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ABSTRACT
Collaborative filtering has been largely used to advance modern
recommender systems to predict user preference. A key compo-
nent in collaborative filtering is representation learning, which
aims to project users and items into a low dimensional space to
capture collaborative signals. However, the scene information,
which has effectively guided many recommendation tasks, is
rarely considered in existing collaborative filtering methods. To
bridge this gap, we focus on scene-based collaborative recom-
mendation and propose a novel representation model SceneRec.
SceneRec formally defines a scene as a set of pre-defined item
categories that occur simultaneously in real-life situations and
creatively designs an item-category-scene hierarchical structure
to build a scene-based graph. In the scene-based graph, we adopt
graph neural networks to learn scene-specific representation on
each item node, which is further aggregated with latent repre-
sentation learned from collaborative interactions to make recom-
mendations. We perform extensive experiments on real-world
E-commerce datasets and the results demonstrate the effective-
ness of the proposed method.

1 INTRODUCTION
Recommender systems have become increasingly important to
address the information overload problem and have been widely
applied in many different fields, such as social networks [22] and
news websites [24]. To predict a user’s preference, an extensive
amount of collaborative filtering (CF) methods have been pro-
posed to advance recommender systems. The basic idea of CF is
that user behavior would always be similar and a user’s interest
can be predicted from the historical interactive data like clicks
or purchases. A key component of CF is to learn the latent repre-
sentation, which usually projects users and items into a lower
dimensional space. A variety of CF models, including matrix fac-
torization [8], deep neural networks [7] and graph convolutional
networks [16], are adopted to capture collaborative signals from
a user-item matrix or a user-item bipartite graph.

In the meantime, recommender systems that integrate scene
information are attracting more and more attention. For exam-
ple, predictive models are able to recommend substitutable or
complementary items [9, 10, 13] that visually match the scene
which is represented in an input image. The image data contains
rich contextual information like background color, location, land-
scape, etc., which may be ignored by conventional CF methods.
However, the input image could reveal no scene information or
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even becomes unavailable in many recommendation scenarios.
For example, in E-commerce systems, most thumbnail images
only contain product pictures which are embedded in the white
background. In such circumstances, scene-based recommenda-
tion becomes infeasible because the scene definition is not clear.

To address this issue, this work investigates the utility of incor-
porating scene information into CF recommendation. However,
this study brings two challenges. First, a formal definition on
scene is essential to this problem. Without image data, how to
formally define a scene becomes a problem. Second, how to incor-
porate scene information into existing CF models should also be
taken into account. Keeping these two key points in mind, we pro-
pose SceneRec, a novel method for scene-based collaborative fil-
tering. Specifically, we propose a principled item-category-scene
hierarchical structure to construct the scene-based graph (Figure
1). In particular, a scene is formally defined by a set of fine-grained
item categories that could simultaneously occur in real-life situa-
tions. For example, the set of item categories {Keyboard, Mouse,
Mouse Pad, Battery Charger, Headset} represents the scene “Pe-
ripheral Devices”. This can be naturally applied to a situation
where a user has already bought a PC and many different types
of supplementary devices are recommended. Moreover, SceneRec
applies graph neural networks on the scene-based graph to learn
the item representation based on the scene information, which is
further aggregated with the latent representation learned from
user-item interactions to make predictions.

To the best of our knowledge, SceneRec is among the first
to study scene-based recommendation with a principled scene
definition and our main contributions are summarized as follows:
(1) We study the problem of scene-based collaborative filtering
for recommender system where a scene is formally defined as a
set of item categories that could reflect a real-world situation.
(2)We propose a novel recommendation model SceneRec. It lever-
ages graph neural networks to propagate scene information and
learn the scene-specific representation for each item. This rep-
resentation is further incorporated with a latent representation
from user-item collaborative interactions to make predictions.
(3) We conduct extensive experiments to evaluate the perfor-
mance of SceneRec against 9 other baseline methods. We find
that our method SceneRec is effective. Specifically, SceneRec on
average improves the two metrics (NDCG@10, HR@10) over the
baselines by (14.8%, 12.1%) on 4 real-world datasets.

2 RELATEDWORK
Collaborative filtering has been widely applied in modern rec-
ommender systems. One class of CF methods try to build explicit
models on the user-item interactions. For example, matrix factor-
ization [2, 8, 12, 14] maps the representation of each user and each
item into a lower dimensional space and calculates inner product
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between vector representations to make predictions. To enhance
recommendation, various contextual information has been incor-
porated into CF, such as user review [21], social connections [22]
and item side information [17]. Different from existing works
that rely on linear predictive function, many recent efforts apply
deep learning techniques [7] to learn non-linearities between
user embedding and item embedding.

Another line of CF methods take user-item interactions as a
bipartite graph. For example, some early efforts [5] conduct label
propagation, which essentially searches neighborhood on the
graph, to capture collaborative signals. Inspired by the success
of graph neural networks (GNN) [6, 11] that directly conduct
convolutional operations on the non-grid network data, a series
of GNN-based recommendation methods have been proposed
on an item-item graph [23] or a user-item graph [16] to learn a
vector embedding for each item or user. The general idea is the
representation of one graph node can be aggregated and com-
bined by the representation of its neighbor nodes. NGCF [20]
extends GNN to multiple depths to capture high-order connectiv-
ities that are included in user-item interactions. KGAT [19] and
KGCN [18] investigate the utility of incorporating knowledge
graph (KG) into CF by projecting KG entities to item nodes.

Our work is also related to the application of scene information
in recommender systems. For example, given the scene in the
form of an input image, recommendation methods are capable
of providing substitutable [10, 13] or supplementary[9] products
that visually match the input scene. However, in these tasks, the
scene is represented by image data, which is not readily available
in many recommendation scenarios. In such cases, scene-based
recommendations become difficult or even impossible because
the scene has not been well defined. In this paper, we aim to
integrate scene information into CF where each scene is define
by a set of fine-grained item categories. By exploiting the scene-
specific representation into conventional CF signals, the model
can potentially improve predictions on user preference.

3 PROBLEM FORMULATION
Definition 3.1. Scene. A scene is defined as a set of item cat-

egories that occur simultaneously and frequently in a real-life
situation, denoted as 𝑠 = {𝑐1, 𝑐2, · · · , 𝑐 |𝑠 | |𝑐𝑖 ∈ C, 1 ≤ 𝑖 ≤ |𝑠 |},
where C is the set of item categories and |𝑠 | ≥ 1. The item cate-
gory is one of a item’s attributes and 𝑠 ⊂ C.

Definition 3.2. User-ItemBipartiteGraph.The user-item in-
teractions can be represented as a bipartite graph G = {(𝑢, 𝑥𝑢𝑖 , 𝑖) |
𝑢 ∈ U, 𝑖 ∈ I}, where U and I are the set of users and items
respectively, and the edge 𝑥𝑢𝑖 indicates the occurrence or fre-
quency with that the user 𝑢 has interacted with the item 𝑖 , such
as clicking and purchasing.

Definition 3.3. Scene-based Graph. The scene-based graph
H is a hierarchical network with three layers: the item layer,
the category layer, and the scene layer as shown in Figure 1.
The item layer consists of items and is denoted as L𝑖𝑡𝑒𝑚 =

{(𝑖𝑝 , 𝑦𝑝𝑞, 𝑖𝑞) |𝑖𝑝 , 𝑖𝑞 ∈ I}, where the edge 𝑦𝑝𝑞 represents the simi-
larity between two items 𝑖𝑝 and 𝑖𝑞 . The category layer is denoted
as L𝑐𝑎𝑡𝑒 = {(𝑐𝑝 , 𝑧𝑝𝑞, 𝑐𝑞) |𝑐𝑝 , 𝑐𝑞 ∈ C}, where the edge 𝑧𝑝𝑞 rep-
resents that the category 𝑐𝑝 has relevance to the category 𝑐𝑞 .
The interaction between the item layer and the category layer
is described by L𝑖𝑐 = {(𝑖𝑝 , 𝑎𝑝𝑞, 𝑐𝑞) |𝑖𝑝 ∈ I, 𝑐𝑞 ∈ C}, where
the edge 𝑎𝑝𝑞 connects an item 𝑖𝑝 to a pre-defined item cate-
gory 𝑐𝑞 . The scene layer is composed of scenes, where a scene
𝑠 is formally defined as a set of item categories {𝑐1, 𝑐2, · · · , 𝑐 |𝑠 |}.

s1

i2

c2
c4c1

c5

s2

i1 i3

i4 i5Item Layer

Category Layer

Scene Layer

Figure 1: An illustrative example of the scene-based graph
that consists of the item layer, the category layer and the
scene layer. Each item is associated with a category. In
the item layer and the category layer, the set of edges rep-
resent the item-item relations and the category-category
relations. There are connections between categories and
scenes, which indicates that a category belongs to a scene.

The relation between categories and scenes is illustrated by
L𝑐𝑠 = {(𝑐𝑝 , 𝑏𝑝𝑞, 𝑠𝑞) |𝑐𝑝 ∈ C, 𝑠𝑞 ∈ S}, where the edge 𝑏𝑝𝑞 indi-
cates that a category 𝑐𝑝 belongs to a scene 𝑠𝑞 andS = {𝑠1, 𝑠2, · · · }
is the set of scenes. For simplicity, we set the weights of edges in
the scene-based graphH to be 1; otherwise, 0.

Definition 3.4. Scene-basedRecommendation.Given a user-
item bipartite graph G recording interaction history, the goal of
the scene-based recommendation is to predict the probability r𝑢𝑖
that the user 𝑢 has potential interest in the item 𝑖 with the help
of scene information from a scene-based graphH .

4 FRAMEWORK
In this section, we will first give an overview about the proposed
framework, then introduce each model component in detail.

4.1 Architecture Overview
The architecture of the proposed model is shown in Figure 2.
There are three components in the model: user modeling, item
modeling, and rating prediction. User modeling aims to learn
a latent representation for each user. To achieve this, we take
user-item interaction as input and aggregate the latent represen-
tation of items that the user has interacted with to generate the
user latent factor. Item modeling aims to generate the item latent
factor representation. Since each item exists in both user-item
bipartite graph and the scene-based graph, SceneRec learns item
representations in each graph space, i.e., item modeling in the
user-based space and item modeling in the scene-based space.
In the user-based space, we take a similar strategy which aggre-
gates the representation of all users that each item has interacted
with to generate vector embedding. In the scene-based space,
we exploit the hierarchical structure of the scene-based graph
where the information is propagated from the scene layer to
the category layer and from the category layer to the item layer.
Then we concatenate two item latent factors for the general rep-
resentation. In the last component, we integrate item and user
representations to make rating prediction.

4.2 User Modeling
In the user-item graph, a user 𝑢𝑝 is connected with a set of items
and these items directly capture the user’s interests. We thus
learn user 𝑢𝑝 ’s embedding m𝑢𝑝 by aggregating the embeddings
of item neighbors, which is formulated as,

m𝑢𝑝 = 𝜎 (Wu ·


∑
𝑖𝑞 ∈𝑈 𝐼 (𝑢𝑝 )

e𝑖𝑞

 + bu), (1)
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Figure 2: The illustration of SceneRec architecture (the arrowed lines present the bottom-up information flow). The em-
beddings of users and items are learned by user modeling and item modeling, respectively.

where𝑈 𝐼 (𝑢𝑝 ) denotes the set of items that are connected to user
𝑢𝑝 , e𝑖𝑞 is the embedding vector of item 𝑖𝑞 , and 𝜎 is the nonlinear
activation function. Wu and bu are the weight matrix and the
bias vector to be learned.

4.3 Item Modeling
The general representation m𝑖𝑝 for item 𝑖𝑝 can be further split
into two parts: the embedding m𝑈

𝑖𝑝
in the user-based space and

the embedding m𝑆
𝑖𝑝

in the scene-based space.

4.3.1 User-based embedding. In the user-item graph, an item
𝑖𝑝 has connections with a set of users. We learn its embedding
m𝑈
𝑖𝑝

by aggregating the embedding of these engaged users:

m𝑈
𝑖𝑝

= 𝜎 (Wiu ·


∑
𝑢𝑞 ∈𝐼𝑈 (𝑖𝑝 )

e𝑢𝑞

 + biu), (2)

where 𝐼𝑈 (𝑖𝑝 ) denotes the set of users that are connected to item
𝑖𝑝 , e𝑢𝑞 is the embedding vector of user𝑢𝑞 ,Wiu and biu are param-
eters to be learned. Since m𝑈

𝑖𝑝
is aggregated from user neighbors,

m𝑈
𝑖𝑝

represents the user-based embedding of item 𝑖𝑝 .

4.3.2 Scene-based embedding. In the scene-based graph, each
item is connected to both other items and its category. So, the
scene-based embedding m𝑆

𝑖𝑝
for item 𝑖𝑝 is composed of represen-

tation that is specific to item neighbors and category neighbors.
For the category-specific representation, we should first gener-

ate the latent factor of each category. Since one category node can
connect to both scene nodes and other related category nodes,
the category representation can be further split into two types:
the scene-specific and category-specific representation.

Given a category 𝑐𝑝 , it may belong to a set of scenes and its
scene-specific embedding vector h𝑆𝑐𝑝 can be updated as follows:

h𝑆𝑐𝑝 =
∑

𝑠𝑞 ∈𝐶𝑆 (𝑐𝑝 )
e𝑠𝑞 , (3)

where𝐶𝑆 (𝑐𝑝 ) is the set of scenes that category 𝑐𝑝 belongs to and
e𝑠𝑞 is the embedding vector of scene 𝑠𝑞 .

Besides the connection between scene nodes and category
nodes, our model also captures the interactions between differ-
ent category nodes. Each category contributes to the category-
specific representation but categories do not always affect each

other equally. Therefore, we apply the attention mechanism to
learn the influence between different item categories. In this way,
the category-specific representation h𝐶𝑐𝑝 of the category 𝑐𝑝 can
be aggregated as follows:

h𝐶𝑐𝑝 =
∑

𝑐𝑞 ∈𝐶𝐶 (𝑐𝑝 )
𝛼𝑝𝑞e𝑐𝑞 , (4)

where 𝐶𝐶 (𝑐𝑝 ) is the set of neighbor categories, e𝑐𝑞 is the em-
bedding vector of 𝑐𝑞 , and 𝛼𝑝𝑞 is the attention weight. For a pair
of categories, the more scenes they share, the higher relevance
between them. Therefore, we propose a scene-based attention
function to compute 𝛼𝑝𝑞 . Specifically, we calculate the attention
score by comparing the sets of scenes that 𝑐𝑝 and 𝑐𝑞 belong to:

𝛼∗𝑝𝑞 = 𝑓
©­«

∑
𝑠𝑎 ∈𝐶𝑆 (𝑐𝑝 )

e𝑠𝑎 ,
∑

𝑠𝑏 ∈𝐶𝑆 (𝑐𝑞 )
e𝑠𝑏

ª®¬ , (5)

where 𝑓 (·) is an attention function tomeasure the input similarity.
For simplicity, we use cosine similarity as 𝑓 (·) in this work. 𝛼𝑝𝑞
is obtained by further normalizing 𝛼∗𝑝𝑞 via the softmax function:

𝛼𝑝𝑞 =

exp
(
𝛼∗𝑝𝑞

)
∑

{𝑞 |∀𝑐𝑞 ∈𝐶𝐶 (𝑐𝑝 ) } exp
(
𝛼∗𝑝𝑞

) . (6)

Finally, we generate the overall representation m𝑐𝑝 of cate-
gory 𝑐𝑝 by integrating the scene-specific representation and the
category-specific representation:

m𝑐𝑝 = 𝜎

(
Wic · [h𝑠𝑐𝑝 ∥h

𝑐
𝑐𝑝
] + bic

)
, (7)

where ∥ denotes the concatenation operation, Wic and bic are
parameters to be learned.

For item 𝑖𝑝 , it is only connected to one pre-defined category
and thus its category-specific representation h𝐶

𝑖𝑝
is denoted as:

h𝐶𝑖𝑝 = m𝐶 (𝑖𝑝 ) , (8)

where 𝐶 (𝑖𝑝 ) indicates the category of 𝑖𝑝 .
We continue to learn the item-specific representation h𝐼

𝑖𝑝
since

there exist connections between different item nodes. Similar to
category-category relations, items do not always affect each other
equally and we apply the attention mechanism to learnh𝐼

𝑖𝑝
:

h𝐼𝑖𝑝 =
∑

𝑖𝑞 ∈𝐼 𝐼 (𝑖𝑝 )
𝛽𝑝𝑞e𝑖𝑞 , (9)
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Table 1: Statistics of JD datasets. Each relation A-B has three parts: number of A, number of B, and number of A-B.

Relations (A-B) Baby & Toy Electronics Fashion Food & Drink

User-Item 4,521-51,759 (481,831) 3,842-52,025 (539,066) 3,959-53,005 (541,238) 3,236-47,402 (463,391)
Item-Item 51,759-51,759 (3,002,806) 52,025-52,025 (2,992,333) 53,005-53,005 (2,750,495) 47,402-47,402 (2,606,003)

Item-Category 51,759-103 (51,759) 52,025-78 (52,025) 53,005-91 (53,005) 47,402-105 (47,402)
Category-Category 103-103 (1,791) 78-78 (825) 91-91 (1,058) 105-105 (1,628)
Scene-Category 323-103 (1,370) 54-78 (281) 438-91 (1,646) 136-105 (630)

where 𝛽𝑝𝑞 denotes the attention weight. Since items that belong
to the same category share similarity, we leverage scene infor-
mation to calculate 𝛽𝑝𝑞 by comparing their categories via the
scene-based attention mechanism:

𝛽∗𝑝𝑞 = 𝑓
©­«

∑
𝑠𝑎 ∈𝐼𝑆 (𝑖𝑝 )

e𝑠𝑎 ,
∑

𝑠𝑏 ∈𝐼𝑆 (𝑖𝑞 )
e𝑠𝑏

ª®¬ , (10)

𝛽𝑝𝑞 =

exp
(
𝛽∗𝑝𝑞

)
∑

{𝑞 |∀𝑖𝑞 ∈𝐼 𝐼 (𝑖𝑝 ) } exp
(
𝛽∗𝑝𝑞

) , (11)

where 𝐼𝑆 (𝑖𝑝 ) is the set of scenes that contain item 𝑖𝑝 ’s category.
In the end, we concatenate the category-specific representa-

tion h𝐶
𝑖𝑝

and the item-specific representation h𝐼
𝑖𝑝

to derive the

overall representationm𝑆
𝑖𝑝

of the item 𝑖𝑝 in the scene-based space:

m𝑆
𝑖𝑝

= 𝜎

(
Wii · [h𝐶𝑖𝑝 ∥h

𝐼
𝑖𝑝
] + bii

)
, (12)

where Wii and bii are parameters to be learned.

4.3.3 The general item embedding. The item embedding m𝑈
𝑖𝑝

in the user-based space learns the collaborative signals from user-
item interactions, while the item embedding m𝑆

𝑖𝑝
in the scene-

based space provides additional information from the scene-based
graph. These two types of representations could be complemen-
tary to each other, and they are combined by a multilayer percep-
tron (MLP) to generate the general item embedding as follows:

m𝑖𝑝 = F
(
Wi · [m𝑈

𝑖𝑝
∥m𝑆

𝑖𝑝
] + bi

)
, (13)

where F(·) is a MLP network,Wi and bi are parameters.

4.4 Model Optimization
Given the representation of user 𝑢𝑝 and the general representa-
tion of item 𝑖𝑞 , the user preference is obtained via a MLP network:

r′𝑝𝑞 = F
(
Wr · [m𝑢𝑝 ∥m𝑖𝑞 ] + br

)
, (14)

whereWr and br are parameters to be learned.
To optimize the model parameters, we apply the pairwise BPR

loss [14], which takes into account the relative order between ob-
served and unobserved user-item interactions and assigns higher
prediction scores to observed ones. The loss function is as follow:

Ω(Θ) =
∑

(𝑝,𝑥,𝑦) ∈O
− ln𝜎

(
r′𝑝𝑥 − r′𝑝𝑦

)
+ 𝜆∥Θ∥22, (15)

where O =
{
(𝑝, 𝑥,𝑦) | (𝑝, 𝑥) ∈ R+, (𝑝,𝑦) ∈ R−} denotes the pair-

wise training data, R+ and R− are the observed and unobserved
user-item interactions, respectively.Θ denotes all trainable model
parameters and 𝜆 controls ℓ2 regularization to prevent overfitting.

To sum up, we have different entity types, i.e., user, item,
category and scene, in the user-item bipartite graph and the scene-
based graph. In the learning process, the user representation is
learnt from interactions between users and items. The item latent
factor is generated from two components: the representation in
the user-based space and the representation in the scene-based
space. Then the user embedding and the item embedding are
integrated to make prediction via pairwise learning.

5 EXPERIMENTS
In this section, we evaluate SceneRec on 4 real-world E-commerce
datasets and focus on the following research questions:
RQ1: How does SceneRec perform compared with state-of-the-
art recommendation methods?
RQ2: How do different key components of SceneRec affect the
model performance?
RQ3: How does the scene information benefit recommendation?

5.1 Datasets
To the best of our knowledge, there are no public datasets that de-
scribe scene-based graph for recommender systems. To evaluate
the effectiveness of SceneRec, we construct 4 datasets, namely,
Baby & Toy, Electronics, Fashion, and Food &Drink, from JD.com,
one of the largest B2C E-commerce platform in China. In each
dataset, we build the user-item bipartite graph and the scene-
based graph from online logs and commodity information. Statis-
tics of the above datasets are shown in Table 1 and more details
are discussed next. We have released the codes and datasets (avail-
able at https://github.com/e09b47e1/Scene-Based_Recommendation).

We first build the user-item bipartite graph that by randomly
sampling a set of users and items from online logs. A user is then
connected to an item if she or he clicked the item.

Next we build the scene-based graph where three different
nodes, i.e., item, category and scene, are taken as input. We
first consider connections between different item nodes. In E-
commerce systems, users perform various behaviors such as
“view” and “purchase”, which can be further used to construct
item-item relations. In this work, we choose “view” to build the
item-item connections. A view session is a sequence of items that
are viewed by a user within a period of time and it is intuitive
that two items should be highly relevant if they are frequently
co-viewed. In the item layer, two items are linked if they are co-
viewed by a user within the same session where the weight is the
sum of co-occurrence frequency within 2 months. For each item,
we rank all the connected items by the edge weight and at most
top 300 connections are preserved. All time period and numbers
of connection are empirically set based on the trade-off between
the size of datasets and co-view relevance between items.

We then connect each item to its pre-defined category to build
the item-category relations. We also consider connections be-
tween different category nodes as shown in the second layer
of the scene-based graph. For example, in E-commerce systems,
the category “Mobile Phone” is strongly related to the category
“Phone Case” but has little relevance to the category “Washing
Machine”, and thus the first two categories are linked. To achieve
this, we compute the co-view frequency within six months be-
tween each pair of category node, and only top 100 connections
of each category is preserved. In the end, each pair is further
labeled as 0 or 1 from consensus decision-making by three data
labeling engineers to indicate if there exists relevance or not.

The last step of building the scene-based graph is to link cate-
gory nodes to scene nodes. Each scene consists of a set of selected
categories which can be manually coded by human experts (scene
mining is our future work). Specifically, this procedure consists
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Table 2: Comparisons with baselines and model variants.

Baby & Toy Electronics Fashion Food & Drink
NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10 HR@10

BPR-MF 0.3117 0.5213 0.4005 0.6082 0.3142 0.5294 0.3663 0.5445
NCF 0.2232 0.3800 0.3324 0.5364 0.1518 0.3090 0.3068 0.4628
CMN 0.2136 0.3840 0.4447 0.6725 0.2616 0.4516 0.4028 0.5854

PinSAGE 0.2124 0.4145 0.2954 0.5200 0.1770 0.3724 0.2791 0.4798
NGCF 0.3679 0.6000 0.4308 0.6559 0.3361 0.5749 0.3487 0.5228
KGAT 0.3055 0.5421 0.3616 0.6172 0.3115 0.5580 0.3221 0.5093

SceneRec-noitem 0.3977 0.6475 0.4748 0.7007 0.3936 0.6454 0.4080 0.6029
SceneRec-nosce 0.4193 0.6617 0.4715 0.7156 0.3933 0.6499 0.4156 0.6074
SceneRec-noatt 0.3950 0.6357 0.4665 0.7053 0.3953 0.6410 0.4138 0.6154

SceneRec 0.4298 0.6771 0.4926 0.7524 0.4220 0.6763 0.4266 0.6211

of two steps. First, an expert team (about 10 operations staff)
edits a set of scene candidates based on the corresponding do-
main knowledge. Then, a data labeling team which consists of 3
engineers refines the generated scenes based on the criteria that
whether each scene is reasonable to reflect a real-life situation.

To sum up, there is a user-item bipartite graph and a scene-
based graph in the constructed E-commerce datasets where we
have different types of nodes, i.e., user, item, category and scene.
The scene-based graph presents a 3-layer hierarchical structure.
There exist multiple relations among items, categories and scenes
that are derived from user behavior data, commodity information
and manual labeling. Thus, the datasets have all the characteris-
tics of networks we want to study as described in Section 3.

5.2 Baselines
SceneRec leverages scene information to learn the representation
vector of users and items in recommendation. Therefore, we
compare SceneRec against various recommendation methods or
network representation learning methods.
(1) BPR-MF [14] is a benchmark matrix factorization (MF) model
which takes the user-item graph as input and BPR loss is adopted.
(2)NCF [7] leveragesmulti-layer perceptron to learn non-linearities
between user and item interactions in the traditional MF model.
(3) CMN [3] is a state-of-the-art memory-based model to capture
both global and local neighborhood structure of latent factors.
(4) PinSAGE [23] learns node representations on the large-scale
item-item network where the representation of one item can be
aggregated by the representation of its neighbor nodes. Here, we
directly apply PinSAGE on the input user-item bipartite graph.
(5) NGCF [20]: This is a state-of-the-art GNN-based recommen-
dation method, which learns the high-order connectivities based
on the network structure.
(6) KGAT [19] investigates the utility of KG into GNN-based
collaborative filtering where each item is mapped to an entity
in KG. In our experiments, we regard each scene as a special
type of KG entity and link it to item nodes via the category node
connection. In such cases, the scene-based graph is degraded to
the one that contains only item-scene connections. The graph
contains two types of relations: an item belongs to a scene and a
scene includes an item.
(7) SceneRec-noitem is a variant of SceneRec by removing item-
item interactions in the scene-based graph.
(8) SceneRec-nosce is a variant of SceneRec by removing both
category and scene nodes, and thus the scene-based graph only
includes relations between items.
(9) SceneRec-noatt is another variant of SceneRec by remov-
ing the attention mechanism between item-item relations and
category-category relations.

5.3 Experimental Settings
We evaluate the model performance using the leave-one-out
strategy as in [1, 7]. For each user, we randomly hold out one
positive item that the user has clicked and sample 100 unobserved
items to build the validation set. Similarly, we randomly choose
another positive item along with 100 negative samples to build
the test set. The remaining positive items form the training set.

In our experiments, we choose Hit Ratio (HR) and Normalized
Discounted Cumulative Gain [15] (NDCG) as evaluation metrics.
HR measures whether positive items are ranked in the top 𝐾
scores while NDCG focuses more on hit positions by assigning
higher scores to top results. For both metrics, a larger value indi-
cates a better performance. We report the average performance
over all users with 𝐾 = 10.

The hyper-parameters of SceneRec are fine-tuned using the
validation set. We apply RMSProp [4] as the optimizer where the
learning rate is determined by a grid search among {10−4,10−3,10−2,10−1}
and the ℓ2 normalization coefficient 𝜆 is determined by a grid
search among {0, 10−6, 10−4, 10−2}. For fair comparisons, the em-
bedding dimension 𝑑 is set to 64 for all methods except NCF. For
NCF, 𝑑 is set to 8 due to the poor performance in higher dimen-
sional space. For NGCF and KGAT, the depth 𝐿 is set to 4 since it
shows competitive performance via the high-order connectivity.

5.4 Experimental Results
5.4.1 Performance Comparison (RQ1). Table 2 reports com-

parative results of SceneRec against all 6 baseline methods, and
we have the following observations:
(1) In general, NGCF achieves better results than baselinemethods
that take the user-item bipartite graph as input. There are two
main reasons. First, GNN can effectively capture the non-linearity
relations from user-item collaborative behaviors via information
propagation on the graph. Second, NGCF learns the high-order
connectivities between different types of nodes as shown in [20].
(2) KGAT further adds KG information into recommender sys-
tems, but it does not obtain the best result. Note that the KG
quality is essential to the model performance. In our work, there
are no available KG attributes that match our datasets, so there
is no additional information to describe network items. Further-
more, the simple item-scene connection loses rich relations, e.g.
category-category interactions and item-item interactions, in the
scene-based graph, and may not advance model prediction.
(3) The proposed framework SceneRec obtains best overall perfor-
mance using different evaluation metrics. Specifically, SceneRec
boosts (16.8%, 10.8%, 25.6%, 5.9%) for NDCG@10, and (12.9%,
11.9%, 17.6%, 6.1%) for HR@10 on datasets (Baby & Toy, Electron-
ics, Fashion, and Food & Drink), compared with the best baseline.
There are several main reasons. First, SceneRec considers mul-
tiple types of entity nodes. To be specific, SceneRec generates
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Figure 3: A real example on the Electronics dataset.

embedding representations of users and items from the user-item
bipartite graph while it learns complementary representations
of items from the scene-based graph, which is not accessible in
baseline methods. Second, SceneRec creatively designs a prin-
cipled hierarchical structure in the scene-based graph where
additional scene-guided information is propagated into collabo-
rative filtering. Third, SceneRec leverages GNN which captures
local network structure to learn non-linear transformation of
different types of graph nodes. Fourth, SceneRec adopts attention
mechanism to attentively learn weighting importance among
item-item connections and category-category connections.

5.4.2 Key Component Analysis (RQ2). Table 2 also reports
comparative results against 3 variants and it is observed that:
(1) SceneRec-noitem obtains better experimental results than
other baseline methods, and this indicates that the hierarchi-
cal structure of the scene-based graph can effectively propagate
information and generate complementary scene-based represen-
tations. Moreover, SceneRec outperforms SceneRec-noitem and
this verifies the effectiveness of incorporating item-item sub-
network into the scene-based graph.
(2) SceneRec-nosce outperforms all baselines because the item-
item connections provide additional knowledge into conventional
collaborative filtering. Comparing to SceneRec-nosce, SceneRec
achieves better performance on both datasets and this indicates
that, by leveraging scene information, SceneRec is capable of
learning complementary representations beyond CF interactions.
(3) The prediction result of SceneRec is consistently better than
that of SceneRec-noatt, and this verifies that the attention mech-
anism does benefit the recommendation by learning weights of
1-hop neighbors for each item node or each category node.

5.4.3 Case Study (RQ3). Finally, we use a case study to show
the effects of integrating scene-specific representations into col-
laborative filtering in Figure 3. From the Electronics dataset, we
randomly select a user 𝑢1428, a set of items that the user has
interacted with and a set of candidate items (whose prediction
scores are given above item nodes). It is noted that we espe-
cially compute the average attention score (below the category
node) between the candidate item and each item that the user
has interacted with by the scene-based attentive mechanism.

The higher average attention score means more shared scenes
between the candidate item and the user’s interacted items. There-
fore, the candidate item is more likely to occur in the scene de-
rived from user interests, which could boost recommendation
prediction. From this case study, we see that the average atten-
tion score does relate to the prediction result. For example, the
positive sample of item 𝑖14778 that the user has interacted with
has the highest prediction score and the largest average attention
weight. Similar results can be also observed from other users.
The item 𝑖14778 is recommended because its category “Keyboard”
complements the user-interacted items’ categories in the same
scene “Peripheral Devices”.

6 CONCLUSIONS
In this paper, we investigate the utility of integrating the scene
information into recommender systems using graph neural net-
works, where a scene is formally defined as a set of pre-defined
item categories. To integrate the scene information into graph
neural networks, we design a principled 3-layer hierarchical
structure to construct the scene-based graph and propose a novel
method SceneRec. SceneRec learns item representation from the
scene-based graph, which is further combined with the conven-
tional latent representation learned from user-item interactions
to make predictions. We conduct extensive experiments on four
datasets that are collected from a real-world E-commerce plat-
form. The comparative results and a case study demonstrate the
rationality and effectiveness of SceneRec.
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