O

proceedings

Deep Learning Approaches for Text-to-SQL Systems

Tutorial
George Katsogiannis-Meimarakis
katso@athenarc.gr
Athena Research Center
Greece
ABSTRACT

To bridge the gap between users and data, numerous text-to-SQL
systems have been developed that allow users to pose natural
language questions over relational databases. Recently, novel text-
to-SQL systems are adopting deep learning methods with very
promising results. At the same time, several challenges remain
open making this area an active and flourishing field of research
and development. To make real progress in building text-to-SQL
systems, we need to de-mystify what has been done, understand
how and when each approach can be used, and, finally, identify
the research challenges ahead of us. The purpose of this tutorial
is to present recent advances of deep learning techniques for
text-to-SQL translation, and to highlight open problems and new
research opportunities for researchers and practitioners in the
fields of database systems, natural language processing and deep
learning.

1 INTRODUCTION

Data is a prevalent part of every business and scientific domain,
but its explosive volume and increasing complexity make data
querying and exploration challenging even for experts. In an
attempt to bridge the gap between users and data, numerous text-
to-SQL systems have been implemented, both from industry and
academia, that enable users to pose unstructured queries (using
keywords or free-form text) over relational databases [1, 4, 26].
The recent advances on deep neural networks and the creation of
two large datasets for training text-to-SQL systems, have led to
the emergence of several, novel, text-to-SQL systems that lever-
age deep learning techniques. These efforts show very promising
results. At the same time, several open challenges make this area
an active and flourishing field of research and development. It is
high time for a systematic study of these solutions.

In this work, we aim at presenting the recent advances in the
field of text-to-SQL systems with the adoption of deep learning
techniques. We follow a systematic and structured approach. First,
we introduce the text-to-SQL problem, explain and categorize its
challenges. Then, we present available benchmarks and explain
their advantages and shortcomings. We zoom in on the recent
advances of deep learning techniques for text-to-SQL transla-
tion. We explain the problems they address and their limitations,
and we highlight research opportunities on the intersection of
database systems, natural language processing and deep learning.

2 THE TEXT-TO-SQL PROBLEM

The text-to-SQL (also known as NL2SQL) problem can be de-
scribed as follows: Given a Natural Language Query (NLQ) on
a Relational Database (RDB), produce a SQL query equivalent to
the NLQ, which is valid for the said RDB. Several challenges arise,

© 2021 Copyright held by the owner/author(s). Published in Proceedings of the
24th International Conference on Extending Database Technology (EDBT), March
23-26, 2021, ISBN 978-3-89318-084-4 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Series ISSN: 2367-2005

710

Georgia Koutrika
georgia@athenarc.gr
Athena Research Center
Greece

including: ambiguity, schema linking, vocabulary gap and user
mistakes.

Ambiguity of natural language queries is one of the most diffi-
cult challenges a text-to-SQL system has to cope with. There are
several types of ambiguity [3, 27]. For instance, lexical ambiguity
refers to the case of a single word with multiple meanings (e.g.,
“Paris" can be a city or a person).

On the other hand, schema linking is the problem of under-
standing which parts of the NLQ refer to which parts of the
database schema. Vocabulary gap refers to the differences be-
tween the vocabulary used by the database and the one used by
the user. User mistakes, such as syntactical or grammatical errors,
make the problem even more challenging.

3 TEXT-TO-SQL LANDSCAPE

The problem of translating user queries to SQL has been a holy
grail for the database community for over 30 years [4]. In this sec-
tion, we will give a very brief overview of the earlier approaches,
especially those proposed by the database community.

Early database approaches use (a) inverted indexes (like search
engines do) to map query keywords to database elements (re-
lations, attributes and values) and (b) the database schema to
find how relations in a query should be joined [18]. These ap-
proaches use either a schema graph that represents the data-
base relations as nodes and the joins between them as edges
[2, 6, 14, 21, 22, 30, 38] or a tuple graph where the nodes are the
database tuples [5, 9, 13, 16]. Answers to a query are defined as
sub-graphs over the complete graph, comprising a subset of the
relations and tuples that contain the query keywords and are
connected by the joins between them. NALIR [17] is the first
to use a syntactic parse tree to represent a query and map it
to the database schema graph. ATHENA [29] employs an ontol-
ogy to represent a real-world domain (such as finance) and an
ontology-to-database mapping, which describes how the ontol-
ogy elements are mapped to the database objects. DBPal [33]
aims at generating join queries based on the information learnt
from domain-specific training data, and requires many training
examples with different join paths.

4 AVAILABLE BENCHMARKS

Training a deep learning system is a very data-intensive pro-
cedure; large amounts of data are required in order to train an
accurate model. For this reason, the availability of datasets is
the main fuel for the development of deep learning solutions
and the text-to-SQL task is no exception. In this section, we will
introduce the two major large-scale benchmarks, explain their
characteristics as well as highlight their shortcomings.

WikiSQL [39] is a large crowd-sourced dataset for developing
natural language interfaces for relational databases released along
with the Seq2SQL text-to-SQL system. It contains over 25,000
tables gathered from Wikipedia pages and over 80,000 natural
language and SQL question pairs, which were created by crowd-
sourcing. Note that each of WikiSQL’s questions is directed to a
single table and not to a relational database. This means that the

10.5441/002/edbt .2021.90


https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2021.90

proposed task is much simpler than the ultimate goal of creating
a natural language interface for relational databases. Addition-
ally, the complexity of the queries is very low. There are no JOIN,
GROUP BY, UNION, INTERSECTION or other complex SQL ele-
ments. We must also note that that WikiSQL contains multiple
errors and ambiguities, which might hinder the performance of
any model trained on it.

Spider [37] is a large-scale complex and cross-domain semantic
parsing and text-to-SQL dataset annotated by 11 Yale students. It
contains 200 relational databases from 138 different domains
along with over 10,000 natural language questions and over
5,000 complex SQL queries. Its queries range from very simple to
very hard, using all the common SQL elements, including nested
queries. All the above, along with the fact that it was hand-crafted
and re-checked are an indicator of its higher quality, compared
to WikiSQL, and has led to the development of very promising
systems.

5 NL REPRESENTATION

We will now provide an overview of the state-of-the-art tech-
niques for natural language representation in neural networks.
The use of neural networks, which can only handle numerical
inputs and not raw text, has led to the adoption of word em-
beddings for numerical word representation. Additionally, in the
past few years, the use of language models is blooming, following
their rise as an efficient solution for increased performance in
NL tasks.

Word embeddings assume that every unique word has a numer-
ical representation that can be different from all other words and
at the same time incorporate useful information about the word,
and aim at mapping each word to a multidimensional vector. Be-
sides the brute-force creation of one-hot embeddings, researchers
have provided highly efficient techniques to create representa-
tions that carry the word’s meaning and its relationships with
other words. Word2Vec [25], GloVe [28] and WordPiece embed-
dings [34], to name a few, are some famous word embedding
techniques that are used in most, if not all, text-to-sql systems.

Language models are a novel and emerging type of pre-trained
neural networks for processing NL, that has been shown to excel
in NL tasks during the past few years. Note that language models
are not a replacement for word embeddings, given that they are
neural networks and they still need a way of transforming words
to vectors. The way this type of models are created, is that a
very large network (108 order of magnitude of parameters) is
created and is pre-trained on a very large NL dataset (10° order
of magnitude of words). The pre-trained model is made available
for researchers who can then adapt its inputs and outputs to
the specific task they aim to solve, and train it for an additional
number of epochs on their task-specific dataset. The result is a
much stronger model that can reach state-of-the-art performance
even without the need of complex architectures [8]. These models
have been able to reach such performances due to the use of a
neural network architecture that was recently proposed, called
the Transformer [31], which excels at handling NL sequences.
Some of the most used language models for the text-to-SQL task
are BERT [8] and MT-DNN [20].

6 TEXT-TO-SQL DEEP LEARNING
APPROACHES

Deep learning systems following the encoder-decoder architec-
ture can be distinguished in three categories, based on the output

711

of their decoder [7]: (a) sequence-to-sequence approaches, (b)
grammar-based approaches, and (c) sketch-based slot-filling ap-
proaches. In order to better understand the proposed systems,
we will now give a taxonomy of deep learning approaches for
text-to-SQL, and highlight the main characteristics as well as
the advantages and shortcomings of each neural network archi-
tecture. Additionally, we will provide an overview of some key
systems in each category.

6.1 Sequence-to-sequence approaches

This category includes systems (e.g. [19, 39]) that produce a se-
quence of SQL tokens and schema elements as their output, with
the resulting sequence being the final SQL query prediction, or a
major part of it. Essentially, they attempt to transform an input
NLQ sequence to an output SQL sequence. This approach is the
simplest, but is also very prone to errors. It was adopted by one
of the first deep-learning systems for the task at hand, Seq2SQL
[39], but later systems steered away from such approaches. The
main drawback of sequence-to-sequence architectures is that
they do not take the strict grammatical rules of SQL into account
when generating a query. The system attempts to learn how a
SQL sequence is generated, but at prediction time there are no
measures to safeguard from producing syntactically incorrect
queries.

Seq2SQL [39] was one of the first neural networks created
specifically for the text-to-SQL task and was based on a pre-
vious work focusing on generating logical forms using neural
networks [10]. Its authors released the WikiSQL dataset along
with it, which signified a new era for deep learning research on
the text-to-SQL problem. The system predicts an aggregation
function and the column for the SELECT clause as classification
tasks and generates the WHERE condition clause using a seq-
to-seq network. The latter part of the system is burdened with
generating parts of the query that can lead to syntactic errors,
which is its major drawback. The network architecture combines
LSTM and linear layers, and the GloVe embeddings are used to
represent the inputs.

6.2 Grammar-based approaches

Grammar-based approaches (e.g., [7, 11, 12, 32]) are an evo-
lution of sequence-to-sequence approaches, and produce a se-
quence of grammar rules instead of simple tokens as their output.
These grammar rules are instructions that, when applied, can
create a SQL query. The advantage over sequence-to-sequence
approaches is that the possibility for generating an out-of-place
token or a syntactically incorrect query is dramatically reduced.
This is the most used approach for generating complex SQL
queries.

RAT-SQL [32] is a grammar-based text-to-SQL system focus-
ing on the Spider dataset. It is capable of generating complex
SQL queries by incorporating three note-worthy features. First,
it creates a question-contextualized schema graph, i.e. a graph
representing the database schema, its tables and columns, as well
as the words of the user’s question as nodes and the connections
between them as edges. The edges between DB elements are
created based on the DB schema and the edges between NLQ
words and DB elements are created by performing text match-
ing, which is a form of schema linking. Furthermore, it uses a
modified Transformer network for relation aware self-attention,
that is specifically designed to leverage the information of the
created graph and its edges. Finally, it follows a method for SQL



generation as an abstract syntax tree, by generating a sequence
of actions for building the tree, as proposed in [36].

IRNet [12] is another grammar-based system capable of gener-
ating complex SQL queries. It uses text-matching techniques to
address the schema linking challenge similarly but in a simpler
form than RAT-SQL. It uses a complex architecture of linear and
recurrent neural networks to process the input, in addition to
BERT. After processing the input, it creates an SQL query using
the same method as RAT-SQL for generating an abstract syntax
tree, with the main difference that the output it produces is in
an intermediate language called SemQL designed specifically for
this system. Its authors argue that it is easier to generate queries
in this language and then transform them to SQL.

6.3 Sketch-based slot-filling approaches

Systems following this approach (e.g., [15, 23, 24, 35]) aim at
simplifying the difficult task of generating a SQL query, to the
easier task of predicting certain parts of the query (e.g. which
of the table columns will appear in the SELECT clause), trans-
forming in this way the SQL generation task to a classification
task. In this case, we consider a query sketch with a number of
empty slots that must be filled and develop neural networks that
predict which element is most probable to fill each slot. A basic
prerequisite for such approaches is to have a query sketch that,
when filled, will be able to capture the NLQ’s intention. As a
result, this category of systems is rarely able to produce complex
SQL queries.

SQLNet [35] was one of the first sketch-based approaches. It
was based on the observation that the way Seq2SQL chose to
generate the WHERE clause was prone to errors that could be
avoided. For this reason, a query sketch, which could cover every
SQL query in the WikiSQL dataset, was developed and separate
neural networks were created to fill each slot. All slots are filled
by considering a classification task (e.g., which of the six possible
aggregation functions is appropriate for the given NLQ) except
for the condition value slot which was generated by a seq-to-seq
network. Note that in this case the aforementioned seq-to-seq
network only generates a value and does not handle SQL tokens,
meaning that it is not possible to generate syntactically incorrect
queries. Another improvement is the introduction of a column
attention neural mechanism to the network.

HydraNet [23] focuses on the WikiSQL task and follows a
sketch-based approach, using the same sketch as SQLNet, but
takes advantage of the BERT language model and achieves much
better results.

SQLova [15] is another sketch-based approach focusing on
the WikiSQL dataset and leveraging the BERT language model,
just as the HydraNet system. Their main difference is that while
HydraNet aims to use a very simple network after receiving
BERT’s output, SQLova employs a large and complex network
similar to the one used by SQLNet, while also incorporating BERT
into the system. What must be noted is that even though SQLova
employs a larger and more complex network than HydraNet, it
achieves lower accuracy scores on the WikiSQL dataset.

7 CHALLENGES AND RESEARCH
OPPORTUNITIES
While a lot of progress has been made on the text-to-SQL problem,

several important issues need to be tackled. Here, we outline some
of the most challenging ones.

712

The need for new benchmarks and in-depth system evalu-
ations is pressing and the database community can help com-
plement the work done by benchmarks such as Spider. New
benchmarks are needed that can test the query expressivity (i.e.,
what types of queries a system can answer) as well as the effi-
ciency and scalability of text-to-SQL systems to bigger and more
complex data sets.

Furthermore, there is a need for further research on answer
validation. Since in many cases users are not familiar with SQL,
the question is how they can confirm that the obtained results
match the intention of the NLQ. Another challenge is the univer-
sality of the solution, i.e. the system’s ability to perform equally
well for different databases. It is also important to enable natural
language queries in languages other than English, which is the
main focus of current efforts. Due to the problem’s multidisci-
plinarity, database, ML, and NLP approaches can join forces to
push the barrier further.

8 PRESENTERS

George Katsogiannis-MeimaraKkis is a research assistant at
Athena Research Center in Athens, Greece, where he works on
the INODE (Intelligent Open Data Exploration) project, focusing
on the text-to-SQL problem. He is a graduate of the Depart-
ment of Informatics and Telecommunications of the National
and Kapodistrian University of Athens, where he completed his
thesis with the title "Translating Natural Language to SQL using
Deep Learning". Currently, he is attending a MSc programme on
Data Science and Information Technologies with a specialisation
on Artificial Intelligence and Big Data.

Georgia Koutrika is a Research Director at Athena Research
Center in Greece. She has more than 15 years of experience in
multiple roles at HP Labs, IBM Almaden, and Stanford. Her work
focuses on data exploration, recommendations, and data analyt-
ics, and has been incorporated in commercial products, described
in 14 granted patents and 26 patent applications in the US and
worldwide, and published in more than 90 papers in top-tier
conferences and journals. She is Editor-in-chief for VLDB Jour-
nal, PC chair for VLDB 2023, associate editor for TKDE, and an
ACM Distinguished Speaker. Prior tutorials: Fairness in Rank-
ings and Recommenders [EDBT20], Recommender Systems [SIG-
MOD’18, EDBT 18, ICDE’15], Personalization [ICDE’10, ICDE’07,
VLDB’05].

ACKNOWLEDGMENTS

This work has been partially funded by the European Union’s
Horizon 2020 research and innovation program (grant agreement
No 863410).

REFERENCES

[1] Katrin Affolter, Kurt Stockinger, and Abraham Bernstein. 2019. A comparative
survey of recent natural language interfaces for databases. VLDB J. 28, 5
(2019), 793-819.

Sanjay Agrawal, Surajit Chaudhuri, and Gautam Das. 2002. DBXplorer: A
system for keyword-based search over relational databases. In ICDE. 5-16.
Ambiguity [n.d.]. Ambiguity. https://stanford.io/2YXcECi.

Ion Androutsopoulos, Graeme D. Ritchie, and Peter Thanisch. 1995. Natu-
ral language interfaces to databases - an introduction. Natural Language
Engineering 1, 1 (1995), 29-81. https://doi.org/10.1017/S135132490000005X
Gaurav Bhalotia, Arvind Hulgeri, Charuta Nakhe, Soumen Chakrabarti, and
Shashank Sudarshan. 2002. Keyword searching and browsing in databases
using BANKS. In ICDE. 431-440.

Lukas Blunschi, Claudio Jossen, Donald Kossmann, Magdalini Mori, and Kurt
Stockinger. 2012. SODA: Generating SQL for Business Users. PVLDB 5, 10
(2012), 932-943.

(2]



[7] DongHyun Choi, Myeong Cheol Shin, EungGyun Kim, and Dong Ryeol Shin.

2020. RYANSQL: Recursively Applying Sketch-based Slot Fillings for Complex
Text-to-SQL in Cross-Domain Databases. arXiv:cs.CL/2004.03125

[8] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019.

BERT: Pre-training of Deep Bidirectional Transformers for Language Under-
standing. arXiv:cs.CL/1810.04805
Bolin Ding, Jeffrey Xu Yu, Shan Wang, Lu Qin, Xiao Zhang, and Xuemin Lin.

[34] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi,

Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff
Klingner, Apurva Shah, Melvin Johnson, Xiaobing Liu, Lukasz Kaiser, Stephan
Gouws, Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith Stevens, George
Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason Smith, Jason Riesa, Alex
Rudnick, Oriol Vinyals, Greg Corrado, Macduff Hughes, and Jeffrey Dean.
2016. Google’s Neural Machine Translation System: Bridging the Gap between

2007. Finding top-k min-cost connected trees in databases. In ICDE. 836-845. Human and Machine Translation. arXiv:cs.CL/1609.08144
[10] Li Dong and Mirella Lapata. 2016. Language to Logical Form with Neural [35] Xiaojun Xu, Chang Liu, and Dawn Song. 2017. SQLNet: Generating Struc-
Attention. arXiv:cs.CL/1601.01280 tured Queries From Natural Language Without Reinforcement Learning.
[11] Li Dong and Mirella Lapata. 2018. Coarse-to-Fine Decoding for Neural Se- arXiv:cs.CL/1711.04436
mantic Parsing. arXiv:cs.CL/1805.04793 [36] Pengcheng Yin and Graham Neubig. 2017. A Syntactic Neural Model for
[12] Jiaqi Guo, Zecheng Zhan, Yan Gao, Yan Xiao, Jian-Guang Lou, Ting Liu, and General-Purpose Code Generation. arXiv:cs.CL/1704.01696
Dongmei Zhang. 2019. Towards Complex Text-to-SQL in Cross-Domain [37] Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan
Database with Intermediate Representation. arXiv:cs.CL/1905.08205 Li, James Ma, Irene Li, Qingning Yao, Shanelle Roman, Zilin Zhang, and
[13] Hao He, Haixun Wang, Jun Yang, and Philip S Yu. 2007. BLINKS: ranked Dragomir Radev. 2019. Spider: A Large-Scale Human-Labeled Dataset
keyword searches on graphs. In ACM SIGMOD . ACM, 305-316. for Complex and Cross-Domain Semantic Parsing and Text-to-SQL Task.
[14] Vagelis Hristidis, Luis Gravano, and Yannis Papakonstantinou. 2003. Efficient arXiv:cs.CL/1809.08887
IR-style Keyword Search over Relational Databases. In VLDB. 850-861. [38] Zhong Zeng, Mong Li Lee, and Tok Wang Ling. 2016. Answering Keyword
[15] Wonseok Hwang, Jinyeong Yim, Seunghyun Park, and Minjoon Seo. 2019. A Queries involving Aggregates and GROUPBY on Relational Databases. EDBT
Comprehensive Exploration on WikiSQL with Table-Aware Word Contextual- (2016), 161-172.
ization. arXiv:cs.CL/1902.01069 [39] Victor Zhong, Caiming Xiong, and Richard Socher. 2017. Seq2SQL: Generating
[16] Mehdi Kargar, Aijun An, Nick Cercone, Parke Godfrey, Jaroslaw Szlichta, and Structured Queries from Natural Language using Reinforcement Learning.
Xiaohui Yu. 2014. MeanKS: Meaningful Keyword Search in Relational Databases arXiv:cs.CL/1709.00103
with Complex Schema. ACM. http://ceur-ws.org/Vol-1912/paper20.pdf
[17] FeiLi and H. V. Jagadish. 2014. Constructing an Interactive Natural Language
Interface for Relational Databases. PVLDB 8, 1 (Sept. 2014), 73-84.
Yunyao Li and Davood Rafiei. 2017. Natural Language Data Management
and Interfaces: Recent Development and Open Challenges. In ACM SIGMOD.
1765-1770.
[19] Xi Victoria Lin, Richard Socher, and Caiming Xiong. 2020. Bridging Textual
and Tabular Data for Cross-Domain Text-to-SQL Semantic Parsing. In Findings
of the Association for Computational Linguistics: EMNLP 2020. Association for
Computational Linguistics, Online, 4870-4888. https://doi.org/10.18653/v1/
2020.findings-emnlp.438
[20] Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jianfeng Gao. 2019.
Multi-Task Deep Neural Networks for Natural Language Understanding.
arXiv:cs.CL/1901.11504
[21] Yi Luo, Xuemin Lin, Wei Wang, and Xiaofang Zhou. 2007. Spark: Top-k
Keyword Query in Relational Databases. In ACM SIGMOD. 115-126.
[22] YiLuo, Wei Wang, Xuemin Lin, Xiaofang Zhou, Jianmin Wang, and Keqiu Li.
2011. SPARK2: Top-k Keyword Query in Relational Databases. IEEE Trans.
Knowl. Data Eng. 23, 12 (2011), 1763-1780. https://doi.org/10.1109/TKDE.2011.
60
[23] Qin Lyu, Kaushik Chakrabarti, Shobhit Hathi, Souvik Kundu, Jianwen
Zhang, and Zheng Chen. 2020. Hybrid Ranking Network for Text-to-SQL.
arXiv:cs.CL/2008.04759
[24] Jiangiang Ma, Zeyu Yan, Shuai Pang, Yang Zhang, and Jianping Shen. 2020.
Mention Extraction and Linking for SQL Query Generation. In Proceedings
of the 2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP). Association for Computational Linguistics, Online, 6936-6942. https:
//doi.org/10.18653/v1/2020.emnlp-main.563
[25] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient
Estimation of Word Representations in Vector Space. arXiv:cs.CL/1301.3781
[26] Amihai Motro. 1986. Constructing Queries from Tokens. In ACM SIGMOD.
120-131. https://doi.org/10.1145/16894.16866
[27] Notes on Ambiguity [n.d.]. Notes on Ambiguity. http://bit.ly/2YTLFeR.
[28] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. GloVe:
Global Vectors for Word Representation. In Empirical Methods in Natural
Language Processing (EMNLP). 1532-1543. http://www.aclweb.org/anthology/
D14-1162
[29] Diptikalyan Saha, Avrilia Floratou, Karthik Sankaranarayanan, Umar Fa-
rooq Minhas, Ashish R. Mittal, Fatma Ozcan, IBM Research. Bangalore,
and IBM Research. Almaden. 2016. ATHENA: An Ontology-Driven System
for Natural Language Querying over Relational Data Stores. VLDB. http:
//www.vldb.org/pvldb/vol9/p1209-saha.pdf
[30] Alkis Simitsis, Georgia Koutrika, and Yannis Ioannidis. 2008. Précis: from
unstructured keywords as queries to structured databases as answers. The
VLDB Journal 17, 1 (2008), 117-149.
[31] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention Is All
You Need. arXiv:cs.CL/1706.03762
[32] Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr Polozov, and Matthew
Richardson. 2020. RAT-SQL: Relation-Aware Schema Encoding and Linking
for Text-to-SQL Parsers. arXiv:cs.CL/1911.04942
Nathaniel Weir, Prasetya Utama, Alex Galakatos, Andrew Crotty, Amir
Ilkhechi, Shekar Ramaswamy, Rohin Bhushan, Nadja Geisler, Benjamin Hét-
tasch, Steffen Eger, Ugur Cetintemel, and Carsten Binnig. 2020. DBPal: A Fully
Pluggable NL2SQL Training Pipeline. In Proceedings of the 2020 International
Conference on Management of Data, SSIGMOD Conference 2020, online conference
[Portland, OR, USA], June 14-19, 2020, David Maier, Rachel Pottinger, AnHai
Doan, Wang-Chiew Tan, Abdussalam Alawini, and Hung Q. Ngo (Eds.). ACM,
2347-2361.

[18

[33

713



	Deep Learning Approaches for Text-to-SQL SystemsGeorge Katsogiannis-Meimarakis, Georgia Koutrika

