
Scaling Density-Based Clustering to Large Collections of Sets
Daniel Kocher

University of Salzburg
Salzburg, Austria

dkocher@cs.sbg.ac.at

Nikolaus Augsten
University of Salzburg

Salzburg, Austria
nikolaus.augsten@sbg.ac.at

Willi Mann
Celonis SE

Munich, Germany
w.mann@celonis.com

ABSTRACT
We study techniques for clustering large collections of sets into
DBSCAN clusters. Sets are often used as a representation of
complex objects to assess their similarity. The similarity of two
objects is then computed based on the overlap of their set rep-
resentations, for example, using Hamming distance. Clustering
large collections of sets is challenging. A baseline that executes
the standard DBSCAN algorithm suffers from poor performance
due to the unfavorable neighborhood-by-neighborhood order in
which the sets are retrieved. The DBSCAN order requires the use
of a symmetric index, which is less effective than its asymmetric
counterpart. Precomputing and materializing the neighborhoods
to gain control over the retrieval order often turns out to be
infeasible due to excessive memory requirements.

We propose a new, density-based clustering algorithm that
processes data points in any user-defined order and does not
need to materialize neighborhoods. Instead, so-called backlinks
are introduced that are sufficient to achieve a correct clustering.
Backlinks require only linear space while there can be a quadratic
number of neighbors. To the best of our knowledge, this is the
first DBSCAN-compliant algorithm that can leverage asymmetric
indexes in linear space. Our empirical evaluation suggests that
our algorithm combines the best of two worlds: it achieves the
runtime performance of materialization-based approaches while
retaining the memory efficiency of non-materializing techniques.

1 INTRODUCTION
We consider the problem of partitioning large collections of sets
into DBSCAN [15] clusters. Our work is motivated by a pro-
cess mining use case at Celonis SE that models processes as
sets. A process is a sequence of timestamped activities. Large
companies store hundreds of millions of activities in millions
of processes. In order to analyze the processes, they should
be clustered into groups of similar activity sequences that can
be further explored [5, 22, 39]. To this end, a process is repre-
sented by the set of all its neighboring activity pairs, e.g., the
process with the activity sequence (S,O, P,H ,R, F , E) (Start, Or-
der, Pay, sHip, Return good, reFund, End) is represented by the set
{(S,O), (O, P), (P,H), (H ,R), (R, F), (F , E)}. The similarity of two
processes is then assessed by the Hamming distance1 of their set
representations.

Sets are used in many other applications [29] to represent
objects for the purpose of clustering, e.g., sales may be repre-
sented by sets of product categories, photos by sets of tags and
title words, user interactions on a website by sets of visited links,
users of a social network by their group memberships, or users
of a music streaming platform by sets of tracks they listen to.

1Hamming distance H (r , s) = |r ∪ s | − |r ∩ s | for two sets r and s .

© 2021 Copyright held by the owner/author(s). Published in Proceedings of the
24th International Conference on Extending Database Technology (EDBT), March
23-26, 2021, ISBN 978-3-89318-084-4 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

asymmetric
candidates

symmetric
candidates

lookahead
neighbors

r

ϵ-neighborsprocessed

unprocessed

processing order

Figure 1: Symmetric candidates with ϵ-neighbors (blue);
asymmetric candidates with lookahead neighbors (red).

The popular DBSCAN (Density-Based Spatial Clustering of
Applications with Noise) algorithm [15] identifies clusters of ar-
bitrary shape without requiring the number of clusters as input.
Intuitively, DBSCAN finds dense regions that are separated by
regions of lower density. The density of a region (given a dis-
tance function between pairs of data points) is defined by two
parameters: the number of neighbors, minPts, and the radius,
ϵ , of the neighborhood. A data point is called core point (i.e., it
is at the core of a dense region) if it has at least minPts neigh-
bors (including itself) within radius ϵ ; a non-core point in the
ϵ-neighborhood of a core point is a border point (i.e., it is at the
border of a dense region); all other points are noise [37].

The runtime of the DBSCAN algorithm heavily depends on
the efficiency of the neighborhood computation. In our exper-
iments, the neighborhood computation accounts for up to 99%
of the overall runtime for some datasets. Therefore, in order
to efficiently cluster large collections of sets, effective indexing
techniques for sets are required.

Similarity indexes for sets have been proposed in the con-
text of ϵ-neighborhood joins, which are executed in an index
nested loop fashion. A prominent representative is the prefix in-
dex [1, 8], which is linear in size and has been shown to be highly
effective [29]. The symmetric prefix index returns the complete
ϵ-neighborhood for a given query point r . The asymmetric prefix
index assumes a processing order on the sets in R and retrieves
only the lookahead neighbors: the ϵ-neighbors that follow r in
processing order. A typical processing order for sets is based on
the set sizes (ties broken arbitrarily). The asymmetric prefix index
further leverages the length information to avoid many of the
candidates that the symmetric index must inspect (among the
unprocessed sets). Figure 1 illustrates the ϵ-neighborhood, the
lookahead neighbors, and the candidate regions of symmetric
and asymmetric index, respectively. The region above the gray
line represents the sets that have been processed before r , the
region below the gray line are unprocessed sets. The circles and
semicircles show subset relationships.

Clearly, the asymmetric prefix index is preferable in terms
of effectiveness over its symmetric counterpart. Unfortunately,
there is an inherent mismatch between the asymmetric index
and the DBSCAN algorithm. DBSCAN suffers from the following
issues when executed with the asymmetric index: (1) Core status

Series ISSN: 2367-2005 109 10.5441/002/edbt.2021.11

https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2021.11

problem: The lookahead neighbors of r are not sufficient to update
the core status of r . (2) Border vs. Noise problem: To distinguish
border points from noise, a border point must be visible from a
core point, which is not guaranteed by the asymmetric lookahead
neighborhood. (3) Disconnected clusters: To guarantee connected
clusters, DBSCAN imposes a (partial) processing order on the
neighborhood computations: all core points of the current cluster
must be expanded (i.e., their neighborhood must be computed)
before any point belonging to a different cluster is processed.

A well-known clustering approach [3] is based on a self-join
that precomputes and materializes all neighborhoods. The pre-
computed neighborhoods are then used while executing DB-
SCAN. This approach can leverage the asymmetric index and
is efficient in runtime. Unfortunately, this join-based technique
requires quadratic memory in the worst case and suffers from a
large memory footprint in practice. For example, for our social
media dataset (LIVEJ) that stores the interests of 3.1M users, this
approach requires almost 100GB of memory.

Summarizing, applications that must cluster large collections
of sets have two options, which we call Sym-Clust and Join-Clust.
(1) Sym-Clust: Retrieve the full ϵ-neighborhoods in the processing
order imposed by DBSCAN using the symmetric index. (2) Join-
Clust: Compute and materialize neighborhoods in a join using
the effective asymmetric index. None of the options is satisfying:
Sym-Clust runs almost up to an order of magnitude slower than
Join-Clust, while Join-Clust is infeasible for many datasets and
parameter settings due to its excessive memory usage.

We propose a new clustering algorithm, Spread, that computes
correct DBSCAN clusters using the asymmetric prefix index.
Spread runs in linear space and does not need to materialize the
(quadratic-size) neighborhoods. Spread avoids symmetric neigh-
bor computations, therefore reducing the number of neighbors
retrieved by Sym-Clust. So-called backlinks are introduced to
achieve a correct clustering. Backlinks are dynamically added
and removed as required and occupy only a small fraction of
the memory that is used by materialized neighborhoods. Spread
maintains a graph of subclusters in a disjoint-set data structure
and guarantees that connected components in the resulting graph
represent correct DBSCAN clusters.

In general, Spread can process data points in any user-defined
order given an index that retrieves the lookahead neighbors, i.e.,
all data points that follow the query point in the user-defined
processing order. In our usage scenario – set clustering – the
processing order is defined by the set sizes (ties broken arbitrarily)
and the asymmetric prefix index retrieves lookahead neighbors.

Summarizing, our contributions are the following:

• We propose Spread, a novel algorithm for partitioning
large collections of sets into DBSCAN clusters. To the best
of our knowledge, this is the first linear space DBSCAN-
compliant algorithm that leverages the asymmetric prefix
index for sets.
• We introduce the new concept of backlinks that keep suffi-

cient information to build correct clusters independently
of the processing order that the user imposes on Spread.
We prove invariants for backlinks and the correctness of
our approach.
• Our extensive empirical evaluation on 13 real-world datasets

suggests that Spread is as fast as Join-Clust (that material-
izes all neighborhoods) while being competitive in mem-
ory usage with Sym-Clust (that computes all neighbor-
hoods on the fly).

The remainder of this paper is organized as follows. In Sec-
tion 2, we cover the background on ϵ-neighborhood and set
similarity, indexing techniques for sets, and density-based clus-
tering, and we define the density-based set clustering problem.
Section 3 presents the two baseline approaches for density-based
set clustering, Join-Clust and Sym-Clust. In Section 4, we present
Spread, our time- and space-efficient solution for density-based
set clustering. We evaluate our solution against the baseline al-
gorithms and discuss the results in Section 5. Related work is
summarized in Section 6. Finally, Section 7 concludes this paper.

2 BACKGROUND & PROBLEM DEFINITION
We revisit set similarity indexes and density-based clustering,
and define our problem. To simplify the presentation, we focus on
prefix indexes for the Hamming distance. Our results, however,
extend to other distance and similarity measures (e.g., Jaccard
or Cosine) and the respective indexes [12, 29, 40]. The required
adaptations of the index that have been studied in the context of
set similarity joins [29, 49] (e.g., prefix length, size lower bound,
equivalent overlap) also apply to our scenario.

2.1 Set Similarity and ϵ-Neighborhood
R is a collection of n unique sets, each set r ∈ R consists of
unique tokens t1, . . . , tm , |r | = m. The processing order, ≻, is a
total order defined over R. The similarity between two sets r and
s is assessed by the Hamming distance, H (r , s) = |r ∪ s | − |r ∩ s |,
which counts the number of tokens that exist only in one of the
sets, e.g., H (r1, r2) = 4 and H (r2, r3) = 3 for the sets in Figure 2.

The ϵ-neighborhood of set r includes r and all sets within dis-
tance ϵ from r , Nϵ (r) = {s ∈ R | H (r , s) ≤ ϵ}. A region query on
r computes Nϵ (r). A set r splits its ϵ-neighborhood into two dis-
joint parts based on the processing order: the lookahead neighbors
that follow r in processing order, N ≻ϵ (r) = {s ∈ Nϵ (r) | s ≻ r }
and the preceding neighbors, N ≺ϵ (r) = {s ∈ Nϵ (r) | s ≺ r }.

2.2 Indexing Techniques for Sets
Prefix Filter and Inverted Index. A naive approach computes a

region query Nϵ (r) by verifying the predicate H (r , s) ≤ ϵ for all
sets s ∈ R. An effective indexing technique, which was originally
developed for set similarity joins [2, 29], is based on the so-called
prefix filter. The prefix, πr , of a set r consists of the first π tokens
of r according to some total token order (which must be the same
for all sets). The prefix length depends on the distance function
and is π = ϵ + 1 for the Hamming distance. Figure 2 shows the
prefix of three sets for distance threshold ϵ = 3 and a numerical
token order. The prefix filter works best if the tokens in the prefix
are infrequent, thus the tokens are typically ordered by ascending
global token frequency.

A set s ∈ R can be in the ϵ-neighborhood Nϵ (r) only if the
prefixes of r and s share at least one token, i.e., H (r , s) ≤ ϵ ⇒
πr ∩ πs , ∅ (assuming |r | + |s | > ϵ ; otherwise r and s are always
similar). Therefore, if two sets do not share a token in the prefix,
the pair can be safely pruned. If two sets r and s share a prefix
token, (r , s) is a candidate pair and must undergo verification, i.e.,
the predicate H (r , s) ≤ ϵ must be evaluated. Candidates that fail
verification are false positives. Mann et al. [29] discuss efficient
prefix-based verification.

Symmetric Prefix Index. An inverted index on the prefix tokens
is used to retrieve candidate pairs efficiently. The inverted index
maps prefix tokens to sets that contain that token in the prefix.
A lookup of set r retrieves all lists of the prefix tokens of r . The

110

3 4 5 6 7 8
r1

1 2 5 6 7 8
r2

1 2 4 7 8
r3

1

r2
r3

2

r2
r3

3

r1

4

r1
r3

5

r1
r2

6

r1
r2

7

r3

1

r2
r3

2

r2
r3

3

r1

4

r1

Sym. index: π = 4 Asym. index: π i = 2

Figure 2: Symmetric and asymmetric prefix index, ϵ = 3.

union of these lists (except r itself) are the candidates of r . The
index is symmetric and returns the ϵ-neighborhood of r .

For example, the candidates for r2 returned by the symmetric
index, π = ϵ + 1 = 4, in Figure 2 are {r1, r3} (resulting from the
union of [r2, r3] for token 1, [r2, r3] for token 2, [r1, r2] for token
5, and [r1, r2] for token 6). Candidate r1 is a false positive since
H (r1, r2) > ϵ ; r3 is a true positive due to H (r2, r3) ≤ ϵ .

Asymmetric Prefix Index. We construct an asymmetric prefix
index that returns only the lookahead neighbors, N ≻ϵ (r). To this
end, we define a length-based processing order on R (longest
to shortest): r precedes s if |r | > |s |, i.e., |r | > |s | ⇒ s ≻ r ; ties
(|r |= |s |) are broken by the lexicographic order of the sorted sets.

Since we are interested only in sets s ∈ Nϵ (r) that are no
larger than r , |s | ≤ |r |, we need to index only a subset of the
prefix tokens: the tokens in the so-called indexing prefix [49]. The
so-called probing prefix of the lookup set, r , remains of length
π = ϵ + 1. For the Hamming distance, the indexing prefix is of
length π i =

⌊ ϵ
2 + 1

⌋
. For ϵ > 0, the probing prefix is always

longer than the indexing prefix, e.g., π = 4 and π i = 2 for
ϵ = 3. A shorter prefix results in fewer candidates and renders the
asymmetric index more effective than its symmetric counterpart.

In the case of r2, the asymmetric index, π i = 2, in Figure 2
returns only a true positive candidate, r3. The false positive can-
didate, r1, which is returned by the symmetric index, is avoided.

2.3 Density-Based Clustering
We formally define DBSCAN clusters and the related concepts.
A set r represents a point to be clustered. The density of r is the
number of ϵ-neighbors |Nϵ (r)| (cf. Section 2.1).

Core, Border, Noise. A set r is a core point iff the ϵ-neighborhood
of r contains at least minPts sets: r is core⇔ |Nϵ (r)| ≥ minPts. A
set s is a border point iff it is in the ϵ-neighborhood of a core point
r and s is not core: s is border⇔ s ∈ Nϵ (r)∧ |Nϵ (r) | ≥ minPts∧
|Nϵ (s) | < minPts. All remaining sets in R are noise. We denote
the set of core and border points with C and B, respectively. The
set of noise points is N = R \ (C ∪ B).

Density-Reachability. Let r , s ∈ R and r is core: s is directly
density-reachable from r iff s is in the ϵ-neighborhood of r : r ▶
s ⇔ s ∈ Nϵ (r). If there is a sequence of sets r1, r2, . . . , rk with
r1 = r and rk = s , ri ▶ ri+1 for 1 ≤ i < k , s is density-reachable
from r , denoted r ▶ . . . ▶ s . Two sets r , s are density-connected
if there is a set x s.t. both r and s are density-reachable from x .

A density-based cluster is a subset Ci ⊆ R that satisfies two
criteria [38]:

(1) Maximality M: For any two sets r , s ∈ R, r ∈ Ci . If s is
density-reachable from r , then s ∈ Ci . Formally,

∀r , s ∈ R : r ∈ Ci ∧ r ▶ . . . ▶ s =⇒ s ∈ Ci

Table 1: Notation overview.

Notation Description
R a collection of sets
r , s, x sets of R
|r | cardinality of set r
r ≺ s , r ≻ s r precedes/succeeds s (in R)
H (r , s) the Hamming distance of two sets r , s
π , π i probing/indexing prefix
ϵ distance threshold
minPts minimum density s.t. a set r is core
Nϵ (r) full ϵ-neighborhood of r
N ≺ϵ (r) ,N ≻ϵ (r) preceding/lookahead neighbors of r
r ▶ s s is directly density-reachable from r

r ▶ . . . ▶ s s is density-reachable from r

C,B,N the set of core, border, and noise sets
Ci a density-based cluster with id i

(2) Connectivity C: For any two sets r , s in Ci , there is a set x
that density-connects r and s . Formally,

∀r , s ∈ R : r , s ∈ Ci =⇒ ∃x ∈ Ci : r ◀ . . . ◀ x ▶ . . . ▶ s

DBSCAN Clustering. A border point may be part of multi-
ple density-based clusters such that the clusters overlap. We
define the DBSCAN clustering that partitions the data into non-
overlapping clusters. The standard DBSCAN algorithm [15] pro-
duces a DBSCAN clustering.

Definition 2.1. Let R∗ = R \ N and C1,C2, . . . ,Ck be density-
based clusters such that

⋃k
i=1Ci = R∗. A DBSCAN clustering is a

partitioning Γ = {C ′1,C ′2, . . . ,C ′k }, C ′i ⊆ Ci , such that
⋃k
i=1C

′
i =

R∗, C ′i ∩C ′j = ∅ for i , j.

A subclustering of a cluster Ci ,ψi = {c1, c2, . . . , cl }, is a parti-
tioning of Ci into 1 ≤ l ≤ |Ci | non-empty, disjoint subclusters,
c j ⊆ Ci , such that

⋃l
j=1 c j = Ci , c j ∩ ck = ∅ for j , k .

A subcluster graph of R∗ is an undirected graph in which nodes
are subclusters and an edge between two nodes can only exist if
the respective nodes are in the same DBSCAN cluster.

2.4 The DBSCAN Algorithm
The standard DBSCAN algorithm [15] forms clusters by repeat-
edly picking a seed point from the set of unvisited data points
(initially all points are unvisited). If the seed is a core point, it
forms a new cluster with all points that are density-reachable
from the seed and are not yet assigned to a cluster. The set of
density-reachable points is computed by recursively adding the
ϵ-neighbors of all core points to the current cluster. The algo-
rithm terminates when all points have been visited. Points that
cannot be assigned to a cluster are noise.

2.5 Problem Statement
Definition 2.2 (Density-Based Set Clustering). Given a collec-

tion of sets R, a distance threshold ϵ , and the neighborhood
density minPts, the goal is to find a DBSCAN clustering Γ =
{C1,C2, . . . ,Ck } of R.

For sets, asymmetric indexes with a lookahead neighbor func-
tion N ≻ϵ (r) promise the best performance (cf. Section 2.2). Given
an ordering ≻ on R, we strive for a time- and space-efficient algo-
rithm that solves the density-based set clustering problem with
an asymmetric index.

111

r9

r5

Nϵ (r5)

Nϵ (r6)

Nϵ (r1)

r10

r2

r8
r6

r3r1

r7
r4

ϵ

. . . core set

. . . border set

Collection R:

r10 {1, 2, 3, 4}
r9 {2, 3, 4, 5}
r8 {3, 4, 7, 8}

r7 {7, 8, 10, 11}
r6 {1, 2, 4, 7, 8}
r5 {1, 3, 4, 5, 6}

r4 {7, 8, 9, 10, 11}
r3 {1, 4, 7, 8, 10, 11}

r2 {1, 3, 4, 5, 6, 12, 13, 14}
r1 {1, 4, 7, 8, 10, 11, 12, 13, 14}

Figure 3: Running example, ϵ = 3, minPts = 4.

Running Example. Figure 3 shows an example collection R of
ten sets, r1–r10, and their neighborhoods for Hamming distance
ϵ = 3. Sets r3, r5, r6, and r10, are core sets; all sets r1–r10 form a
single cluster.

3 BASELINE APPROACHES
This section presents two baseline solutions for the density-based
set clustering problem. (1) Sym-Clust is memory-efficient and fol-
lows the standard DBSCAN approach with the symmetric prefix
index to answer neighborhood queries on the fly. (2) Join-Clust
is speed-optimized and materializes all ϵ-neighborhoods using
a state-of-the-art set similarity join algorithm [2] (which lever-
ages the asymmetric prefix index) before the standard DBSCAN
algorithm is executed.

Both baselines leverage state-of-the-art set indexes. We are not
aware of other previous solutions that can outperform Sym-Clust
or Join-Clust for the density-based set clustering problem. Note
that using the standard DBSCAN [15] (rather than some advanced
techniques presented in later works, cf. Section 6) is not a limiting
factor: Most of the overall execution time is spent computing the
neighborhoods, and prefix-based indexes are highly efficient in
combination with efficient verification [29].

3.1 Sym-Clust: DBSCAN with Inverted Index
When the standard DBSCAN algorithm (cf. Section 2.4) picks a
seed point that is core, it forms a cluster with all points that are
density-reachable from the seed. The density-reachable points
are computed by pushing all core neighbors of the seed onto a
stack. Then, each point on the stack is processed in the same
manner (i.e., all its core neighbors are pushed onto the stack)
until the stack is empty. All neighbors of core points retrieved in
this process belong to the cluster.

The neighborhood queries will overlap to some extent. Assume
r is processed before s , s ∈ Nϵ (r), then |Nϵ (s) ∩ Nϵ (r)| ≥ 2
(at least r and s are in both neighborhoods). Since r assigns all
its neighbors to the current cluster, only the non-overlapping
neighbors of s , Nϵ (s) \ Nϵ (r), will further increase the cluster.

Figure 4 illustrates this observation for the neighborhoods of
two example points r (black circle) and s (red circle): only the
new, non-overlapping area of Nϵ (s) (shaded in red) is relevant
for expanding the cluster.

r ϵs r , s . . . core sets
. . . new part

Figure 4: Redundant neighborhood queries.

1

r1
r2
r3
r5
r6
r10

2

r6
r9
r10

3

r2
r5
r8
r9
r10

4

r1
r2
r3
r5
r6
r8
r9
r10

5

r2
r5
r9

7

r1
r3
r4
r6
r7
r8

8

r1
r3
r4
r7
r8

9

r4

10

r4
r7

11

r7

Figure 5: Symmetric prefix index on r1-r10, ϵ = 3, π = 4.

1

r1
r2
r3
r5
r6
r10

2

r6
r9
r10

3

r2
r5
r8
r9

4

r1
r3
r8

7

r4
r7

8

r4
r7

Figure 6: Asymmetric prefix index on r1-r10, ϵ = 3, π i = 2.

The standard DBSCAN algorithm requires the use of a sym-
metric index since it assumes to see all neighbors of a point s
when s is processed. The asymmetric index is not compatible with
the standard DBSCAN algorithm: We cannot impose an order on
the points such that all non-overlapping neighbors of s follow s
in the processing order. Further, the size of the neighborhood of
s , |Nϵ (s)|, is required to decide its core status.

Figure 5 shows the symmetric prefix index for our running
example, ϵ = 3, π = ϵ + 1 = 4. We probe r8 = {3, 4, 7, 8}.
The prefix of r8 consists of all tokens in r8 (due to |r8 | = π).
The union of the respective index lists yields the candidates
{r2, r5, r9, r10, r1, r3, r6, r4, r7}. Note that the candidates include
both sets that are smaller and sets that are larger than r8.

The so-called length filter [2], an optimization of the symmet-
ric prefix index that also applies to its asymmetric counterpart,
prunes candidates r2 and r1. Due to their length difference to
r8, they cannot be in the ϵ-neighborhood of r8. By ordering the
lists in processing order (i.e., longer sets precede shorter sets, as
illustrated in Figure 5), the length filter can prune the head (sets
that are too long) and the tail (sets that are too short) of a list
without inspecting all elements in head and tail, respectively.

All candidates that are not pruned by the length filter must un-
dergo verification. Only r6 passes verification, therefore Nϵ (r8) =
{r8, r6}, and r8 is classified as non-core (minPts = 4).

Complexity Analysis. We probe each set r ∈ R against the
index once. With cost C for an index lookup and n = |R |, the
runtime is O(n ·C); C = O(n) since r may have O(n) neighbors,
thus the overall runtime of Sym-Clust is O(n2). The symmetric
index is of linear size leading to space complexity O(n).

112

Algorithm 1: Materialize-Neighborhoods(R, ϵ)
Input: Collection of sets R, distance threshold ϵ
Result: Materialized neighborhoods of R w.r.t. ϵ

1 I ← Create-Index (R, ϵ);
2 pairs ← ∅ // Result set of similar pairs

3 foreach r ∈ R in processing order do
4 M ← Probe (r , I , ϵ) // candidates with prefix overlaps

5 foreach (s,po) ∈ M do // po . . . prefix overlap

6 if Verify-Pair (r , s, ϵ,po) then
7 pairs ← pairs ∪ {(r , s)}

8 neiдhborhoods ← new associative array of size |R |;
9 foreach (r , s) ∈ pairs do

10 neiдhborhoods[r] ← neiдhborhoods[r] ∪ {s};
11 neiдhborhoods[s] ← neiдhborhoods[s] ∪ {r };
12 return neiдhborhoods

Algorithm 2: Create-Index (R, ϵ)
Input: Collection of sets R, distance threshold ϵ
Result: Inverted index of R w.r.t. ϵ

1 I ← ∅ // inv. index of set prefixes, Ir [p] . . . list of token r [p]
2 foreach r ∈ R do
3 π ← ⌊ ϵ+2

2
⌋

// indexing prefix length of r

4 for p ← 1 to π do Ir [p] ← Ir [p] ∪ {r };
5 return I

3.2 Join-Clust: Materialized Neighborhoods
Join-Clust executes a set similarity self-join on R and materializes
the ϵ-neighborhoods in main memory. The self-join traverses all
sets of r ∈ R in processing order and computes their lookahead
neighbors, N ≻ϵ (r). The lookahead neighbors of r are appended to
the list of r ’s neighbors, and r is appended to the neighborhood
lists of all s ∈ N ≻ϵ (r). After processing all sets, the neighborhood
list of each set r ∈ R is complete and stores Nϵ (r).

Next, standard DBSCAN (cf. Section 2.4) is executed to form
clusters using the materialized neighborhoods. Algorithms 1–4
implement the similarity join with neighborhood materialization,
index creation, probing, and efficient verification [29].

Mann et al. [29] found that the prefix-based index in combi-
nation with the length filter can be considered state of the art
given an efficient verification procedure (which we use).

Figure 6 shows the asymmetric prefix index for our running
example, ϵ = 3, π i = 2. We probe r8 = {3, 4, 7, 8} and look up the
lists of the tokens 3, 4, 7, and 8 (the length of the probing prefix is
π = 4). Since we are only interested in the lookahead neighbors,
i.e., all neighbors that follow r8 in processing order, we need to
inspect the lists only starting from the point where r8 or a set
ri ≻ r8 appears. The length filter does not prune any candidate
in this example, and the candidate set is {r9}. Since H (r8, r9) > ϵ ,
the lookahead neighborhood of r8 is empty, N ≻ϵ (r8) = ∅.

In the context of the self-join, r8 will be retrieved as a looka-
head neighbor of r6, which is processed before r8. Therefore, the
neighborhood list of r6 will store r8 and vice versa.

Join-Clust produces fewer candidates than Sym-Clust and is
therefore faster. However, the efficiency of Join-Clust comes at
the cost of a larger memory footprint since all neighborhoods
must be materialized.

Algorithm 3: Probe (r , I , ϵ)
Input: Probing set r , inv. index I , distance threshold ϵ
Result: Set of candidates for r w.r.t. ϵ
// M maps a candidate s to its prefix overlap with r

1 M ← new associative array // candidates

2 π ← ϵ + 1 // probing prefix length of r

3 lbr ← |r | − ϵ // size lower bound wrt. r

4 for p ← 1 to π do
5 foreach s ∈ Ir [p] in proc. order do // list of token r [p]
6 if |s | < lbr then break ;
7 else // add candidate

8 if s < M then M[s] ← 0; // init.

9 M[s] ← M[s] + 1 // incr. overlap of (r , s)

10 return M

Algorithm 4: Verify-Pair (r , s, ϵ,po)
Input: Probing set r , candidate set s , distance threshold ϵ ,

prefix overlap po
Result: True iff r and s are similar w.r.t. ϵ , false otherwise
// cf. Mann et al. [29] for prefixes, equiv. overlaps, and Verify proc.

1 πr , πs ← probing resp. indexing prefix length of r resp. s;
2 wr ,ws ← πr - resp. πs -th token in r resp. s;
3 t ← equivalent overlap for r , s , and ϵ ;
4 if wr < ws then
5 return Verify (r , s, t,po, πr + 1,po + 1)
6 return Verify (r , s, t,po,po + 1, πs + 1)

Complexity Analysis. A neighborhood query is a constant-time
lookup and a traversal of O (|Nϵ (r)|) neighbors. In the worst
case, the join reports O (

n2) pairs. Consequently, materializing
the neighborhoods takes O (

n2) time and space for n = |R |. The
asymmetric prefix index requires only O (n) space and does not
dominate memory usage.

4 THE SPREAD ALGORITHM
We present Spread, a novel time- and space-efficient solution
for the density-based clustering problem. Spread leverages the
effective asymmetric index and clusters all sets by traversing the
sets in processing order. We identify key challenges that must be
solved, discuss the algorithm, prove its correctness, analyze time
and space complexity, and sketch a multi-core extension.

4.1 Key Challenges
Since Spread uses an asymmetric neighborhood index, a process-
ing order, ≻, must be imposed on the data points, and an index
lookup of query point r retrieves only the lookahead neighbors,
N ≻ϵ (r). To achieve a correct clustering without materializing the
neighborhoods, three key challenges must be solved.

In the following discussion, we assume that all sets of R are
processed in processing order. When the current set ri is to be
processed, we know the core status of all preceding sets, r j ≺ ri ,
but we do not know the core status of any unprocessed sets,
rk ≻ ri . We further assume that all sets r ∈ R that are directly
density-reachable from any r j that precedes ri (i.e., are neighbors
of a core point r j ≺ ri) are assigned to the same cluster as the
core point r j ; this may also include sets rk ≻ ri that have not
been processed yet.

113

Core Status. A set ri is core if |Nϵ (ri)| ≥ minPts. Sym-Clust
and Join-Clust have access to the full neighborhood, Nϵ (ri), thus
deciding the core status of ri is trivial. In contrast, Spread sees
only the lookahead neighbors, N ≻ϵ (ri). To identify the core sta-
tus of ri , however, additional knowledge about the size of the
preceding neighborhood, N ≺ϵ (ri), is required.

Consider probing ri = r5 in our running example. According to
our assumptions, the core status of sets r1–r4 is known (only r3 is
core), and all neighbors of r3 are in clusterC3 = {r1, r3, r4, r6, r7}.
An index lookup of r5 returnsN ≻ϵ (r5) = {r9, r10}. Since

��N ≻ϵ (r5)
��+

1 = 3 < 4 = minPts we cannot decide if r5 is core. In fact, r5
should be classified core since the full neighborhood is Nϵ (r5) =
{r2, r5, r9, r10} (cf. red circle in Figure 3).

Border vs. Noise. Assume that the current set ri is a non-core
point that is not assigned to any cluster. We need to decide if ri is
border or noise. A border point has at least one core point in its
neighborhood. None of the preceding neighbors, r j ∈ N ≺ϵ (ri), is
core, otherwise ri would be assigned to the cluster of r j . Thus, ri
is core iff one of the lookahead neighbors is core. Unfortunately,
we do not know the core status of the lookahead neighbors and
can therefore not label ri as border or noise.

Assume a core point, rk ∈ N ≻ϵ (ri), among the lookahead
neighbors of ri . When rk is processed, rk will not see ri in its
lookahead neighborhood since ri ≺ rk . Therefore, ri will not
be included into the cluster of rk and will wrongly be classified
noise. The challenge is to correctly decide the border status of ri
despite seeing only the lookahead neighbors of ri and rk .

In our running example, r1 is processed first. Thus, no core
points are known and no clusters exist. N ≻ϵ (r1) = {r3} and r1
remains noise (cf. blue circle in Figure 3). When the neighbor r3
of r1 is processed, r3 will be detected as a core point and start a
new cluster. However, since r3 only sees its lookahead neighbors,
N ≻ϵ (r3) = {r4, r6, r7}, r1 is not included into the cluster and is
not detected as a border point.

Disconnected Clusters. Assume that the current set ri is core
and there is a core point r j ≺ ri in a cluster Cj , ri < Cj . The
current set ri will assign all its lookahead neighbors to its cluster,
Ci = Ci ∪ N ≻ϵ (ri) (Ci can be a new cluster started by ri or an
existing cluster to which ri belongs). Unfortunately, we cannot
assume that Ci and Cj are indeed distinct clusters: there can be
a core point rk ≻ ri that density-reaches both ri and r j , i.e., Ci
and Cj should form a single cluster. In general, multiple subclus-
ters of the same DBSCAN cluster may grow independently. The
challenge is to identify subclusters that should be merged and to
merge them efficiently.

We process the current set ri = r6 in our running exam-
ple. According to our assumptions, we know that r3 and r5 are
core and we are aware of two clusters, C3 = {r1, r3, r4, r6, r7},
C5 = {r2, r5, r9, r10}. In addition, assume that we know that r6 is
core. Then, r6 extends its current cluster, C3, with its lookahead
neighbors N ≻ϵ (r6) = {r8, r10}. Note that r10 is already part of
cluster C5. Since we do not know the core status of r10, we can-
not decide if C5 and C3 should be merged into a single cluster. If
r10 is core, r5 and r3 are density-reachable from r10 and should be
in the same cluster. If r10 is a border point, however, the clusters
must not be merged, and r10 can be assigned to either C5 or C3.

4.2 Data Structures
Disjoint-Set. The disjoint-set (or union-find) data structure

maintains a dynamic collection of non-overlapping sets for n

objects in O (n) space [10, 41]. A typical use case is the efficient
computation of (minimum) spanning trees. It supports three
operations: (1) For a given element u, make_set (u) creates a new
(singleton) set that contains u. (2) The union (u,v) operation
merges the two sets that contain u resp. v into a new set. (3)
find_set (u) returns the representative for the set that contains u
or∞ if u is not found. The amortized worst-case time complexity
is Θ (α (n)) for all operations, α (.) being the inverse Ackermann
function. In practice, α (n) is considered a constant. In our setting,
set elements are subclusters, and the disjoint-set data structure
links subclusters that belong to the same DBSCAN cluster.

Backlinks. The backlinks data structure of a set r ∈ R is a
collection of unique references to other sets s that precede r ,
s ≺ r . The backlinks bl support the add operation, bl ∪ {s},
which adds a reference to a new set s in time O (1) (on average).
Depending on the type of sets that are referenced in the backlinks,
we distinguish core and non-core backlinks, denoted c_bl and
nc_bl , respectively. We implement backlinks as unordered sets
of integer identifiers.

4.3 The Algorithm
Algorithm 5 shows the pseudocode of Spread. We use the follow-
ing notation: r is the current probing set, s ≻ r is a lookahead
neighbor, and x ≺ r is a preceding neighbor. Initially, all sets are
noise, i.e., their cluster identifier is −∞, ∀r ∈ R : r .cid = −∞.
Although we initialize all sets in Algorithm 5 explicitly (lines
3–4), this can also be done during indexing (cf. Algorithm 2).

Algorithm Outline. Spread proceeds in three main steps: (1) A
counter and the processing order guarantee that the cardinality
of the ϵ-neighborhood is known when a set is processed despite
using the asymmetric prefix index. (2) Each set is assigned to
a subcluster solely based on its lookahead neighboorhood. Sub-
clusters of the same DBSCAN cluster are linked in a subcluster
graph. Backlinks ensure that we do not miss border sets or links
between subclusters. (3) Each connected component in the sub-
cluster graph represents a DBSCAN cluster.

Core Status. A set r is core if |Nϵ (r) | ≥ minPts. In Spread,
however, only N ≻ϵ (r) is computed. To capture the cardinality of
N ≺ϵ (r), we store a density counter with each set r , denoted r .dens .
Initially, ∀r ∈ R : r .dens = 1. For every lookahead neighbor s ∈
N ≻ϵ (r), r .dens and s .dens are incremented (due to the symmetry
of the distance). Core set identification is highlighted in green .

Border vs. Noise. A probing set r that is not core is a border
set iff ∃y ∈ Nϵ (r) : y is core. Due to our processing order and
the fact that only N ≻ϵ (r) is computed, the existence of a core
neighbor y may be unknown when r is probed. However, for
each s ∈ N ≻ϵ (r), we know that r is part of N ≺ϵ (s). We store this
information by adding r to the non-core backlinks nc_bl[s] of
each s ∈ N ≻ϵ (r) (lines 31–33). Then, the first s ∈ N ≻ϵ (r) that
becomes core claims r (and all other unassigned sets in nc_bl[s])
as border point for its subcluster. If none of the neighbors s ∈
N ≻ϵ (r) becomes core, then r remains noise. Lines 26–30 deal with
a special case: If any s ∈ N ≻ϵ (r) is already core when r is probed,
then s claims r immediately without adding r to its non-core
backlinks. The relevant code lines are marked in red .

Subcluster Linkage. If the probing set r is core and a core neigh-
bory is part of another subcluster, the subclusters of r andy must
be linked in our subcluster graph. The subcluster graph repre-
sents all connected components of subclusters, each of which is

114

a DBSCAN cluster. We use the disjoint-set data structure ds to
track the connected components. Two subclusters u,v are linked
by ds .union(u,v). We may not be able to determine if there is a
set s ∈ N ≻ϵ (r) that is core before s is probed. We use the core
backlinks, c_bl , to book-keep potential subclusters for linkage: r
adds its subcluster identifier to c_bl[s] of each s ∈ N ≻ϵ (r) (lines
22-23). After N ≻ϵ (r) has been processed, a link between the sub-
cluster of r and every entry in c_bl[r] is created (line 24). The
special case when s is already core allows us to create the link
immediately without using core backlinks (lines 20–21). Linkage
is only required if two subclusters coalesce (condition in line 19).
Otherwise, r simply claims s ∈ N ≻ϵ (r) for its subcluster (lines
17–18). Linkage of subclusters is highlighted in blue .

All backlinks of r are released after r has been processed to
save memory (line 34). The subcluster graph in ds is used to
assign consistent cluster IDs in a final scan over R (lines 35–36).

4.4 Correctness
We show that Algorithm 5 partitions R into DBSCAN clusters (cf.
Definition 2.1). Set ri ∈ R is the i-th set of R in processing order.
We prove the correctness by induction over i and increasing
subsets Ri ⊆ R. R0 = ∅, Ri = Ri−1 ∪ {ri } ∪ N ≻ϵ (ri) for 1 ≤ i ≤
n = |R |, thus Rn = R. Due to space constraints, we omit the full
proofs and only provide the invariants that must be shown.

Core Status. The core status of set ri is determined in the i-
th iteration of the main loop. ri is core if minPts ≤ |Nϵ (ri)| =
1+

��N ≺ϵ (ri)��+ ��N ≻ϵ (ri)��. In line 5, ri .dens = 1+
��N ≺ϵ (ri)��. Lines 6–

11 compute N ≻ϵ (ri). The index lookup in line 6 returns candidate
set M , N ≻ϵ (ri) ⊆ M ⊆ {s | s ≻ ri }. Every set s ∈ M is verified in
line 9 such that N ≻ϵ (ri) is available starting from line 12.

Lemma 4.1. Algorithm 5 correctly identifies all core sets in R.

Proof Sketch. We show that at the start of the i-th itera-
tion in line 5, for all rk and r j , 1 ≤ k < i ≤ j the follow-
ing invariants hold: (I1) rk .dens = |Nϵ (rk)|; (I2) r j .dens = 1 +��{rk | r j ∈ N ≻ϵ (rk)}��, i.e., ri .dens = 1 +

��N ≺ϵ (ri)��. Further, (I3) in
line 12 of the i-th iteration, ri .dens = |Nϵ (ri)|, i.e., Algorithm 5
correctly identifies the core status of ri . □

Border vs. Noise. Lines 25–33 cover the case that ri is not core.
If any s ∈ N ≻ϵ (ri) qualifies as core, s claims ri . Otherwise, ri is
stored in the non-core backlinks nc_bl[s] of every s ∈ N ≻ϵ (ri)
(lines 31–33). The next core neighbor in processing order claims
ri (lines 14–15) such that all border sets are assigned to a cluster.

Lemma 4.2. Algorithm 5 correctly clusters all border sets in R.

Proof Sketch. At the start of the i-th iteration, the following
invariant holds for all border sets rk ∈ B, 1 ≤ k < i: if rk is not
stored in nc_bl[s] for any s ∈ N ≻ϵ (rk), s = ri or s ≻ ri , then rk is
assigned to the cluster of a core point in its neighborhood. □

Subcluster Linkage. Lines 12–24 cover the case that ri is core.
Each core point may form a subcluster on its own or together
with other core points. We must ensure that all subclusters of
the same DBSCAN cluster are linked in the disjoint-set, ds .

Lemma 4.3. Algorithm 5 correctly links all subclusters in R.

Proof Sketch. At the start of the i-th iteration, the following
invariant holds for all core neighors c ∈ CN (rk) = Nϵ (rk) ∩ C
of a core set rk ∈ C, 1 ≤ k < i: (a) c and rk have the same
cluster representative (in ds), or (b) c is stored in some c_bl[s],
s ∈ N ≻ϵ (rk), s = ri or s ≻ ri . □

Algorithm 5: Spread(R, ϵ,minPts)
Input: Collection of sets R, distance threshold ϵ ,

min. density minPts
Result: A correct DBSCAN clustering of R w.r.t. ϵ , minPts

1 ds ← new disjoint-set; nc_bl, c_bl ← new backlinks;
2 I ← Create-Index (R, ϵ);
3 foreach r ∈ R do
4 r .dens ← 1; r .cid ← −∞; ds .make_set (r .id);
5 foreach r ∈ R in processing order do
6 M ← Probe (r , I , ϵ);
7 N ≻ϵ (r) ← ∅;
8 foreach (s,po) ∈ M do // po ... prefix overlap

9 if Verify-Pair (r , s, ϵ,po) then
10 r .dens ← r .dens + 1; s .dens ← s .dens + 1;
11 N ≻ϵ (r) ← N ≻ϵ (r) ∪ {s};

12 if r .dens ≥ minPts then // r is core

13 if r .cid = −∞ then r .cid ← r .id ;
14 foreach x ∈ nc_bl[r] do // claim border sets x ≺ r
15 if x .cid = −∞ then x .cid ← r .cid ;

16 foreach s ∈ N ≻ϵ (r) do // s ≻ r
17 if s .cid = −∞ then // claim unclaimed s ≻ r
18 s .cid ← r .cid

19 else if r .cid , s .cid then // s already claimed

20 if s .dens ≥ minPts then // s is core

21 ds .union (r .cid, s .cid) // link subclusters

22 else // remember core neighbor r

23 c_bl[s] ← c_bl[s] ∪ {r .cid}

24 foreach x ∈ c_bl[r] do ds .union (r .cid, x);
25 else // r is not core, i.e., r .dens < minPts

26 if r .cid = −∞ then // claim potential border set r

27 foreach s ∈ N ≻ϵ (r) do
28 if s .dens ≥ minPts then // s is core

29 if s .cid = −∞ then s .cid ← s .id ;
30 r .cid ← s .cid ; break;

31 if r .cid = −∞ then // remember potential border set r

32 foreach s ∈ N ≻ϵ (r) do
33 nc_bl[s] ← nc_bl[s] ∪ {r }

34 release c_bl[r] and nc_bl[r] // not needed anymore

35 foreach r ∈ R do // final assignment of cluster IDs

36 if r .cid , −∞ then r .cid ← ds .find_set (r .cid);

Theorem 4.4. Algorithm 5 returns a correct set clustering Γ =
{C1,C2, . . . ,Ck } of R according to Definition 2.1.

Proof Sketch. By Lemmata 4.1–4.3 and due to our final scan
over R (lines 35–36), x .cid = ds .find_set (x .cid) holds for all
x ∈ R. Initially, x .cid = −∞ for all x ∈ R. The cluster IDs are
updated only for border and core sets. Consequently, x .cid = −∞
holds for all x ∈ R \ (C ∪ B) ≡ N , i.e., also noise is correctly
identified. □

115

4.5 Complexity Analysis
Memory. The asymmetric prefix index requires O (n) space. In
addition, Spread maintains the following data structures. (i) A
density counter for each set r ∈ R requires O (n) space. (ii) A
disjoint-set data structure with at most O (n) entries, i.e., the
disjoint-set structure requires O (n) space [41]. (iii) In the worst
case, we allocate two backlink structures for each r ∈ R, i.e.,
O (n) backlinks. We release c_bl[r] and nc_bl[r] after probing r .
Backlinks are only extended in lines 23 and 33. However, both
lines are executed iff � s ∈ N ≻ϵ (r) : s is core. Set s is core iff
s .dens ≥ minPts, and the density is updated for every neighbor,
therefore any backlink holds at most minPts entries. As a result,
no more than O (n ·minPts) entries are allocated, thus requiring
O (n) space since minPts and ϵ are constants. Runtime. For each
r ∈ R, we process O (��N ≻ϵ (r)��) neighbors and the backlinks of r
if it is core. Recall that the disjoint-set operations take constant
time. Therefore, the final for-loop (lines 35–36) runs in O (n) time.
Overall, Spread runs in O (

n2) time and O (n) space.

4.6 Multi-core Extension
Spread is designed as a single-core algorithm. We sketch an exten-
sion to multi-core processors that requires little synchronization
between threads. Our extension is based on the observation that
Spread spends most of the runtime in neighborhood computa-
tions (lines 6-11). While for some datasets the neighborhood
computation accounts for only about half of the overall runtime
(e.g., 55% for ORKUT, ϵ = 3), for the configuration with the high-
est runtime in our experiments (CELONIS1, ϵ = 5), Spread spends
over 99% of the runtime in computing the neighborhoods.

We distribute the workload to k + 1 threads, T1,T2, . . . ,Tk+1.
Threads T1 −Tk are responsible for the neighborhood computa-
tions (lines 6-11),Tk+1 performs the actual clustering (lines 12-34).
The runtime of the other steps in the algorithm is negligible.

Neighborhood Computation. Let ri ∈ R, 1 ≤ i ≤ |R | be the i-th
set of R in processing order. Thread Tj , 1 ≤ j ≤ k , computes the
neighborhoods N ≻ϵ (ri) of all ri with j = i mod k (i.e., round
robin). Each thread processes the assigned sets ri in processing
order (i.e., increasing values of i). The neighborhood computation
in Algorithm 5 is interleaved with updating the density counters
of ri and its neighbors. Only this step requires synchronization
(e.g., using atomic writes) since multiple threads may access the
same counter concurrently. We do not expect congestions since
the density updates are distributed over all neighbors.

Cluster Scan. Thread Tk+1 scans the sets in processing order
and performs the steps in lines 12-34 (maintain backlinks and
disjoint-set, assign preliminary cluster IDs). After processing a
set ri , the memory for the neighbors of ri is released.

Synchronization. We need to make sure that Tk+1 processes
set ri only after ri ’s neighbors have been computed. This can be
achieved with a lock (implemented as condition variable2) on ri
that is held byTj , j ≤ k , until the neighborhood of ri is computed.
Tk+1 needs to get the lock on ri before processing it.

Memory. Tk+1 releases the neighbors after processing them.
If the parallel neighborhood computation is faster than Tk+1,
the precomputed neighborhoods will fill up the memory. This
is avoided with a shared counter that is incremented by T1 −Tk
(when they process a new set ri) and is decremented byTk+1 (after
processing ri). The neighborhood computation of ri is postponed
until the counter is below some threshold that bounds the number
of concurrently materialized lookahead neighborhoods.
2A queue of threads waiting for a condition to become true.

Table 2: Characteristics of datasets.

Dataset Coll. Size Set Size Univ. Sizeavg. max.
BMS-POS4 3.2 · 105 9.3 164 1.7 · 103

FLICKR5 1.2 · 106 10.1 102 8.1 · 105

KOSARAK6 6.1 · 105 11.9 2.5 · 103 4.1 · 104

LIVEJ7 3.1 · 106 36.4 300 7.5 · 106

ORKUT7 2.7 · 106 119.7 4.0 · 104 8.7 · 106

SPOT8 4.4 · 105 12.8 1.2 · 104 7.6 · 105

CELONIS1 8.2 · 106 20.3 91 1.2 · 104

CELONIS2 2.6 · 106 22.1 130 3.5 · 103

5 EXPERIMENTAL EVALUATION
Algorithms. We compare our solution, Spread, against the two

baseline approaches Sym-Clust and Join-Clust (cf. Section 3).
All algorithms are single-threaded C++ implementations (2017
standard). Our implementations of Spread, Join-Clust, and the
index of Sym-Clust follow the guidelines by Mann et al. [29], e.g.,
regarding symmetric and asymmetric prefix index, candidate
generation, and optimized prefix-based verification.

Datasets. We execute all experiments on 13 real-world datasets:
(a) Nine of the datasets where previously used for benchmarking
set similarity joins [16, 29]: BMS-POS, DBLP, ENRON, FLICKR,
KOSARAK, LIVEJ, NETFLIX, ORKUT, and SPOT. For a descrip-
tion of the datasets and preprocessing instructions3 we refer to
Mann et al. [29]. (b) Four large real-world datasets from the pro-
cess mining domain, CELONIS1–4, that store one set per process.
Compared to most datasets of the join benchmark, the universe
size of these datasets is rather small. Table 2 summarizes impor-
tant characteristics of our benchmark data.

Due to space constraints we omit detailed results for the fol-
lowing datasets: (a) DBLP, ENRON, and NETFLIX show very
low runtimes (< 4s) and a small and stable memory footprint
(< 1GiB) for all algorithms and configurations. (b) CELONIS3–4
show results similar to the other process mining datasets.

Parameters. The algorithms take two parameters: the neigh-
borhood radius, ϵ , and the density, minPts. Typically, density-
based clustering is sensitive to ϵ and quite robust to minPts. In
our experiments, we vary both parameters: ϵ ∈ {2, 3, 4, 5} and
minPts ∈ {2, 4, 8, 16, 32, 64, 128} (defaults in bold font).

Environment. All experiments have been conducted on a 64-bit
machine with 2 physical Intel Xeon E5-2630 v3 CPUs, 2.40GHz, 8
cores each (i.e., 16 logical processors, hyper-threading disabled).
The cores share a 20MiB L3 cache and have another 256KiB of
independent L2 cache. The system has 96GiB of RAM and runs
Debian 10 Buster (Linux 4.19.0-12-amd64 #1 SMP Debian 4.19.152-
1 (2020-10-18)). Our code is compiled with clang9 version 7,
highest optimization level (-O3). The runtime is measured with
clock_gettime10 at process level, memory usage is the heap

3http://ssjoin.dbresearch.uni-salzburg.at/datasets.html
4BMS-POS: http://www.kdd.org/kdd-cup/view/kdd-cup-2000 [52]
5FLICKR: Bouros et al. [6]
6KOSARAK: http://fimi.uantwerpen.be/data/
7LIVEJ, ORKUT: http://socialnetworks.mpi-sws.org/data-imc2007.html [30]
8SPOT: Pichl et al. [33]
9https://releases.llvm.org/7.0.0/tools/clang/docs/ReleaseNotes.html
10https://man7.org/linux/man-pages/man2/clock_gettime.2.html

116

Table 3: Index & cluster statistics for ϵ = 3, minPts = 16.

(a) BMS-POS.
Candidates True Positives Clusters

Sym-Clust 3.9 · 109 38.0 · 106 1
Join-Clust 640.0 · 106 38.0 · 106 1

Spread 640.0 · 106 38.0 · 106 1

(b) KOSARAK.
Candidates True Positives Clusters

Sym-Clust 40.7 · 109 2.8 · 109 5
Join-Clust 7.0 · 109 2.8 · 109 5

Spread 7.0 · 109 2.8 · 109 5

(c) CELONIS1.
Candidates True Positives Clusters

Sym-Clust 644.6 · 109 7.4 · 106 5,075
Join-Clust 131.5 · 109 7.4 · 106 5,075

Spread 131.5 · 109 7.4 · 106 5,075

peak of Linux memusage11 (using LD_PRELOAD). A single instance
is executed at a time with no other load on the machine.

5.1 Index & Cluster Statistics
We compare the number of candidates, true positives, and the
number of clusters. The numbers are sums over all region queries.
Table 3 shows the results obtained for BMS-POS, KOSARAK,
and CELONIS1. We observe that Spread produces exactly the
same number of candidates as Join-Clust since both solutions use
the asymmetric index. Sym-Clust generates significantly more
candidates due to the symmetric prefix index and the symmetric
distance computations. For CELONIS1, Spread and Join-Clust
verify about 5 times fewer candidates compared to Sym-Clust.

5.2 Runtime Efficiency
We measure the overall runtime, i.e., the CPU time that is re-
quired to cluster all sets into DBSCAN clusters (excluding the
time to load the data from disk). Figure 7 shows the results for
varying ϵ (minPts = 16). We observe that Sym-Clust is not com-
petitive in terms of overall runtime in most cases. For all datasets,
except KOSARAK and SPOT, the runtime of Sym-Clust increases
much faster with ϵ than observed for Join-Clust and Spread. This
is mainly due to the use of the symmetric prefix index (more
candidates) and redundant computations (symmetric pairs).

Our experiments reveal that Join-Clust suffers from the follow-
ing issues: (i) High runtimes for LIVEJ, ORKUT, and SPOT due to
the expensive neighborhood materialization. (ii) Join-Clust runs
out of memory for many instances (missing points in plots), in
particular for FLICKR (any ϵ), KOSARAK (ϵ ≥ 4), LIVEJ, ORKUT,
and SPOT (ϵ ≥ 3).

Spread outperforms its competitors in most settings and is
competitive with Join-Clust otherwise (cf. Figures 7a, 7g, and 7h).
For CELONIS1 and CELONIS2, Spread outperforms Sym-Clust by
almost an order of magnitude and is competitive with Join-Clust.

Figure 8 shows the runtime results for varying minPts values
(ϵ = 3). We observe that the runtime of all three solutions is quite
robust to minPts. The insights are similar for all datasets and
values of ϵ . We include the plots for BMS-POS and KOSARAK.

11https://man7.org/linux/man-pages/man1/memusage.1.html

5.3 Memory Efficiency
We study the memory usage of Join-Clust, Sym-Clust, and Spread.
All three solutions store (i) the collection, (ii) the inverted index,
(iii) the candidates, and (iv) the result of a region query on the
heap. The symmetric prefix index of Sym-Clust is larger than
the asymmetric index, but still linear in the collection size. Sym-
Clust generates more candidates than Join-Clust and Spread (cf.
Section 5.1), which both use the asymmetric prefix index . Join-
Clust materializes all neighborhoods in main memory. Sym-Clust
and Spread materialize only a single neighborhood at a time.
Spread stores also backlinks and the disjoint-set in main memory.

Figure 11 shows our results for varying ϵ (minPts = 16, y-axis
log scale). Join-Clust runs out of memory for many instances (cf.
Section 5.2). The neighborhood materialization in Join-Clust can
be memory intensive even for small values of ϵ . We observe dif-
ferent growth rates with increasing radius ϵ , which we attribute
to the different neighborhood sizes. The memory consumption of
Sym-Clust is significantly lower and robust to varying ϵ . Spread
shows a similar behavior. In some cases (e.g., LIVEJ, ORKUT),
Spread occupies even less memory than Sym-Clust. When few
backlinks are materialized, the smaller asymmetric prefix index
of Spread outweighs the storage overhead for the backlinks.

Figure 12 shows the memory usage over minPts (ϵ = 3, log-log
scale). The memory consumption of Sym-Clust and Join-Clust
is stable w.r.t. increasing values of minPts, while the memory
usage of Spread slightly increases. This is due to the number of
concurrently stored backlinks: the larger minPts, the higher the
chance that a succeeding core neighbor is not yet classified, which
triggers the creation of a backlink entry. The memory grows
slowly with increasing minPts and does not limit the scalability
of Spread. We include the results for BMS-POS and KOSARAK,
ϵ = 3; other datasets and ϵ values show similar results.

Backlinks Peak. We evaluate the effect of releasing the back-
links of a set in Spread after the set has been processed (cf. line
34, Algorithm 5). Figures 10 and 14 show the peak number of
allocated backlinks relative to the maximum number of backlinks
for varying ϵ (minPts = 16) and minPts (ϵ = 3), respectively. Since
two backlink structures, core (green) and non-core (orange), are
maintained for each set in R, at most 2 |R | backlinks can be al-
located (light blue). Deallocating the backlinks of probed sets is
highly effective: Only a small fraction of the maximum number of
backlinks is allocated at any point in time. For increasing values
of ϵ and minPts also the number of allocated backlinks grows.

5.4 Scalability
We evaluate the scalability of Spread and its competitors to in-
creasing data sizes. To this end, we increase the size of BMS-POS
and KOSARAK using the procedure of Vernica et al. [42]. This
approach does not affect the token universe, and the number of
similar pairs in the dataset increases linearly with the data size.

Figure 9 (runtime) and Figure 13 (main memory) report the
results for our default parameter setting. Spread shows runtimes
similar to Join-Clust and outperforms Sym-Clust by a factor of
about 12 (BMS-POS) resp. 5.7 (KOSARAK) on the largest dataset
(×16). As we increase BMS-POS by a factor of 16, the runtime
increases by a factor of 195 for Spread, 204 for Join-Clust, and
460 for SymClust. The memory grows linearly for all measured
data points and increases by a factor of about 2 when we double
the data size. Join-Clust requires 18-25 (BMS-POS) resp. 499-
569 (KOSARAK) times more memory than its competitors and
runs out of memory on KOSARAK except for the ×1 dataset.

117

2 3 4 50
100
200

ϵ

CP
U

tim
e

[s
]

(a) BMS-POS.
2 3 4 50

500

1,000

ϵ

CP
U

tim
e

[s
]

(b) FLICKR.

2 3 4 50

1,000

2,000

ϵ

CP
U

tim
e

[s
]

(c) KOSARAK.
2 3 4 50

1,000
2,000
3,000

ϵ

CP
U

tim
e

[s
]

(d) LIVEJ.

2 3 4 50
200
400
600

ϵ

CP
U

tim
e

[s
]

(e) ORKUT.
2 3 4 50

200
400

ϵ

CP
U

tim
e

[s
]

(f) SPOT.

2 3 4 50
20
40
60
80
·103

ϵ

CP
U

tim
e

[s
]

(g) CELONIS1.
2 3 4 50

5

10
·103

ϵ

CP
U

tim
e

[s
]

(h) CELONIS2.

Spread Join-Clust Sym-Clust

Figure 7: Runtime over ϵ , minPts = 16.

21 22 23 24 25 26 270
20
40
60
80

minPts

CP
U

tim
e

[s
]

(a) BMS-POS

21 22 23 24 25 26 270
200
400
600
800

minPts

CP
U

tim
e

[s
]

(b) KOSARAK

Spread Join-Clust Sym-Clust

Figure 8: Runtime over minPts, ϵ = 3.

×1 ×2 ×4 ×8 ×160
10
20
30
·103

dataset size

CP
U

tim
e

[s
]

(a) BMS-POS

×1 ×2 ×4 ×8 ×160
50

100
150
·103

dataset size

CP
U

tim
e

[s
]

(b) KOSARAK

Spread Join-Clust Sym-Clust

Figure 9: Runtime over data size, ϵ = 3, minPts = 16.

2 3 4 50
200
400
600
·103

ϵal
lo

c.
ba

ck
lin

ks

(a) BMS-POS.
2 3 4 50

0.5
1
·106

ϵal
lo

c.
ba

ck
lin

ks

(b) KOSARAK.

Core Non-core 100%

Figure 10: Backlinks peak over ϵ , minPts = 16.

2 3 4 50.01
0.1

1
10

100

ϵ

m
em

or
y

[G
iB

]

(a) BMS-POS.
2 3 4 50.1

1

ϵ

m
em

or
y

[G
iB

]

(b) FLICKR.

2 3 4 50.1
1

10
100

ϵ

m
em

or
y

[G
iB

]

(c) KOSARAK.
2 3 4 50.1

1
10

100

ϵ

m
em

or
y

[G
iB

]

(d) LIVEJ.

2 3 4 51

10

100

ϵ

m
em

or
y

[G
iB

]

(e) ORKUT.
2 3 4 50.01

0.1
1

10
100

ϵ

m
em

or
y

[G
iB

]

(f) SPOT.

2 3 4 51

10

ϵ

m
em

or
y

[G
iB

]

(g) CELONIS1.
2 3 4 50.1

1

10

ϵ

m
em

or
y

[G
iB

]

(h) CELONIS2.

Spread Join-Clust Sym-Clust

Figure 11: Main memory over ϵ , minPts = 16.

21 22 23 24 25 26 270.01
0.1

1
10

100

minPts

m
em

or
y

[G
iB

]

(a) BMS-POS

21 22 23 24 25 26 270.01
0.1

1
10

100

minPts

m
em

or
y

[G
iB

]

(b) KOSARAK

Spread Join-Clust Sym-Clust

Figure 12: Main memory over minPts, ϵ = 3.

×1 ×2 ×4 ×8 ×160.01
0.1

1
10

100

dataset size

m
em

or
y

[G
iB

]

(a) BMS-POS

×1 ×2 ×4 ×8 ×160.01
0.1

1
10

100

dataset size

m
em

or
y

[G
iB

]

(b) KOSARAK

Spread Join-Clust Sym-Clust

Figure 13: Main memory over data size, ϵ = 3, minPts = 16.

21 22 23 24 25 26 270
200
400
600
·103

minPts

al
lo

c.
ba

ck
lin

ks

(a) BMS-POS.

21 22 23 24 25 26 270
0.5

1
·106

minPts

al
lo

c.
ba

ck
lin

ks

(b) KOSARAK.

Core Non-core 100%

Figure 14: Backlinks peak over minPts, ϵ = 3.

118

Summarizing, Spread clearly outperforms Sym-Clust in runtime
(by a factor of 5-12) and Join-Clust in memory usage (by more
than an order of magnitude) as we increase the data size.

6 RELATED WORK
Indexes for Sets. Most set similarity joins operate on an in-

verted list index that maps signatures to candidate sets. Various
signatures have been proposed [2, 8, 40, 45]. Prefixes [8] in con-
junction with the length filter [1] have been shown to prune sets
effectively. More sophisticated filters include positional and suffix
filter [49], the removal filter [35], the position-enhanced length
filter [28], and the adaptive prefix filter [44]. Wang et al. [46]
leverage the similarity of the sets in an ϵ-neighborhood to reduce
the overall number of false positives. Dong et al. [13] propose a
size-aware algorithm that runs in o(n2) + O(k) time for k result
pairs. Qin and Xiao [34] propose the pigeonring, a generalization
of the pigeonhole principle that yields stronger constraints. In-
dexing and join techniques for sets have been studied extensively
in the single-machine [29] and the distributed context [16].

Most of these approaches focus on self-joins, which order the
sets and compute the lookahead neighborhood to avoid symmet-
ric distance computations. In our work, we use the prefix filter,
but any of the other asymmetric indexes is applicable.

Efficient Region Queries. Ester et al. [15] propose the first ex-
act DBSCAN algorithm with O (n logn) runtime for vectors of
arbitrary dimension. O (n logn) runtime holds for a small num-
ber of neighbors (compared to n) and an index with O (logn)
lookup time. Henceforth, efficient region query computation has
been of great interest and many improvements have been pro-
posed. Brecheisen et al. [7] use minPts-nearest neighbor queries
to identify core points and postpone the other distance computa-
tions until the distances are required to get a correct DBSCAN
clustering. The proposed Xseedlist data structure is designed for
expensive distance functions and assumes a cheap but selective
filter. These assumptions do not hold for sets: The verification
(i.e., distance computation) of candidate pairs has shown to be
highly efficient [29] (a small number of integer comparisons).
Brecheisen et al. must insert the candidates into the Xseedlist
data structure, which maintains sorted lists of candidates. Due
to the expensive sorting procedure, we do not expect Xseedlist
to improve the DBSCAN algorithm for sets. TI-DBSCAN [25] ex-
ploits the triangle inequality to reduce the search space of region
queries. The solution is not index-based, sorts the points w.r.t. a
reference point, and shifts a window of size 2ϵ over the sorted
points. The reference point is the point with minimal values in all
dimensions. This is equivalent to the empty set, and our process-
ing order in combination with the prefix index for sets subsumes
this technique. Patwary et al. [32] introduce PARDICLE, a paral-
lel approximate density-based clustering algorithm for Euclidean
space. Its aim is to reduce the neighborhood computation time by
sampling high-density regions. Kumar and Reddy [26] propose
a new graph-based index structure called Groups. It discovers
groups of patterns in two scans over the dataset and applies a
standard DBSCAN afterwards. Groups accelerates region queries
by pruning noise points effectively. This technique assumes Eu-
clidean distance and does not consider Hamming distance or
other set similarity measures. Recently, Jiang et al. [24] proposed
SNG-DBSCAN, which prevents the computation of the full ϵ-
neighborhood graph via subsampling its edges. This results in
O (

sn2)-time complexity with s being the sampling rate. Under
certain distribution assumptions, SNG-DBSCAN has been shown

to preserve the exact ϵ-neighborhood graph for s ≈ (logn) /n
with O (n logn) runtime.

DBSCAN Techniques. Yang et al. [51] propose the distributed
DBSCAN-MS clustering algorithm for metric spaces. DBSCAN-
MS uses pivots to map the data from metric space to vector space,
where it is partitioned in order to be distributed. A local DBSCAN
is then executed on each partition. Our solution does not rely
on the metric properties of set distances, but uses specialized
set indexes. However, our techniques may be leveraged in the
context of DBSCAN-MS, where the data points are ordered by
one of the dimensions for efficient neighborhood queries.

Patwary et al. [31] propose PDSDBSCAN, a parallel DBSCAN
algorithm that uses the disjoint-set data structure to connect data
points into clusters. We only insert links between subclusters
into the disjoint-sets structure, while PDSDBSCAN inserts a
link for each neighbor, rendering the number of required union
operations a bottleneck for this approach.

Böhm et al. [3] use a block-nested loop join and buffer the
join result to reduce the number of block accesses required to
compute ϵ-neighborhoods. CUDA-DClust [4] is a GPU-based
solution that splits clusters into chains that are expanded from
different starting points in parallel. In order to merge chains into
clusters, a quadratic-size bit matrix is used. We maintain only a
linear number of links and leverage disjoint-sets to merge clusters.
Incremental DBSCAN algorithms [14] deal with updates on an
existing clustering. Similar to our approach, these techniques may
need to merge clusters when new points are inserted. None of
the above solutions supports asymmetric neighborhood indexes.

Numerous parallel and distributed algorithms [9, 11, 18–21, 23,
36, 38, 47, 50] as well as approximations [17, 27, 43, 48] have been
proposed. We present an exact, single-core solution for sets.

7 CONCLUSION
In this paper, we have investigated clustering techniques for
large collections of sets. Our work was motivated by an appli-
cation in process mining that models processes as sets to assess
their similarity. We have shown that the solutions that are cur-
rently available, Sym-Clust and Join-Clust, are not satisfying:
Sym-Clust is slow since it cannot use effective asymmetric set
indexes, while Join-Clust is infeasible for many settings due to its
excessive memory usage. We introduced a novel, density-based
clustering algorithm, Spread, that can process data points in any
user-defined order and is therefore fit for the use with asym-
metric indexes. Spread combines the best of both worlds: It uses
the effective asymmetric index of Join-Clust, but like Sym-Clust
does not need to materialize the neighborhoods. We introduced
so-called backlinks to guarantee a correct DBSCAN clustering
and showed the correctness of our approach. To the best of our
knowledge, Spread is the first DBSCAN-compliant algorithm that
uses an asymmetric index and runs in linear space.

Spread uses the index as a black box and works with any
data type. Interesting future work includes evaluating the perfor-
mance of Spread for vector data, where candidates are generated
using a sliding window that is shifted along one dimension. The
data points in the window are candidates, i.e., the window simu-
lates an asymmetric index for Spread.

ACKNOWLEDGMENTS
We thank Alexander Miller, Mateusz Pawlik, Thomas Hütter,
Manuel Widmoser, Manuel Kocher, Daniel Ulrich Schmitt, Kon-
stantin Thiel, Daniel Grittner, Christian Böhm, and Claudia Plant

119

for valuable discussions, and Manuel Kocher for typesetting Fig-
ures 1 and 3. This work was partially supported by the Austrian
Science Fund (FWF): P 29859.

REFERENCES
[1] Arvind Arasu, Venkatesh Ganti, and Raghav Kaushik. 2006. Efficient Exact

Set-Similarity Joins. In Proc. of the Int. Conf. on Very Large Databases (VLDB).
918–929.

[2] Roberto J. Bayardo, Yiming Ma, and Ramakrishnan Srikant. 2007. Scaling
Up All Pairs Similarity Search. In Proc. of the Int. Conf. on World Wide Web
(WWW). 131–140.

[3] Christian Böhm, Bernhard Braunmüller, Markus Breunig, and Hans-Peter
Kriegel. 2000. High Performance Clustering Based on the Similarity Join. In
Proc. of the ACM Int. Conf. on Information and Knowledge Management (CIKM).
298–305.

[4] Christian Böhm, Robert Noll, Claudia Plant, and Bianca Wackersreuther. 2009.
Density-Based Clustering Using Graphics Processors. In Proc. of the ACM Int.
Conf. on Information and Knowledge Management (CIKM). 661–670.

[5] R. P. Jagadeesh Chandra Bose and Wil M. P. van der Aalst. 2010. Trace
Clustering Based on Conserved Patterns: Towards Achieving Better Process
Models. In Business Process Management Workshops. 170–181.

[6] Panagiotis Bouros, Shen Ge, and Nikos Mamoulis. 2012. Spatio-Textual Simi-
larity Joins. Proc. of the VLDB Endowment 6, 1 (Nov. 2012), 1–12.

[7] S. Brecheisen, H. . Kriegel, and M. Pfeifle. 2004. Efficient Density-Based
Clustering of Complex Objects. In Proc. of the IEEE Int. Conf. on Data Mining.
43–50.

[8] S. Chaudhuri, V. Ganti, and R. Kaushik. 2006. A Primitive Operator for Sim-
ilarity Joins in Data Cleaning. In Proc. of the Int. Conf. on Data Engineering
(ICDE). 5–5.

[9] I. Cordova and T. Moh. 2015. DBSCAN on Resilient Distributed Datasets.
In Proc. of the Int. Conf. on High Performance Computing Simulation (HPCS).
531–540.

[10] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
2009. Introduction to Algorithms, Third Edition (3rd ed.).

[11] B. Dai and I. Lin. 2012. Efficient Map/Reduce-Based DBSCAN Algorithm with
Optimized Data Partition. In Proc. of the IEEE Int. Conf. on Cloud Computing.
59–66.

[12] Dong Deng, Guoliang Li, He Wen, and Jianhua Feng. 2015. An Efficient
Partition Based Method for Exact Set Similarity Joins. Proc. of the VLDB
Endowment 9, 4 (Dec. 2015), 360–371.

[13] Dong Deng, Yufei Tao, and Guoliang Li. 2018. Overlap Set Similarity Joins
with Theoretical Guarantees. In Proc. of the ACM Int. Conf. on Management of
Data (SIGMOD). 905–920.

[14] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Michael Wimmer, and Xiaowei
Xu. 1998. Incremental Clustering for Mining in a Data Warehousing Environ-
ment. In Proc. of the Int. Conf. on Very Large Databases (VLDB). 323–333.

[15] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. 1996. A
Density-based Algorithm for Discovering Clusters in Large Spatial Databases
with Noise. In Proc. of the ACM Int. Conf. on Knowledge Discovery and Data
Mining (SIGKDD). 226–231.

[16] Fabian Fier, Nikolaus Augsten, Panagiotis Bouros, Ulf Leser, and Johann-
Christoph Freytag. 2018. Set Similarity Joins on Mapreduce: An Experimental
Survey. Proc. of the VLDB Endowment 11, 10 (June 2018), 1110–1122.

[17] Junhao Gan and Yufei Tao. 2015. DBSCAN Revisited: Mis-Claim, Un-Fixability,
and Approximation. In Proc. of the ACM Int. Conf. on Management of Data
(SIGMOD). 519–530.

[18] Markus Götz, Christian Bodenstein, and Morris Riedel. 2015. HPDBSCAN:
Highly Parallel DBSCAN. In Proc. of the Workshop on Machine Learning in
High-Performance Computing Environments. Article 2, 10 pages.

[19] D. Han, A. Agrawal, W. Liao, and A. Choudhary. 2016. A Novel Scalable
DBSCAN Algorithm with Spark. In IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW). 1393–1402.

[20] Yaobin He, Haoyu Tan, Wuman Luo, Shengzhong Feng, and Jianping Fan.
2014. MR-DBSCAN: A Scalable MapReduce-Based DBSCAN Algorithm for
Heavily Skewed Data. Frontiers of Computer Science 8, 1 (2014), 83–99.

[21] Y. He, H. Tan, W. Luo, H. Mao, D. Ma, S. Feng, and J. Fan. 2011. MR-DBSCAN:
An Efficient Parallel Density-Based Clustering Algorithm Using MapReduce.
In Proc. of the IEEE Int. Conf. on Parallel and Distributed Systems (ICPADS).
473–480.

[22] B.F.A. Hompes, J.C.A.M. Buijs, W.M.P. van der Aalst, P.M. Dixit, and J. Buur-
man. 2015. Discovering Deviating Cases and Process Variants Using Trace
Clustering. In Benelux Conf. on Artificial Intelligence.

[23] Eshref Januzaj, Hans-Peter Kriegel, and Martin Pfeifle. 2004. Scalable Density-
Based Distributed Clustering. In Knowledge Discovery in Databases (PKDD).
231–244.

[24] Heinrich Jiang, Jennifer Jang, and Jakub Łącki. 2020. Faster DBSCAN via
subsampled similarity queries. CoRR (2020).

[25] Marzena Kryszkiewicz and Piotr Lasek. 2010. TI-DBSCAN: Clustering with
DBSCAN by Means of the Triangle Inequality. In Rough Sets and Current
Trends in Computing (RSCTC). 60–69.

[26] K. Mahesh Kumar and A. Rama Mohan Reddy. 2016. A fast DBSCAN clustering
algorithm by accelerating neighbor searching using Groups method. Pattern
Recognition 58 (2016), 39 – 48.

[27] Yinghua Lv, Tinghuai Ma, Meili Tang, Jie Cao, Yuan Tian, Abdullah Al-Dhelaan,
and Mznah Al-Rodhaan. 2016. An efficient and scalable density-based clus-
tering algorithm for datasets with complex structures. Neurocomputing 171
(2016), 9 – 22.

[28] Willi Mann and Nikolaus Augsten. 2014. PEL: Position-Enhanced Length Filter
for Set Similarity Joins. In Proc. of the Workshop Grundlagen von Datenbanken
(CEUR Workshop Proceedings), Vol. 1313. 89–94.

[29] Willi Mann, Nikolaus Augsten, and Panagiotis Bouros. 2016. An Empirical
Evaluation of Set Similarity Join Techniques. Proc. of the VLDB Endowment 9,
9 (2016), 636–647.

[30] Alan Mislove, Massimiliano Marcon, Krishna P. Gummadi, Peter Druschel,
and Bobby Bhattacharjee. 2007. Measurement and Analysis of Online Social
Networks. In Proc. of the ACM Int. Conf. on Internet Measurement (SIGCOMM).
29–42.

[31] M. M. A. Patwary, D. Palsetia, A. Agrawal, W. Liao, F. Manne, and A. Choud-
hary. 2012. A new scalable parallel DBSCAN algorithm using the disjoint-set
data structure. In Proc. of the Int. Conf. on High Performance Computing, Net-
working, Storage and Analysis (SC). 1–11.

[32] M. M. A. Patwary, N. Satish, N. Sundaram, F. Manne, S. Habib, and P. Dubey.
2014. Pardicle: Parallel Approximate Density-Based Clustering. In Proc. of the
Int. Conf. for High Performance Computing, Networking, Storage and Analysis
(SC). 560–571.

[33] Martin Pichl, Eva Zangerle, and Günther Specht. 2014. Combining Spotify
and Twitter Data for Generating a Recent and Public Dataset for Music Rec-
ommendation. In Proc. of the Workshop Grundlagen von Datenbanken (CEUR
Workshop Proceedings), Vol. 1313. 35–40.

[34] Jianbin Qin and Chuan Xiao. 2018. Pigeonring: A Principle for Faster Thresh-
olded Similarity Search. Proc. of the VLDB Endowment 12, 1 (2018), 28–42.

[35] Leonardo Andrade Ribeiro and Theo Härder. 2011. Generalizing Prefix Filter-
ing to Improve Set Similarity Joins. Information Systems 36, 1 (2011), 62–78.

[36] A. Sarma, P. Goyal, S. Kumari, A. Wani, J. S. Challa, S. Islam, and N. Goyal. 2019.
µDBSCAN: An Exact Scalable DBSCAN Algorithm for Big Data Exploiting
Spatial Locality. In Proc. of the IEEE Int. Conf. on Cluster Computing (CLUSTER).
1–11.

[37] Erich Schubert, Jörg Sander, Martin Ester, Hans Peter Kriegel, and Xiaowei
Xu. 2017. DBSCAN Revisited, Revisited: Why and How You Should (Still) Use
DBSCAN. ACM Transactions on Database Systems 42, 3 (2017), 21.

[38] Hwanjun Song and Jae-Gil Lee. 2018. RP-DBSCAN: A Superfast Parallel
DBSCAN Algorithm Based on Random Partitioning. In Proc. of the ACM Int.
Conf. on Management of Data (SIGMOD). 1173–1187.

[39] Minseok Song, Christian W. Günther, and Wil M. P. van der Aalst. 2009. Trace
Clustering in Process Mining. In Business Process Management Workshops.
109–120.

[40] Ji Sun, Zeyuan Shang, Guoliang Li, Dong Deng, and Zhifeng Bao. 2019. Balance-
aware Distributed String Similarity-based Query Processing System. Proc. of
the VLDB Endowment 12, 9 (2019), 961–974.

[41] Robert Endre Tarjan. 1975. Efficiency of a Good But Not Linear Set Union
Algorithm. Journal of the ACM 22, 2 (1975), 215–225.

[42] Rares Vernica, Michael J. Carey, and Chen Li. 2010. Efficient Parallel Set-
Similarity Joins Using MapReduce. In Proc. of the ACM Int. Conf. on Manage-
ment of Data (SIGMOD). 495–506.

[43] P. Viswanath and V. Suresh Babu. 2009. Rough-DBSCAN: A fast hybrid density
based clustering method for large data sets. Pattern Recognition Letters 30, 16
(2009), 1477 – 1488.

[44] Jiannan Wang, Guoliang Li, and Jianhua Feng. 2012. Can We Beat the Prefix
Filtering? An Adaptive Framework for Similarity Join and Search. In Proc. of
the ACM Int. Conf. on Management of Data (SIGMOD). 85–96.

[45] Pei Wang, Chuan Xiao, Jianbin Qin, Wei Wang, Xiaoyang Zhang, and Yoshi-
haru Ishikawa. 2016. Local Similarity Search for Unstructured Text. In Proc. of
the ACM Int. Conf. on Management of Data (SIGMOD). 1991–2005.

[46] Xubo Wang, Lu Qin, Xuemin Lin, Ying Zhang, and Lijun Chang. 2017. Lever-
aging Set Relations in Exact Set Similarity Join. Proc. of the VLDB Endowment
10, 9 (May 2017), 925–936.

[47] Yiqiu Wang, Yan Gu, and Julian Shun. 2020. Theoretically-Efficient and Prac-
tical Parallel DBSCAN. In Proc. of the ACM Int. Conf. on Management of Data
(SIGMOD). 2555–2571.

[48] Y. Wu, J. Guo, and X. Zhang. 2007. A Linear DBSCAN Algorithm Based on
LSH. In Proc. of the Int. Conf. on Machine Learning and Cybernetics, Vol. 5.
2608–2614.

[49] Chuan Xiao, Wei Wang, Xuemin Lin, Jeffrey Xu Yu, and Guoren Wang. 2011.
Efficient Similarity Joins for Near-Duplicate Detection. ACM Transactions on
Database Systems 36, 3 (2011), 41.

[50] Xiaowei Xu, Jochen Jäger, and Hans-Peter Kriegel. 1999. A Fast Parallel
Clustering Algorithm for Large Spatial Databases. Data Mining and Knowledge
Discovery 3, 3 (1999), 263–290.

[51] K. Yang, Y. Gao, R. Ma, L. Chen, S. Wu, and G. Chen. 2019. DBSCAN-MS:
Distributed Density-Based Clustering in Metric Spaces. In Proc. of the Int. Conf.
on Data Engineering (ICDE). 1346–1357.

[52] Zijian Zheng, Ron Kohavi, and Llew Mason. 2001. Real World Performance
of Association Rule Algorithms. In Proc. of the ACM Int. Conf. on Knowledge
Discovery and Data Mining (SIGKDD). 401–406.

120

	Scaling Density-Based Clustering to Large Collections of SetsDaniel Kocher, Nikolaus Augsten, Willi Mann

