
GPU-INSCY: A GPU-Parallel Algorithm and Tree Structure for
Efficient Density-based Subspace Clustering

Jakob Rødsgaard Jørgensen
Department of Computer Science
Aarhus University, Denmark

jakobrj@cs.au.dk

Katrine Scheel
Department of Computer Science
Aarhus University, Denmark

scheel@cs.au.dk

Ira Assent
Department of Computer Science

DIGIT Aarhus University Centre for
Digitalisation, Big Data and Data

Analytics
Aarhus University, Denmark

ira@cs.au.dk

ABSTRACT
Subspace clustering is the task of grouping objects based on mu-
tual similarity in subspaces of the full-dimensional space. The
INSCY algorithm extends the well-known density-based cluster-
ing algorithm DBSCAN. It finds dimensionality-unbiased non-
redundant subspace clusters using a tree structure to speed up the
processing of subspaces. Still, finding density-based clusters in all
subspaces implies an exponential search space in the number of
dimensions. Thus, the running time of INSCY is still measured in
hours on even small datasets of 2000 points. For larger datasets,
it becomes prohibitively expensive.

To benefit from INSCY for real-world sized datasets, we pro-
pose a novel GPU-parallel approach that runs on standard graph-
ics cards. To utilize the many cores of the GPU, we need new
algorithmic strategies that fit the computational model of the
GPU. While the GPU provides a large number of threads, tra-
ditional algorithms incur diverging threads and poor memory
alignment, both of which lead to idle time and poor runtime
performance. In INSCY, extracting subspace regions from the
SCY-tree structure and the density-based clustering of regions
itself are thus unfit for the GPU.

Our novel GPU-friendly algorithm GPU-INSCY computes the
same subspace clustering as INSCY at dramatically reduced run-
times. To achieve this, we devise a restructured SCY-tree index-
structure and associated operations for the GPU, as well as a
GPU-parallel density-based subspace clustering.

We experimentally show that GPU-INSCY scales well with the
size of the dataset and the number of dimensions, and improves
the running time of INSCY by a factor of several thousand for
large datasets of high dimensionality.

1 INTRODUCTION
Clustering, i.e., grouping data points based on mutual similarity,
is a widely used data mining task, e.g., for grouping customers to
allow for targeted marketing. However, real-world data is often
high-dimensional, and a higher number of dimensions means
that there are more possibilities for points to seem dissimilar.
This is known as the curse of dimensionality. Due to this effect,
points tend to group within a subspace of the full-dimensional
space, leading to the task of subspace clustering [2, 4, 15], where
we search for clusters with all possible subspaces. To search for
such clusters, we often employ density-based clustering simi-
lar to DBSCAN [12]. Most subspace clustering algorithms, e.g.,
SUBCLU [15], use a fixed density threshold independent of the

© 2021 Copyright held by the owner/author(s). Published in Proceedings of the
24th International Conference on Extending Database Technology (EDBT), March
23-26, 2021, ISBN 978-3-89318-084-4 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

subspace’s dimensionality. When finding clusters, the density
threshold needs to match the expected density such that we
can find all points within clusters, but without including ev-
erything. However, the expected density is lower for higher-
dimensional subspaces than it is for lower-dimensional subspaces.
For density-based subspace clustering, this problem implies that
density-measures that do not take the subspace’s dimensionality
into account are biased toward lower subspaces. To address this
problem, Assent et al. [6] formulated a dimensionality-unbiased
density-measure and utilized this in the algorithm INSCY [8].
INSCY, furthermore, removes redundancy and provides an index-
structure called SCY-tree used to partition and prune regions of
density-connected data points. A drawback that remains, is that
the running time is still measured in hours on even small datasets
of a couple of thousands of points.

To reduce the runtime of dimensionality-unbiased density-
based subspace clustering, we exploit modern graphics cards
(GPUs), capable of general-purpose computations, fast context
switches, and parallelizing over many cores, but with a restric-
tive computational model and limited memory. The high com-
putational throughput of GPUs has been utilized to improve
clustering runtimes [1, 5, 10]. However, to our knowledge, there
exists no GPU-parallelization of a dimensionality-unbiased index-
supported algorithm like INSCY, which is challenging to GPU-
parallelize due to index and depth-first subspace search being
optimized for (sequential) CPU processing.

Contributions. In this work, we present a novel GPU-parallel
algorithm, called GPU-INSCY, which provides the same cluster-
ings as INSCY at substantially reduced runtimes. To achieve this,
we restructure several major parts of INSCY, the index-structure
SCY-tree, the operations used to partition regions of data, and
the clustering of points. INSCY partitions regions represented by
SCY-trees through a sequence of operations. We show how to
make these operations parallel and combine several partitions
into one process. Combining these allows us to avoid many re-
dundant iterations and temporary copies. The clustering step
is also GPU-parallelized and improved further by utilizing the
density monotonicity for neighborhoods in increasing subspaces.

This paper is organized as follows: Section 2 discusses related
work, Section 3 gives the background of subspace clustering
and INSCY, Section 4 describes our new parallel algorithm GPU-
INSCY, Section 5 presents the experimental comparison of INSCY
and GPU-INSCY, and Section 6 concludes our work.

2 RELATEDWORK
Subspace clustering is the task of grouping points based on mu-
tual similarity in any possible subspace of the full-dimensional
space, hence its worst case complexity is exponential in the num-
ber of dimensions.

Series ISSN: 2367-2005 25 10.5441/002/edbt.2021.04

https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2021.04

Algorithms for subspace clustering [2, 4, 6–8, 11, 14, 15, 25]
are often categorized into bottom-up or top-down approaches
[16, 21, 24, 26]. Bottom-up approaches start with clustering in 1-
dimensional subspaces, iteratively combining 𝑘-dimensional sub-
space clusters into (𝑘 +1)-dimensional subspace clusters. CLIQUE
[4] and MAFIA [14] are grid-based approaches that may miss
subspace clusters spanning across grid cells. Instead of clustering
dense cells, SUBCLU [15] clusters dense points, as in the density-
based full space clustering algorithmDBSCAN[12]. An issue with
SUBCLU and other density-based subspace clustering approaches
is that they use a fixed density-threshold for all subspaces. There-
fore, they do not take dimensionality into account and are biased
towards lower-dimensional subspace clusters. INSCY is an ex-
tension of SUBCLU that mitigates this problem by introducing a
density measure normalized by a subspace’s expected density.

Top-down approaches start by clustering the full-dimensional
space and iteratively refine the subset of dimensions associated
with each subspace cluster [2, 3, 29]. These approaches limit sub-
space clusters by assigning each point in the data to exactly one
subspace cluster. Due to the exponential search for subspaces,
many of the algorithms take an approximate approach to sub-
space clustering [2, 14, 20]. They do so using a heuristic to pick
the subspaces that are examined or only compute clusterings of
dense regions instead of single dense points. These approaches
might miss clusters that exact algorithms like INSCY capture.

Even though exact subspace clustering algorithms are time
consuming, few algorithms have been proposed to reduce the
running time by exploiting the high computational throughput of
the GPU. Utilizing the many cores of the GPU is highly challeng-
ing because of the distinct and limited computational model, as
well as limited memory. There have been proposed several GPU-
parallelized full-space clustering algorithms [5, 10, 13, 17, 19].
One of the earliest GPU versions of the full-space clustering algo-
rithm DBSCAN was CUDA-DClust* [10], which starts multiple
searches for clusters in parallel. If multiple searches start within
the same cluster, they are merged. Multiple other GPU-versions
of DBSCAN have been developed [5, 18, 19, 28]. Our assessment
of self-reported results suggest that G-DBSCAN[5] and CUDA-
DClust*[10] are the best performing options. An experimental
evaluation [22] studies three of these GPU-versions and finds that
G-DBSCAN is the fastest and CUDA-DClust* uses less memory.

Only one GPU-parallelization of a well-known subspace clus-
tering approach has been proposed [1] for grid-based MAFIA.
GPUMAFIA parallelizes one operation at a time, mapping nested
for-loops of minor computations directly to parallel threads. Our
restructuring of INSCY lets us GPU-parallelize GPU-INSCY even
further such that we can even parallelize operations performed
at different points of the process. We completely restructure the
algorithm and its underlying SCY-tree structure to fit the compu-
tational model and the memory structure of the GPU.

To the best of our knowledge, we are the first to develop a GPU-
parallelized version of a density-based subspace clustering algo-
rithm, in particular an algorithm that supports dimensionality-
unbiased density measures and exploits indexing structures for
efficient computation.

3 BACKGROUND
3.1 The graphics processing unit
We give a short introduction to graphics processing units (GPUs)
and their computational model. When using a GPU for general-
purpose computation, the GPU is co-processor, and the CPU is

main processor. Throughout the paper, we use the term parallel to
denote parallel execution under the GPU’s computational model.
The main difference between a multi-core CPU and a GPU is that
GPUs can perform fast context switches and that several cores
on the GPU uses the same program counter and, therefore, must
perform the same operations.

CUDA is NVIDIA’s framework for using their line of GPUs.
It uses the concept of a kernel, which is a function executed on
multiple threads in parallel. Threads are organized into blocks,
and all threads within a single block are capable of synchronizing,
share fast accessible memory, and use atomic operations. How-
ever, there is a physical limit to the number of threads a block
can contain, and the communication between threads comes at a
time-cost. Each block is further separated into warps. All threads
within a warp share a program counter, implying that they must
perform the same instructions (SIMD) at all times. In the case of
branch-diversion, threads in different branches will remain idle
until the other branch has finished.

When parallelizing operations on the GPU, we are not guar-
anteed any order of executions. Therefore, our goal is to identify
independent operations, i.e., operations that do not use the partial
result of each other and therefore can be run in any order with-
out changing the final result. All allocation of memory and calls
to kernels are done by the CPU and executed on the GPU. All
communication with the GPU comes with a time-cost due to the
large latency of data transfer. Therefore, it is essential to balance
where data is processed and how long it takes to transfer.

3.2 INSCY
We describe INSCY briefly. For further details please see [8]. We
use the following terminology: let 𝑋 ∈ R𝑛×𝑑 be a 𝑑-dimensional
dataset with 𝑛 points, 𝐷 = {0, . . . , 𝑑 − 1} an index set for the
full dimensional space, 𝑆 ⊆ 𝐷 a subspace of 𝐷 , and 𝑁𝑆

𝜀 (𝑝) the
neighborhood with radius 𝜀 of a point 𝑝 in subspace 𝑆 .

According to INSCY [6], a subspace cluster is a maximal set
of points of at least 𝑚𝑖𝑛𝐶 , which are density-connected in a
subspace according to some density measure, and which is not
redundant w.r.t. a higher dimensional subspace projection:

Definition 3.1. INSCY Subspace Cluster
A set of points 𝐶 ⊆ 𝑋 in subspace 𝑆 ⊆ 𝐷 is a subspace cluster if:
• objects in 𝐶 are S-connected: ∀𝑝, 𝑞 ∈ 𝐶 : ∃𝑜1, . . . , 𝑜𝑚 ∈
𝐶 : 𝑝 = 𝑜1 ∧ 𝑞 = 𝑜𝑚 ∧ ∀𝑖 ∈ {2, . . . ,𝑚} : 𝑜𝑖 ∈ 𝑁𝑆

𝜀 (𝑜𝑖−1)
• all points fulfill the density criterion: ∀𝑝 ∈ 𝐶 : 𝑑𝑐𝑆 (𝑝),
• 𝐶 ismaximal, i.e., contains all S-connected objects:∀𝑝, 𝑞 ∈
𝑋 : 𝑝, 𝑞 S-connected⇒ 𝑝 ∈ 𝐶 ∧ 𝑞 ∈ 𝐶 ,
• minimum cluster size: |𝐶 | ≥ 𝑚𝑖𝑛𝐶 ,

• not redundant: �𝐶 ′, 𝑆 ′ subspace cluster with 𝐶 ′ ⊆ 𝐶 ∧
𝑆 ⊂ 𝑆 ′ ∧ |𝐶 ′ | ≥ 𝑟 × |𝐶 |

where 𝑟 is the redundancy parameter,𝑚𝑖𝑛𝐶 is the minimum size
of a cluster, and 𝑑𝑐𝑆 (𝑝) is any dimensionality-unbiased density
criterion within subspace 𝑆 .

In this paper, we use the dimensionality-unbiased rectangular
density measure for the density criterion 𝑑𝑐𝑆 (𝑝) := |𝑁𝑆

𝜀 (𝑝) | ≥
max(𝐹 · 𝛼 (𝑆), 𝜇), where 𝐹 is the density factor threshold, 𝛼 (𝑆) =
E𝑆

[
|𝑁𝑆

𝜀 (𝑝) |
]

= |𝑋 | 𝑐 (𝑆)×𝜀
|𝑆 |

𝑣𝑆
is the expected density, 𝑐 (𝑆) =

𝜋
|𝑆 |
2 /Γ

(
|𝑆 |
2 + 1

)
with Γ(𝑛 + 1) = 𝑛× Γ(𝑛), Γ(1) = 1, Γ(1/2) =

√
𝜋 ,

𝑣𝑆 is the volume of subspace 𝑆 , and 𝜇 is the minimum number
of points required for not just being pseudodense. Other density
measures can also be used. For further details see [6]. Note that

26

Def. 3.1 is similar to density-based clustering in DBSCAN [12],
but with an unbiased density notion wrt. subspaces.

SUBCLU [15] uses monotonicity of density-connectivity to
prune points that lie outside clusters in a lower-dimensional sub-
space projection. However, for INSCY’s unbiased densitymeasure
that scales with the expected density of a subspace, monotonicity
is lost. Still, as [6] observes, pruning can be done by discard-
ing points that are not dense w.r.t. the lowest possible density
threshold, i.e., for the full-space. INSCY finds such points, called
not weak-dense, which can safely be pruned before searching
for clusters within superspaces of the current space. A point is
weak-dense if |𝑁𝑆

𝜀 (𝑝) | ≥ max(𝐹 × 𝛼 (𝐷), 𝜇).

3.2.1 The INSCY algorithm. The idea of INSCY is to bound
the search for subspace clusters by identifying regions that fully
contain potential clusters. INSCY describes such a region by the
dimensions it spans and the respective intervals in these dimen-
sions, and call it a subspace region. INSCY performs a depth-first
search (DFS) of the subspace regions, i.e., enumerating all pos-
sible subspace regions. INSCY does so by recursively extending
with one dimension at a time and partitioning the region into
intervals along that dimension. When INSCY returns from the
recursion, it performs density-based clustering within the current
subspace region to obtain the clusters. This implies that INSCY
cluster points within all superspaces of the current space first.

Each dimension is partitioned into a fixed number of cells.
As a cluster likely spans multiple cells, INSCY register this by
having a border between each cell at the size of the neighborhood
radius 𝜀. When performing density-based clustering, it follows
that if there are no points within this border, the two cells’ points
cannot be density-connected. Otherwise, a cluster may span
both cells. Such connected cells are referred to as S-connected.
S-connected cells must be merged into a density-connected in-
terval to ensure that no clusters are split. An interval spanning
multiple cells is identified by the first cell. A dimension might
have multiple density-connected intervals, and INSCY is called
recursively on each interval in a depth-first manner. The whole
process of expanding with a new dimension and bounding to
a density-connected interval is referred to as restricting w.r.t. a
new dimension and the cell identifying the interval. The pair of
dimension 𝑑 and cell 𝑐 is called a descriptor (𝑑, 𝑐). When expand-
ing with a new dimension, we expand one region at a time. Figure
1 shows a 1-dimensional example, and the expansion into two
dimensions. On the left, the dimension is split into three cells,
where two are S-connected and merged into one interval marked
by green. On the right, we see the expansion. The red region is
split into cells along the added dimension and connected with
any S-connected cells, and likewise for the green region.

To keep track of the possible dimensions and cells that can be
restricted, INSCY introduces an index-structure called SCY-tree.
The idea of SCY-tree is to precompute the number of points within
cells along a dimension such that restricting becomes easier. The

 d
im

en
si

on
 1

 dimension 0 dimension 0

Figure 1: Expansion of 1-d regions into 2-d

dim 0 1:1

dim 2

root

2:1

-1:3

2:2

2:2 dim 0

dim 2

root

1:4

0:3 2:1 2

1

-1:5

2:1

2:1 dim 0

dim 2

root

1:5

0:3 2:2 2

1

-1:8

2:3

2:3

mergerestrict (dim 1, cell 0) restrict (dim 1, cell 1)

dim 0 0:1

dim 1 2:1

dim 2

root

1:1

1:5

0:1

2:1 0:3 2:1

1:4

2

1

1

-1:10

2:2

0:2 0

2

1:1

2:1

2:1

2:1

2:4

 d
im

en
si

on
 1

 dimension 0
0 1 2

0

1

2

Figure 2: SCY-tree for examples in [8]; node values 𝑐𝑒𝑙𝑙 :
𝑐𝑜𝑢𝑛𝑡 ; dimensions and points colored as in later figures

SCY-tree, therefore, represents the dimensions and cells not yet
restricted. The SCY-tree is a tree-structure containing nodes that
represent a partition of a space along a specific dimension. All
nodes regarding a specific dimension are located at the same
height in the SCY-tree, which we call a layer. The children of
a node represent splits into cells along a dimension, one child
per cell. Each node contains its cell number and the count of
points within the cell it represents. A cell with an S-connection
is represented by adding a sibling with the same cell number,
but with the count of points set to -1. Such a node is called
an S-connector node. INSCY keeps track of S-connections by
continuing the path of S-connector nodes down to the leaf layer.
The root node of the SCY-tree represents a restricted subspace
region. SCY-trees that represent regions that share a border are
called neighboring SCY-trees. For further details, see [8].

Figure 2 (top) shows an example of an initial SCY-tree for
the full-dimensional space. In this example, the space is first
partitioned along dimension 0, creating three cells noted by the
cell number and the count of points in that cell 𝑐𝑒𝑙𝑙 : 𝑐𝑜𝑢𝑛𝑡 . Cell
1 has an S-connection, which is represented by a node without
a count of points. Each cell is then further partitioned along
dimension 1, discarding cells that do not contain any points.

INSCY proceeds as in Algorithm 1. For each descriptor, create a
restricted SCY-tree. If cells in the SCY-tree are S-connected, merge
connected restricted SCY-trees into one final restricted SCY-tree.
INSCY prune the final restricted SCY-tree for redundancy, call
recursively, and cluster the points if there is a possibility for
non-redundant clusters.

Restrict. INSCY restricts a SCY-tree by identifying nodes
matching the current descriptor, i.e., the nodes residing on the
layer of the restricted dimension and with the same cell number
as the descriptor. For each matching node, copy the node’s path
to the root and subtrees below the node into a new restricted

Algorithm 1 INSCY(𝑠𝑐𝑦𝑡𝑟𝑒𝑒 , 𝑑𝑓 , 𝑋 , 𝑑 , 𝑟 , 𝐹 , 𝜇, 𝜀,𝑚𝑖𝑛𝐶 , 𝑅)

1: for 𝑑𝑟𝑒 = 𝑑𝑓 to 𝑑 do
2: for 𝑐𝑟𝑒 = 0 to 𝑛𝑐𝑒𝑙𝑙𝑠 do
3: 𝑠𝑐𝑦𝑡𝑟𝑒𝑒 ′ ← restrict(𝑠𝑐𝑦𝑡𝑟𝑒𝑒, 𝑑𝑟𝑒 , 𝑐𝑟𝑒)
4: 𝑠𝑐𝑦𝑡𝑟𝑒𝑒 ′ ← mergeNeighbors(𝑠𝑐𝑦𝑡𝑟𝑒𝑒, 𝑠𝑐𝑦𝑡𝑟𝑒𝑒 ′, 𝑑𝑟𝑒 , 𝑐𝑟𝑒)
5: if prune_recursion(𝑠𝑐𝑦𝑡𝑟𝑒𝑒 ′, 𝐹 , 𝜇, 𝜀,𝑚𝑖𝑛𝐶) then
6: INSCY(𝑠𝑐𝑦𝑡𝑟𝑒𝑒 ′, 𝑑𝑟𝑒 + 1, 𝑋, 𝑑, 𝑟, 𝐹 , 𝜇, 𝜀,𝑚𝑖𝑛𝐶 , 𝑅)
7: if prune_redundancy(𝑠𝑐𝑦𝑡𝑟𝑒𝑒 ′, 𝑟 , 𝑅) then
8: 𝑅 ← 𝑅 ∪ clustering(𝑠𝑐𝑦𝑡𝑟𝑒𝑒 ′, 𝑋 , 𝐹 , 𝜇, 𝜀)

27

SCY-tree. Since the SCY-tree keeps track of not yet restricted
dimensions, the matching node itself is not copied. The node’s
children are now children of the node’s parent. The count of
points is also updated to reflect the number of points in the
restricted region. Figure 2 (bottom) contains two restricted SCY-
trees for descriptors (1, 0) and (1, 1) and the merged result. For
descriptor (1, 0) only 2 nodes match, leading to a small SCY-tree.

Merge. INSCY merges neighboring restricted SCY-trees if
there exists an S-connection, i.e. when an S-connector path starts
at dimension 𝑑 and has cell number 𝑐 that matches the current
descriptor (𝑑, 𝑐). Merge is done by going through the two re-
stricted SCY-trees and copying the nodes in both. A node can be
represented in several SCY-trees. During the merge, nodes with
the same cell number and the same parent are merged. Figure 2
(bottom), shows that the descriptor (1, 0) matches an S-connector
node, the node represented by only a 0 on dimension 1, and there-
fore INSCY restricts the neighboring descriptor (1, 1) and merges
the two restricted SCY-trees.

Pruning recursion.To reduce the search space, INSCY prunes
the final restricted SCY-tree before calling recursively, as follows:
Remove non-weak dense points and check if the region’s number
of points still exceeds𝑚𝑖𝑛𝐶 . INSCY only proceeds with the re-
cursion if this is the case, as further restrictions will only reduce
the number of points.

Pruning redundancy. When returning from the recursive
call INSCY has found clusters in all superspaces of the current
subspace. The current region can therefore be pruned by redun-
dancy. INSCY prunes by redundancy by checking if the result
already contains a cluster covering a factor 𝑟 of the points in the
restricted region. If the number of points in the region is large
enough, INSCY computes the density-based clustering on all
points in the final restricted SCY-tree and adds all non-redundant
clusters to the result.

4 GPU-INSCY ALGORITHM
INSCY is inherently computationally expensive, making it infea-
sible to run on large real-world datasets. As mentioned in the
introduction, GPUs provide computational power that algorithms
designed for a different computational model of single-core CPUs,
as INSCY, cannot utilize. We design an algorithm for the GPU
that reduces the running time of INSCY substantially, making it
feasible to run on much larger datasets. To summarize the nota-
tion found in this section we provide Table 1 for ease of reading.
Recall that threads in a warp must execute the same instructions
to fully utilize the GPU’s computational power. INSCY does not
group similar operations and would perform poorly on the GPU.

The idea of each iteration in INSCY is to bound a subspace
region by restricting andmerging, prune that region, and perform

Algorithm 2 GPU-INSCY(𝑠𝑐𝑦𝑡𝑟𝑒𝑒 ′, 𝑑𝑓 , 𝑋 , 𝑑 , 𝑟 , 𝐹 , 𝜇, 𝜀,𝑚𝑖𝑛𝐶 , 𝑅)

1: 𝐿 ← GPU_restrict_and_merge(𝑠𝑐𝑦𝑡𝑟𝑒𝑒, 𝑑𝑓 , 𝑑)
2: precompute_neighborhoods(𝑋 , 𝐿, 𝜀)
3: for 𝑑𝑟𝑒 ← 𝑑𝑓 to 𝑑 − 𝑑𝑓 do
4: 𝐶 ← 1d array of size |𝑋 | initialized to −1
5: for ∀𝑠𝑐𝑦𝑡𝑟𝑒𝑒 ′ ∈ 𝐿[𝑑𝑟𝑒] do
6: if prune_recursion(𝑠𝑐𝑦𝑡𝑟𝑒𝑒 ′, 𝐹 , 𝜇, 𝜀,𝑚𝑖𝑛𝐶) then
7: GPU-INSCY(𝑠𝑐𝑦𝑡𝑟𝑒𝑒 ′, 𝑑𝑟𝑒 + 1, 𝑋, 𝑑, 𝑟, 𝐹 , 𝜇, 𝜀,𝑚𝑖𝑛𝐶 , 𝑅)
8: if prune_redundancy(𝑠𝑐𝑦𝑡𝑟𝑒𝑒 ′, 𝑟 , 𝑅) then
9: 𝐿′ ← 𝐿′ ∪ {(𝑠𝑐𝑦𝑡𝑟𝑒𝑒 ′,𝐶)}
10: 𝑅 ← 𝑅 ∪ GPU_clustering(𝐿′, 𝑋, 𝐹, 𝜇, 𝜀)

Table 1: Notation

𝑛𝑛𝑜𝑑𝑒𝑠 number of nodes
𝑛𝑝𝑡𝑠 number of points
𝑛𝑐𝑒𝑙𝑙𝑠 number of cells
𝑛𝑑𝑖𝑚𝑠 number of dimensions
𝑛𝑟_𝑑𝑖𝑚𝑠 number of restricted dims
𝑝𝑎 ∈ N𝑛𝑛𝑜𝑑𝑒𝑠 parent array
𝑐𝑒 ∈ N𝑛𝑛𝑜𝑑𝑒𝑠 cell array
𝑐𝑜 ∈ N𝑛𝑛𝑜𝑑𝑒𝑠 count array
𝑙𝑎 ∈ N𝑛𝑑𝑖𝑚𝑠 layer-indexing array
𝑑𝑖𝑚𝑠 ∈ N𝑛𝑑𝑖𝑚𝑠 dimension array
𝑟_𝑑𝑖𝑚𝑠 ∈ N𝑛𝑟_𝑑𝑖𝑚𝑠 restricted dims array
𝑝𝑜 ∈ N𝑛𝑝𝑡𝑠 point-id array
𝑝𝑙 ∈ N𝑛𝑝𝑡𝑠 point-placement array
𝑖𝑛𝑐𝑙 ∈ {0, 1}𝑛𝑑𝑖𝑚𝑠×𝑛𝑐𝑒𝑙𝑙𝑠×𝑛𝑛𝑜𝑑𝑒𝑠 node inclusion array
𝑖𝑛𝑐𝑙𝑝𝑡𝑠 ∈ {0, 1}𝑛𝑑𝑖𝑚𝑠×𝑛𝑐𝑒𝑙𝑙𝑠×𝑛𝑝𝑡𝑠 point inclusion array
𝑖𝑑𝑥 ∈ N𝑛𝑑𝑖𝑚𝑠×𝑛𝑐𝑒𝑙𝑙𝑠×𝑛𝑛𝑜𝑑𝑒𝑠 node new-index array
𝑖𝑑𝑥𝑝𝑡𝑠 ∈ N𝑛𝑑𝑖𝑚𝑠×𝑛𝑐𝑒𝑙𝑙𝑠×𝑛𝑝𝑡𝑠 point new-index array
𝑛_𝑐𝑜 ∈ N𝑛𝑑𝑖𝑚𝑠×𝑛𝑐𝑒𝑙𝑙𝑠×𝑛𝑛𝑜𝑑𝑒𝑠 new-count array
𝑖𝑠_𝑆 (𝑖) is S-connection
𝑠_𝑖𝑛𝑐𝑙 (𝑗, 𝑖, 𝑐) should be included
𝑆 ∈ {0, 1}𝑛𝑑𝑖𝑚𝑠×𝑛𝑐𝑒𝑙𝑙𝑠 S-connection array
𝑀 ∈ N𝑛𝑑𝑖𝑚𝑠×𝑛𝑐𝑒𝑙𝑙𝑠 merge map
𝑛_𝑝𝑎 ∈ N𝑛𝑑𝑖𝑚𝑠×𝑛𝑐𝑒𝑙𝑙𝑠×𝑛𝑛𝑜𝑑𝑒𝑠 new-parent array
𝑛_𝑐ℎ ∈ N𝑛𝑑𝑖𝑚𝑠×𝑛𝑐𝑒𝑙𝑙𝑠×𝑛𝑛𝑜𝑑𝑒𝑠×𝑛𝑐𝑒𝑙𝑙𝑠×2 new-children array
𝑟𝑒𝑝 (𝑗, 𝑐, 𝑖) representative node

clustering in that region. This process is repeated until all clusters
in all subspace regions are found. This approach is efficient for a
sequential algorithm. However, when parallelizing for the GPU,
we prefer grouping identical and independent operations to make
each kernel call utilize as many cores as possible. Making INSCY
run parallel on the GPU is not straightforward since many partial
computations depend on previous results. E.g., in the alternation
between restricting and merging SCY-trees, we need the previous
merged SCY-tree and the neighboring restricted SCY-tree before
continuing to merge.

In this section, we present a new algorithm called GPU-INSCY,
in which we tackle the problem of identifying and reorganizing
the operations that can be performed in parallel to reduce running
time. Contrary to INSCY, GPU-INSCY aims to perform similar
and independent operations simultaneously for multiple final
restricted SCY-trees to utilize multiple thread blocks. Remember
that this allows us to use more cores, but it is only possible if the
threads in different blocks do not need to communicate.

We first outline the general order of computations in GPU-
INSCY, and we later explain this reordering. These reorderings
do not affect the result since the reordered operations are inde-
pendent of each other as discussed below for each change we
introduce. GPU-INSCY can be seen in Algorithm 2. First, compute
the set 𝐿 of all final restricted SCY-trees. Precompute the neigh-
borhoods for all points in all final restricted SCY-trees. For each
final restricted SCY-tree, prune the recursion, call GPU-INSCY
recursively, and prune for redundancy. All non-pruned final re-
stricted SCY-trees are added to 𝐿′. Finally, we cluster all points
in each of the final restricted SCY-trees in 𝐿′.

Restrict and merge. In GPU-INSCY, we isolate all restrict
and merge operations at the beginning of the algorithm, whereas
INSCY performs them ad hoc. We isolate the operations such that
we can parallelize them in different thread blocks. The result of

28

each restrict and merge operation only depends on the informa-
tion parsed to the recursion. Computing all restricted SCY-trees
at the beginning does, therefore, not change the final result. Par-
allelizing within each thread block is not a simple task due to
both the alternation between restrict and merge and the fact
that INSCY only visits nodes in the SCY-trees one by one when
restricting and merging. We discuss how to parallelize restrict
and merge in Section 4.1.2, after introducing a representation of
the SCY-tree index-structure for the GPU in Section 4.1.1.

Precomputing the neighborhoods. Computing the neigh-
borhoods is an expensive task, and it is used both for the cluster-
ing andwhen computing weak-density while pruning a recursion.
In Section 4.2, we describe how to precompute the neighborhoods
in parallel and how we take advantage of having direct access to
the neighborhoods in a subspace of the current space.

Pruning. In Section 4.3, we parallelize both pruning phases
following the same approach as for restrict and merge.

Clustering. In Section 4.2, we change the sequential way of
expanding the clusters [12] with one density-connected point at
a time, to obtain a more efficient clustering algorithm.

4.1 SCY-tree on the GPU
The SCY-tree representation and the associated operations are not
very suited for the GPU. Section 4.1.1 describes how to represent
the SCY-tree in a GPU friendly fashion and Section 4.1.2 describes
how to perform the restrict and merge operations in parallel.

4.1.1 Representing the SCY-tree on the GPU. Handling mem-
ory on the GPU is more restrictive than on the CPU, and allo-
cating memory can only be done from the CPU. Furthermore, it
is expensive to alternate between calling kernels, transferring
data, and allocating memory. Therefore, we prefer to allocate
memory and transfer data as few times as possible. GPU memory
is loaded one block at a time to reduce latency, implying that
data used close together in time should be placed close together
in memory. If the data we use is not placed in the same block, we
get cache misses, i.e., not using the loaded data, which we would
like to reduce. For ease of reference, we call the GPU friendly
representation of the SCY-tree GPU-SCY-tree. A way to represent
tree structures on the CPU is to create an object for each node
with pointers to its children, parent, and other values in the tree.
This structure is very flexible and allows adding nodes on the fly.
However, this does not fit well with the restrictions on the GPU.

Remember, all nodes for a particular dimension are placed on
the same layer in the SCY-tree. These layers are indexed by 𝑗

starting with 𝑗 = −1 for the root and incrementing toward the
leaf layer 𝑗 = 𝑛𝑑𝑖𝑚𝑠 − 1, implying that lower indices are above
the higher indices in the SCY-tree. In Section 4.1.2, we describe
how we handle all nodes on the same layer simultaneously, and
we would therefore like to place these nodes close together in
memory. The same is the case for points contained in the tree.

Instead of representing nodes as objects, we choose to repre-
sent the GPU-SCY-tree as arrays, with an entry for each node.
Each array represents the kind of pointer or values that a node
contains. In the arrays, we locate nodes on the same layer in the
SCY-tree next to each other and order the layers by their index
𝑗 . In this way, data for nodes on the same layer is placed close
together in memory, making it more likely to avoid cache-misses.
We organize points using the same reasoning. To represent the
GPU-SCY-tree, we use a total of eight arrays with one entry
per node, point, or dimension. An example is given in Figure 3.
Besides the arrays we also keep count of the number of nodes

0 0 0 0 0
0 1 2 3 4 5

1 2 2 3
6 7 8

4 4 4 4
9 10 11 12

5 6 7 7 8 9 10 11 12
13 14 15 16 17 18 19 20 21

-1 0 1 1 2 2 0 1 1 0 0 1 2 1 2 0 2 2 2 2 2 2

pa:

ce:

10 1 5 -1 4 1 1 4 -1 2 -1 1 1 1 1 3 1 -1 2 -1 1 1co:

dims:

la:

0 1 2

1 5 13

0 1 2 3 4 5 6 7 8po:

13 14 15 15 15 16 18 18 20pl: 21

9r_dims: ∅

Figure 3: GPU-SCY-tree for SCY-tree in Figure 2.

𝑛𝑛𝑜𝑑𝑒𝑠 , number of points 𝑛𝑝𝑡𝑠 , number of cells 𝑛𝑐𝑒𝑙𝑙𝑠 , number
of dimensions in the SCY-tree 𝑛𝑑𝑖𝑚𝑠 , and number of restricted
dimensions 𝑛𝑟_𝑑𝑖𝑚𝑠 .

The nodes are represented using three arrays: the parent
pointer 𝑝𝑎 ∈ N𝑛𝑛𝑜𝑑𝑒𝑠 , the cell number 𝑐𝑒 ∈ N𝑛𝑛𝑜𝑑𝑒𝑠 , and the
count of points 𝑐𝑜 ∈ N𝑛𝑛𝑜𝑑𝑒𝑠 . Notice that we do not keep point-
ers to children, see Section 4.1.2 for reasoning. To access each
layer 𝑗 we have an array with the starting index of each layer
𝑙𝑎 ∈ N𝑛𝑑𝑖𝑚𝑠 and an array with the dimensions that the lay-
ers represent 𝑑𝑖𝑚𝑠 ∈ N𝑛𝑑𝑖𝑚𝑠 . We furthermore keep an array of
the restricted dimensions 𝑟_𝑑𝑖𝑚𝑠 ∈ N𝑛𝑟_𝑑𝑖𝑚𝑠 , however, for the
GPU-SCY-tree in Figure 3 this is empty. To keep track of the
points in the GPU-SCY-tree, we have two arrays with an entry
for each point. One keeps track of the points’ index in the dataset
𝑝𝑜 ∈ N𝑛𝑝𝑡𝑠 , and the other keeps track of which leaf-node each
point is placed in 𝑝𝑙 ∈ N𝑛𝑝𝑡𝑠 .

4.1.2 Restrict and merge on the GPU. When parallelizing for
the GPU, we identify: (i) ways to reorder independent tasks that
can be performed in parallel, (ii) similar tasks that can be per-
formed by a warp, and (iii) ways to allocate memory as few times
as possible. Restrict and merge for a SCY-tree are sequential op-
erations where we look at one node at a time, check if it should
be included, and copy all information to the temporary or final
result. Running this in parallel on the GPU requires a substantial
restructuring due to two things: The alternation between restrict
and merge and a node’s inclusion being dependent on the inclu-
sion of either the parent or one of its children. As mentioned
before, such a dependency makes the process sequential, which
is not suitable for the GPU.

In Section 4, we state that all final restricted SCY-trees can
be computed first in the recursion since the computation only
requires the descriptors and the SCY-tree parsed to the recur-
sion. But to parallelize the restrict and merge operation, we need
several observations and restructuring that we now provide.

Allocating once. To allocate memory only once per restricted
GPU-SCY-tree, we first compute which nodes and points are
included in the restricted SCY-trees. This information is kept
in two temporary binary arrays both initialized to 0. One for
nodes 𝑖𝑛𝑐𝑙 ∈ {0, 1}𝑛𝑑𝑖𝑚𝑠×𝑛𝑐𝑒𝑙𝑙𝑠×𝑛𝑛𝑜𝑑𝑒𝑠 with entries for each de-
scriptor and node combination. And one for points 𝑖𝑛𝑐𝑙𝑝𝑡𝑠 ∈
{0, 1}𝑛𝑑𝑖𝑚𝑠×𝑛𝑐𝑒𝑙𝑙𝑠×𝑛𝑝𝑡𝑠 with entries for each descriptor and point
combination. Here 0 and 1 represent false and true, respectively.
In Figure 2, we show the restriction for descriptor (1,0). In Figure
4 we show the same restriction in GPU-SCY-tree representa-
tion, and the temporary arrays. Here the five included nodes are
marked with a 1 in 𝑖𝑛𝑐𝑙 . Knowing which nodes and points are
included allows us to compute the new indices of the nodes and
points in the restricted SCY-trees. We compute the indices forn-
odes and points using inclusive scan (cumulative sum) of 𝑖𝑛𝑐𝑙 for
each descriptor. The result is kept in 𝑖𝑑𝑥 ∈ N𝑛𝑑𝑖𝑚𝑠×𝑛𝑐𝑒𝑙𝑙𝑠×𝑛𝑛𝑜𝑑𝑒𝑠

29

0 1 0 0 0 0 0 1 1inclpts: 0

idx:

0 1 1 1 1 1 1 2 3idxpts: 3

1 1 2 2 3 3 3 3 3 3 3 3 3 3 4 4 4 4 5 5 5 5

0 0 0
0 1 2 3 4

1 2

-1 1 2 2 2

pa':

ce':

3 1 2 1 2co':

dims':

la':

0 2

1 3

1 7 8po':

3 4 4pl':

0 1 0 0 0 1 0 0 0

0 1 0 0 0 2 0 0 0

incl: 1 0 1 0 1 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 00 1 0 2n_co:

r_dims': 1

restrict descriptor (1, 0)

result

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Figure 4: Restrict example before combining with merge.

and 𝑖𝑑𝑥𝑝𝑡𝑠 ∈ N𝑛𝑑𝑖𝑚𝑠×𝑛𝑐𝑒𝑙𝑙𝑠×𝑛𝑝𝑡𝑠 . This is used to determine where
each node is placed in the resulting SCY-tree. E.g. in Figure 4, the
last included node is placed at entry 4 = 𝑖𝑑𝑥 (18) − 1. Further-
more, for each descriptor, we use the last index to allocate the
needed memory for the restricted SCY-trees.In Figure 4 we need
to allocate space for 5 = 𝑖𝑑𝑥 (|𝑖𝑑𝑥 | − 1) nodes. After allocating
memory, we copy all included nodes and points to the restricted
SCY-trees. To copy, we need the new count of points in the sub-
trees starting at each node 𝑛_𝑐𝑜 ∈ N𝑛𝑑𝑖𝑚𝑠×𝑛𝑐𝑒𝑙𝑙𝑠×𝑛𝑛𝑜𝑑𝑒𝑠 which
we compute along side the inclusion of each node.

Restrict is independent.We observe that the restrict opera-
tion only requires the SCY-tree parsed to the recursion and the
descriptor it is restricting w.r.t.. Both the descriptor and the SCY-
tree are not changed during the recursion. Therefore, the restrict
operations of each recursion are completely independent of each
other and all other operations. Consequently, the final result does
not depend on the order of restriction, and we can parallelize the
restrict operations over different thread blocks, which allows us
to utilize more cores.

Restrict - similar tasks and restructuring. INSCY restricts
by identifying all nodes matching a descriptor and then visiting
upward and downward in the layers of the SCY-tree from there.
INSCY copies all nodes on the path to the root and the subtree
below the matching nodes to the new restricted SCY-tree. We
take advantage of the SCY-tree being a well-balanced tree with
a layer for each dimension. Observe that nodes on layers above
the restricted dimension are included if any of its children is in-
cluded in the restricted SCY-tree. The nodes on layers below are
included if their parent is included. Because of the dependency
w.r.t. inclusion between parents and children, we have a depen-
dency between layers where we need to compute the inclusion of
nodes up- and downwards in the GPU-SCY-tree starting from the
restricted dimension. However, observe that computing the in-
clusion of each node on a layer is independent of the other nodes
on that layer. Using this observation, we suggest computing the
inclusion of nodes one layer at a time, making the computation of
node inclusion parallel over each node on a layer. Since we keep
the ordering between parents and children, we do not violate the
dependency, and hence we compute the same result as INSCY.

When computing the inclusion of nodes, we have four cases,
where the computation is different for each of them. One for
nodes directly above the restricted dimension, one for the nodes
on the remaining layers above, one for nodes directly below the
restricted dimension, and one for the nodes on the remaining

layers below. We handle each of the cases in their own kernel, to
avoid branch-divergence that would lead to idle threads.

We compute the inclusion array 𝑖𝑛𝑐𝑙 in parallel with thread
blocks for each descriptor (𝑑𝑖𝑚𝑠 (𝑗), 𝑐) where 𝑗 is the layer repre-
senting the restricted dimension and 𝑐 is the cell number.Within
each block, we process sequentially over each layer 𝑗 + 𝑘 where
− 𝑗 ≤ 𝑘 < 𝑛𝑑𝑖𝑚𝑠 − 𝑗 , starting from 𝑘 = 0 and increment-
ing/decrementing from there. For all nodes 𝑖 on a given layer we
parallelize using threads.

When we compute the inclusion array 𝑖𝑛𝑐𝑙 , we treat normal
nodes and S-connector nodes slightly differently. An S-connection
is only used to enforce a merge along the restricted dimension.
Therefore, we discard the S-connector path starting at the re-
stricted dimension. Remember, we have an S-connection on the
restricted dimension, when an S-connector node 𝑖 has a normal
node as the parent:

𝑖𝑠_𝑆 (𝑖) := (𝑐𝑜 (𝑖) < 0) ∧ (𝑐𝑜 (𝑝𝑎(𝑖)) ≥ 0) . (1)

In Figure 3, node 10 represents an S-connection since it has a
negative count and its parent, node 4, has a positive count.

We can now use this when searching for nodes 𝑖 matching the
descriptor (𝑑𝑖𝑚𝑠 (𝑗), 𝑐). A node 𝑖 on layer 𝑗 matches the descriptor
(𝑑𝑖𝑚𝑠 (𝑗), 𝑐) if its cell number matches the cell number of the
descriptor 𝑐𝑒 (𝑖) = 𝑐 and it is not an S-connector node starting at
the restricted dimension ¬𝑖𝑠_𝑆 (𝑖):

𝑠_𝑖𝑛𝑐𝑙 (𝑗, 𝑖, 𝑐) := (𝑐𝑒 (𝑖) = 𝑐) ∧ (¬𝑖𝑠_𝑆 (𝑖)) . (2)

In Figure 3, for descriptor (1, 0), node 6 should be treated as
a match since it is in dimension 1 and has cell number 0 and
does not represent an S-connection. Node 10 also matches the
descriptor, but it represents an S-connection, so it should not be
treated as a match.

We wish to compute inclusion for all nodes on the layers
above the restricted dimension. This requires us to look at each
child of a given node. As the number of children can vary from
node to node, threads in the same warp would stay idle until the
other threads have visited all their children. We address this by
parallelizing over all children instead and letting the children
mark if their parent is included. Observe that now each thread
only visits the current node and its parent, instead of a varying
number of children.

Starting from layer 𝑗 we compute inclusion for the nodes on
layer 𝑗−1 just above the restricted dimension𝑑𝑖𝑚𝑠 (𝑗). The parent
𝑝𝑎(𝑖) of a node 𝑖 is marked as included if the node 𝑖 matches the
descriptor 𝑠_𝑖𝑛𝑐𝑙 (𝑗, 𝑖, 𝑐):

∀0 ≤ 𝑗 < 𝑛𝑑𝑖𝑚𝑠 , 0 ≤ 𝑐 < 𝑛𝑐𝑒𝑙𝑙𝑠 ,

𝑙𝑎(𝑗) ≤ 𝑖 < 𝑙𝑎(𝑗 + 1), 𝑠_𝑖𝑛𝑐𝑙 (𝑗, 𝑖, 𝑐) :
𝑖𝑛𝑐𝑙 (𝑗, 𝑐, 𝑝𝑎(𝑖)) := 1.

(3)

In Figure 4 node 2 is included since node 6 matches the descriptor.
Sequentially moving towards the root, we can now compute

inclusion for nodes on layer 𝑗 − 𝑘 where 2 ≤ 𝑘 < 𝑗 . The parent
𝑝𝑎(𝑖) is now included if the node 𝑖 is marked as included:

∀0 ≤ 𝑗 < 𝑛𝑑𝑖𝑚𝑠 , 0 ≤ 𝑐 < 𝑛𝑐𝑒𝑙𝑙𝑠 , 1 ≤ 𝑘 < 𝑗 − 1,
𝑙𝑎(𝑗 − 𝑘) ≤ 𝑖 < 𝑙𝑎(𝑗 − 𝑘 + 1), 𝑖𝑛𝑐𝑙 (𝑗, 𝑐, 𝑖) :

𝑖𝑛𝑐𝑙 (𝑗, 𝑐, 𝑝𝑎(𝑖)) := 1.
(4)

In Figure 4 the root, node 0, is included since node 2 is included.

30

Similarly, we include nodes on the layer 𝑗+1 directly below the
restricted dimension𝑑𝑖𝑚𝑠 (𝑗) if the parent matches the descriptor:
∀0 ≤ 𝑗 < 𝑛𝑑𝑖𝑚𝑠 , 0 ≤ 𝑐 < 𝑛𝑐𝑒𝑙𝑙𝑠 , 𝑙𝑎(𝑗 + 1) ≤ 𝑖 < 𝑙𝑎(𝑗 + 2) :
𝑖𝑛𝑐𝑙 (𝑗, 𝑐, 𝑖) := 𝑠_𝑖𝑛𝑐𝑙 (𝑗, 𝑝𝑎(𝑖), 𝑐) . (5)

In Figure 4 node 14 is included as node 6 matches the descriptor.
Moving towards the leaves, we compute inclusion for nodes

on layer 𝑗 + 𝑘 where 2 ≤ 𝑘 < 𝑛𝑑𝑖𝑚𝑠 − 𝑗 by checking if a node’s
parent is marked as included:

∀0 ≤ 𝑗 < 𝑛𝑑𝑖𝑚𝑠 , 0 ≤ 𝑐 < 𝑛𝑐𝑒𝑙𝑙𝑠 , 2 ≤ 𝑘 < 𝑛𝑑𝑖𝑚𝑠 − 𝑗,

𝑙𝑎(𝑗 + 𝑘) ≤ 𝑖 < 𝑙𝑎(𝑗 + 𝑘 + 1) :
𝑖𝑛𝑐𝑙 (𝑗, 𝑐, 𝑖) := 𝑖𝑛𝑐𝑙 (𝑗, 𝑐, 𝑝𝑎(𝑖)) .

(6)

After we have computed the inclusion of the nodes on the leaf
layer, we can compute which points are included. A point 𝑝 is
included if the leaf node where it is located 𝑝𝑙 (𝑝) is included:
∀0 ≤ 𝑗 < 𝑛𝑑𝑖𝑚𝑠 , 0 ≤ 𝑐 < 𝑛𝑐𝑒𝑙𝑙𝑠 , 0 ≤ 𝑝 < 𝑛𝑝𝑡𝑠 :

𝑖𝑛𝑐𝑙𝑝𝑡𝑠 (𝑗, 𝑐, 𝑝) :=
{
𝑖𝑛𝑐𝑙 (𝑗, 𝑐, 𝑝𝑙 (𝑝)) if 𝑗 < 𝑛𝑑𝑖𝑚𝑠 − 1
𝑐𝑒 (𝑝𝑙 (𝑝)) = 𝑐 else

(7)

E.g. in Figure 4 point 1 is included since the leaf node 14 where the
point is placed is included. The computation is done in parallel
over each descriptor as blocks and each point 𝑝 as threads. We
handle the case of restricting the leaf layer by directly checking
if the placement node’s cell number matches the descriptor.

Restrict and merge combined. INSCY alternates between
restricting and merging as long as S-connections are found. The
merge operation only merges restricted SCY-trees that represent
subspace regions within the same subspace. Therefore, merges
are independent between restricted dimensions in the same re-
cursion. However, remember that the merge operation merges
the newly restricted SCY-tree with the previous merged SCY-tree.
Instead of this sequential process, we devise a strategy to per-
form merges and restrictions simultaneously. Implying that we
avoid allocating space for the temporary restricted and merged
SCY-trees, and by that, save time.

Precomputing SCY-trees to merge. Observe that in INSCY,
what makes the merge process sequential, is that we do not
know in advance which SCY-trees need to be merged for a given
descriptor. However, this only depends on the S-connections
along the restricted dimension. A merge is only necessary if
there is an S-connection between two cells on the restricted
dimension. We suggest precomputing which SCY-trees need to
be merged for each descriptor in advance. First, check if there
is an S-connection for the given descriptor, then compute from
which descriptor themerging process should start. The first check
for S-connections can be parallelized as follows. We define 𝑆 ∈
{0, 1}𝑛𝑑𝑖𝑚𝑠×𝑛𝑐𝑒𝑙𝑙𝑠 , a table of whether there exists an S-connection
for a given descriptor. Each entry of 𝑆 is initialized to 0 and
updated in parallel over each layer 𝑗 as thread blocks and each
node 𝑖 as threads. The update entails writing 1 if the node 𝑖 is
the start of an S-connector path.

∀0 ≤ 𝑗 < 𝑛𝑑𝑖𝑚𝑠 , 𝑙𝑎(𝑗) ≤ 𝑖 < 𝑙𝑎(𝑗 + 1), 𝑖𝑠_𝑆 (𝑖) :
𝑆 (𝑗, 𝑐𝑒𝑙𝑙𝑠 (𝑖)) := 1.

(8)

We use 𝑆 to compute from which descriptor each merge se-
quence starts. This information is saved in 𝑀 ∈ N𝑛𝑑𝑖𝑚𝑠×𝑛𝑐𝑒𝑙𝑙𝑠 ,
where each entry represents a descriptor. For each entry, we com-
pute which restricted SCY-trees should bemerged, denoted by the
cell number 𝑐 of the descriptor associated with the first SCY-tree
in that merge sequence. Remember that we start a new sequence

S-connected S:

Step 1: shown for all descriptors

0
0

0
1 0

Merge map M: 0
0

0
0 2

1 10 1

0 10 2

0
1
2

0
1
2

0 1 20 1 2
cell

di
m

en
si

on

di
m

en
si

on

cell

Step 2: only shown for descriptor (1,0)

-1 -1 15 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1
2 -1
3 -1
4 -1 16 -1 20 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 -1 17 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

0 1 1 1 1 1 1 1 1inclpts: 0

idx:

0 0 1 2 3 4 5 6 7idxpts: 7

0 0 1 2 3 4 4 4 4 4 4 4 4 4 4 4 5 6 7 7 7 8

Step 4: only shown for descriptor (1,0)

0 0 0 0
0 1 2 3 4 5 6 7

1 1 2 3

-1 1 1 2 0 2 2 2

pa':

ce':

8 5 -1 3 3 2 -1 3co':

dims': la':0 2 1 5

1 2 3 4 5 6 7 8po':

5 4 4 4 5 7 7 7pl':

0 0 1 1 1 0 0 1 0

-1 2 2 2 3 4 -1 4 -1

0 0 3 2 -1 0 0 3 0

incl:

0/node
0/s-connection

1/node
1/s-connection

2/node
2/s-connection

Step 3: only shown for descriptor (1,0)

1 0 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 -1 -1 -1 -1 -1 -1 -1 -1

8 0 0 0 0 0 0 0 00 5 -1 3

n_pa:

n_ch:

n_co:

r_dims': 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Figure 5: Restrict after combining with merge.

of merges whenever there was no S-connection from the previous
cell 𝑆 (𝑗, 𝑐−1). In other words, if there is an S-connection between
two cells, we continue the sequence with identifier𝑀 (𝑗, 𝑐 − 1).
If not, we start a new sequence with the identifier 𝑐 .

∀0 ≤ 𝑗 < 𝑛𝑑𝑖𝑚𝑠 , 0 ≤ 𝑐 < 𝑛𝑐𝑒𝑙𝑙𝑠 :

𝑀 (𝑗, 𝑐) :=
{
𝑀 (𝑗, 𝑐 − 1) if (𝑐 > 0) ∧ 𝑆 (𝑗, 𝑐 − 1)
𝑐 else

(9)

Equation 9 is parallelized over layers 𝑗 but remains sequential
over cell numbers 𝑐 since we need to know the preceding entry
𝑀 (𝑗, 𝑐 − 1) to compute𝑀 (𝑗, 𝑐).

The table with S-connections 𝑆 and merge map 𝑀 for the
GPU-SCY-tree in Figure 3 are shown in Figure 5. 𝑆 contains an
S-connection in dimension 1, starting at cell 0. Therefore, in𝑀 ,
a merge sequence starts at cell 0, continuing to cell 1.

Avoiding merge sequences. The merge map 𝑀 allows us to
avoid the merge sequence and instead directly include nodes that
would be in the final restricted SCY-tree for a given descriptor.
More concretely, when checking if a node 𝑖 on the restricted di-
mensions 𝑑 = 𝑑𝑖𝑚𝑠 (𝑗) matches the descriptor, we instead look up
the restricted dimension and the current node’s cell number in the
merge map𝑀 . We treat node 𝑖 as a match if𝑀 (𝑗, 𝑐𝑒 (𝑖)) matches
the cell number 𝑐 of the descriptor. This changes Equation 2 into:

𝑠_𝑖𝑛𝑐𝑙 (𝑗, 𝑖, 𝑐) := (𝑀 (𝑗, 𝑐𝑒 (𝑖)) = 𝑐) ∧ (¬𝑖𝑠_𝑆 (𝑖)), (10)

and Equation 7 into
∀0 ≤ 𝑗 < 𝑛𝑑𝑖𝑚𝑠 , 0 ≤ 𝑐 < 𝑛𝑐𝑒𝑙𝑙𝑠 , 𝑝 < 𝑛𝑝𝑡𝑠 :

𝑖𝑛𝑐𝑙𝑝𝑡𝑠 (𝑗, 𝑐, 𝑝) :=
{
𝑖𝑛𝑐𝑙 (𝑗, 𝑐, 𝑝𝑙 (𝑝)) if 𝑗 < 𝑛𝑑𝑖𝑚𝑠 − 1
𝑀 (𝑗, 𝑐, 𝑐𝑒 (𝑝𝑙 (𝑝))) = 𝑐 else

(11)

31

E.g. for descriptor (1, 0), we now also treat node 7 in Figure 3 and
5 as a match, since cell 1 in dimension 1 has a merge sequence
starting at cell number 0.

Since nodes on the restricted dimension are not included,
nodes directly below that dimension will become their grand-
parents’ children instead. This implies that the grandparent can
end up with multiple children with the same cell number. Nodes
with the same parent and cell number would have been merged
in INSCY and must also be merged in GPU-INSCY to ensure that
INSCY and GPU-INSCY still compute the same final restricted
SCY-trees. However, INSCY merges these one by one and GPU-
INSCY merges them all simultaneously. In Figure 5, nodes 14 and
16 will now both be children of node 2, and they have the same
cell number, so they must be merged.

Merging nodes can propagate the problem of children, with
the same cell number, down towards the leaves. We merge such
nodes during our new restrict phase. We keep track of nodes
that need to be merged in the restricted SCY-trees by computing
two things: each node’s new parent 𝑛_𝑝𝑎 ∈ N𝑛𝑑𝑖𝑚𝑠×𝑛𝑐𝑒𝑙𝑙𝑠×𝑛𝑛𝑜𝑑𝑒𝑠

and the node’s new children𝑛_𝑐ℎ ∈ N𝑛𝑑𝑖𝑚𝑠×𝑛𝑐𝑒𝑙𝑙𝑠×𝑛𝑛𝑜𝑑𝑒𝑠×𝑛𝑐𝑒𝑙𝑙𝑠×2.
Examples of both arrays are shown in Figure 5. All entries of
𝑛_𝑝𝑎 and 𝑛_𝑐ℎ are initialized to −1. For each descriptor, 𝑛_𝑝𝑎
holds the new parents of all nodes. Likewise for 𝑛_𝑐ℎ, except that
we make room for all possible children by 𝑛𝑐𝑒𝑙𝑙𝑠 × 2. A node can
have two types of children: normal or S-connector nodes. For
both types, we can have a node for each cell. To look up the type
of a node we use:

𝑆_𝑖𝑑𝑥 (𝑖) :=
{
0 if 𝑐𝑜 (𝑖) ≥ 0
1 else

(12)

Merge representatives.When merging nodes in the SCY-tree,
we pick one of the nodes to be the representative, which is the
node that will actually be included in the final restricted SCY-tree.
We will lookup the representative node 𝑟𝑒𝑝 (𝑗, 𝑐, 𝑖) by

𝑟𝑒𝑝 (𝑗, 𝑐, 𝑖) := 𝑛_𝑐ℎ(𝑗, 𝑐, 𝑛_𝑝𝑎(𝑗, 𝑐, 𝑖), 𝑐𝑒 (𝑖), 𝑆_𝑖𝑑𝑥 (𝑖)) .

If a node should be represented in the final restricted SCY-tree
we say that it is fused into that SCY-tree. We call it fused if it is
either merged or included in the SCY-tree. If a node is merged
into the SCY-tree, the count of points and children is added to
the representative node. In Figure 5, nodes 14 and 16 should be
fused, but only node 16 is included as the representative.

We assign a new parent to all nodes that are fused into the
final restricted SCY-tree. This implies that iff 𝑛_𝑝𝑎 has a value
that is not −1, the associated node has been fused into the final
restricted SCY-tree. Notice that we can use 𝑛_𝑝𝑎(𝑗, 𝑐, 𝑖) ≥ 0 to
check if the parent has been fused instead of just checking if it
has been included 𝑖𝑛𝑐𝑙 (𝑗, 𝑐, 𝑖).

When identifying the new parent of a node 𝑖 , below the re-
stricted dimension, we look up which node the old parent has
been merged into. This will be one of the children of the new
grandparent of node 𝑖 , which is identified as the representative
node for the parent:

∀0 ≤ 𝑗 < 𝑛𝑑𝑖𝑚𝑠 , 0 ≤ 𝑐 < 𝑛𝑐𝑒𝑙𝑙𝑠 , 2 ≤ 𝑘 < 𝑛𝑑𝑖𝑚𝑠 − 𝑗,

𝑙𝑎(𝑗 + 𝑘) ≤ 𝑖 < 𝑙𝑎(𝑗 + 𝑘 + 1), 𝑛_𝑝𝑎(𝑗, 𝑐, 𝑝𝑎(𝑖)) ≥ 0 :
𝑛_𝑝𝑎(𝑗, 𝑐, 𝑖) := 𝑟𝑒𝑝 (𝑗, 𝑐, 𝑝𝑎(𝑖)).

(13)

When computing the new parent for nodes just below the
restricted dimension, we need to skip the nodes on the restricted
dimension, since the restricted layer is removed from the result.
However, for a node above the restricted dimension, there are no

changes. Therefore, no merge of nodes can occur, and we do not
need to check which child has been picked:

∀0 ≤ 𝑗 < 𝑛𝑑𝑖𝑚𝑠 , 0 ≤ 𝑐 < 𝑛𝑐𝑒𝑙𝑙𝑠 ,

𝑙𝑎(𝑗 + 1) ≤ 𝑖 < 𝑙𝑎(𝑗 + 2), 𝑠_𝑖𝑛𝑐𝑙 (𝑗, 𝑝𝑎(𝑖), 𝑐) :
𝑛_𝑝𝑎(𝑗, 𝑐, 𝑖) := 𝑝𝑎(𝑝𝑎(𝑖)) .

(14)

E.g., the parent of node 14 is node 6, and the parent of node 6 is
node 2. Therefore, the new parent of node 14 is node 2.

For all nodes above the restricted dimension, we do not change
the child-parent relationship, and they can be copied in parallel.

∀0 ≤ 𝑗 < 𝑛𝑑𝑖𝑚𝑠 , 0 ≤ 𝑐 < 𝑛𝑐𝑒𝑙𝑙𝑠 , 1 ≤ 𝑘 < 𝑗,

𝑙𝑎(𝑗 − 𝑘) ≤ 𝑖 < 𝑙𝑎(𝑗 − 𝑘 + 1), 𝐼 (𝑗, 𝑐, 𝑖) :
𝑛_𝑝𝑎(𝑗, 𝑐, 𝑖) := 𝑝𝑎(𝑖),
𝑛_𝑐ℎ(𝑗, 𝑐, 𝑝𝑎(𝑖), 𝑐𝑒 (𝑖), 𝑆_𝑖𝑑𝑥 (𝑖)) := 𝑖 .

(15)

Below the restricted dimension, we need to decide which of
the merged nodes is the representative. It is not important which
of the nodes is picked, but all threads involved in the merge must
agree on just one node. We do this by letting each node 𝑖 , that is
fused, write its id as the representative, i.e., the new child:

∀0 ≤ 𝑗 < 𝑛𝑑𝑖𝑚𝑠 , 0 ≤ 𝑐 < 𝑛𝑐𝑒𝑙𝑙𝑠 , 1 ≤ 𝑘 < 𝑛𝑑𝑖𝑚𝑠 − 𝑗,

𝑙𝑎(𝑗 + 𝑘) ≤ 𝑖 < 𝑙𝑎(𝑗 + 𝑘 + 1), 𝑛_𝑝𝑎(𝑗, 𝑐, 𝑖) ≥ 0 :
𝑟𝑒𝑝 (𝑗, 𝑐, 𝑖) := 𝑖 .

(16)

We synchronize such that all threads see the same node id, and
only include that node as the new child. E.g., in Figure 5 both
node 14 and 16 would vote for themselves as the representative.
In our example, node 16 was the last to write. Therefore, node 16
becomes the representative. This expands Equation 5 into:
∀0 ≤ 𝑗 < 𝑛𝑑𝑖𝑚𝑠 , 0 ≤ 𝑐 < 𝑛𝑐𝑒𝑙𝑙𝑠 , 𝑙𝑎(𝑗 + 1) ≤ 𝑖 < 𝑙𝑎(𝑗 + 2) :
𝑖𝑛𝑐𝑙 (𝑗, 𝑐, 𝑖) := 𝑠_𝑖𝑛𝑐𝑙 (𝑗, 𝑝𝑎(𝑖), 𝑐) ∧ (𝑟𝑒𝑝 (𝑗, 𝑐, 𝑖) = 𝑖), (17)

and Equation 6 into:
∀0 ≤ 𝑗 < 𝑛𝑑𝑖𝑚𝑠 , 0 ≤ 𝑐 < 𝑛𝑐𝑒𝑙𝑙𝑠 , 2 ≤ 𝑘 < 𝑛𝑑𝑖𝑚𝑠 − 𝑗,

𝑙𝑎(𝑗 + 𝑘) ≤ 𝑖 < 𝑙𝑎(𝑗 + 𝑘 + 1) :
𝑖𝑛𝑐𝑙 (𝑗, 𝑐, 𝑖) := (𝑛_𝑝𝑎(𝑗, 𝑐, 𝑖) ≥ 0) ∧ (𝑟𝑒𝑝 (𝑗, 𝑐, 𝑖) = 𝑖) .

(18)

For a point, the placement can change since nodes are merged.
Therefore, we check if the node where the point is placed is fused
into the final restricted SCY-tree. This is the case if the node has
been assigned a new parent. Equation 11 changes into:
∀0 ≤ 𝑗 < 𝑛𝑑𝑖𝑚𝑠 , 0 ≤ 𝑐 < 𝑛𝑐𝑒𝑙𝑙𝑠 , 𝑝 < 𝑛𝑝𝑡𝑠 :

𝑖𝑛𝑐𝑙𝑝𝑡𝑠 (𝑗, 𝑐, 𝑝) :=
{
𝑛_𝑝𝑎(𝑗, 𝑐, 𝑝𝑙 (𝑝)) ≥ 0 if 𝑗 < 𝑛𝑑𝑖𝑚𝑠 − 1
𝑀 (𝑗, 𝑐, 𝑐𝑒 (𝑝𝑙 (𝑝))) = 𝑐 else

(19)

Accumulating count. Now that we know which nodes are
fused into the SCY-tree, we can accumulate the count of points in
the subtree of each node 𝑖 . For nodes on the same layer, the entry
in 𝑛_𝑐𝑜 might be incremented by different threads. Therefore,
we need to use atomic addition, implying that threads handling
nodes on the same layer must be in the same thread block. For the
layer just above the restricted dimension, we sum the old count
of all children that are normal nodes and fused. If the parent is
included and an S-connector node, we set the count to −1:
∀0 ≤ 𝑗 < 𝑛𝑑𝑖𝑚𝑠 , 0 ≤ 𝑐 < 𝑛𝑐𝑒𝑙𝑙𝑠 , 𝑙𝑎(𝑗) ≤ 𝑖 < 𝑙𝑎(𝑗 + 1), 𝑠_𝑖𝑛𝑐𝑙 (𝑗, 𝑖, 𝑐) :

𝑛_𝑐𝑜 (𝑗, 𝑐, 𝑝𝑎(𝑖)) :=
{
𝑛_𝑐𝑜 (𝑗, 𝑐, 𝑝𝑎(𝑖)) + 𝑐𝑜 (𝑖) if 𝑐𝑜 (𝑖) ≥ 0
−1 if 𝑐𝑜 (𝑝𝑎(𝑖)) < 0

(20)

32

For the nodes on the remaining layers above the restricted dimen-
sion, we iteratively sum the new count of points of the children:
∀0 ≤ 𝑗 < 𝑛𝑑𝑖𝑚𝑠 , 0 ≤ 𝑐 < 𝑛𝑐𝑒𝑙𝑙𝑠 , 1 ≤ 𝑘 < 𝑗 − 1,
𝑙𝑎(𝑗 − 𝑘) ≤ 𝑖 < 𝑙𝑎(𝑗 − 𝑘 + 1), 𝑖𝑛𝑐𝑙 (𝑗, 𝑐, 𝑖) :

𝑛_𝑐𝑜 (𝑗, 𝑐, 𝑛_𝑝𝑎(𝑗, 𝑐, 𝑖)) :=

+
{
𝑛_𝑐𝑜 (𝑗, 𝑐, 𝑝𝑎(𝑖)) + 𝑛_𝑐𝑜 (𝑗, 𝑐, 𝑖) if 𝑐𝑜 (𝑖) ≥ 0
−1 if 𝑐𝑜 (𝑝𝑎(𝑖)) < 0

(21)

For all layers below the restricted dimension, the new count is a
sum of the old counts of all fused nodes:
∀0 ≤ 𝑗 < 𝑛𝑑𝑖𝑚𝑠 , 0 ≤ 𝑐 < 𝑛𝑐𝑒𝑙𝑙𝑠 , 1 ≤ 𝑘 < 𝑛𝑑𝑖𝑚𝑠 − 𝑗,

𝑙𝑎(𝑗 + 𝑘) ≤ 𝑖 < 𝑙𝑎(𝑗 + 𝑘 + 1), 𝑛_𝑝𝑎(𝑖) ≥ 0 :

𝑛_𝑐𝑜 (𝑗, 𝑐, 𝑟𝑒𝑝 (𝑗, 𝑐, 𝑖)) :=
{
−1 if 𝑐𝑜 (𝑖) < 0
𝑛_𝑐𝑜 (𝑗, 𝑐, 𝑟𝑒𝑝 (𝑗, 𝑐, 𝑖)) + 𝑐𝑜 (𝑖) else

(22)

Overview of restrict and merge operations. To summa-
rize, the restricting and merging for all descriptors is done by
• Initialization: Each entry of 𝑖𝑛𝑐𝑙 , 𝑖𝑛𝑐𝑙𝑝𝑡𝑠 , 𝑖𝑑𝑥 , 𝑖𝑑𝑥𝑝𝑡𝑠 , and
𝑛_𝑐𝑜 is initialized to 0. Each entry of 𝑛_𝑐ℎ and 𝑛_𝑝𝑎 is
initialized to −1.
• Step 1: Compute for which descriptors the associated SCY-
trees will be merged using two kernels; one that checks for
each descriptor if there is an S-connection, using Equation
8, and one that uses this information to compute which
SCY-trees will be merged, using Equation 9.
• Step 2: Compute which nodes are included in the final re-
stricted and merged SCY-trees, and accumulate the count
of points in the subtrees. We compute the inclusion in the
restriction using five kernels. First, directly above the re-
stricted dimension we use Equations 3, 15, and 20, second,
for the remaining layers above we use Equations 4, 15, and
21, third, directly below we use Equations 17, 14, 16, and
22, fourth, for the remainder below we use Equations 18,
13, 16, and 22, and at last, we compute inclusion of points
by checking if the leaf-node where the point is placed is
included using Equation 19.
• Step 3: We now knowwhich nodes and points are included
in the final restricted SCY-trees. We do an inclusive scan
and decrement each entry with 1 to compute the new
indices for nodes 𝑖𝑑𝑥 and points 𝑖𝑑𝑥𝑝𝑡𝑠 . This is also used
to allocate the arrays for all final restricted SCY-trees.
• Step 4: All needed information has been precomputed, and
we now copy all nodes, points, dimensions, and restricted
dimensions to the final restricted SCY-trees. Each copy is
independent and can be done completely in parallel.

4.2 Density-based clustering on the GPU
In this section, we discuss how to find the subspace clusters for
all points in each SCY-tree. For each subspace region, the clus-
tering process of INSCY is similar to that of DBSCAN [12]. The
main difference is that INSCY supports different density measures
and that clustering is done in a subspace projection. DBSCAN,
and other density-based clustering methods, find clusters by ex-
panding chains of density-connected points. This is a sequential
process that we would like to replace with a parallelized process.

As discussed in related work, G-DBSCAN [5] is a competi-
tive parallelization of full-space DBSCAN with rectangle kernel
for density assessment. To support INSCY subspace clustering

and further improve runtime performance, we introduce three
major algorithmic solutions: supporting a different unbiased,
i.e., subspace-dependent density-measure, reduced neighborhood
searches, and expanding several clusters at once.

Precomputing the neighborhoods. To compute the neigh-
borhood without allocating worst-case sizes, G-DBSCAN first
computes the neighborhoods’ size, then allocates space, and at
last populates the neighborhoods with the neighboring points.
For GPU-INSCY, the neighborhood of each point in all SCY-trees
can be computed independently of other points and can therefore
be computed in parallel over different thread blocks.

GPU-INSCY additionally takes advantage of already having
computed the neighborhoods in the lower-dimensional subspace
projections of the current subspace. Since adding a dimension to
a subspace only increases the distance between points, previous
neighborhoods can be used to bound the search for neighbors
effectively. We demonstrate that this is an efficient strategy in
the experiments, see Section 5.

Collecting the clusters. Using the precomputed neighbor-
hoods, G-DBSCAN proceeds as follows. While there are still
unclustered points, pick a random point to expand a cluster from.
While that cluster is still being expanded, look at all points in
parallel. If a point has just been added to the cluster, add its neigh-
bors that have not yet been clustered to the current cluster. Since
G-DBSCAN run in parallel for all points, but only a few points
actually expand a single cluster each iteration, many threads are
left idle. We suggest instead that a point adds itself to a clus-
ter. Furthermore, we expand all clusters simultaneously for each
point 𝑝 in parallel as threads and over each descriptor in parallel
as blocks. We precompute for each point if it is dense and only
perform the following for dense points. For each descriptor, let
𝐶 ∈ N𝑛𝑝𝑡𝑠 be clustering labels for each point 𝑝 in the SCY-tree
associated with that descriptor. Start by assigning all points to a
singleton cluster, letting the cluster id be the point id, 𝐶 (𝑝) := 𝑝 .
While any cluster is still being expanded, look at all points in
parallel. If the point 𝑝 can reach a cluster with a lower cluster-id
through its neighborhood, add the current point to that clus-
ter 𝐶 (𝑝) := min𝑞∈𝑁𝜀 (𝑝)∪{𝑝 }𝐶 (𝑞). Between each iteration, we
synchronize such that all threads know if any cluster has been
expanded. For each iteration we check for all points if they can
be expanded, thus we ensure that all density connected clusters
have been found.

Clustering of each subspace region (SCY-tree) is independent
of each other since the subspace regions are not S-connected,
meaning that no density-connected clusters can span multiple
subspace regions. Therefore, since no communication is needed,
we can compute the clustering in parallel for each SCY-tree using
different thread blocks. However, since we want to perform all
clusterings in parallel and each SCY-tree must have been pruned
first, we can only perform clusterings in parallel at the end.

4.3 Pruning on the GPU
As previously mentioned, we parallelize both pruning phases. In
the interest of space, we keep the discussion brief as it follows the
same approach as for restricting and merging the GPU-SCY-trees.

When pruning the recursion, we compute in parallel for each
point if it is weak-dense. If it is not, mark it as not-included and
propagate the count up in the SCY-tree layer by layer. We also
parallelize the propagation over all nodes on a layer. If the count
in the root is below 𝑚𝑖𝑛𝐶 , then we do not continue with the
recursion for this SCY-tree.

33

Pruning for redundancy is done as follows. For each super-
space of the current subspace, we execute three kernels: Find the
size of each cluster, find all clusters that overlap with points in the
current SCY-tree, and find the smallest cluster that overlaps with
the points in the current SCY-tree. Update the largest smallest
cluster𝑚𝑎𝑥_𝑚𝑖𝑛_𝑐𝑙𝑢𝑠𝑡𝑒𝑟 that overlaps with the current SCY-tree.
If the number of points in the SCY-tree scaled by the parameter 𝑟
is smaller than𝑚𝑎𝑥_𝑚𝑖𝑛_𝑐𝑙𝑢𝑠𝑡𝑒𝑟 , we do not perform clustering
for this SCY-tree because it can only contain redundant clusters.

4.4 Trading off speed for memory usage
Each recursive call of GPU-INSCY is parallelized over all descrip-
tors simultaneously. This requires that we keep all final restricted
SCY-trees, neighborhoods, and clusters in memory for all descrip-
tors. However, memory on the GPU is limited, putting a bound on
how large inputs we can process in parallel. There is, therefore, a
natural trade-off between memory usage and how many descrip-
tors we efficiently parallelize over simultaneously. To support
efficient processing of larger inputs, we devise a version of GPU-
INSCY called GPU-INSCY-memory that iterates over subsets of
descriptors that we then parallelize over. We study this trade-off
experimentally in Section 5.

5 EXPERIMENTS
5.1 Experimental setup
We conduct experiments for comparison of GPU-INSCY with
INSCY on synthetic and on real-world data, and study impact
of parameters on a workstation with Intel Core i7-9750HF CPU
2.60GHz × 12 cores, 16 GB RAM, GeForce GTX 1660 TI 6 GB
dedicated RAM. The large scale experiments in Section 5.4 are
executed on NVIDIA TITAN V 12 GB dedicated RAM, Intel Core
E5-2687W 3.100GHz × 10 cores, 400 GB RAM.

We use a search-tree for efficient neighborhood search in
INSCY, which provides a large speedup and makes it a fairer com-
parison. We have experimentally validated that GPU-INSCY and
INSCY produce identical subspace clusterings. Plots and further
details have been omitted due to the space limit. We provide our
source code at: https://github.com/jakobrj/GPU_INSCY.

5.2 Comparison with INSCY.
For subspace clustering, the dimensionality and size of the dataset
are dominating factors regarding runtime. Especially dimension-
ality since, as the number of dimensions increases, the number
of possible subspaces increases exponentially.

To compare INSCY and GPU-INSCY and the impact of input
data, we use the data generator provided by [1] to generate syn-
thetic datasets with dense clusters in arbitrary subspaces that
may overlap and have a small percentage of noise. As in [7], we
generate different datasets with four hidden subspace clusters.
All runtimes are averages of three runs on datasets with the same
generator settings. All dataset have been min/max-normalized.
The default parameters for INSCY and GPU-INSCY in these ex-
periments are 𝐹 = 1, 𝑅 = 1,𝜇 = 8, 𝜀 = 0.01, 𝑛𝑐𝑒𝑙𝑙𝑠 = 4, and𝑚𝑖𝑛𝐶
is set to 5% of the data points.

To analyze components of our algorithm, we also test GPU-
INSCY* and GPU-INSCY-memory. GPU-INSCY* is a version of
GPU-INSCY that does not bound the neighborhood search, so
that we can study the effect of bounding the neighborhood search.
GPU-INSCY-memory is described in Section 4.4. For our exper-
iments we group the descriptors by the dimensions such that
each iteration of the recursions is only parallel over the cells.

10 20 30
number of dimensions

100

102

104

tim
e

in
 se

co
nd

s

INSCY
GPU-INSCY
GPU-INSCY*
GPU-INSCY-memory

(a) Scalability in |𝐷 |.

2000 4000 6000 8000
number of points

100

102

104

tim
e

in
 se

co
nd

s

INSCY
GPU-INSCY
GPU-INSCY*
GPU-INSCY-memory

(b) Scalability in |𝑋 |.

10 20 30
number of dimensions

0

5000

10000

15000

fa
ct

or
 o

f s
pe

ed
up

INSCY
GPU-INSCY
GPU-INSCY*
GPU-INSCY-memory

(c) Speedup in |𝐷 |.

2000 4000 6000 8000
number of points

0

5000

10000

15000

fa
ct

or
 o

f s
pe

ed
up

INSCY
GPU-INSCY
GPU-INSCY*
GPU-INSCY-memory

(d) Speedup in |𝑋 |.

Figure 6: Scalability in size and dimensionality

glass vowel pendigits sky(0.5 × 0.5) sky(1 × 1) sky(1 × 2)

10 1

100

101

102

103

104

105

tim
e

in
 se

co
nd

s

0.061 0.037

3.037 4.892

62.529

283.441

2.912

36.152

31439.81
77354.22 INSCY

GPU-INSCY

Figure 7: Real world data; INSCY aborted after 24 hours

Comparison of INSCY and GPU-INSCY. In Figure 6a, the
running time for INSCY is decent for lower dimensions but in-
creases rapidly for higher dimensions. GPU-INSCY reduces the
running time to a point where it is faster to find subspace clus-
ters for 25 dimensions using GPU-INSCY than finding subspace
clusters for two dimensions using INSCY. In fact, in Figure 6c,
the speedup of GPU-INSCY relative to INSCY keeps increasing.
For 30 dimensions we achieve a factor of speedup of more than
2000×. A similar effect is observed for increasing the number of
points. In Figure 6b, INSCYs runtime again increases faster than
for GPU-INSCY. In Figure 6d, we see that the speedup becomes
a factor of several thousand. This speedup is much higher than
expected for the relatively low number of 1536 cores on our GPU.

Comparison of versions of GPU-INSCY. As mentioned in
Section 4.2, we attribute this dramatic speedup to our bounding
of the neighborhood searches. This effect is also clear in Figure
6c and 6d, where we see that GPU-INSCY* achieves a 500-1000×
speedup, corresponding to a good use of the cores, and GPU-
INSCY achieves a substantially larger speedup of up to 14’000×
obtained by our improved neighborhood search. GPU-INSCY-
memory allows us to run on larger datasets, with only a slight
reduction of factor 2 in speedup, which is a reasonable trade-off.

34

5.3 Real world datasets
Wealso demonstrate GPU-INSCY speedups for real-world datasets.
We report runtimes on the three datasets (glass, vowel, pendigits)
[23] also studied in [7, 8]. The glass dataset 𝑋𝑔𝑙𝑎𝑠𝑠 ∈ R214×9,
vowel 𝑋𝑣𝑜𝑤𝑒𝑙 ∈ R990×10, and pendigits 𝑋𝑝𝑒𝑛𝑑𝑖𝑔𝑖𝑡𝑠 ∈ R7494×16.
Furthermore, we also evaluate on a more sizable higher dimen-
sional real world data set, part of the SkyServer dataset[27]
that contains measurements of objects in the sky, e.g., stars and
galaxies. We select three different areas of size 0.5×0.5, 1×1, and
1×2, measured in spherical coordinates (RA/Dec):𝑋𝑠𝑘𝑦 (0.5×0.5) ∈
R7253×17, 𝑋𝑠𝑘𝑦 (1×1) ∈ R29627×17, and 𝑋𝑠𝑘𝑦 (1×2) ∈ R59285×17. Ex-
periments are aborted if they run for more than 24 hours, as
INSCY does for larger setups. In Figure 7, we see that we obtain
high speedups on all datasets, but much higher for larger datasets
up to 15′000× speedup.

5.4 Effect of parameters
In this section, we study the effect of parameters for the density
criterion, 𝜀, 𝜇, 𝐹 and the model parameter 𝑛𝑐𝑒𝑙𝑙𝑠 .

In particular, the parameters for the density criterion are ex-
pected to impact the running time. Especially the neighborhood
radius 𝜀 is interesting since GPU-INSCY uses a strategy for re-
ducing the neighborhood search that INSCY does not employ.
The bigger the part of the subspace region that the neighborhood
radius covers, the less we save by reducing the search area for
the neighborhoods. Therefore, we expect that GPU-INSCY will
obtain the greatest speedup for smaller values of 𝜀. In Figure 8a,
we study the range of 𝜀 between 0 and 0.02, and see that this is
the case, but that the speedup remains large for the entire range.

The minimum number of points in the neighborhood 𝜇 and
density threshold 𝐹 only affect the number of points that are
dense and weak-dense. The fewer points that are dense or weak-
dense, the fewer points INSCY and GPU-INSCY need to process.
As this is the same fraction of points for both INSCY and GPU-
INSCY, we, therefore, expect to see a similar reduction in time for
both algorithms. For 𝜇, we study the range between 2 and 16, as
this parameter is intended as a cut-off for avoiding tiny subspace
clusters in very high-dimensional subspace projections (called
pseudodense in INSCY). The factor 𝐹 that governs the extent
to which expected density is exceeded is evaluated in the range
between 0.5 and 2.5. A value of 0.5 implies that we only expect a
point to be half as dense as the expected density, which is a very
low criterion, and 2.5 is more than twice the expected density,
which is rather high. In Figure 8b and 8c, we see that the speedup
for the density parameters remains stable for both criteria. As
expected, we see that the running time decreases equally for both
INSCY and GPU-INSCY as 𝜇 increases.

The parameter number of cells 𝑛𝑐𝑒𝑙𝑙𝑠 does not change the
result, but only how we partition the subspace into cells and
regions. We can, therefore, pick whichever number of cells INSCY
or GPU-INSCY perform the best at. In Figure 8d, we study a
range between 2 and 10 cells. Here both INSCY and GPU-INSCY
perform best at a lower number of cells, especially GPU-INSCY.

5.5 Scalability and different distributions
We evaluate scalability and different data distributions for GPU-
INSCY alone. The running time of INSCY quickly becomes too
high, e.g., more than 10 hours for 8000 points and 15 dimen-
sions, which makes experiments for large inputs infeasible. In
this section, we use GPU-INSCY-memory.

0.005 0.010 0.015 0.020
neighborhood size

100

102

104

tim
e

in
 se

co
nd

s

INSCY
GPU-INSCY

(a) Varying 𝜀.

5 10 15
min number of points in neighborhood

100

102

104

tim
e

in
 se

co
nd

s

INSCY
GPU-INSCY

(b) Varying 𝜇.

0.5 1.0 1.5 2.0 2.5
density threshold F

101

103

105

tim
e

in
 se

co
nd

s

INSCY
GPU-INSCY

(c) Varying 𝐹 .

2 4 6 8 10
number of cells

101

103

105

tim
e

in
 se

co
nd

s

INSCY
GPU-INSCY

(d) Varying 𝑛𝑐𝑒𝑙𝑙𝑠 .

Figure 8: Runtimes for different parameter values

0.00 0.25 0.50 0.75 1.00
number of points 1e6

0
200
400
600
800

1000
1200

tim
e

in
 se

co
nd

s

(a) Scalability in |𝑋 |.

10 20 30 40 50
number of dimensions

0
200
400
600
800

1000
1200

tim
e

in
 se

co
nd

s

(b) Scalability in |𝐷 |.

0 20 40 60
number of clusters

0

50

100

150

200

250

tim
e

in
 se

co
nd

s

(c) Scalability in number of clus-
ters.

0 2 4 6 8
standard deviation

0

50

100

150

200

250
tim

e
in

 se
co

nd
s

(d) Scalability in cluster spread
(standard deviation).

0 20 40 60
number of clusters

0

50

100

150

200

250

tim
e

in
 se

co
nd

s

(e) Scalability in number of clus-
ters with stable density.

Figure 9: Runtimes for scalability experiments

To test various distributions, we use the generator provided
by [9], but modify it to generate clusters in random subspaces
and not just the first 𝑘 dimensions. The default settings used
for the dataset generator are 64‘000 points with 4000 points for
each cluster, except 1%, which is uniformly distributed noise. The
dataset values range from −100 to 100, and the full space consists
of 15 dimensions. Each cluster is normally distributed with a

35

standard deviation of 0.3 in a random 3-dimensional subspace. All
datasets have been min/max-normalized. The default parameters
for GPU-INSCY in these experiments are 𝐹 = 0.1, 𝑅 = 1, 𝜇 = 1,
𝜀 = 0.0003, 𝑛𝑐𝑒𝑙𝑙𝑠 = 4, and𝑚𝑖𝑛𝐶 = 500 points.

Scalability. Figure 9a shows runtimes with increasing dataset
size |𝑋 | up to 1‘024‘000. The figure shows that GPU-INSCY per-
forms subspace clustering on 1‘024‘000 points in less that 20
minutes. We also run experiments for increasing dimensionality
|𝐷 | up to 50, as shown in Figure 9b. GPU-INSCY can perform
subspace clustering in 50 dimensions (and on 64‘000 points) in
less than 6 minutes.

Data distribution. We evaluate performance on data with
different distributions using the same setting as for scalability.
In Figure 9c, we increase the number of clusters, keeping clus-
ter distribution (standard deviation) and total number of points
fixed. As we can see, large numbers of clusters further reduce the
runtime of GPU-INSCY, as it finds fewer points in each neighbor-
hood when the number of points per cluster decreases. In Figure
9d, we increase the spread of clusters (standard deviation). Again,
the runtime of GPU-INSCY further improves, as neighborhoods
are again less populated. Finally, we conduct an experiment with
stable density. As the number of clusters is doubled, we increase
cluster density accordingly by halving standard deviation. As
Figure 9e confirms, similar density results in stable runtime when
scaling number of clusters.

To summarize, the trend is that a lower density implies fewer
points in each neighborhood and, therefore, a lower runtime.
This means that GPU-INSCY scales particularly well for large
numbers of clusters and clusters that are spread.

Overall, GPU-INSCY outperforms INSCY by two-four orders
of magnitude with respect to runtimes for all tested settings.
Even on our small GPU, we measure the running time in seconds
instead of hours for smaller datasets (< 10‘000 points and 15
dimensions) and minutes instead of days for larger datasets.

6 CONCLUSION
In this paper, we propose GPU-INSCY, a novel GPU-parallel
algorithm for dimensionality-unbiased density-based subspace
clustering, following INSCY. GPU-INSCY outperforms INSCY by
several orders of magnitude. To achieve this, we utilize GPU cores
by restructuring both the algorithmic processing and the data
structure SCY-tree used in INSCY to fit the GPU computational
model. Furthermore, GPU-INSCY proposes a further reduction
of the time spent on neighborhood searches. Our experiments
show that GPU-INSCY scales well w.r.t. dimensionality and size
of the dataset, and compared to INSCY, the gap even continues
to grow with the scale of data.

ACKNOWLEDGMENTS
This work was supported by Independent Research Fund Den-
mark.

REFERENCES
[1] Andrew Adinetz, Jiri Kraus, Jan Meinke, and Dirk Pleiter. 2013. GPUMAFIA:

Efficient subspace clustering with MAFIA on GPUs. In European Conference
on Parallel Processing. Springer, 838–849.

[2] Charu C Aggarwal, Joel L Wolf, Philip S Yu, Cecilia Procopiuc, and Jong Soo
Park. 1999. Fast algorithms for projected clustering. ACM SIGMoD Record 28,
2 (1999), 61–72.

[3] Charu C Aggarwal and Philip S Yu. 2000. Finding generalized projected
clusters in high dimensional spaces. In Proceedings of the 2000 ACM SIGMOD
international conference on Management of data. 70–81.

[4] Rakesh Agrawal, Johannes Gehrke, Dimitrios Gunopulos, and Prabhakar
Raghavan. 1998. Automatic subspace clustering of high dimensional data for

data mining applications. In Proceedings of the 1998 ACM SIGMOD international
conference on Management of data. 94–105.

[5] Guilherme Andrade, Gabriel Ramos, Daniel Madeira, Rafael Sachetto, Renato
Ferreira, and Leonardo Rocha. 2013. G-dbscan: A gpu accelerated algorithm
for density-based clustering. Procedia Computer Science 18 (2013), 369–378.

[6] Ira Assent, Ralph Krieger, Emmanuel Müller, and Thomas Seidl. 2007. DUSC:
Dimensionality unbiased subspace clustering. In seventh IEEE international
conference on data mining (ICDM 2007). IEEE, 409–414.

[7] Ira Assent, Ralph Krieger, Emmanuel Müller, and Thomas Seidl. 2008. EDSC:
efficient density-based subspace clustering. In Proceedings of the 17th ACM
conference on Information and knowledge management. 1093–1102.

[8] Ira Assent, Ralph Krieger, Emmanuel Müller, and Thomas Seidl. 2008. INSCY:
Indexing subspace clusters with in-process-removal of redundancy. In 2008
Eighth IEEE International Conference on Data Mining. IEEE, 719–724.

[9] Anna Beer, Nadine Sarah Schüler, and Thomas Seidl. 2019. A Generator for
Subspace Clusters.. In LWDA. 69–73.

[10] Christian Böhm, Robert Noll, Claudia Plant, and Bianca Wackersreuther. 2009.
Density-based clustering using graphics processors. In Proceedings of the 18th
ACM conference on Information and knowledge management. 661–670.

[11] Chun-Hung Cheng, Ada Waichee Fu, and Yi Zhang. 1999. Entropy-based
subspace clustering for mining numerical data. In Proceedings of the fifth ACM
SIGKDD international conference on Knowledge discovery and data mining.
84–93.

[12] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. 1996. A
density-based algorithm for discovering clusters in large spatial databases
with noise.. In Kdd, Vol. 96. 226–231.

[13] Reza Farivar, Daniel Rebolledo, Ellick Chan, and Roy H Campbell. 2008. A
Parallel Implementation of K-Means Clustering on GPUs.. In Pdpta, Vol. 13.
212–312.

[14] Sanjay Goil, Harsha Nagesh, and Alok Choudhary. 1999. MAFIA: Efficient
and scalable subspace clustering for very large data sets. In Proceedings of the
5th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, Vol. 443. ACM, 452.

[15] Karin Kailing, Hans-Peter Kriegel, and Peer Kröger. 2004. Density-connected
subspace clustering for high-dimensional data. In Proceedings of the 2004 SIAM
international conference on data mining. SIAM, 246–256.

[16] Hans-Peter Kriegel, Peer Kröger, and Arthur Zimek. 2009. Clustering high-
dimensional data: A survey on subspace clustering, pattern-based clustering,
and correlation clustering. ACM Transactions on Knowledge Discovery from
Data (TKDD) 3, 1 (2009), 1–58.

[17] You Li, Kaiyong Zhao, Xiaowen Chu, and Jiming Liu. 2013. Speeding up
k-means algorithm by gpus. J. Comput. System Sci. 79, 2 (2013), 216–229.

[18] Woong-Kee Loh, Yang-Sae Moon, and Young-Ho Park. 2014. Erratum: Fast
Density-Based Clustering Using Graphics Processing Units [IEICE Transac-
tions on Information and Systems Vol. E97. D (2014), No. 5 pp. 1349-1352].
IEICE TRANSACTIONS on Information and Systems 97, 7 (2014), 1947–1951.

[19] Woong-Kee Loh and Hwanjo Yu. 2015. Fast density-based clustering through
dataset partition using graphics processing units. Information Sciences 308
(2015), 94–112.

[20] Gabriela Moise and Jörg Sander. 2008. Finding non-redundant, statistically
significant regions in high dimensional data: a novel approach to projected
and subspace clustering. In Proceedings of the 14th ACM SIGKDD international
conference on Knowledge discovery and data mining. 533–541.

[21] Emmanuel Müller, Stephan Günnemann, Ira Assent, and Thomas Seidl. 2009.
Evaluating clustering in subspace projections of high dimensional data. Pro-
ceedings of the VLDB Endowment 2, 1 (2009), 1270–1281.

[22] Hamza Mustafa, Eleazar Leal, and Le Gruenwald. 2019. An Experimental Com-
parison of GPU Techniques for DBSCAN Clustering. In 2019 IEEE International
Conference on Big Data (Big Data). IEEE, 3701–3710.

[23] David J Newman, SCLB Hettich, Cason L Blake, and Christopher J Merz. 1998.
UCI repository of machine learning databases, 1998.

[24] Lance Parsons, Ehtesham Haque, and Huan Liu. 2004. Subspace clustering
for high dimensional data: a review. Acm Sigkdd Explorations Newsletter 6, 1
(2004), 90–105.

[25] Karlton Sequeira and Mohammed Zaki. 2005. SCHISM: a new approach to
interesting subspace mining. International Journal of Business Intelligence and
Data Mining 1, 2 (2005), 137–160.

[26] Kelvin Sim, Vivekanand Gopalkrishnan, Arthur Zimek, and Gao Cong. 2013. A
survey on enhanced subspace clustering. Data mining and knowledge discovery
26, 2 (2013), 332–397.

[27] Alexander S Szalay, Jim Gray, Ani R Thakar, Peter Z Kunszt, Tanu Malik,
Jordan Raddick, Christopher Stoughton, and Jan vandenBerg. 2002. The SDSS
skyserver: public access to the sloan digital sky server data. In Proceedings
of the 2002 ACM SIGMOD international conference on Management of data.
570–581.

[28] Rajeev J Thapa, Christian Trefftz, and Greg Wolffe. 2010. Memory-efficient
implementation of a graphics processor-based cluster detection algorithm
for large spatial databases. In 2010 IEEE International Conference on Elec-
tro/Information Technology. IEEE, 1–5.

[29] Kyoung-GuWoo, Jeong-Hoon Lee, Myoung-Ho Kim, and Yoon-Joon Lee. 2004.
FINDIT: a fast and intelligent subspace clustering algorithm using dimension
voting. Information and Software Technology 46, 4 (2004), 255–271.

36

	GPU-INSCY: A GPU-Parallel Algorithm and Tree Structure for Efficient Density-based Subspace ClusteringJakob Rødsgaard Jørgensen, Katrine Scheel, Ira Assent

