
BBoxDB Streams: Distributed Processing of Real-World
Streams of Position Data

Jan Kristof Nidzwetzki
FernUniversität Hagen

Hagen, Germany
jan.nidzwetzki@studium.fernuni-hagen.de

Ralf Hartmut Güting
FernUniversität Hagen

Hagen, Germany
rhg@fernuni-hagen.de

ABSTRACT
BBoxDB Streams is an extension of the key-bounding-box-value
store BBoxDB. The extension allows the handling of multi-dimen-
sional data streams. Multi-dimensional streams consist of 𝑛-
dimensional elements, such as position data (e.g., two-dimensio-
nal positions of cars or three-dimensional positions of aircraft). In
this demonstration, we show how BBoxDB Streams can be used
to process data streams of position data in a distributed manner.
The software allows the user to capture data streams and pro-
cess continuous queries. Continuous range queries or continuous
spatial joins are supported. The GUI of BBoxDB Streams shows
the query results interactively as an overlay over a map. For the
demonstration, public real-world data streams with positions
of aircraft and transport data are processed. Continuous range
queries such as which aircraft is currently in the area of Berlin? or
continuous spatial join queries such as which bus drives currently
through a forest? are executed, and the results can be observed
in real-time. The spatial joins are executed between the stream
data and previously stored static geographical information (e.g.,
the polygons of roads or forests), which are fetched from the
OpenStreetMap Project.

1 INTRODUCTION
Data streams consisting of position data are ubiquitous. For ex-
ample, aircraft periodically broadcast their positions via ADS-B
messages (Automatic Dependent Surveillance–Broadcast), and the
positions of buses, trains, or ferries of public transport companies
are available in real-time via the internet in GTFS format (General
Transit Feed Specification). Processing streams containing posi-
tion data is an essential topic in location-aware applications. The
ability to capture data streams and the near real-time execution
of queries is required to deal with the information of the stream.
Data streams can contain a lot of elements, and queries can be
expensive to evaluate. Therefore, a scalable solution is required
to process data streams.

BBoxDB Streams is an extension of BBoxDB [15], which allows
the efficient handling of 𝑛-dimensional data streams. BBoxDB
streams implements a novel way to execute efficient continuous
joins between dynamic elements from a data stream and static al-
ready stored 𝑛-dimensional big data. This capability is shown for
the first time in this demonstration. Besides, the GUI of BBoxDB
was enhanced to execute queries on data streams and show the
results interactively. This new enhancement is shown in this
demonstration for the first time. BBoxDB streams is included in
BBoxDB since version 0.9.5 and licensed under the Apache 2.0
license. The software can be freely downloaded from the website
of the project [3].

© 2021 Copyright held by the owner/author(s). Published in Proceedings of the
24th International Conference on Extending Database Technology (EDBT), March
23-26, 2021, ISBN 978-3-89318-084-4 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

In this demonstration, we show two types of queries with
BBoxDB Streams: (1) continuous range queries, and (2) continuous
spatial joins. Continuous range queries can answer questions such
as which aircraft are inside of a specific region of the airspace?.
Continuous spatial joins can be used to join the dynamic position
data of the streamwith static data (e.g., geographical information).
With a continuous spatial join, queries such as which buses are
closer than 10 miles to a forest? or which bus drives on a particular
street? can be answered.

The rest of the paper is organized as follows: Section 2 de-
scribes the key-features of BBoxDB and BBoxDB Streams. Sec-
tion 3 describes our demonstration. Section 4 describes the related
work. Section 5 concludes the paper.

2 BBOXDB AND BBOXDB STREAMS
The amount of data is increasingly growing. NoSQL databases
like distributed key-value stores (DKVS) are often used to handle
large amounts of data. In a DKVS, the data are assigned to the
nodes of a cluster. Each node stores only a part of the whole
dataset. A value is stored under a given key. Using this key, the
value can be retrieved. The key is the access path to the data. A
key for a one-dimensional value can be easily chosen. For data
with a higher dimensionality, a key is hard to choose. Which
key should be used for the geographic information about a road?
Using the name of the road as the key does not help to access
the data when a spatial range query is performed; the name does
not contain the information where the road is located. To answer
such range queries, a full data scan has to be performed; all stored
tuples have to be loaded and it needs to be tested whether or not
the stored value intersects with the given query rectangle. This
is an expensive operation that is performed on all nodes of the
distributed system.

BBoxDB was designed to solve this problem. BBoxDB is a
distributed key-bounding-box-value store (KBVS) which supports
the efficient storage and retrieval of 𝑛-dimensional data.

2.1 Basic Concepts of BBoxDB
BBoxDB is a distributed generic datastore optimized for the han-
dling of 𝑛-dimensional big data. Values are stored as byte arrays
together with a key and an 𝑛-dimensional bounding box as tu-
ples. The bounding box describes the location of the tuple in the
𝑛-dimensional space. Point and non-point data are supported
by BBoxDB. Tuples are grouped together in tables and multiple
tables of the same dimensionality can be stored together in a
distribution group. The space is split automatically to ensure al-
most equal-sized partitions; the data of these partitions (called
distribution regions) are assigned to the nodes of a cluster. The
tables of the same distribution group are distributed in the same
way; this means the tables are stored co-partitioned, which en-
ables the execution of efficient spatial joins. No data need to be
transferred through the network; all join partners are stored on

Demo

 

 

Series ISSN: 2367-2005 662 10.5441/002/edbt.2021.78

https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2021.78


the same node. The complete system is highly available, data can
be replicated and failing nodes are handled automatically.

Operations: Data are stored in BBoxDB with the put(table,
key, hrect, value) operation. As hrect parameter, an 𝑛-
dimensional bounding box (a hyperrectangle) has to be specified.
One-dimensional point data (as used in DKVS) can also be stored
in BBoxDB. In this case, the bounding box degenerates to a point
in the one-dimensional space.

Data are retrieved by the queryByRect(table, hrect) op-
eration, which retrieves all tuples whose bounding box inter-
sects with the query bounding box. The operation join(table1,
table2, hrect) executes a spatial join between the two tables
in the specified region in space.

Indexing: BBoxDB uses a two-level indexing structure that
enables the efficient execution of range queries. The global index
is used to map the distribution regions to the nodes of the cluster
(𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑟𝑒𝑔𝑖𝑜𝑛 → P(𝑛𝑜𝑑𝑒𝑠))1. The space is partitioned
(split and merged) by a space partitioner automatically, based
on the stored data [13]. Splitting and merging the space is done
transparently in the background without interrupting the access
to the data. BBoxDB provides multiple algorithms for the global
index. The used algorithm can be specified (KD-Trees [4] or Quad-
Trees [5]) when the distribution group is created. The local index
is stored on the nodes and maps from the space to the stored
tuples (𝑠𝑝𝑎𝑐𝑒 → 𝑡𝑢𝑝𝑙𝑒𝑠). This index is implemented by an R-Tree
[7] which is stored on the nodes.

User-defined filters: BBoxDB is a generic data store; the
stored values are a plain array of bytes. BBoxDB does not under-
stand the semantics of the stored data. Therefore, operations are
executed primarily on the bounding boxes of the tuples. User-
defined filters [14] (UDFs) can be used to decode the bytes of a
value (e.g., GeoJSON encoded data) and to refine the bounding
box based operations of the query processor. UDFs are developed
by the user of the system. Only the user who has stored the data
knows how to interpret the values of the data. Besides, BBoxDB
ships with a collection of UDFs for common data formats. UDFs
are written in Java and can use existing libraries.

One of the UDFs that have been included is capable of decoding
GeoJSON data. Using this UDF, a bounding box based spatial join
is refined to a spatial join on the real geometries of the values.
Intersecting bounding boxes is a necessary but not sufficient
criterion for a spatial join (see Figure 1).

(a) Two non-intersecting spatial objects. (b) Two intersecting spatial objects.

Figure 1: Two spatial objects (solid line) with intersecting
bounding boxes (dashed line). In (a), the spatial objects do
not intersect, while in (b), the spatial objects do intersect.

This UDF is used in the demonstration to refine the continuous
spatial joins. The property map of GeoJSON encoded objects (see
Listing 1) can also be taken into consideration in the UDF. For
example, this can be used to filter streets of a specific name like
Elizabeth Street. Queries such as find all buses which are on a street
named Elizabeth Street become possible.
1When replication is used, one distribution region is mapped to multiple nodes.

2.2 BBoxDB Streams
BBoxDB is an extension of BBoxDB that allows the handling of
data streams. With the extension, data streams can be captured
and continuous queries can be executed. Figure 2 shows the
architecture of the extension. The upper part of the figure shows
the stream capturing part, the lower part the query processing
part.

Stream
Capturing

Query
Processing

Data stream
(File, Pipe, Network Socket)

Data converter

BBoxDB-Client

Node a Node b Node c

BBoxDB-Client

BBoxDB GUI

Stream elements

put()Tuples

continuousQuery()Tuples

BBoxDB-Cluster

Figure 2: Handling a data stream with BBoxDB. The data
stream is captured, converted into tuples, and written to
the BBoxDB cluster. Afterward, the continuous queries
are executed and the result can be consumed.

Stream Capturing: BBoxDB Streams captures data continu-
ously from an input source like a file, a pipe, or a network socket.
After a stream element is read, the element is converted into
a BBoxDB tuple and sent to the BBoxDB nodes of the cluster2.
To communicate with the BBoxDB nodes, the regular BBoxDB-
Client library is used. The library manages the connection to the
nodes, observes the global index, and executes the operations on
the necessary nodes. Changes of the global index or the available
nodes are handled. The converted stream elements are written
to the BBoxDB cluster by executing the put() operation. The
bounding box of these tuples is compared with the global index;
the tuple is written to all nodes that are responsible for the region
is space. On these nodes, the potential join partners are stored for
a spatial join; the stream elements become co-partitioned to the
already stored data, and efficient spatial joins become possible.
After a node receives a tuple, the registered continuous queries
are executed. The highly-available architecture is also used for
the processing of the streams. Distribution groups can be stored
replicated, in this case the continuous queries are also registered
on multiple nodes. As the stream is written to a table, BBoxDB
splits the space, updates the global index, and re-distributes un-
even distributed tables automatically as described in [15, p. 20].

Query Processing: BBoxDB Streams enhances BBoxDB by
two operations for the handling of continuous queries: (1) con
tinuousQuery(queryPlan) and (2) cancelQuery(id). The first
operation registers a new query while the second operation can-
cels a previously registered query. The existing BBoxDB-Client
2BBoxDB ships with some data converter for common data formats like GTFS
or ADS-B. The converter decodes the input data, calculates the bounding box
and creates a tuple. Further data converters can be added easily by a user. For
certain stream types, multiple elements from the stream are combined into one
BBoxDB tuple. For example, the ADS-B format defines multiple message types.
Three different message types have to be read to get the current data of an aircraft.

663



was enhanced by BBoxDB Streams to register continuous queries.
The BBoxDB-Client automatically registers the queries on the
required nodes of the cluster; this part of the client library was
re-used. In this demonstration, the GUI of BBoxDB uses the
BBoxDB-Client to register the queries and to obtain the results.
These tuples are consumed by the GUI and shown as an overlay
of a map. The stream handling functionality is now integrated
into the regular client library. Any application can create queries
on data streams and consume the results.

The query plan defines the operations of the continuous query.
In the query plan, (1) the type of the query (range query or spatial
join), (2) transformations, and (3) filters are defined. Technically,
the query plan is a JSON document that is sent to the BBoxDB
nodes. A helper class is available, which allows the easy and
syntactically correct creation of these query plans.

Transformations allow themodification of the stream elements
and the potential join partners. For example, the bounding box
of an aircraft can be extended and joined with the obstacles in
the airspace. Due to the enhancement of the bounding box, a
possible collision is detected and reported before the aircraft and
the obstacle actually collide. Also the potential collision of two
aircraft can be detected. This is done by storing the data stream
in a table and performing a continuous spatial join between the
new stream elements and the materialized stream elements from
the table.

Filters allow removing elements from the stream or from the
list of potential join partners. For example, process only the
aircraft with a call sign starting with LH. In addition, UDFs can
also be used as a filter.

The complete architecture of BBoxDB and BBoxDB streams is
horizontally scalable. When more static data have to be stored,
the existing distribution regions can be split, and these new re-
gions can be assigned to further BBoxDB nodes. This can also be
done to process a larger stream or more continuous queries. The
use of more distribution regions splits up the stream into more
parts. Each part is handled by an individual node that has its
own resources to capture the stream and execute the registered
queries.

3 DEMONSTRATION
A cluster of five nodes is used in our demonstration, which is
located at our university. Each node contains an Intel Xeon E5-
2630 CPU, 32 GB of memory and four 1 TB hard disks. All the
nodes are connected via a 1 Gbit/s network and running Java 8
on a 64 bit Ubuntu Linux. A notebook is used to run the GUI and
to perform the demonstration.

3.1 Data Streams for the Demonstration
In this demonstration, two real-world data streams are used: (1)
The ADS-B aircraft data stream and (2) the Sydney transport data
stream.

An aircraft continuously broadcasts its position periodically
via radio as ADS-B transmissions. The transmissions contain
the position of the aircraft, the height, the call sign, and some
more information. However, an ADS-B receiver captures only
the transmissions in a radius of some miles around the antenna.
Websites such as adsbhub.org [19] provide a service to aggre-
gate the feeds of several individual stations into a global feed,
containing the flight data of the whole world.

The government of the state of New South Wales in Australia
operates the NSW open data portal [17]. On this portal, real-time

data about buses, ferries, metros, and trains of the region are
published. A GTFS encoded real-time feed of the data can be
subscribed.

For our demonstration, the elements of both data streams are
used and converted into GeoJSON objects. GeoJSON is a for-
mat that can be read and understand by a human (in contrast to
binary-encoded GTFS data), which makes it suitable for demon-
stration purposes. Listing 1 contains one element from the public
transport data steam after it is converted into GeoJSON. In addi-
tion to the position of the bus, further properties are contained
which contain additional information such as the route or the
speed of the vehicle.

Listing 1: Bus trip data converted into GeoJSON
1 {
2 "geometry":{
3 "coordinates":[151.17762756347 , -33.92598342895] ,
4 "type":"Point"
5 },
6 "type":"Feature",
7 "properties":{
8 "Speed":"19.2",
9 "TripStartDate":"20200121",
10 "TripScheduleRelationship":"SCHEDULED",
11 "OccupancyStatus":"MANY_SEATS_AVAILABLE",
12 "TripStartTime":"02:00:00",
13 "RouteID":"2437 _N20",
14 "Timestamp":"1579530867",
15 "TripID":"883447",
16 "Bearing":"77.0",
17 }
18 }

For executing spatial joins, we fetched the planet data set from
the OpenStreetMap Project [18], converted this data set into GeoJ-
SON, and stored it in the BBoxDB cluster. The dataset contains
the geographical information of the whole world. We imported
the roads (146 060 493 elements - 67 GB) and the forests (5 187 592
elements - 5.4 GB) in our BBoxDB cluster for the demonstration.

3.2 The GUI of BBoxDB
The GUI of BBoxDB shows information about the BBoxDB cluster,
the data distribution, and can be used to perform queries. BBoxDB
Streams enhances the GUI in such a way that continuous queries
are supported. The GUI is optimized for the handling of GeoJSON
encoded data. On the main screen, a map of the world (fetched
dynamically from the OpenStreetMap Project) is shown. The
mouse can be used to create a query rectangle, and a window
that is automatically opened allows one to specify the desired
query. Continuous range and continuous spatial joins can be
executed, and user-defined filters can be applied.

The geometries of the result tuples are shown as an overlay
over the map. In addition to the location, the stream elements
contain further information. Placing the mouse cursor over an
element opens a tooltip. The tooltip contains all the additional
information that is contained in the GeoJSON object (e.g., the
height of an aircraft or the trip id of a bus). The area of the
GUI below the map shows details about the used cluster (i.e., IP,
software version, available disks, disk space, CPUs).

Different practical queries can be formulated and observed
in the GUI. Figure 3 shows the visualization of an ADS-B data
stream of aircraft in the region of Berlin, Germany. Another
example (see Figure 4) shows the visualization of a GTFS data
stream of metro buses in Sydney, Australia. Additional operations,
such as spatial joins between forests and buses (Which bus drives
currently through a forest?) or roads and buses (Which buses are
driving on the Elizabeth Street in Sydney?) can be performed and
displayed in the GUI.

664



Figure 3: Observing aircraft traffic over Berlin, Germany.

Figure 4: Observing bus traffic in Sydney, Australia.

4 RELATEDWORK
BBoxDB and BBoxDB streams have related work in the area of
key-value stores and stream processing systems.

Key-Value Stores: During the last decade, NoSQL databases
have become popular. They omit features from RDBMS, such
as transactions and permanent consistency. This allows NoSQL
systems to scale better horizontally. Distributed key-value stores
such as Cassandra [9] or HBase [1] provide simple methods to
manage large amounts of key-value pairs. These are optimized
for one-dimensional data, since handling 𝑛-dimensional data is a
laborious task in such systems (see Section 2).

KVSwith support for𝑛-dimensional data:MD-HBase [16]
is a multi-dimensional extension of HBase that allows the effi-
cient storage and retrieval of multi-dimensional data. MD-HBase
employs Quad-Trees and K-D Trees together with a Z-Curve to
build an index. Systems such as EDMI - Efficient Distributed Multi-
dimensional Index [21], Pyro [10], and HGrid [8] are also enhance-
ments of HBase which use an additional index layer to store
multi-dimensional data in HBase. However, operations such as
spatial joins or continuous queries are not supported by these
systems, and these systems only support point data.

Stream Processing Systems: Apache Flink [6], Apache Spark
Streams [11], Apache Storm [2], and Apache Kafka [12] are wide-
spread stream processing systems. These systems are not opti-
mized to compare the stream data with larger previously-stored
datasets. Operations like geometric indexing or spatial joins are

not supported by these systems. In [20] an extension of Apache
Storm for the handling of spatial data streams is proposed. How-
ever, the paper focuses only on 2-dimensional point data; BBoxDB
streams can handle 𝑛-dimensional point and non-point data.

5 CONCLUSION
In this demonstration, we have shown the capabilities of BBoxDB
Streams for the first time. Two real-world data streams are cap-
tured and processed. Queries such as continuous range queries
and continuous spatial joins are performed on these streams. The
spatial joins are executed between the dynamic data from the data
stream and static stored data fetched from the OpenStreetMap
Project. The results of the queries are visualized using an en-
hanced version of the GUI of BBoxDB and user-defined filters are
used to refine the bounding box based operations of the query
processor. In this demonstration, many aspects of the architec-
ture of the system are only superficially addressed. Topics such
as the integration with BBoxDB, the scalability, the filters, and
transformations have to be described more precisely. We plan
to discuss these topics in detail together with an experimental
evaluation of BBoxDB Streams in a full research paper.

REFERENCES
[1] Apache HBase 2020. Website of Apache HBase. https://hbase.apache.org/

[Online; accessed 03-Nov-2020].
[2] Apache Storm 2021. Website of the Apache Storm project. https://storm.

apache.org/ - [Online; accessed 20-Jan-2021].
[3] BBoxDB 2018. Website of the BBoxDB project. http://bboxdb.org [Online;

accessed 03-Nov-2020].
[4] J. L. Bentley. 1975. Multidimensional Binary Search Trees Used for Associative

Searching. Commun. ACM 18, 9 (Sept. 1975), 509–517.
[5] R. A. Finkel and J. L. Bentley. 1974. Quad Trees a Data Structure for Retrieval

on Composite Keys. Acta Inf. 4, 1 (March 1974), 1–9.
[6] E. Friedman and K. Tzoumas. 2016. Introduction to Apache Flink: Stream

Processing for Real Time and Beyond (1st ed.). O’Reilly Media, Inc.
[7] A. Guttman. 1984. R-trees: A Dynamic Index Structure for Spatial Searching.

SIGMOD Rec. 14, 2 (June 1984), 47–57.
[8] D. Han and E. Stroulia. 2013. HGrid: A Data Model for Large Geospatial Data

Sets in HBase. 910–917.
[9] A. Lakshman and P. Malik. 2010. Cassandra: A Decentralized Structured

Storage System. SIGOPS Oper. Syst. Rev. 44, 2 (April 2010), 35–40.
[10] S. Li, S. Hu, R.K. Ganti, M. Srivatsa, and T.F. Abdelzaher. 2015. Pyro: A

Spatial-Temporal Big-Data Storage System. In 2015 USENIX Annual Technical
Conference, USENIX ATC ’15, July 8-10, Santa Clara, CA, USA. 97–109.

[11] Z. Nabi. 2016. Pro Spark Streaming: The Zen of Real-Time Analytics Using
Apache Spark (1st ed.). Apress, Berkely, CA, USA.

[12] N. Narkhede, G. Shapira, and T. Palino. 2017. Kafka: The Definitive Guide
Real-Time Data and Stream Processing at Scale (1st ed.). O’Reilly Media, Inc.

[13] J.K. Nidzwetzki and R.H. Güting. 2018. BBoxDB - A Scalable Data Store for
Multi-Dimensional Big Data (Demo-Paper). In Proceedings of the 27th ACM
International Conference on Information and Knowledge Management (Torino,
Italy) (CIKM ’18). ACM, 1867–1870.

[14] J.K. Nidzwetzki and R.H. Güting. 2019. Demo Paper: Large Scale Spatial Data
Processing With User Defined Filters In BBoxDB. In 2019 IEEE International
Conference on Big Data (Big Data). 4125–4128.

[15] J.K. Nidzwetzki and R.H. Güting. 2020. BBoxDB: A Distributed and Highly
Available Key-Bounding-Box-Value Store. Distributed and Parallel Databases
38 (June 2020), 439—-493.

[16] S. Nishimura, S. Das, D. Agrawal, and A. E. Abbadi. 2011. MD-HBase: A
Scalable Multi-dimensional Data Infrastructure for Location Aware Services.
In Proceedings of the 2011 IEEE 12th International Conference on Mobile Data
Management - Volume 01 (MDM ’11). IEEE Computer Society, 7–16.

[17] Open Data Hub 2020. The Open Data Hub for New South Wales transport
data. https://opendata.transport.nsw.gov.au - [Online; accessed 03-Nov-2020].

[18] OpenStreetMap Project 2020. Website of the OpenStreetMap Project. http:
//www.openstreetmap.org - [Online; accessed 03-Nov-2018].

[19] Website of adsbhub.org 2020. The Website of the adsbhub.org project. http:
//adsbhub.org - [Online; accessed 03-Nov-2020].

[20] F. Zhang, Y. Zheng, D. Xu, Z. Du, Y. Wang, R. Liu, and X. Ye. 2016. Real-Time
Spatial Queries for Moving Objects Using Storm Topology. ISPRS International
Journal of Geo-Information 5, 10 (2016).

[21] X. Zhou, X. Zhang, Y. Wang, R. Li, and S. Wang. 2013. Efficient Distributed
Multi-dimensional Index for Big Data Management. In Proceedings of the
14th International Conference on Web-Age Information Management (Beidaihe,
China) (WAIM’13). Springer-Verlag, Berlin, Heidelberg, 130–141.

665


	BBoxDB Streams: Distributed Processing of Real-World Streams of Position DataJan Kristof Nidzwetzki, Ralf Hartmut Güting

