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ABSTRACT
The rising popularity of data science has resulted in a chal-
lenging interplay between traditional declarative queries
and numerical computations on the data. In this paper, we
present and evaluate the advanced analytical system Horse-
Power that is able to combine and optimize both program-
ming styles in a holistic manner. It can execute traditional
SQL-based database queries, programs written in the statis-
tical language MATLAB, as well as a mix of both by support-
ing user-defined functions within database queries. Horse-
Power exploits HorseIR, an array-based intermediate rep-
resentation (IR), to which source programs are translated,
allowing to combine query optimization and compiler opti-
mization techniques at an intermediate level of abstraction.

1 INTRODUCTION
Complex data analytics has become the cornerstone of our
data-driven society. Although the amount of data stored
in traditional relational database systems (DBS) has been
growing rapidly, the by far most common current approach
is to take the data first out of the DBS and load it into
stand-alone analytical tools, which are based on languages
such as Python, or the statistical languages MATLAB [1],
and R [3]. However, as the size of the data increases, the
expensive data movement between DBS and analytics tools
can become a severe bottleneck.

Integrating analytical capabilities into the DBS avoids
such expensive data exchange. A common approach is to
use user-defined functions (UDFs) that are embedded in
SQL queries [13]. For example, MonetDB supports UDFs
written in Python, that are executed by a Python language
interpreter that is embedded inside the DBS engine.

While no data transfer is needed with this approach, there
are still two separate execution environments, one being the
SQL execution engine, the other the programming language
execution environment. This can lead to costly data format
conversion. Furthermore, the SQL and the UDF compo-
nents of the query are each individually optimized by their
respective execution environments, without the considera-
tion of any holistic optimization across the entire task.

To address these issues, we propose HorsePower, an ad-
vanced analytical SQL system, which provides a holistic
solution to integrate UDFs in SQL queries. The system is
based on HorseIR [5], an array-based intermediate represen-
tation (IR) language which was developed to explore the
usage of compiler optimizations for query execution. Chen
et al. [5] translated the execution plans of standard SQL
queries into HorseIR and compiled the generated HorseIR
code using various compiler optimization strategies devel-
oped for array-based languages. Using arrays to represent
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database columns, HorseIR follows conceptually the data
model of column-based DBS, which has been proven to be
effective for data analytics tasks.

HorsePower extends the idea to a full-fledged execution
environment for data analytics. Additionally to support-
ing plain SQL queries, HorsePower also supports functions
written in MATLAB, a popular high-level array language
widely used in the field of statistics and engineering. Horse-
Power can take stand-alone functions written in MATLAB
and translate them to HorseIR, of have these functions be
embedded in SQL queries and then translate all into a sin-
gle HorseIR program, before optimizing and compiling the
code in a holistic manner.

As such HorsePower avoids the overhead of inter-system
data movements as it has a single execution environment,
and eliminates the barriers between SQL queries and an-
alytical functions allowing optimizations across both the
declarative and functional parts of the query.

The contributions of this paper are thus as follows:
• We present HorsePower, an advanced analytical system,

that extends the approach proposed in [5] to not only offer
a compiler-based execution environment for SQL queries,
but also for programs written in the array-based language
MATLAB and for SQL queries with embedded UDFs.

• HorsePower uses a holistic approach of exploiting array-
based compiler optimization techniques for both SQL and
MATLAB taking advantage of the conceptual similarities
of columns and arrays.

• The performance of HorsePower is shown through an ex-
tensive set of experiments on programs written in MAT-
LAB, and SQL queries with embedded UDFs.

2 BACKGROUND
2.1 HorseIR: an Array-based IR for SQL
Recent years have seen the development of modern query
compilers that translate an SQL query into an intermediate
representation (IR) before target code is generated from the
IR, making it possible to leverage any existing code opti-
mizations available within the IR platform.

In this context, HorseIR [5] was developed as a high-level
IR specifically for database applications [7]. Being an array-
based IR, it is relatively straightforward to generate basic
HorseIR code following the execution plans developed by
column-based DBS, as the operators executing on entire
columns can be translated to functions executing on vectors
in HorseIR. In fact, Chen et al. [5] took the execution plans
generated by the column-based database system HyPer [11],
that incorporate a wide range of traditional DBS optimiza-
tions, as the input for generating HorseIR programs.

In this regard, HorseIR provides a rich set of array-based
built-in functions to which one can map the standard data-
base operations. Moreover, the HorseIR compiler provides
vital optimizations over these array-based operations. For
example, loop fusion merges multiple loops into one loop,
allowing for an intuitive merge of chained operations and
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1 SELECT SUM(l_price * l_discount) AS RevenueChange
2 FROM lineitem WHERE l_discount >= 0.05;

1 module ExampleQuery{
2 def main(): table{
3 ...
4 // assume t1 , t2 are references to l_price/l_discount columns
5 t3:bool = @geq(t2, 0.05);
6 t4:f64 = @compress(t3, t1);
7 t5:f64 = @compress(t3, t2);
8 t6:f64 = @mul(t4, t5);
9 t7:f64 = @sum(t6);

10 ...}}

Figure 1: Example query and its HorseIR program

thus, avoiding intermediate results. Thus, optimizations de-
veloped for array-based programming languages can be ex-
ploited to improve query performance.
Example The top of Figure 1 shows a simplified version
of Query 6 of the TPC-H benchmark [16] computing the
change in total revenue given prices and discounts from
the table lineitem. A basic translation into a HorseIR pro-
gram prior to performing any optimizations is shown at
the bottom of Figure 1, outlining only the part of the code
that performs the actual relational operators. We assume
that arrays t1 and t2 represent the price and discount
columns. The program computes the WHERE condition
(@geq), which returns a boolean vector of the same length
as t2 with true values in all rows that fulfill the condition.
The function @compress then extracts from both t1 and t2
the rows for which the boolean vector has a true value. The
output are “compressed” vectors with relevant rows, over
which then the aggregation is performed in two steps.
HorseIR Optimizations As can be seen, such an approach
can generate a fair amount of intermediate results (arrays t3
to t6 in the example). If lines 5 to 9 are translated to lower-
level code independently, each of them generates its own for
loop over the corresponding arrays. However, array-based
optimization techniques, including loop fusion, and some
pattern-based optimizations developed specifically for the
operator sequences found in SQL statements, allow the Hor-
seIR compiler to fuse these loops to just one loop to avoid
materializing these intermediate vectors. To do such fusion,
HorseIR first builds a data dependence graph across all the
statements. Statements which can be fused or follow a pat-
tern, are then identified by a well-defined data flow analysis,
and compiled together to efficient C code. For our example,
the resulting sequential C code would look similar to

1 ...
2 revenue = 0;
3 for(i = 0; i < numRows; i++)
4 { if(t2[i] >= 0.05) revenue += t1[i] * t2[i]; }
5 ...

Although the example C code does not convey it explicitly,
behind the scenes, HorseIR uses OpenMP to compile the
program into a parallel implementation, as outlined in [5].

2.2 Traditional Database UDFs
A UDF is a high-level language function embedded within
an SQL statement, and is used to offload partial computa-
tion into are more concise language than SQL, or provide
additional functionality. To support UDFs, the database
system integrates the language runtime environment into
the DBS (such as the Python interpreter in MonetDB [13]).
We will focus only on Scalar UDFs and Table UDFs, as

1 FUNCTION RevChangeSclr(price,discount)
2 RETURN price * discount;
3 END

1 SELECT SUM(RevChangeSclr(l_price,l_discount)) AS RevChange
2 FROM lineitem WHERE l_discount >= 0.05;

Figure 2: Rewriting the example query with a scalar UDF

these are the most commonly employed types of UDFs and
also the ones supported presently in HorsePower.

A scalar UDF returns a single value per row (which could
be a vector) and can be therefore essentially used wherever
a regular table column is used, such as the SELECT or the
WHERE clause of SQL queries. Figure 2 shows a scalar UDF
which performs the multiplication that was originally part
of the SELECT clause in Figure 1. In a column-based data-
base system, the execution of such a query first evaluates
the WHERE clause on l_discount, returning a boolean vec-
tor. Then, the database applies the corresponding boolean
selection on columns l_discount and l_extendedprice, re-
turning compressed vectors containing the rows where the
boolean vector was true. These columns are then given to
the UDF as arrays, and the UDF performs an element-wise
multiplication on them and produces a result array. This is
then the input to the SUM operator. Thus, the UDF is only
called a single time and works on entire arrays.

A table UDF returns a table-like data structure, and thus,
is typically called within the FROM clause of an SQL state-
ment, similar to regular database tables. For an example of
a table UDF, we refer to a technical report [6].

Introducing UDFs into queries can bring performance is-
sues. If the data types used by the two execution environ-
ments are different, this can introduce a conversion over-
head when exchanging data. Further, as UDF languages
are typically black-boxes to the database engine, cross op-
timization attempts are minimal, resulting in sub-optimal
execution plans.

3 HORSEPOWER
In this section we present HorsePower, a system designed
for the code generation and optimization of HorseIR gener-
ated from (1) SQL queries, (2) MATLAB programs, and (3)
SQL queries with analytical functions written in MATLAB.

3.1 SQL to HorseIR
While prior work used HyPer’s execution plans [11] to trans-
late SQL to HorseIR, HorsePower uses MonetDB’s execu-
tion plans, as MonetDB supports UDFs and the execution
plans contain the relevant UDF information. Our implemen-
tation first translates the tree-based plans to JSON objects
that are then translated to HorseIR1.

Furthermore, HorsePower supports a wider range of SQL
queries than [5], which did not properly support multi-join
queries. This includes all queries of the TPC-H benchmark [16].

3.2 MATLAB to HorseIR
MATLAB is a sophisticated dynamic language which pro-
vides numerous flexible language features. In order to trans-
form MATLAB code to HorseIR, as an intermediate step,
1HorsePower could generate it own execution plans. However, as the
traditional query optimization techniques are not the focus of our
research, we preferred to integrate the already optimized execution
plans generated by existing DBS.
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HorsePower calls upon the McLab framework [2] which
translates MATLAB programs to its own internal IR, called
TameIR, handling MATLAB’s many dynamic features and
lack of strict typing. Type and shape information for all
variables in the program are automatically derived. Fur-
thermore, class program analysis steps, such as constant
propagation, are performed to produce optimized TameIR
code [9]. TameIR can represent MATLAB’s matrix and
high-dimension arrays, and currently supports an essential
subset of MATLAB array operations.

HorsePower then translates TameIR code to HorseIR. So
far, this translator supports a core subset of MATLAB fea-
tures and built-in functions. It preserves MATLAB pass-
by-value semantics but automatically switches to pass-by-
reference when it determines that the input parameters are
not modified, avoiding data copies. It supports the com-
mon control structures if-else and while with a restric-
tion on the condition which must be a single boolean ele-
ment. While explicit loop iteration is not supported, MAT-
LAB’s array-based built-in functions (which have implicit
loop execution) are translated in a straightforward way as
similar functions exist in HorseIR. All types supported by
TameIR are also supported by HorseIR, however, due to
type rule mismatches, input types for some operators are
restricted (e.g. because integer + double returns integer in
MATLAB, but double in HorseIR). Finally, the translator
requires MATLAB arrays to have the data layout of 1-by-N
instead of N-by-1, as the former one is more cache-friendly
in MATLAB.

3.3 SQL and UDF to HorseIR
HorsePower supports SQL queries with embedded UDFs
written in MATLAB. As described in Section 3.1, Horse-
Power uses execution plans generated by MonetDB, which
contain hooks into UDFs with their names, and input and
output parameters, but otherwise treat the UDFs as a black-
box. HorsePower translates such a plan to HorseIR, where
the invocation of the UDF is translated to a method in-
vocation in HorseIR. Next, we generate a separate piece
of HorseIR code by translating the UDF written in MAT-
LAB using the MATLAB-to-HorseIR translator introduced
in Section 3.2. Finally, the two segments of code for SQL
and UDFs are integrated into a single HorseIR program.

HorsePower supports both scalar and table UDFs. In or-
der to make the MATLAB functions conform to the seman-
tic form expected of these types of UDFs, we enforce some
restrictions on the MATLAB functions. For instance, we re-
quire a function to have one return statement with either a
single vector (for scalar UDFs) or a table-like data structure
(for table UDFs).

Figure 3 shows the HorseIR program for the example
query in Figure 2 with a scalar UDF. The HorseIR code con-
sists of a module with two methods: the SQL component is
translated to the main method, and the UDF is translated
to the method RevChangeSclr which takes two arrays of
type float as input and returns the resulting product. This
method is called by the main method, which otherwise is
the same as we have already seen in Figure 1.

3.4 Holistic HorsePower Optimizations
HorsePower performs compiler-based optimizations when
translating a HorseIR program to target C code. We have
discussed in Sec. 2.1, how automatic loop-fusion and pattern-
based, as introduced in [7] lead to efficient parallel C code.

1 module ExampleQuery{
2 def RevChangeSclr(price:f64, discount:f64): f64{
3 x0:f64 = @mul(price, discount); // S5
4 return x0;
5 }
6 def main(): table{
7 ...
8 // compute revenue change
9 t3:bool= @geq(t2, 0.05:f64); // S0

10 t4:f64 = @compress(t3, t1); // S1
11 t5:f64 = @compress(t3, t2); // S2
12 t6:f64 = @RevChangeSclr(t4,t5); // S3
13 t7:f64 = @sum(t6); // S4
14 ...
15 }}

Figure 3: HorseIR code for the Query in Figure 2
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Figure 4: Dependence graphs for the example in Figure 3

However, such optimizations require all statements to be
in one method. But when SQL statements have embedded
UDFs, the HorseIR code has at least two methods, with a
main method calling the method representing the UDF as
shown in our example in Figure 3.

If we were to optimize both parts independently using
loop fusion and pattern-based fusion, the overall result would
be sub-optimal. In fact, if we look at the dependence graph
for this program on the left side of Figure 4 (with S0 to
S4 depicting the statements in the code), we can see that
the optimization opportunities are now separated into three
snippets: before, after, and in the method being called in the
statement S3. The snippets have to be optimized individu-
ally because the content of the statement S3 is invisible to
the rest of the code. Thus, statements S1 and S2 of the main
method need to be evaluated and intermediate results t4
and t5 cannot be eliminated as the method RevChangeSclr
requires their actual values to be passed as parameters. Fur-
thermore, the return value of the method needs to be mate-
rialized to be assigned to t6 which is then the input of the
statement S4. This means the potential scope for fusion is
significantly reduced leading to more intermediate results.

In order to enable a more holistic cross-optimization, we
use the concept of inlining. This involves replacing the method
calls within the main method with the corresponding code
segments that constitute the method that is being called.
For our example program in Figure 3 this means the code of
RevChangeSclr can be inlined into the main method with
the generated HorseIR being almost the same as the one
in Figure 1 except for possibly different variable names. As
a result, a dependence graph can be built across the main
method, as illustrated on the right side of Figure 4, allowing
for loop fusion across all statements and generating a single
loop of all tasks as outlined in Section 2.1, and avoiding the
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materialization of any intermediate results introduced by
UDF invocations.

In some scenarios method inlining offers additional opti-
mization opportunities, such as the elimination of unused
computations. For example, consider a scenario where a ta-
ble UDF computes and returns two columns as part of its
invocation, but the enclosing SQL query itself uses only one
of those two columns. HorsePower will employ the backward
slicing technique [15] to avoid the computation of the un-
used column in the table UDF.

While performing inlining, to respect the pass-by-value
convention for parameter passing, a copy of the object used
as the parameter will be generated if the parameter is found
to be modified inside the original callee method. This en-
sures that inlining does not result in any unintended data
modifications to the objects inside the method that was
making the call. Further, if inlining results in any variable
name conflicts, they are resolved by assigning new but unique
variable names. Finally, an inlined method is removed if it
can be inlined in all the code locations where it is called.

4 EVALUATION
In this section we present the evaluation result of our frame-
work for pure MATLAB programs, and for SQL queries
with analytical UDFs written in MATLAB. For the latter,
we compare it with MonetDB.

The experiments are conducted on a server equipped with
4 Intel Xeon E7-4850 2.00GHz (total 40 cores with 80 threads,
and 24 MB of shared L3 CPU cache) and 128 GB RAM
running Ubuntu 18.04.4 LTS. We use GCC v8.1.0 to com-
pile HorseIR source code with optimization options -O3 and
-march=native; MonetDB version v11.35.9 (Nov2019-SP1)
and NumPy v1.13.3 along with Python v2.7.17 interpreter
for embedded Python support in MonetDB; and MATLAB
version R2019a.

The response time is measured only for the core compu-
tation, and excludes the overhead for parsing SQL, plan
generation, compilation, and serialization for sending the
results to the client. We only consider execution time once
data resides in the main memory. We run each test 15 times
but only measure the average execution time over the last
10 times. Scripts and data used in our experiments can be
found in our GitHub repository2.

4.1 MATLAB Benchmarks
We first evaluate MATLAB programs in order to under-
stand the performance of using HorsePower for executing
non-SQL based data analytics, and use the following bench-
marks: the Black-Scholes algorithm from the PARSEC
benchmark suite v3.0 [4] having two UDFs BlackScholes and
CNDF, and the Morgan algorithm [8] from a finance applica-
tion having a main function morgan and another function
msum. Both contain several element-wise functions and are
fully vectorizable.

In our experiments, we compare the following:
• We execute the original MATLAB program using the

MATLAB interpreter with default settings.
• We compile the HorseIR program generated from the

MATLAB code into C code without any of the optimiza-
tions that we mentioned in Section 3.4. We refer to this
version as HorsePower-Naive. As such, it is likely to pro-
duce a similar amount of intermediate results as the MAT-
LAB interpreter.

2https://github.com/Sable/edbt21-analysis

Table 1: Speedup of HorsePower over MATLAB in execu-
tion time using Black-Scholes (in milliseconds)

Size MATLAB HorsePower
Naive Speedup Opt. Speedup

1M 61 66 0.92x 7 9.34x
2M 145 137 1.06x 14 10.17x
4M 491 463 1.06x 49 10.12x
8M 1009 1384 0.73x 117 8.60x

• We compile the HorseIR code into C code with all opti-
mizations enabled, referred to as HorsePower-Opt.
Table 1 shows the execution times for MATLAB and

for the two HorsePower versions with different sizes of the
Black-Scholes tables. We also indicate the speedup of Horse-
Power over MATLAB in execution time. Note that the
MATLAB interpreter uses all physical threads. For Horse-
Power, we used 40 threads.

The execution times for MATLAB and HorsePower-Naive
are similar, with slightly better performance for MATLAB,
probably due to MATLAB having more efficient library
functions. When comparing with HorsePower-Opt, MAT-
LAB is significantly slower. The reason is that HorsePower-
Opt optimizations, in particular loop fusion, are able to
avoid many intermediate results. We also observe that the
size of the data set plays a minor role.

For Morgan (no table shown due to space limitations) we
run experiments up to 8 million rows as well. HorsePower-
Naive also provides similar performance to MATLAB with
smaller data sizes, but already has a speedup of 2 with 8
million rows. We believe the reason is our efficient parallel
implementation of built-in functions, such as the cumula-
tive sum. Again, the optimized version is significantly faster,
with a speedup of 7 with 8 million rows.

In summary, HorsePower can execute data analytics tasks
in an efficient manner due to its data-centric IR and com-
piler optimization techniques.

4.2 SQL and UDF Benchmarks: TPC-H
This is the first of two sections to evaluate the performance
of HorsePower in executing SQL statements with embedded
UDFs, and comparing it with MonetDB.

Froid [14] proposed a whole range of queries derived from
the TPC-H benchmark in which part of the SELECT or
WHERE clauses, e.g., to check certain conditions, are out-
sourced into a UDF. In all cases, these are scalar UDFs. For
instance, they propose a variation of the q6 of the TPC-H
benchmark, which is very similar to our example query of
Figure 1, simply containing more conditions.

For MonetDB, we rewrote the queries to use Python-
based UDFs, for HorsePower, the UDFs are written in MAT-
LAB. The structure of the programs is very similar for both
languages. Some of the proposed UDFs have embedded SQL
statements which are currently not supported by the McLab
framework that we use. Thus, we excluded those unsup-
ported queries and present results only for queries q1, q6,
q12, q14, and q19.

Table 2 shows the execution times of these queries with
a different number of threads using HorsePower and Mon-
etDB. When first looking only at MonetDB we can see that
execution times are relatively low for some queries and im-
prove with an increasing number of threads considerably
(q1 and q14), but are high for others with little benefit of
parallelization (q6, q12, q19). The reason is that in these
queries, the UDF is in the WHERE clause and MonetDB
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Table 2: Speedup (SP) of HorsePower over MonetDB in execution time using the modified TPC-H benchmarks with UDFs

Thread MonetDB (ms) HorsePower (ms)
q1 q6 q12 q14 q19 q1 SP q6 SP q12 SP q14 SP q19 SP

T1 16853 48832 137195 1040 69045 3799 4.44x 392 125x 900 152x 904 1.15x 858 80.5x
T8 5724 47775 143714 773 72124 3316 1.73x 56 853x 300 479x 396 1.95x 364 198x

T32 2502 44636 140438 750 64267 1883 1.33x 45 1000x 170 826x 216 3.48x 209 307x

has to perform costly data conversion when sending the en-
tire database columns as arrays to the Python interpreter
in order to execute the UDF. MonetDB is able to use zero-
copy transfer for data types where the database system uses
the same main-memory representation as Python. But for
strings, it needs to convert the data to a different format
as the database internal and the Python formats are incom-
patible. This data conversion seems to not be parallelized
to multiple threads, making it the predominant factor of
the execution. In q1 and q14, the UDFs are in the SELECT
clause (where data sizes are smaller as they got reduced
due to the selection that was already executed), and do not
require any string conversions.

HorsePower has overall much better performance for all
queries, being under 1 second for all queries except q1, and
can always improve execution times by increasing the num-
ber of threads. As no data conversion is necessary it is orders
of magnitude faster than MonetDB for queries q6, q12, and
q19. We observe the advantage of having a unified execution
environment that has translated both the UDF part and the
SQL part to a single HorseIR program with its own data
structures. But we also observe significant improvements
for q1 and q14. These are due to the unified optimization
across the HorseIR code generated from SQL and UDF.

4.3 SQL and UDF Benchmarks: MATLAB
In this second experiment, we embed the Black-Scholes al-
gorithm in form of UDFs into SQL queries.

We again have a HorsePower version, with the Black-
Scholes UDF implemented in MATLAB, and a MonetDB
version, with the UDF implemented in Python UDF using
the NumPy library and the same array programming style
as the MATLAB UDF.

In order to understand the implication of having the UDFs
written in different programming languages, we first com-
pared the execution time of Black-Scholes written in Python
and using HorseIR (both naive and optimized). Execution
is in one thread because NumPy does not support multi-
threading. Similar to what we have seen with our analysis
with MATLAB, a naive usage of HorseIR provides similar
execution time as Python (around 500 ms); performing op-
timizations achieves a speedup of 2.

In order to look at the impact of embedding this UDF into
SQL statements, we created both scalar and table UDF vari-
ations as well as designed several enclosing SQL statements
that offer different potential for optimizations. In particu-
lar, we created a scalar UDF that returns just the computed
optionPrice to the calling SQL.

1 CREATE SCALAR UDF bScholesUDF(spotPrice, ..., optionType)
2 {
3 import blackScholesAlgorithm as bsa
4 return bsa.calcOptionPrice(spotPrice, ..., optionType)
5 };

Furthermore, we implemented the solution as a Table
UDF, which returns in table form the computed optionPrice
along with the associated spotPrice and optionTypewhich
are columns from the original input table.

In order to have a broad set of tests and comparisons, we
first integrated these two UDF versions into a straightfor-
ward base query. From there we created three significant
variations of this base query that had different columns in
the SELECT and WHERE clauses. Furthermore, the selectivity
of WHERE clause can be high (returning few records) or
low (having many qualifying records).

Table 3 shows the result of all the variations for MonetDB
and HorsePower for 1 thread (T1) and 64 threads (T64).
Base query. The base query bs0_base selects all the data
from the database table and passes it to the UDF and re-
turns all the data produced by the UDF.

1 −− Base query , bs0_base , Scalar UDF
2 SELECT spotPrice, optionType,
3 bScholesUDF(spotPrice,...,optionType) AS optionPrice
4 FROM blackScholesData;
5
6 −− Base query , bs0_base , Table UDF
7 SELECT spotPrice, optionType, optionPrice
8 FROM bScholesTblUDF ((SELECT * FROM blackScholesData));

We first observe that for MonetDB multi-threading has
little impact on its performance while HorsePower benefits
a lot. As Python is not multi-threaded, the Black-Scholes
UDF in MonetDB runs always in a single thread even if 64
threads are enabled, while HorsePower creates optimized
parallel also for the Black-Scholes part. But HorsePower is
already significantly better with a single thread. We then
find that HorsePower has even significant benefits with a sin-
gle thread. In fact, HorsePower’s execution time for the en-
tire query is nearly the same as executing the Black-Scholes
algorithm alone, while MonetDB takes nearly double the
time (> 900 ms) to execute the entire query than the time
used by the Python interpreter to execute Black-Scholes
(around 500 ms). The reason for this performance penalty
in MonetDB must be the communication between its SQL
engine and the Python UDF interpreter.
Variation 1. The first variation bs1_* applies a predicate
condition on spotPrice, a column which is actually part of
the input database table. The objective of this test case is to
analyze if the systems can intelligently avoid performing the
UDF computation on records that will not be in the result
set. As can be seen, for one thread, HorsePower’s speedup
over MonetDB is at least 3.5x for both scalar and table
UDFs, and for 64 threads at least 50x. MonetDB follows
the traditional database optimization technique of apply-
ing high selectivity operations first, discarding the records
that do not qualify before processing the UDFs. As Horse-
Power relies on MonetDB for database execution plans, it is
similarly impacted by the plans generated by MonetDB for
table UDF based queries. This results in HorsePower’s own
table UDF based queries costing more than its scalar ver-
sions. However, unlike MonetDB, HorsePower benefits from
being able to avoid data copies and conversions as well as
from generating parallelized code for UDFs, thus expanding
this performance gap when the number of threads increases.
Variation 2. In the next variation, bs2_*, the SQL does
not include the computed column optionPrice in the final
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Table 3: Performance comparison between HorsePower (HP) and MonetDB (MDB) for variations in Black-Scholes.

UDF Selectivity
Table UDF (ms) Scalar UDF (ms)

T1 T64 T1 T64
MDB HP Speedup MDB HP Speedup MDB HP Speedup MDB HP Speedup

bs0_base 100.0% 927.5 249.8 3.71x 774.0 7.09 109x 670.0 249.5 2.69x 696.5 7.06 98.6x
bs1_high 0.2% 926.4 256.2 3.62x 818.0 7.62 107x 6.10 0.32 19.1x 6.55 0.13 50.4x
bs1_low 99.8% 929.7 266.4 3.49x 832.9 14.6 57.0x 725.4 169.6 4.28x 645.4 4.90 132x
bs2_high 0.2% 895.6 4.67 192x 791.5 0.70 1131x 4.29 4.59 0.93x 3.52 0.63 5.59x
bs2_low 99.8% 916.4 11.0 83.7x 820.4 6.64 124x 15.9 10.95 1.45x 5.11 5.95 0.86x
bs3_high 10.0% 911.8 259.0 3.52x 824.4 10.1 81.6x 673.8 179.3 3.76x 623.2 7.69 81.0x
bs3_low 90.0% 879.1 262.5 3.35x 793.6 13.7 57.8x 685.4 182.6 3.75x 641.7 12.8 50.1x

result. A smart system should be able to analyze the se-
mantics of the request and avoid processing the UDF both
together. MonetDB is able to do the optimization when the
SQL query is using the scalar UDF, avoiding the computa-
tion of the optionPrice column that is not included in the
final result. Similarly, HorsePower, being an integrated sys-
tem, can avoid the computation of optionPrice by using
a backward slice. As both avoid executing the UDF, Horse-
Power has only moderate speedup over MonetDB due to
other optimizations. However, with a table UDF, MonetDB
is unable to avoid this computation as there is no way for
it to pass this optimization information to the UDF inter-
preter. On the other hand, HorsePower uses method inlining
and backward slicing to remove this computation, offering
a huge advantage.
Variation 3. The last variation, bs3_* applies a predicate
condition on optionPrice. As this is a column computed
by the UDFs, both the systems have to process the UDFs
across all input records before discarding records that do
not qualify, providing limited opportunities for optimiza-
tion. As can be seen, HorsePower has speedups of around
3.5x for both scalar and table UDFs with one thread and be-
tween around 50x and 80x for 64 threads. HorsePower has
better performance than MonetDB simply because Horse-
Power can avoid the data movement between the UDF.
With more threads, HorsePower’s speedup is even better
as the data movement in MonetDB is not parallelized and
takes most of the time in the whole execution pipeline.

In summary, HorsePower avoids the problems of a black-
box integration of programming language execution envi-
ronments as used in current DBS. As such, it avoids expen-
sive data conversions, can optimize in a holistic manner and
provides full support for parallelization, leading to signifi-
cant speedups.

5 RELATED WORK AND CONCLUSIONS
Intermediate representations and compiler techniques have
been applied by others to improve the performance of data-
base queries. However, there is little research in these sys-
tems extending to support UDFs within the database queries.

Froid [14] shows a holistic optimization solution by trans-
forming simple UDF to relational code. Thus, the existing
query optimizer can be utilized for the optimizations of the
execution plan. However, this approach is limited as not all
UDFs are translatable to a relational operator.

Weld [12] presents its IR (WeldIR) to support the code
generation from various source languages. WeldIR is able
to handle database queries and call UDFs written in C code.
However, in contrast to HorsePower that automatically op-
timizes across different source languages, such capabilities
have not been implemented by Weld.

Lara [10] is a domain-specific language tailored for rela-
tional algebra and UDFs. Its code is first compiled to an IR

which is able to inspect UDFs by collecting necessary infor-
mation from UDFs. Thus, Lara can optimize such transpar-
ent UDFs together with its IR code. This is different from
our HorsePower which compiles database queries and UDFs
to its common IR with holistic optimizations enabled.

In conclusion, HorsePower differs from previous work in
that it is a compiler-based approach exploiting array-based
optimizations to support database queries, MATLAB pro-
grams and database queries with analytical UDFs in a holis-
tic framework. Given the very promising evaluation results,
future work will integrate different programming languages,
and enhance our relational operators.
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