Tutorial

O

proceedings

Very Short Primer on Blockchain Technology
for Database Researchers

Zsolt Istvan
IT University of Copenhagen, Denmark
zsis@itu.dk

ABSTRACT

Blockchain is an emerging technology, considered increasingly
often beyond the cryptocurrency world for business-to-business
use-cases. In contrast to public blockchains such as Bitcoin, that
are open systems in which anyone can participate, in business-
to-business scenarios the membership of the service is controlled
(permissioned blockchain). This permits the use of Byzantine
fault tolerant (BFT) consensus protocols at the core of the service
to establish a total order of transactions, instead of the more ex-
pensive Proof-of-Work-based consensus protocols. Permissioned
blockchains typically set out to solve problems in the space where
databases have traditionally resided, with the main difference
being that the former decentralizes trust. There are numerous re-
search proposals in the intersection of databases and blockchains.
Sadly, there are still many misconceptions about this technology
which leads to confusion in the community. The main goal of this
primer is to give an overview of the relevant topics and provide
pointers for further reading.

1 BLOCKCHAIN BASICS

Blockchains have entered the “spotlight” after the seminal Bit-
coin paper published by Nakamoto [11] more than a decade ago.
Even though many think of Blockchains as being part of the data
management field, the Nakamoto paper was addressing a finan-
cial issue: its goal was to provide a decentralized currency that
does not require trust in a central authority for its functioning.
It has been only later that discussions emerged about “transac-
tion processing”, that is, smart contracts on top of blockchains,
perhaps most notably, in the Ethereum White Paper [4].

In the years since their proposal, Blockchains have lived through
a hype and this resulted in a dizzying number of different sys-
tems. At their core, however, all blockchains are quite similar.
They aim to decentralize trust and are composed of two parts: 1)
a verifiable data structure that allows participants to determine
whether the data in the blockchain has been tampered with and
2) a consensus algorithm that defines how participants can add
new data to the data structure. The choice for data structure is
typically an append-only log with cryptographic hashes linking
entries (i.e., blocks, see Figure 1). Nonetheless, there are also
blockchains, such as IOTA, that order data into a directed acyclic
graph (DAG) [10] instead. Put in database terms, we can think of
the former as establishing global total order on all transactions
and keeping a single logical shard of the data, and the latter as
data sharding with total order within a shard and infrequent
cross-shard transactions.

The choice of the consensus algorithm is determined by the as-
sumptions the blockchain makes on the trustworthiness of third
parties and the participation model. We can split blockchains

© 2021 Copyright held by the owner/author(s). Published in Proceedings of the
24th International Conference on Extending Database Technology (EDBT), March
23-26, 2021, ISBN 978-3-89318-084-4 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Series ISSN: 2367-2005

706

Fingerprint of previous
0x566F

| Fingerprint of previous

| Fingerprint of previous
/ 0xBBAL

0x1AB3

7 Data Block N . DataBlockN+1 — « Data Block N+2

Fingerprint: 0x566F Fingerprint: 0xBBAL

Fingerprint: 0x3C14 ‘

Figure 1: At the core of all blockchains is a verifiable data
structure, typically in the form of an append-only log.
Cryptographic hashes (fingerprints) included in blocks re-
cursively tie them to the previous blocks.

into two categories based on who is allowed to participate in the
consensus algorithm and, as a result, add data to the data struc-
ture: First, permissionless blockchains where anyone is allowed
to participate and, second, permissioned blockchains where only
selected entities can participate (this also assumes that the nodes
in the system have verifiable identities, which is not the case in
permissionless blockchains).

Permissionless blockchains are, by definition, public, since
anyone can access the data structure and read all previous trans-
actions. Permissioned blockchains can be either private, in which
case the governing consortium or members of the blockchain
restrict access based on internal rules (e.g., business partners
in specific areas), or they can be public, in which case anyone
fulfilling some non-restrictive condition can join (e.g., Alastrial
implements a country-wide blockchain network that relies on
national tax register numbers as a pre-condition to joining). It
is important to note that, while permissionless blockchains are
typically used for dealing with fully virtual assets, permissioned
blockchains are more similar to databases, in that the data they
store typically represents real-world assets and events.

What is there for database researchers to explore? In the
permissionless blockchain space most current and future chal-
lenges are related to scalability of the network, to economic incen-
tives, as well as, to consensus algorithms with better guarantees
for tolerating malicious actors. In terms of data management
and transaction processing, there is no clear need for inventing
new approaches because these systems can benefit from already
existing best practices. In contrast, permissioned blockchains
are considered for use-cases which are much closer to the data-
base community, such as supply-chain management, banking
or notaries, and therefore face challenges closer in nature to
the database community. As we will discuss in the last section,
there is significant overlap in database and blockchain research,
with many database ideas/techniques being well applicable in the
blockchain space. The fundamental difference, however, between
permissioned blockchains and traditional distributed databases is
the decentralization of trust in the former, that is, the assumption
that not all nodes belong to the same enterprise and the ability
to function even if not all members of a consortium are trusting
each other. From a database research perspective, hence, most

!https://alastria.io/en/

10.5441/002/edbt .2021.89

https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2021.89

of the interesting future work is in understanding how the per-
formance of transaction processing (and perhaps analytics) can
be increased while benefiting from the trust decentralization of
blockchains. Additionally, the standardization of smart contracts
and data models, as well as their integration with traditional
databases is an open challenge.

2 PERMISSIONLESS BLOCKCHAINS

In permissionless blockchains there are no node identities and,
as a result, a consensus mechanism is required that cannot be
subverted by creating a large number of “fake” nodes to achieve
majority in the system (Sybill attack). Therefore, Bitcoin and
many other cryptocurrencies use Proof of Work (PoW) consensus,
that requires participants to the consensus to solve a crypto-
graphic puzzle before they can add to the log. The puzzle consists
of finding a hash value that fulfills a specific condition, for in-
stance, a number of leading zeros. The input to the hashing is the
block that the participant would like to record on the blockchain.
Inside the block are 1) transactions collected from clients of the
system and other participants, 2) the cryptographic hash (signa-
ture) of the previous block in the blockchain and 3) a field holding
a random number. The randomness is added to the block before
being hashed, and unless the resulting hash fulfills the condition,
the last step is repeated (this is the process of mining). Finally,
when a miner discovers a combination for which the condition
holds, it appends it to the blockchain by broadcasting it to all
other participants. These can validate whether the added block
is legitimate simply by computing its cryptographic hash and
checking whether this hash fulfills the condition?. Hence, even
though mining is very expensive, clearly limiting the throughput
of the system, validation itself is cheap. In exchange for “find-
ing” the next block of the blockchain, the miner will receive a
payment in the underlying cryptocurrency, typically deducted
as fees from the transactions in the just-appended block.

While PoW consensus has benefits in that it limits participants’
power in the blockchain to their relative compute power (which
is much more costly to increase than creating new IP addresses
for instance), it has also many drawbacks. Apart from the obvious
energy efficiency concerns resulting from the repeated hashing
computations and the issue that all miners are fundamentally
competing with each other for the next block, it has an important
implication on transaction finality. In systems relying on PoW,
competing miners could create forks in the log, working towards
two “alternate realities”. In practice, blocks are considered com-
mitted once enough additional blocks (e.g., 5) have been added
after them. The expectation is that, at that point, the economic
incentives are driving all participants to continue building on the
longest subchain of the system. Nonetheless, transactions never
reach finality because there is a small probability that any block,
no matter how old, could have been forked and it does not, in
fact, lie on the longest subchain.

It has to be noted that the common practice of composing
blocks from a large number of transactions is rooted in the space
of PoW blockchains in an effort to amortize the exuberant cost
of mining, as well as, to simplify global broadcasts. Overall, the
idea of a blockchain and its underlying mechanisms could just as
well work for appending single transactions into a tamper-proof

2Depencling on the nature of the transactions in a block, of course, additional checks
might be required that ensure that the underlying state remains consistent at all
times.

707

log, albeit, with much less efficiency for PoW consensus-based
blockchains, such as Bitcoin.

To overcome the fundamental efficiency issues of PoW, other
forms of consensus are becoming wide-spread, most notably,
variations of Proof of Stake (PoS), e.g., in Tezos, Peercoin, and
in newer iterations of Ethereum. PoS consensus is, at its core,
a majority-based consensus algorithm that requires the voting
participants to stake part of their cryptocurrency holding behind
each consensus round. In case irregularities happen, e.g., forks, or
conflicts, they are liable to lose their stake. This creates a strong
economic incentive for participants to adhere to the rules.

In addition to PoS, there are other exciting proposals, such as
Proof of Storage, Proof of Elapsed Time and Proof of Personhood,
to name only a few (see more in this survey [14]). In addition
to consensus protocols that provide a “proof” of owning some
information or property, there are other proposals that embrace
stochastic behavior and can even tolerate 51% attacks temporar-
ily [13].

Even though non-PoW consensus solves many of the efficiency
issues of PoW blockchains and, in principle, allows for lower
latencies, these blockchains still typically suffer from the lack
of finality in transactions: their throughput and latency are not
determined only by the choice of underlying consensus protocol
but also by the economic assumptions the blockchain makes.

3 PERMISSIONED BLOCKCHAINS

Permissioned Blockchains, such as Hyperledger Fabric [2], Corda
R3 [3] and IOTA [12], introduce the requirement for a mecha-
nism to associate identities with participants of the blockchain.
Identities could be either issued by a trusted third party or by a
consortium of the blockchain nodes themselves. Identities allow
the use of more traditional, and significantly cheaper, forms of
consensus algorithms, typically those from the family of Byzan-
tine Fault Tolerant (BFT) algorithms (e.g., PBFT [5]), to append
to the shared data structure. Using BFT consensus has the im-
portant benefit that transactions can be committed with finality.
As a result, these permissioned systems can reach latencies and
throughputs more similar to those of traditional databases. It has
to be noted, however, that many of these systems run in widely
geodistributed setups without the availability of dedicated, high
bandwidth, networking, resulting in lower performance than
what we typically see in RDBMSs.

In addition to the limitations imposed by networking bottle-
necks, many permissioned blockchains inherit other limitations
from the PoW blockchain space. They often rely, for instance,
on batching a large number of transactions into blocks, which
unsurprisingly results in artificially high latencies. These limi-
tations, however, are not fundamental. We have demonstrated,
as an example, that by rethinking the block-based processing of
Hyperledger Fabric [9], its latency can be lowered from the hun-
dreds of milliseconds to the millisecond range without negatively
impacting its throughput or requiring significant changes to its
code base. Therefore, it is reasonable to assume that permissioned
blockchains that are being deployed in production systems will
eventually “shed” the most obvious inefficiencies.

Given the decades-long of research in distributed consensus
and fault tolerant systems, it is reasonable to predict that the
work of database researchers will not necessarily be most use-
ful in improving consensus but, instead, in enhancing the data
management and data processing aspects of these systems. For
instance it is an open challenge how to make Smart Contract

Execution models

Smart contract
complexity determines
execution rate (serial)

-

Ordering Execution
* Establish global a * Execute
UN] order of TXs transaction on
(@] all peers
* Groupinginto X
. el * Commit results
Client to local ledger
Cheap operation
(insert/modify KV pairs)
Execution Ordering Validation ;
> J ° Simulating * Establish global * Validate all TX -
@) '_j ‘) transaction order of TXs —— inablock —
e & result on L !
subset of peers * Groupinginto « Commit results -
cli (endorsers) blocks to local ledger

4

Wider range of

applications

State DB (materialized view)

Figure 2: Blockchains can be classified into two groups depending on their smart contract execution model (nomenclature

might differ across systems)

execution more efficient and integrated with RDBMs, which, in
some cases, might have different schemas at different companies.

4 SMART CONTRACT EXECUTION

Most practical solutions for Smart Contracts (e.g., in Ethereum,
Tezos, Fabric, etc.) treat the “contents” of the blockchain as a
multi-versioned key-value store. As such, it is possible to think
of smart contracts as small programs that can only interact with
a key-value interface.

Blockchains adopt one of two execution models: Order-Execute
(OE), which is similar to active replication in database terminol-
ogy, and Execute-Order-Validate (EOV), which can be thought of
as passive replication. As shown in Figure 2, the OE model first es-
tablishes the total order of transactions (that is, the order of smart
contract invocations), then broadcasts these to all participants,
each participant executing the transactions locally, typically in a
serial manner. For this approach to work, smart contracts cannot
include non-deterministic operations, otherwise the results could
diverge. Blockchains using the OE model ensure this by relying
on carefully designed DSLs for writing smart contracts.

Systems implementing the EOV model start by simulating
(also called executing or endorsing) smart contracts on a subset
of the nodes, chosen by a user-defined policy. The results of these
executions are recorded in a terms of read/write modifications
they would perform on the key-value store (state DB). Once
the client receives enough simulation results, and these are all
identical, it can submit the transaction for ordering (that is, the
R/W modifications and proofs of execution). Once the order of
transactions has been established, all participants will receive the
list of transactions to record in their ledgers. At this point, the
smart contracts are not re-executed but instead their read/write
modifications are made directly on the ledger. The benefit of
this solution is that it allows executing a large number of smart
contracts in parallel but, since all simulations happen on a “view”
of the ledger state that can change by the time validation happens,
transactions can fail in the validation phase due to data staleness
in the state DB in the first phase. In the EOV model it is feasible to
use general purpose programming languages, such as Go or Java,

708

to write smart contracts since (most) non-deterministic behavior
will be detected in the simulation phase.

5 RECENT RELATED WORK IN DATABASES

In the following, we present a handful of related works pub-
lished within the database community targeting shortcomings
of permissioned blockchains mentioned above (the list is not
exhaustive and is intended as a sample of the space).

In an effort to increase transaction processing throughput in
the EOV model, Sharma et al. [16], show that by relying on data-
base techniques for concurrency control, it is possible to reorder
transactions within a block during the ordering step (i.e., when
establishing their total order) in a way that minimizes the number
of failing transactions due to R/W conflicts. They implemented
their prototype on Fabric and it is one example of how ideas from
the database world can be used to improve existing blockchain
platforms without fundamental redesigns. Other examples in-
clude FastFabric [7], that brings various optimizations, inspired
by databases, to Fabric which result in an unprecedented 20,000
ops/s throughput.

There are also proposals which aim to increase throughput
and lower latencies by implementing sharding at different levels
in permissioned blockchains. CAPER [1], for instance, allows
multiple applications to share one blockchain and leverages the
fact that they operate on disjoint parts of the dataset to increase
the overall throughput. This is achieved by separating the or-
dering of operations inside an application from that of ordering
across applications. In a similar vein, ResilientDB [8] proposes a
permissioned blockchain that incorporates a hierarchical consen-
sus protocol design that relies on locality, both in terms of dataset
and physical proximity of the nodes, to boost performance.

Other lines of work treat blockchains as a fault-tolerant and
highly available storage layer and build traditional database capa-
bilities on top, e.g., as in BlockchainDB [6]. This direction of re-
search provides one possible answer the question of how to bridge
the gap between SQL-based processing (and the amassed exper-
tise in this space by developers) and the fairly exotic field of smart
contracts. Other work, e.g., ChainifyDB [15], explores a similar

question and provides a different possible answer. Instead of re-
placing the storage engines of databases, ChainifyDB re-designs
the distributed transaction processing protocol and utilizes a
blockchain for BFT fault tolerance and transparency/auditing for
both local and distributed transactions.

ABOUT THE AUTHOR

Zsolt Istvan is an Associate Professor at the

IT University of Copenhagen, working in the
area of databases, distributed systems, and
FPGA programming. Earlier, he was an Assis-
tant Research Professor at the IMDEA Soft-
ware Institute in Madrid, Spain. He holds a
PhD and MSc in Computer Science from ETH

Zurich, Switzerland. His personal website is
at: https://zistvan.github.io.

REFERENCES

[1] M.]J. Amiri, D. Agrawal, and A. E. Abbadi. Caper: a cross-application permis-

2

]

sioned blockchain. Proceedings of the VLDB Endowment, 12(11):1385-1398,
2019.

E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis, A. De Caro,
D. Enyeart, C. Ferris, G. Laventman, Y. Manevich, et al. Hyperledger fabric: a
distributed operating system for permissioned blockchains. In Proceedings of
the thirteenth EuroSys conference, pages 1-15, 2018.

709

(3]
(4]
(5]
(6]

(1]
[12]
[13]
(14]

[15]

[16]

R. G. Brown, J. Carlyle, I. Grigg, and M. Hearn. Corda: an introduction. R3
CEV, August, 1:15, 2016.

V. Buterin et al. A next-generation smart contract and decentralized applica-
tion platform. white paper, 3(37), 2014.

M. Castro and B. Liskov. Practical byzantine fault tolerance and proactive
recovery. ACM Transactions on Computer Systems (TOCS), 20(4):398-461, 2002.
M. El-Hindi, C. Binnig, A. Arasu, D. Kossmann, and R. Ramamurthy.
Blockchaindb: A shared database on blockchains. Proceedings of the VLDB
Endowment, 12(11):1597-1609, 2019.

C. Gorenflo, S. Lee, L. Golab, and S. Keshav. FastFabric: Scaling Hyperledger
Fabric to 20,000 transactions per second. In IEEE ICBC, 2019.

S. Gupta, S. Rahnama, J. Hellings, and M. Sadoghi. Resilientdb: Global scale
resilient blockchain fabric. Proceedings of the VLDB Endowment, 13(6).

L. Kuhring, Z. Istvan, A. Sorniotti, and M. Vukoli¢. Streamchain: Rethinking
blockchain for datacenters. arXiv preprint arXiv:1808.08406, 2018.

Y. Li, B. Cao, M. Peng, L. Zhang, L. Zhang, D. Feng, and J. Yu. Direct acyclic
graph-based ledger for internet of things: Performance and security analysis.
IEEE/ACM Transactions on Networking, 28(4):1643-1656, 2020.

S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Technical report,
2008.

S. Popov. The tangle. White paper, 1:3, 2018.

T. Rocket. Snowflake to avalanche: A novel metastable consensus protocol
family for cryptocurrencies. Available [online].[Accessed: 4-12-2018], 2018.
L.S. Sankar, M. Sindhu, and M. Sethumadhavan. Survey of consensus protocols
on blockchain applications. In 2017 4th International Conference on Advanced
Computing and Communication Systems (ICACCS), pages 1-5. IEEE, 2017.

F. M. Schuhknecht, A. Sharma, J. Dittrich, and D. Agrawal. Chainifydb: How to
blockchainify any data management system. arXiv preprint arXiv:1912.04820,
2019.

A. Sharma, F. M. Schuhknecht, D. Agrawal, and J. Dittrich. Blurring the lines
between blockchains and database systems: the case of hyperledger fabric. In
Proceedings of the 2019 International Conference on Management of Data, pages
105-122. ACM, 2019.

	Tutorials
	Tutorial on the Internals of Permissioned Blockchains and on How to Build Applications with Hyperledger FabricZsolt István

