
DBMS Performance Troubleshooting in Cloud Computing
Using SQL Transaction Clustering

Arunprasad P. Marathe
Huawei Research Canada
Markham, Ontario, Canada

arun.marathe@huawei.com,ap.marathe@gmail.com

ABSTRACT
Database management systems traditionally provide user-, table-,
index-, and schema-level monitoring. For cloud-deployed applica-
tions, the research reported herein provides preliminary evidence
that transaction cluster-level monitoring simplifies performance
troubleshooting—especially for online transaction processing
(OLTP) applications. Specifically, problematic rollbacks, perfor-
mance drifts, system-wide performance problems, and system
bottlenecks can be more easily debugged. The DBSCAN algo-
rithm identifies transaction clusters based on transaction features
extracted directly from a DBMS server—a job previously done
using SQL log-mining. DBSCAN produces more accurate clus-
ters when inter-transaction distances are computed using the
angular cosine distance function (ACD) rather than the usual Eu-
clidean distance function. Choice ofACD also simplifies DBSCAN
parameter tuning—a task known to be nontrivial.

1 INTRODUCTION
A user books air tickets for himself and family members using
an online web portal—front-end to a prototypical online trans-
action processing (OLTP) application. He makes several flight
searches, books tickets, and provides frequent flyer numbers of
the passengers. The airline reservation system implements this
activity using a transaction. A second user performs different
flight searches before booking a ticket for herself, but does not
provide a frequent flyer number because it is not handy. The two
transactions have both similarities and differences. Because they
access the same tables in similar fashions, there may be a reason
to believe that their performances are similar—a hypothesis that
can be exploited if found true.

A study of the various applications contained in two popular
OLTP benchmarking toolkits OLTP-Bench [2] and Sysbench [6]
reveals that each application contains transactions that can be
neatly divided into a small number of non-overlapping transac-
tion clusters (between 1 and 10 for the two toolkits).

Self-similar transactions within a cluster differ in parameter
values, statement orders, statement counts, statement types, rows
read or updated, and so on. Nevertheless, this research shows
that each cluster has a characteristic performance profile—termed
its signature—at the level of which an OLTP application can be
monitored. Sample cluster-levels metrics are average values of:
transactions/sec (TPS); number of rows (read, updated, or sent
to client); locking time; and so on.

Cluster-level monitoring is much simpler than transaction- or
statement-level monitoring, and cluster count is independent of
an OLTP application’s load. Benefits of clustering multiply when
that OLTP application is deployed in cloud where DBA’s have to

© 2021 Copyright held by the owner/author(s). Published in Proceedings of the
24th International Conference on Extending Database Technology (EDBT), March
23-26, 2021, ISBN 978-3-89318-084-4 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

monitor performance of many applications simultaneously [17].
This paper demonstrates how transaction clustering helps a cloud
DBA simplify debugging of several performance problems: identi-
fication of problematic transaction rollbacks; performance bottle-
necks; system-wide performance issues; performance drifts; and
so on. The cluster-level performance monitoring is not meant
to replace existing tools: table-level and index-level data will
continue to provide the necessary drill-downs, but help in deter-
mining where to drill-down should be valuable.

The DBSCAN algorithm [3] determines transaction clusters.
DBSCAN is usually run with the Euclidean distance function, but
this research demonstrates that when used with a normalized dis-
tance function called the angular cosine distance (ACD), DBSCAN
finds more accurate clusters, and DBSCAN parameter tuning
becomes easier—welcome news for a cloud DBA who cannot
hand-tune the parameters for each OLTP application. DBSCAN
parameter tuning is a known difficult task [4, 15], and therefore,
suitability of ACD is a research contribution.

To calculate inter-transaction distances, transaction attributes
are extracted into feature vectors. Previous research has relied on
SQL log-mining for transaction feature extraction, whereas this
research proposes to use simple server-side extensions instead.
Regular-expression based SQL log mining is error-prone, and
parsing SQL text may require parser duplication. Using server-
side extensions, no (re)parsing of a SQL statement is required be-
yond the one initiated upon a statement’s submission. A MySQL
implementation demonstrates that server-side feature extraction
is feasible. Similar infrastructure already exists in most modern
DBMS engines (Oracle, SQL Server, PostgreSQL, and so on), and
hence the solution has wider applicability.

2 SQL TRANSACTION CLUSTERS
SQL transactions within a cluster are similar (but not identical),
and transactions in different clusters are dissimilar. Cluster de-
termination is a three-step process. First, certain distinguishing
attributes (called features) are extracted from a transaction, and an
𝑛-element feature vector (FV) is formed. Second, the distance be-
tween two transactions—defined to be the distance between their
feature vectors—is computed using a distance function. Third, a
clustering algorithm uses the feature vectors and the distance
function to determine clusters.

2.1 Feature vector construction
In this research, extracting the following transaction features
proved adequate.

(1) Statement type: SELECT, INSERT, UPDATE, DELETE, COMMIT,
ROLLBACK, BEGIN, and so on.

(2) Table name(s)—possibly empty—referenced in the state-
ment in ‘schema.table’ format.

(3) Counts associated with table names indicating frequency.

Short Paper

Series ISSN: 2367-2005 463 10.5441/002/edbt.2021.52

https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2021.52

For other applications, different or additional features may
need to be extracted.

A transaction 𝑋 ’s feature vector 𝐹𝑉 (𝑋) is a concatenation of
four sub-vectors 𝐹𝑉𝑆 , 𝐹𝑉𝐼 , 𝐹𝑉𝑈 , and 𝐹𝑉𝐷 for the four major SQL
statement types SELECT, INSERT, UPDATE, and DELETE, respec-
tively. All of the four sub-vectors are computed similarly, and
therefore, only the construction of 𝐹𝑉𝑆 is described.

𝐹𝑉𝑆 is of length 𝑛—the total number of tables in the OLTP
system’s schema, where each table is schema-qualified, and oc-
cupies a specific position in the vector to enable cross-feature
vector comparisons. If a table𝑇 is referenced by all of the SELECT
statements in a transaction a total of 𝑘 times (𝑘 ≥ 0), then the
vector element for 𝑇 inside 𝐹𝑉𝑆 has value 𝑘 .

𝐹𝑉𝐼 , 𝐹𝑉𝑈 , and 𝐹𝑉𝐷 are computed similarly from all of the
INSERT, UPDATE, and DELETE statements in a transaction.1

Listing 1: Transaction 𝑋1
SELECT C_ID FROM Customer WHERE C_ID_STR = ' 50665 '
SELECT ∗ FROM Customer WHERE C_ID = 50665
SELECT ∗ FROM Airpor t , Country WHERE AP_ID = 180 AND

AP_CO_ID = CO_ID
SELECT ∗ FROM F r e qu en t _ F l y e r WHERE FF_C_ID = 50665
UPDATE F r e qu en t _ F l y e r SET FF_IATTR00 = −14751 ,

FF_IATTR01 = 8902 WHERE FF_C_ID = 50665 AND
FF_AL_ID = 1075

UPDATE Customer SET C_IATTR00 = −14751 , C_IATTR01 =
89025 WHERE C_ID = 50665

COMMIT

Consider the transaction 𝑋1—taken from the SEATS workload
of [2]—shown in Listing 1.

• 𝐹𝑉𝑆 (𝑋1) = [2, 1, 1, 1] because SELECT statements in 𝑋1
refer to Customer table twice, and the other three tables
once each.

• 𝐹𝑉𝑈 (𝑋1) = [1, 1] because UPDATE statements in 𝑋1 refer
to two tables once each.

• 𝐹𝑉𝐼 (𝑋1) = 𝐹𝑉𝐷 (𝑋1) = [] because there are no UPDATE or
DELETE statements in 𝑋1.

• 𝐹𝑉 (𝑋1) = [2, 1, 1, 1] + [] + [1, 1] + [] = [2, 1, 1, 1, 1, 1]
Imagine a second transaction 𝑋2 similar 𝑋1 that references

Customer only once. 𝐹𝑉 (𝑋2) will be [1, 1, 1, 1, 1, 1].

2.2 Angular cosine distance
Angular cosine distance, henceforth ACD, measures the distance
between two transactions—in particular, between their feature
vectors. For two𝑛-dimensional vectorsA andB, each with indices
0, 1, · · ·𝑛 − 1, and with non-negative values, ACD is defined as
follows [21].

𝐴𝐶𝐷 (A,B) = 2
𝜋

©­­«cos−1
©­­«

∑𝑛−1
𝑖=0 A𝑖B𝑖√∑𝑛−1

𝑖=0 A2
𝑖

√∑𝑛−1
𝑖=0 B2

𝑖

ª®®¬
ª®®¬ (1)

ACD is a distance measure or metric, and furthermore is uni-
tary or normalized: 0.0 ≤ 𝐴𝐶𝐷 (A,B) ≤ 1.0. Because ACD dis-
tances are unitary, a closeness threshold Eps (for example, 0.2)
can be defined so that two transactions at most Eps apart are
considered ‘close’; otherwise, they are declared ‘far’. Normalized
distance functions enable easy similarity definition: 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =

1.0 − 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 . ‘Close’ transactions have 0.8 (or 80%) similarity—
something even a non-expert can understand.

For 𝑋1 and 𝑋2 of Section 2.1, 𝐴𝐶𝐷 (𝑋1, 𝑋2) =
𝐴𝐶𝐷 ([2, 1, 1, 1, 1.1], [1, 1, 1, 1, 1, 1]) = 0.197, or they are 1.0 −
0.197 = 0.803 (80.3%) similar which seems intuitively correct.
1INSERT, UPDATE, and DELETE statements can also have embedded SELECT queries,
and those are handled similarly to the way 𝐹𝑉𝑆 is.

Let 𝐹𝑉 (𝑋3) = [1, 1, 1, 1, 1, 0]. 𝑋3 does not update the Customer
table, and hence the 0. 𝑋3 is somewhat dissimilar to 𝑋1 and 𝑋2,
and indeed, 𝐴𝐶𝐷 (𝑋1, 𝑋3) = 0.295, or they are only 70.5% similar
which again seems intuitive. With the closeness threshold Eps
set to 0.2, 𝑋1 and 𝑋2 will be considered close, and may end up in
the same cluster, whereas 𝑋1 and 𝑋3 will not belong to the same
cluster.

2.3 DBSCAN parameter tuning
An open-source DBSCAN implementation [16]—instrumented
to use ACD—performs transaction clustering. (By default, it uses
the Euclidean distance function.) The author did not consider
other clustering algorithms because DBSCAN has been found
adequate for transaction clustering previously [11, 23].

DBSCAN’s two tunable parameters Eps and minPts define
density. A hyper-sphere of radius Eps with at least minPts points
inside is considered dense. ACD does not eliminate hand-tuning
DBSCAN parameters, but provides twofold help.

• Eps = 0.2 means that independent of workload, two trans-
actions have to be at least 80% similar before they can
belong to the same cluster. With such unnormalized dis-
tance functions as the Euclidean, Eps values are workload
dependent.

• For many workloads, ACD-based DBSCAN clustering is
not very sensitive to the two parameter values, and a good
starting point is (Eps, minPts) = (0.2, 10). (Section 5.2.)

3 MySQL EXTENSIONS FOR TRANSACTION
FEATURE EXTRACTION

Feature extraction uses the data from three in-memory tables
shown in Fig. 1 that contain transaction-level, statement-level,
and table-level information. The three tables will henceforth be
referred to by the acronyms e_t_h, e_s_h, and e_s_t.

Figure 1: Relationships between the three tables.

Each completed transaction appears as a row in e_t_h, and
the statements within are captured in e_s_h (1:N relationship).
The newly added e_s_t table contains zero or more rows for each
statement present in e_s_h—one for each distinct table reference
in that statement (another 1:N relationship). Such statements
as COMMIT and ROLLBACK do not refer to any tables, and
therefore, have no presence in e_s_t. The columns in Fig. 1 only
capture inter-table relationships. The other columns added to the
three tables—not explicitly shown in Fig. 1—capture transaction-,
statement-, and table-level statistics.

Using a SELECT query involving multi-way joins among e_t_h,
e_s_h, and e_s_t tables, such information as transaction text;
statement type; statement text; statement run-time; transaction

464

run-time; table names appearing in statement and their counts;
number of rows examined; locking times; and so on is easily
extracted.

Tables similar to the ones depicted in Fig. 1 already preexist
(or can be easily created) in SQL Server [10], Oracle [12], and
PostgreSQL [13], and therefore, server instrumentation of the
kind described in this section is possible in those products.

4 SYSTEM ARCHITECTURE
A prototype SQL transaction clustering system has been imple-
mented as depicted in Fig. 2. The Linux KVM virtual machine
represents a hosted environment running a customer application
(OLTP-Bench and Sysbench workloads during experimentation).
The top MySQL instance within the Linux KVM has been in-
strumented as described in Section 3 to enable transaction-level
data collection and feature extraction. The Windows 10 machine
contains data processing components, including those perform-
ing transaction clustering and classification. (A second hosted
application would require its own data processing node.)

Figure 2: Architecture of a transaction clustering system.

A SQL query runs every 5 seconds on the Linux machine,
and performs data collection. (The interval ensures minimal data
collection overhead, but is a system parameter.) Each 5-second
chunk includes feature and non-feature data: SQL statements;
statement types; table names; table counts; statement durations;
transaction duration; lock times; and rows examined by state-
ments. An epoch-style Linux timestamp is associated with each
chunk, and the resulting time-series is shipped to the data pro-
cessing node where chunk-based iterators process it.

The first 𝑡 chunks are used to perform transaction clustering.
During experimentation, the first 30 seconds worth of trans-
actions (𝑡 = 6) were found adequate to determine transaction
clusters, but 𝑡 is a system parameter. OLTPworkloads do not have
ad-hoc queries, and so clusters, once formed, should not change.
If that assumption is violated, DBSeer’s online implementation
of DBSCAN can be used [5], but we leave that for future work.

Once clusters form, the rest of the streaming transactions are
simply classified. The average distance (computed using ACD)
from a transaction 𝑋 to a cluster’s exemplars is calculated, and
𝑋 is assigned to the cluster for which that average distance is
minimum, as long as that minimum value is no more than a
threshold (say 0.2). If the threshold is exceeded, 𝑋 is declared an
outlier.

Simple roll-up operations compute cluster-level statistics from
transaction statistics as long as transactions are not outliers. If

necessary, data about outliers can be captured and processed
similarly.

5 CLUSTERING EXPERIMENTS
These experiments demonstrate that ACD-based DBSCAN is ef-
fective at finding transaction clusters, and is not very sensitive
to Eps and minPts parameter values. Workload consists of OLTP-
Bench [2] and Sysbench [6]. Out of OLTP-Bench’s 15 workloads,
the author was able to run 11.2 Clustering effectiveness requires
expected cluster counts which OLTP-Bench already provides, and
were manually determined for Sysbench. In Tables 1 and 2, ex-
pected cluster counts are indicated in brackets after the workload
names. Actual cluster counts are not always integral because each
value is an average of 5 runs, and DBSCAN sometimes produces
slightly different cluster counts for different samples.

5.1 ACD-based DBSCAN
ACD-based DBSCAN with (Eps, minPts) = (0.2, 10)—henceforth,
ACD(0.2, 10)—is an excellent starting point for clustering data-
base transactions. Table 1 captures ACD(0.2, 10)’s performance
against a baseline provided by the well-known Euclidean distance
function. In the Euclidean baseline, Eps and minPts values are set
using a heuristic provided by the DBSCAN authors in a subse-
quent paper [14]. We will term the resulting baseline SEKX after
the author names. The heuristic itself works as follows. Let the
dimensionality of a workload—defined to be maximum feature
vector length—be DIM. Then:

• Heuristic value of Eps = (2 ∗ 𝐷𝐼𝑀) − 1
• Heuristic value of minPts = (2 ∗ 𝐷𝐼𝑀)

ACD(0.2, 10) handily outperforms SEKX in 8 out of 13 work-
loads, and equally important, is never worse than SEKX in the
remaining 5 workloads. For 9 workloads, SEKX puts all of the
transactions into single clusters, and hence is ineffective.

The following observations—cross-referenced in the ‘Com-
ments’ column of Table 1—provide reasons why ACD(0.2, 10)’s
cluster counts are slightly off in a few cases.

(1) Epinions cluster count is off by 1 because a transaction
type selects from Review and Trust tables separately, and
another type selects from their joined version. Both end up
in the same cluster because the feature vector construction
in Section 2.1 currently does not distinguish them.

(2) YCSB cluster count is off by 1 because two of the transac-
tion types have point and range selects, but are otherwise
identical, and that difference is currently not captured as
a feature.

(3) AuctionMark and SEATS produced the correct cluster
counts withACD(0.15, 10) andACD(0.15, 15), respectively.

Observations 1 and 2 suggest possible features that can be
extracted, and added to the feature vector.

5.2 Sensitivity analysis of ACD
When used along with ACD, DBSCAN is not very sensitive to
various Eps andminPts values. Table 2 captures ACD results for 6
sets of parameters. Approximately, cluster membership criterion
becomes more stringent as one reads across a row, and hence clus-
ter counts can be expected to diminish from left to right. As can
be seen, ACD is not very sensitive to parameter values for most of

2Wikipedia turns out to be hard to cluster because two of the transaction types
have frequencies of only 0.07% each, and are rarely present in samples. One can
ignore ‘Wikipedia’ results, but they are included for completeness.

465

Table 1: ACD (0.2, 10) versus SEKX (2 ∗ 𝐷𝐼𝑀 − 1, 2 ∗ 𝐷𝐼𝑀)

Workload & DIM Avg. cluster Comments
expected cluster count
count ACD SEKX

AuctionMark (9) 9 9.4 1 Observation 3
Epinions (9) 2 8 1 Observation 1
SEATS (6) 8 7 1 Observation 3
SIBench (2) 1 2 2
SmallBank (6) 5 6 1
sysbench_ro (10) 1 10 10
sysbench_rw (10) 5 10 10
TATP (7) 3 7 1
TPC-C (5) 10 5 1
Twitter (5) 2 5 1
Voter (1) 4 1 1
Wikipedia (5) 7 2 1 Footnote 2
YCSB (6) 2 5 1 Observation 2

the workloads. Even when it is (AuctionMark and sysbench_rw;
and to a lesser extent SEATS and TPC-C), graceful degradation is
observed. Therefore, it is not crucial for a DBA to get the values
of Eps and minPts spot on, and any reasonable values should
perform respectably well. ‘Sysbench_rw’ is tricky to cluster for
its highly symmetrical transactions—all of the transactions are
roughly equidistant from all of the other transactions—but two
ACD configurations perform well.

Table 2: ACD with different Eps andminPts values.

Workload & Avg. cluster count
expected ACD ACD ACD ACD ACD ACD
cluster count (.20,10) (.15,10) (.15,15) (.10,10) (.10,15) (.05,20)

AuctionMark (9) 9.4 9.4 5.4 8.2 5.4 4
Epinions (9) 8 8 8 8 8 8
SEATS (6) 7 7.4 6 8.4 7 5.2
SIBench (2) 2 2 2 2 2 2
SmallBank (6) 6 6 6 6 6 6
sysbench_ro (10) 10 10 10 10 10 10
sysbench_rw (10) 10 9 0.6 0 0 0
TATP (7) 7 7 7 7 7 7
TPC-C (5) 5 6 5.8 6 5.8 4.8
Twitter (5) 5 5 5 5 5 5
Voter (1) 1 1 1 1 1 1
Wikipedia (5) 2 2 2 2 2 2
YCSB (6) 5 5 5 5 5 5

6 PERFORMANCE TROUBLESHOOTING
USING TRANSACTION CLUSTERING

Experiments in this section demonstrate how cluster-level perfor-
mance monitoring simplify debugging of several real-life prob-
lems faced by cloud DBA’s.

6.1 Cluster signatures
OLTP-Bench’s SmallBank workload simulates some operations of
a bank, and produces the cluster signatures shown in Fig. 3 with
10-terminal workload, and scale-factor of 1. The three sub-plots
capture the average values of the three transaction-cluster-level
metrics: lock time (in ms); number of rows examined; and TPS

Figure 3: SmallBank’s cluster signatures (10-terminal workload).

(transactions/sec). Each sub-plot contains six lines—one for each
of the transaction clusters identified.3

From SmallBank cluster signatures, a cloud DBA can learn
several things about the workload. First, six clusters means that
there are six types of transactions in SmallBank—as OLTP-Bench
confirms. Second, cluster signatures are discernible. Third, small
signature variations exist because each data point aggregates 5
seconds worth of transactions (which themselves execute in a
multi-tasking environment). Fourth, all of the transactions in a
given cluster examine the same number of rows—a SmallBank pe-
culiarity. Fifth, cluster exemplars reveal that the only cluster with
read-only transactions is cluster 1—explaining its its highest TPS
values. Sixth, when 100 terminals generate workload, the same
six clusters form (graphs not included to save space), thereby con-
firming that clusters are load independent—a practically useful
promise of clustering.

6.2 Identification of transaction rollbacks
Transaction rollbacks are normal DBMS occurrences, but some-
times their frequencies become problematic. If rollbacks are lim-
ited to a transaction type, cluster-level monitoring helps because
unexpected additional clusters form.

The TPC-C benchmark [20] has five well-known transaction
types. Rollbacks are demonstrated using the Payment transaction
by modifying its code such that after submitting 2 out of its
7 statements, it rolls back with 20% probability—simulating a
problematic high-frequency rollback. To make example even
more realistic, a second rollback—simulating a normal and rare
DBMS occurrence—happens after the sixth statement with 0.1%
probability (overall probability 0.8 × 0.1 = 0.08%). Because the
problematic rollbacks are numerous, they should form their own
cluster, whereas the normal rollbacks should not.

Figure 4: Payment transaction rolls back with 20% probability
causing an unexpected sixth cluster (Cluster 1) to appear.

3The second subplot contains only five lines because clusters 1 and 3 examine 3
rows each, and the plotting software cannot distinguish two overlapping lines.

466

Themodified TPC-C benchmark produces the results shown in
Fig. 4. Usually, TPC-C produces five clusters, but six are found. A
sample exemplar from Cluster 1 reveals the ‘incomplete’ Payment
transaction with a telltale rollback issued after two statements.
UPDATE WAREHOUSE SET W_YTD = W_YTD + 1704 . 6 8 9 9 4 1 4 0 6 2 5

WHERE W_ID = 2
SELECT W_STREET_1 , W_STREET_2 , W_CITY , W_STATE , W_ZIP ,

W_NAME FROM WAREHOUSE WHERE W_ID = 2
rol lback

The normal (rare) DBMS rollbacks (0.08% probability) do not
form a cluster because they do not meet DBSCAN’s density re-
quirement mentioned in Section 2.3. High-frequency rollbacks
are difficult to identify if cluster-level statistics are not kept. Ap-
plications often resubmit transactions in case of rollbacks, and
users only notice andwonder about degraded performance. An in-
cident report would cause DBA’s or programmers to dig through
voluminous logs to even begin suspecting a culprit.

6.3 Performance drift
Performance drift refers to a situation in which one (or just a
few) cluster’s performance drifts from its norm. Many situations
can cause performance drifts. Here is a typical one: A DBA might
forget to reinstate an index that (s)he deliberately dropped during
a bulk load operation.

Figure 5: An index made invisible during [615, 685].

To simulate a performance drift, a secondary index (used by
two out of the five TPC-C transactions) on the CUSTOMER table
is made invisible4 to the query optimizer during a portion of the
run. When the index is made unavailable, the query optimizer
has to use table scans instead of index seeks. As can be seen in
Fig. 5, average row counts show dramatic increases (drifts) for
clusters 0 and 2 during the interval [615, 685].5

When the performance of only one cluster drifts, objects re-
lated to only that cluster (e.g., tables, indexes, statistics) are good
starting points for debugging. Without cluster-level statistics,
such a diagnosis may require considerably more work.

6.4 System-wide performance problem
System-wide performance problems are caused by such things as
a failed network card, operating system reboot, failed disk, and
runaway process hogging CPU’s. If all of the clusters experience
simultaneous degraded performances, a system-wide issue may
be the cause. One such situation is created using a CPU-hogging
program that spawns as many processes as the number of CPU
cores on the computer (8), and then making them run infinite
‘while’ loops—thereby creating a CPU bottleneck.
4MySQL command used was: ALTER TABLE CUSTOMER ALTER INDEX
IDX_CUSTOMER_NAME INVISIBLE;
5As an aside, if an invisible index makes no difference to any cluster’s performance,
it might be safe to drop—the reason why that feature was added to MySQL.

Figure 6: Average durations increase during [300, 375].

In the resulting graphs shown in Fig. 6, during the interval
[300, 375], average durations of all of the clusters show unmistak-
able jumps. After about 375, when the offending program is killed,
all five average durations return to their baseline values. Interest-
ingly, average lock times are largely unaffected, indicating that
for the few transactions that did manage to execute during CPU
saturation, lock time did not take a hit. Such observations should
provide the DBA a good starting point to formulate a hypothesis
before beginning a detailed investigation.

6.5 Bottleneck analysis
Cloud applications run on pre-provisioned VM’s. Because applica-
tion behaviour is relatively unknown, a bottleneck may develop—
in CPU, memory, disk I/O, network I/O, and so on. Furthermore,
bottlenecks may vary by transaction types. Non-cloud DBA’s
are used to monitoring such operating system-level performance
counters as vmstat, iostat, and netstat in Linux for bottleneck
identification, but cluster-level statistics offer a complementary
method that can provide additional help.

To study whether a VM has sufficient memory, its memory is
reduced on the fly from 16 GB to 3 GB while TPC-C workload
runs. Such a drastic change in memory allocation is only for
demonstration: typical changes should be much smaller.

Figure 7: Memory reduces from 16 GB to 3 GB at timestamp 120.

In the results captured in Fig. 7, memory reduction happens at
timestamp 120 onward. The average TPS values before and after
that interval show no discernible changes. There is a noticeable
drop at 120 as the operating system seems to adjust to the new
memory setting, but soon, normal service resumes. The ‘Avg.
lock time’ metric is also mostly unaffected, and therefore, one
can conclude that this VM is well-provisioned for memory.

In the next variation, CPU is constrained. Changing CPU count
in KVM requires a machine restart, and therefore, an approach
similar to the one in Section 6.4 is taken, except that 7 out of the

467

8 cores are kept busy running infinite ‘while’ loops. The results
appear in Fig. 8.

Figure 8: CPU saturation during the interval [3960, 4025].

The CPU bottleneck spans the interval [3960, 4025] during
which reduced ‘Avg. TPS’ values are visible. The highest ‘Avg.
TPS’ values are for clusters 2 and 4 (read-only transactions Stock-
Level and Order-Status, respectively). Outside of the CPU bottle-
neck, those values are somewhat close, but during the bottleneck,
Order-Status transaction’s performance takes a bigger hit (Y-axis
is log-scale) suggesting Order-Status is much more sensitive to
CPU than Stock-level is in this environment. If Order-Status is
deemed important (say because customers check statuses their
orders often), it may make sense to over-provision for CPU rather
than for memory if a choice is to be made between the two.

7 RELATEDWORK
Identifying transaction clusters from SQL text arriving at a data-
base server is important for two reasons. First, applications de-
ployed in cloud environments are often web-applications [17]
using object-relational mappings to submit SQL queries, and
do not use stored procedures. Second, as noted by Stonebraker
et al. [19], because of SQL’s ‘one language fits all’ approach,
transaction code may use a mix of stored procedures, prepared
statements, and Java/C++/C# code.

Clustering itself is a broad and well-studied topic [22]. SQL
query clustering and classification has been studied under two
granularities: query-level and transaction-level. SQL query fea-
tures previously tried include terms in SELECT, JOIN, FROM, GROUP
BY, and ORDER BY clauses, table names, column names, normal-
ized estimated execution costs [7, 9]; and features have been
converted into vectors, graphs, or sets [7, 18]. As a general ob-
servation, fewer features suffice in self-similar OLTP workloads;
ad-hoc workloads require more features. Such distance functions
as cosine, Jaccard, and Hamming have been tried for clustering
SQL queries [1, 9, 18], although only the Euclidean has been tried
at the transaction level before [5]. Before this research, feature ex-
traction has mined SQL text from DBMS logs [9, 18], or MaxScale
proxy server [11]; server-side feature extraction is novel.

8 CONCLUSIONS AND FUTURE WORK
This research makes a case that in addition to user, table, index,
and schema level monitoring provided, DBMS’s should start to
provide transaction-cluster-level monitoring. In applications de-
ployed in the cloud, and for OLTPworkloads, that additional level
simplifies debugging of performance problems: unexpected trans-
action rollbacks, performance drifts, bottleneck identifications,
and so on. Angular cosine distance-based DBSCAN is an improve-
ment over Euclidean-based DBSCAN with SEKX heuristic [14]
(better clusters and simplified DBSCAN parameter tuning).

Future work may investigate the following features for trans-
action clustering: column names to possibly identify index issues;

predicate types (point queries vs. range queries) and counts; ac-
cess paths used; isolation level; number of sorts; join tables; and so
on. Multiple cluster-level signatures may help because an applica-
tion may have distinct ‘peak’ and ‘off-peak’ behaviours. Whether
ACD is suitable with such clustering algorithms as BIRCH [24]
and 𝑘-means [8] remains to be seen. Server-side feature extrac-
tion can be attempted in other modern database systems using
minor extensions to preexisting scaffoldings.

ACKNOWLEDGMENTS
MatthewVanDijk implemented the server-side extensions needed
for transaction feature extraction. Anonymous reviewers pro-
vided valuable feedback.

REFERENCES
[1] Rakesh Agrawal, Ralf Rantzau, and Evimaria Terzi. 2006. Context-sensitive

ranking. In Proceedings of the SIGMOD 2006 Conference. 383–394.
[2] Djellel Eddine Difallah, Andrew Pavlo, Carlo Curino, and Philippe Cudré-

Mauroux. 2013. OLTP-Bench: An Extensible Testbed for Benchmarking Rela-
tional Databases. PVLDB 7, 4 (2013), 277–288.

[3] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. 1996. A
Density-Based Algorithm for Discovering Clusters in Large Spatial Databases
with Noise. In Proceedings of the Second International Conference on Knowledge
Discovery and Data Mining (KDD-96). 226–231.

[4] Junhao Gan and Yufei Tao. 2015. DBSCAN Revisited: Mis-Claim, Un-Fixability,
and Approximation. In Proceedings of the SIGMOD 2015 Conference. 519–530.

[5] GitHub. 2020. DBSeer. Retrieved September 17, 2020 from https://github.com/
barzan/dbseer

[6] GitHub. 2020. sysbench. Retrieved August 5, 2020 from https://github.com/
akopytov/sysbench

[7] Guoliang Li, Xuanhe Zhou, Shifu Li, and Bo Gao. 2019. QTune: A Query-Aware
Database Tuning System with Deep Reinforcement Learning. Proc. VLDB
Endow. 12, 12 (2019), 2118–2130.

[8] Stuart P. Lloyd. 1982. Least squares quantization in PCM. IEEE Trans. Inf.
Theory 28, 2 (1982), 129–136.

[9] Vitor Hirota Makiyama, Jordan Raddick, and Rafael D. C. Santos. 2015. Text
Mining Applied to SQL Queries: A Case Study for the SDSS SkyServer. In
SIMBig.

[10] Microsoft. 2019. System Dynamic Managemenet Views. Re-
trieved August 4, 2020 from https://docs.microsoft.com/en-us/
sql/relational-databases/system-dynamic-management-views/
system-dynamic-management-views?view=sql-server-ver15

[11] Barzan Mozafari, Carlo Curino, Alekh Jindal, and Samuel Madden. 2013. Per-
formance and resource modeling in highly-concurrent OLTP workloads. In
Proceedings of the SIGMOD 2013 Conference. 301–312.

[12] Oracle. 2020. About Dynamic Performance Views. Retrieved September 22, 2020
from https://docs.oracle.com/cd/B19306_01/server.102/b14237/dynviews_1001.
htm#i1398692

[13] PostgreSQL. 2020. The Statistics Collector. Retrieved August 4, 2020 from
https://www.postgresql.org/docs/9.6/monitoring-stats.html

[14] Jörg Sander, Martin Ester, Hans-Peter Kriegel, and Xiaowei Xu. 1998. Density-
Based Clustering in Spatial Databases: The Algorithm GDBSCAN and Its
Applications. Data Min. Knowl. Discov. 2, 2 (1998), 169–194.

[15] Erich Schubert, Jörg Sander, Martin Ester, Hans-Peter Kriegel, and Xiaowei
Xu. 2017. DBSCAN Revisited, Revisited: Why and How You Should (Still) Use
DBSCAN. ACM Trans. Database Syst. 42, 3 (2017), 19:1–19:21.

[16] Scikit Learn. 2019. DBSCAN. Retrieved August 2, 2020 from https://scikit-learn.
org/stable/modules/generated/sklearn.cluster.DBSCAN.html

[17] Alexandre Verbitski et al. 2017. Amazon Aurora: Design Considerations for
High Throughput Cloud-Native Relational Databases. In Proceedings of the
SIGMOD 2017 Conference. ACM, 1041–1052.

[18] Gökhan Kul et al. 2018. Similarity Metrics for SQL Query Clustering. IEEE
Trans. Knowl. Data Eng. 30, 12 (2018), 2408–2420.

[19] Michael Stonebraker et al. 2007. The End of an Architectural Era (It’s Time for
a Complete Rewrite). In Proceedings of the VLDB 2007 Conference. 1150–1160.

[20] Transaction Processing Performance Council 1992. TPC-C. Retrieved Sep-
tember 22, 2020 from http://www.tpc.org/tpcc/

[21] Wikipedia. 2019. Cosine similarity. Retrieved August 11, 2020 from https:
//en.wikipedia.org/wiki/Cosine_similarity

[22] Dongkuan Xu and Yingjie Tian. 2015. A Comprehensive Survey of Clustering
Algorithms. Annals of Data Science 2 (2015), 165–193.

[23] Dong Young Yoon, Ning Niu, and Barzan Mozafari. 2016. DBSherlock: A
Performance Diagnostic Tool for Transactional Databases. In Proceedings of
the SIGMOD 2016 Conference. 1599–1614.

[24] Tian Zhang, Raghu Ramakrishnan, and Miron Livny. 1997. BIRCH: A New
Data Clustering Algorithm and Its Applications. Data Min. Knowl. Discov. 1, 2
(1997), 141–182.

468

	DBMS Performance Troubleshooting in Cloud Computing Using Transaction ClusteringArunprasad Marathe

