
Fixing Wikipedia Interlinks Using Revision History Patterns
Tova Milo

Tel Aviv University
milo@post.tau.ac.il

Slava Novgorodov
eBay Research

snovgorodov@ebay.com

Kathy Razmadze
Tel Aviv University

kathyr@mail.tau.ac.il

ABSTRACT
Wikipedia, the web-based free content encyclopedia project, is
one of the most popular websites on the Web. Its “open-door"
policy, allowing anyone to edit, has made Wikipedia the largest
and possibly the best encyclopedia in the world. At the same
time, the continuously evolving content, constantly updated by a
large number of uncoordinated users, renders the maintenance of
a clean, consistent encyclopedia an extremely challenging task.

The goal of the WICLEAN (WC) system presented in this pa-
per is to assist Wikipedia editors in this difficult task. Specifically,
we focus on the correctness of Wikipedia inter-links that point
from one article (entity) to another. Such inter-links form a key
component of the structured part of Wikipedia and their correct-
ness is critical for coherent browsing. Given an entity type of
interest, our highly parallelizable algorithm identifies relevant edit
patterns across revision histories of Wikipedia entities of related
types, along with time windows in which partial edits are tolerable.
The discovered patterns/windows are then used by WC to alert
Wikipedia editors on past edits that appear to be incomplete, as
well as to provide users with on-line assistance as they update
the encyclopedia. Our experiments with real-life Wikipedia data
demonstrate the efficiency and effectiveness of WC in identifying
actual errors in a variety of Wikipedia entity types.

1 INTRODUCTION
Wikipedia, the free-content web encyclopedia, is one of the most
popular websites on the Web. Per Time magazine, Wikipedia’s
"open-door" policy of allowing anyone to edit the data, has made
it the largest, and possibly best, encyclopedia in the world [2].
Nonetheless, the continuously evolving content, constantly up-
dated by a large number of uncoordinated users, renders the main-
tenance of a clean, consistent encyclopedia an extremely challeng-
ing task. To understand the volume of the updates, the English
Wikipedia in 2018 consisted of 6 million articles, with an average
of 3.4 million edits per month, by roughly 30𝐾 active editors [4].

The goal of our work is to assist Wikipedia editors in this
difficult task. Specifically, we focus here on the correctness of
inter-links that point from one article to another in the structured
sections of Wikipedia (such as infoboxes and tables), which is
critical for coherent browsing. Maintaining the integrity of these
links is challenging, as illustrated by the following example.

Example 1.1. Consider the Wikipedia page of the soccer player
Neymar. The links in its infobox point to the page of his current
club, Paris Saint Germain F.C. (PSG), his place of birth, and so
on. When Neymar moved to PSG in 2017, leaving his previous
team, Barcelona F.C., the three related pages, Neymar, PSG, and
Barcelona F.C. had to be updated.

There are three typical causes for inconsistently updating these
links. First, Wikipedia editors are not provided with a compre-
hensive list of links that need to be updated as a result of such an

© 2021 Copyright held by the owner/author(s). Published in Proceedings of the 24th
International Conference on Extending Database Technology (EDBT), March 23-26,
2021, ISBN 978-3-89318-084-4 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

event. A typical error related to player transfers is updating only
the page of the new club and neglecting to update the page of the
old club, which still incorrectly links to the player.

Second, different pages are often edited by different people,
typically, in an uncoordinated manner. It could be that, e.g., the
page of the club is updated by one dedicated editor, whereas no
editor has taken up the responsibility of updating Neymar’s page
or even noticed the absence of a corrected link. Moreover, no
mechanism alerts the active editors of Neymar’s page of a related
update, that may require action on their part.

Third, it is often impractical to correct all links simultaneously.
For example, player transfers occur during predetermined periods,
referred to as transfer windows, and tend to take a long time to
be officially confirmed. In the meantime, many rumors regarding
conflicting transfer destinations are posted in various media out-
lets. Consequently, in that span, there may be hundreds of edits
of player pages, adding/removing new/old links, and reverting
previous edits, whereas the club pages are commonly updated
only once the transfer is officially approved.

More generally, Wikipedia contains very noisy data, as it could
be edited by anyone, including bots1, inexperienced editors, and
opposite-agenda editors2, resulting in editing conflicts3 and dis-
pute resolution4. This process of frequent conflicting edits, cul-
minating in a consistent state, is a naturally evolving mechanism
to mitigate noise, due to the distributed and asynchronous nature
of Wikipedia edits. Thus, enforcing immediate corresponding up-
dates to all relevant links during the dispute period is impractical
and counterproductive. Moreover, the existence of a time window,
that may range from hours to months (depending on the context of
the update and the involved entities), during which partial incon-
sistent edits are tolerable, beyond serving as a necessary trigger for
the dispute resolution process, also has the advantage of providing
users with the most up-to-date, albeit tentative, information.

Previous work. Much research has been devoted to aspects
of this problem in the more general context of detecting errors
in knowledge bases (KBs) [22]. Some of these works [27, 30]
also evaluated their solutions over Wikipedia, representing a snap-
shot of it as a KB, with pages as entities, and entity relations
derived from inter-links. Over this representation and an input set
of integrity constraints, pertaining to entity relations, the objec-
tive is to detect all their violations. While these works provide
satisfactory solutions for the intended problem over KBs, cast-
ing the special case of inconsistencies in the constantly-evolving
Wikipedia’s links into this generic framework, omits important
practical considerations specific to the operation of Wikipedia.

To illustrate, continuing with our example of player transfers, a
possible constraint over the corresponding KB may state that if
player A links to club B, then club B also links to player A and
vice versa. If there exists only one link or two contradictory links,
then a violation of this constraint is detected. There are several
drawbacks to applying this approach as a comprehensive solution.
1https://www.bbc.com/news/magazine-18892510
2https://en.wikipedia.org/wiki/Wikipedia:Lamest_edit_wars
3https://en.wikipedia.org/wiki/Edit_conflict
4https://en.wikipedia.org/wiki/Wikipedia:Dispute_resolution

Series ISSN: 2367-2005 49 10.5441/002/edbt.2021.06

https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2021.06

First, the most crucial drawback relates to the fact that the con-
straints are static and lack any temporal dimension. Concretely,
the constraint does not account for the time window, discussed
in Example 1.1, during which partial edits are acceptable (and,
in some cases, practically unavoidable). An inconsistency should
be resolved at the earliest appropriate moment but not earlier. In
this case, this earliest moment is arguably the end of the transfer
window. However, detecting the constraint violation right after
Neymar’s page is linked to PSG, without a link in the other direc-
tion, is treated the same as detecting it long after the end of the
transfer window. Consequently, one is uncertain whether to take
immediate action or allow the unsupervised process of sequen-
tial refining edits to run its course and converge into a consistent
state. We note that solutions suggested in previous works (e.g.,
[27]), discussed above, can successfully identify ‘window-less’
edits’ combinations. That is edits that should all be applied si-
multaneously and are distributed uniformly across the timeline of
Wikipedia’s revision history. However, our empirical analysis iden-
tified many edit patterns associated with specific time windows,
such as in Example 1.1. Our work is, thus, complementary to the
above works, as it aims to address specifically these patterns.

Second, most works assume the existence of a set of constraints
as input for the solution framework. This is not realistic in the
case of Wikipedia. Wikipedia entries encompass a wide array of
domains and sub-domains, each with its own set of constraints.
While there are broad similarities across related domains, each
domain may be infinitely nuanced. Given the volume of domains,
entity types, and case-specific subtleties, the task of comprising
a nearly exhaustive list of important constraints is impractical,
particularly if one is also interested in complex relations (where,
e.g., a combination of 10 pages must be consistently updated).

In this line of research, closest to us, is the recent work of [36],
where the focus is on Wikipedia, and on top of detecting viola-
tions of the given constraints, the solution produces corresponding
correction rules, that dictate how one can resolve partial edits.
This is inferred by examining the revision history, identifying the
most common patterns of revision actions for completing each
type of partial editing. Nevertheless, this work also does not aim to
identify tolerable time windows and targets the scenario where the
list of constraints is provided as input (a more detailed comparison
to this and previous works is presented in Section 2).

Our approach. To address the above limitations, we present
in this paper WiClean (WC), a system that automatically infers
common edit patterns (combinations of edits), along with a time
window for allowing partial edits of each pattern, alerts editors of
inconsistencies, and suggests concrete corrections.

The thesis underlying WC is that the majority of Wikipedia
updates follow desirable patterns and lead to consistent states.
WC, thus, mines revision logs to identify common update patterns
and the time windows in which they occur. Potential errors are
then detected by updates that deviate from the patterns and are
not completed within the corresponding window. For such partial
patterns, WC suggests all completions to known patterns, providing
statistical metadata to facilitate an informed course of action.

Before describing our solution techniques, we illustrate the
format of the revision history. Figure 1 depicts excerpts from
the revision histories of players and clubs merged into a single
timeline. The Subject column identifies the article where the addi-
tion/removal of a link occurred, the Object column identifies the
article to which the added/deleted links point, and the Relation
column describes the link type (the column R will be explained

+/- Subject Relation Object Time R
1 - Neymar current_club Barcelona F.C ...1531 0
2 - Gianluigi Buffon current_club Juventus F.C. ...1534 1
3 - Neymar in_league La Liga ...8711 1
4 - Barcelona F.C squad Neymar ...2804 0
5 + Neymar current_club PSG F.C. ...3321 0
6 + PSG F.C. squad Neymar ...8263 1
7 + Barcelona F.C. squad Neymar ...4040 0
8 + PSG F.C. squad Gianluigi Buffon ...4051 1
9 + Gianluigi Buffon in_league Ligue 1 ...3330 1

10 + Neymar in_league Ligue 1 ...8711 1
11 - Juventus F.C. squad Gianluigi Buffon ...4058 1
12 + Neymar current_club Barcelona F.C ...5861 0
13 - Kylian Mbappe current_club Monaco F.C. ...9459 1
14 - Neymar current_club PSG F.C. ...3732 0
15 - Gianluigi Buffon in_league Serie A ...3380 1
16 - Neymar current_club Barcelona F.C ...6109 1
17 + Neymar current_club PSG F.C ...7694 1
18 - Barcelona F.C. squad Neymar ...8001 1
19 + Kylian Mbappe current_club PSG F.C. ...9589 1
20 - Monaco F.C. squad Kylian Mbappe ...9451 1
21 + PSG F.C. squad Kylian Mbappe ...9885 1

Figure 1: Actions from revision history of several articles

later). One can see that, after several edits and reverts, the transfer
of Neymar is reflected in his and the teams’ pages.

Methods. Formally, we model Wikipedia entities (articles) and
the links between them as a graph. Nodes and edges are labeled by
type names. Intuitively, the revision history of each article records
the edits made to the outgoing links of the corresponding graph
node. Given an entity type of interest, our algorithm identifies
meaningful relevant edit patterns across revision histories, along
with time windows in which partial edits are acceptable. By mak-
ing an analogy between link edits (resp. edit patterns) and graphs
(graph patterns), we can harness conventional graph mining algo-
rithms to our context. However, some important adaptations must
be made to account for (1) the Wikipedia type hierarchy5 that
requires the examination of a larger number of potential patterns,
and (2) the distributed nature of the edits across revision histories
of multiple entities, that makes the construction of the full edits
graph prohibitively expensive. For the former we introduce a join-
based computation (optimized by the underlying SQL engine) to
quickly prune infrequent patterns; for the latter we use incremental
graph construction that considers only relevant entity types.

The discovered windows and patterns are then used by WC to
assist Wikipedia editors in correcting/updating Wikipedia links.
Here again, we employ an optimized join-based computation to
quickly identify potential errors. WC both alerts Wikipedia editors
on past edits that appear to be incomplete as well as provides users
with on-line assistance as they update Wikipedia.

Our contributions can be summarized as follows:

• Model. We formulate and present a simple, natural model for
capturing time windows and update patterns of interest. Given
an entity type 𝑡 , our goal is to find related and common update
patterns across the Wikipedia graph. Such updates may involve
entities of the same or other types. We first introduce the notion
of abstract update actions that generalize a set of actions involv-
ing specific entities to general patterns over the corresponding
entity types. We then define the notion of connected patterns
which include abstract actions that are related (possibly transi-
tively) to entities of the input type of interest. The frequency of
a pattern, within a time frame 𝑤 , is then naturally defined as
the fraction of entities of type 𝑡 that participate in a pattern that
occurs within the time frame𝑤 (Section 3).

• Identifying windows and patterns. Building on algorithms
for graph mining, we devise a scalable, highly parallelizable
algorithm, based on the following three points. (1) We represent

5Typically around eight hierarchy levels.

50

the identified patterns by relational tables, incrementally com-
puted by dedicated relational queries. This allows harnessing
the effective optimizations of the SQL engine underlying WC.
(2) Unlike conventional graph mining algorithms that assume
that the entire graph is given as input, our focus on connected
patterns allows WC to incrementally consider only the entity
types (and their corresponding revision histories) that may po-
tentially be related to the input type via frequent edit patterns,
thereby significantly saving on graph construction. (3) We focus
on non-overlapping time windows and split the revision histo-
ries accordingly. This reduces the number of actions (edits) to
be considered for each window (and resp. the size of the edits
graph) and allows parallelizing the processing of the action sets
in the different windows (Section 4).

• Using Windows and patterns. An immediate application of
the discovered patterns is to alert Wikipedia editors on partial
edits performed in past windows, as well as to assist users in
current edits. For that, we examine the discovered windows
and then signal, for each window and pattern, partial edits that
may be extended to a full pattern occurrence. Our algorithm
builds on the previously mentioned relational representation of
patterns and employs dedicated outer-join queries to identify
partial pattern occurrences (Section 5).

• Implementation and experiments. We have implemented our
solution and employed it over real Wikipedia data. We con-
sidered a variety of Wikipedia entities, identifying a multitude
of interesting time frames and corresponding relevant frequent
edit patterns, and signals of updates that deviate from the mined
patterns. Our experiments demonstrate the effectiveness of our
approach for identifying real-life errors. The experiments fur-
ther demonstrate the efficiency and scalability of our algorithms,
compared to competing baselines (Section 6).

To complete the outline of the paper, we overview related work
in Section 2 and discuss future work in Section 7.

Finally, we note that the prototype of WC was demonstrated in
[20]. The short paper accompanying the demonstration provided
only a high-level overview of its capabilities and user interface
whereas the present paper details the model and algorithms under-
lying our solution as well as their experimental evaluation.

2 RELATED WORK
We overview related work from several related fields.

Wikipedia Cleaning. Much effort has been devoted over the
past years to the cleaning and correction of errors in Wikipedia.
Our work, which focuses on link correction, is complementary
to works on entity resolution, completeness prediction, and van-
dalism detection [9, 33]. Similarly to our work, [13] also aims to
improve inconsistencies in Wikipedia’s infoboxes, representing
it as an RDF database. However, [13] does not take the revision
history into account and instead uses user interaction as the main
tool. In contrast, our algorithm requires no user assistance, other
than setting the initial parameters.

Revision history as a tool. Revision histories have been used
in multiple areas, e.g., in program repairing, in recording prove-
nance in knowledge bases and assisting query answering [10]. In
Wikipedia, revision histories have been leveraged for various pur-
poses, such as the discovery of controversial topics, the estimation
of an article’s translation quality and the detection of vandalism
[23]. Other lines of work attempt to learn how to use the edits
to enrich Wikipedia, e.g. to edit infoboxes with news extracted
from tweets, or to connect Wikipedia edits to recent news articles

[17]. Our work is complementary to these efforts, considering the
consistency/completeness of edits to multiple related entities.

As mentioned in the introduction, particularly close to our work
is [36], which, similarly to WC, infers from edit histories in Wiki-
data knowledge bases how to correct inconsistencies/violations.
Nevertheless, this problem is formalized over a different model
with similar but different objectives. One important difference
is that in the setting of [36], the constraints are provided in ad-
vance, and the focus is on correction rules (for violations of these
constraints) mining from relevant past edits. Whereas, one of the
key contributions of our work is the derivation of such constraints
(edit patterns, in our context). Moreover, the setting of [36] does
not take into account the time frames in which a given constraint
should or should not be enforced. Another key difference is that
[36] do not harness the Wikipedia type hierarchy as a means to
enrich their constraints of correction rules.

Other works that use the Infobox revision history focus on
cleaning tasks. These include refining infobox titles by locating
duplicate attributes within each entity type, predicting when a
given infobox is likely to be updated and by whom, and identifica-
tion of vandalizing editors [8].

Constraints inference and enforcement. The patterns we iden-
tify can be viewed as a form of integrity constraints. There is a
large body of work devoted to inferring and enforcing such con-
straints. Two recent examples are [27, 30]. In [30], both positive
and negative examples are used to infer the constraints. Their
approach consists of greedily identifying, at each step, the most
promising rule, in terms of the coverage of the positive examples.
As [30] focus on identifying rules that make good predictions,
some of the rules that exceed the confidence threshold will not be
found. An alternative approach is taken by [27], where rules are
mined via an exhaustive, breadth-first search method. They devise
sophisticated pruning strategies and optimizations that enable their
solution to efficiently run on large KBs, such as Wikidata.

Many other approaches to KB correction have been explored
in the literature, e.g., discovering denial constraints [14] and error
detection via the few-shot learning framework (e.g., [22]).

A key difference, in our setting, is that the constraints need to
be enforced only outside the time frames in which inconsistencies
are acceptable. Thus, we focus on a different objective, where in
addition to the update patterns, we also identify the corresponding
time window for each pattern. Another difference is that we iden-
tify patterns from the sequence of actions in the revision log, and
not from a static snapshot of the knowledge base. Moreover, the
above works (barring [36], which we discussed separately above),
are concerned with detecting the rules/constraints, while one ad-
ditional objective, in our setting, is to also compute correction
suggestions for violations (partial patterns) of these rules. Lastly,
to our knowledge, we are the first to leverage the type hierarchy
to consider more nuanced rules, at varying levels of abstraction.

The importance of considering consistency, w.r.t. a sequence of
actions, has recently been emphasized in the vision paper of [12].
Our work matches their motivating use-case, which advocates
the usage of Wikipedia revision logs for data cleaning. Another
related, complementary line of work deals with optimizing the
corrections procedure over the detected constraint violations [11,
19]. It would be interesting to examine whether their techniques
may be employed in our setting, to further optimize WC.

(Sequential) itemset/association rule mining. Algorithms for
frequent itemset/association rules mining have been the focus of
many works, including contexts where the mined items belong to
a type hierarchy [32].As we seek connected patterns, conventional

51

a-priori style algorithms for frequent itemsets mining [7] inappli-
cable to our setting. Such algorithms recursively assemble larger
frequent itemsets from smaller ones, but arbitrary sub-patterns of
a connected pattern may not be connected, w.r.t. the input type.
Consequently, our solution exploits principles from graph mining
algorithms rather than general frequent itemsets.

Another closely related line of work deals with sequential item-
set/association rules mining, where the pattern is mined from a
sequence of items [34, 41] and [5] which discovers temporal rules
for web data cleaning. In these works, the focus is also typically
on arbitrary items set, rather than connected patterns. More impor-
tantly, the order of the items in the sequence is important in these
works. In contrast, as explained in Section 3, in our case, only the
co-occurrence of items within the given window matters, whereas
their relative positioning within the window does not.

An interesting set of works that deal with sequential patterns
mining studies probabilistic or uncertain databases [18, 29]. In our
setting, there is inherent uncertainly, w.r.t. the (in)correctness of
the identified partial updates, and thus examining the connection
to such works is an interesting direction for future research.

Graph mining. Graph mining algorithms (see survey in [24])
can be roughly divided into two categories: algorithms that mine
patterns in a set of graphs (e.g. [39]) and algorithms that are pro-
vided with a single large graph (e.g. [26, 28]). Our context is
the latter. Multiple notions of graph pattern frequency have been
proposed in the literature, many of which consider the number of
distinct isomorphisms from the given pattern graph to the input
graph [15, 24]. However, as our goal is to characterize how fre-
quent a pattern is relative to a particular entity type of interest,
we employ here the notion of frequency, inspired by [16], that
counts the number of nodes, out of all nodes of the given type,
that are involved in some pattern occurrence. Our notion can also
be viewed as a special case of the MNI support in [15], where the
isomorphism count focuses only on the given entity type.

As discussed above for association rules mining, since our fo-
cus is on connected patterns (and the corresponding frequency
notion), algorithms that consider arbitrary sub-graphs (e.g. [21])
are unsuitable for our setting. We follow instead the “grow and
store” approach of [26], that iteratively expands previously identi-
fied (connected) patterns. However, two issues must be addressed
when adapting such a scheme to our context. First, the need to
support the Wikipedia type hierarchy entails a richer order relation
among patterns (see Section 3), which, to our knowledge, is not
supported by any of the existing algorithms for mining connected
patterns in graphs. Second, [26] (and all other comparable works),
assume that the algorithm receives as input the entire graph. This
is impractical in our context. Specifically, as our experiments
demonstrate, materializing the complete edits graph from a mas-
sive number of entity revision histories is infeasible. Our dedicated
algorithm addresses both these issues. In general, modifying solu-
tions that expect the entire graph as input, is, arguably, not trivial.
For instance, the work of [40], which leverages the embedding of
the nodes to mine patterns, cannot be straightforwardly integrated
into our approach of gradually examining larger subgraphs, as the
embedding loses its utility if the underlying graph changes.

Another related line of work is Link Prediction [35, 38] that
discover missing links within Wikipedia. However, these works
do not detect incorrect links that should be removed.

Wikipedia information extraction. To conclude, we note that
one may think of the patterns/time windows that we derive as a
particular type of information, extracted from Wikipedia revision

logs. Much previous work has been devoted to information ex-
traction from Wikipedia articles (e.g. [31]) rather than their edit
history. As mentioned, some works consider the revision logs, but
for other purposes, and could be useful information or tool for
us. In particular, [37] devise optimization methods for processing
Wikipedia’s revision history, as it is a massive and complicated
dataset, and [25] infers the level of expertise of a specific editor
from statistics of conflicts with other editors.

3 PRELIMINARIES
We start by presenting the data model underlying the system.

Wikipedia Graph. We model the relations between entities at
a given point in time using a graph 𝐺 (𝑉 , 𝐸). Each node represents
an entity and is labeled by a unique name (e.g. Neymar) and a type
(e.g. soccer player). Each edge represents a relationship between
two entities and is labeled accordingly (e.g. 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑐𝑙𝑢𝑏).

We use an alignment from Wikipedia entities to DBPedia [1]
to derive the entity types. The link labels (relationship names) are
derived directly from Wikipedia. In general, the types belong to
type taxonomy - the higher the type is in the taxonomy the more
general it is - and an entity may have multiple types. For two types
𝑡, 𝑡 ′ we use 𝑡 ′ ≤ 𝑡 to denote the fact that 𝑡 either equals to 𝑡 ′ or
generalizes it. For example, 𝑆𝑜𝑐𝑐𝑒𝑟_𝑃𝑙𝑎𝑦𝑒𝑟 ≤ 𝐴𝑡ℎ𝑙𝑒𝑡𝑒 ≤ 𝑃𝑒𝑟𝑠𝑜𝑛.
We assume that each entity 𝑒 has one most specific type to which
it belongs and use it as its label, denoted 𝑡𝑦𝑝𝑒 (𝑒). For a type 𝑡 we
use 𝑒𝑛𝑡𝑖𝑡𝑖𝑒𝑠 (𝑡) to refer to all entities labeled by a type 𝑡 ′ ≤ 𝑡 .

Actions and inverse actions. The revision history of Wikipedia
entities contains edits to the graph edges. We particularly consider
two types of actions: adding new edges and deleting existing ones.
Our model associates each action with a time stamp. We use a
triplet of the form 𝑎 = (+, (𝑢, 𝑙, 𝑣), 𝑡) (resp. 𝑎 = (−, (𝑢, 𝑙, 𝑣), 𝑡)) to
denote the addition (rep. deletion) of edge from 𝑢 to 𝑣 with label 𝑙
at time 𝑡 . We use 𝑠𝑜𝑢𝑟𝑐𝑒 (𝑎) = 𝑢 and 𝑡𝑎𝑟𝑔𝑒𝑡 (𝑎) = 𝑣 to denote the
source and target entities, resp., of the added/deleted edge. We say
that an action 𝑎′ is the inverse of a preceding action 𝑎, denoted
𝑎′ = 𝐼𝑛𝑣 (𝑎) if applying 𝑎′ after 𝑎 leaves the graph unchanged.

For example, in row #1 in Figure 1 we see an update to Ney-
mar’s Wikipedia entry, when a user removed (−) the Barcelona
(= 𝑣) team that Neymar (= 𝑢) was playing at (= 𝑙), at a certain
time (=t), and, action #12 is an inverse action of action #1.

Note that, in Wikipedia, each action appears at the revision
history of the source node of the edge. Intuitively, this is because
the revision history of each article records the edits made to the
outgoing links of the corresponding graph node. Updates of other
incoming links are recorded in the revision logs of these other
pointing entities. Continuing the above example, the two actions
#1 and #3 will appear in the revision history of Neymar’s page,
and the gray action set in Figure 1 is the set of actions taken from
entities of the same type (soccer_player).

(Reduced) set of actions. Given a Wikipedia graph𝐺 (𝑉 , 𝐸), a
set of entities 𝑆 ⊆ 𝑉 , and a time frame (referred to as window), we
consider the set of all actions (denoted as 𝐴) that were recorded in
the revision history of the entities in 𝑆 , within the given window.

For instance, Figure 1 shows the set of actions recorded in the
revision histories of the entities S = {Neymar, Kyian_Mbappe,
Barcelona_F.C., Gianluigi_Buffon, PSG_F.C., Monaco_F.C., Ju-
vetus_F.C.} at a given time frame. Observe that all the updated
links are outgoing links from the entities in 𝑆 .

In the update processes, some edits may naturally be reversed.
To consider only the final effect we focus on reduced actions sets
that do not include action and its inverse. More formally, given a
graph 𝐺 , we say that two action sets are equivalent if, when the

52

actions are applied on 𝐺 in the order of their timestamps, they
yield the same graph. The reduced set of actions, that remain by
removing the rows that their value in column R equals to 0 in the
table of Figure 1. We denote it as reduced actions from Figure 1.

Note that up to possibly different timestamps, the reduced
version obtained through this iterative removal process is unique,
as it contains the same set of graph update operations. Furthermore,
the timestamps are no longer important as any permutation of the
actions yields the same output graph. We thus consider from
now on only reduced sets of actions and ignore the timestamps,
referring to actions as pairs 𝑎 = (𝑜𝑝, (𝑢, 𝑙, 𝑣)) where 𝑜𝑝 ∈ {+,−}.

Abstract actions. Since we are trying to find general update
patterns across the Wikipedia graph, we want to generalize a
set of actions involving specific entities to general patterns over
the corresponding entity types. For that we define the notion of
abstract actions. We associate with each entity type 𝑡 an infinite
set of variables 𝑡1, 𝑡2, Then, an abstract action is the pair of
the form 𝑎 = (𝑜𝑝, (𝑡 ′, 𝑙, 𝑡 ′′)) where 𝑜𝑝 ∈ {+,−}, 𝑡 ′ and 𝑡 ′′ are type
variables, 𝑙 is an edge label.

Patterns. We define a pattern as a set of abstract actions. We
consider two patterns identical if they are the same up to isomor-
phism on the variable names of the same type. We refer to a pattern
that contains only a single action as a singleton pattern. Given a
pattern 𝑝 we say that a set𝐴′ of concrete actions is a realization of
𝑝 (resp. that 𝑝 is an abstraction of 𝐴′) if 𝐴′ may be obtained from
𝑝 by replacing each variable of type 𝑡 by a some Wikipedia graph
node in 𝑒𝑛𝑡𝑖𝑡𝑖𝑒𝑠 (𝑡), s.t. distinct variables are assigned different
Wikipedia graph nodes.

An observation that will be useful in the sequel is that for a
given action 𝑎, the set of its possible abstractions can be easily
computed by traversing the type hierarchy and replacing 𝑠𝑜𝑢𝑟𝑐𝑒 (𝑎)
(resp. 𝑡𝑎𝑟𝑔𝑒𝑡 (𝑎)) by some variable of type ≥ 𝑡𝑦𝑝𝑒 (𝑠𝑜𝑢𝑟𝑐𝑒 (𝑎))
(≥ 𝑡𝑦𝑝𝑒 (𝑡𝑎𝑟𝑔𝑒𝑡 (𝑎))).

To illustrate the above notions, in the reduced actions in Figure
1 lines #2 and #13 are both realization of the singleton pattern
{-, (player1, current_club, team1)} (which we consider identical,
e.g., to the isomorphic pattern {-, (player2, current_club, team2)}).
On the other hand, the reduced actions in Figure 1 contain no
realization of the pattern
[{−, (𝑝𝑙𝑎𝑦𝑒𝑟1, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑐𝑙𝑢𝑏, 𝑡𝑒𝑎𝑚1)},
{−, (𝑝𝑙𝑎𝑦𝑒𝑟1, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑐𝑙𝑢𝑏, 𝑡𝑒𝑎𝑚2)}]
as the assigned team nodes have to be distinct in the realization,
but all players in the table were removed from a single team.

(Abstract) actions graph. It is useful to make an analogy be-
tween action sets and graphs. Given a set of concrete (resp. ab-
stract) actions 𝐴 (𝑝), consider the directed labeled graph 𝑔𝐴 (𝑔𝑝)
with a node per each entity in 𝐴 (variable in 𝑝), labeled by the
entity (variable) type name, and where there exists an edge from
node 𝑣1 to 𝑣2, labeled [𝑜𝑝, 𝑙], iff𝐴 (𝑝) includes an (abstract) action
of the form (𝑜𝑝, (𝑣1, 𝑙, 𝑣2)). We refer to these graphs as abstract
graphs as the actual entity identities (resp. the variable names) that
the nodes represent are insignificant.

With this graph view, a realization of a pattern 𝑝 in a set of
actions 𝐴 corresponds to an isomorphism from 𝑔𝑝 to a subgraph
of 𝑔𝐴, where the type of each node in 𝑝 either equals or is more
general than the type of its corresponding node in 𝑔𝐴. Given a type
𝑡 , we say that the pattern 𝑝 is connected (w.r.t. 𝑡) iff 𝑔𝑝 contains a
node variable of type 𝑡 from which all other nodes are reachable.

Connected patterns. Given an entity type 𝑡 , we are interested
in entities’ updates that are related (possibly transitively) to entities
of type 𝑡 . We thus focus on connected patterns, where the updated
edges are related.

Definition 3.1. For an update pattern 𝑝, let 𝑔𝑝 be its correspond-
ing abstract graph. Given a type 𝑡 , we say that the pattern 𝑝 is
connected (w.r.t. 𝑡) iff 𝑔𝑝 contains a node of type 𝑡 from which
all other nodes are reachable.

In the discussion below we refer to such a node (variable) as the
pattern’s source (w.r.t. 𝑡). If multiple such nodes exist in the graph,
we arbitrarily pick one to serve as the pattern’s distinguished
source and we use below the term source to refer to this single
distinguished node, and denote is as 𝑠𝑜𝑢𝑟𝑐𝑒𝑡 .

For example, the pattern shown in Figure 3 is connected w.r.t. to
the type 𝑝𝑙𝑎𝑦𝑒𝑟 . Its corresponding graph 𝑔𝑝 appears in Figure 2(a)
where all nodes are reachable from the source node 𝑝𝑙𝑎𝑦𝑒𝑟_1. But
if we replace the variable 𝑝𝑙𝑎𝑦𝑒𝑟1 in lines 11 and 13 of Figure 3
by a new variable 𝑝𝑙𝑎𝑦𝑒𝑟2, then the pattern becomes disconnected,
see Figure 2(b), and composed of two smaller, connected patterns
- the abstract actions in lines 10, 5, 2, 7 (with source 𝑝𝑙𝑎𝑦𝑒𝑟_1) and
the abstract actions in lines 11, 13 (with source 𝑝𝑙𝑎𝑦𝑒𝑟_2).

For a type 𝑡 we only consider patterns that are connected w.r.t.
𝑡 . Thus, for brevity, we use below the term pattern to refer to a
connected pattern, and omit the type 𝑡 when clear from the context.

Figure 2: (a) connected pattern, (b) unconnected pattern

Frequent patterns. To define that a pattern is frequent we
would like to measure the amount of support that a pattern has,
regarding the seed type entities.

Many notions of patterns frequency have been considered in
the graph mining literature. Common notions consider the number
of distinct isomorphisms from the given pattern graph to the input
graph (e.g. occurrence-based support [24] and MNI support [15].
However, as our goal is to characterize how frequent a pattern is
in the context a particular seed type of interest, we employ here a
notion of frequency inspired by the [16] that counts the number
of nodes (out of all nodes of the given seed type) that are involved
in some pattern. For readers familiar with the 𝑀𝑁𝐼 -based support
in [15], we note that our notion of frequency can also be viewed
as a special case where the isomorphism count focuses only on
the seed entity type node.

Given a type 𝑡 , a pattern 𝑝 and a set 𝐴 of actions, we define the
frequency of 𝑝 (w.r.t. to 𝑡 and 𝐴) as the fraction of entities of 𝑡 that
participate as source nodes in a realization of 𝑝 is 𝐴.

Definition 3.2. The frequency of a pattern 𝑝 in a set of actions
𝐴, w.r.t. to a type 𝑡 in 𝑝, is defined as 𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 (𝑝,𝐴, 𝑡) =

| {𝑒 ∈ 𝑒𝑛𝑡𝑖𝑡𝑖𝑒𝑠 (𝑡) | 𝑒 𝑎𝑝𝑝𝑒𝑎𝑟𝑠 𝑖𝑛 𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑒𝑛𝑡𝑖𝑡𝑖𝑒𝑠 (𝑡) |
|𝑒𝑛𝑡𝑖𝑡𝑖𝑒𝑠 (𝑡) |

To continue with our running example, consider the actions in
Figure 1 and the pattern in Figure 3, and assume there are overall
five players in Wikipedia. The frequency of this pattern in the
given actions set, w.r.t. to the type 𝑝𝑙𝑎𝑦𝑒𝑟 , is 0.2 because there is
only one player (Neymar) that the patterns hold for (with Neymar
mapped to 𝑝𝑙𝑎𝑦𝑒𝑟_1), out of the five existing players. However,
the frequency of the partial pattern displayed in figure 3 in lines 1

53

Edit type Subject Relation Object
10 + 𝑝𝑙𝑎𝑦𝑒𝑟1 current_club 𝑡𝑒𝑎𝑚1
11 - 𝑝𝑙𝑎𝑦𝑒𝑟1 current_club 𝑡𝑒𝑎𝑚2
5 + 𝑡𝑒𝑎𝑚1 squad 𝑝𝑙𝑎𝑦𝑒𝑟1

13 - 𝑡𝑒𝑎𝑚2 squad 𝑝𝑙𝑎𝑦𝑒𝑟1
2 + 𝑝𝑙𝑎𝑦𝑒𝑟1 in_league 𝑙𝑒𝑎𝑔𝑢𝑒1
7 - 𝑝𝑙𝑎𝑦𝑒𝑟1 in_league 𝑙𝑒𝑎𝑔𝑢𝑒2

Figure 3: Pattern found from set of action in Figure 1
and 2 (gray lines) in this actions set (again w.r.t. the type 𝑝𝑙𝑎𝑦𝑒𝑟),
is 0.4 because there are 2 players for which that pattern holds.

Partial Order of Patterns. Given a type 𝑡 , a set 𝐴 of actions
and frequency threshold 𝜏 we will be interested in finding pat-
terns whose frequency in 𝐴 (w.r.t. the given type) is above the
threshold. To avoid redundancy, we would like to consider only
the most specific such patterns. Formally, we say that a pattern 𝑝
is more specific than a pattern 𝑝 ′ (alternatively, 𝑝 ′ is more gen-
eral than 𝑝), denoted 𝑝 ≺ 𝑝 ′, if 𝑝 ′ may be obtained from 𝑝 by
removing some abstract actions, replacing some type variables
in 𝑝 by corresponding variables of a more general type, or both.
An alternative definition is close frequent sub-graph, as defined in
[39]. To illustrate, for the patterns:
𝑝1 = {(+, (𝑝𝑙𝑎𝑦𝑒𝑟1, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑐𝑙𝑢𝑏, 𝑡𝑒𝑎𝑚1)),
(−, (𝑝𝑙𝑎𝑦𝑒𝑟1, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑐𝑙𝑢𝑏, 𝑡𝑒𝑎𝑚2))}
𝑝2 = {(+, (𝑎𝑡ℎ𝑙𝑒𝑡𝑒1, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑐𝑙𝑢𝑏, 𝑡𝑒𝑎𝑚1)),
(−, (𝑎𝑡ℎ𝑙𝑒𝑡𝑒1, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑐𝑙𝑢𝑏, 𝑡𝑒𝑎𝑚2))}
𝑝3 = {(+, (𝑎𝑡ℎ𝑙𝑒𝑡𝑒1, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑐𝑙𝑢𝑏, 𝑡𝑒𝑎𝑚1))}

we have that 𝑝1 ≺ 𝑝2 ≺ 𝑝3.

Thus, given a type 𝑡 and a set 𝐴 of actions our goal will be
to find the most specific patterns with a frequency above a given
threshold. Our formal definition refines the closed frequent graph
pattern notion of [39], taking the type hierarchy also into consid-
eration when ordering patterns.

Definition 3.3. Given a set of actions 𝐴, a type 𝑡 , and a fre-
quency threshold 𝜏 , we say that a pattern 𝑝 is a most specific
frequent pattern in 𝐴 (w.r.t. 𝑡 and 𝜏), if 𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 (𝑝,𝐴, 𝑡) ≥ 𝜏

and there is no pattern 𝑝 ≺ 𝑝 where 𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 (𝑝,𝐴, 𝑡𝑖) ≥ 𝜏 .

Relatively frequent patterns. Finally, note that in the discus-
sion so far, the frequency of patterns 𝑝 was measured w.r.t. a given
type, as the percentage of entities of the given type that serve as a
pattern source. In some cases, it is interesting to further explore
what percentage of these entities adhere to a more specific pattern
𝑝 ′. For example, what percentage of players among the ones that
move to a new team also, change the league. For that we define
the notions of relative frequency and relative frequent patterns.

Definition 3.4. For two patterns 𝑝, 𝑝 ′ s.t. 𝑝 ′ ≺ 𝑝, the relative
frequency of 𝑝 ′ w.r.t. 𝑝 in a set of actions 𝐴 (for a given type
variable 𝑡), is defined as
𝑟𝑒𝑙_𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 (𝑝 ′, 𝑝, 𝐴, 𝑡) = 𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 (𝑝′,𝐴,𝑡)

𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 (𝑝,𝐴,𝑡) .

Definition 3.5. Given a set of actions 𝐴, a type 𝑡 , a pattern 𝑝
and a relative frequency threshold 𝜏𝑟𝑒𝑙 , we say that a pattern 𝑝 ′

is a most specific relative frequent pattern in 𝐴, w.r.t. 𝑡 and 𝑝, if
𝑟𝑒𝑙_𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 (𝑝 ′, 𝑝, 𝐴, 𝑡) ≥ 𝜏𝑟𝑒𝑙 and there is no more specific
pattern 𝑝 ≺ 𝑝 ′ where 𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 (𝑝, 𝑝,𝐴, 𝑡) ≥ 𝜏 .

4 FINDING WINDOWS AND PATTERNS
Intuitively, given an entity type 𝑡 of interest, we wish to signal
out significant time frames and identify the most specific frequent
patterns in them.

We will first explain how, given a specific window𝑤 and fre-
quency threshold 𝜏 , the most specific frequent patterns in𝑤 (w.r.t.
type 𝑡), are efficiently identified. The extraction of relative fre-
quent patterns is similar. Finally, we will explain how the windows
and thresholds to examine are selected.

As noted in Section 3, the (reduced) set of edit actions per-
formed over Wikipedia entities in the time window 𝑤 may be
viewed as a graph. Thus one may harness graph mining algorithms,
such as the ones presented in [24] to identify frequent connected
patterns. Such algorithms work roughly as follows. Starting from
patterns consisting of a single edge, they incrementally expend the
patterns with new edges. At each iteration, they check which of
the extended obtained patterns are frequent, prune all the others,
and iteratively continue expending the frequent ones.

There are, however, two important issues that one has to address
when adapting such a scheme to our context.

1. Supporting the Wikipedia type hierarchy entails a richer
order relation among patterns (as defined in Section 3), which to
our knowledge is not supported by any of the existing algorithms
for mining connected patterns in graphs. While the modifications
to the algorithms, to support this, are rather immediate, the number
of patterns that now need to be examined becomes larger, and thus
the patterns’ frequency test must be performed efficiently. For
that, we represent each graph’s type of relation as a relational
table, containing its pattern realizations. That allows us to utilize a
join-based computation (optimized by the underlying SQL engine)
to quickly prune infrequent patterns.

2. Observe that common graph mining algorithms assume that
a full graph is given as input to the algorithm. In our setting, the
revision histories are distributed across all Wikipedia entities, and
(even when restricted to the time window𝑤) their overall size can
be very large. Thus, as our experiments show, materializing the
full graph that represents them may be prohibitively expensive.
To avoid this, we embed into the discovery of the incremental
patterns an analogous incremental graph construction, that materi-
alizes only revision histories of entity types that may potentially
be related to the input type 𝑡 via frequent edit patterns. Our pattern
mining algorithms is detailed in Algorithm 1. For better under-
standing the pseudo-code, we first outline the data structures and
notations that we make use of. For space constraints, an illustrative
example appears in our technical report [3].

4.1 Data Structures and Notation
For each considered time window𝑤 , the algorithm incrementally
extracts, from the revision histories determined to be relevant,
the set of actions performed within the time frame. The actions
are abstracted and stored in a dictionary called 𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡_𝑎𝑐𝑡𝑖𝑜𝑛𝑠
whose keys are the time windows. Thus, 𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡_𝑎𝑐𝑡𝑖𝑜𝑛𝑠 [𝑤]
denotes a set of abstract actions with realizations in the window
𝑤 . The corresponding realizations of each such abstract action are
stored in a dictionary called 𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑠 whose keys are the time
frame and abstract action. Thus, 𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑠 [𝑤] [𝑎] denotes the
set of realizations of abstract action 𝑎 within window𝑤 .

The identified (relative) patterns, for each time window𝑤 (and
pattern 𝑝 in 𝑤), are stored in a dictionary named 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠 (resp.
𝑟𝑒𝑙_𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠) whose keys, again, are the time frames (and re-
lated patterns). Thus 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠 [𝑤] (resp. 𝑟𝑒𝑙_𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠 [𝑤] [𝑝]) de-
notes the set of (relative) patterns computed for time window𝑤

(and pattern 𝑝 in 𝑤). We overload notation and also use below
𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑠 [𝑤] [𝑝] (resp. 𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑠 [𝑤] [𝑝] [𝑝 ′] to denote the
realizations of the (relative) pattern 𝑝 (𝑝 ′) within time window
𝑤 . As mentioned above, the pattern realizations are implemented
as relational tables. We will explain this point in details below.
Finally, we use an auxiliary data structure 𝑡𝑒𝑠𝑡𝑒𝑑 [𝑤], whose keys
are the time frames, to record partial patterns that have already
been examined in the computation for the window𝑤 .

54

4.2 Pattern mining
We are now ready to present the Algorithm 1. As mentioned above,
the algorithm follows the line of graph mining algorithms such as
[15], starting from singleton patterns and incrementally expending
them. While doing so it incorporates into the processing the two
optimizations mentioned above, to ensure efficient processing in
our particular setting. We note that several additional optimization
techniques have been introduced in [24, 39], e.g. to minimize the
used storage and search space. These are orthogonal to ours and
thus, for simplicity of presentation, we follow below the basic
scheme of the incremental pattern construction (to which these
orthogonal optimizations can later be applied if desired).

Initialization. Our initial entity set 𝑆 contains the entities of
input type 𝑡 . First, we extract for the given window𝑤 edit actions
performed on entities in 𝑆 in time window 𝑤 . We reduce the set
of actions, eliminating redundant edits and computing the pos-
sible action abstractions (as explained in Section 3) and store
them in 𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡_𝑎𝑐𝑡𝑖𝑜𝑛𝑠 [𝑤] and their corresponding realiza-
tions in 𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛_𝑡𝑎𝑏𝑙𝑒 [𝑤]. This is performed using the func-
tion 𝑟𝑒𝑑𝑢𝑐𝑒𝑑_𝑎𝑛𝑑_𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡_𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑆,𝑤) (line 1). 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠 [𝑤]
stores only abstract actions (singleton patterns) whose source is
the seed type 𝑡 and their frequency in𝑤 exceeds the threshold (line
2). We explain below how the frequency is efficiently computed.

Interleaving graph and patterns expansion. We next inter-
leave the extension of considered entity set (and, correspondingly,
the considered subgraph representing their respective revision
histories), with the extension of the patterns.

To determine which other related entities (and, respectively,
entity revision histories) should be considered, we examine the fre-
quent patterns identified so far, to see which additional entity types
appear in them, if any (line 4). Correspondingly, we add their (re-
duced) revision histories within𝑤 to the set of considered actions.
For that, we employ again the function 𝑟𝑒𝑑𝑢𝑐𝑒𝑑_𝑎𝑛𝑑_𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡
_𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑆,𝑤) (line 8) that reduces the revision histories and adds
the actions abstraction (and their corresponding realizations) to
𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡_𝑎𝑐𝑡𝑖𝑜𝑛𝑠 [𝑤] (resp. 𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛_𝑡𝑎𝑏𝑙𝑒 [𝑤]).

Next, we iteratively consider for each previously discovered fre-
quent pattern 𝑝 ∈ 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠 [𝑤], its graph 𝑔𝑝 and attempt to extend
it with additional edges (abstract action) 𝑎 ∈ 𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡_𝑎𝑐𝑡𝑖𝑜𝑛𝑠 [𝑤],
that has not been considered for it yet (lines 9-14). The procedure
uses the auxiliary global variable 𝑡𝑒𝑠𝑡𝑒𝑑 [𝑤], (initially the empty
set) to record pairs of patterns and actions that have already been
examined. It is important to note that by considering all action
abstractions (rather than just their base type) we can construct
patterns at all abstraction levels.

Extended patterns whose frequency exceeds the threshold are
added to 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠 [𝑤] (line 14). We will explain later how the
pattern realizations and frequency are efficiently computed. When
the frequent patterns can no longer be extended w.r.t. the current
set of abstract actions/action realizations, we check again whether
the discovered patterns contain new types whose actions have
not yet been considered (line 4). If so, we repeat the graph and
patterns extension (lines 5 - 15). Observe that the incremental
nature of the patterns’ construction allows refining the previously
derived patterns with the newly added abstract actions, rather than
computing frequent patterns from scratch. In other words, the
extension of the actions graph, and the extension of the patterns
(w.r.t. the extended graph), interleave well.

Note that, in the presentation so far we keep in 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠 [𝑤]
all the discovered frequent patterns and not just the most-specific
ones. This is because such general patterns may still be useful, in

later iterations, being expended to other, different most-specific
patterns. However, an optimization that we can still employ here
is the removal of these (not most-specific) patterns whose expan-
sions have been fully examined, e.g. where all the entities types
occurring in them have been thoroughly processed (line 15). An-
other optimization that we employ (omitted from the pseudo-code)
is the cashing of the computed frequencies/realization tables, to
be reused if the same patterns are later re-examined with different
thresholds. When all patterns have been discovered, we select the
most specific ones and return them (line 16).

Computing patterns realization and frequency. To complete
the picture we need to explain how the patterns realizations and fre-
quency are computed in lines 12-13 of the algorithm. To efficiently
compute (and extend) pattern realizations, we represent each pat-
tern realization in 𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑠 [𝑤] [𝑝] by a relational table whose
attribute names correspond to the pattern variables names, and
whose tuples capture the different realizations of the pattern in
the given time window (namely the qualifying assignments of
concrete Wikipedia graph nodes to the pattern variables).

Now, note that given a pattern 𝑝 and an abstract action 𝑎, there
may be several ways to extend the graph 𝑔𝑝 with 𝑎. First, 𝑎’s
source may be “glued” to any of the nodes (variables) in 𝑝 of
the same type as 𝑎 (if such exist). Second, for each such possible
gluing, 𝑎’s target may either be added to the pattern as new pattern
node (in which case 𝑔𝑝 is extended by both a new edge and a new
node) or the target may also be glued to an existing same type
node (in which case 𝑔𝑝 is extended by only a new edge).

We process each such possible extension as follows. Let 𝑝 ′

be such an extended pattern. An important observation is that,
using the relational representation discussed above, the realiza-
tion table of the extended pattern 𝑝 ′ can be easily computed, from
𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑠 [𝑤] [𝑝] and 𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑠 [𝑤] [𝑎], via a join-based query.
For the glued pattern/action nodes we use equijoin on the corre-
sponding attributes, whereas for the new node (if such exists),
we require inequality to all same type attributes. Finally, we only
need to project a single column for each pattern attribute. Then,
the frequency of a pattern 𝑝 w.r.t. a type 𝑡 can be easily com-
puted from the relation, by an SQL count operator that counts the
number of distinct nodes appearing in the column corresponding
to the pattern’s source variable, (then dividing the count by the
cardinality of 𝑒𝑛𝑡𝑖𝑡𝑖𝑒𝑠 (𝑡)).

Mining Relative Patterns. To conclude, we note that the com-
putation of relative frequent patterns proceeds in a similar manner.
The only difference is that each pattern 𝑝 we begin the expansion
process starting from 𝑝 itself, and relative frequency (rather than
just frequency) is computed similarly, but using the formula in
Definition 3.4. We omit the details for space constraints.

4.3 Finding Windows and Thresholds
So far we assumed that we are given a window𝑤 and a threshold
𝜏 , and our goal was to identify the (relative) frequent patterns in
𝑤 , w.r.t. the seed type 𝑡 . To identify windows and thresholds of po-
tential interest, we use a simple heuristic, which our experiments
show to be extremely effective.

We restrict our attention to non-overlapping time windows and
split the revision histories accordingly. This allows parallelizing
the processing of the action sets in the different windows. Our
analysis of real Wikipedia data indicates this to be a reasonable
design choice. For an input type 𝑡 there are very few meaningful
(update-wise) time frames that overlap and those can be merged
into a somewhat longer window that includes both update patterns.

55

Algorithm 1: Mine connected patterns
Input: entity set 𝑆 ,Wikipedia type 𝑡 , window 𝑤, frequency threshold 𝜏 ,

relative threshold 𝜏𝑟𝑒𝑙
Output: (relative) patterns and their time frames: 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠 [𝑤],

rel_patterns[w][p]
1 call reduced_and_abstract_actions(𝑆 ,𝑤) to create abstract_actions[𝑤] and

realizations[𝑤];
2 patterns[𝑤] = {{𝑎} | 𝑎 ∈ abstract_actions[𝑤] ∧𝑡𝑦𝑝𝑒 (𝑠𝑜𝑢𝑟𝑐𝑒 (𝑎)) = 𝑡∧

frequency({𝑎}) ≥ 𝜏 };
3 tested[w]={};
4 while new type names found in patterns[w] do
5 foreach 𝑝 ∈ patterns[𝑤] do
6 foreach new type name 𝑡 ∈ 𝑝 do
7 𝑆 = get_entities(𝑡);
8 call reduced_and_abstract_actions[𝑆, 𝑤] to expand

abstract_actions[w] and realizations[w];

9 while there exists 𝑝 ∈ patterns[𝑤], 𝑎 ∈ 𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡_𝑎𝑐𝑡𝑖𝑜𝑛𝑠[𝑤], s.t.
(𝑝, 𝑎) ∉ tested[𝑤] do

10 tested[𝑤]=tested[𝑤] ∪{(𝑝, 𝑎𝑖) };
11 foreach pattern 𝑝′ obtained by expending 𝑝 with 𝑎𝑖 do
12 compute realizations[𝑤][𝑝′] from realizations[𝑤][𝑝] and

realizations[𝑤][𝑎𝑖];
13 frequency(𝑝′) =

|𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡 𝑒𝑛𝑡𝑖𝑡𝑖𝑒𝑠 𝑜𝑓 𝑡𝑦𝑝𝑒 𝑡 𝑖𝑛 𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑠 [𝑤] [𝑝′] |
|𝑒𝑛𝑡𝑖𝑡𝑖𝑒𝑠 (𝑡) | ; if

frequency(𝑝′) ≥ 𝜏 then
14 patterns[𝑤]=patterns[𝑤] ∪{𝑝′ };

15 𝑝𝑟𝑢𝑛𝑒 (𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠 [𝑤]), 𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑠 [𝑤]
16 patterns[𝑤]=most_specific_patterns(patterns[𝑤]);
17 Return(𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠)

Our algorithm is initialized with minimal window size (the sys-
tem default is two weeks) and frequency thresholds (default 0.7),
which are iteratively refined: The window size is extended (resp.
the threshold it lowered) if no qualified patterns were found, or if
the refinement leads to the discovery of additional patterns. The
extension granularity (resp. frequency bound reduction) may be
determined by the user. Otherwise, the default refinement policy
is to alternate between multiplying the window size by two (re-
taining the threshold as it) and reducing the frequency thresholds
by 20% (retaining the window size). This is repeated as long as
the refinement leads to new patterns, up to a maximal window
size of one year, and a minimum threshold value of 0.2 (All exper-
iments were run with this setting). We chose the above heuristic
by examining several alternatives, as elaborated in Section 6, and
chose the one with the lowest running time among all heuristics
that performed best in terms of 𝐹1 score evaluations.

We now present the full algorithm, depicted in Algorithm 2.
As mentioned above, given an entity type 𝑡 , our initial entity set
𝑆 contains all entities of the input type. Users not familiar with
the type hierarchy may provide a seed entity 𝑒 and the system will
use 𝑡𝑦𝑝𝑒 (𝑒) as an input (lines 1-3). To derive 𝑡𝑦𝑝𝑒 (𝑒) we use an
alignment from Wikipedia entities to DBPedia [1]. Then to find
all entities of type 𝑡 we employ a corresponding inverse index.

We first split the timeline into consecutive time frames of size
𝑊𝑚𝑖𝑛 (line 7). Next we call (possibly in parallel) the procedure
𝑀𝑖𝑛𝑒_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑_𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠, described in Algorithm 1 in Section
4, for all windows (line 9). We iteratively refine the considered
windows width (𝑊𝑚𝑖𝑛) and frequency threshold (𝜏) (following the
heuristics described above), and until a stable result is obtained
(lines 10-11). Finally, for each discovered pattern 𝑝 in window𝑤 ,
its relative frequent patterns are mined as well (lines 14).

Algorithm 2: Find windows and patterns
Input: Wikipedia type 𝑡 or seed entity 𝑒 , min. window width𝑊𝑚𝑖𝑛 ,

frequency threshold 𝜏 , relative threshold 𝜏𝑟𝑒𝑙
Output: (relative) patterns and their time frames

1 if t is not given then
2 t = type(e);

3 S = get_entities(𝑡);
4 patterns = [];
5 rel_patterns = [];
6 Frequent patterns Stage;
7 split the timeline into a set𝑊 of consecutive time frames of size𝑊𝑚𝑖𝑛 ;
8 foreach 𝑤 in𝑊 do
9 patterns[𝑤]= Mine_connected_patterns(𝑆, 𝑡, 𝑤, 𝜏, 𝜏𝑟𝑒𝑙)

10 if patterns==[] or refine?(𝑊𝑚𝑖𝑛 ,𝜏 ,patterns)==True then
11 go to line 7 with the updated𝑊𝑚𝑖𝑛, 𝜏 ;

12 Relative frequent patterns Stage;
13 foreach 𝑤 ∈𝑊 do
14 rel_patterns[𝑤] = Mine_rel_connected_patterns (patterns[𝑤],

rel_patterns[𝑤], abstract_actions[𝑤], realizations[𝑤],𝜏𝑟𝑒𝑙);

15 Return(𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠, 𝑟𝑒𝑙_𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠)

5 USING WINDOWS AND PATTERNS
We employ the discovered windows and patterns to clean and
correct Wikipedia entries, as well as to assist users in editing.

Cleaning. An immediate application of the discovered patterns
is to alert Wikipedia editors on partial edits from past windows.
For that, we examine the discovered windows and identify for each
window and pattern (using an efficient outer-join based algorithm,
described below, parallelly processed) partial sets of actions that
may be extended to a full pattern occurrence. To assist the editor
in determining how (if) the partial edit should be completed (or
reversed), we present examples of other full patterns.

To explain how the algorithm works, recall from Section 4.2
that, to discover patterns, we iteratively expand the pattern’s graph,
joining corresponding action relations to form a relation table that
captures the pattern realizations. In each such join, the left-hand
side (LHS) relation represents the realizations of a (partially grow-
ing) portion of the pattern, and the right-hand side (RHS) relation
contains the realizations of the added edge. The join conditions
assert the (in)equalities of the corresponding graph nodes. To iden-
tify partial updates, that haven’t been properly completed, we
similarly traverse the graph. But instead of the abovementioned
join operator, we employ a full outer-join [6], with analogous
(in)equality conditions. Note that, unlike the join, the full outer-
join also records in the output relation those LHS (resp. RHS)
tuples not matching any RHS (LHS) tuple, padding the missing
attribute values with nulls. In terms of our patterns, partial pattern
realizations (resp. action realizations) that are missing a corre-
sponding action (partial pattern) are also recorded in the relation,
padded by null values. The incomplete edits can then be easily
identified via a selection query retrieving tuples with null values.
A result table keeping the attributes of original action relations is
kept to record which missing updates cause null values.

Our algorithm for identifying partial updates is depicted in
Algorithm 3. For a time window𝑤 and a pattern 𝑝, it focuses on
the entity types in 𝑝. It invokes 𝑟𝑒𝑑𝑢𝑐𝑒𝑑_𝑎𝑛𝑑_𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡_𝑎𝑐𝑡𝑖𝑜𝑛𝑠
(described earlier), to examine their revision histories and con-
struct the realization relations of their corresponding abstract ac-
tions (lines 1–2.) Next we traverse the pattern’s graph 𝑔𝑝 , and
iteratively outer-join the corresponding relations (lines 8-9). We
use 𝑝1 . . . 𝑝𝑛 to denote the incrementally growing sub-patterns
(from the first singleton edge 𝑎1, to the full pattern 𝑝). The array

56

Algorithm 3: Identifying partial updates
Input: window 𝑤, pattern 𝑝

Output: partial realizations of 𝑝 in 𝑤

1 let 𝑆 be the set of entity types in 𝑝;
2 call reduced_and_abstract_actions(𝑆 ,𝑤) to create abstract_actions[𝑤] and

realizations[𝑤];
3 let 𝑒1, . . . , 𝑒𝑛 be the edges in the pattern’s graph 𝑔𝑝 , in some traversal order;
4 let 𝑎1 . . . , 𝑎𝑛 be the corresponding actions in 𝑝;
5 𝑝1 = {𝑎1 };
6 𝑎𝑙𝑙_𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑠 [𝑝1] = 𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑠 [𝑤] [𝑎1];
7 for 𝑖 = 2 . . . 𝑛 do
8 𝑝𝑖 = 𝑝𝑖−1 ∪ {𝑎𝑖 };
9 compute 𝑎𝑙𝑙_𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑠 [𝑝𝑖] from 𝑎𝑙𝑙_𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑠 [𝑝𝑖−1] and

𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑠 [𝑤] [𝑎𝑖] using full outer-join;

10 𝑝𝑎𝑟𝑡𝑖𝑎𝑙_𝑟 = {𝑟 ∈ 𝑎𝑙𝑙_𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑠 [𝑝] | 𝑟 includes a null value }};
11 Return(𝑝𝑎𝑟𝑡𝑖𝑎𝑙_𝑟)

𝑎𝑙𝑙_𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑠 [𝑝𝑖] is used record the intermediate (possibly in-
complete) pattern instantiations. Finally we return all tuples that
include null values (lines 10-11). An example of the algorithm
execution appears in our technical report [3].

Edit assistance. Update patterns often appear periodically in
multiple windows. For example, transfer windows occur each
summer with a similar edit pattern. Our system automatically
identifies such periodic patterns/windows and provides online
edit assistance (via a plug-in) to users that update pattern entities
within a given window, suggesting potential update completions,
as explained above. The algorithm for identifying patterns that
need completion follows similar lines, with the user alerted on
partial edits that involve entities that she is updating.

6 EXPERIMENTS
We open this section by describing the experimental setup, the
examined datasets, baselines, and evaluation methods. We then
present the results, both in terms of running time and quality.
Finally, we present a comparative analysis of heuristics, demon-
strating the superior performance of the heuristic used by WC.

6.1 Experimental Setup
We have implemented WC as a web browser extension, with back-
end in Python, frontend in JavaScript, and SQL over pandas as
the underlying query engine. All experiments were executed on
an Intel i7 2.4Ghz with 96GB RAM and 16 cores server. We ran
experiments over Wikipedia datasets and examined the system per-
formance in terms of running times, the quality of the discovered
patterns, and the number of detected errors, w.r.t. these patterns.

For the quality experiments (and measuring the running time)
we use the default settings of WC. Recall that our algorithm is
initialized with minimal window size (default is two weeks) and
frequency thresholds (default 0.8), which are refined throughout
the computation. As mentioned, the default refinement policy
alternates between multiplying the window size by two and re-
ducing the frequency thresholds by 20%, up to at most one year
window and a minimal 0.2 frequency. For other experiments, that
test the effect of each parameter, we vary the given parameter
while setting all others to default values, as explained below.

Settings. To demonstrate the operation of WC in different
entity domains, we examine here three Wikipedia domains: soccer
(including players, teams, leagues, etc), cinematography (actors,
movies, awards, etc) and US politicians (specifically US senators).
To derive patterns (and correspondingly identify potential edit
errors) we used the revision history for the year 2018. We then
validated the signaled potential errors w.r.t. edits recorded in the

revision history of 2019. To further assess (resp. validate) the
identified patterns (signaled errors), we have also consulted three
domain experts - one expert per each of the three domains.

For the soccer domain, we used major European leagues’ soccer
players for our seed set of entities. For the cinematography domain,
we used actors from Hollywood-produced movies for the seed set.
Lastly, in the politicians’ domain, we used US senators for the
seed entity set. In each domain, we considered different sizes of
seed sets by randomly choosing between 100-1K entities from the
respective seed type. We run each experiment 5 times and show
the average running time (the variance was below 5%). For the
entities selection, we used the “recently edited” criterion (edited
in the last year of 2018) to focus on active pages with edits that
may contribute to the mining process, and may also contain errors.
Following Algorithm 2, we also considered related entity types
and extracted their revision history in the corresponding period.

Due to the lack of an appropriate API, obtaining the Wikipedia
data required crawling and parsing entities and it’s revision logs.
Nevertheless, we gathered data for 100K entities - about 10𝑡ℎ of
the million frequently edited Wikipedia’s entities [4].

Algorithms. The core of WC is Algorithm 2 (referred in the
sequel as WC) which identifies time windows of interest and cor-
responding edit patterns. A main ingredient of WC is the pattern
mining procedure depicted in Algorithm 1 (referred in the sequel
as PM) that given a specific window𝑤 and frequency threshold 𝜏 ,
identifies the most specific frequent patterns in𝑤 (w.r.t. the seed
type of interest). As explained in Section 4, PM refines conven-
tional graph mining algorithms [15] by introducing two dedicated
optimizations: (1) an efficient join-based SQL computation of
patterns realization and frequencies, and (2) an incremental com-
putation that avoids a full materialization of the edits graph. To
demonstrate the importance of these two optimizations, we ex-
amine the running times of the following four algorithm variants.

• PM, our mining algorithm.
• PM−𝑗𝑜𝑖𝑛 , a restricted variant of PM without our dedicated join-

based queries. Instead, pattern realizations and frequencies are
computed via conventional main memory nested loop.

• PM−𝑖𝑛𝑐 , a restricted variant of PM that does not utilize our incre-
mental, on-demand graph construction. Instead, the full edits
graph for the given window is materialized then given as input
to the mining process (but patterns realization/frequency is still
computed via our join-based queries).

• PM−𝑖𝑛𝑐,−𝑗𝑜𝑖𝑛 , conventional graph mining without our two op-
timizations. The edits graph for the window is materialized as in-
put to the mining process, with the pattern realizations/frequencies
computed via the main memory nested loop.

Note that direct comparison to leading graph mining baselines is
not possible due to their use of different frequency metric (not
capturing connectivity property and relativity to a specific type)
and lack of support for type hierarchy. We have thus adapted the
most relevant variant to our context, denoted by 𝑃𝑀−𝑖𝑛𝑐−𝑗𝑜𝑖𝑛 , and
benchmark w.r.t. it. See discussion in Section 2.

6.2 Running Time Analysis
Next, we examine how the running time is affected by (1) the size
(number of entities) of the seed type of interest, (2) the frequency
threshold, and (3) the window size. In each experiment, we vary
one parameter while setting the others to a default value (500
seed entities, 0.7 frequency, and two weeks, resp.). As the results
for the different domains show similar trends, we present here a
representative set of experiments for the soccer domain.

57

Note that, as is common in graph mining algorithms, PM−𝑖𝑛𝑐

and PM−𝑖𝑛𝑐,−𝑗𝑜𝑖𝑛 require the full edits graph for the given win-
dow to be materialized. However, materializing this graph, even
for relatively small time windows, can be infeasible. Indeed, our
experiments show that even when considering a two-week time
window, only 100 seed entities, and revision histories only of
entities reachable from the seed set, the graph construction ex-
ceeded 24 hours (the time limit for the graph materialization).
This is due to the dense connectivity of the Wikipedia graph6 [4],
the previously mentioned high volume of edits, and the lack of
adequate API, as noted above. Thus, as the graph must be con-
structed for each considered window, we initially focus only on
the two feasible algorithms: PM and PM−𝑗𝑜𝑖𝑛 , with the infeasible
algorithms evaluated over reduced inputs. We report below the
sizes of the partial graphs built by PM and PM−𝑗𝑜𝑖𝑛 . For intuition
on the relative savings, we note that the graph for the 100 seed
entities during these 2-weeks contains over 100K entities.

Seed set cardinality. We start by examining the running time
as a function of the size of the seed set. Naturally, the more entities
in the seed set, the more related updates need to be examined
and the more revision histories are processed. Consequently the
running time of both PM and PM−𝑗𝑜𝑖𝑛 increases, as illustrated in
Figure 4(a). The threshold is set here to the default value of 0.8 and
the window is the month of August. Similar results are obtained
for other thresholds/months. Next to the size of each seed set, we
give (in parenthesis) the overall number of related entities (graph
nodes) processed by the algorithm. In each column, the upper
part shows how much time (in hours) it took to parse the revision
history of the relevant entities and extract the reduced updates set.
This is naturally identical for both algorithms (as they only differ
in the computation of pattern realizations/frequencies). It should
be noted that this time would be much shorter if Wikipedia had
provided a more convincing API for its revision logs or, publicly-
available structured revisions database. The lower part of each
column shows the running time dedicated to the pattern mining
itself. We can see that is significantly shorter for PM that employs
our efficient join-based queries. For PM the pattern mining time
only marginally grows when the seed set size increases and stays
below 15 min, which is very reasonable for offline computation.

Frequency threshold. Next, we examine the running time as
a function of the frequency threshold. The seed set size is set
to a default size of 500 and the window is the month of August.
(Similar results are obtained for other sizes/months). The lower
the threshold, the more potential patterns (and revision histories
of involved entity types) need to be examined, and, consequently,
the processing time of both algorithm increases, as illustrated in
Figure 4(b). The processing time for the revision logs is the same
in both algorithms, but PM mines the patterns much faster. Again,
for PM the pattern mining time increases only moderately when
the threshold decreases and stays below 15 min.

Window size. In this experiment, we measure the preprocess-
ing time for varying window sizes. Figure 4(c) illustrates the
processing time for 2, 4 and 8 weeks window. Specifically, we
see here the running times for the first two weeks of August, the
whole month of August, and the two months July and August,
but similar results are obtained for other similar-length windows.
(The seed set size here is again set to default size of 500 and
the frequency default 0.8. Similar results are obtained for other

6Wikipedia contains about 6 million entities (of which 4 million are considered of
marginal importance) and over 80 million internal links as to 2010.

sizes/frequencies). Naturally, the larger the window, the more up-
dates need to be processed and as a result, more patterns may
occur. Consequently, the running time increases. Again, the pro-
cessing time for the revision logs in both algorithms is the same,
but PM mines the patterns much faster.

Parallelism. So far we examined the performance of the PM
component of WC. To complete the discussion we now examine the
full operation of WC, highlighting, in particular, its embarrassingly
parallelized nature. Recall that WC splits the timeline into non-
overlapping windows that may be processed in parallel. Similarly,
independent entity types can be processed in parallel. This is easily
exploitable in a multi-core setting as shown in 4(d). We focus here
on the pattern mining process (the revision logs processing shows
similar trends). The figure shows the time in minutes (in log scale)
of the pattern mining computation for a single core vs 16 cores,
for varying sizes of seed entity sets. As before, next to the size of
each seed set we give in parenthesis the overall number of related
entities (nodes) processed by the algorithm. Note that the numbers
here are the total number of nodes processed through all iterations,
for all examined windows and threshold values. Running on 1000
entities takes less than one minute on a single core. 5K entities
need 6 minutes to process on one core and about 1 minute on 16
cores. For 100K entities - the largest entities set generated in the
algorithm execution on the three domains mentioned above - it
took 58 minutes on one core and about 15 minutes on 16 cores.
Overall, the parallelization speedup is about 4x.

Based on known statistics of approximately 5.9 million Wikipedia
entities (one million of them are of mid-to-high importance) [4],
given a preprocessed Wikipedia revisions database/graph (which
unfortunately is currently not publicly available), running on all
Wikipedia entities will take about six hours (one hour on mid-to-
high importance entities) on a 16 core server.

Experiments with small data. As mentioned above, the ma-
terialization of the entire edits graph of Wikipedia, which is a
necessary input for 𝑃𝑀−𝑖𝑛𝑐 and 𝑃𝑀−𝑖𝑛𝑐−𝑗𝑜𝑖𝑛 , takes impractical
time. To, nevertheless, evaluate the efficiency of these two algo-
rithms, we also conducted experiments over considerably smaller
subsets of the Wikipedia graph. Over such small instances, the
running time is less meaningful, however, we can focus instead on
the number of considered pattern candidates as an indication of
the efficiency of these algorithms. Note that, since this experiment
is only possible over small data, typically negligible amounts of
noise become significant, and since the number of seed entities is
small, many of the identified candidates will exceed the threshold.
Therefore, we do not examine any quality indicators.

Concretely, we examined a small subset of Wikipedia, con-
sisting of 10 seed entities from the soccer domain, and all the
revisions of these entities that occurred within an arbitrarily cho-
sen two-week period. We constructed the corresponding edits
graph, containing the seed entities and a close (2-reachable) neigh-
borhood of these seeds in two phases, as follows. We first added
to this graph all the entities that are connected within one link
from the seeds and were also edited in the chosen time window,
and then we also added, analogously, another layer of neighbor-
ing entities - all the entities that are connected within one link to
the previously added entities, and were also edited in the chosen
time window. We did not extend the graph further, as it could
not be materialized within the time frame we defined. The above
construction resulted in a graph with roughly 10K entities.

We compared the performance of 𝑃𝑀−𝑖𝑛𝑐 and 𝑃𝑀−𝑖𝑛𝑐−𝑗𝑜𝑖𝑛

over this graph, to that of𝑃𝑀 (our pattern mining algorithm)
and 𝑃𝑀−𝑗𝑜𝑖𝑛 (which does not include our dedicated join-based

58

 (a)

R
un

ni
ng

 ti
m

e
(m

in
)

0

5

10

15

100 (2K) 500 (18K) 1000 (25K)

Preproc. (PM-join) Algo (PM-join)
Preproc. (PM) Algo (PM)

 (b)

R
un

ni
ng

 ti
m

e
(m

in
)

0

5

10

15

20

0.7 0.4 0.2

Preproc. (PM-join) Algo (PM-join)
Preproc. (PM) Algo (PM)

 (c)

R
un

ni
ng

 ti
m

e
(m

in
)

0
2
4
6
8

10
12

2W 4W 8W

Preproc. (PM-join) Algo (PM-join)
Preproc. (PM) Algo (PM)

 (d)

R
un

ni
ng

 ti
m

e
(m

in
)

0

20

40

60

500(16K) 1K(25K) 2K(50K) 3K(100K)

1 Core 16 Cores

Figure 4: Running time when varying the (a) DB size (b) threshold (c) window size (d) WC execution time on 1 vs 16 cores

queries) over a Wikipedia subgraph of the same size. Recall
that𝑃𝑀 and 𝑃𝑀−𝑗𝑜𝑖𝑛 , in contrast to 𝑃𝑀−𝑖𝑛𝑐 and 𝑃𝑀−𝑖𝑛𝑐−𝑗𝑜𝑖𝑛 , do
not receive the complete graph as input, rather create the relevant
edits subgraph (of the Wikipedia graph) incrementally on-the-fly.
Therefore, to ensure a meaningful comparison, we used as input
a set of 200 seeds, as this results in subgraphs of roughly 10K
entities (which is also the size of the input graphs for 𝑃𝑀−𝑖𝑛𝑐 and
𝑃𝑀−𝑖𝑛𝑐−𝑗𝑜𝑖𝑛). Moreover, as we focus solely on the number of
considered candidates, this value will be the same for all variants
of𝑃𝑀 , when employed over the same graph, as the frequency defi-
nition is identical for all baselines. Therefore, the result will be
the same for𝑃𝑀 and 𝑃𝑀−𝑗𝑜𝑖𝑛 , and also the same for 𝑃𝑀−𝑖𝑛𝑐 and
𝑃𝑀−𝑖𝑛𝑐−𝑗𝑜𝑖𝑛 . Hence, we essentially compare only two approaches
in this experiment (receiving the complete graph in advance versus
computing a more relevant subgraph on-the-fly).

The results show that 𝑃𝑀−𝑖𝑛𝑐 and 𝑃𝑀−𝑖𝑛𝑐−𝑗𝑜𝑖𝑛 consider more
candidates (524), compared to𝑃𝑀 and 𝑃𝑀−𝑗𝑜𝑖𝑛 (125). This demon-
strates the superiority of our incremental graph construction ap-
proach, which prunes many of the irrelevant candidates.

6.3 Quality Analysis
To assess the usefulness of WC for error detection we evaluated
the quality of the discovered patterns and the validity of the po-
tential errors signaled using these patterns. We employed WC,
over the subsets of the Wikipedia 2018 revision log relating to the
domains of soccer, cinematography, and US politicians, with the
corresponding seed sets consisting of 1000 entities.

Ground truth patterns. To evaluate the correctness and cover-
age of the detected patterns, we asked each of the three experts to
provide a comprehensive list of common periodic update patterns,
in structured data. The soccer expert provided 11 such patterns
(e.g., the page of a player that won the “Goal of the Month” award
should link to the page of the award and vice versa). The cin-
ematography expert provided 8 patterns (e.g., a TV series page
should point to all the pages of its specific seasons). Lastly, the pol-
itics expert provided 5 patterns (e.g., the page of a newly-elected
senator points to her predecessor’s page and vice versa).

Discovered patterns and detected errors. Interestingly, the
patterns derived by WC are a proper subset of the set of patterns
provided by the experts, implying 100% precision. In terms of
recall, our algorithm detected 9 (out of the 11) soccer-related
patterns, 7 (out of the 8) cinematography related patterns and 4
(out of the 5) US politicians related patterns, yielding an average
recall of 83.3% across all the domains. The discovered patterns
were then used by WC to detect erroneous updates.

Running Algorithm 3 on the 2018 revision log we have iden-
tified 3743 potential errors for the soccer domain, 2554 potential
errors for the cinema domain and 1125 potential errors for US
politicians. To determine which of these are actual errors, we ran
a two-step verification process. First, for each signaled potential
error (partial pattern occurrence) we examined whether it still
existed after the 2019 updates had been applied. Errors that were
eliminated (corrected) are considered true errors. Note, however,
that the remaining set may still include actual errors that went un-
noticed. To determine how many such signaled, unnoticed errors
Wikipedia still contains, we sampled 50 such errors per pattern

and asked the relevant domain expert to determine their validity.
Next, examples and results of discovered patterns are provided.

Soccer. Out of the 3743 signaled potential errors, 2680 were cor-
rected in 2019 (71.6%). From the remaining examined cases,
82.1% were indeed verified as actual previously unnoticed errors.

To illustrate, the simplest pattern detected in the soccer domain
indicates that, after joining a new club, the page of the player
should link from the career table to the page of the club, which,
in turn, should add a link to the player’s page in the current squad
table. This pattern has a frequency of 0.8 in the window consisting
of the first week of August. Out of the 50 sampled errors for
this pattern (partial pattern occurrences), 48 indeed turned out to
be previously unnoticed errors (96%). A more complex pattern
includes also the deletion in the player’s page of the link to the old
club, and vice versa. This pattern has a lower frequency (0.4) and a
wider window size (the first two weeks of August). Here, out of 50
sampled potential errors, 44 were verified as actual errors (88%).
An example of such an error, detected by the algorithm, relates to
the page of Nikola Mitrovic, a player that switched leagues. His
new club, ZTE, added him to its current squad table, while the
previous club, Kesla, did not remove him. Similarly, Aleksandrs
Cauna’s page was updated when he joined his new club Jelgava,
whereas the page of RFS, his old club, still pointed to his page past
the transfer window. A relative frequent pattern, that the algorithm
detected, includes an update of the current league link in the
player’s page. While this pattern is much less frequent (since a
player may move to a club in the same league, in contrast to the
previously mentioned patterns, where a violation almost certainly
results in “incomplete” data), its relative frequency, nevertheless,
exceeds the threshold. Out of the 50 detected potential errors, 14
were indeed actual previously unnoticed errors.

Cinematography. One example of a detected pattern relates to an
actor/actress winning the Oscar award: the page of the winner
should link to the page of the award and vice versa. In terms of
quality evaluation, out of the 2554 signaled potential errors, 1731
were corrected in 2019 (67.8%). Of the remaining cases, 81.2%
were determined to be true unnoticed errors.

US Politicians. An illustrative example of a discovered pattern in
the US politics domain pertains to the election of a new senator.
Given such an event, the pages of the new senator and the relevant
state must point to each other, and also a link to the page of the
previous senator is removed from the page of the state. The page
of the previous senator should still point to the state, since the
only modification relates to the adjacent text, detailing the period
during which she held office. Out of the 1125 signaled potential
errors, 728 were corrected in 2019 (67.8%). Of the remaining
cases, 78.1% were determined to be previously unnoticed errors.

Insights. To conclude, we discuss insights derived from the
above evaluation, that reaffirm the distinction between our in-
tended use-cases and those addressed by previous works. As men-
tioned in the Introduction, our solution focuses on patterns that
are associated with a well-defined time window, complementing
existing solutions that target ‘window-less’ constraints. Indeed,
for all the discovered patterns, a statistically significant time win-
dow was identified. In contrast, of the few overlooked patterns,

59

Table 1: Sample of heuristics test
(𝑤, 𝜏) Running time (min) Precision Recall F1 Score
2.0x, 20% 2 1 0.84 0.91
1.0x, 20% 1.2 0.88 0.68 0.77
2.0x, 0% 1.2 1 0.75 0.86
1.5x, 10% 3.2 1 0.68 0.81
3.0x, 40% 1.5 0.75 0.88 0.81

two are not clearly associated with any time window. This further
reinforces the contrast between our solution and other works.

6.4 Parameter Tuning
When refining the two parameters across different iterations, 𝑃𝑀
alternates between multiplying the window size by two and reduc-
ing the frequency threshold by 20%. To arrive at these values, we
performed a grid search, selecting the parameters that led to the
fastest running time among the options that yield the best 𝐹1 score
(w.r.t. patterns provided by experts). We checked combinations
of reducing the threshold by 𝑋 and multiplying the window size
by 𝑌 , where 𝑋 ranges from 1% to 100%, in steps of 5%, and 𝑌
ranges from 1.5 to 5, in steps of 0.5. In terms of the bounds for the
above parameters, the window size is restricted to the range of two
weeks to one year, while the threshold is restricted to [0.2, 0.7].
These intervals were also derived via an analogous grid search
over various ranges. A sample of the results is depicted in Table 1,
where the left column provides the combination of the changes in
the values of the window size and the threshold. Note that the first
row pertains to the combination used by WC.

These results demonstrate the advantages of our balanced ap-
proach, compared to more extreme approaches. Namely, opting
for very small changes to the parameters increases the running
time and lowers the recall. The recall drops because WC would
terminate at an early stage, as new patterns are not likely to be dis-
covered compared to the previous iteration. At the other extreme,
drastically changing the parameter values, while improving the
running time, lowers the precision score. The latter effect is due
to quickly reaching iterations where the time window is large and
the threshold is low, causing WC to discover erroneous patterns,
whereas WC with our heuristic would terminate prior to this point.

7 CONCLUSION
This paper presents WC, a Wikipedia plug-in assisting editors in
maintaining the correctness of inter-links. Given an entity type
of interest, our efficient, highly parallelizable algorithm identi-
fies relevant edit patterns across revision histories of entities of
related types, along with time windows in which partial edits are
acceptable. The discovered patterns/windows are then used by
WC to alert editors on past edits that appear incomplete, and pro-
vide users with on-line assistance as they update Wikipedia. Our
experiments with Wikipedia data demonstrate the efficiency and
effectiveness of our approach in identifying and correcting errors.

There are several directions for future research. As our work
considers inconsistencies in structured parts of Wikipedia, expand-
ing our approach to consider free text, in particular parts related to
the inter-links, is a challenge. Another intriguing future direction
is enriching the expressiveness of the patterns to support value-
specific instantiations (e.g., a pattern specific to PSG, but not to
football clubs in general). Finally, applying our ideas to other do-
mains where revision histories are available and link consistency
is important (e.g., software repositories) is another challenge.

Acknowledgements This work has been partially funded by the Israel
Science Foundation, the Binational US-Israel Science Foundation, and the
Tel Aviv University Data Science center.

REFERENCES
[1] DBPedia. https://wiki.dbpedia.org/.
[2] Time Magazine, “Jimmy Wales”. http://content.time.com/time/specials/

packages/article/0,28804,1975813_1975844_1976488,00.html.
[3] WiClean Technical Report. http://slavanov.com/research/wc-tr.pdf.
[4] Wiki statistics. https://en.wikipedia.org/wiki/Wikipedia:Statistics.
[5] Z. Abedjan, C. G. Akcora, M. Ouzzani, P. Papotti, and M. Stonebraker. Tempo-

ral rules discovery for web data cleaning. PVLDB, 9(4):336–347, 2015.
[6] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-

Wesley, 1995.
[7] R. Agrawal and R. Srikant. Fast algorithms for mining association rules in

large databases. In VLDB, 1994.
[8] E. Alfonseca, G. Garrido, J.-Y. Delort, and A. Peñas. Whad: Wikipedia histori-

cal attributes data. Language resources and evaluation, 47(4), 2013.
[9] A. Assadi, T. Milo, and S. Novgorodov. Cleaning data with constraints and

experts. In WebDB, pages 1:1–1:6, 2018.
[10] M. Atzori, S. Gao, G. M. Mazzeo, and C. Zaniolo. Answering end-user

questions, queries and searches on wikipedia and its history. IEEE Data Eng.
Bull., 39(3):85–96, 2016.

[11] M. Bergman, T. Milo, S. Novgorodov, and W. C. Tan. Query-oriented data
cleaning with oracles. In SIGMOD, pages 1199–1214, 2015.

[12] T. Bleifuß, L. Bornemann, T. Johnson, D. V. Kalashnikov, F. Naumann, and
D. Srivastava. Exploring change: a new dimension of data analytics. Proceed-
ings of the VLDB Endowment, 12(2):85–98, 2018.

[13] S. Bostandjiev, J. O’Donovan, C. Hall, B. Gretarsson, and T. Hollerer. Wigi-
pedia: A tool for improving structured data in wikipedia. In 2011 IEEE Fifth
International Conference on Semantic Computing, pages 328–335, Sep. 2011.

[14] X. Chu, I. F. Ilyas, and P. Papotti. Discovering denial constraints. Proc. VLDB
Endow., 6(13):1498–1509, Aug. 2013.

[15] M. Elseidy, E. Abdelhamid, S. Skiadopoulos, and P. Kalnis. Grami: Frequent
subgraph and pattern mining in a single large graph. PVLDB, 7(7), 2014.

[16] W. Fan, X. Wang, Y. Wu, and J. Xu. Association rules with graph patterns.
Proceedings of the VLDB Endowment, 8(12):1502–1513, 2015.

[17] B. Fetahu, A. Anand, and A. Anand. How much is wikipedia lagging behind
news? CoRR, abs/1703.10345, 2017.

[18] J. Ge and Y. Xia. Distributed sequential pattern mining in large scale uncertain
databases. In PAKDD, pages 17–29. Springer, 2016.

[19] F. Geerts, G. Mecca, P. Papotti, and D. Santoro. The LLUNATIC data-cleaning
framework. PVLDB, 6(9):625–636, 2013.

[20] S. Goldberg, T. Milo, S. Novgorodov, and K. Razmadze. WiClean: a sys-
tem for fixing Wikipedia interlinks using revision history patterns. PVLDB,
12(12):1846–1849, 2019.

[21] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate genera-
tion. ACM sigmod record, 29(2):1–12, 2000.

[22] A. Heidari, J. McGrath, I. F. Ilyas, and T. Rekatsinas. Holodetect: Few-shot
learning for error detection. arXiv preprint arXiv:1904.02285, 2019.

[23] S. Heindorf, M. Potthast, B. Stein, and G. Engels. Towards vandalism detection
in knowledge bases: Corpus construction and analysis. In SIGIR, 2015.

[24] C. Jiang, F. Coenen, and M. Zito. A survey of frequent subgraph mining
algorithms. The Knowledge Engineering Review, 28(1):75–105, 2013.

[25] P. Kin-Fong Fong and R. Biuk-Aghai. What did they do? deriving high-level
edit histories in wikis. 01 2010.

[26] M. Kuramochi and G. Karypis. Finding frequent patterns in a large sparse
graph. Data mining and knowledge discovery, 11(3):243–271, 2005.

[27] J. Lajus, L. Galárraga, and F. Suchanek. Fast and exact rule mining with amie
3. In European Semantic Web Conference, pages 36–52. Springer, 2020.

[28] N.-T. Le, B. Vo, L. B. Nguyen, H. Fujita, and B. Le. Mining weighted subgraphs
in a single large graph. Information Sciences, 514:149–165, 2020.

[29] M. Muzammal and R. Raman. Mining sequential patterns from probabilistic
databases. Knowledge and Information Systems, 44(2):325–358, 2015.

[30] S. Ortona, V. V. Meduri, and P. Papotti. Rudik: Rule discovery in knowledge
bases. Proceedings of the VLDB Endowment, 11(12):1946–1949, 2018.

[31] D. Raghu, S. Nair, and Mausam. Inferring temporal knowledge for near-
periodic recurrent events. 2018.

[32] N. Rajkumar, M. Karthik, and S. Sivanandam. Fast algorithm for mining
multilevel association rules. In Proc. of TENCON, pages 688–692, 2003.

[33] A. Sarabadani, A. Halfaker, and D. Taraborelli. Building automated vandalism
detection tools for wikidata. WWW 2017 Companion.

[34] R. Srikant and R. Agrawal. Mining sequential patterns: Generalizations and
performance improvements. In Proc. of EDBT, pages 1–17, 1996.

[35] O. Sunercan and A. Birturk. Wikipedia missing link discovery: A comparative
study. In 2010 AAAI Spring Symposium Series, 2010.

[36] T. P. Tanon, C. Bourgaux, and F. M. Suchanek. Learning How to Correct a
Knowledge Base from the Edit History. In WWW, 2019.

[37] T. Tran and T. N. Nguyen. Hedera: Scalable indexing and exploring entities in
wikipedia revision history. pages 297–300, 2014.

[38] R. West, A. Paranjape, and J. Leskovec. Mining missing hyperlinks from
human navigation traces: A case study of wikipedia. In WWW, 2015.

[39] X. Yan and J. Han. Closegraph: mining closed frequent graph patterns. In Proc.
of KDD, pages 286–295, 2003.

[40] R. Ying, A. Wang, J. You, and J. Leskovec. Frequent subgraph mining by
walking in order embedding space. 2020.

[41] M. J. Zaki. Spade: An efficient algorithm for mining frequent sequences.
Machine learning, 42(1-2):31–60, 2001.

60

	Fixing Wikipedia Interlinks Using Revision History PatternsTova Milo, Slava Novgorodov, Kathy Razmadze

