful knowl-
edge from smart city data. We show an example that illustrates
the effectiveness of CAP mining.

∗ These authors contributed equally. Yuya Sasaki is the corresponding author.
© 2021 Copyright held by the owner/author(s). Published in Proceedings of the
24th International Conference on Extending Database Technology (EDBT), March
23-26, 2021, ISBN 978-3-89318-084-4 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.
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(a) Sensor location (b) Correlation

Figure 1: The correlation between traffic volume and tem-
perature in Santander [2]

Example 1.1. Figure 1 shows locations of three sensors 𝑠1, 𝑠2,
and 𝑠3 in Santander and these measured values. 𝑠1 and 𝑠2 mea-
sure traffic volume and 𝑠3 measures temperature. These sensors
are spatially close to each other, and the measurements of them
co-evolve frequently (i.e., change the values simultaneously).
The CAP mining can discover correlated patterns among traffic
volume and temperature measured by the three sensors. Mu-
nicipalities can understand that traffic behavior in the area is
correlated to temperature from the CAP.

Contribution: In this paper, we develop a visualization system
for CAP mining, called Miscela-V, to support an intuitive analy-
sis of smart city data.Miscela-V has the following characteris-
tics:

• Miscela-V natively supports CAPminingwith user-specified
parameters.

• Miscela-V visualizes sensor locations on a map and tem-
poral changes of sensor measurements.

• Miscela-V caches results of CAP mining and reuses the
cached results for efficient interactive analysis.

Our system supports intuitive understanding of analytic re-
sults via visualization. We demonstrate an analysis of smart city
data by using our system. We use two different scale datasets:
Santander (i.e., city size) and China (i.e., country size). Our system
is effective for any space and time scales such as daily city-scale
and minutely country-scale datasets. For further investigation,
we open our source codes1.

This work is a collaborated work with researchers in database,
environmental, and urban science fields, so we validated that
Miscela-V is effective for environmental and urban science stud-
ies. Through the demonstration of Miscela-V, we expect that
Miscela-V helps researchers in more other fields for accelerating
their analysis.
1https://github.com/OnizukaLab/MISCELA-v
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Related systems:There are several systems for visualizing spatio-
temporal data (e.g., [1, 4, 8]). Some systems support spatial-
temporal pattern mining but no systems support CAP mining.
The novelty of our system is that it focuses on CAP mining with
efficient interactive analysis.

Organization: The rest of this paper is organized as follows. We
explain the CAP mining and the CAP mining methodMiscela
in Section 2 as preliminaries. Then, we present a visualization
system Miscela-V in Section 3. After that, we show our demon-
stration plan in Section 4, followed by the conclusion in Section 5.

2 PRELIMINARIES
We explain CAP mining andMiscela as preliminaries.

2.1 CAP mining
We consider a sensor set in a geographical region. Each sensor
has longitude and latitude as spatial information. It measures a
specific attribute, such as temperature, traffic volume, and PM2.5.
Each sensor is synchronized, that is, it measures its sensor value
at a certain interval. We define that measurements are co-evolved
if they increase/decrease at the same timestamp.

The CAP mining aims for discovering spatially and temporally
correlated environmental properties such that multiple sensors
measure those attributes that satisfy the following conditions: (1)
the set of sensors are located at spatially close locations to each
other, (2) the measurements of the sensors co-evolve frequently,
and (3) the set of attributes measured by the sensors includes
multiple attributes. The CAP mining restricts the correlation
between different attributes to support diversified analysis of
smart cities. This restriction can be easily removed.

CAP mining has several parameters for obtaining CAPs that
users want. We here summarize parameters and their impacts on
the number of CAPs to be discovered.

• Evolving rate 𝜀: The CAP mining removes slight changes
of measurements by specifying 𝜀. If the amount of changes
from the previous timestamp is smaller than 𝜀, the times-
tamps are evaluated as that the measurements do not
change. If 𝜀 is large, sensors likely co-evolve, so the number
of CAPs likely becomes large.

• Distance threshold 𝜂: 𝜂 gives a criterion of close sensors.
If a distance between the two sensors is less than 𝜂, we
define that they are close. If 𝜂 is large, many sensors are
spatially close to each other.

• The maximum number of CAP attributes 𝜇: 𝜇 restricts the
number of attributes in CAPs. The CAP mining discovers
correlations among not larger than 𝜇 attributes.

• The minimum support 𝜓 : 𝜓 is the minimum support. If
measurements of two sensors co-evolve at more than 𝜓
timestamps, they are co-evolving sensors. If 𝜓 is small,
many sensors become co-evolving sensors, and thus the
number of CAPs likely becomes large.

Since the sensitivity of parameters depends on datasets, it is
necessary to support interactive analysis. Please seemore detailed
definitions in [2].

2.2 MISCELA: an efficient algorithm for CAP
mining

Miscela supports efficient computation for CAP mining, which
comprises the following four steps.

(1) Linear segmentation: We filter uninteresting data fluc-
tuation by applying a linear segmentation algorithm to
time series data.

(2) Extracting evolving timestamps: We extract evolving
timestamps in the measurements of all sensors by using
the given evolving rate 𝜀.

(3) Discovering spatially connected sets of sensors: Since
CAPs are discovered only from spatially connected sets,
we divide a given sensor set into spatially close sensors to
restrict the search space.

(4) CAP search: For each set of spatially close sensors, we
search for CAPs. We recursively conduct the CAP search
with gradually expanding spatially close sensors according
to a tree structure for CAP mining.

Please see more detailed and precise procedures in [2].

3 MISCELA-V: VISUALIZING SYSTEM
We present our visualization system, which we callMiscela-V.
The purposes of Miscela-V is (1) to easily find CAPs in users’
datasets, (2) to visually understand the CAPs, and (3) to efficiently
support interactive analysis. First, Miscela-V natively supports
CAPmining. It visualizes locations of sensors and changes of their
measurements to understands reasons why these attributes are
correlated. In addition, sinceMiscelamay take a large execution
depending on their parameters, it has a caching mechanism for
efficient interactive CAP mining.

3.1 System overview
Figure 2 shows an overview of Miscela-V. Miscela-V has three
main processes to visualize CAP mining results. First, we upload
datasets to the system. Then, we input parameters of CAPmining
for obtaining appropriate results. Finally, we can see the CAP
results on a map and the temporal behaviors of their measure-
ments. Since our system supports interactive analysis, data and
CAPs are stored in databases. Users can easily change parame-
ters to check CAPs in different parameters. If users specify the
parameters of CAPs stored in databases, we can immediately see
CAPs without processingMiscela.

Figure 3 shows a visualization of sensor locations and temporal
measurements. Figures (A) and (B) show sensor locations, and
three sensors are highlighted. When we click a sensor in the map,
sensors are highlighted if their measurements are correlated
to measurements of the clicked sensor. In addition, we can see
the attributes of correlated sensors. Figures (C) and (D) show
temporal behaviors of measurements, which we can zoom in and
zoom out. In (D), you can see that three measurements frequently
increase/decrease together. Our visualization helps to intuitively
understand correlations among sensors.

3.2 Data upload
We can easily upload our datasets via a user interface that pro-
vides two ways of data upload: drag-and-drop and selecting files
from finder. For uploading datasets, we need to prepare three
files; data.csv, location.csv, and attribute.csv. data.csv lists the
set of measurements at all timestamps. We note that timestamps
must be the same time intervals, and sensor values are null if the
sensors do not have the sensor values at timestamps. location.csv
lists the sensor information; identifier, attribute, and location.
attribute.csv lists all attributes in the datasets. Each file should
have the following formats:
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Figure 2: An overview ofMiscela-V
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Figure 3: Visualization of CAP mining results

data.csv� �
id,attribute,time,data
00000,temperature,2016-03-01 00:00:00,null
00000,temperature,2016-03-01 01:00:00,9.87
· · ·� �
location.csv� �
id,attribute,lat,lon
00000,temperature,43.46192,-3.80176
00001,temperature,43.46212,-3.79979
· · ·� �
attribute.csv� �
temperature
light
· · ·� �
The data.csv might be very large. For scalably uploading large

datasets, we divide the file into 10,000 lines and send each divided

set to our system. Each dataset is stored in databases, and thus
we can use the dataset without re-uploading by specifying the
dataset name.

3.3 Caching mechanism
Miscela may take a long time for finding CAPs depending on
data and user-specified parameters. For efficient interactive anal-
ysis,Miscela-V caches CAPmining results and reuses the cached
results if users specify the same parameter setting. This caching
mechanism accelerates the analytic process and reduces the com-
putational costs when the front end receives multiple requests at
the same time.

We store the name of the dataset, parameters, and CAPs (i.e., a
set of sets of sensors) to the database. Before computing CAPs by
Miscela, our system searches for CAPswith the same parameters
and the name of the dataset from the database. Since interactive
analysis could input the same parameters to compare results
repeatedly, the caching mechanism supports more efficient data
analysis.
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3.4 Implementation
We use MongoDB as database management systems and django
as API servers.Miscela is implemented by Python, and a map
visualization is implemented by JavaScript, jQuery, and Google
Map API.Miscela returns a set of sets of sensors as CAPs that
might include many sensors (or empty), and its format is JSON.
Since RDBMS is not suitable for Miscela outputs, we select
MongoDB to store datasets and CAP results. Since we design that
these components are connected by APIs, we can modify each
component individually.

4 DEMONSTRATION PLAN
For Miscela-V demonstrations, we use smart city data in San-
tander and China, as a case study. We will introduce the system
architecture, the analytic process, and how to use our system
to find knowledge. Attendees can interact with our system to
perform analysis using the data. For example, sinceMiscela-V
can show temporal changes of sensors’ measurements, we can
analyze the difference of measurements before/after COVID-19.
The attendees will interactively discover CAPs of smart city data.

The attendees can use the following datasets2:
• Santander includes 552 sensors in Stantander, Spain from
2016 March 1st to September 30th. The number of records
is 2,329,936. Attributes are temperature, light, sound, traffic
volume, and humidity.

• China6 includes 9,438 sensors in China from 2016 Sep-
tember 1st to 2018 October 31st. The number of records is
6,889,740. Attributes are PM2.5, SO2, NO2, CO, and O3.

• China13 includes 4,810 sensors. The period is the same
as China6. The number of records is 3,511,300. Attributes
are additionally included in temperature, humidity, air
pressure, daylight, rainfall percentage, rain volume, and
wind speed.

• COVID-19 includes 12 sensors in Shanghai andGuangzhou,
China from 2020 January 1st to June 30th. The number of
records is 52,261. Attributes are PM2.5, PM10, SO2, NO2,
CO, and O3. This data includes the period after and before
spreading COVID-19.

We plan to demonstrate the following case studies.
Interactive analysis: In this demonstration, we first provide
interactive analysis to upload datasets, input parameters, and
view CAP results. Attendees can freely use our system and try
to find interesting patterns in our datasets. First, attendees set
the parameters for finding CAPs and see the visualization of the
results. Second, the attendees can investigate why the CAPs are
discovered by visualizing the temporal behavior of measurements
of sensors. Since our system highlights sensors that are correlated,
they can understand what sensors are correlated intuitively.
Santander dataset: a single city data analysis: This scenario
aims to find interesting knowledge within Santander. Attendees
will find interesting CAPs from Santander datasets and inves-
tigate the results via visualization. For example, we can find
correlated patterns among temperatures and traffic volumes and
among light and temperature.
China dataset: multiple cities data analysis: This scenario
aims to find interesting knowledge among many cities in China.
In particular, attendees can intuitively understand that two sen-
sors are correlated even if they are distant from each other. Fur-
thermore, sensors are not correlated if two sensors are vertically
2We consider sensors with different attributes as different sensors even if they are
located at the same location.

(a) Before (b) After

Figure 4: An example of correlation pattern changes be-
fore/after spreading COVID19

(north and south) close to each other, but if sensors are horizon-
tally (east and west) close, they are correlated. These are often
caused by wind directions. We can understand that wind direc-
tions affect to air quality from the CAPs. Our system supports
for understanding reasons why sensors are correlated and not
correlated.
COVID-19 analysis: COVID-19 dataset includes the period be-
fore and after spreading COVID-19. Attendees can know that
levels of air pollution change due to spreading COVID-19. Fig-
ure 4 shows the correlation patterns before and after COVID-19.
From these results, we can visually understand that our activity
changes affect not only the amounts of air pollutants but also
their correlation patterns.

5 CONCLUSION
In this paper, we introduced a visualization systemMiscela-V
for CAP mining and demonstrated the data analysis of smart
city viaMiscela-V. We plan to continuously extend our system
to improve usability and add additional data mining techniques,
based on user feedback. We hope that our system accelerates
data analysis in many research fields.
Acknowledgements This work was supported by JSPS KAK-
ENHI Grant Numbers JP20H00584.
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ABSTRACT
Heterogeneous Information Networks (HINs) provide a natural
way to represent various relationships between entities of differ-
ent types, thus they are valuable in many domains. Extracting
knowledge from HINs typically relies on the concept of metap-
aths, which are paths in the network schema denoting relations
of different semantics among entities. Moreover, real-world HINs
are often extremely large, containing millions of nodes and edges.
Thus, exploring HINs not only requires interdisciplinary exper-
tise, being able both to interpret and select appropriate metapaths
in the network, but also to run the analysis in an efficient and
scalable manner. Since there is a lack of tools to facilitate this task,
we present SciNeM, an open source, publicly available, scalable
analysis tool for metapath-based knowledge discovery in HINs.

1 INTRODUCTION
Many modern applications rely on analysing large amounts of
data that comprise multiple types of entities and relationships be-
tween them. For instance, data-driven science, which has become
a very popular and effective paradigm for scientific research, is
based on computationally exploring large heterogeneous datasets.
Also, the foundations of the Fourth Industrial Revolution heavily
rely on data science techniques for data-driven decision making
based on large heterogeneous datasets from multiple sources.

Heterogeneous Information Networks (HINs) provide a way to
represent such complex information. They are graphs comprising
multiple types of nodes and relationships between them [7]. An
example HIN is illustrated in Figure 1, representing the interac-
tions of genes (𝐺) with a class of biomolecules called miRNAs (𝑀)
and their relationship with particular biological processes (𝑃 ) and
diseases (𝐷)1. It contains 4 distinct node types (𝐺 ,𝑀 , 𝑃 , 𝐷) and 3
distinct types of (bidirectional) relationships (𝐺𝑀 , 𝐺𝑃 , 𝐺𝐷).

Various data science methods to analyse HINs and facilitate
knowledge discovery from them have been proposed [6, 8, 11].
These typically rely on the concept of metapaths: paths in the
HIN schema that represent types of entity relationships with
particular semantics. For instance, two interesting metapaths in
the HIN of Figure 1 are𝐺𝑃𝐺 and𝑀𝐺𝐷𝐺𝑀 . The former connects
genes based on the processes they are involved in (i.e., strongly
connected genes based on it may share common functionalities).

1Note that some edges have been added for presentation purposes and may not
reflect real relationships.

© 2021 Copyright held by the owner/author(s). Published in Proceedings of the
24th International Conference on Extending Database Technology (EDBT), March
23-26, 2021, ISBN 978-3-89318-084-4 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Figure 1: An example HIN.

The latter links miRNAs based on the diseases which relate to
the genes with which they interact.

Many HIN analysis algorithms use metapaths as input; the
metapath-based connectivity can be used to define a measure for
node similarity search [8] or similarity join [11] or to rank nodes
based on their centrality in a metapath-defined network [6]. In
the previous example, using the metapath 𝐺𝑃𝐺 for similarity
join could reveal that genes 𝐼𝑇𝐺𝐵2 and𝐶𝑌𝑃1𝐴2 are similar since
they are involved in two common processes. Moreover, to further
elaborate the analysis, it is often useful to apply constraints to a
given metapath (e.g., in the previous example, to consider only
metapath instances involving Cell adhesion).

Despite the wide applicability of HINs and the plethora of
proposed algorithms in the literature, there is still a lack of
(a) open-source, scalable implementations of these methods, and
(b) tools to facilitate their use by non-experts. Also, implementing
metapath-based analysis of HINs on top of a graph database, such
as Neo4j, requires significant programming skills and familiarity
with the system’s native query language; also, certain important
features of Neo4j, including distributed execution, are only avail-
able in the Enterprise Edition. As a first attempt to fill this gap,
we have recently developed SPHINX [2]; however, SPHINX is
mainly tailored to similarity search and does not offer parallel
and distributed execution that is required to scale to larger HINs.

In this work, we introduce SciNeM2 (Data Science tool for
heterogeneous Network Mining), an open-source3 tool that of-
fers a wide range of functionalities for exploring and analysing
HINs and utilises Apache Spark for scaling out through parallel
and distributed computation. SciNeM provides an intuitive, Web-
based user interface to build and execute complex constrained
metapath-based queries and to explore and visualise the cor-
responding results. Under the hood, all the supported state-of-
the-art HIN analysis types have been implemented in a scalable
2http://scinem.imsi.athenarc.gr
3https://github.com/schatzopoulos/SciNeM
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manner supporting the distributed execution of analysis tasks
on computational clusters. SciNeM has a modular architecture
making it easy to extend it with additional algorithms and func-
tionalities. Currently, it supports the following operations, given
a user-specified metapath: ranking entities using a random walk
mode, retrieving the top-𝑘 most similar pairs of entities, finding
the most similar entities to a query entity, and discovering entity
communities.

2 SYSTEM OVERVIEW
2.1 Architecture & Functionalities
Figure 2 illustrates the key components of SciNeM’s architecture,
as well as the data flow between them. All (back-end) components
have been implemented on top of Apache Spark to allow scalable
execution on computational clusters. In the following paragraphs,
we elaborate on their functionality and implementation.

2.1.1 Distributed HIN Storage. This is SciNeM’s main storage
layer. It is responsible for the storage of all HIN data and it is
based on a Hadoop Distributed File System (HDFS) hosted on the
storage media of the underlying computational cluster. Each HIN
consists of a set of files including (a) a schema file, that describes
the HIN node types and the types of relationships between them
(compatible with Cytoscape’s Elements JSON format4), (b) node
files in TSV format containing data attributes for the nodes of
each type, and (c) relationship files that define the edges of the
network. User-created HINs can be uploaded to this storage layer
via the Web front-end.

2.1.2 HIN Transformation. Most metapath-based analysis ty-
pes, like those discussed in Section 2.1.3, require a common pre-
processing step that transforms the initial heterogeneous network
to a homogeneous (or bipartite) one. This network is essentially a
view of the HIN containing only the nodes of the first (or the first
and last, respectively) entity type in the metapath and having
one edge for each metapath instance connecting these entities.
Further analysis is performed on the aforementioned HIN view.

The HIN Transformation component implements this pre-
processing step. It takes as input a user-defined metapath and
a set of constraints and identifies all pairs of nodes that are
connected based on this constrained metapath. For each pair,
it also captures the number of metapath instances that connect
the corresponding nodes.

Since the calculation of the metapath-based view is a compu-
tationally intensive task, special care was taken for the efficient
implementation of this component. The core of transformation is
calculated using matrix multiplication between the adjacency ma-
trices defined by the relations of the given metapath. Specifically,
our approach is based on thework in [6] but extends it by utilising
sparse matrix representations. Since the order of multiplications
significantly affects the performance of the whole processing,
we adopt a dynamic programming approach that estimates the
optimal ordering taking into consideration the computational
cost of sparse matrix multiplications introduced in [4]. This mod-
ification offers significant speedups in many cases. In addition,
the implementation of this component utilises Apache Spark,
thus taking advantage of parallel and distributed computing.

2.1.3 Metapath-based analysis. This component implements
a range of metapath-based mining tasks for HINs. In particu-
lar, state-of-the-art methods for entity ranking, similarity join,

4https://cytoscape.org/
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Figure 2: Architecture of SciNeM.

similarity search, and community detection are implemented, as
explained below.

Given a particular constrained metapath, the Entity Ranking
component estimates the significance of entities according to a
random walk model applied to the corresponding HIN view [6].
In particular, the PageRank score of each node in the HIN view
is calculated, and the corresponding entities are ranked based
on these scores. The intuition is that this procedure brings as
top-ranked results nodes which are well-connected inside the
metapath-based view, i.e., nodes that correspond to entities which
are important according to the semantics of the selected con-
strained metapath (this is why so many other nodes connect to
them). To guarantee scalability, a high-performance Spark-based
ranking component has been developed, allowing the analysis of
very large HINs.

The Similarity Join component identifies the most similar pairs
of nodes based on the way they are linked with other nodes when
considering a particular (possibly constrained) metapath. As this
type of analysis is computationally intensive, SciNeM leverages
Locality Sensitive Hashing [3] (LSH) using Bucketed Random
Projection to prune expensive similarity calculations. For each
node, a feature vector is constructed based on its connectivity
on the metapath-based HIN view. These vectors are then hashed
into buckets, so that vectors that are similar end up in the same
bucket with high probability. A similar approach is also followed
by other relevant works (e.g., [11]).

The Similarity Search component detects nodes that are similar
to a given query node. The notion of similarity used is the same
as the one used by the Similarity Join component. In more details,
SciNeM performs an approximate nearest neighbors search us-
ing the Euclidean Distance to determine (dis)similarity between
nodes. Moreover, the same hashing technique as in Similarity
Join is used to effectively prune the search space. Furthermore,
it should be noted that, to improve scalability of the performed
analyses, the Similarity Search and Join components have been
implemented based on Apache Spark.

Finally, the Community Detection component identifies com-
munities (i.e., clusters) of interacting nodes/entities based solely
on the structural properties of the selected metapath-based HIN
view, that is produced by the HIN Transformation component
(see Section 2.1.2). The analysis is based on the Label Propagation
Algorithm (LPA) [5], which is a popular community detection ap-
proach that requires no a priori knowledge about the network’s
structure. It is based on propagating labels throughout the net-
work and forming the communities following the intuition that
labels will be trapped and become dominant in clusters of densely
connected nodes. Although this type of analysis is less intensive
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(a) Analysis task submission form.

(b) Constraint selection pop-up window.

Figure 3: Screenshots from sumbitting a Ranking analy-
sis on the BIO dataset, using the MGDGM metapath with the
constraint D.name=‘Colorectal Cancer’

than other approaches (e.g., Fast-Greedy, Infomap), for large net-
works it requires significant computational power and has a very
large memory footprint. This is why the corresponding compo-
nent of SciNeM takes advantage of a Spark-based, distributed
implementation of the algorithm.

2.1.4 Web front-end. SciNeM’s Web UI supports determining
and executing metapath-based analysis tasks. These can be ex-
ecuted on already available HINs or new ones uploaded by the
user. A visual wizard used to determine the details of the desired
analysis tasks lies at the core of this component (see also Sec-
tion 2.2). The front-end was implemented using React5 JS library
assisted with Redux6 state container for efficient state manage-
ment. Graph visualisations (e.g., HIN schema visualisation for the
query builder) were implemented using the Cytoscape JS library.

2.2 User Interface
Figure 3a presents a screenshot of SciNeM’s analysis task sub-
mission form. To perform a new analysis, the user first selects
an existing HIN from the corresponding drop-down menu or
uploads a new one. The latter requires uploading a single com-
pressed file that contains the files described in Section 2.1.17.

After selecting the input HIN, the user specifies the metapath
to be used for the analysis and the desired constraints. To assist
the user in selecting metapaths, an interactive version of the
schema of the HIN is displayed in the submission form. The user
can either click on the entity types (nodes) of the schema to
incrementally build the desired metapath, or add extra entity
types by selecting them from a drop-down list after clicking on
the green button located at the end of the currently selected
sequence. To select the desired constraints, the user can click on

5https://reactjs.org/
6https://redux.js.org/
7Details can also be found in SciNeM’s dataset upload page.

(a) Ranking results.

(b) Visualisations of ranking results.

Figure 4: Screenshots from the results of the analysis of
Figure 3.

the filter icon located below the involved entity type. A pop-up
windowwill appear on the screen (see Figure 3b). The user selects
the desired constraints and then hits the ‘Save’ button.

Finally, the user selects the types of analysis to be performed
(multiple can be selected simultaneously) and clicks on the ‘Exe-
cute analysis’ button8. A progress bar appears in the screen (see
at the bottom of Figure 3a) to monitor the status of the execution.
Moreover, a unique identifier is assigned to each analysis so that
the user can return to the analysis using the option ‘Reattach to
analysis’ from SciNeM’s navigation bar.

After the analysis is completed, the results appear in a tabular
form (see Figure 4a). The user can browse them or select to
download all or part of them. She also has the option to select
some of them to create a condition file, i.e. a special file in JSON
format that encodes them into a set of constraints that can be
used in a later analysis. In particular, after creating a condition
file the user can provide it as input in a later analysis by clicking
on the ‘Load from file’ button of the constraints pop-up window
(see Figure 3b). Essentially this creates a mechanism to use the
results of an analysis as input to a subsequent one.

Finally, apart from the tabular results, SciNeM also provides a
set of visualisations. The user can click on the ‘Visualize’ button,
located above the list of results, and select the visualization type
to display (for the cases for which more than one visualization
type is provided). Figure 4b displays examples of such visual-
isations, in particular a bar chart showing the distribution of
ranking scores in the top ranking results of Figure 4a and a graph
showing the part of the corresponding metapath-based HIN view
that contains the top-10 results (the node sizes are based on the
corresponding ranking scores).

8It should be noted that for all similarity search analysis tasks the user should also
determine the search entity before starting the execution.
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Figure 5: Schema definitions of pre-loaded HINs.

3 DEMONSTRATION
During the demonstration, the audiencewill have the opportunity
to become familiar with the concepts of metapath-based analysis
in HINs and to interact with SciNeM’s user interface exploring
its functionalities. The members of the audience will be able to
execute their own analysis tasks and, if needed, to upload their
ownHINs. However, to facilitate examining SciNeM’s capabilities,
three datasets have been already prepared and made available:

• BIO. It contains data about the involvement of genes in
biological processes and diseases (based on GeneOntol-
ogy [1, 10] and DisGeNET9, respectively). It also contains
data about the suppression of genes by miRNAs (provided
by MR-microT10). It includes 4 entity types (see Figure 5a),
containing a total of 61, 177 nodes and 4, 190, 808 edges.

• GDELT. It contains data for news articles and associated
entities collected by the GDELT project11. In particular,
we have collected articles published in 2019 from BBC
and CNN. GDELT consists of 5 entity types (see Figure 5c)
totaling 245, 950 nodes and 6, 523, 924 relationships.

• DBLP-Ext. This HIN contains bibliographic data from the
DBLP Citation Dataset of AMiner [9] enriched with eu-
ropean project data from the Cordis project12. It contains
6 entity types with 12, 152, 816 nodes and 190, 998, 307 re-
lationships. DBLP-Ext’s schema is presented in Figure 5b.

Based on these HINs, four indicative scenarios have been pre-
pared for demonstration. Short descriptions of them follow:
Scenario 1: Important miRNAs for a disease (Ranking). Al-
though the involvement of genes in biological processes and
diseases is relatively well-studied, this is not the case for the role
of miRNAs. Yet, it is possible to reveal a miRNA’s role based on
the list of genes it suppresses. Using SciNeM on the BIO dataset,
a member of the audience can reveal miRNAs having important
role in ‘Colorectal Cancer’ by selecting to rank miRNAs based on
the 𝑀𝐺𝐷𝐺𝑀 metapath using the D.name = ‘Colorectal Cancer’
condition. Highly ranked entities have large centrality in the
corresponding HIN view, thus they are highly connected through
metapath instances that satisfy the determined condition about
the disease of interest. A search in PubMed reveals that there are
various articles mentioning in their abstract and/or title both the
top retrieved miRNA (‘miR-548c’) and disease of interest.
Scenario 2: Similar venues to a given one based on the top-
ics of their published papers (Similarity Search). Amember
of the audience is interested in finding similar venues to the “Very
Large Data Bases” (VDLB) conference, according to the topics of
their recent papers. As a result, she selects to perform a similar-
ity search on the DBLP-Ext dataset using the 𝑉𝑃𝑇𝑃𝑉 metapath
and the constraint 𝑃 .𝑦𝑒𝑎𝑟 > 2000. The top results include very
relevant venues like the “Int’l Conference on Data Engineering”
9https://www.disgenet.org
10http://diana.imis.athena-innovation.gr/DianaTools/index.php?r=mrmicrot/
11https://www.gdeltproject.org
12https://cordis.europa.eu

(ICDE) in the first position and the “Int’l Conference on Manage-
ment of Data” (SIGMOD) in the second position.
Scenario 3: Communities of organizations based on arti-
cle mentions (Community Detection). A member of the au-
dience is interested in revealing clusters of related organizations
(e.g., governmental institutions, companies) based on their men-
tions in the news articles of an international network source
like CNN. To do so, she chooses to perform community detec-
tion on the GDELT dataset using the 𝑂𝐴𝑂 metapath with the
𝐴.𝑠𝑜𝑢𝑟𝑐𝑒 =“cnn” constraint. The results contain various inter-
esting communities; e.g., the one with 𝑖𝑑 = 111 consists of 3
institutions having an agenda related to climate change (“UN In-
tergovernmental Panel on Climate”, “European Union Copernicus
Climate Change Programme”, “World Meteorological Organiza-
tion”), whereas the one with 𝑖𝑑 = 394 includes 7 institutions
involved in politics in India.

4 CONCLUSION
We demonstrated SciNeM, an open source, high-performance and
scalable online data science tool that facilitates metapath-based
analysis of HINs. Its intuitive user interface aids non-experts
to perform a variety of HIN analysis tasks such as metapath-
based ranking, similarity join, similarity search, and community
detection. Finally, SciNeM’s users may upload their own HIN
datasets to analyse, however the tool also provides pre-loaded
datasets for demonstration reasons.
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ABSTRACT

In this demonstration paper, we present an innovative IoT Meta-

Control Firewall (IMCF), which allows users to schedule their

IoT devices in smart buildings (e.g., heating, cooling, lights) in or-

der to reach some long-term energy consumption objective (e.g.,

consume less than 400 kWh in December) while, at the same

time, retaining high levels of user convenience (comfort). IMCF

internally deploys an AI-inspired Energy-Planner (EP) algorithm

that exploits domain-specific operators to balance the trade-off

between convenience and energy consumption. Our framework

then filters the rules of users in a way that these do not conflict

with the long-term objectives (i.e., like a network firewall). We

demonstrate IMCF using a prototype system we have developed

in the Laravel PHP web framework using the open Home Au-

tomation Bus (OpenHAB), the Linux crontab daemon and Any-

place for building modeling. In our demonstration scenario, atten-

dees will be able to observe the execution and benefits of IMCF

on a graphical dashboard using pre-configured or custom-made

Meta-Rule-Table profiles.

1 INTRODUCTION

Internet of Things (IoT) refers to a large number of physical de-

vices being connected to the Internet that are able to “see", “hear",

“think", “react", perform tasks, as well as communicate with each

other using open protocols [8]. According to Gartner1, it is ex-

pected that the number of IoT devices per house will increase to

more than 500 smart devices by 2022. Many IoT devices also en-

able the execution of Rule Automation Workflows (RAW), which

span from simple predicate statements to procedural workflows

capturing a smart actuation pipeline in tools like IFTTT [5], con-

trolling Philips Hue lights, BMW i3 EVs or Daikin A/Cs [7][4],

Apilio.io, or Apple Automation.

RAW aim to meet the convenience level of users under spe-

cific conditions (e.g., “warm house to 22°C if cold or preheat

Electric Vehicle when approaching”). In the simplest case, a user

expresses preferences manually through a vendor-specific smart-

phone app / integrated app (e.g., see Fig. 1). This process requires

continuous attention by custodians, making it a cumbersome pro-

cess that generates erroneous executions and that clearly calls for

more automated (i.e., “smarter”) approaches.

1Gartner Inc., URL: https://tinyurl.com/ycrxsmy6
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Figure 1: The openHAB bridge gives the privilege to users to

adapt a Meta-Rule-Table (MRT) profile as necessary

One of the most straightforward approaches to achieve a smarter

RAW is to utilize the so-called trigger-action model. Users con-

trol the behavior of an IoT by specifying triggers (e.g., “if it is

sunny outside”) and their resultant actions (e.g., “turn off the

lights”). Because of its conceptual simplicity, the trigger-action

model (a.k.a. Event-Condition-Action) has attracted significant

attention with ifttt.com (“If This Then That”) becoming one of

the first large-scale deployments. Services like Apilio expanded

the expressiveness of the RAW with Boolean predicates (e.g.,

conjunctions) and Apple Automation [3] even introduced pro-

cedural programming constructs, like variables, while loops, if

statements and functions to advance RAW actuations.

However, none of the above RAW technologies enables indi-

viduals or group of users to express their convenience (comfort)

preferences while achieving some long-term objective. Similarly,

prior research [6] was mainly concerned with improving comfort

levels of HVAC system but not long-term energy planning tar-

gets. In our scenario, the long-term objective relates to energy

consumption (e.g., in kWh), which is motivated by European’s

Commission calls for a climate-neutral Europe by 20502 . Partic-

ularly, we aim to consume energy more intelligently and within

margins we define as persons or group of users.

In this demo we present an innovative system, coined the IoT

Meta-Control Firewall (IMCF) [2], which aims to fill the gap

of manual RAW tuning to reach the energy consumption targets.

The user (or group of users) start out by defining a vector of RAW

rules, dubbed MRT , and an Energy Consumption Profile, dubbed

ECP . The high-level objective is to identify among all MRT rules

2EU 2050 long-term strategy, https://tiny.cc/9wu8iz
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Figure 2: IMCF Graphical User Interface: Integration of the IMCF Software Library in the openHAB Home Automation Stack.

From left to right: a) Interactive and Automated Menu; b) Dashboard for smart space current state linked with Anyplace Viewer;

c) Meta-Rule-Table Configurator; and d) IMCF Results.

the ones that must be dropped so that the user stays within the

desired energy budget according to the ECP history (e.g., con-

sume less than 400 kWh in December). For this purpose, it uti-

lizes an intelligent search algorithm, coined EP (Energy Planner),

which goes over the exponentially large search space of
∑
r ≤n r -

combinations (where n = |MRT |), yielding quickly the rules to be

dropped. Particularly, IMCF is composed of an intelligent energy

amortization process and an AI algorithm for balancing the trade-

off between convenience and energy consumption, and satisfying

the RAW pipelines of users in a way that these do not conflict

with the long-term objectives.

Considering several system implications, IMCF can be imple-

mented in various ways such as the following: (i) a cloud meta-

service, which guides the IFTTT cloud service that in turn con-

trols a local controller (e.g., Linux, as in the case of OpenHab),

which controls the sensors/actuators (e.g., A/C unit); or (ii) a lo-

cal controller (filtering rules out at the network level on the local

controller).

2 THE IOT META-CONTROL FIREWALL

(IMCF) OVERVIEW

In this section, we describe a prototype system we have devel-

oped for IMCF using the open Home Automation Bus (Open-

HAB)3, the Linux crontab daemon, Anyplace for building mod-

eling [1], as well as the Laravel PHP web framework following

the model–view–controller architectural pattern.

We start out with a discussion of the system architecture, fol-

lowed by the IMCF algorithm, and then describe the Graphical

User Interface (GUI) we have developed. The GUI integrates di-

rectly into OpenHAB’s mobile and web Panel view for both inter-

active management of IoT and automated management of Energy-

aware MRT pipelines using the EP described below.

3OpenHAB, https://openhab.org

2.1 System Architecture

Our system architecture comprises of the following components:

(i) a full-fledge local controller implemented inside the openHAB

stack, which is a smart home management software; and (ii) IMCF,

which is the software system that encapsulates the complete ap-

plication logic of the energy management stack we propose along

with the respective user interfaces.

Local Controller (LC): is a java-based system that can be in-

stalled on a micro device, like a Linux Raspberry PI, running on

the local network of a user. The LC will be in direct communi-

cation with the IoT devices (i.e., Things (TG)) to instruct them

based on the preferences registered by a user. A user will typi-

cally download the openHAB smartphone application (APP), for

iOS or Android, and interact with TG through LC. For the im-

plementation of LC we decided to extend the openHAB stack,

which is a vendor and technology-agnostic open source automa-

tion software for smart home that provides a rich ecosystem of

bridges through which a user can interact directly with IoT de-

vices (e.g., Daikin Smart A/C, Phillips HUE lights) both locally

and remotely. This gives us the benefit to achieve maximum IoT

market compatibility as the integration of IoT is always an im-

mense challenge.

To realize the operation of LC consider, for example, a user

inside his smart space that uses an APP to increase the tempera-

ture of an A/C from 21 to 25 degrees Celsius (see Figure 2a-b).

This manual interaction goes directly to LC that eventually com-

municates with TG (on older units this is typically refers to unen-

crypted http communication channels, either http querystring or

in some cases JSON web 2.0 interactions). When a user’s APP

is outside a smart space, the network firewall and Network Ad-

dress Translation (NAT) will obviously not let this user interact

with LC. As such, the user’s APP connects to the Cloud Con-

troller (CC), which is a server on the public Internet that com-

municates and controls LC remotely. The complete picture can

tentatively be complemented by a Cloud Meta-Controller (CMC),

like IFTTT, which can enable the user to configure and run vari-

ous custom rules. CMC would in this case interact with CC that
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Table 1: Evaluating our system prototype with respect to En-

ergy Consumption (FE ) and Convenience Error (FCE )

Time Duration Energy Consumption (FE ) Convenience Error (FCE )

Week 130.64 kWh 2.35%

Table 2: Individual Resident Convenience Error (FCE )

Users Convenience Error (FCE )

Father 0.8006%

Mother 0.7899%

Daughter 0.7595%

would in turn interact with LC that would eventually interact with

TG, all under the manual control of the user APP.

The IMCF Component: is a software extension to LC we have

implemented to enable the adaptation of convenience preferences

to meet the long-term energy planning targets of individuals or

group of individuals. It has been developed in a way that encap-

sulates the implementation of the EP algorithm but also the GUI

and storage necessary to allow the user to interact with the system.

EP is implemented as a JAVA library, which takes the user con-

figurations from a local MariaDB persistency layer. The storage

layer is populated by the user using the APP, which has been con-

figured in a way to integrate seamlessly the MRT rule definition

process through a web-based GUI (see Figure 2c,d). The GUI

code is written in the Laravel PHP web framework, as well as

JavaScript and HTML. The GUI code execution relies on a web-

server supporting PHP while for the IMCF EP library a cron job

daemon is assumed (available on Linux) that reliably invokes the

Energy Planning in fixed time intervals (e.g., every few minutes).

In case devices have to be turned on or off, the IMCF system has

the following options in our system:

• Binding-mode, where IMCF exploits the rich ecosystem of

bridges available on the openHAB open source project to

interact with local devices. We use this as the default mode,

as it allows our platform to scale up to a wide spectrum of

IoT devices.

• Extended mode, where IMCF implements locally the cus-

tom instructions for enabling and disabling the various TG

devices in the smart space of a user.

Given that many of the IoT communications are unencrypted,

this can be easily captured by deep packet analyzers like

Wireshark. Moreover, to avoid any additional CMC, CC

or LC interactions with TG, we also configure the LC net-

work firewall with the iptables command to disable

TCP flows to designated TG devices on the local network.

In this case, IMCF works actually as a real network fire-

wall by blocking all outgoing traffic from LC to TG.

Case scenario: We have deployed an instance of our real pro-

totype system for a family of three persons for one week. Partic-

ularly, we allowed each person to configure their personal pref-

erences using the Mobile APP that interacts with an IMCF-LC

node on a Linux VM on our datacenter described earlier. Partic-

ularly, each individual resident entered approximately three dif-

ferent meta-rules according to their personal preferences. One

of them have set the weekly energy consumption (kWh) limit

to 165kWh. This results in configuration data of approximately

65 bytes / user stored in the MariaDB persistency layer. In or-

der to measure the environmental parameters (i.e., temperature,

light) we use data from the open weather forecast API. We mea-

sure the performance of the proposed EP framework in regards

to Energy Consumption (FE ) and Convenience Error (FCE ). The

FE and FCE results for our evaluation are summarized in Table 1.

In respect to FCE our observation is that EP is indeed an efficient

approach for retrieving great user satisfaction, as it performs in 4

seconds on average with FCE ≈ 2.35%. Table 2 demonstrates for

each individual resident their own Average Convenience Error

values in respect with their configured meta-rules, showing both

a consistent and high satisfaction close to 99.2% for all residents.

Another observation is that FE ≈ 130.64 kWh is within the pre-

ferred budget limit as pre-configured by the user, and the system

behaves correspondingly to what we observed in the simulations.

Please note, this particular framework can be equally utilized in

various cases such as CO2 emission deduction, or any other sce-

nario type that requires a planning to conserve some kind of re-

sources.

2.2 The IMCF algorithm

The IMCF algorithm is composed of two subroutines: (i) the

Amortization Plan (AP); and the (ii) the Energy Plan (EP). The

amortization plan is responsible for calculating the maximum en-

ergy budget constraint (coined Ep ) through a pre-selected amor-

tization formula. Then an artificial intelligence approach is exe-

cuted every t seconds (e.g., hourly, daily, monthly, yearly pref-

erence) over a time period p (i.e., the complete duration of the

execution) for generating an energy plan solution s∗ for optimiz-

ing the Convenience Error

min FCE =

t∑

k=1

(
1

N

N∑

i=1

D∑

j=1

cej (MRi )), (1)

where cej is the difference between the desired output value Ω
j
i ∈

ℜ of a rule set by a user (temperature or light intensity level)

and the actual value O
j
i ∈ ℜ set by the controller, given by:

ce = |Ω
j
i | − |O

j
i |.

Subject to satisfying the Energy Consumption FE (s
∗) ≤ Ep , where:

FE =

t∑

k=1

(
1

N

N∑

i=1

D∑

j=1

ej (MRi )), (2)

Ep is total available energy budget for the complete period p dur-

ing which the execution of our algorithm takes place, N is the

total number of meta-rules, D the set of all IoT devices and ej is

the energy consumption of device j given the action defined by

output O
j
i of meta-rule MRi , given by:

E =




ej , if O
j
i is executed

0, otherwise
,

where ej is the energy cost of device j for MRi .

Amortization Plan (AP) Algorithm. The AP () subroutine is

initially executed for calculating the energy budget constraint Ep ,

subject to a monthly residence Energy Consumption Profile ECP .

There are several amortization strategies that can be used, such

as Linear Amortization Formula, Balloon Linear Amortization

Formula, and ECP-based Amortization Formula. Given that our

approach requires no training data and only a primitive MRT pref-

erence profile, this can be easily integrated in smart actuations

platforms.

Energy Plan (EP) Algorithm. An energy plan solution is a

vector s =< s1, . . . , sN >. A vector component si represents a
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meta-rule in the meta-rule-table MRT , where si = 0 means ignor-

ing meta-rule at position i of table MRT and si = 1 means adopt-

ing meta-rule at position i. We have adopted a hill-climbing al-

gorithm, an iterative local search heuristic, which doesn’t require

a learning history (like respective Machine Learning techniques),

doesn’t require a target function (e.g., like A*) and is straightfor-

ward to be implemented in a resource-constraint setting like local

smart controllers (e.g., Raspberry). At the beginning of the local

search heuristic an initial solution s∗ is developed that will spec-

ify the initial state of the algorithm either randomly or determin-

istically. For the optimization step, a hill-climbing local search

heuristic is utilized for local optimization with neighborhoods

that involve changing up to k components of the solution, which

is often referred to as k-opt. Each solution s is evaluated using

the performance metrics FE and FCE . A solution s is considered

better and replaces the current best solution s∗ if (FE (s ) ≤ Ep )

&& (FCE (s ) < FCE (s
∗)). The energy planner stops when τmax

iterations are completed. Alternatively, the algorithm can iterate

until ∄s |FCE (s ) < FCE (s
∗).

2.3 Graphical User Interface (GUI)

Our prototype GUI provides all the functionalities for a user par-

ticipating in IMCF. The GUI is divided into a Meta-Rule-Table

interface and the OpenHAB Rules Table, respectively as shown

in Figure 2b-c. The Meta-Rules interface prompts users to define

kWh preferred limit, temperature and light values for any config-

ured time slots. The OpenHAB Rules Table records are retrieved

through the OpenHAB Rest API system consisted of smart device

sensor measurements installed and pre-configured in a building.

These rule combinations are used by the AI Energy Planner algo-

rithm to satisfy the user needs, while keeping the balance between

convenience and energy consumption.

At a high level, our GUI enables the following functions: (i)

record OpenHAB item measurements/values on local storage and

present those on a table; (ii) configure various meta-rules in re-

gards of kWh limit, temperature and light values; (iii) operate

IMCF framework and get an efficient execution considering user

satisfaction along with balanced FCE and FE .

3 DEMONSTRATION SCENARIO

During the demonstration, the attendees will be able to appreciate

the key components in IMCF, as well as the adaptability and the

performance of our propositions (see Figure 2).

3.1 Demo Artifact

We have implemented a prototype of IMCF as a standalone pro-

gram that is loaded on a Linux-based local controller. Particularly,

we implemented a graphical user interface in the Laravel PHP

web framework, following the MVC architectural pattern where a

user has the privilege to upload a MRT profile that is stored on the

filesystem of the Linux device. A cron job has been programmed

in order to initiate our energy planner every few seconds. Every

time our program runs, it decides whether certain local IPs have

to be banned to satisfy user’s profile by interacting with the Linux

firewall using the iptables commands.

3.2 Demo Plan

The conference attendees will have the opportunity to interac-

tively engage with the OpenHAB and MRT user profile website

by setting up configurations through a smartphone. We will pre-

load a variety of synthetic and web-accessible rules to the MRT

user profile website back-end. The loaded rules will capture the

structure and needs of real residential data and will be very use-

ful to visually demonstrate how the IMCF algorithm works in

real time through the OpenHAB application.

The main objective of our intelligent algorithm is to identify

among an exponentially large search space of MRT rule combi-

nations the ones that must be dropped so that the user stays within

the desired energy budget. In order to present the benefits of our

propositions to the attendees, we will provide visual cues that will

enable the audience to understand the performance benefits (i.e.,

CPU time) and the negligible reduction in energy consumption

and convenience error we have observed during the experiments.

We will also provide conference attendees the opportunity to

create custom MRT profiles through the website. Our hypothesis

is that many data engineering researchers and practitioners would

feel more comfortable to formulate MRT profile predicates, as op-

posed to be limited within the boundaries of well-defined MRT

templates provided. We will provide participants the possibility

to upload an actual building plot through Anyplace. The Open-

HAB interface will allow the attendees to rapidly visualize the

result-sets on a smartphone, using fancy charts (pie, bar, etc.)

when the rules get enabled or disabled by the proposed firewall,

respectively. Our particular aim here will be to describe how the

IMCF structure, residing on the OpenHAB, will be accessible to

enable/disable rule services.

4 FUTURE WORK

In the future, we plan to further investigate multiple energy plan-

ners with conflicting interests but also to investigate the so-called

IMCF-Cloud extensions that will enable IMCF to operate as a

CMC controller in the cloud. We also aim to look at CO2 re-

ductions methods with algorithms geared towards the environ-

ment. Finally, we aim to investigate power workload identifica-

tion methods for power-hungry devices (e.g., white devices, elec-

tric vehicles, heating) and how to reschedule those workloads in

a environmental friendly manner.
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ABSTRACT
BBoxDB Streams is an extension of the key-bounding-box-value
store BBoxDB. The extension allows the handling of multi-dimen-
sional data streams. Multi-dimensional streams consist of 𝑛-
dimensional elements, such as position data (e.g., two-dimensio-
nal positions of cars or three-dimensional positions of aircraft). In
this demonstration, we show how BBoxDB Streams can be used
to process data streams of position data in a distributed manner.
The software allows the user to capture data streams and pro-
cess continuous queries. Continuous range queries or continuous
spatial joins are supported. The GUI of BBoxDB Streams shows
the query results interactively as an overlay over a map. For the
demonstration, public real-world data streams with positions
of aircraft and transport data are processed. Continuous range
queries such as which aircraft is currently in the area of Berlin? or
continuous spatial join queries such as which bus drives currently
through a forest? are executed, and the results can be observed
in real-time. The spatial joins are executed between the stream
data and previously stored static geographical information (e.g.,
the polygons of roads or forests), which are fetched from the
OpenStreetMap Project.

1 INTRODUCTION
Data streams consisting of position data are ubiquitous. For ex-
ample, aircraft periodically broadcast their positions via ADS-B
messages (Automatic Dependent Surveillance–Broadcast), and the
positions of buses, trains, or ferries of public transport companies
are available in real-time via the internet in GTFS format (General
Transit Feed Specification). Processing streams containing posi-
tion data is an essential topic in location-aware applications. The
ability to capture data streams and the near real-time execution
of queries is required to deal with the information of the stream.
Data streams can contain a lot of elements, and queries can be
expensive to evaluate. Therefore, a scalable solution is required
to process data streams.

BBoxDB Streams is an extension of BBoxDB [15], which allows
the efficient handling of 𝑛-dimensional data streams. BBoxDB
streams implements a novel way to execute efficient continuous
joins between dynamic elements from a data stream and static al-
ready stored 𝑛-dimensional big data. This capability is shown for
the first time in this demonstration. Besides, the GUI of BBoxDB
was enhanced to execute queries on data streams and show the
results interactively. This new enhancement is shown in this
demonstration for the first time. BBoxDB streams is included in
BBoxDB since version 0.9.5 and licensed under the Apache 2.0
license. The software can be freely downloaded from the website
of the project [3].

© 2021 Copyright held by the owner/author(s). Published in Proceedings of the
24th International Conference on Extending Database Technology (EDBT), March
23-26, 2021, ISBN 978-3-89318-084-4 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

In this demonstration, we show two types of queries with
BBoxDB Streams: (1) continuous range queries, and (2) continuous
spatial joins. Continuous range queries can answer questions such
as which aircraft are inside of a specific region of the airspace?.
Continuous spatial joins can be used to join the dynamic position
data of the streamwith static data (e.g., geographical information).
With a continuous spatial join, queries such as which buses are
closer than 10 miles to a forest? or which bus drives on a particular
street? can be answered.

The rest of the paper is organized as follows: Section 2 de-
scribes the key-features of BBoxDB and BBoxDB Streams. Sec-
tion 3 describes our demonstration. Section 4 describes the related
work. Section 5 concludes the paper.

2 BBOXDB AND BBOXDB STREAMS
The amount of data is increasingly growing. NoSQL databases
like distributed key-value stores (DKVS) are often used to handle
large amounts of data. In a DKVS, the data are assigned to the
nodes of a cluster. Each node stores only a part of the whole
dataset. A value is stored under a given key. Using this key, the
value can be retrieved. The key is the access path to the data. A
key for a one-dimensional value can be easily chosen. For data
with a higher dimensionality, a key is hard to choose. Which
key should be used for the geographic information about a road?
Using the name of the road as the key does not help to access
the data when a spatial range query is performed; the name does
not contain the information where the road is located. To answer
such range queries, a full data scan has to be performed; all stored
tuples have to be loaded and it needs to be tested whether or not
the stored value intersects with the given query rectangle. This
is an expensive operation that is performed on all nodes of the
distributed system.

BBoxDB was designed to solve this problem. BBoxDB is a
distributed key-bounding-box-value store (KBVS) which supports
the efficient storage and retrieval of 𝑛-dimensional data.

2.1 Basic Concepts of BBoxDB
BBoxDB is a distributed generic datastore optimized for the han-
dling of 𝑛-dimensional big data. Values are stored as byte arrays
together with a key and an 𝑛-dimensional bounding box as tu-
ples. The bounding box describes the location of the tuple in the
𝑛-dimensional space. Point and non-point data are supported
by BBoxDB. Tuples are grouped together in tables and multiple
tables of the same dimensionality can be stored together in a
distribution group. The space is split automatically to ensure al-
most equal-sized partitions; the data of these partitions (called
distribution regions) are assigned to the nodes of a cluster. The
tables of the same distribution group are distributed in the same
way; this means the tables are stored co-partitioned, which en-
ables the execution of efficient spatial joins. No data need to be
transferred through the network; all join partners are stored on
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the same node. The complete system is highly available, data can
be replicated and failing nodes are handled automatically.

Operations: Data are stored in BBoxDB with the put(table,
key, hrect, value) operation. As hrect parameter, an 𝑛-
dimensional bounding box (a hyperrectangle) has to be specified.
One-dimensional point data (as used in DKVS) can also be stored
in BBoxDB. In this case, the bounding box degenerates to a point
in the one-dimensional space.

Data are retrieved by the queryByRect(table, hrect) op-
eration, which retrieves all tuples whose bounding box inter-
sects with the query bounding box. The operation join(table1,
table2, hrect) executes a spatial join between the two tables
in the specified region in space.

Indexing: BBoxDB uses a two-level indexing structure that
enables the efficient execution of range queries. The global index
is used to map the distribution regions to the nodes of the cluster
(𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑟𝑒𝑔𝑖𝑜𝑛 → P(𝑛𝑜𝑑𝑒𝑠))1. The space is partitioned
(split and merged) by a space partitioner automatically, based
on the stored data [13]. Splitting and merging the space is done
transparently in the background without interrupting the access
to the data. BBoxDB provides multiple algorithms for the global
index. The used algorithm can be specified (KD-Trees [4] or Quad-
Trees [5]) when the distribution group is created. The local index
is stored on the nodes and maps from the space to the stored
tuples (𝑠𝑝𝑎𝑐𝑒 → 𝑡𝑢𝑝𝑙𝑒𝑠). This index is implemented by an R-Tree
[7] which is stored on the nodes.

User-defined filters: BBoxDB is a generic data store; the
stored values are a plain array of bytes. BBoxDB does not under-
stand the semantics of the stored data. Therefore, operations are
executed primarily on the bounding boxes of the tuples. User-
defined filters [14] (UDFs) can be used to decode the bytes of a
value (e.g., GeoJSON encoded data) and to refine the bounding
box based operations of the query processor. UDFs are developed
by the user of the system. Only the user who has stored the data
knows how to interpret the values of the data. Besides, BBoxDB
ships with a collection of UDFs for common data formats. UDFs
are written in Java and can use existing libraries.

One of the UDFs that have been included is capable of decoding
GeoJSON data. Using this UDF, a bounding box based spatial join
is refined to a spatial join on the real geometries of the values.
Intersecting bounding boxes is a necessary but not sufficient
criterion for a spatial join (see Figure 1).

(a) Two non-intersecting spatial objects. (b) Two intersecting spatial objects.

Figure 1: Two spatial objects (solid line) with intersecting
bounding boxes (dashed line). In (a), the spatial objects do
not intersect, while in (b), the spatial objects do intersect.

This UDF is used in the demonstration to refine the continuous
spatial joins. The property map of GeoJSON encoded objects (see
Listing 1) can also be taken into consideration in the UDF. For
example, this can be used to filter streets of a specific name like
Elizabeth Street. Queries such as find all buses which are on a street
named Elizabeth Street become possible.
1When replication is used, one distribution region is mapped to multiple nodes.

2.2 BBoxDB Streams
BBoxDB is an extension of BBoxDB that allows the handling of
data streams. With the extension, data streams can be captured
and continuous queries can be executed. Figure 2 shows the
architecture of the extension. The upper part of the figure shows
the stream capturing part, the lower part the query processing
part.

Stream
Capturing

Query
Processing

Data stream
(File, Pipe, Network Socket)

Data converter

BBoxDB-Client

Node a Node b Node c

BBoxDB-Client

BBoxDB GUI

Stream elements

put()Tuples

continuousQuery()Tuples

BBoxDB-Cluster

Figure 2: Handling a data stream with BBoxDB. The data
stream is captured, converted into tuples, and written to
the BBoxDB cluster. Afterward, the continuous queries
are executed and the result can be consumed.

Stream Capturing: BBoxDB Streams captures data continu-
ously from an input source like a file, a pipe, or a network socket.
After a stream element is read, the element is converted into
a BBoxDB tuple and sent to the BBoxDB nodes of the cluster2.
To communicate with the BBoxDB nodes, the regular BBoxDB-
Client library is used. The library manages the connection to the
nodes, observes the global index, and executes the operations on
the necessary nodes. Changes of the global index or the available
nodes are handled. The converted stream elements are written
to the BBoxDB cluster by executing the put() operation. The
bounding box of these tuples is compared with the global index;
the tuple is written to all nodes that are responsible for the region
is space. On these nodes, the potential join partners are stored for
a spatial join; the stream elements become co-partitioned to the
already stored data, and efficient spatial joins become possible.
After a node receives a tuple, the registered continuous queries
are executed. The highly-available architecture is also used for
the processing of the streams. Distribution groups can be stored
replicated, in this case the continuous queries are also registered
on multiple nodes. As the stream is written to a table, BBoxDB
splits the space, updates the global index, and re-distributes un-
even distributed tables automatically as described in [15, p. 20].

Query Processing: BBoxDB Streams enhances BBoxDB by
two operations for the handling of continuous queries: (1) con
tinuousQuery(queryPlan) and (2) cancelQuery(id). The first
operation registers a new query while the second operation can-
cels a previously registered query. The existing BBoxDB-Client
2BBoxDB ships with some data converter for common data formats like GTFS
or ADS-B. The converter decodes the input data, calculates the bounding box
and creates a tuple. Further data converters can be added easily by a user. For
certain stream types, multiple elements from the stream are combined into one
BBoxDB tuple. For example, the ADS-B format defines multiple message types.
Three different message types have to be read to get the current data of an aircraft.
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was enhanced by BBoxDB Streams to register continuous queries.
The BBoxDB-Client automatically registers the queries on the
required nodes of the cluster; this part of the client library was
re-used. In this demonstration, the GUI of BBoxDB uses the
BBoxDB-Client to register the queries and to obtain the results.
These tuples are consumed by the GUI and shown as an overlay
of a map. The stream handling functionality is now integrated
into the regular client library. Any application can create queries
on data streams and consume the results.

The query plan defines the operations of the continuous query.
In the query plan, (1) the type of the query (range query or spatial
join), (2) transformations, and (3) filters are defined. Technically,
the query plan is a JSON document that is sent to the BBoxDB
nodes. A helper class is available, which allows the easy and
syntactically correct creation of these query plans.

Transformations allow themodification of the stream elements
and the potential join partners. For example, the bounding box
of an aircraft can be extended and joined with the obstacles in
the airspace. Due to the enhancement of the bounding box, a
possible collision is detected and reported before the aircraft and
the obstacle actually collide. Also the potential collision of two
aircraft can be detected. This is done by storing the data stream
in a table and performing a continuous spatial join between the
new stream elements and the materialized stream elements from
the table.

Filters allow removing elements from the stream or from the
list of potential join partners. For example, process only the
aircraft with a call sign starting with LH. In addition, UDFs can
also be used as a filter.

The complete architecture of BBoxDB and BBoxDB streams is
horizontally scalable. When more static data have to be stored,
the existing distribution regions can be split, and these new re-
gions can be assigned to further BBoxDB nodes. This can also be
done to process a larger stream or more continuous queries. The
use of more distribution regions splits up the stream into more
parts. Each part is handled by an individual node that has its
own resources to capture the stream and execute the registered
queries.

3 DEMONSTRATION
A cluster of five nodes is used in our demonstration, which is
located at our university. Each node contains an Intel Xeon E5-
2630 CPU, 32 GB of memory and four 1 TB hard disks. All the
nodes are connected via a 1 Gbit/s network and running Java 8
on a 64 bit Ubuntu Linux. A notebook is used to run the GUI and
to perform the demonstration.

3.1 Data Streams for the Demonstration
In this demonstration, two real-world data streams are used: (1)
The ADS-B aircraft data stream and (2) the Sydney transport data
stream.

An aircraft continuously broadcasts its position periodically
via radio as ADS-B transmissions. The transmissions contain
the position of the aircraft, the height, the call sign, and some
more information. However, an ADS-B receiver captures only
the transmissions in a radius of some miles around the antenna.
Websites such as adsbhub.org [19] provide a service to aggre-
gate the feeds of several individual stations into a global feed,
containing the flight data of the whole world.

The government of the state of New South Wales in Australia
operates the NSW open data portal [17]. On this portal, real-time

data about buses, ferries, metros, and trains of the region are
published. A GTFS encoded real-time feed of the data can be
subscribed.

For our demonstration, the elements of both data streams are
used and converted into GeoJSON objects. GeoJSON is a for-
mat that can be read and understand by a human (in contrast to
binary-encoded GTFS data), which makes it suitable for demon-
stration purposes. Listing 1 contains one element from the public
transport data steam after it is converted into GeoJSON. In addi-
tion to the position of the bus, further properties are contained
which contain additional information such as the route or the
speed of the vehicle.

Listing 1: Bus trip data converted into GeoJSON
1 {
2 "geometry":{
3 "coordinates":[151.17762756347 , -33.92598342895] ,
4 "type":"Point"
5 },
6 "type":"Feature",
7 "properties":{
8 "Speed":"19.2",
9 "TripStartDate":"20200121",
10 "TripScheduleRelationship":"SCHEDULED",
11 "OccupancyStatus":"MANY_SEATS_AVAILABLE",
12 "TripStartTime":"02:00:00",
13 "RouteID":"2437 _N20",
14 "Timestamp":"1579530867",
15 "TripID":"883447",
16 "Bearing":"77.0",
17 }
18 }

For executing spatial joins, we fetched the planet data set from
the OpenStreetMap Project [18], converted this data set into GeoJ-
SON, and stored it in the BBoxDB cluster. The dataset contains
the geographical information of the whole world. We imported
the roads (146 060 493 elements - 67 GB) and the forests (5 187 592
elements - 5.4 GB) in our BBoxDB cluster for the demonstration.

3.2 The GUI of BBoxDB
The GUI of BBoxDB shows information about the BBoxDB cluster,
the data distribution, and can be used to perform queries. BBoxDB
Streams enhances the GUI in such a way that continuous queries
are supported. The GUI is optimized for the handling of GeoJSON
encoded data. On the main screen, a map of the world (fetched
dynamically from the OpenStreetMap Project) is shown. The
mouse can be used to create a query rectangle, and a window
that is automatically opened allows one to specify the desired
query. Continuous range and continuous spatial joins can be
executed, and user-defined filters can be applied.

The geometries of the result tuples are shown as an overlay
over the map. In addition to the location, the stream elements
contain further information. Placing the mouse cursor over an
element opens a tooltip. The tooltip contains all the additional
information that is contained in the GeoJSON object (e.g., the
height of an aircraft or the trip id of a bus). The area of the
GUI below the map shows details about the used cluster (i.e., IP,
software version, available disks, disk space, CPUs).

Different practical queries can be formulated and observed
in the GUI. Figure 3 shows the visualization of an ADS-B data
stream of aircraft in the region of Berlin, Germany. Another
example (see Figure 4) shows the visualization of a GTFS data
stream of metro buses in Sydney, Australia. Additional operations,
such as spatial joins between forests and buses (Which bus drives
currently through a forest?) or roads and buses (Which buses are
driving on the Elizabeth Street in Sydney?) can be performed and
displayed in the GUI.
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Figure 3: Observing aircraft traffic over Berlin, Germany.

Figure 4: Observing bus traffic in Sydney, Australia.

4 RELATEDWORK
BBoxDB and BBoxDB streams have related work in the area of
key-value stores and stream processing systems.

Key-Value Stores: During the last decade, NoSQL databases
have become popular. They omit features from RDBMS, such
as transactions and permanent consistency. This allows NoSQL
systems to scale better horizontally. Distributed key-value stores
such as Cassandra [9] or HBase [1] provide simple methods to
manage large amounts of key-value pairs. These are optimized
for one-dimensional data, since handling 𝑛-dimensional data is a
laborious task in such systems (see Section 2).

KVSwith support for𝑛-dimensional data:MD-HBase [16]
is a multi-dimensional extension of HBase that allows the effi-
cient storage and retrieval of multi-dimensional data. MD-HBase
employs Quad-Trees and K-D Trees together with a Z-Curve to
build an index. Systems such as EDMI - Efficient Distributed Multi-
dimensional Index [21], Pyro [10], and HGrid [8] are also enhance-
ments of HBase which use an additional index layer to store
multi-dimensional data in HBase. However, operations such as
spatial joins or continuous queries are not supported by these
systems, and these systems only support point data.

Stream Processing Systems: Apache Flink [6], Apache Spark
Streams [11], Apache Storm [2], and Apache Kafka [12] are wide-
spread stream processing systems. These systems are not opti-
mized to compare the stream data with larger previously-stored
datasets. Operations like geometric indexing or spatial joins are

not supported by these systems. In [20] an extension of Apache
Storm for the handling of spatial data streams is proposed. How-
ever, the paper focuses only on 2-dimensional point data; BBoxDB
streams can handle 𝑛-dimensional point and non-point data.

5 CONCLUSION
In this demonstration, we have shown the capabilities of BBoxDB
Streams for the first time. Two real-world data streams are cap-
tured and processed. Queries such as continuous range queries
and continuous spatial joins are performed on these streams. The
spatial joins are executed between the dynamic data from the data
stream and static stored data fetched from the OpenStreetMap
Project. The results of the queries are visualized using an en-
hanced version of the GUI of BBoxDB and user-defined filters are
used to refine the bounding box based operations of the query
processor. In this demonstration, many aspects of the architec-
ture of the system are only superficially addressed. Topics such
as the integration with BBoxDB, the scalability, the filters, and
transformations have to be described more precisely. We plan
to discuss these topics in detail together with an experimental
evaluation of BBoxDB Streams in a full research paper.
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ABSTRACT
Stock market events are hard to model. In recent years, one ap-
proach that has been receiving increasing attention is to analyze
graphs induced by price correlations of different stock companies.
By analyzing the structure of such graphs, it is possible to identify
critical events, e.g., market crises. To the best of our knowledge,
there are no tools available that offer comprehensive support
for such analyses. This paper introduces a novel tool that offers
in-depth analysis with the ability of fine tuning parameters with
an intuitive user interface. With a proposed workflow to handle
time series data, the tool becomes versatile and it can analyze
correlation graphs of different semantics: minimum spanning
tree, graphs with edge thresholds, and evolving graphs. It also
provides a rich set of functions that enable users to explore easily,
interactively and systematically the correlation graphs starting
from a file of raw time series data. With real-world stock data, we
demonstrate how straightforward yet effective it is to accomplish
various analytical tasks with the proposed tool.

1 INTRODUCTION
Time series systems are pervasively used in many domains for
different tasks such as monitoring and recording data gathered
over time, with which analysts can discover meaningful and
valuable information to understand the observed system and to
avoid risks. The examples of applying time-series technologies
to real-world problems are numerous, e.g., fault detection [18],
seasonal trend analysis [21], financial data [11], etc.

For the analysis of financial data, Mantegna [14] proposed to
compute all correlations between the time signals and to visualize
them in a graph. This is illustrated in Fig. 1. First, the pairwise
correlations between the five input signals are computed and
stored in a matrix. Then, the correlation matrix is transformed
into a graph, where nodes represent signals and edges are labeled
with the correlation coefficient between the two nodes. Instead of
visualizing a complete graph, the minimum spanning tree (MST)
is often used as a compact overview of the signal correlations.

In recent years, a significant number of works have shown
that by observing changes in the structure of a MST, it is possible
to deduce important events in stock markets, such as market
crises and volatility [5, 6, 16]. Many studies about stock market
analysis adopted this approach and investigated the structure
and topologies of the induced network or MST [4, 6, 9, 19]. The
study of correlation graph analysis also raised the attention of
the computer science community. Marti et al. [15] studied the
best window length to calculate time series correlations. Azza-
lini et al. [2] proposed a technique to detect significant changes
in financial time series clusters expressed with hierarchical cor-
relation trees. Luo et al. [12] used correlation graphs to spot
cheating behaviors with business data. In the database commu-
nity, research focused on efficient methods for correlation graph
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Figure 1: Correlation analysis of time series using MST.

analyses. Petrov et al. [17] proposed different approaches for
exploring correlated time signals interactively. Aghasadeghi et
al. [1] presented techniques to visualize evolving graphs at dif-
ferent resolutions. Likewise, Mamun et al. [13] studied efficient
solutions for computing MSTs.

When it comes to correlation graph analytics for financial data,
analysts have to tackle several challenges: identifying appropriate
parameter values such that the computed correlation graph is
meaningful and presents visible characteristics; investigating
whether patterns exist for graphs under different representational
semantics, such as MST, graphs with specific thresholds, graphs
of signal classes; assessing the robustness of graph features (e.g.,
radius, degree distribution), and determining if they are reliable to
capture special events. Existing tools in the finance literature [4,
6, 9, 19] suffer at least from the following two limitations: (i) they
offer only a few of the above mentioned aspects and (ii) they
were implemented ad hoc for specific case studies and are not
designed to be easily integrated with other tools or analyses.

In this demo paper, we present a versatile and user-friendly
tool for analyzing time series data based on the pairwise correla-
tions that are visualized in a graph. We propose a workflow in
which the parameters are considered logically, and it allows a
high level of flexibility to visualize and analyze the graphs: the
comparison of two graphs representing subsequences of the data
selected by two different windows; the evolution and changes
of a graph over time by applying a moving window; and a com-
pact heatmap representation of crucial graph parameters for all
possible windows over the data. Throughout the paper, we use
the financial domain to illustrate the key features of the system.
However, the analysis tool can also be applied in other domains,
as we will illustrate in one of the demonstration scenarios. The
tool is online at https://dbs.inf.unibz.it/projects/ismard/, and peo-
ple can use it with their data at hand. In four demo scenarios we
discuss how to use the tool and what can be learned by a data
analyst.

2 SYSTEM OVERVIEW
2.1 Architecture
The system is implemented as a web App based on a client-server
architecture (cf. Fig. 2). On the client side, a user can upload time
series data, set parameters for data pre-processing and graph
computations, and inspect the resulting graphs. By tuning the
parameters in the client side, the web page will perform AJAX
calls and trigger the processing of the data in the server. The
computed graph data is then returned to the client and interpreted
by visualization components. On the client side, two Javascript
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Figure 2: System Architecture

libraries are used for the visualization: VIS.js for graph views
and Plotly.js for data reports. On the server side, three Python
libraries are employed: Pandas for correlation computation, SciPy
for MST computation, and Networkx for graph statistics.

2.2 Data and Parameters
The system accepts time series data in CSV format. The first
row specifies the signal names. Each subsequent row stores a
time point followed by the signal values for that time point.
Missing values are marked with NaN. Optionally, a second CSV
file containing ⟨signal name, class name⟩-pairs can be uploaded
in order to group the time signals into classes.

There are a number of parameters that can be controlled by
the user and make the tool flexible for data analytics. For the
preparation of the input data, the user can, among others, spec-
ify a time granularity (e.g., daily, weekly, or monthly) for the
analysis and whether to use the raw data values or the variation
of the value w.r.t. the previous time point. The computation of
the correlations and the construction of the MST/graph can be
controlled by several parameters, including a time range for the
analysis, the required minimum number of values for each signal
for a meaningful analysis, a minimum overlap between two sig-
nals, and a correlation threshold for an edge to be included in the
graph visualization. Finally, for the visualization of the analysis
results three different views are offered.

2.3 Analysis Workflow
The first step in the analysis workflow is to load the raw data
file, store it on the server, and then to optionally apply two pre-
processing operations. First, the user can specify a time granu-
larity for the analysis which is different from the granularity of
the raw data. For instance, in the financial sector the raw data
typically contain the daily closing prices, but financial analysts
often prefer to use weekly or monthly price values in order to
reduce noise. Instead of computing the average, the closing price
of Thursday is used as the weekly price, and the price of the last
trading day of each month as the monthly price. To support the
analysis of data from other domains, the tool also offers the use of
the average value in combination with different granularities. Sec-
ond, the analysis of stock data usually investigates the variation
of the price rather than the price itself. Two different variations
are frequently used: the return rate, which is the relative price
difference to the previous time point, i.e., ri = (pi − pi−1)/pi−1
with pi being the closing price at time point ti ; and the log return
ri = (logpi − logpi−1). The result of the pre-processing phase is
stored in the so-called working file on the server.

The next step is to compute the pairwise correlations matrix
using the Pearson Correlation coefficient. For this, the subse-
quences of the signals that correspond to the specified window
are loaded from the working file into a so-called DataFrame —

an efficient two-dimensional main memory data structure of the
Pandas library, which natively supports the computation of the
Pearson correlation. To obtain robust and reliable results, time
series that contain an excessive number of missing values are
omitted from the computation of the correlation. Similarly, we
do not compute the correlation between two time series if they
do not sufficiently overlap in time. Both parameters can be con-
trolled by the user. For the time series that pass these filters,
the Pearson Correlation coefficient is computed, which for two
time signals x and y with average value x̄ and ȳ, respectively,
is defined as r =

∑n
i=1(xi−x̄ )(yi−ȳ)√∑n

i=1(xi−x̄ )2
√∑n

i=1(yi−ȳ)2
with −1 ≤ r ≤ 1. A

value of 1 indicates total positive linear correlation, a value of −1
total negative linear correlation, and a value of 0 no linear corre-
lation. Instead of analyzing the correlation between individual
stock signals, the user can decide to investigate the stock sectors
(classes), which allows them to gain insights into entire sectors
rather than individual stocks. The signal of a class is computed as
the average of all stock signals belonging to that class. More ad-
vanced aggregation methods are known in the literature, e.g., the
free-float adjusted market-capitalization weighting method [10],
which computes a weighted average based on the stock shares.

Next, we compute the minimum spanning tree (MST) from the
correlation matrix using the classical algorithm by Kruskal [7].
Each node represents a stock signal, and the edges are labeled
with the correlation coefficient between the connected nodes.
As an alternative to the MST, a correlation graph can be used
for the visualization. Since a complete graph would not be very
useful for analysis purposes, the user can prune weak edges by
introducing a threshold for the correlation.

The last step is to compute several statistics for the MST/graph.
A very important measure for the analysis is the degree dis-
tribution of the graph nodes. This measure reflects structural
information of a graph and can be used to detect stock market
events [3, 6]. Other useful statistics include the range of the actual
correlation values and the radius of the MST/graph. Additionally,
we also compute the modularity score [8, 20], which allows us to
measure whether the stock connections in a MST correlate with
the stock sectors. This score is defined as

∑k
i=1(eii −a2

i ), where k
is the number of sectors, eii is the percentage of edges connecting
two nodes of the same sector i , and ai is the percentage of edges
for which at least one node belongs to sector i .

2.4 Interaction and Result Visualization
For the visualization of the analysis results, our tool offers three
principal viewing modes: comparison mode, evolving graphs
mode, and heatmap mode.

The goal of the comparisonmode is to analyze the data over two
different time periods in order to spot similarities and differences,
e.g., comparing a normal period with a crisis period. Figure 3
shows a screenshot of this mode, which contains two panels for
the two graphs. A scroll bar allows users to select a time window
for the analysis. The graphs report the node names (either signal
name or class name), and edges are labeled with the correlation
coefficients. By clicking on a node, additional information is
shown such as the node’s eccentricity and class. A color coding
is used for the graphs. The node color indicates the class of the
represented stock. For the edges, the colors distinguish different
levels of correlation: red for high correlations above 0.7, orange
for medium correlations between 0.4 and 0.7, and gray for low
correlations below 0.4. At the bottom of the screen, the computed
statistics are summarized.
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Figure 3: Compare MSTs in ordinary period with COVID crisis period.

The evolving graphmode shows the evolution of a graph along
the time axis, which helps to understand the subtle changes of
graph components over time. For this, a sliding window is used,
where the user can specify the window length and the step size.
For each window a graph is computed. To highlight the changes
between consecutive windows, the new edges w.r.t. the previous
graph are shown by dashed lines (cf. Fig. 4).

The heatmap mode helps to understand the stability and re-
liability of a MST metric w.r.t. the values of the selected time
window. For this, we compute a heatmap for three important
graph metrics: first degree score defined as the number of nodes
with degree one divided by the total number of nodes; the modu-
larity score; and the radius. Each heatmap shows the metric for all
possible windows over the data (cf. Fig. 5). The x-axis represents
all possible starting points of time windows, and the y-axis all
possible window lengths. Heatmaps allow users to investigate
whether the metric value changes drastically with different time
windows, as well as discern whether a metric’s values are similar
with time windows that cover special events in the timeline. The
heatmaps are interactive. By clicking on the heatmap, the system
computes the MST over the corresponding window. This allows
us to inspect the MST in detail. Since the computation of the
heatmaps in real time is a computational bottleneck, this feature
is currently only activated for the demo dataset. An efficient com-
putation of the heatmaps for large datasets is part of our future
work.

3 DEMONSTRATION SCENARIOS
The following four scenarios provide a glimpse of how our tool
can be used to systematically investigate behaviors and prop-
erties of time series data. We use the Italian stock market data
collected from Yahoo Finance. This dataset contains the daily
stock prices of 407 companies which traded from January 2019 to
June 2020 and includes the COVID stock crash. The companies
are classified into 12 market sectors, such as financial service,

real estate, energy, etc. In addition, we use a dataset that contains
signals from industrial devices provided by a local company.

Comparing Normal and Crisis Periods. In the first demo
scenario, an analyst is interested in investigating how stock cor-
relations were affected by the COVID crash. This can be observed
by graph shapes and indicators in the comparison mode shown
in Fig. 3. The left-hand side shows the MST over a normal period
(Jan 2019 – Apr 2019), while the right-hand side shows the MST
during the COVID crisis (Jan 2020 – Apr 2020). From the graph
shapes, analysts can observe that the crisis led to the formation of
many star-like hubs and red-color edges, indicating that a large
number of companies were strongly correlated. From the indica-
tors, analysts find that during the COVID crisis the MST had a
much smaller radius and a steeper degree distribution compared
to the normal period. In particular, significantly more nodes had
a degree of 1 during the crisis period. Similar analyses can be
performed for other market events. More details on shapes and
indicators are described in [6]. Moreover, different parameter
values and time windows can be chosen to examine the stability
of the above features.

Changes over Time. In this scenario, an analyst wants to
investigate whether the correlation between different sectors has
changed in proximity to the COVID crash. This type of analysis
is supported in the evolution mode. Figure 4 shows the MST
computed over three consecutive windows over the aggregated
stock signals. The length of the sliding window is three months,
and the step size one month. A dashed line indicates a new edge
compared to the MST over the previous window. It can be ob-
served that the Industrials sector (red node) tends to be at the
center of the tree. Presumably, sectors in Fig. 4c that are con-
nected with Industrials are the most negatively affected sectors
by the COVID crash. In contrast, Healthcare (purple) switched its
connection from Technology to Consumer Cyclical and Utilities.
They could be the positively influenced sectors, since with the
medical research and “stay at home” order, these sectors either
received more investments or increased consumption.
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(a) 10/2019–01/2020 (b) 11/2019–02/2020 (c) 12/2019–03/2020

Figure 4: Evolving graphs.

Figure 5: Heatmap view.

Concise Overview of All Windows. A critical aspect for
time series analysis is to choose an appropriate window length,
owing to the fact that real-world data are often noisy and contain
missing values. The heatmap mode helps in this regard as it
provides a concise overview of important MST metrics over all
possible windows. An example is shown in Fig. 5 with three
heatmaps for the first degree score, the modularity score, and the
radius of the MST, respectively. It can be observed that for long
time windows (i.e., more than 300 time points) the radius is more
reliable to signal the crisis period. This is explained by a dark
strip at the top border of the heatmap (gray circle in Fig. 5). It
appears that for all long time windows that cover the crisis period,
the radius of the corresponding MST is significantly lower than
the MSTs in normal periods. A similar pattern can be observed
for the heatmap of the first degree score. In this scenario, a user
learns which are sound indicators for detecting crises and the
conditions to use them, e.g., the appropriate window length.

Beyond Stock Data. To show the generality of our tool, we
also provide a demonstration scenario for the analysis of data
from the industrial sector. The time series come from sensors
monitoring components of large industrial printers, such as the
temperature of internal CPUs, ink speed, or belt velocity. In
this scenario, we show how our tool can be used to understand
the interaction of different components, similar to stock sectors,
based on their correlation over different time periods.

4 CONCLUSIONS AND FUTUREWORK
In this demo paper, we presented a new web App to investigate
stock time series data. The key idea is to compute the pairwise
correlations between the data and – in order to facilitate the
analysis – to visualize them in a minimum spanning tree, where
nodes represent the trading companies and edges show their
correlation. With Italian stock market data we demonstrated the
effectiveness and versatility of our tool.

Future work points in two directions. First, we will investigate
more efficient algorithms for the computation of heatmaps in

order to make the tool scalable for larger datasets. The other di-
rection concerns the use of machine learning techniques to detect
useful parameter configurations for the analysis automatically.

ACKNOWLEDGMENTS
This work is supported by the projects ISMarD and TASMA,
which are funded by the Free University of Bozen-Bolzano.

REFERENCES
[1] Amir Aghasadeghi, Vera Zaychik Moffitt, Sebastian Schelter, and Julia Stoy-

anovich. 2020. Zooming Out on an Evolving Graph. In EDBT 2020. 25–36.
[2] Davide Azzalini, Fabio Azzalini, Mirjana Mazuran, and Letizia Tanca. 2019.

Tracking the Evolution of Financial Time Series Clusters. In DSMM@SIGMOD
2019. 4:1–4:5.

[3] AQ Barbi and GA Prataviera. 2019. Nonlinear dependencies on Brazilian
equity network from mutual information minimum spanning trees. Physica
A: Statistical Mechanics and its Applications 523 (2019), 876–885.

[4] Xuewei Cao, Yongbin Shi, Penghao Wang, Liujun Chen, and Yougui Wang.
2018. The evolution of network topology structure of Chinese stock market.
In ICBDA 2018. IEEE, 329–333.

[5] Ricardo Coelho, Claire G Gilmore, Brian Lucey, Peter Richmond, and Stefan
Hutzler. 2007. The evolution of interdependence in world equity markets-
Evidence from minimum spanning trees. Physica A: Statistical Mechanics and
its Applications 376 (2007), 455–466.

[6] Paolo Coletti and Maurizio Murgia. 2016. The network of the Italian stock
market during the 2008–2011 financial crises. Algorithmic Finance 5, 3-4 (2016),
111–137.

[7] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein.
2009. Introduction to algorithms. MIT press.

[8] Santo Fortunato. 2010. Community detection in graphs. Physics reports 486,
3-5 (2010), 75–174.

[9] Raphael H Heiberger. 2014. Stock network stability in times of crisis. Physica
A: Statistical Mechanics and its Applications 393 (2014), 376–381.

[10] S&P Dow Jones. 2014. Index mathematics methodology.
[11] Kyoung-jae Kim. 2003. Financial time series forecasting using support vector

machines. Neurocomputing 55, 1-2 (2003), 307–319.
[12] Ping Luo, Kai Shu, Junjie Wu, Li Wan, and Yong Tan. 2020. Exploring Correla-

tion Network for Cheating Detection. ACM Trans. Intell. Syst. Technol. 11, 1
(2020), 12:1–12:23.

[13] Abdullah-Al Mamun and Sanguthevar Rajasekaran. 2016. An efficient Mini-
mum Spanning Tree algorithm. In ISCC 2016. 1047–1052.

[14] Rosario N Mantegna. 1999. Hierarchical structure in financial markets. Eur.
Phys. J. B 11, 1 (1999), 193–197.

[15] Gautier Marti, Sébastien Andler, Frank Nielsen, and Philippe Donnat. 2016.
Clustering Financial Time Series: How Long Is Enough?. In IJCAI 2016. 2583–
2589.

[16] SalvatoreMiccichè, Giovanni Bonanno, Fabrizio Lillo, and Rosario NMantegna.
2003. Degree stability of aminimum spanning tree of price return and volatility.
Physica A: Statistical Mechanics and its Applications 324, 1-2 (2003), 66–73.

[17] Daniel Petrov, Rakan Alseghayer, Mohamed A. Sharaf, Panos K. Chrysanthis,
and Alexandros Labrinidis. 2017. Interactive Exploration of Correlated Time
Series. In ExploreDB 2017. 2:1–2:6.

[18] Francisco Serdio, Edwin Lughofer, Kurt Pichler, Thomas Buchegger, Markus
Pichler, and Hajrudin Efendic. 2014. Fault detection in multi-sensor networks
based on multivariate time-series models and orthogonal transformations.
Information Fusion 20 (2014), 272–291.

[19] M Wiliński, A Sienkiewicz, Tomasz Gubiec, R Kutner, and ZR Struzik. 2013.
Structural and topological phase transitions on the German Stock Exchange.
Physica A: Statistical Mechanics and its Applications 392, 23 (2013), 5963–5973.

[20] Lisi Xia, Daming You, Xin Jiang, and Quantong Guo. 2018. Comparison
between global financial crisis and local stock disaster on top of Chinese
stock network. Physica A: Statistical Mechanics and its Applications 490 (2018),
222–230.

[21] G Peter Zhang and Min Qi. 2005. Neural network forecasting for seasonal and
trend time series. Eur. J. Oper. Res. 160, 2 (2005), 501–514.

669



Conquering a Panda’s weaker self - Fighting laziness with
laziness
Demo Paper

Stefan Hagedorn
TU Ilmenau

Ilmenau, Germany
stefan.hagedorn@tu-ilmenau.de

Steffen Kläbe
TU Ilmenau

Ilmenau, Germany
steffen.klaebe@tu-ilmenau.de

Kai-Uwe Sattler
TU Ilmenau

Ilmenau, Germany
kus@tu-ilmenau.de

ABSTRACT
The Python programming language has become very popular
among data scientists because of its easy-to-learn syntax and rich
ecosystem of libraries. Especially the Pandas framework is widely
used for various data processing and analytics tasks. However,
due to its memorymanagement and eager evaluation Pandas does
not scale and workstations quickly come to their limits even for
moderate data set sizes. With Grizzly, we introduce a framework
that produces SQL queries for operations on DataFrames, moving
complexity from workstations to database servers. Grizzly allows
to not only access data already stored in a database, but also to
combine it with external data from files. Furthermore, users can
use their own user-defined functions or use Grizzly’s model join
feature to easily apply machine learning models to data, both
being executed inside the database server. This allows for fast and
scalable data analytics operations, even with a small workstation.

1 INTRODUCTION
Data Science and Machine Learning are hot topics, not only in
research but also in industrial and commercial applications. Al-
though the terms Data Analysis and Data Science date back to the
early 1960s and 1970s, respectively, with the rise of Big Data in
the early 2000s more and more companies started to collect and
analyze every piece of information they could generate about
their, e.g., sales and customers with the goal to gain insights
that help to improve the companies productivity and business.
One of the standard languages for data science tasks is Python
(besides Julia and R). Python has become very popular because of
its easy to learn syntax that allows to quickly build prototypical
data processing pipelines. One of the most popular libraries for
Python in the field of data analytics is Pandas. It allows to easily
load data from various sources and represents it in DataFrames–
a table-like abstraction with column names, types and more meta
information. Using Pandas, one can load data in various formats
from local or remote locations into DataFrames and apply opera-
tions such as projection, filter, grouping, join – all well known
from the relational algebra. In Pandas, these operations are exe-
cuted on the local machine of the data scientist and create copies
of the data in the local RAM. Since this is slow and means larger-
than-RAM data sets cannot be processed easily, data scientists
who should actually focus on their data analytics tasks, started
to build their custom solutions for parallel processing or buffer
management. However, the database community has built fast,
robust, and scalable systems to perform exactly this kind of op-
erations efficiently, even if the complete data set does not fit into
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RAM. Often the data to analyze is already stored in such reliable
database systems. Thus, instead of moving the data from the large
DBMS server into the potentially small data scientist’s laptop for
processing, the operations defined in the Python script should
be transferred to the DBMS and be translated into a language it
understands, i.e. SQL.

During recent years, a few systems have been developed to
address these needs, such as RIOT-DB [12], AIDA [3], Modin
[9], AFrame [10], and IBIS1. IBIS was initiated by the creators of
Pandas and tries to overcome the scalability issues of Pandas by
using lazy evaluation and converting operations on DataFrames
into a (sequence of) SQL queries. However, it is not possible to
join data from different database systems and UDFs can only be
executed using the Pandas backend (i.e. local execution) or on
Google Big Query. The DataFrame concept has also been adopted
by other frameworks like Apache Spark [11], Koalas2, and Nvidia
Rapids3. Internally, these systems use optimizers to tune the
query and produce good execution plans. The idea of providing
a DataFrame API over graph data has been studied for example
in [2] and [8].

In this paper, we demonstrate our Grizzly4 framework for tran-
spiling Python code to SQL queries, with the following features:

• Grizzly uses query-shipping and lazy evaluation to achieve
high scalability.

• It supports relational operations in standard SQL syntax
and uses configurable templates for DBMS-specific dialects
without changing the underlying execution system.

• External data can be combined with in-DBMS data.
• Users can define their own functions (UDFs) in Python to
apply within the generated query.

• Grizzly uses the UDF mechanism to load and execute pre-
trained machine learning models inside the database.

In our demonstration, we show how easy it is to exchange Pandas
with Grizzly as the execution engine for DataFrame programs.
Using a web application, users can compare Pandas and Grizzly
scripts, either using our provided examples for various scenarios
or writing own code, side-by-side and run them on prepared
datasets. Our demo system automatically generates comparison
charts for query performance andmemory consumption. As these
charts are maintained over multiple runs, users can built their
own evaluations by varying parameters like the dataset size.

2 REQUIREMENTS
Companies typically store their valuable data in some durable
and integer database. This database consists of various tables,

1http://ibis-project.org/
2https://www.github.com/databricks/koalas
3https://developer.nvidia.com/rapids
4https://github.com/dbis-ilm/grizzly
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containing, e.g., the customer information, the products the com-
pany sells, and of course the orders the customers have made over
time. This basically resembles the well-known TPC-H [1] bench-
mark and for larger companies this database can quickly store
several GBs. Below we briefly describe use case scenarios from
which the requirements for a system that shifts the processing
into the DBMS can be derived.
Basic Data Processing. As an example use case, a data scientist
may be interested in the names of the customers, who ordered a
specific product most often. Using Pandas, the scientist would
load the tables customer, orders, and products onto her local
workstation and then filter the products by the product name she
is interested in, join the remaining products with orders and then
with customers. Finally, the join result may be grouped by the
customer and aggregated to count how often they have ordered
the specific product.

At this point we would like to emphasize that with Pandas, all
these processing steps take place in the scientists workstation and
not on the actual database server that stores this data. Though,
Pandas is able to send a SQL query to a database server in order
to fetch proprocessed data. However, we argue that many data
scientists often don’t know or use SQL and prefer their higher
level languages. Thus, to improve the query performance and
often make the evaluation possible at all, the computational part
should be shifted into the database server while letting the users
still express their analysis tasks in Python.
Accessing External Data. After getting these top customers,
the data scientist needs to find out how these products are per-
ceived in social media platforms. The company may track social
media posts using some additional systems and collects the prod-
uct reviews in a text file. However, these posts are not critical to
the company and are not ingested into the DB. Thus, the data
scientist needs to join the data in the DB with the data in files.
Currently, this operation would typically also be executed on the
workstation, but should optimally be executed by the DBMS. In
order to do so, the DBMS must import the file as a (temporary)
table. This import should be transparent to the user so that she
only needs to specify a file path, but does not have to bother with
DBMS specific import code.
UDFs & Model Join. The well-known data processing libraries
all provide a vast variety of algorithm implementations and op-
erators for various tasks. However, these may not be enough for
every problem to solve and users fall back to implement their
own logic in user-defined functions which they want to apply.
Such functions could either be applied to every record individu-
ally or to one table/data set as a whole. Again, the function could
be applied on the workstation using Pandas, but then subsequent
operations which could be handled in the DBMS are not possible
anymore. Thus, the function’s code should also be shipped to the
database server transparently for convenient execution.

A special case is the application of some existing machine
learning model. An existing model like RoBERTa [6] may be
trained to detect the sentiment of some text, i.e. if it is positive
or negative. After the data scientist joined the top customers and
products with the product reviews from a text file, she needs to
classify how the reviews rate the corresponding product. Thus,
she needs to join the model with the data (intermediate query
result) in the database. For this, it must be possible to select and
load an existing model and join it with the data in the database,
i.e. apply it to every tuple of a table/intermediate result. In further
discussion we name this concept model join.

Code 
Generator

DBMS

R
S ⨝

𝜎

co
n
stru

cte
d

o
p

e
ra

to
r tre

e

DB connection

r = g.load("R")
s = g.load("S")

import grizzly 
          as g

j = r.join(s)
j = j[j['a'] == 1]

if 2 > 1:

else:
  ...

DataFrame API

SQL
Plugin

Executor Service
Query

Figure 1: Overview of Grizzly’s architecture.

# load table (t0)
df = grizzly.read_table("tab")
# projection to a,b,c (t1)
df = df[['a','b','c']]
# selection (t2)
df = df[df.a == 3]
# group by b,c (t3)
df = df.groupby(['b','c'])

(a) Source Python code.

tab
t0

π
a,b,c

𝜎
a = 3

𝛾
b,c

t1

t2

t3

(b) Opera-
tor tree.

SELECT t3.b, t3.c FROM (
SELECT * FROM (
SELECT t1.a, t1.b, t1.c
FROM (
SELECT * FROM tab t0

) t1
) t2 WHERE t2.a = 3

) t3 GROUP BY t3.b, t3.c

(c) Produced SQL query.

Figure 2: Steps for transpiling Python code to a SQL query:
The operations on DataFrames (a) are collected in an inter-
mediate operator tree (b) which is traversed to produce a
nested SQL query (c).

3 GRIZZLY ARCHITECTURE
The scalability issues of the Pandas framework are a consequence
of two major bottlenecks:

• Pandas operations are executed eagerly, producing nu-
merous intermediate results that increase the memory
consumption of a Pandas program.

• Pandas uses the data-shipping paradigm, which means
that data is transferred to the place where the program
is executed. Despite being easy to use, the data-shipping
paradigm limits scalability as potentially large amounts of
data are transferred. Operators are executed on the client-
side, which usually consists of weaker hardware compared
to (cloud) servers.

The design of the Grizzly framework focuses on solving these
two problems. First, Grizzly replaces the eager operator execu-
tion approach with a lazy approach by collecting operators and
generating a query when the result is needed. Second, Grizzly
combines the convenience of the data-shipping paradigm with
the scalability of the query-shipping paradigm by abstracting
from data access and pushing query execution to the DBMS.

An overview of the Grizzly architecture is given in Figure 1.
Grizzly provides a Pandas-like DataFrame API for compatibility
with existing Pandas programs. In order to achieve the lazy exe-
cution paradigm, Grizzly collects operators and builds a lineage
graph as an internal query representation, following a similar
approach as RDDs in Apache Spark [11]. Operators are classified
as transformations (e.g. projections, filters, joins) or actions (e.g.
show, count, sum). While transformations are collected in the
lineage graph, actions trigger code generation and execution. In
order to meet the second design goal of using the query-shipping
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paradigm, Grizzly transpiles the lineage graph of DataFrame to
standard SQL, compatible with a broad range of DBMSs. The
transpilation is achieved by traversing the lineage graph and
using a mapping between DataFrame operators and SQL query
constructs, which is described in detail in [4]. There are two
options for incrementally constructing a SQL query:

(1) Incrementally extend SELECT, FROM and WHERE blocks of a
(single) SQL query, or

(2) generate a separate query for each operator and nest the
existing query in the FROM clause.

While producing more compact and easier-to-read queries, op-
tion (1) has the drawback that nesting is still required in some
cases, e.g. for a filter on a computed column. These cases re-
quire special handling in the code generation as well as a careful
naming. We observed that modern query optimizers of existing
DBMSs have excellent capabilities for unnesting queries, and
thus decided to follow option (2) and apply a generic naming
schema for sub-queries. Queries are send to the DBMS using a
standard connection object as specified by PEP 2495. Additionally,
Grizzly uses a template file in order to match vendor-specific SQL
dialects. An example workflow for transpiling a Pandas program
into a nested SQL query is shown in Figure 2.

4 API EXTENSIONS
Modern data analytics tasks not only use traditional operators,
but also include the use of external data sources, user-defined
functions (UDFs) or machine learning models for prediction or
classification as we argued in the use case discussion in Section 2.
In order to address these challenges, we extended the DataFrame
API of Pandas with a set of operators. All additional operators
are designed with the goal of hiding complexity and providing
an easy-to-use interface for complex operations.

The basic approach of supporting the described features is
the generation of additional queries to create functions or define
external data sources. Such queries are required to be run before
the actual analysis starts. Grizzly maintains a list of pre-queries
and whenever the lineage graph traversal reaches an operator
that requires a pre-query, it is generated and appended to the
list. Finally, all pre-queries are automatically executed before the
actual generated query.
External Data Sources. Various database systems offer support
for external data sources by creating a table over a file, e.g. using
foreign data wrappers in PostgreSQL or external tables in Actian
Vector. Similar to ordinary database tables using read_table,
external tables can be used as leaf nodes in the lineage graph.
Grizzly offers the read_external_table function for this, which
takes the path to the external source as well as the schema as
parameters and returns a DataFrame for further usage. During
code generation, the external table is generated using a pre-query
and given a temporary name to be referenced in the actual query.
UDF Support. In Pandas, users can apply custom functions to
DataFrames using the apply function in an elementwise fashion
(scalar UDFs) or as a reduce function (table UDFs). Modelling the
apply operator as an action, and therefore executing the subquery
and applying the UDF at the client side, has the major drawback
that further operators also need to be executed at the client side.
In order to avoid this, we model UDFs as transformations in
Grizzly by exploiting the recent upcome of Python UDF support
in database systems. The source code of the UDF is accessed via
reflection and transferred to the database system using a UDF

5https://www.python.org/dev/peps/pep-0249/

# Define conversion functions
def input_to_model(a: str):

...
def model_to_output(a) -> str:

...

# Use external file
df = grizzly.read_external_table("path/to/file", schema, options)
# Apply onnx classification model using conversion functions
df['class'] = df['text'].apply_model("/path/to/model",

input_to_model, model_to_output)↩→
# Count elements per classification
df = df.groupby('class').count()
# Trigger execution and show result
df.show()

Listing 1: Example for external file usage and model join

creation as a pre-query. The function is created with a generic
name and is then applied in the actual query in the projection
list. Note that many database systems currently only support
scalar UDFs and only offer this feature as a beta version due to
security concerns. Consequently, Grizzly is currently also limited
to scalar UDFs and requires the vendor-specific activation of the
UDF feature in order to support UDFs. As a result of modelling
UDFs as transformations, UDF computation can also be pushed
to the database, enabling efficient subsequent operations on the
UDF result.
Machine Learning Model Join. Database systems are a non-
optimal environment for training complexmachine learningmod-
els, as this task is mainly performed on massively parallel engines
like GPUs and involve a hybrid workload of intensive compu-
tations as well as large updates of e.g. weights in the model.
However, there are various pre-trained models available that
can be easily used for data analytics, e.g. in the Model Zoo on
Github6. Applying machine learning models to data is a special
case of UDFs and can also be applied to Pandas DataFrames using
the apply function and handcrafted code for model execution.
Grizzly offers a family of specialized apply functions for the
most popular model formats and execution engines PyTorch7,
Tensorflow8 and ONNX9. Similar to UDFs, these operators are
modelled as transformations and designed for comfortable usage,
demanding only necessary, model type specific parameters from
the user. The generated code for model execution (application) is
handled like a UDF: it is defined in the database system using a
pre-query and used in the projection list of the generated SQL
query. For a more detailed discussion of challenges that come
with this features and their solutions in Grizzly, we kindly refer
to [5].

For the discussion of the presented features we assume that
necessary files like data sources or machine learning models are
accessible from the database server and that required Python
modules are installed. We argue that using cloud file systems or
NAS storage this is not a limitation and that root access or con-
tacting the database administrator is currently necessary anyway
in order to use the UDF feature.

As an example, Listing 1 shows a program that loads an ex-
ternal file, applies a classification model in the ONNX format
on column text and then counts the number of entries per class.
ONNX models are typically provided with conversion functions
to convert an input to a tensor and convert the output tensor

6https://www.github.com/onnx/models
7https://www.pytorch.org/
8https://www.tensorflow.org/
9https://www.github.com/onnx/
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Figure 3: Screenshot of the Grizzly Web Application.

back. The type hints in the signature of these functions are used
to determine the type of the overall UDF. The types are required
to define the functions in SQL. Grizzly generates pre-queries for
the external table and the UDF, ultimately executing three SQL
statements.

5 OBSERVING THE BEARS IN THEWILD
The demonstration highlights the benefits users can expect when
using Grizzly over Pandas. It invites visitors to interact with the
system over a web application and Jupyter notebooks.

The application lets users choose between prepared scenarios,
but also allows to run own scripts. For both cases we provide a
pre-loaded collection of data sets (from TPC-H [1] and IMDB [7])
with varying sizes. The scenarios range from simple queries to
more complex tasks that make use of the features we explained in
the previous sections: executing UDFs, combining existing tables
with external files, and performing the model join. For every
scenario, a prepared Grizzly and Pandas script can be selected
and executed. The side-by-side code editors demonstrate how
similar the Grizzly and Pandas APIs are, but especially for the
model join this will also highlight how much work Grizzly saves
developers compared to Pandas. Using the “Show SQL” button,
one can inspect the SQL query Grizzly transparently generates
for an entered Python program. As an example, the model join
scenario offers different models available in ONNX, PyTorch, and
Tensorflow format to classify entries in the tables. It follows the
use case described in Section 2: We connect to a movie database
and join this data with reviews from a text file and classify every
movie using a pre-trained model into the categories positive and
negative. The final result is grouped in order to count the number
of positive and negative reviews per movie. The Grizzly code is
as easy as shown in Listing 1, being significantly smaller than the
respective Pandas implementation. Additionally, the application
shows the effort to handcraft the SQL code, which is transparently
generated by Grizzly. Users can also compare the external table

feature of Grizzly to the respective read_csv feature of Pandas as
sketched in Figure 3 and observe a significant performance gain
when using Grizzly. The web application tracks the execution
time as well as the memory consumption during the execution
of a program over multiple runs and visualizes both metrics for
comparison. Through the collected result graphs and by using
our input data sets of different sizes, users can build their own
evaluation and investigate the scalability of the systems.

A second part of the demonstration uses Jupyter notebooks to
demonstrate the easy integration of Grizzly in such environments
and how it can be used to process and visualize data and query
results interactively.

REFERENCES
[1] Peter A. Boncz, Thomas Neumann, and Orri Erling. 2014. TPC-H Analyzed:

Hidden Messages and Lessons Learned from an Influential Benchmark. In
Performance Characterization and Benchmarking. Springer, 61–76.

[2] Ankur Dave, Alekh Jindal, et al. 2016. GraphFrames: an integrated API for
mixing graph and relational queries. In GRADES. ACM, 2.

[3] Joseph Vinish D’silva, Florestan D. De Moor, and Bettina Kemme. 2018. AIDA -
Abstraction for advanced in database analytics. VLDB 11, 11 (2018), 1400–1413.

[4] Stefan Hagedorn, Steffen Kläbe, and Kai-Uwe Sattler. 2021. Putting Pandas in
a Box. In CIDR.

[5] Steffen Kläbe and Stefan Hagedorn. 2021. When Bears get Machine Support:
Applying Machine Learning Models to Scalable DataFrames with Grizzly. In
BTW.

[6] Yinhan Liu, Myle Ott, et al. 2019. RoBERTa: A Robustly Optimized BERT
Pretraining Approach. arXiv:1907.11692

[7] Andrew L. Maas, Raymond E. Daly, et al. 2011. Learning Word Vectors for
Sentiment Analysis. In ACL-HLT. Portland, Oregon, USA, 142–150.

[8] Aisha Mohamed, Ghadeer Abuoda, et al. 2020. RDFFrames: Knowledge Graph
Access for Machine Learning Tools. Proc. VLDB Endow. 13, 12 (2020), 2889–
2892.

[9] Devin Petersohn, William W. Ma, et al. 2020. Towards Scalable Dataframe
Systems. Proc. VLDB Endow. 13, 11 (2020), 2033–2046.

[10] Phanwadee Sinthong and Michael J. Carey. 2019. AFrame: Extending
DataFrames for Large-Scale Modern Data Analysis. In Big Data. 359–371.

[11] Matei Zaharia, Mosharaf Chowdhury, et al. 2012. Resilient distributed datasets:
A fault-tolerant abstraction for in-memory cluster computing. In USENIX.

[12] Yi Zhang, Herodotos Herodotou, and Jun Yang. 2009. RIOT: I/O efficient
numerical computing without SQL. In CIDR.

673



DocDesign 2.0: Automated Database Design for Document
Stores with Multi-criteria Optimization

Moditha Hewasinghage, Sergi Nadal, Alberto Abelló
Universitat Politècnica de Catalunya

Barcelona, Spain
moditha|snadal|aabello@essi.upc.edu

ABSTRACT
We present DocDesign 2.0, a novel system that supports data-
base design for document stores. DocDesign 2.0 automatically
generates a document store design driven by a query workload
and a set of optimization objectives. In the presence of a massive
search space, DocDesign 2.0 adopts multi-objective optimization
techniques that, with high probability, guarantee to yield the
optimal design based on the preferences (i.e., weights) provided
by the end-user. In this paper, we demonstrate how DocDesign
2.0 improves the productivity on the task of designing a document
store, as well as how the quality of the results is improved with
respect to those obtained by manually generating the design.

1 INTRODUCTION
The plethora of current NoSQL systems introduces alternative
data storage methods to the traditional relational database man-
agement systems (RDBMSs) [2]. Among these, document stores
have gained popularity due to the semi-structured data storage
model. In contrast to the RDBMS normalization, document stores
favor embedding, trying to keep the data related to a single in-
stance together instead of spreading it across different tables.
This increases the complexity of database design for document
stores as opposed to RDBMS, where reaching 3NF or BCNF guar-
antees an optimal database design in the majority of the use-cases.
Database design for document stores is, in general, given low
precedence, andmostly carried out in a rule-based ad-hocmanner.
For instance, MongoDB, the leading document store, provides a
set of design patterns1 that provide certain guidelines on how
to structure documents. However, it has been shown that the
choice of design has a major impact on performance, specially in
the NOSQL realm [1]. Thus, it is advantageous to have a better
design by exploiting any prior knowledge on the requirements
rather than a purely random one.

Let us take an example of implementing an online auction
system based on the RUBiS benchmark [3] in a document store.
Fig. 1 shows the 5 entities and 6 relationships composing the

Figure 1: ER diagram of RUBiS Benchmark

1https://www.mongodb.com/blog/post/building-with-patterns-a-summary

© 2021 Copyright held by the owner/author(s). Published in Proceedings of the
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Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

RUBiS framework. We can have a normalized solution, similar to
that in a RDBMS, an embedded single-document solution, or the
solution suggested by a purely workload-based schema recom-
mender, such as DBSR [11], which denormalizes certain entities.
To show the complexity of finding the optimal database design
in a document store, let us define a running example use case
consisting of two single entities from RUBiS, namely Product and
Comments, and an equiprobable hypothetical workload defined
as follows:
• Given a Comment ID, find its text.
• Given a Product ID, find its name.
• Given a Comment ID, find the Product name.
• Given a Product ID, find all of its Comments.

In this scenario, we have two entities and one relationship.
If we assume that all attributes for an entity are kept together
within a document, we are left with the decision on where the
relationship must be stored in the final design. Thus, database
designs can be enumerated based on the alternatives to store
the relationship, which depend on three independent choices:
direction, representing, and structuring as shown in Fig. 2, to-
gether with two examples. Direction determines which entity
keeps the information about the relationship. It can be one of
the two entities, or both. Representation affects how this rela-
tionship is stored either by keeping a reference or embedding
the object. Finally, Structuring determines how we structure
the relationship, either as a nested list or flattened. For example,
if keep the references to the comments in the product, they can

Figure 2: Relationship design choices, and two examples
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Figure 3: Overview of the DocDesign 2.0 Architecture

be stored as a list of references (comment:...) or in a flattened
manner (comment_1:.., comment_2:..). Hence, we end up with 12
possible designs for our running example. Each of these could
potentially be the optimal solution for an end-user depending
on their preferences. For example, the design where products
and comments nest their counterparts redundantly (i.e., both di-
rections are stored by embedding the objects) will benefit query
performance, as all queries can be answered with a single random
access. However, this is at the expense of storage space due to
redundancy. What if we only have a single reference on the prod-
uct for its comments? Does the reduction of storage space justify
the impact on performance? This trade-off between alternatives
makes the process of finding the optimal design a complex one.

The number of relationships of the use-case (𝑟 ) determines the
number of candidate designs, which is exponential (12𝑟 ), as the
storage option of each relationship is independent of others. Note,
however, that here we did not consider allowing heterogeneous
collections/lists, which is possible in the context of schemaless
databases, leading to a complexity increase. For example, collec-
tions at the top level could potentially contain different kinds of
documents. In our running example, user and region documents
could be stored in a single heterogeneous collection mixing both.
Precisely, for a design with 𝑐 top-level collections, the total num-
ber of combinations will be

∑𝑐
𝑖=1

{
𝑐
𝑖

}
where

{
𝑛
𝑘

}
is the Stirling

number of the second kind, used to calculate the number of ways
to partition 𝑛 distinct elements into 𝑘 non-empty subsets [5].
Overall, such exponential growth makes impossible to enumer-
ate and evaluate all candidate designs. Hence, existing solutions,
such as DBSR [11], NoSE [10] and Mortadelo [4], mainly rely on
the query workload to propose a database design.

Contributions. Considering the above observations it is clear
that the problem of storage design for document stores has a
large search space. Moreover, each candidate solution poten-
tially performs differently among the considered cost functions.
It is, hence, obvious that exhaustively exploring the search space
is prohibitively expensive. To overcome this issues, in this pa-
per, we present DocDesign 2.0, a novel solution that addresses
the complex problem of database design for document stores.
DocDesign 2.0’s contributions involve automatically generating
potential designs, as well as evaluating the performance of a design
on four objectives: storage size, query performance, degree of het-
erogeneity, and average depth of documents. Finally, DocDesign
2.0 presents the end-user with the near-optimal database design spe-
cific to his/her preference of the objective for a given use-case and
query workload. Precisely, in this paper, we consider read-only
query workloads. DocDesign 2.0 embeds and extends our for-
mer solution DocDesign [7], which aids on evaluating database

designs based on storage size and query performance, requir-
ing however to provide a concrete schema as input. Contrarily,
DocDesign 2.0 automatically generates such designs yielding,
with a high probability, the near-optimal one with respect to a
set of objectives.

Outline. In the rest of the paper we introduce DocDesign 2.0’s
demonstrable features to resolve the motivational example and
other database design for document stores scenarios. We first
provide an overview of DocDesign 2.0and its core features. Lastly,
we outline our on-site demonstration, involving the motivational
scenario as well as other more complex real-world use cases.

2 DOCDESIGN 2.0 IN A NUTSHELL
DocDesign 2.0 adopts multi-objective optimization techniques,
which have shown to be effective on obtaining near-optimal solu-
tions out of a large search space in the presence of contradicting
objectives [9]. In these scenarios, one can only aim to obtain a
Pareto solution (a solution that, in the presence of multiple objec-
tives, cannot improve one objective without worsening another).

Search algorithm. Local search algorithms consist of the sys-
tematic modification of a given state, by means of action func-
tions, in order to derive an improved state. The intricacy of these
algorithms consists of their parametrization, which is at the same
time their key performance aspect. Due to the genericity of dif-
ferent use cases DocDesign 2.0 can tackle, we decided to choose
hill-climbing, a non-parametrized search algorithm which can
be seen as a local search, always following the path that yields
higher utility values. Nevertheless, the cost functions we use
are highly variable and non-monotonic, which can cause hill-
climbing to provide different outputs depending on the initial
state. To overcome this problem, we adopt a variant named shot-
gun hill-climbing, which consists of a hill-climbing with restarts
using random initial states.

An overview of DocDesign 2.0 is shown in Fig. 3 and we present
the modules and components of DocDesign 2.0 in the following
subsections.

2.1 User Inputs
There are three inputs the end-user must provide, namely the
equivalent to an Entity-Relationship diagram of the domain,
query workload, and the weights of the cost functions.

Entity-Relationship. Refers to the use case-specific entities,
their attributes, and the relationships between them. To accu-
rately measure the different cost functions, DocDesign 2.0 re-
quires the number of instances of each entity, the size of its
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a. Input entity relationships
{

"atoms ":[{

"PRODUCT ":{"* P_ID ":{" count ":2500000 ," size ":4},

"P_NAME ": varchar (155)}},

{" COMMENT ":{"* C_ID ":{" count ":5000000 ," size ":4},

"C_TEXT ": varchar (105)}}],

"relationships ":[{" P_ID ":{" C_ID ":"1~2"}}]}

b. Immutable graph c. Query workload
[

{"freq ":0.25 ,"q":[" C_ID","C_TEXT "]},

{"freq ":0.25 ,"q":[" P_ID","P_NAME "]},

{"freq ":0.25 ,"q":[" C_ID","P_ID","P_NAME "]},

{"freq ":0.25 ,"q":[" P_ID","C_ID","C_TEXT "]}

]

Figure 4: Input entity relationships, its internal graph representation, and query workload

attributes, and the relationship multiplicities (Fig. 4.a). This in-
formation is considered immutable, and the database design is
carried out on top of it. We use a hypergraph-based canonical
model internally to represent them [8]. (shown in Fig. 4.b). Fur-
thermore, the entities are atomic, meaning that attributes related
to an entity cannot be split.

Query workload. Consists of a set of queries together with
their frequencies to be executed in the use case. These queries
are independent of the database design and are represented as
subsets of the immutable information (Fig. 4.c).

Cost function weights. Allows the end-user to include his/her
preference in the database design. Currently, DocDesign 2.0 sup-
ports tuning four cost functions corresponding to the objectives:
query cost, storage size, degree of heterogeneity within collec-
tions and sets, and average depth of the documents. The end-user
can decide how important each of these costs are and resolve
trade-offs between them. For instance, forcing higher importance
to query cost and lowering the one of storage size would lead to
a schema with higher redundancy and better performance.

2.2 Design Operations
Information about entities, their attributes, and the relationships
are considered immutable, and the database design is built from
it. Indeed, with regard to our running example, the final design
must have information on all the warehouses, districts, and the
relationships between them. A hypergraph-based representation
enables DocDesign 2.0 to guarantee this property (we refer the
reader to [7, 8] for further details). We introduce two methods to
fit the shotgun hill climbing approach: generation of a random
design, and evolution of a design using valid transformations.

Random design generation. The random schema generator
relies on identifying subsets of entities and relationships that will
be made into a collection (referred to as connected components)
and the structure of the documents inside the collection in a
document store database design. Based on the 12 possible designs
that a relationship can be stored, we make the following decisions
randomly in the schema generation process.
• Root of the connected component is chosen at random
from the available entities. This choice determines the root
document of the document store collection that this component
represents. In our running example, this is either picking the
warehouse or the district as the root of the collection. Let us
assume we picked the warehouse in this case.

• Choosing the next path to explore expands the connected
component and determines it’s structure. Potentially multiple
relationships connect an entity to others in a connected com-
ponent. Thus, for a given entity of a connected component, a
random subset of these relationships is picked to further ex-
pand, determining the depth and the related documents of the
final design. This, together with the root of the document deter-
mines the choice of the direction in Fig. 2 except for replicating

both. In the running example, we choose the relationship to the
district from the warehouse (already inside the component).

• Embedding or Reference determines possible ways to rep-
resent the relationship between two entities of a component.
If embedding is chosen, the entire document is embedded in
the parent and referencing only keeps the reference of the
related document on the parent. In the running example, if the
embedding option is chosen, the final collection will be ware-
houses with embedded districts. We also make the decision of
replicating both based on a given probability.
The above choices are carried out until all the entities and

relationships belong to at least one of the connected components.
Finally, each of the components is represented as a document
store collection. These initial designs do not contain heteroge-
neous collections or lists, yet, since we initially ignore the choice
of flattening and only use the nested option for structuring with
regard to the options in Fig. 2. This decision reduces the complex-
ity of the random generation and the number of starting schemas.
However, we introduce this through design transformations to
ensure that we do not lose certain designs in the process.

Design transformations. Even though it is possible to generate
most of the potential designs through the random generator, it is
very unlikely to reach an optimal state randomly. Moreover, we
omitted the heterogeneous collections/lists and flattened ones in
the random process. Thus, we introduce seven design transfor-
mation operations and use five of them to generate the neighbors
of a particular design. These transformations are inspired by
the rule-based design patterns proposed by MongoDB.We have
validated them by recreating the MongoDB design patterns as
sequences of transformations2.
• Union - merges two collections/lists at the same level and
creates a heterogeneous one.

• Segregate - separates a homogeneous collection/list out of a
heterogeneous one.

• Embed - embeds a related document inside another.
• Flatten - flattens an embedded document or a list inside it’s
parent.

• Group - creates an embedded list of related documents inside
another (opposite of flattening a list).
We also identify two other operations, namely,Nest and Split.

Nest operation creates a nested document inside another and is
unnecessary as we already cover it through the random genera-
tion. Split is similar to vertical partitioning a document. However,
adhering to the atomic entity rule, we decided not to include this
operation as it would also expand the search space uncontrollably.

2.3 Optimization
Candidate designs obtained through random generation or trans-
formation need to be evaluated in order to assess their optimality.

2More details at https://www.essi.upc.edu/~moditha/transformations
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Figure 5: DocDesign 2.0 user interface

Cost functions. We introduce four cost functions to be mea-
sured and optimized in DocDesign 2.0: query cost, storage cost,
degree of heterogeneity, and average depth of the documents.
These are defined as follows:
• Query cost (𝐶𝐹𝑄 ), is the sum of the relative query perfor-
mance values calculated from the schema using a cost model
for document stores [6].

• Storage size (𝐶𝐹𝑆 ), is the total storage size required by the
collections and indexes, calculated using the canonical model.

• Degree of heterogeneity (𝐶𝐹𝐻 ), is the number of different
types of documents in a collection/list. We use the average over
all the collections and lists of the schema. Each heterogeneity
is given a weight depending on which level the list/collection
lies in the document. The higher the level, the higher the as-
signed weight, penalizing heterogeneities at higher levels of
the document structure.

• Depth of the documents (𝐶𝐹𝐷 ), is the average depth of the
documents of the design.

Utility function. Guiding the local search algorithm requires
the definition of a utility function taking into account the end-
user’s preferences. Here, this is a function to beminimized. Hence,
the end-user can assign weights to each of the cost functions
according to their importance in the use-case. Then, for a given
design𝐶 , we define the utility as the normalized weighted sum of

each cost function 𝑢 (𝐶) =
𝑛∑
𝑖=1

𝑤𝑖

𝐶𝐹𝑖 (𝐶) −𝐶𝐹𝑜
𝑖

𝐶𝐹𝑚𝑎𝑥
𝑖

−𝐶𝐹𝑜
𝑖

. The expression

considers the weight𝑤 of each cost function, which is used on
the transformed utility function for𝐶 . This is a normalized value
that considers the utopia (i.e., the expected minimal) and the
maximal design costs, yielding values between zero and one.

3 DEMONSTRATION OVERVIEW
DocDesign 2.0 has a web interface as shown in Fig. 5. In the
on-site demonstration, we will showcase DocDesign 2.0 using
the RUBiS usecase as a real-world example The manual database
design process is expensive as RuBiS contains five entities and
six relationships, leading to a large solution space. Moreover,
we use the 11 queries with their access frequencies as the work-
load. First, for the ease of explanation, we will use the paper’s
running example (i.e., Products and Comments) and the four
queries to showcase the ease of using DocDesign 2.0, initially
with equal weights and then higher weight to query cost. In the
first scenario with equal weights, the optimal schema is prod-
ucts having references to their comments. When optimizing only
for the query performance, DocDesign 2.0 suggests redundantly

nesting comments inside the product and product inside the com-
ment. This approach reduces the actual runtime almost by half
at the expense of double the storage space. This establishes the
functionality and the efficiency of DocDesign 2.0.

Then, we will import the full RUBiS E/R to DocDesign 2.0 to-
gether with the queries and showing the ability of DocDesign
2.0 to solve more complex use-cases. The results presented by
DocDesign 2.0 have a higher throughput once implemented com-
pared to the best solution suggested by DBSR [11]. Moreover, the
suggestion by DocDesign 2.0 has far less redundancy compared
to the ones by DBSR. The participants are also allowed to interact
with the DocDesign 2.0 demonstration with the ability to choose
between different queries and objective function weights as well
as generate their own. The resulting updates made to the design
can be discussed by means of changes introduced (e.g.: giving
more importance to query cost will result data redundancy). We
also present the actual runtimes (calculated by a benchmarking
suite) and storage sizes for the usecases and the designs that we
demonstrate. This allows the users to validate the effectiveness
of the solutions generated by DocDesign 2.0.

Since the JSON input format is specific to DocDesign 2.0, we
also include a functionality to create them through an intuitive
UI. Moreover, the users can suggest their own design to compare
against the one suggested in terms of the four objective functions.
The designs suggested by DocDesign 2.0 rely on pre-defined
queries. If the queries are unknown the end users have to rely on
the other three cost functions to obtain a "good enough" design.
Through this hands-on experience, we are able to show the ability
of DocDesign 2.0 to address the complex problem of document
store database design improving the quality and productivity as
opposed to a manual design process.3
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ABSTRACT
The extended use of the RDF model has made available many
datasets from heterogeneous sources that are of interest to a wide
audience. Their exploration, however, is a highly demanding
task requiring extensive training and knowledge of the SPARQL
language. In this demo, we present an innovative system, which
supports the exploration of large RDF datasets without requiring
any knowledge about the RDF or SPARQL. The system is based on
a novel algorithm that detects semantically similar communities
capitalizing on hyperbolic network embedding and a weighted
similarity metric. The detected communities are visualized in a
user-friendly way and presented to the user through a two level
abstraction interface with a toolbox of exploration functionalities.

1 INTRODUCTION
Many organisations and scientists use the RDF model to share
their data. There is currently high availability of linked datasets,
that cover a wide range of topics and have a high degree of di-
versity regarding their size and characteristics [1]. Exploring
and visualizing these datasets is a complex task that requires
extensive knowledge about RDF and the SPARQL language. Be-
cause of their volume and update rate, they require expensive
infrastructure for their processing. Therefore, even though the
information is of interest to a wide audience, the datasets are, in
practice, accessible only to a few data scientists.

In order to allow the exploration of linked datasets by people
with no experience with the RDF and the SPARQL language,
as well as no access to expensive infrastructure, we need an
approach that enables: (a) accessible visualization that is scalable
even for very large datasets, (b) exploration that is user-friendly
and intuitive. In the following, we discuss these challenges.

Scalable visualization.RDF follows the graph structure, since
the entities can be represented as nodes, and the relationships
between them as edges of a graph. Systems visualizing datasets
compliant with RDF, should use a graph model to represent the
data, presenting each entity as a distinct node and their rela-
tionships as respective edges. Such systems should be easily
accessible through commodity infrastructure and scale efficiently
for very large graphs. Actually there is a requirement for efficient
and scalable rendering for many devices, such as laptops, tablets
and smartphones, and for a high number of simultaneous users.

User-friendly and intuitive exploration. Exploration of
the dataset and extraction of relevant information should be user-
friendly for users with no knowledge of the RDF model. To this

© 2021 Copyright held by the owner/author(s). Published in Proceedings of the
24th International Conference on Extending Database Technology (EDBT), March
23-26, 2021, ISBN 978-3-89318-084-4 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

end, the system should offer an easy-to-use toolbox that provides
a set of exploration functionalities, such as keyword search, se-
mantic filtering based on labels, path navigation and neighbor
retrieval. Also, the system should allow interactive navigation
towards the sought information. Finally, the dataset should be
explorable through different abstraction levels, allowing the user
to determine the degree of detail in the visualized information.
Furthermore, exploration should be intuitive for users with little
knowledge regarding the information that the specific dataset
represents or about what can be of interest to explore.

To this end, many systems use summarization methods [6].
These can be divided in three basic categories: pattern mining,
statistical and structural. Pattern mining methods employ aggre-
gations and graph structures to identify trends in the datasets.
Due to the strictness of these trends, such methods are ideal for
schema identification. Statistical methods provide quantitative
results over the data based on targeted queries and available
semantic information. Such methods are used for the selection
of the proper dataset for the user needs. The structural methods
create the summaries based on the graph structure and can be fur-
ther divided in quotient, which aim to identify equivalent nodes
based on an equivalence relation over them, and non-quotient
that use other structural measures, such as centrality, to create the
summaries. Quotient summaries target indexing and querying,
while non-quotient summaries are better suited for visualization
and data understanding. Thus, we focus further on them.

The Grouping Nodes on Attributes and Pairwise Relationships
(SNAP) [12] method is the most well-known among them. It fo-
cuses on the construction of a graph visualization that uses super-
nodes, nodes that contain multiple nodes of the input graph, to
create summarizations based on user input and structural infor-
mation such as edge values and node connections. The main
drawback of this solution is the requirement for the user to select
the summarization properties, in order to produce the visualized
graph. Such a limitation is hindering for inexperienced users or
users that want to explore datasets they are unfamiliar with.

An alternative to summarization, and a promising solution
for intuitive exploration of RDF datasets, is community detec-
tion. As discussed in [7], community detection has a key role
in the analysis of complex networks and the inference of useful
insights regarding graph topology. However, although traditional
community detection methods are very useful when applied to
small networks, they cannot scale for networks of modern size
as they rely on heavy computations and require a significant size
of main memory. Therefore, they can process networks of up
to only a few thousand nodes and edges. Hence, in order to ap-
ply community detection to RDF datasets, we need new scalable
and efficient algorithms that use persistent memory and data
management models to process larger graphs.
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Contributions. We propose the demonstration of a robust
system that implements a novel visualization technique over a
novel community detection algorithm to detect communities that
include semantically similar content in large RDF datasets. The
system takes as input a semantically annotated dataset, divides it
into semantically similar communities using a novel algorithm,
stores the communities and their interconnections in a graph
database and visualizes the results with respect to the graph
structure. The dataset is then presented to the user through a
user-friendly interface that offers two abstraction layers, allowing
the user to explore both the detected communities and the sub-
graphs within. The system has strong advantages related to:

Semantic community detection. We have designed and im-
plemented a novel algorithm that detects semantically similar
communities [9], by first transforming the RDF dataset into a
weighted graph and then employing embedding of the graph in
the hyperbolic space. This is a proven “natural” space for embed-
ding large graphs, with a semantic similarity metric aiming to
detect semantically similar communities.

Community visualization. The system implements a novel two-
level visualization approach: first, the nodes and edges within a
community are visualized as an independent two-dimensional
graph; second, the connections between communities are visual-
ized to provide a high-level overview.

Scalability.We ensure the scalability of our technique in two
ways. First, our algorithm for community detection is the first of
its kind to employ a DBMS. We have selected a graph DBMS for
indexing and storage of the RDF dataset to facilitate the storage of
node coordinates in the hyperbolic space and the computation of
the distance for all node pairs. Second, we employ a graph DBMS
for storage and indexing of the inner and intra communities
graphs, a design decision so that the system can support the
retrieval of the information using a client-server architecture. In
practice, this ensures that the system can work efficiently on any
web browser and device.

Exploration functionalities. We provide an easy-to-use toolbox
of functionalities that allows the users to explore the dataset
using multiple filtering criteria, and navigation through panning
and zooming capabilities [10].

2 SEMANTIC COMMUNITY DETECTION
We propose a new algorithm for semantic community detection.
The algorithm takes as input a RDF dataset and pre-processes it
in order to map it in a three dimensional (3D) space and store
it as a weighted graph. In order to introduce the semantics in
the detected communities we need to calculate a weight for pairs
of RDF triplets that represents their semantic relation. This is
based on a novel metric that encapsulates semantic and lexical
similarities. Finally, the new graph is processed by the algorithm
we have proposed in [9], which employs hyperbolic space con-
cepts for semantic community detection. Algorithm 1 shows the
pseudocode, and in the following we give more details for every
step of the algorithm.

Step 1: RDF dataset pre-processing. Each RDF triplet of
the input dataset is mapped to one node in a custom 3D space,
where each one of the three dimensions correspond to (subject,
predicate, object). The nodes of the 3D space are connected with
edges, to create a complete graph. This is the representation of
the input dataset to the custom 3D space. Next, to ensure the
efficiency and scalability of the algorithm for very large datasets,

the information is stored and indexed in a graph database where
each node has three properties.

Step 2: Weighted graph creation. In order to calculate se-
mantically accurate weights for the graph, we follow a three-step
method. First, all the words of the dataset are mapped to seman-
tically similar groups and given a popularity score. Each node
has three labels: subject, predicate and object. For each label of
the node a semantic metric is calculated. Finally, the metric is
used to calculate the weight between two nodes.

Initially, we aim to create groups of semantically similar words.
In order to achieve this, each word is examined against all al-
ready formed groups in case it exists in one of them. In this case,
the word is added to the group. In any other case, the word is
examined for lexical similarity with all the words already in each
group. If none is found, then the word is placed in the group that
contains a semantically similar word. If no such group exists,
then the word is placed in a new group.

As ‘lexically similar’ we consider two words that share the
same lemma. For example, the words ‘playing’ and ‘player’ are
lexically similar to one other, as well as to the word ‘play’. As
‘semantically similar’ we consider two terms that have common
semantic content, based on the likeness of the meaning between
them, as defined in dictionaries. Two entities are semantically
similar when they are associated with what is commonly refer to
as ’is a’ semantic relationships which are synonymy, hyponymy
and hypernymy [11]. For each group 𝑖 that has been formed, a
score is calculated by dividing the count of words within the
group with the total number of words in the dataset.

Definition 2.1. Popularity Score. Let G = {G1,G2, ...,G𝑘 }
be the set of semantic groups, where G𝑖 for 𝑖 = 1, 2, ..., 𝑘 corre-
sponds to the 𝑖-th group of words and includes the words W𝑖 =

{W𝑖,1,W𝑖,2, ...,W𝑖,𝑚} where eachW𝑖,𝑙 for 𝑙 = 1, 2, ...,𝑚 corre-
sponds to the 𝑙-thword in the 𝑖-th group. LetC𝑖 = {C𝑖,1, C𝑖,2, ..., C𝑖,𝑚}
where each C𝑖,𝑙 corresponds to the number of times the 𝑙-th word
of the 𝑖-th group is found in the dataset. Then the popularity
score for the 𝑖-th group is calculated as:

𝑝𝑜𝑝𝑢𝑙𝑎𝑟𝑖𝑡𝑦𝑆𝑐𝑜𝑟𝑒 (𝐺𝑖 ) =
∑𝑚
𝑙=1𝐶𝑖,𝑙∑𝑘

𝑖=1
∑𝑚
𝑙=1𝐶𝑖,𝑙

(1)

□
Definition 2.2. Semantic Similarity. Each label of the node

is split into𝑚 words and each word𝑊𝑖,𝑙 , where 𝑙 = 1, 2, ...,𝑚, is
replaced by the popularity score of the group it belongs to, 𝐺𝑖 .
The sum of the popularity scores divided by the number of words
in the label is the semantic metric:

𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐𝑀𝑒𝑡𝑟𝑖𝑐 (𝑙𝑎𝑏𝑒𝑙) =
∑𝑚
𝑛=1 𝑝𝑜𝑝𝑢𝑙𝑎𝑟𝑖𝑡𝑦𝑆𝑐𝑜𝑟𝑒 (𝐺𝑛)

𝑚
(2)

□
Then, for each pair of nodes the distance between them for

each dimension is calculated as well as a total distance between
them, the weighted average of the three distance values. The
calculated distance is used as the graph weights.

Step 3: Community Detection. The community detection
starts with pruning the edges of the complete weighted graph by
applying the DMST method [5] to obtain a graph that is dense
enough to represent the relationships between nodes and sparse
enough to highlight the underlying community structure. This
graph is then embedded in the hyperbolic space using Rigel Em-
bedding [15]. In the embedding process, each node is assigned
coordinates in the hyperbolic space and these are stored in the
database. Based on these coordinates the computation of Hyper-
bolic Edge Betweenness Centrality (HEBC) follows. The HEBC
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Figure 1: Semantic Community Detection

metric can be considered as the “hyperbolic” analog of the tra-
ditional Edge Betweenness Centrality (EBC) metric. The HEBC
quantifies for each edge, the amount of shortest paths in the graph
that pass through it. In its computations it uses the hyperbolic
distance between nodes. Even though the HEBC values do not
always match the nominal EBC values, the ordering of the edges
is very similar. The edges of the graph are ranked in descending
order and in that order edges are removed in batches, until one
of the following occurs. Either the graph becomes disconnected,
meaning a new community is discovered, or the maximum num-
ber of edges to remove in a single round is reached. Then, if a
pre-specified number of communities is reached the algorithm
terminates, otherwise the previous process is repeated for the
current largest connected component of the graph. The details of
the basic version of the hyperbolic-embedding can be found in
our previous work[9]. In [13], we have enhanced this work for
efficient and scalable processing of very large graphs.

Example. In Figure 1 we present how the proposed algo-
rithm detects the communities on a small RDF dataset. The figure
shows six nodes that relate to the ages and salaries of three peo-
ple, as well as the complete graph created from the first and
second step of the algorithm. The distances for each node pair
are calculated as follows: the Euclidean distance is used for the
numerical properties and the distance based on the semantic
metric is used for the rest. This dataset is split into three seman-
tic groups,𝐺1 = (𝐴𝑙𝑖𝑐𝑒, 𝐵𝑜𝑏, 𝐽𝑢𝑑𝑦), 𝐺2 = (𝑎𝑔𝑒,𝑦𝑒𝑎𝑟𝑠, 𝑏𝑖𝑟𝑡ℎ𝐷𝑎𝑦),
𝐺3 = (𝑠𝑎𝑙𝑎𝑟𝑦, 𝑖𝑛𝑐𝑜𝑚𝑒,𝑤𝑎𝑔𝑒), with scores (0.167, 0.25, 0.25). For
example, the distance between the triplets (:Alice, :age, :25) and
(:Judy, :years, :24) is computed as follows. First, the distance
𝑑 (′𝐴𝑙𝑖𝑐𝑒 ′,′ 𝐽𝑢𝑑𝑦′) = 0, then 𝑑 (′𝑎𝑔𝑒 ′,′𝑦𝑒𝑎𝑟𝑠 ′) = 0 and finally the
distance 𝑑 (25, 24) = 1. From that it follows that the distance
between these two triplets is 0+0+1

3 = 0.3. In the third step, the
algorithm performs the DMST, removing edges shown as dashed
lines, and then we proceed to the core part of community de-
tection, which results in two communities denoted by the two
different node colors. The algorithm discovers a community that
corresponds to the ages of the people and a community that
contains information about their salaries. It is important to note
that a different averaging technique could result in a different
clustering as more importance could be given to one attribute
over another. As an example, if we wanted the analysis to focus
more on people’s names, and thus possibly discover clusters con-
taining information about the attributes of a person, we could use
an average with larger weight on the distance between names.

Experimental results. For the Facebook network provided
by SNAP library [2], our community detection algorithm obtains
a modularity score of 0.59. The Girvan-Newman method resulted
in a score of 0.7 but it required almost double the time necessary
for our approach. As discussed in detail in [9], this result proves
the benefits of our algorithm when applied to real life networks
and its the ability of finding high quality clusters.

Algorithm 1: Semantic Community Detection
Input: RDF dataset, distance metric, # communities 𝑐𝑚, #

spanning trees to join 𝑘 , embedding parameters 𝑝𝑎𝑟𝑎𝑚𝑠 ,
maximum # edges to remove per round 𝑏𝑎𝑡𝑐ℎ

Output: clusters stored as communities in a Graph DB
1 𝐷 ← distances between RDF triplets
2 𝐷 is stored in DB
3 𝐺 ← 𝐷𝑀𝑆𝑇 (𝐷,𝑘)
4 𝑐𝑜𝑚𝑚_𝑓 𝑜𝑢𝑛𝑑 ← 0
5 while 𝑐𝑜𝑚𝑚_𝑓 𝑜𝑢𝑛𝑑 < 𝑐𝑚 do
6 𝑐𝑜𝑜𝑟𝑑𝑠 ← 𝑒𝑚𝑏𝑒𝑑 (𝐺, 𝑝𝑎𝑟𝑎𝑚𝑠)
7 𝑡𝑜𝑝_𝑒𝑑𝑔𝑒𝑠 ← 𝐻𝐸𝐵𝐶 (𝐺,𝑐𝑜𝑜𝑟𝑑𝑠)
8 𝑖 ← 0
9 while 𝑖 < 𝑏𝑎𝑡𝑐ℎ & isconnected(𝐺) do
10 𝐺 remove 𝑡𝑜𝑝_𝑒𝑑𝑔𝑒 [𝑖 ]
11 if not isconnected(𝐺) then
12 𝑐𝑜𝑚𝑚_𝑓 𝑜𝑢𝑛𝑑 ← 𝑐𝑜𝑚𝑚_𝑓 𝑜𝑢𝑛𝑑 + 1
13 store newly found community in Graph DB

3 ARCHITECTURE & FUNCTIONALITIES
As shown in Figure 2, we have developed a server-client archi-
tecture that takes as input a RDF dataset, process it using the
proposed Semantic Community Detection Algorithm, stores the
communities to a Graph Database and further processes the infor-
mation through two dedicated modules, the Inner Community Vi-
sualization and the Intra Community Visualization. The processed
information is presented to the user through the Visualization
Interface that it is based on a novel visualization technique [10].

Graph Database Due to the structure of the RDF model and
the needs of the Visualization Interface, the Neo4j[14] graph data-
base is used for the storage of the dataset. For the Semantic Com-
munity Detection Algorithm the custom 3D graph is stored in
the graph database, but now the dataset has been restored to its
initial structure and stored here. Each entity has as properties
its unique identifier, the community id it belongs to, the ground
truth community, if available, and its coordinates within the 2D
graphical representation of the community.

Intra-Community Visualization The Intra-Community Vi-
sualization uses the Scalable Force Directed Placement algorithm
[8] for the graphical representation of the entities and their rela-
tionships that belong in each community in the 2D space. This
algorithm was selected as it allows the parameterization of many
attributes of the output graph including the overlapping percent-
age and the size of the nodes.

Inter-Community Visualization The Inter-Community Vi-
sualization creates an overview of the dataset by connecting the
communities in a super-graph. Two communities, 𝑖 and 𝑗 are
super-nodes that are connected with super-edges that contain
information about the real edges that connect pairs of nodes
(𝑛𝑖 , 𝑛 𝑗 ), where 𝑛𝑖 belongs to 𝑖 and 𝑛 𝑗 to 𝑗 . In addition, each super-
node contains information about the content of the respective
community. It includes the three most prevalent nodes and edges
as they are calculated based on a popularity score, calculated
as follows: first, the frequency of appearances of each label in
the super-node is calculated; the counter is then converted to
the percentage of the label appearances in the overall dataset.
As an example, if the label ‘happiness’ appears in the dataset
1000 times and the label ‘hate’ just once, then for a super-node
that includes the label ‘hate’ once and the label ’happiness’ 700
times, the score for the first would be 1 and for the second 0.7.
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Figure 2: System Overview

This way, nodes and edges that are important to the communities
but also contribute to their differentiation from the others, are
included. Similarly, each super-edge has a list with the three most
important edges connecting the two super-nodes.

Visualization Interface The information is presented visu-
ally through a user interface in two abstraction levels. The high
level presents the interconnections between communities, as well
as a brief summary regarding the context of each community.
The second layer presents as a graph all the triplets of infor-
mation of the community and as meta-information connections
with other communities. In order to allow the user to explore
the input dataset and the detected communities a series of func-
tionalities are provided through the interface. Employing the
indexing and querying capabilities of the graph database, the
functionalities are provided in real-time. One key functionality
is the zoom support, where the user can use the mouse wheel
or the buttons at the functionality panel to visualize the graph
in different levels of detail. In addition, dedicated controls allow
the user to navigate between the two abstraction layers, focus-
ing either on the overview of the communities or visualizing its
information. Also, the visualization panels for the two abstrac-
tion layers are interactive and responsive to user requests. The
user can browse information within them using panning and
scrolling actions. The system, also, enables the user to view the
information within the communities using multiple filtering and
aggregation criteria either independently or at the same time.
For example the user can isolate a specific edge type as well as
nodes with a given node degree. To further support the explo-
ration of the dataset, the user can locate information through
keyword search. A term is matched against node and edge labels,
and the result is presented as an interactive list. Last but not
least, the user can select a node and focus on paths within its
community, originating from it. Figure 3 shows the interface of
the system, which includes the dataset selector, the functionality
toolkit and the graph visualization. The graph panel depicts two
of the communities based on the user selections.

4 DEMONSTRATION
We will demonstrate the prototype system that implements the
proposed technique using three datasets. The audience will be
able to explore the datasets through the visualization of semantic
communities and compare our results with the ground truth.

Scenarios A: Semantic communities overview. The first
scenario will be based on the Wikidata[3], which is a free and
open knowledge base, mainly the central storage for the struc-
tured data of Wikipedia. The dataset contains a plethora of di-
verse information that can be used for multiple analysis based

Figure 3: User interface

on topic, source or category. Initially, the users will be able to
access multiple visualized overviews of semantic communities fo-
cusing on different attributes of the RDF entities. The overviews
will focus on popular topics such as persons and places. Next,
the users will delve into the fine exploration of a community
graph. Given the volume and diversity of the information avail-
able in this dataset, examples of the customizable filtering and
aggregation functions will allow the users to focus on specific
information. The users may discover for example, based on their
interests collaborations between scientists, artists or countries.
Finally, the users will be encouraged to follow paths between
entities aiming to identify patterns and information exchanges.

Scenarios B: Ground truth comparison. For the third sce-
nario the DBLP and Amazon datasets will be used, which are
offered with ground-truth by SNAP [4]. The DBLP dataset pro-
vides open bibliographic information on major computer science
journals and proceedings. The RDF dataset extracted includes
information about co-authors and the semantic communities are
formed based on the journal or conference that a paper was pub-
lished. The Amazon dataset contains a product co-purchasing net-
work. The users will be also provided with statistics and detailed
analysis of the comparison of the detected semantic communities
through the proposed technique with the ground truth.
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ABSTRACT

We demonstrate the Temporal Graph Explorer, a distributed open-
source framework that enables time-dependent graph exploration
and analysis on large real-world networks using a rich tempo-
ral property graph model and dynamic graph operators. In this
demonstration we show how the evolution of a graph plays an
essential role in many analytical questions. Besides retrieving
a snapshot from a past graph state or calculating the difference
between two graph snapshots, users can use our application
to summarize the graph to reduce its complexity and to obtain
deeper insights into its evolution. Visitors of the demo can vi-
sually experience these advanced temporal operators and their
results or build and manipulate analytical programs in a declar-
ative way without extended programming skills and run them
on a distributed local or remote environment. We provide real-
world temporal graph data from bicycle rentals of New York City
with millions of rentals per month, also demonstrating horizontal
scalability of the system.

1 INTRODUCTION

Graphs are an intuitive way to model and analyze complex re-
lationships between entities representing real-world scenarios.
Since most entities and interconnections evolve in the real-world,
graphs also change over time in terms of their structure and con-
tent. For example, Figure 1 shows a toy example of bicycle rentals
(represented as directed edges) between fixed stations (vertices)
over time. Such temporal property graphs [1] additionally allow
tracking changes in the graph over time. In the example of Fig-
ure 1 both vertices and edges store temporal information (marked
by a clock symbol) as attributes (valid times) and, thus, the graph
reveals that the bike with id 2115 was moved from station [1]
to [2] by three consecutive rentals over time.

In this paper, we demonstrate the Temporal Graph Explorer,
a tool for user-friendly exploration, analysis, and visualization
of large temporal property graphs. The core of this application
is Gradoop1, an open-source framework for distributed graph
analysis. Its Temporal Property Graph Model (TPGM) [8] enables
modeling and analysis of graphs with bitemporal time seman-
tics. The TPGM also comes with a set of composable temporal
graph operators (including snapshot retrieval, graph evolution,
and time-dependent grouping and aggregation) that can be visu-
ally configured through the user interface or programmatically
1https://github.com/dbs-leipzig/gradoop

© 2021 Copyright held by the owner/author(s). Published in Proceedings of the
24th International Conference on Extending Database Technology (EDBT), March
23-26, 2021, ISBN 978-3-89318-084-4 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Figure 1: Example temporal property graph representing

bicycle rentals between rental stations. The validity pe-

riod of an edge is marked with a clock symbol and sim-

plified with numbers instead of timestamps.

combined with the help of the declarative language GrALa [5]
to build distributed analysis workflows.

The Temporal Graph Explorer thus enables the analysis of the
evolution of graphs, i.e., to figure out when something happened
or changed, rather than a static view representing something
that happened at some time [9]. To this end, it provides temporal
graph operators (including snapshot retrieval and graph differ-

ence) to compute and visualize changes, including additions and
deletions, that have been occurred. This can be used in the given
bicycle example to find, for a given week in the past, all rentals
that have been added, removed, or remained the same.

Our Temporal Graph Explorer can also be employed for the
analysis of large graphs by using time-related grouping and

aggregation. This allows for a profound exploration of a graph’s
structure, semantics, and development over time, which is a sig-
nificant part of knowledge discovery for temporal graphs. Such a
graph grouping mechanism helps to find out how different types
of vertices and edges are connected as well as when and how long
they were connected. In addition, the graph can be grouped on
different dimensions, e.g., by rental time or by station location,
as well as on different dimension levels, e.g., per year or month
for the time dimension. The grouped vertices and edges can fur-
ther be aggregated in any conceivable way, from a simple count
to the minimum, maximum and average duration of a specific
relationship type.

2 TEMPORAL GRAPH ANALYSIS AND

EXPLORATION

The Temporal Graph Explorer is an application to explore, analyze
and visualize temporal property graphs. An intuitive web-based
user interface enables the configuration of selected temporal
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graph operators and their application on a predefined graph
dataset of the user’s choice. The whole processing is then ex-
ecuted in a distributed environment by using Gradoop as a
backend framework. The resulting graph is again temporal and
sent back to the user interface for visualization. Frontend and
backend application communicate through a RESTful webservice.
The visual representation is adjusted to the temporal characteris-
tics of the graph, as later explained. An architectural overview
of the system is given in Figure 2.

In the following, we will dive into the single parts of the
application including the used bitemporal graph datamodel, three
selected operators, and graph visualization techniques focused
on understanding the graph’s evolution.

Graphmodel and distributed processing. The heart of our
Temporal Graph Explorer is Gradoop [4, 5], which offers many
generic operators on graphs (for pattern matching, global ag-
gregations, etc.) that can be used within workflows for graph
analysis. Workflows representing graph analytical programs can
be expressed in GrALa for distributed execution. All operators
are closed over the model, i.e., they take graphs as input and
produce graphs. Since Gradoop is built on top of Apache Flink’s
Dataset-API, each operator is based on a subset of Flink’s transfor-
mations (map, flatmap, join, etc.) to achieve a parallel execution
and scalability to large graphs. Thus, it combines and extends fea-
tures of graph analytical systems with the benefits of distributed
graph processing.

To maintain the full history of a graph, including any insertion,
deletion, or update of a vertex, edge, or its properties, Gradoop
was extended by the recently introduced TPGM [7, 8] as a graph
data model. It supports labeled, directed, multi-graphs where the
vertices and edges are characterized by a unique identifier, a type
label, and a set of properties, modeled as key-value pairs. In ad-
dition, each vertex and edge is extended by two time intervals 𝐼𝑣
and 𝐼𝑡𝑥 that define a lifespan regarding to valid-2 and transaction
time dimension, which ensures a bitemporal data modeling [3].
Each close-open interval is represented by two first-order at-
tributes 𝑡from and 𝑡to defining the start and end timestamp of the
respective time interval. Thus, a graph of this model contains
all historical and rollback information and therefore allows the
exploration of its evolution and retrieving valid snapshots from
the past, present or future for the valid time dimension or past
and present states from the transaction time domain. To provide
maximum flexibility, 𝐼𝑣 can also be empty if no time information
is available or just hold a single timestamp 𝑡from if the duration of
the element is not available or can be neglected, e.g., the time at
which a bike station was newly built. A more detailed description
and scalability evaluation of the TPGM and its operators is given
in [8].

Graph snapshot and difference. To enable temporal and
evolutionary queries and analysis, one data management chal-
lenge for large historical graphs is the retrieval of graph snapshots
as of any time-point in the considered time domain [6]. To achieve
this, we developed the snapshot operator that can be applied on
a temporal graph instance and allows to retrieve a valid state of
the graph either at a specific point in time or a subgraph that is
valid during a time range. The user can configure the operator by
pre-defined time-dependent predicates such as asOf(), overlaps()
or precedes(). Furthermore, user-defined predicates, as well as
helper functions to extract certain time dimensions, can be used.

2Valid-time is also known as application time.

An important part of the analysis of graphs is the examina-
tion of changes that have occurred between two points in time.
Changes, i.e. additions, deletions, and edits, represent the evolu-
tion of a temporal graph and can be selected or aggregated in sub-
sequent analysis steps. Therefore, we demonstrate the difference
operator that computes a graph △𝐺 between two graph snap-
shots𝐺1 and𝐺2 by determining the union𝐺1∪𝐺2 and extending
each element by a property that expresses the addition, deletion,
or persistence of this element respectively. The user configures
both snapshots by using time-dependent predicate functions, as
described before. In addition, the desired time-dimension can be
selected.

Time-specific grouping andaggregation. Themaintenance
of the entire history of a real-world graph entails a huge amount
of graph elements. A structural grouping of the graph (also de-
noted as summarization) will help to reduce the overall com-
plexity and offers deeper insights into the graph’s structure, dis-
tribution, and evolution. For example, a graph with billions of
vertices and edges can be first grouped by the element’s label to
explore the schema that reveals how the heterogeneous types
are connected. In addition, temporal and content information of
the grouped vertices and edges can be aggregated in many ways
to get knowledge about the respective groups.

The temporal grouping operator goes further and offers a
flexible mechanism to group a temporal property graph by all
available information of the vertices and edges, especially their
temporal characteristics. This is achieved by the possibility of
defining a function 𝑓 (𝑣) ↦→ 𝑘 , denoted as key function, that maps
a vertex 𝑣 (or edge) to a key 𝑘 on which to group. All elements
mapped to the same key are grouped together and form a new
super-vertex or -edge, respectively. To simplify the specification
for users, Gradoop offers predefined key functions, e.g. label()
to group elements by their label, as well as helper functions, e.g.,
functions for extracting time-related information to summarize
the graph at different temporal resolutions. Since real-world
graphs are usually very heterogeneous, the application of the
key functions can also be restricted to nodes or edges of a certain
label (label-specific grouping), e.g., to group Station vertices by
district and Trip edges by gender.

Besides the grouping itself, one main feature is to enrich the
grouped elements by summarized information about the group,
which can be achieved by applying pre- and user-defined aggre-
gate functions. Not only properties but also information from the
additional time dimensions can be aggregated. For example, the
earliest or latest beginning of an edges validity can be calculated
by using minTime() or maxTime() aggregate functions.

Analysis specification and result visualization. As already
mentioned, Gradoop workflows are described in the declarative
language GrALa. Besides the possibility for users to write pro-
grams directly in GrALa (see programmatic demonstration) the
Temporal Graph Explorer allows the creation of simple work-
flows with the help of an adaptive user interface. Users can select
operator(s) and the user interface allows easy parameterization
by displaying suitable graphical elements, e.g. drop-down lists
for selecting a snapshot predicate.

The resulting temporal graph is visualized by the Temporal
Graph Explorer using Apache ECharts3 and the JavaScript library
of Cytoscape4, an open-source software platform for visualizing

3https://echarts.apache.org
4https://js.cytoscape.org/
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Visual demonstration Programmatic demonstration

Figure 2: Systemarchitecture overviewof TemporalGraphExplorer anduser interactionworkflow for both demonstration

scenarios.

Figure 3: Example visualization of a difference graph.

complex attributed networks. By default, the coloration of ver-
tices and edges is based on the respective label, i.e., elements with
the same label are equally colored. Further, identifiers, properties,
and temporal attributes are displayed in a tooltip after selecting
a vertex or an edge.

Besides this default graph visualization, we provide two ad-
ditional graph representations: a difference graph view and a
grouped graph view. Figure 3 shows a cutout of a difference
graph’s visualization. It colorizes the vertices and edges depend-
ing on the annotation with which the elements are expanded
by the difference operator. A vertex or edge is colored red if the
elements have been deleted in the time between both snapshots,
grey if the elements were not changed at all, or green if the
elements were created.

For the visualized result of the grouping operator, aggregated
properties (e.g., count, minDuration, maxTimestamp) can be used
to adjust the radius of vertices and width of edges to the corre-
sponding property value. For example, the width of a super-edge
depends on the average duration of the grouped edges. Besides, if
the graph data set contains geographic coordinates as properties
of vertices, these can be mapped onto an interactive map using a
geo-layout (see the example in Section 3).

Further, the graph can be exported to the graph description
language DOT, which can be easily rendered by Graphviz library
or Gephi, an external visualization and exploration tool.

3 DEMONSTRATION DESCRIPTION

Our demonstration of the Temporal Graph Explorer is separated
into two parts as shown in Figure 2. First, we demonstrate our
web-based toolbox and user-interface for Gradoop. There, differ-
ent analytical operators can be selected and configured in many
ways, whereas the resulting graph is presented to the user by
graph visualization to present the analytical value of the opera-
tors. We provide real-world graph data based on the open-source
New York CitiBike5 database which captures bicycle rentals since

5https://www.citibikenyc.com/system-data

Figure 4: Visualization of two grouped stations each

placed in the grid center and their aggregated trips distin-

guished by gender (blue dotted = male; black solid = fe-

male).

the year 2013. The structure of the graph is analogous to the ex-
ample graph of Figure 1. The dataset consists of around 1,000
vertices (ascending over time) representing the rental stations
and more than 2,000 trip edges per hour, which results in about 17
million trips per year. Further, we also integrated other temporal
networks such as a heterogeneous social network synthetically
generated by the LDBC data generator [2]. In the second part of
the demonstration, we give visitors the opportunity to inspect
and manipulate existing example temporal programs written in
GrALa. All our examples can be executed on demonstration data
locally, but also remotely on our research cluster.

Visual demonstration. To give more insight about results
of frequently used single temporal operators, such as snapshot,
difference and temporal grouping, we demonstrate their usage
by the Temporal Graph Explorer. The explorer offers each visitor
the possibility to parameterize the operators by using a dynamic
user interface. Each operator is then executed by a Gradoop
instance from where resulting temporal graphs are pushed back
to the web application for visualization. The visualized graph is
interactive, i.e., visitors can zoom in and out, drag vertices and
edges to other positions or click on them to show their properties
and temporal attributes.

To demonstrate the snapshot operator, a user is able to choose
between supported time predicates, e.g., asOf, fromTo or overlaps,
a time dimension (valid- or transaction time) and a respective
timestamp or interval. Through the visualization, the user re-
ceives instant feedback on the changes made and thus can explore
and compare various states of different times.

For the difference operator, a user can compare two temporal
graph snapshots by exploring a difference graph. To define the
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Figure 5: Analytical application defined in GrALa.

snapshots, we are using the same implemented time predicates.
For the visualization, graph elements are colorized to provide
more information about their temporal evolution as described
in Section 2. Using this kind of visualization a user gains insights
about how and how frequently the graph evolves between two
graph states.

Temporal grouping, the last operator we demonstrate, offers
a large variety of possibilities to explore the temporal graph by
summarizing it. The configuration options of this operator are
very extensive and depend on the characteristics of the selected
graph dataset and the objectives of the corresponding analysis.
The Temporal Graph Explorer supports the user in the configu-
ration of the operator by a flexible selection of the predefined
key functions for vertices and edges, as well as aggregate func-
tions. Appropriate arguments are offered for parameterized key
functions. For example, a list of property names is offered for the
function property(<name>). Timestamps which appear to be
useful for the selected temporal graph are also suggested for use
with temporal key functions. Besides, the user can choose from
pre-defined aggregate functions to additionally configure the
grouping and thus to enrich the grouped elements with detailed
information about the grouped element, which can be accessed in
the graph visualization. The user can thus interactively add key
and aggregate functions to the configuration step by step until
the grouped graph and its aggregated values provide information
about a specific analysis question. Figure 4 shows a cutout of a
grouping result in the Temporal Graph Explorer. The used con-
figuration is equal to the later-described analytical application.
Since the grouped vertices have geographic properties, they can
be placed on a map-view. Edges can also be colored according to
a certain property, as one can see in the figure. The properties
created by the aggregates are displayed after selecting a vertex
or an edge.

Programmatic demonstration. For a better understanding
of the API of our temporal operators, we prepared a set of example

programs6 that show basic functionality and usage. Advanced
examples, like the one in Figure 5, demonstrate the composition
of multiple (temporal-) operators to answer specific analytical
questions.

In an example scenario, we want to answer the following
question: In 2019, how did the minimum, maximum and average
trip duration change per month for male and female users born
after 1990 between stations located in different areas?

We first use the snapshot operator (line 3) to retrieve all in-
formation about trips, users, and stations of the whole year of
2019. Since snapshot can produce dangling edges, we make sure
to remove them by calling the verify operator (line 8). We further
apply a subgraph operator with specific predicates (line 10) to
filter for users born after 1990. At the end of our pipeline, we
want to summarize our graph by calling the grouping operator
with specific grouping key functions for vertices (lines 15-16)
and edges (lines 22-24). Besides the predefined label() function,
we also show the usage of a user-defined grouping key function
(line 16). It calculates a map grid using latitude and longitude
properties of our vertices. We further group the edges for each
month of the year, separated by the two genders of the users.
During this step, we also apply multiple aggregation functions to
calculate the minimum, maximum, and average duration of trips
(lines 28-30). Figure 4 shows the results of this GrALa program
for two randomly picked stations.

The example illustrates the level of abstraction using our op-
erators. A user does not have to care about the underlying graph
data structure, operator implementation, or distributed execution
details. Gradoop offers a variety of DataSources and DataSinks
to read and write different kinds of data such as .csv files for data
exchange or .dot files for graph visualization.

A visitor of this demonstration has the possibility to freely
manipulate the provided GrALa programs. For example, it is
possible to use asOf instead of overlaps at the snapshot oper-
ator (line 3) to specify a different time period. Further a user
is able to use pattern matching instead of subgraph (line 10) to
detect important graph patterns. Also the grouping operator can
be parameterized by different pre- or user-defined functions to
summarize different aspects of the data.
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ABSTRACT
Motivated by the global unrest related to the COVID-19 pandemic,
this demo paper presents a system for acquisition of COVID-
related data from different, public sources, and interlinking under
a common semantic data model at a fine level of granularity. The
integrated data set contains data from several European coun-
tries, which come in different schemata, formats, granularity, and
data integration acts as a facilitator towards querying data from
different sources, joint data analysis, and identifying correlations
at varying geographical level. Moreover, our work shows how
such an integrated data set can be exploited to answer complex
questions for the pandemic, also in combination with other data
sets via federated queries.

1 INTRODUCTION
The COVID-19 virus outbreak presents major problems world-
wide, as it affects every country in the world, both economically
and socially. Governments publish COVID-related data daily, and
it is commonly accepted that analyzing this data may unveil hid-
den patterns and aid in developing a better understanding of the
pandemic. However, published data comes in different schemata,
formats, granularity, which prevents data analysts from apply-
ing advanced spatio-temporal analysis methods for monitoring
the evolution in space-time, due to the well-known problem of
big data integration from disparate sources [7]. This motivates
our work for building an extensible system based on linked data
principles that allows integration of data that combines reports
regarding COVID-19 cases from various countries with other
public data sources.

To the best of our knowledge, the public data sets related
to COVID-19 that are currently available, either report the to-
tal number of cases per country or per administrative region
within a specific country. Typical examples of the first category
are the World Health Organization (WHO) Coronavirus Disease
Dashboard [6], the WorldOmeter [1] and the Johns Hopkins Uni-
versity dashboard [2], built mainly for monitoring the situation
at a coarse level of detail, rather than for supporting any kind of
analysis, as epidemiologists do with elaborated models. On the
other hand, several countries report details about the confirmed
cases in their administration regions [3]. Nevertheless, it is hard
to extract the time series of reported cases for each country from
the unstructured text. Also, summaries of reports provided per
region through online repositories by individual countries, such
as [4] and [5], do not share a common schema and use different
data formats (JSON, CSV or ESRI shapefiles), which hinders joint
data exploration and analysis. However, data integration needs
to solve several problems at a technical level, such as different
languages, text encodings and region identification systems used.

© 2021 Copyright held by the owner/author(s). Published in Proceedings of the
24th International Conference on Extending Database Technology (EDBT), March
23-26, 2021, ISBN 978-3-89318-084-4 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

For example, Germany uses “landkreis” codes, whereas Austria
uses “Gemeindekennziffer” (GKZ) codes. As a result, it is nec-
essary to convert this spatial data to a level of granularity that
allows correlation analysis.

Figure 1: The overall workflow for retrieving, transform-
ing updating and publishing data as RDF triples.

This work contributes a system, called Coronis1, for gathering
and linking COVID-related data from different sources under a
common ontology, at a fine level of granularity and as five-star
Open Data[8], enabling the correlated analysis of such data via
queries that can extract useful knowledge and insights. Currently,
our prototype automatically retrieves data from daily reports re-
garding COVID cases from 7 European countries, populating a
single ontology, at a specific level of spatial and temporal granu-
larity. Moreover, the administrative regions reported in the data
set, are related to data regarding population density per region
and per various age groups2, as well as to external Open Data
portals. Data exploration is enabled by a SPARQL[11] endpoint
that supports federated queries. The result set is visualized using
a variety of options including tables, charts and a map-based
interface.

2 SYSTEM ARCHITECTURE
Figure 1 illustrates the overall system architecture as well as the
workflow for data integration. Our system for COVID-19 data
acquisition, integration and querying comprises the following
main components:

• Data connectors: enabling data acquisition from different
data sources.

• Data transformation: converts incoming data into a com-
mon semantic representation (RDF triples) according to a
given ontology.

1In greek mythology, Coronis is a Thessalian princess and a lover of Apollo, also
the mother of Asclepius, the Greek god of medicine.
2Data retrieved from: https://ec.europa.eu/eurostat/

Demo

 

 

Series ISSN: 2367-2005 686 10.5441/002/edbt.2021.84

https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2021.84


Figure 2: Core concepts (rectangles) and properties (labeled edges) of the ontology.

• Data storage: using an in-memory RDF store for efficient
SPARQL query processing.

• Query handler: a SPARQL request handler that validates
SPARQL queries and directs them to the RDF store.

• User interface: the web-based, graphical user interface that
renders query results in different formats.

2.1 Data Connectors
We separate data acquisition from the remaining components, by
implementing a set of data connectors, one for each data source.
A data connector is responsible for establishing the connection
to a remote data source, parse data, and perform data preparation
tasks, such as conversion of spatial and textual encoding, build
population groups, etc. The separation of data acquisition and
parsing from data transformation to RDF, makes the system
extensible, flexible and robust to data source modifications, or
even failures of individual connectors.

The data sources accessed daily for confirmed cases per region
include: Austria3, Belgium4, France5, Germany6, Greece7, Italy8,
and Sweden9. Regions referenced in the data of these sources are
converted to the corresponding level of Nomenclature of Territo-
rial Units for Statistics (NUTS) regions. This conversion allows
the correlation of regions of different countries, and also enables
data integration with population data per region and age group,
provided by Eurostat10.

2.2 Data Transformation to RDF
The transformation of data into RDF triples is performed using
RDF-Gen [10], our tool for efficient and flexible data transforma-
tion to RDF. RDF-Gen transforms input data using a template of
triples that allows the use of variables or predefined functions
on any of the constituent parts (subject, predicate, object) of a
triple. The connector to a COVID-19 data source is initialized
with contextual data related to the source, such as Administrative
Regions and population (total and groups per age). The data are
then automatically converted to RDF triples by RDF-Gen, and
the whole process is repeated on a daily interval.

3https://www.drawingdata.net/covmap/
4https://epistat.wiv-isp.be/
5https://www.data.gouv.fr/fr/datasets/donnees-hospitalieres-covid-19/
6https://corona.rki.de
7https://github.com/iMEdD-Lab/open-data/tree/master/COVID-19
8https://github.com/pcm-dpc/COVID-19
9https://visalist.io/emergency/coronavirus/sweden-country
10http://ec/europa.eu

The transformation process also computes owl:sameAs triples
between resources referring to regions in our data set and re-
sources referring to the same regions on Open Data, such as the
EU Open Data Portal, wikiData11 and FactForge12.

2.3 Triple Store and Query Handler
The generated RDF triples are preserved in an in-memory RDF
store (Jena 3.14), which enables efficient evaluation of federated
SPARQL queries over the integrated data set. In federated queries,
a portion of the query is directed to a particular remote SPARQL
endpoint and results returned to the federated query processor
are combined with results from the rest of the query. The RDF
store is initialized with static data (GeoVocab TTL files) that
describe the geometries of NUTS regions and their topological
relations.

The Query Handler implements SPARQL 1.1 protocol and en-
ables our endpoint to participate in federated queries. Queries to
the RDF store are supported by means of YASGUI [9], which fea-
tures a user-friendly SPARQL query editor and allows rendering
the result set in a wide range of formats, varying from plain CSV
tables to 2D-3D maps, enriched with HTML formatted pop-ups.

2.4 The Coronis Ontology
To support the process of data integration, we build an ontology
that describes the domain. Figure 2 illustrates the core concepts
and properties of the ontology, where the rounded rectangles
represent concepts, while edges and skewed parallelograms illus-
trate properties and datatypes respectively. Our ontology imports
at the conceptual level:

SIOC (Semantically-Interlinked Online Communities) Core
Ontology13, OGC GeoSPARQL standard14, OWL-Time ontol-
ogy15, and RAMON geographic ontology16. The integration of
COVID-19 reports from different countries with EU NUTS/RA-
MON introduces the spatial dimension to the data, and allows
the detection of topological relations between regions.

We use cov:, geosparql:, nuts:, as prefix abbreviations for
the namespaces of our ontology, GeoSPARQL and EU NUTS
RDF ontologies, respectively. The concept cov:DailyReport

11https://www.wikidata.org/
12http://factforge.net/
13https://www.w3.org/Submission/sioc-spec/
14http://www.opengis.net/ont/geosparql
15https://www.w3.org/TR/owl-time/
16https://ec.europa.eu/eurostat/ramon/ontologies/geographic.rdf
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Figure 3: Adjacent regions (left) and correlations between German, Austrian and Italian regions (right).

represents the set of reports of confirmed cases. A daily re-
port has both spatial and temporal constituents: it is associ-
ated to a resource representing a region in the EU NUTS RDF
vocabulary by the property cov:hasSpatialFeature, and it is
also related to exactly one temporal resource via the property
time:has_time. We also define nuts:GeographicalRegion as
a subclass of geosparql:Feature.

In addition, we specify a set of data properties related to the
population profile of any region. Specifically, the total popula-
tion, the population density, and the population per age group,
with domain nuts:GeographicalRegion. Finally, the proper-
ties cov:infected and cov:deceased specify the number of
infected and deceased cases for a region, respectively.

2.5 Queries
The Coronis ontology enables the retrieval of interlinked data
with simple SPARQL queries. For example, the reported cases
for a specific region (e.g., Ravensburg), sorted by date, can be
obtained with the query:

PREFIX : <http ://ai-group.ds.unipi.gr/covid -19#>

PREFIX nuts: <http :// nuts.geovocab.org/id/>

PREFIX time: <http ://www.w3.org /2006/ time#>

SELECT ?report ?date ?population ?infected ?deceased

WHERE {

?report :hasSpatialFeature ?region ;

:infected ?infected ; :deceased ?deceased ;

time:has_time/time:inXSDDateTimeStamp ?date .

?region :totalPopulation ?population ;

nuts:name "Ravensburg" .

}order by ?date

Figure 3 depicts an example of exploiting interlinked data from
European regions, in order to investigate whether the number
of infections reported in adjacent regions (of different countries)
show a linear correlation. Figure 3 (left) illustrates the 67 pairs
of regions returned for this query. Interestingly, the results show
high correlation (0.86–1.00) between Austrian and German re-
gions, depicted in Figure 3 (right). Lower correlation (0.25–0.46)
is observed between French and Belgian regions, while negative
values (-0.04 – -0.48) between French and Italian regions (proba-
bly a result of measures in Italy, when the reported number of
infections dramatically increased).

To identify the adjacent regions 𝑔1, 𝑔2 in queries, we use the
spatial predicate 𝑡𝑜𝑢𝑐ℎ𝑒𝑠 (𝑔1, 𝑔2). The Pearson R coefficient in
Figure 3 (right) is computed from the results of the query:

PREFIX : <http ://ai -group.ds.unipi.gr/covid -19#>

PREFIX nuts: <http :// nuts.geovocab.org/id/>

PREFIX geosparql: <http :// www.opengis.net/ont/geosparql#>

PREFIX f: <java:SPARQL_functions.>

SELECT ?r1 ?r2 ?inf1 ?inf2 ?date WHERE {

?r1 nuts:name ?name ;

geosparql:hasGeometry/geosparql:asWKT ?wkt ;

nuts:level ?l1 .

?r2 nuts:name ?name2 ;

geosparql:hasGeometry/geosparql:asWKT ?wkt2 ;

nuts:level ?l2 .

?c1 :hasPart ?r1 ; nuts:level "0" .

?c2 :hasPart ?r2 ; nuts:level "0" .

?rp1 :hasSpatialFeature ?r1 ; :infected ?inf1 ;

time:has_time/time:inXSDDateTimeStamp ?date.

?rp2 :hasSpatialFeature ?r2 ; :infected ?inf2 ;

time:has_time/time:inXSDDateTimeStamp ?date.

FILTER(f:touches (?wkt ,?wkt2 )&&(?c1!=?c2) &&

((?l1="2")||(?l1="3"))&&((? l2="2")||(?l2="3")))

} ORDER BY ?date

3 SYSTEM DEMONSTRATION
Coronis provides a wide range of options for query building and
rendering the result set, by supporting federated queries and a
user-friendly web interface based on YASGUI. In this section,
we provide the demonstration scenario briefly17. The system
prototype uses a SPARQL editor to query the integrated data set.

Illustrate results in tabular format: In this option, the re-
sult set is presented as a table where each column corresponds to
the projected variables, and each row corresponds to the combi-
nation of values that match the query pattern. The web interface
enables sorting the results by values of specific columns or fil-
tering the results by value. A table reporting the total number of
confirmed cases for a specific date is shown in Figure 4.

Illustrate results in a grid: The result set of queries are
rendered in a grid, where the cells are HTML formatted blocks
dynamically constructed from the result set. For example, Figure 5
illustrates the result set of a federated query, combining number
of hospitals (fromwikidata) and confirmed cases (from the locally
stored RDF triples) per region.

Illustrate results in a chart: In this option, a result sets that
contain numerical values is presented in one of various chart
types. The user can select the type of chart (and customize) by
clicking on “configure”. The chart can be also downloaded as an
SVG file for offline use. Figure 6 depicts the number confirmed
cases in Bayern per day.
17The queries presented in this paper and additional examples are publicly available
at the endpoint’s URL address: http://83.212.169.101/datasets/yasgui.html
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Figure 4: Result set rendered as a table.

Figure 5: Result set rendered as a gallery.

Figure 6: Example of a result set as a chart.

Illustrate results in a map: This option can be applied on
results sets with spatial dimension. It renders each spatial object
in the result set as a point or polygon on a 2D or a 3D map, on
top of OpenStreetMap layer. The 2D map of Figure 3 and 3D map
of Figure 7 are examples of this option.

4 CONCLUSIONS
This work presents Coronis, a prototype for data collection and
integration of an Open Data set about COVID-19 confirmed cases

Figure 7: Result set rendered as a 3D map.

that enables cross-country, spatio-temporal analysis at different
levels of granularity. Our work facilitates querying and analyz-
ing data from different data sources, which would otherwise be
a tedious and time-consuming task. The integrated data set is
transformed into RDF triples to populate an ontology built on top
of well-known ontologies, and resources are linked to external
Open Data repositories. In turn, this enables the formulation
of complex queries over interlinked COVID data with external
sources, thus offering the opportunity for advanced data analysis.
In our future work, we plan to expand our data set with more
countries and link the data with more portals that provide infor-
mation about social events, news feeds and human activities that
possibly affect the spreading of the virus.
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ABSTRACT
We present NextiaJD, a data discovery system with high predic-
tive performance and computational efficiency. NextiaJD aids
data scientists in the discovery of datasets that can be crossed.
To that end, it proposes a ranking of candidate pairs according to
their join quality, which is based on a novel similarity measure
that considers both containment and cardinality proportions be-
tween candidate attributes. To do so, NextiaJD adopts a learning
approach relying on profiles. These are succinct and informa-
tive representations of the schemata and data values of datasets
that capture their underlying characteristics. NextiaJD’s features
are fully integrated into Apache Spark and benefits from it to
parallelize the profiling and discovery processes. The on-site
demonstration will showcase how NextiaJD can effectively sup-
port large-scale data discovery tasks with a large set of datasets
the audience will be able to play with.

1 INTRODUCTION
Data-driven organizations are nowadays generating valuable in-
sights by crossing their core data with external third party data,
such as data from open data catalogs [6]. This has led to the
creation of massive data repositories, or data lakes [8], of hetero-
geneous datasets without a proper structure or organization [7].
Yet, it is reported that data scientists spend up to 80% of their
time in the process of discovering and integrating such datasets
[9]. The lack of efficient strategies to automate such discovery
process has a large impact on productivity. We exemplify this
fact with the following scenario:

Example 1.1. Emma is a data scientist employed by a marketing
agency, hired to launch a campaign in the northern region of Spain.
The objective is to find the best way to upsell a new product. To
that end, Emma is provided with a reference dataset, such as that
depicted in Table 1, containing the store locations and marketing
channels that will be used to advertise the new product. She knows
that the best strategy for this task is to use demographic data to
define consumer segments, ultimately driving the kind of promotion
and budget devoted to it. Thus, Emma plans to search for datasets in
the agency’s data lake, requiring to manually explore each dataset
to find interesting ones to be crossed.

1st Admin. Level 2nd Admin. Level Store code Channel
Aragon Zaragoza ST123 Social networks
Catalonia Lleida ON456 Transit ads
Catalonia Barcelona ST093 Social networks

Basque Country Araba ON123 TV
... ... ... ...

Table 1: Stores in Spain’s northern region (𝐷𝑟𝑒 𝑓 )

© 2021 Copyright held by the owner/author(s). Published in Proceedings of the
24th International Conference on Extending Database Technology (EDBT), March
23-26, 2021, ISBN 978-3-89318-084-4 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

The previous example is a commonplace data discovery sce-
nario. This is the process of automatically identifying and cross-
ing relevant datasets to enable informed data analysis [1]. We put
the focus on the task of discovering joinable attributes among
datasets in a data lake. The problem is commonly tackled by
measuring the similarities among pairs of attributes, aiming to
provide the user with higher similarity pairs. We distinguish
exact and approximate approaches, where there is a trade-off
between their search accuracy and algorithmic complexity. Mas-
sive data lake environments, containing hundreds of datasets
with thousands of attributes, require solutions with the ability to
scale-up, and thus rule out exact methods. The state-of-the-art
on approximate approaches to data discovery is those adopting
comparison by hash techniques, such as MinHash [2] or LSH En-
semble [11]. These compare and predict similarities among pairs
of attributes using techniques that, with high probability, hash
similar elements to the same bucket (e.g., locality-sensitive hash-
ing or locality-preserving hashing). This process is optimized by
building index structures for a particular threshold, such that
they allow to efficiently look up the predicted similarity. We next
elaborate on applying hash-based techniques on Example 1.2.

Example 1.2. Table 2 depicts a sample of Emma’s agency data
lake. She aims to automatically find datasets that will yield the
best join with 𝐷𝑟𝑒 𝑓 . To do so, as an indicator of a high quality
join, she builds a threshold index to discern pairs of attributes
with a containment similarity larger than 0.75. Then, Emma uses
this index to find promising joinable pairs. Examples of the pro-
posed pairs are𝐷𝑟𝑒 𝑓 .1𝑠𝑡 𝐴𝑑𝑚𝑖𝑛 𝐿𝑒𝑣𝑒𝑙 = 𝐷1 .𝐴𝑟𝑒𝑎,𝐷𝑟𝑒 𝑓 .1𝑠𝑡 𝐴𝑑𝑚𝑖𝑛
𝐿𝑒𝑣𝑒𝑙 = 𝐷2 .𝑅𝑒𝑔𝑖𝑜𝑛 and 𝐷𝑟𝑒 𝑓 .1𝑠𝑡 𝐴𝑑𝑚𝑖𝑛 𝐿𝑒𝑣𝑒𝑙 = 𝐷3 .𝑃𝑟𝑜𝑑𝑢𝑐𝑡 .
Note, however, that the last pair is clearly a false positive, since
many regions have a matching product name. Indeed, the values
from 𝐷𝑟𝑒 𝑓 .1𝑠𝑡𝐴𝑑𝑚𝑖𝑛𝐿𝑒𝑣𝑒𝑙 can also be found in datasets related
to ship names, people names, places that are not from Spain, etc.
This is a usual scenario in heterogeneous data lakes (i.e., files in
different formats and covering different semantic topics) that tend
to generate a significant amount of false positives pairs when only
considering containment. The number of false positives generated
by current approaches is overwhelming when working at scale.

State of the art hash-based data discovery systems tend to op-
timistically propose too many candidate pairs at scale. Moreover,
the arrival of new datasets requires to reconstruct the threshold
indexes for efficient lookup. Such factors can overwhelm data sci-
entists when dealing with large data lakes. Alternatively, another
kind of approximate method to data discovery is the compari-
son by profile approach. These approaches extract summaries of
datasets and their attributes to build a profile. Profiles are then
compared to predict whether a given pair of attributes will join.
Such succinct representations can be efficiently generated in a
distributed fashion, and their comparison is much more efficient
than comparing data values from a complexity point of view.
Nevertheless, state of the art profile-based solutions, such as Flex-
Matcher [3] and Aurum [4], have a low quality prediction rate
with respect to other approaches. This is mainly due to either the

Demo

 

 

Series ISSN: 2367-2005 690 10.5441/002/edbt.2021.85

https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2021.85


(a) 𝐷1 – Spain census data

Area Total
population

Persons
under 18

Households with
a computer

Aragon 3,017,804 23.2 % 84.1 %
Catalonia 973,764 20.9% 89.9%
Asturias 28,995,881 25.5% 89.2%
Galicia 6,045,680 22.1% 91.3%

... ... ... ...

(b) 𝐷2 – Average life expectancy per region

Region Life expectancy
(Women)

Life expectancy
(Men)

Catalonia 77.9 71.9
Galicia 82.6 77.5

Cantabria 78.8 73.3
Andalusia 81.4 76.8

... ... ...

(c) 𝐷3 – One million products reviews

Product Brand Kind Rating
Asturias Sidra de Asturias Cider 7.22
Catalonia K. McRoberts Book 8.83
Echo dot Amazon Smart speakers 8.3
Aragon Ambar Beer 8.22
Georgia Fossil Watch 5.4

... ... ...

Table 2: Three datasets proposed in a data discovery (𝐷1, 𝐷2 and 𝐷3)

Figure 1: Profiling and data discovery stages implemented
by NextiaJD

usage of a predictive binary class (i.e., joinable or non-joinable)
that generate too many false positives in practice; or to the adop-
tion of rather basic profiles that do not accurately describe the
underlying data.

In order to overcome the previous issues, we present NextiaJD1,
a novel data discovery system with high predictive performance
and computational efficiency. NextiaJD aims to fill the gap gener-
ated by the low predictive performance of current profile-based
methods, as well as the limited precision and scalability of hash-
based ones on data lakes. NextiaJD adopts a novel learning-based
method based on data profiles. Importantly, the steps related to
profiling and classification can be efficiently run in parallel. Our
experiments (see [5] for more details) have shown that the predic-
tive performance of NextiaJD is comparatively better than that
obtained using state-of-the-art profile-based solutions, and the
rate of false positives (i.e., precision) is improved w.r.t. hash-based
ones. Additionally, NextiaJD also outperforms these systems in
terms of scalability. This is achieved by integrating NextiaJD into
the Apache Spark2 ecosystem for distributed data processing,
providing a competitive advantage with respect to the state of
the art on scalability. NextiaJD’s predictive model is based on
random forest classifiers, a highly expressive model robust to out-
liers and noise. These models, unlike current approaches, predict
a categorical quality for a candidate join based on both the con-
tainment and cardinality proportion of the involved attributes,
and provide a join quality ranking that facilitates to disregard
false positives.

Our demonstration will let EDBT participants impersonate
Emma on her data discovery tasks. These involve exploring a
data lake, generating a ranking based on the join quality of at-
tribute pairs, as well as generating data processing pipelines from
them. Similarly to other contemporary data discovery solutions

1More info and resources are available at https://www.essi.upc.edu/dtim/nextiajd/
2https://spark.apache.org/

(e.g., [10]), NextiaJD is accessible via a friendly notebook inter-
face, nowadays the customary tool to develop and visualize data
science tasks. Nevertheless, NextiaJD is able to scale-up and man-
age more and larger datasets. Additionally, the audience will be
encouraged to try NextiaJD on datasets of their interest.

This will demonstrate how NextiaJD facilitates data discov-
ery by reducing the time on high quality data exploration and
discovery, and thus increasing the productivity of data scientists.

Outline. We next introduce NextiaJD’s demonstrable features
to resolve the motivational example and other data discovery
scenarios. We first provide an overview of NextiaJD, followed by
a presentation of its core features. Lastly, we outline our on-site
demonstration, involving the motivational scenario as well as
other more complex real-world use cases.

2 NextiaJD IN A NUTSHELL
Apache Spark has emerged as the leading framework for Big Data
processing due to its scalability and performance. It has been
extended with modules to enable structured data processing and
machine learning, namely SparkSQL andMLlib. NextiaJD extends
Spark’s source code with new operators to discover joinable
datasets: attributeProfile and discovery. Figure 1, depicts a
high-level overview of the stages involved in these operators.

2.1 Attribute profiling
The profiling operator implements the computation of a dataset’s
profile, which is composed of attribute meta-features. These
represent the underlying distribution and characteristics of at-
tributes. Hence, the method attributeProfile lazily computes
the attribute profiles from a DataFrame object once and stores
them for later reuse. This process can be triggered at ingestion
time, or later in the discovery phase. NextiaJD takes full advan-
tage of the Spark’s Catalyst Optimizer to efficiently distribute
the workload on very large datasets.

Kinds of profiles. NextiaJD collects extensive meta-features
about the structure and content of String attributes in a DataFrame.
We consider three kinds of meta-features: cardinalities, value dis-
tribution, and syntax. Cardinalities provide a broad view of an
attribute via meta-features like the number of distinct values,
uniqueness, or incompleteness. The value distribution builds a
histogram by collecting the number of occurrences and aggre-
gating it to compute meta-features such as the mean, standard
deviation, or quantiles. Finally, syntax meta-features aim to de-
scribe the shape of data and their patterns. NextiaJD collects
meta-features such as the length of values, numbers, or alphabetic
values. Here, NextiaJD also exploits several regular expressions
to identify specific data types such as telephones, IPs, or emails.

Overall, NextiaJD computes 48 meta-features that compose
an attribute’s profile. Figure 2, depicts the Scala code used to
compute attribute profiles for 𝐷𝑟𝑒 𝑓 , as well as an excerpt of its
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Spark.read.csv("Dref.csv").attributeProfile()

1st Admin. Level 17 0 12.59 5% . . .
2nd Admin. Level 50 130 0.73 12% . . .

Store code 8 5 8.22 1% . . .
. . .
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Figure 2: Code to compute profiles and output’s excerpt

output. Additionally, prior to the discovery process, NextiaJD also
computes binary meta-features, which denote the characteristics
of the relationship between pairs of attributes. Precisely, we mea-
sure the degree of similarity and dissimilarity between attribute
names by computing the Levenshtein distance. NextiaJD also es-
timates a best-case containment scenario, assuming all unique
values are covered in both attributes. The current set of meta-
features used result from a principal component analysis and
therefore, all of them are guaranteed to contribute with relevant
information to make the decision. Indeed, NextiaJD computes
richer profiles compared to other profile-based approaches.

2.2 Data discovery
The data discovery operator exposes the functionality to dis-
cover joinable attributes by using the profiles. We distinguish
two scenarios: discovery-by-attribute and discovery-by-dataset.
The former focuses on the discovery from a reference attribute,
while the latter exhaustively searches all attributes in a reference
dataset. Both settings require a reference dataset and a list of
candidate datasets. Additionally, discovery-by-attribute requires
a reference attribute name. This operator encapsulates and hides
from the analyst the complexity required to implement the dif-
ferent stages in the discovery pipeline: profile normalization,
comparison, classification, and ranking. Thus, NextiaJD does not
require to parameterize or process the input data.

Normalization. Meta-features in a profile are represented in
different magnitudes, therefore normalization plays an important
role to guarantee a meaningful comparison between profiles.
NextiaJD adopts the Z-score normalization method for all meta-
features in a profile. To do so, a UDF function computes the
mean and standard deviation for a given meta-feature using the
respective SparkSQL aggregation functions.

Comparison. Comparing profiles requires computing distances
among meta-features corresponding to a pair of attributes. Once
pairs are created, we merge the profiles subtracting the normal-
ized meta-features from the reference attribute and the to-be-
compared attribute by using Spark SQL.

Classification. NextiaJD adopts a learning approach that allows
us to classify pairs of attributes producing high quality joins.
Precisely, NextiaJD aims to predict the join quality, which is an
asymmetric rule-based measure combining both containment
similarity and cardinality proportion. In [5] we introduced the
concept and role of the cardinality proportion, which comple-
ments the containment metric to remove a substantial amount of
the false positives generated by it. In short, the cardinality propor-
tion contextualizes containment, and as such, different cardinali-
ties tend to identify different semantics or granularity levels for

heterogeneous data lakes. Such metric yields a quality class from
a totally-ordered set 𝑆 = {None, Poor, Moderate, Good, High}.
Hence, the definition of join quality is as follows:

Definition 2.1. Let 𝐴, 𝐵 be sets of values, respectively the ref-
erence and candidate attributes. The join quality among 𝐴 and 𝐵
is defined by the expression

𝑄𝑢𝑎𝑙𝑖𝑡𝑦 (𝐴, 𝐵) =



(4) High, 𝐶 (𝐴, 𝐵) ≥ 𝐶𝐻 ∧ |𝐴 |
|𝐵 | ≥ 𝐾𝐻

(3) Good, 𝐶 (𝐴, 𝐵) ≥ 𝐶𝐺 ∧ |𝐴 |
|𝐵 | ≥ 𝐾𝐺

(2) Moderate, 𝐶 (𝐴, 𝐵) ≥ 𝐶𝑀 ∧ |𝐴 |
|𝐵 | ≥ 𝐾𝑀

(1) Poor, 𝐶 (𝐴, 𝐵) ≥ 𝐶𝑃
(0) None, otherwise

NextiaJD embeds a set of general purpose models, one per
quality label in the previous definition, trained with Random
Forest classifiers from Spark MLlib. These models were trained
by transforming a multi-class classification problem into a binary
one per class. Each of these models takes as input the normalized
unary and binary meta-features of the pair of attributes for which
we aim to predict their join quality. These models were trained
following good practices in model learning and the ground truth
(including labeling), data preparation, and validation processes
are thoroughly presented in a reproducible manner at: https:
//www.essi.upc.edu/dtim/nextiajd/. As part of this process, we
empirically determined the values 𝐶𝐻 = 3/4 = 0.75,𝐶𝐺 = 2/4 =
0.5,𝐶𝑀 = 1/4 = 0.25,𝐶𝑃 = 0.1 for containment, and 𝐾𝐻 =

1/4 = 0.25, 𝐾𝐺 = 1/8 = 0.125, 𝐾𝑀 = 1/12 = 0.083 for cardinality
proportion on our training dataset composed of 138 real datasets.
The models validation was conducted with 139 real datasets
from different topics and file sizes and yielding a high predictive
performance [5]. As a result, for each candidate join pair the
discovery operator associates a join quality label (i.e., from None
to High) and five probability scores, one per model.

A key distinguishing factor of NextiaJD with regard to other
profile-based approaches (e.g., FlexMatcher [3]), is that it relies on
general purpose models that can be used for any data discovery
process with heterogeneous datasets.

NextiaJD.discovery(Dref, Seq[D1,D2,D3],
"1st Admin. Level")

Dataset Attribute Quality Probability
𝐷2 Region High 0.95
𝐷1 Area High 0.93

Figure 3: Code to trigger a discovery process, and the two
first elements of the ranking it generates

Ranking. Finally, an evaluation is performed in the probabilities
of a candidate join pair to assign a single probability. In short, the
highest probability wins, except for cases where several probabil-
ities are close to each other. In those cases, we follow a rule-based
strategy to avoid misclassifications due to the fact that the prob-
ability for the None class is the only one predicting no join. We
identified two main cases generating the most misclassifications:
(i) when the no join probability (i.e., the probability for None) is
above 50% and (ii) when the join-related labels (i.e., from Poor to
High) are all below 50% and the None probability is close to them
(measured by an empirical threshold). In these cases, the final
decision is modified to the second highest probability (which
in practice, given these rules, mostly means to that of None).
Then, NextiaJD generates a partial order by considering, first,
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Figure 4: NextiaJD GUI in a Zeppelin notebook

the predicted quality label (and the totally-ordered set related to
them). For pairs yielding the same quality label, we rank them
considering the probability yielded by the model (i.e., that of the
model of the quality labeled finally assigned). An example of the
ranking produced for Emma’s use case is presented in Fig. 3. By
default, NextiaJD only shows High and Good qualities. However,
other qualities can be requested on-demand.

3 DEMONSTRATION OVERVIEW
Computational notebooks have become the de-facto tool for
data science projects. In our experience in several Data Science
projects, data scientists like to explore datasets with their usual
analytical tools. Using a third party tool to perform data discovery
is disruptive for their day-by-day tasks, and they tend to avoid it.
For this reason, we created NextiaJD, which fills a current gap to
bring data discovery closer to data scientists. We argue that em-
bedding data discovery into notebooks and taking advantage of
their interactive capabilities will improve data scientists’ produc-
tivity. Therefore, for our demonstration, we will use a Zeppelin
notebook to present the main functionalities: profiling and data
discovery, and how they can be used in the day-by-day of data
scientists. We have also created an informative companion web-
site3 where the notebooks4, source code and experiments are
publicly available. It is worthy to say that NextiaJD is not tied
to this demonstration platform and can be integrated into any
technology that supports Spark in Java or Scala clients.

We encourage attendees to impersonate Emma and follow the
workflow she would have to execute using NextiaJD. Note that
we assume for this demonstration that datasets were profiled
when ingested into a repository to be ready for use in further
discoveries. However, new datasets can be processed and pro-
filed on demand if required during the demo. Figure 4 shows
NextiaJD’s GUI in a Zeppelin notebook:
(1) Dataset selection. First, attendees can select and preview

datasets available in our heterogeneous data lake containing
Emma’s dataset and datasets from different topics such as
movies, territories, finance, etc. Through this step, attendees
can also preview the profiling computed to have a better
perspective of what kind of meta-features NextiaJD collects.

(2) DataDiscovery.Once a dataset is selected, we proceed to the
data discovery task. Users can perform two types of setting:
discovery-by-dataset or discovery-by-attribute. Through this
step, it is possible to select the desired quality. NextiaJD will

3https://www.essi.upc.edu/dtim/nextiajd/
4NextiaJD online notebooks have deactivated parallelism to keep them 24/7
in a budget machine. Find instructions to install Spark and NextiaJD in
https://www.essi.upc.edu/dtim/nextiajd/#resources

execute the data discovery operator and will handle all steps:
normalization, comparison, classification, and ranking.

(3) Explore results. After data discovery, results are visualized
in a table wherewe show the attributes pairs found, the source
of the datasets, the quality predicted, and the probability.

(4) Validate results. Once the attendees find an interesting pair
proposed by NextiaJD, they can validate the result by execut-
ing the join operation. This operation will update the dataset
preview with the result of the join. Additionally, the similar-
ity and cardinality proportion obtained by the join operation
is also computed and shown.
Last, but not least, we are aware that some data scientists are

advanced users. In these cases, they do not need to use NextiaJD’s
GUI but directly use the new it offers as an extension of Spark.
These are compiled and ready in the Spark fork available from our
website. This is shown in the live demo on our website. Overall,
this demonstration will offer a comprehensive dive into NextiaJD.

ACKNOWLEDGMENTS
This work is partly supported by Barcelona’s City Council under
grant agreement 20S08704. Javier Flores is supported by contract
2020-DI-027 of the Industrial Doctorate Program of the Govern-
ment of Catalonia and Consejo Nacional de Ciencia y Tecnología
(CONACYT, Mexico).

REFERENCES
[1] Alex Bogatu, Alvaro A. A. Fernandes, Norman W. Paton, and Nikolaos Kon-

stantinou. 2020. Dataset Discovery in Data Lakes. In ICDE. IEEE, 709–720.
[2] Andrei Z. Broder. 1997. On the resemblance and containment of documents.

In SEQUENCES. IEEE, 21–29.
[3] Chen Chen, Behzad Golshan, Alon Y. Halevy, Wang-Chiew Tan, and AnHai

Doan. 2018. BigGorilla: An Open-Source Ecosystem for Data Preparation and
Integration. IEEE Data Eng. Bull. 41, 2 (2018), 10–22.

[4] Raul Castro Fernandez, Ziawasch Abedjan, Famien Koko, Gina Yuan, Samuel
Madden, and Michael Stonebraker. 2018. Aurum: A Data Discovery System.
In ICDE. IEEE Computer Society, 1001–1012.

[5] Javier Flores, Sergi Nadal, and Oscar Romero. 2021. Scalable Data Discovery
Using Profiles. In EDBT. To be published as short paper.

[6] Renée J. Miller, Fatemeh Nargesian, Erkang Zhu, Christina Christodoulakis,
Ken Q. Pu, and Periklis Andritsos. 2018. Making Open Data Transparent: Data
Discovery on Open Data. IEEE Data Eng. Bull. 41, 2 (2018), 59–70.

[7] Fatemeh Nargesian, Ken Q. Pu, Erkang Zhu, Bahar Ghadiri Bashardoost, and
Renée J. Miller. 2020. Organizing Data Lakes for Navigation. In SIGMOD
Conference. ACM, 1939–1950.

[8] Fatemeh Nargesian, Erkang Zhu, Renée J. Miller, Ken Q. Pu, and Patricia C.
Arocena. 2019. Data Lake Management: Challenges and Opportunities. Proc.
VLDB Endow. 12, 12 (2019), 1986–1989.

[9] Michael Stonebraker and Ihab F. Ilyas. 2018. Data Integration: The Current
Status and the Way Forward. IEEE Data Eng. Bull. 41, 2 (2018), 3–9.

[10] Yi Zhang and Zachary G. Ives. 2020. Finding Related Tables in Data Lakes for
Interactive Data Science. In Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data. ACM, 1951–1966.

[11] Erkang Zhu, Fatemeh Nargesian, Ken Q. Pu, and Renée J. Miller. 2016. LSH
Ensemble: Internet-Scale Domain Search. Proc. VLDB Endow. 9, 12 (2016),
1185–1196.

693



A Tool for JSON Schema Witness Generation
Lyes Attouche

Université Paris-Dauphine, PSL
Research University

lyes.attouche@dauphine.fr

Mohamed-Amine Baazizi
Sorbonne Université, LIP6 UMR 7606

baazizi@ia.lip6.fr

Dario Colazzo
Université Paris-Dauphine, PSL

Research University
dario.colazzo@dauphine.fr

Francesco Falleni
Dipartimento di Informatica,

Università di Pisa
fallenifrancesco98@gmail.com

Giorgio Ghelli
Dipartimento di Informatica,

Università di Pisa
ghelli@di.unipi.it

Cristiano Landi
Dipartimento di Informatica,

Università di Pisa
c.landi7@studenti.unipi.it

Carlo Sartiani
DIMIE, Università della Basilicata

carlo.sartiani@unibas.it

Stefanie Scherzinger
Universität Passau

stefanie.scherzinger@uni-passau.de

ABSTRACT
JSON Schema is an evolving standard for the description of JSON
documents. It is an extremely powerful language endowed with
boolean operators and recursive definitions. Hence, classical prob-
lems like schema consistency and equivalence may be challenging
without well-principled tools. Based on our recent effort for lay-
ing down an algebraic formal semantics of JSON Schema, we
demonstrate an approach for generating valid witnesses of a user-
defined schema. Our goal is not only to allow programmers to
design schemas that meet their intentions, but also to guide
them in their journey to understanding the semantics of existing
schemas, in an interactive fashion. We thus aim to contribute to
the adoption of the JSON Schema language by facilitating its use.

1 INTRODUCTION
In recent years, JSON has become the de facto standard data in-
terchange format, and is now widely used for exchanging data
between web applications and remote servers, for exporting and
importing data, as well as inside complex ML pipelines for com-
bining different stages, as in Google TFX [11].

Despite its great popularity, there is no consensus about a
standard schema language for JSON yet. Indeed, in many cases,
JSON datasets come without a schema, and the end user or appli-
cation has the duty to infer or guess a new schema, if required. In
many other cases, however, several and vastly different schema
languages are used for describing the structure of JSON data,
ranging from Apache Avro [3], to the MongoDB internal schema
language [6], and to JSON Schema [12].

Differently from what happened with XML, whose standard
schema languages (DTDs and XML Schema) reached quickly a
wide diffusion, JSON Schema is not being adopted at the same
pace. Many reasons are slowing down its adoption, but, accord-
ing to our observations, a major obstacle is the fact that, while
extremely powerful, JSON Schema is – frankly – hard to use. In-
deed, a schema is a logical combination of implicative assertions,
and some of them may produce side effects on previous ones.

As a consequence, leaving the realm of plain vanilla schemas
may expose the programmer to many risks, such as the definition
of a schemawith unintended semantics, or one that is even empty.

© 2021 Copyright held by the owner/author(s). Published in Proceedings of the
24th International Conference on Extending Database Technology (EDBT), March
23-26, 2021, ISBN 978-3-89318-084-4 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Example 1.1. Consider the following schema.
{

"type": "object",
"properties": {

"x": { "type": "integer" }
},
"required": [ "x" ]

}

This schema declares that all instances are JSON objects, and
that each object has a mandatory member whose name is x and
whose type is inteдer . This schema, however, does not impose
further constraints on object values; therefore, an object may
also have supplementary and unconstrained members.

Example 1.2. Consider now the following schema, differing
only in the next-to-last line.

{
"type": "object",
"properties": {

"x": { "type": "integer" }
},
"not": { "required": [ "x" ] }

}

One may assume that this specifies that x is “not required”,
hence is optional. However, given the semantics of JSON Schema,
negating a required member does not make it optional: indeed,
the final effect is to actually forbid the presence of the mem-
ber, hence excluding any JSON object having a member whose
name is x (this example is inspired by a discussion on Stack Over-
flow [1], where the confusing effect of this schema is testified).

Given the complex and non-trivial interplay between schema
assertions, designing a rich yet sound schema is challenging,
especially when other powerful mechanisms of JSON Schema are
involved, such as negation, mutual exclusion, recursion, union
and conjunction, as well as array constraints controlling array
length and content, possibly requiring uniqueness of elements.

Motivating Witness Generation. The state-of-the-art approach
for exploring JSON Schema semantics is ultimately a manual trial
and error: using a JSON Schema validator, a schema designer can
test whether a JSON document is valid w.r.t. the schema. That is,
the designer must come up with suitable witness documents.

Yet, in this demo, we present a tool capable of automatic wit-
ness generation. For instance, for the schema from Example 1.1,
our tool generates the witness {"x": 0}, as any valid instance

Demo

 

 

Series ISSN: 2367-2005 694 10.5441/002/edbt.2021.86

https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2021.86


must be an object, where member x is mandatory and integer-
typed. For Example 1.2, our tool generates the witness {}, since
the empty object is valid. For the schema designer, this valuable
feedback may well increase the overall productivity.

Moreover, upon the push of a button, the designer can gener-
ate further witnesses. In the example just discussed, the designer
would be provided with {"0": null}. Thus, by interactive itera-
tion, the designer ensures that he or she “gets it right”.

Moreover, our tool allows the comparison of two schemas: for
a witness that is valid w.r.t. the schema from Example 1.2, but
not w.r.t. the schema from Example 1.1, the tool returns the JSON
document {}. For the other way round, a witness is {"x": 0}.
Again, the designer can request further witnesses, as needed.

Contributions. The goal of this demonstration is to showcase
a tool allowing the schema designer to investigate the formal
properties of a schema, and even to compare schemas. Our tool
is based on our earlier contributions on algebraic manipulations
of JSON Schema [7]. With our tool, the designer can:

• obtain an algebraic representation of the input schema;
• generate a witness for the schema, to verify whether the
schema is empty or not, and to gain insights into the actual
semantics of a given schema;

• exploit witness generation for checking whether a schema
S1 is a subtype of a schema S2, and hence, whether it
represents a conservative and not disruptive evolution.

This combination of features is currently not supported by
any existing commercial or academic tool: while tools for JSON
Schema containment checking are available (e.g., [9]), theymerely
produce boolean answers. Ours is the first tool capable of gener-
ating actual witnesses in containment checking.

2 JSON AND JSON SCHEMA
In the following, we introduce the JSON data model and provide
some intuition for JSON Schema. We refer to [7, 10] for details.

2.1 JSON data model
The grammar below captures the syntax of JSON values, which
are either basic values, objects, or arrays. Basic values B include
the null value, booleans, numbers n, and strings s . Objects O
represent sets of members, each member being a name-value
pair, and arrays A.

J ::= B | O | A JSON expressions
B ::= null | true | false | n | s Basic values

n ∈ Num, s ∈ Str
O ::= {l1 : J1, . . . , ln : Jn } Objects

n ≥ 0, i , j ⇒ li , lj
A ::= [J1, . . . , Jn ] n ≥ 0 Arrays

2.2 JSON Schema
JSON Schema is a language for defining the structure of JSON doc-
uments, maintained by the Internet Engineering Task Force [4].

JSON Schema uses the JSON syntax. Each construct is defined
using a JSON object with a set of fields describing assertions
relevant for the values being described. Some assertions can be
applied to any JSON value type (e.g., type), while others are more
specific (e.g., multipleOf applies to numeric values only). The
syntax and semantics of JSON Schema have been formalized
in [10] following the specification of Draft-04. We limit ourself to

an informal discussion about the possible constraints associated
to each type:

• when defining a string, it is possible to restrict its length
by specifying minLength and maxLength constraints, and
to define the pattern that the string should match;

• when defining a number, it is possible to define its range
of values (by any combination of minimum / exclusiveMi-
nimum and maximum / exclusiveMaximum), and to define
whether it should be multipleOf a given number;

• when defining an object, it is possible to define its proper-
ties, the type of its additionalProperties and the type of the
properties matching a given pattern (i.e., patternProperties).
It is also possible to restrict the minimum and maximum
number of properties using minProperties and maxProper-
ties, and to indicate which properties are required;

• when defining an array, it is possible to define the type of
its items and the type of the additionalItems which were
not already defined by items, and to restrict the minimum
andmaximum size of the array;moreover, it is also possible
to enforce uniqueness of the items using uniqueItems.

JSON Schema allows the combination of assertions using stan-
dard boolean connectives: not for negation, allOf for conjunction,
anyOf for disjunction, and oneOf for exclusive disjunction. A
finite set of accepted values can be indicated through the enum
constraint. Please note that hereafter, as well as in our formal
development [7], we will use in some examples the usual notation
for boolean operators (e.g., ∨/¬/∧ for disjunction/negation/con-
junction) and the symbols S/Si to indicate schema fragments.

3 WITNESS GENERATION
Witness generation is challenging for JSON Schema, in particular
due to the non-algebraic nature of JSON Schema (the meaning
of certain assertions depends on the surrounding context), and
because of the presence of negation and conjunctive schemas.
We elaborate on these facts, and describe some main aspects of
the formal systems and algorithms we devised. We will provide
the full details in a future publication.

In a nutshell, our approach proceeds as follows. Assume that
you have an algorithm to generate a witness for any schema
assertion S of size up to n. In order to generate a witness for a
schema of size n + 1 describing objects having a field of label l
and value of type S , one will generate a witnessw for S and use
it to build an object with a field label l whose value isw .

For disjunction S1 ∨ S2, we recursively generate witnesses
of S1 and of S2. Yet negation and conjunction are problematic,
as there is no way to generate a witness for ¬S starting from a
witness for S , and, given a witness for S1, if this is not a witness
for S1 ∧ S2, we may need to try infinitely many others before
finding one that satisfies S2. As we will see, since conjunction is
used for object and array schemas, dealing with conjunction is
particularly important for generating these two kinds of values.

Dealing with these challenges requires schema manipulations
that can be rather complex. In order to devise the necessary
schema transformation rules, as well as to study their properties
and optimization techniques, we designed an algebra which is at
the same time minimal and fully compliant to JSON Schema.

Details can be found in [7], but just to have a glimpse, consider
the following JSON Schema fragment describing properties of
label-value members of object values. In this fragment, we have
a conjunction of assertions satisfied by a JSON value J if the
following holds: if J is an object then i) if a ki label is present,

695



then its associated value meets Si , ii) if a label k ′ is present,
satisfying a pattern (regular expression) ri , then its associated
value satisfies PSi , iii) for all other labels in J not satisfying the
previous conditions, the associated value satisfies S , iv) a member
with label k1 is required.

"properties" : {"k1" : S1, . . . , "kn" : Sn },
"patternProperties" : {"r1" : PS1, . . . , "rm" : PSm },

"required" : ["k1"],
"additionalProperties" : S

In this example, we can see the non-algebraic nature of JSON
Schema: the semantics of one assertion (additionalProperties)
depends on a co-occurring assertion (properties).

Our algebra encapsulates possibly interacting assertions into
one, as shown below.

props(k1 : ⟨S1⟩, . . . , kn : ⟨Sn⟩, r1 : ⟨PS1⟩, . . . , rm : ⟨PSm⟩; ⟨S⟩)
∧ req(k1)

In the above algebra expression, we use k to indicate the JSON
pattern "̂ k$" that only matches k , and ⟨S ′⟩ to indicate our algebra
expression corresponding to a schema S ′.

By relying on this algebra, in order to deal with schemas ¬S
for enabling witness generation, we follow a traditional approach:
we push negation inside S by playing with standard boolean laws,
in order to obtain an equivalent, not-free schema that we use
for witness generation. Unfortunately, JSON Schema does not
enjoy negation closure: there are JSON schemas for which not-
elimination is not possible. So we have extended our algebra with
several new basic operators ensuring negation closure (that can
be produced by not-elimination), and for which witness genera-
tion is possible in an inductive fashion, after further rewritings
that we are going to exemplify. One of such operators is

pattReq(r1 : S1, . . . , rn : Sn )

In order for a value to be an instance of the schema above, if the
instance is an object, then, for each i ∈ {1..n}, it must possess
a member whose name matches ri and whose value satisfies Si .
(It is worth observing, that it is strictly more expressive than
required since it allows one to require a name that belongs to
an infinite set L(ri ), and it associates a schema Si to each required
pattern ri .)

A second challenging aspect is related to conjunction. In order
to deal with conjunctive schemas we rely on standard rewritings,
enabling the transformation into equivalent schemas in Disjoint
Normal Form, which is more amenable for witness generation.

Unfortunately, DNF rewriting is not sufficient, because some
mutual dependencies still remain among factors of conjunctions
after DNF transformations. This means that we need to effectively
push DNF transformation (as well as other operators) a step
further in an unconventional fashion. The approach we have
devised can be illustrated by the following example, where we
focus on object schemas.

We use here JSON regular expressions (patterns), where ˆ
matches the beginning of a string, [ˆabc] matches any one char-
acter different from a, b and c , a dot . matches any character, $
matches the end of the string, so that “ˆa[ˆb].” matches acccccc
and acc but does not match ac , because the dot after the “ˆa[ˆb]”
requires a third letter (carefully consider the dots in the patterns).

The expression below is a conjunction that we obtain bymeans
of DNF transformations. We use the notation {Obj, S1, . . . , Sn } to
denote a group of statements whose conjunctionObj∧S1,∧ . . .∧

Sn describes object values (we can also have array groups, etc.).
Also note that t stands for the schema accepting any value.

{Obj, props(ˆa : S1), props(ˆ .b : S2),
pattReq(ˆ .d : t), pattReq(ˆa : S3)}

A possible plausible witness generation strategy for this group
would start considering pattReq constraints, but we need to keep
into consideration possible interactions with other patterns in
the object type, so we should first generate a witness for pattReq
constraints, then checking whether props() are satisfied by the
candidate witness, and if it is not the case, go back to pattReq
and so on, by possibly infinite loops. To avoid this we rather
manipulate the object group in order to be able to focus on subex-
pressions of the newly obtained object schema where, in some
sense, all possible interactions are finitely enumerated, so that
they can be dealt with separately.

Rather than providing the step-by-step process that produces
this expansion, we show below the final result.

props(ˆa : S1), props(ˆ .b : S2) →
ˆa[ˆb] : S1, ˆab : S1 ∧ S2, ˆ [ˆa]b : S2, ˆ [ˆa][ˆb] : t

pattReq(ˆ .d : t) →
orPattReq(ˆad : S1 ∧ S3, ˆad : S1 ∧ ¬S3, ˆ [ˆa]d : t)

pattReq(ˆa : S3) →
orPattReq(ˆad : S1 ∧ S3, ˆa[ˆbd] : S1 ∧ S3,

ˆab : S1 ∧ S2 ∧ S3),

In the props()-part the set {ˆa, ˆ .b} has been divided into three
disjoint parts {ˆa[ˆb], ˆab, ˆ [ˆa]b} by separating the intersection
ˆab from the two original patterns, and the set is completed with
ˆ [ˆa][ˆb] : t. Note that these new patterns can be obtained by
means of standard techniques, thanks to the well-known closure
properties of regular expressions.

The first request pattReq( ˆ .d : t) is split into three differ-
ent cases. The first ˆad : S1 ∧ S3 is in common with the other
orPattReq (an internal operator introduced to decompose pattReq
into disjoint components), while the case ˆad : S1 ∧ ¬S3 is inter-
nally and externally split, thanks to the ¬S3 factor in the schema,
and ˆ [ˆa]d is pattern-disjoint thanks to the initial [ˆa]. You can
also observe that ˆad : S1∧S3 internalizes the requirement ˆa : S1,
the same holds for ˆad : S1 ∧¬S3, while ˆ [ˆa]d only matches the
trivial requirement, hence maintains its t schema.1

The second pattReq is split into three cases as well, in order
to bring into view the intersection with the first pattReq, and in
order to internalize the constraints of the props()-part.

This splitting effort is needed in order to be able to enumerate
and try all the possible ways of satisfying a set of requests. For
example, in this case the two orPattReq requests share the first
component ˆad : S1 ∧ S3, and contain two more components
each, all of themmutually incompatible, hence having a structure
orPattReq(a,b1,b2), orPattReq(a, c1, c2). Hence, we know that
there are exactly 5 ways of satisfying both: either by generating
a single member that satisfies a, or by generating two members
that satisfy, respectively, (b1, c1), (b1, c2), (b2, c1), (b2, c2), and
our witness generation algorithm will try to pursue all, and only,
these five approaches.

Even array groups obtained by DNF rewriting need prepara-
tion, by a different approach, which we cannot detail here, for

1As we have introduced not-schemas, notably ¬S3 , we re-apply not-elimination.
For space reasons we do not delve into these aspects.
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space reasons. Also, we have omitted how we deal with recursive
definitions, both in not-elimination and witness generation.

This algorithm has an overall exponential complexity. How-
ever, we have designed techniques thatmake the problems tractable
for many real-world schemas, and we are currently measuring
their effectiveness.

4 DEMONSTRATION OVERVIEW
Our demo setup includes these datasets: we explore schemas from
the JSON Schema Test Suite [2], a collection of small schemas that
serve as unit tests for JSON Schema validators (and explore differ-
ent operators), and real-world schemas from SchemaStore.org [5].
Naturally, our attendees may also formulate their own schemas.

We next describe the analysis for single schemas in more detail,
and then remark on how attendees may also compare schemas.

Witness generation. Our tool is implemented as a Spring web
application, with a Java backend. Our prototype does not yet
support the operators uniqueItems and repeatedItems. Figure 1
shows a screenshot of the analysis of a single schema.

Typically, the user will first enter a JSON Schema document (or
load one of the provided schemas), and then convert the schema
(shown in the midsection of our screenshot) into our algebra
(shown in the bottom section). Our algebra has been designed to
be close to the original language, to be intuitive for practitioners.
Yet different from the JSON Schema language, our algebra enjoys
substitutability, that is, the semantics of an operator does not
depend on its context, which eases manipulation.

The user may then choose to generate a first JSON witness. If
the system finds no witness, it will alert the user that the schema
is empty, otherwise, a witness is generated.

If there is a witness, the user can generate a further (“yet
another”) witness, that is different from all those previously seen.
Alternatively, the user can edit the original JSON Schema, or
directly the algebraic expression, and request that a new first
witness is generated (disregarding witnesses already seen).

The schema designer can choose to convert back from the
algebra to JSON Schema. Thus, the schema designer can interac-
tively explore the semantics of a given schema, switch between
the JSON Schema representation and the (often more compact)
representation in our algebra, and iteratively revise the schema.

To allow interested demo attendees to inspect the internals of
witness generation, as outlined in the previous section, our tool
can also perform negation elimination on algebraic expressions.
This feature would not be included in a tool targeted at end users.

Comparing schemas. Our tool offers a second screen (not shown
here) where two schemas may be compared. Rather than com-
puting a boolean answer to the question whether one schema
subsumes the other, as done in state-of-the-art tools today [8],
our tool can generate a witness that exemplifies a JSON document
which is valid w.r.t. the one schema, but not the other.

Target audience. Our demo targets both the EDBT and the
ICDT community. Attendees will become sensitive to the intrica-
cies of working with the JSON Schema language, which caters to
the ICDT community. Moreover, we point out original research
questions that are of interest to the EDBT community, such as ef-
ficiency and scalability issues in dealing with real-world schemas,
either due to the conditional semantics of the JSON Schema lan-
guage, the interplay between negation and recursion (known to
be difficult also in other areas of database research), and the sheer

JSON Schema
is translated to..

… an algebra
expression,

from which we
can generate

witnesses.

Figure 1: Screenshot: from JSON Schema to our algebra.

size of some real-world schemas (especially generated schemas,
which can even take up hundreds of thousands of lines [8]).
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ABSTRACT
This demo presents covRew, a Python toolkit for rewriting slic-
ing operations in pre-processing pipelines (i.e., pipelines to be
executed before further tasks, such as data analytics and machine
learning) so that the pipeline execution ensures that protected
groups are adequately represented (i.e., covered) in the result. The
toolkit includes: (i) an analyzer, which identifies candidate oper-
ations for rewriting; (ii) a rewriter, which transforms operations
for ensuring coverage satisfaction with respect to user specified
constraints; (iii) an impact evaluator, allowing the user to assess
the impact of the rewriting on the obtained results.

1 INTRODUCTION
One of the main current challenges in data processing is the devel-
opment of technological solutions satisfying non-discriminating
requirements. Themes such as diversity, non-discrimination, fair-
ness, protection of minorities, and transparency are increasingly
crucial when processing and analyzing data.

Analytical pipelines processing real data are often very com-
plex and various systems have been designed for supporting the
user in the design and the execution of processing pipelines in a
non-discriminating way. Among them, we recall: Fair-DAGs [11],
an open-source library aiming at representing data processing
pipelines in terms of a directed acyclic graph (DAG) and identify-
ing distortions with respect to protected groups as the data flows
through the pipeline; FairPrep [10], an environment for inves-
tigating the impact of fairness-enhancing interventions inside
data processing pipelines; AI Fairness 360 [5], an open-source
Python toolkit for algorithmic fairness, aimed at facilitating the
transition of fairness-aware research algorithms to usage in an
industrial setting and at providing a common framework to share
and evaluate algorithms.

The complexity of data processing pipelines does not only
depend on the used analytical or learning tasks but also on the
types of pre-processing operations applied to input datasets for
filtering, projecting (thus slicing), or merging together input ob-
jects. Indeed, it has been recognized that data pre-processing
tasks can introduce bias at different levels [10]. As an example,
classical data transformation operations, often defined in terms of
Selection-Projection-Join (SPJ) operations over tabular data, can
reduce the number of records related to some protected or disad-
vantaged groups, defined in terms of some sensitive attributes,
even if such attributes are not directly used in the specification of
the data transformation operation. As a consequence, some pro-
tected or disadvantaged categories can be under-represented in

© 2021 Copyright held by the owner/author(s). Published in Proceedings of the
24th International Conference on Extending Database Technology (EDBT), March
23-26, 2021, ISBN 978-3-89318-084-4 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

(uncovered by) the result of a transformation, possibly introducing
bias in the following analytical steps.

As already recognized [3, 11], we believe that it is important
to support the user in the design of non-discriminating data pre-
processing tasks, with a special reference to data transformations
defined in terms of slicing and merge operations. Additionally,
following what stated in [9], we believe that such design can
be improved by the usage of specific diversity or fairness-aware
data transformations, where the idea is to minimally rewrite
the transformation operation so that certain non-discrimination
constraints are guaranteed to be satisfied in the transformation
result. Through minimal rewriting, the revised process takes into
account the original transformation goals and is traced for further
processing, thus guaranteeing transparency.

Starting from these considerations, in our recent work [2],
we designed an approach for minimally rewriting slicing and
merge operations with the aim of satisfying specific coverage con-
straints [4, 6], guaranteeing that there are enough entries related
to specific protected groups of interest in the result obtained
by applying a given transformation, thus increasing diversity
with the aim of limiting the introduction of bias during the next
analytical steps. The problem we address is closely related to
[3], where a constraint-based optimization approach is proposed
for identifying a filter-based transformation generating a dataset
satisfying a given input set of soft constraints. However, dif-
ferently from [3], we consider the rewriting of transformations
corresponding to SPJ queries with the aim of satisfying (hard)
coverage constraints through a rewriting approach that can be
easily integrated inside a pre-processing pipeline.

The aim of this demonstration is to showcase the techniques
proposed in our recent work [2] by presenting covRew, a Python
toolkit for rewriting data transformations specified inside pipelines
described in Pandas [7], ensuring the satisfaction of a set of
coverage constraints provided in input. The toolkit includes: (i)
a pipeline analyzer, which identifies candidate operations for
rewriting, (ii) a pipeline rewriter, which transforms operations
that are selected by the user according to the input coverage
constraints, and (iii) an impact evaluator, assessing the impact
of the rewriting of the selected operations by comparing the
result of the execution of the rewritten pipeline with that of the
original one, according to the solution-based accuracy measures
proposed in [1]. We showcase our toolkit in action with vari-
ous scenarios on real-world datasets, demonstrating its usability
in coverage constraint enforcing and the provided support for
analyzing the impact of coverage-based rewriting. Notice that,
though the approach supports merge operations and works on
multiple datasets, in the demonstration, for the sake of simplic-
ity, we will rely on a single dataset and will not consider merge
operations. This way, indeed, the analysis of the impact of the
proposed rewriting on the obtained results is clearer.
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Figure 1: covRew flow

The remainder of the paper is structured as follows. In Sec-
tion 2, we present the covRew architecture, illustrating the tech-
niques underlying each step. In Section 3, we present the demon-
stration scenarios, with a special reference to the user interaction.
Section 4 concludes and outlines some future work directions.

2 OVERVIEW
covRew is a Python toolkit focusing on the rewriting of data pre-
processing pipelines, with the aim of satisfying specific coverage
constraints on the results of slicing operations. In the following,
we describe the characteristics of input data, processing pipelines,
and the main covRew tasks. The covRew logical architecture is
illustrated in Figure 1.

2.1 Input specification
Input data for covRew are: a dataset, with the related sensitive
attribute specification, for the identification of protected groups;
a processing pipeline represented as a Pandas script; a set of
coverage constraints.
Dataset. covRew takes as input a tabular dataset 𝐼 , represented
as a Pandas Data Frame. We assume that some discrete valued
attributes 𝑆1, ..., 𝑆𝑛 of the input dataset are of particular concern
since they allow the identification of protected groups and we
call them sensitive attributes. Examples of sensitive attributes are
the gender (with values in {𝑓 𝑒𝑚𝑎𝑙𝑒,𝑚𝑎𝑙𝑒}) and the race (with
values in, e.g., {𝑎𝑠𝑖𝑎𝑛, 𝑏𝑙𝑎𝑐𝑘, ℎ𝑖𝑠𝑝𝑎𝑛𝑖𝑐,𝑤ℎ𝑖𝑡𝑒}).
Pipelines. covRew focuses on pre-processing pipelines repre-
sented in Pandas and in particular on Pandas data preparation
tasks corresponding to data slicing operations.1 The slicing opera-
tions we are interested in correspond to monotonic Select-Project
(SP) queries over input tabular data that might alter the represen-
tation (i.e., the coverage) of specific groups of interests, defined
in terms of sensitive attribute values. To this aim, we focus on
SP queries that return, among the others, at least one sensitive
attribute (called sensitive SP operations or queries). The sensitive
attributes returned by an SP query 𝑄 are called reference sensi-
tive attributes for 𝑄 . We further assume the user is satisfied by
the specified transformations and she does not want to lose the
obtained results through rewriting.

In the following, when needed, we denote 𝑄 by 𝑄 ⟨𝑣1, ..., 𝑣𝑑 ⟩
or 𝑄 ⟨𝑣⟩, 𝑣 ≡ (𝑣1, ..., 𝑣𝑑 ), where 𝑣1, ..., 𝑣𝑑 are the constant values
appearing in the selection conditions contained in𝑄 that, for the
sake of simplicity, we assume to be numeric.2

1https://pandas.pydata.org/pandas-docs/stable/getting_started/intro_tutorials/
03_subset_data.html
2We remark that the proposed approach can however be easily extended to deal
with any other ordered domain.

Coverage constraints. Conditions over the number of entries
belonging to a given protected group of interest returned as
result by the execution of SP queries can be specified in terms of
coverage constraints [4, 6]. Given an SP query 𝑄 with reference
sensitive attributes 𝑆1, ..., 𝑆𝑛 , given a value 𝑠𝑖 belonging to the
domain of 𝑆𝑖 , 𝑖 ∈ {1, ..., 𝑛}, a coverage constraint with respect to
𝑆𝑖 and 𝑠𝑖 is denoted by |𝑄 ↓𝑆𝑖𝑠𝑖 | ≥ 𝑘𝑖 and it is satisfied by 𝑄 over
the input dataset 𝐼 when |𝜎𝑆𝑖=𝑠𝑖 (𝑄 (𝐼 )) | ≥ 𝑘𝑖 holds.

2.2 Pipeline analysis
In the first step, given the dataset, the list of sensitive attributes,
the Pandas script, and the coverage constraints, covRew ana-
lyzes the script for identifying the sensitive SP queries and pre-
annotates the script by highlighting them.

The user can then select, among the sensitive SP queries, those
that, from her point of view, should be used for guaranteeing
input coverage constraint satisfaction and, if needed for exper-
imental purposes and for increasing system flexibility, she can
change input coverage constraints. The output of this phase is
a script annotated with information about the operations to be
rewritten and related coverage constraints, if changed. By select-
ing different selective SP operations, during different covRew
executions, the user can examine the impact of different coverage-
based rewritings on the generation of the final result.

As an example, Figure 2 shows a Pandas script to be run on the
US Adult Census database3 containing information about 48,842
individuals from the 1994 U.S. census, taking sex as sensitive
attribute and |𝑄 ↓𝑠𝑒𝑥

𝑓 𝑒𝑚𝑎𝑙𝑒
| ≥ 100 as coverage constraint, thus

requesting that at least 100 females are returned by the selected
SP operations. The pipeline analysis returns lines 7 and 17 as
sensitive SP operations and the user can select one or both lines
for the rewriting. In the following, we suppose line 17 is selected.

2.3 Pipeline rewriting
In the second step, covRew rewrites each selected sensitive SP
query 𝑄 into another query 𝑄 ′, according to what presented in
[2], so that 𝑄 ′ is the minimal query relaxing 𝑄 guaranteeing
coverage constraint satisfaction when evaluated over the input
dataset. More precisely, according to what stated in Section 2.1:
(i) 𝑄 ′ ≡ 𝑄 ⟨𝑢⟩, thus it is obtained from 𝑄 without changing the
original transformation goal; (ii) 𝑄 ⊆ 𝑄 ′, thus the result of the
original transformation is kept by the rewriting;4 (iii) all coverage

3https://archive.ics.uci.edu/ml/datasets/census+income
4We remark that covRew can be easily extended by relaxing assumption (ii), in case
query relaxation is not mandatory.
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1 data = pd.read_csv(‘DEMO/dataset/adult.csv’)
2
3 # projection
4 data = data[[‘capital_gain’,‘age’,‘education_num’,‘sex’,

‘capital_loss’,‘hours_per_week’,‘marital_status’,‘label’]]
5
6 # filtering
7 data = data.loc[(data[‘hours_per_week’] <= 70) &

(data[‘capital_gain’] > 200)]
8
9 # OneHotEncoder considering marital_status

10 data = pd.concat([data[[‘age’,‘education_num’,
‘sex’,‘capital_gain’,‘capital_loss’,‘hours_per_week’
‘label’]],pd.get_dummies(data[‘marital_status’])], axis=1)

11
12 new_columns = list(data.columns)
13 new_columns.remove(‘label’)
14 new_columns.remove(‘sex’)
15
16 # filtering
17 data = data.loc[(data[‘education_num’] >= 15) &

(data[‘hours_per_week’] > 40)]
18
19 # model
20 model = SVC()
21 model.fit(data[new_columns], data[‘label’])

Figure 2: Pandas script over the Adult dataset

constraints associatedwith𝑄 are satisfied by𝑄 ′(𝐼 ). The coverage-
based rewriting should be optimal, i.e.: (iv) there is no other query
𝑄 ′′ satisfying conditions (i), (ii), and (iii) such that𝑄 ′′(𝐼 ) ⊂ 𝑄 ′(𝐼 )
(thus, 𝑄 ′ is the minimal query satisfying (i), (ii), and (iii)); (v)
𝑄 ′ ≡ 𝑄 ⟨𝑢⟩ is the closest query to𝑄 ⟨𝑣⟩ according to the Euclidean
distance between 𝑣 and 𝑢, satisfying (i), (ii), (iii), and (iv), in a
normalized space in which the values for each dataset attribute
are between 0 and 1, potentially increasing user satisfaction.

In order to compute the optimal coverage-based rewriting of
an SP query 𝑄 ⟨𝑣⟩, given a set of coverage constraints 𝐶𝐶 and an
instance 𝐼 , we follow the approach presented in [2].
Canonical form generation. We first translate the selected SP
queries into a canonical form, in which each selection condition
containing operators (>, ≥, =) is translated into one or more
equivalent conditions defined in terms of operator <. For example,
any predicate of the form 𝐴𝑖 > 𝑣𝑖 can be transformed into the
predicate −𝐴𝑖 < −𝑣𝑖 . An optimal coverage-based rewriting of a
canonical query is obtained from the original one by replacing
one or more selection predicates 𝑠𝑒𝑙𝑖 ≡ 𝐴𝑖 < 𝑣𝑖 with a relaxed
predicate 𝑠𝑒𝑙 ′

𝑖
≡ 𝐴𝑖 < 𝑣 ′

𝑖
with 𝑣 ′

𝑖
≥ 𝑣𝑖 . Relaxed queries generated

through coverage-based rewriting starting from 𝑄 ⟨𝑣⟩, 𝐼 , and 𝐶𝐶
have the form𝑄 ⟨𝑢⟩, with 𝑢 ≥ 𝑣 , and can be represented as points
𝑢 in the 𝑑-dimensional space defined over the selection attributes,
thus satisfying conditions (i) and (ii) of the reference problem.
Pre-processing. During the pre-processing step, we organize the
reference space for the detection of a coverage-based rewriting
of 𝑄 ⟨𝑣⟩ as a multi-dimensional grid. The grid has 𝑑 axes, one for
each selection attribute in 𝑄 ⟨𝑣⟩, and each axis is discretized into
a fixed set of bins, by using the equi-depth binning approach,
typical of histogram generation. Each cell in the resulting grid
corresponds to a sensitive SP query containing𝑄 ⟨𝑣⟩, in line with
condition (ii) of the reference problem. The grid represents the
search space for identifying the optimal coverage-based rewriting.
The approach is approximate because a smaller coverage-based
rewriting of the input query might exist but, if lying inside one
grid cell, it cannot be discovered by the algorithm. Notice that
the grid is computed starting from 𝐼 and 𝑄 (𝐶𝐶 is not used).
Processing. During the processing step, the multi-dimensional
grid is visited starting from the cell corresponding to the input

query, one cell after the other, at increasing distance from 𝑄 . For
each cell (𝑢), we check whether the associated query 𝑄 ⟨𝑢⟩ is a
coverage-based rewriting of 𝑄 ⟨𝑣⟩ by estimating the cardinality
of |𝑄 (𝐼 ) | and one cardinality for each coverage constraint. The
properties of the grid and of the canonical form are considered
for pruning cells that cannot contain the solution and for further
improving the efficiency and the scalability of the process [2].

The processing step requires fast and accurate cardinality
estimates. To make the processing more efficient and scalable,
similarly to [8], we rely on estimators based on (uniform, inde-
pendent, and without replacement) samples of the input dataset,
dynamically constructed during the rewriting phase. covRew
then allows the user to select two different rewriting modalities:
fast, but potentially inaccurate, execution due to the usage of
sample-based approaches for cardinality estimation (as a conse-
quence, some constraints might not be satisfied when evaluated
over the real dataset); accurate, but potentially slower execu-
tion, by detecting cardinalities in a precise way through query
execution over the real dataset.

As a result of the pipeline rewriting step, covRew generates
a rewritten script whose impact is evaluated in the final phase.
In our example, line 17 of the original script is rewritten into:
data = data.loc[(data[‘education_num’] >= 14) &
data[‘hours_per_week’] > 37)].

2.4 Impact evaluation
In the last phase, for each rewritten sensitive SP query, covRew
shows many statistics useful for evaluating the impact of rewrit-
ing. In case the user is not satisfied by the rewriting, she can
discard the changes and go back to the pipeline analysis pane,
for changing her selections. More precisely, for each rewritten
query, covRew returns (see Figure 3):

• the result of the rewriting of each original selection condi-
tion (in the example data[‘education_num’] >= 14 and
data[‘hours_per_week’] > 37), with information about
the data distribution related to the selected attributes, be-
fore and after the rewriting;

• the maximum and the minimum approximation error due
to the pre-processing, defined as the maximum and the
minimum diagonal length of grid cells, normalized be-
tween 0 and 1, and the approximation error of the de-
tected solution, corresponding to the grid-based accuracy
proposed in [1] (0.04, 0.28, and 0.07 in Figure 3);

• the percentage of additional tuples returned, due to the
rewriting, corresponding to the relaxation degree pro-
posed in [1, 2] (66% in Figure 3);

• the Euclidean distance, in the normalized space, between
the rewritten solution and the original one, corresponding
to the proximity measure proposed in [1] (0.08 in Figure 3);

• the absolute and percentage distribution of protected groups
in the result of the original query and of the rewritten one,
(121 wrt to 22, 19.3 wrt 10.5 in Figure 3);

• information about the satisfaction of the coverage con-
straints on the result of the original query when evaluated
on the input dataset (satisfied, in Figure 3).

The impact evaluation pane gives the user the opportunity
to revise the annotation, if the accuracy is not satisfactory, and
select the accurate execution if, due to the estimation error of
the fast approach, some coverage constraints are not satisfied by
the result of the rewritten queries over the input dataset. After
this revision, the final script is returned to the user.
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Figure 3: Impact evaluation pane

3 DEMONSTRATION SCENARIOS
In the demonstration of covRew we pursue three goals: (i) to
ascertain the feasibility of rewriting slicing operators to ensure
adequate protected group representation by means of coverage
constraints; (ii) to explore the effects of such rewriting with
respect to protected group membership on result accuracy; (iii)
to compare executions of alternative rewritten pipelines sharing
the same goal in terms of coverage, but using different rewriting
approaches (efficiency vs accuracy). In the following, we discuss
the foreseen user interactions and how these interactions realize
the most relevant scenarios for our demonstration goals.
Datasets and sensitive attributes. As first operation, the user
can select one dataset to work on ( 1 in Figure 1). Two datasets
are available: the already mentioned US Adult Census database.
and the Diabetes US5 dataset representing 10 years (1999-2008) of
clinical care at 130 US hospitals and integrated delivery networks
(100,000 instances). For each dataset, a short description of the
dataset and the list of attributes is shown. The user is asked to
select the sensitive attributes from this list for the task at hand
and to define coverage constraints over them ( 1 in Figure
1). For example pipelines, we select the sex/gender and race
attributes for both datasets.
Input scripts. For each dataset, three different scripts are al-
ready available and will be proposed as a starting point. The user
is allowed to freely modify the code as well as to enter her own
code ( 1 in Figure 1). A sample script is shown in Figure 2
and has been discussed in Section 2. The other scripts allow us
to demonstrate different combinations of projection and filter-
ing operations, with multiple conditions on different attributes,
allowing to obtain a different ratio among different groups for
sensitive attributes.
Script annotation and impact evaluation. In addition to se-
lecting the input dataset and sensitive attributes, among those
available, the user interacts with the toolkit in the pipeline analy-
sis phase ( 2 in Figure 1), when she can select the operations to
rewrite, choose for each of them the execution type (fast rather
than accurate) and, if needed, modify the input coverage con-
straints. The user can also provide a feedback after impact evalu-
ation ( 3 in Figure 1) when, by looking at the statistics about
execution, she might want to reconsider some of the choices
made in script annotation with reference to one or more slicing
operations, thus producing a new annotated script.
5https://archive.ics.uci.edu/ml/datasets/Diabetes+130-US+hospitals+for+years+
1999-2008

In the online demonstration, active user involvement for sev-
eral simultaneous demonstration attendees will be fostered by
using clickers/instant polling tools to select the input to provide
to the system in the various steps.
Realized scenarios. The demonstration will be conducted in
such a way to show, with reference to cases in which one or more
operations are rewritten and one ore more coverage constraints
are specified, different possible scenarios of interest, namely:

• the coverage constraints are satisfied and the user is fine
with the rewriting;

• the coverage constraints are not satisfied on the input
dataset and the user changes the type from fast to accurate;

• the user is not satisfied by the results, either because she
deems the pre-processing approximation too high or be-
cause the rewriting has a too high impact on result accu-
racy, and decides to revise the choices she made, going
back to the pipeline analysis pane.

In addition to the prefigured scenarios, the user will be given
the opportunity to suggest modifications to the pipelines and
even to submit her own script, on one of the reference datasets.

4 CONCLUSIONS
We have presented covRew, a user-friendly Python system for
rewriting sensitive slicing operations that can lead to the viola-
tion of coverage constraints with respect to the protected groups
of interests. In the demonstration, we illustrated the main cov-
Rew functionalities over predefined and user-specified pipelines.
As future work, we plan to extend covRew with functionalities
for automatically identifying sensitive operations to be rewrit-
ten with the highest accuracy. Further extensions concern the
relaxation of the containment property between the original
query and the rewritten one, a comparison of covRew with the
approach proposed in [3], the integration with different types
of fairness constraints, a graph-based representation of input
scripts, similarly to [11], for simplifying pipeline analysis.
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ABSTRACT
The large volume of currently available data creates several oppor-
tunities for sciences and industry, especially with the application
of data analytics. But also raises challenges that make unfeasible
the use of batch-based ETL processes. Indeed, near real-time data
analytics is a requirement in several domains as an alternative to
traditional data warehouses. In the last years, big data platforms
have been developed to enable query execution over distributed
data sources. However, they do not deal with subject-oriented
analysis, do not provide data distribution transparency, or do not
assist with schema mapping and integration.

In this demonstration, we present EasyBDI. It’s a near real-
time big data analytics prototype that enables users to run queries
over heterogeneous data sources based on global logical abstrac-
tions created by the system and provides some usual concepts of
data warehouse systems, like facts and dimensions. We use two
motivating scenarios, one based on three years of real data on
photovoltaic energy production and consumption, and the other
based on the SSB+ benchmark. We will also present implementa-
tion challenges, issues, solutions, and insights.

KEYWORDS
Distribution transparency, data analytics, near real-time data
warehousing

1 INTRODUCTION
For several years, data analytics has been based on large data
warehouses. Such warehouses are mostly centralized databases
whose data is periodically extracted from OLTP databases and
load into the warehouse as part of an ETL (extract, transform, and
load) process [10]. This traditional warehouse structure is not
suitable for most of the current big data analytics environments.
On the other hand, near real-time operations have become a
requirement in several current IT contexts, like in IoT, where
several sensors generate data streams and users need to process
and analyze the most recent data [10].

This demonstration presents EasyBDI (Easy Big Data Inte-
gration), a prototype for logical integration of distributed and
heterogeneous data sources (including NoSQL ones, like Mon-
goDB, Kafka, and Redis) into a global database and global star
schemas. The integration is logical, i.e., there is no materialized
global database, and data source autonomy is maintained. Ana-
lytical queries specified over global star schemas are transformed
and executed by the distributed and heterogeneous sources.

Building a global schema requires finding and matching syn-
tactic and semantic similarities between the data structures of

© 2021 Copyright held by the owner/author(s). Published in Proceedings of the
24th International Conference on Extending Database Technology (EDBT), March
23-26, 2021, ISBN 978-3-89318-084-4 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

distinct local sources. This can be achieved either by looking at
the structural organization of data (i.e., schema-based matching)
or to the contents andmeaning of data (i.e., instance-based match-
ing) [7]. Also, each local element should be mapped into a global
element. For instance, local structures identified as semantically
identical in the schema matching process should be mapped into
a single global entity. Partitioning of (logical) global structures
across distinct databases should also be handled [6]. Creating
a global schema over distributed databases is challenging, par-
ticularly in the context of NoSQL and heterogeneous databases.
EasyBDI gets the data organization on participating sources and
uses a combination of techniques to automatically propose a
global schema, which can be fine-tuned by the users.

EasyBDI runs over a distributed query execution engine (Trino,
formerly PrestoSQL [4, 8]) and adds some levels of abstraction,
namely data location and fragmentation transparency, and spe-
cialized subject-oriented analysis. The system uses schemamatch-
ing and integration techniques to automatically design a global
model and allows users to build subject-oriented cubes over such
model. Non-expert users may use drag-and-drop to submit an-
alytical queries over global cubes, but advanced features (e.g.
based on SQL language) are also available for experts.

Big data frameworks and polystore systems (e.g. Apache Drill
[5], Presto [8], BigDAWG [3]) provide a unified query language
that can be used to access distributed data. But big data frame-
works commonly lack providing distribution transparency, while
polystores are tightly integrated, managing all sources together,
including in terms of data location and data replication [9]. Our
system maintains source autonomy, uses a global schema to pro-
vide distribution transparency (location, replication, and fragmen-
tation), is extensible, and supports a wide range of data sources.

In the demonstration, two scenarios will be made available
for participants. The first one is based on more than 3 years
of real data on photovoltaic panel production/consumption in
Sydney, Australia, and nearby areas. The second uses the SSB+
benchmark [2], which contains persistent and streaming data on
retail store’s sales, deliveries and popularity in social media.

Participants will understand how EasyBDI deals with some key
challenges, like how to (i) explore the local data models to identify
entities of the global model that are partitioned across multiple
data sources, (ii) implement the automatic schema matching,
mapping, and integration procedures to support the users in de-
signing global models for a large number objects and data sources,
and (iii) execute queries on a high-level star schema model ab-
stracting several distributed, heterogeneous and autonomous
data sources. They will also see the global SQL queries generated
by EasyBDI and their translation into queries to the local sources.
Implementation challenges and issues, adopted solutions and
insights will be discussed, making this demonstration helpful to
researchers and practitioners.
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2 EASYBDI PROTOTYPE
EasyBDI is a framework for near real-time analytics that provides
logical integration of multiple data sources while also enabling
the creation of star schemas over global (logical) entities. Local
databases are assumed to be autonomous (operate independently)
and heterogeneous (in terms of data models and query languages,
e.g., relational, graph and document databases, or semi-structured
and unstructured data sources).

Data sources are accessible through a distributed query engine
(Trino). The role of EasyBDI is to add additional levels of trans-
parency, namely, location and fragmentation transparency, to
allow building global schemas providing unified and high-level
representations of the data sources, and to enable the execution
of analytical queries by subject-experts. The architecture and the
main components of EasyBDI are depicted in Figure 1.
API communication handler This component handles the in-
teraction with the external systems: Trino and SQLite.

The Distributed Query Execution Engine Interface uses Java
and JDBC, and implements all the logic regarding the integration
of EasyBDI with Trino. Even though Trino provides a single
representation of the underlying data, queries to Trino must
contain the data source identifier for each data fragment. Thus,
this component must also convert the queries specified using
a global schema (see Database Integration below) into queries
supported by Trino. This requires adding data source identifiers,
as well as union and join operators, according to the mapping
used between the global and local schemas.

The Schema Metadata Storage is responsible for the storage
and management of the metadata of all schemas: local schema
view, global schema, and star schema. Currently, these (meta)data
are stored in an SQLite database.
Configuration Manager This component is responsible for
generating the configuration files that allow Trino to commu-
nicate with the data sources (e.g., data source type, data source
URL, username, password, and other parameters that depend on
the data source type). It also creates local schema views. The
procedure consists of iterating each data source and retrieving
(meta)data about their schemas, namely, tables and columns in-
formation (or the equivalent concepts depending on the data
source), using Trino commands. These (meta)data are stored in
an SQLite database through the Metadata Storage Interface.
Database integration This layer deals with the creation of the
global schema. A global schema contains a set of global tables,
each containing a mapping to logically related data fragments.
The integration is logical, i.e., the global schema is entirely virtual
and not materialized. The main tasks to build a global schema
are schema matching, schema integration and schema mapping.

The schema matching defines a mapping of concepts in a
schemawith concepts in another schema. EasyBDI uses a schema-
based method with linguistic and constraint-based criteria [6].
The algorithm starts by finding tables with similar names us-
ing the Levenshtein distance. For each pair of matching tables,
EasyBDI does columns matching using the Levenshtein distance
to compare names and a similarity measure to compare data
types.

The schema integration defines the global tables and their
columns, using the correspondences found in the schema match-
ing. EasyBDI uses the stepwise binary integration method [6].

The schema mapping defines how to combine data from one or
more local data sources (data fragments) into a single global ta-
ble while keeping consistency and semantic coherence. EasyBDI

Figure 1: Main Components of EasyBDI architecture

analyzes the matching between global and local entities, and iden-
tifies the type of partitioning (horizontal, vertical, or none) used.
If a global table corresponds to only one local entity, then there
is no partitioning. If a global table has a correspondence with
several local tables, and the number of matching columns and
their data types in all tables are the same, then the local tables are
considered horizontally partitioned. The current implementation
of EasyBDI uses foreign key-primary key relationships to find
whether two or more tables are vertically partitioned, but this
is only feasible when it is possible to get constraint information
from the catalog of the data sources.

The methods presented above are automatic and may lead
to incomplete or semantically incorrect results. Thus, EasyBDI
allows users to review and edit the global schema generated
automatically (e.g., removing replicated data sources) using an
intuitive GUI interface.
Multidimensional Schema Manager This component allows
the design of data cubes (star schemas) and the use of abstrac-
tions like facts and dimensions to perform analytical queries so
that users focus on data analysis rather than technical details
regarding data organization. Data cubes are built over the global
schema,i.e., fact and dimensions tables are based on global en-
tities. A start query is basically a join between a fact table and
some dimensions, possibly with filters and aggregations.
Query ExecutionManager This component rewrites the queries
on the global schema into the queries submitted to Trino to get
data from the local data sources. It handles vertical and horizon-
tal data partitioning. Queries on global tables are automatically
translated into queries on local tables using union and join op-
erations of data fragments. The framework can handle multiple
aggregations and joins at the same time. The queries that merge
partitioned data are written as nested queries. An outer query
contains the operators specified by the user (e.g., filters and ag-
gregations) and other implicit joins needed between the facts
table and dimensions. It is also possible to deal with complex
operations such as pivoting and unpivoting data.

Figure 2 exemplifies the query submission process, which
starts with a user interacting with the interface and issuing a
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Figure 2: Query transformation - from an initial query over global schema to a query over local schemas

query over the star schema. Then the system generates an SQL
query based on the global schema, which is translated into a
query on the local schema and submitted to Trino. Notice that
users do not need to know any query language: EasyBDI provides
an intuitive interface and analytical queries are specified using
drag-and-drop. Finally, Trino prepares and sends the queries that
must be executed by the local data sources. Thus, users can create
queries using global names and cubes and do not need to know
about the format, organization and distribution of the data, nor a
query language.

The Query Execution Manager also transforms the results pro-
vided by Trino according to the global schema and sends them
to the visualization layer.

Visualization andConfiguration This layer comprises several
tools related to querying and configuration, including wizards to
provide guided operations to users, like the cube builder, query
builder, global schema editor, and data source configuration.

3 DEMONSTRATION
This demonstration has two case studies to highlight different fea-
tures of EasyBDI. It will cover the selection of data sources, auto-
matic generation of a global schema, creation of a star schema and
execution of drag-and-drop (and user-edited) analytic queries.

Case study 1 uses data on energy production and consump-
tion of 300 homes equipped with photovoltaic panels in Sydney
over the span of 3 years. The data are available in three CSV files.
The lines represent the customers, generator capacity, dates and
type of consumption or production (GC, CL, and GG), and the
columns represent the values recorded every 30 minutes (Fig-
ure 3). This case is interesting because the organization of the
data is far from a typical data organization in relational databases.

We consider that the data on the customers’ location (postal
codes related data) are in a PostgreSQL database and the temporal
data are in a MySQL database, just for experimentation purposes.

Figure 3: Sample of a CSV file with photovoltaic data

After the automatic generation of the global schema, we will
manually edit it to show some advanced features. In particular, we
will show how to use virtual tables and user-defined commands
to unpivot the data in the CSV files, how to specify constraints
and change the data types of global schema columns, and how
to create a mapping between the global schema and the data
sources using virtual tables (Figure 4).

Figure 4: Global schema (left panel) and local schema
views (right panel) for the photovoltaic datasets

Then, a star schema will be created with a fact table (pv_facts),
three measures (GC, CL and GG) and three dimensions (cus-
tomer_dim, time_dim and postalcodes_dim). We will show how
to run queries on the global schema using only drag-and-drop
how to edit the commands manually (Figure 5). We will also illus-
trate the transformation of queries on a global schema (Listing 1)
into queries on the local schema views that must be executed by
Trino (Listing 2). The “<user query>” in Listing 2 denotes the
query used to transform the data structure depicted in Figure 3
into a virtual table and is omitted because of its size.
Listing 1: Code generated for the global query depicted in
Figure 5 (top) (datatype casting operators were removed).

SELECT c . cus tomer_ id , t . year ,
SUM( pv .GG) AS " SUM_of_GG "

FROM cus tomers c , t ime_d imens ion t , pv
WHERE ( t . h a l f _hou r = pv . h a l f _hou r
AND c . cu s tomer_ id = pv . cus tomer
AND t . date = pv . date )
GROUP BY ( t . year , c . cu s tomer_ id )
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Figure 5: A global query made with drag-and-drop (top)
and a global query edited manually (bottom)

Listing 2: Translation of the code in Listing 1 into a
query over the local schema views (the name of the data source
“mysql_localhost_3306_time” is abbreviated to “mysql”).

SELECT cus tomers . cus tomer_ id , t ime_d imens ion . year ,
SUM(GG) AS " SUM_of_GG "

FROM
(SELECT mysql . pv_schema . cus tomers . cu s tomer_ id
FROM mysql . pv_schema . cus tomers ) AS customers ,

(SELECT mysql . pv_schema . t ime_d imens ion . ha l f _hour ,
mysql . pv_schema . t ime_d imens ion . year ,
mysql . pv_schema . t ime_d imens ion . date
FROM mysql . pv_schema . t ime_d imens ion ) AS
t ime_dimens ion ,

SELECT customer , date , h a l f _hour , GG FROM
( < u se r query > UNION <use r query >
UNION <use r query >) AS pv

WHERE ( t ime_d imens ion . h a l f _hou r = pv . h a l f _hou r
AND cus tomers . cu s tomer_ id = pv . cus tomer
AND t ime_d imens ion . da t ed = pv . date )

GROUP BY ( t ime_d imens ion . year , cu s tomers . cu s tomer_ id )

Case study 2 uses the SBB+ benchmark [2] and represents a
more conventional scenario in a big data environment. The SSB+
data model has two star schemas, one for batch Online Analytical
Processing (OLAP) and the other for streaming OLAP. The batch
OLAP is an adaptation of the schema proposed in TPC-H. The
streaming OLAP is based on social media data and represents the
popularity of retail stores (and their sales and deliveries).The data
for OLAP batch storage are stored in Hive, while the facts data for
streaming OLAP are stored in Cassandra (a NoSQL database that
uses a wide-column store model), and conceptual relationships
exist between data stored in both systems, as represented in
Figure 6. We use the code available in [1] to populate the data
sources.

In this case, EasyBDI’s automatic matching, integration and
mapping was mostly correct. Only a few manual edits are needed
and no user-defined commands are necessary. We also show
how to create the star schemas for batch OLAP and streaming
OLAP and how to execute queries. SSB+ has a listing of analytical
queries that we used to test the functionality of EasyBDI and
we also use some of these queries in this demonstration. Regard-
ing EasyBDI’s performance, the overhead associated with query

Figure 6: Case study 2: batch and streaming OLAP –
overview of local schemas

generation is small (≈ 1% of query execution time). Query exe-
cution time depends mostly on query complexity, data sources’
efficiency, and on the resources available for Trino.

4 SUMMARY
In this work, we present EasyBDI, a framework for near real-
time data analytics that uses logical data integration to pro-
vide a high-level abstraction of data distribution and hetero-
geneity, while keeping the autonomy of the data sources. Au-
tomatic schema matching and configuration wizards are used
to support the addition of new data sources. Multidimensional
data organization is used to enable query analytics by subject-
experts. We present two scenarios, one based on real data and
the other on the use of a benchmark that simulates sales data
and social media data. We also present several implementation
issues, discussing adopted solutions that may be helpful to re-
searchers and practitioners. EasyBDI is publicly available on
Github https://github.com/bsilva3/EasyBDI .
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ABSTRACT
Blockchain is an emerging technology, considered increasingly
often beyond the cryptocurrency world for business-to-business
use-cases. In contrast to public blockchains such as Bitcoin, that
are open systems in which anyone can participate, in business-
to-business scenarios the membership of the service is controlled
(permissioned blockchain). This permits the use of Byzantine
fault tolerant (BFT) consensus protocols at the core of the service
to establish a total order of transactions, instead of the more ex-
pensive Proof-of-Work-based consensus protocols. Permissioned
blockchains typically set out to solve problems in the space where
databases have traditionally resided, with the main difference
being that the former decentralizes trust. There are numerous re-
search proposals in the intersection of databases and blockchains.
Sadly, there are still many misconceptions about this technology
which leads to confusion in the community. The main goal of this
primer is to give an overview of the relevant topics and provide
pointers for further reading.

1 BLOCKCHAIN BASICS
Blockchains have entered the “spotlight” after the seminal Bit-
coin paper published by Nakamoto [11] more than a decade ago.
Even though many think of Blockchains as being part of the data
management field, the Nakamoto paper was addressing a finan-
cial issue: its goal was to provide a decentralized currency that
does not require trust in a central authority for its functioning.
It has been only later that discussions emerged about “transac-
tion processing”, that is, smart contracts on top of blockchains,
perhaps most notably, in the Ethereum White Paper [4].

In the years since their proposal, Blockchains have lived through
a hype and this resulted in a dizzying number of different sys-
tems. At their core, however, all blockchains are quite similar.
They aim to decentralize trust and are composed of two parts: 1)
a verifiable data structure that allows participants to determine
whether the data in the blockchain has been tampered with and
2) a consensus algorithm that defines how participants can add
new data to the data structure. The choice for data structure is
typically an append-only log with cryptographic hashes linking
entries (i.e., blocks, see Figure 1). Nonetheless, there are also
blockchains, such as IOTA, that order data into a directed acyclic
graph (DAG) [10] instead. Put in database terms, we can think of
the former as establishing global total order on all transactions
and keeping a single logical shard of the data, and the latter as
data sharding with total order within a shard and infrequent
cross-shard transactions.

The choice of the consensus algorithm is determined by the as-
sumptions the blockchain makes on the trustworthiness of third
parties and the participation model. We can split blockchains

© 2021 Copyright held by the owner/author(s). Published in Proceedings of the
24th International Conference on Extending Database Technology (EDBT), March
23-26, 2021, ISBN 978-3-89318-084-4 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Figure 1: At the core of all blockchains is a verifiable data
structure, typically in the form of an append-only log.
Cryptographic hashes (fingerprints) included in blocks re-
cursively tie them to the previous blocks.

into two categories based on who is allowed to participate in the
consensus algorithm and, as a result, add data to the data struc-
ture: First, permissionless blockchains where anyone is allowed
to participate and, second, permissioned blockchains where only
selected entities can participate (this also assumes that the nodes
in the system have verifiable identities, which is not the case in
permissionless blockchains).

Permissionless blockchains are, by definition, public, since
anyone can access the data structure and read all previous trans-
actions. Permissioned blockchains can be either private, in which
case the governing consortium or members of the blockchain
restrict access based on internal rules (e.g., business partners
in specific areas), or they can be public, in which case anyone
fulfilling some non-restrictive condition can join (e.g., Alastria1
implements a country-wide blockchain network that relies on
national tax register numbers as a pre-condition to joining). It
is important to note that, while permissionless blockchains are
typically used for dealing with fully virtual assets, permissioned
blockchains are more similar to databases, in that the data they
store typically represents real-world assets and events.
What is there for database researchers to explore? In the
permissionless blockchain space most current and future chal-
lenges are related to scalability of the network, to economic incen-
tives, as well as, to consensus algorithms with better guarantees
for tolerating malicious actors. In terms of data management
and transaction processing, there is no clear need for inventing
new approaches because these systems can benefit from already
existing best practices. In contrast, permissioned blockchains
are considered for use-cases which are much closer to the data-
base community, such as supply-chain management, banking
or notaries, and therefore face challenges closer in nature to
the database community. As we will discuss in the last section,
there is significant overlap in database and blockchain research,
with many database ideas/techniques being well applicable in the
blockchain space. The fundamental difference, however, between
permissioned blockchains and traditional distributed databases is
the decentralization of trust in the former, that is, the assumption
that not all nodes belong to the same enterprise and the ability
to function even if not all members of a consortium are trusting
each other. From a database research perspective, hence, most

1https://alastria.io/en/
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of the interesting future work is in understanding how the per-
formance of transaction processing (and perhaps analytics) can
be increased while benefiting from the trust decentralization of
blockchains. Additionally, the standardization of smart contracts
and data models, as well as their integration with traditional
databases is an open challenge.

2 PERMISSIONLESS BLOCKCHAINS
In permissionless blockchains there are no node identities and,
as a result, a consensus mechanism is required that cannot be
subverted by creating a large number of “fake” nodes to achieve
majority in the system (Sybill attack). Therefore, Bitcoin and
many other cryptocurrencies use Proof of Work (PoW) consensus,
that requires participants to the consensus to solve a crypto-
graphic puzzle before they can add to the log. The puzzle consists
of finding a hash value that fulfills a specific condition, for in-
stance, a number of leading zeros. The input to the hashing is the
block that the participant would like to record on the blockchain.
Inside the block are 1) transactions collected from clients of the
system and other participants, 2) the cryptographic hash (signa-
ture) of the previous block in the blockchain and 3) a field holding
a random number. The randomness is added to the block before
being hashed, and unless the resulting hash fulfills the condition,
the last step is repeated (this is the process of mining). Finally,
when a miner discovers a combination for which the condition
holds, it appends it to the blockchain by broadcasting it to all
other participants. These can validate whether the added block
is legitimate simply by computing its cryptographic hash and
checking whether this hash fulfills the condition2. Hence, even
though mining is very expensive, clearly limiting the throughput
of the system, validation itself is cheap. In exchange for “find-
ing” the next block of the blockchain, the miner will receive a
payment in the underlying cryptocurrency, typically deducted
as fees from the transactions in the just-appended block.

While PoW consensus has benefits in that it limits participants’
power in the blockchain to their relative compute power (which
is much more costly to increase than creating new IP addresses
for instance), it has also many drawbacks. Apart from the obvious
energy efficiency concerns resulting from the repeated hashing
computations and the issue that all miners are fundamentally
competing with each other for the next block, it has an important
implication on transaction finality. In systems relying on PoW,
competing miners could create forks in the log, working towards
two “alternate realities”. In practice, blocks are considered com-
mitted once enough additional blocks (e.g., 5) have been added
after them. The expectation is that, at that point, the economic
incentives are driving all participants to continue building on the
longest subchain of the system. Nonetheless, transactions never
reach finality because there is a small probability that any block,
no matter how old, could have been forked and it does not, in
fact, lie on the longest subchain.

It has to be noted that the common practice of composing
blocks from a large number of transactions is rooted in the space
of PoW blockchains in an effort to amortize the exuberant cost
of mining, as well as, to simplify global broadcasts. Overall, the
idea of a blockchain and its underlying mechanisms could just as
well work for appending single transactions into a tamper-proof

2Depending on the nature of the transactions in a block, of course, additional checks
might be required that ensure that the underlying state remains consistent at all
times.

log, albeit, with much less efficiency for PoW consensus-based
blockchains, such as Bitcoin.

To overcome the fundamental efficiency issues of PoW, other
forms of consensus are becoming wide-spread, most notably,
variations of Proof of Stake (PoS), e.g., in Tezos, Peercoin, and
in newer iterations of Ethereum. PoS consensus is, at its core,
a majority-based consensus algorithm that requires the voting
participants to stake part of their cryptocurrency holding behind
each consensus round. In case irregularities happen, e.g., forks, or
conflicts, they are liable to lose their stake. This creates a strong
economic incentive for participants to adhere to the rules.

In addition to PoS, there are other exciting proposals, such as
Proof of Storage, Proof of Elapsed Time and Proof of Personhood,
to name only a few (see more in this survey [14]). In addition
to consensus protocols that provide a “proof” of owning some
information or property, there are other proposals that embrace
stochastic behavior and can even tolerate 51% attacks temporar-
ily [13].

Even though non-PoW consensus solves many of the efficiency
issues of PoW blockchains and, in principle, allows for lower
latencies, these blockchains still typically suffer from the lack
of finality in transactions: their throughput and latency are not
determined only by the choice of underlying consensus protocol
but also by the economic assumptions the blockchain makes.

3 PERMISSIONED BLOCKCHAINS
Permissioned Blockchains, such as Hyperledger Fabric [2], Corda
R3 [3] and IOTA [12], introduce the requirement for a mecha-
nism to associate identities with participants of the blockchain.
Identities could be either issued by a trusted third party or by a
consortium of the blockchain nodes themselves. Identities allow
the use of more traditional, and significantly cheaper, forms of
consensus algorithms, typically those from the family of Byzan-
tine Fault Tolerant (BFT) algorithms (e.g., PBFT [5]), to append
to the shared data structure. Using BFT consensus has the im-
portant benefit that transactions can be committed with finality.
As a result, these permissioned systems can reach latencies and
throughputs more similar to those of traditional databases. It has
to be noted, however, that many of these systems run in widely
geodistributed setups without the availability of dedicated, high
bandwidth, networking, resulting in lower performance than
what we typically see in RDBMSs.

In addition to the limitations imposed by networking bottle-
necks, many permissioned blockchains inherit other limitations
from the PoW blockchain space. They often rely, for instance,
on batching a large number of transactions into blocks, which
unsurprisingly results in artificially high latencies. These limi-
tations, however, are not fundamental. We have demonstrated,
as an example, that by rethinking the block-based processing of
Hyperledger Fabric [9], its latency can be lowered from the hun-
dreds of milliseconds to the millisecond range without negatively
impacting its throughput or requiring significant changes to its
code base. Therefore, it is reasonable to assume that permissioned
blockchains that are being deployed in production systems will
eventually “shed” the most obvious inefficiencies.

Given the decades-long of research in distributed consensus
and fault tolerant systems, it is reasonable to predict that the
work of database researchers will not necessarily be most use-
ful in improving consensus but, instead, in enhancing the data
management and data processing aspects of these systems. For
instance it is an open challenge how to make Smart Contract
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Figure 2: Blockchains can be classified into two groups depending on their smart contract executionmodel (nomenclature
might differ across systems)

execution more efficient and integrated with RDBMs, which, in
some cases, might have different schemas at different companies.

4 SMART CONTRACT EXECUTION
Most practical solutions for Smart Contracts (e.g., in Ethereum,
Tezos, Fabric, etc.) treat the “contents” of the blockchain as a
multi-versioned key-value store. As such, it is possible to think
of smart contracts as small programs that can only interact with
a key-value interface.

Blockchains adopt one of two execution models: Order-Execute
(OE), which is similar to active replication in database terminol-
ogy, and Execute-Order-Validate (EOV), which can be thought of
as passive replication. As shown in Figure 2, the OEmodel first es-
tablishes the total order of transactions (that is, the order of smart
contract invocations), then broadcasts these to all participants,
each participant executing the transactions locally, typically in a
serial manner. For this approach to work, smart contracts cannot
include non-deterministic operations, otherwise the results could
diverge. Blockchains using the OE model ensure this by relying
on carefully designed DSLs for writing smart contracts.

Systems implementing the EOV model start by simulating
(also called executing or endorsing) smart contracts on a subset
of the nodes, chosen by a user-defined policy. The results of these
executions are recorded in a terms of read/write modifications
they would perform on the key-value store (state DB). Once
the client receives enough simulation results, and these are all
identical, it can submit the transaction for ordering (that is, the
R/W modifications and proofs of execution). Once the order of
transactions has been established, all participants will receive the
list of transactions to record in their ledgers. At this point, the
smart contracts are not re-executed but instead their read/write
modifications are made directly on the ledger. The benefit of
this solution is that it allows executing a large number of smart
contracts in parallel but, since all simulations happen on a “view”
of the ledger state that can change by the time validation happens,
transactions can fail in the validation phase due to data staleness
in the state DB in the first phase. In the EOVmodel it is feasible to
use general purpose programming languages, such as Go or Java,

to write smart contracts since (most) non-deterministic behavior
will be detected in the simulation phase.

5 RECENT RELATEDWORK IN DATABASES
In the following, we present a handful of related works pub-
lished within the database community targeting shortcomings
of permissioned blockchains mentioned above (the list is not
exhaustive and is intended as a sample of the space).

In an effort to increase transaction processing throughput in
the EOV model, Sharma et al. [16], show that by relying on data-
base techniques for concurrency control, it is possible to reorder
transactions within a block during the ordering step (i.e., when
establishing their total order) in a way that minimizes the number
of failing transactions due to R/W conflicts. They implemented
their prototype on Fabric and it is one example of how ideas from
the database world can be used to improve existing blockchain
platforms without fundamental redesigns. Other examples in-
clude FastFabric [7], that brings various optimizations, inspired
by databases, to Fabric which result in an unprecedented 20,000
ops/s throughput.

There are also proposals which aim to increase throughput
and lower latencies by implementing sharding at different levels
in permissioned blockchains. CAPER [1], for instance, allows
multiple applications to share one blockchain and leverages the
fact that they operate on disjoint parts of the dataset to increase
the overall throughput. This is achieved by separating the or-
dering of operations inside an application from that of ordering
across applications. In a similar vein, ResilientDB [8] proposes a
permissioned blockchain that incorporates a hierarchical consen-
sus protocol design that relies on locality, both in terms of dataset
and physical proximity of the nodes, to boost performance.

Other lines of work treat blockchains as a fault-tolerant and
highly available storage layer and build traditional database capa-
bilities on top, e.g., as in BlockchainDB [6]. This direction of re-
search provides one possible answer the question of how to bridge
the gap between SQL-based processing (and the amassed exper-
tise in this space by developers) and the fairly exotic field of smart
contracts. Other work, e.g., ChainifyDB [15], explores a similar
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question and provides a different possible answer. Instead of re-
placing the storage engines of databases, ChainifyDB re-designs
the distributed transaction processing protocol and utilizes a
blockchain for BFT fault tolerance and transparency/auditing for
both local and distributed transactions.
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ABSTRACT
To bridge the gap between users and data, numerous text-to-SQL
systems have been developed that allow users to pose natural
language questions over relational databases. Recently, novel text-
to-SQL systems are adopting deep learning methods with very
promising results. At the same time, several challenges remain
open making this area an active and flourishing field of research
and development. To make real progress in building text-to-SQL
systems, we need to de-mystify what has been done, understand
how and when each approach can be used, and, finally, identify
the research challenges ahead of us. The purpose of this tutorial
is to present recent advances of deep learning techniques for
text-to-SQL translation, and to highlight open problems and new
research opportunities for researchers and practitioners in the
fields of database systems, natural language processing and deep
learning.

1 INTRODUCTION
Data is a prevalent part of every business and scientific domain,
but its explosive volume and increasing complexity make data
querying and exploration challenging even for experts. In an
attempt to bridge the gap between users and data, numerous text-
to-SQL systems have been implemented, both from industry and
academia, that enable users to pose unstructured queries (using
keywords or free-form text) over relational databases [1, 4, 26].
The recent advances on deep neural networks and the creation of
two large datasets for training text-to-SQL systems, have led to
the emergence of several, novel, text-to-SQL systems that lever-
age deep learning techniques. These efforts show very promising
results. At the same time, several open challenges make this area
an active and flourishing field of research and development. It is
high time for a systematic study of these solutions.

In this work, we aim at presenting the recent advances in the
field of text-to-SQL systems with the adoption of deep learning
techniques.We follow a systematic and structured approach. First,
we introduce the text-to-SQL problem, explain and categorize its
challenges. Then, we present available benchmarks and explain
their advantages and shortcomings. We zoom in on the recent
advances of deep learning techniques for text-to-SQL transla-
tion. We explain the problems they address and their limitations,
and we highlight research opportunities on the intersection of
database systems, natural language processing and deep learning.

2 THE TEXT-TO-SQL PROBLEM
The text-to-SQL (also known as NL2SQL) problem can be de-
scribed as follows: Given a Natural Language Query (NLQ) on
a Relational Database (RDB), produce a SQL query equivalent to
the NLQ, which is valid for the said RDB. Several challenges arise,

© 2021 Copyright held by the owner/author(s). Published in Proceedings of the
24th International Conference on Extending Database Technology (EDBT), March
23-26, 2021, ISBN 978-3-89318-084-4 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

including: ambiguity, schema linking, vocabulary gap and user
mistakes.

Ambiguity of natural language queries is one of the most diffi-
cult challenges a text-to-SQL system has to cope with. There are
several types of ambiguity [3, 27]. For instance, lexical ambiguity
refers to the case of a single word with multiple meanings (e.g.,
“Paris" can be a city or a person).

On the other hand, schema linking is the problem of under-
standing which parts of the NLQ refer to which parts of the
database schema. Vocabulary gap refers to the differences be-
tween the vocabulary used by the database and the one used by
the user. User mistakes, such as syntactical or grammatical errors,
make the problem even more challenging.

3 TEXT-TO-SQL LANDSCAPE
The problem of translating user queries to SQL has been a holy
grail for the database community for over 30 years [4]. In this sec-
tion, we will give a very brief overview of the earlier approaches,
especially those proposed by the database community.

Early database approaches use (a) inverted indexes (like search
engines do) to map query keywords to database elements (re-
lations, attributes and values) and (b) the database schema to
find how relations in a query should be joined [18]. These ap-
proaches use either a schema graph that represents the data-
base relations as nodes and the joins between them as edges
[2, 6, 14, 21, 22, 30, 38] or a tuple graph where the nodes are the
database tuples [5, 9, 13, 16]. Answers to a query are defined as
sub-graphs over the complete graph, comprising a subset of the
relations and tuples that contain the query keywords and are
connected by the joins between them. NALIR [17] is the first
to use a syntactic parse tree to represent a query and map it
to the database schema graph. ATHENA [29] employs an ontol-
ogy to represent a real-world domain (such as finance) and an
ontology-to-database mapping, which describes how the ontol-
ogy elements are mapped to the database objects. DBPal [33]
aims at generating join queries based on the information learnt
from domain-specific training data, and requires many training
examples with different join paths.

4 AVAILABLE BENCHMARKS
Training a deep learning system is a very data-intensive pro-
cedure; large amounts of data are required in order to train an
accurate model. For this reason, the availability of datasets is
the main fuel for the development of deep learning solutions
and the text-to-SQL task is no exception. In this section, we will
introduce the two major large-scale benchmarks, explain their
characteristics as well as highlight their shortcomings.

WikiSQL [39] is a large crowd-sourced dataset for developing
natural language interfaces for relational databases released along
with the Seq2SQL text-to-SQL system. It contains over 25,000
tables gathered from Wikipedia pages and over 80,000 natural
language and SQL question pairs, which were created by crowd-
sourcing. Note that each of WikiSQL’s questions is directed to a
single table and not to a relational database. This means that the
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proposed task is much simpler than the ultimate goal of creating
a natural language interface for relational databases. Addition-
ally, the complexity of the queries is very low. There are no JOIN,
GROUP BY, UNION, INTERSECTION or other complex SQL ele-
ments. We must also note that that WikiSQL contains multiple
errors and ambiguities, which might hinder the performance of
any model trained on it.

Spider [37] is a large-scale complex and cross-domain semantic
parsing and text-to-SQL dataset annotated by 11 Yale students. It
contains 200 relational databases from 138 different domains
along with over 10,000 natural language questions and over
5,000 complex SQL queries. Its queries range from very simple to
very hard, using all the common SQL elements, including nested
queries. All the above, along with the fact that it was hand-crafted
and re-checked are an indicator of its higher quality, compared
to WikiSQL, and has led to the development of very promising
systems.

5 NL REPRESENTATION
We will now provide an overview of the state-of-the-art tech-
niques for natural language representation in neural networks.
The use of neural networks, which can only handle numerical
inputs and not raw text, has led to the adoption of word em-
beddings for numerical word representation. Additionally, in the
past few years, the use of language models is blooming, following
their rise as an efficient solution for increased performance in
NL tasks.

Word embeddings assume that every unique word has a numer-
ical representation that can be different from all other words and
at the same time incorporate useful information about the word,
and aim at mapping each word to a multidimensional vector. Be-
sides the brute-force creation of one-hot embeddings, researchers
have provided highly efficient techniques to create representa-
tions that carry the word’s meaning and its relationships with
other words. Word2Vec [25], GloVe [28] and WordPiece embed-
dings [34], to name a few, are some famous word embedding
techniques that are used in most, if not all, text-to-sql systems.

Language models are a novel and emerging type of pre-trained
neural networks for processing NL, that has been shown to excel
in NL tasks during the past few years. Note that language models
are not a replacement for word embeddings, given that they are
neural networks and they still need a way of transforming words
to vectors. The way this type of models are created, is that a
very large network (108 order of magnitude of parameters) is
created and is pre-trained on a very large NL dataset (109 order
of magnitude of words). The pre-trained model is made available
for researchers who can then adapt its inputs and outputs to
the specific task they aim to solve, and train it for an additional
number of epochs on their task-specific dataset. The result is a
much stronger model that can reach state-of-the-art performance
even without the need of complex architectures [8]. These models
have been able to reach such performances due to the use of a
neural network architecture that was recently proposed, called
the Transformer [31], which excels at handling NL sequences.
Some of the most used language models for the text-to-SQL task
are BERT [8] and MT-DNN [20].

6 TEXT-TO-SQL DEEP LEARNING
APPROACHES

Deep learning systems following the encoder-decoder architec-
ture can be distinguished in three categories, based on the output

of their decoder [7]: (a) sequence-to-sequence approaches, (b)
grammar-based approaches, and (c) sketch-based slot-filling ap-
proaches. In order to better understand the proposed systems,
we will now give a taxonomy of deep learning approaches for
text-to-SQL, and highlight the main characteristics as well as
the advantages and shortcomings of each neural network archi-
tecture. Additionally, we will provide an overview of some key
systems in each category.

6.1 Sequence-to-sequence approaches
This category includes systems (e.g. [19, 39]) that produce a se-
quence of SQL tokens and schema elements as their output, with
the resulting sequence being the final SQL query prediction, or a
major part of it. Essentially, they attempt to transform an input
NLQ sequence to an output SQL sequence. This approach is the
simplest, but is also very prone to errors. It was adopted by one
of the first deep-learning systems for the task at hand, Seq2SQL
[39], but later systems steered away from such approaches. The
main drawback of sequence-to-sequence architectures is that
they do not take the strict grammatical rules of SQL into account
when generating a query. The system attempts to learn how a
SQL sequence is generated, but at prediction time there are no
measures to safeguard from producing syntactically incorrect
queries.

Seq2SQL [39] was one of the first neural networks created
specifically for the text-to-SQL task and was based on a pre-
vious work focusing on generating logical forms using neural
networks [10]. Its authors released the WikiSQL dataset along
with it, which signified a new era for deep learning research on
the text-to-SQL problem. The system predicts an aggregation
function and the column for the SELECT clause as classification
tasks and generates the WHERE condition clause using a seq-
to-seq network. The latter part of the system is burdened with
generating parts of the query that can lead to syntactic errors,
which is its major drawback. The network architecture combines
LSTM and linear layers, and the GloVe embeddings are used to
represent the inputs.

6.2 Grammar-based approaches
Grammar-based approaches (e.g., [7, 11, 12, 32]) are an evo-
lution of sequence-to-sequence approaches, and produce a se-
quence of grammar rules instead of simple tokens as their output.
These grammar rules are instructions that, when applied, can
create a SQL query. The advantage over sequence-to-sequence
approaches is that the possibility for generating an out-of-place
token or a syntactically incorrect query is dramatically reduced.
This is the most used approach for generating complex SQL
queries.

RAT-SQL [32] is a grammar-based text-to-SQL system focus-
ing on the Spider dataset. It is capable of generating complex
SQL queries by incorporating three note-worthy features. First,
it creates a question-contextualized schema graph, i.e. a graph
representing the database schema, its tables and columns, as well
as the words of the user’s question as nodes and the connections
between them as edges. The edges between DB elements are
created based on the DB schema and the edges between NLQ
words and DB elements are created by performing text match-
ing, which is a form of schema linking. Furthermore, it uses a
modified Transformer network for relation aware self-attention,
that is specifically designed to leverage the information of the
created graph and its edges. Finally, it follows a method for SQL
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generation as an abstract syntax tree, by generating a sequence
of actions for building the tree, as proposed in [36].

IRNet [12] is another grammar-based system capable of gener-
ating complex SQL queries. It uses text-matching techniques to
address the schema linking challenge similarly but in a simpler
form than RAT-SQL. It uses a complex architecture of linear and
recurrent neural networks to process the input, in addition to
BERT. After processing the input, it creates an SQL query using
the same method as RAT-SQL for generating an abstract syntax
tree, with the main difference that the output it produces is in
an intermediate language called SemQL designed specifically for
this system. Its authors argue that it is easier to generate queries
in this language and then transform them to SQL.

6.3 Sketch-based slot-filling approaches
Systems following this approach (e.g., [15, 23, 24, 35]) aim at
simplifying the difficult task of generating a SQL query, to the
easier task of predicting certain parts of the query (e.g. which
of the table columns will appear in the SELECT clause), trans-
forming in this way the SQL generation task to a classification
task. In this case, we consider a query sketch with a number of
empty slots that must be filled and develop neural networks that
predict which element is most probable to fill each slot. A basic
prerequisite for such approaches is to have a query sketch that,
when filled, will be able to capture the NLQ’s intention. As a
result, this category of systems is rarely able to produce complex
SQL queries.

SQLNet [35] was one of the first sketch-based approaches. It
was based on the observation that the way Seq2SQL chose to
generate the WHERE clause was prone to errors that could be
avoided. For this reason, a query sketch, which could cover every
SQL query in the WikiSQL dataset, was developed and separate
neural networks were created to fill each slot. All slots are filled
by considering a classification task (e.g., which of the six possible
aggregation functions is appropriate for the given NLQ) except
for the condition value slot which was generated by a seq-to-seq
network. Note that in this case the aforementioned seq-to-seq
network only generates a value and does not handle SQL tokens,
meaning that it is not possible to generate syntactically incorrect
queries. Another improvement is the introduction of a column
attention neural mechanism to the network.

HydraNet [23] focuses on the WikiSQL task and follows a
sketch-based approach, using the same sketch as SQLNet, but
takes advantage of the BERT language model and achieves much
better results.

SQLova [15] is another sketch-based approach focusing on
the WikiSQL dataset and leveraging the BERT language model,
just as the HydraNet system. Their main difference is that while
HydraNet aims to use a very simple network after receiving
BERT’s output, SQLova employs a large and complex network
similar to the one used by SQLNet, while also incorporating BERT
into the system. What must be noted is that even though SQLova
employs a larger and more complex network than HydraNet, it
achieves lower accuracy scores on the WikiSQL dataset.

7 CHALLENGES AND RESEARCH
OPPORTUNITIES

While a lot of progress has beenmade on the text-to-SQL problem,
several important issues need to be tackled. Here, we outline some
of the most challenging ones.

The need for new benchmarks and in-depth system evalu-
ations is pressing and the database community can help com-
plement the work done by benchmarks such as Spider. New
benchmarks are needed that can test the query expressivity (i.e.,
what types of queries a system can answer) as well as the effi-
ciency and scalability of text-to-SQL systems to bigger and more
complex data sets.

Furthermore, there is a need for further research on answer
validation. Since in many cases users are not familiar with SQL,
the question is how they can confirm that the obtained results
match the intention of the NLQ. Another challenge is the univer-
sality of the solution, i.e. the system’s ability to perform equally
well for different databases. It is also important to enable natural
language queries in languages other than English, which is the
main focus of current efforts. Due to the problem’s multidisci-
plinarity, database, ML, and NLP approaches can join forces to
push the barrier further.
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ABSTRACT
Data series are a prevalent data type that has attracted lots of
interest in recent years. Specifically, there has been an explosive
interest towards the analysis of large volumes of data series in
many different domains. This is both in businesses (e.g., in mobile
applications) and in sciences (e.g., in biology). In this tutorial, we
focus on applications that produce massive collections of data
series, and we provide the necessary background on data series
storage, retrieval and analytics. We look at systems historically
used to handle and mine data in the form of data series, as well
as at the state of the art data series management systems that
were recently proposed. Moreover, we discuss the need for fast
similarity search for supporting data mining applications, and
describe efficient similarity search techniques, indexes and query
processing algorithms. Finally, we look at the gap of modern data
series management systems in regards to support for efficient
complex analytics, and we argue in favor of the integration of
summarizations and indexes in modern data series management
systems. We conclude with the challenges and open research
problems in this domain.

1 INTRODUCTION
In various scientific and industrial domains analysts are required
to measure quantities as they fluctuate over a dimension; these
values are commonly called data series or sequences. The dimen-
sion over which data series are ordered depends on the applica-
tion domain and can have various diverse physical meanings. By
far, the most common dimension over which data are ordered
is time. In this case, we specifically talk about time series. Other
applications though, produce series ordered over position (DNA
sequences), mass (mass spectrometry) or angle (shapes). In all
cases, data have to be captured, stored and analyzed as series
rather than individual values.

Applications range from forecasting methods to correlation
analysis, summarization, representation methods, sampling, out-
lier detection and more [6–8, 35, 41]. Moreover, it is not unusual
for applications to involve numbers of sequences in the order of
hundreds of millions to billions [1, 3]. As a result, analysts are
more frequently than ever deluged by the vast amounts of data se-
ries that they have to filter, process and understand. Consider for
instance, that for several of their analysis tasks, neuroscientists
are currently reducing each of their 3,000 point long sequences
to a single number (the global average) in order to be able to
analyze their huge datasets [1]. In astronomy, there are currently
available more than 70TB of spectroscopic sequence data from
200 million sky objects, collected by the Sloan Digital Sky Sur-
vey [3], allowing scientists to study the universe. These data have
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Figure 1: DBMS category popularity change trend [2]

to be processed and analyzed, in order to identify patterns, gain
insights, and detect abnormalities.

Recent advances in domains such as cloud computing and data
centers, IoT and smart cities, self-driving cars and communica-
tions, generated a tremendous interest in developing specialized
systems able to manage and mine data series. This is evident both
by industrial [42] [17] and academic interest [5, 28], as well as
through popularity studies [2], where time series management
systems gather the most intense interest change over the last two
years, as shown in Figure 1.

Our goal is to describe the current state in data series man-
agement, including applications, query types and data types,
complex analytic algorithms, their components and their imple-
mentation in modern data systems. Further on we will explore
how modern techniques can be leveraged to speed up complex
analytical pipelines, and take a glimpse on how these techniques
can be improved by applying machine learning.

2 SEQUENCE MANAGEMENT OVERVIEW
We take a holistic look at the problem of managing and analyzing
very large collections of data series, discuss the state-of-the-art
and pinpoint the opportunities for optimizing complex query
execution.
[Introduction and Foundations] We will start by looking at
some foundational aspects of data series management. Those
include the data characteristics, the query workloads, and the spe-
cialized data structures used to index sequential data. Data series
can be categorized under many dimensions: i.e., the way that
data arrive: streaming vs static, the lengths of data series: fixed
vs variable length per series, the way that points are sampled:
fixed intervals vs variable sampling intervals, and the presence
of uncertainty in their values.

In terms ofworkloads, wewill then look at various applications
and query patterns that recur in each one of those. Specifically, we
will discussing both simple Selection-Projection-Transformation
(SPT) queries, where analysts filter based on data properties (e.g.,
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thresholds) or meta-data values, as well as complex data mining
(DM) analytics, like clustering, outlier detection and more [39].
We will look at the core component of advanced analytics, which
is similarity search, and look at the different flavors of this prob-
lem. Those include whole matching vs sub-sequence matching,
exact vs approximate similarity search, as well as various dis-
tance measures that are commonly used in practice. Finally, we
will briefly talk about the different data structure categories that
exist, and how they are used to organize and retrieve data in each
one of the aforementioned query patterns.
[Complex Analytics]We will dive in analytics like outlier de-
tection [12, 16], frequent pattern mining [51], clustering [29, 52,
54, 63], and classification [13]. Such analytics involve a series
of operations that are performed in a pre-processing step (e.g.,
sliding windows, normalization, interpolation, etc.), as well as op-
erations that are repeated in the context of an iterative algorithm
(e.g., similarity search). We will discuss these operations, and pin-
point the ones that can be optimized at the database kernel level.
Such operations include sliding windows, normalization, interpo-
lation, and various transformations such as dft that are specific
to each algorithm. During the iterative part of these analytics,
multiple similarity search operations need to be performed. This
is useful for finding series within a given radius from a centroid
in clustering, or for identifying distances from a given model in
anomaly detection and classification, but also for retrieving pat-
terns in frequent pattern mining. All of these operations can be
implemented externally, in the application side. However, since
some of them are data-intensive, pruning or incremental com-
putation can significantly improve their performance. For this
reason, performing them at the database level can provide large
improvements in terms of execution time. We will focus on simi-
larity search as such an example, being a crucial and expensive
component of most mining algorithms, and motivate a deep-dive
at its characteristics and scalable implementations.
[Systems for Data Series Management] We will then look at
current state-of-the-art systems, describing their storage layers
and data structures, as well as how they implement the aforemen-
tioned data manipulation operations. In particular, we will both
look at systems that have been specifically designed to support
sequential data, as well as systems that have been adapted to
support them.

Specialized systems either utilize custom storage layers, or
existing solutions. Common off-the-shelf storage systems are
log-structure merge tree (LSM) based engines like RocksDB and
LevelDB, and distributed systems such as HBase. Custom engines
utilize domain-specific compression, indexing and data partition-
ing to increase efficiency. They support both simple and complex
analytical queries and some of the systems offer encryption and
distributed query processing.

Beringei [42] is developed by Facebook, it has a custom
in-memory storage engine. It compresses and organizes data
in a series per series scheme. CrateDB [15] partitions data in
chunks, stores them in a distributed file system, and indexes
them using Apache Lucene. InfluxDB [27] uses Time-Structured
Merge Trees (LSM tree variant), logging data on disk as they
arrive, and periodically merge-sorting overlapping time-stamps.
Prometheus [48] is based on the Beringei ideas. QuasarDB [49]
utilizes either RocksDB or Hellium [26]. Riak TS [53] supports
both LevelDB or Bitcask, which is a custom log structured hash
table. Timescale [59] is a Postgres extension. It partitions time
series both in groups of series as well as in distinct time segments.
It then provides an abstraction of a single table. Finally, various

systems such as OpenTSDB [38], Timely [58] (concentrated on
security) and Warp10 [62] are developed on top of HBase.

All the aforementioned systems support range scans in the
positions, aggregation functions and filtering. Beringei addition-
ally supports correlation queries through a brute force imple-
mentation. Crate supports geospatial queries. InfluxDB supports
queries like moving averages, prediction, transformations, etc,
and Timescale supports gap filling.
[Advanced Techniques for Optimizing Analytics] We will
present techniques for speeding up similarity search, which plays
a central role in several algorithms related to complex data series
analytics, and discuss opportunities for integrating such tech-
niques in modern data series management systems. Previous
work on similarity search has proposed the use of spatial indexes
such as R-Trees with DFT [4, 50] and DHWT [11]. Specialized
indexes are based on domain specific summarizations. Examples
include DS-Tree [61], 𝑖SAX [40, 56], 𝑖SAX 2.0 [9], 𝑖SAX2+ [10],
ADS+ [68, 68], SFA [55], Coconut [31, 32], and ULISSE [33, 34].

In addition, we will pay particular attention to parallel and
distributed solutions for similarity search. These include meth-
ods that support both exact and approximate similarity search
query answering, and make use of modern hardware (e.g., SIMD,
multi-core, multi-socket, GPU) such as ParIS+ [43, 45], Delta-
Top-Index [47], MESSI [44], and SING [46], as well as distributed
computation (e.g., Spark) such as DPiSAX [65, 66], TARDIS [67],
KV-match [64], MVS-match [23], and L-match [22]. These meth-
ods are in a much better position than traditional single-node
techniques to address the scalability challenges of modern data
series analytics applications that have to deal with very large
data collections.

Apart from exact indexes, there are also various approximate
index structures proposed in the literature. Those include meth-
ods based on hashing [30, 57], sketches and grid indexes [14],
and kNN-Graphs [36, 37]. Recent studies [20, 21] have compared
several data series and high-dimensional similarity search meth-
ods under a common framework, revealing multiple promising
future research directions, which we will analyze.
[Challenges and Conclusions]Massive data series collections
are becoming a reality for virtually every scientific and social do-
main. This leads to the need of designing and developing general-
purpose Data Series Management Systems, able to cope with
big data series, that is, very large and fast-changing collections
of data series, which can be heterogeneous (i.e., originate from
disparate domains and thus exhibit very different characteristics),
and which can have uncertainty in their values (e.g., due to inher-
ent errors in the measurements). These systems should have data
series indexes and summarizations integrated into their engines,
so as to speedup the time-intensive operations of complex ana-
lytics pipelines, and support interactive exploration of big data
series. To this end, progressive analytics operators would also
be very useful [24, 25, 60]. At the same time, the role that deep
learning techniques can play should be studied in more detail,
especially with regards to similarity search [18, 19] and query
optimization. Finally, there is a pressing need for developing
data series specific benchmarks [69, 70] able to stress test index
structures in a principled way.
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