Short Paper

O

proceedings

Efficient Exploratory Clustering Analyses
with Qualitative Approximations

Manuel Fritz, Dennis Tschechlov, Holger Schwarz
University of Stuttgart
Stuttgart, Germany
{manuel fritz,dennis.tschechlov,holger.schwarz}@ipvs.uni-stuttgart.de

ABSTRACT

Clustering is a fundamental primitive for exploratory data analy-
ses. Yet, finding valuable clustering results for previously unseen
datasets is a pivotal challenge. Analysts as well as automated
exploration methods often perform an exploratory clustering
analysis, i.e., they repeatedly execute a clustering algorithm with
varying parameters until valuable results can be found. k-center
clustering algorithms, such as k-Means, are commonly used in
such exploratory processes. However, in the worst case, each sin-
gle execution of k-Means requires a super-polynomial runtime,
making the overall exploratory process on voluminous datasets
infeasible in a reasonable time frame. We propose a novel and ef-
ficient approach for approximating results of k-center clustering
algorithms, thus supporting analysts in an ad-hoc exploratory
process for valuable clustering results. Our evaluation on an
Apache Spark cluster unveils that our approach significantly out-
performs the regular execution of a k-center clustering algorithm
by several orders of magnitude in runtime with a predefinable
qualitative demand. Hence, our approach is a strong fit for clus-
tering voluminous datasets in exploratory settings.

1 INTRODUCTION

Clustering is a fundamental primitive for exploratory tasks. Jain
identified three main general purposes of clustering, which em-
phasize the exploratory power of clustering analyses [15]: (1)
Assessing the structure of the data. Here, the goal is to exploit
clustering to gain a better understanding of data, to generate
hypotheses or to detect anomalies. (2) Grouping entities. Clus-
tering aims to group similar entities into the same cluster. Thus,
previously unseen entities can be assigned to a specific cluster.
(3) Compressing data, i.e., to use clusters and their information
as summary for further steps.

Due to their runtime behavior, k-center clustering algorithms,
such as k-Means [16], k-Medians [6] or k-Mode [14] are com-
monly used [18], especially on voluminous data. However, the
expected number of clusters k has to be provided prior to their
execution. Particularly for previously unknown datasets, choos-
ing this parameter is a tremendous pitfall and requires particular
caution: Wrong values lead to bad results regarding the above-
mentioned purposes, i.e., imprecise structurings, groupings or
compressions are performed, thus making the clustering results
unusable in the worst case.

In order to achieve valuable clustering results, k-center cluster-
ing algorithms are typically executed with varying values for k.
This can be performed manually by analysts or in an automated
manner by exploration methods, which perform an automated
exploratory process in order to find valuable clustering results [9].

© 2021 Copyright held by the owner/author(s). Published in Proceedings of the
24th International Conference on Extending Database Technology (EDBT), March
23-26, 2021, ISBN 978-3-89318-084-4 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Series ISSN: 2367-2005

337

However, as these approaches require several complete runs of
a clustering algorithm, they tend to be very time-consuming, in
particular when the clustering algorithm is repeatedly executed
on voluminous datasets [11].

Regarding k-Means as instantiation of a k-center clustering
algorithm, the runtime for a single execution is O(kndw) [13],
where k is the number of clusters, n is the number of entities in
a dataset, d is the number of dimensions, and w is the number
of clustering iterations performed. In the worst case, i.e., when
performing k-Means until convergence, o is super-polynomial
regarding n [3], i.e., a single execution of the clustering algorithm
on large datasets is already very time-consuming. However, for
exploratory clustering analyses, where clustering results of sev-
eral parameter values are of interest, analysts typically require
fast, yet adequately accurate approaches that can be used to gain
a fundamental understanding of the results. As we show in this
paper, efficient exploratory clustering analyses are possible by
controlling the number of clustering iterations in the exploration
process for promising parameter values.

Many implementations, such as sklearn! or Spark’s MLIlib?,
allow to reduce the runtime of clustering algorithms by setting a
fixed threshold for the number of clustering iterations. However,
it is not clear how to set this threshold such that a valuable clus-
tering result can be achieved, since this choice highly depends on
dataset characteristics and the initialization of a clustering algo-
rithm. Hence, too few clustering iterations lead to an imprecise
clustering result, whereas too many clustering iterations lead to
an unacceptable runtime. In this work, we introduce a novel ap-
proach to efficiently terminate k-center clustering algorithms as
soon as a predefined qualitative demand is met, thus reducing the
number of clustering iterations and therefore also the runtime.

Our contributions include the following:

e We propose our novel approach to terminate k-center
clustering algorithms based on a predefined qualitative
demand, which is typically defined by analysts.

o We show, that our approach (i) provides negligible runtime
overhead for its calculations, and (ii) can be seamlessly
integrated into exploratory clustering analyses.

o The results of our comprehensive evaluation on a dis-
tributed Spark cluster unveil that our approach outper-
forms a regular execution of a k-center clustering algo-
rithm with speedups of several orders of magnitude, while
the given qualitative demand is met in most cases.

The remainder of this paper is structured as follows: We present
related work in Section 2. In Section 3, we analyze advantages
and pitfalls of a closely related approach to reduce the number of
clustering iterations. Subsequently, we present our novel generic
qualitative approximation approach for k-center clustering algo-
rithms in Section 4. In Section 5, we summarize the results of a
comprehensive evaluation unveiling the benefits of our method.
Finally, we conclude this work in Section 6.

! https:/git.io/Jt8l] 2 https://git.io/Jt8lt

10.5441/002/edbt .2021.31

https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2021.31

2 RELATED WORK

All k-center clustering algorithms proceed in an iterative man-
ner, i.e., the same sequence of steps is repeated until a given
convergence criterion is met. Each clustering iteration comprises
the following three steps: (1) initialize or change the position of
the centroids, which are centers of gravity for a specific cluster,
(2) improve the clustering by (re-)assigning entities to the clos-
est centroid, and (3) check for convergence. Eventually, many
clustering algorithms terminate when no entities change their
membership anymore. As mentioned above, k-Means as concrete
instantiation of such an algorithm has the runtime complexity
of O(kndw) [13]. Since clustering results for several values for
k are at the core of exploratory processes, we focus on related
work, which addresses the remaining influencing factors.

In order to reduce the number of entities n in a dataset, sam-
pling or coresets [4] can be used to ultimately reduce the runtime
of a clustering algorithm. Similar observations apply to (i) dimen-
sionality reduction techniques, e.g., PCA or SVD, (ii) embeddings,
or (iii) sketches, which all together aim to reduce the number of
dimensions d of the dataset [1].

Regarding the number of clustering iterations w, there are
three categories of related work, which address the internals of a
clustering iteration: (a) It has been shown that the initialization of
k-center clustering algorithms is crucial to reduce the number of
clustering iterations [5, 10]. The initial centroids of state-of-the-
art initialization techniques are close to their optimum position,
therefore requiring less clustering iterations until convergence.
(b) Several works address how a single clustering iteration can
be accelerated, i.e., by making distance calculations faster [7] or
by caching previously calculated distances [12]. (c) Undoubtedly,
reducing w is crucial since it subsumes approaches from (a) and
(b). Therefore, the “check for convergence” step is of paramount
interest when reducing w and thereby reducing the runtime of
the clustering algorithm.

As each iteration comprises costly distance calculations, it is
practically not feasible to perform a clustering algorithm on large
datasets until convergence due to the excessive runtime. Hence,
the question arises when to terminate the algorithm earlier than
convergence. An easy approach to reduce the runtime of the
clustering algorithm is to allow a fixed number of clustering
iterations. However, it is challenging to choose a promising value
for this threshold: Too few iterations lead to an imprecise result,
whereas too many iterations lead to a high runtime. A generic
threshold for all datasets is not feasible, because of too many
influencing factors, such as the feature space or data distribution.

3 META-LEARNING TERMINATION (MTL)

In a previous work [8], we proposed a generic meta-learning
approach to terminate k-center clustering algorithms early based
on an arbitrary definable qualitative demand g € [0; 1]. This ap-
proach relies on a correlation between the quality of intermediate
clustering results throughout several clustering iterations and cor-
responding clustering validity measures (CVMs). To this end, the
meta-learning procedure requires an offline phase, which gath-
ers the necessary meta-knowledge, and an online phase, which
applies the meta-knowledge on previously unseen datasets.

In the offline phase, a clustering algorithm is executed with
varying parameter values on datasets with different character-
istics. Throughout these executions, values of selected CVMs
are recorded for each clustering iteration. The resulting values
of these CVMs are often not normalized, i.e., the value ranges

338

can be unbounded. In order to make these values tangible for
analysts, we introduced the notion of quality ¢ € [0; 1]. That is,
q indicates the quality of the intermediate clustering result after
a certain clustering iteration in contrast to the quality of the last
clustering iteration, which only becomes available after conver-
gence. Hence, the clustering quality for each clustering iteration
can only be investigated in retrospective after convergence. We
proposed to create a correlation between the quality g and the
CVMs, e.g., with a regression function that is trained during the
offline phase based on several executions.

In the online phase, the analyst defines the expected qualitative
demand q for the clustering result of a previously unseen dataset.
Subsequently, the above-mentioned correlation is exploited to ter-
minate the clustering algorithm earlier than convergence, while
aiming to achieve the desired qualitative demand.

We showed that considerable runtime savings are possible,
while regularly meeting the qualitative demand for several CVMs.
However, we face two pitfalls regarding this method: (1) In order
to exploit the correlation, it is first necessary to perform the of-
fline phase. Since the offline phase comprises several executions
of a k-center clustering algorithm, the high runtimes are solely
moved from the online phase to the mandatory offline phase. (2)
Creating a sound correlation between the quality and the corre-
sponding CVM is an optimization problem. Influencing factors
are for example datasets and their characteristics, the selected
CVM, or chosen parameter values in the offline phase. Further-
more, formalizing the correlation itself, i.e., choosing a promising
correlation method, poses another optimization problem.

To the best of our knowledge, this proposed approach is
nonetheless currently the only one to limit the number of cluster-
ing iterations w based on an arbitrarily predefinable qualitative
demand. In the next section, we propose a novel method to re-
duce the number of clustering iterations based on a qualitative
demand, which avoids the two mentioned pitfalls, yet still pro-
vides a tangible notion of quality for analysts.

4 GENERIC QUALITATIVE
APPROXIMATION TERMINATION (GQA)

Before detailing on our new approach, we briefly summarize the
basics of k-center clustering algorithms. Let X be a dataset with
n entities and d dimensions, i.e., X C R9. The goal of k-center
clustering algorithms is to group X into k disjoint clusters, such
that each entity is assigned to the closest centroid ¢ € C. As this
problem is NP-hard [2], several heuristics exist, which aim to
approximate the solution. One of these heuristics is the k-Means
algorithm [16]. The goal of k-Means is to find the set C of k
centroids which minimizes the objective function in Equation 1.

$x(C)= Y minx ~c|? M
xeX

Here, the Euclidean distance from an entity x € X to the closest
centroid ¢ € C is calculated. ¢ x (C) denotes the sum of these
distances over all entities in X and is also called sum of squared
errors (SSE) for k-Means or variance for all k-center clustering
algorithms. k-center algorithms minimize their notion of variance
by moving these k centroids to a better position in each clustering
iteration until a certain convergence criterion is met.

4.1 Intuition of our Approach

The goal of our approach is to exploit a tangible qualitative de-
mand q in order to terminate the clustering algorithm as soon

as g is met. In contrast to MTL [8], we explicitly aim for no
preparations, e.g., no prior meta-learning step.

Our novel approach GQA draws on two properties, which
are valid independent of datasets and eventualities of k-center
clustering algorithms, thus preserving generality.

Property 1: Monotonically decreasing variance. According to
the objective function in Equation 1, the variance ¢ decreases
throughout each clustering iteration, which is applicable for all k-
center clustering algorithms. Manning et al. discuss this property
for k-Means in detail [17], which can be transferred to other
k-center clustering algorithms analogously.

Since ¢ is monotonically decreasing, we derive that the quality
of the clustering is becoming better in each iteration (cf. Equa-
tion 1). Hence, we can formulate the gain in quality as changes
of the variance between two subsequent iterations. To this end,
we focus on the quotient o; of the variance between two subse-
quent clustering iterations i — 1 and i, i.e., o; = (¢;—1/¢;). Finally,
k-center clustering algorithms converge as soon as ¢;—1 = ¢;,
hence o; = 1, i.e., the variance cannot be reduced any further. As
o; typically becomes smaller per iteration and since we do not
make any further assumptions on the dataset X and its variance
in order to preserve generality, we can conclude that o; € [1; oo].

Property 2: Notion of quality. Similarly to MTL, we also draw
on a qualitative demand q € [0; 1] of the approximated clustering
result, yet in a different way. That is, q can be specified by an
analyst, where the choice of ¢ has impact on the clustering result:
If a very accurate clustering result is of interest, g should be set
larger than for exploratory purposes, where already potentially
moderate results may lead to valuable insights.

Yet, the question remains how to combine the qualitative de-
mand g € [0; 1] of the approximated clustering result with o; €
[1; 0], while avoiding time-consuming preparations. Putting
both above-mentioned properties together, we can formalize our
approach as follows: During each clustering iteration, o; (and
therefore ¢;) has to be calculated. Subsequently, terminate the
k-center clustering algorithm as soon as Inequality 2 is satisfied.

@
Inequality 2 denotes that further clustering iterations would typi-
cally reduce o;—1 less than 1—q. Note, that our approach preserves

generality, since both properties are generally valid regarding
dataset characteristics or k-center clustering algorithms.

1-g>a—1

4.2 Algorithm

Algorithm 1 outlines how GQA can be incorporated in the generic
procedure of k-center clustering algorithms. The algorithm pro-
ceeds in four steps: (1) The centroids are initialized in line 1 ac-
cording to a specific initialization, e.g., random, or k-Means|| [5].
(2) The clustering is improved, i.e., the entities are assigned to
the closest centroid (cf. lines 4-6). (3) The centroids are moved
to the center of the cluster. To this end, the new position of the
centroids ¢ € C and the corresponding variance for each cluster
are determined according to an objective function (cf. line 9). (4)
Finally, the algorithm converges in line 16.

Changes in contrast to the regular procedure of k-center clus-
tering algorithms are depicted underlined. As the variance for
each single cluster is calculated in line 9, the overall variance
for the current iteration ¢; is the sum of these individual values.
Subsequently, o; is calculated in line 13, if a previous iteration
was already performed. It is necessary to check this state, since
our approach draws on the change of ¢ between two subsequent

339

Algorithm 1: k-center clustering algorithms with GQA.

Input: X - dataset, k - number of clusters, g - qualitative
demand
Output: K - a combination (o) between X and the assigned
centroid for each entity

/* initialize centroids */
1 C « initialize a set of k centroids;
2 1 0;
3 repeat
/* improve clustering */
4 for Vx € X do
5 K «— {x o c}, where ¢ denotes the closest centroid to x
according to an objective function;
6 end
7 $i(C) < 0;
/* change centroids */

8 for Vc € C do
9 ¢, ¢(c) « new c and its corresponding variance
according to an objective function, where {xoc} € K;
$:(C) < ¢:(C) +¢(c);
end
if i > 0 then
‘ oi — $i-1(C)/$:(C);
$i-1(C) < 4:(C);

i—i+1;

16 untili > 1and1-q > o0;—1; // check for convergence

17 return K;

iterations. After o; is calculated, ¢ is adjusted properly for the
next iteration, i.e., ¢ of the previous iteration is set as ¢ of the cur-
rent iteration. Finally, the convergence criterion is set according
to Inequality 2 in line 16. Note however, that this convergence
criterion can only be met after at least 2 clustering iterations are
performed, since o; draws on the variance ¢ of two subsequent
iterations. Hence, we introduce the additional check for i > 1 in
the convergence criterion in line 16.

4.3 Analysis and Discussion

The goal of our approach is to keep additional calculations as
cheap as possible. As already mentioned, the computations re-
quired by our approach are underlined in Algorithm 1. The com-
putations rely on (a) allocations of variables (lines 7, 10, 13 and
14), (b) comparisons (lines 12 and 16), as well as (c) arithmetic
operations (lines 10, 13, 16). Allocations and comparisons can be
performed in O(1). For the arithmetic operations, we reuse by-
products of the k-center clustering algorithm, such as ¢;. These
values are used throughout several iterations with simple ad-
ditions (line 10) or divisions (line 13). Therefore, the runtime
complexity for the arithmetic operations is O(1). Concluding,
the overall runtime complexity of our approach is O(1), thus pre-
serving the runtime complexity of a k-center clustering algorithm
without a significant runtime overhead.

In contrast to MTL, our novel approach GQA (i) can be used for
ad-hoc exploratory clustering analyses, since it does not rely on
a time-consuming meta-learning step, (ii) preserves generality
regarding dataset characteristics, which may not be the case
for MTL, since it obeys an optimization problem (cf. Section 3),
and (iii) directly addresses the objective function of k-center
clustering algorithms instead of additional CVMs as MTL does.
As discussed above, addressing the objective function can be

Dataset n d c
I-1II 10,000 10 {10; 50; 100}
IV - VI 10,000 50 {10; 50; 100}
VII - IX 10,000 100 {10; 50; 100}
X - XII 100,000 10 {10; 50; 100}
XII-XV 100,000 50 {10;50; 100}
XVI - XVIII 100,000 100 {10; 50; 100}
XIX - XXI 1,000,000 10 {10; 50; 100}
XXII - XXIV 1,000,000 50 {10; 50; 100}
XXV - XXVII 1,000,000 100 {10; 50; 100}

Table 1: 27 synthetic datasets for the evaluation.

done very efficiently, whereas using an additional CVM in each
clustering iteration may require noticeable runtime overhead [8].
Furthermore, it should be emphasized that GQA can be easily
used by analysts and automated exploration methods due to its
striking resemblance to the regular procedure of k-center cluster-
ing algorithms. Because solely g should be defined, the additional
complexity of our novel approach is clearly manageable.

5 EVALUATION

In our evaluation, we investigate the benefits of our proposed
approach for exploratory clustering analyses. To this end, we will
compare our novel approach GQA with its closest competitor
MTL [8] and a regular execution of a k-center clustering algo-
rithm. We present the setup for our evaluation, before presenting
the runtime and quality results.

5.1 Experimental Setup

Hardware and Software. We conducted all of our experiments
on a distributed Apache Spark cluster. This cluster consists of one
master node and six worker nodes. The master node has a 12-core
CPU with 2.10 GHz each and 192 GB RAM. Each worker has a
12-core CPU with 2.10 GHz each and 160 GB RAM. Each node
in this cluster operates on Ubuntu 18.04. We installed OpenJDK
8u191, Scala 2.11.12, Hadoop 3.2.0 as well as Spark 2.4.0.

Synthetic Datasets. We implemented a synthetic dataset gener-
ator in order to perform a systematic evaluation with controlled
dataset characteristics. This tool generates datasets based on the
following input parameters: The number of entities in the dataset
(n), the number of dimensions (d) and the number of clusters in
a dataset (c), where each cluster contains n/c entities. Our tool
generates datasets with values that lie within the range [-10; 10]
for each dimension. Each cluster has a Gaussian distribution with
the mean at the center and a standard deviation of 0.5. The ¢ cen-
ters are randomly chosen and the clusters are non-overlapping.
Table 1 depicts the characteristics of the 27 synthetic datasets.

Real-World Datasets. We use the same datasets as in our prior
work for MTL [8], which are publicly available3. Table 2 summa-
rizes the characteristics of these 10 datasets. Note, that not all of
them have class labels, i.e., the number of classes is unknown for
some datasets (indicated by “-” in Table 2).

Implementation. We base our implementation on Apache
Spark. We focus on k-Means as instantiation of a k-center clus-
tering algorithm due to its overwhelming popularity [18]. To this
end, we implemented several methods to terminate k-Means.

3 https://archive.ics.uci.edu/ml/datasets.php

340

Dataset Name n d ¢
i Skin segmentation 245,057 3 2
ii Poker hand 1,025,010 10 10
iii Individual household electric power consumption 2,049,280 7 -
iv US census data (1990) 2,458,285 68 -
v KDD Cup 1999 data 4,898,431 33 23
vi SUSY 5,000,000 18 2

vii Gas sensor array under dynamic gas mixtures 8,386,765 19 -
viii HEPMASS 10,500,000 28 2
ix HIGGS 11,000,000 28 2
X Heterogeneity activity recognition 33,741,500 5 6

Table 2: 10 real-world datasets as used in the work of
MTL [8], where ¢ denotes #classes, if available.

The baseline (BASE) for this experiment is Spark’s MLIib imple-
mentation of k-Means. This implementation uses k-Means|| [5]
for the initialization step and terminates after 20 clustering itera-
tions at most. We explicitly remove the threshold for the number
of clustering iterations, since we want to highlight the differences
in quality when performing k-Means until convergence.

For MTL, it should be noted that this obeys an optimization
problem regarding (i) the used datasets and their characteristics,
and (ii) the choice of the used correlation technique. However,
for synthetic datasets, we have closely followed the approach
described in our previous work [8]. For the offline phase, we
used datasets from Table 1 where d = 50. We clustered these
datasets with k in 11 equidistant values in [2;2c] and let each
clustering run until Spark’s convergence criterion is met. We
performed three runs per value of k. For each clustering iteration,
we measured the SSE as well as the separation (SEP) between
the centroids, since we achieved the best results with the SEP
metric in our previous work [8]. Subsequently, we trained a
second-degree polynomial regression between the change rate
of SEP in contrast to the relative error of the SSE regarding the
current clustering iteration and the final clustering iteration. The
whole process took 11.17 hours and is thus not feasible for ad-
hoc exploratory clustering analyses. Regarding the real-world
datasets, we use the same ones as in [8], i.e., we also use the
same regression function. The meta-learning process on those
real-world datasets required several days, which emphasizes the
impractical runtime for the offline phase of MTL. Furthermore, we
implemented our novel GQA approach as described in Section 4.

For MTL and GQA, we set the respective qualitative demands
to 90 % and 99 % in order to achieve valuable results. Hence, we
compare Spark’s implementation (BASE) to MTL-90, MTL-99,
GQA-90 and GQA-99 on synthetic and real-world datasets.

Furthermore, we use different initialization techniques in order
to investigate the differences in the results. We run k-Means with
k = c for each dataset, where c is known. For each method, we
performed three runs and present median values.

5.2 Runtime Results

Figure 1 summarizes the results regarding the speedups in con-
trast to the baseline, where Figure 1a focuses on the results with
random initialization and Figure 1b addresses the results with
the initialization via k-Means||. While both of them show the
results on synthetic datasets, Figure 1c unveils the results with
k-Means|| initialization on real-world datasets.

It can be seen that for random initialization, speedups can
be achieved for all datasets in contrast to the initialization via
k-Means||. Since k-Means|| initializes centroids closer to their
optimum, less clustering iterations are necessary than for random

d=10 d=100 d=10 d=100
B ERE]
El It g ERl = 10% E
b s 3 18 k= §
g s 2 I
& S & 18 S 1pEon
100t -
i
g = =
. 2 2oy N ase I 3L
& L5557 gyec 53as)|®B8E 25sz 0o = 5 safgl - g 00
e irs Sas Bial 2§ o10h g % el
2, f E s & E S 2 E
MR I g8 0 E Tt
10" . T 100L
XIX XX XXI XXV XXVI XXVII XXV XXVI XXVII X
Datasets Datasets Datasets Datasets Datasets
(a) Random initialization, synthetic datasets (b) k-Means||, synthetic datasets (c) k-Means ||, real-world datasets
MTL-90 NEMTL-99 GQA-90 GQA-99

Figure 1: Speedup of MTL and GQA in contrast to BASE for all synthetic and real-world datasets where k = c.

initialization. Hence, MTL and GQA lead to remarkable speedups
for random initialization of up to 190.3 (MTL) and 134.7 (GQA).

On the other hand, k-Means|| provides an O(log k)-
approximation to the final clustering result [5]. Therefore, some
speedups of 1 are observed, i.e., BASE terminates k-Means as
early as MTL and GQA. However, as shown in Figure 1b, MTL
and GQA still provide strong speedups in many cases, such as
for datasets XIX and XXVII. We observe speedups of roughly
up to 164.6. When comparing dataset IX with dataset XXVII,
it is evident that the latter has 100X more entities, where the
remaining dataset characteristics, such as d and c, remain un-
changed. As k-Means|| does not select promising initial centroids
for dataset XXVII, several clustering iterations are necessary for
BASE. Yet, MTL and GQA terminate k-Means earlier than con-
vergence, thus achieving significant speedups. More generally
speaking, k-Means|| can only select promising initial centroids,
if the underlying dataset characteristics and number of clusters
are a strong fit for its procedure.

Regarding the results of the real-world data (cf. Figure 1c),
we make very similar observations. Here, even more significant
speedups of up to 669.0 (MTL) and 444.7 (GQA) can be observed
for the largest real-world dataset x.

In general, MTL and GQA achieve similar speedups, however
MTL is faster in some cases. Note, that MTL addresses the SEP,
whereas GQA addresses the variance (= SSE for k-Means) in order
to approximate clustering results. Since the SEP typically changes
more significantly in the first few iterations than the SSE, we
argue that GQA requires a few additional clustering iterations.

Regarding the different qualitative demands, we observe only
small deviations in the resulting speedups. These differences
mostly occurred on real-world datasets (cf. Figure 1c). Here, the
higher qualitative demand of 99 % requires more iterations and
therefore leads to lower speedups.

We conclude that both approaches are well-suited for rather
voluminous datasets, since k-center clustering algorithms require
more clustering iterations on these datasets until convergence,
which is explicitly addressed by MTL and GQA.

5.3 Quality Results

Since MTL and GQA are able to speedup the execution of a clus-
tering algorithm significantly, the question remains how these
approximations affect the clustering quality.

341

As clustering aims to provide compact and well-separated clus-
ters, we focus on the compactness and the separation (SEP) of
the centroids. We use the sum of squared errors (SSE) as instanti-
ation of the compactness, since the smaller the SSE for k-Means,
the less variance in the clusters, i.e., the more compact are the
clusters. For a better comparison, we focus on the relative error
& of SSE and SEP of the clustering results of MTL and GQA in
contrast to the baseline, i.e., the smaller the better.

Figure 2 summarizes the results for MTL and GQA. Note the
different y-axes throughout the figures. The results unveil that
the qualitative demands of 90 % and 99 % are mostly met in av-
erage for MTL and GQA. It should be noted, that the qualitative
demand of GQA addresses the SSE (left), whereas the qualitative
demand of MTL addresses the SEP (right). A more detailed in-
vestigation of the results unveiled that for all synthetic datasets,
the respective qualitative demands are always met. Regarding
the real-world datasets, MTL and GQA rarely terminated the
clustering algorithm too early, thus omitting better clustering
results. This happened for both approaches only once for a quali-
tative demand of 90 % and twice for a qualitative demand of 99 %.
This observation supports the practical feasibility of our novel
approach GQA, i.e., addressing the decreasing trend of ¢; leads
to satisfying clustering results in practice.

The quality of the clustering results achieved by MTL and GQA
differ only marginally from the baseline, i.e., the regular execution
of k-Means. Furthermore, the initialization via k-Means|| leads
to more compact and better separated clustering results than
initializing at random, since the values for §SSE and §SEP are
mostly smaller (cf. Figure 2a and b). Hence, this initialization is
better suited for exploratory clustering analysis, since it allows
more correct insights into clustering results.

Moreover, the results achieved by GQA are always better than
the corresponding pendant of MTL in terms of SSE and SSEP.
The reason can be found in the additional clustering iterations
that GQA performed in contrast to MTL (cf. Section 5.2).

Concluding, MTL and GQA perform similar in terms of run-
time, yet GQA does not rely on a previously conducted offline
phase for meta-learning. Remember, that MTL required several
executions of a k-center clustering algorithm on several datasets,
which required more than 11 hours for synthetic datasets and
several days for real-world datasets in our scenario. In addition,
MTL and GQA lead to compact and well-separated clustering
results. However, GQA achieves better clustering results, because

10% [~ B
—~ 1.42 —~ 102
S : ® 283107% 13171072 1.41-1072 1.16 11072
_ 3.59 710~ 10-3 4 1072 [~ N
H o102 f 1107 47.107% | £
%) n
) -6 L I IR _
MTL-90 MTL-99 GQA-90 GQA-99 MTL-90 MTL-99 GQA-90 GQA-99
(a) Random initialization, synthetic datasets
E 2 R) - 1
[Sa) Ay 1074 | E
v 11073 11073 25| - 3.34-.1073 3.34{1073 -3 e
B 10725 | 234:1070 23401070 gg q08 7 334107 3340 273107 0
)) “©w E)]
1073
MTL-90 MTL-99 GQA-90 GQA-99 MTL-90 MTL-99 GQA-90 GQA-99
(b) k-Means ||, synthetic datasets
S N ® 01 L]
= 1001 4.90 3.67 1 = 100 3.29 3.06 =
% = 2.13 n L(})J 0 - ks]
B 1.03 7 100 E 0.44 =
g0 | HEEES - E
MTL-90 MTL-99 GQA-90 GQA-99 MTL-90 MTL-99 GQA-90 GQA-99

(c) k-Means||, real-world datasets

MTL-90 e MTL-99

GQA-90

GQA-99

Figure 2: Relative error § of SSE and SEP compared to the baseline. Average values are depicted per error bar. Smaller
values indicate more similar clustering results w.r.t. the baseline, i.e., they show better clustering results.

it typically requires a few more clustering iterations than MTL.
Therefore, our novel approach GQA is well-suited for ad-hoc ex-
ploratory clustering analyses, especially on voluminous datasets,
since it provides very accurate results in a short time period.

6 CONCLUSION

In this work, we proposed a novel approach to terminate k-center
clustering algorithms as soon as a predefined qualitative demand
of the clustering results is met. Our approach aims to trade off
quality of clustering results, while achieving them in a short time
frame. We showed that our approach is generic, i.e., it can be
used with several k-center clustering algorithms and initializa-
tion strategies. In our comprehensive evaluation, we unveiled
that our approach significantly outperforms state-of-the-art ex-
ecutions of k-center clustering algorithms in terms of runtime,
yet achieves very similar clustering results. Therefore, it is of
particular interest for exploratory clustering analyses. Future
work will address to what extent automated exploration methods
benefit from our novel approach.

ACKNOWLEDGMENTS

This research was partially funded by the Ministry of Science of
Baden-Wiirttemberg, Germany, for the Doctoral Program ’Ser-
vices Computing’. Some work presented in this paper was per-
formed in the project INTERACT’ as part of the Software Cam-
pus program, which is funded by the German Federal Ministry
of Education and Research (BMBF) under Grant No.: 011S17051.

REFERENCES

[1] Amirali Abdullah, Ravi Kumar, Andrew McGregor, Sergei Vassilvitskii, and
Suresh Venkatasubramanian. 2016. Sketching, embedding, and dimensionality
reduction for information spaces. In AISTATS 2016, Vol. 41. 948-956.

342

S
e AN

=
=

[10

(1]

[12]
[13]

[14]

[15]

[16]

[17]

(18]

Daniel Aloise, Amit Deshpande, Pierre Hansen, and Preyas Popat. 2009. NP-
hardness of Euclidean sum-of-squares clustering. Machine Learning 75, 2 (may
2009), 245-248.

David Arthur and Sergei Vassilvitskii. 2006. How slow is the k-means method?.
In Proceedings of the Annual Symposium on Computational Geometry.

Olivier Bachem, Mario Lucic, and Andreas Krause. 2018. Scalable k-means
clustering via lightweight coresets. In Proceedings of the ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining. 1119-1127.
Bahman Bahmani, Benjamin Moseley, Andrea Vattani, Ravi Kumar, and Sergei
Vassilvitskii. 2012. Scalable K-Means++. PVLDB 5, 7 (2012), 622-633.

P S Bradley, O L Mangasarian, and W. N. Street. 1997. Clustering via concave
minimization. In Advances in Neural Information Processing Systems. 368—-374.
Charles Elkan. 2003. Using the Triangle Inequality to Accelerate k-Means.
International Conference on Machine Learning (2003), 147-153.

Manuel Fritz, Michael Behringer, and Holger Schwarz. 2019. Quality-driven
early stopping for explorative cluster analysis for big data. SICS Software-
Intensive Cyber-Physical Systems 34, 2-3 (jun 2019), 129-140.

Manuel Fritz, Michael Behringer, and Holger Schwarz. 2020. LOG-Means:
Efficiently Estimating the Number of Clusters in Large Datasets. PVLDB 13,
11 (2020), 2118 - 2131.

Manuel Fritz and Holger Schwarz. 2019. Initializing k-means efficiently:
Benefits for exploratory cluster analysis. In Lecture Notes in Computer Science,
Vol. 11877 LNCS. Springer, 146-163.

Manuel Fritz, Dennis Tschechlov, and Holger Schwarz. 2020. Learning from
past observations: Meta-learning for efficient clustering analyses. In Lecture
Notes in Computer Science, Vol. 12393 LNCS. Springer, 364-379.

Greg Hamerly. 2010. Making k-means even faster. In Proceedings of the 2010
SIAM international conference on data mining. 130-140.

Greg Hamerly and Jonathan Drake. 2015. Accelerating Lloyd’s Algorithm for
k-Means Clustering. In Partitional Clustering Algorithms. Springer, 41-78.
Zhexue Huang. 1997. A Fast Clustering Algorithm to Cluster Very Large
Categorical Data Sets in Data Mining. Research Issues on Data Mining and
Knowledge Discovery (1997), 1-8.

Anil K. Jain. 2010. Data clustering: 50 years beyond K-means. Pattern Recog-
nition Letters 31, 8 (jun 2010), 651-666.

James B. Macqueen. 1967. Some methods for classification and analysis of
multivariate observations. Proceedings of the Fifth Berkeley Symposium on
Mathematical Statistics and Probability 1 (1967), 281-297.

Christopher D. Manning, Prabhakar. Raghavan, and Hinrich. Schiitze. 2008.
Introduction to information retrieval. Cambridge University Press. 482 pages.
Xindong Wu, Vipin Kumar, Quinlan J. Ross, Joydeep Ghosh, Qiang Yang,
Hiroshi Motoda, Geoffrey J. McLachlan, Angus Ng, Bing Liu, Philip S Yu,
Zhi Hua Zhou, Michael Steinbach, David J Hand, and Dan Steinberg. 2008.
Top 10 algorithms in data mining. Knowledge and Information Systems 14, 1
(2008), 1-37.

	Efficient Exploratory Clustering Analyses with Qualitative ApproximationsManuel Fritz, Dennis Tschechlov, Holger Schwarz

