
SOJA: A Memory-e�icent Small–large Outer Join for MPI
Liang Liang, Guang Yang, Thomas Heinis

Imperial College London
David Taniar

Monash University

ABSTRACT
The join is a fundamental and widely used operation in data
analytics but equally, it is also one of the most expensive ones.
Considerable work has been carried out to improve and evaluate
join approaches based on popular distributed processing systems
such as Spark and Hadoop, however, it has not been widely
studied on MPI.

In this paper, we first implement, analyse and compare existing
algorithms for the common small-large outer join operation and
develop a novel approach, the swap-based outer join algorithm
(SOJA). SOJA is designed to minimise the expensive communica-
tion between the distributed nodes while also reducing the cost
of the local join operations. We demonstrate the benefits of SOJA
experimentally, showing that it achieves at worst an execution
time similar to its competitors. More importantly, SOJA requires
substantially less memory (typically half the memory compared
to the best competitor) and that memory usage scales very well.

KEYWORDS
Outer Joins, Algorithm, Parallel Processing, MPI

1 INTRODUCTION
Collecting and storing data has never been as easy and as cheap as
today. It comes as no surprise that vast amounts of data are being
stored today and it is predicted that all known data worldwide
will grow to 250 Zettabytes by 2025. Many real-world applications
benefit from the efficient analysis of large amounts of data, be it
for medical applications [1, 2, 13], scientific applications [11] or
commercial applications such as traffic analysis [7] and others.
Analysing this data efficiently and at scale has thus never been
more important than today and is also a considerable challenge.

Crucial in the analysis of large amounts of data is the combi-
nation of multiple datasets before analysis. One central operation
thus is the join operation which combines multiple datasets (or
one with itself) by matching tuples with a shared attribute. More
specifically, a join on datasets 𝑅 and 𝑆 based on equality (or a dif-
ferent relationship) will pair tuples 𝑟 ∈ 𝑅 and 𝑠 ∈ 𝑆 if 𝑟 .𝑐1 = 𝑠 .𝑐2
where 𝑐1 and 𝑐2 are attributes of the tuples. The operation is
frequently used but very costly due to computational overhead
but also because of I/O.

In this paper, we develop the swap-based outer join algorithm
(SOJA), a new approach to the specific problem of the small-
large outer join where a small and a large dataset are joined.
We develop SOJA for Message Passing Interface (MPI) on HPC
infrastructure as such large-scale parallel infrastructure is one of
the few efficient ways to join large datasets [3]. MPI is a message-
passing standard which is widely used in high performance ap-
plications [10]. The standard defines the syntax and semantics of
approximately 250 library routines that allow users to develop
a wide variety of communication operations on different types

© 2021 Copyright held by the owner/author(s). Published in Proceedings of the
24th International Conference on Extending Database Technology (EDBT), March
23-26, 2021, ISBN 978-3-89318-084-4 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

of parallel computing infrastructure[8, 9]. Point to point com-
munication between two MPI processes (ranks) and collective
communication among MPI processes are most commonly used.
For each of them, MPI also provides multiple communication
modes that fall into either blocking or non-blocking communica-
tion according to whether constituent operations of the commu-
nication complete synchronously. Additionally, MPI supports a
derived datatype and a virtual topology which allows users to
control data movement among processes efficiently and flexibly.
MPI thus is a promising tool to design and implement algorithms
to handle and analyze massive amounts of data efficiently.

We use MPI running on HPC infrastructure to efficiently exe-
cute a small-large left outer join. The small-large left outer join
can be denoted as 𝑅 ⊲⊳ 𝑆 with |𝑅 | << |𝑆 | where |𝑅 | and |𝑆 | are
number of tuples in tables or, more generally, datasets 𝑅 and 𝑆 . In
the query below, 𝑅 and 𝑆 represent the left table and right table,
and a join is performed between 𝑅 and 𝑆 based on join keys 𝑅.𝑎
and 𝑆.𝑏:

SELECT * FROM R LEFT OUTER JOIN S ON R.a = S.b;

For parallelising the left outer join, we assume that 𝑅 and 𝑆
are distributed among the 𝑁 processes in a round-robin fashion.
Each partition 𝑅8 is assigned to the 𝑖 − 𝑡ℎ process, and has the
same number of elements |𝑅8 | = |’ |# . The same applies to all 𝑆8 .

The parallel left outer join with partitioned data then has two
goals: (1) find all matching tuples from the two tables; (2) find
all dangling tuples from the left table and output them with no
matching tuple from the right table.

Existing approaches mainly adopt two methods, redistribution
and broadcast, to produce the entire join results while guaran-
teeing data locality. Redistribution refers to redistributing both
tables among all processes to make tuples such that the same join
keys are placed in the same process. Broadcast, in this context,
means the left table in each process is duplicated and sent to
all other processes, so that each process holds the complete left
table. These two methods either lead to inevitable skewness or
duplication. SOJA adopts a novel method, swap, to ensures tuples
in the left table can join all possible matching tuples in the right
table by swapping the left table among processes. Based on the
swap method, SOJA can also perform other types of parallel joins
such as inner or right outer joins by replacing local join methods.

As our extensive set of experiments shows, SOJA in many
cases outperforms its competitors and at worst has an execution
time similar to its competitors. Most importantly, however, SOJA
requires substantially less memory which in a supercomputing
environment is crucial (as data cannot easily be swapped to
disk). SOJA typically requires only half the memory and, as our
experiments show, scales extremely well.

In the remainder of this paper we first review the state of the
art in Section 2, present our approach SOJA in Section 3.1, analyse
SOJA experimentally in Section 4 and conclude in Section 5.

2 RELATEDWORK
In this section, we first describe four related parallel outer join
algorithms (Figure 1) and then discuss their limitations and com-
munication implementations on MPI .

Series ISSN: 2367-2005 523

https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2021.62

526

Figure 2: Execution time and memory usage against |𝑅 |, wide ranges |𝑅 | from 103 to 107, narrow is from 106 to 107. (A) time
vs 𝑁 for 32; (B) memory usage vs 𝑁 for 32; (C) time vs 𝑁 for 64; (B) memory usage vs 𝑁 for 64;

Figure 3: Execution time against selectivity ratio of left table over varying number of processes: (A - D): execution time
for 𝑁 = 4, 32, 64, 512; (E - H): memory usage for 𝑁 = 4, 32, 64, 512;

Figure 4: Execution time and memory usage ratio against skewness degree: (A) execution time for 𝑁 = 32; (B) memory
usage ratio 𝑁 = 32; (C) execution time for 𝑁 = 64; (D) memory usage ratio for 𝑁 = 64;

Both execution time and memory usage in ROJA are not con-
siderably affected by changes in |𝑅 |, because the cost of ROJA is
dominated by the large table (although 𝑅 increases, it is still at
least 5 times smaller than |𝑆 |). The broadcast cost and subsequent
local join between 𝑅 and 𝑆8 in DOJA, DER and DDR increases

with the growth of 𝑅, increasing both execution time and mem-
ory usage. Furthermore, dangling tuples candidates after the
first local outer join will also increase as 𝑅 increases. Therefore,
DER and DDR have to redistribute and filter more data to iden-
tify non-matching tuples. The number of candidates is roughly

527

	SOJA: A Memory-efficent Small–large Outer Join for MPILiang Liang, Guang Yang, Thomas Heinis, David Taniar

