
Short Paper

Series ISSN: 2367-2005 421 10.5441/002/edbt.2021.45

https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2021.45

Algorithm 2 Typical Exploration Flow with UEI
Require: The raw data set D
Ensure: Result set T

1: P ← ∅, L ← ∅, U ← ∅
2: DC ← ver ticalDecompose (D)
3: for d = 1 to |DC | do
4: sor t (DCd)
5: C ← split IntoChunks (DCd)
6: end for
7: G ← split IntoSubspaces (D)
8: for each grid дi ∈ G do
9: pi ← computeCenter (дi)

10: P ← P ∪ {pi }
11: end for
12: U ← sample (D, γ)
13: M ← initialize predictive model for uncertainty estimation
14: while user continues the exploration do
15: drop any previously loaded data regions from U
16: M ← trained with L to update M
17: P ← updateU ncer tainty (P, M)
18: p∗i ← choose the most uncertainty index point from P
19: д∗i ← load data region with m (p∗i)
20: U ← U ∪ дi
21: choose one x from U using M
22: solicit user’s label on x
23: L ← L ∪ {x }
24: U ← U − {x }
25: end while
26: T ← r esultRetr ieval (L)
27: Return the set of interesting data objects T

each symbolic index point pi , the set of chunks that are needed
to construct дi . As chunks are stored separately on the disk, this
approach allows UEI to quickly identify the data that needs to
be loaded. Since each data subspace д is stored as series of one-
dimensional data chunks, to reconstruct each д when needed, UEI
utilizes a hash table for efficiently merge of those data chunks.
During the merge process, UEI iterates through each dimension
and loads the corresponding chunks to the memory one at a time,
and each entry in the chunk would be visited in a sequential
manner. For each object ID that is recorded in a loaded data
chunk ci , the value associated with the ID will be inserted into
the corresponding entry in the hash table. Once a chunk has been
examined, UEI will release the memory space used to hold the
data chunk and reuse the space for the subsequent chunk.

3.2 UEI in Action
In the previous section, we have discussed the components of
UEI, as well as how the data are being stored and indexed, which
essentially covers the first half (i.e., lines 1 - 11) of the exploration
workflow, shown in Algorithm 2. In this section, we will discuss
the interactive exploration phase of UEI, which illustrates how a
typical active learning-based IDE task (i.e., Algorithm 1) can be
performed when incorporating UEI (lines 12 - 27, Algorithm 2).

Interactive Exploration Phase: After the index set has been
constructed, UEI begins the exploration by filling the unlabeled
set U . Specifically, for the original data space D, UEI would
uniformly sample a set of data from the underlying dataset (line
12), where the size of the samples γ can be adjusted based on
the system hardware specs (e.g., available main memory size).
As a result, a set of unlabeled objects U would be sampled and
cached in the main memory. These unlabeled objects will then be
used in the acquisition of the set of initial examples that will be

labeled by the user to construct the initial predictive model M0
for uncertainty estimation. Query strategy will randomly sample
examples from U until the set of initial examples contains at least
one positive example and one negative example (line 13).

In each iteration, UEI updates the uncertainty of all index
points pi ∈ P based on the most recently trained predictive model
Mt−1 (line 17), which serves as the uncertainty estimator. Here the
uncertainty of a data object is essentially equals to the probability
of one object being either positive or negative class, with a value
that equal to 50% being the most uncertain. Then, the index point
p∗i for which the current exploration model is most uncertain, will
be chosen (line 18), such that:

p∗i = Argmax
pi ∈P

Mt−1 (Y |pi) (3)

where Y = {0,1} is set of binary labels.
Based on the chosen p∗i , UEI uses the mapping method m to

identify and load (into the memory) all data chunks that corre-
spond to the subspace д∗i , which was represented by p∗i (line 19).
As mentioned earlier, the mapping method m is simply a hash
table that maps a single index point p into a set of data chunks
located on the disk. Later, the data of subspace д∗i together with
the unlabeled dataset U will be used by the query strategy (i.e.,
uncertainty sampling) in the selection of the example to be labeled
in the current iteration (lines 20 - 22). To reduce memory usage, by
default UEI kept only one uncertain data region д∗i in the memory
at any given time. Once the user is satisfied with the exploration
result, the resultRetrieval method will be invoked to retrieve the
exploration results and present them to the user (lines 26 - 27).

Tuning Interactive Exploration: In addition to the above typ-
ical exploration flow, UEI further allows the user to specify a
response latency threshold σ that determines the latency between
each exploration iteration (i.e., two subsequent examples). Us-
ing the user-specified σ , UEI determines whether or not to defer
the swap between the current in-memory uncertain region д∗i and
the next uncertain region д∗i+1, when д∗i is no longer the most
uncertain region.

In the case when an extremely low σ is specified that makes
it impossible for the system to load the entire subspace д∗i into
main memory, UEI would start fetching the corresponding data
chunks that associated with д∗i+1 (in the background) θ iterations
before д∗i+1 is loaded into the memory. Here, θ is a tunable variable
that can also be inferred based on the average loading time τ of
data regions, and the configurable latency threshold σ , such that
θ =

j
τ
σ

k
.

3.3 Time Complexity of UEI
Clearly, the time complexity of UEI is dominated by the inter-
active exploration phase. As discussed in Section 3.1, the initial-
ization phase is done once for each dataset and the time required
for UEI to prepare and store a dataset D on secondary storage is
simply linear with respect to the number items n stored in D.

As discussed in Section 3.2, each iteration of the interactive
exploration phase in UEI is dominated by the time taken to load
the data from the chunks stored on the disk into the memory,
which is linear with respect to the number of dimensions k and
the number entries e stored in the loaded chunks. In contrast, each
iteration in the current IDE approaches needs to load and examine
all data items n (e <<< n).

Therefore, the time complexity of the UEI-enhanced data ex-
ploration generally is reduced from O (kn) where n is the number
of data objects to O (ke) where e is the number entries associated

424

UEI Response time (Figure 6): Finally, we have measured the
response time for both UEI and MySQL based schemes. As shown
in Figure 6, UEI achieves 50x faster response time than MySQL,
and ensures the sub-second interactive response time across all
data region sizes. Note the response time remains the same across
all three target interest regions sizes, which is as expected because
the runtime complexity of the uncertainty sampling-based systems
only depends on the size of the dataset and not the size of the
target interest regions.

From the experiments, it is clear that due to the fact that uncer-
tainty sampling requires an exhaustive search over the entire data
spare, thus the physical bandwidth of the secondary storage has
become the major bottleneck that severely limits the scalability of
active learning-based IDE systems.

Even though in our experiments, we have used NVMe based
SSD with I/O throughput of around 3.4GB/s, the uncertainty sam-
pling still takes over 12 seconds to complete the exhaustive search
in each iteration. Therefore, it is still impossible to explore datasets
that exceed the main memory capacity without UEI.

5 RELATED WORK
Traditionally, indexing has been the core technique for optimiz-
ing response time in database systems. Recently, main-memory
indexing and specialized access methods have been proposed
to support domain-specific query processing and analytics (e.g.,
[6, 17]). UEI is based on similar principles as these specialized
access methods. However, UEI, to the best of our knowledge,
is the first domain-specific access method with in-memory and
disk components that support interactivity and scalability of active
learning-based IDE systems.

The active learning-based IDE systems that can leverage our
proposed UEI for better scalability includes REQUEST [9], the
first active learning-based IDE system, and the two more recently
proposed systems, Dual-Space Model [12] and ExNav [10]. RE-
QUEST utilizes a two stages approach; a data reduction stage
aims to selectively reduce the search space while keeping all rel-
evant data regions, and a query selection stage that utilizes an
active learning-based predictive model to iteratively improve the
accuracy of the constructed exploratory query through interactions
with the user. Dual-Space Model uses a new uncertainty sampling-
based predictive model and a new dual-space pruning technique
that focuses solely on exploration tasks with a single relevant
region. It also optimizes these tasks for faster model convergence.
ExNav is the first uncertainty sampling-based IDE system that
specializes in exploring a variety of unstructured data sets by
leveraging the corresponding data embedding methods for each
unstructured data type [10].

In addition to the active learning-based IDE systems, UEI can
also be utilized in other active learning-based Human-in-the-loop
(HIL) systems. For example, in [18], the authors have proposed an
active learning-based HIL system, called SystemER, for learning
Entity Resolution models through user interactions. Another ex-
ample of an active learning-based HIL application is fact-checking.
In [4], the author has proposed an effective active learning-based
HIL system for identifying various types of potentially misleading
or false information for news contents. Most recently, [19] has
proposed to use active learning for learning the implicit struc-
tured representations of entity names, which can be useful for
many entity-related tasks such as entity normalization and variant
generation. To facilitate the process of learning such structured
representations, a user-friendly interface called PARTNER has
been designed to enhance the user’s interaction experience.

6 CONCLUSION
In this paper, we present the Uncertainty Estimation Index (UEI),
the first indexing mechanism that enables active learning-based
IDE systems to explore datasets that exceed the main memory
capacity. Instead of requiring all data to be loaded into the main
memory as in existing active learning-based IDE systems for sub-
second respond times, UEI enables the scalability by dynamically
identify and caching the set of objects that are most uncertain to
the current stage of the exploration. It achieves this by maintaining
a small in-memory index that estimates the aggregated uncertainty
value of the data items in the entire data subspaces. UEI also
employees columnar-based secondary storage and combines it
with an inverted index to support efficient loading of the necessary
data items at each iteration.

Our experimental evaluation using real-world data show that
a state-of-the-art IDE systems using UEI greatly outperforms a
DBMS-based version of the same IDE system by provide more
than 50x runtime efficiency when the size of the dataset exceed
the main memory capacity, and is capable of achieving sub-second
response time for data that is 100 times larger than the available
memory while achieving the desired exploration accuracy and
effectiveness. In conclusions, UEI can be used not only with
existing active learning-based IDE but with other active learning-
based Human-in-the-loop systems as well to achieve significantly
higher scalability by removing the main memory restriction.

REFERENCES
[1] SDSS Samples Queries - http://cas.sdss.org/dr4/en/help/docs/realquery.asp.
[2] A. Anagnostopoulos, L. Becchetti, C. Castillo, A. Gionis. 2010. An Optimiza-

tion Framework for Query Recommendation. In ACM WSDM. 161–170.
[3] A. Arasu, M. Götz, R. Kaushik. 2010. On active learning of record matching

packages. In ACM SIGMOD. 783–794.
[4] S. Bhattacharjee, A. Talukder, B. Balantrapu. 2017. Active learning based news

veracity detection with feature weighting and deep-shallow fusion. In IEEE
BigData. 556–565.

[5] W. Cai, Y. Zhang, J. Zhou. 2013. Maximizing Expected Model Change for
Active Learning in Regression. In IEEE ICDE. 51–60.

[6] G. Chatzigeorgakidis, D. Skoutas, K. Patroumpas, T. Palpanas, S. Athanasiou,
S. Skiadopoulos. 2019. Local Similarity Search on Geolocated Time Series
Using Hybrid Indexing. In ACM SIGSPATIAL. 179–188.

[7] K. Dimitriadou, O. Papaemmanouil, Y. Diao. 2016. AIDE: An Active Learning-
Based Approach for Interactive Data Exploration. In TKDE, 28:2842–2856.

[8] A. Freytag, E. Rodner, J. Denzler. 2014. Selecting Influential Examples: Active
Learning with Expected Model Output Changes. In ECCV. 562–577.

[9] X. Ge, Y. Xue, Z. Luo, M. Sharaf, P. Chrysanthis. 2016. REQUEST: A Scal-
able Framework for Interactive Construction of Exploratory Queries. In IEEE
BigData. 4566–4579.

[10] X. Ge, X. Zhang, P. Chrysanthis. 2020. ExNav: An Interactive Big Data
Exploration Framework for Big Unstructured Data. In IEEE BigData.

[11] J. Gou, L. Du, Y. Zhang, T. Xiong, et al. 2012. A new distance-weighted
k-nearest neighbor classifier. In J. Inf. Comput. Sci, 9(6):1429–1436.

[12] E. Huang, L. Peng, L. Palma, A. Abdelkafi, A. Liu, Y. Diao. 2019. Optimization
for active learning-based interactive database exploration. In VLDB. 71–84.

[13] S. Islam, C. Liu, R. Zhou. 2013. A framework for query refinement with user
feedback. In J. Syst. Softw., 86(6):1580-1595.

[14] D. Lewis W. Gale. 1994. A sequential algorithm for training text classifiers. In
ACM SIGIR. 3–12.

[15] Z. Liu , J. Heer. 2014. The Effects of Interactive Latency on Exploratory Visual
Analysis. In IEEE TVCG, 20(12):2122–2131.

[16] B. McCamish, V. Ghadakchi, A. Termehchy, B. Touri, and L. Huang. 2018.
The Data Interaction Game. In ACM SIGMOD. 83–98.

[17] B. Peng, P. Fatourou, T. Palpanas. 2020. MESSI: In-Memory Data Series
Indexing. In IEEE ICDE. 337–348.

[18] K. Qian, L. Popa, P. Sen. 2019. SystemER: A Human-in-the-loop System for
Explainable Entity Resolution. PVLDB 12, 12, 1794–1797.

[19] K. Qian, P. Raman, Y. Li, L. Popa. 2020. Learning Structured Representa-
tions of Entity Names using Active Learning and Weak Supervision. CoRR
abs/2011.00105.

[20] B. Settles. 2009. Active learning literature survey. Technical Report. University
of Wisconsin-Madison.

[21] H. S. Seung, M. Opper, and H. Sompolinsky. 1992. Query by Committee. In
ACM Workshop on Computational Learning Theory.

[22] Y. Zhang, Y. Wang, W. Cai, S. Zhou, Y. Zhang. 2017. From Theory to Practice:
Efficient Active Cost-sensitive Classification with Expected Error Reduction.
In SIAM. 153–161.

[23] Zheng Zhao and Huan Liu. 2007. Semi-supervised Feature Selection via
Spectral Analysis. In SDM. 641–646.

426

	On Supporting Scalable Active Learning-based Interactive Data Exploration with Uncertainty Estimation IndexXiaoyu Ge, Panos Chrysanthis

