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ABSTRACT
The extended use of the RDF model has made available many
datasets from heterogeneous sources that are of interest to a wide
audience. Their exploration, however, is a highly demanding
task requiring extensive training and knowledge of the SPARQL
language. In this demo, we present an innovative system, which
supports the exploration of large RDF datasets without requiring
any knowledge about the RDF or SPARQL. The system is based on
a novel algorithm that detects semantically similar communities
capitalizing on hyperbolic network embedding and a weighted
similarity metric. The detected communities are visualized in a
user-friendly way and presented to the user through a two level
abstraction interface with a toolbox of exploration functionalities.

1 INTRODUCTION
Many organisations and scientists use the RDF model to share
their data. There is currently high availability of linked datasets,
that cover a wide range of topics and have a high degree of di-
versity regarding their size and characteristics [1]. Exploring
and visualizing these datasets is a complex task that requires
extensive knowledge about RDF and the SPARQL language. Be-
cause of their volume and update rate, they require expensive
infrastructure for their processing. Therefore, even though the
information is of interest to a wide audience, the datasets are, in
practice, accessible only to a few data scientists.

In order to allow the exploration of linked datasets by people
with no experience with the RDF and the SPARQL language,
as well as no access to expensive infrastructure, we need an
approach that enables: (a) accessible visualization that is scalable
even for very large datasets, (b) exploration that is user-friendly
and intuitive. In the following, we discuss these challenges.

Scalable visualization.RDF follows the graph structure, since
the entities can be represented as nodes, and the relationships
between them as edges of a graph. Systems visualizing datasets
compliant with RDF, should use a graph model to represent the
data, presenting each entity as a distinct node and their rela-
tionships as respective edges. Such systems should be easily
accessible through commodity infrastructure and scale efficiently
for very large graphs. Actually there is a requirement for efficient
and scalable rendering for many devices, such as laptops, tablets
and smartphones, and for a high number of simultaneous users.

User-friendly and intuitive exploration. Exploration of
the dataset and extraction of relevant information should be user-
friendly for users with no knowledge of the RDF model. To this
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end, the system should offer an easy-to-use toolbox that provides
a set of exploration functionalities, such as keyword search, se-
mantic filtering based on labels, path navigation and neighbor
retrieval. Also, the system should allow interactive navigation
towards the sought information. Finally, the dataset should be
explorable through different abstraction levels, allowing the user
to determine the degree of detail in the visualized information.
Furthermore, exploration should be intuitive for users with little
knowledge regarding the information that the specific dataset
represents or about what can be of interest to explore.

To this end, many systems use summarization methods [6].
These can be divided in three basic categories: pattern mining,
statistical and structural. Pattern mining methods employ aggre-
gations and graph structures to identify trends in the datasets.
Due to the strictness of these trends, such methods are ideal for
schema identification. Statistical methods provide quantitative
results over the data based on targeted queries and available
semantic information. Such methods are used for the selection
of the proper dataset for the user needs. The structural methods
create the summaries based on the graph structure and can be fur-
ther divided in quotient, which aim to identify equivalent nodes
based on an equivalence relation over them, and non-quotient
that use other structural measures, such as centrality, to create the
summaries. Quotient summaries target indexing and querying,
while non-quotient summaries are better suited for visualization
and data understanding. Thus, we focus further on them.

The Grouping Nodes on Attributes and Pairwise Relationships
(SNAP) [12] method is the most well-known among them. It fo-
cuses on the construction of a graph visualization that uses super-
nodes, nodes that contain multiple nodes of the input graph, to
create summarizations based on user input and structural infor-
mation such as edge values and node connections. The main
drawback of this solution is the requirement for the user to select
the summarization properties, in order to produce the visualized
graph. Such a limitation is hindering for inexperienced users or
users that want to explore datasets they are unfamiliar with.

An alternative to summarization, and a promising solution
for intuitive exploration of RDF datasets, is community detec-
tion. As discussed in [7], community detection has a key role
in the analysis of complex networks and the inference of useful
insights regarding graph topology. However, although traditional
community detection methods are very useful when applied to
small networks, they cannot scale for networks of modern size
as they rely on heavy computations and require a significant size
of main memory. Therefore, they can process networks of up
to only a few thousand nodes and edges. Hence, in order to ap-
ply community detection to RDF datasets, we need new scalable
and efficient algorithms that use persistent memory and data
management models to process larger graphs.
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Contributions. We propose the demonstration of a robust
system that implements a novel visualization technique over a
novel community detection algorithm to detect communities that
include semantically similar content in large RDF datasets. The
system takes as input a semantically annotated dataset, divides it
into semantically similar communities using a novel algorithm,
stores the communities and their interconnections in a graph
database and visualizes the results with respect to the graph
structure. The dataset is then presented to the user through a
user-friendly interface that offers two abstraction layers, allowing
the user to explore both the detected communities and the sub-
graphs within. The system has strong advantages related to:

Semantic community detection. We have designed and im-
plemented a novel algorithm that detects semantically similar
communities [9], by first transforming the RDF dataset into a
weighted graph and then employing embedding of the graph in
the hyperbolic space. This is a proven “natural” space for embed-
ding large graphs, with a semantic similarity metric aiming to
detect semantically similar communities.

Community visualization. The system implements a novel two-
level visualization approach: first, the nodes and edges within a
community are visualized as an independent two-dimensional
graph; second, the connections between communities are visual-
ized to provide a high-level overview.

Scalability.We ensure the scalability of our technique in two
ways. First, our algorithm for community detection is the first of
its kind to employ a DBMS. We have selected a graph DBMS for
indexing and storage of the RDF dataset to facilitate the storage of
node coordinates in the hyperbolic space and the computation of
the distance for all node pairs. Second, we employ a graph DBMS
for storage and indexing of the inner and intra communities
graphs, a design decision so that the system can support the
retrieval of the information using a client-server architecture. In
practice, this ensures that the system can work efficiently on any
web browser and device.

Exploration functionalities. We provide an easy-to-use toolbox
of functionalities that allows the users to explore the dataset
using multiple filtering criteria, and navigation through panning
and zooming capabilities [10].

2 SEMANTIC COMMUNITY DETECTION
We propose a new algorithm for semantic community detection.
The algorithm takes as input a RDF dataset and pre-processes it
in order to map it in a three dimensional (3D) space and store
it as a weighted graph. In order to introduce the semantics in
the detected communities we need to calculate a weight for pairs
of RDF triplets that represents their semantic relation. This is
based on a novel metric that encapsulates semantic and lexical
similarities. Finally, the new graph is processed by the algorithm
we have proposed in [9], which employs hyperbolic space con-
cepts for semantic community detection. Algorithm 1 shows the
pseudocode, and in the following we give more details for every
step of the algorithm.

Step 1: RDF dataset pre-processing. Each RDF triplet of
the input dataset is mapped to one node in a custom 3D space,
where each one of the three dimensions correspond to (subject,
predicate, object). The nodes of the 3D space are connected with
edges, to create a complete graph. This is the representation of
the input dataset to the custom 3D space. Next, to ensure the
efficiency and scalability of the algorithm for very large datasets,

the information is stored and indexed in a graph database where
each node has three properties.

Step 2: Weighted graph creation. In order to calculate se-
mantically accurate weights for the graph, we follow a three-step
method. First, all the words of the dataset are mapped to seman-
tically similar groups and given a popularity score. Each node
has three labels: subject, predicate and object. For each label of
the node a semantic metric is calculated. Finally, the metric is
used to calculate the weight between two nodes.

Initially, we aim to create groups of semantically similar words.
In order to achieve this, each word is examined against all al-
ready formed groups in case it exists in one of them. In this case,
the word is added to the group. In any other case, the word is
examined for lexical similarity with all the words already in each
group. If none is found, then the word is placed in the group that
contains a semantically similar word. If no such group exists,
then the word is placed in a new group.

As ‘lexically similar’ we consider two words that share the
same lemma. For example, the words ‘playing’ and ‘player’ are
lexically similar to one other, as well as to the word ‘play’. As
‘semantically similar’ we consider two terms that have common
semantic content, based on the likeness of the meaning between
them, as defined in dictionaries. Two entities are semantically
similar when they are associated with what is commonly refer to
as ’is a’ semantic relationships which are synonymy, hyponymy
and hypernymy [11]. For each group 𝑖 that has been formed, a
score is calculated by dividing the count of words within the
group with the total number of words in the dataset.

Definition 2.1. Popularity Score. Let G = {G1,G2, ...,G𝑘 }
be the set of semantic groups, where G𝑖 for 𝑖 = 1, 2, ..., 𝑘 corre-
sponds to the 𝑖-th group of words and includes the words W𝑖 =

{W𝑖,1,W𝑖,2, ...,W𝑖,𝑚} where eachW𝑖,𝑙 for 𝑙 = 1, 2, ...,𝑚 corre-
sponds to the 𝑙-thword in the 𝑖-th group. LetC𝑖 = {C𝑖,1, C𝑖,2, ..., C𝑖,𝑚}
where each C𝑖,𝑙 corresponds to the number of times the 𝑙-th word
of the 𝑖-th group is found in the dataset. Then the popularity
score for the 𝑖-th group is calculated as:

𝑝𝑜𝑝𝑢𝑙𝑎𝑟𝑖𝑡𝑦𝑆𝑐𝑜𝑟𝑒 (𝐺𝑖 ) =
∑𝑚
𝑙=1𝐶𝑖,𝑙∑𝑘

𝑖=1
∑𝑚
𝑙=1𝐶𝑖,𝑙

(1)

□
Definition 2.2. Semantic Similarity. Each label of the node

is split into𝑚 words and each word𝑊𝑖,𝑙 , where 𝑙 = 1, 2, ...,𝑚, is
replaced by the popularity score of the group it belongs to, 𝐺𝑖 .
The sum of the popularity scores divided by the number of words
in the label is the semantic metric:

𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐𝑀𝑒𝑡𝑟𝑖𝑐 (𝑙𝑎𝑏𝑒𝑙) =
∑𝑚
𝑛=1 𝑝𝑜𝑝𝑢𝑙𝑎𝑟𝑖𝑡𝑦𝑆𝑐𝑜𝑟𝑒 (𝐺𝑛)

𝑚
(2)

□
Then, for each pair of nodes the distance between them for

each dimension is calculated as well as a total distance between
them, the weighted average of the three distance values. The
calculated distance is used as the graph weights.

Step 3: Community Detection. The community detection
starts with pruning the edges of the complete weighted graph by
applying the DMST method [5] to obtain a graph that is dense
enough to represent the relationships between nodes and sparse
enough to highlight the underlying community structure. This
graph is then embedded in the hyperbolic space using Rigel Em-
bedding [15]. In the embedding process, each node is assigned
coordinates in the hyperbolic space and these are stored in the
database. Based on these coordinates the computation of Hyper-
bolic Edge Betweenness Centrality (HEBC) follows. The HEBC
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Figure 1: Semantic Community Detection

metric can be considered as the “hyperbolic” analog of the tra-
ditional Edge Betweenness Centrality (EBC) metric. The HEBC
quantifies for each edge, the amount of shortest paths in the graph
that pass through it. In its computations it uses the hyperbolic
distance between nodes. Even though the HEBC values do not
always match the nominal EBC values, the ordering of the edges
is very similar. The edges of the graph are ranked in descending
order and in that order edges are removed in batches, until one
of the following occurs. Either the graph becomes disconnected,
meaning a new community is discovered, or the maximum num-
ber of edges to remove in a single round is reached. Then, if a
pre-specified number of communities is reached the algorithm
terminates, otherwise the previous process is repeated for the
current largest connected component of the graph. The details of
the basic version of the hyperbolic-embedding can be found in
our previous work[9]. In [13], we have enhanced this work for
efficient and scalable processing of very large graphs.

Example. In Figure 1 we present how the proposed algo-
rithm detects the communities on a small RDF dataset. The figure
shows six nodes that relate to the ages and salaries of three peo-
ple, as well as the complete graph created from the first and
second step of the algorithm. The distances for each node pair
are calculated as follows: the Euclidean distance is used for the
numerical properties and the distance based on the semantic
metric is used for the rest. This dataset is split into three seman-
tic groups,𝐺1 = (𝐴𝑙𝑖𝑐𝑒, 𝐵𝑜𝑏, 𝐽𝑢𝑑𝑦), 𝐺2 = (𝑎𝑔𝑒,𝑦𝑒𝑎𝑟𝑠, 𝑏𝑖𝑟𝑡ℎ𝐷𝑎𝑦),
𝐺3 = (𝑠𝑎𝑙𝑎𝑟𝑦, 𝑖𝑛𝑐𝑜𝑚𝑒,𝑤𝑎𝑔𝑒), with scores (0.167, 0.25, 0.25). For
example, the distance between the triplets (:Alice, :age, :25) and
(:Judy, :years, :24) is computed as follows. First, the distance
𝑑 (′𝐴𝑙𝑖𝑐𝑒 ′,′ 𝐽𝑢𝑑𝑦′) = 0, then 𝑑 (′𝑎𝑔𝑒 ′,′𝑦𝑒𝑎𝑟𝑠 ′) = 0 and finally the
distance 𝑑 (25, 24) = 1. From that it follows that the distance
between these two triplets is 0+0+1

3 = 0.3. In the third step, the
algorithm performs the DMST, removing edges shown as dashed
lines, and then we proceed to the core part of community de-
tection, which results in two communities denoted by the two
different node colors. The algorithm discovers a community that
corresponds to the ages of the people and a community that
contains information about their salaries. It is important to note
that a different averaging technique could result in a different
clustering as more importance could be given to one attribute
over another. As an example, if we wanted the analysis to focus
more on people’s names, and thus possibly discover clusters con-
taining information about the attributes of a person, we could use
an average with larger weight on the distance between names.

Experimental results. For the Facebook network provided
by SNAP library [2], our community detection algorithm obtains
a modularity score of 0.59. The Girvan-Newman method resulted
in a score of 0.7 but it required almost double the time necessary
for our approach. As discussed in detail in [9], this result proves
the benefits of our algorithm when applied to real life networks
and its the ability of finding high quality clusters.

Algorithm 1: Semantic Community Detection
Input: RDF dataset, distance metric, # communities 𝑐𝑚, #

spanning trees to join 𝑘 , embedding parameters 𝑝𝑎𝑟𝑎𝑚𝑠 ,
maximum # edges to remove per round 𝑏𝑎𝑡𝑐ℎ

Output: clusters stored as communities in a Graph DB
1 𝐷 ← distances between RDF triplets
2 𝐷 is stored in DB
3 𝐺 ← 𝐷𝑀𝑆𝑇 (𝐷,𝑘)
4 𝑐𝑜𝑚𝑚_𝑓 𝑜𝑢𝑛𝑑 ← 0
5 while 𝑐𝑜𝑚𝑚_𝑓 𝑜𝑢𝑛𝑑 < 𝑐𝑚 do
6 𝑐𝑜𝑜𝑟𝑑𝑠 ← 𝑒𝑚𝑏𝑒𝑑 (𝐺, 𝑝𝑎𝑟𝑎𝑚𝑠)
7 𝑡𝑜𝑝_𝑒𝑑𝑔𝑒𝑠 ← 𝐻𝐸𝐵𝐶 (𝐺,𝑐𝑜𝑜𝑟𝑑𝑠)
8 𝑖 ← 0
9 while 𝑖 < 𝑏𝑎𝑡𝑐ℎ & isconnected(𝐺) do
10 𝐺 remove 𝑡𝑜𝑝_𝑒𝑑𝑔𝑒 [𝑖 ]
11 if not isconnected(𝐺) then
12 𝑐𝑜𝑚𝑚_𝑓 𝑜𝑢𝑛𝑑 ← 𝑐𝑜𝑚𝑚_𝑓 𝑜𝑢𝑛𝑑 + 1
13 store newly found community in Graph DB

3 ARCHITECTURE & FUNCTIONALITIES
As shown in Figure 2, we have developed a server-client archi-
tecture that takes as input a RDF dataset, process it using the
proposed Semantic Community Detection Algorithm, stores the
communities to a Graph Database and further processes the infor-
mation through two dedicated modules, the Inner Community Vi-
sualization and the Intra Community Visualization. The processed
information is presented to the user through the Visualization
Interface that it is based on a novel visualization technique [10].

Graph Database Due to the structure of the RDF model and
the needs of the Visualization Interface, the Neo4j[14] graph data-
base is used for the storage of the dataset. For the Semantic Com-
munity Detection Algorithm the custom 3D graph is stored in
the graph database, but now the dataset has been restored to its
initial structure and stored here. Each entity has as properties
its unique identifier, the community id it belongs to, the ground
truth community, if available, and its coordinates within the 2D
graphical representation of the community.

Intra-Community Visualization The Intra-Community Vi-
sualization uses the Scalable Force Directed Placement algorithm
[8] for the graphical representation of the entities and their rela-
tionships that belong in each community in the 2D space. This
algorithm was selected as it allows the parameterization of many
attributes of the output graph including the overlapping percent-
age and the size of the nodes.

Inter-Community Visualization The Inter-Community Vi-
sualization creates an overview of the dataset by connecting the
communities in a super-graph. Two communities, 𝑖 and 𝑗 are
super-nodes that are connected with super-edges that contain
information about the real edges that connect pairs of nodes
(𝑛𝑖 , 𝑛 𝑗 ), where 𝑛𝑖 belongs to 𝑖 and 𝑛 𝑗 to 𝑗 . In addition, each super-
node contains information about the content of the respective
community. It includes the three most prevalent nodes and edges
as they are calculated based on a popularity score, calculated
as follows: first, the frequency of appearances of each label in
the super-node is calculated; the counter is then converted to
the percentage of the label appearances in the overall dataset.
As an example, if the label ‘happiness’ appears in the dataset
1000 times and the label ‘hate’ just once, then for a super-node
that includes the label ‘hate’ once and the label ’happiness’ 700
times, the score for the first would be 1 and for the second 0.7.
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Figure 2: System Overview

This way, nodes and edges that are important to the communities
but also contribute to their differentiation from the others, are
included. Similarly, each super-edge has a list with the three most
important edges connecting the two super-nodes.

Visualization Interface The information is presented visu-
ally through a user interface in two abstraction levels. The high
level presents the interconnections between communities, as well
as a brief summary regarding the context of each community.
The second layer presents as a graph all the triplets of infor-
mation of the community and as meta-information connections
with other communities. In order to allow the user to explore
the input dataset and the detected communities a series of func-
tionalities are provided through the interface. Employing the
indexing and querying capabilities of the graph database, the
functionalities are provided in real-time. One key functionality
is the zoom support, where the user can use the mouse wheel
or the buttons at the functionality panel to visualize the graph
in different levels of detail. In addition, dedicated controls allow
the user to navigate between the two abstraction layers, focus-
ing either on the overview of the communities or visualizing its
information. Also, the visualization panels for the two abstrac-
tion layers are interactive and responsive to user requests. The
user can browse information within them using panning and
scrolling actions. The system, also, enables the user to view the
information within the communities using multiple filtering and
aggregation criteria either independently or at the same time.
For example the user can isolate a specific edge type as well as
nodes with a given node degree. To further support the explo-
ration of the dataset, the user can locate information through
keyword search. A term is matched against node and edge labels,
and the result is presented as an interactive list. Last but not
least, the user can select a node and focus on paths within its
community, originating from it. Figure 3 shows the interface of
the system, which includes the dataset selector, the functionality
toolkit and the graph visualization. The graph panel depicts two
of the communities based on the user selections.

4 DEMONSTRATION
We will demonstrate the prototype system that implements the
proposed technique using three datasets. The audience will be
able to explore the datasets through the visualization of semantic
communities and compare our results with the ground truth.

Scenarios A: Semantic communities overview. The first
scenario will be based on the Wikidata[3], which is a free and
open knowledge base, mainly the central storage for the struc-
tured data of Wikipedia. The dataset contains a plethora of di-
verse information that can be used for multiple analysis based

Figure 3: User interface

on topic, source or category. Initially, the users will be able to
access multiple visualized overviews of semantic communities fo-
cusing on different attributes of the RDF entities. The overviews
will focus on popular topics such as persons and places. Next,
the users will delve into the fine exploration of a community
graph. Given the volume and diversity of the information avail-
able in this dataset, examples of the customizable filtering and
aggregation functions will allow the users to focus on specific
information. The users may discover for example, based on their
interests collaborations between scientists, artists or countries.
Finally, the users will be encouraged to follow paths between
entities aiming to identify patterns and information exchanges.

Scenarios B: Ground truth comparison. For the third sce-
nario the DBLP and Amazon datasets will be used, which are
offered with ground-truth by SNAP [4]. The DBLP dataset pro-
vides open bibliographic information on major computer science
journals and proceedings. The RDF dataset extracted includes
information about co-authors and the semantic communities are
formed based on the journal or conference that a paper was pub-
lished. The Amazon dataset contains a product co-purchasing net-
work. The users will be also provided with statistics and detailed
analysis of the comparison of the detected semantic communities
through the proposed technique with the ground truth.
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