Industrial Paper

O

proceedings

AutoDBaaS: Autonomous Database as a Service for managing
backing services’

Mayank Tiwary
University of British Columbia
Vancouver, Canada
mayank09@cs.ubc.ca

Shashank Mohan Jain
SAP Labs Bangalore
Bangalore, India
shashank.jain01@sap.com

ABSTRACT

This work introduces and aim to overcome the potential chal-
lenges while deploying automated tuning of relational database
as a service for a Platform as a Service (PaaS) provider. Some of
the major challenges identified in this work include (i) automated
detection of performance throttling (figure out when the perfor-
mance of the system is affected due to incorrect configurations
of knobs) of a database and identify potential points where a
database requires a tuning, (ii) scalability and accuracy of tuning
service and (iii) applying the recommendations obtained from
tuning services wherein applying an obtained recommendation
might require a database restart.

In this work, we present a generic tuning service architec-
ture for Paa$ providers. To deal with the above challenges, we
introduce performance throttling engine which is responsible
to detect potential points when a relational database actually
needs a knob tuning, which helps in increasing the scalability
and accuracy of the tuner deployments (responsible for tuning
production landscapes). This work also proposes approaches that
facilitate efficiently applying the recommendations without caus-
ing much disruption in Quality of Service (QoS) of the underlying
database system. Lastly, the results are obtained by evaluation
of the proposed methods and modules on multiple cloud native
provisioners against various set of metrics.

1 INTRODUCTION

The PaaS customers do not have access to tune the configura-
tion knobs of database/backing services as the service configu-
rations are often abstracted. Tuning of the offered data services
often requires DBAs to pitch in, observe/monitor and then, tune
the service-instances. This often adds more complexity, as PaaS
providers needs to have a DBA for each customer group, where
each service offered has tens to hundreds of knobs to be tuned.
In literature, there exists a set of various auto-tuners [1], [2]
and [3] that aim to automate the tasks of a DBA. These tools
are not holistic in nature and are limited to specific classes of
parameters.
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This work introduces challenges and requirements for intro-
ducing generic tuner as a service (AutoDBaaS), which can tune
the configuration knobs of the relational data services as per re-
quirement and thus, in-turn reduce the performance dependency
on a DBA. In this work we evaluate already existing tuners and
try to see how they can be used to tune live production systems. In
literature there exists multiple style of tuners, broadly classified
as search based [16] and learning based. This work specifically
considers learning based tuners (as they can easily tune multiple
types of databases and more suitable for PaaS service providers):
bayesian optimization (BO) style tuners (like Ottertune [4]) and
reinforcement learning (RL) tuners [18] and [17]. We discuss the
pros and cons of both RL and BO style tuners for tuning live pro-
duction systems in coming sections. Potentially, the challenges
that drive the design and deployment of a tuning service as per
PaasS architecture have been identified as follows:

o Scalability of Tuners
e High Quality Samples
e Metrics for Tuner Evaluation

Scalability of Tuners. As per the architecture of a BO style,
it uses previously observed workloads to train a Gaussian Process
(GP) regression (or a surrogate model), which recommends a new
set of configs. The workload in Ottertune (any large scale ma-
chine learning tuner which tries to leverage previous experiences)
is a collection of different knob values, obtained with respect to
observed database metrics. The workload should contain enough
data, where sufficient metric variations are observed across differ-
ent variations in values of knobs. Or in another sense, a BO stlye
tuner like Ottertune needs high volume of high quality samples.
With the high volume samples, the Ottertune’s workload size
increases and causes a GPR training to take a time of around 100
to 120 seconds. Then if the underlying services, asks for recom-
mendation with a high frequency of 5 mins (a typical monitoring
time for a transactional data), one Ottertune deployment can be
bound to a maximum of 3 to 4 service instances. This can also be
inferred as a cost for a BO style tuners - ‘recommendation-cost’
to service-provider. In this aspect the RL style tuners do pretty
well, as they do not need high volume of high quality samples.
However, the pros and cons of BO style tuners and RL style tuners
are discussed in comming sections.

High Quality Samples. Both RL and BO style tuners need
to capture delta metrics (after execution of a workload) from the
underlying database to be tuned. The quality of the captured
metrics (or the quality of the samples) depends solely on the
workload executed on the database. For example - when a client
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executes TPCC queries to a database, continuously for 10 minutes
with 3000 requests per second, will generate a high quality sample.
However, in production systems, the throughput of the executing
workload is often low (or for most of the time, the production
database does not needs a tuning), which cannot produce enough
variations in the delta metrics (or often a low quality sample).
In production systems, the spikes in throughput graph is seen
at specific time-intervals only. In many cases, it is observed that
even if there is high throughput, only a certain set of metrics show
good variations and rest do not [4]. The quality of samples highly
impacts the performance of both RL and BO style tuners. And,
in production systems capturing high quality samples is very
difficult (or atleast there exists no such way to do so in literature).
In a nutshell, the main problem is that a production/live database
tuner faces corruption of learning model when it trains over such
samples (or collected metrics) which sometimes does not requires
any tuning (and this is very much seen on production workloads).
However, an offline tuner (which is expected to tune a staging,
development, testing landscape database) does not face this issue.
This is because in these database the all the queries are batched
to form a workload and the workload gets executed for a time
frame which generates a high quality sample.

Metrics for Tuner Evaluation. The tuner service the knobs,
metrics and provides recommendations for performance improve-
ments. As an end user, the expectations will be to get recommen-
dations when the workload pattern changes in real time and
the recommendation should actually improve performance. Cur-
rently there are ways in literature which can suggest changes
in workload patterns [8], [19]. This works use templates (from
queries) and cluster them. However, still there is no such infor-
mation that with change in workload does the database actually
needs a tuning. Secondly, just an increase in throughput cannot
be a qualifier to suggest performance improvements. The rea-
son for this is that in production systems, the workload pattern
always changes i.e. say the throughput was measured when a
query set was executed on a production database. Now after ap-
plying the recommendations, the next query set will get changed
(or the workload gets changed) and the new throughput cannot
be compared with the previous one. Hence, measuring perfor-
mance based on recommendations on production system is also
challenging.

A unifying theme to the above challenges is to identify the
actual performance throttling on a database system. With respect
to changing workload pattern of users SQL workload, perfor-
mance throttling detection will help in predicting the incorrect
knobs.

The paper makes the following novel contributions:

o Identifying Performance throttling: The performance
throttling is responsible for identifying the database in-
sufficiency to process SQL queries due to incorrectness
of configured knobs. It classifies the knobs into different
classes and then, for each class of knobs, it predicts throt-
tling. This module increases the scalability of the tuner
deployment by reducing the number of recommendation
requests (when compared with the periodic nature of mak-
ing tuning requests). The underlying services request for
recommendation only when a performance throttling is
detected. Thus, this module acts as a DBA and identifies
when a database requires an actual tuning in real-time.
This module identifies performance throttles from rela-
tional databases only.
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e Applying Recommendations in an effective way: The
tuning agent running on the database VM/Container as
an plugin process, applies the recommendation on service-
instance by re-loading the configs. The same plugin is also
responsible for tuning of knobs that require a restart of
the database.

e Evaluation: In production systems as the throughput
varies, we need to identify new performance metrics to
compare the effectiveness of obtained recommendations.
To achieve this, we introduce the number of throttles trig-
gered by the performance throttling module, as a metric.

2 SYSTEM DESIGN

This work presents a generic architecture, which can be easily
integrated with any available cloud platform provisioners. As
shown in Figure 1, the overall deployment of database tuning
service, in an abstract form, is divided into two parts: (i) tuner
instances - responsible for executing the ML pipeline to generate
new config recommendations and (ii) config director instances -
responsible for managing all available customer service-instances.
The tuner instances can be spawned via either containers or
VMs. There can be more than one tuner instances (also depends
upon tuner scalability), where each tuner stores a workload W
in a database, where a workload is combination of knob config
parameters and metrics observed against those parameters (also
called as training samples). Technically as described in [4], a tuner
workload W is a set S of N matrices S : {Xo, X1, X2, ... XN—-1}»
where Xp, ; ; is the value of a metric m observed when executing
a user SQL workload on database having configuration, j and the
workload identifier, i. The tuner service uses the workload W for
initial training of both BO and RL style tuners. These workloads
are stored in database which is present on a different instance.
This database acts as a common central data repository for all
tuner instances. Tuning agent runs on the same database (and
communicates to DB using Domain Sockets) which is responsible
for identifying new workloads and uploads new workloads data
periodically to the central data repository. The tuning services
running on different IaaS’es, fetch the new workloads from the
central data repository. This helps all tuning services to get the
new unknown workloads, which might have been observed on a
different IaaS, and create a better ML model.

The metric readings and recommendation request calls (we call
it something like a tuning request) are event-based and triggered
from the performance Throttling Detection Engine (TDE). The
TDE gets periodically executed on the database master VM (like
a plugin) and triggers recommendation requests to the config
director. The TDE runs periodically on the master VM of the un-
derlying database service and is responsible for figuring out per-
formance throttling due to incorrect knob values with respect to
current executing user workload. The config director receives the
metric data (or queries in case of a RL based tuner) from service in-
stances and triggers recommendation requests to tuner instances.
The config director performs load balancing of recommendation
request tasks across multiple tuner instances. The Service Or-
chestrator agent running on database services, is responsible
for performing all life-cycle operations of service instances and
maintains credentials. When the config director receives a new
recommendation for a database service instance from a tuner,
the config director passes the new configs synchronously to Data
Federation agent (DFA) and Service-Orchestrator, while simul-
taneously storing it into the config data repository. The DFA
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Figure 1: AutoDBaaS$ architecture.

fetches the credentials from Service Orchestrator layer and hits
the APIs of TDE to apply configs to all nodes of the database
service (such as all VMs/Containers of the service-instance). The
DFA has multiple adapter implementations to get connected to
various kinds of database services. As per the architecture, the
tuner deployment is capable to tune multiple databases instances
(one to many).

2.1 Tuner Instances

The tuner instances as shown in Fig. 1, can be any type BO or RL
style tuners. Or can even be a hybrid combination. RL vs BO style
tuners is offcourse a debatable topic as both have their pros and
cons. BO style tuners when fully tuned with high volume of high
quality samples can tune an underlying database in just two to
three recommendations, where as RL style tuners need to experi-
ence large number of recommendations over the database (as per
try-and-error strategy) to learn good configurations for the new
workload pattern. At the same time, RL style tuners are highly
sclable as they can quickly generate new configurations when
properly trained (RL style tuners do not need high volume of high
quality samples). Both BO and RL style tuners learning model
relay on captured metrics when database actually needed tuning.
And metrics/samples captured from database when database did
not needed any throughput tuning (this is the often production
system case), this corrupts the learning models of tuners. With
such wrongly captured metrics BO style tuners face a cascading
style corruption and RL style tuners face corrupting the current
learning model. This problem of both RL and BO style tuner does
not enable them to tune live production workloads, which are
often characterized by low throughput or when the database
does not needs any tuning. Well this is the major motivation for
driving this work.

3 IDENTIFYING PERFORMANCE
THROTTLES IN DATABASE

One of the crucial initial steps that the DBA performs before tun-
ing is, monitoring the database to identify whether the database
actually needs tuning or not. This module executes periodically
as a part of TDE, gathers statistics based on the metrics/features
collected using a rule-based approach and identifies potential
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points when a database needs a recommendation for tuning its
configs. As per the proposed performance throttling approach,
the config knobs of a relational database can be categorised, based
on their properties, into three classes:

e Memory knobs
e Background writer knobs
e Async/Planner estimate knobs

The working of each sub-module is different and is explained as
follows:

3.1 Memory Knobs

Memory knobs are the set of knobs which are dependent upon the
resource (VM or container) hardware limits. The major portion
of memory used by the database is utilised to keep the data in
buffer. One of the approaches for identifying throttles could be
to find out the actual working database size. To identify this, we
use the algorithms proposed by authors in [5] where the authors
use gauging techniques to identify the actual working page set.
However, the major challenge with this knob is encountered
while attempting to update this knob, since it requires a restart
of the database. The TDE, collects this information and keeps
on sending it to config director instances, where config-director
collects the number of throttles and checks the size of the working
page set and adjusts this knob value only during the scheduled
maintenance downtime.

The other knobs belonging to this segment are related to work-
ing area of the database. The knobs related to the working area
of memory depends upon the total number of active connec-
tions and if it is found to be in-sufficient, then database uses disk
or system swap space to perform work operations like sorting,
or maintenance operations like index-creation, storing tempo-
rary tables, table alter, etc. To get the memory usage details
probes needs to be created in the codebase, which is arduous
and dependent on freedom given from vendors. Alternatively,
figuring out the disk usage while query execution, the query
plans can be used as a potential source of information. We use
query templating as described in [6], to reduce the total queries
(to be examined in production systems), where the queries are
converted to a template having a template-id. The queries col-
lected from streaming logs are pre-processed and then converted



to generic templates (having no actual parameters/arguments).
The final template selection takes place from the pool of queries
by reservoir sampling (for capturing samples from streaming
logs) [7]. The selected query templates undergoes execution plan
evaluation by substituting the actual (most frequent) parameters
to the template. From the plans/streaming logs, it can be easily
inferred how much memory/disk the query is going to take. If
any of the selected templates (from reservoir sampling) uses disk
while execution, signifies that the memory is in-sufficient for
execution of queries and now the TDE triggers a memory based
throttle signal and asks for knob recommendation from a tuning
service (raises a tuning request to the tuner).

However, there can be potential cases when the memory al-
located for the buffer is maximum (which means the memory
left for other processes becomes less), it is observed that TDE
un-necessarily triggers throttle signals. This is a case, where the
underlying instance configuration limit is in-sufficient (or the
usage has reached the caps limit). When the size of the database is
sufficiently higher than the actual memory allocated to database
process, it is observed that the TDE frequently triggers throttle
signals and is unable to understand that the throttles are being
caused because of limited hardware resources. To deal with this
cases, we need filtration approach, which identifies such situation
and stops the un-necessary throttles (one potential case is the
underlying VM hardware resource is in-sufficient and customer
needs to upgrade to another plan or ask for more resources for
the VM). We face the following challenges when designing such
filters:

o There are a specific set of queries which trigger consec-
utive throttles from one memory knob (like use of ag-
gregate queries triggers a throttle from working memory
in PostgreSQL). Situations like this can cause increasing
working memory continuously with each recommenda-
tion obtained and hence decreasing other knobs (to make
room for increase of working memory). However, even
after increasing the knob values to the maximum, throttles
can get triggered. This situation can easily be captured by
rule-based engine and throttles can be filtered.

e For a certain query, consecutive throttles are observed
intermittently against different knobs. For example the
first two throttles came from working memory and next
two throttles came from maintenance_work_mem. This
becomes very difficult to manage and identify with a rule
based approach especially when number of knobs are high.

o There are a specific set of queries which triggers consecu-
tive throttles from more than one set of knobs at a time
(like use of aggregate queries, index creation queries, temp
table creation queries, etc causes trigger of throttle from
multiple knobs). Situations like this are difficult to be cap-
tured by rule based engine (becomes more complex when
knob numbers increases or is already high) and needs a
different approach.

We observed and collected such queries and table shown in
Fig. 2 shows the same. In PostgreSQL, working memory is used
by the execution engine to perform internal-sorting, joins, hash-
tables, etc. We evaluated amount of working memory used by
TPCC and CH-Bench, YCSB and Wikipedia bench in absence of
indexes. We observed that Wikipedia and YCSB queries do not
use working memory (due to absence of complex queries like
aggregate, joins, and order-by). The table illustrates the actual

603

working memory allocated and the amount of disk and memory

used by queries.
sk space Memory Execution
ed (in MB) tilized (in MB) | Latency (in ms)
3 0.5
0

Work

Mem (i

Benchmark — Query
Type

MB)
tpcc - Scan Query

0.5
tpcc — Scan Query 1

8310
3953

0.64

ch-bench - Scan Query 125 260 125 15413
ch-bench — Scan Query 150 0 137 6801
tpcc — Complex 350 475 350 53013
Aggregation Query

37! 367 19835

tpcc — Complex 5 0
Aggregation Query
Figure 2: Queries and Memory statistics observed on Post-

greSQL running on AWS VM, type-t3.x_large
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Figure 3: Entropy variation with 80% adulteration
bility on Production SQL Workload
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Figure 4: Entropy variation with 50% adulteration proba-
bility on Production SQL Workload

In this case, a probabilistic approach is needed to predict the
pattern of SQL queries which can cause a potential throttle in per-
formance. The queries which cause more use of working memory
are mostly Join, aggregate queries, sorting queries (ORDER BY).
On production systems, the frequency of rest queries like index
creation or alter table is comparatively lesser. The worst-case
scenarios could be all queries are fired with similar proportion.
To deal with such cases, or to identify such randomness/query
proportion, (to measure the probability distribution) entropy is



used. Entropy of a discreet variable X with possible outcomes
X1, X2, X3, ..., X can be defined as:
Hp(X) =

= > plxi)log(p(xi) (1)
i=1

where p(x;) is the probability of the i’ h outcome of X. With a
more abstract approach, a generalized entropy can be defined as:

Z pGxi)log(p(xi))

o= Iog(n)

@

Value of (X) can range from 0 to 1 i.e. n(X) € [0,1]. This
helps in determining the threshold value of entropy, as for any
number of classes the normalized entropy ranges between 0 and
1.

The queries are grouped into specific categories (grouping of
obtained query templates), such as Join queries, Select queries,
Alter-table queries, Update queries, etc and a hash table is built
for each category. The classification of queries is done based on
the trigger of throttle from knobs, for example - complex aggre-
gation queries are grouped to one class which triggers throttles
to working memory knob. Similarly, we create individual class
for each given knob. From the generated logs, we create a hash
table containing the class of queries and its frequency. Once the
entropy value is evaluated, it can be inferred from multiple ob-
servations, that the entropy value is less when high randomness
is present or all queries are fired with similar proportion (the
query frequency from classes are evenly distributed). This, thus,
indicates the SQL queries will, probably, again trigger a throttle
(when underlying instance configuration is in-sufficient). How-
ever, if the entropy value is high, the degree of randomness is
quite less or probability is quite evenly distributed. Thus, pro-
vided, if the query class, which is constrained by throttles, has
less frequency, it can be concluded that in future, the throttles will
not be triggered (as here the limits have not reached the caps and
the underlying database depends on the tuner recommendation
for knob optimization).

As part of the proposed flow, if more than 8 throttles are trig-
gered consecutively, the entropy value is evaluated, and if the
entropy value is higher along-with the memory-knobs reaching
maximum cap value, the TDE triggers a plan update (increas-
ing the hardware limits of instance) request to customer and
recommendation requests are not sent to config director. Else,
it is estimated that the throttles will soon reduce and the same
job waits for next 8 throttles before calculating the next entropy
value. The graphs shown in Fig. 3 and 4 shows the calculated
entropy values while executing TPCC and an adulterated TPCC
workload. The TPCC workload was adulterated with index cre-
ation, index drop, complex-joins, temp-table creation, order-by
and aggregate queries.

In order to showcase the entropy variation, we loaded TPCC
with a scale-factor of 18 (which loads around 21GB of data) to
Postgresql. However the queries fired mostly hit the working
memory and wal-memory knobs
(sort_buf fer_size in MySQL). The amount of working memory
used by TPCC as shown in Fig. 2 is around 0.5 MB, which is quite
less to generate a throttle from memory based knobs. Hence now
we add complex aggregation queries to TPCC (like queries having
heavy sorts), which requires nearby 350 MB. Still we are able to
trigger throttle for only working memory using TPCC. Now in
order to design such a workload which triggers throttles from
all defined classes/knobs, we started adding more queries and
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procedures, the following queries (analysing from production
level performance bottlenecks faced earlier) were added to TPCC
bucket:

e complex sorts/aggregation queries - To trigger throttle
from Postgresql - work_mem, MySQL - sort_buf fer_size
and join_buf fer_size

o create/delete indexes - To trigger throttle from
Postgresql - maintenance_work_mem, MySQL -
key_buf fer_size and sort_buf fer_size

o delete queries: To trigger throttle from
Postgresql - maintenance_work_mem

e creating temporary tables and firing complex aggrega-
tion queries on it to trigger throttle from Postgresql -
temp_buf fers and MySQL - temp_table_size

Now the new queries are always added to the actual TPCC bucket
based on probability as given in Fig. 3 and Fig. 4 (80% and 50%).
With the adulterated TPCC workload, we were able to simulate
throttles from all set of classes/knobs. The probably distribution
with TPCC varies hugely with the probability distributions of
adulterated TPCC due to absence of the new queries and results
in entropy difference.

3.2 Background writer knobs

The background writer knobs control the writing of dirty pages
from buffer, back to the disk. This write process is triggered by
background writer processes or periodic checkpointing processes.
However, if the checkpointing process is triggered too often and
the amount of data written is high, then it leads to higher values
in consumption of I/O throughput and disk latency resulting
a decrease in throughput of the database. The other processes
involved in writing dirty pages back to disk (background writer)
helps in mitigating the same problem, with the aim to reduce the
amount of data written by a checkpointing process. Usually the
background process writes a fixed number of pages back to disk
and the left pages are taken care by checkpointing process. In
case of write heavy workloads, the background process writes
fixed amount of data causing uncertain amount of data written
by a checkpointing process. Given a discrete configuration for
the set of knobs, for identifying throttles the following set of
challenges needs to be overcome:

o To find out optimal value of checkpointing triggered per
unit time. This parameter helps in understanding the over-
all period till which there can be a surge in disk latency,
IO, etc.

e To find out optimal value of data written to disk with
trigger of a checkpoint. This parameter helps in under-
standing the max surge the disk IO and latency parameters
can go for write operations.

e There are various processes which write back to disk,
for example - WAL writer, statistics writer, log writer,
archiver, garbage collector, vacuum. This makes it difficult
to figure out holistically the exact amount of data written
by checkpointing process.

In order to figure out the exact amount of data written by
a specific process requires use of user-level statically defined
tracing probes (USDT probes). Where, any low-overhead tracing
tool like ebpf or dtrace (Linux Foundation - IO Visor project)
can use the probes to get information. The other option is to
use kernel-probes (uprobes) for tracing, but this is also indepen-
dent of the database process levels. Hence the safest way to get
this data is to move writing of majority of processes to another



disk. In our experimentation, we changed the disk for storing of
WAL, statistics, logs, etc. Now only background writer processes
or checkpointing processes and vacuum/garbage-collector pro-
cesses are responsible for writing on the current disk (where the
production database files are located). This strategy also guaran-
tees SLA for minimum IOPS for a disk which stores the actual
database and at the same time increases cost of extra hardware
and operations. Still the checkpointing process can be interpreted
with the vacuum/garbage collector processes which is responsi-
ble for updating indexes for dead tuples and defragmenting pages
on disk. The frequency of this process can easily be controlled
and the left slots can be utilised for monitoring of checkpointing
processes. During experimentations, we increased the frequency
of vacuum/garbage collector to substantially a higher value and
neglect the monitoring of checkpointing during the interval when
vacuum/garbage collectors are triggered.

To predict/evaluate the values of optimal checkpointing and
optimal amount of data written per checkpoint, the proposed
approach uses the historic data of the workloads stored in the
tuner’s database or in short leverages the tuners experiences of
tuning write oriented workloads. The workloads which are gen-
erated for tuner, are often pre-generated offline or it considers
newer workloads as well (workloads from live database systems).
The tuner service for recommending new knob values selects a
target workload, and then uses the target workloads data to train
the GPR. However, in all cases we monitor the disk latency from
external monitoring agents such as Dynatrace. The throttling
point for these knobs depends upon the disk latency as the per-
formance degrades when the disk latency increases. In order to
figure the optimal checkpoint per unit time with amount of data
written to disk, the time difference between peaks in disk-latency
is observed and averaged out for consecutive peaks. We define
checkpointing per unit time based on the same observations. The
checkpointing per unit time is calculated only for the highest
observed throughout point in mapped workload.

Each database service in order to get the optimal parameters
uses the best information seen/tried by tuner in past. Now, when
a throttle is triggered, the tuner maps the current workload A’
(workload representing a target underlying database service)
to a target workload B’ which had shown similar features in
the past, with respect to the current workload. Now, for B, the
timestamp value for the most optimal points observed (with
respect to maximum throughput) are captured and passed on to
the Dynatrace agent and the disk latency readings are collected.
The points are the best recommended knob sets obtained using
a trained GPR. From this data point, for the entire duration of
workload execution on database, the checkpointing per unit time
and respective disk latency is observed. Now on live/production
systems, the checkpointing per unit time for A is calculated based
on the baseline of disk-latency defined (obtained from tuner)
earlier. If in A’ the ratio of checkpointing per unit time and
disk latency is more than the ratio of checkpointing per unit
time and disk latency for B, then the throttle-detection scripts
trigger a throttle signal. However, there could still be scenarios,
when the workload A has very less data points (config values
vs metrics) and for such a scenario, the mappings are initially
incorrect for target workloads. Then for that scenario, the number
of throttles could be either more or less, however, with each
throttle signal that is triggered, the workload size increases and
probability of getting mapped to an optimal workload increases.
Thus, the proposed approach eventually improves in efficiency
with passing time.
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Figure 5: Disk Latency graph for TPCC execution.

The graph, as shown in Figure 5, represents the disk latency
incurred when TPCC is executed on PostgreSQL with default
knob config values and compared with when it is executed with
optimal knob config values. The readings observed from 11:45
to 12:05, show the disk latency values for TPCC execution with
default knob values and readings observed from 12:10 to 12:25,
show the disk latency values for TPCC execution with optimal
config values on PostgreSQL. Here, the TPCC execution on tuned
PostgreSQL gives an average disk-write latency of around 6.5 ms
and based on this the checkpointing per unit time is obtained. So,
this becomes the base line for any workload on live systems which
is mapped to the TPCC workload. Here, the major constraint is
also that the underlying hardware (storage type as SSD or HDD)
should be the same for all systems (databases used for training
tuner and live systems).

3.3 Async/Planner estimate knobs

The async knobs are based on the ability of the database to par-
allelise the query execution, whereas the planner estimate knobs
helps the query execution planner to estimate the best route.
Most of the database recommends to statically set the planner
estimate knobs (random page cost, effective cache size. etc) based
on the underlying hardware capabilities. Still it is often seen
that increasing/decreasing the values of such knobs (from the
recommended values) improves the overall query execution. The
async knobs are often defined by the number of parallel worker
processes supported per relation by the database. During query
execution, the parallel workers are taken from a pool of all de-
fined workers. Often, it happens that the requested workers are
not available or it could also happen that setting a higher value
for these knobs affects the planner estimates. Thus, it always
depends upon the nature of query and to what degree it can
support parallel executions.

As this categories of knobs directly or indirectly impacts the
planner estimates, it is often required to check the planners
cost/benefit optimizations. The straight forward way to trigger a
throttle would be to manually increase/decrease the knob values
and check the overall cost/benefit optimizations. However, to au-
tomate this, the TDE needs to carefully take decision on whether
to increase or decrease the value and by how much the value
should be increased or decreased. Assuming at a given instance
of time, for a given production workload, there exists an optimal
values of this knobs. And the optimality does not depends on the
underlying hardware (as per recommendations), making this a
stochastic environment use case. Reinforcement learning is often
seen as the best way for analysing the cost/benefit optimizations
of query execution planner [8] [9] [10]. Hence, we model this
problem as sequential decision problem and address it by using
reinforcement learning.



Hence, we use a very basic Markov Decision Process (MDP)
as a very basic RL model to solve the above sequential decision
problem. In order tp minimise the uncertainty, the MDP starts
with random set of actions and with course of time the action
probabilities are adjusted, based on the response from the envi-
ronment. The RL algorithm tries to optimize an agents returns
when the episodes are restricted/limited. The RL engine captures
all the queries in a time frame (typically a day or two based on
the length of the workload). One episode comprises of atleast 350
to 400 steps (set of actions), where the knob values are changed
as per policies (policies are random model initialization) and
planner cost/benefit estimates are captured for all queries. The
cost benefit estimates are then converted to rewards or penalties.

The TDE uses a MDP to trigger a throttle from this category
of knobs. A MDP is represented by {Q, A, B, N, H}. For all given
knob in this category, a MDP is given as follows:

o Qisthe finite set of internal states given by Q = {q1, q2, g3,
..»qn}, where g, represents a specific knob value tried
before or in current usage.

o A={m,a2 as,...,an} is the set of actions performed by
the automata (increase/decrease the knob value) where
each action has its own probability distribution.

® B = {f1, B2, B3, ..., Pu} is the response from the environ-
ment (cost/benefit calculated from query planner)

e N is a mapping function responsible to map current state
and input to the next state and

e H is a mapping function responsible to current state and
response to figure out the action to be performed.

The TDE triggers the MDP at interval of 2 to 4 minutes, where
the MDP performs cost/benefit analysis by fetching all the queries
from log, performing reservoir sampling as described above (in
throttling detection for memory knobs). For a given knob value
(represented by qy), based on the action probability, the MDP
increases/decreases the knob value by unit step (defined stati-
cally). Later the TDE calculates the loss/profit in execution time
against the sampled queries with respect to the new knob value
and old knob value. If there is a loss, which signifies the action is
misleading and the MDP penalises the respective action (which
adjusts the probability of the given action @) and vice-versa.
However if a profit is seen with the change of the knob, the TDE
triggers a throttle to get a recommendation from the tuner. The
graphs in Fig. 6 presents the learning progress for a production
workload as shown in Fig. 8. In the initial episodes, it is observed
that the learning is less as the agent is suppose to do more and
more exploration of knob configs. However, as the iterations
continues, we observe more and more learning (as the episodic
rewards increases). This draws a balance between exploration
and exploitation.

One can argue that if with the course of time the MDP learns
about the optimal/sub-optimal values of the knobs, is it really
necessary to go and again ask the tuner to get recommenda-
tion. Yes, the tuner needs to be asked as the optimality changes
with respect to change in workload pattern and secondly the
tuners learning models predict best values for the given knobs by
utilising the past seen experiences from set of other production
systems.

4 APPLYING RECOMMENDATIONS

The potential challenges in this job could be designing the overall
orchestration mechanism for applying these configs, considering
the prevalent architecture of the database system like multi-node,
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Figure 6: Measuring Reinforcement Learning accuracy on
production workload

high-availability constraints, etc. The configs need to be persisted
too such that a database reset or re-deployment doesn’t over-
write the settings. Additionally, concerns like how to apply the
recommendations without causing a downtime of the running
database system, must also be addressed.

Generic Approach. An orchestration approach had to be
formulated in-order to apply the recommendations, taking into
consideration the above-mentioned challenges. As per the archi-
tecture explained in Figure 1, the service-orchestrator is responsi-
ble for spawning of database system instances for a customer. The
config of the spawned database system is generated and applied
initially to the database, by the service-orchestrator. If for any
reason (like updating the system, applying security patch, etc.),
the database system needs a re-deployment, then the service-
orchestrator must re-deploy the system with the updated config
of the database.

As per the architecture, the Data Federation Agent (DFA) hits
API endpoints of TDE to apply the config recommendations. In
case of multiple nodes maintaining high availability, the recom-
mendations are first applied to the Slave node(s). If the process
crashes in the Slave node, the config recommendations are re-
jected. Thus, it is ensured that the Master node is up and the
process is still able to serve requests. After the config recommen-
dations are applied to the Master node, the recommendations are
stored in the persistence storage used by the service-orchestrator.
Thus, whenever the service-orchestrator re-deploys the database
system in the future, it retrieves the updated config from the
persistence storage. An additional concern here could be the fail-
ure in one of the intermediate steps. Since, all of the operations
are not atomic, but eventually are expected to yield consistent
data (i.e., configs must be same for all master/slave nodes and
persistence storage used by service-orchestrator), a reconciler
process is defined. The reconciler keeps a watch on config of
the database system running on the Master node. If the differ-
ence in config is observed for a threshold time-period (watcher
timeout), the reconciliation occurs and the config stored in the
persistence storage is applied to all nodes. Thus, this eventually
leads to rejection of the config recommendation due to error in
the intermediate process.

For changing the knobs values, one of the efficient methods is
to use Socket Activation (using sockets via systemd). This also
makes possible to restart the DB since the socket is up and keeps
on accepting the incoming requests. However this method only
caches the requests but causes a lot of jitter and performance
degradation. Another method is to use linux reload signals, upon
evaluating this method, we observe very minimal jitter in the
performance of the database. A comparative analysis has been



presented in graphs in Figure 7 where the performance of the
database is observed under identical load conditions.

3.2k /s 24
2.4k /s 18
1.6k /s 12
800 /s 6
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Figure 7: IOPS graph for TPCC execution.

The graphs shown in Figure 7, the TPCC workload is executed
with tuned MySQL. Readings during 15:08 to 15:23, shows the
TPCC execution without triggering any config reload signals,
where as readings between 15:38 to 15:54, shows the TPCC exe-
cution which was accompanied by a config signal reload with a
frequency of 20 seconds (even with this high frequency of reloads,
the performance is not compromised).

Applying Non-tunable Knobs. 'Non-tunable knobs’ has
been used as a term to categorise such knobs that cannot be
applied/tuned without causing a restart of the database process.
Since, the restart of database can only be performed during sched-
uled downtime window (a pre-announced time-period where a
re-deployment of database occurs), an approach had to defined
for the tuning of such knobs. The design of the approach can
be considered for memory-related knobs (as non-tunable knobs
are majorly memory knobs). For a non-tunable memory related
knob, like buffer-pool’s size, the optimum value of this parameter
can be obtained from the working set [5]. Once this optimum
value is determined, the database system is initially set up with
the same value. However, there could be other memory-related
knobs that are dependent on such a non-tunable knob. The value
of all such knobs must be within the total memory allocated
to the database process. Let us consider the following equation.
A+B+C+ D < X Here, A could be assumed to be a non-
tunable knob like buf fer_cache size. B, C, D could be other tun-
able memory knobs like work_mem, maintenance_work_mem
and temp_buf fers, where X is the total memory allocated to DB
process.

There is always an upper limit on buffer-pool knob out of
the total memory pool. This knob is changed only during the
scheduled downtimes. During the downtime, if the total working
page set size is greater than the maximum limit, then we find
out the 99" percentile of this knob obtained during all last rec-
ommendations before the last scheduled downtime. If the new
averaged value is lesser than the current value accompanied by
at-least one entropy hit, then this knob value is reduced. The
entropy hit indicates that the other tunable knobs have already
raised many throttles and now it is mandatory to create more
room for tunable knobs by reducing the buffer knob value.

Now when the memory for buffer value is reduced with re-
spect to the current knob value, it increases more room for other
memory related tunable knobs. So if the cost on throughput for
tunable knobs is more, tuning services rotates around nearly
same values for buffer knob, else in the next iteration it increases

607

the value of buffer knob (average value of buffer knob obtained
till last last scheduled downtime encountered.)

5 PERFORMANCE EVALUATION

The experiments were conducted on AWS instances, where cloud
resources is provisioned by cloud-foundry managed by Bosh. The
tuner deployment consists of 12 tuner instances with Ottertune
and CDBTune (we do not go for QTune due to unavailability of
its codebased in opensource) - m4.xlarge with 4vCPU and 16GB
memory, 5 config-director instances - m4.xlarge. We connected a
total of 80 live-database deployments (spawned through t2.small,
t2.medium, m4 large, t2.large and m4.xlarge VM types) to the tun-
ing. For evaluating the experiments, we used PostgreSQL (v9.6)
and MySQL (v5.6). All the tuner instances collected data from one
common data-repository (m4.xlarge VM plan) which is shared
by all tuner instances. The bare-service-replicas were created:
one for each plan and were used to test the recommendations
obtained. A real-time customer workload (activity for 33 days) is
captured for the purpose of some of the below experiments. The
SQL workload has 132 tables, 42.13M queries per day (average),
71K Select queries, 41M Insert queries, 34K Update queries and
0.8K Delete queries with a DB size of 59GB. The query arrival
rate is shown in Fig. 8
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Figure 8: Production workload query arrival rate

Before evaluating the AutoDBaaS on live systems, we perform
training of the tuners as per their standard ways [4] [18]. The
first experiment we design is to measure the tuning requests
per second on production landscape where both ottertune and
CDBTune is being used for tuning. Figure 9 showcases one such
outcome to illustrate the impact on scalability challenges of a BO
style tuner. When comparing scalability of BO vs RL style tuners,
a RL style tuner generates new configs very fast (but sometimes
takes a long time to come around a good configuration). As per
the BO approach, generating a new configuration takes around
200 seconds (which is assumed to be a good configuration). Both
the RL or BO style tuners follow periodic approach (with a pe-
riodic length of nearly 5 to 10 minutes). In this case we bring
in TDE which breaks down the periodic tuning approach. We
measure the requests per second for live databases on production
landscape where we compare requests per seconds generated
when TDE checks in, periodic approach with a period of 5 min
and periodic approach with a period of 10 mins. In both the cases
it seems like the TDE approach gives a reduction and comes to
peak when the workload pattern changes a lot like say morning
8AM to 11AM (when most of the microservice usages surge). The
tuning requests per seconds when TDE checks in also directly
gets impacted by the efficiency of tuner being used. If the tuner
generates good configuration, in the next upcoming iterations,
there are pretty less chances of a throttle getting detected.



As the proposed work largely reduces the tuning requests per
minute, this evidence seems to directly impact the scalability of
the tuning services and specifically the BO style tuners.

tuning requests per unit time
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Figure 9: Requests per minute graph for 80 live connected
databases

Next we measure the performance throttles due to incorrect
knobs for some standard and production workloads. The param-
eters for the standard workloads was for (1) tpce, 3300 requests
per second with 26 GB of database size, (2) wikipedia, 1000 re-
quests per second with 12 GB of database size (3) twitter, 10000
requests per second with 22 GB of database size and (4) ycsb, 5000
requests per second with a database size of 20 GB. We used oltp-
bench to do the benchmarking on postgresql (Fig. 10) and mysql
(Fig. 11) on m4-large instances. In order to purely measure the
performance throttles, we do not go for a tuning session. These
throttles presents averaged score for nearly 20 to 25 iterations.
However, for production systems (as described above), we do not
run iterations, rather they are actually captured from live systems
directly for the workload described above and measured at differ-
ent timestamps. We observe that for both postgresgl and mysql,
the write heavy workloads raise more throttles for background
writter knobs, read-heavy/mix workloads raise more throttles for
memory and async/planner knobs and for production workload
it seem like a mix of ratios.

The next crucial metric for evaluation is Performance. There
could be two metrics for measuring the performance of the pro-
posed approach: (i) the throughput of the database system and
(ii) the number of throttles encountered by the database system.

In Fig. 12, we measure the average throughput on live database
using (1) Ottertune and (2) Ottertune with TDE (i.e. Ottertune
only captures high quality samples from TDE). Ottertune uses
samples from both production-workloads and offline-workloads
(like executing tpcc offline) to train GPR. As per the tuning
pipeline of Ottertune, it bootstraps with offline-workloads and
starts tuning live systems. It separately captures each experiences
from each workload (i.e. eiter live or offline). There is no chances
of training model corruption with offline workloads as samples
from offline workloads are captured are always of high quality
(i.e. there is no such point when a offline workload does not re-
quires a tuning). So when new batches of production system are
hooked with the same ottertune instances, ottertune’s through-
put is roughly the same as compared with Ottertune + TDE as
initially Ottertune uses offline samples (i.e. samples taken from
offline workloads) to train GPR. However, the samples captured
from the first batch of productions systems causes corruption
to GPR (with high probability). Hence, when such samples are
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Experimental Setup
Variable used workload Metrics window knobs
in Fig. 14 length class
#1 YCSB to TPCC 5 min background writter,
async/planner
#2 TPCC to YCSB 5 min memory,
async/planner
#3 YCSB to Wiki 7 min async/planner
#4 Wiki to YCSB 5 min NA
#5 TPCC to twitter 6 min memory,
async/planner
#6 Twitter to TPCC 5 min background writter

Table 1: Experimental parameters and values

utilized to tune other set of production systems, the accuracy of
GPR recommendations is extremely low. Hence, in Fig. 12 we
hook in the 40" database instance and measure the throughput.
As shown in the graphs the proposed approach seems to per-
form well and the main reason for that is there is no possible
learning corruption in learning. For the workload executing in
this database, we observed that Ottertune mapped the workload
(with high mapping scores) to nearly 14 different workloads (to
leverage tuning experiences) where only 4 of them were offline
workloads. Similarly, we measure the same set of throughput
when CDBTune is used as tuner. Here as CDBTune does not
so much utilizes past learning experiences or atleast the way
Ottertune does it. CDBTune minimally utilizes offline training
but for sure does not uses learning from other production tuning
experiences. Therefore in the case of CDBTune, this problem
happens directly from the first hooked/subscribed database. The
graph shown in Fig. 13 presents the throughput measured on the
first database connected to CDBTune.

We also measure the effectiveness of performance throttling
with changing of workload pattern by execution of standard
workloads. The graph shown in Fig. 14 presents the same. This ex-
periment is designed to measure how throttling detection helps to
quickly capture workload change. In this experiment, we loaded
22GB of TPCC data, 24GB of TPCH data, 18.34 GB of YCSB data,
16 GB of twitter data and 20.2GB of wikipedia data on a m4-xlarge
instance of postgresql. And we measure the throttles detected
upon change of queries (i.e. from one workload to another). We
present the details of experiment done here in the below table 1:

In this experiment we also observe and present the class of
throttles. The tuner has a direct impact on the total number of
throttles. This is because a single throttle triggers a tuning request
and tuner recommends back a good configuration. Hence, in case
of a very idealistic tuner the underlying database should not
trigger more than one throttle as the idealistic tuner is expected
to get the best config which would cause no throttles in the next
iteration.

Lastly we tried measuring the accuracy of the throttling de-
tection engine for all the classes of knobs what we presented. To
evaluate the accuracy of throttles raised, either we could have
used the human knowledge, where an administrator would have
verified each throttles manually. But, this approach could have
been time-consuming and could might result with a biased deci-
sion of the administrator. So another way to evaluate the throttles
was to use the tuning of an already trained tuner. We trained
Ottertune with offline workloads like TPCC, YCSB, Wikipedia
and Twitter and then observed the throttles classes and con-
figurations generated by Ottertune. If Ottertune recommends a
majority of knob (say out of top 5 ranked knobs) whose class is
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Figure 12: Throughput graph for live production database
with Ottertune
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Figure 13: Throughput graph for live production database
with CDBTune

same as the class of throttle, then the throttle was accurate else
we consider the throttle to be not accurate. This is specifically
tested on the same workload with which Ottertune was trained
i.e. TPCC, YCSB, Wikipedia and Twitter (as for the same trained
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Figure 14: Throttles captured when tuner is Ottertune

data accuracy would be very high). Ottertune recommendations
sometimes perform exploration for the Gaussian Models better
training. We minimize this exploration by setting appropriate
hyper parameters manually. With this settings, Ottertune’s rec-
ommendation should least explore and only aim to maximize
the throughput. We loaded similar amount of data on a Post-
gresql m4-xlarge instance as done in the previous experiment.
The graph shown in Fig. 15 presents the same. We observed high
accuracy for memory and background writter knobs and a lower
accuracy for planner/async knobs. However, we are confident
more for planner/async knobs as the throttle points clearly shows
improvement as per cost-benefit analysis of planner estimates.
However, we observed ottertune fails to understand such throt-
tles mainly because of absence of planner estimates in the metric
set that it captures for postgresql.

6 RELATED WORK

Facebook introduced Pressure Stall Information (PSI) [11] for
evaluation and control of computational resources across large
data centers. It is one of the first canonical ways of measuring re-
source pressure increase as it develops based on pressure metrics
such as memory, CPU and I/O using cgroup?2 and oomd. There



Throttling Accuracy

100 T T T T
80| A Aaka, an® Nk
S
E 6o} 1
>
3
2 40w A A
3
<20} memory knobs .
background writter knobs —&—
0 planner/async knobs ——
0 40 80 120 160 200

number of throttles

Figure 15: Accuracy of performance throttles on Post-
gresql

are many methods which exists in literature which try to capture
similar pressure on computational resources. However in case of
databases these approach seems to be in-efficient in figuring out
pressure on individual database knobs. This is also because of the
reasons that database knobs are mostly indirectly-non-linearly
dependent on the computational resources.

Oracle came up with a database internal monitoring mecha-
nisms [14] and [15] to identify the bottlenecks in performance
due to misconfigurations in internal components or knobs. Here,
authors propose ’database time’ of query as a parameter to fig-
ure out performance bottlenecks. Later this information is given
to DBA’s for tuning of knobs. The system uses heuristics from
performance measurements for tuning of memory knobs and
however does not tunes all set of knobs.

In literature, there are many knob tuning approaches [12]
and [13], which are either specific to specific databases or tune
only a subset of knobs. Other PaaS providers like AWS RDS ser-
vice, gives freedom to consumers to tune it based on the workload.
The architecture of Ottertune seems to meet the requirements
of PaaS tuning offerings to customers, based on its capabilities
to tune multiple databases by leveraging the workloads seen by
tuner in the past. Oracle came up with autonomous database, a
similarly solution came from Microsoft, however the approaches
does not tune more than one database (unable to leverage experi-
ence gained by another system) and is only coupled to tune one
database at a time (and thus increasing cost of tuning).

Also there exists multiple works that have focused on tun-
ing database knobs. However, there exists two main classes: (1)
Search based methods like BestConfig [16] and (2) Learning based
methods which includes BO style learning or RL style. We do not
consider Search based methods for tuning production systems
as it expects the user to execute the workload on staging land-
scapes and tries tuning it. However, it cannot tune live systems
as it takes huge amount of time to get to a good configuration.
This is because for every tuning from scratch they again start
the searching process from scratch. This work mainly focuses to
solve specific problems of learning based methods like Ottertune
and CDBTune.

7 CONCLUSION

We presented a generic tuning architecture for tuning services
to be provisioned by any PaaS model. In this work, we bring in
the challenges and drive them to make the AutoDBaaS more ro-
bust for production environments. To take up all the challenges,
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this work presented (1) methods to monitor database and de-
tect performance throttling, which helps the database to trigger
recommendation requests only when potentially required and
calculating the monitoring/observation time, (2) methods for
applying and validating the obtained recommendations on pro-
duction systems. Lastly we evaluate the proposed architecture
on cloud-foundry managed by Bosh running on AWS. With our
approach of detecting performance throttling, we were able to
achieve better scalability. On Production systems, due to vary-
ing load - throughput, we measure the performance of tuning
recommendations in terms of performance throttles hit on pro-
duction systems. As the existing learning based method needs
high quality samples from production system, proposed throt-
tling detection engine enables it to do so. Hence, in this work we
also achieve better throughput as throttling detection approach
reduces corruption of learning methods.

In the coming future, we would like to explore more on us-
ing reinforcement learning methods to capture the performance
throttles and making the current TDE free from static rules.
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