
Exchanging Data under Policy Views
Angela Bonifati

Lyon 1 University & Liris CNRS

Lyon, France

angela.bonifati@univ-lyon1.fr

Ugo Comignani

Grenoble INP Ensimag & LIG CNRS

Grenoble, France

ugo.comignani@grenoble-inp.fr

Efthymia Tsamoura

Samsung AI Research

Cambridge, UK

efi.tsamoura@samsung.com

ABSTRACT
Exchanging data between data sources is a fundamental problem

in many data science and data integration tasks. In this paper, we

focus on the data exchange problem in the presence of privacy

constraints on the source data, which has been disregarded in the

literature to date. By leveraging a logical privacy-preservation

paradigm, the privacy restrictions are expressed as a set of policy
views representing the information that is safe to expose over

all instances of the source in order to exchange them with the

target. We introduce a protocol that provides formal privacy

guarantees and is data-independent, i.e., under certain criteria,

it guarantees that the mappings leak no sensitive information

independently of the instances lying in the source. Moreover, we

design an algorithm for repairing an input mapping w.r.t. a set of

policy views, in cases where the input mapping leaks sensitive

information. We show that the repairing can build upon hard-

coded and learning-based user preference functions and we show

the trade-offs. Our empirical evaluation shows that repairing

mappings is quite efficient, leading to repairing sets of 300 s-t

tgds in an average time of 5s on a commodity machine. It also

shows that the repairing based on learning is robust and has

comparable runtimes with the hard-coded one.

KEYWORDS
privacy-preserving data integration, data exchange, mapping

repairs

1 INTRODUCTION
Data exchange is a key process in data science and data integra-

tion pipelines, leading to translating data compliant with a source

schema S and lying in a source database to a target databasewith a
non-overlapping target schema T [1, 4, 17]. Data exchange is also

part of metadata management operations [6], since the schema

mappings between source and target also known as source-to-
target (s-t) dependencies Σ𝑠𝑡 (s-t tgds) are declarative expressions
manipulating schema elements, i.e. metadata rather than data.

Despite a wealth of research on the topic, the privacy-aware

variant of the data exchange problem has received little attention

to date. However, recent data protection regulations such as EU

GDPR or CCPA in the US bring the attention to the problem of

protecting personal data when transferring data across countries

and institutions, thus motivating our work. In a privacy-aware

data exchange scenario (as exemplified in Figure 1), the source

schema comes with a set of constraints called policy views V
representing the data that is safe to expose to the target over all
instances of the source. The policy views can be considered as

user views on the data of the source and can encode possible

formulations of the different purposes the data will undergo dur-

ing the exchange process as in many data protection regulations.

© 2021 Copyright held by the owner/author(s). Published in Proceedings of the

24th International Conference on Extending Database Technology (EDBT), March

23-26, 2021, ISBN 978-3-89318-084-4 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons

license CC-by-nc-nd 4.0.

source instance

over schema S

View instance

over schema V

(possibly)

unsafe instance

over schema T

safe instance

over schema T

Policy views V

MappingM

M ′
(repair ofM)

Figure 1: A privacy-aware data exchange settingwithmap-
pings and policy views.

This process entails the repairing of the original mappingM into

a mappingM ′
in order to make the exported target instance safe.

However, in order to realize such a data exchange scenario, one

needs to address the following issues: (1) given a set of privacy

restrictions on the source schema, what would it mean for a data

exchange setting to be safe under the proposed privacy restric-

tions?; (2) assuming that the privacy-preservation protocol is

fixed, how could we assess the safety of a data exchange setting

w.r.t. the privacy restrictions and provide strong guarantees of no
privacy leakage?; finally, in case of privacy violations, (3) how

could we repair the s-t tgds (and transform the mapping M into

a repaired mappingM ′
)?

To address the first issue, we build upon prior work on the

logical foundations of privacy-preserving data integration [5, 21],

and we tailor them to a data exchange setting. Hence, we de-

fine a set of s-t tgds to be safe w.r.t. the policy views if every
positive information that is kept secret by the policy views is

also kept secret by the s-t tgds. As we will see in subsequent

sections and contrarily to previous work, our proposed privacy-

preservation protocol is data-independent allowing us to provide

strong privacy-preservation guarantees over all instances of the

sources. As such, our work leads to the first practical frame-

work establishing privacy-conscious data exchange. The above

addresses the second aforementioned issue in that it enables a

schema-level enforcement of the privacy-preserving protocol

with strong guarantees. Regarding the third issue, we propose a

repairing algorithm for the proposed privacy-preservation proto-

col in case of detected unsafety. Since multiple repairs are pos-

sible, such an algorithm might leverage techniques for learning

the user preferences during the repairing process, which is also

a desirable feature in privacy enforcement over sensitive data.

In order to further illustrate the relevance of our problem, we

illustrate a running example inspired by a real-life data exchange

process between two different hospitals in the UK
1
.

1.1 Illustrative example
Consider the source schema S of NHS consisting of the following
relations: P, HN, HS, O and S as illustrated in Figure 2 (a). Re-

lation P stores for each person registered with the hospital, his

insurance number, his name, his ethnicity group and his county.

Relations HN and HS store for each patient who has been ad-

mitted to some hospital in the north or the south of UK, his

1
https://www.nhs.uk/

Series ISSN: 2367-2005 1 10.5441/002/edbt.2021.02

https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2021.02

Source schema S = {P(i, n, e, c);HN (i, d);HS (i, d);
O(i, t, p); S(i, n, e, c)}

Target schema T = {EthDis(e, d);CountyDis(c, d); SO(e)}
View schemas V = {V1 (e, d);V2 (c, d);V3 (t, p);V4 (e)}

(a) Schemas S, T and V

P(i, n, e, c) ∧ HN (i, d) → V1 (e, d) (1)

P(i, n, e, c) ∧ HS (i, d) → V2 (c, d) (2)

O(i, t, p) → V3 (t, p) (3)

S(i, n, e, c) → V4 (e) (4)

(b) Policy views V

P(i, n, e, c) ∧ HN (i, d) → EthDis(e, d) (5)

P(i, n, e, c) ∧ HN (i, d) → CountyDis(c, d) (6)

S(i, n, e, c) ∧ O(i, t, p) → SO(e) (7)

(c) Mapping from S to T.

Figure 2: Schema and tgds in our illustrative example

insurance number and the reason for being admitted to the hospi-

tal. Relation O stores information related to patients in oncology

departments and, in particular, their insurance numbers, their

treatment and their progress. Finally, relation S stores for each
student in UK, his insurance number, his name, his ethnicity

group and his county.

Consider also the setV comprising the policy views (1)–(4).

The policy views define the information that is safe to make

available to the public. View (1) projects the ethnicity groups

and the hospital admittance reasons for patients in the north of

UK; view (2) projects the counties and the hospital admittance

reasons for patients in the south of UK; view (3) projects the

treatments and the progress of patients of oncology departments;

view (4) projects the ethnicity groups of the school students. The

policy views are compliant with the NSS privacy preservation

protocol that is adopted at the hospital. Precisely, the NSS pri-

vacy preservation protocol considers as unsafe any non-evident

piece of information that can potentially de-anonymize an indi-

vidual. For example, views (1) and (2) do not leak any sensitive

information concerning the precise address of patients. Indeed,

they include patients from a very large geographical area thus

implying that the probability of de-anonymizing a patient is sig-

nificantly small. Similarly, views (3) and (4) are considered to be

safe: the probability of de-anonymizing patients of the oncology

department from view (3) is zero, since there is no way to link a

patient to his treatment or his progress, while view (4) projects

information which is already evident to public.

Finally, consider the following set of source-to-target depen-

dencies Σ𝑠𝑡 . Dependencies (5) and (6) project similar information

with the views (1) and (2), respectively. However, contrarily to

the views, they solely focus on patients in the north of UK. Finally,

dependency (7) projects the ethnicity groups of students who

have been in some oncology department, whereas view V4 aims

at concealing the information about the department in which a

student has been admitted.

The above example shows that the policy views defined within

one hospital might be in stark contrast with the mappings used to

export patient’s information to another hospital. This motivates

the aforementioned questions (1), (2) and (3) about establishing

formal guarantees for privacy preservation as well as enabling

repairing of the mappings in order to make them safe. To the

best of our knowledge, our work is the first to provide practical

algorithms for a logical privacy-preservation paradigm effective

in a real system [10], described as an open research challenge

in [5, 21]. Our technique is inherently data-independent thus

bringing the advantage that both the safety test and the repairing

operations are executed on the metadata provided through the

mappings and not on the underlying data instances.

The paper is organized as follows. Section 2 discusses the re-

lated work. Section 3 presents the basic concepts and notions. Sec-

tion 4 lays our privacy preservation protocol. Section 5 presents

our repairing algorithms and their properties. mechanism. Sec-

tion 6 outlines the experimental results, while Section 7 concludes

our work. The code base along with the experimental data are

publicly available at [12].

2 RELATEDWORK
Privacy in data integration. Safety of secret queries formu-

lated against a global schema and adhering to the certain an-

swers semantics has been tackled in previous theoretical work

[21]. They define the optimal attack that characterizes a set of

queries that an attacker can issue to which no further queries

can be added to infer more information. They then define the

privacy guarantees against the optimal attack by considering the

static and the dynamic case, the latter corresponding to modifica-

tions of the schemas or the GLAV mappings. The same definition

of secret queries and privacy setting is adopted in [5], which

instead focuses on boolean conjunctive queries as policy views

and on the notion of safety with respect to a given mapping.

An ontology-based integration scenario is assumed in which the

target instance is produced via a set of mappings starting from

an underlying data source. Whereas they study the complexity

of the view compliance problem in both data-dependent and

data-independent setting, we focus on the latter and extend it

to non-boolean conjunctive queries as policy views. We further

consider multiple policy views altogether in the design of a prac-

tical algorithm for checking the safety of schema mappings and

for repairing the mappings in case of violations.

Privacy in data publishing. Data publishing accounts for

the settings in which a view exports or publishes the information

of an underlying data source. Privacy and information disclosure

in data publishing linger over the problem of avoiding the dis-

closure of the content of the view under a confidential query. A

probabilistic formal analysis of the query-view security model

has been presented in [20], where they offer a complete treatment

of the multi-party collusion and the use of external adversarial

knowledge. Access control policies using cryptography are used

in [20] to enforce the authorization to an XML document. Our

work differs from theirs on both the considered setting, as well

as the adopted techniques and the adopted privacy protocol.

Striking the balance between utility and privacy in a logic-based

framework has been the object of investigation in recent studies

focusing on data publishing for Linked Data [13, 14, 19]. The

problem there is remarkably different from ours since they focus

on publishing a single RDF dataset by applying privacy and util-

ity queries in SPARQL, checking for their compatibility, and for

update operations realizing the privacy and utility constraints.

Controlled Query Evaluation. Controlled Query Evalua-

tion is a confidentiality enforcement framework introduced in

[23] and refined in [9],[7] and [8], in which a policy declaratively

specifies sensitive information and confidentiality is enforced by

a censor. Provided a query as input, a censor verifies whether the

2

query leads to a violation of the policy and in case of a violation

it returns a distorted answer. It has been recently adopted in

ontologies expressed with Datalog-like rules and in lightweight

Description Logics [18]. They assume that the policies are only

known to database administrators and not to ordinary users and

that the data has protected access through a query interface. Our

assumptions and setting are quite different, since our multiple

policy views are accessible to every user and our goal is to render

the s-t mappings safe with respect to a set of policies via repairing

and rewriting.

Data privacy. Previous work has addressed access control to

protect database instances at different levels of granularity [22], in

order to combine encrypted query processing and authorization

rules. Our work being logic-based and declarative does not deal

with these authorization methods, as well as does not consider

any concrete privacy or anonymization algorithms operating on

data instances, such as differential privacy [15] and k-anonymity

[24]. Further exploring the connection between concrete privacy

enforcement and logic-based privacy formalisms is the subject

of future investigation.

Data exchange. The vast literature on data exchange [17] has
inspired our work. In the considered scenarios, the source and

target schema are considered along with s-t mappings and target

dependencies, the latter being both egds and tgds. Similarly, past

work on degugging schema mappings [11] has focused on all pos-

sible routes generated by the exchange process when incomplete

or undefined values in one or more variables are exported from

the source instance. By opposite, we focus in this paper on the

case in which s-t mappings are coupled with source dependencies

under the form of policy views, the latter being typical in privacy

scenarios and unexplored in the classical data exchange setting.

3 PRELIMINARIES
Relational symbols and critical instances. Let Const, Nulls,
and Vars be mutually disjoint, infinite sets of constant values,
labeled nulls, and variables, respectively. A schema is a set of rela-
tion names (or just relations), each associated with a nonnegative

integer called arity. A relational atom has the form 𝑅(®𝑡) where
𝑅 is an 𝑛-ary relation and ®𝑡 is an 𝑛-tuple of terms, where a term
is either a constant, a labelled null, or a variable. An equality
atom has the form 𝑡1 = 𝑡2 where 𝑡1 and 𝑡2 are terms. An atom is

called ground or fact, when it does not contain any variables. A

position in an 𝑛-ary atom 𝐴 is an integer 1 ≤ 𝑖 ≤ 𝑛. We denote

by𝐴|𝑖 , the 𝑖-th term of𝐴. An instance 𝐼 is a set of relational facts.

An atom (resp. an instance) is null-free if it does not contain la-

belled nulls. The critical instance of a schema S, denoted as CrtS,
is the instance containing a fact of the form 𝑅(®∗), for each 𝑛-ary
relation 𝑅 ∈ S, where ∗ is called the critical constant and ®∗ is an
𝑛-ary vector. A substitution 𝜎 is a mapping from variables into

constants or labelled nulls.

Dependencies and queries A dependency describes the seman-

tic relationship between relations. A Tuple Generating Dependency
(tgd) is a formula of the form ∀®𝑥 𝜆(®𝑥) → ∃®𝑦 𝜌 (®𝑥, ®𝑦), where 𝜆(®𝑥)
and 𝜌 (®𝑥, ®𝑦) are conjunctions of relational, null-free atoms. An

Equality Generating Dependency (egd) is a formula of the form

∀®𝑥 𝜆(®𝑥) → 𝑥𝑖 = 𝑥 𝑗 , where 𝜆(®𝑥) is a conjunction of relational,

null-free atoms. We usually omit the quantification for brevity.

We refer to the left-hand side of a tgd or an egd 𝛿 as the body, de-
noted as body(𝛿), and to the right-hand side as the head, denoted
as head(𝛿). An instance 𝐼 satisfies a dependency 𝛿 , written 𝐼 |= 𝛿

if each homomorphism from body(𝛿) into 𝐼 can be extended to a

homomorphism ℎ′ from head(𝛿) into 𝐼 . An instance 𝐼 satisfies a

set of dependencies Σ, written as 𝐼 |= Σ, if 𝐼 |= 𝛿 holds, for each

𝛿 ∈ Σ. The solutions of an instance 𝐼 w.r.t. Σ is the set of all in-

stances 𝐽 such that 𝐽 ⊇ 𝐼 and 𝐽 |= Σ. A solution is called universal
if it can be homomorphically embedded to each solution of 𝐼 w.r.t.

Σ.
A conjunctive query (CQ) is a formula of the form ∃®𝑦 ∧

𝑖 𝐴𝑖 ,

where 𝐴𝑖 are relational, null-free atoms. A CQ is boolean if it

does not contain any free variables. A substitution 𝜎 is an answer
to a CQ𝑄 on an instance 𝐼 if the domain of 𝜎 is the free variables

of 𝑄 , and if 𝜎 can be extended to a homomorphism from

∧
𝑖 𝐴𝑖

into 𝐼 . We denote by 𝑄 (𝐼), the answers to 𝑄 on 𝐼 .

Let S be a source schema and let T be a target schema. A

mapping M from S to T is defined as a triple (S, T, Σ), where Σ =

Σ𝑠𝑡 ;, i.e. the set of the s-t dependencies over S and T. We usually

refer to the dependencies in Σ𝑠𝑡 as mappings. A variable 𝑥 of a

mapping 𝜇 ∈ Σ𝑠𝑡 is called exported if it occurs both in the body

and the head of 𝜇. We denote by exported(𝜇), the set of exported
variables of 𝜇. The inverse of set of s-t dependencies Σ𝑠𝑡 , denoted
as Σ−1𝑠𝑡 is the set consisting, for each mapping 𝜇 in Σ𝑠𝑡 of the

form 𝜆(®𝑥) → 𝜌 (®𝑥, ®𝑦), a mapping 𝜇−1 of the form 𝜌 (®𝑥, ®𝑦) → 𝜆(®𝑥).
We focus on GAV mappings in this paper, thus assuming that

®𝑦 is empty. Moreover, we consider the setting in which Σ only

consists of Σ𝑠𝑡 thus not including Σ𝑡 . This implies that target egds

and target tgds are excluded, since, despite their usage in data

exchange, their role is less understood in the privacy-preserving

variant considered in this paper.

4 PRIVACY PRESERVATION
In this section, we introduce our notion of privacy preservation.

LetV be a set of policy views over S, representing the information

that is safe to expose for instances 𝐼 of S. Our goal is to verify

whether a user-defined mappingM = (S, T, Σ) is safe w.r.t. the
views in a setV . Below, we will introduce a notion for assessing

the safety of a GAV mappingM2 with respect to a GAV mapping

M1, when both make use of the same source schema S. Moreover,

let Σ𝑖 = Σ𝑠𝑡𝑖 be the dependencies associated withM𝑖 .

4.1 A formal privacy-preservation protocol
Our notion of privacy preservation builds on the logical foun-

dations introduced in [5] for ontology-based data integration

for boolean queries. However, we extend the notion of privacy

preservation from [5] to a relational data exchange setting in the

presence of non-boolean conjunctive queries. First, we define the

notion of disclosure of a CQ by a mapping as follows:

Definition 4.1. A mappingM = (S, T, Σ) does not disclose a CQ
𝑝 over S on any instance of S, if for each instance 𝐼 of S there

exists an instance 𝐼 ′ such that 𝐼 ≡M 𝐼 ′ and 𝑝 (𝐼 ′) = ∅.

The problem of checking whether a mappingM over S does

not disclose a boolean and constants-free CQ 𝑝 on any instance

of S is decidable for GAV mappings consisting of CQ views [5].

In particular,M does not disclose 𝑝 on any instance of S if and

only if there does not exist a homomorphism from 𝑝 into the

unique instance computed by the visible chase visChaseS (Σ) of Σ
under the critical instance CrtS of S. The visible chase computes

a universal source instance defined as follows:

Definition 4.2. 7 Given a mappingM = (S, T, Σ), an instance 𝐼

is a universal source instance over S if for any instance 𝐽 over the

source schema S, there exists an homomorphism ℎ from 𝐽 into 𝐼

3

such that for any constant 𝑐 from 𝐽 that is made visible through

M, ℎ(𝑐) = ∗.

The only constant occurring in the instance computed by

visChaseS (Σ) is the critical constant ∗ and it represents any other
constant that can occur in the source instance.

We introduce our own variant of the visible chase, which

organizes the facts derived during chasing into subinstances

called bags. Algorithm 1 describes the steps of the proposed

variant. Please note that Algorithm 1 derives the same set of

facts with the algorithm from [5]. However, instead of keeping

these facts in a single set, we keep them in separate bags. Before

presenting Algorithm 1, we will introduce a couple of useful new

notions. The first notion serves the need of defining derived egds

that allow to unify as many labeled nulls as possible with the

critical constant in the target instance. The second notion allows

to define relevant bags for which this unification must hold. Both

notions are exploited by the visible chase (Algorithm 1) whose

last step triggers the obtained egds.

Definition 4.3. Consider an instance 𝐼 . Consider also a s-t

tgd 𝛿 and a homomorphism ℎ from body(𝛿) into 𝐼 , such that

ℎ(𝑥) ∈ Nulls, for some 𝑥 ∈ exported(𝛿). Then, we say that the

egd

body(𝛿) →
∧

∀𝑥 ∈exported(𝛿) :ℎ (𝑥) ∈Nulls
𝑥 ≈ ∗ (8)

is derived from 𝛿 in 𝐼 . For an egd 𝜖 that is derived from a s-t tgd

𝛿 in 𝐼 , tgd(𝜖) denotes 𝛿 . For a set of s-t tgds Σ and an instance 𝐼 ,

Σ≈ is the set comprising for each 𝛿 ∈ Σ, the egd that is derived

from 𝛿 in 𝐼 .

Definition 4.4. Consider an instance 𝐼 , whose facts are orga-

nized into the bags 𝛽1, . . . , 𝛽𝑚 . Consider also a derived egd 𝛿 of

the form (8) and an active trigger ℎ for 𝛿 in 𝐼 . A bag 𝛽𝑖 is relevant
for 𝛿 and ℎ in 𝐼 , where 1 ≤ 𝑖 ≤ 𝑚, if some fact 𝐹 ∈ ℎ(body(𝛿))
occurs in 𝛽𝑖 and if some ℎ(𝑥) is a labeled null occurring in 𝛽𝑖 ,

where 𝑥 ∈ exported(𝛿).
Let 𝛽 𝑗1 , . . . , 𝛽 𝑗𝑘 ⊆ 𝛽1, . . . , 𝛽𝑚 be the set of bags that are rele-

vant for 𝛿 and ℎ in 𝐼 . Let 𝜈 = {ℎ(𝑥 𝑗) ↦→ ℎ(𝑥𝑖)} if ℎ(𝑥𝑖) = ∗, and
𝜈 = {ℎ(𝑥𝑖) ↦→ ℎ(𝑥 𝑗)} if ℎ(𝑥𝑖) ∉ Const, where 𝑥𝑖 , 𝑥 𝑗 are variables
from exported(𝛿). Then, the derived bag 𝛽 for 𝛿 andℎ in 𝐼 consists
of the facts in

⋃𝑘
𝑙=1

𝜈 (𝛽 𝑗𝑙). The bags 𝛽 𝑗1 , . . . , 𝛽 𝑗𝑘 are called the pre-
decessors of 𝛽 . We use 𝛽 𝑗𝑙 ≺ 𝛽 to denote that 𝛽 𝑗𝑙 is a predecessor

of 𝛽 , for 1 ≤ 𝑙 ≤ 𝑘 .

We are now ready to proceed with the description of Algo-

rithm 1. Given a s-t mapping, Algorithm 1 computes a universal

source instance whose facts are organized into bags. Algorithm 1

first computes the instance 𝐼0 by chasing CrtS using the s-t tgds,

line 1. It then chases 𝐼0 with the inverse s-t tgds Σ−1, line 2. and
proceeds by chasing 𝐼1 with the set of all derived egds Σ≈, for
each 𝛿 ∈ Σ in 𝐼1, line 4. Algorithm 1 computes a fresh bag at each

chase step. In particular, for each active trigger ℎ for 𝛿 in 𝐼 , Algo-

rithm 1 adds a fresh bag with facts ℎ′(head(𝛿)), if 𝛿 ∈ Σ ∪ Σ−1,
line 9; otherwise, if 𝛿 ∈ Σ≈, then it adds the derived bag for 𝛿 and

ℎ in 𝐼 , see Definition 4.4, line 20.

Note that, Σ≈ aims at “disambiguating” as many labeled nulls

occurring in 𝐼1 as possible, by unifying them with the critical

constant ∗. Since ∗ represents the information that is “visible" to a

third-party, chasing with Σ≈ computes the maximal information
from the source instance a third-party has access to. Note that

Algorithm 1 always terminates [5]. Let 𝐵 = visChaseS (Σ). We

will denote by 𝐼S (Σ), the instance
⋃

𝛽∈𝐵 𝛽 .

Algorithm 1 visChaseS (Σ)
1: 𝐵0 ··= bagChaseTGDs(Σ,CrtS)
2: 𝐵1 ··= bagChaseTGDs(Σ−1,⋃𝛽∈𝐵0

𝛽 \ CrtS)
3: Let Σ≈ be the set of all derived egds Σ≈, for each 𝛿 ∈ Σ in 𝐼1
4: return bagChaseEGDs(Σ≈, 𝐵0 ∪ 𝐵1)

5: procedure bagChaseTGDs(Σ, 𝐼)
6: 𝐵 ··= ∅
7: for each 𝛿 ∈ Σ do
8: for each active trigger ℎ : body(𝛿) → 𝐼 do
9: create a fresh bag 𝛽 with facts ℎ′(head(𝛿))
10: add 𝛽 to 𝐵

11: return 𝐵

12: procedure bagChaseEGDs(Σ≈, 𝐵)
13: 𝑖 ··= 0; 𝐼𝑖 ··=

⋃
𝛽∈𝐵 𝛽

14: do
15: 𝑖 ··= 𝑖 + 1

16: for each (𝛿 ∈ Σ≈ of the form (8) do
17: for each active trigger ℎ : body(𝛿) → 𝐼𝑖−1 do
18: if ℎ(𝑥) ≠ ∗, for some 𝑥 ∈ exported(𝛿) then
19: Let 𝛽 be the derived bag for 𝛿 and ℎ in 𝐼𝑖−1
20: add 𝛽 to 𝐵

21: 𝐼𝑖 ··= 𝐼𝑖 ∪ 𝛽

22: while 𝐼𝑖−1 ≠ 𝐼𝑖
23: return 𝐵

Example 4.5. We demonstrate the visible chase algorithm over

the policy views and the s-t dependencies from Example 1.1. We

show how the algorithm runs first on the policy views V and

then show the computation on Σ𝑠𝑡 .
We first present the computation of 𝐼S (V) = ⋃

𝛽∈visChaseS (V) 𝛽 .
The critical instance CrtS of S consists of the facts shown in

the following Eq. (9)

P(∗, ∗, ∗, ∗) HN (∗, ∗) HS (∗, ∗) O(∗, ∗, ∗) S(∗, ∗, ∗, ∗) (9)

where ∗ is the critical constant.
The instance 𝐼1 computed by chasing the output of line 1 using

V−1
will consist of the facts

P(ni, nn, ∗, nc) HN (ni, ∗) O(n′′i , ∗, ∗) (𝐼1)

P(n′i , n
′
n, ne, ∗) HS (n′i , ∗) S(n′′′i , n′′′n , ∗, n′′′c)

where the constants prefixed by n are labeled nulls created while

chasing CrtS with the inverse mappings. Since there exists no

homomorphism from the body of any s-t tgd into 𝐼1 mapping

an exported variable into a labeled null, Σ≈ will be empty, see

Definition 4.3. Thus, 𝐼S (V) = 𝐼1.

We next present the computation of 𝐼S (Σ𝑠𝑡) =
⋃

𝛽∈visChaseS (Σ𝑠𝑡) 𝛽 .
The instance 𝐼 ′

1
computed by chasing the output of line 1 by Σ−1𝑠𝑡

will consist of the facts

P(ni, nn, ∗, nc) HN (ni, ∗) S(n′′i , n
′′
n , ∗, n′c) (𝐼 ′

1
)

P(n′i , n
′
n, ne, ∗) HN (n′i , ∗) O(n′′i , n

′′
t , n

′′
p)

Since there exists a homomorphism from the body of 𝜇𝑒 into 𝐼
′
1

mapping the exported variable 𝑒 into the labeled null ne, and
since there exists another homomorphism from the body of 𝜇𝑐
into 𝐼 ′

1
mapping the exported variable 𝑐 into the labeled null nc,

Σ≈ will comprise the egds 𝜖1 and 𝜖2 shown below

P(i, n, e, c) ∧ HN (i, d) → e ≈ ∗ (𝜖1)

P(i, n, e, c) ∧ HN (i, d) → c ≈ ∗ (𝜖2)

4

The last step of the visible chase involves chasing 𝐼 ′
1
using Σ≈.

W.l.o.g, assume that the chase considers first 𝜖1 and then 𝜖2.

During the first step of the chase, there exists a homomorphism

from body(𝜖1) into 𝐼 ′
1
. Hence, ne = ∗. During the second step

of the chase, there exists a homomorphism from body(𝜖2) into
𝐼 ′
1
and, hence, nc = ∗. The instance computed at the end of the

second round of the chase will consist of the facts

P(ni, nn, ∗, ∗) HN (ni, ∗) HN (n′i , ∗) (10)

S(n′′i , n
′′
n , ∗, n′c) O(n′′i , n

′′
t , n

′′
p)

Since there exists no active trigger for 𝜖1 or 𝜖2 in the above

instance (Eq (10)), the chase will terminate.

The facts in 𝐼S (Σ𝑠𝑡) will be organized into the following bags

𝛽1–𝛽5 (one bag per line)

SO(e)
⟨𝜇−1𝑠 ,ℎ1 ⟩−−−−−−−→ S(n′′i , n

′′
n , ∗, n′c),O(n′′i , n

′′
t , n

′′
p)

CountyDis(c, d)
⟨𝜇−1𝑐 ,ℎ2 ⟩−−−−−−−→ P(n′i , n

′
n, ne, ∗),HN (n′i , ∗)

EthDis(e, d)
⟨𝜇−1𝑒 ,ℎ3 ⟩−−−−−−−→ P(ni, nn, ∗, nc),HN (ni, ∗)

P(n′i , n
′
n, ne, ∗),HN (n′i , ∗)

⟨𝜖1,ℎ4 ⟩−−−−−−→ P(n′i , n
′
n, ∗, ∗),HN (n′i , ∗)

P(ni, nn, ∗, nc),HN (ni, ∗)
⟨𝜖2,ℎ5 ⟩−−−−−−→ P(ni, nn, ∗, ∗),HN (ni, ∗)

ℎ1 = {i ↦→ n′i , n ↦→ n′n, e ↦→ ne, c ↦→ ∗, d ↦→ ∗}
ℎ2 = {c ↦→ ∗, d ↦→ ∗}
ℎ3 = {e ↦→ ∗, d ↦→ ∗}
ℎ4 = {i ↦→ n′i , n ↦→ n′n, e ↦→ ne, c ↦→ ∗, d ↦→ ∗}
ℎ5 = {i ↦→ ni, n ↦→ nn, e ↦→ ∗, c ↦→ nc, d ↦→ ∗}

The contents of the bags correspond to the right-hand side of

the arrows. However, for presentation purposes, we also show

the related dependency 𝛿 and the homomorphism ℎ that lead to

the derivation of each bag (shown at the top of each arrow), as

well as, the facts in ℎ(body(𝛿)) (left-hand side of each arrow).

The obtained bags will be part of the universal source instance

𝐼S (Σ𝑠𝑡). Such an instance will be used in Section 5 in order to

apply the notion of safety in the repairing of the underlying

mappings Σ𝑠𝑡 .

4.2 Preserving the privacy of policy views
We consider a mapping M = (S, T, Σ) to be safe w.r.t. a view

mappingMV = (S,V,V) (withV being the set of policy views

and V being the schema of the views as shown in Figure 1), ifM
does not disclose the information that is also not disclosed by

MV. Definition 4.6 and Theorem 4.7 presented below formalize

our notion of privacy preservation and show that there exists a

simple process for verifying whetherM is safe w.r.t.MV.

Definition 4.6. A mappingM2 = (S, T2, Σ2) preserves the pri-
vacy of a mapping M1 = (S, T1, Σ1) on all instances of S, if for
each constants-free CQ 𝑝 over S, if 𝑝 is not disclosed byM1 on

any instance of S, then 𝑝 is not disclosed byM2 on any instance

of S.
Theorem 4.7. A mappingM2 = (S, T2, Σ2) preserves the pri-

vacy of a mappingM1 = (S, T1, Σ1) on all instances of S, if and
only if there exists a homomorphism ℎ from 𝐼S (Σ2) into 𝐼S (Σ1),
such that ℎ(∗) = ∗.

Proof. (Sketch) First we show that the following holds:

Lemma 4.8. AmappingM = (S, T, Σ) does not disclose a constants-
free CQ 𝑝 over S on any instance of S, iff ®∗ ∉ 𝑝 (𝐽), where 𝐽 = 𝐼S (Σ𝑠𝑡).

Proof. By adapting the proof technique of Theorem 16 from

[5], we can show that 𝐽 = 𝐼S (Σ𝑠𝑡) is a universal source instance
𝐼S (Σ) satisfying the following property: for each pair of source

instances 𝐼 and 𝐼 ′, such that 𝐼 ′ is indistinguishable from 𝐼 w.r.t. the

mapping M, there exists a homomorphism ℎ from 𝐼 ′ into 𝐼S (Σ)
mapping each schema constant into the critical constant ∗. Due
to the existence of a homomorphismℎ from 𝐼 ′ into 𝐼S (Σ), for each
pair of indistinguishable source instances 𝐼 and 𝐼 ′, we can see

that if ®∗ ∉ 𝑝 (𝐽) for a constants-free CQ 𝑝 , then 𝑝 (𝐼 ′) = ∅. Due to
the above and due to Definition 4.1, it follows that M = (S, T, Σ)
does not disclose a constants-free CQ 𝑝 over S on any instance

of S. □

Lemma 4.8 states that, in order to check if a constants-free CQ

is safe according to Definition 4.1, we need to check if the critical

tuple is among the answers to 𝑝 over the instance computed by

visChaseS (Σ). Next, we show the following lemma.

Lemma 4.9. Given two instances 𝐼1 and 𝐼2, the following are
equivalent

(1) for each CQ 𝑝 , if ®𝑢 ∈ 𝑝 (𝐼1), then ®𝑢 ∈ 𝑝 (𝐼2), where ®𝑢 is a
vector of constants

(2) there exists a homomorphism from 𝐼1 to 𝐼2 preserving the
constants of 𝐼1

Proof of Lemma 4.9. (2)⇒(1). Suppose that there exists a ho-

momorphism ℎ from 𝐼1 to 𝐼2 preserving the constants of 𝐼1. Sup-

pose also that ®𝑢 ∈ 𝑝 (𝐼1), with 𝑝 being a CQ. This means that there

exists a homomorphism ℎ1 from 𝑝 into 𝐼1 mapping each free vari-

able 𝑥𝑖 of 𝑝 into 𝑢𝑖 , for each 1 ≤ 𝑖 ≤ 𝑛, where 𝑛 is the number

of free variables of 𝑝 . Since the composition of two homomor-

phisms is a homomorphism and since ℎ preserves the constants

of 𝐼1 due to the base assumptions, this means that ℎ ◦ ℎ1 is a

homomorphism from 𝑝 into 𝐼2 mapping each free variable 𝑥𝑖 of 𝑝

into 𝑡𝑖 , for each 1 ≤ 𝑖 ≤ 𝑛. This completes this part of the proof.

(1)⇒(2). Let 𝑝1 be a CQ formed by creating a non-ground atom

𝑅(𝑦1, . . . , 𝑦𝑛) for each ground atom 𝑅(𝑢1, . . . , 𝑢𝑛) ∈ 𝐼1, by taking

the conjunction of these non-ground atoms and by converting

into an existentially quantified variable every variable created

out of some labelled null. Let ®𝑥 denote the free variables of 𝑝1
and let 𝑛 = | ®𝑥 |. From the above, it follows that there exists a

homomorphism ℎ1 from 𝑝1 into 𝐼1 mapping each 𝑥𝑖 ∈ ®𝑥 into

some constant occurring in 𝐼1. Let ®𝑢 ∈ 𝑝1 (𝐼1). From (1), it follows

that ®𝑢 ∈ 𝑝1 (𝐼2) and, hence, there exists a homomorphism ℎ2 from

𝑝1 into 𝐼2 mapping each 𝑥𝑖 ∈ ®𝑥 into 𝑢𝑖 , for each 1 ≤ 𝑖 ≤ 𝑛. Since

ℎ1 ranges over all constants of 𝐼1 and since ℎ1 (𝑥𝑖) = ℎ2 (𝑥𝑖) holds
for each 1 ≤ 𝑖 ≤ 𝑛, it follows that there exists a homomorphism

from 𝐼1 to 𝐼2 preserving the constants of 𝐼1. This completes the

second part of the proof. □

Lemma 4.9 can be restated as follows:

Lemma 4.10. Given two instances 𝐼1 and 𝐼2, the following are
equivalent

(1) for each CQ 𝑝 , if ®𝑡 ∉ 𝑝 (𝐼2), then ®𝑡 ∉ 𝑝 (𝐼1)
(2) there exists a homomorphism from 𝐼1 to 𝐼2

We are now ready to return to themain part of the proof. Given

a CQ 𝑝 over a source schema S, and a mappingM defined as the

triple (S, T, Σ), where T is a target schema and Σ is a set of s-t

dependencies, we know from Proposition 4.8 that if M discloses

𝑝 on some instance of S, then there exists a homomorphism of

𝑝 into visChaseS (Σ) mapping the free variables of 𝑝 into the

critical constant ∗.

5

From the above, we know that M2 does not preserve the pri-

vacy of M1 if there exists a CQ 𝑝 over S, such that ®∗ ∉ 𝐽1 and

®∗ ∈ 𝐽2, where 𝐽1 = 𝐼S (Σ1) and 𝐽2 = 𝐼S (Σ2). We will now prove

thatM2 preserves the privacy ofM1 iff there exists a homomor-

phism from 𝐽2 into 𝐽1 that preserves the critical constant ∗. This
will be referred to as conjecture (𝐶).

(⇒) IfM2 preserves the privacy ofM1, then for each CQ 𝑝 , if

®∗ ∉ 𝑝 (𝐽1), then ®∗ ∉ 𝑝 (𝐽2). From the above and from Lemma 4.10,

it follows that there exists a homomorphism 𝜙 : 𝐽2 → 𝐽1, such

that 𝜙 (∗) = ∗.
(⇐) The proof proceeds by contradiction. Assume that there

exists a homomorphism ℎ from 𝐽2 into 𝐽1 preserving ∗, butM2

does not preserve the privacy of M1. We will refer to this as-

sumption as assumption (𝐴1). From assumption (𝐴1) and the

discussion above it follows that there exists a CQ 𝑝 over S such

that ®∗ ∉ 𝑝 (𝐽1) and ®∗ ∈ 𝑝 (𝐽2). Letℎ2 be the homomorphism from 𝑝

into 𝐽2 mapping its free variables into ∗. Since the composition of

two homomorphisms is a homomorphism, this means that ℎ ◦ℎ2
is a homomorphism from 𝑝 into 𝐽1 mapping its free variables

into ∗, i.e., ®∗ ∈ 𝑝 (𝐽1). This contradicts our original assumption

and hence concludes the proof of conjecture (𝐶). Conjecture (𝐶)

witnesses the decidability of the instance-independent privacy

preservation problem: in order to verify whether M2 preserves

the privacy of M1 we only need to check if there exists a homo-

morphism 𝜙 : 𝐼S (Σ2) → 𝐼S (Σ1), such that 𝜙 (∗) = ∗. □

Theorem 4.7 states that in order to verify whether M2 is safe

w.r.t. M1, we need to compute 𝐼S (Σ1) and 𝐼S (Σ2) and check if

there exists a homomorphism from the second instance into the

first one that maps ∗ into itself. If there exists such a homomor-

phism, we say that 𝐼S (Σ1) is safe w.r.t. 𝐼S (Σ2), or simply safe, and

we say that it is unsafe otherwise.

Example 4.11. Continuing with Example 1.1, we can see that

the s-t tgds are not safe w.r.t. the policy views according to

Theorem 4.7, since there does not exist a homomorphism from

the instance 𝐼S (Σ𝑠𝑡) into the instance 𝐼S (V). This means that

there exists information which is disclosed by Σ𝑠𝑡 in some in-

stance that satisfies Σ𝑠𝑡 , but it is not disclosed by V . Indeed,

from S(n′′i , n
′′
n , ∗, n′c) and O(n′′i , n

′′
t , n

′′
p), we can see that we can

potentially leak the identity of a student who has been to an

oncology department. This can happen if there exists only one

student in the school coming from a specific ethnicity group and

this ethnicity group is returned by 𝜇𝑠 . Please note that the policy

views are safe w.r.t. this leak. Indeed, it is impossible to derive this

information through reasoning over the returned tuples under

the input instance and the views V3 and V4.
Furthermore, by looking at the factsP(ni, nn, ∗, ∗) andHN (ni, ∗),

we can see that we can potentially leak the identity and the dis-

ease of a patient who has been admitted to some hospital in the

north of UK. This can happen if there exists only one patient

who relates to the county and the ethnicity group returned by

𝜇𝑒 and 𝜇𝑐 . Note that the policy views V1 and V2 do not leak this

information, since it is impossible to obtain the county and the

ethnicity group of an NHS patient at the same time.

5 REPAIRING UNSAFE MAPPINGS
In Section 4, we presented our privacy preservation protocol and

a technique for verifying whether a mapping is safe w.r.t. another

one, over all source instances. This section presents an algorithm

for repairing an unsafe mapping M w.r.t. a set of policy views

V . This is a fundamental operation needed to amend mappings

Algorithm 2 repair(Σ,V, prf, 𝑛)
1: Σ1 ··= frepair(Σ,V, prf)
2: Σ2 ··= srepair(Σ1,V, prf, 𝑛)
3: return Σ2

whenever the policy views are modified and become unsafe (e.g.

in the presence of data protection regulations).

Algorithm 2 summarizes the steps of the proposed algorithm.

The inputs to it are, apart from Σ and V , a positive integer 𝑛

which will be used during the second step of the repairing pro-

cess and a preference mechanism prf for ranking the possible

repairs. In the simplest scenario, the preferencemechanism imple-

ments a fixed function for ranking the different repairs. However,

it can also employ supervised learning techniques in order to

progressively learn the user preferences by looking at his prior

decisions.

Since a mapping M is safe w.r.t. V if the instance 𝐼S (Σ) is
safe according to Theorem 4.7, Algorithm 2 rewrites the tgds in

M, such that the derived visible chase instances are safe. The

rewriting takes place in two steps. The first step rewrites Σ into

a partially-safe set of s-t dependencies Σ1, while the second step

rewrites the output of the first one into a new set of s-t depen-

dencies Σ2, such that 𝐼S (Σ2) is safe. As we will explain later on,

partial-safety ensures that the intermediate instance 𝐼1 produced

by visChaseS (Σ1) at line 2 of Algorithm 1 is safe, but it does

not provide strong privacy guarantees. The benefit of this two-

step approach is that it allows repairing one or a small set of

dependencies at a time.

5.1 Computing partially-safe mappings
Since the problem of safety is reduced to the problem of checking

for a homomorphism from 𝐼S (Σ) into 𝐼S (V), a first test towards
checking for such a homomorphism is to look if the mappings

in Σ would lead to such a homomorphism or not. For instance,

by looking at 𝜇𝑠 in Example 1.1 it is easy to see that it leaks

sensitive information, since it involves a join between students

and oncology departments, which does not occur in 𝐼S (V).

Definition 5.1. A mapping M = (S, T, Σ) is partially-safe w.r.t.
MV = (S,V,V) on all instances of S, if there exists a homomor-

phism from chase(Σ−1,CrtT) \ CrtT into 𝐼S (V).

From Algorithm 1, it follows that Σ is partially-safe iff the

intermediate instance 𝐼1 computed by visChaseS (Σ) is safe.

Proposition 5.2. A mapping M = (S, T, Σ) is partially-safe
w.r.t.MV = (S,V,V) on all instances of S, if for each 𝜇 ∈ Σ, there
exists a homomorphism from body(𝜇) into 𝐼S (V) mapping each
𝑥 ∈ exported(𝜇) into the critical constant ∗.

Note that according to Proposition 5.2, in our running example

Σ𝑠𝑡 would be partially-safe, if 𝜇𝑠 ∉ Σ𝑠𝑡 , then since there exist

homomorphisms from the bodies of 𝜇𝑠 and 𝜇𝑐 into 𝐼S (V), map-

ping their exported variables into ∗. It is also easy to show the

following

Remark 1. AmappingM = (S, T, Σ) is safew.r.t.MV = (S,V,V)
on all instances of S, only if it is partially-safe w.r.t. MV on all
instances of S. □

Proposition 5.2 presents a quite convenient, yet somewhat

expected, finding: in order to obtain a partially-safe mapping, it

suffices to repair each s-t dependency independently of the others.
Furthermore, the repair of each 𝜇 ∈ Σ involves breaking joins

6

and hiding exported variables, such that the repaired dependency

𝜇𝑟 satisfies the criterion in Proposition 5.2.

We make use of the result of Proposition 5.2 in Algorithm 3.

Algorithm 3 obtains, for each 𝜇 ∈ Σ, a set of rewritings R𝜇 , out of

which we will choose the best rewriting according to prf. The set
R𝜇 consists of all rewritings that differ from 𝜇 w.r.t. the variable

repetitions in the bodies of the rules and the exported variables.

Below, we present the steps of Algorithm 3.

For each s-t tgd 𝜇 and for each atom 𝐵 ∈ body(𝜇), Algorithm 3

constructs a fresh atom𝐶 and adds𝐶 to a set C. The set of atoms C
provides us with the means to identify all repairs of 𝜇 that involve

breaking joins and hiding exported variables. In particular, each

homomorphism 𝜉 from C into 𝐼S (V) corresponds to one repair

of 𝜇. In lines 12–25, Algorithm 3 modifies each atom 𝐵 ∈ body(𝜇)
by taking into account prior body atom modifications. The prior

modifications are accumulated in the relation 𝜌 and the mapping

𝜓 . The relation 𝜌 keeps for each variable 𝑥 from body(𝜇), the
fresh variables that were used to replace 𝑥 during prior steps of

the repairing process, while𝜓 is a substitution from the partially

repaired body into 𝐼S (V). In particular, at the end of the 𝑖-th

iteration of the loop in line 12,𝜓 holds the substitution from the

first repaired 𝑖 atoms from body(𝜇) into 𝐼S (V). We adopt this

approach instead of replacing variable 𝑥 in position 𝑝 always by

a fresh variable, in order to minimize the number of the joins we

break.

Below, we describe how Algorithm 3 modifies each body atom

of 𝜇, w.r.t. a homomorphism 𝜉 , lines 9–27. Let 𝐶 = 𝜈 (𝐵) be the
fresh body atom that was constructed out of 𝐵 in line 5. For each

atom 𝐵 ∈ body(𝜇) and for each 𝑝 ∈ pos(𝐵), if the variable 𝑦 in

position 𝑝 of 𝐶 is not mapped to the critical constant ∗ via 𝜉 and
𝐵 |𝑝 is an exported variable, this means that the variable sitting in
position 𝑝 of 𝐵 should not be exported (see first condition in line 16).
Similarly, if the variable sitting in position 𝑝 of 𝐵 is mapped to a

different constant than the one that𝑦 maps via 𝜉 , then this means

that the variable sitting in position 𝑝 of 𝐵 introduces an unsafe
join (see second condition in line 16). In the presence of these

violations, we must replace variable 𝑥 in position 𝑝 of 𝐵, either by

a variable that was used in a prior step of the repairing process,

line 17–18), or by a fresh variable, lines 19–23. Otherwise, if there

is no violation so far, then we add the mapping {𝑥 ↦→ 𝜉 (𝑦)} to
𝜓 , if it is not already there, lines 24–25. Finally, the algorithm

chooses the best repair according to the preference function,

lines 28–31.

Proposition 5.3. For any M = (S, T, Σ), any MV = (S,V,V)
and any preference function prf, Algorithm frepair returns a map-
pingM ′ = (S, T, Σ′) that is partially-safe w.r.t.MV on all instances
of S.

Proof. (Sketch) FromProposition 5.2, amappingM = (S, T, Σ)
is partially-safe w.r.t. MV = (S,V,V) on all instances of S, if for
each 𝜇 ∈ Σ, there exists a homomorphism from body(𝜇) into
𝐼S (V) mapping each 𝑥 ∈ exported(𝜇) into the critical constant ∗.
Since for each 𝜇 ∈ Σ frepair computes a set of repaired tgds R𝜇 ,

it follows that Proposition 5.3 holds, if such a homomorphism

exists, for each repaired tgd in R𝜇 . The proof proceeds as follows.

Let 𝜇𝑖𝑟 and𝜓
𝑖
denote the repaired s-t tgd and the homomorphism

𝜓 computed at the end of each iteration 𝑖 of the steps in lines 12–

25 of Algorithm 3. Let also 𝐵𝑖 denote the 𝑖-th atom in body(𝜇𝑟).
Since each 𝐶 ∈ C is an atom of distinct fresh variables, since 𝜉

is a homomorphism from C to 𝐼S (V) and since𝜓 (𝐵𝑖) = 𝜇𝑟 |𝑖 , it
follows that in order to prove Proposition 5.2, we have to show

that the following claim holds, for each 𝑖 ≥ 0:

Algorithm 3 frepair(Σ,V, prf)
1: for each 𝜇 ∈ Σ do
2: 𝜈 ··= ∅, C ··= ∅
3: for each 𝐵 ∈ body(𝜇), where 𝐵 = 𝑅(®𝑥) do
4: create a vector of fresh variables ®𝑦
5: create the atom 𝐶 = 𝑅(®𝑦)
6: add (𝐵,𝐶) to 𝜈
7: add 𝐶 to C
8: R𝜇 := ∅
9: for each homomorphism 𝜉 : C → 𝐼S (V) do
10: 𝜌 := ∅,𝜓 := ∅
11: 𝜇𝑟 := 𝜇

12: for each 𝐵 ∈ body(𝜇𝑟) do
13: 𝐶 = 𝜈 (𝐵)
14: for each 𝑝 ∈ pos(𝐵) do
15: 𝑥 = 𝐵 |𝑝 , 𝑦 = 𝐶 |𝑝
16: if 𝑥 ∈ exported(𝜇) and ∗ ≠ 𝜉 (𝑦) or 𝑥 ∈

dom(𝜓) and𝜓 (𝑥) ≠ 𝜉 (𝑦) then
17: if ∃𝑥 ′ s.t. (𝑥, 𝑥 ′) ∈ 𝜌 and 𝜓 (𝑥 ′) = 𝜉 (𝑦)

then
18: 𝐵 |𝑝 = 𝑥 ′

19: else
20: create a fresh variable 𝑥 ′

21: add (𝑥, 𝑥 ′) to 𝜌

22: add {𝑥 ′ ↦→ 𝜉 (𝑦)} to𝜓
23: 𝐵 |𝑝 = 𝑥 ′

24: else if 𝑥 ∉ dom(𝜓) then
25: add {𝑥 ↦→ 𝜉 (𝑦)} to𝜓
26: if 𝜇𝑟 ≠ 𝜇 then
27: add 𝜇𝑟 to R𝜇

28: if R𝜇 ≠ ∅ then f

29: choose the best repair 𝜇𝑟 of 𝜇 from R𝜇 based on prf
30: remove 𝜇 from Σ
31: add 𝜇𝑟 to Σ

32: return Σ

• 𝜙 . 𝜓 𝑖
is a homomorphism from the first 𝑖 atoms in the

body of 𝜇𝑟 into 𝐼S (V) mapping each exported variable

occurring in 𝐵0, . . . , 𝐵𝑖 into the critical constant ∗.
For 𝑖 = 0, 𝜙 trivially holds. For 𝑖 + 1 and assuming that 𝜙 holds

for 𝑖 let 𝐶𝑖+1 = 𝜈 (𝐵𝑖+1), line 13. The proof of claim 𝜙 depends

upon the proof of the following claim, for each iteration 𝑝 ≥ 0 of

the steps in lines 14–25:

• 𝜃 .𝜓 𝑖+1 (𝐵𝑖+1 |𝑝) = 𝜉 (𝑦), where 𝑦 = 𝐶𝑖+1 |𝑝 .
The claim 𝜃 trivially holds for 𝑝 = 0, while for 𝑝 > 0, it directly

follows from the steps in lines 16–25. Since 𝜙 holds for 𝑖 , since

the steps in lines 16–25 do not modify the variable mappings in

𝜓 𝑖
and due to 𝜃 , it follows that 𝜙 holds for 𝑖 + 1, concluding the

proof of Proposition 5.3. □

Example 5.4. We demonstrate an example of Algorithm 3.

Since Algorithm 3 focuses on 𝐼S (V) overlooking the actual

views inV , we will not explicitly defineV . Instead, we will only

assume that the visible chase computes the instance

𝐼S (V) = {R1 (∗, n1, n2), S1 (n1, n2, n2), S1 (n1, n3, ∗), S1 (n1, ∗, ∗)}

where n1–n3 are labeled nulls. Consider also the mapping M
consisting of the following s-t dependency

R1 (𝑥,𝑦, 𝑧) ∧ S1 (𝑦, 𝑧, 𝑧) → T1 (𝑥, 𝑧) (𝜇1)

7

Note that M is not partially-safe. Algorithm 3 computes two

repairs for 𝜇1 by applying the steps described below. First, it com-

putes the atoms R1 (𝑥1, 𝑥2, 𝑥3) S1 (𝑥4, 𝑥5, 𝑥6) and adds them to C,
lines 3–7. Then, it identifies the following three homomorphisms

from C into 𝐼S (V):

𝜉1 = {𝑥1 ↦→ ∗, 𝑥2 ↦→ n1, 𝑥3 ↦→ n2, 𝑥4 ↦→ n1, 𝑥5 ↦→ n2, 𝑥6 ↦→ n2}
𝜉2 = {𝑥1 ↦→ ∗, 𝑥2 ↦→ n1, 𝑥3 ↦→ n2, 𝑥4 ↦→ n1, 𝑥5 ↦→ n3, 𝑥6 ↦→ ∗}
𝜉3 = {𝑥1 ↦→ ∗, 𝑥2 ↦→ n1, 𝑥3 ↦→ n2, 𝑥4 ↦→ n1, 𝑥5 ↦→ ∗, 𝑥6 ↦→ ∗}

From 𝜉1, we can see that the joins in the body of 𝜇1 are safe;

however, it is unsafe to export 𝑧. From 𝜉2, we can see that is safe

to reveal the third position of S1; however, it is unsafe to join the

second and the third position of S1. Algorithm 3 then iterates over

𝜉1 and 𝜉2, line 9. When 𝐵 = R1 (𝑥,𝑦, 𝑧) and 𝑝 < 3, Algorithm 3

computes 𝜓 to {𝑥 ↦→ ∗, 𝑦 ↦→ n1}, since there is no violation

according to line 16. When 𝐵 = R1 (𝑥,𝑦, 𝑧) and 𝑝 = 3, however, a

violation is detected. This is due to the fact that 𝑧 is an exported

variable and 𝜉 (𝑥3) = n2. Algorithm 3 tackles this violation by

creating a fresh variable 𝑧1. Then, it adds the relation (𝑧, 𝑧1)
to 𝜌 , replaces 𝑧 in 𝐵 |3 by 𝑧1 and adds the mapping {𝑧1 ↦→ n2}
to 𝜓 , lines 19–23. Algorithm 3 then considers S1 (𝑦, 𝑧, 𝑧). When

𝑝 = 1, no violation is encountered, since𝜓 (𝑦) = 𝜉1 (𝑥4). However,
when 𝑝 = 2, a homomorphism violation is encountered, since 𝑧 is

an exported variable and since 𝜉 (𝑥3) = n2. Since (𝑧, 𝑧1) ∈ 𝜌 and

𝜓 (𝑧1) = 𝜉1 (𝑥5), Algorithm 3 replaces 𝑧 in the second position of

S1 (𝑦, 𝑧, 𝑧) by 𝑧1, line 19. By applying a similar reasoning, we can

see that the variable 𝑧 siting in S1 (𝑦, 𝑧, 𝑧) |3 is also replaced by 𝑧1.

Hence, the first repair of 𝜇 is

R1 (𝑥,𝑦, 𝑧1) ∧ S1 (𝑦, 𝑧1, 𝑧1) → T1 (𝑥) (𝑟1)

Algorithm 3, then proceeds by repairing 𝜇1 based on 𝜉2. When

𝐵 = R1 (𝑥,𝑦, 𝑧), Algorithm 3 proceeds as described above and com-

putes𝜓 to {𝑥 ↦→ ∗, 𝑦 ↦→ n1, 𝑧1 ↦→ n2}. When 𝐵 = S1 (𝑦, 𝑧, 𝑧) and
𝑝 = 1, then no violation is encountered since𝜓 (𝑦) = 𝜉1 (𝑥4), while
when 𝐵 = S1 (𝑦, 𝑧, 𝑧) and 𝑝 = 2, there is a violation. Since the con-

dition in line 18 is not met, Algorithm 3 creates a fresh variable

𝑧2 and adds the mapping {𝑧2 ↦→ n3} to 𝜓 . When 𝐵 = S1 (𝑦, 𝑧, 𝑧)
and 𝑝 = 3, then no violation is met, since 𝑧 ∈ exported(𝜇) and
𝜉2 (𝑥6) = ∗. Hence, the second repair of 𝜇1 is

R1 (𝑥,𝑦, 𝑧1) ∧ S1 (𝑦, 𝑧2, 𝑧) → T1 (𝑥, 𝑧) (𝑟2)

Finally, we can see that the repair for 𝜇1 w.r.t. 𝜉3 is

R1 (𝑥,𝑦, 𝑧1) ∧ S1 (𝑦, 𝑧, 𝑧) → T1 (𝑥, 𝑧) (𝑟3)

5.2 Computing safe mappings
Unifications of one or more labeled nulls occurring in 𝐼1 with the

critical constant ∗, might lead to unsafe instances. Consider, for

instance, a simplified variant of Example 1.1, where Σ𝑠𝑡 comprises

only 𝜇𝑒 and 𝜇𝑐 . Both 𝜇𝑒 and 𝜇𝑐 are partially-safe, as we have

explained above. However, the unification of the labeled nulls nn
and nc produces an unsafe instance. Algorithm 4 aims at repairing

the output of the previous step, such that no unsafe unification

of a labeled null with ∗ takes place.
Consider again the simplified variant of Σ𝑠𝑡 from above. Since

Σ𝑠𝑡 is partially-safe, it suffices to look for homomorphism viola-

tions in 𝐼𝑖 , for 𝑖 ≥ 1. A first observation is that the homomorphism

violations are “sitting" within the bags. This is due to the fact that

each bag stores all the facts associated with the bodies of one or

more s-t tgds from Σ𝑠𝑡 . A second observation is that one way for

preventing unsafe unifications is to hide exported variables. For

example, let us focus on the unsafe unification of ne with ∗. This

unification takes place due to 𝜖1, which in turn has been created

due to the fact that e is an exported variable in 𝜇𝑒 . By hiding the

exported variable e from 𝜇𝑒 , we actually prevent the creation of

𝜖1 and hence, we block the unsafe unification of e with ∗. Hiding
exported variables is one way for preventing unsafe unifications

with the critical constant. Another way for preventing unsafe

unifications is to break joins in the bodies of the rules.

Example 5.5. This example demonstrates a second approach

for preventing unsafe labeled null unifications.

Consider a set of policy viewsV leading to the following in-

stance 𝐼S (V) = {R1 (n1, n1, ∗),R1 (∗, ∗, n2), S1 (∗)}, where n1 and
n2 are labelled nulls. Consider also the mappingM consisting of

the following s-t dependencies:

R1 (𝑥, 𝑥,𝑦) ∧ S1 (𝑦) → T1 (𝑦) (𝜇2)

R1 (𝑥, 𝑥,𝑦) → T2 (𝑥) (𝜇3)

It is easy to see that M is partially-safe, but unsafe in overall.

Indeed, 𝐼S (Σ) will consist of the following bags (for presentation

purposes, we adopt the notation from Example 4.5):

T1 (∗)
⟨𝜇−1

2
,𝜃1 ⟩

−−−−−−−→ R1 (n3, n3, ∗), S1 (∗)

T2 (∗)
⟨𝜇−1

3
,𝜃2 ⟩

−−−−−−−→ R1 (∗, ∗, n4)

R1 (n3, n3, ∗), S1 (∗)
⟨𝜖3,𝜃3 ⟩−−−−−−→ R1 (∗, ∗, ∗), S1 (∗)

where 𝜖3 ··= R1 (𝑥, 𝑥,𝑦) → 𝑥 = ∗,𝜃1 = {𝑦 ↦→ ∗},𝜃2 = {𝑥 ↦→ ∗} and
𝜃3 = {𝑥 ↦→ n3, 𝑦 ↦→ ∗}. Note that 𝜖3 has been created out of 𝜇3,

since there exists a homomorphism from body(𝜇3) intoR1 (n3, n3, ∗)
mapping the exported variable 𝑥 into n3.

One approach for preventing the unsafe unification of n3 with
∗ is to hide the exported variable 𝑥 from 𝜇3. By doing this, we

block the creation of 𝜀, and hence the unsafe unification.

A second approach is to keep 𝑥 as an exported variable in 𝜇3,

but modify the body of 𝜇2 by breaking the join between the first

and the second position of R1

R1 (𝑥, 𝑧,𝑦) ∧ S1 (𝑦) → T1 (𝑦) (𝜇 ′
2
)

By doing this, we prevent the creation of 𝜀, since the instance

computed at line 2 of Algorithm 1 would consist of the facts

R1 (n3, n5, ∗), R1 (∗, ∗, n4), S1 (∗) and, hence, there would be no

homomorphism from body(𝜇3) into it. Note that the modification

of 𝜇2 to 𝜇 ′
2
is safe. Intuitively, this holds, since we break joins,

and thus, we export less information.

Before presenting Algorithm 4, we will introduce some new

notation. The depth of each bag 𝛽 , denoted as depth(𝛽), coin-
cides with the highest derivation depth of the facts in 𝛽 . The

support of a bag 𝛽 , denoted as 𝛽≺ , is inductively defined as fol-

lows: if depth(𝛽) = 1, then 𝛽≺ = 𝛽 ; otherwise, if depth(𝛽) > 1,

then ∪𝛽′≺𝛽𝛽
′≺
. Consider an active trigger ℎ for 𝛿 in 𝐼 lead-

ing to the creation of a bag 𝛽 . We use the following notation:

dependency(𝛽) = 𝛿 , trigger(𝛽) = ℎ and premise(𝛽) = ℎ(body(𝛿)).
Two bags 𝛽1 and 𝛽2 are candidates for modifyBody if 𝛽1 ≺ 𝛽2,

depth(𝛽1) = 1, depth(𝛽2) = 2 and there exists at least one re-

peated variable in the body of tgd(𝛽1).
Algorithm 4 presents an iterative process for repairing a partially-

safe Σ, by employing the three ideaswe described above: checking

for homomorphism violations within each bag and preventing

unsafe unifications either by hiding exported variable, or by mod-

ifying the bodies of the s-t tgds. In brief, at each iteration 𝑖 ≥ 0,

the algorithm repairs one or more dependencies from Σ𝑖 , where
Σ0 = Σ, and incrementally computes the visible chase of the new

8

Algorithm 4 srepair(Σ,V, prf, 𝑛)
1: Σ0 ··= Σ
2: 𝐵0 ··= visChaseS (Σ)
3: 𝑖 ··= 0

4: do
5: Σ𝑖+1 ··= Σ𝑖
6: 𝑐𝑜𝑛𝑡 ··= false
7: if ∃ unsafe 𝛽 ∈ 𝐵𝑖 , s.t. depth(𝛽) ≤ depth(𝛽 ′), ∀ unsafe

bag 𝛽 ′ ∈ 𝐵𝑖 then
8: 𝑐𝑜𝑛𝑡 ··= true
9: if 𝑖 < 𝑛 then
10: 𝑟1 ··= ∅; 𝑟2 ··= hideExported(𝛽,V, prf)
11: if ∃𝛽1, 𝛽2 ∈ 𝛽≺ , s.t. 𝛽1, 𝛽2 are candidates for

modifyBody then
12: 𝑟1 ··= modifyBody(tgd(𝛽1), tgd(𝛽2), prf)
13: if 𝑟1 ≠ ∅ and it is preferred over 𝑟2 w.r.t. prf then
14: remove tgd(𝛽1) from Σ𝑖+1
15: add 𝑟1 to Σ𝑖+1
16: else
17: remove tgd(𝛽) from Σ𝑖+1
18: add 𝑟2 to Σ𝑖+1
19: else
20: if ∄𝛽 ′, s.t., 𝛽 ≺ 𝛽 ′ ∈ 𝐵𝑖 then
21: add hideExported(𝛽,V, prf) to Σ𝑖+1
22: else remove tgd(𝛽) from Σ𝑖+1
23: compute 𝐽𝑖+1 from Σ𝑖 , Σ𝑖+1 and 𝐵𝑖
24: 𝑖 = 𝑖 + 1

25: while 𝑐𝑜𝑛𝑡 and 𝑖 ≤ 𝑛

26: return Σ𝑛

set of dependencies, lines 4–25. Algorithm 4 terminates either

when the dependencies are safe, or when the maximum num-

ber of iterations 𝑛 is reached, line 25, in which case it repairs

all unsafe dependencies by hiding their exported variables. The

algorithm starts by initializing Σ0 to Σ, lines 1. Then, at each
iteration 𝑖 , it first identifies the lowest depth unsafe bag, line 7,

and attempts to repair the dependencies from Σ𝑖 that lead to its

creation, lines 7–22. If 𝑖 < 𝑛, it proposes two different repairs for

Σ𝑖 , one based on hiding exported variables through hideExported
(Algorithm 5), and the second based on eliminating joins through

modifyBody (Algorithm 6), lines 10–19. Algorithm 4 applies the

modifyBody if there exist two bags in the support of 𝛽 that are

candidates for modifyBody. Informally, Algorithm 4 tries to ap-

ply modifyBody as early as possible (condition depth(𝛽1) = 1,

depth(𝛽2) = 2) and when there are one or more repeated vari-

ables in the body of tgd(𝛽1) (recall Example 5.5). Otherwise, if

𝑖 = 𝑛, it either applies the function hideExported, or it eliminates

the s-t tgds that are responsible for unsafe unifications.

Note that when we reach the maximum number of itera-

tions we do not apply modifyBody. This is due to the fact that

modifyBody might lead to unsafe unification of labeled nulls to

∗ that were not taking place before the modifying the s-t tgd

through modifyBody. In contrast, hideExported is a safe modifi-

cation, since it does not lead to new unsafe unifications.

Theorem 5.6. For any partially-safe M = (S, T, Σ),
any MV = (S,V,V), any preference function prf and 𝑛 ≥ 0, Al-
gorithm srepair returns a mappingM ′ = (S, T, Σ′) that preserves
the privacy of MV on all instances of S.

Proof. (Sketch) Since srepair takes as input a partially-safe
mappingM = (S, T, Σ), it follows from Definition 5.1 that there

Algorithm 5 hideExported(𝛽,V, prf)
1: 𝐽 := premise(𝛽)
2: 𝜈 := ∅
3: for each 𝑛 ∈ Nulls occurring into 𝐽 do
4: add {𝑛 ↦→ 𝑥} to 𝜈 , where 𝑥 is a fresh variable

5: R := ∅
6: for each 𝜉 : 𝜈 (𝐽) → 𝐼S (V) do
7: 𝜇 ··= tgd(𝛽)
8: for each 𝑥 ∈ dom(𝜉) do
9: if 𝜉 (𝑥) ≠ ∗ then
10: for each 𝑦 ∈ exported(𝜇) do
11: if 𝜏 (𝑦) = 𝜈−1 (𝑥), where 𝜏 = trigger(𝛽) then
12: remove 𝑦 from exported(𝜇)
13: if 𝜇 ≠ tgd(𝛽) then
14: add 𝜇 to R
15: choose the best repair 𝜇𝑟 of 𝜇 from R based on prf
16: return 𝜇𝑟

Algorithm 6 modifyBody(𝜇1, 𝜇2, prf)
1: R := ∅
2: if ∃ one or more repeated variables in body(𝜇1) then
3: for each 𝜉 : body(𝜇2) → body(𝜇1) mapping some

𝑥1 ∈ exported(𝜇1)
into some 𝑥2 ∉ exported(𝜇2) do

4: Let 𝐵 ⊆ body(𝜇1), s.t. 𝜉 (body(𝜇2)) = 𝐵

5: Let 𝑉 be the set of repeated variables from 𝐵

6: Let 𝑃 be the set of positions from 𝐵, where all vari-

ables from 𝑉 occur

7: for each non-empty 𝑆 ⊂ 𝑃 do
8: 𝜇 ··= 𝜇1
9: replace the variables in positions 𝑆 of 𝜇 by fresh

variables

10: add 𝜇 to R
11: choose the best repair 𝜇𝑟 of 𝜇 from R based on prf
12: return 𝜇𝑟

exists a homomorphism from chase(Σ−1,CrtT) \ CrtT into 𝐼S (V).
Furthermore, from Proposition 5.2, we know that for each 𝜇 ∈ Σ,
there exists a homomorphism from body(𝜇) into 𝐼S (V) map-

ping each 𝑥 ∈ exported(𝜇) into the critical constant ∗. Due to

the above, since the steps in lines 16–20 of Algorithm 1 do not

introduce new labeled nulls and since srepair applies the pro-

cedure hideExported to each unsafe bag 𝛽 in 𝐵𝑛 , if there does

not exist a bag 𝛽 ′ ∈ 𝐵𝑛 , such that 𝛽 ≺ 𝛽 ′, it follows that M ′
pre-

serves the privacy ofMV on all instances of S, if hideExported
prevents dangerous unifications of labeled nulls with the critical

constant in line 4 of Algorithm 1. In particular, assume that we

are in the 𝑛-th iteration of the steps in lines 4–25 of Algorithm 4.

Let 𝛽0𝑛, . . . , 𝛽
𝑀
𝑛 be the unsafe bags in 𝐵𝑛 . Assume also that for

each 1 ≤ 𝑙 ≤ 𝑀 , 𝛽𝑙𝑛 , was derived due to some active trigger ℎ𝑙 ,

for some derived egd 𝜀𝑙 ∈ Σ≈ in 𝐼 𝑗 , where 𝑗 ≥ 0, line 17 of Algo-

rithm 1. Let 𝜇𝑙 = tgd(𝜀𝑙), for each 0 ≤ 𝑙 ≤ 𝑀 and let 𝜇𝑙𝑟 be the

repaired s-t tgd. Finally, let 𝛽0
𝑛+1, . . . , 𝛽

𝑁
𝑛+1 be the bags in 𝐵𝑛+1,

line 23 of Algorithm 4. Based on the above, in order to show that

Theorem 5.6 holds, we need to show that (i) the number of bags

in 𝐵𝑛+1 is ≤ the number of bags in 𝐵𝑛 and that (ii) the s-t tgds

in

(
Σ \⋃𝑀

𝑙=0
𝜇𝑙
)
∪⋃𝑀

𝑙=0
𝜇𝑙𝑟 are safe. In order to show (i) and (ii),

we consider the steps in Algorithm 5: for each 1 ≤ 𝑙 ≤ 𝑀 , each

exported variable 𝑦 occurring in 𝜇𝑙 , which leads to an unsafe

9

min max step

s-t tgds per scenario (𝑛𝑑𝑒𝑝) 100 300 50

body atom per s-t tgds (𝑛𝑎𝑡𝑜𝑚𝑠) 1 3 (5) −
exported variables per s-t tgds (𝑛𝑣𝑎𝑟𝑠) 5 8 −
Table 1: Properties of the generated iBench scenarios.

unification, line 11 of Algorithm 5, is turned into a non-exported

variable. □

By combining Proposition 5.3 and Theorem 5.6 we can prove

the correctness of Algorithm 2. Furthermore, if the preference

function always prefers the repairs computed by hideExported
from the repairs computed by modifyBody, we can show the

following:

Proposition 5.7. For each mappingM = (S, T, Σ), eachMV =

(S,V,V) and each preference function prf that always prefers the
repairs computed by hideExported from the repairs computed by
modifyBody, Algorithm 2 returns a non-empty mapping that is
safe w.r.t. MV, if such a mapping exists.

Proof. (Sketch) From Algorithm 3, we can see that frepair
always computes a non-empty partially-safe mapping, if such

a mapping exists. Note that a mapping, where no variable is

exported and no repeated variables occur in the body of the s-

t tgds is always partially-safe as long as, the predicates in the

bodies of the s-t tgds are the same with the ones occurring in

the policy views. Please also note that such a mapping is always

considered by frepair. The above argument, along with the fact

that a partially-safe mapping can be transformed into a safe

one by turning exported variables into non-exported ones by

means of the function hideExported, shows that Proposition 5.7

holds. □

6 EXPERIMENTS
We gauge the efficiency of our repairing algorithm on two types

of preference function: a hardcoded one and a learning-based

preference function.

We evaluated our algorithm using a set of 3.6K diverse map-

ping scenarios each of which consisting of a set of policy views

and a set of s-t tgds. The characteristics of the scenarios are

summarized in Table 1. In each scenario, we used a different num-

ber of s-t tgds 𝑛𝑑𝑒𝑝 , a different number of body atoms 𝑛𝑎𝑡𝑜𝑚𝑠

and a different number of exported variables 𝑛𝑣𝑎𝑟𝑠 . The source

schemas and the policy views have been synthetically generated

using iBench, the state-of-the-art data integration benchmark

[2]. We considered relations of up to five attributes and we cre-

ated mappings using the iBench configuration recommended by

the authors of [2]. We generated a set of varied policy views by

applying the iBench operators copy, merge, deletion of attributes

and self-join, each of which has been applied 10 times.

We implemented our algorithm in Java and we used the Weka

library [16] that provides an off-the-shelf implementation of the k-

NN algorithm for the learning-based preference function. We ran

our experiments on a laptop with one 2.6GHz 2-core processor,

16Gb of RAM, running Debian 9.

In the remainder, all data points have been computed as an

average on a total of 5 runs preceded by one discarded cold run.

Running time of repair. First, we study the impact of the num-

ber of s-t tgds and body atoms on the running time of repair. We

adopt a fixed preference function that chooses the repair with

the maximum number of exported variables. In case of ties, the

golden standard

prediction 𝜇1 𝜇2

𝜇1 230 0

𝜇2 0 395680

(a) 𝑃𝑚𝑎𝑥 confusion matrix.

golden standard

prediction 𝜇1 𝜇2

𝜇1 290 1

𝜇2 42 395577

(b) 𝑃𝑎𝑣𝑔 confusion matrix.

Table 2: Confusion matrix for the golden standards.

repair with the maximum number of joins is preferred. We vary

the number of s-t tgds from 100 to 300 by steps of 50 and the

number of body atoms from 3 to 5, respectively. The obtained

results are shown in Figure (3a), illustrating the fact that the

median repairing time is less than 1.5s in most cases. For the

most complex scenario containing up to five body atoms per s-t

tgd, the median running time is less than 8s with 71s being the

maximum. These results clearly show the high performance of

our repair method along with its scalability. The reader should

keep in mind that the repairing process is triggered prior to ex-

changing the data between source and target and might be rerun

each time a mapping (set of s-t tgds) is modified or each time a

policy view is modified, thus bringing the overhead to be quite

reasonable in both cases.

Figure (3b) shows the time breakdown for repair. The first bar
shows the average running time to run the visible chase over the

input s-t mappings, the second one shows the average running

time for checking the safety of the computed bags and the third

one shows the average running time for repairing the s-t tgds.

The results show that the repairing time is 32𝑥 greater than the

time to compute the visible chase and 40𝑥 greater than the time

to check the safety of the chase bags for scenarios with 300 s-t

tgds. In the simplest scenarios, these numbers are much lower

(reduced to 5𝑥 and 9𝑥 , respectively). Overall, the absolute values

of the rewriting times are kept low (of the order of few seconds)

for all these scenarios and gracefully scale while increasing the

number of s-t tgds and the number of atoms in their bodies.

Timebreakdownbetween frepair and srepair. Figure (3c) shows
the average running time for frepair and srepair for the consid-
ered scenarios.We can see that srepair is themost time-consuming

step of our algorithm. We can also see that the running time of

srepair increases more in comparison to the running time of

frepair when increasing the number of the s-t tgds and the num-

ber of atoms in their bodies. This is due to the incurred overhead

during the incremental computation of the visible chase after

repairing a s-t tgd (line 23 of Algorithm 4). Figure (3d) shows

the correlation between the number of active triggers detected

while incrementally computing the visible chase and the run-

ning time of srepair for scenarios with 100 s-t tgds using the

ANOVA method (p-value < 2.2𝑒−16). Figure (3d) shows that the
most complex scenarios lead to the detection of more than 45, 000

active triggers. Despite the high number of the detected active

triggers, the running time of srepair is kept low thus confirming

its efficiency.

Leveraging learning-based preferences.We adopted the fol-

lowing steps in order to evaluate the performance of our learning

approach. First, we defined the following two golden standard

preference functions that we will try to learn:

• 𝑃𝑚𝑎𝑥 , which chooses the repair with the maximum num-

ber of exported variables and in case of ties, it chooses the

repair with the maximum number of joins.

• 𝑃𝑎𝑣𝑔 , which computes the average number of exported

variables and joins for each repair, and choose the one

with the maximum average value.

10

(a) Repairing times. (b) Time comparisons.

(c) Time breakdown between frepair and srepair. (d) Running time of srepair over 100 s-t tgds.

Figure 3: Summary of the performance-related experimental results.

Figure 4: Repairing times with ML classifiers.

For both preference functions, we created a training set of 10, 000

measurements for the k-NN classifier by running the repairing al-

gorithm on fresh scenarios of 50 s-t tgds and five body atoms per

s-t tgd. For each input vector ⟨𝛿𝐹𝑉 , 𝛿 𝐽 ⟩whose repair wewanted to
predict, we computed the Euclidean distance between ⟨𝛿𝐹𝑉 , 𝛿 𝐽 ⟩
and the vectors of the training set. We also set the value of pa-

rameter 𝑘 to 1. This parameter controls the number of neighbors

used to predict the output. Higher values of this parameter led to

comparable predictions and are omitted for space reasons. Finally,

we used the trained k-NN classifier as a preference function in

srepair, rerun the above scenarios and compared the returned re-

pairs with the ones returned when applying the golden standards

𝑃𝑚𝑎𝑥 and 𝑃𝑎𝑣𝑔 as preference functions.

Learning 𝑃𝑚𝑎𝑥 . Table (2a) (left) reports the confusion matrix

associated to learning 𝑃𝑚𝑎𝑥 , including the choices made by the

k-NN classifier during its iterations.

Let us call 𝜇1 and 𝜇2 two possible repairs of an s-t tgd as evalu-

ated by the k-NN classifier. We can observe that the prediction of

𝜇1 was correct (and equal to the golden standard in the training

set) in 230 cases, while the prediction of 𝜇2 was correct in 395,680

cases.

This confirms the fact that 𝜇2 is the best repair across the

iterations of the k-NN algorithm and is also chosen in case 𝜇1
and 𝜇2 are equally weighed by the preference function.

Furthermore, we also report the accuracy of learning the pref-

erence function, obtained by measuring the closeness of the

learned mapping to the golden standard mapping.

We used the Matthews Correlation Coefficient metric (MCC)

[3] to compare the repairs returned by the trained k-NN classifier

and the ones returned when applied 𝑃𝑚𝑎𝑥 . This is a classical

measure that allows to evaluate the quality of ML classifiers when

ranking is computed between two possible values (in our case,

the choice between 𝜇1 and 𝜇2). This measure has been computed

using the following formula:

𝑀𝐶𝐶 =
𝑁1,1 × 𝑁2,2 − 𝑁1,2 × 𝑁2,1√

(𝑁1,1 + 𝑁1,2) (𝑁1,1 + 𝑁2,1) (𝑁2,2 + 𝑁1,2) (𝑁2,2 + 𝑁2,1)
where 𝑁𝑖, 𝑗 is the number of predictions of 𝜇𝑖 when 𝜇 𝑗 is ex-
pected. The results of 𝑀𝐶𝐶 range from −1 for the cases where
the model perfectly predicts the inverse of the expected values,

to 1 for the cases where the model predicts the expected values.

The value𝑀𝐶𝐶 = 0 means that there is no correlation between

the predicted value and the expected one. By applying MCC to

the learning of 𝑃𝑚𝑎𝑥 , we observed that the data are clearly dis-

criminated, thus leading to high-quality of our prediction in this

case (𝑀𝐶𝐶 = 1).

Learning 𝑃𝑎𝑣𝑔 . Table (2b) (right) shows the confusion matrix

associated to learning 𝑃𝑎𝑣𝑔 . We can see that the predictions are

less accurate in this case. The data is not as clearly discriminated

as before, leading to a fairly negligible error rate (< 0.02%). How-

ever, the latter is still acceptable for learning, since only < 0.02%

of the predictions are erroneous. This is corroborated by an𝑀𝐶𝐶

value equal to 0.93, thus leading to a fairly acceptable quality of

the prediction in this case too.

Running time of repair with ML classifiers. In the last ex-

periment, we want to measure the impact of learning on the

performance of our algorithm. To this end, we compare the run-

ning time of repair when adopting a hard-coded preference func-

tion (as in the results reported in Figure 3) and when adopting a

learned preference function. Figure 4 shows the running times

for the same scenarios used in Figure 3. We can easily observe

that the runtimes are rather similar with and without learning

and the difference amounts to a few milliseconds. This further

corroborates the utility of learning the preference function and

shows that the learning is robust and does not deteriorate the

performances of our algorithm.

Qualitative study. In order to illustrate the utility of our ap-

proach, in this experiment we study possible rewritings of a

mapping defined over the NHS schema.The NHS schema focuses

on storing information concerning patients admitted in hospi-

tals. Here, we consider the dependencies involving general in-

formation on patients. This includes administrative information

11

Relation #atts

birth 34

patient 17

mothers_social_data 8

pis_e_prescribing 27

death 50

(a) Source schema characteristics

Relation #atts

birth_export 34

patient_export 17

pis_e_prescribing_export 27

death_export 50

(b) Target schema characteristics
Relation #atts

link_death_drugs 3

death_causes 20

prescribed_drugs_evolution 9

mothers_social 8

fathers_social 6

(c) Policy views schema characteristics

(1) birth(. . .) → birth_export(. . .)
(2) patient(. . .) → patient_export(. . .)
(3) pis_e_prescribing(. . .) → pis_e_prescribing_export(. . .)
(4) death(. . .) → death_export(. . .)

(d) Mapping over NHS

death(. . .) ∧ pis_e_prescribing(. . .) → link_death_drugs_data(. . .)
death(. . .) → death_causes(. . .)
pis_e_prescribing(. . .) → prescribed_drugs_evolution(. . .)
birth(. . .) ∧ patient(. . .) → mother_social(. . .)
birth(. . .) → fathers_social(. . .)

(e) Policy views over NHS

Table 3: Properties of the NHS dataset.
Rewrited #possible #frontier variables in repairs

tgd repairs min max

(1) 3 25 29

(2) 2 13 14

(3) 2 18 18

(4) 2 25 25

Table 4: Properties of the repairing process.
(relation patient in the source schema), social and medical infor-

mation on the patient himself (relations birth and death), social
data on patients’ mothers (relation mother_social_data) and in-

formation on drugs prescriptions (relation pis_e_prescribing).
The characteristics of the source schema are summarized in

Table 3a. The mapping to rewrite and the characteristics of its

target schema are summarized in Tables 3d and 3b, respectively.

The set of policy views and the characteristics of their target

schema are reported in Tables 3e and 3c, respectively.

The link_death_drugs_data view allows to link the prescribed

drugs with patient pathology, but no personal information is ex-

ported to prevent the identification of the patient. The death_causes
view gives access to the causes of death of the admitted patients.

The prescribed_drugs_evolution view gives access to drug pre-

scriptions information without any identifying information. The

mother_social and fathers_social views give access to patients’

mothers and fathers social information.

In Table 4, we show the number of possible repairs for each

tgd in Table 3d. It can be seen that the tgd (1) has three possible
repairs, exporting from 25 to 29 variables, respectively. Anal-

ogously, the tgd (2) leads to two possible repairs, allowing to

export from 13 to 14 variables each. Both tgds (3) and (4) lead to

two possible repairs, with a constant number of exported vari-

ables for each tgd. These rewritings are distinguished by the

exported variables, and one can decide to choose which repair-

ing fits best her needs either visually or by leveraging the user

preference function, as shown in our previous experiment.

7 CONCLUSION
We have studied the problem of data exchange in the presence

of privacy restrictions expressed as policy views on the source

schema. We have proposed a repairing process for the mappings

that are unsafe under the source policy views. Our approach is

inherently data-independent and leads to repairing the mappings

guaranteeing privacy preservation at a schema level. As such,

our approach is orthogonal to several data-dependent privacy-

preservation methods (such as differential privacy methods), that

can be used on the source and target instances to further corrob-

orate the privacy guarantees. The study of such fruitful combi-

nations of methods is devoted to future work.

We also envision several other extensions of our work, such as

the study of more expressive GLAV mappings and the interplay

between data-independent and data-dependent privacy methods

as well as the usage of other learning methods.

ACKNOWLEDGEMENTS
Research by the first author is funded by ANR (under Grant No.

18-CE23-0002 QualiHealth)

REFERENCES
[1] Marcelo Arenas, Pablo Barceló, Leonid Libkin, and Filip Murlak. 2014. Foun-

dations of Data Exchange. Cambridge University Press.

[2] Patricia C Arocena, Boris Glavic, Radu Ciucanu, and Renée J Miller. 2015. The

iBench integration metadata generator. In Proceedings of VLDB.
[3] Pierre Baldi, Søren Brunak, Yves Chauvin, Claus AF Andersen, and Henrik

Nielsen. 2000. Assessing the accuracy of prediction algorithms for classifica-

tion: an overview. Bioinformatics 16, 5 (2000).
[4] Zohra Bellahsene, Angela Bonifati, and Erhard Rahm (Eds.). 2011. Schema

Matching and Mapping. Springer.
[5] M. Benedikt, B. Cuenca Grau, and E. Kostylev. 2017. Source Information

Disclosure in Ontology-Based Data Integration.. In AAAI.
[6] Philip A. Bernstein. 2005. The many roles of meta data in data integration. In

In ACM SIGMOD.
[7] Joachim Biskup and Piero Bonatti. 2004. Controlled query evaluation for

enforcing confidentiality in complete information systems. International
Journal of Information Security 3, 1 (2004).

[8] Joachim Biskup and Torben Weibert. 2008. Keeping secrets in incomplete

databases. International Journal of Information Security 7, 3 (2008), 199–217.

[9] Piero A. Bonatti, Sarit Kraus, and VS Subrahmanian. 1995. Foundations of

secure deductive databases. IEEE TKDE 7, 3 (1995), 406–422.

[10] Angela Bonifati, Ugo Comignani, and Efthymia Tsamoura. 2019. MapRepair:

Mapping and Repairing under Policy Views (demo). In ACM SIGMOD. 1873–
1876.

[11] Laura Chiticariu and Wang Chiew Tan. 2006. Debugging Schema Mappings

with Routes. In Proceedings of VLDB. 79–90.
[12] Ugo Comignani. 2020. MapRepair - open source code. https://github.com/

ucomignani/MapRepair.git.

[13] Remy Delanaux, Angela Bonifati, Marie-Christine Rousset, and Romuald

Thion. 2018. Query-Based Linked Data Anonymization. In ISWC 2018. 530–
546.

[14] Remy Delanaux, Angela Bonifati, Marie-Christine Rousset, and Romuald

Thion. 2019. RDF Graph Anonymization Robust to Data Linkage. In WISE
2019. 491–506.

[15] Cynthia Dwork and Aaron Roth. 2014. The Algorithmic Foundations of

Differential Privacy. Foundations and Trends in Theoretical Computer Science 9,
3-4 (2014), 211–407.

[16] Frank Eibe, MA Hall, and IH Witten. 2016. The WEKA Workbench. Online

Appendix for" Data Mining: Practical Machine Learning Tools and Techniques.

Morgan Kaufmann (2016).

[17] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. 2005. Data exchange: semantics

and query answering. Theoretical Computer Science 336, 1 (2005).
[18] Bernardo Cuenca Grau, Evgeny Kharlamov, Egor V. Kostylev, and Dmitriy

Zheleznyakov. 2015. Controlled Query Evaluation for Datalog and OWL 2

Profile Ontologies. In IJCAI.
[19] Bernardo Cuenca Grau and Egor V. Kostylev. 2016. Logical Foundations of

Privacy-Preserving Publishing of Linked Data. In AAAI. 943–949.
[20] Gerome Miklau and Dan Suciu. 2007. A formal analysis of information disclo-

sure in data exchange. J. Comput. Syst. Sci. 73, 3 (2007).
[21] Alan Nash and Alin Deutsch. 2007. Privacy in GLAV Information Integration.

In ICDT.
[22] Muhammad I. Sarfraz, Mohamed Nabeel, Jianneng Cao, and Elisa Bertino. 2015.

DBMask: Fine-Grained Access Control on Encrypted Relational Databases. In

In CODASPY. 1–11.
[23] George L Sicherman, Wiebren De Jonge, and Reind P Van de Riet. 1983. An-

swering queries without revealing secrets. ACM TODS 8, 1 (1983), 41–59.
[24] Latanya Sweeney. 2002. k-Anonymity: A Model for Protecting Privacy. Inter-

national Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 10, 5
(2002), 557–570.

12

	Research Papers
	Exchanging Data under Policy ViewsAngela Bonifati, Ugo Comignani, Efthymia Tsamoura

