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Foreword

The International Conference on Extending Database Technology (EDBT) is a leading international forum
for database researchers, developers, and users to present and discuss novel and cutting-edge ideas and tech-
niques, and to showcase tools and experiences related to data management. Data management is an essential
enabling technology that has applications in several scientific, business and social communities, and runs on
diverse technical platforms associated with the web, enterprises, clouds and mobile devices. The database
community has a continuing tradition of contributing with models, algorithms and architectures to the set of
tools and applications that enable day-to-day functioning of our societies. Faced with the broad challenges
of today’s applications, data management technology constantly broadens its reach, exploiting new hardware
and software to achieve innovative results and embracing new challenges in the years to come.
EDBT 2020 solicited submissions of original research contributions, descriptions of industrial solutions and
applications, and proposals for tutorials and software demonstrations. We encouraged submissions of research
papers related to all aspects of data management. We also encouraged submissions of visionary papers as well
as innovative system papers and experimental analyses papers. In addition to long research paper submissions,
EDBT 2020 again encouraged the submission of short research papers, which provide an excellent opportunity
to describe significant work or research in progress that can foster the discussions at the conference. Short
papers are presented as posters at plenary poster sessions of the conference. This year, they will also be
communicated at a plenary lightning talks session.
The program committees of EDBT accepted 30 out of 151 submitted regular research papers, resulting in an
acceptance rate of 20% for the research track; 26 out of 85 submitted short research papers, resulting in an
acceptance rate of 31% for short research papers; 16 out of 37 demos, resulting in an acceptance rate of 43% for
the demonstration track; and 10 out of 37 industrial and application papers, resulting in an acceptance rate of
27% for industrial and application papers. The papers will be presented in eight research paper sessions, three
industrial and application sessions, as well as two plenary poster and demonstration sessions.
The program additionally features five workshops, one of which is the well-established DOLAP workshop that
has successfully been co-located with EDBT since many years. Finally, the conference program includes four
tutorials and an EDBT and ICDT joint session on climate change.
I would like to thank all authors for their contributions: a successful conference crucially depends on high-
quality submissions. I also would like to thank all senior reviewers and reviewers for serving on the EDBT
2020 program committee, in particular for the high quality and timely handling of all reviews and discussions.
This community service requires a lot of work on a tight schedule, and is what makes our research community
function and ensures the sustained impact of our research. Thanks to their valuable effort we can look forward
to an exciting program and attractive EDBT conference in Copenhagen from March 30–April 2, 2020.
A warm thanks to Anastasia Alaimaki and Tamer Özsu for serving on the Test-of-Time Award committee
to select the paper from EDBT 2010 that has had the most lasting influence. Wook-shin Han, Erhard Rahm
and Nesime Tatbul generously accepted to serve on the Best Paper committee. The EDBT 2020 program is
the result of the joint effort of many people who shared their experience and time to contribute to the EDBT
2020 program and make the conference a great success. Alexander Boehm served as PC chair for industrial
and application papers; George Fletcher as PC chair for the demonstration track; Dan Olteanu as tutorial
chair; Alexandra Poulovassilis as workshop chair. My warmest thanks to all these people. The general chairs,
Yongluan Zhou and Marcos Vaz Salles and the other local organizers worked hard to make all necessary
arrangements for a successful event. Special thanks to Arijt Khan, the EDBT proceedings chair; Davide Mottin,
the publicity chair; Bin Yang, the local executive chair; Boris Düdder, the sponsorship chair; Nanna Højholt, the
finance chair and Yiwen Wang, the website chair, for tirelessly finding solutions for all our requests. Norman
Paton was most helpful in advising and coordinating with the EDBT Executive Board. Last but not least, I
would like to thank Marc H. Scholl for assembling the EDBT proceedings on openproceedings.org I hope that
you find EDBT 2020 inspiring, enriching, and enjoyable and look forward to meeting you in Copenhagen.

Angela Bonifati
EDBT 2020 Program Chair
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Test-of-Time Award

Established in 2014, the Test-of-Time Award awarded by the Extended Database Technology (EDBT) Confer-
ence recognizes papers presented at EDBT Conferences that have had the most impact in terms of research,
methodology, conceptual contribution, or transfer to practice over the past ten years.
The EDBT 2020 Test of Time Award committee was formed by Anastasia Ailamaki (Ecole Polytechnique
Fédérale de Lausanne (EPFL), Switzerland), Tamer Oszu (University of Waterloo, Canada), and Angela Bonifati
(Lyon 1 University, France).
After careful consideration, the committee has decided to select the following paper from the EDBT 2010
conference as the EDBT ToT Award winner for 2020:

Optimizing joins in a map-reduce environment
by Foto Afrati and Jeff Ullman

published in EDBT 2010 Proceedings, pp. 99–110, DOI: 10.1145/1739041.1739056.

This paper presented optimization strategies for executing multi-way joins in a map-reduce environment. It
focused on large-scale data and provided algorithms to choose the number of map-keys and shares in order
to minimize the communication cost among the map and reduce processes.
The committee members agreed that this paper clearly pioneered the field of join processing in map-reduce
environments. It has triggered substantial follow-up research and impact on big data processing in parallel
and distributed architectures.

The EDBT Test-of-Time award for 2020 will be presented during the EDBT/ICDT 2020 Conference in Copen-
hagen, Denmark, as part of the Awards session on March 31, 2020.
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Best Paper Award

The EDBT 2020 Best Paper Award committee was formed by Wook-shin Han (Postech, Korea), Erhard Rahm
(University of Leipzig, Germany), Nesime Tatbul (Intel & MIT, USA), and Angela Bonifati (Lyon 1 University,
France). After careful consideration, the committee has decided to select the following paper as the EDBT Best
Paper for 2020:

Provenance for Probabilistic Logic Programs
by Shaobo Wang, Hui Lyu, Jaichi Zhang, Chenyuan Wu, Xinyi,Chen, Wenchao,Zhou, Boon Thau

Loo, Susan B. Davidson, Chen Chen.
DOI: 10.5441/002/edbt.2020.14

Abstract: Despite the emergence of probabilistic logic programming (PLP) languages for data driven appli-
cations, there are currently no debugging tools based on provenance for PLP programs. In this paper, we
propose a novel provenance model and system, called P3 (Provenance for Probabilistic logic Programs) for an-
alyzing PLP programs. P3 enables four types of provenance queries: tra- ditional explanation queries, queries
for finding the set of most important derivations within an approximate error, top-K most influential queries,
and modification queries that enable us to modify tuple probabilities with fewest modifications to program
or input data. We apply these queries into real-world scenar- ios and present theoretical analysis and prac-
tical algorithms for such queries. We have developed a prototype of P3, and our evaluation on real-world
data demonstrates that the system can support a wide-range of provenance queries with explainable results.
Moreover, the system maintains provenance and execute queries efficiently with low overhead.

The EDBT Best Paper Awards for 2020 will be presented during the EDBT/ICDT 2020 Conference in Copen-
hagen, Denmark, as part of the Awards session on March 31, 2020.
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ABSTRACT

With the mind-blowing development of REST (REpresentational
State Transfer) APIs (Application Programming Interfaces), many
applications have been designed to harness their potential. As
such, bots have recently become interesting interfaces to connect
humans to APIs. Supervised approaches for building bots rely
upon a large set of user utterances paired with API methods. Col-
lecting such pairs is typically done by obtaining initial utterances
for a given API method and paraphrasing them to obtain new
variations. However, existing approaches for generating initial
utterances (e.g., creating sentence templates) do not scale and
are domain-speci!c, making bots expensive to maintain. The
automatic generation of initial utterances can be considered as
a supervised translation task in which an API method is trans-
lated into an utterance. However, the key challenge is the lack
of training data for training domain-independent models. In this
paper, we propose API2CAN, a dataset containing 14,370 pairs of
API methods and utterances. The dataset is built by processing
a large number of public APIs. However, deep-learning-based
approaches such as sequence-to-sequence models require larger
sets of training samples (ideally millions of samples). To miti-
gate the absence of such large datasets, we formalize and de!ne
resources in REST APIs, and we propose a delexicalization tech-
nique (by converting an API method and initial utterances to
tagged sequences of resources) to let deep-learning-based ap-
proaches learn from such datasets.

1 INTRODUCTION

Much of the information we receive about the world is API-
regulated. Essentially, APIs are used for connecting devices, man-
aging data, and invoking services [1–3]. In particular, because
of its simplicity, REST is the most dominant approach for de-
signing Web APIs [4–6]. Meanwhile, thanks to the advances in
machine learning and availability of web services, building natu-
ral language interfaces has gained attention by both researchers
and organizations (e.g., Apple’s Siri, Google’s Virtual Assistant,
IBM’s Watson, Microsoft’s Cortana). Natural language interfaces
and virtual assistants serve a wide range of tasks by mapping
user utterances (also called user expressions) into appropriate
operations. Examples include reporting weather, booking "ights,
controlling home devices, and querying databases [1, 7–9]. In-
creasingly, organizations have started or plan to use capabilities
arising from advances in cognitive computing to increase pro-
ductivity, automate business processes, and extend the breadth
of their business o#ering.

© 2020 Copyright held by the owner/author(s). Published in Proceedings of the
23rd International Conference on Extending Database Technology (EDBT), March
30-April 2, 2020, ISBN 978-3-89318-083-7 on OpenProceedings.org.
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To serve users’ requests, virtual assistants often employ su-
pervised models which require a large set of natural language
utterances (e.g., “get a customer with id being 1” ) paired with their
corresponding executable forms (e.g., SQL queries, API calls, log-
ical forms). The training pairs are used to learn the mappings
between user utterances and executable forms. Given the popu-
larity of REST APIs (based on the well-known HTTP protocol),
we focus on one of the most common types of executable forms
called operations. In REST APIs, an operation (also called API
method) consists of an HTTP verb (e.g., GET, POST), an end-
point (e.g., /customers), and a set of parameters1 (e.g., query
parameters). Figure 2 shows di#erent parts of a REST request in
HTTP.

An annotated utterance is a corresponding natural language
expression to an operation in which API parameters are labeled:

/customers/Operation

1Annotated Utterance Get a customer with id being 

{customer_id}

HTTP Verb Endpoint (URI/Path)

GET

Parameter

As shown in Figure 1, collecting such pairs is typically done in
two steps: (i) obtaining initial utterances for each operation; and
(ii) paraphrasing the initial utterances either automatically or
manually (e.g., crowdsourcing) to new variations in order to live
up to the richness in human languages [1, 7, 8]. Paraphrasing ap-
proaches (e.g., crowdsourcing, automatic paraphrasing systems)
have made the second step less costly [7, 8, 10], but existing ap-
proaches for generating the initial sentences are still limited, and
they are not scalable [8].

Existing solutions for generating initial utterances (also called
canonical utterances) often involve employing domain experts
to generate hand-crafted domain-speci!c grammars or templates
[1, 8, 11]. Almond virtual assistant, as an example, relies on hand-
crafted rules to generate initial utterances [8]. Such approaches

1In this paper, to show parameters of an operation, we use curly brackets
with two parts separated by semicolon (e.g., {customer_id:1}): the !rst part gives
the name of the parameter and the second part indicates a sample value for the
parameter
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POST /customers/1/accounts?brief=true HTTP/1.1 
Host: bank.api 
Accept: application/json
Content-Type: application/json 
...
Authorization: Bearer mt0dgHmLJMV_PxH23Y 

{
   "account-type": "saving",
   "opening-date": "01/01/2020",
}

Figure 2: Example of an HTTP POST Request

are domain-speci!c and costly since rules are generated by ex-
perts [1, 8, 11]. In other words, adding new APIs to a particular
virtual assistant requires manual e#orts for revising hand-crafted
grammars to generate training samples for new domains. With
the growing number of APIs and modi!cations of existing APIs,
automated bot development has become paramount, especially
for virtual assistants which aim at servicing a wide range of tasks
[1, 8].

Supervised approaches such as sequence-to-sequence models
can be used for translating operations to canonical utterances.
However, the key challenge is the lack of training data (pairs
of operations and canonical utterances) for training domain-
independentmodels. In this paper, we proposeAPI2CAN, a dataset
containing 14,370 pairs of operations and canonical utterances.
The dataset is generated automatically by processing a large set
of OpenAPI speci!cations2 (based on the description/summary
of each operation). However, deep-learning-based approaches
such as sequence-to-sequence models require much larger sets of
samples to train from (ideally millions of training samples). That
is to say, sequence-to-sequence models are easy to over!t small
training datasets, and issues such as out of vocabulary words
(OOV) can negatively impact their performance. To overcome
such issues, we propose a delexicalization technique to convert
an operation to a sequence of prede!ned tags (e.g., singleton, col-
lection) based on RESTful principles and design guidelines (e.g.,
use of plural names for a collection of resources, using HTTP
verbs). In summary, our contribution is three-folded:

• ADataset.We propose a dataset calledAPI2CAN, contain-
ing annotated canonical templates (a canonical utterance
in which parameter values have been replaced with place-
holders e.g., “get a customer with id being «id»” ) for 14,370
operations of 985 REST APIs. We automatically built the
dataset by processing a large set of OpenAPI speci!ca-
tions, and we converted operation descriptions to canoni-
cal templates based on a set of heuristics (e.g., extracting
a candidate sentence, injecting parameter placeholders in
the method descriptions, removing unnecessary words).
We then split the dataset into three parts (test, train, and
validation sets).

• ADelexicalizationTechnique.Deep-learning algorithms
such as sequence-to-sequence models require millions of
training pairs to learn from. To assist such models to learn
from smaller datasets, we propose a delexicalization tech-
nique to convert input (operation) and output (canonical
template) of such models to a sequence of prede!ned tags
called resource identi!ers. The proposed approach is based
on the concept of resource in RESTful design. Particularly,

2previously known as Swagger speci!cation

we formalize various kinds of resources (e.g., collection,
singleton) in REST APIs. Next, using the identi!ed re-
source types, we propose a delexicalization technique to re-
placementions of each resource (e.g., customers) with a cor-
responding resource identi!er (e.g., Collection_1). As such,
for a given operation (e.g., GET /customers/{customer_id}),
the model learns to translate the delexicalized operation
(e.g., GET Collection_1 Singleton_1) to a delexicalized
canonical templates (e.g., “get a Collection_1 with Single-
ton_1 being «Singleton_1»”). A resource identi!er consists
of two parts: (1) the type of resource and (2) a number n
which indicates n-th occurrence of a resource type in a
given operation. Resource identi!ers are then used in time
of translation to lexicalize the output of the sequence-
to-sequence model (e.g., “get a Collection_1 with Single-
ton_1 being «Singleton_1»”) to generate a canonical tem-
plate (e.g., “get a customer with customer id being «cus-
tomer_id»”). Delexicalization is done to reduce the impact
of OOV and force the model to learn the pattern of trans-
lating resources in an operation to a canonical template
(rather than translating a sequence of words).

• Analysis of Public REST APIs. We analyze and give
insight into a large set of public REST APIs. It includes
how REST APIs are designed in practice and drifts from
the RESTful principles (design guidelines such as using
plural names, appropriate use of HTTP verbs). We also pro-
vide inside into distribution of parameters (e.g., parameter
types and location) and how values can be sampled vari-
ous types of parameters to generate canonical utterances
out of canonical templates using API speci!cations (e.g.,
example values, similar parameters with sample values).
Automatic sampling values for parameters is essential for
automatic generation of canonical utterances because cur-
rent bot development platforms (e.g., IBMWatson) require
annotated utterances (not canonical templates with place-
holders).

2 RELATEDWORK

REST APIs. REST is an architectural style and a guideline of
how to use the HTTP protocol3 for designing Web services [12].
RESTful web services leverage HTTP using speci!c architectural
principles (i,e., addressability, uniform interface) [13]. Since REST
is just a guideline without standardization, it is not surprising that
API developers only partially follow the guidelines or interpret
REST in their own ways [5]. In particular, this paper is built
upon one of the most important principles in REST, namely the
uniform interface principle. According to this principle, resources
must be accessed and manipulated using proper HTTP methods
(e.g., DELETE, GET) and status codes (e.g. using “201” to show a
resource is created, and “404” to show resource does not exist).
The uniform interface requires API to be developed uniformly
to ensure that API users can understand the functionality of
each operation without reading tedious and long descriptions. To
ensure uniform interface, API developers are required to follow
design patterns (e.g., using plural names to name collection of
resources, using lowercase letters in paths). Existing works have
listed not only those patterns but also anti-patterns in designing
interfaces of REST APIs [5, 14, 15]. Examples of anti-patterns

3REST isn’t protocol-speci!c, but it is designed over HTTP nowadays
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also include using underline in paths and adding !le extensions
in paths [4, 6].

In this paper, we build upon existing works on designing inter-
faces for REST APIs. In particular, we formalize resource types
based on patterns and anti-patterns recognized in prior works
and built a resource tagger to annotate the segments of a given
operation with resource types.

Conversational Agents and Web APIs. Research on conver-
sational agents (e.i., bots, chatbots, dialog systems, virtual as-
sistants) dates back to decades ago [16]. However, there have
been only a few targeting web APIs, particularly because of the
lack of training samples [1–3]. In absence of training data, op-
erations descriptions (e.g., having long descriptions containing
unnecessary information) have been used for detecting the user’s
intent [3]. However, operations often lack proper descriptions,
and operations descriptions may share the same vocabularies
in a single API, making it di$cult for the bot to di#erentiate
between operations [3]. Moreover, these descriptions are rarely
similar to the natural language utterances which are used by bot
users to interact with bots. That is to say, these descriptions are
originally written to document operations (not intended to be
used for training bots) [2, 3].

Other approaches rely on domain experts for generating initial
utterances [1, 7, 8]. These approaches include (i) natural language
templates (a canonical utterance with placeholders) which are
written by experts [17], and (ii) domain-speci!c grammars such
as rules written for semantic parsers [1, 8]. Thus in either ap-
proach, manual e#ort is required to modify the templates of
grammar if API speci!cations are changed. In the template-based
approach, for each operation, a few templates are created in
which entities are replaced with placeholders (e.g., “search for a

"ight from ORIGIN to DESTINATION”). Next, by feeding values (e.g.,
ORIGIN=[Sydney] and DESTINATION=[Houston]) to the placeholders
canonical utterances are generated (e.g., “search for a "ight from

Sydney to Houston“ ). Likewise, generative grammars have been
used by semantic parsers for generating canonical utterances
[1, 17, 18]. In this approach, logical forms are automatically gen-
erated based on the expert-written grammar rules. The grammar
is used to automatically produce canonical utterances for the
randomly generated logical forms [1]. Both generative grammar
and template-based approaches require human e#orts, making
them hard and costly to scale.

In our work, by adopting ideas from the principles of RESTful
design and machine translation techniques, we tackle the main
issue which is creating the canonical utterances for RESTful APIs.
As opposed to current techniques such as generative-grammar-
based or template-based approaches, the proposed approach is
domain-independent and can automatically generate initial ut-
terances without human e#orts. We thus pave the way for au-
tomating the process of building virtual assistants, which serve
a large number of tasks, by automating the process of training
datasets for new/updated APIs.

User Utterance Acquisition Methods. Current approaches
for obtaining training utterances usually involves three main
paradigms: launching a prototype to get utterances from end-
users, employing crowd workers, and using automatic paraphras-
ing techniques to paraphrase existing utterances [19].

In the prototype-based approach, a bot is built without any
(rule-based methods) or with a small number of annotated utter-
ances. Such prototypes are able to obtain utterances from users to
further improve the bots based on supervised machine learning

paths:   
   /customers/{customer_id}:     
     get:       
        description: gets a customer by its id, 
        summary: returns a customer by its id,      
        parameters:       
        - {  
            name: customer_id, 
            in: path, 
            description: customer identifier, 
            required: true, 
            type: string 
          }       

Figure 3: Excerpt of an OpenAPI Speci!cation

techniques [20]. However, in case of using supervised machine
learning methods in building the prototype, collecting initial an-
notated user utterances is still needed. Collecting an initial set
of training samples is essential since the prototype bot must be
accurate enough to serve existing user’s requests without turning
them away from the bot.

Crowdsourcing has been also used extensively to obtain nat-
ural language corpora for conversational agents [1, 8, 17, 18].
In this approach, a canonical utterance is provided as a starting
point, and workers are asked to paraphrase the expression to new
variations. Automatic paraphrasing techniques have also been
employed to automatically generate training data [21–24]. This
is done by paraphrasing canonical utterances to obtain new ut-
terances automatically. However, while automatic paraphrasing
is scalable and potentially cheaper, even the state-of-art models
fall short in producing su$ciently diverse paraphrasing [25],
and fail in producing multiple semantically-correct paraphrases
for a single expression [26–28]. Nevertheless, these automatic
approaches are still bene!cial for bootstrapping a bot.

In this paper, we propose a dataset and an automated, scalable,
and domain-independent approach for generating canonical ut-
terances. Generated canonical utterances can be next fed to either
automatic paraphrasing systems or crowdsourcing techniques to
generate training samples for task-oriented bots.

3 THE API2CAN DATASET

In this section, we explain the process of building the API2CAN
dataset, and we provide its statistics (e.g., size).

3.1 API2CAN Generation Process

To generate the training dataset (pairs of operations and canon-
ical utterances), we obtained OpenAPI speci!cations indexed
in OpenAPI Directory4. OpenAPI Directory is a Wikipedia for
REST APIs5, and OpenAPI speci!cation is a standard documen-
tation format for REST APIs. As shown in Figure 3, the OpenAPI
speci!cation includes description, and information about the
parameters (e.g., data types, examples) of each operation. We ob-
tained the latest version of each API index in OpenAPI Directory,
and totally collected 983 APIs, containing 18,277 operations in
total (18.59 operation per an API on average). Finally, we gener-
ated canonical utterances for each of the extracted operations as
described in the rest of this section and illustrated in Figure 4.

Candidate Sentence Extraction. We extract a candidate sen-
tence from either the summary or description of the operation
speci!cation. For a given operation, the description (and sum-
mary) of the operation (e.g., “gets a [customer] (#/de!nitions/-

Customer) by id. The response contains ...” ) is pre-processed by

4https://github.com/APIs-guru/openapi-directory/tree/master/APIs
5https://apis.guru/browse-apis/
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gets the customer by id

Convert the candidate sentence 
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Figure 4: Process of Canonical Utterance Extraction

removing HTML tags, lowercasing, and removing hyperlinks
(e.g., “gets a customer by id. the response contains ...” ) and then
it is split into its sentences (e.g., “gets a customer by id.”, “the
response contains ...”). Next, the !rst sentence starting with a verb
(e.g., “gets a customer by id” ) is chosen as a potential canonical
utterance, and its verb is converted to its imperative form (e.g.,
“get a customer by id” ).

Parameter Injection While the extracted sentence is usually a
proper English sentence, it cannot be considered as a user utter-
ance. That is because the sentence often points to the parameters
of the operation without specifying their values. For example,
given an operation like “GET /customers/{customer_id}” the ex-
tracted sentence is often similar to sentences like “get a customer

by id” or “return a customer”. However, we are interested in anno-
tated canonical utterances such as “get the customer with id being

«id»”, and “get the customer when its id is «id»” ; where “«id»” is a
sampled valued for customer_id. To consider parameter values in
the extracted sentence, we created a context-free grammar (CFG)
as brie"y shown in Table 1. This grammar has been created based
on our observations of how operation descriptions are written
(how parameters are mentioned in the extracted candidate sen-
tences) by API developers. With this grammar, a list of possible
mentions of parameters in the operation description is generated
(e.g., “by customer id”, “based on id”, “with the speci!ed id” ). Then
the lengthiest mention found in the sentence is replaced with
“with NPN being «PN»”, where NPN and PN are human-readable
version of the parameter name (e.g., customer_id −→ customer
id) and its actual name respectively (e.g., “get a customer with

customer id being «customer_id»” ).
We also observed that path parameters are not usually men-

tioned in operation descriptions in API speci!cations. For ex-
ample, in an operation description like “returns an account for a

given customer” the path parameter accountId and customerId are
absent, but the lemmatized name of collections “customer” and
“account” are present. By using the information obtained from
detecting such resources (see Section 4.2), it is possible to convert
the description into “return an account with id being «customer_id»

for a given customer with id being «account_id»”.
In the process of generating the API2CAN dataset, a few types

of parameters were automatically ignored. As such, we did not

Table 1: Parameter Replacement Context Free Grammar

Rule

N −→ {PN }|{NPN }|{LPN }|{RN }|{NRN }|{LRN }

CPX −→ ‘by’ | ‘based on’ | ‘by given’ | ‘based on given’ | ...

R −→ N | CPX N | N CPX N

{PN} Parameter Name (e.g., “customer_id”, “CustomerID”, “CustomersID”)

{NPN} Normalized PN by splitting concatenated words and lowercasing (e.g.,
“customer id”, “customers id”)

{LPN} Lemmatized NPN (e.g., “customer id”)

{RN} Resource Name (e.g., “Customers”)

{NRN} Normalized RN (e.g., “customers”)

{RN} Lemmatized NRN (e.g., “customer”)

include header parameters6 since they are mostly used for authen-
tication, caching, or exchanging information such asContent-Type
and User-Agent. Thus such parameters do not specify entities of
users’ intentions. Likewise, using a list of prede!ned parameter
names (e.g., auth, v1.1), we automatically ignored authentication

and versioning parameters because bot users are not expected to
directly specify such parameters while talking to a bot. Moreover,
since the payload of an operation can contain inner objects, we
assume that all attributes in the expected payload of an opera-
tion are "attened. This is done by concatenating the ancestors’
attributes with the inner objects’ attributes. For instance, the
parameters in the following payload are "attened to “customer
name” and “customer surname”:

{

  "customer": {

    "name": "string",

    "surname": "string"

  }

}

1

2

3

4

5

6

7
As such, we convert complex objects to a list of parameters that
can be asked from a user during a conversation.

3.2 Dataset Statistics

By processing all API speci!cations, we were able to automati-
cally generate a dataset called API2CAN 7 which includes 14,370
pairs of operations and their corresponding canonical utterances.
We next divided the dataset into three parts as summarized in Ta-
ble 2, and manually checked and corrected extracted utterances
in the test dataset to ensure a fair assessment of models learned
on the dataset8.

Table 2: API2CAN Statistics

Dataset APIs Size

Train Dataset 858 13029

Validation Dataset 50 433

Test Dataset 50 908

Figure 5 shows the number of operations in API2CAN based
on the HTTP verbs (e.g., GET, POST). As shown in Figure 5, the

6Header !elds are components of the header section of request in the Hypertext
Transfer Protocol (HTTP).

7https://github.com/mysilver/API2CAN
8Train and validation datasets will be also manually revised in near future
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Figure 5: API2CAN Breakdown by HTTP Verb
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Figure 6: API2CAN Breakdown by Length

majority of operations are of GET methods which are usually
used for retrieving information (e.g., “get the list of customers” ),
followed by POST methods which are usually used for creating
resources (e.g., “creating a new customer” ). The DELETE, PUT,
and PATCH methods are also used for removing (e.g., “delete a
customer by id being «id»” ), replacing (e.g., “replace a customer by

id being «id»” ), and partially updating (e.g., “update a customer

by id being «id»” ) a resource.
Figure 6 also represents the distribution of number of seg-

ments in the operations9 as well as the number of words in the
generated canonical templates. As shown in Figure 6, many of
the operations consist of less than 14 segments by 4 being the
most common. Given the typical number of segments in the oper-
ations, Neural Machine Translation (NMT)-based approaches can
be used for the generation of canonical sentences [29, 30]. On the
other hand, the canonical sentences in the API2CAN dataset are
longer. The reason behind having such lengthier utterances is the
existence of parameters, and operations with more parameters
tend to be lengthier. However, given the maximum length of
canonical sentences, NMT-based approaches can still perform
well [30].

4 NEURAL CANONICAL SENTENCE
GENERATION

Neural Machine Translation (NMT) systems are usually based on
encoder-decoder architecture to directly translate a sentence in
one language to a sentence in a di#erent language. As shown in
Figure 7, generating a canonical template for a given operation
can be also considered as a translation task. As such, the opera-
tion is encoded into a vector, and the vector is next decoded into
an annotated canonical template. However, the main challenge
in building such a translation model is the lack of a large train-
ing dataset. Since deep-learning models are data thirty, training
requires a very large and diverse set of training samples (ideally
millions of pairs of operations and their associating user utter-
ances). As mentioned in the previous section, we automatically
generated a dataset called API2CAN. However, such a dataset is
still not large enough for training sequence-to-sequence models.

Having a large set of training samples requires a very large
diverse set of operations as well. However, such a large set of APIs
and operations is not available. One of the serious repercussions
of the lack of such a set of operations is that training samples lack
a very large number of possible words that can possibly appear

9For example, “GET /customers/{customer_id}” has two segments:
“customers” and “{customer_id}”

in the operations (but did not appear in the training dataset). As a
result, the models trained on such datasets will face many out-of-
vocabulary words at runtime. To address this issue, we propose a
delexicalization technique called resource-based delexicalization.
As such, we reduce the impact of the out-of-vocabulary problem
and force the model to learn the pattern of translating resources
in an operation to a canonical template (instead of translating a
sequence of words).

4.1 Resources in REST

In RESTful design, primary data representation is called resource.
A resource is an object with a type, associated data, relationships
to other resources, and a set of HTTP verbs (e.g., GET, POST)
that operate on it. Designing RESTful APIs often involves fol-
lowing conventions in structuring URIs (endpoints) and naming
resources. Examples include using plural nouns for naming re-
sources, using the “GET” method for retrieving a resource and
using the “POST” method for creating a new resource.

In RESTful design, resources can be of various types. Most com-
monly, a resource can be a document or a collection. A document,
which is also called singleton resource, represents a single in-
stance of the resource. For example, “/customers/{customer_id}”
represents a customer that is identi!ed by a path parameter
(“customer_id”). On the other hand, a collection resource repre-
sents all instances of a resource type such as “/customers”. Re-
sources can be also nested. As such, a resource may also contain
a sub-collection (“/customers/{customer_id} /accounts”), or a
singleton resource (e.g., “/customers/{customer_id} /accounts/

{account_id}”). In RESTful design, CRUD actions (create, retrieve,
update and delete) over resources are shown by HTTP verbs
(e.g., GET, POST). For example, “GET /customers” represents the
action of getting the list of customers, and “POST /customers”
indicates the action of creating a new customer. However, some
actions might not !t into the world of conventional CRUD op-
erations. In such cases, controller resources are used. Controller
resources are like executable functions, with inputs and return-
values. REST APIs rely on action controllers to perform appli-
cation speci!c actions that cannot be logically mapped to one
of the standard HTTP verbs. For example, an operation such
as “GET /customers/{customer_id}/activate” can be used to acti-
vate a customer. Moreover, while it is unconventional, adjectives
also are occasionally used for !ltering resources. For example,
“GET /customers/activated” means getting the list of all activated
customers. In this paper, such adjectives are called attribute con-

trollers.
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While above-mentioned principles are followed by many API
developers, there are still many APIs violate these principles. By
manually exploring APIs and prior works [5, 14, 15], we identi!ed
some unconventional resource types used in designing operations
as summarized in Table 3. A common drift from RESTful princi-
ples is the use of programming conventions in naming resources
(e.g., “createActor”, “get_customers”). Aggregation functions (e.g.,
sum, count) and expected output format of an operation (e.g.,
“json”, “tsb”, “txt”) are also used in designing endpoints. Words
similar to “search” (e.g. “query”, “item-search”) are used to indi-
cate that the operation looks for resources based on given criteria.
Moreover, collections are occasionally !ltered/sorted by using
keywords such as “!ltered-by”, “sort-by”, or appending a resource
name to “By” (e.g., “ByName”, “ByID”). Segments in the endpoints
may also indicate API versions (e.g., v1.12), or authentication end-
points (e.g., auth, login). Even though the aforementioned types
of resources are against the conventional design guidelines of
RESTful design, they are important to detect since still they are
used by API developers in practice.

Table 3: Resource Types

Resource Type Example

Collection /customers

Singleton /customers/{customer_id}

Action Controller /customers/{customer_id}/activate

Attribute Controller /customers/activated

API Specs /api/swagger.yaml

Versioning /api/v1.2/search

Function /AddNewCustomer

Filtering /customers/ByGroup/{group-name}

Search /customers/search

Aggregation /customers/count

File Extension /customers/json

Authentication /api/auth

4.2 Resource-based Delexicalization

In resource-based delexicalization, the input (API call) and output
(canonical template) of the sequence-to-sequence model are con-
verted to a sequence of resource identi!ers as shown in Figure 7.
This is done by replacing mentions of resources (e.g., customers,
customer) with a corresponding resource identi!er (e.g., Collec-
tion_1). A resource identi!er consists of two parts: (i) the type of
resource and (ii) a number n which indicates n-th occurrence of
a resource type in a given operation. This number later is used
in the lexicalization of the output of the sequence-to-sequence
model to generate a canonical template.

To detect resource types, we used the Resource Tagger shown
in Algorithm 1. We convert the raw sequence of words in a
given operation (e.g., “GET /customers/{customer_id}/accounts”)
to a sequence of resource identi!ers (e.g., “get Collection_1

Singleton_1 Collection_2”). Likewise, mentions of resources in
the canonical templates are replaced with their corresponding re-
source identi!ers (e.g., “get all Collection_1 for the Collection_2
with Singleton_1 being Singleton_1”). The intuition behind the
conversions is to help the model to focus on translating a se-
quence of resources instead of words.

Algorithm 1: Resource Tagger

Input : segments of the operation
Result: List of resources

1 resources←− [];

2 i ←− size(segments);

3 for i ← lenдth(seдments) down to 1 do

4 current←− segments[i];

5 resource←− new Resource();

6 resource.name←− current;

7 previous←− ϕ;

8 if i > 1 then

9 previous←− segments[i − 1];

10 end

11 resource.type←− “Unknown” ;

12 if current is a path parameter then

13 if previous is a plural noun and an identi!er then

14 resource.type←− “Singleton” ;

15 resource.collection←− previous;

16 else

17 resource.type←− “Unknown Param” ;

18 end

19 else

20 if current starts with “by” then

21 resource.type←− “Filtering” ;

22 else if current in [“count”, “min”, ...] then

23 resource.type←− “Aggregation” ;

24 else if current in [“auth”, “token”, ...] then

25 resource.type←− “Authentication” ;

26 else if current in [“pdf”, “json”, ...] then

27 resource.type←− “File Extension” ;

28 else if current in [“version”, “v1”, ...] then

29 resource.type←− “Versioning” ;

30 else if current in [“swagger.yaml”, ...] then

31 resource.type←− “API Specs” ;

32 else if any of [“search”, “query”, ...] in current then

33 resource.type←− “Search” ;

34 else if current is a phrase and starts with a verb then

35 resource.type←− “Function” ;

36 else if current is a plural noun then

37 resource.type←− “Collection”

38 else if current is a verb then

39 resource.type←− “Action Controller” ;

40 else if current is an adjective then

41 resource.type←− “Attribute Controller” ;

42 end

43 resources.append(resource);

44 end

45 return reversed(resources)

In the time of using the model for generating canonical tem-
plates, the tagged resource identi!ers are replaced with their
corresponding resource names (e.g., Collection_2 −→ customers).
Meanwhile, in the process of replacing resource tags, occasion-
ally grammatical errors might happen such as having plural
nouns instead of singular forms. To make the !nal generated
canonical template more robust, we used LanguageTool 10 (an

10https://languagetool.org
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Figure 7: Canonical Template Generation via Resource-

based Delexicalization

open-source tool for automatically detecting and correcting lin-
guistically errors) to correct linguistic errors in the generated
canonical templates.

5 PARAMETER VALUE SAMPLING

To obtain canonical utterances, values must be sampled for the
parameters (placeholders) inside a given canonical template. The
sampled values help to generate canonical utterances which are
understandable sentences without any placeholders. Canonical
utterances can be paraphrased later either automatically or man-
ually by crowd-workers to diversify the training samples. In this
section, we investigate how values can be sampled for parameters
of REST APIs. More speci!cally, we identi!ed !ve main sources
as follows.

(1) Common Parameters. Parameters such as identi!ers
(e.g., customer_id), emails, and dates are ubiquitous in
REST APIs. We built a set of such parameters paired with
values. As such, a short random string or numeric value is
generated for identi!ers based on the parameter data type.
Likewise, mock email addresses and dates are generated
automatically.

(2) API Invocation. By invocation of API methods that re-
turn a list of resources (e.g., “GET /customers”), we can
obtain a large number of values for various attributes (e.g.,
customer names, customer ids) of the resource. Such val-
ues are reliable since they correspond to real values of
entities in the retrieved resources. Thus they can be used
reliably to generate canonical utterances out of canonical
templates.

(3) OpenAPI Speci!cation. An OpenAPI speci!cation may
include an example or default values11 for parameters
of each operation. Since these values are generated by

11An example illustrates what the value is supposed to be for a given parameter.
But a default value is what the server uses if the client does not provide the value.

API owners, they are reliable. Moreover, API speci!cation
speci!es the data-types of parameters. This can also be
used to automatically generate values for parameters in
the absence of example and default values. For example,
in the case of enumeration types (e.g., gender −→ [MALE,
FEMALE]), one of the elements is randomly selected as a
parameter value. In the case of numeric parameters (e.g.
size), a random number is generated within the speci-
!ed range (e.g., between 1 to 10) in the API speci!cation.
Likewise, for the parameters whose values follow regu-
lar expressions (e.g., “[0-9]%” indicates a string that has a
single-digit before a percent sign), random sequences are
generated to ful!ll the given pattern in the API speci!ca-
tion (e.g., “8%”).

(4) Similar Parameters. Having a large set of API speci!ca-
tions, example values can be found from similar parame-
ters (sharing the same name and datatype). This can be
possible by processing parameters of API repositories such
as OpenAPI directory.

(5) Named Entities. Knowledge graphs provide informa-
tion about various entities (e.g., cities, people, restaurants,
books, authors). Examples of such knowledge graphs in-
clude for Freebase [31], DBpedia [32], Wikidata[33], and
YAGO [34]. For a given entity type such as “restaurant” in
the restaurant domain, these knowledge graphs might con-
tain numerous entities (e.g., KFC, Domino’s). Such knowl-
edge bases can be used to sample values for a given param-
eter if the name of the parameter matches an entity type.
In this paper, we use Wikidata to sample values for entity
types. Wikidata is a knowledge graph which is populated
by processing Wikimedia projects such as Wikipedia.

6 EXPERIMENTS & RESULTS

Before delving into the experiments, we brie"y explain the train-
ing process in the case of using neural translation methods. We
trained the neural models using the Adam optimizer [35] with
an initial learning rate of 0.998, a dropout of 0.4 between recur-
rent layers (e.g., LSTM, BiLSTM), and a batch size of 512. It is
worth noting that the hyper-parameters are initial con!gurations
set based on the size of the dataset and values suggested in the
literature, and !nding optimized values requires further stud-
ies. Furthermore, in case of not using delexicalization, we also
populate word embeddings of the model with GloVe [36].

In the time of translation, we used beam search with a beam
size of 10 to obtain multiple translations for a given operation,
and then the !rst translation with the same number of placehold-
ers as the number of the parameters in the given operation is
considered as its canonical template. Moreover, we replaced the
generated unknown tokens with the source token that had the
highest attention weight to avoid the out-of-vocabulary problem.

6.1 Translation Methods

We trained translationmodels using di#erent sequence-to-sequence
architectures and we also built a rule-based translator as de-
scribed next. Given the size of the API2CAN dataset, we con!g-
ured the models using two layers for both encoding and decoding
parts at the most.

GRU. This model consists of two layers (each having 256 units)
of Gated Recurrent Units (GRUs) [37] for both encoding and
decoding layers using the attention mechanism [38].
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Table 4: Excerpt of Transformation Rules

# Resources Sequence Transformation Rule

1 Rule GET /{c}/ get list of {c.name}
Example GET /customers get list of customers

2 Rule DELETE /{c}/ delete all {c.name}
Example DELETE /customers delete all customers

3 Rule GET /{c}/{s}/ get the {sinдular (c .name)} with {s.name} being {s.name}
Example GET /customers/{id} get the customer with id being <id>

4 Rule DELETE /{c}/{s}/ delete the {sinдular (c .name)} with {s.name} being <{s.name}>
Example DELETE /customers/{id} delete the customer with id being <id>

6 Rule PUT /{c}/{s}/ replace the {sinдular (c .name)} with {s.name} being <{s.name}>
Example PUT /customers/{id} replace the customer with id being <id>

7 Rule GET /{c}/{a}/ get {a.name} {sinдular (c .name)}
Example GET /customers/first get !rst customer

8 Rule GET /{c1}/{s}/{c2}/ get the list of {c2.name} of the {sinдular (c1.name)} with {s.name} being {s.name}
Example GET /customers/{id}/accounts get the list of accounts of the customer with id being <id>

LSTM. This model consists of two layers (each having 256 units)
of two layers of LSTM for both encoding and decoding using the
attention mechanism [38].

CNN. We also built a sequence-to-sequence model based on
Convolutional Neural Network (CNN) as proposed in [39]. In
particular, we used 3x3 convolutions (one layer of 256 units) with
the attention mechanism [38].

BiLSTM-LSTM. This model consists of two layers (each having
256 units) of Bidirectional Long-Short Term Memory (BiLSTM)
[40] for encoding, and two layers (each having 256 units) of
Long-Short Term Memory (LSTM) [41] for the decoder using the
attention mechanism [38].

Transformer. The Transformer architecture [42] has been shown
to perform very strong in machine translation tasks [43, 44]. We
used the Transformer model implemented by OpenNMT [45]
using the same hyper-parameters as the original paper [42]. For
an in-depth explanation of the model, we refer the interested
reader to the original paper [42].

Rule-based (RB) Translator. Based on the concept of resource
in REST APIs, we also built a rule-based translation system to
translate operations to canonical templates (shown in Algorithm
2). First, the algorithm extracts the resources of a given operation
based on the resource types extracted by the Resource Tagger

algorithm (see Algorithm 1). Next, the algorithm iterates over
an ordered set of transformation rules to transform the oper-
ation to a canonical template. A transformation rule is a hand-
crafted Python function which is able to translate a speci!c HTTP
method (e.g., GET) and sequence of resource types (e.g., a col-
lection resource followed by a singleton resource) to a canonical
template. We created 33 transformation rules by the time of writ-
ing this paper, some of which are listed in Table 4. In this table,
{c}, {s}, and {a} stands for collection, singleton, and attribute
controller respectively. And the sinдular (.) function returns the

singular form of a given name. For instance, in case of an oper-
ation like “GET /customers”, given that the bot user requests a
collection of customers, the provided transformer (rule number
1 in Table 4) is able to generate a canonical template as “get the
list of customers”. Following Python function also presents the
transformation rule implementation which is able to translate
such operations (a single collection resource when the HTTP
method is “GET”):

def (resources, verb):
   if verb != "GET" or len(resources) != 1:

  return
   if resources[0].type != "Collection":

  return
collection = resources[0]

   return "get the list of {}".format(collection.name)

A transformer is written based on the assumption that a se-
quence of resource types has special meaning. For example,
considering “GET /customers/{id}/accounts” and “GET /users

/{user_id}/aliases”, both operations share the sameHTTP verbs
and sequence of resource types (a singleton followed by a col-
lection). In such cases, possible canonical templates are “get ac-
counts of a customer when its id is «id»” and “get aliases of a user
when its user id is «user_id»”. Thus such a sequence of resource
types can be converted to a rule like: “get {collection} of a {single-
ton.collection} when its {singleton.name} is «{singleton.name}»” ; in
which “{}” represents placeholders and singleton.collection repre-
sents the name of the collection for the given singleton resource
(e.g., customers, users). Thus adding a new transformation rule
would mean generalizing a speci!c sequence of resources types
that is not considered in the existing translators. However, as
discussed earlier, since many APIs do not conform to the RESTful
principles, creating a comprehensive set of transformation rules
is very challenging.

6.2 Canonical Utterance Generation

Quantitative Analysis. For each of the aforementioned NMT
architectures, we trained models with and without using the
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Algorithm 2: Rule-Based Translator

Input :operation, transformation_rules written by experts
Result: A canonical template

1 resources←− ResourceTagger(operation);

2 foreach t ∈ trans f ormation_rules do

3 canonical←− t.transform(resources, operation.verb);

4 if canonical , ϕ then

5 param_clause←− to_clause(operation.parameters) ;

6 canonical←− canonical + " " + param_clause ;

7 return canonical;

8 end

9 end

10 return ϕ

proposed resource-based delexicalization approach as described
in Section 4.2. In these experiments, we did not tune any hyper
parameters and trained the models on the training dataset. For
each baseline, we saved the model after 10000 steps and used
the model with the minimum perplexity based on the validation
set to compare with other con!gurations. Table 5 presents the
performance of each model in terms of machine translation met-
rics: bilingual evaluation understudy (BLEU) [46], Google’s BLEU
Score (GLEU) [47], and Character n-gram F-score (CHNF) [48].

In the case of using the RB-Translator, hand-crafted transfor-
mation rules are able to generate canonical templates for 26%
of the operations. Creating such transformation rules is very
challenging for lengthy operations as well as those not follow-
ing RESTful principles. We did not include RB-Translators’ per-
formance in Table 5 because the results are not comparable to
the rest. Our experiments indicate that RB-Translator performs
reasonably well (BLEU=0.744, GLEU=0.746, and CHRF=0.850).
However, the BiLSTM-LSTMmodel built on the proposed dataset
using the resource-based delexicalization technique outperforms
the RB-Translator (BLEU=0.876, GLEU=0.909, and CHRF=0.971),
ignoring the operations which RB-Translator could not trans-
late. As experiments indicate, Delexicalized BiLSTM-LSTM out-
performs the rest of the translation systems, and resource-based
delexicalization improves the performance of NMT systems by
large.

Table 5: Translation Performance

Translation-Method BLEU GLEU CHRF

Delexicalized BiLSTM-LSTM 0.582 0.532 0.686

Delexicalized Transformer 0.511 0.462 0.619

Delexicalized LSTM 0.503 0.470 0.652

Delexicalized CNN 0.507 0.458 0.601

Delexicalized GRU 0.481 0.450 0.623

BiLSTM-LSTM 0.318 0.266 0.421

Transformer 0.295 0.248 0.397

LSTM 0.278 0.226 0.381

CNN 0.271 0.220 0.379

GRU 0.251 0.198 0.347

Qualitative Analysis. Table 6 gives a few examples of canonical
templates generated by the proposed translator (Delexicalized
BiLSTM-LSTM). While the machine-translation metrics do not
show very strong translation performance in Table 5, our man-
ual inspections revealed that these metrics do not re"ect the
actual performance of the proposed translators. Therefore, we
conducted another experiment to manually evaluated the trans-
lated operations. For this reason, we asked two experts to rate
the generated canonical templates manually using a Likert scale
(in a range of 1 to 5 with 5 showing the most appropriate canon-
ical sentence). In the experiment, the experts were given pairs
of generated canonical utterances and operations (including the
description of the operation in the API speci!cation). Next, they
were asked to rate the generated canonical templates in a range
of 1 to 5.

Figure 8 shows the Likert assessment for the best performing
models in Table 5. Based on this experiment, canonical templates
generated by RB-Translator are rated 4.47 out 5, and those of the
delexicalized BiLSTM-LSTM are rated 4.06 out of 5 (by averag-
ing the scores given by the annotators). The overall Kappa test
showed a high agreement coe$cient between the raters by Kappa
being 0.86 [49]. Based on manual inspections, as also shown in
Table 6, we observed that when APIs are designed based on the
RESTful principles the delexicalized Delexicalized performs as
good as RB-Translator.

Figure 8 also shows how the automatically generated dataset
(API2CAN ) represents their corresponding operations. Based on
the rates given by the annotators, the dataset (training part) is
also of decent quality while being noisy, indicating that the pro-
posed set of heuristics for generating the dataset are well-de!ned.
Given the promising quality of generated canonical templates, we
concluded that the noises in the dataset can be ignored. However,
yet it is desirable to manually clean the dataset.

Table 6: Examples of Generated Canonical Templates

Sample

Operation GET /v2/taxonomies/

Canonical fetch all taxonomies

Operation PUT /api/v2/shop_accounts/{id}

Canonical update a shop account with id being <id>

Operation DELETE /api/v1/user/devices/{serial}

Canonical delete a device with serial being <serial>

Operation GET /user/ratings/query

Canonical get a list of ratings that match the query

Operation GET /v1/getLocations

Canonical get a list of locations

Operation POST /series/{id}/images/query

Canonical query the images of the series with id being
<id>

Operation PUT /api /hotel /v0 /hotels /{hotelId}

/rateplans/batch/$rates

Canonical set rates for rate plans of a hotel with hotel id
being <hotelId>
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Figure 8: Assessment of Generated Canonical Templates

Error Analysis. Even though the proposed method outperforms
the baselines, it still occasionally fails in generating high-quality
canonical templates. Based on our investigations, there are three
main sources of error in generating the canonical templates:
(i) detecting resource types, (ii) translating APIs which do not
conform to RESTful principles, and (iii) lengthy operations with
many segments.

Detecting resource types requires natural language processing
tools to detect parts of speech (POS) of a word (e.g., verb, noun,
adjective), and to detect if a given noun is plural or singular
(particularly for unknown words or phrases and uncountable
nouns). However, these tools occasionally fail. Speci!cally, POS
taggers are built for detecting parts of speech for words inside a
sentence. Thus it is not surprising if they fail in detecting if a word
like “rate” is a verb or noun in a given operation. For example, an
operation like GET /participation/rate can indicate both “get
the rate of participations” and “rate the participants”. Another
source of such issues is tokenization. It is common in APIs to
concatenate words (e.g., whoami, addons, registrierkasseuuid,
AddToIMDB). While it seems trivial for an individual to split
these words, existing tools frequently fail. Such issues a#ect
the process of detecting resources and consequently impact the
generation of canonical templates negatively.

Unconventional API design (not conforming to RESTful princi-
ples) also extensively impacts the quality of generated canonical
templates. Common drifts from RESTful principles includes using
wrong HTTP verb (e.g., “POST” for retrieving information), using
singular nouns for showing collections (e.g. /customer), adding
non-resource parts to the path of the operation (e.g., adding re-
sponse format like “json” in /customers/json. Since those API
developers (who do not conform to design guidelines) follow
their own thoughts instead of accepted rules, the automatic gen-
eration of canonical templates is challenging.

Lengthy operations (those with roughly more than 10 seg-
ments) naturally are rare in REST APIs. Such lengthy operations
convey more complex intents than those with a lesser number
of segments. As shown in Figure 6, unfortunately, such opera-
tions are also rare in the proposed dataset (API2CAN ), impacting
translation of lengthy operations.

6.3 Parameter Value Sampling

This section provides an analysis of parameters in the RESTful
APIs and evaluates the proposed parameter sampling approach
which is used for generating canonical utterances out of canonical
templates. To this end, we processed API speci!cations which
are indexed in OpenAPI Directory. Based on our analysis, the
dataset contains 145971 parameters in total, which indicates that
an operation has 8.5 parameters on average.

Figure 9 presents statistics of parameters in the whole list of
API speci!cations in the OpenAPI Directory. As shown in the
right-hand pie chart, most of the parameters are located in the
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Figure 9: Parameter Type and Location Statistics

payload (body) of APIs, followed by query and path parameters.
Figure 9 also shows the percentages of parameter data types in
the collection with strings being the most common type of pa-
rameters. About 1.5% of string parameters are de!ned by regular
expressions, and 4.8% of them can be associated with an entity
type12. String parameters are followed by integers, booleans,
numbers, and enumerations. Moreover, some parameters are left
without any type, or they are given general parameter types such
as “object” without any schemes. These parameters are combined
together in the left-hand pie chart in Figure 9 with a single label–
“others”. Moreover, 28% of parameters are required parameters
(not optional), 10.6% of parameters have not assigned any value
in the API speci!cations, and 26% of all parameters are identi!ers
(e.g., id, UUID). Thus, sampling values is required only for less
than 10.6% of parameters (those without any values). In particu-
lar, value sampling for string parameters requires more attention.
That is because string parameters are widely used, and they are
more di$cult to automatically be assigned values in comparison
to other types of parameters (e.g., integers, enumerations).

To evaluate how well the proposed method generates sam-
ple values for parameters, we conducted an experiment. Since
generating sample values for data types such as numbers and
enumerations is straightforward, we only considered string pa-
rameters in this experiment. To this end, we randomly selected
200 parameters and asked an expert to annotate if a sampled
value is appropriate for the given value or not. The results indi-
cate that 68 percent of sampled values are appropriate for given
parameters. The main reason for inappropriate sampled values
is noises in the API speci!cations. For instance, developers oc-
casionally describe the parameters in the example part instead
of the description part of the documentation. For instance, for
a string parameter like “customer_id”, the example part may be
!lled by “a valid customer id”. Moreover, sometimes the same pa-
rameter name is used in di#erent contexts for di#erent purposes.
For example, the parameter name like “name” which can be used
for representing the name of a person, school, or any object.

7 CONCLUSION & FUTUREWORK

This paper aimed at addressing an important shortcoming in
current approaches for acquiring canonical utterances. In this
paper, we demonstrated that the generation of canonical utter-
ances can be considered as a machine translation task. As such,
our work also aimed at addressing an important challenge in
training supervised neural machine translators, namely the lack

12We looked up the parameter name in Wikidata to !nd if there is associating
entity type
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of training data for translating operations to canonical templates.
By processing a large set of API speci!cations and based on a set
of heuristics, we build a dataset called API2CAN. However, deep-
learning-based approaches require larger sets of training samples
to train domain-independent models. Thus, by formalizing and
de!ning resources in REST APIs, we proposed a delexicalization
technique to convert an operation to a tagged sequence of re-
sources to help sequence-to-sequence models to learn from such
a dataset. In addition, we showed how parameter values can be
sampled to feed placeholders in a canonical template and gen-
erate canonical utterances. We also gave a systematic analysis
of web APIs and their parameters, indicating the importance
of string parameters in automating the generation of canonical
utterances.

In our future work, we will be working on improving the
dataset (API2CAN ). Moreover, given that ful!lling complex in-
tents usually requires a combination of operations [8, 50], we will
be working on compositions between operations. To achieve this,
it is required to detect the relations between operations and gen-
erate canonical templates for complex tasks (e.g., tasks requiring
conditional operations or compositions of multiple operations).
In future work, we will target these problems, together with
many other exciting opportunities as extensions to this work.
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ABSTRACT
Graphs are ubiquitous and ever-present data structures that have a
wide range of applications involving social networks, knowledge
bases and biological interactions. The evolution of a graph in such
scenarios can yield important insights about the nature and ac-
tivities of the underlying network, which can then be utilized for
applications such as news dissemination, network monitoring, and
content curation. Capturing the continuous evolution of a graph
can be achieved by long-standing sub-graph queries. Although,
for many applications this can only be achieved by a set of quer-
ies, state-of-the-art approaches focus on a single query scenario.
In this paper, we therefore introduce the notion of continuous
multi-query processing over graph streams and discuss its appli-
cation to a number of use cases. To this end, we designed and
developed a novel algorithmic solution for efficient multi-query
evaluation against a stream of graph updates and experimentally
demonstrated its applicability. Our results against two baseline
approaches using real-world, as well as synthetic datasets, confirm
a two orders of magnitude improvement of the proposed solution.

1 INTRODUCTION
In recent years, graphs have emerged as prevalent data structures
to model information networks in several domains such as social
networks, knowledge bases, communication networks, biological
networks and the World Wide Web. These graphs are massive in
scale and evolve constantly due to frequent updates. For example,
according to its latest quarterly update, Facebook has over 1.52B
daily active users who generate over 500K posts/comments and
four million likes every minute resulting in massive updates to the
Facebook social graph.

To gain meaningful and up-to-date insights in such frequently
updated graphs, it is essential to be able to monitor and detect
continuous patterns of interest. There are several applications from
a variety of domains that may benefit from such monitoring. In so-
cial networks, such applications may involve targeted advertising,
spam detection [3, 40], and fake news propagation monitoring
based on specific patterns [34]. Similarly, other applications like
(i) protein interaction patterns in biological networks [37, 45],
(ii) traffic monitoring in transportation networks, (iii) attack de-
tection (e.g., distributed denial of service attacks in computer
networks), (iv) question answering in knowledge graphs [2], and
(v) reasoning over RDF graphs may also benefit from such pattern
detection.

For the applications mentioned above it is necessary to ex-
press the required patterns as continuous sub-graph queries over
© 2020 Copyright held by the owner/author(s). Published in Proceedings of the
23rd International Conference on Extending Database Technology (EDBT), March
30-April 2, 2020, ISBN 978-3-89318-083-7 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

(a) (b)
Figure 1: Spam detection: Users sharing and liking content
with links to flagged domains. (a) A clique of users who know
each other, and (b) Users sharing the same IP address.

(one or many) streams of graph updates and appropriately notify
the subscribed users for any patterns that match their subscrip-
tion. Detecting these query patterns is fundamentally a sub-graph
isomorphism problem which is known to be NP-complete due
to the exponential search space resulting from all possible sub-
graphs [18, 33]. The typical solution to address this issue is to
pre-materialize the necessary sub-graph views for the queries and
perform exploratory joins [36]; an expensive operation even for a
single query in a static setting.

These applications deal with graph streams in such a setup
that is often essential to be able to support hundreds or thou-
sands of continuous queries simultaneously. This leads to several
challenges that require: (i) quickly detecting the affected queries
for each update, (ii) maintaining a large number of materialized
views, and (iii) avoiding the expensive join and explore approach
for large sets of queries.

To better illustrate the remarks above, consider the application
of spam detection in social networks. Fig. 1 shows an example
of two graph patterns that may emerge from malicious user activ-
ities, i.e., users posting links to domains that have been flagged
as fraudulent. Notice that malicious behavior could be caused
either because a group of users that know each other share and
like each other’s posts containing content from a flagged domain
(Fig. 1(a)), or because the group of users shared the same flagged
post several times from the same IP (Fig. 1(b)). Even though
these two queries are fundamentally different and produce differ-
ent matching patterns, they share a common sub-graph pattern,

i.e., “User1
shares
−−−−−→Post1

links
−−−−→Domain1”. If these two queries are

evaluated independently, all the computations for processing the
common pattern have to be executed twice. However, by identify-
ing common patterns in query sets, we can amortize the costs of
processing and answering them.

One simple approach to avoid processing all the (continuous)
queries upon receiving a graph update is to index the query graphs
using an inverted-index at the granularity of edges. While this
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approach may help us quickly detect all the affected queries for a
given graph update, we still need to perform several exploratory
joins to answer the affected queries. For example, in Fig. 1, we
would need to join and explore the edges matching the pattern

“User1
Shares
−−−−−→Post1 and Post1

Links
−−−−→Domain1” upon each update

to process the two queries. On the contrary, if we first identify
the maximal sub-graph patterns shared among the queries instead,
we can minimize the number of operations necessary to answer
the queries. Therefore, a solution which groups queries based
on their shared patterns would be expected to deliver significant
performance gains. To the best of our knowledge, none of the
existing works provide a solution that exploits common patterns
for continuous multi-query answering.

In this paper, we address this gap by proposing a novel algorith-
mic solution, coined TRIC (TRIe-based Clustering) to index and
cluster continuous graph queries. In TRIC, we first decompose
queries into a set of directed paths such that each vertex in the
query graph pattern belongs to at least one path (path covering
problem [11]). However, obtaining such paths leads to redundant
query edges and vertices in the paths; this is undesirable since it
affects the performance of the query processing. Therefore, we
are interested in finding paths which are shared among different
queries, with minimal duplication of vertices. The paths obtained
are then indexed using ‘tries’ that allow us to minimize query
answering time by (i) quickly identifying the affected queries, (ii)
sharing materialized views between common patterns, and (iii)
efficiently ordering the joins between materialized views affected
from the update. To this end, our contributions are:
• We formalize the problem of continuous multi-query an-

swering over graph streams (Section 3).
• We propose a novel query graph clustering algorithm that

is able to efficiently handle large numbers of continuous
graph queries by resorting on (i) the decomposition of
continuous query graphs to minimum covering paths and
(ii) the utilization of tries for capturing the common parts
of those paths (Section 4).
• Since no prior work in the literature has considered con-

tinuous multi-query answering in the context of graph
streams, we designed and developed two algorithmic so-
lutions that utilize inverted indexes for the graph query
answering. Additionally, we deploy and extend Neo4j [43],
a well-established graph database solution, to support our
proposed paradigm. To this end, the proposed solutions
will serve as baselines approaches during the experimental
evaluation (Section 5).
• We experimentally evaluate the proposed solution using

three different datasets from social networks, transporta-
tion, and biology domains, and compare the performance
against the three baselines. In this context, we show that
our solution can achieve up to two orders of magnitude
improvement in query processing time (Section 6).

2 RELATED WORK
Structural graph pattern search using graph isomorphism has been
studied in the literature before [18, 33]. In [17], the authors pro-
pose a solution that aims at reducing the search space for a single
query graph. The solution identifies candidate regions in the graph
that can contain query embeddings, while it is coupled with a
neighborhood equivalence locating strategy to generate enumer-
ations. In the same spirit [30] aims at reducing the search space
in the graph by exploiting syntactic similarities present on vertex

relationships. [31] considers the sub-graph isomorphism problem
when multiple queries are answered simultaneously. However,
these techniques are designed for static graphs and are not suitable
for processing continuous graph queries on evolving graphs.

Continuous sub-graph matching has been considered in [41] but
the authors assume a static set of sub-graphs to be matched against
update events, use approximate methods that yield false positives,
and small (evolving) graphs. An extension to this work considers
the problem of uncertain graph streams [7], over wireless sensor
networks and PPIs. The work in [15] considers a setup of con-
tinuous graph pattern matching over knowledge graph streams.
The proposed solution utilizes finite automatons to represent and
answer the continuous queries. However, this approach can sup-
port a handful of queries, since, each query is evaluated separately,
while, it generates false positives due to the adopted sliding win-
dow technique. These solutions are not suitable for answering
large number of continuous queries on graphs with high update
rates.

There are a few publish/subscribe solutions on ontology graphs
proposed in [29, 42], but they are limited to the RDF data model.
Distributed pub/sub middleware for graphs has recently been
proposed in [5], however, the main focus is on node constraints
(attributes) while ignoring the graph structure.

The work in [9] provides an exact subgraph search algorithm
that exploits the temporal characteristics of representative quer-
ies for online news or social media exploration. The algorithm
exploits the structural and semantic characteristics of the graph
through a specialized data structure. Where the authors consider
continuous query answering with graph patterns over dynamic
multi-relation graphs. In [36] the authors perform subgraph match-
ing over a billion node graph by proposing graph exploration
methods based on cloud technologies. While the aforementioned
works are similar to the query evaluation scenario, the emphasis is
on efficient search mechanisms, rather than continuous answering
over streaming graphs.

In the graph streams domain; [28] proposes algorithms to iden-
tify correlated graphs from a graph stream. This differs from our
setup since a sliding window that covers a number of batches of
data is used, and the main focus is set on identifying subgraphs
with high Pearson correlation coefficients. In [14], the authors pro-
pose continuous pattern detection in graph streams with snapshot
isolation. However, this solution considers only isolated queries
(i.e., one query at a time) and the patterns detected are approximate.
Finally, in [13] the authors propose a solution over a distributed
computational environment, while the solution operates under the
assumption of a static and limited query set.

Finally, some of the techniques used for increasing the effi-
ciency of the proposed algorithm employ standard data indexing
practices from a variety of domains, although the assumed setup
and target applications differ significantly: (i) the representation of
materialized views bears similarities with techniques from central-
ized RDF query processing [24, 32, 39] and statement/property
tables as in Jena1 and Jena2 [44], (ii) the problem of maintaining
the materialized views of (graph) queries relates to incremen-
tal view maintenance [4, 8, 25, 47] in database and warehousing
environments, (iii) while query decomposition and tree-based clus-
tering is typical in a variety of domains and applications [31, 38].

In general, solutions like the proposed one on continuous sub-
graph pattern matching can be applied in a wide range of do-
mains such as social networks, protein-protein interactions (PPI),
cyber-security, knowledge graphs, road network monitoring, and
co-authorship graphs. Social network graphs emerge naturally
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Figure 2: (a) An update stream S and (b) the evolution of graph G after inserting ui ∈ S .

from the evolving interactions and activities of the users, while
applications such as advertising, recommendation systems, and
information discovery aim at exploiting these interactions. So-
cial network applications may benefit from continuous pattern
matching, and can leverage on already observed patterns in con-
tent propagation [21, 22, 46] and influential user discovery [6, 9].
PPIs are data repositories [35, 37] that index proteins (graph ver-
tices) and the interactions (graph edges) between them. PPI graphs
are constantly updated due to additions and invalidations of in-
teractions, while scientists manually query PPIs to discover new
patterns. In such scenarios, subgraph matching could enhance
information discovery through appropriate graphical user inter-
face tools. In cyber-security, subgraph matching could be applied
for network motoring, denial of service, and exfiltration attacks
[20], while subgraph matching over road networks could capture
traffic events, and taxi route pricing. Finally, in the domain of co-
authorship graphs, users may utilize continuous query evaluation
in services similar to Google Scholar Alerts, when requesting to
be notified about newly published content.

3 DATA MODEL AND PROBLEM
DEFINITION

In this section we outline the data (Section 3.1) and query model
(Section 3.2) that our approach builds upon.

3.1 Graph Model
In this paper, we use attribute graphs [10] (Definition 3.1), as our
data model, as they are used natively in a wide variety of applica-
tions, such as social network graphs, traffic network graphs, and
citation graphs. Datasets in other data models can be mapped to
attribute graphs in a straightforward manner so that our approach
can be applied to them as well.

Definition 3.1. An attribute graph G is defined as a directed
labeled multigraph:

G = (V ,E, lV , lE , ΣV , ΣE )

whereV is the set of vertices and E the set of edges. An edge e ∈ E
is an ordered pair of vertices e : (s, t), where s, t ∈ V represent
source and target vertices. lV : V → ΣV and lE : E → ΣE are
labeling functions assigning labels to vertices and edges from the
label sets ΣV and ΣE .

For ease of presentation, we denote an edge e as e = (s, t),
where e, s and t are the labels of the edge(lE (e)), source vertex
(lV (s)) and target vertex (lV (t)) respectively.

As our goal is to facilitate efficient continuous multi-query
processing over graph streams, we also provide formal definitions
for updates and graph streams (Definitions 3.2 and 3.3).

Definition 3.2. An update ut on graph G is defined as an ad-
dition (e) of an edge e at time t . An addition leads to new edges
between vertices and possibly the creation of new vertices.

Figure 3: Example query graph pattern.

Definition 3.3. A graph stream S = (u1,u2, . . . ,ut ) of graph G
is an ordered sequence of updates.

Fig. 2(a) presents an update stream S consisting of three graph
updates u1, u2, and u3 generated from social network events.
While, Fig. 2 (b) shows the initial state of graphG and its evolution
after inserting sequentially the three updates.

3.2 Query Model
For our query model we assume that users (or services operat-
ing on their behalf) are interested to learn when certain patterns
emerge in an evolving graph. Definition 3.4 formalizes query
graph patterns that define structural and attribute constraints on
graphs.

Definition 3.4. A query graph pattern Qi is defined as a di-
rected labeled multigraph:

Qi = (VQi ,EQi ,vars, lV , lE , ΣV , ΣE )

where VQi is a set of vertices, EQi a set of edges, and vars a set
of variables. lV : V → {ΣV ∪vars} and lE : E → ΣE are labeling
functions assigning labels (and variables) to vertices and edges.

Let us consider an example where a user wants to be notified
when his friends visit places nearby. Fig. 3 shows the correspond-
ing query graph pattern that will result in a user notification when
two people check in at the same place/location in Rio.

Based on the above definitions, let us now define the problem
of multi-query processing over graph streams.

Problem Definition. Given a set of query graph patterns QDB =

{Q1,Q2, . . . ,Qk }, an initial attribute graph G, and a graph stream
S with continuous updates ut ∈ S , the problem of multi-query
processing over graph streams consists of continuously identify-
ing all satisfied query graph patterns Qi ∈ QDB when applying
incoming updates.

Query Set and Graph Modifications. A set of query graph pat-
ternsQDB is subject to modifications (i.e., additions and deletions).
In this work, we focus on streamlining the query indexing phase,
while developing techniques that allow processing each incom-
ing query graph pattern separately, thus supporting continuous
additions in QDB . In the same manner, a graph G is subject to
edge additions and deletions, our main objective is to efficiently
determine the queries satisfied by an edge addition. The proposed
model does not require indexing the entire graph G and retains
solely the necessary parts of G for the query answering. To this
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Figure 4: (a) Four query graph patterns that capture events generated inside a social network and (b) their covering paths.

end, we do not further discuss deletions on QDB and G, as we
focus on providing high performance query answering algorithms.

4 TRIE-BASED CLUSTERING
To solve the problem defined in the previous section, we propose
TRIC (TRIe-based Clustering). As motivated in Section 1, the key
idea behind TRIC lies in the fact that query graph patterns overlap
in their structural and attribute restrictions. After identifying and
indexing these shared characteristics (Section 4.1), they can be
exploited to batch-answer the indexed query set and in this way
reduce query response time (Section 4.2).

4.1 Query Indexing Phase
TRIC indexes each query graph pattern Qi by applying the follow-
ing two steps:
1. Transforming the original query graph pattern Qi into a set

of path conjuncts, that cover all vertices and edges of Qi , and
when combined can effectively re-compose Qi .

2. Indexing all paths in a trie-based structure along with unique
query identifiers, while clustering all paths of all indexed
queries by exploiting commonalities among them.

In the following, we present each step of the query indexing
phase of Algorithm TRIC, give details about the data structures
utilized and provide its pseudocode (Fig. 5).

Step 1 : Extracting the Covering Paths. In the first step of the
query indexing process, Algorithm TRIC decomposes a query
graph pattern Qi and extracts a set of paths CP(Qi ) (Fig. 5, line 1).
This set of paths, covers all vertices V ∈ Qi and edges E ∈ Qi . At
first, we give the definition of a path and subsequently define and
discuss the covering path set problem.

Definition 4.1. A path Pi ∈ Qi is defined as a list of vertices
Pi = {v1

e1
−−→ v2

e2
−−→ . . .vk

ek
−−→ vk+1} where vi ∈ Qi , such

that two sequential vertices vi ,vi+1 ∈ Pi have exactly one edge
ei ∈ Qi connecting them, i.e., ek = (vk ,vk+1).

Definition 4.2. The covering paths [1] CP of a query graph Qi
is defined as a set of paths CP(Qi ) = {P1, P2, . . . , Pk } that cover
all vertices and edges ofQi . In more detail, we are interested in the
least number of paths while ensuring that for every vertex vi ∈ Qi
there is at least one path Pj that contains vi , i.e., ∀i∃j : vi ∈ Pj ,
vi ∈ Qi . In the same manner, for every edge ei ∈ Qi there is at
least one path Pj that contains ei , i.e., ∀i∃j : ei ∈ Pj .
Obtaining the Set of Covering Paths. The problem of obtaining
a set of paths that covers all vertices and edges is a graph opti-
mization problem that has been studied in literature [1, 27]. In our
approach, we choose to solve the problem by applying a greedy

Input: Query Qi = (VQi , EQi , vars, lV , lE , ΣV , ΣE )
Output: QDB ← QDB ∪ Qi

1 Paths← CP(Qi ); // Obtain the set of covering paths

2 foreach Pi ∈ Paths do // For each covering path Pi of Qi
3 foreach trie Ti with root(Ti ) = e1 : e1 ∈ Pi do
4 depthFirstSearch(Ti ); // Traverse trie in DFS

// If there exists a trie that can store Pi
5 if ∃{n0 → . . . ni → . . . nk } ⊆ Pi then

// Store the trie path positions

6 positions← {n0 → . . . ni → . . . nk };

// If all edges ei ∈ Pi cannot be indexed, create

additional trie nodes to index them

7 if positions ∩ Pi , ∅ then
8 create_nodes(Pi \ positions);

9 last(positions) ← id (Qi ); // Store the query id

// Keep a reference to the last trie node

10 pathPositions→ pathPositions ∪ last(positions);
// Store tries Ti under which, edge ei is indexed

11 foreach ei ∈ Pi do
12 edgeInd[ei ] ← Ti ;

// Store the nodes that Qi was indexed under

13 queryInd[id (Qi )] ← pathPositions

S
te
p
1

S
te
p
2

Figure 5: Query indexing phase of Algorithm TRIC.

algorithm, as follows: For all vertices vi in the query graph Qi
execute a depth-first walk until a leaf vertex (no outgoing edge)
of the graph is reached, or there is no new vertex to visit. Subse-
quently, repeat this step until all vertices and edges of the query
graph Qi have been visited at least once and a list of paths has
been obtained. Finally, for each path in the obtained list, check if
it is a sub-path of an already discovered path, and remove it from
the list of covering paths. The end result of this procedure yields
the set of covering paths.

Example 4.3. In Fig. 4(a) we present four query graph patterns.
These query graph patterns capture activities of users inside a
social network. By applying Definition 4.2 on the four query
graph patterns presented, Algorithm TRIC extracts four sets of
covering paths, presented in Fig. 4(b).

Obtaining a set of paths serves two purposes: (a) it gives a
less complex representation of the query graph that is easier to
manage, index and cluster, as well as (b) it provides a streamlined
approach on how to perform the materialization of the subgraphs
that match a query graph pattern, i.e., the query answering during
the evolution of the graph.

Materialization. Each edge ei that is present in the query set
has a materialized view that corresponds to its matV [ei ]. The
materialized view of ei stores all the updates ui that contain ei . In
order to obtain the subgraphs that satisfy a query graph pattern Qi
all edges ei ∈ Qi must have a non-empty materialized view (i.e.,
matV , ∅) and the materialized views should be joined as defined
by the query graph pattern.
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Figure 6: Data structures utilized by Algorithm TRIC to cluster query graph patterns.
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Figure 7: Materialized views of Q1.

In essence, the query graph pattern determines the execution
plan of the query. However, given that a query pattern in itself is a
graph there is a high number of possible execution plans available.
A path Pi = {v1

e1
−−→ v2

e2
−−→ . . .vk } serves as a model that

defines the order in which the materialization should be performed.
Thus, starting from the source vertex v1 ∈ Pi and joining all the
materialized views from v1 to the leaf vertex vk ∈ Pi : |P | = k
yields all the subgraphs that satisfy the path Pi . After all paths Pi
that belong inQi have been satisfied, a final join operation must be
performed between all the paths. This join operation will produce
the subgraphs that satisfy the query graph Qi . To achieve this path
joining set, additional information is kept about the intersection
of the paths Pi ∈ Qi . The intersection of two paths Pi and Pj are
their common vertices.

Example 4.4. Fig. 7 presents some possible materialized views
that correspond to the covering paths of query graph Q1 (Fig. 4
(b)). In order to locate all subgraphs that satisfy the structural
and attribute restrictions posed by paths P1, P2 and P3 their ma-
terialized views should be calculated. More specifically, path

P1 = {?var
hasMod
−−−−−−−→?var

posted
−−−−−−→ “pst1”}, is formulated by two

edges, edges hasMod = (?var , ?var ) and posted = (?var ,pst1),
thus, their materialized views matV [hasMod = (?var , ?var )] and
matV [posted = (?var ,pst1)] must be joined. These two views
contains all updates ui that correspond to them, while the re-
sult of their join operation will be a new materialized view
matV [hasMod = (?var , ?var ),posted = (?var ,pst1)] as shown
in Fig. 7. In a similar manner, the subgraphs that satisfy path P2
are calculated, while P3 that is formulated by a single edge does
not require any join operations. Finally, in order to calculate the
subgraphs that match Q1 all materialized views that correspond to
paths P1, P2 and P3 must be joined.

Step 2 : Indexing the Paths. Algorithm TRIC proceeds into in-
dexing all the paths, extracted in Step 1, into a trie-based data
structure. For each path Pi ∈ CP(Qi ), TRIC examines the forest
for trie roots that can index the first edge e1 ∈ Pi (Fig. 5, lines
3 − 6). To access the trie roots, TRIC utilizes a hash table (namely

rootInd) that indexes the values of the root-nodes (keys) and the
references to the root nodes (values). If such trie Ti is located, Ti
is traversed in a DFS manner to determine in which sub-trie path
Pi can be indexed (Fig. 5, line 4). Thus, TRIC traverses the forest
to locate an existing trie-path {n1 → . . .ni → . . .nk } that can
index the ordered set of edges {e1, . . . , ek } ∈ Pi . If the discovered
trie-path can index Pi partially (Fig. 5, line 7), TRIC proceeds into
creating a set of new nodes under nk that can index the remaining
edges (Fig. 5, line 8). Finally, the algorithm stores the identifier of
Qi at the last node of the trie path (Fig. 5, line 9).

Algorithm TRIC makes use of two additional data structures,
namely edgeInd and queryInd. The former data structure is a hash
table that stores each edge ei ∈ Pi (key) and a collection of trie
roots Ti which index ei as the hash table’s value (Fig. 5, lines
11 − 12). Finally, TRIC utilizes a matrix queryInd that indexes
the query identifier alongside the set of nodes under which its
covering paths Pi ∈ CP(Qi ) was indexed (Fig. 5, line 13).

Example 4.5. Fig. 6 presents an example of rootInd, queryInd
and edgeInd of Algorithm TRIC when indexing the set of covering
paths of Fig. 4 (b). Notice that TRIC indexes paths P1, P2 ∈ Q1,
path P1 ∈ Q2 and path P1 ∈ Q4 under the same trie T1, thus,
clustering together their common structural restrictions (all the
aforementioned paths) and their attribute restrictions. Additionally,
note that the queryInd data structure keeps references to the last
node where each path Pi ∈ Qi is stored, e.g. for Q1 it keeps
a set of node positions {&n2,&n4,&n5} that correspond to its
original paths P1, P2 and P3 respectively. Finally, edgeInd stores
all the unique edges present in the path set of Fig. 4 (b), with
references to the trie roots under which they are indexed, e.g.
edge posted = (?var ,pst1) that is present in P1 ∈ Q1, P1 ∈ Q3
and P1 ∈ Q4, is indexed under both tries T1 and T3, thus this
information is stored in set {&T1,&T3}.

The time complexity of Algorithm TRIC when indexing a path
Pi , where |Pi | = M edges and B the branching factor of the forest,
is O(M ∗ B), since TRIC uses a DFS strategy, with the maximum
depth bound by the number of edges. Thus, for a new query graph
pattern Qi with N covering paths, the total time complexity is
O(N ∗M ∗ B). Finally, the space complexity of Algorithm TRIC
when indexing a query Qi is O(N ∗M), where M is the number
of edges in a path and N the cardinality of Qi ’s covering paths.

Variable Handling. A query graph pattern Qi contains vertices
that can either be literals (specific entities in the graph) identified
by their label, or variables denoted as “?var”. This approach allevi-
ates restrictions posed by naming conventions and thus leverages
on the common structural constraints of paths.

However, by substituting the variable vertices with the generic
“?var” requires to keep information about the joining order of each
edge ei ∈ Pi , as well as, how each Pi ∈ CP(Qi ) intersects with the

17



Input: Update ui = (ei ) : ei = (s, t )
Output: Locate matched queries

1 affectedTries← edgeInd[ei ]; // Get affected tries

2 foreach Ti ∈ affectedTries do
3 foreach node ni ∈ Ti do // Traverse Ti in DFS
4 if edge(nc ) = ei then // If current node indexes ei
5 fndPos← n ; // Store the position

6 break ; // Terminate the traversal

// Update matVs of f ndPos and its children

7 affectedQueries← Trie Traversal & Materialization (fndPos);

8 foreach query Qi ∈ affectedQueries do
9 results← ∅;

10 foreach Pi ∈ Qi do // For the covering paths of Qi
11 results← results 1 matV [Pi ];

12 if results , ∅ then
13

S
te
p
1

mark_Matched(Qi );

Figure 8: Query answering phase (Step 1) of Algo-
rithm TRIC.

rest of the paths inCP(Qi ). In order to calculate the subgraphs that
satisfy each covering path Pi ∈ CP(Qi ), each matV [ei ] : ei ∈ Pi
must be joined. Each path Pi that is indexed under a trie path
{n1 → . . .ni → . . .nk } maintains the original ordering of its
edges and vertices, while the order under which each edge of a
node ni is connected with its children nodes (chn(ni )), is deter-
mined as follows: the target vertex t ∈ ei (where ei is indexed un-
der ni ) is connected with the source node s ∈ ei+1 : ei+1 ∈ chn(ni )
of the parent node ni . Finally, for each covering path Pi ∈ CP(Qi )

TRIC maintains information about the vertices that intersected
in the original query graph pattern Qi , while this information is
utilized during the query answering phase.

4.2 Query Answering Phase
During the evolution of the graph, a constant stream of updates
S = (u1,u2, . . . ,uk ) arrives at the system. For each update ui ∈ S
Algorithm TRIC performs the following steps:
1. Determines which tries are affected by update ui and proceeds

in examining them.

2. While traversing the affected tries, performs the materializa-
tion and prunes sub-tries that are not affected by ui .

In the following, we describe each step of the query answer-
ing phase of Algorithm TRIC. The pseudocode for each step is
provided in Figs. 8 and 10.

Step 1 : Locate and Traverse Affected Tries. When an update
ui arrives at the system, Algorithm TRIC utilizes the edge ei ∈ ui
to locate the tries that are affected by ui . To achieve this, TRIC
uses the hash table edgeInd to obtain the list of tries that con-
tain ei in their children set. Thus, Algorithm TRIC receives a
list (affectedTries) that contains all the tries that were affected by
ui and must be examined (Fig. 8, line 1). Subsequently, Algo-
rithm TRIC proceeds into examining each trie Ti ∈ affectedTries
by traversing each Ti in order to locate the node ni that indexes
edge ei ∈ ui . When node ni is located, the algorithm proceeds in
Step2 of the query answering process described below (Fig. 8,
lines 3 − 7).

Example 4.6. Let us consider the data structures presented
in Fig. 6, the materialized views in Fig. 9, and an update
u1 = (posted = (p2,pst1)) that arrives into the evolving graph
(Fig. 9(a)). Algorithm TRIC prompts hash table edgeInd and ob-
tains list {&T1,&T3}. Subsequently, TRIC will traverse triesT1 and
T3. When traversing trie T1 TRIC locates node n2 that matches
update e1 ∈ u1 and proceeds in Step2 (described below). Fi-
nally, when traversing T3 TRIC will stop the traversal at root

(a)

(c)

(b) pst1 ?var
matV[hasCreator = (pst1, ?var)]

=

matV[posted = (?var, pst1)]matV[n1] matV[n2]

u1
p2 pst1
p1 pst1
?var pst1 ?var ?var pst1

f2 p2 pst1
f2 p1 pst1
f1 p1 pst1

?var ?var
f1 p1
f2 p1
f2 p2

= ∅
pst1 ?var

matV[containedIn = (pst1, ?var)]
matV[n2]

?var ?var pst1

f2 p2 pst1
f2 p1 pst1
f1 p1 pst1

Figure 9: Updating materialized views.

Function: Trie Traversal & Materialization
Input: Node ni
Output: Locate matched queries
// Update the current materialized view by joining the

parent materialized view with the materialized view
of the edge in node ni

1 result ← matV [prnt(ni )] 1 matV [edge(ni )];
2 if result = ∅ then
3 return;

// Store the query identifiers of node ni
4 affectedQueries← affectedQueries ∪ qIDs(ni );
// Recursively update the matVs of ni’s children

5 foreach nc ∈ chn(ni ) do
6 Trie Traversal & Materialization (nc );

7

S
te
p
2

return affectedQueries ; // Return the affected qIDs

Figure 10: Query answering phase (Step 2) of Algo-
rithm TRIC.

node n6 as its materialized view is empty matV [hasCreator =
(pst1, ?var )] = ∅ (Fig. 9 (b)), thus all sub-tries will yield empty
materialized views.

Step 2 : Trie Traversal and Materialization. Intuitively, a trie
path {n0 → . . .ni → . . .nk } represents a series of joined materi-
alized views matVs = {matV 1, matV 2 , . . . , matVk }. Each mate-
rialized view matV i ∈ matVs corresponds to a node ni that stores
edge ei and the materialized view matV i . The materialized view
contains the results of the join operation between the matV [ei ]
and the materialized view of the parent node ni (matV (prnt(ni )]),
i.e., matV i = matV [prnt(ni )] 1 matV [ei ]. Thus, when an update
ui affects a node ni in this “chain” of joins, ni ’s and its children’s
(chn(ni )) materialized views must be updated with ui . Based on
this TRIC searches for and locates node ni insideTi that is affected
by ui and updates ni ’s sub-trie.

After locating node ni ∈ Ti that is affected by ui , Algo-
rithm TRIC continues the traversal of ni ’s sub-trie and prunes
the remaining sub-tries of Ti (Fig. 8, line 7). Subsequently, TRIC
updates the materialized view of ni by performing a join operation
between its parent’s node materialized view matV [prnt(ni )] and
the update ui , i.e., results = matV [prnt(ni )] 1 ui . Notice that Al-
gorithm TRIC calculates the subgraphs formulated by the current
update solely based on the update u1 and does not perform a full
join operation between matV [prnt(ni )] and matV [edge(ni )], the
updated results are then stored in the corresponding matV [ni ].

For each child node nj ∈ chn(ni ), TRIC updates its corre-
sponding materialized view by joining its view matV [nj ] that
corresponds to the edge that it stores (given by matV [edge(nj )])
with its parent node materialized view matV [ni ] (Fig. 10, lines
1− 7). If at any point the process of joining the materialized views
returns an empty result set the specific sub-trie is pruned, while,
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the traversal continues in a different sub-trie of Ti (Fig. 10, lines
5−6). Subsequently, for each trie node nj in the trie traversal when
there is a successful join operation among matV [ej ] : ej ∈ nj and
matV [ni ], the query identifiers indexed under nj are stored in
affectedQueries list (Fig. 10, lines 4 and 7). Note that similarly
to before, only the updated part of a materialized view is uti-
lized as the parent’s materialized view, an approach applied on
database-management system [16].

Example 4.7. Let us consider the data structures presented in
Fig. 6, Fig. 9, and an update u1 = (posted = (p2,pst1)) that ar-
rives into the evolving graph. After locating the affected trie node
n2 (described in Example 4.6) TRIC proceeds in updating the
materialized view of n2, i.e., matV [n2], by calculating the join
operation between its parents materialized view, i.e., matV [n1]
and the update u1. Fig. 9, demonstrates the operations of join-
ing matV [n2] with update u1, the result of the operation is tu-
ple (f 2,p2,pst1), which is added into matV [n2], presented in
Fig. 9(a). While the query identifiers of n2 (i.e., Q1) are indexed in
affectedQueries. Finally, TRIC proceeds in updating the sub-trie of
n2, node n3, where the updated tuple (f 2,p2,pst1) is joined with
matV [edge(n3)] (i.e., matV [containedIn = (pst1, ?var )]). This
operation yields an empty result (Fig. 9(c)), thus terminating the
traversal.

Finally, to complete the filtering phase Algorithm TRIC iterates
through the affected list of queries and performs the join opera-
tions among the paths that form a query, thus, yielding the final
answer (Fig. 8, lines 8 − 13).

The time complexity, of Algorithm TRIC when filtering an
update ui , is calculated as follows: The traversal complexity is
O(T ∗ (Pm ∗ B)), where T denotes the number of tries that contain
ei ∈ ui , Pm denotes the size of the longest trie path, and B the
branching factor. The time complexity of joining two materialized
views matV 1 and matV 2, where |matV 1 | = N and |matV 2 | = M ,
is O(N ∗M). Finally, the total time complexity is calculated as
O((T ∗ (Pm ∗ B)) ∗ (N ∗M)).

Caching. During Step 2, two materialized views are joined using
a typical hash join operation with a build and a probe phase. In
the build phase, a hash table for the smallest (in the number of
tuples) table is constructed, while in the probe phase the largest
table is scanned and the hash table is probed to perform the join.
TRIC discards all the data structures and intermediate results after
the join operation commences. In order to enhance this resource
intensive operation, we cache and reuse the data structures gener-
ated during the build and probe phases as well as the intermediate
results whenever possible. This approach constitutes an extension
of our proposed solution (TRIC) and it is coined TRIC+.

4.3 Supporting richer models and languages
The proposed algorithm is easily extensible to more sophisticated
data models and query languages; in this section, we briefly out-
line the necessary modifications to support graph deletions and
updates, as well as more general types of graphs (e.g., property
graphs).

Edge deletions may be handled by algorithms TRIC and TRIC+
by locating the affected paths, and traversing each path to locate
the deleted edges; while visiting each edge, the materialized view
that corresponds to that edge should be accessed and all affected
tuples should be removed. Updates on the graph (e.g., on the
label of an edge) may be modeled as an edge deletion followed
by an edge addition operation. Finally, extending our solution

Figure 11: Index structures utilized by Algorithm INV.

for more general graph types, like property graphs, entails the
addition of extra constraints within the nodes of the tries and the
usage of a separate data structure to appropriately index these
constraints. Then, query answering would include an extra phase
for the determining the satisfaction of the additional constraints.
Efficient execution of such extensions is an interesting topic for
future research (see Section 7).

5 ADVANCED BASELINES
Since no prior work in the literature considers the problem of
continuous multi-query evaluation, we designed and implemented
Algorithms INV and INC, two advanced baselines that utilize
inverted index data structures. Finally, we provide a third baseline
that is based on the well-established graph database Neo4j [43].

5.1 Algorithm INV
Algorithm INV (INVerted Index), utilizes inverted index data struc-
tures to index the query graph patterns. The inverted index data
structure is able to capture and index common elements of the
graph patterns at the edge level during indexing time. Subse-
quently, the inverted index is utilized during filtering time to
determine which queries have been satisfied. In the following, we
describe the query indexing and answering phase of INV.

The Query Indexing Phase of Algorithm INV, for each query
graph pattern Qi , is performed in two steps: (1) Transforming
the original query graph pattern Qi into a set of path conjuncts,
that cover all vertices and edges of Qi , and when combined can
effectively re-compose Qi , and finally, indexing those covering
paths in a matrix along the unique query identifier, (2) Indexing
all edges ei ∈ Qi into an inverted index structure. In the following,
we present each step of the query indexing phase of INV and give
details about the data structures utilized.

Step 1 : Extracting the Covering Paths. In the first step of the
query indexing phase, Algorithm INV decomposes a query graph
Qi into a set of paths CP , a process described in detail in Sec-
tion 4.1. Thus, given the query set presented in Fig. 4 (a), INV

yields the same set of covering paths CP (Fig. 4 (b)). Finally, the
covering path set CP is indexed into an array (queryInd) with the
query identifier of Qi .

Step 2 : Indexing the Query Graph. Algorithm INV builds
three inverted indexes, where it stores the structural and attribute
constrains of the query graph pattern Qi . Hash table edgeInd in-
dexes all edges ei ∈ QDB (keys), and the respective query identi-
fiers as values, hash table sourceInd indexes the source vertices of
each edge (key), where the edges are indexed as values , and hash
table targetInd that indexes the target vertices of each edge (key),
where the edges are indexed as values. In Fig. 4(a) we present
four query graph patterns, and in Fig. 11 the data structures of
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INV when indexing those queries. Finally, INV applies the same
techniques of handling variables as Algorithm TRIC (Section 4.1).

The Query Answering Phase of Algorithm INV, when a con-
stant stream of updates S = (u1,u2, . . . ,uk ) arrives at the system,
is performed in three steps: (1) Determines which queries are af-
fected by update ui , (2) Prompts the inverted index data structure
and determines which paths have been affected by update ui , (3)
Performs the materialization while querying the inverted index
data structures. In the following, we describe each step of the
query answering phase:

Step 1 : Locate the Affected Queries. When a new update ui
arrives at the system, Algorithm INV utilizes the edge ei ∈ ui to
locate the queries that are affected, by querying the hash table
edgeInd to obtain the query identifier qIDs that contain ei . Subse-
quently, the algorithm iterates through the list of affectedQueries
and checks each query Qi ∈ qIDs. For each query Qi the algo-
rithm checks ∀ei ∈ Qi if matV [ei ] , ∅, i.e., each ei should have a
non empty materialized view. The check is performed by iterating
through the edge list that is provided by queryInd and a hash table
that keeps all materialized views present in the system. Intuitively,
a queryQi is candidate to match, as long as, all materialized views
that correspond to its edges can be used in the query answering
process.

Step 2 : Locate the Affected Paths. Algorithm INV proceeds to
examine the inverted index structures sourceInd and targetInd by
making use of ei ∈ ui . INV queries sourceInd and targetInd to
determine which edges are affected by the update, by utilizing the
source and target vertices of update ui . INV examines each current
edge ec of the affected edge set and recursively visits all edges
connected to ec , which are determined by querying the sourceInd
and targetInd. While examining the current edge ec , INV checks if
ec is part of affectedQueries, if not, the examination of the specific
path is pruned. For efficiency reasons, the examination is bound
by the maximum length of a path present in affectedQueries which
is calculated by utilizing the queryInd data structure.

Step 3 : Path Examination and Materialization. While INV

examines the paths affected by update ui (Step 2), it performs
the materialization on the currently examined path. INV searches
through the paths formulated by the visits of edge sets determined
by targetInd and sourceInd, and maintains a path Pc = {v1

e1
−−→

v2
e2
−−→ . . .vk

ek
−−→ vk+1} that corresponds to the edges already

visited.
While, visiting each edge ec , INV accesses the materialized

view that corresponds to it (i.e., matV [ec ]) and updates the set of
materialized views matVs = {matV 1,matV 2, . . . ,matVk } that
correspond to the current path. For example, given an already vis-
ited path P = {v1

e1
−−→ v2

e2
−−→ v3} its materialized view matV [P]

will be generated, by matV [P] = matV [e1] 1 matV [e2]. When
visiting the next edge en , a new path P ′ is generated and its materi-
alized view matV [P ′] = matV [P] 1 matV [en ] will be generated.
If at any point, the process of joining the materialized views yields
an empty result set the examination of the edge is terminated (prun-
ing). This allows us to prune paths that are not going to satisfy
any Qi ∈ affectedQueries. If a path Pi yields a successful series of
join operations (i.e., matV [Pi ] , ∅), it is marked as matched.

Finally, to produce the final answer subgraphs Algorithm INV

iterates through the affected list of queries qIDs ∈ affectedQueries
and performs the final join operation among all the paths that
comprise the query.

Caching. In the spirit of TRIC+ (Section 4.2), we developed
an extension of INV, namely INV+, that caches and reuses the
calculated data structures of the hash join phase.

5.2 Algorithm INC
Based on Algorithm INV we developed an algorithmic extension,
namely Algorithm INC. Algorithm INC utilizes the same inverted
index data structures to index the covering paths, edges, source
and target vertices as Algorithm INV, while the examination of
a path affected during query answering remains similar. The key
difference lies in executing the joining operations between the
materialized views that correspond to edges belonging to a path.
More specifically, when Algorithm INV executes a series of joins
between the materialized views (that formulate a path) to deter-
mine which subgraphs match a path; it utilizes all tuples of each
materialized view that participate in the joining process. On the
other hand, Algorithm INC makes use of only the update ui and
thus reduces the number of tuples examined through out the join-
ing process of the paths.

Caching. In the spirit of TRIC+ (Section 4.2), we developed
an extension of INC, namely INC+, that caches and reuses the
calculated data structures of the hash join phase.

5.3 Neo4j
To evaluate the efficiency of the proposed algorithm against a
real-world approach, we implemented a solution based on the
well-established graph database Neo4j [43]. In this approach, we
extend Neo4j’s native functionality with auxiliary data structures
to efficiently store the query set. They are used during the an-
swering phase to located affected queries and execute them on
Neo4j.

The Query Indexing Phase. To address the continuous multi-
query evaluation scenario, we designed main-memory data struc-
tures to facilitate indexing of query graph patterns. Initially, in
the preprocessing phase, we convert each incoming query Qi into
Neo4j’s native query language Cypher1. Subsequently, the query
indexing phase of Neo4j commences as follows: (1) indexing each
Cypher query in the queryInd data structure, and (2) indexing all
edges ei ∈ Qi in the edgeInd data structure where ei is used as
key, and a collection of query identifiers as values. The queryInd
structure is defined as matrix, while the edgeInd is an inverted
index, similarly to the data structures described in Section 5.1.

The Query Answering Phase. Each update that is received as
part of an incoming stream of updates S = (u1,u2, . . . ,uk ) is
processed in the following steps: (1) an incoming update ui is
applied to Neo4j (2) the inverted index edgeInd is queried with
ei ∈ ui , to determine which queries are affected, (3) all affected
queries are retrieved from matrix queryInd, (4) the affected queries
are executed.

To enhance performance, the following configurations are ap-
plied: (1) the graph database builds indexes on all labels of the
schema allowing for faster look up times of nodes, (2) the exe-
cution of Cypher queries employs the parameters syntax2 as it
enables the execution planner of Neo4j to cache the query plans
for future use, (3) the number of writes per transaction3 in the
database and the allocated memory were optimized based on the
hardware configuration (see Section 6.1).
1https://neo4j.com/developer/cypher-query-language/
2https://neo4j.com/docs/cypher-manual/current/syntax/parameters/
3https://neo4j.com/docs/cypher-manual/current/introduction/transactions/
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Figure 12: Query answering time for the SNB dataset.

6 EXPERIMENTAL EVALUATION
In this section, we present a series of experiments that compare
the performance of the presented algorithms.

6.1 Experimental Setup
Data and Query Sets. For the experimental evaluation we used a
synthetic and two real-world datasets.

The SNB Dataset. The first dataset we utilized is the LDBC Social
Network Benchmark (SNB) [12]. SNB is a synthetic benchmark
designed to accurately simulate the evolution of a social network
through time (i.e, vertex and edge sets labels, event distribution
etc). This evolution is modeled using activities that occur inside
a social network (i.e. user account creation, friendship linking,
content creation, user interactions etc). Based on the SNB gen-
erator we simulated the evolution of a graph consisting of user
activities over a time period of 2 years. From this dataset we de-
rived 3 query loads and configurations: (i) a set with a graph size
of |GE | = 100K edges and |GV | = 57K vertices, (ii) a set with a
graph size of |GE | = 1M edges and |GV | = 463K vertices, and (iii)
a set with a graph size of |GE | = 10M edges and |GV | = 3.5M .

The NYC Dataset. The second dataset we utilized is a real world
set of taxi rides performed in New York City4 (TAXI ) in 2013
utilized in DEBS 2015 Grand Challenge [19]. TAXI contains
more that 160M entries of taxi rides with information about the
license, pickup and drop-off location, the trip distance, the date
and duration of the trip, and the fare. We utilized the available data
to generate a stream of updates that result in a graph of |GE | = 1M
edges and |GV | = 280K , accompanied by a set of 5K query graph
patterns.

The BioGRID Dataset. The third dataset we utilized is Bi-
oGRID [35], a real world dataset that represents protein to protein
interactions. This dataset is used as a stress test for our algorithms
4https://chriswhong.com/open-data/foil_nyc_taxi/

since it contains one type of edge (interacts) and vertex (protein),
and thus every update affects the whole query database. We used
BioGRID to generate a stream of updates that result in a graph
size of |GE | = 1M edges and |GV | = 63K vertices, with a set of
5K query graph patterns.

Query Set Configuration. In order to construct the set of query
graph patterns QDB we identified three distinct query classes that
are typical in the relevant literature: chains, stars, and cycles [15,
26]. Each type of query graph pattern was chosen equiprobably
during the generation of the query set. The baseline values for
the query set are: (i) an average size l of 5 edges/query graph
pattern, a value derived from the query workloads presented in
SNB [12], (ii) a query database |QDB | size of 5K graph patterns,
(iii) a factor that denotes the percentage of the query set QDB that
will ultimately be satisfied, denoted as selectivity σ = 25%, and
(iv) a factor that denotes the percentage of overlap between the
queries in the set, o = 35%.

Metrics. In our evaluation, we present and discuss the filtering
and indexing time of each algorithm, along with the total memory
requirements.

Technical Configuration. All algorithms were implemented in
Java 8 while for the materialization implementation the Stream
API was employed. The Neo4j-based approach was implemented
using the embedded version of Neo4j 3.4.7. Extensive exper-
imentation evaluation concluded that a transactionsection 5.3
can perform up to 20K writes in the database without degrad-
ing Neo4j’s performance, while in order to guarantee indexes
are cached in main memory 55GB of main memory were allo-
cated. A machine with Intel(R) Xeon(R) Processor E5-2650 at
2.00GHz, 64GB RAM, and Ubuntu Linux 14.04 was used. The
time shown in the graphs is wall-clock time and the results of each
experiment are averaged over 10 runs to eliminate fluctuations in
measurements.
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Figure 13: Results for (a) & (b) the SNB dataset, and (c) the SNB, TAXI , BioGRID datasets.

6.2 Results for the SNB Dataset
In this section, we present the evaluation for the SNB benchmark
and highlight the most significant findings.

Query Answering Time. Fig. 12(a) presents the results regarding
the query answering time, i.e., the average time in milliseconds
needed to determine which queries are satisfied by an incoming
update, against a query set of QDB = 5K . Please notice that the
y-axis is split due to the high differences in the performance of
TRIC/TRIC+and its competitors. We observe that the answer-
ing time increases for all algorithms as the graph size increases.
Algorithms TRIC/TRIC+ achieve the lowest answering times, sug-
gesting better performance. Contrary, the competitors are more
sensitive in graph size changes, with Algorithm INV performing
the worst (highest query answering time). When comparing Al-
gorithm TRIC to INV, INC and Neo4j the query answering time
is improved by 99.15%, 98.14% and 91.86% respectively, while the
improvement between INC and INV is 54.33%. Finally, comparing
Algorithm TRIC+ to INV+, INC+ and Neo4j demonstrates a per-
formance improvement of 99.62%, 99.17% and 96.74% respectively,
while the difference of INC+ and INV+ is 54.6%.

The results (Fig. 12(a)) suggest that all solutions that im-
plement caching are faster compared to the versions without
it. In more detail, Algorithms TRIC+/INV+/INC+ are consis-
tently faster than their non-caching counterparts, by 59.95%, 9.36%
and 9.91% respectively. This is attributed to the fact that Algo-
rithms TRIC/INV/INC, have to recalculate the probe and build
structures required for the joining process, in contrast to Algo-
rithms TRIC+/INV+/INC+ that store these structures and incre-
mentally update them, thus providing better performance.

In Fig. 12(b) we present the results when varying the parameter
σ , for 10%, 15%, 20%, 25% and 30% of a query set for |QDB | = 5K
and |GE | = 100K . In this setup the algorithms are evaluated for
a varying percentage of queries that match. A higher number of
queries satisfied, increases the number of calculations performed
by each algorithm. The results show that all algorithms behave in a
similar manner as previously described. In more detail, Algorithm
TRIC+ is the most efficient of all, and thus the fastest among the
extensions that utilize caching, while TRIC is the most efficient
solution among the solutions that do not employ a caching strat-
egy. Finally, the percentage differences, between the algorithmic
solutions remain the same as before in most cases.

Fig. 12(c) presents the results of the experimental evaluation
when varying the size of the query database |QDB |. More specifi-
cally, we present the answering time per triple when |QDB | = 1K ,
3K and 5K , and |GE | = 100K . Please notice the y-axis is in loga-
rithmic scale. The results demonstrate that all algorithm’s behavior

is aligned with our previous observations. More specifically, Al-
gorithms TRIC+ and TRIC exhibit the highest performance (i.e.,
lowest answering time), throughout the increase of |QDB |, and
thus determine faster which queries of |QDB | have matched given
an update ui . Similarly to the previous setups, the competitors
have the lowest performance, while Algorithms INC and INC+
perform better compared to INV and INV+.

In Fig. 12(d) we give the results of the experimental evalua-
tion when varying the average query size l. More specifically,
we present the answering time per triple when l = 3, 5, 7 and
9 of a query set for |QDB | = 5K and |GE | = 100K . We observe
that the answering time increases for all algorithms as the aver-
age query length increases. More specifically, Algorithms TRIC+
and TRIC exhibit the highest performance (i.e., lowest answering
time), throughout the increase of ls, and thus determine faster
which queries have been satisfied. Similarly to the previous eval-
uation setups, the Algorithms INV/INV+/INC/INC+/Neo4j have
the lowest performance, and increase significantly their answering
time when l increases, while Algorithms INC and INC+ perform
better compared to INV, INV+ and Neo4j when l = 9.

Fig. 12(e) gives the results of the experimental evaluation when
varying the parameter o, for 25%, 35%, 45%, 55% and 65% of a
query set for |QDB | = 5K and |GE | = 100K . In this setup the
algorithms are evaluated for varying percentage of query overlap.
A higher number of query overlap, should decrease the number of
calculations performed by algorithms designed to exploit common-
alities among the query set. The results show that all algorithm
behave in a similar manner as previously described, while Al-
gorithmsINV/INV+/INC/INC+ observe higher performance gains.
Algorithm TRIC+ is the most efficient of all, and thus the fastest
among the extensions that utilize caching techniques, while TRIC
is the most efficient solution among the solutions that do not
employ caching.

Fig. 12(f) presents the results regarding the query answering
time, for all algorithms when indexing a query set of |QDB | = 5K
and a final graph of |GE | = 1M and |GV | = 463K . Given the
extremely slow performance of some algorithms we have set
an execution time threshold of 24 hours, for all algorithms un-
der evaluation, thus, when the threshold was crossed the evalua-
tion was terminated. Algorithms TRIC/TRIC+ achieve the low-
est answering times, suggesting better performance, while Al-
gorithms INV/INV+/INC/INC+ are more sensitive in graph size
changes and thus fail to terminate within the time threshold. More
specifically, Algorithms INV/INV+ time out at |GE | = 210K , while
INC/INC+ time out at |GE | = 310K as denoted by the asterisks
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Figure 14: Query answering time for (a) the TAXI dataset, and (b) & (c) the BioGRID dataset.

in the plot. When comparing TRIC/TRIC+ to Neo4j the query
answering is improved by 77.01% and 92.86% respectively.

Fig. 13(a) presents the results regarding the query answering
time, for Algorithms TRIC, TRIC+ and Neo4j when indexing a
query set of QDB = 5K and a final graph size of |GE | = 10M
and |GV | = 3.5M . Again, we have set an execution time thresh-
old of 24 hours, for all the algorithms under evaluation. Algo-
rithm TRIC+ achieves the lowest answering times, suggesting
better performance, while Algorithms TRIC and Neo4j fail to
terminate within the given time threshold. More specifically, Al-
gorithm TRIC times out at |GE | = 5.47M , while Algorithm Neo4j
times out at |GE | = 4.3M as denoted by the asterisks in the plot.

Overall, Algorithms TRIC+ and TRIC, the two solutions that
utilize trie structures to capture and index the common structural
and attribute restrictions of query graphs achieve the lowest query
answering times, compared to Algorithms INV/INV+/INC/INC+
that employ no clustering techniques, as well as when com-
pared with commercial solutions such as Neo4j. Adopting the
incremental joining techniques (found in Algorithm TRIC) into
Algorithm INC does not seem to significantly improve its per-
formance when compared to Algorithm INV. While, adopting
caching techniques that store the data structures generated dur-
ing the join operations, changes significantly the performance
of Algorithm TRIC+. Taking all the above into consideration,
we conclude that the algorithms that utilize trie-based indexing
achieve low query answering times compared to their competitors.

Indexing Time. Fig. 13(b) presents the indexing time in millisec-
onds required to insert 1K query graph patterns when the query
database size increases. We observe that the time required to go
from an empty query database to a query database of size 1K is
higher compared to the time required for the next iterations. Please
notice the y-axis is in logarithmic scale. This can be explained
as follows, all algorithms utilize data structures that need to be
initialized during the initial stages of query indexing phase, i.e.
when inserting queries in an empty database, while as the queries
share common restrictions less time is required for creating new
entries in the data structures. Additionally, the time required to
index a query graph pattern in the database does not vary signifi-
cantly for all algorithms. Notice that query indexing time is not a
critical performance parameter in the proposed paradigm, since
the most important dimension is query answering time.

6.3 Results for the NYC and BioGRID Dataset
In this section, we present the evaluation for the NYC and
BioGRID dataset and highlight the most significant findings.

The NYC Dataset. Fig. 14(a) presents the results from the eval-
uation of the algorithms for the NYC dataset. More specifically,
we present the results regarding the query answering performance
of all algorithms when QDB = 5K , l = 5, o = 35%, σ = 25%
and an execution time threshold of 24 hours. Please notice that
the y-axis is split due to high differences in the performance
of the algorithms. Algorithms INV and INV+ fail to terminate
within the time threshold and time out at |GE | = 210K and
|GE | = 300K respectively. Similarly, Algorithms INC and INC+
time out at |GE | = 220K and 360K respectively. When compar-
ing Algorithms TRIC and TRIC+ to Neo4j the query answering
is improved by 59.68% and 81.76% respectively. These results
indicate that again an algorithmic solution that exploits and in-
dexes together the common parts of query graphs (i.e., Algo-
rithms TRIC/TRIC+) achieves significantly lower query answer-
ing time compared to approaches that do not apply any clustering
techniques (i.e., AlgorithmsINV/INV+INC/INC+/Neo4j).

The BioGRID Dataset. Figs. 14(b) and 14(c) present the results
from the evaluation of the algorithms for the BioGRID dataset.
In Fig. 14(b) we present the results regarding the query answer-
ing performance of the algorithms, when QDB = 5K , σ = 25%
for a final graph size of |GE | = 100K and |GV | = 17.2K . Addi-
tionally, we set an execution time threshold of 24 hours due to
the high differences in the performance of the algorithms. The
BioGRID dataset serves as a stress test for our algorithms, since
it contains only one type of edge and vertex, thus each incoming
update will affect (but not necessarily satisfy) the entire query
database. To this end, Algorithms INV/INV+/INC exceed the time
threshold and time out at |GE | = 50K , while INC+ times out
at |GE | = 60K as denoted by the asterisks in the plot. Finally,
Fig. 14(c) presents the results for the BioGRID dataset for a final
graph size of |GE | = 1M and |GV | = 63K . We again observe
that Algorithms TRIC and TRIC+ achieve the lowest answering
time, while Neo4j exceeds the time threshold and times out at
|GE | = 550K . As it is demonstrated from the results yielded by
the evaluation, Algorithms TRIC and TRIC+ are the most effi-
cient of all; this is attributed to the fact that both algorithms create
a combined representation of the query graph patterns that can
efficiently be utilized during query answering time.

Comparing Memory Requirements. Fig. 13(c) presents the
memory requirements of each algorithm, for the SNB, NYC
and BioGRID datasets when indexing |QDB = 5K | and a graph
of |GE | = 100K . We observe, that across all datasets, Algo-
rithms TRIC, INV and INC have the lowest main memory re-
quirements, while, Algorithms TRIC+, INV+, INC+ and Neo4j
exhibit higher memory requirements. The marginally higher mem-
ory requirements of algorithms that employ a caching strategy,
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(i.e., Algorithms TRIC+/INV+/INC+) is attributed to the fact that
all structures calculated during the materialization phase are kept
in memory for future usage; this results in slightly higher mem-
ory requirements compared to algorithms that do not apply this
caching technique (i.e., Algorithms TRIC/INV/INC). To this end,
employing a caching strategy for all algorithms yields significant
performance gains with minimal impact on main memory. Fi-
nally, Neo4j is a full fledged database management system, thus it
occupies more memory to support the required specifications.

7 OUTLOOK
In this work, we proposed a new paradigm to efficiently capture
the evolving nature of graphs through query graph patterns. We
proposed a novel method that indexes and continuously evaluates
queries over graph streams, by leveraging on the shared restric-
tions present in query sets. We also evaluated our solution using
three different datasets from social networks, transportation and bi-
ological interactions domains, and demonstrated that our approach
is up to two orders of magnitude faster when compared to typical
join-and-explore inverted index solutions, and the well-established
graph database Neo4j.

Our future research plans involve (i) further improving the al-
gorithm performance by storing materializations within the trie
to minimize trie traversal at query answering time and exploiting
workload-driven statistics in the spirit of [23] and (ii) increas-
ing the model expressiveness by implementing graph deletions,
supporting more general graph types (e.g., property graphs), and
introducing query classes that aim at clustering coefficient, short-
est path, and betweenness centrality.
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ABSTRACT
An evolving graph maintains the history of changes of graph
topology and attribute values over time. Such a graph has a
speci�c temporal and structural resolution. It is often useful to
modify this resolution during analysis, for example, to consider
communities rather than individual nodes, or to quantify changes
at the level of days rather than hours.

We propose attribute-based zoom and temporal window-based
zoom — two operators that support exploratory analysis of an
evolving graph at di�erent levels of resolution. We develop sev-
eral alternative physical representations of an evolving property
graph — a temporal generalization of a property graph — and
detail how to implement the proposed zoom operators using
data�ow operations. These di�erent physical representations
allow us to explore the trade-o�s in temporal and structural lo-
cality with respect to the performance of the zoom operators.
We implement the operators in Apache Spark, evaluate them
on real evolving graph datasets, and demonstrate scalability to
billion-edge graphs.

1 INTRODUCTION
Many social structures and systems can be represented as net-
works or graphs. The phenomena that are represented by these
graphs can change over time, and therefore, many interesting
questions about these graphs are related to their evolution rather
than to their static state. Researchers study graph evolution rate
and mechanisms [1, 9], the impact of speci�c events on further
evolution [8, 39] and spatio-temporal patterns [27, 28], with most
progress taking place in the last decade [24, 35, 37, 38, 40].

Our focus in this paper is on a temporal generalization of a
property graph, called TGraph, whichwe recently introduced [37].
Figure 1 shows an example — an interaction network in which
nodes represent people, and, for the students among them, in-
clude information about a school at which they are enrolled,
while edges represent co-authorship. As in conventional prop-
erty graphs [3], nodes and edges of a TGraph are associated with
a set of key-value pairs that represent an assignment of values to
attributes. In addition, TGraph associates a time interval (repre-
senting a set of discrete consecutive time points) with each state
of a node or edge. For example, a person node Ann exists, and is
enrolled at MIT, during the interval T = [1, 7).

TGraph maintains the history of changes of graph topology
and attribute values over time. It has a speci�c temporal and struc-
tural resolution, which users often want to modify for exploratory
analysis, for example, to look at communities rather than indi-
vidual nodes, or to quantify changes at the level of days rather
than hours. In this paper we focus on two operators, aZoomT and
wZoomT , that allow us to change the structural and temporal

∗This work was supported in part by NSF Grant No. 1916505.
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23rd International Conference on Extending Database Technology (EDBT), March
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resolution of a TGraph, respectively. These operators are part
of a compositional evolving graph algebra called TGA, which
we presented in [37], that operates under point semantics [5].1 A
consequence of these semantics is that the TGraph must remain
temporally coalesced — vertices and edges in the output of an
operator must be associated with time periods of maximal length
during which no change occurred.
Attribute-based zoom (aZoomT ). We may be interested in an-
alyzing evolving graphs at di�erent levels of structural resolution,
to study properties and behavior of individual nodes, of commu-
nities, and of the graph as a whole. An operation that achieves
this, known as node creation, is present in several conventional
(non-temporal) graph query languages [14, 21, 32, 42]. Our fo-
cus is on a temporal generalization of this operation for graphs,
called temporal attribute-based zoom, or aZoomT for short.

Consider TGraph G1 in Figure 1, where school names are
represented as values of the school property of person nodes.
aZoomT computes the TGraph in Figure 2, where schools become
nodes (actors) rather than values.

aZoomT is evaluated over a TGraph under point semantics and,
speci�cally, under the principle of snapshot reducibility [5]: we
evaluate the non-temporal variant of the operator over each state
of the graph (also known as a “snapshot”), and then apply tempo-
ral coalescing [4] to represent each vertex or edge in the result
with a single fact, corresponding to the longest interval during
which no change occurred. aZoomT is described in Section 2.2.
Temporal window-based zoom (wZoomT ). This operator
changes the temporal resolution of a TGraph. This operation is
important because it may not be known a priori, at the time when
graph evolution is being recorded, at what time scale interesting
trends can be observed. For example, changes in node centrality
in a social network may be observable on the scale of weeks
but not months. Understanding at what temporal resolution to
consider network evolution is an integral part of exploratory
analysis. Let us return to our running example in Figure 1, and
assume that time points represent months of 2019. We may zoom
out on G1 temporally, to 3-month windows, retaining nodes and
edges in the result for a particular time window that were present
in the input during all time points of the window. The result is
presented in Figure 3, and described in more detail in Section 2.3.

Next, we explore di�erent physical representations to answer
the following questions: (i)How should we represent a TGraph to
compute the result of aZoomT and wZoomT e�ciently? Should
we use a snapshot-based representation, storing graph evolution
as a sequence of conventional graphs, that is easy to parallelize
but lacks compactness, or should we leverage a more compact
representation, as suggested by Figure 1? (ii)What representation
should we use to e�ciently execute a sequence of these operators?
We address these questions, making the following contributions:
• We propose di�erent physical representations of a TGraph
and detail how to de�ne aZoomT and wZoomT using data�ow
operations for these representations (Section 3).

1The focus of [37] is on de�ning the TGraph model and algebra, while this paper
focuses on system and implementation aspects.
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Figure 1: Evolving property graph (TGraph) G1.

• Wedescribe how to e�ciently implement aZoomT andwZoomT

in Apache Spark (Section 4).
• Weconduct an extensive experimental evaluation of aZoomT and
wZoomT and demonstrate scalability to billion-edge graphs.
We �nd that a physical representation that balances temporal
and structural locality outperforms other representations in
most cases (Section 5).

2 TGRAPHMODEL AND ZOOM OPERATORS
Weprovide the background on the evolving property graphmodel
called TGraph, and de�ne the operators aZoomT andwZoomT that
take a valid TGraph as input, and output a TGraph.

2.1 Evolving property graphs
In [37] we proposed a logical model of an evolving graph called
TGraph that represents a single graph (such as theWeb, or a large
collaboration network), and models the evolution of its topology,
and vertex and edge properties. A TGraph is a directed multi-
graph: its nodes and edges have identity, and multiple edges may
connect a given pair of nodes. Each entity (node and edge) has
a required type label, and is associated with a (possibly empty)
set of key-value pairs that represent its properties, each in the
form of a property label (key) and a corresponding value. The set
of properties for an entity is not �xed: it can be di�erent among
entities of the same type, and for the same entity over time.

We now recall the de�nition of TGraph from [37], simplifying
it slightly. This de�nition extends the static property graph de�-
nition of Angles et al. [3] by associating periods of validity with
graph nodes, edges, and their properties. Time is drawn from a
linearly ordered discrete domain ΩT .

De�nition 2.1. A TGraph G = (V , E, L, ρ, ξT , λT ) is a six-tuple:
• V is a �nite set of nodes (or vertices), E is a �nite set of edges,
V ∩ E = ∅, and L is a �nite set of property labels;
• ρ : E → (V × V ) is a total function that maps an edge to its
source and destination nodes;
• ξT : (V ∪ E) × ΩT → B is a total function that maps a node or
an edge and time point to a Boolean, indicating existence of
the node or edge at that time point; and
• λT : (V ∪ E) × L × ΩT → val is a partial function that maps a
node or an edge, a property label, and a time point to a value
of the property at that time point.

A valid TGraph conceptually corresponds to a sequence of
valid conventional (non-temporal) graphs. This imposes the fol-
lowing conditions: (i) a condition on ξT that an edge can only
exist at a time when both of the nodes it connects exist; and (ii)
a condition on λT that a property can only take on a value at a
time when the corresponding node or edge exists. Finally, we
require that the property set of an entity not be empty at any
time point when it exists. Practically, we require that each node
and edge assign a value to a property called type.

De�nition 2.1 associates graph nodes, edges and attribute val-
ues with time points. In the remainder of this paper, we will rep-
resent temporally adjacent time points by intervals, for syntactic
compactness, as illustrated in Figure 1. Following the SQL:2011

type=school
student=1

type=school
student=2

MIT

T = [1, 7)     T  = [7,  9)

type=school
student=1

T = [1,  7)

CMU

type=collaborate
T = [5,  7)

e1

type=collaborate

e2

T = [7,  9)

Figure 2: Result of aZoomT over G1 (Figure 1). Semanti-
cally, this operation is executed over every snapshot of
G1 to: (i) create school nodes for each value of the school
property of person nodes in G1; (ii) count the number of
persons enrolled at a school, set the value of the student
property of the school node to that count; (iii) create edges
of type collaborate between school nodes for which co-
author edges were present in G1; and (iv) temporally coa-
lesce the result across snapshots, due to point semantics.

standard, we use closed-open intervals, representing a discrete
contiguous set of time points from ΩT . This representation does
not add expressiveness to a point-based representation, and is
purely a syntactic device [10].

We now describe aZoomT and wZoomT in detail using our
running example, and refer to [37] for a formal treatment.

2.2 Attribute-Based Zoom
Temporal attribute-based zoom, denoted aZoomT , is a temporal
generalization of the graph node creation operation [42]. Node
creation over non-temporal graphs takes a graph pattern as input,
and computes a new node for each occurrence of a match of
the pattern in the input. To assign identity to new nodes, it is
customary to extend this operation with a Skolem function fs .
aZoomTwill similarly create nodes in the output TGraph from
disjoint groups of nodes in the input, such that nodes within a
group agree on the values of all grouping attributes.

Conceptually, aZoomT is executed over every snapshot of the
input TGraph, and new nodes are assigned identity by a Skolem
function fs , which generates consistent assignments across time.
In addition to creating new nodes, aZoomTwill also optionally
compute values of node attributes using the aggregation function
faдд , including count, sum, min, max, average, and user-speci�ed
functions that are required to be commutative and associative.
Next, aZoomT computes edges as follows. Suppose that input
nodes n and n′ corresponds to output nodesд andд′, respectively,
and that edge e connects n to n′. Then, the output will contain
the edge e , with д as its source and д′ as its target. Essentially,
the input edge is re-created in the output, and re-pointed.

Node creation, computation of node attribute values, and re-
pointing of the edges, is executed over each snapshot of the input
TGraph, under point semantics. As the �nal step, the result is
then coalesced, associating a time interval of maximal length
during which no change occurred with every newly-computed
node and edge. We now illustrate aZoomTwith an example.

Example 2.2. Node Ann in Figure 1 is associated with a closed-
open interval T = [1, 7), signifying that the node existed in the
graph for six consecutive time points with no change. Bob exists
in the graph during T = [2, 9), but with a change to its attributes
at time 5, when school=CMU was added. School names are
represented as values of the school property of person nodes.

We invoke aZoomT to compute from G1 a TGraph where
schools become nodes rather than values, as shown in Figure 2
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Figure 3: wZoomT (G1, window=3-months, nodes=all,
edges=all, node.school=last(school)) over G1 (Figure 1).

with school nodes MIT and CMU. Note that the number of stu-
dents at MIT changes over time: both Ann and Cat study there
during T = [1, 7), while only Cat studies there during T = [7, 9).
Note that both edge e1 and e2 have been redirected to newly cre-
ated nodes and their validity period is updated to correct values
based on when those were valid in the graph: While e1 is valid
during T = [2, 7) in Figure 1, it is only valid during T = [5, 7) in
Figure 2, because Bob was not at CMU during T = [2, 5).

2.3 Temporal Window-Based Zoom
The wZoomT operator is analogous to moving window temporal
aggregation in temporal relational algebra. This operator is in-
spired by stream aggregation of Li et al. [29] (adopted to graphs),
and by generalized quanti�ers [22].

The wZoomT operator modi�es validity periods of TGraph
nodes and edges, by mapping di�erent states of a node or an
edge to a single representative state. This mapping is based on a
speci�cation of a temporal window, such as 2 months or 10 years.
If the speci�edwindow is �ner than the temporal resolution of the
input TGraph, the operation has no e�ect. For example, applying
wZoomTwith 1-month windows to a TGraph in which evolution
is recorded across years will simply return the input TGraph. Note
that, because wZoomT is required to produce a valid TGraph as
output, this operation does not support overlapping windows.

Window speci�cation is of the form n {unit |changes}, where
n is an integer, and unit is a time unit (e.g., 10 min, 3 years).
Window speci�cation generates a temporal relationW with the
schema (d | T ), where each tuple associates a window number d
with its period of validity T . We additionally require node and
edge existence quanti�ers {all|most|at least n |exists}, where n is
a decimal representing the percentage of the time during which
a node or an edge existed, relative to the duration of the window.
Quanti�ers are useful for observing di�erent kinds of temporal
evolution. For example, to observe strong connections over a
volatile evolving graph we may include nodes that span the
entire window (nodes=all), and edges that span a large portion of
the window (edges=most). We refer to all and exists as universal
and existential quanti�cation, respectively.

A related point is that a given node or edge should exist at
most once at any given time point, and so we must specify how
con�icts in attribute values are resolved by wZoomT . The an-
swer to this question is determined by the window aggregation
functions, which specify, for each attribute of a node or an edge,
which of its values to accept as a representative for the given
temporal window. We support the window aggregation functions
first, last, and any (the default).

Example 2.3. Consider again TGraph G1 in Figure 1, and sup-
pose that time points represent the months of 2018, and are di-
vided into �scal year quarters as follows: windowW 1: time points
1, 2, 3; T = [1, 4), windowW 2: time points 4, 5, 6; T = [4, 7), win-
dowW 3: time points 7, 8, 9; T = [7, 10). How might we quantify
the state of G1 during each quarter, a 3-month temporal window?

Figure 3 shows the temporally coalesced results of zooming out
to quarters over G1 with nodes=all and edges=all.

Ann is present in windowsW 1 andW 2 in the input in Figure 1,
and so is associated withT = [1, 7) in the result for both universal
and existential quanti�cation. In contrast, Bob is present in the
input for all ofW 2 but for only part ofW 1, and so is returned
with T = [4, 7) in the result for nodes=all, and with T = [1, 7) for
nodes=exists. Finally, Cat is present for all ofW 1 andW 2, but for
only part ofW 3 in the input (it is missing at time point 9), and
so is associated with T = [1, 7) in the output undernodes=all and
with T = [1, 10) under nodes=exists. Quanti�cation is applied to
edges analogously: e1 is mapped to windowW 2 and e2 is absent
in the output in Figure 3, because there does not exist a quarter
during which e2 exists continuously in the input.

3 EVOLVING GRAPH REPRESENTATIONS
AND DATAFLOW OPERATORS

In this section, we introduce several physical representations
for a TGraph and detail how to de�ne the zoom operations ac-
cording to these representations. We express the zoom opera-
tors using general data�ow operations — directed acyclic graphs
of operators resembling parallelizable second-order functions
that execute user-de�ned �rst order functions. This is a popular
programming model for distributed computations supported by
systems such as Apache Spark [43] and Apache Flink [2].

We use the term snapshot to refer to a conventional (non-
temporal) graph that represents the state of a TGraph during
some interval in which no change occurred. Figure 4 shows the
TGraph in our running example as a sequence of snapshots.When
storing and accessing evolving graphs, we are concerned with
preserving two kinds of locality: temporal and structural. Adopt-
ing the terminology of [19], with structural locality, neighboring
vertices (resp. edges) of the same snapshot are laid out together,
while with temporal locality, consecutive states of the same ver-
tex (resp. edge) are laid out together. We develop four TGraph
representations that di�er in compactness and in the kind of
locality (structural or temporal) they prioritize.
Representative Graphs (RG). RG represents a TGraph by a
sequence of snapshots (conventional graphs), associating them
with time intervals, see Figure 4 for an example. The snapshot
sequence is by far the most common representation in the litera-
ture [15, 20, 24–26, 38, 40]. RG has the following schema:
TemporalGraph { interval: Interval,

snapshots: array(Snapshot) }

Snapshot { vertices: array(Vertex), edges: array(Edge) }

Interval { start: Date, end: Date }

Vertex { vid: long, type: string, attributes: dictionary }

Edge { eid: long, type: string, v1: Vertex, v2: Vertex,
attributes: dictionary }

Note that vertices and edges of each snapshot store the attribute
values for the interval represented by the snapshot. This represen-
tation is simple, and lends itself well to parallelizing operations
in a distributed environment, as we can simply assign di�er-
ent snapshots to di�erent workers. An advantage of RG is that
it naturally preserves structural locality, and so is e�cient for
snapshot-based operations. An important drawback of RG is that
it is not compact: in many real-world evolving graphs there is an
80% or larger overlap between consecutive snapshots [8].
VertexEdge (VE). As illustrated in Figure 5,VE is a nested tempo-
ral relational representation of TGraph, with one relation storing
vertices and the other edges, together with the corresponding
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Figure 4: Representative-Graphs (RG): a “sequence of snapshots” representation of the TGraph G1 of Figure 1.

Vertices (V)
v a T

Ann type=person, school=MIT [1, 7)
Bob type=person [2, 5)
Bob type=person, school=CMU [5, 9)
Cat type=person, school=MIT [1, 9)
Edges (E)
e v1 v2 a T
e1 Ann Bob type=co-author [2, 7)
e2 Bob Cat type=co-author [7, 9)

Figure 5: Vertex-Edge (VE): nested relational representa-
tion of theTGraphG1 fromFigure 1. The relationsVertices
(V) and Edges (E) are temporally coalesced.

time intervals. Both relations are temporally coalesced, giving
rise to a compact representation. VE stores all vertex proper-
ties together as a single nested attribute (and all edge properties
analogously). VE has the following schema:
TemporalGraph { interval: Interval,

vertices: array(Vertex), edges: array(Edge) }

Interval { start: Date, end: Date }

Vertex { vid: long, type: string, interval: Interval,
attributes: dictionary }

Edge { eid: long, type: string, vid1:long, vid2: long,
interval: Interval, attributes: dictionary }

For edges, we store a unique edge identi�er eid(long) to support
multi-graphs, as well as the vertex identi�ers vid1(long) and
vid2(long) that are foreign keys referring to the vertex relation.
The main advantage of VE’s attribute representation is that it
lends itself to schema evolution. A disadvantage is that di�erent
properties may have di�erent evolution rates, and a change to
a single property requires a new vertex or edge tuple. VE stores
graph vertices and edges in unordered collections, and therefore
does not maintain temporal locality by default in cases where
the state of a vertex or edge changes. For example, two tuples
for vertex Bob in Figure 5 may not be located consecutively, or
even on the same worker, once the data is partitioned across
a cluster. We can reconstruct temporal locality at runtime, by
re-partitioning the data based on vertex or edge identi�ers.
One Graph (OG), One Graph Columnar (OGC). These are
two topologically compact representations.OG stores all vertices
and edges once, in a single aggregated data structure, as shown
in Figure 6. In OG, vertices and edges store the history of the
evolution of their attributes as an array of key-value pairs, to-
gether with the corresponding validity periods. Figure 6 shows
the OG representation for our example graph. Note that we have
only one tuple for vertex Bob, which holds two sets of values for
two corresponding validity periods T=[2,5) and T=[5,9). OG has
the following schema:
TemporalGraph { interval: Interval,

vertices: array(Vertex), edges: array(Edge) }

Vertices (V)
v a

Ann { T=[1,7): type=person, school=MIT }
Bob { T=[2,5):type=person,

T=[5,9):type=person, school=CMU }
Cat { T=[1,9): type=person, school=MIT }
Edges (E)
e v1 v2 a
e1 Ann Bob { T=[2,7): type=co-author }
e2 Bob Cat { T=[7,9): type=co-author }

Figure 6: One Graph (OG): nested relational representa-
tion of theTGraphG1 fromFigure 1. The relationsVertices
(V) and Edges (E) are temporally coalesced.

Interval { start: Date, end: Date }

HistoryItem { interval: Interval, attributes: dictionary }

Vertex { vid: long, type: string,
history: array(HistoryItem) }

Edge { eid: long, type: string, v1: Vertex, v2: Vertex,
history: array(HistoryItem) }

The schemas for OG and VE are similar in many ways. The main
di�erence is that the interval and attribute dictionary in VE has
been replaced with a history array that containsHistoryItems.
Each such history item stores an interval as the key and a dictio-
nary of the corresponding attributes. The second di�erence is
that OG contains a copy of the source and target vertex of each
edge, instead of a foreign key to the vertex relation.

OGC, on the other hand, only stores the graph topology with
validity periods as a graph, as shown in Figure 7. OGC has the
following schema:
TemporalGraph { intervals: array(Interval),

vertices: array(Vertex), edges: array(Edge) }

Interval { start: Date, end: Date }

Vertex { vid: long, type: string, intervals: Bitset }

Edge { eid: long, type: string, v1: Vertex,
v2: Vertex, intervals: Bitset }

OGC is intended for topology-only attribute-less graphs, encod-
ing the presence of a vertex or edge in each interval with a bitset.
Both OG and OGC emphasize temporal locality, while also pre-
serving structural locality, but lead to a much denser graphs than
RG. This, in turn, makes parallelizing computation challenging.

In the remainder of this section, we describe how to de�ne
aZoomT and wZoomT in terms of data�ow operations according
to our proposed representations.

3.1 Attribute-Based Zoom
We now describe aZoomT for each TGraph representation. In the
algorithms we present, V and E are overloaded to refer to the
vertex and edge relations of a given snapshot (in the case of RG)
or of the overall TGraph. In aZoomTwe use a Skolem function
fs to produce new vertex ids. fs is a user-provided function that

28



Bitset (b): T={[1,2),[2,7),[7,9)}
Vertices (V) Edges (E)
v b e v1 v2 b

Ann [1, 1, 0] e1 Ann Bob [0, 1, 0]
Bob [0, 1, 1] e2 Bob Cat [0, 0, 1]
Cat [1, 1, 1]

Figure 7: One Graph Column (OGC): nested relational rep-
resentation of the TGraph G1 of Figure 1. Vertices (V) and
Edges (E) are temporally coalesced. Bitsets represent va-
lidity during periods of T={[1,2),[2,7),[7,9)}.

takes the vertex id and all attributes as an input and produces a
long identi�er as output. We additionally apply the commutative
and associative aggregation function faдд to resolve cases where
we have a series of vertices with identical identi�ers but multiple
values for the same attribute in the same snapshot. This is an
important step that ensures that each snapshot in the result
corresponds to a valid graph (see [36] for details).
RG. Recall thatRG maintains a collection of snapshots. We apply
the same set of operations in an embarrassingly parallel manner
to each snapshot, as there are no dependencies between them in
this case (Algorithm 1). We iterate over each snapshot (lines 3-10)
and return an RG (line 11) containing the aZoomT result. We
apply fs to each vertex using amap (line 5) in order to compute a
new identi�er for each vertex. The copyWithVid function updates
each vertex identi�er while keeping other attributes unchanged.
We then group vertices by id (line 7) and apply the aggregation
function faдд (line 8).

To redirect edges to the newly created vertices, we apply the
function fs to the vertices v1 and v2 of each edge in a map (line 9).
The copyWithVids function updates the id of the vertices to the
new identi�ers. The edges contain a copy of their source and
target vertices in RG, which obliviates the need for a join here.

Algorithm 1 aZoomT over RG
Require: Skolem function fs : V ⇒ N; Aggregation function faдд :

V ×V ⇒ V
1: newSnapshots ← �
2: .Aggregate each snapshot
3: for (V ,E) in graph.snapshots do
4: V ′ ← V .Update of vertex identi�ers
5: .map{v ⇒ v .copyWithVid(fs (v))}
6: .Vertex aggregation for identity-equivalence
7: .groupBy{v ⇒ v .vid }
8: .reduce{(va , vb ) ⇒ faдд (va , vb )}

.Edge redirection to new vertices
9: E′ ← E .map{e ⇒ e .copyWithVids(fs (e .v1), fs (e .v2))}
10: Add (V ′, E′) to newSnaphots
11: return new TGraph G(newSnapshots)

VE. VE consists of two temporal relational tables for vertices
and edges, which contain tuples for each vertex or edge history.
Algorithm 2 details our implementation of aZoomT for VE. We
�rst calculate non-overlapping intervals (lines 2-5) based on the
temporal splitter concept introduced in [11]. We join intervals
and vertices (lines 7- 9), assign new identi�ers (line 10), and
enforce identity-equivalence in each interval with the aggrega-
tion function (line 12). Since VE edges only contain a foreign
key to the corresponding vertices, we need to join the edges

with their corresponding vertices for the edge redirection pro-
cess (lines 14 and 15), before we can apply the fs function to each
corresponding vertex to redirect the edge (line 18).

Algorithm 2 aZoomT over VE
Require: Skolem function fs : V ⇒ N; Aggregation function faдд :

V ×V ⇒ V
1: I ← V .Non-overlapping intervals for each new vertex identi�er
2: .map{v ⇒ (fs (v), v .interval )}
3: .groupBy{(vid , _) ⇒ vid }
4: .foldLeft(EmptyInterval)
5: {(i , v) ⇒ mergeNonOverlapping(i , v .interval )}
6: V ′ ← V .Vertex aggregation for non-overlapping intervals
7: .join(I ).on{(v , id ) ⇒ v .id == i .vid }
8: .�atMap{(v , i) ⇒ verticesForIntervals(v , i)}
9: .map{(v , i) ⇒
10: v .copyWithIdAndInterval(fs (v), i) }
11: .groupBy{v ⇒ v .id }
12: .reduce{(va , vb ) ⇒ faдд (va , vb )}

13: E′ ← E .Edge redirection to new vertices
14: .join(V ).on{(e , v) ⇒ e .vid1 == v .id }
15: .join(V ).on{((e , _), v) ⇒ e .vid2 == v .id }
16: .map{(e , v1, v2) ⇒
17: i ← recomputeInterval(e , v1, v2)
18: e .copyWithVidsAndInterval(fs (v1), fs (v2), i) }

return new TGraph G(V ′, E′)

OG. We implement aZoomT for One Graph (OG) analogously to
RG, with the di�erence that we compute over the entire TGraph
rather than over each individual snapshot (Algorithm 3). We split
each vertex in OG based on its history, and apply the fs func-
tion to each element of the history array individually. We use a
flatMap function on vertices combined with a map on the his-
tory elements of each vertex for this (lines 1-3). We again enforce
identity-equivalencewith our aggregation function (lines 4 and 5).
The vertext computation portion of Algorithm 3 is illustrated in
Figure �g:az-og. For edge redirection inOG, we split the edges by
expanding the history of each corresponding vertex in that edge,
as OG stores each edge only once. Next, we apply the Skolem
function fs to each element of the history (line 6-9).

Algorithm 3 aZoomT over OG
Require: Skolem function fs : V ⇒ N; Aggregation function faдд :

V ×V ⇒ V
1: V ′ ← V .�atMap{v ⇒
2: v .history .map{(_, attr ) ⇒
3: v .copyWithIdAndAttributes(fs (v .vid ), attr ) }}
4: .groupBy{v ⇒ v .vid }
5: .reduce{(va , vb ) => faдд (va , vb )}
6: E′ ← E .map{e ⇒
7: h ← recompute_history(e)
8: e .copyWithVidsAndHistory(fs (e .v1.vid ),
9: fs (e .v2.vid ), h)}

return new TGraph G(V ′, E′)

OGC does not represent attributes and so does not support
aZoomT .

3.2 Temporal Window-Based Zoom
As we did for aZoomT , we express wZoomT di�erently for each
representation, with some common aspects. The �rst step is to
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Figure 8: Illustration of the vertex computation portion of Algorithm 3, aZoomT , over TGraph in Figure 6, with count as
faдд . The �rst two steps correspond to the call to flatMap on lines 1-3: splitting nodes based on their history array, and
then calling the Skolem function fs to generate ids for new nodes. In this example, fs outputs the value of the school
property. The next step groups vertices by id (line 4). The �nal step (line 5) applies the aggregation function count, storing
the computed value as a vertex property.

compute the temporal window relation based on the window
speci�cation. We split the total graph lifetime temporally by
applying the function computeNewIntervals to the graph. This
function takes an interval as an input and returns a tuple con-
taining the old and the recomputed interval.

A major di�erence to aZoomT is that the TGraph must be coa-
lesced before wZoomT can be applied, in order to guarantee the
correctness of the zoom operation. This is because aZoomT exe-
cutes over each snapshot (under snapshot reducibility), while the
computation of wZoomT is across snapshots. Consequently, if
the input to wZoomT is not coalesced, we cannot properly apply
existence quanti�ers and compute results of aggregation.

We additionally need to handle potential dangling edges for all
representations in wZoomT to ensure that every snapshot of the
resulting TGraph is a valid graph, as speci�ed in the condition
over ξT in De�nition 2.1. Recall that wZoomT supports the quan-
ti�ers all, most, at least n, and exists, which can be translated
to a threshold on the percentage of the time during which an
entity (a vertex or an edge) existed, relative to the duration of
the window: t = 1 for all, t > 0.5 for most, t > 0 for exists and
t > n for at least n. If an entity’s existence meets the threshold,
it will be retained in the result of the operation. A dangling edge
check is only required if rv is more restrictive than re , because
a particular edges may pass the check, but one or more of the
vertices it connects may not.

RG implements wZoomT as shown in Algorithm 4. We again
use the computeNewInteval function to compute the new inter-
vals based on the window speci�cation (line 2). Next, we apply
join, groupBy, and flatMap to map each vertex to one or more
snapshots from the speci�cation (lines 4-9). Then, vertices are
grouped by their id within each new interval (line 10). Next, we �l-
ter vertices and edges based on the existence quanti�er (line 11).
We apply the math_threshold function to vertices with their
respective thresholds (r ) to �lter vertices that do not meet the
criteria of our quanti�er. Finally, we apply the resolve function
fv to compute the new attribute values (line 12). We treat edges
analogously (lines 14-18). At the end, we merge snapshots into a
TGraph and remove dangling edges.

VE implements wZoomT using Algorithm 5. Figure 9 illus-
trates this algorithm for vertex Bob from Figure 5. We �rst need
to calculate the new intervals using computeNewInterval (lines 2-
3). Then we join V with the intervals to align each vertex with
each temporal window (lines 4-6) to split the vertices. Next, we
group by interval and vertex (line 7), and �lter vertices that do
not pass the quanti�er threshold (line 8). Finally, we resolve the
vertices’ �nal attributes (line 12). We apply the same operations

Algorithm 4 wZoomT over RG
Require: resolve functions fv , fe ; quanti�ers rv , re
1: .Computation of new intervals
2: I ′ ← I .map{i ⇒ (i , computeNewInterval(i))}
3: .Grouping of snapshots by new interval
4: S ← G .snapshots .join(I ′)
5: .on{(s , interval ) ⇒ s .i == interval .i }
6: .groupBy{(s , interval ) ⇒ interval .newInterval }
7: .Aggregation of vertices for new snapshots
8: V ′ ← S .�atMap{(i , snapshot ) ⇒
9: (i , snapshots .map{s ⇒ s .ver t ices })}
10: .groupBy{(i , v) ⇒ (i , v .id )}
11: .�lter{(i , ver t ices) ⇒ match_threshold(ver t ices , rv )}
12: .reduceByKey{((va ), (vb )) ⇒ fv (va , vb )}
13: .Aggregate edges for new snapshots
14: E′ ← S .�atMap{(i , snapshot ) ⇒
15: (i , snapshots .map {s ⇒ s .edдes })}
16: .groupBy{(i , e) ⇒ (i , e .id )}
17: .�lter{(i , edдes) ⇒ match_threshold(edдes , re )}
18: .reduceByKey{((ea ), (eb )) ⇒ fe (ea , eb )}

.Recreate RG representation
19: G′ ← merge(I ′,V ′, E′)

to edges (lines 11-18). We remove dangling edges (given that
rv > re ) with two semijoins (lines 17-19).

OG implements wZoomT using Algorithm 6. Recall that in
OG each vertex stores its interval information in a history array.
We process each element of this array separately and rebuild
the array afterwards (lines 1-4) for this process. We �rst invoke
recomputeIntervals (line 2) to recompute the history array with
updated intervals. Next, we leverage the aggregateAndFilterAt-
tributes function (line 3) to group, �lter and resolve vertices
analogous to previous algorithms, and apply the same transfor-
mations to the edges as well (lines 5-8).

We again remove dangling edges with semijoins (lines 9-15).
The only di�erence here is that joining edges with vertices is not
enough, as we also need to update the history arrays. We achieve
this with a map function which updates every edge history with
the intersection of the edge history and the corresponding vertex
history (lines 12 and 15) using the copyWithHistory function.

OGC implements wZoomT similarly to OGC, but working
with a bitset instead of a history array. Removing dangling edges
in OGC is as simple as computing the logical and between the
edge bitset and the corresponding vertex bitsets.
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Figure 9: Illustration of Algorithm 5,wZoomT , for vertex Bob in Figure 5, with window size 3 and last as fv . The �rst step
aligns each vertex with each temporal window (lines 4-6 of the algorithm). Next we create a single nested representation
of each vertex per window and compute rv , the fraction of the window during which the vertex was observed (line 7).
Finally, we �lter vertices by rv and resolve their attribute values with fv =last (lines 8, 9).

Algorithm 5 wZoomT over VE
Require: resolve functions fv , fe ; quanti�ers rv , re
1: .Computation of new intervals
2: I ′ ← I .map{ i ⇒ (i , computeNewInterval(i)) }
3: .Vertex aggregation for new intervals
4: V ′ ← V .join(I ′).on{ (v , (i , n)) ⇒ v .n == i }
5: .map { (v , (i , newInterval )) ⇒
6: v .copyWithNewInterval(newInterval )}
7: .groupBy{ v ⇒ (v .id , v .interval ) }
8: .�lter{(i , ver t ices) ⇒ match_threshold(ver t ices , rv )}
9: .reduceByKey{((va ), (vb )) ⇒ fv (va , vb )}
10: .Edge aggregation for new intervals
11: E′ ← E .join(I ′).on{ (e , (i , n)) ⇒ e .interval == n }
12: .map { (e , (i , newInterval )) ⇒
13: e .copyWithNewInterval(newInterval )}
14: .groupBy{ e ⇒ (e .id , e .interval ) }
15: .�lter{(i , edдes) ⇒ match_threshold(edдes , re )}
16: .reduceByKey{((ea ), (eb )) ⇒ fe (ea , eb )}
17: if rv > re then .Dangling edge removal
18: E′′ ← E′.semijoin(V ′)

.on{ (e , v) ⇒ e .vid1 == v .id and in_interval(e, v)}
19: E′′′ ← E′′.semijoin(V ′)

.on{ (e , v) ⇒ e .vid2 == v .id and in_interval(e, v)}
20: return new TGraph (V ′, E′′′)

Algorithm 6 wZoomT over OG
Require: resolve functions fv , fe ; quanti�ers rv , re
1: V ′ ← V .map{v ⇒
2: h ← recomputeIntervals(v .history)
3: h ← aggregateAndFilterAttributes(h, fv , rv )
4: v .copyWithHistory(h) }
5: E′ ← E .map{e ⇒
6: h ← recomputeIntervals(e .history)
7: h ← aggregateAndFilterAttributes(h, fe , re )
8: e .copyWithHistory(h) }
9: if rv > re then .Dangling edge removal
10: E′′ ← E′.semijoin(V ′)

.on{ (e , v) ⇒ e .vid1 == v .id and in_interval(e, v)}
11: .map{(e , v) ⇒
12: e .copyWithHistory(intersect(e .history, v .history)) }
13: E′′′ ← E′′.semijoin(V ′)

.on{ (e , v) ⇒ e .vid2 == v .id and in_interval(e, v)}
14: .map{(e , v) ⇒
15: e .copyWithHistory(intersect(e .history, v .history)) }
16: return new TGraph G(V ′, E′′)

4 IMPLEMENTATION
Wede�ned our zoomoperators in Section 3 using general data�ow
operations and UDFs that are implemented by a variety of popu-
lar systems. Apache Spark with GraphX [17] and Apache Flink
with Gelly [7] are natural candidates for such workloads, as is
Di�erential Data�ow [33]. We choose Apache Spark for our im-
plementation due to its maturity and popularity.

Our implementation includes a TGraph API, several graph rep-
resentations as discussed in Section 3, and several optimizations
such as lazy coalescing. Our API supports chaining multiple op-
erations together and switching between graph representations
during query execution.

The VE representation is implemented directly over Spark’s
Resilient Distributed Datasets (RDDs) [43] while RG, OG and
OGC leverage the GraphX library for static graphs [17]. We
use the long datatype to represent node and edge identi�ers to
maintain interoperability with GraphX.
GraphX-speci�c implementation details. GraphX implements
vertex-cut-based partitioning that reduces communication over-
head [17] for certain aggregations on graphs. GraphX also pro-
vides an optimized implementation of a distributed triplet view,
a concept originating from Resource Description Frameworks
(RDF) [31]. The triplet view provides fast access to each edge
and its corresponding source and destination vertex properties.
The triplet view requires a materialized three-way join, which
GraphX optimizes by implementing vertex-mirroring and a mul-
ticast join [17]. We leverage the implementation of the triplet
view to e�ciently access edges’ vertex attributes in RG, OG and
OGC. We implement RG as sequence of GraphX graphs, while
OG and OGC are modeled as a single GraphX graph. GraphX
mechanisms such as vertex-cut partitioning and the triplet view
enabled us to implement graph operations more e�ciently.
Data loading. The data is read from the Hadoop Distributed File
System (HDFS). Our on-disk data layout uses Apache Parquet, a
columnar data format for HDFS based on the Dremel project [34].
Apache Parquet does not have a mechanism for indexing, but it
supports �lter pushdown on any column by which the data is
sorted on disk. We store and load vertices and edges as separate
vertex and edge Parquet �les. The default schema to store a graph
on disk is similar to the VE schema described in Section 3. We
load two of our representations (VE and RG) from this format.
To apply a �lter pushdown, the data on disk need to be sorted.
For VE, we use the vertex/edge identi�er as the �rst sort key, and
the interval start time as the second key. Storing data in this way
preserves temporal locality, and places the history of changes
in a vertex or an edge together. Parquet does not support �lter
pushdown for datetime formats, hence we store time as UNIX
timestamps (long).
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We use a similar schema for RG, however, we sort vertices
and edges by the interval start time �rst, and then by their vertex
(resp. edge) identi�er, to preserve structural locality. During our
experiments we learned that RG can be loaded 30% faster using
the structural locality instead of temporal locality (experiment
omitted due to space constraints). While OG and OGC could be
loaded in the same way as VE, we experimentally validated that
it is signi�cantly faster to pre-compute nested versions of the
graphs with schemas described in Section 3, and then convert
to OG or OGC during load time. A problem with this approach
is that Parquet’s �lter pushdown will not work, since interval
information is stored in a nested column. We resolve this issue by
storing the �rst and last time a vertex/edge existed as a separate
column on disk, and sorting on these columns.

We provide a GraphLoader utility that can initialize any of
our physical representations from Apache Parquet �les on HDFS
or on local disk. This loader accepts a date range and �lters
the data through Parquet’s �lter pushdown. For datasets with a
long evolution history, this optimization provides a substantial
performance improvement (see [36]).
Coalescing. The coalesce primitive for merges adjacent and
overlapping time periods for value-equivalent tuples. Several
implementations have been suggested for the coalesce operation
over temporal SQL relations [5]. In our implementation for VE,
we use the partitioning method: grouping the vertex and the edge
relation by key, then sorting by start time, and folding tuples
within each group and checking pairs of adjacent tuples for value-
equivalence. The e�ect of this operation is that a single tuple is
produced for each period of maximum length during which no
change occurred.

To further optimize performance, we coalesce lazily for se-
quences of two or more operations. Recall that aZoomT com-
putes in each snapshot, and so it does not require its input to be
temporally coalesced to produce the correct output. In contrast,
wZoomT does require its input to be coalesced for correctness,
because it computes across snapshots. This means that, in a se-
quence of aZoomT and wZoomT operators, the system does not
need to temporally coalesce before invoking aZoomT , but it must
coalesce before invoking wZoomT and at the end of the operator
sequence, when the �nal result is produced.

5 EXPERIMENTAL EVALUATION
We conduct an experimental evaluation to study the performance
of aZoomT andwZoomT . Our goal is to understand how di�erent
representations and their corresponding operator implementa-
tions perform for di�erent datasets and workloads. We present
three di�erent categories of experiments: aZoomT experiments
(Section 5.1),wZoomT experiments (Section 5.2), and experiments
combining both operations (Section 5.3).
Cluster. All experiments are conducted on a 16-worker in-house
Cloudera cluster, using Linux CentOS 14.04 and Spark v2.2. Each
machine has 4 cores and 32 GB of RAM. Spark standalone cluster
manager and Hadoop 2.6 were used. In each experiment, we
report the mean runtime of three executions, each with a cold
start. The runtime includes the setup time of submitting a job
to the cluster manager, reading the data from disk, executing
the operation, and materializing the results in memory. We set a
30-minute time-out for all experiments.
Datasets.We evaluate the performance on two real world datasets,
WikiTalk and NGrams, and a family of synthetic datasets SNB,

with di�erent scale factors. All datasets are summarized in the ta-
ble below, and di�er in size, in the number and type of attributes,
and in evolution rates, calculated as the average graph edit sim-
ilarity [38] between consecutive snapshots (the edit similarity
between snapshots i and j is the ratio of the number of common
edges to the sum of the number edges: 2 ∗ |Ei ∩ Ej |/(|Ei | + |Ej |)).
In contrast toWikiTalk and NGrams, SNB is a growth-only graph,
and so it shows a higher evolution rate.

vertices edges snaps ev. rate
WikiTalk 2.9M 10.7M 179 14.4
SNB:10 65K 1.9M 36 89
SNB:100 448K 20M 36 90
SNB:300 1.1M 59M 36 90
SNB:1000 3.3M 202M 36 91
NGrams:M 28M 606M 287 16.6
NGrams:L 48M 1.32B 328 18.2

WikiTalk is a real dataset that contains over 10 million mes-
saging events (edges) among 3 million wiki-en users (vertices) at
a 1-month resolution, from 2000 through 2016 [41]. Vertices have
two attributes: name is a unique username for each account and
editCount is the number of edits committed by the user (around
15K unique values). Edges have no attributes. WikiTalk is a very
sparse dataset with short-lived edges and growth-only vertices:
once added, a vertex persists for the lifetime of the graph and its
attributes do not change.

NGrams is a real dataset that contains word co-occurrence
pairs, with 88 million word vertices (3.2 unique words in all) and
over 2.8 billion undirected co-occurrence edges. In our experi-
ments we use two versions of this dataset: NGrams:L, with 328
yearly snapshots from 1520 through 1920, and NGrams:M, with
287 yearly snapshots from 1520 through 1870. NGrams is denser
than WikiTalk; its vertices persist over time, while edges can
appear and disappear. This dataset exhibits a linear relationship
between the number of nodes and the number of edges.

The LDBC Social Network Benchmark (SNB) [12] is a synthetic
graph generator that produces realistic networks with di�erent
types of entities and di�erent attributes. We focus on SNB person
entities (vertices) and on friendship relationships (edges), and
generate datasets at four scale factors: SNB:10, SNB:100, SNB:300,
and SNB:1000, with 36 monthly snapshots in each. SNB:1000 is
the largest dataset that can be created without changing the gen-
erator source code. SNB does not generate a temporal benchmark
but, since entities and relationships have timestamps, it can be
viewed as a growth-only evolving graph. We use the vertices
attribute firstName (5300 unique values in SNB:1000), edges
have no attributes. The friendship network generated using SNB
is growth-only graph, a graph where every vertex and edge is
added once and never goes away.

5.1 Evaluation of aZoomT

We now evaluate the performance of attribute-based zoom. Ex-
periments are executed with RG, VE and OG, as described in
Section 2, but not with OGC, which does not support aZoomT .

Fixed number of groups, varying data size. Dataset size
plays an important role in the performance of aZoomT . We sim-
ulated di�erent data sizes by using three datasets and varying
the number of snapshots in each dataset. In this experiment and
all other experiment in this section, we used aZoomTwith a hash
function as the Skolem function fS that generate new ids based
on one of the attributes of the graph. In WikiTalk we group by
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Figure 10: aZoomT : The e�ect of dataset size on the run-
time for each dataset. OG and VE perform on par, while
RG quickly times out.

username (2.9M output groups), In NGrams— by word (3.2M out-
put groups), and in SNB— by firstName (5,300 output groups).

Figure 10 shows the runtime of aZoomT on di�erent datasets.
As expected, increasing the data size increases the execution time.
OG is the best-performing representation, and VE is second-best.
Both VE and OG exhibit sub-minute runtimes on WikiTalk: at
most 0.54 min for OG and at most 1.09 min for VE (Figure 10a).
The runtime of VE for SNB:1000 is at most 2.21 min for this
graph with over 200M edges, where OG takes up to 2.53 minutes.
(Figure 10b). Notably, OG scales well, even for NGrams, where
OG computes in 4.8 min for 400 years worth of data and VE in
9.3, in a graph with 1.3 billion edges (Figure 10c). In contrast, RG
is much slower than VE and OG, and it does not scale for the full
SNB:1000 and NGrams:L dataset. It takes 26 minutes forWikiTalk,
14minutes for 12 snapshots of SNB, timing out for anything larger
and taking 29.55min to compute for 200 snapshots of NGrams,
and timing out for 300 snapshots.
Fixed number of groups and graph size, varying number
of snapshots. Another important factor in evolving property
graphs that can impact operator performance is the number
of snapshots (intervals during which no change occurred in
the TGraph). We generate experimental datasets to measure
this e�ect by merging consecutive snapshots of WikiTalk and
NGrams:L, where we gradually decrease the number of intervals,
while we keep the size of the dataset (in terms of the number
of nodes and edges) �xed. For SNB:1000, we directly generate
datasets with the desired number of snapshots. For WikiTalk,
we select the last 160 months of history, and create graphs with
between 2 and 160 snapshots. For NGrams, we select the last 320
years of the graph’s history, and again generate datasets with
between 2 and 320 snapshots. For SNB, we generate between
12 and 360 snapshots, corresponding to between 1 and 30 years
worth of network evolution. Note that generating graphs in this
way does neither change the number of nodes and edges, nor the
group-by cardinality.

Figure 11 shows the runtime of aZoomT as a function of the
number of snapshots. OG and VE exhibit comparable perfor-
mance for WikiTalk, executing in under 2 minutes, with OG
being slightly more e�cient. The trends are di�erent in SNB: the
runtime of aZoomT on both OG and VE is near-constant, but VE
is more e�cient: 2.3 minutes for VE, compared to 2.9 minutes for
OG. OG outperforms VE for NGrams; their runtime increases
linearly with an increasing number of intervals.

The di�erence in performance across datasets is due to the
nature of data evolution. WikiTalk and SNB only have one tuple
per node, since attributes do not change over time, therefore an
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Figure 11: aZoomT : Fixed dataset size and group-by car-
dinality, varying number of snapshots. The number of
nodes and edges is �xed to the largest graph size, and the
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dinality of each dataset.
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Figure 12: aZoomT : Fixed dataset size and number of snap-
shots, with varying group-by cardinality.
increase in the number of intervals does not change the number
of tuples (which is not the case for NGrams). We observe that
RG is the least e�cient representation for this operation, except
for the smallest number of intervals in WikiTalk, where all repre-
sentations have roughly similar performance. The running time
of RG grows linearly with the number of intervals, with a high
slope. We timed out this experiment at 30 minutes per execution,
and RG failed to complete for SNB and NGrams at 80 intervals.

Fixed size and number of snapshots, varying group-by
cardinality. In this aZoomT experiment, we investigate the ef-
fect of group-by cardinality — the number of new nodes being
created by the aZoomT operation, on performance. We work with
the WikiTalk, SNB:300 and NGrams:300 datasets at their original
temporal resolution. We vary the number of groups in the output
by assigning a group identi�er to each node in the input. Group
identi�ers are drawn uniformly at random from a given integer
range. We varied the range to control group-by cardinality, set-
ting it to 10, 100, 1,000, 100,000, and 1,000,000. Figure 12 shows
the results of this experiment. We observe that the runtime of
aZoomT over OG, VE and RG is not a�ected by group-by cardi-
nality. For visibility purpose, we did not include RG in Figure 12.
On WikiTalk, RG showed an execution time of about 29 minutes
for all the group-by cardinality values.

Frequency of change. In our �nal aZoomT experiment, we
study the e�ect of the frequency of change on performance.
Therefore, we synthetically change vertex attributes values with
a �xed frequency. While this intervention does not change the
size of the graph in terms of the number of nodes and edges, it
does change the storage requirements (e.g., the number of tuples
for VE, or the length of the array in OG) for each vertex.
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Figure 13: aZoomT : Fixed dataset size and number of snap-
shots, varying frequency of change of vertex attributes

Figure 13 shows the e�ect of the frequency of change on the
performance forWikiTalk (Figure 13a) and SNB:1000 (Figure 13b).
The size of each graph and the contained number of snapshots is
�xed to the full dataset size. While the group-by cardinality does
vary, the number of new groups is of the same order of magni-
tude as in the original graphs. We observe that the frequency of
change has no e�ect on the performance of RG. This is because
RG stores each vertex once per snapshot, irrespective of whether
there was a change between consecutive snapshots. The runtime
of aZoomT on OG is higher when more changes occur. This is
expected: Recall that OG stores attributes with their correspond-
ing validity intervals in an array, and so a higher frequency of
change results in longer arrays, which slows down operations on
OG. VE stores each change as a new tuple,and a higher frequency
of change results in more tuples, slowing down VE as well.

Summary. We studied the e�ects of data size, the number of
snapshots, the frequency of attribute change, and the group-by
cardinality (e.g., the number of newly-computed nodes) on the
performance. We observed that OG is the best representation for
aZoomT , followed by VE. For our largest experimental datasets,
with over 1.3 billion edges, aZoomT can be executed in less than 5
minutes withOG. The dataset size (the total number of nodes and
edges) a�ects operator performance on all datasets. The number
of representative graphs (snapshots) has a small e�ect on VE and
OG, and a signi�cant e�ect on RG. We did not observe an e�ect
of the group-by cardinality on the runtime in any representation.
The frequency of change has a small e�ect on RG, but it a�ects
VE and OG signi�cantly.

5.2 Evaluation of wZoomT

We now investigate the performance of wZoomT . In all experi-
ments, we load RG from disk enforcing structural locality, and
VE enforcing temporal locality. For OG and OGC we load data
from nested format described in Section 4.

Fixed time window, changing data size. In this experi-
ment, we �x the zoom window size to 3 snapshots for Wik-
iTalk (grouping into up to 60 temporal windows) and SNB:1000
(grouping into up to 12 temporal windows), and 25 snapshots
for NGrams:L (grouping into up to 16 temporal windows). We
load di�erent temporal slices of each graph and measure the
execution time of wZoomT . Figure 14 shows the results of this
experiment. We applied “exists“ quanti�ers for both nodes and
edges. We observed similar results for “all“ quanti�ers (except
that they make wZoomT slightly faster as fewer nodes and edges
have to be kept in the result), which we omit for space reasons.

As expected, increasing the size of the graph increases the
runtime on all representations. Our implementation based on
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Figure 14:wZoomT : Fixedwindow size, changing data size,
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Figure 15: wZoomT : Fixed data size and number of inter-
vals with varying window size, nodes=all, edges=all. OG
and OGC outperform other representations.

OGC is the clear winner for all datasets, taking 0.41 minutes for
WikiTalk, 1.25 minutes for SNB and 1.12 minutes for NGrams. For
WikiTalk and SNB, OG is the second winner while VE performs
better for NGrams:L, particularly for larger TGraph sizes. Finally,
RG performsworst for all datasets. The reason forVE’s signi�cant
performance drop on SNB is window size. We look at the impact
of window size on wZoomT in the next section.

Fixed data size, varying temporal window size. In the
previous experiment, we used a �xed zoom window size and
increased the size of the graph. In this experiment, the size of
the graph is �xed and we vary the size of the temporal window.
Figure 15 shows the corresponding results. RG does not scale for
temporal window-based zoom on large datasets, therefor we only
report performance numbers for RG on WikiTalk. We observe
that the performance of OG and OGC does not depend on the
window size, while the operations on VE take longer to execute
for smaller temporal windows. OGC is the winner among all
datasets followed by OG; VE exhibits longer runtimes for smaller
window sizes especially. This is because VE creates copies of each
tuple in order to align them with the computed time windows.
The smaller the window, the more tuples are created in the inter-
mediate stage. This e�ect is more visible for WikiTalk and SNB
because of their growth-only nature. In SNB, each vertex or edge
exists from its start date to the life time of the graph, therefore
VE needs to create a large amount of copies as each of those long
intervals is split into intervals corresponding to the window size.
Summary. We studied the e�ect of data size and of temporal
window size on performance. Our experiments showed thatOGC
performs best, followed by OG and VE. RG was the slowest rep-
resentation in all cases. We also observed that smaller temporal
window sizes (and thus more windows to compute) lead to longer
execution time for RG and VE.
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Figure 16: aZoomT - wZoomT combination and switching
between memory representations. Fixed data size, group-
by cardinality and number of intervals, varying the size of
windows, node quanti�er ‘all’, edge quanti�er ‘all’.

5.3 Operation Chaining
In this section we chain together aZoomT to a wZoomT and in-
vestigate whether switching between representations improves
performance. Since OGC does not support attribute-based oper-
ation and due to the high memory usage and scalability issues of
RG, we only run our experiments on VE and OG.

In the �rst experiment we run aZoomT then wZoomTwith
di�erent windows sizes on WikiTalk, SNB:300 and NGrams:M.
For aZoomT onWikiTalk, we use edit count as the zoom attribute,
for SNB we use �rst name, and for NGrams we use the word
attribute. Figure 16 shows the results of this experiment. The
x-axis lists window sizes for wZoomT (in months for WikiTalk
and SNB, and in years for NGrams), while the y-axis denotes the
running time in minutes. Each line shows which representation
is used. On WikiTalk, OG is the winner while OG-VE, VE-OG
and VE are slightly slower. On SNB:300, VE-OG, and OG are
fastest, and OG-VE is slowest, followed by VE.

In the previous section we saw that VE performs slightly better
for aZoomT on SNB, and OG performs signi�cantly better for
wZoomT , so it makes sense for VE-OG and OG to show the
best performance and for VE and OG-VE to show the worst. For
NGrams, OG is the clear winner followed by OG-VE. The worst-
performing combination here is VE-OG, followed by VE. On
NGrams, OG performs signi�cantly better for both aZoomT and
wZoomT , and this can explain the results we are observing here.

In the next experiment we change the order of aZoomT and
wZoomT . While this reordering does not always produce the
same result, we can safely reorder the operations for WikiTalk
and SNB, since no attributes change in these datasets, and so
applying wZoomT or aZoomT �rst produces the same result with
the “exist“ quanti�er for both vertices and edges.

Figure 17 shows the e�ect of group-by cardinality onwZoomT -
aZoomT and aZoomT - wZoomT . In this experiments, we load
the full graph for each dataset, project each node attribute to a
random value based on group-by cardinality, and then perform
the operations, with window size set to 6 months for WikiTalk
and SNB, and 10 years for NGrams. We vary group-by cardinality
from 10 to 1 million. We observe an increase in the execution
time as the group-by cardinality increases, which we attribute
to the fact that aZoomT produces a larger intermediate graph
for cases where we perform aZoomT �rst. In contrast, we see
no signi�cant change in the execution time when wZoomT is
executed �rst. Interestingly, performingwZoomT �rst in NGrams
yields faster running time. Unlike in WikiTalk and SNB, vertices
in NGrams are not growth-only, and they also span over a longer
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Figure 17: aZoomT andwZoomT performance for di�erent
group-by cardinalities with di�erent zoom orders. Fixed
data size and number of intervals.OG-based implementa-
tions perform best in most cases.

period of time.wZoomTwill reduce the number of snapshots and
vertex tuples, which explains why wZoomT - aZoomT is faster
than aZoomT - wZoomT .
Summary. We studied combining aZoomT and wZoomT for dif-
ferent combinations of parameters. Our experiments show that,
while OG alone performs best in most cases, switching between
representations does not signi�cantly a�ect the running time.
We also found that running aZoomT before wZoomT is fastest
for growth-only datasets.

5.4 Summary
In this section, we �rst studied the e�ects of data size, the number
of snapshots, the frequency of attribute change, and the group-by
cardinality on the running time of aZoomT . We observed that
OG is the best performing representation for aZoomT , followed
by VE. We showed that representing the TGraph as a sequence
of independent snapshots in RG results in the by far worst per-
formance. The second part of this section focused on wZoomT .
We varied graph size and window size, and observed that OGC
is the best-performing representation, followed by OG and VE.
RG again exhibited the worst performance forwZoomT . The last
part of this section focused on combining aZoomT and wZoomT .

Overall, we found thatOG, which balances temporal and struc-
tural locality, outperforms other representations in most cases.

6 RELATEDWORK
Temporal models and languages in the relational literature
are very mature (see, e.g., [10, 16, 23]). However, the same cannot
be said for evolving graphs, where models di�er in what time
representation they adopt (point or interval), what top-level enti-
ties they model (graphs or sets of nodes and edges), whether they
represent topology only or attributes or weights as well, and what
types of evolution they support. Harary and Gupta [20] were,
to the best of our knowledge, the �rst to informally propose to
model graph evolution as a sequence of static graphs. This model
has been predominant in the literature [15, 24–26, 38, 40], with
various restrictions on the kinds of changes that can take place
during graph evolution. In contrast to existing work, TGraph
assigns periods of validity to nodes, edges and their properties,
capturing evolution of graph topology and of node and edge
attributes, and supports point-based semantics [37].

The attribute-based zoom operator is a temporal general-
ization of the node creation operator that is present in several
conventional (non-temporal) graph query languages [42]. For
example, StruQL outputs new nodes in a create clause, corre-
sponding to the node creation operation with a Skolem function
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to create the object ids [13], while GOOD provides an abstraction
operator that allows to create new nodes to represent multiple
nodes based on shared properties [18]. To the best of our knowl-
edge, a temporal generalization of this operator has not been
considered except in our own prior work [37], and also has not
been implemented in systems.

That said, the G* system supports SQL-style aggregation using
the AggregateOperator per graph snapshot, supporting a limited
version of summarization [26]. G* ingests evolving graph data
one snapshot at a time, replicated across all machine without any
compression, and is most similar to our RG. Our experiments
showed that G* is not capable of loading graphs with a large num-
ber of intervals and does not scale for large size graphs [36]. We
were not able to fully ingest any of our datasets used in Section 5
into G*. Chronograph, a system designed for temporal graph
traversal [6], implements a version of temporal aggregation for
the purpose of converting point-based to period-based semantics
for edges, but not for nodes.

Temporal aggregation operators over relational data can
be found in the literature, typically as an extension of non-
temporal relational aggregation (see, e.g., example 10 in [11]). Li
et al. proposed a general window aggregate for data streams [29]
that can be applied to temporal relational data. Window aggre-
gate semantics is based on a sliding window speci�cation — a
range and a slide — based on the desired data attribute that has a
domain with a total order. The range speci�es the width of the
window e.g., 100 seconds or 100 rows, and the slide speci�es how
windows are formed. We are not aware of any proposal for an
operator capable of changing the temporal resolution of evolving
graphs, besides our own, introduced in [37], and no systems work
on such an operator.

In our work we implement aZoomT and wZoomT operators
in a data�ow system, and instantiate our ideas over Apache
Spark [43], using the GraphX [17] library. We leverage the graph-
speci�c optimizations provided by GraphX, as described in our
implementation section, and incorporate temporal semantics into
data representations and operators.

7 CONCLUSION
In this paper we proposed an implementation of two zoom oper-
ators — aZoomT and wZoomT— on evolving graphs. We detailed
four physical representations — RG, VE, OG, and OGC, and
described how to de�ne the zoom operators using distributed
data�ow operations, tailored to the corresponding data represen-
tation. We discussed how to e�ciently implement the operators
in Apache Spark with its GraphX library, and explained that
our operator de�nitions could easily be implemented in other
data�ow systems such as Apache Flink. In an extensive experi-
mental evaluation on several real datasets with up to 1.3 billion
edges, we explored the trade-o�s in terms of temporal and struc-
tural locality with respect to zoom operator performance. We
�nd that OG, which balances temporal and structural locality,
outperforms the other representations in most cases.

In our future work we will extend our system to support addi-
tional operations on evolving graphs, such as Pregel-style analyt-
ics [30]. We will propose query optimization techinques for our
workloads. Finally, we will design a query language with support
for the proposed temporal zoom operators, among others.
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ABSTRACT
Very large time series are increasingly available from an ever

wider range of IoT-enabled sensors deployed in different envi-

ronments. Significant insights and values can be obtained from

these time series through performing cross-domain analyses, one

of which is analyzing time delay temporal correlations across

different datasets. Most existing works in this area are either lim-

ited in the type of detected relations, e.g., linear relations alone,

only working with a fixed temporal scale, or not considering

time delay between time series. This paper presents our Time

delaY COrrelation Search (TYCOS) approach which provides a

powerful and robust solution with the following features: (1)

TYCOS is based on the concept of mutual information (MI) from

information theory, giving it a strong theoretical foundation to

detect all types of relations including non-linear ones, (2) TYCOS

is able to discover time delay correlations at multiple temporal

scales, (3) TYCOS works in an efficient, bottom-up fashion, prun-

ing non-interesting time intervals from the search by employing

a novel MI-based noise theory, and (4) TYCOS is designed to effi-

ciently minimize computational redundancy. A comprehensive

experimental evaluation using synthetic and real-world datasets

from the energy and smart city domains shows that TYCOS is

able to find significant time delay correlations across different

time intervals among big time series. The performance evalua-

tion shows that TYCOS can scale to large datasets, and achieve

an average speedup of 2 to 3 orders of magnitude compared to

the baselines by using the proposed optimizations.

1 INTRODUCTION
Rapid advancements in IoT technology have enabled the collec-

tion of enormous amounts of time series data at unprecedented

scale and speed. For example, a modern wind turbine has hun-

dreds of sensors sampled at a high frequency, a smart building

contains thousands of sensors sensing the surrounding environ-

ment, and an autonomic vehicle carries numerous vision sensors.

All of them are collecting terabytes of data everyday. Analyzing

these massive, heterogeneous and rich datasets can help uncover

hidden patterns and extract new insights to support evidence-

based decision making.

While time series analysis has been studied extensively in the

past, its importance and value only continue to grow. One of

the first steps to harness the enormous potential from modern

big time series is to discover correlations among heterogeneous

and cross-domain datasets. Consider for example the NYC Open

Data [2] with more than 1,500 published datasets containing

quantitative data from different domains, including weather and

transportation, energy and environment etc. Cross-domain anal-

ysis among these datasets can reveal new insights about the city

and its citizens, and thus aid policy makers in decision making.
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For instance, finding correlations between weather and trans-

portation data can lead to the identification of individual weather

events, such as the occurrence of a storm or a hurricane, which

then helps explain an abnormal increase in the number of ac-

cidents. Data correlation is also useful in behavioral prediction

and future planning. For example, illustrating that weather data

(e.g., wind speed) is well-correlated with energy production can

provide accurate prediction of the city’s energy capacity at a spe-

cific time, thus allowing better resource planning. In the financial

domain, data correlation can help forecast the price movement of

related stocks, or predict the purchasing behavior of consumers,

and thus assist investors in making real-time investment deci-

sions. Not only is it useful in reasoning and predicting, data

correlation can also be considered as one of the three building

blocks to establish a causal relation [3], and thus can serve as a

basis for constructing inference and learning models.

Despite its potential use, finding correlations in big time series

is challenging. Not only does the very large volume of data raises

significant challenges in terms of performance and scalability,

their complex and noisy nature also presents difficulties in find-

ing different types of correlation relations, or in the ability to

deal with adaptive temporal scales. For example, stock prices

or weather data exhibit non-linear relations, which cannot be

captured by traditional correlation metrics such as Pearson Cor-

relation Coefficient [23]. Besides, there is often a misconception

that finding correlations and finding similarities in time series are

the same task, where in fact, they are two different problems. Find-

ing correlations is to look for statistical relationships in the data,

whereas finding similarities means to find the optimal match-

ing and/or alignment between time series sequences. Unlike the

correlation-based approach, similarity metrics (which have posi-

tive values only) cannot distinguish between un-correlated and

negatively correlated time series, both of which may have val-

ues close to 0. For example, consider a pair of time series (X ,Y )
generated by a sine function y = sin(x). Here, X ∈ (−∞,∞)

represents a linearly increasing time series, while Y follows a

sine function of X . In this example, X and Y do not exhibit any

similarities among their values, but they do have an underlying

relation. Such non-linear relations are common in areas such

as signal processing, but cannot be detected using similarity

measures. Thus, methods such as those used in Dynamic Time

Warping [28] or MatrixProfile [31] have significant limitations

in analyzing modern time series.

To make the problem even more challenging, cross-domain

correlations might appear at different temporal scales. For exam-

ple, correlations involving weather data might span over multiple

temporal durations ranging from hours (e.g., during rain show-

ers), to days, or even weeks (e.g., during a storm) depending on

the weather events. Likewise, interactions between events might

not always occur simultaneously. In practice, it is common to

see events of one phenomenon influence other phenomena only

after some delay of time. For instance, an increase of incidents

caused by heavy rain can only be observed minutes or hours

after the rain starts; or the impact of one rising stock on other
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stocks is visible only a few hours later. Given a heterogeneous

set of time series data, there is a need to identify not only which

datasets are correlated, but also when the correlations occur, and

at what time delay.

Although correlation analysis has been researched extensively,

current techniques are limited either in the type of detected

relations, i.e., only linear ones, or the temporal scale and time

delay in which they deal with. Most of the correlation works do

not consider adaptive temporal scales as they assume correlations

only exist for a fixed time period, e.g., [29], or ignore the time

delay between variables of interest. There is no existing work that

offers a holistic solution for searching window-based correlations,

considering both multiple temporal scales and time delay, in

modern big time series data.

This paper aims to address those challenges and limitations

by introducing the Time delaY COrrelation Search (TYCOS) ap-

proach, making the following novel contributions: (1) We pro-

pose the first, to our knowledge, comprehensive solution for

the multi-scale time delay correlation search problem that ex-

tracts significant correlations from big time series. (2) TYCOS is

based on the concept of mutual information from information

theory, giving it a strong theoretical foundation and the ability to

discover various types of correlation relations, including linear

and non-linear, monotonic and non-monotonic, functional and

non-functional. (3) By combining the well-known Late Accep-

tance Hill Climbing (LAHC) search method with a window-based

approach, TYCOS can automatically discover time delay correla-

tions at multiple temporal scales, without requiring user inputs

to specify the window sizes or the delay. (4) Based on mutual in-

formation properties, we propose a novel theory to identify noise

in the data, enabling efficient pruning of non-interesting time

intervals from the search, thus significantly reducing the search

space and improving the search speed. (5) TYCOS is designed

with efficient data structures to reuse the MI computation across

a large number of windows, thus minimizing the computation

redundancy. Moreover, TYCOS is scalable since it is designed

in an efficient bottom-up fashion, making the method memory

efficient and suitable for big datasets. And finally (6), we per-

form a comprehensive experimental evaluation using synthetic

and real-world datasets from the energy and smart city domains,

which shows that TYCOS is able to find interesting and important

correlations among time series with high accuracy, can scale to

large datasets, and achieves an average speedup of 2 to 3 orders

of magnitude compared to the baselines.

2 RELATEDWORK
Finding correlations among datasets is a fundamental step in data

exploration. In the past, correlation analyses relied on traditional

statistical metrics such as covariance or correlation coefficients to

measure correlations [13, 15, 18, 19, 32]. However, these metrics

are usually best for linear and/or monotonic dependencies. Re-

cent studies had attempted to approach the problem from a high

level. Sarma et al. [10] use the concept of relatedness, Pocham-

pally et al. [24] use joint precision and joint recall, Alawini et al.
[4] rely on the history and schema of datasets, Roy et al. [26] use

the concept of intervention, to identify relations between datasets

or data tables. Middelfart et al. [21] propose a bitmap-based ap-

proach to measure change relationships in a data cube. Chirigati

et al. [7] propose a topology-based framework to identify spatio-

temporal relationships in heterogeneous data corpuses. These

studies, however, only focus on overall correlations. None of

them consider correlations in time windows.

Surprisingly, very little effort has been made to design efficient

solutions for time delaywindow-based correlations. Among them,

Rakthanmanon et al. [25] design a Dynamic TimeWarping-based

technique (MASS) to quickly find the most similar subsequences

in time series. Although considered to be the state of the art for

subsequences matching, the technique does not have a mecha-

nism to automatically search for correlated windows, but rather

relies on a provided query. To improve MASS, Yeh et al. [31]

designed the MatrixProfile framework to perform similarity joins

between time series. However, as will be shown in Section 8.3,

MASS and MatrixProfile cannot detect complex relations such

as non-linear and non-functional ones. Other works, e.g., [8, 29]

propose sliding window-based procedures to detect hidden cor-

relations. However, they only focus on fixed size windows, not

considering time delay, or using correlation coefficients as cor-

relation measures, and thus, cannot find multi-scale time delay

correlations and are limited in the types of relations they can

detect. Our work in this paper overcomes those limitations. Since

TYCOS uses MI as a correlation metric, it can discover all types

of relationships. Furthermore, TYCOS works in a bottom-up fash-

ion, and can thus automatically discover time delay correlations

at multiple temporal scales.

Prior to this work, we investigated the use of MI in correlation

discovery, and proposed AMIC [16, 17], a top-down approach to

search for multi-scale correlations in big data. However, AMIC

does not consider time delay correlations. Recently, we examine

the power of LAHC in correlation search in a short paper [14].

The present paper significantly extends [14] by considering time

delay correlations, and proposes a novel noise theory and MI

computation technique to achieve better performance.

3 BACKGROUND
3.1 Mutual Information
MI is a statistical measure to quantify the shared information be-

tween two probability distributions. Given two discrete random

variables X , Y with the corresponding probability mass func-

tions (p.m.fs) p(x), p(y), and the joint distribution p(x ,y), the MI

between X and Y is defined as

I (X ;Y ) =
∑
y∈Y

∑
x∈X

p(x, y) log
p(x, y)
p(x )p(y) (1)

Intuitively, I (X ;Y ) represents the reduction of uncertainty of

one variable (e.g., X ) given the knowledge of another variable

(e.g.,Y ) [9]. The larger I (X ;Y ), the more information is shared be-

tween X and Y , and thus, the less uncertainty about one variable

when knowing the other. The property that MI is equal to zero if

and only if the considered variables are statistically independent,

otherwise always positive if there exists any kind of dependency

(e.g., linear and non-linear) [11], makes MI a versatile measure

to capture correlations in noisy datasets which often exhibit a

high degree of bias and abnormality, causing their relationships

to often be arbitrary and non-linear.

Estimating mutual information: Eq. (1) is the theoretical defini-
tion of MI but is usually not used for computing MI, as it requires

having the distributions of the underlying data which are often

unknown in practice. To estimate MI from collected samples, we

choose an estimation method proposed by Kraskov et al. [20]

(hereafter called the KSG method) for several reasons: (1) The

KSG method outperforms other estimators (e.g., histogram, ker-

nel density estimation) in terms of computational efficiency and
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accuracy [22]; (2) The method uses k−nearest neighbor approxi-
mation and thus is data efficient, adaptive and has minimal bias

[20]. These reasons make the KSG method particularly suitable

for discovering temporal correlations in big and heterogeneous

time series where the dependencies between different time series

can be complex and might occur at multiple time scales.

The main idea of the KSG estimator is, instead of directly

computing the joint and marginal probability distributions of

the considered variables, it approximates the distributions by

computing the densities of data points in nearby neighborhoods

[20]. Specifically, KSG computes the probability distribution for

the distance between each data point and its kth nearest neighbor.
For each data point, it searches for k nearest neighbor clusters

(k is a pre-defined parameter) and computes the distance dk to

the kth-neighbor. Then, the population density is estimated by

counting the number of data points that fall within dk . This leads
to the computation of MI between two variables X and Y as [20]:

I (X ;Y ) = ψ (k ) − 1/k −
〈
ψ (nx ) +ψ (ny )

〉
+ψ (n) (2)

where ψ is the digamma function, k is the number of nearest

neighbors, (nx ,ny ) are the number of marginal data points in

each dimension falling within the distance dk , n is the total num-

ber of data points and ⟨·⟩ is the average function. The digamma

function ψ is a monotonically increasing function. Thus, the

larger nx and ny (i.e., more data points fall within the distance

dk ), the lower I (X ;Y ), and vice versa.

3.2 Late Acceptance Hill Climbing
Our correlation search algorithm is built based on LAHC [6]

which we briefly introduce next. LAHC is an optimization tech-

nique attempting to find local optimal solutions for a given prob-

lem through iterative improvement. Given a target function f
and a current solution S of f , LAHC tries to improve S by explor-

ing potential candidates in the nearby neighborhood. If a better

solution for f is found (according to some criteria), the current

solution S is replaced by this new solution Snew , and the process

is repeated until no further improvement can be made. LAHC is

an extension of the classic Hill Climbing (HC) [27], but it differs

from HC in its acceptance rule: a solution Snew is accepted if

Snew is better than either the current solution S or a solution Sold
found in the history. To do that, LAHC uses a fixed length array

Lh to maintain a history of the most recently accepted solutions,

and use Lh to justify the goodness of a candidate solution.

4 PROBLEM FORMULATION
Definition 4.1 (Time series) A time series XT = {x1,x2, ...,xn }
is a sequence of data values that measures the same phenomenon

during an (observation) time periodT , and is sorted in time order.

Note that the time period T = [t1, tn ] contains n time steps

where each time step ti has a recorded value xi ∈ XT , and t1 and
tn denote the first, and the last time step of T . We say XT has

length n if XT contains n data samples.

Definition 4.2 (Time window) A time window w = [ts , te ] is a
temporal sub-interval of T that records the events of XT from

time step ts to time step te , and forms a (sub) time series Xw =
{xts , ...,xte } ⊆ XT .

We sayw has sizem, denoted as |w | =m, ifw containsm time

steps, and is equivalent to Xw containingm data samples.

Definition 4.3 (Pair of time series) A pair of two time series

(XT ,YT ) = ({x1,x2, ...,xn }, {y1,y2, ...,yn }) contains data col-

lected from XT and YT that measure two separate phenomena

during the same observation periodT . A tuple (xi ,yi ) ∈ (XT ,YT )
records the data values on XT and YT at the same time step ti .
Definition 4.4 (Pair of time windows) LetwX = [txs , txe ],wY =

[tys , tye ] be time windows of XT and YT , respectively. Assume

wX and wY have the same length, i.e., |wX | = |wY |. The pair

of time windows (wX ,wY ) = ([txs , txe ], [tys , tye ]) records the
events ofXT from [txs , txe ], and ofYT from [tys , tye ], and forms a

pair of (sub) time series (Xw ,Yw ) = ({xtxs , ...,xtxe }, {ytys , ...,ytye })
⊆ (XT ,YT ).
Definition 4.5 (Time delay window of a time series pair) Let
(wX ,wY ) = ([txs , txe ], [tys , tye ]) be a pair of time windows like

in Definition 4.4, and τ be an integer. The pair (wX ,wY ) is called

a time delay window of (XT ,YT ) with the delay τ if tys − txs = τ ,
and is denoted as wX ,Y+τ = ([ts , te ],τ ), where ts = txs and

te = txe are the start time and the end time of wX ,Y+τ on XT ,
and τ is the time delay ofwY w.r.t.wX .

The window wX ,Y+τ = ([ts , te ],τ ) in Definition 4.5 defines

a one-to-one mapping f : wX 7→τ wY that maps each event

in wX to the corresponding event in wY . The mapping is time

correspondence, i.e., the event at the ith time step of XT inwX is

mapped to the event at the (i + τ )th time step of YT inwY . Each

windowwX ,Y+τ is characterized by three parameters: the start

time ts , the end time te , and the time delay τ . The size ofwX ,Y+τ
equals to the size ofwX andwY , i.e.,

��wX ,Y
�� = |wX | = |wY |.

A time delay window represents a shift (also called a “delay”

or “lag”) in time between two time series XT and YT , and the

value of τ indicates the shifted time units. Since τ can be equal to

0, or positive, or negative, the window wX ,Y+τ = ([ts , te ],τ ) is
generalized for all time shifting scenarios. Semantically, if τ = 0,

thenwX ,Y+τ does not have a time delay (or events of XT inwX
and events of YT inwY occur at the same time). Whereas if τ > 0,

thenwY is delayed τ time units fromwX (or events inwY occur

τ time units after events inwX ). Similarly, if τ < 0,wX is delayed

τ time units from wY . For brevity, in this paper, the two terms

time delay window and window are used interchangeably.

Example 1. Consider a pair of time series (Rain Precipitation
(RP), Injured Pedestrian (IP)), and a time window wRP, I P+30 =

([9.00 am, 10.00 am], 30mins]). The windowwRP, I P+30 contains

events of RP during [9.00 am, 10.00 am], and maps them to events

of IP occurring 30 minutes later, i.e., during the interval [9.30

am, 10.30 am].

Fig. 1 illustrates 3 different scenarios of time window on

(XT ,YT ). Here, w1 = ([ts1 , te1 ],τ1 = 0]) has no time delay, thus

starts and ends at the same time on XT and YT . Instead, the win-
doww2 = ([ts2 , te2 ],τ2 > 0]) has a time delay τ2 > 0, thus YT is

shifted from XT . The windoww3 = ([ts3 , te3 ],τ3 < 0]) has τ3 < 0,

thus XT is shifted from YT , similarly forw4.

Definition 4.6 (Mutual information of a window) Let (XT ,YT )
be a pair of time series, andwX ,Y+τ be a time delay window of

(XT ,YT ). TheMI betweenXT andYT withinwX ,Y+τ is estimated

using the KSG estimator as:

IwX ,Y+τ = I (Xw ;Yw ) = ψ (k) −
1

k
−

1

m

∑
xi ∈Xw
yj ∈Yw

[ψ (nxi ) +ψ (nyj )]

+ψ (m) (3)

wherem is the size ofwX ,Y+τ , and nxi and nyj are the number

of data points falling within the kth -nearest distances in each

dimension dx and dy of point (xi ,yj ) ∈ (Xw ,Yw ).

Fig. 2 illustrates how to compute theMI of a window usingKSG
estimation. Consider a window wX ,Y+τ contains 7 data points
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{p1=(x1,y1), ...,p7=(x7,y7)}, with their positions projected into

a two dimensional grid as in Fig. 2. Without loss of generality,

we assume τ = 0 (events in Xw and Yw occur at the same time

step), the nearest neighbor parameter k = 2, and the distance

metric between neighbors is the maximum norm1
. Under this

setting, the 2 nearest neighbors of p1 are p2 and p3 (in green),

and the nearest distances from p1 to its nearest neighbors in

each dimension are dx and dy. The nearest distances allow the

KSG estimator to form the marginal regions (in gray shade), from

which the marginal counts are computed. In this case for point p1,
the marginal counts are nx1=3 (including p2,p3,p5), and ny1=3
(includingp2,p3,p4). Similar steps are applied to other data points

from p2 to p7. Finally, the marginal counts nxi , nyi are inserted
into Eq. 3 to compute the MI ofwX ,Y+τ .

Definition 4.7 (Correlated time delay window) LetwX ,Y+τ be a

time delay window of (XT ,YT ), and IwX ,Y+τ be the MI ofwX ,Y+τ .

The two time series XT and YT are said to be correlated within

wX ,Y+τ iff IwX ,Y+τ ≥ σ where σ > 0 is a pre-defined correlation

threshold.

Problem Statement: Time delaY COrrelation Search (TYCOS).
Let (XT ,YT ) be a pair of time series measured during the time
interval T , andwX ,Y+τ be a time delay window of (XT ,YT ). Then
TYCOS aims to find a set S ofwX ,Y+τ such that smin ≤

��wX ,Y+τ
�� ≤

smax ∧ τ ≤ tdmax ∧ IwX ,Y+τ ≥ σ ∧ ∀wi ,w j ∈ S : wi ⊈ w j ∧

w j ⊈ wi , where
��wX ,Y+τ

�� denotes the size of wX ,Y+τ , smin and
smax are the minimum and maximum sizes that a window can
have, tdmax is the maximum time delay, and σ is the pre-defined
correlation threshold.

The goal of TYCOS is to find a set S of non-overlapping time

delay windows that respect size and time delay constraints, and

have their MI satisfying the pre-defined correlation threshold.

As the size of each window is restricted in the range [smin, smax],

this implies that if correlations exist in the pair (XT ,YT ), they
will last at least for length smin, and at most for length smax.

This assumption is meaningful especially when working with

real datasets. For example, when searching for weather-related

correlations, one could assume that correlations can only last for

at most several weeks which correspond to the longest duration

of a weather event. Furthermore, the time delay of a window

is also assumed to be bounded by a maximum value tdmax that

represents the longest shifting duration between two time series.

The value of tdmax can be used to prevent spurious correlations.

For example, a heavy rain cannot have an impact on the number

of injured pedestrians one year later. Setting tdmax value, for now,

will rely on the expert’s domain knowledge.

1L∞: d (pi , pj ) =∥ (dx , dy ) ∥max= max( ∥ xi − x j ∥, ∥ yi − yj ∥)

5 TYCOS: TIME DELAY CORRELATION
SEARCH

5.1 Search Space and Time Complexity
The search space of TYCOS is represented by the number of

feasible windows (feasible windows are those that respect the
size and time delay constraints), illustrated in Fig. 3. Here, the

x−axis represents the start time ts , the y−axis represents the end
time te , and the z−axis represents the time delay τ of a window.

Each point in this 3−dimensional grid represents a windowwi
identified by its start time index tsi , end time index tei , time delay

τi , and its MI Iwi . Since the start time index tsi always has to be

smaller than the end time index tei , the feasible windows will
reside only in half of the grid (Fig. 3).

Lemma 1. Let (XT ,YT ) be a pair of two time series of length n,
and smin, smax be the minimum and maximum sizes of a window,
tdmax be the maximum time delay between XT and YT . Then the
size of TYCOS search space is O(n3).

Proof. To find all feasible windows, initially, a Brute Force
search can start with a window w0 = ([ts0 , te0 ],τ0) at the mini-

mum size smin and the initial time delay τ0 = 0. For each start

index tsi , it extends the end index tei , creating a new and larger

window w
′

i until it reaches the maximum size smax. With one

start index tsi , the number of windows created by extending the

end index is: smax − smin + 1.

Furthermore, each windowwi has the possibility to shift (2 ∗

tdmax) times (corresponding to negative and positive values of τ ),
creating (2 ∗ tdmax) possible time delay windows. Finally, there

are (n−smin +1) possible start indices tsi . Thus, the total number

of feasible windows of TYCOS is:

(n − smin + 1) ∗ (smax − smin + 1) ∗ 2 ∗ tdmax ∼ n3 (4)

if smax → n ∧ tdmax → n ∧ smin ≪ n. □

Lemma 2. Let n be the length of (XT ,YT ), andm be the average
size of a window, then the worst-case time complexity of a Brute
Force search for TYCOS on (XT ,YT ) is O(n3m2).

Proof. The complexity of TYCOS depends on the number of

windows it needs to evaluate, and the time required to compute

the MI of each window. The number of windows to be evaluated

for TYCOS is O(n3), according to Lemma 1.

On the other hand, the MI is computed using the KSG esti-

mator, in which the most expensive operator is the k-nearest
neighbor (kNN ) search. Therefore, the complexity of MI com-

putation depends on the complexity of kNN search. Consider a

windowwi of sizem. A basic kNN algorithm applied towi will re-

quireO(kdm) to find k nearest neighbors for one sample (d is the

data dimensionality), and thus O(kdm2) ∼ O(m2) (if k and d are

significantly smaller thanm) for all samples inwi [12]. Hence, the

worst-case time complexity of a Brute Force search for TYCOS
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is O(n3m2). However, if a more efficient data structure is used,

such as k-d tree [5] or grid-based structure (for low dimensional

data) [30], the expected-case kNN complexity is O(kdm logm) ∼

O(m logm), and thus, the expected-case Brute Force complexity

is O(n3m logm). □

5.2 TYCOSLAHC: A LAHC Based Approach
The time complexity of a Brute Force approach for TYCOS is

computationally prohibitive in practice. For example, a pair of

time series with n=9,000 data points, smax = 400, smin = 20, and

tdmax = 20 will create 136,870,440 windows. Our Brute Force

search implemented in C++ and run on a standard PC will take

more than 12 hours to process all generated windows. In the next

section, we propose a heuristic search method using LAHC to

speed up the TYCOS process.

To improve the TYCOS process, we look at two angles for

improvements: (1) reducing the search space, and (2) optimizing

the MI computation. To reduce the search space, we adopt LAHC,

and propose a novel MI-based theory to prune unpromising win-

dows. To optimize the MI computation, we design efficient data

structures so that we can reuse the computation across windows.

The following sections discuss the intuition behind our approach

and detail how LAHC can be applied to TYCOS. The MI-based

theory and its applicability to TYCOS are introduced in Section

6. The efficient MI computation is described in Section 7.

5.2.1 The choice of LAHC. To explain the intuition behind

the LAHC-based method, consider Fig. 4 that illustrates the MI

value fluctuation across windows. Here, they−axis represents the
MI values of corresponding time windows on the x−axis. Given
the correlation threshold σ (red line), the three windows which

correspond to the three locally maximal points (in red) indicate

highly correlated areas, and can be found by identifying the three

peak (red) points in the search space. Since LAHC guarantees to

achieve local optimal solutions, it becomes an ideal foundation

for solving the TYCOS problem.

5.2.2 Apply LAHC to TYCOS. Indeed, finding correlations in

time series means to find windows that maximize the MI. Thus,

we consider the problem of searching for time delay correla-

tions using LAHC, namely TYCOSLAHC (or TYCOSL in short),

as a maximization problem. Specifically, the target function of

TYCOSL is a maximize function, and our goal is to find windows

where their MIs are locally maximal values that satisfy σ .
a) Search space navigation. We first illustrate how LAHC navi-

gates through the search space of TYCOS in Fig. 5, with the three

axes being the start time (x−axis), the end time (y−axis) and the

time delay (z−axis) of a window. Assume wi = ([tsi , tei ],τi ) is
the window where the search is currently at. Starting fromwi , if

TYCOSL follows a rightwards trajectory on the y−axis, it moves

the end time tei ofwi forward in time, thus enlarging the window

size. If it follows a leftwards trajectory on the y−axis, it moves

the end time tei backward in time, thus reducing the window

size. Similarly, moving along the x−axis, TYCOSL can reduce or

increase the start time tsi , therefore, extending or narrowing the

size ofwi accordingly. On the z−axis, following the tx direction,

TYCOSL increases the shifting time of XT w.r.t. YT . Following
the ty direction, TYCOSL will shift YT further from XT . In both

cases, it increases the time delay but keeps the same window size.

While exploring the search space inmultiple directions, TYCOSL
creates different windows by adjusting the indices of the current

window. The generated windows are grouped into the same

neighborhood if they share similar indices. The neighborhood
concept is defined below.

Definition 5.1 (δ -neighbor) Let w = ([ts , te ],τ ) be a window

of (XT ,YT ), and assume (XT ,YT ) has length n. A windoww
′

=

([t
′

s , t
′

e ],τ
′

) is a δ -neighbor of w if t
′

s = ts ± δ ∨ t
′

e = te ± δ

∨ τ
′

= τ ± δ , where δ is a pre-defined moving step such that

1 ≤ δ ≤ n ∧ smin ≤

���w ′
��� ≤ smax ∧ τ

′

≤ tdmax.

A δ -neighbor window w
′

has at least one of its indices (i.e.,

ts ′ , or te ′ , or τ
′

) differing a δ step from the indices ofw .

Definition 5.2 (δ -neighborhood) Let w = ([ts , te ],τ ) be a win-
dow of (XT ,YT ). A δ -neighborhood ofw , denoted asNδ , is formed

by all δ -neighbors w
′

= ([t
′

s , t
′

e ],τ
′

) ofw .

The neighborhood concept is illustrated in Fig. 5. Consider

the window wi (in blue). The nearest δ−neighborhood of wi ,

called the 1−neighborhood N1, is the area formed by the 26

windows in blue color w1

i where i = 1, ..., 26. Each window in

this neighborhood differs fromwi by one δ step, either by its start

index, or its end index, or its time delay, or the combinations of

them, or all. Going further, another neighborhood ofwi , called the

2−neighborhood N2, is the 50 windows in green color area. Each

δ−neighborhood forms an area where TYCOSL will iteratively

look for potential candidates to improvewi .

b) TYCOSL algorithm. We provide the outline of TYCOSL in

Algorithm 1, and explain it in the following.

Consider a time series pair (XT ,YT ), and let Iw be the target

function to be maximized. To improve Iw , TYCOSL will start with

an initial feasible solution, and explores its neighborhood to look

for better solutions. Letw = w0 where |w0 | = smin ∧ τ0 = 0 be an

initial solution (Alg. 1, line 2). The goodness ofw0 is evaluated

by computing I (w0) (line 3). Starting fromw0, TYCOSL will first

explore its nearest neighborhood N1, and search for a better so-

lution thanw0 in this area. To do that, it creates all δ1−neighbors

ofw0 to form N1. Then for eachw
′

∈ N1, it computes I (w
′

) and

selects the best neighbor bestnb which has the highest MI (lines

5 − 8). Next, it determines whether bestnb is a better solution

than the current onew using the following policies:

• (Policy 1) If: Ibestnb > Iw or Ibestnb > Iwh where wh ∈ Lh ,
then: bestnb is a better solution than w and thus, w is

replaced by bestnb (lines 10 − 12).

• (Policy 2) If: Ibestnb ≤ Iw and Ibestnb ≤ Iwh , then there is

no better solution in the considered neighborhood, thus,

no improvement can be made (lines 14 − 15).

In Policy 1, a better solution is found, the search moves to

this new solution w = bestnb, and repeats the neighborhood

exploration process on the new w . Note that since LAHC also

uses a historical valuewh to justify a potential candidate solution,

the newly selected solution bestnb might be better thanwh , but

not necessarily better than the current solutionw . This type of

approximation creates some “randomness” in the search, which

is helpful, for example, when the search needs to escape from

plateau situations, i.e., when the search space is flat. In Policy
2, no better solution is found, then the stopping conditions are
checked. If the stopping conditions are not yet satisfied, the search
continues exploring larger neighborhoods. Otherwise, it stops

and the value Iw at the stopping point is the locally maximal

value. Finally,w is accepted and inserted into the result set S if

Iw ≥ σ (lines 19 − 20).

When the stopping conditions are satisfied and TYCOSL stops,

the time series pair might not be scanned entirely. In that case,

TYCOSL restarts again on the remaining part of the data, looking
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for new local optimal solutions, until the entire time series are

searched (line 21).

Stopping conditions: Ideally, TYCOSL will stop immediately

when no better solution can be found in the considered neigh-

borhood. However, to avoid situations where the occurrence of a

temporary setback stops the search too early, an idle period is

used to measure the number of non-improvements observed. The

search will stop when the pre-defined max idle period TmaxIdle is

reached (line 4).

Initial solution: The initial windoww0 can be at the beginning,

or at an arbitrary position in the time series. A good initial solu-

tion can help reach satisfying solutions faster, and vice versa. In

Section 6, we rely on an MI-based theory to select a good initial

solution, leading to a more promising exploration for the search.

The history list Lh : TYCOSL maintains a history Lh of the most

recently accepted solutions and uses it to justify the goodness of

a potential candidate. In our implementation, TYCOSL follows

the random policy when selecting and updating an item in the

history (line 9 and 16 − 18).

Algorithm 1 TYCOSL: LAHC for TYCOS

Input: (XT , YT ): pair of time series

Params: σ , ε , smin, smax, tdmax

Output: S: a set of non-overlapping windows whose MI ≥ σ
1: while (XT , YT ) is not scanned entirely do
2: Initial solution w := w0 with |w0 | = smin ∧ τ0 = 0

3: Compute I (w0) ▷ Evaluate the goodness of w0

4: while tidle < TmaxIdle do
5: N := Neighbors(w ) ▷ Identify the neighbors of w
6: for w

′
∈ N do

7: Compute I (w
′
) ▷ Evaluate the goodness of w

′

8: bestnb := BestNeighbor(N ) ▷ Select best neighbor in N
9: wh := random.get(Lh ) ▷ Randomly select from Lh
10: if Ibestnb > Iwh or Ibestnb > Iw then
11: w := bestnb ▷ Accept the candidate

12: tidle := 0 ▷ Reset the idle time

13: else
14: w := w ▷ Reject the candidate

15: tidle := tidle + 1 ▷ Increase the idle time

16: if Iw > Iwh then ▷ Update the history list

17: wh := w
18: Iwh := Iw
19: if Iw ≥ σ then
20: Insert w to S
21: TYCOSL(X

′

T , Y
′

T ) ▷ Restart TYCOSL

22: return S

6 NOVEL NOISE THEORY TO IMPROVE
TYCOS

6.1 Noise Identification
When TYCOSL performs the neighborhood exploration, con-

ceptually, it is performing a depth-first search. Each neighbor

window is considered as an expansion to a deeper level of the

search tree, and the expansion only stops when the stopping

conditions are met. During the expansion, some part of the data

might be revisited multiple times, which can lead to redundant

computation. To reduce potential redundancy, we explore several

MI properties to establish principles that can help narrow the

search space. Specifically, we seek the answer for the following re-

search question: "When should a certain part of data be completely
removed from the search?".

This research question concerns the removal of a data parti-

tion from the search without affecting its final outcomes. This

is due to the fact that by repeatedly expanding the neighbor-

hood, TYCOSL revisits a data partition multiple times, and in

some cases, a particular data partition might be irrelevant to the

search’s objectives, i.e., including this particular data partition in

the search process does not lead to promising results. If that data

partition can be identified, it should not be included in future

explorations of the search. The following example demonstrates

this situation.

Consider the window wi (blue point), and its neighborhood

N1 and N2 in Fig. 5. In N1 and N2, neighbors that belong to the

same exploration direction might contain overlapping data. For

instance,w1

4
∈ N1 is expanded fromwi by extending its end index

by a δ1 step, while w
2

7
∈ N2 is an extension of w1

4
by enlarging

wi ’s end index a δ2 step (δ2 > δ1). The process of extending one

window to another window results in overlapping data that will

be revisited multiple times in different exploration iterations.

On the other hand, consider Fig. 6 that plots the MI values of

a time series pair with different start indices: the blue line starts

at index 0, the red line starts at index 5, i.e., the data from 0 to

5 are not considered in the red line. From Fig. 6, it can be seen

that by excluding the data range [0 − 5] from the search, the MI

values of subsequent windows increase and are larger than when

including the considered range. This implies that the data range

[0 − 5] provides no information about the dependency between

the times series pair, and thus can be considered as “noise” and

eliminated from future exploration.

The above research question thus can be answered by estab-

lishing a “noise” identification principle. To do that, we rely on

the following theorem to understand when a data partition can

be considered as “noise” and should be eliminated.

Definition 6.1 (Mixture distribution) Let X and U be discrete

random variables with the corresponding p.m.fs pX (x), pU (u).
Let Z be a new random variable which is drawn from the same

distribution as X with probability θ and from the same distribu-

tion as U with probability 1 − θ for a given θ ∈ [0, 1]. Then Z
is said to have a mixture distribution between pX (x) and pU (u)
with probability θ and is written as Z = X ⊙θ U .

Theorem 6.1. Let X , Y ,U , V be discrete random variables and
pX (x), pY (y), pU (u), and pV (v) be their corresponding p.m.fs. Let
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Z = X ⊙θ U andW = Y ⊙η V where ⊙ denotes the mixture of
two variables. Assume that, except for X and Y , other variables are
pair-wise independent, i.e., (U ⊥ V ) ∧ (X ⊥ U ) ∧ (X ⊥ V ) ∧ (Y ⊥

U ) ∧ (Y ⊥ V ). Then I (X ;Y ) ≥ I (Z ;W ).
Proof. Z andW are the two mixed variables: Z = X ⊙θ U

andW = Y ⊙η V . Then, for a value of x drawn according to

pX (x) and a value of u drawn according to pU (u), we can write

the probabilities for Z as follows:

pZ (x) = P(Z = X )pX (x) = θpX (x) (5)

pZ (u) = P(Z = U )pU (u) = (1 − θ )pU (u) (6)

Similarly, for y ∼ pY (y) and v ∼ pV (v), we have:

pW (y) = P(W = Y )pY (y) = ηpY (y) (7)

pW (v) = P(W = V )pV (v) = (1 − η)pV (v) (8)

Then, we can write the following joint probabilities:

pZ ,W (x ,y) = θηpX ,Y (x ,y) (9)

pZ ,W (x ,v) = θ (1 − η)pX ,V (x ,v) (10)

pZ ,W (u,y) = (1 − θ )ηpU ,Y (u,y) (11)

pZ ,W (u,v) = (1 − θ )(1 − η)pU ,V (u,v) (12)

We have the MI between X and Y as

I (X ;Y ) =
∑
y

∑
x

pX ,Y (x ,y) log
pX ,Y (x ,y)

pX (x)pY (y)
(13)

And the MI between Z andW as

I (Z ;W ) =
∑
w

∑
z

pZ ,W (z,w) log
pZ ,W (z,w)

pZ (z)pW (w)
(14)

Since Z can take the values in RX if z is drawn from X , and in

RU if z is drawn fromU (similarly forW ), then from Eq. (14), it

follows that:

I (Z ;W ) =
∑

w ∈RY

∑
z∈RX

pZ ,W (x ,y) log
pZ ,W (x ,y)

pZ (x)pW (y)

+
∑

w ∈RY

∑
z∈RU

pZ ,W (u,y) log
pZ ,W (u,y)

pZ (u)pW (y)

+
∑

w ∈RV

∑
z∈RX

pZ ,W (x ,v) log
pZ ,W (x ,v)

pZ (x)pW (v)

+
∑

w ∈RV

∑
z∈RU

pZ ,W (u,v) log
pZ ,W (u,v)

pZ (u)pW (v)

=
∑
y∈RY

∑
x ∈RX

θηpX ,Y (x ,y) log
θηpX ,Y (x ,y)

θpX (x)ηpY (y)

+
∑
y∈RY

∑
u ∈RU

(1 − θ )ηpU ,Y (u,y) log
(1 − θ )ηpU ,Y (u,y)

(1 − θ )pU (u)ηpY (y)

+
∑
v ∈RV

∑
x ∈RX

θ (1 − η)pX ,V (x ,v) log
θ (1 − η)pX ,V (x ,v)

θpX (x)(1 − η)pV (v)

+
∑
v ∈RV

∑
u ∈RU

(1 − θ )(1 − η)pU ,V (u,v) log
(1 − θ )(1 − η)pU ,V (u,v)

(1 − θ )pU (u)(1 − η)pV (v)

(15)

Eq. (15) can be rewritten as

I (Z ;W ) = θηI (X ;Y ) + (1 − θ )ηI (U ;Y )

+ θ (1 − η)I (X ;V ) + (1 − θ )(1 − η)I (U ;V )
(16)

Since we assume

(U ⊥ V ) ∧ (X ⊥ U ) ∧ (X ⊥ V ) ∧ (Y ⊥ U ) ∧ (Y ⊥ V )

This leads to

I (U ;Y ) = 0 ∧ I (X ;V ) = 0 ∧ I (U ;V ) = 0

Thus, Eq. (16) becomes

I (Z ;W ) = θηI (X ;Y ) (17)

where θ ≤ 1 and η ≤ 1, which leads to

I (X ;Y ) ≥ I (Z ;W )

□
Theorem 6.1 says that, ifU and V are independent from each

other and from X and Y , then adding them to X and Y will bring

more uncertainty to (X ,Y ), in other words, they reduce the shared
information I (X ;Y ).
Definition 6.2 (Consecutive windows) LetwX ,Y+τ = ([ts , te ],τ )

andw
′

X ,Y+τ ′
= ([ts ′ , te ′ ],τ

′

) be the two time delay windows of

(XT ,YT ). Then wX ,Y+τ and w
′

X ,Y+τ ′
are consecutive iff ts ′ =

te + 1 ∧ τ = τ
′

.

From Definition 6.2, wX ,Y+τ and w
′

X ,Y+τ ′
are consecutive if

they are next to each other and have the same shifting time,

i.e., w
′

X ,Y+τ ′
starts right after the end time of wX ,Y+τ . Since

w
′

X ,Y+τ ′
followswX ,Y+τ , terminologically, we callwX ,Y+τ the

followed window, andw
′

X ,Y+τ ′
the following window. Examples

of consecutive windows arew3 andw4 in Fig. 1.

Definition 6.3 (Concatenation operation ⊙ of consecutive win-
dows) Let wX ,Y+τ = ([ts , te ],τ ) and w

′

X ,Y+τ ′
= ([ts ′ , te ′ ],τ

′

)

be two consecutive windows of (XT ,YT ). The concatenation be-

tweenwX ,Y+τ andw
′

X ,Y+τ ′
is defined as:w

′′

X ,Y+τ = wX ,Y+τ ⊙

w
′

X ,Y+τ ′
= ([ts , t

′

e ],τ ). The concatenation operation joins two

consecutive windowswX ,Y+τ andw
′

X ,Y+τ ′
into one bigger win-

doww
′′

X ,Y+τ which has its start time being the start time of the

followed window, and its end time being the end time of the

following window.

Based on the result of Theorem 6.1 and Definitions 6.2, 6.3, we

define noise as follows.
Definition 6.4 (Noise) LetwX ,Y+τ ,w

′

X ,Y+τ ′
be two consecutive

windows of (XT ,YT ),w
′′

X ,Y+τ = wX ,Y+τ ⊙w
′

X ,Y+τ ′
be their con-

catenating window, and ε (0 ≤ ε < σ ) be a real number represent-

ing the noise threshold. Assume that IwX ,Y+τ > 0. Thenw
′

X ,Y+τ ′

is called noisew.r.t.wX ,Y+τ iff Iw ′

X ,Y+τ ′
< ε ∧ Iw ′′

X ,Y+τ
< IwX ,Y+τ .

The noise principle says that if the MI of the following window
w

′

X ,Y+τ ′
is less than the noise threshold, and the MI of the fol-

lowed windowwX ,Y+τ decreases after the concatenation, then

the following window is noise w.r.t. the followed window.

6.2 Applying Noise Theory to Prune the
Search Space

Based on the noise identification principle, we propose two im-

provements to be made in TYCOSL. We name TYCOSL with noise

theory applied as TYCOSLN.

6.2.1 Initial noise pruning. Previously, we said that TYCOSL
can start out at the beginning of, or at an arbitrary location in the

time series. This, however, can lead the search to an unpromising

exploration area. For example, if the search starts out at the

valleys in Fig. 4, it might take longer time to reach the top of

the hill than if it starts somewhere on the edges. To avoid the
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Figure 7: Initial window Figure 8: Efficient MI com-
putation

“valley-trapped” situations, we use the noise theory to find a good

starting point. The search is at a good starting point if the initial

solutionw0 has Iw0
≥ ε (the noise threshold). To find such a point,

we first divide the time series into non-overlapping windows

of the minimal size smin with no time delay (τ = 0), and then

hierarchically combine them to form larger, and hopefully better

windows. The combination stops when it finds a windoww that

has Iw ≥ ε . Fig. 7 demonstrates this procedure.

In Step 1, initially the search starts with two minimal con-

secutive and non-overlapping windows w1, w2, and evaluates

their goodness by computing Iw1
, Iw2

. In Step 2, it combines the

two windows into a bigger onew12, and computes Iw12
. Next, it

compares the goodness of the 3 windows, and select the one that

has the highest MI. Assuming that {Iw1
, Iw2

} ≤ Iw12
< ε , then

w12 is the one selected among the three. Since Iw12
is still less

than ε , it moves to Step 3.1, where a next minimal windoww3 is

evaluated both separately (by computing Iw3
), and together with

w12 (by computing Iw123
).

Assume that Iw3
< ε , and that by combiningw3 tow12, it re-

duces theMI Iw12
, i.e., Iw123

< Iw12
< ε . According to Theorem 6.1,

we can conclude thatw3 is noise w.r.t.w12. Thus, the combination

w123 does not lead to a promising result. The next window to

be considered isw4. However,w12 cannot be combined withw4

without the presence ofw3, which we know is noise ofw12. Thus,

the combinationw1234 should not be formed, andw12 should also

be eliminated from future consideration (Step 3.3). Next, in Step 4,
w3 is evaluated again in combination withw4, and the procedure

is repeated until it can find a window that has MI > ε . Once the
starting point is determined, TYCOSLN begins its neighborhood

exploration as described in Section 5.2.

6.2.2 Subsequent noise detection. The noise identification

principle is also beneficial during the neighborhood exploration.

We explain its applicability in Fig. 5. Assume wi is the current

window and w1

4
, w2

7
are its neighbors when moving along the

y−axis. In the first exploration, the neighbor w1

4
is considered.

Sincew1

4
is created by extending the end index ofwi by a δ1−step,

we have: w1

4
= wi ⊙ wδ1 where wδ1 is the extension to be con-

catenated withwi . Assume that by applying our noise theory to

wi ,wδ1 , andw
1

4
, we conclude thatwδ1 is noise w.r.t.wi . In this

case, it is not promising to further explore the neighborhoods

ofwi along the y−axis in that direction. In the next exploration,

TYCOSLN will omitw2

7
, as well as the entire forward direction

along the y−axis.
Ensuring the completeness of TYCOSLN: When TYCOSLN stops

at a locally optimal solution, it has followed the best path and

explored to the deepest level of the current tree. This, however,

does not guarantee that is the only path. In fact, we want to find

the set of all windows that are above the correlation threshold.

Thus, to ensure the completeness of the search, TYCOSLN is

designed recursively so that once it stops at the locally optimal

solution, it goes back to the previously found starting point and

continues exploring other paths to find all feasible solutions.

Algorithm 2 reflects on how the noise theory is applied in

TYCOS. In line 2, the noise theory is applied to find a good

starting point. During the neighborhood exploration, the theory

is applied again to prune the search space (line 5).

Algorithm 2 TYCOSLN: Apply noise theory to TYCOSL

Input: (XT , YT ): pair of time series

Params: σ , ε , smin, smax, tdmax

Output: S: a set of non-overlapping windows whose MI ≥ σ
1: while (XT , YT ) is not scanned entirely do
2: Initial solution w := InitialNoisePruning((XT , YT ), ε )
3: Compute I (w ) ▷ Evaluate the goodness of the initial solution

4: while tidle < TmaxIdle do
5: N := SubsequentNoiseDetection(w, τ ) ▷ Apply Theorem 6.1

to identify promising neighbors of w
6: w := EvaluateCandidateSolution(w, N ) ▷ Follow the steps

8-18 in Algorithm 1 to improve w
7: if Iw ≥ σ then
8: Insert w to S
9: TYCOSLN(X

′

T , Y
′

T ) ▷ Restart TYCOSLN

10: return S

6.3 Setting the Correlation Threshold
6.3.1 Using normalized MI. Since MI is a measure of total

dependence between variables, its magnitude represents the

strength of the correlation. As theMI value is always non-negative,

its lower bound is 0. However, the MI’s upper bound varies and

thus, it is difficult to set an appropriate correlation threshold

using MI magnitude when data characteristics and their rela-

tionships are unknown. To overcome this challenge, we propose

a robust method to set the correlation threshold based on the

normalized MI :
0 ≤ Ĩw =

Iw
Hw

≤ 1 (18)

where Iw is the MI and Hw is the entropy of the windoww .

In Eq. (18), the window entropy Hw represents the amount

of uncertainty contained in the windoww . Thus, Ĩw represents

the fraction of the window’s uncertainty reduced by the shared

information Iw . The larger Ĩw , the more information is shared

between the window’s variables, and thus the stronger correla-

tion. The normalized MI Ĩw is always scaled between [0, 1], and

thus provides an easier way for users to set the threshold σ .

6.3.2 Using top-K filtering. Top-K maintains a list of K (K is

a predefined parameter) windows that have the highest MI up

to the current point. The top-K list represents the top correlated

time-series windows, and can be used to set the value of σ . In
this top-K filtering approach, σ starts with the MI value of the

initial windoww0. As the search proceeds, the top-K list is filled,

and σ gets updated by the minimum MI value in the list. Once

the top-K list is full, it will get updated if there is a new window

that has MI greater than the current value of σ . The element with

the least MI value in the top-K list will be replaced by this new

window, and σ is updated accordingly.

7 EFFICIENT MI COMPUTATION
In this section, we discuss the efficient MI computation (based

on Eq. (2)) in TYCOS. Due to space limitations, the discussion

will be brief and touch only important points.

Recall that while exploring its neighborhood, TYCOS might

visit the same data partition multiple times. For example, while
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evaluatingw1

4
andw2

7
in Fig. 5, TYCOS will repeatedly revisitwi

because w1

4
and w2

7
are extended from wi . To minimize the re-

dundancy, we design an efficient MI computation method so that

computation of overlapping data can be reused across windows.

We observe that neighboring windows in each neighborhood

Ni can differ from the current windowwi by only a small data

partitionwδi , wherewδi is either removed from or added towi .

For instance, in Fig. 5,w1

8
differs fromwi by removing awδ1 data

partition from wi , whereas w
1

4
differs from wi by adding a wδ1

data partition towi . The removal of old data and the addition of

new data can introduce different types of changes to the previous

computation of wi . These changes can be either changing the

k-nearest neighbors or changing the marginal counts nx , ny
of existing points. To track those changes, we introduce the

influenced region and influenced marginal region concepts for

each data point.

Definition 7.1 (Influenced region (IR))An IR of pointpi = (xi ,yi )
is a square bounding box Ri = (li , ri ,bi , ti ), where li , ri ,bi , ti are
its left-, right-, bottom-, and top-most indices, respectively, and

are computed as li = xi − d , ri = xi + d , bi = yi − d , ti = yi + d
where d = max(dx ,dy ).
Definition 7.2 (Influenced marginal region (IMR)) The IMRs of
point pi are the marginal regions located within the nearest

distance di in each dimension.

Fig. 8 illustrates these concepts. The influenced region of p0 is
the square colored in green, and the influenced marginal regions
are those with gray shade in either dimension.

Lemma 3. Given a windowwi and a data point p ∈ wi , a new
point o inserted intowi will become the new kth -neighbor of p iff
o is within IR of p.

Lemma 4. Given a window wi and a data point p ∈ wi , an
existing point o deleted fromwi will change the k nearest points of
p iff o is within IR of p.

Lemma 5. Given a windowwi and a data point p ∈ wi , a new
point o inserted intowi will increase the marginal count nx (or ny )
of p iff o is within IMRx (or IMRy ) of p.

Lemma 6. Given a window wi and a data point p ∈ wi , an
existing point o deleted fromwi will reduce the marginal count nx
(or ny ) of p iff o is within IMRx (or IMRy ) of p.

Proof. Proofs of Lemmas 3, 4, 5, 6 are straightforward, thus

omitted. □

Lemmas 3, 4, 5, 6 display unique properties of IRs and IMRs.
An IR maintains an area where any point pj either falling into or

being removed from this region will change the k nearest points

ofpi . In this case, a newk-nearest neighbors search is required for
pi . Instead, an IMR maintains an area where any point pj either
falling into or being removed from it will change the marginal

counts of pi . In this case, the marginalized neighbors of pi have
to be recounted.

Fig. 8 illustrates how changes are introduced and managed.

For simplicity, we only discuss cases when new points are added

into the previous computation. Changes introduced by removing

points can be handled in a similar way. Assume that at time t1, a
new point p8 is added to the current window and falls into the IR
of p1. The addition of p8 changes the k

th
-nearest neighbor of p1,

thus, triggers a new nearest neighbor search for p1. At time t2,
a new point p9 arrives and falls into the y-marginal influenced

region of p1, for which it will alter the marginal count ny (but no

new k-nearest neighbor search is required in this case). Similarly,

a new point p10 will increase the marginal count nx . In these

cases, only a recount of nx or ny is performed.

As the result of our efficient MI computation, for each window,

only a minimum search region (containing new points) and a

minimum update region (containing points affected by added

and removed points) require additional computation. The rest is

reused, and thus minimizing the computational cost.

8 EXPERIMENTAL EVALUATION
We evaluate the effectiveness and efficiency of TYCOS using

both synthetic and real-world datasets. Effectiveness measures

the method qualitatively by assessing the quality of extracted

windows, while efficiency measures the method quantitatively

in terms of its performance and accuracy.

8.1 Baseline methods
Effectiveness evaluation: TYCOS is compared against four base-

line methods. The first baseline is a traditional correlation metric:

Pearson Correlation Coefficient (PCC) [23]. The second is the

Fast Subsequence Search (MASS) algorithm [25], often used for

subsequences matching in time series. The third is MatrixProfile

[31], considered to be the state of the art method for similarity

join between time series. The final baseline is the Adaptive Mu-

tual Information-based Correlation (AMIC) [17] framework that

follows a top-down approach to search for multi-scale temporal

correlations in big time series.

Efficiency evaluation: TYCOS runtime is compared against

the Brute Force and MatrixProfile (which uses different win-

dow lengths) methods. In addition, different variants of TYCOS,

including LAHC-based TYCOS (TYCOSL), TYCOSL with noise

theory applied (TYCOSLN), TYCOSL with the proposed efficient

MI computation (TYCOSLM), and TYCOSL with both noise the-

ory and efficient MI computation (TYCOSLMN), are compared

against each other to illustrate the effectiveness of the proposed

noise theory and MI computation technique. We do not compare

AMIC against TYCOS quantitatively, however, as AMIC does not

consider time delay correlations, and thus, has a different search

space. PCC and MASS are also not considered for efficiency eval-

uation because they lack mechanisms to automatically search for

correlated windows.

8.2 Parameter setting for TYCOS
TYCOS requires setting 5 parameters: correlation threshold σ ,
noise threshold ε , minimumwindow size smin, maximumwindow

size smax, and maximum time delay tdmax. Among these, σ , smin,

smax, and tdmax are user parameters, while ε is a hyper parameter.

The value of σ determines the strength of extracted corre-

lations. The larger the σ , the stronger the correlations. In our

experiments, we set the value of σ using the normalized MI

(scaled between [0, 1]) introduced in Section 6.3. On the other

hand, the values of smin, smax and tdmax are context dependent

and is set based on domain knowledge. That is, given an appli-

cation domain, it is usually intuitive how small/large a window

could be and how long a time shift is possible. For example, when

a user analyzes weather related data, he/she might decide that

the longest duration of a weather event is two weeks, and thus set
the size of smax to two weeks. Similarly, a user can set tdmax to 24
hours by assuming that weather events have impacts on other

events only within a day duration. Table 2 lists the values of σ ,
smin, smax and tdmax we use in each dataset.

For the hyper parameter ε , we set ε = 1

4
σ in all experiments.

This means that a window whose MI is less than 25% of the

correlation threshold is considered unpromising to explore. The

ratio ε/σ = 0.25 is chosen based on empirical studies we conduct
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Table 1: Identifying different types of correlation relations (N (µ, σ ): normal distribution, u ∼ U (0, 1): uniform distribution)

td = 0 (No time delay) td = 150 (With time delay)

Relation y = f (x ) PCC MASS MatrixProfile AMIC TYCOS PCC MASS MatrixProfile AMIC TYCOS

Independent y ∼ N (0, 1), x ∼ N (3, 5) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Linear y = 2x + u , x ∈ [0, 10] ✓ ✓ ✓ ✓ ✓ ✓ ✓

Exp. y = 0.01x+u , x ∈ [−10, 10] ✓ ✓ ✓ ✓ ✓

Quad. y = x 2 + u , x ∈ [−4, 4] ✓ ✓ ✓ ✓

Circle y = ±
√
3
2 − x 2 + u , x ∈ [−3, 3] ✓ ✓ ✓

Sine y = 2 ∗ sin(x ) + u , x ∈ [0, 10] ✓ ✓ ✓

Cross y1 = x + u , y2 = −x + u , x ∈ [−5, 5] ✓ ✓ ✓

Quartic y = x 4 − 4x 3 + 4x 2 + x +u , x ∈ [−1, 3] ✓ ✓ ✓ ✓

Square root y =
√
x , x ∈ [0, 25] ✓ ✓ ✓ ✓

Table 2: Parameters setting
Parameter Energy datasets Smart city datasets

Correlation threshold σ 0.3 0.2

Minimum window size smin 3 samples ≃ 3 mins 3 samples ≃ 15 mins

Maximum window size smax 10080 samples ≃ 7 days 4032 samples ≃ 14 days

Maximum time delay tdmax 2880 samples ≃ 2 days 288 samples ≃ 1 day

on different datasets, which consistently show that ε/σ ≃ 0.25

yields the best trade-off between accuracy and runtime gain.

Section 8.5 shows this trade-off analysis, togetherwith an analysis

of the effects of σ , smax and tdmax on the performance of TYCOS.

8.3 Effectiveness evaluation
A) Evaluation on synthetic datasets: We generate synthetic

datasets containing different types of relations, including both

linear and non-linear, monotonic and non-monotonic, functional

and non-functional functions. Then, we combine the generated

relations into the same time series pair (the first time series is

the values of x , the second time series is the values of y = f (x)).
The individual relations are separated by independent data, and

the time delays, td={0, 50, 100, 150} (samples), are added between

x and y. Next, we apply TYCOS, and the baselines PCC, MASS,

MatrixProfile and AMIC to the time series to verify whether the

methods can detect the generated relations. A method detects a

relation in a given pair of time series if it can locate a windoww
where (Xw ,Yw ) corresponds to that relation. Table 1 shows the
relations (y = f (x) andu is added noise) recognized by the tested

methods (the ✓ sign denotes an identified relation, and the

sign denotes an unidentified relation). The plots of the generated

relations can be found in [17].

We see that when there is no time delay (td = 0), TYCOS

and AMIC can detect all types of relations, while PCC, MASS,

and MatrixProfile cannot detect non-linear and non-functional

relations, e.g., a circle relation. When there is time delay (td
, 0), PCC, MASS and AMIC cannot detect any relations, while

MatrixProfile can detect only linear relations, unlike TYCOS

which can detect all the tested relations.

B) Evaluation on real-world datasets: We evaluate TYCOS

on two real-world data collections: smart energy [1] and smart

city [2]. Using real-world applications, our goal is to make sense

of extracted windows and learn insights from them. We describe

the datasets, and the findings in the following.

The energy datasets [1]: measure energy usage from electri-

cal devices in residential households in Maryland, USA during

07/2013-07/2014, and 02/2015-02/2016. There are 72 electrical

plugs in total, and their consumptions are reported in minute

and hour interval. We create pairwise time series from 72 plugs,

and apply TYCOS and AMIC on each time series pair.

The smart city datasets: The NYC Open Data [2] contains more

than 1,500 spatio-temporal datasets, providing rich information

about NYC. For evaluation purposes, we consider two collections

of data related to weather and transportation. Within transporta-
tion, we focus on the Collision dataset reporting the number of

accidents in the city. TheWeather dataset has 30 variables, record-
ing weather condition in 5-minute and hour resolutions. The

Collision dataset has 29 variables, recording incidents happened

in minute resolution.

Summary of the results: On the energy datasets, TYCOS can

extract correlations from more than 50 different time series pairs,

while AMIC extracts fewer windows than TYCOS, and omits any

correlations that have time delay. On smart city datasets, TYCOS

is able to find correlations that could not be confirmed in [17] by

AMIC. Due to space limitations, we cannot discuss all of them,

but instead just show a few extracted correlations in Table 3 to

illustrate our observations. In each column, the first number is

the number of extracted windows, the second number is the time

delay range, and the sign denotes no windows can be extracted.

Table 3: Extracted correlations (h: hour, m: minute)

Correlations TYCOS AMIC

(C1) Kitchen vs. Dish Washer 80, [0-4h] 25, 0h

(C2) Kitchen vs. Microwave 21, [0-1h] 5, 0h

(C3) Clothes Washer vs. Dryer 39, [10-30m]

(C4) Bathroom Light vs. Kitchen Light 14, [1-5m]

(C5) Kitchen Light vs. Microwave 11, [0-2m] 4, 0m

(C6) Children Room Light vs. Living Room Light 8, [15-40m]

(C7) Precipitation vs. Collisions 28, [0.5-2h]

(C8) Wind Speed vs. Collisions 23, [0.25-1h]

(C9) Precipitation vs. Pedestrian Injured 16, [0.5-2h]

(C10) Wind Speed vs. Motorist Killed 12, [0.25-1h]

Interpretation of extracted windows: We interpret some of the

correlations in Table 3 by comparing with the findings of [7,

17], and/or by plotting the data of extracted windows. Here, C1

presents a correlation between the energy usage of the kitchen
and of the dish washer, with the time shift ranging from 0 to

4 hours. The extracted windows indicate frequent activities of

kitchen from 16.00 to 19.00, and of dish washer from 21.00 to

23.00. C4 presents a correlation between the light upstairs in

the bathroom, and the light downstairs in the kitchen, with an

average time shift from 1 to 5 minutes. The correlation occurs

frequently from 6.00 to 7.00. This pattern might hint that, either

more than one person are living together so that when one is

in the bathroom, the other goes to the kitchen; or that the same

person wakes up in the early morning, goes to the bathroom and

then comes to the kitchen. Interestingly, C5 can help provide extra

information for C4. A correlation between the kitchen light and

the microwave is identified, with a time shift between two devices

is from 0 to 2 minutes, indicating the person might come to the

kitchen to prepare breakfast. On smart city datasets, C7 and C8

present correlations between the increase of precipitation/ wind

speed, and the number of collisions, with a time shift from 0.25

to 2 hours. In [17], AMIC could not confirm C7 and C8, because

it does not consider the time delay between time series, and thus

fail to capture correlations that are shifted in time. Furthermore,

we found that precipitation has stronger impact on pedestrians
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(c) Synthetic 3
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Figure 9: Runtime evaluation of TYCOS
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Figure 10: Brute Force, Matrix Profile, and TYCOSLMN

than on motorists or cyclists, while contrarily, wind has more

impact on motorists and cyclists than pedestrians (C9, C10).

8.4 Efficiency evaluation
TYCOS performance is evaluated in terms of its runtime and

accuracy. TYCOS is implemented in C++, and the experiments

are run on a standard PC that has 2.7 GHz processor, 16 GB of

RAM, and 512 GB of SSD.

A) Runtime evaluation: TYCOS runtime is evaluated by com-

paring its 4 different versions: TYCOSL, TYCOSLN, TYCOSLM,

TYCOSLMN, and the Brute Force and MatrixProfile baselines.

First, different TYCOS versions are compared against each other.

The results on both synthetic and real-world data are shown in

Fig. 9. The synthetic datasets, Synthetic 1, Synthetic 2, and Syn-
thetic 3, are created by combining multiple relations from Table

1 into one time series pair. From Fig. 9 where the y-axis is in
log scale, it can be seen that TYCOSLMN achieves the best per-

formance among all versions. Its speedup w.r.t. TYCOSL ranges

from 10 to 150 depending on data sizes. The average speedup is

20 on synthetic data, and 60 on real-world data. Furthermore, the

noise theory and the efficient MI computation technique result

in different speedups depending on data (there are situations

where the noise theory is more efficient, and vice versa). The

average speedup is 39 for the noise theory, and 32 for the efficient

MI computation. However, applying both always yields better

speedups than applying either of them.

Next, TYCOS with the best performance, TYCOSLMN, is com-

pared against Brute Force and MatrixProfile. The results are

shown in Fig. 10 (note log scale in the y-axis). We can see that

TYCOSLMN can achieve an average speedup of more than 3 or-

ders of magnitude over Brute Force, and of more than 2 orders of

magnitude over MatrixProfile, both of which are, however, exact.

B) Accuracy evaluation: To evaluate the accuracy of TYCOS,
we compare the similarity of windows extracted from 3 versions:

Brute Force, TYCOSL and TYCOSLN. Note that the efficient MI

computation technique does not change the accuracy of TYCOSL,
thus, TYCOSLM and TYCOSLMN are not considered in this eval-

uation. Moreover, two windows are considered to be similar if

they cover a similar range of indices. The comparison between

Table 4: Accuracy evaluation

TYCOSL vs. Brute Force TYCOSLN vs. TYCOSL

Data Size Synthetic Data Real Data Synthetic Data Real Data

1K 96.2 95 100 100

10K 97.52 95.1 97.91 95.05

20K 94.08 91.7 98.19 97.78

30K 92.4 89.5 96.4 95.19

40K 97.85 95.1 98.17 97.01

50K 93.69 94.7 96.12 93.91

60K 95.49 94.8 97.1 97.78

70K 90.6 94.3 94.5 95.15

80K 88.75 91.02 96.21 95.8

90K 92.8 89.3 93.01 94.7

100K 93.1 94.7 95.8 94.94

Brute Force and TYCOSL evaluates how accurate the LAHC ap-

proach on the TYCOS problem is, while the comparison between

TYCOSL and TYCOSLN validates the accuracy of the noise theory.

Since Brute Force generates overlapped windows, the generated

windows are aggregated and the overlapped windows are com-

bined together. The same synthetic and real-world datasets as

when evaluating the runtime are used in this experiments.

Table 4 shows the average accuracy of TYCOSL w.r.t. Brute

Force, and of TYCOSLN w.r.t. TYCOSL. Depending on the data

sizes, TYCOSL extracts from 88% to 98% similar windows com-

pared to Brute Force, while TYCOSLN extracts windows that are

from 90% to 100% similar to TYCOSL.
The quantitative evaluation proves that our proposed theory

and technique are very effective in improving the search perfor-

mance. They help achieve an average speedup of more than 3

orders of magnitude compared to the Brute Force method, while

maintaining highly accurate results.

8.5 Effects of Parameters
We examine how the major parameters: ε , σ , smax, and tdmax,

affect the performance of TYCOS. We do not consider smin in this

experiment because smin has minimal impact on TYCOS results.

A) Noise threshold ε: First, we examine how different values

of ε affect the accuracy and runtime, using both synthetic and

real-world data in Fig. 11. We can see, as the ratio ε/σ increases,

the runtime gain increases (Fig. 11b), but the error rate also

increases (Fig. 11a, error rate is measured by the number of

missing windows). This result is intuitive because as the ratio

ε/σ increases, more of the TYCOS search space is pruned, leading

to higher speedup and larger errors. Next, we perform a trade-

off analysis between accuracy and runtime gain as a means for

choosing a proper value of the noise threshold ε . In Fig. 12, the

accuracy and the runtime gain of each tested dataset are plotted

together, with the ratio ε/σ on the x-axis. On the two tested

datasets, i.e., energy and smart city datasets, we found that, when

ε/σ ∈ [0.05, 0.3], TYCOSLN maintains an error rate less than 5%,

while reducing the runtime up to 50%, compared to TYCOSL.
Thus, our experimental setting ε = 1

4
σ proved to be effective

and robust. This threshold can be adjusted according to user’s

preference for accuracy.

5 10 20 30 40 50 60 70 80
0

20

40

60

80

100

Noise Threshold (ε/σ )

%
o
f
w
i
n
d
o
w
s

(a) Missing windows

5 10 20 30 40 50 60 70 80
0

50

100

150

Noise Threshold (ε/σ )

%
r
u
n
t
i
m
e
g
a
i
n

(b) Runtime gain

Washer-Dryer Wind-Collision Synthetic 1

Figure 11: Effect of noise threshold ε
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B) Correlation threshold σ : We vary the values of σ to ex-

amine its effect, shown in Fig. 13a. We observe that, the correla-

tions are stronger as σ increases, and thus, fewer windows are

extracted. However, the runtime also increases because larger

neighborhoods need to be explored to find strong correlations.

For example, only 80 windows are extracted compared to 681

windows when σ increases from 0.2 to 0.6, while the runtime

increases from 115 to 573 seconds.

C) Window size smax and time delay tdmax: We examine

how smax and tdmax affect TYCOS. We found that, although smax

and tdmax are context dependent, the algorithm will converge

after the two parameters reach certain values. When the conver-

gence occurs, TYCOS extracts the same set of windows, while

maintaining a similar runtime for tdmax, but an increasing run-

time for smax. Fig. 13b and Fig. 13c illustrate this evaluation.

Here, using the (Snow, Collision) datasets, TYCOS converges at
smax = 250 and tdmax = 60, with 276windows extractedwhen the

convergence occurs. After the convergence, the runtime contin-

ues increasing as smax goes beyond the value 250, while keeping

similar values as tdmax goes more than 60.

9 CONCLUSION AND FUTUREWORK
To our knowledge, TYCOS is the first comprehensive solution for

the multi-scale time delay correlations search problem. TYCOS

has the ability to extract all types of correlation relations, includ-

ing both linear and non-linear, monotonic and non-monotonic,

functional and non-functional ones. Our major contributions are:

(1) integration of TYCOS and LAHC for multi-scale time delay

correlations search, (2) the novel MI-based theory for noise iden-

tification, (3) the efficient MI computation technique to reduce

computational redundancy. We perform an extensive evaluation

on the effectiveness and efficiency of TYCOS, using both syn-

thetic and real-world datasets. The evaluation shows that TYCOS

can detect various types of relations in synthetic data, and find

significant and interesting correlations in real-world data. The

proposed noise theory and MI computation technique are also

proved to be effective and improve the search performance by

2 to 3 orders of magnitude compared to the baselines. In future

work, TYCOS can be extended to capture correlations across

spatial dimensions. The result of this work can also provide a

foundation for deeper data analysis, such as perform mining or

infer causal effects from the extracted correlations.
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ABSTRACT
Queries that can navigate large search spaces to identify complex
objects of interest cannot be efficiently supported by traditional
DBMSs. Searchlight is a recent system that aims to address this
fundamental shortcoming by deeply yet transparently integrating
Constraint Programming (CP) logic into the query engine of an
array DBMS. This hybrid model enables exploration of large
multi-dimensional data sets progressively and quickly.

Fast query execution is only one of the requirements of ef-
fective data-exploration support. Finding the right questions to
ask is another notoriously challenging problem, given the users’
lack of familiarity with the structure and contents of the under-
lying data sets, as well as the inherently fuzzy goals in many
exploration-oriented tasks. To this end, in the context of Search-
light, we study the modification of initial query parameters at
run-time. We describe how to dynamically refine (i.e., relax or
tighten) the parameters of a query, based on the result cardinality
desired by the user and the live query progress. This feature al-
lows users to iterate over the datasets faster and without having
to make accurate guesses on what parameters to use. Our ex-
perimental results show that the proposed techniques introduce
little or no overhead while yielding considerable time savings
compared to user-driven, manual query refinements. The result
is a system that not only optimizes machine resource usage but
also reduces user effort.

1 INTRODUCTION
Consider a researcher working with the MIMIC II dataset [1],
which contains medical information for a number of ICU patients
over a large period of time. Assume that she is studying histori-
cal ABP (Arterial Blood Pressure) signal readings and wants to
identify time intervals that satisfy the following constraints:

• The length of the time interval can be from 8 to 16 seconds,
and it can start at any point in time.

• The average signal amplitude must be within [150, 200]
range for the interval.

• The maximum amplitude of the signal over the interval
must exceed the maximum amplitude of the signal over its
left and right neighborhoods by at least 80. The left (right)

∗This work was funded in part by NSF IIS-1526639.
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neighborhood is defined as an 8-second interval to the left
(right) of the main interval.

This seemingly simple search query is difficult to express and
even harder to optimize using traditional query languages and
DBMSs [10]. Recent systems, such as Searchlight [10, 11], extends
SciDB [2] with constraint-based search and optimization support,
effectively integrating two mature technologies (DBMS and CP-
based solver) to address queries that operate on large search
spaces and over large data sets.

Now imagine that the user gets zero results after running the
initial query, as illustrated in the top part of Figure 1. It turns out
that the query was over-constrained! She then tries to guess the
correct constraint parameters manually by relaxing the average
amplitude constraint: now the average ABP amplitude must be
within the [150, 250] range. When she runs this new query, she
gets flooded with a large number of intervals, many of which
overlap, as shown in the middle band of Figure 1. Since such a
result can be overwhelming for her to parse and study, expecting
that there might be more focused and “better” initial results she
could work with, she then tries to tighten the interval to [150, 220].
After running the query again, she gets a reasonable number of
results that she can explore in detail, as illustrated at the bottom
of Figure 1.

Figure 1: Exploring the ABP waveform data. Top: original
query result.Middle: an over-relaxed query result. Bottom:
final query result.

This scenario illustrates a number of problems:

• The user has to go through a series of guesses to identify
a query that outputs a desirable number of results. This is
often a frustrating and cumbersome process, especially if
the user has limited knowledge about the data, which is
often the case when exploring new data sets.

• The process of manual refinements (i.e., relaxation and
tightening) might be quite complex even for seemingly
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simple queries. In the earlier example, the user can mod-
ify the average amplitude constraint, or the two neigh-
borhood constraints, or any combination of those, which
collectively create an exponential number of possibilities.

• With manual refinements, no guarantees can be given for
the final result. In general, users prefer to get results that
are as close as possible to the original query parameters.

We address these problems in the context of Searchlight, which
gives us an open DBMS platform to develop and test our solutions.
At the same time, we emphasize that these problems would arise
in any system supporting constraint-based queries and traditional
solving technology. We also note that these issues are amplified
when dealing with large datasets, as the query times can be
larger and it becomes even more critical to perform such query
iterations quickly and efficiently.

1.1 Motivation
A common initial step in data exploration is the identification
of a small number of interesting cases that the user dives into
for deeper study. In such cases, query refinements are applied to
assure a target result cardinality tomeet a “budget” constraint typ-
ically on user time or money. For example, a medical researcher
may have the budget to run a survey on a specific number of
patients with certain characteristics. A business may have a dis-
count budget that is sufficient only to a specific number of cus-
tomers within a given campaign. An advancement officer of a
university may have a limited time to call a certain number of
alumni on a given day. An astronomy researcher may have the
time to study a limited number of celestial objects for a research
project. In all these cases, the ability to have the system automat-
ically tweak the query to produce a result set of a desirable size
is very helpful.

Beyond these generic use scenarios, we have anecdotal evi-
dence from a demonstration of waveform data exploration [11].
In this demo, the users were given the ability to fill in the pa-
rameters for template queries, such as signal amplitude, interval
length, etc. However, since they had very limited knowledge
about the presented dataset, their queries often output either too
many results (sometimes thousands) or nothing at all. Both of
the outcomes were frustrating, and the users had to go through
a number of trial-and-error runs to identify a small set of results
that is amenable to manual deeper inspection.

1.2 Query Refinement Approaches
Ideally, any system should perform any refinements automati-
cally by detecting if the query needs to be modified during its
evaluation without specific directives from the user. If there is a
need for relaxing the query, it should choose the constraints and
the degree of modification such that the final results are closest
to the original constraint parameters according to the provided
distance function. In the case of tightening, it should rank the
results and output the top ones according to the specified ranking
function. For performance optimization, it should reuse as much
computation as possible to minimize the overhead from multiple
searches. At the same time, if there is no need to modify the
query, the automatic approach should not incur any significant
overhead.

Query refinements have been studied in the context of re-
lational DBMSs [4, 6–8, 12–18]. Similar approaches can be ex-
tended to array DBMSs (such as SciDB) as well. However, the
query described in the example belongs to a different kind of

search queries, which is the reason why an engine such as Search-
light that supported CP was used in the first place instead of the
original array DBMS. As we argue in Section 6, existing meth-
ods cannot be easily applied to constraint-based search queries.
These methods generally assume that either the result cardinality
can be easily estimated for the query, or appropriate range-based
indexes (e.g., B-trees or R-trees) exist over the objects of interest
(which are time intervals for the example above), so that the
search space of all possible objects could be traversed efficiently.
Due to the ad-hoc nature of search queries, however, the result
cardinality is hard to estimate. At the same time, since objects of
interest are defined by the query itself, as part of the constraint
specification, indexing becomes infeasible [10].

Another approach, possibly applicable to some simple search
queries, would be to rewrite such queries in SQL and execute
them on a relational (or array) engine, opening the possibility of
using the existing query refinement techniques. However, previ-
ous research [9, 10] suggests that executing such search queries
in a traditional engine, while possible, incurs significant perfor-
mance penalties. More importantly, such conversion results in
very complex SQL queries, for which the applicability of existing
refinement methods would be quite limited.

1.3 Overview of Dynamic Query Refinement
In a nutshell, Searchlight uses Constraint Programming (CP) to
perform the search over an in-memory synopsis of the original
data. The solver dynamically builds the search tree, possibly
pruning parts of the tree that cannot satisfy the constraints. We
observe that the main reason the original query fails and, thus,
produces an empty result is search pruning. If the query needs
relaxation, only the previously pruned parts of the search space
need to be revisited. Thus, we track these parts and later “replay”
the search over them, if needed. The replaying is guided by a
user-provided distance function — more promising replays are
explored first. It is important to mention that this replay happens
automatically, when we detect the absence of the desired number
of results. At the same time, replaying is performed as part of the
original query, thus removing the need to re-explore previously
finished parts of the search space, resulting in considerable time
savings. From the logical perspective, this approach can be seen
as introducing an objective function and searching for results
that minimize it. This results in a very natural extension of the
traditional CP model that already supports objective function-
based search. The only piece of information required from the
user is the desired cardinality of the result k and, possibly, the
distance function d() 1. Our approach guarantees to produce
top-k results closest to the original constraints (i.e., minimizing
d()).

Query tightening can be seen as a dual problem for query
relaxation. Thus, the two work closely together. If the number of
results at some point during the search exceeds the desired result
cardinality, we switch the approach to query tightening, which
essentially ranks all results according to the specified ranking
function r () 2. The main idea behind our approach involves intro-
ducing a dynamic ranking constraint at that particular moment
during the search that restricts the final result to top-k objects
maximizing r (). As in the case of relaxation, it can logically be
seen as introducing an objective function with the maximization

1We provide built-in distance functions by default.
2Some built-in ranking functions are provided by default as well.
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goal. We call such a constraint dynamic since its parameters are
constantly updating depending on the current result.

1.4 Contributions
Our main contributions are as follows:

• We introduce a novel distributed relaxation and tighten-
ing framework for search queries, which automatically
detects the need for modifying the query at run-time and
performs query refinements without the need for any user
intervention. The user just needs to specify the target re-
sult cardinality and, optionally, the distance and ranking
functions.

• The framework is general and applicable to different types
of constraints. It works for any constraint of form a ≤
fc () ≤ b, where fc () is an arbitrary expression, including
User-Defined Functions (UDFs). It can be extended to other
types of constraints, with the introduction of a meaningful
distance and/or ranking measure. If desired, it can be even
applied to other engines beyond Searchlight, provided
they follow the CP execution model.

• Our implementation of this framework operates at the
DBMS engine level and extends it in a natural way that
is compatible with a generic CP model. Due to such a
seamless integration, it does not interfere with the existing
query processing, does not impact performance of queries
that do not require relaxation/tightening, and leverages
existing DBMS engine features.

We performed an extensive experimental evaluation over syn-
thetic and real (MIMIC II) data, which we discuss in Section 5.
Our results reveal tremendous time savings compared to manual
refinements and very low overhead.

The rest of the paper is organized as follows. In Section 2
we describe Searchlight as the DBMS/CP platform we use to ex-
plore our solutions. Section 3 presents the formal model behind
our relaxation/tightening framework. Section 4 describes design
and implementation of our solutions. Section 5 presents the ex-
perimental evaluation Section 6 discusses the related work and
Section 7 concludes the paper.

2 SEARCHLIGHT BACKGROUND
Searchlight is an extension of a traditional query processing
engine for efficient execution of search queries. It introduces
Constraint Programming (CP) methods to the query processing
and operates inside the engine. The user submits a search query in
form of a constraint program (decision variables and constraints
over them).

Searchlight processes the query by creating a number of CP
Solvers that perform the search on an in-memory synopsis of the
original data. Since synopsis is a lossy compression of the original
data, the CP-provided results (solutions) might contain false pos-
itives. Thus, the results need to be verified over the original data.
This is done by another Searchlight component called Validator.
The two components work concurrently to facilitate online an-
swering. When Validator confirms a solution, it is immediately
output, while false positives are filtered out. While Searchlight
does not have the notion of a query plan, each execution can
be imagined as a pipeline between two “operators”: Solver and
Validator. The Solver receives the query, outputs a stream of so-
lutions (tuples) to the Validator, while the latter filters out false
positives and outputs the final solutions to the user. Searchlight
is implemented as part of the SciDB query engine and uses its

infrastructure to distribute both search space and data across the
cluster. Thus, Solvers and Validators exhibit both multi-node and
multi-core parallelism. The details of query processing are out of
scope of this paper, and the in-depth discussion can be found in
the Searchlight paper [10].

There are no specific limitations on types of queries Search-
light can work with, since CP solvers are quite general. Users
can use any of the constraints generally found in CP solvers. At
the same time, most useful types of queries tend to use aggre-
gate functions to assess regions in the data. For example, the
query presented in the introduction section can be represented
in Searchlight as follows:

• Decision variable x defines the start of the resulting inter-
val. Its domain is the entire length of the recorded data,
since the interval can start anywhere.

• Variable lx defines the length of the interval, lx ∈ [8, 16].
• The amplitude constraint: avд(x ,x + lx ,ABP) ∈ [150, 200],
where avд() is a built-in Searchlight aggregate. We will
denote it c1 for future reference.

• The left neighborhood constraint: |max(x ,x + lx ,ABP) −
max(x − 8,x ,ABP)| ≥ 80. The right neighborhood is simi-
lar. We will denote them as c2 and c3 respectively.

When the Solver receives a CP specification similar to the
above, it dynamically builds a search tree for the query. An exam-
ple of such a tree for the query above can be seen in the left part
of Figure 2. The nodes represent the current variable domains
(search states), while edges represent Solver decisions that lead to
the corresponding search states. Children’s variable domains are
subsets of the parent’s ones, and leaves have the variables bound
(i.e., the domains are scalars). The decision process (search heuris-
tic) is tunable, can be selected and modified by the user [10]. The
search process itself is performed in a traditional backtracking
way. If, while building the tree, the Solver establishes a viola-
tion of query constraints (by relying on estimations from the
synopsis), the entire corresponding sub-tree is pruned from the
search (marked with the red “no” symbols in the figure), and is
never built or visited. When a leaf of the tree is reached (i.e., the
variables are bound to scalar values), the corresponding variable
assignment (solution) is passed to the Validator.

3 QUERY REFINEMENT MODEL
In this section we discuss our relaxation/tightening framework.
While described in the context of Searchlight, the model does
not depend on its implementation details and is primarily driven
by well established CP concepts. Throughout the paper, we use
query “constraining” as a synonym for “tightening”.

Each CP search query consists of a number of decision vari-
ables X and constraints C . Given such a query the search frame-
work either outputs all results or proves there is none. However,
if the user specifies the desired cardinality of the result k , the
framework behaves differently depending on the outcome of the
original query:

• The query outputs exactly k results. In this case the be-
havior stays the same.

• The query outputs a set of results R = r , |R | < k . In this
case it is automatically modified to produce additional
k − |R | results. The additional results are guaranteed to
minimize the specified RD(r ) function (discussed below).
This is query relaxation.
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• The query outputs |R | > k results. In this case the frame-
work effectively ranks the results based on the RK(r ) func-
tion (discussed below), and the query returns top-k results
according to RK(r ). This is query constraining.

When relaxing or constraining a query, we consider only
range-based constraints of form a ≤ f (X ) ≤ b. The nature of f ()
is not important. It might be an arbitrary algebraic expression
containing User-Defined Functions (UDFs), built-in functions
and variables from X . In our running example f () is the avд()
function for constraint c1 and themax(x ,x + lx) −max(x − 8,x)
expression for c2. We generally treat f () as black boxes, but we
assume the knowledge of values a′,b ′ at every node of the search
tree, such that a′ ≤ f (X ) ≤ b ′ for all possible values of X at that
node. This information is readily available as part of the search
process and is used to make search decisions (for building the
tree) and prune parts of the tree. In Searchlight a′,b ′ are derived
from the each node’s variable domains by using the synopses to
estimate constraint functions [10]. Thus, no modification to the
query engine should be required in this regard. By default, we
consider all range-based constraints for relaxation/constraining,
but the user can exclude any of them from the process. We denote
constraints considered for relaxation (constraining) as Cr (Cc ).
Cr does not necessarily equal Cc .

The relaxation and constraining processes are based on re-
sult ranking via separate relaxation and constraining ranking
functions. In the two following sections we describe the default
functions we use. Then we discuss the custom ranking functions
requirements.

3.1 Query Relaxation Model
Assume a constraint c ∈ Cr : a ≤ fc (X ) ≤ b and a result r
such that fc (r ) = t . We define the relaxation distance RDc (r ) as
follows:

RDc (r ) =


0 if a ≤ t ≤ b

t−b
max (fc (X ))−b if t > b

a−t
a−min(fc (X )) if t < a

Then, the total relaxation distance RD(r ) is:
RD(r ) = max

c ∈Cr
wcRDc (r ),

wherewc ∈ [0, 1] are constraint weights, which can be defined
by the user. By default,wc = 1.

We selected the RD() definition above just as a suitable default,
aiming at providing reasonable out-of-box experience. As we
discuss in Section 3.3, users can choose their own functions,
provided they respect certain requirements. In general, p-norm is
a logical choice when some distance between query points needs
to be measured [4]. We chose max (p = ∞) to penalize results
where some outlier constraints have large RDc () values. This
allows us to limit the distances of final results. A weighted sum
(p = 1) or Euclidean distance (p = 2) are other viable choices.

The denominators in RDc (r ) require further explanation. In
general, fc () from different constraints might have different
scales. For example, one constraint might deal with ages (e.g.,
fc1 () ∈ [0, 150]), while another with similarities (e.g., fc2 () ∈
[0, 1]). That is whywe perform [0, 1]-normalization of eachRDc (r )
by dividing it by the maximum possible difference in values.
Min/max values for fc () can be usually derived from the obvious
domain restrictions (e.g., age cannot exceed 150). We addition-
ally allow users to specify the max/min values with the query,
giving them more control over relaxation: we will not relax the

corresponding constraints beyond the specified min/max values.
We will use RDc (r ) to denote the normalized distances, as well
as the original ones, where appropriate.

In addition to RD(r ) for each result r we define VC(r ) as the
number of constraints fromCr violated by r divided by |Cr |. Thus,
VC(r ) ∈ [0, 1] is the normalized number of violated constraints.
Then, we define the total relaxation penalty for r as:

RP(r ) = αRD(r ) + (1 − α)VC(r )

The RP() allows users to prefer results with smaller number of
violated constraints, which is especially important in cases when
RD(r ) “looses” information about individual constraints (e.g., as
in our choice of max). α controls the degree of the preference
(the default is 0.5). We picked weighted sum as a suitable default,
giving the user the choice between two criteria, RD() and VC().
However, this default is not essential for the proposed framework.
RP() can be changed, and other criteria can be incorporated in
the formulation, if required.

The model provides the following relaxation guarantee: if the
user submits query Q with the cardinality requirement k , the
query outputs at least k results r with the lowest RP(r ) values
possible.

The definition above naturally incorporates queries in no need
of relaxation, with ≥ k results. If r satisfies the original con-
straints, RP(r ) = 0. Thus, the guarantee is automatically ful-
filled. If the user chose to specify tight min/max bounds for some
fc (), we might not be able to find k results in case there are not
enough results satisfying even maximally relaxed constraints
(i.e., min fc () ≤ fc () ≤ max fc ()). This is because we effectively
treat such fc () specification as a “hard” constraint.

Let us revisit the running MIMIC example. Assume the user
wants k = 3 results and Cr = {c1, c2, c3}. Additionally, avд()
andmax() values for the ABP signal lie within [50, 250]. Then a
possible search might progress as follows:

(1) A result r1 = (180, 85, 85) is found (we write a result as
a tuple of fi () values). Since it satisfies the constraints,
RP(r1) = 0 and it is output to the user.

(2) r2 = (190, 80, 90). Since, RP(r2) = 0, it is output.
(3) Searchlight cannot find any more results, so it starts relax-

ing the query.
(4) r3 = (160, 70, 60) is found. It violates c2 and c3. For r3:

RDc1 = 0,RDc2 =
10
80 = 0.125,RDc3 =

20
80 = 0.25. Thus,

RD(r3) = 0.25, and RP(r3) = 1
2 (0.25 +

2
3 ) = 0.458.

(5) r4 = (130, 80, 80) is found. For r4:RDc1 =
20
100 = 0.2,RDc2 =

0,RDc3 = 0. Thus,RD(r4) = 0.2, andRP(r4) = 1
2 (0.2+

1
3 ) =

0.267. Since RP(r4) < RP(r3), r3 is discarded, and r4 is put
into the result.

3.2 Query Constraining Model
The query performs constraining only when the number of re-
sults exceeds the k required by the user. That means during
constraining each result ri satisfies all constraints in Cc . For
each function fc (X ) from constraints in Cc the user can spec-
ify her preference in form of maximization or minimization of
the function. For example, if some constraint’s fc (X ) is a prop-
erty like the amplitude of a signal, the user might prefer large
values of fc (X ). On the other hand, if fc (x) is some spatial dis-
tance, the user might prefer smaller values. For each constraint
c ∈ Cc : c = a ≤ fc (X ) ≤ b and result r : fc (r ) = t we define the
ranking function RKc (r ) as follows:
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RKc (r ) =
{
b−t
b−a if c is being maximized
a−t
b−a if c is being minimized

Since r satisfies the constraints, a ≤ t ≤ b. As in the case of
query relaxation, we normalize RKc () to [0, 1] to account for the
possibility of different scales for fc (). If the interval is half-open,
i.e., a or b is not specified, a suitable domain boundary for fc ()
can be used instead.

We define the full rank of result r as:

RK(r ) = 1 −
∑
c ∈Cc

wcRKc (r ),

where wc , 0 ≤ wc ≤ 1 ∧ ∑
c wc = 1 represent the constraint

weights to prioritize some constraints over others. By default,
wc =

1
|Cc | . Note, RK(r ) assigns higher ranks to better results,

which is more natural to the user. As in the case of RD(), any p-
norm could be a reasonable choice for RK(). We saw the weighted
sum providing meaningful results in practice. In addition, it al-
lows us to demonstrate that the approach is flexible to the choice
of distance functions.

Assuming these definitions, the model provides the following
constraining guarantee: when the user submits query Q with the
cardinality requirement k , if Q has at least k results r , the query
outputs at most k results with highest RK(r ) possible. Note, if
the query does not have at least k results, the relaxation will be
performed instead.

Revisiting the running MIMIC example, let Cc = {c1, c2, c3},
wci =

1
3 . Let us assume the user prefers maximization for all

constraints and wants a single result. Note, that fc1 and fc2 has
the maximum value, 200, derived from the domain. The search
might progress as follows:

(1) A result r1 = (160, 100, 100) is found. Its rank is RK(r1) =
1 − 1

3 (
40
50 +

100
120 +

100
120 ) = 0.178.

(2) A result r2 = (150, 80, 85) is found. Its RK(r2) = 0.014.
Since RK(r2) < RK(r1), r2 is discarded.

(3) The next result is r3 = (190, 120, 120). Its RK(r3) = 0.289.
Since RK(r3) > RK(r1), r1 is discarded, and r3 becomes
the new top-1.

In addition to the scalar ranking approach just described we
support another popular vector-based ranking called skyline [3].
In that case the query simply outputs non-dominated results,
where a result is a vector of values of fc (), c ∈ Cc (as in the
example above). By definition, V dominates W , iff ∀i : vi ≥
wi ∧ ∃i : vi > wi . The meaning of > for each fc () is defined by
the user’s minimization/maximization preference, as in the scalar
case. For skyline, however, we cannot guarantee that the number
of results will not exceed k , since non-dominated vectors are not
comparable.

3.3 Approach Customization
In addition to the default penalty and ranking functions discussed
above, the user can add their own custom functions. The func-
tions may be called by the query engine during the search at any
search tree node, where some variables may still be unbound.
This means the custom RP()/RK() functions must be able to out-
put the penalty/rank interval for all possible solutions contained
in the corresponding sub-tree. Our implementation provides the
user with the current variable domains and synopsis-based in-
tervals for all constraint functions at any node. This information
should be enough to compute the required bounds.

The functions must conform to the certain requirements to
ensure the relaxation/constraining guarantees and proper per-
formance. For a custom RP returning ranges [lp,hp], the require-
ments are:

• RP() ≥ 0, with larger values corresponding to worse relax-
ation. All results satisfying the original query must have
RP() = 0.

• lp = hp at solutions (leaves) of the tree, since the variables
are bound there.

• RP() cannot underestimate lp, which means it cannot be
greater than the minimum of penalties for all possible
solutions at the corresponding sub-tree.

The requirements for the RK functions are similar, with the
only differences that RK() assigns larger values to better candi-
dates and, thus, should not underestimate hp. The user can define
her own dominance measure for the skyline ranking as well. The
corresponding function is periodically called over the current
top-k results to determine if any of the current sub-tree solutions
might enter the top-k .

In principle, customization can go beyond static ranking func-
tion. Dynamic functions is an interesting extension, where the
ranking functions may change depending on the results already
found, e.g., the user might want to prefer “diversity” among the
relaxed results so that their relaxation distances differ by at least
the specified amount. This can be accomplished by introducing
new constraints depending on the results already discovered.
Other dynamic modifications might be possible as well, depend-
ing on the user’s preference. Studying such richer functionality
is left for future work.

4 QUERY RELAXATION AND
CONSTRAINING

In this section we describe the implementation of the relax-
ation/constraining model. Our approach is general and can be
applied to other CP-based engines.

In general, a CP solver dynamically builds and traverses the
search tree. The dynamic nature of the search process allows
for modification of existing constraints and the addition of new
ones. Thus, if a query does not produce enough results satisfying
the original constraints, we can revisit some parts of the search
tree with modified (relaxed) constraints. If a query produces too
many results, we can introduce new dynamic constraints to prune
results having smaller ranks than the already found ones.

The efficiency of the relaxation and constraining heavily relies
on effective pruning. We exploit the following cases:

• During the main search at the Solver. This is the most
effective point. It allows us to prune parts of the search
tree with possibly large number of candidates and avoid
unnecessary validations later.

• Just before validating the candidate at the Validator. This
is effective in case Validators lag behind the Solvers, and
their candidate queues grow large. In that case new rank-
ing/penalty information about the current result might
allow us to perform additional pruning and avoid expen-
sive I/O.

• After validating the candidate at the Validator. Even if
the candidate passes the validation over the real data,
it is necessary to check them again with the up-to-date
penalty/ranking values. However, this is is done only for
correctness, with no performance benefits. These checks
do not require any additional I/O.
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4.1 Query Relaxation
A CP solver dynamically builds the search tree and validates
query constraints at every node of the tree. A node either satisfies
the constraints or fails. Successful nodes eventually lead to leaves,
which produce candidate solutions. When the search is finished,
if we have not found k results (the user’s desired cardinality), we
start revisiting parts of the search tree with modified, relaxed
constraints. We do not have to revisit successful search nodes,
since these nodes satisfied the original constraints and cannot
yield any new solutions. Previously failed search nodes, on the
other hand, could lead to new candidates satisfying the relaxed
constraints. We call this process fail replaying.

When we encounter a failed search node, we prune the node
as usual. However, we also record the current search state of the
node:

• Current decision variable domains. This information is
crucial when the fail is replayed later to resume the search
from this exact point without revisiting any extraneous
search nodes.

• The ranges [a′,b ′] for every function fc (), c ∈ Cr . As we
discussed in Section 3, these are available as part of the
normal search process.

After this information has been obtained, we compute the
best (BRP ) and worst (WRP ) relaxation penalties possible for the
saved failed node (i.e., for the solutions in its sub-tree). For the
built-in RP function this is straightforward from the definition.
The custom function, as discussed in Section 3.3, must compute
these values itself. After the relaxation penalties are computed,
the fail is inserted in the priority queue ranked by the BRP .

If during the search at least k results are found, we just stop
recording the fails. At the same time the constraining mechanism
turns on, which we discuss further in Section 4.3. If the main
search completes with less than k results, the relaxation is needed.
We start replaying fails from the priority queue (i.e., minimizing
BRP ). To replay a fail, we do the following:

(1) A new CP search is initiated with the decision variables
assigned the domains recorded at the fail. This can be seen
as traveling back in time to the moment just before the
fail.

(2) Each violated constraint is modified: a ≤ fc () ≤ b → a′ ≤
fc () ≤ b ′, where [a′,b ′] is the recorded interval. This
guarantees the search will not fail again when resumed.

The new search is handled exactly the same as the original
one. Thus, it might fail again, at other search nodes further in the
search tree. One example is when a previously valid constraint
becomes violated due to more accurate synopsis estimations
(those tend to become better closer to leaves). Such repeated
fails are caught as the original ones and might be replayed later.
During replays we explore only previously untouched parts of the
search tree. No search nodes are ever revisited, which improves
performance and guarantees the absence of duplicate results.

The discussed replay mechanism can be seen as naïve, since it
does not allow any additional pruning at the search level. When
we replay a fail, we relax previously failed constraints maximally,
so they cannot fail again. Thus, we just relax constraints until the
search reaches the leaves. The new candidates, however, do not
necessarily belong to the best-k results. To improve the efficacy of
pruning we take into account the Maximum Relaxation Penalty
(MRP ) among the already found results.

MRP ∈ [0, 1] effectively defines the worst penalty a result can
have to belong to the best-k , and it constantly changes during

the execution. Let us first assume the built-in RP function. While
the number of results found is less than k , theMRP = 1. When at
least k results have been found,MRP might decrease. We modify
the process as follows:

• When a fail is recorded, its BRP is compared with MRP .
If BRP > MRP , the fail is discarded completely, since its
search sub-tree cannot provide any useful candidates (i.e.,
with RP(r ) ≤ MRP ).

• When a fail is selected for replaying, its recorded intervals
[a′,b ′] are tightened according to the current MRP to
improve pruning, since the constraints will be relaxed as
minimally as possible. In addition, we repeat the BRP and
MRP comparison, sinceMRP might have changed.

Let us discuss the interval tightening in more detail. Assume
the built-in RP() function discussed in Section 3.1 with α , 0.
If α = 0, the relaxation distance does not influence RP(), so no
tightening is possible. Otherwise, to qualify for the result, all
candidate solutions r must have RP(r ) ≤ MRP . Since RP(r ) =
αRD(r ) + (1 − α)VC(r ),

RD(r ) ≤ MRP − (1 − α)VC(r )
α

.

Let us revisit the example from Section 3.1 and illustrate the
above algorithm with Figure 2. In this figure the search nodes
are rectangles with the synopsis values for the c1 and c2 func-
tions (we do not show c3). The search encounters two fails.
The first one in the search order is the lower one, for which
both c1 and c2 are violated, since 110 < 150 and 60 < 80. Its
BRP = 1

2 (max( 40
100 ,

20
80 ))+

1
2
2
3 = 0.53. The fail is recorded into the

table. Then the search encounters the upper fail, for which only
c2 is violated. Its BRP = 1

2 (
20
80 )+

1
2
1
3 = 0.29. AssumeMRP = 0.5 at

some point during the relaxation, and the next fail is being taken
from the table. According to the formula above, RD(r ) ≤ 0.33.
Thus, the [10, 60] is tightened to [80 − 0.33 ∗ 80, 60] = [53, 60],
which is used as the relaxed c2.

For the custom RP() function we cannot apply the same logic
for tightening intervals, since the custom RP() is effectively a
black box. In this case the constraints are relaxed to the [a′,b ′]
intervals. However, at each search node we call the custom RP()
function to check against theMRP . If the search node does not
pass the check, we fail the node and prune the sub-tree com-
pletely.

After the search tree with relaxed constraints reaches a leaf,
the corresponding solution is submitted to the Validator in the
same way as in the original search. Validator is aware of the
relaxation and validates the relaxed candidate accordingly, by
taking into account the currentMRP value. As we discussed in
the beginning of Section 4, it performs two checks: one before
and one after the validation. At the first one it compares the
candidate’s BRP(r ) value (supplied by the Solver) with the current
MRP and discards the candidate if BRP(r ) > MRP . Otherwise,
it performs the validation as usual with all constraints relaxed
maximally with respect to MRP . Relaxing all constraints here
is required for correctness, since even if some constraints fail
during validation, the solution’s penalty might still be below the
MRP , and it will qualify for the result. That is why the second
check is required after the validation.

It is the responsibility of the Validator to update theMRP value,
since it produces the final result. If a new result decreasesMRP ,
the Validator broadcasts the change to all instances in the cluster,
so MRP is (asynchronously) updated for all Solvers/Validators
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C1: [50, 250]
C2: [0, 200]

C1: [100, 220]
C2: [20, 100]

C1: [110, 220]
C2: [20, 100]

C1: [100, 110]
C2: [20, 60]

Search 
Tree

C1: [130, 180]
C2: [10, 60]

Domains C1 Range C2 Range RP

x’, lx’ [130, 180] [10, 60] 0.29

x’’, lx’’ [100, 110] [20, 60] 0.53

… … … …
Recorded fails

Search Tree (x’, lx’)
130 ≤ avg ≤ 180
53 ≤ |max| ≤ 60

2. Continue search (relax failed sub-trees)

1. Original Search

Too few results?

Figure 2: Example of fail recording and replaying for the running MIMIC query.

participating in the query. No special changes to the distributed
query processing is required beyond that.

The correctness of the the model’s relaxation guarantee is
due to the correctness of the CP search itself. While the search
process itself uses heuristics to guide the process, the pruning
is performed in the provable way, without eliminating any valid
results. Constraints modification during the search process is
guided by theMRP , which is maintained based on the currently
discovered results, so subsequent relaxation results will not be
eliminated. As far as the complexity of the approach goes, it is
equivalent to the complexity of the underlying CP search problem,
since the relaxation is performed as in terms of CP.

4.2 Query Relaxation Optimizations
We now discuss a number of useful optimizations for query re-
laxation. These do not modify the main algorithm, but offer per-
formance gains in common situations.

Computing functions at fails. When we catch a fail, we
save the [a′,b ′] intervals for functions fc (), c ∈ Cr . However, if
the search fails at a search node, it does not necessarily mean all
constraints have been verified yet. The fail might happen at the
first violated constraint, in which case the subsequent constraints
are not touched at all. This implies some fc () values might be
unknown. For example, in our running MIMIC example, if c1
fails, c2, c3 are not verified, and min/max ABP values are not
computed.

In such cases we can force the computation via the Search-
light API to obtain [a′,b ′] ranges for the remaining constraints.
However, fc () might be relatively expensive, and the cumula-
tive overhead of the fail recording might become quite large. We
perform the computation in a lazy way instead, when the fail
is replayed. There are compelling reasons behind the lazy eval-
uation. First of all, if the query does not require any relaxation
(i.e., it discovers at least k results) or the fail does not pass the
MRP check later, the fail and its intervals will not be needed
at all. Thus, the total completion time might improve. Second,
delays for interactive results might decrease, as we do not pay the
full price of computing fc () immediately, but later, when really
needed.

This does not require any significant changes to the engine.
Lazy evaluated functions’ values are recorded as unknown, and
the constraints are considered as non-violated. During the replay,
Searchlight automatically estimates unknown values and checks
the constraints.

Partial relaxation at replays.When we replay fails, we re-
lax the violated constraints according to the saved [a′,b ′] inter-
vals (tightened with respect to theMRP value). However, even
the tightened intervals might be quite wide, resulting in poor

pruning. This is especially true for fails happening closer to the
root of the tree. To avoid over-relaxation, we do not relax the
violated constraints all the way, but rather use a percentage of
the relaxation interval — a parameter called Replay Relaxation
Distance (0 ≤ RRD ≤ 1). If, for example, a constraint fc () ≤ 10
needs to be relaxed to fc () ≤ 20, and RRD = 0.3, we relax the
constraint to fc () ≤ 10 + (20 − 10) × 0.3 = 13. The parameter
exposes a trade-off. On the one hand, the relaxation becomes
more conservative, avoiding potential performance drops. Too
much tightening, however, might result in an increased number
of fails and the cost of maintenance. On the other hand, loosing
the relaxation decreases the number of replays, but might result
in increased cost of the search itself. Our experiments showed
that the cost of the search usually considerably outweighs the
cost of the maintenance, and decreasing the value of RRD might
considerably speed-up some queries without slowing down the
others. This parameter does not change the result and is purely
performance-related.

Saving function states at fails. When recording a fail, we
store enough information to replay the fail later. However, some
fc () functions might have additional information computed. For
example,max() might store support coordinates for its [a′,b ′]
range, which might allow us to avoid recomputing the function
at other nodes of the tree. We extended the Searchlight API
with the ability to serialize such information and save it when
recording a fail. During the replay this information is restored.
The optimization provides significant performance benefits in
the presence of a large number of fails with expensive functions.

Sorting the Validator queue on BRP .When candidate solu-
tions are received by a Validator, they are put into its FIFO queue,
which does not take candidate BRP values into account. However,
candidates with better BRP values might have a better chance of
belonging to the final result. They also might help to decrease
the MRP faster, which improves pruning at Solvers. Thus, we
decided to use a priority queue ranked by BRP at the validators
instead. While a priority queue is generally more expensive than
FIFO, in practice performance benefits resulting from better prun-
ing outweigh the queue maintenance costs, as supported by our
experiments.

Speculative Relaxation. Before relaxing a query, we exe-
cuted the original query until completion. Only then the recorded
fails are replayed if needed. If the user does not mind intermedi-
ate results, relaxation can start when first fails are encountered.
We call this speculative relaxation and provide it as an option.

Speculative relaxation is done by additional CP solvers replay-
ing fails concurrently with the main execution. This is done only
when the Validators are idle, so that relaxed candidates do not
interfere with the main search. Speculative Solvers still consume
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CPU resources, which might slow down the main Solvers and
increase query result latency for the user. At the same time, they
might provide relaxed results much faster. The best use-case for
speculation is probably when the user has little insight about the
data, and expects an original query to fail.

4.3 Query Constraining
Query constraining deals with the problem of many results. That
means it does not need to examine fails, since it is only interested
in the results satisfying the original constraints, which failed
sub-trees cannot contain. After the query begins execution, we
consider only the query relaxation and tracks the fails. If the
query produces at least k results, it turns off the relaxation, stops
tracking fails and starts constraining the query to prune inferior
results. The pruning is based on ranking supplied by the built-in
or custom function, as described in Section 3.2. Effective pruning
allows us to avoid discovering and ranking each result of the
original query by eliminating entire parts of the search tree that
cannot contain better results than already discovered.

Recall that we explore three possible points of pruning. The
first one is Solver-based, at the search tree. When at least k re-
sults are found, Searchlight computes the Minimum result RanK
(MRK ) — the minimum rank RK() among all the k results found
so far. This is similar to the query relaxation’sMRP . For a new
result to belong to the top-k results its rank RK must exceed
MRK . Similar to query relaxation, for each search sub-tree we
compute BRK — the Best possible RanK, which is the maximum
RK among all solutions that might be found in the sub-tree. This
can be easily done by using Searchlight-provided synopsis estima-
tions for constraint functions. If the BRK value for the sub-tree
falls below MRK , it is pruned, since no results from that sub-
tree can enter the top-k . The check is done by introducing a
new dynamic constraint into the search: BRK(r ) ≥ MRK . The
constraint is dynamic, sinceMRK is updated during the search,
with new information coming from both local and remote Search-
light instances. It results in progressively better values for BRK ,
and, thus, better results. At the same time the pruning becomes
progressively tighter, resulting in better performance. The MRK
updates are performed by Validators, as in the case ofMRP , since
Validators produce final results. The cost of checking the dynamic
constraint is negligent. We ensure it is done after the original
constraints have been checked at the node, so all fc () functions
have been already computed. Computing BRK itself just involves
a small number of arithmetic operations.

Let us revisit the example from Section 3.2 with the same
Cc and parameters. Let us assume at some search node c1 ∈
[100, 190], c2, c3 ∈ [100, 200]. Then, for the sub-tree BRK = 1 −
1
3 (

10
50 + 0) = 0.933. If, for example, MRK = 0.8, the search will

continue for the sub-tree. However, if at some node in the sub-
tree c1 ∈ [100, 180], c2, c3 ∈ [100, 150], the BRK becomes 1

3 (
20
50 +

2 50
120 ) = 0.589 < MRK . Thus, the sub-tree is pruned.
When a leaf of the search tree is reached, the corresponding

candidate is sent to the Validator, which does checks similar to
the query relaxation, but without relaxing any constraints. It
takes into account the BRK(r ) value of the candidate and updates
the globalMRk (if r enters the top-k).

Skyline computation (see Section 3.2) is done similarly to the
scalar query constraining. It is implemented by introducing an-
other dynamic constraint for the result. However, instead of
checking the scalar MRK value at every node, the constraint
compares the estimated fc () intervals with the current skyline.

If the sub-tree is dominated by the skyline, it is pruned. Other-
wise, we keep traversing the tree and passes the candidates to
the Validator.

The same correctness and complexity argument as for the
relaxation applies to the constraining as well, since it is performed
as CP search.

5 EXPERIMENTAL RESULTS
We performed an extensive experimental evaluation of the pro-
posed techniques. The main part of the evaluation consisted of
measuring the benefits of using our approach against the only al-
ternative available to the user — manual relaxation/constraining.
Additionally, we wanted to make sure these features do not bring
any significant overhead to the existing query processing. An-
other important part of the evaluation was to measure the ben-
efits of our optimizations from Section 4.2. Note that existing
query refinement solutions are designed for traditional database
systems running SQL over relational data, and are not readily
applicable to constraint-based search queries over multidimen-
sional data, which we study here. Finally, a head-to-head com-
parison of Searchlight with a pure DBMS approach is available
elsewhere [10] for both synthetic and a real-world data sets. The
same paper [10] also argues about the prohibitive complexity of
formulating CP queries in relational terms.

We measure the benefit of our approach in terms of query
latency. While the quality of the final results might be another
measure, such a measure would be governed by the user via
the ranking/penalty functions and, thus, can be considered as
immutable for our purposes.

Performing a user study would be important to measure the
usability of our approach. Such a studywould allow us tomeasure
user satisfaction with the quality of the refined results and to
more accurately account for time savings for the user. This works
was primarily directed at the design and implementation part
of the framework. It also lacks a GUI component, as well as a
realistic workload to perform a meaningful user study. We leave
a user study for future work.

All experiments were performed on a four-instance Search-
light Amazon AWS cluster. The cluster consisted of c4.xlarge
machines running Debian 8.6 (kernel 3.16) with 7.5GB of mem-
ory. We used two data sets. The first one was a synthetic data set
from the original Searchlight paper, 100GB total size. The second
data set was a part of the MIMIC II [1] waveform data for the
Arterial Blood Pressure (ABP) signal. The data set size was 100GB
as well. These data set are representative of general Searchlight
workloads: the synthetic one introduces areas of varying function
amplitudes, while the MIMIC provides real-world distribution.
On a side note, the data sets choice plays secondary importance
to the queries, since our approach relies on the efficacy of the
general Searchlight search process and should work for all data
sets that can be handled efficiently by Searchlight.

We used a variety of queries to perform the experimental eval-
uation. However, to provide concise and meaningful presentation,
we discuss different aspects of our approach with the help of two
characteristic queries for each data set. By default, we assumed
the user’s cardinality requirement of 10 results. The queries were
as follows:

• S-SEL (from Synthetic SELective) is an empty-result query
for the synthetic data set. Being maximally relaxed it be-
comes a non-empty, but very selective query.
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• S-LOS (from Synthetic LOoSe) outputs empty result in-
tially. However, the maximally relaxed version is very
loose, outputs a very large number of results, and does
not allow the search process to perform much pruning.

• M-SEL/LOS (from Mimic SELective/LOoSe). This are the
MIMIC versions of the queries above

Semantically, the M-SEL/LOS correspond to the running exam-
ple from Section 2, They contain exactly the same variables and
constraints, but different parameters (domains and thresholds).
Thus, we do not repeat the query constraints here. S-SEL/LOS
have the same constraints (function amplitude and neighbor-
hoods), but with synthetic attributes from the generated data. So
queries basically look for certain “spikes” in the data, where a
spike is determined by comparing the resulting intervals with
the neighborhood.

The main idea behind choosing selective and loose types of
queries is the observation that a selective query allows the user
to perform manual relaxation without significant performance
penalties. The user just have to relax the constraints maximally,
and the query still finishes in a reasonable amount of time. The
user then can choose the best 10 results. A loose query, however,
being maximally relaxed outputs an avalanche of results, which
results in significant latency. Such over-relaxation might be quite
costly in practice. Since the user cannot easily predict the selec-
tivity beforehand, the system should be able to handle both types
of queries automatically.

We used the maximally relaxed versions of the queries above
to measure the performance of the query constraining, since they
output more than 10 results. As in the case of relaxation, the
selective queries’ results can be ranked manually. For the loose
query this is infeasible.

5.1 Query Relaxation
We measured the benefits of the automatic relaxation over the
manual approach, in which the user would be forced to guess
the correct query, possibly in several iterations. This manual
relaxation scenario is the only alternative available to the users
and exactly the case we want to avoid in practice, hence it was
important to compare it with our solution. The manual approach
was performed using Searchlight as well, so the search engine
remained the same. We will often refer to the automatic approach
as just Searchlight. We studied the following scenarios:

• USER-3. This is a common user scenario. The original
query gives an empty answer. Then the user relaxes it in a
cautious way, several times, and gets the required number
of results on the second try. Thus, she comes through 3
iterations (hence, the name). In practice the number of
iterations might be much larger, due to a large number of
relaxation possibilities, but three iterations was enough
to demonstrate our point.

• USER-2. In this scenario the user guesses the query cor-
rectly from the first try, for the total of 2 iterations. Note,
this scenario is quite infeasible in practice, and can be
seen as an oracle-based approach, in which the user im-
mediately knows the correct relaxation. This approach
establishes an important baseline.

• USER-MAX. This is the scenario in which the user just
relaxes the query maximally after the original query fails.
Depending on the query, this might perform like the oracle
approach above (e.g., for selective queries) or just start
outputting a large stream of results without any means

of pruning (for loose ones). In the latter case the user
would have to stop the query and guess further, since such
queries might easily take hours to finish.

First, we provide query completion times for the selective
queries S-SEL and M-SEL under different scenarios described
above. The results are illustrated in Table 1, where the “SL” col-
umn corresponds to the automatic Searchlight relaxation ap-
proach discussed in the paper. For the USER-2 scenario in the
parenthesis we specify the completion time of the second, cor-
rectly relaxed, query. For these queries the USER-2 and -MAX
scenarios are basically equivalent since there is no much penalty
in relaxing the query maximally.

Table 1: S/M-SEL query completion times (secs) for query
relaxation.

Query SL USER-3 USER-2 USER-MAX
S-SEL 97 327 210 (120) 216
M-SEL 150 544 380 (240) 380

As can be seen, even comparing with the USER-2 approach
Searchlight provided considerable performance gains. They come
from two sources:

• Searchlight does not need to re-explore the already tra-
versed parts of the search tree. After the main search is
finished, it can concentrate only on the previously unex-
plored (i.e., failed) parts. This is in contrast with any of
the manual approaches, which have to start every query
iteration from scratch.

• When relaxing the query, Searchlight is able to provide
additional pruning based on the best results found so far.
While for selective queries it is not necessarily the game
changer, it has a much more pronounceable effect for loose
queries, which we show later.

We also measured the time it took Searchlight to obtain the
first result. For the S-SEL queries it took Searchlight 42 seconds
in the SL approach versus 91s seconds for the USER-2 (the best)
approach. The corresponding times for the M-SEL query were
45 and 198 seconds. We saw similar trends across all queries we
ran. The results come as no surprise, since Searchlight is able to
start the relaxation right away without restarting queries with
new parameters.

When it came to the overhead of the query relaxation approach
itself, it did not exceed 5 seconds for the synthetic and 3 seconds
for theMIMIC queries. This overheadmainly came from assessing
and recording the fails.

Table 2 provides the corresponding results for the loose queries.
For the “Max” case, we stopped the query after 1 hour (hence the
> symbol in the table), since this was enough to demonstrate our
point.

Table 2: S/M-LOS query completion times (secs) for query
relaxation.

Query SL USER-3 USER-2 USER-MAX
S-LOS 105 314 208 (106) >3600
M-LOS 91 177 118 (83) >3600

This experiment shows the same trend as for the selective
queries with a single exception: the USER-MAX and USER-2 be-
haved differently. When the user relaxed the query maximally, it
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ran for a very long period of time (we stopped it after 1 hour) due
to the very large number of results. In practice, the user cannot
just stop the query and rank the currently found results, since
she is not guaranteed to find the top-k among them. However,
Searchlight guarantees correct top-k results. Since the maximal
relaxation is out of the question, without Searchlight the user
would have to continue the guessing game of scenario USER-3
but with potentially more iterations and longer times.

Searchlight outputs the first result in 92 and 45 seconds for
S-LOS and M-LOS, respectively. The corresponding times for the
USER-2 were 108 and 77 seconds. This is the same trend as we
discussed for the selective queries. The auto relaxation overhead
remained at comparably low levels: 15 seconds for S-LOS and 1
second for M-LOS.

The next experiment measured the overhead of the auto relax-
ation for the queries that do not need it. We wanted to explore
the possibility of keeping the relaxation always on, without the
user turning the knob. For this experiment we ran the second
query from USER-2 with the relaxation turned on. The results
are given in Table 3.

Table 3: Query completion times (secs) for queries not
needing relaxations.

Relax S-LOS M-LOS S-SEL M-SEL
Off 106 83 120 240
On 116 98 127 290

As can be seen, turning on the auto-relaxation does not have
any significant impact on the query completion times. The no-
table exception is M-LOS query, for which Searchlight submitted
a lot of relaxed candidates to the Validator before 10 results were
actually found. However, this overhead was the largest we saw
for a large number of queries we ran. Even with such an overhead
the auto-method would be quite helpful for the user, since the
relaxed candidates are output to her as useful feedback. At the
same time, the time to first result did not change significantly
for all queries, which means the interactivity was not hampered,
and the overhead was limited to the total completion time.

5.2 Query Constraining
In the absence of automatic query constraining, the only option
is to run the query until completion and then rank results at the
client. While this might work for queries with small number of
results, it is very inefficient for queries returning a lot of them. In
addition, the manual approach misses significant pruning oppor-
tunities. Our main results are shown in Table 4. “Off” means no
constraining, which is equivalent to the manual approach; “Rank”
means scalar ranking automatic constraining, and “Skyline” —
vector domination constraining. Both approaches were described
in Section 3.2. By default we specify times in seconds, and we
use ’h’ and ’m’ symbols to denote hours and minutes.

Table 4: Query completion times (secs) for query con-
straining.

Method S-LOS M-LOS S-SEL M-SEL M-SEL’
Off 2h 8m 2h 24m 120 240 263
Rank 60 154 29 139 135
Skyline 314 13m 93 269 218

The loose S/M-LOS queries could not even finish in a reason-
able time. These queries actually were outputting results with
very low latency during the execution. However, since constraints
were loose, they created an avalanche of such results without
the ability to prune. To guarantee the top-10 results the user
would have to stop the query and constrain it by hand, possibly
in several iterations.

At the same time, for the same queries Searchlight provided
considerable performance gains, coming from pruning both at
Solvers and Validators, as we described in Section 4.3. This was
especially evident for the rank-based constraining. The skyline
constraining was less effective, with respect to the query comple-
tion time. However, comparing with the manual “Off” approach,
the performance benefits were considerable. The reduced effi-
cacy can be attributed to the nature of skyline — it is harder to
prune interval-based search nodes at Solvers and candidates at
Validators.

The selective queries S-SEL and M-SEL allowed us to measure
the constraining benefits for the queries for which the client-
based filtering is a viable alternative due to their reasonable com-
pletion time. In most cases our approach resulted in considerable
gains. The M-SEL query is somewhat of an exception, for which
the skyline approach performed worse than the “Off” approach.
This can be attributed mostly to some overhead from the skyline
based checks during pruning (without any benefits) and slightly
different rebalancing of the candidates between Validators. The
last column of the table (M-SEL’) provides results for another
selective MIMIC query. It can be seen that both rank and skyline
auto approaches provided significant improvements for query
completion times, so the M-SEL case should not be considered a
trend for selective queries.

When it comes to the overhead of the automatic approach,
it is kept at the minimum. Actually, it is smaller than that for
the query relaxation since it does not need any maintenance
similar to tracking of failed search nodes. As for the Solver-
and Validator-level checks, they are quite cheap for the rank-
based constraining, being in-memory algebraic comparisons. For
skyline-based constraining the checks are somewhat more expen-
sive, and they must be active all the time, from the beginning of
the query. However, the checks can be done quite efficiently us-
ing the variety of existing methods for skyline computation. This
problem is well-researched, for example, for relational skylines.
The overhead in this case is basically the cost of computation,
which cannot be avoided for such a non-trivial constraint.

5.3 Query Relaxation Optimizations
In this section we describe experiments to measure the perfor-
mance of the relaxation optimizations from Section 4.2.

Computing functions at fails. In this experiment we mea-
sured the difference between the two different strategies to com-
pute functions fc () when catching fails. The first strategy, “Full”,
corresponds to fully evaluating all functions at the failed node.
The “Lazy” corresponds to the lazy evaluation. Both strategies
were described in Section 4.2.

The results are presented in Table 5 where the parenthesis
times specify the times to first result, which is a reasonable mea-
sure of interactivity. While times to the first result might seem
large, they include the completion time of the original query,
which found no results at all. The optimization provided benefits
for more expensive synthetic queries. At the same time it did
not result in any overhead for all queries. We also ran additional
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experiments for more expensive MIMIC queries, for which we
took the same M-SEL/LOS queries and increased their cardinality
requirements from 10 to 200 results. We saw the significant ben-
efits at the fail recording stage: for some queries the fail tracking
overhead decreased from 30 to 15 seconds.

Table 5: Query completion and first result times (secs) for
fail recording methods.

Method S-LOS M-LOS S-SEL M-SEL
Full 120(100) 81(45) 112(46) 149(45)
Lazy 105(90) 91(45) 97(42) 150(45)

Saving UDF states at fail recording. In this experiment we
measured the impact of saving additional UDF information when
recording fails. In contrast with the previous optimization, which
just lazily postpones computation of some UDFs, this optimiza-
tion allows us to avoid re-computation of some UDFs completely.
The results are presented in Table 6 for query completion and
first-result times (the latter is given in parenthesis).

Table 6: Query completion and first-result times (secs) for
the UDF saving optimization.

UDF saving S-LOS M-LOS S-SEL M-SEL
On 105(90) 91(45) 97(42) 150(45)
Off 113(111) 104(70) 97(40) 154(46)

The optimizationwas especially beneficial for the loose queries.
For the selective queries the benefits were not pronounced due to
the structure of those queries. The replays were relatively cheap,
involving less re-computation. As in the previous case, this op-
timization did not result in any overhead as well, at the same
time allowing better performance in many cases. The memory
footprint for the saved states depends on the functions. Stan-
dard aggregate functions use about 80 bytes per save for the
two-dimensional data set (16 bytes for the range itself plus 64
bytes for the support coordinates for the min and max values).

Speculative execution.As can be seen from the experiments,
the time to the first result is often quite large. This is a logical
result for empty-result queries, since Searchlight first finishes
the main, non-relaxed, query and only then tries to relax it. We
support speculative relaxation as a means to start the relaxation
sooner. The corresponding query completion and first result
times are presented in Table 7.

Table 7: Query completion and first result times (secs) for
speculative relaxation.

Speculation S-LOS M-LOS S-SEL M-SEL
On 128(7) 90(45) 115 (2) 152(47)
Off 105(90) 91(45) 97(42) 150(45)

As can be seen from the results in many cases speculative
execution significantly improved times to the first result. We
could not find suitable queries to demonstrate the same trend
for the MIMIC queries. While the speculative Solver for those
queries replayed some of the fails, they resulted in a small number
of non-perspective candidates. As we discussed in Section 4.2,
speculative Solvers are restricted to fails found by main Solvers
so far.

As expected, the speculative relaxation has its own overhead
coming from the consumption of CPU resources by the specu-
lative Solver. For some queries the increase in the completion
time was significant. We decided to run an additional experiment
(not shown here), with one additional CPU thread available. As
expected, the times for the speculative relaxation turned on and
off were the same, which suggests the overhead is CPU related
and cannot be trivially extinguished. Basically, the decision of
trading off some completion time to faster interactive results is
up to the user.

Partial relaxation during replays. This optimization ad-
dresses the issue of over-relaxing the query at a fail replay, when
early fails might be relaxed in a very loose way because of loose
estimations. As we discussed in Section 4.2, the RRD parameter
(0 ≤ RRD ≤ 1), allows us to perform the relaxation in a more
controlled way by enforcing tighter relaxation. The results of
changing this parameter for the loose queries are presented in
Table 8. We did not see any significant effect of the parameter to
first result times.

Table 8: Query completion times (secs) for different RRD
values.

Query RRD 0.1 0.3 0.5 0.7 1.0
S-LOS 106 105 106 106 106
M-LOS 87 91 112 145 54m

As can be seen from the table, the optimization resulted in
gains only for some queries (we saw gains for other MIMIC
queries as well). M-LOS query, for instance, fails almost imme-
diately, and replaying its early fails with maximal relaxation
effectively results in traversing most of the search tree. For S-
LOS, on the other hand, search fails are relatively deep in the
search tree, so maximal relaxation does not cause significant
increase in the number of visited search nodes. In general, the
benefits of the optimization depend on the nature of the search
tree, which in turn depends on the query. At the same time, it
does not introduce any overhead, which allows us to keep it
always on. We saw a slightly elevated number of fail recordings
and replays, but not significant enough to cause any drop in
performance.

Additional experimentswith the fail and candidate queues.
We extended the Validator to sort the candidates on theBRP value.
This in general might allow the Validator to identify better re-
laxed results faster, which in turn results in betterMRP values
and more effective pruning. We performed the experiment over
a number of queries with different cardinality requirements to
vary the number of candidates at runtime. For some queries, we
saw 8-12% improvement in total completion times and no major
impact on the first results.

We also measured the benefits of our fail-based approach
presented in the paper against simply continuing the search
“through” the fail. The latter would still involve relaxing con-
straints, but no fail recording (and later replaying) would be
made — the search would be immediately resumed from the
point of failing. One reason to do that would be to simplify the
approach and decrease the memory overhead. However, we claim
it would result in a sub-optimal approach, where the utility of the
fails is not taken into consideration. Our experiments supported
this claim. When we replayed the fails in the order they were
encountered, simulating the immediate search resume, we did
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not see any improvements in the completion or first result times.
Moreover, for some queries the completion times increased up to
several orders of magnitude. For example, for S-LOS the time in-
creased from 105 seconds to 56 minutes. We believe these results
emphasize the necessity of a utility-based approach.

6 RELATEDWORK
Query relaxation [12, 14–16] deals with the empty-answer and
too-few-answers query problems by relaxing the original query
constraints. The past work on query refinement can be studied
under two broad categories. The first includes relaxation based on
some statistics readily available in the database. For example, the
Stretch-and-Shrink (SnS) framework [14] uses query cardinality
estimations via precomputed samples and then uses the estima-
tions to find relaxed ranges for each range-based query constraint
independently. The framework heavily relies on fast cardinality
estimations. Multiple estimations might have to be made at ev-
ery step of the interactive refinement. Another framework [4]
uses histograms to produce cardinality estimations and derive
proper constraint ranges for the query. The results presented to
the user are ranked based on the distance (e.g., Euclidean) from
the original constraint ranges. There is also the possibility of
using probabilistic [15] and machine learning [16] frameworks
to produce relaxations. These methods, however, still rely on
statistics to provide probabilistic estimations for the relaxation
decision or the learning stage to understand the rules hidden
inside the data. On the other hand, Searchlight targets queries
for which the cardinality is not known beforehand. It would be
also hard to estimate properly due to a large search space and
possible complexity of query constraints. The results are also
not known, and might be expensive to find, which makes the
learning stage or probabilistic estimations infeasible.

The other category includes methods that use indexes to relax
constraints. One such approach [12] is to relax join and selection
predicates, and obtain the relaxation skyline. These methods have
limited applicability for Searchlight, since results cannot be in-
dexed beforehand. Also Searchlight generally works with regions
(subsets) instead of single tuples, and the search space itself de-
pends on the query constraints. Additionally, query constraints
might be more complex than ranges, potentially referencing data
outside of regions (e.g., the neighborhood constraints in the query
from the Introduction). This makes R-trees (or other traditional
index trees) generally ineffective for traversal and pruning.

The too-many-results problem creates the dual problem of
contracting the query. These methods [4, 14] generally use pre-
computed statistics to make fast cardinality estimations and find
suitable ranges for query constraints. The corresponding frame-
works usually handle both relaxation and contraction at the same
time. Another approach is to get rid of excessive answers by rank-
ing and outputting only the best few. The “best” can be based on a
scalar ranking function (top-k queries) or vector domination (sky-
line [5] queries). These methods commonly rely on traditional
precomputed structures, such as views [6, 8] and R-trees [17, 18].
The view-based approaches require advance knowledge of at least
a part of the workload to materialize proper views. The R-tree
approaches traverse the tree and perform MBR-based pruning.
If such structures are not readily available, the only option is to
perform a sequential scan and either build the required struc-
tures or do the processing during the scan (e.g., sorting [3, 7],
batch computation [3] or building structures optimized for par-
ticular queries [17]). For Searchlight, no indexes are available

beforehand, thus we performed a comprehensive search. This
might seem similar to the sequential scan-based approaches, how-
ever, as we argued, the nature of the constraint-based queries is
different and, thus, requires novel approaches.

7 CONCLUSION
Fast query execution is necessary but not sufficient for effec-
tive interactive data exploration. Users often go through multi-
ple query iterations to identify a reasonable set of results that
matches their goals. It is thus critical for the underlying system
to aid the users, optimizing for human labor, time and attention,
to maximize user productivity.

We introduce dynamic and automatic refinement of constraint-
based search queries, based on user-specified target result car-
dinalities. When relaxing a query, we guarantee optimal results
according to user-specified distance functions. When constrain-
ing, we output the top results according to a ranking function.
Unlike previous solutions, our approach does not require any
pre-computed indexes nor does it require result cardinality esti-
mations, which might be extremely hard to obtain accurately for
queries with complex constraints. Our approach instead alters
the constraints during the run-time. Our techniques naturally fit
in and can effectively leverage the common features of CP plat-
forms and DBMSs. Furthermore, our approach can explore more
promising parts of the search space first, which considerably im-
proves pruning and, consequently, provides better interactivity
and query completion times.

Our approach provides significant performance benefits in
comparison with the tedious and inefficient manual approach. At
the same time, it incurs negligible performance overhead, even
for queries that end up not needing any refinements.

REFERENCES
[1] [n. d.]. MIMIC II Dataset. https://mimic.physionet.org/. ([n. d.]).
[2] [n. d.]. SciDB. https://www.paradigm4.com/. ([n. d.]).
[3] Stephan Börzsönyi, Donald Kossmann, and Konrad Stocker. 2001. The Skyline

Operator. In ICDE. 421–430.
[4] Nicolas Bruno, Surajit Chaudhuri, and Luis Gravano. 2002. Top-k Selection

Queries over Relational Databases: Mapping Strategies and Performance Eval-
uation. ACM Trans. Database Syst. 27, 2 (June 2002), 153–187.

[5] Michael J. Carey and Donald Kossmann. 1997. On saying “Enough already!”
in SQL. SIGMOD Rec. 26, 2 (1997), 219–230.

[6] Gautam Das, Dimitrios Gunopulos, Nick Koudas, and Dimitris Tsirogiannis.
2006. Answering Top-k Queries Using Views. In VLDB. 451–462.

[7] Ronald Fagin, Amnon Lotem, and Moni Naor. 2001. Optimal Aggregation
Algorithms for Middleware. In PODS. 102–113.

[8] Vagelis Hristidis, Nick Koudas, and Yannis Papakonstantinou. 2001. PREFER:
A System for the Efficient Execution of Multi-parametric Ranked Queries. In
SIGMOD. 259–270.

[9] Alexander Kalinin, Ugur Cetintemel, and Stan Zdonik. 2014. Interactive Data
Exploration Using Semantic Windows. In SIGMOD. 505–516.

[10] Alexander Kalinin, Ugur Cetintemel, and Stan Zdonik. 2015. Searchlight:
Enabling Integrated Search and Exploration over Large Multidimensional
Data. In VLDB. 1094–1105.

[11] Alexander Kalinin, Ugur Cetintemel, and Stan Zdonik. 2016. Interactive Search
and Exploration of Waveform Data with Searchlight. In SIGMOD. 2105–2108.

[12] Nick Koudas, Chen Li, Anthony K. H. Tung, and Rares Vernica. 2006. Relaxing
Join and Selection Queries. In VLDB. 199–210.

[13] Gang Luo. 2006. Efficient Detection of Empty-result Queries. In VLDB. 1015–
1025.

[14] Chaitanya Mishra and Nick Koudas. 2009. Interactive Query Refinement. In
EDBT. 862–873.

[15] Davide Mottin, Alice Marascu, Senjuti Basu Roy, Gautam Das, Themis Pal-
panas, and Yannis Velegrakis. 2013. A Probabilistic Optimization Framework
for the Empty-answer Problem. VLDB 6, 14 (2013), 1762–1773.

[16] Ion Muslea. 2004. Machine Learning for Online Query Relaxation. In SIGKDD.
246–255.

[17] Dimitris Papadias, Yufei Tao, Greg Fu, and Bernhard Seeger. 2005. Progressive
Skyline Computation in Database Systems. ACM Trans. Database Syst. 30, 1
(March 2005), 41–82.

[18] Man Lung Yiu and Nikos Mamoulis. 2009. Multi-dimensional Top-k Dominat-
ing Queries. The VLDB Journal 18, 3 (2009), 695–718.

60



Micro Analysis to Enable Energy-Efficient Database Systems
Chen Yang1, Yongjie Du1, Zhihui Du2, Xiaofeng Meng1

1School of Information, Renmin University, China
2Department of Computer Science and Technology, Tsinghua University, China

ABSTRACT
CPU has been identified as the energy bottleneck for database
systems and existing approaches only allow database systems
to trade the performance for energy. However, our work show
that cutting down the energy cost of database systems with-
out losing the CPU performance is feasible. We first develop a
measurement methodology to accurately evaluate the energy
cost of different CPU micro-operations. Then three popular data-
base systems with different setups and data sizes are used as
benchmarks to explore the energy distribution on CPU micro-
operations. Our experimental results show that L1 data cache
(L1D cache) consumes 39%-67% of total CPU energy and it is def-
initely the energy bottleneck of database systems. This finding
inspires us a novel idea on building energy-efficient database
systems with customized CPU architecture that features low L1D
cache energy cost. A proof-of-concept system is developed to
evaluate this idea and the experimental results show that our
solution can not only achieve 60% of peak energy saving but also
gain further performance improvement.

1 INTRODUCTION
As the infrastructure of the data center, database system has been
limited by the energy wall. The energy cost of powering the
database server is not only rapidly approaching the machine ac-
quisition cost[24], but the energy wall also limits the scalability of
database server. CPU[13, 19, 25], main memory[23] and disk[24]
may become the energy bottleneck due to different computer
architectures and database types. In this paper, we focus on the
energy profiling of typical relational database systems on the
x86_64 architecture with local disk, and many evidences have
confirmed that CPU consumes more power than other major
components in our scenario[13, 19, 25].

According to whether the workload is running or not, the CPU
energy cost may be classified into Busy-CPU energy cost and Idle-
CPU energy cost. The Idle-CPU energy cost has been reported to
reduce from 50% to 18%[19]. Undoubtedly, the Busy-CPU energy
cost as the dominant part attracts a lot of research work. For
example, both academia and industry have expended a great deal
of effort in energy-oriented query optimization[21, 28, 29] and
the external energy knobs based approaches[13, 19, 21, 23]. The
basic idea is building the cost model based on the Busy-CPU
energy cost to choose the energy-optimized query plan or set
the appropriate CPU voltage and frequency according to the
database load status. These methods consider CPU as a black box
and the energy cost is reduced by trading the performance, such
as a 43%-80% performance loss[21, 28].

Actually, there are many different micro-operations inside the
CPU and they expect different energy costs. Existing black-box
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optimization methods cannot take advantage of micro energy
cost characteristics of database workloads so they often lead to
significant performance loss to meet the energy saving demand.

Energy-efficient database systems expect that the CPU archi-
tecture can significantly cut down the Busy-CPU energy cost. To
achieve this object, an in-depth breakdown of Busy-CPU energy
cost is indispensable. It cannot only help us identify the energy
bottleneck on CPU, but it is also the basic work to design a novel
customized CPU architecture for energy-efficient database ma-
chine. Breakdown analysis of Busy-CPU energy cost will help
to answer some important questions such as what is the micro-
scopic distribution of Busy-CPU energy cost and how different
database implementations and settings affect this distribution.

In this paper, we design micro-benchmarks to breakdown
the Busy-CPU energy cost of typical read query workloads, and
enable the energy-efficient database system on the customized
CPU architecture. Unless otherwise specified, the query will refer
to read query. It is very difficult to achieve an accurate breakdown
of energy cost on a real database system. The micro-operations
which can be monitored are so many e.g., about 514 events inside
our CPU that we cannot evaluate the energy cost for every micro-
operation. To isolate the energy cost of an individual micro-
operation, we need to overcome many mutual related factors,
such as the compiler optimization and architectural features. In
addition, to enable energy-efficient database systems, we have
investigated many CPU architectures and updated the kernels of
both operator system and database system to make them support
the customized CPU architecture well. Finally, we present a clear
energy cost distribution pattern of database systems and give a
proof-of-concept system to cut down the energy cost without
losing the performance. The major contributions are as follows.

• Amicro analysis based accurate energy breakdownmethod
is proposed for the Busy-CPU energy cost with typical
query workloads.

• The energy bottleneck L1D cache is identified based on
extensive experiments on three typical database systems.

• The L1D energy-efficient CPU architecture design is pro-
posed and the experimental results show that 60% of peak
energy saving can be achieved with further performance
improvement.

The rest of the paper is organized as follows. Section 2 presents
our evaluation approach and the energy cost of micro-operations.
Section 3 profiles the energy cost of database systems alongwith a
detailed analysis. Section 4 presents our proof-of-concept system
design, optimization approach and evaluation results. Section 5
analyzes the energy cost preference of some typical scenarios.
Section 6 describes the related work. Section 7 summaries our
work and presents directions for future work.

2 MICRO ANALYSIS METHOD FOR
BUSY-CPU ENERGY

In this section, we will present our methodology on how to break
down the Busy-CPU energy cost into the energy cost of different
micro-operations for queries in relational database systems.
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Figure 1: Example of energy cost along the workload run-
ning.

2.1 Key Idea
Depending on whether the CPU is on operational states or idle
states, we name the total energy cost as Busy-CPU energy cost
and Idle-CPU energy cost, shown in Figure 1. When fixing the
CPU frequency and voltage, we further divide Busy-CPU energy
cost into the Active energy cost and the Background energy cost,
defined as

Busy-CPU enerдy = Active enerдy + Backдround enerдy.

When running a workload, the Active energy is the real cost
used for the calculation and data movement and the Background
energy is the fixed cost to activate the hardware. Obviously, the
Active energy cost can reveal the power usage of a workload so
that it is our profiling target.

We first formalize the Active energy cost as the sum of the en-
ergy cost of micro-operations. Next, we mainly solve three issues.
(1)We have to identify whichmicro-operations to be profiled. The
queryworkloads are typically data-intensive. This motivates us to
pay an attention to the data movement related micro-operations,
such as the cache load. When we know the executed counts of
thesemicro-operations and the energy cost driving them once, we
can actually evaluate their energy cost. (2) How to quantify the
energy cost of an individual micro-operation. We construct many
micro-benchmarks, each of which shows a simple performance
behavior issued by the specific micro-operations. Then, we also
build energy models to map the energy cost of micro-benchmarks
into the energy cost of an individual micro-operation. (3) How
to verify the accuracy of the energy cost of an individual micro-
operation. We have to construct the other micro-benchmarks
which have the clear and complex performance behaviors. We
can identify the difference between the estimated energy cost
and the measurement value to take the verification. We will give
a detailed introduction focusing on the above three issues.

2.2 Problem Formalization
We denote the analyzed micro-operation set as MS and then
formalize the Active energy cost Eactive for the workloadw as

Eactive (w) = Eother (w)+
∑

m∈MS
Em (w), (1)

where Em (w) = Nm (w) × ∆Em is the energy cost of the micro-
operationm. ∆Em is the energy cost driving the micro-operation
m once and Nm is the count executing the micro-operationm and
Eother is the unisolated energy cost, including the calculation,
L1I cache and TLB, etc. According to Eq. (1), we have to solve the
∆Em and Nm . Noting that our energy breakdown model is based
on the stable voltage and CPU frequency. The dynamic voltage
and frequency scaling (DVFS) will cause fluctuations on ∆Em ,
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Figure 2: Example of data movement on the modern CPU
architecture. The CPU core in the white box is busy and it
in the gray box is stall.

so we disable DVFS during the testing. However, we can also
evaluate the impact of different voltages and CPU frequencies.
To solve Eq. (1), we must construct the setMS and evaluate the
∆Em of every micro-operation inMS .

2.3 Energy Breakdown Representation
Generally speaking, the query workload is usually data-intensive,
so that we tend to choose datamovement relatedmicro-operations
to characterize the energy cost. For the modern CPU architec-
ture, the data is frequently moved between main memory and
registers. In order to cross the memory wall, the CPU (e.g., Intel
i7-4790 in our experiment) contains a three-level cache memory
sub-system, shown in Figure 2. The closer the cache memory is
to the CPU core, the smaller, faster and more energy-efficient it
will be. We describe three ways of data movement that have the
great impact on query workloads.

Regular data fetching. If the data is not in registers, the load
instruction will fetch the data of the cache line size (e.g., 64 Bytes)
and the CPU core could stall to wait for the data return. Noting
that if instructions are uncorrelated with each other, speculation
and out-of-order execution can disable the pipeline bubble. In
addition, data fetching follows a step-by-step replication strategy.
The CPU will first fetch data from L1D cache. If L1D cache hits
(L1D hit), the data will be loaded into the register, like Core 6 in
Figure 2. Otherwise, the CPU will go to the next level cache to
search for data, called as L1D cache miss (L1D miss). Specifically,
when L1D cache misses, L2 cache starts to search for data. There
are also two cases: hit and miss. If L2 cache hits, the data will be
copied to L1D cache first, and then copied to the register, like
Core 4 in Figure 2. Similarly, L3 hit and DRAM hit are like Core
2 and Core 0 in Figure 2. Although the step-by-step replication
strategy can provide the good data locality, the data movement
leads to much energy cost.

Data prefetching. In order to improve the CPU performance,
the data prefetching technique is used to predict the data usage
under the background and fetch it without the pipeline bub-
ble, like Core 5 in Figure 2. So, the data prefetching will also
cause the data movement behavior. Four prefetching techniques
are provided in Intel i7-4790[3]. Two are implemented through
L1D hardware prefetcher to replicate the data into L1D cache in
advance. Unfortunately, they cannot support the performance
counter in Intel i7-4790. The two other types of prefetches that
can be generated by the L2 hardware prefetcher – prefetches into
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the L2 cache (L2 prefetching) or prefetches into the L3 cache (L3
prefetching). Their behaviors can be monitored by the perfor-
mance counter. In our paper, the data prefetching only means
the L2 hardware prefetcher.

Write-back. Although the query is the read-only workload,
lots of temporary data, e.g., local variables, have to be created
and updated. The store operation always updates the data into
L1D cache within 1 cycle. Because the local variables do not
need to be eventually persisted so that they are rarely written
to the lower level memory due to the write-back strategy. For
example, L1D cache store hit rate is 99.86% in our experiment.
So, we also evaluate the store operation which writes the data
into L1D cache.

Based on the above analysis, we define the micro-operation
setMS as

MS = {L1D,Reд2L1D,L2,L3,mem,p f , stall}

for the query workload. ∀m ∈ {L1D,L2,L3,mem} is that a load
operation reads the data fromm to the next higher level memory.
For example,m = L2 means to load the data from L2 cache to L1D
cache. Reд2L1D means that the store operation writes the data
from the register to L1D cache. We combine two different types
of prefetches generated by the L2 hardware prefetcher together
as a micro-operation p f meaning to prefetch data. The micro-
operation stall is the stall event due to memory access. Recalling
the Eq. (1), we next evaluate Nm and ∆Em .

The energy breakdown of update/write queries is a totally
different problem from the read queries. We need to know how
to write the data into main memory. It may involve more micro-
operations about writing. We do not discuss it in depth in this
paper.

2.4 Micro-Operation Counting
The modern processors have built-in performance monitor unit
(PMU) to record the performance related events. We can use
Linux Perf[5] or ocperf[6] to get them from PMU to evaluate
the micro-operation count Nm . For ∀m ∈ {L1D,L2,L3,p f }, it is
worth noting thatNm is the sum of both the hit count and themiss
count due to the step-by-step replication strategy. Npf involves
the L2 prefetching count N L2

pf and the L3 prefetching count N L3
pf .

Especially, Nmem is the miss count of L3 cache. NReд2L1D is the
hit count when writing the data into L1D cache. Nstall is the
stall cycle count due to the data load.

2.5 Energy Evaluation of Micro-Operation
To quantify∆Em , we design a set of micro-benchmarks which can
achieve the specific performance behavior, such as only accessing
L1D cache, etc. Finally, we can use the Active energy cost of micro-
benchmarks to evaluate the ∆Em of different micro-operations.

2.5.1 Micro-Benchmark Design. Isolating memory access to
only follow a specific performance behavior is a challenging
task in modern processors. The design of the micro-benchmark
methodology is inspired by the recent work[22]. The out-of-
order execution, speculation execution and data prefetching have
worked well in hiding memory latencies but at the same time
make the energy cost benchmarking for an individual instruc-
tion difficult. In addition, the treading switching, DVFS and the
compiler optimization could affect the evaluation accuracy. In
order to accurately evaluate ∆Em , we make a lot of effort on
it. First, our micro-benchmarks should minimize the effect of
CPU architectural optimization. Second, we must configure the
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Figure 3: CPU execution behaviors when list traversal and
array traversal only load data from L1D cache.

appropriate runtime environment to reduce the error, shown in
Section 2.5.3. Third, we must review the assembly code which is
generated by the compiler to disable some compiler flags who
will change the performance behavior. Our micro-benchmarks
follow two design frameworks to skip out of the architectural
optimization.

List traversal. We allocate a size of memory as an array Arr
of pointers. The size of each item is 64 Bytes (i.e., cache line size)
which can be processed by a load operation. We link every item
as the list. Then, we traverse the list many times. Through the
correct implementation, we can ensure that micro-benchmarks
only load data from the specific memory layer. In this way, the
energy cost of each micro-benchmark can be broken down into
the energy cost of the specific micro-operations and stall cycle.

The list structure can make sure the data items have the back-
and-forth dependency. Due to the access dependency, in the
premise of disabling the perfetching the CPU does not know the
address of the next data item until the previous item is finished.
An example is shown in Figure 3. We assume the data in L1D
cache and a L1D load requires 4 cycles from issue to return. Due
to the unknown address of next data item, the pipeline is forced
to break, leading to 1 load cycle and 3 stall cycles, i.e., L1D load
energy and stall energy. The link traversal can disable the out-
of-order execution and the pipeline to minimize the energy cost
measurement error incurred by CPU architectural optimization.

Array traversal. The energy cost of stall cycle cannot be sep-
arated by list traversal. So, we design the array traversal frame-
work. In it, the micro-benchmark allocates a size of memory as
an array Arr (also 64 Bytes per data item), and then sequentially
traverses it many times. Under some special conditions, CPU ar-
chitectural optimization can make micro-benchmarks only load
data from the specific memory layer without stall cycles.

As well known, the data item in array is completely indepen-
dent and supports random access because the CPU knows the
address of all data items before traversing. The load of next data
does not have to wait for the finish of the previous data item. As
shown in Figure 3, although a L1D load still requires 4 cycles,
3 stall cycles can be hidden due to the continuous pipeline. In
addition, the Dual-Issue technique of Intel i7-4790 can issue two
load instructions per cycle without stall.

2.5.2 Micro-Benchmark Set. For evaluating ∆Em (∀m ∈ MS),
we build amicro-benchmark setMBS including 6micro-benchmarks
to show the specific performance behaviors as follows.

B_L1D_array.Thismicro-benchmark is used to evaluate∆EL1D ,
only accessing L1D cache without stall cycles. As shown in Al-
gorithm 1, it follows the array traversal framework and allocates
memory size smaller than or equal to the size of L1D cache. As
shown in Figure 4a, if Smem = 32KB (i.e., L1D cache size in i7-
4790), the Arr size is 500 and the size of each item is 64 Bytes.
T is usually set into a huge value, such as 1 billion, to maintain
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Figure 4: Examples of data structures in different micro-
benchmarks. B_m represents B_L2, B_L3 and B_mem.
Pointer f points the next data item and pointer b points
the previous data item.

a stable memory access pattern. A large T also applies to Algo-
rithm 2-4. For balancing the performance, it can also be reduced
moderately. So, all the data easily fit the L1D cache, so there will
not be any miss after initial set of loads. Noting that we unroll
the Arr and traverse it instead of loop traversal, it will avoid the
effects of loop control statements as much as possible. By this
programming optimization, 98.6% instructions are the desired
load instructions.

Algorithm 1 B_L1D_array
Input: Smem : allocated memory size; T : loop times;
1: allocate Smem memory size as an arrayArr with Smem

64 items;
2: for iter i in range T do
3: traverse Arr through unrolling Smem

64 times;
4: end for

B_L1D_list. The energy cost of this micro-benchmark mainly
involves the load operation from L1D cache and the CPU stall.
As shown in Algorithm 2, it follows the list traversal framework
and allocates memory size smaller than or equal to the size of
L1D cache, such as still 32KB. We also give an example to show
such data structure in Figure 4b.

Algorithm 2 B_L1D_list
Input: Smem : allocated memory size; T : loop times;
1: allocate Smem memory size as an arrayArr with Smem

64 items;
2: partition each item into a pointer f (the first 8 Bytes) and the

last 56 Bytes of data;
3: for iter j in range Smem

64 − 1 do
4: Arr [j]. f = &Arr [j + 1];
5: end for
6: for iter i in range T do
7: use pointer f to traverse Arr and unroll Smem

64 times;
8: end for

B_L2, B_L3 and B_mem. They will be used to evaluate ∆Em
(∀m ∈ {L2,L3,mem}). As shown in Algorithm 3, they follow the
list traversal framework and only access the specific memory
layers. When only accessing the memory layerm, the allocated
memory size should be as close as possible to the sum of them size
and sizes of its higher caches to ensure that the majority of data is
inm. Using B_L2 as an example, the allocatedmemory size should
be close to 288KB (32KB L1D cache and 256KB L2 cache). Similar
setup methods can be extended to B_L3 and B_mem. Noting that
we do not use the linked list structure similar to B_L1D_list, the
sequential load along physical position means the simple access

pattern, which is easily employed by the modern CPU to improve
the performance. However, it has the serious impact on profiling.
For example, when setting Smem = 260KB for Algorithm 2, the
L1D hit rate is 55%, so that there is no guarantee that only L2
cache is accessed. Thus, we randomize the access order (logical
position) and generate jump access on a large span to break the
data locality, as shown in Figure 4d. Because the low memory
layer is far larger than the high memory layer, the data will
usually miss in the high memory layer.

Algorithm 3 B_L2, B_L3 and B_mem
Input: Smem : allocated memory size;T : loop times; εspan : span

threshold of two given data items;
1: allocate Smem memory size as an arrayArr with Smem

64 items;
2: partition each item into a pointer f (the first 8 Bytes), and

pointer b (the second 8 Bytes) and the last 48 Bytes of data;
3: for iter j in range Smem

64 − 1 do
4: Arr [j]. f = &Arr [j + 1];
5: Arr [j].b = &Arr [j − 1] (j − 1 > 0);
6: end for
7: for iter z in range Smem

64 − 1 do
8: //avoid frequent exchange of logical neighbors when e is

always the same value.
9: randomly pick e ∈ [1, Smem

64 −2] to satisfy |z−e | > εspan
and Arr [e] is not the logical neighbor of Arr [z];

10: exchange the logical positions of Arr [z] and Arr [e];
11: end for
12: for iter i in range T do
13: use pointer f to traverse Arr and unroll Smem

64 times;
14: end for

B_Reg2L1D. The energy cost of this micro-benchmarkmainly
involves the store operation from registers and the L1D cache.
As shown in Algorithm 4, it only accesses the same variable
repeatedly, but it is effective to ensure that the CPU only execute
the store operation. This benchmark always access the same
variable, the CPU can find it in registers, instead of reading it
from L1D cache every time. In addition, the allocated memory
size is large enough, so that the CPU has to perform multiple
store operations to complete the assignment. Due to temporary
variable assignment, the vast majority of store operations only
involve L1D cache.

Algorithm 4 B_Reg2L1D
Input: T : loop times; ut : unrolling times;
1: allocate 64 Bytes of memory size as a variable A;
2: for iter i in range T do
3: execute p = A through unrolling ut times; //variable

assignment
4: end for

Our micro-benchmark set can achieve the specific perfor-
mance behavior. Noting that it may be not the only way, but
it has been enough accurate to help us profile the energy cost of
database systems.

2.5.3 Runtime Configuration. The accurate execution of our
micro-benchmarks depends on some runtime configurations to
overcome the measurement error.

Compiler optimization. In order to minimize the impact of
unnecessary instructions, our micro-benchmark set is compiled
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with an optimization level of -O3. The necessary temporary vari-
ables are added with a volatile modifier, such as a temporary
pointer variable for linked list pointer tracking, which can can-
cel the compiler’s active optimization to avoid the microscopic
behavior changing.

Thread switching. In order to prevent the thread attached
by the micro-benchmark from being switched between different
idle CPUs during execution, the micro-benchmark will be fixed
on a specific logic core to run.

DVFS knobs. EIST (Enhanced Intel SpeedStep Technology),
an Intel DVFS implementation, changes CPU frequency and volt-
age to balance energy cost and performance. The energy cost of
micro-components will increase with the improvement of CPU
frequency and voltage. Because our micro-benchmarks are effec-
tive under the stable frequency and voltage, EIST technique will
incur the measurement error of energy cost. We turn off these
options and execute our micro-benchmarks under the given fre-
quency and voltage according to our experimental requirement.

Prefetcher. The data prefetching could lead to the unexpected
load instructions into our micro-benchmarks. So, the hardware
prefetcher will be turned off by modifying MSR registers when
running our micro-benchmarks. It will be turned on when evalu-
ating the energy cost of query workloads.

Through running our micro-benchmarks, we can isolate the
specific micro-operations and reduce most of measuring errors.
It will lead to an easy solution to ∆Em in next section.

2.5.4 Energy Model to Evaluate ∆Em . We construct a series
of energy models to map the energy cost of the micro-benchmark
into ∆Em . For any micro-benchmarkmb ∈ MBS , we define the
Active energy cost ofmb as E(mb) which will be given in next
section. Here, we assume that E(mb) is known to give the solution
of ∆Em .

Through running B_L1D_array which only loads data from
L1D cache, we can solve the ∆EL1D as

∆EL1D =
E(B_L1D_array)

NL1D
.

Recalling that NL1D is the count loading data from L1D cache in
Section 2.4. Similarly, when running B_L1D_list, we can solve
the ∆Estall as

∆Estall =
E(B_L1D_list) − EL1D

Nstall
.

For the micro-operations x ,y ∈ C = {L1D,L2,L3,mem}, if the
micro-operation x loads data from the higher memory layer than
y, we denote x > y. When running the micro-benchmark B_L2,
B_L3 and B_mem, respectively, we can solve the ∆Em as

∆Em =

E(B_m) −
i ∈C∑
i>m

∆EiNi − Estall

Nm
. (2)

Due to the step-by-step replication strategy, loading data from
the low memory layer must also lead to a load operation from
the higher memory layer. So, the load energy cost of the higher
memory layer needs to be eliminated in Eq. (2). When running
B_Reg2L1D, we can solve the ∆EReд2L1D as

∆EReд2L1D =
E(B_Reд2L1D)

NReд2L1D
.

Prefetching energy. In term of the energy cost, the data
prefetching and the regular data fetching are similar. we follow
the assumption that the energy is mainly consumed in moving

data from a specific memory layer to a higher layer [18] and set
∆EL2

pf = ∆EL3 and ∆EL3
pf = ∆Emem . ∆EL2

pf is the energy cost of an
individual L2 prefetching from L3 cache and ∆EL3

pf is the energy
cost of an individual L3 prefetching from main memory[4].

2.5.5 Verification Method of ∆Em . For verifying the accuracy
of ∆Em , we propose a verification micro-benchmark set VMBS
derived fromMBS , where each micro-benchmark shows a more
complex performance behavior.

Micro-benchmarks in VMBS essentially perform a series of
data movement operations and data calculation operations to sim-
ulate the real workload.We first construct twomicro-benchmarks
B_add and B_nop. They only loop the known number of add
and nop instructions to evaluate the ∆Eadd and ∆Enop . Next, we
add the add and nop instructions into the micro-benchmarks in
MBS to finally construct VMBS including 7 micro-benchmarks
shown in Table 3. For example, B_L1D_list_nop is to add the nop
instruction into B_L1D_list.

When running a micro-benchmark v ∈ VMBS , Eq. (1) is used
to solve the estimated Active energy cost Eactive (v)wherewe set
the Eother (v) = ∆EaddNadd (v) + ∆EnopNnop (v). We measure
the real Eactive (v) and define the accuracy as

acc(v) = 1 − |Eactive (v) − Eactive (v)|

Eactive (v)
,

where acc < 0, set acc = 0. If the acc is closer to 1, the estimated
energy cost is closer to the real energy cost, showing that the
∆Em got by our approach is accurate.

Through the above effort, we have got all of ∆Em (m ∈ MS).
Next, we introduce how to measure the Active energy.

2.6 Active Energy Evaluation
Our experiments run on the server with an Intel i7-4790 processor
(L1D cache size is 32KB, L2 cache size is 256KB and L3 cache
size is 8MB), 32GB DDR3-1600 main memory and a 500GB SATA
hard drive. Our processor is popular to enable that our results are
representative. The operator system is Ubuntu 14.04 including
Linux Perf, ocperf and RAPL (Running Average Power Limit)[10].

We leverage RAPL to measure the energy cost. RAPL counters
are highly accurate on x86_64 and allow us to separately measure
the energy cost of the core domain E(core), the package domain
E(packaдe) (including the core, L3 cache and memory controller)
and the main memory domain E(memory). We can run an only-
blocked program (e.g., sleep 1) to use its RAPL’s measurement
values as the Background energy cost of three different domains
per second when disabling idle states (i.e., C-states[7]). For work-
loads which do not access L3 cache andmainmemory, we observe
the E(core) as the Busy-CPU energy cost, such as B_L1D_list and
B_L1D_array. For the workloads which do not access main mem-
ory, we observe the E(packaдe) as the Busy-CPU energy cost.
For other workloads, we observe E(packaдe)+E(memory) as the
Busy-CPU energy cost. Eactive is Busy-CPU energy cost minus
the corresponding Background energy cost.

2.7 Selection of CPU Frequency and Voltage
Our micro-benchmarks set is usually used to evaluate ∆Em under
the fixed CPU frequency and voltage. However, the real work-
loads widely run with the EIST knob turned on to balance the
performance and energy. So, in this section we will profile the
performance of TPCH query workloads when turning on EIST
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Figure 5: Query count distribution bars and the fitting dis-
tribution curves based on the percent of P-state 36.

Table 1: Runtime behaviors of micro-benchmarks

Micro-
benchmarks BLI L1D

miss%
L2

miss%
L3

miss% IPC

B_L1D_list 98.9 0.01 - - 0.26
B_L1D_array 99.5 0.01 - - 2.02

B_L2 98.5 99.93 0.02 - 0.09
B_L3 98.6 98.68 99.98 0.01 0.03

B_mem 97.8 98.86 99.88 97.45 0.005
B_Reg2L1D 99.98 0.02 - - 1.01

B_add 98.4 - - - 2.01
B_nop 99.87 - - - 3.99

Table 2: Energy cost of micro-operations at different CPU
frequencies and voltages

P-state 36
(3.6GHz)

24
(2.4GHz)

12
(1.2GHz)

Micro-operations Energy cost (nJ)
∆EL1D 1.30 0.90 ↓ 0.60 ↓
∆EL2 4.37 3.25 ↓ 1.64 ↓

∆EL3, ∆EL2
pf 6.64 5.91 ↓ 5.33 ↓

∆Emem , ∆EL3
pf 103.1 99.1 ↓ 99.04 ↓

∆EReд2L1D 2.42 1.60 ↓ 1.10 ↓
∆Estall 1.72 1.07 ↓ 0.80 ↓
∆Eadd 1.03 - -
∆Enop 0.65 - -

to identify their preference for CPU frequency and voltage. That
can help us evaluate a more reasonable ∆Em .

EIST usually sets the CPU into different states to save energy1,
including C-states and P-states[7]. C-states are idle states {C0,
C1, C2, ...}. C0 means the CPU non-idle and others mean that the
CPU enters an idle state with different energy-saving levels. C0
can be further subdivided into different P-states. So, P-states can
be called as operational states. Each P-state also has a different
energy-saving level. We focus on P-states due to the profiling of
Active energy cost. In truth, a P-state is both a frequency and volt-
age operating point. For the high CPU load, a high-performance
P-state might be set, and vice versa. Intel i7-4790 includes 29 can-
didate P-states. CPU frequency of each P-state differs by 100MHz.
1Themodern processor frequency can be separated into (1) core frequency involving
ALU, L1 cache, L2 cache and etc, and (2) uncore frequency involving L3 cache,
memory controller and etc. In this paper, the CPU frequency means core frequency.
The uncore frequency in Intel i7-4790 will dynamically match the CPU frequencies.

Table 3: Energy cost of verificationmicro-benchmarks and
the accuracy

Verification
micro-benchmarks Ēactive (J) Eactive (J) acc%

B_L1D_list_nop 129.34 122.04 94.36
B_L1D_array_add 169.85 150.71 88.73

B_L2_nop 122.01 125.57 97.08
B_L3_add 215.37 224.16 96.07

B_mem_nop 396 345.37 87.22
B_L1D_list_L2 168.29 158.26 94.01

B_L1D_list_nop_add 193.06 186.94 96.83

The highest P-state is 36 (3.6GHz CPU frequency) and the lowest
is 8 (800MHz CPU frequency).

In this experiment, we turn on the EIST knob and set the P-
state range from 8 to 36. Our purpose is to analyze the P-state
preference of query workloads. We use 22 TPCH queries [8]
to benchmark PostgreSQL, SQLite and MySQL with baseline
configuration and baseline data size (more detailed instructions
in Section 3) and sample the runtime P-state per 100 milliseconds.
According to the percent of P-state 36, Figure 5 shows query
count distributions of three database systems. We find that most
of queries tend to run at P-state 36, due to the high CPU load
(average 96% CPU usage). So, we will fix the CPU at P-state 36 in
the following trunk experiment. We also evaluate the impact of
other P-states on our results in Section 3.5.

2.8 Results of Micro-Benchmarks
We turn off these knobs which will lead to measurement errors
shown in Section 2.5.3, fix the CPU at P-state 36 and specify all
workloads to run on the core CPU0. For B_L1D_list, B_L1D_array
and B_Reg2L1D, we allocate the memory size as 31KB; for B_L2,
allocate 260KB; for B_L3, allocate 6MB and for B_mem allocate
60MB. These setups ensure that our micro-benchmarks only fetch
data from the single memory layer under an acceptable latency.

Performance behaviors ofmicro-benchmarks. As shown
in Table 1, BLI (Body-Loop Instruction%) is the percentage of the
desired instructions in the main loop and IPC (Instruction Per
Clock) is the number of instructions per cycle. For BLI, 98.9%
instructions of B_L1D_list is to load data from L1D cache. For
othermicro-benchmarks, this metric also has a good performance,
showing that our micro-benchmarks have little noise instructions.
In addition, our micro-benchmarks can provide the specific per-
formance behavior. For B_L1D_list, L1D miss rate is only 0.01%,
showing that it always only accesses the L1D cache. Even for
B_mem, it can still skip out of cache memory and load data from
main memory with a hit rate 97.45%. Especially, IPC shows the
CPU stall status. For B_L1D_array, IPC is 2.02 showing that CPU
is always busy and no stall. However, IPC=0.26 for B_L1D_list
shows that 4 cycles are required to execute a load operation. For
B_Reg2L1D, IPC is 1.01 and the number of L1D store instructions
are 98.37% of all instructions, showing that CPU always executes
1 store instruction per cycle. These results reveal that our bench-
marks can work properly with specific performance behaviors.

Evaluation of ∆Em . According to Eactive of micro bench-
marks and energy models in Section 2.5.4, we give the energy
cost of micro-operations in Table 2. The unit of energy cost is
Nanojoule. For the load operation the data is closer to the CPU
causing the energy cost to be lower. Especially for ∆EL1D , it is
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Figure 6: Active energy cost breakdown of the basic query operations for three different database systems.

the lowest than other load operations. Oppositely, loading from
the main memory will get a high energy cost penalty. Actually,
it explains that why improving cache hit rate can improve both
the performance and energy-efficiency.

Verification of ∆Em . We use the verification method in Sec-
tion 2.5.5 to evaluate the accuracy of ∆Em . In Table 3, we give
the real Active energy cost and the estimated Active energy cost
and the accuracy. The unit of energy cost is Joule. The average
accuracy is 93.47%. Even for the most complex B_mem_nop, the
accuracy is still high. It shows that ∆Em proposed by us is accu-
rate enough to break down the energy cost of real workloads.

3 ENERGY COST DISTRIBUTION OF
QUERIES

In this section, we use ∆Em to break down the energy cost of
query workloads implemented on the real database systems. We
use the PostgreSQL-9.5.2, SQLite-3.14.2 and MySQL-8.0.13 as our
analysis targets. We will deeply analyze the energy cost of 7
basic query operations and 22 queries in TPCH[8] with different
data sizes and knob settings. We will compare the energy cost
breakdown of queries with the typical CPU-bound workloads.
In addition, we also show the impact of different P-states on the
energy cost breakdown.

To avoid the random error, we disable the result display by
updating the database kernels and run the workloads 100 times
(10 times for long-running workloads). Finally, the average en-
ergy cost is got. We turn on the hardware prefetchers, specify all
workloads to run on the core CPU0 and fix the CPU into P-state
36. In addition, the percent of the Background energy cost is
47.2%-51.7% of Busy-CPU energy cost in our experiments. Our
main findings are summarized as follows.

• 77.7%-89.2% of Busy-CPU energy cost can be broken down
into the energy cost of datamovement and the Background
energy cost. The energy cost of data movement (7 micro-
operations inMS) is 55%-76.4% of Active energy cost.

• EL1D +EReд2L1D is 39%-67% of Active energy cost, identi-
fied as the energy bottleneck. This phenomenon does not
appear in the typical CPU-bound workloads. In addition,
it is little affected by the data size, the database setting
and CPU frequency and voltage.

• The sequential scanning in query workloads is the major
reason that leads to this energy cost pattern.

3.1 Experimental setup
We take our experiments with 100MB (baseline), 500MB and 1GB
data. In addition, each database system has many configurable
knobs. We investigate them and tune two important knobs that

Table 4: Knob settings for three database systems

Database
systems Knobs Small Baseline Large

PostgreSQL Shared_buffers 8MB 128MB 1024MB
Work_mem 4MB 64MB 512MB

SQLite Cache_size 2000 16000 65000
Page_size 4KB 8KB 16KB

MySQL1 Inbuffer_size 8MB 128MB 1024MB
Inpage_size 4KB 8KB 16KB

also have similar roles in three database systems. In Table 4, we
give three kinds of database settings to limit the memory usage.
The resource size provided to three database systems at each
setting is approximate. The small setting looks stringent and the
large setting is relaxed.

3.2 Energy Cost of Basic Query Operations
We profile the energy cost of 7 basic query operations with the
baseline data size on the baseline setting. 77.7%-89.2% Busy-CPU
energy cost can be broken down into the energy cost of data
movement and the Background energy cost, showing that our
energy breakdown approach can work well on database systems.
Figure 6 gives the breakdown of Eactive . The energy cost of
data movement is 68.1% for PostgreSQL, 76.4% for SQLite and
56.8% for MySQL, becoming dominant. For the three database
systems, the energy cost distribution is similar, and much energy
is consumed in L1D cache load/store. EL1D + EReд2L1D is 41.6%
for PostgreSQL, 66.6% for SQLite and 43.4% for MySQL. So, we
can think that this phenomenon could be general for most of
relational database systems.

L1D cache load. Actually, we can easily explain why the per-
cent of EL1D is high. In the database systems, almost all of the
query operations is based on sequential scan. Even if segmenta-
tion or paging strategies are used to manage data, each data block
is big enough to fit the CPU cache to ensure a good data locality.
So, the modern CPU architecture can ensure most of data to be
loaded at L1D cache when sequentially scanning. For example,
L1D hit rate of 7 basic query operations is 97.74% and IPC of the
complex join operator is 1.85, showing good data locality.

L1D cache store. In addition, the reason why the energy cost
of L1D cache store is high is because the query workload will
generate many temporary data, such as temporary storage of
intermediate data and output stream. These temporary data are

1For MySQL knobs, inbuffer_size is short for innodb_buffer_pool_size and
inpage_size is short for innodb_page_size.
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Figure 7: Active energy cost breakdown of TPCH for three different database systems.

written in L1D cache but they little have to be persisted due to
the write-back strategy. In our experiment, the store operations
are frequently issued by 7 basic query operations, being about
66% of the load operations but 99.86% of them occur at L1D cache.

In summary, although the implementation of three database
systems has impact on the energy cost distribution, L1D cache
load/store is still their energy bottleneck. In addition, the query
workload is read-only operation, but the energy cost of temporary
data write is still high.

3.3 Energy Cost of TPCH
We profile the energy cost of TPCH with the baseline data size
on the baseline setting. 79.2%-88.7% Busy-CPU energy cost can
be broken down. As shown in Figure 7, the energy cost of data
movement is 65% for PostgreSQL, 75% for SQLite and 55% for
MySQL. In addition, the energy cost distributions of three data-
base systems are similar. The percent of EL1D + EReд2L1D is
so attractive, 46.8% for PostgreSQL, 60% for SQLite and 38.6%
for MySQL. The phenomenon is like it in basic query operations
because complex queries are the combination of basic operations.

Sequential scanning. For SQLite, the percent of EL1D +
EReд2L1D is higher than that of two other database systems ei-
ther in the TPCH or the basic query operations because SQLite
tends to the sequential scanning. Actually, the energy cost of
sequential scanning prefers to L1D cache. We take an example to
illustrate the relationship between sequential scanning and the
energy cost of L1D cache. As shown in Figure 6, the difference
of both index scan and table scan is scan table using the index (B
tree) or not. Obviously, index scan utilizes the pointer chasing to
reorganize data causing the relatively weak data locality. Table
scan tends to the sequential scanning. Without exception, the
percent of EL1D + EReд2L1D reduces and the percent of Estall
increases for index scan compared with table scan.

Similarly, SQlite as the mobile database is usually used to man-
age the small-scale data so that it does not involve many complex
optimization strategies, such as the hash join. The main data
access method is sequential scanning. It is reasonable because
the hardware optimization is more important than software op-
timization for the small-scale data. The sequential scanning is
easily sped up by the hardware optimization, such as speculation
and out-of-order execution. It will lead to the less stall cycles. For
SQLite, the present of Estall is 12% lower than two other database
systems, showing the good performance of sequential scanning.
For optimizing performance on large-scale data, we think that
both PostgreSQL and MySQL may construct the complex data
structure and reorganize the data, such as the compact buffer
management. These optimizations can improve the performance,

e.g., average 3.31× faster than SQlite in our experiment. However,
they will introduce the extra calculations, and they also hinder
hardware optimization due to the weak data locality, leading to
the low percent of EL1D + EReд2L1D .

Impact of data size. We evaluate the energy cost distribu-
tions of three database systems with different data sizes (100MB,
500MB and 1GB) on the baseline setup. As shown Figure 8, we
only illustrate the average energy cost result of 22 queries in
TPCH as a vector due to the space limitation and PG is short for
PostgreSQL. As the data size increases, the energy cost distribu-
tions of three database systems have not changed significantly.
We also analyze the energy cost change of every query and find
that Estall of 14% queries is improved by 2× when increasing
the data size. The large data size may lead to frequent swapping
in and out of data pages and CPU stall. In general, the L1D cache
load/store is still the energy bottleneck which is hardly affected
by the data size.

Impact of different settings. As shown in Figure 9, we also
compare the impact of different database settings being from
Table 4. For MySQL, Estall is reduced when the larдe setting pro-
vides more memory to fit data pages but PostgreSQL and SQLite
are not sensitive to different settings. It still suggests that different
settings have little impact on the energy cost distribution.

In summary, sequential scanning is the basic behavior of query
workloads. For different database system implementations, the
dependency of sequential scanning affects the energy allocation
for L1D cache. Data size and database settings do not lead to sub-
stantial changes in this energy cost distribution. So, our findings
could be general for query workloads of database systems.

3.4 Comparison to CPU-Bound Workloads
With the optimization of database systems and the performance
improvement of the disk, the database system has tended to be
CPU-bound from disk-bound. For example, CPU usage is 96%
and IPC=1.9 showing a busy CPU, when running TPCH in our
experiment. In this section, we compare the energy cost distri-
butions of query workloads with the energy cost distributions
of typical CPU-bound workloads. As shown in Figure 10, we
evaluate the energy cost of 9 workloads in the classic CPU bench-
mark CPU2006-v99[2], involving the compression, compiling
and simulation workloads, etc. Not like the query workloads, the
energy cost distributions of typical CPU-bound workloads are
not similar to each other. For three database systems, the percent
of EL1D + EReд2L1D of 76% queries is greater than 40%, but the
percent is only 11% for CPU2006. For some extreme CPU2006
workloads (Mcf and Libquantum), EL1D + EReд2L1D is so low at
only 5.6%, but this behavior does not occur in query workloads.
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Figure 8: Impact of data size.
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Figure 9: Impact of database setting.
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Figure 10: Energy cost breakdown of CPU2006.
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Figure 11: Impact of CPU frequencies and voltages.

In summary, we think that the energy cost pattern of query
workloads is totally different from the typical CPU-bound work-
loads and it could be unique to query workloads.

3.5 Impact of CPU Frequency and Voltage
In the real scenario, the EIST knob is usually turned on, so that
we in this section explore the impact of different CPU frequencies
and voltages on the energy cost breakdown. We select two other
P-states: P-state 24 and P-state 12 to first evaluate energy cost
of micro-operations and then break down energy cost of three
databases under baseline knob settings and baseline data size.

As shown in Table 2, the energy cost of micro-operations
under low P-states will definitely reduce. The closer the micro-
operation is to the CPU core, the more significantly the energy
cost decreases. For example, ∆EL1D reduces by 53.8% from P-state
36 to P-state 12, but 3.9% for ∆Emem .

As shown in Figure 11, we compare the energy cost breakdown
of three databases at different P-states. In our experiment, Eactive
decreases by 32%±2% at P-state 24 and 51%±1% at P-state 12, but
the energy cost breakdown has little impact due to the lower en-
ergy cost of micro-operations. In detail, because ∆Emem has little
change at different P-states, the percent of both Emem and Epf
(involving main memory accessing) have a significant improve-
ment at P-state 12, about 2× and 2.2 × compared with P-state
36. However, the absolute impact is still little. Actually, different
P-states cannot change the query runtime characteristics, so that
the L1D cache load/store hit rate is still high, only leading to
the slight reduction of the percent of EL1D + EReд2L1D at low

P-states. For example, the percent of EL1D + EReд2L1D at P-state
12 only decreases by 4%-8.6% for three databases, compared with
it at P-state 36. Our result shows that the L1D cache load/store
operations are still the energy cost bottleneck at different CPU
frequencies and voltages.

In essence, this experiment reveals the energy cost profiling for
typical query runtime characteristics at different CPU frequencies
and voltages. For other query scenarios, the CPU could not always
be at the high P-state when turning on the EIST knob, such as real-
time query workloads. However, their runtime characteristics
should be similar to those shown in this paper. So, we think that
this energy cost bottleneck could be general for many query
scenarios even if turning on the EIST knob.

In summary, the low CPU frequency and voltage will lead
to the low energy cost of micro-operations, but the L1D cache
load/store operations are still the energy cost bottleneck.

4 PROOF-OF-CONCEPT SYSTEM
In the section, we will discuss the customized CPU architecture
design which can enable the energy-efficient database systems.
The optimization and evaluation on SQLite will be given.

4.1 L1D Energy-Efficient CPU Architecture
L1D cache load/store is the energy bottleneck, but their optimiza-
tion is difficult on typical x86_64 architecture because L1D cache
has the lowest energy cost than other memory layers.

For database systems, a good energy-efficient CPU architec-
ture should provide the lower energy cost L1D cache (i.e., Arch
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Figure 12: ARM1176JZF-S architecture as an L1D energy-
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1) or provide a piece of the low energy cost memory at the same
speed as L1D cache (i.e., Arch 2). For Arch 1, users can transpar-
ently migrate the database systems on it. For Arch 2, users need
to update the kernel of database systems to decide what data to
put into the low energy cost memory. We investigate many CPU
architectures and only find the architecture similar to Arch 2. As
shown in Figure 12, ARM1176JZF-S[1] supports 16KB L1D cache,
32KB DTCM (Data Tightly Coupled Memory) and 256MB main
memory. TCM is the programmable on-chip memory which is
as fast as L1 cache but its energy cost is lower than L1 cache. So,
ARM1176JZF-S could be as an L1D energy-efficient CPU archi-
tecture. In this section, we will use the DTCM load instead of the
L1D cache load to reduce Busy-CPU energy cost.

4.2 System-Level Co-Design
Wewill optimize SQLite because, as a mobile database it can work
well on ARM architecture, but the optimization is still difficult.
First, although Linux supports many hardware environments,
it cannot be directly compiled in this ARM environment. The
ARM hardware environments are so diverse that Linux can only
identify some mainstream architectures and it does not support
ARM1176JZF-S well. We have to modify and update Linux kernel
to make it support TCM, Linux perf and cross compiling. Second,
we have to implement the TCM driver and API enabling that TCM
can be accessed in user space. It took us about 2 months to build
an available runtime environment. For SQLite, our optimization
strategies are as follows.

Database buffer.We allocate 16KBDTCM for database buffer,
which will be dynamically managed by SQLite.

Special variables.Weuse the Linux perf to profile the SQLite’s
runtime and find that about 70% L1D cache load operations
are issued by the sqlite3VdbeExec() function to execute the
query plan. This phenomenon in x86_64 architecture is simi-
lar to it in ARM architecture. We allocate 4KB DTCM and put
some key structures of sqlite3VdbeExec() in it, such as query
plan (Vdbe), meta data (Vdbe->db), cursor (Vdbe->apCsr and
Vdbe->apCsr->aOffset), head address of heap space (Vdbe->aOp
and Vdbe->aMem), etc.

B tree. Every table in SQLite is organized as a B tree. The
primary key or row ID will be the key of B tree. So, the top layers
of B tree will be frequently read. Based on this, we allocate 12KB
DTCM to put the root and first few layers of B-tree of current
tables into DTCM. We divide DTCM memory evenly according
to the number of tables being queried. In this way, we can ensure
that more B tree data of small tables are loaded into DTCM.

Noting that our strategies are for L1D cache load operation.
The energy cost optimization of L1D cache store operation is
more difficult. We do not discuss it in this paper.
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Figure 13: Energy saving and performance improvement
for SQLite using DTCM or not on ARM1176JZF-S.

4.3 Evaluation Results
ARM does not support RAPL, so that we use the external power
meter to measure the energy cost. We first design a micro bench-
mark B_DTCM_array, which only loads data from DTCM. It is
similar to Algorithm 1 but allocates memory from DTCM, instead
of main memory. Compared with B_L1D_array, the energy cost
of B_DTCM_array can reduce by 10% with no performance loss.
Therefore, 10% will be as the peak energy saving of DTCM in our
experimental environment.

In Figure 13, we show the energy saving and performance
improvement of the optimized SQLite. Noting that we compare
whether SQLite uses DTCM on ARM, not SQLite on Intel CPU
or ARM CPU. We use 10MB TPCH data and the small setting
to take our experiment. Our optimization makes SQLite save
average 6% energy and improve average 1.5% performance. It
means that our approach can achieve 60% of the peak energy
saving. The dominant factor is that accessing the hot data in
DTCM can bypass the L1D cache leading to L1D cache energy
saving. In addition, the performance of 64% queries can be further
improved due to the avoidance of hot data misses. For the non-
optimized SQLite, 25% L1D miss rate in ARM1176JZF-S could
cause the hot data to swap in and out the L1D cache from main
memory. However, DTCM has the fixed physical address, so that
the hot data in DTCM is not loaded from main memory.

Advantages. Limited to the hardware implementation, 6%
energy saving in our experiments may seem to be less, but our
approach has three advantages as follows. First, compared with
the existing approaches, our approaches can save energy with
no performance reduction. It is advantageous for energy-strict
real-time tasks, such as UPS-powered data centers and databases
in smart phones. Second, our approach is orthogonal to existing
approaches. Our approach tends to save energy from the view of
CPU architecture, so that it can work together with application-
level energy optimization approaches, such as energy-oriented
query optimization and DVFS-based approaches. Third, our ap-
proach is depend on the implementation of TCM. So, these results
in our paper only suggest that our approach can achieve 60% of
the peak energy saving, and do not mean the final energy-saving
potential. The existing work shows that the optimized TCM has
got 40% energy saving compared with L1D cache[9]. If integrat-
ing such an optimized TCM into ARM1176JZF-S, our approach
should get a maximum 24% energy saving.

In summary, our optimized SQLite can achieve 60% of the peak
energy saving. It can also achieve 1.5% performance improvement
due to the avoidance of hot data misses.
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Table 5: Energy cost bottleneck ofB_memat differentCPU
frequencies and voltages

P-state 36
(3.6GHz)

24
(2.4GHz)

12
(1.2GHz)

Micro-operations Energy cost (J) / Percent%

Emem
295.4
(16.6%)

284.2
(29.8%)

284.6
(47.4%)

Estall
1416.1
(79.8%)

630.6
(66.2%)

310.1
(51.6%)

Eactive
1772.5
(100%)

952.9
(100%)

600.5
(100%)

5 POTENTIAL OPTIMIZATIONS
Based on the Busy-CPU energy breakdown results, we also find
some additional interesting energy cost phenomena in Figure 6
and 7 that suggests other optimization approaches.

In index-intensive scenario, especially for index scan of Post-
greSQL and MySQL, the percent of both Emem and Epf becomes
prominent, also causing a high Estall . Similar phenomenon can
also be seen in PostgreSQL’s basic query operations compared
with them of two other database systems. In addition, as the data
size increases, the main memory access is also more frequent,
especially for MySQL. They imply a memory-bound tendency.
In this section, we will focus on the energy cost optimization of
memory-bound workloads. Actually, we think that improving
main memory performance or radically lowering CPU frequency
and voltage are efficient ways to save energy.

To explain our idea, we first profile the energy cost of a typical
memory-bound workload under different CPU frequencies and
voltages. The micro-benchmark B_mem is a typical memory-
bound workload and we break down its energy cost shown in
Table 5. Interestingly, such a slight change to ∆Emem does not im-
ply that the low P-state will cause the energy cost to increase for
memory-bound workloads, although the elapsed time may be in-
creased. Actually, B_mem’s performance bottleneck is main mem-
ory, the energy cost bottleneck is the CPU (Estall , not Emem ).
This result suggests that the energy cost bottleneck is in the
CPU, even if for non-CPU bound workloads. So, the ultra-linear
decrease in Estall causes a reduction in Eactive with slight per-
formance loss. For example, B_mem only trades 7% performance
loss for 46% Eactive saving when lowering P-state from 36 to
24. The energy-efficiency ( Per f

Enerдy )[14] is improved by 70%. In
addition, EIST cannot work well on memory-bound workloads.
When turning on the EIST knob, the percent of P-state 36 is 98.6%
due to the high CPU load (99.8% CPU usage), implying failure of
dynamic energy saving.

Actually, formemory-bound query scenarios, an energy-saving
chance is to reduce Estall . Improving main memory performance
tends to reduce Nstall or radically lowering CPU frequency and
voltage tends to reduce ∆Estall . We take a preliminary experi-
ment on PostgreSQL’s index scan to confirm the second approach.
When lowering P-state from 36 to 24, PostgreSQL’s index scan
only trades 20% performance loss for 27% Eactive saving, show-
ing that the energy-efficiency is improved by 10%. However, our
strategy is not trivial. PostgreSQL’s table scan, a CPU-bound
workload, has to trade 30% performance loss for 28% Eactive sav-
ing, i.e., the energy-efficiency is reduced by 3%. So, a customized
DVFS approach is expected for memory-bound query scenarios.
It should analyze the query plan, such as index-intensive or not,

and monitor the main memory access to employ a more radical
DVFS strategy.

The percent of MySQL’s Eother is higher than that of two
other databases, especially for basic query operations, so that
energy-efficient calculation components or instruction-related
components, e.g., instruction TCM (ITCM), should be considered.

6 RELATEDWORK
Energy characterization and optimization in database systems
is the basic work to design an energy-efficient database systems.
There are extensive researches on this topic from different aspects,
including (1) macro energy cost breakdown, (2) trade-off based
energy optimization and (3) employing TCM. However, we take a
micro analysis of the Busy-CPU energy cost of database systems
and then provide a customized CPU architecture to enable the
energy-efficient database systems.

Macro energy cost breakdown. The energy-efficient data-
base design is systematically reported in [14]. From then on, the
researchers had made much effort to make sense of its energy
bottleneck. Research work focuses on the breakdown of the en-
ergy cost of the major resources, i.e., the CPU, main memory and
disk, on various of system architectures. For the classic x86_64
architecture with local disk, the CPU is identified as the energy
cost for disk-based database systems[19, 25] and in-memory data-
base systems[13]. For the architecture of ARM+RDRAM (Rambus
DRAM), the main memory is identified as the bottleneck[23]. For
the system with the remote disk array, the disk is the energy
bottleneck[24]. These above conclusions are difficult to explain
whether the power is consumed by the database system or by the
hardware itself because the measurement of the total energy cost
contains the Background energy cost and Idle-CPU energy. Our
work divides the Busy-CPU energy cost into the Active energy
cost and the Background energy cost, and only profile the Active
energy cost which is consumed by database systems. In addition,
the existing work focuses on the macro energy breakdown of
major resources. However, the main drawback is that they cannot
give the clear optimization suggestions on hardware architecture
due to the lack of the fine-grained information. We study the mi-
cro energy analysis inside CPU and have the ability to make sense
of microscopic energy cost distribution. It is helpful to design the
CPU architecture for energy-efficient database systems.

Trade-off based energy optimization. For the x86_64 ar-
chitecture, the CPU has been identified as the energy bottleneck
for database systems. Because the energy cost distribution inside
the CPU is unknown, the existing work sees the CPU as an in-
separable whole to design the energy-oriented query optimizer
or tune the external DVFS knobs. Inspired by the performance-
oriented query optimizer, PET [28, 29] as an energy-aware query
optimization constructs a cost model to choose the low-energy
query plans under a DBA-specified energy/performance trade-
off level. QED [21] uses query aggregation to leverage common
components of queries to reduce energy cost. These query opti-
mization techniques are used to gracefully trade response time
for energy. DVFS knobs can be configured by users to trade the
voltage and CPU frequency for energy. It provides the chance to
optimize the energy. PVC[21] and sweet spots[13] attempt all of
combinations between the voltage and CPU frequency for a spe-
cific workload to choose one combination which can minimize
the energy cost. Their drawback is hard to apply to all queries.
Other approaches leverage feedback-control loops to dynami-
cally set DVFS knobs using the load profile and can obey a query
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latency limit as a soft constraint. Based on this idea, lots of work
has achieved the adaptive energy control for various of databases,
such as the disk-based transaction-oriented DBMS [20, 26, 30]
and data-oriented in-memory DBMS [19]. In order to get a good
energy-saving effect, these techniques expect a relaxed run-time
constraint, so that they in essence trade the performance for the
energy. Through our micro analysis of the Busy-CPU energy cost,
we have found the micro-operation level energy bottleneck. With
the help of the L1D cache energy-efficient CPU architecture, we
can cut down the energy cost of database systems with slight
performance improvement.

Employing TCM. TCM as on-chip memory is usually used
for performance improvement by combining the micro perfor-
mance feature of applications, such as digital signal processing[12],
MapReduce framework[16] and embeddedmulti-media[15]. How-
ever, we attempt to use TCM to reduce the energy cost, combining
the micro energy feature of database systems. The main idea of
our optimization is to put the hot data into TCM to save the
energy. The similar idea for TCM has appeared. They at compile-
time analyze a given piece of program, identify the hot data
and put them into TCM at runtime to reduce the energy cost
of data movement, such as a SPM management framework for
nest-loop[17], a data program relationship graph for global and
stack variables[27] and heap data[11]. Facing the complex data-
base systems, these program-level optimization methods under
specific premises may not work. Actually, our optimization is
system-level. We profile the runtime behavior of database sys-
tem, review its source code and elaborately identify the hot data.
Although the optimized SQLite is only a proof-of-concept system,
it confirms that our method is feasible. Providing the customized
CPU architecture is a possible way to enable energy-efficient
database systems.

7 SUMMARY & FUTURE WORK
In this paper, we propose a novel idea to reduce the energy cost
based on profiling the energy cost of CPU micro-operations for
databases systems. Our approach can break down the majority of
Busy-CPU energy cost and isolate the accurate energy cost of data
movement. The CPU energy breakdown method exposes that
L1D cache load/store is the energy bottleneck of database systems.
The finding supposes that we may achieve energy efficiency by
adopting a customized CPU architecture with lower L1D energy
cost. TCM can meet this requirement well and an optimized
system-level co-design solution for SQLite is implemented to
evaluate the proposed idea. The experimental result of the proof-
of-concept system shows that our method can achieve 60% of the
peak energy saving with further performance improvement.

In future, we will try to profile the energy cost of other typical
database systems, such as NoSQL systems to identify their energy
distribution feature on CPU and check if our method can be
employed into more type of database systems.
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ABSTRACT
Distributed database systems partition the data across multiple

nodes to improve the concurrency, which leads to higher through-

put performance. Traditional concurrency control algorithms aim

at producing an execution history equivalent to any serial history

of transaction execution. Hence an agreement on the final serial

history is required for concurrent transaction execution. Tradi-

tional agreement protocols such as Two-Phase-Commit (2PC)

are typically used but act as a significant bottleneck when pro-

cessing distributed transactions that access many partitions. 2PC

requires extensive coordination among the participating nodes

to commit a transaction.

Unlike traditional techniques, deterministic concurrency con-

trol techniques aim for producing an execution history that obeys

a pre-determined transaction ordering. Recent proposals for de-

terministic transaction processing demonstrate high potential

for improving the system throughput, which had led to their

successful commercial adoption. However, these proposals do

not efficiently utilize and exploit modern computing resources

and are limited by design to conservative execution.

In this paper, we propose a novel distributed queue-oriented

transaction processing paradigm that fundamentally re-thinks

how deterministic transaction processing is performed. The pro-

posed paradigm supports multiple execution paradigms, multiple

isolation levels, and is amenable to efficient resource utilization.

We employ the principles of our proposed paradigm to build

Q-Store, which is the first to support speculative execution and

exploits intra-transaction parallelism efficiently among proposed

deterministic and distributed transaction processing systems. We

perform extensive evaluation against both deterministic and non-

deterministic transaction processing protocols and demonstrate

up to two orders of magnitude of improved performance.

1 INTRODUCTION
Distributed transaction processing is challenging due to the in-

herent overheads of costly commit protocols like 2-Phase-Commit
(2PC) [13]. Even for use cases such as in-memory databases and

stored-procedure-based transactions, 2PC is either used (e.g.,

[24, 25, 46]) or avoided by eliminating the processing of multi-

partitioned transactions (e.g., [27, 28]). Note that 2PC by itself

does not ensure serializable transaction processing, and it re-

quires a distributed concurrency control protocol to guarantee

serializability. Traditional concurrency control protocols may

abort active distributed transactions non-deterministically to
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Figure 1: Overview of transaction processing in Calvin
(left) and Q-Store (right)
ensure serializable transaction processing. When such abort deci-

sions are coupled with 2PC, the cost of the distributed transaction

processing is further increased because of the overhead of roll-

backs and restarts.

Deterministic databases [12, 40] reduce the cost of committing

distributed transactions by imposing a single order on executing

a batch of transactions prior to actual execution. By ensuring

the same pre-execution ordering, deterministic database systems

eliminate the need to abort transactions for violating serializ-

ability guarantees (in optimistic concurrency control), avoiding

deadlocks (in pessimistic concurrency control), or node crash

failures.

Unfortunately, the state-of-the-art designs of distributed de-

terministic databases suffer from other inefficiencies. We iden-

tify three of these inefficiencies that limit their performance

and scalability. First, they rely on single-threaded pre-execution

sequencing and scheduling mechanisms which cannot exploit

multi-core computing architectures and limit vertical throughput

scalability [20]. Second, they mostly support a conservative (non-

speculative) form of transaction execution. One exception is the

work by Jones et al. [24], which performs speculative-execution

only for multi-partition transactions but limits the concurrency

for single-partition transactions (a property inherited from H-
Store’s design). Third, they follow a thread-to-transaction assign-

ment which limits intra-transaction parallelism [34, 35].

In this paper, we propose a novel transaction processing para-

digm of queuing-oriented processing, and describe Q-Store. Q-Store
is built on the principles of queue-oriented paradigm, which pro-

vides a unified abstraction for processing distributed transactions

deterministically and does not suffer from the inefficiencies such

as lower utilization of cores. Furthermore, it admits multiple

execution paradigms (i.e., speculative or conservative) and multi-

ple isolation levels (i.e., serializable isolation or read-committed

isolation) seamlessly, unlike existing proposals of the determin-

istic database. It is important to note that several existing non-

deterministic database systems already support multiple forms

of isolation levels (e.g., [22, 30, 33, 37, 38]).
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Our queue-oriented transaction processing paradigm can effi-

ciently utilize the parallelism available with commodity multi-

core machines by maximizing the number of threads doing useful

work. Q-Store processes batches of transactions in two multi-

threaded yet deterministic phases of planning and execution,
as shown in the right side of Figure 1. Each phase utilizes all

available computing resources efficiently, which improves the

system’s throughput significantly. The planning phase is car-

ried out by multiple planning-threads, delivering maximum CPU

utilization. Planning-threads generate queues of transaction op-

erations that require minimal coordination among execution-
threads. These queues are executed by execution-threads that are
assigned to different cores to maximize cache efficiency. Each

execution-thread is assigned one or more queues for execution.

In other words, these queues constitute a schedule for executing

transnational operations of a batch of transactions. Any coordi-

nation among execution-threads is performed via efficient and

distributed lock-free data structures. In particular, we make the

following contribution, in this paper.

• We propose a novel queue-oriented transaction processing

paradigm that facilitates distributed transaction processing

and unifies local and remote transaction processing in a single

paradigm based on pre-determined priorities of queues. Our

proposed paradigm supports multiple execution paradigms

and multiple isolation levels and leads to implementation of

efficient transaction processing protocol (Section 3).

• We present a formalization of our proposed paradigm and

prove that it produces serializable histories to guarantee seri-

alizable isolation. We also formally show how our paradigm

can support read-committed isolation seamlessly (Section 4).

• We design and build Q-Store, which is a distributed transaction

processing system that relies on the principles of our proposed

queue-oriented paradigm (Section 5).

• We present the results of an extensive evaluation of Q-Store. In
our evaluation, we compare Q-Store against non-deterministic

and deterministic transaction processing protocols using work-

loads from standardmacro-benchmarks such as YCSB and TPC-

C. We perform our evaluation using a single code-base, which

allows us to conduct an apple-to-apple comparison against

5 transaction processing protocols. Our experiments demon-

strate that Q-Store out-performs state-of-the-art deterministic

distributed transaction processing protocols by up to 22.1×.

Against non-deterministic distributed transaction processing

protocols, Q-Store achieves up to two orders of magnitude bet-

ter throughput (Section 6).

2 BACKGROUND
In this section, we give an overview of Calvin [40] as a represen-
tative for deterministic databases. As far as we know, Calvin is

regarded as the state-of-the-art distributed deterministic trans-

action processing protocol, and has been commercialized [12].

Other deterministic transaction processing protocols are either

designed for non-distributed environments (e.g., [9, 11, 35]) or a

variation that improves parts of Calvin’s protocol while re-using
the remaining parts as-is (e.g., [44]). These proposals are cov-

ered in Section 7 in more details. We also briefly describe the

transaction model used by Q-Storewhich adopts the same transac-

tion model used by [35], which is in sharp contrast from Calvin’s
transaction model.

2.1 Transaction Processing in Calvin
This section gives a brief description of how Calvin works based
on [40]. The basic processing flow requires 3 phases: a sequencing

phase, a scheduling phase, and an execution phase with 5 sub-

phases. Figure 1 (left), illustrate these phases.

Each node, in Calvin, runs a single sequencer thread, a single
scheduler thread, and one or more worker threads. The sequencer

thread forms batches of sequenced transactions. It uses a time-

based demarcation of batches. Batches formed by different nodes

are processed by scheduler threads in strict round-robin fashion.

Scheduler threads use deterministic locking to schedule trans-

actions that require the full knowledge of the read/write sets

of transactions, which is similar to Conservative 2PL [8]. Unlike

Conservative 2PL, Calvin ensures that conflicting transactions are
deterministically processed according to their sequence number

in the sequencing batch. For example, let ta and tb denote two

conflicting transactions (i.e., cannot be scheduled to execute con-

currently), and seq(t) denote the sequence number of transaction

t as determined by the sequencer thread. If seq(ta ) < seq(tb ),
then Calvin ensures that ta is scheduled before tb . Once locks on
all the records are acquired by the scheduler thread, the transac-

tion is ready for execution, and it is given to a worker thread for

execution.

As Calvin is a distributed database system, each worker thread

executes an assigned transaction in the following phases:

Phase 1 - Read/write set analysis: This phase is used to deter-
mine the set of nodes that are participating in the transaction.

For this set, nodes that are executing at least one write operation

are marked as active participants.

Phase 2 - Perform local read operations: This phase is per-
formed by all participants if records are available locally.

Phase 3 - Serve remote read operations: Multicast records

to active participants. This phase is the last phase performed

by non-active participants. At this point, they can declare the

transaction as completed and move to the next transaction.

Phase 4 - Collect remote read operations: This phase is per-
formed by active participants only, and they need to wait for

remote records before moving to the next phase. Hence, worker

threads can postpone the active transaction (while waiting) and

resume another transaction that is ready for execution.

Phase 5 - Execute transaction logic andperform localwrite
operations: This phase is also performed only by active partic-

ipants.

Discussion. The original Calvin paper by Thomson et al. [40]

does not clearly describe how a transaction is committed (or

aborted). However, by looking into the code-base of one of the

implementations of Calvin from [20], which we ported to our

test-bed, we discovered that the basic idea goes as follows.

The sequencer determines the participant nodes of every se-

quenced transaction by performing Phase 1 from above. When

a participant node completes its work on a transaction, it sends a

one-way acknowledgment (ACK) message to the sequencer of the

transaction. When the sequencer collects all ACK messages from

all participants, it commits the transaction and sends a response

message to the client of the transaction. Worker threads (that ex-

ecute transactions) can re-use read/write set analysis performed

by the sequencer thread to avoid needless computation.

2.2 Q-Store’s Transaction Model
We adopt the same transaction model used by [35]. In this model,

a transaction is broken into fragments. A fragment can perform
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Figure 2: An example illustrating transaction dependen-
cies in Q-Store. Execution-queues (EQs) are planned by
planning-thread PT(q,p)

multiple operations on the same record, such as read, modify,

and write operations. A fragment can cause the transaction to

abort, and in this case, we refer to such fragments as abortable

fragments.

Furthermore, there are can be dependencies among fragments.

In Figure 2, we illustrate these dependencies. There are 7 planned

transactions in 3 execution-queues. Fragments are denoted as

Oi,Tj where i denotes the fragment index in transaction Tj . We

describe the notations in detail in Section 4.

Data dependencies exist when an operation in a fragment

requires a value that is read by another fragment of the same

transaction (solid black arrow between O2,T5 and O3,T5 ).

Conflict dependencies exist between fragments from different

transactions that access the same record, and the dependee frag-

ment performs a write operation (solid red arrow between O3,T5
and O1,T7 ).

Two kinds of commit dependencies exist between fragments.

The first kind is concerned with fragments of the same trans-

action. In this case, a commit dependency exists between two

fragments of the same transaction if the dependee is an abortable
fragment (dotted black arrow between O2,T4 and O1,T4 ). In this

example,O2,T4 is an abortable fragment. The second kind of com-

mit dependencies, which we refer to as speculation dependencies,
exist between fragments of different transactions. Tracking them

is required when using the speculative execution paradigm. A

speculation dependency exists between the two fragments when

the dependent fragment reads speculatively uncommitted data

written by the dependee fragment (dotted red arrow between

O1,T4 and O1,T6 ).

Discussion. It is worth noting that speculation dependencies

are a realization of conflict dependencies. Tracking speculation

dependencies is needed to ensure correct transaction execution

with speculative execution. Note that, in Q-Store, conflict depen-
dencies are not explicitly tracked during planning. It is possible

to capture these during planning, but that would introduce addi-

tional overhead to the planning phase, which is undesirable.

3 TRANSACTION PROCESSING IN Q-STORE
In this section, we describe the novel and unique features of

Q-Store. As far as we know, Q-Store is the first distributed de-

terministic transaction processing system to provide following

features.

Efficient two-phase distributed processingmodel. In Fig-

ure 1, we show the critical differences between Calvin’s processing
model and Q-Store’ processing model. On the left side (Calvin) of
Figure 1, the total number of phases required to process a batch of
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Figure 3: System Architecture

transactions is 3with the execution phase requiring 5 sub-phases.

Note that the sequencing and the scheduling phases in Calvin
are single-threaded. On the right side, Q-Store processes a batch
of transactions in two multi-threaded phases of planning and

execution. The execution phase does not include any sub-phases.

Q-Store reduces the number of phases compared to Calvin (See

Figure 1). Furthermore, Q-Store uses all available cores efficiently.

All available threads work on the planning of a batch, then all of

them work on execution.

Multi-paradigm execution. The design of Q-Store admits

multiple execution paradigm. The processing of a batch of trans-

actions can be speculative or conservative. Transaction isolation

can be serializable or read-committed.

Queue-oriented processing. The planning phase in Q-Store
abstracts the logical semantics of a transaction into prioritized

queues of transaction fragments. Queues provide ordering for

conflict fragments that seamlessly resolve conflict dependencies

among fragments of different transactions. Therefore, threads

during execution only deal with the other dependencies. Further-

more, queues can be implemented efficiently to ensure efficient

execution and communication.

3.1 Queue-oriented Architecture
In Figure 3, we illustrate an example architecture ofQ-Store, which
consists of three server nodes. A client may send transactions

that require access to multiple partitions, which we call multi-

partition transactions. A client selects one of the server nodes

for a given transaction and sends the transaction to the selected

server. The role of the selected server is to coordinate the ex-

ecution of the received transaction. Note that a server can be

selected during the client session establishment, which allows

mechanisms for load-balancing. Mechanisms for load-balancing

include client-side libraries and middle-ware-based mechanisms.

These details are beyond the scope of this paper.

Also in Figure 3, each node maintains a set of local client trans-
action queues. There is one client transaction queue per planner-

thread to avoid contention. Planner-threads create fragments

from transactions and capture dependencies, and create queues

of fragments for each execution thread. Each planner-thread also

updates the Batch Meta-data distributed data structure. The Batch
Meta-data stores information about fragment dependencies, and

execution-queues progress status. It is a globally shared lock-

free distributed data structure that is used to facilitate minimal

coordination among execution threads. In Figure 3, yellow ar-

rows depict communication patterns during the planning-phase
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while green arrows depict communication patterns during the

execution-phase.

Zooming into a single node, Figure 4, we illustrate the major

components of a server node. Similar to Figure 3, yellow and

green arrows, depict communication during planning-phase and

execution-phase, respectively.

Each server employs a set of threads to complete various tasks.

We can broadly categorize threads into two sets: (i) communi-
cation threads, and (ii) worker threads. Q-Store employs commu-

nication threads to handle message transmission and reception

among the servers and clients. They are also responsible for han-

dling messages between server components and network buffers.

They store client transactions in transaction queues, send and

receive remote execution-queues (EQs), and apply updates to the

batch meta-data.

Each worker thread may participate in either one or two

phases: planning and execution (e.g., we can have dedicatedworker
threads for each phase). Hence depending on the phase, we refer

to these worker threads as either planning-threads or execution-
threads. We use P to represent the set of planning-threads and E
to represent the set of execution-threads. The planning-threads

take a set of transactions and generate plans to execute these

transactions. The execution-threads execute transactions accord-

ing to these plans.

3.2 Priorities in Q-Store
In Q-Store, we use the notion of priorities to impose order at vari-

ous levels granularity. The concept of priority captures the or-

dering of queues and transaction fragments elegantly. Execution-

threads need to respect these priorities to ensure the correct

ordering of conflicting transactions. We have three different lev-

els of granularity from the perspective of execution.

We formalize the notion of priorities by representing our dis-

tributed system as a set S, which is the set of server nodes. We

assign each server Sq a priority q, that is,

S := {S1, S2, ...., Sq }, where q ≥ 1

Q-Store requires each server to associate a priority p with each

of its planning-threads. Note that the planning-thread priority p
differs from the server priority q. As each planning-thread also

inherits the priority of its server, so each planning-thread has

two associated priorities. Hence, we use the Pq,p representation

for a planning thread with priority p.

Pq := {Pq,1, Pq,2, ...., Pq,p }, where q,p ≥ 1 (1)

Planning-threads create execution-queues for transactions

and tag them with their priorities. The execution-queues created

by a planning-thread constitute schedules of transaction frag-

ments of the set of transactions processed by the planning-thread.

Execution-threads execute fragments according to planned sched-

ules while respecting the priorities of execution-queues in addi-

tion to checking and resolving dependencies among fragments.

3.3 Logging and Recovery
Q-Store like other deterministic transaction processing systems

(e.g., [25, 40]) assumes a deterministic stored procedure based

transaction model [1]. Within this model, all inputs of a trans-

action are available before this transaction can start execution.

Therefore, the input of a batch of transactions is logged before

they are delivered to execution-threads. Periodic check-pointing

of the database state is used to reduce the time required for re-

covery in case of a failure. In this paper, we mainly focus on

transaction execution as we can rely on the same techniques for

logging and recovery as [25, 40].

4 FORMALIZING Q-STORE
We now formalize the planning and execution phases of Q-Store.
Later in this section, we also prove that Q-Store transaction pro-

cessing protocol produces serializable histories.

4.1 Planning Transactions
As stated earlier in the previous section, the set of planning-

threads Pq at a server inherit its priority q, and each planning-

thread Pq,p in the set Pq has another priority p to prioritize

planning-threads of the same server. In general, planning-threads

may use any mechanism to create execution-queues as long as

they ensure that conflicting operations are placed in the same

queue. For example, a range-based partitioning of the record-
identifiers can be used, which ensures that operations accessing

the same record are placed in the same execution queue. However,

a placement strategy that minimizes the dependencies among

execution-queues can yield better performance. More sophisti-

cated approaches based on some cost model are also possible as

long as the planning times are minimized and do not introduce

significant overhead to the processing latency. The study of such

strategies is out of the scope of this paper.

We denote the set of these execution-queues as Qq,p and indi-

vidual execution-queue as Qi
q,p .

Qq,p := {Q1

q,p , Q
2

q,p , ...,Q
i
q,p }, where i ≥ 1 (2)

In Q-Store, each planning-thread processes a batch of transac-

tions and places its fragments in its respective execution-queues.

Hence, each ith execution-queue Qi
q,p contains a set of oper-

ations that access the records belonging to that sub-partition,

which implies that fragments from two execution-queues created

by the same planning-thread have operations, access records

in different sub-partitions, and any conflicting fragments (i.e.,

access the same records) are placed in the same execution-queue.

Q-Store’s planning-threads try to balance the load and create

execution-queues equal to the number of execution-threads in

the system. Such planning is done to keep execution-threads

from being idle. More formally:
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∀ Pq,p , ∈ Pq , |Qq,p | ≥ |E| (3)

However, it is undesirable in practice to have the number of

execution-queues much larger than the number of execution-

threads because it can lead to performance degradation due to

low-level issues (e.g., cache-locality).

Each transaction can perform multiple operations. These op-

erations can be grouped into fragments if they are accessing the

same record. Otherwise, a fragment has a single operation. We

denote the set of fragments in a transaction T as OT . For presen-

tation simplicity, let us assume that each fragment Ok,T in set

OT can be either a read (R) or a write (W ).

OT := {O1,T , O2,T , ...,Ok,T }

A planning-thread may distribute the fragments of a given

transaction acrossmultiple execution-queues.Q-Store needs to im-

pose an order to the transactions that are being planned. This or-

der can be as simple as the order imposed by the client-transaction-
queue. A transaction and its fragments inherit the priorities of

its planning-thread.

Hence, we can identify the order of a transaction T using a

triple (i,p,q), where q is the priority of the server, p is the priority

of the planning thread, and i can be the order imposed by the

client-transaction-queue.

∀ i, j, i < j → T(j,p,q)
follows

−−−−−−→ T(i,p,q) (4)

Equation 4 shows that as T(i,p,q) has a smaller identifier (i)
thanT(j,p,q), so it must have been placed in the client-transaction-

queue before T(j,p,q).
Since transactionsmay have operations accessing remote parti-

tions, planning-threads similarly create remote execution-queues

to be executed at remote nodes. Note that our notation of an

execution-queue Qi
q,p identifies the priority q of a remote server,

which guides the execution phase. Therefore, queue execution at

remote nodes is also deterministic.

When the planning-threads have collectively processed a set of

transactions, they mark the resulting batch of execution-queues

(local and remote) as ready for execution and deliver them to

(local and remote) execution threads.

4.2 Speculatively Executing Transactions
The execution phase is performed by a set of execution-threads.

Each server consists of a set of execution-threads E.

E := {E1,E2, ...,Ej }, where j ≥ 1

We require all the execution-threads to adhere to the following

condition strictly:

Condition: For each record, operations belonging to higher priority
execution-queues must always be executed before executing any
lower priority operations.

∀ Qm ∈ Qq,p , ∀ Qn ∈ Qs,t , ∀ Oi ∈ Qm , ∀ O j ∈ Qn

| (q > s) ∨ ((q = s) ∧ (p > t)) → O j
follows

−−−−−−→ Oi
(5)

This condition ensures that the order of executed operations

follows a single order within and across servers. In other words,

Q-Store requires execution-threads E to process the operations

from those execution-queues, which have the highest priority

among all the servers and planning-threads. However, Q-Store
does allow the execution-queues produced by a single planner

thread to be executed in parallel because they have the same

priority.

Execution-threads process fragments from the execution-queues

speculatively such that fragments are allowed to read uncom-

mitted data (speculating that it would commit at a later time).

Q-Store tracks these speculative actions and captures correspond-

ing speculation dependencies (Section 2.2).

When a violation of an integrity constraint causes a transac-

tion to abort, other fragments of the same transaction that have

updated records must rollback as well. The other fragments may

have uncommitted updates that have been read by fragments be-

longing to other transactions. In this case, dependent fragments

and their respective transactions must rollback, causing a cascade

of aborts through the batch.

4.3 Conservatively Executing Transactions
Q-Store also seamlessly supports a conservative execution, which

introduces stalls when processing queues, but has the advantage

of avoiding cascading aborts. In Q-Store, a transaction is aborted

when the transaction logic induces an abort (e.g., for violating an

integrity constraint). By design, non-deterministic aborts (e.g.,

for ensuring deadlock-free execution) do not exist in Q-Store.
Looking back at our example illustrating transaction depen-

dencies from Section 2.2, FragmentO1,T4 depends onO2,T4 which

is abortable. In conservative execution, the execution-thread exe-

cuting EQ2

q,p stalls until the dependency is resolved. The event

of resolving the dependency indicates that O2,T4 is not going

to abort. Therefore, any records updated by fragment O1,T4 are

safe for any read operations by subsequent fragments in the

execution-queue.

Fragments are marked by planning-threads to ensure that

execution-threads know when to wait and stall the processing

of an execution-queue. When execution-threads encounter a

marked fragment, they stall waiting for its commit dependencies

to be resolved. Execution-threads can work on other execution-

queues if they need to stall due to unresolved commit dependen-

cies. Therefore, we are still exploiting parallelism by allowing

other fragments to execute. If an integrity constraint violation

happens, then, only one transaction is aborted and rollbacked.

4.4 Serializability
We now prove the serializability guarantees of Q-Store’s transac-
tion processing model.

Theorem 4.1. Q-Store’s distributed transaction processing is
serializable.

Proof. One principle of our queue-oriented paradigm is to

treat local and remote execution-queues in the same way. There-

fore, the fact that an execution-queue is remote or local is an

orthogonal concept.

Let us assume that Q-Store produces a non-serializable history,
which means that there exist 4 transaction fragments that are

executed in an incorrect order. Let these fragments be as follows:

Oi,Tn ,O j,Tn ,Ok,Tm and Ol,Tm . Here Oi,Tn conflicts with Ok,Tm
and O j,Tn conflicts with Ol,Tm . Further, let n < m in the client

transaction queue, which means that a planner plans Tn before

Tm . A non-serializable history means that at one execution-queue

Oi,Tn is executed before Ok,Tm while Ok,Tm is executed before

Oi,Tn at another execution node. More formally,

∃Qa ,Qb s.t. {Oi,Tn ,Ok,Tm } ∈ Qa ∧ {O j,Tn ,Ol,Tm } ∈ Qb (6)
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Furthermore, the following constraint captures one possible

non-serializable history for the transaction fragments.

Ok,Tm
follows

−−−−−−→ Oi,Tn ∧O j,Tn
follows

−−−−−−→ Ol,Tm (7)

The other non-serializable history is captured by:

Oi,Tn
follows

−−−−−−→ Ok,Tm ∧Ol,Tm
follows

−−−−−−→ O j,Tn (8)

Either Qa or Qb has fragments from Tm ordered before Tn ,
which contradicts the fact that the planner ofQa andQb planned

Tn before Tm .

□

4.5 Read-committed Isolation
Not only that, Q-Store supports multiple execution paradigms

but also multiple isolation levels seamlessly using the queue-

oriented paradigm. Supporting read-committed isolation requires

planning-threads to produce an additional set of execution-queues

Q
′j
q,p such that they only contain read-only transaction fragments

as shown in Eq. 9. Read-only transaction fragments do not per-

form any write operations.

∀ Pq,p , ∈ Pq ,Qq,p := {Q1

q,p , Q
2

q,p , ...,Q
i
q,p }

∪ {Q ′1
q,p , Q

′2
q,p , ...,Q

′j
q,p }, where i ≥ 1, j ≥ 1

(9)

Furthermore, Q-Store employs a copy-on-write technique that

creates a private copy of the updated records. Using these two

simple techniques, Q-Store can support read-committed isolation

seamlessly.

4.6 Discussion
The performance of speculative execution is dependent on the

workload. Two properties of the workload can degrade the perfor-

mance of speculative execution. The activation of logic-induced

aborts which leads to the cascading aborts phenomena. The con-

servative execution solves this issue at the cost of more coordi-

nation among execution-threads.

For either of the execution paradigms, there is another work-

load property that impacts their performance negatively. The

existence of a large number of data dependencies among frag-

ments (see Section 2.2) in the planned workload limits the concur-

rency because it forces additional coordination among threads

to resolve these data dependencies.

In Q-Store, mitigating the impact of data dependencies require

more intelligent planning. Planning-threads can minimize the

data dependencies among execution-queues. However, solving

the minimization problem cannot introduce significant latency.

Furthermore, because the database is partitioned, this can only

work for local execution-queues. Planning-threads can intelli-

gently move read-only fragments to a special set of execution-

queues that allow resolving data-dependencies before executing

dependent fragments. The implementation of these optimization

remains as future work.

Limitations Advantages and disadvantages of deterministic

transaction processing are discussed in the literature [36]. The

key limitation of deterministic transaction processing is that the

knowledge of the full read/write sets is required. One approach

is to run the transaction without committing its write-set to

compute the full read/write sets [40]. In general, this approach

does not guarantee the finality of the read/write set when running

the transaction. Another approach is to partially execute the

transaction over multiple batches instead of a single batch. The

study of these approach is beyond the scope of this paper.

5 IMPLEMENTATION
We now present some key details for our implementation of

Q-Store. In our implementation of Q-Store, we model various com-

ponents of Q-Store as a set of producers and consumers. As stated

in Section 3, Q-Store includes a set of communication-threads.

These threads perform two tasks: (i) consuming messages from

the network and storing them in respective queues, and (ii) con-

suming messages from the worker-threads and pushing those

on to the network. The task of consuming messages from the

network involves reconstructing the raw buffers into appropriate

message types so that other threads can interpret them.

InQ-Store, we partition the database using a range-partitioning
scheme. At each server, we allocate an equal number of worker

threads that assume the roles of both the planning-threads and

execution-threads but only one role at a time. This scheme sim-

plifies both the planning and execution phases as computing the

number of sub-partitions across the whole cluster requires no

additional communication.

When an input thread receives a client transaction, it places the

transaction into a client-transaction-queue associated with one of

the planning-threads, in a round-robin fashion. We allocate one

client-transaction-queue for each planning-thread. This approach

eliminates contention among the planning-threads to fetch the

next transaction.

Q-Store employs a count-based batch demarcation mechanism

which requires Planning-threads to create batches of transactions

containing a specific number of transactions. However, time-
based implementations for defining batches are also possible (e.g.,

a batch is created every 5 milliseconds).

Our Q-Store’s implementation requires minimal low-level syn-

chronization among all the threads in the system. Communica-

tion threads and worker threads utilize lock-free data structures

to interact. For instance, if a worker thread is currently acting

as a planning-thread, then as soon as it has processed the re-

quired number of transactions for the next batch and created

its execution-queues, it starts acting as an execution-thread and

checks for any available execution-queue to process. When it has

executed all the required execution-queues, then it resumes the

role of a planning-thread.

Batch Meta-data Q-Store requires execution-threads to pro-

cess both the local execution-queues and remote execution-queues.

This requirement implies there is a need to store locally gener-

ated execution-queues and incoming remote execution-queues.

We employ a distributed lock-free data-structure, which we re-

fer to as the Batch meta-data (illustrated in Figures 3 and 4), to

store these execution-queues as well as any relevant meta-data

needed to fulfill transactions dependencies. The implementation

of dependencies uses a count to represent the number of de-

pendencies to be resolved. When a dependency is resolved, we

use atomic operations to decrement the dependency count. The

communication-threads push the incoming remote execution-

queues directly to the batchmeta-data, whichmakes these queues

available for execution. In this case, communication-threads are

acting as virtual planning-threads. Execution-threads access this

batch meta-data to fetch any available remote execution-queues.

Moreover, the batch meta-data also stores the incoming acknowl-

edgment messages (ACK), which an execution-thread transmits

after processing a remote execution-queue, and the commit pro-

tocol uses them.
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Commitment Protocol Q-Store’s design allows us to support
two light-weight commitment protocols. We can commit a trans-

action as soon as its last operation has been processed when

using conservative execution. Alternatively, we can defer the

commitment of all the transactions to the end of the batch when

using speculative execution.

Note that the former approach requires additional implemen-

tation complexity to ensure that committed transactions do not

read uncommitted updated from aborted transactions. The latter

approach could cause a non-trivial increase in the latency at the

client because all transactions are committed at the end. However,

the latter approach also helps the system to amortize the cost of

the commit protocol over a batch of transactions [7].

One of the key advantages of employing deterministic trans-

action processing protocols is that non-deterministic aborts are

no longer possible (e.g., aborts induced by concurrency control

algorithms). Therefore, there no need to rely on costly commit
protocols, such as 2PC.

For speculative execution in Q-Store, the commit protocol com-

mits the whole batch after all the execution-queues are processed.

On completing the execution of an execution-queue, the worker

thread sends an ACK message notifying the planner’s node about

it. When the planner’s node receives the ACKmessage, it updates

the batch meta-data associated with the remote execution-queue.

Further, Q-Store requires the local execution-threads to directly

update the batch meta-data. When all the local execution-queues

are executed and remote execution-queues are acknowledged,

the planner node starts the commit stage for the planned trans-

actions.

To commit a particular transaction, we check if all of its frag-

ments’ dependencies are resolved. If so, the transaction is com-

mitted. Otherwise, the transaction needs to be aborted, and the

rollback process is started. During rollback, the speculative de-

pendency path is walked, and dependent transactions are aborted.

Note that, in the conservative execution, there are no speculative

dependencies, and there are no cascading aborts.

6 EVALUATION
In this section, we present an extensive evaluation of Q-Store.
We implement our techniques in ExpoDB [18, 19, 35]. We com-

pare the performance of Q-Store’s speculative execution with

the following concurrency control techniques. The conservative

execution’s performance evaluation and analysis remain future

work.

• NO-WAIT: A representative of pessimistic protocols. A two-

phase locking (2PL) variant that aborts a transaction if a lock

cannot be acquired [3].

• TIMESTAMP: A basic time-ordering protocol [3] that is a repre-

sentative of time-ordering concurrency control protocols.

• MVCC: An optimistic concurrency control protocol that relies

on maintaining multiple versions of the accessed records. We

select MVCC as representative of multi-version concurrency

control protocols.

• MaaT: An optimistic concurrency control protocol [29] that is

a representative of optimistic concurrency control protocols.

• Calvin: A deterministic transaction processing protocol [40].

We use a range-based partitioning instead of the original hash-

based partitioning used by [20].

Cluster Setup We use a total of 32 Amazon EC2 instances

for all experiments (16 server nodes and 16 client nodes). The

instance type c5.2xlarge, which has 16GB of RAM and 8 vCPUs.

Table 1: Workload configurations parameters. Default val-
ues are in parenthesis.

Parameter Name Possible Parameter Values
Common parameters:
% of multi-partition txns. 1%, 5%, 10%, 20%, (50%), 80%, 100%

YCSB Workloads:
Zipfian’s theta (0.0), 0.4, 0.8, 0.9, 0.99

% of write operations 0%, 5%, 20%, (50%), 80%, 95%

Operations/txn. 2, 4, 8, 12, (16)

Partitions accessed/txn. 2, 4, (8), 12, 16

Server nodes counts 2, 4, 8, (16)

Batch sizes 5K , 10K , 20K , 40K , (80K), 160K , 320K

TPC-C Workloads:
% of Payment txn. 0%, 50%, 100%

We use Ubuntu 16.04 (xenial), GCC 5.4, Jemalloc 4.5.0 [2, 23] and

compile our code with -O2 compiler optimization flag. We pin

threads to cores to reduce the variance from the operating system

scheduling and the effect of the caching system. Each dedicates 4

threads as worker threads, and 4 as communication threads. For

Calvin, 2 out of the 4 worker threads are dedicated to sequencing

and scheduling tasks. Each client node maintains a load of 10K
active concurrent transactions.

Workloads We use two common macro-benchmarks for our

evaluation. The first one is YCSB [5]. YCSB is representative

of web applications used by YAHOO. The YCSB benchmark is

modified to have transactional capabilities by including multiple

operations per transaction. Each operation can be either a READ
or a READ-MODIFY-WRITE operation. The benchmark consists of

a single table that is partitioned across server nodes, and each

node hosts 16 million records. The benchmark can be configured

to capture various workload characteristics.

We also experiment with workloads based on the industry-

standard TPC-C [41]. The TPC-C benchmark simulates a whole-

sale order processing system. There are 9 tables and 5 transaction

types in this benchmark. All tables are partitioned across server

nodes, where a partition can host one or more warehouses. Simi-

lar to previous studies in the literature[20, 45], we focus on the

two main transaction profiles (NewOrder and Payment) out of the
five transaction profiles, which correspond to 88% of the default

TPC-C workload mix [41].

We report the average of 3 trials where each experiment trial

runs for 120 seconds, and we ignore the measurements of the

first 60 seconds, as it is used as a warm-up period. All reported

measurements are observed by the client-side; thus, they are

reflective of practical settings. Table 1, shows the various config-

uration parameters we used in our evaluation. Unless mentioned

otherwise, we employ the default values.

Our experimental evaluation focuses on answering the follow-

ing questions: (1) How does batch size affects the performance

of batch-based distributed transaction processing systems (e.g.,

Calvin and Q-Store)? How do these systems handle high-volume

workloads with large batches of concurrent multi-partition trans-

actions? How do the following workload characteristics impact

the performance of distributed transaction processing protocols:

(a) the contention induced by data access skew; the percentage of

multi-partition transactions in the workload; (b) the percentage

of update operations in each transaction; (c) the transaction size

(i.e., the number of operation per transaction); (d) the number of

partitions accessed per transaction, and; (e) the transaction pro-

files? (3) How do these transaction protocols scale with respect

to the number of nodes in the cluster?
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Figure 5: Impact of varying batch sizes on the system
throughput and 99

th percentile latency of deterministic
systems.

6.1 YCSB Experiments
The YCSB benchmark is versatile, and we use it to answer many

of the questions related to sensitivity factors.We start by studying

the impact of batch sizes for protocols that rely on batching.

Impact of Batch Sizes Using the YCSB benchmark, we first

study the impact of batch size on protocols that rely on batching,

such as Calvin and Q-Store. The current implementation of Q-Store
uses a count-based batch demarcation mechanism. On the other

hand, the original Calvin implementation uses a time-based mech-

anism. For this set of experiments to be meaningful, we modified

Calvin to use a count-based batch demarcation mechanism and

make it stand on the same ground as Q-Store. We use the default

parameters and varying the batch size from 5K to 320K. The

results are shown in Figure 5. Compared to Calvin, Q-Store scales
very well as we increase the batch size up to 80K .

Moreover, Calvin’s throughput is very low because both the

sequencing layer and the scheduling layer are single-threaded

per node. With a large number of transactions per batch, those

layers act as a bottleneck for the system. These results also show

that Q-Store’s architecture can utilize computing and network

resources more efficiently. Beyond 80K , the throughput of Q-
Store plateaus as transaction processing becomes CPU-bound,

and the latency starts to increase because worker threads take

more time to process large batches. Calvin cannot handle large
batches as transaction latency values exceed the experiment

period. Remarkably, at 40K batches, Q-Store demonstrates an

improvement of 22.1× the throughput of Calvin and an order of

magnitude lower latency.

The most significant insight for Q-Store is that for large deploy-
ments (e.g., here, we have a total of 64worker threads distributed

over 16 server nodes), we need more work per thread to ensure ef-

ficient transaction processing and to hide the latency. Q-Store can
handle large batches of concurrent transactions while keeping

the latency low.

The presented results indicate that Q-Store is efficient in terms

of performing useful work locally. The bottleneck is in the com-

munication protocol, which is expected because the network is

slower than local communication.

In the remaining experiments, we use the original time-based

batch demarcation mechanism for Calvin and use their reported

parameter of 5ms [20]. We observe that with 5ms time-based

batch demarcation, Calvin produces batches of size 160 per node
approximately.

Variable Contention In this set of experiments (Figure 6),

we vary the Zipfian skew factor θ from 0.0 (uniform) to 0.99

(extremely skewed). As θ approaches 1.0, the data access becomes
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Figure 6: Impact of varying the data access skewness pa-
rameter θ of the Zipfian distribution on systems through-
put (log scale).

more skewed within a partition, but the partitions are chosen

uniformly per transaction. In other words, each partition receives

uniform access, but the record access within the partition is

skewed. It is possible to use a Zipfian distribution for partitions

as well, but that would not measure the performance of how each

node is dealing with skewness. Further, in such a case, mostly

one node is active while the remaining nodes are idle most of

the time. We use a 50% multi-partition workload such that the 16

operations in a transaction randomly access exactly 8 partitions.

Both Calvin andQ-Store perform better because they both avoid

the cost of the two-phase commit protocol (2PC). However, Q-
Store achieves up to 6× better throughput. The first reason for

that is queue-oriented execution and communication. Q-Store
sends a queue of ordered operations that belong to several con-

current transactions to remote nodes. Thus, Q-Store ensures a
more efficient communication.

Since different threads execute queues in parallel, Q-Store ex-
ploits intra-transaction parallelism (bothwithin a node and across

nodes) better than Calvin. For Calvin, the level of contention does

not affect its performance because the bottleneck is in the se-

quencing and scheduling layer. Note that Q-Store’s throughput
degrades slightly under high-contention (i.e., beyond θ = 0.6)

due to the imbalance in the size of execution queues.

The throughputs for non-deterministic protocols are low be-

cause they require a costly 2PC protocol for committing each

transaction. As the contention increases, the abort rates also

increases, which lowers their performance even more. When

transactions abort, they are retried using a random back-off

period. Under high-contention, transactions may abort multi-

ple times, which effectively increases the latency per transac-

tion, which lowers the throughput. Remarkably, Q-Store achieves
nearly two orders of magnitude better system throughput under

high-contention in comparison to non-deterministic protocols.

Varying multi-partition transactions rate Now, we focus
on the impact of multi-partition transactions in the workload.

We vary the percentage of multi-partition transactions in the

workload from 0% (single-partition transactions only) to 100%

(multi-partition transactions). We fix the values of other param-

eters to the default values. The results shown in Figure 7 are

for low contention (i.e., θ = 0.0). Note that in comparison to

Figure 6, there is no noticeable difference in the throughputs of

the protocols with single-partition transaction workloads, except

for Calvin.
Non-deterministic protocols do not need to perform 2PC,

which allows them to avoid 2PC’s cost. When the rate of multi-

partition transactions increases, non-deterministic protocols in-

cur the overhead of 2PC to ensure serializable execution, and
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Figure 7: Impact of varying the percentage of multi-
partitions transactions in the workload on the system’s
throughput.
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Figure 8: Impact of varying the percentage of update oper-
ations in the workload on the system’s throughput.

thus, their throughput decreases. Thus, our results validate pre-

viously published results (e.g., [20]), which illustrate the poor

performance of non-deterministic protocols.

Despite the deterministic nature of Calvin, its throughput also
decreases as the rate of multi-partition transaction increases.

Calvin needs to send a given transaction to all participants and

waits for their responses before scheduling the next conflicting

transaction. This approach increases the communication over-

head per transaction and negatively affects the performance of

Calvin. Unlike Calvin, Q-Store is not sensitive to multi-partition

transactions. In addition to avoiding 2PC overhead, it has minimal

communication overhead. Q-Store communicates only a minimal

number of execution queues between partitions, which contain

scheduled operations of several transactions. Thus, it effectively

reduces the communication overhead per transaction. Q-Store
outperforms Calvin’s throughput by up to 10.6×.

Vary the percentage of update operations In the follow-

ing experiments, we study the impact of the percentage of the

update operations on the transaction processing performance. In

previous experiments, we used a value of 50%, which means that

8 out of 16 operations are updating the database in each trans-

action. To study this factor, we vary the percentage of update

operations from 0% (read-only operations) to 95%. We fix the re-

maining parameters to their default values. Note that increasing

the rate of update operations increases the contention on records

(e.g., exclusive locks induce record contention).

Figure 8 shows the result of varying the percentage of up-

date operations. The results show that neither Q-Store nor Calvin
are sensitive to this factor. Calvin employs deterministic lock-

ing to avoid aborting transactions unnecessarily while Q-Store
executes operations according to their order in a given queue.
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Figure 9: The impact of varying the number of operation
per transaction on system’s throughput.We force each op-
eration access a different partition. This results is for low
contention θ = 0.0.

In other words, for Q-Store there is no difference between the

read or update operations as Q-Store executes each operation

in-order, which eliminates any sensitivity to this factor. With

non-deterministic protocols, we observe that the abort-rate in-

creases as the contention increases due tomore update operations

in the workload. For NO-WAIT, MaaT, TIMESTAMP, and MVCC, the
abort-rates are up to 41%, 19%, 7%, and 6%, respectively, at 95%

update rate.

When a transaction is read-only, there is no need to perform

2PC, but participants still need to communicate messages to fi-

nalize the running transaction. As the transaction involves more

update operations, the overhead of 2PC protocol becomes more

substantial, which negatively affects the performance of non-

deterministic protocols that rely on 2PC as their atomic com-

mitment protocol. Notably, Q-Store shows an improvement in its

system’s throughput by up to 5.9× and 17.1× over Calvin and

MVCC (the next best non-deterministic protocol), respectively.

Vary the number of operations per transaction Now, we

experiment with varying the number of operations per trans-

action. We set the percentage of multi-partition transactions to

50%, and force each transaction to access the same number of

partitions as its number of operations. For example, if a transac-

tion has 4 operations, the number of partitioned accessed by that

transaction is also 4. However, each partition has the same proba-

bility of access by any operation, and we do not force operations

to be remote.

This experiment aims to capture execution and communica-

tion overheads as transactions become larger. For non-deterministic

protocols, as the number of operations increases, the cost of 2PC

increases because it is more likely that more nodes need to par-

ticipate in the commitment protocol. Calvin performs better than

other non-deterministic protocols, but its performance does not

scale with larger transactions. Q-Store, on the other hand, scales

well as the number of operations per transaction increases. With

16 operations per transaction, Q-Store’s performance reaches a

remarkable throughout of nearly 16 million operations per sec-

ond. These numbers are 12× and 20× better than those for Calvin
and NO-WAIT, respectively, as shown in Figure 9. These gains are

due to the proposed efficient queue-oriented execution and com-

munication. For Q-Store, the number of queues communicated

is constant (but their sizes may vary) while the other protocols

exchange messages for remote operations, which increases the

overall communication overhead.
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Figure 10: The impact of varying the number of partitions
accessed by each transaction on the system’s throughput.
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Figure 11: Throughput scalability results while varying
the number of server nodes.

Vary partitions per transaction In Figure 10, we show the

results for varying the number of partitions accessed by transac-

tions having 16 operations. We use uniform data access, which

leads to a low contention workload. By having uniform data ac-

cess, the effect of contention is negligible, which can help us to

examine the communication costs. As we increase the number

of partitions accessed by a transaction, the overhead of commit-

ting this transaction increases because the commitment involves

agreement of more participants per transaction. This issue is

mainly a problem for non-deterministic protocols as the partici-

pants need to agree on the order for operations. As the number of

participants increases, more coordination is required to commit

each transaction.

While Calvin eliminates the overhead of 2PC, it still suffers

from increasing the number of partitions accessed per transaction.

The reasons for that are: (i) it needs to send the transactions to

more participants, and (ii) it needs to wait for acknowledgments

from more participants before declaring a transaction as commit-

ted. This communication overhead increases as the number of

partitions accessed increases. In contrast, Q-Store demonstrates

its insensitivity to this factor and achieves a throughput of around

a million transactions per second despite the increase in the num-

ber of partitions accessed per transaction. Since the workload

is uniform, the number of partitions accessed affects only the

sizes of remote execution queues, and there is no increase in the

number of communicated execution queues.

Scalability For all previous experiments, we have used 16

servers. In this set of experiments, we vary the number of nodes to

evaluate the scalability. We set the percentage of multi-partition

transactions to 50%, and force each transaction to access all avail-

able partitions. Figure 11, shows that Q-Store scales well as the
number of server nodes increases in the cluster, achieving over
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Figure 12: The impact of different TPC-C transaction
mixes on the system’s throughput. 15% multi-partition
transactions is used.
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Figure 13: Varying the percentage ofmulti-partition trans-
action with equal ratios of Payment and NewOrder trans-
actions.

1 million transactions per second at 16 server nodes. Other ap-

proaches do not scale due to the overhead of multi-partition

transactions. Calvin’s performance cannot scale because of the

single-threaded pre-execution phases, while non-deterministic

protocols do not scale due to the increased overhead of 2PC.

6.2 TPC-C Experiments
We also evaluate Q-Store with workloads based on the industry-

standard TPC-C benchmark. For this set of experiments, we use

a total of 16 server nodes, with 4 warehouses per server. Hence,

the total number of warehouses is 64. We use three workloads:

100% NewOrder-transaction workload, 50% Payment and 50%

NewOrder transactions workload mix, and finally 100% Payment-

transaction workload. We use the standard rate of 15% of the

payment transactions coming from remote customers as the

multi-partition transaction rate, for all the transactions in the

workloads. We also restrict the number of partitions accessed to

two even for NewOrder transactions.

The results are shown in Figure 12. Both deterministic systems

Calvin and Q-Store significantly outperform other algorithms by

a significant margin due to their use of 2PC. Q-Store outperforms

Calvin by up to 1.8×. Remarkably, Q-Store outperforms NO-WAIT,
which is the best performing non-deterministic protocol, by up

to 55.2×. NO-WAIT suffers from high abort rates due to contended

warehouse records (to avoid deadlocks) and the overhead of

2PC for multi-partition transactions. On the other hand, Q-Store
eliminates the overhead of 2PC and execution-induced aborts.

The second set of experiments that use TPC-C workloads

study the effects of multi-partition transaction rates (Figure 13).

The transaction profiles in TPC-C are more complicated than

their YCSB counterparts. It involves data dependencies among
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operations, which can reduce the performance of Q-Store. For
example, in the NewOrder transaction, many operations require

the new value of the OrderId, which is updated by the same

transaction. Our current implementation creates an execution-

queue per warehouse, which serializes all operations accessing

records belonging to a given warehouse. Despite this unfavorable

data partitioning scheme, Q-Store’s throughput still outperforms

Calvin’s throughput. 1

7 RELATEDWORK
Research on distributed transaction processing systems started

several decades ago. One of the key challenges in distributed

transaction processing is managing the execution of concurrent

transactions such that they produce serializable execution histo-

ries. Bernstein and Goodman [3] give a comprehensive overview

of distributed concurrency control techniques. In this section,

we cover some of the recently proposed distributed transaction

processing systems and transaction processing techniques that

are mostly related to Q-Store. We categorize them as follows.

Non-deterministic Transaction ProcessingWhen a trans-

action updates multiple partitions of the distributed database,

there is a need for a commit protocol to ensure that the updates

are consistent across all the partitions because nodes may ar-

rive at distinct order of execution for the transaction operations.

As a result, aborts may occur non-deterministically. The two-

phase commit protocol is typically used to resolve this problem,

but naive implementations of 2PC suffer from costly overheads,

which negatively impact the system performance. Therefore,

many optimizations for 2PC have been proposed (e.g., [26, 29, 31,

39]) while preserving the non-deterministic nature of execution.

However, due to this non-determinism, these systems suffer from

execution-induced aborts and cannot eliminate the overhead of

2PC [1]. In contrast to these approaches, Q-Store processes trans-
actions deterministically and eliminates the overhead of 2PC and

non-deterministic aborts during execution.

EliminatingMulti-partitionTransactions Some proposed

approaches avoid the cost of 2PC by avoiding the need to pro-

cess multi-partition transactions. For example, G-store [6] allows
applications to declare arbitrary groups of records and moves

these groups to a single node to avoid the overhead of processing

multi-partition transactions. In a similar spirit, LEAP [27] avoids

the cost of 2PC by moving records accessed by a given transac-

tion to a single node at run-time implicitly. Q-Store, on the other

hand, embraces multi-partition transactions, and deterministi-

cally orders operations into execution-queues; thus avoiding the

need for a 2PC protocol.

Deterministic Transaction Processing Deterministic ap-

proaches to transaction processing showed great potential in the

academic research literature and even had commercial offerings,

e.g., [12, 42]. For single-partitioned workloads, H-Store[25] uses
single-threaded serial execution per partition. For workloads

having multi-partition transactions, H-Store provides limited con-

currency by employing a coarse-grained locking mechanism that

locks all the partitions prior to the start of a transaction. Jones

et al. [24] studies the application of speculative concurrency

control to multi-partition transactions in H-Store, which allows

transactions to read uncommitted updates of transactions that are

1
For TPC-C like workloads, unlike Calvin, Q-Store’s performance can be further

optimized by further splitting execution-queues and exploit parallelism instead of

serializing operations per warehouse. However, such optimization is beyond the

scope of this paper, and we leave it to future work.

performing distributed commitment protocol. Unlike H-Store, Q-
Store does not lock partitions to produce a serializable execution

for operations of multi-partition transactions. Instead, Q-Store
creates execution-queues that capture the serializable order of

conflicting operations, and it assigns these execution-queues

to worker threads. After that, each worker thread executes its

assigned execution-queues according to the pre-determined pri-

ority of execution-queues, which allows Q-Store to maintain its

high performance despite the multi-partition workloads.

In Gargamel [4], a single dedicated load-balancing node pre-

serializes (using static analysis) possibly conflicting transactions

before their execution. The load-balancing node can easily be-

come the bottleneck for the system. Unlike Gargamel, Q-Store
is centered around the notion of priority and exploits multiple

nodes for planning.

Calvin [40, 44] uses determinism to eliminate the cost of two-

phase-commit protocol when processing distributed transactions.

T-Part [44] relies on the same system architecture of Calvin, but
its scheduling layer constructs transaction dependency graphs to

reduce the stalling of worker threads. There are fundamental ar-

chitectural differences between Calvin and Q-Store. The planning
phase performs the same functionality as the two-step (sequenc-

ing and scheduling) pre-processing phases, but in parallel, and
the execution phase of Q-Store does not rely on any locking mech-

anism and employs a queue-oriented (speculative and conserva-

tive) processing design. Additionally, in contrast to Calvin, which
assigns a transaction to a worker thread for processing, Q-Store
assigns an execution-queue to a worker. Because of this thread-

to-transaction mapping, Calvin cannot exploit intra-transaction
parallelism opportunities within a single node.

Intra-transaction Parallelism Most transaction processing

systems perform a thread-to-transaction assignment, whichmakes

these systems unable to exploit intra-transaction parallelism ef-

ficiently. Several research studies proposed techniques for ex-

ploiting this kind of parallelism in centralized environments (e.g.,

[10, 34, 35, 43]). Q-Store goes beyond these proposals and ex-

ploits intra-transaction parallelism within and across nodes in

the context of distributed transaction processing.

8 CONCLUSIONS AND FUTUREWORK
We presented Q-Store, which efficiently processes distributed

multi-partition transactions via queue-oriented priority-based

execution model. We present a formalization of our system and

describe its design and implementation. We perform an extensive

evaluation of Q-Store using different workloads from standard

benchmarks (that is, YCSB and TPC-C). We demonstrate that Q-
Store, consistently and significantly achieves higher performance

than existing non-deterministic and deterministic distributed

transaction processing systems. We experimentally demonstrate

that Q-Store out-performs the state-of-the-art deterministic dis-

tributed transaction processing protocol by up to 22.1× with

YCSB workloads. Against non-deterministic distributed transac-

tion processing protocols, Q-Store achieves up to two orders of

magnitude better throughput with YCSB workloads, and up to

55× with TPC-C workloads.

There are renewed research interests in byzantine fault-tolerance

for transaction processing [14–17, 21, 32]. In future, we plan to

support byzantine fault-tolerance for database transactions in Q-
Store. On the one hand, blockchain transactions are deterministic,

which aligns with the kind of transactions that Q-Store’s supports.
On the other hand, it is very challenging to design and implement
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efficient, Byzantine fault-tolerant protocols. We believe that the

design principles behind Q-Store can lead to efficient Byzantine

fault-tolerant protocols, as very few blockchain proposals look

at optimizing execution.
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ABSTRACT
Time series anomaly detection is an important task, with appli-
cations in a broad variety of domains. Many approaches have
been proposed in recent years, but often they require that the
length of the anomalies be known in advance and provided as an
input parameter. This limits the practicality of the algorithms, as
such information is often unknown in advance, or anomalies with
different lengths might co-exist in the data. To address this limita-
tion, previously, a linear time anomaly detection algorithm based
on grammar induction has been proposed. While the algorithm
can find variable-length patterns, it still requires preselecting val-
ues for at least two parameters at the discretization step. How to
choose these parameter values properly is still an open problem.
In this paper, we introduce a grammar-induction-based anomaly
detection method utilizing ensemble learning. Instead of using
a particular choice of parameter values for anomaly detection,
the method generates the final result based on a set of results ob-
tained using different parameter values. We demonstrate that the
proposed ensemble approach can outperform existing grammar-
induction-based approaches with different criteria for selection
of parameter values. We also show that the proposed approach
can achieve performance similar to that of the state-of-the-art
distance-based anomaly detection algorithm.

1 INTRODUCTION
Time series anomaly detection is an important task, with appli-
cations in a broad variety of domains. Many approaches have
been proposed in recent years, but often they require that the
length of the anomalies be known in advance and provided as
an input parameter. Recently, this limitation has been addressed
by introducing a time series anomaly detection approach that is
based on grammar induction and has a linear time complexity
with respect to the data size (the time series length).

Typically, the grammar-induction-based anomaly detection
follows a four-step process. In the first step, the input time series
is converted into a discrete sequence of symbols via a sliding win-
dow; this discretization depends on two parameters. In the second
step, grammar induction (e.g., via the Sequitur algorithm [15])
is applied to the discrete sequence to quickly identify grammar
rules that are repeating strings of symbols. The third step maps
the repeating strings back to the time series subsequences that
the strings represent. Finally, a meta time series named rule den-
sity curve is computed, which records the frequency of grammar
rules at each point and is used to detect and rank the anomalies.
Specifically, it is assumed that anomalies correspond to rarely
occurring strings and hence are indicated by minima of the rule
density curve.

© 2020 Copyright held by the owner/author(s). Published in Proceedings of the
22nd International Conference on Extending Database Technology (EDBT), March
30-April 2, 2020, ISBN 978-3-89318-083-7 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

While the grammar-induction-based algorithm can find variable-
length patterns, it still requires preselecting values for at least
two parameters at the discretization step. These two discretiza-
tion parameters are the number of segments (i.e., the length of
a word, also called PAA size which will be explained later), and
the alphabet size. How to choose the parameter values properly
is still an open problem, especially in an unsupervised setting
where no training data are available.

Figure 1 presents an example that illustrates the challenge of
choosing proper parameter values, even with the knowledge of
ground truth information that allows us to evaluate the quality of
anomalies detected. Figure 1.top shows a snippet of dishwasher
electricity usage time series. An anomalous cycle that has an
unusual short power usage period is highlighted in red. We ran
the algorithm with different parameter value combinations, and
the results are shown in Figure 1.bottom. According to the figure,
the best parameter value combination (indicated by the arrow) is
significantly different from the second best combination. More-
over, we see that parameter values that are close to the optimal
values actually perform badly. As a result, guessing the “best”
parameter values can be very tricky.

Figure 1: (top) A snippet of dishwasher electricity usage
time series. An anomalous cycle is highlighted in red. (bot-
tom) Performance of the grammar-induction-based algo-
rithm with different discretization parameter values in
the task of detecting the anomalous subsequence.

To overcome the challenge mentioned above, in this paper,
we introduce a robust version of the grammar-induction-based
anomaly detection method, which utilizes ensemble learning.
Intuitively, instead of using a single combination of parameter
values, the method generates the final result based on a set of
results obtained using different parameter values. We design an
approach that combines the results returned by each ensemble
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member corresponding to a different combination of parame-
ter values. Furthermore, in the discretization step, we use an
approach to compute multi-resolution words to efficiently repre-
sent time series subsequences. This approach can dramatically
reduce the cost of discretization and increase the scalability of
the proposed work.

The contribution of this paper is summarized as follows:

• The proposed ensemble grammar induction can achieve
better performance than the grammar induction with a
single combination of parameter values.

• The proposed ensemble grammar induction is particularly
suitable for unsupervised anomaly detection, where no
training set is available to perform a grid search for the
best parameter values.

• The proposed approach has a linear time complexity with
respect to the data size and can achieve performance com-
parable to that of the state-of-the-art distance-based ap-
proach that has a quadratic time complexity.

• Weadapt a fast algorithm to discretize subsequences, which
reduces the cost of repeated computation.

• We demonstrate that the ensemble approach can be ap-
plied to find meaningful anomalies in real-world applica-
tion.

The rest of the paper is organized as follows. Section 2 de-
scribes related work. Section 3 presents definitions and nota-
tions used in the paper. The process used for discretization and
numerosity reduction is described in Section 4. The grammar-
induction-based anomaly detection is presented in Section 5. The
ensemble approach is introduced in Section 6. The experimental
results are shown in Section 7, and conclusions are summarized
in Section 8.

2 RELATEDWORK
First, we describe the state-of-the-art time series anomaly de-
tection approach. Keogh et al. [9] introduced a concept named
time series discord, which is the subsequence that has the largest
one–nearest-neighbor (1-NN) distance, hence it represents the
most unusual subsequence in the time series. The authors in-
troduced an algorithm named HOTSAX to effectively detect the
time series discord. Recently, a series of matrix-profile-based ap-
proaches, STOMP [23] and STAMP [21], have been introduced
for fast computation of 1-NN distances for every subsequence. It
has been shown that compared with the original method, STOMP
and STAMP can achieve more stable and generally better per-
formance. However, all these methods have a quadratic time
complexity with respect to the data size, and the accuracy is
sensitive to the length of the discord that has to be specified in
advance as an input parameter [20].

In previous work, we proposed a series of approximate time
series pattern discovery algorithms called GrammarViz based
on grammar induction [10, 19, 20]. The idea is that by learning
a context-free grammar from a discrete sequence of symbols
that approximates the original time series, one can identify the
repeating strings. Recently, in [18], we have extended the idea of
grammar-induction-based anomaly detection by introducing the
concept of rule density curve, which is a meta time series that
records the frequency of grammar rules (repeating strings) at
each point of the original time series. Since anomalies correspond
to rarely occurring strings, they are indicated by minima of the
rule density curve. It has been shown that this approach can

achieve competitive performance compared to the state-of-the-
art while having linear time complexity. However, the algorithm
requires the user to preselect values of two important parameters,
and the performance can be greatly affected by these values.

Several ensemble algorithms have been proposed for unsuper-
vised anomaly detection [17, 22]. Most of them use the average
performance as the ground truth and select a very small number
of detectors to approximate the average performance. All these
approaches are introduced for point-based anomaly detection.
How to use them for detecting anomalous subsequences is still
unclear. Besides, since subsequences extracted from a time series
via a sliding window are highly overlapped, the detector used in
these approaches [1] cannot resolve this problem.

Other works [2, 4, 8] also focus on anomaly detection; however,
these techniques often focus on detecting anomalies in event logs
(discrete or mixed data type time series) and the lengths of the
anomalies are often very short.

3 NOTATIONS AND PROBLEM DEFINITION
We first describe the fundamental definitions related to time
series and grammar induction. We then formulate the problem
of time series anomaly detection.

3.1 Notations and Definitions
We start with the definitions related to time series:

Time series T = t1, . . . , tm is a set of observations ordered
by time.

Subsequence Tp,q of a time series T is a subsequence of ele-
ments in T starting from position p and ending at position q, of
length n = q − p + 1. Typically, n ≪m, and 1 ≤ p ≤ m − n + 1.

Subsequences can be extracted from time series via a slid-
ing window. In many applications, we are interested in finding
unusual “shapes.” Therefore, anomaly discovery result is more
meaningful when the method can maintain offset- and amplitude-
invariance during the anomaly detection process. This can be
achieved by normalizing all subsequences prior to applying an
anomaly detection algorithm. z-normalization is a procedure
that normalizes the mean and standard deviation of a subse-
quence to zero and one, respectively.

Since the proposed anomaly detection approach is based on
grammar induction, we next introduce the definitions related
to grammar induction using a toy example shown in Figure 2.
Intuitively, grammar induction is a process that induces a hierar-
chical grammar structure from a token sequence S , which is a
sequence of discrete tokens (words). In the example, S consists
of nine two-letter tokens. The hierarchical grammar structure
is represented by a set of grammar rules. Each grammar rule
represents a repeating string of token segments in S . In the exam-
ple, two rules R1 and R2 represent the repeating token segments
ab,bc and cc, cc , respectively. Following the terminology used
in previous work [15, 20], each grammar rule is also called a
non-terminal and each token stored in the token sequence is
called a terminal.

Using the set of grammar rules, the original token sequence S
is represented by the compressed sequence R0. Since compress-
ibility is a measure of regularity (and hence incompressibility is
a measure of anomalousness), the compressed sequence plays
an important role in motif (repeated patterns) discovery and
anomaly detection.
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Figure 2: Example of grammar induction applied to a to-
ken sequence.

Clearly, the grammar induction approach cannot be directly
used for real-valued time series. To use it, we need first to approx-
imate the original time series by a discretized token sequence.
We describe the time series discretization process in detail in
Section 4.

3.2 Problem of Anomaly Detection
Based on the definitions above, we can formulate the problem of
anomaly detection. In this work, we follow the previous anomaly
detection framework GrammarViz [20], and determine a hierar-
chical grammar structure for a time series, through the processes
of time series discretization and grammar induction. The anom-
aly candidates are subsequences that cannot be compressed by
induced grammar rules.

To illustrate the basic idea behind this process of anomaly de-
tection, we use another toy example of a simple token sequence:

S = aa,bb, cc, xx,aa,bb, cc . (1)

The grammar structure induced from S is shown in Table 1. We
see that S contains a repeating pattern, aa,bb, cc , represented by
the grammar rule R1. The token xx , however, does not appear
in any grammar rules (i.e., it is incompressible). It is not hard
to see that token xx is structurally dissimilar from the rest of
the sequence. In the grammar-induction-based time series anom-
aly detection framework, the subsequence that xx represents is
considered an anomaly candidate.

Table 1: Example of grammar rules induced from token
sequence S of Eq. (1)

Grammar rules Expanded sequence
R0 → R1, xx,R1 aa,bb, cc, xx,aa,bb, cc

R1 → aa,bb, cc aa,bb, cc

4 DISCRETIZATION AND NUMEROSITY
REDUCTION

Time series discretization [12] is a common step in many time
series data mining tasks, including anomaly detection [5, 9]. Since
grammar induction requires discrete input, it is necessary to
approximate the time series by a token sequence first. In general,
discretization offers several advantages including noise removal,
dimensionality reduction, and improved efficiency.

In this section, we first describe the algorithm called Symbolic
Aggregate approXimation (SAX) [12], a widely used time series
discretization technique. We then describe numerosity reduction,
a procedure that removes repeating consecutive tokens to form
a more compact token representation of a time series [11, 20].

4.1 Symbolic Aggregate approXimation
In this section, we describe SAX [12], a popular technique used
to discretize univariate time series.

SAX consists of two steps. At the first step, the Piecewise Ag-
gregate Approximation (PAA) is used to convert a normalized
subsequence of length n from a time series T into a representa-
tion of a lower dimension w < n (w is called PAA size). Specif-
ically, the subsequence is divided into w equal-sized windows,
and the average value of the elements within each window is
computed. In other words, the PAA coefficients vector [12] is a
w-dimensional vector that consists of the average values fromw
equal-sized segments of the input subsequence. PAA coefficients
are an approximate representation of the original subsequence.

At the second step, the PAA coefficients vector is mapped to
w symbols from an alphabet of size a, according to a breakpoint
table [12], defined such that the regions are approximately equal-
probable under the Gaussian distribution. This maximizes the
chances that the symbols occur with an approximately equal
probability. Thesew symbols form a SAX word.

Figure 3 illustrates the SAX process for an example subse-
quence (shown as the blue curve). The bold flat lines represent
the values of PAA coefficients computed from their respective
segments in the subsequence. The breakpoint table with a from 2
to 4 is also shown in the figure. Since we set a = 3 in this example,
two breakpoints in the second column of the table are used to
generate three regions: (−∞,−0.43), [−0.43, 0.43), [0.43,∞). The
PAA coefficients falling into these three regions are mapped to
symbols a, b, and c , respectively. In this example, the SAX word
abca is formed to approximate the original subsequence.

This description shows how SAX is applied to a given sub-
sequence. In order to discretize the entire time series, SAX is
usually applied via a sliding window of length n.

Figure 3: Example of the SAXprocess, with a = 3 andw = 4,
which approximates the original subsequence by theword
abca.
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4.2 Numerosity Reduction
In practice, since neighboring subsequences are only off by one
point, the neighboring tokens generated by SAX are often identi-
cal to each other. This phenomenon, however, will result in an
overwhelming number of grammar rules that represent trivial
matches, and this redundancy will significantly affect both the
scalability and the quality of results. To avoid this problem, a
numerosity reduction step is added to further compress the token
sequence. Specifically, whenever there is a sequence of one token
repeating consecutively multiple times, numerosity reduction
will output only the first occurrence of the token along with its
offset.

For example, a token sequence

S = ba,ba,ba,dc,dc,aa,ac,ac (2)

can be compressed to

SNR = ba1,dc4,aa6,ac7, (3)

where the subscripts indicate the positions in the original uncom-
pressed token sequence. SNR contains all information needed to
retrieve the original token sequence.

5 GRAMMAR INDUCTION
In this section, we first describe Sequitur [15], a grammar induc-
tion algorithm with a linear time complexity. We then describe
the process of computing the rule density curve and ranking
anomalies.

5.1 Sequitur
Sequitur is a linear-time greedy algorithm to induce a context-
free grammar structure from a discrete token sequence.

Sequitur maintains a list of grammar rules and a table of di-
grams based on the input sequence. A digram is a pair of consec-
utive tokens (terminals or non-terminals) in the sequence. Two
principles, digram uniqueness and rule utility, are applied to con-
strain the rules during grammar induction. Digram uniqueness
requires that digrams stored in the digram table should be unique.
Rule utility requires that rules that only appear once should be
removed to minimize the size of grammar.

To illustrate how Sequitur works, consider an example token
sequence generated by SAXwith parametersw = 2, a = 3,n = 16,
after the numerosity reduction step:

SNR = ab1,bc8,aa15, cc21, ca25,ab29,bc34,aa40. (4)

A step-by-step grammar induction process is shown in Table 2.
From Step 1 to Step 6, since neither digram uniqueness nor rule
utility is violated, the algorithm simply reads the first six tokens
and adds digrams into the digram table, respectively. In Step 7,
the algorithm finds that the digram {ab,bc} occurs in the digram
table twice. Therefore, in Step 8, the algorithm forms a new rule,
R1 → ab,bc . The new non-terminal symbol R1 is generated
to replace all occurrences of {ab,bc}, and the digram table is
updated to maintain the uniqueness of digrams by removing
{ab,bc} and adding {R1,aa} and {ca,R1}. Similarly, in Step 9,
the digram {R1,aa} appears twice and therefore is replaced, in
Step 10, by a new rule R2. After the digram table is updated in
Step 10, the algorithm finds that the rule R1 only appears once.
Therefore, in Step 11, R1 is expanded to satisfy rule utility.

After processing the entire token sequence, the original token
sequence is compressed into R0 → R2, cc, ca,R2 and the string
cc, ca is identified as an anomaly candidate since it cannot be
compressed.

5.2 Rule Density Curve
We next describe the construction of the rule density curve [20].
Simply stated, a rule density curve is a meta time series, in which
each value is equal to the number of grammar rules that “cover”
the respective time point. For anomaly detection, we are inter-
ested in the intervals for which the rule densities are the lowest.
These intervals correspond to subsequences (more precisely, the
SAX strings that represent these subsequences) that rarely ap-
pear in grammar rules, and hence are potentially anomalous. For
the example sequence shown in Table 2, the time series points
corresponding to the token subsequence cc, ca will have a count
of zero since cc, ca does not appear in any grammar rules.

To construct the rule density curve, we map each instance of a
rule back to the subsequence index based on the index recorded
in the numerosity reduction step, and then we keep track of the
number of rules that cover each time point.

Figure 4: An example of the rule density curve generated
for an ECG time series.

Once the rule density curve is constructed, we can locate the
potentially anomalous subsequences by finding the local minima
of the curve and ranking them based on their respective rule
density values.

An example is shown in Figure 4. Figure 4.top shows an elec-
trocardiogram (ECG) time series and Figure 4.bottom shows the
rule density curve computed from this time series. An anom-
aly candidate, highlighted in red in Figure 4.top, corresponds to
the minimum of the rule density curve. According to [20], this
location corresponds to an anomalous premature heart beat.

5.3 Challenges of Parameter Selection
Although the grammar-induction-based approach described above
has been successfully used in time series data mining problems
[7, 20], it has two drawbacks that can strongly affect the quality
of patterns found. First, approximation errors are inevitably in-
troduced due to the information loss at the discretization step.
For example, two subsequences represented by the same SAX
word may actually be dissimilar and have a large distance. Sec-
ond, Sequitur is a greedy algorithm which cannot guarantee the
globally optimal result. Therefore, the grammar rules learned
may not perfectly reflect the repeating and anomalous patterns
in the time series. In summary, a single run of grammar induction
with fixed parameter values may simply not be enough to detect
high quality anomalies.

In this paper, in order to mitigate the limitations of the ex-
isting grammar-induction-based anomaly detection framework
while still maintaining high efficiency, we introduce an ensemble
approach to generate a rule density curve based on multiple runs
with different parameter values.
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Table 2: Example of Sequitur inducing grammar from token sequence SNR of Eq. (4)

Step Grammar rules Digrams
1. S → ab1
2. S → ab1,bc8 {ab,bc}

3. S → ab1,bc8,aa15 {ab,bc}, {bc,aa}

4. S → ab1,bc8,aa15, cc21 {ab,bc}, {bc,aa}, {aa, cc}

5. S → ab1,bc8,aa15, cc21, ca25 {ab,bc}, {bc,aa}, {aa, cc}, {cc, ca}

6. S → ab1,bc8,aa15, cc21, ca25,ab29 {ab,bc}, {bc,aa}, {aa, cc}, {cc, ca}, {ca,ab}

7. S → ab1,bc8,aa15, cc21, ca25,ab29,bc34 {ab,bc}, {bc,aa}, {aa, cc}, {cc, ca}, {ca,ab}, {ab,bc}
8. S → R1,aa15, cc21, ca25,R1 {R1,aa}, {bc,aa}, {aa, cc}, {cc, ca}, {ca,ab}, {ca,R1}

R1 → ab,bc {ab,bc}

9. S → R1,aa15, cc21, ca25,R1,aa40 {R1,aa}, {bc,aa}, {aa, cc}, {cc, ca}, {ca,ab}, {ca,R1}, {R1,aa}
R1 → ab,bc {ab,bc}

10. S → R2, cc21, ca25,R2 {R2, cc}, {cc, ca}, {ca,R2}
R1 → ab,bc {ab,bc}
R2 → R1,aa {R1,aa}

11. S → R2, cc21, ca25,R2 {R2, cc21}, {cc, ca}, {cc21,R2}
R2 → ab,bc,aa {ab,bc}, {bc,aa}

6 ENSEMBLE GRAMMAR INDUCTION
In this section, we introduce the proposed ensemble-based gram-
mar induction approach.

6.1 Ensemble Rule Density Curve
The algorithm that generates the ensemble rule density curve
from a set of multiple grammar induction runs is shown in Al-
gorithm 1. First, we generate N rule density curves using values
for PAA sizew and alphabet size a randomly chosen from inter-
vals [2,wmax] and [2,amax], respectively (Lines 4–6). Second, we
remove low-quality curves based on their standard deviations
(Lines 7–10). Third, we normalize each remaining curve to the
same scale (Line 11). Finally, we combine the results from all
normalized curves by computing the median (Line 14).

Algorithm 1: Ensemble Rule Density Curve

1: Input: time series T , sliding window length n, ensemble
size N , maximum PAA sizewmax, maximum alphabet
size amax, ensemble selectivity τ

2: Output: ensemble rule density curve de
3: D =[] {Compute N rule density curves with random

parameter values and compute the standard deviation
for each of them}

4: for i = 1 to N do
{Randomly generate parameter values; anyw,a

combination is used only once}
5: w,a = GenerateRandomParam(wmax,amax)
6: di = GrammarInduction(T ,n,w,a)
7: si = ComputeStd(di );
8: end for
9: index = ArgSort(s) {Sort the standard deviations in

descending order}
10: for i = 1 to τN do {Keep τ% of the density curves and

normalize each of them}
11: dnorm = dindex[i]/max(dindex[i])
12: D.add(dnorm)
13: end for
14: de = ComputeMedian(D) {Compute the median for all

normalized rule density curves}
15: return de

6.1.1 Removing Low-Quality Rule Density Curves. Not all rule
density curves provide reliable information about anomalies. Intu-
itively, low-quality curves correspond to situations where a gram-
mar rule set has a similar frequency everywhere, and they should
be removed from the ensemble to improve the effectiveness of
anomaly detection. Towards this end, the algorithm computes
the standard deviation for each of the generated rule density
curves (Line 8). We then rank the curves based on the standard
deviation in descending order and only keep the top τ% of the
curves to form the ensemble set D.

An example that illustrates the quality variation among dif-
ferent rule density curves is shown in Figure 5. All four curves
in Figure 5 are generated from the ECG time series shown in
Figure 4.top. The first two curves colored in blue are the top-2
curves based on the ranking by the standard deviation. The last
two curves colored in red are the bottom-2 curves based on this
ranking. As seen from the figure, it is very hard to determine the
anomaly location from the bottom-2 curves. In contrast, the top-2
curves reveal the anomaly location clearly. This example demon-
strates that using the rule density curves with higher standard
deviations can help identify anomalies and potentially reduce
the number of false positives.

Figure 5: Examples of rule density curves generated from
the ECG time series with different parameter values.
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6.1.2 Normalizing Rule Density Curves. Intuitively, each rule
density curve may have a different scale. For example, using a
coarse discretization resolution (i.e., small PAA size and alphabet
size) tends to result in a large average frequency of grammar rules
since it is more likely to find a match due to a smaller dictionary
size. Conversely, using a fine discretization resolution (i.e., large
PAA size and alphabet size) tends to result in a small average fre-
quency of grammar rules. Consequently, without a normalization
process, some anomaly detectors may undeservedly dominate
the decision.

To avoid this problem, we normalize each of the rule density
curves in the ensemble set, so that each point of the curve falls
in the range [0, 1]. It is worth noting that we do not use min-max
normalization because we want to preserve the significance of
the locations where the rule density is zero.

6.1.3 Combining Rule Density Curves. At the final step, we
compute an ensemble rule density curve de based on all nor-
malized curves kept in the set. In this paper, the specific way
in which we combine all rule density curves in the ensemble is
by computing the median value at each time point. Once the
ensemble rule density curve is generated, the algorithm ranks
the anomaly candidates through the same process as described
in Sec. 5.2.

6.2 Multi-resolution SAXWord Computation
Since the ensemble approach requires computing different SAX
words (corresponding to different parameter values) for the same
subsequence, it is important to increase the efficiency of the
discretization process. Therefore, in this subsection, we describe
a fast way to compute multi-resolution SAX words [6].

6.2.1 Fast Computation of SAX Words with Different Values of
w . We first describe a fast way to compute the PAA coefficients
[16]. First, two vectors of statistical features for a time seriesT are
pre-computed: ESumx (x) =

∑x
i=1 ti and ESumxx (x) =

∑x
i=1 t

2
i .

Given a subsequence Tp,q of length n, the SAX representation
can be computed by Algorithm 2. In this algorithm, the mean
and variance of Tp,q are computed in constant time (Lines 3–5).
The cost of computing the PAA coefficients (Lines 6–8) is O(w)

for a single resolution, which is faster than the trivial approach
whose computation cost is O(n) (w < n).

Algorithm 2: Fast Compute PAA (FastPAA)

1: Input: subsequence Tp,q , Esumx ,Esumxx , PAA sizew
2: Output: PAA representation A
3: Ex = Esumx (q) − Esumx (p)
4: Exx = Esumxx (q) − Esumxx (p)

5: n = q − p + 1, µ = Ex /n, σ =
√
(Exx − E2x /n)/(n − 1)

6: for every PAA segment do
7: Ai =

(
Esumx (Ai ,e)−Esumx (Ai ,s)

n/w − µ
)
/σ {Ai ,s and Ai ,e are

the start and end points of the ith PAA segment}
8: end for
9: return A

6.2.2 Fast Computation of SAX Words with Different Values of
a. To efficiently compute SAX words with multiple resolutions,
we adapt an algorithm we introduced in a previous work [6].
Specifically, given a maximum alphabet size amax, to fast com-
pute SAX words with different alphabet sizes, we first gather

Figure 6: Fast computation of multi-resolution SAX.

breakpoint tables of all alphabet size values used in the ensemble.
For each interval between any two breakpoints, a symbol se-
quence containing corresponding symbols up to amax resolution
is recorded. We represent any PAA coefficient belonging to the
interval by the pre-computed symbol sequence.

An example with alphabet sizes from 2 to 4 is shown in Figure
6. In the figure, the set of breakpoints for all alphabet sizes from 2
to 4 (labeled by ‘×’ in each line) are projected to the line denoted
as “summary.” All distinct breakpoints with a from 2 to 4 in
the breakpoint table (Fig. 3.bottom) create 6 intervals, and each
interval stores a sequence of symbols. The ith position in such
a sequence stores the corresponding symbol for alphabet size
a = i +1. For example, the 3 PAA coefficients that fall in intervals
(−∞,−0.63], (−0.43, 0] and (0.63,∞) (denoted by yellow dots)
are mapped to symbol sequences aaa, abb, and bcd , respectively.
A symbol matrix is then created by concatenating such symbol
sequences (bottom of Figure 6). The ith row of the symbol matrix
represents a SAX word generated with alphabet size i + 1. For
example, the first row aab is the SAX word generated for a = 2.
To construct the matrix of SAX words with all alphabet sizes,
for each PAA coefficient, we only need to perform at most 3
comparisons to determine the interval via binary search, which
is the same as generating fixed-resolution SAX. By using binary
search to determine which interval the PAA coefficient belongs
to, we can find its SAX representations in all resolutions from
a = 2 to a = amax with a time complexity of O(2 log(amax)).
When amax = 20, the cost of computing all resolutions is similar
to computing a fixed resolution.

6.2.3 Overall Improvement. The time complexity of comput-
ing SAX words with multiple resolutions in a straightforward
manner (without acceleration) is O(nwmaxamax +w2

maxa
2
max). In

contrast, with the proposed acceleration, the computation cost is
O(w2

max log(amax)), which is a significant improvement.

7 EXPERIMENTAL EVALUATION
We perform a series of numerical experiments to evaluate the
accuracy and speed of ensemble grammar induction applied to
time series anomaly detection. In all experiments, unless noted
otherwise, the parameter values are: amax = 10, wmax = 10,
N = 50, and τ = 40%. All the experiments are conducted on a
16 GB RAM laptop with quad core processor of 2.5 GHz. We first
show the performance on real-world time series. We then evalu-
ate the impact of parameter sets used in the ensemble. Finally,
we analyze the scalability of the algorithm and conduct a case
study on an electric load time series.
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Table 3: Properties of datasets used for experimental eval-
uation

Dataset Time Series Segment Data Type
Length Length

TwoLeadECG 1772 82 ECG
ECGFiveDay 2772 132 ECG
GunPoint 3150 150 Motion
Wafer 3150 150 Sensor
Trace 5775 275 Sensor

StarLightCurve 21504 1024 Sensor

Table 4: Performance evaluation results (average Score)

Dataset Proposed GI-Random GI-Fix GI-Select Discord
Approach

TwoLeadECG 0.3951 0.2873 0.0629 0.1663 0.4931
ECGFiveDay 0.3903 0.2988 0.2671 0.105 0.4794
GunPoint 0.4728 0.3715 0.2411 0.056 0.4
Wafer 0.3179 0.2126 0.1382 0.248 0.309
Trace 0.5718 0.2022 0.3601 0.3408 0.2816

StarLightCurve 0.9369 0.6930 0.5301 0.8759 0.9161

Table 5: Performance evaluation results (HitRate)

Dataset Proposed GI-Random GI-Fix GI-Select Discord
Approach

TwoLeadECG 0.72 0.52 0.4 0.24 0.8
ECGFiveDay 0.8 0.44 0.36 0.24 0.8
GunPoint 0.68 0.56 0.44 0.12 0.68
Wafer 0.72 0.4 0.36 0.4 0.52
Trace 0.96 0.4 0.8 0.6 0.52

StarLightCurve 1.0 0.96 0.76 1.0 1.0

7.1 Performance Evaluation in Comparison
to Baseline Methods

Since it is difficult to find annotated time series for anomaly
detection, to evaluate our proposed method, we compile our own
data using several real-world and synthetic time series datasets
from the UCR Time Series Classification Archive [3].

7.1.1 Datasets. We chose six time series datasets with diverse
characteristics from the archive. The properties of the data are
shown in Table 3. The datasets originate from different appli-
cation domains including medicine (ECG), 3D motion tracking
(GunPoint), manufacturing (Wafer), synthetic sensor data (Trace)
and astronomy (StarLightCurve), with different instance lengths
(ranging from 82 to more than 1000).

The instances are labeled with class information. For each
dataset, we treat all instances that belong to the first class as
“normal” data, and all the remaining instances that belong to other
classes as “anomalous.” We first generate a normal time series by
concatenating 20 randomly selected normal instances. Then an
anomalous instance is randomly selected and planted into the
generated normal time series at a random position between 40%
and 80% of the series. In this manner, we generate 25 time series
for each of the six datasets. One example of the generated time
series for each of the six datasets are shown in Figure 7, with
planted anomalous instances highlighted in red. All methods
being compared are run to locate the planted anomalous instance
in each time series, with sliding window length n equal to the
instance length.

7.1.2 Performance Evaluation. Each of the tested methods
returns top-3 ranked anomaly candidates (which are required

Figure 7: Examples of the test time series generated from
six real-world and synthetic time series datasets. In each
time series, the segment that belongs to a different class is
highlighted in red.

to not overlap with each other) for each time series. We evalu-
ate the performance of each method by quantifying the overlap
between the discovered anomalies and the ground truth (the
planted anomaly). Specifically, for each anomaly candidate, we
compute a quantity called Score, defined as:

Score = 1 −min
(
1,

|PredictLocation − GTLocation|
GTLength

)
, (5)

where PredictLocation is the location of the anomaly candidate,
while GTLocation and GTLength are the location and length of
the planted anomalous instance. The maximum value, Score = 1,
is obtained when PredictLocation exactly matches the ground
truth. The better the overlap between the anomaly candidate and
the ground truth, the higher the Score. If the anomaly candidate
does not overlap with the ground truth at all, then Score = 0.

For each method and each time series, we only use the maxi-
mum Score achieved among the three anomaly candidates. For
each method, we record the average Score value computed over
the set of 25 time series generated per dataset; the average Score
values are reported in Table 4. We also record the quantity called
HitRate, which is the fraction of the anomaly candidates that over-
lap with the ground truth (i.e., satisfy the condition Score > 0);
the HitRate values are reported in Table 5. Finally, we record
the number of times the ensemble grammar induction method
wins/ties/loses against a baseline method; these results are re-
ported in Table 6.

7.1.3 Baselines. The proposed ensemble-basedmethod is com-
pared against four different baseline methods, which are de-
scribed below.

• Grammar Induction with Random Parameter Val-
ues (GI-Random): The grammar-induction-based anomaly
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detection approach with randomly selected parameter val-
uesw and a. The ranges from whichw and a are chosen
are the same as in the ensemble-based approach..

• Grammar Induction with Fixed Generic Parameter
Values (GI-Fix): The grammar-induction-based anomaly
detection approach with fixed parameter values w = 4
and a = 4. These are popular parameter values that can
be used in most of datasets as reported in [20].

• Grammar Inductionwith SelectedParameterValues
(GI-Select): The grammar-induction-based anomaly detec-
tion approach with w and a values selected via an opti-
mization procedure described in [19], using 10% of the
normal time series. The ranges from which w and a are
chosen are the same as in the ensemble-based approach.

• Time Series Discord (Discord): The state-of-the-art ap-
proach that computes the one–nearest-neighbor (1-NN)
distance for every subsequence in the time series; the sub-
sequences with the largest 1-NN distances are labeled as
anomalies. In the experiments, we use the latest Matrix-
Profile-based implementation of this approach [23] to com-
pute the 1-NN distances.

7.1.4 Results. The overall performance results measured by
the average Score and HitRate are shown in Tables 4 and 5, re-
spectively.

According to Table 4, the proposed approach achieves the
highest average Score values in four out of six datasets, and
the second-highest average Score values in two of the datasets.
Compared with GI-Random, GI-Fix, and GI-Select, the proposed
approach achieves higher average Score values in all six datasets.
Compared with Discord, the proposed approach achieves a higher
average Score value in four out of six datasets (GunPoint, Wafer,
Trace and StarLightCurve). In two datasets (ECGFiveDays and
TwoLeadECG), Discord outperforms the proposed approach.

According to Table 5, the proposed approach achieves the
highest HitRate values (alone or shared) in five out of six datasets,
and the second-highest HitRate value in one of the datasets.
These results are consistent with those in Table 4 and indicate
that the proposed approach can successfully locate an anomalous
subsequence that strongly overlaps with the ground truth.

In addition, Figure 10 shows a detailed comparison summary of
the proposed approach against all baselines. Each of the six rows
corresponds to one of the datasets, and each of the four columns
corresponds to one of the baselines. In each plot, a blue dot located
at the point (x,y) denotes a pair of Score values (ensemble Score,
baseline Score), computed from Eq. (5) for one of the 25 generated
time series. A dot located in the lower triangle (highlighted in
pink) of the plot corresponds to a win of the proposed approach
(ensemble Score > baseline Score); a point located in the upper
triangle corresponds to a loss (ensemble Score < baseline Score),
and a point located on the diagonal corresponds to a tie (ensemble
Score = baseline Score). The numbers of wins, ties, and losses of
the proposed method against the baselines are shown in Table 6.

According to Figure 10, the proposed approach outperforms
GI-Random, GI-Fix, and GI-Select. Moreover, in most of the
tested datasets, the proposed method often detects ground truth
anomalies that are completely missed by these variations of the
grammar-induction-based approach (i.e., the respective baseline
Score values are zero), while the opposite outcomes (ensemble
Score values are zero) are quite rare. Compared with Discord,
the proposed approach achieves similar performance. Moreover,
in most of the tested datasets, cases where the ensemble-based

approach discovers ground truth anomalies missed by Discord
are more common than the opposite ones.

According to Table 6, compared with GI-Random, GI-Fix, and
GI-Select, the proposedmethodwins in more than half of the time
series in most datasets. Compared with Discord, the results are
similar to those measured by Score and HitRate. Specifically, the
proposed approach has more wins than losses in three datasets
(GunPoint, Wafer, and Trace), loses more often than wins in two
ECG datasets, and is in a virtual dead heat with Discord in the
StarLightCurves dataset.

In summary, the experiments indicate that using an ensemble
of parameter values can significantly improve the performance
of the grammar-induction-based approach, compared to the vari-
ations of the method where a single combination of parameter
values is selected. Also, the proposed method can achieve a com-
petitive performance compared with the state-of-the-art discord
approach. Importantly, while the latter has a quadratic time com-
plexity, the former preserves a linear time complexity and hence
is much more feasible for anomaly detection in large-scale data.

7.2 Effects of Parameter Value Ranges
In this subsection, we first evaluate how the ensemble gram-
mar induction approach performs for different parameter value
ranges determined bywmax and amax. Specifically, we evaluate
the performance on the same time series that were used in Sec.
7.1. As the baseline for comparison, we use the best of the GI-
Random, GI-Fix, and GI-Select methods for each dataset. We
report the number of wins/ties/loses vs. the baseline for all tested
parameter value ranges. We then evaluate how values of three
hyper parameters — ensemble size N , ensemble selectivity τ , and
sliding window length n — affect the result. In these experiments,
we evaluate the performance based on Score and HitRate.

7.2.1 Effect of wmax and amax. We first test the proposed
approach with values ofwmax and amax equal to each other and
varying from 5 to 20. The results are shown in Table 7. According
to the results, the smallest ranges (wmax = amax = 5) lead to
the worst performance. A possible explanation is that the ranges
are too small to generate a sufficient number of high-quality
rule density curves. The performance significantly improves for
wmax = amax = 15. However, increasing the range values beyond
15 is not useful; furthermore, in two datasets (TwoLeadECG and
StarLightCurve) the performance slightly deteriorates when the
ranges go up to 20, and in the GunPoint dataset the performance
actually peaks for wmax = amax = 10. The lack of performance
improvement (or even some deterioration) at range values larger
than 15 indicates that long and high-resolution SAX words may
capture too much noise in data and, as a result, produce low-
quality rule density curves. Nevertheless, the ensemble-based
method still outperforms other approaches that rely on a single
combination of parameter values.

7.2.2 Effect ofwmax. We also test the proposed approachwith
values of wmax varying from 5 to 20 and fixed amax = 10. The
results are shown in Table 8. Once again, we observe that when
the range is too small (wmax = 5), the performance is the worst.
The performance significantly improves for larger values ofwmax,
with the peak-performance value depending on the dataset.

7.2.3 Effect of amax. In this experiment, we test the proposed
approach with values of amax varying from 5 to 20 and fixed
wmax = 10. The results are shown in Table 9. For amax = 5,
the performance is subpar for the ECGFiveDays, GunPoint, and
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Table 6: Wins/ties/losses of ensemble grammar induction against all baselines
Approach Dataset TwoLeadECG ECGFiveDays GunPoint Wafer Trace StarLightCurve

GI-Random 12/5/8 17/3/5 14/5/6 13/5/7 20/1/4 18/1/6
GI-Fix 17/7/1 13/5/7 15/4/6 17/6/2 14/1/10 24/0/1

GI-Select 14/5/6 18/5/2 16/8/1 9/8/8 14/3/8 17/0/8
Discord 8/4/13 9/1/15 14/7/4 12/5/8 18/1/6 12/0/13

Table 7: Wins/ties/losses of ensemble grammar induction against best GI baseline for different values of amax andwmax
Approach TwoLeadECG ECGFiveDays GunPoint Wafer Trace StarLightCurve

amax = 5,wmax = 5 1/12/12 8/9/8 3/9/13 3/14/9 4/11/10 2/0/23
amax = 10,wmax = 10 12/5/8 13/5/7 14/5/6 9/8/8 14/1/10 17/0/8
amax = 15,wmax = 15 14/4/7 17/2/6 13/4/8 13/7/5 15/0/10 18/0/7
amax = 20,wmax = 20 12/4/9 17/2/6 13/4/8 13/7/5 15/0/10 17/1/7

Table 8: Wins/ties/losses of ensemble grammar induction against best GI baseline for different values ofwmax
Approach TwoLeadECG ECGFiveDays GunPoint Wafer Trace StarLightCurve

amax = 10,wmax = 5 5/9/11 6/8/11 5/6/14 7/9/9 4/10/11 1/0/24
amax = 10,wmax = 10 12/5/8 13/5/7 14/5/6 9/8/8 14/1/10 17/0/8
amax = 10,wmax = 15 10/5/10 18/3/4 11/6/8 18/3/4 15/0/10 19/0/6
amax = 10,wmax = 20 12/4/9 18/2/5 10/4/11 14/3/8 16/0/9 20/0/5

Table 9: Wins/ties/losses of ensemble grammar induction against best GI baseline for different values of amax
Approach TwoLeadECG ECGFiveDays GunPoint Wafer Trace StarLightCurve

amax = 5,wmax = 10 11/5/9 8/8/9 7/8/10 12/7/6 11/5/9 1/1/23
amax = 10,wmax = 10 12/5/8 13/5/7 14/5/6 9/8/8 14/1/10 17/0/8
amax = 15,wmax = 10 11/6/8 13/6/6 13/4/8 8/8/9 16/0/9 15/0/10
amax = 20,wmax = 10 11/4/10 14/5/6 13/4/8 9/9/7 15/0/10 12/1/12

Trace datasets, and it is terrible for the StarLightCurve dataset (as
a rule, this dataset exhibits the worst performance when one or
both range values are small). However, amax = 5 actually results
in the best performance for the Wafer dataset. For most datasets,
the amax values of 10, 15, and 20 produce very similar results.

The last two experiments indicate that having a larger range
for w is more important than for a, which may indicate that a
variation in the PAA size has a larger effect on the performance
of the algorithm than a variation in the alphabet size, and hence
w is a more important parameter to choose, in general.

Table 10: Performance (average Score) vs. N
Dataset N = 5 N = 10 N = 25 N = 50

TwoLeadECG 0.3424 0.3488 0.3912 0.3951
ECGFiveDays 0.37 0.3882 0.4168 0.3903
GunPoint 0.3128 0.4629 0.4965 0.4728
Wafer 0.2308 0.2637 0.2839 0.3179
Trace 0.4767 0.5789 0.5994 0.5718

StarLightCurve 0.8244 0.7593 0.8676 0.9369

Table 11: Performance (HitRate) vs. N

Dataset N = 5 N = 10 N = 25 N = 50
TwoLeadECG 0.52 0.6 0.72 0.72
ECGFiveDays 0.68 0.72 0.76 0.8
GunPoint 0.56 0.76 0.68 0.68
Wafer 0.44 0.64 0.6 0.72
Trace 0.76 0.96 0.96 0.96

StarLightCurve 1.0 1.0 1.0 1.0

7.2.4 Effect of Ensemble Size. We next evaluate the proposed
method with the ensemble size N varying from 5 to 50 (recall
that all other experiments used the fixed value N = 50). The
average Score and HitRate of the proposed method for different
ensemble sizes are shown in Tables 10 and 11, respectively.

We observe that the performance for a small ensemble size
(N = 5) is worse than for a larger ensemble size (N = 25 or
N = 50) for all datasets. In general, the Score and HitRate val-
ues increase as N grows, but these increases saturate when the
ensemble size is large enough (e.g., when N ≥ 25). The results
indicate that selecting N ≥ 25 may be suitable for most cases.

We also observe that the Score values are, in general, rather
low for all methods, for most datasets except StarLightCurve.
This could be due to the fact that the Score is normalized by the
ground truth length (cf. Eq. (5)). However, the planted anomaly
may only have a small section that differs from the “normal”
data, and that may be what the algorithms detect. In such case,
treating the entire planted instance as anomalous would indeed
lower the Score. This explanation is later validated by the results
in Table 13, which show that a shorter sliding window length
results in higher Score values in some cases. Nevertheless, this is
why we also use the HitRate, which is independent of the ground
truth length, as an alternate measure.

7.2.5 Effects of Ensemble Selectivity. Next, we evaluate the
proposed method with ensemble selectivity τ varying from 5%
to 100%. In this experiment, the evaluation of the average Score
value (which is computed over 25 time series) is repeated 20
times for each dataset and τ value. We then compute the mean
and standard deviation over the set of 20 average Score values.
The results are shown in Table 12. We observe that better per-
formance is typically achieved for smaller τ values (e.g., from
5% for ECGFiveDays and Trace datasets to 20% for GunPoint
and StarLightCurve datasets), while the standard deviation is
typically smaller for τ values of 20% or 40%. Therefore, we recom-
mend choosing τ around 20% since it combines a relatively high
level of performance with a relatively small variance of results.

7.2.6 Effects of Sliding Window Length. In this experiment,
we investigate how the proposed method performs when the
sliding window length n is less than the ground truth anomaly
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Table 12: Mean and standard deviation over 20 average
Score values, vs. τ

Dataset τ = 5% τ = 10% τ = 20% τ = 40% τ = 80% τ = 100%
TwoLeadECG 0.4149 0.4196 0.4 0.3882 0.3354 0.3071

(0.04) (0.032) (0.026) (0.027) (0.036) (0.032)
ECGFiveDays 0.425 0.41 0.38 0.37 0.35 0.32

(0.042) (0.045) (0.038) (0.037) (0.024) (0.036)
GunPoint 0.488 0.50 0.505 0.488 0.43 0.412

(0.042) (0.037) (0.035) (0.025) (0.023) (0.023)
Wafer 0.339 0.371 0.337 0.311 0.27 0.26

(0.05) (0.042) (0.027) (0.027) (0.032) (0.037)
Trace 0.6136 0.6017 0.5972 0.5864 0.4997 0.4166

(0.037) (0.035) (0.025) (0.024) (0.046) (0.042)
StarLightCurve 0.9057 0.9183 0.9327 0.9052 0.7359 0.628

(0.017) (0.016) (0.009) (0.012) (0.021) (0.021)

Table 13: Performance (average Score) vs. n

Dataset n = 0.6na n = 0.7na n = 0.8na n = 0.9na n = na

TwoLeadECG 0.4620 0.4605 0.4107 0.4259 0.3951
ECGFiveDays 0.4391 0.3691 0.3535 0.3797 0.3903
GunPoint 0.4373 0.4992 0.4680 0.4371 0.4728
Wafer 0.3095 0.4195 0.3389 0.2824 0.3179
Trace 0.5229 0.5911 0.5689 0.5852 0.5718

StarLightCurve 0.8624 0.8998 0.9216 0.9048 0.9369

Table 14: Performance (HitRate) vs. n
Dataset n = 0.6na n = 0.7na n = 0.8na n = 0.9na n = na

TwoLeadECG 0.72 0.84 0.8 0.76 0.72
ECGFiveDays 0.96 0.8 0.84 0.72 0.8
GunPoint 0.84 0.68 0.72 0.64 0.68
Wafer 0.56 0.64 0.52 0.52 0.72
Trace 1.0 1.0 1.0 1.0 0.96

StarLightCurve 1.0 1.0 1.0 1.0 1.0

length (denoted as na). Specifically, we test five different sliding
window lengths equal to 60%, 70%, 80%, 90% and 100% of na.
The average Score and HitRate values are shown in Tables 13
and 14, respectively. According to the results, while there exists
some variation in the performance, the dependence on n is not
significant, and the proposed method robustly outperforms the
existing grammar-induction-based approaches in most cases.

7.3 Scalability
We evaluate the scalability of the proposed ensemble-based ap-
proach by applying it to a 160,000 length random walk (RW) time
series, ECG data [18] and electroencephalogram (EEG) data [13].
We compare the computation times for the proposed method
and for the state-of-the-art discord discovery approach. In the
experiment, we use STOMP [23], the latest Matrix-Profile-based
algorithm, to detect discords. It has been shown that STOMP is
both faster and more robust to different types of data compared
to the original discord discovery method HOTSAX [9].

The scalability, evaluated as the computation time versus the
time series length, is shown in Figure 8. We see that, as the time
series length increases, the computation time grows significantly
slower for the proposed method than for STOMP. At the largest
time series length, the proposed approach is about one order of
magnitude faster than STOMP, for all three types of time series
data. We also find that the computation times for both approaches
are roughly independent of the sliding window length.

(a) RW time series

(b) ECG time series

(c) EEG time series

Figure 8: Scalability: Computation time vs. time series
length.

7.4 Case Study: Anomaly Detection in
Electric Power Usage Time Series

Interpreting the time dependence of electric power usage has
many potential applications [21]. In this section, we show that
the ensemble grammar induction method can find anomalies in
large-scale electric power usage time series. We use 100 days of
the fridge-freezer power usage data provided in [14], to evaluate
the performance of the proposed method. The entire time series,
which consists of approximately 600,000 points, is shown in Fig-
ure 9(a), and the first 20,000 points are shown in Figure 9(b). We
run the proposed method with the sliding window length of 900,
which is about the duration of one cycle (shown in red box in Fig-
ure 9(b)). The computation time is about one minute. Figures 9(c)
and 9(d) show the two top-ranked anomaly candidates detected
by the proposed method.

We see that the top-1 anomaly represents a cycle whose shape
is unusual compared to the typical cycles shown in Figure 9(b).
The top-2 anomaly represents an unusual event that contains
normal cycles and short spikes. The two anomalies represent
different, unusual power usage patterns. Since this time series
is very long, and the anomalies have different lengths, using the
state-of-the-art discord discovery approach would be time con-
suming. In contrast, the proposed method provides an efficient
way to detect anomalies.

94



Figure 9: A 600,000 length fridge-freezer power usage time
series, and two top-ranked anomalies detected in this se-
ries by ensemble grammar induction.

7.5 Detecting Multiple Anomalies
We also investigate the effectiveness of the proposed approach in
detecting multiple anomalies in time series. In this experiment,
we use the StarlightCurve dataset to generate 10 time series. Each
of these time series is of length 43008 and contains two randomly
selected and placed anomalies of length 1024. We evaluate the
performance by the number of ground truth anomalies detected
(a ground truth anomaly is considered detected if it overlaps
with at least one of the top-3 ranked anomaly candidates). The
proposed method performed well as it successfully identified
both anomalies in nine time series and one of the two anomalies
in one time series.

8 CONCLUSION
In this paper, we introduce a robust grammar-induction-based
anomaly detection approach utilizing ensemble learning. Instead
of using a particular combination of parameter values for anom-
aly detection, the proposed method generates the final result
based on a set of results obtained using different parameter val-
ues. The experiments performed on datasets with known ground
truth show that the proposed ensemble approach can outperform
existing grammar-induction-based approaches with different cri-
teria for selection of parameter values. We also show that the
proposed approach, which has a linear time complexity with re-
spect to the data size, can achieve performance similar to that of
the state-of-the-art distance-based anomaly detection approach
that has a quadratic time complexity.
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(a) Vs. GI-Random (TwoLeadECG) (b) Vs. GI-Fix (TwoLeadECG) (c) Vs. GI-Select (TwoLeadECG) (d) Vs. Discord (TwoLeadECG)

(e) Vs. GI-Random (ECGFiveDays) (f) Vs. GI-Fix (ECGFiveDays) (g) Vs. GI-Select (ECGFiveDays) (h) Vs. Discord (ECGFiveDays)

(i) Vs. GI-Random (Wafer) (j) Vs. GI-Fix (Wafer) (k) Vs. GI-Select (Wafer) (l) Vs. Discord (Wafer)

(m) Vs. GI-Random (GunPoint) (n) Vs. GI-Fix (GunPoint) (o) Vs. GI-Select (GunPoint) (p) Vs. Discord (GunPoint)

(q) Vs. GI-Random (Trace) (r) Vs. GI-Fix (Trace) (s) Vs. GI-Select (Trace) (t) Vs. Discord (Trace)

(u) Vs. GI-Random (StarLightCurve) (v) Vs. GI-Fix (StarLightCurve) (w) Vs. GI-Select (StarLightCurve) (x) Vs. Discord (StarLightCurve)

Figure 10: Summary of performance comparison of ensemble grammar induction against baseline methods.
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ABSTRACT
Interactive Data Analysis (IDA) is a core knowledge-discovery

process, in which data scientists explore datasets by issuing a

sequence of data analysis actions (e.g. filter, aggregation, visu-

alization), referred to as a session. Since IDA is a challenging

task, special recommendation systems were devised in previ-

ous work, aimed to assist users in choosing the next analysis

action to perform at each point in the session. Such systems of-

ten record previous IDA sessions and utilize them to generate

next-action recommendations. To do so, a compound, dedicated

session-similarity measure is employed to find the top-k sessions

most similar to the session of the current user. Clearly, the effi-

ciency of the top-k similarity search is critical to retain interactive

response times. However, optimizing this search is challenging

due to the non-metric nature of the session similarity measure.

To address this problem we exploit a key property of IDA,

which is that the user session progresses incrementally, with the

top-k similarity search performed, by the recommender system,

at each step. We devise efficient top-k algorithms that harness

the incremental nature of the problem to speed up the similarity

search, employing a novel, effective filter-and-refine method. Our

experiments demonstrate the efficiency of our solution, obtaining

a running-time speedup of over 180X compared to a sequential

similarity search.

1 INTRODUCTION
Interactive Data Analysis (IDA) is an important procedure in any

process of data-driven discovery. It is ubiquitously performed by

data scientists and analysts who interact with their data “hands-

on” by iteratively applying analysis actions (e.g. filtering, aggre-

gations, visualizations) and manually examining the results. This

is primarily done to understand the nature of the data and ex-

tract knowledge from it, yet is also fundamental for particular

data scientific tasks such as data wrangling and cleaning, feature

selection and engineering, and explaining decision models.

However, since IDA is long known as a complex and difficult

task, extensive research has been devoted to the development

of recommendation systems that assist users in choosing an ap-

propriate next-action to perform at each point in an IDA session.

Many of these IDA recommendation systems [2, 15, 16, 26, 43]

rely on a similarity comparison between users’ sequences of anal-

ysis actions (denoted sessions). They follow the assumption that

if two session prefixes are similar, their continuation is likely to

also be similar. Hence, they utilize a repository of prior analysis

sessions (of the same or other users): Given an ongoing user’s

session, such systems first retrieve the top-k most similar session

prefixes from the repository, then examine their continuation

and use the gathered information to form a possible next-action
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recommendation [2, 15, 16, 43]. Since these recommender sys-

tems are interactive, the efficiency of the top-k session similarity

search is critical. However, most previous work focuses on the

quality and applicability of the produced IDA recommendations,

rather than on their scalability and running time performance.
Our goal in this paper is thus to devise efficient, scalable al-

gorithms for this particular top-k similarity search problem, a

significant computational bottleneck in many IDA recommender

systems. Specifically, we focus our attention on a dedicated simi-

larity measure for analysis sessions [3], which we denote by SW-
SIM . In a comprehensive user study [3], SW-SIM was compared,

quality wise, against several alternative similarity measures, and

was found to be the most suitable for the context of data analy-

sis sessions. Consequently, it has been adopted by multiple IDA

recommender systems and applications, e.g., [2, 4, 30, 41, 44].

SW-SIM is an extension of the well-known Smith-Waterman al-

gorithm [35] for local sequence alignment. Intuitively, given a

similarity metric for individual analysis-actions (e.g. filter, ag-

gregation, visualization), SW-SIM compares two sessions s, s ′ by
aligning them, i.e. matching similar action pairs using an align-
ment matrix. The measure allows for (yet penalizes) gaps in the

alignment, and gives a higher weight to the more recent actions

in the session, since they are expected to have higher relevance

on the current user’s intent.

Given a current user session and a sessions repository, a naive

top-k search may be done by sequentially iterating over all ses-

sions in the repository, computing the SW-SIM similarity score of

the current session w.r.t. each of their prefixes, then selecting the

top-k prefixes with the highest score. This simple algorithm, how-

ever, is prohibitively time consuming: Our experiments show
that even when employed on a medium size repository of
10K sessions, the naive sequential search takes more than
17 seconds to complete. This is excessively high for a real-time

response.

To optimize it, two key challenges must be addressed:

1. A single similarity comparison of two sessions is expen-
sive to begin with. Computing SW-SIM requires to construct

an alignment matrix, which results in a high computation time

(quadratic in the mean session length).

2. Employing existing optimizations is highly non-trivial.
Since SW-SIM is a non-metric similarity measure, existing op-

timizations for similarity search e.g. [8, 33, 37] are inadequate.

Furthermore, because analysis sessions are compound sequences

of complex analysis actions, they do not have a numeric vector

representation, which is a requirement by other top-k optimiza-

tion works [33].(See Section 2 for an elaborated discussion.)

A key observation underlying our work is that the user session

progresses incrementally with the top-k similarity search per-

formed by the IDA recommender system at each step. We exploit

this property to address the two challenges mentioned above:

Our first, rather direct optimization, speeds up the processing of

a single similarity comparison between two sessions by utilizing
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previous-step computations. Our second, more sophisticated opti-

mization, tackles the top-k search by employing a novel filter-and-

refine technique. It employs lower and upper bounds stemming

from the incremental growth of the sessions accompanied by

a dedicated index structure. Our experiments demonstrate that

using our optimizations, a speedup of more than 180X is
obtained compared to a non-optimized sequential search.
Importantly, this is done while retaining a perfect accuracy of

results, since our algorithms are exact.

We next explicitly state our assumptions and focus, then sum-

marize our contributions and paper organization.

Paper Focus and Assumptions.
1. Although the particular IDA settings may vary, many
IDA recommender systems rely on a top-k prefixes search.
IDA settings may vary between systems, in terms of, e.g., the

type of allowed analysis actions, structure of the data, user ex-

pertise, etc. However, the incremental, session-like nature of the

process characterizes most IDA settings. Our paper is thus aimed

at solving a computational bottleneck in a growing number of

IDA-dedicated recommendation systems [2, 15, 16, 26, 43] that

rely on finding the top-k most similar session prefixes in order

to generate recommendations. Our solution is generic, suitable

for a wide range of IDA platforms, regardless of their particular

settings.

2. SW-SIM is currently the most-suitable measure for IDA
sessions similarity. A multitude of definitions exist for mea-

suring the similarity between two arbitrary sequences, such as

Dynamic Time Warping for time series and Smith-Waterman for

DNA sequences. In the context of data analysis sessions, SW-SIM
is considered the most comprehensive and suitable (See [3] for a

comparative study).

3. The focus of this paper is on performance and scalabil-
ity, rather than on the quality of the produced recommen-
dations. Different IDA recommender systems may use the se-

lected top-k sessions in different ways in order to generate rec-

ommendations, possibly using additional information such as the

data properties, user profiles, etc. But in all of them - response

time optimization of the top-k search is clearly a critical issue.

We therefore focus on performance and scalability rather than

discussing the quality of the recommendations produced. For the

latter, we refer the reader to works e.g. [2, 15, 16, 26, 43] in which

the focus is on the quality of recommendations produced.

Technical Contributions & Paper Organization.
Section 3: We provide a simple, generic model for representing

IDA sessions, and describe the alignment-based session similarity

notion. Based on this model, we develop a formal definition for

the incremental top-k similarity search problem.

Section 4: We describe an optimization for the incremental con-

struction of a session alignment matrix and means to derive

prefixes similarity scores from it.

Section 5: We present a novel threshold-based algorithm for the

incremental top-k search, which utilizes effective similarity lower

and upper bounds, also stemming from the incremental nature

of the search problem.

Section 6: We demonstrate the efficiency of our solution via ex-

tensive experiments on artificial and real-life session repositories.

We begin by reviewing related work (Section 2), and finally

present our conclusions and limitations in Section 7.

2 RELATEDWORK
There is vast literature on sequences similarity, alignment, and

top-k search. We survey works in numerous application domains,

explaining why existing optimizations are inadequate for the

context of IDA.

Bioinformatics-based optimizations for sequence alignment.
Local alignment techniques are known to be extremely useful

in the bioinformatics domain for tasks such as DNA and protein

sequencing [22, 25, 39]. In this application domain, alignment is

often performed between a query sequence and an extremely long

reference string (e.g. a DNA genome), often from a fixed, small

size alphabet (comprises, e.g., six nucleotides). Consequently,

biology-driven optimizations such as [14, 18, 28, 40] exploit this

particular property (small alphabet size) in order to index the

large reference string. These solutions typically use a prefix/suffix

tree or hash tables mapping small, common substrings to their

location in the reference string. In contrast, in our context the

“alphabet" (namely the analysis-actions space) is unbounded and,

as explained in the next section, there is a predefined notion of

distance between letters (analysis actions in our context). Such

solutions, therefore, cannot be directly employed in our case.

Edit Distance and Dynamic TimeWarping (DTW). Edit dis-
tance and DTW are popular alignment-based measures that are

used in numerous application domains such as textual auto-

correction, speech recognition and the comparison of time series.

However, as noted in [3], these measures lack important proper-

ties for the context of IDA sessions. Classical edit-distance, which

originated from the comparison of textual strings, assumes that

letters are either identical or mismatched, which is inadequate

for the context of IDA. This is because the alphabet, containing

individual actions, is much larger and more complex. Also, the

compound similarity of individual “letters” (actions) should be

taken into consideration. DTW, on the other hand, does support

the employment of a designated distancemetric for the sequences’

objects, yet is not compatible with the notion of gaps [32]. Also,
both measures do not support the important time-discount fea-

ture [3], which allows giving a higher weight to the more recent

actions in the session. Optimization works for these measures

are typically based on specific properties of the measures or

application domain [19, 38].

General solutions for similarity search in a non-metric
space. SW-SIM is a non-metric similarity measure, thus many

optimizations that rely on the triangle inequality property (e.g.,[8,

27]) cannot be used here. Other solutions for non-metric spaces,

e.g. [6, 7, 19, 34], assume that the sequences’ objects are numeric

vectors (e.g. as in Minkowski distance, Cosine distance), as op-

posed to sequences of abstract objects (analysis actions in our

case). But even ignoring this, employing any such solutions in

our context requires indexing each session prefix, which may be

prohibitively large (typically by an order of magnitude compared

to the number of sessions). Existing solutions for optimized top-k

search supporting arbitrary, non-metric similarity measure are

Constant Shift Embedding (CSE) [31] and NM-Tree [34]. We ex-

amine these solutions in our experimental evaluation (Section 6.2)

and show that our algorithm is consistently superior, obtaining

a performance improvement of at least two orders of magnitude.

Incremental keyword query autocompletion. Incremental

computation is used for optimization in a variety of database

applications, e.g., interactive association-rules and sequence min-

ing [29], butmost notably for incremental text autocompletion [10,

17, 24]. the latter solutions efficiently perform a top-k keyword
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similarity search at each key stroke of the user (using string edit

distance). However, such solutions also exploit the rather small

alphabet size and use a trie-index, a dedicated prefix tree for

strings. As explained above, in our case the “alphabet” (i.e., the

analysis-actions space) is complex and unbounded. Last, [21] and

[20] suggest algorithms for incrementally computing the string
edit distance of Ax and B (where x is an additional character) in

O(|A| + |B |) by using the distance matrix computed for A and

B. We employ similar principles for our single-pair incremental

alignment computation (Section 4), yet, importantly, augment

them with novel techniques for efficient top-k similarity search.

Similarity search of scientific/business workflows. Similar-

ity search has also been considered in the context of workflows [12,

23, 36] in two main contexts - searching for workflow specifica-
tions, and searching for workflow traces. They employ, however,

a different notions of similarity focusing mainly on the struc-

ture/nesting of the workflow-specification components (different

from the the unstructured, free-form nature of IDA sessions).

Also, to our knowledge, these works do not address the incremen-
tal nature of the top-k similarity search problem, that is more

typical for IDA sessions than for workflows.

3 PRELIMINARIES
We start by providing basic definitions for IDA, then define the

incremental top-k similarity search problem.

Interactive Analysis Sessions. In the process of IDA, users in-

vestigate datasets via an interactive user interface which allows

them to formulate and issue analysis actions (e.g., filter, group-

ing, aggregation, visualization, mining) and to examine their

results. Formally, we assume an infinite domain
1
of analysis ac-

tions Q and model an analysis session as a sequence of actions

s = ⟨q1,q2, . . . ,qn⟩|qi ∈ Q. We use s[i] to denote the i’th ac-

tion in s (qi ) and si to denote the session’s prefix up to qi , i.e.
si = ⟨q1,q2, . . . ,qi ⟩. Therefore, s = sn , and s0 is the empty ses-

sion. An ongoing user session, denoted u , is built incrementally.

At time t the user issues an action qt , then analyzes its results

and decides whether to issue a next action qt+1 or to terminate

the session. The session (prefix) ut at time t thus consists of the
actions ⟨q1, . . . ,qt ⟩, where the following actions in the session,

i.e., qt+1, ..qn are not yet known.

In this work we consider the case of comparing the similarity

of the user session u to other sessions (and parts thereof) in a

given repository, denoted S , containing prior analysis sessions
performed by the same or other users. To formally define sessions

similarity, let us first consider the similarity of individual analysis

actions, then generalize to sessions.

Individual Actions Similarity. Given a distance metric for in-
dividual analysis actions ∆ : Q × Q → [0, 1] over the actions

domain, the action similarity function σ (q1,q2) is the complement

function defined by σ (q1,q2) = 1 − ∆(q1,q2) for all q1,q2 in Q.
Several distance/similarity measures for many kinds of analysis

actions, e.g. for SQL and OLAP queries visualizations, and web-

based analysis actions have been proposed in the literature (e.g.

[3, 16, 26]) and our framework can employ any of them as long

as the corresponding measure defines a metric space.

Session Similarity. As mentioned in Section 2, there are several

ways to lift the similarity of individual elements into similarity

of sequences [11]. To assess which measure is the most suitable

1
The domain is practically infinite since some action types, e.g. “filter”, may have

an unbounded number of possible parameter assignments.

a b c A B
0 0 0 0 0 0

A 0 0.24 0.19 0.13 0.66 0.58
B 0 0.19 0.53 0.47 0.58 1.47
A 0 0.30 0.47 0.53 1.28 1.38
B 0 0.23 0.66 0.58 1.19 2.28

(a) Session ϕ

A B a b c
0 0 0 0 0 0

A 0 0.48 0.43 0.37 0.30 0.23
B 0 0.43 1.07 1.00 0.93 0.85
A 0 0.59 1.00 1.43 1.35 1.26
B 0 0.52 1.32 1.35 1.88 1.78

A AB
ABAB 0.80 1.81

(b) Session ψ

Figure 1: Alignment Matrices for u4 = ”ABAB”

for comparing analysis sessions, the authors of [3] formulated

desiderata for an ideal session similarity measure, based on an

in-depth user study:

• It should take the actions’ order of execution into consider-

ation, i.e. two sessions are similar if they contain a similar
set of actions, performed in a similar order.
• “Gaps” (i.e subsequences of non-matching actions) should

be allowed yet penalized.

• Long matching subsequences should be better rewarded

than shorter matching subsequences.

• Recent actions in the sessions are more relevant than old

ones.

They conclude that the only measure respecting all of the

above mentioned desiderata is the Smith-Waterman similarity
measure [35], a popular measure for local sequence alignment,

and propose an extension suitable for the context of analysis

actions, denoted SW-SIM in our work. We next describe the mea-

sure.

The similarity score of two sessions is defined recursively, on

increasingly growing prefixes, with the base of the recursion

being the empty prefix. At each point, the similarity of the pair

of actions at the end of the prefixes is considered, and the best

option, score-wise, is chosen. The two actions may either be

matched, in which case an award proportional to their similarity

is added to the accumulated score for their preceding prefixes,

or, alternatively, one of the actions is skipped over. In this case a

linear gap penalty 0 ≤ δ ≤ 1 is deducted from the accumulated

score. To reflect the fact that the matching/skipping of older ac-

tions is less important than that of recent ones, rewards/penalties

are multiplied by a decay factor 0 ≤ β ≤ 1 with an exponent re-

flecting how distant the actions are from the sessions’ end. More

formally, the sessions similarity is defined using an alignment
matrix.

Definition 3.1 (Alignment Matrix, Similarity Score). Given ses-

sions s, s ′ of lengths n,m resp., their alignment matrix As,s ′ ∈

R(n+1)×(m+1) is recursively defined as follows. For 0 ≤ i ≤ n,
0 ≤ j ≤ m:

As,s′ [i, j] =



0, if i = 0 ∨ j = 0, else:

max


As,s′ [i − 1, j − 1] + σ (s[i], s′[j])β (n−i )+(m−j )

As,s′ [i, j − 1] − δ β (n−i )+(m−j )

As,s′ [i − 1, j] − δ β (n−i )+(m−j )

0

The similarity score between s and s ′ is defined as:

Sim(s, s ′) := As,s ′[n,m]

Note that even though the distance between individual actions
forms a metric space, as noted in the introduction, SW-SIM does

not induce a metric on IDA sessions.
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The optimal values for the decay factor β and the gap penalty

δ are typically chosen by the system administrator using an

extrinsic evaluation, as explained in Section 6.1.

The following example illustrates the definition.

Example 3.2. For simplicity, assume that the action space is

represented by the English letters, both uppercase and lowercase,

and assume the following action similarity for any two distinct

uppercase lettersX ,Y and their corresponding lowercase versions

x ,y.

σ (·, ·) :=



σ (X , X ) = 1

σ (x, x ) = 1

σ (x, X ) = σ (X , x ) = 0.5

σ (x, y) = σ (X , Y ) = 0.1

σ (X , y) = σ (y, X ) = 0

Identical letters are maximally similar, and two instances of

the same letter, but in different case (upper/lower), are 0.5 sim-

ilar. Different letters but of the same case are 0.1 similar. Let

u4 =“ABAB” be the current user session, and consider two repos-
itory sessionsϕ =“abcAB” andψ =“ABabc”. Intuitively, according
to the desiderata above, we expect ϕ to be more similar tou4 than
ψ , as their most recent suffix (“AB") is identical. This is reflected

also in the alignment matrices of ϕ andψ , depicted in Figure 1a

and Figure 1b (resp.), when setting the gap penalty δ = 0.1 and

decay factor β = 0.9. The bottom-right cell in each matrix reflects

the alignment score of the two sessions. The highlighted cells

describes the alignment "trace", namely the cells chosen (among

the three options in alignment formula) when advancing to the

next step in the final score computation. Specifically, when the

highlighted trace moves vertically/horizontally we have a gap,

and when it moves diagonally the corresponding actions are

matched. As we can see, the similarity score Sim(u4,ϕ) is higher
than Sim(u4,ψ ).

Our definition of SW-SIM follows that of [3, 35] with a minor

adaptation to our context. First, we define the similarity score

as the bottom-right cell of the alignment matrix, as opposed to

the maximal cell value in [3, 35]. This is because we focus on

measuring the similarity of the current session to all session
prefixes in the repository

2
. Second, we apply a decay factor to

both actions matches and gaps, as opposed to only matches in

[3], since their significance decreases as the session advances.

Also, note that [3] suggests dynamically setting the decay factor

and gap penalty, which are both constants in our case. As we

shall see, the use of constant parameter values facilitates effective

optimization via computation factorization.

Problem Definition. To assist the user in choosing an appropri-

ate next-action, IDA recommender systems search the repository

S to identify session prefixes that are most similar to ut - the
current, ongoing user session at time t . The continuation of the

retrieved sessions is then processed by the recommender systems

and used to derive a next-action recommendation for ut .
3

Let Pre f ix(S) be the set consisting of all session prefixes in

repository S , i.e. Pre f ix(S) = {si |s ∈ S, 1 ≤ i ≤ |s |}. Since the
user session u = ⟨q1,q2, ...⟩ is built incrementally, at each step

t = 1, . . . , |u | we are given ut and wish to identify its top-k most

similar session prefixes in the repository.

2
This is done by IDA recommendation systems in order to process the continuation

of matching session-prefixes to next-action recommendations.

3
Other information is often used as well, e.g. the interestingness or frequency of the

actions to be recommended, the user profile, etc.

u  \  φ a ab abc abcA abcAB
ABAB 0 0.35 0.90 0.71 1.32 2.28

ABABc 0 0.22 0.71 1.23 1.09 1.95
(a) u , ϕ

u  \  ψ A AB ABa ABab ABabc
ABAB 0 0.80 1.81 1.67 2.09 1.78

ABABc 0 0.62 1.53 1.47 1.78 2.19
(b) u , ψ

Figure 2: Similarity vectors for u4 and u5

Definition 3.3 (Incremental Top-k Similarity Search). Given a

user session ut at time t and a sessions repository S , the set

topk (ut , S) ⊆ Pre f ix(S) consists of k session prefixes s.t. ∀s ∈
topk (ut , S),∀s ′ ∈ Pre f ix(S)\topk (ut , S) : Sim(ut , s) ≥ Sim(ut , s

′).

The incremental search problem is to compute, at each t =
1, . . . , |u |, the set topk (ut , S).

For simplicity, we assume that in the course of a user session

u , the repository S is unchanged. In Section 5.5 we discuss the

minor changes required in our framework to support the case of

a dynamic repository where sessions are incremented or added.

Last, note that while session prefixes may be long and con-

tain “historical” actions of less importance, SW-SIM (as explained

above) favors recent, later actions over old ones. Also, it is easy to
show that in SW-SIM , the similarity of a prefix si = ⟨q1,q2, ...qi ⟩
is always higher (or equal) than the similarity of any shorter

sub-session of s ending in qi .

4 INCREMENTAL SIMILARITY COMPUTATION
We first optimize the similarity calculations between the current

user session u and all prefixes of a single repository session s .
Rather than computing the alignment matrix from scratch for

each prefix of s , we show that: (1) it is sufficient to compute one

alignment matrix between two sessions, then use it to simultane-

ously derive all prefixes similarity scores, and (2) the alignment

matrix Aut ,s at time t can be efficiently constructed by reusing

the previous matrix Aut−1,s computed at time t − 1.
Given a current user session ut and a repository session s of

size |s |, we define a similarity vector, ®Sim(ut , s) containing the

similarity score of ut and each prefix of s , i.e.,

®Sim(ut , s) = [Sim(ut , s0), Sim(ut , s1), . . . , Sim(ut , s |s |)]

We use ®Sim(ut , s)[j], where j = 1 . . . |S |, to denote the j element

in the vector. The similarity vector ®Sim(ut , s) can be derived from
the alignment matrix Aut ,s using the following observation:

Observation 4.1. Given an alignment matrix Aut ,s

∀0 ≤ j ≤ |s | : ®Sim(ut , s)[j] =
Aut ,s [t , j]

β |s |−j

Namely, the similarity score of ut and prefix sj is derived from
their corresponding element in the alignment matrix, Aut ,s [t , j],
by readjusting the decay factor β . The proof is derived from the

more general observation that for arbitrary prefixes si and s
′
j of

session s and s ′:

Asi ,s ′j [i, j] =
As,s ′[i, j]

β ( |s |−i)+( |s
′ |−j)

(1)

Example 4.2. To continue with our running example, the simi-

larity vectors ®Sim(u4,ϕ) and ®Sim(u4,ψ ) are given in the first row

of the tables in Figure 2a, and Figure 2b, resp. According to Obser-

vation 4.1, an element in the similarity vector, e.g. ®Sim(u4,ϕ)[3],
may be computed directly from the corresponding cell in the
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alignmentmatrix ofu4 andϕ: ®Sim(u4,ϕ)[3] =
Au

4
,ϕ [4,3]

β 2
= 0.58

0.81 =

0.71.

Further exploiting the incremental nature of the problem,

we next show how to efficiently construct a similarity vector

®Sim(ut , s) at time t , from that computed at time t − 1, thereby
avoiding explicitly building the entire alignment matrix. To do

so, we generalize the dynamic programming construction of the

alignment matrix (Definition 3.1). Vector entries at time t are
computed by reusing entries in the previous similarity vector

®Sim(ut−1, s), computed at time t − 1 (see the colored parts of the

formula in Proposition 4.3).

Proposition 4.3. For every repository session s , user session u
and time t > 1,

®Sim(ut , s)[j] =



0, if j = 0, else:

max



®Sim(ut−1, s)[j − 1] β 2 + σ (ut [t ], s[j])
®Sim(ut , s)[j − 1]β − δ

®Sim(ut−1, s)[j] β − δ

0

The proof is obtained by employing Equation 1 on each case

of the conditional definition.

Example 4.4. Continuing with our example, assume that the

user now issues a new action "c", i.e. at t = 5, u5 = ”ABABc”. The
new similarity vectors ®Sim(u5,ϕ) and ®Sim(u5,ψ ), are depicted in

the bottom row of Figures 2a and 2b, resp. As before, the similarity

scores Sim(u5,ϕ) and Sim(u5,ψ ), appear in the right-most cell of

the vectors. Using Proposition 4.3 we can derive each value in the

new vectors from the previous corresponding similarity vectors

at time t = 4. For example, the fourth element in ®Sim(u5,ψ ) is
given by:

®Sim(u5, ψ )[4] =max


®Sim(u4, ψ )[3]β 2 + σ (“c”, “b”)
®Sim(u5, ψ )[3]β − δ
®Sim(u4, ψ )[4]β − δ

=max (1.45, 1.22, 1.78) = 1.78

Let us analyze the reduction in time complexity resulting from

these two simple optimizations. Let |̂s | be the average session
size and λ the complexity of computing similarity for individual

actions. The expected time complexity of computing the similar-

ity vector ®Sim(ut , s) by construcitng all ( |̂s |) allignemnt matrices

is O(|̂s |3λ). Employing Observation 4.1 allows us to compute

the same vector by constructing only one alignment matrix, in

O(|̂s |2λ). Further employing Proposition 4.3 reduces the expected

time to O(|̂s |λ) since only |s | action similarity calculations are

required, between ut [t] (the new action in ut ) and all actions of

s .

5 INCREMENTAL TOP-K ALGORITHMS
We are now ready to address the incremental top-k problem -

given an ongoing user session u , retrieve the set topk (ut , S) of
similar prefixes at each time t = 1, . . . , |u |. We first present a sim-

ple algorithm, denoted I-TopK, that iterates over the repository

S and computes the similarity vector for each session. We then

show how a much faster variant, denoted T-TopK, is obtained by

employing a novel, incremental-based filter-and-refine approach.

Algorithm 1 T-TopK(ut , S,k)

Input: ut - current user session,
S - session repository,

k - size of the top-k set.

Output: topk (ut , S ) - a set of top-k most similar session

prefixes to ut .
1: top ← MaxHeap(k )
2: if t == 1 then
3: Use I-TopK to obtain topk (ut , S )
4: else
5: Compute inf t , the lower-bound similarity threshold

6: C ← {s |s ∈ S ∧ supt (s) ≥ inf t }
7: for session s ∈ C do
8: m ← latest time t ′ < t that ®Sim(ut ′, s) was computed.

9: for (i =m + 1; i ≤ t ; i + +) do
10: Compute ®Sim(ui , s) using Proposition 4.3

11: for (j = 1; j ≤ |s |; j + +) do
12: top .push( ®Sim(ut , s)[j], sj )

13: if |top | == k then
14: C ← C \ {s |supt (s) < minScore(top)}
15: return top

5.1 Iterative Top-k Algorithm (I-TopK)
Algorithm I-TopK takes the following as input: the current session

ut , the sessions repository S , and the desired size k of the top-

k set. It iterates over the repository, computing the similarity

vector ®Sim(ut , s) for each s ∈ S by employing Proposition 4.3,

i.e. by using the similarity vector ®Sim(ut−1, s) calculated at the

previous iteration (t − 1). The top-k similarity scores (along with

their corresponding prefixes) are maintained in a max-heap of

size k , which will contain the exact set topk (ut , S) of the top-k
most similar prefixes to ut at the end the loop.

The time complexity of I-TopK is O(|S | |̂s |λ), since it iterates
over a session repository of size |S | and computes a similarity

vector inO(|̂s |λ). The max-heap is maintained in a negligible cost

ofO(loд k), as we assume that k << |S |. As for space complexity,

I-TopK requires storing the previous similarity vectors computed

at t − 1, therefore it requires O(|S | |̂s |) space, where |̂s | is the
average session size.

5.2 Threshold-Based Algorithm (T-TopK)
The T-TopK algorithm follows a filter-and-refine paradigm, s.t.

in the filter step, repository sessions are pruned according to

an overestimation of their similarity scores. Then, during the

refinement step, the similarity vectors are computed only for

candidate sessions passing the filter step. Importantly, T-TopK is

guaranteed to be exact since the filter step always overestimates
the true similarity scores and underestimates the filter thresholds.
The novelty and efficiency of the algorithm stem from exploiting

the incremental nature of the search problem.

We first describe the outline of the T-TopK algorithm, then in

Sections 5.3 we present the techniques used for its filter step, i.e.,
the efficient calculation of the similarity lower and upper bounds.

T-TopK Algorithm Outline. Algorithm 1 depicts the outline of

the T-TopK algorithm. For a given user session ut , a sessions

repository S and a number k , the prefixes set topk (ut , S) is re-
trieved in the following manner. First, if ut contains only one
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action, the I-TopK algorithm will be used, since we have no pre-

vious prefix to rely on. Otherwise we employ a filter-and-refine
process as follows.

Filter Step. We first find candidate sessions that are likely to

contain prefixes in the top-k set topk (ut , S):
(1) Form a global similarity threshold. We first compute

an initial lower bound threshold, denoted inf t , for the similarity

score of a prefix to be a member of topk (ut , S). The threshold
inf t underestimates the true minimal similarity score (Line 5).

(2) Compute a similarity upper-bound for each session.
We then form a similarity upper-bound for each session s , denoted
supt (s), that overestimates the maximal similarity of a prefix in

s to the current user session ut .
The algorithm then filters the repository S by retrieving all ses-

sions having similarity upper-bounds greater than inf t (Line 6).
Importantly, since the lower bound is underestimated and the

upper bounds are overestimated - no false negatives can occur.

In Section 5.3 we describe how the similarity lower and upper

bounds are defined and efficiently calculated.

Refinement Step. We employ a refinement step over the candi-

date sessions and calculate the exact similarity scores using their

similarity-vectors. Recall that to efficiently construct a similarity

vector (Proposition 4.3) at time t , we need to have the vector of

time t − 1. However, we may not have calculated a similarity vec-

tor at t −1 if a session was pruned in the filter step. Thus, for each

such candidate session we reconstruct, if necessary, its previous

vectors from time < t (We discuss below how this computation

can be performed in user idle-times, allowing T-TopK a further

speed-up), then compute the current similarity vector ®Sim(ut , s)
(Lines 9- 10).

Last, we iteratively push each element in the similarity vector

into a max-heap top of size k (Lines 11- 12), and further prune

candidate sessions if their upper bound is lower than the mini-

mum score in top (Lines 13-14). Finally, the max-heap top holds

the set topk (ut , S), containing the top-k most similar prefixes to

ut .

Offline computation in user idle-times. User idle-times occur

between two consecutive actions - while the user examines the

results of her current action, before executing the next one (which

typically takes several seconds). Our algorithm utilizes such idle-

times, to compute similarity vectors skipped at previous iterations

offline, so that they are already available when needed in the top-k
search.

Correctness of the T-TopK algorithm. We next sketch the cor-

rectness proof, showing that the T-TopK algorithm is correct,

i.e., always retrieves the exact set of top-k most similar session

prefixes:

Let top denote the output of the algorithm. We need to show

that topk (ut , S) = top. We will consider t > 1 (the case of t=1 is

trivial). First, we show that for an arbitrary prefix sj of a repos-
itory session s , sj ∈ topk (ut , S) → sj ∈ top. If s ∈ topk (ut , S)
then Sim(ut , s) ≥ inf t (as inf t is the similarity lower bound).

Hence, for the upper bound supt (s) of session s we can eas-

ily see that supt (s) ≥ inf t , thus s ∈ C , i.e. s is retrieved and

processed as a candidate session. The proof for the case that

sj ∈ topk (ut , S) ← sj ∈ top follows similar lines.

To complete the picture we still need to explain how (1) the

similarity lower bound inf t , and (2) the upper bounds supt (s)
are computed and compared.

5.3 Incremental-Based Similarity Bounds
We first explain how the similarity lower and upper bounds are

defined, then describe how the candidate sessions are efficiently

retrieved.

5.3.1 Similarity Threshold (Lower Bound). The threshold inf t

forms a lower-bound (underestimated) for the similarity score

of a prefix to be a member of topk (ut , S). Intuitively, we use the
sessions in the (already computed) top-k set of time t − 1 as a
potential representative for the top-k set of time t , and define

our threshold w.r.t. them. Let St−1top ⊆ S denote the set of sessions

with prefixes in topk (ut−1, S). The similarity threshold is defined

by:

inf t =minScore(topk (ut , S
t−1
top ))

As the size of St−1top is at most k , inf t is computed efficiently.

The proof that inf t always underestimates the exact lower-

bound can be immediately obtained from the simple observation

that:

∀S ′ ⊆ S,minScore(topk (ut , S
′)) ≤ minScore(topk (ut , S

′))

In particular, the observation holds for S ′ = St−1top .

Nevertheless, we show that inf t cannot be too far from the

exact threshold at t-1, using the following observation:

Observation 5.1. minScore(topk (ut−1, S))β − δ ≤ inf t

This stems from the fact that the lowest possible inf t is ob-
tained when the last query in ut is not aligned in any of the

sessions in St−1top (hence a gap penalty is absorbed).

Example 5.2. Assume that k = 1 (i.e. we are interested in the

top-1 similar prefixes), and consider the sessions u ,ϕ,ψ from our

running example. Considering the similarity vectors at t = 4

(detailed in Example 4.2), the most similar prefix is ϕ5 and thus

top1(u4, {ϕ,ψ }) = {ϕ5}. Consequently, its corresponding ses-

sion is in the set S4top = {ϕ}. For computing the threshold

inf 5 =minScore(top1(u5, S
4

top )), we construct the similarity vec-

tor ®Sim(u5,ϕ) (bottom row in Figure 2a), and take the maximal

score among its elements, thus inf 5 = 1.95.

5.3.2 Upper-Bounding Similarity Scores.
Let ŝupt (s) = max

1≤j≤ |s |Sim(ut , sj ) denote the tight, exact
upper bound for the similarity score of all prefixes in s . Recall
that for sessions in St−1top , we already computed their similarity

vectors when computed the lower bound inf t , therefore their
tight bound is already at hand. Nevertheless, for the rest of the

sessions, i.e. s ∈ S \ St−1top , we show that the incremental nature

of the computation can be used to form supt (s), an effective

over-approximation to ŝupt (s). An important observation is that

we are only interested in upper-bounding the scores of sessions

containing at least one prefix with a similarity scores higher than

inf t (otherwise it can be safely pruned). We therefore define a

proper similarity upper bound as follows:

Definition 5.3 (Proper upper bound). supt (s) is a proper upper
bound w.r.t. ut and S , if for every session s having some prefix sj
where Sim(ut , sj ) > inf t , we have that supt (s) ≥ ŝupt (s).

A second important observation, is that unless the last action

in ut , denoted qt , is aligned to an action in s ∈ S \ St−1top , s can be

safely pruned.
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Observation 5.4. For a session s ∈ S \St−1top , if when computing
Sim(ut , s) the action qt is not matched with any of s’s actions, then
for every prefix sj of s , Sim(ut , sj ) ≤ inf t .

This is because if qt is not matched with an action in sj it ab-
sorbs a gap penalty, i.e., Sim(ut , sj ) = Sim(ut−1, sj )β − δ (Propo-

sition 4.3). On the other hand, since sj < topk (ut−1, S) we know
that Sim(ut−1, sj ) ≤ minScore(topk (ut−1, S)). Then, using Obser-
vation 5.1 we can see that Sim(ut , sj ) can never exceed inf t .

Consequently, in the analysis below we ignore sessions where

qt is not matched with any of s’s actions, and for brevity, unless

stated otherwise, whenever we refer to a session s we mean one

in S \ St−1top where qt has a match.

We next provide two ways to overestimate ŝupt (s). In our

efficient implementation of the filter procedure for candidate

session retrieval (to be detailed in the next subsection), we use

the first bound to quickly prune irrelevant sessions, then use the

second one for further pruning the candidates set.

First bound (B1). The following observation shows that we

can bound ŝupt (s) from above using the top-k set of the previous

iteration and the maximal similarity of the session’s individual

actions to the new action qt .

Observation 5.5.

ŝupt (s) ≤ minScore(topk (ut−1, S))β
2 +maxq∈s {σ (qt ,q)}

Intuitively, this is because for every prefix not in topk (ut−1, S),
the similarity to ut−1 is smaller than

minScore(topk (ut−1, S)). Consequently, even if the newly added

action qt is matched to the most similar action in s , by the defi-

nition of the similarity measure, the cumulative score cannot be

greater than the prefix similarity (multiplied by the decay factor,

following the arrival of a new action) plus the similarity of the

best match (Proof omitted). We therefore use the following as

our first upper-bound:

B1(s) =minScore(topk (ut−1, S))β
2 +maxq∈s {σ (qt ,q)}

Note that since topk (ut−1, S) is already computed, to calculate

the bound we only need the similarity of qt and the actions in s .
As individual actions do reside in a metric space (unlike session-

s/prefixes), we show in Section 5.4 how this is done efficiently.

Second bound (B2). An alternative, less intuitive upper-bound

for ŝupt (s) is achieved by dividing ut into three disjoint subse-

quences w.r.t. a session s , and separately bounding the similarity

to each part: (a) the segment of ut that was already compared to

s in previous iterations, denoted uτ (b) the segment containing

only the last added action qt , and (c) the segment in between

these two. By adding up the bounds for each segment we obtain

a bound for the whole sequence:

Proposition 5.6.

ŝupt (s) ≤ max
1≤j≤ |s |{ ®simuτ ,s [j]}β

2(t−τ ) +
β2(t−τ ) − β2

β2 − 1
+

+maxq∈s {σ (ut [t],q)}

The latter proposition holds for β < 1
4
.

Proof Sketch. We prove by induction. We denote

sτ := max
1≤j≤ |s |{ ®simuτ ,s [j]}. The base case is when t = τ + 1.

4
For the case of β = 1, the middle part in the compound expression is defined to be

0

We can easily show that:

ŝupτ+1(s) ≤ sτ β
2 +maxq∈s {σ (ut [t],q)}

We know that:

ŝupt+1(s) ≤ ŝupt (s)β2 +maxq∈s {σ (ut+1[t + 1],q)} (2)

Assuming the inequality holds for t , we can bound ŝupt (s)β2:

ŝupt (s)β2 ≤ β2(sτ β
2(t−τ ) +

β2(t−τ ) − β2

β2 − 1
+maxq∈s {σ (ut [t],q)})

Sincemaxq∈s {σ (ut [t],q)} ≤ 1 we have:

ŝupt (s)β2 ≤ sτ β
2(t+1−τ ) +

β2(t+1−τ ) − β4 + β2(β2 − 1)

β2 − 1

We can use the latter expression in (2) to obtain:

ŝupt+1(s) ≤ sτ β
2(t+1−τ )+

β2(t+1−τ ) − β2

β2 − 1
+maxq∈s {σ (ut+1[t+1],q)}

Hence the inequality holds for t + 1 □

Importantly, note that this bound requires no action-similarity

computations besides those already performed for B1, and that all
other values are either predefined constants or already computed

in previous iterations. The proper upper bound supt (s) is defined
as the minimum of the two bounds: supt (s) =min(B1(s),B2(s))

5.4 Efficient Retrieval of Candidate Sessions
As mentioned above, we use the first bound B1 to quickly iden-

tify relevant sessions, then compute the full bound only for the

retrieved sessions, for further pruning. We use the following

observation, which follows immediately from Observation 5.5.

Observation 5.7. For supt (s) to be not smaller than inf t , s
must contain some action q s.t.

σ (qt ,q) ≥ inf t −minScore(topk (ut−1, S))β
2

To identify sessions that contain such actions, we employ

an index structure that uses the fact that the action similarity

measure defines a metric space (See Section 3). Specifically, in

our implementation we use a metric-tree [8] - a popular index
structure that harnesses the triangle inequality property of a

metric space to facilitate a fast similarity search.

Sessions selection via the actions metric-tree. Individual actions
are stored in a metric tree, with pointers from each action to the

session it appears in
5
. From Observation 5.7 and our definition of

the action distance notion, it follows that all sessions that satisfy

the bound B1 must contain some action q s.t.:

∆(qt ,q) ≤ 1 − inf t +minScore(topk (ut−1, S))β
2

We thus use the metric tree for a fast retrieval of all such actions

q, and follow their associated pointers to identify the relevant

sessions. Now we only need to compute Bound B2 for the re-

trieved sessions to select those with upper bound greater than

inf t .

Example 5.8. For our running example, at t = 5 we retrieve

candidate sessions via the metric tree, w.r.t. the lower bound

1.95 (computed as in Example 5.2). Recall that our goal is to

retrieve sessions having an action q s.t. ∆(q5,q) ≤ 1 − inf 5 +
minScore(top1(u4, {ϕ,ψ }))β

2
, namely actions similar to q5 = “c”

with distance no more than 1 − 1.95 + 2.28 ∗ 0.81 = 0.897. Only

5
The distance function used is the complement of our predefined action similarity

function, i.e. ∆(q, q′) = 1 − σ (q, q′)
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the letters “C” and “c” meet this constraint, therefore sessionsψ
(that contains “c”) is retrieved and added to the initial candidate

sessions set. Then, the upper bound forψ is given by sup5(ψ ) =
min({B1(ψ ),B2(ψ )}) =min(2.84, 3.09) = 2.84 (full computation

omitted), which is greater than the lower bound 1.95, therefore

the final set of candidate sessions is {ψ }.

5.5 Analysis of Pruning Effectiveness
Intuitively, the effectiveness of T-TopK is dependent on (1) the

amount of reduction in the examined candidate sessions, on which

the exact similarity scores are calculated, as well as on (2) the

cost of retrieving the candidate sessions.

First, let us assess the expected time complexity of T-TopK. Let

|Ĉ | be the expected number of candidate sessions meeting the

bounds (we assume |Ĉ | >> k), and let τ̂ be the expected number

of missing similarity vectors that need to be computed for each

candidate session. Also, denote by α the cost of the metric-tree

search. Thus the average time complexity of T-TopK is given by

O(α + λ |Ĉ |τ̂ |̂s |).
The parameters |̂s | (mean session size) and λ (cost of individ-

ual action similarity operation) are not controllable nor affected

by the implementation of the T-TopK algorithm. We therefore

analyze the performance of T-TopK according to the following

parameters: α - the cost of the actions metric tree search, |Ĉ | -
the expected number of candidate sessions, and τ̂ the expected

number of missing vectors per candidate session.

Cost of searching the actions metric tree (α ). Recall that the
individual actions metric tree is used to efficiently retrieve all

repository sessions that satisfy BoundB1. Based on the costmodel

for metric trees proposed in [9], α is given by:

∑L
l=1 λMl+1F (r̂l +

rq ), where: F (x) is the action-distance probability distribution

(i.e., the probability that the distance of two arbitrary actions

≤ x ), L is the number of levels in the tree, andMl is the number

of nodes in level l of the tree, r̂l is the mean covering radius of
nodes at level l , and rq is the search range (in our case, rq =

1 − inf t + minScore(topk (ut−1, S))β
2
). Also note that ML+1 is

the total number of individual actions stored in the metric tree.

Based on this cost model, we can see that (1) naturally, increasing

the size of the actions domain and the cost of action-distance

computation increases α . (2) More importantly, decreasing the

range rq decreases α . The latter is greatly affected by the lower

bound inf t and the upper bound B1, as described next.

Expected number of candidate sessions (|Ĉ |). The number

of candidate sessions directly stems from the number of ses-

sions that satisfy both bounds B1 and B2. Intuitively, |Ĉ | de-
pends on three factors: (1) How high is the lower-bound. Natu-
rally, the higher the lower-bound inf t is, the less the repository
sessions may surpass it. The lower bound inf t , computed by

minScore(topk (ut , S
t−1
top )) is higher, if the least similar prefix in

the top-k set, computed over the sessions in St−1top , is of high simi-

larity tout . In turn, this holds if the probability that qt , the newly
added action to ut will be similar enough to actions contained

in the sessions of St−1top , and also on the exact similarity thresh-

old computed at t-1 (higher is better). (2) How low are the upper
bounds. Similarly, lower upper-bounds reduce the chance that
repository sessions can surpass the lower bound. Both upper

bounds are lower when the decay factor β is lower (this directly

stems from Observation 5.5 and Proposition 5.6). Also, for both

upper bounds, if the probability that qt is aligned to an action in

s ∈ S \St−1top is lower - so are the upper bounds. (3) The underlying

session similarity probability distribution - intuitively, how many

sessions, on expectation, may contain prefixes with high simi-

larity to ut - sufficient to satisfy Bounds B1 and B2. Naturally,
if many sessions are likely to have prefixes similar to ut , more

candidates will be retrieved.

Expected number of missing similarity vectors τ̂ . A higher

number of missing similarity vectors decreases the performance

of T − TopK . It may happen if a session did not make it to the

candidates set C for several consecutive iterations, yet is sud-

denly considered at time t . However, recall that many of these

missing vectors may be effectively computed in user idle times.

We also show in Section 6.3 that even idle-times shorter than the

minimal human reaction time (250ms) are sufficient to compute

a significant portion of the missing vectors.

In summary, the effectiveness of the pruning is dependent on

multiple, intertwined factors that stem both from the underlying

structure of the analysis sessions (and actions) as well as the prob-

lem parameters (such as the gap penalty δ and the size of k). In
our experimental evaluation (See Section 6) we have empirically

examined the effect of various such parameters on the perfor-

mance of T-TopK. Besides using a real-life session repository,

we used a multitude artificially crafted repositories, each with

different underlying structure, as well as different settings of the

search problem. We show that in almost all such configurations,

T-TopK is highly efficient in comparison to I-TopK and surpasses

other baseline algorithms by 2-3 orders of magnitude.

Additional Remarks. We conclude with two remarks. First, con-

sidering the space complexity of T-TopK - on top of storing the

similarity vectors there is an additional cost induced by main-

taining the metric tree. However, assuming that the metric tree

is balanced, the overall space complexity of the algorithm is thus

O(|S | |̂s |), which is the same as for I-TopK. In Section 6 we show

that the additional cost induced by the metric tree is marginal,

even when the session repository contains over 1.5M individual

actions.

Last, note that in practical settings the repository is dynamic,

i.e., new sessions are added and existing ones are incremented.

T-TopK can be easily adapted to this setting, as newly added

or incremented repository sessions merely induce more missing
similarity vectors. Recall from Section 5.2 that missing vectors

can be computed during user idle-times (between her consecutive

actions) thereby minimizing the effect on computation time.

6 EXPERIMENTAL STUDY
As mentioned above, since the speedup achieved by our opti-

mizations may be affected by the underlying structure of the

session repositories, one would ideally like to evaluate their per-

formance on a multitude of real-life session repositories with

different characteristics.

However, the only publicly available repository (to our knowl-

edge) of real-life analysis sessions is rather small [1]. Therefore,

we first performed experimental evaluations on a variety of artifi-

cially crafted session repositories, each having different internal

characteristics that may effect the performance of our solutions.

Then, we used the session repository of [1] to verify that the

same performance trends hold on real life sessions as well.

Last, let us recall that our experiments focus on running-

time performance. For an evaluation of the quality of recom-

mendations generated based on SW-SIM we refer the reader to,

e.g., [2, 3].
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In what comes next, we describe the experimental setup and

the construction method for the artificial repositories in Sec-

tion 6.1, then show the performance of our solution compared to

numerous baseline approaches in Section 6.2. Last, we examine

the scalability and performance trends w.r.t. numerous parame-

ters of the search problem and session repositories (Section 6.3).

6.1 Experimental Datasets & Setup
Artificial Session Repositories Construction. In the absence of

real-life session repositories that are large enough and publicly

available, we constructed a multitude of artificial repositories,

each with different underlying characteristics that may affect the

performance of our solution. Each repository was constructed by

first building an action (metric-) space with certain, configurable

properties, then constructing repository sessions by drawing

actions from this space (also w.r.t. a configurable setting). The

controllable parameters and the ranges we use are depicted in

Table 1.

Generating the individual action space. Recall that our algo-
rithmsmodel analysis actions as abstract objects in a givenmetric

space. We represent here actions as points in an N -dimensional

Euclidean space, with the Euclidean distance as the distance met-

ric. To obtain values in [0, 1] range, each element is restricted to

the range [0, 1√
N
]. We the simulate a controlled degree of similar-

ity between actions as follows: first draw a (controllable) number

of action points uniformly at random (u.a.r.), to serve as cluster

centers, then generate additional actions around each center us-

ing a (multi-variant) normal distribution, with the cluster-center

as mean. In our experiments we varied the number N of action-

space dimensions, the number of action clusters, and their radius

(standard deviation), obtaining different degrees of underlying

action-similarity in the repository session.

Generating repository sessions. The sessions repository is

constructed in an analogous manner. We first generate a set of

“seed” sessions, then use them to generate sessions with varying

degrees of similarity to the seed. For each session (seed or other)

we draw its length from a given normal distribution. To construct

a seed-session we select (u.a.r) a sequence of actions of the given

length. The rest of the repository sessions are constructed based

on one of the seed-sessions. To further control the similarity of

an arbitrary session s to its corresponding seed, we set a fraction

p of “random” actions in s . Namely, p · l actions in s are randomly

drawn (u.a.r) from the entire action space. The rest (1−p)·l actions
in s are chosen from the same action-clusters as the actions in

the corresponding seed session. Intuitively, setting a high value

of p of “random” actions significantly decreases the potential of

two sessions to be similar.

In the experiments below we used multiple repository config-

urations, as depicted in Table 1.

REACT-IDA Session Repository. We used the only publicly avail-

able repository (to our knowledge) of real-life sessions [1], col-

lected as part of the experimental evaluation of an existing IDA

recommender system [26]. The user sessions were performed by

56 analysts who used a web-based IDA interface in order to ex-

plore four different datasets from the cyber-security domain. The

repository contains 1100 distinct actions. The average session

length is 8.5 actions, and the median user idle-time is 40 seconds.

Action Similarity. Recall that both algorithms require a mea-

sure for action similarity. When using the real-life repository,

we employed the similarity measure of the IDA recommender

Parameter Min Max Default
Problem Parameters

Decay Factor β 0.1 1 0.9

Gap Penalty δ 0.05 1 0.1

Output Size k 4 24 12

Controlled Repository Parameters
Action Dim. 5 500 25

#Action Clusters 3K 24K 6K

Cluster Rad. (std) 0.0075 0.012 0.003

#Seed Sessions 6% 16% 10%

%Random Actions (p) 0% 100% 80%

Idle Time (s) 0 5 1

Repository Scale Parameters
#Sessions 1K 100K 10K

Session len. N(4, 32) N(32, 122) N(16, 32)

Table 1: Problem & Repository Parameters

system [26] whose analysis UI was used to record the sessions.
6

For the artificial repositories, where the actions reside in a multi-

dimensional metric-space, we used Euclidean distance.

Default Parameters Selection. The search problem parameters

(namely, the decay factor β , the gap penalty δ , and the size of

k) may affect the performance of our solution. However, to cap-

ture the real-life setting where the algorithms are embedded in

actual IDA recommender systems, the default values are set to

optimize the quality of the SW-SIM measure, rather than the per-

formance of our optimizations. To do so, we embedded SW-SIM as

the top-k search component in the IDA next-step recommender

system [26] (code available in [1]), and performed the hyper-

parameters selection routine as described in [26]. Briefly, this

is done by executing a grid search for the systems’ parameters

(including the top-k problem parameters), and selecting the con-

figuration that allows the recommender system to achieve the

highest qualitative performance (as determined in a predictive

accuracy evaluation).

As for the artificial repository construction, intermediate val-

ues were chosen as default values, as stated in Table 1. Never-

theless, in Section 6.3 we examine the effect of varying each

problem/repository parameter on the running time performance

of our solution.

Hardware and Software Specifications. We implemented the

algorithms presented in the previous sections in Java 8, using
Guava (https://github.com/google/guava) for the max-heap. For

the metric-tree we used an M-tree [8] Java implementation (https:

//github.com/erdavila/M-Tree), employingMinimum Sum of Radii
split policy (See [8]), and a maximum node capacity of 20 objects.

All experiments were conducted over Intel Core i7-4790, 3.6GHz
machine (4 dual cores), equipped with 8GB RAM.

6.2 Baseline Comparison
We compared the performance of the T-TopK algorithm to the

following baseline algorithms, each computing the exact set

topk (ut , S) according to the alignment based similarity measure

(Definition 3.1). Among these, we show the results of the follow-

ing baselines: (1) Naive Sequential Search (NSS) that retrieves
the set of similar prefixes by iteratively comparing ut to each

prefix of each repository session in S using a direct implementa-

tion of Definition 3.1 with no further optimizations, then selects

6
The similarity notion considers both the action syntax and (a signature of) the

results. (See [26]).
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REACT-IDA (1.1K actions) Repo-10 (160K actions) Repo-100 (1.6M actions)Baseline Time (ms) #ops Time (ms) #ops Time (s) #ops
NM-Tree 42.3 27.5K 18,503 12.3M 186 123M

CSE 55 36.6K 18,224 12.1M 183 121M

NSS 51.9 35K 17,204 11.5M 170 123M

OSS 7.6 5.1K 3,242 1.36M 32 13.6M

I-TopK 1 1.1K 237 160K 2.4 1.6M

T-TopK 0.5 641 59 39K 0.9 722K

Table 2: Baseline Comparison. We compared various baseline algorithms in terms of running times and the number of similarity operations

the top-k similar prefixes. (2) Optimized Sequential Search
(OSS), which employs the first optimization described in Sec-

tion 4, instead of computing the alignment matrix for each prefix.

Namely, it iterates over all sessions in s ∈ S , constructs a single
alignment matrix Aut ,s , and uses Observation 4.1 to derive the

similarity scores of ut and each prefix of s . (3) I-TopK, the itera-
tive algorithm depicted in Section 5.1 which employs both of the

optimizations in Section 4. (4) T-TopK, the optimized algorithm

described in Sections 5.2-5.4. (5) Constant Shift Embedding
(CSE)[31] and (6) NM-Tree [34], are general purpose solutions
for top-k search in a non-metric space. Both usemetrization tech-

niques: CSE use a simple solution that increments each distance

score by a predefined constant, so the triangle inequality is en-

forced. Then, all session prefixes in S are stored in a metric tree
(w.r.t. the new metric space). When given the ongoing session

ut , the metric tree is traversed, using the new metric to obtain

the exact set of top-k similar prefixes. NM-tree uses a more so-

phisticated similarity-preserving transformation on the original

(non-metric) distance measure, then employs an extension of the

metric tree to index and query the transformed metric space.

Finally, recall from Section 2 that optimization techniques

dedicated to other similarity measures (e.g., DTW, Global Se-

quence Alignment) are inadequate for SW-SIM , therefore could

not serve as baselines. Also, approximation-based solutions were

omitted as well since this work concerns with the case of exact

computation of the similarity scores.

Evaluation Process. We evaluated all baselines using a mul-

titude of configurations for the top-k search problem (i.e. the

constants β , δ of the similarity measure, and k), on various con-

figurations of artificial repositories.

The evaluation process is as follows. Given a session repository

S , in each trial we draw a random session prefix as ut , then
employ each baseline to retrieve topk (ut , S). We performed 100

trials for each repository, capturing the average execution time

and memory consumption, and the average number of action

similarity operations performed in each run.

Results. Table 2 presents a representative sample of the results,

showing the average running time and the number of action sim-

ilarity operations (denoted #ops) obtained by each baseline. The

comparison is presented for the REACT-IDA repository (Con-

taining 1.1K actions) as well as Repo-10 and Repo-100, which are

two artificial session repositories (with the default configuration

stated in Table 1) containing 10K and 100K sessions (resp., 160K

and 1.6M actions).

First, for both Repo-10 and Repo-100, the performance of NM-
Tree and CSE is almost on-par with NSS (the naive sequential

search). This could be due to the fact that transforming the non-

metric space may induce high overlap between the metric-tree

nodes, therefore the search deteriorates to sequential search plus

additional overhead induced by the metric tree (See [34]). Second,

note that OSS improves running times by 5X (and #ops by 9X )
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Figure 3: Effect of Scale Parameters

over NSS due to its efficient use of Observation 4.1. However, a

more significant improvement of 15X in running times (and 9X
in terms of #ops) is achieved by I-TopK which utilizes the incre-

mental computation. Finally, an additional 2-4X speedup is
obtained by T-TopK, resulting in an overall improvement
of 189X to 291X over the NSS baseline.

The performance trends on the REACT-IDA repository (com-

prising the smaller collection of real-life sessions) are similar, with

some minor variation. We can first see that NM-Tree performs

slightly better than NSS and CSE. This is due to the underlying

structure of the dataset that allows the NM-Tree to perform (and

store) the distance-preserving transformations more efficiently.

However, both our optimized algorithms perform significantly

better, with T-TopK dominating. Interestingly, while the REACT-

IDA is fairly small, the pruning-based optimizations of T-TopK

are still highly effective. T-TopK retains a 2X speedup compared

to I-TopK, and significantly outperforms the other baselines.

Next, we present a performance comparison of the algorithms

when employed on a multitude of different repositories and with

different problem parameters, as well as an examination of the

computation segments in T-TopK. Since in all configurations, the

performance of T-TopK was significantly better (by at least an

order of magnitude) than the baseline algorithms, we omit them

from presentation and use only I-TopK as a baseline.

6.3 Scalability & Parameters Effect
We next analyze the performance of the T-TopK Algorithm com-

pared to I-TopK, by varying the problem parameters as well as

the repository parameters, one at a time, while keeping the rest

at their default values (As in Table 1). We measured both the

running times, number of action similarity operations (#ops), and
memory consumption.

Scalability Parameters. Figure 3a depicts the performance of

the algorithms when increasing the number of sessions in the

repository. For both algorithmswe can see a rather linear increase

in running times (correspondingly, #ops however the two plots

overlap), but T-TopK shows a significant speed up of 3X (on aver-

age) over I-TopK. Moreover, as we can see in Figure 3b, when the

mean session length increases, T-TopK performance stays stable

compared to a linear increase for I-TopK. This demonstrates that
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Figure 4: Parameters Effect on REACT-IDA (R) and Artificial (A) Datasets

the effectiveness of the threshold-based approach further grows

for longer sessions. As for memory consumption, the maximal

usage for T-TopK did not exceed 74MB even for a repository as

big as 100K sessions (1.6M individual actions), which is negli-

gible in practice. We therefore do not further discuss memory

consumption in the next experiments.

Problem Parameters. Recall that the problem parameters are

the gap penalty δ , the decay factor β and the output set size k .
We examine their effect on the performance, when varying each

parameter, and keeping the rest at their default values. To gain a

better insight on the computation of T-TopK, we break the total

#ops performed into three computational segments: (1) forming

the initial similarity lower bound, (2) the metric-tree search, and

(3) computing similarity vectors for candidate sessions. The cor-

responding running time trends are similar, therefore omitted

from the figures below. Also, as Segment (3) is negligibly small

when using the default idle-time, we further restrict the default

user idle-time to 150ms, which naturally stresses T-TopK. The

performance of I-TopK in terms of #ops is represented by a dotted

flat line since it is not dependent on the problem parameters.

We observe that increasing each of the problem parameters

results in a minor increase in #ops for T-TopK. Figure 4a and

Figure 4c show the effect of the decay factor β and the output

size k on performance, when the algorithms are employed on

the REACT-IDA repository, and Figure 4d shows the effect of the

gap penalty δ on the default artificial repository (the effect of δ
on the REACT-IDA repository was marginal, therefore the figure

is omitted). The increase in performance is expected, since the

values of the problem parameters play a part in the lower/upper

bound computations: (1) The decay factor β affects the upper

bound, therefore lower values induce more restrictive candidate

selection, and thereby better performance. (2) Increasing the

output size k causes a decrease in the lower bound threshold

inf t , thus more candidate sessions are examined.

To gain a deeper insight on the performance w.r.t. the compu-

tation segments, we examine in Figure 4b, the number of sessions

retrieved in the metric-tree search results (i.e. sessions satisfying

bound B1) and the number of sessions among them that also

meet bound B2 (hence satisfy the upper bound), for varying β
values. We can see that the first set grows with β (hence the cost

of Segment 2 increases), but many sessions are pruned via bound

B2 (thus the cost of Segment 3 does not increase).

Repository Parameters. As is the case for most top-k search

optimizations and dedicated data structures, the underlying struc-

ture of the data points may impact the performance of the T-TopK

algorithm (note that the incremental similarity optimizations pre-

sented in Section 4 are not affected by such parameters).

Therefore, to properly evaluate the effectiveness of T-TopK

we constructed a multitude of artificial repositories (as described

above), each with a different underlying structure that stems from

a particular repository-parameters configuration. We varied each

construction parameter and examined its effect on the perfor-

mance of T-TopK (keeping the rest of the parameters at their

default configuration). Figures 4e, 4f and 4g depict the perfor-

mance of T-TopK compared to I-TopK when varying the amount

of individual action clusters, percentage of “seed sessions”, and

the percentage of random actions in a session, respectively. Intu-

itively, increasing the values of each of these parameters inflict

more “randomness” on the underlying structure of the data points

(sessions), therefore the mean similarity score of two arbitrary

sessions decreases. In turn, lower similarity scores imply smaller

lower bounds, therefore more candidate sessions are examined.

With the exception of one case, in all observed settings, even

when increasing these parameters, T-TopK was still effective,

outperforming I-TopK. The only setting where I-TopK outper-

formed T-TopK was when setting a high (> 60%) percentage of

random actions in the repository sessions, which significantly de-

creases the average session similarity score (Importantly, further

increasing this parameter had a negligible effect on performance).

However, as we show next, given slightly higher user idle-times,

(which is a very reasonable assumption) T-TopK still outperforms

I-TopK, even when the percentage of random actions is high, as

the computation segment of calculating similarity vectors (in

green) is significantly diminished.

User Idle-Times. We measured how the mean user idle-time

affects the performance of T-TopK. Such idle time between con-

secutive actions of the same user often takes several seconds.

Figure 4h depicts the performance when varying the expected

time ranges from 0 to 0.24 seconds. Interestingly, even the lat-

ter, which is lower than the minimal human reaction time to a

visual stimulus, was already sufficient to compute all missing

vectors offline. As expected, T-TopK improves when the idle-time

increases, and when all missing vectors are computed offline -

T-TopK obtains almost a 3X speedup over I-TopK.
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7 CONCLUSION
In this work, we show (for the first time, to our knowledge) that by

utilizing the progressive nature of IDA sessions, a major running-

time speedup (of over 180X ) can be obtained, compared to current

solutions for top-k similarity search of analysis sessions. Our

solution allows IDA recommendation systems to effectively rely

on much larger session repositories while retaining interactive

response times.

However, the scope of our work is limited in two main as-

pects: First, our solution is dedicated to the SW-SIM similarity

measure for analysis sessions. While considered a very compre-

hensive, useful measure, some IDA recommendation systems use

different session similarity measures. Nevertheless, we believe

that the core principles of our solution may be applicable (with

some tweaking and adaptations) to other similarity measures -

even outside the scope of IDA, (e.g. scientific/business workflows,

prescriptive analytics, mashups [5, 13, 42]).

Second, as common in many filter-and-refine based frame-

works, the efficiency of the pruning techniques used by the T-

TopK algorithm may be affected by underlying characteristics of

the session repository, as well as the parameters of the search

problem. In the absence of large enough, publicly available real-

life IDA workloads, our experimental evaluation is performed,

primarily, over a multitude of carefully crafted artificial repos-

itories, each with different characteristics. Although we have

shown that similar performance trends occur on the real-life

session repository as well (the only one that is publicly available),

it is still left to demonstrate the performance speedup on other

real-life IDA workloads (when such become publicly available).

Nevertheless, recall that the efficiency of the single-alignment

optimizations, and the computation of the similarity vectors (as

presented in Section 4), is independent of the session repository

or problem parameters - and even these alone still provide a sig-

nificant speedup of 40− 80X compared to the currently available

solutions.
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ABSTRACT
By expressing physical laws and control strategies, interopera-
ble physical system models such as Functional Mock-up Units
(FMUs) are playing a major role in designing, simulating, and
evaluating complex (cyber-)physical systems. However, exist-
ing FMU simulation software environments require significant
user/developer effort when such models need to be tightly inte-
grated with actual data from a database and/or model simulation
results need to be stored in a database, e.g., as a part of larger
user analytical workflows. Hence, users encounter substantial
complexity and overhead when using such physical models to
solve analytical problems based on real data. To address this is-
sue, this paper proposes pgFMU - an extension to the relational
database management system PostgreSQL for integrating and
conveniently using FMU-based physical models inside a database
environment. pgFMU reduces the complexity in specifying (and
executing) analytical workflows based on such simulation models
(requiring on average 22x fewer code lines) while maintaining
improved overall execution performance (up to 8.43x faster for
multi-instance scenarios) due to the optimization techniques and
integration between database and an FMU library. With pgFMU,
cyber-physical data scientists are able to develop a typical FMU
workflow up to 11.74x faster than using the standard FMU soft-
ware stack. When combined with an existing in-DBMS analytics
tool, pgFMU can increase the accuracy of Machine Learning
models by up to 21.1%.

1 INTRODUCTION
Cyber-physical system experts, cyber-physical data scientists,
and cyber-physical developers often need to analyze, predict,
and simulate physical systems. For this purpose, physical sys-
tem models are often used to capture time-dependent behaviour
and dynamics of such systems [1]. They offer powerful, rigor-
ous, and cost-effective means to characterize and reason about
such systems, without the need to build, interact, and/or inter-
fere with such systems. Physical system models (physical models
for short) are well supported by a number of physical system
modelling software tools and environments. However, each such
modelling environment often uses a specialized form and for-
mat of a physical model with limited possibilities to utilize such
models across different tools and environments. To mitigate this
problem, Functional Mock-up Interface (FMI) [2] has emerged as
a de-facto standard [3] to facilitate physical model exchange and
co-simulation across a large number of modelling tools. In FMI,
physical models are compiled into a standard representation,
denoted as functional mock-up units (FMUs). FMUs reflect real
physical systems composed of physical and digital components

© 2020 Copyright held by the owner/author(s). Published in Proceedings of the
23rd International Conference on Extending Database Technology (EDBT), March
30-April 2, 2020, ISBN 978-3-89318-083-7 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

interacting in complex ways according to a set of pre-defined con-
trol strategies and physical laws. FMUs allow accurately defining
system behaviour even in the physical states that are not ob-
servable in the real world, unlike what is required by traditional
AI/ML models (e.g., artificial neural networks). Due to these ad-
vantages, FMUs continue gaining popularity in relevant physical
modeling communities [5]. FMI has already been broadly adopted
and supported by 130+ software tools, including well-known sim-
ulation environments Simulink (Matlab) [4] and EnergyPlus [6]
(80.000+ downloads), as well as JModelica [8]/OpenModelica [10]
(more than 20 companies and 30 universities in the consortium)
with 1600+ model components and 1350+ functions from many
domains available in a standard library alone.

Despite comprehensive physical modelling support, existing
FMI-based simulation environments and tools offer poor data-
base (DB) integration and lack built-in support for conveniently
including physical models into user-defined analytical workflows.
Thus, user data (e.g., model parameters, measurements, control
inputs) cannot be conveniently supplied to the model from a DB
and model results cannot be effectively used in larger analytical
workflows (e.g., those encompassing multiple simulations) while
offering convenient declarative approaches to manage such phys-
ical models within a common data management and physical
modelling environment. Without these capabilities, model-driven
analytical tasks become complicated and slow in terms of both de-
velopment time and execution, and less usable for users working
with, e.g., prescriptive analytics applications [12]).

As a running example, consider a prediction problem from
the energy field. The aim is to predict and analyze indoor tem-
peratures inside a house that is heated by an electric heat pump
(HP) under different heating scenarios (e.g., no heating, heating
at max power). For this task, a physical model represented as an
FMU needs to be calibrated and simulated using measurements
and weather data stored in the database. Predictions need to be
stored in the database, for further analysis and visualization. In
this case, as shown in Figure 1, the user has to pick relevant
FMU-compliant software tools (e.g., JModelica [8] or Python [7]
+ PyFMI [14] + ModestPy [3]) and then use these tools to (1)
load a pre-generated FMU file or manually build an FMU file
from a model specification file, (2) read historical measurements
and (future) control inputs from a database, (3) recalibrate the
model (e.g, using ModestPy) in case the model cannot ensure
the good fit with the historical measurements, (4) validate the
model against real measurements, and update the model and/or
parameters values, (5) simulate the updated model to generate
temperature predictions for different scenarios (e.g, using PyFMI),
(6) export predicted values back to the database, and (7) perform
further analysis utilizing a DBMS. This imposes limitations for
the user in terms of number of software tools and libraries to use,
and in terms of the overall complexity and ability to effectively
utilize physical models in larger analytical workflows where both
simulation and optimization are required. In this and similar user
workflows, interleaved data exchange between a database and a
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Figure 1: Running example workflow

modelling tool makes the workflows difficult to specify and eval-
uate, leading to significant implementation complexity, developer
and performance overheads. This calls for new solutions offering
more tight integration between a database and a modeling tool.

This paper proposes pgFMU – an extension to the PostgreSQL
[9] DBMS to address these issues. pgFMU is a SQL-based model-
and data management environment that brings benefits to cyber-
physical data scientists and cyber-physical software developers.
pgFMU facilitates FMU model storage, simulation, and parameter
estimation tasks by effectively integrating FMI inside PostgreSQL.
For this purpose, pgFMU offers a number of User-Defined Func-
tions (UDFs) accessible by simple SQL queries for each necessary
operation. As such, our extension exhibits the following advan-
tages: (1) increased user productivity (on average 11.74x faster
for user-defined workflows in terms of development time) due
to the usage of a single integrated system for FMU-specific use
cases, (2) reduced system complexity (22x fewer code lines), (3)
increased performance due to the reduction in I/O operations and
optimization for multi-instance workflows (up to 8.43x faster),
(4) reduced number of error-prone actions by minimizing the
number of software systems and tools a data scientist is required
to work with, and 5) when used in combination with traditional
Machine Learning models, pgFMU can increase model accuracy
by up to 21.1%. These are supported by the results of our ex-
periments which are based on the real-world use cases. Lastly,
pgFMU is an open-source project and can be found on GitHub1.

The rest of the paper is organized as follows: Section 2 elabo-
rates on solving the aforementioned use case using traditional
stack, Section 3 discusses the related work Section 4 highlights
technical challenges of integrating FMUs inside a FMS, Section 5
discusses how pgFMU tackles model storage and specification,
Section 6 presents our pgFMU-based approach for parameter
estimation, Section 7 discusses the model simulation, Section 8
presents the experimental evaluation, and Section 9 concludes
the paper and suggests future research directions.

2 RUNNING EXAMPLE
In this section, we follow Figure 1 and elaborate on the steps of
solving the exemplified case of predicting indoor temperatures
of a house. This example illustrates a typical process, steps, and
software packages a cyber-physical data scientist would adopt to
address this specific and similar problems based on FMU models.

Load / build an FMU model. A Functional Mockup Unit
(FMU) is a .zip file consisting of a number of XML files, model and
underlying solver implementation C-language files and/or their
binary compilations for execution on different hardware plat-
forms. The XML files describe model variables and parameters,
attributes, default stop time, tolerance, etc., to be used, mostly,
by FMU libraries and software tools and not the end-user. The
cyber-physical data scientist can either download a pre-compiled

1https://github.com/OlgaRyb/pgFMU.git

FMU file from the (third-party) system modellers, or build an
FMU file manually using a modelling tool, e.g., Open Modelica
[10]. The latter option requires domain knowledge and modeling
skills to mathematically capture all instantaneous thermal energy
losses (and gains), intensities, and their balance within the build-
ing (e.g., windows, walls). For this problem, at time tk ,k = 1...n,
temperature dynamics of the house can be captured by a generic
linear time invariant state space model (1) (adapted from [11]):

x(tk+1) = F (x(tk ),u(tk ),θ (t), t)

y(tk ) = H (x(tk ),u(tk ),θ (t), t),
(1)

where x(t0) = x0 is the initial state, F is a linear or non-linear
function, F : ℜn ×ℜm ×ℜp ×ℜ → ℜn , x(·) ∈ Rn is the state
variable vector, u(·) ∈ Rm is the model input vector, Θ(·) ∈ Rp is
the parameter vector, y(·) ∈ RO is the model output vector, and
H : ℜn ×ℜm ×ℜp ×ℜ → ℜO is the output function.

This model often needs to be translated into a representation
required by a specific modelling tool, e.g., the Modelica [13]
program shown in Figure 2. There, u is the input variable – heat
pump power rating settings in the range [0 ... 1], corresponding
to [0 .. 100%] of HP power operation; x is the state variable –
indoor temperatures; y is the output variable – energy consumed
by a heat pump. The parameters are represented by A,B,C,D,

and E; A =
(
− 1

R ·Cp

)
, B =

(
P ·η
Cp

)
, C = P , D = 0, E =

(
θa

R ·Cp

)
,

whereCp = 1.5kWh/°C is the thermal capacitance (the amount of
energy needed to heat up by 1 ◦C within 1 hour); R = 1.5°C/kW
is the thermal resistance; P = 7.8kW is the rated electrical power
of the heat pump; η = 2.65 is the performance coefficient (the
ratio between energy usage of the heat pump and the output heat
energy); θa = −10°C is the outdoor temperature.

Read historical measurements and control inputs.Mod-
elling tools often have poor support for database integration
and require model parameters and inputs to be provided in a
predefined format, usually a text file. If model inputs are stored
in a database, the users are required to either manually export
them to use it within the modelling software, or to download and
familiarize themselves with often complex library functionality
(e.g. Matlab Database Explorer app [4] or psycopg2 [16] Python
package ). Yet, storing the measurements in a database has a num-
ber of advantages while handling the concurrent I/O operations
such as managing the information from the multiple sensors
and serving end-user applications. Lastly, the user is required to
retrieve the control inputs from the FMU, and manually match
them with the input data series obtained from the measurements.

Recalibrate the model. Values of one or more model pa-
rameters (e.g., A, B, E in Figure 2) are often either not known,
or tuned for another physical system. This may result in poor
model predictions, or erroneous decisions. Parameter estimation
(or model calibration) is the operation of fitting model parameters
to actual measurements, such that simulated model states and

Figure 2: Heat pump LTI SISO model in .mo format
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outputs acceptably match measured system states and outputs.
In our problem, the unknown model parameter values are A,B
and E (see Figure 2), and the sum of squared errors between the
measured and simulated indoor temperatures is to be minimized.

Parameter estimation can be performed, for instance, using the
ModestPy Python package [3] and its built-in function Estimation.
In this situation, Estimation requires a path to theworking direc-
tory, a path to the FMU model file, input measurements, known
values of the parameters, values to be estimated, and a dataset
with real measurements to calibrate upon. All these formal pa-
rameters need to be specified explicitly by the user. Additionally,
in case the user needs to further use the updated model, parame-
ters update is required to be done manually by calling a specific
function from the PyFMI [14] package.

Often, a set of relevant parameters to be estimated has to
be identified by the user. This operation demands an extensive
domain knowledge, or assistance of the external domain expert.
As an alternative, the user can use the functionality of PyFMI
Python package to retrieve the relevant parameters of an FMU
model. However, the list of retrieved parameters always needs
to be accompanied by often complex filtering. For example, by
default the PyFMI fetches the full list of parameters, including
the parameters related to the built-in solver internally connected
with the FMU model. Such parameters are not relevant for the
parameter estimation operation, therefore, should be filtered out.

Validate and update the FMUmodel. Once parameter esti-
mation is performed, the model needs to be validated before it can
be used for subsequent predictions, e.g., using cross-validation.
In case the model cannot generate predictions with sufficient
accuracy, the model has to be either re-calibrated (e.g., with a
different set of parameters) or further refined or replaced (i.e.,
using another FMU). In our case, validation should be performed
using user-defined Python scripts.

Simulate the recalibratedmodel to predict temperatures.
Next, we need to generate predictions by simulating the cali-
brated FMU model based on the desired input (HP power rating
setting in the range [0 ... 1]/heating scenario). During simulation,
model outputs and states are computed based on the provided
inputs (and previous states), as seen in Figure 3. To simulate
the model in this workflow, the user need to write a (Python)
program (e.g. using the PyFMI ) to load the .fmu file, read input
data, map data to the form required by the simulation library (e.g.
using numpy and pandas [15]), simulate the model (PyFMI ), and
insert simulation results back in the database (psycopg2).

Export predicted values to a database. For further analysis
and visualization, the user needs to export data either directly to
a database or first to a text file and then import the text file into
a database using the respective SQL command.

Perform further analysis. Stored predicted indoor temper-
atures may further be used for subsequent visualization, analysis,
optimization, and/or decision support. However, if predictions

Figure 3: Simplified simulation FMU schematic of the HP
system

Table 1: Workflow operations

Operation Package Code lines
Python pgFMU

Load/build an FMU model PyFMI 4 1
Read historical measure-
ments and control inputs

psycopg2, PyFMI,
pandas

12 -

Recalibrate the model ModestPy, pandas 15 1
Validate & update the FMU
model

PyFMI, pandas 7 -

Simulate the recalibr.
model to predict temp.

PyFMI, Assimulo,
numpy

24 1

Export predicted values to
a DB

psycopg2, pandas 4 -

Perform further analysis psycopg2, PyFMI 22 1
Total 88 4

under different model inputs are required, or by using different
models, this overall process needs to be repeated. When pre-
dictions with multiple FMU model need to be performed, the
cyber-physical data scientist faces additional complexity of man-
aging all these models, their parameters values, and predictions.
As seen in Table 1, for this particular example, the data scien-
tist would have to perform 7 steps utilizing 6 different Python
packages and writing 88 lines of code. The necessity to utilize
multiple software packages makes development time-consuming
and error-prone. At the same time, the usage of different program-
ming interfaces makes such tasks difficult to perform, manage,
and customize. FMU integration inside a DBMS, as in pgFMU,
results in an order of magnitude reduction in the code (as seen
in last table column).

3 RELATEDWORK
FMU model simulation is widely supported by over 130 tools
and packages, most of them being commercial ones. Among
open-source projects are OpenModelica[10], PyFMI [14], and
FMI Library as a part of JModelica[8]. However, even while pro-
viding GUI (e.g., OpenModelica), these tools do not have the solid
support for the import and export of data from/to a DBMS. For
example, OpenModelica requires an intermediary text file to be
created as an input to the simulation engine; this text file should
follow a strict format to be able to continue the simulation.

Another well-known environment for FMU simulation and
parameter estimation is JModelica [8]. JModelica offers a Python
interface, and serves the user with a number of functions re-
quired for a broad range of simulation- and optimization-related
tasks. Another advantage of JModelica is package orchestration:
even though some packages (e.g. PyFMI or Assimulo [20]) are
claimed to be independent of other software, individual package
management still remains a challenge. Nonetheless, JModelica
does not provide yet a direct database input support, so the users
are required to use extra packages (e.g. psycopg2).

At the same time, attempts were made to develop in-DBMS
analytics: SAS [21] in collaboration with Teradata suggested
the integration of DBMS with predictive modelling (including
regression analysis and time series analytics); Tiresias [22] - a
PostgreSQL-based system that supports "how-to" queries for
defining and integrated evaluation of constrained optimization
problems, and SolveDB - an extensible DBMS for SQL-based opti-
mization problems [23]. The existing DBMSes offer only limited
analytical support, such as in-DBMS linear optimization and, to

111



Table 2: Comparison between in-DBMS analytics tools and
pgFMU

Feature MADlibMicrosoft SQL Ser-
ver ML Services

pgFMU

Data query language SQL SQL SQL
Model integration approach UDFs Stored procedures UDFs
In-DBMS machine learning ✓ ✓ ✗

In-DBMS physical models ✗ ✗ ✓
- FMU management ✗ ✗ ✓
- FMU simulation ✗ ✗ ✓
- FMUparameter estimation ✗ ✗ ✓

some extent, forecasting and simulation. To our best knowledge,
no systems have until now supported in-DBMS storage, analysis,
simulation, and calibration of the FMI-compliant models.

There exists a number of tools that incorporate traditional Ma-
chine Learning (ML) models into a DBMS, e.g., the hugely popular
MADlib [27] and the recently released Microsoft (MS) SQL Server
ML Services [28]. Table 2 shows a comparison of pgFMU with
these systems. As we can see, neither MADlib, nor Microsoft SQL
Server ML Services support physical system models (like FMUs),
unlike pgFMU. MADlib follows the same integration approach
as pgFMU by offering a set of UDFs specialized for ML. MS SQL
Server ML Services provides a single T-SQL stored procedure for
executing external Python and R scripts for ML, which is consid-
erably less user-friendly as two languages (SQL + Python/R) are
involved. While the UDFs of pgFMU can be installed as a DBMS
extension, pgFMU can be used as a complement to existing ML
tools, e.g., MADlib, which we demonstrate in Section 8.

4 CHALLENGES OF INTEGRATING FMUS
INSIDE A DBMS

In the next section, we highlight 3 essential technical challenges
of integrating FMUs inside a DBMS:

Challenge 1. Language Integration Challenge: How to in-
tegrate and expose FMUs in database queries? The challenge is
to offer effective new SQL constructs, so that FMUs and FMU
instances can be created, analyzed, manipulated, and used effec-
tively together with existing SQL constructs.

Challenge 2. FMUMeta-data Challenge. How to optimally
take advantage of FMU meta-data to semi-automate task specifica-
tion and data mapping? Traditionally, the specification of FMU
tasks and mapping between (discrete) data stored in a database
and the FMU variables is manual and very verbose, but there is a
huge opportunity to take advantage of the meta-data stored as a
part of a FMU to automate such specifications.

Challenge 3. FMUPerformanceChallenge.How to increase
system performance when a (generic) FMU needs to be instantiated
and used many times? Individual tasks within FMU workflows
(e.g., Figure 1) often require the same FMU to be instantiated
and simulated many times. When model parameters and inputs
change only marginally, FMU computations/results of FMU sim-
ulation can be reused to increase overall performance. The next
sections elaborate on how pgFMU addresses these challenges.

5 MODEL SPECIFICATION, STORAGE, AND
MANIPULATION

pgFMU aims to facilitate arbitrary user-specified FMU-based
workflows by enabling creation, storage, and manipulation of

FMU models (e.g., in terms of model parameters to be estimated)
in a DBMS through user-specified SQL queries. This leads to
Challenge 1: Language Integration Challenge (Section 4). Here,
pgFMU takes a "session-like" approach where FMU instances are
managed and used by explicitly calling commands in a particular
order for FMU creation, deletion, etc. For this, pgFMU employs
the same approach as MADlib [27] and offers a set of easy-to-use
User-Defined Functions (UDFs) that support the full range of
model management operations. pgFMU packs and offers these
UDFs as a PostgreSQL extension, for ease-of-use and installation.
Thus, FMU-specific functionality of pgFMU can be used with, e.g.,
the functionality of MADlib, for combined machine learning and
physical simulations, as shown later. In this section, we describe
in detail the new DBMS constructs / UDFs for model specification
and storage, explain how they work, and show how users can
take advantage of them when working with FMU models.

In pgFMU, a user can create an instance of an FMU model by
using the function (UDF) fmu_create (modelRef, [instanceId]) 7→
instanceId. As input, the function takes a mandatory textual ar-
gument modelRef, that represents either a path to a pre-compiled
FMU (.fmu) file, a Modelica (.mo) file, or inline Modelica model
code. If modelRef is a Modelica argument, it will be automatically
compiled into an FMU file. The function returns a textual model
instance identifier instanceId, which uniquely identifies the model
instance in the subsequent model management function calls.
The model instance identifier can be set manually by the user by
supplying instanceId as an optional argument.

As explained in Section 4, FMU meta-data can be used to semi-
automate task specification and data mapping (Challenge 2). For
this, pgFMU reads meta-data from the user-defined FMUs once
during FMU load and stores it in a model catalogue in a data-
base. Thus, pgFMU automatically detects simulation parameters
(start/stop timestamp, time step), variable causalities (e.g., input,
output, parameter) and data types (e.g., float, integer, string), au-
tomatically configures simulation, and performs implicit data
conversions when needed. The user can manually override the
detected parameters. As seen in Figure 4, the model catalogue
consists of four basic tables:Model,ModelVariable,ModelInstance,
and ModelInstanceValues. Model captures the essential model at-
tributes. FMU models are identified with a Universally Unique
Identifier (UUID) [25] - a 128-bit string for unique object identi-
fication. All loaded models are stored in the FMU storage (non-
volatile memory). ModelVariable describes the model variables:
the variable name, variable type, and the initial, minimum, and
maximum values. The combination of ModelId and varName at-
tributes serves as the primary key. initialValue, minValue, and
maxValue have the variant [24] type - a specialized PostgreSQL
data type that allows storing any data type in a column, while
keeping track of the original data type. ModelInstance stores the
information about model instances. It uses instanceId as the pri-
mary key, and modelId as a foreign key. In this way, multiple
instances of the same parent model can be stored. ModelInstance-
Values stores the model instance variable values. Here, the com-
bination of modelId, instanceId, and varName is a primary key.
Lastly, we show some fields in all four tables decoded in regular
and italic font. Here, the italic indicates the changes occurred
after executing a query example (e.g., fmu_parest, Section 6). The
initial field value is decoded with regular font.

A user can create an instance of the heat pump model (see
Section 2) using the following intuitive SQL query in pgFMU:

1 SELECT fmu_c rea t e ( ' / tmp / hp1 . fmu ' , ' HP1Ins tance1 ' ) ;
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Figure 4: pgFMU model catalogue (filled with example data values)

The result of query execution is shown in Row 1 in Model, Row 1
in ModelInstance, Rows 1-8 in ModelVariable and ModelInstance-
Values, and the object 21736bsxb73sxb in FMU storage. Similarly,
the user can use fmu_create to interact with Modelica model files:

1 SELECT fmu_c rea t e ( ' HP0Ins tance1 ' , ' / tmp / model .mo ' ) ;
2 SELECT fmu_c rea t e ( ' HP0Ins tance1 ' , 'model heatpump

outpu t Rea l x , . . . , y = C ∗ x + D∗ u ; end heatpump ; ' ) ;

The result of executing either of these calls corresponds to Row
2 in Model, Row 3 in ModelInstance, Row 9 in ModelVariable, and
the object 23ksjdjn256smn in FMU storage. The user can also cre-
ate a copy of the model instance by using fmu_copy (instanceId,
[InstanceId2]) 7→ instanceId2 (e.g., when managing many heat
pumps of the same type); it takes the initial instance instanceId
as input, and outputs the copy of this instance with the new in-
stance identifier InstanceId2 (user-defined or pgFMU-generated).
The code snippet below illustrates the usage of fmu_copy (lead-
ing to changes in Row 2 in ModelInstance and Rows 9, 10 in
ModelInstanceValues):

1 SELECT fmu_copy ( ' HP1Ins tance1 ' , ' HP1Ins tance2 ' ) ;

In pgFMU, the initial copy of the FMU file is reused when
either creating a new instance of the same FMU model (Row 2 in
ModelInstance), copying a model instance, or changing a model
state in the database environment. Once loaded (see Figure 4,
FMU storage), an FMU model is used for all further operations;
in this way, we avoid the creation and load of superfluous FMU
model files, and we control andmanipulate model instances while
minimizing memory and computational resources. Algorithm 1
presents the logic behind fmu_create.

Furthermore, pgFMU provides a number of utility functions
to analyse and manipulate the model instance variable values.
For example, the function fmu_variables (instanceId) 7→ (instan-
ceId, varName, varType, initialValue, minValue, maxValue) returns
the details of all variables and parameters of the supplied model
instance instanceId. The result includes the variables’ initial, min-
imum, and maximum values, which can also be retrieved using
the function fmu_get(instanceId, varName) 7→ (initialValue, min-
Value, maxValue). In addition, a user can set the initial, maximum
and minimum values of HP1Instance1 A and B model instance
parameters using fmu_set_initial(instanceId, varName, initial-
Value) 7→ instanceId, fmu_set_minimum (instanceId, varName,
minValue) 7→ instanceId, and fmu_set_maximum (instanceId, var-
Name, maxValue) 7→ instanceId (Row 4 in ModelVariable, italic
font):

1 SELECT fm u _ s e t _ i n i t i a l ( ' HP1Ins tance1 ' , 'A ' , 0 ) ;
2 SELECT fmu_set_minimum ( ' HP1Ins tance1 ' , 'A ' , −10) ;
3 SELECT fmu_set_maximum ( ' HP1Ins tance1 ' , 'A ' , 1 0 ) ;

Furthermore, a user can retrieve all "HP1Instance1" model
variables that serve, for example, as model parameters using the
following query (the query output is shown in Table 3):

1 SELECT ∗ FROM fmu_va r i a b l e s ( ' HP1Ins tance1 ' ) AS f WHERE
2 f . varType = ' paramete r '

The model instance can be brought back to its initial state using
fmu_reset (instanceId) 7→ instanceId (see Rows 4, 5 in ModelVari-
able, and Rows 4, 5, 9, 10; the regular font indicates the initial
values for the specific model instance). The user can delete either
a specific model instance using fmu_delete_instance (instanceId),
or an entire FMU model using fmu_delete_model (modelId). In the

Algorithm 1: fmu_create
Input:

Stored model representation: modelRef;
Optional: Unique model instance identifier [instanceId];

Output:
Model instance identifier instanceId;

1: if modelRef = .fmu file then
2: fmuModel← Construct a model object using PyFMI

function load_fmu(modelRef);
3: else
4: if modelRef = .mo file or inline Modelica model

specification then
5: fmuModel← Construct a model object using PyFMI

function compile_fmu(modelRef);
6: end if
7: end if
8: if instanceId is not given then
9: instanceId← pgFMU-generated instanceId;
10: end if
11: Store the FMU model file in FMU storage;
12: Retrieve model variable names varName, types varType and

values value by means of PyFMI function
fmuModel.get_model_variables;

13: Insert the related sets of records into Model, ModelVariable,
ModelInstances, ModelInstancesValues;

14: Return instanceId;
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Table 3: fmu_variables example query output

instanceId varName varType initial-
Value

min-
Value

max-
Value

HP1Instance1 A parameter 0 -10 10
HP1Instance1 B parameter 0 -20 20
... ... ... ... ... ...

latter case, all model instances associated with this FMU model
will be automatically removed from the database.

6 MODEL PARAMETER ESTIMATION
Model parameter estimation is a key functionality in pgFMU.
Model instance parameters in pgFMU can be estimated using
fmu_parest (instanceIds, input_sqls, [pars]) 7→ estimationErrors. It
takes a list of model instances instanceIds as input, updates the
model instances with updated parameter values, and returns the
list of estimation errors for each model instance estimationErrors
(RootMean Square Errors (RMSEs) by default). The user must also
specify a list of SQL queries (input_sqls, one SQL query for each
model instance) that produce the data to use in the parameter
estimation, i.e., model training input and output variable pairs
at different time instances. By default, the function estimates all
model parameters. Optionally, the user can override this list by
supplying a list of specific parameter names pars.

For example, the user can estimate the model parameters "A"
and "B", and then store the updated model instance in the model
catalogue using the following query (output is shown in Rows 4
and 5 in ModelInstanceValues, italic font):

1 SELECT fmu_pare s t ( ' { HP1 Ins tance1 } ' , ' { SELECT ∗ FROM
measurements } ' , ' {A , B } ' )

fmu_parest() adopts the functionality of the ModestPy [3]
Python package, which uses multiple optimization runs of the
Global (denoted as G) and the Local (denoted as LaG) Search
algorithms on different subsets of inputs to ensure result optimal-
ity even in the case of non-convex problems (later Figure 5 will
illustrate the intuition behind this). In pgFMU, we use the Mod-
estPy genetic algorithm implementation as G, and gradient-based
method implemented by scikit-learn as LaG.

fmu_parest is designed to reduce the required amount of com-
putation when parameters of multiple FMU instances need to
be estimated (Challenge 3). Therefore, it automatically detects
the number of model instances supplied and uses different algo-
rithms when estimating parameters of a single model instance
(SI scenario) or multiple instances (MI scenario).

Single instance parameter estimation Algorithm 2 pro-
vides implementation details for fmu_parest within the SI sce-
nario. fmu_parest not only estimates the parameters of the FMU
model instances, but also validates and updates the model in-
stance with the new parameter values.

Multi-instance optimization In many scenarios, a user has
a number of instances of the same model, e.g., 20 instances
(HP1Instance1, HP1Instance2,.., HP1Instance20) of the heat pump
model HP1 corresponding to 20 different houses located in the
same neighbourhood. In this case, pgFMU can apply its MI opti-
mization when estimating parameters for multiple instances.

For example, the user can estimate the parameters "A" and
"B" of HP1Instance1 and HP1Instance2 using the following query
(leading to Rows 4, 5, 9, and 10 inModelInstanceValues, italic font):

Algorithm 2: fmu_parest_SI
Input:

Unique model instance identifier: instanceId;
Query to retrieve measured data: input_sql;
Optional: List of parameters [pars];

Output:
estimationError;

1: Result set measurements← Execute input_sql;
2: uuid← Retrieve FMU model UUID from ModelInstance

table identified by instanceId;
3: if pars is not given then
4: pars← Retrieve parameter variables from ModelVariable

table identified by uuid;
5: end if
6: Retrieve the input variable values from the result set

measurements;
7: parsEstimated, estimationError← Run G & LaG for

pars;
8: Update ModelInstanceValues with parsEstimated;
9: Return estimationError;

1 SELECT fmu_pare s t ( ' { HP1Ins tance1 , HP1 Ins tance2 } ' , ' {
SELECT ∗ FROM measurements , SELECT ∗ FROM
measurements2 } ' , ' {A , B } ' )

Figure 5 illustrates the logic behind theMI optimization of fmu_par-
est. This optimization occurs in two stages. During the first stage,
we estimate the parameters of HP1Instance1 (solid blue line). In
most cases, only the lower and upper bounds of each model
parameter are known, and such bounds are usually defined by
real-world physical constraints (e.g., HP performance coefficient
cannot be negative).We set the initial parameter values to random
numbers between the lower and the upper bounds mentioned
above. Then, we follow the steps described in Algorithm 2, i.e.,
firstly, we run Global Search (G) to reduce the search space. Here,
1_G, 2_G, and 3_G (filled circles) indicate the G iterations for
HP1Instance1. After finding a good place in the search space, Lo-
cal Search after Global (LaG) finetunes the parameter values to
find optimal ones. We denote LaG iterations as 1_LaG, 2_LaG, and
3_LaG (empty circles). 3_LaG (exemplified by Rows 4, 5 in Mod-
elInstanceValues) is the optimal parameter values of HP1Instance1.

The next stage is to perform parameter estimation forHP1Insta-
nce2 (red dashed line). First, we check that the model instances
belong to the same parent FMU. Next, we check whether the
condition for the MI optimization invocation holds, i.e., we only

Figure 5: fmu_parest MI optimization
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invoke the MI optimization after ensuring similarity (by calculat-
ing the L2 norm) between the input (and output) measurements
of HP1Instance1 and HP1Instance2. L2 norm (or the Euclidean
norm) is one of the simplest and widely known, but still accu-
rate and robust metrics for measuring the similarity between
time series [26]. It is important to check the similarity between
model instances time series to make sure the optimal solutions
for these model instances lie within the same neighbourhood (see
Figure 5). In case the difference between measurement time series
is greater than a threshold, we do not invoke the MI optimization,
and instead, run Algorithm 2 (a combination of G+LaG) for every
instance. The 1_G, 2_G, and 3_G points (filled circles) indicate
the G iterations, while 1_LaG, 2_LaG, and 3_LaG (empty circles)
illustrate the LaG iterations. 3_LaG would, in this case, be the
optimal parameter values of HP1Instance2.

If the measured time series are sufficiently similar, i.e., the
difference between them is less than threshold, we invoke the
MI optimization. This means the optimal parameters values of
HP1Instance1 (solid blue line, 3_LaG) become the initial parame-
ter values ofHP1Instance2 (red dashed line, 1_LO). In this way, we
run Local Only Search (LO) (which is essentially the same algo-
rithm as LaG, but with different initial parameter values) to obtain
optimum parameter values of HP1Instance2, as its solution lies
within the neighbourhood of the best solution of HP1Instance1.
The points 1_LO, 2_LO, and 3_LO (diamonds) are converging to
those found by LaG. 3_LO (exemplified by Rows 9, 10 inModelIn-
stanceValues) is the optimum parameter values of HP1Instance2.
Algorithm 3 describes MI optimization for n model instances.

In pgFMU, the MI optimization significantly speeds up param-
eter estimation for multiple model instances. This speed-up is
possible because G is much more expensive than LaG (see Sec-
tion 8), and instead of G+LaG only LO is run. pgFMU provides the
gradient-based Local Search algorithm with the good initial pa-
rameter values. In [3] authors emphasize, that "the initial global
search would not be needed if the approximate initial values of
parameters were known. In such a case the gradient-based meth-
ods would easily outperform GA [genetic algorithm]". As it will
be shown later in Section 8, this statement holds. It should also be
noted that the quality of the solution is dependent on the internal
ModestPy algorithms. Within pgFMU, we adapt and enhance
the functionality of ModestPy to best capture user preferences,
streamline parameter estimation, and facilitate user interaction.
The empirical evaluation of the MI parameter estimation shows
identical accuracy with and without MI optimization.

7 MODEL SIMULATION
Users can simulate models by utilizing the function fmu_simulate
(instanceId, [input_sql], [time_from], [time_to]) 7→ (simulation-
Time, instanceId, varName, values), which performs simulation on
the supplied model instance and returns simulation results as a
table of a timestamp, a model instance identifier, a variable name,
and the variable’s simulated value. By default, the simulation
results for all state and output variables are returned. It is also
possible to supply a time series of model input variable values
by specifying an SQL query input_sql. If desired, the user can
also specify a time window for simulation using the time_from
and time_to parameters; otherwise, the start and end time will be
determined by defaultStartTime and defaultEndTime. The system
raises an error, e.g., if insufficient model input time series or an
incomplete simulation time interval is provided.

Algorithm 3: fmu_parest_MI
Input:

List of unique model instance identifiers: instanceIds;
List of queries to retrieve measured data: input_sqls;
Optional: List of parameters [pars], float [threshold].

Output:
List of estimationErrors;

1: if pars is not given then
2: pars← Retrieve parameter variables from ModelVariable

table identified by InstanceIds;
3: end if
4: for i = 0 to length (instanceIds)-1 do
5: Result set measurements[i]← Execute input_sql[i];
6: parsEstimated[0], estimationError[0]← Run

fmu_parest_SI for instanceIds[0];
7: for i = 1 to length (instanceIds)-1 do
8: if modelId[0] ! = modelId[i] then
9: Run fmu_parest_SI for instanceIds[i];
10: else
11: δ = L2 norm of measurements[i] from

measurements[0];
12: if δ ≥ threshold then
13: Run fmu_parest_SI for instanceIds[i];
14: else
15: Update all the initial parameter values of

instanceIds[i] to parsEstimated[0];
16: parsEstimated[i], estimationError[i]←

Run LO for instanceIds[i];
17: end if
18: end if
19: end for
20: Update ModelInstanceValues with parsEstimated;
21: end for
22: Return estimationErrors;

Table 4: fmu_simulate example query output

simulationTime instanceId varName value
08:00 28/02/2015 HP1Instance1 x 20.7507
08:30 28/02/2015 HP1Instance1 y 0.0041
... ... ... ...

For example, the user can simulate the model by supplying
model input values from the table measurements (Table 6) using
the following query (also updating ModelInstanceValues, Row 1
and ModelInstance, Row 1, values in italic):

1 SELECT s imula t ionT ime , i n s t a n c e I d , varName , va l u e
2 FROM fmu_s imu la t e ( ' HP1Ins tance1 ' , ' SELECT ∗ FROM

measurements ' ) WHERE varName IN ( ' y ' , ' x ' ) ;

Table 4 shows the output of this query. If needed, the user can
filter values of the desired columns using the standard WHERE
clause predicates. We note that returning variable values as sep-
arate columns is not possible due to PostgreSQL limitations. In
PostgreSQL, UDFs require fixed output schemas; flexible schemas
are not supported in a convenient and easy-to-use way.

If multi-instance simulations are needed, the user can call a
standard LATERAL join:

1 SELECT ∗ FROM g e n e r a t e _ s e r i e s ( 1 , 1 0 0 ) AS id ,
2 LATERAL fmu_s imu la t e ( ' HP1Ins tance ' | | i d : : t e x t ,
3 ' SELECT ∗ FROM measurements ' ) AS f
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Using fmu_simulate, model simulation is performed in two
stages. In the first stage, an input object required for model sim-
ulation is created according to the FMU meta-data. This object
consists of a set of input time series, automatically transformed
for each input variable by taking into account their data types
and variabilities (Challenge 2). In the second stage, an underly-
ing model instance is simulated within the time interval (user-
specified or from the model catalogue) while feeding the simula-
tion algorithm with an input object. The simulation results are
then emitted as a table (Table 4). Algorithm 4 depicts the logic
behind fmu_simulate.

The UDFs described in Sections 5, 6, and 7 can be combined to
solve specific problems. For instance, the example regarding HP
temperature prediction can be specified using a single query (pro-
ducing the same results and updates as fmu_create, fmu_parest,
and fmu_simulate example queries from Sections 5, 6, and 7):

1 SELECT time , v a l u e
2 FROM fmu_s imu la t e ( fmu_pare s t { fmu_c rea t e
3 ( ' HP1Ins tance1 ' , 'C : \ temp \ hp1 . fmu ' ) } ,
4 ' { SELECT ∗ FROM measurements } ' , ' {A , B } ' ) ,
5 ' SELECT time , ' u ' AS varName , va l u e
6 FROM g e n e r a t e _ s e r i e s ( ' ' ' 2015−01−01 ' ' ' : : t imestamp ,
7 ' ' ' 2015−01−02 ' ' ' : : t imestamp , ' ' ' 1 hour ' ' ' : :
8 i n t e r v a l ) AS t ime WHERE varName = ' x '

In addition, there are few important points. Firstly, all pgFMU
UDFs are independent of each other and can be used in any order.
Similar to other modelling software, e.g., Matlab and JModelica,

Algorithm 4: fmu_simulate
Input:

Unique model instance identifier: instanceId;
Optional: Query to retrieve measured data: [input_sql],
[time_from], [time_to];

Output:
Output table (simulationTime, instanceId, varName, values);

1: uuid← Retrieve FMU model UUID from ModelInstance
table identified by instanceId;

2: fmuModel← Load FMU model identified by uuid from FMU
storage;

3: Result set measurements← Execute input_sql;
4: inputs← Retrieve input variables from ModelVariable

identified by uuid;
5: input_object← Empty hash map of (name, time series)

pairs;
6: For each name n in inputs: Insert (n, measurements[n])

into input_object ;
7: if time_from and time_to are not given then
8: (time_from, time_to) ← (Model.DefaultStartTime,

Model.DefaultEndTime) where Model.modelid = uuid;
9: end if
10: result← fmuModel.simulate(input_object,

time_from, time_to);
11: time ← (time_from, time_to)
12: output← [];
13: for time i in result.time do
14: for varName in result.variables do
15: Append (i, instanceId, varName, result[varName][i]) to

output;
16: end for
17: end for
18: Return output;

the user is only requested to create the in-DBMS instance of
an FMU model. pgFMU provides full flexibility when configur-
ing user workflows: if parameter estimation is not required, the
user can simulate the model right away, or change the order of
actions and perform model simulation followed by parameter
estimation. Next, in pgFMU, we eliminate explicit I/O operations
(e.g. historical measurements import, or simulation results export
from a third-party software into DBMS) as all the computations
are done "in-place" inside DBMS. This affects the essential op-
erations (parameter estimation, model simulation) due to the
data-driven nature of these operations. Furthermore, when op-
erating many instances of the same model, we eliminate the
necessity to load the same FMU file multiple times. We store one
single FMU model, and operate with in-DBMS model instances.
These instances share the essential information about the initial
FMU through model catalogue, and can be considered as suffi-
cient substitutes of FMUs. pgFMU is also able to operate several
in-memory FMU model files at a time. Lastly, as we use prepared
SQL queries, we avoid the repeated reevaluation of database
queries for measurements retrieval.

8 EXPERIMENTAL EVALUATION
In this section, we evaluate pgFMU in real-world circumstances.
Firstly, we describe our experimental setup. Then, we present
the results of the evaluation with regard to model quality, perfor-
mance, and usability.

8.1 Experimental Setup
As a baseline, we follow a traditional workflow for model storage,
calibration, simulation, and validation, and perform the steps
described in Figure 1. We consider two scenarios: single instance
(SI) scenario and multi-instance (MI) scenario. In the SI scenario,
we execute parameter estimation and simulation using a single
model instance only. In the MI scenario, we execute parameter
estimation and simulation for many model instances.

Three main system configurations are compared: (1) workflow
execution within a Python IDE (referred as Python), (2) workflow
execution using the non-optimized version of pgFMU (referred
as pgFMU-), and (3) workflow execution using the optimized
version of pgFMU (referred as pgFMU+). Python is based on the
usage of standard Python packages. In pgFMU- configuration
we use the pgFMU system with no multi-instance optimization
activated, and pgFMU+ takes advantage of the MI optimization.
All three configurations are evaluated using Ubuntu 17.1 OS on
a Lenovo ThinkPad with a four-core Intel i7 processor, and 8
GB of DDR3 main memory. For parameter estimation within
pgFMU, we utilize genetic algorithm (GA) for Global Search and
sequential quadratic programming (SQP) for Local Search. The
study argues [3] that this combination of algorithms produces
optimal results in terms of accuracy and performance. For GA, we
use default settings with a fixed randomly derived seed. For SQP,
the default settings were used as well. More information about
default parameters settings is available on the library homepage.

Generalizability was one of the main criteria for choosing the
test models. The models should represent real-world physical sys-
tems with varying numbers of inputs and outputs, and different
physical meaning of model parameters. We follow a workflow
process identical to the one outlined in Figure 1, i.e., we esti-
mate the unknown parameters of the model (model parameter
estimation), validate the model with regard to the real input mea-
surements (model validation), and simulate the model to predict
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the values of the model state variable (model simulation). We
have chosen three different FMU models, each of them represent-
ing a real-world physical system. These models are denoted HP0,
HP1, and Classroom, respectively. HP1 corresponds to the running
example model described in Section 2. HP0 is a modification of
HP1 with zero inputs, such that we keep the heat pump power at
a constant rate. Classroom is a thermal network model [17] repre-
sented by a classroom in a 8500m2 university building at the SDU
Campus Odense (Odense, DK). Table 5 summarizes the inputs,
outputs and parameters of the three models. For experimental
evaluation within the MI scenario, we construct 100 synthetic
datasets for each FMU model. We multiply the original dataset
time series values with a constantdelta from the numerical range
δ ∈ {0.8, ..., 1.2}, meaning we amplify or decrease the numerical
values by up to 20% while ensuring the same data distribution as
the original datasets. In Section 6 we explain the reasoning be-
hind such numerical range of δ . We also ensure that the datasets
respect the physical constraints of the real-world systems.

8.2 Model quality
In this subsection, we compare and evaluate model quality for
Python, pgFMU-, and pgFMU+. We perform parameter estimation
and model simulation within the SI scenario and MI scenario.

SI scenario.Within Python, parameter estimation is performed
using the ModestPy package, whereas pgFMU- and pgFMU+ uti-
lize the fmu_parest UDF. HP1 was calibrated using the NIST
dataset [18]. HP0 was calibrated using the same dataset with u
being kept at a constant rate of 1.38%. For both models, we esti-
mate the parameters based on the hourly aggregated data from
February 1-21, while using February 22-28 for validation. The
Classroom model was calibrated using measurements data from
University building O44 in Odense, DK. Table 6 shows an excerpt
of the datasets for all three models. We compare parameter values
and error value for HP0, HP1 and Classroom for Python, pgFMU-,
and pgFMU+. Table 7 shows this comparison. To evaluate the
quality of the model, we use the RMSE metric. RMSE and Mean
Absolute Error (MAE) are two commonly used metrics for model
evaluation. However, a study [19] argues that RMSE is more ap-
propriate to be used when unfavourable conditions should be
given a higher weight, i.e., RMSE penalizes large errors stricter
than MAE. In our case, we want to distinguish every occurrence
when a model fails to secure a good fit with the measured data,
therefore, we choose RMSE for model quality evaluation.

For HP0 (Table 7), the model parameter values have converged
to the same values within Python, pgFMU- and pgFMU+. The RM-
SEs when performing parameter estimation for Python, pgFMU-,
and pgFMU+ are near identical (the relative difference is only
0.013%). For HP1, the RMSEs in all three configurations are ex-
actly the same, and for Classroom the relative difference is at most
0.018%. We consider these differences negligible. Thus, pgFMU-
and pgFMU+ handles single model workflow computations with
the same accuracy as Python. The identical accuracy for all three
configurations is achieved through the usage of the same Python
ModestPy library; however, both pgFMU- and pgFMU+ use a
modified version of ModestPy to provide generalizability and
handle all types of FMU models, and perform data binding and
pre-processing steps discussed in Section 2.

MI scenario. For the MI scenario, we compare RMSE values
for 100 instances of each model (HP0, HP1 and Classroom) side-
by-side. Each model instance is supplied with a synthetic dataset
based on the measured data. For Classroom, the RMSE values

for all three configurations are matching, resulting in the same
average RMSE values (1.61°C). For HP1, RMSE values differ a
bit more, but are still very close, with either Python, pgFMU-, or
pgFMU+ as the better one. The average RMSE values yield in
2.03°C for all three configurations. Thus, the model quality is also
the same here. We observe a similar behaviour for HP0, where for
pgFMU- and Python the average RMSE is 0.68°C , while pgFMU+
estimates the model parameters with 0.66°C average accuracy.

When enabling MI optimization, one must remember the con-
ditions for this feature to produce acceptable results. By default,
parameter estimation is performed using Algorithm 2 (Section 6),
unless the user alters the threshold value. In our case, we have
set the threshold to 20% (Section 8.1) based on the series of exper-
iments reflected in Figure 6. In this Figure, the x-axis represents
dataset dissimilarity in terms of L2 norm distances, the y-axis en-
codes the corresponding RMSE values, and the secondary y-axis
shows the execution time of G+LaG and LO. RMSE is represented
using the same unit as the dependent variable (forHP1, the indoor
temperature in °C). The Figure shows that the execution time of
G+LaG is significantly larger than LO. We see that G takes ap-
proximately 90% of the execution time (considering that LaG and
LO are the same algorithms, with different initial parameter val-
ues). The Figure shows that there is no difference in G+LaG and
LO RMSEs until maximum dissimilarity reached approximately
30%; after this, the difference grows linearly. This is because the
optimal solution for instanceId[0] used as initial parameter values
for the remaining models instanceId[1], ..., instanceId[n-1] (see
Algorithm 3) was not able to provide satisfactory results. Further,
the choice of a threshold value is always contextually dependent,
and a user has to decide about the acceptable RMSE values.

Combining pgFMUandMADlib. To improvemodel quality,
pgFMU can be used in combination with other in-DBMS analytics
tools, e.g., MADlib. If in our Classroom model the number of
occupants in the room is unknown, we can use MADlib to predict
occupancy, e.g., using the ARIMA model and the following query
to train the model:

1 SELECT a r ima _ t r a i n (
2 ' occupan t s ' , −− Source t a b l e
3 ' occupan t s _ou tpu t ' , −− Output t a b l e
4 ' t ime ' , −− Timestamp column
5 ' va lue ' ) ; −− T ime s e r i e s column

In this experiment, we used the original dataset to train the model
and perform the prediction. We divided the dataset into training
(80%) and validation (20%) sets. We created two model instances:
without occupancy information, and with occupancy values pre-
dicted by the MADlib ARIMA model. Then, we simulated the
two models, and compared model RMSEs. The Classroom model

Figure 6: Avg. RMSE & execution time overhead of LO &
G+LaG for datasets of different dissimilarity (HP1 model)
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Table 5: FMU models

ModelID Measurements dataset Inputs Outputs Parameters
HP0 NIST Engineering Lab’s

Net-Zero Energy Resi-
dential Test Facility

No inputs HP power consump-
tion y, Indoor tempera-
ture x (state variable).

Thermal capacitance Cp, thermal re-
sistance R.

HP1 NIST Engineering Lab’s
Net-Zero Energy Resi-
dential Test Facility

HP power rating setting in the
range [0 .. 100%] u

HP power consump-
tion y, Indoor tempera-
ture x (state variable).

Thermal capacitance Cp, thermal re-
sistance R.

Class-
room

Data from the class-
room in the test facility
in Odense, DK

Solar radiation solrad, outdoor
temperature tout, number of oc-
cupants occ, damper position dpos,
radiation valve position vpos.

Indoor temperature t
(state variable)

Solar heat gain coeff. shgc, zone ther-
mal mass factor tmass, ext. wall ther-
mal resistance RExt, occupant heat
generation effectiveness occheff.

Table 6: Dataset for HP0, HP1 (top), Classroom (bottom)

No Timestamp x y u
1 2015/02/01 00:00 20.7507 0 0
2 2015/02/01 01:00 23.6231 0.1381 0.0177
... ... ... ... ...
No Timestamp T solrad Tout occ dpos vpos
1 2018/04/04 08:00 21.5727 364.37 11 19.7 0 13.165
2 2018/04/04 08:30 20.8667 396.05 10.5 20.033 0 19.4
... ... ... ... ... ... ... ...

with the occupancy values predicted by MADlib ARIMA showed
up to 21.1% increased accuracy in terms of RMSE.

Reversely, pgFMU can be used to improve the quality of tradi-
tional ML models. In the next experiment, we used the indoor
temperatures of the Classroom computed using pgFMU to in-
crease the accuracy of the logistic regression model that identifies
the position (open/closed) of the ventilation damper dpos. When
we include indoor temperature t into the feature vector of the
model, this yields 5.9% increased model accuracy.

8.3 Performance evaluation
In this subsection, we look into the performance comparison of
Python, pgFMU-, and pgFMU+ for HP0, HP1, and Classroomwithin
SI and MI scenarios.

Single instance scenario. To evaluate pgFMU performance
within the SI scenario, we compare the execution time for all three
models. Table 8 shows this comparison. For all the models, we do
not observe a significant difference in execution time between
Python, pgFMU- and pgFMU+ (for HP0, Python is faster by 0.14%,
for HP1 and Classroom pgFMU- and pgFMU+ perform better by
0.10%, and 0.12%, respectively). We conclude that within Python,

Table 7: SI scenario, model calibration comparison

Python pgFMU-, pgFMU+
Param. values RMSE Param. values RMSE

HP0 Cp: 1.53 0.7701 Cp: 1.53 0.7702R: 1.51 R: 1.51

HP1 Cp: 1.49 0.5445 Cp: 1.49 0.5445R: 1.481 R: 1.481

Classroom

RExt: 4

1.6445

RExt: 4

1.6442occheff: 1.478 occheff: 1.478
shgc: 3.246 shgc: 3.246
tmass: 50 tmass: 50

pgFMU-, and pgFMU+ the performance is practically identical,
as expected. However, in Table 8 we see that model calibration
takes more than 99% of execution time. This imposes limitations
when estimating the parameters of multiple model instances.

MI scenario. For the MI scenario, we use Python, pgFMU- and
pgFMU+, and scale the number of model instances to 100 for
each FMU model. We match the synthetic dataset with each FMU
model instance. Figure 7 shows the execution time for Python,
pgFMU-, and pgFMU+ for HP0, HP1 and Classroom. The execution
workflow of storing, calibrating, simulating, and validating 100
HP0 model instances takes 1083.7 min (18.06 hours) for Python,
1073.7 min (17.9 hours) for pgFMU-, and 204.2 min (3.4 hours)
for pgFMU+. As we can see, pgFMU+ outperforms Python and
pgFMU- by 5.31x. The execution workflow of storing, calibrat-
ing, simulating, and validating 100 HP1 model instances takes
1329.63 min (22.16 hours) for Python, 1319.48 min (21.97 hours)
for pgFMU-, and 241.47 min (4.02 hours) for pgFMU+. In this case,
pgFMU+ outperforms Python and pgFMU- by 5.51x. We observe
an even larger difference in workflow execution time for 100
Classroom model instances. It takes 1380.68 min (23.01 hours)
for Python, 1370.95 min (22.85 hours) for pgFMU-, and 163.6 min
(2.73 hours) for pgFMU+; pgFMU+ is faster by 8.43x.

As we can see, the execution time grows linearly with more
model instances, but the growth rate is different for different
models. The common pattern for all three models is that Python
and pgFMU- exhibit a similar growth rate. For pgFMU+, the execu-
tion time also grows linearly, but slower compared to Python and
pgFMU-. This means pgFMU+ performs user-defined workflows
based on the FMU model calibration and simulation on average
6.42x faster. Such gains in the runtime are achieved through a
number of optimization steps described in Sections 6 and 7.

8.4 Usability
We conducted usability tests to evaluate how the functionality of
pgFMU reflects user needs.We asked a group of 6 PhD-candidates
and 24 master students from four different universities in Den-
mark, Poland, Spain, and Belgium to individually perform the
task of HP1 and Classroom model calibration and simulation. All
the participants were asked to complete the SI workflow based
on Figure 1 using Python and pgFMU. The execution of the MI
workflow was optional. During the usability testing, we recorded
the issues with both configurations, and observed the learning
curve of the participants as they progressed with the task. All
participants were timed.
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Table 8: Configurations comparison, SI scenario

ID Operation
execution time, s

HP0 HP1 Classroom
Python pgFMU± Python pgFMU± Python pgFMU±

1 Load FMU 0.02 0.025 0.02 0.021 0.03 0.03
2 Read historical measurements & control inputs 0.02 0.021 0.03 0.031 0.04 0.041
3 (Re)calibrate the model 842.99 844.18 834.68 833.88 830.2 829.16
4 Validate and update FMU model 0.01 - 0.01 - 0.01 -
5 Simulate FMU model 0.16 0.214 0.2 0.22 0.35 0.44
6 Export predicted values to a DBMS 0.06 - 0.06 - 0.05 -

Total 843.26 844.44 835 834.15 830.68 829.67

Figure 7: HP0, HP1, Classroom (from the left to the right) parameter estimation execution time

In the beginning, the userswere asked to answer a pre-assessment
questionnaire aimed at identifying their knowledge about physi-
cal systems modelling. By using the scale from 1(very little) to
5(very much), the participants answered the following questions:

Q1. How familiar are you with energy systems and physical sys-
tem modelling?

Q2. How familiar are you with model simulation and calibration?
Q3. How familiar are you with model simulation software?
Q4. How comfortable are you with using Python IDE(s)?
Q5. How comfortable are you with using SQL?

Based on the participants’ answers, they did not consider them-
selves experts in the energy domain (Q1). Only 2 people estimated
the familiarity with energy systems as "very much". For Q1, Q2
and Q3, the majority (27 out of 30 for Q1 and Q2, 26 out of 30 for
Q3) ranked their knowledge in energy systems, model simula-
tion and calibration processes, and model simulation software
as "very little" or "little". When speaking about programming
environments, 25 out of 30 students knew "much" or "very much"
about the SQL, with only 14 out of 30 giving the same score to the
Python. We concluded that graduate and post-graduate students
possessed more knowledge about SQL, and felt more comfortable
with using SQL-based functions rather than Python packages.

For this session, we set the time limit to 3 hours. The partici-
pants tested the pgFMU functionality first, then the Python. All
participants but one were able to finalize the task within the
defined time range. Figure 8 illustrates the time distribution for
every user performing the steps described in Figure 1 for HP1
and Classroom models. With pgFMU it took under 20 minutes for
all participants to become familiar with the syntax, and complete
the task. The minimum learning time for pgFMU was reported
to be 9.6 minutes, and the maximum was 17.6 minutes, respec-
tively. On average, with pgFMU the participants finished the task
(excluding the runtime) 11.74x faster than with Python.

The main criticism regarding the suggested setup was the
necessity to use multiple Python packages, and the inability to

Figure 8: Users learning anddevelopment time (combined)

perform all the tasks with a single programming package/tool.
The whole workflow was described as "intuitive" and "easy to
understand", but the need to use different libraries was charac-
terized as "confusing" and "unsettling". One of the participants
reported that both PyFMI and ModestPy packages in their docu-
mentation use domain-specific language which was difficult to
grasp. Table 9 shows highlighted feedback that the participants
expressed about the strengths and weaknesses of both systems.

At the end, all users were asked to answer a post-assessment
questionnaire aimed at identifying participants’ opinion regard-
ing the functionality of Python and pgFMU. By using the scale
from 1(very unsatisfactory) to 5(very satisfactory), the partici-
pants were asked to answer the following questions :

Q1. How was it to retrieve information about model variables?
Q2. How was it to set model parameters?
Q3. How was it to calibrate the model?
Q4. How was it to simulate the model?
Q5. How was your satisfaction with systems’ functionality?
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Table 9: Strengths and weaknesses of Python and pgFMU

Strong points of Python Strong points of pgFMU

“Better to debug, analyze";
“More functionality”;
“Control over program flow”;
“Data visualization option”;

"Data and model in one place";
"Easy to run and understand";
"Simplicity, no need to use or
import external tools";
"Familiar SQL syntax";

Weak points of Python Weak points of pgFMU
"A lot of unknown new mo-
dules and packages";
"No one ready package to do
everything";
"A lot of code to set up confi-
guration, some functions not
intuitive";
"You need practise[sic] to
understand";

"Not so much configuring
available";
"I don’t see any significant
[weak points] besides
maybe installation of the pac-
kage on postgres
[PostgreSQL];"
"Specific database implemen-
tation";

The questionnaire results show a clear advantage of using pgFMU
over Python. When performing the workflow depicted in Figure 1,
pgFMU scores better when retrieving (3.7 out of 5 for pgFMU vs
3.1 out of 5 for Python) or setting the model variables (3.83 out
of 5 vs 3.26 out of 5 respectively), calibrating (3.66 out of 5 vs
3.1 out of 5 respectively) and simulating the model. In particular,
the model simulation functionality of pgFMU was commended,
scoring 4.17 out of 5 (for the same operation, Python scored only
3.53 out of 5). pgFMU outperforms Python in terms of overall
participants’ satisfaction, scoring 4.2 and 3.6 out of 5, respectively.

Lastly, pgFMU requires substantially fewer lines of code than
does Python; Table 1 shows this comparison. In addition, pgFMU
does not require any customization, meaning it is capable of
working with any number of model inputs, outputs and parame-
ters without UDF adjustment for every specific model or use case.
On the contrary, Python requires the user to manually retrieve
and match model inputs with measurements data.

9 CONCLUSION AND FUTUREWORK
This paper presents pgFMU - the first DBMS extension to support
storage, simulation, calibration, and validation of physical sys-
tem models defined as Functional Mock-up Units (FMUs) within
a single DBMS environment. This extension is developed for
cyber-physical data scientists and cyber-physical software devel-
opers. For such users, pgFMU provides a set of powerful User-
Defined Functions (UDFs) invoked by traditional SQL queries.
The UDFs are designed as stand-alone functions within pgFMU,
and can be used in a user-defined sequence. Furthermore, pgFMU
provides efficient functionality to store, simulate an arbitrary
number of FMU model instances, and estimate the parameters
of such instances. The aforementioned properties all contribute
to supporting FMU model simulation and parameter estimation
tasks within a DBMS environment. Due to its in-DBMS imple-
mentation, pgFMU demonstrates increased performance (up to
8.43x, and on average 6.42x faster for multi-instance workflows)
for data-dependent workflows and improves user productivity
(11.74x times faster in terms of development time). Moreover, it
can increase Machine Learning model accuracy by up to 21.1%
when used in combination with existing in-DBMS analytics tools,
e.g., MADlib.

pgFMU has been tested by the entry level cyber-physical data
scientists. The usability testing showed positive results, reporting

the development time more than an order of magnitude lower
than the traditional approach. As reported by the participants,
pgFMU was capable of addressing the major point of dissatisfac-
tion, namely the variety of software packages and libraries the
user is obliged to use, and the domain-specific nature of such
packages. pgFMU simplifies the overall analytical procedure, and
minimizes the efforts required to specify and calibrate a particu-
lar model; the users are able to perform the necessary operations
with approximately 22x fewer code lines. pgFMU was also re-
ported to provide a more intuitive way of scripting and a better
data organisation.

Future work will continue the development of functionality
to support in-DBMS FMU-based dynamic optimization. This in-
cludes the adoption of various model predictive control means,
covering the optimization of control inputs. Additionally, we will
look into FMU integration challenges in the Big Data setting,
including just-in-time (JIT) FMU compilation to optimize user
queries, and scheduling FMU execution on multi-core multi-node
environments.
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ABSTRACT
The emergence of mobile apps (e.g., location-based services,

geo-social networks, ride-sharing) led to the collection of vast

amounts of trajectory data that greatly benefit the understand-

ing of individual mobility. One problem of particular interest is

next-location prediction, which facilitates location-based adver-

tising, point-of-interest recommendation, traffic optimization,

etc. However, using individual trajectories to build prediction

models introduces serious privacy concerns, since exact where-

abouts of users can disclose sensitive information such as their

health status or lifestyle choices. Several research efforts focused

on privacy-preserving next-location prediction, but they have

serious limitations: some use outdated privacy models (e.g., k-

anonymity), while others employ learning models with limited

expressivity (e.g., matrix factorization). More recent approaches

(e.g., DP-SGD) integrate the powerful differential privacy model

with neural networks, but they provide only generic and difficult-

to-tune methods that do not perform well on location data, which

is inherently skewed and sparse.

We propose a technique that builds upon DP-SGD, but adapts

it for the requirements of next-location prediction. We focus

on user-level privacy, a strong privacy guarantee that protects

users regardless of how much data they contribute. Central to

our approach is the use of the skip-gram model, and its negative

sampling technique. Ourwork is the first to propose differentially-

private learning with skip-grams. In addition, we devise data

grouping techniques within the skip-gram framework that pool

together trajectories from multiple users in order to accelerate

learning and improve model accuracy. Experiments conducted on

real datasets demonstrate that our approach significantly boosts

prediction accuracy compared to existing DP-SGD techniques.

1 INTRODUCTION
The last decade witnessed a rapid development in mobile de-

vices capabilities, accompanied by the emergence of numerous

locations-centric applications, such as point-of-interest (POI)

search, geo-social networks, ride-sharing services, etc. As a re-

sult, vast amounts of rich trajectory data have become available.

Coupledwith recent advances inmachine learning, these data can

benefit numerous application domains, such as traffic analysis,

location-based recommendations, homeland security, etc.

Mobile users share their coordinates with service providers

(e.g., Google Maps) in exchange for receiving services customized

to their location. The service providers analyze the data and

create powerful machine learning models. Subsequently, these

models can be (i) placed on user devices to improve the qual-

ity of location-centric services; (ii) shared with business affili-

ates interested in expanding their customer base; or (iii) offered
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in a Machine-Learning-as-a-Service (MLaaS) infrastructure to

produce business-critical outcomes and actionable insights (e.g.,

traffic optimization). Figure 1 illustrates these cases. Given his-

torical trajectories, several approaches exploit recent results in

neural networks to produce state-of-the-art POI recommender

systems [10, 35, 58]. Even though individual trajectory data are

not disclosed directly, the model itself retains significant amounts

of specific movement details, which in turn may leak sensitive

information about an individual’s health status, political orienta-

tion, entertainment preferences, etc. The problem is exacerbated

by the use of neural networks, which have the tendency to overfit

the data, leading to unintended memorization of rare sequences

which act as quasi-identifiers of their owners [9, 13]. Hence, sig-

nificant privacy risks arise if individual location data are used in

the learning process without any protection.
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Figure 1: System Model

The research literature identified several fundamental privacy

threats that arise when performing machine learning on large

collections of individuals’ data. One such attack is membership
inference [25, 52] where an adversary who has access to the

model and some information about a targeted individual, can

learn whether the target’s data was used to train the model.

Another attack called model inversion [56] makes it possible to

infer sensitive points in a trajectory (e.g., a user’s favorite bar)

from non-sensitive ones (e.g., a user’s office). Within the MLaaS

setting—where a third party is allowed to only query the model—

this implies extracting the training data using only the model’s

predictions [20].

Iterative procedures such as stochastic gradient descent (SGD) [7]

are often used in training deep learning models. Due to the re-

peated accesses to the data, they raise additional challenges when

employing existing privacy techniques. In order to prevent the

inference of private information from the training data, recent ap-

proaches rely on the powerful differential privacy (DP)model [14].

Sequential querying using differentially private mechanisms de-

grades the overall privacy level. The recent work in [2] provides

a tight-bound analysis of the composition of the Gaussian Mech-

anism for differential privacy under iterative training procedures,

enabling the utility of a deep learning model to remain high [39],
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while preventing the exposure of the training data [6, 27]. While

integrating differential privacy techniques into training proce-

dures like stochastic gradient descent is relatively straightfor-

ward, computing a tight bound of the privacy loss over multiple

iterations is extremely challenging (see Section 6 for a summary

of results).

The seminal work in [2] provided record-level privacy for a

simple feed-forward neural network trained in a centralized man-

ner. The approach provides protection only when each individual

contributes a single data item (e.g., a single trajectory). When

an individual may contribute multiple data items, a more strict

protection level is required, called user-level privacy. McMahan

et. al. [39] showed that one can achieve user-level privacy pro-

tection in a federated setting for simple learning tasks. However,

ensuring good utility of the trained model for datasets with var-

ious characteristics remains a challenge. McMahan et. al. [39]

remove skewness in their inputs by pruning each user’s data to

a threshold, thus discounting the problems of training neural

models on inherently sparse location datasets, usually having

density around 0.1% [60]. Existing work on privacy-preserving

deep learning either assume large and dense datasets, or are eval-

uated only on dummy datasets [21] that are replicated to a desired

size using techniques such as [38]. Such techniques overlook the

difficulty of training models on smaller or sparse datasets, which

often prevent models from converging [40]. Moreover, they re-

quire extensive hyperparameter tuning to achieve good accuracy,

and the rough guidelines offered to tune these parameters [37] do

not extend to more complex neural architectures, or to datasets

different from those used in their work.

We propose a technique that can accurately perform learning

on trajectory data. Specifically, we focus on next-location predic-

tion, which is a fundamental and valuable task in location-centric

applications. The central idea behind our approach is the use of

the skip-gram model [41, 43]. One important property of skip-

grams is that they handle well sparse data. At the same time, the

use of skip-grams for trajectory data increases the dimensional-

ity of intermediate layers in the neural network. This creates a

difficult challenge in the context of privacy-preserving learning,

because it increases data sensitivity, and requires a large amount

of noise to be introduced, therefore decreasing accuracy.

To address this challenge, we capitalize on the negative sam-
pling (NS) technique that can be used in conjunction with skip-

grams. NS turns out to be extremely valuable in private gradient

descent computation, because it helps reduce the gradient update

norms, and thus boosts the ratio of the useful signal compared

to the noise introduced by differential privacy. In addition, we

introduce a data grouping mechanism that makes learning more

effective by combining multiple users into a single bucket, and

then training the model per bucket. Grouping has a dual effect:

on the positive side, it increases the information diversity in each

bucket, improving learning outcomes; on the negative side, it

heightens the adverse effect of the introduced Gaussian noise. We

study closely this trade-off, and investigate the effect of grouping

factors in practice.

Our specific contributions are:

(1) We propose a private learning technique for sparse loca-

tion data using skip-grams in conjunction with DP-SGD.

To our knowledge, this is the first approach to combine

skip-grams with DP to build a private MLmodel. Although

our analysis and evaluation focus on location data, we be-

lieve that DP-compliant skip-grams can also benefit other

scenarios that involve sparse data.

(2) We address the high-dimensionality challenge introduced

by skip-grams through the careful use of negative sam-
pling, which helps reduce the norm of gradient descent

updates, and as a result preserves a good signal-to-noise

ratio when perturbing gradients according to the Gauss-

ian mechanism of DP. In addition, we group together data

from multiple users into buckets, and run the ML process

with each bucket as input. By increasing the diversity of

the ML input, we are able to significantly boost learning

accuracy.

(3) We perform an extensive experimental evaluation on real-

world location check-in data. Our results demonstrate

that training a differentially private skip-gram for next-

location recommendation clearly outperforms existing

approaches for DP-compliant learning. We also perform

a thorough empirical exploration of the system parame-

ters to understand in-depth the behavior of the proposed

learningmodel. Our findings show that DP-compliant skip-

grams are a powerful and robust approach for location

data, and some of the trends that we uncovered can also

extend to other types of sparse data, beyond locations.

The rest of the paper is organized as follows: we provide back-

ground information in Section 2. Section 3 introduces the system

architecture, followed by the details of our private location rec-

ommendation technique in Section 4. We perform an extensive

experimental evaluation in Section 5. We survey related work in

Section 6, followed by conclusions in Section 7.

2 BACKGROUND
2.1 Differential Privacy
Differential Privacy (DP) [17] represents the de-facto standard in

protecting individual data. It provides a rigorous mathematical

framework with formal protection guarantees, and is the model

of choice when releasing aggregate results derived from sensitive

data. The type of analyses supported by DP range from simple

count or sum queries, to the training of machine learning models.

A popular DP flavor that is frequently used in gradient descent

due to its refined composition theorems is (ε,δ )-differential pri-
vacy. Given non-negative numbers (ε,δ ), a randomized algorithm

M satisfies (ε,δ )-differential privacy iff for all datasets D and D ′

differing in at most one element, and for all E ⊆ Range(M), the

following holds:

Pr [M(D) ∈ E] ≤ eεPr [M(D ′) ∈ E] + δ (1)

The amount of protection provided by DP increases as ε and δ
approach 0. Dwork et al. [17] recommend setting δ to be smaller

than 1/n for a dataset of cardinality n. The parameter ε is called
privacy budget.

Datasets D and D ′ that differ in a single element are said

to be neighboring, or sibling. When the adjacency between the

datasets is defined with respect to a single data record, then the

DP formulation provides record-level privacy guarantees. The

amount of protection can be extended to account for cases when

a single individual contributes multiple data records. In this case,

the sibling relationship is defined by allowing D and D ′ to differ

only in the records provided by a single individual. This is a

stronger privacy guarantee, called user-level privacy.
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To achieve (ε,δ )-DP, the result obtained by evaluating a func-

tion (e.g., a query) f on the input data must be perturbed by

adding noise sampled from a random variable Z . The amount

of noise required to ensure the mechanism M(D) = f (D) + Z
satisfies a given privacy guarantee depends on how sensitive the

function f is to changes in the input, and the specific distribution

chosen for Z . The Gaussian mechanism (GM) [16] is tuned to

the sensitivity Sf computed according to the global ℓ2-norm as

Sf = supD≃D′ | | f (D) − f (D ′)| |2 for every pair of sibling datasets

D, D ′ . GM adds zero-mean Gaussian noise calibrated to the

function’s sensitivity as follows:

Theorem 2.1. For a query f : D → R, a mechanism M that
returns f (D) + Z , where Z ∼ N(0, σ 2S2

f ) guarantees (ε,δ )-DP if

σ 2ε2 ≥ 2ln(1.25/δ ) and ε ∈ [0, 1] (see [17] for the proof).

The composability property of DP helps evaluate the effect on

privacy when multiple functions are applied to the data (e.g., mul-

tiple computation steps). Each step is said to consume a certain

amount of privacy budget, and the way the budget is allocated
across multiple steps can significantly influence data utility.

2.2 Neural Networks
Modern machine learning (ML) models leverage the vast expres-

sive power of artificial neural networks to dramatically improve

learning capabilities. Convolutional networks have shown ex-

ceptional performance in processing images and video [30]. Re-

current networks can effectively model sequential data such as

text, speech and DNA sequences [12, 28]. A neural network is

composed of one or more interconnected multilayer stacks, most

of which compute non-linear input-output mappings. These lay-

ers transform the representation at one level (starting with the

raw input) into a representation at a higher, more abstract level.

The key to improving inference accuracy with a neural net is to

continually modify its internal adjustable parameters.

Stochastic gradient descent (SGD) is the canonical optimiza-

tion algorithm for training a wide range of ML models, including

neural networks. It is an iterative procedure which performs

parameter updates for each training example xi and label yi .
Learning the parameters of a neural network is a nonlinear opti-

mization problem. At each iteration, a batch of data is randomly

sampled from the training set. The error between the model’s

prediction and the training labels, also called loss, is computed

after each iteration. The loss is then differentiated with respect

to the model’s parameters, where the derivatives (or gradients)

capture their contribution to the error. A back-propagation step

distributes this error back through the network to change its

internal parameters that are used to compute the representation

in each layer from the representation in the previous layer. Each

internal parameter of the model θ is brought closer to predicting

the correct label as follows:

θ = θ − η · ∇θJ(θ ;x (i);y(i))

where η is the learning rate hyper-parameter and J is the loss

function. Iteratively recomputing gradients and applying them

to update the model’s parameters is referred to as descent, and
this operation is performed until the model’s performance is

satisfactory.

2.3 Differentially Private-SGD (DP-SGD)
Introduced in [1], DP-SGD integrates (ε,δ )-DP with neural net-

works. It modifies traditional SGD in that after calculating the

Table 1: Summary of Notations

Notation Definition
U , P Sets of users and check-in locations, respec-

tively

N ,L Cardinalities of setsU and P , respectively

Uu Historical record of user u’s check-ins

dim Dimension of location embedding space

b,η Batch size and learning rate, respectively

q User sampling probability per step

m Expected user sample size per step

ε,δ Privacy parameters of Gaussian mechanism

σ Noise scale

λ Data grouping factor

H Set of training buckets

C Per-layer clipping norm

changes in its internal parameters, it obfuscates the gradient

values with noise sampled from the Gaussian distribution.

DP-SGD averages together multiple gradient updates induced

by training-data examples, clips (i.e., truncates) each gradient

update to a specified maximum ℓ2-norm, and adds Gaussian ran-

dom noise to their averaged value. Clipping each gradient bounds

the influence of each training-data example on the model. Ac-

cordingly, the sensitivity of the average query can be adjusted as

desired, and due to the added noise tuned to the sensitivity of the

query, differential privacy is ensured in each iteration. Typically,

repeatedly executing a query results in sharp degradation of the

privacy protection, as more information is leaked by multiple

usages of private iterations. The moments accountant technique
[1] computes the privacy loss resulting from the composition

of Gaussian mechanisms under random sampling. It tracks the

moments of the privacy loss variable in each step of the descent,

and provides a much tighter upper bound on privacy budget

consumption than the standard composition theorem [17].

3 SYSTEM ARCHITECTURE
In Section 3.1 we define the problem statement. We outline the

learning model architecture in Section 3.2 and we show how

it is utilized in Section 3.3. Table 1 summarizes notations used

throughout the paper.

3.1 Problem Statement
Data Representation. The input to our learning model consists

of check-in data from a set of N usersU = {u1,u2, ...,uN }. The
set of L check-in locations (e.g., points of interest) is denoted

as P = {l1, l2, ..., lL}. Each user u ∈ U has a historical record of

check-ins denoted as Uu = {c1, c2, ...}, where each element ci is
a triplet ⟨u, l , t⟩ comprised of user identifier, location and time.

Learning Objective. The objective of our model is to predict

the location that a given user u will check into next, given a

time-ordered sequence of previous check-ins of the user. The

past check-ins can represent the user’s current trajectory or

his entire check-in history. For each scenario, we describe the

usage of the model in Section 3.3. In an initial step, we employ

an unsupervised learning method, specifically the skip-gram

model [43], to learn the latent distributional context [50] of user

movements over the set P of possible check-in locations. A latent

representation of every location in a reduced-dimension vector

space is the intermediate output. Next, we determine for each user
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u its inclination to visit a particular location l by measuring how

similar l is in the latent vector space to the locations previously

visited by u.
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Figure 2: Architecture of the location-recommendation
model

3.2 Learning Model
The skip-gram negative sampling (SGNS) model [41, 43] was

initially proposed to learn word embeddings from sentences.

However, several recent efforts [10, 35, 58] show that the model

is also appropriate for location recommendation tasks. Specifi-

cally, the model is used to learn location embeddings from user

movement sequences, where each location corresponds to a word,

and a user’s check-in history to a sentence.

Given the set of check-ins of a user, we treat the consecutively

visited locations as a trajectory that reflects her visit patterns.

A data pre-processing step is required to make the data format

compatible with the input of a neural network: every location in

P is tokenized to a word in a vocabulary of size L = |P |. Given a

target location check-in c , a symmetric window of win context

locations to the left and win to the right is created to output

multiple pairs of target and context locations as training samples.

The assumption is that if a model can distinguish between actual

pairs of target and context words from random noise, then good

location vectors will be learned.

Figure 2 illustrates the neural network used in our solution.

The model parameters consist of three tensors θ = {W ,W ′,B′}
and two hyper-parameters representing the embedding dimen-

sions dim and the negative samples drawn neд. Consider a target-
context location pair (lx , ly ). First, both locations are one-hot

encoded into binary vectors ®x and ®y of size L. The multiplication

of ®x with embedding matrixW produces the embedding vector

for the input location lx (i.e., the ith row of matrixW ).W × x

represents the mapping of input location x to a vector
®h in an

dim-dimensional space. Next, for each positive sample (i.e., true

target/context pair), a neд number of negative samples are drawn.

The context location vector ®y along with the negative samples

are passed through a different weight matrixW ′ and bias vector

B′. Finally, a sampled softmax loss function is applied to calculate

the prediction error. At a high level (we refer the reader to [49] for

a detailed look), the parameters are modified such that the input

word (and the corresponding embedding) is tugged closer to its

neighbors (i.e., paired context locations), and tugged away from

the negative samples. As a result, during back-propagation, only

neд+1 vectors inW orW ′ are updated instead of entire matrices.

In the original work [41, 43], negative sampling was devised to

improve computational efficiency, as updating the entire model

in each iteration can be quite costly. In private learning, it also

plays an important role in controlling the adverse affects of noisy

training.

We remark here that techniques such as Noise Contrastive

Estimation [23] and Negative Sampling use a non-uniform dis-

tribution for drawing the samples—for example, by decreasing

the sampling weight for the frequent classes—whereas, we use a

sampled softmax function with a uniform sampling distribution.

This is a necessity for preserving privacy, since estimating the

frequency distribution of locations from user-submitted data will

cause privacy leakage. Lastly, the embedded vectors are normal-

ized to unit length for efficient use in downstream applications.

On top of improving performance [32, 55], normalizing the vec-

tors assists similarity calculation by making cosine similarity and

dot-product equivalent.

We detail the privacy-preserving learning model in Section 4.

In the remainder of this section, we show how the model, once

computed in a privacy-preserving fashion, can be utilized.

3.3 Model Utilization
We provide an overview of how our proposed privacy-preserving

next-location prediction model is utilized. Once our privacy-

preserving learning technique is executed, the resulting model

can be shared with consumers, since the users who contributed

the data used in the training are protected according to the seman-

tic model of DP. While the utilization of our model is orthogonal

to our proposal, we include it in this section in order to provide a

complete, end-to-end description of our solution’s functionality.

A typical use of our model is for a mobile user to download
1
it

to her device, provide her location history as input, and receive a

next-location recommendation. Alternatively, a service provider

who already has the locations of its subscribers, will perform the

same process to provide a next-location suggestion to a customer.

We emphasize that, the model utilization itself does not pose any

privacy issues. In both cases above, neither the input, nor the

output to the model are shared, so there is no privacy concern.

The only time we need to be concerned about privacy is when

training the model, since a large amount of trajectories from

numerous users is required for that task.

Consider a user who has recent check-ins ζ in a relatively

short time period (e.g., last few hours). This set of locations forms

the basis for recommending to the user the next location to visit.

The normalized embedded matrixW in the fully-trained model

encodes the latent feature vector of all locations. For each loca-

tion check-in li ∈ ζ , the embedding vectorsw(li ) are extracted
and stacked on top of each other. More precisely, to obtain the

embedding vectorw(li ), the binary vector of li is multiplied with

W (similar to the first step of the training process). This process is

equivalent to extracting the dim-dimensional row corresponding

to location li . Then, the average of elements across dimensions

of the stacked vectors is computed to produce a representation

F(ζ ) of the recent check-ins of the user. Finally, cosine similarity

scores are computed as the dot-product of the vectorF(ζ ) to the
embedding vector of each location in the universe L. We rank

all locations by their scores and select the top-K locations as the

potential recommendations for the user.

In the case when the user has no recent check-ins, the rep-

resentation F() can be computed over her movement profile

1
To reduce communication costs, only the embedding matrix is deployed.
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comprising of historical check-ins. Other methods include train-

ing an additional model to learn latent feature vectors of each

user from her preferences and locations visited. As in [19, 58], a

user’s feature representation can be used to determine her incli-

nation to visit a particular location. However, modeling each user

with such personalized representations, while at the same time

preserving user-level privacy, is a fundamentally harder problem

(in terms of both system design and privacy framework), and is

left as future work.

When the model is deployed at an untrusted location-based

service provider (LBS), additional privacy concerns must be ad-

dressed. In this case, the mobile user must protect the set ζ (or

F(ζ )) locally. Techniques such as geo-indistinguishability [3]

can be applied to protect the check-in history (discussed in Sec-

tion 6). For example, the check-in coordinates can be obfuscated

to prevent adversaries from pinpointing the user to a certain

location with high probability. Addressing these vulnerabilities

in the MLaaS setting is orthogonal to the scope of this paper.

4 PRIVATE LOCATION PREDICTION (PLP)
Section 4.1 presents in detail our proposed approach for private

next-location prediction. Section 4.2 provides a privacy analysis

of our solution.

4.1 Private Location Prediction (PLP)
PLP is a customized solution to location recommendation. It

learns latent factor representations of locations while control-

ling the influence of each user’s trajectory data to the training

process. Bounding the contribution of a single data record in the

SGD computation has been proposed in previous work [2, 53].

We make several extensions and contribute data grouping tech-

niques to boost model performance. Even while combining data

of multiple users, we guarantee user-level privacy (such as in

[21, 39]). By grouping data records of multiple users, we benefit

from cross-user learning to improve model performance.

Algorithm 1 depicts the procedure of this learning process.

Model hyperparameters labeled batch size β , learning rate η
and loss function J are related to gradient descent optimization,

whereas hyperparameters labeled grouping factor λ, sampling

probability q, gradient clipping norm bound C , noise scale σ and

privacy parameters ε,δ are introduced to create an efficient and

privacy-preserving system. We briefly describe each component

in isolation before coupling them together to illustrate the big

picture.

User Sampling. Given a sampling probability q =m/N , each

element of the user set is subjected to an independent Bernoulli

trial which determines whether the element becomes part of

the sample. As a consequence, the size of sampled set of users

Usample is equal tom only in expectation. This is a necessary

step in correctly accounting for the privacy loss via the moments

accountant [2].

DataGrouping. Data grouping is essentially a pre-processing
technique that significantly boosts model performance. It has

a dual purpose. The first is to reduce the effects of skewness

and sparsity inherent to location data, where the frequency of

check-ins of users at locations follows the Zipf’s law [11]. The

second is to provide cross-user learning to smooth updates in the

model parameters produced by the function in lines 15-22. The

underlying intuition is simple: to ensure good performance of

the context model, each update of a training step must contribute

to the final result. By combining the profiles of multiples users
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Figure 3: Data sampling and grouping

we also reduce minor observation errors that may be produced

from specific data points in a user’s profile.

Our data grouping technique agglomerates the data of multiple

users into bucketsH. Given a grouping factor λ, users (and their

entire data) are randomly assigned to buckets such that each

bucket contains λ users. This operation is encapsulated in the

дroupData(·) function in line 6. As a separate method, we also

tried equal frequency grouping, where a global pass over the

record count of each user is used to produce buckets such that

each contains approximately the same number of records (while

ensuring that the data records of each user are not split into

multiple buckets). However, we noticed no statistically significant

benefit in model accuracy from equal frequency grouping than

with a random grouping. Accordingly, we use the latter in the

rest of the work.

Figure 3 illustrates the data sampling and grouping process

(corresponding to lines 5-6) for a sampling probability of 0.66

and λ = 2. Grouped data in each bucket is organized as a sin-

gle array for processing by gradient descent optimization. Re-

call from Section 3.2 that a symmetric moving window is ap-

plied to create training examples, after the array is read by the

дenerateBatches() function (in line 17). A number β of target-

context location pairs are placed in each batch.

In brief, at each step of PLP, we sample a random subset of

users (line 5), combine the data of multiple users into buckets

(line 6), compute a gradient update with bounded ℓ2 norm from

each bucket (lines 7-8), add noise to the sum of the clipped gradi-

ents (line 9), take their approximate average, and finally update

the model by adding this approximation (line 10). Alongside, a

privacy ledger is maintained to keep track of the privacy bud-

get spent in each iteration by recording the values of σ and C
(lines 3 and 11). This tracker has the added benefit of allowing

privacy accounting at any step of the training process. Given a

value of δ and the recorded ledger, the moments accountant can

compute the overall privacy cost in terms of ε . This functionality
is provided by the cumulative_budget_spent() function in line

12, which implements the moments accountant from [2].

Privacy Mechanism. The gradient values computed in line

20 do not have an a-priori bound. This complicates the application

of the Gaussian Mechanism (GM), which is generally tuned to the

sensitivity of the performed query. In this particular use case, we

employ a Gaussian sum query in line 9, the results of which are

then averaged using a fixed-denominator estimator. To bound the

sensitivity of this query, a maximum sensitivity of C is enforced
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Algorithm 1 Algorithm for Private Location Prediction with

user-level privacy.

Input: loss function J(θ ), grouping factor λ, learning rate η,
sampling probability q =m/N , gradient norm bound C , batch

size β , privacy parameters ε,δ

1: procedure TrainPrivateLocationEmbedding
2: Initialize: Model θ0 = {W ,W

′,B′},
3: Privacy Accounting ledgerA(δ ,q)
4: for each step t = 1, ... do
5: Usample ← a random sample ofmt users

6: Initialize buckets H← дroupData(Usample , λ)
7: for each data bucket dh ∈ H do
8: ḡh ← ModelUpdateFromBucket(θt ,dh )

9: ĝt =
1

|H |
(
∑
h∈H ḡh +N(0,σ

2C2I )) ▷ Noise.

10: θt+1 = θt + ĝt ▷ Model Update.

11: A.track_budget(C,σ )
12: if A.cumulative_budget_spent() ≥ ε then:
13: return θt−1

14:

15: functionModelUpdateFromBucket(θt ,dh )
16: Φ← θt
17: B ← дenerateBatches(dh , β)
18: for each b ∈ B do
19: Φ← Φ − η 1

|b |
∑
(xi ,yi )∈b ∇ΦJ(Φ,xi ,yi )

20: дh = Φ − θt

21: ḡh = дh/max(1,
∥дh ∥2
C ) ▷ Gradient Norm Clipping.

22: return д̄h

on every gradient computed on bucket h as follows (equivalent

to line 21):

∥ḡh ∥2 =

{
∥gh ∥2 for ∥gh ∥2 ≤ C
C for ∥gh ∥2 > C .

Gradient clipping places a strict limit on the maximum cont-

ribution—in terms of its ℓ2 norm—of the gradient computed on a

bucket. Formally, | |ḡh | |2 ≤ C . The sensitivity of the scaled gradi-

ent updates with respect to the summing operation is thus upper

bounded by C . Finally, dividing the GM’s output by the number

of buckets |H| yields an approximation of the true average of the

buckets’ updates.

We note that increasing the number of users in each bucket

increases the valuable information in each gradient update. At the

same time, the noise introduced by the Gaussian mechanism is

scaled to the sensitivity of each bucket’s update (i.e.,C). If too few
buckets are utilized, this distortion may exceed a limit, meaning

that too much information output by the summing operation

is destroyed by the added noise. This will impede any learning

progress. We treat the grouping factor λ as a hyper-parameter

and tune it.

In a multi-layer neural network such as the one described in

our work, each tensor can be set to a different clipping thresh-

old. However, we employ the per-layer clipping approach of [37],

where given an overall clipping magnitude C , each tensor is

clipped to C/
√
|θ |. In the skip-gram model, θ0 = {W ,W

′,B′},

hence |θ | = 3, so we clip the ℓ2-norm of each tensor to C/
√

3.

However, the effect of clipping on the three tensors is rather

different due to the difference in their dimensionality. Context

matrixW ′ is clipped to the same degree as bias vector B′, despite

the fact that they have dimensions (L × dim) and (1 × L), respec-
tively. While the dimensionality of the embedding matrixW is

(L × dim), only a fraction of the weights—proportional to neд,
instead of L—are considered for clipping due to the sampling of

neд number of negative examples in the sampled softmax func-

tion. Simply put, | |W | |2 is proportional to neд and when carefully

tuned, the clipping parameter is large enough that nearly all

updates are smaller than the clip value of C/
√
|θ |, improving the

signal-to-noise ratio over iterative computations. We discuss the

effect of this parameter in controlling the distortion of Gaussian

noise in Section 5.

4.2 Privacy Analysis
Recall that, our proposed system provides user-level differen-
tial privacy to individuals who contribute their check-in history

to the training data. This ensures that all individuals are pro-

tected, regardless of how much data they contribute (i.e., even

if the length of the check-in history varies significantly across

users). LetUk denote the data of a single user. The sensitivity of

the Gaussian Sum Query (GSQ) function w.r.t. to neighboring

datasets that differ in the records of a single user is defined as

SGSQ = max

{Usample ,Uk }
∥GSQ(Usample ∪Uk ) −GSQ(Usample )∥2

In Algorithm 1, GSQ is executed over the bucket gradients, which

complicates the analysis of the privacy properties of the algo-

rithm. We consider two distinct scenarios where a user’s data

may be assigned to: (i) exactly one bucket; or (ii) more than one

bucket. We define ω as the data split factor, meaning that a user’s

data may be placed in at most ω buckets.

Case 1 [ω = 1]. This represents the scenario where multiple

(up to λ) users’ data may be present in a single bucket, but a

single user’s data may be allocated to at most one bucket. Figure

4(a) depicts this case, which is assumed by default in Algorithm 1.

This is a sufficient condition to ensure that the per-user contribu-

tion to a bucket’s gradient update is tightly bounded. Formally,

there exists a unique dh ∈ H s.t.Uk ⊆ dh . In addition, when the

ℓ2 norm of the gradient | |ḡh | |2 computed on a data-bucket dh is

upper-bounded by the clipping factor C , we get

SGSQ ≤ max

{H,dh }
∥GSQ(H ∪ dh ) −GSQ(H)∥2 ≤ C

An informal proof that this approach satisfies (ε,δ )-DP is as fol-

lows: The sensitivity of the gaussian sum queryGSQ =
∑
h∈H ḡh

is bounded as SGSQ ≤ C , if for all buckets we have | |ḡh | |2 ≤ C .
By extension, if a sampled user (and his location visits) can be

assigned to exactly one bucket, sibling datasets that differ in the

data of a single user can change the output ofGSQ by at most C .
Therefore, Gaussian Noise drawn from N(0,σ 2C2I ) guarantees
user-level (ε,δ )-DP.

Case 2 [ω > 1]. If the data of a single user is split over multiple

buckets, then it is possible that even after scaling the bucket

gradients to C , the sensitivity of the Gaussian sum query is no

longerC w.r.t. to user-neighboring datasets. Figure 4(b) illustrates

an example with ω = 2. A similar split strategy (proposed in

[38]) is used in the empirical evaluation of [21], wherein a small

dataset is scaled up to amplify privacy accounting. However, the

authors fail to regulate their noise scale to reflect the altered

data sensitivity or alternatively recompute the achieved privacy

guarantee. We show that when the data of a user Uk is split

across multiple buckets, the sensitivity of the query increases to
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ω. Assuming that |H| ≤ |Usample |, we can write,

ω = max

{Uk ∈Usample }
|{dh : dh ∈ H and dh ∩Uk , ∅}|

meaning that the data of a user can influence the gradients of at

most ω buckets. Accordingly, if for all buckets | |ḡh | |2 ≤ C , a sin-
gle user can change the output ofGSQ by at most ωC . Therefore,
to guarantee user-level (ε,δ )-DP, Gaussian Noise must be drawn

from N(0,σ 2ω2C2I ) .

Usample = 
{U1,U2,U4,U6}

(a) Buckets generated
with ω = 1  

H 2 ={U2,U6} 

H 1 ={U1,U4} 

U1

U2

U4

U6

ω = 1, λ = 2 ω = 2, λ = 1
H 4

{U2,U6} 

H 3

{U4,U6} 

H 2

{U2,U1} 

H 1

{U1,U4} 

(b) Buckets generated
with ω = 2 

Figure 4: Sensitivity of Gaussian Sum Query over Usample
users: (a) ω = 1, a single user’s data is placed in exactly
one bucket; (b) ω = 2, a single user’s data is split across
two buckets. Since gradients computed over the generated
bucketsH1, ...,H4, are bounded by C, a user can contribute
at most 2C to the computed sum.

We remark here that values of ω > 1 produced no positive

effect in our evaluation. We experimented withω = 2 by splitting

a user’s data to exactly two random buckets. We found that the

signal-to-noise ratio is adversely affected, since the marginally

improved signal from the split data is offset by the now quadru-

pled (proportional to ω2
) noise variance. In the rest of the work,

we set ω to 1.

5 EXPERIMENTS
Section 5.1 provides the details of the experimental testbed. Sec-

tion 5.2 focuses on the evaluation of the proposed technique in

comparison with the state-of-the-art DP-SGD approach. In Sec-

tion 5.3 we evaluate in detail our approach when varying system

parameters, and provide insights into hyper-parameter tuning.

5.1 Experimental Settings
Dataset. We use a real dataset collected from the operation of a

prominent geo-social network, namely Foursquare [59]. The data
consist of a set of user check-ins. Every check-in is described by

a record comprising of user identifier, the latitude and longitude

of the check-in, and the identifier of the POI location. In order to

simulate a realistic environment of a city and its suburbs, we focus

on check-ins within a single urban area, namely Tokyo, Japan.

In particular, we consider a large geographical region covering

a 35 × 25km
2
area bounded to the South and North by latitudes

35.554, 35.759, and to the West and East by longitudes 139.496,

139.905. We filter out the users with fewer than ten check-ins,

as well as the locations visited by fewer than two users (such

filtering is commonly performed in the location recommendation

literature [33, 61]). The remainder of the data contains a total of

739, 828 check-ins from 4, 602 unique users over 5, 069 locations

during a time period of 22 months from April 2012 to January

2014.

Implementation.All algorithmswere implemented in Python

on a Ubuntu Linux 18.04 LTS operating system. The experiments

were executed on an Intel Xeon Platinum 8164 CPU, with 64GB

RAM. All data and intermediate structures (e.g., neural network

parameters, gradients) are stored in main memory. The proposed

neural model is built using Google’s Tensorflow library [1]. To

account for the privacy budget consumption of the complex iter-

ative mechanism used in learning, we use the privacy account-

ing method from [54], which allows for a tight composition of

privacy-preserving steps. At each step of the computation, we

calculate the (ε,δ ) tuple from moment bounds, according to the

moments accountant procedure introduced in [37].

Evaluation Metric. To evaluate the performance of loca-

tion recommendation, we adopt the “leave-one-out” approach,

which has been widely used in the recommender systems litera-

ture [10, 19, 26, 35, 57, 58]. This metric simulates the behavior of

a user looking for the next location to visit. Given a time-ordered

user check-in sequence, recommendation models utilize the first

(t − 1) location visits as an input and predict the t th location

as the recommended location. The recommendation quality is

measured by Hit-Rate (HR). HR@k is a recall-based metric, mea-

suring whether the test location is in the top-k locations of the

recommendation list. The outcome of the evaluation is binary:

1 if the test location is included in the output set of the recom-

mender, and 0 otherwise. In the rest of the section, we use the

terms prediction accuracy and HR@k interchangeably.

Model Training. Our testing and validation sets consist of

location visits of users who are not part of the training set. Since

we do not train models to learn user specific representations

(such as in [10, 35, 58]), this is an accurate representation of real-

life model utilization at a user’s device. Validation and testing

sets are created in a similar fashion. First, a randomly selected

set of 100 users and their corresponding check-ins are removed

from the dataset. From these, time ordered sequences of trajecto-

ries are generated. Each individual trajectory does not exceed a

total duration of six hours (following the work in [10, 34]). The

remaining 4402 users and their check-ins represent the training

dataset for learning the parameters of the proposed model.

To train the model, we utilize Adam [29], a widely adopted

optimization algorithm for deep neural network models that

has specific properties to mitigate disadvantages of traditional

SGD, such as its difficulty in escaping from saddle points, or

extensive tuning of its learning rate parameter. We implement

the optimizer in a differentially private manner by tracking an

exponential moving average of the noisy gradient and the squared

noisy gradient, as illustrated in [24]. We found that tuning the

initial learning rate and decay scheme for Adam only affects the

learning in the very first few steps. Typically, Adam does not

require extensive tuning [29] and a learning rate between 0.001

to 0.1 is most often appropriate. In our experiments, we found

that a learning rate value η ∈ [0.02, 0.07] produces similar results,

so we set it to 0.06 for all our runs.

Parameter Settings.We select the training hyper-parameters

of the skip-gram model via a cross validation grid search. Figure

5 depicts the validation accuracy over 200 data epochs using

the non-private learning approach. We plot the validation Hit-

Rate for k = 5, 10 and 20 candidates, respectively. We look for

those models that reach the highest accuracy. The embedding

dimension dim is set to 50. While a larger number of hidden units

127



allows more predictive power, the accuracy improvement reaches

a plateau when the embedding dimension is in the range [50, 150].

In non-private training, it is preferable to use more units, whereas

for private learning a larger model increases the sensitivity of the

gradient. We keep our model at the lower end of the dim range to

keep the number of internal parameters of the models low. The

batch size is set to b = 32, and the context window parameter

win = 2 (for a total window size of 5). These parameters are

also consistent with those utilized in previous work [10, 58].

Varying the number of negative examples sampled (denoted by

neд) marginally affects the non-private model, whereas with

private learning we find that it directly controls the sensitivity

of the private sum query (in Section 5.3 we show experiments

on how to tune it). The default value for negative samples is

neд = 16.
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Figure 5: Non-private model hyperparameter tuning

For the privacy parameters, we fix the value of δ = 2× 10
−4 <

1/N as recommended in previous work on differentially-private

machine learning [2, 39]. For a given value of δ , the privacy

budget ε affects the amount of steps we can train until we exceed

that budget threshold. We set the default value of the hyper-

parameters to q = 0.06, σ = 2.5, C = 0.5, λ = 4 (please see

Table 1 for a summary of notations). Recall that, the sampling

ratio of each lot is q =m/N , so each epoch consists of 1/q steps.
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Figure 6: Non-private model performance

5.2 Comparison with Baseline
We evaluate the performance of our proposed approach in com-

parison with two baselines: (i) a non-private learning approach

using SGD, and (ii) the state-of-the-art user-level DP-SGD ap-

proach from [2, 39].

First, we evaluate the non-private location prediction model

described in Section 3.2. Figure 6 illustrates the validation and

testing Hit-Rate at k = 5, 10 and 20. The model generalizes well

to the test set, and there appears to be no evidence of overfitting

up to 250 data epochs. The presented results are competitive with

existing approaches in [35, 58], suggesting that the model hyper-

parameters are suitable to capture the underlying semantics of

mobility patterns. The best testing accuracy of the non-private

model for the HR@10 setting is 29.5%.

Throughout our evaluation we found that, when the model is

trained in a differentially private manner, there is only a small

difference between the model’s accuracy on the training and the

test sets. This is consistent with both the theoretical argument

that differentially private training generalizes well [5, 15], and

the empirical evidence in previous studies [2, 39]. For brevity of

presentation, in the rest of this section we only show HR@10

evaluation results (similar trends were recorded for HR@5 and

HR@20).

Next, we evaluate our proposed Private Location Prediction

(PLP) approach in comparison with DP-SGD [2], which is summa-

rized in Section 2.We adapt themodel towork on user-partitioned

data, so that it guarantees user-level privacy. The improvements

of PLP over DP-SGD passed the paired t-test with significance

value p < 0.01.

Figure 7 plots the prediction accuracy of the privately trained

models for varying levels of privacy ε . For each ε value, we con-
sider two settings each for sampling probability q = 0.06 (upper

left) and q = 0.10 (bottom right). We set σ = 1.5. We compare

PLP against the baseline DP-SGD for two values of the grouping

factor λ. As expected, a general trend we observed is that provid-

ing more privacy budget allows the models to train to a higher

accuracy. However, for the baseline approach, the convergence

of the model is thwarted because the model update computed

on the data of a single user contributes a limited signal, which
is often offset by the introduced Gaussian noise. On the other

hand, the results show that by incorporating data grouping in

its design, PLP is able to ameliorate the data sparsity problem

inherent to location datasets. The gain is more pronounced when

the grouping factor increases (i.e., higher λ).
Next, we measure the effect of sampling probability q on ac-

curacy. From the theoretical model [2], we know that q directly

affects the amount of privacy budget utilized in each iteration (q
is also called “privacy amplification factor”). A lower sampling

rate includes less data in each iteration, hence the amount of bud-

get consumed in each step is decreased. Our results in Figure 8

confirm this trend. We vary the rate of user sampling q from 4%

to 12%. For all runs, we fixed the budget allowance at ε = 2. For

a higher sampling probability, the privacy budget is consumed

faster, hence the count of total training steps is smaller, leading

to lower accuracy. Our proposed PLP method clearly outper-

forms DP-SGD, whose accuracy drops sharply with an increase

in q. We note that, due to the proposed grouping strategy, PLP is

more robust to changes in sampling rate, as its accuracy degrades

gracefully. In general, a larger bucket cardinality leads to better

accuracy, except for the lowest considered sampling rate, where

the small fraction of records included in the computation at each
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ing factor λ

step prevents buckets from reaching a significant diversity in

their composition.

Finally, we provide a result on the runtime improvements

offered by PLP. The y-axis in Figure 9 depicts the multiplicative

factor by which PLP is faster that DP-SGD. We show results for

two values of q, and for each we present the runtime with two

values of noise scale. Linearly scaling the grouping factor has

two opposing effects: on the one hand, fewer buckets implies that

equally few bucket gradients need to be computed and averaged.

On the other hand, as each bucket gets assigned more users, it

takes longer to compute each bucket gradient. When fewer users

are sampled (i.e., q = 0.06) the latter effect begins to dominate for

λ > 5, whereas for λ ∈ [2, 5], the computational efficiency scales

from 1.6× to 2.5×. In the setting where sampling rate is higher,

at q = 0.10, the runtime improvements scale monotonically, to

over 4.8× for λ = 6. These results are consistently observed even

with a different number of total iterations (as a larger σ allows

more iterations).

In summary, our results so far show that PLP clearly out-

performs the existing state-of-the-art DP-SGD. Furthermore, its

accuracy was observed to reach values as high as 24%, which is

quite reasonable compared to the maximum of 29.5% reached

by the non-private learning approach. In the rest of the evalua-

tion, we no longer consider DP-SGD, and we focus on tuning the

parameters of the proposed PLP technique.

5.3 Hyper-parameter Tuning
The objective of tuning model hyper-parameters is to obtain a

good balance of accuracy and computational overhead of learn-

ing. We focus on the following parameters, which we observed

throughout the experiments to have a significant influence: group-

ing factor λ, noise scale σ , the magnitude of ℓ2 clipping norm,

and the number of negative samples neд.
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Figure 10: Effect of varying λ

Effect of Grouping factor λ. Figure 10 shows the influence on
accuracy of grouping factor λ. We consider two distinct settings

each of sampling parameter q and noise scale σ (for a total of

four lines in the graph). To limit sensitivity, we clip the gradient

norm of each tensor to a maximum l2 norm of 0.5. Choosing

the grouping factor must balance two conflicting objectives: on

the one hand, assigning the data of multiple users to the same

bucket improves the signal in each bucket gradient, by improving

the data diversity within the bucket. On the other hand, the

Gaussian noise must be scaled to the sensitivity of a bucket

gradient, and a larger bucket size results to fewer buckets, which

in turn increases the effect of added noise. Our results confirm

this trade-off: initially, when λ increases there is a pronounced

increase in accuracy. After a certain point, the accuracy levels

off, and reaches a plateau around the value of λ = 5. When the

grouping factor is increased further (not shown in the graph),

the accuracy starts decreasing, because there is no significant

gain in per-bucket diversity, whereas the relative noise-to-signal

ratio keeps increasing.

Effect of Noise Scale σ . The noise scale parameter σ directly

controls the noise added in each step. A larger σ leads to more

noise, but at the same time it decreases the budget consumption

per step, which in turn allows the execution of more learning

steps. Figure 11 depicts the model accuracy for varying settings

of noise scale. The results presented correspond to two settings

each of sampling rate and privacy budget (for a total of four lines).

We observe that for the lower-range of σ values, the accuracy

is rather poor, especially for smaller settings of privacy budget

ε . This is explained by the fact that too little noise is added per

step, and the privacy consumption per step is high. As a result,

only a small number of steps can be executed before the privacy

budget is exhausted, leading to insufficient learning. For larger ε
settings, the effect is less pronounced, because there is sufficient

budget to allow more steps, even when the noise scale is low.

Conversely, a larger σ allows more steps to be executed, so the

best accuracy is obtained for the largest σ = 3.0 setting. However,

we also note that the accuracy levels off towards that setting. For

larger σ values (not showed in the graph), we observed that

the noise magnitude is too high, and even if budget is slowly

exhausted, the training loss in each learning step is excessively

high, preventing the model from converging, and leading to very

low accuracy. We conclude that the choice of noise scale must

be carefully considered relative to the total privacy budget, such

that a sufficient number of steps are allowed to execute, while at

the same time the loss function value per step is not excessive.

The total number of executed steps also influences the compu-

tational overhead of learning. If execution time is a concern, one
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may want to reduce the number of steps by reducing σ , in an

attempt to accelerate the learning (intuitively, since less noise is

added at each step, the model will converge faster). This approach

is still subject to ensuring that a sufficient number of steps are

executed, as neural networks need to perform several complete

passes over the dataset.
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Figure 11: Effect of varying σ

Effect of Clipping norm C.We vary the clipping bound of

every tensor in the model θ0 = {W ,W
′,B′}. The value C rep-

resents the magnitude of per-tensor clipping, which is set to

be equal for every tensor in the model. Clipping more aggres-

sively decreases sensitivity, which in turn leads to a lower privacy

budget consumption per step, and allows additional learning iter-

ations to be executed. Conversely, setting the threshold too low

also limits the amount of learning that the model can achieve per

step. Figure 12 plots the obtained results for several combinations

of sampling probability and grouping factor.

We observe that the for the range of values considered, the

decrease in sensitivity has a more pronounced impact, and as

a result the smaller clipping bounds lead to better accuracy. Of

course, one cannot set the clipping bound arbitrarily low, as that

will significantly curtail learning. Another factor to consider is

the nature of the data, and the effect on gradient values. If the

norm of the resulting tensors following gradient computation is

high, then a low clipping threshold will destroy the information

and prevent learning. In our case, we were able to keep the

gradient norm low by using negative sampling, which in turn

allowed us to obtain good accuracy for that setting. In cases

where this is not possible, it is recommended to increase the

clipping threshold value.

Figure 12: Effect of varying ℓ2 clipping norm

Effect of Negative samples neд. In our final experiment, we

investigate the effect on accuracy of negative sampling, which is

an important factor in the training success of a skip-gram model.

We plot the model accuracy for various values of negative sam-

pling in Figure 13. The number of negative samples neд controls

the total fraction of weights that are updated for each training

sample, and as a side effect it helps keeping the gradient norm

low. We can observe a clear ‘U’-shaped dependency, reaching a

maximum at neд = 16. The observed trend is the result of two

conflicting factors: if the number of negative samples is too low,

training is slowed down, due to the fact that only a small part of

the layers are updated per step. Conversely, if too many samples

are drawn, then the correspondingly many parameters that need

to be updated lead to a large norm. Gradient clipping has an

aggressive effect, and as a result, the amount of information that

can be learned in each update is obliterated by the noise.
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Figure 13: Effect of varying neд

6 RELATEDWORK
Location recommendation. The problems of location recom-

mendation and prediction have received significant attention in

the last decade. Recommending a location to visit to a user necessi-

tates modeling human mobility for the sequential prediction task.

Markov Chain (MC) based methods, Matrix Factorization (MF)

techniques, and Neural Network models (NN) are the schemes

of choice for this objective. MC-based methods utilize a per-user

transition matrix comprised of location-location transition prob-

abilities computed from the historical record of check-ins [62].

Themth
-order Markov chains emit the probability of the user

visiting the next location based on the latestm visited locations.

Private location recommendation over Markov Chains is stud-

ied in [63]. Aggregate counts of check-ins in discretized regions

are published as differentially private statistics. However, due to

the sparsity in check-in behavior and the general-purpose pri-

vacy mechanisms, their method can only extend to coarse spatial

decompositions (e.g., grids having larger than 5km2
cells). Factor-

izing Personalized Markov Chains (FPMC) [47] extend MC by fac-

torizing this transition matrix for the collaborative filtering task.

Matrices containing implicit user feedback on locations can also

be exploited for location recommendation via weighted matrix

factorization [33]. Private Matrix Factorization has been explored

in [36, 51], but we are not aware of any proposal for their appli-

cation to the problem we are considering. Neural Networks have

become a powerful tool in recommender applications due to their

flexibility, expressive power and non-linearity. Recurrent Neural

Networks (RNN) can model sequential data effectively, especially

language sentences [42]. Recurrent nets have also been adapted

for location sequences [34, 64]. However, RNNs assume that tem-

poral dependency changes monotonically with the position in a

sequence. This is often a poor assumption in sparse location data.

As a result, the state-of-art [10, 19, 35, 58] employs the skip-gram
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model [43] to learn the distributional context of users check-in

behavior. Extensions incorporate temporal [19, 35, 61], textual

[10] and other contextual features [58]. However, none of these

studies provide any privacy features, which is the crux of our

work.

Differential Privacy (DP) and Neural Networks. A recent

focus in the differential privacy literature is to reason about cu-

mulative privacy loss over multiple private computations given

the values of ε used in each individual computation [8, 18, 44, 54].

A fundamental tool used in this task is privacy amplification

via sampling [4], wherein the privacy guarantees of a private

mechanism are amplified when the mechanism is applied to a

small random subsample of records from a given dataset. Abadi

et. al. [2] provide an amplification result for the Gaussian out-

put perturbation mechanisms under Poisson subsampling. Their

technique, called moments accountant, is based on the moment

generating function of the privacy loss random variable. Other

privacy definitions that lend themselves to tighter composition

include Rényi Differential Privacy [44] and zero-Concentrated

Differential Privacy [8], and their application to private learning

with data subsampling ([54],[31] respectively). However, these

privacy models are relatively new and the distinctions in privacy

guarantees at the user-end remain to be investigated. In practice,

(ε,δ )-differential privacy is the de-facto privacy standard [21, 39].
Location PrivacyWe overview literature that focuses on pre-

venting the location based service provider (the adversary) from

inferring a mobile user’s location in the online setting. Spatial

k-anonymity (SKA) [22] generalizes the specific position of the

querying user to a region that encloses at least k users. The result-

ing anonymity set bounds the adversary’s probability of identify-

ing the query user to at most 1/k . However, this syntactic notion
of privacy can be easily circumvented when the data are sparse,
i.e., the distribution of the number of location visits of an average

user over the universe of POIs is long-tailed. Moreover, check-ins

in sparse regions are especially vulnerable to an adversary with

background knowledge, significantly increasing the probability

that de-anonymization succeeds [45]. Another source of leakage

is when the querying user moves, disconnecting himself from

the anonymity set. DP can be used in the context of publishing

statistics over datasets of locations or trajectories collected from

mobile users. The Local Differential Privacy paradigm is well

suited for this purpose, and its application to location data is

explored in [46]. The Randomized Response mechanism is used

to report, in addition to users actual locations, a large number of

erroneous locations. Recommendation models that utilize these

statistics can at best leverage spatial proximity queries [48] or

apply to coarse spatial decompositions [46], and are incapable of

cross-user learning such as in the case of the skip-gram model.

Lastly, adapting the powerful guarantees of DP to protecting

exact location coordinates, Geo-indistinguishability (GeoInd) [3]

relaxes the DP definition to the euclidean space. It is the pri-

vacy framework of choice for obfuscating user check-ins in the

absence of a trusted data curator.

Note that, SKA and GeoInd rely on obfuscating individual

location records that make up the larger dataset, making them

suitable only for applications that utilize spatial proximity queries

(e.g., a user that sends noisy coordinates to obtain points of in-

terest in her vicinity). Utilizing these methods to publish data for

training ML models is not viable, since adding noise to the coor-

dinates wipes out any contextual information on the POI visited

(beginning with the POI identifier). Moreover, since the same

user may have numerous check-in records in a longitudinal loca-

tion dataset, data publishing with the common techniques suffers

from serious privacy leakages. User-level correlations (e.g., multi-

ple checkins of a user that are closely related) severely increase

the possibility of de-anonymization in the case of SKA. Likewise,

in the case of GeoInd, the cumulative privacy loss variable cal-

culated via a standard composition theorem exceeds reasonable

privacy levels.

7 CONCLUSIONS
We proposed a new approach for differentially-private next-

location prediction using the skip-gram model. To the best of

our knowledge, ours is the first technique that deploys DP-SGD

for skip-grams. We made use of negative sampling to reduce the

norms of gradient updates when dealing with high-dimensional

internal neural network layers, and provided a data grouping

technique that can improve the signal-to-noise ratio and allows

for effective private learning. Our extensive experiments show

that the proposed technique outperforms the state-of-the-art, and

they also provide insights into how to tune system parameters.

Although our results focus on location data, we believe that

our findings can be extended to other types of sparse data. In

future work, we plan to test the viability of our approach for

other learning tasks. Furthermore, we plan to investigate flexible

privacy budget allocation strategies across different stages of the

learning process, such that accuracy is further improved. Finally,

we will study more sophisticated data grouping approaches that

make informed decisions on which users to place together in the

same bucket. Since such decisions are data dependent, a careful

trade-off must be considered between the budget consumed per-

forming the grouping and the remaining budget used for learning,

such that prediction accuracy is maximized.
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ABSTRACT

We study the problem of explaining differences between two

snapshots of the same database table including record insertions,

deletions and in particular record updates. Unlike existing al-

ternatives, our solution induces transformation functions and

does not require knowledge of the correct alignment between

the record sets. This allows profiling snapshots of tables with

unspecified or modified primary keys. In such a problem setting,

there are always multiple explanations for the differences. Our

goal is to find the simplest explanation. We propose to measure

the complexity of explanations on the basis of minimum descrip-

tion length in order to formulate the task as an optimization

problem. We show that the problem is NP-hard and propose a

heuristic search algorithm to solve practical problem instances.

We implement a prototype called Affidavit to assess the explana-

tory qualities of our approach in experiments based on different

real-world data sets. We show that it can scale to both a large

number of records and attributes and is able to reliably provide

correct explanations under practical levels of modifications.

1 INTRODUCTION

When the content of a database table is frequently changing, it

is difficult to find and understand the differences manually. For

this reason, a large number of tools has been developed with

the goal of supporting database administrators in situations like

these [1, 7–9, 24]. Most of them cannot only identify deleted and

inserted records but also highlight changes of individual attribute

values of records that exist in both snapshots. However, the exist-

ing solutions share a big limitation. They require knowledge of

the correct record alignment, usually derived from primary key

attributes. In certain use cases though, immutability of primary

keys is not a valid assumption. Our research is motivated by a

use case of an industry project that aims to understand database

updates caused by proprietary software updates. We found exist-

ing solutions not well suited because keys of the same records

sometimes get reassigned during the update.

Figure 1 serves as a running example for such a problem in-

stance. It shows two table snapshots S1 and T1 whose uncolored

records have been deleted and inserted respectively. Equally col-

ored records resemble a correctly aligned pair of records in which

the record from T1 was derived from the record in S1 with the

transformations specified below the table.

Snapshots S1 and T1 could belong to a company’s ERP system

whose database was transformed as part of an update to a newer

software revision. While the attribute value changes were likely

done to meet a new data format specification, the deletions and

insertions constitute changes of the table content or noise from

continued use of both databases between transformation and

© 2020 Copyright held by the owner/author(s). Published in Proceedings of the

23rd International Conference on Extending Database Technology (EDBT), March

30-April 2, 2020, ISBN 978-3-89318-083-7 on OpenProceedings.org.
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snapshotting. The company might be interested in an explana-

tion for the changes because the conversion script is unavailable,

proprietary or legacy code that is difficult to understand. A direct

benefit of reverse-engineering the transformation is that, addi-

tional full system conversions can be avoided if more data needs

to be transformed later on, reducing both costs and downtime.

Other application domains include data integration, e.g. dupli-

cate detection when integrating multiple sources with redundant

records in the target schema, as well as analysis of changes of

third-party data sources without access to the transaction log.

What makes the running example interesting, are the changes

to the composite primary key {ID1, ID2, Date} that make it neces-

sary to identify other suitable attributes for record linking. ID2

looks very promising because it is part of the primary key and

has perfect discriminability and coverage [3]: The provenance

of every single target record is reduced to exactly one source

record. However, the correct alignment shows that these charac-

teristics can be highly misleading. ID2 in T1 was most likely filled

using a skolem function [2] as part of an auto-increment policy.

Linking with Date is another promising option, yet it would fail

to explain the provenance of the three records T13, T14, T15 in

which ‘99991231’ in Date was replaced by ‘20180701’. On the other

hand, once the correct transformation function for Val has been
learned, it would be very helpful for aligning the records without

missing out on these three pairs. Learning this function without

the alignment is difficult though.

Intuitively, we can expect at least some attributes to be un-

changed in practice and use them to partially resolve the align-

ment problem. For example, Type and Org suggest an alignment

of records S11 and T13. The division function of Val implied by

the input-output example ‘65’ 7→ ‘0.065’ generalizes to other

alignment clusters, too, often resolving them.

Extending snapshot comparison with record linking and func-

tion synthesis creates a challenging duality. Scalable unsuper-

vised record linking methods need domain knowledge on how

to use the attributes to cluster records into blocks that are small

enough for detailed similarity comparisons. In the case of at-

tributes whose values have been systematically changed, algo-

rithms that induce string transformations from examples are

needed to learn how to use the attribute for blocking. However,

the records need to be aligned already to produce the required

input-output examples. Hence, these two sub-problems affect

each other and cannot be solved independently.

The core of our contribution is an unsupervised search algo-

rithm that iteratively learns which attributes have likely been

changed and induces the corresponding value transformation

functions. The resulting solution can deal with transformed or

unspecified primary keys and produces more than a report of

the differences. It yields an explanation that can be used to trans-

form additional, unseen records of the source table because it

generalizes the value changes instead of only listing them.
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ID1 ID2 Date Type Val Unit Org

S01 0000 20130416 A 80000 USD IBM

S02 0001 20120128 A 180000 USD IBM

S03 0002 20130315 A 220000 USD IBM

S04 0003 20120128 B 3780000 USD IBM

S05 0004 20120731 B 425000 USD IBM

S06 0005 20120731 C 21000 USD IBM

S07 0006 20140503 C 422400 USD IBM

S08 0007 20140503 C 6540 USD SAP

S09 0008 20131021 C 9800 USD SAP

S10 0009 20121125 C 0 USD SAP

S11 0010 99991231 D 65 USD SAP

S12 0011 99991231 D 180000 USD BASF

S13 0012 99991231 D 220000 USD BASF

S14 0013 20150203 D 21000 USD BASF

S15 0014 20150213 D 65 USD BASF

S16 0015 20160807 E 80000 USD BASF

S17 0016 20161231 E 80000 USD BASF

Source table S1

ID1 ID2 Date Type Val Unit Org

T01 0000 99991231 A 80 k $ IBM

T02 0001 20120128 A 180 k $ IBM

T03 0002 20120731 C 21 k $ IBM

T04 0003 20120731 B 425 k $ IBM

T05 0004 20121125 B 0.022 k $ DAB

T06 0005 20130315 A 220 k $ IBM

T07 0006 20130416 A 80 k $ IBM

T08 0007 20131021 C 9.8 k $ SAP

T09 0008 20140503 C 422.4 k $ IBM

T10 0009 20140503 C 6.54 k $ SAP

T11 0010 20150213 D 0.065 k $ BASF

T12 0011 20161231 E 80 k $ BASF

T13 0012 20180701 D 0.065 k $ SAP

T14 0013 20180701 D 180 k $ BASF

T15 0014 20180701 D 220 k $ BASF

T16 0015 99991231 F 0.45 k $ SAP

Target table T1

F E1 =

©«

f E1
ID1

:

{S01 7→ T 07, S02 7→ T 02, S03 7→ T 06, S05 7→ T 04, S06 7→ T 03, S07 7→ T 09, S08 7→ T 10,
S09 7→ T 08, S11 7→ T 13, S12 7→ T 14, S13 7→ T 15, S15 7→ T 11 S17 7→ T 12},

f E1ID2
:

{0000 7→ 0006, 0001 7→ 0001, 0002 7→ 0005, 0004 7→ 0003, 0005 7→ 0002, 0006 7→ 0008,

0007 7→ 0009, 0008 7→ 0007, 0010 7→ 0012, 0011 7→ 0013, 0012 7→ 0014, 0014 7→ 0010,

0016 7→ 0011}, f E1
Date

: ‘9999123’x 7→ ‘2018070’x, otherwise x 7→ x,

f E1
Type

: x 7→ x, f E1
Val

: x 7→ x / 1000, f E1
Unit

: x 7→ ’k $’, f E1
Org

: x 7→ x

ª®®®®®®®®¬
Figure 1: Problem Instance I1 = (S1,T1,A1, F1) that shows the content of two snapshots of the same table. Primary key

attributes are bolded. The attribute functions specified in F E1 are part of a possible explanation E1 for the changes that

uses the colored records in S1 to create the records of the same color in T1. Note that the alignment of the colored records

is also given by f E1ID1
. Uncolored records are records which E1 explains as deleted and inserted respectively.

2 RELATEDWORK

The problem presented in this work extends the classic task of re-

porting differences of table snapshots in two dimensions: record

linking and function synthesis. Handling both efficiently at once

is not as trivial as combining the best solutions of both fields. It

is not even straight-forward how to apply the respective state-of-

the-art techniques at all in this context due to their requirements.

Our contribution is an exploration of the intersection of the two

problems. It is not our goal to improve the state-of-the-art in

either of these fields. Instead, we aim to solve them in the context

of a comparison tool that requires minimal user effort to make it

practical to profile database snapshots with hundreds of tables.

Table Comparison Tools In the industry, there is a high de-

mand for database analysis software which resulted in a large

number of both free and commercial solutions for the comparison

of relational database tables. Exploring this market, we found,

among others, options such as ApexSQL Data Diff [1], Repli-

cator [8], Redgate SQL Data Compare [24], Devart Data Com-

pare [9] or SQL Delta [7]. However, to the best of our knowledge,

they can only be used on tables for which a primary key is spec-

ified and none of the available products is able to cope with

changes of the primary key attributes as it is common standard

to use them to link the records for comparison. If they do include

functionality to link records in a different way, it requires man-

ual effort by the user, for example by explicitly defining linkage

rules. Furthermore, while most of the products are able to export

executable SQL scripts that implement the transformation of the

data, they do not generalize well to unknown records because

the value changes are explicitly stated per record and there is

no learning of systematic transformation functions on the level

of attributes. As a consequence, the generated reports lack an

explanation of the changes in case a systematic pattern exists.

Record Linking Record linking has been frequently studied

in academic research and is also known as record, entity or in-

stance matching, identity resolution or deduplication [5]. There

are several solutions available that implement both supervised

and unsupervised algorithms for linking structured data, for ex-

ample Magellan [17] inlcuding DeepMatcher [20], JedAI [21],

dedupe [4], SILK [16], or WInte.R [18].

In a supervised setting, a set of annotated examples is given.

Each example corresponds to a record described in two different

representations that usually share some attributes but not nec-

essarily the whole schema. While powerful, we do not consider

techniques centered around supervision as users typically use

comparison tools as a first attempt to understand changes in large

amounts of data without investing manual annotation effort.
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JedAI is a suite of unsupervised algorithms that do not re-

quire an annotated training dataset to link records. It contains

methods for data cleaning, blocking and matching that can be

configured by a user to guide the matching process. JedAI of-

fers a rather generic approach where it is not required to define

attribute-specific similarity functions. However, the lack of an-

notated examples means, the user needs to choose a suitable

configuration of the different algorithms manually. This depends

on the individual data and requires domain knowledge. Our solu-

tion is unsupervised without user guidance by using a universally

applicable cost function to search for good linking criteria.

A major difference to both supervised and unsupervised ap-

proaches, is that we aim to learn transformation functions that

transform records from one representation to the other. At the

same time, this yields a strong criterion for the task of separating

deleted or inserted records from transformed data. Most record

linking algorithms however, link records purely based on a fuzzy

notion of similarity. They are designed to support use cases in

which no transformation function might exist, e.g. linking data

from different sources.

Induction of Transformation Functions Learning string ma-

nipulations from input-output examples is a research field that

has real-world applications in widespread tasks such as data

preparation and spreadsheet manipulation. This is exemplified

by several works of Gulwani et al. [12–14, 23] that laid the founda-

tions for different add-ins of Microsoft Excel and Azure, marketed

under the names QuickCode and FlashFill. FlashMeta [23] on the

other hand, is a framework into which the authors were able to

cast several different instances of the problem by separating the

induction algorithm from the domain-specific language of the

transformations.

The language of transformation functions that can be induced

by these algorithms spans a subset of regular expressions that

includes loops and conditionals. These kinds of transformations

are more expressive but have many more parameters than the

function families we consider in this work. As it is usually impos-

sible to learn all function parameters from a single input-output

example, a set of examples is used to unambiguously induce a

specific function. Typically, a user is supposed to give a handful

of examples.

Unfortunately, the authors in [26] found that current meth-

ods do not scale well to a large number of examples which led

them to develop an iterative algorithm that re-uses intermedi-

ate search results from previous examples. The third-party scala

re-implementation of FlashFill [19] that we were able to try was

indeed too slow to be used on large tables as its induction time

was in the range of seconds for a single example. On the other

hand, there is no mention in [26] of how it deals with mislabeled

or noisy examples, leading us to belief that it is not well suited for

such scenarios. While in our setting one can reasonably expect

to be able to provide a set of input-output examples that includes

some correct ones, the examples can be extremely noisy due to

record deletions and insertions as well as the unknown align-

ment of records. This makes it difficult to use state-of-the-art

techniques that support complex transformations if the goal is

to scale to large tables.

An alternative to induction for learning transformation func-

tions, is the retrieval of a fitting transformation from a corpus.

TDE [15] follows such an approach with 50K functions crawled

from Github and Stackoverflow and recently showed substan-

tially better performance than induction-based systems.

3 PROBLEM STATEMENT

Given two table snapshots with unaligned records, our goal is to

explain the differences with a set of operations that transform

the source snapshot to the target snapshot. Allowed operations

are record insertions, deletions and transformation functions on

an attribute level, for example to express a primary key mapping.

Definition 3.1. (Problem Instance) A problem instance I =

(S,T ,A, F ) is a set of source (S) and target (T ) records given

as value tuples under the same schemaA which is a tuple of d at-

tributes. F ⊃ {id} contains candidate transformation functions.

We will describe F implicitly with meta functions (see Table 1)

used to solve a problem instance, such as prefixing or integer ad-

dition. F contains all their instantiations (i.e. parameter choices)

that transform at least one source value to a target value of the

same attribute, e.g. x 7→ x + 5. We do not define a problem in-

stance directly by meta functions because the space of possible

explanations depends on the concrete instantiations (see Def. 4.1).

The definition of all other symbols is to be understood in

relation to one specific, fixed problem instance. It should be clear

from the context which problem instance they refer to.

Definition 3.2. (Explanation) An explanation is a tuple E =

(SE−,T E+, F E ) of source records labeled as deleted (SE− ∈ S),

target records labeled as inserted (T E+ ∈ T ) and a tuple F E =

(f Ea1 , . . . , f
E
ad ) of attribute functions from F .

Definition 3.3. (Core) SE := S \ SE− is called the core of an

explanation E.

The core contains all source records which are not labeled as

deleted. It is used to produce the target records which are not

labeled as inserted.

Definition 3.4. (Core Image) The result T E of applying the

attribute functions of F E to the core SE is called core image:

T E := F E (SE ) := Πf Ea
1
, ..., f Ead

(SE ), and so for s ∈ SE :

F E (s) =
(
f Ea1 (Πa1 (s)), ..., f

E
ad (Πad (s))

)
.

We are only interested in explanations that state the origin of

every single target record, either as the result of transforming a

source record or as an insertion. Moreover, we demand that each

target record provenance is unambiguous by enforcing F E to be

a bijection between SE and T E .

Definition 3.5. (Validity) An explanation E is called valid if

T E+ = T \ T E and |SE | = |T E |. The set of valid explanations

for a problem instance I is denoted by EI .

From now on, when we talk about explanations, we implicitly

mean valid explanations.

Proposition 3.6. Given a problem instance I and attribute

functions F E , a valid explanation E can be constructed from F E

by appropriately choosing SE− and T E+.

Proof. Let SE = {s | s ∈ S and F E (s) ∈ T }. If multiple

core records are transformed into the same target record, remove

all but one such record from SE . This yields T E = F E (SE )

(Definition 3.4) with |SE | = |T E |. Finally, construct SE− =

S \ SE (Definition 3.3) and T E+ = T \ T E (Definition 3.5). �

We use Figure 1 to elaborate on these definitions. It visualizes

some problem instance I1 with S1, T1, A1 as depicted by the

two tables. F1 could be defined implicitly by the following meta
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functions which have a varying number of parameters: identity,

constant value, division, prefix replacement and value mappings

(see Table 1).

The record coloring visualizes a possible explanation E1. The

colored target records are producible from the source records of

the same color using the specified attribute functions. E1 has the

following formal components:

SE1− =
{
s ∈ S1 | ΠID1(s) ∈ {S10, S04, S14, S16}

}
T E1+ =

{
t ∈ T1 | ΠID1(t) ∈ {T01,T05,T16}

}
F E1 = as shown below the tables in Figure 1

For instance, applying its attribute functions to the first source

record (S01) produces the seventh target record (T07):

F E1 ((S01, 0000, 20130416,A, 80000,USD, IBM))

=
(
f E1
ID1
(S01), f E1

ID2
(0000), f E1

Date
(20130416), f E1

Type
(A),

f E1
Val
(80000), f E1

Unit
(USD), f E1

Org
(IBM)

)
= (T07, 0006, 20130416,A, 80, k $, IBM)

E1 is a valid explanation because every target record is either

producible from exactly one core record or is included in T E1+.

3.1 Explanation Quality

The example above can be used to demonstrate that, even if sys-

tematic operations are used to change a table, it is in general

impossible to be sure about the correct explanation given two

snapshots. Besides E1, there are many more valid explanations

using the same meta functions. For instance, the twelfth target

record (T12) could also be created from the sixteenth (S16) source

record instead of the seventeenth (S17). A second valid expla-

nation E2 could therefore be constructed by adjusting the set

of core records and replacing two value mappings in f E1
ID1

and

f E1
ID2

. This would not affect the brevity of the explanation. How-

ever, we would also have to replace f E1
Date

with a function that

additionally maps 20160807 to 20161231. For this, we could not

instantiate a simple meta function anymore and we would need

a value mapping. As it would have more parameters than a prefix

replacement, explanation E2 is less intuitive than E1.

Our formal definition of an explanation’s quality is motivated

by [11] in which the cost of a schema mapping induced from data

instances is measured by the number of variables and constants

in its minimum repair. Schema mapping repairs are defined as

first-order formulas that state exceptions to the schema mapping

to make it fit the given data example. The corresponding concept

in our problem are records outside of the core whose origin can

not be explained with the induced functions. The central task

becomes the balancing of the size of the core with the complexity

of the functions which does not have a straight-forward solution.

We decide to loosely follow the concept of minimum description

length [25] and prefer explanations that maximally compress the

problem instance. Specifically, we evaluate the description length

of our input data S and T under an explanation and ignore the

contribution of inputs A and F as their description length is

independent of the choice of E.

Proposition 3.7. S and T are implicitly described by a valid

explanation E = (SE−,T E+, F E ) and its core SE .

Proof. S = (S \ SE−) ∪ SE−
(Def. 3.3)
= SE ∪ SE−,

T
(Def. 3.5)
= T E+ ∪ T E

(Def. 3.4)
= T E+ ∪ F E (SE ) �

Note that every source record is described exactly once (in the

two disjoint sets SE and SE−) and the choice of E only affects

the distribution of the source records to these two sets. However,

from the records in T , only those contained in T E+ need to be

described. Therefore, an explanation compresses inputs S and

T if its attribute functions F E can be described shorter than the

core image T E which are the records from S and T that can be

reconstructed from E and SE . For this reason, we optimize the

description lengths of T E+ and F E but not SE− or SE .

To measure the description length of the records in T E+ by

strictly following the definition of minimum description length,

we would need to determine the minimum number of bits needed

to represent T E+. We decide to loosen this requirement both for

semantic and practical reasons. In the context of this work, it is

sufficient to count the number of data values that appear in the

formal description of an explanation.

Definition 3.8. The description length of the record set T E+

is defined by L(T E+) := |A| · |T E+ |.

Concerning the description length of an explanation’s attribute

functions, it is difficult to find a general definition that captures

the brevity of a function’s signature.We decide to use the smallest

number of parameters that are needed to instantiate the function

from a meta function, which again is a count of data values. It

shall be denoted byψ (f ).

Definition 3.9. The description length of an explanation’s at-

tribute functions F E is defined by L(F E ) :=
∑
a∈A ψ (f

E
a ).

Definition 3.10. (Costs of Explanations) The costs c(E) of an

explanation are defined by c(E) := 2αL(T E+)+ 2(1− α)L(F E ).

Parameter α ∈ [0, 1] can be used to prioritize one of the compo-

nents. For example, in the standard setting α = 0.5, explanation

E1 of Figure 1 has costs c(E1) = L(T
E1+)+L(F E1 ) = 7|T E1+ |+∑

a∈A ψ (f
E
a ) = (7·3)+(13·2+13·2+2+0+1+1+0) = 21+56 = 77.

Our cost definition captures two desirable qualities of an ex-

planation. The first term rewards explanations that use a large

core to produce a big subset of the records in T . Therefore, expla-

nations that successfully align many records are preferred. The

second term promotes simple explanations, as complicated at-

tribute functions with many parameters, such as value mappings,

are penalized for their lengthy description.

We can now formally express the requirements of an optimal

solution for a problem instance.

Definition 3.11. (Optimal Solution)Given a problem instance

I, the set of optimal solutions is defined by E∗ := arдmin
E ∈ EI

c(E).

We call the problem of finding such an optimal solution Explain-

Table-Delta.

In practice, E∗ is unlikely to contain more than one optimal

explanation. In some problem instances though, multiple source

records can be used to produce the same target record and more

than one provenance leads to an explanation with optimal costs.

Note that EI , ∅ as E∅ = (S,T , {id}
d ) is a trivial explanation

for every problem instance I that can always be given. It lists all

source records as deleted and all target records as inserted. For

example, onI1 andα = 0.5, this explanation has costs |A1 | · |T1 | =

7 · 16 = 112.

3.2 Problem Complexity

Theorem 3.12. (NP-Hardness) The problem Explain-Table-

Delta is NP-hard for α > 0.
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ci # v1 v2 v3 v4

v 1
∨
v 2
∨
v 3

c1 1 1 0 -

v 1
∨
v 4

c2 0 - - 1

v 3 c3 - - 1 -

Source records S

# v1 v2 v3 v4 ci

c1 0 0 0 -

v 1
∨
v 2
∨
v 3c1 0 1 0 -

c1 0 1 1 -

c1 1 0 0 -

c1 1 1 0 -

c1 1 0 1 -

c1 1 1 1 -

c2 0 - - 0

v 1
∨
v 4

c2 0 - - 1

c2 1 - - 1

c3 - - 1 - v 3

Target records T

Figure 2: Reduction of an example 3-sat instance c = (v1∨
v2 ∨v3) ∧ (v1 ∨v4) ∧ v3 to a problem instance of Explain-

Table-Delta with 3 source and 11 target records.

Proof. Via polynomial-time reduction from 3-sat.

Figure 2 shows an example reduction. Let c =
n∧
i=1

ci be an instance

of 3-satwith clauses ci over variables from a setV = {v1, ...,vd }.
Then, we can create a problem instance I = (S,T ,A, F ) for

which the optimal solution specifies a model of c if c is satisfiable.
For this, we set A := (#,v1, ...,vd ). We let F contain only two

possible attribute functions, id (x 7→ x) and boolean negation

(x 7→ x). The latter shall swap the truth values {‘0’, ‘1’} and

otherwise behave like id .
We construct S to have n records. For each clause ci , S con-

tains a record si such that Π#(si ) = ‘c’ ◦ i and

Πvj (si ) =


‘1’, vj positive in ci
‘0’, vj negative in ci
‘-’, vj not in ci .

T is constructed to contain a maximum of 7n records. For a clause
ci with k literals, the 2

k − 1 different models over the variables

in ci are used to define one target record each. Letmk be such a

model for clause ci . Then, the corresponding target record ti ,k
has Π#(ti ,k ) = ‘c’ ◦ i . and

Πvj (ti ,k ) =


‘1’, vj positive in ci and vj true inmk or

vj negative in ci and vj false inmk
‘0’, vj positive in ci and vj false inmk or

vj negative in ci and vj true inmk
‘-’, vj not in ci .

The description length L(F E ) is 0 for every explanation as

the two possible functions id and boolean negation have no pa-

rameters that need to be instantiated. Consequently, for α > 0,

the costs of explanations for I are solely determined by |T E+ |.

Note that any explanation E can only produce exactly one

target record from the source record of clause ci because of the

functionality of F E . Because of attribute #, this target record

needs to belong to a model of ci , independent of the choice of f
E
#
.

For the same reason, a target record describing a model of clause

ci can only be produced by the source record corresponding to

clause ci . This means that for a fixed clause ci , it is impossible to

produce more than one target record that describes a model of ci .
Hence, each clause ci for which E produces a target record from

the corresponding source record reduces |T E+ | by 1. An optimal

solution is one that fulfills this criterion on the most clauses.

Lastly, note that F E describes an interpretation over the vari-

ables in V . A variable vi ∈ V in this interpretation is true if

f Evi = id and f alse if f Evi = boolean negation. Applying F E to

the source record of clause ci produces a record that contains the
truth values of all variables occuring in ci under this interpreta-
tion. If the resulting record is a target record, the interpretation

satisfies the clause as target records of ci describe models. We

can conclude that if the 3-sat instance c is satisfiable, an optimal

solution E∗
0
for the corresponding Explain-Table-Delta prob-

lem is able to produce a target record for every single clause by

letting F E
∗
0 describe a model of c . Therefore, given the optimal

solution E∗
0
, |SE

∗
0
− | = 0 can be used to check if c is satisfiable

and if it is, a model can be extracted from F E
∗
0 . �

4 AFFIDAVIT

In this section, we describe the components of the search algo-

rithm presented as Algorithm 1 to solve practical instances of

Explain-Table-Delta. We implement it in a prototype that is

called Affidavit
1
(Algorithm For Function-Inducing Delta

Analysis Via Integration of Tables). For a given problem

instance, it produces an explanation that serves as an affidavit to

declare that, to the best of its knowledge, the specified modifica-

tions were used to generate the target from the source table.

Thanks to Proposition 3.6, the task of finding explanations

can be reduced to a search for attribute functions. Consequently,

Explain-Table-Delta can be understood as a constraint satis-

faction problem. If the set of possible attribute functions is finite,

a brute-force solution could enumerate and assess all possible

attribute function tuples by treating each attribute as a variable

with domain F . Clearly, this approach does not scale and works

poorly in practice because meta functions like value mappings

cause F to grow exponentially with the size of the data.

We propose a best-first search instead, which starts from a

set of empty or partial function assignments and efficiently navi-

gates towards a full assignment with good quality. A transition

in the search space corresponds to deciding on the function of

an attribute. Each of the assignments of a search state acts as a

constraint on the possible alignment of source and target records.

The more attribute functions have been assigned, the more it

becomes clear which records belong together under these assump-

tions, making it easier to decide on functions for the remaining

attributes. A bad function choice eventually leads to high costs

because it results in a small core or complicated functions for the

remaining attributes. The search is guided by estimations of the

final explanation costs of partial function assignments.

4.1 Preliminaries

Definition 4.1. (Search Space) Given I with |A| = d , the

search space is defined byHI :=
{
(h1, ...,hd ) | hi ∈ {∗,�} ∪F

}
.

This means, a search stateH ∈ HI is a d-tuple whose compo-

nent hi assigns either ∗, � or some function f from F to attribute

ai . In the case of ∗, the function of ai is still undecided. A �means

that Affidavit has identified the attribute as one for which a

value mapping is best suited. It will be resolved at the very end

of the search when the alignment is maximally determined.

Definition 4.2. (End State)H is called end state if the function

of each attribute is determined, i.e. if {ai ∈ A | hi ∈ {∗,�}} = ∅.

1
https://github.com/Finkman7/affidavit
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Algorithm 1 Affidavit

function Affidavit(I)

Q ← Init-Start-States(I) ◃ Init Priority Queue Q

while Q , ∅ do
H ← Poll(Q) ◃ Remove Best State

if Is-End-State(H ) then break

else

Q ← Q ∪ Extensions(H )

return Convert-To-Explanation(H ) ◃ Proposition 3.6

function Extensions(H )

A∗ ← Order-By-Indeterminacy({ai ∈ A| hi = ∗})
Hext ← ∅, A� ← ∅ ◃ Extensions and �-attributes

A ′ ← Poll(A∗, β) ◃ Poll β attributes

R ← Sample-Random-Alignment(ΦH )
whileHext = ∅ and A ′ , ∅ do

for a in A ′ do

Ha ← ∅ ◃ Promising attribute extensions

д← Induce-Greedy-Map(R, a)
Hд ← Extend(H , a, д)

for f in Induce-Functions(ΦH , a) do
Hf ← Extend(H , a, f )
if c(Hf ) < c(Hд) then

Ha ←Ha ∪ {Hf }

if Ha , ∅ then
Hext ←Hext ∪Ha

else ◃ a map function is best suited for a
A� ← A� ∪ {a}

A ′ ← Poll(A∗) ◃ Poll next attribute

if Hext = ∅ then

for a in A� do ◃ A� = A∗

H ← Extend(H ,a,�)

Hext ← Finalize(H ) ◃ Resolve �s
returnHext

Given a search stateH , its function assignments can be used

as criteria for standard blocking [10] to group source and target

records together.

Definition 4.3. (Blocking Index)The blocking index of a source

or target record r under a search stateH is determined by the

projection ξH to those attributes whose functions are already

determined. In the case of source records, the attribute functions

are applied during projection:

ξH := r 7→

{
Π{hi (ai ) | hi<{∗,�}} (r ) if r ∈ S

Π{ai | hi<{∗,�}} (r ) if r ∈ T .

ΞH denotes the set of all blocking indices:

ΞH := {ξH(s) | s ∈ S} ∪ {ξH(t) | t ∈ T }.

To address source records, target records and the block belonging

to an index κ, we define:

ϕH
S

:= κ 7→ {s ∈ S | ξH(s) = κ}

ϕH
T

:= κ 7→ {t ∈ T | ξH(t) = κ}

ϕH := κ 7→
(
ϕH
S
(κ),ϕH

T
(κ)

)
.

Definition 4.4. (Blocking Result) The blocking result under

search stateH is the set of all blocks ΦH := {ϕH(κ) | κ ∈ ΞH}.

Figure 3 visualizes parts of an example blocking result.

ΦH1

...

...

κi = (‘C′, ‘k $
′, ‘SAP′)

(S08, 0007, 20140503,C, 6540,USD, SAP)

(S09, 0008, 20131021,C, 9800,USD, SAP)

(S10, 0009, 20121125,C, 0,USD, SAP)

(T08, 0007, 20131021,C, 9.8,k $, SAP)

(T10, 0009, 20140503,C, 6.54,k $, SAP)

ϕH1

S
ϕH1

T
ϕH1

Figure 3: A block with index κi within blocking result ΦH1

of search stateH1 := (∗, ∗, ∗, id, ∗, x → ‘k $’, id) on I1.

4.2 Initialization Strategy

A natural choice for the set of start states H0
of the search is

H ∅ = {(∗, ..., ∗)} in which all assignments are empty. While

it begins the search without any wrong assumptions and can

in theory lead to any explanation, it comes with a drawback.

Without any assumption on how to link the records, producing

input-output examples to learn the first function is very difficult.

A second natural way of beginning the search comes to mind

which dampens this issue. Given the assumption that there is at

least one attribute which has not been changed, the search can

be started from the set

H id
:= {(id, ..., ∗), (∗, id, ∗, ..., ∗), ..., (∗, ..., id)}.

We prefer it toH ∅ as this assumption should be valid for nearly

all practical use cases.

Furthermore, we find overlap scores another reasonable choice

to determine a start state. It can drastically improve the runtime

by beginning the search from a state in which most of the at-

tributes have already been assigned. The idea is to independently

assume for each attribute that it has not been changed and use it

to link source and target records that have the same value on this

attribute. Giving a score of 1 per attribute on which two records

are identical, the score of each pair denotes their similarity in

terms of an attribute overlap. Assuming that k unchanged at-

tributes exist, the score of correctly aligned record pairs will be at

least k and it is very likely that among the pairs with the highest

overlap score, their large overlap will stem mainly from these

attributes. We take advantage of this by using the target record

with the highest overlap for each source record to build the most

likely a-priory alignment over all source records. Sorting the at-

tributes by how often their values overlap on these pairs, we use

the k ′ most frequently overlapping ones to build a set Aid
. Our

choice of k ′ is determined by the most frequent overlap score

among these pairs. This leads to the set of start states

Hs
:= {(h1, . . . , hd )} with hi =

{
id if ai ∈ A

id

∗ otherwise.

To compute record overlaps without a quadratic comparison of

all records, we calculate it only for record pairs that share at

least one value. Very frequent attribute values that are shared by

nearly every record generate an enormous amount of alignment

pairs. Therefore, we ignore value overlaps in which the number

of resulting pairs would be above a configurable threshold. This

limits the a-priori matching to pairs that share at least one value

that is not too frequent.
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Figure 4: Search Tree on I1 with α = 0.5, β = 2, ϱ = 3.

4.3 Extending Search States

Affidavit discovers potential attribute functions from the block-

ing result ΦH of a search state H as described in Section 4.4.

The resulting functions are used to extend H by assigning an

induced function to the corresponding attribute.

To extend a stateH , we first decide on a set of attributes A ′

for which functions are induced. The decision is based on an

estimation of the indeterminacy of the undecided attributes ofH .

We estimate it for an attribute by computing itsmaximumnumber

of distinct source values over all blocks that have both target

and source records. This corresponds to an upper bound for the

number of source values that need to be considered as the origin

of a target value.A ′ consists of the β most determined attributes

from this estimation. In the next step, we create extensions ofH

with the β most promising function candidates of each attribute

inA ′. The branching factor β is configurable to limit the number

of extensions that are produced.

For each a ∈ A ′, we compare its resulting extensions toHд
which is an extension ofH on a with a map function constructed

from a random alignment of all records that respects ΦH . We

build it by mapping each source value to the target value with

the highest co-occurrence in the random record alignment. If

Hд has the lowest costs, we store a in the set A� and reject the

attribute’s extensions, otherwise we keep all extensions with

costs lower than those ofHд . If the function of a in the optimal

solution is a value mapping, there typically is no other function

type that can be instantiated to a good function candidate for

that attribute. This is why, once their indeterminacy is low, this

check allows the detection of attributes for which map functions

are likely needed.

If we did not keep any extension from the β most determined

attributes, we try the next most determined one until we have

found at least one extension or we have come to the conclusion

that all undecided attributes should receive a map function. In

the latter case, we mark all attributes fromA� with � and finalize

the state by replacing one � after another. The replacement is a

greedy value mapping from the random alignment, just likeHд .

We re-sample a new random alignment after each � is replaced

in order to have the next map respect the previous assignment.

Figure 4 demonstrates how Affidavit finds the optimal so-

lution on I1 starting from H0 = H id
. The number in square

brackets indicates the order in which the states are expanded.A ′

is implicitly given by the origin of the arrows. Greyed out arrows

lead to extensions that are not added to the queue because no

induced function was better than a greedy map (�), the queue was

full with better states (�, see Section 4.6) or because of duplicate

detection.

4.4 Inducing Functions

4.4.1 Supported Meta Functions. Our framework supports

any meta function whose parameters are learnable from one

input-output example. An example for such a meta function is

the conversion of a date attribute. An input-output example such

as ‘Sep 31 2019’ 7→ ‘20190931’ contains enough information to

learn to split the source value by white spaces to extract month,

day and year (in that order) and express the date in ‘yyyymmdd’

format. Note that there can still be input-output examples of that

function such as ‘Oct 10 2019’ 7→ ‘20191010’ for which the func-

tion instantiation is not unambiguous. It would not be clear from

this example if the target format is ‘yyyymmdd’ or ‘yyyyddmm’.

However, one could simply generate both candidate functions or

learn the function from a different input-output example. On the

other hand, any linear function of the form x 7→mx + c needs at
least two input-output examples to learn its parametersm and c .
After one example, the number of possible meta function instan-

tiations is still infinitely large. There is no single example that

would be enough to induce the function and it is impossible too,

to generate all possible candidate functions from one example.

To transform values of an attribute that was the target of a

function type that is not supported, Affidavit tries to learn the

full value mapping. This way it can still produce explanations

with a correct record alignment, even if a more concise function

can not be learned. As a mapping with more than one entry

needs an input-output example for every value it transforms,

value mappings are not learned during the search like other

functions. Instead, they are learned at the very end when the

record alignment is maximally defined by regular functions.

4.4.2 Inducing Function Candidates. To induce functions for

an attribute, Affidavit uses noisy input-output examples that

it samples from blocks that have both source and target records

inside them. It does this by randomly selecting up to k distinct

target records from these blocks and trying for each one to pro-

duce its attribute value from the value of any source record in

the same block. We do so by instantiating functions from the

meta functions. For example, if target record T08 from Figure 3

was sampled to learn functions for Val , the following functions
could be induced: x 7→ x − 6530.2 (from ‘6540’), x 7→ x

1000
(from

‘9800’), x 7→ x + 9.8 (from ‘0’), x 7→ ‘9.8’ (from any source value).

The set of induced functions over the sampled target records

is filtered to include only functions that have been generated

a statistically significant amount of time. The idea behind this,

is that the function of the optimal solution would be generated

each time we sample a target record from the core image of the

optimal solution. However, it is only generated from examples in

which the effect of the optimal function is actually visible. How

often it gets generated, depends on the fraction θ of records with

this property in relation to the number of target records. For

example, the optimal function might be the one that removes
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trailing zeroes if there are any but it would not be generated from

correct examples without trailing zeroes in the source value.

We regard the sampling of a target record as Bernoulli experi-

ment with success chance θ . Assuming |T | >> k , we treat each
experiment as independent, such that the number of records X
from which the best function would be generated is a random

variable that follows a Binomial distribution with success chance

θ and sample size k . We set k to the smallest integer for which

p(X ≥ 5) ≥ ρ. Both the estimated fraction θ and the confidence

level ρ are configurable parameters. Choosing a larger θ speeds

up the algorithm but risks that functions of the optimal solution

will not be sampled if θ underestimates the amount of noise in

the target records or the rarity of the function’s effect. A function

that was generated n times, is filtered if p(X = n) < ρ. If θ is

set lower than the actual fraction, the function of the optimal

solution will be found with a probability of a least ρ.

4.4.3 Ranking Function Candidates. In the next step, we de-

termine the best β candidate functions for each attribute. This

time, the fact that some functions are not induced from all value

pairs which they cover, prevents us from simply ranking the can-

didates by how often they were generated. While the function

from the optimal solution is very likely to be contained in the

candidate set after filtering, it is not necessarily the one that was

generated most often.

A complete evaluation would consist in traversing all blocks

and applying every function candidate to the block’s source

record values in order to compare the resulting histogram with

the block’s target values. As this can be very expensive, we use

sampling to estimate the fraction of records that each function

would align. This time, we sample k ′ distinct source records and
to penalize functions that map too many source values to the

same target value, we evaluate on the level of blocks that contain

them instead of the individual records. In each block of a sampled

source record, we apply all function candidates to every source

record value of the block to create a value histogram each in

which every resulting value has a frequency equal to the sum of

the frequencies of all source values from which it was created.

For example, x 7→ x
1000

on block κi from Figure 3 results in the

histogram {1 × ‘6.54’, 1 × ‘9.8’, 1 × ‘0’}, while x 7→ ‘9.8’ produces

{3 × ‘9.8’}. For each function candidate of an attribute, we com-

pute the overlap of the resulting histogram and the target value

histogram of the block ({1 × ‘9.8’, 1 × ‘6.54’} for κi ) by summing

up the minimum of the frequency of each value present in both

histograms. On block κi , x 7→
x

1000
would have an overlap of 2,

whereas x 7→ ‘9.8’ has an overlap of 1. We rank the candidate

functions in descending order by the size of their total overlap

minus their description length to determine the best β candidates.

We choose the smallest integer k ′ for which it holds that if we

use p = θ in Cochran’s formula [6] for determining sample sizes:

k ′ ≥
z2 · p · (1 − p)

e2
.

For this, we choose z = 1.96 and e = 0.05 which yields a confi-

dence of 95% that the overlap on the sampled blocks is within

±5% of the overlap over all blocks. If ΦH is already very fine-

grained with many blocks, this results in a huge speed-up over

an evaluation over all blocks. If ΦH is still very vague with few

blocks, we usually evaluate on many more source records than

we sample because we fully evaluate the blocks in which they

are contained. This makes the sampling actually less risky than

the guarantees of the formula imply.

4.5 Evaluating Search States

The cost function from Definition 3.10 is defined for explanations

which can only be constructed from end states. However, during

the search, it is necessary to assess the quality of partial search

states. In this section, we describe how we extend this definition

to partial search states (and end states) in a coherent way to

arrive at the cost function used by Affidavit.

The cost component L(F E ) that measures the description

length of an explanation’s attribute functions has an obvious

counterpart for search states:

cf (H) :=
∑

hi ,hi<{∗,�}

ψ (hi ).

The value of L(T E+) however, depends on |T E+ | which is not

yet determined by a partial search state H . A lower bound is

given by the record set for which it is already clear from the

partial function assignments ofH that no source record will be

aligned with it in any end state to which this search state can lead.

Any record in a block without source records is such a record.

On the other hand, the blocks that do have source records

can still be used to improve this lower bound. Because a valid

explanation’s attribute function tuple is a bijection, the number

of those records can be estimated from the blocking result ofH

from the blocks which have more target than source records:

ct (H) :=
∑

κ ∈ΞH | |ϕH
T
(κ) | > |ϕH

S
(κ) |

|ϕH
T
(κ)| − |ϕH

S
(κ)|.

Moreover, there is an alternative way of computing |T E+ | that

can be useful to estimate costs during search.

Corollary 4.5. Let ∆ = |S| − |T |. The validity properties can

be leveraged to compute |T E+ | in terms of |SE− | and ∆.

Proof. |T E+ |
(Def . 3.5)
= |T | − |T E | = (|T | + ∆) − ∆ − |T E |

= |S| − ∆ − |T E |
(Def . 3.5)
= |S| − ∆ − |SE |

= (|S| − |SE |) − ∆
(Def . 3.3)
= |SE− | − ∆ �

Just like |T E+ |, |SE− | cannot be completely calculated for a

partial search state H . However, as before we can compute a

lower bound by using the blocking result ofH :

cs (H) :=
∑

κ ∈ΞH | |ϕH
S
(κ) | > |ϕH

T
(κ) |

|ϕH
S
(κ)| − |ϕH

T
(κ)|

Definition 4.6. Costs of Search States The cost of a search

stateH is defined by

c(H) := 2α · cf (H) + 2(α − 1) ·max(ct (H), cs (H) − ∆).

It depends on both the problem instance and the search state

which lower bound underestimates less.

4.6 Queue

The best-first search tends to spend most of its time visiting

search states with few assignments which is most pronounced

when starting the search fromH∅ orHid . This stems from the

fact that costs monotonically increase when a function is added

to an undecided attribute. What makes this behavior problematic,

is the fact that there are exponentially many search states from

which one can reach an end state. For instance, there are 2
|A |

states in the search lattice on a path fromH∅ = (∗, . . . , ∗) to the

end state Hid = (id, . . . , id). Even with duplicate elimination,
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unlessHid aligns all records, a complete search would possibly

try exponentially many subsets of id assignments to check if

the remaining attributes can have other functions assigned that

result in a better explanation. This behavior cripples performance

as the number of attributes grows.

Fortunately, apart from (direct as well as indirect) parents

of the optimal solution, it is in practice very unlikely to find

many different search states that are at least as good as the

optimal solution and will therefore be extracted before it. The

likelihood of finding a search state with this property strongly

decreases with the number of assignments of a state. For in-

stance, setting ID1 to id in I1 is an assignment that makes the

state (∗, ∗, id, ∗, ∗, ∗, ∗) look promising at first and even still after

extending it to (∗, ∗, id, ∗, ∗, x 7→ ‘k $’, ∗). These states align a

lot of records with relatively cheap functions. This is why they

are extracted first in Figure 4. However, the costs of states that

result in an incorrect record alignment eventually increases fast

when assigning functions to the remaining attributes. In this

case, costly value mappings are neededÃű on attributes that

could be transformed with a simple operation under the correct

alignment. In addition, if the same source value is aligned with

multiple different target values (which is more likely under a

wrong alignment), the number of aligned records will drop even

when using value mappings. For an increasing number of assign-

ments, this makes it more and more unlikely to find states with

ID1 set to id that have lower costs than the optimal solution.

Therefore, we decide to use a modified priority queue that is

bounded to holdmax(1, ϱ − i + 1) search states at the same time

on the i-th level of the lattice, i.e. the level on which states have i
attributes assigned. If a level is full, it only accepts a new state if it

is not worse than all states on the same level. If an inserted state

is accepted, it drops the worst state on the same level to make

space. Polling the queue still returns the state with the lowest

costs independent of the level. In case of equal costs, it returns

states with a higher number of assignments first. Heuristically, it

is quite unlikely in practice to skip the optimal solution due to this

limitation. The most important decisions of the search happen

at the early levels. While the cost of search states with only one

or a few assignments might still be underestimated, a handful of

assignments is in practical problem instances usually enough to

identify the best foundation for inducing the remaining attribute

functions.

5 EVALUATION

To evaluate Affidavit, we have implemented the meta func-

tions described in Table 1 which include basic string and number

transformations. The experiments are meant to demonstrate the

core functionality and scalability of the framework. In practice,

one might encounter problem instances with functions not sup-

ported by our prototype. However, we decided to evaluate on

self-created problem instances based on these meta functions

because this gives us certainty about the correct transformations

and alignment as well as control over the degree of change and

noise. This way, we can judge the given explanations in-depth.

Furthermore, we can evaluate on the same table multiple times

with different transformations, giving a more trust-worthy result.

We describe our synthetic transformation of real-world datasets

in Section 5.1 and the evaluation protocol in Section 5.2. In Sec-

tion 5.3, we report about the quality of the produced explanations.

Finally, we evaluate in Section 5.4 how our algorithm scales with

the number of records and attributes of a problem instance.

Name Operation Parameters

Identity x 7→ x −

Uppercasing x 7→ Uppercase(x) −

Constant Value x 7→ c c

Addition (Numeric) x 7→ x + y y

Division (Numeric) x 7→ x/y y

Front Masking .{|m |} ◦ x 7→m ◦ x m

Front Char Trimming [c]∗ ◦ x 7→ x c

Prefixing x 7→ y ◦ x y

Prefix Replacement y ◦ x 7→ z ◦ x y, z

Value Mappings x 7→


y1 if x = x1

. . .

yn if x = xn

x1, . . . , xn,

y1, . . . ,yn

Table 1: Meta functions implemented in Affidavit. The

inverse variants of these functions are also supported, e.g.

suffixing in addition to prefixing. String concatenation is

denoted by ◦.

5.1 Datasets

We perform our experiments on the datasets
2
described in more

detail in [22] which have already been used to evaluate algorithms

for detecting functional dependencies. They cover a wide range

of topics (e.g., flight routes, chess game logs, web log data, etc.)

and feature different structural properties, both in terms of the

number of attributes (5 to 223) and records (100 to 250000).

For each dataset used in [22], we create ten problem instances

in three settings of varying difficulty. Each problem instance is

the result of choosing some records of the table as core, transform-

ing it with randomly sampled functions and using the remaining

records as noise for the source and target snapshots. A setting

consists of two parameters τ and η. The transformation percent-

age τ denotes the likelihood to sample a function different from

id for an attribute. This means, it can happen that every attribute

gets transformed. In this case, we reject the sampling and gen-

erate another one. To sample a function for an attribute that is

to be transformed, we randomly instantiate a function from the

meta functions described in Table 1. We make sure to generate

functions that fit the domain of the attribute, e.g. we do not use

uppercasing on numerical attributes. In the case of value map-

pings, we instantiate it as a random permutation of the source

values. These are potentially the hardest transformations to learn

due to the high number of parameters and can easily lead to a

wrong alignment when confused with id . The noise percentage η
refers to the fraction of source and target records that are outside

the core of the generated problem instance.

To create two table snaphots from a dataset, we first determine

the source and target noise by randomly selecting two record sub-

sets. We choose the size of the noise sets such that these records

make up a fraction η each of the resulting snapshots. The num-

ber of records in the resulting snapshots decreases to a fraction

1

η+1 of the dataset as the noise records are distributed over both

snapshots. The rest of the dataset records resembles the core of

our reference explanation. We create the core image by applying

the sampled transformations to the corresponding attributes of

these core records. We also apply the sampled transformations

2
https://hpi.de/naumann/projects/repeatability/data-profiling/fds.html
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to the target noise as its data format should be similar to the core

image records. Finally, we add the the source and target noise to

the core and core image, respectively.

In addition to the random attribute transformations, we aug-

ment each dataset with a new attribute that contains a set of

running integers to simulate a simple primary key. We use the

same integers in both snapshots in two different permutations.

The resulting attribute results in a wrong record alignment if it

is used for blocking and is supposed to challenge Affidavit’s

ability to deal with transformed primary key attributes. If the

dataset already has attributes in which the fraction of distinct

attribute values is larger than 0.7, we remove these attributes for

our experiments as it might make the alignment too easy when

that attribute is not transformed. In Table 2, |A| denotes the

resulting number of attributes after these modifications. Dataset

attributes that are completely empty prior to the transformations

are ignored as well and do not count towards this number.

5.2 Evaluation Protocol

On each problem instance, we evaluate Affidavit with two

different configurations on a unix system with 24 cores at 2.6

GHz and 200GB memory. The first configuration usesH0 = Hs

(start states) determined with a maximum block size of 100000

for the overlap matching, β = 1 (branching factor) and ϱ = 1

(queue width). The second configuration usesH0 = H id
, β = 2

and ϱ = 5. Both configurations were run with α = 0.5, θ = 0.1

(core size estimation) and ρ = 0.95 (confidence).

We have chosen two configurations of Affidavit that resem-

ble different approaches of tackling the problem. Using overlap

sampling to begin the search from a promising start state follows

the spirit of unsupervised record linking and assumes that simi-

larities in the data can be leveraged a-priori to align the records

with sufficient accuracy for the induction of transformation func-

tions. The intention of this approach is a reduction of runtime

compared to a more exhaustive search. As such, we chose to push

further into that direction by limiting both branching factor and

queue width to see how well one can induce the remaining func-

tions when starting from an a-priori alignment. The resulting

configuration corresponds to a greedy search that induces one

attribute after another without backtracking. We compare this

configuration with a search that begins with the set of start states

H id
in which each state corresponds to the assumption that one

particular attribute was not changed. We use parameters that

allow the search to traverse a larger part of the search lattice

as this setting is supposed to be more robust in exchange for

runtime.

Table 2 describes the macro average over the ten problem

instances per dataset per setting with four numbers comprised

of runtime t , relative core size ∆core , relative costs ∆costs and
accuracy acc . The latter three numbers are computed by compar-

ing the resulting explanation Er es to the reference explanation

Er ef that correctly describes the attribute functions and sepa-

ration of core and noise records that were used to create the

problem instance. For example, ∆core = 0.8 means that Er es
aligned 20% less records than Er ef and ∆costs = 0.99 says that

the cost c(Er es ) was 1% lower (better) than c(Er ef ). Accuracy is

calculated by applying the learned functions F Er es to each core

record r ∈ SEr ef and comparing it with the correct transforma-

tion F Er ef (r ). For computing accuracy, we ignore the artificial

primary key attribute that we added andmeasure it as the fraction

of cells in SEr ef that are correctly translated this way.

5.3 Result Quality

The results presented in Table 2 show thatH id
performs very

well in the setting (η = 0.3, τ = 0.3) as it learned to correctly

translate the core in every run, with minor deviations only in the

balance and nursery datasets. This is a hint that Affidavit can

be used with this setting out-of-the-box to produce high quality

explanations for problem instances with a reasonable amount of

noise and transformations. However, we see a definite decline in

accuracy on some datasets in the setting (η = 0.7, τ = 0.7). We at-

tribute it mainly to the high noise, as we can see on balance, chess

and nursery that Affidavit was able to produce explanations

cheaper than the reference, aligning a larger number of records

by including noise in the core. This shows that our search is

effective at minimizing costs but that our cost definition does not

reliably lead to the correct explanation when the majority of the

records are noise. Consequently, this effect is more pronounced in

tables with few attributes. Nevertheless, we see on some datasets

that Affidavit can still correctly learn transformations when

the majority of attributes has been changed. This holds especially

for tables with a large number of attributes which supports our

claim that at least a handful of unchanged attributes is needed to

correctly bootstrap the alignment in the beginning of the search

− but not necessarily more.

As expected, we find most of the runtimes ofHs
to be signif-

icantly lower. The performance in terms of accuracy is mostly

comparable to that ofH id
which shows that our use of overlap

sampling is a promising way to start the search. However, we can

see obvious gaps in performance on datasets such as chess, letter

or nursery. We manually investigated this and found out that

Hs
begins the search assuming that the artificial primary key

attribute was unchanged. As highlighted by ∆core = 0, this leads

to a trivial explanation because Affidavit was not able to find

functions for the remaining attributes to support anything but

an empty core. The reason for this behavior is the fact that these

tables contain only attributes with very few distinct values in re-

lation to the number of records. As such, the maximum block size

is exceeded when producing records pairs based on overlapping

attribute values. The exception is the maximally distinct attribute

of running integers which leads to a wrong a-priori alignment.

Increasing the maximum block size to the point where a correct

start state is found, we found the initial matching already took

longer than the total runtime of the more exhaustive configura-

tion. This shows that there are problem instances for which the

search fromH id
is preferable because it is independent of record

similarity and can correct wrong decisions by backtracking.

5.4 Scalability

Affidavitwas designed with the goal of scaling to large problem

instances. In the context of database tables, this means that the

runtime should increase at most linearly with both a growing

number of records and attributes.

5.4.1 Row Scalability. We begin by experimentally measur-

ing the scalabilty of Affidavit to tables with a large number of

records. For this, we run the H id
configuration on scaled ver-

sions of a (η = 0.3, τ = 0.3) problem instance of flight-500k which

comes from the same source as flight-1k but by default has 500000

records and 20 attributes. To scale the problem instance to x% of

the original size, we use x% of the core records as well as x% of

the source and target noise. We then create the corresponding

core image from the scaled core. The sampled transformations
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η = 0.3, τ = 0.3 η = 0.5, τ = 0.5 η = 0.7, τ = 0.7

Dataset |A| Records H0 t ∆core ∆costs acc t ∆core ∆costs acc t ∆core ∆costs acc

iris 6 150

Hs
0.12s 1.01 1 1 0.09s 0.99 1.01 0.99 0.10s 1.04 0.99 0.99

H id
0.69s 1.01 1 1 0.51s 1.02 0.99 1 0.38s 1.05 0.99 0.99

balance 6 625

Hs
0.23s 1.01 0.99 0.99 0.21s 0.96 1.02 0.92 0.19s 1.42 0.9 0.84

H id
0.82s 1.01 0.99 0.99 0.63s 0.93 1.03 0.9 0.79s 1.44 0.89 0.86

chess 8 28056

Hs
2.83s 0 2.11 0.43 2.16s 0.24 1.46 0.56 2.00s 0.45 1.16 0.6

H id
7.70s 1.03 0.96 1 6.37s 1.05 0.97 0.98 12.97s 1.24 0.93 0.86

abalone 9 4177

Hs
1.49s 0.98 1.02 1 1.01s 0.98 1.01 1 0.88s 0.82 1.04 0.89

H id
8.70s 1 1 1 3.44s 1 1 1 3.61s 0.97 1.01 1

nursery 10 12960

Hs
1.58s 0 2.27 0.51 1.36s 0.16 1.56 0.56 1.41s 0 1.32 0.48

H id
4.24s 1 1.01 0.98 5.26s 0.96 1.03 0.85 4.63s 1.55 0.83 0.87

bridges 10 108

Hs
0.05s 0.99 1.02 1 0.08s 0.96 1.04 0.99 0.08s 1.05 1.11 0.9

H id
0.43s 1 1 1 0.50s 1 1.01 0.99 0.69s 1.15 1.04 0.96

echo 10 132

Hs
0.07s 0.99 1.02 1 0.13s 0.93 1.06 0.98 0.11s 0.89 1.13 0.93

H id
0.79s 0.99 1.02 1 0.89s 0.93 1.04 0.99 0.95s 0.87 1.11 0.94

breast 11 699

Hs
0.39s 1.07 0.91 1 0.42s 1.21 0.85 0.99 0.42s 1.49 0.83 0.98

H id
1.02s 1.1 0.86 1 1.08s 1.26 0.81 1 1.37s 1.6 0.8 0.99

adult 15 48842

Hs
6.42s 0.96 1.06 1 5.57s 0.97 1.05 0.99 4.17s 0.99 1.03 0.97

H id
14.33s 1 1.01 1 19.91s 0.93 1.1 0.99 17.38s 1.1 0.99 0.98

ncvoter-1k 16 1000

Hs
0.58s 0.95 1.08 1 0.57s 0.99 1.01 1 0.85s 0.88 1.06 0.97

H id
1.81s 0.99 1.02 1 2.33s 0.98 1.01 1 3.50s 0.87 1.07 0.96

letter 18 20000

Hs
4.41s 0 2.65 0.86 5.04s 0.31 1.55 0.82 5.59s 0.68 1.12 0.79

H id
12.73s 1.02 0.97 1 10.78s 1.04 0.97 1 9.40s 1.14 0.95 1

hepatitis 19 155

Hs
0.11s 0.95 1.09 1 0.14s 0.97 1.02 1 0.19s 0.83 1.09 0.98

H id
0.79s 0.94 1.1 1 0.71s 0.96 1.03 1 0.76s 0.82 1.09 0.97

horse 28 368

Hs
0.23s 0.99 1.01 1 0.38s 0.89 1.09 0.99 0.56s 0.99 1.01 1

H id
1.19s 0.97 1.06 1 1.36s 0.94 1.05 0.99 1.82s 0.82 1.07 0.98

fd-red-30 31 250000

Hs
261.18s 1.03 1.06 1 190.49s 0.96 1.04 1 132.03s 0.98 1.01 1

H id
281.46s 1 1 1 342.02s 1 1 1 242.51s 1 1 1

plista 43 1000

Hs
1.70s 0.9 1.2 1 2.35s 0.89 1.1 0.99 2.52s 1.06 0.98 1

H id
4.34s 0.98 1.05 1 6.74s 1.01 0.99 1 8.28s 0.93 1.03 0.99

flight-1k 75 1000

Hs
2.67s 0.81 1.41 0.99 3.85s 0.68 1.3 0.98 4.82s 0.69 1.13 0.98

H id
14.98s 1 1.01 1 26.58s 0.95 1.05 1 35.89s 0.9 1.05 0.99

uniprot 182 1000

Hs
2.95s 0.45 2.23 0.99 2.80s 0.33 1.65 0.99 3.96s 0.77 1.1 1

H id
49.52s 1 1.01 1 40.55s 1 1.01 1 33.70s 0.85 1.08 1

Table 2: Experimental results of two Affidavit configurationsHs
andH id

on problem instances of varying difficulty.

stay the same. However, we remove value mapping entries de-

fined over attribute values that do not exist anymore in the scaled

version. Otherwise the costs of the reference explanation would

be unnecessarily high. The resulting run times in Figure 5 con-

firm that Affidavit scales linearly in the number of records.

Moreover, it was able to produce the reference explanation in

every run on these problem instances.

5.4.2 Attribute Scalability. Attribute scalability is difficult to

assess experimentally because removing attributes from a prob-

lem instance can completely alter the difficulty. However, be-

cause of the modified priority queue, we can give a rough the-

oretical upper-bound in ϱ for the worst-case complexity that

suggests linear scalability in the number of attributes. For a fixed

ϱ, Affidavit begins the search with ϱ search states with one

assignment each. Ignoring duplicate elimination, in the absolute

worst-case, each of these search states and its (direct and indirect)

children are visited in depth-first order. Assuming ϱ < |A|, this
results in visiting level ϱ with O(ϱ!) states that are each followed

by |A| − ϱ extensions to produce a full assignment which gives

|A|O(ϱ!) −ϱO(ϱ!) total extensions. In the case ofH0 = H ∅ , this

number is at most one larger, forH0 = Hs
it is smaller.

Technically, there are operations inside each extension that

are not constant in the number of attributes, leading to a polyno-

mial complexity. However, during the extension of a state, the

runtime is dominated by the induction of functions for a fixed

attribute. As the number of attributes for which this is performed

is bounded by β , a linear runtime increase with a growing num-

ber of attributes should be the result in practice. The normalized

runtimes in Figure 6 support this expectation. The resulting data

is very noisy though for a low number of attributes which can be

explained by the fact that individual differences in difficulty of

the datasets have a proportionally bigger impact on the runtime

than the difference in the already low number of attributes.
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Figure 5: Runtimes on a (η = 0.3, τ = 0.3) problem instance

of flight-500k scaled to different numbers of records.

6 CONCLUSIONS AND FUTUREWORK

Motivated from an industrial use case in the domain of data ex-

change, we found a lack of solutions for reverse-engineering up-

dates of relational tables without knowledge of the record align-

ment. In particular, this pertains snapshots of tables with unspec-

ified or modified primary keys. The resulting task requires record

linking and function induction at the same time. To the best of

our knowledge, we presented the first theoretical framework that

explores both problems at once. As there are no straight-forward

criteria that define the best solution, we suggested to measure the

quality of a solution on the basis of minimum description length.

While we could prove that the resulting optimization problem is

NP-hard, we proposed an algorithm based on a best-first search

to solve practical instances of the problem. We implemented

a prototype of our algorithm called Affidavit and evaluated

it on several problem instances of varying difficulty based on

real-world datasets. The results confirmed that Affidavit scales

linearly with the number of records and attributes. Moreover,

we have identified a parameter configuration that can be used

out-of-the-box to reliably produce correct explanations under

practical levels of noise and transformations of the data. As our

algorithm is completely unsupervised, this setting can be used to

compare snapshots of databases with many tables without prior

linking or labeling of the data by hand.

In practical problem instances, themeta functions implemented

so far, would likely not be versatile enough to explain all data

transformations. In its current form, Affidavit is most usable

by administrators with domain knowledge about which meta

functions commonly occur in their domain. They are able to

customize Affidavit by adding further meta functions via imple-

mentation of a small Java interface. In FutureWork, the prototype

could be updated to support a richer set of functions by default.

For instance, we recently added support for date conversions.

Furthermore, it would be interesting to integrate a function cor-

pus like it was done in TDE [15] instead of manually extending

the supported functions.

Future work could also investigate a problem variant without

knowledge of the schema alignment. Consequently, table modi-

fications like attribute renaming, merging or splitting could be

supported. We think the insights and methods of this work would

be valuable for such a task as well.
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ABSTRACT
Despite the emergence of probabilistic logic programming (PLP)
languages for data driven applications, there are currently no
debugging tools based on provenance for PLP programs. In this
paper, we propose a novel provenance model and system, called
P3 (Provenance for Probabilistic logic Programs) for analyzing
PLP programs. P3 enables four types of provenance queries: tra-
ditional explanation queries, queries for finding the set of most
important derivations within an approximate error, top-K most
influential queries, and modification queries that enable us to
modify tuple probabilities with fewest modifications to program
or input data. We apply these queries into real-world scenar-
ios and present theoretical analysis and practical algorithms for
such queries. We have developed a prototype of P3, and our
evaluation on real-world data demonstrates that the system can
support a wide-range of provenance queries with explainable
results. Moreover, the system maintains provenance and execute
queries efficiently with low overhead.

1 INTRODUCTION
In many data intensive applications, there has been a paradigm
shift towards probabilistic and statistical reasoning. In some cases,
it is in support of programs that rely on probability distributions.
Probabilistic reasoning is used as a basis to trade off performance
and accuracy, when collecting and aggregating readings from
sensors. In other cases, probabilistic reasoning is dictated by
use of external libraries, typically involving programs that rely
on outputs of machine learning libraries which are intrinsically
probabilistic.

Consequently, over the past few years, there is an emergence
of probabilistic logic programming (PLP) languages. Many of these
languages use database-style declarative conjunctive rules that
are loosely based on Datalog semantics with extensions to handle
probability. These include SLP [21], DatalogP [7], PRISM [28],
ICL [23], ProbLog [24]. A common thread across these systems
is that they allow both data and rules to be probabilistic, and
are based on Sato’s distribution semantics [27] among possible
worlds under a given probability distribution. These languages
cover the bulk of PLP languages in use today.

In addition, some PLP languages are used as machine learn-
ing models, such as Markov Logic Networks (MLN) [26] and

© 2020 Copyright held by the owner/author(s). Published in Proceedings of the
23rd International Conference on Extending Database Technology (EDBT), March
30-April 2, 2020, ISBN 978-3-89318-083-7 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Probabilistic Soft Logic (PSL) [3]. These PLP programs are com-
bined with probabilistic graphical models (PGM), or converted
to weighted Boolean formulas [6], for inference and learning.
Beyond these languages, BAYONET [9], which introduces their
own flavor of probabilistic network programming language.

Despite the proliferation of declarative PLP languages, there
are currently no tools that enable us to debug and analyze pro-
grams. Given the declarative feature, a natural question to ask is
whether data provenance [11] can be used for debugging these
declarative data-driven systems. However, prior provenancework
falls short in enabling debugging capabilities for PLP programs
because they are geared primarily towards traditional relational
databases. The most obvious candidate is provenance in proba-
bilistic databases [25]. However, these systems do not work for
PLP programs, given that only tuples are labeled with indepen-
dent probabilities while the operators in SQL remain determin-
istic. This is unlike PLP programs where the rules (and hence
the operators used for executing these rules) are probabilistic.
Consequently, systems that support provenance in probabilistic
databases do not work on queries or programs with uncertainty
built into the algorithm rather than the underlying data.

In this paper, we present a model and system called P3 (Prove-
nance for Probabilistic logic Programs). P3 enables a novel form
of provenance, which we term probabilistic provenance. P3 is
aimed at the first class of declarative PLP programs described
above. All of these languages consist of programs that are a union
of weighted conjunctive rules with recursion (without negation),
and adhere to the possible world semantics. A representative
example of this language that we use throughout our paper is
ProbLog, although the approach can be generalized to similar
languages. In ProbLog, tuples and rules are labeled with prob-
abilities. ProbLog-like languages encompasses a wide range of
PLP programs that involve reasoning with uncertainty over data.
To the best of our knowledge, our work is the first one providing
a comprehensive case study on using probabilistic provenance
for PLP analysis.

By allowing PLP programs to be analyzable using probabilis-
tic provenance, P3 enables a whole series of novel provenance
queries not previously possible, including (1) showing the deriva-
tion graphs that explain tuples and their probability values; (2)
finding the set of most important derivations for a derived tuple
based on its provenance; (3) finding the top-K most influential
variables (including base tuples and rules) for a derived tuple
based on its provenance; and (4) supporting modification queries,
where we can answer how to modify variables’ probabilities to
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efficiently change the derived tuple probability to a target score
with small cost.

The key contributions of this paper are as follows:
• Probabilistic provenancemodel.We propose a provenance
based approach to reason PLP programs with semantics similar
to ProbLog. Provenance is maintained through both graph-
based representation (provenance graph) and algebraic repre-
sentation (provenance polynomials).
• Probabilistic provenance queries. We demonstrate how
the provenance model can enable provenance queries to an-
swer explanation, derivation, influence and modification ques-
tions about derived tuples. We further demonstrate how these
queries can generate meaningful results in the presence of
cycles in recursive rules.
• Implementation and evaluation.We have implemented P3,
and evaluated the system over use cases based on real-world
data. Through our use cases, we also demonstrate how P3 can
help debug and fix errors in ProgLog programs. Our results
demonstrate that P3 can enable a range of novel provenance
queries with low overhead at maintenance and query time.

2 BACKGROUND
Given our choice of ProbLog as a representative example, we first
provide an introduction to the salient features of the language.
ProbLog’s syntax is based on Datalog, with the main difference
being that all base tuple clauses and rule clauses are labeled
with probabilities. A ProbLog program specifies a probability
distribution over all possible non-probabilistic subprograms of
the ProbLog program. The semantics of ProbLog is defined by
the success probability of a query, which is the probability that
the queried tuple succeeds among these subprograms.

rid p1: H() :- B1(),B2(),...,Bn().
tid p2: B1().

Figure 1: ProbLog syntax

Figure 1 summarizes the ProbLog syntax. There are two types
of clauses: a weighted conjunctive rule (first line in Figure 1
where H() means the rule head, and B1(),B2(),..., Bn() are
relations in the rule body), and a probabilistic base tuple (second
line in Figure 1). Each conjunctive rule has a rid, labeled with a
probability (p1 in Figure 1) of being true. Each base tuple has a
tid, labeled with a probability score of existence (p2 in Figure 1).

2.1 Running Example
As a running example used throughout the paper, we consider
the Acquaintance ProbLog program shown in Figure 2. The
program computes all pairs of people who may know each other.

r1 0.8: know(P1,P2) :-
live(P1,C), live(P2,C), P1!=P2.

r2 0.4: know(P1,P2) :-
like(P1,L), like(P2,L), P1!=P2.

r3 0.2: know(P1,P3) :-
know(P1,P2), know(P2,P3), P1!=P3.

t1 1.0: live("Steve","DC").
t2 1.0: live("Elena","DC").
t3 1.0: live("Mary","NYC").
t4 0.4: like("Steve","Veggies").
t5 0.6: like("Elena","Veggies").
t6 1.0: know("Ben","Steve").

Figure 2: Acquaintance ProbLog rules and base tuples

live("Steve","DC")

r1

know("Steve","Elena")

r3

know("Ben","Elena")

live("Elena","DC") like("Steve","Veggies")

r2

like("Elena","Veggies")

know("Ben","Steve")

Derivation 1

Derivation 2

Figure 3: Provenance graph of know("Ben","Elena") with
annotated derivations

In the Acquaintance program, people who live in the same
place (r1) or like the same item (r2) may know each other with
some probability. The Acquaintance relationship can also be
transitive with some probability (r3). Given the program in Fig-
ure 2, our P3 system demonstrates how we can derive more
Acquaintance relations based on existing relations. For exam-
ple, we can infer whether know("Ben","Elena") can be derived
by querying the tuple, and also derive the probability that Ben
knows Elena.

Beyond inferring probability values, P3 will enable the follow-
ing classes of queries:
• Probability explanations. Figure 3 is a provenance graph
which explains how know("Ben","Elena") is derived. There
are two derivations in Figure 3, annotated by two types of
arrows. They share some paths to derive the tuple. We can use
provenance queries to answer which derivation contributes
more to the tuple probability.
• Change modification. After getting the probability score of
know("Ben","Elena"), we may be dissatisfied with its score,
and would like to increase or decrease it, either by changing
base tuple values or rule weights. To minimize disruption, we
would like make the fewest possible changes. A provenance
query may be used to find out the variable that influences
the derivation of know("Ben", "Elena") most, so that if we
would like to modify its probability values with the fewest
number of variable changes, we can start with the most influ-
ential variables. Likewise, we can also use provenance queries
to determine the fewest number of modifications to rules.

2.2 ProbLog Semantics
As is shown in Figure 1, each clause ci (whether a base tuple
or rule) is labeled with a probability pi . These probabilities are
mutually independent. A ProbLog programT = {p1 : c1, · · · ,pn :
cn } defines a probability distribution over logic programs L ⊆
LT = {c1, · · · , cn } as follows:

P(L|T ) =
∏
ci ∈L

pi
∏

ci ∈LT \L

(1 − pi ) (1)

where L denotes one non-probabilistic subprogram, also called
one possible world. The success probability P(q |T ) of a query q
in a ProbLog program T is defined as:

P(q |L) =

{
1, ∃θ : L |= qθ
0, otherwise

(2)
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P(q,L|T ) = P(q |L) · P(L|T ) (3)

P(q |T ) =
∑
L⊆LT

P(q,L|T ) (4)

The success probability of query q corresponds to the probability
that the query q has a proof, given the probability distribution
over logic programs. Asmentioned in [24], the success probability
of a ProbLog query can be computed as the probability of a
Boolean monotone DNF (Disjunctive Normal Form) formula of
binary variables being true, which is an NP-hard problem [29].
The DNF formula is obtained by SLD-resolution [8], and then
represented by binary decision diagrams (BDDs) [4] in order to
compute its probability efficiently.

The reason we choose ProbLog semantics to be the focused of
this paper is as follows:
• Sato’s distribution semantics or possible worlds semantics [5]
is widely used in probabilistic databases, where the base tuple
score has a meaningful semantics - probability. In ProbLog,
the rule weight also means the probability that the rule is true.
• Provenance in probabilistic databases is intuitively easy to be
extended in ProbLog’s syntax and semantics.
• Alternative PLP languages (such as PRISM, ICL, SLP, and
DatalogP ) that adhere to the Sato’s distribution semantics im-
pose extra constraints such as mutual exclusion constraint for
rule bodies of the same rule head, and do not allow for recur-
sion. However, ProbLog is more general and expressive, and it
supports recursive rules which is necessary in network data
applications. Hence, provenance support for ProbLog naturally
carries forward to these alternative languages.
Note that while we focus on ProbLog, given ProbLog’s general-

ity, the concepts that we introduce in this paper can be generally
applied to any declarative probabilistic programs that are based
on union of conjunctive rules.

3 PROVENANCE MODEL

In this section, we introduce the provenance model used in P3.
Traditionally, provenance can have both graph representation
(provenance graph) and algebraic representation (provenance
polynomials). P3 provides both types of representations, and as
we will see later, different representations support different types
of provenance queries.

3.1 Provenance Graph
Given a ProbLog-like PLP program, we model its provenance as
a directed graph G(V ,E), which describes the data dependencies
(see Figure 3 as an example).

The vertex set V in G consists of tuple vertices and rule exe-
cution vertices. An oval denotes a rule execution vertex, and a
rectangle denotes a tuple vertex. We also annotate the associated
probability for each tuple vertex and rule execution vertex. For
a concise graph representation, we omit the probability values
in the example provenance graph, but they are maintained as an
associated attribute and can be queried.

The edge set E consists of unidirectional edges that represent
data dependencies between tuple vertices and rule execution
vertices. An edge is always pointing from a tuple vertex t to a
rule execution vertex r , or from a rule execution vertex r to a
tuple vertex t . The former indicates t is an input of r , and the
latter means t is derived through r . The provenance graph G
shows the complete derivation history of teh PLP program. For a

queried tuple q (derivable from the PLP program), it provenance
is the a subgraph of G rooted by q’s corresponding tuple vertex.

For PLP programs containing recursive rules, it may generate
cycles during the derivations. A cycle appears when a derived
tuple can also be an input tuple in one of its own derivations. How-
ever, we prove that the cycles in the graph can be removed with-
out affecting computing the success probability of the queried
tuple q (See Section 3.3 for details).

Figure 3 shows a simple provenance graph for Acquaintance
example. Intuitively, we can find two derivations of tuple
know("Ben","Elena") in the graph. know("Ben","Elena") is
derived through rule r3 when both know("Ben","Steve") and
know("Steve","Elena") are true. Then there are two ways to
derive know("Steve","Elena"): through r1 or through r2. The
two derivations also share some paths.

3.2 Provenance Maintenance
The provenancemaintenance for PLP shares similarities with that
of ExSPAN engine [31]: we perform an automatic rule rewrite of
the PLP program to create and maintain provenance information
at runtime as a side-computation along with the evaluation of the
original PLP program. During this process, our system naturally
maintains provenance as a graph: the direct dependencies of the
tuple and rule executions (i.e., the edges in the provenance graph)
are captured and stored in relational tables.

More concretely, each rule rid p H() :- B1(),...,Bn().
is rewritten into three rules at compile time 1:

H() :- B1(),...,Bn().
prov(H(),p,rid) :- B1(),...,Bn().
rule(rid ,(B1(),...,Bn())) :- B1(),...,Bn().

The first rule performs the original tuple derivation; the second
rule records the dependency between the rule execution and
its input tuples (i.e., B1(), ..., Bn()); the final rule records
that the derived tuple H() has a derivation from this particular
rule execution. In addition, we further identify rules labeled with
probabilities and associate the rule execution vertices with their
corresponding probabilities. For example, consider rule r1 in
Figure 2, its execution results in two dependencies (captured
in the prov and rule table respectively): know(P1,P2)

0.8
←−−r1

and r1←(live(P1,C), live(P2,C)). These are reflected in
Derivation 1 in Figure 3.

The maintenance of provenance only adds a reasonable con-
stant cost for each rule evaluation, and is expected to have limited
impacted on the scalability of the program or application.

3.3 Provenance Querying
With the captured direct dependencies (i.e., the edges in the
provenance graph), we can extract the complete provenance of
a queried tuple y by recursively traversing the graph: starting
from y, we traverse the graph by following the edges until we
reach base tuples. The returned provenance is presented in a
pre-determined representation. Generally, the graph traversal
allows us to extract any provenance representation defined as a
provenance semiring [11].
Provenance polynomials. In this paper, provenance polyno-
mial is adopted as the basis for answering more complex queries
(such as identifying the most influential base tuples, etc), for

1For performance considerations, additional optimization is adopted in the actual
implementation to ensure that the rule body, which is the same for all the three
rules, only needs to be evaluated once.
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its close connection to probability calculation. The provenance
polynomial for a queried tuple q in ProbLog is a Boolean formula
λ(q), where each literal denotes one individual tuple or rule. The
literals are Boolean variables and each has some probability of
being true. There are two binary operators “·” and “+” in λ(q).
Specifically, “·” denotes conjunctive use of multiple tuple or rules
for the derivation of a derived tuple, and “+” denotes union of
alternative derivations for the same derived tuple.

For example, if tuple q is derived from a conjunctive rule
r1 which takes tuple t1 and t2 as input, then the provenance
polynomial of this derivation is r1 · t1 · t2. Suppose that q has
another derivation from rule r2 which takes tuple t3 and t4 as
input, then the complete provenance polynomial λ(q) is r1 · t1 ·
t2 + r2 · t3 · t4.

Consider the Acquaintance example (see Figure 2), the prove-
nance polynomial of the derived tuple know("Ben","Elena") is
r3 · know("Ben","Steve") · know("Steve","Elena"), where
know("Steve","Elena") is a derived tuple that can be further
expanded. The complete provenance polynomial of tuple
know("Ben","Elena") is the following:

r3 · know("Ben","Steve") ·
( r1 · live("Steve","DC") · live("Elena","DC")+
r2 · like("Steve","Veggie") · like("Elena","Veggie") )

This provenance polynomial represents the two derivations of
know("Ben","Elena").
Success probability of provenance polynomial. Noting that
this example provenance polynomial consists of only base tuple
literals and rule literals, we can, at least in theory, compute the
success probability of the provenance polynomial. We simply
treat the provenance polynomial as a formula of random vari-
ables; we can then calculate its success probability by plugging
in the probabilities of the base tuples and the rules, which are
provided as input to a ProbLog program. More formally,

P [λ(q) ] = E[ λ̃(q) ] (5)

where λ̃ denotes the arithmetization form of λ. P[] denotes suc-cess probability, and E[] denotes expectation.
However, computing the success probability of an arbitrary

provenance polynomial is an NP-hard problem [29]. For instance,
the success probability of formula a+b is not the sum of the proba-
bility of a and the probability ofb because of Inclusion−Exclusion
principle. Therefore, in practice, we useMonte-Carlo sampling [14]
approach to estimate the probability value.
Handling cycles. For a ProbLog program containing recursive
rules, a cycle may appear in the provenance graph where a de-
rived tuple can also be an input tuple for one of its own derivation.
This raises issues when we retrieve provenance polynomials from
the provenance graph – the provenance polynomials may po-
tentially be arbitrarily long (by infinitely expanding the graph
traversal through cycles) or contain literals that correspond to
derived tuples (by stopping the graph traversal at these derived
tuples). This would greatly affect the calculation of the success
probability of the provenance polynomial.

However, we show that any such cycles can be removed from
the provenance graph without affecting the success probability
of the provenance polynomial. Generally, if the queried tuple q
has cycles in its provenance graph, its provenance can be written
as a polynomial in the following form:

λ(q) = (PE + PI ) · λ(q) + P
′
E + P

′
I (6)

where PE and P ′E each denotes a polynomial that only contains
base tuples and rule literals. PI and P ′I each denotes a polynomial

containing other derived tuple literals (e.g., the provenance graph
contains other cycles that do not involve q). The polynomial
(PE + PI ) · λ(q) indicates that some derivations of q depend on
the existence of q itself.

Given the existence of cycles,q has infinitely many derivations:
some derivations can traverse around a cycle multiple times. We
define a series of formula that progressively include derivations
with multiple-round cycles:

λ0(q) includes derivations containing no cycles. We have

λ0(q) = P ′E + P
′
I (7)

λ1(q) includes derivations containing at-most-one-round cy-
cles, that is, it includes all derivations in λ0(q) but also derivations
containing exact one-round cycles. We have

P[ λ1(q) ] = P[ (PE + PI ) · λ0(q) + P ′E + P
′
I ] (8)

= P[ (PE + PI ) · (P ′E + P
′
I ) + P

′
E + P

′
I ] (9)

= P[ (1 + PE + PI ) · (P ′E + P
′
I ) ] (10)

= P[ P ′E + P
′
I ] (Absorption Law) (11)

Thus, we have P[ λ0(q) ] = P[ λ1(q) ]. Likewise, we have P[ λ0(q) ] =
P[ λ1(q) ] = P[ λ2(q) ] = · · · = P[ λ∞(q) ] = P[ P ′E+P

′
I ]. Therefore,

if we are only concerned about calculating its success probability,
we can simplify provenance polynomial for q as:

λ(q) = P ′E + P
′
I (12)

Furthermore, to simplify P ′I , if any derived tuple qk in P ′I that
has cycles in its derivation graph, we can replace λ(qk ) with
λ0(qk ). Then we have

λ(q) = P ′E + P
′
I | (∀λ(qk ), λ(qk ) = λ0(qk ) ) (13)

In cases where λ0(qk ) also includes λ(q), we can replace
λ(q) with P ′E + P ′I | (∀λ(qk ), λ(qk ) = λ0(qk ) ) in λ0(qk ), and
then remove λ0(qk ) following the same process (Equation (6) to
Equation (12)). Recursively, the final provenance polynomial for
q consists of only base tuple literals and rule literals.

4 REASONING PLP WITH PROVENANCE
The provenance of a queried tuple can be used in a variety of ways
to reason a PLP program. For instance, users may want to know
how a tuple is derived (Explanation Query), which derivation
contributes most to achieving the probability of the derived tuple
(Derivation Query), which base tuple has the most influence
on the derivation of the queried tuple (Influence Query), and
how to change the base tuples to achieve a given target value
(Modification Query). These questions can help users reason and
debug a PLP program. A summary of the provenance query types
discussed in this paper is shown in Table 1.

4.1 Explanation Query
An Explanation Query returns the complete derivations of the
queried tuple. The success probability of the queried tuple as well
as any intermediate derived tuples can be computed efficiently
using Monte-Carlo simulation. Consider the Acquaintance pro-
gram (see Figure 2), an example Explanation Query is:
Query 1: Show the derivations of the derived tuple
know("Ben","Elena").
By querying the provenance of know("Ben","Elena"), we get
provenance polynomial λ(know("Ben","Elena")) =
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Table 1: Summary of provenance query types

Query Type Operation
Explanation Query Illustrate the derivations graph of the queried tuple for explanation
Derivation Query Find the set of most important derivations of the queried tuple given some approximation error
Influence Query Show the (top-K) most influential variables (base tuples and rules) of the queried tuple
Modification Query Modify the variables to achieve a target probability value with minimal change

r3 · know("Ben","Steve") ·
( r1 · live("Steve","DC") · live("Elena","DC")+
r2 · like("Steve","Veggie") · like("Elena","Veggie") )

Its success probability P[ λ(know("Ben","Elena")) ] = 0.18, mean-
ing there is a 18% probability Ben knows Elena. The prove-
nance polynomial also corresponds to the visual provenance
graph shown in Figure 3 and explained in Section 3.1: tuple
know("Ben","Elena") has two derivations that share parts of
their paths.

4.2 Derivation Query
Sometimes, the complete explanation can be too long or too com-
plex for users to (intuitively) understand; instead, users may be
interested in a more compact explanation that still retains a close-
enough success probability. For example, in the Acquaintance
scenario, suppose two person Alice and Bob share many com-
mon hobbies (and thusmay know each other from the same hobby
groups). But if Alice’s and Bob’s addresses show that they are
next-door neighbors, then this serves as a strong explanation for
why Alice knows Bob; it easily trumps the share-similar-hobbies
explanation which can be long and tedious.

More generally, after computing the success probability of a
queried tuple, it is intuitive to ask: (a) which derivations con-
tributed most to the success probability? (b) can we find a small
set of important derivations to achieve an approximate probabil-
ity? The Derivation Query is used to answer these types of ques-
tions. Formally, given a provenance polynomial λ, the Derivation
Query returns a sufficient provenance λS :

| P[ λ ] − P[ λS ] | ≤ ϵ (14)

where λS consists of a subset of themonomials in λ, and ϵ is a user-
specified error limit. As an example, consider the Acquaintance
program. An example Derivation Query is:
Query 2: What are the most important derivations of
know("Ben","Elena"), assuming an error limit of ϵ?
The original provenance polynomial is given by Query 1, which
consists of two monomials, corresponding to the two derivations
of know("Ben","Elena"). The returned sufficient provenance
varies with the value of ϵ : When ϵ is set to 0.001, the sufficient
provenance remains the same, as removing either of the mono-
mials would yield a success probability change greater than ϵ .
After we increase ϵ to 0.01, the returned sufficient provenance
λS (know("Ben","Elena")) =

r3 · know("Ben","Steve") ·
r1 · live("Steve","DC") · live("Elena","DC")

It removes one derivation and presents themost important deriva-
tion: The fact that Steve and Elena live in the same city con-
tributes more to the derivation of know("Steven","Elena")
(and then, in turn, the derivation of know("Ben","Elena"), since
rule r1 has a significantly higher probability than r2.
Compute sufficient provenance. For a queried tuple q, each
monomial in the provenance DNF formula λ(q) corresponds to

one derivation path of q. The probability of each monomial is
computed by multiplying all the probabilities of literals in the
monomial. So it is easy to find the most important derivation
of q. However, the probability of λ is not the sum of the prob-
ability of each monomial in λ, since these monomials can be
correlated. In fact, finding the smallest sufficient provenance of
λ, i.e., the ϵ−approximate polynomial with the minimal number
of monomials, is NP-hard [25].

A naïve way to compute sufficient provenance is to sort the
monomials in the provenance polynomial according to their prob-
abilities in a descending order. We can then progressively remove
monomials that have the lowest probabilities, until the error
limit ϵ is reached. This doesn’t guarantee the smallest sufficient
provenance but it provides an approximation. In our evaluation
in Section 6, this naïve approach performs surprisingly well.

Alternatively, prior work [25] on approximate lineage for prob-
abilistic databases proposed an algorithm to efficiently find an
ϵ-approximation of provenance polynomial. Our system extends
it for PLP programs. Briefly, the algorithm finds a sufficient prove-
nance of a k−literal polynomial λ in the following steps:

• Step 1. It first finds an arbitrary match of λ: A match of λ
consists of a set of independent monomials in λ. Since these
monomials are independent, the success probability of the
match can be efficiently computed.
• Step 2. If the match is already an ϵ−approximation of λ, then
the match is returned as the final result.
• Step 3. Otherwise, the monomials in λ are partitioned into
groups, where the monomials in each group share at least one
literal. Therefore, each group can be rewritten into the form
l · (m1 +m2 + ... +mk ), where l is the literal shared by all
monomials in the group.
• Step 4. The algorithm can then recursively find the sufficient
provenance for m1 +m2 + ... +mk , which is a (k-1)−literal
polynomial. The algorithm is guaranteed to terminate at 1-
literal polynomial.

Although this algorithm is more efficient than the naïve approach,
it relies heavily on the choices of the match (in Step 1) and the
groups (in Step 3). In some cases, it provides little reduction in
the size of the provenance polynomial.

4.3 Influence Query
In addition to derivations of a queried tuple, users may also be
interested in the influence of each literal on the queried tuple.
An Influence Query returns the most influential literals (i.e., rule
weight or base tuple probability) of a given derived tuple.

Intuitively, the influence of a literal xi on a provenance polyno-
mial λ measures the impact on the success probability of λ when
the value of xi changes. For example, a counterfactual base literal
would have a large influence, because setting it to be false would
invalidate the derived tuple. We adopt the definition proposed in
a prior work [13]: Consider λ as a multiple-variable function, the
influence of xi is the partial derivative ∂λ

∂xi
.
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Definition 4.1. Literal influence [13]. The influence of a lit-
eral xi on the provenance polynomial λ, denoted Infxi (λ), is:

Infxi (λ) =
∂λ

∂xi
= P[λ |xi=1]−P[λ |xi=0] = E[λ̃ |xi=1−λ̃ |xi=0] (15)

where λ̃ denotes the arithmetization form of λ. P[] denotes prob-
ability, and E[] denotes expectation. P[λ] = E[λ̃].

Based on this definition, P3 can answer Influence Query ef-
ficiently by using Monte-Carlo sampling approach to estimate
E[λ̃ |xi=1 − λ̃ |xi=0]. Consider the Acquaintance program. An ex-
ample Influence Query is:
Query 3: What are the most influential literals to the suc-
cess probability of know("Ben","Elena")?

Table 2: Results of Influence Query

Variable Influence Value
r3 0.896
r1 0.2
t6 0.1792

Table 2 lists the top-3 most influential literal. It shows that rule
r3 is the most influential. It makes intuitive sense: Rule r3 is the
critical recursive rule that allows for the generation of multi-hop
know relationships, including the case for Ben and Elena who
know each other through their direct relationships with Steve.

4.4 Modification Query
For a queried tuple, our system can answer which derivations
contributemost, andwhich individual variables are themost influ-
ential ones. Users may further explore how to effectively modify
the base variables to adjust the queried tuple’s success probability,
for example, when the success probability of the queried tuple is
suspiciously low (or high). The Modification Query aims to an-
swer this type of question. We use the results from the Influence
Query as a basis to answer Modification Queries.

Based on Equation (5), we can easily get

P[λt ] = Infxi (λ) · p(xi ) + P[λ |xi=0] (16)

It means that for any variable xi , the success probability of the
derived tuple is positively correlated to p(xi ), and the positive
coefficient is the influence value of xi . Equation (16) effectively
considers P[λ] as a function of p(xi ).
Query 4: Given a target success probability of the queried
tuple, how should we modify the base literals to achieve
the targe with minimal cost?

Here, we consider the cost is defined as:

Cost =
∑
i
|∆p(xi )| (17)

which is the summation of the probability change of each mod-
ified literal. To find a good solution for Query 5, We follow a
heuristic-based greedy algorithm. The algorithm selects the most
influential variable, and change its value to reach the target prob-
ability. Sometimes, even changing the most influential variable
to the maximum value of 1 (or minimum value of 0) is still not
enough. In this case, we continue to find the most influential
variable in the remaining variables, until the target probabil-
ity is reached. The most influential variable in each iteration
corresponds to the highest slope to change, so the total cost of
modification of variables is minimized. The strategy returned by
this heuristic-based algorithm is not guaranteed to be an optimal

solution of minimal cost, but, by leveraging the result of Influence
Query, it works well empirically.

Take the Acquaintance program as an example. The original
success probability of know("Ben","Elena") is 0.18. If we hope
to modify the value to be above 0.5, the answer returned by P3
is that we should change variable r3 to 0.56. The total cost of
the change is 0.36. Further evaluation of the effectiveness of the
heuristic-based algorithm is elaborated in Section 5.2.

5 CASE STUDY
The Acquaintance program is a simple example to illustrate how
provenance is utilized to reason the evaluation results of ProbLog
programs. In this section, we present two case studies to showcase
how users can benefit from P3’s practical reasoning capabilities.
Performance evaluations will follow in the next section.
Visual Question Answering. Our first use case describes a
scenario from multi-modal learning in the machine learning
community, called Visual Question Answering (VQA). The learn-
ing task is to answer user’s questions regarding a presented
photo, e.g., identifying a (partially blocked) object in the photo.
In this scenario, we use provenance to provide some insights
from human-explainable perspective, e.g., to identify the most
influential features that lead to the learning result.
Mutual Trust in Social Network. Our second use case is simi-
lar to the Acquaintance example, which, at the core, computes
probabilistic recursive rules. In this scenario, we use sampled
data from real-world trust network, and computes pair-wise mu-
tual trust between each pair of peers in the network. We use
provenance to identify critical direct trust relationships.

5.1 Visual Question Answering
This use case involves supporting the Visual Question Answering
(VQA) [2] task using a probabilistic logic program. In VQA, the
system answers a natural language question about an image. This
task comgines natural language, image processing, and logical
reasoning. Prior work on PSL based VQA program [1] can de-
compose and reason VQA task in terms of logic rules, but lacks
the ability to explain the derivation procedure for the answer.
Here, we rewrite the VQA-PSL program in ProbLog syntax, and
provides provenance queries to explain VQA answers.

The input of this use case is a set of tuples parsed from both the
image (hasImg relation) and the question (hasQ relation) with
some probability. The similarity between words are also base
tuples (sim relation). The input also includes word relation tuples.
It is the set of answers with prior confidence scores as probability.
The scores can come from some sources, e.g. a dictionary with
word frequency.

The VQA-PSL program [1] is written into an equivalent VQA
ProbLog program shown in Figure 5. Each rule is associated with
a weight probability, which can be assigned any reasonable val-
ues. The four rules in Figure 5 explain how the final answers
(ans relation) can be derived step-by-step combining image in-
formation, question parsing information, and words similarity
knowledge.

In Figure 5, rule r1 extends the hasImg relation by replacing
items with their synonyms (but with a diminishing score). For
example, hasImg(V,"apple","in","background") can be ex-
tended to hasImg(V,"fruit","in","background"), as apple
is similar to fruit (indicated by sim("apple","fruit")).

Rule r2 states that a word in the dictionary automatically be-
comes a candidate answer. However, it may then be out-weighted
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Other 
derivations

Answer?

ans(“ID1”, “barn”)

candidate(“ID1”, 
“barn”)

hasQ(“ID1”, “background”, 
“building”, “WHAT”)

hasImg(“ID1”, “horse”, 
“in”, “background”)

sim(“barn”, “horse”)

sim(“building”, “in”)

sim(“background”, 
“background”)word(“ID1”, “barn”)

r2

r4

Figure 4: Abstract provenance graph of ans("ID1","barn"). The complete most important derivation is shown.

by results generated by rule r3 which further considers how the
candidate answer is correlated with user’s question and the ob-
jects appeared in the photo.

Finally, rule r4 takes all the candidate answers and evaluates
their correlation with the question and the objects in the photo.
Stronger correlation will have higher scores. Note that we as-
signed equal weight to all words in the dictionary such that the
predicted result is unbiased.
r1 w1:hasImgAns(V,Z,X1,R1 ,Y1) :-

word(V,Z), hasImg(V,X1 ,R1,Y1),
sim(Z,X1), sim(Z,Y1).

r2 w2:candidate(V,Z) :- word(V,Z).
r3 w3:candidate(V,Z) :- word(V,Z),

hasQ(V,X,R,Y), hasImgAns(V,Z,X1,R1,Y1),
sim(R,R1), sim(Y,Y1), sim(X,X1).

r4 w4:ans(V,Z) :- candidate(V,Z),
hasQ(V,X,R,"WHAT"), hasImg(V,Z1,R1,X1),
sim(Z,Z1), sim(R,R1), sim(X,X1).

Figure 5: VQA ProbLog program

Given an image and a question shown in Figure 4, the input
tuples can be obtained using a image captioning system and nat-
ural language processing system. The word similarity inputs are
obtained from Word2Vec library. The evaluation of the ProbLog
program returns the tuple ans("ID1","barn") as the the result
with the highest confidence, meaning that the building in the
presented photo (identified by “ID1”) is determined as a barn. We
query the provenance of ans("ID1","barn") to check whether
the returned provenance can give meaningful explanations.
Query 1A: Show the derivations of ans("ID1", "barn").
Since the provenance graph for the queried tuple has many
branches, to enhance readability, we only display a condensed
graph shown in Figure 4 instead of the complete fine-grained
provenance graph. The actual complete graph can be generated
by our system if the user hopes to take a closer look at it.

In Figure 4, we show themost important derivation to ans("ID1",
"barn"), and leave out other derivations. In the most impor-
tant derivation, word "barn" is selected as a candidate (rule r2)
given that "barn" is included in the dictionary. Besides, "barn" is
strongly correlated to the horse appeared in the photo, adding
some other words similarity relation, ans("ID1", "barn") is
derived through rule r4. There are other derivations that can
also derive ans("ID1", "barn"), but they contribute less to the
final probability of ans("ID1", "barn").
Query 1B: Show the most influential base tuple to
ans("ID1", "barn"). Our next query concerns the base tu-
ple that influences the final learning result the most. In other
words, we would like to understand which factor would affect

Figure 6: Image of horses in front of a church

the predicted result the most if its value was changed. We per-
formed the influence query on the returned provenance result,
then identified that the base tuple word("ID1","barn") is the
most influential one. This is reasonable, however, less interesting
as it is simply stating the obvious truth that a word must be con-
sidered as a potential answer to affect the result. As the program
mainly depended on the information from hasImg() and sim()
for prediction, we decided to find the most influential tuples in
these two relations respectively.

We further identified the base tuple hasImg("ID1", "horse",
"in", "background") as the most influential one in hasImg().
Its influence value was approximately 0.005. Effectively, this re-
sult states that the building being identified as a barn is largely
influenced by the fact that there is a horse in the background. In
sim(), the most influential tuple was sim("barn", "horse")
with 0.03 influence value. Again, it confirmed that horse was
the key factor that would affect the result the most. Both tuples
coincided with human intuition while supporting the feasibility
of our approach as well.
Query 1C: Show themost influential base tuple after mak-
ingmodifications to the input image.Our next query demon-
strates the use of provenance queries for debugging. Intuitively,
we expected that ans("ID1","church")would have the highest
probability if we replaced the horses in the photo with a cross. We
replaced hasImg("ID1","horse","in","background") with
hasImg("ID1","cross","in","background") tomimic themod-
ified photo aforementioned. However, the result was not as what
we expected. We observed that ans("ID1","barn") still ap-
peared in the evaluation result with the highest probability value.
For debugging purposes, we ran the query on Figure 6 and cap-
tured the image information shown in Table 3.

We then updated the word similarity using Word2Vec. How-
ever, ans("ID1","barn") was still predicted as the most proba-
ble answer (i.e., the answer with the high probability). Demon-
strating the generality of our approach, we use the previous
queries to debug this issue. First, we ran the Derivation Query to
show the most important derivations of ans("ID1", "barn")
and ans("ID1", "church"). We found out that "barn" had
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Table 3: Captured image information

Information Prob.
horse color brown 1
horse in field 0.88
cloud in sky 0.85
building with roof 0.5
cross on building 1

very high similarities with other objects in the image ("cross":
0.30, "horse": 0.35, "cloud": 0.33), while "church" had much lower
values ("cross": 0.09, "horse": 0.19, "cloud": 0.01). Surprisingly,
sim("church", "cross") was much lower than sim("barn",
"cross"). This explains exactly why the program did not predict
the answer correctly.

Next, we would like to see how to increase the probability of
ans("ID1", "church") with minimum cost. Our goal was to
make "Church" the answer with the highest probability. So we
ran the Influence Query, and selected the unique tuples that only
appeared in the provenance of ans("ID1", "church"). The top
3 unique most influential tuples are shown in the following table:

Table 4: Top 3 unique influential tuple for ans("ID1",
"church")

Tuple Influence
sim("church", "cross") 0.04
sim("church", "horse") 0.02
sim("church", "cloud") 0.01

It is reasonable to have sim("church", "cross") as the most
influential tuple. We set the probability of ans("ID1", "barn")
as the target probability value for sim("church", "cross") and
further computed the increment using the Modification Query,
which returns a result value of 0.42. The value of sim("church",
"cross") is updated to 0.51. Again, this met with our expec-
tation that sim("church", "cross") should be greater than
sim("barn", "cross").

This use case demonstrates how multiple queries can be used
in tandem to explain and debug unexpected answers caused by
input data errors in probabilistic logic programs.

5.2 Mutual Trust in Social Network
For this graph network reachability use case, we use the Bitcoin
OTC trust weighted signed network dataset2. This is a who-
trusts-whom network of people who trade using Bitcoin on a
platform called Bitcoin OTC [15, 16]. Each weighted edge in the
network graph represents the trust between two users with the
degree of trust as weight value. To fit the data in our probabilistic
setting, we re-scale the weights of edges from [-10,10] to [0,1] to
represent the probability score of trust.

In this use case, the input tuples are trust relations between
people. For example, tuple trust(1,2) of score 0.7 means Per-
son 1 trusts Person 2 with probability 0.7. We introduce the
ProbLog program shown in Figure 7 to find trustPath and
mutualTrustPath tuples that can be derived. Rule r1 is a base
case that each trust relation tuple is also a one-hop trustPath
relation tuple. Rule r2 is a recursive rule used to derive all the
reachable trustPath tuples. Rule r3 defines mutualTrustPath
tuples that can be derived when the trustPath between any two
nodes are bi-directional. The Trust ProbLog program can help
2https://snap.stanford.edu/data/soc-sign-bitcoin-otc.html

finding any indirect trust relations between people, which is of
significant interest during actual transactions.

r1 1.0: trustPath(P1,P2) :- trust(P1,P2).
r2 1.0: trustPath(P1,P3) :-

trust(P1,P2), trustPath(P2,P3),
P1!=P3.

r3 0.8: mutualTrustPath(P1,P2) :-
trustPath(P1,P2),trustPath(P2,P1).

Figure 7: Trust ProbLog program
The original network graph is quite large, so for quality check

purpose, we use a sample of 30 nodes to evaluate the provenance
query results.
Query 2A: Show the derivations of mutualTrustPath(1,6).
The answer returned by P3 system is the provenance graph for
queried tuple mutualTrustPath(1,6), shown in Figure 8. The
provenance graph shows Person 1 and Person 6 mutually trust
each other because of the existence of trust paths from 6 to
1 (denoted by trustPath(1,6)) and from 1 to 6 (denoted by
trustPath(6,1)). It further shows that there is one single deriva-
tion for trustPath(6,1) where Person 2 is the middle man that
connects this trust path; on the other hand, trustPath(1,6)
has two derivations, namely through path 1 → 2 → 6 or path
1→ 13→ 2→ 6.
Query 2B: Show the most influential base tuple for
mutualTrustPath(1,6).
Next, we perform a query to understand which base tuples, i.e.,
the trust tuples, are most critical to the mutual trust between
Person 1 and Perosn 6. We initialize the base tuples with prob-
ability values shown as follows (we omit the ones that are not
involved in the derivation of mutualTrustPath(1,6)):

Table 5: Initial probability values of base tuples

Literal Prob. Literal Prob.
trust(1,2) 0.9 trust(1,13) 0.65
trust(2,1) 0.9 trust(2,6) 0.75
trust(6,2) 0.7 trust(13,2) 0.6

Given this initialization, the P3 system returns that
trust(6,2) is the most influential literal with an influence value
of 0.51. The second most influential literal is trust(2,6) with
an influence value of 0.48. Observing the provenance structure in
Figure 8, we find that this result comply with human’s intuition:
trust(6,2) is influential3 because its existence is the basis of
the trust path from Person 6 to Person 1; trust(2,6) is also
influential, more so than trust(1,2) and trust(1,13), for the
existence of the trust path from Person 1 to Person 6.

More intuitively, the result indicates that if Person 6 wants
to increase the mutual trust to Person 1 without directly reach-
ing him, strengthening the trust to Person 2 might be the most
effective approach.
Query 2C: Show the optimal way to increase the probabil-
ity of mutualTrustPath(1,6). Here, we assume that each lit-
eral’s probability can reach to 1.0 as maximum. The original
P[mutualTrustPath(1, 6)] is 0.3524. Now we want to approxi-
mately double it to a target value 0.7. The strategy returned
by P3 is as follows:
3trust(6,2) is considered to have a higher influence value than trust(2,1) due
to the initial probability assignment: whether trust(6,2) exist or not has a higher
influence because its existence would almost imply the existence of the trust path
from 6 to 1 as P[trust(2,1)] is very close to 1.
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Figure 8: Provenance graph of queried tuple
mutualTrustPath(1,6)

Table 6: Optimal strategy (total change = 0.58)

Literal Change Overall prob.
Step 1 trust(6,2) 0.7→ 1.0 0.51
Step 2 trust(2,6) 0.75→ 1.0 0.68
Step 3 trust(2,1) 0.9→ 0.93 0.7

To show the effectiveness of our heuristic-based algorithm, we
compare the cost, in terms of total change in base tuple’s prob-
ability values, of its strategy with another randomly generated
strategy where a random base tuple is chosen to update in each
step. The result of a random strategy is shown as follows:

Table 7: Random strategy (total change = 1.36)

Literal Change Overall prob.
Step 1 trust(1,13) 0.65→ 1.0 0.37
Step 2 trust(13,2) 0.6→ 1.0 0.38
Step 3 trust(6,2) 0.7→ 1.0 0.54
Step 4 trust(1,2) 0.9→ 1.0 0.55
Step 5 trust(2,6) 0.75→ 0.96 0.7

We find that the strategy provided by P3 significantly out-
performs the random strategy (0.58 vs 1.36 in total change). We
make similar observations for other Modification Queries.

6 EVALUATION
We developed a prototype of P3 based on enhancements to the
ExSPANprovenance engine [31].While ExSPANwas a distributed
provenance engine designed for networks, we focused on using
ExSPAN primarily in a single-node centralized setting. ExSPAN
provides provenance for Datalog programs and provides basic
provenance explanations. We enhanced the system to implement
ProbLog, collect provenance, and support the three additional
types of P3 queries (derivation, influence, and modification).
Experimental setup. Our experiments were performed on a
Dell PowerEdge R730 server equipped with dual Intel Xeon E5-
2640 CPUs and 32GB memory running Ubuntu 16.04 LTS 64-bit
operating system.

As our workload, we evaluated the program shown in Figure 7.
The output derivation of interest was the mutualTrustPath rela-
tion, over which we would run provenance queries. We selected
this program as it had all the features of our use case. Meanwhile,

Figure 9: Running time with and without provenance

there existed real-world data that we could use for our experi-
ments. Specifically, we used the Bitcoin OTC data set described
in Section 5.2. The data set consisted of a directed graph network
with 5,881 nodes (bitcoin users) and 35,592 edges (trust relations).
We sampled the graph with different sizes of nodes, and evaluated
the performance of provenance queries elaborated in Section 4
for each sample.

6.1 Provenance Maintenance and Querying
To evaluate the provenance maintenance and querying perfor-
mance, we sampled subgraphs from the original trust network
with 50, 100, 150, . . . , 500 nodes. For each sample, we randomly
chose a small set of seed nodes, and expanded the graph by per-
forming a breadth-first search within the trust network from
these seed nodes, until the graph reaches a given number of
nodes. We then collected all traversed edges. For each size, we
repeated our experiments 10 times with different samples and
calculated the average running time.
Maintenance. Our first set of experiments aimed to measure
the overhead of provenance maintenance. We compared the run-
ning time between running the Trust program with and without
provenance maintenance. The overhead is shown in Figure 9. We
observe that the evaluation time, both with and without prove-
nance, increases exponentially as the sample size grows, which
complies with our expectation. In addition, as provenance is
maintained at the runtime as a side-computation along each rule
evaluation, the provenance maintenance incurs a small overhead.
We observed that, in average, the maintenance time is less than
10% of the total running time, and will not impact the asymptotic
scalability of PLP programs. Thus, the provenance maintenance
is efficient and its overhead in P3 for ProbLog-like PLP programs
is low enough to be accepted.
Query.We next measured the overhead to obtain the provenance
of a queried tuple, as a generic explanation query. Figure 10
summarizes our evaluation results. We fixed the hop limit to 4,
which means we only retrieved the mutual trust paths whose
length are no greater than 4 hops. Limiting the path length can
remove overly long derivation paths from the provenance and
expedite the querying process: The number of derivation paths
grows exponentially with the path length, however, the long
paths contribute little to the derivability of the queried tuple
(intuitively, people are less likely to trust a relationship that has
many hops). As shown on the figure, the query time is roughly on
the same order of magnitude compared to the maintenance time,
but grows slower for larger-sized graphs owing to the use of hop
limits. Overall, the provenance querying is reasonably efficient
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Figure 10: Provenance query time compared with mainte-
nance time. Hop limit is set to 4

Figure 11: Compression ratio of sufficient provenance

to be practical, and can be further optimized by parallelizing the
provenance graph traversal.

6.2 Performance for Different Queries
We have evaluated the overhead of provenance maintenance for
a PLP program, and the execution time of generic explanation
query (i.e., to obtain the provenance for a queried tuple). In
this section, we perform a set of experiments to measure the
performance of answering other types of provenance queries
elaborated in Section 4.
Derivation Query. To evaluate this type of query, we sampled
graphs consisting of 150 nodes and 150 edges from the trust
network (we repeated the experiment 10 times with different
sampled graphs). We queried all possible mutual paths between
two specific users and set the hop limit to 6. We ran the query
on each sampled graph and calculated the average. For each
returned provenance polynomial λ, varying the approximation
error ϵ leads to sufficient provenance of different sizes – a more
forgiving approximation error (i.e., larger ϵ) leads to a smaller-
sized sufficient provenance. We evaluated the compression ratio
of sufficient provenance with approximation error from 0.1% to
10% (X% means X percent of P[λ]). Compression ratio is defined
as the number of monomials in the sufficient provenance divided
by the number of monomials in the original provenance polyno-
mials. Our evaluation result is shown in Figure 11. We observed
that, as expected, sufficient provenance leads to significant com-
pression: it warrants a 50% deduction in provenance size even
with merely 0.1% approximation error; 10% approximation error
allows approximately 99.8% deduction.

We further evaluated the computation time of our naïve ap-
proach; we observe that the computation time was consistently
under 1 second. In fact, it decreased tremendously as we increased

the approximation error. This is because the computation of
Derivation Queries heavily relies on Monte-Carlo simulation (for
evaluating whether more monomials should be removed), and
larger approximation error shifts the search for optimal sufficient
provenance towards shorter polynomials and therefore a shorter
overall query time.
Influence Query. Our next set of experiments evaluates the
performance of Influence Queries. We used the same set of sam-
pled graphs as the Derivation Query, that is, each sampled graph
consists of 150 nodes and 150 edges. We observe that the average
time for computing the influence of all literals (and identifying
the most influential literal) is 9.6 seconds; according to the defini-
tion of influence presented in Section 4, the computation time of
influence queries highly depends on the size of the provenance,
more specifically, the number of monomials in the provenance
polynomial and the number of distinct literals. We consider two
optimizations that significantly reduce the computation time of
influence queries.
Parallelize Monte-Carlo simulation.Monte-Carlo simulation re-
peatedly evaluates the truth value of a Boolean polynomial given
a random value assignment of the variables (which can be either
true or false). This process is embarrassingly parallel and can
greatly benefit from using hardwares such as GPUs. We therefore
evaluated the computation time of the Influence Query using a
parallel implementation of Monte-Carlo simulation. The experi-
ment was run on a workstation equipped with an Intel i7 9800X
CPU, 64GB memory and four Nvidia GTX 1080 Ti GPUs. Table 8
summarizes the time required to compute the influence value
sequentially or in parallel.

Table 8: Comparison of influence query time

Seq total Seq per-literal Para total Para per-literal
9.60 0.14 0.85 0.01

We observe that the parallel implementation provides a 10x
speed improvement owing to the high degree of parallelization,
and reduces the total computation time to under 1 second.
Preprocess using sufficient provenance.We noticed that most lit-
erals have a negligibly small influence value. If our goal is to
identify the most influential literal, we might be able to avoid
computing the influences of most literals. Our approach is to
use sufficient provenance as a preprocessing step, such that the
influence query runs on a much small provenance polynomial.
To evaluate the effectiveness of this method, we first examined
whether the returned sufficient provenance still retains the most
influential literals. We computed the sufficient provenance when
allowing different approximation errors, and compared the top-5
most influential literals to the ones computed from the original
provenance. As shown in Figure 12, the rank of the top-5 most
influential literals remained the same when the error limit was
less than 2%, and then started to fluctuate as the error limit in-
creased. However, the most influential tuple remained the same
even the error limit was as high as 10%.

Second, we evaluated the computation time of Influence Query
after the preprocessing step retrieves the sufficient provenance.
Figure 13 shows the evaluation results with varying approxima-
tion error limits. We observe that, since the number of monomials
decreased exponentially as we increased the error limit, the com-
putation time of Influence Query also decreased exponentially.

We further measured the total execution time of computing
influence queries with sufficient provenance. The result is shown
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Figure 12: Rank change of top-5 most influential literals

Figure 13: Influence query time for a single literal

in Figure 14. We observed that, for large provenance polynomial,
allowing even a small approximation error would reduce the
query time tremendously. We compared it with Figure 12 and
observed that, when the approximation error limit was set ap-
propriately (around 2% in this case), the returned top influential
literals remained unchanged while the computation time could
be reduced substantially. For example, we observed an order of
magnitude reduction in computation time when setting the error
limit to 2%.
Modification Query In our last set of experiments, we evalu-
ated the performance of modification query where we change
the provenance probability to a target value with minimum cost.
Recall that the changed tuple in each step is the most influential
one to the provenance. We tested the Modification query on a
given provenance polynomial that consists of 366 monomials
and 65 distinct literals. The probability of the provenance was
0.873, and we wanted to reduce it to 0.373. We conducted the
experiment using three methods: sequential without sufficient
provenance, parallel without sufficient provenance, and sequen-
tial with sufficient provenance (with an error limit of 0.01). All
the three method returned the same change sequence: a) modify
the probability of trust21-2 by -0.75 (i.e., set its probability to
0), and b) modify the probability of trust132-2 by -0.196. The
computation time are shown in Table 9.

Table 9: Compare running times of modification query

Sequential Parallel Seq. with suff. prov.
20.66 1.55 2.44

Figure 14: Influence query on sufficient provenance

We observed that sufficient provenance can give the same re-
sult while its computation time is in the same order of magnitude
compared to the hardware-aided parallel processing.

7 RELATEDWORK

We briefly summarize related works in provenance for relational
databases (regular and probabilistic), as well as a reference to
other probabilistic logic programs.

7.1 Data Provenance
Data provenance is widely used in declarative logic programs
like Datalog and NDlog (Network Datalog) [17–19]. Provenance
information is stored using graph representation and algebraic
representation [11, 31]. The graph representation is also called
provenance graph, and the algebraic representation is commonly
encoded as provenance polynomials.

Tuple-level provenance graph is a fine-grained derivation
graph. In ExSPAN [31], the provenance graph is acyclic. There
are two types of vertices in the graph. One is the tuple vertex, and
the other is the rule execution vertex. Each tuple vertex is either a
base tuple or a derived tuple; each rule execution vertex denotes
an instance of a rule execution. The edges in the provenance
graph are unidirectional, and represent data flows between tuple
vertices and rule execution vertices.

Provenance can also be represented as provenance polynomi-
als [11] which is encoded as an algebraic expression with two
binary operations: addition “+” and multiplication “·”. Each base
tuple is encoded as one literal in the polynomials. Specifically, “+”
indicates the combination of tuples with union and projection
operations, and “·” denotes a natural join over tuples.

As we will describe later in our paper, P3 also uses ExSPAN
style execution to maintain and process provenance, with several
extensions in order to support a new provenance model.

7.2 Provenance in Probabilistic Databases
In probabilistic databases community, lineage is the synonym
of provenance. Each tuple has an associated probability score
in probabilistic databases. For SQL-like queries in probabilistic
databases, provenance can support explanations for the queried
tuple probabilities. For instance, Trio [30] is an innovative data-
base management system (DBMS) based on an extended rela-
tional model called Uncertainty-Lineage Databases (ULDBs) to
handle the uncertainty of data and data lineage. It extends the tra-
ditional model by adding a confidence value (probability of being
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true) for each tuple. Trio introduces a SQL-based language called
TriQL for querying confidences and lineage in ULDBs. In our
paper, for PLP programs, we do not consider SQL-like queries.

In addition, for probabilistic databases, approximation of lin-
eage such as sufficient lineage [25] is used for only keeping track
of the most important derivations for the derived tuple given
some approximation error ϵ . Kanagal et al. presented a further
discussion and provided an efficient approach for sensitivity and
explanation analysis [13]. This approach works on read-once
lineages from conjunctive queries without self-joins. However,
read-once is not a universal property of the provenance polyno-
mials extracted from PLP programs.

7.3 Probabilistic Logic Programs
Milch et al. introduced the BLOG language [20] to define proba-
bilistic models with unknown objects and identity uncertainty.
Unlike BLOG based on first-order logic, Goodman et al. devel-
oped Church[10], a LISP-like language based on lambda calculus
to describe stochastic generative processes. Furthermore, Pfeffer
introduced an object-oriented language called Figaro for proba-
bilistic programming. Beside these languages, for probabilistic
inference, Alchemy[26] is a system based on Markov logic repre-
sentation to construct knowledge bases. Niu et al. and Gribkoff et
al. introduced Tuffy[22] and SlimShot[12] respectively such that
MLN inference can perform on large scale data sets. Compared
to the aforementioned studies, our contribution is on providing
a feasible solution to perform quantitative query evaluations for
debugging purposes.

8 CONCLUSIONS AND FUTURE WORK
This paper proposes P3, a platform and system for capturing
provenance in probabilistic logic programs. P3 maintains the
provenance information using both graph representation (di-
rected acyclic provenance graph) and algebraic representation
(provenance polynomials as Boolean DNF formulas). P3 enables
a wide range of novel query types, including explanation query,
derivation query, influence query, and modification query. We
conduct the theoretical analysis of P3’s provenance model and
queries. Our evaluation on a P3 prototype demonstrate the feasi-
bility of P3 across multiple use cases with low overhead.

Moving forward, we are working on expanding the scope of
PLP programs supported by P3. We plan to extend provenance
model and system to support first-order PLP programs with nega-
tion, and machine-learning style inference [3, 6, 26]. As we sup-
port more language features, we would also like to broaden our
use cases to include learning-based applications, such as explain-
able recommendation through relational learning. Finally, we are
exploring ways to improve our performance further, leveraging
parallel query execution across multiple machines in a cluster.
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ABSTRACT
The containment rate of query Q1 in query Q2 over database
D is the percentage of Q1’s result tuples over D that are also
in Q2’s result over D. We directly estimate containment rates
between pairs of queries over a specific database. For this, we use
a specialized deep learning scheme, Containment Rate Network
(CRN), which is tailored to representing pairs of SQL queries
(inspired by the MSCN model [22]). Result-cardinality estimation
is a core component of query optimization. We describe a novel
approach for estimating queries’ result-cardinalities using esti-
mated containment rates among queries. This containment rate
estimation may rely on CRN or embed, unchanged, known cardi-
nality estimation methods. Experimentally, our novel approach
for estimating cardinalities, using containment rates between
queries, on a challenging real-world database, realizes significant
improvements to state of the art cardinality estimation methods.

1 INTRODUCTION
Query Q1 is contained in (resp. equivalent to), query Q2, analyti-
cally, if for all database states D, Q1’s result over D is contained
in (resp., equals)Q2’s result over D. Query containment is a well-
known concept that has applications in query optimization. It
has been extensively researched in database theory, and many
algorithms were proposed for determining containment under
different assumptions [8, 9, 16, 40]. However, determining query
containment analytically is not practically sufficient. Two queries
may be analytically unrelated by containment, although, the exe-
cution result on a specific database of one query may actually be
contained in the other. For example, consider the queries:
Q1: select * from movies where title = ’Titanic’
Q2: select * from movies where release = 1997 and director = ’James
Cameron’
Both queries execution results are identical since there is only
one movie called Titanic that was released in 1997 and directed
by James Cameron (he has not directed any other movie in 1997).
Yet, using the analytic criterion, the queries are unrelated at all
by containment.

To our knowledge, while query containment and equivalence
have been well researched in past decades, determining the con-
tainment rate between two queries on a specific database, has not
been considered by past research.

By definition, the containment rate of query Q1 in query Q2
on database D is the percentage of rows (tuples) in Q1’s execu-
tion result over D that are also in Q2’s execution result over D.
Determining containment rates allows us to solve other prob-
lems, such as determining equivalence between two queries, or
whether one query is fully contained in another, on the same

© 2020 Copyright held by the owner/author(s). Published in Proceedings of the
23rd International Conference on Extending Database Technology (EDBT), March
30-April 2, 2020, ISBN 978-3-89318-083-7 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

specific database. In addition, containment rates can be used in
many practical applications, for instance, query clustering, query
recommendation [11, 15], and in cardinality estimation as will
be described subsequently.

Our approach for estimating containment rates is based on
a specialized deep learning model, CRN, which enables us to
express query features using sets and vectors. An input query
is converted into three sets, T , J and P representing the query’s
tables, joins and column predicates, respectively. Each element
of these sets is represented by a vector. Using these vectors,
CRN generates a single vector that represents the whole input
query. Finally, CRN estimates the containment rate of two input
queries by using their representative vectors as input to another
specialized neural network. Thus, the CRN model relies on the
ability of the neural network to learn the vector representation
of queries relative to the specific database. As a result, we obtain
a small and accurate model for estimating containment rates.

In addition to the CRN model, we introduce a novel tech-
nique for estimating queries’ cardinalities using estimated query
containment rates. We show that using the proposed technique
we improve current cardinality estimation techniques signifi-
cantly. This is especially the case when there are multiple joins,
where the known cardinality estimation techniques suffer from
under-estimated results and errors that grow exponentially as
the number of joins increases [14]. Our technique estimates the
cardinalities more robustly (x150/x175 with 4 joins queries, and
x1650/x120 with 5 joins queries, compared with PostgreSQL and
MSCN, respectively).

As shown in [26], to obtain an efficient query plan, the query
optimizer chooses the cheapest alternative from semantically
equivalent plan alternatives. Since the cost model uses the car-
dinality estimates as a principal input, the more accurate the
cardinality estimates are, the more accurate the predicted plans
costs are. Thus, by using the more accurate cardinality estimates
obtained from our technique, the query optimizer can generate
better query plans, resulting in faster query execution time.

We compare our technique with PostgreSQL [1], and the pi-
oneering multi-set convolutional network (MSCN) model [22],
by examining, on the real-world IMDb database [26], join cross-
ing correlations queries which are known to present a tough
challenge to cardinality estimation methods [26, 28, 35].

We show that by employing known existing cardinality esti-
mation methods for containment estimation, we can improve on
their cardinality estimates as well, without changing the methods
themselves. Thus, our novel approach is highly promising for
solving the cardinality estimation problem, the "Achilles heel"
of query optimization [30], a cause of many performance issues
[26].

The rest of this paper is organized as follows. In Section 2
we define the containment rate problem and in Sections 3-4 we
describe and evaluate the CRN model for solving this problem.
In Sections 5-6 we describe and evaluate our new approach for
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estimating cardinalities using containment rates. In Section 7
we show how one can adapt the new ideas to improve existing
cardinality estimation models, and in Section 8 we compare the
prediction time among the different approaches. Finally, Sections
9-10 present related work, conclusions and future work.

2 CONTAINMENT RATE DEFINITION
We define the containment rate between two queries Q1, and
Q2 on a specific database D. Query Q1 is x%-contained in query
Q2 on database D if precisely x% of Q1’s execution result rows on
database D are also in Q2’s execution result on database D. The
containment rate is formally a function fromQxQxD toR, where
Q, D and R are the set of all queries, all databases, and the Real
numbers, respectively. This function can be directly calculated as
follows. Let Q1(D) = (A,m1) and Q2(D) = (B,m2) be multisets1
representing queries Q1 and Q2 execution results on database D,
respectively, then:

x% =
∑
x ∈(A∩B)m1(x)∑
x ∈Am1(x)

∗ 100

Where operator ∩ is the regular set intersection operator (in case
Q1’s execution result is empty, then Q1 is 0%-contained in Q2).
Note that the containment rate is defined only on pairs of queries
whose SELECT and FROM clauses are identical.

Since we aim to estimate cardinalities using containment rates,
we consider only queries with SELECT * clauses, then, given a
query Q whose SELECT clause includes specific columns, Q’s
cardinality is identical to the cardinality of the query with a
SELECT * clause instead (as long as the DISTINCT keyword is
not used). Therefore, in practice, the requirement that the clauses
need to be identical applies only to the FROM clauses.

2.1 Containment Rate Operator
We denote the containment rate operator between queries Q1
and Q2 on database D as:

Q1 ⊂D
% Q2

Operator ⊂D
% returns the containment rate between the given

input queries on database D. That is,Q1 ⊂D
% Q2 returns x%, ifQ1

is x%-contained in query Q2 on database D. For simplicity, we
do not mention the specific database, as it is usually clear from
context. Hence, we write the containment rate operator as ⊂%.

3 LEARNED CONTAINMENT RATES
From a high-level perspective, applying machine learning to the
containment rate estimation problem is straightforward. Follow-
ing the training of the CRN model with pairs of queries (Q1,Q2)
and the actual containment rates Q1 ⊂% Q2, the model is used
as an estimator for other, unseen pairs of queries. (Later on, as
described in Section 5, we will make use of this model to estimate
cardinalities of single queries). There are, however, several ques-
tions whose answers determine whether the machine learning
model (CRN) will be successful. (1) Which supervised learning
algorithm/model should be used. (2) How to represent queries
as input and the containment rates as output to the model ("fea-
turization"). (3) How to obtain the initial training dataset ("cold
start problem"). Next, we describe how we address each one of
these questions.
1From Wikipedia: A multiset may be formally defined as a 2-tuple (S,m) where
S is the underlying set of the multiset, formed from its distinct elements, and
m : S → N≥1 is a function from S to the set of the positive integers, giving the
multiplicity. The number of occurrences of element x in the multiset ism(x ).

3.1 Cold Start Problem
3.1.1 Defining the Database. We generated a training-set, and

later on evaluated our model on it, using the IMDb database.
IMDb contains many correlations and has been shown to be
very challenging for cardinality estimators [26]. This database
contains a plethora of information about movies and related facts
about actors, directors, and production companies, with more
than 2.5M movie titles produced over 130 years (starting from
1880) by 235,000 different companies with over 4M actors.

3.1.2 Generating the Development Dataset. Our approach for
solving the "cold start problem" is to obtain an initial training
corpus using a specialized queries generator that randomly gen-
erates queries based on the IMDB schema and the actual columns
values. Our queries generator generates the dataset in three main
steps. In the first step (similarly to MSCN’s queries generator), it
repeatedly generates multiple SQL queries as follows. It randomly
chooses a set of tables t (t = {bt1,bt2, ...,bt |t |}). Then, it adds
|t | − 1 join edges to the query, bti .cola = bti+1.colb , 1 ≤ i < |t |.
Each of these joins is on a column containing the ID of movies
(each table in IMDB has such a column). Note that when |t | = 1,
there are no joins in the query.

For each base table bt in t , it uniformly draws the number
of query predicates pbt (0 ≤ pbt ≤ number of columns in table
bt ). Subsequently, for each predicate it uniformly draws a col-
umn from the relevant table bt , a predicate type (<, =, or >),
and a value from the corresponding column values range in the
database. To avoid a combinatorial explosion, and to simplify
the problem that the model needs to learn, we force the queries
generator to create queries with up to two joins and let the model
generalize to a larger number of joins (that is, the maximum car-
dinality of set t is 3). Note that all the generated queries include
a SELECT * clause. They are denoted as initial-queries.

To create pairs of queries that are contained in each other
with different containment rates, we generate, in the second step,
queries that are "similar" to the initial-queries, but still, different
from them, as follows. For each query Q in initial-queries, the
generator repeatedly creates multiple queries by randomly chang-
ing query Q’s predicates’ types, or the predicates’ values, and
by randomly adding additional predicates to the original query
Q . This way, we create a "hard" dataset, which includes pairs of
queries that look "similar", but having mutual containment rates
that vary significantly. Finally, in the third and last step, using the
queries obtained from both previous steps, the queries generator
generates pairs of queries whose FROM clauses are identical.

After generating the dataset, we execute the dataset queries
on the IMDb database, to obtain their true containment rates and
skip query pairs that include a query with an empty result set.
Using this process, we obtain an initial training set of 100,000
pairs of queries with zero to two joins. We split the training
samples into 80% training samples and 20% validation samples.

3.2 Model
Featurizing all the queries’ literals and predicates as one "big
hot vector", over all the possible words that may appear in the
queries, is impractical. Also, serializing the queries’ SELECT,
FROM, and WHERE clauses elements into an ordered sequence
of elements, is not practical, since the order in these clauses
is arbitrary. Thus, standard deep neural network architectures
such as simple multi-layer perceptrons [6], convolutional neural
networks [6], or recurrent neural networks [6], are not directly
applicable to our problem.
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Our Containment Rate Network (CRN) model uses a special-
ized vector representation for representing the input queries and
the output containment rates. As depicted in Figure 1, the CRN
model runs in three main stages. Consider an input queries pair
(Q1,Q2). In the first stage, we convertQ1 (resp.,Q2) into a set of
vectors V 1 (resp., V 2). Thus (Q1,Q2) is represented by (V 1,V 2).
In the second stage, we convert set V 1 (resp., V 2) into a unique
single representative vectorQvec1 (resp.,Qvec2), using a special-
ized neural network,MLPi , for each set separately. In the third
stage, we estimate the containment rate Q1 ⊂% Q2, using the
representative vectorsQvec1 andQvec2, and another specialized
neural network,MLPout .

Figure 1: CRN Model Archeticture.

3.2.1 First Stage, from (Q1,Q2) to (V 1,V 2). In the same way
as MSCNmodel [22], we represent each queryQ as a collection of
three sets (T , J , P).T is the set of all the tables inQ ’s FROM clause.
J is the set of all the joins (i.e., join clauses) inQ ’s WHERE clause.
P is the set of all the (column) predicates in Q’s WHERE clause.
Using sets T , J , and P , we obtain a set of vectors V representing
the query, as described later. Unlike MSCN, in our model all
the vectors of set V have the same dimension and the same
segmentation as depicted in Table 1, where #T is the number of all
the tables in the database, #C is the number of all the columns in
all the database tables, and #O is the number of possible predicates
operators. In total, the vector dimension is #T + 3 ∗ #C + #O + 1,
denoted as L.

The queries tables, joins and column predicates (sets T , J and
P ) are inseparable, hence, treating each set individually using
different neural networks may disorientate the model. Therefore,
we choose to featurize these sets using the same vector format
in order to ease learning.

Type Table Join Column Predicate
Segment T-seg J1-seg J2-seg C-seg O-seg V-seg

Segment size #T #C #C #C #O 1
Featurization one hot one hot one hot one hot one hot norm

Table 1: Vector Segmentation.

Element of sets T , J , and P , are represented by vectors as fol-
lows (see a simple example in Figure 2). All the vectors have the
same dimension L. Each table t ∈ T is represented by a unique
one-hot vector (a binary vector of length #T with a single non-
zero entry, uniquely identifying a specific table) placed in the
T-seg segment. Each join clause of the form (col1,=, col2) ∈ J is
represented as follows. col1 and col2 are represented by a unique
one-hot vectors placed in J1-seg and J2-seg segments, respec-
tively. Each predicate of the form (col ,op,val) ∈ P is represented
as follows. col and op are represented by a unique one-hot vec-
tors placed in the C-seg and V-seg segments, respectively. val is

represented as a normalized value ∈ [0, 1], normalized using the
minimum and maximum values of the respective column, placed
in the V-seg segment. For each vector, all the other unmentioned
segments are zeroed. Given input queries pair, (Q1,Q2), we con-
vert queryQ1 (resp.,Q2) into setsT , J and P , and each element of
these sets is represented by a vector as described above, together
generating set V 1 (resp., V 2).

3.2.2 Second Stage, from (V 1,V 2) to (Qvec1,Qvec2). Given
set of vectors Vi , we present each vector of the set into a fully-
connected one-layer neural network, denoted asMLPi , convert-
ing each vector into a vector of dimension H . The final represen-
tation Qveci for this set is then given by the average over the
individual transformed representations of its elements, i.e.,

Qveci =
1
|Vi |

∑
v ∈Vi

MLPi (v)

MLPi (v) = Relu(vUi + bi )

WhereUi ∈ RLxH , bi ∈ RH are the learned weights and bias, and
v ∈ RL is the input row vector. We choose an average (instead of,
e.g., sum) to ease generalization to different numbers of elements
in the sets, as otherwise the overall magnitude of Qvec would
vary depending on the number of elements in the set Vi .

3.2.3 Third Stage, from (Qvec1,Qvec2) to Q1 ⊂% Q2. Given
the representative vectors of the input queries,(Qvec1,Qvec2),
we aim to predict the containment rateQ1 ⊂% Q2 as accurately as
possible. Since we do not knowwhat a "natural" containment rate
measure is in the representative queries vector space, encoded by
the neural networks of the second step, we use a fully-connected
two-layer neural network, denoted asMLPout , to compute the
estimated containment rate of the input queries, leaving it up
to this neural network to learn the correct containment rate
measure.

MLPout takes as input a vector of size 4H which is constructed
using function ExpandFunction that creates a row of concate-
nated vectors of size 4H using vectors Qvec1 and Qvec2. We use
this function in order to provide the final network,MLPout , with
additional information that may enhance its learning and thus
obtain more accurate containment rates estimations.

The first layer in MLPout converts the input vector into a
vector of size 2H . The second layer converts the obtained vector
of size 2H , into a single value representing the containment rate.

ŷ = MLPout (Expand(Qvec1,Qvec2))

MLPout (v) = Siдmoid(ReLU (vUout1 + bout1)Uout2 + bout2)

Expand(v1,v2) = [v1, v2, abs(v1 −v2), v1 ⊙ v2]

Here, ŷ is the estimated containment rate (a number in [0, 1]),
Uout1 ∈ R4Hx2H , bout1 ∈ R2H and Uout2 ∈ R2Hx1, bout2 ∈

R1 are the learned weights and bias, abs is the absolute value
function, and ⊙ is the dot-product function.

We use the ReLU 2 activation function for hidden layers in all
the neural networks, as they show strong empirical performance
advantages and are fast to evaluate.

In the final step, we apply the Siдmoid3 activation function
in the second layer to output a float value in the range [0,1], as
the containment rate values are within this interval. Therefore,
we do not apply any featurization on the containment rates (the
output of the model) and the model is trained with the actual
containment rate values without any featurization steps.
2ReLU(x) = max(0,x); see [36].
3Sigmoid(x) = 1/(1 + e−x ); see [36].
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Figure 2: Query featurization as sets of feature vectors obtained from sets T , J and P (Rest denotes zeroed segments).

3.2.4 Loss Function. Since we are interested in minimizing
the ratio between the predicted and the actual containment rates,
we use the q-error metric in our evaluation. We train our model
to minimize the mean q-error [33], which is the ratio between an
estimated and the actual containment rate (or vice versa). Let y
be the true containment rate, and ŷ the estimated rate, then the
q-error is defined as follows.

q − error (y, ŷ) = ŷ > y ? ŷ

y
: y

ŷ

The q-error is not defined when y (or y′) equals zero. Therefore,
in creating the training and testing datasets we skip query pairs
that include a query with an empty results set (see Section 3.1.2).

In addition to optimizing the mean q-error, we also exam-
ined the mean squared error (MSE) and the mean absolute error
(MAE) as optimization goals. MSE and MAE would optimize the
squared/absolute differences between the predicted and the ac-
tual containment rates. Optimizing with theses metrics makes
the model put less emphasis on heavy outliers (that lead to large
errors). Therefore, we decided to optimize our model using the
q-error metric which yielded better results.

3.3 Training and Testing Interface
Building CRN involves two main steps. (1) Generating a random
training set using the schema and data information as described
in Section 3.1. (2) Repeatedly using this training data, we train
the CRN model as described in Section 3.2 until the mean q-error
of the validation test starts to converges to its best absolute value.
That is, we use the early stopping technique [39] and stop the
training before convergence to avoid over-fitting. Both steps are
performed on an immutable snapshot of the database.

After the training phase, to predict the containment rate of
an input query pair, the queries first need to be transformed
into their feature representation, and then they are presented as
input to the model, and the model outputs the estimated contain-
ment rate (Section 3.2). We train and test our model using the
Tensor-Flow framework [34], and make use of the efficient Adam
optimizer [21] for training the model.

3.4 Hyperparameter Search
To optimize ourmodel’s performance, we conducted a search over
its hyperparameter space. In particular, we focused on tuning the
neural networks hidden layer size (H) as we found out that this
hyperparameter has the most impact on the results.

Note that the same H value is shared in all the neural networks
of the CRN model, as described in section 3.2. During the tuning
of the size hyperparameter of the neural network hidden layer,
we found that increasing the size of our hidden layer generally
led to an increase in the model accuracy, till it reached the best
mean q-error on the validation test. Afterwards, the results began
to decline in quality because of over-fitting (see Figure 3). Hence,
we choose a hidden layer of size 512, as a good balance between
accuracy and training time.

Overall, we found that our model performs uniformly well
across a wide range of settings when considering different batch
sizes and learning rates. We use a learning rate of 0.001, and
batch size of 128, as these settings lead to the best results on the
validation test.

Figure 3: The mean q-error on the validation set with dif-
ferent hidden layer sizes.

3.5 Model Computational Costs
We analyze the training, prediction, and space costs of the CRN
model with the default hyperparameters (H=512, batch size=128,
learning rate=0.001).

3.5.1 Training Time. Figure 4 shows how the mean q-error of
the validation set decreases with additional epochs, until conver-
gence to a mean q-error of around 4.5. The CRN model requires
almost 120 passes on the training set to converge. On average,
measured across six runs, a training run with 120 epochs takes
almost 200 minutes.

3.5.2 Prediction Time. The prediction process is dominated by
converting the input queries into the corresponding vectors, and
presenting these vectors as input to the CRN model. On average,
the prediction time is 0.5ms per single pair of queries, including
the overhead introduced by the Tensor-Flow framework.

3.5.3 Model Size. The CRN model includes all the learned
parameters mentioned in Section 3.2 (U1,U2,Uout1,Uout2, b1, b2,
bout1, bout2). In total, there are 2∗L∗H +8∗H2+6∗H +1 learned
parameters. In practice, the size of the model, when serialized to
disk, is roughly 1.5MB.

Figure 4: Convergence of the mean q-error on the valida-
tion set.
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4 CONTAINMENT EVALUATION
Since the focus of this paper is on cardinality estimation using
containment rates, in this section we only briefly present the
containment evaluation results of the CRNmodel when compared
to other (baseline) methods. In the following sections, we present
in detail the experiments of the cardinality estimation technique.

Since to the best of our knowledge, the problem of determin-
ing containment rate has not been addressed till now, we use a
transformation as described in Section 4.1 below.

4.1 From Cardinality to Containment
To our knowledge, this is the first work to address the problem of
containment rate estimation. In order to compare our results with
different baseline methods, we used existing cardinality estima-
tion methods to predict the containment rates, using the Crd2Cnt
transformation, as depicted in the middle part diagram in Fig-
ure 5. (This transformation will be used also in our technique to
improve existing cardinality estimation models in Section 7).

4.1.1 The Crd2Cnt Transformation. Given a cardinality esti-
mation modelM , we can convert it to a containment rate estima-
tion model using the Crd2Cnt transformation which returns a
modelM ′ for estimating containment rates. The obtained model
M ′ functions as follows. Given input queries Q1 and Q2, whose
containment rate Q1 ⊂% Q2 needs to be estimated:

• Calculate the cardinality of query Q1∩Q2 usingM .
• Calculate the cardinality of query Q1 usingM .
• Then, the containment rate estimate is:

Q1 ⊂% Q2 = |Q1∩Q2|
|Q1|

Here, Q1∩Q2 is the intersection query of Q1 and Q2 whose
SELECT and FROM clauses are identical toQ1’s (orQ2’s) clauses,
and whose WHERE clause is Q1’s AND Q2’s WHERE clauses.
Note that, by definition, if |Q1| = 0 then Q1 ⊂% Q2 = 0.

Given model M , we denote the obtained model M ′, via the
Crd2Cnt transformation, as Crd2Cnt(M).

4.2 Experimental Results
We compared the CRN model predictions to those based on the
other examined cardinality estimation models, using the Crd2Cnt
transformation. We evaluated the models with several workloads,
that included over 2000 queries with zero to five joins, on the
challenging real-world IMDB database [26]. In terms of mean
q-error [33], the CRN model reduced the mean q-errors by a
factor of roughly 8 compared with the estimates obtained from
Crd2Cnt(PostgreSQL) and Crd2Cnt(MSCN).

To provide a fuller picture, in Table 2 we show the percentiles,
maximum, and mean q-errors, on one of the examined evaluation
workloads. Additional details may be found in arXiv [18].

50th 75th 90th 95th 99th max mean
Crd2Cnt(PostgreSQL) 4.5 46.22 322 1330 39051 316122 1345
Crd2Cnt(MSCN) 4.1 17.85 157 754 14197 768051 1238
CRN 3.64 13.19 96.6 255 2779 56965 161

Table 2: Estimation errors on 1200 examined queries with
zero to five joins, equally distributed in the number of
joins. In all the similar tables presented in this paper, we
provide the percentiles, maximum, and themean q-errors
of the tests. The p’th percentile, is the q-error value below
which p% of the test q-errors are found. For example, 50%
of the CRN test q-errors are smaller than 3.64.

5 CARDINALITY ESTIMATION USING
CONTAINMENT RATES

In this section we consider one application of the proposed con-
tainment rate estimation model: cardinality estimation. We intro-
duce a novel approach for estimating cardinalities using query
containment rates, and we show that using the proposed ap-
proach, we improve cardinality estimations significantly, espe-
cially in the case when there are multiple joins.

A traditional query optimizer is crucially dependent on cardi-
nality estimation, which enables choosing among different plan
alternatives by using the cardinality estimation of intermediate
results within query execution plans. Therefore, the query opti-
mizer must use reasonably good estimates. However, estimates
produced by all widely-used database cardinality estimation mod-
els are routinely significantly wrong (under/over-estimated), re-
sulting in not choosing the best plans, leading to slow executions
[26].

Three principal approaches for estimating cardinalities have
emerged. (1) Using database profiling [1]. (2) Using histograms
[3, 7]. (3) Using sampling techniques [5, 27, 37]. Recently, deep
learning neural networks were also used for solving this prob-
lem [22, 45]. However, all these approaches, with all the many
attempts to improve them, have conceptually addressed the prob-
lem directly in the same way, as a black box, where the input is a
query, and the output is its cardinality estimation, as described in
the leftmost diagram in Figure 5. In our proposed approach, we
address the problem differently, and we obtain better estimates
as described in Section 6.

In prior works, the answers to previous queries were used for
speeding up new queries, by incrementally updating histograms,
and in the context of query re-optimization [3, 7, 13, 20]. Similarly,
using the CRN model for predicting containment rates, we are
making use of these previous answers to reveal the underlying
relations between the new queries and the previous ones.

Our new technique for estimating cardinalities mainly relies
on two key ideas. The first one is the new framework in which
we solve the problem. The second is the use of a queries pool that
maintains multiple previously executed queries along with their
actual cardinalities, as part of the database meta information. The
queries pool provides new information that enables our technique
to achieve better estimates. Using a containment rate estimation
model, we make use of previously executed queries along with
their actual cardinalities to estimate the result-cardinality of a
new query. This is done with the help of a simple transformation
from the problem of containment rate estimation to the problem
of cardinality estimation (see Section 5.1).

5.1 From Containment to Cardinality
Using a containment rate estimation models, we can obtain car-
dinality estimates using the Cnt2Crd transformation, as depicted
in the rightmost diagram in Figure 5.

5.1.1 The Cnt2Crd Transformation. Given a containment rate
estimation model4 M , we convert it to a cardinality estimation
model using the Cnt2Crd transformation which returns a model
M ′ for estimating cardinalities. The obtained modelM ′ functions
as follows. We are given a "new" query, denoted asQnew , as input
to cardinality estimation. Assume that there is an "old" query,
denoted as Qold , whose FROM clause is the same as Qnew ’s

4The term "model" may refer to an ML model or simply to a method.

161



Figure 5: A novel approach, from cardinality estimation to containment rate estimation, and back to cardinality estimation
by using a queries pool.

FROM clause, that has already been executed over the database,
and therefore |Qold | is known, thenM ′ functions as follows:

• Calculate x_rate = Qold ⊂% Qnew usingM .
• Calculate y_rate = Qnew ⊂% Qold usingM .
• Then, the cardinality estimate equals to:

|Qnew | =
x_rate
y_rate ∗ |Qold |

provided that y_rate = Qnew ⊂% Qold , 0. This is true, since:

x_rate = |Qnew∩Qold |

|Qold |
, y_rate = |Qnew∩Qold |

|Qnew |

And therefore,
x_rate
y_rate =

|Qnew∩Qold |

|Qold |
∗

|Qnew |

|Qnew∩Qold |
=

|Qnew |

|Qold |

where the query intersection operator, ∩, is as defined in Section
4.1.1. Given modelM , we denote the obtained modelM ′, via the
Cnt2Crd transformation, as Cnt2Crd(M).

5.2 Queries Pool
Our technique for estimating cardinality reliesmainly on a queries
pool that includes records of multiple queries.

The queries pool is envisioned to be an additional component
of the DBMS, along with all the other customary components.
It includes multiple queries with their actual cardinalities5, but
without the queries execution results. Therefore, holding such a
pool in the DBMS as part of its meta information does not require
significant storage space or other computing resources. Maintain-
ing a queries pool in the DBMS is thus a reasonable expectation.
The DBMS continuously executes queries, and therefore, we can
easily configure the DBMS to store these queries along with their
actual cardinalities in the queries pool.

In addition, we may construct in advance a queries pool using
a queries generator that randomly creates multiple queries with
many of the possible joins, and with different column predicates.
We then execute these queries on the database to obtain and save
their actual cardinalities in the queries pool.

Notice that we can combine both approaches (actual comput-
ing and a generator) to create the queries pool. The advantage of
the first approach is that in a real-world situation, queries that
are posed in sequence by the same user, may be similar and there-
fore we can get more accurate cardinality estimates. The second
approach helps in cases where the queries posed by users are
diverse (e.g., different FROM clauses). Therefore, in such cases,
we need to make sure, in advance, that the queries pool contains
sufficiently many queries that cover all the possible cases.

5Due to limited space, we do not detail the efficient hash-based data structures used
to implement the queries pool.

Given a query Q whose cardinality is to be estimated , it is
possible that we fail to find any appropriate query, in the queries
pool, to match with queryQ . This happens when all the queries in
the queries pool have a different FROM clause than that of query
Q , or that they are not contained at all in query Q . In such cases
we can always use the known basic cardinality estimation models.
In addition, we can make sure that the queries pool includes
queries with the most frequently used FROM clauses, with empty
column predicates. That is, queries of the following form:

SELECT * FROM − set o f tables − WHERE TRUE

In this case, for most of the queries posed in the database, there is
at least one query that matches in the queries pool with the given
query, and hence, we can estimate the cardinality (perhaps less
accurately) without resorting to the basic cardinality estimation
models.

5.3 A Cardinality Estimation Technique
Consider a new queryQnew , and assume that the DBMS includes
a queries pool as previously described. To estimate the cardinality
of Qnew accurately, we use multiple "old" queries instead of one
query, using the same Cnt2Crd transformation of Section 5.1.1,
as described in Figure 6.

EstimateCardinality(Query Qnew , Queries Pool QP ):
results = empty list

For every pair (Qold , |Qold |) in QP :
if Qold ’s FROM clause , Qnew ’s FROM clause:

continue
Calculate x_rate = Qold ⊂% Qnew
Calculate y_rate = Qnew ⊂% Qold
if y_rate <= epsilon: /* y essentially zero */

continue
results .append(x_rate/y_rate ∗ |Qold |)

return F(results)

Figure 6: Cardinality Estimation Technique.

Algorithm EstimateCardinality considers all the matching
queries whose FROM clauses are identical to Qnew ’s FROM
clause. For each matching query, we estimate Qnew ’s cardinality
using the Cnt2Crd transformation and save the estimated result
in the results list. The final cardinality is obtained by applying the
final function, F , that converts all the estimated results recorded
in the results list, into a single final estimation value. Note that
the technique can be easily parallelized since each iteration in the
For loop is independent, and thus can be calculated in parallel.
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5.3.1 Comparing Different Final Functions. We examined var-
ious final functions (F ), including:

• Median, returning the median value of the results list.
• Mean, returning the mean value of the results list.
• Trimmedmean, returning the trimmedmean of the results
list without the 25% outliers (trimmed removes a desig-
nated percentage of the largest and smallest values before
calculating the mean).

Experimentally, the cardinality estimates using the various
functions were very similar in terms of q-error. But the Median
function yielded the best estimates as it is more stable to outliers
(we do not detail these experiments due to limited space).

5.3.2 Early Stopping. The described cardinality estimation
technique considers all the matching queries to the given in-
put query on the queries pool. However, we can configure the
technique for early stopping. That is, taking into account all the
matching queries in the pool is not always necessary. We can
set a limit on the number of matching queries that are used to
estimate the input query cardinality, and thus obtain predictions
faster by considering only a subset of the matching queries.

In the reported experiments we consider all the queries in the
pool since the pool size is limited as described in Section 6.2.

6 CARDINALITY EVALUATION
We evaluate our proposed technique for estimating cardinality,
with different test sets, while using the CRN model as defined in
Section 3.2 for estimating containment rates.

We compare our cardinality estimates with those of the Post-
greSQL version 11 cardinality estimation component [1], a simple
and commonly used method for cardinality estimation. In ad-
dition, we compare our cardinality estimates with those of the
MSCN model [22]. MSCN was shown to be superior to the best
methods for estimating cardinalities such as Random Sampling
(RS) [5, 37] and the state-of-the-art Index-Based Join Sampling
(IBJS) [27].

In order to make a fair comparison between the CRN model
and the MSCN model, we train the MSCN model with the same
data that was used to train the CRN model. The CRN model takes
two queries as input, whereas the MSCN model takes one query
as input. Therefore, to even the playing field, we created the
training dataset for the MSCN model as follows. For each pair of
queries (Q1,Q2) used in training the CRN model, we added the
following two input queries to the MSCN training set:

• Q1∩Q2, along with its actual cardinality.
• Q1, along with its actual cardinality.

Finally, we ensure that the training set includes only unique
queries without repetition. This way, both models, MSCN and
CRN, are trained with the same information. Note that comparing
with the profiling and histograms-based PostgreSQL does not
require generating training set.

We create the test workloads using the same queries generator
used for creating the training set of the CRN and the MSCN
models (described in Section 3.1.2), while skipping its last step.
That is, we only run the first two steps of the generator. The third
step creates query pairs which are irrelevant for the cardinality
estimation task.

6.1 Evaluation Workloads
We evaluate our approach on the (challenging) IMDb dataset,
using three different query workloads:

• crd_test1, a synthetic workload generated by the same
queries generator that was used for creating the training
data of the CRN model, as described in Section 3.1 (using
a different random seed) with 450 unique queries, with
zero to two joins.

• crd_test2, a synthetic workload generated by the same
queries generator as the training data of the CRN model,
as described in Section 3.1 (using a different random seed)
with 450 unique queries, with zero to five joins. This
dataset is designed to examine how the technique gen-
eralizes to additional joins.

• scale, another synthetic workload, with 500 unique queries,
derived from the MSCN test set as introduced in [22].
This dataset is designed to examine how the technique
generalizes to queries that were not created with the same
queries generator used for training.

number of joins 0 1 2 3 4 5 overall
crd_test1 150 150 150 0 0 0 450
crd_test2 75 75 75 75 75 75 450
scale 115 115 107 88 75 0 500

Table 3: Distribution of joins.

6.2 Queries Pool
Our technique relies on a queries pool, we thus created a synthetic
queries pool, QP , generated by the same queries generator as
the training data of the containment rate estimation model, as
described in Section 3.1 (using a different random seed) with 300
queries, equally distributed among all the possible FROM clauses
over the database. In particular,QP , covers all the possible FROM
clauses that are used in the test workloads. Note that, there are
no shared queries between theQP queries and the test workloads
queries.

Consider a query Q whose cardinality needs to be estimated.
On the one hand, the generated QP contains "similar" queries to
queryQ . These can help the machine in predicting the cardinality.
On the other hand, it also includes queries that are not similar at
all to query Q . These may cause erroneous cardinality estimates.
Therefore, the generated queries pool QP , faithfully represents a
real-world situation.

6.3 Experimental Environment
In all the following cardinality estimation experiments, for pre-
dicting the cardinality of a given query Q in a workloadW , we
use the whole queries poolQP as described in Section 6.2 with all
its 300 queries. That is, the "old" queries used for predicting cardi-
nalities, are the queries of QP . In addition, in all the experiments
we use the Median function as the final F function.
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6.4 The Quality of Estimates
Figure 7 depicts the q-error of the Cnt2Crd(CRN) model as com-
pared toMSCN and PostgreSQL on the crd_test1 workload.While
PostgreSQL’s errors are more skewed towards the positive do-
main, MSCN is competitive with Cnt2Crd(CRN) in all the de-
scribed values. As can be seen in Table 4, while MSCN provides
the best results in the margins, the Cnt2Crd(CRN) model is more
accurate in 75% of the tests (as it is less accurate, in the margins,
than MSCN with queries that have up to two joins). In addition,
we show in the next section (Section 6.5) that the Cnt2Crd(CRN)
model is more robust when considering queries with more joins
than in the training dataset.

Figure 7: Estimation errors on the crd_test1 workload. In
all the similar plots presented in this paper, the box bound-
aries are at the 25th/75th percentiles and the horizontal
lines mark the 5th/95th percentiles. Hence, 50% of the
tests results are located within the box boundaries, and
90% are located between the horizontal lines. The orange
horizontal line mark the 50th percentile.

50th 75th 90th 95th 99th max mean
PostgreSQL 1.74 3.72 22.46 149 1372 499266 1623
MSCN 2.11 4.13 7.79 12.24 51.04 184 4.66
Cnt2Crd(CRN) 1.83 3.71 10.01 18.16 76.54 1106 9.63

Table 4: Estimation errors on the crd_test1 workload.

6.5 Generalizing to Additional Joins
We examine how our technique generalizes to queries with addi-
tional joins, without having seen such queries during training.
To do so, we use the crd_test2 workload which includes queries
with zero to five joins. Recall that we trained both the CRNmodel
and the MSCN model only with query pairs that have between
zero and two joins.

From Tables 5 and 6, and Figure 8, it is clear that Cnt2Crd(CRN)
model is significantly more robust in generalizing to queries with
additional joins. This is clearly illustrated in the Cnt2Crd(CRN)
box plot. The boxes are almost within the same q-error inter-
val, close to q-error 1, which is the best q-error (obtained when
an estimate is 100% accurate). In terms of mean q-error, the
Cnt2Crd(CRN) model reduces the mean by a factor x100 and
x1000 compared with MSCN and PostgreSQL, respectively.

50th 75th 90th 95th 99th max mean
PostgreSQL 9.22 289 5189 21202 576147 4573136 35169
MSCN 4.49 119 3018 6880 61479 388328 3402
Cnt2Crd(CRN) 2.66 6.50 18.72 72.74 528 6004 34.42

Table 5: Estimation errors on the crd_test2 workload.

Figure 8: Estimation errors on the crd_test2 workload.

50th 75th 90th 95th 99th max mean
PostgreSQL 229 3326 22249 166118 2069214 4573136 70569
MSCN 121 1810 6900 25884 83809 388328 6801
Cnt2Crd(CRN) 4.28 10.84 43.71 93.11 1103 6004 61.26

Table 6: Estimation errors on the crd_test2 workload con-
sidering only queries with three to five joins.

To highlight these improvements, we describe, in Table 7 and
Figure 9, the mean and median q-error for each possible number
of joins separately (note the logarithmic y-axis scale in Figure 9).

The known cardinality estimation models suffer from produc-
ing under-estimated results and errors that grow exponentially
as the number of joins increases [14]. This also happens in the
cases we examined. The Cnt2Crd(CRN) model was better at han-
dling additional joins (even though CRN was trained only with
queries with up to two joins, as was MSCN). The reason why
the Cnt2Crd(CRN) model successfully generalizes to additional
joins lies in its use of the queries pool. The queries pool contains
queries with a similar number of joins as the input queries, along
with their true cardinalities. The underlying CRN model esti-
mates the containment rates accurately even when considering a
high number of joins. As a result, the Cnt2Crd(CRN) cardinality
estimates are accurate as well.

Figure 9: Q-error medians for each number of joins.

number of joins 0 1 2 3 4 5
PostgreSQL 10.41 216 25.38 355 4430 210657
MSCN 3.44 3.56 3.31 81.95 5427 14895
Cnt2Crd(CRN) 12.43 3.54 6.77 23.24 30.51 129

Table 7: Q-error means for each number of joins.
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6.6 Generalizing to Different Kinds of
Queries

In this experiment, we explore how the Cnt2Crd(CRN) model
generalizes to a workload that was not generated by the same
queries generator that was used for creating the CRNmodel train-
ing set. To do so, we examine the scale workload that is generated
using another queries generator in [22]. As shown in Table 8,
Cnt2Crd(CRN) is clearly more robust thanMSCN and PostgreSQL
in all the described percentiles. Examining Figure 10, it is clear
that the Cnt2Crd(CRN) model is significantly more robust with
queries with 3 and 4 joins. Recall that the QP queries pool in
this experiment was not changed, while the scale workload is
derived from another queries generator. In summary, this experi-
ment shows that Cnt2Crd(CRN) generalizes well to workloads
that were created with a different generator than the one used to
create the training data.

Figure 10: Estimation errors on the scale workload.

50th 75th 90th 95th 99th max mean
PostgreSQL 2.62 15.42 183 551 2069 233863 586
MSCN 3.76 16.84 100 448 3467 47847 204
Cnt2Crd(CRN) 2.53 5.88 24.02 95.26 598 19632 69.85

Table 8: Estimation errors on the scale workload.

To further examine how Cnt2Crd(CRN) generalizes, we con-
ducted the following experiment.We compared the Cnt2Crd(CRN)
model with an improved version of the MSCN model that com-
bines the deep learning approach and sampling techniques by
using samples of 1000 materialized base tables, as described in
[22]. We denote this model as MSCN1000.

We make the test "easier" for MSCN1000 model by training
the MSCN1000 model with a training set that was created with
the same queries generator that was used for generating the scale
workload. As depicted in Figure 10, the MSCN1000 model is more
robust in queries with zero to two joins, still, the Cnt2Crd(CRN)
model is superior on queries with additional joins. Recall that the
CRN model training set was not changed, while the MSCN1000
model was trained with queries obtained from the same queries
generator that was used for creating the test (i.e., scale) work-
load. In addition, note that the MSCN1000 model uses sampling
techniques whereas Cnt2Crd(CRN) does not. Thus, this experi-
ment further demonstrates the superiority of Cnt2Crd(CRN) in
generalizing to additional joins.

We obtain these improvements for the same reason described
in Section 6.5. The CRN model is more robust in generalizing
for additional unseen (during training) joins. As a result, the
Cnt2Crd(CRN) model generalizes well for cardinality estimation.

7 IMPROVING EXISTING CARDINALITY
ESTIMATION MODELS

In this section we describe how existing cardinality estimation
models can be improved using the idea underlining our proposed
technique. The proposed technique for improving existing car-
dinality estimation models relies on the same technique for pre-
dicting cardinalities using a containment rate estimation model,
as described in Section 5.3.

In the previous section we used the CRN model in predicting
containment rates. CRN can be replaced with any other method
for predicting containment rates. In particular, it can be replaced
with any existing cardinality estimation model after "converting"
it to estimating containment rates using the Crd2Cnt transfor-
mation, as described in Section 4.1.

At first glance, our proposed technique seems to be a more
complicated method for solving the problem of estimating cardi-
nalities. However, we show that by applying it to known existing
models, we improve their estimates, without changing themodels
themselves. These results indicate that the traditional approach,
which directly addressed this problem, straightforwardly, using
models to predict cardinalities, can be improved upon.

In the remainder of this section, we described the proposed
approach, and show how existing cardinality estimation methods
are significantly improved upon, by using this technique.

7.1 Approach Demonstration
Given an existing cardinality estimation modelM , we first con-
vertM to a modelM ′ for estimating containment rates, using the
Crd2Cnt transformation, as described in Section 4.1. Afterwards,
given the obtained containment rate estimation model M ′, we
convert it to a modelM ′′ for estimating cardinalities, using the
Cnt2Crd transformation, as described in Section 5.3, which uses
a queries pool.

To summarize, our technique converts an existing cardinality
estimation modelM to an intermediate modelM ′ for estimating
containment rates, and then, using M ′ we create a model M ′′

for estimating cardinalities with the help of the queries pool, as
depicted in Figure 5 from left to right.

For clarity, given cardinality estimation modelM , we denote
the modelM ′′ described above, i.e., model Cnt2Crd(Crd2Cnt(M)),
as Improved M model.

7.2 Existing Models vs. Improved Models
We examine how our proposed technique improves the Post-
greSQL and the MSCN models, by using the crd_test2 workload
as defined in Section 6.1, as it includes the most number of joins.
Table 9 depicts the estimates when using directly the PostgreSQL
or MSCN models, compared with the estimates when adopting
our technique with each one of these models (i.e., the Improved
PostgreSQL model and the Improved MSCN model). Examining
the results, it is clear that the proposed technique significantly
improves the estimates (by a factor x7 for PostgreSQL and x122
for MSCN in terms of mean q-error) without changing the models
themselves (embedded within the Improved version).

The reason why the existing cardinality estimation models
obtain better estimates (when adopting our technique) stems
from the fact that these models are generalizing better when they
are converted to estimate containment rates. Thus, along with
the use of the queries pool, when these models are converted
back to estimate cardinalities, they obtain better estimates.
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Figure 11: Estimation errors on the crd_test2 workload, compared with all models.

These results highlight the power of our proposed approach.
The approach provides an effective and simple technique for im-
proving existing cardinality estimation models. By adopting our
approach and crating a queries pool in the database, cardinality
estimates can be improved significantly.

50th 75th 90th 95th 99th max mean
PostgreSQL 9.22 289 5189 21202 576147 4573136 35169
Improved PostgreSQL 2.61 19.3 155 538 17697 1892732 5081
MSCN 4.49 119 3018 6880 61479 388328 3402
Improved MSCN 2.89 7.43 25.26 55.73 196 3184 27.78

Table 9: Estimation errors on the crd_test2 workload.

7.3 Improved Models vs. Cnt2Crd(CRN)
Using the crd_test2 workloade, we examine how our technique
improves PostgreSQL and MSCN, compared with Cnt2Crd(CRN).
Examining Table 10, it is clear that in 90% of the tests, the best
estimates are those obtained when directly using the CRN model
to estimate the containment rates, instead of converting existing
cardinality estimation models to obtain containment rates (Im-
proved MSCN and Improved PostgreSQL). It seems that the CRN
model is more accurate in estimating containment rates since it
is directly designed for performing this task, whereas existing
cardinality estimation models need to first be converted in order
to estimate containment rates using the Crd2Cnt transformation.

50th 75th 90th 95th 99th max mean
Improved PostgreSQL 2.61 19.3 155 538 17697 1892732 5081
Improved MSCN 2.89 7.43 25.26 55.73 196 3184 27.78
Cnt2Crd(CRN) 2.66 6.50 18.72 72.74 528 6004 34.42

Table 10: Estimation errors on the crd_test2 workload.

8 CARDINALITY PREDICTION TIME
Using the idea of using containment rates estimations to pre-
dict cardinalities, the cardinality prediction process is dominated
by calculating the containment rates of the given input query
with the relevant queries in the queries pool, and calculating
the final function F on these results to obtain the predicted car-
dinality, as described in Section 5.3. Therefore, the larger the
queries pool is, the more accurate the predictions are, and the
longer the prediction time is. Table 11, shows the medians and
the means estimation errors on the crd_test2 workload, along
with the average prediction time for a single query, when using
the Cnt2Crd(CRN) model for estimating cardinalities, with differ-
ent sizes of QP (equally distributed over all the possible FROM
clauses in the database) while using the same final function F
(the Median function).

QP Size 50 100 150 200 250 300
Median 3.68 2.55 2.63 2.55 2.61 2.66
Mean 1894 90 41 40 35 34
Prediction Time 3.2ms 7.1ms 9.8ms 11.3ms 14.5ms 16.1ms

Table 11: Median and mean estimation errors on the
crd_test2 workload, and the average prediction time, con-
sidering different queries pool (QP) sizes.

In table 12, we compare the average prediction time for es-
timating the cardinality of a single query using all the exam-
ined models (when using the whole QP queries pool of size 300).
The default MSCN model is the fastest model, since it directly
estimates the cardinalities without using a queries pool. The
Cnt2Crd(CRN) model is the fastest among all the models that use
a queries pool. That is, the Cnt2Crd(CRN) model is faster than
the Improved MSCN model and the Improved PostgreSQL model.
This is the case, since in the Improved MSCN model or the Im-
proved PostgreSQL model, to obtain the containment rates, both
models need to estimate cardinalities of two different queries as
described in Section 4.1, whereas the CRN model directly obtains
a containment rate in one pass within 0.5ms (see Section 3.5).

Although the prediction time of the models that use queries
pools is higher than the most common cardinality estimation
model (PostgreSQL), the prediction time is still in the order of a
few tens milliseconds. In particular, it is similar to the average
prediction time of models that use sampling techniques, such as
the MSCN version with 1000 base tables samples.

For the results in Table 12, we used a queries pool (QP ) of size
300. We could have used a smaller pool (or adapt the early stop-
ping technique as mentioned in Section 5.3.2), resulting in faster
prediction time, and still obtaining better results, as depicted in
Table 11. Furthermore, all the the models that use queries pools
may be easily parallelized as discussed in Section 5.3, and thus,
reducing the prediction time (we ran these models serially in the
reported tests).

Model Prediction Time
PostgreSQL 1.75ms
MSCN 0.5ms
MSCN with 1000 samples 33ms
Improved PostgreSQL 70ms
Improved MSCN 35ms
Cnt2Crd(CRN) 16ms

Table 12: Average prediction time of a single query.
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9 RELATEDWORK
Over the past five decades, conjunctive queries have been stud-
ied in the contexts of database theory and database systems.
Conjunctive queries constitute a broad class of frequently used
queries. Their expressive power is roughly equivalent to that
of the Select-Join-Project queries of relational algebra. Numer-
ous problems and associated algorithms have been researched
in depth in this context. Chandra and Merlin [10] showed that
determining (analytic) containment of conjunctive queries is an
NP-complete problem. Finding the minimal number of conditions
that need to be added to a query in order to ensure containment
in another query is also an NP-complete problem [44]. This also
holds in additional settings involving inclusion and functional
dependencies [2, 19, 44].

Although determining whether queryQ1 is contained in query
Q2 (analytically) in the case of conjunctive queries is an in-
tractable problem in its full generality, there are many tractable
cases. For instance, in [41, 42] it was shown that query contain-
ment of conjunctive queries could be solved in linear time, if
every database (edb) predicate occurs at most twice in the body
of Q1. In [12] it was proved that for every k ≥ 1, conjunctive
query containment could be solved in polynomial time, if Q2
has querywidth smaller than k + 1. In addition to the mentioned
cases, there are many other tractable cases [8, 9, 16, 40]. Such
cases result from imposing syntactic or structural restrictions on
the input queries Q1 and Q2.

Whereas analytic containment was well researched in the past,
to our knowledge, the problem of determining the containment
rate on a specific database has not been investigated. In this paper,
we address this problem using ML techniques.

Lately, we havewitnessed extensive adoption ofmachine learn-
ing, and deep neural networks in particular, in many different
areas and systems, and in particular in databases. Recent research
investigates machine learning for classical database problems
such as join ordering [31], index structures [23], query optimiza-
tion [24, 38], concurrency control [4], and recently in cardinality
estimation [22, 45]. MSCN, a recently conceived sophisticated NN
model, estimates cardinalities [22]. MSCN has been shown to be
superior in estimating cardinalities for queries that have the same
number of joins as that in the queries training dataset. However,
MSCN proved less effective when considering queries with more
joins. In this paper, we propose a deep learning-based approach,
inspired by the MSCN model, for predicting containment rates
on a specific database. Additionally, we show how containment
rates can be used to predict cardinalities more accurately.

There were many attempts to tackle the problem of cardinality
estimation; for example, Random Sampling techniques [5, 37],
Index based Sampling [27], and recently deep learning [22, 45].
However, all these attempts have addressed, conceptually, the
problem directly in the same way, as a black box, where the
input is a query, and the output is the cardinality estimate. In this
paper, we address this problem differently by using information
(the actual cardinalities) about queries that have already been
executed in the database.

A similar idea of using the information contained in the exe-
cution results of queries was used to refine and update columns
of histograms. In this approach, histograms are incrementally
refined every time they are used, by comparing the histogram esti-
mated selectivity to the actual selectivity. This leads to more accu-
rate histograms, and to better cardinality estimates [3, 7, 13, 20].

10 CONCLUSIONS AND FUTUREWORK
We introduced a new problem, that of estimating containment
rates between queries over a specific database, and introduced the
CRN model, a new deep learning model for solving it (inspired by
MSCN [22]). We trained CRN with generated queries, uniformly
distributed within a constrained space, and showed that CRN
usually obtains the best results in estimating containment rates
as compared with other examined models.

We introduced a novel approach for cardinality estimation,
based on the CRN-based containment rate estimation model, and
with the help of a queries pool. We showed the superiority of
our new approach in estimating cardinalities more accurately
than state-of-the-art approaches. Further, we showed that our ap-
proach addresses the weak spot of existing cardinality estimation
models, which is handling multiple joins.

In addition, we proposed a technique for improving any exist-
ing cardinality estimation model (M) without the need to change
the model itself, by embedding it within a three step method
(Cnt2Crd(Crd2Cnt(M))). Observe that it is possible to further
improve the estimation by using the obtained improved model
Cnt2Crd(Crd2Cnt(M)), and generating models (repeatedly), e.g.,
Cnt2Crd(Crd2Cnt(Cnt2Crd(Crd2Cnt(M))))6. Given that the es-
timates of state-of-the-art models are quite fragile, and that our
technique for estimating cardinalities is simple, has low overhead,
and is quite effective, we believe that it is highly promising and
practical for solving the cardinality estimation problem.

We considered cardinality estimation for SQL queries not us-
ing the DISTINCT keyword. For various intermediate results,
a query planner requires the set-theoretic cardinality (without
duplicates). For example, employing counting techniques for
handling duplicates, considering sorting, creating an index or a
hash table, and more. This requirement may therefore limit our
techniques’ usability. One may use our (inaccurate for this case)
predictions as proxies. However, a better technique is needed
and we are currently evaluating a promising extension of our ma-
chine learning approach for predicting set-theoretic cardinalities
(i.e., queries with the DISTINCT keyword).

To make our containment based approach suitable for more
general queries, the CRN model for estimating containment rates
can be extended to support other types of queries, such as queries
that include complex predicates. In addition, the CRN model can
be configured to support databases that are updated from time
to time. Next, we discuss some of these extensions, and sketch
possible future research directions.

Strings. A simple addition to our current implementation may
support equality predicates on strings. To do so, we could hash
all the possible string literals in the database into the integer
domain (similarly to MSCN). This way, an equality predicate on
strings can be converted to an equality predicate on integers,
which the CRN model can handle.

Complex predicates. Complex predicates, such as LIKE, are not
supported since they are not represented in the CRN model. To
support such predicates we need to change themodel architecture
to handle such predicates. Note that predicates such as BETWEEN
and IN, may be converted to ordinary predicates.

EXCEPT Operator.Given a queryQ of the formQ1 EXCEPTQ2,
we can estimate its cardinality using our technique as follows:

|Q1 EXCEPT Q2| = |Q1| − |Q1∩Q2|

6This observation is due to one of the referee.

167



UNION Operator. Given a query Q of the from Q1 UNION Q2,
we can estimate its cardinality using our technique as follows:

|Q1UNION Q2| = |Q1| + |Q2|

Observe that for handling both the EXCEPT and the UNION
operators, the cardinality of queries Q1, Q2 and Q1∩Q2 can be
estimated using our technique, as they are conjunctive queries.

The OR operator. Given queries that include the OR operator
in their WHERE clause, the CRN model does not handle such
queries straightforwardly. But, we can handle such queries using
a promising recursive algorithm that we are currently evaluating.

Database updates. Thus far, we assumed that the database is
static (read-only database). However, inmany real world databases,
updates occur frequently. In addition, the database schema it-
self may be changed. To handle updates we can use one of the
following approaches:

(1) We can always completely re-train the CRN model with a
new updated training set. This comes with a considerable com-
pute cost for re-executing queries pairs to obtain up-to-date con-
tainment rates and the cost for re-training the model itself. In this
approach, we can easily handle changes in the database schema,
since we can change the model encodings prior to re-training it.

(2) We can incrementally train the model starting from its
current state, by applying new updated training samples, instead
of re-training the model from scratch. While this approach is
more practical, a key challenge here is to accommodate changes
in the database schema. To handle this issue, we could hold, in
advance, additional place holders in our model to be used for
future added columns or tables. In addition, the values ranges of
each column may change when updating the database, and thus,
the normalized values may be modified as well. Ways to handle
this problem are the subject of current research.
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ABSTRACT
Data structures like indexes are typically used to accelerate
dataflow execution locating and accessing data more efficiently.
The automated management of data structures has been a chal-
lenging problem, traditionally constrained by the time and stor-
age required to build and maintain them. As cloud computing is
becoming an attractive platform for the execution of dataflows
with the usage of compute and storage resources being charged
by cloud providers, monetary cost is becoming an equally impor-
tant factor for the user to consider. In this work, we identify the
opportunity of interleaving dataflow and index build operators
in the execution schedule to utilize idle slots for the creation of
indexes which may be beneficial for future dataflows. In that
way, the cost of building indexes can be eliminated without im-
pacting dataflow execution. We propose an online auto-tuning
approach to assess the importance of indexes for the workload
based on historical data taking into account the trade-off between
the dataflow speed-up they offer and the monetary cost needed
to maintain them. The results show that the proposed approach
can dynamically adapt to the workload and significantly reduce
the average execution time and cost spent per dataflow building
and maintaining a proper set of indexes.

1 INTRODUCTION
Modern applications face the need to process large amounts of
data using complex functions for analysis [40], data mining [32],
Extract-Transform-Load processes (ETL) [45], and more. Such
rich tasks are typically expressed in high-level languages like Pig
Latin [39], optimized and transformed into data processing flows,
or simply dataflows, that describe computations (operators) and
flow dependencies between them [34],[33],[48].

Dataflows are usually executed on distributed systems to pro-
cess independent operators in parallel and reduce overall ex-
ecution time. Among these, clouds have evolved to a popular
platform for large-scale data processing, mainly due to the lack
of any upfront investment and elasticity (the ability to lease re-
sources on demand for as long as needed). Cloud providers offer
compute resources in the form of virtual machines (VMs) which
are typically charged based on a per quantum pricing scheme
(e.g. one hour) such as Amazon EC2 [3], and storage resources
which are usually charged per GB per month [5].

© 2020 Copyright held by the owner/author(s). Published in Proceedings of the
23rd International Conference on Extending Database Technology (EDBT), March
30-April 2, 2020, ISBN 978-3-89318-083-7 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Data structures like indexes and materialized views are addi-
tionally used to improve the performance of dataflows, encapsu-
lating prior computations to access data more quickly and avoid
unnecessarily large data movements during dataflow execution
[36]. Building and maintaining indexes may be costly in terms
of computation and storage, often exceeding the gain in perfor-
mance [30]. However, in several cases the costs can be amortized.
For example, the time overhead required for the creation of in-
dexes may be reduced by building them in parallel. Also, indexes
are usually associated to multiple dataflows and can thus be ex-
ploited for the execution of future dataflows. As the existence
of indexes may improve application performance, but may also
affect the monetary cost incurred [22, 41], it is important to find
a good trade-off between these two conflicting objectives. Hence,
index tuning (the selection of indexes based on their usefulness)
is required to avoid uncontrolled creation and maintenance of
data structures. This task may become even more challenging,
when the workload is not known a-priori and the set of indexes
may change dynamically over time.

We envision a Query-as-a-Service (QaaS) platform to man-
age the execution of complex dataflow workloads on clouds,
like Google’s BigQuery1. Dataflows, such as exploratory data-
intensive queries, are issued sequentially by the user, e.g. a data
scientist, to extract knowledge from data. Each dataflow is asso-
ciated with a set of indexes that can benefit its execution. The
service incorporates automated management of suggested in-
dexes by creating and deleting them based on their usefulness
on the dataflow workload. These indexes can either be computed
automatically or incorporate feedback from administrators to
generate useful recommendations [16, 29, 43]. This is an orthog-
onal problem and the integration of already proposed solutions
would easily work with our approach. For example, most index
advisors can output a set of indexes that might be useful (e.g., by
doing a what-if analysis). This would be the input to our system.

Building a generic model that captures dataflows and indexes
is an open research problem, mainly because operators may have
arbitrary user code that is often impossible to analyze, and the
usefulness of an index may be specific to each dataflow. However,
this is beyond the scope of this work. We identify five generic
categories of dataflow operators where indexes can be useful:
• Lookup. The complexity of finding a particular record from an
input table of size n isO(n) when no data structure is used and
can be reduced to O(loд n) using a B-tree index or O(1) using
a hash index.

1Google Big Query, https://cloud.google.com/products/big-query
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• Range select. Selecting records in a particular range from the
input can be efficiently performed using a B-Tree index because
the leaves of the tree are sorted. The complexity isO(loд n)+k
where k is the number of records in the range.
• Sorting. The complexity of operators that perform sorting is
O(n · loд n) and can be reduced to O(n) using a B-Tree index.
• Grouping. Grouping can be efficiently performed using sorting,
as described above.
• Join. Several algorithms, such as nested loops join, hash join,
sort-merge join, can be used. Such algorithms are faster when
an appropriate index is provided. For example, the complexity
of sort-merge join is O(n +m) if the inputs (of size n andm)
are sorted.
In this work, we propose an online auto-tuning approach to

assess the usefulness of indexes for the execution of dataflows
taking into account the trade-off between the dataflow speed-
up they offer and the monetary cost needed to maintain them
(the storage cost in the cloud). We identify the opportunity to
build indexes and eliminate their cost using slots of idle time on
compute resources. These may be created due to data dependency
constraints between the execution of dataflow operators but also
the provider’s quantized pricing policy. Building entire indexes
sequentially using idle compute resources may not be feasible
due to the large data volume [41]. Hence, indexes on partitions
of tables or files are built independently. In this way, indexes
can be built in parallel and, most importantly, may fit inside
idle slots. The approach proposed in this work is generic and
can be used in several large-scale data processing platforms, like
Hadoop [7], Hive [46], or Pig [39]. Several systems like [26, 35,
46] have been developed to provide highly scalable distributed
architectures for data processing on the Cloud; however, the
monetary cost and the quantized pricing of resources need to be
considered [23]. To the best of our knowledge, there is no index
management solution that takes into account the monetary cost
of using cloud resources, while related work on execution time
and cost optimization of dataflows does not consider building
and maintaining indexes.

The main contributions of this work are the following:
• We identify the opportunity to use idle slots on compute re-
sources created when executing data-intensive flows due to
data dependency constraints between operators but also the
quantum-based pricing policy of compute resources.
• We propose an online auto-tuning approach to assess the
importance of indexes based on the trade-offs between the
dataflow execution speed-up they offer and the monetary cost
needed to maintain them.
• We develop two index interleaving algorithms, namely linear
program based interleaving and online interleaving algorithms,
to utilize idle slots in the dataflow execution schedule and build
indexes in parallel without increasing the monetary cost and
the time required for the execution of each dataflow.
• We provide an experimental evaluation to show the effective-
ness of the proposed approach to accelerate dataflow execution
and eliminate the related monetary costs.
The rest of the paper is organized as follows. Related work

is discussed in Section 2. The problem description follows in
Section 3, while the optimization problem is defined in Section 4.
The online auto-tuning approach and interleaving algorithms
proposed are described in Section 5. The experimental evaluation
and its results follow in Section 6, while Section 7 concludes the
paper.

2 RELATEDWORK
A considerable body of work focuses on VM consolidation to
exploit underutilized resources for the execution of multiple
workloads [14, 51]. However, consolidating different workloads
may greatly affect application performance due to interference,
as consolidated VMs may compete for resources [53]. In con-
trast, the idea of this work is to interleave dataflow and index
build operators in the execution schedule to accelerate dataflow
execution while eliminating the cost of building indexes.

Offline algorithms for index tuning on centralized systems
like [10, 16] do not consider a dynamic environment where the
service is unaware of the dataflows and a priori predictions of
how long to keep and when to delete indexes cannot be made.
Our approach is closer to online algorithms like [9, 38, 52]. How-
ever, we target a distributed and elastic environment where VMs
are allocated dynamically and compute resources are prepaid
for the whole time quanta. Also, what-if optimizations that im-
prove index tuning [16] are complementary to our work and
can be used to accelerate the computation of index usefulness.
Approaches that incorporate feedback from administrators to
improve index recommendations [29, 43] are also orthogonal to
our work, as user feedback can be beneficial for the computation
of index usefulness. The problem of index interactions has also
been studied [42, 44]. Such efforts could be leveraged in our work
to delete indexes that become obsolete when index interactions
in the dataflow workload are identified.

Online algorithms for distributed environments like [13, 20,
41, 47] focus on replicated databases, investigating which sets of
indexes to build on each replica and how to route queries prop-
erly to take advantage of them. Such approaches can be used in
combination with our proposed approach since multiple replicas
for each partition are typically created in distributed environ-
ments to increase efficiency and fault tolerance [24]. Indexing
mechanisms on clouds like [11, 15, 36] mainly focus on the opti-
mization of application performance and ignore the monetary
cost of using the resources. The monetary cost of data structures
has been considered in multi-user environments [30, 49] to dis-
tribute the creation and maintenance costs of data structures
among multiple users. However, our work focuses on single-user
environments where resources allocated to the user are dedicated
and data structures built are not shared among multiple users.
This way, each user is independent and the provider’s pricing
policy for compute and storage resources like Amazon Elastic
MapReduce [4] can be directly used, without considering com-
plex cost sharing policies that users may or may not agree with.
Finally, the work in [21] considers the problem of data structure
reuse by future queries, materializing and storing the output
of operators of MapReduce jobs. To the best of our knowledge,
there is no index management approach for single-user environ-
ments that takes into account the monetary cost of using cloud
resources.

3 PROBLEM DESCRIPTION
Figure 1 shows the architectural framework envisioned in this
work. The typical users of the QaaS service are data scientists that
issue exploratory query tasks to extract knowledge from data,
such as data intensive transformations that perform processing
and aggregations on data read from tables or files. The data can
be partitioned for flexibility, performance, and fault tolerance
and indexes on each partition of tables or files can be built. Each
user interacts with the service by issuing dataflows sequentially,
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Figure 1: The setting of the QaaS service.

usually observing the results obtained from the execution of
a single dataflow before submitting the next one. The service
executes the dataflows on top of clouds according to selected
execution schedules with desired time-money trade-offs using
compute and storage services offered by cloud providers. The
execution of the dataflow is interleaved with the execution of
build index operators and the indexes created are stored in the
cloud storage. Each dataflow submitted for execution has access
to currently available indexes and each operator can make use of
those associated to partitions it accesses.

Motivation. A dataflow example is shown in Figure 2a. As can
be seen in the graph of the DAG (left part of the figure), the
dataflow uses two partitions,A.0 andA.1, of an input tableA and
performs processing (Q1, Q2), partitioning (P ), and aggregations
(Q3). The dataflow is associated to a set of indexes (A_DS .0 and
A_DS .1) built for the table partitions (A.0 and A.1, respectively)
as shown in the right part of the figure. There are two indexes to
be built: A built in three parts A0,A1 and A2 and B built in parts
B0, B1 and B2. Parts can be created in parallel using different
VMs. Figure 2b shows an execution schedule of the dataflow
operators when using 3 VMs (VM1,VM2,VM3). Arrows show
the idle slots created due to data dependency constraints and the
quantized pricing policy (f 1 − f 6). For example, slot f 4 onVM2
remains idle asQ3 cannot be executed until allQ2 operators have
finished. Such idle slots can be used for the building of indexes
without incurring any additional cost, as shown in Figure 2c.
Different indexes can be built in parallel such as the case of A1
and B0. The execution of the index build operator A1 at VM2
is stopped as it is not completed before the execution of the
dataflow operator P starts so that the execution of the dataflow
is not delayed. Similarly, B2 is stopped before the time the leased
quantum expires to avoid unnecessary costs for building indexes.

Application Model. A dataflow d is modelled as d(expr ,R,N , t),
where expr is its definition expressed in an appropriate language,
R is the set of input tables, N is the set of indexes that can accel-
erate its execution, and t is the time point that the dataflow is
issued to the service. The dataflow is modelled as a DAG where
the nodes correspond to operators and the edges to data de-
pendencies (flows) between them. An operator is modelled as
op(cpu,memory,disk, time), where cpu is the CPU utilization,
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Time	  

VMs	  

Q1	  

	  	  	  P	  Q1	  

P	  

P	   Q2	  

quantum0	   quantum1	  

VM1	  

VM2	  

VM3	  
f2	  

f3	  

f6	  

f5	  

f1	  

f4	  

quantum2	  

Q2	  

Q2	  

Q3	  

(b) Execution schedule of the dataflow DAG.
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(c) Interleaving of dataflow and build index operators.

Figure 2: Execution of an example dataflow and indexes

mem is the maximum memory needed for its normal opera-
tion, disk is the disk resources, and time is its execution time.
A flow between two operators is labelled with the size of the
data transferred between them. The estimations of operators can
be computed analytically or can be collected by the system at
runtime [37]. Since we target large datasets, the statistics (e.g.,
histograms) do not change radically over time (a 10GB update
on 1TB dataset is not large enough to change the statistics). The
dataflow processing rate is much higher than the rate at which
the data is updated. This is the typical case in many settings:
updates are done every few days and the datasets are processed
much more frequently [27]. Also, operators come from a set that
does not change frequently, which is typical for exploratory data
analysis [36].

Cloud Model. Compute resources are offered in the form of
VMs (or containers) with a fixed capacity of resources, CPU,
memory, disk, and network, respectively. Each VM is charged
at a fixed price (Mc ) per time quantum (Q) and can be dynam-
ically allocated and deallocated based on the workload needs.
In this work, homogeneous VMs are assumed. This is typical
for many installations; most VMs are of the same size and only
few VMs which run critical services are significantly larger (like
namenodes of Hadoop [7]). An idle VM (a VM that is not used)
is deleted when its currently leased time quantum expires, since
the resources are prepaid for whole time quanta [3]. Each VM
has a local disk that can be used to store temporary results or
data. After deleting a particular VM, the files stored in its local
disk cannot be recovered.
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A storage service is used to store data persistently; VMs re-
trieve data from the storage service and cache it to their local
disks and transfer data to the storage service after the execu-
tion of an operator finishes. This scheme is flexible as compute
from storage resources are decoupled. Typically, cloud providers
charge a fixed amount of money per GB per month (MC). In the
model used, the cost of storing data,Mst , is measured in GB per
time quantum (Q). As a year has approximately 365.25 days and,
assuming that Q is measured in minutes, we compute Mst as
(MC · 12 ·Q)/(365.25 · 24 · 60).

Data Model. Tables can be partitioned and stored to the stor-
age service of the cloud. As mentioned, allocated VMs can cache
table partitions to their local disk to avoid network overheads
when possible. Data updates are performed in batches periodi-
cally (every day or week). Each update creates a new version of
the table partitions changed [2], invalidating old versions and
indexes built on them. A table t in the database is modelled by
its schema (i.e., the names and types of its columns), its ordered
set of partitions, and its statistics: t(schema, P, S). A partition
p ∈ P is modelled by its id , its number of records n and a partic-
ular path in the storage service where the partition is located:
p(id,n,path). The statistics contain the average size of the fields
of each column.

An index idx built on table t is modelled as idx(t,C,T ), where
C is the ordered set of columns based on which the index is built
and T is the ordered set with the respective creation time points
of its partitions. Each index consists of several index partitions
built on different table partitions. Index partitions can be built
on different time periods. The index size is computed by adding
the sizes of its partitions. The size of a partition can be computed
based on the type of the index (e.g. Hash, B+Tree). We assume
without loss of generality that B+Trees are used. The size of
partition p of index idx is computed as follows:

size(idx,p) = (1 − k logk (p .n)) · RecSize/(1 − k),

where RecSize is the average size of the record in the index,
computed from column statistics, and k is the width of the tree
computed from the block size on the disk and the record size
RecSize . Assuming that the tree is balanced, its size is computed
using geometric series as follows: the total number of records
including the non-leaf blocks is

∑m
i=0 k

i = (1−km )/(1−k), where
m is the height of the tree computed asm = logk N . Parameter
N represents the number of records in the partition. The time
to build an index idx , ti (idx), is computed by adding the time
to build all the index partitions of the corresponding table. The
time to build the index on a partition p is computed as:

tip (idx,p) = tio (idx,p) +C(idx) · p.n · logk (p.n)/TQ ,

where C(idx) is a constant calculated using the columns in the
index. The time to read and write the partition tio (p) is computed
as:

tio (idx,p) = (p.n · RecSize + size(idx,p))/cont .net,

where cont is the container to which the build index operator is
assigned for execution. The building of indexes can be expressed
as a DAGwith operators that take as input one partition and build
the partial index on that partition. Operators are independent
to each other (there are no edges between the operators in the
DAG) and as a result there is a large degree of parallelism. Hence,
indexes can be built incrementally (not all index partitions need
to be built in order to use the index) and in parallel (two or more
index partitions can be built simultaneously). The storage cost of

index idx for a time periodW (given in time quanta) is computed
by adding the cost stp(idx,p,W ) of storing each index partition
p for that period, where

stp(idx,p,W ) =W · size(idx, idx .t .P[p]) ·Mst .

Our approach can work with different pricing models. A pric-
ing model is plugged to the scheduler by using the appropriate
pricing formulas for the cost of a VM (MC ) and the cost of storage
(Mst ). Also, although we consider a homogeneous environment
with a single VM type, the scheduler can consider slots at different
VM types.

Dataflow and Index Management. The dataflows are issued
sequentially to the service. Historical dataflows (dataflows that
have already been executed) are stored in a list called Hd . An
execution schedule Sd of a dataflow graph d is a set of assign-
ments of its operators to containers. An execution schedule is
computed taking into account the network communication cost
using the model in [33]. The execution time of a dataflow in
schedule Sd , td (Sd ), is defined as the time period from the time
the first operator starts executing until the time the execution of
the last operator finishes. The monetary costmd (Sd ) is computed
taking into account the sum of the total time quanta of the VMs
leased. The monetary cost and execution time are measured in
quanta in order to have the same unit. An idle slot f (id,q, c, Sd )
in schedule Sd is a continuous time period inside the leased time
quantum q of the container, c , that has no operators running. The
fragmentation of the schedule is the set of all the idle slots in the
leased containers and shows the time the compute resources are
not used during the execution schedule, but they are charged by
the cloud provider.

Idle slots can be used for the building of indexes. We denote
as I the evolving ordered set of indexes built and maintained by
the service. The set of indexes available at time t is denoted as
I (t) and the set of all indexes created during the operation of
the service (independently of whether they are deleted or not)
is denoted as I . Potential indexes are indexes that are associated
with one or more dataflows, but they are not beneficial to build.
Indexes built on table partitions that are updated are deleted and
marked as not built to support index updates.

4 OPTIMIZATION PROBLEM
This work considers the problem of interleaving indexes with
the execution of dataflows so that dataflow execution, in terms
of execution time and monetary cost, is not affected. The aim
is to determine the set of beneficial indexes required to build
and maintain over time to achieve good trade-offs between the
dataflow speedup and the monetary cost required taking into
account the storage cost needed to maintain the indexes.

The optimization problem is formulated as a weighted single
objective problem using a linear function to express the different
tradeoffs between the time and money objectives:

max
I

[∑
i
Mc · (α ·δtd (di )+ (1−α) ·δmd (di ))−

∑
j
st(I [j])

]
, (1)

where d is the dataflow, st(I [j]) is the storage cost of index I (j),
δtd (di ) is the difference (given in quanta) in dataflow execution
time without and with the use of indexes and δmd (di ) is the
difference (quanta) in the monetary cost required without and
with the use of indexes. Parameter α essentially expresses how
much money a time quantum is valued, taking values between
0 and 1 that correspond to scenarios where the optimization
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Table 1: Notation used.

Parameter Meaning
TQ Quantum size
Mc VM price (per quantum)
Mst Storage cost (per GB per quantum)
I (t ) The set of indexes available at time t
a Parameter for time-cost trade-off
st (idx ,W ) Storage cost of index idx within a time windowW
дt (idx , t ) Gain in time for index idx at time t
дm(idx , t ) Gain in money for index idx at time t
dc(t ) Gain fading function
ti (idx ) Time for building index idx
mi (idx ) Monetary cost for building index idx

problem becomes one-dimensional. Small values of α indicate
that monetary cost (or money) is more important, while large
values of α indicate scenarios where time is more important. The
difference in time δtd (di ) is multiplied with the container price
per quantum (Mc ) so that the time and money objectives have
the same units.

In a dynamic environment where arbitrary dataflows are is-
sued at arbitrary time points using different sets of potential
indexes, it is hard to find the optimal sequence of index sets (I (t)),
i.e., determine when to build and delete indexes using Equation 1.
We formulate the optimization problem to a more suitable form
(Equation 2) for the computation in an online fashion:

I (t) = arдmax
I

[ ∑
idx ∈I

(α ·Mc ·дt(idx, t)+(1−α)·дm(idx, t))
]
, (2)

where functions дm(idx, t) and дt(idx, t) (described in Equa-
tions 4 and 5) compute the gain in money and time, respectively,
when using a particular index idx at time point t and within
a time window of predefined sizeW (e.g., two quanta). Table 1
summarizes the notation used to define the optimization problem.
Equation 2 can be approximated in an online fashion by comput-
ing the gain of each index individually, building and maintaining
only those that contribute in a positive way to the summation at
any given point in time. More specifically, an index idx is said to
be beneficial at time point t if its gain (the weighted summation
of time and money gain of Equation 3) is positive.

д(idx, t) = α ·Mc · дt(idx, t) + (1 − α) · дm(idx, t) (3)

Indexes are built as soon as they become beneficial and are deleted
as soon as they become non beneficial.

The gain in money дm(idx, t) of index idx is computed by
adding the gain in money дmd (idx,di ) of the index on each
related dataflow di (the dataflows that use it and are evaluated
inside time window [t−W , t] and the currently running dataflow)
and the monetary cost required to build and store the index for
time periodW , as described in Equation 4:

дm(idx, t) =
∑
i

(
δ (di , t) · dc(δTdi ) ·Mc · дmd (idx,di )

)
−(Mc ·mi (idx) + st(idx,W ))

(4)

where δ (di , t) is 1 if the dataflow f has been executed during
time period [t −W , t] or else 0, δTdi is the number of quanta
passed since the dataflow di was executed (0 for the ones that are
currently running or queued) and dc(t) is a function that reduces
with time in order to fade the gain of the historical dataflows.
An exponential function is used to fade the gain: dc(t) = e−t/D ,
where parameter D controls the degree the historical dataflows
affect it. A small value of D means that dc(t) approaches quickly
to 0 and, as a consequence,дm(idx) becomes negative.We assume

Table 2: Dataflows Issued using Indexes A and B.

Dataflow Time Gain Money Gain
d1(−, −, {B }, 10) дtd (B, d1) = 1.0 дmd (B, d1) = 3.0
d2(−, −, {B }, 30) дtd (B, d1) = 2.0 дmd (B, d1) = 5.0
d3(−, −, {A, B }, 50) дtd (A, d1) = 2.0 дmd (A, d1) = 8.0

дtd (B, d1) = 3.0 дmd (B, d1) = 8.0
d4(−, −, {A}, 100) дtd (A, d1) = 3.0 дmd (B, d1) = 5.0

Figure 3: Gain over time of two indexes A and B.

that D is the same for all indexes. However, different values of
the controller D can be used for each individual index. Automatic
learning of the controller for each index based on predictions is
a direction for future work. Also,mi (idx) is the monetary cost
required to build the index, st(idx,W ) the storage cost required
to maintain it for a time windowW and дmd (idx,di ) is the gain
in money of dataflow di when using index idx which is computed
based on the time gain of the index on di . The gain in money
дmd (idx,di ) also includes the monetary cost spent to read the
index from the storage service, which is equivalent to the time
to read the index, as both of them are measured in quanta. If
dataflow di does not use index idx , then дmd (idx,di ) = 0.

Similarly, the time gain дt(idx, t) of index idx at time point t
is computed taking into account the gains of index idx on the
dataflows executed within the time windowW , subtracting the
time needed to build it as follows:

дt(idx, t) =
∑
i

(
δ (di , t) · dc(δTdi ) · дtd (idx,di )

)
− ti (idx) (5)

where дtd (idx,di ) is the gain in time of dataflow di when using
index idx .

An example to illustrate the proposed approach is presented.
Assume the dataflows shown in Table 2 are issued to the service
at the time points specified. The dataflows use two indexes, A (of
size 100MB) and B (of size 500MB). The time and money gain of
the indexes for each dataflow is included in the table. Figure 3
shows the gain of each index computed over time for the case of
α = 0.5 and D = 60. It can be seen that the gain of both indexes,
A and B, is negative in the beginning due to their storage cost.
As dataflows specify them as useful, the gain becomes positive at
some point (the indexes become beneficial) and then decreases
over time because of parameterD (that impacts index usefulness).
For example, index B becomes beneficial at time point 30 and
will be deleted at time point 125 where it stops being useful.

5 AUTO-TUNING APPROACH
In this section, we propose an auto-tuning approach to select and
build an optimal set of indexes over time. Statistics from historical
(issued) dataflows and their specified indexes are continuously
collected and used tomake decisions about which indexes to build
or delete at each time point. Dataflows to be executed can only use
indexes that are currently available, while new indexes to be built
are scheduledwith the currently issued dataflow. Indexes are built
using idle slots in the execution schedule of the issued dataflow
so that the dataflow execution is not affected. However, beneficial
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Figure 4: Index ordering based on α at time point t .

indexes to be built may not fit in the currently available slots
and selecting which beneficial indexes to build is required. Since
the goal is to maximize the optimization objective of Equation 2,
indexes are ranked based on their usefulness and the best subset
to be built is selected.

5.1 Index Ranking
Equation 3 is used to compute the usefulness or gain of indexes at
each time point, as described earlier in Section 4. Non beneficial
indexes are not built or are deleted if they are already available.
Note that an index that is not used for a long time may become
non-beneficial because of the increased storage cost. We only
consider beneficial indexes with дm(idx, t) and дt(idx, t) (Equa-
tions 4 and 5) larger than 0 and among them higher values of gain
(Equation 3) are preferred. Essentially, indexes can be depicted
in a bi-dimensional space based on their time and money gain as
shown in Figure 4. Indexes at the lighter areas are prioritized. For
example, point 1 has the highest priority for a=0.7, while indexes
X1, X2, X3, and X4 are not beneficial.

5.2 Online Index Tuning
The online index tuning approach proposed is shown in Algo-
rithm 1. The algorithm schedules the issued dataflow along with
the subset of potential indexes that maximize the total gain. Ben-
eficial indexes are assigned to idle compute resources in the
dataflow execution schedule without violating the constraints (i.e,
the time and the monetary cost of the dataflow are not affected).
Indexes that are not beneficial or cannot fit to the schedule are
deleted. Note that partitions of a particular index can be built in
the context of several dataflows if there is not enough idle time
to build it entirely in the context of one dataflow. The algorithm
is triggered every time a new dataflow is issued, the execution of
a dataflow finishes or periodically at fixed time intervals to delete
indexes that become non beneficial when there is not any new
dataflow to be issued. In more detail, the procedure triggered
is the following. The gains in time and cost for each index are
computed and beneficial indexes are ranked (lines 2-9 of Algo-
rithm 1) as described in Section 5.1. Then, the algorithm calls the
index interleaving procedure to compute the skyline of execution
schedules of the dataflow d f interleaved with build index oper-
ators and selects from the skyline the schedule to be executed
(lines 10-11). Different methodologies can be used to choose the
schedule to be executed. In this work, the fastest schedule is
chosen. In lines 13-19 the algorithm identifies index partitions
that are not beneficial and need to be deleted.

Algorithm 1 Online Index Tuning
Input:

Hd : The historical dataflows.
Ai , Bi , Pi : The index lists.

df : The next dataflow to schedule.
Return:

Sdf : The schedule of the dataflow.
SBI : The schedule of the build indexes.
DI : The indexes that should be deleted.

1: GAINS ← ∅
2: for i ∈ Pi do
3: дt ← дt (i , Hd ∪ df )
4: дm ← дm(i , Hd ∪ df ) ▷ Compute the index gains
5: if дt > 0 and дm > 0 then
6: GAINS ← GAINS ∪ {i }
7: end if
8: end for
9: RANK ← rank2Dspace(GAINS ) ▷ rank the indexes
10: skyl ine ← schedule(df , Ai , RANK )

▷ Scheduling of both the dataflow and indexes
11: Sdf , SBI ← select (skyl ine) ▷ Select the schedule from skyline
12: DI ← ∅
13: for i ∈ Ad do
14: дt ← дt (i , Hd ∪ df )
15: дm ← дm(i , Hd ∪ df )
16: if дt ≤ 0 and дm ≤ 0 then
17: DI ← DI ∪ {i } ▷ Indexes to be deleted
18: end if
19: end for
20: return (Sdf , SBI , DI )

5.3 Index interleaving approaches
In this section, we propose two different approaches to schedule
dataflows interleaved with build index operators without using
additional monetary cost, namely the Linear program based in-
terleaving algorithm (LP) and the online interleaving algorithm.
The LP interleaving algorithm initially schedules the currently
issued dataflow and finds the idle slots in the compute resources.
Then, it uses a linear programming algorithm to determine the
subset of potential index partitions and tries to assign them on
the idle slots based on their ranking (gain). The online interleav-
ing algorithm schedules the current dataflow and the index build
operators together labeling the index build operators as optional
operators to be scheduled.

5.3.1 Linear program based interleaving algorithm. The LP
interleaving algorithm shown in Algorithm 2 schedules indexes
after the dataflows. More specifically, the algorithm initially up-
dates the operator runtimes based on the available index parti-
tions. Estimations of runtimes can be provided based on existing
models [50]. The algorithm calls the scheduler described in Algo-
rithm 4 to compute the skyline of the execution schedules (line
6). For each schedule in the skyline, the algorithm finds the set of
idle slots and sorts them in decreasing order based on their size
(lines 8-10). For each slot, a linear program (line 12) is solved to
determine the subset of potential indexes that maximize the total
gain. The build index operators in each idle slot are sorted by gain
so that the building of less useful indexes is stopped when the
time quantum ends or the next assigned operator is scheduled (as
shown in Figure 2c) before the build index operator finishes due
to runtime estimation errors. The build index operators whose
execution has been stopped are queued and scheduled with the
next dataflow issued. Overall, the algorithm does not violate the
constraints (i.e. index interleaving does not affect dataflow exe-
cution in terms of time and money) as indexes are built on slots
that are not used for the execution of dataflow operators, but
they are charged.
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Algorithm 2 Linear program based interleaving algorithm
Input:

df : The current dataflow from the input.
Ai : The available indexes.
I : The ranked list of indexes.

Return:
skyl ine : The skyline of solutions.

1: for op ∈ df do
2: if op uses indexes in Ai then
3: update(op , Ai ) ▷ op. runtimes based on available indexes
4: end if
5: end for
6: skyline← Skyline(df ) ▷ generate skyline of execution schedules
7: for s in skyline do
8: idle_time← FindIdleTime(s)
9: ordered_idle_time← OrderBySize(idle_time)
10: indexes←∪(I .P )
11: for i in ordered_idle_time do
12: maxset← SolveLinearProgram(i, indexes)

▷index set to be built based on linear program
13: for m in maxset do
14: schedule(m, i) ▷ assign indexes to idle slots
15: end for
16: indexes← indexes - maxset
17: end for
18: add indexes to s
19: end for
20: return skyline ▷ schedules of dataflow ops and index build ops

Algorithm 3 Linear Program Algorithm
Input:

f : The size of the idle time segment.
pi : The sizes of all the build index partition operators.
дi : The gain of all the build index partition operators.

Return:
The subset of the build index operators that maximize Equation 2

1: max
[ ∑

i (wi ∗ дi )
]

w.r.t
2:

∑
i (wi ∗ pi ) ≤ f

3: 0 ≤ wi ≤ 1, ∀i
4: inteдer (wi ), ∀i
5: return (w1,w2, ...wn )

Linear program approximation algorithm. The problem of as-
signing build index operators into idle time slots on compute
resources is a variation of the Knapsack [31] problem, which is
NP-hard. The Linear program approximation algorithm shown
in Algorithm 3 is an approximation algorithm to solve a 0/1 knap-
sack problem for each idle time slot. The algorithm solves the
relaxed problem setting the weights of the build index opera-
tors between the values 0 and 1 and calls a branch and bound
algorithm to find integer values.

Skyline dataflow scheduler. Different execution schedules that
vary in the achieved execution time and monetary cost can be
created by assigning the dataflow operators to potential slots
of the available VMs. Between them, non-dominated solutions
(solutions that outperform others in terms of execution time
and monetary cost) may be preferred. The set of non-dominated
solutions achieved comprises the obtained skyline of execution
schedules. The algorithm in [12] is used to develop the skyline of
execution schedules for each dataflow. An operator is candidate
for assignment when all of its predecessors are assigned, starting
from operators without data dependencies (entry nodes in the
dataflow graph). At each iteration, the algorithm (Algorithm 4)
assigns the next available operator to the partial solutions of the
current skyline taking into account the communication costs and
data dependency constraints between the operators. After the
assignment of the new operator to all the possible slots, the new
skyline is computed. Between schedules with the same execution

Algorithm 4 Skyline Dataflow Scheduler
Input: df : The dataflow DAG.

C : The maximum number of containers to use.
Output: skyl ine : The solutions in the skyline.

1: skyl ine ← ⊘
2: r eady ←{operators in df that have no dependencies}
3: f ir stOperator ← r eady .peek ()
4: f ir stSchedule ← {assiдn(f ir stOperator , 1, −, −)}
5: skyl ine ←{f ir stSchedule }
6: while r eady , ⊘ do
7: next ← r eady .peek ()
8: S ← ⊘
9: for all schedules s in skyl ine do
10: for all containers c (c ≤ C) do
11: S ← S ∪ {s + assiдn(next , c , −, −)}
12: end for
13: end for
14: skyl ine ← skyline of S ▷ new skyline of schedules
15: r eady ← r eady − {next } ∪ {operators in df that dependency con-

straints no longer exist}
16: end while
17: return skyl ine

time and monetary cost, the schedule with the most sequential
idle compute time is selected, since the aim of our work is to
use idle slots where index build operators may fit. The proce-
dure described is repeated for the next available operator. The
algorithm terminates when all operators are assigned and the
final skyline is generated. Note that the impact of data transfers
on the execution of data-intensive dataflows may be significant
and overhead may be introduced [18]. Thus, each dataflow is
scheduled offline to generate more efficient schedules where the
overhead from data transfers is considered.

5.3.2 Online interleaving algorithm. The online interleaving
algorithm is a modification of the scheduler in [12] to use optional
operators and schedule index build operators along dataflows.
To do so, operators are separated to optional and non optional
using a boolean variable; the variable is set to true (optional
operators for execution) for each index build operator while
the variable is f alse for all dataflow operators. Algorithm 4 is
modified so that the schedules in each iteration may vary in the
number of assigned operators. The ready operators list (line 2 of
Algorithm 4) includes optional index build operators which are
candidate for scheduling. If the operator next in line 7 is optional,
the previous skyline (skyline) is kept and unioned with the set of
schedules S (line 11) before computing the new skyline in line 14.
As a result, the newly generated skyline may consist of schedules
with different numbers of operators. Between schedules with
the same execution time and money, schedules with a larger
number of operators are preferred. Also, the schedules kept in
the new skyline do not violate the constraints of the optimization
problem, as solutions that belong to the initial skyline and have
lower execution time or monetary cost will dominate solutions
in the unioned set where the assignment of optional operators
have affected dataflow execution. Hence, only schedules where
the assignment of optional operators does not affect the dataflow
execution time and monetary cost will be kept in the newly
computed skyline.

6 EXPERIMENTAL EVALUATION
In this section, the proposed approach is evaluated based on
simulation. The skyline dataflow scheduler described in Section
5.3.1 (offline) is evaluated using an online load balance scheduler
(online) typically deployed in elastic clouds as baseline. The on-
line algorithm examines the dataflow graph in an online greedy
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Table 3: Experiment Parameters

Parameter Values
Quantum size 60 seconds
Quantum cost $0.1
Storage Cost $10−4 per MB per Quantum
Max Containers 100
Dataflow Montage, Ligo, Cybershake
Operators / Dataflow 100
α 0.5
Index gain fading D 1 quantum
Poisson Generator λ 1 quantum
Total Time 720 quanta

fashion scheduling the operators to the available containers so
that load balance is achieved. Finally, the two index interleaving
algorithms, the LP interleaving algorithm and the online interleav-
ing algorithm, are evaluated and compared using two baseline
index management approaches: a naive approach that does not
create indexes at all (no indexes) and an approach that randomly
selects indexes from the potential set and randomly assigns them
to containers to be built (random).

6.1 Experimental Setup
Table 3 summarizes the parameters used in the experiments. Ho-
mogeneous containers with similar capacity in resources (CPU,
memory, disk, and network) are assumed. Each container has
one CPU and one disk. The CPU and memory needs of each oper-
ator is specified as a percentage of container’s CPU and memory
respectively. A disk size of 100 GB and a speed of 250 MB/sec
(typical SSD) are assumed. Allocated containers cache table parti-
tions and indexes read from the storage service. A time quantum
Q of 60 seconds is assumed. Pricing is based on Amazon’s billing
policy [6]. The price Mc charged for the provisioning of each
container per time quantum is set equal to $0.1 and the storage
cost Mst is set equal to $10−4 per MB per quantum. The stor-
age of the cloud is computed by counting the number of bytes
transferred and charging appropriately over time.

In the simulator used, user queries are sent to the scheduler,
which adds them to a queue. Each query is transformed into
an execution graph of operators with data dependencies. Given
the execution graph, the scheduler selects a subset of contain-
ers and schedules the execution of the graph operators on these
containers, respecting the graph dependencies. The set of active
containers can be dynamically varied based on the demand. Each
operator has a priority specified and each container has a queue
with operators that are executed as soon as the memory needed
is sufficient. Dataflow operators have priority 1 and build index
operators have priority −1. Operators with negative priority are
stopped when operators with positive priority arrive to the con-
tainer or its current time quantum expires. A network bandwidth
of 1 Gbps is assumed. The execution of an operator is delayed
until its input data are transferred. Also, if an index is available
and beneficial, the container reads the index in addition to the
input of the operator, depending on the speedup it offers.

In the simulator used, each container has a local disk to cache
input files from the storage service. If the data required as in-
put from the operator are already in the cache, data transfer is
considered to be 0. If the container cache gets full, LRU policy
is used to create empty space. Containers that do not have any

Figure 5: The dataflow graphs Montage(A), Ligo(B), and
Cybershake(C).

Table 4: Basic statistics of the scientific dataflows.

Time (sec) # Min Max Mean Stdev
Montage 100 3.82 49.32 11.32 2.95
Ligo 100 4.03 689.39 222.33 241.42
Cybershake 100 0.55 199.43 22.97 25.08
Input (MB) # Min Max Mean Stdev
Montage 20 0.01 4.02 3.22 1.65
Ligo 53 0.86 14.91 14.24 2.70
Cybershake 52 1.81 19169.75 1459.08 5091.69

Table 5: Indexes on table lineitem.

Column Type Index Size % Table Size
comment text 422.30 MB 30.16 %
shipinstruct 20 chars 248.95 MB 17.78 %
commitdate date 225.91 MB 16.13 %
orderkey integer 146.99 MB 10.49 %

dataflow operators scheduled on them are deleted at the end of
the leased quantum.

Synthetic data of three real scientific applications, namely
Montage [28], Ligo [19] and Cybershake [17], are used to evaluate
the proposed approach. Montage shown in Figure 5A is used to
generate image mosaics of the sky, LIGO shown in Figure 5B is
used to analyze galactic binary systems and Cybershake shown
in Figure 5C is used for the characterization of earthquakes. The
dataflows are produced using the generator in [8] which specifies
the execution time of each operator, the dependencies between
them and the sizes of the input/output files of each operator. The
basic statistics of the operators are shown in Table 4.

The input files of the dataflows shown in Table 4 are used as a
database of files. The total number of files is 125 and their total
size is 76.69 GB. The maximum size of a file partition is set equal
to 128 MB, resulting in a total number of 713 file partitions. The
TPC-H benchmark [1] is used to compute the sizes of typical
indexes and model the speed-ups they provide. Table lineitem
with scale 2 which has approximately 12 million rows and a
size of 1.4 GB is used. Table 5 shows the sizes of indexes on
four different columns of the table. To model the speed-up that
indexes offer, the following SQL queries were created based on
the categories presented in Section 1:
Order by:
SELECT orderkey FROM lineitem
ORDER BY orderkey;

Select range (large):
SELECT orderkey FROM lineitem
WHERE orderkey > 1000000

AND orderkey < 2000000;

Select range (small):
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Table 6: Index speedup.

Query No-Index Index Speedup
Order by 44.730 sec 6.010 sec 7.44x
Select range (large) 5.103 sec 0.054 sec 94.44x
Select range (small) 4.921 sec 0.016 sec 307.50x
Lookup 4.393 sec 0.007 sec 627.14x

SELECT orderkey FROM lineitem
WHERE orderkey > 10000

AND orderkey < 20000;

Lookup:
SELECT orderkey FROM lineitem
where orderkey = 1000000;

Table 6 shows the speed-up the index on column orderkey
offers. Four potential indexes for each file are used. Each index
size is computed using the percentages shown in Table 5 and its
speed-up is randomly chosen from the values of Table 6.

A Dataflow Generator Client issues dataflows at time points
that follow a Poisson distribution. More specifically, the generator
implemented computes the arrival time k (in seconds) of the next
dataflow as f (k ; λ) = Pr(X = k) = λke−λ/k!, with λ equal to 60
seconds. Dataflows are generated using two settings: randomly
(random generator) and with phases (phase generator). The phase
generator produces dataflows to measure the adaptability of the
proposed approach to workload changes as follows: Cybershake
dataflows for 33.3 quanta (10000 sec), Ligo dataflows for 16.6
quanta (5000 sec), Montage dataflows for 66.6 quanta (20000 sec)
and Cybershake dataflows for 27.3 quanta (8200 sec) with each
generated dataflow having different speed-ups for the indexes it
uses.

6.2 Scheduler robustness for estimation
errors

In reality, operator runtimes and data sizes may be overestimated
or underestimated. In the first set of experiments, the sensitivity
of the scheduler to estimation errors is investigated. To do so,
the runtime of operators and the data sizes they generate are
randomly varied within a certain percentage and the difference
between the actual and estimated values for time, money and
fragmentation are computed. For example, for an estimation er-
ror of 10% a random value in the range of [90 - 110] seconds is
selected to modify the runtime of an operator initially estimated
at 100 seconds. Figure 6 shows the results for different values
of estimation errors added on the CPU time (operator runtime)
and data used. As can be seen, the estimations are robust con-
sidering that an error of more than 20% in operator runtime and
datasize estimations is relatively high. When the estimations are
extremely poor (large errors), the performance of the algorithm
can be significantly affected. This is because the algorithm makes
scheduling decisions offline (before dataflow execution) based
on estimations of operator runtimes and datasizes and does not
adapt to unpredicted changes. Future work could investigate how
to incorporate estimation errors on decision making to account
for inaccurate estimates and yield better performance.

6.3 Comparison of dataflow schedulers
In this set of experiments, the skyline dataflow scheduler pro-
posed (offline) is compared with the online load balance scheduler
typically used in IaaS clouds (online). Operator runtimes and data

Figure 6: Sensitivity of the offline scheduler to inaccurate
estimations.

sizes are scaled to evaluate the efficiency of the proposed sched-
uler for different scenarios. Since the online scheduler generates
a single execution schedule, the fastest schedule from the skyline
obtained using the proposed skyline dataflow scheduler (offline)
is used for the comparison. The results for Cybershake (the re-
sults are similar for the other dataflows) are presented in Figure 7;
the y-axis shows the difference (%) between the offline and the
online scheduler. The left part of Figure 7 shows the results when
scaling the operator runtimes up to 10x (shown in the x-axis) and
keeping the data sizes small (scaled to 0.01 of the original size).
The online scheduler performs well for these type of dataflows
(CPU-intensive) generating faster but slightly more expensive
schedules by balancing the load. However, load balancing does
not work well for data-intensive dataflows where data place-
ment greatly affects the execution of dataflows. The right part
of Figure 7 shows the results when scaling the size of data up to
100x. It can be seen that the schedules generated by the online
load balance scheduler are up to 2x slower and up to 4x more
expensive compared to the proposed offline scheduler.

6.4 Comparison of index interleaving
algorithms

In this experiment, we compare the two index interleaving al-
gorithms proposed; the LP interleaving algorithm and the online
interleaving algorithm. Figure 8 shows the number of indexes
built at each schedule in the skylines obtained for Montage using
the two index interleaving algorithms (the results are similar
for the other two dataflows). The first observation is that the
LP interleaving algorithm is able to schedule significantly more
build index operators. This is because the information about the
fragmented resources is available before the algorithm runs. In
contrast, the online algorithm schedules the index build opera-
tors and the dataflow operators at the same time. Also, the two
skylines obtained are not the same (as can be seen from the mon-
etary cost that corresponds to each point). This is because the
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Figure 7: Comparison of the online and offline scheduler performance.
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Figure 8: Number of indexes scheduled using different al-
gorithms for Montage dataflow.
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Figure 9: Montage with build index ops (green).

online algorithm interferes with the scheduling of the dataflow
operators resulting in cheaper schedules.

Figure 9 shows an example with the timeline of Montage
interleaved with build index operators scheduled by the LP in-
terleaving algorithm. Dataflow operators are shown in blue and
build index operators are shown in green. The red line indicates
idle compute resources. We observe that the LP interleaving algo-
rithm uses a significant amount of idle compute time. The initial
idle time is 7.14 quanta and after the assignment of the build
index operators, the fragmentation is reduced to 1.6 quanta.

We also compute an upper bound of the quality of the solution
found by the LP algorithm by merging all the individual idle
time periods and solving the knapsack problem using only one
large continuous time segment. We do this using the example of
Figure 10, which shows the times of the build index operators and
the fragmented resources we used. For simplicity, we set the gain
of each operator to be equal to its execution time. As a baseline,
we compare with the following greedy algorithm (inspired by
Graham [25]): first, we order the operators by descending execu-
tion times (and gain in this case) and proceed by assigning each
operator to the idle time segment with the most remaining time.
A build index operator that does not fit anywhere is not sched-
uled. Figure 11 shows the results of the LP interleaving algorithm
compared to the baseline and the upper bound. We observe that

the LP interleaving algorithm is able to find a solution close to
the theoretical upper bound (within 5% in this experiment).

6.5 Dynamic DataflowWorkload
In this experiment, the efficiency of the proposed auto-tuning ap-
proach (shown in Algorithm 2) is evaluated and compared using
the no-indexes and random approaches as baseline algorithms.

6.5.1 Dataflow Generator with Phases. Initially, the results
obtained using the dataflow generator client with phases are pre-
sented. Figure 12 shows the number of dataflows finished after
720 time quanta using the different approaches. It can be seen
that the number of dataflows executed is doubled when using
the proposed approach compared to the baseline where no index
is used. Furthermore, the monetary cost spent per dataflow is sig-
nificantly reduced. It can also be seen that the random approach
does not greatly affect the number of finished dataflows com-
pared to the scenario of not using indexes (no index). However
the average monetary cost per dataflow is significantly increased
due to the storage cost required, which is not taken into account.
Finally, the cost per dataflow is increased when non beneficial
indexes are maintained, as can be seen by comparing the columns
labelled as Gain (no delete) and Gain.

Table 7 shows the total number of operators executed and
stopped due to quantum expiration or preemption for the exe-
cution of a dataflow operator. It can be seen that the packing
achieved by the LP interleaving algorithm is better compared
to the random algorithm and fewer build index operators are
stopped prematurely.

Table 7: Operators executed.

Algorithm Total Ops Killed Ops Percentage
No Index 22402 0 0
Random 25649 1143 4.4
Gain 49549 1418 2.8

Figure 13 shows the number of indexes built and the total
storage cost over time. It can be seen that the proposed approach
adapts to the workload by creating and deleting indexes when
they become non-beneficial. When Cybershake is re-issued in the
final phase, some previously deleted indexes become beneficial
again and are recreated.

6.5.2 Random Dataflow Generator. In this experiment, a ran-
dom dataflow generator client is used. Figure 14 shows the num-
ber of dataflows finished after 720 time quanta. The number of
dataflows executed is larger using the proposed approach. This
is because the average execution time per dataflow is reduced.
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Figure 10: Histogram with execution times of build index operators and idle time resources.
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Figure 11: Total gain using different algorithms using the
build index operators and idle compute times of Figure 10.
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Figure 13: Adaptation of the algorithm to the dataflow
workload.

Also, the cost per dataflow is reduced, but not as much as in the
previous experiment where the phase dataflow generator client
was used. This is because the input is totally at random and, as
a result, indexes are stored for a longer period (essentially, they
never become non-beneficial). Even in this case, the proposed
approach outperforms the baseline approaches.
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Figure 14: Executed dataflows and average cost per
dataflow (random dataflow generator).

7 CONCLUSIONS
In this paper the problem of index management to improve the
performance of data-intensive flows on the Cloud is considered.
An online auto-tuning approach to assess the usefulness of in-
dexes for the execution of dataflows and utilize idle slots in the
execution schedule to build a proper set of indexes is described.
The results show that the proposed approach can significantly
reduce the average execution time and monetary cost required
per dataflow. Future work could evaluate the benefits of index
management for scenarios with heterogeneous cloud resources.
Also, in this work, we consider a conservative approach to build
indexes using idle slots so that they do not interfere with the
user workload. Building indexes in a delayed manner for sce-
narios were idle slots are short is an interesting direction of our
future work. Finally, automatic learning of the index gain fading
controller to select proper respective values for each index and
improve the performance of the proposed approach is another
research direction.
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ABSTRACT
Histograms are a well studied and simple way to summarize data.

As such, they are used extensively in a variety of applications that

require estimates of data frequency values. Significant previous

work has studied the problem of finding optimal histograms with

respect to an error measure. In this paper we study the classic

problem of finding an optimal histogram for a dataset, with a

new twist: The histogram must contain at least 𝑛 − 𝑘 of the 𝑛

data points. The 𝑘 excluded data points are considered outliers.

We consider two notions of excluding data items, by allowing

arbitrary items to be excluded, or only removing items while

retaining a consistent histogram. Polynomial algorithms are pre-

sented for these problems. Significant experimentation demon-

strates that our algorithms work well in practice to reduce the

histogram error.

1 INTRODUCTION
Covering a set of data points with a histogram is a fundamental

problem that lays at the heart of many database applications.

Problems of this sort appear as optimization problems with var-

ious constraints on the type and size of the histogram, as well

as an error function that must be minimized. Among these prob-

lems, finding an optimal histogram covering all but a few input

points is of interest in view of outlier removal. In such a problem,

given 𝑛 data points, we are asked to find the optimal histogram

covering at least 𝑛 − 𝑘 of the 𝑛 input points. From the viewpoint

of optimization, excluding 𝑘 points reduces the error and in this

sense, the excluded data points can be considered outliers. In

computational geometry, variations of this problem have been

studied in many different settings.

A histogram provides the user with an estimate of frequencies

of data elements within each bucket. For example, consider a

histogram over integer exam grades. The bucket ( [51, 60]; 40)
indicates that there are 40 exam grades between 51 and 60, inclu-

sive, in the dataset. Without additional information, a uniform

distribution of elements within the bucket will be assumed, i.e.,

4 grades each for every number between 51 and 60. In practice,

this may be far from the correct frequencies, e.g., it is possible

that there are 19 occurrences each of grade 59 and 60 and two

occurrences of grade 51.

Using an error metric, such as sum-squared error, it is possible

to measure the distance between the histogram’s estimation and

the actual frequencies. When the error is large, the histogram

poorly captures the data. The simplest way to decrease the error

is to increase the number of buckets. By using more buckets, the

user has a more fine-grained view of the data. This, however,

is not always an appropriate solution, and in particular, is in-

appropriate if the histogram is given to a human to view (and

not simply to a computer program to continue manipulating for
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some purpose). If the user is given a very large number of buckets

she loses the ability, to some degree, of seeing “the big picture”

of the data. It is more difficult to grasp the meaning of the data

when many buckets are displayed. A large number of buckets

also degrades the quality of the user interface, particularly on

mobile devices.

Histograms with a limited number of buckets can have high

error as they must cover all elements within the dataset. However,

there can be elements that are outliers, in the sense that it is their

inclusion that causes the error to increase. In the above example

of a dataset of grades, the occurrences of grade 51 can be seen

as outliers. Indeed, if these elements did not have to be covered

by a bucket, one could use ( [59, 60]; 38), for which the uniform

distribution perfectly estimates the actual grades in the bucket

range.

In this paper our goal is to find optimal histograms, given a

bound 𝛽 on the number of buckets, as well as a bound 𝑘 on the

number of outliers that need not be covered. In other words, the

goal is to optimally choose up to 𝑘 elements and a histogram

with up to 𝛽 buckets, so as to minimize the total error.

The main contributions of the paper are:

• We introduce two intuitive notions for an optimal his-

togram (called a summary) with deletions.

• We present several algorithms for solving this problem,

including algorithms that are provably optimal.

• Extensive experimentation demonstrates the quality of

our solutions.

This paper is organized as follows. We start by discussing

related work in Section 2. In Section 3 we set up the framework

by providing the necessary definitions. In Sections 4 and 5 we

study the optimal summary with deletion problem when there is

only a single bucket, or when multiple buckets are allowed. In

Section 6 we consider datasets with multiple columns. Extensive

experimentation appears in Section 7, and Section 8 concludes.

2 RELATEDWORK
Related work falls into two sub-areas: finding optimal histograms

and identifying outliers in data. We discuss each of these aspects

below.

Histograms. Histograms summarize data by storing the num-

ber of values within a given data range. They are traditionally

used for estimating costs of query plans, as well as for approxi-

mate query answering. Various types of histograms have been

considered in the past. These differ both on their maintenance

efficiency over dynamic data, and their effectiveness for approxi-

mating query answers. Some of the classical types of histograms

considered include equi-width (in which all buckets have the

same range size), equi-depth (in which all buckets have the same

number of data elements), serial (which group elements accord-

ing to frequency) and end-biased (in which all buckets except one

have a single element range). This paper considers the popular

v-optimal histograms [9] which has been proven to be optimal
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in minimizing the variance of element frequencies within the

buckets. A taxonomy of histogram types was presented in [12]

Due to their popularity, there has been much effort to effi-

ciently compute histograms from data. In [11], a polynomial time

algorithm was presented to compute v-optimal histograms. This

work was later expanded in [10] for the case in which there is a

bound on the total number of buckets that can be used to summa-

rize several different columns of data. There has also been work

on approximating histograms, e.g., [7, 8], and using sampling for

constructing histograms [5].

No previous work has considered the setting of computing

histograms when not all of the elements must be covered. Among

previous work, our paper is most related to [11] as we also present

an optimal algorithm for histogram creation, albeit in a new

setting.

Outliers. Intuitively, an outlier is a data element that is distant

from other elements. Many different criteria have been consid-

ered in the past to determine when a data point is an outlier, and

outlier detection algorithms have been presented. In particular,

algorithms differ as to whether they compare data elements with

the entire set, or only with a small local subset. In our work, we

assume that the user provides us with a number 𝑘 of outliers

that can be removed. This differs from most previous work, in

which no such number is provided. In [4, 14] algorithms for top-𝑘

outliers are presented. However, they may return less than 𝑘 ele-

ments if, fewer are deemed to be outliers. (In addition, they differ

in their notion of an outlier, as they do not attempt to minimize

histogram error.)

Histograms have been used to efficiently find outliers [6, 13].

Our algorithms can also be viewed as finding outliers using his-

tograms. However, our approach is significantly different from

previous work. In [6, 13], histograms are built over the entire

data set, and then data elements that significantly differ from

their fellow bucket elements are considered outliers. In our work,

we find the optimal set of data elements that should be removed

in order to generate a histogram with low error.

Several works have considered similar types of problems, i.e.,

covering all but 𝑘 data elements in an optimal manner (in some

sense). In particular, [2] considers optimality in terms of min-

imum diameter, minimum area bounding box or minimal area

convex hull. In [3], the goal is to optimally remove 𝑘 data el-

ements so that the remaining have a minimum-width square

or rectangular annulus. Covering all but 𝑘 data elements with

disjoint boxes is considered in [1]. While these works have a

similar goal, they differ in the type of cover that must be created

and in error function that should be minimized. Hence, previous

techniques cannot carry over to our framework.

3 DEFINITIONS
Datasets and Frequencies. The goal of this paper is to find a

method to effectively summarize a large dataset, such as the

contents of a relation in a database, or the result of a query. In

the following, a dataset 𝑃 is a multiset of elements. To simplify

the presentation, we assume that the domain of 𝑃 is Z. However,
all our results immediately generalize to arbitrary completely

ordered discrete domains.
1

Given a multiset of elements 𝑃 , for all 𝑞 ∈ Z, we use card (𝑞, 𝑃)
to denote the number of copies of 𝑞 that appear in 𝑃 . We use

®𝑓𝑃
1
This work considers only discrete domains. For attributes over continuous domains,

our work can be applied if a discretization function is used, e.g., by rounding to a

given decimal place.

to denote the frequency vector of 𝑃 , i.e., ®𝑓𝑃 [𝑞] = card (𝑞, 𝑃). Note
that

®𝑓𝑃 has finitely many non-zero elements. We differentiate

between the elements of ®𝑓𝑃 denoted 𝑝 , 𝑞, 𝑟 , and the frequency
values (or simply values for short) of ®𝑓𝑃 , denoted 𝑣 ,𝑤 .

Example 3.1. Consider the multiset, used as running example,

𝑃 = {{10, 20, 30, 20, 30, 40, 10, 40, 50, 0, 0, 0, 0}}.
The frequency vector of 𝑃 , when considering only non-zero ele-

ments, is

®𝑓𝑃 [𝑞] = {0:4, 10:2, 20:2, 30:2, 40:2, 50:1} �

Summaries. A bucket is written 𝑏 = ( [𝑝, 𝑞];𝑛), where
• 𝑝 ≤ 𝑞 are integers defining the bucket endpoints and
• 𝑛 is a positive natural number indicating the number of

elements in the bucket.

We say that {𝑝, . . . , 𝑞} is the range of 𝑏.
Now, consider a multiset 𝑃 and a bucket 𝑏 = ( [𝑝, 𝑞];𝑛). We

say that 𝑏 is consistent with 𝑃 if

∑𝑞
𝑟=𝑝
®𝑓𝑃 [𝑟 ] = 𝑛, i.e., 𝑛 is precisely

the sum of frequencies of all elements within the range of 𝑏 in 𝑃 .

We say that a set of buckets 𝐵 is a summary of 𝑃 if

• every two buckets in 𝐵 have disjoint ranges,

• all buckets in 𝐵 are consistent with 𝑃 ,

• for every 𝑟 ∈ 𝑃 , there is some 𝑏 ∈ 𝐵 such that 𝑟 is in the

range of 𝑏.

Thus, intuitively, a summary of 𝑃 is a set of disjoint consistent

buckets that cover all elements appearing in 𝑃 .

Example 3.2. The following are different summaries of dataset

𝑃 from Example 3.1, with one and two buckets, respectively:

𝐵1 = {([0, 50]; 13)} 𝐵2 = {([0, 0]; 4), ( [10, 50]; 9)} �

Remark 1. A summary of a multiset of elements is very similar
to the well-studied notion of a histogram of a multiset of elements.
Much of the previous work on histograms assumed that the buckets
fully covered the domain. This was important, as data was dynam-
ically added to the dataset and had to be incorporated into the
histogram (and therefore, had to have a bucket to which it could
be added). In this work, since our goal is to summarize the cur-
rent contents of a dataset, we only create non-empty buckets, with
endpoints corresponding to actual elements in the dataset. Empty
buckets are not of interest.

We associate a summary 𝐵 with a vector ®𝑒𝐵 used to estimate
frequencies of elements, as follows. Let 𝑟 be an integer. If 𝑟 is

within the range of a bucket ( [𝑝, 𝑞];𝑛) ∈ 𝐵, then ®𝑒𝐵 [𝑟 ] = 𝑛
𝑞−𝑝+1 .

Otherwise, ®𝑒𝐵 [𝑟 ] = 0.

Now, the error of 𝐵 w.r.t. 𝑃 , denoted err (𝐵, 𝑃) is the distance of
®𝑒𝐵 from

®𝑓𝑃 . In general, different distance metrics can be employed.

In this paper, we use the sum-squared-error (SSE) metric as, used

by [11]:

err (𝐵, 𝑃) =
∑
𝑞∈Z
( ®𝑓𝑃 [𝑞] − ®𝑒𝐵 [𝑞])2 .

However, the work generalizes to additional metrics. It has been

shown [11] that this error metric can be equivalently computed

as:

err (𝐵, 𝑃) =
∑

( [𝑝,𝑞 ];𝑛) ∈𝐵

©«
∑

𝑝≤𝑟 ≤𝑞
( ®𝑓𝑃 [𝑟 ])2 −

𝑛2

𝑞 − 𝑝 + 1
ª®¬ . (1)

Example 3.3. Recall𝐵1 and𝐵2 fromExample 3.2. Then, err (𝐵1, 𝑃) =
29.7 and err (𝐵2, 𝑃) = 15. �
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Optimal Summaries. For any dataset 𝑃 , it is possible to find

a summary 𝐵 with err (𝐵, 𝑃) = 0 by simply creating a single-

ton bucket for each element appearing in 𝑃 . However, such a

summary will be of size similar to that of 𝑃 itself, and will be un-

wieldy for large datasets. Hence, we will be interested in creating

summaries of bounded size.

Let 𝛽 be a positive integer, called the bucket size bound. A
summary 𝐵 is size-bounded by 𝛽 if the number of buckets in 𝐵

is at most 𝛽 . Given a dataset 𝑃 and a bucket size bound 𝛽 , the

optimal summary problem is to find a summary 𝐵 of 𝑃 that is

size-bounded by 𝛽 , and has minimal error. This problem has been

considered in the past, and has been shown to be solvable in

polynomial time using dynamic programming [11].

Optimal Summaries with Deletion. In practice, some of the

elements in the dataset may be outliers that greatly contribute

to the error of the summary, while adding little information

of interest. When we are interested in summarizing the data

to understand the general trends, such outliers may not be of

interest. Indeed, a better understanding of the datamay be derived

when some elements are removed, to derive a smoother dataset,

before creating a summary.

We say that 𝑃 ′ is a 𝑘-deletion of 𝑃 if 𝑃 ′ is derived by removing

at most 𝑘 elements from 𝑃 . We consider two different types of

summaries after deletion. We say that 𝐵 is a 𝑘-deletion summary
of 𝑃 if there is a 𝑘-deletion 𝑃 ′ of 𝑃 such that 𝐵 is a summary of

𝑃 ′. A stronger requirement on the summary can be formulated

as follows: We say that 𝐵 is a consistent 𝑘-deletion summary of

𝑃 if there is a 𝑘-deletion 𝑃 ′ of 𝑃 such that 𝐵 is a summary of 𝑃 ′

and every bucket in 𝐵 is consistent with 𝑃 .

Example 3.4. Consider the dataset

𝑃 = {{1, 1, 2, 2, 2, 3, 3}}.

Suppose that we can only use a single bucket, but we may delete

up to 𝑘 = 2 elements.

The optimal choice is to delete a single occurrence of ele-

ment 2, yielding the dataset 𝑃 ′ = {{1, 1, 2, 2, 3, 3}}, which can be

summarized using one bucket with an error of 0. This summary

𝐵′ = ( [1, 3]; 6), however, is not consistent with 𝑃 .

An optimal consistent 2-deletion summary can be derived by

removing all occurrences of the element 1 (or all occurrences of

the element 3) yielding the consistent summary 𝐵′′ = ( [2, 3]; 5)
with error 0.5.

This example also serves to demonstrate why consistent sum-

maries have an added benefit. The summary 𝐵′′ accurately re-

flects the dataset, namely that it contains five elements in the

range [2, 3]. The summary 𝐵′ can be seen as being somewhat

confusing, as it seems to imply that the dataset has six elements

in the range [1, 3], when in fact there are seven such elements

(and one occurrence of element 2 has been removed to reduce

the error). �

Problems of Interest. In this paper we study the following prob-

lem, called the (consistent) optimization problem: Let 𝑃 be a
dataset, 𝛽 be a bucket size bound and 𝑘 be a natural number. Find
𝑃 ′, 𝐵 such that 𝑃 ′ is a 𝑘-deletion of 𝑃 and 𝐵 is a summary of 𝑃 ′

(and 𝐵 is consistent with 𝑃 ) such that err (𝐵, 𝑃 ′) is minimized.

4 SINGLE BUCKET SUMMARIES
Before studying the general optimization problems, we start by as-

suming that only a single bucket may be used. We note that even

in this case there can be exponentially many different choices of

𝑘 elements to delete. Hence, finding an optimal 𝑘-deletion sum-

mary with one bucket is not a trivial problem. In addition, the

ability to optimize for a single bucket is an important component

in a solution for multiple buckets. Therefore, in this section we

present algorithms that find an optimal 𝑘-deletion summary in

polynomial time, when only a single bucket can be used. We start

by considering arbitrary single bucket summaries with deletions,

and then consider the special case of consistent single bucket

summaries with deletions.

4.1 Arbitrary Single Bucket Summaries
We use minArbErr ( ®𝑓 , 𝛽, 𝑘) to denote the minimal error that can

be achieved for a multiset with frequency vector
®𝑓 , when up to

𝑘 elements can be deleted from the multiset, and up to 𝛽 buckets

can be used. The algorithms that we will present compute this er-

ror value directly. As is standard with dynamic programming, to

find the 𝑘 elements to be deleted from the multiset and the bucket

boundaries that should be used, some additional book-keeping is

necessary. This is quite straight-forward, but clutters the presen-

tation. Hence, we focus on computing minArbErr ( ®𝑓 , 𝛽, 𝑘).
In this section, we study the problem of computing the value

minArbErr ( ®𝑓 , 1, 𝑘) for a given ®𝑓 and 𝑘 , i.e., our optimization prob-

lem for the special case where only one bucket can be used. Intu-

itively, there are two different ways to choose elements to remove,

in order to reduce the error:

(1) we can remove the first or last elements with non-zero

frequency in
®𝑓 , thereby allowing a bucket with smaller

range to cover
®𝑓 ;

(2) we can remove elements that have the greatest frequency,

thereby reducing the variance of the frequencies within

the bucket.

Before presenting our algorithm, we introduce some neces-

sary notion used in the algorithms throughout this paper. Let

®𝑓 be a frequency vector. We use size( ®𝑓 ) to denote the number

of different non-zero elements in
®𝑓 , and first( ®𝑓 ) and last( ®𝑓 ) to

denote the first and last elements with non-zero frequency in

®𝑓 , respectively. Finally, next( ®𝑓 , 𝑝) and prev( ®𝑓 , 𝑝) denote the ele-
ment immediately after and immediately preceding 𝑝 in

®𝑓 with

non-zero frequency, respectively. When
®𝑓 is clear from the con-

text, it will be omitted, and we will simply write size, first, last,
prev(𝑝), next(𝑝).

For elements 𝑝, 𝑞, let ®𝑓[𝑝,𝑞 ] be the frequency vector

®𝑓[𝑝,𝑞 ] [𝑟 ] =
{
®𝑓 [𝑟 ] 𝑝 ≤ 𝑟 ≤ 𝑞

0 otherwise

The algorithm ArbSingleBErr in Figure 1 computes the value

minArbErr ( ®𝑓 , 1, 𝑘). ArbSingleBErr starts by first checking if all

elements in the vector can be removed (Lines 1–2), in which

case an error of zero is returned. Next, the algorithm considers

all options of removing first or last elements, as well as other

elements with high frequency. Intuitively, the values 𝑘left and

𝑘right in the algorithm are used to specify how many elements

can be removed from the beginning and end, respectively, of
®𝑓 .

This leaves 𝑘mid = 𝑘 − 𝑘left − 𝑘right elements of high frequency

to be removed from the remainder of
®𝑓 .

The algorithm ArbSingleBErr therefore iterates over values of
𝑘left ≤ 𝑘 (Line 6), and values of 𝑘right ≤ 𝑘 − 𝑘left (Line 9). We

note that we always choose values for 𝑘left and 𝑘right that are

sufficient to reduce the frequency of elements at the beginning
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Algorithm ArbSingleBErr( ®𝑓 , 𝑘)
1. if

∑last
𝑝=first

®𝑓 [𝑝] ≤ 𝑘

2. then return 0

3. 𝑒∗ ←∞
4. 𝑝 ← first
5. 𝑘left ← 0

6. while 𝑘left ≤ 𝑘

7. do 𝑞 ← last
8. 𝑘right ← 0

9. while 𝑘right ≤ 𝑘 − 𝑘left
10. do 𝑘mid ← 𝑘 − 𝑘left − 𝑘right
11. 𝑒 ← LowerMaxError( ®𝑓[𝑝,𝑞 ] , 𝑘mid )
12. 𝑒∗ ← min{𝑒∗, 𝑒}
13. 𝑘right ← 𝑘right + ®𝑓 [𝑞]
14. 𝑞 ← prev(𝑞)
15. 𝑘left ← 𝑘left + ®𝑓 [𝑝]
16. 𝑝 ← next(𝑝)
17. return 𝑒∗
Algorithm LowerMaxError( ®𝑓 , 𝑘)
1. 𝑝min:𝑣min ← minFreqVal( ®𝑓 )
2. 𝑝max :𝑣max ← maxFreqVal( ®𝑓 )
3. while (𝑘 > 0 and 𝑣max > 𝑣min)

4. do ®𝑓 [𝑝max ] ← ®𝑓 [𝑝max ] − 1
5. 𝑘 ← 𝑘 − 1
6. 𝑝max :𝑣max ← maxFreqVal( ®𝑓 )
7. 𝑛sum ←

∑last
𝑝=first

®𝑓 [𝑝]
8. 𝑛sqsum ←

∑last
𝑝=first ( ®𝑓 [𝑝])

2

9. return 𝑛sqsum − 𝑛sum2/(last − first + 1)

Figure 1: Returns minArbErr ( ®𝑓 , 1, 𝑘).

and end of
®𝑓 to zero. This is achieved by increasing 𝑘left and 𝑘right

by the actual frequency values appearing in
®𝑓 (Lines 15 and 13).

For given values of 𝑘left and 𝑘right we have 𝑝 and 𝑞 that cor-

respond to the first and last elements of
®𝑓 whose frequency has

not been reduced. They determine the range of values in
®𝑓 for

which we will attempt to reduce the highest frequency values (to

reduce variance) using the algorithm LowerMaxError.
LowerMaxError usesminFreqVal (resp.maxFreqVal) to return

the element and corresponding frequency value which is minimal

(resp. maximal) in
®𝑓 . While more elements can be removed (𝑘 > 0)

and there is still non-zero variance within the range (𝑣max >

𝑣min) the frequency of the most frequent element is reduced

by one (Line 4). Finally, Line 9 returns the error for the single

bucket that would be created for the updated
®𝑓 , using Equation 1.

ArbSingleBErr keeps track of the lowest error option (Line 12),

and returns this value (Line 17).

Correctness and runtime of ArbSingleBErr are stated in the

following theorem.

Theorem 4.1. For a given ®𝑓 and 𝑘 , ArbSingleBErr( ®𝑓 , 𝑘) com-
putes minArbErr ( ®𝑓 , 1, 𝑘) in time O(𝑘2 (size log size + 𝑘)).

Proof. ArbSingleBErr iterates over all options of removing all

occurrences of elements (i.e., reducing to a zero frequency) from

the beginning and end of
®𝑓 . For each such option, LowerMaxError

is used to reduce the frequencies of highest frequency elements.

Hence, it is sufficient to show that LowerMaxError returns the

minimal error that can be derived by 𝑘-deletions that do not

remove all occurrences of the first and last elements of
®𝑓 .

In the following, assume that 𝑝 and 𝑞 are the first and last

elements, respectively, with non-zero frequency in
®𝑓 . Thus, the

single bucket over a 𝑘-deletion of
®𝑓 will have the form ( [𝑝, 𝑞];𝑛)

where 𝑛 is the sum of frequencies of the remaining elements of
®𝑓 .

Recall that LowerMaxError does the following simple action:

while there are still elements that can be deleted and not all fre-

quencies in
®𝑓 (between 𝑝 and 𝑞) are equal, find the most frequent

element, and reduce its frequency by one. We will prove that this

strategy achieves minimal error.

Assume, by way of contradiction, that there exist a different

strategy to delete up to 𝑘 elements from
®𝑓 , that achieves the

minimal error 𝑒0. Let ®𝑓 ′ be this 𝑘-deletion. Let

𝑣est = (
∑

𝑝≤𝑟 ≤𝑞
®𝑓 ′[𝑟 ])/(𝑞 − 𝑝 + 1).

Note that 𝑣est is the estimated frequency value for each element

in the bucket. The error of
®𝑓 ′ is

𝑒0 =
∑

𝑝≤𝑟 ≤𝑞
( ®𝑓 ′[𝑟 ] − 𝑣est )2 .

We will show that LowerMaxError also returns 𝑒0.

Let 𝑣− = min𝑝≤𝑟 ≤𝑞{ ®𝑓 ′[𝑟 ] | ®𝑓 ′[𝑟 ] ≠ ®𝑓 [𝑟 ]}, i.e., 𝑣− is the

minimal frequency in
®𝑓 ′ changed by the deletion. Let 𝑣+ =

max𝑝≤𝑟 ≤𝑞{ ®𝑓 ′[𝑟 ]}, i.e., 𝑣+ is the maximal frequency value in
®𝑓 ′.

Now we consider the frequency vector derived by reducing

the frequency 𝑣+ by one and increasing the frequency 𝑣− by one.

The error of this new frequency vector 𝑒 ′
0
differs from 𝑒0 only in

the summation for frequencies 𝑣+ and 𝑣−. Now we will show that

𝑒 ′
0
− 𝑒0 ≤ 0 i.e, this change did not increase the error. Observe

that

𝑒 ′
0
− 𝑒0 = (𝑣+ − 1 − 𝑣est )2 + (𝑣− + 1 − 𝑣est )2 − (2)(

(𝑣+ − 𝑣est )2 + (𝑣− − 𝑣est )2
)

= 2(𝑣− − 𝑣est ) − 2(𝑣+ − 𝑣est ) + 2 (3)

≤ 2(𝑣− − 𝑣est ) − 2(𝑣− + 1 − 𝑣est ) + 2 = 0 (4)

where Equation 4 holds since 𝑣− + 1 ≤ 𝑣+, since otherwise we
could have produced

®𝑓 ′ using LowerMaxError.
Now, by repeating this change up to 𝑘 times, the result of

LowerMaxError will be equal to the minimum error.

To prove the runtime, observe that ArbSingleBErr makes at

most 𝑘2 calls to LowerMaxError. Each call to LowerMaxError
costs size log size + 𝑘 . To achieve this time, we first sort the

vector
®𝑓[𝑝,𝑞 ] sent to the algorithm. This allows us to efficiently

evaluate all calls to minFreqVal and maxFreqVal. Then, we re-
quire another 𝑘 operations to lower the frequencies, giving a

total of O(size log size + 𝑘) for algorithm LowerMaxError, and
O(𝑘2 (size log size + 𝑘)) for ArbSingleBErr, as required. �

4.2 Consistent Single Bucket Summaries
We use minConErr ( ®𝑓 , 𝛽, 𝑘) to denote the minimal error that can

be achieved for a multiset with frequency vector
®𝑓 , when a 𝑘-

deletion is taken and up to 𝛽 buckets can be used, and the sum-

mary created must be consistent with ®𝑓 . In this section we show

how to compute this value for the special case where 𝛽 = 1.

ConSingleBErr (Figure 2) uses a precomputed matrix 𝑆𝑆𝐸 of

dimensions size( ®𝑓 )×size( ®𝑓 ), where 𝑆𝑆𝐸 [𝑝, 𝑞] is the sum-squared

error for a single bucket over the range [𝑝, 𝑞] of ®𝑓 , with no
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Algorithm ConSingleBErr( ®𝑓 , 𝑘)
1. if

∑last
𝑝=first

®𝑓 [𝑝] ≤ 𝑘

2. then return 0

3. 𝑞 ← last
4. 𝑘right ← 0

5. while 𝑘right + ®𝑓 [𝑞] ≤ 𝑘

6. do 𝑘right ← 𝑘right + ®𝑓 [𝑞]
7. 𝑞 ← prev(𝑞)
8. 𝑒 ← 𝑆𝑆𝐸 [first, 𝑞]
9. 𝑝 ← first
10. 𝑘left ← 0

11. while 𝑘left + ®𝑓 [𝑝] ≤ 𝑘

12. do 𝑘left ← 𝑘left + ®𝑓 [𝑝]
13. 𝑝 ← next(𝑝)
14. while 𝑘left + 𝑘right > 𝑘

15. do 𝑞 ← next(𝑞)
16. 𝑘right ← 𝑘right − ®𝑓 [𝑞]
17. 𝑒 ← min{𝑒, 𝑆𝑆𝐸 [𝑝, 𝑞]]}
18. return 𝑒

Figure 2: Returns minConErr ( ®𝑓 , 1, 𝑘).

deletions,
2
i.e., 𝑆𝑆𝐸 [𝑝, 𝑞] = ∑

𝑝≤𝑟 ≤𝑞 ( ®𝑓 [𝑟 ] − 𝑣est )2 where 𝑣est =
(∑𝑝≤𝑟 ≤𝑞 ®𝑓 [𝑟 ])/(𝑞 − 𝑝 + 1).

The algorithm ConSingleBErr first checks if all elements in

®𝑓 can be deleted. In this case, the error is zero (Lines 1–2). Oth-

erwise, it begins by considering the case in which elements on

the right-hand side of
®𝑓 are maximally deleted and computes the

error in this case (Lines 5–8). Then, in Lines 11–17 we slowly

increase the number of elements removed on the left-hand side,

while reducing the number of elements removed on the right-

hand side, so as to remain within the limit of 𝑘 . For each such

option, we compute the error, and keep the minimal value.

We show the following result.

Theorem 4.2. For a given ®𝑓 and 𝑘 ,ConSingleBError( ®𝑓 , 𝑘) com-
putes minConErr ( ®𝑓 , 1, 𝑘) in time O(min{𝑘, size}).

Proof. To prove correctness, it is important to note that only

maximal deletions from the two sides of
®𝑓 need to be considered.

Thus, for example, in Lines 5–7 we maximally remove elements

from the right-hand side of
®𝑓 . This follows from the following

claim: Let
®𝑓 be a frequency vector, and 𝑝 < 𝑞 be elements with

non-zero frequencies in
®𝑓 . Let 𝑛 be the total frequency of all

elements in
®𝑓 and let 𝑛′ be the total frequency of all elements be-

tween 𝑝 and 𝑞 (including) in
®𝑓 . Then, err ({([first, last];𝑛)}, ®𝑓 ) ≥

err ({([𝑝, 𝑞];𝑛′)}, ®𝑓[𝑝,𝑞 ] ). This follows from Lemma 2 in [11].

Finally, to show the runtime, observe that we iterate over
®𝑓

twice: once from right to left (Lines 5–7) and once from left to

right (Lines 11-17). Thus, the time is at most O(size). Since in
both our iterations over

®𝑓 we do at most𝑘 operations (we increase

𝑘right or 𝑘left until 𝑘), the time is at most O(𝑘). Together, this
proves our claim of runtime. �

2
In practice, it is not necessary to store a matrix of size size × size. Instead this

value can be computed in time O(1) given two arrays of size size each, as discussed
in [11].

Algorithm NoDeletionSummary( ®𝑓 , 𝛽)
1. for 𝑝 ← first to last
2. do𝑀 [𝑝, 1] ← 𝑆𝑆𝐸 [first, 𝑝]
3. for 𝛽 ′ ← 2 to 𝛽

4. do for 𝑞 ← next(first) to last
5. do𝑀 [𝑞, 𝛽 ′] ← ∞
6. for 𝑝 ← prev(𝑞) down-to first
7. do 𝑒 ← 𝑀 [𝑝, 𝛽 ′ − 1] +

𝑆𝑆𝐸 [next(𝑝), 𝑞]
8. 𝑀 [𝑞, 𝛽 ′] ← min{𝑀 [𝑞, 𝛽 ′], 𝑒}
9. return𝑀 [last, 𝛽]

Figure 3: Returns minArbErr ( ®𝑓 , 𝛽, 0) (which is also equal to
minConErr ( ®𝑓 , 𝛽, 0)).

5 MULTI-BUCKET SUMMARIES
We now consider the problem of finding summaries that can have

multiple buckets. The problem of finding an optimal summary,

when no deletions are permitted (𝑘 = 0) is well studied. Hence,

as a baseline approach it is natural to try to directly leverage

algorithms that find an optimal summary, in order to solve our

problem.

5.1 Baseline Approaches
Before discussing how to find summaries with deletions, we re-

view the dynamic algorithm proposed in [11] for building optimal

sum-squared-error histograms without deletions.

Optimal Summary without Deletions. Figure 3 presents the

algorithm NoDeletionSummary from [11] which computes the

optimal error for a multiset with frequency vector
®𝑓 when using

𝛽 buckets but no deletions. Note that in this special case, clearly

minArbErr ( ®𝑓 , 𝛽, 0) = minConErr ( ®𝑓 , 𝛽, 0) will always hold. Hence,
the algorithm can be seen as computing either of these values.

Intuitively, the algorithm dynamically iterates over all possible

divisions of the input into 𝛽 buckets and returns the minimal

sum-square error found.

NoDeletionSummary utilizes two matrices:

• the precomputed matrix 𝑆𝑆𝐸 discussed earlier;

• a matrix 𝑀 of dimensions size( ®𝑓 ) × 𝛽 , in which we will

update𝑀 [𝑝, 𝛽 ′] to contain minArbErr ( ®𝑓[first( ®𝑓 ),𝑝 ] , 𝛽
′, 0).

Hence,𝑀 [last( ®𝑓 ), 𝛽] is precisely what we are computing.

The algorithm starts by initializing the matrix 𝑀 with the

error elements for the case of a single bucket (Lines 1–2). Note

that this loop, (as well as all other loops in this paper that iterate

over elements from
®𝑓 , such as Line 4 and 6) should be understood

as implicitly only looping over elements 𝑝 for which
®𝑓 [𝑝] > 0.

Thus, for each element 𝑝 with positive frequency, we update

𝑀 [𝑝, 1].
To compute the remainder of 𝑀 , the algorithm uses three

nested for loops. In the outer loop, it iterates over the number of

𝛽 ′ from 2 to 𝛽 (Line 3). In the first inner loop, it iterates over ele-

ments 𝑞 from next(first) to last (Line 4). In the inner-most loop,

the algorithm iterates over all possible elements 𝑝 for the left side

of the right most bucket (Line 6). Using previously computed val-

ues, it then calculates the error, under the assumption that the last

bucket ranges from just after 𝑝 to 𝑞, (Line 7) and saves the mini-

mal error in𝑀 [𝑞, 𝛽 ′] (Line 8). Finally, the algorithm returns the

minimal error that can be achieved with 𝛽 buckets, i.e.,𝑀 [last, 𝛽]

185



Algorithm SumThenDelErr( ®𝑓 , 𝛽, 𝑘)
1. 𝐵 ← NoDeletionSummaryBuckets( ®𝑓 , 𝛽)
2. ( [𝑝1, 𝑞1];𝑛1) ← 𝐵 [1]
3. for 𝑘 ′ ← 0 to 𝑘

4. do𝑀 [1, 𝑘 ′] ← SingleBErr( ®𝑓[𝑝1,𝑞1 ] , 𝑘 ′)
5. for 𝛽 ′ ← 2 to 𝛽

6. do for 𝑘 ′ ← 0 to 𝑘

7. do SDUpdateMatrix( ®𝑓 , 𝛽 ′, 𝑘 ′, 𝑀, 𝐵)
8. return𝑀 [𝛽, 𝑘]
Algorithm SDUpdateMatrix( ®𝑓 , 𝛽, 𝑘, 𝑀, 𝐵)

1. 𝑀 [𝛽, 𝑘] ← ∞
2. ( [𝑝, 𝑞];𝑛) ← 𝐵 [𝛽]
3. for 𝑘 ′ ← 0 to 𝑘

4. 𝑒 ← 𝑀 [𝛽 − 1, 𝑘 − 𝑘 ′]
5. 𝑒 ′ ← SingleBErr( ®𝑓[𝑝,𝑞 ] , 𝑘 ′)
6. 𝑀 [𝛽, 𝑘] ← min{𝑀 [𝛽, 𝑘], 𝑒 + 𝑒 ′}

Figure 4: Returns either minArbSDErr ( ®𝑓 , 𝛽, 𝑘) or
minConSDErr ( ®𝑓 , 𝛽, 𝑘), depending on the version of Sin-
gleBucketError used.

(Line 9). It is not difficult to see that NoDeletionSummary runs
in time O(𝛽 size2).

Example 5.1. As a running example, to compare algorithms

returning multi-bucket summaries, we consider a dataset with

the frequency vector
®𝑓 , defined as

{1:2, 2:1, 3:2, 4:1, 5:2, 6:3, 7:2, 8:1}.
The optimal 2-bucket summary of

®𝑓 , without deletions is
𝐵 = {([1, 7]; 13), ( [8, 8]; 1)}

with error 2.86. �

Summarize, then Delete. One approach to finding a summary

with deletions is to

• first compute an optimal summary 𝐵 without deletions

(using NoDeletionSummary) and
• then choose the best elements to delete from the buckets,

adjusting bucket boundaries accordingly.

We denote the minimal possible error that can be achieved

when following this two-step methodology for a dataset with

frequency vector
®𝑓 , bucket bound 𝛽 and a number 𝑘 of deletions

as minArbSDErr ( ®𝑓 , 𝛽, 𝑘) and minConSDErr ( ®𝑓 , 𝛽, 𝑘) for arbitrary
and consistent summaries, respectively.

While a-priori it may not be clear how to choose elements

to delete, in fact, an optimal choice can be found in polynomial

time using dynamic programming. SumThenDelErr in Figure 4

computes theminimal error by filling in amatrix𝑀 of dimensions

𝛽×𝑘 . The position𝑀 [𝛽 ′, 𝑘 ′] is updated to be the optimal error of

the first 𝛽 ′ buckets while allowing up to 𝑘 ′ deletions. Hence, the
value of interest will be in𝑀 [𝛽, 𝑘] at the end of the algorithm.

Algorithm SumThenDelErr begins by calling an algorithm

named NoDeletionSummaryBuckets, which is a version of the

previously presentedNoDeletionSummary that returns the set of
buckets 𝐵, for which the error, with no deletions, is minimal. Next

the algorithm initializes all entries of𝑀 for 𝛽 = 1 by calling an al-

gorithm that computes the error for a single bucket (Lines 2–3). In

practice, SingleBErr should be replaced with ArbSingleBErr if the
goal is to computeminArbSDErr ( ®𝑓 , 𝛽, 𝑘) andwithConSingleBErr
if the goal is to compute minConSDErr ( ®𝑓 , 𝛽, 𝑘).

Finally, the algorithm considers all choices for 2 ≤ 𝛽 ′ ≤ 𝛽 ,

as well as all values of 𝑘 ′ ≤ 𝑘 , by calling SDUpdateMatrix for
each combination. Algorithm SDUpdateMatrix is used to update
𝑀 [𝛽, 𝑘], by considering all choices 𝑘 ′ of how to split the deletions

between the first 𝛽 − 1 buckets (i.e., 𝑀 [𝛽 − 1, 𝑘 − 𝑘 ′]) and the

final bucket (i.e., SingleBErr( ®𝑓[𝑝,𝑞 ] , 𝑘 ′)).

Example 5.2. Recall the frequency vector
®𝑓 from Example 5.1.

When running SumThenDelErr( ®𝑓 , 2, 2) once with ArbSingleBErr
and once with ConSingleBErr we derive the summaries 𝐵1 and

𝐵2, respectively:

𝐵1 = {([1, 7]; 11), ( [8, 8]; 1)} e𝑟𝑟: 0.18

𝐵2 = {([2, 7]; 11), ( [8, 8]; 1)} e𝑟𝑟: 0.35

where the former is derived by deleting two occurrences of ele-

ment 6, and the latter is derived by removing two occurrences of

element 1. �

If we can show that the algorithm returns a value close to

minArbErr ( ®𝑓 , 𝛽, 𝑘) or minConErr ( ®𝑓 , 𝛽, 𝑘), we can leverage opti-

mizations presented in the past for finding optimal summaries

without deletions to solve the problem at hand. Unfortunately, the

following theorem states that SumThenDelErr can be arbitrarily

bad.

Theorem 5.3. For any 𝛽 , 𝑘 and 𝑒 > 0, there exists a multiset 𝑃
with frequency vector ®𝑓 such that

minArbSDErr ( ®𝑓 , 𝛽, 𝑘) −minArbErr ( ®𝑓 , 𝛽, 𝑘) > 𝑒 ,

minConSDErr ( ®𝑓 , 𝛽, 𝑘) −minConErr ( ®𝑓 , 𝛽, 𝑘) > 𝑒 .

Proof. Due to space limitations, we only show the result

for 𝑘 = 1 and 𝛽 = 2. The more general case, however, can be

shown similarly. Let 𝑒 > 0 be an error gap. Let 𝑛 be a natural

number such that 𝑛 > 𝑚𝑎𝑥{10, 5𝑒}. Let ®𝑓 be the frequency vector
{0:𝑛, 2:1, 4:𝑛, 7:𝑛}.

If we can delete elements before choosing the buckets, the

optimal strategy is to reduce the frequency of the element 2

in
®𝑓 , thus deriving the frequency vector

®𝑓 ′ = {0:𝑛, 4:𝑛, 7:𝑛}.
Then the optimal summary would be {([0, 0];𝑛), ( [4, 7]; 2𝑛)}.
This summary is also consistent. Hence, minArbErr ( ®𝑓 , 2, 1) =
minConErr ( ®𝑓 , 2, 1) = 𝑛2.

There are three possible no-deletion summaries of
®𝑓 with two

buckets. These are specified below with their errors.

𝐵1: {([0, 4]; 2𝑛 + 1), ( [7, 7];𝑛)} err1 :
6

5

𝑛2 + 4

5

𝑛 + 4

5

𝐵2: {([0, 2];𝑛 + 1), ( [4, 7]; 2𝑛)} err2 :
5

3

𝑛2 + 2

3

𝑛 + 2

3

𝐵3: {([0, 0];𝑛), ( [2, 7]; 2𝑛 + 1)} err3 :
4

3

𝑛2 − 2

3

𝑛 + 5

6

It is not difficult to see that for a sufficiently large 𝑛, the optimal

summary without deletions is 𝐵1 = {([0, 4]; 2𝑛 + 1), ( [7, 7];𝑛)}.
Thus, this summary would then be returned by the algorithm

NoDeletionSummaryBuckets.
No deletion can be made from 𝐵1 if the summary must be

consistent. Hence, SumThenDelErr would return precisely 𝑒𝑟𝑟1
if ConSingleBucketError is used. It easily follows that

minConSDErr ( ®𝑓 , 𝛽, 𝑘) −minConErr ( ®𝑓 , 𝛽, 𝑘) > 𝑒.

For arbitrary summaries, that need not be consistent, the

largest decrement in the error of 𝐵1 that can be achieved by delet-

ing one element is derived by reducing the frequency of element 0
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(or equivalently of element 4) by one, which gives us the fre-

quency vector
®𝑓 ′
1
= {0:𝑛 − 1, 2:1, 4:𝑛, 7:𝑛} and the summary 𝐵′

1
=

{([0, 4]; 2𝑛), ( [7, 7];𝑛)}. Thus, we have thatminArbSDErr ( ®𝑓 , 2, 1) =
6

5
𝑛2 − 2𝑛 + 2.
Now, minArbSDErr ( ®𝑓 , 2, 1) −minArbErr ( ®𝑓 , 2, 1) equals

6

5

𝑛2 − 2𝑛 + 2 − 𝑛2 = 1

5

𝑛2 − 2𝑛 + 2

which is greater than 𝑒 when 𝑛 is chosen to be greater than

𝑚𝑎𝑥{10, 5𝑒}, as required. �

The above theorem implies that one cannot create an optimal

summary without deletions, and only afterwards delete elements

from the pre-chosen buckets without paying an arbitrarily large

penalty in error. However, this algorithm was worth discussion

as in practice we will show that it often works quite well. See

Section 7 for experimental results.

Delete, then Summarize. An alternative approach that also uses
previous work on optimal summaries without deletions is to

• first choose 𝑘 outliers in the dataset to delete, thereby

deriving a 𝑘-deletion 𝑃 ′ of the original dataset 𝑃
• then compute an optimal summary without deletions for

𝑃 ′ (using NoDeletionSummary).

This approach may not return consistent summaries, but it can

be used to produce arbitrary summaries. It is difficult to formally

prove the quality of the results that this approach will derive. In

particular, there are many different ways to define the notion of

an outlier. Hence in the first step it is not even clear what we are

attempting to delete. Second, most outlier detection algorithms

return a set of outliers given a dataset, but cannot be tuned to

find a specific number of outliers. This poses a significant techni-

cal challenge. Thus, instead of trying to formally prove that this

approach will not yield optimal outcomes, we defer consideration

of this approach to the experimentation. There we experimen-

tally show that the results returned using this methodology are

significantly inferior to all other approaches considered in this

paper.

5.2 Optimal Multi-Bucket Summaries
We consider the problem of computing minArbErr ( ®𝑓 , 𝛽, 𝑘) for
arbitrary values of 𝛽 . Algorithm ArbMultiBErr in Figure 5 is

inspired by NoDeletionSummary. ArbMultiBErr uses dynamic

programming to fill in a matrix 𝑀 of dimension size × 𝛽 ×
𝑘 . The position 𝑀 [𝑝, 𝛽 ′, 𝑘 ′] is updated to be the minimal er-

ror of a 𝑘 ′-deletion summary of
®𝑓[first,𝑝 ] with 𝛽 ′ buckets, i.e.,

minArbErr ( ®𝑓[first,𝑝 ] , 𝛽 ′, 𝑘 ′). Hence, the value of interest will be
in𝑀 [last, 𝛽, 𝑘] at the end of the algorithm.

ArbMultiBErr begins by initializing all entries of𝑀 for 𝛽 = 1

by calling ArbSingleBErr (Lines 1–3). Next, the algorithm consid-

ers all choices for 2 ≤ 𝛽 ′ ≤ 𝛽 , as well as all elements 𝑝 , other than

the first, and all values of 𝑘 ′ ≤ 𝑘 . Algorithm ArbUpdateMatrix
is used to update𝑀 [𝑝, 𝛽 ′, 𝑘 ′].

Given 𝑝, 𝛽, 𝑘 , ArbUpdateMatrix computes𝑀 [𝑝, 𝛽, 𝑘], by con-

sidering the minimal choice among several options:

• If the frequency value
®𝑓 [𝑝] of 𝑝 is at most 𝑘 , then we can

create 𝛽 buckets for
®𝑓[first,𝑝 ] by removing all occurrences

of 𝑝 , and then finding the optimal buckets for
®𝑓[first,prev(𝑝) ]

with 𝑘 − ®𝑓 [𝑝] deletions, using the precomputed value in

𝑀 . (Lines 1–3)

Algorithm ArbMultiBErr( ®𝑓 , 𝛽, 𝑘)
1. for 𝑝 ← first to last
2. do for 𝑘 ′ ← 0 to 𝑘

3. do𝑀 [𝑝, 1, 𝑘 ′] ← ArbSingleBErr( ®𝑓[first,𝑝 ] , 𝑘 ′)
4. for 𝛽 ′ ← 2 to 𝛽

5. do for 𝑝 ← next(first) to last
6. do for 𝑘 ′ ← 0 to 𝑘

7. do ArbUpdateMatrix( ®𝑓 , 𝛽 ′, 𝑘 ′, 𝑝, 𝑀)
8. return𝑀 [last, 𝛽, 𝑘]
Algorithm ArbUpdateMatrix( ®𝑓 , 𝛽, 𝑘, 𝑝,𝑀)

1. if ®𝑓 [𝑝] ≤ 𝑘

2. then𝑀 [𝑝, 𝛽, 𝑘] ← 𝑀 [prev(𝑝), 𝛽, 𝑘 − ®𝑓 [𝑝]]
3. else 𝑀 [𝑝, 𝛽, 𝑘] ← ∞
4. for 𝑞 ← first to prev(𝑝)
5. do for 𝑘 ′ ← 0 to 𝑘

6. do 𝑒 ← 𝑀 [𝑞, 𝛽 − 1, 𝑘 − 𝑘 ′]
7. 𝑒 ′ ← LowerMaxError( ®𝑓[next(𝑞),𝑝 ] , 𝑘 ′)
8. 𝑀 [𝑝, 𝛽 ′, 𝑘 ′] ← min{𝑀 [𝑝, 𝛽, 𝑘], 𝑒 + 𝑒 ′}

Figure 5: Returns minArbErr ( ®𝑓 , 𝛽, 𝑘).

• In addition, for every element 𝑞 preceding 𝑝 , and for ev-

ery 𝑘 ′ ≤ 𝑘 we consider the case that 𝛽 − 1 buckets are

used to cover
®𝑓[first,𝑞 ] with 𝑘 − 𝑘 ′ deletions and a final

bucket covers the range from next(𝑞) to 𝑝 , using 𝑘 ′ dele-
tions. The error of such a summary is𝑀 [𝑞, 𝛽 − 1, 𝑘 −𝑘 ′] +
LowerMaxError( ®𝑓[next(𝑞),𝑝 ] , 𝑘 ′). (Lines 4–8)

Example 5.4. Recall the frequency vector
®𝑓 from Example 5.1.

With ArbMultiBErr we will get an error of 0.125 corresponding

to the deletion of one occurrence of the element of 6, as well as

the element 8, and the buckets {([1, 4]; 6), ( [5, 7]; 6)}. �

Theorem 5.5. Given ®𝑓 , 𝛽 and 𝑘 , ArbMultiBErr( ®𝑓 , 𝛽, 𝑘) com-
putes minArbErr ( ®𝑓 , 𝛽, 𝑘) in time

O(𝛽𝑘2size2 + size2 (size log size + 𝑘)).

Proof. Correctness is easy, and follows from Theorem 4.1,

and from the fact that the algorithm considers all possible ways to

divide the frequency vector into buckets, and all possible choices

of deletions. Note that the algorithm directly considers removals

of elements only on the right-hand of buckets. (For the first bucket

both sides are considered). However, any removals of elements

at the left-hand side of these buckets can equivalently be thought

of as removals from the right-hand side of the previous bucket.

To achieve the stated runtime, we pre-compute the values

of LowerMaxError( ®𝑓[𝑝,𝑞 ] , 𝑘 ′) for all 𝑝 < 𝑞 (with non-zero fre-

quencies) and for all 𝑘 ′ ≤ 𝑘 . For a choice of 𝑝 and 𝑞, we can

compute LowerMaxError( ®𝑓[𝑝,𝑞 ] , 𝑘 ′) for all values of 𝑘 ′ in time

size log size + 𝑘 , by sorting
®𝑓[𝑝,𝑞 ] by frequency values, and then

computing the results incrementally starting with 𝑘 = 0. This

give a total time of size2 (size log size + 𝑘) for LowerMaxError
computations. These values are then read from a pre-computed

data structure, in O(1) when running ArbUpdateMatrix.
The remainder of the algorithm runs in time O(𝛽𝑘2size2)

due to the nested loops of length 𝛽 (Line 4 of ArbMultiBErr), of
length size (Line 5), of length 𝑘 (Line 6) and the loop of lengths

size (Line 4 of ArbUpdateMatrix) and length 𝑘 (Line 5). �
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Algorithm ConUpdateMatrix( ®𝑓 , 𝛽, 𝑘, 𝑝, 𝑀)

1. if ®𝑓 [𝑝] ≤ 𝑘

2. then𝑀 [𝑝, 𝛽, 𝑘] ← 𝑀 [prev(𝑝), 𝛽, 𝑘 − ®𝑓 [𝑝]]
3. else 𝑀 [𝑝, 𝛽, 𝑘] ← ∞
4. for 𝑞 ← prev(𝑝) to first
5. do 𝑒 ← 𝑀 [𝑞, 𝛽 − 1, 𝑘] + 𝑆𝑆𝐸 [next(𝑞), 𝑝]
6. 𝑀 [𝑝, 𝛽, 𝑘] ← min{𝑀 [𝑝, 𝛽, 𝑘], 𝑒}

Figure 6: Used as a sub-procedure in order to compute
minConErr ( ®𝑓 , 𝛽, 𝑘).

5.3 Optimal Consistent Multi-Bucket
Summaries

We now consider the problem of computing the error for optimal

consistent summaries, i.e.,minConErr ( ®𝑓 , 𝑘, 𝛽). LetConMultiBErr
be an algorithm identical to ArbMultiBErr, except that in Line 3 it
calls ConSingleBErr and in Line 7 it calls ConUpdateMatrix. Re-
call that ConSingleBErr appears in Figure 2. ConUpdateMatrix
appears in Figure 6. It remains to explain how this algorithm

works.

ConUpdateMatrix( ®𝑓 , 𝛽, 𝑘, 𝑏, 𝑀) is called to update the value in
𝑀 [𝑝, 𝛽, 𝑘] for 𝛽 > 1. It first considers the case that the right-most

element (which is now 𝑝) can be completely removed (Lines 1–3),

in which case the previously computed error can be used. It then

(Lines 4–6) considers all splits of
®𝑓 into two, such that 𝛽 − 1

buckets are used to summarize
®𝑓[first,𝑞 ] (with error appearing in

𝑀 [𝑞, 𝛽 − 1, 𝑘]) and one bucket is used to summarize
®𝑓[next(𝑞),𝑝 ]

(with error appearing in 𝑆𝑆𝐸 [next(𝑞), 𝑝]). Note that in this case,

we can assume that no deletions occur in the rightmost bucket,

as:

(1) we already considered the case that occurrences of 𝑝 are

removed and

(2) any removals of elements at the left-hand side of the final

bucket can equivalently be thought of as removals from

the right-hand side of the previous bucket.

Example 5.6. Recall once again ®𝑓 from Example 5.1. With algo-

rithm ConMultiBErr we will get an error of 0.17 corresponding

to the deletion of the element of 4, as well as the element 8, and

the buckets {([1, 3]; 5), ( [5, 7]; 7)}. �

We can show the following result. Observe thatConMultiBError
is only slower than algorithm NoDeletionSummary by a factor

of 𝑘 .

Theorem 5.7. For a given ®𝑓 , 𝛽 and 𝑘 , ConMultiBErr( ®𝑓 , 𝛽, 𝑘)
computes minConErr ( ®𝑓 , 𝛽, 𝑘) in time O(𝛽 𝑘 size2).

Proof. Correctness is easy to show as the different ways to

split
®𝑓 to different buckets, while deleting all occurrences of

elements not in these buckets, is considered. To show the runtime,

observe thatConSingleBErr runs inO(size). Therefore, Lines 1–3
of ConMultiBErr run in time O(𝑘 size2). ConUpdateMatrix runs
in time O(size). Therefore, Lines 4–7 of ConMultiBErr run in

time O(𝛽 𝑘 size2), as required. �

6 SUMMARIES OF DATASETS WITH
MULTIPLE COLUMNS

We now briefly consider the problem of finding an optimal sum-

mary for datasets with multiple columns, in the presence of
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Figure 7: Example multicolumn dataset

outliers. Let R be a relation with 𝑛 columns, (𝛽1, . . . , 𝛽𝑛) be a
𝑛- tuple indicating the number of buckets per column that can

be allocated and let 𝑘 be a number. We consider two types of

outliers:

• value deletions: a specific value in some tuple 𝑡 can be

considered an outlier in a specific column (even though

the other values in 𝑡 are not outliers), and thus, be deleted

from the column;

• tuple deletions: a tuple 𝑡 can be considered an outlier, and

thus, be deleted from the relation.

Our goal is to find a summary with 𝛽𝑖 buckets for column 𝑖 , that

minimizes the sum of error over all columns, when there can be

at most 𝑘 value or tuple deletions.

Example 6.1. Consider the relation R repeated twice in Fig-

ure 7. (Ignore the first column which names the tuples for con-

venience.) Suppose 𝑘 = 6. In the version of R on the left, we

have chosen up to 𝑘 values to be deleted per column, while in the

version on the right we have chosen up to 𝑘 tuples to be deleted.

(Both are indicated by the color blue.)

Now, suppose we can allocate one bucket for the first column

𝐶 and three buckets for the second column 𝑋 . For both types of

deletions we can find a perfect summary (i.e., one with no error).

For the deletions of the left we would choose buckets:

• ([1, 7]; 7) for column 𝐶 and

• ([0, 0]; 4), ( [20, 20]; 2), ( [30, 30]; 2) for column 𝑋 .

For the deletions on the right we would choose buckets:

• ([1, 7]; 7) for column 𝐶 and

• ([0, 0]; 4), ( [20, 20]; 1), ( [40, 40]; 2) for column 𝑋 .

The above example demonstrated summaries with (1, 3) buck-
ets for the columns and six value/tuples deletions that are clearly

optimal (as they have no error at all). The problem arises as to

how hard it is to find such optimal summaries in the general case.

Theorem 6.2. LetR be a relationwith𝑛 columns, let (𝛽1, . . . , 𝛽𝑛)
be the bucket size bounds and let 𝑘 be natural number. Then:
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(1) An optimal summary satisfying the bucket size bounds, with
up to 𝑘 value deletions per column can be found in polyno-
mial time.

(2) The problem of determining whether there exists a perfect
summary of R with up to 𝑘 tuple deletions is NP-complete,
even if
• the dataset has two attributes or
• all attributes can have at most two buckets.

The first claim is easy to show as we can simply apply the

algorithms from the previous section to each column separately.

For the second claim, in the case in which there are only two

attributes we can show hardness by a reduction from the mono-

tone satisfying assignment problem. For the case where there

are at most two buckets per attribute we can show hardness

by a reduction from 1-in-3 SAT. The proofs are omitted due to

space limitations, but the main ideas of the second claim are

demonstrated in the following examples.

Example 6.3. We demonstrate hardness when the relation con-

tains only two columns.

Let𝜓 be a positive 3-SAT formula with𝑚 clauses 𝐶1, . . . , 𝐶𝑚 ,

over the variables 𝑥1, . . . , 𝑥𝑛 . We say that𝜓 is ℎ-monotone satis-

fiable if𝜓 can be satisfied by an assignment in which at most ℎ

variables are assigned true. This is a well-known NP-complete

problem.

Let R be a relation of cardinality 2, containing two types of

tuples:

• For each clause 𝐶𝑖 = 𝑥𝑖1 ∨ 𝑥𝑖2 ∨ 𝑥𝑖3 we add to D three

tuples 𝑡𝑖
1
= (2𝑖, 10𝑖1), 𝑡𝑖

2
= (2𝑖, 10𝑖2), 𝑡𝑖

3
= (2𝑖, 10𝑖3).

• For every 0 ≥ 𝑗 ≥ 𝑚 we add the tuple 𝑡 𝑗 = (2 𝑗 + 1, 0).
Observe that R contains 4𝑚 + 1 tuples. For example, the formula

(𝑥1 ∨ 𝑥2 ∨ 𝑥3) ∧ (𝑥2 ∨ 𝑥3 ∨ 𝑥4) ∧ (𝑥1 ∨ 𝑥4 ∨ 𝑥5)

corresponds to the relation R in Figure 7.

Now, we choose 𝑘 = 2𝑚 and (1, ℎ + 1) as our bucket bound,
i.e., a single bucket for the first column and ℎ + 1 buckets for the
second column. We can show that𝜓 is ℎ-monotone if and only if

there is a 𝑘-tuple deletion for which there is a summary bounded

by (1, ℎ + 1) with zero error.

For example, suppose that ℎ = 2. Consider the 𝑘-tuple deletion

R ′ derived by removing the blue tuples in the relation on the

right. It is easy to see that we can use a single bucket for the first

column, and ℎ + 1 = 3 buckets for the second column, to derive a

summary with error of zero. Observe also that R ′ corresponds to
a satisfying assignment that assigns at most ℎ variables the value

true (in this case 𝑥2 and 𝑥4 as the elements 20 and 40 remain after

the 𝑘-tuple deletion).

One can show (omitting some precise details due to space

limitations) that the opposite holds too, i.e., that any 𝑘-deletion

that has a summary bounded by (1, ℎ + 1) with an error of zero

corresponds to an ℎ-monotone satisfying assignment. �

Example 6.4. We demonstrate why determining whether there

exists a 𝑘-tuple deletion R ′ with a perfect summary 𝑆 is a difficult

problem, even when there are only two buckets per column.

Consider a positive 3-SAT formula with𝑚 clauses𝐶1, . . . , 𝐶𝑚 ,

over the variables 𝑥1, . . . , 𝑥𝑛 . Recall that the 1-in-3 SAT problem

is to determine whether there exists an assignment that satisfies

precisely one variable in each clause.

We create a relation R with 𝑛 + 1 columns, and three types of

tuples:

𝑋1 𝑋2 𝑋3 𝑋4 𝑋5 𝐶

𝑡1
1

2 -2 -2 0 0 1

𝑡1
2

-2 2 -2 0 0 1

𝑡1
3

-2 -2 2 0 0 1

𝑡2
1

0 2 -2 -2 0 2

𝑡2
2

0 -2 -2 -2 0 2

𝑡2
3

0 -2 -2 2 0 2

𝑡3
1

2 0 0 -2 -2 3

𝑡3
2

-2 0 0 2 -2 3

𝑡3
3

-2 0 0 -2 2 3

𝑡
𝑐,1
1

0 0 0 0 0 1

𝑡
𝑐,1
2

0 0 0 0 0 1

𝑡
𝑐,2
1

0 0 0 0 0 2

𝑡
𝑐,2
2

0 0 0 0 0 2

𝑡
𝑐,3
1

0 0 0 0 0 3

𝑡
𝑐,3
2

0 0 0 0 0 3

𝑡0
1

0 0 0 0 0 0

𝑡0
2

0 0 0 0 0 0

𝑡0
3

0 0 0 0 0 0

Figure 8: Example relation in 1-in-3 SAT reduction.

• For each clause 𝐶𝑖 = 𝑥𝑖1 ∨ 𝑥𝑖2 ∨ 𝑥𝑖3 we add three tuples as

follows:

– for all 𝑗 = 1, 2, 3 we have 𝑡𝑖
𝑗
[𝑛 + 1] = 𝑖;

– for all 𝑗 = 1, 2, 3 and 𝑘 ∉ {𝑖1, 𝑖2, 𝑖3} we have 𝑡𝑖𝑗 [𝑘] = 0;

– for all 𝑗 = 1, 2, 3 and 𝑘 = 1, 2, 3 we have 𝑡𝑖
𝑗
[𝑖𝑘 ] = 2 if

𝑘 = 𝑗 and 𝑡𝑖
𝑗
[𝑖𝑘 ] = −2, otherwise.

• For each 𝑖 ≤ 𝑚, we add two tuples 𝑡
𝑐,𝑖
1

= 𝑡
𝑐,𝑖
2

= (0, . . . , 0, 𝑖).
• Finally, we add three tuples 𝑡0

1
= 𝑡0

2
= 𝑡0

3
= (0, . . . , 0).

In total, R has 5𝑚 + 3 tuples. For example, the formula

(𝑥1 ∨ 𝑥2 ∨ 𝑥3) ∧ (𝑥2 ∨ 𝑥3 ∨ 𝑥4) ∧ (𝑥1 ∨ 𝑥4 ∨ 𝑥5)
corresponds to the dataset in Figure 8.

Now, suppose that 𝑘 = 2𝑚 and our bucket bound allows two

buckets per attribute. For the example in Figure 8, we can remove

up to 6 tuples. It is not difficult to see that if we remove the blue

tuples, we are left with a data set R ′ for which we can create

a summary with error of zero. This holds since each column

𝑥1, . . . , 𝑥5 has precisely two different elements (which can be

placed in different buckets) and column 𝐶 has three occurrences

each of every value from 0 to 3. Observe also that the remaining

rows define an assignment that satisfies precisely one variable in

each clause, if we assign each 𝑥𝑖 true if R ′[𝑋𝑖 ] contains element

2, and false otherwise. (In the example given this corresponds to

mapping 𝑥2 and 𝑥5 to true.)

Indeed, with a bit of reasoning it is possible to show the oppo-

site direction too, i.e., a 𝑘-tuple deletion R ′ for which there is a

summary with error of zero corresponds to a solution to the 1-in-

3 SAT problem. Intuitively, this holds since such a tuple-deletion

must retain, for each 𝑥𝑖 , only the elements 0 and 2 or only the

elements 0 and −2 (thus, corresponding to a truth assignment).
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Dataset size𝑃 size ®𝑓

ForestAspect 581,012 361

ForestDistHydro 581,012 136

IncomeCapitalGain 48,842 123

IncomeHoursWeek 48,842 96

Figure 9: Real datasets.

In addition, we must retain precisely one tuple from every triple

𝑡𝑖
1
, 𝑡𝑖
2
, 𝑡𝑖
3
so as to have error of zero on the column 𝐶 , i.e., we will

map precisely one variable in each clause to the value true.
3 �

7 EXPERIMENTAL RESULTS
In the following we discuss our experimental results which con-

sider different datasets, and varying 𝛽 and percentage of elements

that can be deleted, denoted 𝜌 . As default values, we use 𝛽 = 10

and 𝜌 = 2%. In our experiments, we prefer to consider the percent-

age of elements to be deleted (𝜌) instead of an absolute number

(𝑘), as the size of the dataset should determine the number of

elements we are willing to delete. We set a time limit of five

minutes, i.e., tests that exceeded the time limit were excluded

from the results.

All experimentation was run on a standard Win7 desktop with

16GB RAM and an Intel i5-4570 processor. The algorithms were

implemented in Java, and experimentation was run with a limit

of 1GB of main memory.

Algorithms. We implemented five algorithms for the𝑘-deletion

problem. We abbreviate the algorithm names as follows. We

use Arb for ArbMultiBErr and Con for ConMultiBErr. We im-

plemented algorithm SumThenDelErr with ArbSingleBErr, and
ConSingleBErr, henceforth referred to as SDArb and SDCon, re-
spectively. Finally, we implemented the delete then summarize
strategy using a well-known distance-based outlier detection

algorithm [4] to remove outliers and then summarizing the result

using NoDeletionSummary. This algorithm is referred to as DS.

Datasets. We run our algorithms on both synthetic datasets

and real datasets. The synthetic datasets were generated by two

different distributions—randomly permuted zipf distribution with

skew parameter 𝑧 = 0.85 (as in [11]), and normal distribution

with variance proportional to 25% of the value range. For each

experiment over the synthetic datasets, we generated three in-

stances of the dataset with the same parameters, ran the tests

on all three, and computed the average result. Our default syn-

thetic datasets have 50,000 elements and a range of 100, i.e., the

elements were sampled from [1, 100].
We also use several real datasets, taken from the UCI KDD

Archive
4
and the UCI Machine learning repository

5
. When con-

sidering the size of these datasets, there are two factors of im-

portance: the number of elements in the dataset, called size𝑃 and

the number of different elements in the dataset (i.e., the number

of non-zero elements in the frequency vector), called size ®𝑓 . Note

that size ®𝑓 corresponds to the value size discussed in the previous

sections. The dataset sizes are summarized in Figure 9.

3
More details are required to make a precise proof, e.g., an assumption that no

variable appears in all clauses, but these are omitted due to space limitations.

4
http://kdd.ics.uci.edu/

5
http://archive.ics.uci.edu/ml/index.php

The Forest dataset contains data obtained from US Forest Ser-

vice, where the Aspect column is aspect in degrees azimuth, and

DistHydro is the horizontal distance to nearest surface water fea-

tures. For DistHydro we rounded to the nearest 10 meters. The

Income dataset (referred to as Adult in the repository) was origi-

nally extracted from the Census Bureau 1994 database. We use

the columns CapitalGain and HoursWeek, which is the number

of work hours per week.

In all runtime graphs, the y-axis is in log scale and the units

are in seconds. In all error graphs, the data points represent the

ratio of the error in the current setting to the minimum error

of the same settings with no deletions. Intuitively, lower values

indicate a larger percentage of reduction in error due to deletions.

Comparing All algorithms. In our first test, we compare the

error and runtime of all algorithms over the Income dataset and

synthetic dataset, using the default values for 𝛽 and 𝜌 . The results

of this test appear in Figures 10a, 10b, 10c and 10d. Due to space

limitations, we omit the Forest dataset from this experiment, but

similar trends can be seen there.

Algorithm DS, which uses distance based outlier detection, is

mostly unsuccessful in improving the error. In our testing, there

have even been cases in which the error increases using this

algorithm. This is not surprising, both due to the fact that outliers

are removed before determining bucket boundaries and because

the algorithm does not always even produce enough outliers to

delete. This result was consistent in all experiments and therefore,

we do not consider it in remainder of the experimentation.

For the other algorithms, the graphs show a consistent order

of the error reduction—Arb always finds the optimal error, then

SDArb, Con and finally SDCon have increasing errors. The run-

time performance, on the other hand, is in almost the opposite

order, albeit Con and SDCon are very close in runtime. One can

observe that Con achieves error that is fairly close to Arb and

SDArb with runtime that is better in orders of magnitude.

Note that the runtime of Arb is so poor over the permuted zipf

dataset, that it timed out, and therefore its runtime and error are

missing. This occurs often in the experiments both for Arb and
for SDArb, as these algorithms have a runtime that is a function

of 𝑘2, even when a single bucket is used.

Varying percentage of Deletions. We tested the effect of chang-

ing the percentage of elements deleted by varying the value of 𝜌 ,

and running our algorithms with 𝑘 chosen as 𝜌 · size𝑃 . The error
and runtime results of these tests appear in Figures 10e, 10g, 11a

,10f, 10h and 11b. Note that for the synthetic datasets, we present

the error for both permuted zipf and normal distribution, but the

runtime only for the former. Since the runtime is not affected by

the data distribution, the graph omitted is almost identical to the

one appearing.

As expected, in all algorithms and datasets, the error is reduced

as 𝜌 grows. The degree to which the error is reduced differs be-

tween the datasets, due to differences in the data distributions.

For the synthetic data, deletions are more significant in normal

distribution than in permuted zipf distribution. Almost consis-

tently, Con and SDCon have significantly lower runtimes than

SDArb which is much faster than Arb. It is interesting to see that
in most tests, on lower values of 𝜌 , SDCon is faster than Con,
but as 𝜌 increases, SDCon becomes slower. The only exception

in our tests was on the dataset ForestAspect, where the number

of distinct values i.e., size ®𝑓 , is much higher than in the other
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Figure 10: Experiments for default values and varying 𝜌 over real datasets.
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Figure 11: Experiments for varying 𝜌 , 𝛽 , size𝑃 and size ®𝑓

datasets, and larger size ®𝑓 degrades the runtime of Con. This phe-

nomenon will be discussed later in our experiments, when we

consider varying the value size ®𝑓 .

Varying Number of Buckets. Next, we tested the results of our

algorithms when varying the number of buckets. The runtimes,

which do not appear in graphs due to space limitations, increase

linearly together with 𝛽 . The error reduction is shown in Fig-

ures 11c, 11d, and 11e. In general, as the number of buckets

increase, the error decreases. On IncomeCapitalGain for instance,

the error goes down to zero with 30 buckets, but On ForestDistHy-

dro on the other hand, the improvement in error with 30 bucket

is only a little under 80%. There are also cases where the reduc-

tion in error actually increases when buckets are added. This

counter-intuitive result is because the error ratio is computed

with respect to the same settings (and thus, the same number of

buckets) without deletions. As the number of buckets increases,

the relative gain by removing elements may decrease. This is

particularly noticeable for SDCon.

Varying the Values of size𝑃 and size ®𝑓 . We studied how the total

number of elements size𝑃 affects the results. To this end, we cre-

ated synthetic datasets of increasing size. In Figures 11f and 11g

depict the change in error and in runtime over different sizes of

multisets of elements. The relative error remains approximately

the same even as the dataset size increases. This apparently is the

result of the fact that the proportion of elements deleted relative

to the entire set remains the same. In contrast, the runtime grows

linearly with the size of the dataset. (Note that both axes of Fig-

ure 11g are on log scale.) The linear increase in runtime occurs

as the constant 2% element deletion translates to bigger absolute

numbers of 𝑘-deletions as the dataset size increases. Similarly to

before, for larger datasets (i.e., larger values of 𝑘), SDCon runs

slower than Con.
In the next experiment we considered increasing the number of

distinct elements size ®𝑓 . In this experiment the dataset remained

at the default size of 50,000 elements, but we increased the range

of values so as to increase size ®𝑓 . Due to space limitations, the
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Figure 12: Error of Sampling versus Optimal Deletion

error graph is omitted, as it had the same trends as in Figure 11f.

Figure 11h shows the runtime as size ®𝑓 increases. As expected, all

algorithms have runtime that grow with size ®𝑓 , except for SDCon

whose runtime is independent of size ®𝑓 .

Comparison with Sampling for Summary Construction. Since
histogram construction is costly, in many systems histograms

are computed over a sample of the dataset. Intuitively, it might

appear that such a sampling based approach will yield similar

results to our algorithms that allow for optimal deletions, as

perhaps outliers will not be chosen in the sample. In order to

check how sampling affects the error in practice, for each dataset

𝑃 , we constructed a summary 𝐵 over sampled data using the

NoDeletionSummary algorithm. Some of the elements in the

original dataset 𝑃 did not fall into the range of any of the buckets,

and were considered to have been “deleted” from the dataset,

yielding a new dataset 𝑃 ′. We then computed err (𝐵, 𝑃 ′) and com-

pared this value with the error of the optimal consistent summary

allowing for |𝑃 − 𝑃 ′ | deletions.
The results of this experiment on the synthetic datasets, with

sampling of 10% and 20% are depicted in Figure 12. (The results on

the real datasets were similar.) The size of |𝑃 − 𝑃 ′ |, i.e., the value
that was then used as 𝑘 in the input of ConMultiBErr, appears
on top of the bars. The results show two cases. With the per-

muted Zipf dataset there were no deletions at all as a result of the

sampling, and thus, the error is exactly the same as the original er-

ror of NoDeletionSummary algorithm. With the normal dataset,

there was a larger number of deletions, but the elements deleted

by the sampling actually increased the error significantly. When

ConMultiBErr was run with the same number of deletions, the

error was reduced. We conclude that sampling cannot be used as

an effective technique in order to reduce the error of a summary.

8 CONCLUSION
This paper studied the problem of an optimal summary with

𝛽 buckets, when 𝑘 outliers need not be covered. We presented

the first algorithms for this problem, by taking two different ap-

proaches for deleting elements (arbitrarily and consistently), and

attempting to determine which elements to delete at different

stages (before, during and after finding the optimal summary).

We also considered the problem of multi-column datasets. The ex-

perimentation shows that algorithm Con has the best balance be-

tween low error and low runtime. In addition, on smaller datasets

Arb performs very well, providing significantly lower error.

As future work, we intend to consider domains in which there

is no natural (useful) ordering over the values, and hence, buckets

cannot be described by their endpoints. While our algorithms

work well for moderately large datasets, they degrade when the

dataset becomes huge. We intend to develop approximation algo-

rithms to deal with this case. Finally, another important direction

is finding optimal summaries with outliers over streaming data.
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ABSTRACT

How can we eciently generate large-scale signed networks fol-
lowing real-world properties? Due to its rich modeling capability
of representing trust relations as positive and negative edges,
signed networks have spurred much interests with various ap-
plications. Despite its importance, however, existing models for
generating signed networks do not correctly reect properties of
real-world signed networks.

In this paper, we propose BalanSiNG, a novel, scalable, and
fully parallelizable method for generating large-scale signed net-
works following realistic properties. We identify a self-similar
balanced structure observed from a real-world signed network,
and simulate the self-similarity via Kronecker product. Then,
we exploit noise and careful weighting of signs such that our
resulting network obeys various properties of real-world signed
networks. BalanSiNG is easily parallelizable, and we implement
it using Spark. Extensive experiments show that BalanSiNG ef-
ciently generates the most realistic signed networks satisfying
various desired properties.

KEYWORDS

Signed NetworkModeling; Balance Theory; Stochastic Kronecker
Signed Graph; Balanced Signed Network Generator

1 INTRODUCTION

Signed networks [26] exhibit relationships between nodes as
positive (trust) and negative (distrust) edges, and various on-
line social services such as Epinions [10] have naturally formed
signed networks by allowing users to express their trust. In-
spired by these interesting trust relationships, many researchers
have been recently attracted to mining useful information from
signed networks, inducing advanced techniques for diverse appli-
cations such as sign prediction [22, 25], link prediction [40, 47],
node ranking [15, 16, 28], node embedding [20, 46], node clas-
sication [42], anomaly detection [21], and community detec-
tion [5, 48].

Even though signed networks are important resources in so-
cial network analysis, the understanding of synthetically gen-
erating realistic signed networks from scratch was nascent. In
unsigned networks, many sophisticated generation models have
been proposed, including Barabási-Albert (BA) [1], Forest Fire
(FF) [27], Stochastic Kronecker Graph (SKG) [23], and Recur-
sive Matrix (R-MAT) [4]. Among those models, SKG and R-MAT
have received signicant interest from data mining communi-
ties [12, 13, 31, 34, 37] since they well capture various prop-
erties of real-world graphs such as power-law degree distribu-
tions [1, 8, 9, 23, 31], shrinking eective diameters [3, 9, 27],
power-law singular value distribution [4, 9, 23], etc.

© 2020 Copyright held by the owner/author(s). Published in Proceedings of the
22nd International Conference on Extending Database Technology (EDBT), March
30-April 2, 2020, ISBN 978-3-89318-083-7 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

However, the existing models cannot generate realistic signed
networks because they do not provide a mechanism for deter-
mining signs of edges. Real-world signed networks exhibit not
only the traditional properties in unsigned networks, but also
distinct characteristics derived from signs (Figure 11). Especially,
real-world signed networks are dominated under balance the-
ory [2, 11] that plays a crucial role in the construction of signed
networks [6, 26]. According to the balance theory, balanced tri-
angles are more likely to be created than unbalanced ones in real
signed networks (details in Section 2). Thus, modeling signed
networks demands careful considerations on how to positively
or negatively associate three nodes on each triangle.

Motivated by this, several methods have been proposed for
signed network generation considering the balance theory. Vukaši-
nović et al. [45] proposed an interaction based model (IB) sim-
ulating the generation of signed edges using ant pheromone
mechanism and the balance theory. Ludwig et al. [29] suggested
an evolutionary model (Evo) that randomly inserts or removes
signed edges over time so that the evolving network follows
the balance theory. Derr et al. [6] have recently proposed Bal-
anced Signed Chung-Lu (BSCL), the state-of-the-art model im-
itating an input network based on Transitive Chung-Lu [35]
and the balance theory. However, they are limited in generating
realistic signed networks (see Figure 1), and computationally
inecient. Furthermore, the scale of existing signed networks
remains small; consequently, researchers have suered from the
lack of large-scale signed networks when testing the scalability
of their methods. Thus, generating realistic large-scale networks
is extremely useful to evaluate the scalability [14, 19, 30–32],
simulate their performance depending on various properties of
networks [17, 18, 23, 39], and anonymize their data [6, 24].

In this paper, we propose BalanSiNG (Balanced Signed Net-
work Generator), a novel and scalable method for generating
synthetic but realistic signed networks. We rst identify a self-
similar pattern observed from a real signed network. Then, we
design Basic Stochastic Kronecker Signed Graph (SKSG-B),
a basic model that simulates the self-similarity using Kronecker
product and generates fully balanced signed networks. On top
of SKSG-B, we propose Stochastic Kronecker Signed Graph
(SKSG) by adding random noises to the self-similar pattern and in-
troducing careful weighting to increase the probability of forming
positive edges to generate signed networks following real-world
properties. From SKSG, we derive BalanSiNG that eciently
creates signed edges fully in parallel. Through extensive experi-
ments, we show that BalanSiNG eciently generates the most
realistic signed networks capturing various properties of real-
world signed networks.

Our main contributions are summarized as follows:

• Novel self-similarity. We suggest a novel self-similar
pattern called self-similar balanced structure to be satised
for generating signed networks (Figure 4).
• Method. We propose BalanSiNG, an ecient and par-
allel method that simulates the suggested self-similarity
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Figure 1: BalanSiNG generates the most similar network to the real-world network, compared to other methods. The

plots show the comparison of properties from real-world signed networks and those from BalanSiNG and competitors.

We use BitcoinO dataset [22] for representing the properties of real-world signed networks; other real-world networks

give similar results. (a)-(d) illustrate properties derived from edge signs, and (e)-(h) depict traditional properties of real-

world networks regardless of edge signs (see Section 2.1). Red colored boxes denote that the corresponding graph does not

match the corresponding property.

by using Kronecker product, exploiting noise, and careful
weighting (Algorithm 3).BalanSiNG generates signed net-
works satisfying various desired properties of real-world
signed networks listed in Section 2.1.
• Experiments. We demonstrate that BalanSiNG gener-
ates the most realistic signed networks following real-
world properties compared to competitors as shown in Fig-
ure 1. We also show that BalanSiNG generates signed net-
works up to 265× faster than the state-of-the-art method,
and near linearly scales up w.r.t. the number of edges on
both single and distributed machines (Figure 9).

The source code of BalanSiNG and datasets are available at
hps://datalab.snu.ac.kr/balansing.

2 PRELIMINARIES

We describe the desired properties of real-world signed networks
to consider when generating a synthetic signed network in Sec-
tion 2.1. We formally dene the problem addressed in this paper
in Section 2.2. We then review Stochastic Kronecker Graph (SKG),
a representative generation model for unsigned networks to cap-
ture the concept of self-similarity simulation in Section 2.3.

Symbols used in this paper are summarized in Table 1. Through-
out the paper, we use a blue arrow and a red arrow to indicate a
positive edge and a negative edge, respectively.

2.1 Desired Properties of Signed Networks

We investigate real-world signed networks to grasp their unique
properties to be satised when generating signed networks. As

shown in the rst row of Figure 1, there are not only unique
properties derived from signs on edges but also traditional ones
studied in unsigned networks. The properties of other real-world
networks are in Figure 11. We examine properties induced by
signs in Section 2.1.1, and then review the typical ones regardless
of signs in Section 2.1.2.

2.1.1 Properties with respect to signs on edges.

• D1) Positively skewed sign proportion [25, 26, 43].

Real-world signed networks contain much more positive
edges than negative ones, as demonstrated in the rst row
of Figure 1(a).
• D2) Highly balanced triangle proportion [6, 11, 26,

41, 43, 48]. Signed triangles have been extensively stud-
ied in signed networks based on balance theory [2, 11]
stating that triangles 4+++ with three positive signs and
those 4+−− with one positive sign are much more plau-
sible than other types of triangles 4++− and 4−−−. The
former are called balanced triangles, and the latter are un-
balanced triangles. Thus, the ratio of balanced triangles is
much larger than that of unbalanced triangles as shown
in Figure 1(b).
• D3) Power-law degree distribution for only positive

or negative edges [43]. In scale-free networks, in- and
out-degree distributions follow a power-law [1]. In real-
world signed networks, when we consider only positive
(or negative) edges, corresponding degree distributions
also follow power-laws as shown in Figures 1(c) and 1(d).
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Self-Similar 
Balanced Structure

Kronecker 
Product

(a) Self-similar balanced structure to be simulated
by Kronecker product

Fully Balanced 
Signed Network

Properties

D4. Degree 
distribution
(oscillatory)

D2. Signed triangle 
distribution
(only balanced △)

D1. Edge sign
distribution
(uniform)

(b) Signed network following Basic Stochastic
Kronecker Signed Graph (SKSG-B)

Realistic
Signed Network

Properties

D4. Degree 
distribution
(power-law)

D2. Signed triangle 
distribution
(skewed)

D1. Edge sign
distribution
(skewed)

(c) Signed network following Stochastic Kronecker
Signed Graph (SKSG)

Figure 2: Overview of our approach. (a) We suggest self-similar balanced structure observed from a real-world signed net-

work (Section 3.1). (b) We design SKSG-B, a basic version of our model, that simulates the self-similarity using Kronecker

product, and generates a fully balanced signed network (Section 3.2). (c) We then propose SKSG, an advanced version that

produces realistic signed networks by introducing noise and weight splitting (Section 3.3). From SKSG model, we derive

BalanSiNG which quickly generates realistic signed networks satisfying the desired properties in parallel (Section 3.4).

2.1.2 Properties without respect to signs on edges.

• D4) Power-law degree distribution [1, 8, 9, 23, 31].

Real-world networks without signs also show power-law
degree distributions as shown in Figures 1(e) and 1(f).
• D5) Small eective diameter (hop plot) [3, 9, 27]. The
hop plot shows the ratio of node pairs reachable from each
other within k-hop for each integer k . It is closely related
to the eective diameter, the 90 percentile distance in the
hop plot. As seen in Figure 1(g), the eective diameters of
real-world graphs are small (typically between 4 and 5).
• D6) Power-law singular value distribution [4, 9, 23].

The singular values in the adjacency matrix of a real graph
follow a power-law distribution as shown in Figure 1(h).

2.2 Problem Denition

Problem 1 (Signed Network Generation). Given the tar-

get numbers |V| and |E| of nodes and edges, respectively, we aim
to synthetically generate a directed signed network from scratch

having |V| nodes and |E| signed edges where the output network
should follow the desired properties of real-world signed networks

listed in Section 2.1. �

2.3 SKG: Stochastic Kronecker Graph Model

SKG [23] is an unsigned network generation model based on
Kronecker product. Its motivation is that power-law phenomena
in nature occur due to self-similarity, i.e., a self-similar object is
approximately similar to a part of itself [36]. SKG stochastically
simulates a self-similarity with a tiny seed graph using Kronecker
product denoted by ⊗ (Denition D.1 in Appendix D). Speci-
cally, SKG creates a self-similar graph by recursively computing
A(k ) = Aseed ⊗ A

(k−1) where A(k ) is k-th Kronecker product
result over the adjacency matrixAseed of the seed graph. In SKG,
(u,v)-th entry ofA(k) is the probability P(u,v) that edge u → v
exists in the graph. When a randomly generated value for each
entry is within the probability, the corresponding edge is created.
Several methods such as FastKronecker [24] and R-MAT [4] were
proposed to reduce the generation time of SKG.

Although many research works [23, 37] have shown that SKG
well captures various real-world properties (e.g., D4-6) in un-
signed networks, the model is not proper for modeling signed
networks since it does not consider how to form signs on edges.
More essentially, it has not been revealed which self-similarity
should be simulated when we generate signed networks through
Kronecker products. Hence, our main challenge is to identify a
desirable self-similarity for generating signed networks based on
Kronecker product so that a resulting network establishes a solid
foundation for the aforementioned properties.

Table 1: Table of symbols.

Symbol Denition

V set of nodes
E set of singed edges
⊗ Kronecker product
L target recursion depth
T stochastic signed tensor T ∈ R|V|×|V|×2 = {+P, −M}

Tseed 2 × 2 × 2 seed stochastic signed adjacency tensor, i.e.,
Tseed = {+Pseed, −Mseed }

N(l )seed 2 × 2 × 2 seed tensor with noise at level l
fb (·) balanced sign aggregator in Denition 3.2
fα (·) weight splitter with α in Denition 3.4
T̃(l ) l -th Kronecker product result with fb (·) and fα (·)
γ parameter for noise
α parameter for weight splitting
ρ(·) ratio of a given input

4b and 4u balanced and unbalanced triangles, respectively
4+++ balanced triangles with three + signs
4++− unbalanced triangles with two + signs and one − sign
4+−− balanced triangles with one + sign and two − signs
4−−− unbalanced triangles with three − signs

3 PROPOSED METHOD

We propose BalanSiNG, a novel method for generating realistic
signed networks following the desired properties in Section 2.1.
The technical challenges and our approaches are as follows:
• Which self-similarity should be satised for generating
signed networks (Section 3.1)? We suggest a novel self-
similarity called self-similar balanced structure to be satis-
ed for generating balanced signed networks by investi-
gating a real-world signed network.
• How can we generate signed networks following the self-
similarity (Section 3.2)?We design Basic Stochastic Kro-
necker Signed Graph (SKSG-B), a basic model that pro-
duces a fully balanced signed network by simulating the
self-similarity via Kronecker product.
• How canwe generate realistic signed networks (Section 3.3)?
We propose Stochastic Kronecker SignedGraph (SKSG),
an advanced model introducing noise and weight split-
ting to SKSG-B so that the resulting network exhibits the
aforementioned characteristics in Section 2.1.
• How can we eciently generate large-scale signed net-
works (Section 3.4)? We derive Balanced Signed Net-
work Generator (BalanSiNG) from SKSG, a fully paral-
lelizable method that quickly generates signed edges.

We illustrate the overview of our approaches in Figure 2. Our
main goal is to design a generation method for signed networks
showing the distinct properties of real world signed networks.
Among the various properties, we mainly focus on the balanced
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Figure 3: Balanced Structure in Congress dataset [44]

where two large clusters are observed. Most nodes in each

cluster are positively connected, and nodes between the

clusters are negatively connected.

triangle distribution indicating balanced signed networks since it
is one of the most distinct properties derived from signs [6, 26].
For that purpose, we rst design a self-similarity to be satised
for balanced signed networks, inspired from balanced structure
in signed networks as shown in Figure 2(a).

We then propose a basicmodel SKSG-B and an advancedmodel
SKSG. SKSG-B simulates the self-similarity using Kronecker prod-
uct so that it produces a fully balanced signed network (i.e., there
are no unbalanced triangles) as depicted in Figure 2(b). However,
we observe that the fully balanced network of SKSG-B has dif-
ferent properties than those from real-world signed networks in
terms of edge sign and balanced triangle proportions as shown
in Figure 2(b). Thus, we suggest SKSG by introducing noise and
weight splitting to SKSG-B so that SKSG produces realistic signed
networks following the desired properties as seen in Figure 2(c).
Furthermore, we develop BalanSiNG that generates balanced
signed networks fully in parallel while supporting SKSG.
3.1 Self-Similarity for Signed Networks

We investigate a real-world signed network to understand its
structure with signs, and then model a self-similarity behind the
structure. We analyze the Congress dataset [44], a real-world
signed network where nodes represent politicians, and signed
edges indicate supports (i.e., positive) or oppositions (i.e., neg-
ative) between nodes. The detailed statistics of the dataset are
summarized in Table 4. We visualize the signed network of the
Congress dataset in Figure 3. Note that two distinct clusters ap-
pear where most nodes are mutually friends in each cluster while
nodes between the clusters exhibit mutual antagonism. This struc-
ture is called balanced signed network. If a signed network is fully
balanced [7], there are two groups; nodes in each group create
only positive edges while nodes between the groups form only
negative edges as in Figure 4(a). This structure is directly related
to balance theory [11] since there are only balanced triangles in
a fully balanced network, i.e., there are only triangles 4+++ in
each group and triangles 4+−− between the groups.

(a) Global balanced
structure

(b) Zoomed-in balanced
structure

1 2

(c) Self-similar
balanced structure

Figure 4: Self-similar pattern in balanced signednetworks.

From this structure, we observe a self-similar pattern, called
self-similar balanced structure, as illustrated in Figure 4. Figure 4(a)
represents a fully balanced signed network. Then, if we zoom in
the network as in Figure 4(b), a smaller but similar structure to
that of Figure 4(a) appears. Note that the structure in Figure 4(b)

Algorithm 1: SKSG-B
Input: seed tensor Tseed ∈ R2×2×2, target recursion level L, and target

number |E | of edges
Output: set E of signed edges
1: set T̃(1) ← Tseed and E← ∅
2: for l = 2 to L do

3: compute T̃(l ) ← fb (T̃(1) ⊗ T̃(l−1)) in Equation (4)
4: for each (u, v) such that u, v ∈ V do

5: set P (u, v, s) ← T̃(L)uvs where s ∈ {+, −}
6: compute P (u, v) and P (s |u, v) using Equation (2)
7: toss a biased coin with P (u, v)
8: if head appears, i.e., u → v is formed then

9: ŝ ← argmaxs∈{+,−} P (s |u, v)
10: insert a signed edge (u → v, ŝ) into E if |E | < m
11: return set E of signed edges

is also balanced; hence, the balanced structure is self-similar
according to the denition of self-similarity [36]. We abstract the
self-similar balanced structure as shown in Figure 4(c) where each
node indicates a group, and blue edges represent that positive
edges are created within each group while red edges indicate
that negative edges are formed between the groups.
3.2 SKSG-B: Basic Stochastic Kronecker

Signed Graph Model

We describe our basic model SKSG-B for modeling signed net-
works. The main intuition of SKSG-B is to simulate the self-
similarity explained in Section 3.1 using Kronecker product.

3.2.1 Formulation of SKSG-B. First of all, we dene stochastic
signed tensor used for constructing a signed networkG as follows:

Denition 3.1 (Stochastic Signed Tensor). Let |V| be the number
of nodes. A stochastic signed tensor T ∈R |V |× |V |×2 consists of
two stochastic adjacency matrices P ∈R |V |× |V | andM∈R |V |× |V |
with signs, i.e., T = {+P,−M} where P andM represent prob-
abilities for positive and negative edges, respectively. �

Then, the self-similar balanced structure in Figure 4(c) is rep-
resented as follows:

Tseed = {+Pseed, −Mseed } =
{
+

[
p11 0
0 p22

]
, −

[
0 m12

m21 0

]}
(1)

where + and − indicate positive and negative signs, respectively.
Each entry Tuvs is a joint probability P(u,v, s) where u and v
are nodes, and s ∈ {+,−} is a sign, e.g., T12− =m12 = P(1, 2,−).
The sum of all P(u,v, s) is 1, i.e.,

∑
(u,v,s) P(u,v, s) = 1. If we

know P(u,v, s), we are able to determine the creation process of
edge u → v and its sign. First, we compute P(u,v) = P(u,v,+)+
P(u,v,−), toss a biased coin with P(u,v), and determine to create
the edge if the coin’s head appears (line 7 in Algorithm 1). If
u → v is formed, we decide its sign based on P(s |u,v) as follows:

P (s |u, v) =
P (u, v, s)∑

t∈{+,−} P (u, v, t )
=
P (u, v, s)
P (u, v)

(2)

If P(+|u,v) > P(−|u,v), then its sign is determined to be positive,
otherwise, it is negative (line 9 in Algorithm 1). Note that we call
this approach deterministic sign decision.

Given a small seed signed tensor Tseed, SKSG-B repeats Kro-
necker product multiple times over Tseed. Kronecker product
between two signed tensors is dened as follows:

T(2) = T(1) ⊗ T(1) = {+P, −M} ⊗ {+P, −M} (3)
= {+P ⊗ P, −P ⊗ M, −M ⊗ P, +M ⊗ M}

where T(k ) is k-th Kronecker product result on Tseed = T(1) ∈
Rn×n×2. Note that the dimension of T(2) is n2 ×n2 ×22 where the
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last dimension indicates {++,+−,−+,−−}. Each entry of T(2)
indicates a joint probability P(u,v, {s, s}). However, this is not
the probability that we want since we need P(u,v, s) to determine
the edge’s sign. Hence, we aggregate the terms according to their
sign using balanced sign aggregator fb (·) dened as follows:

Denition 3.2 (Balanced Sign Aggregator). Balanced sign ag-
gregator fb : RN×N×4 → RN×N×2 aggregates the terms in
Equation (3) according to their signs as follows:

T̃ = fb (T ⊗ T) = {+(P ⊗ P +M ⊗ M), −(P ⊗ M +M ⊗ P)}

= {+P̃, −M̃}

where T̃ ∈ RN×N×2 is a signed tensor aggregated by fb (·), P̃ =
P ⊗ P +M ⊗M, and M̃ = P ⊗M +M ⊗ P. �

The Kronecker product result with fb (·) is guaranteed to form
a fully balanced signed network (see Section 3.2.2 and Lemma 3.3).
Let T̃(l ) denote l-th Kronecker product result with fb (·), and T̃(1)
is initially set to Tseed in Equation (1). Then, we generalize the
Equation (3) as follows:

T̃(l ) = fb (T̃
(1) ⊗ T̃(l−1)) (4)

where T̃(l ) ∈ Rn
l×nl×2 is used for building a signed network

G given the recursion level l . Algorithm 1 summarizes SKSG-
B based on Equation (4). Given Tseed in Equation (1), a target
recursion level L, and a number |E| of edges, SKSG-B generates a
signed network having 2L nodes and |E| edges (line 3). For each
pair of nodes, it decides the creation of the edge (line 7) and its
sign (line 9) based on T̃(L).

3.2.2 Self-similar Balanced Network Simulated by SKSG-B. We
illustrate how SKSG-B simulates the self-similarity for balanced
signed networks. Given T̃(1) = Tseed in Equation (1), we compute
T̃(2), T̃(3), · · · based on Equation (4). Figure 5 depicts the results
of T̃(1), T̃(2) and T̃(3). Note that the balanced structure is kept
as level l increases, i.e., only positive edges are formed within
each group (dotted ellipses), and only negative edges are allowed
between the groups when we start from Tseed in Equation (1).
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(a) T̃(1)

2′1$

3′4′

(b) T̃(2) (c) T̃(3)

Figure 5: Illustrations on how SKSG-B simulates the self-

similarity for balanced signed networks given Tseed = T̃(1).
We formalize this property of the balanced structure generated

by SKSG-B in the following lemma:

Lemma 3.3. Given Tseed in Equation (1), T̃(l ) of Equation (4)
produces a fully balanced signed network.

Proof. See the detailed proof in Appendix B. �

3.3 SKSG: Exploiting Noise and Weight for

Realistic Signed Networks

We propose Stochastic Kronecker Signed Graph (SKSG), an
advanced model from SKSG-B for generating signed networks
following the desired properties in Section 2.1. Although SKSG-
B simulates a fully balanced signed network, we will observe
that the network’s properties deviate from those of real signed
networks. We explain the issues of SKSG-B step by step, and

Algorithm 2: SKSG
Input: seed tensor Tseed ∈ R2×2×2, target recursion level L, target

number |E | of edges, noise parameter γ , and weight parameter α
Output: set E of signed edges
1: generate random noises µ (l ) ∈ [−γ , γ ] [37], and obtain noisy seed

tensors N(l )seed using Equation (6) with Tseed and µ (l ) for 1 ≤ l ≤ L

2: set T̃(1) ← N(1)seed and E← ∅
3: for l = 2 to L do

4: compute T̃(l ) ← fα (fb (N
(l )
seed ⊗ T̃(l−1))) in Equation (7)

5: for each (u, v) such that u, v ∈ V do

6: set P (u, v, s) ← T̃(L)uvs for s ∈ {+, −}
7: compute P (u, v) and P (s |u, v) using Equation (2)
8: toss a biased coin with P (u, v)
9: if head appears, i.e., u → v is formed then

10: toss a biased coin with P (+ |u, v)
if head appears, then ŝ ← +, otherwise, ŝ ← −

11: insert a signed edge (u → v, ŝ) into E if |E | < m
12: return set E of signed edges
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(c) SKSG with noises

Figure 6: Out-degree distributions of (a) the Epinions

dataset, (b) a network from SKSG-B, and (c) a network

from SKSG.

suggest how to resolve each issue in the following subsections.
The approaches of SKSG are summarized in Algorithm 2.

3.3.1 Introducing Noise (line 1 in Algorithm 2). We investigate
whether a degree distribution of a graph from SKSG-B follows a
power-law. We focus on degree distributions regardless of edge
signs (i.e., D4). For Tseed, we use the values of Equation (9) in
Section 4.1.3. Figure 6(b) shows the out-degree distribution of
SKSG-B. Note that the distribution exhibits oscillations; it is far
from being monotonically decreasing unlike that of real networks
as in Figure 6(a). In fact, the oscillatory behavior is a well-known
issue of the standard SKG [37]. Since the edge formation of SKSG-
B is equivalent to that of SKG (see the details in Appendix E),
SKSG-B naturally inherits the oscillatory behavior from SKG.

Seshadhri et al. [37] analyzed the oscillatory issue of SKG,
and provided a technique called Noisy SKG. For each level l ,
Noisy SKG denes a noise seed matrix A(l )seed ∈ R

2×2 by introduc-
ing a random noise µ (l ) to the seed matrix Aseed ∈ R

2×2. More
specically, µ (l ) is chosen uniformly at random in [−γ ,γ ] for
γ ≤ min( a11+a222 , a12) while ai j denotes (i, j)-th entry of Aseed
dened as follows:

A
(l )
seed =


a11 −

2µ (l )a11
a11+a22

a12 + µ (l )

a21 + µ (l ) a22 −
2µ (l )a22
a11+a22

 (5)

Note that its entries sum to 1, and the expectation of A(l )seed is
Aseed. This approach introduces randomness to the degree of each
node so that the uctuation in the degree distribution is removed,
which is theoretically and empirically proved in [37, 38].

In this work, we adopt this technique to our advanced model
SKSG for power-law degree distributions in its signed networks.
We aim to obtain a noisy seed tensor N(l )seed by adding a noise µ (l )
to the seed tensor Tseed = {+Pseed, −Mseed } of Equation (1) for
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each level l as follows (line 1 in Algorithm 2):

N(l )seed = {+P
(l )
seed, −M

(l )
seed } (6)

=

+

p11 −

2µ (l )p11
p11+p22

0

0 p22 −
2µ (l )p22
p11+p22

 , −
[

0 m12 + µ (l )

m21 + µ (l ) 0

]
where µ (l ) is a uniform random noise selected in [−γ ,γ ] for
γ ≤ min( p11+p222 ,m12). Note that Equation (6) is derived from
Equation (5) such that A(l )seed = P

(l )
seed +M

(l )
seed, while preserving

the self-similar balanced structure in Equation (1). Thus, our ap-
proach is able to model the probability of edge sign as well as the
randomness of node degree while Noisy SKG with Equation (5)
cannot model the probability for deciding the sign of an edge.

When generating a signed edge, we exploit N(l )seed according to
level l instead of the original Tseed as in line 4 of Algorithm 2 (see
Equation (7) in Section 3.3.2). Figure 6(c) depicts the out-degree
distribution of SKSG using N(l )seed with γ = 0.1. The in-degree
distribution of SKSG also shows the similar tendency.

3.3.2 Weight Spliing (line 4 in Algorithm 2). We analyze the
properties about signs in a network of SKSG-B. As shown in
Table 2, the ratio of positive edges in a network of SKSG-B is
almost equal to that of negative ones, and there are only balanced
triangles because SKSG-B generates fully balanced signed net-
works. However, real signed networks exhibit positively skewed
sign and highly balanced triangle proportions (i.e., there are few
unbalanced triangles) as seen in the ‘BitcoinO’ column of Table 2.
Table 2: Sign and balanced triangle ratios. ρ(+) and ρ(−)
are the ratios of positive and negative edges, respectively.

ρ(4b ) and ρ(4u ) are the ratios of balanced and unbalanced

triangles, respectively.

BitcoinO SKSG-B SKSG

ρ(+) 0.8999 0.5001 0.8993
ρ(−) 0.1001 0.4999 0.1007
ρ(4b ) 0.8934 1.0000 0.8254
ρ(4u ) 0.1066 0.0000 0.1746

To alleviate this issue, we suggest a weight splitting technique
that increases the probabilities on generating positive signs. Note
that SKSG-B produces a larger number of negative edges than ex-
pected; hence, we move a proportion of probabilities for negative
signs into that for positive signs using the following function:

Denition 3.4 (Weight Splitter). For 0 < α < 1, weight splitter
fα : RN×N×2 → RN×N×2 is dened as follows:

fα (T) = fα ({+P, −M}) = {+(P + αM), −(1 − α )M} �

The function fα increases the probabilities P of positive signs
by αM. Equation (4) is extended with fα and N(l )seed as follows:

T̃(l ) = fα (fb (N
(l )
seed ⊗ T̃(l−1))) (7)

where T̃(l ) is the level-l result with fα and fb . The eects of fα are
that it 1) increases the proportion of positive edges, and 2) forms
a few unbalanced triangles 4++− as in Figure 7(b). The reason for
the latter is as follows. SKSG-B produces a fully balanced network;
thus, there are two groups as in Figure 7(a). Since fα decreases
probabilities of negative sign by αM at each level l in Equa-
tion (7), a negative edge between the groups in SKSG-B could
become positive in SKSG, resulting in4++− as in Figure 7(b). Note
that after fα (·), probabilities for positive signs do not decrease
(Denition 3.4); thus, SKSG with fα still produces only positive
edges inside a group if the edge sign is decided deterministically.

With deterministic
sign decision

(a) SKSG-B without fα

With deterministic
sign decision

(b) SKSG with fα

With stochastic
sign decision

(c) SKSG with fα

Figure 7: Eects of weight splitter fα with (b) determinis-

tic sign decision (Section 3.3.2) and (c) stochastic sign deci-

sion (Section 3.3.3).

3.3.3 Stochastic Sign Decision (line 10 in Algorithm 2). SKSG-B
deterministically decides the sign of an edge based on P(+|u,v) >
P(−|u,v) (line 9 in Algorithm 1). However, this approach incurs
a subtle issue: such decision does not produce 4−−− at all even
though in real signed networks, there are a very few 4−−− as
shown in Table 5. Although we introduce fα in Section 3.3.2,
SKSG with fα does not form 4−−− since it generates only pos-
itive edges inside a group while for the case in Figure 7(b), the
formation of 4−−− needs one negative edge inside a group with
two negative ones between the groups. To resolve this issue, we
suggest stochastic sign decisionwhere SKSG stochastically decides
the edge sign by tossing a biased coin with P(+|u,v) (line 10 in
Algorithm 2). This allows an edge to become negative with a low
probability inside a group; thus, a few 4−−− are formed as in
Figure 7(c). Based on T̃(L) with fα and stochastic sign decision,
SKSG introduces the skewness of the sign and balanced triangle
ratios similarly to those of the real network as shown in Table 2
where we use γ = 0.1, α = 0.75, L = 13 and Tseed in Equation (9).

3.4 BalanSiNG: Fast and Scalable Balanced

Signed Network Generator

We propose BalanSiNG, an ecient method for generating
signed edges in parallel, while supporting SKSG. Algorithm 2 of
SKSG is not scalable since its time and space complexities are
O(|V |2), respectively, where |V | is the number of nodes to be
generated. The reason is that SKSG explicitly constructs signed
tensor T̃(L) ∈ R2

L×2L×2 through Kronecker product. Our main
intuition to design a scalable method for the problem is to di-
rectly determine edge and track its sign probabilities without
constructing T̃(L) explicitly.

We summarize BalanSiNG in Algorithm 3. At each iteration,
it exploits Generate-Edge function which determines an edge
(u, v) and its sign probabilities P (u,v,+) and P (u,v,−) (line 4). We
rst explain how the function determines the edge (u, v). Intu-
itively, this function divides the whole region of 2L×2L adjacency
matrix represented by P̃(L)+ M̃(L) of T̃(L) into four quadrants.
Then, it selects one of them with the corresponding probability,
and repeats the process recursively in the chosen quadrant until
the quadrant becomes a single cell where an edge is inserted.

To formalize this process, we need to dene selected region at
level l of Generate-Edge as follows:

Denition 3.5 (Selected Region). R(l ) = {[ssrc, tsrc], [sdst, tdst]}
represents a region of an adjacency matrix, which is selected at
level l , where [ssrc, tsrc] is a range of source nodes, and [sdst, tdst]
is that of destination nodes as shown in Figure 8(a). �

Suppose Generate-Edge is given R(l ) at level l . It splits the
region R(l ) equally into four quadrantsQ (l )i j (line 9) for 1 ≤ i, j ≤ 2
which are dened as follows:
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Algorithm 3: BalanSiNG

Input: seed tensor Tseed ∈ R2×2×2, target recursion level L, target
number |E | of edges, noise parameter γ , and weight parameter α

1: generate random noises µ (l ) ∈ [−γ , γ ] [37], and obtain noisy seed
tensors N(l )seed using Equation (6) with Tseed and µ (l ) for 1 ≤ l ≤ L

2: parallel for k ← 1 to |E | do
3: set R(L) ← {[1, 2L ], [1, 2L ]} as an initial region
4: {+P (u,v,+), −P (u,v,−)} and (u, v)←Generate-Edge(L, R(L))
5: compute P (+ |u, v) using Equation (2)
6: toss a biased coin with P (+ |u, v)

if head appears, then ŝ ← +, otherwise, ŝ ← −
7: write (u → v, ŝ)
8: procedure Generate-Edge(level l , region R(l ))
9: divide R(l ) into four quadrants Q (l )i j for 1 ≤ i, j ≤ 2

10: randomly select a quadrant Q (l )i j according to probabilities

p(l )i j +m
(l )
i j in N(l )seed for 1 ≤ i, j ≤ 2

11: set R(l−1) ← Q (l )i j as a selected region for level l − 1
12: if l is 1 then
13: return {+p(1)i j , −m

(1)
i j } and (u, v) in R

(0)

14: else

15: {+p̃(l−1)uv , −m̃(l−1)uv } and (u, v)←Generate-Edge(l−1, R(l−1))
16: compute {+p̃(l )uv , −m̃

(l )
uv } using Equation (8)

17: return {+p̃(l )uv , −m̃
(l )
uv } and (u, v)
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Figure 8: The concept of region and quadrants.

Denition 3.6 (Quadrants in R(l )). Given R(l ), letmsrc = ssrc +
b
tsrc−ssrc

2 c andmdst = sdst+ b
tdst−sdst

2 c. Each quadrantQ (l )i j is dened
as in Figure 8(b) for 1 ≤ i, j ≤ 2. �

Then, it randomly selects a quadrant Q (l )i j with the probability
p(l )i j +m

(l )
i j which is based on the noisy seed tensor N(l )seed (line 10).

Note that p(l )i j +m
(l )
i j indicates P (i, j, +) + P (i, j, −) = P (i, j) inter-

preted as the probability of selecting (i, j)-th quadrant in R(l ). For
the next level l − 1, it sets R(l−1) to the selected Q (l )i j (line 11). The
function recursively repeats this process for R(l−1) (line 15) until
l becomes 1 when the selected region R(0) (called base region) is
a single cell representing the edge (u,v) (line 13) as shown in
Figure 8(c), after starting from the initial region R(L) (line 3).

The edge sign probabilities P(u,v,+) and P(u,v,−) are also
recursively computed using the following equation (line 16):

{+p̃(l )uv , −m̃
(l )
uv } ← fα

(
fb

(
{+p(l )i j , −m

(l )
i j } ⊗ {+p̃

(l−1)
uv , −m̃(l−1)uv }

))
(8)

which is the entry-wise version of Equation (7) where p(l )i j and
m(l )i j are the selected quadrant probabilities at line 10 (derivation
in Lemma C.1 of Appendix C). The terms p̃(l )uv and m̃(l )uv denote
the entries of P̃(l ) and M̃(l ) corresponding to edge (u,v), respec-
tively, where T̃(l ) = {+P̃(l ), −M̃(l ) }. Note that each probability
is scalar, i.e., p(l )i j ,m

(l )
i j ∈ R

1×1; thus, {+p(l )i j , −m
(l )
i j } ∈ R

1×1×2. Simi-
larly, {+p̃(l−1)uv , −m̃(l−1)uv } ∈ R

1×1×2. The Kronecker product result in
fb (·) is {+p(l )i j p̃

(l−1)
uv , −p(l )i j m̃

(l−1)
uv , −m(l )i j p̃

(l−1)
uv , +m(l )i j m̃

(l−1)
uv } ∈ R

1×1×4

which is consistent with the input denition of fb (·) when N = 1
(see Denition 3.2). For level l−1, {+p̃(l−1)uv , −m̃(l−1)uv } is recursively

Table 3: BalanSiNG has the smallest time and space com-

plexities. |E| and |V| are the number of edges and nodes,

respectively, and dmax is the maximum node degree.

Method Time Space Parallel?

IB [45] O ( |E | |V |) O ( |E |) No
Evo [29] O (d3

max |E | |V |) O ( |E |) No
BSCL [6] O (d2

max |E | + |V |) O ( |E |) No
BalanSiNG (proposed) O ( |E | log |V |) O (log |V |) Yes

computed by Generate-Edge (line 15). The nal {+p̃(L)uv , −m̃
(L)
uv }

returned by the function is {+P (u,v,+), −P (u,v,−)} (line 4).
Note that the generation of a signed edge of Generate-Edge

is independent of the generation of other edges; thus, Algorithm 3
of BalanSiNG generates signed edges in parallel (line 2). We let
Algorithm 3 call the Generate-Edge function in parallel using
Apache Spark, a widely used distributed computing framework.

3.4.1 Complexity Analysis. We analyze the complexities of
BalanSiNG. To compare BalanSiNGwith other sequential meth-
ods, we analyze the sequential complexities as follows:

Lemma 3.7 (Complexity of BalanSiNG). The time complexity

of BalanSiNG isO(|E| log |V|) where |E| and |V| are the number of

edges and nodes, respectively. The space complexity is O(log |V|).

Proof. Let T (L) be the time complexity of Generate-Edge
given L; then,T (L) = T (L−1)+O(1) since there is a recursive call
with L− 1 at line 15 of Algorithm 3, and other lines demandO(1).
Hence, it is obvious that T (L) is in O(L) = O(log |V|) where we
set |V| = 2L . BalanSiNG generates |E| edges; thus, the total time
complexity is O(|E| log |V|). BalanSiNG needs to have L noisy
seed tensors N(l )seed ∈ R

2×2×2 where each tensor exhibits constant
space complexity, i.e.,O(1) (line 1 in Algorithm 3). Therefore, the
space complexity is O(L) = O(log |V|). �

Table 3 compares signed network generation methods (see
Section 4.1.2) in terms of complexities and parallelism. The time
and space complexities of BalanSiNG are less than those of
other sequential methods such as IB, Evo, and BSCL. Especially,
these competitors require to store all generated edges in memory
(i.e., they require O(|E|) space) since they need to retrieve the
common neighbors of two nodes to determine the edge’s sign
between the nodes based on balance theory. On the other hand,
BalanSiNG is free of such restriction; i.e., as soon as an edge
is created, BalanSiNG is able to write it onto disk (line 7 of
Algorithm 3).

4 EXPERIMENT

We aim to answer the following questions from experiments:
• Q1. Properties of signed networks (Section 4.2). Is
our proposed BalanSiNG able to synthetically generate
signed networks following the desired properties of real-
world networks?
• Q2. Fine-grained comparison of signed triangles (Sec-

tion 4.3). Does BalanSiNG generate graphs with realistic
signed triangle distributions, compared to other methods?
• Q3. Eects of parameters (Section 4.4).How doweight
parameter α and recursion level L of BalanSiNG aect
the properties of generated networks?
• Q4. Computational performance (Section 4.5). How
ecient is BalanSiNG for generating large-scale signed
networks compared to other competitors? How does Bal-
anSiNG scale up in terms of the number of workers and
the data size on distributed machines?
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4.1 Experimental Settings

We explain the detailed settings for our experiments.

4.1.1 Datasets. The datasets used for our experiments are
summarized in Table 4. The BitcoinO and BitcoinA datasets [22]
were extracted from online trust and directed networks served
by Bitcoin Alpha and Bitcoin OTC, respectively. The Epinions
dataset [10] is a directed signed network, and was scraped from
Epinions, a product review site where users are able to mark
their trust or distrust to others. We use the datasets to investigate
their distinct properties and provide baseline statistics on signed
triangle distributions in Table 5.

4.1.2 Competitors. We compare our proposed method Bal-
anSiNG to the following competitors:
• IB [45]: IB (Interaction-based model) generates signed
edges based on global and local interactions between nodes
under ant pheromone mechanism and balance theory.
• Evo [29]: Evo (Evolutionary model) randomly generates
signed edges, and keeps track of the number of unbalanced
triangles over time. Once a node reaches a certain thresh-
old of unbalanced triangle ratio, it randomly removes a
link from the node until the threshold is not exceeded.
• BSCL [6]: BSCL (Balanced Signed Chung-Lu) is the-state-
of-the-art model based on Transitive Chung-Lumodel [35]
and balance theory, which synthetically produces a signed
network by imitating an input signed network.

4.1.3 Parameters. We describe the setting of the parameters
for each method as follows:
• BalanSiNG: For the weight parameter α , we search for
α on a grid between 0 and 1 by 0.05, and choose α which
minimizes the absolute dierence for edge signs in Equa-
tion (12) between a generated network and a real network.
We set the noise parameter γ to 0.1 and the seed tensor
Tseed = {+Pseed, −Mseed } to the following values:

Tseed =
{
+

[
0.57 0
0 0.05

]
, −

[
0 0.19

0.19 0

]}
(9)

which are derived from Aseed =

[
0.57 0.19
0.19 0.05

]
. Many re-

searches [30, 31, 37, 38] have empirically proved that these
values produce monotonically decreasing power-law de-
gree distributions. Note that other values of γ and Tseed
can be used as well.
• IB:MG andML are the numbers of edges added globally
and locally, respectively. pG and pL are the probabilities of
the positive sign of the globally and locally added edges,
respectively. δ is the initial weight of an added edge. ϵ
is the parameter for the evaporation. According to their
work [45], we set MG = ML to 1 and pG = pL to ρ(+)
for each dataset in Table 4. For δ and ϵ , we perform grid
searches from 0 to 1.0 by 0.05 to minimize the absolute
dierence for edge signs in Equation (12).
• Evo: In Evo, α is a friendliness index aecting the forma-
tion of the positive sign of an edge, and β is a tolerance
threshold for unbalanced triangles. For α and β , we per-
form grid searches from −1 to 1 by 0.05 to minimize the
absolute dierence for edge signs in Equation (12).
• BSCL: ρBSCL is a parameter for closing wedge, αBSCL is
for creating positive edge, and βBSCL is for closing bal-
anced triangle. Given a real network, those parameters are
approximately tuned by the estimation phase of BSCL.

Table 4: Dataset statistics. |V| is the number of nodes, |E| is
the number of edges, and ρ(+) is the ratio of positive edges.

Dataset |V | |E | ρ(+) Description

Epinions1 131,828 841,372 0.85 Online social network
BitcoinO2 5,881 35,592 0.89 Bitcoin social network
BitcoinA2 3,783 24,186 0.93 Bitcoin social network
Congress3 219 764 0.78 Politician network
1 http://www.trustlet.org/wiki/Extended_Epinions_dataset
2 https://snap.stanford.edu/data/soc-sign-bitcoin-otc.html
3 http://www.cs.cornell.edu/home/llee/data/convote.html

4.1.4 Machines and Implementation. We describe the settings
of machines and implementation used for evaluating the compu-
tational performance of each method in Section 4.5 as follows:
• Setting on single machine (Section 4.5.1). We use a
single thread in a machine with an Intel Xeon E3-1240v5
CPU and 32GB RAM, and implement all tested methods
including BalanSiNG based on g++ v5.4.0.
• Setting on distributed machines (Section 4.5.2). We
implement BalanSiNG on Spark to test the scalability on
a cluster (managed by Hadoop YARN) that consists of 17
machines: a master and 16 worker nodes. Each worker
node has 4 physical cores (Intel Xeon E3-1240v5 CPU)
with 32GB RAM, and can run 4 workers. Java v1.8.0, Scala
v2.11.8, Hadoop v2.7.3, and Spark v2.11.9 are used.

4.2 Properties of Signed Networks (Q1)

We compare real-world signed network BitcoinO with those gen-
erated by BalanSiNG and competitors in Figure 1 to investigate
if they exhibit the desired properties of real-world signed net-
works listed in Section 2.1. We omit the comparisons for other
datasets due to the space limit, but the overall tendency is similar.
We adjust the parameters of each method so that the resulting
networks have almost the same positive edge sign ratios as that
of BitcoinO (details in Appendix F); thus, the sign distributions
in Figure 1(a) are similar for all graphs.

The signed network generated by BalanSiNG follows the
desired properties w.r.t. signs (D1-3) as well as those regard-
less of signs (D4-6). The balanced triangle distribution is highly
skewed as shown in Figure 1(b), and degree distributions follow
a power-law as seen from Figure 1(c) to Figure 1(f). The hop plot
of BalanSiNG in Figure 1(g) is similar to that of BitcoinO. Also,
top-k singular values of graphs from BalanSiNG and BitcoinO
monotonically decrease as shown in Figure 1(h).

On the other hand, the signed networks generated by IB and
Evo do not follow power-law degree distributions as shown in
the third and forth rows (Figure 1(c) to Figure 1(f)). The main
reason is that IB and Evo naively create random edges without
the consideration of power-law degree distribution. The hop
plot and singular value distributions of both methods are also
dierent from those of the real-world network as shown in Fig-
ures 1(g) and 1(h). BSCL generates signed networks obeying most
of the desired properties, but its balanced triangle distribution
(D2) does not; it is not skewed enough compared to the real
network (at the rst row) and BalanSiNG (at the second row)
as shown in Figure 1(b). We further provide the ne-grained
comparison about these signed triangles in Section 4.3.

4.3 Fine-grained Comparison of Signed

Triangles (Q2)

We compare BalanSiNG to other competitors in terms of signed
triangle distribution. As described in Section 2.1, the balanced
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Table 5: Comparison of signed triangle distributions by BalanSiNG and competitors. ρ(4b ) and ρ(4u ) indicate the ratios
of balanced and unbalanced triangles, respectively. ρ(4+++), ρ(4+−−), ρ(4++−), and ρ(4−−−) denote the ratios of the trian-

gle types 4+++, 4+−−, 4++−, and 4−−−, respectively. Note that BalanSiNG (marked †) generates the most closest signed

networks to the corresponding real-world signed networks in terms of absolute dierence and Kolmogorov–Smirnov

statistic (the lower the better).

Datasets BitcoinA BitcoinO Epinions

Methods Real

Balan

SiNG†
IB Evo BSCL Real

Balan

SiNG†
IB Evo BSCL Real

Balan

SiNG†
IB Evo BSCL

ρ(4b ) 0.8805 0.8740 0.7604 0.8184 0.8366 0.8934 0.8254 0.7023 0.7402 0.7579 0.9240 0.8109 0.7061 0.7025 0.7104
ρ(4u ) 0.1195 0.1260 0.2396 0.1816 0.1634 0.1066 0.1746 0.2977 0.2598 0.2422 0.0760 0.1891 0.2939 0.2975 0.2896

Abs. Di. - 0.0130 0.2402 0.1242 0.0879 - 0.1360 0.3822 0.3064 0.2711 - 0.2261 0.4358 0.4430 0.4272
K-S Stat. - 0.0065 0.1201 0.0621 0.0439 - 0.0680 0.1911 0.1532 0.1356 - 0.1131 0.2179 0.2215 0.2136

ρ(4+++) 0.8413 0.8632 0.7285 0.7954 0.8240 0.8260 0.8014 0.6649 0.6975 0.7281 0.8723 0.7782 0.6688 0.6297 0.6677
ρ(4+−−) 0.0393 0.0108 0.0319 0.0231 0.0126 0.0675 0.0240 0.0374 0.0427 0.0298 0.0517 0.0328 0.0373 0.0728 0.0427
ρ(4++−) 0.1166 0.1259 0.2377 0.1816 0.1630 0.1026 0.1743 0.2945 0.2598 0.2408 0.0694 0.1886 0.2913 0.2975 0.2875
ρ(4−−−) 0.0028 0.0001 0.0009 0.0000 0.0005 0.0040 0.0003 0.0032 0.0000 0.0014 0.0066 0.0005 0.0026 0.0000 0.0021
Abs. Di. - 0.0625 0.2432 0.1299 0.0927 - 0.1434 0.3839 0.3145 0.2764 - 0.2383 0.4438 0.4984 0.4362
K-S Stat. - 0.0219 0.1202 0.0621 0.0441 - 0.0681 0.1912 0.1533 0.1357 - 0.1131 0.2179 0.2426 0.2136

triangle proportion is the most distinct property in real-world
signed networks. Hence, we analyze signed triangles of generated
signed networks to check if they exhibit distributions similar to
that of a real-world signed network.

For the purpose, we rst enumerate directed signed triangles
in each real signed network as in [43] since all of the signed net-
works used in this paper are directed, and then measure the ratio
ρ(·) for each triangle type. For example, 4+++ indicates triangles
with three positive signs; thus, ρ(4+++) = |4+++ |/|4total | where
|4total | is the total number of triangles. For large-scale signed
networks, distributed algorithms [33] can be used to enumerate
triangles. Then, we generate synthetic signed networks for each
dataset following the procedure in Section 4.2 (see the parame-
ters of each method in Appendix F), and compare the triangle
distributions of both real and synthetic networks. To measure the
distance between two distributions, we utilize Absolute Dier-
ence [6] and Kolmogorov–Smirnov statistic (K-S statistic) metrics.
The absolute dierence [6] is dened as the sum of absolute dif-
ferences between each ratio of real and synthetic triangles (see
Denition D.2). The K-S statistic is dened as the maximum gap
between the two cumulative distributions; it has been tradition-
ally used for measuring the dierence between two distributions.
We repeat the above procedure 10 times, and report the average
for each method and each dataset. For both of the metrics, small
values indicate that the synthetic network has a similar tendency
to the corresponding real network in terms of signed triangles.

Table 5 shows the ne-grained comparison on the four types of
signed triangles by BalanSiNG and competitors for each dataset.
Note that BalanSiNG gives the best signed triangle distribution,
showing the smallest absolute dierence and K-S statistic. Specif-
ically, BalanSiNG shows about 1.5 ∼ 2× better performance
than the second best method for each dataset.

4.4 Eect of Parameters (Q3)

We investigate the eect of parameters of BalanSiNG. We focus
on the eects of weight parameter α and target recursion level
L while noise parameter γ is set to 0.1 and seed ten sor Tseed
is set to the values of Equation (9), as described in Section 4.1.
The weight parameter α is introduced to increase the probability
of generating positive edges, and the level L controls the size of
networks to be generated.

Figure 10(a) shows the eect of the weight parameter α on
positive sign ratio ρ(+) and balanced triangle ratio ρ(4b ). We set
L = 17 and |E| = 219, and vary α form 0.1 to 0.9. As shown in the
gure, both of the ratios ρ(+) and ρ(4b ) increase as α increases.

The reason is that according to Denition 3.4, as we increase α ,
the probability of the positive term becomes large while that of
the negative term diminishes. Also, as the number of positive
edges increases, balanced triangles 4+++ and 4++− are more
likely to be formed. Note that α between 0.7 and 0.85 introduces
the skewness of both ratios similarly to those of real signed
networks. Thus, our method is able to control the skewness of
those ratios according to users’ preference through adjusting α .

Figures 10(b) and 10(c) demonstrate the eect of the recursion
level L on the ratios ρ(+) and ρ(4b ), and the out-degree distri-
butions of networks generated by BalanSiNG. We set α to 0.8,
and vary L from 12 to 21 to generate networks with |V| = 2L+1
and |E| = 2L+6. In Figure 10(b), ρ(+) and ρ(4b ) do not change
much as L increases. Also, as shown in Figure 10(c), the degree
distributions for dierent L have almost the same tendency w.r.t.
power-law distribution. These results indicate the eect of L on
those ratios and degree distribution is marginal, i.e., our method
is able to control the size of signed networks to be generated
while the tendency of such properties is preserved.

4.5 Computational Performance (Q4)

We evaluate the computational performance of BalanSiNG on
single and distributed machines.

4.5.1 Performance on Single Machine. We examine the per-
formance of BalanSiNG and competitors on a single machine.
The detailed setting is in Section 4.1.4. We x the size of each syn-
thetic network to that of the corresponding real-world network,
and compare the generation time of each method. As shown in
Figure 9(a), the generation time of BalanSiNG is up to 265×
faster than that of BSCL. Figure 9(b) shows the data scalability
of methods. Note that BSCL is excluded since it cannot generate
synthetic networks having arbitrary numbers of nodes and edges.
BSCL aims to imitate an input network, and thus the size of the
generated network of BSCL is xed to that of the input network.
We vary |V | = 2L+1 and |E | = 2L+6 for L = 4..26 where L is
the target recursion level. We report out of time (o.o.t.) error
when the generation time is more than 24 hours. As shown in
Figure 9(b), only BalanSiNG generates the largest network for
L = 26 within the limited time while IB and Evo generate o.o.t.
errors. BalanSiNG is 50, 149× and 3, 001× faster than Evo and
IV, respectively. Furthermore, the slope of BalanSiNG is 0.92,
indicating the data scalability of BalanSiNG is near linear w.r.t.
the number of edges. To sum, BalanSiNG provides the fastest
running time and the best scalability.
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Figure 9: Computational performance of BalanSiNG. (a) BalanSiNG generates signed networks up to 265× faster than

existing methods. (b-c) The data scalability of BalanSiNG is near linear w.r.t. the number of edges on both single and

distributed machines where o.o.t. stands for out of time (more than 24 hours). (d) BalanSiNG also scales up well with the

increase of the number of workers on distributed machines.
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Figure 10: Eects of weight parameter α , and target recur-

sion level L. BalanSiNG generates graphs of various sizes

following the power laws, while controlling the positive

sign ratio ρ(+) and the balanced triangle ratio ρ(4b ).

4.5.2 Performance on Distributed Machines. We demonstrate
the performance of BalanSiNG on distributed machines. The
detailed setting is in Section 4.1.4. We report the generation times
with and without writing edges onto disks (line 7 of Algorithm 3).
The former is execution time with disk I/O, and the latter is only
CPU execution time without disk I/O. To evaluate data scalability,
we use 64 workers, and vary |V | = 2L+1 and |E | = 2L+6 for
L = 20..30 where L is the target level. Figure 9(c) shows that
BalanSiNG has near linear scalability w.r.t. the number of edges
with the slope 0.85 in the plot. Note that BalanSiNG generates
|E |=236'68.7 billion signed edges within 45.5minutes including
disk I/O time on the distributed machines; the generated network
is 81, 675× larger than the Epinions dataset, the largest real signed
network currently open to the public, with respect to the number
of edges. Figure 9(d) shows BalanSiNG also scales up well with
the increase of the number of workers from 2 to 64 where we set
|V | = 227 and |E | = 232. The last point of the blue line at 64 is due
to the bottleneck of HDFS I/O, i.e., there are too many workers
trying to write edges to disks at the same time.

5 RELATEDWORK

Models for generating graphs from scratch. There are vari-
ous methods for generating unsigned networks following real-
world properties described in Section 2.1.2. Barabási et al. [1]
proposed Barabási-Albert model through a preferential attach-
ment process for generating scale-free networks. Leskovec et
al. [27] identied densication laws and shrinking diameters
inherent in graphs over time, and developed Forest Fire for mod-
eling such graphs. Also, they proposed Stochastic Kronecker
Graph (SKG) [23], a general generation model that simulates a
self-similarity using Kronecker product. They developed FastKro-
necker [24] that chooses edges in a recursive way to reduce
the generation time. However, those models cannot generate
signed networks, while BalanSiNG generates signed networks
following real-world properties. There are a few methods for
generating signed networks from scratch. Vukašinović et al. [45]

proposed an interaction based model (IB) using ant pheromone
mechanism and balance theory for simulating signed edge gener-
ation. Ludwig et al. [29] suggested an evolutionary model (Evo)
that simulates an evolving network by inserting or removing
signed edges so that the network keeps obeying balance the-
ory. However, their resulting networks give dierent properties
from those of the real-world signed networks, while BalanSiNG
generates realistic signed networks as shown in Figure 1.

Models for generating graphs imitating an input net-

work. Chung-Lu [35] model aims to generate a synthetic un-
signed network by randomly selecting an edge with its associ-
ated degree probability. Transitive Chung-LU (TCL) model [35]
stochastically performs a two-hop random walk from a node in
order to explicitly form at least one triangle, thereby imitating
clustering coecients in the input graph. Derr et al. [6] proposed
Balanced Signed Chung-LU (BSCL) model, the state-of-the-art
model for synthetic signed networks. They combined balance
theory and TCL model in order that the resulting network imi-
tates the signed triangle distribution of the input graph. However,
BSCL is not fast, does not generate networks which fully follow
the properties of real-world signed networks, and cannot gener-
ate signed networks having an arbitrary number of nodes from
scratch. On the other hand, BalanSiNG is fast and scalable, gen-
erates the most similar networks to real signed networks as in
Table 5, and generates graphs of arbitrary sizes as in Figure 9.

6 CONCLUSION

We propose BalanSiNG, a novel, scalable, and fully parallelizable
method for generating realistic signed networks from scratch.
BalanSiNG exploits the self-similar balanced structure with Kro-
necker product, and produces realistic signed networks by intro-
ducing noises and weights. We implement BalanSiNG in parallel
using Spark, a widely used distributed computing platform. Ex-
periments show that BalanSiNG generates the most realistic
signed networks. BalanSiNG is up to 265× faster than existing
methods for generating signed networks, and scales up near lin-
early with the size of networks and the number of workers on
both single and distributed machines, successfully generating
graphs with 68.7 billion edges.
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Figure 11: Various properties of real-world signed networks. (a)-(d) illustrate properties derived from edge signs, and

(e)-(h) depict traditional properties of real-world networks regardless of edge signs (see Section 2.1).
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APPENDIX

A PROPERTIES OF SIGNED NETWORKS

Figure 11 shows properties of other real-world signed networks.
The properties of the BitcoinO dataset are depicted in Figure 1.

B PROOF OF LEMMA 3.3

Proof. We use mathematical induction. For the base case,
T̃(1) = Tseed is trivially fully balanced as shown in Figure 5(a).
Assume T̃(l−1) is fully balanced. Then, T̃(l ) of Equation (4) with
Tseed = T̃(1) is represented as follows:
fb (T̃(1) ⊗ T̃(l−1))

= {+(P ⊗ P̃(l−1) +M ⊗ M̃(l−1)), −(P ⊗ M̃(l−1) +M ⊗ P̃(l−1))}
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Figure 12(a) shows T̃(l−1) where P̃(l−1) represents edges within

each group (A and B), and M̃(l−1) represents edges between the
two groups. We depict the block structure of P̃(l ) in Figure 12(b)
where P̃(l )i j indicates (i, j)-th block of P̃(l ). Figure 12(b) has two
copies: (A,B) of 1st copy and (A′,B′) of 2nd copy. Then, P̃(l )11
means edges within A and B of 1st copy because they are from
p11 P̃(l−1) = P̃

(l )
11 . Also, P̃

(l )
12 represents directed edges from A to

B′, and from B to A′ bym12M̃
(l−1). Other blocks in P̃(l ) are simi-

larly interpreted; thus, there are two groups (A,B′) and (A′,B)
having positive between-group edges in the graph of P̃(l ). Each
block in M̃(l ) represents edges between the groups as shown in
Figure 12(c). These indicate T̃(l ) is also fully balanced. Hence, T̃(l )
is fully balanced for any l ≥ 1. �

C LEMMA OF ENTRY-WISE RECURSIVE

REPRESENTATION OF BALANSING

Lemma C.1. Let R(l ) be the selected region at level l with proba-

bility p(l )i j +m
(l )
i j in Generate-Edge. Let (u,v) be decided through

R(L), · · · , R(0). Equation (7) for (u,v) is equivalent to Equation (8).

Proof. Equation (7) is represented as follows:

T̃(l ) = fα (fb (N
(l )
seed ⊗ T̃(l−1))) ⇔ (10)

{+P̃(l ), −M̃(l ) } = fα (fb ({+P
(l )
seed, −M

(l )
seed } ⊗ {+P̃

(l−1), −M̃(l−1) }))

Let p̃(l )uv and m̃(l )uv indicate the xed location (u,v) in P̃(l ) and
M̃(l ) under R(l ) as shown in Figure 13(a). Let д(·) be a function
that extracts entries participating in the computation related to
(u,v) in a signed tensor of Equation (7). For {+P̃(l ), −M̃(l ) }, д(·)
extracts p̃(l )uv and m̃(l )uv :

{+p̃(l )uv , −m̃
(l )
uv } ← д

(
{+P̃(l ), −M̃(l ) }, (u, v)

)
Note that R(l−1) is a selected region with probability p(l )i j +m

(l )
i j

where p(l )i j ∈ P
(l )
seed and m(l )i j ∈ M

(l )
seed. As shown in Figure 13(b),

suppose p(l )i j and m(l )i j correspond to (1, 2)-th quadrant, respec-
tively, i.e., p(l )i j = p

(l )
12 andm(l )i j =m

(l )
12 . Then, other quadrant prob-

abilities except for p(l )12 and m(l )12 do not aect the computation
of {+p̃(l )uv , −m̃(l )uv } through Kronecker product. Also, since (u,v)
is xed, the only locations corresponding to (u,v) of P̃(l−1) and
M̃(l−1) aect the nal result as shown in Figure 13(b). In other
words, only p̃(l−1)uv and m̃(l−1)uv participate in the computation for
{+p̃(l )uv , −m̃

(l )
uv }, and {+p̃(l−1)uv , −m̃(l−1)uv } are recursively obtained by

д(·) as follows:

{+p̃(l−1)uv , −m̃(l−1)uv } ← д
(
{+P̃(l−1), −M̃(l−1) }, (u, v)

)
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Figure 13: The locations corresponding to (u,v) in (a)

{+P̃(l ),−M̃(l )} and (b) {+P̃(l−1),−M̃(l−1)}.

Hence, Equation (10) is represented with д(·) as follows:

д
(
{+P̃(l ), −M̃(l ) }, (u, v)

)
= fα

(
fb

(
{+p(l )i j , −m

(l )
i j } ⊗ д

(
{+P̃(l−1), −M̃(l−1) }, (u, v)

)))
⇔{+p̃(l )uv , −m̃

(l )
uv }= fα (fb ({+p

(l )
i j , −m

(l )
i j } ⊗ {+p̃

(l−1)
uv , −m̃(l−1)uv })). �

Note that Generate-Edge(·) represents the recursive function
д(·), and p̃(L)uv = P (u, v, +) and m̃(L)uv = P (u, v, −).

D DEFINITIONS

Denition D.1 (Kronecker Product). Given A ∈ Rm×n and B ∈
Rp×q , the Kronecker product of A and B is dened as follows:

A ⊗ B =

a11B · · · a1nB
.
.
.

. . .
.
.
.

am1B · · · amnB


where ai j is the (i, j)-th entry of A, and A ⊗ B ∈ Rmp×nq . �

Denition D.2 (Absolute Dierence for Signed Triangles and

Edge Signs [6]). Let ρreal(·) and ρsyn(·) denote ratios from a real
network and a synthetic network, respectively. Let T be the set
of signed triangles, i.e., T = {4+++,4++−,4+−−,4−−−}. Then,
absolute dierence for signed triangles is dened as follows:

Abs. Di. (T) =
∑
4∈T
|ρreal(4) − ρsyn(4) | (11)

Let S be the set of signs, i.e., S = {+,−}. Then, absolute dierence
for edge signs is dened as follows:

Abs. Di. (S) =
∑
s∈S
|ρreal(s) − ρsyn(s) | (12)

E CONNECTION TO SKG AND NOISY SKG

In terms of edge determination process (line 7 in Algorithm 1
and line 8 in Algorithm 2) without signs, SKSG-B and SKSG are
equivalent to Stochastic Kronecker Graph (SKG) [23] and Noisy
SKG [37], respectively. SKG constructs a stochastic adjacency
matrix A using Kronecker product where each entry Auv indi-
cates a probability P(u,v) of forming edge u → v . In our models,
the probability P(u,v) is divided into P(u,v,+) and P(u,v,−),
i.e., P(u,v) = P(u,v,+) + P(u,v,−), implying that A = P +M
where {+P,−M} is a stochastic signed tensor. Thus, the for-
mation of edges without signs in SKSG-B is equivalent to that
of SKG; consequently, networks from SKSG-B naturally inherit
characteristics of those of SKG. Similarly, the edge formation of
SKSG with noises corresponds to that of Noisy SKG.

F PARAMETER SETTING

Table 6 describes the selected α and the target recursion level L
of BalanSiNG for each dataset.

Table 6: Parameters used in BalanSiNG

Parameters BitcoinA BitcoinO Epinions

α 0.84 0.75 0.65
L 12 13 17
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ABSTRACT

Top-k rankings are a commonly used technique to summarize the
most important entities of a speciic domain. In this work, we fo-
cus on eiciently solving the problem of similarity joins for top-k
rankings, for instance, for determining users with similar ainity,
or for grouping related queries in search engines, based on their
results. We put forward a novel algorithmic multi-step solution,
realized via Apache Spark, harnessing mathematical properties
of the distance function and a preceding near-duplicate detection
phase, for search-space pruning. We further show how existing
state-of-the-art algorithms for set similarity joins can be adapted
to handle top-k rankings and how the data partitioning internals
of Spark can be used to enable eicient data processing. The
experimental study over standard benchmark datasets reveals
that the proposed solution outperforms the state-of-the-art com-
petitor by up to a factor of 5, despite involving additional stages
of processing.

1 INTRODUCTION

Similarity joins have been a popular research topic in the data-
base community for more than a decade now. Previous research
in this topic is concerned with solving the problem of similar-
ity joins for sets [7, 11, 25, 28], strings [13] or the more general
problem of inding the similar objects in metric space [12]. Many
distributed solutions, developed for the MapReduce framework,
have also been proposed. Recently, Fier et al. [10] summarized
and compared these distributed solutions. In this paper, we specif-
ically focus on solving the problem of similarity joins for top-k
rankings. Top-k rankings are a very popular and widely used
technique to summarize the most relevant entities from a certain
domain. Fast and eicient solutions for similarity joins of top-k
rankings is of great value in many contexts. For instance, the
case of query suggestion or expansion in search engines based on
inding similar queries by comparing their result lists, in a dating
portal where we can use the preferences and ainities of users,
presented in a form of top-k lists, for matchmaking, or in the
case of recommender systems, where the similarity between the
top sold (liked, favored) items for diferent clients can help in rec-
ommending products. For instance, consider Table 1 containing
favorite movies of members of some dating portal. By comparing
the lists, we see that Alice and Chris have similar taste so the
system should match them for a date.

Spearman’s Footrule distance is used as a distance measure
for comparing two top-k lists. Fagin et al. [9] show that there
is a Spearman’s Footrule adaptation for top-k rankings that is
a metric. This immediately entails the use of existing metric
space similarity join approaches. On the other hand, rankings

∗This work has been supported by the German Research Foundation (DFG) under
grant MI 1794/1-1/2.

© 2020 Copyright held by the owner/author(s). Published in Proceedings of the
23rd International Conference on Extending Database Technology (EDBT), March
30-April 2, 2020, ISBN 978-3-89318-083-7 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Alice Bob Chris

1. Pulp Fiction The Schindler List Indiana Jones

2. E. T. Lord of the Rings Pulp Fiction

3. Forrest Gump Avengers Forrest Gump

4. Indiana Jones Indiana Jones E. T.

5. Titanic E. T Titanic

Table 1: Dating portal users’ favorite movies

can be considered as plain sets and accordingly indexed using
inverted indices, that keep for each item a list of rankings where
this item appears. Thus, many of the distributed algorithms that
solve the problem of similarity joins for sets can be applied for
top-k rankings. The best performing one, according to a recent
study [10], is the algorithm proposed by Vernica et al. [24], based
on the principle of preix iltering. This approach, as shown in
the study [10], also outperforms existing metric space similarity
join approaches. Furthermore, Fier et al. [10] showed that the
existing distributed solutions inMapReduce do not scale well, and
propose that Apache Spark is used as a platform for developing
new alternative solutions. In this paper, we speciically focus on
studying an eicient and scalable top-k rankings similarity joins
using Apache Spark [4].

We propose a novel approach implemented in Apache Spark
that is better tailored to the properties of this platform. In con-
trast to MapReduce, where each stage is composed from only a
map and reduce function, and the data from each stage is written
to disk, Apache Spark is more suitable for iterative processing
of data and performs the computation in memory. Thus, we pro-
pose an iterative approach that computes the similarity join in
several stages, while storing the intermediate results in mem-
ory. As Spearman’s Footrule adaptation for top-k rankings is a
metric, the algorithm uses the triangle inequality to reduce the
number of candidate pairs generated. Very similar rankings are
clustered together, and then, only the cluster representatives are
joined, reducing the size od the data processed, and thus, inding
more eiciently the join results. Through a detailed experimental
study we show that our algorithm outperforms the competitor,
especially for larger values of the similarity threshold θ .

1.1 Problem Statement and Setup

As input we are provided with a dataset T of rankings τi (Ta-
ble 2). Each ranking has a domain Dτi of items it contains. We
consider ixed-length rankings of size k , i.e., |Dτi | = k , but inves-
tigate the impact of diferent choices of k on the join performance
1. The considered rankings do not contain any duplicate items.

The ranked items in a ranking are represented as arrays or
lists of items, where the left-most position denotes the top ranked
item. In addition, each ranking has an id associated to it. Without

1Working with ixed-length rankings gives better insights into the diference of
performance of the algorithms. For handling variable-length rankings, only the
length boundaries for the Footrule distance, given a distance threshold, need to be
computed .
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ranking id ranking content

τ1 [2, 5, 4, 3, 1]
τ2 [1, 4, 5, 9, 0]
τ3 [0, 8, 5, 7, 3]

Table 2: Sample dataset T of top-5 rankings (items are rep-

resented by their ids).

loss of generality, in the remainder of the paper, we assume that
items are also represented by their ids. The rank of an item i in a
ranking τ is given as τ (i ).

A distance function d quantiies the distance between two
rankingsÐthe larger the distance the less similar the rankings
are. Given a dataset of top-k rankings T = {τ1, . . . ,τn } and a

distance threshold θ we want to ind all pairs (τi ,τj ), τi ,τj ∈ T ,

i , j , where the distance d between τi and τj is smaller or equal to

θ , i.e., d (τi ,τj ) ≤ θ .

In this work, we focus on the computation of Spearman’s
Footrule distance, but the proposed algorithm can be applied on
any distance measure that satisies the triangle inequality. Spear-
man’s Footrule distance is computed as a sum over the difer-
ence in position of the items in the two rankings, i.e., F (τ ,σ ) =∑
i ∈Dτ ∪Dσ

|τ (i ) − σ (i ) |. An artiicial rank l for items not con-
tained in a ranking, i.e., τ (i ) = l if i < Dτ , is considered. Consider
the rankings τ1 and τ2, in Table 2. For a rank l = 6 for not-
contained items, we obtain F (τ1,τ2) = 4+1+1+5+2+2+1 = 16.
A more detailed introduction to rankings, speciically top-k rank-
ings, distance functions, and how to handle items i that are not
in a ranking τ is described in Section 3.

1.2 Contributions and Outline

The contributions of our work can be summarized as follows.

• We adapt existing set-based similarity join algorithm to
the problem of top-k rankings. We furthermore implement
and adapt this algorithm to the Apache Spark framework.
• We introduce a new iterative, highly conigurable algo-
rithm that combines metric space distance-based iltering
with state-of-the-art set-based similarity join algorithms.
• We propose further optimization to the proposed algo-
rithm by presenting a method for repartitioning large
partitions.
• We implemented our methods and competitors in Apache
Spark and through an extensive experimental study on two
real-world datasets we show that our methods consistently
outperform state-of-the-art approaches for larger values
of the threshold θ .

The rest of the paper is structured as follows. Section 2 dis-
cusses related work and, in Section 3, we present background on
top-k rankings, a state-of-the-art distributed set similarity join
algorithm, and Apache Spark. In Section 4, we describe how exist-
ing set-based similarity join algorithm is adapted to top-k rank-
ings. The clustering algorithm and its components is introduced
in Section 5. Section 6 proposes a Spark-based repartitioning
technique. We experimentally evaluate the presented approaches
in Section 7. Finally, we give the conclusion in Section 8.

2 RELATED WORK

To the best of our knowledge, the problem of similarity join for
top-k rankings has not been addressed so far. As top-k rankings
can also be seen as sets, we mainly focus here on explaining
set-based similarity joins.

In-memory similarity join approaches: There is an ample
work on computing the similarity join for sets or strings. Mann
et al. summarize and compare the in-memory based approaches
in [16]. Previous approaches are mainly based on a ilter and veri-
ication framework which uses inverted indices as the initial ilter
for pairs that do not have any items in common and applying
additional ilters that prune dissimilar pairs. In the veriication
phase the candidates are veriied by computing their true simi-
larity score. The preix-iltering approach, initially proposed by
Chaudhuri et al. [7] is the most well know algorithm for inding
the similar pairs. It works by irst sorting all records in the dataset
in the same canonical order and then indexing only a preix of
the record with an inverted index. The size of the preix depends
on the threshold and distance, i.e., the similarity measure used.
The records are usually sorted by the ascending frequency of the
elements in the sets. There are many works [5, 6, 21, 25, 28] that
propose improvements over the initial preix-iltering algorithm,
by introducing additional position or length-based ilters, reduc-
ing the size of the preix, introducing variable length preixes,
grouping based on the preix, etc. Recently Wang et al. [26], moti-
vated by the conclusions presented in [16], proposed an approach
that improves upon existing preix-iltering approaches by intro-
ducing index level and answer-level skipping. The index level
skipping reduces the unnecessary checks done by position and
length-based ilters, by using length-sorted skipping blocks in
the posting lists, augmented with the positions of the elements in
the sets. The answer-level skipping is based on the idea that the
answer sets of similar sets should be also similar, thus the already
computed answer set of one set is used for computing the answer
set of another, similar, set. Bouros et al. [6] propose an approach
for spatio-textual similarity joins. They describe algorithms that
partitions and ilters the data based on the spatial (Euclidean)
distance between the points in the dataset, and, in addition, they
extend the preix-iltering method by introducing grouping based
on the preix of the textual data. The grouping based on the preix
of the textual data is orthogonal to our presented approach, i.e.,
it can be applied in our approach in addition to (instead of) the
VJ algorithm. Their method for distance based partitioning of the
data space resembles our idea for clustering based on the distance
threshold. However, the solution proposed in [6] works specif-
ically for two dimensional data. Top-k rankings, on the other
hand, can be interpreted as points in multidimensional space,
where the dimension is determined by the size of the rankings,
usually 10 or larger. In addition, our clustering approach is more
general, and works for any data in metric space.

MapReduce-based similarity join approaches: To handle
larger datasets, many distributed solutions for similarity join of
sets have also been proposed. Recently, Fier et al. [10] summarized
and compared the MapReduce-based similarity join solutions.
Vernica et al. [24] present a distributed solution, referred to as
VJ, based on the well known preix iltering method. Since we
use this algorithm in our implementation, we describe it in more
details in Section 3. The V-SMART algorithm [17] adopts a difer-
ent idea, by computing the ingredients of the similarity measure
in a distributed manner, which are later joined to compute the
inal results. It works in two phases, a joining phase and a sim-
ilarity phase. In the irst phase, the joining phase, the partial
results for each set is computed and joined to all the elements
in the sets. In the similarity phase, the algorithm takes as input
the output from the irst phase, builds an inverted index, and
then, while traversing the posting lists for each element si , emits
pairs of sets together with information needed to compute the
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inal similarity. Deng et al. present MassJoin [8]. This approach
is based on PassJoin [15], a main memory method for string
similarity joins. The idea behind their method is to generate sig-
natures for the sets r ∈ R, and then for each signature of r they
generate signatures for s ∈ S . In order for s and r to be simi-
lar, they should share at least one signature. Additional ilters
are applied to reduce the number of candidate pairs generated.
Rong et al. present FS-Join [20]. They claim that their algorithm
outperforms the competitors because it addresses some of the
issues that previous approaches had, i.e., it does not generate
duplicate results and achieves better load balancing. The dataset
is vertically partitioned, by dividing each set into segments and
then partitioning the data according to the segments. Interest-
ingly, Fier et al. [10] came to the conclusion that the approach
proposed by Vernica et al. [24] outperforms the other approaches
in most scenarios. Therefore, in this work we compare our ap-
proach to the one presented in [24]. Distributed metric space
approaches have also been proposed [22, 27]. Wang et al. [27] for
a dataset D, partition the input dataset D into N disjoint parti-
tions Pi , Pi ∪ Pj = ∅,∪Ni=1Pi = D, created by randomly choosing
N centroids pi and assigning each point p ∈ D to the partition
represented by the closest centroid. Further, they deine inner and
outer sets of a partition and based on that they decide the data
distribution. The proposed MapReduce algorithm consists of two
main stages, partitioning the data, and, in the second stage, com-
puting the similarity join. Sarma et al. [22] propose a MapReduce
method that works very well for very small distance thresholds.
In fact, they evaluate their approach using only threshold values
up to 0.1. The novelty in their work is that they apply several
iltering techniques, both distance speciic and not, which lead
to having tighter partitions, and thus, fewer comparisons.

In prior work [18], we solve the problem of answering simi-
larity range queries over top-k rankings. There, in addition to an
algorithm based to the preix-iltering framework, we also pre-
sented a so-called coarse index, that combines an inverted index
with a metric index structure to reduce the number of distance
function computations.

3 PRELIMINARIES

Complete rankings are considered to be permutations over a
ixed domain D. We follow the notation by Fagin et al. [9] and
references within. A permutation σ is a bijection from the domain
D = Dσ onto the set [n] = {1, . . . ,n}. For a permutation σ , the
value σ (i ) is interpreted as the rank of element i . An element
i is said to be ahead of an element j in σ if σ (i ) < σ (j ). We
consider incomplete rankings, called top-k lists in [9]. Formally,
a top-k list τ is a bijection from Dτ onto [k]. The key point is
that individual top-k lists, say τ1 and τ2 do not necessarily share
the same domain, i.e., Dτ1 , Dτ2 .

Pairwise similar rankings can be retrieved by means of dis-
tance functions, like Kendall’s Tau or Spearman’s Footrule dis-
tance. In this work we use Spearman’s Footrule adaptation for
top-k lists proposed in [9]. Spearman’s Footrule distance is com-
puted as a sum over the diference in position of the two rank-
ings, i.e., F (τ ,σ ) =

∑
e ∈Dτ ∪Dσ

|τ (i ) − σ (i ) |. An artiicial rank l
for items not contained in a ranking, i.e., τ (i ) = l if i < Dτ is
considered.

In this work, we assume that τ (i ) takes values from 0 to k − 1
(instead of 1 to k), and we ix the value of l to k as suggested in
[9]. It is clear that this does not afect our algorithms. We further
consider only rankings of same size k , thus the largest possible

value of the Footrule distance is k ∗ (k + 1) and occurs if two
disjoint rankings are compared. The smallest distance is 0, for
the compared rankings are identical. In the rest of the paper, for
ease of presentation, we use normalized values for the Footrule
distance and the threshold values, ranging from 0 to 1.

3.1 Vernica Join (VJ) Algorithm

According to a recent experimental study [10], the VJ algorithm
outperforms other distributed similarity join algorithms in most
cases. The algorithm is implemented in MapReduce and is based
on the well known preix iltering method. It works in several
phases, each representing one map reduce job. For each phase,
the authors propose several variations, however, here we describe
the version which, according to their evaluation, showed the best
performance.

In the irst phase, all records are read and the tokens in the
universe are sorted according to the increasing frequency of
appearance in the sets. Then, in the next phase, the sorted tokens
are loaded into the memory of the mappers and used for sorting
the sets into a canonical form. Then themappers emit a composite
key consisting of the token and the size of the set, plus the whole
set as value, but only those elements that belong to the preix.
For grouping the records in the reducers, only the token is used,
while the size of the set is used for sorting the records by size. The
latter allows utilizing size-based ilters. At the reducers, for all
the rankings that share at least one element together, the PPJoin+
algorithm [28] is used, to ind the similar rankings. In the inal
phase, duplicate pairs must be removed, since the same pair can
be generated at several machines.

3.2 Apache Spark

Apache Spark [4] is a general purpose platform that enables easy
and fast development and execution of distributed applications.
It can be considered successor of MapReduce, as it provides simi-
lar capabilities with generally better performance. Additionally,
several other functionalities are provided and many libraries are
built on top of its core. The parallelization of applications is easier
when using Apache Spark due to the notions of RDD, transfor-
mations and actions used in the platform. RDDs are collections
of elements distributed across the nodes of a cluster [14]. Once
created, they are then partitioned among the available nodes of a
cluster. This way, each node handles a subset of the input. RDDs
are evaluated lazily, meaning that, instead of directly computing
each RDD transformation, the computation is performed only
at the end, when the inal RDD data needs to be materialized.
This allows Spark to optimize job execution, by analyzing and
grouping the transformations that are performed over the RDDs.

Another important characteristic of Apache Spark is its ability
to execute iterative processes, using the main memory of the
nodes, in order to reduce disk I/O, thus, reducing the overall exe-
cution time of the application, leading to superior performance
over MapReduce, as shown by Shi et al. [23].

4 A VJ-STYLE ALGORITHM FOR TOP-K
RANKINGS

To ind all pairs of similar top-k rankings for a given set of rank-
ings T and a threshold θ , we can use the Vernica Join (VJ) algo-
rithm. However, in order to be able to apply it on top-k rankings,
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τi :

τj :

i1 i2 i3 i4 i5

i3 i4 i1 i2 i5

Figure 1: Example rankings with k = 5 and p = 2 with

maximum Footrule distance F (τi ,τj ) = 8.

we need to derive the preix size p of top-k rankings, when Spear-
man’s Footrule distance is used to compare them2. There are
two ways for computing the preix size of top-k rankings, one
considering the overlap of the rankings, and the other, consid-
ering their position. The latter provides slightly tighter preix
sizes than the irst. However, the former allows more freedom
in choosing the items in the preix. In prior work [18], we found
the minimum overlap between two rankings τi and τj , such that

F (τj ,τj ) = θ , as ω = ⌊0.5 ∗ (1 + 2 ∗ k −
√
1 + 4 ∗ θ ) and the preix

size as p = k −ω+1. We refer to this as preix based on overlap.
In addition, we deine an ordered preix, po , as:

Lemma 4.1. For a given Spearman’s Footrule distance threshold

θ and a ranking length k , the ordered preix po of the top-k

rankings is given by the best ranked:

po = ⌊
√
θ
√
2
⌋ + 1

items of the rankings.

Proof. The lowest Footrule distance that two top-k rankings
τi and τj can have, when none of the irst p items of each ranking
are overlapping, L(p,k ), is when the items are overlapping in the
rankings, i.e., Dτi = Dτj , but they are positioned in the next p
places in the other ranking. This is so, because the partial Footrule
distance of an item we get either by the diference in its positions,
when they are overlapping, or as k − τi (i ) when the item is non
overlapping. For the items i positioned in the irst p places in

ranking, where p < k
2 , the partial distance of the items being

overlapping and placed at the next p places is always lower than

if an item is non overlapping. L(p,k ) can be computed as
(p∗2)2

2 .
An example of such rankings,wherep = 2, are the rankings τi and
τj , shown in Figure 1. These rankings have the same domain, i.e.,
Dτi = Dτj = {i1, i2, i3, i4, i5}, however, when looking only the
irst p items, written in bold, they have no overlap. The Footrule
distance between them is F (τi ,τj ) = 8, the lowest that they can
have when the irst p items are not shared.

Solving L(p,k ) = θ gives us the irst p = ⌊
√
θ√
2
⌋ items that can

be non-overlapping in case of θ . Taking one more item guaranties
that we will not miss any candidate pair. 3 □

Given the Footrule distance threshold θ , we now describe the
VJ algorithm for top-k rankings. The irst step in the VJ algorithm
is counting the frequency of the elements in the sets and ordering
them by frequency. This step is not needed for top-k rankings
and can be skipped. However, since most real world datasets
follow a skewed distribution, through experiments we concluded

2To use another distance measure with a preix-iltering based algorithm, these
bounds will need to be recomputed. However, our approach is lexible and any
other algorithm can be used.
3Note that this only holds when θ ≤ k2

2 . In the case when θ >
k2

2 computing the
formula for the ordered preix size is more complicated and we leave it as future

work, since using values of θ ≤ k2

2 is more than enough for our problem setting,

as it is common practice to use values of θ ≤ 0.4. θ = k2

2 is around 0.45 when

normalized, depending on the value of k .

that reordering the rankings by the item’s frequency leads to
major performance gains, and thus, we keep this step for top-
k rankings as well. This entails that the preix size based on
the overlap between the rankings should be used. To perform
the reordering, we irst count the frequency of the items in the
rankings. Then, in order to make this collection available to all
the nodes, in Spark, we use a broadcast variable which is cached
on each machine and then used to sort the items of all rankings
τ ∈ T by increasing order of their frequency. Note that, while we
reorder the items in the rankings, we still need to keep track of
their original rank for the computation of the Footrule distance,
thus rankings are transformed to arrays of (iid ,τ (i )) pairs. In the
next step we transform the rankings, into (iid ,τ ) pairs, where
as key we have the item id, and as value we have the ranking.
This we only do for the items that belong to the preix of the
ranking. Then in the next step, in order to bring all rankings
that share an item to the same partition, we aggregate the tuples
(RDD), created in the previous step, by key. In the next step, for
the rankings that share an item, a main memory approach for
inding the similar pairs is applied. For the rankings on each item
list we index their preixes using an inverted index. In addition,
based on our previous work [19] we apply a position ilter in
order to ilter out more candidate pairs. In [19], we proved that
two rankings τi and τj cannot have distance smaller than θ if at
least one of the items in the rankings have a diference in their

ranks larger than
k∗(k+1)∗θ

2 . That means, if there is at least one

item i ∈ τi ,τj , such that, |τi (i ) − τj (i ) | > k∗(k+1)∗θ
2 , we can be

sure that d (τi − τj ) > θ . For the candidate pairs that pass the
ilters, we compute the Footrule distance. Note that, since we
work with rankings of same size k , iltering based on the length
of the rankings is not applicable. Finally, before writing the inal
result, we remove the duplicate pairs.

4.1 Improved Memory Usage

Previous distributed approaches for similarity joins were de-
signed and implemented in MapReduce. Spark, as a successor of
MapReduce, has diferent characteristics than MapReduce, and
thus existing approaches can be adapted to the computational
properties of Spark in order to improve their performance.

Datasets in Spark are represented as RDDs, which are im-
mutable, distributed collections of objects, stored in the memory
of the executors. This means that for every transformation of an
RDD, a new RDD is created. In addition to this, Spark runs in
the JVM, which means that garbage collection can easily cause
performance issues for Spark jobs. Thus, keeping objects in the
memory of executors is not recommended, since it can lead to
crashes or performance degradation when dealing with large
datasets. Instead, working with iterators is more native to the
Sparks computational model, since this allows the framework to
spill some data to disk, when needed.

The VJ algorithm that shows the best performance, according
to [24] works such that rankings that share the same item are
distributed to diferent partitions. Next, on each partition, an in
memory join algorithm is executed, to compute the rankings with
distance smaller than θ . This entails, irst, storing a dictionary
of the items, second, storing an inverted index for the rankings
for this partition, and storing the partial result sets until the inal
computation is done. In addition to this, since Spark works with
immutable objects, sorting the objects for performing the per
partition in memory join, imposes creating new objects for each
ranking. This means that the VJ algorithm can lead to having
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Figure 2: Overall architecture. The algorithm has four

main phases: ordering, clustering, joining and expansion.

both issues that we mentioned above, bad performance caused by
the garbage collector overhead, and, memory overhead crashes,
due to keeping data structures and objects in memory.

Instead, we claim that a nested loop modiication to the VJ
algorithm, is more native to Spark’s processing style. Instead of
indexing the rankings per partition, we propose using iterators
to walk through the rankings in a nested loop fashion. For each
ordered pair of rankings,(τi ,τj ), where τi < τj that passes the
position ilter deined above, we compute the Footrule distance,
and output those pairs where d (τi ,τj ) ≤ θ . This approach, as we
will show in our experiments, performs better for large datasets,
since allows Spark to spill the data to disk, when needed.

5 APPROACH

Driven by the idea that similar rankings should have similar re-
sult sets, we propose a novel approach having a pre-processing
step, where very similar rankings are grouped. Then, only one
representative ranking from the clusters, called centroid, is con-
sidered in the next similarity join phase. The idea is that by doing
this, the number of records being joined is reduced and, thus, the
execution time of the main joining phase is reduced tooÐwhich
is actually the most expensive part of similarity join algorithms.
Since Spark is suitable for iterative processing, adding an addi-
tional phase should be acceptable. However, this pre-processing
phase should be very eicient, such that we do not end up with
having a higher overhead than real beneit. Another key observa-
tion is that the Footrule distance is a metric and, thus, the triangle
inequality can be used for forming, and expanding the clusters,
after inding the similar centroids, to compute the inal result set
more eiciently.

Making use of the above observations, we propose an approach
consisting of four main phases: Ordering, Clustering, Joining,
and Expansion, depicted in Figure 2.

Ordering: The irst phase of our approach is ordering the
items in the rankings by their occurrence, i.e., items that occur
less frequently in the rankings, are moved to the top positions of
the rankings. In our proposed algorithm, as later described, the
VJ similarity join algorithm is applied twice, once for clustering
the rankings, and once for inding the similar clusters. Instead of
reordering the rankings twice, we choose to do this only once,
using the original dataset T . As our approach does not depend
on the similarity join algorithm used for clustering or for joining
the clusters, the re-ordering of the items in the rankings can be
skipped if it is of no use to the joining algorithm applied later on.

The reordering is done just for determining which items will be
included into the preix of the rankings, while the rankings still
preserve their original item ordering for the computation of the
distance.

Clustering: The second phase of our approach is forming
clusters, such that similar rankings will belong to the same cluster,
Ci . First, a similarity join algorithm is executed, to ind the similar
rankings that need to be grouped together. Our experiments
revealed that VJ is the most eicient one to be used here, which
supports the indings by Fier et al. [10]. In principle, however,
any similarity algorithm could be employed at this stage. Then,
clusters are formed such that the pairwise distance between each
member of the cluster and its representative is at most θc . We
will refer to θc as the clustering threshold. In contrast to other
similarity join algorithms in metric space, where clusters have
diferent radius, the radius of all clusters formed by our approach
is bounded by the clustering threshold, θc . We write τi ≺ ci to
denote that ranking τi belongs to the cluster, Ci , represented by
ranking (centroid) ci . Rankings in the dataset T that do not have
any similar rankings with distance smaller than the clustering
threshold, θc , form singleton clusters, i.e., one element clusters.

Joining: In this phase a similarity join algorithm is executed
over the centroidswith a threshold θo = θ+2∗θc . Using threshold
θo instead of θ is necessary in order to insure the correctness
of the algorithm. Note that any similarity join algorithm can be
applied here, independently from the algorithm used in the clus-
tering phase. Due to the aforementioned reason, we implement
the VJ algorithm.

Expansion: In the last step of the algorithm the inal result
set is computed, by joining the results from the joining phase
with the formed clusters in the clustering phase. The members
of the joined clusters from the joining phase are checked against
each other if the distance between them is smaller than θ . Using
the metric properties of the distance measure, we are able to
directly ilter out some candidates, and thus compute the inal
result list more eiciently.

Before we describe each phase more formally, how each phase
is realized and how the inal join results is computed, we irst
discuss the correctness of the proposed algorithm.

Lemma 5.1. For given join threshold θ and clustering threshold

θc , in the joining phase, all pairs of centroids ci , c j with distance

d (ci , c j ) ≤ θ + 2 ∗ θc need to be retrieved in order not to miss a

potential join result.

Lemma 5.1 ensures that pairs {(τi ,τj ) |τi ≺ ci ,τj ≺ c j ∧
d (τi ,τj ) ≤ θ ∧ d (ci , c j ) > θ } will not be omitted from the re-
sult set.

In other words, Lemma 5.1 avoids missing result rankings with
distance ≤ θ , which are represented by centroids which are with
distance larger than θ from each other.

This follows from the fact that for all rankings {τi |τi ≺ ci ∧
d (τi , ci ) ≤ θc }. It follows that for any pair of rankings {τi ,τj |τi ≺
ci ,τj ≺ c j } the distance of the corresponding centroids d (ci , c j )
must be ≤ θ + 2 ∗ θc . Thus, using a threshold θo = θ + 2 ∗ θc in
the joining phase is enough to ensure that no true result will be
missed.

5.1 Clustering

When forming the clusters the following points need to be con-
sidered: (i) To ensure correctness, the radius of all the clusters
should be the same, i.e., for any ranking τi ∈ Ci , represented by
a ranking ci , d (τi , ci ) ≤ θc . (ii) The clustering method should be
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very eicient, otherwise the cost of the clustering would over-
weight its beneit. (iii) The performance of the expansion phase
depends on the clusters formed. We address each point indi-
vidually while explaining our design choices for the clustering
algorithm.

For forming the clusters, we could turn to existingmethods [22,
27], where, irst, the centroids of the clusters are randomly chosen,
and then, by computing the distance from the centroids to the
other points in the dataset, the members of the clusters are found.
However, considering that we aim at forming equal range clusters,
where the points are very close to each other, this approach has
two main drawbacks, which make it not suitable for our use case.
First, due to the very small clustering threshold, and the random
choice of the clusters, it could happen that for some, or in the
worst case for all, of the chosen centroids, there are no other
points in the dataset such that their distance to the centroids is
smaller than the clustering threshold, θc . This leads to having
singleton clusters which do not cause any performance beneit
in the joining phase. Another drawback of this approach is that
the number of clusters needs to be chosen upfront.

First, to ind the rankings that are very similar to each other,
instead of selecting the centroids irst, and comparing the dis-
tance for each point to the centroids, we execute a similarity join
algorithm with the clustering threshold over the whole dataset,
T . Any similarity join algorithm can be applied, however, since
preix iltering approaches are especially eicient for very small
thresholds, in our implementation we use the VJ algorithm. Note
that the rankings have already been sorted, so we do not perform
any additional sorting in this phase. The result of the VJ algo-
rithm are all pairs of rankings (τi ,τj ) whose distance is smaller
than the clustering threshold, i.e. d (τi ,τj ) ≤ θc . The clusters are
formed such that, from the pairs, we take the irst ranking, i.e.,
the one with a smaller id, as the cluster centroid, and the second
one as their member. This does not only keep the clustering phase
eicient, but also simpliies the expansion of the results in the
last phase, since then the expansion can simply be performed
by joining the result set from the joining and clustering phase.
Furthermore, this way we can also eiciently apply ilters based
on the distance of the elements to their centroids, explained in
Section 5.3. Clusters formed this way theoretically correspond
to clusters formed by grouping the results by the irst ranking,
and taking the irst ranking as the centroid. For instance, in Fig-
ure 3, the following clusters would be formed C1 = {τ1,τ2,τ5},
C2 = {τ3,τ4} with centroids τ1 and τ3, respectively.

Since Spearman’s Footrule distance is a metric, we know that
for any two rankings τi ,τj ∈ Ci it holds that d (τi ,τj ) ≤ 2 ∗ θc ,
and thus, members of the same clusters can directly be written
to disk as partial results, as long as θc ∗ 2 < θ .

By creating the clusters in this way, all of the aforementioned
requirements are satisied. The radius of all the clusters is the
same and both forming the clusters and expanding the result set
is kept simple, and thus, very eicient. One minor drawback of
this approach is that the formed clusters would be overlapping.
However, resolving this overlap would negatively impact the
performance of the clustering and the expansion phase.

As input to the next, joining phase, we union the set of cen-
troids Cm that contains all centroids representatives of clusters
with at least two members, i.e., |C | ≥ 2 with the set of centroids
Cs that represent the singleton clusters, i.e., |C | = 1. The set Cs
is derived from the original dataset, by inding those rankings
τi ∈ T such that there is no other ranking τj ∈ T , such that,

!1 [(1,4),(2,0),(4,2),(3,3),(5,1)]

!2 [(1,4),(2,1),(4,2),(3,3),(5,0)]

!3 [(7,3),(8,1),(0,0),(3,4),(5,2)]

!4 [(7,3),(8,0),(0,1),(3,4),(5,2)]

!5 [(1,4),(2,0),(4,3),(3,2),(5,1)]

!6 [(9,1),(6,0),(0,3),(8,2),(5,4)]

((!1, !5), 0.06)

((!3, !4), 0.06)
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and 

repartition

VJ join 

algorithm

((!1, !2), 0. 06)

(!1, (!5, 0.06))

(!1, (!2, 0.06))

(!3, (!4, 0.06))

ordered rankings

output pairs of 

members of the 
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Join 

phase

centroids
(!1)

(!3)

compute singletons

union
(!6)

Cs

Cm

Figure 3: Example of how clusters are formed and cen-

troids (marked with red) are chosen, where θc = 0.1.

d (τi ,τi ) ≤ θc . An example of a singleton cluster in Figure 3 is
C3 = {τ6}.

Example 5.2. Figure 3 shows through an example the creation
of the clusters, for θc = 0.1. The items in the rankings τ1, . . . τ6
have already been sorted by increasing order of their frequency.
For instance, in τ1 item 1 with position τ1 (1) = 4 is placed on the
irst position, as it appears three times in the rankings (ties are
arbitrarily broken). After running a similarity join algorithmwith
distance threshold θc = 0.1 on these rankings, the pairs (τ1,τ5),
(τ1,τ2) and (τ3,τ4). In the following step clusters C1 = {τ1,τ2,τ5},
C2 = {τ3,τ4} with centroids τ1 and τ3, respectively are formed.
Furthermore, the ranking τ6 forms a singleton cluster since it
does not belong to any of the formed clusters C1,C2.

5.2 Joining

In the joining phase we need to ind all centroids pairs (ci , c j )
such that d (ci , c j ) ≤ θo . To do this, we execute the VJ algorithm
over all centroids ci , with a threshold θo = θ+2∗θc . However, the
VJ algorithm, as almost all similarity join algorithms, is sensitive
to the threshold valueÐfor larger threshold values the algorithm
performs worse. Thus, it could happen that, even though we
are joining a dataset C ⊆ T , due to the larger threshold used,
the joining phase performs worse than simply executing the VJ
algorithm over the whole dataset T . Again, note that we do not
perform additional reordering of the rankings here, but the VJ
algorithm is executed on the initially ordered rankings.

According to Lemma 5.1, using a threshold θo is only needed
to avoid missing pairs of rankings {(τi ,τj ) |τi ≺ ci ,τj ≺ c j ∧
d (τi ,τj ) ≤ θ ∧d (ci , c j ) > θ )}. Furthermore, due to the small clus-
tering threshold, in the dataset C we have many centroids which
are representatives of singleton clusters. For these centroids, we
can avoid unnecessary computation, by using a smaller threshold,
without missing any true result. Lemma 5.3 deines this:

Lemma 5.3. Given join threshold θ and clustering threshold θc ,

and a set of centroids C = Cm ∪Cs , where Cs is the set of centroids
that represent the singleton clusters and Cm = C \ Cs is the set of
centroids representing non-singleton clusters. The following pairs

of centroids need to be retrieved in order not to miss a potential join

result:

{(ci , c j ) | d (ci , c j ) ≤ θ + 2 ∗ θc if ci , c j ∈ Cm } (1)

{(ci , c j ) | d (ci , c j ) ≤ θ + θc if ci ∈ Cm ∧ c j ∈ Cs or v.v.} (2)

{(ci , c j ) | d (ci , c j ) ≤ θ if ci , c j ∈ Cs } (3)
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method: Centroids Join

input: Dataset C = Cm ∪ Cs , double θ , θc
output: all pairs (ci , c j ) s.t. d (ci , c j ) ≤ θ + 2 ∗ θc
1 pm = get_preix(θ + 2 ∗ θc ,k)
2 ps = get_preix(θ , k)
3 grouped← transform_and_emit(Cm ,Cs ,pm ,ps )
4 R ← compute_sim(grouped, k , θ , θc )
return R

Algorithm 1: Joining of centroids based on the type of the

centroid.
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Figure 4: Example of computing the inal result set us-

ing the result set from the joining phase and the clusters

where θc = 0.1 and θ = 0.2. Cluster’s centroids are marked

with red.

Lemma 5.3 allows us to more eiciently join the centroids. It
follows that, only for the centroids cm ∈ Cm we need to use θo
for joining and, thus, only for these centroids, we need to use
a preix based on the threshold θo . For the centroids cs ∈ Cs ,
we can actually use the preix based on the original threshold θ .
Then, when computing the distance between the candidate pairs,
we keep track of the type of the centroid, and accordingly, we
output the pair if it satisies the corresponding threshold. This is
outlined in Algorithm 1.

Since we propose using small values for the clustering thresh-
old θc , we expect that in practice, the cardinality of Cm will be
signiicantly smaller than |C|, and thus, by applying a threshold
of θo only for centroids cm ∈ Cm , the savings should be notable.

5.3 Expansion

In the last phase, the inal result set is generated. For this purpose,
the results from the clustering phase, Rc , and the result from the
joining phase Rj , need to be joined together, and the generated
pairs need to be veriied. Depending on the joined pairs from the
joining phase, the expansion is done diferently. The pairs where
both centroids are singletons do not need to be expanded and are
directly written to disc. Pairs where at least one of the rankings is
not a singleton, need to be joined with the set of clusters, so that
similar pairs of rankings between cluster members from diferent
clusters, or with other singleton centroids, are generated.

Algorithm 2 outlines how the inal result set is computed.
First, the result set from the join phase, Rj , is divided into two
sets: Rs = {(ci , c j ) |ci , c j ∈ Cs ∧ d (ci , c j ) ≤ θ } and Rm = Rj \
Rs . Rs is the set of candidate pairs, where both centroids are
singletons. These pairs can be directly written to disc without
further processing and veriication. In addition, a subset of Rm ,

method: expand

input: Dataset Rc , Rj , double θ , θc
output: all pairs (τi ,τj ) s.t. d (τi ,τj ) ≤ θ

1 Rm ,Rs ← split(Rm )
2 Rp ← get_partial_results(Rm , θ , θc )
3 Rj ,Rm ← prepare_for_join(Rj , Rm )
4 RRj ▷◁Rm ← join(Cm ,Rj ,Rj )
5 Rm,c ← get_partial_results(RRj ▷◁Rm , θ , θc )

6 RRj ▷◁Rm ← prepare_for_join(RRj ▷◁Rm )

7 R(Rj ▷◁Rm )▷◁Rj ← join(RRj ▷◁Rm ,C)
8 Rm,c ,Rm,m ← get_partial_results(R(Rj ▷◁Rm )▷◁Rj ,θ ,θc )

return distinct(Rp ∪ Rs ∪ Rm,c ∪ Rm,m )

Algorithm 2: Computation of the inal result set.

i.e., pairs (ci , c j ) |θc < d (ci , c j ) ≤ θ , can already be included to
the inal results set.

Candidate pairs, where at least one centroid is not a singleton,
Rm , need to be further joined with the set of clusters Rc , in order
to ind the result pairs where at least one ranking is a cluster
member. These pairs are missing from Rj , since in the joining
phase the join was performed only over the centroids. To do this,
irst the set of clusters and the setRj are transformed, so that they
are brought into a format where as key we have the centroids.
Next, Rm and Rc are joined into RRc ▷◁Rm . Then, RRc ▷◁Rm is
used to generate the following result pairs:

Rm,c = {(τi , c j ) | (τi , c j ) ≤ θ ∧ τi ≺ ci ∧ (ci , c j ) ∈ Rj }
Rm,m = {(τi ,τj ) | (τi ,τj ) ≤ θ ∧ τi ≺ ci ∧ τj ≺ c j ∧ (ci , c j ) ∈ Rj }

To generate the irst result set Rm,c , the candidate tuples
in RRc ▷◁Rm need to be transformed into the needed pairs and
further veriied, if their distance is in fact smaller then θ . For pairs
(τi , c j ), where τi ≺ ci , we already know d (τi , ci ) and d (ci , c j ).
Thus, using the triangle inequality, we verify only those candidate
pairs (τi , c j ) such that |d (ci , c j )−d (τi , ci ) | ≤ θ and the remaining
ones we can ilter out since we can be certain that their distance
is larger than θ .

For generating the set Rm,m , the set RRc ▷◁Rm is irst trans-
formed, so that the second centroid is set as key of the tuples, and
then it is joined with the set of clusters. The joined set is then used
to add pairs to the set Rm,c . These will be candidate pairs from
the members of the newly joined centroids to the centroids we
already had in RRc ▷◁Rm . Filtering based on the triangle inequal-
ity is applied here as well. As last step, we generate all candidate
pairs (τi ,τj ), such that τi ≺ ci , τj ≺ c j and d (ci , c j ) ≤ θ + 2 ∗ θc .
For these, the Footrule distance is computed, and the ones where
d (τi ,τj ) ≤ θ are written to disk. Before writing the results to
disc, the duplicates are removed.

Example 5.4. Figure 4 illustrates the expansion through an
example. As results from the clustering phase, we have tuples
(τ1,τ5), (τ1,τ2), and (τ3,τ4). The centroids of these clusters are
τ1 and τ3Ðthe clusters are the same as in the aforementioned ex-
ample. The join results Rj are split into Rs = {(τ7,τ9), (τ9,τ12)},
where none of the rankings in the pairs is a centroid and Rm =
{(τ1,τ8), (τ1,τ6), (τ1,τ3)}, where at least one ranking in the pair
is a centroid. Pairs in Rs are directly written to disk. Tuples in
Rc and Rm are transformed such that the centroids, τ1 and τ3
are placed as keys of the tuples. They are joined and Rm , c =
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{(τ5,τ8), (τ5,τ6), (τ2,τ8), (τ2,τ6), (τ2,τ3), (τ5,τ3)} are veriied. Then
we take only those pairs in RRc ▷◁Rm where two rankings are cen-
troids, in the example the last two elements of RRc ▷◁Rm . For
these, we switch the places of the centroids τ1 and τ3 so that the
members of the second cluster could be joined with members
of the irst cluster, (τ4,τ5) and (τ4,τ2). These pairs need to be
veriied if their distance is smaller than θ .

6 REPARTITIONING USING JOINS

Naturally, the way data is distributed across partitions/machines
greatly inluences the performance of distributed algorithms.
The VJ algorithm partitions the rankings based on the items
that they containÐrankings that share an item end up at the
same partition. This means that in the case of a skewed data
distribution, which is often the case for real-world data, items
that appear very frequently cause very large partitions. This
problem is partially solved by the preix iltering framework,
especially for smaller values of θ , since the most frequent items
would not be included. However, as we increase the value of θ ,
the size of the preix increases, leading to skewed a distribution
of data across the partitions, thus, having few partitions that
dominate the overall execution time of the algorithm.

To tackle this issue, we propose an algorithm where large
partitions are split into smaller sub-partitions. Then, the resulting
pairs are computed for each small partition, and for each pair of
sub-partitions. Algorithm 3 describes this procedure. First, using a
user deined partitioning threshold δ we divide the inverted index
into two parts, one where the partitions per item have more that
δ rankings, I>δ , and those whose partitions per item are smaller
then the partitioning threshold, δ ,I<δ . In Spark, this can be easily
computed, since the distributed inverted index is kept in one RDD,
which allows easy access to the sizes of each partition. For those
partitions that are smaller than the partitioning threshold, we
compute the similarity join as before. The partitions larger than
the partitioning threshold, I>δ , are irst split into smaller sub-
partitions with at most δ rankings. This is done by assigning
to each sub-partition a random number as a secondary key. To
compute the inal result set, we irst compute the similarity join
over each sub-partition. Then, we self join the sub-partitions by
the item id, and for those join results where the secondary key
of the irst join pair is smaller than the secondary key of the
second join pair, we execute a R-S similarity join algorithm for
the joined partitions. To better handle the increased load due
to data replication and to redistribute the working load equally
among nodes, we partition by both the primary and secondary
key, i.e., by both the item id and the randomly assigned number
and increase the number of partitions.

Example 6.1. Figure 5 illustrates through an example the simi-
larity join computation in case of repartitioning. In this example,
the posting list for items i2, i10, . . . im have size larger than δ and
thus are split into smaller partitions. For instance, the posting list
for item i2 is split into three smaller lists with keys (i1, 1), (i1, 5),
and (i1, 9). In order to keep the correctness of the algorithms, in
addition to generating the pairs for each of these lists, they are
self joined, and an R-S join algorithm over the joined posting
lists (with keys (i1, 1, 5), (i1, 1, 9), and (i1, 5, 9)) is performed.

Choosing the Partitioning Threshold δ . In our experiments, we
show that the performance of the algorithm does not signiicantly
vary, when changing the partitioning threshold δ . However, the
partitioning threshold still needs to be chosen carefully, such that
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Figure 5: Example of repartitioning of the large partitions

using a partitioning threshold δ .

method: Repartitioning

input: inverted index over D, I. partitioning threshold, δ
output: all pairs (τi ,τj ) s.t. d (ci , c j ) ≤ θ

1 I>δ ,I<δ = split(I,δ )
2 R<δ = compute_sim(I<δ ,θ ,k)
3 P ← repartition(I>δ ,δ )
4 Rp1 ← compute_sim(P,θ ,k)
5 Rp2 ← compute_sim(join(P,P),θ ,k)
return R<δ ∪ Rp1 ∪ Rp2

Algorithm 3: Computing the all pair similarity join with

repartitioning of large partitions using a partitioning

threshold δ .

it is not set to a very small value, leading to too many partitions
being split into many small sub-partitions. If this happens then
joining the sub-partitions in step 5 of Algorithm 3 becomes too
expensive, and the beneit of the repartitioning is lost. In addition,
due to the use of Spark joins, choosing a very small value of δ
can also lead to memory crashes of the executors.

As a general guidance for choosing the value of the parameter
δ an estimation for the size of the posting lists can be used. In
our previous work on similarity search for top-k rankings [18],
we devised a formula for estimating this:

E[index list length] =
∑

i

n ∗ f (i; s,v ′)2 (4)

where n is the number of rankings indexed, and f (i; s,v ′) is
the frequency of the item at rank i , when the items follow a Zipf’s
distribution with skewness parameter s .v ′ is the distinct number
of items in the preix of the rankings.

7 EXPERIMENTS

We deployed all algorithms on a Spark 1.6 (using YARN and
HDFS) cluster running Ubuntu 14.04.5 LTS. The cluster consists
of 8 nodes, each equipped with two Xeon E5-2603@ 1.6GHz/
1.7GHz of 6 cores each, 128GB of RAM, out of which 40GB is
reserved for execution of jobs by YARN, and 4TB hard disks. All
nodes are connected via a 10GBit Ethernet connection.

Datasets: Due to the lack of real top-k ranking datasets, for
the experiments we used datasets that are often used in pre-
vious work on similarity joins for sets and were also used for
performing the experimental study for distributed similarity join
algorithms [10]. Speciically, we use the DBLP [1] and ORKU [2]
datasets. To transform the records of these dataset into top-k
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spark.driver.memory 12G

spark.executor.memory 8GB

spark.executor.instances 24

spark.executor.cores 5

Table 3: Spark parameters used for the evaluation

rankings, we simply take the irst k tokens in the sets, and con-
sider them as items in the rankings. Since we are working with
rankings of same size, we remove records with size smaller than
k . In addition, the datasets are preprocessed as in [10], without
the sorting of the records. Note that, while in the preprocessing
step duplicates are removed from the dataset, since we cut the
records to size k it can happen that we have a small amount of
records with distance 0 to each other. However, this should not

afect the performance of the algorithms, since duplicate records
are not handled diferently, i.e., the performance of the algorithms
should be the same as if there are no duplicates. As we will show
later on in our experimental study, what afects the performance
of our algorithm is the number of records with distance smaller
than θc .

After the preprocessing the DBLP dataset has approximately
1.2 million top-10 rankings, and ORKU has approximately 2 mil-
lion top-10 rankings. Each datasets has a size of 67MB and 173MB.
Since these datasets are relatively small for a distributed setting,
we also increase their size using the same method as in [10, 24],
where the domain of the items remains the same, and the join re-
sult increases approximately linearly with the size of the dataset.
We use suix xn to denote the number of times the dataset has
been increased. For instance, łORKUx5ž represents the ORKU
datasets increased 5 times.

The iles in Spark are read as text iles, and are directly parti-
tioned into the number of partitions speciied at input. Through-
out the experiments we write the number of partitions that the
data is divided into. Additionally, we show experiments that il-
lustrate the behavior of the efect that the number of partitions
has to the performance of the algorithms.

Algorithms under investigationWe investigate the perfor-
mance of the following algorithms:

• The adaptation of VJ to top-k rankings in Spark (VJ)
• The adaptation of VJ to top-k rankings using iterators
instead of inverted index (VJ-NL)
• The clustering algorithm using iterators (CL)
• The clustering algorithmwith iterators and re-partitioning
of the data (CL-P)

Based on general recommendations for running Spark jobs,
which suggest to not run ‘tiny’ or ‘fat’ executors, we assign 5
cores per executor. Then, based on the total number of cores and
the available memory of the nodes in the cluster, we set the other
execution parameters, reported in Table 3. The memory assigned
to the executers also corresponds to the amount assigned to
the reducers in a previous experimental study [10]. In case we
use diferent settings, we write these changes for the speciic
experiments. We report on the average wall-clock time measured
in seconds over 3 runs. If an algorithm runs more than 10 hours
we stop its execution.

7.1 Results

Performance Based on the Distance Threshold θ . We irst evalu-
ate and compare the performance of the above listed algorithms
when we vary the distance threshold θ . Figure 6 reports on the

performance of the four algorithms for both datasets DBLP and
ORKU, for values of θ ranging from 0.1 to 0.4. We see that our
algorithm outperforms the competitor algorithm VJ for larger
values of θ . Most importantly, we see that, with the exception
of the DBLP dataset, each optimization that we propose, brings
additional performance improvement. For all algorithms, the ex-
ecution time increases, as we increase the distance threshold θ ,
however, for our proposed algorithms, CL and CL-P, the increase
in performance is smaller, especially for the latter. For instance,
for the DBLPx5 dataset, the execution of the VJ algorithm for
the largest threshold value, 0.4, is 100 times more expensive than
when executing it for the smallest threshold value of 0.1. On the
other hand, the increase in execution time for the CL and CL-P
algorithms is 33 and 13 times, respectively. This can be attributed
to the design of the CL algorithm. Since in the joining phase
less rankings are being processed, the algorithm is not too much
afected by the skewness of the dataset. With the partitioning
of the large partitions into smaller ones, and their redistribution
among the nodes in the cluster, the CL-P algorithm shows even
larger performance improvement, for larger threshold values.

Furthermore, we see that for the datasets DBLPx5 (Figure 6(b))
and ORKU (Figure 6(d)) the gains in performance are the largest.
Here, we can clearly see that using iterators over an inverted
index is more eicient when it comes to a Spark implementation.
Additionally, we see that the largest performance beneit from
our clustering algorithm are for values of θ of 0.3 and 0.4. When
θ is set to 0.4, clustering combined with partitioning based on
joins (CL-P) performs 5 and 3 times better than the VJ and VJ-
NL algorithms, respectively, for the ORKU dataset (Figure 6(d)).
For the DBLPx5 dataset, the CL-P algorithm outperforms the
VJ and VJ-NL algorithms by almost 4 and 3 times, respectively
(Figure 6(b)). For lower values of the partitioning threshold, i.e.,
when θ = 0.1 or θ = 0.2, the CL and CL-P algorithms either
perform slightly worse than the VJ or VJ-NL, or the gain in
performance is not that large. This is especially true for θ = 0.1.
This is due to the fact that the VJ algorithm is very eicient for
a very small thresholds, since the preix size is then small. In
these cases, the overhead from the additional clustering phase in
the CL approach, or partitioning for the CL-P, is larger than the
beneit that we could get from it.

Note that in all cases, the clustering threshold for the CL and
CL-P algorithms is set to 0.03. The reason for this is explained
bellow, where we study the efect that this threshold has on the
performance of the algorithms. The value of the partitioning
threshold δ difers depending on the dataset, and the threshold
value, θ . For larger thresholds θ , we choose larger partitioning
threshold δ , since we expect an increase in the size of the posting
lists. Later we discuss how choosing the partitioning threshold
δ afects the performance. For the smallest dataset, DBLP (Fig-
ure 6(a)), where the original VJ algorithm is already very eicient,
the proposed optimizations lead to worse performance. The CL-P
algorithm in this case always performs worse than VJ, since it
brings additional overhead of repartitioning and joining already
small posting lists. The CL algorithm outperforms VJ only for
large values of θ . On the other hand, for the ORKUx5 dataset
(Figure 6(e)), for θ = 0.4, only the CL-P algorithm inished under
10 hours. Similarly, for the DBLPx10 dataset (Figure 6(c)), the VJ
algorithm did not inish under 10 hours.

Scalability. To test the scalability of the proposed algorithm,
we varied the number of nodes in our cluster. We executed the
CL-P algorithm on a cluster with 4 nodes and with 8 nodes. For
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Figure 6: Comparison of diferent algorithms when varying θ
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Figure 7: Performance of CL-PL algorithm when varying

the number of nodes in the cluster (DBLPx5 and ORKU).
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Figure 8: Performance of CL-P algorithm when varying

the dataset size for the DBLP dataset.

this experiment, we reduced the number of cores per executor to
3, and we did not ix the number of executors to be used, i.e., this
was left to be decided by YARN, based on the cluster size. The
memory restriction per executor and for the driver were kept as
speciied in Table 3. Figure 7 shows the performance of the CL-P
algorithms for diferent values of the theshold θ , for the DBLPx5
and ORKU datasets. The values for the clustering threshold θc
and the partitioning threshold δ were kept the same as for the
previous experiment. We see that for both datasets, the CL-P
algorithm exhibits better performance, when the number of nodes
is increased. For the DBLPx5 dataset, when increasing the number
of nodes from 4 to 8, the time cost decreases from 22% to 46%,
and for the ORKU dataset the time savings are similar, ranging
from 26% to 44%. Again, the largest performance improvement is
observed for θ = 0.4.

Furthermore, in Figure 8 we plotted the performance of the
CL-P algorithm as we increase the size of the DBLP dataset. Note
that the result size increases approximately linearly with the
increase in the number of records. The rise of the execution time
is the largest, i.e., for θ = 0.4, when we increase the dataset size
from x5 to x10. In this case the CL-P algorithm executes 7 times
slower. However, the reason for this we see in the value of the
partitioning threshold δ . We believe that with a more carefully
chosen value for δ this increase in the execution time can be
avoided. For all other cases of θ the decrease in performance is
lower than 5 times.

Efect of the Clustering Threshold θc . Another threshold that
can have impact on the performance of the proposed clustering
algorithm is the clustering threshold θc . Depending on the value
of this threshold, the size and number of the formed clusters
varies, and thus the performance of the whole algorithm. Figure 9
shows the performance of the CL algorithm for diferent values
of θc for both datasets. We see that, in almost all cases, setting
θc = 0.03 brings the best performance for the CL algorithm.
This can be explained by two reasons. First, as we increase the
clustering threshold θc , the running time of the clustering phase
increases, since here we use the VJ algorithm to ind the similar
pairs. Second, the beneit by the additionally formed clusters does
not seem to compensate for this increase in the running time.
Thus, setting the clustering threshold θc to a very small value is
the recommend choice, and in all further experiments we set θc
to 0.03 for both CL and CL-P.

Efect of the Partitioning Threshold δ . The partitioning thresh-
old δ is a parameter which decides which and how many posting
lists need to be partitioned, and as such, it inluences the perfor-
mance of the CL-P algorithm. In Figure 10 we see the performance
of the CL-P algorithm as the partitioning threshold changes, for
both datasets DBLP and ORKU and for diferent values of the
threshold θ . For the DBLP dataset we show only the DBLPx5
increased dataset, since, as we showed in Figure 6(a), the DBLP
dataset is small and does not beneit from the partitioning of
the posting lists. For each dataset, we chose diferent varying
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Figure 9: Performance of CL algorithm when varying the

clustering threshold θc

ranges for the partitioning threshold, since its value is directly
dependent from the size of the dataset. For ORKU (Figure 10(a))
we vary δ from 500 to 5000, for ORKUx5 (Figure 10(b)) we vary
δ from 10000 to 50000 and for DBLPx5 (Figure 10(c)) we vary δ
from 1000 to 50000. Furthermore, for ORKU and DBLPx5 we plot
the performance for θ = 0.3 and θ = 0.4 (Figures 10(c) and 10(a),
respectively), while for ORKUx5, for practical reasons, due to the
large execution times when having large values of θ , we plot the
performance for θ = 0.1 and θ = 0.2 (Figure 10(b)). In Figure 6(a)
we see that the performance of CL-P is not widely inluenced
by the partitioning threshold δ . Starting with small values of
δ , the performance is slightly worse, due to the larger number
of posting lists that need to be joined, and thus the overhead
imposed by the Spark join is larger. Then, as we increase δ , the
performance at irst drops and reaches its minimum, and then
starts to slightly increase. This is important to note, since it gives
us more freedom of choosing the value for δ . Note, however, that
choosing very small values can lead to either bad performance
or crashes of the executors due to memory overhead caused by
the joins. During our experiments execution, we experienced
crashes due to memory overhead, whenever the δ value was set
to an inappropriately small value, when considering the number
of records being processed. On the other hand, setting δ to a
very large value will not bring any performance beneit, since no
postings lists will be partitioned.

Increasing the size of the rankings. Top-k rankings usually
contain only very few items. In fact in our study [3] we showed
that most of the rankings are of size 10 or 20. Therefore, in the
previous experiments we focused on rankings of size 10. To see
how the performance of the algorithms changes, when we have
rankings of larger size, we also run experiments where k = 25.
For this purpose we used the ORKU dataset, which contains also
longer records. From the original dataset, we extracted around
1.5 million top-25 rankings, as described above. This dataset
has a size of 289MB. The DBLP dataset contained only shorter
records, and thus for this experiment we rely only on the ORKU
dataset. Figure 11 shows the performance of the four algorithms
when varying the distance threshold θ . While our algorithms
still outperform the VJ algorithm, there are two important things
to note here. First, the diference in the performance between VJ-
NL and VJ is not so signiicant, and second CL performs almost
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Figure 10: Performance of CL-P algorithm when varying

the partitioning threshold δ
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rankings of size 25 when varying the distance threshold θ

(ORKU)

the same as VJ-NL. This might be explained with the size of the
dataset, since our clustering algorithms, CL and CL-P, perform
better on larger datasets. The CL-P algorithm shows the best
performance, except for θ = 0.1, and is, as with rankings of
size 10, least susceptible to the increase of the threshold θ . For
θ = 0.1, the VJ-NL algorithm performs slightly better than the
other algorithms. The CL-P algorithm outperforms the VJ-NL
algorithm for 1.5 and 1.9 times for θ = 0.2, and θ = 0.3 and 0.4,
respectively. Note that for this experiment, for both CL and CL-P,
we set θc = 0.03 and the partitioning threshold, δ , for CL-P, we
set to 5000, for all values of θ .

Varying the number of Spark partitions. The general recom-
mendation when executing Spark jobs is to set the number of
partitions to be at least four times as the number of executors run-
ning. In our setting, this means that the general recommendation
is to have at least 100 partitions. Figure 12 shows the performance
of diferent algorithms (VJ, VJ-NL and CL) for diferent number
of partitions. For this experiments the partitioning threshold θ
is ixed to 0.3. We see that for both DBLP and DBLPx5, the per-
formance does not change much as we increase the number of
partitions. In fact, we see that whether the performance increases
or decreasesÐas we increase the number of partitionsÐdepends
on the size of the dataset. For the smaller dataset, DBLP, the best
performance is observed when the number of partitions is set to
86, and then the performance slightly decreases. For DBLPx5, on
the other hand, we have the best performance of both CL and
VJ-NL for 186 partitions. Figure 13 shows the performance of
the CL-P algorithm when changing the number of partitions. For
CL-P we used a larger span of the number of partitions, from
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Figure 12: Performance of VJ, VJ-NL and CL when

varying the number of Spark partitions, θ = 0.3 (DBLP
and DBLPx5).
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286 to 686. Since here we additionally repartition the large parti-
tioning into smaller ones, we believe that using a larger number
of partitions is more appropriate for this approach However, as
we can see from Figure 13, the performance is again not greatly
inluenced by the change of the number of the partitions. In fact,
there is also a slight drop in the performance in the initial in-
crease in the number of partitions, from 286 to 486. In all of the
experiments presented before, the number of partitions was set
to 286.

Lessons Learned. The proposed clustering algorithms, CL and
CL-P, outperform the adaptation of the state-of-the-art algorithm
for similarity joins over sets, VJ, for higher values of the dis-
tance threshold θ . For small values of θ the VJ algorithm is very
eicient on its own, and thus, the beneits introduced by the
additional stages of the CL approach, do not seem to pay of. This
is also the case for small datasets. However, more importantly,
for larger datasets, the CL and CL-P approaches seem to bring
larger performance improvements over the VJ algorithm. Addi-
tionally, they both seem to be less susceptible to the increase of
the distance threshold. This seems to be especially true for the
CL-P algorithm, in particular, when the partitioning threshold is
chosen right. Furthermore, our approach is more appropriate for
handling datasets with skewed distribution, as irst, the dataset is
reduced for the joining phase, and second, large posting lists are
split into smaller ones and processed in parallel. For choosing the
partitioning threshold δ , statistics like the number of records in
the dataset, and the size of the vocabulary, or item domain, can
be used, as discussed in Section 3. For choosing the clustering
threshold, as a rule of thumb, we suggest choosing a very small
value, namely to set θc to be smaller than 0.05. A drawback of
our solution is that, since we rely on Spark joins, it can run out
of memory, especially where the result set is large.

8 CONCLUSION AND OUTLOOK

In this paper, we addressed distributed similarity join process-
ing techniques for a datasets of top-k rankings. As a distance

for comparing the rankings, we speciically considered Spear-
man’s Footrule adaptation to top-k rankings. The presented
approach synthesizes existing state-of-the-art, set-based, dis-
tributed similarity join algorithm with the advantages of metric-
space, distance-based, iltering. It works in several stages, where
each can be independently conigured from each other. Further-
more, our algorithms are designed and implemented in Apache
Spark, as suggested by a recent experimental study. By a compre-
hensive performance evaluation using two real-world datasets,
we showed that the presented approach exhibits better perfor-
mance than the competitor, Vernica Join. In the future, we plan
to extend our approach to sets where the Jaccard distance is used
as a distance measure.
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ABSTRACT
Modernmixed (HTAP)workloads execute fast update-transactions

and long-running analytical queries on the same dataset and sys-

tem. In multi-version (MVCC) systems, such workloads result in

many short-lived versions and long version-chains as well as in

increased and frequent maintenance overhead.

Consequently, the index pressure increases significantly. Firstly,
the frequent modifications cause frequent creation of new ver-

sions, yielding a surge in index maintenance overhead. Secondly

and more importantly, index-scans incur extra I/O overhead to

determine, which of the resulting tuple-versions are visible to

the executing transaction (visibility-check) as current designs

only store version/timestamp information in the base table – not

in the index. Such index-only visibility-check is critical for HTAP

workloads on large datasets.

In this paper we propose the Multi-Version Partitioned B-Tree
(MV-PBT) as a version-aware index structure, supporting index-
only visibility checks and flash-friendly I/O patterns. The ex-

perimental evaluation indicates a 2x improvement for analytical

queries and 15% higher transactional throughput under HTAP

workloads. MV-PBT offers 40% higher tx. throughput compared

to WiredTiger’s LSM-Tree implementation under YCSB.

1 INTRODUCTION
The spread of large-scale, data-intensive, real-time analytical

applications is increasing. Such applications result in Hybrid

Transactional and Analytical Processing workloads (HTAP) com-

bining long running analytical queries (OLAP) as well as frequent

and low-latency update transactions (OLTP) on the same dataset

and even on the same system [19].

Multi-versioning is at the core of many approaches and sys-

tem designs suitable for HTAP. Under Multi-Version Concurrency
Control (MVCC) reading transactions, executing long-running

queries, do not block the frequent low-latency modifying transac-

tions. Under such approaches multiple versions of each data item

(i.e. tuple) may physically co-exist, whereas every transaction op-

erates against a snapshot of the database comprising all versions

it is allowed to see for consistent execution. Read operations

simply operate on the latest committed version, visible to them

and are therefore never blocked, yielding good read performance

and concurrency. An update operation produces a new version

of the updated data item and invalidates the predecessor version.

© 2020 Copyright held by the owner/author(s). Published in Proceedings of the

23rd International Conference on Extending Database Technology (EDBT), March
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Figure 1: HTAP and Version-Chain Lengths:TXU 1 . . .TXU 3

create new versions of tuple t, which are indexed. The in-
dex scan ofTXR returns only the index entries (t .v0) visible
to TXR filtering the invisible ones (t .v1 . . .t .v3), matching
the search predicate.

All versions of a tuple form a version-chain. Timestamps placed

on every physical version-record are used to determine, which

of the exisiting tuple-versions is visible to a transaction.

Under OLTPworkloads, version-chains tend to be short, due to

the predominantly short-lived transactions. For instance, under

TPC-C the average version-chain length is approx. 1.2 [9]. Under
HTAP the DBMS needs to handle much longer version-chains due
to the mix of long-running and short-lived transactions (Figure 1).
Whenever a transactionTXR reads a tuple t the DBMS returns the

latest version of that tuple t .v0, committed before the start ofTXR .

Even though, in the meantime multiple low-latency updating

transactions TXU 1 . . .TXU 3 might have committed, producing

successor-versions (t .v1 . . .t .v3), t .v0 cannot be garbage collected
as long as, it is visible to an active transaction, i.e. TXR . Thus,

the amount of such transient versions can be as high as several
hundred millions in real systems [14].

HTAP workloads in combination with long version-chains exer-
cise significant pressure on indices. In a single-versioned system

there is one index entry per tuple. However, in a multi-versioned

system, the DBMS needs to index at least all committed tuple-

versions (Figure 1), even the transient ones. Thus, long version-

chains put extra pressure on the index. Although most of today’s
systems are multi-versioned, the majority of index approaches still
handle tuple-versions of the same tuple as if they were separate
tuples, ignoring the version semantics. If naïvely integrated, these

slow down index lookups and may cause significant maintenance

overhead to persistent indices, as index updates are very frequent

and since index entries corresponding to obsolete tuple-versions

need to be frequently garbage collected. Given the read/write
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asymmetry of modern persistent storage technologies these op-

erations result in prohibitively expensive in-place updates. In

this context append-based index structures trading sequential

writes for complex reads are a good candidate.

All in all, the following observations can be made:

1) Version-obliviousness: Although, all tuple-versions need to be

indexed, current indexing approaches lack version information.

2) Lack of index-only visibility-checks: It is currently impossible

to determine, which of the index-entries resulting from an index

lookup/scan correspond to versions, visible to the calling trans-

action solely based on the index.

3) I/O overhead: Version-oblivious indices or naïve support for
multi-versioning yield significant I/O overhead.

In the present paperwe propose theMulti-Version Partitioned B-
Tree (MV-PBT) as a version-aware index structure for MV-DBMS,

in an attempt to address the above issues. MV-PBT is based on a

variant of B
+
-Trees called Partitioned B-Trees [13]. The contribu-

tions of this paper are:

• MV-PBT is a version-aware index structure. It contains version

information and supports index-only visibility-checks.

• MV-PBT supports append-based write-behavior and exhibits

much lower write-amplification compared to LSM-Trees.

• MV-PBT has been implemented in PostgreSQL. The perfor-

mance evaluation under HTAP workloads (CH-Benchmark

[2]) indicates 2x analytical throughput improvement due to

index-only visibility-checks, while improving the transactional

throughput by 15% compared to PostgreSQL’s highly-optimized

B
+
-Tree. Under TPC-C MV-PBT performs 15% better.

• MV-PBT has also been implemented in WiredTiger (Mon-

goDB). The performance evaluation indicates approx. 40%

higher throughput under YSCB compared to WiredTiger’s

highly-optimized LSM-Trees.

The rest of the paper is organized as follows. We motivate the

missing version-awareness and the need for index-only visibility-
checks in Section 2, while Section 3 provides some background

on various multi-versioning aspects. The design and implemen-

tation of MV-PBT is described in detail in Section 4, while the

experimental evaluation is presented in Section 5. We. discuss

related approaches in Section 6 and conclude in Section 7.

2 MOTIVATION
In this section we give a more comprehensive perspective on

the above issues of: 1) Version-obliviousness in indices; 2) missing
index-only visibility-check; and 3) I/O overhead. Consider the ex-
ample in Figure 2, which is a more detailed version of Figure 1

with a conventional B
+
-Tree. An initial transaction TXU 0 (not

depicted) inserts tuple t prior to TXR , creating its initial version

t .v0. While TXR is running, multiple concurrent transactions

TXU 1 . . .TXU 3 update tuple t and each of them produces new

versions of it (t .v1. . .t .v3). Only TXU 3 inserts tuple y in its ini-

tial version y.v0 in addition to creating t .v3. Each tuple-version

is a separate physical version record (Figure 2.A). It contains

version-information: the recordID of the predecessor version and

two timestamps, tcreation - the timestamp of the transaction that

created that tuple-version; and tinvladiation the timestamp of

the transaction that invalidated it by creating a successor version.

The invalidation-timestamp is null if there is no successor. If a

tuple gets deleted a special tombstone version-record is inserted

to mark the logical end of the chain. The version-information is
only available on the version-record.

Since version-records are independent physical entities they

can be stored on any DB-page with enough free space. Figure

2.B depicts an example of the physical version-storage. For con-
sistency, an index on a table must contain index-entries for each
committed version of every tuple. Therefore, a B+-Tree index idx
on attribute a of table R (Figure 2.C) should reflect all versions of

each tuple of R. Since the index is version-oblivious it contains no
version-information, and treats each tuple-version as if it were a
separate tuple. Consequently, ifTXR uses the index to count all tu-

ples satisfying “a ≤10” (Figure 2.D), the index scan will return the

matching index entries (referencing versions t .v0 . . .t .v3). Now,
each one of them must be checked for visibility, i.e. is it latest

committed tuple-version prior to the start of TXR . However, the

necessary timestamps are available only on the version-records.

Therefore, all of them are retrieved, at the cost of random I/Os.

Return all tuple 
versions satisfying:

Table R a z tcrea
tion

tinvali
dation

Tuple t version t.v0 7 TXu0 TXu1
version t.v1 3 TXu1 TXu2
version t.v2 1 TXu2 TXu3
version t.v3 9 TXu3 null

Tuple y version y.v0 11 TXu3 null

Logical ViewA

B+-Tree
idx

931 7

IndexC

11 *****

Physical StorageB
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Page 3
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Page 42
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Page 5
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                 :
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FROM R WHERE a <= 10;
                 :

Transaction TXR
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    4 Table Pages/
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RESULT: 1 Version 
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& COMMITTED
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Figure 2: Index-Only Visibility-Check in Multi-Version
DBMS: (a) logical tuples (t and y) of a table R and their ver-
sions; (b) the physical storage of these versions into data-
base pages; (c) an index created over table Rmust index all
versions; (d) an index-scan retrieves all versions matching
the predicate, out of which (e) the visibility-check returns
only the ones visible to calling transaction TXR .

In our example (Figure 2.D, C and E), the index-scan for the

condition “a ≤10” will return versions t .v3, t .v0, t .v1 and t .v2.
Subsequently, they are read to extract the version-information
(tcreation and tinvalidation – Figure 2.A) yielding four random

I/Os. The visibility-check then determines the latest version com-

mitted prior to the start ofTXR , returning the recordID of t .v0 and
ignoring the rest. Since the index is version-oblivious and thus does
not support index-only visibility-checks, the I/O costs amount to:
COST(Index-Scan) + 1 random I/O for each matching tuple-version.
Especially for HTAP workloads this yields significant performance
degradation depending on the length of the version-chains.

To quantify the combined effect, we designed a simple experi-

ment with YCSB [7] and PostgreSQL. We run YCSB workloads A

(update) and E (scan) combined, performing frequent scans and

updates. In parallel, we perform a point-query on a tuple every 30

seconds (simulating an HTAP workload). Additionally, we con-

tinuously increase the version-chain, by updating the tuple, until

50 versions are reached. In realistic HTAP settings, the amount of

active versions can be as high as several hundred millions, while
analyses can take as long as 1000s [14]. The experimental results
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are shown in Figure 3. The highly-optimized B
+
-Tree implemen-

tation in PostgreSQL performs better than MV-PBT on a single

tuple-version. However, as the version-chain length increases

(6-8 versions) the performance drops rapidly to approx. 50 trans-
actions/sec, due to version-obliviousness and random I/O. Basic

Partitioned B-Trees (PBT), are likewise version-oblivious, but ex-
hibit append-based write behaviour, avoiding in-place updates

and perform therefore slightly better (approx. 150 tx/sec). Due to
its version-awareness and support for index-only visibility-check
MV-PBT exhibits much higher and robust performance (approx.
1200 tx/sec) with growing chain lengths. MV-PBT shows a per-

formance increase with chain-lengths of two or more due to the

partition buffer since: (a) the initial YCSB data load, producing the

first version fills partition P0 and evicts it; while (b) the second

version is created by the benchmark workload and is in PN .

3 BACKGROUND
Multi-Version Concurrency Control (MVCC) is one of the most

popular transaction management schemes and is used in most

modern DBMS: Oracle, Microsoft SQL Server, HyPer, SAP HANA,

MongoDB WiredTiger, NuoDB, PostgreSQL or MySQL-InnoDB,

just to name a few. These DBMS make different design decisions

regarding various MVCC aspects described below.

3.1 Version Storage
Under MVCC a logical tuple corresponds to one or more tuple-

versions (Figure 2.A). They form a singly linked list, which rep-

resents a version chain. There are two possible physical repre-

sentations of a tuple-version (Figure 4): physically materialized
or delta-record based. The former implies that each tuple-version

record is stored physically materialized in its entirety and is in

the focus of this paper. The latter implies that each modification

of a logical tuple results in a delta-record, indicating the differ-

ence to another version (à la BW-Tree [15, 22]). The delta-records

are connected and retrieved on demand by the DBMS storage

manager to restore a tuple-version. Delta-record based system

designs typically store a single version (oldest or newest) in the

main store and use a separate store for the delta-records, which

may be the undo log (à la InnoDB) or a temporary version store (à

la MS SQL Server). Both organizations can perform modifications

in-place or out-of-place. Out-of-place updates with physically
materialized version-maintenance insert a new version-record

in the base table. Based on the version ordering, additional mod-

ifications may be necessary to maintain logical timestamps or

references.

Tuple t 
version t.v3

t.v3 7 TXu3 -V3

Tuple t 
version t.v2

t.v2 7 TXu2 TXu3V2

y.vn

...

Physically Materialized Storage Delta-Record Storage
latest versiont.v3 7 TXu3 -V3

Delta storage

t.v2 TXu2V2

UNDO log

LogLSN TXU2

Version Pool/Temp Storage

t.v2 ... TXu2 TXu3

t.v0

...

...

Figure 4: Version Storage Alternatives

Considering the characteristics of modern storage technolo-

gies, physically materialized version storage and out-of-place

updates are preferable, due to lower write-amplification and the

higher parallelism. Delta records tend to consume less space than

materialized tuple-versions, but require additional processing

and all predecessors or successors for tuple reconstruction.

3.2 Version Ordering
The set of tuple-versions of a database tuple is organized as

a singly linked list. There are two different ordering methods

(Figure 5): old-to-new and new-to-old.
Old-to-New ordering: The entry-point is the oldest tuple-version

in version chain and each version contains a reference (recordID)

to its successor. A visibility-check must therefore process all suc-

cessors, beginning from the oldest tuple-version. This behavior is

beneficial for lookups of long-running analytical (OLAP) queries

under HTAP workloads, where older tuple-versions are likely to

be the visible ones. Alternatively, OLTPworkloads mostly require

the newest version and would need to process the whole version

chain. New-to-Old ordering implies that the entry-point is the

newest tuple-version, which refers to its predecessor. Queries in

the typically short OLTP transactions find the visible version very

fast, but long-running OLAP queries may need to process several

successors in version chain (Figure 3). In-place and out-of-place
update strategies are are possible for both methods.

Considering the characteristics of modern storage technolo-

gies new-to-old ordering for physical version storage results in

lower write-amplification and matches append-only storage. All

other approaches require in-place updates.

Newer 
version t.v3 ... TXu3 -

Older 
Version t.v2 ... TXu2 TXu3

New-to-Old Ordering Old-to-New Ordering

New-to-old Reference

Newer 
versiont.v3 ... TXu3 -

Older 
Versiont.v2 ... TXu2 TXu3

Old-to-New Reference

Figure 5: Version Ordering Alternatives

3.3 Version Invalidation Model
Under MVCC a version is said to be invalidated whenever a suc-

cessor version exists. There are two possible invalidation models

[9] (Figure 6). First, two-point invalidation is the state-of-the-art

model, where the creation timestamp of the successor version is

also placed as invalidation timestamp on the predecessor. Two-
point invalidationworks well with old-to-new ordering. However,

with new-to-old ordering, the invalidation timestamp must be

set on the predecessor version, yielding an in-place update and

possibly a random write. Second, with one-point invalidation [11],
the existence of a successor implicitly invalidates the predeces-

sor and all version-records contain only the creation timestamp.

One-point invalidationmatches well new-to-old ordering, the use
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of indirection layer (VIDs, and entry-points) as well as append-

based storage.

Tuple t 
version t.v2

t.v2 1 TXu2 TXu3...

Tuple t 
version t.v1

t.v1 3 TXu1 TXu2...

Two-Point Invalidation One-Point Invalidation
Tuple t 
version t.v2

t.v2 1 TXu2...

Tuple t 
version t.v1

t.v1 3 TXu1...

Figure 6: Version Invalidation Model

3.4 Garbage Collection
Under MVCC modifications of a tuple result in the creation of a

new tuple-version. Old tuple-versions become obsolete, if they

are no longer visible to any of the active transactions. Therefore,

some form of version GC is necessary to reclaim space and can im-

prove performance. However, GC causes performance spikes (as

it interferes with foreground I/O), reduces concurrency (as some

form of locking is required) and increases write-amplification

on secondary storage. GC [23] can be performed on transaction

[14], tuple and index levels [15, 22]. Index-level GC (Section 4.6)

purges index entries, resulting from index updates, maintenance

or tuple-level GC.

3.5 Version/Index-Record Referencing
There are two possibilities to map index records to tuple-versions

in base tables (Figure 7). First, classical physical references (recor-
dIDs) can be used. Thus, the latest tuple-version in base tables

(entry-point in the version chain) can be accessed directly, but

changes to the latest version or its location result in index-record

modifications. Such changes comprise: creation of a successor-

version; storage management and physical movement (as in ap-

pend storage) or garbage collection. Second, an indirection layer

with logical references can be employed. Each tuple-version is

augmented with an unique tuple-identifier (Virtual Tuple Identi-

fier – VID), which is also stored in the index records. An index

operation resolves the VID using a mapping table (indirection

layer) to locate the physical entry-point. An indirection layer
can reduce index maintenance costs for in-place and out-of-place
updates, but requires additional structures and processing.

Tuple t version t.v3

t.v3 7 TXu3 -VID(t)

Tuple y version y.v1

t.v2 7 TXu2 TXu3VID(t)

y.v1 11 TXu3 -VID(y)

t.v1 7 TXu1 TXu2VID(t)

y.v0 13 TXu1 TXu3VID(y)
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Figure 7: Version/Index-Record Referencing

Traditional index designs use physical references and contain

no version-information, which tends to increase index mainte-

nance overhead as well as the visibility check costs for lookups

and scans. Alternatively, modern index-structures (BW-Tree) use

an indirection layer, but contain no version-information and sup-

port no index-only visibility check. This can cause massive read

amplification for mixed workloads. An optimal index structure

should reduce write amplification and return only references to

tuple-versions that are visible to a transaction snapshot. MV-PBT

uses physical or logical references, is version-aware and produces

append-only sequential write pattern.

3.6 Discussion
Wehave outlined some relevant design decisions for storing tuple-

versions in multi-version DBMS. Modifications are preferably

stored as physically materialised tuple-versions in base tables,

rather than deltas, due to tuple reconstruction costs. Moreover,

this enables direct access to each tuple-version from additional

access paths. Out-of-place updates reduce write amplification

to secondary storage. Garbage collection is required for space

reclamation, but brings additional complexity to data structures.

A new-to-old version ordering requires index maintenance for

every new tuple-version, because the entry-point of the version

chain for that tuple changes. A logical indirection layer ensures

fast lookups by efficiently returning the entry-point of a version

chain and reduces index maintenance effort. New-to-old order-

ing is beneficial for OLTP and speeds up visibility-check as the

latest version ist typically the visible one, yet older versions may

require slow reconstruction. Alternatively, old-to-new ordering

is supports long-running OLAP operations and visibility-check

in HTAP settings, as the oldest version is directly accessible. Yet,

modifications and maintenance may suffer low performance.

Indices for mixed workloads and large datasets should rather

return visible tuple-versions. Alternatively, traditional index struc-

tures only return version candidates, which have to be subse-

quently verified, fetching version-records from base tables by

performing random I/O. For these reasons MV-PBT rely on phys-

ically materialised versions, out-of-place updates, a new-to-old

ordering, one-point invalidation and can do without an indirec-

tion layer.

3.7 Storage Characteristics
Modern database storage management needs to address the char-

acteristics of semiconductor storage technologies [20]. Consider

Figure 8, which deptics the I/O characteristics of the enterprise

Flash storage used in the evaluation. Typical index search opera-

tions result in large amount of small (8K) random reads. Hence,

optimize for read IOPS and sequential writes (≥64K). We derive

the following tradeoffs for the I/O behaviour ofMV-PBT: (a) trans-

form random writes in sequential writes with higher granularity

(MB); and (b) trade sequential writes for complex and possibly

random reads with higher parallelism and smaller granularity

(KB). Thus, append-based storage managers are beneficial for the

base tables [9, 11]. Write-sequentialization is therefore necessary

for indices, and MV-PBT supports it intrinsically, like LSM-Trees.

Blocksize [KB] 8 64 8 64
Iops 122382 24180 11104 1343

MB/s 956 1511 87 84
Iops 112479 23631 7185 56

MB/s 879 1477 1184 74

Read Write

Sequential

Random

Figure 8: I/O Characteristics of Intel DC P3600 SSD.
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4 MULTI-VERSION PARTITIONED B-TREES
Multi-Version Partitioned B-Trees (Figure 9) are based on Parti-

tioned B-Trees (PBT), introduced by Goetz Graefe [12, 13]. PBT

in turn represent an enhancement on traditional B
+
-Trees[4].

PBT (and MV-PBT) create index partitions based on an artificial,

leading key-column – the partition number. All index-entires in a

partition have the same partition number in the search key. PBT

(and MV-PBT) utilize a portion of the database buffer (partition
buffer) to host the latest partition PN , where insertions and up-

dates to existing partitions (P0 . . .PN−1) are placed. Updates to
existing index entries are treated as replacement records to avoid

in-place updates. Once PN gets full it is appended to persistent

storage and becomes immutable.

DB BufferPartition P0 Partition P1
... PN-1

MV-PBT Buffer

PN

Append to 
storage, 

when full

Partition PN

MV-PBT
Record

Insertions and updates of P0 - PN-1 go in PN
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Figure 9: Structure of a Multi-Version Partitioned B-Tree.

Regular MV-PBT records comprize of a partition number, its
search key columns, and a recordID (set). Furthermore, MV-PBT

index records contain version-information: logical transaction
timestamp for validation or invalidation of the tuple-version and

optionally an unique virtual identifier (indirection layer). Each

partition number identifies a single partition. Partition numbers

are unique, monotonically increasing, two-byte integer values.

This enables the MV-PBT to maintain partitions within one single

tree structure in alphanumeric sort order. The partition number

is an artificial column and is therefore transparent to higher data-

base layers. Each MV-PBT maintains partitions independent of

other MV-PBTs. Partitions appear and vanish as simple as insert-

ing or deleting records. They can be reorganized and optimized

on-line in system-transaction merge steps, depending on the

workload. Partitions can support additional functionalities, like

bulk loads or can serve as multi-version store[13].

MV-PBTs write any modification of index records exactly once

– upon eviction of a partition, except for later reorganization or

garbage collection operations. This is realized by forcing sequen-

tial writes of all leaf nodes in a partition (Figure 9). Leaf nodes

of modifiable main memory partitions are stored in a separate

buffer cache – the MV-PBT Buffer. This area is shared for all MV-

PBT indices in the database. Once the MV-PBT Buffer gets full,

a victim MV-PBT is selected and its PN is written to secondary

storage. The MV-PBT Buffer is managed by a special replacement

policy, giving active partitions the chance to grow (Section 4.5).

4.1 MV-PBT Record Types
Persistent index partitions are immutable. Direct modification-

operations are forbidden. Therefore, modifications to existing

index-records as well as insertions are placed in the buffered

partition PN . To handle this behavior MV-PBT introduces new

index-record types. Currently the following are defined.

Transaction TXU0: insert

INSERT INTO r VALUES (7, 'V0'); 

Transaction TXU1: non-key update

UPDATE r SET z='V1' WHERE a=7;

Transaction TXU2: index key update

UPDATE r SET a=1 WHERE a=7;  

Transaction TXU3: delete

DELETE FROM r WHERE a=1; 

P0 P1 P3P2

P0 7 recID(t.v0) TXU0

P1 7 recID(t.v1) TXU1 recID(t.v0)

P2 7 recID(t.v1) TXU2

P3 1 recID(t.v2) TXU3

Regular Record

Replacement Record

Replacement Record Anti-Record

Tombstone Record

(1) (2) Table R a z
tcreat

ion
tinvalid

ation

version t.v0 7 TXu0 TXu1

version t.v1 7 TXu1 TXu2

version t.v2 1 TXu2 TXu3

version t.v3 tombstone TXu3 null
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 recordID 
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Transactional 
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 recordID 
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Search Key 
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 recordID
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Transactional 
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P2 7 recID(t.v1) TXU2
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Transactional 
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recID(t.v1)

Index-Key update

Figure 10: MV-PBT Index-Record Types and Their Use:
MV-PBT record format (top), an example including a se-
quence of transactions and their index records (bottom).

Regular Index Records are created upon the insertion of

new tuples. The partition number of the newest MV-PBT partition

PN is inserted together with the search key values. The recordID
(pageID and slot) of the newly inserted tuple-version is included

as well as the transaction timestamp of the inserting transaction

(Figure 10). The latter is essential for index-only visibility-checks.

For example, transaction TXU 0 (Figure 10) inserts a new tuple

(t), in its initial version (t .v0), causing the creation of a regular
index record in partition P0.

Replacement-Records result from tuple-updates on non-
index key columns on existing index-entries. Such updates yield

a new tuple-version that becomes the new chain entry-point,

which needs to be reflected in the index. Although the index-

record for the previous version has not changed (non-index-key

update) the version-information and recordID of the new ver-

sion need to be replaced. However, this is not possible, if the

index-record is already in an immutable partition (P0. . .PN−1).
Therefore a replacement record is inserted in the newest partition

PN to logically replace the old one with the recordID and the

version-information. The Replacement Record (Figure 10) con-

tains: the recordID of the new version, its creation-timestamp as

well as the recordID of the predecessor version. Hence the record

includes some "anti-matter" [13] (recordID) invalidating the pre-

decessors as well as some "matter", i.e. recordID and timestamp

if the new version. For example, transaction TXU 1 (Figure 10)

updates the attribute z of the previously inserted tuple (t), pro-
ducing a new version (t .v1). Although the index-key 7 remains

unchanged, the version-information of (t .v1) has to be updated,

causing the creation of a replacement-record in partition P1.
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Anti-Records are required for updates on index-key attributes
and are always used in combination with replacement records in
the same partition. If the index-key of an existing index-record (in

the immutable partitions) gets updated, MV-PBT inserts a combi-

nation of an anti-record and a replacement record. Anti-records are
pure "anti-matter" as they mark the extinction of the old index

record (from partitions P0. . .PN−1), whereas the simultaneously

inserted replacement record represents the new "matter" and re-

flects the new index-key and the new version-information. The

anti-record and the replacement record are inserted in PN and

are placed according to the sort-order of the search-key value.

An anti-record contains the recordID of the old version, together

with its search key and the transaction timestamp of the updating

transaction (Figure 10). For example, transaction TXU 2 (Figure

10) updates the indexed attribute a of the previously inserted

and updated tuple (t), producing new version (t .v2), modifying

the index-key from 7 to 1. The anti-record (marking the extinc-

tion of the replacement-record from partition P1) reflects the
recordID of the predecessor version (t .v1), contains its index-key
values (7) and the transaction-timestamp of the current updating-

transaction (TXU 2). The simultaneously inserted replacement

record reflects the new and updated value of the search key (i.e.

1), the recordIDs of the old and the new tuple-versions (t .v1 and
t .v2) as well as the transaction-timestamp of TXU 2. Since the in-

dex records are kept in sort order of the search-key values within

a partition (as in a B-Tree), the replacement record is placed first

in order, followed by the anti-record.

Tombstone-records indicate the deletion of a tuple. If a tuple
is logically deleted, it does not become erased immediately in

MV-DBMS, because it could be visible to a concurrent transaction.

Rather a tombstone tuple-version record is inserted in the DB,

which needs to be reflected in the MV-PBT index. Tombstone-
records are similar to Anti Records in that they represent pure

"anti-matter", marking the extinction of the whole tuple-version

chain. The difference is that if a tombstone-record is visible to

a transaction, no further tuple-version belonging to this chain

can be visible, even no replacement record. Tombstone-records
(Figure 10) contain the recordID of the latest tuple-version and

the transaction-timestamp of the deleting transaction.

For example, transaction TXU 3 (Figure 10) deletes tuple (t),
creating a tombstone-version (t .v3) in the DB. Therefore a tomb-

stone record is inserted in partition P3 with the recordID of the

deleted tuple-version t .v2, reflecting deletion of the whole ver-

sion chain t .v2 → t .v1 → t .v0.

4.2 MV-PBT Operations
In the following we describe the index operations in an MV-PBT:

• Insert Operations are only performed in PN . An insertion yields
the creation of an regular index-record in PN with the recor-

dID of the newly created tuple-version and the timestamp of

the creating transaction. The insertion traverses the buffered

partition PN and places the new index record according to

the alphanumeric sort-order of the search-key (ordering issues

are described in Section 4.3). The MV-PBT buffer management

strategy (Section 4.5) guarantees sufficient space for the in-

sertion and possible maintenance. In case of an non-unique
index the insertion is performed directly. Alternatively, given

a unique index, a lookup operation (see Search and Scan) is per-

formed ahead of the inseartion to guarantee the non-existence

of the new index-key.

• Update Operations are performed in different ways. If a trans-

action modifies a tuple-version in a way that a non-index-key

attribute is changed (non-key update) a new tuple-version is

created and its version-information needs to be reflected in the

index. In case of non-key updatesMV-PBT inserts a replacement-
record in PN (Figure 10), containing the version-information

(recordID and timestamp) of the modifying transaction. By

doing so, it logically replaces the index-record, which is located

in an older partition, and reflects the predecessor version.

Alternatively, if the modifying transaction updates an index-

key attribute (index-key update) a replacement record as well as

an anti-record are inserted in PN (ordering issues are described

in Section 4.3). The former reflects the new and modified index-

key value in the new tuple-version, the latter indicates the

extinction of the old index-record, reflecting the index-key

value of the predecessor version. In case of an unique index, the
MV-PBT first performs a lookup to ensure the non-existence

of the new key-value.

• Delete Operations cause the insertion of a tombstone record in

PN . If a transaction deletes a logical-tuple a tombstone version

is created indicating the deletion of the whole version-chain,

to transactions to which it is visible. Analogously, MV-PBT

inserts a tombstone record to indicate the extinction of all index-

records corresponding to the version chain. Ordering issues

are described in Section 4.3.

• Search and Scan Operations process partitions in reverse order

from PN to P0. Filter techniques such as Partition Range Keys,
Minimum Transaction Timestamp or Bloom- and Range Filters
(Section 4.7) are needed for selecting the predeceasing parti-

tion which may contain an index record, matching the search

conditions (Algorithm 1). The search conditions are extended

to match the format of an MV-PBT – the partition number is

prepended to the first search key column. A regular root-to-leaf

traversal operation is performed and the cursor is positioned.

Afterwards, the next matching index record is requested and

checked for visibility (Section 4.4). This process is repeated un-

til an index record, visible to current transaction is found, and

can be returned together with the respective recordID. Partition
number and timestamp are transparent for higher database

layers. Index records of most recent tuple versions are found

and processed first, due to index-record ordering (Section 4.3),

which is very beneficial for simple search conditions, like point

lookups.

Complex scan operations (Algorithm 2) build a set of all match-

ing index records, spreading all MV-PBT partitions. Every parti-

tion is pre-selected by filter techniques and processed from PN
to P0. Traversal operations benefit from commonly buffered

higher levels of the tree-structure. Matching index records of

any record type in a partition are processed by the index-only

visibility-check. Visible index records are added to the result

set without partition number and timestamp in regular sort

order. If no further index record matches the scan conditions,

the algorithm proceeds with the preceding partition. Finally,

the result set is returned. It is filled with all index records (in-

cluding recordIDs), matching the scan and visibility conditions

of the calling transaction.

A single scan process without rechecking for concurrent mod-

ifications in PN is sufficient, due to transaction snapshots as

concurrent modifications in PN are invisible, anyway. Expen-

sive retrieval of version-records from the base-table (random
read I/O) for version-information is avoided. In case of selection

of non-index attributes, the recordID indicates the location
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of version-record in the base-table, which can be directly ac-

cessed.

Algorithm 1MV-PBT Search

1: function search(Search conditions |attrval,cond |, ...)
2: Output: IndexRecord
3: while hasNext( ) do
4: Let idx_record ← next( ) ▷ fetch next index record

5: if VisCheck(idx_record) equals V ISIBLE then
6: return set_return_format(idx_record)

▷ hide partitionnumber and timestamp

7: while part ← previousPartition(part) do
8: if |attrval,cond | ∈ part . f ilter then
9: Let |skeyspar t | ←

form_rec(part , |attrval,cond |)
10: traverse(|skeyspar t |)
11: return search( )

12: return ∅

Algorithm 2MV-PBT Scan

1: function scan(Scan conditions |attrval,cond |, ...)
2: Output: ResultSet of |IndexRecords |
3: part ← ∅ ▷ previousPartition returns PN for ∅

4: while part ← previousPartition(part) do
5: if |attrval,cond | ∈ part . f ilter then
6: Let |skeyspar t | ←

form_rec(part , |attrval,cond |)
7: traverse(|skeyspar t |)

8: while hasNext( ) do
9: Let idx_record ← next( ) ▷ neighbor in BTree

10: if VisCheck(idx_record) equals V ISIBLE then
11: |IndexRecords |.add(

set_return_format(idx_record))

12: return |IndexRecords |

4.3 MV-PBT Index-Record(Version) Ordering
The version/partition-placement in MV-PBT is governed by mod-

ification, search and scan algorithms. Index-records of predecessor
versions are likely to be located in lower-numbered partitions, suc-
cessors in higher-numbered ones (Figure 10). This however neces-
sitates multiple memory partitions for an MV-PBT.

To address such issues the currentMV-PBT design uses a single

main-memory partition PN for each MV-PBT. However, for index-
records with the same index-key it is mandatory that records for
newer/successor versions are always placed before index-records for
older/predecessor versions in PN . In other words the primary sort-
order of the index-records in a PN is on the search-key (mostly

descending), however all records with the same search-key are

sorted in inverse secondary sort-order (mostly ascending) on the

transactional timestamp.

Search and scan operations traverse partitions backwards:
starting from buffered partition PN (i.e. PN → PN−1 · · · → P0).
Yet, given the above ordering, index-records of newer tuple-

versions, matching the search predicates, are processed first in
forward direction (i.e. in descending timestamp-order). Only then

the next lower-numbered partition is traversed and processed.

This is how MV-PBT ensures that in a search and scan operation,

newer versions can always be found before older ones in the same
partition, and across partitions.

Consider for example Figure 11, where we have only two

partitions and index-records reflecting updates to the same tuple

go to P1, and contrast to Figure 10, where all index-records with

higher-timestamps are placed in higher-numbered partitions.

Observe that the index-records in P1 (Figure 11) appear in their

primary-order (on the search key), i.e. records with search-key

1 precede those with 7. Observe also that the tombstone record
with key 1 precedes the regular record as a result of the secondary
sort-order since timestamp(TXU 3) > timestamp(TXU 2).

Transaction TXU0: insert

INSERT INTO r VALUES (7, 'V0'); 

Transaction TXU1: non-key update

UPDATE r SET z='V1' WHERE a=7;

Transaction TXU2: index key update

UPDATE r SET a=1 WHERE a=7;  

Transaction TXU3: delete

DELETE FROM r WHERE a=1; 

P0 P1

P0 7 recID(t.v0) TXU0 P1 7 recID(t.v1) TXU1 recID(t.v0)

P1 7 recID(t.v1) TXU2

Regular Record Replacement Record

Replacement Record Anti-Record

Tombstone Record

(1) (2) Table R a z
tcreat

ion
tinvalid

ation

version t.v0 7 TXu0 TXu1

version t.v1 7 TXu1 TXu2

version t.v2 1 TXu2 TXu3

version t.v3 tombstone TXu3 null
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V1
V1

1

2

3

4

P1 1 recID(t.v2) TXU2 recID(t.v1)

1 recID(t.v2) TXU3P1 Index-Key update

P1 7 recID(t.v1)
TXU1 recID(t.v0)

P1 7 recID(t.v1)
TXU2

P1 8
recID(t.v2) TXU3
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Record

Repalcement 
Record

Anti-Record Tombstone 
Record

P0 P1

P0 7 recID(t.v0)
TXU0

Regular Record

P1 8 recID(t.v2)
TXU2 recID(t.v1)

Alternatively: TXU3 and TXU4  
UPDATE/DELETE ... WHERE a=8;  

Index-Key update

Figure 11: MV-PBT Index-Record Ordering.

4.4 MV-PBT Index-Only Visibility-Check
MV-PBT is version-aware and supports index-only visibility-check,
i.e. it returns a set of index records matching the search condition

and visible to the calling transaction. In doing so, MV-PBT avoids

the expensive retrieval of base-table version-records to extract

their version-information.
The index-only visibility-check (Algorithm 3) is inherently sup-

ported by the data structure. MV-PBT index records (Section

4.1) contain version-information and define modifications and

recordIDs of tuple-versions. The respective index-record ordering
is essential to scans (Section 4.3), whereby records indicating the

invalidation of a tuple-version are guaranteed to be placed before

the “validating”-records for a given transactional timestamp.

Index records of any type, matching the search-conditions

are processed by the visibility check. They are invisible to a

transaction, if:

(a) the index record is flagged for garbage collection;
(b) the transaction timestamp of the index-record is greater than

the timestamp of the calling transaction; or

the transaction corresponding to the index-record timestamp

is concurrent to the calling transaction;

(c) visible record with anti-matter for the recordID (anti-matter,

replacement- and tombstone-records) was already encoun-

tered (in this case also checked for GC); or
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(d) the index record is either a tombstone record or an anti-record.
An additional visibility-check by processing the version chain in

base table is not required. Skewed updates on tuples do not lower

the performance of the index-only visibility check, due to well

performing garbage collection and well-cached version-chains

in the main-memory partition PN .

Algorithm 3MV-PBT Index-Only Visibility-Check

1: function VisibilityCheck( idx_record)
2: input: idx_record at current scan position

3: output: BOOL_V ISIBLE
4: Let anti_map ← Map of (recID |TS) ▷ anti-matter

5: if IS_SET(idx_record, FLAG_GC) then
6: return INV ISIBLE
7: if not precedes(idx_record .ts,CurrentTxId) OR

isConcurrent(idx_record .ts,CurrentTxId) then
8: return INV ISIBLE
9: if tsanti ← anti_map.get(idx_record .recIDmatter )

and precedes(idx_record .ts, tsanti ) then
10: checkForGC(idx_record)
11: return INV ISIBLE
12: if IS_SET(idx_record, FLAG_ANTI_MATTER) then
13: anti_map.put(idx_record .recIDanti , idx_record .ts)

14: if IS_SET(idx_record, FLAG_MATTER) then
15: return V ISIBLE
16: return INV ISIBLE

4.5 MV-PBT Buffer Management
MV-PBT accumulate modifications to persistent partitions in the

latest partition PN , which is held in the MV-PBT partition buffer

(Figure 9). All MV-PBT indices place their respective PN in the

MV-PBT buffer, which rises the question of the proper buffer man-

agement strategy. Well-known replacement policies (like LRU or

ARC) are not suitable for managing the set of leaf nodes contained

in the respective PN as well as different PN . The MV-PBT buffer

should (a) only evict partitions as a whole instead of individual

pages (like in LRU) to achieve sequential write patterns; and (b)

give partitions of update intensive indices a fair chance to grow,

and balance it across all indices. Remember that MV-PBT read

operations place persistent partition nodes in the main/shared

DB-Buffer. MV-PBT buffer-management strategy can be summa-

rized as follows. Whenever the buffer-size threshold is reached

the MV-PBT buffer manager selects the largest partition of all

indices as a victim for eviction. Smaller, less update-intensive

partitions are frequently evicted to avoid imbalanced number of

partitions per MV-PBT and shrinking partition sizes.

The eviction process (Algorithm 4) can be summarized as fol-

lows. A new partition numbered PN+1 (initially PN+2) is created
for ongoing modifications. The current victim partition PN be-

comes immutable and is scanned, as following operations are

performed cooperatively and latch-free, piggybacking that scan.
(1) Version-chains are built for each of the Scan-ResultSet records,

using their timestamps and RecordIDs, and creating a tem-

porary VID for each chain. While doing that, obsolete index-

records (parts of the version-chain) are detected and marked

for garbage collection.

(2) Garbage Collection is performed on the marked records (no

longer needed/invisible records are removed) and the result

is written out to new leaf nodes.

(3) During this process index-records and leaf nodes are trans-

formed to an on-disk format, whereby prefix-truncation, com-

pression and encoding as well as dense-packing (Section 4.7)

are performed. Furthermore, the partition number of each

index record is decremented from PN to PN−1. Now PN−1 is
a separate partition, which is yet unknown in the MV-PBT

partition metadata. The process resembles a leaf-build in Post-

greSQL: having full leaf pages the intermediary index nodes

can be easily built on top. Concurrent, lookups and scans are

still performed on the old PN nodes.

(4) In parallel, well-sized (prefix-) bloom filters are created (Sec-

tion 4.7).

(5) Dense-packing, compression and read-optimizations are per-

formed to higher level intermediary nodes, resembling a

bottom-up build. All nodes are sequentially written out.
(6) Finally, PN−1 is added to the MV-PBT partition metadata. The

old PN leaf nodes, on which concurrent non-blocking reads

had been executing, are detached from the MV-PBT and are

freed for reuse.

Algorithm 4 MV-PBT Partition Eviction

1: function evict(|PN |)
2: Input: set of PN in MV-PBT buffer

3: Let pevict ←SelectEvictionVictim(|PN |)
4: Add Partition pevict+1 to B

+
-Tree PartitionsList

5: SET(pevict , FLAG_IMMUTABLE)
6: Let recordSet ← scanRecords(pevict )
7: garbageCollectionP3(recordSet )
8: worker1.loadAndFlush(pevict .pNo − 1, recordSet )
9: worker2.createFilters(pevict , recordSet )
10: wait( )

11: Letpevict_new ←decrementPartitionNumber(pevict )
12: detatchAndFree(pevict )

4.6 MV-PBT Partition Garbage Collection
Mixedworkloadswith high update-rates result inmassive amount

of tuple-versions, which need to be garbage collected once a long-

running reading/analytical query completes [14]. Same is true

for the corresponding index-records. With high probability these

records are located in the main-memory partition PN of an MV-

PBT due to their temporal locality. Therefore, we implemented a

cooperative page-level garbage collection (GC) for PN .

Phase (1): The GC piggybacks regular index-scans to identify

index-records of versions, that are not visible to any active trans-

action (cutoff-transaction). As a page is already latched (shared),

the following checks a performed on each record: (a) comparison

with the lowest active transaction timestamp and if lower, mark

predecessors as victim-versions for GC; (b) if higher, but a succes-
sor exists, mark all predecessors as victims for GC. In both cases,

a hasGarbage flag is set in the page header (no exclusive latch

required). This step also piggybacks the in-memory structures of

the scan and index-only visibility check algorithms. Records with

anti-matter (anti-matter, replacement and tombstone records) re-

quire special attention, as they are still required for invalidation

of predecessors. Hence the anti-matter record with the highest

timestamp smaller than cutoff transaction timestampmust not be

garbage collected. Index-record ordering (Section 4.3) supports

GC while scanning, since successors are mostly processed first.

Phase (2): Update operations check the hasGarbage flag in page

header. If set they first set the recordID of the oldest required
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record with anti-matter (anti-matter, replacement and tombstone

records) to the recordID of the oldest victim-version of that chain

on the page. Next, GC victims are removed on that page, the space

is reclaimed and only then the update operation proceeds. This

behavior saves memory, speeds up scans and visibility checks as

well as reduces index maintenance operations (split).

Phase (3): To handle version-chains spanning several pages, and

for final cleanup before partition eviction the whole partition

is scanned and the version chains (based on timestamps and

records) are built in memory. This scan is also piggybacked for

filter creation and dense-packing (Section 4.7). Before switching

to sibling page, obsolete versions are removed after updating

invalidation reference and in-memory version chain is updated.

4.7 MV-PBT Filters and Optimizations
Various optimizations can be performed, based on the fact that

once written to storage MV-PBT partitions are immutable.
Bloom Filters. Each MV-PBT partition has a bloom filter (BF )

on the search key. Using bloom filters accelerates key lookups

(point-queries) in a partition, by avoiding unnecessary scans.

Whenever a key lookup is performed, a BF-query executed first,

to verify whether the key does not exist in the partition. If it does

not exist MV-PBT proceeds with the next partition. Alternatively,

if the BF returns true (i.e. the key may exist), MV-PBT scans the

whole partition.

Our experimental evaluation (Figure 13) indicates that the av-

erage BF size is small – in the order of few hundred KB. Therefore

frequently used filters are usually cached in the MV-PBT buffer.

Furthermore, their precision is 98% on average, thus false posi-

tives and therefore superfluous scans are rare. BF is is computed

efficiently on eviction, piggybacking existing maintenance scan

and is persisted as part of the partition metadata.

Range Filters. Partition bloomfilters accelerate point lookups,

but cannot handle range predicates. Currently, we employ prefix
Bloom Filters (pBF), if appropriate, to speedup range scans.

Dense-packed, Read-Optimized immutable storage. Since
a partition is immutable once persisted, various space and read-

optimization techniques can be applied. Dense-packing is used

to perform coalescing and free-space optimzation. When in-

memory leaf nodes are on average 67% full to accumulate modifi-

cations and avoid splitting, however when persisted the the space

utilization can be maximized. MV-PBT performs dense-packing
as part of the final garbage collection and space reclamation.

Especially for non-unique indices MV-PBT performs recon-
celiation upon eviction to convert all regular records with the

same search key to a single regular record with a set of {recor-

dID, timestamp}, instead of holding separate record for each key

instance. The same is true for replacement records, where for

the same search key sets of {recordIDNEW , TimestampNEW ,

recordIDOLD } are created. Last but not least, compression tech-

niques such as prefix-truncation or delta-compression are per-

formed on the search key. Along the same lines, various read and

cache-aware optimizations can be performed.

5 EXPERIMENTAL EVALUATION
We present the analysis of Partitioned B-Trees (PBT) and MV-

PBT together with traditional B
+
-Trees (which serve as baseline)

in PostgreSQL 9.04. Standard, PostgreSQL uses an old-to-new
version ordering, physically materialized version storage and two-
point invalidation. Index records have a physical reference to

base tables – denoted as B-Tree (PG/HOT). PostgreSQL base

table storage was also modified to Snapshot Isolation Append

Storage (SIAS) [9, 11] with a beneficial append-only write pat-

tern, one-point invalidation and new-to-old version ordering.

We implemented and evaluated B
+
-Trees and PBT with physical

references and with logical tuple references on top of SIAS [9, 11].

Experimental Setup.We deployed PostgreSQL 9.04 and Post-

greSQL with SIAS [11] on an Ubuntu 16.04.4 LTS server with

an eight core Intel(R) Xeon(R) E5-1620 CPU, 2GB RAM and an

Intel DC P3600 400GB SSD drive. We used the well-known DBT-

2[1] TPC-C-like OLTP benchmark and mixed workload CH-

Benchmark [6] in OLTP-Bench [2, 8] for experimental evaluation.

The OS page cache is cleaned every second to ensure repeatable

and reliable results (even though conservative).

Mixed Workloads: CH-Benchmark. MV-PBT is designed

for large datasets and mixed workloads. We evaluate the through-

put of B
+
-Trees, PBT and MV-PBT under the CH-Benchmark [6]

in OLTP-Bench [2, 8]. MV-PBT doubles the analytical throughput
compared to B

+
-Trees (Figure 12a), improving it from 0.29 to 0.61

queries/transactions per minute. In the same time, MV-PBT yield

15% higher transactional throughput than B
+
-Trees (Figure 12a).

The performance improvements are mainly due to index-only
visibility-check and partition garbage collection. To illustrate the

combined effect we turn off both and repeat the experiment.

Consider now the lower MV-PBT performance bars in Figure

12a. Without partition garbage collection and index-only visibility-
check the OLAP performance drops by 75% from 0.61 to 0.16

queries per minute, whereas the OLTP throughput plummets

from 4232 from to 3093 tx/min.

MixedWorkloads: Index-OnlyVisibility-Check andGarbage
Collection. In a further experiment we investigate MV-PBT GC

and visibility-check in more detail varying the version-chain

length. We run the OLTP part of the CH-Benchmark and execute

a query on the same dataset (Figure 12b), however we pause it (us-

ing pg_sleep) for 30/60/90/120 seconds to simulate a long-running

query and vary the amount of transient versions and the chain

length. Clearly, as the version-chain length increases, index-only

visibility-checks gain importance, because unnecessary read I/O

on base table can be reduced.

We compare PBT and standard visibility-check in base table
(VC) to MV-PBT and index-only visibility-check (idxVC) (Figure
12b). As the query processing time and version-chain length

increase, index scans and VC of slow down PBT by an order of

magnitude. Even if the version-chain length has no linear growth,

pages in base table get evicted and need to be fetched more

frequently. MV-PBT performs idxVC however without garbage

collection (Figure 12b MV-PBT w/o GC), every index record of

successor tuple-versions has to be processed, likewise the scan

time increases proportionally with the length of the version-

chain. With garbage collection (Figure 12b MV-PBT w/ GC), the
number of scanned index records and the scan time remain almost

constant. However, GC requires additional processing and latches

index nodes in PN . Reading transactions have to wait for latches

and scan time increases - consider Figure 12b at 30 seconds sleep

time. As more index record get garbage collected, GC improves

the index scan time - compare MV-PBT with and without GC at

30 and 120 second (Figure 12b).

Sequential write-pattern/Append-based storage. Based
on the tradeoffs derived in Section 3.7. MV-PBT needs to sup-

port write sequentialization and append based storage. In this

experiment we evaluate the write pattern of MV-PBT (Figure 12c).

Using blktrace and blkparse we record an I/O trace during the

partition eviction from MV-PBT buffer. The X-axis represents the
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(a) Index Performance under Mixed Workloads (CH-Bnchmark)
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(d) Requests / Cache Hit Rate for PostgreSQL Heap-Only
Tuples (HOT), Logical(LR) and Physical(PR) references

Figure 12: Index Performance under Mixed Workloads (CH-Benchmark)

eviction time; the average write I/O time is about 1ms. The Y-axis

represents the logical block addresses (LBA), i.e. the file system

addresses where the blocks of the index file are written. Each

red cross indicates the write of a single index node. A horizontal

line, therefore indicates a sequential write, i.e multiple blocks

are written onto neighbouring addresses over time. Hence the
sequential write pattern of MV-PBT. The horizontal lines in Figure

12c represent database extents and result from the database space
allocation strategy. Each evicted partition comprises leaf nodes

allocated in new extents of the index file, allocated at (mostly) ad-

jacent addresses by the file system. The overall sequential pattern
confirms the sequential append behaviour of MV-PBT.

MV-PBT Buffer Efficiency. Figure 12d shows the fetch re-

quests on index nodes (blue) and base table nodes (red) for an

OLTP benchmark. Furthermore, the cache hit-rate is depicted.

Requests yielding a cache-hit are displayed in brighter colours

than fetches (cache-misses) from secondary storage. The scale

of requests is logarithmic. The results are calculated for equal

throughput over the test duration and all tables and indices.

PBT and MV-PBT require more requests on index nodes due

to partitioning of index records and greater record sizes. Most

requests are on buffered nodes, because many queries can be

answered in the main memory partition. Index records of new

tuple-versions are common to be located there. MV-PBT reduces

the requests on base table by up to 40%, because the base table is

not required for visibility-check. The version chains are short for

this benchmark, for mixed workloads this effect is more weighty.

This can be seen at the reduced cache hit rate on base table nodes

in comparison to PBT. Most saved requests on base tables are on

new tuple-versions, which are located in main memory.

Partition Filters. Partition-based indices like MV-PBT, PBT

or LSM-Trees incur higher lookup and scan overhead than B-

Trees, sincematching records may exist in older partitions. Hence,

the effort of lookups and especially of scans increases with num-

ber of index-partitions, since in the worst case every partition has

to be traversed. Point lookups can stop partition traversal after

finding the first matching record, which is visible to a transaction,

since older partitions are guaranteed to contain older records.
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Figure 13: Effectiveness and Size of Partition Filters

Using Bloom filters (BF) (Section 4.7) point lookups can skip

partitions and increase throughput up to 10% under TPC-C (Fig-

ure 14c). Furthermore, prefix Bloom filters (pBF)may under certain

conditions speedup scans by skipping partitions not matching

the range predicate. pBF including a fixed set of scan attributes,
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Approaches under TPC-C
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(c) Influence of filter techniques
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(d) MV-PBT Garbage Collection
under TPC-C

Figure 14: OLTP Performance Evaluation under TPC-C

increase the throughput by another 10% (Figure 14c). The preci-

sion of both Bloom filters is relatively high (Figure 13): the false

positives rate is 2% for BF and 10% for pBF, while the negatives
(skipping) rate is approx. 82% for BF and 84.5% for pBF. The size
BF and pBF is small relative to the partition size (Figure 14c): for

a 24MB partition BF is 0.57MB, while pBF is 0.36MB.

Since index operations only have a fair share of the whole

database operations under TPC-C (besides logging, CC and I/O)

the above numbers yield moderate performance improvements.

Comparison to LSM-Trees. LSM-Trees [17] are used asworkhorse

storage structure in many Key/Value stores for large datasets.

Today’s highly-optimized multi-level LSM-Trees with levelling

or tiering resemble MV-PBT as they exhibit an append-behaviour

and employ buffered components. We implemented MV-PBT in

WiredTiger [3], the high-performance KV-Store of MongoDB. In

this experiment we compare MV-PBT to LSM-Tree in WiredTiger

under YCSB [7] (Figure 15a). YCSB has been instrumented as

follows: a dataset of 100 million keys (approx. 100GB); workloads

A (30 mil. requests), B and D(10 mil. req.) and E (2 mil. req).
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Figure 15: Performance Evaluation under YCSB [7]

Workload A comprises 50% read and 50% update requests,

which require fast lookups and updates. MV-PBT is approx. 42%

faster than LSM-Trees. Each LSM level comprises multiple com-

ponents, which themselves are small read-optimised BTrees. A

search needs to process separate LSM components even though

some can be skipped (bloom filters). MV-PBT partition search

is faster than LSM component search, since the leaf nodes in

each partition are under the same common index. Updates in

MV-PBT hit PN , which accommodates more KV-pairs than the

main memory L0 in LSM-Trees. Workload B comprises 95% read

and 5% update requests, with zipfian distribution. BTree performs

random reads, the LSM Tree caches the updates, but has an equal

amount of random reads spread over more components. MV-PBT

have much lower index maintenance compared to BTrees and

place the updates in PN . The reads are performed with maximum

I/O parallelism. Workload D comprising 95% read and 5% update

requests, which given the latest distribution stress the memory

components and BTrees performs most of the operations in mem-

ory. MV-PBT is marginally better than LSM-Tree. Last but not

least, we run workload E comprising 95% scans and 5% insert

requests. Even though the scans are slow under MV-PBT, they

outperform LSM-Trees due to the faster search and updates.

Consider, Figure 15b depicting the YCSB throughput (work-

load A) and the number of MV-PBT partitions over time. The

throughput remains stable as the number of partitions increases.

OLTP: comparison of B-Tree alternatives. To establish the
baselinewe first compare standard PostgreSQL B-Trees (PG/HOT)

to B
+
-Trees with physical reference and indirection layer on top

of append-only storage (SIAS [9, 11]) under TPC-C. In Figure 14a,

we show the throughput for different dataset sizes. The buffer

cache of the DBMS is fixed to 600MB. B-Tree(PG/HOT) performs

well (Figure 14a) as long as the database buffer can accommo-

date most modifications. Under standard Postgres updates are

performed in base tables by Heap-Only Tuples (HOT), i.e. the

predecessor version is cached on the same page, on which its suc-

cessor is located. Therefore the index maintenance effort is low.

With growing data sizes (and therefore more modifications), the

throughput falls rapidly. Append-based storage and one-point

invalidation (SIAS [9, 11]) exhibit a robust throughput: (a) physi-
cal references (Section 3.5) yield lower performance, due to the

higher index management overhead; (b) an indirection layer re-
duces index maintenance for insertions and index-key updates,

yielding up to 30% better throughput. With larger datasets (≥
1200 warehouses) B-Trees with indirection outperform standard
PostgreSQL PG/HOT.

Indexing Approaches under OLTP. In a follow-up experi-

ment, we compare B-Tree with indirection layer (Section 3.5), to
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PBT and MV-PBT under TPC-C (Figure 14b). PBT and MV-PBT

exhibit robust performance, which improves with larger datasets

compared to B-Tree. PBT with indirection layer exhibits high

and robust performance (Figure 14b). PBT with physical reference
to close the performance gap for larger datasets as the update

density decreases decreases with larger datasets. MV-PBT are
slower than PBT under OLTP workloads for several reasons. First,
less MV-PBT index records fit on the same sized PN , since their

sizes are larger because of the version-information (transaction

timestamps). Consequently, the number of partitions increases,

yielding more I/O. Second, the average version-chain length un-

der TPC-C is short: 1.15/2.18 versions for customer/stock respec-

tively [9]. Therefore, index-only visibility-checks cannot improve

performance significantly. Thus, MV-PBT exhibit 6% lower per-

formance than PBT under TPC-C (Figure 14b). We implemented

MV-PBT with an indirection layer as well as with physical refer-
ences (Section 3.5). Figure 14b depicts on the performance with

physical references for brevity, both curves are almost identical.

Therefore, MV-PBT are general enough to be implemented matching
the rest of the system design.

OLTP Garbage Collection. In this experiment (Figure 14d)

we quantify the performance effect of MV-PBT partition garbage

collection (Section 4.6). It improves performance between 5%

and 17% since old invisible versions are purged and need not be

processed by scans aswell as space is reclaimed lettingmore index

records fit in PN . The opportunity of improvement under OLTP is

however limited by the short average version-chain length: 1.15

versions for customer and 2.18 versions for stock under TPC-C

[9]. With HTAP workloads the amount of ’transient’ (short-lived

versions visible only throughout the duration of an analytical

query) versions increases rapidly as does the effect of garbage

collection. Garbage collecting larger amounts transient versions

has a major role on the performace improvment of MV-PBT over

PBT and B-Tree under mixed workloads (Figure 12a).

6 RELATEDWORK
Most popular indexing approaches in database management sys-

tems are based on B
+
-Trees. Their alphanumeric sorted structure

can result in high write amplification for high update rates and

visibility-checks require information, that is only located at tuple-

versions in base table. PostgreSQL uses Heap-Only Tuples (HOT)

to reduce index management operations. Index records refer-

ence items in base table, which point to tuple-versions in the

heap node. Corresponding tuple-versions are held on the same

node and can be located by processing the version chain. If a

tuple-version become garbage collected, the item is modified

to reference the next version. This indirection layer reduces in-

dex modifications, but cannot avoid write amplification of index

nodes and requires the base table for visibility-checking. Fur-

thermore the write amplification of base table nodes is increased

for large datasets. MV-IDX[10] maintains a virtual identifier for

each tuple and data nodes for each version as an indirection layer.

With Snapshot Isolation Append Storage (SIAS)[11] write amplifi-

cation on base tables is reduced in comparison to HOT, but index

management operations can cause a high write amplification

and base table nodes are still required for visibility-checking[21].

LSM-Trees[18] reduce write amplification due to collecting mod-

ifications in main memory components, but there is no concept

for managing tuple-versions and perform an index-only visibility-

check[21]. Time-Split B-Trees [16] and Multiversion B-Trees [5]

are able to separate index records of old tuple-versions from cur-

rent dataset and to perform an index-only visibility-check, but

maintenance operations are complex and can cause a high write

amplification of index nodes[21].

7 CONCLUSION
In the present paper we introduce MV-PBT as an approach to

multi-version indexing. An MV-PBT is an extension of a B-Tree,

where an artificial leading column is prepended to the search key

of each index record and index records are placed in a buffered in-

dex partition, which if full gets evicted and appended to persistent

storage. MV-PBT is version-aware, since index records contain

version-information and allow for index-only visibility check.

This is particularly beneficial for HTAP workloads since long

chains of transient versions exist due to the mix of short-lived

updating transactions and long-running queries. Furthermore,

MV-PBT exhibit a sequential write pattern due to the concept of

partition, which leads to less write-amplification and better uti-

lization of modern storage technologies. Under mixed workloads

(CH-Benchmark) MV-PBT doubles the analytical throughput 2x,

while improving the transactional throughput by 15%.

ACKNOWLEDGMENTS
This work has been partially supported by: HAW Promotion and

KPK Services Computing, MWK, Baden-Würrtemberg, Germany;

BMBF PANDAS – 01IS18081C/D; DFG Grant neoDBMS – 419942270.

REFERENCES
[1] 2019. Database Test Suite. https://sourceforge.net/projects/osdldbt/files/dbt2/

[2] 2019. Oltpbench. https://github.com/oltpbenchmark/oltpbench/

[3] 2019. WiredTiger (MongoDB). http://www.wiredtiger.com

[4] R. Bayer and E. McCreight. 1970. Organization and Maintenance of Large

Ordered Indices. In Proc. SIGFIDET (SIGMOD) 1970. 107–141.
[5] Bruno Becker, Stephan Gschwind, and et al. 1996. An Asymptotically Optimal

Multiversion B-tree. The VLDB Journal 5, 4 (Dec. 1996), 264–275.
[6] Richard Cole, Florian Funke, Alfons Kemper, and et al. 2011. The Mixed

Workload CH-benCHmark. In Proc. DBTest ’11. Article 8, 6 pages.
[7] Brian F. Cooper, Adam Silberstein, and et al. 2010. Benchmarking Cloud

Serving Systems with YCSB. In In Proc. SoCC2010.
[8] Djellel Eddine Difallah, Andrew Pavlo, Carlo Curino, and Philippe Cudre-

Mauroux. 2013. OLTP-Bench: An Extensible Testbed for Benchmarking Rela-

tional Databases. Proc. VLDB Endow. 7, 4 (Dec. 2013), 277–288.
[9] Robert Gottstein. 2016. Impact of new storage technologies on an OLTP DBMS,

its architecture and algorithms. Ph.D. Dissertation. TU, Darmstadt.

[10] Robert Gottstein, Sergej Hardock, Ilia Petrov, and Alejandro Buchmann. 2014.

MV-IDX: Indexing in Multi-version Databases. In Proc. IDEAS 2014. 142–148.
[11] Robert Gottstein, Ilia Petrov, and et al. 2017. SIAS-Chains: Snapshot Isolation

Append Storage Chains. In ADMS@VLDB.
[12] Goetz Graefe. 2003. Partitioned B-trees - a user’s guide. In Proc. BTW. 668–671.

[13] Goetz Graefe. 2003. Sorting And Indexing With Partitioned B-Trees. In CIDR.
[14] Juchang Lee, Hyungyu Shin, Chang Gyoo Park, Seongyun Ko, and et al. 2016.

Hybrid Garbage Collection for Multi-Version Concurrency Control in SAP

HANA. In Proc. SIGMOD 2016. 1307–1318.
[15] Justin J. Levandoski, David B. Lomet, and Sudipta Sengupta. 2013. The Bw-Tree:

A B-tree for New Hardware Platforms. In Proc. ICDE 2013. 302–313.
[16] David Lomet and Betty Salzberg. 1990. The Performance of a Multiversion

Access Method. In Proc. SIGMOD 1990. 353–363.
[17] Chen Luo and Michael J. Carey. 2019. LSM-based storage techniques: a survey.

The VLDB Journal (19 Jul 2019).
[18] Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth O’Neil. 1996. The

Log-structured Merge-tree (LSM-tree). Acta Inf. 33, 4 (June 1996), 351–385.
[19] Fatma Özcan, Yuanyuan Tian, and Pinar Tözün. 2017. Hybrid Transac-

tional/Analytical Processing: A Survey. In Proc. SIGMOD 2017. 1771–1775.
[20] I. Petrov, R. Gottstein, and S. Hardock. 2015. DBMS on modern storage

hardware. In Proc. ICDE 2015. 1545–1548.
[21] Christian Riegger, Tobias Vincon, and Ilia Petrov. 2017. Multi-version Indexing

andModernHardware Technologies A Survey of Present IndexingApproaches.

In Proc. iiWAS 2017. 266–275.
[22] ZiqiWang, Andrew Pavlo, Hyeontaek Lim, Viktor Leis, and et al. 2018. Building

a Bw-Tree Takes More Than Just Buzz Words. In Proc. SIGMOD 2018. 473–488.
[23] Yingjun Wu, Joy Arulraj, Jiexi Lin, Ran Xian, and Andrew Pavlo. 2017. An

Empirical Evaluation of In-memory Multi-version Concurrency Control. Proc.
VLDB Endow. 10, 7 (March 2017), 781–792.

228



Lineage-Preserving Anonymization of the Provenance of
Collection-Based Workflows

Khalid Belhajjame

PSL, Université Paris-Dauphine, LAMSADE

Paris, France

khalid.belhajjame@dauphine.fr

ABSTRACT
We examine in this paper the problem of anonymizing the prove-

nance of collection-oriented workflows, in which the constituent

modules use and generate sets of data records. Despite their popu-

larity, this kind of workflows has been overlooked in the literature

w.r.t privacy. We, therefore, set out in this paper to examine the

following questions: How the provenance of a collection-based
module can be anonymized? Can lineage information be preserved?
Beyond a single module, how can the provenance of a whole work-
flow be anonymized? As well as addressing the above questions,
we report on evaluation exercises that assess the effectiveness

and efficiency of our solution. In particular, we tease apart the

parameters that impact the quality of the obtained anonymized

provenance information.

1 INTRODUCTION
Automated workflows have been shown to facilitate and accel-

erate scientific data exploration and analysis in many areas of

sciences [11]. Figure 1 illustrates a simple workflow that is used

to establish correlations between smoking and health conditions.

Workflow provenance information, recorded during workflow

executions, facilitates the interpretation of the results delivered

by workflow execution. Beyond verification, workflow prove-

nance information represents a useful dataset on its own right,

that can be leveraged to answer queries that are relevant for

an experiment that is (possibly related but) different from the

original experiment, to learn new hypotheses, or to gain insight

on the characteristics and quality of the data generated by given

modules. Collected workflow provenance information can also

be used to respond to the requirements of funding agencies that

are increasingly requesting the publication of the data generated

in the context of research investigations.

In fields such as biomedicine and social sciences, workflow

executions manipulate and generate sensitive information about

individuals. To promote the publication and sharing of the prove-

nance of workflow executions, we set out in this paper to examine

the problem of anonymizing workflow provenance.

1.1 Related Work
Related work has focused on the problem of securing workflow

provenance and policing their access. For example, Chebotko et
al [9] and Biton et al [7] proposed solutions that derive a partial

view on a workflow provenance by hiding the data records of

given modules Our objective is different from the above line of

work in that we seek to provide the user with the provenance of

all the modules of the workflow by leveraging anonymization.

© 2020 Copyright by the author(s). Published in Proceedings of the 23rd Interna-

tional Conference on Extending Database Technology (EDBT), March 30-April 2,

2020, Copenhagen, Denmark, ISBN 978-3-89318-083-7 on OpenProceedings.org.
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Fig. 1: Example workflow.

Davidson et al. [12] investigated the problem of module pri-

vacy, whereby some of the parameters (attributes) characterizing

the inputs and outputs of the modules are hidden to guarantee

the privacy of modules. In our work, we seek, instead, to guar-

antee the privacy of the data records used and generated by the

modules, instead of the behavior of the module.

We have examined in a previous work, the problem of identifi-

cation of the k-anonymity degree that needs to be enforced when

anonymizing the datasets used and generated by workflows [6].

In doing, we assumed that the modules that compose the work-

flow are 1-to-1 in that they produce a single data record, given

a single data record, and we did not give much thought to the

problem of lineage preservation. In this paper, we are interested

in what we refer to as collection-based workflows [16–18, 27].

The modules that compose such workflows can take as input a

collection of data records and deliver a collection of data records.

Such workflows have been advocated as a way to better meet the

needs of non-expert users to model scientific data [20], and to

structure complex relationships among related pieces of informa-

tion that are processed together by the workflow [22]. This class

of workflows has been overlooked in the literature w.r.t. privacy.

Different techniques have been proposed in the literature for

protecting the privacy of individuals, notably, k-anonymity [26]

and differential privacy [15]. In particular, differential privacy

[15] has recently gained momentum as the method of choice

in statistical databases. It involves adding random noise to the

data so that the distribution of the resulting dataset is almost

invariant to the inclusion of any data record. While powerful,

differential privacy is not suitable for our purposes. It assumes

that the user knows up-front the queries s/he wants to issue prior

to the anonymization. This is not the case in our setting, where

the scientist issues exploratory queries for understanding and

eventually interpreting the results of the workflows. Furthermore,

for it to be useful, the scientist should be able to inspect individual

data records and their relationships (lineage), both of which are
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not possible using differential privacy. Indeed, differential privacy

is more suited for statistical (i.e., aggregation-based) queries.

For our work, we chose to use k-anonymity [26]. This method

is not as powerful as differential privacy when it comes to privacy

guarantees. Yet, it is better suited for our purposes since it can

be instrumented, as we will show, to allow users to query and ex-

amine individual data records and their lineage within workflow

provenance. k-anonymity is also still perceived by practitioners

as sufficient for mitigating risk while maximizing utility, and

real-world applications still utilize it for data sanitization (see

e.g., [3, 10]). It is also widely popular and is used, e.g., in the

healthcare world [1, 25], and is still recommended by data protec-

tion agencies (see e.g., [2]). This technique has been extensively

investigated in the database and data mining communities [28].

Most of the proposals have focused on anonymizing a single

relational table. In workflow provenance, however, we need to

anonymize different datasets considering and preserving lineage

relationships between them. One solution that can be used to

anonymize workflow using k-anonymity would be to create a

global relational table that is obtained by joining relations rep-

resenting the input and output data records of the modules that

compose the workflows. However, this solution suffers from the

following issues. First, information about the same individual

can be found in different records. This is because we consider

collection based modules, e.g., a patient can be associated with

multiple practitioners. Second, the same tuple in the global table

may contain information about multiple individuals, e.g., a pa-

tient, one of its practitioners, etc. Moreover, as we will see later,

different kinds of individuals may be associated with different

k-anonymity degrees. For example, the k-anonymity degree as-

sociated with patients may be higher than that associated with

practitioners. Traditional k-anonymity is not equipped to deal

with the above issues. In this respect, the proposal by Nergiz

et al. [24] is related to ours. They elaborated a technique that

anonymizes multiple relations of a given database schema. While

useful, this proposal makes a number of limiting assumptions. In

particular, they consider snowflake schemas, in which there is

a single relational table that represents individuals with the re-

maining relations containing quasi-attributes and having a single

foreign key. In our work, we drop these assumptions and show

that the anonymization of workflow provenance can be achieved

in the presence of multiple datasets representing individuals with

multiple relationships (foreign keys constraints) between them.

1.2 Contributions
Our first contribution is the formulation of the problem of k-

anonymization of the provenance of collection-based workflows.

This is, to our knowledge, the first paper that extends the notion

of k-anonymization from a single relation to the provenance

of workflows. Our second contribution is a technique for k-

anonymizing the provenance of a single module, i.e., input and

output records together with their lineage information. Indeed,

lineage information tracing the dependencies between the output

and input of a module (and more generally a workflow) is key for

third-party scientists to understand and examine the validity of

workflow results. We examine this problem for modules that use

and generate collections of data records. Our third contribution

extends the technique proposed to cater for the anonymization

of the provenance of a workflow as a whole. Central to the solu-

tion we present is the notion of k-group anonymity, which we

define based on the k-anonymity degree and the magnitude of

the smallest input (or output) set of data records used and gen-

erated by a module. This concept allows us to gracefully reason

over the different k-anonymity degrees that may be associated

with the inputs and outputs of the workflow’s modules. We also

show how the NP-hard problem of identifying the sets of data

records to be grouped together into equivalence classes that meet

k-anonymity requirements can be cast as a scheduling problem

that we solve using integer programming.

The paper is organized as follows. We start by laying the foun-

dations of our work and stating the problem in Section 2. We then

focus on the problem of anonymizing the provenance of a module

in Section 3, and the provenance workflow in Section 4. In Sec-

tion 5, we address an issue that is inherent to our anonymization

technique, namely grouping sets of data records, and cast it as a

scheduling problem. We report on evaluation exercises that we

empirically conducted to assess the effectiveness and efficiency

of our solution in Section 6, and conclude the paper in Section 7.

2 FOUNDATIONS
2.1 Collection-Based Module and Workflow

Definition 2.1 (module). A module m is defined by the tuple

(Im, Om, card), where Im (resp. Om) is a set of ordered input (resp.

output) ports, and card specifies the cardinality of m. A port

p = ⟨a1, . . . , an⟩ is a list of attributes, each characterized with a

basic type, e.g., String, Integer.

Assigning a data value to each attribute in a port gives rise to

a data item, and assigning a data item to each input (output) port

of a module gives rise to a data record.

card ∈ {1-to-1,1-to-n,n-to-1,n-to-n}: 1-to-1 specifies that the in-

vocation of m takes as input a single data record and produces

a single data record; n-to-1 (resp. 1-to-n) specifies that the in-

vocation of m takes as input a list (ordered set) of data records

(resp. single data record) and produces a single data record (resp.

a list of data records); n-to-n specifies that the invocation of the

module takes as input a list of data records and produces a list of

data records.

Definition 2.2 (data link). A data link dl is defined by the pair

dl = (mi : omi , mj : imj ), where mi : omi designates an output port
omi of the module mi, and mj : imj designates an input port imj
of the module mj.

Definition 2.3 (workflow). A workflow specification is defined

by a pair w = (M, E), where M is a set of modules and E is a set of
data links. w has one initial module with no incoming data links,

and one final module with no outgoing data links.

We consider acyclic workflows that have a single initial mod-

ule and a single final module, and where each module in the

workflow, other than the initial module, is reachable from the ini-

tial module. Workflow execution follows a pure dataflowmodel: a

module m is invoked (is fireable) as soon as all of its input ports are
bound to data items. During the workflow execution, data items

are transferred between connected output and input ports. For

example, the following data link binding ((m1 : om1, m2 : im2 ), di)

specifies that the data item diwas transferred using the data link
connecting the output port om1 of m1 to the input port im2 of m2.
The technical report [5] provides more information about the

workflow execution model. It specifies how input data records of

a module are constructed using the data records of the preceding

modules in the workflow. It also specifies how mismatches in

cardinalities between connected modules’ outputs and inputs are

resolved at execution time.
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Table 1: Input and Output Provenance of admittedTo.
Input Patient DataSet Output Hospital DataSet

ID name birth lin ID hospital Lin

p1 Garnick 1990 {r1, r2 } h1 St Louis

{p1, p3 }p2 Hiyoshi 1987 {r3, r4 } h2 St Anton

p3 Suessmith 1989 {r5, r6 } h3 St Anne

{p2, p4 }p4 Solares 1985 {r7, r8 } h4 St August

p5 Kading 1992 {r9, r10 } h5 Holby

{p5, p7 }p6 Pero 1988 {r11, r12 } h6 Larib.

p7 Pehl 1986 {r13, r14 } h7 St James

{p6, p8 }p8 Barriga 1995 {r15, r16 } h8 St Mary

2.2 Workflow Provenance as Relations
Definition 2.4. Given a workflow w, its provenance, denoted

by prov(w), is the collection of modules and data link bindings

that take place as a result of the executions of w.

For ease of exposition of our anonymization solution, we

encode the provenance of a module m using two relational ta-

bles denoted by prov(m, w).in and prov(m, w).out. They contain

the data records that were used and generated, respectively, by

the invocations of m within the executions of a workflow w. we
call prov(m, w).in (resp. prov(m, w).out) the input (resp. output)
provenance of m. When the referred workflow w is clear from

the context, we abuse the notation and simply use prov(m).in
and prov(m).out to refer to such relations. The schema of such

relations contains the attributes of the input ports (resp. output

ports) of m. We assume that the attribute names are unique within

the input (resp. output) ports of a module. From a provenance

point of view, we do not keep information about the order of

the data records in an input or output list, which is, therefore,

viewed as a set. This is the case, for example, in the Taverna

workflow system [30]. Because of this, we use in what follows

the terms input/output set of data records, as opposed to list

of data records. W.l.o.g, we assume that the attributes of two

succeeding modules that have the same name are connected (via

their ports) by data links. In other words, we can deduce data

link bindings from module bindings, which allows us to write:

prov(w) =
⋃

m ∈ w.M
(prov(m).in ∪ prov(m).out)

Consider a module admittedTo that given a set of patients

returns a set of hospitals that those patients were admitted to
1
.

Table 1 illustrates an example of two relations representing input

provenance and output provenance of the admittedTo module.

The names of identifying attributes are written in bold, and the

names of quasi-identifying attributes are underlined. Notice that

the relations contain also two additional attributes: ID and Lin.
The first is an ID that is generated internally by the workflow

system to identify data records, and the second is used to encode

lineage information. In the case of the input provenance, Lin
specifies the data records produced by the preceding modules

in the workflow and that were used in the construction of the

data record in question. For example, the data record p1 was

constructed using two data records r1 and r2 that were produced
by some preceding modules. The Lin column is empty for the

relational table used to store the data records used as input to the

initial module in the workflow. Regarding the output provenance

of admittedTo, the Lin column identifies the data records that

were used as input to obtain the output data record in question.

For example, it specifies that h1 and h2 were generated given the

inputs p1 and p3. The lineage information we consider here is in

line with the why provenance semantics (see [8]).

2.3 Problem Statement
Adversary Model. The data records used and generated by a

workflow module are characterized by three kinds of attributes:

1
A hospital appears in the result only if it was visited by each of the patients in the

input set.

(i) Identifying attributes allow identifying individuals, e.g., the at-

tribute name is an identifying attribute. (ii) Sensitive attributes are
attributes that carry sensitive information, e.g., health condition.

(iii) Quasi-identifying attributes are non-identifying attributes,

but their combination can be used to identify an individual, e.g.,

address, phone number, etc. Notice that the ID attribute is not

considered as an identifying attribute because it is generated by

the workflow system and does not carry information that allows

identifying individuals such as name for example.

We assume that an adversary may know identifying and quasi-

identifying attribute values about individuals, e.g., name, address,

date of birth. However, we assume that s/he does not know sen-

sitive attribute values, e.g., health-condition, income tax.

In relational databases, a relation r is k-anonymized, where k
is an integer greater than 2, if any data record d in r is not distin-
guishable from (at least) k − 1 other records in r. This condition
is met by masking the values of identifying attributes, and gener-

alizing the values of quasi-identifying attributes (e.g., address, vis-

ited hospital, etc.). Sensitive attributes, such as health condition,

salary, are not masked: adversaries are assumed not to be knowl-

edgeable of the values of sensitive attributes. In what follows,

we use the term identifier record to refer to a data record that

has an identifying attribute value, and the term quasi-identifier

record to refer to a data record that has no identifying attribute

value but has a quasi-identifying attributes value. A module in-

put (resp. output) that is bound to identifier records following

module invocation is called identifier input (resp. output). It is

called quasi-identifier input (resp. output) if it is bound to quasi-

identifier records.

Anonymity degree of Identifier Inputs and Outputs. We assume

that every identifier input (resp. identifier output) of a module m
is associated with an anonymity degree, which we denote by kim
(resp. kom) to be enforced. Note that non-identifier module inputs

and output are not associated with an anonymity degree because

they are not bound at execution time to records that represent

individuals. We do not make the assumption that the anonymity

degrees associated with the identifier inputs and outputs of the

modules that compose the workflow are the same. This is be-

cause the modules that compose a workflow are likely to use

different underlying data sources that are supplied by different

providers who may impose different requirements when it comes

to the anonymity degree to be enforced on their data. Moreover,

the same data provider may impose different anonymity degrees

depending on the data that is retrieved from its source. For exam-

ple, an input that provides information about patients and their

health condition is likely to be associated with an anonymity

degree that is higher than an output that informs on the trips

of practitioners. In this paper, we apply k-anonymization to the

provenance prov(w) of a workflow prov(w) by creating equiv-

alence classes for the relations prov(m).in and prov(m).out for

each identifier input and output of the modules in w.M.

Definition 2.5 (Equivalence Classes). Consider the input

provenance prov(m).in of a module m. We say that the set

{E1min, . . . , E1
m
in}, n ≥ 1, is a set of input equivalence classes

for m and write prova(m).in = {E1min, . . . , E1
m
in} iff:

1)- The set {E1min, . . . , E1
m
in} forms a partitioning for prov(m).in.

That is prov(m).in = ∪
i∈[1,n]

Eimin, and Eimin ∩ Ej
m
in = ∅ for

i, j ∈ [1, n] s.t. i , j.
2)- The identifying attribute values of the data records in every

equivalence class Eimin are masked, and their quasi-identifying

attribute values are generalized such that the data records in an
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Table 2: Input and Output Provenance of admittedTo
where the Input Provenance is 2-anonymized.

2-anonymized Patient DataSet Hospital DataSet
ID name birth lin ID hospital Lin

p1 ⋆ {1987,1990} {r1, r2 } h1 St Louis

{p1, p3 }p2 ⋆ {1987,1990} {r3, r4 } h2 St Anton

p3 ⋆ {1985,1989} {r5, r6 } h3 St Anne

{p2, p4 }p4 ⋆ {1985,1989} {r7, r8 } h4 St August

p5 ⋆ {1988,1992} {r9, r10 } h5 Holby

{p5, p7 }p6 ⋆ {1988,1992} {r11, r12 } h6 Larib.

p7 ⋆ {1986,1995} {r13, r14 } h7 St James

{p6, p8 }p8 ⋆ {1986,1995} {r15, r16 } h8 St Mary

equivalence class Eimin are indistinguishable w.r.t. their quasi-

identifying attribute values.

A set of output equivalence classes are defined in a similar

manner: prova(m).out = {E1mout, . . . , E1
m
out}.

Note that the ID and Lin attribute values of the data records
are not generalized. This is because the values of the ID attribute
are generated internally by the workflow system. In other words,

they are not meaningful for human users. More importantly, they

are used within the Lin attribute to encode lineage information

that we seek to preserve.

Lineage information needs to be considered when k-

anonymizing the input provenance (resp. output provenance)

of an identifier module input (resp. output). To illustrate this,

let us consider the admittedTo module. It has an identifier in-

put and a quasi-identifier output. Consider that the anonymity

degree associated with its input is kadmittedToi = 2. Notice that

its output is not associated with an anonymity degree because

it is not an identifier output. Table 2 illustrates the input and

output provenance of admittedTo, where the input provenance
is 2-anonymized. The anonymization consisted in partitioning

the set of input data records into input equivalence classes of size

≥ 2. Notice that this anonymization operation does not guaran-

tee k-anonymization, however. To illustrate this, consider that an

adversary knows that Garnick was born in 1990 and that he vis-

ited the StLouis hospital. By examining the output data records

together with lineage information in prov(admittedTo).out (see
Table 2), an adversary will be able to infer that the data record p1
refers to Garnick. This can be more of an issue when the data

record contains sensitive information such as health condition.

Problem 1 (K-anonymization of the input and output

provenance of a module). Consider a module m with an iden-
tifier input (resp. output). k-anonymizing the input provenance
prov(m).in (resp. prov(m).out) of m using an anonymity degree kmi
(resp. kmo) gives rise to anonymized input provenance prova(m).in
(resp. anonymized output provenance prova(m).out) where:
1)- prova(m).in = {E1min, . . . , En

m
in} (resp.

prova(m).out = {E1mout, . . . , En
m
out}), is a set of input (resp.

output) equivalence classes for the input (resp. output) provenance
of m, with n ≥ 1.
2)- An input equivalence class Eimin (resp. output equivalence class
Eimout) contains at least k

m
i (resp. k

m
o) data records.

3)- The data records in an input equivalence class Eimin (resp. output
equivalence class Eimout) cannot be distinguished by examining
their lineage, i.e., by examining the data records that (transitively)
contributed to the data records in Eimin (resp. Ei

m
out) or by examining

the data records that the records in Eimin (resp. Ei
m
out) contributed

to through workflow execution.

Condition (3) is formally defined in the technical report using

the notions of backward- and forward-lineage in a workflow [5].

Problem 2 (K-anonymization of the provenance of a

workflow). The provenance of a workflow w is said to be k-
anonymized iff the input provenance of every identifier module
input and the output provenance of every identifier module output
in w.M are k-anonymized.

The above problem is NP-Hard: Meyerson and Williams [21]

demonstrated that optimal k-anonymity for a single relational

table without considering lineage is an NP-hard problem. We

present in this paper a heuristic that seeks to satisfy k-anonymity,

to reduce the generalization (information-loss) incurred as a

result, and to preserve lineage information in doing so.

3 ANONYMIZATION OF MODULE
PROVENANCE

We show, in this section, how the input provenance and output

provenance of a module are anonymized. The solution we present

is applicable to many-to-many modules but also to modules with

other cardinalities. We distinguish the case where the module

input is an identifier input and its output is a quasi-identifier

output, and the case where the module input and output are iden-

tifier input and identifier output. In the first case, the attribute

values of the output data records are treated as quasi-identifying

attribute values for their counterpart input data records. The sec-

ond case is slightly more complex in the sense that the attribute

values of the output data records are treated as quasi-identifying

attribute values for their counterpart input data records, and vice-

versa. We will not examine the case where both the module input

and output carry quasi-identifier records. Indeed, it only makes

sense to perform the anonymization when the input and/or the

output carry identifier records, and as such associated with an

anonymity degree to be enforced. That said, we will show in

Section 4 how modules that carry quasi-identifier input and out-

put records are dealt with in situations where they are used in

workflows containing other modules with identifier records.

3.1 Module with Identifier Input and
Quasi-Identifier Output

Consider the admittedTo module, presented earlier, that given

a set of individuals returns a set of hospitals that those patients

visited (see Table 1). And consider that the input dataset has been

2-anonymized as illustrated in Table 2. As discussed earlier, the

lineage associating the output dataset to the input dataset may

allow an adversary to pinpoint patients in the input dataset, even

if this is anonymized. To avoid this, the hospital dataset needs to

be anonymized in a way not to be able to distinguish between

the hospitals visited by the patients that belong to the same

equivalence class as a result of the anonymization of the patient

dataset. For example, p1 and p2 must be associated with the same

set of hospitals, and so do p3 and p4. Given lineage information,

one way to do so consists in generalizing the hospitals in a way

not to be able to distinguish between the hospitals corresponding

to {p1, p3} and those corresponding to {p2, p4}. An example

of generalization of the hospital dataset that achieves this is

illustrated in Table 3. Notice that similar generalization is applied

to the hospitals corresponding to the groups of patients {p5, p7}
and {p6, p8}.

While acceptable, there is a more effective manner in this

case to anonymize the patient and hospital datasets that yields

less generalization of the quasi-attributes, thereby reducing the

information loss incurred by the anonymization. Indeed, we can

exploit the fact that patients are grouped into input sets to guide
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Table 3: Input and Output Provenance of admittedTo
where the Input and Output are 2-anonymized.

2-anonymized Patient DataSet 2-anonymized Hospital DataSet
ID name birth Lin ID hospital Lin

p1 ⋆ {1987,1990} {r1, r2 } h1 {St Louis, St Anne}
{p1, p3 }p2 ⋆ {1987,1990} {r3, r4 } h2 {St Anton, St August}

p3 ⋆ {1985,1989} {r5, r6 } h3 {St Louis, St Anne}
{p2, p4 }p4 ⋆ {1985,1989} {r7, r8 } h4 {St Anton, St August}

p5 ⋆ {1988,1992} {r9, r10 } h5 {Holby, St James}
{p5, p7 }p6 ⋆ {1988,1992} {r11, r12 } h6 {Larib., St Mary}

p7 ⋆ {1986,1995} {r13, r14 } h7 {Holby, St James}
{p6, p8 }p8 ⋆ {1986,1995} {r15, r16 } h8 {Larib., St Mary}

Table 4: Input and Output Provenance of admittedTo
where the Input is 2-anonymized and the output does not
need to be.

Input Patient DataSet Output Hospital DataSet
ID name birth Lin ID hospital Lin

p1 ⋆ {1989,1990} {r1, r2 } h1 St Louis

{p1, p3 }p2 ⋆ {1985,1987} {r3, r4 } h2 St Anton

p3 ⋆ {1989,1990} {r5, r6 } h3 St Anne

{p2, p4 }p4 ⋆ {1985,1987} {r7, r8 } h4 St August

p5 ⋆ {1986,1992} {r9, r10 } h5 Holby

{p5, p7 }p6 ⋆ {1988,1995} {r11, r12 } h6 Larib.

p7 ⋆ {1986,1992} {r13, r14 } h7 St James

{p6, p8 }p8 ⋆ {1988,1995} {r15, r16 } h8 St Mary

the anonymization process. In particular, we put sets of data

records that are used as input to a module invocation within the

same equivalence class. For example, the patients p1 and p3 are
put within the same equivalence class. Using this approach, we

obtain the 2-anonymized patient dataset illustrated in Table 4.

Notice that by doing so, we actually do not need to anonymize

the hospital dataset. Indeed, starting from the hospital dataset,

we cannot single out any patient: the same set of hospitals are

visited by 2 patients. The approach we have just described is more

effective as far as information loss is concerned. For example,

one would know that p1 and p3 visited St Louis and St Antonio.

Using the previous approach (described in Table 3), we would

infer less specific information: that p1 and p3 visited St Louis or

St Anne, and St Antonio or St Augustine.

With the above consideration in mind, we revisit the definition

of equivalence classes introduced in Section 2 by requiring equiv-

alence classes to contain sets of data records that are used as input

or generated as output of module invocations. We will also intro-

duce the notion of k − group anonymity degree, which allows us

to gracefully reason about k-anonymity for collection-oriented

modules.

Definition 3.1 (Equivalence Classes - Revisited). Given
a module m, we say that the set {E1min, . . . , En

m
in} (resp

{E1mout, . . . , En
m
out}) is a set of input (resp. output) equivalence

classes for m, and write: prova(m).in = {E1min, . . . , E1
m
in} (resp.

prova(m).out = {E1mout, . . . , E1
m
out}) iff:

1)- The conditions in Definition 2.5 are satisfied.

2)- An input (resp. output) equivalence class Eimin (resp. Ei
m
out)

contains entire sets of input sets (resp. output sets) of data records.

That is, two data records that belong to the same input set (resp.

output set) that was used (resp. generated) by the invocation of

m in prov(m).in (resp. prov(m).out) cannot belong to different

input (resp. output) equivalence classes.

Definition 3.2 (k-group anonymity (kg)). We say that the input

provenance prova(m).in (resp. output provenance prova(m).out)
of a module m is k-group anonymized using the k-group

anonymity degree kgmi (resp. kgmo) iff each equivalence class in

prova(m).in (resp. prova(m).out) contains at least kgmi input sets
of data records (resp. kgmo output sets of data records)

Property 1. Consider a module m with an identifier input
associated with an anonymity degree kmi (resp. identifier out-
put with an anonymity degree kmo). And, let lmi (resp. lmo) be

the magnitude of the smallest input (resp. output) set of data
records in prov(m).in (resp. prov(m).out). k-group anonymyz-
ing prov(m).in (resp. prov(m).out) using the k-group anonymity

degree kgmi =
⌈
kmi
lmi

⌉
(resp. kgmo =

⌈
kmo
lmo

⌉
) yields input provenance

prova(m).in (resp. output provenance prova(m).in) that is k-
anonymized using the anonymity degree kmi (resp. k

m
o).

Proof. An input equivalence class in prova(m).in contains at

least

⌈
kmi
lmi

⌉
input sets of data records. Given that lmi is the magni-

tude of the smallest input set in prov(m).in, we conclude that an
input equivalence class in prova(m).in contains at least kgmi · l

m
i

data records, which is equal to or greater than kmi. In other words,

prova(m).in is k-anonymized using the k-anonymity degree of

kmi. The same reasoning can be applied to show that the output

provenance is k-anonymized using the degree of kmo. □

We are now ready to discuss the general case. To anonymize

the input provenance and output provenance of a module m
with an identifier input and quasi-identifier output, we start

by k-group anonymizing its input provenance using the k-group

anonymity degree of kgmi =
⌈
kmi
lmi

⌉
. This yields input provenance

prova(m).out that is k-anonymized using the degree of kmi (see
Property 1). Because the data records in the output provenance

act as quasi-identifying records for the data records in the input

provenance, we also need to anonymize the output provenance.

To do so, we partition prov(m).out into a set of output equiva-

lence classes prova(m).out. This is done by putting the output

sets of data records, that correspond to input sets pertaining to

the same input equivalence class in prova(m).in, within the same

output equivalence class in prova(m).out. This way, an adver-

sary cannot distinguish the data records in an input equivalence

class by examining their corresponding output data records, since

these belong to the same output equivalence class and as such

have the same quasi-identifying attribute values.

The above solution is applicable to modules with quasi-

identifier input and identifier output, by inverting the roles of

the input and output used above.

3.2 Modules with Identifier Input and
Identifier Output

Consider a module mwith an identifier input and an identifier out-
put. To anonymize the input provenance and output provenance

of m, we reason using the k-group anonymity degrees associated

with the input and output of m. Specifically, we distinguish the

following cases:

Case 1: kgmi ≥ kgmo. We k-group the input provenance using

the k-group degree kgmi. This yields k-anonymized input prove-

nance with an anonymity degree of kmi (according to Property

1). The output provenance is anonymized by partitioning it into

a set of output equivalence classes prova(m).out: output sets of
data records, that correspond to input sets pertaining to the same

input equivalence class in prova(m).in, are put within the same

output equivalence class in prova(m).out.
An output equivalence contains the sets of data records that

correspond to input sets of data records in the same input equiva-

lence class. Given that an input equivalence class contains at least

kgmi input sets of data records, it follows that an output equiva-

lence class in prova(m).out contains at least kgmi output sets of
data records. Given that kgmi ≥ kgmo, it follows that prov

a(m).out
is k-group anonymized using the k-group anonymity degree of
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Table 5: Input and Output Provenance of
getPractitioners.

Input Patient DataSet Output Practitioner DataSet
ID name birth ID name birth Lin

p1 Facello 1953 pr1 Rosch 1996

{p1, p2 }p2 Simmel 1964 pr2 Bellone 1987

p3 Bamford 1959 pr3 Gargeya 1993

p4 Koblick 1954 pr4 Gubsky 1988

{p3, p4 }p5 Maliniak 1955 pr5 Heyers 1985

p6 Preusig 1953 pr6 Tokunaga 1991

p7 Zielinski 1957 pr7 Camarinopoulos 1995

{p5, p6 }p8 Kalloufi 1958 pr8 Miculan 1986

pr9 Birrer 1992

pr10 Keustermans 1999

{p7, p8 }pr11 Mancunian 2001

pr12 Bond 1982

kgmo, which implies that prova(m).out is k-anonymized using the

anonymity degree of kmo (see Property 1). Note also that data

records in the same input (resp. output) equivalence class cannot

be distinguished by examining their corresponding output (resp.

input) data records. This is because the data records in a given

input equivalence class will have their corresponding output

data records in the same output equivalence class, and, therefore,

cannot be distinguished by examining their quasi-identifying

attribute values, and vice-versa.

As an example, consider a module, getPractitioners, that
takes a set of patients and returns the set of practitioners that

have examined those patients
2
. Table 5 illustrates the input

provenance and the output provenance of getPractitioners.
We omit the lineage information (Lin column) in the input

provenance because it is not useful in the example. Con-

sider that the input of getPractitioners is associated with

kgetPractitionersi = 2, and its output with kgetPractitionerso = 2.

Given that lgetPractitionersi = 2 and lgetPractitionerso = 3 (see

Table 5), we have kggetPractitionersi = kggetPractitionerso = 1.
The k-group anonymity degree for both input and output in

this case is 1. Tables 6 shows the anonymized input and output

provenance obtained using the solution we have just described.

Notice that the resulting patient dataset is 2-anonymized and

that the resulting practitioner dataset is 3-anonymized. Moreover,

we cannot distinguish between the practitioners of the patients

in the same input equivalence class, and, similarly, we cannot

distinguish between the patients of the practitioners that belong

to the same output equivalence class.

Case 2: kgmi < kgmo. We perform the same processing as in

(case 1) by inverting the roles of the input and output.

Table 6: 2-anonymized Input and 3-anonymized Output
Provenance of getPractitioners.

Input Patient DataSet Output Practitioner DataSet
ID name birth ID name birth Lin

p1 ⋆ {53, 64} pr1 ⋆ {87, 93, 96}
{p1, p2 }p2 ⋆ {53, 64} pr2 ⋆ {87, 93, 96}

p3 ⋆ {54, 59} pr3 ⋆ {87, 93, 96}
p4 ⋆ {54, 59} pr4 ⋆ {85, 88, 91}

{p3, p4 }p5 ⋆ {53, 55} pr5 ⋆ {85, 88, 91}
p6 ⋆ {53, 55} pr6 ⋆ {85, 88, 91}
p7 ⋆ {57, 58} pr7 ⋆ {86, 92, 95}

{p5, p6 }p8 ⋆ {57, 58} pr8 ⋆ {86, 92, 95}
pr9 ⋆ {86, 92, 95}
pr10 ⋆ {82, 99, 01}

{p7, p8 }pr11 ⋆ {82, 99, 01}
pr12 ⋆ {82, 99, 01}

4 DATA PRIVACY OF WORKFLOW
PROVENANCE

Given a workflow w, we seek to anonymize its provenance

prov(w) by anonymizing the input provenance and output prove-

nance of its constituent modules. In doing so, we can use the

2
A practitioner appears in the output set only if it has examined every

patient in the input set.

method presented in the previous section as is to anonymize the

data used and generated by each module, in an independent fash-

ion. Unfortunately, this solution may lead to a breach of privacy.

Indeed, equivalence classes will be formed without consideration

to lineage between data records output by given modules and

the data records used to feed the succeeding modules within the

workflow, which may lead to a privacy breach. The technical

report [5] contains a detailed example that illustrates this case.

We, therefore, designed an algorithm that ensures that lineage

information cannot be used by an adversary to uncover private

information about individuals. For the purpose of the anonymiza-

tion algorithm, we will be shortly presenting, we group the work-

flow modules into levels as illustrated in Figure 2. A module

belongs to level O if it does not have a previous module. A mod-

ule belongs to a level i where i > 0, if it has at least an incoming

data link connected to a module in level i − 1, and it does not

have any incoming data link connected to a module in level ≥ i.

Fig. 2: Workflow levels.

Algorithm 1 Anonymize Workflow Provenance

Input: w, the workflow specification.

Input: Modules = {L0, . . . , Lk } //workflow modules grouped into levels (breadth)
from the sink to the source.

prov(w), the provenance of the workflow w.
kg, group anonymity degree.

Output: Prova(w) // anonymized provenance

1: for Level in Modules do
2: for m in Level do
3: if (m is the initial module) then
4: prova(m).in← anonymizeInitialInput(m, prov(m).in, kg)
5: prova(m).out← anonymizeOutput(m, prov(m).out, prova(m).in)
6: else
7: prova(m).in← constructInputRecords(m, prec(m))
8: prova(m).out← anonymizeOutput(m, prov(m).out, prova(m).in)
9: end if
10: end for
11: end for
12: prova(w) ←

⋃
m∈w.M prof

a(m)

13: return prova(w)

To anonymize the provenance of a workflow w, Algorithm
1 takes as input the modules that compose the workflow orga-

nized into levels from the source to the sink, the provenance

of the workflow prov(w), as well as a group anonymity degree

kg to be applied to the input provenance of the initial module

of the workflow. (We will see later which k-group anonymity

degree is used.) The algorithm examines the modules by level.

For the first level composed of the initial module minit, the op-
eration anonymizeInitialinput() (line 4) anonymizes the in-

put data of such module using the k-group degree kg and pro-

duces the set of equivalence classes prova(minit).in. The output
data records of the initial module are used to feed the operation
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anonymizeOutput(), which produces prova(minit).out (line 5).

For a module m that belongs to a level other than the initial one,

the algorithm starts by constructing the anonymized input data

records by using the anonymized data records of the preceding

output in the previous level using the constructInputRecords()
operation (lines 7). The output data records of m are, then,

anonymized by using the same grouping applied to its inputs

to produce prova(m).out using the anonymizeOuput() operation
(line 8). The algorithm terminates when the provenance of the

module that belongs to the sink level is anonymized.

Having described how Algorithm 1 operates, we will describe

in detail the operations used in the algorithm.We will also list the

guarantees respected by each operation. Due to space limitations,

the poofs of the guarantees can be found in the technical report

[5]. Before proceeding to the presentation of the operations used

in our algorithm, we start by defining the notion of lineage-

related equivalence classes.

Definition 4.1 (Lineage-Related Equivalence Classes). Let E1 and
E2 be two different equivalence classes. We say that E1 and E2 are
lineage-related iff there are data records in E1 that (transitively)

contributed through workflow executions to data records in E2,
or vice-versa.

anonymizeInitialInput(m, prov(m).in, kg). This operation

generates input equivalence classes for the initial module m:
prova(m).in = {E1min, . . . , En

m
in}, n ≥ 1. Such equivalences

classes are obtained by partitioning the input sets of data records

in prov(m).in into groups, each containing at least kg input sets.
Each group gives rise to an equivalence class by masking the

identifying attribute values of its data records and generalizing

their quasi-identifying attribute values such that the data records

in the group are indistinguishable w.r.t. their quasi-identifying

attribute values. Details about the partitioning operation are

presented later in Section 5.

Guarantees:

• G1: prov(minit)
a.in is kg group anonymized.

anonymizeOutput(m, prov(m).out, prova(m).in). Given
anonymized input provenance prova(m).in = {E1min, . . . , En

m
in}

of a module m, this operation generates anonymized output

provenance of that module: prova(m).out = {E1mout, . . . , En
m
out}.

To do so, for every input equivalence class Eimin, a group Gimout
containing the output sets of data records in prov(m).out
that are lineage dependent on input sets of data records in

Eimin, is constructed. Each group Gimout gives rise to an output

equivalence class Eimout by masking the identifying attribute

values of the data records in Gimout and by generalizing their

quasi-identifying attribute values such that the data records in

the group are indistinguishable w.r.t. their quasi-identifying

attribute values.

Guarantees:

• G2: for every equivalence class Emin in prova(m).in,
anonymizeOutput() generates one lineage-related equiv-

alence Emout in prova(m).out.
• G3: anonymizeOutput() preserves k-group anonymity

degree. That is, the number of output sets of data

records in an output equivalence class Emout, generated
by anonymizeOutput(), is equal to the number of input

sets of data records in the input equivalence class Emin that
is used as input to that operation.

ConstructInputRecords(m, prec(m)). construct input equiv-
alence classes for m given the output equivalence classes of its

preceding modules prec(m). We distinguish two cases:

Case 1: m is preceded by one module: prec(m) = {m′}
There are data links connecting the output ports of m′

to the input ports of m. Given the anonymized output

provenance prova(m′).out = {E1m
′

out, . . . , En
m′
out} of m

′
, this op-

eration generates the anonymized input provenance of m,
prova(m).in = {E1min, . . . , En

m
in}, as follows: For every output

equivalence class Eim
′

out, a group Gimin is constructed contain-

ing the input sets of data records in prov(m).in that are lineage

dependent on output sets of data records in Eim
′

out. The data

records in Gimin are, then, anonymized by masking their identi-

fying attribute values, and by replacing their quasi-identifying

attribute values, with the values used in their lineage-dependent

data records in Eim
′

out. Thereby, each group Gimin gives rise to an

input equivalence class Eimin.
Case 2: m is preceded by multiple modules. Suppose that

prec(m) = {m1, m2}. Cases, where a module has more than two

preceding modules, are handled in the same manner. Given

the anonymized output provenance prova(m1).out of m1 and

the anonymized output provenance prova(m2).out of m2, the
anonymized input provenance prova(m).in of m is obtained using
the following process:

For pair (Eim1out, Ej
m2
out) in (prov

a(m1).out, prov
a(m1).out), if

there exists a data record d in prov(m).in that is lineage depen-
dent on a data record in Eim1out and a data record in Ejm2out, a
group Gijmin containing the data records in prova(m).in that are

lineage-dependent on data records from both equivalence classes

Eim1out and Ejm2out, is constructed. The data records in Gijmin are

anonymized, thereby giving rise to Eijmin, as follows. The identi-
fying attribute values of the data records in Gijmin are masked,

and their quasi-identifying value attributes are replaced by the

attribute values of their lineage-wise corresponding data records

in Eim1out and Ejm2out.

Guarantees:

• G4: Using the operation ConstructInputRecords(), an
output equivalence class of a module in prec(m) con-
tributes to one lineage-related input equivalence class of

m.
• G5: The operation constructInputRecord() preserves k-
group anonymity. In other words, the number of input

sets of data records in an input equivalence class Emin is

equal to or greater than the number of output sets of data

records in the corresponding output equivalence classes

of the preceding modules.

4.1 Privacy Analysis
We will show, in this section, that an adversary cannot break

k-anonymized workflow provenance that is obtained using Al-

gorithm 1. In doing so, we need to show that: i)- The data

records in the anonymized input provenance prova(m).in (resp.
anonymized output provenance prova(m).out) of every identifier
input (resp. identifier output) of a module m in w, belong to equiv-
alence classes of size ≥ kmi (resp. ≥ kmo ). ii)- The data records in

an equivalence class in prova(m).in (resp. prova(m).out) cannot
be distinguished by examining their lineage (i.e., by examining

the data records they have been (transitively) generated from

or the data records that they have (transitively) contributed to
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within workflow executions). To do so, we present in what fol-

lows a lemma and a theorem, each of which is accompanied by

proof.

Lemma 1. An input equivalence class (resp. output equivalence
class) of a given module:

(1) is lineage-related with at most one input equivalence class

and one output equivalence class of a different module in

the same workflow, and

(2) is lineage-related with one output equivalence class (resp.

input equivalence class) of the same module, and

(3) is not lineage-related with any input equivalence class

(resp. output equivalence class) of the same module.

Proof. We start by showing (1). Let m and m′ be two modules

in a workflow w, and let Emin and Emout be an input and output

equivalence classes of m. There are three possible cases:
a)- There is exist a dataflow path connecting m to m′ in w. For ease
of exposition, we denote m by m1, and m′ by mn, and, therefore,
the data flow path connecting m to m′, can be represented by

the sequence (m1, . . . , mn), with n ≥ 2. The sequence (m1, . . . , mn)
denotes a dataflow, i.e. there are data links connecting the output

ports of mi to the input ports of mi+1 for i ∈ [1, n − 1]. Given the

guarantees G2 and G4, it follows that

• Every input equivalence class in mi gives rise to

one lineage-related output equivalence class of mi for

i ∈ [1, n].
• Every output equivalence class in mi gives rise to

one lineage-related input equivalence class of mi+1 for

i ∈ [1, n − 1].

Given that we consider acyclic workflow, a module cannot

appear twice in the dataflow path (m1, . . . , mn), which allows us

to conclude that every input or output equivalence class of m1
gives rise to one lineage-related input equivalence class for mn
and one lineage-related output equivalence class for the output

of mn. Given that we use m1 to denote m1 and mn to denote m′, we
can conclude that m′ has one input equivalence class and one

output equivalence class that are lineage-related with Emin (resp.
Emout).
b)- There is exist a dataflow path connecting m′ to m in the work-

flow. The same analysis in (a) allows to conclude that m′ has one
input equivalence class and one output equivalence class that are

lineage-related with Emin (resp. E
m
out).

c)- There does not exist a data flow path connecting m to m′, or
vice-versa. Given that we consider a data-driven workflow exe-

cution module, the data records used and generated by m cannot

possibly contribute to the data records used and generated by

m′, and vice-versa. It follows from Definition 4.1 that the equiv-

alence classes associated with the input or output of m cannot

be lineage-related to the equivalence classes associated with the

input or output of m.
(a), (b) and (c) allows us to conclude (1).

We now show (2). According to G2, given a module m in a work-

flow w, the operation anonymizeOutput() generates one lineage-
related output equivalence class Emout of m, for every input equiv-

alence class Emin of m. Given that w is acyclic, it follows that Emin
contains all the data records bound to the input of m that con-

tributed to Emout, and the data records in Emin contribute to no data
records bound to the output of m, other than those in Emout. In
other words, Emout is the only output equivalence class of m that
is lineage-related with Emin, and E

m
in is the only input equivalence

class of m that is lineage-related with Emout.

We now show (3). Given that we consider acyclic workflows,

input data records (resp. output data records) of a given module

cannot possibly contribute data records bound to the same input

module (resp. module output). It follows then that an input equiv-

alence class (resp. output equivalence class) of a given module is

not lineage-related with any input equivalence class (resp. output

equivalence class) of the same module. □

Theorem 4.2 (Soundness). The workflow provenance gener-
ated for the provenance prov(w) of a workflow w by Algorithm 1
using as input the k-group anonymity degree:

kgmax = max(
⋃

mj∈WF.modules

{kg
mj
i , kg

mj
o }) (1)

is k-annoymized.

Proof. To prove this theorem, we need to show: i) that every

equivalence class in prova(m).in of an identifier input of (resp.

prova(m).out of an identifier output) of every module m in the

workflow w, contains at least kmi (resp. kmo) data records, and ii)

that data records in an equivalence class of the input or output

of m cannot be distinguished by examining their lineage within

the executions of w (see the problem statements in Section 2).

The input equivalence classes of the initial module in the

workflow are generated using anonymizeInitialInput. Ac-
cording to G1, the input equivalence classes generated by

anonymizeInitialInput are k-grouped using the k-group

anonymity degree kgmax. Such equivalence classes give rise to

other equivalence classes by repeatedly applying the the oper-

ations anonymizeOutput() and ConstructInputRecords(). Ac-
cording to the guarantees G3 and G5 , such operations preserve

k-group anonymity. It follows, then, that every equivalence class

of an input (or output) of a module m that is generated by the algo-
rithm contains a number of input (or output) sets that is equal to

or greater than kgmax. In other words, the equivalence classes in

prova(m).in (resp. prova(m).out) contain at least kgmax · lmin data
records (resp. kgmax · lmout data records). Given that, kgmax · lmin
is equal to or greater than kgmi · l

m
i, which by definition is equal

to or greater than kmi. It follows that the equivalences classes in
prova(m).in contain at least kmi data records. Similarly, given that,

kgmax · lmo is equal to or greater than kg
m
o · l

m
o, which by definition

is equal to or greater than kmo. It follows that the equivalences
classes in prova(m).out contain at least kmo data records. Thereby,
we have just shown (i).

We will now show (ii). Every input equivalence class Emin in
prova(m).in is, according to lemma 1, not lineage-related to any

equivalence class of the same input, and it is lineage-related

with at most one input equivalence class Em
′

in of any other mod-

ule input in the workflow, and is lineage-related with at most

one output equivalence class Em
′

in of any module in the workflow

(including m). The data records in any lineage-related input equiv-

alence class Em
′

in or output equivalence class E
m′
out) do not carry

identifying attribute values and are indistinguishable w.r.t. their

quasi-identifying attribute values. Therefore, an adversary is un-

able to distinguish between the data records in Emin of an input

equivalence class of a module m by examining the data records of

its lineage-related equivalence classes. The same reasoning can

be applied to the output equivalences classes in prova(m).out.
This implies that data records in an equivalence class E cannot
be distinguished by examining the records of any of its lineage-

related equivalence class E′. And, by recursion, the data records

in E′ cannot be distinguished by examining the data records in the
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equivalence classes that are lineage-related with E′., etc. That is,
the data records in an equivalence class cannot be distinguished

by examining their lineage, thereby showing (ii). □

5 GROUPING OF DATA RECORD SETS
Consider that the initial module of a workflow took as in-

put the following sets of records D = D1 ∪ · · · ∪ Dn , with

l = mini∈[1· · ·n] |Di |. Consider now that the target k-group

anonymity degree is kg, i.e., the target anonymity degree

k = kg ∗ l. If k > l, i.e. kg > 1, then the method for anonymiza-

tion that we have described so far states that the inputs sets in

D = D1 ∪ · · · ∪ Dn need to be grouped (unionied) into equivalence
sets of a magnitude at least equal to k. In doing so, the method

we presented does not specify which inputs sets in D to group

together to form equivalence classes. A naïve solution to this

problem would be to union all the datasets in D into a single

group, i.e. a single equivalence class, and anonymize the quasi-

identifying attributes of the data records accordingly. However,

the records obtained using this approach are likely to be useless

since the scientists will not be able to distinguish between any of

the data records used as input to the module in question. A more

desirable solution would, therefore, generate groups that have a

small magnitude of at least k, and yet try to keep the magnitude

of such groups as close as possible to k. We can formally define

the above problem as follows
3
.

Given sets of data records D = D1 ∪ · · · ∪ Dn, and an

anonymity degree k, group the sets Di, i = 1 . . . n, into groups

G = G1 ∪ · · · ∪ Gm, m ≤ n, such that:

(1) |Gi | ≥ k, and
(2) maxi=1...m(|Gi |) is minimal.

The above problem can be viewed as a variant of the scheduling

problem [29], in which the datasets Di represent independent

and non-preemptive jobs, and the cardinalities of such datasets

represent jobs’ lengths. There is a maximum of n machines. If

a machine is used then its load must be greater or equal to k.
The objective of such a scheduling problem is to minimize the

makespan. To our knowledge, there does not exist any variant

of the scheduling problem in the literature that meets the above

criteria. We prove in the technical report that this is a strongly

NP-hard problem, by reducing the 3-partition problem to the

above problem (see [5], page 14, for the proof).

Given that our problem is strongly NP-hard, we turn our at-

tention to approximation algorithms. In particular, we devised

the minimizeG integer problem (see below) to produce a good

quality solution. xij is an integer that can takes the value 1 if

the set Di participates in the union that forms the group Gj, and
0, otherwise (Constraint C4). yj is an integer that can takes the

value 1 if the group Gi contains at least one set in D, and 0, oth-

erwise (Constraint C5). cardi represents the cardinality of the

set Di. Constraints (C1) states that a set Di must participate in

the union of exactly one group. Constraint (C2) specifies that a
group Gj can have a cardinality of 0 (when yj equals to 0), or a

cardinality greater or equal to k (when yj equals to 1). Constraint
(C3) specifies that the cardinalities of the groups G1, . . . , Gn is

smaller than a variable Z, which represents the makespan. The

objective of the integer program is, therefore, to minimize the

value of Z. Constraints (C6) states that yj is definitely equal to 1 if
xij is equal to 1. More specifically, if the set Di has been affected

to the group Gj (i.e., xij = 1), then the group Gj contains at least
one set (i.e.yj = 1).

3
The problem statement formulated in Section 2.3 contains this condition.

minimizeG Z
subject to

∑
j∈{1, ··· ,n}

xi j = 1, i = 1, ..., n (C1)∑
i∈{1, ··· ,n}

cardi · xi j ≥ k .yj , j = 1, ..., n (C2)∑
i∈{1, ··· ,n}

cardi · xi j ≤ Z , j = 1, ..., n (C3)

xi j ∈ {0, 1}, i, j = 1, ..., n (C4)

yj ∈ {0, 1}, j = 1, ..., n (C5)

yj ≥ xi j , i, j = 1, ..., n (C6)

Notice that we need to invoke the minimiseG program only

once per workflow to identify the way the input sets of the

initial module are to be grouped. The output of the initial module,

as well as the input and output of the remaining modules in

the workflow, use groupings that are derived based on lineage

information (see Algorithm 1, lines 4 − 8).

6 VALIDATION
We implemented the solution that we have described in this paper

using Python 2.7. We used the COIN Branch and Cut solver (CBC)

provided by the LPModeler Pulp
4
for solving the integer program

MinimizeG presented in Section 5.

6.1 Experimental Setup
There is no existing solution that we can utilize as a base solu-

tion for comparison. Nonetheless, the approach that we have

described raises the question as to which parameters impact

the quality of the provenance anonymized using our solution.

The analysis of the k-group anonymity degree computed for a

workflow (see Equation 1), which dictates the degree of general-

ization, i.e., information loss, to be applied to the provenance of

a workflow, reveals that the quality of the provenance (level of

generalization) can be influenced by the anonymity degrees and

magnitudes of the sets of data records used and generated by the

parameters (inputs or outputs) of the workflow’s modules. Note

that on the other hand, the same equation allows us to rule out

the topology (structure) of the workflow as a possible influencing

factor. Because of this, we focus in our experiment on assessing

the impact that the difference in the anonymity degrees and the

magnitudes of the sets associated with two module parameters,

which we take w.l.o.g to be the input and output of a module, has

on the quality of anonymized provenance.

To be able to control the parameters of our experiment, we im-

plemented a python program that given lmin, l
m
out and a number of

module invocations, automatically generates module provenance.

The provenance identifies the data records that are automatically

generated by our tool. Regarding the content of data records, we

use the Adult dataset [14], a de facto benchmark for anonymiza-

tion solutions.

To assess the quality of anonymized data, we used the average

equivalence class size [19] and the discernability metric [19].

For conciseness sake, we focus in what follows on the average

equivalence class size. Readers interested in examining the results

for discernability are referred to [5].

The average equivalence class measures how well equivalence

classes created by the anonymization do not exceed what is

required by the anonymization degree k. It can be defined as

follows: AEC(DS∗) = |DS|
|EQ(DS∗)|·k

where EQ(DS∗) represents the set of equivalence classes created
as a result of anonymizing DS, i.e., |EQ(DS∗)| is the number of

equivalence classes created. k represents the k-anonymity degree

4
https://pypi.org/project/PuLP
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required. The best value of AEC is 1. It means that none of the

equivalence classes created as a result of anonymization exceeds

the required anonymity degree when performing the generaliza-

tion. We chose AEC as a measure because it is a good indicator for

the quality of the anonymized data, with respect to a minimum

requirement that is set by the anonymity degree.

As well as examining the impact of the anonymity degree and

magnitude of sets of data records on the quality of anonymized

provenance (in Sections 6.2, 6.3 and 6.4), we assess the utility

of anonymized workflow provenance by examining the degree

to which they can be used for answering workflow provenance

challenge queries using real-world workflows [23] (in Section

6.5), and assess the efficiency of our solution (in Section 6.6).

6.2 Impact of the Disparity of kmin, k
m
out on the

Quality of Anonymization
Given the provenance of the module m, one would expect that

disparity between kmin and kmout, or more specifically between

the ratios kgmin and kgmout have an impact on the quality of the

obtained anonymized input and output datasets of m. Specifically,
if kgmout is larger than kgmin then the inputs records of m will be
grouped into equivalence classes that are beyond what is required

by kmin to meet kmoutput. Thereby, the average equivalence class

of the obtained anonymized input datasets is likely to suffer as

a results. On the contrary, if kgmin and kgmout are close then one

would expect that the average equivalence class for both the

input and output anonymized datasets to be of good quality. To

assess this intuition, we ran an experiment in which:

1) We generated the provenance of a module m that associates

sets of input data records with sets of output data records. (Note

that we ran our experiments using different numbers of mod-

ule invocations, namely 50, 100, 200, 300, 400 and 500 module

invocation. The results we obtained presented similar trends.

We, therefore, focus on reporting on the results obtained for 100

module invocations.) We set lmin and lmout to the same value, viz.

1. Specifically, an input (resp. output) set of data records that are

used or generated by m has a magnitude between 1 and 3 (resp.

1 and 4). (We did so to examine the interplay between kmin and
kmout. Later on, we report on an experiment that we ran to assess

the impact of the magnitudes of the sets of data records and their

variability.) 2)We then set the value of kmin to 2, and anonymized

the input and output datasets using our method by varying the

value of kmin between 2 and 20.

We ran this experiment three times. Figures 3 illustrates the

average of the AEC obtained. Notice that the AEC of the output

dataset is close (if not equal) to 1, indicating that the quality of

the anonymized dataset is optimal as far as the constructed equiv-

alence classes are concerned. On the other hand, we observe that

the AEC of the input dataset increases as the disparity between

kmin and kmout increases. This confirms our initial observation.

6.3 Impact of the Disparity of kmin, l
m
in on the

Quality of Anonymization
Another aspect that can impact the quality of the anonymized

datasets is the difference between the anonymity degree and the

magnitude of the smallest input (resp. output) set of data records.

Without loss of generality, let us consider the input of a module

m. If lmin is greater than the anonymity degree kmin, then the mag-

nitude equivalence classes obtained as a result of anonymization

will be greater than what is required by kmin, thereby impacting

negatively the AEC. To empirically examine this aspect, we set
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the anonymity degree kmin to 20. We then varied the parameter

lmin between 1 and 99, with a unit of 2, i.e., [1, 3, . . . , 97, 99]. In
particular, for a given value of lmin, the input sets generated for

a module have a magnitude between lmin and lmin + 3. In other

words, the input sets have a magnitude that is close to the value

of lmin. We did so to factor out the impact that the variability in

the magnitude of the input sets, which we will examine later on.

For each value of lmin, we generated the provenance for the

module m (100 module invocation) and anonymized the obtained

input dataset. We ran this experiment three times, and averaged

the results, which are depicted in Figure 4 for the average equiva-

lence class. The chart can be partitioned into two parts. The first

part where lmin ranges from 1 to 20, and in the second part where

it ranges from 20 to 100. In the first part, we notice that the AEC

remains relatively close to 1 until it reaches the value of 15 and

17 where we notice an increase of the AEC 1.5. The AEC then

decreases to values that are close to 1 for lmin values of 19 and
21. To explain this increase in the AEC, consider the case where

lmin = 15. The magnitude of the input sets ranges between 15

and 18 according to the above experiment setting. Consequently,

the magnitude of the sets obtained using the grouping ranges

between 30 and 36. Indeed, an input set on its own has a magni-

tude lower than the required anonymity degree of 20, and two

unionied input sets will definitely have a magnitude between 30

and 36, which is larger than the required anonymity degree. This

explains the fact that the AEC value is close to 1.5. In the second

phase, we observe that the value of the AEC grows linearly as the

magnitude of the smallest set grows. This can be explained by

the following. For values of lmin greater than 20, no set grouping

is actually performed: the magnitude of the input set is greater

than the required anonymity degree. The larger is the magnitude

of lmin, the larger the disparity between lmin and kmin = 20, and

subsequently, the larger is the AEC.
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6.4 Impact of the Disparity of the Size of
Input (resp. Output) Sets

In the experiment that we ran this far, we assumed that the size of

the input (resp. output) set of data records are close to lmin (resp.
lmout). We have examined the provenance of the workflows avail-

able in ProvBench
5
, namely the workflow provenance collected

the workflow systems Taverna and Wings (120 workflows). For

each workflow and each of its modules, we computed lmin and
lmout. We then examined the variability of the magnitude of the

input and output sets. This analysis revealed that in the majority

of the cases the magnitude of the sets used and output by the

modules that compose the workflow follows a uniform distri-

bution. However, for an important proportion of the modules

(≈ 15%), we observed that the distribution is instead geometric

in the sense that the input (resp. output) sets have a magnitude

that is close to lmin (resp. l
m
out).

Given the above results, we decided to empirically examine the

variability of the magnitude of the parameter sets on the quality

of the anonymization considering the two distributions. For the

random uniform distribution, we used three distributions where

the maximum magnitude of a set is 20, 50 and 100, respectively.

Regarding the geometric distribution, we used three distributions

with the probabilities of 30, 50 and 80, respectively.

We then ran an experiment in which we computed the AEC by

varying the anonymity degree kin between 2 and 20. The results

of the experiment for geometric distributions are illustrated in

Figure 5, and those obtained for uniform distribution are illus-

trated in Figure 6. For geometric distribution, we observe that the

higher the success probability, the better the AEC obtained. For

example, the AEC quickly converges to the value of 1 when the

success probability is equal to 0.8. On the other hand, the AEC

converge to 1 only when the anonymity degree reaches 11 when

the success probability is set to 0.3. That said, overall, geomet-

ric distribution delivers better results compared with uniform

distribution: the AEC is much smaller. This can be explained

by the fact that the variability in the magnitudes of the sets of

data records is smaller in the case of the geometric distribution.

And, the lower the variability of the magnitude of the data record

sets, the better is the grouping of sets in the sense that it yields

groups (i.e. equivalence classes) with magnitudes close to k, and
therefore the better the AEC obtained (close to 1).

6.5 Assessing Utility Using Real Workflows
We assessed the degree to which anonymized provenance can be

used to answer the following 3 queries that are representative

of the queries defined by the workflow provenance challenge

community [23].
6
.

q1 Find the workflow executions that led to a given record in the

workflow results.

q2 Find the input data records that contributed to a given data

record in the workflow result.

q3 Find the difference between two workflow execution.

For this experiment, we used 14 real-world Taverna workflows.

The size of the workflows ranges from 3 modules to 24 modules,

and have different structures patterns. We ran each workflow

30 times, and captured the provenance obtained using the Tav-

erna workflow systems. We then anonymized the provenance by

5
https://github.com/provbench

6
We could not use the provenance challenge queries as they are since they were

specified for a single specific workflow on image processing.
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varying the group anonymity degree kgmax from 1 to 10, and ex-

amined whether queries of the form listed above can be answered

using the anonymized provenance.

Regarding q1 and q2, a user is presented with anonymized

workflow provenance, and as such cannot pinpoint a single data

record in the results that can be used as input to q1 and q2.
Instead, s/he chooses a (set) of data records that belong to the

same equivalence class. As expected, the larger is the anonymity

degree, the larger is the set of data records to be considered (see

Table 7). Note that on the other hand, the query results obtained

had 100% precision and recall, regardless of the value of group-

anonymity degree used. This was possible thanks to the fact that

our anonymization method preserves lineage across data records.

Table 7: Size of the data record sets used as input to q1 and
q2 given kgmax, averaged over the 14 workflows.

kgmax 1 2 4 6 8 10

avg size of the set of data records 3 6 11 20 25 33

Regarding q3, the provenance challenge does not formally

specify what it is meant by the difference of workflow executions

[23]. That said, this question has later been thoroughly examined

by Bao et al. [4]. They defined the difference between workflow

executions of the same workflow specification using the edit

distance which is the minimum number of edit operations that

transform one provenance graph structure to the other. Using this

definition, the edit distance between every pair of anonymized

provenance graphs (of the 14 workflow specifications that we

used) was the same as the edit distance computed using their

counterpart original provenance graphs. This can be explained by

the fact that our anonymization solution preserves the structure

of the provenance graph as-is (since one of the requirements

that we set is to preserve lineage information). Therefore, the
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original provenance graph of a given workflow specification is

homomorphic to its anonymized counterpart.

This experiment has shown the utility of the workflow prove-

nance anonymized using our solution since we were able to

answer the three classes of queries. This evaluation exercise has

also shown that for q1 and q2, the input of the query size (number

of records) depends on the anonymity degree. Smaller anonymity

degrees allow having smaller sets of data records that can be used

for the queries, and vice-versa.

6.6 Efficiency
The only operation that is costly in the anonymization solution

presented is the grouping of sets of data records, which we imple-

mented using the integer program minimizeG (Section 5). Note,

however, that such an operation is performed only once for the

input of the initial module of the workflow. Indeed, the remain-

ing parameters of the modules that compose the workflow apply

the same grouping as the one applied to the input of the initial

module. That said, we investigated the cost of such an operation

to group n data sets, where n = 50, 100, 100, · · · , 500. As expected,

this experiment showed that time required increased as does the

number of module invocations. Interestingly, the experiment also

showed that the time required for performing the grouping of

the sets of data records is primarily impacted by the distribution

of the magnitude of the sets of data records to be grouped.

This experiment showed that using a uniform distribution,

the range has little impact on the time required for grouping: it

took between 16 and 18 seconds. On the other hand, it showed

that sets that follow a geometric distribution with high success

probability (50% and higher) require a considerable time com-

pared to sets that follow a uniform distribution: it took up to 17

minutes. This can be explained by the fact that for a geometric

distribution with high success probability, the majority of the

sets have the same (or close) magnitudes. Therefore, many of the

groupings that are explored by the integer program yield similar

values for the objective function, hence recording little progress.

The above results prompted us to develop an alternative solution

when the magnitudes of the sets follow a geometric distribution

with high success probability. The alternative solution we devel-

oped is simple, yet it group sets of data records in the orders of

microseconds with a small impact on the AEC, which was higher

by a margin of 0.03 on average compared with the situation in

which we used our integer program minimizeG. More details can

be found in the technical report [5].

7 CONCLUSIONS
We presented, in this paper, a solution for systematically

anonymizing the provenance of collection-oriented workflows.

Evaluation exercises allowed us to tease apart the aspects that

impact the quality of the anonymization, namely the disparity

between the anonymity degrees of the input and output sets

of a module (or more generally the inputs and outputs of the

modules that compose the workflow), the disparity between the

anonymity degree and the magnitude of the sets of data records,

and the distribution of the magnitudes of the record sets. We

also examined the utility of the anonymized provenance using

real-world workflows, and assessed the efficiency of our solution.

In our ongoing work, we are investigating the applicability of our

solution to anonymization techniques, other than k-anonymity,

e.g., l-diversity and t-closeness [13]. We are also investigating

the incorporation of vocabularies (hierarchies of concepts) to

our solution. In the solution we presented, we substitute each

quasi-identifier attribute value with a set containing the values

that that attribute takes given a group (i.e. equivalence class) of

data records. We will investigate how the use of vocabularies

can be incorporated in our solution for generalizing the values

of quasi-identifier attributes.
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ABSTRACT
UDAFs (user-defined aggregate functions) are becoming a type

of fundamental operators in advanced data analytics. The UDAF

mechanism provided by most of the modern systems suffers,

however, from at least two severe drawbacks: defining a UDAF

requires hardcoding the routine that computes an aggregation,

and the semantics of a UDAF is totally or partially unknown to the

query processor, which hampers the optimization possibilities.

This paper presents SUDAF (Sharing User-Defined Aggregate

Functions), a declarative framework that allows users to write

UDAFs as mathematical expressions and use them in SQL state-

ments. SUDAF rewrites partial aggregates of UDAFs in users’

queries using built-in aggregate functions and supports efficient

dynamic caching and reusing of partial aggregates. Our experi-

ments show that rewriting UDAFs using built-in functions can

significantly speed up queries with UDAFs, and the proposed

sharing approach can yield up to two orders of magnitude im-

provement in query execution time.

1 INTRODUCTION
An aggregate function has the inherent property of taking several

values as input and generating a single value based on specific

criteria [17, 25]. This ability to summarize information, the in-

trinsic feature of aggregation, has always been a fundamental

task in data analysis [18, 24]. While earlier data management and

analysis systems come equipped with a set of built-in aggregate

functions, e.g., max, min, sum and count, it becomes clear that a

limited set of predefined functions is not sufficient to cover the

needs of the new applications in the age of analytics. In addition

to augmenting the set of their built-in functions, most modern

systems (e.g., [1, 2, 4, 21, 28, 29]) enable users to extend the system

functionalities by defining their own aggregations. The UDAF

(User-Defined Aggregate Function) mechanism provides a flex-

ible interface to allow users to define new aggregate functions

that can then be used for advanced data analytics, i.e., queries

with statistical functions or ML workloads.

Current UDAF mechanisms suffer, however, from at least two

drawbacks. Firstly, defining a UDAF is not an easy task since

it is up to users to implement the routine that computes their

aggregation functions. For example, to write a custom UDAF in

Spark SQL [4], a user needs to map the UDAF to four methods:

initialize, update, merge and evaluate, a.k.a. the IUME pattern.

The user must ensure that the merge method is commutative

and associative such that the UDAF can be computed correctly

in a distributed architecture. In other words, to take benefit from

distributed computations in Spark SQL, it is up to the user to

identify whether her function supports partial aggregates (i.e.,

whether it is an algebraic function [18]). Secondly, the semantics

of a UDAF, i.e., computation details, are not fully captured by

a query engine, which hampers optimization possibilities. For

© 2020 Copyright held by the owner/author(s). Published in Proceedings of the
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example, when computing a UDAF that is created using the IUME

pattern, a query engine can only be aware of calling an update

function if there is a tuple or calling a merge function if there are

intermediate results. However, the specific computations that are

required to compute update and merge functions are unknown

to a query engine since these two functions are hardcoded. The

loss of such computation details prevents a query engine from

sharing partial results of different UDAFs.

In the context of aggregate queries optimization, material-

ized views with aggregates or cached queries are among the

techniques that can be used to accelerate query processing. In

this context, most existing works focus on the data dimension

[8, 11, 12, 15], i.e., sharing identical aggregates computed over

overlapping range predicates or different data granularities. Ad-

mittedly, considering only the data dimension restricts the shar-

ing possibilities to queries with identical aggregation operators.

To cope with such a limitation, few works propose to use prede-

fined rules to specify how a given aggregate can be computed

from the results of another one [10, 33]. However, such a static

approach requires one to explicitly predefine the computation

rules across prefixed aggregates, which hinders the optimization

for UDAFs defined on the fly.

The objective of this work is twofold: firstly, we aim at giving

full flexibility to users by providing a declarative framework

that allows them to write UDAFs as mathematical expressions

and use them in SQL queries
1
. Then, a UDAF is decomposed

into partial aggregates, which are then rewritten using built-in

functions, i.e., scalar functions and aggregations. Secondly, our

goal is to develop a dynamic approach for caching and reusing

partial aggregates of UDAFs to optimize the computations of

UDAFs. More precisely, we aim at identifying when it is possible

to reuse cached partial aggregates of past UDAFs to compute

new UDAFs.

Contributions. Our main contributions, implemented in the

SUDAF framework, are as follows:

• We present SUDAF, a declarative UDAF framework that al-

lows users to formulate a UDAF as a mathematical expres-

sion and use them within SQL queries. When executing a

given query with UDAFs, SUDAF identifies appropriate

partial aggregations from the mathematical expression of

a UDAF and rewrites them using built-in functions of an

underlying data management and analysis system.

• We formalize the problem of identifying when a partial

aggregate of a given UDAF can be used in the computation

of another UDAF as the sharing problem, and we show that

this problem is undecidable in a general setting.

• To deal with the undecidability of the sharing problem, we

restrict the set of UDAFs supported in SUDAF by provid-

ing classes of primitive functions that can be used to de-

scribe mathematical expressions of UDAFs. This practical

framework is powerful enough to be used in practical ap-

plications. From a theoretical standpoint, we characterize

1
This approach is more intuitive than programming the procedure of an aggregation,

e.g., Wolfram Mathematica provides mathematical expressions to define advanced

statistical computation [34].
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Figure 1: Experiments in PostgreSQL with the TPC-DS
dataset (scale = 20). UDAFs theta1() and qm() are created
in PL/pgSQL.

the sharing problem in SUDAF and provide correspond-

ing sharing conditions (Theorem 4.1). From a practical

standpoint, we design an approach based on symbolic

representations of mathematical expressions to efficiently

verify the proposed conditions.

• We implemented a SUDAF prototype and report on ex-

periments using SUDAF with both PostgreSQL and Spark

SQL. Our experiments show that rewriting partial aggre-

gates of UDAFs using built-in aggregates can significantly

speed up query execution. In addition, the proposed shar-

ing technique can yield up to two orders of magnitude

improvement in query execution time.

The rest of this paper is organized as follows. We present a

motivating example to illustrate SUDAF’s main features in Sec-

tion 2. In Section 3, we introduce a canonical form of UDAFs

and discuss the sharing problem in this context. In Section 4,

we present the SUDAF framework and show that the sharing

problem is decidable in this context. In Section 5, we introduce a

practical approach, based on symbolic representations of partial

aggregates, to solve the sharing problem in the SUDAF frame-

work. In Section 6, we present an experimental evaluation of

SUDAF. We discuss related works in Section 7 and conclude in

Section 8. All related proofs are included in our online technical

report [31].

2 MOTIVATING EXAMPLE
In this section, we present a motivating example demonstrating

two SUDAF’s functionalities: (i) rewriting UDAFs using built-in
functions, and (ii) sharing partial aggregation results between

different UDAFs. In addition, we also illustrate how the sharing

mechanism can be used to extend query rewriting using aggre-

gate views. In the following example, we consider 4 relations of

the TPC-DS [27] dataset, store_sales, store, date_dim and stores.
Suppose that a user wants to analyze the price of every item

sold by the stores in the state Tennessee (TN) in the past ev-

ery year. Specifically, the user has a hypothesis of a simple
linear regression: y = θ1x + θ0, where y represents a value

in the sales_price column and x a value in the list_price col-

umn. Using the least square error function, we have θ1 (X ,Y ) =
n
∑
xiyi−

∑
xi
∑
yi

n
∑
x 2

i −(
∑
xi )2

, and θ0 (X ,Y ) = avд(Y ) − θ1avд(X ).

One can hardcode θ1 as a user-defined function and then uses

it in an SQL statement, e.g., one writes a piece of Java or Scala

code to create θ1 in Spark SQL (see Scala code in [31]). Assume

that a hardcoded user-defined function theta1(), that implements

the function θ1 (), is created and the following query Q1 is issued:
Q1: SELECT ss_item_sk, d_year, avg(ss_list_price),

avg(ss_sales_price),
theta1(ss_list_price,ss_sales_price)

FROM store_sales, store, date_dim
WHERE ss_sold_date_sk = d_date_sk and
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Figure 2: Experiments in Spark SQL with the TPC-DS
dataset (scale = 100). UDAFs theta1() and qm() are created
using UserDefinedAggregateFunction in Scala.

ss_store_sk = s_store_sk and s_state = 'TN'
GROUP BY ss_item_sk, d_year;

Alternatively, in SUDAF the function theta1() is defined declar-
atively by providing its mathematical expression without the

needs of any programming effort.

Now, assume that a user defines the expressions of theta1()
and avg() and uses them in the query Q1. We illustrate in the rest

of this section two benefits of using SUDAF to execute the query

Q1: (i) the partial aggregates of theta1() and avg() used in the

query Q1 are rewritten into a set of partial aggregates using the

built-in functions sum and count , and (ii) the partial aggregates
computed during the execution of Q1 can be cached and reused

to compute various other UDAFs.

Rewriting partial aggregates using built-in functions. The
first step of processingQ1 in SUDAF is to factor out partial aggre-
gates of theta1() and avg() and rewrite them using built-in func-

tions to compute. More precisely, SUDAF identifies the following
5 partial aggregates in the expression of θ1: s1 = count (), s2 =∑
xi , s3 =

∑
x2

i , s4 =
∑
yi and s5 =

∑
xiyi . Hence, SUDAF

rewrites Q1 to the following query RQ1 where the partial aggre-
gates are first computed and then theta1() is computed using the

partial aggregates, θ1 =
s1s5−s4s2

s1s3−(s2 )2
.

RQ1: SELECT ss_item_sk, d_year, s2/s1 avg_list_price,
s4/s1 avg_sales_price,
(s1*s5-s4*s2)/NULLIF((s1*s3-power(s2,2)),0) theta1

FROM (SELECT ss_item_sk, d_year, count(*) s1,
sum(ss_list_price) s2,
sum(power(ss_list_price,2)) s3,
sum(ss_sales_price) s4,
sum(ss_sales_price*ss_list_price) s5

FROM store_sales, store, date_dim
WHERE ss_sold_date_sk = d_date_sk and

ss_store_sk = s_store_sk and
s_state = 'TN'

GROUP BY ss_item_sk, d_year) TEMP;

Compared to the original query Q1, RQ1 uses only built-in

aggregate functions and hence it is expected to be much more

efficient because built-in functions are better handled by existing

query optimizers and execution engines than hardcoded user-

defined functions. Figure 1 (a) shows that the execution of Q1
using SUDAF on top of PostgreSQL can be 10X faster compared

to running Q1 directly over PostgreSQL. Similar results can be

observed in Figure 2 (a) using SUDAF on top of Spark SQL, where

Q1 is 1.25X faster compared to the direct execution of Q1 over
Spark SQL. To be fair in our analysis, we should mention that

in the context of PostgreSQL and Spark SQL systems, where the

covariance (cov) and the variance (var ) are built-in functions,

an alternative and efficient implementation of theta1() can be

obtained using the formula theta1() = cov/var. We also report

the query time of using cov/var in Q1, respectively in Figure 1

(a) and Figure 2 (a), which is at the same order of magnitude as

SUDAF execution time. However, even in this case, the benefit
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of using SUDAF comes from the fact that the performance of

SUDAF is independent of the user’s programming skill and, as

shown in the next example, the partial aggregates computed by

SUDAF using sum and count aggregates open wider sharing

possibilities than the variance and covariance functions.

Note that SUDAF decomposes a UDAF into two parts, a set

of partial aggregates and a terminating function T , then only

the partial aggregates of a UDAF are rewritten using built-in

functions. This is because a terminating function T is essentially

a scalar function applied only on several partial aggregates, and

hence it does not impact the computation time of a UDAF. More-

over, there are some UDAFs where it is not possible to write their

corresponding terminating functions using built-in functions,

e.g., the MomentSolver [16] used to approximate a quantile.

Sharing partial aggregates across UDAFs. Caching the result
of Q1, which contains the aggregate values of theta1(), is of
little interest from the sharing perspective. However, the partial

aggregates s1, . . . , s5 computed by the query RQ1 offer more pos-

sibilities to be reused in future UDAF computations. We illustrate

the sharing idea by the following example. Consider a new query

Q2 that computes quadratic mean qm() and standard deviation

stddev() of list prices of every item sold by stores in TN for every

year:

Q2: SELECT ss_item_sk, d_year, qm(ss_list_price),
stddev(ss_list_price)

FROM store_sales, store, date_dim
WHERE ss_sold_date_sk = d_date_sk and

ss_store_sk = s_store_sk and s_state = 'TN'
GROUP BY ss_item_sk, d_year;

Using SUDAF, qm() (an instance of power mean with p = 2

shown in Table 1) and stddev() are defined using themathematical

expressions given in Table 1. When executing Q2, SUDAF factors
out their partial aggregations and generates the following query

RQ2 which uses the same partial aggregates s1, s2 and s3 as the

query RQ1.
RQ2: SELECT ss_item_sk, d_year, sqrt(s3/s1) qm_list_price,

sqrt(s3/s1-power(s2/s1,2)) std_list_price
FROM (SELECT ss_item_sk, d_year, count(*) s1,

sum(ss_list_price) s2,
sum(power(ss_list_price,2)) s3

FROM store_sales, store, date_dim
WHERE ss_sold_date_sk = d_date_sk and

ss_store_sk = s_store_sk and
s_state = 'TN'

GROUP BY ss_item_sk, d_year) TEMP2;

SUDAF can cache the partial aggregates in the query RQ1 and
identify the opportunity to reuse them for computing aggregates

in the query RQ2 automatically. This makes the execution of Q2
in SUDAF significantly faster than executing the query Q2 from
base data. We report the query time of Q2 when it is executed by

SUDAF on top of PostgreSQL in Figure 1 (b) and on top of Spark

SQL in Figure 2 (b). In both figures, the execution time of SUDAF
is compared to the execution time of the query Q2 computed

respectively over PostgreSQL and Spark SQL. We would like to

stress the fact that the result of the UDAF theta1() computed by

the query RQ1 cannot be reused to compute the UDAF qm() and
stddev() of the query RQ2. However, identifying the appropriate

partial aggregates of RQ1 andRQ2 enables to increase the sharing
opportunities between these two queries.

Note that we only consider in our example the computation

dimension, i.e., computing a UDAF from other UDAFs. Full imple-

mentation of our approach requires handling the data dimension,

i.e., whether a query is semantically contained in the cached

query, which is not addressed in this paper. We point out existing

techniques [15, 33] based on data partitioning that can be used in

our context to handle the data dimension issue. The main idea of

such techniques is to partition the data into predefined chunks

and then to map a given query to chunks. Extending SUDAF
with such techniques enables us to share partial aggregates over

predefined data chunks.

We would like to stress the following three features of the

SUDAF sharing mechanism:

• Firstly, it increases performance significantly compared

to SUDAF without sharing. In this example, using SUDAF
without sharing over PostgreSQL to compute Q2 will take

33.61 s, which is far slower compared to 0.892 s shown in

Figure 1 (b). Similarly, in the case of using SUDAF over

SparkSQL, SUDAFwithout sharing will take 2.953 s, which
is also significantly slower compared to 0.059 s shown in

Figure 2 (b).

• Moreover, the sharing opportunity is dynamically iden-

tified in SUDAF by analyzing the expressions of partial

aggregates in UDAFs. Note that, using a static approach,

one has to predefine computation rules for specific aggre-

gations, e.g., defining stddev → s1, s2, s3 to share results

between RQ1 and RQ2, which is not required in SUDAF.
• Finally, the sharing mechanism of SUDAF covers also the

case where partial aggregates are not identical (we present

sharing conditions in Section 4.2). For example, SUDAF
enables sharing computations between geometric mean

and the aggregate

∑
ln(xi ), an element of the moment

sketch [16]. This is because the partial aggregate

∏
xi

of geometric mean (see Table 1) can be computed from∑
ln(xi ), i.e.,

∏
xi = exp (

∑
ln(xi )),∀xi > 0 (see detailed

experiments in Section 6).

Extending query rewriting using aggregate views.We show

that factoring out partial aggregations of UDAFs can improve

traditional query rewriting using aggregate views. Assuming a

user is interested in computing qm() and stddev() of the list prices
of all items in the category of sports sold by stores in TN for every

year since 2000. This is expressed by the following query Q3.
Q3: SELECT d_year, qm(ss_list_price), stddev(ss_list_price)

FROM store_sales, store, date_dim, item
WHERE ss_sold_date_sk = d_date_sk and ss_item_sk =

i_item_sk and ss_store_sk = s_store_sk and
i_category = 'Sports' and s_state = 'TN'
and d_year >= 2000

GROUP BY d_year;

Now, assume that a materialized view VQ1 corresponding

to the query Q1 is given. One can realize that the view VQ1 is
useless for rewriting Q3 since it is not possible to compute qm()
and stddev() from theta1() and avg().

However, if a materialized view V1 corresponding to the sub-

query of RQ1 is given and if we factor out partial aggregations

of qm() and stddev() in Q3 to generate the following query RQ3:
RQ3: SELECT d_year, sqrt(s3/s1) qm_list_price,

sqrt(s3/s1-pow(s2/s1,2)) std_list_price
FROM (SELECT d_year, count(*) s1,

sum(ss_list_price) s2,
sum(power(ss_list_price,2)) s3

FROM store_sales, store, date_dim, item
WHERE ss_sold_date_sk = d_date_sk and

ss_item_sk = i_item_sk and
ss_store_sk = s_store_sk and
i_category = 'Sports'
and s_state = 'TN'and d_year >= 2000

GROUP BY d_year) TEMP3;

Then it is possible to use the rewriting algorithm proposed in [13]

to rewrite the subquery of RQ3 using V1. The obtained rewriting,
denoted by RQ3’, is shown below.
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Table 1: Examples of aggregations in canonical forms.

Aggregation Expression Canonical form
(
F, ⊕,T

)
Power mean (

∑
(xi )

p

n
)1/p

(
(1,x

p
i ), (+,+), (

s2

s1

)1/p
)

Geometric

mean
(
∏

xi )
1/n

(
(xi , 1), (×,+), (s1)

1/s2

)

Stddev

√∑
x2

i
n
− (

∑
xi
n

)2
(
(1,xi ,x

2

i ), (+,+,+),

√
s3

s1

− (
s2

s1

)2
)

Central

moment

∑
(xi − avд)

k

n

(
((xi − avд)

k , 1), (+,+), s1/s2

)
LogSumExp ln(

∑
exp (xi ))

(
(exp (xi )), (+), ln(s1)

)

Aggregation Expression Canonical form
(
F, ⊕,T

)
Skewness

(
∑
(xi − avд)

3)/n

((
∑
(xi − avд)2)/n)3/2

(
((xi − avд)

3, (xi − avд)
2, 1),

(+,+,+),
(s1/s3)

(s2/s3)3/2

)
Covariance

∑
(xiyi )

n
−

∑
xi
∑
yi

n2

(
(xi ,yi ,xiyi , 1), (+,+,+,+),

s3

s4

−
s1s2

s4

)

Correlation
n
∑
(xiyi ) −

∑
xi
∑
yi√

n
∑
x2

i − (
∑
xi )2
√
n
∑
y2

i − (
∑
yi )2

(
(xi ,x

2

i ,yi ,y
2

i ,xi × yi , 1),

(+,+,+,+,+,+),
s6s5 − s1s3√

s6s2 − (s1)2
√
s6s4 − (s4)2

)

RQ3': SELECT d_year, sqrt(s3/s1) qm_list_price,
sqrt(s3/s1-pow(s2/s1,2)) std_list_price

FROM (SELECT d_year, sum(s1) s1, sum(s2) s2,
sum(s3) s3

FROM V1, item
WHERE ss_item_sk = i_item_sk and

d_year >= 2000 and
i_category = 'Sports'

GROUP BY d_year) TEMP3;

The key reason that enables such a rewriting comes from the

fact that the UDAFs have been rewritten using built-in aggre-

gates: sum() and count() (we recall that the rewriting algorithm
proposed in [13] supports only the sum and count aggregates).
We report the execution time of Q3 and RQ3’ in PostgreSQL in

Figure 1 (c) and Spark SQL in Figure 2 (c).

To conclude this section, we would like to emphasis the fact

that the main features of SUDAF, factoring out the partial aggre-

gations of UDAFs, computing partial aggregations using built-in

functions and sharing partial aggregates, provide abundant op-

portunities to speed up queries with UDAFs. In the rest of this

paper, we address the following challenges:

• how to identify appropriate partial aggregations of UDAFs
to maximize sharing opportunities?
• how to efficiently determine when cached results of par-
tial aggregations of UDAFs can be reused to compute other
UDAFs? (hereafter, called the sharing problem)

3 IDENTIFYING AND SHARING PARTIAL
AGGREGATES

We aim at speeding up queries with UDAFs by reusing cached

answers to previous queries with UDAFs during the evaluation of

new ones. We deal with the following two issues in this section.

What computation results should be cached to optimize the eval-
uation of UDAFs? We identify a canonical form of UDAFs [10],

which captures the computation pipelines of UDAFs. We analyze

the caching possibilities based on the computation pipelines and

identify the appropriate level of aggregation to be kept in caches.

How can we identify if a cached answer can be reused in the
evaluation of a given UDAF? We formalize the problem of identi-

fying a reusable answer as the sharing problem. Then we show

that it is an undecidable problem for arbitrary cases. In Section

4, we present a restricted, yet powerful enough, framework to

handle the sharing problem for practical cases.

3.1 Canonical forms of UDAFs
An aggregate function takes as inputs several values and pro-

duces as output a single representative value [17]. In our work, we

consider aggregations operating on multisets. Let Ds and Dt be

two domains i.e., countably infinite sets of values, and letM (Ds )

denote the set of all nonempty multisets of elements from Ds .

An aggregate function α is a function:M (Ds ) → Dt .

We use the notion of well-formed aggregation to define a

canonical form of aggregate functions. Well-formed aggregation

was introduced in [10] to capture the manner in which a UDAF

is created. An aggregation α : M (Ds ) → Dt is a well-formed
aggregation if α can be expressed as a triple (F , ⊕,T ), where F
is a translating function, ⊕ is a commutative and associative

binary operation andT is a terminating function, such that ∀X =
{{x1, ...,xn }} ∈ M (Ds ),α (X ) = T (F (x1) ⊕ . . . ⊕ F (xn )), or briefly
α (X ) = T (

∑
⊕ F (xi )).

In this paper, we consider the well-formed aggregation as the

canonical form of UDAFs. We list some examples of aggregations

with their canonical forms in Table 1 (an input of a terminating

functionT is denoted as si ). It is interesting to note that practical
aggregations usually have addition and multiplication as an ele-

ment of ⊕ function in their canonical forms, e.g., the ⊕ function

of geometric mean is (×,+).
Given an aggregation, α = (F , ⊕,T ), the associative and com-

mutative property of ⊕ ensures that α (X ) can be computed by

first applying F and ⊕ on arbitrary subsets of X and then the

intermediate results can be merged using ⊕ and T to produce

the final result α (X ). Hence, we call the intermediate results∑
⊕ F (xi ) the partial aggregations of α .

3.2 Caching aggregate data
To obtain more sharing possibilities, we identify which results

of an aggregation are worth caching based on its canonical

form. Consider two aggregations α = (Fα , ⊕α ,Tα ) and β =
(Fβ , ⊕β ,Tβ ). Suppose a scenario where an implementation of α
based on its canonical form is executed first. When the UDAF β
is evaluated, there are three possibilities to reuse partial or whole

computation results of α : (1) the result of Fα , (2) the result of∑
⊕α Fα , or (3) the final result of α . It is clear that caching the 1st

result does not provide any added value to the computation of

β since Fα is a scalar function. Storing the 3rd result is of little

interest as it offers very restricted possibilities
2
to be reused in

the computation of other UDAFs, e.g., β . However, the partial
aggregation

∑
⊕α Fα offers much more potentials to reuse than

the others. For example, if α is a stddev and β is a power mean
(p = 2) shown in Table 1, it is not possible to reuse the final result
of α to compute β . However, using their canonical forms, one can

observe that the fragments, s1 and s3, in the partial aggregation

of α can be used to compute β . Therefore, we choose to cache

the partial aggregation

∑
⊕α Fα (xi ).

2
Theoretically, Tα should not be expected to have an inverse function [10], such

that we cannot always have the 2nd result if we cache the 3rd one. However, we

can indeed have the 3rd result if we cache the 2nd result.
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Table 2: Classes of primitive functions provided in
SUDAF.

Class Functions
PS a; x ; ax ; xa ; loдax ; a

x
.

PB +; −; ×; /; ∧.

PA
∑
;

∏
.

PS◦ д(x ) = hl ◦ ... ◦ h1 (x ), with hj ∈ PS, for j ∈
[1, ..., l].

PS⊙ f (x ) = дk (x ) ⊙k−1
... ⊙1 д1 (x ), with дj ∈

PS◦, ⊙z ∈ PB, for j ∈ (1, ...,k ), z ∈ (1, ...,k −
1),k ∈ N>0.

PA◦ aдд(X ) = f ′ ◦
∑
⊕ ◦f (xi ), with f , f ′ ∈

PS⊙,
∑
⊕ ∈ PA.

PA⊙ baдд(X ) = T ′(aддk (X ) ⊙k−1
... ⊙1 aдд1 (X )),

with aддj ∈ PA◦,⊙z ∈ PB for j ∈ (1, ...,k ),z ∈
(1, ...,k − 1),k ∈ N>1 and T ′ ∈ PS⊙ .

Table 3: Cases analysis of the sharing problem in SUDAF.

Case f1 in s1 f2 in s2 Whether s1 ∈ D (s2)

1 Injective Non-injective N (case 1 of Theorem 4.1)

2 - Injective Case 2 of Theorem 4.1

3 Even Even Case 2 of Theorem 4.1

4 Neither injective

nor even

Neither injective

nor even

Splitting rules (SR)

: neither injective 
nor even

: injective

: even

𝑷𝑺∘

𝑷𝑺⨀

Figure 3: Injective and even functions in PS◦ and PS⊙ (excluding
constant functions).

3.3 Sharing aggregation states
Let α = (F , ⊕,T ) be an aggregation and

∑
⊕ F (xi ) be the partial

aggregation of α . We decompose the partial aggregation as fol-

lows,

∑
⊕ F (xi ) =

( ∑
⊕1

f1 (xi ), ...,
∑
⊕m fm (xi )

)
, where the fi s

are scalar functions and the ⊕i s are commutative and associa-

tive binary operations, e.g., the partial aggregation of geometric

mean is (
∏

xi , count ). In the sequel, we call an individual ele-

ment sj (X ) =
∑
⊕j fj (xi ) as an aggregation state, e.g., both

∏
xi

and count are aggregation states of geometric mean.

We rely on aggregation states to define when a partial result

of a UDAF α can be reused in the computation of another UDAF

β . More precisely, we define below when an aggregation state s
of α can be shared by an aggregation state s ′ of β .

Definition 3.1. Let s ′(X ) and s (X ) be two aggregation states

of two UDAFs. Then, s ′ shares s iff there exists a computable

function r such that s ′(X ) = r ◦ s (X ),∀X ∈ M (D).

The function r is a scalar function that enables computing the

aggregation state s ′ without scanning the base dataset X , e.g., r
is the identity function if s ′(X ) = s (X ). If an aggregation state s
is cached, the sharing problem is then to decide whether s can
be reused in the computation of another aggregation state s ′.

We denote the problem whether s ′ shares s as share(s ′, s).
As stated by the following theorem, it is not possible to solve

share(s ′, s) in a general setting. The proof for Theorem 3.2 is

included in our online technical report [31].

Theorem 3.2. The problem share(s ′, s) is undecidable.

4 THE SUDAF PRACTICAL FRAMEWORK
In this section, we present a declarative UDAF framework SUDAF,
which rests on the canonical form of UDAFs to generate and share

partial aggregation states of UDAFs automatically. The following

main objective guided the design of SUDAF.
How to deal with the undecidability of the sharing problem? We

adopt a pragmatic approach to solve this problem by restricting

the class of UDAFs that can be used in SUDAF. The proposed
practical framework is powerful enough to be useful in many real-

world applications while making the sharing problem decidable.

We argue that it is not realistic to ask a user to provide UDAFs

in their canonical forms. Therefore, SUDAF enables users to for-

mulate UDAFs as mathematical expressions and then generates

a corresponding canonical form. Consequently, in a generated

canonical form, SUDAF knows the semantics of partial aggrega-

tions, i.e., computation details, which can be exploited to analyze

sharing possibilities during computing UDAFs.

4.1 Declarative UDAF framework
SUDAF provides a set of predefined functions that can be used

by users to write UDAFs. Three classes of primitive functions are

proposed (cf. Table 2):

• Primitive scalar functions. This class, denoted PS (primitive

scalar), contains six types of functions: constant, identity,
linear, power, logarithmic and exponential functions. The
elements of PS are presented in line 1 of Table 2, where a
is an arbitrary constant defined by users.

• Primitive binary functions. This class, denoted PB (primi-

tive binary), contains the following binary functions: ad-
dition +, subtraction −, multiplication ×, division / and
exponentiation ∧.
• Primitive aggregate functions. This class, denoted PA (prim-

itive aggregate functions), contains two functions: sum-
mation

∑
and product

∏
.

As explained below, primitive functions can be combined using

the composition operator and binary functions to create more

complex scalar and aggregate functions.

Complex scalar functions. SUDAF provides a composition op-
erator, denoted ◦, that enables creating complex scalar functions

from the primitive ones. The class of such functions is denoted

PS◦. A function д(x ) ∈ PS◦ can be expressed as a composition

of primitive scalar functions (cf. Table 2). The length of д(x ),
denoted |д |, gives the number of primitive functions used in the

definition of д(x ). For example, if д(x ) = hl ◦ ... ◦ h1 (x ), with
hj ∈ PS , then |д | = l . Besides, more complex scalar functions

can be expressed by using binary functions to combine scalar

functions from PS◦. The set of such functions, i.e., scalar func-

tions containing binary operations, is denoted PS⊙ . The shape
of functions in PS⊙ is shown in Table 2.

Supported aggregations. SUDAF also allows using the compo-

sition operator ◦ between scalar functions and primitive aggre-

gate functions to define new aggregations. More precisely, in this

context, the composition can be used in two ways: (i) to apply a

scalar function on an output of a primitive aggregate function, or

(ii) to apply a primitive aggregation on a set of data transformed

using a scalar function. The class of such functions is denoted
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as PA◦. The expression of aggregation aдд ∈ PA◦ is presented in

Table 2. Moreover, more complex aggregations can be expressed

using primitive binary functions to combine several aggregations

in PA◦. The class of such functions is denoted as PA⊙, and a

UDAF baдд ∈ PA⊙ has the expression shown in Table 2.

Scope of UDAFs in SUDAF. SUDAF restricts the set of UDAFs

that can be declared to the classes presented in Table 2. We shall

show in the next section that this restriction enables us to cope

with the undecidability of sharing problems. However, this re-

striction does not hamper the usability of SUDAF in real world

applications since the proposed framework covers a wide range

of aggregations such as the classes of power mean, arbitrary
central moments [7], arbitrary standardized moments [32] and
other multi-variate aggregations

3
such as covariance, correlation,

and cofactor aggregates [30] used in training linear regression.

Generally, algebraic aggregations can be defined in SUDAF. Al-
though holistic aggregations, e.g., median, cannot be expressed
in SUDAF, aggregates used in their approximation algorithms

are supported by SUDAF, e.g., moment sketch [16],

Mapping SUDAF functions into canonical forms. SUDAF
supports two scenarios to define UDAFs. We explain below how

to derive canonical forms and aggregation states from UDAFs

defined in each scenario.

The first scenario is that a terminating function is described

using an element from PS⊙ . Such functions are expressed using

a functionT ′ ∈ PS⊙ applied on compositions, using binary oper-

ations in PB, of aggregations from PA◦ and have the following

general form:

α (X ) = T ′(
(
f ′k ◦
∑
⊕k

◦fk (xi )
)
⊙k−1

... ⊙1

(
f ′
1
◦
∑
⊕1

◦f1 (xi )
)
).

The fj , f
′
j , for j ∈ [1, ...,k], are scalar functions from PS⊙ and∑

⊕j are primitive aggregations from PA. Given such a function

α (X ) ∈ PA⊙ , a canonical form canonical(α ) = (F , ⊕,T ) is de-
rived from the general expression of α as follows:

• F = ( f1, . . . , fk );
• ⊕ = (⊕1, . . . , ⊕k ) and

• T = T ′
(
( f ′

1
◦
∑
⊕1
◦f1) ⊙1 . . . ⊙k−1

( f ′k ◦
∑
⊕k ◦fk )

)
.

The aggregation states of α are shown as follows: sj (X ) =∑
⊕j fj (xi ), for j ∈ [1, . . . ,k]. For instance, aggregations in Table

1 can be defined in SUDAF using their expressions in the second

column. SUDAF generates their canonical forms and aggregation

states from their expressions (the si elements in Table 1).

The second scenario is that a terminating function is cre-

ated by hardcoding. Such functions have the following shapes,

α (X ) = T (s1, ..., sk ), where sj , j ∈ (1, ...,k ) is an aggregation

state. For example, if one wants to use the MomentSolver [16]

taking the MomentSketch as inputs to approximate a quantile,

the MomentSketch can be defined as a set of aggregation states

from PS◦ and the MomentSolver as a terminating function.

4.2 Dealing with the sharing problem in
SUDAF

In this section, we present sharing conditions to deal with

the sharing problem in SUDAF. Let s1 (X ) =
∑
⊕1

f1 (xi ) and
s2 (X ) =

∑
⊕2

f2 (xi ) be two aggregation states of two UDAFs in

the scope of SUDAF. Then both f1 and f2 belong to PS⊙ . We

3
Multi-variate aggregations can be seen as a combination of several uni-variate

aggregations, each of which is expressed using functions in Table 2. Moreover,

the cofactor aggregate

∑
xiyi computed over columns X and Y can be seen as a

uni-variate aggregate over an abstract column Z = X ·Y with the scalar product ·.

carry out a case analysis to identify the conditions that character-

ize situations where s1 shares s2. Our case analysis is based on the

properties of the scalar functions f1 and f2 used by the aggrega-

tion states s1 and s2. In fact, all scalar functions in PS
◦
, except con-

stant functions, are either injective, or even (i.e., f (x ) = f (−x ))),
while scalar functions in (PS⊙ \ PS◦) are not injective because
of the presence of the arithmetic binary functions ⊙ (cf. Figure

3). Therefore, we split the sharing problem share(s1, s2) into four

main cases depending on whether f1 and f2 are injections or

even functions. The studied cases are presented in Table 3. Our

main results provide a full characterization for the first three

cases in Table 3. Specifically, we provide complete conditions in

Theorem 4.1 for the first two cases in Table 3, and then we reduce

the third case to the second case in Table 3. We also propose an

incomplete solution to deal with the fourth case in Table 3.

Theorem 4.1. Let X ∈ M (Q) and let s1 (X ) =
∑
⊕1

f1 (xi ) and
s2 (X ) =

∑
⊕2

f2 (xi ) be two aggregation states with
∑
⊕1
∈ PA and∑

⊕2
∈ PA, f1 a non constant function and s1 , s2. Then, we have:

(Case 1) if f1 is injective and f2 is not injective, then s1 does not share
s2.

(Case 2) if f2 is injective, then: there exists a computable function
r12 such that s1 (X ) = r12 ◦ s2 (X ) iff one of the following
conditions holds:

(2.1)

∑
⊕1
=
∑
⊕2
=
∑

and f1 ◦ f
−1

2
(x ) = ax with a ∈ Q,0 a

constant. Then we have r12 (x ) = f1 ◦ f
−1

2
(x ).

(2.2)

∑
⊕1
=
∑
,
∑
⊕2
=
∏

and f1 ◦ f
−1

2
(x ) = a(loдb |x |) with

b ∈ Q>0,,1 and a ∈ Q,0 two constants. Then we have
r12 (x ) = f1 ◦ f

−1

2
(x ).

(2.3)

∑
⊕1
=
∏
,
∑
⊕2
=
∑

and f1 ◦ f −1

2
(x ) = bax with

b ∈ Q>0,,1 and a ∈ Q,0 two constants. Then we have
r12 (x ) = f1 ◦ f

−1

2
(x ).

(2.4)

∑
⊕1
=
∑
⊕2
=
∏

and with a constant a ∈ Q,0:
(i) when f1 ◦ f

−1

2
(−1) = 1, f1 ◦ f −1

2
(x ) = |x |a ;

(ii) when f1 ◦ f
−1

2
(1) = −1, f1 ◦ f −1

2
(x ) = sдn(x ) × |x |a ;

Then we have r (x ) = f1 ◦ f
−1

2
(x ).

The proof for Theorem 4.1 is included in a technical report [31].

The case 1 of Theorem 4.1 states that, given two aggregation

states s1 (X ) =
∑
⊕1

f1 (xi ) and s2 (X ) =
∑
⊕2

f2 (xi ) in the scope

of SUDAF, when f1 is injective and f2 is non-injective, then

except the special case of an identity function when s1 = s2,

it is not possible to find a computable function r12 such that

s1 (X ) = r12◦s2 (X ). The case 2 of Theorem 4.1 provides necessary

and sufficient conditions to characterize solutions for the problem

share(s1, s2) when f2 is injective. It carries out a case analysis for

the four possible combinations obtained from the instantiation

of

∑
⊕1

and

∑
⊕2

as operations in PA, i.e., either sum or product.

Example 4.2. We explain how Theorem 4.1 can be used as

follows. Consider the problem whether s1 (X ) =
∑

4xi shares
s2 (X ) =

∏
2
xi
. Since

∑
⊕1
=
∑

and

∑
⊕2
=
∏
, then the case 2.2

of Theorem 4.1 is selected. Then, we have f1 ◦ f
−1

2
(x ) = 4loд2 (x ),

which satisfies the shape a(loдb (x )) with constants a = 4 and

b = 2. Thus, we have s1 (X ) = r ◦ s2 (X ) with r (x ) = 4loд2 (x ).

The case of even scalar functions. The third case to deal with
is when both f1 (x ) and f2 (x ) are not injections but even functions
(case 3 of Table 3). As depicted in Figure 3, non-injective scalar

functions of PS◦ are even functions. We exploit this property to

reduce the study to a sharing problem over a positive domain

of scalar functions and show that the case 2 of Theorem 4.1 can

be applied in this setting. We denote UX = {ux = |x | |x ∈ X }.
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Then, whatever x is, we haveux ⩾ 0. Let s1 (X ) =
∑
⊕1

f1 (xi ) and
s2 (X ) =

∑
⊕2

f2 (xi ) be two aggregation states in SUDAF such

that { f1, f2} ⊂ PS◦. Observe that s1 (X ) shares s2 (X ) iff s1 (UX )
shares s2 (UX ). This is because f1 (x ) = f1 (ux ) (since f1 is even),

and similarly for f2. Consequently, one can focus on solving

the sharing problem only over positive domains of f1 and f2. In
this setting (positive domain), all primitive scalar functions of

SUDAF (non-constant elements in PS) are injections and hence

the complex scalar functions, elements of PS◦, are also injective

functions. Therefore, the case 2 of Theorem 4.1 can be exploited

to solve the sharing problem in this context.

The case of neither even nor injective scalar functions. The
last case to deal with is when both f1 (x ) and f2 (x ) are nei-

ther injections nor even functions (case 4 of Table 3). As de-

picted in Figure 3, such scalar functions are from (PS⊙ \ PS◦).
We propose splitting rules to deal with such cases. W.l.o.g, let

s (X ) =
∑
⊕ (д1 (xi ) ⊙ д2 (xi )),

∑
⊕ ∈ PA, {д1,д2} ∈ PS

◦
. Then, we

define the following two splitting rules (SR):

SR1:
∑
(д1 (xi ) ⊙ д2 (xi )) =

∑
(д1 (xi )) ⊙

∑
(д2 (xi )), ⊙ ∈ {+,−};

SR2:
∏
(д1 (xi ) ⊙ д2 (xi )) =

∏
(д1 (xi )) ⊙

∏
(д2 (xi )), ⊙ ∈ {×, /}.

By applying the above two rules, aggregation states in (PS⊙\PS◦)
can be split into new ones with scalar functions in PS◦, which can
still be verified using Theorem 4.1. If aggregation stares are not

covered by splitting rules in this case, SUDAF simply proceeds

syntactic comparison between their mathematical expressions.

Note that syntactic comparison is sufficient but not necessary.

5 A PRACTICAL APPROACH TO SOLVE
THE SHARING PROBLEM

We present in this section a practical approach to solve the shar-

ing problem based on the results provided by Theorem 4.1. Turn-

ing the conditions of Theorem 4.1 into an algorithm could be

cumbersome because equivalent mathematical expressions may

have different syntactic shapes.

Example 5.1. Consider the problem whether s1 (X ) =
∑

4x2

i
shares s2 (X ) =

∑
(3xi )

2
. Using Theorem 4.1, one needs to con-

struct f1 ◦ f
−1

2
(x ) = 4x ◦ x2 ◦ 1

3
x ◦
√
x (over the positive domain

since both f1 and f2 are even). Then, according to case 2.1 of

Theorem 4.1, we need to check whether f1 ◦ f
−1

2
(x ) = ax , for

some constant a. This is not an easy task, particularly for gen-

eral cases, since it requires mathematical transformations of the

original expression as follows: f1 ◦ f
−1

2
(x ) = 4x ◦ x2 ◦ 1

3
x ◦
√
x =

4x ◦ 1

9
x ◦ x2 ◦

√
x = 4

9
x . The first transformation is a reordering

of x2 ◦ 1

3
x , which generates

1

9
x ◦ x2

, and it is then followed by a

removal of the composition x2 ◦
√
x . Finally, f1 ◦ f

−1

2
(x ) is trans-

formed to
4

9
x , which satisfies the condition f1 ◦ f

−1

2
(x ) = ax ,

with a = 4

9
, of the case 2.1 of Theorem 4.1.

In addition, a straightforward implementation of Theorem 4.1

leads to redundant computations as illustrated below.

Example 5.2. Checking whether s ′
1
=
∑

6x3

i shares s ′
2
=∑

(5xi )
3
requires redoing identical transformations as in the pre-

vious example (i.e., checking whether s1 (X ) =
∑

4x2

i shares

s2 (X ) =
∑
(3xi )

2
). This is because we have as a general property:∑

a2x
a1

i shares

∑
(b1xi )

b2
if a1 = b2.

Hence, our general idea to deal with the two previous issues

is: (i) to use symbolic representations of aggregation states to

avoid redundant computations, i.e., using

∑
a2x

a1

i and

∑
(b1xi )

b2
,

where a1,a2,b1 and b2 are parameters, to represent the concrete

states

∑
4x2

i and

∑
(3xi )

2
, and (ii) to precompute sharing rela-

tionships between symbolic representations to avoid cumber-

some transformations of mathematical expressions at execution

time. For example, we precompute the relationship stating that∑
a2x

a1

i shares

∑
(b1xi )

b2
if a1 = b2. Then, at execution time, this

relationship can be used to efficiently identify that the concrete
aggregation state

∑
4x2

i , an instance of the abstract state
∑
a2x

a1

i ,

shares the concrete state

∑
(3xi )

2
, an instance of the abstract state∑

(b1xi )
b2
, because the condition a1 = b2 is satisfied.

5.1 Symbolic representations
In this section, we first present symbolic representations of scalar

functions and then use them to introduce symbolic representa-

tions of aggregation states. In the sequel, we assume an infinite

set of parameters, distinct from the set of constants. Hereafter,

the parameters are denoted p,p1, . . ..

Symbolic primitive scalar functions. Intuitively, px with a

parameter p is the symbolic representation of the primitive scalar

function 2x . In this case, 2x is an instance of px . Formally, we

consider four symbolic primitive scalar functions with a pa-

rameter p: px = {ax |∀a , 0}; loдpx = {loдax |∀a > 0,, 1};

px = {ax |∀a > 0,, 1}; xp = {xa |∀a , 0}. We use the notation

s fp̄ (x ) for a symbolic primitive scalar function with a sequence

p̄ = (p) of a parameter p.
Symbolic scalar functions. Intuitively, p2x

p1
with a parameter

sequence (p2,p1) is the symbolic representation of the scalar

function 3x2
, and in this case 3x2

is an instance ofp2x
p1
. Formally,

let every s fip̄i (x ) for i ∈ [1, . . . , l] be a symbolic primitive scalar

function. Then, s fp̄ (x ) = s fl p̄l ◦ ... ◦ s f1p̄1
(x ) is a symbolic scalar

function s fp̄ (x ) with a sequence p̄ = (pl , ...,p1) of parameters.

Similarly, |s fp̄ | = l .

Symbolic aggregation states. Intuitively,
∑
p2x

p1

i is the sym-

bolic representation of

∑
3x2

i . In this case,

∑
p2x

p1

i is called a

symbolic (aggregation) state and we say that the concrete state∑
3x2

i is an instance of the symbolic state

∑
p2x

p1

i . Formally,

let

∑
⊕ ∈ PA and s fp̄ (x ) be a symbolic scalar function. Then,

ss (X ) =
∑
⊕ s fp̄ (xi ) is a symbolic aggregation state.

Specifically, we let

∑
xi and

∏
xi be also two symbolic aggre-

gation states, which contain respectively only one instance

∑
xi

and

∏
xi , and we define | f | = 0 with f (x ) = x .

5.2 Precomputed sharing relationships
Informally, we say that a symbolic state ss1 shares a symbolic

state ss2 if and only if for any instance s1 of ss1, there exists an

instance s2 of ss2, such that s1 shares s2. As explained previously,

our aim is to precompute and store the sharing relationships

between symbolic aggregation states. Specifically, we conduct

an exhaustive analysis to identify the sharing relationships be-

tween symbolic states in a preprocessing step, which is performed

once when SUDAF is deployed, and then the precomputed rela-

tionships are reused at runtime to handle the sharing problem

between concrete aggregation states. Note that the space of sym-

bolic states may be very huge (theoretically infinite) because

symbolic scalar functions may be of arbitrary lengths. In addi-

tion, aggregation states having scalar functions with a higher

length are useless from the practical point of view. For example

in our experiments presented in Section 6 it was enough to use

aggregation states, whose scalar functions have a length up to

2, to express aggregations in real-world applications. Therefore,

SUDAF enables a user to bound the space of symbolic aggregation
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Figure 4: The digraph G of saддs2 (X ).
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Figure 5: The simplified digraph G of saддs2 (X ).

states that is prebuilt in the preprocessing step using a configu-

ration parameter, denoted by l . The obtained space, denoted by

saддsl (X ), is introduced below.

l-bounded symbolic space. Let l ⩾ 0 be an integer. We define

the space saддsl (X ) of symbolic aggregation states as follows:

saддsl (X ) = {
∑
⊕ s fp̄ (xi ) |s fp̄ is a symbolic scalar function with

|s fp̄ | ⩽ l }. We say saддsl (X ) is a l-bounded symbolic space. Note

that the size of the set saддsl (X ) is bounded by
2(4l+1−1)

3
.

Once the parameter l is fixed by a user, SUDAF builds space

saддsl (X ) and precomputes the sharing relationships between

every two symbolic aggregation states in saддsl (X ). An excerpt

of saддs2 (X ) is shown in Figure 4, where each symbolic aggrega-

tion state is depicted as a node labeled with its expression (the

meaning of edges in Figure 4 is explained later). As it can be

observed in Figure 4, the space saддs2 (X ) is organized in three

levels, where each level i , with i ∈ {0, 1, 2}, contains the symbolic

states of the form

∑
⊕ s fp̄ (xi ) with |s fp̄ | = i . Figure 4 shows all

the symbolic states of level 0 and 1, and some states of level 2.

5.3 Organizing the space saддsl (X )
We briefly discuss the organization of saддsl (X ), w.l.o.g., focus-
ing on the case l = 2. In the sequel, we first consider that the

input multiset X contains only positive values, i.e., X ∈ M (Q+),
then we extend the results to the case whereX contains both neg-

ative and positive values. We represent the sharing relationships

between symbolic states in saддs2 (X ) using a digraph G = (V ,E)
where the set of vertices V = saддs2 (X ) is the space saддs2 (X )
and the set of edges E ⊆ V ×V represent the sharing relationship,

i.e., (ss ′, ss ) ∈ E if and only if ss ′ shares ss . Figure 4 depicts the
digraph associated with the space saддs2 (X ) . We distinguish

between two kinds of sharing relationships in G (two types of

edges are depicted in Figure 4). The first one is called strong re-
lationships and relates two symbolic states (ss ′, ss ) if ss ′ shares
ss without requiring any condition on the parameters. The sec-

ond one is called weak relationships and relates two symbolic

states (ss ′, ss ) if ss ′ shares ss under some conditions defined over

the parameters of ss and ss ′. For example, since any instance of∑
pxi shares any instance of

∏
pxi , then

∑
pxi and

∏
pxi have

a strong sharing relationship denoted as

∑
pxi −→

∏
pxi . As an-

other example, the state

∑
x
p
i shares

∑
p2x

p1
with the condition

p = p1, then

∑
x
p
i and

∑
p2x

p1
have a weak sharing relationship

denoted as

∑
x
p
i

p=p1

−−→
∑
p2x

p1
.

We observed that in the space saддs2 (X ), the sharing relation-
ships are equivalence relations. For example,

∑
pxi ←→

∏
pxi and

∑
x
p
i

p=p1

← →
∑
p2x

p1
. Consequently, the space saддs2 (X ) can be

partitioned into equivalence classes. Intuitively, for a symbolic

state ss , its associated equivalence class, denoted [ss], is made

of the set of symbolic aggregation states that shares (and are

shared by) ss . For example, as depicted in Figure 4: [

∑
xi ] =

{
∑
xi ,
∑
pxi ,
∏

pxi ,
∏

p
p2xi
1
} and [

∑
x
p
i ] = {

∑
x
p
i ,
∑
p2x

p1

i }.

We select a unique element in each equivalence class [ss] to
be a representative of the class, which is denoted as rep ([ss]) and
depicted as a shaded node in Figure 4. It is clear that, given an

equivalence class [ss], one only needs to focus on the instances

of its representative rep ([ss]) since they are able to compute an

instance of any other element in [ss].
We simplify G presented in Figure 5 based on the equivalence

relations derived from the sharing relationships. More precisely,

it is only necessary for any state ss ∈ saддs2 (X ) to store such a

sharing relationship ss → rep ([ss]), or ss
pcon
−−→ rep ([ss]) with a

parameter condition (pcon). Consequently, when an instance s of

ss is given, we use an edge ss → rep ([ss]), or ss
pcon
−−→ rep ([ss])

to get a cached instance of rep ([ss]) to compute s .
Extension to an arbitrary multiset. When a multiset X con-

tains negative values, instances of some symbolic states in

saддs2 (X ) do not exist, which will cause the miss of sharing

opportunities. We take

∑
loдpxi as an example to explain the

issue. As we know that, an instance

∑
ln(xi ) of

∑
loдpxi can

only be computed over the positive domain, such that the caches

for

∑
loдpxi are empty in this context. To deal with this issue,

we separate input values from their signs. Specifically, we trans-

late an input multiset X = {x1, . . . ,xn } to the following multiset

X̂ = {( |x1 |, sдn(x1)), . . . , ( |xn |, sдn(xn )}, where |x j | denotes the
absolute value of x j and sдn(x j ) is its sign. Then, we keep in the

cache such a result (
∑
ln |xi |,

∏
sдn(xi )) for

∑
loдpxi . By this

way, a new aggregation state

∑
ln(x2

i ) can still be computed us-

ing the cache (
∑
ln |xi |,

∏
sдn(xi )) that is stored for

∑
loдpxi .

6 EXPERIMENTAL EVALUATION
We implemented a SUDAF prototype in Java and Scala, which

can be used on top of PostgreSQL (through JDBC) and Spark

SQL. The SUDAF prototype also comes equipped with a UDAF

editor that enables users to write SUDAF-compatible UDAFs and

integrate them in SQL queries.

The general scheme of our experiments is the following. We

select 3 query models, and we instantiate each query model us-

ing 11 aggregations. We simulate the 11 instances of each query

model coming in 2 different orders, i.e., two different sequences of
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Figure 6: Total execution time of each query sequence in
each query model.

cm qm gm hm min max count std var sum avg apm0

2

4

6

8

10

Ex
ec

ut
io

n 
tim

e 
(s

)

(a) Aggregates of sequence 1 in query model 1
Spark SQL
Spark SQL + SUDAF (no share)

Spark SQL + SUDAF (share)

AS1 AS20

10

20

Ex
ec

ut
io

n 
tim

e 
(s

) Query model 1

AS1 AS20

10

20

Ex
ec

ut
io

n 
tim

e 
(s

) Query model 2

AS1 AS20

20

40

Ex
ec

ut
io

n 
tim

e 
(s

) Query model 3

Figure 7: Total execution time of each query sequence in each
query model.
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Figure 8: Execution time in PostgreSQL of each query in each query sequence.
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Figure 9: Execution time in Spark SQL of each query in each query sequence.

queries. Thus, the tested workload consists of 6 query sequences,

where each sequence has 11 queries. We execute the query se-

quences in three technical contexts (i) PostgreSQL and Spark SQL,
(ii) SUDAF without the sharing functionality, and (iii) SUDAF
with the sharing functionality. In the PostgreSQL environment

(case (i)), the aggregations are either PostgreSQL built-in or hard-

coded user-defined functions, and similarly for the Spark SQL

environment. PostgreSQL UDAFs are created using PL/pgSQL,

and Spark SQL UDAFs are created using the UserDefinedAggre-

gateFunction interface in Scala code. In the SUDAF environment

(cases (ii) and (iii)), UDAFs are provided as mathematical expres-

sions and used in the SQL queries. And in case (iii) of SUDAF, the
precomputed sharing relationships in saддs2 (X ) are exploited to

reuse cached aggregation states to compute new ones. In SUDAF
sharing environment, we prefetch a moment sketch (MS) [16, 26]

under one of the two selected query orders. At the end of this

section, we also present a scenario of running a random sequence

of 200 queries in the Spark SQL context.

Our main findings are twofold. First, we observed that SUDAF
without sharing outperforms both PostgreSQL and Spark SQL
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despite the overhead in SUDAF due to the analysis and decom-

position of UDAF expressions. The main reason that explains

these performances comes from the fact that rewriting of UDAFs

by SUDAF, which is based on canonical forms, leads to imple-

mentations that use PostgreSQL or Spark SQL built-in functions,

these later ones being much faster than PostgreSQL or Spark SQL

UDAFs. The second finding is SUDAF with sharing outperforms

both PostgreSQL and Spark SQL. In particular, the fine-grained

unit of caching used in SUDAF improves the sharing possibilities

and increases the gain brought by sharing.

Experiment setup.All experiments of Spark SQL are performed

on a cluster with 1 master node and 6 worker nodes, running

Ubuntu server 16.04, Spark 2.2.0 and Hadoop 2.7.4. The master

node has a processor of 6 cores (XEON E5-2630 2.4GHz), 16 GB of

main memory and 160 GB of disk space, and every worker node

has a processor of 4 cores (XEON E5-2630 2.4GHz), 8 GB of main

memory and 80 GB of disk space. All experiments on PostgreSQL

are only performed on the master node running PostgreSQL 11.4.

Querymodels. The three query models used in experiments are

illustrated below, where AGG represents an aggregation.

-- Query model 1
SELECT AGG(internet_traffic) FROM milan_data;
-- Query model 2
SELECT square_id, AGG(internet_traffic) FROM milan_data
GROUP by square_id ORDER by square_id LIMIT 20;
-- Query model 3, the TPC-DS query 7 when AGG is avg
SELECT i_item_id, AGG(ss_quantity) agg1, AGG(ss_list_price) agg2,

AGG(ss_coupon_amt) agg3, AGG(ss_sales_price) agg4
FROM store_sales, customer_demographics, date_dim, item, promotion
WHERE ss_sold_date_sk = d_date_sk and

ss_item_sk = i_item_sk and
ss_cdemo_sk = cd_demo_sk and
ss_promo_sk = p_promo_sk and cd_gender = 'M'
and cd_marital_status = 'S' and
cd_education_status = 'College' and
(p_channel_email = 'N' or p_channel_event = 'N')
and d_year = 2000

GROUP BY i_item_id ORDER BY i_item_id LIMIT 100;

Datasets. The first two query models are evaluated on the Milan

dataset [22] and the third query model is evaluated on the TPC-

DS [27] dataset. For the experiments of PostgreSQL, the Milan

dataset consists of 72.6 million rows in total and the TPC-DS

dataset comes with scale = 20. For the experiments of Spark SQL,

the Milan dataset consists of 319 million rows in total and the

TPC-DS dataset comes with scale = 100. All data files in Spark

SQL experiments are in Parquet format.

Aggregate functions.We use the following 11 aggregate func-

tions to instantiate our query models: cubic_mean (cm), qua-
dratic_mean (qm), geometric_mean (gm), harmonic_mean (hm),
min, max, count, sum, average (avg), standard deviation (std),
variance (var). In the used PostgreSQL and Spark SQL version,

all of these functions are built-in functions except the functions

cm, qm, gm and hm which are implemented using PL/pgSQL in

PostgreSQL and using UserDefinedAggregateFunction interface in

Scala code in Spark SQL.

Query sequences. We instantiate each query model using each

of the 11 aggregations and define the following two sequences

of query executions for each instantiated query model:

AS1 = [cm, qm, gm, hm, min, max, count, std, var, sum, avg]
AS2 = [max, min, sum, avg, count, std, var, cm, gm, hm, qm]
Thus, we obtain 6 query sequences in total, where each query

sequence is made of 11 aggregate queries. In the SUDAF
sharing environment (cases (ii)) with the sequence AS2, we
prefetch a moment sketch (MS) [16, 26] with parameter k =
10, which consists of a set of aggregate functions (min,max ,

count ,
∑
xi , ...,

∑
xki ,
∑
ln(xi ), ...

∑
lnk (xi )) and can be used to

approximate a percentile, e.g., median.

Experimental results. We executed the 6 query sequences on

PostgreSQL or Spark SQL, SUDAF without sharing, and SUDAF
with sharing, and we report the execution time of every query.

In scenarios with sharing, we use precomputed sharing relation-

ships of symbolic aggregation states in saддs2 (X ), and we also

add three additional relationships for SQL standard aggregates,

max, min, and count, that they share themselves. Note that in

the reported results we do not take into account the overhead

needed to precompute sharing relationships in saддs2 (X ) which
is part of the initialization of SUDAF and takes 110ms . However,
the overhead due to the cache access is included in the global

execution time reported for each query. This overhead is about

2ms for query model 1 or 2, and about 5ms for query model 3.

Moreover, the prefetching of a moment sketch is a preprocess-

ing step in the aggregate sequence AS2, and the corresponding

time is not taken into account. In the context of PostgreSQL, the

prefetching time is 13.06 s for query model 1, 15.16 s for query
model 2, and 14.53 s for query model 3. In the context of Spark

SQL, the prefetching time is 1.87 s for query model 1, 2.17 s for
query model 2, and 3.82 s for query model 3.

The total execution time of each query sequence in each query

model is presented in Figure 6 for the case of PostgreSQL and in

Figure 7 for the case of Spark SQL. We observe that PostgreSQL

or Spark SQL (respectively, SUDAFwithout sharing) always have
the same execution time for the two sequences of the same model.

Also, we observe that SUDAF without sharing outperforms both

PostgreSQL and Spark SQL in all the considered scenarios ex-

cept query model 3 in Spark SQL (the reason is explained later).

SUDAF with sharing shows the best performances, whatever the

considered sequence or query model. In the sequel, we discuss

the execution time of every individual query depicted in Figure

8 and 9 for the cases of PostgreSQL and Spark SQL.

SUDAFwithout sharing. In this scenario, SUDAF only rewrites
aggregations to built-in ones and it does not share computations

in processing query sequences. For the case of PostgreSQL, com-

pared to PostgreSQL UDAF queries, SUDAF speeds up UDAF

queries up to 20X in query model 1 (Figure 8 (a) and (b)), 4X

in query model 2 (Figure 8 (c) and (d)), and 2X in query model

3 (Figure 8 (e) and (f)). For the case of Spark SQL, compared

to Spark UDAF queries, SUDAF speeds up UDAF queries up to

3X in query model 1 (Figure 9 (a) and (b)), 2X in query model

2 (Figure 9 (c) and (d)), and have identical query time in query

model 3 (Figure 9 (e) and (f)). The major reason for this improve-

ment is that SUDAF rewrites queries with UDAFs to queries with

partial aggregations that can be evaluated using PostgreSQL or

Spark SQL built-in functions, which are faster compared to Post-

greSQL or Spark UDAFs. The performance improvements of such

a rewriting depends on the number of data to be aggregated. The

instances of query model 1 have the highest number of values

to be aggregated while the instances of query model 3 have the

smallest number of values as aggregation inputs. Therefore, for

the case of query model 3, the difference between SUDAF only

with the rewriting functionality and Spark SQL is less noticeable.

SUDAF with sharing. In this scenario, SUDAF rewrites aggre-

gations to built-in ones and shares the computation results of

partial aggregations in every query sequence. For the sequence

AS1, we observe in Figure 8 (a), (c) and (e) and in Figure 9 (a), (c)

and (e) that for all the considered query models the computation

times of count, variance (var), sum and average (avg) decrease
drastically w.r.t. the no sharing option. This is because SUDAF
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Figure 10: Execution time in Spark SQL of a random sequence of 200 queries.

is able to reuse cached results from earlier aggregates in the se-

quence AS1. As it can be observed in Figure 8 (b), (d) and (f) and

in Figure 9 (b), (d) and (f), the sequence AS2 is more advanta-

geous for sharing due to the prefetched moment sketch. Indeed,

the moments sketch consists of 33 partial aggregates which are

cached by SUDAF and reused for the computation of all the re-

maining aggregations in the sequence AS2 except the harmonic
mean (hm). Computing queries with the harmonic mean in AS2
still requires data access since the aggregation state

∑
x−1

i in the

harmonic mean is not evaluated in previous computing.

Random query sequence. We present in Figure 10 the sce-

nario of running a random sequence of 200 queries in Spark SQL,

which are instances of the query model 2 having the following

16 aggregate functions: (min, max, sum, avg, harmonic_mean,

quadratic_mean, cubic_mean, geometric_mean, stddev, variance,

skewness, kurtosis, approx_median, count, approx_first_quantile,

approx_thrid_quantile). The benefits of using SUDAF in this sce-

nario are more obvious (the orange line in Figure 10).

7 RELATEDWORKS
There is a wealth of research on queries with aggregations, earlier

works focusing on standard aggregations (e.g., [8, 9, 12, 18, 19, 35])

and then extended to UDAFs (e.g., [6, 10, 20, 24]). Partial aggre-

gation appeared as an essential technique used to improve the

performances of aggregations: instead of computing aggregations

on a complete multiset, applying aggregations on subsets and

merging intermediate results is an efficient solution in numerous

scenarios. In OLAP applications, partial aggregation enables com-

puting aggregation by merging summaries of cells with different

granularities across multi-dimensional data, thereby allowing

aggregate queries to be executed on pre-computed results instead

of base data [8]. In join-aggregate query optimization, partial

aggregation enables to compute group-by aggregation before

joins to decrease the size of intermediate results [35], i.e., the

eager group-by technique. In distributed computing, partial ag-

gregation allows to push the execution of aggregation before

transferring data on networks [36], thereby decreasing the over-

head of data shuffling, which is usually called initial reduce in

MapReduce-like frameworks. An original classification of aggre-

gations [18] distinguishes between algebraic aggregations having

partial aggregation with fixed size results, and holistic functions

where there is no constant bound on the storage size for partial

aggregation. Several properties are proposed to have partial ag-

gregations from algebraic aggregations, such as decomposable

aggregation [35], commutative semi-group aggregation [11] and

associative and commutative aggregation [36].

Most modern data management and analysis systems support

UDAFs (e.g., [1, 2, 4, 21, 28, 29]). In the original MapReduce (MR)

framework [3, 14], UDAFs are implemented according to the MR
paradigm without requiring any specific template. This makes

the semantics of UDAFs hidden in the implementations and hin-

ders optimization possibilities (e.g., reordering with relational

operators and other UDAFs [20]). However, in most of recent

systems, users define UDAFs using an IUME pattern (initialize

function, update function, merge function and evaluate function).

Although such an approach enables exploiting the properties

of the merging functions to allow optimization based on partial

aggregations, e.g., parallel computation of the merging functions,

part of the UDAF semantics still remains hidden in the imple-

mentation, which hampers the opportunity of aggregate sharing.

In addition, implementing UDAFs in existing frameworks may

be a tedious task since it is up to the user to map a UDAF to the

implementation paradigm (MR or IUME). We build on a canonical

form of UDAFs proposed in [10] to design SUDAF by allowing

users to specify UDAFs as mathematical expressions and then

automatically generate canonical forms of UDAFs which are com-

pliant with the IUME pattern. Consequently, with SUDAF a user
does not need to handle the problem of how to obtain partial

aggregations from UDAFs. Moreover, SUDAF knows the seman-

tics of partial aggregations (primitive functions used in partial

aggregation) which extends the optimization opportunities.

Different facets of the sharing problem have been studied in

the literature, e.g., rewriting aggregate queries using materialized

views [11, 12], reusing caches to accelerate multi-dimensional

queries [8, 15], or identifying overlapping processing for mul-

tiple aggregate queries with various selection predicates [19],

group-by attributes [9] and sliding-windows [5, 23]. Most of these

approaches focus on the data dimension, i.e., they consider the

problem of sharing the same aggregation across different ranges

or granularities of data. Our work does not consider the data

granularity dimension where existing techniques, e.g., [15, 33],

can be used to extend SUDAF in this direction. [10, 11] proposes

to predefine computation rules for sharing between different

aggregations. However, SUDAF automatically identifies sharing

opportunities on partial aggregates across different UDAFs.

The closest work to SUDAF is DataCanopy [33]. DataCanopy

caches the basic aggregates (e.g.,

∑
xi ,
∑
x2

i and

∑
xiyi ) of sta-

tistical measures and then is able to reuse them for queries with

various range predicates. Basic aggregates are maintained at a

granularity of a chunk (smallest portion of data), and DataCanopy

allows sharing across queries covering overlapping chunks. In

DataCanopy, basic aggregates are fixed in advance and the de-

composition of an aggregate into basic ones is predefined (see

Table 1 of [33]). We discuss the differences between DataCanopy

and SUDAF as follows. From a theoretical standpoint, the sharing

condition in SUDAF allows having a scalar function between two
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aggregates (see Theorem 4.1), which is more general compared

to sharing identical basic aggregates in DataCanopy. From a prac-

tical standpoint, our approach is complementary to DataCanopy

in the sense that DataCanopy deals with sharing w.r.t. the data

dimension and proposes a static approach for sharing on the

aggregation dimension, whereas SUDAF extends its static ap-

proach to a dynamic one w.r.t. the aggregation dimension. More

precisely, the sharing opportunities w.r.t the aggregation dimen-

sion are automatically identified in SUDAF, which do not require

any decomposition rule and are not restricted to a fixed set of

aggregates. For example, if we restrict the attention to the set

of predefined basic aggregates introduced in [33], the execution

of a geometric mean (дm(X ) = exp (

∑
ln(xi )

count
,∀xi > 0) cannot

take any benefit from the static caching solution used in Dat-

aCanopy (i.e., cannot reuse the basic aggregates stored in the

cache and do not lead to any new cached computation results). In

contrast, SUDAF can reuse partial aggregates from the cache to

compute дm and if not possible, it caches the partial aggregates

(
∑
ln(xi ), count ) after computing дm from base data. To obtain

similar behavior, one needs to explicitly define additional basic

aggregates in DataCanopy together with the appropriate decom-

position rules for дm. In addition to being cumbersome, such a

task requires to know in advance the query workloads that will

be issued.

8 CONCLUSIONS AND FUTURE WORKS
In this paper, we introduce the design principles underlying

SUDAF, a framework that provides a set of primitive functions to-

getherwith a composition operator to enable users to definemath-

ematical expressions of their UDAFs. SUDAF comes equipped

with the ability to automatically rewrite partial aggregations,

which are factored out from mathematical expressions of UDAFs,

using built-in aggregates, and supports efficient dynamic caching

and sharing of partial aggregates. We showed experimentally the

benefits of rewriting partial aggregates of UDAFs using built-in

functions and sharing partial aggregates to improve the perfor-

mances of queries with UDAFs.

In this paper, we focus on the issue of how to compute a UDAF
from another UDAF. In practice, to share computation results of

different queries, we need to consider the data dimension, e.g.,

different range queries, or different OLAP queries. Sharing over

data dimension has been extensively studied in existing works

[15, 33]. The general idea is to split cached query results using

chunks. For the case of range queries, a chunk is a range predicate

over an attribute. For the case of OLAP queries, a chunk is a region

in a multi-dimensional space. Merging our sharing approach

with such approaches, we can share computation results for

different queries with different UDAFs. As another future work,

we envision to exploit the fact that the semantics of UDAFs is

known by SUDAF to investigate query optimization and query

rewriting problems for join and group-by queries with UDAFs.
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ABSTRACT
Big data analytics systems such as Apache Spark natively sup-
port nested data formats since they offer operators to manipulate
nested lists and complex types. Compared to flat data, nested
data introduces further complexity and sources of error, e.g.,
when developing data processing pipelines, performing auditing
tasks, or performance tuning. To ease such tasks, we propose a
provenance-based solution tailored to nested data processing in
big data analytics systems. Unlike previous solutions, it combines
(i) tracing provenance of nested datawith (ii) efficient and scalable
provenance processing, leveraging a newly proposed structural
provenance that traces structural manipulations through data
processing pipelines in addition to data. We provide a formal def-
inition of structural provenance, as well as methods to efficiently
capture and succinctly backtrace it. We implement them in our
Pebble system in Apache Spark and validate its performance and
usefulness on up to 500GB of real-world data.

1 MOTIVATION
Big data analytics systems such as Apache Spark or Flink are
frequently the means of choice to build data processing pipelines
that process large quantities of nested data. These pipelines trans-
form nested lists and complex types stored in nested data formats
like JSON, protocol buffer, or parquet. Provenance solutions that
capture meta-data about the data processing [14] have proven to
be useful for analyzing the internals of data processing pipelines,
e.g., for debugging purposes. These solutions typically have two
phases, a provenance capture phase to collect the meta-data and
a provenance query phase to analyze the meta-data. For big data
analytics systems, we distinguish two categories of provenance
solutions: (i) Efficient and scalable solutions that track individual,
flat data items (i.e., tuples) from the input to the output over each
execution step [15–17, 22]. They capture so-called lineage or why-
provenance [7]. (ii) System prototypes that compute provenance
polynomials of nested data [2, 28]. They capture how-provenance,
which provides both the input items contributing to the result
and the data combination process an item undergoes.

Solutions of the first category fail to track nested items accu-
rately. Solutions of the second category do not efficiently scale
to big data processing pipelines. To capture the how-provenance,
these solutions propagate the growing provenance polynomial
through the entire pipeline or require annotation of each nested
element, which imposes a very high and practically unacceptable
overhead [16, 17]. Further, these solutions have to offload the
provenance to external tools to query the captured provenance.
Thereby, they miss potential performance and usability benefits

© 2020 Copyright held by the owner/author(s). Published in Proceedings of the
23rd International Conference on Extending Database Technology (EDBT), March
30-April 2, 2020, ISBN 978-3-89318-083-7 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

compared to solutions that are fully integrated into the big data
analytics or data-intensive, scalable computing (DISC) system.

We, therefore, present a DISC system integrated provenance
solution for nested data that is as efficient and scalable as solutions
of the first category while, at the same time, at least as accurate
as solutions of the second category [9]. Our solution leverages
our newly defined structural provenance to provide both features.

Structural provenance records identifiers for top-level data
items only. For attributes and nested data items, it captures paths
on a schema level. To provide accurate provenance when queried,
it employs these identifiers and paths to trace back individual
nested items at attribute level. Capturing paths instead of identi-
fier annotations for nested data further allows us to distinguish
between paths that are used for access (e.g., during filtering) or
manipulation (e.g., during flattening). We can thereby differenti-
ate contributing attributes, i.e., attributes needed to reproduce a
result item, and influencing attributes that are accessed during
data processing but not required to reproduce a result. This dis-
tinction, which is unique compared to existing data provenance
models, qualifies structural provenance for use-cases beyond de-
bugging such as auditing or determining data-usage patterns for
partitioning, data compression, and workload optimization.
Auditing. Auditing aims at identifying and analyzing data
breaches. These breaches commonly stem from attacks of com-
pany insiders who extract sensitive data by querying data and
leaking the query result. Auditing solutions are designed to
identify both these insiders and the customers whose data are
leaked [19]. To address the latter challenge, the solutions typi-
cally leverage some sort of data provenance. It serves to identify
those input tuples that are exposed in a leaked query result. How-
ever, after the European Union has introduced the European
general data protection regulation GDPR [26], European com-
panies are not only required to identify the customers (tuples)
whose data are leaked, but also which of their data are leaked (i.e.,
attributes such as name, address, or payment details). Structural
provenance precisely provides the attributes and items in nested
collections that contribute to a query result. Unlike existing data
provenance solutions, it further reveals which attributes are not
exposed in the result but have influenced it to create awareness
for reconstruction attacks.
Data-usage patterns. Data-usage patterns reveal frequently
used subsets of the input data over a query workload. These pat-
terns serve to optimize data layout and compression or to improve
query performance [25]. State-of-the-art scalable provenance so-
lutions for DISC systems can identify subsets of the input data
that are frequently used. This knowledge allows for horizontal (or
row-based) data partitioning and distribution. Structural prove-
nance further provides all the information needed for vertical (or
column-based) partitioning since it reveals which attributes and
nested items are accessed or manipulated. It even provides in-
sights on attribute combinations that are frequently used together
for data layout optimizations.
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Capturing provenance imposes runtime and space overhead
during pipeline execution. The mentioned use-cases are per-
formed infrequently. Thus, keeping the overhead low during
pipeline execution is essential to ensure efficiency and scalability.
During the provenance capture phase, a system can typically opt
for computing and storing the provenance of all processed data
(eager approach) or decide to capture it on demand when users
query the provenance (lazy approach). Consequently, during
the provenance query phase, retrieving the desired provenance
is more or less time-consuming. We consider the provenance
capture and provenance query phases holistically. To this end,
we devise a meet-in-the-middle approach that eagerly collects
the necessary “pebbles” (i.e., identifiers and paths on schema
level) during pipeline execution to later reconstruct or backtrace
attribute-level provenance of nested data at query time. Our eval-
uation shows that capturing structural provenance introduces
comparable overhead to state-of-the-art lineage solutions in DISC
systems [17], while providing attribute-level precision.

This paper also presents the first provenance solution for
nested data that seamlessly integrates into a big data analytics
system (Apache Spark in our implementation). Existing solu-
tions [2, 28] require offloading captured provenance for querying
to separate, non-distributed applications. This has three draw-
backs: (i) It prevents adopting a holistic provenance capture and
querying approach to keep capture and query overhead reason-
able; (ii) it forces users to leave their familiar environment; and
(iii) it prevents scalable provenance querying.
Contributions and structure. To summarize, this paper
presents research on processing structural provenance in big
data analytics systems to accurately trace nested data in an effi-
cient, scalable, and integrated way. This approach enables novel
use-cases that arise in the context of big data processing. After
discussing a running example in Sec. 2 and related work (Sec. 3)
this paper covers the following contributions:
• Structural provenance (Sec. 4). We present a novel prove-
nance model for nested data that tracks structural manipu-
lations in addition to data dependencies, and distinguishes
between data access and manipulation to support use-cases
beyond debugging.
• Lightweight structural provenance capture (Sec. 5). We
discuss how to capture structural provenance in big data an-
alytics programs composed of filter, select, map, join, union,
flatten, grouping, nesting, and aggregation operations. The
capture is devised to incur a minimal overhead compared to
the capture of flat provenance in DISC systems.
• Backtracing for provenance query processing (Sec. 6).
We formalize the backtracing algorithm used at provenance
query time. As input, users provide a tree-pattern that, upon its
scalable execution, identifies data items for which provenance
is requested. The backtracing algorithm computes provenance
for these items based on the previously captured information.
• Implementation and evaluation (Sec. 7). We implement
our contributions in Pebble [9], our system for integrated
provenance capturing and querying within Apache Spark. We
conduct a quantitative evaluation of runtime and space over-
head incurred by our solution on two large real-world data sets,
validating the scalability of our solution. In comparison to the
state-of-the-art lineage solution Titian [17], Pebble has compa-
rable runtime and space overhead. However, as our workload
shows, Pebble provides sufficient insight to support the above
use-cases, unlike other solutions.

2 RUNNING EXAMPLE
To distinguish our research from related work and for illustration,
we use a running example based on Twitter data. Among its
roughly 1000 attributes, we focus on the tweeted text, the user
tweeting, the user_mentions in the tweet, and the retweet_cnt.
The input data is nested as shown in Tab. 1 (ignore colors and
number annotations for now). This sample data is processed in
the big data processing pipeline shown in Fig. 1. It results in a
list of distinct users associated with tweets that they authored
or were mentioned in, as shown in Tab. 2. The upper branch
of the pipeline describes how authoring users become part of
the result. Their tweets require a retweet_cnt of 0 before the
pipeline reduces them to the text, id_str, and name. The lower
branch processes tweets mentioning users. First, it flattens the
user_mentions attribute to select the tweeted text, id_str, and name
of each mentioned user. Then the pipeline unifies the results of
both branches and groups by the user to aggregate the tweeted
texts into a nested list.

In the result, a duplicate Hello World text occurs in the nested
tweets of user Lisa Paul, short lp. To find out how this potential
data quality issue occurred, we debug the pipeline by tracing back
the duplicate texts in the context of user lp, which are highlighted
in dark-green in Tab. 2. The solution presented in this paper
returns the dark- and medium-green items in Tab. 1. The dark-
green items are contributing data. They suffice to reproduce the
dark-green items in the result. The medium-green items reveal
which attributes potentially influence the result of the pipeline.

If trivially extended to nested data, scalable lineage solu-
tions [15–17, 22] provide all input tweets that contain the user lp.
They are highlighted in light-grey in the input. In reality, a user
typically authors more than a handful of tweets and is potentially
mentioned in more than a million tweets. These tweets would
all be in the provenance returned by the lineage solutions. They
mask the actual two tweets causing the duplicate text.

PROVision [28] supports the unnesting of data but does not
explicitly support the nesting of data. Extending it with nest-
ing requires a list collection UDF cl , which yields the following
provenance polynomial for the entire result item 102 in Tab. 2:

(p1+p12+p17+(p29 ·Pf lat ten (p29 ·[0])))·

Pcl ((p1+p12+p17+(p29 ·Pf lat ten (p29 ·[0]))),(⟨p1⟩+⟨p12⟩+⟨p17⟩+⟨(p29 ·Pf lat ten (p29 ·[0]))⟩))

text user user_mentions retweet_cnt

1 Hello @ls @jm @ls2
id_str name
lp3 Lisa Paul4

id_str name
ls5 Lauren Smith6
jm7 John Miller8
ls9 Lauren Smith10

011

12 Hello World13
id_str name
lp14 Lisa Paul15 016

17 Hello World18
id_str name
lp19 Lisa Paul20 021

22 This is me @jm23 id_str name
jm24 John Miller25

id_str name
jm26 John Miller27 028

29 Hello @lp30
id_str name
jm31 John Miller32

id_str name
lp33 Lisa Paul34 135

Table 1: Example input data

read
tweets.json

read
tweets.json

select
text, 

user.id_str,
user.name

flatten
user_mentions
à m_user

select
text, 

m_user.id_str,
m_user.name

union
select

text à tweet,
<id_str, name>

à user

aggregate
groupBy(user),

collectList(tweet)
à tweets

1 3

4 5 6

7 8 9

filter
retweet_cnt == 0

2

Figure 1: Example processing pipeline
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user tweets

101 id_str name
ls Lauren Smith

text
Hello @ls @jm @ls
Hello @ls @jm @ls

102 id_str name
lp Lisa Paul

text
Hello @ls @jm @ls

Hello World
Hello World
Hello @lp

103 id_str name
jm John Miller

text
Hello @ls @jm @ls
This is me @jm
This is me @jm

Table 2: Example result data

Essentially, the first line tells us that the result item is based
on the source tuples annotated with 1, 12, and 17, denoted as p1,
as well as p12, p17 (all these are processed by the upper branch of
the pipeline in Fig. 1), and p29, with some of its data flattened out
during processing (corresponds to the lower part of the pipeline).
The second line makes use of our extension and describes how
data is combined by the remainder of the pipeline where the tu-
ples mentioned above are grouped and aggregated. The example
shows that the provenance is very verbose while not precisely
tracing the dark-green data items of the user question. This is the
case since it collects tuple-based provenance polynomials only.

Lipstick [2] traces provenance polynomials for each nested
item. This allows pinpointing the dark-green nested values Hello
World and lp correctly. However, Lipstick requires annotating all
values, not just the tuples, e.g., 35 rather than 5 annotations, as
indicated by the superscript italic numbers in Tab. 1. This entails
a significant runtime and space overhead, rendering the solution
impractical when needing to scale to large volumes of data.

We also differentiate structural provenance from where-
provenance [4], which determines where a (nested) result value
is copied from. In our example, the where-provenance (extended
to the processing pipelines we consider) would include, for the
value lp the “cells” with superscript annotation 14, 19, and 33 of
Tab. 1. This is combined with the where-provenance of the Hello
World result values via product. The result is not sufficiently
accurate because it cannot capture that the dark-green values of
the output need to be traced within their common context.

No existing solution allows recognizing (i) that the user at-
tribute is unnested and nested again, (ii) that the id_str, lp, and
the text attribute Hello World are subject to different, indepen-
dent, structural manipulations, and (iii) that the medium-green
retweet_cnt and name values in Tab. 1 are accessed for filtering
and grouping, respectively. Even though these values are not
needed to reproduce the queried result, they are influencing the
result, which is valuable information in certain use-cases. Struc-
tural provenance captures all this information since it captures
not only data dependencies but also path dependencies.

To get an understanding of querying structural provenance,
consider the right tree in Fig. 2. The string labels of tree nodes
denote attribute names whereas numbers refer to provenance
ids (e.g., 102) or positions in nested collections (e.g., 2 and 3).
The displayed tree represents the structure associated with our
sample user query. It encodes the path to user lp and the duplicate
Hello World items in the context of top-level data item 102. Note
that name is absent from this tree since it is not pertinent to the
user query. Backtracing this tree yields the two trees on the left
of Fig. 2. These distinguish between data items that contribute to
the result (dark-green) and data items that influence it (medium-
green). The nodes match the green items in Tab. 1. A closer
look at the medium-green name node reveals that this node
influences the queried result since it is accessed for grouping

12

usertext

id_str

102

user tweets

id_str 2 3

text text

name

retweet
_cnt

Back-
tracing

provenance tree on the outputprovenance trees on the input

contributing attributes

influencing attributes

2       provenance IDs/ positions

user attribute names

17

usertext

id_str name

retweet
_cnt 9 access by operator

manipulation by operator8

name
83 9

Figure 2: Example provenance trees. Tracing the tree on
the right back to the input yields the trees on the left

(light-blue 9). Similarly, the retweet_cnt influences the result since
it is accessed for filtering. Further, the name node undergoes
structural manipulations at operator 3 and 8 (dark-blue).

3 RELATEDWORK
This section generalizes the discussion of existing approaches
that we provided along with the running example. We divide our
discussion into research on data provenance in DISC systems
and provenance models for nested data, summarized in Tab. 3.

3.1 Data provenance in DISC systems
Data provenance has been studied for various applications [14].
While the majority of approaches has focused on relational data
processed by relational queries, first solutions have emerged for
tracing provenance in DISC systems such as Titian [12, 16, 17] for
Spark, Lipstick for PigLatin (Hadoop) [2], as well as RAMP [15],
Newt [22], and PROVision [28] for multiple DISC systems.

Titian, RAMP, and Newt trace lineage of data items, i.e., they
determine which top-level data items contribute to which output
item. These solutions scale well but do not trivially extend to
nested data. PROVision extends the provenance model for top-
level data (or flat) items to also capture provenance of data items
in nested collections. It lacks information on attribute level access.
Lipstick is the only solution that supports provenance capture for
nested data at attribute level. However, it requires annotations
for each data value, not only the top-level data items. Structural
provenance provides provenance on attribute level but requires
annotation on top-level items only since it records access to
attributes and nested data using paths. These paths are recorded
on a schema level, saving space and runtime overhead.

All the above solutions except for Titian require offloading
the provenance to an external tool. Titian integrates provenance
querying directly into the DISC system. Thus, provenance queries
can be integrated into a big data processing pipeline just like any
other query. Our system extends Titian’s integrated querying
means with tree-patterns [13, 23] to address combinations of
nested data items. Further, we present the first solution that
tracks access and manipulation of attributes.

3.2 Provenance models for nested data
Focusing on nested data, at least three major directions to for-
malize provenance models have been researched: (i) models for
why-, how-, and where-provenance, (ii) graph-based provenance
models, and (iii) program slicing models.

For unions of conjunctive queries, Buneman et al. [4] define a
why- and where-provenance model for nested data. This model
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Feature Titian Ramp Newt Lipstick PROVision HowProvNested Why/Where Prov Kwasnikowa Acar Program Slicing Structural Prov
Data provenance for nested data ❌ ❌ ❌ � � � � � � � �

Provenance of acces and manipulation ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ � �

Provenance of data item structure ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ � �

Eager/lazy provenance computation � / ❌ � / ❌ � / ❌ � / ❌ ❌  / � n.a. n.a. n.a. ❌  / � � / � � / �
Implementation-independent 
provenance query formalism

❌ ❌ ❌ � ❌ n.a. n.a. na. ❌ ❌ �

DISC system compatibility/integration � / � � / ❌ � / ❌ � / ❌ � / ❌ ❌  / ❌ ❌  / ❌ ❌  / ❌ ❌  / ❌ ❌  / ❌ � / �

Reported implementation
Spark 
RDDs 

Hadoop
Hadoop/
Hyracks

PigLatin Java no no no Haskell Haskell Spark Datasets

Evaluated for scalability � � � ❌ ❌ ❌ ❌ ❌ ❌ ❌ � �
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or
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d
❌
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ot
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up
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Table 3: Feature overview of related work

does not extend to the programs defining data analytics pipelines
in DISC systems, like the one shown in Fig. 1, since they may
include map or reduce functions or any other higher-order func-
tions in general. To model the how-provenance of nested data, a
semiring-model for a subset of XQuery has been proposed [10, 18].
However, this model does not include complex operations over
nested data, such as aggregations. The only how-provenance
model supporting aggregations that we are aware of applies to
relational data only [3].

Lipstick [2], makes use of a graph model to describe the how-
provenance. This model only applies semiring annotations where
possible. It provides no formal model definition for aggregations,
nesting, and flattening of nested data. Kwasnikowska and Acar et
al. [1, 20] also employ a graph-based provenance model to track
nested data items. These solutions are essentially limited to the
operations defined in the Nested Relational Calculus (NRC) [5],
which do not include aggregations or joins. Also, the reported
implementation and evaluation (if any) indicate that they neither
integrate nor scale sufficiently to apply on DISC systems.

All provenance solutions mentioned so far do not distinguish
between access and manipulation as they focus on tracing data
values. In that respect, the work closest to our structural prove-
nance model is the program slicing model [6], which tracks prove-
nance traces for NRC operators over nested data. To provide
formal guarantees, the model is limited to a small set of seman-
tically fully specified NRC operators. In practice, it is infeasible
to provide semantics for all higher-order functions such as map
operations, which allow for user-defined functions. Via trace
slicing it is possible to query provenance for individual nested
items. However, like the other described models, this model is de-
signed to trace data values and manipulations of them rather than
structural manipulations. It is not expressive enough to faithfully
capture and query structural manipulations. Its implementation
is not designed or evaluated for efficiency or scalability.

The final column of Tab. 3 summarizes the capabilities of our
system, which we have highlighted previously. These capabilities
are based on processing structural provenance, discussed next.

4 STRUCTURAL PROVENANCE
This section formalizes structural provenance. We first present
the data model and the execution model to define the correspond-
ing structural provenance model afterwards.

4.1 Data model
DISC systems process collections of typed nested data items,
which we refer to as (nested) datasets. These datasets support
positional access, and, thus, the handling of ordered datasets.

Definition 4.1. (Nested dataset) A nested dataset D comprises
constants, data items, bags, and sets, denoted and typed as shown
in Tab. 4. D is a list of data items d1, . . . ,dn with or without
duplicates (ordered bag vs. set), i.e., D = B |S . Each data item d is

Name Notation Type τ (·)
Constant c Int |Double |Str inд |...
Data item d = ⟨a1 : v1, ..., an : vn ⟩ ⟨a1 : τ (v1), ..., an : τ (vn ))⟩

Bag B = {{d1, ..., dn }} {{τ (d )}} , ∀d , d′ ∈ B, τ (d ) = τ (d′)
Set S = {d1, ..., dn } |d1 , ... , dn {τ (d )} , ∀d , d′ ∈ S , τ (d ) = τ (d′)

Table 4: Notation and types for nested collections

a list of ai : vi pairs. Attribute names a1, ...,an are unique labels
within each data item. Values v1, ...,vn may be bags, sets, data
items, or constants, i.e., v = B |S |c |d .

The type of D is defined recursively based on the type of its
building blocks as described in Tab. 4, where τ (·) returns the
type of its parameter. Bags and sets are restricted to containing
elements of the same type.

Example 4.2. All data shown in our running example conform
to the above definition. The result data of Tab. 2 has type:
{{ ⟨user :⟨id_str :Str inд,name :Str inд ⟩,tweets :{{ ⟨text :Str inд ⟩ }}⟩ }}

To access the different components defined by the data model,
we define access paths, inspired by XPath expressions [24] to
navigate XML data. Provided a context data item d , an access
path navigates to “deeper” data in the nested model. Given that
the data model ensures the order of data items in lists, we also
model positional accesses in paths.

Definition 4.3. (Access path w.r.t. d) In the context of a data
item d , we define an access path p by p = d .p′, p′ = x | x .p′,
x = a | a[i]. Here, p′ is the path accessing x either directly
or recursively. The accessed x is either an attribute a in the
schema of the context data item, evaluating to its value, or the
i-th component of a, denoted a[i], evaluating to the item at the
i-th position of a’s value. For the recursive definition of p′, the
context data item is updated to the item referred to by x .

For simplification, we denote a path p with context data item d

by pd when the context is not clear. We refer to the enumeration
of all paths that exist in a context d as path set PSd .

Example 4.4. Considering the data item d102 in Fig. 2, the
path d102.tweets evaluates to a list of four data items. Path
d102.tweets[2].text points to the first Hello World in that list.

4.2 Execution model
The execution model defines the processing semantics of data
analytics programs like the one in Fig. 1. These programs process
data complying with our data model. We model a program as
a directed acyclic graph (DAG) of individual operators, such
as filter, flatten, join, etc. Each operator has its own execution
semantics.

Definition 4.5. (Operator) An operatorO takes a set of datasets
I = {I1, . . . , Ik } as input and returns a single result dataset R.
Inference rules describe the execution semantics of an operator
O . O has a unique identifier, a type, and its arguments.

Definition 4.6. (Program executionmodel) LetG(V , E) be a DAG.
V = {O1, . . . ,On } is the set of algebraic operators and E the set
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Figure 3: Provenance model and lightweight provenance
capture applied on the flatten operator from the example

of directed edges that model the data flow. If and only if the result
set Ri ofOi is in the set Ij of input datasets of operatorO j an edge
(Oi ,O j ) ∈ E directed from Oi to O j exists. While G may contain
multiple source nodes (in-degree of 0), G has only one sink node
(out-degree of 0), which outputs the final result dataset.

Example 4.7. The graph in Fig. 1 represents the execution
model of our running example. The type and parameters of each
operator are displayed inside the operator nodes. Further, each
node is labeled with its identifier in the top right corner.

We abstract from a particular language to define the semantics
of individual operators by extending the inference rules from [11]
to describe the filter, select, map, join, union, flatten, grouping
and aggregation operator with their semantics.

Example 4.8. We illustrate how inference rules work on our
inference rule for a join operator:

φ(i, j) ⇒ true
I1.join[φ(i ∈ I1, j ∈ I2)](I2) ⇒ {{⟨i, j⟩ | i ∈ I1, j ∈ I2}}

The rule joins two input datasets I1 and I2 into a single result
dataset. More precisely, the operator associates elements i ∈ I1
with elements j ∈ I2 based on a join condition (φ(i, j) → boolean).
With the precondition that φ evaluates to true, i.e., φ(i, j) ⇒ true,
the data item ⟨i, j⟩ becomes part of the result.

4.3 Provenance model
Our provenance model extends the program execution model
described above by adding annotations to each node inG. More
precisely, for each operator O represented by a node in G, it
generates the result provenance R that contains the provenance
of each result data item ri in the result R of operator O .

Definition 4.9. (Result provenance w.r.t. result R of operator O)
Let R = {ρ1, . . . , ρn } be the result provenance associated with
R = {r1, . . . , rn }. For each data item ri ∈ R, we record the result
data item provenance ρi = ⟨ri ,I,M⟩, whereI is the provenance
of input data items that contribute to ri (see definition below)
andM is a set of path pairs mapping access paths of input data
items to paths of ri to describe restructuring performed by O .

Definition 4.10. (Input provenanceI w.r.t. result data item prove-
nance ρ in result R ofO) The input provenanceI is a bag of triples〈
i, Ij ,A

〉
, where i is a data item from one of the input datasets of

O , i,e., i ∈ Ij , Ij ∈ I , and A a set of paths recording the elements
of i that are accessed byO to produce the result data item r ∈ ρ.

The above provenance model does not only contain informa-
tion on the relationship between input and result data items of

an operator (which is the previously mentioned lineage), it also
records accesses and manipulations inM and A while trans-
forming input items to result data items.

Example 4.11. To illustrate our model for structural prove-
nance, we focus on the f latten operator labeled 5 in Fig. 1. It
unnests the nested items of attribute user_mentions. An excerpt
from its input and output data is given at the top of Fig. 3. Black
headers encode bag data types, light gray headers identify com-
plex data items as nested data type. At the bottom left, Fig. 3
shows the provenance for the result items 42 and 43. The flat-
ten operator derives item 42 from input item 1. It accesses path
user_mentions[1] as recorded in A. Further, it copies the first
user of theuser_mentions list (and implicitly, all paths in the path
set PSuser_mentions[1]) to the new itemm_user as recorded in
the mappingM. Ignore the bottom right for now.

5 PROVENANCE CAPTURE
Based on the provenance model, we introduce inference rules
describing the provenance capture of our supported operators.
When the rules in Tab. 5 are annotated with a ∗, we extend an
existing inference rule from [11]. Otherwise, we formalize the
inference rule with and without provenance extension. Due to
space constraints, we only show the complete set of inference
rules with provenance. After explaining the map, flatten and
aggregation rule, we show how we capture the structural prove-
nance obtained from these rules efficiently.

5.0.1 Map. For themap operator, we assume that the function
λ(i) over input data item i returns a result of type data item,
denoted as τ (λ(i)) → ⟨. . .⟩. Given this precondition, without
provenance capture,map returns the result of applying λ(i), for
each i in the input dataset I1. The inference rule for the map
operator in Tab. 5 additionally produces the provenance for each
data item i . More formally,map, parameterized by a function λ,
produces the result provenance R, which is a bag of data items.
Each data item extends the “normal” result ofmap, i.e., λ(i) with
two additional attributes: the input provenance I and mapping
M. For I, the only input data item participating in producing an
output data item λ(i) is i , which originates from the single input
dataset I1. Because we generally do not know the internals of an
arbitrary function λ, the set A is set to undefined, denoted by ⊥.
Thus, I = {{⟨i, I1,⊥⟩}}. The structural mapping M = ⊥ is also
undefined because we have no knowledge of how elements from
the input are restructured in the result.

Based on the rule for themap operator, we derive more general
observations concerning our inference rules. The rules only cap-
ture structural provenance when the operator semantics clearly
pinpoint paths to populate A and M. Thus, the rule for the
map operator captures the “undefined” semantics inM = ⊥ and
A = ⊥. This semantics distinguishes fromM = ∅ andA = ∅ se-
mantics in the f ilter and union rules. Both rules featureM = ∅
since they do not restructure the data items. Each item’s input
structure is maintained in its entirety in the result. Further, the
rule for the union operator holds A = ∅ since it only performs
an item-independent schema comparison of the input datasets.

5.0.2 Flatten. We introduced the flatten operator in Ex. 4.11
to illustrate our provenancemodel. Here, we explain the inference
rule in Tab. 5 that captures the provenance for the f latten.

As preconditions, the rule requires the type of acol to be either
a list with duplicates (bag) or without duplicates (set). The result
of the f latten consists of items r = ⟨i,anew : j⟩, where i refers
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Filter*
φ(i) ⇒ true

I1. f ilter [φ(i ∈ I1)] ⇒
{{〈

i,
{{〈

i, I1,∪p
i ∈ φ(i)

〉}}
, ∅
〉
| i ∈ I1

}}
Select*

a1, ...,an ∈ schema(I1)

I1.select(a1, ...,an ) ⇒

{{〈
r ,

{{〈
i, I1,

n⋃
k=1
(ak )

i

〉}}
,

n⋃
k=1

〈
(ak )

i , (ak )
r 〉〉 | r = ⟨i .a1, ..., i .an⟩ , i ∈ I1}}

Map*
τ (λ(i)) ⇒ ⟨...⟩

I1.map[λ(i ∈ I1)] ⇒ {{⟨λ(i), {{⟨i, I1,⊥⟩}} ,⊥⟩ | i ∈ I1}}

Join
φ(i, j) ⇒ true

I1.join[φ(i ∈ I1, j ∈ I2)](I2) ⇒



〈
r ,



〈
i, I1,

⋃
pi ∈φ(i , j)

pi

〉
,

〈
j, I2,

⋃
q j ∈φ(i , j)

qj

〉
 ,

{〈
pi ,pr

〉
| pi ∈ schema(I1)

}
∪
{〈
qj ,qr

〉
| qj ∈ schema(I2)

}〉
| r = ⟨i, j⟩ , i ∈ I1, j ∈ I2




Union*
τ (I1) = τ (I2)

I1.union(I2) ⇒ {{⟨i, {{⟨i, I1, ∅⟩}} , ∅⟩ | i ∈ I1}} ⊎ {{⟨j, {{⟨j, I2, ∅⟩}} , ∅⟩ | j ∈ I2}}

Flatten
τ (acol ) ⇒ {{}} ∨ τ (acol ) ⇒ {}

I1. f latten (anew , explode (acol )) ⇒
{{〈

r ,
{{〈

i, I1,
{〈
(acol [x])

i 〉}〉}} , {〈(acol [x])i ,arnew 〉}〉
| r = ⟨i,anew : j⟩ , i ∈ I1, j ∈ i .acol at position x

}}
Grouping*

G = {{д1, ...,дn }} πG (i) = ⟨д1 : i .д1, ...,дn : i .дn⟩
I1.дroupBy(д1, ...,дn ) ⇒ {{{{⟨i, {{⟨i, I1, {д1, . . . ,дn }⟩}} , ∅⟩ | i ∈ I1, πG (i) == j}} | j ∈ set({{πG (i) | i ∈ I1}})}}

Aggregation

τ (I ) == {{τ (I1), ..., τ (In )}} τ (I1) == ... == τ (In ) == {{...}}

Ac ==
{
αc1 (a1), ...,αcm (am )

}
with τ (αck (ak )) ⇒ c AB ==

{
αB1 (b1), ...,αBp (bp )

}
with τ (αBk (bk )) ⇒ {{...}}

∀Ik ∈ I ,∀i, j ∈ Ik , πG (i) == πG (j) with G == schema(Ik ) \ {a1, . . . ,am,b1, . . . ,bp }

I .aдд(Ac ,AB ) ⇒




〈 r =

〈
d,aαc1 : αc1

(
πa1 (Ik )

)
, . . . ,aαcm : αcm

(
πam (Ik )

)
,aαB1 : αB1

(
πb1 (Ik )

)
, . . . ,aαBp : αBp

(
πbp (Ik )

)〉
,d ∈ set({{πG (i) | i ∈ Ik }}), Ik ∈ I ,


〈
i, Ik ,

⋃
д∈G

дi ∪
⋃
a∈Ac

ai ∪
⋃

b ∈AB

bi

〉
| i ∈ Ik , Ik ∈ I


 ,{〈

дi ,дr
〉
| д ∈ G, i ∈ Ik

}
∪

{〈
aik ,

(
aαck

)r 〉
| k = 1, ...,m, i ∈ Ik

}
∪

{〈
aik ,

(
aαBk

)r 〉
| k = 1, ...,p, i ∈ Ik

}
〉


Table 5: Provenance capture semantics partially based on operator semantics from [11]. Access A and manipulationM
provenance is highlighted.

to the input item and anew to the newly created attribute. This
attribute holds item j that is unnested from i’s attribute acol ,
i.e., i ∈ I1, j ∈ i .acol . In our structural provenance, we need to
refer to the position of j within its bag (or set) in the context of i .
Therefore, we denote the position of j in i .acol by pos . For each
result item r , the structural provenance is ρ = ⟨r ,I,M⟩ with
I =

{{〈
i, I1,

{
(acol [pos])

i }〉}} andM = {〈
(acol [pos])

i ,arnew
〉}
.

Here, (acol [pos])i denotes the access path on the pos-th element
of attribute acol in the context of the input item i . arnew is the
path to the new attribute in the context of the result item r .

5.0.3 Aggregation. The aддreдation in Tab. 5 requires a bag
of equally structured input collections (we only show bags for
conciseness) as input, i.e., τ (I ) = {{τ (I1), . . . , τ (In )}} such that
τ (I1) == . . . == τ (In ) == {{. . .}}. These nested bags are con-
structed by the дroupinд. Further, the aддreдation supports mul-
tiple aggregation functions. Among those supported by data
analytics systems, we distinguish between aggregation functions
that, given a bag as input, return an atomic constant value c (e.g.,
count , sum, max) and aggregation functions returning nested
collections (e.g., collect_list and collect_set ). We denote these by
Ac and AB , respectively. The rule also requires that all attributes
G that are not aggregated by either a function in Ac or AB , but
that are present in the schema of a collection Ik ∈ I are equal.

Given these preconditions, aддreдation reduces each of the
nested bags Ik ∈ I to a single data item. It returns the unique
value present in Ik for non-aggregated attributes in G and the
results of the specified aggregate functions that are applied on
the input attributes. The result of this process is the item r in the
first line at the bottom of the aддreдation rule. The second line
shows I. A result item r is based on input items that all originate

from the same input collection Ik ∈ I . Thus, for each i ∈ Ik , the
rule creates a data item ⟨i, I ,A⟩ ∈ I. The set of attribute accesses
performed during aggregation includes the paths to all attributes
inG , the paths to all attributes aggregated by functions inAc , and
the paths to all attributes aggregated by functions in AB . That is,
A =

⋃
д∈G дi ∪

⋃
a∈Ac a

i ∪
⋃
b ∈AB b

i . ForM in line 3, the rule
maps aggregated attributes to the newly created attributes of r ,
which hold the aggregated items.

5.1 Lightweight provenance capture
The provenance capture rules have the potential for optimiza-
tion, since they hold redundant information. First, recording a
unique identifier suffices to identify each top-level item. Second,
recording the paths accessed and manipulated on a schema level
once per operator suffices since the paths are the same for all
processed data items. They only differ in the identifier of the top-
level item and the positions of items in nested collections. The
lightweight operator provenance P exploits these observations
to keep overhead at capture time low.

Definition 5.1. (Operator provenance P) The operator prove-
nance P is the following 5-tuple:

P = ⟨oid, type,I : {{⟨p,A⟩}} ,M, P⟩

P has an operator identifier oid and a type . The bag I holds
one tuple for each of the operator’s inputs. This tuple holds a
reference to the preceding operator p and the paths accessed A
on the input at a schema level. They are data item independent.
Similarly, P has a bag of manipulated pathsM on a schema level.
Positions of items in nested bags are replaced with placeholders.
The bag P in P holds the unique identifiers of the top-level input
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Operator Provenance structure
map, select , f ilter P =

{{〈
idi , ido

〉}}
join, union P =

{{〈
idi1, id

i
2, id

o 〉}}
f latten P =

{{〈
idi ,pos, ido

〉}}
дroupby and aддreдation P =

{{〈
idsi :

{{
idi

}}
, ido

〉}}
Table 6: Operator-dependent provenance structure

and output items, as well as positions of accessed or manipulated
items in nested collections, if needed.

The content of P depends on the operator type as summarized
in Tab. 6. In this table, the attributes idi and ido hold the unique
identifiers of top-level items in the input and the output, respec-
tively. If the operators have multiple inputs, attributes idi1 and
idi2 are indexed in the order of appearance in I. The structure
P of the flatten operator has a reference to the position of the
nested item being flattened. The aggregation holds a collection of
input idsi for each group. The position of the input idi is equal
to the position of any nested item that the aggregation produces.

Example 5.2. Fig. 3 shows the reduced operator provenance
P5 for the flatten operator at the bottom right.

In the following section, we describe how the backtracing
algorithm computes the structural provenance of nested data
from the lightweight provenance structures P.

6 BACKTRACING
Querying the provenance of items or structures in the result
involves two major phases. In the first phase, the backtracing
algorithm identifies those data items, for which a user queries
provenance (Sec. 6.1). In the second phase, it traces these items
back to the input data (Sec. 6.3).

6.1 Structural query processing
DISC systems have rudimentary means to address individual
nested items, at most. They lack sophisticated means to address
arbitrary combinations of them, which is essential for querying
structural provenance. Thus, we devise an extension to a DISC
system (i.e., Apache Spark) to support tree-pattern queries. Tree-
patterns allow for addressing combinations of nested items that
are related by their structure [13]. Intuitively, they express struc-
tural queries in the form of a tree, in which each node represents
an attribute and edges define parent-child or ancestor-descendant
relationships (depending on edge type) that should exist between
two connected nodes. Further constraints may be imposed on
attribute nodes, e.g., equality of an attribute’s value to a constant.
Therefore, we define a novel distributed tree-pattern matching
algorithm to return the query result in an efficient and scalable
way. Due to space constraints, we omit details on processing
tree-pattern queries but show an example.

Example 6.1. Fig. 4 shows a tree-pattern for the provenance
question introduced in Sec. 2. Its root has an ancestor-descendant
edge to the id_str node. All other edges indicate parent-child
relationships. The id_str and text nodes hold equality conditions,
which require values of those attributes to be equal to lp and
Hello World, respectively. Further, as indicated by the black box,
the value Hello World has to occur twice in the nested collection.

Our algorithm matches the tree-pattern against a dataset D (in
our example, the final result of the processing pipeline) to then
return the matching data in the form of a backtracing structure,
which we introduce next.

root

id_str
=

“lp”

tweets

text
=

“Hello World”

[2,2]

Figure 4: Example tree-pattern in a provenance question

6.2 Backtracing structure
The backtracing structure describes the items that are queried in
the provenance question and traced back to the input. The back-
tracing algorithm updates its content while stepping backward.

Definition 6.2. (Backtracing structure) The backtracing struc-
ture B = {{⟨id,T⟩}} is a bag of provenance identifiers id of
top-level data items associated with a backtracing tree T (see
next definition), referencing attributes in the schema of id .

The nodes in the backtracing trees also hold information about
the access and manipulation of the attribute and whether the
attribute is contributing or just influencing the items queried.

Definition 6.3. (Backtracing tree) The backtracing tree
T = ⟨root,N ⟩ holds complex nodes n ∈ N . Each node
n = ⟨name,parent,C,A,M, c⟩ has a name equal to the attribute
name it references. Further, it references its parent node p, and its
children C . A node also holds the set of operators A that access
the referenced attribute and a set of operatorsM that manipulate
the attribute. A boolean value c indicates whether the attribute
contributes to the items in the provenance question (c = true) or
whether it influences the items (c = f alse).

Example 6.4. Examples of backtracing trees are provided in
Fig. 2. The right tree corresponds to the backtracing tree obtained
from matching the tree-pattern in Ex. 6.1 on the data in Tab. 2.
The left trees correspond to backtracing trees resulting from
recursively updating the backtracing structure while stepping
back through the processing pipeline to the input data.

The following two methods manipulate the trees, and the
backtracing algorithm calls them repeatedly during backtracing.
Their execution context is an instance of an operator provenance
P and a backtracing structure B.

ThemanipulatePath method performs two tasks. First, it ma-
nipulates the nodes in T . For each input and output path in
m ∈ P .M it transforms the output path back to the specified
input path inm, if the output path exists in T . After the trans-
formations, the nodes in the tree T conform to the schema of
the input. Second, it adds the current operator identifier P .oid
to each node’s manipulation collectionM .

The accessPath method records access to attributes in the
nodes of T . During that process, one of two cases applies. In
the first case, all nodes of the path a ∈ A,A ∈ P .I already
exist in T . Then the method adds the P .oid to each node’s access
collection A. In the second case, nodes in path a do not exist in
T , because these attributes are neither needed to reproduce the
result nor have been accessed by other operators so far. Then,
the accessPath method adds the according nodes to T but sets
the contribution value to c = f alse since these nodes are not
required to reproduce the queried data items.

6.3 Backtracing algorithm
Alg. 1 shows the backtracing algorithm that traces the queried
items recursively back from the result to the input. It takes the
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Algorithm 1: backtrace(P,B)
Input: P , B
Output: B

1 switch P .type do
2 case “f il ter ” do
3 ⟨P′, B′ ⟩ ← backtraceFilter(P , B)

4 case “f latten” do
5 ⟨P′, B′ ⟩ ← backtraceFlatten(P , B)

6 · · ·

7 if P′ is defined then
8 backtrace(⟨P′, B′ ⟩)

9 return B′

Algorithm 2: backtraceFlatten(P,B)
Input: P , B
Output: ⟨P′, B′ ⟩

1 ⟨P′, B′ ⟩ ← backtraceOperatorGener ic(P, B)
2 B′ ← αmerдeT rees (T,pos )(γid (B

′))

3 return ⟨P′, B′ ⟩

Algorithm 3: backtraceOperatorGeneric(P,B)
Input: P , B
Output: ⟨P′, B′ ⟩

1 B′ ← πidi→id ,pos ,T (P .P ▷◁ido=id B)

2 for t ∈ B′ .T do
3 form ∈ P .M do
4 manipulatePath(t ,m, P .oid )

5 for a ∈ P .I1 .A do
6 accessPath(t , a, P .oid )

7 return ⟨P′ ← P .I1 .p, B′ ⟩

operator provenance of the last operatorP in the pipeline and the
backtracing structure B as input to call the operator-dependent
backtracing method, which returns its predecessor’s operator
provenance P ′ and an updated backtracing structure B′. The
algorithm recursively calls the backtrace method until the input
is reached. Then P ′ is not defined so that the recursion ends.
Flatten, Select, Filter, Map.As shown in Alg. 2, backtracing the
flatten operator has two steps. In the first step (l. 1), the algorithm
calls backtraceOperatorGeneric (Alg. 3) to undo the flatten on
each item in B individually. At this step, the algorithm does
not consider positions in the flattened collection. As a result, it
obtains P ′ and B′. In the second step (l. 2), the algorithm groups
the trees and positions in B′ by the top-level item id and merges
all trees of the same id , considering the position pos .

The generic backtracing algorithm, shown in Alg. 3, also has
two major steps. In the first step (l. 1), it joins B with the prove-
nance associations P of P to obtain the input identifiers of the
top-level items along with the trees in B (l. 1). These identifiers
become the new ids in B′ so that they match the ido of the pro-
jection’s predecessor P .I1.p,B′. This join is essentially the same
one that existing lineage solutions [15, 17, 22] apply for backtrac-
ing. In the second step (ll. 2-6), the algorithm iterates over all the
trees in B′ to undo all recorded structural manipulations in the
manipulatePath method and record the access to attributes in
the accessPath method.

Example 6.5. The example input of Alg. 2 is P5 in Fig. 3 (bot-
tom right) and a backtracing structure B with the two items
of id = 42 and id = 43. They reference the items with the
same identifier in Fig. 3. For simplicity, the example subtree
T is reduced to the pathm_user .id_str . The backtraceFlatten
algorithm calls the backtraceOperatorGeneric algorithm (Alg. 2,
l. 1), which joins P5 with B (Alg. 3, l.1). Afterwards, both items
are assigned id = 1. Then the algorithm modifies the trees to
user_mentions .[pos].idstr so that they comply with the input
schema of the flatten operator (Alg. 3, l.4). However, instead of

Algorithm 4: backtraceAggregation(P,B)
Input: P , B
Output: ⟨P′, B′ ⟩

1 P ∗ ← pos_f latten(P .P .ids i , id i , pP )
2 B′ ← P ∗ ▷◁ido=id B
3 B′ ← withCol (B′, inProv , f alse)
4 for b ∈ B′ do
5 form ∈ P .M do
6 if contains(m .out , [pos]) then
7 out ← r eplace(m .out , b .pP )

8 else
9 out ←m .out

10 if out ∈ b .T then
11 b .inProv = true
12 manipulatePath(b .T, ⟨m .in, out ⟩ , P .oid )

13 r emoveNodes(b .T,m .out )

14 for t ∈ B′ .T do
15 for a ∈ I .A do
16 accessPath(t , a, P .oid )

17 B′ ← πidi→id ,T (σinProv=true (B
′))

18 return ⟨P′ ← I .p, B′ ⟩

holding the position of the nested items, they hold [pos] placehold-
ers. ThemerдeTrees method in Alg. 2 (l. 2) replaces them with
pos = 1 and pos = 2 for the items with the former id = 42 and
id = 43, respectively. Further, it merges their trees because both
items have id = 1 and, thus, are grouped together. Finally, the
algorithm returns a B′ with the item of id = 1 and the tree refer-
ring to positions 1 and 2 in the nested collection user_mentions .

The algorithms to backtrace a select, filter, or map operator are
basically the same as Alg. 3, except that they do not project on
the pos attribute (l. 1). Some optimizations are applicable to the
filter. Since the filter does not manipulate any data, its backtrac-
ing algorithm does not loop over the manipulations P .M. The
backtracing algorithm for the map operator has no information
on the paths manipulated or accessed. Thus, it marks all nodes
in the input schema as manipulated by default.
Aggregation and Nesting. As described in Sec. 5, aggregation
and nesting are preceded by a grouping. Further, our model al-
lows multiple aggregations and nestings over different attributes.
Alg. 4 describes the procedure to trace aggregation and nesting
back to the input of the preceding grouping.

Unlike the provenance structures of other operators, P .P of an
aggregation holds a nested collection of input idsi (cf. Tab. 5.1).
Thus, Alg. 4 first flattens the idsi and their positions into the
columns idi and pP , respectively (l. 1). After joining P∗ with
B to B′ (l.2), the algorithm adds a column inProv to B′ (l. 3).
This column is initialized with f alse and used later to indicate,
whether items in B′ remain in the backtraced provenance. Then,
the algorithm iterates over each item in B′ and each manipulated
path inP .M (ll. 4-13). For eachmanipulated pathm.out , it checks
for a position placeholder [pos] (l.6), which only occurs when the
operator performs bag nesting. In this case, the input item with
idi contributes exactly to the item in the nested bag that also
has position pP . Thus, the algorithm replaces the placeholder in
m.out and stores the result in out (l. 7). Otherwise, out is assigned
m.out (l. 9). If the exact path out is in the provenance tree, item b
is marked as relevant and the path is adjusted accordingly (ll.10-
12). In case of a bag nesting, the provenance tree may also hold
information of items at other positions. The algorithm removes
these nodes calling the removeNodes method (l. 13). It marks
the accessed paths, to which the grouping attributes also belong
(ll.14-16). In a final step, the algorithm removes all items and
attributes from B′ that are irrelevant for further backtracing.
Their value in inProv was not set to true.
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Example 6.6. Let us apply Alg. 4 on the nesting operator in our
running example, which collects all tweeted texts in a nested bag.
The backtracing structure B contains just the item with id = 102
and the right tree T of Fig. 2, which refers to the duplicate text
Hello World. The operator Provenance P contains a provenance
structure P that Alg. 4 flattens out to the following P∗:

id i pP ido

81 1 102
82 2 102
93 3 102
95 4 102

After joining B with P∗, each entry with ido = 102 holds
a copy of the same tree T . For a single loop iteration over B′
and M ′ (ll. 4-13), we choose b ∈ B′ with idi = 82, pP = 2,
ido = 102 and pathm.out = tweets .[pos]. The algorithm replaces
placeholder [pos] with 2, so that out = tweets .2 (l. 7). Since out
is part of T , it sets b .inProv = true (l. 11) and transforms the
subtree tweets .2.text to the subtree text (l. 12). Then, it removes
the node tweets and all its children from its copy of T (l. 13),
which includes the nodes in path tweets .3.text . Now, the nodes
in T describe a subset of the schema of the aggregation’s input
data. The algorithm marks the accessed attributes and removes
all items that are not part of the provenance. Here, it marks the
user and its children as accessed (ll. 14-16), since these attributes
are used for grouping. Further, it removes items from B′ whose
provenance is not queried (l. 17), e.g., b ′ with idi = 95 and pP = 4.

Join and Union. Unlike the other operators, the join and the
union operator have two predecessors. Thus, the backtracing
algorithms require an additional parameter to specify which of
the two inputs is traced back to. Based on that parameter, the
algorithms pick the appropriate input tuple from the operator
provenance P .I and the appropriate input identifiers idi1 or id

i
2

from the provenance structure P .P (cf. Tab. 4). Then they call
the generic backtracing algorithm from Alg. 3. Afterwards, the
algorithm for the join operator removes all nodes in the prove-
nance trees B′.T that are not part of the chosen input schema,
since they reference elements in the schema of the other input.
The algorithm for the union operator filters out all items in B′
whose value is undefined in the chosen field idi1 or id

i
2 . These

items originate from the other input of the union operator.

7 IMPLEMENTATION & EVALUATION
We integrate the contributions described in this paper into a
system prototype named Pebble. Sec. 7.1 provides some details
of the system implementation, demonstrated in [9]. Sec. 7.2 then
describes our evaluation setup and workload, which we use for
our experimental evaluation (Sec. 7.3).

7.1 Implementation
While our contributions are generally applicable to DISC systems,
we implement Pebble as a library extension for Apache Spark.
This allows us to better compare it to Titian, which is the only
other fully integrated provenance solution for DISC systems that
has been implemented over Spark [16].

Fig. 5 shows Pebble’s architecture (blue) on top of the Spark-
SQL API (grey), which is independent of the Spark Core module
and further modules (grey) such as the MLlib. To provide a trans-
parent user experience, Pebble has an API wrapper PebbleAPI.
It directs user requests to the SparkSQL module or the Pebble
Core module, which contains the Capture and Query submodules.

Spark Core

SparkSQL

Pebble Core

PebbleAPI

Further
Spark 

Modules

Capture

Query

TPM Backtracing

Figure 5: Pebble’s architecture

S Description (detailed descriptions available in [8])
T1 filters tweets containing the text good, flattens and groups by the mentioned users to

collect a bag of complex tweet objects
T2 flattens the nested lists hashtags, media, user mentions
T3 running example
T4 associates all occurring hashtags with the authoring and mentioned users
T5 finds all users that tweet about BTS, and are mentioned in a BTS tweet
D1 associates inproceedings from 2015 with the their according proceeding(s)
D2 unites and restructures conference proceedings and articles
D3 computes nested list for aliase, co-authors, and works per author
D4 computes nested list of all associated inproceedings for each proceeding
D5 is D4 extended with a UDF in map that returns the number of authors per proceeding

Table 7: Short informal scenario descriptions

The former submodule extends Spark’s dataframes and operators
to capture the structural provenance as described in Sec. 5. The
latter submodule implements the backtracing algorithm from
Sec. 6. It utilizes maps to represent the provenance trees T and
modifies the tree in place with user-defined functions. Each of
the Algs. 2-4 iterate over all items in the backtracing structure B
and perform changes impacting only one item at a time. Thus, the
for-loops with iterator variables t or b in Algs. 2-4 are parallelized
across the DISC system. However, the backtracing needs to be
called for each input dataframe independently, because Spark
operators always generate just one result dataframe.

7.2 Test setup & workload
For our experimental validation, we run Pebble on a cluster with
three worker nodes, each having 8 cores, 256GB main memory,
and SSD storage. All nodes run Scala 2.11, Hadoop 3.1.0 and
Spark 2.3.1. We average five test runs framed in an additional
warm-up and cool-down run. The error bars displayed in our
graphs show the standard deviation. We write the result to disk
to ensure that Spark computes the full result. Otherwise, Spark
“optimizes” attributes away. The experiments run on 100GB input
data, if not mentioned otherwise.

We base our evaluation on a nested Twitter and a DBLP dataset.
We scale the datasets from 100GB to 500GB in steps of 100GB. For
each of the datasets, we define five scenarios containing a Spark
program to be executedwith andwithout provenance capture and
a corresponding structural query. Each supported operator occurs
at least once in the scenarios. The Twitter dataset contains up to
130 million tweets (500GB). Each tweet has up to 1000 attributes
and eight layers of nesting [27]. We define five test scenarios
T1 - T5 (Tab. 7). The DBLP dataset contains up to 1.5 billion
records (500GB) that are extracted from the dblp.xml. Records
have one of ten types such as article or proceeding [21]. They are
split by type and upscaled, such that important characteristics
such as the average number of inproceedings per proceeding are
preserved. We define five test scenarios D1 - D5 (Tab. 7).

7.3 Experimental evaluation
We conduct experiments to study the runtime and space over-
head when capturing lightweight structural provenance. We also
evaluate the performance of querying the structural provenance.
Further, we perform a comparative evaluation with Titian [17],
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Figure 6: Runtime overhead on Twitter dataset

kindly provided to us by the authors, and fully lazy provenance
capture as described by PROVision [28]. We conclude our evalua-
tion with a use-case analysis for auditing and data-usage patterns.

7.3.1 Capture runtime overhead. The first series of measure-
ments shows the runtime overhead imposed by the lightweight
provenance capture for increasing data sizes. Our goal is to show
(i) how Pebble scales over the input data size and (ii) how data
size affects the runtime overhead.

We measure the execution time for each of the Twitter scenar-
ios T1 to T5, once without provenance capture, i.e., with Spark’s
regular operator semantics, and once with Pebble’s provenance
capture as defined in Sec. 5.1. Fig. 6 shows the results on datasets
from 100GB to 500GB. The solid dark grey part of each part shows
the runtime that Spark requires without provenance collection.
The textured light grey part on top of each bar shows the over-
head when running provenance capture. The percentage on top
of the textured bars indicate the relative overhead between the
former and the latter types of experiments. Analogously, Fig. 7
reports runtimes for scenarios D1 to D5.

As expected, across all experiments, the runtime increases
when provenance is collected since Pebble performs extra work.
Runtime with and without provenance grows linearly with the
data size. As the overhead percentages indicate, the relative over-
head imposed by provenance capture remains constant with
increasing data sizes for most scenarios. Thus, we conclude that
Pebble scales with the input data size. However, the relative over-
head varies significantly between the scenarios. It ranges from
75% (T3) down to 8% (D3, shown on the right of Fig. 7). A detailed
analysis of D3 reveals that spilling large final and intermediate
results to disk – or more generally speaking disk I/O – dominates
the runtime. The time to compute the extra provenance is small.
In contrast, scenario T3 reads the input tweets twice to perform
a union operation. As a consequence, Pebble annotates the in-
put data twice during provenance capture, hindering Spark to
optimize reading the input.

We further investigate overhead incurred by Pebble for each
individual operator (no graphs shown due to space constraints).
Overall, the overhead highly depends on the size ratio between
the collected provenance and the processed input data. In gen-
eral, for operators with constant provenance annotation overhead
(filter, select, union, join, and flatten), the relative overhead de-
creases with an increasing number of attributes in the input data.
In the case of the DBLP dataset, which has less than 50 attributes,
the overhead ranges between 5% and 25% for the mentioned
operators. The overhead is particularly high for aggregations
that reduce many input items to a single value. Then, Pebble
stores a collection with all item identifiers contributing to the

27%

13%
23%

7%

32%

14%
17%

13%

30%

12%
11%
10%

29%

15%

7%
7%

32%

17%

11%
9%

0

2

4

6

8

10

12

14

D
1

D
2

D
4

D
5

D
1

D
2

D
4

D
5

D
1

D
2

D
4

D
5

D
1

D
2

D
4

D
5

D
1

D
2

D
4

D
5

100 GB 200 GB 300 GB 400 GB 500 GB

Ex
ec

ut
io

n 
Ti

m
e 

(m
in

)

Spark Pebble

8%

9%

7%

6%

8%

0

10

20

30

40

50

60

70

100 G
B

200 G
B

300 G
B

400 G
B

500 G
B

Figure 7: Runtime overhead on DBLP dataset (right: D3)

aggregated item. This collection typically is orders of magnitude
larger than the result item itself. Consequently, the observed
runtime overhead exceeds 100% of the actual execution time for
the aggregation. However, even this overhead is negligible when
disk I/O operations dominate the execution time.

7.3.2 Capture space overhead. The second series of measure-
ments shows the space required to store captured provenance.
We show (i) that the provenance size depends on dataset and
scenario characteristics, (ii) that large provenance sizes do not
necessarily correlate with high runtime overhead, and (iii) that
the captured structural provenance typically adds an overhead of
less than 200MB compared to lineage. Thus, it typically does not
significantly affect scalability. Results are reported in Fig. 8(a) and
Fig. 8(b). The dark grey part of each bar shows the size of lineage
for top-level items and the stacked and textured bars show the
additional space required by structural provenance.

The y-axis of the Twitter graph has a Megabyte scale, whereas
the y-axis of the DBLP graph has a Gigabyte scale. The reason is
that the items in the Twitter dataset have about 1000 attributes,
whereas the items in the DBLP dataset have less than 50 attributes.
Therefore, 100GB of DBLP data contain more than 100 times as
many data items as 100GB of Twitter data. Given that Pebble
associates identifiers to top-level data items only, it stores more
than 100 times the annotations for DBLP scenarios compared
to the Twitter scenarios. Hence, the DBLP provenance is orders
of magnitude larger than the Twitter provenance and lets us
conclude that the size of the provenance significantly depends
on the number of tracked top-level data items in the input.

Further, the sizes significantly differ among the scenarios of
the same dataset. For instance, the provenance of scenario T3
amounts to 750MB, 5.5 times the size of T1’s provenance. There
are three reasons for the different size: (i) As mentioned above,
in T3, our solution annotates the input data twice; (ii) The pro-
cessing pipeline of T3 consists of 7 processing steps that trigger
provenance collection, whereas the pipeline of T1 only consists
of 5 steps; (iii) The filter in T1 reduces the total amount of tracked
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Figure 8: Size of collected structural provenance

262



0

10

20

30

40

50

T1 T2 T3 T4 T5

Ex
ec

ut
io

n 
Ti

m
e 

(m
in

)

Eager Lazy

0

7

14

21

28

35

D1 D2 D3 D4 D5

Ex
ec

ut
io

n 
Ti

m
e 

(m
in

)

Eager Lazy

6% 7%

0

2

4

6

8

10

Titian Pebble

Ex
ec

ut
io

n 
Ti

m
e 

(s
ec

)

w/o P w P

6% 7%

0

2

4

6

8

Titian Pebble

Ex
ec

ut
io

n 
Ti

m
e 

(m
in

)

Spark Overhead

0

10

20

30

40

50

T1 T2 T3 T4 T5

Ex
ec

ut
io

n 
Ti

m
e 

(m
in

)
Eager Lazy

0

7

14

21

28

35

D1 D2 D3 D4 D5

Ex
ec

ut
io

n 
Ti

m
e 

(m
in

)

Eager Lazy

6% 7%

0

2

4

6

8

10

Titian Pebble

Ex
ec

ut
io

n 
Ti

m
e 

(s
ec

)
w/o P w P

6% 7%

0

2

4

6

8

Titian Pebble

Ex
ec

ut
io

n 
Ti

m
e 

(m
in

)

Spark Overhead(a) Twitter dataset (b) DBLP dataset
Figure 9: Runtime of Pebble’s backtracing

data items early in the pipeline. Clearly, space overhead also de-
pends on the number of operators in a program and the number
of top-level items in intermediate results.

The scenarios T3 and T1 have comparable runtime overhead
(see Fig. 6(a)) of around 70 - 75% and, thus, highest across all
scenarios. While scenario T3 is also the scenario with the largest
provenance size, T1 has a comparable runtime overhead but a
much smaller provenance size. Similarly, the relationship of the
runtime and space overhead is actually the inverse for scenario
D3 and D1 in Fig. 8(b). D3 has the largest and D1 the smallest
provenance size. However, D1 has a runtime overhead of 27%,
whereas D3 only has 7%. Therefore, it is not generally true that a
high runtime overhead correlates with a high space overhead.

Looking at the space overhead of lineage and structural prove-
nance, we see that in most scenarios, structural provenance takes
less than 200MB additional space, even in scenarios where lin-
eage itself takes Gigabytes. The only exception is D3, where a
flatten occurring early in the pipeline followed by a very selective
join causes the comparatively high size difference.

Concerning the above experiments, which are all related to
provenance capture, we make the following general observations.
The provenance size highly depends on the number of top-level
items in the input and intermediate results. As explained, the
provenance size may not correlate with the runtime overhead.
Other factors, such as processing optimizations, data width, or
significant disk I/O potentially have a higher impact on the rela-
tive runtime overhead than the provenance size. While the size
difference between lineage and structural provenance is small in
many practical scenarios, the overhead can increase when flatten
operators store positions that lineage solutions do not capture.

7.3.3 Querying structural provenance. Our third series of
experiments focuses on processing structural queries over
provenance-annotated result datasets. The runtimes reported
in Fig. 9 include both the tree-pattern matching on the program’s
result items and the time needed to backtrace these result items
to the input with the help of structural provenance. We report
results on query processing time in our holistic approach (i.e.,
where structural provenance has been eagerly captured and is
traced back). We also implement a fully lazy query approach that
can be considered an extension of PROVision [28] to our pro-
cessing pipelines. The query runtime for these two approaches,
labeled eager and lazy respectively, are shown for both the Twit-
ter scenarios (Fig. 9(a)) and the DBLP scenarios (Fig. 9(b)).

The graphs in Fig. 9 do not explicitly show the time for tree-
pattern matching since the matching is integrated into Spark’s
processing pipeline. It becomes part of Spark’s execution plan
and undergoes optimizations such as filter push down. Therefore,
time cannot be measured independently in a reliable way.

The dark bars in Fig. 9 show that querying structural prove-
nance (eagerly) takes more time than the actual program execu-
tion (cf. Fig. 6 and 7). We identify two reasons for this behavior:
(i) the backtracing presented in Sec. 6 performs a join operation
for each operator in the actual program, even for computationally
less expensive operators such as filters and selects. (ii) Backtrac-
ing has to manipulate the provenance trees for each operator.

When comparing the performance of our holistic capture and
query approach with a completely lazy query approach such as
PROVision [28], we see that our holistic provenance querying
approach (eager) is always faster than the lazy approach. In the
scenarios T3, T5, and D3 the difference amounts to a factor four
to seven for two reasons. First, lazy processing needs to trace
back result items for each input dataset independently and these
scenarios have multiple input datasets. Hence, the extra time
to query provenance lazily add up for each input. Second, the
processing pipelines in these scenarios are deep, yielding high
provenance query times for each input dataset.

Based on the above experiments, we draw the following con-
clusions for provenance querying. Lazily querying structural
provenance is less attractive the more operators a program has
and the more input datasets it processes. It is less time consuming
to rerun a programwith provenance capture and query the prove-
nance eagerly than using lazy provenance querying approaches
such as [28].

7.3.4 Comparison with Titian. We compare Pebble to
Titian [17] since it is the only other provenance system inte-
grated into a DISC system. The purpose of the evaluation is to
compare the runtime overheads for capturing provenance of flat
data items. A detailed comparison is not possible since Titian
neither supports nested data, nor structural provenance, nor the
programs in our scenarios. We run the test on a local machine
with two worker nodes, using the unscaled articles and inpro-
ceedings records of the DBLP dataset. The test program reads
each record as a long string value and filters lines containing
2015. Then, the program computes the union over the filtered
articles and inproceedings. Titian’s program is implemented in
the RDD API. Pebble’s program is implemented in the SparkSQL
API. Without provenance computation, the programs have an
average runtime of 7.13 seconds and 7.36 seconds, respectively.
The overall execution time is lower for the RDD program since
the SparkSQL API imposes overhead on top of the underlying
RDD API. Titian’s overhead is 5.89%, Pebble’s overhead is 6.98%.

The result indicates that for workloads on flat data supported
by both systems, Pebble only adds marginal runtime overhead
compared to Titian, even though it is capturing structural prove-
nance. However, Pebble outperforms Titian in the sense that it
additionally supports nested data and the collection and querying
of structural provenance at attribute level.

7.3.5 Use-case analysis. To validate that structural prove-
nance supports the use-cases described in our motivation, we
revisit these use-cases with a prototypical implementation to
analyze how they benefit from structural provenance.
Data-usage patterns. Pebble reveals data-access patterns, as
well as hot items that frequently contribute to a query result
and cold data items that do not influence any result. In Fig. 10,
we show a heatmap of 25 randomly selected data items from
the DBLP inproceedings dataset after running test scenarios D1
through D5. For that purpose, we merge the provenance of the
individual scenarios. Themore often a data item is used the redder
(hot) it is. Items that do not influence any result are colored
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Figure 10: HeatMap for 25 data items in the DBLP inpro-
ceedings dataset after running scenarios D1-D5

blue (cold). The leftmost column indicates how often the top-
level item (tuple) contributed to a result. The other columns
refer to attributes of the top-level data items. The heatmap only
shows top-level attributes due to space constraints. All but three
top-level items have influenced at least one result. A horizontal
(tuple-based) partitioning of hot and cold items, therefore, may
not significantly improve system performance. However, only a
fraction of all attributes contributes to the results. Thus, in this
example, a vertical (column-based) partitioning of hot and cold
attributes is likely to improve system performance significantly.
Further, the analysis of accessed and manipulated nodes in the
structural provenance reveals that the attributes author and title
are frequently processed together. Thus, system performance
benefits from storing these items next to each other.

In comparison, lineage solutions and PROVision [28] only pro-
vide the tuple based counter. Lipstick [2] also identifies attributes.
However, Lipstick does not reveal information on access and
manipulation and, thus, misses influencing attributes.
Auditing. Pebble identifies sensitive data that has been leaked
directly or indirectly over the DBLP scenarios D1 through D5. All
data in Fig. 10 are leaked whose count is bigger than zero. Data
with count zero (blue) is not leaked. Since Pebble distinguishes
access and manipulation of items, it further reveals the usage of
the year item whose count equals one. It is marked as influenc-
ing since it does not contribute to any result item in D1 to D5.
However, knowing that the year item is accessed is important to
assess the risk of reconstruction attacks.

In comparison, lineage solutions and PROVision [28] only
provide full tuples. Thus, they mark too much data as leaked.
This is costly for a company, e.g., if a non-leaked (blue) attribute
holds credit card numbers. Then, the company has to issue new
credit cards to all marked customers, even though the information
is not leaked. Lipstick [2] potentially misses leaked information,
since it misses influencing attributes like the year. Thus, neither
of the mentioned solutions allows for proper risk assessment.

8 CONCLUSION AND OUTLOOK
This paper introduced structural provenance, for which we pro-
vided a formal data model and execution semantics for operators
frequently used in DISC systems. Further, we showed how to
capture the structural provenance in an efficient and scalable way.
Based on the captured provenance, we formalized an algorithm to
backtrace structural provenance at attribute level for nested data
at provenance query time. Our experimental evaluation using
the Pebble system showed that our contributions result in the
first DISC system integrated provenance solution for nested data

that is efficient, scalable, and accurate enough to support novel
provenance use-cases, such as auditing and data-usage patterns.

Future work includes extending Pebble with a user-friendly
front-end to interact with structural provenance. We also intend
to optimize provenance querying.
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ABSTRACT
Given a set of points, the Best Region Search problem finds the

optimal location of a rectangle of a specified size such that the

value of a user-defined scoring function over its enclosed points

is maximized. A recently proposed top-k algorithm for this prob-

lem returns results progressively, while also incorporating addi-

tional constraints, such as taking into consideration the overlap

between the set of selected top-k rectangles. However, the algo-

rithm is designed for a centralized setting and does not scale to

very large datasets. In this paper, we overcome this limitation by

enabling parallel and distributed computation of the results. We

first propose a strategy that employs multiple rounds to progres-

sively collect partial top-k results from each node in the cluster,

while a coordinator handles the aggregation of the global top-k
list, dealing with overlapping results. We then devise a single-

round strategy, where the algorithm executed by each node is

enhanced with additional conditions that anticipate potential

overlapping solutions from neighboring nodes. Additional op-

timizations are proposed to further increase performance. Our

experiments on real-world datasets indicate that our proposed

algorithms are efficient and scale to millions of points.

1 INTRODUCTION
The amount of geospatial data generated from social networks,

sensors, smart phone applications, tracking devices and so on is

constantly increasing [9]. Analyzing big geospatial data at scale

is of paramount importance for numerous applications in various

areas such as geomarketing, mobile advertisement, urban plan-

ning, tourism and logistics. In many cases, the analysis involves

identifying areas where the intensity of a studied phenomenon is

maximized. This involves, for example, finding hot spots of user
check-ins, commercial activities, crime incidents, etc. Various

traditional methods exist and have been used for such purposes,

such as computing global and local spatial autocorrelation [2] or

finding density-based clusters [10], while several recent studies

have also focused on problems related to finding areas of interest

according to certain keyword-based and size-based criteria and

constraints [3, 4, 7, 8, 15].

In this context, several types of optimal location selection prob-

lems have been studied. Range aggregate queries [18] have been

proposed for scenarios where users are interested in summarized

information about objects in a given region. Such queries return

an aggregate score over the objects enclosed within a given re-

gion, and can be efficiently processed using aggregate spatial
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indices. However, these methods can not be efficiently applied

when the problem is to find where the best regions are located.

A typical and widely studied formulation of this problem is the

MaxRS (Maximizing Range Sum) problem [6], which, given a set

of 2-dimensional weighted points, aims at finding the optimal

location of a fixed-size rectangular region that maximizes the

sum of weights of the points enclosed in it.

In this paper, we focus on the Best Region Search (BRS) prob-

lem [11], which is a generalization of the MaxRS problem. Simi-

larly, the input is a dataset D of spatial objects represented as

weighted points in a 2-dimensional space, and two parameters

a,b ∈ IR
+
, denoting the width and height of the region to be

found. The goal is to identify the optimal location of an axis-

aligned a × b rectangular region R that maximizes the value of

a scoring function f computed over the enclosed points. Hence,

the difference lies in the fact that in MaxRS, f is restricted to the

sum of weights of the points within R, while in BRS it can be

any submodular monotone function. The MaxRS problem and

its extensions and variants have their roots in problems studied

in the past by the computational geometry community [14, 16],

and have received much attention recently by the database com-

munity [1, 4, 6, 11, 12, 20, 21].

The BRS problem has numerous applications related to loca-

tion planning. For instance, assume a company that is searching

for the optimal location to open a new store. In that case, an a ×
b region R can be used to approximate the area from which the

new store is expected to draw its potential customers. Assuming

that a suitable scoring function f is provided, which computes a

utility score for each candidate region R based on its contents,

the solution to the BRS problem indicates the optimal location

for placing this new store. Similar examples can also be found,

for instance, when recommending regions to travelers. Given the

size of the region that a user is willing to explore, modeled by

an a × b rectangle, and a function f quantifying the utility of a

region with respect to the user’s preferences (e.g., presence of

museums, restaurants, shops, etc.), the BRS problem computes

the best region to be recommended.

The k-BRS problem has been introduced in [19], presenting

an algorithm that can compute top-k best regions progressively.
While doing so, we have also observed that in many real-world

datasets, where spatial objects are typically not uniformly dis-

tributed in space, these top-k results tend to highly overlap, even

for very large values of k . This is expected, since by slightly

shifting a region R horizontally and/or vertically it is possible

to obtain a new region R′ that covers almost the same area as R
and thus achieves very similar utility score to it. Yet, results of

such type offer essentially no new insight over the explored data.

Hence, to tackle this problem, we have introduced an additional

constraint that either completely prohibits overlaps among the
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Figure 1: Illustrative example. The green and blue regions
are those returned by Ni and Nj , respectively. The under-
lined results are those finally selected by the coordinator.
The red ones are the correct top-3 results.

returned results or reduces the degree of overlap by allowing but

penalizing partial overlaps among the returned top-k regions.

Being able to retrieve top-k results progressively, instead of

simply computing the overall best region, as well as avoiding

overlapping results that provide near-duplicate information, has

many advantages in data exploration scenarios. Still, the state-of-

the-art solution proposed in [19] operates in a centralized setting

and cannot scale as the input dataset size grows; indicatively, it

needs around 30 seconds to identify the top-10 non-overlapping

regions of size 200 × 200 m
2
even on moderate-size datasets –

around 100 thousand points.

To efficiently address the k-BRS problem when dealing with

big geospatial data, an approach is needed that can scale out, i.e.,

distribute and parallelize the computation over multiple workers

(computing nodes) in a cluster. In this paper, we address this prob-

lem by proposing different methods for parallel and distributed

top-k best region search while taking into account the criterion

of overlap among the returned results. In particular, we consider

a setting where the input dataset is partitioned across several

workers that perform local computations in parallel, while a co-

ordinator node is assigned the task to coordinate the execution

and merge local results to produce the global top-k result list.

Most contemporary Big Data platforms, e.g., Spark, are naturally

represented by the aforementioned setting.

Before we describe our approach, we explain the main chal-

lenge to this problem, which arises when non-overlapping (or

only partially overlapping) results are requested. Specifically, the

challenge arises from the fact that, under this constraint, the

global top-k results are not contained in the union of the local

top-k results computed at each node. Therefore, simply comput-

ing the local top-k results at each node and merging these top-k
lists at the coordinator can lead to incorrect results in many cases.

We illustrate this with the following example.

Example 1. Consider the example illustrated in Fig. 1, assuming
that the data is split in two partitions, each one assigned to a differ-
ent worker, represented as Ni and Nj . Assume that the top-8 regions
with highest scores in both partitions (regardless of overlaps) are
those shown in the figure, with the index of each region indicating
its rank (i.e., R1 having the highest score). Suppose that each region
belongs to (i.e., is computed by) the worker that contains its center.

Assume that the user requests the top-3 non-overlapping results.
Node Ni will progressively compute its results, and will return to
the coordinator the regions R2, R5 and R8. R3 is skipped since it
overlaps with R2 which has a higher rank. Similarly, Nj will return
to the coordinator the results R1, R4 and R7. Again, R6 is skipped as
it overlaps with R4. Based on these two sets of local top-3 results, the
coordinator will compute the global top-3 list excluding overlapping
regions, thus returning R1, R4 and R5.

However, the above result is incorrect. The correct global top-3
results should have been R1, R3 and R6. As we can see, R3 is a
false negative – it was missed because Ni skipped it, as it was
overlapping with R2; however, R2 was eventually discarded by the
coordinator because it was overlapping with a better result R1 from
the neighboring node. R4 and R5 are false positives – their respective
nodes considered them as valid results; however they should have
been discarded because eventually a better result R3 that overlaps
with both of them should have been present. R6 is again a false
negative, for reasons similar to R3.

As revealed by the above example, the root cause of false

results is the fact that the admission of a local top-k region in the

global top-k list is precluded by the existence of a higher ranked

region that overlaps with it. Since the latter may arise from a

different worker than the former, a worker cannot independently

reason regarding the validity of its own results, i.e., which of

these results will eventually “survive” at the coordinator. To

make matters worse, candidates that were rejected locally due to

the existence of a better local overlapping result R, may actually

have a place in the global top-k list if R is later dismissed at the

coordinator.

Since overlapping regions between two neighboring workers

occur at the borders, an intuitive – yet insufficient – approach

to overcome this problem would be to replicate the contents of

two neighboring nodes around the borders. In that case, in the

example of Fig. 1, it could be possible for Ni to know, for instance,

that R1 overlaps with R2 and has higher score than it. However,

it may turn out that R1 is disqualified in Nj , if it overlaps with

an even better result not located in the border with Ni , in which

case Ni would still have no knowledge of this. Even replicating

the whole contents of Nj to Ni would not suffice, since the results

of Nj may similarly be affected by its other neighbors as well.

In this paper, we explore different solutions to overcome this

problem. First, we propose a multi-round algorithm (MR), where
the problem of dealing with conflicts is mainly handled by the

coordinator. The advantage of MR is that workers can readily

exploit the local k-BRS algorithm with minor adaptations, since

the decisions for forming the global top-k list are made at the

coordinator level. The downside is that when overlapping re-

sults are identified, and hence discarded, at the coordinator, a

new round has to be executed, where the relevant workers are

informed about these results and are requested to compute new

results accordingly. To overcome this drawback, we devise a

single-round algorithm (SR). This requires formulating appropri-

ate conditions to reason about the uncertainty of the validity of

the local results. In SR, each worker proactively anticipates which
results may be disqualified because of overlaps with regions from

other nodes, and what the respective effects are in each case, and

produces a sufficiently extended local set of results to guarantee

a single round of communication. However, the computation

of these extended results imposes additional overhead on each

worker, implying potentially significantly higher execution time

of the local processes. Eventually, we propose a hybrid algorithm

(HY ), which strikes a balance between the pros and cons of the

multi-round and single-round strategies.

In the example described above, we assumed that the proposed

regions must not overlap. Other conditions are also possible, e.g.,

the user might accept overlapping regions as long as their overlap

is below a threshold, or even score the overlapping regions differ-

ently. Our methods support arbitrarily complex scoring functions,

enabling different configurations concerning the overlap.
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Summarizing, the paper makes the following contributions:

• We study the top-k best region search problem, identifying

and pointing out the challenges that arise when attempting

to compute non-overlapping (or partially overlapping) top-

k results in a distributed and parallel setting.

• We explore the solution space of the problem, and propose

two different distributed algorithms for efficiently solving

it. The first is a multi-round algorithm, with the number of

rounds bounded by the value of parameter k . The second
is a single-round algorithm, which guarantees that the

top-k best regions can be identified within a single round

of interactions.

• The above two algorithms represent the two extremes

in terms of number of rounds, and come with different

performance tradeoffs. We thus proceed to explore the

configuration space between them, leading to different

optimizations, and to a hybrid, fixed-rounds algorithm

that combines the benefits of the two.

• We implement all proposed algorithms in Spark and we

thoroughly evaluate them using real-world datasets. Our

evaluation results demonstrate the scalability and benefits

of the proposed algorithms, and analyze their tradeoffs on

queries and datasets of different properties.

The rest of the paper is structured as follows. Section 2 sum-

marizes related work. Section 3 presents the problem definition

and background. We introduce the multi-round and single-round

algorithms in Sections 4 and 5, respectively. Section 6 presents

our experimental evaluation, and Section 7 concludes the paper.

2 RELATEDWORK
The Best Region Search problem has its roots in computational ge-

ometry problems relating to intersecting rectangular regions. An

intersection graph of rectangles in the 2-dimensional space with

sides parallel to the axes is defined in [14]. It is constructed by

representing each rectangle with a vertex and connecting two ver-

tices by an edge if the corresponding rectangles intersect. Then,

finding the connected components and the maximum clique on

this graph is investigated. Moreover, given a set of points in a

2-dimensional space, the problem of finding the placement of a

rectangular region P of specified size such that it encloses the

maximum or minimum number of points is investigated in [16].

The proposed algorithm is based on an interval tree.

More recently, the problem has attracted interest in spatial

databases. Specifically, theMaxRS problem has been defined in [6]

as follows: given a set ofweighted points, and a rectangular region
R of specified size, find the placement of R that maximizes the

sum of the weights of all enclosed points. An external-memory

algorithm is proposed that is optimal in terms of I/O complexity,

based on an external version of the plane-sweep algorithm [13].

Furthermore, the (1-ϵ)-approximate MaxRS problem has been

studied in [20], which returns a rectangle whose covered weight

is at least(1-ϵ)m∗, wherem∗ is the optimal covered weight and ϵ
is an arbitrarily small constant between 0 and 1.

The MaxRS problem has also been investigated in a streaming

setting. In [1], an algorithm that exploits a graph in a grid index

is proposed, using also an upper-bounding technique to avoid

unnecessary update computation. A sweep-line based algorithm

has also been proposed for the continuous detection of Bursty Re-
gions [12]. This is a variation of the continuous MaxRS problem,

where the burst score of a region is defined over two consecutive

sliding windows, and spatial objects in different windows con-

tribute differently to the burst score. Moreover, the continuous

maintenance of range-sum heat maps over dynamically updating

data objects has been studied in [17].

The Best Region Search problem generalizes the MaxRS prob-
lem by allowing the objective score function used to quantify a

rectangle’s score to be any submodular monotone function over

the enclosed points, instead of the sum of their weights [11]. Each

point is represented by a fixed-size rectangle centered at it. Then,

the best region is identified by finding the maximal intersections

of these rectangles. To this end, the input space is partitioned

in vertical slices that run parallel to the y-axis. Each slice is pro-

cessed by executing a bottom-up scan over it using a horizontal

sweep line to identify so-calledmaximal slabs. The maximal slabs

are then processed using a vertical sweep line to identify maxi-
mal regions. The best region is guaranteed to be centered inside

one of those maximal regions. A progressive algorithm for top-k
Best Region Search has been proposed in [19]. This algorithm

is used in this paper to retrieve local top-k results at each node;

hence, it is described in more detail in Section 3.2.

Variants of the MaxRS problem have also been considered

in road networks. The length-constrained maximum-sum region
query is introduced in [4]. An approximation algorithm is pro-

posed, utilizing a technique that scales node weights into integers,

as well as a heuristic and a greedy algorithm. A unified frame-

work that addresses three variants of optimal location queries in

road networks is presented in [22]. Given a set of existing facili-

ties and a set of clients, these queries compute the location for a

new facility that optimizes a certain cost metric defined based

on the distances between the clients and the facilities. Finally,

continuous Best Region Search in spatial data streams in road

networks has been addressed in [5], proposing several pruning

strategies and a branch-and-bound algorithm.

3 PRELIMINARIES
In this section, we first provide a formal definition of the problem

addressed in this paper, and then we briefly outline the k-BRS
algorithm [19], which is exploited in our algorithms to compute

the local results at each node.

3.1 Problem definition
Assume a set D of points in a 2-dimensional space. Let f be a

scoring function that assigns a score f (R) to any axes-aligned

rectangle R, based on its enclosed points. We assume monotone

scoring functions, such that if the contents of a rectangle R′ are
a superset of those of R, then f (R′) ≥ f (R). Based on these, the

problem of computing the top-k overlap-aware best regions can
be formally defined as follows:

Problem 1 (Top-k Overlap-Aware Best Regions). Given
a two-dimensional point dataset D, a monotone scoring function
f , width and height parameters w , h, and an integer k , the goal
is to compute a ranked list of k axis-aligned rectangles Ri with
dimensions w × h, such that for each i , j, 1 ≤ i < j ≤ k , it holds
that:
• f (Ri ) ≥ f (Rj ), i.e., the rectangles are ranked in decreasing
order of their score,
• Ri ∩Rj = ∅, i.e., Rj does not overlap with any higher ranked
result Ri , and
• any other rectangle R′ either has score f (R′) ≤ f (Rk ), or
there exists another rectangle Ri in the top-k list such that
f (Ri ) ≥ f (R′) and R′ overlaps with Ri .
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Note that this definition can be relaxed to allow results that

partially overlap, up to a user-specified threshold. In fact, this

boolean condition can be generalized even further, by allowing

overlaps but penalizing the score of a region by a factor depend-

ing on its degree of overlap with a higher-ranked region, as

described in [19] using the notion of marginal gain. To simplify

presentation, in this paper we focus on the boolean case, but it

is straightforward to adapt the proposed algorithms to handle

cases where the score of a region is penalized based on its degree

of overlap with previous results.

Our goal is to compute top-k overlap-aware best regions in a

parallel and distributed setting. A progressive algorithm for top-k
overlap-aware best regions has been presented in [19]. However,

it operates in a centralized setting and does not scale to big

geospatial datasets containing millions of points. Transferring

this solution to a distributed environment is not straightforward,

because, as shown in Section 1, deriving global top-k results from

the union of local top-k ones leads to incorrect answers. Hence,

in this paper, we focus on overcoming this problem.

3.2 The k-BRS algorithm
Next, we briefly outline the k-BRS algorithm [19], which is used

in this paper as the basis for retrieving local top-k results in each

partition. The process is summarized in Alg. 1.

The algorithm starts (Lines 2–3) by constructing a grid with

cells of sizew ×h, i.e., with the same dimensions as the regions to

be discovered. For each cellC , an upper boundUB(C) is computed

for the score of any region R centered inside C . This is based on

the fact that R can enclose at most those points located within C
or its neighboring cells. The cells are then inserted into a priority

queue Q in decreasing order of their upper bound.

Whenever a cell is extracted from Q (Lines 6–8), it is scanned

bottom-up using a horizontal sweep line. This generates a series

of maximal slabs, each one associated with a respective upper

bound, according to which they are inserted into Q. Moreover,

the series of slabs leading up to a maximal slab are organized in

a slab tree, so that these sub-maximal slabs can be visited later

if needed. This permits the algorithm to backtrack and explore

other results in case the one found is inadmissible due to overlap.

Whenever a maximal slab is extracted from Q (Lines 9–12),

it is scanned from left to right using a vertical sweep line. This

generates a series ofmaximal regions, each one associated with an
upper bound, according to which they are added to Q. In addition,

one level of the associated slab tree is traversed, generating one or

two new slabs, which now becomemaximal, and are thus inserted

inQ, alongwith the reduced slab tree, to be processed accordingly.

Maximal regions are also associated with a corresponding region
tree, operating similarly to the slab tree.

Finally, whenever a maximal region is extracted from Q (Lines

13–16), a result is produced, comprising the next region with

the highest utility score in the local top-k list. At this point, a

check is performed to determine whether this result overlaps

with a previously accepted result, and thus determine whether

it is admissible or not. New maximal regions are also generated

from the region tree and added to Q for future consideration.

4 MULTI-ROUND ALGORITHM
Our first method is an incremental, multi-rounds algorithm (MR)
that gradually builds the global top-k list of results by retriev-

ing local top-k results from each worker at each round. While

aggregating the local top-k results received at the end of each

Algorithm 1: Local k-BRS algorithm.

1 Function Local(k)
2 L ← ∅ ; G ← ConstructGrid()
3 Q ← InitializePriorityQueue(G)
4 while |L| < k & |Q| > 0 do
5 E ← Q.nextEntry()

6 if E.type = “Cell” then
7 S ← GenerateSlabs(E)
8 Q.addAll(S)
9 else if E.type = “Slab” then
10 R ← GenerateRegions(E)
11 S ← GetNextSlabs(E.slabTree)
12 Q.addAll(R ∪ S)
13 else if E.type = “Region” then
14 if overlapAcceptable(L, E) then L.add(E)
15 R ← GetNextRegions(E.reдionTree)
16 Q.addAll(R)
17 return L

round, the coordinator resolves overlaps, and, if needed, contacts

again the affected workers, informing them about the occurred

overlaps and asking them for accordingly revised top-k results.

This process may take up to k rounds to complete. The steps are

outlined in Alg. 2. We start our discussion with data partitioning,

and then we explain the querying algorithm.

Data partitioning. Data points are spatially partitioned by a

uniform grid with partition widthwp and height hp (Lines 2–3).

Each point with coordinates (x,y) is mapped to partition Pi , j ,
with i = ⌈x/wp ⌉ and j = ⌈y/hp ⌉. Data partitioning is performed

offline. In Spark, this entails a simple map and groupByKey se-

quence that parses the original data and generates a new pair

RDD with key being the partition id, and value the list of points

belonging to this partition. Partitions are held by N nodes (in our

case, the Spark workers). Typically, the number of nodes is much

less than the number of partitions. It is assumed thatwp >> w
and hp >> h, wherew and h denote the width and height of the

query rectangle.

The node holding each partition is responsible for processing

the partition to identify the top-k regions with a top-left corner
1

within the partition. The border cells of the partitions are of

particular interest. Notice that a candidate region may intersect

two neighboring partitions (e.g., r8 in Fig. 2). To enable detection

of these regions from exactly one partition, and to be able to

compute their score, border cells belonging to the top and left

borders of each partition are replicated to all partitions they share

a border with (for example, the blue-colored cells of P2,3, P3,3
and P3,2 of Fig. 2 are the ones replicated to the node holding P2,2).
This replication may happen either at query time, whenw and h
are determined, or may occur offline, assuming that a maximum

value forw and h is supported.

Query execution. Upon receiving the query, each partition P
is processed in parallel to compute local top-k results (Line 6).

The local top-k algorithm (Alg. 1) is used for this purpose, with a

1
An implementation detail is that, in the k-BRS algorithm [19], each input point

p is represented by aw × h rectangle Rp centered at it. The rationale is that any

region centered inside Rp encloses p . Now, identifying a result by its top-left corner
instead of its center involves a minor adaptation: Rp must have its bottom-right

corner (instead of its center) at p . In this way, it still holds that any result R having

its top-left corner inside Rp will enclose p .
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Algorithm 2: MapReduce implementation of the Multi-

round algorithm.

1 Function AtCoordinator(k)
/* Data partitioning */

2 data ← input .map(poi to <partitionIndex,poi>)

3 data ← data.дroupByKey(partitionIndex)

4 list дlobalAns ← ∅

/* Querying */

5 while |Ans | ≤ k do
6 localAns ← data.map(Local(k,дlobalAns))

7 roundAns ← localAns .reduce((a,b) =⇒

AддFunc(a,b,k))

8 дlobalAns ← дlobalAns ∪ roundAns

/* Reduce-based aggregation of results */

9 Function AggFunc(res1, res2, k)
10 minAcceptableScore ←

max(min(res1 scores),min(res2 scores))

11 localAns ← res1 ∪ res2
12 localAns ← SortDesc(localAns)
13 output ← ∅

14 for pos=1 to k do
15 if overlapAcceptable(localAns[pos], roundAns) &

sc(localAns[pos]) > minAcceptableScore then
16 output ← output ∪ localAns[pos]

17 else
18 break

19 return output

minor tweak such that it accepts as input the list of global results

computed so far (дlobalAns). This list is taken into consideration

in Alg. 1 (Line 14), so that now the overlap condition is checked

with respect to L ∪ дlobalAns instead of L.

The local results per partition are then passed to an aggre-

gation function AддFunc , such that a single list of top-k results

ends up at the coordinator. The function takes as input two lo-

cal results, constructs their union, sorts it, and retains the top-k
of them, as long as these do not overlap each other. If a non-

acceptable overlap is found, or if the minimum score of the two

lists surpasses the score of the current region, then the aggre-

gation interrupts and retains only the output produced so far.

The logic behind this is that, after any of these cases is observed,

any further results returned by the aggregation process are not

guaranteed to be correct or complete. This aggregation is asso-

ciative and commutative. Therefore, it is executed as a reduction

in Spark (Line 7), which means that the whole processing (both

maps and reductions) is fully parallelized, and the coordinator

never constitutes a bottleneck for the algorithm’s performance.

Finally, after the reduced results are returned to the coordinator,

the coordinator merges them with the results of the previous

rounds (if any), and loops through the previous map/reduce steps

until it collects a total of k results.

As explained previously, we focus on the case that a boolean

condition is used to check whether a new result is admissible

with respect to existing results based on potential overlap. In

the algorithm, this condition is checked by the overlapAcceptable
function (Line 15). A generalization of this is to penalize the

score of overlapping regions using a marginal gain function, as

described in [19].

The above algorithm is amenable to configurations and opti-

mizations. First, the size of partitions is a system parameter, which

involves the following tradeoff. Very large partitions reduce the

area covered by border cells, thereby reducing the probability

that overlapping regions of two partitions require more rounds.

However, they also lead to scalability problems of the local algo-

rithm (the workers that hold dense partitions run out of memory,

swap aggressively, and eventually crash).

Also notice that the algorithm asks for k results per round,

per partition. It is however unlikely that the global top-k results

come from the same partition, which means that the local nodes

(the Spark workers) are likely producing many more results than

needed. To reduce this extra effort, the coordinator can instead

ask for the top-k ′ results per partition at each round, with k ′ < k
set either at the beginning, or progressively at each round, in

order to fine-tune the tradeoff between the number of rounds

and the local effort at the nodes: a high k ′ value favors towards
a lower number of rounds, whereas a lower k ′ reduces the effort
spent by the workers on computing results that are not really

useful, because of yet-unknown overlaps. The following lemma

formalizes this tradeoff.

Lemma 4.1. The multi-round algorithm requires at least ⌈k/k ′⌉
rounds and at most k rounds.

Proof. For the lower bound, consider the case where answers

are contained in a single partition. Since each partition generates

k ′ answers at each round, it is not possible to retrieve all results in
less than ⌈k/k ′⌉ rounds. For the upper bound, consider the top-1
region among all collected local results at a given round. This is

guaranteed to be admissible, since it has already been checked

locally against the currently existing results (globalAns). Hence,
at each round, at least one more result is produced. Consequently,

the process will terminate after k rounds. □

5 SINGLE-ROUND ALGORITHM AND
EXTENSIONS

The multi-round algorithm enables processing of datasets with

sizes that could not be practically processed by the centralized

algorithm. Still, the iterative nature of the algorithm (and overlap-

ping regions from different partitions) may lead to a potentially

high overhead and poor performance. To overcome this draw-

back, we now introduce a single-round algorithm. The algorithm

maintains auxiliary information per region that is used during

the reduction phase for handing overlapping regions from dif-

ferent partitions. We will then explore the space between the

single-round and the multi-round algorithm, proposing a hybrid
algorithm, and discussing additional optimizations.

5.1 Single-round algorithm
The intuition for the single-round algorithm (SR) is the following.
When processing each partition, a sufficient number of regions

(typically larger than k) will be computed and sent to the coordi-

nator, such that it is guaranteed that the coordinator will have all

candidates needed to assemble the global top-k results (discard-

ing non-admissible ones) without further communication to the

workers. The challenge is to determine how many, and which,

additional regions need to be sent, such that the coordinator is

guaranteed to hold sufficient information for extracting the final

answer. This challenge arises from the presence of overlaps be-

tween candidate regions that are detected in different partitions.

For example, in Fig. 2, region r1 of partition P2,2 overlaps with the
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Figure 2: Identified regions within a node’s partition. The
regions are labeled in decreasing score, i.e., sc(r1) > sc(r2).

green region of partition P2,1, which has a higher score. There-

fore, r1 will not be in the final results (unless the green region

of P2,1 intersects with another region of P2,1 with higher score),

which will make r2 a possible result. Unfortunately, existence of
long chains of such overlaps prohibit local solutions that rely on

data replication (e.g., replicating the border cells).

The single-round algorithm addresses this issue by forming a

dependency graph of the identified candidate regions at each par-

tition. These graphs allow each node to establish a lower bound

on the number of regions contained in the local results that will

be accepted by the coordinator, if their score is sufficiently high.

We start by describing two core components of the algorithm,

the dependency graph and the extended dependency graph.

Definition 5.1 (Dependency graph). Let R = r1, r2, . . . denote
the list of candidate regions detected at a partition P , ordered by

their score, i.e., sc(ri ) ≥ sc(ri+1). Dependency graph G(R) is a
directed acyclic graph that contains all candidate regions from R

as vertices, and has an edge between any two regions ri and r j if
these overlap. The direction of the edge is from the region with

the higher score towards the region having the lower score (ties

between regions are broken in a consistent manner, by preferring

the region with the lowest x coordinate, and then the region with

the lowest y coordinate).

As an example, Fig. 3 depicts the dependency graph for the

detected regions (r1 to r8) in Fig. 2.

Constructing the dependency graph for each partition Px ,y
is a local process, since it utilizes only the partition’s data and

the data in the border cells of the neighboring partitions Px+1,y ,
Px ,y+1, and Px+1,y+1 which is replicated in the node holding

the partition. Recall, however, that the regions that overlap the

border cells of each partition (gray-shaded cells in Fig. 2) may

overlap with candidate regions detected in adjacent partitions

(e.g., the green region from P2,1 which overlaps with r1 of P2,2).
The dependencies induced by these regions cannot be depicted

in the dependency graph. Thus, to represent these dependencies,

r1 r2 r3 r4

r5 r6r7 r8

Figure 3: Dependency graph.
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Figure 4: Extended dependency graph.

the dependency graph is extended by adding artificial dependen-
cies for all (locally unknown) candidate regions that potentially

overlap with regions detected at neighboring partitions.

Definition 5.2 (Extended dependency graph). The extended de-

pendency graph X(R) of a partition is a DAG containing: (a)

G(R), and (b) for each vertex v ∈ G(R) with an upper-left corner

contained in a border cell (i, j), one vertex v ′ for each one of the

cells adjacent to (i, j) that belongs to a different partition, and an

edge pointing from v ′ to v .

Intuitively, the extended dependency graph encodes the possi-

ble dependencies from regions detected at other partitions. Since

these regions are unknown at the node constructing the graph,

they are represented with the coordinates of the cell that would

contain their upper-left corner. For example, region r1 of parti-
tion P2,2 has an upper-left corner at cell (9, 9). The adjacent cells

of (9, 9) belonging in other partitions are the cells (8, 8), (8, 9),

(8, 10), (9, 8), and (10, 8) of partitions P1,1, P1,2, and P2,1. Any
region from another partition that has a non-empty overlap with

r1 will have its upper-left corner at one of these cells. Figure 4
depicts the extended dependency graph of partition P2,2.

The significance of the extended dependency graph is that it

allows to establish an upper bound on the number of regions in

the partition that may be excluded from the results due to (chains

of) overlapping regions contained in other partitions. Conversely,

it allows each partition to derive a lower bound on the number

of safe regions, i.e., the regions that will not be invalidated from

the contents of other partitions, even by long chains of overlaps.

The progressive construction of the extended dependency

graph takes place alongside the local algorithm introduced in

Alg. 1, and is summarized in Alg. 3. Precisely, we slightly modify

the local algorithm in two ways: (a) for every identified region

that passes the filter of acceptable overlap (Line 14), the modified

algorithm invokes a function addReдion, to add the region and its
dependencies in the extended dependency graph, (b) it terminates

when addReдion has detected sufficient safe regions.

In more detail, before processing a partition, the node initial-

izes an empty extended dependency graph G, three sets Safe,
Unsafe, and detectedRegions for keeping the regions, a setM for

keeping the identified dependencies, and a counter for the num-

ber of identified safe regions safeCnt. Upon invocation, addRegion
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checks the new region to decide whether it is safe, unsafe, or

inadmissible, and to maintain a lower bound for the number of

safe regions (variable safeCnt).2 This process is governed by a

set of rules. Precisely, for a candidate region rx , the node checks
for three different cases:

Case 1: rx does not overlap with other identified regions (either
safe or unsafe), or with the border cells. rx is a safe region, i.e.,

it will be included in the final answer if its score is sufficiently

high. We increase safeCnt by one, and add it in the Safe set and
in the extended dependency graph with no dependencies. r7 is
one such example from Fig. 2.

Case 2: rx overlaps with a safe region ry , which is already in-
cluded in the Safe set. Since ry is already identified, its score is

higher than the score of rx . Therefore, node discards rx and con-

tinues. As an example, consider r5 and r6 from Fig. 2 – since r5 is
safe and has a higher score than r6, the latter will be discarded.

Case 3: rx overlaps with a border cell, or with an unsafe region
ry included in the Unsafe set. In this case, rx is also unsafe. rx is

added in the Unsafe set, and in the extended dependency graph,

with dependency from ry and/or the adjacent cells of the other

partitions. Let D(rx ) denote the set of all dependencies for rx
contained in the dependency graph after this process. We have

two further sub-cases:

Case 3a: If none of the regions contained in D(rx ) is included
inM, none of these has been considered before. Therefore, ei-

ther rx or a region from D(rx ) will be part of the top-k regions,

assuming that their score is sufficiently high. To capture this, rx
and the regions inD(rx ) are added toM, and counter safeCnt is
increased by one. From Fig. 2, r1 and r8 will belong in this cate-

gory. Out of these, the coordinator will later detect that r1 has
an overlap with the green-marked region detected at partition

P2,1 (i.e., the green region will be included in the results instead),

whereas r8 will be included in the results if is score is sufficiently

high (hence the increase on safeCnt for both of them). Another

example is region r3, which depends on r2: since r2 overlaps with
r1 which will be included inM, r2 will not be included inM.

This means that r3 and its dependencies will be included inM,

and safeCnt will be increased by one.

Case 3b: If any of the regions contained in D(rx ) is already
included in setM, then safeCnt is not increased and rx is not

added in M. As an example, consider regions r2 and r1 from

Fig. 2. Region r1 will be identified first, and already contained in

M when r2 is identified. Therefore, identification of r2 will not
lead to an increase of safeCnt.

After completion of addRegion, the control returns to the modi-

fied local algorithm, which breaks the loop when safeCnt reaches
k . The local results for the partition are contained in detectedRe-
gions, and the extended dependency graph is saved in G.

Similar to the case of the multi-round algorithm, implemen-

tation of the single-round algorithm over Spark requires a way

to hierarchically merge/reduce the local results (the dependency

graphs) in order to get a final dependency graph with no further

artificial dependencies in the coordinator, for extracting the final

answer. Conceptually, the required merging involves the follow-

ing steps: (1) we form the union of the two graphs, (2) if the two

graphs share a border, we identify the artificial dependencies

in the union graph that can now be eliminated, or replaced by

2
The problem of counting the number of safe regions is not equivalent to the prob-

lem of actually detecting the safe regions. Addressing the latter problem typically

leads to less regions marked as safe, which translates to larger dependency graphs

and degradation of the algorithm’s performance.

Algorithm 3: Single-round algorithm – progressive con-

struction of extended dependency graph.

1 G ← ∅ , Safe← ∅ , Unsafe← ∅ , detectedRegions← ∅ ,
M ← ∅ , safeCnt← 0

2 Function addRegion(reдion)
3 if region does not overlap with any region in Safe,

Unsafe, and border cells then
4 G.addNode(reдion)
5 Safe← Safe ∪ region
6 safeCnt← safeCnt + 1

7 else if region overlaps with a region in Safe then
8 continue

9 else if region overlaps with a region in Unsafe or
border cells then

10 G.addNode(region)
11 G.addDependencies(region)
12 Unsafe← Unsafe ∪ region
13 if region dependencies is included inM then
14 continue

15 else
16 safeCnt← safeCnt + 1

17 M ← M∪( region dependencies)

18 detectedRegions← Safe ∪ Unsafe

dependencies on real regions, (3) we propagate the effect of each

dependency elimination or replacement (e.g., switching a region

from unsafe to safe), by performing a depth-first traversal of the

graph starting from the affected region, and, (4) we reduce the

graph by finding the score of the top-k safe region, and removing

all regions with a lower score.

Notice that the effect of the propagation step (step 3) relies on

the same rules that we introduced earlier to determine whether

a region is safe, unsafe, or can be safely removed. Therefore, a

simple way to implement the above process is to initialize an

empty graph, and keep adding the regions of the two partitions

in descending order of score by invoking addRegion function of

Alg. 3. The adding process can stop when safeCnt exceeds k .

Theorem 5.3. The final dependency graph produced by the
algorithm only contains safe regions, which are the answer to the
user’s query.

Proof sketch: Since the final dependency graph contains the

input from all partitions, it will no longer contain artificial depen-

dencies, which cause the unsafe regions (notice that inadmissible

regions are not included in the graph – see lines 7-8 of Alg. 3).

Also, regions are added in this graph in order of descending score,

and the graph is completed as soon as the graph contains k nodes.

The proof can be formalized with induction. □
The discussed algorithm is amenable to several optimizations

and extensions for reducing network load and/or wallclock time.

We present these in the following.

5.2 Spatial-aware tree-based aggregation
The aggregation function at the single-round algorithm is com-

mutative and associative, similar to the multi-round algorithm.

Therefore, it can be expressed in Spark as a reduction, enabling

the Spark engine to fully distribute this part of the algorithm as

well. Notice however that Spark does not take spatial proxim-

ity of partitions into account when executing the reducers. As
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Algorithm 4: MapReduce implementation of Single-

round algorithm. Parameters res1, res2, res3, . . . repre-
sent the results grouped by the same key.

1 Function AtCoordinator(k)
2 data← input .map(poi to <partitionIndex,poi>)

3 data ← data.дroupByKey(partitionIndex)

/* first compute the local results per

partition */

4 localAns← data.map(modified Alg1.Local(k))

/* recursive hierarchical aggr. */

5 for i=1 to treeHeiдht do
6 localAns ←

localAns .map(recomputePartitionIndexes(b))
.дroupByKey(partitionIndex).map(mergeRegions(k))

7 Ans ← localAns

8 Function mergeRegions(<res1, res2, res3, . . . >, k)
9 G ← ∅

10 pos ← 0

11 unionRes ← sortDesc(res1 ∪ res2 ∪ res3 . . .)

12 while (G.sa f eCnt < k) do
13 G.addReдion(unionRes .дet(pos))

14 pos ← pos + 1

15 return G

such, for a 16-partitions example of Fig. 5, one possible reduc-

tion order could be the following (where ⊕ denotes the reduc-

tion/aggregation function of the results): (((1 ⊕ 16) ⊕ (5 ⊕ 11)) ⊕

(9 ⊕ 7)) ⊕ (4 ⊕ 13) . . .. This random-order reduction precludes

a core optimization, since merging distant partitions (e.g., parti-

tions 1 and 16) does not help the reduction function to increase

the per-partition number of safe regions. Ideally, we could reduce

partition results in a proximity-aware hierarchical approach (i.e.,

order ((1 ⊕ 2) ⊕ (3 ⊕ 4)) . . .). Then, the merging process would,

for example, exploit the partial results of partition 1 to mark the

partial results of partition 2 that border with partition 1 as safe,

or to exclude them, depending on their overlap and scores.

To exploit this observation, we enforce an explicit reduction

order to Spark by introducing a hierarchical structure of aggre-

gations. Fig. 5 depicts a small example with a hierarchical aggre-

gation of 16 partitions. First, we apply a Z-order curve to assign

an id to all partitions. Notice that close-by ids now mostly have

spatial proximity. Then, each partition with id id assumes place

in the hierarchy as the child of parent with id ⌈id/b2⌉, where
b2 is the desired fan-out of our hierarchy. In our example, par-

titions with id 1 to 4 become children of a parent with id 1, i.e.,

their results will be merged together with a reduction in order to

receive their parent node 1. The aggregation process continues

recursively, until we reach to a single parent.

In concrete terms, let P denote the total number of partitions,

and p = bi be the smallest power of b ∈ N+ that is greater

than or equal to P , for a user-configured value of b. The space
is recursively partitioned to p tiles of equal size (b × b tiles at

each recursion), giving rise to a (b2)-ary aggregation tree. This

aggregation tree is represented in Spark with a chain of map
and groupByKey sequences (Alg. 4, lines 5-7). The map functions

determine the place of the tile in the hierarchy (essentially the

id of the parent reducer), and the groupByKey functions bring

together the results of the neighboring partitions, for the merging

algorithm to run (function mergeRegions). The process continues

until the root of the hierarchy, and the results are finally collected

by the coordinator. Again, this whole process is executed in a

decentralized fashion, and the coordinator only receives the final

results. The value b that determines the number of levels in the

tree hierarchy is important. A very small value of b, e.g., 2, leads
to many levels, introducing significant synchronization overhead

in Spark. At the other extreme, very large b values lead to low

parallelism and large memory requirements at the nodes.

5.3 Peer-to-peer communication
Up to now, construction of the extended dependency graph did

not exploit information regarding the neighboring partitions. As

such, all artificial dependencies from neighboring partitions were

set in a pessimistic way to dominate the local regions, leading

to potentially long dependency chains (e.g., Fig. 6 contains a

dependency chain that includes r1 to r4, because r1 is unsafe).
To alleviate this issue, we introduce moderate communication

between the nodes, for exchanging key statistics regarding their

neighboring partitions (e.g., the exact highest score of any region

within all border cells, the maximum score of all regions in the

border cells, or even the individual regions identified in the bor-

der cells and their scores). These statistics or results can then be

used during the local algorithm to replace or tighten the artificial

dependencies, i.e., to upper-bound the score of the artificial ver-

tices in the extended dependency graph. The amount and type

of data to exchange between nodes can lead to a spectrum of

configurations that enable a tradeoff between the number of safe

regions and the computational overhead and network volume.

This P2P-style communication, though, is not natural in Spark’s

MapReduce paradigm. One way to simulate it within Spark is

by introducing a preliminary round, where each node runs a

fast preparation step on each of its partitions and computes the

desired statistics. However, this extra round introduces a high

synchronization overhead for Spark. Instead, we choose to ex-

tend the idea of replication of border cells we described earlier,

and assign to each node the additional task of first extracting

coarse-grained statistics for the border cells of its eight neighbor-

ing partitions, prior to analyzing its own partition. In this way,

the code for statistics extraction can be fully integrated in the

map process of the single-round algorithm, without requiring an

additional round of synchronization.

Particularly, we extend the data held for each partition by

one row/column in each direction. In the example of Fig. 2, the

yellow-colored cells of the neighboring partitions will also be

copied to the node holding P2,2, in addition to the blue-colored

cells.
3
. When the processing for P2,2 is initiated, the first task of

the node is to process these replicated border cells and extract

these statistics that will be subsequently used for constructing

the extended dependency graph. We examined two levels of

granularity for these statistics (in decreasing granularity):

• Executing the local algorithm on these cells to extract all

contained regions – possibly overlapping each other. The

scores of these regions will be an upper bound of the true

scores. Therefore, these scores can be used to remove some

of the dependency relations of the artificial dependencies

in the extended dependency graph, i.e., if the region of the

local partition has a higher score than the region in the

replicated area (Fig. 6 (left)).

3
Notice the asymmetry between the replicated cells from the left and the replicated

cells from the right of P2,2 (similarly for the cells above and below) This happens

because the node holding P2,2 is also responsible for finding the regions that overlap
P2,3 , but not the ones overlapping P2,1
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Algorithm 5: Hybrid algorithm – region merging. Pa-

rameters res1, res2, res3, . . . represent the results grouped
by the same key.

1 Function mergeRegions(<res1, res2, res3, . . .>, k)
2 minAcceptableScore←

max(min(sc(res1)),min(sc(res2)),min(sc(res3)), . . .)

3 G ← ∅ , pos← 0

4 unionRes← sortDesc(res1 ∪ res2 ∪ res3 . . .)
5 while G.safeCnt < k & sc(unionRes.get(pos)) >

minAcceptableScore do
6 G.addRegion(unionRes.get(pos))
7 pos ← pos + 1

8 return G

• For each border cell of a neighboring partition with co-

ordinates (i, j), compute the score of the 2ϵ × 2ϵ region

consisting of cells (i, j), (i + 1, j), (i, j + 1), (i + 1, j + 1). This
does not require executing the local algorithm, since the

exact region boundaries are known. We only need to com-

pute the score function for the region, and use it as an

upper bound for the cell. (Fig. 6 (right)).

The first approach produces the tightest upper bounds, but

preludes execution of the full local algorithm on the border cells,

thereby adding non-negligible time overhead. The second ap-

proach produces weaker upper bounds for the scores, but it is

much more efficient. In our experiments, the second approach

provided the best tradeoff in terms of overall execution time (and,

thus, is the only one reported).

5.4 Hybrid algorithm
The single-round algorithm is very conservative, requiring k safe

regions to be obtained from every partition. In practice, this leads

to additional load for extending the local graphs, that could other-

wise be avoided.We next describe a hybrid algorithm (HY ), which
covers the space between the single-round and multi-round al-

gorithms, balancing the number of rounds and the number of

results expected from each round. The intuition is that we can

execute the single-round algorithm, but now requesting a smaller

number of safe regions k ′ << k per partition, aggregate the par-

tial results, and then progressively ask for more results only from

the partitions from which we already consumed at least one safe

region. The partial results collected per round are a sorted subset

of the final results (at least the next k ′ answers, but typically
much more), and can be presented progressively to the user.

Similar to the case of the multi-round algorithm, the aggrega-

tion function (see Alg. 5) needs to stop accepting more data when

it can no longer guarantee correctness of results. Correctness

of results is guaranteed by establishing a bound for the region

scores, above which all regions are guaranteed to be complete.

When aggregating partial results of two partitions, say, res1 and
res2, this score bound is simply the maximum of the two mini-

mum scores in each of the partial results (Line 2). The intuition

behind this bound is that the reducer does not have sufficient

information about regions with lower score for one of the two,

but all possible solutions (safe and unsafe regions) for higher

scores are already included in the individual dependency graphs.

Notice that this bound is naturally moved up in the hierarchy, as

the aggregate results are pushed to parent reducers, and regions

with lower scores are filtered out.

1 2 5 6

3 4 7 8

9 10 13 14

11 12 15 16

1 1 2 2

1 1 2 2

3 3 4 4

3 3 4 4

1 2

3 4
1, 2, 
3, 4

5, 6, 
7, 8

9, 10, 
11, 12

13, 14, 
15, 16

       1         2           3         4    

1

Figure 5: Hierarchical aggregation in 4 × 4 partitions with
b = 2 by applying Z-order. The tree depicts the aggregation
hierarchy, from 16 partitions to a single result.
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6 EXPERIMENTAL EVALUATION
We have conducted an experimental evaluation to compare the

performance of our proposed algorithms, investigate their scala-

bility, and explore the impact of the various parameters.

6.1 Experimental setting
Datasets. We conducted our experiments using a real-world

dataset comprising 64 million records representing Points of In-

terest from OpenStreetMap
4
and geolocated photos from Flickr

5

worldwide. We have mapped these to 26 million distinct loca-

tions (points). We have assigned a weight (score) to each point

denoting the number of records (POIs or photos) mapped to it.

Experimental setup. The experiments are executed on a clus-

ter of 11 nodes, each with 30 GB of RAM. Ten of the nodes are

configured as workers, and the eleventh is indicated as the mas-

ter/coordinator. The cluster runs Spark 2.4.3, and Hadoop HDFS

4
https://www.openstreetmap.org

5
https://www.flickr.com
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Parameters Values
number of points |D| 5, 10, 15, 20, 26 million

number of nodes |N | 1, 2, 4, 6, 8, 10
top-k regions 50, 100, 200, 300, 400, 500
region width and height ϵ 0.00025, 0.0005, 0.00075, 0.001, 0.00125, 0.0015

(from approximately 27x27m2
to 162x162m2

)

k′ – Multi-round 3, 5, 10, 20, 30, 40, 50, 60, 300
k′ – Hybrid 3, 4, 5, 6, 10, 15
Table 1: Experimental parameters (default value is bold).

2.9.1. The input file is distributed across the 10 workers, with

replication factor set to one.

Implementation and configuration. All algorithms are imple-

mented in Scala. Our implementations include by default the

hierarchical aggregation for the hybrid algorithm and the cor-

responding commutative and associative reduction function for

the single-round algorithm, since the coordinator becomes a

bottleneck (and crashes for some parameters) otherwise.

We partitioned the input points into a uniform grid with di-

mensions 20,000 × 20,000, leading to partitions of size approxi-

mately 2km × 2km. The most densely populated partition con-

tains approximately 18,000 points. The value ofb in the tree-based
aggregation was set to 8. We found these values to provide con-

sistently good performance without creating bottlenecks. Using

larger partitions creates bottlenecks during the local execution of

the algorithm to the workers, whereas a significantly larger base

leads to bottlenecks during the aggregation step (the reducer

needs to aggregate too many partial results, which may lead to

crashes around dense areas). With respect to all other parameters,

unless otherwise mentioned, we use the default values shown in

Table 1. The region width and height ϵ is measured in degrees.

6.2 Multi-round vs Single-round
We start by comparing the performance of the multi-round (MR)
and the single-round (SR) algorithms.

We first vary the number of requested top-k regions from 50 to

500. Fig. 7 shows the results – wallclock time for both algorithms

on the left Y axis and number of rounds for MR on the right Y

axis. We see that the value of k has only a minor influence on

the performance of SR. Conversely, the execution time of MR
increases as k increases, eventually becoming around 40 times

higher than that of SR. This stark difference is attributed to the

number of rounds required by MR. Indicatively, for k = 500,

MR requires 58 rounds, while SR only requires one. Of course,

one round of execution for SR is more time consuming than for

MR due to the extra time spent on creating and maintaining the

dependency graph and continuing the computation of results

until k safe ones are found. Indeed, we can observe that the one

round of SR takes around 700 seconds to complete, whereas each

round of MR takes on average 400 seconds. Yet, this difference

is very small to compensate the extra overhead incurred by the

high number of rounds required by MR.
In our second experiment (Fig. 8), we fix k to 300 and vary the

width and height ϵ of the regions to be discovered. We see that

the performance of both algorithms is affected by ϵ . These results
are consistent to [19], which shows that the centralized algorithm

(being used to retrieve the local top-k results in each partition)

becomes slower as ϵ increases. Thus, they also exemplify the im-

portance of having a parallel and distributed solution to achieve

scalability. Still, since SR only needs to run the local algorithm

once, it scales much better than MR, which is again affected by
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the need to execute multiple rounds, eventually requiring one

order of magnitude more time compared to SR. Indicatively, for
ϵ = 0.0015°, SR takes 1352 seconds, while MR requires 44383 (for

illustration reasons, the latter point is omitted in the plot).

We also evaluate the impact of the P2P extension on the per-

formance of SR. Figure 9 plots the execution time of the algorithm

with and without this extension. As expected, the extension al-

ways saves time, since it enables each node to create smaller

dependency graphs per partition, and it has very low overhead.

Indicatively, the average size of the dependency graph per parti-

tion with the P2P extension was reduced by approximate 40% for

k = 50 and by 55% for k = 500. Since P2P consistently improves

the performance of SR, it is applied in all remaining results.

6.3 Limiting the number of local results
We now examine how limiting the number of local results affects

the performance of the algorithms. Recall that both MR and the

Hybrid algorithm (HY ) support requesting k ′ < k results or safe

regions from each partition at each round.

Figure 10 plots the execution time (left Y axis) and number

of rounds (right axis) for MR for various k ′ values. Clearly, the
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value of k ′ has significant influence on performance. As expected,

setting a very low k ′ leads to a high number of rounds, which

translates to excessive synchronization overhead and to longer

execution times. Increasing k ′ until 20 reduces total time by limit-

ing the time spent by the workers on computing the local results

(which, in most cases, are anyway not needed by the coordina-

tor). Since this time reduction is per round, and many rounds are

required, the overall performance increase is significant. On the

other hand, increasing k ′ beyond a certain point no longer re-

duces the number of rounds, but increases the average execution

time per round, and consequently, the total execution time of

the algorithm. Interestingly, already for k ′ > 20, execution time

increases with the value of k ′, i.e., the performance gain because

of reduction of the number of rounds is overshadowed by the

additional time required for computing more local results, and

merging them in the reduction phase.

Figure 11 depicts the influence of the respective parameter

k ′ for HY. In this case, k ′ denotes the number of safe regions

requested per partition. We see that a very low value of k ′ raises
the need for additional rounds, since the appearance of non-

admissible results prevents the coordinator from obtaining a

valid top-k at the first place. However, with k ′ equal to 6, HY
already completes in a single round and achieves the optimal per-

formance, which is around one third of the baseline performance

of SR (this would correspond to the worst performance of HY ). It
is also worth noticing that, in absolute time difference, HY is not

as sensitive as MR with respect to a higher-than-optimal number

of local results (cf., a high k ′ value in Fig 10). For example, even

when collecting 15 safe regions per round (2.5 times more than

the optimal), the difference in time is only around 100 seconds,

compared to around 2000 seconds for MR. This is attributed to

the fact that a sub-optimal value of k ′ affects much fewer rounds

in HY, compared to a sub-optimal value of k ′ forMR. Thus, when
tuning HY, it is relatively easier to find a good value for k ′.
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6.4 Comparing SR and HY
We now evaluate the performance of SR andHY for varying k and

ϵ . We omit MR in these experiments since, as already indicated

in previous results, it is always outperformed significantly by SR.
Figure12 presents the execution time of both algorithms, for

different values of k , and for two hybrid executions with k ′ = 5

and k ′ = 10, noted as HY (5) and HY (10), respectively. The plot
also includes the number of rounds for HY (5) (right Y axis). The

number of rounds for HY (10) (and for SR) is always 1, and there-

fore it is omitted. As expected, the value of k brings a noticeable

increase on the cost of SR, since it leads to larger dependency

graphs. For HY (5), a higher k leads to more rounds, which also

causes an increase in execution time. Nevertheless, HY (5) still
outperforms SR, because due to the low value of k ′ the addi-

tional rounds are much faster compared to one round of SR. Also,
HY (10) exhibits a very mild increase of the execution time (300

seconds for k = 50, compared to 339 seconds for k = 500). Since

Hybrid(10) always takes 1 round, even for k=500, this increase is

solely attributed to the extra cost during the hierarchical reduc-

tion: reducers need to maintain longer lists, and pass these lists

to their parent nodes in the tree hierarchy. Still, this increase is

negligible. Therefore, it is better to opt for a slightly higher value

of k ′, in order to avoid the risk of running multiple rounds.

Figure 13 shows the execution time of SR and HY (10) for
varying ϵ . Both algorithms exhibit a similar trend, but with HY
consistently outperforming SR, and with the absolute difference

between the execution time growing as ϵ increases. Detailed pro-

filing on this result reveals that the additional time is exclusively

spent on the local algorithm. As ϵ increases, the local algorithm

spends more time for generating each result. Since SR has to com-

pute 300 results in each partition, whereas HY (10) only 10, the

total difference between the execution time of the two algorithms

increases when the time spent per result is higher.

6.5 Scalability
Our last set of experiments focuses on investigating the scalability

of the three algorithms, when varying the size of the dataset or

number of executor nodes.

Given the original dataset, containing 26million distinct points,

we derive datasets of size from 5 to 20 million points by applying

uniform sampling. Fig. 14 plots the execution time of the three

algorithms. We observe that MR is the slowest algorithm in all

cases, while HY performs better than SR. Moreover, MR demon-

strates poor scalability compared to the other two, which exhibit

similar performance, with HY scaling slightly better.
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In our second experiment (Fig. 15), we vary the number of

nodes from 1 to 10. Since it is not possible to process the whole

dataset (26 million points) in a single node due to memory limita-

tions, we sample 5 million points as input (i.e., the largest dataset

size executable in a single node). As shown, addition of extra

nodes decreases overall execution time for all algorithms, with

SR and HY exhibiting linear speedup.

6.6 Summary
The experiments show that SR substantially outperforms MR
in all cases, indicating that the extra cost incurred by multiple

rounds dominates that for retrieving a sufficiently larger number

of local results to ensure the construction of the global top-k
in a single round. Overall, HY is the most efficient algorithm,

indicating that in practice it suffices to compute just a few more

than k local results to ensure that the coordinator can assemble

the correct top-k list, despite any inadmissible local results.

Moreover, both algorithmsMR andHY can benefit from setting

the parameter k ′ to a much lower value than k (e.g., around 0.1

× k). This significantly increases the efficiency of HY due to

the drastic reduction of the cost of local processing, while still

obtaining the global top-k results in one or two rounds.

7 CONCLUSIONS
We have presented the first scalable algorithms for addressing

the top-k Best Region Search problem. Our approach relies on

distributing the dataset and the expensive computational part

over cluster resources, thereby allowing the processing of large

datasets in parallel. Starting from a multi-round algorithm, we

proceed to devise one that requires a single round and is more

efficient by one order of magnitude. Then, we also propose a

hybrid algorithm, which further reduces computational time by a

factor of two. Our future work focuses on continuous algorithms,

for maintaining the answer in dynamic datasets, as well as ap-

proximation techniques, for further reducing the computational

cost when small, bounded errors can be tolerated.
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ABSTRACT
Data curation – the process of discovering, integrating, and clean-
ing data – is one of the oldest, hardest, yet inevitable data manage-
ment problems. Despite decades of efforts from both researchers
and practitioners, it is still one of the most time consuming and
least enjoyable work of data scientists. In most organizations,
data curation plays an important role so as to fully unlock the
value of big data. Unfortunately, the current solutions are not
keeping up with the ever-changing data ecosystem, because they
often require substantially high human cost. Meanwhile, deep
learning is making strides in achieving remarkable successes in
multiple areas, such as image recognition, natural language pro-
cessing, and speech recognition. In this vision paper, we explore
how some of the fundamental innovations in deep learning could
be leveraged to improve existing data curation solutions and to
help build new ones. We identify interesting research opportu-
nities and dispel common myths. We hope that the synthesis of
these important domains will unleash a series of research activi-
ties that will lead to significantly improved solutions for many
data curation tasks.

1 INTRODUCTION
Data Curation (DC) [32, 44] – the process of discovering, inte-
grating [46] and cleaning data (Figure 1) for downstream analytic
tasks – is critical for any organization to extract real business
value from their data. The following are the most important
problems that have been extensively studied by the database
community under the umbrella of data curation: data discovery,
the process of identifying relevant data for a specific task; schema
matching and schema mapping, the process of identifying simi-
lar columns and learning the transformation between matched
columns, respectively; entity resolution, the problem of identify-
ing pairs of tuples that denote the same entity; and data cleaning,
the process of identifying errors in the data and possibly repair-
ing them. These are in addition to problems related to outlier
detection, data imputation, and data dependencies.

Due to the importance of data curation, there has been many
commercial solutions (for example, Tamr [45] and Trifacta [23])
and academic efforts for all aspects of DC, including data dis-
covery [8, 19, 33, 36], data integration [12, 27], and data clean-
ing [7, 16, 42]. An oft-cited statistic is that data scientists spend
80% of their time curating their data [8]. Most DC solutions can-
not be fully automated, as they are often ad-hoc and require
substantial effort to generate things, such as features and labeled
data, which are used to synthesize rules and train machine learn-
ing models. Practitioners need practical and usable solutions that
can significantly reduce the human cost.

© 2020 Copyright held by the owner/author(s). Published in Proceedings of the
23rd International Conference on Extending Database Technology (EDBT), March
30-April 2, 2020, ISBN 978-3-89318-083-7 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Deep Learning (DL) is a successful paradigm within the area of
machine learning (ML) that has achieved significant successes in
diverse areas, such as computer vision, natural language process-
ing, speech recognition, genomics, and many more. The trifecta
of big data, better algorithms, and faster processing power has
resulted in DL achieving outstanding performance in many areas.
Due to these successes, there has been extensive new research
seeking to apply DL to other areas both inside and outside of
computer science.
Data Curation Meets Deep Learning. In this article, we in-
vestigate intriguing research opportunities for answering the
following questions:

• What does it take to significantly advance a challenging
area such as DC?
• How can we leverage techniques from DL for DC?
• Given the many DL research efforts, how can we identify

the most promising leads that are most relevant to DC?

We believe that DL brings unique opportunities for DC, which
our community must seize upon. We identified two fundamental
ideas with great potential to solve challenging DC problems.
Feature (or Representation) Learning. For ML- or non-ML based
DC solutions, domain experts are heavily involved in feature
engineering and data understanding so as to define data quality
rules. Representation learning is a fundamental idea in DL where
appropriate features for a given task are automatically learned
instead of being manually crafted. Developing DC-specific repre-
sentation learning algorithms could dramatically alleviate many
of the frustrations domain experts face when solving DC prob-
lems. The learned representation must be generic such that it
could be used for multiple DC tasks.
DL Architectures for DC. So far, no DL architecture exists that is
cognizant of the characteristics of DC tasks, such as represen-
tations for tuples or columns, integrity constraints, and so on.
Naively applying existing DL architectures may work well for
some, but definitely not all, DC tasks. Instead, designing new DL
architectures that are tailored for DC and are cognizant of the
characteristics of DC tasks would allow efficient learning both
in terms of training time and the amount of required training
data. Given the success of domain specific DL architectures in
computer vision and natural language processing, it behooves us
to design an equivalent of such a DL architecture customized for
DC task(s).
Contributions and Roadmap. The major elements of our pro-
posed approach to exploiting the huge potential offered by DL to
tackle key DC challenges include:

• Representation Learning for Data Curation. We de-
scribe several research directions for building representa-
tions that are explicitly designed for DC. Developing algo-
rithms for representation learning that can work on multi-
ple modalities of data (structured, unstructured, graphical),
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Figure 1: A Data Curation Pipeline

and can work on diverse DC tasks (such as deduplication,
error detection, data repair) is challenging.
• Deep Learning Architectures for Data Curation

Tasks. We identify some of the most common tasks in
DC and propose preliminary solutions using DL. We also
highlight the importance of designing DC specific DL ar-
chitectures.
• Early Successes of DL for DC. In the last couple of years,

there has been some promising developments in applying
DL to some DC problems such as data discovery [19] and
entity resolution [14, 35]. We provide a brief overview of
these work and the lessons learned.
• Taming DL’s Hunger for Data. DL often requires a

large amount of training data. However, there are multiple
promising techniques, which when adapted for DC, could
dramatically reduce the required amount of labeled data.
• Myths and Concerns about DL. DL is still a relatively

new concept, especially for database applications and is
not a silver bullet. We thus identify and address a number
of myths and concerns about DL.

2 DEEP LEARNING FUNDAMENTALS
We provide a quick overview of relevant DL concepts needed for
the latter sections. Please refer to [5, 20, 29] for additional details.

Deep learning is a subfield of ML that seeks to learn meaning-
ful representations from the data using computational models
that are composed of multiple processing layers. The representa-
tions could be then used to solve the task at hand effectively. The
most commonly used DL models are neural networks with many
hidden layers. The key insight is that successive layers in this
“deep” neural network can be used to learn increasingly useful
representations of the data. Intuitively, the input layer often takes
in the raw features. As the data is forwarded and transformed
by each layer, an increasingly sophisticated and more meaning-
ful information (representation) is extracted. This incremental
manner in which increasingly sophisticated representations are
learned layer-by-layer is one of the defining characteristic of DL.

2.1 Deep Learning Architectures
Fully-connected Neural Networks. The simplest model is a
neural network with many hidden layers – a series of layers
where each node in a given layer is connected to every other
node in the next layer. They are also called feed-forward neu-
ral network. It can learn relationships between any two input
features or intermediate representations. Its generality however

comes with a cost; one has to learn weights and parameters which
requires a lot of training data.
Domain Specific Architectures. There are a number of neural
network architectures that are designed to leverage the domain
specific characteristics. For example, Convolutional Neural Net-
works (CNNs) are widely used by the computer vision community.
The input is fed through convolutions layers, where neurons in
convolutional layers only connect to close neighbors (instead
of all neurons connecting to all neurons). This method excels
in identifying spatially local patterns and use it to learn spatial
hierarchies such as nose → face → human. Recurrent Neural
Networks (RNNs) are widely used in Natural Language Process-
ing (NLP) and Speech recognition. RNN processes inputs in a
sequence one step at a time. For example, given two words “data
curation”, it first handles “data” and then “curation”. Neurons in
an RNN are designed by being fed with information not just from
the previous layer but also from themselves from the previous
pass that are relevant for NLP.

2.2 Distributed Representations
Deep learning is based on learning data representations, and
the concept of distributed representations (a.k.a. embeddings) is
often central to DL. Distributed representations [24] represent one
object by many representational elements (or many neurons).
Each neuron is associated with more than one represented object.
That is, the neurons represent features of objects. Distributed
representations are very expressive and can handle semantic
similarity. These advantages become especially relevant in do-
mains such as DC. There has been extensive work on developing
algorithms for learning distributed representations for different
types of entities such as words and nodes.
Distributed Representations of Words (a.k.a. word embed-
dings) seek to map individual words to a vector space, which
helps DL algorithms to achieve better performance in NLP tasks
by grouping similar words. The dimensionality is often fixed
(such as 300) and the representation is often dense. Word em-
beddings are often learned from the data in such a way that
semantically related words are often close to each other. The geo-
metric relationship between words often also encodes a semantic
relationship between them. An oft-quoted example shows that
by adding the vector corresponding to the concept of female to
the distributed representation of king, we (approximately) obtain
the distributed representation of queen.
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Distributed Representations of Graphs (a.k.a. network em-
beddings) are a popular mechanism to effectively learn appro-
priate features for graphs (see [6] for a survey). Each node is
represented as a dense fixed length high dimensional vector. The
optimization objective is neighborhood-preserving whereby two
nodes that are in the same neighborhood will have similar rep-
resentations. Different definitions of neighborhood results in
different representations for nodes.
Distributed Representations for Sets. Sets are a fundamental
data structure where the order of items does not matter. Sets are
extensively used in the Codd model where each tuple is a set
of atomic units and a relation is a set of tuples. Algorithms for
learning set embeddings must ensure that they have permutation
invariance so that any permutation of the set should obtain the
same embedding. There has been a number of popular algorithms
for processing sets to produce such embeddings such as [41, 52].
Compositions of Distributed Representations. One can
then use these to design distributional representations of atomic
units – words in NLP, or nodes in a graph – for more complex
units. For NLP, these could be sentences (i.e., sentence2vec), para-
graphs or even documents (i.e., doc2vec) [28]. In the case of
graphs, it can be subgraphs or entire graph.

3 REPRESENTATION LEARNING FOR DATA
CURATION

In this section, we discuss potential research opportunities for de-
signing DL architectures and algorithms for learning DC specific
representations.

3.1 The Need for DC Specific Distributed
Representations

Data curation is the process of discovering, integrating and clean-
ing data for downstream tasks. There are a number of challenging
sub-problems in data curation. However, a number of problems
could be unified through the prism of “matching”.
Data Discovery is the process of identifying relevant data for a
specific task. In most enterprises, data is often scattered across
a large number of tables that could range in the tens of thou-
sands. As an example, the user might be interested in identifying
all tables describing user studies involving insulin. The typical
approach involves asking an expert or performing manual data
exploration [8]. Data discovery could be considered as identify-
ing tables that match a user specification (e.g., a keyword or an
SQL query).
Schema Matching is the problem of identifying a pair of
columns from different tables that are (semantically) related and
provide comparable information about an underlying entity. For
example, two columns wage and salary could store similar in-
formation. The problem of schema mapping seeks to learn the
transformation between matched columns such as hourly wage
and monthly salary. One can see that this problem seeks to iden-
tify matching columns.
Data Cleaning is the general problem of detecting errors in
a dataset and repairing them in order to improve the quality
of the data. This includes qualitative data cleaning which uses
mainly integrity constraints, rules, or patterns to detect errors and
quantitative approaches which are mainly based on statistical
methods. Many sub-problems in data cleaning fall under the
ambit of matching. These include:

• Entity Resolution is the problem of identifying pairs of
tuples that denote the same entity. For example, the tuple
⟨Bill Gates, MS⟩ and ⟨William Gates, Microsoft⟩ refer to
the same person. This has a number of applications such
as identifying duplicate tuples between two tables. Once
again, we can see that this corresponds to discovering
matching entities (or tuples), i.e., those that refer to the
same real-world objects.
• Data Dependencies specify how one attribute value de-

pends on other attribute values. This is widely used as
integrity constraints for capturing data violations. For ex-
ample, the social security number determines a person’s
name while the country name typically determines its cap-
ital. We can see that this could be treated as an instance
of relevance matching.
• Outlier Detection identifies anomalous data that does not

match a group of values, either syntactically, semantically,
or statistically. For example, the phone number 123−456−
7890 is anomalous when the other values are of the form
nnnnnnnnnn.
• Data Imputation. is the problem of guessing the missing

value that should match its surrounding evidence.

The main drawback of traditional DC solutions is that they
typically use syntactic similarity based features. The syntactic
approach is often ad-hoc, heavily reliant on domain experts and
thus not extensible. While they are effective, they cannot leverage
semantic similarity. A different approach is needed.

Intuitively, distributed representations, which can interpret
one object in many different ways, may provide great help for
various DC problems. However, there are a number of challenges
before they could be used in DC. In domains such as NLP, simple
co-occurrence is a sufficient approximation for distributional
similarity. In contrast, domains such as DC require much more
complex syntactic and semantic relationships between (multiple)
attribute values, tuples, columns, and tables. Furthermore, the
data itself could be noisy and the learned distributions should be
resilient to errors.

3.2 Distributed Representation of Cells
A cell, which is an attribute value of a tuple, is the atomic data
element in a relational database. Learning distributed representa-
tion for cells is already quite challenging and requires synthesis
of representation learning of words and graphs.
Word Embeddings based Approaches. An initial approach in-
spired by word2vec [31] treats this as equivalent to the problem
of learning word embeddings. Each tuple corresponds to a doc-
ument where the value of each attribute corresponds to words.
Hence, if two cell values occur together often in a similar context,
then their distributed representation will be similar. For example,
if a relation has attributes Country and Capital with many tuples
containing (USA, Washington DC) for these two attributes, then
their distributed representations would be similar.
Limitations of this Approach. The embeddings produced by
this approach suffer from a number of issues. First, databases are
typically well normalized to reduce redundancy, which also mini-
mizes the frequency that two semantically related attribute values
co-occur in the same tuples. Databases have many data depen-
dencies (or integrity constraints), within tables (e.g., functional
dependencies [2], and conditional functional dependencies [17])
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or across tables (e.g., foreign keys, and matching dependencies).
These data dependencies are important hints about semantically
related cells that should be captured by learning distributed rep-
resentations of cells.
Combining Word and Graph Embeddings. To capture the
relationships (e.g., integrity constraints) between cells, a more
natural way is to treat each relation as a heterogeneous network.
Each relation D is modeled as a graph G (V ,E), where each node
u ∈ V is a unique attribute value, and each edge (u,v ) ∈ E
represents multiple relationships, such as (u,v ) co-occur in one
tuple, there is functional dependency from the attribute of u to
the attribute ofv , and so on. The edges could be either directed or
undirected, have labels and weights. This enriched model might
provide a more meaningful distributed representation that is
cognizant of both content and constraints.

A sample table and our proposed graph representation of the
table is shown in Figure 2. There are four distinct Employee ID
values (nodes), three distinct Employee Name values, two dis-
tinct Department ID values, and three Department Name values.
There are two types of edges: undirected edges indicating values
appearing in the same tuple, e.g., 0001 and John Doe, and di-
rected edges for functional dependencies, e.g., Employee ID 0001
implies DepartmentID 1.

Research Opportunities.

• Algorithms. How can we design an algorithm for learning
cell embeddings that take values, integrity constraints, and
other metadata (e.g., a query workload) into consideration?
• Global Distributed Representations. We need to learn dis-

tributed representations for the cells over the entire data
lake, not only on one relation. How can we “transfer”
knowledge gained from one relation to another to improve
the representations?

• Handling Rare Values. Word embeddings often provide
inadequate representations for rare values. How can we
ensure that primary keys and other rare values have a
meaningful representation?

3.3 Hierarchical Distributed Representations
Many DC tasks are often performed at a higher level of granu-
larity than cells. The next fundamental question to solve is to
design an algorithm to compose the distributed representations of
more abstract units from these atomic units. As an example, how
can one design an algorithm for tuple embeddings assuming one
already has a distributed representation for each of its attribute
values? A common approach is to simply average the distributed
representation of all its component values.

Research Opportunities.

• Tuple, Column and Table Embeddings (Tuple2Vec, Col-
umn2Vec, Table2Vec ): Are there any other elegant ap-
proaches to compose representations for tuples than aver-
aging? Can it be composed from representations for cells?
Or should it be learned directly? How can one extend this
idea to learn representations for columns that are often
useful for tasks such as schema matching? Finally, how
can one learn a representation for the entire relation that
can benefit a number of tasks such as copy detection or
data discovery (finding similar relations)?
• Compositional or Direct Learning: Different domains re-

quire different ways to create hierarchical representations.
For the computer vision domain, hierarchical representa-
tions such as shapes are learned by composing simpler in-
dividual representations such as edges. On the other hand,
for NLP, hierarchical representations are often learned
directly [28]. What is an appropriate mechanism for DC?
• Contextual Embeddings for DC. There has been increas-

ing interest in the NLP community in contextual embed-
dings [10, 38] that can provide different embeddings for
a word (such as apple) based on the surrounding context.
This is often helpful for tasks requiring word disambigua-
tion. Often, DC tasks require a number of contextual infor-
mation and hence any learned representation must take
that into account. What is an appropriate formalization of
context and algorithms for contextual embeddings in DC?
• Multi Modal Embeddings for DC. Enterprises often pos-

sess data across various modalities, such as structured
data (e.g., relations), unstructured data (e.g., documents),
graphical data (e.g., enterprise networks), and even videos,
audios, and images. An intriguing line of research is cross
modal representation learning [25], wherein two entities
that are similar in one or more modalities, e.g., occurring
in the same relation, document, image, and so on, will
have similar distributed representations.

4 DEEP LEARNING ARCHITECTURES FOR
DATA CURATION TASKS

Representation learning and domain specific architectures are
the two pillars that led to the major successes achieved by DL
in various domains. While representation learning ensures that
the input to the DL model contains all relevant information, the
domain specific architecture often processes the input in a mean-
ingful way requiring less training data than generic architectures.
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In this section, we motivate the need for designing DC specific
architecture and provide a promising design space to explore.

4.1 Need for DC Specific DL Architectures
Recall from Section 2 that a fully connected architecture is the
most generic one. It does not make any domain specific assump-
tions and hence can be used for arbitrary domains. However, this
generality comes at a cost: a lot of training data. One can argue
that a major part of DL’s success in computer vision and NLP is
due to the design of specialized DL architectures – CNN and RNN
respectively. CNN leverages spatial hierarchies of patterns where
complex/global patterns are often composed of simpler/local pat-
terns (e.g., curves→ mouth→ face). Similarly, RNN processes an
input sequence one step at a time while maintaining an internal
state. These assumptions allows one to design effective neural
architectures for processing images and text that also require less
training data. This is especially important in data curation where
there is a persistent scarcity of labeled data. There is a pressing
need for new DL architectures that are tailored for DC and are
cognizant of the characteristics of DC tasks. This would allow
them to do the learning efficiently both in terms of training time
and the amount of required training data.
Desiderata for DC-DL Architectures.

• Handling Heterogeneity. In both CNN and RNN, the input
is homogeneous – images and text. However, a relation
can contain a wide variety of data, such as categorical,
ordinal, numerical, textual, and image.
• Set/Bag Semantics. While an image can be considered as a

sequence of pixels and a document as a sequence of words,
such an abstraction does not work for relational data. Fur-
thermore, the relational algebra is based on set and bag
semantics with the major query languages specified as
set operators. DL architectures that operate on sets are an
under explored area in DL.
• Long Range Dependencies. The DC architecture must be

able to determine long range dependencies across at-
tributes and sometimes across relations. Many DC tasks
rely on the knowledge of such dependencies. They should
also be able to leverage additional domain knowledge and
integrity constraints.

4.2 Design Space for DC-DL Architectures
Broadly speaking, there are two areas in which DL architectures
could be used in DC. First, novel DL architectures are needed
for learning effective representations for downstream DC tasks.
Second, we need DL architectures for common DC tasks such as
matching, data repair, imputation, and so on. Both are challenging
on their own right and require significant innovations.
Architectures for DC Representation Learning. In a number
of fields such as computer vision, deep neural networks learn
general features in early layers and transition to task specific
features in the latter layers. Initial layers learn generic features
such as edges (which can be used in many tasks) while latter
layers learn high level concepts such as a cat or dog (which could
be used for task for recognizing cats from dogs). Models trained
on large datasets such as ImageNet could be used as feature
extractors followed by specific task specific models. Similarly,
in NLP there has been a number of pretrained language models
such as word2vec [31], ELMo [38], and BERT [10] that could then
be customized for various tasks such as classification, question

answering, semantic matching, and coreference resolution. In
other words, the pre-trained DL models act as a set of Lego bricks
that could be put together to perform the required functionality.
It is thus important that the DL architecture for DC follows this
property by learning features that are generic and could readily
generalize to many DC tasks.

While there has been extensive work in linguistics about the
hierarchical representations of language, a corresponding inves-
tigation in data curation is lacking. Nevertheless, we believe that
a generic DC representation learning architecture must be in-
spired based on the pretrained language models. Once such an
architecture is identified, the learned representations could be
used for multiple DC tasks.
DL Architectures for DC Tasks. While the generic approach
is often powerful, it is important that we must also work on DL
architectures for specific DC tasks. This approach is often much
simpler and provides incremental gains while also increasing
our understanding of DL-DC nexus. In fact, this has been the
approach taken by the NLP community - they worked on DL
architectures for specific tasks (such as text classification or ques-
tion answering) even while they searched for more expressive
generative language models.

A promising approach is to take specific DC tasks and break
them into simpler components and evaluate if there are existing
DL architectures that could be reused. Often, it is possible to
“compose” individual DL models to create a more complex model
for solving a specific DC task. Many of the DC tasks could be
considered as a combination of tasks such as matching, error
detection, data repair, imputation, ranking, discovery, and syn-
tactic/semantic transformations. An intriguing research question
is to identify DL models for each of these and investigate how to
instantiate and compose them together.

4.3 Pre-Trained DL Models for DC
In domains such as computer vision and NLP, there is a com-
mon tradition of training a DL model on a large dataset and then
reusing it (after some tuning) for tasks on other smaller datasets.
One example include ImageNet [9] which contains almost 14M
images over 20k categories. The spatial hierarchy learned from
this dataset is often a proxy for modeling the visual world [5]
and can be applied on a different dataset and even different cate-
gories [5]. Similarly, in NLP, word embeddings are an effective
approximation for language modeling. The embeddings are often
learned from large diverse corpora such as Wikipedia or PubMed
and could be used for downstream NLP tasks. These pre-trained
models can be used in two ways: (a) feature extraction where
these are used to extract generic features that are fed to a sep-
arate classifier for the task at hand; (b) fine-tuning where one
adjusts the abstract representations from the last few hidden lay-
ers of a pre-trained model and make it more relevant to a targeted
task. A promising research avenue is the design of pre-trained DL
models for DC that could be used by others with comparatively
less resources.

5 EARLY SUCCESSES OF DL FOR DC
In this section, we describe the early successes achieved by the
DC community on using DL for major DC tasks such as data
discovery and entity matching.
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5.1 Data Discovery
Large enterprises typically possess hundreds or thousands of
databases and relations. Data required for analytic tasks is often
scattered across multiple databases depending on who collected
the data. This makes the process of finding relevant data for a
particular analytic task very challenging. Usually, there is no
domain expert who has complete knowledge about the entire
data repository. This results in a non-optimal scenario where
the data analyst patches together data from her prior knowledge
or limited searches – thereby leaving out potentially useful and
relevant data.

As an example of applying word embeddings for data discov-
ery, [19] shows how to discover semantic links between different
data units, which are materialized in the enterprise knowledge
graph (EKG)1. These links assist in data discovery by linking
tables to each other, to facilitate navigating the schemas, and by
relating data to external data sources such as ontologies and dic-
tionaries, to help explain the schema meaning. A key component
is a semantic matcher based on word embeddings. The key idea
is that a group of words is similar to another group of words
if the average similarity in the embeddings between all pairs
of words is high. This approach was able to surface links that
were previously unknown to the analysts, e.g., isoform, a type
of protein, with Protein and Pcr – polymerase chain reaction, a
technique to amplify a segment of DNA – with assay. We can
see that any approach using syntactic similarity measures such
as edit distance would not have identified these connections.

5.2 Entity Matching
Entity matching is a key problem in data integration, which
determines if two tuples refer to the same underlying real-world
entity [15].
DeepER. A recent work [14], DeepER, applies DL techniques
for ER, whose overall architecture is shown in Figure 3. DeepER
outperforms existing ER solutions in terms of accuracy, efficiency,
and ease-of-use. For accuracy, DeepER uses sophisticated compo-
sitional methods, namely uni- and bi-directional recurrent neural
networks (RNNs) with long short term memory (LSTM) hidden
units to convert each tuple to a distributed representation, which
are used to capture similarities between tuples. DeepER uses a
locality sensitive hashing (LSH) based approach for blocking; it
takes all attributes of a tuple into consideration and produces
much smaller blocks, compared with traditional methods that
consider only few attributes. For ease-of-use, DeepER requires
much less human labeled data, and does not need feature en-
gineering, compared with traditional machine learning based
approaches which require handcrafted features, and similarity
functions along with their associated thresholds.
DeepMatcher [35] proposes a template based architecture for
entity matching. Figure 4 shows an illustration. It identifies
four major components: attribute embedding, attribute summa-
rization, attribute similarity and matching. It proposes various
choices for each of these components leading to a rich design
space. The four most promising models differ primarily in how
the attribute summarization is performed and are dubbed as
SIF, RNN, Attention, and Hybrid. SIF model is the simplest and
computes a weighted average aggregation over word embed-
dings to get the attribute embedding. RNN uses a bi-directional
1An EKG is a graph structure whose nodes are data elements such as tables, at-
tributes, and reference data such as ontologies and mapping tables, and whose
edges represent different relationships between nodes.
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3 A DESIGN SPACE OF DL SOLUTIONS
Building on the above categorization of the DL solutions for match-
ing tasks in NLP, we now describe an architecture template for DL
solutions for EM. This template consists of three main modules,
and for each module we provide a set of choices. The combinations
of these choices form a design space of possible DL solutions for
EM. The next section selects four DL solutions for EM (SIF, RNN,
A�ention, and Hybrid) as “representative points” in this design
space. Section 5 then evaluates these four DL solutions, as well as
the trade-o�s introduced by the di�erent design choices.

3.1 Architecture Template & Design Space
Figure 2 shows our architecture template for DL solutions for EM.
This template is for the matching phase of EM only (the focus of
this paper). It uses the categorization of DL models for matching
related tasks discussed in Section 2.3, and is built around the same
categorization dimensions: (1) the language representation, (2) the
summarization technique, and (3) the comparison method used
to analyze an input pair of sequences. The template consists of
three main modules each of which is associated with one of these
dimensions.

Before discussing the modules, we discuss assumptions regarding
the input. We assume that each input point corresponds to a pair
of entity mentions (e1, e2), which follow the same schema with
attributes A1, . . . ,AN . Textual data can be represented using a
schema with a single attribute. We further assume that the value of
attribute Aj for each entity mention e corresponds to a sequence of
words we, j . We allow the length of these sequences to be di�erent
across di�erent entity mentions. Given this setup, each input point
corresponds to a vector of N entries (one for each attribute Aj 2
{A1, . . . ,AN }) where each entry j corresponds to a pair of word
sequences we1, j and we2, j .
The Attribute Embedding Module: For all attributes Aj 2
A1 · · ·AN , this module takes sequences of words we1, j and we2, j
and converts them to two sequences of word embedding vectors

ue1, j and ue2, j whose elements correspond to d-dimensional em-
beddings of the corresponding words. More precisely, if for e1, word
sequence we1, j contains m elements then we have ue1, j 2 Rd⇥m .
The same holds for e2. The overall output of the attribute embed-
ding module of our template is a pair of embeddings ue1, j and ue2, j
for the values of attribute Aj for entity mentions e1 and e2. We
denote the �nal output of this module as {(ue1, j , ue2, j )}N

j=1.
The Attribute Similarity Representation Module: The goal of
this module is to automatically learn a representation that captures
the similarity of two entity mentions given as input. This module
takes as input the attribute value embeddings {(ue1, j , ue2, j )}N

j=1 and
encodes this input to a representation that captures the attribute
value similarities of e1 and e2. For each attribute Aj and pair of
attribute embeddings (ue1, j , ue2, j ) the operations performed by
this module are split into two major parts:

(1) Attribute summarization. This module takes as input the two
sequences (ue1, j , ue2, j ) and applies an operation H that summa-
rizes the information in the input sequences. More precisely, let
sequences ue1, j and ue2, j contain m and k elements respectively.
An h dimensional summarization model H takes as input sequences
ue1, j 2 Rd⇥m and ue2, j 2 Rd⇥k and outputs two summary vectors
se1, j 2 Rh and se2, j 2 Rh . The role of attribute summarization is
to aggregate information across all tokens in the attribute value
sequence of an entity mention. This summarization process may
consider the pair of sequences (ue1, j , ue2, j ) jointly to perform more
sophisticated operations such as soft alignment [2].

(2) Attribute comparison. This part takes as input the summary
vectors se1, j 2 Rh and se2, j 2 Rh and applies a comparison function
D over those summaries to obtain the �nal similarity representation
of the attribute values for e1 and e2. We denote that similarity
representation by sj 2 Rl with sj = D(se1, j , se2, j ).

The output of the similarity representation module is a collec-
tion of similarity representation vectors {s1, . . . , sN }, one for each
attribute A1, . . . ,AN . There are various design choices for the two
parts of this module. We discuss those in detail in Section 3.3.
The Classi�er Module: This module takes as input the similar-
ity representations {s1, . . . , sN } and uses those as features for a
classi�er M that determines if the input entity mentions e1 and e2
refer to the same real-world entity.
A Design Space of DL Solutions for EM: Our architecture tem-
plate provides a set of choices for each of the above three modules.
Figure 3 describes these choices (under “Options” on the right side
of the �gure). Note that we provide only one choice for the classi�er
module, namely a multi-layer NN, because this is the most common
choice today in DL models for classi�cation. For other modules we
provide multiple choices. In what follows we discuss the choices for
attribute embedding, summarization, and comparison. The number-
ing of the choices that we will discuss correspond to the numbering
used in Figure 3.

3.2 Attribute Embedding Choices
Possible embedding choices for this module can be characterized
along two axes: (1) the granularity of the embedding and (2) whether

Figure 4: DeepMatcher Framework (Figure from [35])

GRU for summarizing an attribute for efficiency. Attention uses
a decomposable attention model that can leverage information
from aligned attributes of both tuples to summarize the attribute.
Finally, the hybrid approach combines RNN and attention. Deep-
Matcher was evaluated on a diverse set of datasets such as struc-
tured, unstructured and noisy and provides useful rule of thumb
on when to use DL for ER.

5.3 Representation Learning
A number of recent works such as DeepER [14], Deep-
Matcher [35] have applied a compositional approach using aver-
aging or RNN/LSTMs for obtaining tuple embeddings from pre-
trained word embeddings. For a number of benchmark datasets
in entity resolution, this provides good results. There has been
a number of recent efforts for learning distributed representa-
tions for data curation directly. Freddy [22] incorporated support
for semantic similarity based queries by using pre-trained word
embeddings inside Postgres. Termite [18] proposed an effective
technique to learn a common (distributed) representation for both
structured and unstructured data in an organization. In this ap-
proach, various entities such as rows, columns, and paragraphs
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are all represented as a vector. This unified representation al-
lows Termite to identify related concepts even if they are spread
across structured and unstructured data. Finally, EmbDC [4] pro-
posed an interesting approach to learn embeddings for cells that
combine ideas from word and node embeddings. It constructs
a tripartite graph and performs random walks over them. The
walks correspond to sentences that are passed to an algorithm
that computes word embeddings. This allows for different per-
mutations of the same data being outputted thereby partially
incorporating the set semantics. The authors show that this two
step approach provides promising results for unsupervised DC
tasks such as schema matching and entity resolution.

5.4 Understanding the Success and What is
Missing?

Both DeepER and DeepMatcher provide a mechanism to obtain
tuple embeddings from pre-trained word embeddings. The simi-
larity between the embeddings of two tuples is then used to train
a DL classifier. In both cases, the classifier was generic and hence
the state-of-the-art performance of these approaches could be
attributed to learning effective representations for the tuples. A
follow-up work [50] showed that such learned representations
could improve the performance of even non-DL classifiers. [35]
performed extensive empirical evaluation and found that deep
learning based methods were especially effective for entity reso-
lution involving textual and dirty data. For example, the use of
word embeddings allowed the DL based approach to identify that
‘Bill‘ and ‘William‘ are semantically similar while no string simi-
larity metric could do that. Learning such representations could
result in some unexpected applications such as performing entity
resolution between relations that are in different languages [3].

Something analogous happens in the data discovery scenario
as well. The word embedding based approach learned effective
representations that could show that certain concepts were rele-
vant (isoform and Protein or Pcr and assay as mentioned above)
that could not have been identified by any syntactic similarity
measures such as edit distance. This ability to learn representa-
tions that could identify similar pair of words even if they are
syntactically dissimilar explains the success of DL for schema
matching in [34, 43].

From the above discussion, it is clear that learning effective
representations was the cornerstone of improved performance of
DL based methods. Such representations learn relationships that
are hard to pull off using non-DL methods. However, these early
works are only scratching the surface as they do not yet leverage
powerful techniques such as task specific architectures or trans-
fer learning. As an example, DeepMatcher proposed a template
based architecture that has two key layers – composition/ag-
gregation and similarity computation. This could be considered
as a rudimentary task specific architecture that resulted in re-
duced training data. Recent work such as [50] and [26] seek to
use transfer learning to improve ER. However, the days of using
pre-trained ER models for multiple datasets is still far off. Even
within representation learning, works have not yet explored the
use of contextual embeddings such as ELMO or BERT.

6 TAMING DL’S HUNGER FOR DATA
Deep learning often requires a large amount of training data.
Unfortunately, in domains such as DC, it is often prohibitively
expensive to get high quality training data. In order for DL to be

widely used to solve DC problems, we must overcome the prob-
lem of obtaining training data. Fortunately, there are a number
of exciting innovations from DL that can be adapted to solve this
issue. We highlight some of these promising ideas and discuss
some potential research questions.

6.1 Unsupervised Representation Learning
While the amount of supervised training data is limited, most
enterprises have substantial amount of unsupervised data in var-
ious relations and data lakes. These unlabeled data could be used
to learn some generic patterns and representations that are then
used train a DL model with relatively less labeled data. This tech-
nique is widely used in NLP where word embeddings are learned
on large unlabeled corpus data such as Wikipedia and provide
good performance for many downstream NLP tasks.

Research Opportunities.

• How can we perform a holistic representation learning over
the enterprise data? How can the learned representations
be used as features for downstream DC tasks such as entity
matching, schema matching, etc? While there are some
promising start in recent work such as [4, 51], more needs
to be done.

6.2 Data Augmentation
Data augmentation increases the size of labeled training data
without increasing the load on domain experts. The key idea is to
apply a series of label preserving transformations over the existing
training data. For an image recognition task, one can apply a
transformations such as translation (moving the location of the
dog/cat within the image), rotation (changing the orientation),
shearing, scaling, changing brightness/color, and so on. Each of
these operations does not change the label of the image (cat or
dog) – yet generate additional synthetic training data.

Research Opportunities.

• Label Preserving Transformations for DC. What does label
preserving transformations mean for DC? Is it possible to
design an algebra of such transformations?
• Domain Knowledge Aware Augmentation. To avoid creat-

ing erroneous data, we could integrate domain knowledge
and integrity constraints in the data augmentation process.
This would ensure that we do not create tuples that say
New York City is the capital of USA.
• Domain Specific Transformations. There are some recent

approaches such as Tanda [40] that seek to learn domain
specific transformations. For example, if one knows that
Country → Capital, we can just swap the (Country, Cap-
ital) values of two tuples to generate two new tuples. In
this case, even if the new tuple is not necessarily real, its
label will be the same as the original tuple. Is it possible
to develop an algebra for such transformations?

6.3 Synthetic Data Generation for DC
A seminal event in computer vision was the construction of
ImageNet dataset [9] with many million images over thousands
of categories. This was a key factor in the development of
powerful DL algorithms. We believe that the DC community is
in need of such an ImageNet moment.
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Research Opportunities.

• Benchmark for DC. It is paramount to create a similar
benchmark to drive research in DC (both DL and non-
DL). While there has been some work for data cleaning
such as BART [1], it is often limited to specific scenarios.
For example, BART can be used to benchmark data repair
algorithms where the integrity constraints are specified
as denial constraints.
• Synthetic Datasets. If it is not possible to create an open-

source dataset that has realistic data quality issues, a useful
fall back is to create synthetic datasets that exhibit repre-
sentative and realistic data quality issues. The family of
TPC benchmarks involves a series of synthetic datasets
that is somehow realistic and widely used for benchmark-
ing database systems. A recent work [48] proposed a vari-
ational autoencoder based model for generating synthetic
data that has similar statistical properties as the original
data. Is it possible to extend that approach to encode data
quality issues as well?

6.4 Weak Supervision
A key bottleneck in creating training data is that there is often
an implicit assumption that it must be accurate. However, it is
often infeasible to produce sufficient hand-labeled and accurate
training data for most DC tasks. This is especially challenging for
DL models that require a huge amount of training data. However,
if one can relax the need for the veracity of training data, its
generation will become much easier for the expert. The domain
expert can specify a high level mechanism to generate training
data without endeavoring to make it perfect.

Research Opportunities.

• Weakly Supervised DL Models. There has been a series of
research (such as Snorkel [39]) that seek to weakly super-
vise ML models and provide a convenient programming
mechanism to specify “mostly correct” training data. What
are the DC specific mechanisms and abstractions for weak
supervision? Can we automatically create such a weak
supervision through data profiling?

6.5 Transfer Learning
Another trick to handle limited training data is to “transfer” rep-
resentations learned in one task to a different yet related task. For
example, DL models for computer vision tasks are often trained
on ImageNet [9], a dataset that is commonly used for image
recognition purposes. However, these models could be used for
tasks that are not necessarily image recognition. This approach
of training on a large diverse dataset followed by tuning for a
local dataset and tasks has been very successful.

Research Opportunities.

• Transfer learning. What is the equivalent of this approach
for DC? Is it possible to train on a single large dataset such
that it could be used for many downstream DC tasks?
Alternatively, is it possible to train on a single dataset and
for a single task (such as entity matching) such that the
learned representations could be used for entity matching
in similar domains? How can we train a DL model for one
task and tune the model for new tasks by using the limited
labeled data instead of starting from scratch?
• Pre-trained Models. Is it possible to provide pre-trained

models that have been trained on large, generic datasets?

These models could then be tuned by individual practi-
tioners in different enterprises.

7 DEEP LEARNING: MYTHS AND
CONCERNS

In the past few years, DL has achieved substantial successes in
many areas. However, DC has a number of characteristics that
are quite different from prior domains where DL succeeded. We
anticipate that applying DL to challenging real-world DC tasks
can be messy. We now describe some of the concerns that could
be raised by a pragmatic DC practitioner or a skeptical researcher.

7.1 Deep Learning is Computing Heavy
A common concern is that training DL models requires exor-
bitant computing resources where model training could take
days even on a large GPU cluster. In practice, training time often
depends on the model complexity, such as the number of param-
eters to be learnt, and the size of training data. There are many
tricks that can reduce the amount of training time. For example,
a task-aware DL architecture often requires substantially less
parameters to be learned. Alternatively, one can “transfer” knowl-
edge from a pre-trained model from a related task or domain
and the training time will now be proportional to the amount of
fine-tuning required to customize the model to the new task. For
example, DeepER [14] leveraged word embeddings from GloVe
(whose training can be time consuming) and built a light-weight
DL model that can be trained in a matter of minutes even on a
CPU. Finally, while training could be expensive, this can often be
done as a pre-processing task. Prediction using DL is often very
fast and comparable to that of other ML models.

7.2 Data Curation Tasks are Too Messy or
Too Unique

DC tasks often require substantial domain knowledge and
a large dose of “common sense”. Current DL models are very
narrow in the sense that they primarily learn from the corre-
lations present in the training data. However, it is quite likely
that this might not be sufficient. Unsupervised representation
learning over the entire enterprise data can only partially address
this issue. Current DL models are often not amenable to encoding
domain knowledge in general as well as those that are specific
to DC such as data integrity constraints. As mentioned before,
substantial amount of new research on DC-aware DL architec-
tures is needed. However, it is likely that DL, even in its current
form, can reduce the work of domain experts.
DC tasks often exhibit a skewed label distribution. For the
task of entity resolution (ER), the number of non-duplicate tuple
pairs are orders of magnitude larger than the number of duplicate
tuple pairs. If one is not careful, DL models can provide inaccu-
rate results. Similarly, other DC tasks often exhibit unbalanced
cost model where the cost of misclassification is not symmetric.
Prior DL work utilizes a number of techniques to address these
issues such as (a) cost sensitive models where the asymmetric
misclassification costs are encoded into the objective function,
and (b) sophisticated sampling approach where we under or over
sample certain classes of data. For example, DeepER [14] samples
non-duplicate tuple pairs that are abundant at a higher level than
duplicate tuple pairs.
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7.3 Deep Learning Predictions are Inscrutable
Domain experts could be concerned that the predictions of DL
models are often uninterpretable. Deep learning models are of-
ten very complex and the black-box predictions might not be
explainable by even DL experts. However, explaining why a
DL model made a particular data repair is very important for a
domain expert. Recently, there has been intense interest in de-
veloping algorithms for explaining predictions of DL models or
designing interpretable DL models in general. Please see [21] for
an extensive survey. Designing algorithms that can explain the
prediction of DL models for DC tasks is an intriguing research
problem. While there are some promising approaches exist for
specific tasks such as Entity resolution [11, 13, 49], more research
remains.

7.4 Deep Learning can be Easily Fooled
There exist a series of recent works which show that DL mod-
els (especially for image recognition) can be easily fooled by
perturbing the images in an adversarial manner. The sub-field
of adversarial DL [37, 47] studies the problem of constructing
synthetic examples by slightly modifying real examples from
training data such that the trained DL model (or any ML model)
makes an incorrect prediction with high confidence. While this
is indeed a long term concern, most DC tasks are often collab-
orative and limited to an enterprise. Furthermore, there are a
series of research efforts that propose DL models that are more
resistant to adversarial training such as [30].

7.5 Building Deep Learning Models for Data
Curation is “Just Engineering”

Many DC researchers might look at the process of building DL
models for DC and simply dismiss it as a pure engineering effort.
And they are indeed correct! Despite its stunning success, DL is
still at its infancy and the theory of DL is still being developed.
To a DC researcher used to purveying a well organized garden
of conferences such as VLDB/SIGMOD/ICDE, the DL research
landscape might look like the wild west.

In the early stages, researchers might just apply an existing DL
model or algorithm for a DC task. Or they might slightly tweak a
previous model to achieve better results. We argue that database
conferences must provide a safe zone in which these DL explo-
rations are conducted in a principled manner. One could take
inspiration from the computer vision community. They created a
large dataset (ImageNet [9]) that provided a benchmark by which
different DL architectures and algorithms can be compared. They
also created one or more workshops focused on applying DL for
specific tasks in computer vision (such as image recognition and
scene understanding). The database community has its own TPC
series of synthetic datasets that have been influential in bench-
marking database systems. Efforts similar to TPC are essential
for the success of DL-driven DC.

7.6 Deep Learning is Data Hungry
Indeed, this is one of the major issues in adopting DL for DC. Most
classical DL architectures often have many hidden layers with
millions of parameters to learn, which requires a large amount
of training data. Unfortunately, the amount of training data for
DC is often small. The good news is, there exist a wide variety of
techniques and tricks in the DL’s arsenal that can help address
this issue. We could leverage the techniques described in Section 6
for addressing these issues.

8 A CALL TO ARMS
In this paper, we make two key observations. Data Curation is a
long standing problem and needs novel solutions in order to han-
dle the emerging big data ecosystem. Deep Learning is gaining
traction across many disciplines, both inside and outside com-
puter science. The meeting of these two disciplines will unleash
a series of research activities that will lead to usable solutions for
many DC tasks. We identified research opportunities in learning
distributed representations for database aware objects such as
tuples or columns and designing DC-aware DL architectures.
We described a number of promising approaches to tame DL’s
hunger for data. We discuss the early successes in using DL for
important DC tasks such as data discovery and entity matching
that required novel adaptations of DL techniques. We make a
call to arms for the database community in general, and the DC
community in particular, to seize this opportunity to significantly
advance the area, while keeping in mind the risks and mitigation
that were also highlighted in this paper.
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ABSTRACT
A clustering may be considered as fair on pre-specified sensi-
tive attributes if the proportions of sensitive attribute groups
in each cluster reflect that in the dataset. In this paper, we con-
sider the task of fair clustering for scenarios involving multiple
multi-valued or numeric sensitive attributes. We propose a fair
clustering method, FairKM (Fair K-Means), that is inspired by
the popular K-Means clustering formulation. We outline a com-
putational notion of fairness which is used along with a cluster
coherence objective, to yield the FairKM clustering method. We
empirically evaluate our approach, wherein we quantify both
the quality and fairness of clusters, over real-world datasets. Our
experimental evaluation illustrates that the clusters generated by
FairKM fare significantly better on both clustering quality and
fair representation of sensitive attribute groups compared to the
clusters from a state-of-the-art baseline fair clustering method.

1 INTRODUCTION
Clustering is the task of grouping a dataset of objects in such
a way that objects that are assigned to the same group, called
a cluster, are more similar to each other than those in other
groups/clusters. Clustering [10] is a well-studied and fundamen-
tal task, arguably the most popular task in unsupervised or ex-
ploratory data analytics. A pragmatic way of using clustering
within analytics pipelines is to consider objects within the same
cluster as being indistinguishable. Customers in the same clus-
ter are often sent the same promotional material in a targeted
marketing scenario in retail, whereas candidates clustered using
their resumes may be assigned the same shortlisting decision in
a hiring scenario. Clustering provides a natural way to tackle the
infeasibility of doing manual per-object assessment or appreci-
ation, especially in cases where the dataset in question encom-
passes more than a few hundreds of objects. Central to clustering
is the notion of similarity which may need to be defined in a
task-oriented manner. As an example, clustering to aid a task
on identifying tax defaulters may use a similarity measure that
focuses more on the job and income related attributes, whereas
that for a health monitoring task may more appropriately focus
on a very different set of attributes.

Usage of clustering algorithms in analytics pipelines for mak-
ing important decisions open up possibilities of unfairness. Among
two high-level streams of fairness constructs, viz., individual fair-
ness [8] and group fairness [12], we focus on the latter. Group
fairness considers fairness from the perspective of sensitive at-
tributes such as gender and ethnicity and groups defined on the

© 2020 Copyright held by the owner/author(s). Published in Proceedings of the
23rd International Conference on Extending Database Technology (EDBT), March
30-April 2, 2020, ISBN 978-3-89318-083-7 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

basis of such sensitive attributes. Consider a clustering algo-
rithm that targets to group records of individuals to clusters; it
is possible and likely that certain clusters have highly skewed
distributions when profiled against particular sensitive attributes.
As an example, clustering a dataset with broad representation
across gender groups based on exam scores could lead to clusters
that are highly gender-homogeneous due to statistical correla-
tions1; this would happen even if the gender attribute were not
explicitly considered within the clustering, since such informa-
tion could be held implicitly across one or more other attributes.
Choosing a cluster with a high gender or ethnic skew for positive
(e.g., interview shortlisting) or negative (e.g., higher scrutiny or
checks) action entails differentiated impact across gender and
ethnic groups. This could also lead to reinforcement of societal
stereotypes. For example, consistently choosing individuals from
particular ethnic groups for pro-active surveillance could lead
to higher reporting of violations from such ethnic groups since
enhanced surveillance translates to higher crime visibility, re-
sulting in higher reporting rates. This reporting skew results
thus manifests as a data skew which provides opportunities for
future invocations of the same analytics to exhibit higher eth-
nic asymmetry. In modern decision making scenarios within a
liberal and democratic society, we need to account for a plu-
rality of sensitive attributes within analytics pipelines to avoid
causing (unintended) discrimination; these could include gen-
der, race, religion, relationship status and country of origin in
generic decision-making scenarios, and could potentially include
attributes such as age and income in more specific ones. There
has been much recent interest in the topic of fair clustering [1, 6].

Our Contribution. In this paper, we consider the task of fair
clustering in the presence of multiple sensitive attributes. As
will be outlined in a later section, this is a direction that has
received less attention amidst existing work on fair clustering
that has been designed for scenarios involving a single binary
sensitive attribute [3, 6, 14, 17], single multi-valued/categorical
sensitive attribute [1, 20–22], or multiple overlapping groups [4].
We propose a clustering formulation and algorithm to embed
group fairness in clustering that incorporates multiple sensitive
attributes that may include numeric, binary or multi-valued (i.e.,
categorical) sensitive ones. Through an empirical evaluation over
multiple datasets, we illustrate the empirical effectiveness of our
approach in generating clusters with fairer representations of
sensitive groups, while preserving cluster meaningfulness.

2 RELATEDWORK
Fairness in machine learning has received significant attention
over the last few years. Our work contributes to the area of
fair methods for unsupervised learning tasks. We now briefly
survey the area of fairness in unsupervised learning, with a focus

1https://www.compassprep.com/new-sat-has-disadvantaged-female-testers/
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on clustering, our task of interest. We interchangeably refer to
groups defined on sensitive attributes (e.g., ethnic groups, gender
groups etc.) as protected classes for consistency with terminology
in some referenced papers. Towards developing a systematic
summary, we categorize prior work into three types depending
on whether the fairness modelling appears as a (i) pre-processing
step, (ii) during the task of clustering, or (iii) as a post-processing
step after clustering. These yield the three technique families.

2.1 Space Transformation Approaches
The family of fairness pre-processing techniques work by first
representing the data points in a ‘fair’ space followed by applying
any existing clustering algorithm upon them. This is the largest
family of techniques, and most approaches in this family seek to
achieve theoretical guarantees on representational fairness. This
family includes one of the first works in this area of fair cluster-
ing [6]. The work proposes a fair variant of classical clustering
for scenarios involving a single sensitive attribute that can take
binary values. Let each object be colored either x or y depending
on its value for the binary sensitive attribute. [6] defines fair-
ness in terms of balance of a cluster, which ismin{#x/#y, #y/#x}.
They go on and outline the concept of (b, r )-fairlet decomposition,
where the points in the dataset are grouped into small clusters
called fairlets, such that each fairlet would have a balance of b/r ,
where b < r . The clustering is then performed on these fairlets.
The fairness guarantees that are provided by the clustering is
based on the balance in the underlying fairlets. Fairlet decom-
position turns out to be NP-hard, for which an approximation
algorithm is provided. Later, [3] proposed a faster fairlet decom-
position algorithm offering significant speedups. The work in
[20] extends the fairlet idea toK-means for scenarios with a single
multi-valued sensitive attribute. They define fair-coresets which
are smaller subsets of the original dataset, such that solving fair
clustering over this subset also results in giving an approximate
solution for the entire dataset.

Another set of fair space transformation approaches build
upon methods for dimensionality reduction and representation
learning. A recent such work [2] considers the bias in the dataset
(that is, representational skew) as a form of noise and uses spectral
de-noising techniques to project the original points in the dataset
to a new fair projected space. [17] describes a fair version of PCA
(Principal Component Analysis) for data with a single binary
sensitive attribute. A representation learning method may be
defined as fair if the information about the sensitive attributes
cannot be inferred from the learnt representations. The method
uses convex optimization formulations to embed fairness within
PCA. The fairness is specified in terms of failure of the classifiers
in predicting the sensitive class of the dimensionality-reduced
data points obtained from fair PCA. The method is fairer if the
data points are less distinguishable with respect to their values
of the sensitive attribute in this lower dimension space. Another
work that projects the original data points into a fair space is the
one described in [21]. This method, which is for cases involving
a single multi-valued sensitive attribute, defines a clustering to
be fair when there is an equal number of data points of each
protected class in each cluster. They define the concept of fairoids
(short for fair centroids) which are formed by grouping together
all points belonging to the same protected class. The task is
then to learn a latent representation of the data points such
that the cluster centroids obtained after clustering on this latent
representation are equi-distant from every fairoid.

2.2 Fairness Modelling within Optimization
Methods in this family incorporate the fairness constraints into
the clustering step, most usually within the objective function
that the clustering method seeks to optimize for. It may be noted
that the method we propose in this paper, FairKM, also belongs to
this family. Approaches within this family define a clustering to
be fair if the proportional representation of the protected class in
a cluster reflects that in the dataset. One of the techniques [14] de-
scribes a fair variant of spectral clustering where a linear fairness
constraint is incorporated into the original ratio-cutminimization
objective of spectral clustering. Another recent technique [22],
the method that comes closest to ours in construction, modifies
K-means clustering to add a fairness loss term. The fairness loss
is computed as the KL-divergence between the probability dis-
tribution across the different values for the sensitive attribute
in a cluster, and the corresponding distribution for the whole
dataset. This method is designed for a single multi-valued sensi-
tive attribute and does not generalize to multiple such sensitive
attributes. Being closest to our proposed method in spirit, we use
this method as our primary baseline, in the experiments.

In contrast to the above, another recent work [5] outlines a dif-
ferent notion of fairness, one that is independent of (and agnostic
to) sensitive attributes. They define fairness as proportionality
wrt spatial distributions, to mean that any (n/k) points can form
their own cluster if there exists another center that is closer to
each of these (n/k) points. This proportionality constraint is in-
corporated into the objective function of k-median clustering
and is optimized to find a clustering that satisfies this constraint.

2.3 Cluster Perturbation Techniques
In this third family of techniques, vanilla clustering is first applied
on the original set of data points, after which the generated
clusters are perturbed to improve fairness of the solution. In
[4], fairness is defined in terms of a lower and upper bound on
the representation of a protected class in a cluster. This method
is for cases with multiple binary sensitive attributes, referred
to as overlapping groups in the paper. The k-centers generated
from vanilla clustering on the data points are used to perform
a fair partial assignment between points and the centers. The
fair partial assignment is formulated as a linear program with
constraints that ensures that the sum of the weights associated
with a point’s partial assignments is one, and, the representation
of a protected class in a cluster is within the specified upper
and lower bounds. The partial assignments are then converted to
integral assignments by framing it as another linear programming
problem. [1] also uses a similar idea, but it just enforces an upper
bound, consequently preventing over-representation of specific
groups in a cluster. The work described in [13] proposes a simple
approximation algorithm for k-center clustering under a fairness
constraint, for scenarios with a single multi-valued sensitive
attribute. The method targets to generate a fair summary of a
large set of data points, such that the summary is a representative
subset of the original dataset. For example, if the original dataset
has a 70:30 male:female distribution, then a fair summary should
also have the same distribution.

2.4 Summary
Table 1 summarizes the different approaches in literature and our
proposed approach FairKM, in terms of the number and type of
sensitive attributes they handle and their definition for fairness.
As it may be seen from the table, there has been very limited
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Paper Number Type Fairness Definition
[6],[3],[2] Single Binary Preserve proportional representation of protected classes within clusters.
[20] Single Multi-valued Preserve proportional representation of protected classes within clusters.
[17] Single Binary The accuracy of the classifier predicting the protected class of a data point should be within

a specified bound.
[21] Single Multi-valued Each cluster should have an equal number of data points from each protected class.
[4] Multiple Binary The proportional representation of a protected class in a cluster should be within the specified

lower and upper bounds.
[1] Single Multi-valued The proportional representation of a protected class in a cluster should not go beyond a

specified upper bound.
[13] Single Multi-valued The clustering should produce pre-specified number of cluster centers belonging to each

specific protected class.
[14], [22] Single Multi-valued Preserve proportional representation of protected classes within clusters.
[5] - - There are no set of (n/k) points such that there exists another center that is closer to each of

these (n/k) points.
[18] Single Multi-valued Each cluster should have atleast a pre-specified number of points of a protected class.
FairKM Multiple Multi-valued/ Preserve proportional representation of protected classes within clusters.

Numeric as its representation in the whole dataset.
Table 1: Fair Unsupervised ML Methods indicating the Number and Type of Sensitive Attributes they are designed for.

exploration into methods that admit multiple multi-valued (aka
categorical or multi-state) sensitive attributes, the space that
FairKM falls in. While multiple multi-valued attributes can be
treated as together forming a giant multi-valued attribute taking
values that are combinations of the component attributes, this
results in a large number of very fine-grained groupings. These
make it infeasible to both (i) impose fairness constraints over,
and (ii) ensure parity in treatment of different sensitive attributes
independent of the differences in the number of values they take.
Considering the fact that real-life scenarios routinely present
with multiple sensitive attributes, FairKM, we believe addresses
an important line of inquiry in the backdrop of the literature. We
will empirically evaluate FairKM against [22], the latter coming
from the same technique family and having similar construction.

3 PROBLEM DEFINITION
Let X = {. . . ,X , . . .} be a dataset of records defined over two
sets of attributesN and S.N stands for the set of attributes that
are relevant to the task of interest, and thus may be regarded
non-sensitive. As examples, this may comprise experience and
skills in the case of screening applicants for a job application,
and attributes from medical wearables’ data to inform decision
making for pro-active screening. S stands for the set of sensitive
attributes, which would typically include attributes such as those
identifying gender, race, religion, relationship status in a citizen
database and any other sensitive attribute over which fairness
is to be ensured. In other scenarios such as NLP for education,
representational fairness may be sought over attributes such as
types of problems in a word problem database; this forms one of
the scenarios in our empirical evaluation.

The (vanilla) clustering objective would be to group X into
clusters such that it maximizes intra-cluster similarity and mini-
mizes inter-cluster similarity, similarity gauged using the task-
relevant attributes inN . Within a fair clustering, we would addi-
tionally like the output clusters to be fair on attributes in S. A
natural way to operationalize fairness within a clustering that
covers all objects in X would be to ensure that the distribution of
groups defined on sensitive attributes within each cluster approx-
imates the distribution across the dataset; this correlates with the

well-explored notion of statistical parity [8] in fair supervised
learning. For example, suppose the sex ratio inX is 1:1; we would
ideally like each cluster in the clustering output to report a sex
ratio of 1:1, or very close to it. In short, we would like a fair
clustering to produce clusters, each of which are both:
• coherent when measured on the attributes in N , and
• approximate the dataset distribution when measured on the
attributes in S.
It may be noted that simply hiding the S attributes from the

clustering algorithm does not suffice. A gender blind cluster-
ing algorithm may still produce clusters that are highly gender-
homogeneous, since some attributes inN could implicitly encode
gender information. Indeed, we would like a fair clustering to
surpass S-blind clustering by significant margins on fairness.

4 FAIRKM: OUR METHOD
We now describe our proposed technique for fair clustering, code-
named FairKM, short for Fair K-Means, indicating that it draws
inspiration from the classical K-Means clustering algorithm [9,
16]. FairKM incorporates a novel fairness loss term that nudges
the clustering towards fairness on attributes in S. The FairKM
objective function is as follows:

O =∑
C ∈C

∑
X ∈C

distN(X ,C)︸                     ︷︷                     ︸
K-Means Term over attributes in N

+λ deviationS(C,X)︸                ︷︷                ︸
Fairness Term over attributes in S

(1)

As indicated, the objective function comprises two compo-
nents; the first is the usual K-Means loss for the clustering C,
distN(X ,C) computing the distance between X and prototype
of cluster C , distance computed only over attributes in N . The
second is a fairness loss term we introduce, which is computed
over attributes in S. λ is a parameter that may be used to balance
the relative strength of the two terms. As in K-Means, this loss
is computed over a given clustering; the task is thus to identify
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a clustering that minimizes O as much as possible. We now de-
scribe the details of the second term, and the intuitions behind
its construction.

4.1 The Fairness Term in FairKM
While the K-Means term in the FairKM objective tries to ensure
that the output clusters are coherent in theN attributes, the fair-
ness term performs the complementary function of ensuring that
the clusters manifest fair distributions of groups defined by sensi-
tive attributes in S. We outline the motivation and construction
of the fairness term herein.
Attribute-Specific Deviation for a Cluster: Consider a single
sensitive attribute S (e.g., gender) among the set of sensitive
attributesS. For each data objectX , S may take on one value from
a set of permissible values. Let s be one such value (e.g., female, for
the choice of S as gender). For an ideally fair clusterC , one would
expect that the fractional representation of s inC - the fraction of
objects inC that take the value s for S - to be close to the fractional
representation of s in X. With our intent of generating clusters
that are as fair as possible, we seek to generate clusterings such
that the deviation between the fractional representations of s in
C and X are minimized for each cluster C . For a given cluster C
and a choice of value s for S , we model the deviation as simply
the square of the absolute differences between the fractional
representations in C and X:

DS
C (s) =

(
|{X |X ∈ C ∧ X .S = s}|

|C |
−

|{X |X ∈ X ∧ X .S = s}|

|X|

)2
(2)

The deviation, when aggregated over all values of S , yields:

DS
C =

{∑
s ∈Values(S ) D

S
C (s) |C | , 0

0 |C | = 0
(3)

The above aggregation accounts for the fact that DS
C (s) is

undefined when C is an empty cluster.
Domain Cardinality Normalization: Different sensitive at-
tributes may have different numbers of permissible values (or
domain cardinalities). For example, race and gender attributes
typically take on much fewer values than country of origin. Those
attributes with larger domains are likely to yield largerDS

C scores
because, (i) the deviations are harder to control within (small)
clusters given the higher likely scatter, and (ii) there are larger
numbers of DS

C (s) terms that add up to DS
C . In order to ensure

that attributes with larger domains do not dominate the fair-
ness term, we normalize the deviation by the number of differ-
ent values taken by an attribute, yielding NDS

C , a normalized
attribute-specific deviation:

NDS
C =

DS
C

|Values(S)|
(4)

This is then summed up over all attributes in S to yield a
single term for each cluster:

NDC =
∑
S ∈S

NDS
C (5)

Cluster Weighting: Observe that NDC deviation loss would
tend towards 0.0 for very large clusters, since they are obvi-
ously likely to reflect dataset-level distributions better; further,
an empty cluster would also have NDS

C = 0 by definition. Consid-
ering the above, a clustering loss term modelled as a simple sum

over its clusters,
( ∑

C ∈C NDC
)
or a cardinality weighted sum,( ∑

C ∈C |C | × NDC
)
, can both be driven towards 0.0 by keeping

a lot of clusters empty, and distributing the dataset objects across
very few clusters; the boundary case would be a single non-empty
cluster. Indeed, this propensity towards the boundary condition
is kept in check by the K-Means term; however, we would like
our fairness term to drive the search towards more reasonable fair
clustering configurations in lieu of simply reflecting a propensity
towards highly skewed clustering configurations.

Towards achieving this, we weight each cluster’s deviation by
the square of it’s fractional cardinality of the dataset. This leads
to an overall loss term as follows:∑

C ∈C

(
|C |

|X|

)2
× NDC (6)

The squared term in the weighting enlarges the NDC terms of
larger clusters much more than smaller ones, making it unprof-
itable to create large clusters; this compensates for the propensity
towards skewed clusters as embodied in the loss construction.
Overall Loss: The overall fairness loss term is thus:

deviationS(C,X) =∑
C ∈C

(
|C |

|X|

)2
×

∑
S ∈S

∑
s ∈Values(S )

(
FrSC (s) − FrS

X
(s)

)2
|Values(S)|

(7)

where FrSC (s) and FrS
X
(s) are shorthands for the fractional

representation of S = s objects in C and X respectively.

4.2 The Optimization Approach
Having defined the objective function, we now outline the opti-
mization approach. It is easy to observe that there are three sets
of parameters, the clustering assignments for each data object in
X, the cluster prototypes that are used in the first term of the ob-
jective function, and the fractional representations, i.e., FrSC (s)s,
used in the fairness term. Unlike K-Means, given the more com-
plex construction, it is harder to form a closed-form solution
for the cluster assignments. Thus, from a given estimate of all
three sets of parameters, we step over each data object X ∈ X in
round-robin fashion, updating its cluster assignment, and making
consequent changes in cluster prototypes and fractional repre-
sentations. One set of round-robin updates forms an iteration,
with multiple such iterations performed until convergence or
until a maximum threshold of iterations is reached.

4.2.1 Cluster Assignment Updates. At λ = 0, FairKM defaults
to K-Means where the cluster assignments are determined only
by proximity to the cluster prototype (over attributes in N ). At
higher values of λ, FairKM cluster assignments are increasingly
swayed by considerations of representational fairness of S at-
tributes within clusters.

It may be noted that the cluster assignments are used in both
the terms of the FairKM objective, in different ways. This makes a
closed form estimation of cluster assignments harder to arrive at.
This leads us to a round-robin approach of determining cluster
assignments. When each X is considered, the cluster prototypes
as well as the current cluster assignments of all other objects, i.e.
X − {X }, are kept unchanged. The cluster assignment for X is
then estimated as:

Cluster (X ) = argmin
C

OC+(X ∈C) (8)
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For the candidate object X , we evaluate the value of the ob-
jective function by changing X ’s cluster membership from the
present one to each cluster, C + (X ∈ C) indicating a correspond-
ing change in the clustering configuration retaining all other
objects’ present cluster assignments. X is then assigned to the
cluster for which the minimum value of O is achieved. While
this may look as a simple step, implementing it naively is compu-
tationally expensive. However, easy optimizations are possible
when one observes the dynamics of the change and how it op-
erates across the two terms. We now outline a simple way of
affecting the cluster assignment decision. First, let X ’s current
cluster assignment be C ′; the cluster assignment step can be
equivalently written as:

Cluster (X ) = argmin
C

δ (O)X ∈C ′→X ∈C (9)

where δO indicates the change in O when the respective clus-
ter assignment change is carried out. This can be expanded into
the changes in the two terms in the objective function as follows:

δ (O)X ∈C ′→X ∈C =

δ (K-Means term)X ∈C ′→X ∈C+λ×δ (deviation term)X ∈C ′→X ∈C
(10)

We now detail the changes in the respective terms separately.
Change in K-Means Term:We now outline the change in the
K-Means term bymovingX fromC ′ toC . As may be obvious, this
depends only on attributes inN . We model the cluster prototypes
as simply the average of the objects within the cluster. The change
in the K-Means term is the sum of (i) the change in the K-Means
term corresponding to C ′ brought about by the exclusion of X
from it, and (ii) the change in the K-Means term corresponding
to C brought about by the inclusion of X within it. We discuss
them below.

Consider a single numeric attribute N ∈ N , for simplicity.
Through excludingX fromC ′, the N attribute value of the cluster
prototype of C ′ undergoes the following change:

C ′.N →

[(
C ′.N −

X .N

|C ′ |

)
×

|C ′ |

|C ′ − 1|

]
(11)

where C ′ is overloaded to refer to the cluster and the cluster
prototype (to avoid clutter), all values referring to those prior
to exclusion of X . The term after the → stands for the N at-
tribute value for the new cluster prototype. As indicated, it is
computed by the removal of the contribution from X from the
cluster prototype, followed by re-normalization, now that C ′ has
one fewer object within it. The change in the K-Means term for
N corresponding to C ′ is then as follows:

δXoutKM(C ′,N ) =

( ∑
X ′∈C ′,X ′,X

(X ′.N − New(C ′.N ))2
)
−[( ∑

X ′∈C ′,X ′,X
(X ′.N −C ′.N )2

)
+ (X .N −C ′.N )2

]
(12)

where New(C ′.N ) is the new estimate of C ′.N as outlined in
Eq. 11. The first term corresponds to the K-Means loss in the
new configuration (after exclusion of X ), whereas the sum of the
second and third terms correspond to that prior to exclusion of
X . Analogous to the above, the new centroid computation for C
and the change in the K-Means terms are outlined below:

C .N →

[(
C .N ×

|C |

|C + 1|

)
+

X .N

C + 1

]
(13)

δXinKM(C,N ) =

[( ∑
X ′∈C ,X ′,X

(X ′.N − New(C .N ))2
)
+

(X .N − New(C .N ))2
]
−

( ∑
X ′∈C ,X ′,X

(X ′.N −C .N )2
)

(14)

It may be noticed that the computation of the changes above
only involve X and other objects in C and C ′. In particular, the
other clusters and their objects do not come into play. So far, we
have computed the changes for only one attribute N . The overall
change in the K-Means term is simply the sum of these changes
across all attributes in N .

δ (K-Means term)X ∈C ′→X ∈C =∑
N ∈N

(
δXoutKM(C ′,N ) + δXinKM(C,N )

)
(15)

Change in Fairness Term:We now outline the construction of
the change in the fairness term. As earlier, we start by considering
a single clusterC∗, a single attribute S , and a single value s within
it. The fairness term from Eq. 7 can be written as follows:

dev(C∗, S = s) =

C∗2 ×

((
C∗
s

C∗

)2
+

(
Xs
X

)2
− 2C

∗
s Xs
C∗ X

)
X2 × |Values(S)|

(16)

where each set (C∗ and X) is overloaded to represent both
itself and its cardinality (to avoid notation clutter), and their
suffixed versions (C∗

s and Xs ) are used to refer to their subsets
containing their objects which take the value S = s . The above
equation follows from the observation that FrSC∗ (s) =

C∗
S

C∗ and
analogously for X. When an object changes clusters from C ′ to
C , there is a change in the terms associated with both clusters, as
in the previous case. The change in the origin cluster C ′ works
out to be the follows:

δXoutdev(C
′, S = s) =

1
X2 × |Values(S)|

×

[(
Xs
X

)2
(1 − 2C ′)+

I(X .S = s)(1 − 2C ′
s ) − 2

(
Xs
X

) (
I(X .S = s)(1 −C ′) −C ′

s

)]
(17)

where I(.) is an indicator function, and C ′ and C ′
s denote the

cardinalities before X is taken out of C ′. We omit the deriva-
tion for space constraints. Intuitively, to nudge clusters towards
fairness, we would like to incentivize removal of objects with
S = s from C ′ when C ′ is overpopulated with such objects (i.e.,
C ′
s is high). This is evident in the −(C ′

s × I(X .S = s)) component;
when C ′

s is high, removal of an object with S = s entails a bigger
reduction in the objective. The analogous change in the target
cluster C , is as follows:

δXindev(C, S = s) =
1

X2 × |Values(S)|
×

[(
Xs
X

)2
(1 + 2C)+

I(X .S = s)(1 + 2Cs ) − 2
(
Xs
X

) (
I(X .S = s)(1 +C) +Cs

)]
(18)
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where C and Cs denote the cardinalities before X is inserted
intoC . Given that we are insertingX intoC , the fairness intuition
suggests that we should disincentivize addition of objects with s
when C already has too many of such objects. This is reflected
in the (Cs × I(X .S = s)) term; notice that this is exactly the same
term as in the earlier case, but with a different sign.

Thus, the overall fairness term change is as follows:

δ (deviation term)X ∈C ′→X ∈C =∑
S ∈S

∑
s ∈Values(S )

(
δXoutdev(C

′, S = s) + δXindev(C, S = s)

)
(19)

This completes all the steps required for Eq. 9. Based on the
change in the cluster assignment, the cluster prototypes and
fractional representations are to be updated.

4.2.2 Cluster Prototype Updates. Once a new cluster has been
finalized for X , the origin and target cluster prototypes are up-
dated according to Eq. 12 and Eq. 14 respectively.

4.2.3 Fractional Representation Updates. The FrSC ′(s)s and
FrSC (s)s need to be updated to reflect the change in the cluster
assignment of X . These are straightforward and given as follows:

∀S∀s ∈ Values(S), FrSC ′(s) =

{C ′
s−1

C ′−1 if X .S = s
C ′
s

C ′−1 if X .S , s
(20)

∀S∀s ∈ Values(S), FrSC (s) =

{
Cs+1
C+1 if X .S = s
Cs
C ′+1 if X .S , s

(21)

where the C , C ′, Cs and C ′
s values above are cardinalities of

the respective sets prior to the update to X ’s cluster assignment.

Alg. 1 FairKM

Input. Dataset X, attribute sets S and N , number of clusters k
Hyper-parameters: Fairness Weighting λ
Output. Clustering C

1. Initialize k clusters randomly
2. Set cluster prototypes as Cluster Centroids
3.while(not yet converдed and max . iterations not reached)
4. ∀X ∈ X,
5. Set Cluster(X) using Eq. 9 (and Eq. 10 through Eq. 19)
6. Update cluster prototypes as outlined in Sec 4.2.2
7. Re-estimate the FrSC (s) using Eq. 20 and Eq. 21
8. Return the current clustering assignments as C

4.3 FairKM Algorithm
Having outlined the various steps, the FairKM algorithm can now
be summarized in Algorithm 1. The method starts with a ran-
dom initialization of clusterings (Step 1) and proceeds iteratively.
Within each iteration, each object is considered in round-robin
fashion, executing three steps in sequence: (i) updating the clus-
ter assignment of X (Step 5), (ii) updating the cluster prototypes
to reflect the change in cluster assignment of X (Step 6), and (iii)
updating the fractional representations correspondingly (Step
7). The significant difference in construction from K-Means is
due to the inter-dependency in cluster assignments; the cluster
assignment for X depends on the current cluster assignments for
all other objects X − {X }, due to the construction of the FairKM

objective as reflected in the update steps. The updates proceed
as long as the clustering assignments have not converged or a
pre-specified maximum number of iterations have not reached.

4.3.1 Complexity: The time complexity of FairKM is domi-
nated by the cluster assignment updates. Within each iteration,
for each X (|X| of them) and each cluster it could be re-assigned
to (k of them), the deviation needs to be computed for both the
(i) K-Means term, and the (ii) fairness term. First, considering
the K-Means term, it may be noted that each other object in X

would come into play once, either as a member of X ’s current
cluster (in Eq. 12) or as a member of a potential cluster to which
X may be assigned (in Eq. 14). This yields an overall complex-
ity of each K-Means deviation computation being in O(|X||N |).
Second, considering the fairness deviation computation, it may
be seen as a simple computation (Eq. 17 and 18) that can be com-
pleted in constant time. This computation needs to be performed
for each attribute in S and each value of the attribute (consider
m as the maximum number of values across attributes in S),
yielding a total complexity of O(|S|m) for each fairness update
computation. With the updates needing to be computed for each
new candidate cluster, the overall complexity of Step 5 would
be O(|X||N |k + |S|mk). Step 6 is in O(|X||N |) whereas Step 7 is
simply in O(|S|m). With the above steps having to be performed
for each X and for each iteration, the overall FairKM complex-
ity works out to be in O(|X|2 |N |kl + |X||S|mkl) where l is the
number of iterations. While the quadratic dependency on the
dataset size makes FairKM much slower than simple K-Means
(which is linear on dataset size), FairKM compares very favorably
against other fair clustering methods (e.g., exact fairlet decom-
position [6] is NP-hard, and even the proposed approximation is
super-quadratic) which are computationally intensive.

4.4 FairKM Extensions
We outline two extensions to the basic FairKM outlined earlier
which was intended towards handling numeric non-sensitive
attributes and multi-valued sensitive attributes.

4.4.1 Extension to Numeric Sensitive Attributes. FairKM is eas-
ily adaptable to numeric sensitive attributes (e.g., age for cases
where that is appropriate). If all attributes in S are numeric, the
fairness loss term in Eq. 7 would be written out as:

deviationS(C,X) =
∑
C ∈C

(
|C |

|X|

)2
×

∑
S ∈S

(C .S − X.S)2 (22)

where C .S and X.S indicate the average value of the numeric
attribute S across objects in C and X respectively. When there
are a mix of multi-valued and numeric attributes, the inner term
would take the form of Eq. 7 and Eq. 22 for multi-valued and nu-
meric attributes respectively. These entail corresponding changes
to the update equations which we do not describe here for brevity.

4.4.2 Extension to allow Sensitive Attribute Weighting. In cer-
tain scenarios, some sensitive attributes may need to be consid-
ered more important than others. This may be due to historical
reasons based on a legacy of documented high discrimination
on certain attributes, or due to visibility reasons where discrimi-
nation on certain attributes (e.g., gender, race and sexual orienta-
tion) being more visible than others (e.g., country of origin). The
FairKM framework could easily be extended to allow for differen-
tial attribute-specific weighting by changing the deviation term
to be as follows:
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deviationS(C,X) =∑
C ∈C

(
|C |

|X|

)2
×

∑
S ∈S

wS ×

∑
s ∈Values(S )

(
FrSC (s) − FrS

X
(s)

)2
|Values(S)|

(23)

Attributes that are more important for fairness considerations
can then be assigned a higher weight, i.e.wS , which would lead
to their loss being amplified, thus incentivizing FairKM to focus
more on them for fairness, consequently leading to a higher rep-
resentational fairness over them, within the clusters in the output.
ThewS terms would then also affect the update equations.

5 EXPERIMENTAL STUDY
We now detail our experimental study to gauge and quantify
the effectiveness of FairKM in delivering good quality and fair
clusterings against state-of-the-art baselines. We first outline the
datasets in our experimental setup, followed by a description of
the evaluation measures and baselines. This is then followed by
our results and an analysis of the results.

5.1 Datasets
We use two real-world datasets in our empirical study. The
datasets are chosen to cover very different domains, attributes
and dataset sizes, to draw generalizable insights from the study.
First, we use the popular Adult dataset from UCI repository [7];
this dataset is sometimes referenced as the Census Income dataset
and contains information from the 1994 US Census. The dataset
has 32561 instances, each instance represented using 13 attributes.
Among the 13 attributes, 5 are chosen to form the set of sensi-
tive attributes, S. These are {marital status , relationship status ,
race , дender , native country}. The number of values taken by
each of the sensitive attributes are shown in Table 3. The set
of non-sensitive attributes, N , pertain to age, work class (2 at-
tributes), education (2 attributes), occupation, fiscal information
(2 attributes) and number of working hours. The dataset has been
widely used for predicting income as belonging to one of > 50k$
or <= 50k$. We first undersample the dataset to ensure parity
across this income class attribute that we do not use in the cluster-
ing process. The total number of instances after undersampling
is 15682. Second, we use a dataset2 of 161 word problems from
the domain of kinematics. Kinematics is the study of motion
without considering the cause of motion. The problems in this
dataset is categorized into various types as indicated in Table 2.
The complexity of a word problem typically depends on the type.
For example, Type 1 problems are easier to solve (in terms of the
equations required) compared to Type 5 problems. Table 4 shows
the number of problems of each of the above types in the dataset.
Given such a dataset of word problems from kinematics domain,
we are interested in the task of clustering the word problems
such that the proportional representation of problems of a par-
ticular type in a cluster reflects its representation in the entire
dataset. In the application scenario of automatic construction of
multiple questionnaires (one from each cluster) from a question
bank, the fair clustering task corresponds to ensuring that each
questionnaire contains a reasonable mix of problem types. This
ensures that there is minimal asymmetry between the different
questionnaires generated by a clustering, in terms of overall hard-
ness. For the fair clustering formulation, thus, the problem types
2https://github.com/savithaabraham/Datasets

form the set of 5 sensitive binary attributes, S. The lexical rep-
resentation of each word problem, as a 100 dimensional vector
using Doc2Vec models [15], forms the set of numeric attributes
in N . Given our fairness consideration, we consider achieving a
fair proportion of word problem types within each cluster that
reflects their proportion across the dataset.

It may be noted that the Adult and Kinematics datasets come
from different domains (Census and Word Problems/NLP respec-
tively), have different sizes of non-sensitive attribute sets (8 and
100 attributes in N respectively), different kinds of sensitive
attribute sets (multi-valued and binary respectively) and have
widely varying sizes (15k and 161 respectively). An empirical
evaluation over such widely varying datasets, we expect, would
inspire confidence in the generalizability of empirical results.

5.2 Evaluation
Having defined the task of fair clustering in Section 3, it follows
that a fair clustering algorithmwould be expected to performwell
on two sets of evaluation metrics, those that relate to clustering
quality over N and those that relate to fairness over S. We now
outline such evaluation measures below, in separate subsections.

5.2.1 Clustering Quality. These measure how well the clus-
tering fares in generating clusters that are coherent on attributes
in N , and do not depend on attributes in S. These could include:

• Silhouette Score (SH): Silhouette [19] measures the separated-
ness of clusters, and quantifies a clustering with a score in
[−1,+1], higher values indicating well-separated clusters.

• Clustering Objective (CO): Clustering objective functions such
as those employed by K-Means [16] measure how much ob-
servations deviate from the centroids of the clusters they are
assigned to, where lower values indicate coherent clusters. In
particular, the K-Means objective function is:∑

C ∈C

∑
X ∈C

distN(X ,C) (24)

where C stands for both a cluster in the clustering C as well
as the prototype object for the cluster, and distN(., .) is the
distance measure computed over attributes in N .

• Deviation from S-blind Clusterings: S-blind clusterings may
be thought of achieving the best possible clusters for the task
when no fairness considerations are imposed. Thus, among
two clusterings of similar fairness, that with lower deviation
from S-blind clusterings may be considered desirable. A fair
clustering can be compared with a S-blind clustering using
the following two measures:
– Centroid-based Deviation (DevC): Consider each clustering
to be represented as a set of cluster centroids, one for each
cluster within the clustering. The sum of pair-wise dot-
products between centroid pairs, each pair constructed using
one centroid from the fair clustering and one from the S-
blind clustering, would be a measure of deviation between
the clusterings. Such measures have been used in generating
disparate clusterings [11].

– Object pair-wise Deviation (DevO): Consider each pair of
objects from X, and one clustering (either of S-blind and
fair); the objects may belong to either the same cluster or
to different clusters. The fraction of object pairs from X

where the same/different verdicts from the two clusterings
disagree provide an intuitive measure of deviation between
clusterings.
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Type Description
1:Horizontal Motion The object involved is in a horizontal straight line motion.
2:Vertical motion with an initial velocity The object is thrown straight up or down with a velocity.
3:Free fall The object is in a free fall.
4:Horizontally projected The object is projected horizontally from a height.
5:Two-dimensional The body is projected with a velocity at an angle to the horizontal.

Table 2: Kinematics Word Problem Types

Attribute No. of values
Marital status 7
Relationship status 6
Race 5
Gender 2
Native country 41

Table 3: Adult Dataset: Number of possible values for each
sensitive attribute

Type Count
1 - Horizontal motion 60
2 - Vertical motion with an initial velocity 36
3 - Free fall 15
4 - Horizontally projected 31
5 - Two-dimensional 19

Table 4: Kinematics Dataset: #Problems of each Type

5.2.2 Fairness. These measure the fairness of the clustering
output from the (fair) clustering algorithm. Analogous to cluster-
ing quality measures that depend only on N , the fairness mea-
sures we outline below depend only on S and are independent
of N . As outlined earlier, we quantify unfairness as the extent
of deviation between representations of groups defined using
attributes in S in the dataset and each cluster in the clustering
output. Consider a multi-valued attribute S ∈ S, which can take
on t values. The normalized distribution of presence of each of
the t values in X yields a t-length probability distribution vector
XS . A similar probability distribution can then be computed for
each cluster C in the clustering C, denoted CS . Different ways of
measuring the cluster-specific deviations {. . . ,dev(CS ,XS ), . . .}
and aggregating them to a single number yield different quantifi-
cations of fairness, as below:
• Average Euclidean (AE): This measures the average of cluster-
level deviations, deviations quantified using euclidean distance
between representation vectors (i.e., XS and CS s). Since clus-
ters may not always be of uniform sizes, we use a cluster-
cardinality weighted average.

AES =

∑
C ∈C |C | × ED(CS ,XS )∑

C ∈C |C |
(25)

where ED(., .) denotes the euclidean distance.
• Average Wasserstein (AW): In this measure, the deviation is
computed using Wasserstein distance in lieu of Euclidean, as
used in [21], with other aspects remaining the same as above.

• Max Euclidean (ME): Often, just optimizing for average fair-
ness across clusters is not enough since there could be a very
skewed (small) cluster, whose effect may be obscured by other

clusters. It is often the case that one or few clusters get picked
from a clustering to be actioned upon. Thus, the maximum
skew is of interest as an indicative upper bound on the un-
fairness the clustering could cause if any one of its clusters is
chosen for further action.

• Max Wasserstein (MW): This uses Wasserstein instead of Eu-
clidean, using the same formulation as Max Euclidean.

When there are multiple attributes in S, as is often the case, the
average of the above measures across attributes in S provides
aggregate quantifications. As may be evident, the above construc-
tions work only for categorical attributes; however, a similar set
of measures can be readily devised for numeric attributes in S.
With our datasets containing only categorical attributes among
S, we do not outline the corresponding metrics for numeric at-
tributes, though they follow naturally. We are unable to apply
some popular fairness evaluation metrics such as balance [6] due
to them being devised for binary attributes.

5.3 Baselines
We compare our approach against two baselines. The first is
that of S-blind K-Means clustering, that performs K-Means clus-
tering on data using the attributes in N alone. This baseline is
code-named K-Means (N ). K-Means (N ) will produce the most
coherent clusters on N as its objective function just focuses on
maximizing intra-cluster similarity and minimizing inter-cluster
similarity overN , unlike FairKM that has an additional fairness
constraint which may result in compromising the coherence goal.
Comparing the two enables us to evaluate the extent to which
cluster coherence is traded off by FairKM in generating fairer
clusters. The second baseline is the approach described in [22]
which is a fair version of K-Means clustering for scenarios in-
volving a single multi-valued sensitive attribute. We will refer
to this baseline as ZGYA from here, based on the names of the
authors. Since it is designed for a single multi-valued sensitive
attribute and cannot handle multiple sensitive attributes within
its formulation, we invoke ZGYA multiple times, separately for
each attribute in S. Each invocation is code-named ZGYA(S)
where S is the sensitive attribute used in the invocation. We also
report results for similar runs of FairKM , where we consider just
one of the attributes in S as sensitive at a time. The compara-
tive evaluation between FairKM and ZGYA enables studying the
effectiveness of FairKM formulation over that of ZGYA in their
relative effectiveness of trading off coherence for fairness.

5.4 Setting λ in FairKM
From Eq. 1, it may be seen that the K-Means term has a contri-
bution from each object in X, whereas the fairness term (Eq. 7)
aggregates cluster level contributions. This brings a disparity in
that the former has |X|/k times as many terms as the latter. Fur-
ther, it may be noted that the fairness term aggregates deviations
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between cluster level fractional representations and dataset level
fractional representation. The fractional representation being
an average across objects in the cluster, each object can only
influence 1/|C | of it, where |C | is the cluster cardinality. On an
average, across clusters, |C | = |X|/k . Thus, the fairness term has
|X|/k fewer terms, each of whom can be influenced by an object
to a fraction of 1/(|X|/k). To ensure that the terms are of reason-
ably similar sizes, so the clustering quality and fairness concerns
be given similar weighting, the above observations suggest that λ
be set to

( |X |

k
)2. From our empirical observations, we have seen

that the FairKM behavior varies smoothly around this setting.
Based on the above heuristic, we set λ to 106 for the Adult dataset,
and 103 for the Kinematics dataset, given their respective sizes.
We will empirically analyze sensitivity to λ in Section 5.7. We set
max iterations to 30 in FairKM instantiations.

5.5 Clustering Quality and Fairness
5.5.1 Evaluation Setup. In each of our datasets, there are five

sensitive (i.e., S) attributes. FairKM can be instantiated with all
of them at once, and we do so with appropriate values of λ (106
or 103, as mentioned in Section 5.4). We perform 100 such in-
stantiations, each with a different random seed, and measure
the clustering quality and fairness evaluation measures (fairness
measures computed separately for each attribute in S as well
as the average across all attributes in S) outlined in Section 5.2.
We take the mean values across the 100 instantiations to ar-
rive at a single robust value for each evaluation measure for
FairKM. An analogous setting is used for our first baseline, the
S-blind K-Means (denoted K-Means (N)), as well. Our second
baseline, ZGYA, unlike FairKM, needs to be instantiated with
one S attribute at a time. Given this setting, we adopt different
mechanisms to compare FairKM against ZGYA across cluster-
ing quality and fairness evaluation measures. First, for clustering
quality, we instantiate ZGYA separately with each attribute in
S and compute an average value for each evaluation measure
across random initializations as described previously. This yields
one value for each evaluation measure for each attribute in S,
which we take an average of, and report as the clustering quality
of Avg. ZGYA. Second, for fairness, we adopt a synthetic favorable
setting for ZGYA to test FairKM against. For each attribute S ∈ S,
we consider the fairness metrics (AE, AW, ME, MW) obtained
by the instantiation of ZGYA over only that attribute (averaged
across random initializations, as earlier). This is compared to the
fairness metrics obtained for S by the FairKM instantiation that
considers all attributes in S. In other words, for each S ∈ S, we
benchmark the single cross-S instantiation of FairKM against
separate S-targeted instantiations of ZGYA. We also report the
average across these separate comparisons across attributes in
S. For K-Means style clustering formulations, the number of
clusters k , is an important parameter. We experiment with two
values for k , viz., 5 and 15, for the Adult dataset, whereas we use
k = 5 for the Kinematics dataset, given its much smaller size.

5.5.2 Clustering Quality. The clustering quality results ap-
pear in Table 5 (Adult dataset) and Table 7 (Kinematics dataset),
with the direction against each evaluation measure indicating
whether lower or higher values are more desirable. For clustering
quality metrics that depend only on attributes in N , we use K-
Means (N ) as a reference point since that is expected to perform
well, given that it does not need to heed to S and is not held
accountable for fairness. Thus, FairKM is not expected to beat
K-Means (N ); the lesser the degradation from K-Means (N ) on

various clustering quality metrics, the better it may be regarded to
be. We compare FairKM and Avg. ZGYA across the results tables,
highlighting the better performer on each evaluation measure by
boldfacing the appropriate value. On the Adult dataset (Table 5),
it may be seen that FairKM performs better than Avg. ZGYA on
seven out of eight combinations, with it being competitive with
the latter on the eighth. FairKM is seen to score significantly
better than Avg. ZGYA on clustering objective (CO) and silhoutte
score (SH), with the gains on the deviation metrics (DevC and
DevO) being more modest. It may be noted that CO and SH may
be regarded as more reliable measures, since they evaluate the
clustering directly. In contrast,DevO andDevC evaluate the devi-
ation against reference K-Means (N) clusterings; these deviation
measures penalize deviations even if those be towards other good
quality clusterings that may exist in the dataset. The trends from
the Adult dataset hold good for the Kinematics dataset as well
(see Table 7), confirming that the trends generalize well across
datasets of widely varying character. Overall, our results indicate
that FairKM is able to generate much better quality clusterings
than Avg. ZGYA, when gauged on attributes in N .

5.5.3 Fairness. The fairness evaluationmeasures for theAdult
and Kinematics datasets appear in Tables 6 and 8 respectively; it
may be noted that lower values are desirable on all evaluation
measures, given that they all measure deviations. In these results,
which include a synthetically favorable setting forZGYA (as noted
earlier), the top block indicates the average results across all at-
tributes inS, with the following result blocks detailing the results
for the specific parameters in S. The overarching summary of
this evaluation suggests, as indicated in the top-blocks across
the two tables, that FairKM surpasses the baselines with signifi-
cant margins. The % impr column indicates the gain achieved by
FairKM over the next best competitor. The percentage improve-
ments recorded are around 35 + % on an average for the Adult
dataset, whereas the corresponding figure is higher, at around
60 + % for the Kinematics dataset. We wish to specifically make
a few observations from the results. First, the closest competitor
to FairKM is ZGYA on the Kinematics dataset, whereas K-Means
(N ) curiously outperforms ZGYA quite consistently on the Adult
dataset. This indicates that ZGYA is likely more suited to settings
where the number of values taken by the sensitive attribute is
less. In our case, the Kinematics dataset has all binary attributes
in S, whereas Adult dataset has sensitive attributes that take as
many as 41 different values. Second, while FairKM is designed
to accommodate S attributes that take many different values,
the fairness deviations appear to degrade, albeit at a much lower
pace than ZGYA, as attributes take on very many values. This is
indicated by the lower performance (with small margins) on the
native country (41 values) attribute at k = 5 in Table 6. However,
promisingly, it is able to utilize the additional flexibility that is
provided by larger ks to ensure higher rates of fairness on them.
As may be seen, FairKM recovers well to perform significantly
better on native country at k = 15. This indicates that FairKM
will benefit from a higher flexibility in cluster assignment (with
higher k) when there are a number of (high cardinality) attributes
to ensure fairness over. Third, the FairKM formulation targets to
minimize overall fairness and does not specifically nudge it to-
wards ensuring good performance on themaxmeasures (ME and
MW) that quantify the worst deviation across clusters. Thus, it’s
design allows to choose higher fairness in multiple clusters even
at the expense of disadvantaging fairness in one or few clusters,
which is indeed undesirable. The performance on ME and MW
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Evaluation k=5 k=15
Measure K -Means (N) Avg. ZGYA FairKM K -Means (N) Avg. ZGYA FairKM
CO ↓ 1120.9112 10791.8311 1345.1688 837.9785 4095.8366 1235.2859
SH ↑ 0.7212 0.0557 0.3918 0.6076 0.0573 0.3747
DevC ↓ 0.0 8.4597 8.4707 0.0 39.3615 13.1244
DevO ↓ 0.0 0.0306 0.0233 0.0 0.0360 0.0256

Table 5: Clustering quality on Adult Dataset - FairKM vs. Average across {ZGYA(S)|S ∈ S}, shown with K-Means(N).

S Evaluation k=5 k=15
Attribute Measure K-Means(N ) ZGYA(S) FairKM FairKM

Impr(%)
K-Means(N ) ZGYA(S) FairKM FairKM

Impr(%)
Mean AE 0.0459 0.1201 0.0278 39.5357 0.0537 0.1289 0.0295 45.0796
across S AW 0.0161 0.0370 0.0087 45.7857 0.0194 0.0398 0.0094 51.7043
Attributes ME 0.2063 0.8729 0.1457 29.4002 0.2475 0.7810 0.1542 37.6985

MW 0.0740 0.1235 0.0502 32.0985 0.0753 0.1262 0.0542 28.0040
Results for Each Sensitive Attribute in S below.

Marital Status AE 0.0792 0.0886 0.0539 31.9408 0.0853 0.1318 0.0558 34.5263
AW 0.0182 0.0159 0.0132 16.5650 0.0191 0.0258 0.0136 28.4239
ME 0.3055 0.7356 0.2578 15.6087 0.3572 0.6365 0.2607 27.0042
MW 0.0573 0.0890 0.0592 -3.3881 0.0566 0.0952 0.0604 -6.6317

Rel. Status AE 0.0711 0.1743 0.0486 31.5656 0.0808 0.1903 0.0500 38.1517
AW 0.0197 0.0371 0.0146 25.8744 0.0219 0.0429 0.0150 31.3346
ME 0.3331 0.7796 0.2717 18.4487 0.3823 0.7804 0.2777 27.3667
MW 0.0732 0.1205 0.0760 -3.8026 0.0750 0.1439 0.0776 -3.4770

Race AE 0.0163 0.0564 0.0066 59.2251 0.0168 0.0647 0.0079 53.0164
AW 0.0053 0.0154 0.0023 55.9473 0.0055 0.0162 0.0028 48.9813
ME 0.0385 1.0085 0.0266 30.8822 0.0565 1.2175 0.0336 40.6276
MW 0.0126 0.1159 0.0092 27.3039 0.0165 0.1142 0.0115 30.2523

Gender AE 0.0529 0.2535 0.0183 65.3039 0.0711 0.2256 0.0208 70.7472
AW 0.0370 0.1153 0.0130 64.9210 0.0499 0.1122 0.0147 70.4913
ME 0.3324 0.9793 0.1487 55.2713 0.4028 1.0201 0.1697 57.8731
MW 0.2254 0.2568 0.1051 53.3681 0.2262 0.2671 0.1200 46.9680

Native Country AE 0.0101 0.0276 0.0113 -11.2331 0.0146 0.0323 0.0130 10.9108
AW 0.0005 0.0013 0.0006 -15.2027 0.0007 0.0015 0.0006 4.7201
ME 0.0221 0.8612 0.0236 -6.4585 0.0385 0.2506 0.0292 24.1555
MW 0.0012 0.0354 0.0016 -25.8608 0.0020 0.0107 0.0015 25.6292

Table 6: Fairness evaluation on Adult Dataset - S-blind K-Means, Single invocation of FairKM on all S attributes, Separate
Invocations of ZGYA on each attribute in S. (Note: This is a synthetic favorable setting for ZGYA, to stress test FairKM
against ZGYA).

Evaluation K -Means (N) Avg. ZGYA FairKM
CO ↓ 145.6441 164.4703 148.1003
SH ↑ 0.0390 -0.0001 0.0149
DevC ↓ 0.0 1.1844 1.1241
DevO ↓ 0.0 0.0032 0.0038

Table 7: Clustering quality on Kinematics Dataset - FairKM
vs. Average across {ZGYA(S)|S ∈ S}, shown with K-
Means(N).

suggest that such trends are not widely prevalent, with FairKM
recording reasonable gains on ME and ME. However, cases such
as marital status in Table 6 and Type-3 in Table 8 suggest that is
a direction in which FairKM could improve. Finally, the overall
summary from Tables 6 and 8 suggest that FairKM delivers much
fairer clusters on S attributes, and records significant gains over
the baselines, in our empirical evaluation.

5.6 FairKM vs. ZGYA
Having compared FairKM against ZGYA for fairness in a syn-
thetic setting that was favorable to the latter in the previous
section, we now do a more direct comparison here. In particu-
lar, we consider comparing the FairKM and ZGYA instantiations
with each sensitive attribute separately, which offers a more level

Figure 1: Adult Dataset: AW Comparison

setting. Figure 1 illustrates the comparison on the AW evaluation
measure over the Adult dataset for eachS attribute with ZGYA(S)
and FairKM(S) values shown separated by the FairKM (All) value
in between them; all these are values obtained with k = 5. The
FairKM (All) is simply FairKM instantiated with all attributes in
S, which was used in the comparison in the previous section.
As may be seen, with FairKM(S) focusing on just the chosen at-
tribute (as opposed to FairKM (All) that needs to spread attention
across all attributes in S), FairKM(S) is able to achieve better
values for AW. Thus, FairKM(S) is seen to beat ZYGA(S) by larger
margins than FairKM (All), as expected. The Race attribute shows
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S Attribute Metric K-Means
(N )

ZGYA (S) FairKM FairKM
Impr(%)

Mean AE 0.1704 0.1183 0.0172 85.4311
across S AW 0.1021 0.0766 0.0120 84.3660
Attributes ME 0.3744 0.2571 0.1488 42.1364

MW 0.2083 0.1676 0.0852 49.1420
Results for Each Sensitive Attribute in S below.

Type-1 AE 0.2567 0.1821 0.0148 91.8775
AW 0.1289 0.1000 0.0103 89.7246
ME 0.4909 0.3502 0.1673 52.2397
MW 0.2828 0.2321 0.1004 56.7159

Type-2 AE 0.2145 0.1481 0.0163 88.9722
AW 0.1213 0.0994 0.0113 88.6729
ME 0.5116 0.3398 0.1600 52.9166
MW 0.2149 0.1931 0.0888 54.0235

Type-3 AE 0.0759 0.0604 0.0178 70.5473
AW 0.0535 0.0427 0.0123 71.2578
ME 0.1935 0.1270 0.1527 -20.2176
MW 0.1206 0.0898 0.0754 16.0235

Type-4 AE 0.1631 0.1009 0.0152 84.9649
AW 0.1079 0.0708 0.0107 84.9541
ME 0.3605 0.2410 0.1263 47.5836
MW 0.2103 0.1662 0.0770 53.6570

Type-5 AE 0.1415 0.0999 0.0221 77.8973
AW 0.0989 0.0703 0.0154 78.0243
ME 0.3155 0.2273 0.1375 39.5175
MW 0.2128 0.1569 0.0846 46.1075

Table 8: Fairness evaluation on Kinematics Dataset - S-
blind K-Means, Single invocation of FairKM on all S at-
tributes, Separate Invocations of ZGYA on each attribute
in S. (Note: This is a synthetic favorable setting for ZGYA,
to stress test FairKM against ZGYA).

Figure 2: Adult Dataset: MW Comparison

Figure 3: Kinematics Dataset: AW Comparison

a different trend, with FairKM(S) recording a slightly higher AW
than FairKM(S). While we believe this is likely to be due to an

Figure 4: Kinematics Dataset: MW Comparison

Figure 5: Kinematics Dataset: (CO and SH) vs. λ

Figure 6: Kinematics Dataset: (DevC and DevO) vs. λ

unusually high skew in the race attribute where 87% of objects
take the same single value, this warrants further investigation.
Figure 2 presents the corresponding chart for MW evaluation
measure, and offers similar high-level trends as was observed for
AW. The corresponding charts for the Kinematics dataset appear
in Figures 3 and 4 respectively. Over the much smaller Kinemat-
ics dataset, the gains by FairKM(S) over FairKM (All) are more
pronounced in MW with both techniques recording reasonably
similar AW numbers. The observed trends were seen to hold for
AE and ME evaluation measures as well, those charts excluded
for brevity. To summarize the findings across the datasets, it may
be seen that FairKM(S)may be seen to beat the ZGYA(S) baseline
with larger margins than FairKM (All) on an average, as desired.
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Figure 7: Kinematics Dataset: Fairness Metrics vs. λ

5.7 FairKM Sensitivity to λ
We now study FairKM’s sensitivity to it’s only parameter λ, the
weight for the fairness term.With increasing λ, we expect FairKM
to fare better on fairness measures with corresponding degra-
dations in the clustering quality measures. The vice versa is
expected to hold with decreasing λ. We observed such desired
trends across Adult and Kinematics datasets, with changes be-
ing slower and steadier for the larger Adult dataset. This is on
expected lines with the number of parameters such as clustering
assignments being larger on the Adult dataset. In the interest of
focusing on the smaller dataset, we outline the changes with λ
on clustering quality and fairness measures on the Kinematics
dataset, when λ is varied from 1000 to 10000. The variations on
the CO and SH measures are illustrated in Figure 5, whereas the
variations on DevC and DevO are plotted in Figure 6. We use
both sides of the Y-axis to plot the measures which widely vary
in terms of their ranges; the axis used is indicated in the legend.
As may be seen from them, CO, SH and DevO record slow and
steady degradation (the Y-axis is stretched to highlight the region
of the change; it may be noted that the quantum of change is very
limited) with increasing λ. The degradation in DevC, however, is
more jittery, while the direction of change remains on expected
lines. The fairness deviation measures are plotted against varying
λ (once again, on both Y-axes) in Figure 7. They record gradual
but steady improvements (being deviations, they are better when
low) with increasing λ, on expected lines. Overall, it may be seen
that FairKM moves steadily but gradually towards fairness with
increasing λ, as desired.

6 CONCLUSIONS AND FUTURE WORK
We considered the problem of ensuring representational fair-
ness in clustering for scenarios comprising multiple sensitive
attributes. We proposed a novel clustering method, FairKM, to ac-
complish the fair clustering task. In particular, FairKM comprises
the optimization of the classical clustering objective in tandem
with a novel fairness loss term, towards achieving a trade-off
between clustering quality (on the non-sensitive attributes) and
cluster fairness (on the sensitive attributes). We outline a series
of evaluation metrics for both the above criteria, and perform
a rigorous empirical evaluation of FairKM over two real-world
datasets of widely varying character, pitching FairKM against
other available methods. Our empirical evaluation illustrates that

FairKM outperforms the baseline ZGYA even over synthetic set-
tings that are artificially favorable to the latter. This illustrates
the effectiveness of the FairKM formulation.

6.1 Future Work
We are exploring three directions of future work towards en-
hancing FairKM. First, we are studying the performance trends
of FairKM with increasing number of sensitive attributes as well
as increasing number of values per sensitive attribute. Second,
drawing cue from the observation in Section 5.6, we are looking
at how FairKM can be improved to ensure good performance
even on attributes with highly skewed distributions. Third, the
main computational bottleneck in FairKM is the cluster centroid
update while doing cluster assignments. We are considering ap-
proximation heuristics such as mini-batch updates where cen-
troid updates are done only once every mini-batch of clustering
assignment updates, to speed up FairKM for scalability.
Acknowledgements:The second authorwas partially supported
by SPARC (P620). The authors would also like to thank Krishna
M. Sivalingam (IIT Madras) for his constant encouragement.
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ABSTRACT
The proliferation of heterogeneous data sources in many applica-

tion contexts brings an urgent need for expressive and efficient

data integration mechanisms. There are strong advantages to

using RDF graphs as the integration format: being schemaless,

they allow for flexible integration of data from heterogeneous

sources; RDF graphs can be interpreted with the help of an on-

tology, describing application semantics; last but not least, RDF

enables joint querying of the data and the ontology.

To address this need, we formalize RDF Integration Systems (RIS),
Ontology Based-Data Access mediators, that go beyond the state

of the art in the ability to expose, integrate and flexibly query

data from heterogeneous sources through GLAV (global-local-

as-view) mappings. We devise several query answering strategies,
based on an innovative integration of LAV view-based rewriting

and a form of mapping saturation. Our experiments show that

one of these strategies brings strong performance advantages,

resulting from a balanced use of mapping saturation and query

reformulation.

1 INTRODUCTION
The proliferation of digital data sources across all application

domains brings a new urgency to the need for tools which allow

to query heterogeneous data (relational, JSON, key-values, graphs

etc.) in a flexible fashion. Traditional data integration systems

fall into two classes: data warehousing, where all data source

content is materialized in a single centralized source, respectively,

mediation, where data remains in their original stores and all data

can be queried through a single module called mediator. Data
warehousing simplifies query evaluation, but requires potentially

costly maintenance operations when the content of data sources

changes; mediation does not suffer from these drawbacks, but

requires more intricate query evaluation algorithms to distribute

the work between the sources and the mediator.

Below, we classify prior mediator-based approaches according to

two main dimensions, and illustrate this classification in Table 1.

Note that we also include in this table theoretical frameworks

that did not necessarily lead to implementations.

A first dimension concerns the data model and query lan-
guage provided by the mediator to its applications.

(i) The earliest goal of a mediator system was to mimic a single,

integrated database. Thus the mediator supports one data model

and its query language, e.g., relational and SQL, or XML and

XPath/XQuery. More recent polystore systems support side-by-

side different (data model, query language) pairs. These database-

style mediators appear in the row we label DB in Table 1.

(ii) Mediators studied in knowledge representation and manage-

ment research provide a view of the data sources as a set of

classes and relationships, also endowed with a set of semantic

© 2020 Copyright held by the owner/author(s). Published in Proceedings of the

23rd International Conference on Extending Database Technology (EDBT), March

30-April 2, 2020, ISBN 978-3-89318-083-7 on OpenProceedings.org.
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Mappings

GAV LAV GLAV

M
o
d
e
l

DB [22, 24, 27] [4, 5, 22, 38] [19]

CQ [40, 41, 43] [1, 28, 30, 36] [18]

SPARQL-data [11, 17, 32, 34] [45] [21]

SPARQL [16, 33, 44] this work

Table 1: Outline of the positioning of our work.
constraints, or ontology. In such systems, users formulate con-

junctive (relational) queries; answering them involves not only

evaluation over the data (as done in DB mediators), but also rea-

soning on the data with the help of ontologies. This mediation

approach is also commonly termed Ontology-Based Data Access
(OBDA) [41], with ontologies expressed in Description Logics

(DL, in short). Work following this approach are listed in the row

we label CQ in Table 1.

(iii) RDF [47] is naturally suited as an integration model, thanks

to its flexibility, its wide adoption in the Open Data community,

its close relationship with ontology languages such as RDFS

and OWL, and the presence of its associated standard SPARQL

query language. Accordingly, several mediators from the CQ

group have been extended to support RDF as an integration

model and SPARQL query answering. However, while SPARQL

allows querying the data together with the ontology, e.g., “find the

properties of node n, as well the classes to which the values of

these properties belong”, a DL-based mediation approach shares

with all logic-based query languages, e.g., Datalog, SQL etc., the

inability to do so. RDF mediators which support SPARQL but

limited to querying the data only (not the ontology) appear in

the row we label SPARQL-data in Table 1.

(iv) Recent RDF mediators lift this limitation to support joint

querying of the data and ontology; we list them in the SPARQL
row in Table 1.

A second dimension is how the source (or local) schemas are
connected to the global (integration) schema, using map-
pings [23]. There are three types of mappings, each correspond-

ing to a column in Table 1. The simplest mappings define each

element of the global schema, e.g., each relation (if the global

schema is relational), as a view over the local schemas; this is

known as Global-As-View, or GAV in short. In a GAV system, a

query over the global (virtual) schema is easily transformed into

a query over the local schemas, by unfolding each global schema

relation, i.e., replacing it with its definition. In contrast, Local-

As-View (LAV) mappings define elements of the local schemas

as views over the global one. Query answering in this context

requires rewriting the query with the views describing the local
sources [31]. Global-Local-As-View (GLAV) data integration gen-

eralizes both GAV and LAV. A GLAV mapping pairs a query q1

over one or several local schemas to a query q2 over the global

schema, having the same answer variables. The semantics is that

for each answer of q1, the integration system exposes the data

comprised in a corresponding answer of q2. GLAV maximizes
flexibility, or, equivalently, integration expressive power: unlike
LAV, a GLAV mapping may expose only part of a given source’s

data, and may combine data from several sources; unlike GAV, a

GLAV mapping may include joins or complex expressions over
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the global schema.

In this work, we study GLAVmediation supporting SPARQL
queries over the data and the ontology. We pick GLAV for

its highest expressive power, RDF for its wide adoption, and aim

at querying the data and the ontology in order to fully benefit

from the flexibility and expressivity of RDF. As Table 1 shows,

our system is the first capable of integrating multiple data sources
through GLAV mappings, for SPARQL querying over the data and
the ontology; further, it supports heterogeneous data sources (of
different data models). A benefit of our using GLAV is the ability

to support a form of incomplete information, naturally present in

RDF through the so-called blank nodes, in the virtual RDF graph

exposed by the mediator (see Section 3.1).

Our closest competitors only support GAVmappings, even though

some support more expressive ontologies and/or queries [16, 33,

44]. Formal OBDA frameworks based on GLAV mappings have

been defined, e.g., [18], without concretely deployed systems. A

technique for simulating GLAV mappings through GAV ones un-

der certain conditions is suggested in [21], however this solution

has many drawbacks; we defer a detailed discussion to Section 6.

Contributions and novelty The contributions we make in this

work are as follows.

(1). RIS Formalism We formally define RDF Integration Sys-
tems (RIS, in short), OBDA mediators capable of exposing data

from heterogeneous sources of virtually any data model through

GLAV mappings, under the form of an RDF graph endowed with

an RDFS ontology. We formalize the problem of BGP (basic graph

pattern) RDF query answering over the RDF data and ontology

exposed in such systems.

(2). Novel RIS query answering techniquesWe describe sev-

eral RIS query answering methods based on transforming map-
pings into LAV view definitions, and on reducing query answering

to rewriting it using views. Our first method combines known

techniques; the other two methods are novel, and rely on a form

of mapping saturation. We show that a smart decomposition of

reasoning between offline precomputation and query time makes

one of these methods much faster than the others.

The paper is organized as follows. Section 2 recalls a set of prelim-

inary notions we build upon. Then, Section 3 defines our RIS and

formalizes RIS query answering. Section 4 describes RIS query

answering methods. Section 5 presents our experiments, then we

discuss related work and conclude.

2 PRELIMINARIES
We present the basics of the RDF graph data model (Section 2.1),

of RDF entailment used to make explicit the implicit informa-

tion RDF graphs encode (Section 2.2), and how RDF graphs can

be queried using the widely-considered SPARQL Basic Graph

Pattern queries (Section 2.3).

Then, we recall two techniques, namely query reformulation (Sec-
tion 2.4) and view-based query rewriting (Section 2.5), which will

serve as building blocks for our query answering techniques.

2.1 RDF Graphs
We consider three pairwise disjoint sets of values: I of IRIs

(resource identifiers), L of literals (constants) and B of blank

nodes modeling unknown IRIs or literals, a.k.a. labelled nulls [3,
29]. A (well-formed) triple belongs to (I ∪B)×I ×(L ∪I ∪B),
and an RDF graph G is a set of (well-formed) triples. A triple

(s, p, o) states that its subject s has the property p with the object
value o [47]. We denote by Val(G) the set of all values (IRIs, blank
nodes and literals) occurring in an RDF graphG , and by Bl(G) its

Schema triples Notation

Subclass (s, ≺sc , o)
Subproperty (s, ≺sp , o)
Domain typing (s,←↩d , o)
Range typing (s, ↪→r , o)

Data triples Notation

Class fact (s, τ , o)
Property fact (s, p, o) s.t. p < {τ , ≺sc , ≺sp ,←↩d , ↪→r }

Table 2: RDF triples.
set of blank nodes. In triples, we use _:b (possibly with indices)

to denote blank nodes, and quoted strings to denote literals.

Within an RDF graph, we distinguish data triples from schema
ones. The former describe data (either attach a type, or a class,

to a resource, or state the value of a certain data property of

a resource). The latter state ontological constraints using RDF

Schema (RDFS), which relate classes and properties: subclass
(specialization relation between types), subproperty (specializa-

tion of a binary relation), typing of the domain (first attribute)

of a property, respectively, range (typing of the second attribute)
of a property. Table 2 introduces short notations we adopt for

these schema properties.

From now on, we denote by I
rdf

the reserved IRIs from the RDF

standard, e.g., the properties τ , ≺sc , ≺sp , ←↩d , ↪→r shown in

Table 2. The rest of the IRIs are application-dependent classes

and properties, which are said user-defined and denoted by Iuser.

Hence, Iuser = I \I
rdf

.

We will consider RDF graphs with RDFS ontologies made of

schema triples of the four above flavours. More precisely:

Definition 2.1 (RDFS ontology). An ontology triple is a schema

triple whose subject and object are user-defined IRIs from Iuser.

An RDFS ontology (or ontology in short) is a set of ontology triples.
Ontology O is the ontology of an RDF graph G if O is the set of

schema triples of G.

Above, ontology triples are not allowed over blank nodes. This is

only to simplify the presentation; we could have allowed them,

and handled them as in [29]. More importantly, we forbid on-

tology triples from altering the common semantics of RDF it-

self. For instance, we do not allow (←↩d , ≺sp , ↪→r ), which would

impose that the range of every property shares all the types

of the property’s domain! This second restriction can be seen

as common-sense; it underlies most ontological formalisms, in

particular description logics [8] thus the W3C’s Web Ontology

Language (OWL), Datalog± [15] and existential rules [39], etc.

Example 2.2 (Running example, based on [12]).
Consider the following RDF graph:

Gex = {(:worksFor,←↩d , :Person), (:worksFor, ↪→r , :Org),

(:PubAdmin, ≺sc , :Org), (:Comp, ≺sc , :Org),

(:NatComp, ≺sc , :Comp), (:hiredBy, ≺sp , :worksFor)

(:ceoOf, ≺sp , :worksFor), (:ceoOf, ↪→r , :Comp),

(:p1, :ceoOf, _:bc ), (_:bc , τ , :NatComp),

(:p2, :hiredBy, :a), (:a, τ , :PubAdmin)}

The ontology ofGex, i.e., the first eight schema triples, states that

people work for organizations, some of which are public adminis-

trations or companies. Further, national companies are a kind of

companies. Being hired by or being CEO of an organization are

two ways of working for it; in the latter case, this organization is

a company. The facts of Gex, i.e., the four remaining data triples,

state that :p1 is CEO of some unknown company represented

by the blank node _:bc , which is a national company, and :p2 is

hired by the public administration :a.
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Rule [48] Entailment rule

R



rdfs5 (p1, ≺sp , p2), (p2, ≺sp , p3) → (p1, ≺sp , p3) 
Rc

rdfs11 (s, ≺sc , o), (o, ≺sc , o1) → (s, ≺sc , o1)

ext1 (p,←↩d , o), (o, ≺sc , o1) → (p,←↩d , o1)

ext2 (p, ↪→r , o), (o, ≺sc , o1) → (p, ↪→r , o1)

ext3 (p, ≺sp , p1), (p1,←↩d , o) → (p,←↩d , o)
ext4 (p, ≺sp , p1), (p1, ↪→r , o) → (p, ↪→r , o)
rdfs2 (p,←↩d , o), (s1, p, o1) → (s1, τ , o)  Ra
rdfs3 (p, ↪→r , o), (s1, p, o1) → (o1, τ , o)
rdfs7 (p1, ≺sp , p2), (s, p1, o) → (s, p2, o)
rdfs9 (s, ≺sc , o), (s1, τ , s) → (s1, τ , o)

Table 3: Sample RDFS entailment rules.

2.2 RDF Entailment Rules
An entailment rule r has the form body(r ) → head(r ), where
body(r ) and head(r ) are RDF graphs, respectively called body and
head of the rule r . In this work, we consider the RDFS entail-
ment rules R shown in Table 3, which are the most frequently

used; in the table, all values except RDF reserved IRIs are blank

nodes. For instance, rule rdfs5 reads: whenever in an RDF graph,

a property p1 is a subproperty of a property p2, and further p2

is a subproperty of p3 (body of rdfs5), it follows that p1 is a

subproperty of p3 (head of rdfs5). Similarly, rule rdfs7 states

that if p1 is a subproperty of p2 and a resource s has the value o
for p1, then s also has o as a value for p2. The triples (p1, ≺sp , p3)

and (s, p2, o) in the above examples are called implicit, i.e., they
hold in a graph thanks to the entailment rules, even if they may

not be explicitly present in the graph. Following [12], we view

R as partitioned into two subsets: the rules Rc lead to implicit

schema triples, while rules Ra lead to implicit data triples
1
. The

direct entailment of an RDF graph G with a set of RDF en-

tailment rules R, denoted by CG ,R , is the set of implicit triples

resulting from rule applications that use solely the explicit triples

ofG . For instance, the rule rdfs9 applied to the graphGex, which

comprises (:NatComp, ≺sc , :Comp), (_:bc , τ , :NatComp), leads to

the implicit triple (_:bc , τ , :Comp). This triple belongs toCGex,Ra
(hence also to CGex,R ). The saturation of an RDF graph allows

materializing its semantics, by iteratively augmenting it with the

triples it entails using entailment rules, until reaching a fixpoint;

this process is finite [48]. Formally:

Definition 2.3 (RDF graph saturation). LetG be an RDF graph and

R a set of entailment rules. We recursively define a sequence

(Gi )i ∈N of RDF graphs as follows:G0 = G , andGi+1 = Gi∪CGi ,R

for i ≥ 0. The saturation of G w.r.t. R, denoted GR , is Gn for n
the smallest integer such that Gn = Gn+1.

Example 2.4 (Saturation). The saturation ofGex w.r.t. the set R

of RDFS entailment rules shown in Table 3 is attained after the

following two saturation steps:

(Gex)1 =Gex ∪

{(:NatComp, ≺sc , :Org),

(:hiredBy,←↩d , :Person), (:hiredBy, ↪→r , :Org),

(:ceoOf,←↩d , :Person), (:ceoOf, ↪→r , :Org),

(:p1, :worksFor, _:bc ), (_:bc , τ , :Comp),

(:p2, :worksFor, :a), (:a, τ , :Org)}

(Gex)2 =(Gex)1 ∪

{(:p1, τ , :Person), (:p2, τ , :Person), (_:bc , τ , :Org)}

2.3 Basic Graph Pattern Queries
A popular RDF query dialect consists of basic graph pattern
queries, or BGPQs, in short. Let V be a set of variable symbols,

1
In the notations Rc and Ra , c and a respectively stand for “constraint triples”

(called schema triples here) and “assertion triples” (data triples).

disjoint from I ∪B∪L . A basic graph pattern (BGP) is a set of

triple patterns (triples in short) belonging to (I ∪B∪V )× (I ∪
V )×(I ∪B∪L ∪V ). For a BGP P , we denote by Var(P) the set

of variables occurring in P , by Bl(P) its set of blank nodes, and by
Val(P) its set of values (IRIs, blank nodes, literals and variables).

Definition 2.5 (BGP Queries). A BGP query q is of the form q(x̄) ←
P , where P is a BGP (also denoted by body(q)), and x̄ ⊆ Var(P)

are the answer variables of q.

To ease the presentation, and without loss of generality, we con-

sider BGPQs without blank nodes, as it is well-known that these

can be replaced by non-answer variables [46].

For query answering based on query reformulation (see Section

2.4), it is convenient to slightly generalize BGPQs into partially
instantiated BGPQs [12, 29]. Starting from a BGPQ q, partial
instantiation may replace some variables with values from I ∪
L ∪B, as specified by a substitution σ . Due to σ , and in contrast

with standard BGPQs, some answer variables of the resulting

query qσ can be bound:

Example 2.6 (Partially instantiated BGPQ). Consider the BGPQ
asking for who is working for which kind of company q(x,y) ←
(x, :worksFor, z), (z, τ ,y), (y, ≺sc , :Comp) and the substitutionσ =
{x 7→ :p1}. The corresponding partially instantiated BGPQ is:

q(:p1,y) ← (:p1, :worksFor, z), (z, τ ,y), (y, ≺sc , :Comp). In it, the

first answer variable has been bound to :p1.

For simplicity, below we use the term “query” to designate either

a standard BGPQ or a partially instantiated BPGQ.

The semantics of a BGPQ on an RDF graph is defined through

standard homomorphisms from the query body to the queried

graph. We recall that a homomorphism from a BGP P to an

RDF graph G is a function φ from Val(P) to Val(G) such that

for any triple (s,p,o) ∈ P , the triple (φ(s),φ(p),φ(o)) is in G,
with φ the identity on IRIs and literals. Next, we distinguish

query evaluation, whose result is just based on the explicit

triples of the graph, i.e., on BGP-to-RDF graph homomorphisms,

from query answering that also accounts for the implicit graph

triples, resulting from entailment. Formally:

Definition 2.7 (Evaluation and answering). The answer set to a

BGPQ q on an RDF graphG w.r.t. a set R of RDF entailment rules

is: q(G,R) = {φ(x̄) | φ homomorphism from body(q) to GR }. If
x̄ = ∅,q is a Boolean query, inwhich caseq is false whenq(G,R) =
∅ and true when q(G,R) = {⟨⟩}, i.e., the answer to q is the empty

tuple.

The evaluation of q on G, denoted q(G, ∅) or q(G) in short, is

obtained from homomorphisms from body(q) to G alone (not

GR ). It can be seen as a particular case of query answering when

R = ∅.

Example 2.8 (Evaluation and answering). Consider again the BGPQ
q from the preceding example. Its evaluation on Gex is empty

becauseGex has no explicit :worksFor assertion, while its answer

set onGex w.r.t. R is {⟨:p1, :NatComp⟩} because :p1 being CEO of

_:bc , :p1 implicitly works for it, and _:bc is explicitly a company

of the particular type :NatComp.

The above notions and notations naturally extend to unions of
(partially instantiated) BGPQs, or UBGPQs in short.

We end this section by pointing out that many RDF data man-

agement systems use saturation-based query answering, which
directly follows the definition of query answering: an RDF graph

G is first saturated with the set R of entailment rules, so that the
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answer set to an incoming query q is obtained through query

evaluation as q(GR ).

2.4 Query Reformulation
Reformulation-based query answering is an alternative technique

to the widely adopted saturation-based query answering. It con-

sists in reformulating a query using R, so that evaluating the

reformulated query on G yields the answer set to the original

query on G w.r.t. R. Intuitively, reformulation injects the onto-

logical knowledge into the query, just as saturation injects it

into the RDF graph. We rely here on the very recent algorithm

from [12], which takes into account all the entailment rules from

Table 3. The process is decomposed into two steps according to
the partition of R into Ra and Rc .

(i) The first step reformulates a BGPQ q w.r.t. an RDFS ontologyO
and the set of rulesRc into a UBGPQ, sayQc , which is guaranteed

not to contain ontology triples. Intuitively, this step generates

new BGPQs obtained from q by instantiating variables that query

the ontology with all their possible bindings; for instance, y in

a query triple (y, ≺sc , :Comp) is bound to the IRIs of all explicit

and implicit subclasses of :Comp in O . This step, alone, is sound

and complete w.r.t. Rc for query answering, i.e., for any graphG
with ontology O , q(G,Rc ) = Qc (G).
(ii) The second step reformulates Qc w.r.t.O and Ra , and outputs

a UBGPQ, say Qc ,a . This step, alone, is sound and complete

w.r.t. Ra for query answering, i.e., for any graphG with ontology

O , Qc (G,Ra ) = Qc ,a (G). Furthermore, a key property is that

q(G,R) = Qc (G,Ra ), i.e., only Ra needs to be considered to

answer Qc with respect to the entire set of rules R. This is the

fundamental reason why the sucessive application of these two

reformulation steps leads to a sound and complete reformulation-

based query answering technique: q(G,R) = Qc ,a (G).

Example 2.9 (Two-step reformulation). Consider the queryq(x,y) ←
(x, :worksFor, z), (z, τ ,y), (y, ≺sc , :Comp) from the preceding ex-

ample and the ontologyO in Example 2.2. The first reformulation

step instantiates the triple (y, ≺sc , :Comp) on O , leading to:
Qc = q(x, :NatComp) ← (x, :worksFor, z), (z, τ , :NatComp).

Then, Qc is reformulated into Qc ,a =

q(x, :NatComp) ← (x, :worksFor, z), (z, τ , :NatComp) ∪

q(x, :NatComp) ← (x, :hiredby, z), (z, τ , :NatComp) ∪

q(x, :NatComp) ← (x, :ceoOf, z), (z, τ , :NatComp)

by specializing :worksFor according to its subproperties in O . It

can be checked that Qc ,a (Gex) = q(Gex,R) = q(G
R
ex
) =

{⟨:p1, :NatComp⟩}, obtained here from the third BGPQ in Qc ,a .

2.5 Query Rewriting-based Data Integration
We recall now the basics of relational view-based query rewriting

(Section 2.5.1), which has been extensively studied [23, 31]. Then

we present a generalization of the notion of views as mappings

[35] (Section 2.5.2).

2.5.1 View-based (LAV) Data Integration. An integration sys-

tem I is made of a global schema S (a set of relations) and a

setV of views. An instance of I assigns a set of tuples to each

relation of S and to each view ofV . The data stored in a view is

called its extension. Further, to each view V is associated a query

V (x̄) :- ψ (x̄) over the global schema S , specifying how its data fits

into S . Accordingly, this framework is called local-as-view (LAV)

data integration. For instance, let S consist of three relations

Emp(eID, name, dID), Dept(dID, cID, country), Salary(eID,amount),
where eID, dID and cID are respectively identifiers for employees,

departments and companies.

Consider the viewsV1(eID, name, country) :- Emp(eID, name, dID),

Dept(dID, “IBM”, country) providing the names of IBM employ-

ees and where they work, and V2(eID, amount) :- Emp(eID, name,
“R&D”), Salary(eID,amount), which indicates the salaries of em-

ployees in R&Ddepartments. Typically, no single view is expected

to bring all information of a given kind; for instance, V1 brings

some IBM employees, but other views may bring others, e.g., V2,

possibly overlapping with V1; this is called the “Open World

Assumption” (OWA).

In an OWA setting, we are interested in certain answers [31],
i.e., those that are sure to be part of the query result, knowing

the data present in the views. Such answers can be computed by

rewriting a query over S , into one over the viewsV; evaluating

the rewriting over the view extensions produces the answers.

Ideally, a rewriting should be equivalent to the query over S , i.e.,
compute exactly the same answers. However, depending on the

views and queries, such a rewriting may not exist. For instance,

the query q(n,a) :- Emp(e,n,d), Dept(d, c, “France”), Salary(e, a)
does not have an equivalent rewriting using V1 and V2, because

V1 only provides IBM employees working in France, while V2

only has salaries of employees of R&D departments. Amaximally
contained rewriting brings all the query answers that can be ob-

tained through the given set of views; the rewriting may be not be

equivalent to q (but just contained in q). In our example, qr (n,a)
:- V1(e,n, ”France”),V2(e,a) is a maximally contained rewriting

of q; it returns employees of French IBM R&D departments with

their salary, clearly a subset of q answers.

A remarkable result holds for (unions of) conjunctive queries
((U)CQs), conjunctive views (views V such that the associated

query V (x̄) :- ψ (x̄) is a CQ) and rewritings that are UCQs: any
maximally contained rewriting computes exactly the certain an-

swers [2]; we will build upon this result for answering queries in

our RDF integration systems.

2.5.2 GLAV Data Integration. The above setting has been gen-

eralized to views that are not necessarily stored as such, but just

queries over some underlying data source. For instance, assuming

a data source D holds the relations Person(eID, name) and Con-
tract(eID, dID, country) (see Figure 1) with people and their work

contracts at IBM, the view V1 from the above example may be

defined on D by the query VD
1

over the D schema shown in the

figure (note that VD
1

hides the department from system I); VD
1

provides the extension of V1. Similarly, view V2 may be defined

as a query over some data source (or sources).

Global schema S
Emp(eID, name, dID), Dept(dID, cID, country), Salary(eID,amount)

V1 (eID, name, country) :- Emp(eID, name, dID), Dept(dID, “IBM”, country)
VD

1
(eID, name, country) :- Person(eID, name), Contract(eID, dID, country)

Person(eID, name), Contract(eID, dID, country)
Data source D

Figure 1: Example: view V1 as a GLAV mapping.
Query rewriting is unchanged, whether the views are stored or

defined by source queries. In the latter case, to obtain answers,

a view-based rewriting needs to be unfolded, replacing every

occurence of a view symbol V with the body of the source query

defining that view. Executing the resulting query (potentially over

different data sources) computes the answers. This integration

setting, which considers views as intermediaries between sources

and the integration schema, has been called “global-local-as-view”

(GLAV) [26]. An association of a query q1 over the data sources

and another query q2 over the global schema, both with the same

answer variables, e.g., q1 = V
D
1

and q2 = V1 above, is commonly

called a GLAV mapping (denoted q1(x̄) { q2(x̄)).
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Historically, two restrictions of GLAV mappings have been in-

vestigated. First, global-as-view (or GAV) mappings define global

schema relations as views over the local schemas. Specifically,

a GAV mapping q1(x̄) { q2(x̄), q2 defines a single element of

the global schema (hence body(q2) is restricted to a single atom

if q2 is a CQ, or a single triple pattern if q2 is a BGPQ) and its

variables are exactly x̄ . Second, local-as-view (LAV) mappings

express elements of the local schema as views over the global

schema, similarly to the views described in Section 2.5.1.

Importantly, unlike GAV mappings, GLAV ones do not require

all variables of q2 to be answer variables (e.g., dID in V1 in

Figure 1); this makes integration more powerful. For example,

suppose that ⟨1,“John Doe”,“France”⟩ is an answer to VD
1

above.

Then,V1 exposes this tuple in the global schema as: Emp(1,“John
Doe",x),Dept(x ,“IBM",”France”), stating that John Doe works for

a department x located in France. Here, x is an existential vari-

able (called “labeled null” in [3]); the GLAV mapping states the
existence of such a department in the global schema, even if its

identifier is unknown (because it is not provided byV1). Therefore,

John Doe is a certain answer to a query asking for all employees

in IBM departments, based on the above GLAV mapping. This

answer cannot be found using GAV mappings.

3 PROBLEM STATEMENT
In this section, we first formalize the notion of RDF integration
system (Section 3.1). Then, we state the associated query answer-

ing problem (Section 3.2), for which Section 4 provides solutions.

3.1 RDF integration system (RIS)
In an RDF integration system (RIS in short), data from heteroge-

neous sources, each of which may have its own data model and

query language, is integrated into an RDF graph, consisting of an

(RDFS) ontology and of data triples derived from the sources by

means of GLAV-style mappings. Mappings allow (i) specifying
the data made available from the sources, and (ii) organizing it
according to the RIS ontology.

Definition 3.1 (RIS mappings and extensions).
A RIS mappingm is of the formm = q1(x̄) { q2(x̄) where q1 and

q2 are two queries with the same answer variables, and q2 is a

BGPQ whose body contains only triples of the forms:

• (s,p, o) where p ∈ Iuser,

• (s, τ ,C) where C ∈ Iuser.

The body ofm is q1 and its head is q2. The extension ofm is the

set of tuples ext(m) = {Vm (δ (v1), . . . , δ (vn )) | ⟨v1, . . . ,vn⟩ ∈
q1(D)}, where q1(D) is the answer set of q1 on the data source D
thatm integrates and δ is a function that maps source values to

RDF values, i.e., IRIs, blank nodes and literals.

Intuitively, m specifies that the result of query q1 on D trans-

formed in RDF, i.e., the extension ofm, is exposed to the RIS as

the result of the (BGP) query q2.

Example 3.2 (Mappings). Consider the two mappings:

m1 with head q2(x) ← (x, :ceoOf,y), (y, τ , :NatComp) and

m2 with head q2(x,y) ← (x, :hiredBy,y), (y, τ , :PubAdmin).

Suppose that the body ofm1 returns ⟨p
D1 ⟩ as its results, and that

the δ function maps the value pD1

1
from the data source D1 to

the IRI :p1. Then, the extension ofm1 is: ext(m1) = {Vm1
(:p1)}.

Further, suppose that the body ofm2 returns ⟨p
D2

2
,aD2 ⟩, and that

δ maps the values pD2

2
,aD2

from the data source D2 to the IRIs

:p2, :a. Then, the extension ofm2 is: ext(m2) = {Vm2
(:p2, :a)}.

Given a set of RIS mappingsM, the extent ofM is the union

of the mappings’ extensions, i.e., E =
⋃
m∈M ext(m), and we

denote by Val(E) the set of values occurring in E. We can now

define the RIS data triples induced by some mappings and an

extent thereof. These are all the data which is exposed (can be
queried) through a RIS.

Definition 3.3 (RIS data triples). Given a setM of RIS mappings

and an extent E ofM, the RIS data triples induced byM and E

form an RDF graph defined as follows:

GM
E
=

⋃
m=q1(x̄ ){q2(x̄ )∈M

{bgp2rdf(body(q2)[x̄←t̄ ])) | Vm (t̄) ∈ E}

where

• body(q2)[x̄←t̄ ] is the BGP body(q2) in which the answer vari-

ables x̄ are bound to the values in the tuple Vm (t̄), part of
E;

• bgp2rdf(·) is a function that transforms a BGP into an RDF

graph, by replacing each variable with a fresh blank node.

Observe that, because we use GLAV mappings, RIS data triples

may include fresh blank nodes, as exemplified below; these cor-

respond to the existential variables allowed in GLAV mappings,

as discussed at the end of Section 2.5.2.

Example 3.4. Reusing the mappings from Example 3.2, letM =

{m1,m2} and its extent E = {Vm1
(:p1),Vm2

(:p2, :a)}. The RIS

data triples they lead to are:

GM
E
= {(:p1, :ceoOf, _:bc ), (_:bc , τ , :NatComp),

(:p2, :hiredBy, :a), (:a, τ , :PubAdmin)}

In particular, the first and second triples contain the blank node

_:bc , introduced by bgp2rdf instead of the variable y in the head

(query q2) of m1. Importantly, only non-answer variables in

a mapping head lead to blank nodes introduced this way: by

Def. 3.3, answer variables (here x for m1 and x,y for m2) are

replaced with values from Vm (t̄), thus from Val(E).

Finally, we define a RIS as a tuple S = ⟨O,R,M, E⟩ stating that
S allows to access (query), with the reasoning power given by the

set R of RDFS entailment rules, the RDF graph comprising the

ontology O and the data triples induced by the set of mappings

M and their extent E.

3.2 Query answering problem
The problem we consider is answering BGPQs in a RIS. We define

certain answers in a RIS setting as follows:

Definition 3.5 (Certain answer set). The certain answer set of a
BGPQ q on a RIS S = ⟨O,R,M, E⟩ is:

cert(q, S) = {φ(x̄) | φ homomorphism from body(q) to (O∪GM
E
)R }

where φ(x̄) comprises only values from Val(E).

The certain answer set cert(q, S) is thus the subset ofq(O ∪GM
E
,R)

restricted to tuples fully built from source values, i.e., we ex-

clude tuples with blank nodes introduced by the mappings (see

Def. 3.3). Note, however, that blank nodes can be exploited to

answer queries, as shown below.

Example 3.6 (Certain answers). Consider the RIS S made of the

ontology O of Gex in Example 2.2, the set R of entailment rules

shown in Table 3, and the set of mappingsM together with the

extent E from Example 3.4.

Let q(x,y) ← (x, :worksFor,y), (y, τ , :Comp) be the query asking

“who works for which company”, while the query

q′(x) ← (x, :worksFor,y), (y, τ , :Comp) asks “whoworks for some

company”. The only difference between them is that y is an an-

swer variable in q and not in q′. The certain answer set of q is ∅,
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Figure 2: Outline of query answering strategies.

while the certain answer set of q′ is {⟨:p1⟩}. This answer results

from the RIS data triples (:p1, :worksFor, _:bc ), (_:bc , τ , :Comp),

which are entailed from:

• the GM
E

triples (:p1, :ceoOf, _:bc ), (_:bc , τ , :NatComp), with

the blank node _:bc discussed in Example 3.4, and:

• either the O triples (:ceoOf, ≺sp , :worksFor),

(:ceoOf, ↪→r , :Comp) together with the R rules rdfs3,
rdfs7, or the O triples (:ceoOf, ≺sp , :worksFor),

(:NatComp, ≺sc , :Comp) together with the R rules

rdfs3, rdfs9.
The query q has no answer because it requires a value not avail-

able from the source: the company for which :p1 works; the RIS

only knows the existence of such value through the blank node

_:bc begotten by bgp2rdf in its data triples. In contrast, q′ al-
lows finding out that :p1 works for (as CEO of) some (national)

company, even though the mappingm1 (the only one involving

companies) does not expose the company IRI through the RIS.

The problem we study in the next section is:

Problem 1. Given a RIS S , compute the certain answer set of a
BGPQ q on S , i.e., cert(q, S).

4 QUERY ANSWERING IN A RIS
Since we adopt a mediator-style approach, the RIS data triples

GM
E

are not materialised, hence the saturation ofO ∪GM
E

cannot

be computed to answer queries as defined above. Instead, queries

are rewritten in terms of the remote heterogeneous sources, based

on the RIS ontologyO , reasoning power R and mappingsM. We

present three query answering strategies, which differ in how

the ontological reasoning is incorporated: we may have all, some
or no reasoning performed at query time, as outlined in Figure 2.

All reasoning at query time The first strategy will be de-

tailed in Section 4.1. First, it reduces the RIS query answering

problem to standard query evaluation in an RDF data manage-

ment system, by reformulating (step (1) in Figure 2) the query q
based on the RIS ontology O and entailment rules R = Rc ∪ Ra .

The obtained reformulated query Qc ,a thus yields the expected

certain answers when evaluated on the RIS data triples (recall

Section 2.4), provided that answers with blank nodes introduced

by the bgp2rdf function are discarded (recall Section 3.2). Since

these data triples are not materialized, the RDF query evaluation

problem is in turn reduced to relational view-based query answer-
ing, by rewriting Qc ,a using the RIS GLAV mappingsM seen

as LAV views (step (2)). This produces a relational rewriting qr

over the mappings extension (step (3)), whose evaluation with

a mediator query engine provides the desired certain answers

(steps (4) and (5)).

Some reasoning at query time The second strategy (detailed

in Section 4.2) is a main contribution of this paper. First, it re-

duces the RIS query answering problem to saturation-based query
answering by reformulating (step (1’)) the query q based onO and

Rc only (not R = Rc ∪Ra as above). The obtained reformulation

Qc thus yields the expected certain answer set when evaluated

on the RIS data triples saturated withRa (recall Section 2.4), again

provided that the answers with blank nodes introduced by the

bgp2rdf function are discarded (as above). Since these triples are

not materialized in a RIS, hence cannot be saturated with Ra , the

saturation-based query answering problem is in turn reduced

to relational view-based query answering, by rewriting Qc using

the RIS GLAV mappings saturated O and Ra , seen as LAV views.

These saturated mappings, denotedMa,O
, are obtained (step

(A)) from the original ones by adding to their head queries (q2)

all the implicit data triples they model w.r.t. O and Ra . Then,

the partially reformulated query Qc is rewritten usingMa,O

(step (2’)) and the resulting query (step (3)) is evaluated as in

the first strategy (steps (4) and (5)). Importantly, mappings are

saturated offline, and need to be updated only when some map-

ping changes. This limits both the reasoning effort at query time

and the complexity of the reformulated query to rewrite, hence

the rewriting time needed to obtain a rewriting qr over the data

sources, as our experiments show (Section 5).

No reasoning at query time Finally, the third strategy (detailed

in Section 4.3) reduces the RIS query answering problem directly

to view-based query answering. Here, the mappings are saturated

offline as above (step (A)), in order to model all explicit and

implicit RIS data triples. Also, these mappings are complemented

with a set of mappings, notedMORc (step (B)), comprising all the

explicit and implicit RIS schema triples w.r.t.O and R; since only

Rc rules entail new schema triples (Table 3),OR is actually equal

to ORc . This second set of mappings is also computed offline,

and only needs to be updated when the ontology changes. A

query q just needs to be rewritten based on the above mappings

Ma,O ∪MORc seen as LAV views (step (2”)), in order to obtain,

as above, a rewriting q
REW

over the data sources (step(3’), followed

by the evaluation steps (4’) and (5)).

Before going into the technical details of the above strategies, we

introduce a set of simple functions. The bдp2ca function trans-

forms a BGP into a conjunction of atoms with ternary predi-

cate T (standing for “triple”) as follows: bдp2ca({(s1, p1, o1), . . .,

(sn, pn, on )}) = T (s1, p1, o1) ∧ · · · ∧ T (sn, pn, on ). The bдpq2cq
function transforms a BGPQ q(x̄) ← body(q) into a CQ q(x̄) ←
bдp2ca(body(q)). Finally, the function ubдpq2ucq function trans-

forms a UBGPQ

⋃n
i=1

qi (x̄i ) into a UCQ by applying the above

bдpq2cq function to each of its qi .

4.1 Rewriting Fully-Reformulated Queries
using Mappings as Views: REW-CA

Based on [12], the first step of this strategy, (1) in Figure 2, refor-

mulates a query q w.r.t. O and R = Rc ∪ Ra into a query Qc ,a .

This allows obtaining the certain answers directly from the RIS

data triples, and not from their saturation after they have been
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augmented withO (recall Definition 3.5). Indeed, the correctness

of the reformulation ensures that the certain answers of q on

the RIS S correspond precisely to those of Qc ,a asked on S when

disregarding O and R, as formally expressed in the next lemma.

Of course, this still does not provide a concrete solution to ob-

tain the desired certain answers using standard query evaluation,

since the RIS data triples GM
E

are not materialized.

Lemma 4.1. Let S = ⟨O,R,M, E⟩ be a RIS, q be a BGPQ and
Qc ,a its UBGPQ reformulation w.r.t. O,R = Rc ∪ Ra using [12].
Then:

cert(q, S) = cert(Qc ,a, ⟨∅, ∅,M, E⟩)

The proof of this and our following claims can be found in [13].

Recall that the RIS data triples are defined from the mappingsM

by, for every mappingm = q1(x̄) { q2(x̄) ∈ M, (i) evaluating
the mapping body q1(x̄) on the data source to produce its exten-

sion ext(m) ∈ E, and then (ii) instantiating the mapping head

q2(x̄) with its extension. At the same time, this is also how the

instance of a data integration system based on LAV views and

their extensions is defined in a relational setting (Section 2.5.1)!

Based on this analogy, we recast the RIS query answering problem
of the above Lemma, into a relational view-based query answering
one. To this aim, we treat our mappings as LAV views:

Definition 4.2 (Mappings as relational LAV views). Letm = q1(x̄) {
q2(x̄) be a mapping. Its corresponding relational LAV view is:

Vm (x̄) ← bдp2ca(body(q2)).

Example 4.3. The relational LAV views corresponding to the

mappingsm1,m2 from Example 3.2 are:

• Vm1
(x) ← T (x, :ceoOf,y),T (y, τ , :NatComp)

• Vm2
(x,y) ← T (x, :hiredBy,y),T (y, τ , :PubAdmin)

We denote the set of views derived from all the mappingsM by

Views(M). Crucially, the extent E of the mapping setM is also

an extent for the corresponding set of views Views(M).

Based on the above Lemma 4.1, treating mappings and their ex-

tent as relational LAV views and their extent, and seeing (U)BGPQs

as (U)CQs with the help of the functions introduced in the begin-

ning of Section 4, we reduce the RIS query answering problem

to view-based query answering:

Theorem 4.4 (REW-CA correctness). Let S = ⟨O,R,M, E⟩ be a
RIS and q be a BGPQ. Let Qc ,a be the reformulation of q w.r.t. O
and R using [12]. Then:

cert(q, S) = cert(ubдpq2ucq(Qc ,a ),Views(M), E)

where cert(ubдpq2ucq(Qc ,a ),Views(M), E) denotes the certain
answer set of ubдpq2ucq(Qc ,a ) over Views(M) and E.

Importantly, this provides an effective solution to RIS query

answering problem by using state-of-the-art view-based query

rewriting techniques [31], in particular for step (2) in Figure 2.

Example 4.5 (REW-CA query answering). Consider again the RIS

in Example 3.6 and the query q(x,y) ← (x,y, z), (z, τ , t), (y, ≺sp
, :worksFor), (t, ≺sc , :Comp), (x, :worksFor,a), (a, τ , :PubAdmin)

asking “who works for some public administration, and what

working relationship he/she has with some company”. Its UBGPQ

reformulation, seen as a UCQ, is shown in Figure 3. Its maximally-

contained rewriting based on the views obtained from the RIS

mappings is: qr (x, :ceoOf) ← Vm1
(x),Vm2

(x,y), obtained from

the second CQ in the above union. This becomes clear when the

views are replaced by their bodies:q(x, :ceoOf) ← T (x, :ceoOf,y1),

T (y1, τ , :NatComp),T (x, :hiredBy,y2),T (y2, τ , :PubAdmin). Note

Qc ,a = q(x, :ceoOf) ← T (x, :ceoOf, z),T (z, τ , :NatComp),

T (x, :worksFor,a),T (a, τ , :PubAdmin)

∪ q(x, :ceoOf) ← T (x, :ceoOf, z),T (z, τ , :NatComp),

T (x, :hiredBy,a),T (a, τ , :PubAdmin)

∪ q(x, :ceoOf) ← T (x, :ceoOf, z),T (z, τ , :NatComp),

T (x, :ceoOf,a),T (a, τ , :PubAdmin)

∪ q(x, :hiredBy) ←T (x, :hiredBy, z),T (z, τ , :NatComp),

T (x, :worksFor,a),T (a, τ , :PubAdmin)

∪ q(x, :hiredBy) ←T (x, :hiredBy, z),T (z, τ , :NatComp),

T (x, :hiredBy,a),T (a, τ , :PubAdmin)

∪ q(x, :hiredBy) ←T (x, :hiredBy, z),T (z, τ , :NatComp),

T (x, :ceoOf,a),T (a, τ , :PubAdmin)

Figure 3: Sample reformulation for Example 4.5.

that the other CQs cannot be rewritten given the available views.

With the current RIS, this rewriting yields an empty certain

answer set to q, i.e., cert(q, S) = ∅, because the extent of the map-

pings, hence of the views, is: E = {Vm1
(:p1),Vm2

(:p2, :a)}. How-

ever, if we addVm2
(:p1, :a) to E, then cert(q, S) = {⟨:p1, :ceoOf⟩}.

4.2 Rewriting Partially-Reformulated
Queries using Saturated Mappings as
Views: REW-C

In constrast with the REW-CA strategy that performs all the rea-
soning w.r.t. O and R = Rc ∪ Ra at query time, our second

strategy called REW-C splits the reasoning work between offline

preprocessing and query time.

The first step of this strategy, labeled (1’) in Figure 2, reformulates

a query q using [12], but solely w.r.t. O,Rc , producing a UBGPQ

denoted Qc . From the correctness of this reformulation step, and

the fact that only Ra needs to be considered to answer Qc with

respect to the entire set of rules R (recall Section 2.4), the certain

answer set of q asked on the RIS S is exactly the certain answer

set of Qc asked on S when disregarding Rc . Formally:

Lemma 4.6. Let S = ⟨O,R,M, E⟩ be a RIS, q be a BGPQ and Qc
its reformulation w.r.t. O,Rc [12]. Then:

cert(q, S) = cert(Qc , ⟨O,Ra,M, E⟩)

In other words, the desired answer set could be obtained by evalu-

atingQc on the RIS data triplesG
M
E

saturated byRa . Again, since

the RIS data triples are not materialized, this does not provide a

concrete solution. To account for the impact of the ontology O
and the entailment rules R on these “virtual” data triples, we rely

on BGPQ saturation [25]: given a BGPQ q,O and R, the saturation
qR,O is q augmented with all the triples q implicitly asks for, given
the ontology O and the rules R. BGPQ saturation is exemplified

below:

Example 4.7 (BGPQ saturation). Consider the ontology O ofGex

and the query q(x) ← (x, :hiredBy,y), (y, τ , :NatComp) asking

who has been hired by a national company. Its saturationw.r.t.Ra,O

is: qRa ,O (x) ← body(q), (x, :worksFor,y), (x, τ , :Person),

(y, τ , :Comp), (y, τ , :Org).

We use BGPQ saturation to saturate the RIS mapping heads

w.r.t.Ra,O , so that the saturatedmappings together with E model

the saturated RIS data triples w.r.t. Ra,O . To compute qRa ,O we

(1) saturate body(q) ∪O using Ra , then (2) add to the body of q
all triples thus inferred.

Definition 4.8 (Mappings saturation). The saturation of a setM

of RIS mappings w.r.t. entailment rules Ra and ontology O is:

Ma,O =
⋃

m∈M

{q1(x̄) { qRa ,O
2

(x̄) | m = q1(x̄) { q2(x̄)}
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We saturate mappings offline, and just need to update them when

O or the mapping heads change.

Example 4.9 (Saturated mappings). Consider the RIS of Exam-

ple 3.6, the mapping heads inMa,O
are (added implicit triples

are in blue):

m1 : qRa ,O
2

(x) ← (x, :ceoOf,y), (y, τ , :NatComp)

(x, :worksFor,y), (y, τ , :Comp)

(x, τ :Person), (y, τ , :Org)

m2 : qRa ,O
2

(x,y) ←(x, :hiredBy,y), (y, τ , :PubAdmin)

(x, :worksFor,y), (y, τ , :Org)

(x, τ , :Person)

From the above Lemma and the use of saturated RIS mappings

instead of the original ones, we show:

Lemma 4.10. Let S = ⟨O,R,M, E⟩ be a RIS, q be a BGPQ and Qc
its reformulation w.r.t. O,Rc [12]. Then:

cert(q, S) = cert(Qc , ⟨∅, ∅,M
a,O , E⟩)

This result allows solving the RIS query answering problem by

relational view-based query rewriting (step (2’) in Figure 2):

Theorem 4.11 (REW-C correctness). Let S = ⟨O,R,M, E⟩ be a
RIS, q be a BGPQ and Qc its reformulation w.r.t. O,Rc .Then:

cert(q, S) = cert(ubдpq2ucq(Qc ),Views(Ma,O ), E)

Example 4.12 (REW-CA). Consider again the RIS in Example 3.6

and the query q of Example 4.5. Its reformulation Qc w.r.t.O,Rc ,
seen as a UCQ, is:

q(x, :ceoOf) ← T (x, :ceoOf, z),T (z, τ , :NatComp),

T (x, :worksFor,a),T (a, τ , :PubAdmin)

∪ q(x, :hiredBy) ←T (x, :hiredBy, z),T (z, τ , :NatComp),

T (x, :worksFor,a),T (a, τ , :PubAdmin)

This reformulation is therefore rewritten using the RIS views as:

qr (x, :ceoOf) ← Vm1
(x),Vm2

(x,y). It is obtained from the first

CQ in the above; the second one has no rewriting based on the

available RIS views.We remark that this rewriting is equivalent to

the one obtained in Example 4.5, hence yields the same answers.

4.3 Rewriting Queries using Saturated
Mappings and Ontology Mappings as
Views: REW

This strategy does not reason at query time at all. Instead, it

rewrites a query q based on the saturated RIS mappingsMa,O

as above, and on a specific set of ontology mappings we build to

model the saturated RIS ontology as a data source:
Definition 4.13 (Ontology mappings). The set of ontology map-
pings for a RIS ontology O is:

MOc =
⋃

x ∈{≺sc ,≺sp ,←↩d ,↪→r }

{mx | mx = q1(s, o) { q2(s, o)}

with q2(s, o) ← (s, x, o). The extension of an ontology mapping

mx is ext(mx ) = {Vmx (s, o) | (s, x, o) ∈ ORc }. The extent of
MOc is denoted EOc .

We compute ontology mappings offline, and only need to up-

date them when the ontology changes. The ontology mapping

extensions EOc store all the explicit and implicit RIS ontology

triples (recall from Section 2.2 that only Rc lead to such triples).

Importantly, this leads to the observation that a query triple that

refers to the ontology (schema) can be evaluated on the ontology

mapping extensions alone. Formally:

q(x, :ceoOf) ← Vm1
(x),Vm≺sp (:ceoOf, :worksFor),

Vm≺sc (:NatComp, :Comp),Vm2
(x,a)

∪ q(x, :ceoOf) ← Vm1
(x),Vm≺sp (:ceoOf, :worksFor),

Vm≺sc (:Comp, :Comp),Vm2
(x,a)

∪ q(x, :ceoOf) ← Vm1
(x),Vm≺sp (:ceoOf, :worksFor),

Vm≺sc (:Org, :Comp),Vm2
(x,a)

∪ q(x, :worksFor) ←Vm1
(x),Vm≺sp (:worksFor, :worksFor),

Vm≺sc (:NatComp, :Comp),Vm2
(x,a)

∪ q(x, :worksFor) ←Vm1
(x),Vm≺sp (:worksFor, :worksFor),

Vm≺sc (:Comp, :Comp),Vm2
(x,a)

∪ q(x, :worksFor) ←Vm1
(x),Vm≺sp (:worksFor, :worksFor),

Vm≺sc (:Org, :Comp),Vm2
(x,a)

∪ q(x, :hiredBy) ← Vm2
(x, z),Vm≺sp (:hiredBy, :worksFor),

Vm≺sc (:PubAdmin, :Comp),Vm2
(x,a)

∪ q(x, :hiredBy) ← Vm2
(x, z),Vm≺sp (:hiredBy, :worksFor),

Vm≺sc (:Org, :Comp),Vm2
(x,a)

∪ q(x, :worksFor) ←Vm2
(x, z),Vm≺sp (:worksFor, :worksFor),

Vm≺sc (:PubAdmin, :Comp),Vm2
(x,a)

∪ q(x, :worksFor) ←Vm2
(x, z),Vm≺sp (:worksFor, :worksFor),

Vm≺sc (:Org, :Comp),Vm2
(x,a)

∪
⋃

r∈{≺sc ,≺sp ,←↩d ,↪→r }q(x, r) ← Vmr (x, z),Vm2
(v, z),

Vm≺sp (r, :worksFor),

Vm≺sc (:PubAdmin, :Comp),

Vm2
(x,a)

∪ q(x, r) ←Vmr (x, z),Vm2(v ,z),

Vm≺sp (r, :worksFor),

Vm≺sc (:Org, :Comp),

Vm2
(x,a)

Figure 4: Sample rewriting for Example 4.17.

Lemma 4.14. Let S = ⟨O,R,M, E⟩ be a RIS and q be a BGPQ.
Then:

cert(q, S) = cert(q, ⟨O,Ra,MOc ∪M, EOc ∪ E⟩)

This lemma effectively “pushes” Rc reasoning in the set of map-

pings (to which we addMOc ) and the extent (to which we add

EOc ). Next, we rely (as we did for REW-CA) on mappings satu-

ration with O,Ra to also push Ra reasoning in the mappings,

leading to:

Lemma 4.15. Let S = ⟨O,R,M, E⟩ be a RIS and q be a BGPQ.
Then:

cert(q, S) = cert(q, ⟨∅, ∅,MOc ∪Ma,O , EOc ∪ E⟩)

This allows to reduce RIS query answering to relational view-

based query rewriting (step (2”) in Figure 2):

Theorem 4.16 (REW correctness). Let S = ⟨O,R,M, E⟩ be a
RIS and q be a BGPQ. Then:

cert(q, S) = cert(bдpq2cq(q),Views(MOc ∪Ma,O ), EOc ∪ E)

Example 4.17 (REW). Consider again the RIS in Example 3.6 and

the query q of Example 4.5 seen as a CQ:

q(x,y) ←T (x,y, z),T (z, τ , t),T (y, ≺sp , :worksFor),

T (t, ≺sc , :Comp),T (x, :worksFor,a),
T (a, τ , :PubAdmin)

Its maximally-contained rewriting q
REW

based on the views ob-

tained from the RIS saturated mappings and ontology mappings

appears in Figure 4. This rewriting is much larger than the ones

of the two preceding techniques: this is due to the ontology map-

pings. If we assume that E also containsVm2
(:p1, :a), as we did in
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Example 4.5, we obtain again cert(q, S) = {⟨:p1, :ceoOf⟩}, which

results from the evaluation of the first CQ in the UCQ rewriting;

the other CQs yield empty results because some required ≺sc
or ≺sp contraints are not found in the views built from the RIS

ontology mappings.

How do our strategies compare? Since they are all correct,

they lead to the same RIS certain answer set, however they do

not necessarily compute the same view-based rewritings. Indeed,

REW considers the additional setMOc of ontology mappings.

Hence, for queries over the ontology, i.e., featuring in a property

position ≺sc , ≺sp ,←↩d , ↪→r , or a variable, a REW rewriting is

larger than a REW-CA or REW-C rewriting and, to be answered,

requires the additional ontology source. In contrast, REW-CA

and REW-C yield logically equivalent rewritings; we minimize

them both to avoid possible redundancies, thus they become

identical (up to variable renaming). Hence, REW-CA and REW-C

do not differ in how these rewritings are evaluated. Instead, they

differ in how the rewritings are computed, or, equivalently, on the
distribution of the reasoning effort on the data and mappings, across
various query answering stages. As our experiments show, given

the computational complexity of view-based query rewriting [42],

this difference has a significant impact on their performance.

5 EXPERIMENTAL EVALUATION
We now describe our experiments with RIS query answering.

In addition to our strategies based on query rewriting, we in-

clude in our comparison a simple alternative strategy, based
on materialization and denoted MAT. Offline (before answer-

ing queries), this strategy materializes the RIS data triples and

saturates them with the rule set R. The materialization is stored

and saturated in an RDF data management system (RDFDB,
in short). Then, MAT query answering amounts to query eval-

uation on the saturated materialization. Therefore, MAT query

answering can be seen as a lower bound for query answering

through other strategies.

5.1 Experimental settings
Software Our platform is developed in Java 1.8, as follows.

Our RDFDB is OntoSQL
2
, a Java platform providing efficient RDF

storage, saturation, and query evaluation on top of an RDBMS [14,

29], relying on Postgres v9.6. To save space, OntoSQL encodes

IRIs and literals into integers, and a dictionary table which allows

going from one to the other. It stores all resources of a certain

type in a one-attribute table, and all (subject, object) pairs for

each property (including RDFS schema properties) in a table; the

tables are indexed. OntoSQL is used in the MAT strategy, and it

also provides the RDF query reformulation algorithm [12].

We rely on the Graal engine [9] for view-based query rewrit-
ing. Graal is a Java toolkit dedicated to query answering algo-

rithms in knowledge bases with existential rules (a.k.a. tuple-

generating dependencies). Since the relational view Vm (x̄) ←
bдp2ca(body(q2)) corresponding to a GLAV mappingm (recall

Def. 4.2) can be seen as a specific existential rule of the form

Vm (x̄) → bдp2ca(body(q2)), the query reformulation algorithm

of Graal can be used to rewrite the UCQ translation of a BGPQ

with respect to a set of RISmappings. To execute queries against
heterogeneous data sources, we use Tatooine [4, 10], a Java-
based mediator (or polystore) system, capable both of pushing

queries in underlying data sources and (unlike other polystores,

e.g., [24]) of evaluating joins within the mediator engine. Query

rewritings produced by Graal are unfolded into queries on the

2
https://ontosql.inria.fr

data sources (using theq1 parts of the mappings, see Section 2.5.2)

and passed to Tatooine. We implemented the RIS query answer-

ing methods described here in Java 1.8 on top of these tools.

HardwareWe used servers with 2,7 GHz Intel Core i7 processors

and 160 GB of RAM, running CentOs Linux 7.5.

5.2 Experimental scenarios
RDF Integration Systems (RIS) used Our first interest was

to study scalability of RIS query answering, in particular in the

relational setting studied in many prior works. To achieve this,

we used the BSBM benchmark relational data generator
3
to build

databases consisting of 10 relations named producer, product,

offer, review etc. Using two different benchmark scale factors, we

obtained a data source DS1 of 154.054 tuples across the relations,

respectively, DS2 of 7.843.660 tuples; both are stored in Postgres.

We used two RDFS ontologies O1 respectively O2, containing,

first, subclass hierarchies of 151 (resp. 2011) product types, which

come with DS1, respectively, DS2. To O1 and O2, we add a nat-

ural RDFS ontology for BSBM composed of 26 classes and 36

properties, used in 40 subclass, 32 subproperty, 42 domain and

16 range statements.

Relational-sources RIS We devised two setsM1,M2 of 307,

respectively, 3863 mappings, which expose the relational data

from DS1, respectively, DS2 as RDF graphs. The relatively high

number of mappings is because: (i) each product type (of which

there are many, and their number scales up with the BSBM data

size) appears in the head of a mapping, enabling fine-grained

and high-coverage exposure of the data in the integration graph;

(ii) we also generated more complex GLAV mappings, partially

exposing the results of join queries over the BSBM data; interest-

ingly, these mappings expose incomplete knowledge, in the style

of Example 3.4.

The mapping sets lead to theRIS graphs of 2.0 ·10
6
, respectively,

108 · 10
6
triples. Their saturated versions comprise respectively

3.4 · 10
6
and 185 · 10

6
triples. Our first two RIS are thus: S1 =

⟨O1,R,M1, E1⟩ and S2 = ⟨O2,R,M2, E2⟩, where Ei for i in
{1, 2} are the extents resulting from DSi andMi .

Heterogeneous-sources RIS Second, going beyond relational-

sources OBDA [16, 17, 44], our architecture extends to hetero-
geneous data sources. For that, we converted a third (33%) of

DS1,DS2 into JSON documents, and stored them into MongoDB,

leading to the JSON data sources denoted DSj ,1,DSj ,2; the rela-
tional sources DSr ,1,DSr2

store the remaining (relational) data.

Conceptually, for i in {1, 2}, the extension based on DSr ,i and
extension based on DSj ,i form a partition of Ei . We devise a

set of JSON-to-RDF mappings to expose DSj ,1 and DSj ,2 into

RDF, and denoteM3 the set of mappings exposing DSr ,1 and

DSj ,1, together, as an RDF graph; similarly, the mappingsM4

expose DSr ,2 and DSj ,2 as RDF. Our last two RIS are thus: S3 =

⟨O1,R,M3, E3⟩ and S4 = ⟨O2,R,M4, E4⟩, where E3 is the ex-

tent ofM3 based on DSr ,1 and DSj ,1, while E4 is the extent of

M4 based on DSr ,2 and DSj ,2. The RIS data and ontology triples
of S1 and S3 are identical; thus, the difference between these two
RIS is only due to the heterogeneity of their underlying data sources.
The same holds for S2 and S4.

Queries We devised a set of 28 BGP queries having from 1 to

11 triple patterns (5.5 on average), of varied selectivity (they re-

turn between 2 and 330 · 10
3
results in S1 and S3 and between 2

and 4.4 · 10
6
results in S2 and S4); 6 among them query the data

and the ontology (recall Example 2.6), a capability which most

3
https://downloads.sourceforge.net/project/bsbmtools/bsbmtools/

bsbmtools-0.2
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RIS Q01 Q01a Q01b Q02 Q02a Q02b Q02c Q03 Q04 Q07 Q07a Q09 Q10 Q13

all NTRI 5 5 5 6 6 6 6 5 2 3 3 1 3 4

S1, S3 |Qc ,a | 7 21 175 21 49 147 1225 525 1 5 19 7 670 28

S1, S3 NANS 1272 4376 22738 16 56 174 1342 19 91 2 3 5617 9 13190

S2, S4 |Qc ,a | 21 175 1407 63 147 525 1225 4375 1 5 19 7 9350 84

S2, S4 NANS 15514 111793 863729 124 598 1058 1570 5 4487 2 3 299902 10 167760

RIS Q13a Q13b Q14 Q16 Q19 Q19a Q20 Q20a Q20b Q20c Q21 Q22 Q22a Q23

all NTRI 4 4 3 4 9 9 11 11 11 11 3 4 4 7

S1, S3 |Qc ,a | 84 700 1 25 63 147 21 63 525 1225 670 2 40 192

S1, S3 NANS 43157 330142 56200 8114 2015 3515 0 236 2312 7564 1085 28 434 25803

S2, S4 |Qc ,a | 5628 5628 1 201 525 1225 63 525 1225 4221 9350 40 520 192

S2, S4 NANS 4416946 10049829 2998948 249004 39826 60834 904 7818 10486 51988 37176 1528 18588 1329887

Table 4: Characteristics of the queries used in our experiments.

Figure 5: Query answering times on the smaller RIS S1

(top, relational sources) and S3 (bottom, heterogeneous
sources).

competitor systems lack (see Section 6). Table 4 reports three

query properties impacting query answering performance: the

number of induced triples (NTRI), the number of BGPQ refor-

mulations on the ontology (|Qc ,a |, ranging from 1 to 1225; this

strongly determines the performance of answering such large

union queries, recall Example 4.5), and its number of answers

(NANS) on the two RIS groups (S1, S3 and S2, S4). To further study

the impact of the ontology on query evaluation complexity, we

created query families denoted QX ,QXa etc. by replacing the

classes and properties appearing in QX with their super classes

or super properties in the ontology. In such a family, QX is the
most selective, and queries are sorted in the increasing order of their
number of reformulations.
Our ontologies, mappings, queries, and experimental details are

available online
4
.

5.3 Query answering performance
REW inefficiencyWe have conducted experiments

4
using our

six queries on ontological triples showing, as in Example 4.17

and Figure 4, an explosion of the size of the rewriting (number

of CQs), compared to the rewriting produced by the two other

approaches. On queries (also) over the ontology, as explained in

4
Experiment web site: https://gitlab.inria.fr/mburon/org/blob/master/projects/

het2onto-benchmark/bsbm/

Figure 6: Query answering times on the larger RIS S2

(top, relational sources) and S4 (bottom, heterogeneous
sources).

Section 4.3, we noted that the size of the rewriting produced by

REW is larger (by a multiplicative factor of 29 to 74 in S1 and

S3, and of 33 to 969 in S2 and S4) than the rewritings of the two

other strategies, which led to an explosion of the time spent

minimizing the rewriting, and made REW overall unfeasible; the

details of these tests can be found online
4
. On queries that do not

carry over the ontology, REW produces the same rewritings as the

other methods. Thus, we do not report further REW performance

below.

Query answering time comparison Figure 5 depicts the query

answering times, on the smaller RIS, of REW-CA, REW-C andMAT.

The size of (number of BGPQs in) the reformulation of each query
w.r.t. R, |Qc ,a | appears in parentheses after the query name, in the
labels along the x axis. Given that S1, S3 have the same RIS data

triples, theMAT strategy coincides among these two RIS. Figure 6

shows the corresponding times for the largest RIS S2 and S4; the

same observations apply. Note the logarithmic time axes.

A first observation is that our query set is quite diverse; their
answering times range from a few to more than 10

5
ms.

As expected, query answering in MAT is the fastest in most cases,
since it has no reasoning work to do at query answering time.

However, it required, for S1, S3, 1.2 · 10
5
ms to build the material-

ization and 1.49 · 10
5
ms more to saturate it, whereas for S2, S4,

these times are 14h46 (5.31 · 10
7
ms), respectively, 1h28 (5.28 · 10

6
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ms). Not only these are orders of magnitude more than all query
answering times; recall also that materializingGM

E
requires main-

taining it when the underlying data changes, and its saturation

(GM
E
∪O)R needs a second level of maintenance. Thus, MAT is

not practical when data sources change. We were surprised to see

REW-C and REW-CA somehow faster thanMAT for queriesQ09 and

Q14. Answering these queries throughMATwithin OntoSQL leads

to producing many results that involve mapping-generated blank
nodes, tuples which should not appear in our certain answers,

as per Definition 3.5. We remove such tuples in post-processing

mode, which leads to a performance overhead for MAT. REW-C

and REW-CA, in contrast, are answered by evaluating rewritings,

and do not have to apply such a result pruning. It remains to be

seen if this pruning could be pushed in an RDFDB; note that not

all answers including blank nodes should be pruned, only those

whose blank nodes are due to mappings.

In each scenario, we observe that REW-C is faster or takes as

long as REW-CA. Since the two approaches produce the same

rewritings, the difference is due to steps before the step (3) in

Figure 2. It turns out it is due to the rewriting time, which in turn

strongly depends on the size of the reformulation it receives as

input. In REW-C, the reformulations w.r.t. Rc are of size 1 (no

union, just one BGP) for queries on data triples only, and never

exceed 64 in S1 and S3 and 200 in S2 and S4, whereas, in REW-CA

the reformulation sizes are much larger. REW-C is most often

faster than REW-CA, by up to two orders of magnitude e.g., for

Q02a , Q19 and Q20a on S2, the latter two on S4 etc. One order

of magnitude speed-up is noticeable even on the smaller RIS

S1, S3 (Figure 5) for Q02a . As a consequence, REW-C completes

successfully in all scenarios we study, whereas REW-CA fails to

complete for many queries with timeout set to 10min (missing

yellow bars in Figure 6), in close correlation with the increased

number of reformulations.

Scaling in the data size As stated in Section 5.2, there is a

scale factor of about 50 between S1, S3 on one hand, and S2, S4

on the other. Figures 5 and 6 show that the query answering

times generally grow by less than 50, when moving from S1 to

S2, and from S3 to S4. This is mostly due to the good scalability

of PostgreSQL (in the all-relational RIS), Tatooine (itself building

on PostgreSQL and MongoDB, in the heterogeneous RIS), and

OntoSQL (for MAT). As discussed above, computation steps we

implemented outside these systems are strongly impacted by

the mappings, ontology and query; intelligently distributing the

reasoning effort, as REW-C does, avoids the heavy performance

penalties that from which REW-CA and REW sometimes suffer.

Impact of heterogeneity REW-CA and REW-C incur a (modest)

overhead when combining data from PostgreSQL and MongoDB

(heterogeneous RIS) w.r.t. the relational-sources RIS. Part of this

is due to the cost of marshalling data across system boundaries;

the rest is due to imperfect optimization within Tatooine. Overall,

the comparison demonstrates that RIS query answering is feasible

and quite efficient even on heterogeneous data sources.

5.4 Experiment conclusion
In a settingwhere the data, ontology andmappings do not change,

MAT is an efficient and robust query answering technique, at a

rather high cost to materialize and saturate the RIS instance. In

contrast, in a dynamic setting, REW-C smartly combines partial
reformulation and view-based query rewriting to efficiently com-
pute query answers. The changes it requires when the ontology

and mappings change (basically re-saturating mapping heads)

are light and likely to be very fast. Thus, we conclude that REW-C

is the best query answering strategy for dynamic RIS.

6 RELATEDWORK AND CONCLUSION
Ontologies have been used to integrate relational or heteroge-

neous data sources in mediators [49] with LAV views based on de-

scription logics [1, 37] or their combination with Datalog [28, 30].

Semantics have been used at the integration level since e.g., [20]

for SGML and soon after for RDF [6, 7]; data is considered rep-

resented and stored in a flexible object-oriented model, thus no

mappings are used.

Our work follows the OBDA paradigm introduced in [41]. This

paradigm was conceived to enhance access to relational data by

mappings to an ontology expressed in a dialect of the DL-Lite

description logic family (typically DL-LiteR underpinning the

OWL 2 QL profile of the W3C ontological language OWL 2). Ma-

ture DL-based systems include Mastro
5
[17] and Ontop

6
[16, 43].

Another notable OBDA system, namely Ultrawrap
OBDA

[44], is

based on an extension of RDFS to inverse and transitive proper-

ties. All these systems rely on GAV mappings.

Compared to these, ourmain novelty is to handle GLAVmappings

and provide query answering algorithms for the resulting novel

RIS setting. Note that formal OBDA frameworks with GLAV

mappings have long been defined, e.g., in [18], but not put into

practice. Regarding the other components of OBDA, we consider

a simpler ontological language than existing OBDA systems, but

support BGPQs on both data and ontological triples, a feature

hardly found in these systems (an exception is [33]).

As explained in the introduction, GLAV mappings maximize the

expressive power of the integration system. In particular, they

allow to expose a form of incomplete information (recall Exam-

ple 3.6). To some extent, GLAV mappings may be simulated by

GAV mappings provided with so-called Skolem functions on an-

swer variables, as suggested for instance in [21]. To illustrate,

consider the GLAV mapping m1 = q1(x̄) { q2(x̄) with head

q2(x) ← (x, :ceoOf,y), (y, τ , :NatComp) from Example 3.2. The

non-answer variable y could be replaced by a Skolem function

f (x), which would yield two GAV mappings, namely m11
=

q1(x̄) { q21
(x̄) andm12

= q1(x̄) { q22
(x̄), with respective head

q21
(x̄) ← (x, :ceoOf, f (x)) and q22

(x̄) ← (f (x), τ , :NatComp).

Note that Skolem functions would have to produce syntactically

correct RDF values in a materialization scenario. Still in a mate-

rialisation scenario, query answering would require some post-

processing to prevent the values built by the Skolem functions

to be accepted as answers, while in a query rewriting sceSkolem-

nario functional values would also have to be dealt with in a

special way, which in particular prevents to use off-the-shelf

view-based query rewriting algorithms. Hence, value invention

would be simulated here at the price of technically more com-

plex mappings and processing. Second, the break-up of GLAV

mappings into several GAV mappings would lead to higher con-

ceptual complexity since intrinsically connected triples, as those

associated with (x, :ceoOf,y) and (y, τ , :NatComp) in the exam-

ple, could not be exposed together by a single mapping. Last but

not least, query rewriting would be considerably slowed down

andwould produce highly redundant rewritings, as demonstrated

in the seminal paper [42].

Our mapping saturation (Definition 4.8) is inspired by a query

saturation technique introduced in [25] to compute least general

generalizations of BGPQs under RDFS background knowledge.

5
http://obdasystems.com/mastro/

6
https://ontop.inf.unibz.it/
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It can be seen as a generalization to GLAV mappings of the T -

mapping technique introduced in [43] (and further developed in

[44]) to optimize query rewriting in a classical OBDA context.

The T -mapping technique consists of completing the original

set of GAV mappings with new ones, encapsulating informa-

tion inferred from the DL ontology. For instance, given a GAV

mappingm = q1(x) { q2(x) ← C(x) with C a class, and a DL

constraint specifying that C is a subclass of D, a new mapping

m′ = q1(x) { q′
2
(x) ← D(x) is created by composingm and the

DL constraint. On this example, we would saturate the head of

m into q2(x) ← C(x) ∧ D(x), which is semantically equivalent

to adding the mappingm′. However, when mappings are GLAV

and not GAV, one cannot simply add new mappings. For instance,

consider the GLAV mapping m1 = q1(x̄) { q2(x̄) with head

q2(x) ← (x, :ceoOf,y), (y, τ , :NatComp); given the entailment

rule rdfs9 and the ontological triple (:NatComp, ≺sc , :Comp),

the saturation adds the triple (y, τ , :Comp) to the body of q2; cre-

ating instead a new mapping of the formm′
1
= q1(x̄) { q′

2
(x̄)

with head q′
2
(x) ← (y, τ , :Comp) would be unsatisfactory as y in

m′
1
should correspond to the same object as y inm1.

Our mapping saturation technique could be extended to more

general entailment rules, in which the head of the rules may

include blank nodes that are not in their body, possibly shared

by several triples. This is part of our future research agenda.
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ABSTRACT
Current work to detect data errors often uses (semi-)automatic

solutions. In this paper, however, we argue that there are many

real-world scenarios where users have to detect data errors com-
pletely manually, and that more attention should be devoted to

this problem. We then study one instance of this problem in

depth. Specifically, we focus on the problem of manually verify-
ing the values of a target attribute, and shows that the current best
solution in industry, which uses crowdsourcing, has significant

limitations. We develop a new solution that addresses the above

limitations. Our solution can find a much more accurate ranking

of the data values in terms of their difficulties for crowdsourcing,

can help domain experts debug this ranking, and can handle am-

biguous values for which no golden answers exist. Importantly,

our solution provides a unified framework that allows users to

easily express and solve a broad range of optimization problems

for crowdsourcing, to balance between cost and accuracy. Finally,

we describe extensive experiments with three real-world data

sets that demonstrate the utility and promise of our solution

approach.

1 INTRODUCTION
Data cleaning has received significant recent attention (e.g., [5, 7,

10, 46]), due to the explosion of data science applications, which

often need data cleaning before analysis can be carried out. Most

recent data cleaning works focus on detecting and repairing data

errors [5, 7, 10, 46] (e.g., outliers, incorrect values, duplicate tuples,

and constraint violations). In this paper we focus on detecting
errors.

To detect data errors, currentwork often employs semi-automatic

solutions, which use machine learning or hand-crafted data qual-

ity rules (e.g., “agemust be between 18 and 80” and “any employee

in NYC earns no less than any non-NYC employee at the same

level” [5]). In certain cases the user can be involved, e.g., to pro-

vide feedback to the solutions or verify that the data instances

reported by the solutions are indeed errors.

In practice, however, there are many scenarios where users still
have to detect data errors completely manually. First, to detect data
errors we often need to extract the values of certain attributes.

Such extraction can be very difficult for today algorithms, but

much easier for human users. This often happens when an at-

tribute value is buried in a picture or text.

© 2020 Copyright held by the owner/author(s). Published in Proceedings of the

23rd International Conference on Extending Database Technology (EDBT), March

30-April 2, 2020, ISBN 978-3-89318-083-7 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons

license CC-by-nc-nd 4.0.

Figure 1: An example of manual error detection.

Example 1.1. Consider the product in Figure 1. A data quality
rule is “the value of attribute color should be consistent with the
color of the product in the picture”. There is no algorithm today that
can reliably extract the color of the product from the picture. Here
the picture shows not just the product, a bag, but also a woman
wearing a bag, making the extraction of the bag’s color even more
difficult. A human user however can quickly detect that the bag’s
color in the picture is red. This is inconsistent with the value of
attribute color in the text, which is blue, suggesting a data error.

Even if an attribute’s values are present (so no extraction

is required), it can still be difficult for algorithms to judge if

those values are correct. For example, there is no good algorithm

today to detect if a given URL is indeed the correct URL for a

given business (especially where multiple fake URLs exist for

a business). So detecting incorrect business URLs (e.g., to clean

business listings) is still done largely by human users. Another

example is verifying if the category of a product is “athletic

(man)”, which typically requires a human user to read the product

description, examine the picture, etc.

Finally, an algorithmic solution may exist (e.g., extracting a

person’s gender from a picture can be done reliably today using

deep learning [24]), but the business may have no one qualified

to develop, debug, and run it. Or there is someone qualified,

but developing and debugging the algorithm would take weeks,

whereas the cleaning work must be done within days. In such

cases, businesses often resort to detecting data errors completely

manually, using human users.

In this paper we consider manually detecting data errors. As

a first step, we consider the common setting in which users must
manually check the correctness of the values of a target attribute
(e.g., color, category). This problem is often called manual data
validation [5, 7, 10, 46]. It is pervasive, yet no published work has
addressed it in depth, as far as we can tell.

Using in-house experts to do manual data validation is not

practical for large amounts of data: it takes too long and is not

a good use of their limited time. So companies often use crowd-
sourcing, where the crowd can be for instance contractors or
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Mechanical Turk workers. A common solution formulates each

error detection as a question, sends it to the crowd, solicits k
answers (e.g., k = 5), then takes a majority vote. For example, if

three out of five workers answer “no” to the question “is the color

of this product indeed blue?” for the product in Figure 1, then we

can report that product as potentially having a data error.

The above solution is conceptually simple, but inefficient. In-

tuitively, different data values pose different levels of difficulties

to human users. For example, most people know the color “blue”,

and so can answer questions about this color with high accuracy.

But fewer people know the color “chartreuse”. So we may want

to solicit fewer answers for questions involving “blue” (e.g., 3

answers per question), but more answers for questions involving

“chartreuse” (e.g., 7). Such crowdsourcing strategies, which are

sensitive to the difficulties of different data regions, can signifi-

cantly reduce the crowdsourcing cost while achieving the same

level of error detection accuracy.

Indeed many companies have now employed such adaptive
crowdsourcing strategies. A very common solution (e.g., employed

at WalmartLabs, Facebook, Johnson Controls, and elsewhere)

works as follows:

(1) Compute a ranking K of the data values (in decreasingly

order of their difficulties),

(2) Examine K to assign to each data value v a number of

answers nv (such that a data value placed higher in K is

assigned a higher number of answers), then

(3) Solicit nv answers for each question with value v .

Obtaining the ranking K is important for many purposes. For

example, after crowdsourcing to obtain answers for all questions,

companies often take a sample andmanually check the accuracies

of the questions in the sample, for quality assurance purposes.

The ranking K allows them to bias the sample, e.g., intentionally

sample more items with values in the top-10 of K , to check how

well crowdsourcing works for these difficult values. Example 4.1

lists other usages of ranking K .
While the above solution has been quite popular in industry, it

has several important limitations. In this paper we address those

and significantly advance this line of research in several ways.

First, obtaining a good ranking of the data values in terms of

their difficulties is critical. To do so, the above solution estimates

the difficulty score of a data value to be the average worker accu-
racy for a sample set S of questions with that value. To estimate

these scores accurately, the size of sample set S must be quite

large. But this incurs a lot of domain expert’s effort, because he

or she must label all data instances in S (as having data errors or

not).

Here we show that we do not need a large sample S . Our key
idea is that if the average time it takes for a worker to answer

questions is high, or if the disagreement among workers is high,

then those also indicate that a data value is likely to be difficult.

Consequently, we use all three factors (i.e., worker accuracy, av-
erage answer time, and worker disagreement) to directly rank the
data values, using a machine learning approach. We show how

to minimize the domain expert’s effort, by iteratively expanding

sample S and stopping when a convergence condition is met.

Second, once the ranking has been created, domain experts

often want to examine, debug, and modify it. To address this

problem, we develop a solution to help a domain expert debug the
ranking. Specifically, he or she can request explanations on why

a data value v is considered difficult. Among others, our solution

can explain thatv is not difficult, but appears so due to spammers,

low-quality workers, or careless mistakes from the workers; or

that v is indeed difficult, because the value is hard to understand

(e.g., “chartreuse”), or the item description is incomplete, or the

description has confusing/conflict information, etc.

Third, the existing solution considers only the problem ofmin-
imizing the crowdsourcing cost while achieving the same detection
accuracy (as the baseline solution of soliciting the same number

of answers regardless of the data value). We show that in practice,

users want to consider a far broader range of problems. Examples

include minimizing cost given that the accuracy exceeds a thresh-

old, maximizing accuracy given a budget on the cost, improving

the overall accuracy of a set of data items having difficult values,

and more.We develop a unified framework that allows users to eas-
ily express and solve a broad range of such optimization problems,
all of which find crowdsourcing strategies that adapt to the data

value difficulties.

Finally, the existing solution assumes golden answers exist for
the questions with each data value (otherwise the worker accu-

racy for that value cannot be computed). In practice, surprisingly,

we found that there are many cases where there are no such

golden answers. For example, a product description may show

the picture of a bag in sand color, with the value for attribute

“color” being “desert sand”. So the question for the crowd is “is

the color of this product ’desert sand’?”. But nobody knows what

“desert sand” means. There is no such color. Or more accurately,

this is an ambiguous color invented by the marketing team. As

such, there is no correct, i.e., golden answer to the above ques-

tion. (In our experiments, 2/3 of workers answer yes, and the

rest answer no.) Clearly, this problem of ambiguous values must

be addressed, before the above adaptive crowdsourcing solution

can be applied. In this paper we develop a simple but effective

solution to this problem.

Contributions: To summarize, in this paper we make several

fundamental contributions to the problem of manually detecting

errors for data cleaning:

• We argue that the above problem is pervasive, and needs

more attention. As far as we can tell, this is the first work

that studies this problem in depth.

• We focus on the problem of manually verifying the val-

ues of a target attribute, and shows that the current best

solution has significant limitations.

• We develop a new solution that addresses the above limi-

tations and significantly advances the state of the art. Our

solution can find a much more accurate ranking of the

data values, can help domain experts debug this ranking by

providing explanations on why a data value is considered

difficult, and can handle ambiguous values for which no

golden answers exist. Importantly, our solution provides a

unified framework that allows users to easily express and

solve a broad range of optimization problems.

• We describe extensive experiments with three real-world

data sets that demonstrate the utility and promise of our

solution approach.

2 PROBLEM DEFINITION
We now describe the problem of manual detection of data errors

considered in this paper.

Data Items, Attributes, and Values: For manually detecting

data errors, many problem types exist. As a start, in this paper we

will consider the problem of manually verifying the correctness
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of the categorical values of a target attribute. Specifically, let

D = {d1, . . . ,dn } be a set of data items, such as books, papers,

products, etc. We assume that each item is encoded as a tuple of

attribute-value pairs, i.e., di = ⟨a1 = vi1, . . . ,am = vim⟩. For ex-
ample, a product may be encoded as ⟨cateдory = shirt,дender =
male, color = blue⟩. We will use aj (di ) to refer to the attribute

aj of di .
We assume that each attribute aj (di ) has a set of correct val-

ues V ∗j (di ). For example, a course about discrete math is suit-

able for students from both mathematics and computer science

departments, therefore its subject contains at least two values:

mathematics and computer science. We say that aj (di ) is correct
if and only if its value vi j is in V

∗
j (di ).

Further, we assume that all attributes of each data item di are
correct, except one attribute, which is referred to as the target
attribute and whose values we will need to verify. Without loss of

generality, we assume that the target attribute is the last attribute

am .

Manual Validation of the Target Attribute: Let ci be the
context of di , defined as “all other attributes and their values”:

ci = ⟨a1 = vi1, . . . ,am−1 = vi(m−1)⟩.
Our problem is to verify am (di ) for all items di in D. For each

item di , verifying whether the value of am is correct is equiv-

alent to answering the following question qi : “is the value of

am (di ) indeed vim , given the context ci and any other back-

ground knowledge B that the worker may have?” (we discuss

examples of background knowledge B below).

Then the problem of verifying the target attribute am for

items in D can be translated into answering the set of questions

Q = {q1, . . . ,qn }, where the answer for each question qi is yes
or no. If the answer is yes, then our confidence that am (di ) is
correct is increased. If the answer is no, then it is likely that there

is a data error in di (in practice, the error may not be in am , but

the error must exist because am (di ) is inconsistent with ci ). In
this case, di is sent for further verification by an expert.

Suppose we have golden answers for all questions in Q , then
for any solution to the above validation problem, we can define

its overall accuracy to be the fraction of questions whose answers

are correct, i.e., n0/n, where n0 is the number of questions whose

answers match the golden answers, and n = |Q |.

Current Manual Solutions: Today, such questions are often

answered manually, on a GUI, by an expert or a small set of

experts, e.g., data analysts at an e-retailer, data scientists in an

R&D group. To give the expert the maximal context information,

a question will typically display the entire description of the item,

e.g., all attribute-value pairs (see Figure 1).

If the expert still cannot decide after examining these attribute-

value pairs, he or she may try to find more information, e.g.,

examining the same product at a different e-retailer, looking for

any new information that can help answer the question. For the

question “is the color of this product chartreuse?”, the expert may

have to first look up the meaning of “chartreuse” on the Web,

and so on. We refer to such externally acquired knowledge as the
background knowledge B.

Clearly, this manual solution is tedious and time consuming.

As a result, many real-world applications have turned instead to

crowdsourcing to verify attribute values.

CurrentCrowdsourcing Solutions: The simplest crowdsourc-

ing (CS) solution solicits k answers from crowd workers for each

question q ∈ Q , then combines these answers using majority

voting to obtain a final answer for q.
Note that we can combine worker answers using more so-

phisticated strategies, e.g., estimating each worker’s accuracy,

then taking a weighted sum [19, 22, 27, 39]. Many real-world

applications, however, still use majority voting, which is easy to

understand, debug, and maintain. This is especially important

when there is a high personnel turnover. Further, the application

may need to contract with a crowdsourcing company and this

may be the only solution being offered by that company. Finally,

as far as we know, there is no published conclusive evidence

yet that more sophisticated strategies to combine answers work

much better in practice. Thus, in this paper we will focus on the

above majority-voting solution to verify attribute values, leaving

more sophisticated solutions for future research.

The above CS solution, while faster than manual solutions,

can incur high monetary costs, especially if the application wants

high accuracy for crowdsourcing.

Example 2.1. Suppose an e-retailer A must verify the attributes
of 50K newly arrived products. To ensure that product details on
its Web pages are error-free as much as possible, A wants crowd-
sourcing to have an accuracy of at least 95%. To reach this accuracy,
soliciting 3 answers per question is often insufficient, A would need
to solicit 5, 7, or more answers. Assuming 3 cents per answer, if A
solicits 5, 7, or 9 answers per question, crowdsourcing 5 attributes
of 50K products costs $37.5K, $52.5K, and $67.5K, respectively.

Thus, it is important that we develop solutions to minimize

the crowdsourcing cost, while achieving the same verification

accuracy. As discussed in the introduction, intuitively, different

data regions often have different degrees of difficulty for human

verification. So if we can estimate these difficulty levels, we can

adjust the degree of redundancy (i.e., the number of answers

solicited for each question in a region). For example, a set of

products D can be split into data regions where all products with

the same color form a region. Then for each question in the

region with “red” color, we only need to solicit 3 answers, say;

whereas for each question in the region with the “acid yellow”

color, which is more difficult, we would solicit 7 answers.

Indeed many companies have now employed such adaptive
CS strategies. A very common solution works as follows:

(1) Compute a ranking of the data regions (in decreasingly

order of their difficulties),

(2) Examine the ranking to assign to each region a number of

answers (such that a region placed higher in the ranking

is assigned a higher number of answers), then

(3) Solicit that number of answers for each question in the

region.

It is important that this solution outputs both a ranking and a
crowdsourcing plan (which specifies how many answers to solicit

for each question in a data region). Outputting a ranking serves

many important purposes, as discussed in the introduction (see

also Example 4.1).

The above solution is appealing, but has significant limitations.

(1) The ranking that it computes is often inaccurate, because

the solution uses only the average worker accuracy to find the

ranking. (2) Domain experts often cannot debug the ranking, e.g.,

understand why a data region is considered difficult. (3) The task

of assigning to each data region a number of answers is often

done in an ad-hoc “eyeballing” way, by examining where the data

region is in the ranking. (4) It is difficult to express and solve a
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broad range of optimization problems regarding crowdsourcing

costs and accuracy, even though users often have such needs. (5)

Finally, this solution cannot handle “ambiguous” data values (e.g.,

“desert sand”), for which there are no golden answers.

In the rest of this paper we introduce our solution, called

VChecker, which addresses the above limitations.

3 RANKING THE DATA REGIONS
In VChecker, we first obtain a ranking of the data regions, in

decreasing order of their difficulties. In this section we discuss

how we split the data into different regions, then rank them. (The

next two sections describe how to debug the ranking, then how

to use it to formulate and solve a broad range of optimization

problems, to find good crowdsourcing plans.)

3.1 Splitting Data into Regions
We consider scenarios where for each data instance di , the dif-
ficulty in verifying the target attribute am only depends on its

value vim . Such scenarios are common in practice. For instance,

for products such as the one described in Figure 1, the difficulty

of verifying the attribute color only depends on its value (e.g.,

red, blue, acid yellow, etc.).

In such cases, the expert will split the data such that all ques-

tions with the same target attribute value form a region (because

all such questions share the same difficulty level). Formally, let

D = {d1, . . . ,dn } be the set of data instances, am be the target

attribute,Q = {q1, . . . ,qn } be the set of questions “is the value of
attribute am of instance di indeed vim?”, and V = {v1, . . . ,vr }
be the set of all values of am for instances in D. Then we can split

the set of questionsQ into r sets such that all questions (and only

these questions) in a set Qi share the same value for attribute

am . We refer to each such set as a data region. In general, it is

not always possible to so simply split the data into regions. This

raises the interesting problem of how to help the expert do so,

which we leave for future work.

3.2 Learning to Rank the Regions
To rank the data regions, a common solution in industry is to

compute for each region an average worker accuracy, then rank

the regions in increasing worker accuracy (thus in decreasing

difficulties).

Specifically, let Qi be a data region, i.e., the set of questions

(in Q) with the same value vi for the target attribute am . The

current solution assumes that all crowd workers have the same

probability of answering any question in Qi correctly (a reason-

able assumption in many real-world scenarios). It then takes this

probability to be the average worker accuracy for Qi , denoted as

a(Qi ).

To estimate a(Qi ), the solution randomly takes a set x of ques-

tions in Qi , solicits y answers from the crowd for each question,

then computes a(Qi ) as the fraction of xy answers that are cor-

rect. To determine answers’ correctness, the solution uses the

golden answers to the x questions, as provided by an expert. Fi-

nally, the solution ranks the data regions in increasing order of

the computed average worker accuracy a(Qi ).

While conceptually simple, this solution is limited in several

important ways. First, it provides no way to determine x and y. If
they are set to large values, then we waste a lot of crowdsourcing

money and expert time (to provide golden answers). If they are

set to small values, then it is difficult to estimate a(Qi ) accurately.
Second, it fails to exploit extra information that can help better

V={black, red, iris,
lavender, chartreuse}

G={ ⟨black, f1 ⟩, ⟨red, f2 ⟩,
⟨chartreuse, f5 ⟩ }

(a) (c)

F = {f1 = ⟨1, 2.3, 0⟩,
f2 = ⟨1, 2.4, 0.05⟩,
f3 = ⟨0.7, 5.1, 0.1⟩,
f4 = ⟨0.6, 8.4, 0.1⟩,
f5 = ⟨0.7, 11.2, 0.15⟩ }

(b)

{chartreuse} ≥ {black, red}

(d)

S = {(f5, 1), (f1, 2), (f2, 2)}

(e)

Figure 2: Creating training data for SVM Rank.

rank the data regions. Finally, the solution does not provide any

way to solicit and incorporate knowledge from the expert, even

though he or she often has such knowledge about the difficulties

of the various data regions.

Key Ideas of Our Solution: Our solution exploits three key

ideas. First, we observe that if a value is difficult, it often takes a

worker longer to provide an answer (e.g., for a question involving

the value “acid yellow”, he or she may need to consult the Web to

understand its meaning before being able to answer the question).

It also often causes more disagreement among the workers. As

a result, we capture and exploit these two types of information

and use them together with the worker accuracy to learn to rank

the values in decreasing order of their difficulties.

Second, to learn the ranking, we ask the expert to provide

training data in the form of (vi ,vj ) such that vi is ranked more

difficult than vj . We also allow the expert to debug the ranking

and manually edit it if necessary (see Section 4). Thus, our so-

lution provides a natural way for the expert to provide domain

knowledge about the difficulties of the data regions.

Finally, to minimize the crowdsourcing and expert cost, we

develop a solution in which we iteratively explore larger values

for x (the number of questions sampled per value) and y (the

number of answers solicited per question), and stop when a

condition is met. We now describe the above ideas in detail.

1. Defining the Problem of Ranking the Values: Let V =
{v1, . . . ,vr } be the set of all values of the target attribute for all
data instances in D. Our goal is to find a total ranking K of the

values inV , such that vi being ranked higher than vj means that

vi is judged more difficult than vj .

2. Learning the Ranking: For each value vi ∈ V , we start by
sampling x questions from the corresponding region Qi , then

solicit y answers for each question from the crowd (we explain

later how to select x and y). This produces a total of xy answers.

Next, we create a feature vector fi = ⟨ai , ti , ei ⟩, where ai is the
worker accuracy for vi , computed as the fraction of xy answers

that are correct. To determine if an answer is correct, the expert

must provide the golden answers for the x questions. ti is the time

it takes for a worker to answer the questions, averaged over the

xy answers. Finally, ei is the disagreement among the workers

in answering the questions, measured as 1 − |Nyes − Nno |/(xy),
where Nyes and Nno are the total numbers of yes/no answers

from the workers, respectively (and Nyes + Nno = xy).

Example 3.1. Consider the five colors in setV in Figure 2.a. Figure
2.b shows five feature vectors created for these colors, after sampling
x questions from each color region and soliciting y answers from
the crowd for each question.
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At this point, we have obtained a set of feature vectors F =
{ f1, . . . , fr }, one for each value. We now learn to rank the values,

using these feature vectors. To do so, we use SVM Rank, a well-

known ML algorithm that can be used to rank examples [38].

To use SVM Rank, we create training data as follows. First, we

randomly sample a set G of feature vectors (FVs) from F . Next,
we need to rank the FVs in G (in terms of the difficulty of their

corresponding values). Abusing notation, we use “fi ≥ fj ” to
indicate that FV fi is ranked the same or higher than FV fj (i.e.,
the value corresponding to fi is the same or more difficult than

that of fj ).
Ideally, we want to create a total ranking on G, i.e., for any

pair (fi , fj ) ∈ G × G, either fi ≥ fj or fj ≥ fi , then use this

total ranking as training data. However, creating a total ranking

is very expensive and often quite difficult for the expert, so we

ask him or her to create only a partial ranking. Specifically, the

expert merely divides G into two groupsU and V based on his

or her domain knowledge such that for any fi ∈ U and fj ∈ V ,
fi ≥ fj .

Then for each fi ∈ U , we create a training example (fi , 1).
Similarly, for each fj ∈ V , we create a training example (fj , 2).
Here we assume that an example associated with rank 1 is more

difficult than any example associated with rank 2. We output the

set S of all these examples as the training data for SVM Rank.

Example 3.2. Continuing with Example 3.1, suppose we have
selected the three colors black, red, and chartreuse for creating the
training data (see Figure 2.c). Suppose the expert specifies that
chartreuse is considered more difficult than both black and red
(Figure 2.d). Then we can create the training set S in Figure 2.e for
SVM Rank.

SVM Rank then uses S to learn a regression model that assigns

a score to each example, such that the higher the score, the higher

the example is ranked. Finally, we apply SVM Rank to FVs in F
to compute for each FV a score and use these scores to rank the

FVs. This produces a total ranking K for the values in V , such
that a higher ranked value is said to be more difficult than a

lower-ranked one.

The expert can then optionally examine, debug, and edit the

ranking K , as we discuss later in Section 4.

3. Determining Parameters x and y: Recall that for each

value vi we take x questions from the set of questions with that

valueQi , then solicit y answers per question from the crowd. We

now discuss how to set x and y. Our solution is to start with the

smallest x and y, iteratively increase them, computing rankings

along the way, then stop when these rankings have “converged”.

This way, we hope to minimize the cost of the expert (who needs

to answer x |V | questions and the crowd (who needs to answer
xy |V | questions).

Specifically, we start with (2,2), i.e., x = 2 and y = 2 (the

smallest values that allow us to meaningfully compute feature

vectors), and compute the ranking of the values K(2, 2), as de-
scribed earlier. Next, we increase y to consider (2,3), and compute

K(2, 3). Then we consider (3,3) and computeK(3, 3), and so on. To
compute a new ranking, say K(3, 3), using SVM Rank, the expert

needs to label, i.e., provide golden answers to the new questions,

and we need to solicit crowd answers for these questions. But

we do not have to create any additional training data.

We use the Spearman score [48], which ranges from 1 to -

1, to measure the correlation between any two rankings. Con-

sider three consecutive rankings K(xn−2,yn−2), K(xn−1,yn−1),

K(xn,yn ). If it is the case that the score
Spearman(K(xn−2,yn−2),K(xn−1,yn−1)) and the score

Spearman(K(xn−1,yn−1),K(xn,yn )) are both exceeding a pre-

specified threshold, or if xn and yn reach pre-specified maximal

values, then we stop, returning K(xn,yn ) as the desired ranking.

Algorithm 1 shows the pseudo code of the entire process to rank

the data regions.

4 DEBUGGING THE RANKING
Recall from the previous section that at the start, we enlist the

expert and the crowd workers to create a ranking K of the values

in V , in decreasing order of difficulties. In practice, it turns out

that the ranking K can be used for many important purposes.

Example 4.1. The ranking K can be used to re-calibrate the
worker accuracies of the values (see Section 5.2). It can be used in
formulating optimization problems, e.g., a user may want to focus
on the top-10 most difficult values in K and try to maximize the
average accuracy of those values (see Section 5.1). Finally, K can
also be used in quality assurance (QA). For example, after we have
crowdsourced to obtain answers for all questions, we may want to
take a sample and manually check the accuracies of the questions
in the sample, for QA purposes. The ranking K allows us to bias the
sample, e.g., intentionally sample items with values in the top-10
of K , to check how well the crowdsourcing process works for these
difficult values.

As a result, it is important to make the ranking K as accurate
as possible. Once K has been created (see Section 4), the expert

often wants to examine, debug, andmodify it. Currently, however,

there is no debugging support. To address this problem, as a first

step, in this paper we will develop a way to generate explanations,

which can help the expert debug K .
Specifically, given a value v placed high in the ranking K ,

indicating that it is difficult, the expert can ask for an explanation

on why v is judged difficult by the system.

Example 4.2. When asked why “acid yellow” is judged difficult,
our system may return explanations that state that this value is
actually not difficult, but appears to be difficult due to spammers
and low-quality (i.e., bad) workers who gave many incorrect an-
swers. Or the system may return explanations that state that the
value is indeed difficult because it is unfamiliar to many workers.
Other explanations may include “the product description contains
incomplete or confusing information” and “the description is hard
to understand”, among others.

Clearly, such explanations can significantly help the expert un-

derstand and debug the rankingK . To generate such explanations,
we first develop a model M on how a crowd worker answers a

question. Next, we analyzeM to create a taxonomy T of possible

explanations. Finally, we develop a procedure that, when given

a value v , analyzes answers solicited from the crowd to identify

the most likely explanations in T for v . We now discuss these

steps in more details.

Developing a User Model for Answering Questions: There

are many possible ways to model how a worker answers our

questions. For this paper we use the following simple yet rea-

sonable model. Suppose a worker U has to answer a question

q, which has a value v for the target attribute and a context c
(which is the rest of the description of the data item). Then U
first tries to understand v . Next, U tries to understand c . Finally,
U determines if v and c are consistent, returning “yes” or “no” if
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Algorithm 1 Learning to Rank the Data Regions

Input: Q : set of questions, V : set of values, xmax : max num of sampled questions,

ymax : max num of answers to be collected per sampled question, (x0, y0): initial
value for (x , y), ϵ : convergence threshold for ranking, n0 : number of training

examples for SVM Rank

Output: A ranking K of values

1: Vt ← Randomly sample n0 values from V
2: O ← CreatePartialOrder(Vt )
3: P ← GenerateConfigs(x0, y0, xmax, ymax)

4: Qs , As ,Ts ,Gs ← ∅
5: (xc , yc ) ← (0, 0) // current (x , y)
6: L ← [ ] // list of rankings
7: for (x , y) ∈ P do
8: Sample x − xc new questions per value and add them to Qs
9: Collects needed answers and time data and add them to As

and Ts
10: Find golden answers for newly sampled questions and add

them to Gs
11: Compute set of features F from As ,Ts ,Gs
12: K (x , y) ← SVMRank values in V using F ,O
13: (xc , yc ) ← (x , y)
14: Append K (x , y) to L
15: if IsRankingConverged(L, ϵ ) then
16: break

17: end if
18: end for
19: K ← K (xc , yc )
20: W ← Improve estimated worker accuracy using K in Equation 4

21: return K ,W

22: procedure CreatePartialOrder(Vt )
23: The expert partitions Vt into two groupsU ,V such that each

value inU is more difficult than each value in V
24: O ← ∅
25: for v ∈ U do
26: Add (v , 1) into O
27: end for
28: for v ∈ V do
29: Add (v , 2) into O
30: end for
31: return O
32: end procedure

33: procedure GenerateConfigs(x0, y0, xmax, ymax)

34: P ← [(x0, y0)]
35: n = min(xmax − x0, ymax − y0)
36: for i = 1, 2, . . . , n do
37: Append (x0 + i − 1, y0 + i) and (x0 + i , y0 + i) to P
38: end for
39: if x0 + n == xmax then
40: m = ymax − y0 − n
41: for i = 1, 2, . . . ,m do
42: Append (x0 + n, y0 + n + i) to P
43: end for
44: else if y0 + n == ymax then
45: m = xmax − x0 − n
46: for i = 1, 2, . . . ,m do
47: Append (x0 + n + i , y0 + n) to P
48: end for
49: end if
50: return P
51: end procedure

52: procedure IsRankingConverged(L, ϵ )
53: if len(L) < 3 then
54: return False

55: else
56: Let Kn−2, Kn−1, Kn be the last three rankings in L
57: s1 ← Spearman(Kn−2, Kn−1)
58: s2 ← Spearman(Kn−1, Kn )
59: if s1 ≥ ϵ and s2 ≥ ϵ then
60: return True

61: else
62: return False

63: end if
64: end if
65: end procedure

Figure 3: A taxonomy of explanations.

Algorithm 2 Generating Explanations

Input: v : the value to be explained

Output: Ev : the set of possible explanations for value v
1: Collect data S = {Qx , A,W } where Qx is all x |V | questions sam-

pled in difficulty estimation stage, A is all answers and their time

stats for questions in Qx ,W is the set of all workers for A
2: Compute accuracy α and average time t for A
3: for each w ∈W do
4: Apply a procedure on Rw using α , t to classify w as spammers,

low-quality workers, or regular workers

5: end for
6: LetWv be the set of workers who answer at least one question with

value v
7: Ew ← GenWorkerExplanations(Wv )

8: Update S to S+ by removing answers and the time stats from spam-

mers and low-quality workers

9: Apply a procedure on Rv using S+, α , t to classify the nature Nv
of value v (i.e., ambiguous, unfamiliar, overlapping)

10: Ev ← GenValueExplanations(Nv )
11: Let Qv be the set of questions in Qx with value v
12: for each q ∈ Qv do
13: Apply a procedure on Rq using α , t to classify the nature of q

(i.e., comprehension, incomplete, confusing/conflict)

14: end for
15: Let Nq be the set of natures for questions in Qv
16: Eq ← GenQuestionExplanations(Nq )
17: Ev ← Ew ∪ Ev ∪ Eq
18: return Ev

U can make this determination with high confidence. Otherwise

U returns the answer (“yes” or “no”) judged most likely.

Creating a Taxonomy of Explanations: Analyzing the above

user model produces the taxonomy of explanations in Figure

3. Observe that the explanations fall into several clean groups.

The first group concerns the workers: if they are spammers, bad

workers, etc., then the value may not be difficult but will appear

difficult. The second group concerns the nature of the value v
itself: is it ambiguous, unfamiliar, etc? If so, it may explain why

v is ranked difficult. The final group concerns the nature of the
question/the description of the data item/the context. Is the descrip-
tion understandable (e.g., in English)? Is it complete? As we will

see below, we can develop solutions to explore each of the above

groups of explanations.

Generating Explanations for a Valuev: Given a valuev , we
now seek to generate explanations for whyv is difficult. We refer

to each node in the above taxonomy (see Figure 3) as an expla-
nation. Our solution will return a set of such explanations (in

future work we will explore ranking them). To do so, the solution
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proceeds in the following steps (see Algorithm 2 for the pseudo

code).

(1) Collect data S : We first collect data that can be analyzed to

generate explanations. This data S consists of Qx , the set of all

questions generated for the difficulty score estimation process,

A, the set of all answers solicited for questions inQx , andW , the

set of all workers who have given at least one answer in A.

(2) Use S to classify the workers:We use a rule-based procedure to

classify workers inW into spammers, bad workers, and regular

workers. For example, we classify a worker w as a spammer if

w’s accuracy is significantly lower than the average accuracy,

andw ’s response time is much faster than the average response

time (as computed from data S).

(3) Generate explanations regarding the nature of the workers:Next,
we identify likely explanations regarding the nature of the work-

ers in the taxonomy T . For example, if a certain percentage of

workers that have answered questions involvingv are spammers,

then we will identify node “1.A (Spammers)” of T as an explana-

tion.

(4) Update data S into S+: Next, we remove the data involving the

spammers and bad workers from S , so that we can work with

more accurate statistics in subsequent steps.

(5) Use S+ to classify the nature of value v : Similar to Step 2,

here we use a rule-based procedure to analyze S+, to classify the

valuev as ambiguous, unfamiliar, etc. For example, if the average

worker accuracy for v is high and the average response time is

low, then we determine that v is not unfamiliar.

(6) Generate explanations regarding the nature of value v : Again,
similar to Step 3, we identity explanations in taxonomy T that

involve the nature of value v . This step is straightforward.

(7) Use S+ to classify the nature of the questions and generate ex-
planations:We proceed similarly to Steps 2-3. For example, if a

certain percentage of the questions involvingv is confusing, then

we will identify node “2.B.c” of T as an explanation. Finally, we

return all identified explanations as the set of explanations for

value v .
It is important to note that our rule-based procedures for the

above steps have been created, only once. They are not depen-

dent on the particular application domain. However, the rules

employed do use various parameters (e.g., thresholds). These

parameters are set based on analyzing the data S (but can also be

tuned by the domain expert).

5 FINDING GOOD PLANS
We now discuss finding good crowdsourcing plans. We begin by

considering the types of problems that the user wants to solve. As
discussed in Section 1, a common baseline crowdsourcing (CS)

plan is to solicit tb answers per question, then take the majority

vote to be the final answer. The existing solution has considered

a single problem: minimize the total CS cost while keeping the

accuracy the same as that of the baseline plan.

In practice, however, we observe that users often want to express
a wide range of other CS problems. Examples include minimizing

cost given that the accuracy exceeds a threshold, maximizing ac-

curacy given a budget on the cost, improving the overall accuracy

of a set of data items having difficult values, and more.

As a result, in this section we develop a unified framework

in which users can easily express a variety of such CS problems.

Some of these problems make use of the ranking K (e.g., max-

imizing the average accuracy of the values in the top-5 of K).

Next, we show how to solve these problems using integer lin-

ear programming (ILP). Our solutions often involve the average

worker accuracy per data value. Finally, we show how to use the

ranking K to improve our estimations of these average worker

accuracies.

5.1 Expressing Crowdsourcing Problems
Let D = {d1, . . . ,dn } be a set of data items to be validated. Let

V = {v1, . . . ,vr } be the set of values for the target attribute

of the items in D. We define a crowdsourcing plan p to be a

tuple ⟨⟨v1, t1⟩, . . . , ⟨vr , tr ⟩⟩, where for each question involving

the value vi , plan p will solicit ti answers from the crowd (i ∈
[1, r ]).

Let S ⊆ V be a set of values. We define acc(S,p) to be the

accuracy of planp for the values in S , i.e., the fraction of questions
with valuev ∈ S that receive a correct (aggregated) answer when

p is executed. We define cost(S,p) to be the total number of

answers solicited from the crowd for the questions with value

v ∈ S .
We can now define a general CS problem template as follows

“Given a set of plans P and a set of values S, return the plan that
maximizes or minimizes an objective O , subject to a constraint
C , where O and C involve P and S, and optionally a ranking K
of values”. In this paper we consider the following concrete CS

problems that follow the above template.

Finding Plans That Outperform a Baseline Plan: In many

scenarios there exists already a baseline plan pb . The user how-
ever wants a plan p that is better than pb in some aspects. While

numerous problem variations exist, in this paper we consider the

following variations:

T1: Minimize cost while achieving the same accuracy

Return the plan p that minimizes cost(V ,p), subject to constraints
acc(V ,p) ≥ acc(V ,pb ) and cost(V ,p) ≤ cost(V ,pb ). This is the
problem considered by PBA [14].

T2: Maximize accuracy while keeping the same cost

Return the plan p that maximizes acc(V ,p), subject to constraints
cost(V ,p) ≤ cost(V ,pb ) and acc(V ,p) ≥ acc(V ,pb ).

T3: Maximize the individual accuracy

In many cases the overall accuracy acc(V ,p) can be high, say 95%,

yet certain individual accuracies (e.g., acc(v,p) for certain v-s)
may be quite low, say 60%. For example, the overall accuracy for

color verification can be 95%. Yet the accuracy for “chartreuse” is

only 60%.

In such cases, the user often wants to improve the accura-

cies of the values across the board as much as possible, while

keeping the overall accuracy at least as high as that of pb and

keeping the overall cost at most as high as that of pb . To do

this, the user can try to solve the following problem: Return the

plan p that maximizesminvi ∈V acc(vi ,p), subject to acc(V ,p) ≥
acc(V ,pb ) and cost(V ,p) ≤ cost(V ,pb ). Intuitively, if a plan in-

creasesminvi ∈V acc(vi ,p), then it would increase the accuracies

of all individual values.

Solving problems T1 −T3 for only a subset of values

The above problems T1 −T3 consider all values in V . In certain

cases, the user may be interested in optimizing for only a subset

of values S ⊆ V , such as the top 10 most difficult values, accord-

ing to the ranking K . In such cases, we can formulate problems

similar to T1 −T3, but replace V with S where appropriate.
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Finding Plans That Satisfy General Constraints: In cer-

tain cases, the user does not have a baseline plan pb to compare

against. Instead, he or she just wants to find an “optimal” plan

that satisfies certain constraints about cost and accuracy. Many

variations exist. In this paper we consider the following:

T4: Minimize cost while keeping accuracy above a threshold

Return the plan p that minimizes cost(V ,p), subject to constraint
acc(V ,p) ≥ α .

T5: Maximize accuracy while keeping cost below a threshold

Return the plan p that maximizes acc(V ,p), subject to constraint

cost(V ,p) ≤ β .

Solving problems T4 −T5 for only a subset of values

Again, in certain cases, the user may be interested in optimizing

for only a subset of values S ⊆ V . In such cases, we can for-

mulate problems similar to T4 −T5, but replace V with S where

appropriate.

5.2 Solving Crowdsourcing Problems
Wehave described howusers can express a variety of CS problems

for detecting data errors. We now discuss how to solve them. The

main idea is to formulate them as integer linear programming

(ILP) optimization problems, solve these problems to find an

optimal CS plan p∗ = ⟨⟨v1, t1⟩, . . . , ⟨vr , tr ⟩⟩, then execute p∗.
In what follows we discuss how to carry out the above idea

for problem type T1, then briefly discuss problem types T2 −
T5. Recall that in problem type T1, we want to find the plan

p that minimizes cost(V ,p), subject to constraints acc(V ,p) ≥
acc(V ,pb ) and cost(V ,p) ≤ cost(V ,pb ). We now discuss how

to estimate the quantities cost(V ,p), cost(V ,pb ), acc(V ,pb ), and
acc(V ,p).

Estimating cost(V ,p) and cost(V ,pb ): It is straightforward

to compute cost(V ,pb ), the crowdsourcing cost of the baseline

solution. Recall thatV is the set of values. Suppose each value vi
has ni questions, then the total number of questions is

∑r
i=1 ni .

Since tb answers need to be collected per question, cost(V ,pb ) =
tb

∑r
i=1 ni .

To compute cost(V ,p), recall that in our solution, for each

value vi , we have sampled x questions and collected y answers

per sampled question. If plan p states that ti answers will be
collected for each remaining question, then the cost spent on

value vi will be ti (ni − x) + xy. Then the total cost on V can be

computed as cost(V ,p) =
∑r
i=1(ti (ni − x) + xy).

However, we cannot use ti ’s as variables in the resulting ILP

optimization problem (because constraints involving them will

not be linear). To handle this problem, we use a set of indicator

variables to represent ti . Specifically, suppose tmin and tmax are

the min and max number of answers to be collected per question

(these two values are pre-specified; tmin, tmax need to be odd

positive integers since majority vote is used for aggregation).

Let A = {tmin, tmin + 2, . . . , tmax}. Clearly, all ti ’s are in A. To
represent ti , for each j ∈ A we create an indicator variable hi j .
That is, if j = ti , then hi j = 1; otherwise hi j = 0 for all j , ti .
We have ti =

∑
j ∈A jhi j and cost(V ,p) =

∑r
i=1((

∑
j ∈A jhi j )(ni −

x) + xy). As we will see shortly, our ILP formulation uses this

formula for cost(V ,p).

Estimating acc(V ,pb ): Letmi be the number of questions with

valuevi whose aggregated answers are correct, then acc(V ,pb ) =

(
∑r
i=1mi )/(

∑r
i=1 ni ), where ni is the number of questions for

value vi .
To estimatemi , for each question q with value vi we need to

compute the probability that q’s aggregated answer is correct,

which depends on the number of collected answers. Recall that we

assume that all questions with value vi have the same difficulty

and workers are i.i.d. (i.e., identically independently distributed)

for each value. When we collect the same number of answers per

question for a value, the aggregated answers of those questions

will have the same probability of being correct.

We define fi ,t as the probability that for any question q with

value vi , q’s aggregated answer is correct when t answers are
collected per question. So if the baseline approach collects tb
answers per question, thenmi = ni fi ,tb , where ni is the number

of questions in region i (for value vi ). We now describe how to

compute fi ,t for any i and t .
To compute fi ,t , we use the worker accuracy ai for value

vi . Since we assume that workers are i.i.d. for value vi , when t
answers are collected for question q in region i , these answers
are independent and each answer has the probability ai of being
correct. So the number of correct answers follows the binomial

distribution B(t,ai ). Since we use majority voting, q’s aggregated
answer is correct if and only if more than half of the collected

answers of q are correct. So we can compute

fi ,t =
t∑

j=⌈t/2⌉

(
t
j

)
a ji (1 − ai )

t−j
(1)

For each valuevi , we compute fi ,tb using (1), then estimatemi ’s

and cost(V ,pb ) as described above. (At the end of this subsection
we will describe howwe use the rankings from Section 4 to adjust

ai ’s for all vi ’s.)

Estimating acc(V ,p): Recall thatA = {tmin, tmin + 2, . . . , tmax}

and fi ,t is the probability that for any question q with value vi ,
q’s aggregated answer is correct when t answers are collected
per question. Using the indicator variables described earlier, the

expected probability that q’s aggregated answer is correct can

be estimated as

∑
j ∈A hi j fi , j . Then the overall accuracy of our

approach is computed as acc(V ,p) =
∑r
i=1(x+(ni−x )(

∑
j∈A hi j fi , j ))∑r

i=1 ni
.

Formulating T1 as an ILP Problem: We now can formulate

problem T1 as the following ILP problem:

minimize

hi j∀j∈A,
i=1,2, . . .r

r∑
i=1
(xy + (

∑
j∈A

jhi j )(ni − x ))

subject to

∑r
i=1(x + (ni − x )(

∑
j∈A hi j fi , j ))∑r

i=1 ni
≥ αb

r∑
i=1
(xy + (

∑
j∈A

jhi j )(ni − x )) ≤ tb
r∑
i=1

ni∑
j∈A

hi j = 1 ∀i = 1, 2, . . . , r

hi j ∈ {0, 1} ∀j ∈ A, ∀i = 1, 2, . . . , r

(2)

The objective function is the total number of answers to be

collected, which should be minimized. The first constraint en-

sures that the overall accuracy is same or better than that of the

baseline approach (here αb is acc(V ,pb )). The second constraint

ensures that the total cost is no more than that of the baseline.

The third constraint ensures that for each value, only one indica-

tor variable is equal to 1. Finally, we solve the above ILP problem

using the Gurobi solver [1], and return any solution found to the

user, as the crowdsourcing plan p to be executed. We have
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Proposition 5.1. Let tmin and tmax be the minimal and max-
imal number of answers that the user wants to solicit for each ques-
tion. Let tb be the number of answers that the baseline solution so-
licit for each question, andx be the number of questions that we sam-
ple per value for the difficulty estimation step. If tmin ≤ tb ≤ tmax
and tb ≥ x , then Equation 2 always has at least one solution.

Solving Problems T2 −T5: So far we have discussed solving

problem T1. Problems T2, T4, and T5 can be transformed simi-

larly. For T2, we only need to change the objective to maximize

acc(V ,p) (which is the left side part of first constraint in problem

T1). ForT4 (orT5), we only need to replace the estimated baseline

accuracy (or cost) with the given accuracy (or cost) threshold

from problem T1 (or T2) and remove the unnecessary constraint

on cost (or accuracy).

Solving T3, which maximizes minvi ∈V acc(vi ,p), is a bit more

involved. Let z be the minimum value accuracy among values in

V , then the objective function of the transformed optimization is

simply to maximize z, and it must add a constraint for each value

vi in V to ensure the accuracy of vi is at least z (Constraint 3 in
Equation 3). Therefore, we formulate problem T3 as

maximize

z ,hi j∀j∈A,
i=1,2, . . .r

z

subject to

∑r
i=1(x + (ni − x )(

∑
j∈A hi j fi , j ))∑r

i=1 ni
≥ αb

r∑
i=1
(xy + (

∑
j∈A

jhi j )(ni − x )) ≤ tb
r∑
i=1

ni

x + (ni − x )(
∑
j∈A hi j fi , j )

ni
≥ z ∀vi ∈ V∑

j∈A

hi j = 1 ∀i = 1, 2, . . . , r

hi j ∈ {0, 1} ∀j ∈ A, ∀i = 1, 2, . . . , r

(3)

We have described how to solve problems T1 −T5 in the cases

where they involve the set of all values V . It is easy to see that

these problems can be solved in a similar fashion if they involve

only a subset of values S ⊆ V .

Using the Ranking to Adjust Worker Accuracies: Recall

that for each value vi ∈ V , we have obtained xy answers from

the crowd, and have estimated the worker accuracy for vi as ai ,
the fraction of the xy answers that are correct.

However, ai is often not a good estimation of the true worker

accuracy for vi , because the set of xy answers is often small (e.g.,

x = 4 and y = 5 for 20 answers total). Thus, we seek to improve

these estimations, using the ranking K . Our key idea is that if

vi is ranked higher than vj , thus being perceived as being more

difficult, then the worker accuracy for vi should be no higher

than that of vj . If this is not the case, then we can adjust such

worker accuracies so that they become more consistent with the

ranking K .
Specifically, suppose K assigns to each value vi ∈ V a rank

ki ∈ [1, r ], where a smaller ki indicates a value closer to the

top of the ranked list. Then we model the task of improving the

worker accuracies ai ’s as the following optimization problem:

minimize

z1 ,z2 , . . .,zr

r∑
i=1
(zi − ai )2

subject to 0 ≤ zi ≤ zj ≤ 1 ∀i , j ∈ [1, r ] s.t. ki < kj

(4)

Here zi is the improved worker accuracy for value vi , and the

cost function is the sum of the squares of zi − ai (also known

as L2 cost function). Its constraint ensures that each value has

the same or less worker accuracy than any easier value. This

Table 1: An example of handling ambiguous colors.

model is a simple Isotonic Regression problem, which always has

a solution. It can be efficiently solved in O(r ) time [23], where r
is the number of values. We solve it using Gurobi [1]. We then

set ai = zi and use ai ’s as the worker accuracies in formulating

ILP problems, as discussed earlier in this section.

6 MANAGING AMBIGUOUS VALUES
As discussed in Section 1, in practice, there are many cases when

the value for the target attribute is inherently ambiguous, such

as “desert sand” and “arctic white”. In such cases even the expert

has trouble determining what should be the correct answer to

the question, let alone asking the crowd workers. Such cases are

surprisingly common, and no existing work has addressed them,

as far as we can tell.

In this paper we provide a simple yet effective solution to this

problem, based on what we have seen working well in industry.

Briefly, we ask the expert E to first create a taxonomy Z of only

unambiguous values, such as the one in Figure 1. Then the ex-

pert E examines each value v in V (the set of all values for the

target attribute in the data set D). If E judges v to be inherently

ambiguous, E should map v to a valuem(v) in Z .

Example 6.1. Table 1 shows a set of values (on the left side of the
figure) that are ambiguous. The expert can map “Arctic White” to
node “White” in the taxonomy, “Chocolate Cosmos” to “Burgundy”,
and so on.

A question such as “is the color of this product indeed choco-

late cosmos?” is then transformed into “is the color of this product

indeed burgundy?”, which is unambiguous for crowd workers to

answer.

7 EMPIRICAL EVALUATION
We now evaluate our solution. First, we crawled online sources

to obtain the three datasets shown under “Datasets A” in Table 2.

Their schemas are shown at the top of the table, with the target

attribute underlined. Column “# Items” lists the number of data

items in each dataset, and column “# Values” lists the number of

values for the target attribute.

Since it would be too expensive to crowdsource all items in

all datasets, we downsample all three datasets (using stratified

sampling in which for each value of the target attribute, we

randomly retain only 20% of the data items with that value). The

new datasets are listed under “Datasets B” in the same table. Our

experiments with real crowdworkers are performed on these new

datasets. We used Amazon Mechanical Turk for crowdsourcing,

and used common turker qualifications, such as allowing only

turkers with at least 100 approved HITs and 95% approval rate.

7.1 Learning to Rank
We first examine the performance of learning to rank. Recall

that for each dataset, we sample x questions for each value, and

then solicit y answers for each question. Thus, the expert must

provide golden answers for x |V | questions (where V is the set of

319



Table 2: Datasets for our experiments.

Products (title, description, picture, price, color)

Courses (title, description, department, #credits, subject)

Apparel (title, description, style, size, picture, category)

Datasets A Datasets B
# Items # Values # Items # Values

Products 10,869 63 2,131 57

Courses 7,583 148 1,395 133

Apparel 3,480 12 690 11

Table 3: Evaluating the quality of the rankings.

WAK VChecker
Precision Recall F1 Precision Recall F1

Products 71.97 61.33 66.22 68.64 68.47 68.56

Courses 74.81 51.46 60.98 66.71 64.46 65.57

Apparel 76.67 63.89 69.70 72.22 72.22 72.22

all values for the target attribute), and the crowd must provide

xy |V | answers. So it is highly desirable that we minimize these

two quantities, to minimize the workload of the expert and the

crowd workers.

For our current three datasets, (x,y) are (4, 5), (5, 5), (5, 5) for
Products, Courses, and Apparel, respectively. Our iterative ex-

pansion process (to find x and y) converged for Products and

Courses. These results suggest that indeed VChecker spends rel-

atively little expert and crowd effort to compute the difficulty

scores.

Next, we examine the quality of the ranking K of the values

that we have obtained. To do so, we need a “golden” ranking K∗.
We obtain K∗ as follows. First, for each value v , we collect Av ,
the set of all answers obtained from the crowd for all questions

involving v . Since we have obtained at least 9 answers for each

question, this is usually a large number (in the hundreds). Next,

we have identified the correct answer for all questions in our

datasets, so we can compute the worker accuracy for v as the

fraction of answers inAv that is correct. SinceAv is a large set of

answers, we take this worker accuracy to be the golden worker

accuracy. Finally, we sort the values in decreasing order of these

golden accuracies, to obtain a golden rank K∗ of the values, in
decreasing order of difficulties.

We now compare ranking K with K∗. Direct comparison turns

out to be difficult, because we often have two values vi and vj
such thatvi is ranked abovevj inK and the reverse applies inK∗,
yet their difficulty scores differ by less than 0.01, say. In such cases,

where the difficulty scores differ by less than a small ϵ threshold,

we say the two values are not comparable. We translate ranking

K∗ into a set of S(K∗) of all (vi ,vj ) pairs that are comparable,

and translate ranking K into a similar set S(K).
Table 3 compares these sets. Consider the last three cells of the

first row (the cells under “VChecker”). The cell under “Precision”

is 68.64%, meaning 68.64% of pairs in S(K) appear in S(K∗). The
cell under “Recall” means 68.47% of pairs in S(K∗) appear in
S(K). These two numbers produce a F1 score of 68.56%. Thus,

for Products, the ranking K approximates the golden rank K∗
quite well, with high precision and recall (though there is still

room for improvement). Similar results are shown for Courses

and Apparel.

Recall that the current popular solution in industry uses the

average worker accuracy to rank the data values. Table 3 shows

Table 4: Evaluating the generated explanations.

Values
Explanations
by VChecker

Explanations
by Expert

# Compatible
Explanations

P.Denim 2Ab,2Ac,2B,2C 2A,2C 3 {2Ab,2Ac,2C}

P.Brown 1,2A,2Ab,2B,2C 1C,2A,2Bc,2C 5 {1,2A,2Ab,2B,2C}

P.Turquoise 2A,2B,2C 2Ab,2Ac,2Bc,2C 3 {2A,2B,2C}

C.German 2A,2B,2C 2A,2Bc,2C 3 {2A,2B,2C}

C.Zoology 2A,2C 2A,2B,2C 2 {2A,2C}

C.Dance 1A,1Ab,2A,2C 1A,2C 3 {1A,1Ab,2C}

A.Tanks 2Aa,2B,2Ba,2Bb,2C 2A,2B,2C 5 {2Aa,2B,2Ba,2Bb,2C}

A.Underwear 2A,2B,2C 2Bc,2C 2 {2B,2C}

A.Socks 2A,2C 2C 1 {2C}

Table 5: VChecker vs. the UCS baseline solution.

Dataset tb
Cost Accuracy

UCS VChecker Reduction UCS VChecker

Products

3 6,393 4,435 30.6 96.10 95.53

5 10,655 5,961 44.1 96.89 96.03

7 14,917 7,585 49.2 97.27 96.18

9 19,179 8,941 53.4 97.49 96.32

Courses

3 4,185 4,063 2.9 95.94 96.08

5 6,975 5,393 22.7 96.83 97.18

7 9,765 6,639 32.0 97.17 97.60

9 12,555 7,715 38.6 97.56 97.69

Apparel

3 2,070 2,016 2.6 97.60 97.62

5 3,450 2,384 30.9 98.03 97.82

7 4,830 2,866 40.7 98.36 97.97

9 6,210 3,202 48.4 98.84 98.02

that the ranking produced by this solution is worse than the

VChecker ranking (see the first three columns of the table, under

“WAK”, shorthand for “worker accuracy-based ranking”, which

show lower F1 values). This result suggests that VChecker is

indeed able to exploit additional information such as the response

time and the worker disagreement to obtain a better ranking of

value difficulties than the current existing solution.

7.2 Generating Explanations
To evaluate our explanation generator, for each dataset we select

3 values in the top part of the ranking K , then ask for their expla-

nations. For comparison purposes, we also ask a domain expert

to manually generate explanations, after carefully examining all

the answers solicited from the crowd.

Table 4 lists the explanations for VChecker vs those generated

by the experts. “2Ab” for example is the explanation at node

“2.A.b” in the taxonomy of explanations in Figure 3 (“v is indeed

difficult because it is unfamiliar”). The table shows that the two

sets of explanations share large overlaps (see the last column of

the table), suggesting that VChecker is effective in generating

explanations to explain why a value is considered difficult.

7.3 Finding Good Crowdsourcing Plans
We now show that VChecker can find good crowdsourcing plans

for a variety of problem types. Table 5 compares VChecker to

the baseline plan of soliciting the same number tb of answers for

each data value. We call this plan UCS, shorthand for “uniform

crowdsourcing”.

To explain, consider the third row of this table. It shows that

for dataset Products, if UCS solicits tb = 3 answers per question,

then it incurs a total crowdsourcing cost of 6,393 answers. If
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Table 6: VChecker vs UCS in solving problem T3.

Dataset Min Value Accuracy Avg Value Accuracy
UCS VChecker UCS VChecker

Products 68.45 83.33 92.34 96.11

Courses 72.45 74.68 96.11 96.81

Apparel 92.23 95.58 97.46 98.30

we solve the CS problem T1 (as described in Section 5.1; we

experiment with other CS problem types below) to find a better

CS plan, which would minimize this cost while keeping accuracy

at least equal or better than that of UCS, then the cost of this new

plan (listed under column “VChecker”) is 4,435. This produces

a reduction of 30.6% in cost. The last two cells of this row show

that the accuracies of UCS and VChecker are comparable (96.1

vs 95.53)
1
. (We obtained these accuracy numbers by executing

both plans on Amazon Mechanical Turk.) Subsequent rows are

similar, but for different values of tb .
The table shows that VChecker can significantly reduce the

cost of the baseline solution UCS, by 22.7-53.4% in all cases, except

two cases where the reduction is a more modest 2.6% and 2.9%. It

also shows that the accuracy of VChecker is comparable to that

of UCS (with the difference in the range [-1.17%, 0.43%]).

Solving Other Types of CS Problems: Earlier we have shown

how VChecker solves CS problems of typeT1. We now show that

VChecker is effective in helping users solve other types of CS

problems.

In Section 5.1 we discuss problem T3, where the user wants to
improve the accuracies of the values across the board as much

as possible, while keeping the overall accuracy at least as high

as that of the baseline plan pb and keeping the overall cost at

most as high as that of pb . The goal is to return the plan p that

maximizesminvi ∈V acc(vi ,p), subject to acc(V ,p) ≥ acc(V ,pb )
and cost(V ,p) ≤ cost(V ,pb ).

Table 6 shows how well VChecker performs for this problem.

The column “UCS” shows the minimal value accuracy (i.e., the

lowest accuracy among those of all values) when it solicits 3

answers for each question. The column “VChecker” shows that

VChecker is able to improve this minimal accuracy significantly,

while keeping the cost no higher than the cost of UCS. The last

two columns show that even the average value accuracy (i.e.,

averaged over all values) of VChecker is higher than that of UCS.

In Section 5.1 we also discuss the problem of maximizing the

accuracy of k most difficult values, as taken from the ranking K .
Table 7 shows that VChecker is effective for solving this problem,

improving the accuracy of the top 5 most difficult values per

dataset significantly.

7.4 Additional Experiments

Sensitivity Analysis: In the current VChecker system we set

xmax = 5 and ymax = 5, meaning that the iterative exploration

process (see Section 3.2) never goes beyond these values. Figure

4 shows how iterative exploration is sensitive to varying these

values. It shows that this process converges between 3 and 6

for all three datasets, suggesting that setting the values to 5 is a

reasonable choice.

1
When solving the ILP problem, we specified the constraint that VChecker has the

same or better accuracy than UCS. When executing the found plan on Mechanical

Turk, however, this constraint may not hold, due to spammers, careless workers,

etc. Nevertheless, our experiments show that the accuracies of VChecker and UCS

differ by a very small range.

Table 7: Maximizing accuracy of 5 most difficult values.

Dataset Values Value Accuracy
UCS VChecker % Improved

Products

Coral 68.45 83.33 14.88

Denim 81.07 100.00 18.93

Taupe 76.96 100.00 23.04

Brown 95.55 97.92 2.37

Camel 98.52 100.00 1.48

Courses

La Follette School of Pub-

lic Affairs (PUB AFFR)

78.04 87.50 9.46

Agronomy (AGRON-

OMY)

96.13 100.00 3.87

Geological Engineering

(G L E)

93.45 100.00 6.55

Civil and Environmental

Engineering (CIV ENGR)

97.11 100.00 2.89

German (GERMAN) 87.22 96.90 9.68

Apparel

Underwear 98.43 100.00 1.57

Tanks 92.23 100.00 7.77

Pants 94.72 96.85 2.13

Socks 96.87 96.90 0.03

Swimwear 99.34 97.35 -1.99

Figure 4: Convergence in iterative exploration.

Managing Ambiguous Values: Finally, we briefly discuss ex-

amples of managing ambiguous values. In our experiments it

turns out that Products has ambiguous values. Specifically, it has

a total of 173 values, 110 of which are considered ambiguous and

have to be mapped to 63 values in a taxonomy of unambiguous

values. Examples of such mappings include Arctic White mapped

to White, Fluorescent Orange mapped to Orange Red, and Saddle

Brown mapped to Brown. This clearly suggests that managing

such ambiguous values is critical in real-world verification of

attribute values.

8 RELATEDWORK
Data cleaning has received enormous attention (e.g., [2–4, 6, 9,

11, 12, 16, 32–37, 40–45, 50]). See [5, 7, 10, 46] for recent tutorials,

surveys, and books. However, as far as we can tell, no published

work has examined the problem of manually detecting data errors

in categorical attributes, as we do in this paper.

In recent years, crowdsourcing (CS) has received significant

attention and has also been applied to many data cleaning prob-

lems (e.g., [8, 14, 15, 20, 22, 25, 28, 30, 31, 47, 49]). Among these,

the work [14] also discusses the idea of adapting crowdsourcing

strategies to the difficulties of data regions. However, it consid-

ers this idea in the setting of crowdsourcing for active learning.

Further, it does not consider learning to rank the data regions,

nor debugging the ranking, as we do this paper.

A critical challenge in CS is that the quality of workers varies.

Researchers have proposed many methods to differentiate work-

ers, such as filtering out spammers [25, 47], measuring the relia-

bility and quality of workers [19, 22, 27, 39], and finding the right

group of workers for a given task [17]. These methods usually
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assume that all the questions are of the same difficulty. In con-

trast, VChecker utilizes the difficulty heterogeneity among the

questions while assuming that all workers have the same quality.

VChecker uses majority voting to aggregate the collected

answers of each question. Many other aggregation methods

have been proposed [19, 22, 27, 39]. They usually assign higher

weights to answers from workers with good quality, then per-

form weighted aggregation. Many build probabilistic models

[22, 39] to iteratively update the estimation of worker quality

and weights. However, as far as we can tell, there is no published

work yet showing conclusive evidence that these methods can

achieve higher accuracy than majority voting, especially when

we can only collect a small number of answers per question due

to limited budget, as in our setting here.

Researchers also propose other methods to reduce CS cost, e.g.,

early-stopping strategies [13, 21, 29]. They stop collecting more

answers for a question when they realize that collecting more

answers will not change the aggregated answer. Such methods

can also be used in VChecker to further reduce our cost, when

we use the best plan returned by VChecker to crowdsource all

the questions.

Finally, most CS works only collect answers from the crowd.

[26] also collects the self-reported confidence from workers to

improve the accuracy of aggregated answers. However, they

also notice that workers have the tendency to overestimate or

underestimate their confidence. Recently [18] proposes to collect

the time spent by workers to measure CS effort. VChecker also

collects the response times, but use these (and other data) to

estimate question difficulty.

9 CONCLUSIONS
Detecting data errors completely manually is a ubiquitous prob-

lem in data cleaning, yet it has not received much attention. In

this paper we have shown that the current common solution of

crowdsourcing the above problem using the same number of an-

swers per question can be improved by detecting the difficulties

of data regions, then adjusting the number of answers required

for each region based on its difficulty. We showed that current

work using this idea has several significant limitations. We pro-

posed VChecker, a novel solution to address these limitations,

and described extensive experiments with three real-world data

sets that demonstrate the promise of our solution. For future

work, we plan to improve VChecker in multiple ways, including

developing solutions to partition the input data into regions, bet-

ter solutions to estimate and rank the data regions’ difficulties,

and better solutions to generate explanations for domain experts.
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ABSTRACT

Millions of videos are ubiquitously generated and shared ev-
eryday. Releasing videos would be greatly beneficial to social
interactions and the community but may result in severe privacy
concerns. To the best of our knowledge, most of the existing pri-
vacy preserving techniques for video data focus on detecting and
blurring the sensitive regions in the video. Such simple privacy
models have two major limitations: (1) they cannot quantify and
bound the privacy risks, and (2) they cannot address the infer-
ences drawn from the background knowledge on the involved
objects in the videos. In this paper, we first define a novel privacy
notion ϵ-Object Indistinguishability for all the predefined sensi-
tive objects (e.g., humans and vehicles) in the video, and then
propose a video sanitization technique VERRO that randomly
generates utility-driven synthetic videos with indistinguishable
objects. Therefore, all the objects can be well protected in the
generated utility-driven synthetic videos which can be disclosed
to any untrusted video recipient. We have conducted extensive
experiments on three real videos captured for pedestrians on the
streets. The experimental results demonstrate that the generated
synthetic videos lie close to the original video for retaining good
utility while ensuring rigorous privacy guarantee.

1 INTRODUCTION

Millions of videos are ubiquitously generated and shared every-
day via video surveillance devices, traffic cameras, smart phones,
among others. Sharing such video data would greatly benefit hu-
man interactions and the community. For instance, surveillance
cameras in buildings capture possible threats to the corporate
assets (such videos are shared for analysis in many cases [44]).
Traffic videos contribute to monitoring the street traffic and traf-
fic analysis applications such as vehicle counting and traffic flow
analysis [3] as well as pedestrian behavior analysis.

However, these scenarios have often raised severe privacy con-
cerns since human faces, bodies, identities, activities and other
sensitive information can be recorded in such videos [8, 44].
Thousands of vehicles are involved in a traffic monitoring video,
and drivers may not be willing to share their vehicle plate, make,
model, locations and trajectories [2]. In addition, video surveil-
lance systems monitor specific areas of interests with the follow-
ing goals: law enforcement, personal safety, resource planning,
and security of assets [44]. While ensuring safety and deterrence,
it may also compromise the privacy of innocent individuals. Thus,
privacy preserving solutions for videos have attracted significant
interests recently.

© 2020 Copyright held by the owner/author(s). Published in Proceedings of the
23rd International Conference on Extending Database Technology (EDBT), March
30-April 2, 2020, ISBN 978-3-89318-083-7 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

To the best of our knowledge, most of the existing privacy
preserving techniques for addressing the privacy concerns in
video data (e.g., [1, 6, 20, 24, 42]) focus on detecting and blur-
ring the sensitive regions in the videos (e.g., faces and bodies).
Such simple privacy models have two major limitations: (1) they
cannot quantify the bound of privacy risks, and (2) they cannot
address the inferences drawn from the background knowledge on
the involved objects. For instance, the video recipient may have
known that an individual lives near the scene, and he/she usually
wears red clothes as well as likes running at a specific side of the
street. In this case, even if all the humans can be detected and
blurred before video disclosure, they can be readily re-identified
by the adversary with the above background knowledge.
ϵ-Object Indistiguishability. To tackle such critical limitations,
we define a novel privacy notion for protecting the objects (and
the corresponding individuals) in the videos – “ϵ-Object Indistin-
guishability”, which is extended from the emerging differential
privacy in local setting [4, 10, 16]. Specifically, in the past decade,
the notion of differential privacy has emerged essentially as the
de facto privacy standard for bounding the privacy risks while
sanitizing different data [7, 13, 25]. Adversaries cannot infer if a
certain individual is included in the input or not from the noisy
aggregated result (perturbed by a trusted aggregator) regardless
of their background knowledge [13]. More recently, local dif-
ferential privacy (LDP) models have been proposed to privately
perturb data by each individual such that the collected (random)
data from different individuals can be indistinguishable. Inspired
by the LDP models, our privacy notion also ensures indistin-
guishability for all the objects in the randomized output video,
and thus the perturbed video can be safe to be disclosed to any
untrusted video recipient.

Recall that videos differ from many other data (e.g., statistical
databases [13], location data [32], and search logs [26]). A local
video may include numerous objects corresponding to multiple
different individuals, e.g., many pedestrians are recorded in a sin-
gle video, and many vehicles are recorded in the same video. A
video includes the “local data” of many individuals (e.g., humans)
which will be shared to the untrusted recipients via the video
owner. Thus, the primary difference between ϵ-Object Indistin-
guishability and the original definition of LDP [4, 10, 16] is that
the video owner locally perturbs data for all the objects rather
than letting the objects execute perturbation (see Figure 1).
Contributions. With the privacy notion of ϵ-Object Indistin-
guishability, we propose a video sanitization technique that ran-
domly generates a synthetic video by the video owner (e.g., the
agency which captures the video) while ensuring ϵ-Object Indis-
tinguishability and good utility.

Specifically, we design a novel random response scheme (by
optimizing the RAPPOR [16]) that randomly generates different
objects in the video by maximizing the utility of random response
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Figure 1: VERRO: Ensuring Object Indistinguishability in

the Video Data Sanitization

[16] applied to the objects. Thus, we name our proposed tech-
nique as “Video with Randomly Responded Objects (VERRO)”. As
a result, we boost the utility of VERRO in two folds: (1) for each
object, optimizing its random response in different frames, and (2)
interpolating the trajectories of objects in the video [17] (without
additional privacy leakage [14], see Section 4). Thus, the syn-
thetic video can be disclosed to any untrusted recipient. Finally,
we summarize the major contributions of this paper as below:

• To the best of our knowledge, we define the first rigorous
privacy notion for all the sensitive objects (predefined by
the video owner) in the video data, which ensures that all
the objects are indistinguishable in the randomized output
video against arbitrary background knowledge.
• We propose a novel video sanitization technique VERRO
that randomly generates utility-driven synthetic videos
in which any two sensitive objects are ϵ-Object Indistin-
guishable.1 The video owner can also specify its privacy
budget ϵ for all the objects in its video.
• The proposed novel random response scheme (by optimiz-
ing RAPPOR [16]) in VERRO that optimally picks frames
of the video to randomly generate objects (while satisfying
indistinguishability). The utility of the synthetic video is
further improved using computer vision techniques.
• We have conducted extensive experiments on real videos
to validate the performance of VERRO. The experimental
results demonstrate that VERRO can effectively generate
private synthetic videos with high utility.

The remainder of this paper is organized as follows. Section
2 introduces some preliminaries. Section 3 illustrates the first
phase of VERRO and analyzes the privacy guarantee. Section 4
presents the second phase of VERRO (for further boosting the
utility) and its privacy guarantee. Section 5 gives discussions for
VERRO. Section 6 demonstrates the experimental results. Section
7 and 8 present the literature and conclusions.

2 PROBLEM FORMULATION

In this section, we first describe the adversary model, then define
our privacy notion, and finally provide a general overview of our
proposed approach.

2.1 Adversary Model

Denote a video asV which is captured by a video owner, e.g., a
hospital or a company equipped with CCTV surveillance, and an
agency which captures the video on the street. VideoV (all the
frames) includes a set ofn sensitive objectsO = {O1,O2, · · · ,On }

(e.g., humans and vehicles). Assume that the video owner would

1As formally defined in Definition 2.1, ϵ -Object Indistinguishability ensures a similar
privacy guarantee as ϵ -local differential privacy [4, 10, 16].

like to share V to an external party for analysis (viz. the ad-
versary). To ensure privacy, our proposed VERRO (randomly)
generates a synthetic videoV∗ which is close toV , such that:
• Each sensitive object in all the frames satisfies ϵ-Object
Indistinguishability – the adversary cannot distinguish
any two objects from the output synthetic videoV∗ with
arbitrary background knowledge.
• The synthetic videoV∗ retains good utility (close toV).

In VERRO, we assume that the adversaries can possess arbi-
trary background knowledge on each object (e.g., object contents,
trajectories, at-scene times, and gathering groups of objects). To
retain the output utility, VERRO does not change the background
scene(s), but the privacy model can break the linkage between
each object and the background scene(s) via indistinguishability.

With privacy guarantee for all the objects (making them in-
distinguishable), VERRO regularly generates synthetic videos
for videos including sensitive objects w.r.t. multiple individu-
als (e.g., pedestrians and vehicles). In case that a video includes
only one sensitive object, the adversary still cannot re-identify
the object (see Section 5). In addition, VERRO only addresses
the visual privacy concerns, assuming that the adversary cannot
identify objects from the audio or audio is not captured (e.g.,
traffic monitoring and video surveillance).

2.2 Privacy Notion

2.2.1 Traditional Privacy Model. VideoV includes multiple
sensitive objects O1, . . . ,On , which can be detected and tracked
in all the frames [48, 49]. Specifically, it first detects all the sen-
sitive objects in each frame with the detection algorithms (e.g.,
HOG for human [51] and SVM for vehicles [22]). Each detected
object can be accurately tracked with the same ID if they highly
overlap in multiple frames.

The traditional privacy models are defined to blur all the de-
tected objects [1, 6, 20, 24, 42]. An alternative solution could be
replacing the detected objects with “synthetic objects” [28, 43].
Each object can be replaced by a unique synthetic object: for in-
stance, a red synthetic human and a purple synthetic human can
be used to represent two different pedestrians in all the frames in-
volving them. Then, the inferences and re-identification visually
from the objects can be greatly mitigated.

2.2.2 ϵ-Object Indistinguishability for Sensitive Objects. Recall
that only replacing the objects with synthetic objects in the video
cannot address the re-identification based on the adversaries’
background knowledge (as discussed in Section 1). Thus, we need
to ensure indistinguishability for not only objects themselves
(can be achieved by synthetic objects) but also their moving
trajectories [50] in the video.

To this end, inspired from the indistinguishability provided
by the ϵ-LDP, we define a novel privacy notion ϵ-Object Indistin-
guishability by considering each object’s trajectory in the video
(coordinates at different frames) as its “local data”. Specifically,
in the standard LDP definition [4, 10, 16], there are a set of users,
each of which has its own data. After each user locally perturbs
its data, the obfuscated output can be directly disclosed to any
untrusted recipient/aggregator, where the randomized data col-
lected from any two different users are indistinguishable [10, 16].
Migrating the LDPmodel to the objects in any videoV , we define
the ϵ-Object Indistinguishability as below:

Definition 2.1 (ϵ-Object Indistinguishability). A randomization
algorithm A satisfies ϵ-Object Indistinguishability, if and only if
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Figure 2: VERRO for Utility-Driven Synthetic Video Generation with Object Indistinguishability

for any two input objects Oi ,O j ∈ O in the input videoV , and
for any output object of A in the synthetic videoV∗ (denoted
as y), we have Pr [A(Oi ) = y] ≤ eϵ · Pr [A(O j ) = y].

Similar to ϵ-LDP [16], ϵ-Object Indistinguishability also focuses
on the indistinguishability of randomizing any two objects, rather
than the indistinguishability of randomizing any two neighboring
inputs (whether any object is included or not included in the
input) in traditional differential privacy [13]. Privacy budget ϵ
decides the degree of indistinguishability (identical to LDP [16]).

Definition 2.1 guarantees that the randomly perturbed output
of any two objects in V (both the object contents and the tra-
jectories in all the frames) are ϵ-indistinguishable inV∗. It also
ensures plausible deniability for every object [5]. Since ϵ-Object
Indistinguishability also requires all the objects to be visually
indistinguishable (object contents), VERRO randomly assigns
synthetic objects (e.g., the same shape but different colors) to
replace the original distinct objects while generating the syn-
thetic videoV∗. The synthetic objects are generated and placed
by considering the distance of the object to the camera (e.g., the
synthetic object size is larger if getting closer to the camera) [31].

2.3 VERRO Framework

The major components of VERRO (see Figure 2) consist of:
(1) Preprocesssing: all the objects are detected and tracked,

and background scene (for each frame) is extracted using
computer vision techniques [11, 48, 49].

(2) Phase I: for each object, its presence or absence in dif-
ferent frames/segments of the video are randomly gener-
ated (by random response) to be indistinguishable. Before
executing random response, VERRO reduces the frame
dimension in the video by detecting the key frames. Then,
the utility can be improved by allocating optimal budgets
for different dimensions. Furthermore, we also formulate
a utility maximizing random response problem (optimiz-
ing RAPPOR [16]) to retain the optimal object presence
information after Phase I. Note that Phase I satisfies ϵ-
Object Indistinguishability: all the objects’ presence in all
the frames are indistinguishable (see details in Section 3).

(3) Phase II: with the randomly generated presence/absence
information for each object, VERRO generates the syn-
thetic video by inserting the synthetic objects into the
video (background scene(s)). Specifically, the coordinates
(where to insert the synthetic objects) are assigned, and
computer vision techniques are applied to interpolate ob-
ject moving trajectories between two assigned coordinates
in the synthetic video. We also shown that Phase II does

not leak any additional information (as a post-processing
step [14]), and then VERRO satisfies ϵ-Object Indistin-
guishability (see details in Section 4).

3 PHASE I: OPTIMAL OBJECT PRESENCE

As the “local data” of each object (e.g., a pedestrian or vehicle)
in the video V , the object trajectory includes its presence or
absence information in each frame and the coordinates in the
frame (if present). In this section, we illustrate the Phase I of
VERRO that first generates indistinguishable object presence.

3.1 Poor Utility with Random Response

We first define a bit vector for each object to indicate if such
object is included in different frames or not:

Definition 3.1 (Object Presence Vector). Given videoV which
includes m different frames F1, . . . , Fm and n distinct objects
O = {O1, ...,On }, whether each object Oi , i ∈ [1,n] is present in
frame Fk ,k ∈ [1,m] or not (allm frames) can form a bit vector:
Bi = (b

1
i , ..,b

m
i ) ∈ {0, 1}

m for object Oi .

It has been proven that a classic randomized response (RR)
technique (e.g., RAPPOR [4, 16]) can be adapted to ensure ϵ-LDP
for locally randomizing bit vectors. Similarly, a naive solution
of ensuring ϵ-Object Indistinguishability for the object presence
vectors is to directly the random response mechanism (we will
discuss how to optimize the utility in Section 3.2 and 3.3). For each
object Oi ∈ O, i ∈ [1,n], if object Oi exists in frame Fk , we
set bki = 1,k ∈ [1,m]. Otherwise, bki = 0 holds in the vector
Bi . Then, we flip one bit in vector Bi , i ∈ [1,n] with a certain
probability to report the true value. Then, all the perturbed bits
in the object presence vector Bi can be combined as the output
object presence vector for objectOi . Thus, the vectors B1, . . . ,Bn
(of all the objects) can be indistinguishable. Algorithm 1 shows the
details of directly applying random response for object presence.

Algorithm 1 Random Response for Object Presence [16]
1: detect all the objects O = {O1, . . . ,On } in V
2: for each Oi , i ∈ [1, n] do
3: collect the object presence vector Bi = (b1i , .., b

m
i ) in V

4: for each frame Fk , k ∈ [1,m] do
5: equally allocate budget ϵ/m to frame Fk
6: random response for bit bki with the probability eϵ/m

1+eϵ/m
7: end for

8: Bi ← (b1i , ..., b
m
i )

9: end for

10: Return ∀i ∈ [1, n], Bi
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Theorem 3.2. Algorithm 1 randomly generates object presence

vectors for objects with ϵ-Object Indistinguishability.

Proof. ϵ-Object Indistinguishability can be proven by follow-
ing the proof of ϵ-LDP with random response [16]. Given the ob-
ject presence vectors Bi = {b1i , . . . ,b

m
i } and Bj = {b

1
j , . . . ,b

m
j }

of any two objects Oi ,O j ∈ O, for any possible output m-bit
vector y = (y1, . . . ,ym ), we have:

Pr [A(Bi ) = y]
Pr [A(Bj ) = y]

=
Pr (b1i = y

1)

Pr (b1j = y
1)
· · ·

Pr (bmi = y
m )

Pr (bmj = y
m )

(1)

Since each bit is allocated with an equal privacy budget ϵ/m,
the flipping probability would be eϵ/m

1+eϵ/m [16]. For k ∈ [1,m],

if bki = bkj (either 0 or 1), then Pr (bki =y
k )

Pr (bkj =y
k )

always equals 1. If

bki , b
k
j and bki = yk , thus we have:

Pr (bki = y
k )

Pr (bkj = y
k )
=

e
ϵ
m

1 + e
ϵ
m
· (1 + e

ϵ
m ) = e

ϵ
m (2)

Similarly, ifbki , b
k
j andb

k
j = yk , we have

Pr (bki =y
k )

Pr (bkj =y
k )
= e−ϵ/m .

Then, we have ∀k ∈ [1,m], Pr (b
k
i =y

k )

Pr (bkj =y
k )
≤ eϵ/m (equals one of 1,

eϵ/m and e−ϵ/m ). Combining allm bits, we have:

Pr [A(Bi ) = y]
Pr [A(Bj ) = y]

≤ eϵ (3)

Thus, the generated presence bit vectors satisfy ϵ-Object Indistin-
guishability. This completes the proof. □

Poor Utility. Although Algorithm 1 satisfies ϵ-Object Indistin-
guishability, the utility of synthetic video would be extremely low
since the total number of frames in a videom can be thousands
or more, and then the allocated budget for each frame would be
negligible. It destroys the utility of random response (i.e., RAP-
POR [16]). For instance, a vehicle occurs in 100 frames out of
a 1000-frame video, then the privacy budget for each frame is
ϵ/1000, which makes the flipping probability close to 0.5. Then,
each of the 1000 frames would have 50% probability to include
the vehicle (and other vehicles), then the objects in the video are
too random (extremely low utility at this time). Thus, we explore
an alternative solution for the video data in Section 3.2 and 3.3.

3.2 Dimension Reduction in the Video

Recall that the limited utility in Algorithm 1 results from the high
dimensions in the video (considering each frame as a dimension).
Most existing LDP techniques (e.g., RAPPOR [16], LDPMiner
[40], and PLDP [9]) have reduced the dimension (e.g., bloom filter
reduces the bits dimension for RAPPOR [16], top k frequent items
reduces the dimension of items in LDPMiner [40], and Johnson-
Lindenstrauss transform reduces the dimension of location data
[9]). In videos, since difference between two consecutive frames
is very small, we extract the key frames [12, 19, 30] out of m
frames fromV to reduce dimension in VERRO.

3.2.1 Key Frame Extration. In computer vision, many existing
key frame extraction algorithms have been proposed based on
the boundary method [19], motion analysis [12], clustering [30],
among others. Since algorithms based on clustering has been
shown to generate more accurate results [30], we integrate it into
VERRO for dimension reduction. The basic idea is to divide the
video into several groups of similar frames.

The algorithm [39] first transforms each pixel RGB value to
construct the HSV (hue, saturation, value) histogram for each
frame, and then calculates the pixel distribution in terms of hue,
saturation, value, respectively. Each cluster is initialized with
a new frame, and expanded by adding new consecutive frames
which are similar to the existing frames (measured by the HSV
histograms). After the clustering, each cluster includes a group
of consecutive frames, which can be considered as a segment
of the video. Finally, a key frame can be extracted from each
cluster/segment. The details are illustrated in Algorithm 2.

As a result, the key frame can be utilized to represent every
segment. Then, the m-bit object presence vectors (for all the
objects) can be reduced to ℓ-bit vectors. For instance, key frames
F1, . . . , Fℓ (where ℓ denotes the number of key frames, and ℓ ≪
m in general) are extracted fromV . Object Oi ’s presence vector
Bi can be reduced to B′i = (kb

1
i , · · · ,kb

ℓ
i ).

Algorithm 2 Segmentation and Key Frame Extraction
1: initialize the first segment S1 = F1, segment index i = 1
2: equally partition H , S , V value ranges to h, s and v parts
3: for each frame Fk , k ∈ [2,m] do
4: for each part ĥ, ŝ , v̂ in H, S, V do

5: construct the histograms H (ĥ), S (ŝ), V (v̂) in frame Fk
6: end for

7: SimH (Fk , Si ) =
∑h
ĥ=1

min{H (ĥ), Si [H (ĥ)]}

8: SimS (Fk , Si ) =
∑s
ŝ=1 min{S (ŝ), Si [S (ŝ)]}

9: SimV (Fk , Si ) =
∑v
v̂=1 min{V (v̂), Si [V (v̂)]}

{α , β , γ : weights for H, S, V; similarity threshold: τ }
10: if (α · SIH + β · SIV + γ · SIS ) ≥ τ then

11: Si ← Si ∪ Fk

12: else

13: i = i + 1 and initialize a new segment Si
14: Si ← Si ∪ Fk
15: end if

16: end for

17: for each segment Si do
18: compute the maximum frame entropy Entropy(F ):
19: max {−α ·

∑h
ĥ=1
[H (ĥ) logH (ĥ)] − β ·

∑s
ŝ=1[S (ŝ) log S (ŝ)] − γ ·∑v

v̂=1[V (v̂) logV (v̂)]}
20: extract the key frame with maximum entropy Fi in Si
21: end for

22: return all the segments and key frames

3.2.2 Random Response. After dimension reduction, random
response can be implemented based on the RAPPOR framework
[16] for each object. Each bit kbki in ℓ-bit vector of object Oi is
randomly flipped into 0 or 1 using the following rules:

kbki =


kbki , with the probability of (1 − f )

1, with the probability of f
2

0, with the probability of f
2

(4)

Theorem 3.3. The random response (with rules in Equation 4)

ℓ log( 2−ff )-Object Indistinguishability.

Proof. Again, object indistinguishability can be proven by
following the proof of LDP [16]. Specifically, the RAPPOR [16]
satisfies 2h log( 2−ff )-LDP with the output size of the hash func-
tion in the bloom filter h and the flipping probability f . Max-
imum difference sizes are 2h between two input values. Thus,
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the random response (with rules in Equation 4) make ϵ equal
to ℓ log( 2−ff ) since size difference in any two presence vector is
at most ℓ (by replacing the encoded bit vectors of bloom filter
as the object presence vectors in RAPPOR [16]), which satisfies
ℓ log( 2−ff )-Object Indistinguishability.

□

3.3 Optimizing RAPPOR for Object Presence

Although ℓ is far less thanm, the number of key frames ℓ may
still be large depending on the background scene(s), activity
motion and light density. To solve this, we can further reduce the
dimension by choosing a subset of key frames out of ℓ key frames
to allocate the privacy budget. Indeed, determining whether each
key frame is picked for allocating the privacy budget or not can
be formulated as an optimization problem (maximizing the utility

of generating the synthetic video using the random object presence

vectors in Phase II ).

3.3.1 Optimization Problem. For each key frameFk ,k ∈ [1, ℓ],
we define a binary variable xk ∈ {0, 1} to represent if key frame
Fk is picked for budget allocation or not. Then, the total number
of picked key frames is referred as

∑ℓ
k=1 xk . Per the Theorem 3.3,

we have the random response satisfies
∑ℓ
k=1 xk log(

2−f
f )-Object

Indistinguishability.
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Figure 3: Dimension Reduction, Utility Maximization and

Random Response

An example for dimension reduction, utility maximization
and random response is given in Figure 3. Considering the n
objects O1,. . . ,On , after dimension reduction, all the n object
presence vectors are reduced to n different ℓ-bit vectors. Our goal
is to accurately retain more objects in the video, thus we aim at
minimizing the distance between ∀i ∈ [1,n],B′i (extracted from
V) and ∀i ∈ [1,n],Ri (denoted as the ℓ-bit vectors by applying
random response to ∀i ∈ [1,n],B′i ).

Specifically, since ∀i ∈ [1,n],Ri are randomized bit vectors
(the kth entry in all the vectors are 0 if xk = 0), we should mea-
sure the difference between the expectation ∀i ∈ [1,n], E(Ri ) =
E[(R1i , . . . ,R

ℓ
i )] and B

′
i = (kb

1
i , . . . ,kb

ℓ
i ).

We first learn the expectation of Rki (the kth entry in Ri ). If
xk = 0, then ∀i ∈ [1,n],Rki = 0 hold. Thus, we have:

E(Rki ) = xk · [Pr (R
k
i = 1) · 1 + Pr (Rki = 0) · 0] (5)

There are two cases for Rki (in case of xk = 1):

(1) If kbki = 1, per Equation 4, we have E[Rki ] = 1 · [(1 − f ) ·

1 + f
2 · 0 +

f
2 · 1].

(2) If kbki = 0, we have E[Rki ] = 1 · [(1 − f ) · 0 + f
2 · 0 +

f
2 · 1].

Thus, the expectation can be summarized as following:
E(Rki ) =

f
2 , if xk = 1 and kbki = 0

E(Rki ) = 1 − f
2 , if xk = 1 and kbki = 1

E(Rki ) = 0, if xk = 0 and kbki = 0 or 1
(6)

The objective function can be formulated as:

min :
ℓ∑

k=1
[xk

n∑
i=1
|E(Rki ) − kb

k
i |] (7)

Furthermore, for accurately interpolating the objects in dif-
ferent frames in Phase II, the number of key frames picked for
budget allocation should be no less than 2. Therefore, we formu-
late the optimization problem as below:

min :
ℓ∑

k=1
[xk

n∑
i=1
|E(Rki ) − kb

k
i |]

s .t .

{
2 ≤

∑ℓ
k=1 xk ≤ ℓ

∀k ∈ [1, ℓ], xk ∈ {0, 1}

(8)

Detailing expectation E(Rki ) with the flipping probability, the
optimization problem can be converted to:

min :
ℓ∑

k=1
(xk |

n · f
2
− f ·

n∑
i=1

kbki |)

s .t .

{
2 ≤

∑ℓ
k=1 xk ≤ ℓ

∀k ∈ [1, ℓ], xk ∈ {0, 1}

(9)

3.3.2 Complexity and Solver. Since f and ∀k ∈ [1, ℓ],∀i ∈
[1,n],kbki are constants, ∀k ∈ [1, ℓ], | n ·f2 − f ·

∑n
i=1 kb

k
i | are

constants. Then, Equation 9 is a binary integer programming (BIP)
problem. Although solving the BIP problems can be NP-hard [27],
we can approximately solve Equation 9 using linear programming
(LP) since the objective function and the constraints are linear:
(1) letting the binary variable ∀k ∈ [1, ℓ], xk be continuous in
[0, 1], (2) solving the problem using standard LP solvers (e.g.,
the Simplex algorithm), and (3) in the optimal solution of the
LP problem, ∀k ∈ [1, ℓ], if xk ∈ [0, 0.5), we assign xk = 0; if
xk ∈ [0.5, 1] we assign xk = 1 as the approximated optimal
solution of the BIP problem.

3.3.3 Addressing Possible Privacy Leakage in Optimization.
Compared to randomly picking a number of key frames for bud-
get allocation, computing the optimal frames for budget allo-
cation may result in some minor privacy leakage since the to-
tal number of objects in the kth key frame

∑n
i=1 kb

k
i ,k ∈ [1, ℓ]

(which is used in the optimization) might be different. Such pri-
vacy leakage is generally minor due to a small sensitivity ∆ of
the object count in each frame (e.g., ∆ = 1 for protecting the
presence/absence of each object in every frame). Thus, it can
be addressed by injecting a small amount of generic Laplace
noise Lap( ∆ϵ ′ ) into

∑n
i=1 kb

k
i ,k ∈ [1, ℓ] before formulating the

optimization problem. Although adding such small amount of
noise may slightly deviate the optimality, this could guarantee
end-to-end indistinguishability (differential privacy). Since such
privacy guarantee is well studied in literature [13], we do not
discuss it in this paper due to space limitation.

3.4 Privacy Guarantee

After solving the optimization problem, as shown in Figure 3,
each of the picked key frames will be allocated with a privacy
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budget ϵ/
∑ℓ
k=1 xk . In the meanwhile, VERRO utilizes the op-

timal solution ∀k ∈ [1, ℓ], xk n to derive the optimal presence
vectors (

∑ℓ
k=1 xk -bit), denoted as B∗1, . . . ,B

∗
n . Next, random re-

sponse is applied to B∗1, . . . ,B
∗
n to generate output presence vec-

tors R1, . . . ,Rn .

Theorem 3.4. Phase I satisfies ϵ-Object Indistinguishability.

Proof. Phase I derives the presence bit vectors B∗i and B
∗
j for

any two objects Oi and O j after the optimization. Then, random
response is applied to B∗i and B

∗
j and generate random vectors Ri

and Rj . Per Theorem 3.3, Phase I satisfies ϵ-Object Indistinguisha-
bility where ϵ =

∑ℓ
k=1 xk ln

2−f
f (note that the privacy guarantee

for utility maximization has been discussed in Section 3.3.3). □

It is worth noting that the presence of objects in the remaining
(m −

∑ℓ
k=1 xk ) frames and the coordinates of the objects in allm

frames in the synthetic videoV∗ will be generated in Phase II.

4 PHASE II: VIDEO GENERATION

In this section, we illustrate the details of Phase II.

4.1 Background Scene(s)

As discussed in Section 2, video preprocessing includes detect-
ing/tracking objects and background scene(s) extraction. While
removing objects from digital images (e.g., each frame of a video),
the pixels within the objects are missing in the frame and need to
be reconstructed for the background scene(s). In VERRO, we uti-
lize an efficient algorithm [11] to fill the blank area by considering
both texture and structure.

First, the quality of the output image/frame highly depends
on the order of filling different parts of the blank areas. The
algorithm provides a filling strategy by prioritizing them using
the combination of the continuation of strong edges and high-
confidence surrounded pixels. The priority is computed for every
border patch, with distinct patches for each pixel on the boundary
of the blank areas. Then, we always start filling at the border
pixels with the highest priority.

Second, while filling the pixel p, the algorithm places it at
the centroid of a patch with certain size (e.g., 3 × 3). Then, we
traverse all the background pixels, and the centroid pixel of the
most similar patch from the source background region will be
filled inp, where the similarity is measured by the sum of squared
errors. Some reconstructed background scenes are demonstrated
in Section 6.

4.2 Randomly Generating Object Coordinates

Phase I generates indistinguishable presence information (in dif-
ferent frames) for all the objects. Next, we need to insert synthetic
objects into the background scene (each frame) to generate the
synthetic videoV∗. Specifically, we denote all the frames in the
synthetic videoV∗ as {F ∗1 , . . . , F

∗
m }, and the frames inV∗ cor-

responding to the original key frames as {F ∗1 , . . . , F
∗
ℓ
}. We then

discuss different cases of generating coordinates for the objects
in each frame.

4.2.1 Ri = ∅. If all the entries in any object presence vector
are 0, such random vector output Ri would result in object loss
(the synthetic video will lose one object), and it is unnecessary to
identify the coordinates for them in this case. We have evaluated
such utility loss in Section 6, and most of the objects can be
retained by VERRO in practice.

4.2.2 Ri , ∅. If there exists at least one non zero entry in
Ri , then an object will be inserted to the synthetic videoV∗. A
critical and challenging question is that where to insert the object.
We employ the coordinates of all the objects in the original video
V as “Candidate Coordinates” to generate the coordinates in
each frame of the synthetic video.

Specifically, in each key frame of the synthetic video ∀k ∈
[1, ℓ], F ∗k , the number of objects inserted into key frame F ∗k is∑n
i=1 R

k
i (derived in Phase I). Denoting the number of objects in

the kth key frame ofV as ck ,k ∈ [1, ℓ] where ck = 0 if xk = 0,
we thus have:
• Sufficient candidate coordinates: if

∑n
i=1 R

k
i ≤ ck , the num-

ber of required objects in F ∗k is no greater than the num-
ber of candidate coordinates in Fk . Then, VERRO ran-
domly picks

∑n
i=1 R

k
i out of ck candidate coordinates for∑n

i=1 R
k
i different objects in the background scene (frame

F ∗k ). Please see the left example in Figure 4.
• Insufficient candidate coordinates: if

∑n
i=1 R

k
i > ck , the

number of required objects in F ∗k is greater than the num-
ber of candidate coordinates in Fk . For instance, in the
right example in Figure 4, we expand the set of candidate
coordinates by adding the candidate coordinates in Fk ’s
neighboring frames in the same segment. Then, VERRO
randomly picks

∑n
i=1 R

k
i out of c ′k candidate coordinates

(c ′k is expanded from ck where ck <
∑n
i=1 R

k
i ≤ c ′k ) to in-

sert
∑n
i=1 R

k
i different objects into the background scene

(frame F ∗k ).

…
…

ℓ

ℓ

…

ℓ

ℓ

ℓ
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…

ℓ

ℓ−1
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…

ℓ

ℓ

Sufficient Candidate 

Coordinates

Insufficient Candidate 

Coordinates

Figure 4: Random Coordinates Assignment (before Inter-

polation)

After assigning coordinates to the key frames (where Rki = 1),
we obtain at least 1 frame with the corresponding coordinates for
any Oi (if the corresponding object is retained in the synthetic
video) – the retained object has been assigned with coordinates
in at least two frames in almost all the cases in our experiments
in Section 6. With such randomly assigned coordinates in some
key frames, we can interpolate the coordinates in other frames
(out ofm frames in total) between such key frames. For instance,
given coordinates in two key frames F1 and F10 for object Oi ,
then its coordinates between F1 and F10 can be estimated. In
literature, there are many interpolation methods for moving
object trajectories data, such as nearest neighbor interpolation
[21] and Lagrange interpolation [17]. In VERRO, we adopt the
Lagrange interpolation to estimate such trajectories with the
randomly generated positions.

Finally, after interpolation, we define the first frame in which
any object first occurs as “head” and the frame where such object
last occurs as “end” in the interpolated trajectory. The head and
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end generally involve such object on the border of the frame.
Thus, the interpolation terminates as each object’s head and end
are identified on the border of the frame (objects do not occur in
all the frames in general).

Theorem 4.1. VERRO (Phase I and Phase II) satisfies ϵ-Object
Indistinguishability.

Proof. Given any two objectsOi andO j , their randomly gen-
erated presence vectors Ri and Rj are proven to be ϵ-Object In-
distinguishable (after Phase I). We now examine the randomly
assigned coordinates in the key frames and two full interpolated
trajectories in the synthetic videoV∗.

Specifically, given any output presence vectory and any output
trajectory t = {t1, . . . , tm } in V∗, for simplicity of notation,
we also denote the trajectories of Oi and O j in V∗ as Oi =

{T 1
i , . . . ,T

m
i } and O j = {T

1
j , . . . ,T

m
j }, respectively.

Pr [A(Oi ) = t ]
Pr [A(O j ) = t ]

=
Pr [A(B′i ) = y]
Pr [A(B′j ) = y]

·
Pr [A(T 1

i ) = t1]

Pr [A(T 1
j ) = t1]

· · ·
Pr [A(Tmi ) = tm ]
Pr [A(Tmj ) = tm ]

On one hand, we have Pr [A(B′i )=y]
Pr [A(B′i )=y]]

≤ eϵ (Phase I). On the

other hand, if ∀k ∈ [1,m],Rki = Rkj = 1, two objects are present
in the same frame Fk (and F ∗k ). In this case, since the same ran-
domization is applied to Oi and O j to pick the coordinates from
the same set of candidates, we have ∀k ∈ [1,m], Pr [A(T ki ) =
tk ] = Pr [A(T kj ) = tk ]. If ∀k ∈ [1,m],Rki = Rkj = 0 (the coordi-
nates are interpolated from the coordinates randomly assigned
in the previous case [14]), we also have ∀k ∈ [1,m], Pr [A(T ki ) =
tk ] = Pr [A(T kj ) = tk ].

To sum up the above three cases, we have:

Pr [A(Oi ) = t ]
Pr [A(O j ) = t ]

≤ eϵ (10)

where ϵ =
∑ℓ
k=1 xk log(

2−f
f ), as analyzed in Theorem 3.3 and

Section 3.3. This completes the proof. □

Finally, we summarize the procedures and privacy guarantee in
VERRO. Given an video, the presence of objects in all the frames
are indistinguishable via random response. Then, adversaries
cannot identify specific objects by the frame presences with any
background knowledge. Furthermore, we randomly generate
synthetic positions of objects. Therefore, we claim that any object
in the input V can possibly generate any object in the output
V∗ (with random response in Phase I and random coordinates
assignment in Phase II).

5 DISCUSSION

Distributed Framework: LDP techniques [4, 16] are deployed
in distributed setting where each user perturbs its local data to
share. Our object-based privacy model ensures indistinguishabil-
ity at the object level where all the “distributed” local data can
be perturbed by a “local agent” (aka. video owner) and shared as
V∗ to untrusted recipients.

Different video owners can also share their perturbed videos
to any untrusted recipient (all the objects in each video are still
well protected). Note that VERRO does not ensure video level
indistinguishability (all the videos are indistinguishable). We will

investigate the utility of the video level indistinguishability in
practice and explore the LDP solutions in the future.
Noise Cancellation: in VERRO, objects and their trajectories
are generated in the sanitized video. Thus, the individual noises
resulted from random response for all the objects may not be di-
rectly canceled in the output video. Indeed, after random response
and random coordinates assignment, there exists trajectories in
the sanitized video which are close to the original trajectories
(as shown in Figure 6-8 in our experiments). Also, such noise
can be cancelled in data aggregation applications [9] (e.g., object
counting, as shown in Figure 12 and 13).
Multiple Object Types: in this paper, we use pedestrians and
vehicles as concrete examples to show their indistinguishability
in the publishable synthetic video. It is worth noting that other
objects can also be protected with the defined privacy notion
in VERRO by replacing the detecting algorithms and synthetic
objects. Furthermore, if any video includes multiple types of ob-
jects (e.g., pedestrians and vehicles), VERRO can generate the
synthetic video for different types of objects, respectively. For
instance, it first randomly generates pedestrians, and then ran-
domly generates the vehicles. All the pedestrians are ϵ-Object
Indistinguishable while all the vehicles are ϵ-Object Indistinguish-
able, assuming that it does not leak additional information across
different object types (as all the objects have been replaced with
random synthetic objects in the same type).
Protection for One-Object Video: VERRO can generate syn-
thetic videos in which all the objects are ϵ-indistinguishable. In
case that the video includes only one sensitive object, VERRO
can also protect such object against re-identification. In existing
LDP techniques [4, 16], if only one user perturbs its Object data
and discloses it to the untrusted aggregator, the original data can-
not be identified from its perturbed data. Similar to such works
(e.g., RAPPOR [16]), the objects and the trajectories cannot be
identified from the perturbed presence in the synthetic video
even if the adversary has arbitrary background knowledge on
the presence of individuals at specific times.
Imperfect Background Scene(s): as discussed in Section 4,
background scene(s) is extracted from the original video. The
reconstructed scene may not be as perfect as the original frame
(e.g., human/vehicle silhouette or duplicated/blurred region may
occur). Thus, imperfect background scene(s) may leak some pri-
vacy about “there exists some object in the silhouette or blurred
regions in the original video”. However, adversaries cannot infer
that “who is in that region or which object is in that region” since
all the objects are indistinguishable from end to end.
SystemDeployment: the proposedVERRO can be implemented
as an application, and deployed as a component to generate
utility-driven synthetic videos by processing the videos captured
by each camera (e.g., in the surveillance system, integrated with
the traffic monitoring facilities, in smart phones or other mobile
devices) where ϵ-Object Indistinguishability can be guaranteed.

6 EXPERIMENTS

In this section, we present the performance evaluations.

6.1 Experimental Setup

We conduct our experiments on three real videos in the repository
of multiple object tracking benchmark2. To benchmark the re-
sults, we choose three pedestrian videos, two videos are captured
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by static cameras while the third video is recorded by a moving
camera (where multiple background scenes are extracted):

(1) MOT16-01 (people walking around a large square, denoted
as “MOT01”) [35]: 23 distinct pedestrians are sensitive
objects in 450 frames (static camera).

(2) MOT16-03 (pedestrians on the street at night, denoted
as “MOT03”) [35]: 148 distinct pedestrians are sensitive
objects in 1,500 frames (static camera).

(3) MOT16-06 (street scene from a moving platform, denoted
as “MOT06”) [35]: 221 distinct pedestrians are sensitive
objects in 1,194 frames (moving camera).

Table 1: Characteristics of Experimental Videos

Video Resolution Frame # Objects Camera
MOT16-01 1920 × 1080 450 23 static
MOT16-03 1920 × 1080 1,500 148 static
MOT16-06 640 × 480 1,194 221 moving

We implement the detecting/tracking algorithm [48, 49] to
identify all the objects (pedestrians). Objects are detected in each
frame, and the same object is marked with the same ID in the
entire video. Computer vision technique [11] is also utilized to
extract/reconstruct the background scene(s) from the input video
V . All the programs are implemented in Python 3.6.4 with the
OpenCV 3.4.0 library and tested on an HP PC with Intel Core
i7-7700 CPU 3.60GHz and 32G RAM.

6.2 Generic Utility Evaluation

We first evaluate the utility of our synthetic videos. The proposed
VERRO is a two-phase LDP approach. In Phase I, it randomly
generates the object presence in all the frames of the synthetic
video (“1” or “0”). In Phase II, we interpolate the trajectories. Thus,
we evaluate two different types of utility: (1) the retained utility
after Phase I (Random Response), and (2) the utility of synthetic
video after Phase II.

6.2.1 Utility for Phase I. Phase I generates “presence bit vec-
tors” for all the objects with frame dimension reduction, optimiza-
tion (“OPT”) and random response (“RR”). Some objects might
not be included in the key frames, and/or might not be generated
in the random response. Then, such objects cannot be generated
in the synthetic video (all the entries in the corresponding vec-
tors are 0) since they cannot be interpolated without any object
presence in Phase I (also treated as noise). Thus, we evaluate the
count of distinct objects (pedestrians) in Phase I.

First, Table 2 shows some results after detecting key frames
for frame dimension reduction. In video MOT01, there are 22 key
frames, and 19 out of 23 objects are present in the key frames. In
video MOT03, 52 key frames are extracted, and 124 out of 148
objects are present in such key frames. In video MOT06, 191 out
of 221 objects are captured in the identified 48 key frames. We
can observe that frame dimension reduction results in less utility
loss (retaining ∼ 80% distinct objects).

Figure 5(a), 5(c) and 5(e) present the count of distinct objects in
original video, after optimization (“OPT”), and random response
(“RR”).We set the flipping probability f from 0.1 to 0.9 for random
response. In Figure 5(a), approximately 17 distinct objects can be
retained in 10 key frames (optimized). f only slightly affects the
optimization: the count of distinct objects increases a little bit
2https://motchallenge.net/

Table 2: Distinct Objects after Key Frame Extraction

Video Frame # Objects # Key Frame # Remaining #
MOT01 450 23 22 19
MOT03 1,500 148 52 124
MOT06 1,194 221 48 191

as f grows. To evaluate how f affects the random response, we
can observe that one or two objects are not randomly generated
in RR as f grows to a large flipping probability (e.g., 0.8). This
matches the fact that higher f results in worse utility in random
response (Theorem 3.2) – such utility loss is indeed minor in our
experiments. In addition, we can draw similar observations in
Figure 5(c) and 5(e) where the utility loss of random response is
even less for videos MOT03 and MOT06. Thus, Phase I retains a
high percent of distinct objects via their random presence vectors,
which means less side effect introduced by RR (this facilitates the
interpolation in Phase II for boosting utility).
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Figure 5: Utility Evaluation of Phase I & II of MOT01

(MOT03 and MOT06)

6.2.2 Utility for Phase II. Since the synthetic video gener-
ated in Phase II includes the synthetic objects at the same scene,
the corresponding synthetic object of each original object (e.g.,
pedestrian) may have different coordinates in the same frame.
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Frame #

100
150

200
250

300
350

400
450

X-C
oor

din
ate

400
600

800
1000

1200
1400

1600
1800

Y-
Co

or
di
na

te

520

540

560

580

600

620

640

Original
Synthetic

(c) Object #9 (f =0.1)
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(d) Object #9 (f =0.9)

Figure 6: Trajectories of Two Randomly Selected Objects in MOT01
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(a) Object #35 (f =0.1)
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(b) Object #35 (f =0.9)
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(c) Object #105 (f =0.1)
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(d) Object #105 (f =0.9)

Figure 7: Trajectories of Two Randomly Selected Objects in MOT03
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(a) Object #5 (f =0.1)
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(b) Object #5 (f =0.9)
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(c) Object #165 (f =0.1)
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Figure 8: Trajectories of Two Randomly Selected Objects in MOT06

All the coordinates in different frames may form a trajectory
in the synthetic video. Thus, we also measure the deviation for
the trajectories of all the objects in the original video and syn-
thetic video:

∑n
i=1

∑m
k=1

P (Oi ,Fk )−P (Oi ,F ∗k )
P (Oi ,Fk )

, where P(Oi , Fk ) and
P(Oi , F

∗
k ) are the center coordinates of objectOi in the kth frame

of the input video and the synthetic video.
In Figure 5(b), 5(d) and 5(f), we can observe that the deviation

before Phase II is higher than 0.9, since each object is only gener-
ated in a few frames. The deviation of trajectories increases as
the flipping probability f gets larger since more flips occur more
frequently (e.g., “0” to “1”, or vice-versa). In such three figures,
after Phase II, the deviation can be significantly reduced (e.g., in
[0.1, 0.2] for video MOT01, in [0.02, 0.2] for video MOT06).

More specifically, we randomly select two objects (e.g., pedes-
trians) from each of the three videos, and extract their trajectories
in the original videoV . In addition, we also extract their corre-
sponding trajectories in the synthetic videoV∗. Figure 6, 7 and 8
demonstrate the trajectories of those objects in the input videos

and synthetic videos, where 3-dimensional axes refer to the frame
ID and coordinates (X ,Y ) in videos. As f = 0.1, the trajectories of
the objects lie closer to the original ones (compared to f = 0.9). It
is worth noting that any object (pedestrian) in the original video
can generate the corresponding trajectory of any object (e.g., the
plotted trajectories corresponding to Object #2 and Object #9 in
Figure 6). This is ensured by the ϵ-indistinguishable presence bit
vectors randomly generated from all the objects in VERRO.

6.3 Visual & Aggregated Results

We also randomly pick a frame from each of the three experimen-
tal videos, and present the generated background scenes and the
corresponding frames in the synthetic videos. For video MOT01,
Figure 9(a) shows the input frame and the detected objects in
the frame. Also, we use a background interpolation algorithm
[11] to fill the missing pixels (after removing all the detected
objection), as shown in Figure 9(b). Similarly, a randomly picked
frame (with the detected objects) and the generated background
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(a) Frame 8 (b) Background Scene (c) Synthetic Frame (f =0.1) (d) Synthetic Frame (f =0.9)

Figure 9: Representative Frames in MOT01 and the Generated Synthetic Video

(a) Frame 134 (b) Background Scene (c) Synthetic Frame (f =0.1) (d) Synthetic Frame (f =0.9)

Figure 10: Representative Frames in MOT03 and the Generated Synthetic Video

(a) Frame 216 (b) Background Scene (c) Synthetic Frame (f =0.1) (d) Synthetic Frame (f =0.9)

Figure 11: Representative Frames in MOT06 and the Generated Synthetic Video

scenes in MOT03 and MOT06 are given in the first two subfigures
of Figure 10 and 11. Some human silhouettes still exist in the
background scenes. Clearly, the silhouettes cannot be associated
to any objects in the synthetic video (as shown in Figure 10(c),
10(d), 11(c) and 11(d)). This confirms the discussion for imperfect
background scene in Section 5.

In the synthetic videos, we use different colors for different
synthetic objects. Compare to f = 0.1 (shown in Figure 9(c), 10(c)
and 11(c)), f = 0.9 would lead to more coordinates/trajectory
deviation (as shown in Figure 9(d), 10(d) and 11(d)). However,
accurate count of objects (pedestrians) can be retained in the
synthetic frames even if the flipping probability f is specified as
0.9 (small privacy bound). Thus, we can still use such synthetic
videos to function specific application based on the count of
objects, e.g., head counting and crowd density [23, 34]. To confirm
such observation, we also detect and count all the pedestrians in
each frame of the synthetic videos (f = 0.1 and f = 0.9).

Figure 12 shows the pedestrian counts in the (optimized) key
frames (after Phase I). The aggregated result lies very close to
the original result when f is small. When f goes larger, the ag-
gregated result is slightly more fluctuated, and more objects are

generated in the frames. Figure 13 demonstrates the aggregated
counts of pedestrians in each frame (after Phase II). Note that
many objects (with the coordinates outside the frames; not be-
tween the “head” and “end”) are suppressed in Phase II, making
the object counts in different frames more accurate. Note that if
multiple cameras capture more videos (e.g., surveillance or traffic
monitoring cameras for the smart city) for joint analysis, the
noise can be further cancelled in the applications.

6.4 Overheads

We evaluate the overheads of VERRO. Table 3 presents the run-
time of the two phases and the required bandwidth for sending
the synthetic videos to an untrusted recipient.

Table 3: Computational and Communication Overheads

Video Phase I (Sec) Phase II (Sec) Bandwidth (MB)
MOT01 0.89 34.78 9.58
MOT03 1.56 36.12 16.6
MOT06 1.57 43.12 19.4
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Figure 12: Object Counts in the Optimized Key Frames (by each frame)
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Figure 13: Object Counts in the Synthetic Videos (by each frame)

The computational cost increases as the count of distinct ob-
jects increases (MOT01 has the least pedestrians while MOT06
has the most pedestrians). The results reflect a sublinear increase
trend, which enables VERRO to be scaled to generate synthetic
videos for longer videos (with more frames). In addition, although
MOT06 has a lower resolution (less pixels) than MOT01 and
MOT03, it is captured by a moving camera. Since more back-
ground scenes have to be interpolated, it requires longer runtime
(but still efficient). Note that the runtime for object detecting and
background scene(s) generation (1-2 minutes in our experiments)
can be considered as computational costs for preprocessing.

Finally, the communication overhead for sharing three syn-
thetic videos is almost identical to the original video size.

7 RELATEDWORK

In the context of privacy preserving video publishing, many
solutions have been proposed in literature (e.g., [6, 20, 41, 42, 44]).
Saini et al. [41] have categorized such works in terms of the
sensitive attributes obfuscated in the sanitization. These sensitive
attributes include the evidence types bodies, what(activity), where
(location where the video is recorded) and when (time when the
video is recorded). In general, most of these works employ a
detect and blur policy for only body attributes [6, 20, 42, 44] and
some of them [15, 41, 47] aims at preserving the privacy against
other three implicit inference channels.3

Specifically, these techniques often leverage computer vision
techniques [20, 29] to first detect faces and/or other sensitive
regions in the video frames and then obscure them. However, such
detect-and-protect solutions have some limitations. For instance,
the detect-and-protect techniques cannot formally quantify and
3The synthetic videos generated by VERRO can preserve the information of “where
and when the videos are captured” while ensuring indistinguishability of objects
(the linkage between every object and such inference channels can be broken to
avoid leakage in the disclosure of the background scene).

bound the privacy leakage. In addition, blurred regions might still
be reconstructed by deep learning methods [33, 37]. Last but not
least, these techniques often use naive measures for quantifying
the privacy loss in videos. For instance, in [20, 36], if faces are
present, then it is considered as complete privacy loss, otherwise
no privacy loss is reported. Fan [18] applied Laplace noise to
randomly perturb the pixels in an image to ensure differential
privacy for protecting specific regions of an image. However,
the quality of the image is significantly deviated in the sanitized
results. Our proposed privacy notion and the VERRO technique
have addressed all the above limitations.

On the other hand, in the context of privacy preserving data
publishing, the notion of differential privacy has emerged as a
standard specification during past decade. This strong notion of
privacy was first proposed by Dwork [13] to guarantee indistin-
guishability in the published data against an adversary armed
with arbitrary background knowledge. Although differential pri-
vacy has been widely used to sanitize and release data in statis-
tical databases [13], numeric data [45], location data [38], and
search logs [25], to the best of our knowledge, no attempt has yet
been made to benefit from differential privacy in video databases.
Furthermore, to fully utilize differential privacy for sanitizing
videos, we have defined our privacy notion based on a recently
proposed locally implemented notion of differential privacy in
which individuals in the videos (i.e., as objects) can directly inter-
act with the sanitized result to ensure trustworthiness and fine-
grained privacy. The emerging local differential privacy (LDP)
models [4, 10, 16] have been utilized in a wide variety of applica-
tions (e.g., heavy hitters or histogram construction [4, 16], and
frequent itemset mining [46]), but cannot be directly applicable
to local video perturbation. VERRO complements the literature
with strong privacy protection for (local) objects in the video
against arbitrary background knowledge.
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8 CONCLUSION

Privacy concerns arise in considerable number of real world
videos. To the best of our knowledge, we take the first cut to
pursue indistinguishability for objects in the video by defining a
novel privacy notion ϵ-Object Indistinguishability. We propose a
two-phase video sanitization technique VERRO that locally per-
turbs all the objects in the video and generates a utility-driven
synthetic video with indistinguishable objects, which can be di-
rectly shared to any untrusted recipient. In the synthetic videos,
not only the object contents (e.g., different humans, and vehi-
cle make/model/color), but also their moving trajectories in the
video (e.g., a series of coordinates in different frames) can be
effectively protected since every synthetic object and its trajec-
tory can be possibly generated from any object in the original
video. Experiments performed on real videos have validated the
effectiveness and efficiency of VERRO. In the future, we will
comprehensively study the utility of the synthetic videos in more
application scenarios, and explore rigorous protection for objects
which can be tracked in multiple videos.

9 ACKNOWLEDGEMENTS

This work is partially supported by the National Science Founda-
tion (NSF) under awards CNS-1745894 and CNS-1564034, and the
National Institutes of Health (NIH) under awards R01GM118574
and R35GM134927. The authors would like to thank the anony-
mous reviewers for their constructive comments.

REFERENCES

[1] 2012. YouTube~Official~Blog~2012
[2] 2019. https://ops.fhwa.dot.gov/trafficanalysistools/ngsim.htm
[3] Bruno Abreu, Luis Botelho, and et.al. 2000. Video-based multi-agent traffic

surveillance system. In Intelligent Vehicles Symposium. 457–462.
[4] Raef Bassily and Adam Smith. 2015. Local, private, efficient protocols for

succinct histograms. In Symposium on Theory of Computing. 127–135.
[5] Vincent Bindschaedler, Reza Shokri, and Carl A Gunter. 2017. Plausible denia-

bility for privacy-preserving data synthesis. VLDB (2017), 481–492.
[6] Michael Boyle, Christopher Edwards, and Saul Greenberg. 2000. The Effects

of Filtered Video on Awareness and Privacy. In CSCW. 1–10.
[7] Yang Cao, Masatoshi Yoshikawa, Yonghui Xiao, and Li Xiong. 2017. Quantify-

ing Differential Privacy under Temporal Correlations. In ICDE. 821–832.
[8] Paula Carrillo, Hari Kalva, and Spyros Magliveras. 2008. Compression in-

dependent object encryption for ensuring privacy in video surveillance. In
Multimedia and Expo. 273–276.

[9] Rui Chen, Haoran Li, A Kai Qin, Shiva P. Kasiviswanathan, and Hongxia Jin.
2016. Private spatial data aggregation in the local setting. In ICDE. 289–300.

[10] Graham Cormode, Somesh Jha, Tejas Kulkarni, Ninghui Li, Divesh Srivastava,
and TianhaoWang. 2018. Privacy at scale: Local differential privacy in practice.
In Management of Data. 1655–1658.

[11] Antonio Criminisi, Patrick Pérez, and Kentaro Toyama. 2004. Region filling
and object removal by exemplar-based image inpainting. IEEE Transactions

on image processing 13, 9 (2004), 1200–1212.
[12] Ajay Divakaran, Regunathan Radhakrishnan, and Kadir A Peker. 2002. Motion

activity-based extraction of key-frames from video shots. In ICIP. 932–935.
[13] C. Dwork. 2011. Differential privacy. Encyclopedia of Cryptography and

Security (2011), 338–340.
[14] C. Dwork, A. Roth, et al. 2014. The algorithmic foundations of differential

privacy. Foundations and Trends in Theoretical Computer Science (2014), 211–
407.

[15] A. Erdelyi, T. Barat, P. Valet, T. Winkler, and B. Rinner. 2014. Adaptive
cartooning for privacy protection in camera networks. In AVSS. 44–49.

[16] Ú. Erlingsson, V. Pihur, and A. Korolova. 2014. Rappor: Randomized aggregat-
able privacy-preserving ordinal response. In CCS. 1054–1067.

[17] Fariba Fahroo and I Michael Ross. 2002. Direct trajectory optimization by a
Chebyshev pseudospectral method. Journal of Guidance, Control, and Dynam-

ics 25, 1 (2002), 160–166.
[18] L. Fan. 2018. Image Pixelization with Differential Privacy. In DBSec. 148–162.
[19] Huamin Feng, Wei Fang, Sen Liu, and Yong Fang. 2005. A new general frame-

work for shot boundary detection and key-frame extraction. In Multimedia

information retrieval. 121–126.
[20] Douglas A Fidaleo, Hoang-Anh Nguyen, and Mohan Trivedi. 2004. The net-

worked sensor tapestry (NeST): a privacy enhanced software architecture for
interactive analysis of data in video-sensor networks. In Video surveillance &

sensor networks Workshop. 46–53.

[21] Elias Frentzos, Kostas Gratsias, Nikos Pelekis, and Yannis Theodoridis. 2007.
Algorithms for nearest neighbor search on moving object trajectories. Geoin-
formatica 11, 2 (2007), 159–193.

[22] Feng Han, Ying Shan, Ryan Cekander, Harpreet S Sawhney, and Rakesh Kumar.
2006. A two-stage approach to people and vehicle detection with HOG-based
SVM. In Performance Metrics for Intelligent Systems. 133–140.

[23] Marcus Handte, Muhammad Umer Iqbal, and et. al. 2014. Crowd Density
Estimation for Public Transport Vehicles. In EDBT/ICDT Workshops. 315–322.

[24] Steven Hill, Zhimin Zhou, Lawrence Saul, and Hovav Shacham. 2016. On the
(in) effectiveness of mosaicing and blurring as tools for document redaction.
Privacy Enhancing Technologies 4 (2016), 403–417.

[25] Yuan Hong, Jaideep Vaidya, Haibing Lu, Panagiotis Karras, and Sanjay Goel.
2015. Collaborative Search Log Sanitization: Toward Differential Privacy and
Boosted Utility. IEEE Trans. Dependable Sec. Comput. 12, 5 (2015), 504–518.

[26] Yuan Hong, Jaideep Vaidya, Haibing Lu, and Mingrui Wu. 2012. Differentially
private search log sanitization with optimal output utility. In 15th International
Conference on Extending Database Technology. 50–61.

[27] Ravindran Kannan and Clyde L Monma. 1978. On the computational com-
plexity of integer programming problems. In Optimization and Operations

Research. 161–172.
[28] Kevin Karsch, Varsha Hedau, David A. Forsyth, and Derek Hoiem. 2011. Ren-

dering synthetic objects into legacy photographs. Trans. Graph. (2011), 157.
[29] Takashi Koshimizu, Tomoji Toriyama, and Noboru Babaguchi. 2006. Factors

on the sense of privacy in video surveillance. In Continuous archival and

retrival of personal experences. 35–44.
[30] Sanjay K Kuanar, Rameswar Panda, and Ananda S Chowdhury. 2013. Video

key frame extraction through dynamic Delaunay clustering with a structural
constraint. Visual Communication and Image Representation (2013), 1212–1227.

[31] Xuan Li, KunfengWang, Yonglin Tian, Lan Yan, Fang Deng, and Fei-YueWang.
2019. The ParallelEye Dataset: A Large Collection of Virtual Images for Traffic
Vision Research. Intelligent Transportation Systems (2019), 2072–2084.

[32] Bingyu Liu, Shangyu Xie, Han Wang, Yuan Hong, Xuegang Ban, and Meisam
Mohammady. 2019. VTDP: Privately Sanitizing Fine-grained Vehicle Trajec-
tory Data with Boosted Utility. IEEE Transactions on Dependable and Secure

Computing (2019), 1–1.
[33] Richard McPherson, Reza Shokri, and Vitaly Shmatikov. 2016. Defeating image

obfuscation with deep learning. arXiv preprint arXiv:1609.00408 (2016).
[34] Frank McSherry and Kunal Talwar. 2007. Mechanism Design via Differential

Privacy. In FOCS. 94–103.
[35] A. Milan, Laura Leal-Taixé, Ian Reid, Stefan Roth, and Konrad Schindler. 2016.

MOT16: A benchmark for multi-object tracking. CoRR (2016).
[36] S. Moncrieff, S. Venkatesh, and G. West. 2008. Dynamic privacy assessment

in a smart house environment using multimodal sensing. TOMM (2008), 10.
[37] Seong Joon Oh, Rodrigo Benenson, Mario Fritz, and Bernt Schiele. 2016. Face-

less person recognition: Privacy implications in social media. In European

Conference on Computer Vision. 19–35.
[38] Lu Ou, Zheng Qin, Shaolin Liao, Yuan Hong, and Xiaohua Jia. 2018. Releasing

Correlated Trajectories: Towards High Utility and Optimal Differential Privacy.
IEEE Transactions on Dependable and Secure Computing (2018), 1–1.

[39] Lei Pan, Xiao-Jun Wu, and Yuan-Yuan You. 2005. Video shot segmentation
and key frame extraction based on clustering. Infrared and Laser Engineering
34, 3 (2005), 341.

[40] Zhan Qin, Yin Yang, Ting Yu, Issa Khalil, Xiaokui Xiao, and Kui Ren. 2016.
Heavy hitter estimation over set-valued data with local differential privacy.
In CCS. ACM, 192–203.

[41] Mukesh Saini, Pradeep K. Atrey, Sharad Mehrotra, and Mohan Kankanhalli.
2014. W3-privacy: understanding what, when, and where inference channels
in multi-camera surveillance video. Multimedia Tools and Applications 68, 1
(2014), 135–158. https://doi.org/10.1007/s11042-012-1207-9

[42] A. Senior, S. Pankanti, A. Hampapur, L. Brown, Ying-Li Tian, A. Ekin, J.
Connell, Chiao Fe Shu, and M. Lu. 2005. Enabling video privacy through
computer vision. Security Privacy (2005), 50–57.

[43] Alexander Toshev, Ameesh Makadia, and Kostas Daniilidis. 2009. Shape-based
Object Recognition in Videos Using 3D Synthetic Object Models. In CVPR.

[44] M. Upmanyu, A. M. Namboodiri, K. Srinathan, and C. V. Jawahar. 2009. Effi-
cient privacy preserving video surveillance. In Computer Vision. 1639–1646.

[45] Jaideep Vaidya, Basit Shafiq, Anirban Basu, and Yuan Hong. 2013. Differen-
tially Private Naive Bayes Classification. In 2013 IEEE/WIC/ACM International

Conferences on Web Intelligence. 571–576.
[46] TianhaoWang, Ninghui Li, and Somesh Jha. 2018. Locally differentially private

frequent itemset mining. In SP. 127–143.
[47] T. Winkler and B. Rinner. 2013. Sensor-level security and privacy protection

by embedding video content analysis. In DSP. 1–6.
[48] Nicolai Wojke and Alex Bewley. 2018. Deep cosine metric learning for person

re-identification. In WACV. 748–756.
[49] Nicolai Wojke, Alex Bewley, and Dietrich Paulus. 2017. Simple online and

realtime tracking with a deep association metric. In ICIP. 3645–3649.
[50] Roman Yarovoy, Francesco Bonchi, Laks VS Lakshmanan, and Wendy Hui

Wang. 2009. Anonymizing moving objects: How to hide a mob in a crowd?.
In Extending Database Technology. 72–83.

[51] Qiang Zhu, Mei-Chen Yeh, Kwang-Ting Cheng, and Shai Avidan. 2006. Fast
human detection using a cascade of histograms of oriented gradients. In CVPR.
1491–1498.

334



PrefDiv: Efficient Algorithms for
Effective Top-k Result Diversification
Xiaoyu Ge

University of Pittsburgh

xiaoyu@cs.pitt.edu

Panos K. Chrysanthis

University of Pittsburgh

panos@cs.pitt.edu

ABSTRACT
The ever-increasing supply of data is bringing renewed atten-

tion to result diversification, a technique usually studied with

result relevance for a given task. Together, they produce a sub-

set of results that are relevant to the user query and contain

less redundant information. In this work, we formulate an ex-

tended version of the result diversification problem, considering

three objectives—relevance, diversity, and coverage—and present

a novel approach and algorithms that produce better-diversified

results. Our approach takes a large set of possible answers gen-

erated from a user query and outputs a representative subset

of results that are highly ranked according to the preference

of the user. The data items contained in the representative set

are diverse, such that each item is different from the rest and

provides good coverage of the underlying aspects of the orig-

inal results. Our approach also suggests a set of appropriate

parameters for each user query to achieve a balance between our

conflicting objectives and is efficient enough to ensure an interac-

tive experience. We study the complexity of our algorithms and

experimentally evaluate them in terms of normalized relevance,

coverage, and execution time. Our evaluation indicates a speedup

of up to 159x , and outperforms the state-of-the-art algorithms

on multiple fronts.

1 INTRODUCTION
Motivation With the exponential increase in the amount of

data being generated every second, the term "Big Data" that is

adopted to represent the challenge of large-scale data processing

is currently mentioned frequently in everyday life [20]. This

reflects the fact that people are increasingly reliant on using data

as an integral part of their daily activities (e.g., decisions and

collaborations).

The challenge of scalable data processing can be examined

from two viewpoints. Traditionally, scalability has been seen from

a systems point of view, where challenges can be attributed to an

increasing rate of data on the one hand, and network bandwidth,

processing power, and storage limitation on the other hand. Scal-

ability can also be viewed from a human point of view [23]. Given

the expornential volume of data, the challenge here is how to

avoid overwhelming users with irrelevant results.

Query personalization is a well-known technique for dealing

with scalability challenges from a human point of view, which

often happens at two different levels:

• Ranking – Ranking techniques utilize user preferences with
the aim of providing themost relevant results to the users (e.g.,

[33]). These techniques can be distinguished as quantitative-
based, qualitative-based, or hybrid, based on the type of user

preferences that they can support.

• Diversification – Diversification techniques aim to reduce the

amount of redundant information in the results. These tech-

niques typically group data in sets that are most "dissimilar"

with each other (e.g., [3, 12]).
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Since highly-ranked items can be similar, result diversification

[31] has recently drawn significant attention as a technique to

facilitate applications such as keyword search, recommendation

systems, and online shopping. The key idea of result diversifi-

cation is to output a subset of representative results from the

original in an informative way, since the user most probably

will not view results beyond a small number. This requires the

representative top-k results to be relevant, diverse, and maintain

good coverage of the original answers (i.e., able to cover different

underlying aspects of the original results). One thing to note is

that the definitions of both relevance and diversity are subjective;

thus, they can vary depending on the query and the user.

Goal In this paper, we present an approach to efficiently compute

the representative result set for arbitrary top-k queries under

user-definable relevance and diversity definitions. We name this

as the Diversified Top-k (DT-k) problem.

Challenges Below, we will illustrate the challenges to our pro-

posed approach by means of three examples.

Example 1.1. Assume a tourist who is currently visiting Athens

wants to find an affordable restaurant with great taste. So she

visits a publicly available database that contains the relation

RESTAURANT (Name, Food Type, Cost, Score), where Name in-
dicates the official name of the restaurant; Food Type indicates the
type of food (e.g., Greek, Japanese, Chinese); Cost is the average
expense per person, and Score is a numeric number between 1

and 10 that indicates the quality of the food and services offered

at the restaurant. To find the ideal place for dinner, she, therefore,

enters the following SQL-like query:

SELECT * FROM RESTAURANT
WHERE Score ≥ 6 AND Cost ≤ 20

ORDER BY Cost ASC;
However, these kinds of queries may produce thousands of

results, among which the top 5 and bottom 5 results are listed in

Table 1. The problem is that users are typically only interested in

seeing a small portion of these results, not to mention many of

these results are, in fact, redundant (e.g., differ only in the name).

Simply fetching a certain top number (e.g., top 5) of results does

not help improve their usefulness. Instead, the user might be bet-

ter served with the right amount of diverse (i.e., dissimilar) items

from the original answer with good coverage of different aspects

(e.g., Food Type, Cost, Score). Furthermore, among those repre-

sentative subsets with good diversity and coverage, the one that

is most relevant to the user’s interest should be preferred, such

that the relevance refers to criteria that can be used to rank the

answers. These may be obtained by interoperating the SQL-like

query itself (e.g., through the "Order By" predicates), or derived

from external user profiles (e.g., query histories, crowdsourcing).

One immediate challenge raised is how to define diversity,

which clearly changes based on the user and the query being

performed. In our work, we associate diversity with the similar-

ity between pairs of answers (i.e., data items). To address this

challenge, we propose a tunable definition that can be adjusted

with a set of diversity thresholds DIV . Each threshold div in DIV
is a real number between [0,1], which specifies the threshold

between “similar” and “dissimilar” data items with respect to the

normalized distance given by the specified distance measure (e.g.,

Euclidean, Manhattan, and Hamming) and attributes. |DIV | = 0

results in the traditional top-k query, while more diversity thresh-

olds with higher values increase the diversity of the result set.
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Name Food Type Cost Score

McDonald Fast Food 8 7

KFC Fast Food 8 7

Burger King Fast Food 8 7

Arby’s Fast Food 8 7

Oinomageireio H Epirus Greek 8 9

......

Scala Vinoteca Greek 20 9

Ta Karamanlidika tou Fani Greek 20 10

A Little Taste of Home Greek 20 9

Liondi Traditional Greek Greek 20 9

Dio Dekares i Oka Greek 20 9

Table 1: Top-5 and bottom-5 tupleswith respect to the cost.

Name Food Type Cost Score

McDonald Fast Food 8 7

Beer Garden Ritterburg German 8 9

Nolan Japanese 9 8

Oinomageireio H Epirus Greek 10 10

Dosirak Korean 12 6

Table 2: Top-5 tuples based on cost that are diversified re-
spect to attributes “Food Type" and “Score".

Example 1.2. With the above diversity parameter, the previous

sample query in Example 1.1 could be expanded accordingly:

SELECT * FROM RESTAURANT

WHERE Score ≥ 6 AND (Cost ≤ 20)
ORDER BY Cost DESC
DIVERSE BY div = 0.2 ON ‘Food Type’ (Hamming)

AND div = 0.3 ON ‘Score’ (Euclidean) LIMIT 5;

where Food Type and Score are the attributes on which the di-

versity is calculated, and Hamming and Euclidean are the cor-

responding distance measures. The idea here is to generate a

set of results that follow the diversity constraints DIV specified

within the query
1
. The result of the above query is illustrated in

Table 2. Although the above example produces some compelling

results with its information representative subset, it could be

difficult to see how the coverage is contributing differently to the

results than the dissimilarity. To illustrate the importance of the

coverage, let us consider a simple example:

Example 1.3. Consider the nodes in Figures 1 and 2. In these

two figures, each node represents an item in the dataset, and an

edge exists between a pair of nodes iff the similarity between

these two nodes are close enough according to some pre-defined

threshold. On the one hand, in Figure 2, a set of dissimilar items

{v5,v4} is selected. However, only {v1,v5,v4} are considered to

be covered by {v5,v4}, as {v2,v3} are not connected with either

v5 or v4. On the other hand, in Figure 1, a single vertex v1 is

connected to all four vertices, hence achieving 100% coverage. In

this case, one can see that vertex v1 better represents the entire
graph when compared with {v5,v4}, thus indicating coverage

is another valuable aspect to the quality of the representative

results.

The above two examples (i.e., Example 1.2 and 1.3) illustrate the

key advantages and desired features of an effective approach that

provides a meaningful and representative subset of the original

query results. First, the representative subset is relevant to the

intention of the query and contains items that would be ranked

1
Note that our PrefDiv algorithms take the set of diversity constraints DIV as one

of their inputs, and it is up to the design of the actual system that integrates the

PrefDiv to determine how DIV will be integrated with its user query.

Figure 1: Single vertex v1
with 100% coverage.

Figure 2: A set of vertices
{v4,v5} with 60% coverage.

highly in the original results. Second, the chosen representative

items are diverse, each contributing additional novelty to the

answer. Third, the representative items are selected in a way that

most items in the original answers are reachable with a small

distance (i.e., change) from one of the representative answers.

Clearly, simply applying ranking, diversification, or clustering

on the original result sets could not achieve the above properties.

Thus, techniques that clearly consider multiple aspects of the

representative results are needed to address this challenge.

Unfortunately, as we will discuss in more detail in Section 2.2.3,

finding the optimal solution that maximizes both the “relevance”

and “diversity” is an NP-Hard problem by itself, let alone with

the addition of the other aspect “coverage” that should also be

considered when producing the representative results.

Our Approach To overcome these challenges, we propose an

extremely efficient online algorithm, called Preferential Diver-
sity (PrefDiv) [13] , for producing representative result sets with

sufficient relevance, diversity, and coverage of the original an-

swers. PrefDiv is a top-k bounded general diversification ap-

proach that can be applied to any existing relevance ranking

model and datasets to retrieve a diversity-aware top-k represen-

tative subset of results. PrefDiv starts to construct the represen-

tative result set with the k most relevant results (according to the

ranking method), then gradually refine this representative set

by eliminating pairs of items that do not satisfy the constraints

specified by the set of diversity thresholds DIV . This is achieved

by identifying pairs of items in the representative result set that

violate one or more diversity thresholds, and then, among the

two items contained in the pair, one with lower relevance will

be replaced with an item from the database that improves diver-

sity and coverage. In the end, PrefDiv produces k representative

results balanced between relevance, diversity, and coverage.

To the best of our knowledge, PrefDiv is the first general

approach to deliver representative results that explicitly consider

relevance, diversity, and coverage with an interactive speed that

is independent of the underlying database and data set.

However, in order to optimize multiple conflicting objectives

such as relevance and diversity, a common approach taken by

most diversification algorithms, including our PrefDiv, is to utilize

a number of tunable parameters. This could be a major drawback

for an algorithm, because with the increase of the number of

required parameters, the complexity of the algorithm increases

as well, making it more difficult to use in real-world scenarios.

In this paper, we extend and present a family of PrefDiv algo-

rithms based on the vanilla PrefDiv. These includes two novel

algorithms that automatically determine: 1) the corresponding

diversity thresholds DIV = {div1,div2, ...,divn } given the set of

diversity constraints Ψ, and 2) the tunable parameters A that

balance the trade-off between the relevance and diversity, respec-

tively.

Contributions To achieve the solution as described above, this

paper makes the following contributions.

• We formulate the Diversified Top-k (DT-k) problem, provide a

theoretical analysis of its complexity, and show NP-hardness

results. (Section 2)

• We provide a detailed description of the design of PrefDiv,

which is an efficient online result diversification algorithm.
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Table 3: LIST OF NOTATIONS USED IN THE PAPER

Symbol Explanation

RQ a set of initial query results

R a set of representative results

k the number of item in the result-set

L the number of iterations to obtain R with PrefDiv

Ψ a set of diversity constraints

ψ the diversity constraint

div a diversity threshold

divopt an optimal diversity threshold

∆ a set of dimensions

A a relevance parameter

υ a self-adjustable relevance parameter

Ix the intensity value of item x
U (x ) a utility function that produces the Ix
simΨ (xi , x j ) xi and x j are similar w.r.t Ψ

dissimΨ (xi , x j ) xi and x j are dissimilar w.r.t Ψ

• We introduce the concept of Relevance Proportionality (RP),

that dynamically balances the trade-off between relevance

and diversity during the retrieval of the top-k representative

results based on the given query and dataset.

• We propose a novel greedy algorithm that automatically finds

the optimal diversity threshold, which maximizes the cover-

age of the representative result set produced by the PrefDiv.

• We perform extensive experimental evaluations with two

real-world datasets, Cameras [10] and Foursquare [7]. Our

experimental results show that PrefDiv and its optimizations

outperform the most similar state-of-the-art competitors, as

suggested in [34], by a significant margin. Compared to other

alternatives (discussed in Section 5), our algorithm achieves

up to 159x speedup and produces a representative subset that

better covers the original answers with a negligible perfor-

mance decrease in relevance. (Section 4)

2 PROBLEM FORMULATION
In our work, we assume that the database DB is composed of

N data items over a D-dimensional space (d1,d2, ...,dD ), where
each dimension d ∈ D can be either numerical or categorical

attributes. Note that the above assumption enables us to handle

any data type (e.g., structured, semi-structured, unstructured) as

long as they are vectorized. The user specifies a queryQ that aims

to retrieve a set of k representative items from DB over a subset

of dimensions S , such that S ≤ D. The goal here is to produce a

set of k items that maximizes the relevance while ensuring the

diversity (i.e., ensuring each item is diverse with respect to one

another). Below, we will first provide the necessary background

and basic concepts of our problem, and then present our problem

definition and analyze its complexity. The list of symbols used in

the following sections of the paper is shown in Table 3.

2.1 Background
2.1.1 Relevance. The relevance of R represents the degree of

the relevancy of each data item x ∈ R and is typically represented

with a utility functionU (x ) that measures the “goodness” of each

data item with respect to certain metrics.

Definition 1. Relevance – Given a database DB and a utility

functionU (x ), the relevance is measured as the outcome ofU (x ),
which is an intensity value Ix ∈ (0,1) ⊂ R for item x ∈ DB that

is used to express the degree of benefit from retrieving x .

A higher intensity value indicates that a data item is more

desired than those items with a lower intensity value.

The intensity value (i.e., relevance score) enables database

systems to produce a total order of each data item in a given

data set and thus allow the extraction of top-k data items. This

Figure 3: Illustration of similarity and dissimilarity.

is simply achieved by retrieving k data items with the highest

intensity value.

2.1.2 Diversity. In our work, the diversity of a set of data

items R is achieved by enforcing each pair of data items in R to be

dissimilar with respect to each other, such that two data items xi ,
and x j are said to be dissimilar if for a given set of user-specified

diversity constraints Ψ, xi and x j satisfy all constraints ψ ∈ Ψ.
Formally, we can define a diversity constraint as follows:

Definition 2. Diversity Constraint – For a given pair of items

xi and x j , a set of attributes ∆, a distance threshold div , and a

distance function dist (xi ,x j ,∆) that measures the distance be-

tween xi and x j with respect to the set of dimensions specified

in ∆. A diversity constraintψ is satisfied iff dist (xi ,x j ,∆) > div .

Based on the above definition of diversity constraints, we now

define dissimilarity as:

Definition 3. Dissimilarity – Let X be a set of data items. For

a given set of diversity constraints Ψ, two items xi and x j ∈ X
are dissimilar to each other, denoted as dissimΨ (xi ,x j ), if they
satisfy each diversity constraintψ in Ψ.

Consequently, the similarity can simply be defined as the

opposite of the dissimilarity, such that:

Definition 4. Similarity – Let X be a set of data items. For

a given set of diversity constraints Ψ, two items xi and x j ∈ X
are similar to each other, denoted as simΨ (xi ,x j ), if they fail to

satisfy at least one diversity constraint in Ψ.

Figure 3 illustrates the concept of similarity and dissimilarity

with four 2-dimensional data items x1, ..,x4, and a single diver-

sity constraint that requires the Euclidean distance between each

data object with respect to both dimensions (i.e., ∆ = d1,d2) to
be at least div apart. Let us take point x1 as an example. Ac-

cording to Definition 4, points {x2,x3} are similar to x1, since
dist (x2,x1,∆) ≤ div and dist (x3,x1,∆) ≤ div . In contrast, x4 is
dissimilar with respect to x1, as dist (x4,x1,∆) > div .

2.1.3 Coverage. As pointed out in the previous literature [11],

the coverage is another aspect that is important to the quality

of the representative results. Since the size of the representative

results is very restricted compared to the original answers, hav-

ing a set of representative results with good coverage increases

the chance for the user to get meaningful information from the

selected representation items. Furthermore, coverage enables the

system to organize all the answers in a cluster-like fashion, where

each original answer of query Q can still be retrieved by “zoom-

in" into one of the representative items. Such that the “zoom-in"

operation will reveal all answers that are “similar” to the selected

representative item. The actual implementation of this “zoom-in"

operation has been well discussed in [11], thus it is omitted from

the discussion of this paper.

Clearly, the coverage is defined completely based on the defi-

nition of the similarity and thus related heavily to the diversity

constraints when the number of representative results is fixed

337



to a certain number k . When k is fixed, a set of more relaxed

diversity constraints (i.e., with higher diversity threshold) will

help the representative set include more original answers into its

coverage, and a set of stricter diversity constraints will certainly

decrease the coverage of the representative set. In particular,

given the definition of similarity, if item x j satisfies simΨ (xi ,x j ),
x j is said to be covered by the item xi . Consequently, we can
define the coverage of a set of items as follows:

Definition 5. Coverage – Given a set of original answers RQ
and a representative result set R, where R ⊆ RQ , the coverage
of R corresponds to the percentage of items in RQ that satisfies

simΨ (xi ,x j ), such that xi ∈ R and x j ∈ RQ .

2.2 Diversified Top-k (DT-k) Problem
Based on the above discussions and definitions, we name our

problem the Diversified Top-k (DT-k) problem.

2.2.1 Problem Formulation. Consider a database DB that con-

sists of N data items distributed over a multi-dimensional space

with mixed numeric and categorical dimensions. Given a query

Q and its corresponding initial results set RQ over DB, the de-
sired result cardinality of k , a utility functionU (x ), and a set of

diversity constraints Ψ, the solution of DT-k produces a k-sized

representative subset R from the original results RQ , whose rele-
vance, according toU (x ) is maximum, while satisfying the set of

diversity constraints Ψ.
We name the above k-sized subset of representative results as

Diversified Top-k (DT-k) set.

2.2.2 Problem Complexity. Finding the optimal DT-k Set for

the Diversified Top-k problem is computationally hard, which

can be shown by mapping it to the well-knownMaximum-weight
Independent Set problem [1]. We can achieve the mapping by

forming a graph ofG that corresponds to the original results RQ .

Each data item xi in RQ maps to a vertex vi in G. An edge e is
added between two vertices vi and vj if the distance between
these two vertices is close enough such that not all diversity

constraints are satisfied, and the intensity value Ixi of an item xi
represents the weights of the corresponding vertex in G. Some

tractable solutions have been proposed in the literature [18, 21],

but these solutions require either a very specific type of graph

(e.g., Outerstring graphs) or have strict restrictions (e.g., sparsity,

outcome degree of each vertex). Thus, they are not practical in

our environment.

2.2.3 Secondary Objective. As discussed above, coverage is

another important aspect of result diversification, which is de-

pendent completely on the diversity threshold specified inside

each diversity constraint. Given that diversity constraints are

typically defined by the user, this may lead to sub-optimal results

if the user fails to define reasonable constraints. Consequently,

our secondary objective is to address this challenge by automati-

cally adapting the diversity constraints based on the type of the

query being performed and the initial result set. Later, in Section

3.4, we will present a general optimization that helps determine

the most suitable diversity constraints for different user queries.

3 PREFDIV ALGORITHMS
In this section, we introduce our solution to the Diversified Top-k

problem. First, we start with the discussion of a naive approach

to the problem and then propose our solution to this problem,

namely, Preferential Diversity (PrefDiv) algorithm. Finally, we

discuss some optimizations that improve the effectiveness of our

proposed PrefDiv algorithm and reduce its number of tunable

parameters.

3.1 Naive Solution
Before we discuss our solutions, one naive solution to the Diver-

sified Top-k problem work as follows: given a new user query

ALGORITHM 1: PrefDiv
Require:
1: Initial result set RQ , result cardinality k , relevance

parameter A, a set of diversity constraints Ψ
Ensure:
2: One subset R of RQ
3: T ← ∅
4: while exists unexamined items in RQ and |R | < k do
5: T ← Pick k items with highest intensity from RQ
6: for all xi ∈ T do
7: if DissimΨ (xi ,x j ) : ∀x j ∈ R then
8: R ← R ∪ xi
9: else
10: Mark xi as “redundant"

11: while number of promoted items in R from T < A ∗ k do
12: R ← R ∪ xmax , s.t., xmax is marked &

∀x j ∈ T , Ixmax ≥ Ix j
13: T ← T − xmax

14: A← A/2
15: RQ = RQ −T

16: Return R

Q , a k , a set of initial results RQ = {x1, ...,xt }, a utility function

U (x ) and a set of diversity constraints Ψ, for each item in RQ of

q, we first compute and sort each item in RQ according to the

intensity value computed by theU (x ). We pick the item xi ∈ RQ
with the highest intensity value; for each remaining items x j in
RQ , we mark them as “Eliminated” if they are similar to the xi
(i.e., simΨ (xi ,x j )). We then add xi into the final result set R and

remove xi from RQ . Afterwards, a new unmarked item with the

highest intensity value will be picked from RQ , and the previous

steps will be repeated until either |R | = k or all remaining items

in |RQ | are marked as “Eliminated”.

This naive solution is a greedy approach that will eventually

produce a set of items that satisfy all diversity constraints with

relatively high-intensity values. Clearly, the naive solution is

computationally expensive, especially when the size of RQ is

large. Furthermore, it does not guarantee the resulting set to

contain at least k items. However, we use this naive solution as a

foundation and propose an efficient online solution that achieves

better performance with much less computational cost.

3.2 Preferential Diversity
Our Preferential Diversity algorithm is an online solution for

the DT-k problem. As discussed in the previous section, finding

the optimal solution to the DT-k problem is computationally

expensive. Thus we chose a greedy approach in the PrefDiv

design. To maximize the efficiency of PrefDiv, we need to develop

it as an online algorithm that accesses database tuples (i.e., items)

incrementally. The main idea underlying PrefDiv is minimizing

as much as possible the number of data items being examined.

PrefDiv builds the DT-k set R by starting with a set of k highest

ranked data item (with respect to the relevance score/intensity

value), and then gradually replacing items that fail the diversity

constraints with slightly less relevant but diverse items outside

of R that satisfy the diversity constraints. This process continues

until all items in R satisfy the specified diversity constraints.

One potential issue is that relevant items in the DT-k set tend

to be similar to each other. Thus strictly enforcing diversity con-

straints may eliminate too many items that are highly beneficial

to the user. To address this issue, we propose a relevance parame-
ter A that allows PrefDiv to produce representative results with

partial diversity. When A = 1, R would simply be the top k items

from the initial set, i.e., the items with the k highest intensity
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values. WhenA = 0, R contains k dissimilar items from the initial

set. When A is between 0 and 1 and given that PrefDiv is an

iterative algorithm, considering k objectives each iteration, the

final result will have at leastA∗k items from every iteration, and

in each iteration A will be divided by half. For example, when

A = 0.5 and k = 20, the first iteration will select at least 20 ∗ 0.5
items for the final result set, the second iteration will select at

least 20∗ (0.5∗0.5) items, and so on. With this parameter, the user

is able to control the trade-off between relevance vs. diversity by

enabling partial diversity whenever necessary.

As illustrated in Algorithm 1, the basic logic of PrefDiv is as

follows: PrefDiv takes as input, a set of initial results RQ sorted

according to the descending of their intensity value, the desired

result cardinality of k , partial diversity parameter A, and a set

of diversity constraints Ψ. It outputs a DT-k set that represents

the original answers RQ . In each iteration, PrefDiv fetches and

removes k items with the highest intensity value from RQ and

places them in a temporary set T . Each of the items in T is then

compared with items currently in R, such that any item inT that

fails to satisfy all diversity constraints with respect to all items

in R will be marked as “Redundant"; else, it will be added into R
immediately. This process will continue until all items in T are

either moved into R or marked as “Redundant". Once all k items

fetched in the current iteration have been examined, PrefDiv

will check if a sufficient number of items were moved into R
according to parameter A. In case the number is not sufficient,

the difference will be covered by the highest-ranked items (with

respect to intensity value) that are marked as “Redundant" in the

current iteration. Afterward, the above iteration will be repeated

until k representative items are produced (|R | = k).
Time Complexity According to the above discussion, we

can observe that the worst-case complexity of PrefDiv is O (kN ),
since each of the N unlabeled items will be compared at most

k − 1 times with the items that are currently in the result set

before being included or discarded from the final result. Fortu-

nately, as the size of k is usually a small number, PrefDiv should

typically behave as a linear algorithm. Furthermore, as we will

show in our empirical studies (Section 4), depending on the diver-

sity constraints, PrefDiv typically does not need to examine all

original items in RQ . That is, a very small set of the item would

be sufficient enough to produce R if Ψ are appropriately defined.

3.3 Relevance Proportionality
From the above discussions, it should be clear that having a good

balance between relevance and diversity is important to the qual-

ity of the representative result set. In PrefDiv, we have introduced

the relevance parameter A to enable the partial diversity, which

helps preserve the relevance of the representative results. Our

empirical study shows that such a parameter does help improve

the quality of the result set R. However, it is up to the user to

define A for any query, and this may increase user efforts when

using our algorithm. This motivated us to introduce a new self-

adjusted parameter υ to replace the manual relevance parameter

A, which led to a new variation of PrefDiv called Preferneral Di-
versity with Proportional Relevance (PrefDiv-PR). As illustrated in
Algorithm 2, the idea here is to automatically compute the right

amount of items that should be promoted into the final result set

based on the proportion of the relevance of each iteration.

In particular, υ adapts to the aggregated intensity value of all

items in each iteration, and can be computed as follows: Assume

a given set of original results RQ , a DT-k subset R ⊆ RQ and a

number of iterationsL needed for PrefDiv to obtain the result set

R. For each iteration ℓ., s.t. ℓ < L, a set of items with the highest

intensity value from the remaining items of RQ are reserved

into a separated set Bℓ , s.t. Bℓ ⊆ RQ and |Bℓ | = k . The υℓ of an

ALGORITHM 2: PrefDiv-PR
Require:
1: Initial result set RQ , result cardinality k , a set of diversity

constraints Ψ
Ensure:
2: One subset R of RQ
3: L ← 0

4: T ← ∅
5: while exists unexamined items in RQ and |R | < k do
6: T ← Pick k items with highest intensity from RQ
7: for all x j ∈ T do
8: if DissimΨ (x j ,xt ) : ∀xt ∈ R then
9: R ← R ∪ x j

10: RQ = RQ −T
11: BL ← T − R
12: Increase L by one

13: for ℓ = 1→ L do
14: υℓ ← Compute υℓ according to Equation 1

15: while the number of items in R from Bℓ < υℓ ∗ |R | do
16: R ← R − x j , s.t. x j ∈ R, Ix j < Ixk : ∀xk ∈ R
17: R ← R ∪ xi , s.t. xi ∈ Bℓ , Ixi ≥ Ixt : ∀xt ∈ Bℓ
18: Bℓ ← Bℓ − xi

19: Return R

iteration ℓ is calculated through the following equation:

υℓ =

∑
x ∈Bℓ

Ix∑L
j=1
∑
xc ∈Bj Ixc

(1)

Recall from Section 2.1.1, Ix is the intensity value of data item

x . The idea here is that at least υℓ proportion (i.e., percent) of

the item in the final representative result set should be extracted

from iteration ℓ, as early iterations would always have a higher

aggregated intensity value, and thus, would occupy a bigger

portion of the final representative set R. Our empirical results

show that by employing υ to compensate for the loss of relevance,

we can prevent too many relevant results from being dropped.

To actually generate the final representative results according

to υℓ , PrefDiv-PR needs to first run PrefDiv to obtain the initial

representative set R, as well as records the number of iterations

L taken to obtained R. During each iteration of PrefDiv, the

items that are initially extracted from RQ (before applying the

diversity constraints) will also be recorded into a separate set Bℓ .
Afterward, PrefDiv-PR will examine the set of items in R that are

extracted from each Bℓ with the corresponding υℓ to determine

if additional items need to be extracted from Bℓ and added into

R. Note that if such extraction is necessary, depending on the

number of items needed to be extracted, the set of items with

the highest intensity value in Bℓ that have not been included in

R will be chosen from Bℓ and placed in R. Finally, once all υ are
satisfied for each iteration, the set of k items with the highest

intensity value in R will be retrieved as the final results.

3.4 Optimize Diversity Constraints for
Coverage

As discussed previously in Section 2.1.3, coverage is yet another

important property of the representative set. It gives us twomajor

benefits. First, it helps to ensure that the underlying data space

(i.e., the original set) has been well represented by the selected

representative items. Second, it enables the possibility for the

user to retrieve items that are not in the representative result

set by performing “zoom-in” operations—each representative

item can be seen as the leader of a set of similar items, and by
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Figure 4: Illustration of the optimal radius, when k = 2

“zooming-in” to one of the leaders, similar items around the leader

can be revealed.

Since the definition of coverage depends on the similarity

between data objects, it is defined by the set of diversity con-

straints. In order to boost coverage, a set of appropriate diversity

constraints must be defined. Below, we will discuss a general

approach to determine such diversity constraints through an

example.

Example 3.1. Consider a set of initial results RQ that contains

100 items, each with two dimensions, k = 30, a single diversity

constraintψ that considers both dimensions, and the Euclidean

distance as the diversity measure. Furthermore, assume that no

partial diversity is allowed, meaning the final representative set

produced must be a strict DT-k set. Obviously, whether it is

possible to produce a DT-k set with 30 items is dependent on

the definition of diversity constraints, such that if the diversity

constraint consists of a diversity threshold that is beyond the

maximum pair-wise distance between any pair of items in the

original result set, then only a single item can be included in R, as
the rest of the data items would be discarded due to the violation

of the diversity constraint. Clearly, returning a result set with

a single item when k = 30 is not ideal, and thus, the diversity

threshold should be adjusted lower. In contrast, a minimum pos-

sible diversity threshold (i.e., 0) would lead to an arbitrary set of

k items, which gives no guarantee of either diversity or coverage.

Clearly, from the example, an optimal diversity constraint should
include a diversity threshold that exhibits the following proper-

ties: (1) be as large as possible to improve the coverage; and (2)
be small enough to allow a strictly diverse representative set (i.e.,

DT-k set) with k mutually dissimilar items being formed.

With the above observations, we define the optimal diversity

constraint as:

Definition 6. Optimal Diversity Constraint. For a given set of

item R, an integer number k , and a distance function dist (x1,x2),
an optimal diversity constraint must contain the largest possible

distance threshold, denoted as divopt , that exists between a pair

of items in R that can be used to generate a DT-k subset RQ
from R, such that |RQ | >= k and no two item in RQ are similar

according to dist (x1,x2) and divopt .

As illustrated in Figure 4, assume we have a set of points

P = {x1, ...,x4}, such that each point consists of a 2-D coordinate

and a diversity constraintψ that consist of both dimensions and

uses Euclidean distance. In such case, if k = 2, then div = 3

will be the divopt (i.e., optimal diversity threshold) forψ . If any
value less than 3 is chosen to be the divopt , then at least three

points will remain after removing all similar points because only

p2 and p3 are considered to be similar with respect to a diversity

threshold of 2. If any value larger than 3 is chosen to be the

divopt , then only one point will remain in P after removing all

similar points. Thus, 3 is the only option for divopt , as no other

ALGORITHM 3: SearchOptimalDiversityThreshold

Require:
1: A set of items RQ , a size k , a set of attribute ∆, and a

distance function dist (x1,x2,∆)
Ensure:
2: A diversity threshold divopt
3: S ← an initial item x ∈ RQ
4: divopt ← ∅
5: while |S | < k do
6: x∗ ← argmaxx ∈(RQ−S ) (min(dist (x ,x j ,∆) : ∀x j ∈ S ))

7: S ← S ∪ x∗

8: Θ← minimum distance between any pair of items in S

9: xR ← argmaxx ∈(RQ−S ) (min(dist (x ,x j ,∆) : ∀x j ∈

S ,s .t .dist (x ,x j ,∆) < Θ))

10: divopt ← min(dist (xR ,x j ,∆) : ∀x j ∈ RQ )
11: Return divopt

distance threshold would be able to produce a result with three

items. Unfortunately, finding the optimal diversity threshold for

a given distance measure and a set of attributes is NP-hard.

According to Definition 3, two items xi ,x j are dissimilar iff

they fail to satisfy a diversity constant Ψ with a diversity thresh-

old div and distance function dist (x1,x2). Since an item, xi can
be included in a DT-k subset R if and only if xi satisfies all diver-
sity constraints with respect to other items in R, the maximum

distance d between any pair of items in R increases along with

the diversity thresholds inside each diversity constraints. Based

on the Definition 6 of the optimal diversity constraint, the prob-

lem of finding the optimal diversity thresholds (i.e., divopt ) for
a given diversity constraint can be mapped to the MaxMin Di-

versity Problem, which aims to select a representative subset

R ⊆ RQ , such that |R | = k , and the minimum distance between

any pair of items in R is maximized. As the MaxMin Diversity

problem has been previously proven to be an NP-hard problem

[4], finding the optimal diversity threshold is also an NP-hard

problem.

Inspired by the MaxMin Diversity problem, we adopt a greedy

heuristic (Algorithm 3), which automatically computes an ap-

proximation of the optimal diversity thresholds for a given set of

diversity constraints. As illustrated in Algorithm 3, we first find

a subset S ⊆ RQ that maximize the minimum distance between

items in R (Lines 5 - 7). Then, we generate the optimal diversity

threshold by comparing the pair-wise distance of all items that

are in RQ but not in S (Lines 8 - 11). The optimal diversity thresh-

old is defined as the largest distance between a pair of items

in RQ that is smaller than the minimum distance between any

pair of items in R. As proven in [30], the result produced by this

greedy heuristic has a

1

2

approximation of the optimal solution

and a quadratic complexity, and no other polynomial algorithm

can provide a better guarantee.

4 EXPERIMENTAL EVALUATION
To study the effectiveness of our PrefDiv and PrefDiv-PR algo-

rithms, we compare them to the two most effective diversified

top-k algorithms, namely Swap [37] andMMR [5], as suggested in

[34]. We also compare them to four diversity-focused algorithms,

MaxSum, MaxMin, K-Medoids, and DisC Diversity, to assess how

well diversity has been preserved when relevance is taken into

account. All the algorithms in our evaluation are discussed in

Section 5.
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4.1 Experimental Testbed
We implemented all of the algorithms with JDK 8.0 on an Intel

machine with Core i7 2.5Ghz CPUs, 16GB RAM, and 512GB SSD.

Algorithms. We implemented MMR and Swap based on their

published descriptions [5] and [37], respectively. The MaxMin

and MaxSum algorithms used in our experiments are based on

Definitions 8 and 9 (in Section 5), respectively, and DisC Diversity

is taken directly from the original author [10]. However, DisC

Diversity is not top-k bounded algorithms, and the size of the

result set that DisC Diversity produces is heavily dependent on

the radius. To allow for a comparison, we modified the DisC

Diversity to stop when the size of the result set equals k . We also

included one well-known clustering algorithm, K-Medoids [26],

which aims to group a set of data objects into clusters through

some distance measure, so objects within a cluster are close to

each other and objects outside of the cluster are unrelated to the

objects inside the cluster.

In our experiment, we implemented K-Medoids based on [26].

Since K-Medoids does not capture the relevance in any regard,

we improved the performance of K-Medoids in balancing the

relevance vs. diversity trade-off by choosing the object with the

highest intensity value as the final recommendation from each

of its k clusters. This improvement significantly enhances the

performance of the K-Medoids with respect to relevance, while

exhibiting the minimum decrease in diversity.

Most of the diversification techniques involved in our experi-

ments require some parameters, since finding the best parameters

for each technique that are optimum under all situations would

be too difficult. For the purpose of comparison, in all of our ex-

periments, there is only one diversity constraintψ for any given

set of experiments, which is used by all algorithms that require a

diversity constraint during its execution. We fixed the diversity

threshold div used inψ for each set of the experiments, which

is computed with the optimal radius by Algorithm 3. All other

parameters except ψ and r are fixed for all runs and adjusted

according to the suggestion of the original authors, or based on

the best overall performance. For MMR, we set λ = 0.3, for Swap,
we set theUB = 0.1, and for PrefDiv, we set A = 0.6.

Datasets. We ran our tests on two real-world datasets: Cam-

eras [10], and Foursquare. We selected these datasets in order

to experiment with two different distance functions, Hamming
with Cameras and Euclidean with Foursquare. The Cameras

dataset consists of 579 records and 7 attributes per record. The

Foursquare dataset is collected from the major location-based so-

cial network, Foursquare. We obtained real-life user preferences,

used Foursquare’s public venue API, and queried information

for 14,011,045 venues. In order to build realistic user profiles

for our evaluations, we used a dataset collected by Cheng et al.

[7] that includes geo-tagged user-generated content from a vari-

ety of social media between September 2010 and January 2011.

This dataset includes 11,726,632 check-ins generated by 188,450

users. Accordingly, each reading in our Foursquare dataset has

the following tuple format: <ID, latitude, longitude, # check-ins,

# unique users>. In our experiments, we consider only data items

(i.e., venues) from New York City (NYC), which consists of 10912

items and San Francisco (SF), which consists of 7859 items.

User Preferences. The intensity values (I) for each individual
dataset is generated as follows:

For the Cameras dataset, we generated 100 different sets of

user preferences, such that in each profile the preference intensity

value for each individual camera is generated based on a uniform

distribution, and each individual user preference is represented

as one unique query.

For the Foursquare dataset, we obtained the real-life user pref-
erences based on the hierarchy of the Foursquare dataset, such

that every individual venue v in the dataset is associated with a

type Tv . For example, an Italian restaurant belongs to the cate-

gory “Italian restaurant”, which can belong to the higher level

category “Restaurants”, which can itself belong to the category

“Food”, and so on. In order to build highly personalized and spe-

cific profiles, we use the bottom layer of the hierarchy, as well as

the specific venues visited. In particular, given the set of check-

ins Cu of user u, we build a hierarchical profile P where at the

top level, the preferences of the user are expressed in terms of the

(normalized) frequencies of this user’s visitations with respect to

the types of venues. The second layer of the user profiles further

provides the normalized frequencies of venues for the different

types of locations visited by u. Since our user profile is sparsely
gathered during a short period of time, to resemble a real-world

user profile, we merged the 1000 sparse Foursquare user profiles

to create one superuser profile. We performed our experiments

by randomly selecting 50 query points from each city (100 query

points in total). For each query point, we considered all venues

located within a 1.5 kilometer radius of the query location.

4.2 Evaluation Metrics
In our experimental evaluation, we evaluate the performance

of all models based on three well-known and commonly used

metrics: Normalized Relevance [35], Coverage [10] (Definition

5), and Execution Time. Note, there are two other commonly

used metrics for evaluating ranking algorithms such as DCG and

Spearman rho. However, both metrics focus on measuring the

correctness of the order of the results produced by the ranking

algorithm. Thus, they are not the ideal evaluation metrics for

evaluating the effectiveness of result diversification algorithms.

As stated in previous sections, our proposed PrefDiv algorithms

are post-processing steps of initial query results, which does not

impact the relative order of the original result set. In other words,

the produced representative result set of PrefDiv algorithms es-

sentially follows the original order of the initial results. Thus,

metrics that focus on the correctness of the ranking order do not

fit the context of this evaluation.

Definition 7. Normalized Relevance. Let S be a set of items

and S∗k ⊆ S such that |S∗k | = k . The Normalized Relevance of a

subset S∗k is defined as the sum of the intensity value of items in

S∗k over the sum of k items with highest intensity value in S .

nRev (S∗k ) =

∑
x ∈S∗k

Ix

maxSk ⊆S, |Sk |=k
∑
x ∈Sk Ix

(2)

In order to calculate the coverage for the Foursquare dataset,

given that it is difficult to find a fixed radius that would work

with any query location, we calculate the coverage with respect

to the optimal radius generated by Algorithms 3 for every output

size k . In the case of a Camera dataset, where the hamming

distance is employed, the coverage is calculated with a fixed

diversity threshold/radius div = 3 (which is the mid-point of the

maximum distance allowed). For a fair comparison, all algorithms

are evaluated with respect to the same diversity threshold/radius.

Note that Normalized Relevance and Normalized Intensity Value

would be used interchangeably in the following sections.

4.3 Experimental Results
Here we report the findings of our experimental evaluation.

4.3.1 Normalized Relevance. As demonstrated in Figures 5,

8, and 11, we can see a clear separation between two groups

of algorithms for all datasets, where PrefDiv, PrefDiv-PR, Swap,

MMR, and K-Medoids tend to group together, and MaxMin, Max-

Sum, and DisC Diversity form another group. The reason for this

is that the second group does not take relevance into account;

hence, it would be unlikely for them to retrieve a representative

subset that has a high total intensity value. In contrast, the first

group of algorithms takes relevance into account, and, as such, it

341



Size of Result Set
10 20 30 40 50

N
o
rm

a
liz

e
d
 I
n
te

n
s
it
y
 V

a
lu

e

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

Cameras

PrefDiv
PrefDiv-PR
MMR

Swap
K-Medoids
MaxMin

MaxSum
Disc
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Figure 6: Coverage of Cameras.
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Figure 7: Execution Time of Cam-
eras.
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NYC
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Foursquare, NYC
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Figure 12: Coverage of Foursquare,
SF
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Figure 13: Execution Time of
Foursquare, SF

achieves a significantly higher performance in terms of retrieving

relevant items.

4.3.2 Coverage. Figures 6, 9, and 12 show that our PrefDiv and

PrefDiv-PR exhibit better coverage on average when compared

with MMR and Swap by 20% and 42%, respectively. The reason

could be because both MMR and Swap optimize dissimilarity as

their definition of diversity. In contrast, both PrefDiv and PrefDiv-

PR are coverage-aware algorithms, which seek an optimal radius

that directly improves the coverage of the representative result

set. Therefore, both PrefDiv and PrefDiv-PR can perform much

better than Swap and MMR. We also observed that on average

PrefDiv is able to outperform MaxSum in terms of coverage

by 160%, which could be explained because MaxSum as pure

dissimilarity-based algorithm fails to cover the entire space of

the dataset. K-Medoids demonstrates good coverages for both

datasets. However, both PrefDiv and PrefDiv-PR still exhibit

slightly better coverage in general.

TheMaxMin algorithm performswell in terms of the Foursquare

dataset, although the performance dropped significantly for the

cameras dataset. The reason could be because in the Foursquare

dataset the average number of venues around each query point

is about 90 venues. In contrast, the Cameras dataset consists

of 579 tuples. This shows that MaxMin is able to obtain good

coverage with a relatively small dataset and Euclidean distance

that takes a wide range of values as distance, but fails to cover

the space with large datasets and hamming distance that only

takes the number of attributes + 1 distinct values as distance. In

both datasets, DisC Diversity demonstrated the highest coverage,

which is to be expected since DisC Diversity is the only algorithm

in the experiment that directly optimizes coverage as the only

objective.

Another interesting observation is that, in the Foursquare

dataset, except PrefDiv, PrefDiv-PR, and DisC Diversity, other

algorithms appear to have a drop in coverage when the value of k
increases, although, in general, with the increase in result size the

coverage should increase as well. The reason for such behavior is

that in the Foursquare dataset, we employed the optimal radius

as the criterion for determining the similarity between items.

Therefore, with the increase in result size, the optimal radius

becomes smaller, thus leading to a decrease of coverage for some

algorithms.
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Figure 15: Normalized Relevance of
different settings of A, with optimal
radius and k = 30.
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Figure 16: Execution Time of differ-
ent settings of A, with optimal ra-
dius and k = 30.

4.3.3 Execution Time. We have measured the execution time

required by all algorithms. As shown in Figures 7, 10, and 13,

our PrefDiv and PrefDiv-PR appears to be the overall fastest

algorithm when compared to all other alternatives. In general,

PrefDiv and PrefDiv-PR perform near identically in terms of run-

time, which is expected as the additional computation overhead

introduced in PrefDiv-PR is negligible. To illustrate the efficiency

of our proposed greedy heuristic for searching the optimal diver-

sity threshold, we have included its runtime in the PrefDiv-PR, so

the runtime difference between PrefDiv and PrefDiv-PR reflects

the runtime of the search optimal diversity threshold algorithm.

With that in mind, PrefDiv-PR is still on average faster than both

MMR and Swap by up to 72% and 116%, respectively. Specifi-

cally, in the Camera dataset, PrefDiv is able to execute 57 times

faster than K-Medoid, 127 times faster than MMR, and 159 times

faster than Swap. In the Foursquare dataset, most algorithms

tend to be faster when compared with Cameras, because the

number of venues near each query point in Foursquare is much

smaller than in the Cameras dataset. However, we still observed

that, on average, PrefDiv is able to outperform MMR and Swap

by 30 and 36 times, respectively. When compared to K-Medoid,

which is also very efficient when dealing with this type of dataset,

PrefDiv still appears to be 2.7 times faster than K-Medoid on av-

erage. As mentioned previously, if the optimal radius for most

frequent queries is stored, PrefDiv-PR would not need to cal-

culate the optimal radius for these queries again. Furthermore,

for the fairness of the comparison, all of the algorithms run in

a single-threaded mode. Since the optimal radius computation

method that we adopted is fully parallelizable, it can take advan-

tage of the modern multi-threaded CPU architecture to speed up

the computations. In fact, we have observed linear speed up with

respect to the number of CPU cores in the system up to 16 cores

(the highest we have experimented). One interesting remark here

is that, in the Foursquare dataset, the execution time of DisC

Diversity drops when k increases from 10 to 20. The reason is

that the runtime of DisC Diversity is also affected by the length

of the radius, therefore, with smaller output sizes, the optimal

radius will become larger, which leads to the relativity longer

execution time of DisC.

4.3.4 Parameter A of PrefDiv. As illustrated in Figures 6 to

11, a performance difference between PrefDiv and PrefDiv-PR

exists due to the existence of the accuracy parameter A in the

PrefDiv algorithm. In this section, we conducted an experiment

to study the effect of parameter A in PrefDiv with the Camera

dataset and k = 30. As shown in Figures 14, 15, and 16, when A

increases from 0 to 1, we observed an improvement of normalized

relevance, albeit with a decrease in coverage. This is as expected

since, with higher values of A, PrefDiv will select more relevant

items, and with lower values of A, more diverse items will be

selected that lead to an increase in coverage. However, this would

be at the expense of lower relevance. The execution time appears

to be stable regardless of the value of A. This is because, for each

iteration, PrefDiv only requires a tiny amount of execution time.

Therefore, the additional iterations introduced by the low value

of A would not have a large impact on the overall runtime.

4.3.5 Relevancy vs. Diversity. Lastly, as a summary, we present

three scatterplots that capture the trade-off between relevance

and diversity. Each point in Figures 17 and 18 are correspond-

ing to the average of over 50 different query locations with one

value of k , and each point in Figures 19 are corresponding to the

average of over 100 different user profiles with one value of k .
As shown in the figures, we have Normalized Intensity Value as

the y-axis and Coverage as the x-axis. Algorithms located in the

upper left corner of the figure exhibit the best coverage result,

while those in the lower right corner have the highest relevance

scores. As we can observe, both PrefDiv and PrefDiv-PR are lo-

cated towards the upper right corner (circled) for all three scatter

plots, which indicates that both PrefDiv and PrefDiv-PR exhibit

better ability to handle the trade-off between relevance and di-

versity with respect to both datasets and distance measures. One

may notice that in the Camera dataset, the advantage of PrefDiv

and PrefDiv-PR with respect to other alternatives is relatively

smaller compared to that in the Foursquare dataset. This is be-

cause the Cameras dataset uses the Hamming distance as the

distance measure, which has a much smaller domain than the

Euclidean distance used in the Foursquare dataset, thus weaken-

ing the benefit of the optimal diversity threshold. These results

also indicate that the relational proportionality introduced in

PrefDiv-PR does effectively improve the quality of the result,

since PrefDiv-PR is able to outperform (although slightly) the

PrefDiv with manually configured relevance parameter A.

4.3.6 Additional Observations. Despite the fact that both Pref-

Div and PrefDiv-PR run up to 159 times faster than other al-

ternatives, the greedy heuristic (Algorithm 3) that we proposed

for finding the optimal diversity threshold/radius runs at a qua-

dratic time complexity, and thus, it is much slower. Although it

is not required to run this heuristic before each execution of the

PrefDiv/PrefDiv-PR, it certainly helps improve its performance.

However, this is not an issue with our PrefDiv/PrefDiv-PR algo-

rithm because other algorithms (e.g., DisC Diversity) also benefit

from the optimal diversity threshold as much as PrefDiv/PrefDiv-

PR.

Fortunately, this greedy heuristic only needs to run once for

each query, and thus, it can simply be cached to boost the runtime

of frequent queries significantly.

5 RELATEDWORKS
In this section, we discuss works that are closely related to ours

from multiple aspects.
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Figure 17: Relevance VS. Diversity (NYC).

Figure 18: Relevance VS. Diversity (SF).

Figure 19: Relevance VS. Diversity (Cameras).

5.1 Relevance Ranking Techniques
Many ranking techniques using preference have been proposed.

These are comprehensively surveyed in Stefanidis et al. [33]. As

mentioned above, these techniques can be distinguished based

on the type of preferences they support for filtering and order-

ing data. These techniques primarily handle only one type of

preference, either quantitative or qualitative. However, each pref-

erence type has its own advantages and disadvantages. Hybrid

schemes that support both qualitative and quantitative prefer-

ences have been proposed in an attempt to exploit the advantages

of both types of preferences while eliminating their disadvan-

tages [17, 22]. In this work, our proposed algorithms can work

with any existing relevance ranking model that returns a set of

sorted tuples/objects along with their scores/intensity values.

More recently, in [6], the author studied the problem of produc-

ing rankings while preserving a given set of fairness constraints.

In particular, the proposed algorithm takes as input, a utility func-

tion, a collection of sensitive attributes (e.g., gender, race), and a

collection of fairness constraints that restrict the number of items

with each sensitive attribute that are allowed to appear in the

final results. It outputs a ranking that maximizes the relevance

with respect to the given utility function while respecting the fair-

ness constraints. As mentioned previously, our proposed PrefDiv

algorithms can leverage any existing relevance ranking model.

Therefore, in the case where the required sensitive attributes and

fairness constraints can be provided by the user, PrefDiv can be

used in conjunction with the ranking produced in [6].

5.2 Diversity Techniques
Result diversification has been studied in many different contexts

and with various definitions [10], such as similarity, semantic

coverage [2], and novelty [8]. In our work, we focus on the simi-

larity definition and use MaxMin and MaxSum, which are two

widely used diversification models, as baselines.

The goal of these two diversification models is to select a

subset S from the object space R, so that the minimum or the

total pairwise distances of objects in S is maximized. Recently, a

number of variations of the MaxMin and MaxSum diversification

models have also been proposed (e.g., [9, 25]) to address the

problem of diversifying continuous data. Formally, MaxMin and

MaxSum are defined as follows:

Definition 8. MaxMin generates a subset ofR withmaximum

f = minpi ,pj ∈Sdt (pi ,pj ) where dt is some distance function

pi , pj for all subsets with the same size.

Definition 9. MaxSum generates a subset of R with maxi-

mum f = Σoi ,oj ∈Sdt (oi ,oj ) where dt is some distance function

oi , oj for all subsets with the same size.

DisC Diversity [10] is the most recently proposed diversity

framework and solves the diversification problem from a different

perspective. In DisC Diversity, the number of retrieved diverse

results is not an input parameter. Instead, users define the desired

degree of diversification in terms of a tuning parameter r (radius).
DisC Diversity considers two objects oi and oj in the query result

R to be similar objects if the distance between oi and oj is less
than or equal to a tuning parameter r (radius). It selects the

representative subset S ∈ R according to the following conditions:

(1) For any objects in R, there should be at least one similar

object in S ; and (2) All objects in S should be dissimilar to each

other. These two conditions ensure both the coverage and the

dissimilarity property of a diverse result set.

In addition, DisC Diversity also introduces two problems, Cov-
ering and CoveredBy [11]. These can be used to model the issue

of generating a representative result set that is both diverse and

relevant to a user’s individual preference (without using prefer-

ences). The Covering problem is used to model the case where

users want highly relevant items to cover a large area around

them. In order to achieve this goal, a relatively larger radius is

assigned to items with larger weights. The CoveredBy problem is

used to model a case where a user wants to see more relevant ob-

jects. In that case, a smaller radius is assigned to items with larger

weights. These two problems together illustrate the possibility

of using DisC to handle relevance together with diversity.
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The key differences between PrefDiv algorithms and DisC

Diversity are: (1) PrefDiv algorithms follow the Top-k paradigm,

which provides users with the option to specify the size of the

final result set by assigning a value to parameter k , whereas
DisC Diversity adjusts the size of the result set by changing its

radius parameter r . (2) The PrefDiv algorithms focus on both the

relevance of the result set with respect to the users’ preference

and the diversity of the result set. DisC Diversity focuses mainly

on the most diverse representative subset with two scenarios that

only illustrate the possibility of using DisC Diversity to handle

such relevance-aware diversity requests; however, they do not

mention any specific strategies on how one can dynamically

change r with respect to Covering or CoveredBy. In addition, our

implementation of PrefDiv-PR eliminates the need for identifying

r (i.e., diversity threshold) manually by automatically finding the

most suitable diversity threshold under any given situation.

Another way to generate a diverse, representative set of results

is through clustering. One example of this would be k-Medoids,
which is a well-known clustering algorithm that attempts to

minimize the distance between points in a cluster and the center

point (medoid element) of that cluster. The k-Medoids algorithm

can be classified into two stages: In its first stage, it generates

a set of k clusters C = {c1, c2, ..., ck} based on some distance

function dt . In the second stage, one element from each cluster

is selected to be part of the result set R. Several strategies for
selecting an element from each cluster could be employed. For

instance, one strategy is to choose the center point of each cluster

that is expected to deliver high diversity, and another strategy

would be to choose the point that has the highest intensity value

for each cluster. However, since there is no parameter that can be

tuned, either manually or automatically, to balance the trade-off

between relevance and diversity, k-Medoids is unable to balance

such a trade-off in fine granularity.

5.3 Multi-Criteria Objective Optimization
In the past, diversification and retrieval of relevant results have

often been studied together as a multi-objective optimization

problem with two objectives, where the first objective is rele-

vance, and the second objective is dissimilarity [38]. The follow-

ing are some representative techniques that are related to our

work.

In [27], the authors considered the optimization of the diversi-

fied Top-K problem as finding the optimal solution for the maxi-

mum weight independent set problem, which has been proven

to be an NP-hard problem. The authors proposed an approach,

called div-astar, which uses a diversity graph that consists of N

nodes, where each node corresponds to one item in the original

data. This diversity graph is sorted according to the relevance

score, and an a∗ algorithm is used to find the optimal solution

for diversifying Top-K Results. In addition to the div-astar solu-

tion, two enhancements have also been proposed, called div-dp
and div-cut: div-dp takes advantage of dynamic programming to

divide the initial graph into disconnected components, and div-

cut is a cutpoint-based approach that further decomposes each

disconnected component based on loosely connected sub-graphs.

PrefDiv algorithms are different from div-astar [27] (Section 5.3),

in that the main objective of div-astar is to find the exact solution

for the maximum weight independent set; hence, even with all

the enhancements and decompositions, each sub-problem is still

NP-hard. On the other hand, although PrefDiv algorithms also

consider the maximumweight independent set problem as part of

the algorithm, they take advantage of greedy approximation with

a relaxed constraint, which allows similar items to be included in

the result set if the relevance distribution of the original data can

be better reflected in the resulting set. Furthermore, such relaxed

constraints allow PrefDiv to be more practical for border usage,

especially for tasks that require a short response time.

One widely used approach that was targeted directly at opti-

mizing the trade-off between diversity and relevance was intro-

duced by [5]. In this work, the authors proposed the famous twin-

objective function called Maximal Marginal Relevance (MMR),

which combines both relevance and diversity aspects in a single,

comprehensive objective function. Formally, MMR defines its

objective function as:

argmax

Di ∈R\S
[λ(Sim1 (Di ,Q ) − (1 − λ) max

D j ∈S
Sim2 (Di ,D j ))] (3)

Where λ is a scaling factor that specifies the preference between

relevance and diversity. When λ = 1, the MMR function equals a

standard relevance ranking function. When λ = 0, it computes

a maximal diversity ranking. Comparing PrefDiv to MMR [5]

approach, one can clearly see the difference: there are no compre-

hensive objective functions being used in the PrefDiv algorithms.

Our approach addresses the combined problem of relevance and

diversity through a combination of multiple steps, rather than

solving it in one single function.

Recently, a new bi-criteria objective optimization approach

based on MMR has been proposed [19]. This approach integrates

regret minimization with traditional MMR to generate a new rele-

vance score that takes into consideration the case of minimizing

the disappointment of users when they see k representative tu-

ples rather than the whole database. In this work, the authors

proposed two approximation algorithms called ReDi-Greedy and

ReDi-SWAP, which find the set of items consisting of k items

having the highest score with respect to their MMR function.

In [32], the author has conducted a study on personalized,

keyword-based search over relational databases, which includes

the notion of diversity and coverage. Specifically, the author

provided good discussions on modeling the relevance, user pref-

erences, diversity, and coverage for keyword-based searches over

relational databases by means of Join Tree of Tuples. Join Tree

are trees of tuples connected through primary to foreign key

dependencies. However, PrefDiv algorithms assume that a utility

function F is given in advance to reflect the relevance and user

preference, and thus does not focus on modeling the relevance

and user preferences. Furthermore, PrefDiv algorithms are gen-

eral, post-processing techniques for result diversification, and

hence, do not restrict themselves to the keyword-based search

over relational database settings. As long as proper utility func-

tions and distance measures are given, PrefDiv algorithms can

be applied to any data types (e.g., structured, unstructured, semi-

structured). Consequently, the definition of coverage in [32] is

also different than the definition of coverage in this work.Wheres

[32] focuses on covering more user intents based on user pro-

files, PrefDiv algorithms focus on the proximity between the

representative results and original results.

Swap is another recent Top-K diversification technique that is

related to ours [37]; Swap starts with K items with the highest

relevance scores. Among these K items, Swap picks an item with

the lowest contribution to the diversity of the entire set, then

swaps this item with the item that has the next highest relevance

score. A candidate is successfully swapped with one of the items

in the Top-K set if and only if it can contribute more in terms

of the overall diversity of the result set. In order to preserve

the relevance aspect, Swap introduces an optional pre-defined

threshold called UB that specifies how much decrease in rele-

vance can be tolerated.UB can serve as a terminal condition that

stops the algorithm when the item with the highest relevance

among the remaining set is no longer high enough for the algo-

rithm to perform a swap operation. Our PrefDiv is different from

the Swap, as Swap seeks diversity through pairwise distances of

items among the result set, filters out items that contribute less

to diversity, and ensures relevance by throwing out items that

cause the relevance to drop below the pre-defined threshold. In

contrast, PrefDiv algorithms seek diversity by eliminating simi-

lar items and ensuring relevance by using a relevance-focused
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greedy algorithm along with proportionality, which can reflect

the relevance distribution of the original domain.

5.4 Data Summarization
Some recent works [24, 36] have studied the problem of provid-

ing interactive exploration and summarization support for tuples

in a given table. The goal of this type of approach is to produce

an informative hierarchy that organizes the underlying tuples

essentially in k clusters. In order to display tuples as clusters,

each cluster is folded into a single, representative tuple, with

only the common attribute values among all members of the

cluster being displayed. The rest of the attributes are shown as

“?”, which indicates that there are objects with different values

with respect to these attributes inside the cluster. To explore each

cluster, the user can gradually expand each “?” symbol contained

in the current representative tuple of a cluster. Each time the user

expands a “?" symbol, more tuples that contain a different value

with respect to the corresponding attributes will be displayed.

Clearly, these works are different than ours. We focus on produc-

ing a representative subset that is most informative to the user

with adjustable size, rather than summaries of subsets of a table.

5.5 Impacts of PrefDiv
The efficiency of PrefDiv and its ability to balance the trade-

offs between relevance, diversity, and coverage have already

benefited the design of some real-world systems that need to

produce highly informative representative subsets, or require

interactive efficiency in producing the representative results (e.g.,

[14–16, 28, 29]) .

One example is a novel mobile recommendation service that

provides a set of diverse points-of-interest (POI’s) recommenda-

tions [14–16], where the interactive efficiency has been weighted

equally important as the quality of the produced recommenda-

tions.

Another example is in the scientific domain and dimensionality

reduction, which PrefDiv has been employ as a novel way to se-

lect subsets of highly informative dimensions for high-dimensional

gene expression datasets [28, 29]. Those selected dimensions will

then be used to enable effective downstream analysis in a variety

of medical and bioinformatics researche.

6 CONCLUSIONS
Scalability from a human point of view is a very challenging

problem as it consists of finding the perfect balance between

the conflicting objectives of relevance and diversity. Traditional

top-k result diversification approaches focus on producing a

subset of results that balance the trade-off between selecting

highly relevant items and items that are dissimilar with respect

to each other. In order to achieve the above-mentioned objectives,

most algorithms rely on a number of tunable control parameters,

making them harder to configure (and be adopted). Coverage

is another important factor of diversity, which has been mostly

ignored in previous top-k result diversification algorithms.

In this work, we addressed these problems and proposed an

efficient online solution called Preferential Diversity (PrefDiv).

PrefDiv produces a set of high-quality representative items from a

large set of initial answers, where each representative item is cho-

sen to optimize both the relevance and diversity (i.e., dissimilarity,

and coverage). We also proposed a number of optimizations that

further improve PrefDiv’s usability, efficiency, and effectiveness.

We theoretically analyzed and experimentally compared our al-

gorithms to the state-of-the-art, top-k diversification algorithms.

Our evaluation showed that our algorithms achieve similar per-

formance in terms of normalized relevance, but outperforms the

state-of-the-art algorithms in terms of coverage by a noticeable

margin, while achieving a speedup of the runtime up to two

orders of magnitude.
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ABSTRACT
Connected mobility applications rely heavily on geospatial joins
that associate point data, such as locations of Uber cars, to static
polygonal regions, such as city neighborhoods. These joins typi-
cally involve expensive geometric computations, which makes it
hard to provide an interactive user experience.

In this paper, we propose an adaptive polygon index that lever-
ages true hit �ltering to avoid expensive geometric computations
in most cases. In particular, our approach closely approximates
polygons by combining quadtrees with true hit �ltering, and
stores these approximations in a query-e�cient radix tree. Based
on this index, we introduce two geospatial join algorithms: an
approximate one that guarantees a user-de�ned precision, and
an exact one that adapts to the expected point distribution. In
summary, our technique outperforms existing CPU-based joins
by up to two orders of magnitude and is competitive with state-
of-the-art GPU implementations.

1 INTRODUCTION
Connected mobility companies need to process vast amounts of
location data in near real-time to run their businesses. For exam-
ple, Uber needs to map locations of cars and passenger requests
(points) to prede�ned zones (polygonal regions) for allocation
and dynamic pricing purposes [40]. These polygonal regions are
typically largely disjoint (non-overlapping) and mostly static.
Points, on the other hand, are often not known a priori. Thus,
the problem is how to e�ciently �nd the polygons that contain
an incoming point.

Traditionally, such point-polygon joins [19] follow the �lter
and re�ne approach. In this two-phase evaluation strategy, the
�ltering phase typically uses an index (e.g., an R-tree) on the
minimum bounding rectangles (MBRs) of polygons and probes
the index for each point to obtain a list of candidate join pairs.
Then, in the re�nement phase, expensive point-in-polygon (PIP)
tests are performed to discard false matches.

We argue that the time has come to rethink this strategy: First,
main memory is not a scarce resource anymore and modern
machines o�er multiple terabytes of memory. Combined with
the city-centric model of geospatial applications (e.g., Uber), we
show that it is possible to maintain highly �ne-grained indexes
for entire cities (e.g., Uber’s operating zones) in main memory,
dramatically reducing the number of CPU-intensive PIP tests.
Second, geospatial positions, nowadays typically obtained by
smartphones or wearables, are inherently imprecise [41]. Thus,
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we argue that it is in many cases admissible to trade o� accuracy
for performance. Based on these two insights, we transform the
traditionally CPU-intensive problem of point-polygon joins into
one that is bound by memory access latencies.

In contrast to the classical �lter and re�ne approach, true hit
�ltering [9] identi�es actual join pairs already in the �ltering
phase, and thus partially avoids expensive re�nements. This
is achieved by using additional approximations (such as inner
rectangles [20]) to approximate the interior of polygons, so that
when a point falls into an interior approximation, it can be safely
deducted that the point is contained in the polygon.

Building on this seminal idea, we present an improved al-
gorithm that combines true hit �ltering with quadtrees [23] to
holistically index an entire set of polygons. This is in contrast to
existing implementations of true hit �ltering that approximate
polygons individually [15, 21] or use non-hierarchical (single-
resolution) grids [6, 39, 49]. In our approach, polygons are trans-
lated into a single set of multi-resolution grid cells that approx-
imates their boundary and interior areas. To support e�cient
queries, we store one-dimensional identi�ers of the cells in a new
in-memory radix tree (trie) named Adaptive Cell Trie (ACT). We
show that ACT is more query-e�cient than previous approaches
for indexing cell identi�ers (e.g., B-trees, like in [21]).

Another distinguishing feature of our approach is that it can
entirely avoid the expensive re�nement phase by re�ning cells in
the boundary areas until a user-de�ned precision is guaranteed.
Naturally, this comes at the cost of higher memory consumption
than traditional �lter and re�ne approaches. However, as stated
above, we argue that we can nowadays actually a�ord this higher
memory consumption in exchange for higher performance.

Our approach can also provide accurate results by performing
expensive PIP tests for points that are potential hits. To reduce
their number, we adapt (train) our index based on historical data
points to provide higher precision where it is actually needed. As
we show in our experiments, our accurate algorithm performs
very few PIP tests. Compared to a �lter based on the polygons’
MBRs, our index (trained with 1M historical points) reduces
the number of required PIP tests by >97% for a join between
NYC taxi pick-up locations and neighborhood polygons. This
algorithm can also be used when ACT cannot guarantee the
desired precision given a certain memory budget.

In summary, we make the following contributions:

• An algorithm that computes quadtree-based grid approxima-
tions for sets of polygons with precision guarantees

• A radix tree data structure (ACT) that is optimized for indexing
cell identi�ers: for a join of NYC’s yellow taxi data with NYC’s
neighborhoods, we achieve a throughput of >50M points/s
per CPU core under a <4m precision bound
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Figure 1: Quadtree-based cell decomposition and Hilbert
curve-based enumeration.

• An evaluation of ACT in contrast to more traditional data
structures, such as B-trees

• An accurate algorithm that trains the index structure based on
historical data points

• An experimental comparison against state-of-the-art GPU-
based point-polygon joins
In the remainder of this paper, we �rst give some background

about the building blocks of our approach in Section 2. Section 3
describes our approach and Section 4 presents the evaluation
with real-world and synthetic data. Finally, we summarize related
work in Section 5 before concluding in Section 6.

2 BACKGROUND
Location Discretization. Our approach relies on a quadtree-
based (hierarchical) decomposition of space (the surface of the
Earth in this case). This decomposition is static and thus data
independent. We enumerate the quadtree cells using a space-
�lling curve (e.g., the Hilbert or the Z curve) to index them in a
one-dimensional data structure. Our approach does not depend
on a concrete space-�lling curve. For our indexing strategy to
work, the cell enumeration must only ful�ll the property that
child cells share a common pre�x with their parent cell.

Figure 1 shows the hierarchical decomposition of two cells at
levels i and i + 1 and the corresponding bitwise representations
that encode the cells’ positions along the Hilbert curve. Each
cell consists of four sub cells, which it completely covers. Child
cells share a common pre�x with their parent cell, allowing us to
compute contains relationships using e�cient bitwise operations.
In our implementation, we use the Google S2 library [32] for
mapping latitude/longitude coordinates to 64-bit cell identi�ers,
which we call cell ids in the following. A cell id encodes up to 30
levels with two bits per level.
Polygon Approximations. To obtain �ne-grained polygonal
approximations, we need a method that maps polygons to sets of
quadtree cells (possibly at di�erent levels). In particular, our algo-
rithms take as input approximations of the boundary and interior
areas of single polygons. In our implementation, we use the S2 li-
brary to obtain these individual polygon approximations. Figure 2
illustrates a covering (in blue) and an interior covering (in green)
of a polygon. A point contained in a covering cell is either within
or outside of the polygon while points that match interior cells
are known to be within the polygon (true hits). The cell marked
with 1 is one of the largest covering cells and only minimally in-
tersects the polygon. Any point contained in this cell has at most
a distance of

p
2⇤� (with � being the side length of the cell) to the

polygon. To allow for an e�cient search, S2 stores the cell ids of
a covering in a sorted vector. Besides sorting the cell id vector, it
allows for the covering to be normalized. A normalized covering

contains neither con�icting nor duplicate cells. Two cells are con-
�icting when one cell contains the other. Only when the covering
is normalized can cell containment checks be e�ciently imple-
mented using a binary search on the sorted vector (O(logn)).

1

Figure 2: A covering (blue
cells) and an interior cov-
ering (green cells) of an in-
dividual polygon.

While binary search on a sorted
vector is a good strategy for
querying small collections of
cells (e.g., the covering cells of
a single polygon), it is not the
most e�cient way to search
larger collections (e.g., cover-
ings of multiple polygons). In
this work, we store large cell
collections in ACT, a query-
e�cient radix tree, and evalu-
ate its performance compared
to alternative physical represen-
tations (including a sorted vec-
tor and a B-tree).
PIP Test. A point-in-polygon (PIP) test determines whether a
point lies within a polygon. Typically such a test is performed
using complex geometric operations, such as the ray-tracing algo-
rithm [17], which involves drawing a line from the query point to
a point that is known to be outside of the polygon and counting
the number of edges that the line crosses. If the line crosses an
odd number of edges, the query point lies within the polygon. The
runtime complexity of this algorithm isO(n), n being the number
of edges. While there are many conceptual optimizations to the
PIP test, this operation remains computationally expensive since
it processes real numbers (e.g., latitude/longitude coordinates)
and thus involves �oating point arithmetics.

3 GEOSPATIAL JOIN APPROACH
In this work, we target the problem of mapping points to static,
largely disjoint polygons. We show how to accelerate such joins
by computing �ne-grained cell-based approximations of sets of
polygons and maintaining them in a query-e�cient in-memory
radix tree, which enables e�cient cell lookups and signi�cantly
reduces (or even eliminates) expensive geometric tests.

In contrast to techniques that �rst reduce the number of can-
didate polygons using an index, e.g., an R-tree on the polygons’
MBRs, and then re�ne candidates using geometric operations,
our approach leverages true hit �ltering [9] and identi�es most
or even all join pairs in the �lter phase. On a high level, our
approach �rst computes cell-based approximations of all poly-
gons, called coverings and interior coverings, and merges them
to form a super covering. Then, it stores these approximations in a
specialized in-memory radix tree (named ACT) which allows for
e�cient lookups. Finally, ACT is probed for every point to obtain
a list of true and candidate point-polygon pairs. The candidate
pairs are either re�ned by performing geometric computations to
obtain an accurate result, or deemed to be part of the join result
when small approximation errors can be tolerated.

The following provides more information about our indexing
technique and the two geospatial join algorithms that are based
on it: the approximate one that completely avoids expensive
PIP tests while still guaranteeing a user-de�ned precision, and
the exact one that reduces expensive computations by adapting
to the expected point distribution. These algorithms allow us
to trade memory consumption with precision (approximate ap-
proach) and performance (exact approach). Thus, they both favor
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(a) Covering (b) Covering (c) Combined cov.

Figure 3: A combined covering may be less selective than
two individual coverings. The arrows indicate that the
cells will be expanded.

modern hardware with large main memory capacities and high
memory bandwidths. In summary, the key contribution of our
indexing strategy is the novel combination of the super cover-
ing that approximates the polygons precisely, and the radix tree
data structure that allows these approximations to be queried
e�ciently. With this design, we revisit the concept of true hit
�ltering in the context of modern hardware.

3.1 Adaptive Cell Trie (ACT) Indexing
3.1.1 Super Covering Computation. The super covering con-

sists of a set ofmulti-resolution grid cells. All grid cells are disjoint
in the sense that each geographical point is covered by at most
one cell, even if two (or more) polygons overlap. A single cell of
the super covering can therefore be associated with multiple poly-
gons. The super covering maintains a list of polygon references
for each individual cell. A polygon reference has two attributes:
polygon id The identi�er of the polygon that this cell refer-

ences.
interior �ag Whether the cell is an interior or a boundary cell

of the polygon.
The precision of the super covering determines the selectivity

of the index. When combining the approximations of the individ-
ual polygons, we need to take special care of con�icting cells1 to
not lose precision. However, this is challenging for two reasons.
First, con�icts may occur between the cells of a covering of a
given polygon and the cells of its interior covering. The interior
cells always overlap some (if not all) covering cells. Second, when
di�erent polygons overlap or are close to each other, con�icts
may occur between the cells of their coverings.

One approach for retaining the precision would be to not
resolve such con�icts at all and maintain all con�icting cells.
However, this would have the consequence that a query point
could match with more than one cell, which would a�ect lookup
performance. In a radix tree, this would mean that we would
need to keep searching lower levels once we found a match at a
higher level.

Ensuring that cells are non-overlapping results not only in
higher lookup performance, but also in a more compact radix
tree. The reason is that for a given entry in a tree node, we only
need to di�erentiate between a pointer (to a child node) and a
value. With overlapping cells, we would have to store a pointer
and a value.

There are two obvious solutions for resolving a con�ict be-
tween two cells c1 and c2, where c1 is an ancestor of c2 in the
quadtree (c1 contains c2). One is to replace c2 with c1, which
leads to a precision loss as shown in Figure 3. Figures 3a and 3b
1Recall that a con�ict between two cells exists if one cell contains the other. We do
not consider duplicate cells as con�icting.

(a) c1 and c2 (b) Di�erence d (c) d and c2

Figure 4: Precision preserving con�ict resolution. c1 is
marked in blue, c2 in green, and the cells in d in purple.
Note that c1 contains c2.

show the coverings of two individual polygons. The red cells
have con�icts with cells of the other covering. Figure 3c shows
a combined covering, where the originally smaller cells are sub-
sumed by larger cells, causing a precision loss. The other solution
is to replace c1 with a set of smaller cells at the same level (i.e., of
the same size) as c2. While this retains the precision, it can sig-
ni�cantly increase the number of cells in the combined covering.

Without compromising on precision, we would like to reduce
the number of cells introduced. To solve this problem, instead
of storing both con�icting cells c1 and c2, we compute their
di�erence d and store c2 and d . This has the advantage that there
will not be any overlap between the indexed cells, and thus an
index lookup will return at most a single cell. The side e�ect is
that the total number of cells will increase since d consists of at
least three cells.

Figure 4 illustrates this precision preserving con�ict resolution.
Assume that c1 (blue) and c2 (green) are cells of two di�erent
coverings and that c1 contains c2. First, we compute d , which
consists of six cells. We then copy all polygon references of c1 to
d and c2 and omit c1. Note that the cell count is increased by �ve.
Overall, our approach retains the precision and the type (bound-
ary or interior) of the individual cells as well as the mappings of
cells to polygons.

Listing 1 outlines this algorithm. We iterate over all input cells
and try to insert them into the super covering.When a cell already
exists, this means that it is also part of another covering that
has already been processed. When two cells con�ict, this means
that either the current cell covers the other cell or vice versa.

Figure 5: A super cover-
ing of neighborhoods in
NYC’s Jamaica Bay.

These two cases may happen
when polygons overlap or are
close to each other, or when we
�rst insert the cells of the cov-
ering of a given polygon and
then the cells of its interior cov-
ering. To address these cases,
we apply the precision preserv-
ing con�ict resolution strategy
described above. As mentioned
earlier, this strategy increases
the total number of cells. How-
ever, a more precise index re-
duces the number of expensive
PIP tests and thus increases
overall performance.

Figure 5 shows a super covering of neighborhoods in NYC’s
Jamaica Bay. Boundary (former covering) and interior cells are
again marked in blue and green, respectively. Most of the area
shown is covered by either interior cells or by no cells at all. Only
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input:
a list of coverings coverings // one per polygon
a list of interior coverings interiors // one per polygon
output:
// a list of (cell, polygon references)
the super covering superCovering
procedure:
for (covering in coverings) {
for (cell in covering) {
if (superCovering already contains cell) {
add references of cell to existing cell
continue
}
if (cell conflicts with existing cell in superCovering) {
// cell is covered by existing cell or vice versa
// resolve conflict
c1 = ascendant cell // may be cell or existing cell
c2 = descendant cell // may be cell or existing cell
d = di�erence of c1 and c2
add references of c1 to d and c2
remove c1 from superCovering // only required if the existing cell
is the ascendant cell

add c2 and d to superCovering
continue
}
add {cell, {covering.polygonId, interior flag=false}} to superCovering
}
}
// ... same code for interior coverings (with interior flag=true)

Listing 1: Build precision preserving super covering.

in the unlikely event that a query point hits a blue (boundary)
cell, we may experience false positives (approximate approach)
or we will need to enter the re�nement phase (exact approach).

3.1.2 Data Structures. To store the super covering and enable
e�cient queries over it, we use two data structures: (i) a special-
ized radix tree (ACT) that indexes the cells of the super covering,
and (ii) a lookup table that maintains the (variable-length) poly-
gon references. Both data structures are designed for in-memory
processing and are optimized for lookup performance.
Adaptive Cell Trie. ACT is a specialization of a textbook radix tree
that indexes 64 bit cell ids. We call it adaptive for two reasons:
(i) it indexes cells of adaptive sizes (to guarantee user-de�ned
precision), and (ii) it can adapt to the expected point distribution.
All adaptation is performed at build time. Once ACT is built, it
is a static (immutable) data structure. We leave updates such
as adding new polygons to an existing ACT for future work.
However, we would like to point out that supporting updates is
straightforward: In the build phase, cells of individual polygons
are inserted one-by-one into ACT. The same procedure could
be used to add new polygons at runtime, with appropriate syn-
chronization between readers and writers. Code for removing
polygons would follow the same logic, with the only di�erence
being that we may want to (periodically) reorganize (i.e., com-
pact) the lookup table.

We refer to the cell ids stored in the radix tree as keys. Each
key denotes the path of a cell in the hierarchical grid. In the
following, we �rst outline why a radix tree, in general, is a good
choice for indexing quadtree cells, and we then explain how ACT
di�ers from a general-purpose radix tree.

The main reasons why we choose a radix tree to index a super
covering are (i) space e�ciency and (ii) support for e�cient pre�x

lookups. Compared to storing cell ids in a list, a radix tree avoids
redundantly storing common pre�xes, which reduces memory
consumption. Pre�x lookups, on the other hand, are required to
�nd matching cells: The query point, which is a cell id at the
most �ne-grained grid level, is used to search for cell ids within
the radix tree that share a common pre�x (i.e., cover the query
point). The runtime complexity of these lookups is inO(k)with k
being the key length, as opposed to theO(logn) of binary search
that could be used on a sorted list. In other words, the number
of node accesses in a radix tree is bounded by the maximum key
length kmax , which is 60 when 30 quadtree levels are used (which
is the case in our implementation). In practice, a lower kmax is
often su�cient. For example, kmax = 44 allows for indexing cells
up to level 22, which corresponds to a precision of less than 4m
(i.e., the distance between a point and a polygon in a false match
is at most 4m). A further advantage of the radix tree is that most
queries can be answered using the upper levels of the tree: larger
cells use fewer bits and are thus indexed closer to the root node.
In the likely event that a query point hits a larger cell, we can
complete the tree probe sooner.

We now discuss the design choices of ACT. The fanout f of the
radix tree controls space consumption and lookup performance. A
fanout of four means that we consume two bits at every tree level.
With that con�guration, our data structure matches the quadtree
scheme (each node has four children, cf. Figure 6 for an example).
While this would ease the implementation, it would require up
to 30 nodes to be accessed per lookup. With a higher fanout, we
can reduce this number. To maximize lookup performance, ACT
uses a default fanout of 256 (= 8 bits). Thus, each level in ACT
corresponds to four levels in the quadtree (each quadtree level
is encoded with two bits). Let � be the cell level granularity of
ACT (with f = 256, � = 4). While a fanout of 256 may result in
sparsely occupied trie nodes, it allows for e�cient lookups as
it reduces the height of the trie to kmax/�. With f = 256, the
maximum number of node accesses is d60/log2(256)e = 8 for 30
quadtree levels.

Now we exploit a property of the hierarchical cells that we
index: We extend their cell ids (keys) such that the key length
matches the granularity of ACT. This process involves replacing
a cell that we want to index with all its descendant cells at the
next supported granularity level, and replicating the payload of
the original cell to the smaller cells. In other words, if a cell does
not match the tree granularity, we recursively split it into smaller
cells that cover the same area. The following holds for indexed
keys (cells):

level(cell) mod � = 0

Each cell c for which this equation does not hold is decomposed
into a set of smaller cells C , with |C | = 4��(le�el (c)mod �). This
is possible since points are represented by cells at the most �ne-
grained grid level and use the maximum key length. Therefore,
for a query point, it does notmake a di�erencewhether it matches
with the originally inserted cell or with one of its descendant cells.
This insight greatly simpli�es the memory layout of a tree node
and saves many CPU instructions: (i) we do not need to store the
level with a cell, since all cells indexed in a tree node will have
the same level, and (ii) a lookup in a node (an array) becomes
a single o�set access. Without this arti�cial key extension, we
would need to perform multiple accesses per node to traverse all
cell levels indexed in that node.

Figure 6 illustrates ACT indexing three polygons. While the
example shows ACT with a fanout of four, by default we actually
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use a fanout of 256 to reduce the tree height. Every node thus
consists of a �xed-sized array of 256 entries of 8 byte pointers.
Entries that neither contain a child pointer nor a value point to a
sentinel node indicating a false hit (no hit).

Values (i.e., polygon references) can be found in any level of
the tree. This is because the indexed keys (64 bit cell ids in our
case) typically use only a small fraction of the 64 bits with the
remaining bits all set to zero. Larger cells that use fewer bits are
indexed higher up in the tree, possibly even in the root node. In
our example, polygon a is indexed by a cell in the upper level,
while polygons b and c are indexed by cells in the lower level. In-
stead of storing values in separate nodes (e.g., adjacent to the tree
nodes), we use combined pointer/value slots like in [25]. This de-
sign consumes less space and avoids an unnecessary indirection.
Here, we exploit another property of the cell ids that we index:
Cells in the super covering are disjoint, therefore a tree lookup
will return at most one result. Due to this property, we never
need to store a pointer and a value in an array entry at the same
time. Using pointer tagging, we di�erentiate between pointers
and values. We therefore refer to both pointers and values as
tagged entries.

As stated before, each cell is associated with a set of polygon
references. Thus, each value stored in the tree has to identify
such a set. The canonical design would be to make each cell
point to an entry in a lookup table that stores the references.
However, at least in the case of largely disjoint polygons, cells
mostly reference only one or two polygons. Therefore, to elimi-
nate additional indirections, when there are no more than two
polygon references, we store these references directly in the tree.
A tagged entry can thus be:

• An 8 byte pointer to a child or the sentinel node (recall that a
pointer to the sentinel node indicates a false hit)

• An inlined polygon reference (a 31 bit value)
• Two inlined polygon references (two 31 bit values)
• An o�set (a 31 bit value) into a lookup table indicating that
there are at least three polygon references

We use the two least signi�cant bits of the 8 byte pointer
to di�erentiate between these four possibilities. For an inlined
polygon reference, we di�erentiate between a true hit and a
candidate hit using the least signi�cant bit of the 31 bit value.
Thus, we can e�ectively only store 30 bit polygon ids (i.e., can
index up to 230 polygons).

We have experimented with path compression, but have found
that storing common pre�xes with inner and leaf nodes only
barely reduces the number of nodes. Thus, the additional cache
miss to access the pre�x does not pay o�. We therefore only use
a common pre�x at the root level.

We have also considered introducing adaptive node sizes, as
proposed by the adaptive radix tree (ART) [25]. However, experi-
ments have shown that introducing a second (compressed) node
type with four children (Node4 in ART) (i) saves only a negligible
amount of space for our workload and (ii) has a signi�cant per-
formance impact (due to the additional instructions and branch
misses for dispatching between node types [25]). Also, lookups
in compressed node types are more expensive.
Lookup Table.When a cell references more than two polygons,
the tree contains an o�set into a lookup table. Since cells often
reference the same set of polygons, we only store unique polygon
reference lists. The reference lists are split into two parts, a list
with true hits and a list with candidate hits. Both lists contain

Figure 6: Adaptive Cell Trie indexing three polygons a, b,
and c. Here, ACTuses two bits per level. In practice, we use
up to eight bits (a fanout of 255) to reduce the tree height.
Note that the �gure only shows the cell rasterization for
the part of the map that corresponds to the radix tree.

input:
root node of ACT rootNode
the cell id of the query point cellId
output:
tagged entry taggedEntry
procedure:
if (common prefix of rootNode does not match)
return invalid entry
level = 0
currNode = rootNode
bits = getBits(cellId, level++) // extract relevant bits
// traverse the tree until we either hit the sentinel node or found a

value
while (taggedEntry = currNode.getEntry(bits) is a pointer) {
if (taggedEntry points to the sentinel node)
return false hit
currNode = taggedEntry
bits = getBits(cellId, level++)
}

Listing 2: Probe Adaptive Cell Trie.

polygon ids. The lookup table is encoded as a single 32 bit un-
signed integer array. The o�sets stored in the tree are simply
o�sets into that array. Each encoded entry contains the number
of true hits followed by the true hits, the number of candidate
hits, and the candidate hits.

3.1.3 Index Probing. AnACT lookup returns, at most, one cell
mapping to a set of polygon references. Listing 2 shows the probe
algorithm. While traversing the radix tree does not involve any
key comparison, a comparison is performed to check whether the
returned tagged entry contains a payload. For that, we need to
di�erentiate between (i) one polygon reference, (ii) two polygon
references, and (iii) an o�set. In the �rst case, we check whether
the polygon reference is invalid, which indicates a false hit. Oth-
erwise, we extract the interior �ag (the least signi�cant bit of the
31 bit payload) and the polygon id and return the reference. In
the second case, we extract and return both references. Only in
the third case, we need to access the lookup table to retrieve the
polygon references.

3.2 Approximate Join with Precision Bound
The complete point-polygon join algorithm is shown in Listing 3.
It is essentially an index nested loop join, using our novel ACT
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input:
points points // lat/lng coordinates and cell ids
polygons polygons // lat/lng coordinates of vertices
root node rootNode
lookup table lookupTable
output:
list of join pairs pairs // point/polygon pairs
procedure:
for (point in points) {
taggedEntry = probeAdaptiveCellTrie(rootNode, point.cellId) //

cf., Listing 2
if (taggedEntry is invalid)
continue
references = getPolygonReferences(lookupTable, taggedEntry) //

returns a list of polygon references
for (reference in references) {
polygonId = reference.polygonId
polygon = polygons[polygonId]
if (reference is true hit) {
add {point, polygon} to pairs
} else { // candidate hit

#ifdef __APPROX
// treat candidate hit as true hit
add {point, polygon} to pairs

#else
// EXACT: enter refinement phase
if (polygonCoversPoint(polygon, point)) // PIP test
add {point, polygon} to pairs

#endif
} } }

Listing 3: The join algorithm.

index that makes the point-cell containment tests very e�cient.
For a given point, we retrieve the cell that contains it (if such a
cell exists) and go over all references of this cell. When approx-
imate results are su�cient, we omit the expensive re�nement
phase, simply treat all points contained in boundary cells as (ap-
proximate) hits, and immediately output the join pairs. In doing
so, we introduce false positives. However, the distance of false
positives from the polygon is bounded by the diagonal of the
largest boundary cell: Any point contained in that cell has at
most a distance of

p
2 ⇤ � (with � being the side length of the cell)

to the polygon. In order to control this distance, our approximate
algorithm exposes a precision bound as a parameter to the user.
Based on this bound, we compute the minimum cell level for
boundary cells. For example, to guarantee a 4m precision, the
largest boundary cell can at most have a diagonal of 4m, which
corresponds to a minimum cell level of 22 in our implementa-
tion (i.e., cell level 21 would be too coarse-grained). We replace
all boundary cells in the super covering with their descendant
cells at the required level. For each of these descendant cells,
we determine whether they intersect, are fully contained in, or
do not intersect polygons at all, and update ACT accordingly:
We remove the original cell co from ACT and insert only those
descendant cells that intersect or are fully contained in polygons.
The new cells may reuse the lookup table entry of co or create
their own in the event that they only map to a subset of co ’s
polygons.

Note that [39] makes use of a similar distance-based precision
bound, however, uses a single-resolution grid. When it is not
possible to maintain a su�ciently �ne-grained index within a
certain memory budget, the user can fall back on our accurate
approach, in which we train the index with historical data points.

3.3 Accurate Join
When applications require accurate results, or when we cannot
build an index that satis�es a user-de�ned precision without
exceeding a memory budget, we use an approach that may enter
the expensive re�nement phase (cf. Listing 2). To minimize the
number of (expensive) PIP tests, we increase the precision of the
index by adapting it to the expected point distribution. Since we
make use of true hit �ltering, a �ner-grained index allows us to
identify more join partners during the �lter phase.

3.3.1 Index Training. To minimize the likelihood of PIP tests,
we train the index to adapt to the expected distribution of query
points. We train ACT with historical data points (e.g., from a
previous year) which has the e�ect that popular areas that expect
more hits are approximated using a more �ne-grained grid than
less popular areas. This training process replaces expensive cells
with up to four of their child cells. We de�ne expensive cells
as cells that map to polygon reference sets with at least one
candidate hit. When we hit such a cell during the join, we need
to perform expensive PIP tests.

Speci�cally, the training works as follows: When a training
point hits an expensive cell, for each of its four child cells we
check whether they intersect, are fully contained in, or do not
intersect the referenced polygons at all, and update ACT accord-
ingly. The cell replacement procedure is the same as for the
approximate algorithm (i.e., remove original cell, insert descen-
dant cells, and update lookup table, cf. Section 3.2) with the only
di�erence being that we always replace an expensive cell with its
direct children one level below.We do not replace a cell with even
smaller cells to be more robust against outliers. In practice, we
would stop re�ning the index once a user-de�ned memory bud-
get is exhausted. In this work, we focus on training the index in
a dedicated training phase. Training the index at runtime would
introduce additional concurrency and bu�er management issues
that we leave for future work. We show the e�ect of training the
index in Section 4.2.

3.4 Implementation Details
Join Predicate. Our current implementation follows the seman-
tics of the ST_Covers join predicate (cf. PostGIS [30]). ST_Covers
evaluates whether one geospatial object (e.g., a polygon) covers
another (e.g., a point).
Individual Polygon Coverings. We compute the individual
polygon coverings using the S2 library. Note that our approach
does not depend on S2 and, in fact, workswith any other quadtree-
based hierarchical grid inwhich each (implicit) quadtree node [16]
corresponds to a geographical area (space partitioning). For our
approach to work, each quadtree node needs to be uniquely iden-
ti�able with a bit sequence that represents the path to the given
node starting from the root. Thereby, any (consistent) enumera-
tion scheme (e.g., the Hilbert space-�lling curve used by S2 or the
Z curve used by Roth [31]) of the four quadrants is valid. To store
these encoded node identi�ers in a trie, we require the identi�ers
of child nodes to share a common pre�x with their parent node.
Face Nodes. Since our implementation uses S2, which projects
points on Earth onto a surrounding cube, we need to maintain
up to six radix trees (one for each face). Using the �rst three bits
of the query cell id, we select the appropriate radix tree.
Index Probing. The probe (�lter) phase is the performance-
critical part of our approach. We therefore parallelize this phase
to accelerate lookups in the radix tree. Individual processing
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threads fetch batches of 16 tuples at a time and synchronize
using an atomic counter.
PIP Test. In the re�nement phase, we use S2’s PIP test, which
implements the ray tracing algorithm (cf. [29] for performance
numbers).

4 EXPERIMENTAL EVALUATION
In this section, we present a thorough experimental analysis of
our point-polygon join algorithms. We use taxi data from NYC,
which we join with di�erent polygonal regions of NYC, such
as neighborhoods. We also experiment with geo-tagged Twitter
data from di�erent cities. Besides these (skewed) real-world point
datasets, we experiment with (uniform) synthetic point data. We
focus our experiments on the probe phase of the join (probing
points against a pre-built polygon index). For completeness, we
also report build times.

Our evaluation is structured into three parts: First, we evaluate
the performance and space consumption of our approximate
algorithm with di�erent data structures, including ACT, a B-tree,
and a sorted vector. We demonstrate that for a city like NYC (with
its 289 neighborhoods), an approximate index with very high
precision (<4m precision bound) easily �ts into themainmemory
of a single machine and, in the case of ACT, allows for very high
probe performance (>50M points/s per CPU core). We think that
this is a good �t with the city-centricmodel ofmobility companies
(e.g., Uber, DriveNow [13]). We show that ACT outperforms
other physical representations by a large margin, while being
more space-e�cient in many cases. Second, we evaluate our
accurate algorithm and show that it bene�ts greatly from true hit
�ltering. We compare it against other �lter and re�ne approaches,
including an R-tree on the polygons’ MBRs, a geospatial index by
Google, and PostgreSQL (PostGIS). We demonstrate that the high
precision of our index can be further improved by training it with
historical data points. Third, we show that both our algorithms
are competitive with state-of-the-art GPU approaches.
Infrastructure. We use a server-class machine that is equipped
with two 14-core Intel Xeon E5-2680 v4 CPUs and 256GiB DDR4
RAM. All CPU-based approaches are implemented in C++ and
compiled with GCC version 5.4.0 with O3 and march=core-avx2
�ags. We conduct the experiments on a single socket to eliminate
NUMA e�ects. For the comparison against the GPU join algo-
rithms, we use these Amazon Web Services (AWS) instances [5]:

c5.4xlarge 16 vCPUs, USD 0.68/hour
g3s.xlarge NVIDIA Tesla M60 GPU, USD 0.75/hour

Datasets and Queries. We use 1.23 B points (pick-up locations)
from the NYC yellow taxi dataset (years 2009 to 2016), which is
publicly available in CSV format [38]. For each point, we load
its lat/lng coordinate and convert it to an S2Point [33] (which
represents a point on the unit sphere as a 3D vector of dou-
bles) and to an S2CellId (an 8 byte value, cf. Section 2) prior
to performing any experiments. We maintain one std::vector
of S2Points and another one storing the corresponding cell ids.
We join these points against the polygon datasets summarized in
Table 1 (top). All three polygon datasets cover approximately the
same area. While there are only �ve boroughs, their polygons
are signi�cantly more complex.

In addition, we use geo-tagged tweets collected from Twitter’s
live public feed over a period of �ve years. From these, origi-
nally over 2.29 B tweets spread across the entire US, we extract
four point datasets based on the MBRs of NYC, Boston (BOS),

Los Angeles (LA), and San Francisco (SF), consisting of 83.1M,
13.6M, 60.6M, and 9.57M points, respectively. We join these
points against the corresponding neighborhood polygons: NYC
(289), BOS (42), LA (160), and SF (117). Since we extract the points
using the MBR of the entire polygon dataset and not the indi-
vidual neighborhood polygons, there are points that do not join
with any polygon.

We also generate synthetic point datasets, uniformly distributed
within the MBR of the respective polygon dataset.

We focus our experimental evaluation on the probe phase
and simply count the number of points per polygon instead of
materializing the join result. To avoid any contention in the multi-
threaded experiments, we maintain thread-local counters that
we aggregate in the last step. Since we are focusing on the case of
static polygons, the reported throughput times re�ect the time to
compute the counts using an existing (pre-built) polygon index.
We report the time it takes to build the polygon index separately.
However, we would like to point out that we did not optimize
the build phase.
Polygon Approximations. Our default con�guration for com-
puting the individual polygon coverings is as follows: max cover-
ing cells = 128, max covering level = 30, max interior cells = 256,
and max interior level = 20.

4.1 Approximate Join
We �rst analyze the performance and space consumption of our
approximate algorithm. In all of the following experiments, we
�rst build super coverings (sets of cell/value pairs, cf. Section 3)
and then index them with di�erent data structures.
Super Covering Construction. Table 1 shows di�erent met-
rics of the super coverings for the three polygon datasets with
60m, 15m, and 4m precision. With each cell occupying 64 bits,
the largest super covering (census 4m, 39.8M cells) amounts to
304MiB of raw key data and another 304MiB for the values (64
bit tagged entries, cf. Section 3). Given that most cells reference
fewer than three polygons, most polygon references are inlined,
which keeps the lookup table small. While the computation of the
individual coverings is parallelized over the number of polygons,
the construction of the super covering is performed serially.
Data Structures. We essentially need to map cell ids (64 bit
integers) to tagged entries (64 bit values). A tagged entry either
contains up to two polygon references or an o�set into a lookup
table. The lookup table is the same among all data structures that
we evaluate. The data structure needs to support pre�x lookups:
given a 64 bit lookup key (the cell id of a query point), �nd
the cell in the super covering (recall that it only contains non-
overlapping cells) that shares a common pre�x with the lookup
key (if such a cell exists). We analyze ACT with three di�erent
fanouts: 2, 4, and 8 bits per radix level, which corresponds to 1,
2, and 4 quadtree levels, respectively. Recall that one quadtree
level is encoded with two bits. We therefore refer to these three
variants as ACT1, ACT2, and ACT4. As competitors we use a B-
tree implementation by Google [11] (GBT) and a binary search on
a sorted vector implemented with std::lower_bound (LB). For
GBT, we use a (target) node size of 256 bytes, which turned out
to be the most query-e�cient con�guration. The vector stores
pairs of cell ids and tagged entries. We have also experimented
with the STX B+-tree [36] but do not include it in this section as
its lookup performance is very similar to that of GBT.

The performance of our approximate algorithm is dominated
by the costs of the ACT node accesses and the aggregation (count).
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Table 1: Metrics of the NYC polygon datasets and of three super coverings with various precisions.

polygons (# polygons / avg. # vertices) boroughs (5 / 662) neighborhoods (289 / 29.6) census (39,184 / 12.5)

precision [m] 60 15 4 60 15 4 60 15 4

# cells [M] 0.09 1.32 20.9 0.16 0.98 14.0 8.50 8.97 39.8
lookup table [MiB] 0.00 0.00 0.00 0.01 0.01 0.01 1.33 1.33 1.41
build individual coverings [s] 0.11 0.98 16.0 0.07 0.19 1.54 0.96 1.01 3.08
build super covering [s] 0.10 0.94 15.2 0.17 0.81 10.5 11.6 11.8 37.7

Table 2: Metrics of the di�erent data structures (4m precision).

super cov. boroughs (20.9M cells) neighborhoods (14.0M cells) census (39.8M cells)
index ACT1 ACT2 ACT4 GBT LB ACT1 ACT2 ACT4 GBT LB ACT1 ACT2 ACT4 GBT LB

size [MiB] 328 198 173 359 319 224 138 143 240 214 624 421 1234 684 608
build [s] 2.11 1.46 1.06 1.39 - 1.36 0.98 0.69 0.85 - 4.00 3.11 2.80 2.85 -
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Figure 7: Throughput and scalability of our approximate algorithm (taxi dataset). Left: Single-threaded execution with
di�erent data structures (4m precision). Middle: Single-threaded execution with di�erent precisions and data structures
(neighborhood polygons). Right: Multi-threaded execution (neighborhood polygons, 4m precision).

To better understand the results, we therefore �rst analyze the
space consumption of ACT and compare it with GBT and the
sorted vector. Table 2 shows size and build time (single threaded)
of the di�erent data structures on the super coverings introduced
above (4m precision only). In many cases, ACT consumes less
space than the sorted vector (LB). Due to the high density of
the cell ids, ACT is more space-e�cient with higher fanouts,
except for census where ACT4 consumes the most space: Like
for all datasets, ACT4 has fewer (but larger) nodes than ACT1
and ACT2. However, in this case, its nodes are very sparsely
populated compared to those of ACT1 and ACT2. The reason is
that ACT4’s nodes cover too much space for the relatively small
census cells. To mitigate the size impact of sparse ACT nodes,
one can represent them with a more compact data structure [4].
All 4m indexes exceed the 35MiB L3 cache of our evaluation
machine. Note that there is no additional build time for LB, since
the super covering contains cell id/tagged entry pairs already
sorted by cell id.
Single-Threaded Throughput. For this experiment, we com-
pute a super covering with a 4m precision bound on the three
NYC polygon datasets and store it in the di�erent data structures
introduced above. We then join the full taxi dataset (all 1.23 B
points) against each of these indexes and report the throughput
in Mpoints/s (cf. Figure 7 (left)).

ACT clearly dominates the B-tree and the binary search on
the sorted vector, especially in its highest fanout con�guration
(ACT4). A higher fanout means that we consume more bits of the
lookup key per tree level and thus require fewer node accesses
(i.e., need to traverse fewer levels) to �nd a key (an indexed cell).
With ACT4 for example, we consume 8 bits per tree level and

Table 3: Speedups of lookups in smaller (more coarse-
grained) over larger (more �ne-grained) polygon datasets
for di�erent data structures (b = boroughs, n = neighbor-
hoods, c = census).

b over n b over c n over c

ACT1 2.63⇥ 8.63⇥ 3.28⇥
ACT2 2.00⇥ 5.33⇥ 2.66⇥
ACT4 2.36⇥ 7.29⇥ 3.08⇥
GBT 2.05⇥ 3.51⇥ 1.71⇥
LB 1.83⇥ 2.63⇥ 1.44⇥

thus need at most 64/8 = 8 node accesses. Since we reduce the
tree height further by storing a common pre�x at the root level
(cf. Section 3), ACT requires even fewer node accesses (e.g., at
most �ve with 4m precision).

Another insight is that ACT bene�ts the most from the larger
(coarser-grained) cells in the smaller polygon datasets as shown
in Table 3. Going from the most �ne-grained census dataset
(39,184 polygons) to the most coarse-grained boroughs dataset (5
polygons), GBT’s lookup performance improves by 3.51⇥, while
ACT1’s increases by 8.63⇥. The reason for ACT’s large gain is
that larger cells are indexed higher up in the radix tree and are
thus found sooner. GBT, in contrast, does not bene�t from these
larger cells, which might as well be stored in the leaf nodes of the
B-tree. GBT’s performance gain comes from the smaller number
of cells used for indexing the boroughs dataset and the resulting
smaller B-tree (i.e., fewer branch and cache misses per point).
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Table 4: Distribution of the tree traversal depth (ACT4
with 4m precision).

points boroughs neighborhoods census

uniform
0 1 2 3 4

0

1

tree level
0 1 2 3 4

0

1

tree level
0 1 2 3 4

0

1

tree level

taxi
0 1 2 3 4

0

1

tree level
0 1 2 3 4

0

1

tree level
0 1 2 3 4

0

1

tree level

Likewise, the binary search on the sorted vector (LB) is only
a�ected by the number of cells and not their granularity.
Di�erent Precisions.Next, we vary the precision of the indexed
super covering. We perform this experiment using the medium
size neighborhoods dataset. Figure 7 (middle) shows the through-
put numbers for the di�erent data structures. While GBT’s and
LB’s performance decreases by 33.4% and 39.4%, respectively
from 60m to 4m, ACT4’s performance is hardly a�ected (-5.73%)
by the larger number of cells of the more precise super covering.
Compared to the 60m covering, the more precise coverings con-
tain a larger number of small cells (in the boundary areas of the
polygons). Query points are unlikely to hit these cells in contrast
to the large (more coarse-grained) cells, which are indexed in the
upper (cached) ACT nodes (due to their shorter cell ids). ACT1
and ACT2 are more a�ected by the precision increase (-27.8%
and -17.9%, respectively). The reason is that the added small cells
have a stronger e�ect on the depths of these trees. While the
average node depth for ACT4 only increases from 2.83 to 2.97
(+4.95%) from 60m to 4m respectively, the same metric increases
from 10.8 to 14.6 (+35.2%) for ACT1. Although—as already stated
above—the new small cells are unlikely to be hit, they still cause
a performance hit for lower fanouts.

ACT4’s throughput is similar for 15m and 4m (-4.15%) because
its structure is identical for both precisions. In both cases, it has
70,786 nodes occupying 143MiB. The only di�erence is the nodes’
structure: Due to the more �ne-grained cell approximation, the
average node occupancy (measured in terms of occupied slots)
of ACT4 at tree level 3 decreases from 88.2% (60m) to 85.2%
(4m). The occupancies of all other levels are the same. This lower
occupancy for 4m saves some aggregations (for updating the
polygon hit counts), causing a slightly higher performance.

In summary, the impact of precision on query performance is
less signi�cant for ACT than for the other data structures.
Multi-Threaded Throughput. In this experiment, we study
the lookup performance of the di�erent data structures with
an increasing number of threads on the neighborhoods dataset
with a 4m precision bound. We use up to 28 threads, which
matches the number of hyperthreads of a single NUMA node of
our evaluation machine. Figure 7 (right) shows the speedups over
single-threaded execution. Up to 8 threads, all index structures
scale almost linearly (speedup of around 7⇥ in all cases). This is
what we would expect for immutable data structures.

The fact that an oversubscription of cores (hyperthreading)
has a positive performance impact suggests that the lookup is
bound by memory access latencies (having more threads than
physical cores can hide these latencies).
Synthetic Points. To show the general applicability of our ap-
proach, we also experiment with synthetic point data. We gen-
erate 100M points uniformly distributed within the MBR of the
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Figure 8: Single-threaded throughput of our approximate
algorithm (4m precision) with uniform point data.

respective (NYC) polygon dataset. Table 4 shows the probability
distribution of the number of search steps during the tree tra-
versal for the synthetic and the taxi point dataset. As expected,
the distribution for the uniform data is skewed towards the root.
That is because the larger cells (which are more likely to be hit)
are indexed closer to the root. The distribution for the taxi data
depends on the polygon dataset. For boroughs, most traversals
end at tree level 1, while for census, points mostly hit small cells
indexed in tree level 3.

Figure 8 shows the single-threaded throughput for the di�erent
data structures with the uniform point data. ACT achieves the
highest throughput, with ACT4 again being the most query-
e�cient con�guration. The absolute numbers, however, are lower
than for the (real-world) taxi data: ACT4’s throughput decreases
by 65.2%, 26.8%, and 3.11% for boroughs, neighborhoods, and
census, respectively.

The reason for this slowdown is simple: The synthetic point
data is uniformly distributed, which leads to more branch and
cache misses (cf. Table 5 for performance counters on neighbor-
hoods). In contrast, the real-world taxi data is highly clustered
with the majority of points located in Manhattan (>90%) and
around the airports. For boroughs (not shown in Table 5), ACT4
endures 0.79 and 0.01 branch misses per point for the synthetic
and the taxi points, respectively. This is the main cause of the
65.2% performance drop mentioned above.
Twitter Data.Next, we analyze the performance of our approach
on the four Twitter datasets and the corresponding neighbor-
hood polygons (cf. Figure 9). The numbers are similar across the
di�erent cities, with the highest throughput achieved for BOS
with its only 42 neighborhood polygons. Next comes SF followed
by LA and NYC, for which the throughput is very close to what
we obtained with the taxi data (cf. Figure 7 (left)). In fact, with
a 4m precision, ACT4 achieves a single-threaded throughput of
52.1M points/s, which is almost the same as the 53.6M points/s
on the taxi data. Similarly to the taxi points, the tweets are clus-
tered, with certain areas having more tweeting activity than
others. In contrast, with uniform point data, ACT4 only achieved
39.3M points/s. This con�rms that our approach bene�ts from
the skewed distribution of real-world data. For all four cities, the
numbers are (again) hardly a�ected by the precision.

4.2 Accurate Join
We now evaluate our accurate algorithm, which eliminates false
positives in an additional re�nement phase. We demonstrate that
our index bene�ts signi�cantly from true hit �ltering and that
index training with historical data can further improve its e�ect.
Competitors. We compare against the boost R-tree (1.6.0) [8]
on the polygons’ MBRs (RT), Google’s S2ShapeIndex [34] (SI),
and PostgreSQL 9.6.1 (PostGIS 2.3.1) [30] with a GiST index on
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Table 5: Performance counters per point (neighborhoods, 4m precision).

points uniform taxi
index ACT1 ACT2 ACT4 GBT LB ACT1 ACT2 ACT4 GBT LB

cycles 154 99.8 71.3 415 569 172 93.8 56.4 416 817
instructions 214 121 82.4 486 927 202 121 81.3 393 564
branch misses 1.06 1.04 0.88 5.32 8.38 0.96 0.83 0.48 7.06 10.8
cache misses 0.29 0.23 0.18 0.70 1.89 0.22 0.17 0.15 0.29 0.37
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Figure 9: Single-threaded throughput of our approximate
algorithm (Twitter datasets, polygon counts in brackets).

polygons (PG). Our algorithm and the R-tree both use the same
PIP test implementation (cf. Section 3.4). SI also uses that imple-
mentation, however, restricts the test to a subset of edges of the
polygon in question. This is achieved by using a hierarchical grid
approximation of polygons, and internally mapping grid cells (64
bit S2CellIds) to polygon edges using a B-tree. This hierarchical
grid approximation is much more coarse-grained than our super
covering, given its higher focus on build time than on query per-
formance (compared to our approach). SI allows the maximum
number of edges per cell to be con�gured, essentially controlling
the granularity of the employed grid approximation. We evaluate
SI with its default con�guration of 10 edges (SI10) and 1 edge
per cell (SI1). Note that SI1 is the most �ne-grained con�gura-
tion possible. SI also employs true hit �ltering (cf. Section 3) to
avoid PIP tests, but in a much less e�ective way than ours (due
to its coarser-grained grid). Furthermore, SI does not o�er an
approximate version. For the R-tree, we use the splitting strategy
rstar with at most 8 elements per node which performs best in
all workloads.
Taxi Data. For this experiment, we compute coarse-grained su-
per coverings that do not guarantee a certain precision, and
instead fall back on a re�nement phase for candidate hits. Here,
the resolution of a super covering is determined by our default
con�guration for computing individual polygon coverings intro-
duced earlier (cf. Section 4). Thus, these super coverings consist
of much fewer cells than those guaranteeing a certain precision.
For example, the approximation for the neighborhoods dataset
now only consists of 98,687 cells (ACT4 size: 25.9MiB) compared
to the 13.2M cells (ACT4 size: 143MiB) needed to guarantee a 4m
precision. For this dataset, SI1, SI10, and RT consume 1.20MiB,
0.23MiB, and 27.9 KiB, respectively.

Figure 10 shows the single-threaded throughputs for the accu-
rate join. ACT4 achieves the highest performance for all three
datasets. For the medium size neighborhoods dataset, it outper-
forms SI1 by 6.96⇥, followed by SI10, which is only 7.41% slower
than SI1. For census, ACT4 still outperforms SI1 by 5.79⇥. RT
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Figure 10: Single-threaded throughput of our accurate
algorithm (with di�erent ACT fanouts) compared to
S2ShapeIndex (with 1 and 10 edges per cell) and theR-tree.

has the lowest numbers with 0.21, 1.77, and 0.79M points/s for
boroughs, neighborhoods, and census, respectively. The reason
for its slow performance for boroughs is as follows: The com-
plexity of each PIP test (ray-tracing algorithm) is linear with the
size (number of edges) of the polygon. Since the boroughs are
complex polygons with many edges, the PIP tests in the re�ne-
ment phase are very expensive. Here, our algorithm shines since
it can identify most join partners in the �lter phase and only
enters the re�nement phase for 0.1% of the points. As a point
of reference, PG achieves 0.39, 1.09, and 0.69M points/s for bor-
oughs, neighborhoods, and census, respectively (because we use
all hyperthreads on our evaluation machine, PG’s numbers are
not directly comparable and are excluded from the plot). Similar
to RT, PG is a�ected by the complex boroughs polygons.
Index Training. As readers may have noticed, there is a large
performance gap between our approximate and our accurate
algorithm. For example, ACT4 (accurate) is 75.3% slower than
its approximate counterpart (with 4m precision) on the taxi
data/neighborhoods join. The reason is the expensive PIP tests
needed to compute an accurate result.

We now show how to narrow this performance gap. The idea
is to reduce the likelihood for PIP tests by training the index with
historical data points (cf. Section 3.3.1). In other words, we in-
crease the precision of the index by making it more �ne-grained
in areas where we expect more points. One e�ect this has is that
the size of the area covered by (expensive) boundary cells will
decrease. We train the index with taxi points sampled from the
year of 2009 and only use the points from 2010 to 2016 for the
join. Table 6 shows the performance impact. With 100 K training
points, ACT4’s performance improves by 1.56⇥ for neighbor-
hoods and increases further to 2.18⇥ with 1M points (due to a
84.0% reduction in the number of PIP tests). The size of ACT4 only
increases from 25.9MiB (untrained) to 28.0, 34.8, and 44.3MiB
when trained with 100K, 500 K, and 1M historical data points,
respectively. In absolute terms, ACT4 trained with 1M points
achieves a throughput of 29.1M points/s for neighborhoods and
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Table 6: Speedups of single-threaded lookups when train-
ing ACT4 with an increasing number of historical data
points (over untrained ACT4).

no. of train. points boroughs neighborhoods census

100 K 1.25⇥ 1.56⇥ 1.16⇥
500 K 1.40⇥ 2.00⇥ 1.40⇥
1M 1.44⇥ 2.18⇥ 1.53⇥

Table 7: E�ect of training the index with 1M historical
data points (STH = solely true hits).

metric boroughs neighborhoods census

STH (%) 99.9 ! 99.9 87.2! 97.7 72.2! 88.7

thus narrows the performance gap to its approximate counter-
part (with 4m precision) from 75.3% to 45.7% while consuming
68.9% less space. This shows that a trained accurate index is a
good alternative to our approximate indexes when main memory
is sparse. Table 7 shows the e�ect of true hit �ltering when
training the index with 1M training points. The metric solely
true hits (STH) indicates the percentage of points that skipped
the expensive re�nement phase, which is clearly above 70% in
all cases (even without training). Training the index signi�cantly
improves STH for neighborhoods and census.

4.3 Comparison with GPU Algorithms
Finally, we compare our approximate and accurate (untrained
ACT) algorithms against state-of-the-art GPU counterparts [39].
The GPU approaches leverage the graphics rendering pipeline,
and in particular the rasterization operation, which converts a
polygon into a collection of (equi-sized) pixels. Similar to our ap-
proach, the GPU join also comes in two variants: Bounded Raster
Join (BRJ), which guarantees a user-de�ned precision by appro-
priately scaling the rendering resolution, and Accurate Raster
Join (ARJ), which performs PIP tests for points falling on the
pixels forming the boundaries of the polygons. To enable a fair
comparison, we do not consider any preprocessing times on the
polygons (such as triangulation time). Note that the preprocess-
ing time for the GPU join is minimal. In fact, it is designed for
computing the join on-the-�y without a priori knowledge of the
polygonal regions.

We now compare the throughput of both approaches on two
similarly priced AWS machines (cf. Infrastructure in Section 4).
Figure 11 shows the results of joining 612M taxi rides with the
NYC polygon datasets. While our approximate algorithm is again
hardly a�ected by the precision (15m vs. 4m), BRJ takes a signi�-
cant performance drop. The reason for BRJ’s slowdown is simple:
Once the required resolution is higher than what is natively sup-
ported by the GPU, it needs to split the scene and perform more
rendering passes. This is essentially related to the fact that BRJ
relies on a uniform grid. On the contrary, BRJ is barely a�ected
by the polygon datasets, while our approximate algorithm is. The
reason is again related to the granularity of the grid: With the
more �ne-grained census dataset, we need to traverse more tree
nodes (as the cells that approximate the polygons are smaller),
while the rendering resolution in BRJ depends only on the size of
the bounding box of the polygon dataset and the precision. With

boroughs neighborhoods census
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Figure 11: Throughput of ACT4 (16 threads) compared to
the two GPU algorithms on AWS (GPU = Bounded Raster
Join for 15m and 4m and Accurate Raster Join for exact).

exact results, our approach outperforms ARJ for boroughs, while
ARJ takes the crown for neighborhoods and census.

5 RELATEDWORK
Prior Publications. In [24], we describe a novel approach to
reduce control �ow divergence on AVX-512 platforms to further
increase ACT’s lookup performance. Note that [24] is based on
an earlier (4-page) version of this work [22].
Spatial Join Techniques. The point-polygon join is one of the
core operations in spatial databases, and, a large body of related
work on algorithmic techniques [19] is available accordingly.

Naturally, we are not the �rst to index polygons using raster
approximations. Early on, Orenstein [27] proposed decompos-
ing single polygons into multiple cells. Later, Brinkho� et al. [9]
proposed true hit �ltering in the form of maximum enclosed rect-
angles and circles, allowing the re�nement phase to be skipped in
many cases. Zimbrao et al. [49] followed up on this approach by
using raster approximations in the form of uniform grids, thereby
improving selectivity. Kothuri et al. [20] recursively divide the
MBR of a polygon into four cells until a certain granularity is
reached, identify interior cells, and index them in an R-tree to
skip re�nement checks. The primary goal was to minimize I/O, an
important performance factor for disk-based systems. In contrast
to these early works on true hit �ltering and also to the recent
proposal by Tzirita Zacharatou et al. [39], we use a quadtree-
based (multi-resolution) grid that can be very coarse-grained in
interior and very �ne-grained in boundary areas.

Research has, however, also been performed on true hit �lter-
ing with quadtree-based rasterizations, including work in Ora-
cle Spatial [21] and Microsoft SQL Server [15]. In both of these
works, individual polygons are approximated using a set of multi-
resolution grid cells. These grid cells are enumerated using one-
dimensional cell identi�ers and stored in a B-tree. In contrast, we
holistically approximate and index an entire set of polygons and
store these (in our case duplicate-free) cell identi�ers in a novel
radix tree (ACT), which is more query-e�cient than a B-tree. Ad-
ditionally, these existing approaches neither o�er an approximate
mode nor allow the accurate index to be trained with historical
data points to improve query performance.

To decrease the probability of false matches, [35] improves
the precision of MBRs by clipping away empty space that is
concentrated around the MBR corners. In contrast to our work,
[35] uses the classical �lter and re�ne evaluation strategy.

Related to our approximate algorithm is work by Azevedo et
al. [7] that provides precision estimates for approximate polygon-
polygon joins using a less space-e�cient single-resolution grid.
Tzirita Zacharatou et al. [39] propose a similar precision bound
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to ours but also use a single-resolution grid (cf. Section 4.3 for a
comparison).

The PH-tree [47] is another example of a trie data structure
that indexesmulti-dimensional data. In contrast to ACT, it only in-
dexes points, not higher-level grid cells. Winter et al. [43] propose
a query-e�cient storage layout for point data that automatically
adapts to polygonal queries. Along the same lines, Vorona et
al. [42] train a model to approximately answer spatial aggrega-
tion queries.
Systems. Several database systems support geospatial joins. Post-
GIS [30], a geospatial extension to PostgreSQL [1], uses an R-tree
implemented on top of GiST [18] for indexing geospatial objects.
In recent years, various spatial data management systems based
on Hadoop [3, 14] and Spark [26, 37, 44, 46] have emerged. [28]
provides a comprehensive analysis of these modern spatial ana-
lytics systems by a thorough experimental evaluation. In contrast
to our work, most of these systems rely on o�ine partitioning of
the data points.
Modern Hardware. Most work on using modern hardware for
geospatial joins focuses on GPU o�oading [2, 12, 39, 45, 48] while
[10] proposes a GPU-accelerated end-to-end spatial system.

6 CONCLUSIONS
We have presented two point-polygon join algorithms that use a
multi-resolution grid indexed in a query-e�cient radix tree. We
have transformed a traditionally compute-intensive problem into
a memory-intensive one. We have shown that it is possible to
re�ne the index up to a user-de�ned precision and identify all
join partners in the �lter phase. We have demonstrated that the
accurate version of our algorithm can adapt to the expected point
distribution. We have also shown that our approach outperforms
existing CPU-based joins by up to two orders of magnitude and
can compete with dedicated GPU implementations.
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ABSTRACT
With the web-scale data volumes and high velocity of generation

rates, it has become crucial that the training process for recom-

mender systems be a continuous process which is performed on

live data, i.e., on data streams. In practice, such systems have to

address three main requirements including the ability to adapt

their trained model with each incoming data element, the ability

to handle concept drifts and the ability to scale with the volume

of the data. In principle, matrix factorization is one of the popular

approaches to train a recommender model. Stochastic Gradient

Descent (SGD) has been a successful optimization approach for

matrix factorization. Several approaches have been proposed that

handle the first and second requirements. For the third require-

ment, in the realm of data streams, distributed approaches depend

on a shared memory architecture. This requires obtaining locks

before performing updates.

In general, the success of main-stream big data processing

systems is supported by their shared-nothing architecture. In this

paper, we propose DISGD, a distributed shared-nothing variant of
an incremental SGD. The proposal is motivated by an observation

that with large volumes of data, the overwrite of updates, lock-

free updates, does not affect the result with sparse user-item

matrices. Compared to the baseline incremental approach, our

evaluation on several datasets shows not only improvement in

processing time but also improved recall by 55%.

1 INTRODUCTION
We are living in the era of data abundance whereby good de-

cisions are backed by data-driven approaches. In addition to

business-related decisions, we can use data for our personal daily

lives. For example, what products to buy, where to have lunch,

and best places to spend our vacations are all decisions that we

need to make.

Recommender systems [11] have emerged to predict and sug-

gest objects that could be of interest to the user. In general, rec-

ommender systems receive input in the form of user-item rating.

These ratings are used to update a rating matrix R where the rows

represent the users and columns represent items, where usually R
is sparse. Collaborative filtering (CF) [5] is a successful technique

to guess user preferences based on R. Matrix factorization-based

(MF) CF algorithms have shown to be successful. For example, it

was able to win the Netflix prize [2]. MF works by decomposing

R into two low-dimension vectors of latent factors. Stochastic

Gradient Descent (SGD) is used to optimize the weights of these

latent factors. In general, SGD is an iterative algorithm that works

on a static data set. As data velocity have accelerated, there has
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become a crucial need to get recommendations with low latency.

Therefore, the need to analyze these data and generate new sug-

gestions moved from an offline task on a finite set of data into an

online task on a possibly infinite stream of data. Thus, a scalable

online recommender system has to address three main require-

ments [3]: 1) The model must be able to produce a result and

be updated after each record has been received without passing

over all the past data (latency). 2)Concept drifts [10] ought to
be taken care of by adjusting the model with each instance. 3)

Online learning from big data must be processed in a distributed

streaming environment (scalability).
Vinagre et al. [12] have proposed ISGD as an incremental

SGD that needs to process each data element once in a stream-

ing fashion. ISGD addresses the first and second requirements

above. Yet, it remains a centralized (one worker) solution. Sev-

eral approaches have introduced parallel (distributed) variants

of (I)SGD [1, 4, 6, 7, 13]. However, the common limitation in

these approaches is the need to access a shared memory to up-

date the weights among parallel workers. In an online-setting,

the overhead to obtain a lock leads to higher latency. An in-

teresting observation by Recht et al. [9] is that with large data,

having a lock-free update mechanism, i.e. lost updates, does not

affect the overall performance and SGD finally converges. The

authors also prove it. Based on this observation, in this paper, we

present DISGD as a distributed shared-nothing variant of ISGD.

By utilizing the shared-nothing architecture, we allow the best

scalability as each worker is independent. In particular, the main

contributions of this paper can be summarized as follows:

• DISGD: A distributed shared-nothing incremental stochas-

tic gradient descent for a distributed online recommender

system (Section 2),

• A comparative evaluation with the baseline ISGD on sev-

eral data sets showing the superiority of our approach not

just in the processing speed but also in the improved recall

(Section 3).

2 DISGD
ISGD [12] is an incremental matrix factorization algorithm that

is based on SGD. ISGD works centrally where training data are

streamed element-by-element. For every received element, ISGD

updates the model. So this algorithm overcomes the first two

challenges we mentioned in Section 1. In this section, we describe

our approach towards addressing the third challenge, scalability.

2.1 Background
In order to reach a scalable ISGD, we depend on the observation

that usually the ratio of items to users is petite. For instance,

Netflix data set has millions of users and only thousands of items.

We start from the observation that the rating matrix Rn×m is

sparse. So, we decompose the rating matrix into two matrices,
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the users’ matrix U n×k
and the items’ matrix Im×k with low-

dimension k , where k << n and k << m, latent features that

underlie the items’ rating by users. So, we can predict the rating of

user u to item i in Rn×m , by calculating the dot product between

their vectors as in Formula 1.

ˆrui = Un .I
T
m =

k∑
k=1

unk .imk (1)

The two matrices U and I are initialized with Gaussian ran-

dom values. Then, iteratively, SGD calculates how different their

product is from the rating matrix R and then makes an effort to

minimize this difference. ISGD is dealing with positive feedback

only so the error can be calculated by errui = 1 − ˆRui and we

are following that in our algorithm. Furthermore, the gradient

descent algorithm iterates many times and updates the vectors

which are the rows of the matrices U and I with the purpose

of finding a local minimum of the difference following the loss

function formulated in 2 where λ is the regularization parameter.

minU ., I .
∑
(u,i)∈D

(Rui −Uu .I
T
i )

2 + λ(∥Uu ∥
2 + ∥Ii ∥

2) (2)

To parallelize ISGD by distributing the workload among nc pro-
cessors, the rating matrix R has to be divided into several blocks

and the blocks get assigned to different processors. The issue

here is that two processors working on different blocks may need

to update the same column ofU and/or I . The blocks must be dis-

tributed in a way that avoids conflicting updates. Our proposal to

solve this problem, and thus addressing the scalability challenge,

is by utilizing a splitting and replication mechanism of users and

items vectors.

2.2 Splitting and Replication Mechanism
Receiving the rating interactions fromusers formulated as<u, i, r>,
Algorithm 1 will distribute the received streamed data of tuples

by hashing each record where the user vector and item vector

reside over the nodes. For each received tuple < u, i, r>, ISGD
updates the user vector and the item vector according to the two

equations below, where η is the gradient step size.

Uu = Uu + η(errui .Ii − λUu ) (3)

Ii = Ii + η(errui .Uu − λIi ) (4)

The aim behind our splitting and replication mechanism is

to guarantee that the vectors of users and items are divided

over the nodes as it would grow larger than the capacity of one

node (central solution). It is assumed that the items are known

beforehand. Hence, starting by the item matrix, it is divided into

ni splits (partitions) and each split is replicated over nc/ni of the
nodes -where nc is number of nodes in the cluster- while each

user vector should exist in ni of the nodes to always guarantee

that a tuple <u, i, r> hits one nodewhere its user and item vectors

reside. As a requirement, the number of nodes in the cluster nc
should be equal to n2i + w .ni where w ∈ N0. The distribution
technique in Algorithm 1 offloads the storage of vectors to around

ni/nc of the nodes. For example, when ni = 2, the item matrix

I is divided into two halves, each half is stored on half of the

nodes. The user matrixU is divided over nc/2 of the nodes and
each user vector should exist in two nodes, given ni = 2, over the

cluster. Hence, any received tuple is always distributed, in such

a way that its user and item vectors are always represented in

only one node. Thus, the entire rating matrix will not be needed

at any point of time for any single processing task.

Algorithm 1: Parallel ISGD algorithm

Data: data stream of {< u, i, r >} ∈ D
Input: N , λ, η, ni ,k
Output: Top N recommended list.

1: function distributingFn(u,i,ni )
2: nc = n

2

i +w .ni
3: iList←Map hashing of item id to its nc/nio f nodes
4: uList←Map hashing of user id to its ninodes
5: key← Get the common node from uList and iList

6: outStream < key,u, i, rate >
7: end function

while receiving {< u,i,r >} ∈ D on each node do
distributingFn(u,i,ni )
if u < Rows(U) then

Uu ← Vector(size : k);

Uu ∼ N (0,0.1);

end
if i < Rows(I) then

Ii ← Vector(size : k));

Ii ∼ N (0,0.1);

end
errui ←1 −Uu .I

T
i ;

Uu ←Uu+η(errui .Ii - λUu );
Ii ←Ii+η(errui .Uu - λIi )

end

Algorithm 1 describes how we scale ISGD by means of splitting

and replication of the users and items vector. A new top N recom-

mendations list is generated every time a tuple is received. Based

on the distributing mechanism shown in Figure 1. This function

accords a key to the tuple for maintaining that the pair of user

and item vector exists in one node while the single item vector

should be in nc/ni nodes and the single-user vector should reside
in ni of nodes. This key is produced by hashing the user and item
then mapping the hashing output to a predefined list of ni nodes
and nc/ni nodes and get the common node number to be the key

whereby this key is used for distributing. This node processes the

received data and outputs top N recommendations. This particu-

lar node only processes 1/ni of the items matrix I that is received
in the hashing process described earlier. This does not mean that

this particular user will always get his recommendation from

this node based on the same items.

It is a random process, based on which 1/ni of the items stored

in which node that tuple hits. Moreover, the repetition of the

user vector helps offload the storage, making it possible for the

algorithm to recommend items for user from different ni pools
of candidates which boosts our recommendation algorithm by

giving a wide view for all the items. Algorithm 1 does not need

to synchronize between the ni same user’s vectors or nc/ni same

item’s vectors repeatedly stored in the nodes, as Figure 1 shows.

It has been proved by Recht et al. [9] that SGD algorithm run-

ning over parallel processors with shared memory can converge

when the threads overwrite each other and calculate gradient

using the outdated current solution which leads to asynchronous

machine learning algorithms. Keeping the vectors asynchronous

accomplishes two important things, first, it makes DISGD faster

and avoids any synchronization or need for lock management.
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Figure 1: Overview of DISGD collaborative filtering

Algorithm 2: Prequential online evaluator using recall

(1) Recommend top-N recommendation list for the user’s coming

interaction if the user is known otherwise move to step 3.

(2) score top-N recommendation list based on the coming item i

using recall.

Recall@N =

{
1, i ∈ topN recommendationlist

0, i < top − Nrecommendationlist

(3) Updated the vectors with the coming instance

3 EVALUATION
We evaluate DISGD against ISGD as a baseline. The evalua-

tion experiments are done without handling cold start problem

as it is not our concern in this paper. We follow prequential

evaluation[8] which is suitable and mostly used for streaming

algorithms. Prequential evaluation works as follows: for every

received instance; it is used first for testing then feed the model

with it for training. Specifically, we are following prequential

evaluation for streaming recommender systems proposed by

Vinagre et al. [12] using the recall evaluation metric which gives

indication of how many true positive hits from the user side to

the recommendation list by measuring the ratio of relevant items

recommended to the total. We compute recall as per Algorithm 2.

The hyperparameter values of equations 3 and 4 used in our

experiments are λ = 0.01, µ = 0.05. We compute the recall

with N = 10 and set the number of latent features to k = 10.

DISGD has been implemented on top of Apache Flink version

1.8.1 deployed in a standalone cluster mode with 64 workers.

Each worker is a single core running at 2.3 GHz with 30 GB of

main memory. To run the baseline ISGD, we implemented it also

as a Flink application and force it to run on a single worker. All

the code of our experiments are available for reproducibility
1
.

1
https://github.com/DataSystemsGroupUT/DISGD

(a) Recall@10 for Moveilens 1M

(b) Recall@10 for Netflix

Figure 2: Development of recall@10 testing different nc .
The plotted lines relate to a moving average of the re-
call@10 got for every recommendation with window size
w=5000 with replication factor ni = 2

Data Sets. For our experimntal evaluation, we have used

three popular datasets: Movielens 1M2
, Netflix3 and last.FM4.

2
https://grouplens.org/datasets/movielens/1m/

3
https://www.kaggle.com/netflix-inc/netflix-prize-data

4
https://www.last.fm/
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(a) Moveilens 1M (b) Netflix (c) LastFM

Figure 3: Development of recall@10 testing different ni . The plotted lines relate to a moving average of the recall@10 got
for every recommendation with window size w=5000 with different replication factor

Figure 4: Comparison between the processing time for
ISGD and DISGD with different ni applied on Movielens,
Netflix and lastFM datasets.
Movielens and Netflix are notable datasets of rating films and

they are sparse. Both the dataset’s schema consists of user, item,

rating (from 1 to 5) and time-stamp. The same preprocessing is

done for both datasets. The datasets have been ordered chrono-

logically as indicated by the timestamp for capturing the pattern

of how the user interacts with the items consecutively and as

our algorithm depends on positive feedback the datasets have

been filtered out from any records with a rating under 5. LastFM

dataset contains records of listening tomusic tracks.We extracted

the tuples of <user,trackID> assuming that the occurrence of the

pair as positive feedback and the dataset has been ordered by

timestamp.

Experiments and Results. We have run two main experi-

ments. In the first one, we fixed ni = 2; which means that each

item vector exists with two versions each on half of the nodes. As

per condition in our mechanism, the nodes in the cluster should

be nc=4+2w . We have varied the value ofw . The results are re-

ported in Figure 2 showing the results of summing a moving

average recall SMA with window size 5000 elements for data sets

Movielens 1M and Netflix. We can clearly observe that DISGD

achieves significantly a higher recall than the baseline. Obviously,

increasing the number of nodes nc with the same ni results in
higher recall. The recall slightly improves with increasing nc .
The same observation for enhanced recall applies to Netflix.

Regarding the second experiment, DISGD has been tested

using different replication factor ni values with minimum nc =
n2i . In particular we run our experiments with ni ∈ {2, 4, 8, 50}

5
,

for Movielens 1M dataset and with ni ∈ {2, 4, 8} for Netflix.
LastFM is tested with ni ∈ {2, 4, 8, 14}

5
. The model has been

evaluated using SMA recall at N = 10. The results of Figure 3

5
The experiment with ni = 50 and ni = 14 have been applied separately on a

larger cluster

shows that it is obvious that our approach can scale with different

replication factors with enhanced recall in comparison to ISGD.

In general, processing time is a major factor in handling stream-

ing data. The x-axis of the graph in Figure 4 shows the three data

sets while the log processing time in seconds is on the y-axis.

The results show that processing time reduces significantly from

ISGD to DISGD and the time decrease dramatically when nc has

risen. It is observed that DISGD is between 6 − 15 times faster

than ISGD with respect to the data sets and the parallelism factor

nc while keeping a significantly higher recall.

4 CONCLUSION AND FUTUREWORK
In this paper, we presented DISGD, a distributed shared-nothing

variant for stochastic gradient descent for streaming data. Our

solution allows much lower latency in serving for recommender

systems. However, as with other streaming applications, the data

distribution change might lead to skewness in the load on work-

ers. Load rebalancing techniques already exist in literature, how-

ever, the effect of moving/merging state on the performance of

the algorithm is unknown and is an interesting subject for our

future work.
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ABSTRACT
The problem of team formation in a social network asks for a set of
individuals who not only have the required skills to perform a task
but who can also communicate effectively with each other. Exist-
ing work assumes that all links in a social network are positive,
that is, they indicate friendship or collaboration between individu-
als. However, it is often the case that the network is signed, that
is, it contains both positive and negative links, corresponding to
friend and foe relationships. Building on the concept of structural
balance, we provide definitions of compatibility between pairs of
users in a signed network, and algorithms for computing it. We
then define the team formation problem in signed networks, where
we ask for a compatible team of individuals that can perform a
task with small communication cost. We show that the problem is
NP-hard even when there are no communication cost constraints,
and we provide heuristic algorithms for solving it. We present
experimental results to investigate the properties of the different
compatibility definitions, and the effectiveness of our algorithms.

1 INTRODUCTION
Given a task that requires a set of skills, a pool of workers who
possess some of the skills and are organized in a social network,
team formation refers to finding a subset of the workers that
collectively cover the skills and can communicate effectively with
each other [9]. The communication cost of the team is measured
using the distances between the team members in the network. The
idea is that socially well connected users will be more effective in
working together.

Since the pioneering work in [9], there has been considerable
research activity on the problem [1, 8, 12]. All existing work
assumes that the social network contains only positive ties between
individuals. That is, the edges denote friendship or successful
collaboration between two users. However, very often, we have
signed networks with both positive and negative ties. A negative
edge indicates a contentious relationship and inability of two users
to collaborate and thus they should not be in the same team.

In this paper, we study the problem of team formation in signed
networks. In addition to the known requirements of the team for-
mation problem, we ask that the team contains users that are all
compatible with each other. Defining compatibility in a signed
network is an interesting problem in itself. Clearly, users con-
nected with a positive edge are compatible, while users connected
with a negative edge are incompatible. We infer the compatibil-
ity of non-connected pairs of users by using the structure of the
graph, and the principle of structural balance. Structural balance
[4] is based on the premise that “the friend of my friend is my
friend”, “the enemy of my enemy is my friend”, and “the enemy

© 2020 Copyright held by the owner/author(s). Published in Proceedings of the
23rd International Conference on Extending Database Technology (EDBT), March
30-April 2, 2020, ISBN 978-3-89318-083-7 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

of my friend is my enemy”. Using this premise, we determine the
compatibility of two users by looking at the paths that connect
them. For example, a path of two positive or two negative edges
indicates compatibility, while a path of one positive and one neg-
ative edge indicates incompatibility. We formalize this idea, and
we provide definitions of compatibility of varying strictness. We
perform experiments with four real datasets, where we evaluate
the different compatibility definitions, and the performance of the
algorithms for the team formation problem.

2 PROBLEM DEFINITION
We are given as input a pool of 𝑛 individuals organized in an
undirected signed graph 𝐺 = (𝑉 , 𝐸). Each node in 𝑉 corresponds
to an individual, and 𝐸 = {(𝑢, 𝑣, ℓ) : 𝑢, 𝑣 ∈ 𝑉 , ℓ ∈ {+1,−1}} is
a set of edges labeled as either positive or negative to indicate
that 𝑢 and 𝑣 are friends or enemies respectively. We assume that
𝐺 is connected. We will use a function 𝑠𝑖𝑔𝑛 : 𝐸 → {+1,−1} that
returns the label of each edge in 𝐸.

We are also given as input a universe 𝑆 of skills. Each individual
𝑢 in 𝑉 possesses a set of skills, 𝑠𝑘𝑖𝑙𝑙 (𝑢) ⊆ 𝑆 . We define a task
as the subset of skills 𝑇 ⊆ 𝑆 required for its completion. Given a
task, the team formation problem asks for a team 𝑋 of individuals,
𝑋 ⊆ 𝑉 , that collectively covers the required skills and whose
members can work together effectively. The effectiveness of a team
is typically quantified by the communication cost,𝐶𝑜𝑠𝑡 (𝑋 ), of the
team defined as some function of the distances of its members in
the graph.

However, when the graph contains both positive and negative
edges, we need to take into account that some individuals, al-
though close in the graph, may not be compatible with each other.
To capture whether two users are compatible, we introduce a rela-
tion𝐶𝑜𝑚𝑝 ⊆ 𝑉 ×𝑉 such that (𝑢, 𝑣) ∈𝐶𝑜𝑚𝑝, if and only if, 𝑢 and 𝑣

can work together. Two natural requirements for 𝐶𝑜𝑚𝑝 are (1) re-
flexivity: (𝑢,𝑢) ∈ 𝐶𝑜𝑚𝑝, and (2) symmetry: if (𝑢, 𝑣) ∈ 𝐶𝑜𝑚𝑝, then
(𝑣,𝑢) ∈ 𝐶𝑜𝑚𝑝. Furthermore, we require that the 𝐶𝑜𝑚𝑝 relation
satisfies the following two intuitive properties:

(1) Positive Edge Compatibility: For all (𝑢, 𝑣) ∈ 𝐸, such that
𝑠𝑖𝑔𝑛(𝑢, 𝑣) = +1, (𝑢, 𝑣) ∈ 𝐶𝑜𝑚𝑝.

(2) Negative Edge Incompatibility: For all (𝑢, 𝑣) ∈ 𝐸, such that
𝑠𝑖𝑔𝑛(𝑢, 𝑣) = −1, (𝑢, 𝑣) ∉ 𝐶𝑜𝑚𝑝.

We will provide various definitions of compatibility in Sec-
tion 3. We now define formally our problem.

Definition 2.1. (TEAM FORMATION IN SIGNED NETWORKS

(TFSN)) Given a signed graph 𝐺 = (𝑉 , 𝐸), a compatibility rela-
tion 𝐶𝑜𝑚𝑝, and a task 𝑇 , find 𝑋 ⊆ 𝑉 such that (1)

⋃
𝑢∈𝑋 𝑠𝑘𝑖𝑙𝑙 (𝑢)

⊇ 𝑇 , (2) for each 𝑢, 𝑣 ∈ 𝑋 , (𝑢, 𝑣) ∈ 𝐶𝑜𝑚𝑝, and (3) 𝐶𝑜𝑠𝑡 (𝑋 ) is
minimized.

The TFSN problem contains as a special case the original
team formation problem which is NP-hard [9], thus TFSN is
also NP-hard. Moreover, we have shown that just finding a set of
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compatible users is NP-hard. Let TFSNC denote the simplified
version of the TFSN problem, where we drop the third require-
ment of minimizing the cost. In particular, we have proven the
following theorem.

THEOREM 2.2. The decision version of TFSNC is NP-hard for
any compatibility relation that satisfies positive edge compatibility
and negative edge incompatibility.

3 USER COMPATIBILITY
We start with two basic definitions of compatibility.

Definition 3.1. Direct Positive Edge (DPE) compatibility:
𝐶𝑜𝑚𝑝DPE = {(𝑢, 𝑣) ⊆ 𝑉 ×𝑉 : (𝑢, 𝑣, +1) ∈ 𝐸}.

Definition 3.2. No Negative Edge (NNE) compatibility:
𝐶𝑜𝑚𝑝NNE = {(𝑢, 𝑣) ⊆ 𝑉 ×𝑉 : (𝑢, 𝑣,−1) ∉ 𝐸}.

DPE is the strictest form of compatibility, while NNE is the
most relaxed one. Specifically, 𝐶𝑜𝑚𝑝DPE is the minimal subset
of pairs of nodes that satisfies the positive edge compatibility
property, while 𝐶𝑜𝑚𝑝NNE is the maximal subset of pairs of nodes
that satisfies the negative edge incompatibility property.

We will now use the theory of structural balance [2, 4, 7]
to provide more refined definitions of compatibility. The theory
is based on the following socially and psychologically founded
premises: (1) the friend of my friend is my friend, (2) the friend
of my enemy is my enemy, and (3) the enemy of my enemy is my
friend. Let 𝑃 = (𝑣0,. . . , 𝑣𝑘+1), (𝑣𝑖 , 𝑣𝑖+1) ∈ 𝐸 denote a path between
nodes 𝑣0 and 𝑣𝑘+1 in a signed graph 𝐺 . We define the sign of the
path as 𝑠𝑖𝑔𝑛(𝑃) = ∏

𝑖=0...𝑘 𝑠𝑖𝑔𝑛(𝑣𝑖 , 𝑣𝑖+1). We say that path 𝑃 is
positive if 𝑠𝑖𝑔𝑛(𝑃) = +1 and negative if 𝑠𝑖𝑔𝑛(𝑃) = −1.

CLAIM 1. A positive path 𝑃𝑢𝑣 between two nodes 𝑢 and 𝑣 indi-
cates compatibility, while a negative one indicates incompatibility.

The claim follows from the basic principle of structural balance.
To see this, let 𝑃𝑢𝑣 = (𝑥0, 𝑥1, ..., 𝑥𝑘 , 𝑥𝑘+1), 𝑥0 = 𝑢, 𝑥𝑘+1 = 𝑣 be a
path that connects 𝑢 and 𝑣 . Let 𝐹𝑢 be the set of friends of 𝑢 and
𝐸𝑢 be the set of enemies of 𝑢. We start by placing node 𝑢 in 𝐹𝑢
and traverse the path as follows. When we traverse edge (𝑥𝑖 , 𝑥𝑖+1),
if the edge is positive we place 𝑥𝑖+1 in the same set as 𝑥𝑖 . That
is, the friends of my friends are also my friends, and the friends
of my enemies are my enemies. If the edge (𝑥𝑖 , 𝑥𝑖+1) is negative
then we place 𝑥𝑖+1 in the opposite set of 𝑥𝑖 . That is, the enemies
of my enemies are my friends, and the enemies of my friends are
my enemies. If the path 𝑃𝑢𝑣 is positive then 𝑣 will be placed in 𝐹𝑢 ,
while if the path is negative it will be placed in 𝐸𝑢 .

We first look at shortest paths. We use 𝑆𝑃𝑢𝑣 to denote the set
of shortest paths between nodes 𝑢, 𝑣 , 𝑆𝑃+𝑢𝑣 to denote the positive,
and 𝑆𝑃−𝑢𝑣 the negative ones.

Definition 3.3. Shortest Path (SP) compatibility relations: – All
Shortest Path (SPA) compatibility: 𝐶𝑜𝑚𝑝SPA = {(𝑢, 𝑣) ⊆ 𝑉 ×𝑉 :
∀𝑃𝑢𝑣 ∈ 𝑆𝑃𝑢𝑣, 𝑠𝑖𝑔𝑛(𝑃𝑢𝑣) = +1}.
– Majority Shortest Path (SPM) compatibility: 𝐶𝑜𝑚𝑝SPM =

{(𝑢, 𝑣) ⊆ 𝑉 ×𝑉 : |𝑆𝑃+𝑢𝑣 | ≥ |𝑆𝑃−𝑢𝑣 |}.
– One Shortest Path (SPO) compatibility: 𝐶𝑜𝑚𝑝SPO = {(𝑢, 𝑣) ⊆
𝑉 ×𝑉 : ∃𝑃𝑢𝑣 ∈ 𝑆𝑃𝑢𝑣, 𝑠𝑖𝑔𝑛(𝑃𝑢𝑣) = +1}.

We further relax compatibility by asking for positive paths
that are not necessarily the shortest ones. Based on structural
balance, certain triangles are more stable. A general signed graph
is structurally balanced, if it does not contain any cycle with an
odd number of negative edges [7].

Given a path 𝑃 , let 𝐺𝑃 = (𝑃, 𝐸 [𝑃]) be the graph induced by
the nodes of 𝑃 . We say that path 𝑃 is structurally balanced if the
subgraph 𝐺𝑃 is structurally balanced. Let 𝐵𝑃𝑢𝑣 denote the set of
all structurally balanced paths between 𝑢 and 𝑣 .

Algorithm 1 The SP-compatibility algorithm.

Input: Signed graph 𝐺 , query node 𝑞.
Output: The number of positive and negative shortest paths from 𝑞

to all other nodes in the graph.

1: Initialize 𝑁 + (𝑞) = 1, 𝑁 − (𝑞) = 0 𝑁 + (𝑥) = 𝑁 − (𝑥) = 0, 𝐿 (𝑞) = 0,
𝐿 (𝑥) = ∞, empty queue 𝑄 .

2: 𝑄 .enqueue(𝑞)
3: while 𝑄 ≠ 0 do
4: 𝑢 = 𝑄 .dequeue()
5: for 𝑥 adjacent to 𝑢 do
6: if 𝐿 (𝑢) + 1 ≤ 𝐿 (𝑥) then
7: if 𝑥 ∉ 𝑄 then
8: Q.enqueue(𝑥)
9: 𝐿 (𝑥) = 𝐿 (𝑢) + 1

10: if 𝑠𝑖𝑔𝑛 (𝑢, 𝑥) = +1 then
11: 𝑁 + (𝑥) += 𝑁 + (𝑢); 𝑁 − (𝑥) += 𝑁 − (𝑢)
12: else if 𝑠𝑖𝑔𝑛 (𝑢, 𝑥) = −1 then
13: 𝑁 − (𝑥) += 𝑁 + (𝑢); 𝑁 + (𝑥) += 𝑁 − (𝑢)
14: return (𝑁 +, 𝑁 −, 𝐿)

Definition 3.4. Structurally Balanced Path (SBP) compatibil-
ity: 𝐶𝑜𝑚𝑝SBP = {(𝑢, 𝑣) ⊆ 𝑉 ×𝑉 : ∃𝑃𝑢𝑣 ∈ 𝐵𝑃𝑢𝑣, 𝑠𝑖𝑔𝑛(𝑃𝑢𝑣) = +1}.

The motivation for SBP compatibility is that, in addition to 𝑃𝑢𝑣
being positive, asking for 𝐺𝑃 to be structurally balanced means
that the sign of any edge connecting𝑢 and 𝑣 must be positive, other-
wise a cycle with an odd number of negative edges will be created.
Note that SBP-compatibility does not imply SP-compatibility.
Consider the example in Figure 1(a). The (only) shortest path
between 𝑢 and 𝑣 is (𝑢, 𝑥1, 𝑣) which is negative, and thus 𝑢, 𝑣 are
not SP-compatible. However, 𝑢 and 𝑣 are SBP-compatible, since
the path (𝑢, 𝑥2, 𝑥3, 𝑥4, 𝑣) is positive and structurally balanced. Note
that there is a shorter path (𝑢, 𝑥2, 𝑥1, 𝑣) between 𝑢 and 𝑣 that is
positive, but not structurally balanced, since the shortcut edge
(𝑢, 𝑥1) creates the unbalanced triangle (𝑢, 𝑥1, 𝑥2).

It is easy to see that the following holds:

PROPOSITION 3.5. 𝐶𝑜𝑚𝑝dpe ⊆ 𝐶𝑜𝑚𝑝spa ⊆ 𝐶𝑜𝑚𝑝spm ⊆
𝐶𝑜𝑚𝑝spo ⊆ 𝐶𝑜𝑚𝑝sbp ⊆ 𝐶𝑜𝑚𝑝nne.

Algorithms. We now present algorithms for SP and SBP com-
patibility. Algorithm 1 shows the modified BFS algorithm for
counting positive and negative shortest paths. Given the query
node 𝑞, for each node 𝑥 ∈ 𝑉 in the graph, the algorithm maintains
the numbers 𝑁 + (𝑥) and 𝑁− (𝑥) of positive and negative shortest
paths respectively and the length of the shortest path 𝐿(𝑥) from 𝑞

to 𝑥 . When reaching node 𝑥 from node 𝑢 through a shortest path
(line 6), if the edge (𝑢, 𝑥) is positive, we increment the number of
positive and negative paths of 𝑥 by 𝑁 + (𝑢) and 𝑁− (𝑢) respectively,
since all paths retain their sign. If the edge (𝑢, 𝑥) is negative, we
increment 𝑁− (𝑥) by 𝑁 + (𝑢), and 𝑁 + (𝑥) by 𝑁− (𝑢), since the sign
of the paths change. Each edge is examined only once.

The efficient enumeration of shortest paths is possible due to
the prefix property that a shortest path between 𝑞 and 𝑥 that goes
through node 𝑢 must use a shortest path from 𝑞 to 𝑢. However, this
is not the case for shortest structurally balanced paths. Consider
the example in Figure 1(b). The shortest structurally balanced
path from 𝑢 to 𝑥4 is (𝑢, 𝑥3, 𝑥4). However, the shortest structurally
balanced path (𝑢, 𝑥1, 𝑥2, 𝑥4, 𝑥5, 𝑣) from 𝑢 to 𝑣 goes through node
𝑥4 but not through the shortest structurally balanced path from 𝑢

to 𝑥4, since the path (𝑢, 𝑥3, 𝑥4, 𝑥5, 𝑣) is not structurally balanced.
Since the exact algorithm is prohibitively expensive for large

graphs, due to the exponential number of paths, we also consider
a heuristic alternative for SBP-compatibility that counts only
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Figure 1: (a) 𝑢 and 𝑣 are SBP but not SP compatible. (b) It
does not suffice to keep a single path from 𝑢 to 𝑥4.

Algorithm 2 Team formation algorithm.

Input: Signed graph 𝐺 , task𝑇 , compatibility relation 𝐶𝑜𝑚𝑝.
Output: Team 𝑋 .

1: Initialize 𝑆 ← ∅. //𝑆: skills covered so far
2: Initialize L ← ∅. //L: set of candidate teams
3: Select skill 𝑠 from𝑇 //skill selection
4: for each 𝑢 with skill 𝑠 do
5: 𝑋 ← {𝑢 } // 𝑋 : candidate team
6: 𝑆 ← 𝑆 ∪ (𝑇 ∩ 𝑠𝑘𝑖𝑙𝑙𝑠 (𝑢))
7: while 𝑆 ≠𝑇 do
8: Select skill 𝑠 from𝑇 − 𝑆 //skill selection
9: Select user 𝑣 with skill 𝑠 //user selection

10: s.t. (𝑣, 𝑥) ∈ 𝐶𝑜𝑚𝑝 for all 𝑥 in 𝑋

11: 𝑋 ← 𝑋 ∪ {𝑣 }
12: 𝑆 ← 𝑆 ∪ (𝑇 ∩ 𝑠𝑘𝑖𝑙𝑙𝑠 (𝑣))
13: L ← L ∪ 𝑋
14: return 𝑎𝑟𝑔𝑚𝑖𝑛𝑋 ∈L (𝐶𝑜𝑠𝑡 (𝑋 ))

paths having the prefix property. We will use SBP to denote the
compatibility relation computed by the exact exhaustive algorithm,
and SBPH the output of the heuristic algorithm.

4 TEAM FORMATION
We now present algorithms for the TFSN problem. Recall that
our goal is to find a team of compatible users, that covers all skills,
and minimizes the communication cost. The communication cost
is defined as the largest distance between any two pairs of users
in the team. We define the distance between two users looking
at the positive paths connecting them. Specifically, for DPE and
SP compatibility, distance is the length of the shortest path, while
for SBP the length of the shortest structurally balanced positive
path. For NNE compatibility, since there be no positive paths, we
define distance as the length of the shortest path ignoring its sign.

Algorithm 2 is a generic algorithm that incrementally builds
a solution, each time considering an uncovered skill and adding
a compatible user having this skill, until all skills are covered.
There are two placeholders in this algorithm. The first is the policy
for selecting a skill (lines 3 and 8), and the second the policy for
selecting a candidate user (line 9).

We consider two policies for selecting skills: select the rarest
skill first (as in [9]), and select the least compatible skill first. We
define the compatibility degree 𝑐𝑑 (𝑠) of skill 𝑠 based on the com-
patibility between the users with skill 𝑠 and the users with all other
skills: 𝑐𝑑 (𝑠) =

∑
𝑠 𝑗 ∈𝑆,𝑠𝑖≠𝑠 𝑐𝑑 (𝑠, 𝑠 𝑗 ), where 𝑐𝑑 (𝑠, 𝑠 𝑗 ) = |{(𝑢𝑖 , 𝑢 𝑗 ) :

(𝑢𝑖 , 𝑢 𝑗 ) ∈ 𝐶𝑜𝑚𝑝, 𝑠 ∈ 𝑠𝑘𝑖𝑙𝑙𝑠 (𝑢𝑖 ) and 𝑠 𝑗 ∈ 𝑠𝑘𝑖𝑙𝑙𝑠 (𝑢 𝑗 )}|.

Table 1: Dataset Statistics

Slashdot Epinions Wikipedia
#users 214 28,854 7,066
#edges 304 208,778 100,790
#neg edges 89 (29.2%) 34,941 (16.7%) 21,765 (21.5%)
diameter 9 11 7
#skills 1,024 523 500

We also consider two policies for selecting users: select the
user that has the minimum distance, and select the user that is

Table 2: Comparison of compatibility relations
SPA SPM SPO SBPH SBP NNE

Slashdot
comp. users 44.72 55.72 72.45 97.85 99.38 99.64
comp. skills 80.57 86.19 92.63 99.11 99.47 99.50
avg distance 4.13 4.37 4.57 4.95 4.97 4.53

Epinions
comp. users 29.61 62.98 86.46 99.82 – 99.99
comp. skills 97.25 98.90 99.66 99.99 – 99.99
avg distance 3.48 3.82 3.87 3.97 – 3.83

Wikipedia
comp. users 21.98 59.33 87.51 99.56 – 99.91
comp. skills 66.17 87.31 97.32 99.87 – 99.96
avg distance 2.85 3.23 3.30 3.38 – 3.25

Table 3: Comparison with unsigned team formation

SPA SPM SPO SBP NNE
Ignore sign 0% 2% 2% 26% 30%

Delete negative 0% 2% 18% 66% 76%

most compatible among the remaining users. The first selection
aims at minimizing the cost, while the second at maximizing the
chances of finding a group of compatible users. We experimentally
evaluate different combinations of these policies in Section 5.

5 EXPERIMENTAL EVALUATION
In this section, we compare the different compatibility relations
on real datasets and evaluate the team formation algorithm.
Datasets. Table 1 details our real-world datasets. Slashdot con-
tains information about users and their posts on Slashdot. We ob-
tained a network of Slashdot users [11], where users have tagged
their relationships as friend or foe. Then we used the categories of
users’ posts as skills. Epinions contains information about users
and their reviews about products. The dataset is created by com-
bining a signed network of Epinions users [11] with the RED 1

dataset which contains information about the products and product
categories the users have reviewed. We used the unique user ids
to match users in the two datasets, and we assigned as skills to
users the categories of the products they have reviewed. Wikipedia
[11] is a signed network of editors. The edge sign corresponds to
a positive or negative vote in admin elections. Since there was no
skill information, we assigned synthetically generated skills to its
users. We generated 500 distinct skills with frequencies following
a Zipf distribution as in real data. Each skill is assigned to users
in the network uniformly at random.
Compatibility Relations. In Table 2, we report the percentage of
compatible pairs of users and skills. The DPE is excluded from
our analysis, since this corresponds to finding cliques and team
formation is too restrictive. Two skills 𝑠1 and 𝑠2 are compatible if
they have compatibility degree 𝑐𝑑 (𝑠1, 𝑠2) > 0, i.e., there is at least
one compatible pair of users (𝑢, 𝑣) such that 𝑢 has 𝑠1 and 𝑣 has 𝑠2
(including self-compatibility, if the same user has both skills).

As expected, the number of compatible user and skill pairs in-
creases as we relax the notion of compatibility. For SPA, less than
half of the pairs of nodes are compatible, and as low as 21.98% for
the case of Wikipedia. Also, in most cases, for a sizeable fraction
of pairs of skills there are no compatible users, indicating that
for many skill combinations there can be no compatible team.
Another interesting observation is that the fraction of compatible
pairs for SBP is comparable with that for NNE. This means that,
for all pairs that are not directly connected with a negative edge,
there exists at least one positive structurally balanced path that
connects them.

1https://projet.liris.cnrs.fr/red/
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Figure 2: Team formation: comparison of algorithms ((a) and
(b)), varying task size (c) and (d).

Distance. In Table 2, we also report the average distance between
compatible users. The distance steadily increases as we relax the
compatibility definition. The exception is NNE in which we allow
negative paths, and thus we are able to discover shorter ones.
Comparison of SBP and SBPH. We also compare the exact
(SBP) and heuristic (SBPH) structurally balanced compatibil-
ity for the Slashdot dataset, for which we can compute the exact
relation. Table 2 shows the difference between SBP and SBPH
which is only ∼2.5%
Team Formation. Due to space limitation, in this set of experi-
ments, we only report results using Epinions. Results are similar
for the other networks. We generate tasks of different sizes. For a
given task of size 𝑘 , we generated 50 tasks by randomly selecting
𝑘 skills. First, we compare the four different team formation al-
gorithms obtained by combining the two different skill and user
selection policies.We report results for the two algorithms that
performed the best which are the algorithms that select the least
compatible skill. The LCMD, selects the user with the minimum
distance, while the LCMC, the user who is the most compati-
ble with the existing team. We also experiment with a baseline
RANDOM that selects a compatible user at random.

In Figure 2(a), we report the percentage of times that each
algorithm was able to find a compatible team for 𝑘 = 5. The last
bar (MAX) shows the percentage of tasks that contain compatible
skills. This is a rough upper bound on the number of compat-
ible teams, since it is based on compatible skills and not the
compatibility of users. The two algorithms perform equally well
indicating that optimizing for compatibility makes very little dif-
ference. Figure 2(b) shows the average cost of the teams produced
and indicates that LCMD is the best choice.

In Figures 2(c) and (d), we report results for teams of varying
task sizes using LCMD. As expected, more skills means that
more people need to co-operate to complete the task, making it
harder to form a compatible team, and more likely to include a
distant node. The number of solutions drops steeply for more strict
compatibility relations, while it remains more or less constant for
NNE and SBPH .

Finally, we compare our approach with previous work on team
formation. Since there is no previous work on team formation on
signed network, we create two unsigned Epinions networks by
(1) ignoring the sign of the edges and (2) deleting the negative
edges. We run a team formation algorithm [9] on each of these two
networks using the same tasks with 𝑘 = 5 skills as in the previous
experiments. In Table 3, we report the percentage of the returned
teams that satisfy compatibility for the different compatibility
relations. As shown, most of the teams returned are incompatible.

6 RELATED WORK
To the best of our knowledge, our work is the first to address team
formation in signed networks.
Team Formation. Lappas et al. [9] were the first to formally define
the problem of finding a team of experts using the network struc-
ture to quantify the quality of the team as a whole. There is con-
siderable amount of work extending their model, (e.g., [1, 8, 12]),
but none of these works considers a signed network.
Signed Networks. There is a fair amount of work on signed net-
works [13]. A problem somehow related to our work is that of link
and sign prediction [3, 11]. However, we differentiate, since we
are not interested in predicting future links, but rather in evaluat-
ing the compatibility between any two individuals in the network.
There is also work on detecting communities in signed networks
(e.g., see [14]). The notion of the team is somehow related to that
of the community, but the objective of team formation is different.
Structural Balance. There is a rich literature in psychology on
positive and negative relations among groups of people using
structural balance theory, e.g., [2, 4]. Structural balance has been
used e.g., for identifying clusters [5] and polarization in networks
[10], finding communities [6].

7 CONCLUSIONS
In this paper, we introduced the novel problem of team formation
in a signed network. The problem poses the challenge of defining
node compatibility in a signed network. To this end, we provided a
principled framework by utilizing the theory of structural balance.
In the future, we plan to investigate different ways to combine
compatibility and communication cost and to exploit compatibility
for other tasks, such as link prediction or clustering.
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ABSTRACT
Shortest-path distances on road networks have many applica-
tions such as finding nearest places of interest (POI) for travel
recommendations. To compute a shortest-path distance, tradi-
tional approaches traverse the road network to find the shortest
path and return the path length. When the distances are needed
first (e.g., to rank POIs) while the shortest paths may be computed
later (e.g., after a POI is chosen), one may precompute and store
the distances, and answer distance queries by simple lookups.
This approach, however, falls short in the worst-cast space cost –
O (n2) for n vertices even with various optimizations. To address
these limitations, we propose to learn an embedding for every
vertex that preserves its distances to the other vertices. We then
train a multi-layer perceptron (MLP) to predict the distance be-
tween two vertices given their embeddings. We thus achieve fast
distance predictions without a high space cost. Experimental re-
sults on real road networks confirm these advantages. Meanwhile,
our approach is up to 97%more accurate than the state-of-the-art
approaches for distance predictions.

1 INTRODUCTION
Computing shortest-path distances on road networks with a high
efficiency is fundamental for applications such as “finding restau-
rants within 5 km distance” or “ranking restaurant search results
by distance”. Real road networks (e.g., Florida road network [8])
may contain millions of vertices, while thousands of users may
issue distance queries at the same time (e.g., Google Maps has
over a billion active users [1]). Answering distance queries under
such settings poses significant challenges in both space and time
costs. We aim to address such challenges in this paper.

Problem formulation. We consider a road network graph
G = ⟨V ,E⟩, whereV is a set of n vertices (road intersections) and
E is a set ofm edges (roads). A vertex vi ∈ V has a pair of geo-
coordinates. An edge ei, j ∈ E connects two vertices vi and vj ,
and has a weight ei, j .w , which represents the distance to travel
across the edge. Fig. 1a shows an example, wherev1,v2, ...,v5 are
the vertices, and the numbers on the edges are the weights. For
simplicity, in what follows, our discussions assume undirected
edges, although our techniques also work for directed edges.

A path pi, j between vertices vi and vj consists of a sequence
of vertices vi → v1 → v2 → ... → vx → vj such that there
is an edge between any two adjacent vertices in the sequence.
The length of pi, j , denoted by |pi, j |, is the sum of the weights of
the edges between adjacent vertices in pi, j , i.e., |pi, j | = ei,1.w +
e1,2.w + ...+ex, j .w .We are interested in the path p∗i, j betweenvi
and vj with the smallest length, i.e., the shortest path. Its length
is the (shortest-path) distance d (vi ,vj ) between vi and vj , i.e.,
d (vi ,vj ) = |p

∗
i, j |. Consider vertices v1 and v5 in Fig. 1a. Their

∗The authors are ordered alphabetically.
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Figure 1: Shortest-path distance problem

distance d (v1,v5) = 4 is the length of path v1 → v4 → v5. We
aim to predict d (vi ,vj ) given vi and vj with a high accuracy and
efficiency, which is defined as the shortest-path distance query.

Definition 1.1 (Shortest-path distance query). Given two query
vertices vi and vj in graph G, a shortest-path distance query re-
turns the shortest-path distance between vi and vj , i.e., d (vi ,vj ).

For simplicity, we use distance to refer to shortest-path dis-
tance hereafter as long as the context is clear.

Related work. A simple solution is to use shortest path al-
gorithms (e.g., Dijkstra’s algorithm) to compute the shortest
paths and then return the path lengths. In applications such
as those mentioned above, the distances are needed first (e.g.,
to rank restaurants by distance) while the shortest paths may
be computed later (e.g., after a restaurant is chosen). Studies
(e.g., [3, 7, 12]) thus build data structures to enable fast distance
queries without online shortest path computations. Distance la-
beling is commonly used. Its basic idea is to precompute a vector
of (distance) values for each vertex as its distance label. In an
extreme case, the distance label of a vertex contains its distances
to all other vertices (cf. Fig. 1b). A distance query is answered by a
lookup inO (1) time, but this requiresO (n2) storage space for the
distance labels. Techniques (e.g., 2-hop labeling [7] and highway
labeling [12]) are proposed to reduce the label size. However, for
general graphs, the worst-case space costs are still O (n2) [11].

To avoid theO (n2) space cost, approximate techniques are pro-
posed [6, 18, 21], among which landmark labeling [10, 16, 20] is a
representative approach. This approach uses a subset of k (k ≪
n) vertices as the landmarks. Every vertexvi stores its distances to
these landmarks as its distance label, i.e., a k-dimensional vector
⟨d (vi , l1),d (vi , l2), . . . ,d (vi , lk )⟩, where l1, l2, . . . , lk ∈ L repre-
sent the landmarks and d (·) represents the distance. At query
time, the distance labels of the two query vertices vi and vj are
scanned, where the distances to the same landmark are summed
up. The smallest distance sum, i.e., min{d (vi , l ) + d (vj , l ) |l ∈ L},
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is returned. In Fig. 1, v2 and v3 are chosen as the landmarks
(denoted by l1 and l2, respectively), and the distance labels are
shown in Fig. 1c. The distance between v1 and v5 is computed as
min{d (v1, l1)+d (v5, l1),d (v1, l2)+d (v5, l2)} = min{3+6, 3+5} =
8, which is twice as large as the actual distance betweenv1 andv5
(i.e., 4). Even though landmark labeling reduces the space cost to
O (kn), it may not return the exact distance. How the landmarks
are chosen plays a critical role in the distance accuracy. Since
finding the k optimal landmarks is NP-hard [16], heuristics are
proposed [16, 19] such as choosing the vertices that are on more
shortest paths as the landmarks. Theoretical results (e.g., [6, 15])
are offered to bound the relationship between the label size and
the distance accuracy. On undirected graphs, it is shown [21]
that any algorithm with an approximation ratio of α < 2c + 1
(c ∈ N+) must use Ω(n1+

1
c ) space. A structure is proposed [21]

using O (cn1+
1
c ) space and O (cmn

1
c ) time to obtain an approxi-

mation ratio of α = 2c − 1 and an O (c ) query time. Chechik [6]
improves the space cost to O (n1+

1
c ) and the query time to O (1),

with anO (n2+mn
1
2 ) prepossessing time. These studies aremainly

of theoretical interest. They do not offer empirical results.
Our contributions. To preserve more information in the dis-

tance labels and obtain higher distance accuracy, we propose to
learn an embedding for every vertex as its distance label. Our idea
is motivated by recent advances in graph embeddings [4, 5, 9],
which show that vertices can be mapped into a latent space where
their structural similarity (e.g., the number of common neigh-
boring vertices) can be computed. This motivates us to map the
vertices into a latent space to compute their spatial similarity, i.e.,
shortest-path distances. We make the following contributions:

(i) We propose a learning based model vdist2vec to predict
vertex distances. This model learns vertex embeddings while
jointly trains a multi-layer perceptron (MLP) to predict vertex
distances. It has an O (k ) distance prediction time and an O (kn)
storage space, where k is a small constant denoting the vertex
embedding dimensionality. Our model is highly accurate, since
the embeddings are guided by distance predictions directly.

(ii) We further propose two models vdist2vec-L and vdist2vec-S
with an improved loss function and an improved model structure
to optimize the embeddings for different types of vertices.

(iii) We perform experiments on real road networks. The re-
sults show that, comparing with state-of-the-art approaches, our
models reduce the distance prediction errors by up to 97%.
2 PROPOSED MODEL
2 |V |-dimensional
one-hot layer

k-dimensional
embedding
layer

MLP
input layer

MLP hidden
and output
layershi

(vi )

hj
(vj )

vi

vj

Fully
connected

d̂i, j

Figure 2: Vdist2vec model structure
Vdist2vec. As Fig. 2 shows, our vdist2vec model takes two

vertices vi and vj as the input, which are represented as two
size-|V | one-hot vectors hi and hj. The next layer is an embedding
layer for representation learning. This layer has k nodes, and its
weight matrix is a |V | × k (2|V | × k for directed graphs) matrix

to be used as the vertex vectors for all vertices, denoted by V =
[v1T , v2T , ..., v |V |T ]T . Multiplying hi (hj) by V yields vi (vj):

vi = hiV (1)
Vectors vi and vj are then fed into a distance prediction network
(i.e., an MLP) to predict the distance between vi and vj . The
loss function Ld is the mean square error on the actual vertex
distances d (vi ,vj ) and the predicted distances d̂i, j :

Ld = EP
[
(d (vi ,vj ) − d̂i, j )

2] (2)
At training, the vertex representationmatrixV is randomly initial-
ized. Vertex pairs are fed into the network in batches to train the
MLP. The training loss Ld will be propagated back to optimize
the MLP and the vertex representations in V.

At query time, the query vertex vectors vi and vj are fetched
from V and fed into the MLP to make a distance prediction.

(a) Error distribution (DG)
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Figure 3: Prediction error distribution and vdist2vec-S

Next, we optimize the prediction accuracy further. Our motiva-
tion comes from an observation on the distance prediction error
distributions. In Fig. 3a, we plot the normalized absolute distance
prediction errors of vdist2vec on a real dataset (DG, cf. Section 3).
The x-axis represents vertex pairs (sorted by the prediction er-
rors) and the y-axis represents their corresponding prediction
errors. We see that a very small portion (e.g., less than 1%) of the
vertex pairs have much larger prediction errors (see the spike to
the right of the figure) than the other vertex pairs. Such vertex
pairs dominate the training error and force the model to focus
on them. To optimize the overall prediction accuracy, we need to
guide the model to attend more to the other vertex pairs.

Vdist2vec-L. Our first optimization is a novel loss function
denoted by Ln to shrink the larger errors:

Ln = EP
[
fδ (d (vi ,vj ) − d̂i, j )

]
(3)

fδ (x ) =



δ |x |, if |x | ≤ δ
1
2 (x

2 + δ2), otherwise
Function fδ (·) is motivated by the Huber loss and is continuously
differentiable at x = δ . We set δ as the top 1% largest prediction
error after each epoch. If |x | > δ , 12 (x

2 + δ2) ≤ x2 which shrinks
the error. Replacing Ld with Ln results in vdist2vec-L.

Vdist2vec-S. Our second optimization is motivated by ensem-
ble learning. As Fig. 3b shows, we replace the last hidden layer of
vdist2vec with four separate MLPs, each focusing on producing
distance predictions in the ranges of (0, 100), (0, 900), (0, 9000),
and (0, dmax−10000), where dmax is the road network diameter.
This is done by multiplying (“

⊙
”) the sigmoid output of each

MLP with 100, 900, 9000, and dmax − 10000, respectively. The
output of the MLPs are summed up to produce the final predic-
tions. We name this model vdist2vec-S. Its advantage is in that
each MLP can focus on vertex pairs in different distance ranges,
making it easier to learn more accurate predictions.

As shown in Fig. 3a, the error distributions of vdist2vec-L and
vdist2vec-S are less skewed than that of vdist2vec.
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Handling large road networks.Ourmodels compute a |V |×
k embedding matrix. This is cheaper than a |V |2 matrix for all
vertex distances. However, we still need to train over |V |2 pairs
of vertices. Next, we reduce the number of training pairs.

We cluster (e.g., using k-means) the vertices into |Vc | clusters
based on their geo-coordinates, where |Vc | is a small constant.
The vertex nearest to each cluster center is chosen as a center
vertex. We train our models over the center vertices. Given query
vertices vi and vj , their distance d̃i, j is approximated by their
distances to their cluster center vertices vic and vjc (which are
precomputed) plus the predicted distance d̂ic, jc of vic and vjc :

d̃i, j = λ1 · d (vi ,vic ) + d̂ic, jc + λ2 · d (vjc ,vj ) (4)
There are two coefficients λ1 and λ2 to weight the contribu-

tions ofd (vi ,vic ) andd (vjc ,vj ) based on the relative positions of
the vertices (cf. Fig. 4a). To learn λ1 and λ2, we build another neu-
ral network as shown in Fig. 4b, where dla (·) and dlo (·) return
the difference in latitude and longitude between two vertices,
respectively. This neural network feeds the coordinate difference
betweenvi andvic and the coordinate difference betweenvj and
vjc into two MLPs to predict λ1 and λ2, respectively. The last
layer of each MLP uses a tanh activation function, which maps λ1
and λ2 into the range of (−1, 1). The output of these two MLPs is
multiplied (“

⊙
”) with d (vi ,vic ) and d (vjc ,vj ), and the products

are added (“
⊕

”) with d̂ic, jc to produce d̃i, j , which implements
Equation 4. For training, we use loss function Ld but with only
a sampled subset of non-center vertices (e.g., |Vc | |V | pairs), since
the input space (i.e., coordinate difference) is now much smaller.

vi vj

vi vj

vic vjc

di, j

d̂ic, jc

d (vi ,vic ) d (vjc ,vj )

(a) Distance computation

MLP

MLP

d (vi ,vic )

dla (vi ,vic )

dlo (vi ,vic )

dla (vjc ,vj )

dlo (vjc ,vj )

d (vjc ,vj )

d̂ic, jc
d̂i, j

(b) Network structure
Figure 4: Distance prediction for large road networks

Handling updates. Our models can be rebuilt in 13 hours
for road networks with over a million vertices (Section 3). This
allows us to handle a low update frequency by periodic rebuilds.
Our models can also provide distance predictions upon vertex
or edge updates without rebuilding, although the accuracy may
drop. We leave more robust update handling for future study.

Cost analysis. We consider an MLP to have an O(1) space
cost for its parameters and an O(1) time cost for inference. Such
costs depend mainly on the model size rather than the input
size. Also, the inference can be done by GPUs efficiently. Then,
our models can be trained in O ( |V |2) time (O ( |Vc | |V |) for large
road networks). Our models take O (k |V |) space for the embed-
dings. They take O (k ) time to read and feed the query vertex
embeddings into the MLP for distance prediction in O (1) time.

3 EXPERIMENTS
We run experiments on a Linux PC with an Intel(R) Xeon(R)
E5-2630 V3 CPU (2.40GHZ), a GeForce GTX TITAN X GPU, and
32GB memory. All models are implemented with Python 2.7.12.
The neural networks are implemented with Tensorflow 1.13.1.

Datasets.We use six road network datasets as summarized in
Table 1, where dдr denotes the average degree and dmax denotes
the diameter. All datasets are undirected except for MB.

Table 1: Datasets

Dataset |V | |E | dдr dmax
Dongguan, China (DG) [14] 8K 11K 2.76 96km
Florida, USA (FL) [8] 1.07M 1.35M 2.36 1,200km
Melbourne, Australia (MB) [2] 3.6K 4.1K 1.14 6km
New York City, USA (NY) [8] 264K 366K 2.80 160km
Shanghai, China (SH) [14] 74K 100k 2.70 127km
Surat, India (SU) [14] 2.5K 3.6K 2.88 50km

Baselines.We comparewith five baselines: landmark-bt [19]:
it uses the top-k vertices passed by the largest numbers of short-
est paths between the vertex pairs as the landmarks; landmark-
km: it uses the k vertices that are the closest to the vertex k-
means centroids (computed in Euclidean space) as the landmarks;
ado [18]: it recursively partitions the vertices into subsets of
well separated vertices and stores the distance between subsets to
approximate the distance between vertices (we tune its approxi-
mation parameter ϵ such that it has a similar space cost to ours);
geodnn [13]: it trains an MLP to predict the distance of two
vertices given their geo-coordinates (we use its recommended
settings); node2vec [17]: it uses node2vec [9] to learn vertex
embeddings and trains an MLP to predict vertex distances given
the learned embeddings (we use its recommended settings).

Hyperparameters. For our models, the MLP distance pre-
diction component has two hidden layers of 100 and 20 nodes,
respectively. We use ReLU as the activation function for the hid-
den layers and sigmoid for the output layer. We set the batch size
to be |V | (we find that a large batch size helps the training effi-
ciency without impacting the prediction accuracy). We initialize
the MLP parameters using the truncated normal distribution with
0 as the mean and 0.01 as the standard deviation. The training
data is randomly shuffled. We train our model in 20 epochs with
early stopping using AdamOptimizer and a learning rate of 0.01.
Each ensemble MLP of vdist2vec-S has a layer of 20 nodes.

In all approaches except node2vec, we use k = 2%|V | for DG,
MB, and SU, k = 0.05%|V | for SH, and k = 0.005%|V | for FL and
NY. For node2vec, we use k = 128 as suggested by [17].

Evaluation metrics. We predict the distance between ev-
ery two vertices in each dataset and measure the mean absolute
error (MAE, in meters), mean relative error (MRE), precomputa-
tion/training time (PT), and average distance prediction (query)
time (QT). The ground truth distances are precomputed using
the contraction hierarchy algorithm.

Overall results. Table 2 shows the prediction errors. Our
models outperform the baseline models across all six datasets
and reduce the MAE and MRE by up to 97% and 99% (5 vs. 192
and 0.006 vs. 0.488 for vdist2vec-S and landmark-bt on MB). On
NY, landmark-km has a slightly lower MAE than ours, while our
MRE is still lower (by more than 50%).

The advantage of our models comes from their capability to
learn the vertex distances and preserve them in the embeddings.
Landmark-bt and landmark-km rely on the landmarks and may
not preserve the distance for all vertices. Ado is designed to
control the relative error. It yields the lowest MRE among the
baselines on most datasets, but its MAE may be large. Geodnn
uses Euclidean distance to approximate shortest-path distance.
It suffers on large road networks (e.g., FL and NY) with rivers
and large detours. Node2vec focuses on the neighborhood of the
vertices. It also suffers on large road networks such as NY (it
cannot train on FL in 48 hours which is marked as “OT”).

In Table 2, we also show the space required to store the learned
embeddings and model parameters on the FL dataset. Geodnn
has the smallest space requirement, as it only stores the MLP
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Table 2: Mean Absolute and Relative Errors

DG MB SU FL NY SH
MAE MRE MAE MRE MAE MRE MAE MRE Size MAE MRE MAE MRE

baseline

landmark-bt 2,234 0.442 192 0.488 468 0.281 OT OT OT 24,851 0.167 6,144 0.554
landmark-km 74 0.028 15 0.040 142 0.090 58,869 0.113 428 MB 13,431 0.105 1,314 0.159
ado 2,108 0.057 75 0.072 642 0.074 175,571 0.052 431 MB 31,737 0.064 4,539 0.147
geodnn 1,566 0.092 95 0.097 442 0.108 363,661 0.317 17 MB 207,694 0.862 14,842 0.990
node2vec 2,329 0.199 118 0.161 658 0.175 OT OT OT 217,400 0.703 19,465 1.276

proposed
vdist2vec 135 0.015 12 0.014 83 0.027 34,757 0.027 30 MB 16,805 0.052 1,290 0.068
vdist2vec-L 75 0.015 6 0.014 50 0.024 34,860 0.027 30 MB 16,793 0.052 1,290 0.068
vdist2vec-S 71 0.011 5 0.006 49 0.014 34,329 0.026 33 MB 16,649 0.052 1,287 0.068

Table 3: Preprocessing and Query Times

DG MB SU FL NY SH
PT QT PT QT PT QT PT QT PT QT PT QT

baseline

landmark-bt 0.1h 5.832µs 62.7s 4.579µs 32.6s 4.463µs OT OT 39.6h 11.712µs 14.7h 8.423µs
landmark-km 2.2s 6.024µs 0.7s 4.439µs 0.4s 4.322µs 145.1s 63.718µs 66.3s 15.343µs 9.5s 8.930µs
ado 1.0h 1.080ms 0.2h 0.490ms 195.7s 0.356ms 1.5h 0.110ms 0.8h 0.148ms 138s 0.053ms
geodnn 0.9h 0.366µs 0.2h 0.396µs 0.2h 0.375µs 0.1h 0.444µs 0.1h 0.458µs 0.1h 0.432µs
node2vec 2.2h 0.829µs 0.9h 0.820µs 0.5h 0.809µs OT OT 26.3h 0.751µs 2.8h 0.781µs

proposed
vdist2vec 2.3h 1.039µs 0.9h 0.644µs 0.4h 0.589µs 12.5h 3.981µs 6.1h 1.215µs 0.2h 0.797µs
vdist2vec-L 2.3h 1.039µs 0.9h 0.644µs 0.5h 0.589µs 12.5h 3.981µs 6.1h 1.215µs 0.2h 0.797µs
vdist2vec-S 2.8h 1.366µs 1.1h 1.005µs 0.6h 0.921 µs 12.5h 3.981µs 6.1h 1.215µs 0.2h 0.797µs

parameters. Our models store MLP parameters and center vertex
embeddings, which require more space than geodnn but less
than landmark-km and ado. Note that, if our models learn vertex
embeddings for a full graph, we expect a slightly higher space
requirement than landmark-km and ado.

Table 3 shows the preprocesing (training) time PT and dis-
tance prediction (query) time QT. In terms of PT, the landmark
approaches are much faster on the small road networks DG,
MB, and SU. Their precomputation is simpler than the training
of the learning based models. On large road networks FL, NY,
and SH, our models use the proposed clustering based strategy
(|Vc | = 0.4%|V | and 100,000 random vertex pairs to learn λ1
and λ2), which reduces the training time significantly. Ado and
node2vec need to run on the full road networks. Their PT grows
with the road network size. For geodnn, we randomly sample
100,000 vertex pairs for training on the large road networks. It
does not learn vertex embeddings and hence has a lower PT.

In terms of QT, the learning based approaches are highly ef-
ficient because their distance prediction is a simple forward
propagation, which can be done by GPUs efficiently. Geodnn
is the fastest, as its input layer only has four nodes (i.e., two
geo-coordinates). The other learning based approaches including
ours have very similar MLP structures and input sizes which are
larger than that of geodnn. Thus, their QT are similar and are
larger than that of geodnn. Ado has the largest QT because it
needs to first locate the subsets containing the query vertices.

Among our models, vdist2vec-S yields the smallest distance
prediction errors, as it can cope with distances in varying ranges.
This advantage comes with a larger PT. In contrast, vdist2vec-L
has almost the same PT as vdist2vec but achieves smaller distance
prediction errors due to its optimized loss function.
4 CONCLUSIONS
We proposed a representation learning based approach for the
shortest-path distance problem. Our approach learns vertex em-
beddings that preserve the distances between vertices, which
only take an O (kn) storage space. At query time, the vertex em-
beddings are fed into an MLP to predict the distance, which takes
a constant time. Experimental results show that our approach
is highly efficient. It reduces the distance prediction errors by
up to 97% comparing with the state-of-the-art. For future work,
we plan to extend our techniques to more types of (and larger)

graphs such as social networks. We also plan to study real-time
updates for learning based distance prediction models.
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ABSTRACT
Despite the increase of memory capacity and CPU computing
power, memory performance remains the bottleneck of in-memory
DBMS due to ever-increasing data volumes and application de-
mands. Since the scale of data workload has outpaced traditional
CPU caches and memory bandwidth, it is essential to optimize
data movement from memory to computing units. In this work,
we present a near-memory Database Accelerator (DBA) frame-
work that offloads data-intensive database operations via or to a
near-memory computation engine. DBA’s system architecture in-
cludes a DBA software module/driver and memory module with
DBA engine. We build a Proof-of-Concept (PoC) of DBA using
FPGAs with attached DIMMs, and then conduct an experimental
evaluation.

1 INTRODUCTION
Low cost and high capacity of DRAM accelerated the market of
in-memory database management systems (IMDBMS). The latest
IMDBMS architecture capable of running both Online Trans-
actional Processing (OLTP) and Online Analytical Processing
(OLAP) applications in a single system removes the data redun-
dancy and provides higher performance and efficiency with lower
total cost ownership (TCO) [9]. However, with ever-increasing
data volumes and application demands, memory performance be-
comes the main performance bottleneck of IMDBMSs. Our study
with OLTP/OLAP applications shows that performance can be
bound by expensive data-intensive operations like table scan and
aggregation of OLAP workloads. These data-intensive operations
have very little data reuse for further computation but consume
more than 50% of CPU resources and almost all memory band-
width in many cases. The other mission critical workloads suffer
from cache conflicts (or cache thrashing) and memory bandwidth
bottleneck. Therefore, it is essential to optimize data movement
from memory to computing units.

The best way to optimize this data movement in IMDBMS
would be to process these data-intensive operations within mem-
ory devices. Instead of transferring the whole data to computing
units, forwarding the filtered results to the next processing step
could minimize the overhead. Near-storage computing [3, 4] tries
to accelerate the data-intensive operations by minimizing the
data transfer overhead from storage to processing nodes or CPU.

© 2020 Copyright held by the owner/author(s). Published in Proceedings of the
22nd International Conference on Extending Database Technology (EDBT), March
30-April 2, 2020, ISBN 978-3-89318-083-7 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

However, this research does not deliver byte addressability and
much lower latency necessary for IMDBMS. Previous work to
accelerate database operations using FPGA [7, 8, 10] and GPGPU
[5, 6] shows an order of magnitude performance gain in compute-
intensive operations. However, these approaches show a smaller
gain in data-intensive operations because of the data movement
overhead [1]. Even Hybrid CPU-FPGA approaches [7, 10] require
data movement from host memory to accelerator computing
units which has a high memory bandwidth overhead.

Processing-In-Memory (PIM) approaches like UPMEM [2] ad-
vance the concept of near-memory computing but are still in
early stage. Furthermore, the data needs to be reformatted to uti-
lize the processing units, thus the existing data structure cannot
be reused directly.

In this paper, we propose near-memory database accelera-
tor (DBA) to offload data-intensive operations of IMDBMS to
memory devices. By placing simple arithmetic units near DRAM
within memory devices like DIMMs, we 1) save CPU cycles
for data-intensive operations, 2) avoid cache thrashing among
threads, and 3) reduce the host memory bottleneck. We imple-
ment our proof-of-concept (PoC) system using FPGAs with at-
tached DIMMs. Its DBA kernel is designed to perform parallel
comparisons in a SIMD manner fully utilizing internal memory
bandwidth. Our evaluation shows that near-memory DBA has
more than 2 times performance improvement in OLTP workloads
when offloading the data-intensive operations. Finally, we discuss
the obstacles to embody the approach in real memory devices.

2 BACKGROUND
2.1 Motivational example
Figure 1 shows the performance degradation of OLTP workload
by the interference from the scan workloads on OLAP data in
the server having 4 sockets and 72 physical cores. The two work-
loads managed by two separate processes access the different
sets of data but compete with each other for limited hardware re-
sources like CPU, cache and memory bandwidth. As the number
of scan threads increases, the CPU resources allocated for OLTP
workloads are reduced, thus the throughput of OLTP workloads
decreases.

It is quite common to apply SIMD instructions to data-intensive
operations like scan within a DBMS [11, 12], as SIMD performs
the same operation on multiple data points simultaneously ex-
ploiting data level parallelism. We observe that the OLTP work-
loads show a larger performance degradation, when the scan
operation is implemented with SIMD commands like AVX2 or
AVX 512 because of much higher memory bandwidth usage. As
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Figure 1: OLTP throughput bynumber of concurrent scans

Table 1: Memory bandwidth usage (%) by scan workloads

#Threads AVX2 AVX512 No_SIMD
4 11.3 6.0 0.8
8 21.8 12.3 1.3
16 41.3 23.0 2.8
32 73.8 46.3 5.5
64 94.8 85.3 11.3

shown in Table 1, 64 scan threads consume almost all mem-
ory bandwidth of 4 sockets with SIMD, only 12% of memory
bandwidth is consumed without SIMD. Interestingly, there is
no difference in CPU usage between SIMD and NO-SIMD, but
the OLTP throughput shows a larger performance degradation
with SIMD. In Figure 1, with 64 scan threads, the CPU usage by
OLTP decreased by 30% but the OLTP throughput decreases by
about 40% without SIMD and more than 50% with SIMD. This
supports our claim that the larger memory bandwidth usage by
data-intensive workloads degrades OLTP performance more.

2.2 Scan operation in In-memory DBMS
Recent IMDBMSs are designed to support both OLTP and OLAP
workloads and keep the data in the columnar storage for fast
read accesses of the tables, storing the majority of data of each
column in the read optimized main storage, and maintaining the
separate delta storage for optimized writes [9]. The delta storage
is periodically merged to the main storage [8]. To reduce the
memory footprint (or TCO), the main storage uses dictionary
encoding where the distinct values are stored in the dictionary
and the individual values are replaced with the corresponding
value IDs of the dictionary separately with the bit-packed com-
pression [9]. A scan in IMDBMS reads this value ID array with
filter conditions. In this work, the two common scan operations -
Range search (having from/to filter conditions) and Inlist search
(having a list of filtered values) are offloaded to DBA as they are
simple and common data-intensive operations that often con-
sume relatively high CPU usage (5-10% by itself). They include
the decompression of value ID (integer) array and return row IDs
satisfying the predicates. Offloading only low-level data access
operators in the query plans reduces the effort to integrate them
with the existing query optimizer.

3 DBA ARCHITECTURE
This section discusses the architecture and design of our proposed
near-memory Database Accelerator (DBA). Figure 2 describes
the system architecture of DBA. The objective of this work is

1) to demonstrate the offloading feasibility within current eco-
system, 2) to provide a framework to measure the stand-alone
DBA engine performance, and more importantly, 3) to study
the system impact of our proposal. To remove the unnecessary
data movement, database operations are performed by DBA in
the device memory where the source data is stored. After DBA
completes the operations, the result output is written back to
the device memory in FPGA. The host has access to the device
memory via memory mapped I/O (MMIO). This eliminates speed
and coherency limitations of the PCIe interface from this study
and yet leverages the current driver software stack with the OS
and the application.

Figure 2: DBA System Architecture

Figure 3 describes the DBA FPGA micro-architecture with
functional partitions of host interface, multiple DBA kernels and
memory subsystem. The host interface exposes DBA control
parameters to the driver that manages offloading from the ap-
plication API call to the hardware accelerator. Each DBA kernel
consists of data prefetcher reading the data, SIMD engine com-
paring the data with the predicate, and result handler writing
the results. The memory subsystem provides the infrastructure
to access device memories on the FPGA.

Figure 3: DBA FPGA Micro-Architecture

Internally, DBA kernels read 64B bit-compressed data at a
time from the memory. A programmable extractor logic splits the
data into multiple values. They are fed into an array of simple
processing units and each unit performs a simple comparison
independently. The number of parallel units in the array is de-
termined by the number of values in the 64B data so that DBA
kernels can keep up with the input data rate. Compared to fixed-
length instruction-based processors, each DBA kernel takes the
full advantage of parallelism in the data stream due to the flexi-
bility of hardware design. The results are packed into 64B and
written back to the device memories. Thus, the data flow is highly
optimized for available memory bandwidth.

Figure 4 describes DBA software architecture. Unlike GPU/FPGA
accelerators, the DBA engine is located within memory devices.
Hence, it allows zero data copy with performance and energy
gains. The DBA device driver assigns one DBA engine to a thread
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of the IMDBMS application per request. Once offloaded, a thread
that requested an offloading yields to free CPU for processing.
When offloading is done, DBA driver wakes up the requester to
resume.

Figure 4: DBA Software Architecture

Normally, applications use a virtual address (VA) to access
memory in the host system while the DBA engines access mem-
ory with a device physical address (DPA). This implies that the
DBA driver is responsible to translate all VA parameters of an
offloading request into DPA. The DBA driver first obtains the
corresponding system physical address (SPA) by referring to a
page table. Then, converting DPA to SPA is trivial because the
system BIOS has stored the start SPA of device memory in the
Base Address Registers (BAR) of the PCI device at boot time.

4 EVALUATION
4.1 Experimental setup
The system consists of the embedded TPCC benchmark in an
IMDBMS and a separate micro-benchmark program to generate
scan workloads in a single server as shown in Figure 5.

Figure 5: Conceptual diagram

In our experiments, we use the TPCC benchmark for OLTP
workload. Its generator is embedded within the IMDBMS engine
to remove the communication and session management overhead
because the total throughput is usually bound by the session layer,
not IMDBMS engine. We want to maximize the throughput (i.e.
resource consumption) of the TPCC workload.

The micro-benchmark performs the scan workloads 1) on
CPU, or 2) via FPGA. Its data is randomly generated and bit-
compressed. The separate data for scans avoids the internal over-
head of IMDBMS like locking by two different workloads and
enables us to focus on the performance effect by hardware re-
sources. In our experiment, scans read 2 billion bit-compressed
integer values and return the row IDs satisfying the filter condi-
tions. When it runs on CPU, the same number of scan threads
are bound to each socket to prevent workload skew among the
sockets on the 4-socket server (Intel Xeon Gold 6140@2.30GHz,
18 cores and 6 * 64 GB memories per socket). For DBA offloading,
we attach one Ultrascale+ FPGA@250MHz per socket and popu-
late 6 scan engines with 4 * 64 GB DDR4 DIMMs @1866MHz per
FPGA. The scan data is copied to the memory in each FPGA to
emulate that DBA offloading runs within memory devices where
the data resides. We compare the performance variation of TPCC
workloads and measure the latency and throughput scalability
of scan workloads in both options (on CPU vs. on FPGA), while
the number of scan threads increases.

4.2 Evaluation results
This section summarizes our DBA PoC evaluation results com-
pared with a state-of-art 4-socket Skylake system having 72 phys-
ical cores.

Figure 6: OLTP throughput gain by DBA

Figure 7: Scan throughputs with/without TPCC

Figure 6 demonstrates the system performance gain of IMDBMS.
While TPCCworkload runs in the server, the scanmicro-benchmark
runs on either CPU or DBA with a different number of threads.
As a result, DBA offloading shows less performance slowdown as
the number of scan threads increases. Therefore, DBA offloading
shows 115% better tpmC (transactions per minute) in TPCCwork-
loads when all 64 scan threads are offloaded than when 64 threads
use AVX2 on CPU. The results confirm that DBA offloading can
alleviate CPU conflict, cache thrashing and memory bandwidth
conflict by data-intensive operations.
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Table 2: Average latency (sec/scan) of a single scan

Latency of
single scan
(sec/scan)

On CPU OffloadingNO_SIMD AVX2 AVX512
4.16 0.44 0.47 0.29

DBA offloading shows the better performance in scan op-
eration itself, when scans run without OLTP workloads. DBA
offloading shows 1.5x better latency (sec/scan) than AVX2 and
14.3x better than NO-SIMD as shown in Table 2.

As for the throughput (scans/sec) scalability, DBA offloading
shows quite promising performance as shown in Figure 7. The
solid lines represent the throughputs of scans when TPCC work-
loads are executed concurrently. The dotted lines mean the scan
throughputs without TPCC workloads. DBA Offloading shows
similar performance regardless of the presence of TPCC work-
loads, while scan with SIMD/NO-SIMD shows significant perfor-
mance drop because of the interference from TPCC workloads.
DBA offloading outperforms the scan with SIMD/NO-SIMD up to
16 threads and shows similar performance to SIMD scan with 32
threads. With the current implementation, each DBA FPGA has 6
scan engines and 4 DIMM slots. The results show the throughput
by DBA offloading is saturated with 16 threads (4 threads per
FPGA) because of the limited memory bandwidth of 4 memory
channels and resources within the FPGA. Each CPU has 6 DDR
channels with 128GB/sec bandwidth while each FPGA has 4 with
60GB/sec. When DBA has the same number of threads, it per-
forms better than CPU running with SIMD. In a SoC (System
on Chip) implementation where DBA offloading is embedded in
real memory devices, these limitations will be relieved, and the
overall performance will be improved further by higher clock
frequency or more DBA engines.

In our work, we have the similar performance gain with both
range and inlist scans, and similar results regardless of bit-cases
used in bit-packed compression [9]. Due to the limited space in
this paper, we show only the results of the range scan.

5 DISCUSSION
This research was done using FPGAs with attached DIMMs. The
host system accesses the device memory through PCIe MMIO
by mapping the device memory in the same address space of the
host memory. Even with the slow performance of MMIO in PCIe,
the offloading performance is not affected, because our offloading
implementation only accesses the local device memory on FPGA
once offloading operation starts.

DBA offloading can be implemented on the diverse memory
form-factors with their own pros and cons. DIMM-based memory
is quite common and very fast, but the memory controller will
naturally interleave the data among memory channels. There-
fore, even a single value can be crossed on two DIMMs and the
DBA driver should handle the data interleaving while processing
offloaded operations.

Recently proposed interfaces like CXL(Compute Express Link),
Gen-Z and OpenCAPI will enable a newmemory pool hosting the
columnar main storage in IMDBMS. Although these interfaces
introduce a bit higher latency than DIMM, the memory devices
are not part of host memory controller pool where data are typi-
cally interleaved at 64B granularity. This allows DBA to assume
a contiguous data layout in its attached memory and operates
without considering data interleaving across memory channels.
One more hurdle of DBA offloading would be non-contiguity in

the physical address space of the contiguous data in the virtual
address space. DBA offloading will provide so-called ’scatter and
gather’ feature by building a page translation table.

In Clouds, the micro-services of IMDBMS can be spread out
among several nodes according to its role. The front-end com-
puting nodes to process the transactions may be easily scaled
out, but the storage node cannot be done simply having the same
issues on our claim. We believe DBA offloading can contribute
to resolving them in Clouds as well.

6 CONCLUSION
We showed that the OLTP-like mission critical workloads can
interfere with data-intensive operations like massive scans. We
proposed a near-memory database accelerator (DBA) to optimize
the data movement and showed that performing the expensive
scan operations in the memory devices can alleviate CPU load,
cache conflict, host memory bandwidth bottleneck. To confirm its
feasibility, we implemented the offloading system using FPGAs
with attached DIMMs. Its results showmore than 2x performance
gain in OLTP workload when offloading the data-intensive oper-
ations, and higher or similar throughput scalability with better
latency in offloaded scan workloads.

Aggregation is another data-intensive operation in IMDBMS
consuming about 20-50% of CPU usage depending on the work-
loads. While it reads large amounts of data, most of it is rarely
referenced again. DBA offloading on aggregation is being inves-
tigated as the next target operation.
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ABSTRACT
Applications in several areas, such as privacy, security,
and integrity validation, require direct access to database
management system (DBMS) storage. However, relational
DBMSes are designed for physical data independence, and
thus limit internal storage exposure. Consequently, appli-
cations either cannot be enabled or access storage with
ad-hoc solutions, such as querying the ROWID (thereby
exposing physical record location within DBMS storage but
not OS storage) or using DBMS “page repair” tools that
read and write DBMS data pages directly. These ad-hoc
methods are difficult to program, maintain, and port across
various DBMSes.

In this paper, we present a specification of programmable
access to relational DBMS storage. Open Database Storage
Access (ODSA) is a simple, DBMS-agnostic, easy-to-program
storage interface for DBMSes. We formulate novel opera-
tions using ODSA, such as comparing page-level metadata.
We present three compelling use cases that are enabled by
ODSA and demonstrate how to implement them with ODSA.

1 INTRODUCTION
Relational DBMSes adhere to the principle of physical data
independence: DBMSes expose a logical schema of the data
while hiding its physical representation. A logical schema
consists only of a set of relations (i.e., the data). On the
other hand, a physical view consists of several objects, such
as pages, records, directory headers, etc. Hiding physical
representation is a fundamental design of relational DBM-
Ses: DBMSes transparently control physical data layout
and manage auxiliary objects for efficient query execution.
However, data independence inhibits several security and
performance applications requiring low-level storage access.
A small example is provided here, while Section 2 presents
more detailed use cases.

Example 1. Consider a bank or a hospital that man-
ages sensitive customer data with a commercial DBMS.
For audit purposes, they must sanitize deleted customer
data to ensure that it cannot be recovered and stolen.
Very few DBMSes support explicit sanitization of deleted
data (e.g., secure delete in SQLite exists but provides
no guarantees or feedback to the user)1. To programmati-
cally verify the destruction of deleted data, a DBA must
1DBMS encryption is similar in not providing any feedback. Fur-
thermore, encrypted values should still be destroyed on deletion.

© 2020 Copyright held by the owner/author(s). Published in Proceed-
ings of the 23rd International Conference on Extending Database
Technology (EDBT), March 30-April 2, 2020, ISBN 978-3-89318-
083-7 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0.

inspect all storage ever used by a DBMS where such data
may reside. This includes DBMS auxiliary objects such as
indexes, unallocated fragments in DBMS storage, as well
as any DBMS storage released to the OS.

Comprehensive DBMS storage-level access is an inherent
challenge due to DBMS storage management. DBMSes con-
trol allocated storage objects such as a) physical byte rep-
resentation of relations, b) metadata to annotate physical
storage of relation data, and c) auxiliary objects associated
with relations (e.g., indexes, materialized views). Users can
manipulate allocated objects exposed by SQL. However, as
illustrated in Example 1, the DBA may also need access
to unallocated storage objects not tracked by a DBMS
such as deleted data that lingers in DBMS-controlled files,
and DBMS-formatted pages released back to the OS and
no longer under DBMS control (e.g., files deleted by the
DBMS or OS paging files). These objects are certainly part
of the physical view and required for any storage access,
but currently not exposed by any DBMS. Vendors such as
Oracle incorporate the DBMS_REPAIR package [3], enabling
users to manually fix or skip corrupt pages, but such tools
only access DBMS-controlled storage.
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DBMS Files
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Disk Storage

Open Storage 
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RAM

DBMS
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Disk Sectors

System Files
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Figure 1: ODSA storage access.

In order to enable such security and performance appli-
cations, we present Open Data Storage Access (ODSA),
an API that provides comprehensive access to all DBMS
metadata and data in both (unallocated and allocated)
persistent and volatile storage. ODSA does not instrument
any RDBMS software; it interprets underlying data using
database carving methods [8], which we use to expose phys-
ical level details. Carving itself is insufficient because the
carved data consists of disk-level details making it diffi-
cult to program DBMS storage. ODSA abstracts low-level
disk-level details with a hierarchical view of DBMS storage
that is familiar to most DBAs. In particular it organizes
them into pages, records, and values, which are resolved
to internal, physical addresses. ODSA also guarantees the
same hierarchy applies to multiple DBMS storage engines,
ensuring portability of programmed applications. Figure 1
shows the storage access enabled by ODSA.
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The rest of the paper is organized as follows. Section 2
presents three representative uses cases that require storage-
level access. Section 3 provides an overview of how applica-
tions previously had limited access to internal DBMS stor-
age. Section 4 describes the hierarchy exposed by ODSA and
how it provides a comprehensive view of storage. Section 5
demonstrates implementation and use of ODSA. Finally,
Section 6 discusses future work for ODSA.

2 USE CASES
This section presents three representative use cases that
require direct access to different abstractions of storage.

2.1 Intrusion Detection
A bank is investigating mysterious changes to customer
data. Unbeknownst to the bank, a disgruntled sysadmin
modified the DBMS file bytes at the file system level. This
activity bypassed all DBMS access control and logging, and
still effectively altered account balances. The sysadmin also
disabled file system journaling with tune2fs to further hide
their activity. The bank cannot determine the cause for
inconsistencies with the logs alone. Forensic analysis [7, 9]
that detects such malicious activity requires comprehensive
storage access to compare volatile storage with allocated
and unallocated persistent storage.

2.2 Performance Reproducibility
Alice, an author, wants to share her computation and data
based experiments with Bob so he can repeat and verify
Alice’s work. Out of privacy and access constraints, Alice
builds a container consisting of necessary and sufficient
data for Bob to reproduce. If the shared data is much
smaller than original DBMS file, Bob cannot reproduce
any performance-based experiment as the data layout of the
smaller data will significantly differ from the original layout.
To achieve a consistent ratio between Alice’s experiment
and Bob’s verification, data layout specification at the
record and page level must itself be ported. Currently, data
layouts as part of a shared DBMS file in a container cannot
be communicated [4].

2.3 Evaluating Data Retention
Continuing with Example 1 (Section 1), the bank validates
their compliance with data sanitization regulations (e.g,.
EU General Data Protection Regulation or GDPR [5]).
After deleting data, the bank independently validates data
destruction to ensure compliance. No data sanitization
validation guidelines for DBMSes exist beyond a complete
file overwrite [2]. This guideline is too coarse, especially for
DBMS files containing a few deleted records.

Alternatively, consider a compliance officer that has pro-
grammatic access to DBMS storage via ODSA for validation.
The officer can easily access all unallocated storage, and de-
termine the location of deleted data that was not destroyed
(e.g., DBMS index or table file, OS paging file).

3 RELATED WORK
We describe built-in tools and interfaces supported by pop-
ular DBMSes, which provide physical storage information
at different granularities, but no comprehensive views of
storage. The ROWID pseudo-column represents a record’s

physical location within DBMS storage (not disk), and is
one of the simplest examples of storage-based metadata
available to users most DBMSes. Commercial DBMSes
typically provide utilities to inspect and fix page-level cor-
ruption. Examples include Oracle’s DBMS_REPAIR, Oracle’s
BBED (a page editing tool available from Oracle 7 to 10g),
and SQL Server’s DBCC CHECKDB. However, even for ac-
cessible metadata such as ROWID, built-in tools do not
help interpret its meaning; a DBA must manually make
such interpretations. Moreover, no DBMS offers access to
unallocated storage. Finally, existing tools only consider
persistent storage. ODSA offers a universal meaning of DBMS
storage (including IBM DB2, Microsoft SQL Server, Oracle,
MySQL, PostgreSQL, SQLite, Firebird, and Apache Derby)
with support for both persistent and volatile storage.

The term carving refers to interpreting data at the byte-
level, e.g., reconstructing deleted files without the file sys-
tem. Wagner et al. previously extended carving to interpret
DBMS storage with DBCarver [8, 10, 11], retrieving both al-
located and unallocated data and metadata without relying
on the DBMS. DBCarver reads individual files or disk/RAM
snapshots and extracts data, including user data and sys-
tem metadata; it then writes data to a DB3F [12] formatted
file. This paper uses DBCarver to demonstrate the physical
information a DBMS can provide.
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Figure 2: ODSA completes raw database storage abstraction
in an end-to-end process for storage access.

4 OPEN DATABASE STORAGE ACCESS
Figure 2 shows how ODSA relies on carving to access raw
storage. ODSA abstracts two details from raw storage.

First, it interprets each sequence of raw bytes and classi-
fies it into a physical storage element: Root, DBMS Object,
Page, Record, or Value. Thus, given a collection of inter-
preted raw storage elements, ODSA provides a hierarchical
access to these elements by linking them. We provide a
brief description of the hierarchy. The root level represents
the entry point from all other data to be reached. DBMSes
manage their own storage, and a disk partition consisting
of both Oracle and PostgreSQL pages, will result in two
DBMS roots. The DBMS object level calls return meta-
data, data, and statistics describing a DBMS object, such
as a list of pages or column data types. Pages are uniquely
identified by a byte offset in raw storage, rather than the
PageID. We also do not rely on the page row directory
pointers because deletion may zero out a record’s entry.

Second, the ODSA hierarchy hides DBMS heterogeneity
by accessing physical elements (e.g., pages, records) with
physical byte offsets, rather than DBMS-specific pointers.
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#4.A. Root
class Root:

def __init__ (self , db3f ):
# Initialize

def get_object_ids (self ):
# Return a list of object ids

# Calls to Other Instance and Namespace Data
#4.B. Object
class DBMS_Object (Root ):

def __init__ (self , parent , object_id ):
# Initialize

def get_page_offsets (self ):
# Return a list of page offsets

def get_object_type (self ):
# Return the object type string

def get_object_schema (self ):
# Return a list of column datatypes

#4.C. Page
class Page( Object ):

def __init__ (self , parent , page_offset ):
# Initialize

def get_record_offsets (self ):
# Return a list of record offsets

def get_page_id (self ):
# Return a string for page id

def get_page_type (self ):
# Return a string for page node type

def get_checksum (self ):
# Return a string for the checksum

def get_row_directory (self ):
# Return a list of row pointers

#4.D. Record
class Record (Page ):

def __init__ (self , parent , record_offset ):
# Initialize

def get_value_offsets (self ):
# Return a list of value positions

def get_record_allocation (self ):
# Return Boolean allocation status

def get_record_row_id (self ):
# Return a string for the row id

def get_record_pointer (self ):
# Return a string for row pointer

#4.E. Value
class Value ( Record ):

def __init__ (self , parent , value_offset ):
# Initialize

def get_value (self ):
# Return string for a data value

Figure 3: A sample set of ODSA calls.

Computing a DBMS pointer varies between vendors. For
example, Oracle incorporates FileID into index pointer
while PostgreSQL does not; index pointers in MySQL dif-
fers from both Oracle and PostgreSQL because MySQL
relies on index organized tables. Even if all vendors used
similar pointer encodings, abstraction is needed in terms
of pages since duplicate pages may exist across a storage
medium (outside of DBMS-controlled storage, such as pag-
ing files). Given Page𝐴 and its physical copy Page′

𝐴, ODSA
enables application developers to connect an index pointer
referencing Page𝐴 along with Page′

𝐴.

Implementation. There are multiple ways to implement
the hierarchy. The ODSA hierarchy is currently implemented
as a pure object hierarchy (Figure 3) and as a relational
schema (Figure 4). The pure object hierarchy is stored
as a JSON file in the DB3F format [12]. The relational
schema is a starting representation – it supports basic
applications and is normalized to 3NF requirements. A
relational schema is realized since application developers

ROOT
DB3F_File DBMS PageSize PageCnt DiskImage

OBJECT
DB3F_File ObjectID Type PageCnt Schema

PAGE
PageOffset DB3F_File ObjectID PageID

ROW_DIRECTORY
DB3F_File PageOffset Pointer

RECORD
DB3F_File PgOffset RecOffset RowID Allocated

VALUE
DB3F_File PgOffset RecOffset ValueOffset Value

Figure 4: The relational schema used to store ODSA data.

may prefer to access a DBMS storage with SQL rather than
calling the ODSA directly. However, as we show in Section 5
the SQL implementation requires several joins and is quite
counter-intuitive, despite it being DBMS physical storage.

5 USING ODSA
For use cases in Section 2, two fundamental physical stor-
age access operations are finding unallocated records and
matching index pointers to records. ODSA calls enable these
operations and show how these operations are achieved in
Python and SQL, respectively. The two implementations
are shown to contrast programmatic verbosity and main-
tainability. We focus on ODSA access and do not consider
implementation performance.

Example 2: Find Unallocated Records. Use cases 2.1 and
2.3 require a DBA to search and retrieve unallocated
records. To retrieve unallocated records, the user must
know the carved DBMS file name and the table name
(Customer table in this example) from which unallocated
records are considered. Figure 5 finds and prints all unallo-
cated (e.g., deleted) records from the Customer table. All
ODSA calls are highlighted.

The implementation in Figure 5 uses ODSA calls to search
for unallocated records: Line 3 retrieves page offsets, which
uniquely identify pages. Line 5 then iterates through the
pages, Line 6 loads each page, and Line 7 retrieves the
record offsets for that page. Finally, Line 7 iterates through
records using their identifying offsets within a page. Line
11 retrieves the record allocation status to identify and
print unallocated records. The same search and retrieval
requires an 8-way join in SQL due to the data hierarchy:

SELECT PageOffset, RecordOffset, ValueOffset, Value
FROM Object NATURAL JOIN Page
NATURAL JOIN Record NATURAL JOIN Value
WHERE Object.DB_File = 'MyDatabase1.json'
AND Object.ObjectID = 'Customer'
AND Record.Allocated = FALSE;
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1 DBRoot = odsa.Root(’MyDatabase1.json’)
2 CustomerTable = odsa.Object(DBRoot, ’Customer’)
3 PageOffsets = CustomerTable.get_page_offsets()
4
5 for PageOffset in PageOffsets :
6 CurrPage = odsa.Page(CustomerTable, PageOffset)
7 RecordOffsets = CurrPage.get_record_offsets()
8
9 for RecOffset in RecordOffsets :

10 CurrRecord = odsa.Record(CurrPage, RecOffset)
11 allocated = CurrRecord.get_record_allocation()
12 # print unallocated (e.g., deleted ) record
13 if not allocated :
14 print CurrRecord

Figure 5: Using ODSA to find deleted records.

Example 3: Match a Record to an Index Pointer(s). To
match a record to pointers in a DBMS object such as
an index, the user provides as input specific instances of
the record and index objects. In Figure 6, Line 5 iterates
through all index pages to determine if the input record
matches any of the index records. Recall, in an index,
records are value-pointer pairs. The code in Figure 6 de-
termines offsets of all index pages (Line 7), and for each
index page (Line 9) iterates over all index records in that
page. Lines 10 fetches the index entry and Line 12 loads
the pointer (offset 1 in value-pair) of the current index
entry. Finally, for any index pointer match to the record
pointer (Line 13), the index entry is printed.

In this example a brute-force iteration over all index
pages is necessary, i.e., the program cannot break at the
first occurrence of a match in Line 13. In practice, DBMS
indexes often contain records of entries that were deleted
or updated. For example, consider the record (42, Jane,
555-1234) in the Customer table where name column is
indexed. In addition to the expected (Jane, {PAGEID:
12, ROWID: 37}) entry in the index, the index may also
contain (Jehanne, {PAGEID: 12, ROWID: 37}) if the
customer changed their name from Jehanne to Jane (old
index entries will only be purged after the index is rebuilt).
Moreover, the index might also contain a (Bob, {PAGEID:
12, ROWID: 37}) entry if another customer named Bob
previously deleted their account, free-listing the space for
Jane’s record at the same location.

As demonstrated in Figure 6, the Python-specific imple-
mentation retrieves all records. On the contrary, matching a
record to an index in SQL requires a dynamic SQL (shown
below) in which after the customary 8-way join to find
record values, parameters of each record value must be sup-
plied to match the values. Moreover, this query assumes
that there is only one indexed column which is transpar-
ently accounted for in the abstraction of the DBMS Object
class.

SELECT V1.Value
FROM Page NATRUAL JOIN Record
NATURAL JOIN Value V1 NATURAL JOIN Value V2
AND Page.ObjectID = ? --Index name placeholder
AND V1.ValueOffset = 0 --Indexed value at offset 0
AND V2.ValueOffset = 1 --Pointer is at offset 1
AND V2.Value = ( SELECT Record.Pointer FROM Record

WHERE (DB_File, PageOffset, RecordOffset) =
(?, ?, ?) /*Record ID placeholders*/);

1 def findIndexEntries (record , Index ):
2 RecordPtr = record.get_record_pointer()
3 IndPageOffsets = Index.get_page_offsets()
4
5 for IndPageOffset in IndPageOffsets :
6 IndPage = odsa.Page(Index, IndPageOffset)
7 IndROffsets = IndPage.get_record_offsets()
8
9 for IndROffset in IndROffsets :

10 IndEntry = odsa.Record(IndPage, IndROffset)
11 # IndEntry is a pair (Value , Pointer )
12 IndexPointer = odsa.Value(IndEntry, 1)
13 if IndexPointer == RecordPtr :
14 print IndEntry

Figure 6: Using ODSA to find all index entries for one record

6 CONCLUSION
ODSA was designed based on the principles and challenges
described in [1, 6]. In particular, it was designed to be
simple and easy-to-use by integrating the terminology used
across DBMS documentation. Classes were named based
on general concepts giving them an intuitive meaning while
abstracting DBMS-specific implementation details. ODSA
adheres to single-responsibility principle in that calls focus
on single pieces of data and metadata. ODSA supports both
3𝑟𝑑 party carving and built-in DBMS mechanisms should
vendors choose to expose storage. As a result, ODSA comple-
ments physical data independence and enables simple yet
powerful implementations of a variety of applications that
require access to storage. Additional requirements such as
versioning and backward compatibility are future work.
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ABSTRACT
Non-obvious relationship detection (NORD) in a knowledge
graph is the problem of finding hidden relationships between the
entities by exploiting their attributes and connections to each
other. Existing solutions either only focus on entity attributes
or on certain aspects of the graph structural information but
ultimately do not provide sufficient modeling power for NORD.
In this paper, we propose KGMatcher– an integrated graph neu-
ral network-based system for NORD. KGMatcher characterizes
each entity by extracting features from its attributes, local neigh-
borhood, and global position information essential for NORD. It
supports arbitrary attribute types by providing a flexible interface
to dedicated attribute embedding layers. The neighborhood fea-
tures are extracted by adopting aggregation-based graph layers,
and the position information is obtained from sampling-based
position aware graph layers. KGMatcher is trained end-to-end
in the form of a Siamese network for producing a symmetric
scoring function with the goal of maximizing the effectiveness
of NORD. Our experimental evaluation with a real-world data
set demonstrates KGMatcher’s 6% to 35% improvement in AUC
and 3% to 15% improvement in F1 over the state-of-the-art.

1 INTRODUCTION
Enterprises are equipped with modern computing power, and
excel at storing entities of interest and their relationships gener-
ated from daily transactions or operations. Making sense of such
linked data has gained increasing importance due to its potential
of enabling new services. NORD aims at finding relationships
between entities in a knowledge graph where the relationships
are not explicitly defined in the data.

One of the first NORD systems [2] was designed to detect
credit card fraud and later on gained fame for identifying fake
identities in casino businesses. The problem of deciding if two en-
tities share a non-obvious relationship such as “fake identity pair”
is challenging. First, the attribute information is an important
ingredient to characterize entities. However, the attributes are
usually expressed in heterogeneous data structures. Extracting
useful features and constructing a unified representation from
the attributes through manual feature engineering is tedious and
ineffective. Second, two related entities may not share similar
attribute properties at all. For example, to trick the registration
system, the fake identity is often disguised with totally differ-
ent demographic and contact information. Instead of predicting
solely based on the attribute information, a system should also
take the surrounding context into consideration. The “neighbors”
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Figure 1: A supervised approach to NORD.
of the entities of interest in the graph may provide useful infor-
mation for the detector to tap into the truth of a non-obvious
relationship. However, modeling such complex context is a non-
trivial task. Third, the entities that share non-obvious relationship
usually have a high degree of separation in the graph. It is cru-
cial for a system to be capable of capturing the global position
information of the entities in the context of the entire graph so
that the distanced separation can be identified later on.

Existing solutions rely on handcrafted features to characterize
the entities and domain expert defined rules for the detection.
With the rapid growth of the graph size and the increasing com-
plexity of the non-obvious relationships, it is tedious and almost
impossible to manually maintain such solutions to achieve high
effectiveness. Recently, machine learning approaches designed
for similar tasks such as entity resolution [5, 9] and graph link
prediction [6] are proposed. However, proven by our experimen-
tal results, their approaches are only good at tackling certain
aspects of the NORD problem and demonstrate limitations in
terms of their overall effectiveness. In this work, we propose
KGMatcher– an integrated graph neural network-based system
for NORD to address the challenges and overcome the limitations
of the existing solutions.
KGMatcher Approach. We approach the problem in a super-
vised machine learning setting as depicted in Figure 1. That is,
in addition to the knowledge graph which contains the entities,
their attributes and connections, a set of ground-truth labels in-
dicating the existence of the non-obvious relationships between
entities is also available. Our goal is to design a machine learning
model that can learn from these pairs and discover new pairs.

In its core, KGMatcher is a neural model that automatically
extracts important features from the knowledge graph. The fea-
tures encode the information regarding their entity attributes,
neighborhood and position essential for predicting a non-obvious
relationship between two entities. KGMatcher consists of three
types of neural layers which are connected and can be trained
end-to-end. Attribute features are extracted by the attribute em-
bedding layers which support heterogeneous attribute types. The
dense representations of the entities generated from these lay-
ers as well as the edge information are then fed into two stacks
of graph layers. The first type of graph layers called neighbor-
hood [1] layer focuses on extracting near-by neighborhood infor-
mation by aggregating their attribute embeddings to the entity of
interest. The second type of graph layers named position [8] layer
focuses on obtaining global position information of the entities
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by referring them to a set of sampled anchors. The outputs of the
two graph layers are then put together through concatenation to
form the final feature vectors of the entities. Finally, KGMatcher’s
feature extraction network is used in the form of a Siamese net-
work for predicting the existence of a non-obvious relationship
between two input entities.
Contributions. It is worthwhile to highlight the following con-
tributions of this work:
(1) We propose a supervised graph neural network-based solu-

tion for non-obvious relationship detection called KGMatcher.
(2) We design KGMatcher by adapting and integrating neural

architectures for extracting essential NORD features, namely
entity attributes, neighborhood and position features.

(3) We demonstrate the effectiveness of KGMatcher using a pub-
lic dataset. KGMatcher achieves improvement in AUC from
6% to 35% and in F1 from 3% to 15% over the state-of-the-art.

2 PRELIMINARY
Data Model1. Let G = (V , E) denote a knowledge graph where
V = {v1, · · · ,vn } is a set of nodes with each node representing
an entity and E = {e1, · · · , em } is a set of edges with each edge
ek = (vi ,vj ) indicating a connection between two entities vi
and vj . In this work, we assume that the knowledge graph is an
undirected graph, i.e., for every ek = (vi ,vj ), (vi ,vj ) ≡ (vj ,vi ).
Let A = {a1, · · · ,ak } define a set of attributes associated with
each entityvi . An attribute, for example, can be a date, an address,
a comment, etc. which means that attributes can be represented
in various formats such as numerical, categorical, or text data
type. Each entity vi = {x ia1 , · · · , x iak } follows the same schema
with the attribute types defined by A where x iak denotes the kth
attribute value of vi . In other words, we assume that the entities
in the knowledge graph are of the same type, i.e. all the entities
share the same attribute types.
Problem Definition. Given two entities vi and vj in a knowl-
edge graph G defined above, the goal is to design an algorithm
fG for G that can accurately predict whether or not vi and vj
share a non-obvious relationship.

In this study, we approach the problem in a supervised learning
setting. In addition to the knowledge graph G = (V , E), a ground
truth label set LG = {y1, · · · ,yr } is also available. A label yk =
(vi ,vj ) where vi ,vj ∈ V indicates whether or not there exists a
non-obvious relationship betweenvi andvj . Our goal is to design
a machine learning model which is able to learn a function fG
fromG and LG that predicts the relationship between two entities
presented in G. Following the common practice, the label set is
partitioned into train, validation, and test set.
Graph Neural Networks. Graph Neural Networks (GNNs) learn
a vector representation of a node from its associated attributes
and the graph structure. Modern GNNs [6] adopt a neighbor-
hood aggregation strategy where the representation of a node is
learned in an iterative manner by aggregating representations of
its neighbors. After k iterations (layers) of aggregation, a node’s
representation encodes the structural information within its k-
hop network neighborhood. Formally, the k-th layer of a GNN
is:

a
(k )
vi = Aддreдate(k)

({
h
(k−1)
u |u ∈ Neiдhbor (vi )

})
, (1)

h
(k )
vi = Combine(k )

(
h
(k−1)
vi ,a

(k )
vi

)
, (2)

1The knowledge graph model we adopted in this work can be also seen as a form
of the attributed or property graph model referred in the literature.
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whereWc is a learnable matrix. The embedding vector of a node
is initialized by its attribute embedding vector obtained from the
Attribute layer(s).

Position Measuring Layer (P). The GNNs KGMatcher adopted
for neighborhood modeling are good at capturing local context.
One of the limitations of such modeling approach is their lack of
emphasize on the position/location of the embedded node within
the broader context of the entire graph. When comparing two
employees in the company, it is possible that their own pro�les
as well as their team members’ pro�les are similar. But their job
functionalities can be very di�erent according to their reporting
relationships to the upper management which indicates their
absolute positions within the entire organization. KGMatcher is
equipped with P-GNN layers as Position layers to capture such
global position information for each entity. The above motivating
example also reveals the intuition behind P-GNN approach which
is that the absolute position of a node can be de�ned by its relative
positions to a set of reference nodes, e.g. upper managements, in
the graph.

Speci�cally, in stead of aggregating information from the im-
mediate neighbors, P-GNN aggregates information for an embed-
ded node from a set of “anchor" nodes. Each P-GNN layer �rst
samples a set of anchor nodes as references from the entire graph
and then computes the shortest distances from every embedded
node to these sampled anchors to encode a distance metric. Each
embedding dimension of a node corresponds to the aggregated
information from a speci�c anchor(s) weighted by the distance
metric where the aggregated information is inversely propor-
tional to the distance. KGMatcher stacks multiple Position layers
to achieve higher expression power. In particular, the embedding
of a node �i from kth layer is computed as:

[· · · ,

l th dimensionz                                                           }|                                                           {
mean

��
s(�i ,u) ⇥ h

(k�1)
�i · h(k�1)

u |u 2 Anchor (l) �, · · · ],
(6)

where s(�i ,u) computes the weight of an anchor node u to the
embedded node �i , Anchor (l) returns a set of anchors dedicated
for computing the embedding value on the lth dimension of the
embedded nodes and mean represents an element wise mean-
pooling. The weight computed by s(�i ,u) is inversely propor-
tional to the shortest distance between �i and u in the graph.

Interaction between N and P Layer. To form a single represen-
tation that encodes both neighborhood and position information,
a few merging design alternatives can be made . One can com-
bine the output embeddings immediate after each N and P layer
through concatenation or product. The merged node embedding
is then fed separately into the next N and P layer. In our work,
to clearly separate the contribution of neighborhood and posi-
tion signal, we allow the information propagation of the two
kinds progress in parallel and only merge two at the very end
through concatenation (depicted in Figure 1). Therefore, the �nal
embedding of the node �i is given as:

h�i =
⇥
hN
�i
,hP

�i

⇤
. (7)

3.2 Siamese Network for Entity Matching
Suppose a pair of entities u and � are labeled with a label � using
a function d� (u,�) indicating the existence of (u,�) in LG . The
goal of KGMatcher is to predict such label � for unseen entity
pairs. Speci�cally, KGMatcher solves the problem via learning
an embedding function f parameterized by � , where the objec-
tive is to maximize the likelihood of the conditional probability
p(� | f� (u), f� (�)). Formally, we have the learning objective as:

min
�
E(u ,�)⇠LGtr ain

L(dz (f� (u), f� (�)) � d� (u,�)),
(8)

where dz (·, ·) is a function that predicts the label based on two en-
tity embeddings. Since the relationship we de�ned is undirected,
dz should then be a symmetric function. A Siamese neural net-
work uses the same weights while working in tandem on two
di�erent input vectors to compute comparable output vectors
which aligns with the required symmetric property. Therefore,
we train KGMatcher’s entity embedding layers in the form of
Siamese network. In our implementation, dz computes dot prod-
uct of the two input vectors.

4 EXPERIMENTAL EVALUATION
Setup & Evaluation Method. We evaluate our proposed system
with a publicly available dataset by comparing its performance
against other baselines. All methods are implemented in PyTorch
and trained on a CentOS server with Intel(R) Xeon(R) Gold 6138
@ 2.00GHz CPUs and NVIDIA Tesla P100 GPUs.

Since our task is binary classi�cation – predict the existence
of the relationship between two input entities, we measure the
performance of all methods using receiver operating characteristic
(ROC), area under the curve (AUC), precision and recall typical
metrics for the evaluation of a binary classi�cation task.

Dataset. We used the UDBMS Person1 dataset for our evalua-
tion. The original dataset contains 502,529 unique person entities.
Each entity has up to 48 attributes. We used 8 attributes such
as “predecessor” and “spouse” to build the edges and selected
another 25 popular attributes in terms of their presenting rate
as entity attributes. We used “subject” information to annotate
the non-obvious relationships, i.e. two entities sharing the same
“subject” have a non-obvious relationship. We further trimmed
down the dataset by only selecting the entities with reasonable
amount of attributes and reasonable level of connectivity. Finally,
we have 1,294 person entities, 3,480 edges and 316 relationships.
The relationship pairs are splitted into train, validation and test
set as the positive samples. The negative samples are uniformally
sampled. (Release data?)

Baseline. We compare KGMatcher against 5 other baselines:
•DeepMatcher [3] is a supervised deep learning solution de-
signed for entity resolution which aims to identity pair of data
instances that are referring to the same entity.
•Graph Isomorphism Network (GIN) [4]
•Graph Convolutional Network (GCN) [2]
•GraphSAGE [1]
•Position-aware Graph Neural Network (PGNN) [5]
E�ectiveness.

1http://udbms.cs.helsinki.�/?datasets/person_dataset
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Figure 2: The overview of KGMatcher inference and training.
where h(k )vi is the vector representation of the node vi at the k-
th iteration. The node’s attributes are usually used to initialize
h
(0)
vi = Embed({x ia1 , · · · , x iak }) where Embed(·) is an embedding

function that obtains a vector representation of the attributes
from their raw forms. The exact computation of Aддreдate(k )(·)
and Combine(k )(·) in GNNs defines their modeling approach. In
Section 3.1, we will describe the approaches we introduce to our
proposed model and how different models are integrated and
trained end-to-end.

3 KGMatcher APPROACH
Overview. We first give an overview of the KGMatcher approach
depicted in Figure 2. Each design choice will be discussed in the
following sections. The KGMatcher at its core learns a function
fG (·, ·) for a knowledge graph G that takes two entities as in-
puts and produces a score indicating the likelihood of the two
entities sharing a non-obvious relationship. KGMatcher charac-
terizes an entity by considering its attributes, its k-hop neighbors’
attributes and its position in the knowledge graph. These charac-
terizations are extracted by three types of layers in KGMatcher,
namely, Attribute, Neighborhood and Position layer. These
layers are connected and trained end-to-end with the goal of
producing embeddings of entities which maximize the accuracy
of the non-obvious relationship predictions. The function fG
learned by KGMatcher produces a symmetric measure for the in-
put entities which means that fG (u,v) ≡ fG (v,u) whereu,v ∈ V .
The symmetric property is guaranteed by the use of Siamese net-
work[4]. The network consists of two identical graph embedding
networks which share the same parameters (weight matrices).
When measuring two entities, each network takes one of the
two inputs and produces the respective embedding. The final
score is then computed based on a distance measure between
two embeddings.

3.1 Entity Embedding in Knowledge Graph
We introduce the key components in the graph embedding net-
work for entity feature extraction.
Attribute Embedding Layer (E). The attribute information as-
sociated with each entity in the knowledge graph provide the
central ingredients of the entity. It can be a mixture of structured,
semi-structured and/or unstructured data.

By leveraging the existing deep learning based embedding
methods, KGMatcher is able to convert arbitrary attributes into
a vector representation. First, depending upon the specific type
of attribute, one can choose a neural architecture to produce the
embedding in an unsupervised or supervised manner. To pro-
cess “text" type attributes for example, the vector representation
can be generated from a pre-trained language model such as
XLNet[7]. This unsupervised strategy ensures the generality of
the embedding since the pre-trained model is usually obtained
from a large general domain corpus. To be able to generate the
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embeddings that also maximize the accuracy of the entity match-
ing. KGMatcher allows these neural networks to be easily con-
nected to the rest of the KGMatcher’s layers and be adjusted
through backpropagation from the feedback on the relationship
prediction. The connected embedding networks can be either
initialized by the pre-trained parameters (weights) and fine tuned
onward or randomly initialized and trained from scratch. Second,
KGMatcher finally generates the entity attribute embedding by
concatenating each of the embeddings of the whole attribute set
and feed it to the next layers.

In our experiment, the attributes are of three types, namely
numerical, geo-location (in text string) and categorical type. The
numerical types are processed by a normalization layer. The
geo-location strings are converted into latitude and longitude
numbers. For categorical types, we convert them into one-hot-
encodings and embed them using multilayer perceptron neural
networks.
Neighbors Aggregation Layer (N). An entity in a knowledge
graph is usually not isolated by nature. The connectivity among
the entities often indicates additional information which may
not be explicitly described by their attributes.

To exploit the natural connections among the entities to cap-
ture such “surroundings" signal, we adopt a graph neural ar-
chitecture as part of the KGMatcher embedding network. The
GNNs for this purpose broadly follow a recursive neighborhood
aggregation scheme. Each node aggregates embedding vectors of
its immediate neighbors to compute its new embedding vector.
After k iterations of aggregation, a node is represented by its
transformed embedding vector, which captures the surrounding
information within the node’s k-hop distance. Instead of focusing
on embedding nodes from a single fixed graph which is assumed
by many prior works, we adopt a spectrum of GNNs – inductive
GNNs, where only the aggregate (Equation 5) and combine (Equa-
tion 6) for a node are learned. The complexity of such GNNs is
usually independent to the size of the graph. They are capable of
incorporating unseen nodes and easy to scale.

In particular, we implement GraphSage[1] layers as our Neigh-
borhood layers. The Aggregate function is formulated as:

a
(k )
vi = max

({
ReLU

(
W N
a · h(k−1)

u |u ∈ Neiдhbor (vi )
})
, (3)

whereW N
a is a learnable matrix and max represents an element-

wise max-pooling. The Combine function is formulated as a con-
catenation followed by a linear mapping:

h
(k )
vi =W

N
c · [h(k−1)

vi ,a
(k )
vi

]
, (4)

whereW N
c is a learnable matrix. The embedding vector of a node

is initialized by its attribute embedding vector obtained from the
Attribute layer(s).
Position Measuring Layer (P). The GNNs for neighborhood
modeling are good at capturing local context. One of the limi-
tations of such modeling approach is their lack of emphasis on
the position/location of the embedded node within the broader
context of the entire graph. To be able to model the high degree of
separation between entities, KGMatcher is equipped with P-GNN
layers [8] as Position layers to capture the global position infor-
mation for each entity. The intuition of the P-GNN approach is
that the absolute position of a node can be defined by its relative
positions to a set of reference nodes in the graph.

Specifically, instead of aggregating information from the imme-
diate neighbors, P-GNN aggregates information for an embedded
node from a set of “anchor" nodes. Each P-GNN layer samples

a set of anchor nodes as references from the graph and then
computes the shortest distances from every embedded node to
these sampled anchors to encode a distance metric. Each embed-
ding dimension of a node corresponds to the combined of node
embedding and the aggregated information from a specific an-
chor(s) weighted by the distance metric. The weight is inversely
proportional to the distance. KGMatcher stacks multiple Position
layers to achieve higher expression power. The aggregation for
the lth dimension for vi at time k is formulated as:

a
(k )
v li
= mean

({
ReLU

(
W P
a · (s(vi ,u) × h

(k−1)
u )|u ∈ Anchor l (vi )

})
,

(5)
and the combined embedding of vi at time k is:

h
(k )
vi =W

P
t · [ · · · ,

l th dimension︷                  ︸︸                  ︷
W P
c · [h(k−1)

vi ,a
(k )
v li

]
, · · · ], (6)

where s(vi ,u) computes the weight of an anchor node u to the
embedded nodevi ,Anchor l (vi ) returns a set of anchors dedicated
for computing the embedding value on the lth dimension of
the embedded nodes, mean represents an element wise mean-
pooling andW P

a ,W P
t andW P

c are learnable matrices. The weight
computed by s(vi ,u) [8] is inversely proportional to the shortest
distance between vi and u in the graph.
Interaction between N and P Layer. To form a single represen-
tation that encodes both neighborhood and position information,
a few merging design choices are made. One can combine the out-
put embeddings immediately after each N and P layer through
concatenation or other element-wise operations. The merged
node embedding is then fed separately into the next N and P layer.
In our work, to clearly separate the contribution of neighborhood
and position signal, we allow the information propagation of the
two kinds progress in parallel and only merge the two at the very
end through concatenation (depicted in Figure 2).

3.2 KGMatcher Inference and Training
Suppose a pair of entities u and v are labeled with a label y ∈ LG
using a function dy (u,v). The goal of KGMatcher is to predict
such label y for unseen entity pairs. Specifically, KGMatcher
solves the problem via learning an embedding function Φ param-
eterized by θ , where the objective is to maximize the likelihood of
the conditional probability p(y |Φθ (u),Φθ (v)). Formally, we have
the learning objective as:

min
θ
E(u ,v)∼LGtrain
L(dz (Φθ (u),Φθ (v)) − dy (u,v)),

(7)

where dz (·, ·) is a function that predicts the label based on two en-
tity embeddings. Since the relationship we defined is undirected,
dz should then be a symmetric function. A Siamese neural net-
work, depicted in Figure 2 uses the same weights while working
in tandem on two different input vectors to compute compara-
ble output vectors which aligns with the required symmetric
property. Therefore, we train KGMatcher’s entity embedding
layers in the form of Siamese network. In our implementation,
dz computes dot product of the two input vectors.

4 EXPERIMENTAL EVALUATION
Setup & Evaluation Method. We evaluate our proposed system
with a publicly available dataset by comparing its performance
against other baselines. All methods are implemented in PyTorch
and trained on a CentOS server with Intel(R) Xeon(R) Gold 6138
@ 2.00GHz CPUs and NVIDIA Tesla P100 GPUs.

381



Table 1: Test results of different models. ↑ indicates that the higher the score the better the performance. (·) after each score
(average±standard deviation) indicates the ranking of the method (vertical comparison) w.r.t the specific evaluation metric. ⋆ indicates
that the baseline is implemented by ourselves. The cut-off thresholds of these reported methods are 0.210, 0.445, 0.620, 0.580, 0.440, 0.375
and 0.530 which produce the maximum F1 score for each respective method.

Method AUC ↑ F1 ↑ Precision ↑ Recall ↑
DeepMatcher [5] ⋆ 0.6658±0.0351 (6) 0.6755±0.0108 (6) 0.5255±0.0131 (6) 0.9455±0.0000 (2)

GIN [6] 0.7367±0.0329 (3) 0.7400±0.0311 (3) 0.7036±0.0415 (1) 0.7818±0.0000 (6)
GCN [3] 0.7080±0.0333 (5) 0.7210±0.0192 (5) 0.6837±0.0346 (2) 0.7636 ±0.0000 (7)
GraphSAGE [1] 0.7633±0.0320 (2) 0.7442±0.0200 (2) 0.6598±0.0311 (4) 0.8545±0.0000 (5)

PGNN [8] 0.7090±0.0337 (4) 0.7255±0.0199 (4) 0.6108±0.0261 (5) 0.8942±0.0195 (4)
PGNN (w/o attributes) [8] 0.5988±0.0424 (7) 0.6668±0.0023 (7) 0.5003±0.0019 (7) 0.9994±0.0040 (1)

KGMatcher ⋆ 0.8079±0.0343 (1) 0.7660±0.0239 (1) 0.6676±0.0331 (3) 0.8998±0.0222 (3)

Since our task is binary classification – predict the existence
of the relationship between two input entities, we measure the
performance of all methods using receiver operating characteristic
(ROC), area under the curve (AUC),precision, recall and F1 typical
metrics for the evaluation of a binary classification task. We
report the average measurements and the standard deviations of
all methods on the test set of 100 repetitions.
Dataset. We use the UDBMS Person2 dataset for our evalua-
tion. The original dataset contains 502,529 unique person entities.
Each entity has up to 48 attributes. We use 8 attributes – relation,
relative, spouse, child, parent, partner, predecessor, successor, oppo-
nent and rival to build the edges and select another 25 popular
attributes in terms of their presenting rate as entity attributes.
We use subject information to annotate the non-obvious rela-
tionships, i.e. two entities sharing the same subject have a non-
obvious relationship. We further trim down the dataset by only
selecting the entities with reasonable amount of attributes and
reasonable level of connectivity. Finally, we have 1,294 person
entities, 3,480 edges and 316 relationships. The relationship pairs
are split into train, validation and test set as the positive samples.
The negative samples are uniformly sampled by fixing one of the
entities in the positive sample pairs.
Baseline. We compare KGMatcher against 5 other baselines:
•DeepMatcher [5] is a supervised deep learning solution which
aims to identity pair of data instances that are referring to the
same entity based on their attributes.
•Graph Convolutional Network (GCN) [3] is a semi-supervised
spectral-based graph neural network. It models the graph topol-
ogy as well as the node attributes.
•GraphSAGE [1] is a spatial-based graph neural network which
models the graph topology through neighbors aggregation. The
aggregated information is based on the node attributes.
•Graph Isomorphism Network (GIN) [6] is a graph neural
network that generalizesWeisfeiler-Lehman test for maximum
discriminative power. It also models the node attributes.
•Position-aware Graph Neural Network (PGNN) [8] is a gen-
eralized spatial-based graph neural network which aims to iden-
tify the node position in the context of the the entire graph
through sampled anchors.
Effectiveness. Given two entities on the knowledge graph, all
methods produce a score [0-1] which can be interpreted as the
level of confidence of predicting a non-obvious relationship. As a
data analyst, one has to specify a cut-off threshold for the model
to give a firm (binary) answer. To simulate this scenario, we
measure the effectiveness using precision, recall and F1 where
the cut-off thresholds must be provided. Since maximizing ei-
ther precision or recall can easily done by varying the threshold,
we report these measurements by selecting the thresholds that

2http://udbms.cs.helsinki.fi/?datasets/person_dataset
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Figure 3: ROC plot of all baselines. (·) after each method in the
legend box indicates its corresponding AUC value.
maximized each method’s F1 score. As shown on Table 1, KG-
Matcher outperformed all baselines in F1. Although, GIN and
PGNN (w/o attributes) perform well either on precision or re-
call, their measurements on the other side (recall or precision)
are poor. The unbalanced performance may not be acceptable to
many applications. In particular, the model that only considers
attributes (DeepMatcher) or global position information (PGNN
w/o attributes) performs worse than the ones that model both
attributes and some topology of the graph.

To further evaluate the overall performance of all the methods
across different thresholds, we plot the ROC in Figure. 3 and re-
port the AUC value in Table. 1. Our proposed method KGMatcher
is significantly better than all the other baselines.

In summary, our experimental evaluation demonstrates KG-
Matcher’s 6% to 35% improvement in AUC and 3% to 15% im-
provement in F1 over the other baselines.
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ABSTRACT
The increasing ubiquity of multivariate functional data (MFD)
requires methods that can properly detect outliers within such
data, where a sample corresponds to 𝑝 > 1 parameters observed
with respect to (w.r.t) a continuous variable (e.g. time). We im-
prove the outlier detection in MFD by adopting a geometric view
on the data space while combining the new data representation
with state-of-the-art outlier detection algorithms. The geometric
representation of MFD as paths in the 𝑝-dimensional Euclidean
space enables to implicitly take into account the correlation w.r.t
the continuous variable between the parameters. We experimen-
tally show that our method is robust to various rates of outliers in
the training set when fitting the outlier detection model and can
detect outliers which are not detected by standard algorithms.

1 INTRODUCTION
1.1 Functional data context and taxonomy
In many fields (e.g. engineering, biology or medicine), detecting
atypical behaviors of complex systems enables to better antic-
ipate and understand both undesired and rare situations (e.g.
engine failure, heart disease). Most of the time, detecting atypical
behaviors requires the analysis of 𝑝 system parameters (𝑝 ≥ 1)
measured by high sampling-rate sensors. The raw sensor mea-
surements result in noisy data dependent on a continuous vari-
able (e.g. time, wavelength) being discretized by the sampling
process of the 𝑝 sensors. Such data are referred as univariate or
multivariate functional data depending on whether one (𝑝 = 1)
or several parameters (𝑝 > 1) are analyzed, respectively.

Thus the observation of the parameters along the continuous
variable is seen as the realization of an underlying (unknown)
function that values in R𝑝 . We emphasize that in the functional
data framework, a data set sample is represented as a function
rather than a high-dimensional vector of different dimension
containing the raw measurements. Dimension refers to the num-
ber of measurements which can be different from a sample to
another). We refer to [13] for a comprehensive introduction to
functional data analysis.

Here we adopt the following notations : the dependent continu-
ous variable is denoted by 𝑡 ∈ T ⊂ Rwhere T is a closed interval
of R, the data samples are sub-scripted by 𝑖 ∈ {1...𝑛}, univariate
functional data (UFD) samples are denoted by lower case letter
𝑥𝑖 (𝑡) ∈ R and multivariate functional data (MFD) samples are de-
noted by capital letter 𝑋𝑖 (𝑡) = (𝑥𝑖1 (𝑡), ..., 𝑥𝑖𝑘 (𝑡), .., 𝑥𝑖𝑝 (𝑡)) ∈ R𝑝 .
Thus a MFD is made up of 𝑝 UFDwhich are potentially correlated.

∗The author can also be contacted at: clement.lejeune@airbus.com
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Figure 1: Example of 21 MFD (𝑝 = 2) with one shape
persistent outlier in red. (a) (𝑡, 𝑥𝑖1, 𝑥𝑖2) representation. (b)
(𝑥𝑖1, 𝑥𝑖2) representation i.e. projection along 𝑡-axis.

Detecting atypical behaviors is referred as outlier or anomaly
detection. An outlier is defined as a sample which is rare and very
different from the rest of the data set based on some measure
[1]. A taxonomy of functional outliers into two classes has been
proposed by Hubert et al. [8]. First, an isolated outlier is defined as
a sample which exhibits an extreme behavior for very few points
𝑡 . For instance a narrow vertical peak in the curve depicted by a
parameter 𝑥𝑖𝑘 w.r.t 𝑡 is named a magnitude isolated outlyingness
and a high horizontal translation in the curve is referred as shift
isolated outlyingness. Second, a persistent outlier is a sample
which never exhibits extreme behavior but deviates from inliers
for many points 𝑡 , an example of shape persistent outliers is given
in Fig.1. Persistent outliers can be divided into other sub-classes,
see [8] for detailed examples. Note that an outlier can be of mixed
type, i.e. a sample entailing several outlier classes. For an instance,
one parameter has a shape persistent outlyingness and another
one has an isolated outlyingness.

In this paper we focus on a geometric representation for out-
lier detection in MFD and highlight the situation of outliers of
mixed type. The MFD case is more challenging than the UFD one
since the potential correlation between the 𝑝 parameters (i.e. how
𝑥𝑖𝑘 and 𝑥𝑖𝑘′ are correlated w.r.t 𝑡 ) has to be taken into account
additionally to the individual variations of the single parameters
w.r.t to 𝑡 [8]. Indeed contrary to outliers in UFD, where the outly-
ingness of a sample only consists of an atypical variation w.r.t 𝑡
of a single parameter, in MFD the outlyingness of sample might
be hidden in an atypical variation of the relationship between
some parameters [8, 11] as well as an atypical variation of one
of the 𝑝 parameters. Note that the representation of MFD we
propose can also be used for other tasks than outlier detection
(e.g. classification) as well as other geometric representations of
2D and 3D shapes which can be applied for the 𝑝 = 2 and 𝑝 = 3
(respectively) MFD cases [16].

1.2 Related work
The outlier detection in MFD is recent and has been addressed
by statistical depth functions [18] originally proposed to provide
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an outward-center ranking score, also named a depth score (e.g.
in the interval [0, 1]), of multivariate data which are basically
sample points in R𝑑 . In this general multivariate data context,
where each sample is regarded as a point in a𝑑-dimensional point
cloud, the first ranked samples are the most central ones within
such point cloud and are seen as most representative, whereas
the last ranked samples are the least central ones and thus they
are likely to be outliers. Such ranking is ensured through the
monotonicity property of the depth function (see [18] for the-
oretical understanding of a depth function). Hence, the depth
score can be viewed as an outlyingness score which reflects the
degree of outlyingness at the sample level.

Some statistical depth functions have been extended first to
handle UFD [3] and then MFD [2, 8]. The UFD extension consists
in computing a depth function on 𝑥𝑖 (𝑡),∀𝑖 at each 𝑡 and then to
compute the integral over 𝑡 ∈ T of the resulting depth scores
[3, 6] which in turn provides an average sample depth score for all
𝑖 . Note that this extension is an aggregation of the depth function
applied in a univariate manner since, for a given 𝑡 , {𝑥𝑖 (𝑡)}𝑖≤𝑛 is a
point cloud in R. Since {𝑋𝑖 (𝑡)}𝑖≤𝑛 forms a point cloud in R𝑝 , the
MFD extension relies on the application of a depth function in
a multivariate manner and integrates the depth scores as in the
UFD case [2]. Such an extension suffers from important issues :

(1) First, it is not sensitive enough to persistent outliers be-
cause their point-wise depth scores (i.e. for each 𝑡 ) do not
differ from those of inliers. One can augment the MFD
samples by adding some derivatives functions of the pa-
rameters as supplementary (unobserved) parameters but
it increases both computations and the complexity of the
data analysis.

(2) Second, even if the point-wise depth scores of an isolated
outlier are different from those of an inlier, its sample
depth score will be mixed with inliers because the integra-
tion of the point-wise depth scores acts as an average.

(3) Furthermore, since the capacity of the depth function to
capture different types of outlier is fundamental, outliers
caused by abnormal correlation between the parameters
(i.e. outliers of mixed type) are hard to detect. Such an
abnormal correlation can result in outliers of mixed type.

To address the first issue (1), and especially to detect shape
persistent outliers, several depth functions have been proposed.
Khunt and Rehage (𝐹𝑈𝑁𝑇𝐴) [9] proposed a depth function based
on the intersection angles between a curve sample depicted by
𝑥𝑖𝑘 and {𝑥 𝑗𝑘 }𝑗≤𝑛,𝑗≠𝑖 and then average these angles over both
their number and the parameters. Such method is not able to
detect outliers caused by an abnormal correlation between the
parameters and also isolated outliers because their depth function
is only focused on shape persistent outliers.

To address the second issue (2) the integral can be replaced by
the infimum as the aggregation of the point-wise depth scores,
which avoids the masking of outliers having few different point-
wise depth scores.

To address the third issue (3), Dai and Genton [4] proposed the
directional outlyingness (𝐷𝑖𝑟 .𝑜𝑢𝑡 ), a point-wise depth function
based on the direction of𝑋𝑖 (𝑡) inR𝑝 toward the projection-depth
[17] of {𝑋𝑖 (𝑡)}𝑖≤𝑛 . To compute the sample depth score, the point-
wise depth scores are aggregated through an integral over T
which is further decomposed into an average component and a
variance-like component. Such sample depth score decomposi-
tion enables to detect multiple outliers and also to identify their
class by analyzing how the two depth components are distributed

according the other sample depth scores (e.g. samples with high
variance-like component value are likely persistent shape out-
liers and samples with high average component value are likely
isolated outliers). However, to detect persistent shape outliers,
the direction of 𝑋𝑖 (𝑡) is not a sufficient feature and further geo-
metrical representation has to be considered.

1.3 Contribution
In this paper, we propose a different framework than the sta-
tistical depth to remedy these issues by treating MFD as trajec-
tories in R𝑝 from which we extract geometrical features such
as the curvature. Such geometrical features are computed by
interpretable (from a geometric standpoint) aggregation func-
tions, named mapping functions in the sequel, which combine
some derived functions (e.g. derivatives, integral) from the MFD.
We then apply a state-of-the-art algorithm on the geometrical
MFD representation to achieve the outlier detection. Considering
MFD in a geometric manner enables to implicitly capture the
correlation between the 𝑝 parameters w.r.t 𝑡 and thus to detect
different classes of outliers as well as mixed types. Moreover, such
combination results in a more robust outlier detection method
e.g. when there are more than 5% of outliers in the training set.
Thus, we both take benefit from outlier detection algorithm for
multivariate data as well as the geometry of the curve (i.e. the
geometry of 𝑋𝑖 in R𝑝 and the geometry of each parameter 𝑥𝑖𝑘
w.r.t 𝑡 ).

2 FUNCTIONAL DATA REPRESENTATION
The first step in functional data analysis is to approximate the
unknown function, 𝑋𝑖 : T → R𝑝 , underlying the noisy measure-
ment samples 𝑋𝑖 (𝑡1), ..., 𝑋𝑖 (𝑡𝑚𝑖

) where𝑚𝑖 is the number of mea-
surements for each parameter of the sample 𝑖 , by an approxima-
tion function �̃�𝑖 defined as 𝑋𝑖 . Note that no assumption is made
on the distribution of the measurement points {𝑡1 ...𝑡𝑚𝑖

} = 𝑡𝑖• ,
thus the functional data representation can deal with sparse mea-
surements as well as uniform ones.

The functional approximation step aims at removing the noise
and thus enables to achieve accurate evaluations of some derived
functions that we need for the mapping function computation.
This section introduces how �̃�𝑖 = (𝑥𝑖1, ..., 𝑥𝑖𝑘 , ..., 𝑥𝑖𝑝 ) is specified
as well as it is inferred from the data.

2.1 Functions as a basis expansion
First, we specify the functional form of the approximation func-
tion as a finite linear combination of basis functions, where each
basis function depends on 𝑡 ∈ T . Suppose we want to approxi-
mate 𝑥𝑖𝑘 . Intuitively, it aims to represent 𝑥𝑖𝑘 with a small number
of "specific functions", each one being able to capture some local
features of 𝑋𝑖 in hopes to recover it with a small approximation
error. Hence, the following form is given for 𝑥𝑖𝑘 [13],

∀𝑡 ∈ T , 𝑥𝑖𝑘 (𝑡) =
𝐿𝑖𝑘∑
𝑙=1

𝛼𝑖𝑘𝑙𝜙𝑙 (𝑡) = 𝜶⊤
𝑖𝑘
𝝓 (𝑡) (1)

where 𝝓 (𝑡) = {𝜙𝑙 (𝑡)}1≤𝑙≤𝐿𝑖𝑘 is a vector of orthonormal basis
functions at 𝑡 for some 𝐿𝑖𝑘 ∈ N∗ (referred as the basis size) with
fewer basis functions than sampled observation points (𝐿𝑖𝑘 ≪
𝑚𝑖 ), and 𝜶⊤

𝑖𝑘
= {𝛼𝑖𝑘𝑙 }1≤𝑙≤𝐿𝑖𝑘 is the coefficient vector which

element 𝛼𝑖𝑘𝑙 is the importance of the 𝑙-th basis function. The
choice of the basis of functions is data dependent.
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Here we consider that 𝑥𝑖𝑘 are smooth and so we choose the
B-spline basis of functions which are basically piece-wise polyno-
mial functions. If the data were periodic data, one could choose
the Fourier basis. We refer to [13] for a discussion on the choice
of basis functions. Note that from the functional approximation
Eq.1, one can easily compute some derivatives or integral based
functional data since by linearity,

𝐷𝑞𝑥𝑖𝑘 =

𝐿𝑖𝑘∑
𝑙=1

𝛼𝑖𝑘𝑙𝐷
𝑞𝜙𝑙 (𝑡) (2)

where 𝐷𝑞 = d𝑞
d𝑡𝑞 is the 𝑞−th derivative operator, provided that

the basis functions 𝜙𝑙 are differentiable at the 𝑞-th order.

2.2 Inference
Assuming the data were sampled with a white noise 𝜖𝑖 𝑗 , i.e.
𝑥𝑖𝑘 (𝑡𝑖 𝑗 ) = 𝑥𝑖𝑘 (𝑡𝑖 𝑗 ) + 𝜖𝑖 𝑗 where 𝜖𝑖 𝑗 is independent from 𝑥𝑖𝑘 (𝑡𝑖 𝑗 ),
we can compute the coefficient vector 𝜶 𝑖𝑘 by minimizing the
following penalized least-squares criteria:

𝑱 𝜆𝑘 (𝜶 𝑖𝑘 ) = ∥𝑥𝑖𝑘 (𝑡𝑖• ) − Φ𝑖𝑘𝜶 𝑖𝑘 ∥2 + 𝜆𝑘𝜶
⊤
𝑖𝑘

R𝑖𝑘𝜶 𝑖𝑘 (3)

where ∥·∥ stands for the 𝑙2-norm, Φ𝑖𝑘 = {𝜙𝑙 (𝑡𝑖 𝑗 )}1≤ 𝑗≤𝑚𝑖 ,1≤𝑙≤𝐿𝑖𝑘
is the𝑚𝑖 ×𝐿𝑖𝑘 matrix containing all the 𝐿𝑖𝑘 basis functions evalu-
ated at the measurement points 𝑡𝑖• and
R𝑖𝑘 = {

∫
T 𝐷𝑞𝝓 𝑗 (𝑡)𝐷𝑞𝝓𝑚 (𝑡)d𝑡)}1≤ 𝑗,𝑚≤𝐿𝑖𝑘 is a 𝐿𝑖𝑘 ×𝐿𝑖𝑘 positive

semi-definite matrix containing the inner products of the 𝑞-th
derivative of the basis functions which enforces the approxima-
tion function to have a small 𝑞-th derivative i.e. to vary smoothly;
𝜆𝑘 > 0 is a hyper-parameter controlling the weight of the penalty
and can be set to 0 for no penalization. In practice it is common
to choose 𝑞 = 1 or 𝑞 = 2 (i.e to penalize the velocity or the
acceleration) and to compute 𝜆𝑘 by cross-validation.

Equaling the gradient of 𝑱 𝜆𝑘 to 0 w.r.t 𝜶 𝑖𝑘 leads to the mini-
mizer in Eq.4 [13] which is a special case of the ridge regression
solution:

𝜶 ∗
𝑖𝑘,𝜆

= (Φ⊤
𝑖𝑘

Φ𝑖𝑘 + 𝜆𝑘R𝑖𝑘 )−1Φ⊤
𝑖𝑘
𝑥𝑖𝑘 (𝑡𝑖• ) (4)

The estimated coefficient vector 𝜶 ∗
𝑖𝑘,𝜆

can then be plugged in
Eq.1 to evaluate 𝑥𝑖𝑘 over an arbitrary discretization of T .

3 MAPPING FUNCTION
We propose to regard MFD as paths in R𝑝 to highlight some un-
derlying shape outlyingness features corresponding to a change
in the relationship between the parameters. We feature this
change with a mapping function that we define as a geometric
aggregation of the 𝑝 parameters. We refer to [15] for an intro-
duction to shape analysis from functional data.

In this section, we present the curvature as an example of
mapping function. The curvature is a measure of how much
bended a curve is, more formally how the curve locally deviates
from the tangent line, see Fig.2. It is defined as:

𝜅 (𝑡) =
∥𝐷1 ( 𝐷1𝑋 (𝑡 )

∥𝐷1𝑋 (𝑡 ) ∥ )∥

∥𝐷1𝑋 (𝑡)∥
(5)

where ∥·∥ denotes the Euclidean norm in R𝑝 . One can interpret
𝜅 in Eq.(5) as follows: 𝐷1𝑋 (𝑡 )

∥𝐷1𝑋 (𝑡 ) ∥ gives the direction vector (i.e

the normalized tangent vector), therefore 𝐷1 𝐷1𝑋 (𝑡 )
∥𝐷1𝑋 (𝑡 ) ∥ gives the

change direction vector and the denominator ∥𝐷1𝑋 (𝑡)∥ aims to
relate the change of direction w.r.t the tangent vector, i.e. how
the direction vector varies w.r.t a tangent line. Consequently, the

𝑫𝟏𝑿(𝒕𝟏)

𝑫𝟏𝑿(𝒕)

𝒙𝟐

𝒙𝟏

= 𝒙𝟏 𝒕 , 𝒙𝟐 𝒕
= 𝒙𝟏 𝒕𝟏 , 𝒙𝟐 𝒕𝟏

𝒓 𝒕𝟏

Figure 2: Curvature mapping 𝜅. The curvature measures
how large the radius of the tangent circle is. Here, in the
neighbourhood of the curve at 𝑡1 (dark-grey dot), the tan-
gent vector 𝐷1𝑋 (𝑡1) keeps the same direction, hence the
tangent circle has a large radius (𝑟 (𝑡1) = 1

𝜅 (𝑡1) ) resulting in
a small curvature. In the neighbourhood of the curve at 𝑡
(white dot), the tangent vector 𝐷1𝑋 (𝑡) quickly changes di-
rection, hence the tangent circle has a lower radius i.e. a
higher curvature than at 𝑡1.

curvature mapping can highlight functional outliers which curve
exhibits a different bended shape than the other samples.

Thus if a curve abnormally changes direction (i.e. it deviates
from a tangent line) w.r.t most of the data set, then the curvature
mapping can highlight outliers. As a result, if the curve𝑋𝑖 depicts
a line (i.e. the parameters are linearly correlated w.r.t 𝑡 ), then the
curvature is constant w.r.t 𝑡 since the directions do not vary in
R𝑝 . Clearly, this is a geometric characterization of MFD.

From the reconstructed samples {�̃�𝑖 }𝑖≤𝑛 , transformed to UFD
by the mapping function, we detect the outliers with state-of-
the-art algorithms initially proposed to deal with multivariate
data (not functional). Here we use Isolation-Forest (𝑖𝐹𝑜𝑟 ) [10]
and One-class SVM (𝑂𝐶𝑆𝑉𝑀) [14] which are both unsupervised.

4 NUMERICAL EXPERIMENTS
We conducted an experimental study on real data. We com-
pare our approach with state-of-the-art depth-based methods,
𝐹𝑈𝑁𝑇𝐴 and 𝐷𝑖𝑟 .𝑜𝑢𝑡 [4, 9] (Sec.1.2) which take the MFD as input.

4.1 Experimental procedure
We experiment our method on a well-known real data set of
electrocardiogram (ECG) time series [7] also used in outlier de-
tection in [4]. Such data set correspond to time series of electrical
activity and can reveal abnormal heartbeat. The time series are
UFD (with number of measurements𝑚𝑖 = 85,∀𝑖) and in order
to show the applicability of our approach in the MFD case, we
augment the original UFD data to MFD (𝑝 = 2, bivariate) by
adding the square of the initial time series. We did not add some
derivatives-based functions as supplementary parameters since
it is already considered by our mapping function (see Eq.5).

We evaluate our approach through multiple random splittings.
We randomly split the data into a training and a test set. We
generate the training set by setting the ratio of outliers (referred
as the contamination level 𝑐) to 5, 10, 15, 20 and 25%. For each
value of 𝑐 , we repeat the random splitting 50 times, we fit 𝑖𝐹𝑜𝑟
and 𝑂𝐶𝑆𝑉𝑀 on the training set and compute the average and
standard deviation Area Under (AUC) the Receive Operating
Curve (ROC) on the corresponding test set. We present the results
in Fig.3 and discuss them in Sec.4.3.

For each sample and each variable 𝑥𝑖𝑘∀𝑖, 𝑘 we use a B-spline ba-
sis of functions (piece-wise polynomial functions, [13]) to achieve
the functional approximations and we select the basis sizes 𝐿𝑖𝑘
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Figure 3: AUC (vertical axis) and standard deviation (verti-
cal segments’ length equals one standard deviation) from
ECG data set - average results over 50 repetitions consid-
ering five contamination levels 𝑐 (horizontal axis).

trough a leave-one-out cross validation procedure. We evaluate
each �̃�𝑖 on the same regular grid of T with length𝑚𝑖 = 85. We
compute the mapping function by combining the first and second
derivatives, according to Eq.2 and Eq.5, and we apply 𝑖𝐹𝑜𝑟 and
𝑂𝐶𝑆𝑉𝑀 on the resulting UFD.

4.2 Outlier detection step
We use 𝑖𝐹𝑜𝑟 and 𝑂𝐶𝑆𝑉𝑀 as outlier detection algorithms on
the UFD that our mapping function 𝜅 returns (Eq.5). 𝑖𝐹𝑜𝑟 and
𝑂𝐶𝑆𝑉𝑀 are unsupervised and, like the depth-based methods,
output a normalized outlyingness score for each sample. In prac-
tice, in outlier detection one has not necessarily access to labeled
samples, i.e. information depicting whether a sample is an outlier
or not, but if he has, the labels can be combined with their corre-
sponding outlyingness scores to learn an outlyingness threshold
that can best discriminate outliers from inliers. Such a threshold
can be learned from the ROC as well as an imbalanced classifi-
cation algorithm [5, 12] in a one dimensional manner from the
scores. Here, we do not learn any threshold and only consider
the label information for empirical demonstration purpose, i.e.
by computing the AUC on the test set.

4.3 Discussion of the results
From the results in Fig.3, we see that we outperform the two
depth-based methods for all the contamination levels in aver-
age and perform equally in terms of standard deviation. Since
𝐹𝑈𝑁𝑇𝐴 is only able to detect persistent shape outliers and𝐷𝑖𝑟 .𝑜𝑢𝑡
is expected to detect isolated as well as persistent outliers1, we
can deduce that the abnormal class (i.e.outliers) in the ECG data
set not only contains persistent shape outliers but also isolated
ones or outliers of mixed type which are well discriminated by
the curvature mapping function. Thus the curvature mapping
enables to detect mixed type outliers.

Moreover, we note that as 𝑐 increases both 𝑖𝐹𝑜𝑟 (𝐶𝑢𝑟𝑣𝑚𝑎𝑝 )
and𝑂𝐶𝑆𝑉𝑀 (𝐶𝑢𝑟𝑣𝑚𝑎𝑝 ) still outperform the baselines. Hence, we
show that our combination of outlier detection algorithm with
MFD mapped to a geometrical representation is more robust to
the presence of outliers in the training set than the baselines.
We note that OCSVM degrades as 𝑐 increases. It is due to the 𝜈
hyper-parameter (we tune it on the training set with a 5-fold cross
validation) corresponding to an estimate of contamination level in

1Justification can be found in the experiments in [4] which were conducted on
several synthetic data sets where each one contains a unique type of outlier.

the training set. We observed that such hyper-parameter is hard
to tune as 𝑐 increases and thus could decrease the performance
w.r.t 𝑐 .

5 CONCLUSION AND FUTUREWORK
We propose an approach to detect outliers in MFD. It consists
in computing a geometrical representation of MFD followed by
an outlier detection algorithm. We compare our approach with
recent depth-based methods which handle MFD as input.

Through one example of mapping function, we show that
the geometrical representation of MFD is well suited to detect
outliers of mixed type. However, it is hard to interpret what
such mixed type outliers are made up: given a detected outlier,
ideally one would like to access to the amount of the different
outlyingness classes e.g. the amount of shape persistence and shift
isolated outlyingness. As future work, a mean to achieve such an
interpretability is first to detect some specific outliers with depth
functions, second to train outlier detection algorithms (combined
with a mapping function) on training sets containing each one a
unique class of outlier previously detected and then to average
all the models trained to form an ensemble one. As a result, one
could know which model(s) in the ensemble most contribute to
the outlyingness and deduce the outlyingness composition.
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ABSTRACT
A referring expression (RE) is a description that identifies a set of
instances unambiguously. Mining REs from data finds applica-
tions in natural language generation, algorithmic journalism, and
data maintenance. Since there may exist multiple REs for a given
set of entities, it is common to focus on the most concise and
informative (i.e., intuitive) ones. We present REMI, a method to
mine intuitive REs on large knowledge bases. Our experimental
evaluation shows that REMI finds REs deemed intuitive by users.
Moreover we show that REMI is several orders of magnitude
faster than an approach based on inductive logic programming.

1 INTRODUCTION
A referring expression (RE) is a description that identifies a set
of entities unambiguously. For instance, the expression “x is the
capital of France” is an RE for Paris, because no other city holds
this title. The automatic construction of REs is a central task in
natural language generation (NLG). The goal of NLG is to describe
concepts in an accurate and compact manner from structured
data such as a knowledge base (KB). REs also find applications in
automatic data summarization, algorithmic journalism, virtual
smart assistants, and KB maintenance, e.g., in query generation.
Quality criteria for REs is context-dependent. For instance, NLG
and data summarization aim at intuitive, i.e., short and informative
descriptions. In this vibe, it may be more intuitive to describe
Paris as “the city of the Eiffel Tower” than as “the resting place
of Victor Hugo”. Indeed, the world-wide prominence of the Eiffel
Tower makes the first RE more informative to an average user.

Some approaches canmine intuitive REs from semantic data [1,
4–6]. Conceived at the dawn of the Semantic Web, these methods
are not suitable for current KBs for three main reasons. Firstly,
they cannot handle current KBs because they were designed to
mine REs on scenes1 for the sake of NLG. Scenes havemuch fewer
predicates and instances than today’s KBs. Secondly, most exist-
ing approaches are limited to conjunctive expressions on the at-
tributes of the entities, e.g., is(x ,City) ∧ country(x , France). How-
ever, our experience with today’s KBs suggests that this language
bias does not encompass all possible intuitive expressions. For
instance, to describe Johann J. Müller, we could resort to the fact
that he was the supervisor of the supervisor of Albert Einstein,
i.e., supervisor(x ,y) ∧ supervisor(y, Einstein), which goes beyond
the traditional language bias due to the existentially quantified
variabley. Thirdly, state-of-the-art REminers define intuitiveness
for REs in terms of number of atoms. In that spirit, the single-
atom REs capitalOf(x , France) and restingPlaceOf(x ,V. Hugo) are
equally concise and desirable as descriptions for Paris, even
though the latter may not be informative to users outside France.
1The exhaustive description of a place and its objects

© 2020 Copyright held by the owner/author(s). Published in Proceedings of the
23rd International Conference on Extending Database Technology (EDBT), March
30-April 2, 2020, ISBN 978-3-89318-083-7 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

The approach in [6] overcomes this limitation to some extent,
by allowing users to provide a ranking of preference for the at-
tributes used in the description. Nevertheless, providing such a
ranking can be tedious for KBs with thousands of predicates.

We tackle the aforementioned limitations with a solution to
mine intuitive REs on large KBs. How to use such REs is beyond
the scope of this work, however we provide hints about potential
use cases. In summary, our contributions are:
• A scheme based on information theory to quantify the intu-
itiveness of entity descriptions extracted from a KB.
• REMI, an algorithm to mine intuitive REs on large KBs. REMI
extends the state-of-the-art language bias for REs and allows
for expressions such as mayor(x ,y) ∧ party(y, Socialist). This
design choice increases the chances of finding intuitive REs
for a set of target entities.
• A user study to assess the intuitiveness of REMI’s descriptions.

2 PRELIMINARIES
2.1 RDF Knowledge Bases
This work focuses on mining REs on RDF knowledge bases (KBs).
A KB K is a set of assertions in the form of facts p (s,o) with
predicate p ∈ P, subject s ∈ I ∪ B, and object o ∈ I ∪ L ∪ B.
In this formulation, I is a set of entities such as London, P is a
set of predicates, e.g., cityIn, L is a set of literal values such as
strings or numbers, and B is a set of blank nodes, i.e., anonymous
entities. An example of an RDF triple is cityIn(London,UK). KBs
often include assertions that state the class of an entity, e.g.,
is(UK,Country).

2.2 Referring Expressions
2.2.1 Atoms. An atom p (X ,Y ) is an expression such that p

is a predicate and X , Y are either variables or constants. We
say an atom has matches in a KB K if there exists a function
σ ⊂ V × (I ∪ L ∪ B) from the variables V of the atom to
constants in the KB such that µσ (p (X ,Y )) ∈ K . The operator
µσ returns a new atom such that the constants in the input atom
are untouched, and variables are replaced by their corresponding
mappings according to σ . We call µσ (p (X ,Y )) a bound atom and
σ a matching assignment. We extend the notion of matching
assignment to conjunctions of atoms, i.e., σ is a matching assign-
ment for

∧
1≤i≤n pi (Xi ,Yi ) iff µσ (pi (Xi ,Yi )) ∈ K for 1 ≤ i ≤ n.

2.2.2 Expressions & Language Bias. Atoms are traditionally
the building blocks of referring expressions. We say that two
atoms are connected if they share at least one variable argu-
ment. Most approaches for RE mining define REs as conjunc-
tions of connected atoms with bound objects. We call this lan-
guage bias, the state-of-the-art language bias. We extend this
language by allowing atoms with additional existentially quan-
tified variables. For this purpose, we propose subgraph expres-
sions as the new building blocks for REs. A subgraph expres-
sion ρ = p1 (x ,Y1) ∧

∧
1<i≤n pi (Xi ,Yi ), rooted at variable x , is a

conjunction of connected atoms such that for i > 1, atoms are
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1 atom p0 (x , I0)
Path p0 (x ,y) ∧ p1 (y, I1)
Path + star p0 (x ,y) ∧ p1 (y, I1) ∧ p2 (y, I2)
2 closed atoms p0 (x ,y) ∧ p1 (x ,y)
3 closed atoms p0 (x ,y) ∧ p1 (x ,y) ∧ p2 (x ,y)

Table 1: REMI’s subgraph expressions.

transitively connected top1 (x ,Y1) via at least another variable be-
sides x . Examples are: (i) cityIn(x , France), and (ii) cityIn(x ,y) ∧
officialLang(y, z) ∧ langFamily (z, Romance). An expression e =∧

1≤j≤m ρ j is a conjunction of subgraph expressions rooted at
the same variable x such that they have only x—the root variable—
as common variable. Finally, we say e is a referring expression
(RE) for a set of target entities T ⊆ I in a KB K iff:
(1) ∀t ∈ T : ∃σ : (x 7→ t ) ∈ σ , i.e., for every target entity t ,

there exists a matching assignment σ in K that binds the
root variable x to t .

(2) ∄σ ′, t ′ : (x 7→ t ′) ∈ σ ′∧ t ′ < T , in other words, no matching
assignment binds the root variable to entities outside the set
T of target entities.

For example, consider a complete and accurate KB K as well as
the following conjunction of two subgraph expressions:

e = in(x , S. America)∧officialLang(x ,y)∧langFamily(y,Germanic)

We say that e is an RE forT = {Guyana, Suriname} inK because
matching assignments can only bind x to these two countries.

While we do not limit the number of subgraph expressions in
REs, we do not allow more than one variable and three atoms
in individual subgraph expressions, leading to the expressions
in Table 1. This design decision aims at keeping both the search
space and the complexity of the REs under control. Indeed, ex-
pressions with multiple non-root variables make comprehension
and translation to natural language more effortful.

3 REMI
Given an RDF KB K and a set of target entities T , REMI returns
an intuitive RE—a conjunction of subgraph expressions—that
describes unambiguously the input entitiesT inK . Intuitive REs
are concise and resort to concepts that users are likely to under-
stand. We first show how to quantify intuitiveness in Section 3.1.
We then elaborate on REMI’s algorithm in Section 3.2.

3.1 Quantifying intuitiveness
There may be multiple ways to describe a set of entities uniquely.
For example, capitalOf(x , France) and birthPlaceOf(x ,Voltaire)
are both REs for Paris. Our goal is therefore to quantify the intu-
itiveness of such expressions without human intervention. We
say that an RE e is more intuitive than an RE e ′, if C (e ) < C (e ′),
where C denotes the Kolmogorov complexity. The Kolmogorov
complexity C (e ) of a string e (e.g., an expression) is a measure of
the absolute amount of information conveyed by e and is defined
as the length in bits of e’s shortest effective binary description [8].
If eb denotes such binary description andM is the program that
can decode eb into e , C (e ) = l (eb ) + l (M ) where l (·) denotes
length in bits. Due to C’s intractability, applications can only
approximate it via suboptimal encodings and programs (êb , M̂),
hence C (e ) ≈ Ĉ (e ) = l (êb ) + l (M̂ ) with C (e ) ≤ Ĉ (e ).

Our proposed encoding builds upon the observation that intu-
itive expressions resort to prominent concepts. For example, it is
natural and informative to describe Paris as the capital of France,

because the concept of capital is well understood and France is
a very salient entity. In contrast, it would be more complex to
describe Paris in terms of less prominent concepts, let us say, its
twin cities. In this spirit, we devise a code for concepts as follows:
The code for a predicate p (entity I ) is the binary representation
of its position k in a ranking by prominence. This way, prominent
concepts can be rewarded with shorter codes. We can now de-
fine the estimated Kolmogorov complexity Ĉ of a single-atom
subgraph expression p (x , I ) as:

Ĉ (p (x , I )) = l (k (p)) + l (k (I | p))

In the formula, l (·) = log2 (·)+1,k (p) isp’s position in the ranking
of predicates of the KB, and k (I | p) is I ’s conditional rank given
p, i.e., I ’s rank among all objects of p. The latter term follows
from the chain rule of the Kolmogorov complexity. For instance,
if p is the predicate city mayor, the chain rule models the fact
that once the concept of mayor has been conveyed, the context
becomes narrower and the user needs to rank fewer concepts,
in this example, only city mayors. The chain rule also applies
to subgraph expressions with multiple atoms. For instance, the
complexity of ρ = mayor(x ,y) ∧ party(y, Socialist) is:

Ĉ (ρ) = l (k (mayor)) + l (k (party(y, z) | mayor(x, y))) +

l (k (Socialist | mayor(x ,y) ∧ party(y, z)))

The second term in the sum amounts to the code length of the
rank of predicate party among those predicates that allow for
subject-to-object joins with mayor in the KB. Likewise, the com-
plexity of the Socialist party in the third term depends on the
ranking of parties with mayors among their members, i.e., the
bindings for z in mayor(x ,y) ∧ party(y, z). If a city can be unam-
biguously described asmayor (x , I ) for a non-prominent mayor I ,
we may achieve a shorter code length if we replace I by a variable
y, an additional predicate, and a well-known party.

In line with other works that quantify prominence for concepts
in KBs [7], we rank concepts by frequency (fr), and Wikipedia’s
page rank (pr). We denote the resulting complexity measures
using these prominence metrics by Ĉfr and Ĉpr respectively.

Finally, we can estimate the Kolgomorov complexity of an RE
e =
∧

1≤i≤m ρi as the sum of the complexities of its individual
subgraph expressions, i.e., Ĉ (e ) =

∑
1≤i≤m Ĉ (ρi ).

∅

belongedTo(x, Brittany)
mayor(x, y) ∧ party(y, Socialist) placeOf(x, Epitech)

𝝆1 ∧ 𝝆2 (7) 𝝆1 ∧ 𝝆3 (8)

𝝆1 ∧ 𝝆2 ∧ 𝝆3 (12) 𝝆2 ∧ 𝝆3 (9)

𝝆1 (3)
𝝆2 (4)

𝝆3 (5)

Figure 1: Search space example.

3.2 Algorithm
REMI implements a depth-first search (DFS) on conjunctions of
the subgraph expressions common to all the target entities. Let
us assume the KB knows only three common subgraph expres-
sions ρ1, ρ2, and ρ3 for the entities Rennes and Nantes, such that
Ĉ (ρ1) ≤ Ĉ (ρ2) ≤ Ĉ (ρ3) as illustrated in Figure 1. Each node
in the tree is an expression, i.e., a conjunction of subgraph ex-
pressions and its complexity Ĉ is in parentheses. When visiting
a node, DFS must test whether the corresponding expression
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is an RE, i.e., whether the expression describes exclusively the
target entities. If the test fails, the strategy should move to the
node’s first child. If the test succeeds, DFS must verify whether
the expression is less complex than the least complex RE seen so
far. If it is the case, this RE should be remembered, and DFS can
prune the search space by backtracking. To see why, imagine that
ρ1∧ρ2 in Figure 1 is an RE. In this case, all REs prefixed with this
expression (the node’s descendants) will also be REs. However,
all these REs are more complex. This means that we can stop
descending in the tree and prune the node ρ1∧ρ2∧ρ3 in Figure 1.
We call this step a pruning by depth. We can do further pruning
if we leverage the order of the entities. In our example, if ρ1 ∧ ρ2
is an RE, any expression prefixed with ρ1 ∧ ρi for i > 2 must be
more complex and can be therefore skipped. We call this a side
pruning. All these ideas are formalized by Algorithm 1 that takes
as input a KBK as well as the entities to describe, and returns an
RE of minimal complexity according to Ĉ . For each of the target
entities, line 1 calculates (in a BFS fashion) its matching subgraph
expressions, and takes those common to all the target entities.
The expressions are then sorted by increasing complexity in a
priority queue (line 2), which is processed as follows: At each
iteration, the least complex subgraph expression ρ is dequeued
(line 5) and sent to the subroutine DFS-REMI (line 6) with the
rest of the queue. This subroutine explores the subtree rooted
at ρ and returns the most intuitive RE e ′ prefixed with ρ. If e ′
is less complex than the best solution found so far (line 7), we
remember it2. If DFS-REMI returns an empty expression, we can
conclude that there is no RE for the target entities T (line 8). To
see why, recall that DFS will, in the worst case, combine ρ with
all remaining expressions ρ ′ that are more complex. If none of
such combinations is an RE, there is no solution for T in K .

Algorithm 1: REMI
Input: a KB: K , the target entities: T
Output: an RE of minimal complexity: e

1 G :=
⋂
t ∈T subgraphs-expressions(t )

2 create priority queue from G in ascending order by Ĉ
3 e := ⊤
4 while |G | > 0 do
5 ρ := G .dequeue()
6 e ′ :=DFS-REMI (ρ, G, T , K )
7 if Ĉ (e ′) < Ĉ (e ) then e := e ′

8 if e = ⊤ then return ⊤

9 return e

We implemented Algorithm 1 in Java 8, including a parallel
version called P-REMI (detailed in our technical report [3]).

4 EXPERIMENTAL EVALUATION
We evaluated REMI along two dimensions: output quality, and
runtime. The evaluation was conducted on two popular KBs,
namely DBpedia and Wikidata3. Our technical report [3] offers
details about the experimental datasets, as well as a more exten-
sive qualitative evaluation of REMI.

2We define Ĉ (⊤) = ∞
3http://dbpedia.org, http://wikidata.org

metric #participants p@1 p@2 p@3
Ĉfr 44 0.38±0.42 0.66±0.18 0.88±0.09
Ĉpr 48 0.43±0.42 0.53±0.25 0.72±0.16

Table 2: Average precision@k and standard deviation for
Ĉ’s ranking of subgraph expressions in DBpedia

4.1 Qualitative Evaluation
We carried out three user studies in order to evaluate REMI’s
descriptions on instances of the classes person, settlement, album,
film, and organization. The cohort consisted mainly of computer
science students, researchers, and university staff. It also included
some of their friends and family members.

4.1.1 Evaluation of Ĉ . Subgraph expressions are the building
blocks of REs, thus intuitive REs should make use of concise and
informative pieces. We measure to which extent the function Ĉ
captures intuitiveness by asking the participants to rank a set of
5 subgraph expressions by simplicity and comparing this ranking
with the ranking provided by Ĉ . The expressions come from the
common subgraph expressions ranked by Alg. 1 (line 2) using
Ĉ , and include the top 3 as well as a baseline defined by (i) the
worst ranked, and (ii) a random subgraph expression. We man-
ually translated the subgraph expressions to natural language
statements in the shortest possible way using the textual descrip-
tions (predicate rdfs:label) of the concepts when available. We
show the results of our findings on 24 sets of entities in Table 2
for our two variants of Ĉ . We observe that precision@1 is low.
This happens because people usually deem the predicate type the
simplest whereas REMI often ranks it second or third (16 times
for Ĉfr ). This shows the need of special treatment for the type
predicate as suggested by [6]. Nevertheless, the high values for
the other metrics show a positive correlation between the pref-
erences of the users and the function Ĉ . In 88% of the cases, the
three simplest subgraph expressions according to Ĉ are among
the three simplest ones according to users.

4.1.2 Evaluation of REMI’s output. A second study requested
users to rank by simplicity the answer of REMI and a baseline
consisting of 2 to 4 additional REs (solutions encountered dur-
ing search space traversal). The entities were hand-picked to
guarantee the existence of at least two REs sufficiently different
from each other. Based on our previous findings, we used fr as
notion of prominence. We report an average MAP (mean average
precision) of 0.64±0.17 for this task on 20 sets of entities with
51 answers each, if we assume REMI’s solution as the only rele-
vant answer. We recall that a MAP of 1 denotes full agreement
between REMI and the users, while a MAP of 0.5 means that
REMI’s solution is always among the user’s top 2 answers.

4.1.3 User’s perceived quality. In order to measure the per-
ceived quality of the reported REs, we requested 86 participants
to grade the interestingness of 35 Wikidata REs in a scale from 1
to 5, where 5 means the user deems the description interesting
based on her personal judgment. Our results exhibit an average
score of 2.65±0.71, with 11 descriptions scoring at least 3. During
the exchanges with the participants, some of them made explicit
their preference for short but at the same time informative REs.
The latter dimension is related to the notions of pertinence of
concepts and narrative interest. For instance, when asked to se-
lect between the REs country (x ,N . Zealand) ∧ actor (x ,C.Lee)
and country (x ,N . Zealand)∧actor (x ,y)∧ religion(x ,Buddhism)
for two movies, 95% of the users preferred the first one. Both REs
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Language DBpedia Wikidata
#solutions amie+ remi p-remi speed-up #sol. amie+ remi p-remi speed-up

Standard 63 97.4k8 10.3k1 576 13.5kx, 2.44x 44 115.5k15 1.06k 76.2 142kx, 4.7x
REMI’s 65 508.2k68 66.5k8 28.9k 5218x, 21.4x 44 608.3k60 21.7k 33.8k 6476x, 7.1x

Table 3: REMI’s runtime (in seconds) on DBpedia andWikidata. Speed-ups are provided for P-REMI w.r.t. AMIE and REMI.

had more or less the same length when translated to natural lan-
guage, but the second one conveys less information and resorts
to a domain-unrelated entity (i.e., Buddhism). These observations
suggest that prominence captures the notion of simplicity, but it
does not always accurately model the dimension of informative-
ness. While these examples might discourage the use of existen-
tial variables in descriptions, we remark that users also liked REs
such as in(x ,Brittany) ∧mayor (x ,y) ∧ party (y, Socialist) (DBpe-
dia) for Rennes and Nantes, or actor (x ,y)∧ leader (y, Pisa) for the
Italian movie “Altri templi” (Wikidata), as they deemed the first
one quite pertinent, and the second one narratively interesting.
Other interesting REs from DBpedia include “she died of aplastic
anemia” for Marie Curie, and “they were both places of the Inca
Civil War” for Ecuador and Peru. Finally, we highlight the impact
of noise and incompleteness in the quality of the solutions. For
instance, REMI cannot describe France as the country with capi-
tal Paris, because Paris is also the capital of the former Kingdom
of France in DBpedia.

4.2 Runtime Evaluation
4.2.1 Opponent. RE mining can be conceptually formulated

as a rule mining task. Hence, we compare the runtime of REMI
and a state-of-the-art rule miner designed for large KBs, namely
AMIE+ [2]. Given thresholds on support and confidence, AMIE+
mines Horn rules of the form p (X ,Y ) ⇐

∧
1≤i≤n pi (Xi ,Yi ), such

as speaks(x , English) ⇐ livesIn(x ,UK ), on RDF KBs . The sup-
port of a rule is the number of facts correctly predicted by the
rule. If we normalize this measure by the total number of pre-
dictions made by the rule, we obtain its confidence. RE mining
for a target entity setT is equivalent to rule mining with AMIE+,
if we instruct the system to find rules of the formψ (x , True) ⇐∧

1≤i≤n pi (Xi ,Yi ), where ψ is a surrogate predicate with facts
ψ (t , True) for all t ∈ T . In this case, the right-hand side of the rule
becomes our RE. We set thresholds of |T | and 1.0 for support and
confidence respectively. This is because an RE should predict the
exact set of target entities, neither subsets nor supersets. AMIE+
does not define a complexity score for rules and outputs all REs
for the target entities, thus we use Ĉfr to rank AMIE’s output and
return the least complex RE.

4.2.2 Results. We compared the runtimes of REMI and AMIE+
on a server with 48 cores (Intel Xeon E2650 v4), 192GB of RAM4,
and 1.2T of disk space (10K SAS). We tested the systems on
100 sets of DBpedia and Wikidata entities taken from the same
classes used in the qualitative evaluation. Small sets of entities
are challenging in our setting, so we picked random sets of 1, 2,
and 3 entities of the same class in proportions of 50%, 30%, and
20%. We mined REs for those sets of entities according to (i) the
standard language bias of conjunctions of bounded atoms, and
(ii) REMI’s language of conjunctions of subgraph expressions.
We show the total runtime among all sets for AMIE+ and REMI
in Table 3. The values in red account for the number of timeouts
(for a limit of 2 hours), thus cells with red superscripts define

4AMIE assumes the entire KB fits to main memory

runtime lower bounds. We observe that AMIE+ already timed out
23 times with the state-of-the-art language. In particular, AMIE+
is optimized for rules without constant arguments in atoms, such
as livesIn(x ,y) ⇐ citizenOf (x ,y), thus its performance is heavily
affected when bound variables are allowed in atoms. In contrast
REMI and P-REMI are on average 3 and 4 orders of magnitude
(up to 142k times) faster than AMIE+ in this language. In the
worst case REMI was confronted with a space of 62 subgraph
expressions for the state-of-the-art language bias. For REMI’s
language bias, however, this number increased to 25.2k, which
is challenging even for REMI (8 timeouts in total). Despite this
boost in complexity, multithreading makes it manageable: P-
REMI can be at least 4.7x on average faster than REMI for the
extended language bias and at least 21x faster for the state-of-
the-art language, allowing for real-time RE mining. Finally, we
observe that the extended language bias slightly increases the
chances of finding a solution (column #solutions in Table 3) in
DBpedia. This phenomenon is more common among sets with
more than one entity.

5 CONCLUSION AND FUTUREWORK
In this work we have presented REMI, a method to mine intuitive
referring expressions on large RDF KBs. REMI builds upon the
observation that users prefer prominent entities in descriptions
and leverages this fact to quantify the intuitiveness of descrip-
tions in bits. Our results show that (1) real-time RE generation is
possible in large KBs and (2) a KB-based frequency ranking can
provide intuitive descriptions despite the noise in KBs. This latter
factor impedes the fully automatic generation of intuitive REs for
NLG purposes, however our descriptions are applicable to sce-
narios such as computer-aided journalism and query generation.
As future work we aim to investigate if external sources—such
as search engines or external localized corpora—can yield even
more intuitive REs that model users’ background more accurately.
We also envision to relax the unambiguity constraint to mine
REs with exceptions. We provide the source code of REMI as well
as the experimental data at https://gitlab.inria.fr/lgalarra/remi.
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ABSTRACT
One of the biggest challenges in data management is to retain
the high performance of in-memory processing with the ever in-
creasing data volumes. Recent years have shown that the amount
of collected data is increasing at a faster pace than DRAM capaci-
ties. Many state-of-the-art index data structures are optimized for
performance rather than for low space consumption and quickly
exceed the limited main-memory capacities when indexing larger
data sets. Succinct data structures on the other hand allow for
space efficient indexing, but compromise performance while still
being orders of magnitude faster than disk-based data structures.

In this work, we propose a novel framework that combines
state-of-the-art indexes with succinct data structures to form new
hybrid succinct data structures. These hybrids enable fine-grained
trade-offs between space and performance. Frequently accessed
parts of an index, e.g. the upper levels of a tree, are thereby
maintained in performance-optimized structures whereas less
frequently accessed parts have a space-optimized representa-
tion. Our evaluation shows that our approach can significantly
reduce the amount of used space by up to 50% (resp. 90% for
our compressed version) while retaining 93% (resp. 87%) of the
performance.

1 INTRODUCTION
Back in 2006, Jim Gray stated that memory is the new disk and
disk is the new tape [7]. This also applies to modern database
systems that store the entire data in random access memory
(RAM) to allow near real-time analyses for trading companies
and finance services. They need to efficiently process large data-
sets to react within a few milliseconds to new developments or
updates.

To achieve the required performance for near real-time data
processing, index structures such as B-trees, hash tables, tries,
amongst others are used to efficiently find specific elements. In
modern database systems, these index structures are also stored
in main memory and are most often highly optimized in terms
of performance and underlying hardware rather than space ef-
ficiency. However, while the main memory capacities tend to
double every three years and its costs decrease by a factor of 10
every five years, the data collected by sensors, smartphones, so-
cial media platforms, and IoT-devices increases at an even higher
rate resulting in data overflows [12]. This development requires
in-memory data structures to optimize both performance and
space.

In this paper, we focus on hierarchical indexes comprising
nodes and relationships between them, such as trees, tries, and
graphs, and distinguish two different types of data structures:
(1) Pointer Based Data Structures (PBDS): These state-of-the-

art data structures model relationships between elements

© 2020 Copyright held by the owner/author(s). Published in Proceedings of the
23rd International Conference on Extending Database Technology (EDBT), March
30-April 2, 2020, ISBN 978-3-89318-083-7 on OpenProceedings.org.
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Figure 1: We propose a novel framework that combines
state-of-the-art indexeswith succinct data structures. It al-
lows indexing even larger data sets entirely in main mem-
ory by taking advantage of space-efficient succinct in-
dexes. Furthermore, our hybrid index allows online adap-
tation to the actual OLAP workload by storing hot nodes
in performance-optimized structures.

explicitly using machine addresses. Traversing to another
node directly translates to a pointer resolution.

(2) Succinct Data Structures (SDS): These data structures en-
code relationships in the data implicitly using bitmaps and
still allow accessing nodes in constant time [13]. While SDS
tend to be smaller than PBDS, they are often slower since
traversing requires more complex operations [6].

So far, only a few SDS-based approaches, such as succinct
range filters [13] and tree-encoded bitmaps [9], have been suc-
cessfully applied to database systems, as modern PBDS tend to
offer much better performance. However, the explicit mainte-
nance of relationships in PBDS also consumes more space. Using
64-bit addresses may introduce significant overheads, since point-
ers theoretically allow for differentiating between 264 (more than
18 trillion) items, which is not required for most applications.
When indexing larger datasets, SDS become more interesting for
the case when PBDS do not fit into main memory anymore [6]
and would require staging parts of the data structure to disk.

We propose a new, lightweight framework that takes advan-
tage of both types of data structures and allows combining any
hierachical PBDS and SDS to a new hybrid index that consumes
less space than the PBDS and offers higher performance than the
SDS. It also allows online workload adaptation for use cases, in
which some elements tend to be more important than others and
get accessed more frequently.

The rest of this paper is organized as follows: In Section 2,
we present the foundations of succinct index structures as well
as the Fast Succinct Trie [13] which is used in our evaluation.
We also give a short overview of point-polygon joins, since our
evaluation is based on this use case. In Section 3, we present a
detailed overview of our approach. We evaluate our framework
for the real-world use case of geospatial point-polygon joins in
Section 4 and conclude with our next steps and future work in
Section 5.
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2 BACKGROUND
In this section, we present the foundations of succinct data struc-
tures and the Fast Succinct Trie, which is a succinct trie data
structure that almost achieves the performance of uncompressed
PBDSs [13]. We also discuss a state-of-the-art index for point-
polygon joins where we applied and evaluated our framework.

Succinct Data Structures. A data structure is called succinct if
its space is close to the information-theoretic optimum while
most basic operations are still executable in constant time. In
the literature, close is defined in different ways – we refer to a
data structure as succinct if it uses O(opt) bits, with opt being
the minimal number of required bits to represent the data and
its relationships.

As stated in Section 1, instead of explicitly modeling rela-
tionships between elements using machine addresses, this infor-
mation is encoded implicitly in bitmaps. Consider the trie data
structure in Figure 2 where each level encodes two bits and keys
are not a prefix of other keys. For a succinct encoding, we store
two bitmaps labels and hasChild that encode for each node label
(branch) 002, 012, 102, and 112 whether it exists and if there is a
following child node. E.g., when labels[4n + 2] is set, it indicates
that the n-th node contains the label 102. Then, all encoded nodes
are concatenated in breadth-first ordering resulting in the above
mentioned bitmaps (cf. labels and hasChild in Figure 2). We de-
fine rank(x) to count the number of set bits up and including
position x , and select(x) to return the index of the x-th set bit:

rank(x) =
i≤x∑
i=0

hasChild[i] (1)

select(x) = i , with rank(i) = x (2)

Based on rank and select, more complex operations for a noden
starting at position p can be defined. E.g., we can calculate the
position for the child node at label/branch x (3), and we can find
the position of n’s parent node (4) (assuming fixed-sized nodes
comprisingw bits) [13]:

child(x,p) = rank(x + p) ×w,with hasChild[x + p] = 1 (3)
parent(p) = select(⌊p/w⌋) (4)

As one can see in Figure 2, six bytes are sufficient to store the trie
structure and its relationships (excluding the values). However,
while succinct data structures optimize space, they tend to intro-
duce higher latencies than PBDS since resolving a neighboring
element involves multiple rank and select statements.

In 2018, Zhang et al. proposed a new data structure called Fast
Succinct Trie (FST) [13]. It almost achieves the performance of
state-of-the-art trie data structures such as the Adaptive Radix
Tree (ART) [10] but needs less space and allows for efficient value
compression. It internally uses a hybrid encoding scheme where
upper levels are represented similarly to the trie in Figure 2, and
lower levels store the data in a more compressed way by only
representing branches that actually exist. In Section 3, we apply
our framework to this data structure.

Efficient Point-Polygon Joins.Weapplied and tested our frame-
work for the use case of point-polygon joins according to the
approach introduced by Kipf et al. in 2020 [8]. Dynamic points get
joined with a static set of polygons using prefix lookups on one-
dimensional 64-bit keys. First, a given space (e.g. the minimum
bounding rectangle of the polygons, cf. green cell in Figure 3) is
recursively decomposed into smaller sub-cells. Then, the cells are
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Figure 2: Succinct encoding of a trie with maximum fan-
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Figure 3: Left: space decomposition into quadtree cells
that cover polygons a and b. Right: trie data structure in-
dexing the blue cells level-wise and the exemplary lookup
of point x.

enumerated (discretized) by a space-filling curve (e.g. the Hilbert
curve) and can be identified by one-dimensional keys. Each de-
composition divides a given cell into four smaller sub-cells for
which reason we store two bits per cell level that uniquely iden-
tify one of the four sub-cells. Up to 31 levels can be addressed by a
single 64-bit integer where the least significant set bit determines
the encoded level. Applied to the Earth’s surface, we can address
every single square centimeter within 64 bits [2].

As a next step, we compute for each polygon p a so-called
covering, which comprises a set of cells that cover p (cf. blue cells
in Figure 3). A specialized pointer-based radix trie with fan-out
four, called Adaptive Cell Trie (ACT), indexes the cells of all
combined coverings (refer to [8] for more details). When joining
an incoming point, we first transform the point to the smallest
cell level (in this case 31) and then use ACT to find matching
polygons using level-wise prefix checks. If a cell c1=0110 is prefix
of another cell c2= 01101101, then c2 is fully contained in c1.
E.g., the binary key for point z starts with 01 and we can already
detect at ACT’s root node rn that no polygon encloses the point
since the label 01 is not present in rn. For point x (1011. . . ), we
find the enclosing polygon a at level two (cf. exemplary lookup
in Figure 3). Point y is an example for a false positive match since
it is not enclosed by any polygon, but querying ACT indicates
thaty could be contained by polygon b. By this means, this point-
polygon join guarantees a precision which corresponds to the
diagonal of the largest cell that is not completely enclosed by a
polygon.

3 HYBRID SUCCINCT DATA STRUCTURES
We propose a new, lightweight framework that allows combining
any hierarchical PBDS and SDS level-wise to significantly reduce
the memory footprint, while retaining the performance at a large
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extent. Online workload adaptation supports branch-wise PBDS
refinements for use cases with skewedworkloads. Our framework
comprises four steps to build a new hybrid index structure for a
given dataset:

(1) Build the static, read-only SDS.
(2) Build the PBDS for the upper n levels.
(3) Connect the PBDS nodes at level n to the corresponding child

nodes in the SDS (e.g. by using pointer tagging).
(4) Extend the PBDS interface by two operations to allow branch-

wise online workload adaptation:
(a) expand(node): Frequently accessed nodes are encoded

in the faster PBDS when a specified threshold is exceeded.
(b) compact(node): Colder nodes (under the threshold) are

compacted, removed from PBDS and indexed in SDS only.

In our approach, we exploit the fact that real-world workloads
tend to be skewed and therefore, we periodically evaluate the
actual queries at runtime to determine frequently accessed nodes.
For a node n whose accesses exceed a predefined threshold t , we
call expand(n) to add n to the faster PBDS. In the case that the
accesses to n precede t , we simply remove n from the PBDS.

Since all queries start at the upper levels of a hierarchical data
structure, we encode the frequently queried upper levels l using
the performance-optimized PBDS and connect it level-wise to
the SDS. Furthermore, the upper levels represent only a small
fraction of the overall data structure and encoding them as PBDS
may not have a noticeable impact on the total size. In contrast
to branch-wise refinements, level-wise cutoffs do not introduce
additional branch misses since we do not have to differentiate
between PBDS and SDS references before reaching level l .

We deliberately accept that common parts are stored redun-
dantly as it allows the PBDS to become a dynamic meta index
structure for the static SDSwhere lightweight refinements do affect
only the dynamic PBDS. Despite the introduced redundancy, our
framework focuses on minimizing the memory overhead while
our secondary goal is keeping the read overhead as small as pos-
sible. In accordance with the RUM conjecture by Thanassoulise
et al. [5], "there is always a price to pay for every optimization",
as our approach does not handle updates efficiently so far.

To the best of our knowledge, this is the first approach that
applies tuneable level-wise cutoffs combined with branch-wise
workload adaptations to hybrid succinct index structures. In con-
trast to the proposed framework by Zhang et al. in 2016 [11], we
completely avoid searching redundant parts of the key space by di-
rectly pointing from PBDS into SDS using pointer tagging. While
Zhang’s approach is optimized for OLTP workloads where re-
cently inserted tuples are assumed to be accessed more frequently
and therefore are kept in the dynamic structure, we do not rely
on this assumption but rather adapt to the actual workload at
runtime using fine-grained branch-wise refinements. Addition-
ally, we connect PBDS and SDS level-wise, whereas Zhang et al.
completely separate both indexes tuple-wise.

Prefix Lookups Based on ACT and FST. In the following, we
explain our framework using the Adaptive Cell Trie [8] as PBDS
and the Fast Succinct Trie [13] as SDS and apply them to the use
case of point-polygon joins as introduced in Section 2.

Given: We start with a set of polygons and its coverings that
were calculated according to the aforementioned approach in
Section 2. The coverings contain unique cell keys where each cell
key is represented by a uint64_t and for each key, the referenced
polygon(s) are stored in an uint64_t-payload (value).
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Figure 4: Initial hybrid trie with a threshold of 0.4 and
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ter expanding FST node 2 and indexing it in ACT (right).

Step 1: First, we adapted the FST to store two bits per level
(instead of a byte) so that one trie level stores exactly one cell
level (cf. Figure 3). The trie indexes the 64-bit cell keys up to the
cell level while the remaining, unused levels are ignored.

In addition to our framework, we compressed the values using
run-length encoding. In this use case, neighboring cells are likely
to cover the same polygon(s) and thereby share the same polygon
reference (value). These values occur directly one after the other
in the values vector and offer a high compression potential.

Step 2: As PBDS, we use the Adaptive Cell Trie [8] where
one trie level also stores exactly one cell level. Each ACT node
comprises an array of four 64-bit tagged pointers resulting in an
overall size of 256 bits per node. The left trie depicted in Figure 4
stores the cell keys {1011, 110011, 1101, 111000} and shows an
ACT encoded root node while the remaining levels are encoded
in the FST.

Step 3: We connect ACT and FST by inlining the required
information in the ACT pointers. Since pointers do not use the
entire 64 bits for memory addressing, we can use the two least
significant bits to differentiate whether (i) the pointer stores a
memory address for an ACT child node, (ii) a referenced polygon
id (value) or (iii) an offset into the FST. In the case a label does
not exist in a node, we just store a nullpointer.

Step 4: We extended the ACT interface by two functions
expand and compact and stored four access counters for each
node (cf. ACT-encoded root node in the left part of Figure 4). Dur-
ing runtime, we periodically determine the number of accesses
and after a pre-defined number of lookups, we add those nodes
whose access counters exceed a given threshold t to the candidate
set. Then, we start expanding the candidate nodes and add them
to ACT until the candidate list is empty or a givenmemory bound
would be exceeded. E.g., node 2 in Figure 4 gets expanded since
its relative access counter 0.63 exceeds the threshold of 0.4.

4 EVALUATION
We applied our framework to the use case of point-polygon joins
(cf. Section 2). First, we will evaluate the performance of our hy-
brid trie and compare it against other data structures. Then, we
will discuss the impact of workload adaptation on the overall per-
formance and index structure size. Additionally to our approach,
we will show a hybrid trie that compresses the values.

We use a real-world data set containing 289 neighborhoods
(polygons) in New York City and join them with 1.23 billion
publicly available taxi pickup locations (points) for the years
2009 to 2016 [4]. We calculate the cell coverings for the polygons
as described in Section 2. Then, we use different index structures
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that store the combined covering which contains approximately
14 million cells.

We conduct the experiments on a 14-core Intel Xeon E5-2680
v4 CPUs equipped with 256GB DDR4 RAM and we compile with
GCC 5.4.0 and optimization level O3. Besides ACT and FST, we
compare our Hybrid Trie (HT) to the following data structures:
the Google B-tree (GBT) [1], the STX B+ Tree (B+) [3], and the
std::lower_bound algorithm (LB).

Comparing to Other Data Structures. In Figure 5, we show
different data structures and their space consumption in MiB
for indexing 14 M uint64_t-keys on the y-axis. Then, we query
1.23 B keys and denote the performance in M/s on the x-axis.

While LB achieves the lowest throughput (4.78 M/s), the use-
case optimized ACT allows querying more than 18.75 M entries
per second. The most space is used by the B+ tree (535 MiB) and
the most space-efficient index structure is the workload-adaptive
hybrid trie with enabled run-length encoding for the payloads.
While GBT uses internal node compression techniques and B+
uses approximately twice the space, they achieve comparable
performance (7.98 and 8.10 M/s).

As expected, the performance of the hybrid trie with level-wise
cutoff (13.27 M/s) is located in between FST (10.09 M/s) and ACT
(18.75 M/s), while the required space (113.71 MiB) is increased
by a negligible amount of 0.007% compared to FST (113.70 MiB,
ACT uses 223.65 MiB).

Analyzing Workload Adaptation. In Table 1, we depict the
evaluation results for the workload adaptive hybrid tries with dif-
ferent level-wise cutoffs and thresholds t . A cutoff level cl means
that the upper cl levels are encoded as ACT and the remaining
levels are encoded as FST. A node n whose relative accesses ex-
ceed t gets expanded and added to ACT, whereas n gets removed
from ACT if its relative accesses precede t . These updates can be
performed periodically after a specified amount of time. Entries
without a given threshold (-) refer to a non workload-adaptive hy-
brid trie. The ACT-encoded part has a negligible influence on the
total HT size (1.01% for cl = 11) and with increasing cutoff levels,
the performance impact of the workload adaptation decreases.

For the presented use case, online workload-adaptation works
well since taxi pickup locations are skewed (e.g. there are many
pickups at the airport and the main train station). The last column

Table 1: Space and performance metrics for the workload-
adaptive hybrid tries. With increasing cutoff level and
decreasing threshold, the performance increases signifi-
cantly while the size overhead remains negligible.

Cutoff
Level

Refinement
Threshold [%]

Size Overhead
To FST [%]

TP [M/s]
(Perf. of ACT)

ACT-only
Lookups [%]

1 - 0.001 10.32 (55%) 0.00
1 1 0.004 14.30 (76%) 31.25
1 0.5 0.008 14.58 (78%) 44.13

6 - 0.007 12.83 (68%) 0.41
6 1 0.009 13.42 (72%) 31.42
6 0.5 0.013 14.65 (78%) 44.30

11 - 1.020 17.28 (92%) 78.13
11 1 1.020 17.27 (92%) 78.13
11 0.5 1.020 17.28 (92%) 78.13

of Table 1 shows the percentage of queries that can be answered
directly by the refined ACT without entering the FST.

Further Compression Techniques. As discussed in Section 2,
most succinct data structures store the payloads in a separate data
structure which allows for further compression. We applied run-
length encoding to the payloads which results in a compression
ratio of 19,74 (114856 MiB / 5819MiB) while the performance
of 16.24M lookups per second is still comparable to ACT. The
hybrid trie uses only 2.6% of ACT’s space while it retains 86.6% of
its performance. By this means, the hybrid trie is smaller by two
orders of magnitude while it achieves comparable performance
to ACT. Note that our approach is not limited to run-length
encoding but can of course be combined with any compression
technique (e.g. dictionary encoding).

5 CONCLUSIONS AND FUTUREWORK
While our framework achieves good results for the presented use
case, it is still an ongoing work in progress. As a next step, we will
apply the framework to other use cases such as prefix lookups for
strings and other index structures. We also plan to implement a
duplicate-free hybrid trie and apply different compression tech-
niques to the values.
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ABSTRACT
The importance of incorporating ethics and legal compliance
into machine-assisted decision-making is broadly recognized.
Further, several lines of recent work have argued that critical
opportunities for improving data quality and representativeness,
controlling for bias, and allowing humans to oversee and impact
computational processes are missed if we do not consider the
lifecycle stages upstream from model training and deployment.
Yet, very little has been done to date to provide system-level sup-
port to data scientists who wish to develop responsible machine
learning methods. We aim to fill this gap and present FairPrep,
a design and evaluation framework for fairness-enhancing in-
terventions, which helps data scientists follow best practices in
ML experimentation. We identify shortcomings in existing em-
pirical studies for analyzing fairness-enhancing interventions
and show how FairPrep can be used to measure their impact.
Our results suggest that the high variability of the outcomes of
fairness-enhancing interventions observed in previous studies is
often an artifact of a lack of hyperparameter tuning, and that the
choice of a data cleaning method can impact the effectiveness of
fairness-enhancing interventions.

1 INTRODUCTION
While the importance of incorporating responsibility — ethics
and legal compliance — into machine-assisted decision-making
is broadly recognized, much of current research in fairness, ac-
countability, and transparency focuses on the last mile of data
analysis — on model training and deployment. Several lines of
recent work argue that critical opportunities for improving data
quality and representativeness, controlling for bias, and allowing
humans to oversee and influence the process are missed if we do
not consider earlier lifecyle stages [5, 9, 10, 15]. Yet, very little
has been done to date to provide system-level support for data
scientists who wish to develop and evaluate responsible machine
learning methods. In this paper we aim to fill this gap.

We build on the efforts of Friedler et al. [4] and Bellamy et
al. [1], and develop a generalizable framework for evaluating
fairness-enhancing interventions called FairPrep. FairPrep im-
plements a modular data lifecycle, enables the re-use of existing
implementations of fairness metrics and interventions, and the
integration of custom feature transformations and data cleaning
operations from real world use cases. Our framework currently
focuses on data cleaning (including different methods for data
imputation), and model selection and validation (including hyper-
parameter tuning), and can be extended to accommodate earlier
lifecycle stages, such as data integration and curation.
∗This work was supported in part by NSF Grants No. 1926250 and 1934464, and by
the Moore-Sloan Data Science Environment at New York University.
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FairPrep by example. Consider Ann, a data scientist at an on-
line retail company who wishes to develop a classifier for de-
ciding which payment options to offer to customers. Based on
her experience, Ann decides to include customer self-reported
demographic data together with their purchase histories. Follow-
ing her company’s best practices, Ann will start by splitting her
dataset into training, validation, and test sets. Ann will then use
pandas, scikit-learn, and the accompanying data transformers to
explore the data and implement data preprocessing, model selec-
tion, tuning, and validation. She will identify missing values, and
fill these in using a default interpolation method in scikit-learn,
replacing missing values with the most frequent value for that
feature. Finally, following the accepted best practices at her com-
pany, Ann implements model selection and tuning. She identifies
several classifiers appropriate for her task, and then tunes hyper-
parameters of each classifier using k-fold cross-validation. As a
result of this step, Ann selects a classifier that shows acceptable
accuracy, while also exhibiting sufficiently low variance.

No fairness issues were explicitly surfaced in Ann’s workflow
up to this point. This changes when Ann considers the accuracy
of the classifier more closely, and observes a disparity: the accu-
racy is lower for middle-aged women, and for female customers
who did not specify their age as part of their self-reported de-
mographic profile. Ann goes back to data analysis and observes
that the value of the attribute age is missing far more frequently
for female users than for male users. Further, she compares age
distributions by gender, and notices differences starting from
the mid-thirties. Ann hypothesizes that age is an important clas-
sification feature, revisits the data cleaning step, and selects a
state-of-the-art data imputation method such as datawig [2] to
fill in age (and other missing values) in customer demographics.

Having adjusted data preprocessing to reduce error rate dis-
parities, Ann is now faced with several related challenges:
• How should the data processing pipeline be extended to incor-
porate additional fairness-specific evaluation metrics?

• How can the effects of fairness-enhancing interventions be quan-
tified and judiciously validated? These interventions may range
from an improved data cleaning method that helps reduce vari-
ance in the outcomes for a demographic group, to a fairness-
aware classifier, and they may be incorporated at different
pipeline stages.

• How does one continue to follow best practices for ML evalu-
ation when incorporating fairness considerations into these
pipelines? For example, how does Ann ensure an appropri-
ate level of isolation of the test set, and how does she tune
hyperparameters in light of additional objectives?
To address these challenges, Ann will turn to existing develop-

ment and evaluation frameworks: that by Friedler et al. [4] and
IBM’s AIF360 [1]. While these frameworks are certainly a good
starting point, they will unfortunately fall short of meeting Ann’s
needs because they (1) are designed around a small number of
academic datasets and use cases, (2) lack the flexibility to inte-
grate additional data preprocessing steps that are a crucial part
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Figure 1: Data life cycle in FairPrep, designed to enforce isolation of test data, and to allow for customization through
user-provided implementations of different components. An evaluation run consists of three different phases: (1) Learn
different models, and their corresponding data transformations, on the training set; (2) Compute performance / accuracy-
related metrics of the model on the validation set, and allow the user to select the ‘best’ model according to their setup;
(3) Compute predictions and metrics for the user-selected best model on the held-out test set.

of existing machine learning pipelines, and (3) are not designed
to enforce best practices.

This paper makes the following contributions:

• We discuss shortcomings and violations of sound experimen-
tation practices in existing empirical studies and software for
analyzing fairness-enhancing interventions (Section 2).

• We propose FairPrep, a design and evaluation framework that
promotes data to a first-class citizen in fairness-related stud-
ies (Section 3).

• We demonstrate how FairPrep can be applied to illustrate the
impact of violations of best practices of ML experimentation,
and how it enables the inclusion of incomplete data into studies,
which is not supported by existing frameworks (Section 4).

In what follows, we briefly describe these contributions, see
our technical report for additional information [14]. FairPrep is
open-sourced at https://github.com/DataResponsibly/FairPrep.

2 SHORTCOMINGS OF PREVIOUS WORK
We inspect the code base of an existing study [4] and of an
evaluation framework [1] for fairness-enhancing interventions,
and identify a set of shortcomings and violations of best practices
that potentially invalidate some the findings of these studies.
Insufficient isolation of held-out test data. A major require-
ment for the evaluation of ML algorithms is to simulate real world
scenarios as closely as possible. In the real world, we train our
model (and select its hyperparameters) on observed data from the
past. This model is later used to make predictions for unseen tar-
get data for which the ground truth is unknown. To emulate this
real-world deployment scenario, we evaluate the trained model
on a test set that was randomly sampled from observed historical
data. It is crucial that this test set be completely isolated from the
process of model selection, which, consequently, is only allowed
to use the training data (the remaining, disjunct observed histor-
ical data). Unfortunately, we encountered violations of the test
set isolation requirement in the existing benchmarking frame-
work by Friedler at al. [4], bringing into question the reliability
of reported study results. Further, we found that the architecture
of the IBM AIF360 toolkit [1] does not support data isolation best
practices for feature transformation.

Hyperparameter selection on the test set. Grid search for hy-
perparameters1 of fairness-enhancing models and interventions
in [4] computes metrics for all hyperparameter candidates on the
test set, and returns the candidate that gave the best performance.
This strongly violates the isolation requirement. Instead, an eval-
uation procedure should maintain an additional validation set to
select hyperparameters, and only evaluate prediction quality of
the resulting single best hyperparameter candidate on the test
set, to measure how well the model generalizes on unseen data.
Lack of hyperparameter tuning for baseline algorithms.
We additionally found that the study by Friedler et al. [4] did not
tune the hyperparameters of the baseline algorithms2 for which
pre-processing and post-processing interventions are applied,
even though they tuned the hyperparameters of the fairness
interventions. This is problematic because there is no guarantee
that the baseline algorithm will converge to a good solution with
the default parameters. Friedler et al. [4] found a high variability
of the fairness and accuracy outcomes with respect to different
train/test splits, which could be an artifact of the described lack
of hyperparameter optimisation.
Lack of feature scaling. We observed that both existing frame-
works [1, 4] do not normalise the numeric features of the input
data, but keep them on their original scale. While some ML mod-
els such as decision trees are insensitive to feature scaling, many
other algorithm components, such has the L1 and L2 regularizers
of linear models, implicitly rely on standardized features.
Removal of records with missing values. Another point of
critique is that the study of Friedler et al. [4] ignored records
with missing values (by removing them before running experi-
ments), which means that the study’s findings do not necessarily
generalize to data with quality issues. Thereby, existing frame-
works are unable to investigate the effects of fairness enhancing
interventions on records with missing values, which could be es-
pecially important for cases where a protected group has a higher
likelihood of encountering missing values in their data [8].

1https://github.com/algofairness/fairness-comparison/blob/
4e7341929ba9cc98743773169cd3284f4b0cf4bc/fairness/algorithms/
ParamGridSearch.py#L41
2https://github.com/algofairness/fairness-comparison/tree/
35fb53f7cc7954668eeee28eac5fb20faf89b3d8/fairness/algorithms/baseline
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Figure 2: Impact of hyperparameter tuning on the accuracy and fairnessmetrics of logistic regressionmodels (in combina-
tion with various preprocessing and postprocessing interventions) on the germancredit dataset. Hyperparameter tuning
(red dots) often results in higher accuracy and reduced variance of the fairness outcome compared to no tuning (gray dots).

3 FRAMEWORK DESIGN
The identified shortcomings motivate us to propose FairPrep, an
evaluation and experimentation framework.
Design principles. We implement FairPrep on top of scikit-
learn [11] and AIF360 [1], and design it based on two principles:
(i) Data isolation — to avoid target leakage, user code should only
interact with the training set, and never access the held-out test
set. User code can train models or fit feature transformers on the
training data, which will be applied by the framework to the test
set later on. The framework should furthermore especially take
care of data with quality problems. For example, it should allow
experimenters to quantify the effects of their code on records
with missing values by computing metrics and statistics sepa-
rately for these records. (ii) Explicit modeling of the data lifecycle
— the evaluation framework defines an explicit, standardized data
lifecycle that applies a sequence of data transformations and
model training in a particular, predefined order. Users influence
and define the lifecycle by configuring and implementing particu-
lar components. At the same time, the framework should support
users in applying best practices from ML experimentation.
Data lifecycle. Figure 1 illustrates the data lifecycle during the
execution of a run of FairPrep: 1○ Model selection on the training
set and validation set: we train different models on the training
data, where we apply the following consecutive steps: (i) resam-
pling of training data (e.g., bootstrapping or balancing, optional);
(ii) treatment of records with missing values (either removal or
imputation); (iii) feature transformation (e.g., scaling of numeric
values, one-hot encoding of categorical values); (iv) potential
application of a preprocessing intervention; (v) model training
using grid search; (vi) computation of predictions on the train
and validation set; (vii) potential application of postprocessing
intervention to predictions from train and validation set. 2○ User-
defined choice of the best model: Users can choose between the
explored models based on accuracy-related and fairness-related
metrics computed on the validation set, trading these off as ap-
propriate in their context. 3○ Application of the best model on
the test set: The user-selected best model (and its corresponding
data transformations) are finally applied to the test set, and the
resulting accuracy of fairness are reported by FairPrep.

4 EXPERIMENTAL EVALUATION
We now demonstrate how FairPrep can be used to showcase
one of the shortcomings from Section 2, and how it enables

experimentation on incomplete data. For all experiments, data is
randomly split into 70% training, 10% validation, and 20% test.
Impact of hyperparameter tuning on the variability of ac-
curacy and fairness. In the first experiment, we aim to investi-
gate the effect of the lack of hyperparameter tuning of baseline
models during experimentation (as discussed in Section 2).

For consistencywith Friedler et al. [4], we use the germancredit
dataset3, which contains 20 demographic and financial attributes
of 1000 individuals, including the sensitive attribute sex. The task
is to predict each individual’s credit risk. We use two baseline
models (logistic regression and decision tree) in two different
variants each: (i) without hyperparameter tuning, where we just
use the default hyperparameters of the baseline model; (ii) with
hyperparameter tuning, where we apply grid search (over 3 reg-
ularizers and 4 learning rates for logistic regression; over 2 split
criteria, 3 depth params, 4 min samples per leaf params, 3 min
samples per split params for the decision tree) and five-fold cross
validation on the training data. We apply three different fairness-
enhancing interventions that preprocess the data: ‘disparate im-
pact remover’ (‘di-remover’ in the plots) [3] with repair levels
0.5 and 1.0, and ‘reweighing’ [6]. Additionally, we experiment
with two fairness-enhancing interventions that post-process the
predictions: ‘reject option classification’ [7] and ‘calibrated equal
odds’ [12]. We use 16 different random seeds and execute 1,344
runs in total. We report metrics computed from predictions on
the held-out test set.
Results. We plot the results of this experiment in Figure 2, where
we show the resulting accuracy and several fairness related mea-
sures4 between the privileged and unprivileged groups, includ-
ing disparate impact (DI), the difference in false negative rates
(FNRD), and the difference in false positive rates (FPRD). The red
dots denote the outcome when we apply hyperparameter tuning
to the baseline model, while the gray dots denote the outcome
using the default model parameters, without tuning. We observe
a large number of cases where the tuned variant results in both a
higher accuracy and a lower variance in the fairness outcome. Ex-
amples are (i) accuracy and disparate impact for the ‘di-remover’
and ‘reweighing’ interventions in Figure 2(a), (ii) accuracy and
false negative rate difference for ‘di-remover’ in Figure 2(b); and
(iii) accuracy and false positive rate difference for ‘di-remover’
in Figure 2(c). We obtained similar results for the decision tree
model and omit the corresponding plots due to lack of space.

3https://archive.ics.uci.edu/ml/support/Statlog+(German+Credit+Data)
4We plot these measures regardless of whether the intervention optimizes for them.
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Our results indicate that the high variability of the fairness
and accuracy outcomes with respect to different train/test splits
observed by Friedler et al. [4] may be an artifact of the lack of
hyperparameter tuning of the baseline models in these studies.
Enabling the inclusion of incomplete data. Next, we show-
case how FairPrep can be used to quantify the effect of including
records with missing values into an experimental study. These
records are commonly filtered out in other studies and toolkits,
as discussed in Section 2.

We use the adult dataset5 for this experiment, with a total
of 32,561 instances and 14 attributes, including the sensitive
attributes race and sex, and 2,399 instances with missing values.
The task is to predict whether an individual earns more or less
than $50, 000 per year. Fairness evaluation is conducted between
the privileged group of white individuals (85% of records) and the
underprivileged group of non-white individuals (15% of records).

Of the 14 attributes, three have missing values — workclass,
occupation, and native-country. Based on our analysis, miss-
ing values do not occur at random, as the records with missing
values exhibit very different statistics than the complete records.
For example, the positive class label (high income) is associ-
ated with 24% of the complete records, but with only 14% of
the records with missing values. Additionally, married individ-
uals are in the vast majority in the complete records, while the
most frequent marital-status among the incomplete records
is never-married. Furthermore, the records with missing values
from the privileged group are very different from the records
with missing values from the underprivileged group. For exam-
ple, the attribute native-country is missing four times more
frequently for non-white individuals than for white individuals.
Among the incomplete privileged records, 15% are associated
with a high income, the second largest age group consists of 60 to
70 year-olds, and the majority of the individuals is married. For
the incomplete records from the underprivileged group, however,
only 10.6% have a high income, there are very few individuals
over 60, and the majority of the individuals is unmarried.

We use logistic regression as the baseline learner, with hyper-
parameter tuning analogous to previous experiments. As before,
we apply two fairness enhancing interventions that preprocess
the data: ‘disparate impact remover’ [3] and ‘reweighing’ [7]. We
use three strategies to treat missing values: (i) complete case
analysis, removing incomplete records; (ii) retain all records
and impute missing values with ‘mode imputation’6 (replace a
missing value with the most frequent value for that feature);
(iii) retain all records and apply model-based imputation with
datawig [2]. We execute 530 runs and report metrics computed
on the held-out test set.
Results. We investigate the classification accuracy for complete
and incomplete records, under imputationwithmode and datawig.
First, we observe that records with imputed values achieve high
accuracy. This is a significant result, since these records could
not have been classified at all before imputation! Interestingly,
we observe higher accuracy for records with missing values com-
pared to the complete records. Based on our understanding of
the data, we attribute this to the higher fraction of (easier to clas-
sify) negative examples among the incomplete records. Further,
we do not observe a significant difference in accuracy between
mode imputation and datawig. We attribute this to the skewed
distribution of the attributes to impute — a favorable setting for

5https://archive.ics.uci.edu/ml/datasets/adult
6https://scikit-learn.org/stable/modules/generated/sklearn.impute.SimpleImputer

mode imputation. Because datawig does no worse than mode,
and is expected to perform better in general [2], we only present
results for datawig-based imputation in the final experiment.

We compute the accuracy and disparate impact of complete
case analysis (e.g., the removal of incomplete records) versus the
inclusion of incomplete records with datawig imputation. We
observe a minimally higher accuracy in the case of including
incomplete records, but in general find no significant positive or
negative impact on disparate impact. Taken together, the results
paint an encouraging picture: Imputation allows us to classify
records with missing values, and do so accurately, and it does
not degrade performance, either in terms of accuracy or in terms
of fairness, for the complete records.

5 CONCLUSION
We identified shortcomings in existing empirical studies on fairness-
enhancing interventions. Subsequently, we presented the design
of our evaluation framework FairPrep. This framework empow-
ers data scientists to conduct experiments on fairness-enhancing
interventions with low effort, and at the same time enforces ma-
chine learning best practices. We demonstrated how FairPrep can
be used to measure the impact of a lack of hyperparameter tun-
ing, and how it enables the inclusion of incomplete data. We aim
to extend FairPrep by integrating additional fairness-enhancing
interventions [13], datasets, preprocessing techniques, and fea-
ture transformations. Additionally, we intend to extend its scope
to scenarios beyond binary classification, and introduce human-
in-the-loop elements by providing visualisations and allowing
end-users to control experiments with low effort.

This paper is supplemented by a technical report [14]. FairPrep
is open-sourced at https://github.com/DataResponsibly/FairPrep.
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ABSTRACT
In this paper, we propose delta trees to boost efficiency and re-
duce storage requirements of iterative data exploration and data
wrangling tasks over massive, semi-structured datasets. During
such tasks, data is filtered, projected, joined, and converted in
multiple successive or independent steps, driven by data scien-
tists or higher-level applications. While the original datasets can
often not be disposed, delta trees are necessary to represent only
the changes to the original data, instead of creating largely re-
dundant copies. With delta trees, we are able to reduce storage
requirements and query execution time for various data manipu-
lation operations, while maintaining acceptable query times for
others. We report on a first experimental study over a dataset of
Twitter tweets, showing that the expected vast savings of stor-
age consumption can be enjoyed with negligible computational
overhead compared to a full data duplication.

1 INTRODUCTION
In recent years, the interest in semi-structured file formats steadily
increased. Arguably, one of the most visible data formats is JSON,
which eliminates the need to force data into relations and is de-
signed to be human-readable. It has been adopted by various
platforms and systems, for instance, for data exchange through
APIs, to store system access logs, or configuration files. Common
operations in semi-structured document processing are adding,
removing, and moving values. Consider for instance the case
of data scientists working on a large sample of Twitter tweets.
While some first extract textual content and geo-coordinates of
Canadian tweets written in French they later observe that also
the author of the tweet is required, others need to convert the
original schema (attribute names) to match their existing data
visualization libraries. To execute these operations, systems have
to either edit the original document, or perform the operation
on a copy. The first option may not always be possible, if the
base documents are to be used in future processing steps or by
multiple data scientists working in parallel. The second option is
undesirable, because it introduces a huge overhead regarding per-
formance and memory usage, for copying the documents. In this
paper, we propose a novel way to store changes made to original
documents, leading to a vastly reduced memory footprint and
an even improved querying performance for some query types,
while having a modest performance overhead for others.

1.1 Sketch of the Approach and Related Work
The concept of late materialization [1] is used to push back ma-
terializations of (intermediate) results until they are needed. For

© 2020 Copyright held by the owner/author(s). Published in Proceedings of the
23rd International Conference on Extending Database Technology (EDBT), March
30-April 2, 2020, ISBN 978-3-89318-083-7 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.
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Figure 1: Example of base document with a delta tree

this to work, the system has to store the queries, or similar in-
formation, and the base data. The result is then calculated on
demand as soon as it is required.

Our approach also aims to reduce the amount of unnecessary
transformations of the base data. But instead of storing the op-
erations that lead to the result, we calculate the difference (or
delta) of the transformations, compared to the base data and
only store this new information, with a reference to the base
document. Almeida et al. already proposed a map as Conflict-free
Replicated Data Type (CRDT) [2], which can be synchronized by
sending delta changes of the modification action to replicated
instances. This data type can also be nested and JSON documents
can be translated to and from nested maps. But the computa-
tional overhead required for conflict-free synchronization is too
large for our use case. Generally, the concept of extracting or
storing deltas from semi-structured documents has been inves-
tigated before [3, 6, 7]. It has also been applied in the context
of relational database systems to compact historical data [4, 5].
However, in contrast, we store the changes made by incremental
data modification operations, in order to improve the memory
consumption.

2 DELTA TREES
Figure 1a visualizes the tree representation of one semi-structured
document. It consists of (nested) objects containing attributes,
with atomic data. Now, a query may transform this base docu-
ment by deleting the “D” attribute of the root object, changing
the atomic data within the “B” attribute, and adding an additional
member to the “A” object. Instead of storing the complete trans-
formed document, we only store the changed parts of the tree,
as shown in Figure 1b. In this example, the changed “B” member
and additional “E” attribute is stored, together with the required
parent structure (in this case the root node and “A” object).

Additionally, we keep track of all paths within the tree that
have been changed. A path is an ordered list of tokens, identi-
fying all nodes that have to be traversed to arrive at a desired
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destination. In this example, the changed paths would be “/A/B”,
“/A/E”, and “/D”. This information is sufficient to reconstruct the
complete transformation result as shown in Figure 1c.

The benefits of this approach may not be immediately evident
from the given example. But in real world data sets, documents
having hundreds of attributes, distributed over many nested ob-
jects, are very common. If a transformation query only modifies
a couple of nodes, storing the complete transformation result
clearly is unnecessary—and modifying the original data is often
prohibited.

2.1 Reconstructing Combined Documents
Given a base tree B and a delta tree D, with the overwritten paths
P , we may need to construct the complete result document tree R
to return to the user. This is achieved by simultaneously iterating
through both trees in a depth-first manner. Starting at the root
of the trees, for every unique path p in both trees, there are now
five possibilities:

(1) ∃nB ∈ B and ∃nD ∈ D belonging to p
(a) p ∈ P ⇒ the path is overwritten in D, hence, we only

continue traversing nD for this sub-tree.
(b) p < P ⇒ the path is shared between B and D, thereby,

we continue traversing both nB and nD .
(2) ∃nB ∈ B and ∄nD ∈ D belonging to p
(a) p ∈ P ⇒ the path was removed by the transformation

and we do not continue traversing this sub-tree.
(b) p < P ⇒ the node is not materialized, but still valid,

thus, we continue traversing nB .
(3) ∄nB ∈ B and ∃nD ∈ D belonging to p, it must thereby be

added by D and we only traverse nD .
The result is constructed by traversing B and D as above and

adding all visited nodes to R.

2.2 Delta Hierarchies
There can be multiple delta trees, which reference the same base
tree, in which case the memory savings introduced by delta
trees are magnified. Additionally, delta trees may be based on
other delta trees. Given (B,D1, ...,Di , ...,Dn ), where B is the base
document, and Di are delta trees, each based on the previous
tree. This is called a delta hierarchy. The result document R1,
of B and D1 may be constructed as shown in Section 2.1. To
construct the result document Ri , the same algorithm would then
be executed with Ri−1 as base tree and Di as delta tree. In case
of larger hierarchies, this naïve execution is suboptimal. Instead,
we perform the reconstruction algorithm for all trees at the same
time, by traversing the whole delta hierarchy simultaneously. For
each unique path p in the delta hierarchy, starting at the root: If
p exists only in one tree, we follow only this subtree. If p exists
in multiple trees, we use the value of the uppermost delta tree, in
case of atomic values. In case of objects, whose child attributes
are distributed over multiple tree, we continue traversing all
affected trees.

3 ARCHITECTURE AND ALGORITHMS
We implemented our approach in our in-house JSON exploration
system JODA, written in C++. This system uses the RapidJSON
(http://rapidjson.org/) parser, which uses a DOM-tree in-memory
representation to store the parsed JSON documents—the exten-
sion to XML and YAML is straightforward.

Documents provided to the system are organized in so-called
collections, for instance, a collection of Twitter tweets and a

collection of blog posts. All documents within a collection are
organized into a number of containers. Each container is a self-
contained unit, which includes all required information to per-
form a query upon. After creation, these containers are immutable
to make the query execution free of any synchronization over-
head.

Queries are simple PIG-style sequences of commands. To be-
gin, a collection can be chosen and data can be imported into the
system by the LOAD step. This data is then passed to the CHOOSE
command, which may filter the data depending on a given pred-
icate. The filtered documents may then be transformed in the
AS step, by using an arbitrary amount of transformation instruc-
tions, in the form of (<destination>:<source>) tuples, where
the destination is a path in the new document, and the source can
be any supported function or a path in the base document. The
transformed documents are then passed to the AGG command for
aggregation and may finally stored in a collection or exported
into a file with the STORE expression.

3.1 Construction
The AS instruction also supports the special * operator, which
copies the whole source document. This operator may be com-
bined with additional transformations to change the source doc-
ument. If the system detects this combination, delta trees may
be used to perform this transformation.

In this case, the system will first create the support structure,
by instantiating an empty delta tree with a pointer to the base
document, which may also be a delta tree. Each additional trans-
formation is then executed and the result materialized in the
newly created delta tree. Additionally, the <destination> point-
ers form the explicitly overwritten paths and are stored with the
tree, as described in Section 2. These paths will be the same for
all delta trees that are created by a given query. We can therefore
store them once in the—previosuly introduced—container class,
as it includes all data that may be shared by its documents. Now, a
delta hierarchy is given by following the base document pointers
from any given delta tree to the bottom.

3.2 Reconstruction
To reconstruct the result document we created a visitor class,
which implements the idea described in Section 2.1–2.2. This
visitor class simultaneously traverses the delta hierarchy as de-
scribed. This basic visitor class is then extended to fulfill different
needs, like materializing the final result documents or accessing
specific subtrees for query evaluation.

Our system preserves the order of members within a JSON
object, which is not required by the standard itself. Thereby we
have to adapt the traversing algorithm described previously as
follows:

Algorithm 1 reconstructs a result document, given a delta
hierarchy. Our implementation handles the base document as
just another delta tree D0 which overwrites the whole tree (root
path ’ ’). The algorithm visits a node n, which at the beginning
is the root node of Dn . If the given node is shared, i.e., it is an
object or array which is distributed over multiple delta trees,
then we first search the base document. The base document is
the document which has overwritten this node last. Starting from
the base, we collect all members of this shared node in all delta
trees. The algorithm is then repeated for each of these members.

If the node is not shared, then we retrieve the upper most
instance of the node in the delta hierarchy and visit this node.
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Data: n = root(Dn ); p = ’ ’; D0, ...,Dn ; P0, ..., Pn
1 if IsShared(n,P1, ..., Pn ) then
2 Base = GetBaseDeltaTree(n);
3 for i = Base to Dn do
4 members += GetMembers(Di ,Pi );
5 end
6 for member in members do
7 Recurse(member,p+’/’+member.id,D0,...);
8 end
9 else
10 nD = GetBaseNode(n);
11 Visit nD ;
12 end

Algorithm 1: Reconstruction algorithm

The visit function belongs to the given visitor, which may, as
explained previously, perform different actions for the given
node.

3.3 Estimating Memory Usage
The main advantage of delta trees is the reduced memory require-
ment. We define the memory cost of a tree, as the sum of all costs
of its nodes. The cost of a node is given by the byte size of its
in-memory representation. Evidently, each delta tree is smaller
or equal in size as the result tree, given by combining the base
with the delta tree, as all of its nodes are contained in the result,
plus potential additional nodes from the base document. Thus,
the memory cost of delta trees should always be smaller or equal
to materializing the whole result.

In reality, this is often not the case. For instance, the RapidJSON
library, that we use to create JSON documents, creates each new
object and array with 16 placeholder children. In many cases, this
is a sensible decision, as reallocating memory for more children
is an expensive operation and objects and arrays often have more
than one child. For delta trees that mostly consist of a few nodes,
this decision proved to be a disadvantage. Each placeholder child
will be added to the cost, which for some queries and documents
may be more than materializing the result.

We thereby added a sample step to our system before deciding
which execution method, delta trees or complete materializa-
tion, to choose. The transformation is performed for ≤ 1% of
documents with both execution methods. Then the memory re-
quirement of these documents is calculated and the method with
the lowest requirement is chosen. This decision is performed on
per-container basis in our system, which mostly contain similar
documents.

3.4 Accessing values
Queries in our systemmay use a wide range of functions to evalu-
ate values. The parameters of functions may be nested functions
or retrieved directly from the document. Hence, functions have to
be able to access all values contained in delta trees. For example,
it is not trivial to evaluate the member count of an object, that
is distributed over multiple trees. If a function accesses a value,
specified by a given path, the system will check top-down for the
given delta tree hierarchy if this specific path is shared. If not,
the value can be directly passed to the function, without even
traversing the whole delta hierarchy. If it is shared, we have to
evaluate this function by traversing the delta tree hierarchy as
explained in Section 3.2.
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Figure 2: Virtual Object Index

The main cost of accessing values by path is traversing the
tree. For each token in the path, the child represented by this
token has to be found. For arrays, this is simple, as the token
is the index of the child. Objects on the other hand, store their
children in order of occurrence in the source document. Here a
linear search with string comparisons has to be performed to find
the specified child. This operation is the dominating cost factor
for finding a value belonging to a path. For delta hierarchies this
cost may be amplified, if many trees have to be searched. But
if the value is overwritten in one of the higher trees in a delta
hierarchy, this cost can be less than for one materialized result
document.

4 PARTIAL MATERIALIZATION AND
OBJECT INDICES

It may happen, that multiple queries repeatedly require the same
value, which may be an object or array distributed over multiple
delta trees. In these cases it can be beneficial to materialize the
given object or array at the cost of increased memory usage. This
is achieved by traversing only this sub-tree in the delta hierarchy,
as described previously, and copying the whole sub-tree into
the highest delta tree. We call this partial materialization of the
result. By strategically materializing parts of the result we can
still massively reduce the memory footprint while preventing the
performance drawbacks of simultaneously traversing multiple
trees.

To prevent the materialization of objects, we created an virtual
object index. This index tries to combine the powers of delta
trees with the read performance of materialization. A virtual
object, is a list of tuples, containing an attribute id and a pointer
to a value or nested virtual object, as shown in Figure 2. The
attribute id is a numerical value, retrieved by mapping a string
attribute name to a numerical value using a hash map. This
has two advantages. (1) Having a numerical value reduces the
cost of comparisons needed for the linear search of children. (2)
The string dictionary is stored in the container and shared by
many documents, thereby reducing the required memory of this
index. We create these virtual objects, as soon as an object, that is
distributed over multiple trees in the delta hierarchy, is traversed
for the first time. During traversal, we map the attribute names
of the children to the attribute id and add it to the virtual object,
together with the pointer of the actually traversed value. Each
value may reside in a different tree within the delta hierarchy.
The traversed object is then replaced by the virtual object in the
highest delta tree of the hierarchy. Future accesses of the object
can then use the created index without traversing multiple trees.
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5 EVALUATION
In this section, we will evaluate the performance and memory
footprint of our delta tree implementation. The data set used is
a 109 GB selection of the Twitter JSON stream1. It consists of
29,634,708 JSON documents, where each document has between
7 and 348 attributes, containing every JSON type. The documents
are split into two major groups. Around 23.5 million (79.33%)
documents are normal tweets, while around 6.1 (20.67%) million
documents are deletion instructions. The tweets have a varying
number of attributes, depending on their status, e.g., retweets
and favorites, while the deletion documents consist of seven
attributes.

The tests are executed on a machine with 4 Xeon E7-4830
CPUs, each having 12 cores—and 24 threads—with 2.1 GHz. Fur-
thermore, 33 RAM-Kits, each having 32 GB of memory at 2400
MHz, are included, providing the server with around 1 TB of
RAM. The data is stored on one HGST Ultrastar 7K4000 HDD,
with 7200 RPM. Ubuntu 16.04.3 LTS is used as the underlying
operation system.

The first query in Listing 1 loads the Twitter data set. Then a
collection is created which adds one member to the user object
of the previous data set. Derived from this collection, another
attribute is added to the user object. In the following query, only
the data added in Q2 is used in an aggregation. Then the member
count of the user object is queried in the next two queries. The
last query copies the shared user object into a new collection.

Q1: LOAD t1 FROM FILES "/data/twitter";
Q2: LOAD t1 CHOOSE EXISTS('/user')

AS *,('/user/v1':1) STORE t2;
Q3: LOAD t2 AS *,('/user/v2':2) STORE t3;
Q4: LOAD t3 AGG ('':SUM('/user/v1')) STORE a;
Q5: LOAD t3 AS ('':MEMCOUNT('/user')) STORE c1;
Q6: LOAD t3 AS ('':MEMCOUNT('/user')+1) STORE c2;
Q7: LOAD t3 AS ('':'/user') STORE user;

Listing 1: Queries iteratively changing an object and
reading it

We compare our introduced approaches against the default
execution method, which copies and modifies the full JSON doc-
uments. The delta tree approach is based on our implementation
within the system, as explained in Section 3. The index approach
uses the same implementation, but with enabled virtual object
1https://developer.twitter.com/en/docs/labs/sampled-stream

indexing, as described in Section 4. The query time plot in Fig-
ure 3 is omitting the first data import query, as it is unaffected by
the execution method and requires the same time for all of them.

As we can see, for queries Q2 and Q3, the delta tree approaches
have a strong advantage over the default execution method.
While the default execution copies the whole Twitter data set,
the delta tree approaches only require one reference to the base
document and the /user/v<x> values, with the supporting tree
structure. This results in an increase of maximum 37.24GB and
31.89GB to the previous query for Q2 and Q3 respectively, as
can be seen in Figure 4. The default approach on the other hand
increases its memory consumption by 228GB and 230GB. As
copy operations are the dominating cost for these queries, the
execution times of the delta tree methods is also significantly
lower.

In Q4 the value written in Q2 is read. This is fast and mem-
ory unintensive for all approaches, but the delta tree approaches
are faster, as the value can be read very fast in one of the delta
trees without traversal. In Q5 and Q6 the user object, which
is distributed between three delta trees is used. For the default
execution method this is fast and requires nearly no memory.
For the normal delta tree method, this operation is slow, as the
whole delta hierarchy has to be traversed. The index introduces
additional overhead, as it creates the virtual object indices. This
results in vastly improved query times, but increased memory
consumption in Q6, which brings it closer to the default imple-
mentation, while the delta tree execution is much slower. In Q7
the modified user object is materialized to a new document. This
is relatively fast for the default execution method, but once again
slow for the delta tree. The indexed method can use the virtual
objects to improve its query time. All in all are the delta tree
implementations faster and very similar for this query set. But
if it would contain additional read queries this situation could
quickly change.

6 CONCLUSION
In this paper, we introduced the concept of delta trees, for ma-
terializing only the differences of a transformation, to reduce
the memory footprint of exploration systems. We explained the
basic idea and specific implementation details, based on our in-
house JSON exploration tool JODA. Additionally, we introduced
improvements to the systems to mitigate the performance bottle-
necks introduced by the approach. As we have seen, delta trees
enable systems to perform the same set of queries, with a fraction
of the required memory.
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ABSTRACT
Data is routinely being shared online by peers, for instance in
business transactions, social activities and others. This data, in
turn, is often transferred, processed and combined through com-
plex querying and analytics. This raises questions such as the
following: who owns the derived data? With whom and for what
purpose may it be published? If consent is required for its dis-
semination, whose consent should be obtained?

The related topics of data sharing, privacy and access control
have been extensively studied, but uniquely our focus here is
not on data management with known policies but rather on the
active probing of peers to ask for their consent. Active probing
has the potential to allow finer-grained access control, where it is
unreasonable to expect data owners to publish their full policies,
defined for all possible sharing scenarios. They may not even
have a clear view of their own policies, before asked whether
they are willing to share data with a specific third party.

This short paper informally introduces and motivates this
new problem. It further identifies interesting connections to two
distinct areas: data provenance, which captures the way output
data are derived from inputs, and Boolean evaluation, which
focuses on effective strategies to probe hidden Boolean values for
evaluating a formula. As we shall demonstrate, the composition
of these two areas in the context of this problem yields intriguing
avenues for further research.

1 INTRODUCTION
When peers share data – on social networks, for event plan-
ning or in business collaborations – access control is often a
concern. Data may be re-shared and used in analysis that com-
bines input from multiple sources, thereby making it difficult
to correctly decide access permissions. For example, the data
of Alice’s recruitment agency may consist of personal data of
job seekers, confidential data on companies and internal infor-
mation on collaborators. Now assume Alice wants to re-share
parts of this data with a collaborating agency. In common data
sharing platforms, peers that have originally contributed data to
Alice either have no control over the re-sharing of their data, or
give a broad consent to re-sharing within some group (e.g., for
non-commercial purposes), or disallow re-sharing altogether [1].
However, a finer-grained approach may allow re-sharing more
data without compromising the preferences of data owners. For
instance, Bob, a collaborating agent, may not have agreed that
his data is shared with every third party; but if Alice actively asks
for his permission to share data with Carol, a specific mutual
collaborator, he may agree. Next, Alice may compute statistics
based on combining and analyzing the data provided from many

© 2020 Copyright held by the owner/author(s). Published in Proceedings of the
23rd International Conference on Extending Database Technology (EDBT), 30th
March-2nd April, ISBN 978-3-89318-083-7 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

sources. May she share the derived data (analysis results) with a
third party? Who should be probed for permissions in this case?

The related topics of data sharing, privacy and access control
have been extensively studied (see a brief discussion below), but
uniquely our focus here is not on data management with known
policies but rather on the active probing of peers to ask for their
consent, to achieve fine-grained access control. The peer answers
may either be given manually (by one of Bob’s employees), or
(semi)-automatically (by Bob’s servers). In either case, probing
requires resources and reveals parts of Bob’s proprietary policy,
and therefore should be minimized. As we shall demonstrate, this
active setting, coupled with reasoning performed over the data,
leads to novel computational problems. Informally, we introduce
the following high-level problem:

We are given a database whose tuples have been contributed by
multiple peers, and a query (in some language) over the database.
Access control policies with respect to the input tuples are (com-
pletely or partially) unknown, but we may probe data owners to ask
about them. Our goal is to decide whether the query output (or a
subset thereof) may be shared with a third party, while minimizing
the number of probes (or otherwise optimizing with respect to a
related target).

To continue our above example, assume that an agency owned
by Carol seeks information on companies in Pennsylvania in
which positions were successfully found for graduates of envi-
ronmental studies. The agency of Alice, a collaborator of Carol,
may have such data at hand, and the information needs of Carol
may be captured by an SPJU query on this data – but may the
query results be shared? For instance, an output value “PennSolar-
Experts Inc.” may be the result of joining several tuples involving
data on (1) the PennSolarExperts company; (2) three environ-
mental studies graduates who found positions in this company,
and (3) the agency owned by Bob who collaborated with Alice
in finding positions for some of the candidates (and then pro-
jecting on the company name). In this case, to share the query
result with Carol, Alice may need the consent of the company, at
least one of the assigned workers, and Bob. Importantly, Alice
may not know in advance whether the company, workers or Bob
agree that computation results based on their data are shared
with Carol; they could have shared their data with Alice without
giving her permissions to share it with a third party. In this case,
Alice would need to actively probe the peers, but what is her best
“strategy” for probing (i.e. who should she probe and in what
order)?

In this short paper we introduce and motivate this new prob-
lem in a high-level manner, through an example. We further
outline a promising approach for a solution, based on two seem-
ingly disjoint areas of research: Data Provenance and Boolean
Evaluation. We believe that the problem, and our line of attack,
are worthy of in-depth investigation.

RelatedWork. We conclude this Introduction with an overview
of related work. The theory and practice of Access control have
been extensively studied in different contexts, including social
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Companies

cid name

11 PennSolarExperts Ltd.

Vacancies

vid cid position amount

111 11 analyst 3
112 11 supervisor 1

JobSeekers

sid name education agency

1 David Env. studies Bob
2 Ellen Env. studies Bob
3 Frank Env. studies Alice
4 Georgia Env. studies Bob

Assignment

sid vid status agency

1 111 hired Bob
2 112 rejected Alice
2 111 hired Bob
3 111 rejected Alice
4 112 hired Alice

Table 1: Example database of Alice’s recruitment agency.

networks (e.g., [1–7]), distributed systems (e.g., [8, 9]) cloud ser-
vices (e.g., [10–12]), Web applications (e.g., [13, 14]) , databases
(e.g., [15–17]), and many other areas. With respect to these works,
our novelty is in focusing on a setting where access policies may
be unknown or undetermined in advance, which requires active
probing of involved peers to obtain permissions. Fine-grained
access control policies may be too large or complex to be spec-
ified by a client, if, e.g., the permission for every peer and ac-
tion must be specified. To assist clients in specifying policies,
previous work has considered (semi-)automatic computation of
access control policies. This includes the computation of policies
based on example permissions [18]; evaluating the credibility
of peers [5]; mining or interactively defining user roles [19, 20];
using semantically-rich languages to compactly capture real-
life factors on policy definition [21]; and using game-theoretic
considerations in defining policies with respect to risk minimiza-
tion [22]. These works are complementary to ours, in the sense
that we probe peers as a “black box”: peer answers may be ob-
tained manually or predefined using methods such as above.

2 MODEL, VIA AN EXAMPLE
We next outline a preliminary model for the problem, illustrated
informally via an example.

We are given a Relational Database1 where each tuple is an-
notated with a label which we refer to as concept, taken from a
set of concepts C. Each concept “belongs” to a single owner out
of a set of peers P. We will refer to such annotated database as a
shared database.

Example 2.1. Table 1 outlines a simple DB for the recruitment
agency example described above, consisting of details of com-
panies and job vacancies in these companies, with the type of
position and the number of open positions; job seekers with their
name, education and agency to which they have applied; and
the assignment of seekers to vacancies, including the status of
the assignment and the agency responsible for matching. The
annotations here can be set to reflect the row (table+key) and
the owner of the data. In this case, we assume for simplicity
that company and vacancy data is owned by the company, and
job seeker and vacancy data is owned by the relevant agency as
the seekers’ representatives. The annotation for the first row in
Companies could for instance be Companies11PennSolar and
the first row of Assignment could be Assignment1-111Bob.

The premise is that there is a hidden truth value to whether
or not we are allowed to share each concept with a specific third
1For brevity, we demonstrate the problem and our approach in a relational setting
and for tuple-level access control; it applies similarly, with some extensions, to
semi-structured data and value-level access control.

party (or publish it in public, etc.); this truth value is known only
to the concept owner.

Example 2.2. Recall the database in Table 1, and assume that
Alice wishes to share the JobSeekers table with Carol. In this
case, Alice’s agency is the owner of the third tuple, and thus
can check whether she can share the data - e.g., if Frank agreed
in his contract with the agency to share data with third parties.
The yes/no answer would translate to a valuation of true/false
respectively to the Boolean variable captured by the annotation
JobSeekers3Alice. The other tuples correspond to job seekers
recruited by Bob’s agency, hence we assume that when asked by
Alice, Bob’s agency can answer yes/no to the sharing request,
again translated to a Boolean valuation.

Some concepts may be associated with a semantic interpreta-
tion, in which case the hidden truth values are constrained. For
instance, in the database from Figure 1, we can assume that ac-
cess permission to a row in Vacancies implies access permission
to the relevant company’s row in Companies. To capture such
constraints, we use taxonomies.

Next, instead of sharing the data as-is, we consider a query
executed on the database to perform some analytics and the shar-
ing of its results. We consider “query” as a broad term here, and
variants of the problem will focus on different query languages
(e.g., relational SPJU, Datalog, etc.).

1 SELECT DISTINCT c.name
2 FROM Companies c,
3 JobSeekers j,
4 Vacancies v,
5 Assignments a
6 WHERE c.cid = v.cid AND
7 v.vid = a.vid AND
8 a.status = `hired' AND
9 a.sid = s.sid AND
10 s.education = `Env. studies'

Figure 1: Query over the example database

Example 2.3. Recall our running example and now assume
that Alice wishes to share with Carol the names of companies
where environmental studies graduates have successfully found
jobs. To this end, she runs the query in Figure 1 on the database
in Table 1. In this simplified example the answer is the single
company in the database - “PennSolarExperts Ltd.”, where David,
Ellen and Georgia have been hired.

The question is then: given an (annotated) database and a
query, are we allowed to share the result?

Example 2.4. Sharing the single result value returned by the
example query, “PennSolarExperts Ltd.”, requires the company’s
consent, as the owner of the relevant tuple. Furthermore, sharing
the result may reveal information about other tuples participating
in the derivation. For instance, if there are few environmental
studies graduates who work in PennSolarExperts, sharing the
result with Carol would reveal personal information about them,
including that at least one of themwas recruited by Alice’s agency
or her collaborators (and in turn, that this person belongs to the
type of job applications at which Alice and her collaborators
specialize, e.g., interns, part-time positions, etc.). Beyond our
example, peers can ask queries, e.g. Boolean, whose result does
not contain any tuple cell, and yet may reveal the existence of
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other tuples. We shall therefore consider to which tuples used in
the derivation permissions are needed. In our case, intuitively, it is
sufficient to have permissions to the data involved in one relevant
job assignment, since the existence of additional assignments
does not change the result. To share e.g., Georgia’s assignment
details, Alice needs permission to share all the tuples jointly
involved in it in addition to the company’s tuple – tuple 4 in
JobSeekers, vacancy 112 and the relevant assignment. To obtain
these permissions, Alice needs to probe Bob Bob, the owner
of the relevant JobSeekers tuple, and PennSolarExperts for the
Companies andVacancies tuples. The owner of the assignment
itself is Alice’s agency, which means she has the information of
whether this tuple can be shared or not. If only one of the four
aforementioned tuples cannot be shared, Georgia’s assignment
cannot be shared.

Since access control policies with respect to the individual
concepts are “hidden”, namely known only to owners, the tool
that we have for deciding whether or not a result may be shared
is to pose questions or probes to the owners of relevant data items.
The goal is then to optimally select probes in order to discover
whether sharing is permitted.

Example 2.5. In our running example, 9 tuples contributed in
some way (to be formalized below through the notion of prove-
nance) to the result of the example query. If the only tuple owned
by Alice (the assignment of job seeker 4) can be shared, we are
left with 8 tuples. If we ask PennSolarExperts whether their com-
pany’s details can be shared and get a negative answer, we know
that the data cannot be shared and there is no need to ask fur-
ther questions. As another example, recall that we assumed that
vacancies data can only be shared if the company’s data can be
shared. Then assume we get PennSolarSystem’s permission to
share data about vacancy 112 (and hence also the company de-
tails) and Bob’s permissions to share Georgia’s details – we obtain
that the query result can be shared having used only 2 probes.

Naturally, the number of questions that will be asked in prac-
tice depends on the answers received, which are unknown in
advance. The goal is to design a strategy for choosing which
questions to pose and in what order, where multiple variants of
the problem could be of interest. These variants may be based on
axes such as the query language expressiveness (e.g. Conjunctive
Queries, Datalog, etc.); the optimization goal (e.g. minimizing the
number of questions or maximizing the number of shareable re-
sults for a given “budget” of questions); optimizing for the worst
or expected case (with respect to the peer answers); selecting
probes in advance or incrementally; and restricting the per-peer
probes or optimizing the overall number of probes.

3 TOWARDS A SOLUTION
Having informally introduced the problem, we next outline a
preliminary approach for a solution, combining multiple areas
of previous work.

Provenance. We are interested in whether or not we may share
derived data, whereas (hidden) access control policies are defined
with respect to the original, atomic data items. The propagation
of meta-data from atomic data items to the query results related
to them has been studied under the prism of provenance [15,
16, 23] (and previously, c-tables [24]). In our case, we may use
provenance to compute expressions capturing the access control
of derived data, in terms of the concepts annotating the input.

Example 3.1. Recall the query in our running example from
Figure 1. Using c-tables [24] (or alternatively Boolean prove-
nance [15, 23]), we can compute a Boolean expression reflecting
the dependencies of access control credentials to the output on
permissions to view relevant input tuples.

Companies11PennSolar∧

(Vacancies111PennSolar∧((Assignment1-111Bob ∧ JobSeekers1Bob)

∨ (Assignment2-111Bob ∧ JobSeekers2Bob))

∨(Vacancies112PennSolar∧Assignment4-112Alice ∧ JobSeekers4Bob))

The formula uses the access control concepts of the relevant
tuples as variables. Indeed, it matches the intuition of Exam-
ple 2.5 on how probe answers may affect the final decision:
if PennSolarExperts refuse sharing their company details with
Carol, Companies11PennSolarwill be evaluated to false, and the
truth value of the entire formula will be false. Alternatively, if we
know that Vacancies112PennSolar, Companies11PennSolar,
Assignment4-112Alice and JobSeekers4Bob evaluate to true,
the entire expression evaluates to true.

(Boolean) provenance constructions such as the one exempli-
fied above have been developed for different query languages
and formalisms, and the shape of the resulting Boolean expres-
sion depends on the formalism for which provenance is tracked,
which in turn may affect the probe selection process. For instance,
if we restrict attention to Union of Conjunctive Queries, then
provenance of each output tuple may be represented in Disjunc-
tive Normal Form of polynomial size with respect to the input
database size [24]; negation is needed for queries with relational
difference [25]; for Datalog, a polynomial size representation
is possible in the worst case only if we resort to Boolean cir-
cuits [26]; etc.

(Incremental) Boolean Evaluation. Given Boolean provenance
formulas over data items, had we known whether they are au-
thorized for publication, we could simply assign true/false to the
corresponding variables in the formulas and decide whether the
derived data could be shared. However, policies of peers may be
unknown or undetermined, therefore we probe peers to obtain
them. We now consider the optimization problem of selecting
the best variables to observe next.

To illustrate, we next outline our preliminary solution for the
following setting:

• Relational SPJUD queries (select-project-join-union-difference),
• Minimizing the number of questions
• Optimizing the expected case
• Selecting questions incrementally
• Considering either the number of questions overall or per
peer

• Assuming an equal cost for all the questions/peers and
given answer prior probabilities.

In this case, as explained above, output tuples would be anno-
tated by Boolean expressions (computed via [24]). We then ex-
plore results on Boolean evaluation for such expression, and may
leverage them to show that the problem is NP-hard, via [27, 28].
In contrast, previous work has studied optimal solutions for re-
stricted cases, heuristics and approximations (see, e.g., [27, 29]
for a survey). In particular, in [30] we have adapted and extended
an approximate solution by [31], as we next briefly outline.

Denote the set of output tuple annotations by E. For each
Boolean formula ei ∈ E we define two utility functions дi0,д

i
1 :

{1, 0, ∗} |C |→R+, where C is the set of variables in the Boolean
expressions and each entry represents either a value assignment
to a variable or no assignment (∗). дi0(®c) and д

i
1(®c) are respectively
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the number of terms (conjunctions) set to 0 in the DNF form of ei ,
and the number of clauses (disjunctions) set to 1 in the CNF form
of ei by the partial assignment ®c . Denote bymi and li the number
of terms and clauses in ei respectively. The utility functionдi (®c) =
mi li − (mi − дi0(®c))(li − дi1(®c)) reaches its maximum,mi li , when
дi0(®c) =mi or дi1(®c) = li , i.e., ei is evaluated.

To minimize the overall number of questions a greedy algo-
rithm is then used. The algorithm repeatedly selects the unknown
variable c j whose probe maximizes the expected value (over the
possible answers) of дi . Some properties of дi (monotonicity, sub-
modularity) guarantee that the expected number of questions is
within a factor of ln(mi li ) + 1 from the optimum.

Next, we need to simultaneously evaluate all the formulas
in E, which may be done by defining д(®c) =

∑
ei ∈E д

i (®c). д is
a function that reaches its maximum,

∑
ei ∈Emi li , when all the

expressions are evaluated. By similar analysis to that of дi , we
get that the solution is a ln(

∑
ei ∈Emi li )+ 1 approximation of the

optimum.
The above adaptation is an example of a rather direct combi-

nation of results from the provenance and Boolean evaluation
literature; our setting suggest further novel algorithmic devel-
opments. For instance, in [30] we have extended the solution
to compute batches of probes rather than single probes and to
account for constraints imposed by a taxonomy over the items
(i.e., implication constraints between access rights), showing that
we still achieve the same approximation bound. We also study
an incremental setting where the client is allowed to terminate
the process at any point and share partial results via “safe views”
– views of the results that are known to be safe for sharing.

Another example for a variant that is not accounted for by
previous results is one that targets the minimization of the probes
per peer, in this case, minimizing. For that, we keep track of the
number of probes per peer p ∈ P (denoted by probes(p)). At
each step, let C∗ be the set of variables still unknown. When
selecting the next probe, we consider only variables in {c ∈ C∗ |

probes(owns(c)) = minp′∈P∗ probes(p′) ∧ E[д(®c)] > 0}, i.e., that
are owned by least-probed peers and whose utility is non-zero.

Our preliminary results are encouraging and suggest that the
combination of provenance constructions and Boolean evaluation
methods is a promising direction towards studying our problem
complexity and designing efficient algorithms. There are still
many challenges to be overcome in this space, both theoretical
and practical: for instance, can we achieve better guarantees by
restricting the query language? What guarantees can we obtain
for more expressive languages? For instance, what if we have
aggregates, or recursion and then Boolean circuits rather than
formulas? What if we have a “budget” for the number of probes
to be used? How can we estimate the probe answer probabilities,
in light of constraints defined by the taxonomy, peer trust, and
accumulated probe answers? The interplay between the choice
of query language/provenance model, optimization goal and con-
straints leads to many intriguing computational questions which
will be central to research on this problem.

4 CONCLUSION
This paper has advocated the study of access control management
in a setting where peers are actively probed to ask for their per-
missions. Our main insight is that the problem may be addressed
by computing Boolean provenance for query results, and treating
the Boolean expression as input to active Boolean evaluation
algorithms. We believe that this high-level approach paves the

way to exciting research possibilities at the intersection of these
two seemingly unrelated areas.
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ABSTRACT

We present the ML-Index, a memory-efficient Multidimensional

Learned (ML) structure for processing point, KNN and range

queries. Using data-dependent reference points, the ML-Index

partitions the data and transforms it into one-dimensional val-

ues relative to the distance to their closest reference point. Once

scaled, the ML-Index utilizes a learned model to efficiently ap-

proximate the order of the scaled values. We propose a novel

offset scaling method, which provides a function which is more

easily learnable compared to the existing scaling method of the

iDistance approach. We validate the feasibility and show the

supremacy of our approach through a thorough experimental

performance comparison using two real-world data sets.

1 INTRODUCTION

Processing queries on multidimensional data is a classical and

thoroughly investigated problem. A plethora of index structures

provides mechanisms for compactly storing and querying multi-

dimensional datasets, applied in countless application scenarios.

A recent idea proposed by Kraska et al. [4], suggests improvement

and replacement of traditional index structures with machine

learning and deep-learning models. They in particular success-

fully replace the B-Tree with a recursive learned model that maps

a key to an estimated position of a record within a sorted array.

With the use of the proposed learned models, they are able to

utilize the patterns in the data distribution, resulting in an im-

provement of both the memory consumption and the execution

time over the traditional index.

To provide a generalization of the B-Tree for multiple dimen-

sions, the data needs to be sorted in an order which can be easily

learned by supervised learning models. The ordering needs to

be done in such a manner that the correctness guarantees are

fulfilled when answering range and KNN queries. In practice,

techniques, such as the Morton and the Peano-Hilbert order, can

be exploited for sorting multidimensional data. However, directly

mapping the multidimensional data points within the aforemen-

tioned orders cannot be easily learned by deep learning models.

Kraska et al. [3] propose an approach for learning an order based

on successively sorting and partitioning points along several di-

mensions into equally-sized partitions. However, choosing only a

subset of dimensions may lead to performance degradation when

the number of dimensions increases and the deduction of the

partition neighbors may not be a time-efficient task.

Therefore, we create a novel Multidimensional Learned (ML)

index which generalizes the idea of the famous iDistance scaling

method [2] and uses the scaled ordering in combination with

a two-layer learned index, to answer multidimensional queries.

© 2020 Copyright held by the owner/author(s). Published in Proceedings of the
23rd International Conference on Extending Database Technology (EDBT), March
30-April 2, 2020, ISBN 978-3-89318-083-7 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Unlike existing indexes, it captures the data distribution in two

manners, by efficiently partitioning and scaling the data with

respect to distribution-aware reference points and by learning

the distribution of the sorted scaled values. Harnessing the power

of the deep-learning models, the ML-Index is the first complete

learned index, able to answer point, range and KNN queries

efficiently while having a low memory consumption.

2 RELATED WORK

Until recently, limited research was present in improving data

indices by interweaving them with machine learning. One of the

first distribution aware indices [1] focuses on the combination

of R-Trees with a self-organizing map. Another exact KNN al-

gorithm [9] employs k-means clustering and triangle inequality

pruning for efficient query execution.

Recently, Kraska et al. [4] draw the focus on a novel idea of

substituting indices with deep learning models. Lead by the as-

sumption that each index is a model, they draw a parallel between

the indices and their respective analogue in the machine learning

world. For instance, B-Tree Index and Hash-Index can be seen as

models that map a key to a position within a sorted and unsorted

array accordingly and can be easily replaced with neural network

models. A learned database system called SageDB [3], extends the

concepts to multidimensional data, by successively partitioning

points along a sequence of dimensions into equal-sized cells and

ordering them by the cell that they occupy. Although the order

produces a layout noted as learnable, the complexity of directly

learning the projection of n-dimensional points to an order posi-

tion increases with the increase of dimensionality. Even though

limiting the number of dimensions for partitioning avoids the

added complexity, it results in slower execution of range queries

including the missing dimensions.

Providing an inexpensive representation of multidimensional

points which can be meaningfully sorted has been already widely

explored, such as presorting the data by their Z-order [6], Hilbert

order [5], or the respective distance to reference points [2]. A

learned Z-order Model [8] focuses on combining the Z-order

scaling with a staged learned model, for efficiently answering

spatial queries. Although applicable for smaller dimensions, both

the Z-order model and the UB-Tree are limited when dealing with

a larger number of dimensions, which will be analyzed upon the

experiments and the direct comparison.

3 THE ML-INDEX

The ML-Index is a compound of two main components, as il-

lustrated in Figure 1. Its creation is carried out in two stages,

guided and generalized by the idea of previously existent iDis-

tance index [2]. The upper part consists of a set of reference

points, responsible for scaling the multidimensional data to one-

dimensional values, which can be easily sorted. The lower part is

a Learned Model used for learning the distribution of the scaled

values and a sorted array used for searching and storing the data.

Short paper

 

 

Series ISSN: 2367-2005 407 10.5441/002/edbt.2020.44

https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2020.44


Q
dist(O2,Q)
O2

O3

dist(O2,Q)+offset21

2 Learned Model
predicted position

pos - err pos + err

3

O1

Figure 1: The ML-Index Approach

3.1 Scaling Methods

Consider a set of data points dl ∈ D, where dl = (d0,d1, ...,dn ) is

in an n dimensional metric space. The first stage, responsible for

creating the upper part, maps the data points from a n into a one-

dimensional data space. The scaling method aims to group points

that are similar to each other and project them in one-dimension,

such that the similarity is preserved by the proximity of the one-

dimensional values. To efficiently do the scaling, m reference

points Oi are chosen, each representing an identification or a

centroid of the data in partition Pi . The partition Pi is formed

from the points whose closest reference point is Oi . This means

that the minimal distance of a point dl to the reference points

determines the appropriate partition.

Irrespective of the way to find reference points, we elaborate

on the usage of different scaling methods and we discuss their ad-

vantages and disadvantages. The straightforward case is scaling

dl with respect to a single reference point, by mapping it to a one-

dimensional value key = dist(Oi ,dl ). Although applicable for

smaller datasets, the method creates a considerably large amount

of false positives, produced by mapping multidimensional points

that are far from each other to the same value.

The second scaling method is the iDistance method described

by Jagadish et al. [2]. This method maps a data point dl into a one-

dimensional value key, based on key = i ∗ c +dist(Oi ,dl ), where

i is the index of the closest reference point Oi . The constant c

serves to partition the points into predefined ranges and based

on its value it stretches the ranges differently. Using the constant,

the points belonging to a partition Pi will be mapped to a range

[i ∗ c, (i + 1) ∗ c]. Although it provides well-scaled values and

drastically reduces the number of false positives, it is highly

dependent on the parameter c . A smaller value for c may create

an overlap between the partitions, causing multidimensional

points from different partitions to be mapped to the same scaled

value. Hence, upon search, the number of unnecessarily examined

points will be increased. On the other hand, having a larger c

directly affects the creation of the second stage of the ML-Index

which we thoroughly discuss in Subsection 3.2.

Finding the right value for the constant c , which will cause

no overlap and have perfectly ordered partitions, with no gaps

between them, is impossible. This comes as no surprise since ref-

erence points correspond to partitions of different sizes. Prompted

by the previous, we propose a novel scaling approach that pro-

vides a perfect ordering between the ranges of different par-

titions and overcomes the problem of overlapping. The new

method termed offset method, given a point dl and its closest ref-

erence point Oi , calculates the scaling value as key = o f f seti +

dist(Oi ,dl ), where o f f seti is different for every partition Pi .

Given an arbitrary ordering of the reference pointsO1,O2, ...,Om

and their adequate partitions P1, P2, ..., Pm , the offset is calculated

as the sum of the radii of their previous partitions:

o f f seti =
∑

j<i

r (j)

where r is the maximal distance fromO j to the points in partition

Pj . This method assures no overlap and it reduces the gap be-

tween the partitions, which is crucial regarding the performance

of the second stage of the ML-Index. Additionally, it omits the

problem of tuning the parameter c , for a suitable range creation.

The downside in comparison to iDistance is an unnoticeable

memory increase, caused by storing the offsets. Following the

scaling of the original data, each data point dl is associated with a

value key. Multiple points can have the same scaled value. Before

the execution of the second stage of the ML-Index, we sort the

points according to the value key. The resulting order is used as

a starting point for creating a learned model, which efficiently

predicts the position of a given key within a sorted array.

3.2 Learning the Order

The second stage of the ML-Index represents a Recursive Learned

Index, similar to the one described by Kraska et al. [4]. The index,

mimics the behavior of a traditional B-Tree, by mapping a given

lookup key within a sorted array with the guarantee that the key

is within proximity of the predicted position [pos−err ,pos+err ].

As observed [4], a model, which performs this task, effectively ap-

proximates the cumulative distribution function (CDF), modelled

as p = F (key) ∗ N , where N is the number of keys and F (key) is

the estimated CDF that estimates the likelihood to predict a key

smaller or equal than the lookup key. The learned index is built

in a top-down manner where a model in each stage provides a

prediction used to choose the model in the next stage, or the po-

sition of the key when the final stage is reached. For model f (x)

from modelsMl at stage l , with input x , the loss is calculated:

Ll =
∑

x,y

(f
⌊Ml fl−1(x )/N ⌋

l
(x) − y)2 [4]

Although Kraska et al. [4] suggest using multiple stages of

the learned index, we use only two. The incentive behind this

decision is that if the second stage index produces a larger than

expected error, the increase in the number ofmodels in the second

stage is sufficient to reduce the error. Additionally, unlike their

proposed learned index, the second stage of learned models in the

ML-Index is constructed solely by using a regression, with the

purpose of balancing the construction time and the performance

of the learned index. By using a simpler model, the number of

multiplications and additions upon search is reduced, leading to

lower search time. The final prediction of the learned model is a

predicted position within the sorted array where the key, in our

case the scaled value is stored. Because a position is predicted

with a certain error, one must also search within the error bounds

around the prediction for the correct position.

As mentioned, the different scaling methods impact the second

stage of the ML-Index. Since the naive scaling method is infea-

sible, we elaborate only on the impact of the iDistance and the

offset scaling method. Both methods result in different functions

that need to be estimated by the learned index. When consider-

ing the iDistance we distinguish two scenarios, one with overlap

between the partitions and one without. When c is smaller than

the maximum radius of all the partitions, then an overlap be-

tween the ranges of the partitions is inevitable. However, sorting

the data with a smaller c creates a function which can be easily
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learned. This is a result of the overlapping that leads to a larger

density of the scaled values which results in a fairly continuous

function. The second case is having a larger c , that avoids over-

laps, but creates large gaps within the function. Therefore, the

neural network will learn the data present in the different ranges.

However, upon search time it is possible to search for a point that

is not present within these ranges, but it is located within the

gaps of the function. Vast research has been proposed for filling

the missing values in a function to be learned, however, this leads

to a pre-processing step which can be easily avoided by using the

offset method. The offset method circumvents the gaps created

by the different maximal sizes of the partitions and provides a

better łlearnablež function in which the missing values may only

appear due to sparsity in the clusters and not the scaling method.

4 QUERY PROCESSING

Point Query: The point query identifies the existence of a mul-

tidimensional point within the index and it is executed in three

steps as shown in Figure 1. The first step includes searching for

the closest reference point Oi to the query q and calculating the

scaled value key = o f f seti + dist(ClosestOi ,q), where o f f seti
is calculated as i ∗ c for the iDistance scaling and appropriately

for the offset method. Once calculated the key is used to predict

the position of the point q, within the sorted array of points.

The predicted value is the position pos of the key within the

sorted array, and it is used in its exponential search with bounds

[pos − err ,pos + err ]. The complexity of the first step, form ref-

erence points and d dimensions, is O(m ∗ d). The learned model

complexity depends on the architecture of the neural network.

A neural network with a single hidden layer with width h and

input size N will have O(hN ) multiplications and additions.

KNN Query: Given a query q and a parameter k , the KNN

query finds the closest k points Sk , to the query such that ∀di ∈

Sk , ∀dj ∈ D \ Sk , dist(q,dj ) ≥ dist(q,di ). Since the iDistance

was initially created for executing KNN queries, we adapt the

algorithm for the ML-Index. The algorithm creates several one-

dimensional range queries, whose selectivity expands until the

result is complete. The major modification is locating the start of

the range. For this purpose, the Algorithm 1 is used, that exploits

the learned model to predict the position of a given key within a

sorted array. However, since a key which is not present within

the array can be provided, we need to search for the key with

the smallest difference to the initial key. Nonetheless, searching

for the closest key to the initial key is not only dependent on the

bounds provided by the error of the learned model but also the

bounds of the ranges occupied by the reference points. There-

fore, we modify the binary search to also include the o f f seti and

o f f seti+1, which further reduces the search space. The method

closest returns the position of the value closest to the key in the

range [o f f seti , o f f seti+1]. To describe the need for the second

bounds, we consider having two reference points and their re-

spective ranges within the array [1, 5][6, 10]. Let’s further take

the assumption that the first range has the keys [1, 3, 5] and the

second [7.5, 8, 10]. Upon search, we want to find the closest key

to key = 6 for the reference point O2. If we do not consider that

the reference point O2 has a lower bound 6 we would retrieve

the key 5 as closest which does not belong to the region 2 and

thus, in reality, may not be even close to the query point.

Range Query: Widely applicable for smaller dimensions, the

range queryq = q1,q2, ...,qn , whereqj = [boundmin ,boundmax ],

defines bounds of a dimension j, retrives the data points di ∈ D

Algorithm 1 Predict Closest Position

Require: scaled value key (if outside of range, set to of f si or of f si+1),

range for Oi [of f si , of f si+1]

1: mid = predict (key), s =mid − err, t =mid + err

2: while s ≤ t do

3: mid = ⌈(s + t )/2⌉

4: if datamid == key then

5: returnmid

6: withinRanдe = T rue

7: if datamid outside [of f si , of f si+1] then

8: withinRanдe = False , set s or t tomid

9: if withinRanдe or |s − t | ≤ 1 then

10: if key < datamid then

11: if key ≥ datamid−1 then

12: return closest (data, key,mid − 1,mid, of f si )

13: t =mid − 1

14: else

15: if key ≤ datamid+1 then

16: return closest (data, key,mid,mid+1, of f si+1)

17: s =mid + 1

where ∀j ∈ n, di j ≥ qj0 and di j ≤ qj1. For the execution of

the range query within the ML-Index, we adapt the Data-Based

Method for range approximating suggested by Schuh et al. [7].

The algorithm iterates over the reference points and for each ref-

erence point calculates the closest and the furthest point from the

given range q. For the computed furthest and closest point, the al-

gorithm issues a range query of the form [dist(Oi ,pointclosest )+

o f f seti , dist(Oi ,pointf ur thest )+o f f seti ]. Since the closest and

furthest points can also have keys which are not present within

the sorted array, the method described in Algorithm 1 is used.

5 EXPERIMENTS

For evaluation, all indices are in main memory and implemented

in Java. The learnedmodel is implementedwith TensorFlow and it

is extracted to omit the overhead. Its width is set according to the

dataset. The reference points selection is done using the KMeans

algorithm, due to better results for the real-world data. GMeans

was not considered, since the branching factor of theM-Tree is set

to k , for a fair comparison. We compare the following structures:

the ML-Index, the iDistance index [2] with keys computed by

our offset method, the M-Tree, and the index based on learning a

Z-order, ZM-Index [8]. Two real-world datasets were used, Color

Histogram (dim: 32, points: 68040, size: 19.5 MB) and Forest Cover

Type (dim: 10, points: 581012, size: 68.7 MB).

Scaling Methods Comparison: Figure 2a shows the abso-

lute error of learning the order produced by the different scaling

methods, by varying the width of a single layer neural network.

For the iDistance, c is once set to produce 10% and once 0% range

overlap between the different reference points. The data is di-

rectly learned in several epochs, without preprocessing. The error

produced by the offset scaling method is much lower from the er-

ror by the iDistance method when no overlap occurs. Differently,

due to the density of the values, the approach with an overlap

performs slightly better. However, an overlap between the ranges

will result in slower query execution, therefore, the offset method

performs the best when considering both aspects.

Memory: Figure 2b (Note the log scale 2) shows the memory

consumption of the M-Tree, the iDistance and the ML-Index for

both datasets. As observed, the ML-Index has a drastic reduction

in memory and has only small storage required for the learned

model and the offset distances. Increasing the number of clusters
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Figure 3: Range search when varying range selectivity

(left) and clusters (right) for Forest Cover Type dataset

results in an unnoticeably small increase in memory due to the

number of offset values.

Query Execution: Since the M-Tree is drastically slower, we

show only the comparison between iDistance and ML-Index. Fig-

ure 3 shows the execution time of 100 range queries by varying

the query selectivity, representing the fraction of points within

the query range from the total number of points, and the num-

ber of clusters used for choosing the reference points. Figure 4

shows the execution time of 1000 KNN queries by varying k and

the number of clusters. The ML-Index is always faster than the

iDistance, which is a result of the superiority of the search with

the learned model over the search with B+Tree. This is especially

visible for larger ranges and k values where the result may be-

long to more clusters, requiring multiple predictions from the

learned model, causing a more visible difference in the execution

time. Upon an increase of clusters, the difference between the

search time of the ML-Index and iDistance is smaller. Assuming

we search for the closest point, we need to first find the closest

cluster amongm clusters, which is performed the same for the

iDistance and ML-Index. Hence, whenm is large, the execution

will be impacted more by the cluster iteration than the prediction.

Comparisonwith learnedZM-Index: For comparisonwith

ZM-Index, we extract 2, 4, and 6 dimensions from the Forest Cover

dataset, we scale the values to reduce the number of bits and the

large gaps between successive Z-values, which produce a slower

execution time. We always use our learned model, since having

the number of neurons mentioned in [8], results in incomparably

large execution time. ZM-Index outperforms ML-Index when

searching for a two-dimensional point, as seen in Figure 5a. This

is intuitive since a search through multiple clusters requires more

time than a bit shifting operation, which is not the case for larger

dimensions and a smaller number of clusters. When considering

the range query comparison in Figure 5b, the ZM-Index performs

far worse. Upon searching for a next Z-value which is within the

range, we exchange every bit accordingly, resulting in a longer
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(right) for Forest Cover Type dataset
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parison with ZM-Index for Forest Cover Type dataset

execution when dealing with both large numbers and dimensions.

More importantly, in each step, the next Z-value within range is

calculated, which may correspond to a value not present within

the dataset and thus it will lead to unnecessary access.

6 CONCLUSION

We addressed the problem of replacing multidimensional indices

with a learned, distribution-aware ML-Index. The ML-Index en-

tails two core tasks: representing the dataset by one-dimensional

values based on reference points chosen with respect to the data

distribution, and a learned model capable of accurately learning

the order of the values. Experimental results demonstrated the

feasibility of the approach and its superior performance com-

pared to state-of-the-art competitors. Future work includes ren-

dering the index resilient to updates by observing degenerated

performance and triggering retraining only when necessary.
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ABSTRACT
There are massive amounts of textual data residing in databases,
valuable for many machine learning (ML) tasks. Since ML tech-
niques depend on numerical input representations, word em-
beddings are increasingly utilized to convert symbolic repre-
sentations such as text into meaningful numbers. However, a
naïve one-to-one mapping of each word in a database to a word
embedding vector is not sufficient since it would miss to incor-
porate rich context information given by the database schema,
e.g. which words appear in the same column or are related to
each other. Additionally, many text values in databases are very
specific and would not have any counterpart within the word em-
bedding. In this paper, we therefore, propose Retro (RElational
reTROfitting), a novel approach to learn numerical represen-
tations of text values in databases, capturing the information
encoded by general-purpose word embeddings and the database-
specific information encoded by the tabular relations. We for-
mulate relation retrofitting as a learning problem and present an
efficient algorithm solving it. We investigate the impact of vari-
ous hyperparameters on the learning problem. Our evaluation
shows that embedding generated for database text values using
Retro are ready-to-use for many ML tasks and even outperform
state-of-the-art techniques.

1 INTRODUCTION
Due too their appealing properties, word embeddings techniques
such as Word2Vec [7], GloVe [8] or fastText [3] have become
conventional wisdom in many research fields such as machine
learning, NLP or information retrieval. Typically, these embed-
dings are used to convert text values in a meaningful numerical
representations presenting the input for ML tasks. However, a
naïve application of a word embedding model is not sufficient to
represent the meaning of text values in a database which is often
more specific than the general semantic encoded in the raw text
embedding.
Thus, we argue to incorporate information given by the disposi-
tion of the text values in the database schema into the embedding,
e.g. which words appear in the same column or are related. There-
fore, we develop a relational retrofitting approach called Retro
which is able to automatically derive high-quality numerical rep-
resentations of textual data residing in databases without any
manual effort.
Relational Retrofitting. Figure 1 provides a small example
sketching the main principles of the relational retrofitting pro-
cess. Retro expects a database and a word embedding as input,
e.g. a movie table T that should be retrofitted into a pre-trained

© 2020 Copyright held by the owner/author(s). Published in Proceedings of the
23rd International Conference on Extending Database Technology (EDBT), March
30-April 2, 2020, ISBN 978-3-89318-083-7 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.
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Figure 1: Relational Retrofitting: basis word embedding
W 0 and relationT (left), retrofittedword embeddingW and
augmented relation T+

word embeddingW0. To provide vector representations for tex-
tual information in databases one could simply reuse the vec-
tors of pre-trained embeddings, e.g. map each term from T to a
term-vector pair inW0. However, often there will be a semantic
mismatch between word embeddings and textual information in
databases:
1) Given the movie table, it is known that all entities within the
movie column must be movies, although some of the titles, such
as “Brazil" or “Alien", may be interpreted differently by the word
embedding model.
2) T provides a specific amount of relation types like the movie-
director, whereas in the word embedding representationW0 large
amounts of implicit relations are modeled, e.g. if the director of a
movie is also the producer or one of the actors this might be rep-
resented in the word embedding although not explicitly visible.
3) Terms in T which occurring infrequent in the general do-
main can not be modeled accurately by word embedding models.
For instance Word2Vec has a limited vocabulary according to a
frequency threshold. Many terms appearing in a database will
therefore have no counter-part within the embedding.
We present Retro1, a novel relational retrofitting approach ad-
dressing all these challenges. Retro augments all terms in data-
base tables by dense vector representations encoding the seman-
tics given by the relation T and the word embeddingW0. In the
context of our movie example, Retro would generate a new
embedding for “Terry Gilliam" which should be close to other
directors and their respective vectors. Furthermore, Retrowould
create vectors for all other textual values in the movie table that
encode the semantic given of the pre-trained word embeddings
and the database. On the one hand, this ensures that vectors
1https://github.com/guenthermi/postgres-retrofit
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appearing in the same column, such as movies or directors, are
close to each other. On the other hand, this ensures that the dif-
ference vectors between movie-director pairs are similar. These
vectors are ready-to-use for a wide range of ML, retrieval and
data cleaning tasks such as classification, regression, null value
imputation, entity resolution and many more.
Outline. In Section 2, we give an overview of the problem and
a briefly introduce the original retrofitting problem. We then
present our novel relation retrofitting and formulate the under-
lying learning problem in Section 3. In Section 4, we show the
feasibility of Retro in automatically creating vector represen-
tations by defining different classification task and conclude in
Section 5.

2 RETROFITTING AND PROBLEM SCOPE
We aim at leveraging powerful word embedding models to gener-
ate good vector representations for text values residing within re-
lational databases. We therefore extend the notion of retrofitting
which was initially proposed by Faruqui et al. [5]. Retrofitting
is performed as a post-processing step and allows to inject ad-
ditional information into word embeddings. The approach of
Faruqui et al. took a matrix W 0 = (v ′

1, . . . ,v
′
n ) of word em-

beddings and a graph G = (Q,EF ) representing a lexicon as
input. The retrofitting problem was formulated as a dual objec-
tive optimization function: The embeddings of the matrixW 0

are adapted toW = (v1, . . . ,vn ) by placing similar words con-
nected in the graph G closely together, while at the same time
the neighborhood of the words from the original matrix W 0

should be preserved. Hereby, Q = {q1, . . . ,qn } is a set of nodes
where each node qi corresponds to a word vector vi ∈W and
EF ⊂ {(i, j)|i, j ∈ {1, . . . ,n}} is a set of edges. The graph is undi-
rected, thus (i, j) ∈ EF ⇔ (j, i) ∈ EF . The authors specified the
retrofitting problem as a minimization problem of the following
loss function:

ΨF (W ) =

n∑
i=1

[
αi | |vi −v ′

i | |
2 +

∑
j :(i, j)∈EF

βi | |vi −vj | |
2
]

(1)

The constants αi and βi are hyperparameters. ΨF (W ) is convex
for positive values of αi and βi . Thus, the optimization problem
can be solved by an algorithm, which iterates over every node in
Q and updates the respective vector inW .
However, while retrofitting is typically used to improve the vector
quality of general-purpose word embeddings by using lexical
knowledge graphs, we aim at learning vector representations for
text entries in database tables. Here the objective is to 1) reflect
the semantics of the text value specifically referred to in the
database and 2) to fit into the vector space of the given basis
word embedding model.

3 RELATIONAL RETROFITTING
In this paper, we extend idea proposed in [5] and formulate the
relational retrofitting approach that learns a matrix of vector
representationsW = (v1, . . .vn ) corresponding to text values
T = (t1, . . . tn ) where each vi ∈ RD represents a unique text
value in a specific column of the database. To find an initial vector
representation for every text value, we tokenize the text values
based on the vocabulary of the basis word embedding model and
build centroid vectors which is a convenient way to obtain a
representation of text values consisting of multiple tokens [1, 11].
These vectors are stored in a matrixW 0 = (v ′

1, . . .v
′
n ) forming

the basis for the retrofitting process. Besides, columnar and rela-
tional connections are extracted from the database (see Section 3.1).
This encompasses semantic relations between text values, which
are derived from the relational schema. Those connections are
used to create a representation capturing the context of the text
value in the database (e.g. “Brazil” in the column “movie.title” is
considered as a movie) and thus helps to preserve their semantics
more accurately compared to a plain word embedding represen-
tation. The core procedure of the relational retrofitting is the
adaption of the basis vectorsW 0. This is performed by solving
an optimization problem detailed further in Section 3.2.

3.1 Extracting Relational Information
One can derive different structural relations from the alignment
of text values in the relational schema.
Columnar Connections: Text values with the same attribute,
i.e. appearing in the same column, usually form hyponyms of
a common hypernym (similar to subclass superclass relations).
Thus, they share a lot of common properties which typically
leads to similarity. We capture this information and assign each
text value ti to its column C(i).
Relational Connections: Relations exhibit from the co-occur-
rence of text values in the same row as well as from foreign
key relations. Those relations are important to characterize the
semantics of text value in the database. We define a set of relation
types R for each specific pair of related text value columns. Those
columns are related because they are either part of the same
table or there exists a foreign key relationship between their
tables. For every relation type r ∈ R there is a set Er containing
the tuples of related text value ids. Relation types are directed.
Accordingly, there is an inverted counterpart r̄ for each relation
r with Er̄ = {(j, i)|(i, j) ∈ Er }.

3.2 Optimization Problem
Retro considers relational and columnar connections (see Sec-
tion 3.1) to retrofit an initial embedding. Accordingly, we define a
loss function Ψ adapting embeddings to be similar to their basis
word embedding representationW 0, the embeddings appearing
in the same column, and related embeddings.

Ψ(W ) =

n∑
i=1

[
αi | |vi −v ′

i | |
2 + βiΨC (vi ,W ) + ΨR (vi ,W )

]
(2)

The columnal loss is defined byΨC and treats every embeddingvi
to be similar to the constant centroid ci of the basis embeddings
of text values in the same column C(i).

ΨC (vi ,W ) = | |vi − ci | |
2 ci =

∑
j ∈C(i)

v ′
j

|C(i)|
(3)

The relational loss ΨR treats embeddings vi and vj to be similar
if there exists a relation between them and dissimilar otherwise.
Er is the set of tuples where a relation r ∈ R exists. Ẽr is the set
of all tuples (i, j) < Er where i and j are part of relation r . Thus,
each of both indices has to occur at least in one tuple of Er .

ΨR (vi ,W ) =
∑
r ∈R

[∑
j :(i, j)
∈Er

γ ri | |vi −vj | |
2 −

∑
k :(i,k )
∈Ẽr

δ ri | |vi −vk | |
2
]
(4)

αi , βi , γi and δi are hyperparameters. Ψ should be a convex
function. In [6] we proved the convexity of Ψ for hyperparameter
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β = 1, γ = 2, δ = 1

(a) Influence of α = 1, 2, 3

α = 2, γ = 2, δ = 1

(b) Influence of β = 1, 2, 3

α = 2, β = 1, δ = 1

(c) Influence of γ = 1, 2, 3

α = 2, β = 1, γ = 3

(d) Influence of δ = 0, 1, 2

Figure 2: Examples for Different Hyperparameter Settings

configurations fulfilling the following inequation:

∀r ∈ R, i ∈ {1, . . . ,n} (αi ≥ 0, βi ≥ 0, γ ri ≥ 0) (5)

∀vi ∈W (4αi −
∑
r ∈R

∑
j :(i, j)∈Ẽr

δ ri ≥ 0)

In practice, however, other parameter configurations that do not
comply might work as well. The impact of the hyperparameter
values on the retrofitting result is shown in Section 4.1. The
retrofitting algorithm iteratively executes for all vi ∈ V the
following equation, which is derived from the root of the partial
derivative ∂Ψ(W )

∂vi
.

vi =

αiv
′
i + βici +

∑
r ∈R

[ ∑
j :(i, j)
∈Er

(γ ri + γ
r̄
j )vj −

∑
k :(i,k )
∈Ẽr

(δ ri + δ
r̄
k )vk

]
αi + βi +

∑
r ∈R

[ ∑
j :(i, j)
∈Er

(γ ri + γ
r̄
j ) −

∑
k :(i,k )
∈Ẽr

(δ ri + δ
r̄
k )
]

(6)

Given the property of convexity, such an iterative algorithm can
be used to minimize Ψ illustrated in more details in the next
section.

3.3 Retrofitting Algorithm
The retrofitting algorithm can be expressed as a set of matrix
operations that can be solved with linear time complexity accord-
ing to the number of text values inW . We update all vectors at
once using a recursive matrix equation. Ψ(W ) can be minimized
by iteratively calculatingW k according to (7).

WR =
∑
r ∈R

[
((γ ri j ) + (γ

r̄
i j )

T ) − ((δ ri j ) + (δ
r̄
i j )

T )
]
W k

W ′ = αW 0 + βc +WR

D = diag
(
α + β +

∑
r ∈R

[ ∑
j :(i, j)
∈Er

(γ ri + γ
r̄
j ) −

∑
k :(i,k )
∈Ẽr

(δ ri + δ
r̄
k )
] )

W k+1 = D−1W ′

c = (c1, . . . ,cn ) α = (α1, . . . ,αn ) β = (β1, . . . , βn ) (7)

More details are outlined in [6].

4 EVALUATION
Retro is a fully functional system built on top of PostgreSQL.
Given an initial configuration including the connection informa-
tion for a database and the hyperparameter configuration, Retro
fully automatically learns the retrofitted embeddings and adds

them to the given database. We created two databases based on
the Movie Database2 (TMDB) and the Google Play Store Apps
dataset3 (GPSA). TMDB consists of 15 tables containing 493,751
unique text values, whereas the GPSA database has 7 tables and
27,571 unique text values (details are outlined here45). Both of
them are available as CSV files and are imported in our Retro
PostgreSQL database system.
One baseline we compare our retrofitted embeddings to, are plain
word vectors (PV) that have no notion of the relational schema.
The counterpart to this would be embeddings that just rely on
the the structural information given by the database. Here we
use the node embedding technique DeepWalk [9] (DW) that is
learned based on a graph representation of the database rela-
tions. Moreover, we applied the original retrofitting approach [5]
leading to another baseline embedding dataset (MF).

4.1 Hyperparameter Analysis
The influence of the hyperparameters is visualized in Figure 2:We
learned 2-dimensional embeddings for a small example dataset
containing three movies and the country where those movies
have been produced. Accordingly, there are two columnar (movie
and country) and one relational connection (see Section 3.1).
“Amélie” was produced in “France”, the other movies in the “USA”.
Usually the hyperparameters for each vector are derived from
four global hyperparameters α , β ,γ , and δ as detailed in [6]. We
set the hyperparameters α , β,γ , and δ to different values and
performed the relational retrofitting.
As shown in Figure 2a, the learned embeddings stay closer to
their original embeddings when the α values increasing. Higher
values of β make it easier to cluster the categories from each
other, e.g. reduce the distances between the movie vectors of
“Inception” (red), “Godfather” (green), and “Amélie” (blue). The
γ value controls the influence of relational connections. This
brings the representations of text values which share a relation
closer together. The δ factor causes vectors with different rela-
tions to separate and thus prevent concentrated hubs of vectors
with different semantic. One can see in Figure 2d how δ = 0
causes all vectors to concentrate around the origin of the coor-
dinate system. If δ is set to a high value like δ = α = 2, the
algorithm places the vectors far from the origin of the coordinate
system. However, related text values still get assigned to similar
representations. In the example, the retrofitting algorithm is still
converging for this configuration. Our analysis shows, that the
exposed hyperparameters allow to steer the relational retrofitting

2https://www.kaggle.com/rounakbanik/the-movies-dataset
3https://www.kaggle.com/lava18/google-play-store-apps/
4https://github.com/guenthermi/the-movie-database- import
5https://github.com/guenthermi/google-play-dataset- import
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Figure 3: Classification of Birth Places of US-American Di-
rectors with Increasing Sample Size

process into different directions in a fine-grained manner, i.e. to
adapt to different downstream tasks.

4.2 Machine Learning Tasks
Binary Classification. We implemented a binary classifier to
label a set of directors of the TMDB dataset according to there
citizenship. The classifier should decide between US-American
and non-US-American directors. Since this information is not
available from the TMDB dataset, we extract the citizenship from
Wikidata [10] by using the SPARQL query service. We trained a
feed-forward neural network (one hidden layer with 600 neurons;
applying dropout and L2 regularization; Nadam optimizer [4])
on the different 300-dimensional embedding representations of
the director names (full names). We used for the training 200 to
1, 000 samples and validate the accuracy with 1, 000 test samples.
We compared the accuracies achieved when using plain word
embeddings (PV), node embeddings (DW), simple retrofitted (MF)
and relational retrofitted embeddings (RR). We ran the training
and testing on the ANNs 20 times for each configuration with
different sample sets.
The accuracy values and their standard deviation achieved by the
classifiers are shown on the left in Figure 3. The best results are
achieved with our relational retrofitting approach (RR) utilizing
word embedding features of the directors name but indirectly also
word embedding features of related text values like the movie
titles directed by them. The influence of the training sample size
is at lowest for the plain word embeddings (PV). DeepWalk (DW)
needs a larger amount of training data to achieve comparable
results. The right side of Figure 3 shows the accuracies achieved
by running the same experiment but combining the previous
embeddings with node embeddings by concatination. This leads
to better results for all methods. Notably, the accuracies of the
retrofitting methods are much better compared to methods where
node embeddings (DW) and plain word embeddings (PV) are just
concatenated.
Missing Value Imputation. Further, we built classifiers to pre-
dict app categories within GPSA database which can be used
to impute missing values. Here,a feed-forward neural network
(two hidden layer with 600 and 300 neurons; applying dropout
and L2 regularization; Nadam optimizer [4]) is applied on the
embeddings of the application names. The network was trained
10 times on 400 random samples to predict the one out of 33
categories. The category information and the genre information
(which is often redundant) are omitted for the retrofitting. We
trained the network on all embedding types and compared it to

Figure 4: Imputation of Categories of Android Apps

MODE imputation, choosing always the most frequent category
in the training data, and Datawig [2]. Figure 4 shows that best
accuracy is achieved by relational retrofitting (RR).

5 CONCLUSION
In this paper, we presented Retro, a system that augments all
terms in database tables by dense vector representations. There-
fore, we employed the notion of retrofitting to modify word em-
bedding representations to specialize for given relational schemas.
We validated Retro experimentally by building standard feed-
forward neural networks for different classification tasks. Our
evaluation showed that the generated relational embeddings are
ready-to-use for different ML tasks and even outperform state-
of-the-art techniques such as the approach of Faruqui et al. or
DeepWalk [9].
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ABSTRACT
Database cracking (DBC) provides an adaptive data storage envi-

ronment that meets the needs of modern applications in business

and science, reorganizing data on demand and adapting indexes

on the fly, automatically, and collaterally to query processing. De-

spite intensive research on cracking and other adaptive indexing

variants, their theoretical side has scarcely been investigated. Yet,

quite surprisingly, as we show, an antecedent of database crack-

ing in a pure, no-frills form had been developed in the theory

community 24 years ahead of its time by the name of deferred data
structuring (DDS). While lacking system implementations, DDS

corresponds to what we would call, by the terminology used

in the database community, materialization-based data-driven
center cracking for point lookup queries, as well as a stochastic

variant thereof. Further, DDS has gone beyond regular cracking

proposals by suggesting a policy that reorganizes index ranges

along the median of a sample set, i.e., a mediocre element.

In this paper, we reanalyze state-of-the-art database cracking

algorithmswith the benefit of hindsight provided by deferred data

structuring, and propose new alternatives that use a mediocre

element as cracking pivot instead of a random or a median one.

In a thorough experimental study, we determine that a logarith-

mic or linear sample size yields best performance on a standard

benchmark across the board of cracking algorithms.

1 INTRODUCTION
Database Cracking (DBC) [1–3] addresses the needs of dy-

namic environments where workload knowledge and idle time

are scarce, queries follow an exploratory path, and new data ar-

rive continuously [1]; as a form of adaptive indexing [6], it paves

the way to self-organizing database management systems, es-

chewing the need for human administration in physical database

design. Cracking builds and refines index data structures for a

column-oriented database incrementally, in response to queries

and arriving data, without a need for human intervention; its

core operation, applied within the select operator, reorganizes a

column into pieces [5], handles updates [4] and invites security

features [8]. A stochastic alternative [1] improves performance

by refraining from blindly following queries; it also creates ran-
dom cracks on its own, and thereby avoids the deterioration of

performance that skewed workloads may cause.

Surprisingly, while database cracking has been studied over

the last decade, an antecedent thereof had been investigated from

a theory perspective two decades in advance by the name of De-
ferred Data Structuring (DDS) [7]. Specifically, DDS suggested
that, instead of processing a data set in advance, we may instead

process it while responding to queries. Traditionally, to answer

the query “is integer x in list ℓ?”, we would scan ℓ in O(n). If
the number of queries is high, it pays off to sort O(n logn) in a

pre-processing step and then perform binary search in O(logn)
for each query. By DDS, we create a data structure that represents

© 2020 Copyright held by the owner/author(s). Published in Proceedings of the

23rd International Conference on Extending Database Technology (EDBT), March

30-April 2, 2020, ISBN 978-3-89318-083-7 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons

license CC-by-nc-nd 4.0.

the list while processing queries, achieving better performance

in all cases. While DDS was proposed for lookup queries on a

static data set only, we will argue that its main logic uncannily

resembles that of database cracking.

In this paper, we observe the resemblance between DBC and

DDS and bring both concepts under the same roof. We conduct a

thorough theoretical study of state-of-the-art DBC algorithms

under the light of DDS methods. We implement existing DDS and

DBC proposals and propose new intermediary, mediocre-based

solutions, that inherit both the theoretical elegance of DDS and

the practical applicability of DBC.

2 RELATEDWORK
We discuss related works in two fields: database cracking and

defferred data structuring.

2.1 Database Cracking
Database Cracking [2, 3] reorganizes and indexes columns in

an adaptive manner triggered by user queries, within the SELECT
operator. In the general case, a query requests all values within a

range, [low,hiдh]; when responding to that query, the a cracking

system finds one or more pieces of the current index where the
requested data resides, reorganizes (i.e., cracks) the column so as

to bring the result values between query bounds low and high in

a contiguous space, and updates the index accordingly. Figure 1a

provides an example.

(a) Reorganizing a column. (b) Cracking algorithms at work.

Figure 1: Database cracking illustration [1].

Stochastic Cracking [1] maintains performance when faced

with pathological workloads; in addition to cracking using query

bounds as pivots, it creates additional cracks while traversing

the index towards query bounds. Figure 1b indicates how several

stochastic cracking algorithms work. We discuss the six main

alternatives: DDC, DDR, DD1C, DD1R, MDD1R, and PMDD1R.

The Data-Driven Center (DDC) algorithm divides (i.e., cracks)

each value range it encounters while traversing the index along

the middle (i.e., median) of its value domain recursively, as in an

ideal case of pivot selection by quicksort. This recursive split-

ting process terminates when pieces become smaller than a size

threshold. Thereafter, DDC cracks on query bounds as usual.

Algorithm 1 illustrates the process. On the other hand, the Data-
Driven Random (DDR) algorithm avoids the median-finding over-

head: it uses a random element instead of the median as pivot

when cracking each value range in Line 6 of Algorithm 1.

Both DDC and DDR incur an overhead on the first few queries,

as they recursively introduce many cracks on the way to query

bounds. Two lightweight alternatives,DD1C andDD1R, eschew
the recursion, i.e., crack only once at a median or random pivot,
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respectively, in addition to cracking at query bounds, by turning

the while loop in Line 5 of Algorithm 1 to an if statement.

ALGORITHM 1: DDC [1]

Result: Cracks at center of each relevant piece and bounds

1 int DDCCrack(C:array, v:value)
2 Find the piece Piece that contains value v;
3 pLow = Piece .firstPosition();
4 pHiдh = Piece .lastPosition();
5 while (pHiдh − pLow > CRACK-THRESHOLD)
6 pMiddle = (pHiдh + pLow )/2;
7 Introduce crack at pMiddle ;
8 if (v < C[pMiddle])
9 pHiдh = pMiddle
10 else
11 pLow = pMiddle
12 posit ion = crack(C[pLow, pHiдh], v );
13 return posit ion;

/* Main Body : DDC */

/* Crack array C on bounds a and b */

14 posit ionLow = DDCCrack(C, a);
15 posit ionLow = DDCCrack(C, b );
16 result = createView(C, posit ionLow, posit ionHiдh);

Still, the hitherto presented algorithms create cracks at each

query’s bounds, which may hurt performance without bringing

a benefit in the long run. MDD1R, a variation of DD1R, dispels

the cracking at query bounds as well, and simply materializes
query results while creating exactly one random crack per query.

Algorithm 2 shows the corresponding pseudocode.

ALGORITHM 2: MDD1R [1]

Result: Cracks at a random point in one relevant piece and bounds

1 array split-and-materialize(Piece, a, b)
2 L = Piece .firstPosition;
3 R = Piece .lastPosition;
4 r esult = newArray;

5 X = C[L + rand ()%(R − L + 1)];
6 while (L ≤ R)
7 while (L ≤ Q andC[L] < X )
8 if (a ≤ C[L] andC[L] < b)
9 r esult .Add (C[L])
10 L = L + 1;
11 while (L ≤ R andC[R] ≥ X )
12 if (a ≤ C[R] andC[R] < b)
13 r esult .Add (C[L])
14 R = R − 1;
15 if (L < R)
16 swap(C[L], C[R])
17 Add crack on X at position L;
18 return r esult ;

/* Main Body: MDD1R */

/* Crack array C on bound a, b */

19 Find the piece P1 that contains value a;
20 Find the piece P2 that contains value b ;
21 if (P1 == P2)
22 r esult = split-and-materialize(P1, a, b )
23 else
24 r es1 = split-and-materialize(P1, a, b );
25 r es2 = split-and-materialize(P2, a, b );
26 view = createView(C, P1.lastPosit ion + 1, P2.f ir stPosit ion − 1);
27 r esult = concat(r es1, view, r es2);

In more detail, the algorithm first finds the pieces where the

two bounds are. If they are in the same piece, it partitions that

piece with respect to a random pivot, while collecting the query

results in an array. Should they be in different pieces, it partitions

the pieces where each bound belongs and then concatenates

the query results, as well as all pieces in between to produce

the response to the query. Note that MDD1R maintains a data-

driven character: even though not cracking at query bounds, it

introduces random cracks in the pieces where those bounds are.

Even with MDD1R, the initial queries of a workload need

to reorganize almost all the the data. PMDD1R is a progressive
instantiation of MDD1R that takes the incremental nature of

cracking one step further. MDD1R performs a reorganization

task on a given piece in smaller units, performed with each query

touching that piece. A percentage p determines how much of the

pending reorganisation task is done with each relevant query,

while materializing and returning the query result.

2.2 Deferred Data Structuring
Deferred Data Structures [7] are tree-like structures built in
response to queries. Their objective and rationale resembles data-

base cracking, even though they were introduced two decades

earlier with a focused theoretical intent and no accompanying

system implementation. Consider a list ℓ = {x1,x2,x3, . . . ,xn }
and existence queries thereupon, q = {q1,q2,q3, . . . ,qr }. A con-

ventional approach would sort the list and answer each query by

binary search. DDS performs sorting through query answering:

it answers each query in O(n) time, and partition the list as well

while doing so. Algorithm 3 illustrates DDS. By the terms of

Section 2.1, Algorithm 3 corresponds to a DDC variant of data-

base cracking specialized on point lookup queries, without a size

threshold: it cracks recursively on the median, like DDC does, and

reports the existence or absence of the lookup query value; were

there a size threshold, it would correspond to anMDDC variant,

yet without such a thresholdMDDC degenerates to DDC.

ALGORITHM 3: DDS via recursive median finding [7]

Result: Create a tree structure representation of list l while responding to queries

1 boolean SEARCH(v:node, q:query)
2 if(v is not labeled)
3 EXPAND(v);
4 if(label(v) == q)
5 return true;

6 if(v is a leaf node)
7 return false;

8 if(q < label(v))
9 return SEARCH (lef t_child (v), q);
10 if(q > label(v))
11 return SEARCH (r iдht_child (v), q);
12 void EXPAND(v:node)
13 S ← set (v);
14 m ← MEDIAN − F IND(S );
15 label (v) ←m;

16 if(∥S ∥ == 1)

17 return ;

18 Sl ← [x | x in S and x < m ];
19 Sr ← [x | x in S and x > m ];
20 set (lef t_child (v)) ← Sl ;
21 set (r iдht_child (v)) ← Sr ;

/* Main Body */

22 initialize the tree TX with the n data keys at the root;

23 Get a query q;
24 Result← SEARCH (root, q);
25 Output the result;

26 Goto Line 23;

Further, DDS [7] comes along with a randomized proposal,

which replaces the exactmedian-finding operationwith amediocre
function, i.e., the median of small sampled set of values, whose

computed rank passes a sanity test, instead of the whole set, as Al-

gorithm 4 shows; this choice improves the cost per query while it

still creates a well-balanced tree structure in the long term. Once

again, the rationale is reminiscent of what we would callMDDR
in database cracking terms. In particular, a randomized DDS

where the size of the sampled set is one element corresponds to

anMDDR cracking algorithm specialized on point lookup queries

and without a size threshold.

ALGORITHM 4: Mediocre finding function [7]

Result: Finds mediocre of set T
1 int mediocreFind(T:set of values)
2 t ← size(T );
3 Pick a random of sample S of size 2 ∗ ⌈t 5/6 ⌉ + 1 from T;

4 m ← MEDIAN − F IND(S );
5 Compute rank(m) by comparing with each element of T − S ;
6 If rank(m) is not in the range (t/2) ± t 2/3 ;
7 returnm;
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3 THEORETICAL ANALYSIS
Here, we analyze state-of-the-art database cracking algorithms

by the tools of deferred data structuring, assuming a cracking

size threshold of zero and point lookup queries. We also propose,

study, and build upon an alternative stochastic cracking algo-

rithm, DDM, which uses a mediocre element as cracking pivot,

as in Algorithm 4, instead of a random one, as DDR algorithms

do, or a median one, as DDC algorithms do.

Theorem 3.1. DDC: The number of operations needed to process
r queries on a list of n points is no more than λ(n, r ):

λ(n, r ) =

{
3n log r + r logn, if r ≤ n

(3n + r ) logn, if r > n

Proof. In case r ≤ n, at any level of the tree, at most r nodes
are expanded. For the top log r levels, the total cost is less than
3n log r , since all nodes have to be expanded. The creation of a

crack includes finding the median, which requires 3|set(node)|.
The cost of node expansion at level i of the tree for i > log r ,
is O(rn/2i ), since the expansion of a node at this level costs at

most 3n/2i . Summing over all but the first log r levels, we get
an O(n) cost, which is dominated by 3n log r . Searching for each

query costs O(logn), since the tree is balanced, hence the r logn
term. When r > n, expansion will complete the tree, with a cost

of 3n logn, while search follows the same principles. □

Theorem 3.2. DDR: The number of operations needed to process
r queries on a list of n points is no more than λ(n, r ):

λ(n, r ) = n2 + rn

and is expected to be no more than λ(n, r ) operations:

λ(n, r ) =

{
1.39n log r + r logn, if r ≤ n

(1.39n + r ) logn, if r > n

Proof. As there is no guarantee that the created tree will be

balanced, in the worst case, the random numbers chosen to create

cracks yield a completely unbalanced tree. A query may cause

the entire tree to be created in O(n2). Due to the lack of balance,

search can take up to n operations, producing the rn term. In

the average case, we expect performance similar to quicksort [9],

with 1.39 in place of 3 in Theorem 3.1. □

Theorem 3.3. DDM: The number of operations needed for pro-
cessing r queries in a list of n points is no more than λ(n, r ):

λ(n, r ) =

{
(1 + α)(n log r + r logn), if r ≤ n

(1 + α)(n + r ) logn, if r > n

with probability greater than 1− log r
βn , where α ≪ 1 and β depends

on the value of α .

Proof sketch. The proof follows from [7]. The height of the

tree created only differs from logn by a constant, so the search

operations are r logn. Then, the probability of the first sample

chosen rendering a median that passes the test is higher than

(1− 1

4 |set (node) | ), which leads to the conclusion that the total cost

of testing for mediocrity is at most (1+α)n log r with probability

higher than 1 −
log r
k2n , where α and k are small constants, and

β depends on α . The total cost of finding the medians for the

first log r levels isO(n
5

6 r
1

6 ) with probability higher than 1−
log r
βn ,

from which the complexity for r ≤ n follows. If r > n the tree

will be complete with some extra costs, as in the DDR case. □

Theorem 3.4. DD1C: The number of operations needed to pro-
cess r queries in a list of n points is no more than λ(n, r ):

λ(n, r ) =

{
14n + r logn, if r ≤ n

(3n + r ) logn, if r > n

Proof. As the first query, q1 is made to a list of length n, the
median should be found in 3n. Then, one of the two crack pieces

is chosen and another crack is made, with regards to the query.

The process of partitioning takes at most
n
2
comparisons. For

the second query, up to two comparisons are made based on

the crack created in the first query, to choose a chunk of size at

most n/2, find its median, and crack one of the resulting pieces,

yielding
3n
2
+ n

4
. Following the same pattern until the r th query,

we get a cost of:

i=r∑
i=1

3n

2
i−1 +

i=r∑
i=1

n

2
i = 7n

i=r∑
i=1

1

2
i < 14n

while the search component costs r logn. When the number of

queries reaches n, the tree will be complete, and the cost is as in

the proof of Theorem 3.1. □

Theorem 3.5. DD1R :The number of operations needed to pro-
cess r queries in a list of n points is no more than λ(n, r ):

λ(n, r ) =

{
3rn + r , if r ≤ n

n2 + rn, if r > n

and is expected to be no more than λ(n, r ) operations:

λ(n, r ) =

{
7.56n + r logn, if r ≤ n

(1.39n + r ) logn, if r > n

Proof. In the worst case in terms of random pivot choices, for

query q1 we pick a random point and partition based on it, in at

most n operations. The pieces may be of size 1 and n − 1. One of
those two is partitioned based on the query in n − 1 comparisons.

The second query will partition a piece of size as large as n−2 for
the random crack and one as large as n − 3 for the query bound,

and so on, in [n − 2(i − 1)] + [n − (2i − 1)] operations for the ith

query. Going all the way to qr , we have

i=2r−1∑
i=0
(n − i) = 2rn − 2r2 + r

operations for expansion and rn operations for search. Should the

number of queries exceed n, the tree is completed, hence n2 op-
erations. In the expected case, the tree resembles a balanced tree

and results follow Theorem 3.4, with the quicksort complexity

factor 1.39n replacing 3n in calculations, as in Theorem 3.2. □

Theorem 3.6. DD1M: The number of operations needed to pro-
cess r queries in a list of n points is no more than λ(n, r ):

λ(n, r ) =

{
(1 + α)(n log r + r logn), if r ≤ n

(1 + α)(n + r ) logn, if r > n

with probability greater than 1 −
log r
βn .

Proof. By Lemma 3 in [7], with high probability we only need

to compute a median over a sample once, as the first attempt

passes the mediocrity test. For the first r queries, we compute

the medians of nodes that will overall lead toO(n
5

6 r
1

6 ) (Lemma 5

in [7]). The cost testing for mediocrity at level i , denoted by ci ,
is proven to be less than (1 + α)n log r . After cracking at the
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Figure 2: Total runtime, 160K queries; linear:m = size
1000

, logarithmic:m = loд(size), exponential:m = size
5

6 .

mediocre, we scan the list to find the query point and create

another crack there, in at most si (Lemma 1 in [7]), yielding:

n
5

6 r
1

6 +

i=r∑
i=1

ci + 1.5si+1 ≤

n
5

6 r
1

6 + (1 + α)n log r + 2n(1 − (0.5)r ) + 20n
2

3

1 − 2
2r
3

1 − 2
2

3

The cost of search remains similar to that of DDM. □

Overall, materialization-based algorithms have similar com-

plexities as their default counterparts due to their common bases.

4 EXPERIMENTAL STUDY
We assess the performance of mediocre-based variants database

cracking algorithms [1] inspired from our study of deferred data

structures [7]. We conduct experiments on a Ubuntu Linux server

release 18.04 machine with a 10-core 3.1GHz Intel E5-2687W

processor and 377GB of RAM. All methods are implemented in

C++ upon the code
1
of [1]; our code is also available

2
online.

We use the 4TB SkyServer
3
data and workload [1], derived from

an astronomy project mapping the universe. We filter selection

predicates from 160K chronologically ordered queries using the

right ascension attribute of the Photoobjall table, which contains

500 million tuples. Query patterns are complex, as users tend to

focus in a specific area of the sky before moving on.

4.1 Compared Algorithms
We compare the state-of-the-art stochastic cracking algorithms

presented in Section 2, namelyDDR, DD1R,MDD1R, and PMDD1R

with p = 0.1 and CRACK_THRESHOLD = 128 to their median-

based counterparts and to counterparts that use a mediocre

cracking pivot, i.e., the median of a random sample set of a

cracked piece, rather than a median or random one: DDM, DD1M,

MDD1M, and PMDD1M, respectively.

The median-based counterparts of DDR, DD1R and MDD1R

are DDC, DD1C and MDD1C respectively; we included those

three in our study, but they proved to be too expensive. We

do not include a median-based counterpart of PMDD1R, since

median-finding operations are hard to render progressive. The

mediocre-based policy is reduced to the median-based one form
equal to piece size, and to the randomized one form = 1.

4.2 Results
We apply each algorithm on the same 160K-query workload and

measure the total runtime, juxtaposing mediocre-based variants

to their randomized and median-based counterparts, where such

1
https://github.com/felix-halim/scrack

2
https://gitlab.com/fatemeh.zardbani/adaptive-indexing

3
http://cas.sdss.org/

exist. Figure 2 shows the results when varying the sample set

sizem from 1 to 41, and as a linear, logarithmic, or exponential

function of piece size, with the mediocre-based policy, averaging

over 110 runs and foregoing the mediocrity check [7]. The case

of single crack without materialization is very similar to that of

single crack with materialization in Figure 2b, hence we omit a

separate figure for that case.

In the case of a constant sample size, the cost of calculating the

median of a small sample set is initially a worthwhile price to pay

for the benefits it brings, yet the cost to benefit ratio deteriorates

asm grows; binomial fit curves visualize the trends in Figure 2a,

2b, and 2c. However, cases where sample size is a simple function

of piece size achieve the best performance in all variants. The

logarithmic function is the best performer with recursive and

simple crack with and without materialization. In the variant

with progressive materialization, a linear function, m = size
1000

,

performs best.

5 CONCLUSION
We revisited the theory and practice of database cracking, which
has been intensively studied in practice, yet scantily examined in

theory. We provided the first thorough study of the complexity

of the all state-of-the-art stochastic cracking algorithms, drawing

from an overlooked 32-year-old study that introduced analogous

concepts under the name of deferred data structuring. Inspired
from deferred data structuring, we introduced a refined stochastic

cracking policy that uses a sample-based mediocre pivot, rather
than an arbitrary random ormedian one, for data-driven cracking.

We showed that variants of state-of-the-art stochastic cracking al-

gorithms using the mediocre-based policy have lower complexity

than their median-based and randomized counterparts with high

probability, and demonstrated experimentally that they stand out

in terms of cumulative time efficiency.
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ABSTRACT
Entity Resolution (ER) allows to identify different virtual rep-
resentations of entities that refer to the same real world entity.
When applied to highly heterogeneous data, ER relies on schema-
agnostic blocking techniques to improve efficiency while yielding
good effectiveness. A drawback of schema-agnostic blocking is
the potentially high number of redundant pairwise comparisons.
This has led to the introduction of additional efficiency layers be-
yond blocking in the overall ER pipeline, which all aim at pruning
comparisons to reduce the unnecessary time overhead.

This paper proposes a novel technique based on Bloom fil-
ters that integrates in such an efficiency layer. In addition to
avoiding redundant comparisons, it further prunes superfluous
comparisons that are unlikely to result in matches when actu-
ally compared. Experiments on benchmark datasets show that
our approach improves existing approaches in space and time
efficiency, with insignificant changes in effectiveness.

1 INTRODUCTION
Entity resolution (ER) is the problem of identifying or matching
different digital representations of the same real-world entity (e.g.,
the same person, manufactured part). It represents a fundamental
task in data integration and data cleaning. While ER has mostly
been studied for homogeneously structured data (to which we
refer to as structured ER) [6], recent work has been extended
to unstructured ER, i.e., ER when it is not possible or useful to
transform heterogeneous entities to match a common schema [5,
10]. This for instance applies when considering ER for the Web
of Data or for data stored in data lakes.

For large datasets, handling the inherently quadratic complex-
ity of ER generally becomes computationally prohibitive. There-
fore, ER solutions commonly adopt blocking techniques [6, 12]
that reduce the total number of pairwise comparisons by perform-
ing comparisons only between entity representations placed in
the same block according to some criteria. This typically prunes
a significant number of comparisons between entity descriptions
that do not match anyway, to which we refer to as superfluous
comparisons. In structured ER, blocking techniques (and ER in
general) heavily rely on a fixed schema among all entity repre-
sentations. As this assumption does not hold in unstructured
ER, schema-agnostic blocking techniques have recently been
proposed for unstructured ER [5, 8, 10].

Figure 1 depicts a general pipeline for unstructured ER [12]. It
comprises three layers enabling efficient and effective ER. Block
building places entity representations, each denoted as ei , into
blocks. One problem of schema-agnostic blocking is that the

© 2020 Copyright held by the owner/author(s). Published in Proceedings of the
23rd International Conference on Extending Database Technology (EDBT), March
30-April 2, 2020, ISBN 978-3-89318-083-7 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.
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Figure 1: Unstructured ER pipeline.

resulting blocks may significantly overlap and thus yield redun-
dant comparisons and the distribution of entity descriptions over
blocks may still yield too many pairwise comparisons. These
two problems have resulted in two further techniques for un-
structured ER. Block cleaning acts at a block level and either
prunes entire blocks (e.g., too large and thus most likely result-
ing in mostly superfluous comparisons) or entity descriptions
within blocks (e.g., descriptions appearing in too many blocks
are removed from the least important blocks). Finally, comparison
cleaning considers pairs of entity descriptions resulting from the
cleaned block collection. It prunes pairs if they are identified
as either redundant or superfluous. Otherwise, pairs of entity
descriptions are compared using a match function to determine
whether they represent the same entity or not. Examples of com-
parison cleaning techniques are comparison propagation [9] and
meta-blocking approaches [4, 11, 14].
Contribution. This paper presents a novel comparison cleaning
approach that prunes both redundant and superfluous compar-
isons. It relies on (i) a favorable order of blocks being processed,
for which we validate a heuristic that works in practice, and
(ii) false positives that are, in our context, a useful feature of
Bloom filters (BFs). Indeed, while false positives are typically un-
desired, we shall see that we can turn them to our advantage
when coupled with a favorable order. As Bloom filters are static
data structures that need to be correctly set up upfront, we further
extend our method to use scalable Bloom filters (SBFs). Our ex-
perimental validation on several real-world benchmark datasets
shows that comparison cleaning using SBFs is robust to different
block collection characteristics and provides a good trade off
between efficiency and effectiveness of comparison cleaning that
improves on baseline and state-of-the-art solutions.
Structure. Section 2 introduces our novel approach based on
Bloom filters and its extensions. Section 3 presents our experi-
mental evaluation. We conclude in Section 4.

2 BLOOM FILTER ENHANCED BLOCKING
BFs have been previously used in ER, for example, to obscure
sensitive data [15] or to summarize the blocking structure of a
dataset [7]. In our work, we employ BFs for comparison clean-
ing. In this section, we describe our algorithm leveraging BFs
(Section 2.1), the block ordering heuristic allowing to turn false
positives inherent to BFs to our advantage (Section 2.2), and
details on extending our algorithm with SBFs (Section 2.3).
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Algorithm 1: Comparison cleaning using a Bloom filter
Input :pmax , s , B

1 initialize(BF , pmax , s);
2 while B has further pairs to process do
3 pi , j ← next pair according to order defined by P ;
4 if ! lookup(BF , key(i , j)) then
5 insert(BF , key(i , j));
6 submit(match(pi , j ));

2.1 General BF based comparison cleaning
To discuss our algorithm that uses BFs, we first provide relevant
background on BFs. We refer readers to [2, 3] for further details.

A BF is a space-efficient probabilistic data structure that of-
fers two operations: insert(k) inserts the key k in the filter and
lookup(k) answers if the key k has been inserted with some proba-
bility, or definitely if it has not been inserted. False positive prob-
ability (the probability of a lookup returning true even though
k has not been inserted) can be computed and it increases with
insertions of unique keys. A Bloom filter BF is initialized by pro-
viding a maximum acceptable false positive probability pmax and
the number of expected keys to be inserted, denoted s .

In our context, a key ki , j uniquely identifies a pair pi , j =
(ei , ej ). We assume that ei and ej are unique identifiers of entity
descriptions. We generate ki , j using a function key : Inteдer ×
Inteдer → Inteдer . The pairs to be sequentially inserted into the
BF (by inserting their integer key) are pairs produced from a block
collection B = [b1, . . . ,bn ] that comprises n blocks of various
sizes. The maximum number of keys possibly being inserted is
bounded by O(|b1 |2 + |b2 |2 + . . . + |bn |2). Given that the false
positive probability increases with the number of keys that have
been inserted into a BF, we assume that we can iterate over pairs
resulting from B in a specific order. That is, our algorithm uses
an iterator to retrieve pairs in the order given by

P =
[
(eki , e

k
j )

��� eki ekj ∈ bk , 1 ≤ k ≤ n, 1 ≤ i < |bk |, i < j ≤ |bk |
]

where the three ranges specified fork , i , and j are to be interpreted
as three nested loops with k being the outer and j the most inner
loop. How to sort B in a good order for efficient and effective
comparison cleaning is further discussed in Section 2.2.

Using the above assumptions and notation, Algorithm 1 sum-
marizes how we leverage BFs to perform comparison cleaning. It
first initializes a Bloom filter BF , givenpmax and s . Whilepmax is
generally user defined (we will see how to best set it in practice in
Section 3), s can also be computed as the upper bound of compar-
isons based on B (which we do in all experiments). The algorithm
then iterates over pairs retrieved from B in the order given by P ,
retrieving each pair pi , j one at a time. In line 4, we check if pi , j
has already been inserted in BF . To this end, a unique key ki , j is
generated for pair pi , j . If looking up ki , j in BF returns false, we
know that the pair has not been compared before. So we insert
the key into BF , perform the pairwise comparison of the actual
pair of entity descriptions using amatch function, and propagate
the result (could be e.g., a boolean, a similarity score, or a match
probability) for further processing via a submit method.
Time analysis. Time to insert or search a key in a BF is O(|H |),
with |H | the number of hash functions used to fingerprint the
key in the BF [3]. Defining c̄ the average cost for comparing two
entities, the desiderata is that O(|H |) ≪ c̄ . This typically holds
in practice because hashing a pair of integers is less expensive
than fetching and matching two entity representations.

ascending descending random

Figure 2: Distribution of pairwise similarities per iteration
for different order heuristics

Space analysis. The minimum bits sizem of the filter is deter-
mined bym ≥ 1.44s · loд2(1/pmax ) [3]. For instance, assuming
pmax = 0.1, we havem ≈ 4.78s bits.

In our algorithm, we can easily replace the BF by any other dic-
tionary data structure implementing an insert(·) and a lookup(·)
method.We opt for BFs for two reasons. First, a BF is awell known
space efficient data structure and we validate experimentally that
in comparison to other dictionary data structures, it exhibits bet-
ter performance for comparison cleaning (see Section 3). Second,
a BF allows us to additionally prune superfluous comparisons.
This slightly more hidden benefit is rooted in both pmax inherent
to Bloom filters and the order of entity pairs determined by P .
This interplay is further discussed next.

2.2 Block ordering heuristic
The false positive probability inherent to a BF results in three
possible cases when a pair pi , j is processed by Algorithm 1:

True negative (tn) lookup(BF ,pi , j ) returns false, so pi , j is
not redundant

True positive (tp) lookup(BF ,pi , j ) returns true and the
pair is indeed redundant

False positive (fp) lookup(BF ,pi , j ) returns true even
though pi , j has not yet been inserted

While tn and tp are desired cases, fp may be problematic for the
effectiveness of ER as it may reduce the recall of ER if a wrongly
pruned pi , j had, if compared, resulted in a match. We refer to
this case as miss-match. On the other hand, if pi , j would have
resulted in a non-match upon comparison, the comparison was
a superfluous one, i.e., a comparison we actually want to prune.

When the number of keys inserted in the BF increases, the
false positive rate of the BF increases up to pmax . The basic idea
of our Bloom filter based comparison cleaning is to put this “ef-
fect” of BFs to good use by determining an order of pairs for P
that has a high probability of processing true matches early (to
minimize the negative effect of miss-match cases) and using the
increasing false positive probability coming with later processing
to prune superfluous comparisons. Such behavior is intuitively
obtained when finding an order of pairs where the match prob-
ability decreases with increasing number of iterations. Clearly,
the performance of our approach relies on both identifying a
suited order that mimics the behavior described above, and on
the parameter pmax . Given a block collection, [12] postulated
that similar entity descriptions are more likely to be found in
small blocks rather than in big blocks.We experimentally validate
this heuristic on several real-world datasets (see Table 1). Figure 2
shows representative results for three order heuristics resulting
from sorting blocks in ascending, descending, and random order
of the number of entities they contain on the CDDB dataset. The
plots show the first occurrence of a pair pi , j at position (x, sim)
when it is the x-th pair to be processed and the similarity compu-
tation yields a similarity sim. We cut off similarities below 0.5 for
better readability. As is common in ER, we assume that the match
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Dataset Size(D1) Size(D2) Duplicates Brute-force

AG Products 1354 3039 1104 4.11e06
CdDb 9763 // 299 4.77e07
Movies 27615 23182 22813 6.40e08

Table 1: Dataset characteristics (same as in [1]).

Dataset Redundancy Comparisons Recall

E1 AG Products 79% 1.9e7 1.0
E2 Movies 15% 6.5e7 0.98
E3 Movies 7% 9.7e6 0.96
E4 CdDb 36% 2.2e7 0.99
E5 CdDb 7% 4.6e5 0.99

Table 2: Experiment settings.

function determines pi , j to match if its similarity is above a simi-
larity threshold. So the higher the similarity, the more likely it is
we determine a match. Clearly, the ascending order of block sizes
best mimics the desired behavior for our order heuristic. This
experimentally validates the claim that in practice, sorting the
block collection B in ascending order of its block sizes is suited
to approximate the desired behavior on match probability.

2.3 Extension using scalable Bloom filters
We have seen in Section 2.1 that initializing BF requires setting
both pmax and s , which are key in optimally setting the number
of bits allocated to the Bloom filter. While s is in the order of
sum of squares of individual block sizes, this is in practice a very
loose upper bound for the expected number of unique keys to
be inserted, especially when a high degree of redundancy can
be expected. To avoid allocating unnecessary space to a BF and
be less sensitive to variations of both the redundancy and match
distribution in P , we explore how to extend our comparison clean-
ing algorithm with scalable Bloom filters. We provide relevant
background on SBFs and refer readers to [2] for details.

A SBF is a list of Bloom filters BF0, . . . ,BFn . Initially, the list
includes a single BF, denoted BF0, with an associated initial capac-
ity s0 and maximum false positive probability p0. More generally,
each BFi has an associated capacity si and a false positive proba-
bility pi . Given BFi the last BF in the list, a new key is inserted
into BFi . When BFi becomes full (i.e., new keys cannot be in-
serted without exceeding pi ), a new BFi+1 is inserted in the list.
Given a tightening ratio θ with 0 < θ < 1 and a growth ratio
σ ≥ 1, BFi+1 is set with pi+1 = p0θ i and si+1 = siσ . Overall, the
capacity of the SBF gradually increases as needed while the com-
pound false positive probability pfp is bounded by pfp ≤ p0

1
1−θ .

This means that we do no longer have to set s upfront, assuming
the worst case in Algorithm 1. We can choose a more conser-
vative initial capacity s0 << s to improve space efficiency and
extend it if needed. The additional parameters of SBF can be fixed
to θ = 0.9 and σ = 2, following the recommendation of [2].

3 EVALUATION
We experimentally validate the comparison cleaning approaches
presented in this paper. We both perform a parameter sensitivity
study and a comparative evaluation to baseline and state-of-the-
art methods. Performance metrics are runtime (time), memory
footprint (space), and quality (recall over the set of executable
comparisons considering a ground truth file).

All algorithms were implemented in Java 1.8 as extensions of
the JedAI library [13] that supports numerous state-of-the-art

unstructured ER solutions. We ran experiments on an OpenStack
virtualized server (16 processors at 2.30GHz, 50GB RAM).

Our experiments use data from three benchmark datasets
commonly used to evaluate unstructured ER (e.g., in [8, 11]).
Their characteristics are summarized in Table 1. They are publicly
available at the JedAI webpage together with ground truth files.

Our evaluation relies on different experiment settings. Each
setting varies in the block collection B input to the evaluated
comparison cleaning techniques, obtained by varying datasets
and steps preceding comparison cleaning. Table 2 summarizes
the characteristics of five settings E1 through E5. Here, “Redun-
dancy” reports the fraction of redundant pairs produced by B.
“Comparisons” is the total number of pairs resulting from B, i.e.,
|P |. “Recall” reports the maximum possible recall that can be
obtained based on B.

3.1 Parameter sensitivity
We study the effect of parameter variations on performance by
varying the parameters for both BF and SBF as follows:

BF Capacity s = |P | (see Comparison column in Table 2),
pmax ∈ {0.1, 0.5, 0.8}

SBF Initial capacity s0 ∈ {0.01|P |, 0.1|P |, 0.5|P |} and
p0 ∈ {0.1, 0.2, 0.3, 0.4, 0.5}

For all considered parameter settings, we studied their effect
on time, space, and recall. Due to space constraints, we only
report representative results on settings E1 and E3, two extreme
cases with high and low redundancy. The remaining results are
analogous and in line with our discussion.

Figure 3(a) studies recall when varying the false positive prob-
ability for different configurations of the capacity in both E1
and E3. For setting E1, we observe that recall is stable across
all tested configurations. The reason is that E1 has high redun-
dancy, so even the most aggressive configuration setting for a SBF
(low initial capacity, high initial false positive probability) has
an acceptable low loss in recall because typically, it only prunes
comparisons that are indeed unnecessary. In E3, where we have
low redundancy, an aggressive solution based on SBFs with a
very small capacity and high false positive probability loses much
more in effectiveness (25% total loss in recall) compared to a solu-
tion using an higher capacity and same false positive probability
or a solution that uses a smaller false positive probability. This
is due to the fact that a SBF with such aggressive configuration
converges faster to the maximum compound false probability
than the other solutions, resulting in more miss-matches.

Figure 3(b) shows runtime for the same configurations as
the previous experiment. In E1, the aggressive configuration
mentioned before using SBF with very low initial capacity and
high false positive probability is particularly efficient because
it starts to remove non-redundant pairs earlier than the other
solutions but in a point where the match probability is already
very low. This positive effect on runtime decreases as the initial
capacity of a SBF increases, until it eventually converges to the
behavior of a BF. In E3 and similarly in other settings with low
to moderate redundancy, the behavior is similar, yet the slopes
are more evident. This is due to the fact that in such settings,
higher false positive probabilities prune more pairs that are not
redundant (and thus pruned by any configuration).

Considering space (no graphs shown for conciseness), all con-
figurations require less than 25MB of memory, making both SBFs
and BFs space efficient data structures. Considering BFs, as ex-
pected by the formula in Section 2, the space decreases with
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Figure 3: Recall and runtime for parameter configurations

increasing pmax . Considering SBFs, we observe that required
space is lower than for BFs only when the degree of redundancy
is sufficiently high.

From our parameter sensitivity analysis, we observe that good
performance across all settings is obtained when SBF capacity
is set between 0.1 and 0.5 times |P | (the size of a BF) coupled
with a high/moderate false positive probability (0.3 to 0.5). As
BFs do not suffer from efficiency or space degradation caused by
SBF extensions, their false positive probability can be set to even
higher values (as these high values kick in late in the process
where typically, most matches have already been processed), for
which we recommend the range between 0.5 and 0.8.

3.2 Comparative evaluation
Given our above conclusion, we now select two good configura-
tions: BF* with s = |P |, pmax = 0.5 and SBF* with s0 = |P | ∗ 0.5,
p0 = 0.5). We compare them to two other comparison cleaning
approaches. The first baseline uses a hash set (HS) instead of a BF.
The second approach applies comparison propagation (CP) [9].
CP uses inverted indexes to avoid redundant comparisons. The
inverted index is basically a hash-map where the keys are entity
identifiers and the list of values associated to the key identifies
the block indexes where the entity appears. Given a processing
order of the blocks b1,b2, ...,bn , two entities are compared in a
blockbi only if the lowest common index of their associated block
indexes is i . We again evaluate time, space, and recall. We do
not consider meta-blocking [11] as a competitor because it is not
integrable in Algorithm 1, which interleaves pairwise similarity
computation with comparison cleaning.
Quality comparison. Both HS and CP yield the maximum pos-
sible recall (see Table 2) as they exclusively prune redundant
comparisons. The possibly lower recall of our Bloom filter based
solutions is attributed to miss-matches caused by false positives
(see Section 2). Throughout all settings E1 through E5, the recall
of BF* (SBF*) does not reduce by more than 4%.
Time comparison.Table 3a shows the runtime for the compared
approaches in all setings. We further report on the runtime of ER
without any comparison cleaning in the “Nothing” column.When
high redundancy occurs like in E1, all the comparison cleaning
solutions outperform the approach that compares all redundant
pairs (Nothing). Also, we observe that HS and CS consistently
have comparable runtimes. In scenarios with low redundancy,
HS and CS are worse than (or comparable to) Nothing, as their
overhead time to find redundant pairs is higher than the time
avoided by not comparing them (see E3 and E4). Both BF* and
SBF* outperform the baseline approaches thoughout all settings,
improving runtime between 7% and 31% over the best competitor.

BF* SBF* CP HS Nothing

E1 75 74 95 81 540
E2 1235 1161 1557 1566 2038
E3 183 160 255 218 221
E4 77 71 103 112 120
E5 4 4 5 5 4

(a) Time (in seconds)

BF* SBF* CP HS Dataset

E1 6 3 4 223 3
E2 23 38 55 5063 40
E3 3 5 39 785 40
E4 7 13 12 1281 6
E5 <1 <1 5 39 6

(b) Space (in MB)

Table 3: Results for time and space

Space comparison. Table 3b shows space required by the com-
pared comparison cleaning approaches. Unsurprisingly, HS per-
formsworst. CP performs better because the size of its inverted in-
dex depends on the number of entity descriptions of the datasets,
the number of blocks in B, and the level of redundancy of entities
in multiple blocks. We observe that the space used by BF* and
SBF* further usually improves on CP (up to 90%) while, at the
same time, improving efficiency and maintaining high quality.

4 CONCLUSIONS
We proposed a novel approach comparison cleaning approach
in entity resolution based on Bloom filters that removes both re-
dundant and superfluous comparisons to improve efficiency. The
technique relies on a validated heuristic that pairs a decreasing
match probability with an increasing false positive probability.
We further present an extension to our approach, using scalable
bloom filters. Our experimental validation demonstrates that our
approach outperforms state-of-the art algorithms in space and
time, while maintaining high effectiveness.
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ABSTRACT
Many business applications benefit from fast analysis of online
data streams. Modern stream processing engines (SPEs) provide
complex window types and user-defined aggregation functions to
analyze streams. While SPEs run in central data centers, wireless
sensors networks (WSNs) perform distributed aggregations close
to the data sources, which is beneficial especially in modern IoT
setups. However, WSNs support only basic aggregations and win-
dows. To bridge the gap between complex central aggregations
and simple distributed analysis, we propose Disco, a distributed
complex window aggregation approach. Disco processes complex
window types on multiple independent nodes while efficiently
aggregating incoming data streams. Our evaluation shows that
Disco’s throughput scales linearly with the number of nodes
and that Disco already outperforms a centralized solution in a
two-node setup. Furthermore, Disco reduces the network cost
significantly compared to the centralized approach. Disco’s tree-
like topology handles thousands of nodes per level and scales to
support future data-intensive streaming applications.

1 INTRODUCTION
Modern business use-cases often require the analysis of high-
volume data streams. To efficiently process such large amounts of
data, stream processing engines (SPEs) provide complex windows
and aggregations. But to perform these complex aggregations,
state-of-the-art SPEs such as Apache Flink [2], Apache Spark
Streaming [16], and Apache Storm [12] require the data to be
collected in a single data center. Current research approaches
to improve the performance of window aggregation, such as
Scotty [13, 14], Cutty [3], and Pairs [7] also require data to be cen-
trally available. However, efficiently analyzing an ever-increasing
data volume requires streams to be processed on multiple nodes
as the central collection of data quickly becomes a limiting factor
in processing latency and network cost [17]. While SPEs require
data to be available centrally, wireless sensor networks (WSN)
perform aggregations on multiple nodes close to the data sources.
WSNs drastically reduce the network costs by actively leveraging
the distribution of incoming data streams. However, previous
work on WSNs, such as TAG [10] or Cougar [15], provides only
simple aggregation operations on basic window types.

To bridge the gap between complex central aggregation in
SPEs and distributed basic aggregation in WSNs, we propose
Disco, a distributed complexwindow aggregation approach.While
SPEs processes incoming data in one central stream, Disco lever-
ages the distribution of incoming data streams to perform dis-
tributed window creation and aggregations closer to the sources.
We propose multiple strategies to efficiently merge distributed
windows and their respective aggregates. With this approach,
we benefit from both the reduced network cost of WSNs and the
complex analysis of SPEs.
© 2020 Copyright held by the owner/author(s). Published in Proceedings of the
23rd International Conference on Extending Database Technology (EDBT), March
30-April 2, 2020, ISBN 978-3-89318-083-7 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

In this paper, we make the following contributions: 1.) We pro-
pose Disco, an approach for distributed complex window aggre-
gation that does not require raw data collection on single nodes.
2.) We introduce window merging strategies to distribute the
processing of common window types while maintaining correct
aggregation semantics. 3.) We evaluate Disco and show that the
throughput of our approach scales linearly with the number of
nodes as well reduces the network cost drastically compared to
state-of-the-art central window aggregation techniques.

The rest of the paper is structured as follows. In Section 2,
we present the foundations of window aggregation that Disco is
built upon. In Section 3, we present our distributed aggregation
approach for arbitrary window types and aggregation functions.
Before concluding, we present our evaluation of these distributed
aggregation concepts implemented in our prototype in Section 4.

2 BACKGROUND
In this section, we present the background of distributed window
aggregation. We first present the two window types on which we
build, as well as two classes of aggregation functions. We then
introduce stream slicing for efficient window aggregations.

Window Types. For this work, we distinguish between two
types of windows, context-free and context-awarewindows [9, 14].
In this case, context refers to the state that is required to calculate
the start- and end-bounds of all the windows up to time t .

Context-free (CF) windows do not require any state and their
bounds can be computed statically. For a time t , all window
bounds can be computed without processing a single event. Ex-
amples of CF windows are tumbling and sliding windows [1, 9].

Context-aware (CA) windows require some kind of state to
determine thewindow bounds, i.e., thewindowing function needs
to see either previous or future events to know when a window
ends. An example of a CA window is a session window [1]. The
windowing function needs to see future events after t in order to
know that a session has terminated at t .

Aggregation Functions. For distributed aggregation, we dis-
tinguish between two classes of aggregation functions, decom-
posable and holistic (or non-decomposable) [4, 5]. Decomposable
functions are aggregations for which the aggregation can be
performed on subsets of the data and merged afterwards, e.g.,
sum{1, 2, 3, 4} = sum{1, 2} + sum{3, 4}. We call the aggregation
values on subsets of the data partial aggregates. Other examples
of decomposable functions are avg, count, and max.

Holistic functions are all functions that are not decomposable,
i.e., they require all values to perform the correct aggregation.
There is no partial aggregation state for these functions. Examples
of holistic functions are median and quantiles.

Stream Slicing. In Disco, we apply general stream slicing [14]
to efficiently aggregate windows. Stream slicing divides windows
into non-overlapping slices. The slices then store either i) a run-
ning, partial aggregate or ii) the individual events, depending
on the aggregation function. The final aggregation result is com-
puted from the individual slices that fall in the window’s range.
For commutative, decomposable aggregations only partial ag-
gregates are needed, leading to a large memory reduction [14].
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Figure 1: Disco’s Architecture.
Each event belongs to exactly one slice, thus avoiding redundant
storage and computation compared to other windowing tech-
niques such as Buckets [9]. Also, slices represent logical event
groups that can be transferred between nodes more efficiently
than individual events. We refer to previous work [8, 14] for a
detailed description of stream slicing and its advantages.

3 THE DISCO APPROACH
Efficiently aggregatingwindowed streaming data is a core task for
modern SPEs. State-of-the-art window aggregation techniques re-
quire data to be available centrally on a single node. We introduce
Disco, an approach for distributed window aggregation, which
overcomes the central collection of raw events. Disco processes
the incoming streams independently of each other and creates
independent windows and aggregations onmultiple nodes. These
windowed aggregations are then merged to produce the final
aggregation result. Disco’s components communicate in a tree-
like structure, in which leaf nodes (called child nodes in Disco)
create independent windows and inner nodes (called intermediate
nodes) merge them. This independence allows Disco to scale by
adding new child nodes to process more events and by adding
intermediate nodes to process more child nodes.

In the remainder of this section, we provide an architecture
overview of Disco (Section 3.1) followed by a detailed descrip-
tion of Disco’s window merging strategies (Section 3.2) and its
distributed computation of aggregation functions (Section 3.3).

3.1 Architecture
We show Disco’s architecture in Figure 1. Disco consists of three
main components, the root node, the intermediate nodes, and the
child nodes. These individual components communicate in a tree-
like structure, where each node, except the root, communicates
with exactly one parent node and each node can have many
children, limited only by its network and processing power. Each
event stream connects to one child node, which in turn receives
the raw events. The Window Creator on each child node creates
slices and windows according to user-specified queries 1 . The
child nodes then pass on partial aggregates for each window to
their parent. On the intermediate nodes, a Window Merger then
merges incoming windows according to the strategies presented
in Section 3.2 2 . On the root node, the Root Window Merger
finally merges all partial windows 3 and performs the final
aggregation to retrieve the result for a given window 4 . As
the nodes process events and windows independently, there can
be an arbitrary number of child nodes and intermediate levels,
depending on the scale that the system requires.

Our implementation relies on the Scotty library1 [14] for the
window and slice creation step 1 . Because Scotty requires data

1https://github.com/TU-Berlin-DIMA/scotty-window-processor

Figure 2: No merging for unique windows.

to be available centrally, we extend its windowing concepts to
support distributed windows.

3.2 Distributed Window Merging
Depending on the window characteristics (i.e., type and measure),
Disco selects the appropriate window creation and merging strat-
egy. In particular, Disco differentiates between the two window
types: context-free and context-aware (as described in Section 2).
Disco processes incoming event streams and resulting windows
independently on child nodes. In order to create the correct global
window result over all streams, Disco merges the individual win-
dows. To this end, Disco has to determine which partial windows
belong to the same global window. We present three merging
strategies for distributed window aggregation in Disco, i) unique
windowmerging, ii) context-free merging, and iii) context-aware
merging. For our explanation, we assume there are k independent
child nodes producing windows and one Root Window Merger
that merges the windows to produce a global result.

Window Merging Operations. In order to perform distrib-
uted aggregations, we use the three operations: lift, combine, and
lower to model our aggregation functions [11]. lift converts a
single input value x to an aggregation into a partial aggregate, e.g.,
x = 5 → ⟨sum: 5, count: 1⟩ for avg. combine merges two partial
aggregates into a new partial aggregate, e.g., ⟨5, 1⟩ ⊕ ⟨7, 2⟩ →

⟨12, 3⟩. lower converts the partial aggregate to the final result,
e.g., ⟨12, 3⟩ → 12/3 = 4.

To merge multiple windows, we extend the slice-merge opera-
tion [14] for windows. The window-merge operation ⊎ takes two
windowsw1 andw2 and creates a new windoww with a merged
aggregate state (w .state = combine(w1.state,w2.state)), as well
as the according bounds (w .start = min(w1.start,w2.start)) ∧
w .end =max(w1.end,w2.end).

Unique Window Merging. The first merging strategy that
Disco uses is based on unique windows. A unique window is
a window for which data is present in only one stream. With
no matching data, there are no further windows to merge the
unique window with. This strategy is applicable to queries where
there are no overlapping keys on different nodes and the query
is defined on individual keys only. We show this in Figure 2.
A Window Merger that receives a unique window w , emits w
unchanged and the Root Window Merger calls lower(w .state)
to retrieve the final aggregation result. For unique windows,
we benefit from a distributed aggregation compared to central
processing, as we do not need to transfer raw data to the root
node and we distribute the aggregation cost across all child nodes.
An example for a uniquewindow is a smart home setting inwhich
we calculate the average temperature per house.

Context-FreeWindowMerging.Disco determines towhich
global window a partial context-free window belongs by its
start and end bounds. As the bounds are statically computed
and require no context, they are identical on all nodes. Thus,
equivalent partial windows have equal start and end bounds. We
show this for a sliding window on two nodes in Figure 3. For
each global window w with w .start = x and w .end = y, we
collect the k matching partial windows out of all windowsW ,
{wi ∈ W | wi .start = x ∧wi .end = y} and merge them into a
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Figure 3: Merging distributed context-free windows.

new global result window w = w1 ⊎w2 ⊎ ... ⊎wk . The global
result is then calculated by calling lower(w .state) in the Root
Window Merger. An example of a context-free window is a smart
home setting in which we calculate the average temperature of
all houses for the last hour.

Context-AwareWindowMerging.Unlike context-freewin-
dows, the creation of context-aware windows cannot generally be
distributed. As CA windows require some form of context, Disco
cannot make assumptions about whether this context needs to be
viewed centrally or can be viewed independently. If the window
requires a global view of the context, we cannot create windows
independently on multiple nodes. An example of such a global
view is a count-based window, which uses a global event count
to compute the window bounds.

However, certain CA windows, such as session windows, can
benefit from a distributed aggregation. Session windows termi-
nate if the event stream contains a period of inactivity (gap).
In Disco, we define a period of inactivity across all distributed
streams as a global window gap. A timestamp t is active in the
set of all windowsW if ∃w ∈ W : w .start < t ∧ w .end > t .
A timestamp t is thus inactive if it is not active, i.e., there are
no windows spanning across t . A period of inactivity is bound
by two timestamps tstar t and tend between which there are
no active timestamps. Disco leverages this knowledge to merge
session windows in a distributed manner. Session windows are
created independently on child nodes and the Window Merger
then checks if there is an overlap between received windows.
If an incoming window win overlaps with an existing window
wex , it is merged to produce a new windowwnew = wex ∪win
in their place. Two windows overlap if, and only ifwold .start ≤
wnew .end + дap ∧ wnew .start ≤ wold .end + дap. For session
windows, an overlap between two windows needs to take the
session gap into account as events within the gap would cause
the session to continue in a global stream. An arriving window
can merge multiple windows, e.g., if it is a very long window or
it closes the gap between two currently non-overlapping win-
dows. We show this in Figure 4, where window #1b combines
the windows #1a and #1c because it overlaps with both of them.
An example for a context-aware window is a smart home setting
in which we calculate the average temperature of certain houses
as long as they are actively heating.

3.3 Distributed Window Aggregation
While the window type generally decides whether a window
is computed centrally or distributed, the class of aggregation
function determines which data needs to be transferred between
nodes. For decomposable functions (e.g., sum, avg, count), Disco
transfers partial aggregate values. The partial aggregates are then
merged by the window merger.

As holistic functions require all data for a correct aggregation,
Disco needs to transfer all events to the root. However, Disco does
not send individual events but slices. For holistic functions, the

Figure 4: Merging distributed context-aware windows.

slices contain the raw events and Disco uses these slices to send
logical event groups between nodes. As each slice is immutable
and uniquely identifiable, Disco sends it only once, regardless of
howmany windows it appears in. As all holistic functions require
central processing, the root node is the only node that needs to
store slices to performs aggregations on the events. Intermediate
nodes do not process the data in the slices and thus, do not need
to store the slices. Intermediate nodes only keep track of which
slices they have sent to avoid duplicate transmission.

In summary, local and context-free windows can generally
be distributed, while context-aware windows require certain
data characteristics for distribution. If a window or aggregation
function requires a global ordering of events (e.g., count-based
windows), Disco cannot distribute the window creation across
multiple nodes but requires central processing. For holistic ag-
gregations, Disco transfers slices between nodes and for decom-
posable functions, it sends only partial aggregate values.

4 EVALUATION
In this section, we experimentally evaluate Disco’s scalability
(Section 4.1) and its network efficiency (Section 4.2). We choose
avg and median as representative decomposable respectively
holistic aggregation functions, as they show similar character-
istics to other functions of the same group. We execute our ex-
periments on a cluster consisting of 20 nodes. Each node has an
AMD Opteron 6128 @ 2.0 GHz with 16 physical cores and 32 GB
of RAM. All nodes are running Ubuntu 18.04.3 LTS, OpenJDK
12.0.2 64 bit, and are connected via Gigabit LAN. Furthermore,
Disco and our experiments are available on GitHub2.

4.1 Scalability
In this experiment, we compare the scalability of Disco’s dis-
tributed window aggregations to a centralized implementation.

Workload.We evaluate the throughput of a one-second tum-
bling window query for a decomposable as well as a holistic
aggregate function. We define throughput as sustainable if the
system can handle incoming events without an ever-increasing
backlog at the sender [6]. In the centralized implementation, the
child nodes forward the raw events without processing.

Results. In Figure 5, we observe that Disco scales nearly lin-
early with the number of child nodes for both aggregation types.
For decomposable aggregation functions (e.g., avg in Figure 5a),
each child node can process around onemillion events per second.
In the centralized approach, the root node becomes the bottle-
neck, as it processes all raw data centrally. As a consequence, it
is limited by the single node performance (∼1 million events/s).
In contrast, Disco’s root node receives only one partial window
per second per child node instead of all raw events. Thus, Disco
allows for linear scaling as the majority of the window aggrega-
tions is processed independently across all child nodes.

Furthermore, Disco provides scalability for holistic window
aggregation functions (e.g., median in Figure 5b). Overall, the
median aggregation performs significantly worse than the avg
aggregation as it requires the centralized accumulation of all
2https://github.com/hpides/disco
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Figure 5: Scalability of different aggregations in Disco.

events at the root node. As a consequence, the centralized ap-
proach is limited to a throughput of 0.025 million events/s. In
contrast, Disco also performs window creation and merging of
holistic states on multiple nodes in parallel. Thus, the root node
only receives up to eight windows per second in this experiment.
Consequently, Disco is able to scale nearly linearly for the holistic
median function as the final median calculation on the root does
not become a bottleneck for Disco.

Further scalability experiments show that the root node can
process thousands of holistic and tens of thousands of decompos-
able windows per second before it becomes a bottleneck. Thus,
Disco scales to support thousands of child nodes.

Summary. In this experiment, we showed that Disco scales
linearly with the number of nodes for both decomposable as well
as holistic aggregation functions. Even for functions that require
central aggregation but can be windowed independently, Disco
outperform centralized approaches significantly.

4.2 Network Cost
In this experiment, we evaluate the overall network costs of
distributed and centralized aggregations.

Workload. We scale the height of the network topology to
evaluate the network impact of the number of hops between
child nodes and the root. We measure the total bytes sent for a
one-second tumbling window query on 100 million events.

Results. Overall, we observe in Figure 6 that Disco has a sig-
nificantly lower network footprint compared to a centralized
approach. For decomposable distributed aggregations, the net-
work consumption of the central approach scales linearly with
the height of the network tree (see Figure 6a). In contrast, the
network consumption of Disco stays nearly constant. Disco is
independent of the height of the network topology, as all raw
events are sent exactly once from a sensor to a child node. Beyond
that, the intermediate nodes only exchange one partial aggregate
and some windowmetadata per second. This causes an additional
network traffic of only 1 MB per node level. As a consequence, a
network height of five levels causes up to 6x less network traffic
(2GB) compared to the centralized approach (12GB).

For holistic aggregations (see Figure 6b), Disco needs to send
all raw events to the root node. Already for a tree of height two,
we observe that Disco sends fifty percent more data than for de-
composable aggregations. However, by sending events as groups
of slices instead of individually, we avoid the additional TCP over-
head of a purely centralized approach. While all single events
are sent at each level for a centralized approach, slices become
the smallest message unit in the distributed approach. In this
scenario, we can save 50% per level compared to the centralized
approach, which has a large effect once the tree becomes signifi-
cantly deep. For five levels, we send only 7.5 GB of distributed
slice data compared to 12.4 GB centralized single events.
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Figure 6: Network cost for different aggregations in Disco.
Summary. Sending raw events is the dominant factor of the

network cost. In Disco, we avoid sending individual events be-
tween nodes, which results in a high reduction of network traffic.
For decomposable functions, Disco completely avoids sending in-
dividual events, which drastically reduces the network load. Even
for holistic functions, we reduce TCP overhead by combining
and sending events in slices.

5 CONCLUSION
In this paper, we present Disco, a distributed complex window
aggregation approach. Disco combines the distributed data aggre-
gation concepts from wireless sensor networks with the complex
windowing and aggregation semantics from modern stream pro-
cessing engines. This allows us to reduce network traffic while
providing efficient aggregations on arbitrary windows. Our eval-
uation shows that Disco’s throughput scales linearly and that
Disco significantly reduces network costs compared to a central-
ized approach. With the ever increasing number of sensors in the
IoT, Disco lays a foundation for efficient, application transparent,
distributed stream processing.
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ABSTRACT
We propose in this paper a novel approach for explaining query

non-answers in Natural Language within the context of Natural

Language Interfaces to Databases (NLIDBs). Such interfaces allow

non-expert users to pose queries over an underlying database; our

goal is to further allow users to ask why some results that they

have expected to see, are missing from the output. In a nutshell,

our approach is to “marry" NLIDBs with an existing model for

explaining missing query results by pinpointing the last query

operator that is “responsible" for the missing result. We observe

that one can often trace the parts of the original NL question that

correspond to these operators. This paves the way for intuitive

explanations of the non-answers, that are based on highlighting

the relevant parts of the question. Our architecture is generic

and is not coupled with a specific NLIDB, and our solution yields

clear explanations in interactive speed.

1 INTRODUCTION
Natural Language (NL) interfaces to database systems are of-

ten used as easy-to-understand gateways for accessing complex

databases [1, 8, 13]. The rise of NL interfaces allows non-experts

to access and query complex databases, without writing formal

queries or understanding execution plans.

Yet often, the answers returned by such queries do not quite

match the expectations of the users who formed them. Users are

then faced with the problem of understanding the gap between

their expectations and the result. Previous work has dealt with

presenting the users the reason for the presence of a certain

tuple in the result set in a manner that does not require tech-

nical proficiency [5, 6]. When users ask about a missing tuple,

however, a different form of explanation is required. Explaining

missing tuples, or non-answers, is termed why-not provenance

and has been the focus of multiple previous works [2, 3, 10].

Such information is crucial for understanding the result, debug

and improve the query and/or the input database. However, all

of these works have provided this information in the form of

internal representation, not suitable for non-experts.

Rel. author
aid aname oid

1 Marge 1

4 Bart 1

Rel. pub
pid cid jid ptitle pyear

5 11 - “Paper x" 2001

Rel. conf
cid cname dname

11 DBDonut databases

Rel. writes
aid pid

1 5

Figure 1: MAS database instance

Example 1.1. Assume the NL question depicted in Figure 2a

which was correctly translated by an NL interface to a formal

query (shown as SQL in Figure 2b) and executed on the database

instance depicted in Figure 1. The user is presented with a result

© 2020 Copyright held by the owner/author(s). Published in Proceedings of the

23rd International Conference on Extending Database Technology (EDBT), March

30-April 2, 2020, ISBN 978-3-89318-083-7 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons

license CC-by-nc-nd 4.0.

return authors who published papers in database
conferences after 2005

(a) NL Question
SELECT DISTINCT author.aname
FROM author, writes, pub, conf,
WHERE conf.domain = `databases'

AND pub.pyear > 2005
AND author.aid = writes.aid
AND writes.pid = pub.pid
AND pub.cid = conf.cid

(b) SQL Query

return authors who published papers in database
conferences after 2005

(c) Word highlight explanation for “Why not Marge?”

Figure 2: NL query, SQL translation, and our why-not ex-
planations

set, but is surprised to see that Marge is missing. A why-not expla-

nation for this missing tuple could be the predicate pub.pyear >
2005 filtering Marge out, or a modified formal query without this

predicate. However, understanding such explanations requires,

at the very least, SQL knowledge.

In this paper, we aim to provide explanations for non-answers
through natural language. The setting is unique in the sense that

the query is given in NL and the user is not familiar with the

technical details of the query execution, and the explanation

should be tailored to bridge this knowledge gap. We rely on the

frontier picky model [3] to provide explanations to non-expert

users. Our main observation is that, if we use this model, when

the original query was given in NL, we can in many cases trace

back the responsible query operator to the part of the NL query

that corresponds to it.

Example 1.2. For the NL query in Figure 2a, the SQL in Figure

2b, and the why-not query “why not Marge?”. If we employ the

mapping from the words in the NL query to the SQL one we can

find that the words “after 2005” are connected to the operator

pub.pyear > 2005, and reveal that these words in the NL query

caused the removal of the result Marge.

To the best of our knowledge, presenting why-not provenance

to non-experts was not previously studied. This form of explana-

tions is fundamentally different from existing models that show

SQL operators or other technical representations, as it allows

users without technical knowledge to understand the gap be-

tween their expected result and the one they received. We claim

that such explanations are of even greater importance in the

context of NLIDBs, because of the cumulative errors that arise in

such systems. In this setting, users have to specify their intent in

a form of an NL sentence; a failure to specify certain conditions or

a too specific sentence might result in tuple loss, simply because

the user performed an error in the NL formulation. Since the user

has no means of viewing or understanding the SQL query, this

error may go unnoticed.
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The solution is based on word highlighting in the original

sentence form: we highlight the reason for the missing tuples,

manifested as one or more words in the original NL query.

Example 1.3. In our running example, an operator-based why-

not model would return the selection operator filtering tuples

before 2005 as the explanation, i.e. pub.pyear > 2005. Using
our system, the user will be shown her original NL query, with an

emphasis on “after 2005" as the relevant words that caused this

absence (see Figure 2c). This enables the user to better understand

the query, validate the translation process and the credibility of

the database, and reformulate her NL query accordingly.

We have implemented our solution and demonstrated it [7].

We now provide an experimental evaluation, showing multiple

use-cases where the system provides useful explanations and

showing that generating such explanations does not incur sub-

stantial time cost compared to the other steps in the computation.

Related Work: NLIDBs are aimed at bridging the gap between

database systems that use formal query languages such as SQL

for interaction, and users who are not experts in forming formal

queries, yet posses domain knowledge [1, 8, 13, 16]. These inter-

faces allow users to form questions in English, and be presented

with a set of results which satisfy the query. The whole process of

converting the NL question to a formal SQL query can be treated

by the users as a black box. Explaining query results that were

returned in NL has been the focus of previous work [4].

There are multiple approaches and models for explaining why

a certain piece of information that is expected to be returned

from a query was actually discarded. We can broadly divide the

approaches by their type.

(1) Operator-based explanation models (e.g. [2, 3]) aim to pro-

vide one or more query operators that are responsible for

omitting a tuple in the query execution process.

(2) Query modification models (e.g. [9, 17]) try to broaden the

given query to include the missing tuple. Depending on

the model and the query, the change to the query may be

as minor as replacing a constant, or even modifying the

query completely by joining other tables etc.

(3) Tuple modification / generation models (e.g. [10, 11]) cre-

ate or modify factoids in a way that will ensure that the

required tuple will be returned from the query evaluation.

We focus here on explaining non-answers using the frontier picky

model showing the “last” responsible operator [3]. To the best of

our knowledge, no previous work in this field has dealt with the

challenge of explaining missing tuples to non-expert users.

2 MODEL
In this section we review necessary notions in Natural Language

Processing, formal queries and relevant provenance models.

From Natural Language to Formal Queries: Thiswork relies
on an NL interface named NaLIR [13] for translating English

questions to SQL queries. The translation utilizes a data structure

called query dependency tree, designed for conveying the rela-

tions between words in a sentence and their syntactic roles. A

dependency treeT = (V , E, L) is a node-labeled tree where labels

consist of two components, as follows: (1) Part of Speech (POS):
the syntactic role of the word [12] ; (2) Relationship (REL): the
grammatical relationship between the word and its parent in the

dependency tree [14].

After the translation phase, an SQL query Q is being gener-

ated along with a query plan. The query plan is a directed tree

TQ = (VQ , EQ ), where VQ is the set of query operators in Q and

the database table names which Q takes as input, and EQ is a set

of directed pairs (u,v). Table names form the leaves of TQ and

an edge (u,v) indicates that during the evaluation of Q over the

database, all tuples outputted by the operator u are inputted to

the operator v . Finally, the output implied by TQ is the output

of Q . Importantly, NaLIR maps the words in the NL query to

their respective operators in the generated query plan. Revers-

ing this mapping and augmenting it allows us to map why-not

provenance back to NL.

Πaname

σpyear>2005

σdname=databases

▷◁cid

▷◁pid

▷◁aid

writesauthors

pub

conf

(a) Query Plan

return

authors

POS=NNS, REL=dobj

published

POS=VBD, REL=acl:relcl

conferences

databasein

2005

after

papers
who

(b) NL query dependency tree
Figure 3: Query plan and dependency tree

Definition 2.1. Given anNLIDB, a dependency treeTd = (Vd , Ed ,
Ld ) and a query planTQ = (VQ , EQ ), a operator-to-word mapping
is a partial functionMops : VQ → Vd , whereMops is the reverse

of the mapping created by the NLIDB during the mapping from

NL query to SQL.

Example 2.2. Consider the MAS database instance in Figure

1, and the NL query in Figure 2a. NaLIR parses this sentence to
create the dependency tree shown in Figure 3b and returns the

SQL query shown in Figure 2b; its query evaluation plan depicted

in Figure 3a. The operator-to-word mapping,Mops , includes the

mappings:Mops [σpyear>2005] = “2005”,Mops [σdname=databases ] =

“database”, andMops [Πaname ] = “authors”.

Why-not provenance: We start by defining a why-not ques-
tionWNQ . Intuitively each hypothetical output tuple of Q that

matches the criteria ofWNQ is a tuple whose non-existence in

the answer we wish to explain.

Definition 2.3. Given an database instanceD and an SQL query

Q , a why-not questionWNQ is an SQL query such that (1)Q and

WNQ have the same result schema, and (2)Q(D)∩WNQ(D) = ∅.

The why-not question might be more complex than the ini-

tial query, as long as the query it represents has the same result

schema. This allows the user to pose constraints on other at-

tributes as well.

Example 2.4. Reconsider the database instance in Figure 1 and

the SQL query in Figure 2b. Assume the user expects to see the

author Marge in the result set, and surprised when she is not a

part of the answer. The user may form a why-not question, “Why

not Marge?", which would be translated by NaLIR to the query:

SELECT DISTINCT author.aname FROM author
WHERE author.aname = 'Marge'

The query is over the projected attribute of the original query

(author names), and that the author Marge is returned byWNQ .

Some why-not provenance models allow users to define ques-

tions over attributes not in the result schema. We focus here on
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the subset of queries over the projected attributes, as we think

that it is the most natural approach for posing why-not questions.

We will focus on frontier picky model [3]. This model for

why-not provenance focuses on explaining non-answers using a

single query operator. Intuitively, the last operator to contain in

its input a tuple matching the why-not predicate. The motivation

for explaining tuple loss with the frontier picky operator is that

the answer is compact, easy-to-understand and provides a real

value in the sense that it is necessary to modify the returned

operator in order to include the tuple in the result list.

Definition 2.5 (adapted from [3]). Given a database D, a query
Q with its query plan TQ = (VQ , EQ ), aWNQ , and a tuple t ∈
WNQ(D), a picky operator w.r.t. t is a node v ∈ VQ that gets t (or
a predecessor of t in the evaluation process) through one of its

incoming edges, as its input, and does not output it through its

outgoing edge. An operator v ∈ VQ is frontier picky if:

(1) v is a picky operator for at least one tuple inWNQ(D).
(2) There is no tuple t ∈WNQ(D) in the input of any operator

u ∈ VQ such that u is a successor of v in TQ .

According to this model, the answer to a why-not question is

the frontier picky operator. Notice that the frontier picky operator

might be different even if for the same query, evaluated with

different query plans, as it depends on the structure of the query

plan, i.e., the ordering of the operators in the plan.

Example 2.6. Consider the SQL query in Figure 2b and its query
plan in Figure 3a, with theWNQ from Example 2.4. If Marge has

not published papers after 2005, the operator node σpyear>2005
is picky w.r.t. the tuple that containsMarдe . As all successors of
this operator do not contain a tuple with aname = Marдe , the
node σpyear>2005 is the frontier picky operator w.r.t. this tuple.

3 HIGHLIGHT ALGORITHM
Our approach is composed of two stages: find the frontier picky

operator for every removed tuple, and, given a why-not questions,

find the relevant words that correspond to the frontier picky

operator of the tuple in question.

Provenance-Aware Query Evaluation: As a first step, we eval-
uate the query while storing why-not provenance. We start by

translating the NL query to a formal one, via NaLIR [13] aug-

mented so that we keep track of which word in the original NL

query has been mapped to which operator of the formal query,

as done in [4]. The reverse of this mapping is stored in the data

structure Mops . Then, the query is evaluated. During evalua-

tion, whenever a tuple is removed (due to a selection operator

or as part of a filtering join), we update the mapping Mf il ter ,

which maintains the relation between the query operators and

the tuples that were removed by them.

Example 3.1. Reconsider the NL query translated by NaLIR to

the query in Figure 2b. First, we store the operator-to-word map-

ping between the query operators and their respective words in

the original NL query, shown in Example 2.6. During evaluation,

Mf il ter includes intermediate tuples such as (Marge, Paper x,

2001) and its respective picky operators σpyear>2005 (additional
attributes, such as pid , are omitted for brevity).

Finding Relevant Words to Answer Why-Not: After view-

ing the evaluation results, the user now formulates a why-not

query in NL. Algorithm 1 gets as input the results of the evalu-

ation, i.e., the result, Q(D), the mapping Mf il ter , the mapping

Mops , the why-not query formulated in NL QWN , the depen-

dency tree of the NL query Td , and the database D. Its output
is the set of word indices that correspond to the reason for ex-

cluding the tuple of interest. Algorithm 1 operates as follows.

It uses a sub-mechanism of NaLIR to convert the NL why-not

query QWN into a formal why-not selection queryWNQ (line

1). In lines 2–3 it checks whetherWNQ is valid, i.e. if there are

indeed no output tuples satisfying both the why-not query and

the original query (this is a sort of sanity check). If this is not the

case, it finds the frontier picky operator (line 4) for each of the

tuples satisfying the formal why-not query inWNQ and returns

the last of them which is the frontier picky operator w.r.tWNQ .

We may get NULL as the operator in the case where there is no

match toWNQ in the input; in this case we consider the last

projection operation that took place to be the “reason" (lines 5–6).

For instance, if someone asked about “why not Krusty?", who

is not an author in the example database, the reason would be

Πaname which is mapped to the author table.
We then use the mapping outputted by the evaluation process

to trace back the words corresponding to the operator. Themap()
function exploits the data structureMops , and gets as input vari-

able names, values or table names that can be mapped back into

words in the original query. Lines 13-18 are used to help link

back the join operators which could not be directly mapped to

words. The main idea is to exploit the typical scenario where

unmapped joins are used as means for the query generation en-

gine to link two other relations, which are directly referenced

in the NL query. The algorithm traverses the ancestor and suc-

cessor join operations of the given join operator (by repeatedly

calling Get JoinedRelations()), until two operators, one ancestor

and one successor of the join, which can be mapped into words

(le f t, riдht), are found. The returned indices are not of these

two words, but rather of the words between le f t and riдht inTd
(by calling GetPath()), corresponding to the intuition that the

answer to the why-not query is an unmapped operator between

the two mapped operators.

Example 3.2. Consider the NL query in Figure 2a, its SQL query
plan in Figure 3a, and the database in Figure 1. The author Bart

exists in the author table, but has no published papers. Therefore,
the frontier picky operator for the NL why-not query ”why not

Bart?" is the join operator ▷◁aid (see Figure 3a), connecting the

author table with thewrites table, which is a join table, contain-

ing author ids and publication ids. Algorithm 1 will first convert

QWN to its SQL form and check that Bart is indeed not in the

result set ofQ in Figure 2b (lines 1–3). It will then get the frontier

picky operator ▷◁aid , depicted in Figure 3a, which took the tuple

(4,Bart, 1) as input and did not output it (line 4). Since the output
of this line is not NULL, it will continue to line 9. The writes
table cannot be mapped into a word in the NL query in Figure 2a

because the wordwrites does not even appear in it. The reason

for the join operation being included is that NaLIR has used this

table as a link between the authors table and the papers table.

Lines 13-18 are then used to trace back the joined relations. Left

and right would be “authors” and “papers” respectively, and the

returned path would include only the word “published” as this

is the word connecting “authors” and “papers” as seen in the

dependency tree of the NL query in Figure 3b, thus our word

highlight answer is “return authors who published papers in

database conferences after 2005".
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Algorithm 1: Highlight
input :Q(D),Mf il ter ,Mops ,QWN ,Td , and D
output :Word highlight set

1 WNQ = NLToFormal(QWN );

2 if Q(D) ∩WNQ(D) , ∅ then
3 return ∅;

4 op ← FrontierPicky(Mf il ter . f ind(WNQ(D)));

5 if op = NULL then
6 op ← GetProjectionOperator (Mf il ter );

7 if op is σA=x then
8 returnmap(A,Mops ) ∪map(x,Mops );

9 if op is T ▷◁ R where R is a new input table then
10 if map(R,Mops ) , ∅ then
11 returnmap(R,Mops );

12 else
13 (le f t, riдht) ← Get JoinedRelations(R);

14 whilemap(le f t,Mops ) = ∅ do
15 (le f t, _) ← Get JoinedRelations(le f t);

16 whilemap(riдht,Mops ) = ∅ do
17 (_, riдht) ← Get JoinedRelations(riдht);

18 return GetPath(le f t, riдht,Td );

4 IMPLEMENTATION AND EXPERIMENTS
We describe various use cases and our scalability evaluation.

Use cases:

Table 1: Sample of Natural Language queries along with
Why-Not questions and “Why-Not answers"

ID

NL Query With

Highlight Explanation

Why-Not

Question

Selection Frontier Picky Operator

1

Return authors who published in

database conferences after 2015 Catriel Beeri

2

Return authors who published in

database conferences after 2015 Yishay Mansour

3

Return authors from “Tel Aviv
University" who published in VLDB

Benny Kimelfeld

4

Return authors from "Tel Aviv University"

who published in VLDB Yishay Mansour

5

Return organizations of authors who

wrote in database journals
AI University (org.

without DB authors)

6

Return papers of authors in “Artificial
Intelligence” after 2005 and before 2007

Active Views for

Electronic Commerce

7

Return papers of authors in "Artificial

Intelligence" after 2005 and before 2007

Stochastic Link and

Group Detection

8

Return authors from “North America”
who presented in VLDB in 2000

Tova Milo

9

Return authors from "North America"

who presented in VLDB in 2000
Geoffrey E. Hinton

10

Return authors from "North America"

who presented in VLDB in 2000 Christopher Ré

11

Return publications about graphics
after 2005

Overflow Controled

SIMD Arithmetic

Join Frontier Picky Operator

12

Return organizations of authors
who wrote in database journals

MadeUp College (org.

without authors)

13

Return authors who published in

database conferences

John Doe (author

without publications)

Table 1 depicts representative examples of NL queries along

with relevant why-not questions that were executed on the MAS

database [15]. The first 11 examples demonstrate cases in which

the reason for the tuple absence was a selection operator. Queries

12 and 13 demonstrate the operation of Algorithm 1 when the

frontier picky operator is a join operation, this is often an indi-

cation of missing tuples in the dataset. Overall we can see that

for the vast majority of NL queries and why-not questions the

explanations supply valuable information that justify in concise

manner the absence of the tuples in question.

Scalability: Here again we have used the MAS database whose

total size is 4.7 GB, and queries 1–11 from Table 1, running the

algorithm to generate word highlight and NL explanation. The

computation steps execution times, for each query, are depicted in

Figure 4. The computation times are given in nanoseconds and the

y axis is log-scaled. As evident from the graph, most of the time is

spent on NL to SQL conversion, query evaluation and identifying

the relevant tuples for the why-not queries. Generating the why-

not explanations incurs a negligible performance cost (less than

a millisecond on average for selection frontier picky operators),

and thus provides an interactive experience for the user.

Figure 4: Average computation time by step (log scale, val-
ues in nanoseconds)
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ABSTRACT
In recent years, the amount of available data keeps growing at

fast rate, and it is therefore crucial to be able to process them in

an efficient way. The level of parallelism in tools such as Hadoop

or Spark is determined, among other things, by the partitioning

applied to the dataset. A common method is to split the data into

chunks considering the number of bytes. While this approach

may work well for text-based batch processing, there are a num-

ber of cases where the dataset contains structured information,

such as the time or the spatial coordinates, and one may be inter-

ested in exploiting such a structure to improve the partitioning.

This could have an impact on the processing time and increase

the overall resource usage efficiency.

This paper explores an approach based on the notion of con-

text, such as temporal or spatial information, for partitioning the

data. We design a context-based multi-dimensional partitioning

technique that divides an n−dimensional space into splits by

considering the distribution of the each contextual dimension in

the dataset. We tested our approach on a dataset from a touristic

scenario, and our experiments show that we are able to improve

the efficiency of the resource usage.

KEYWORDS
Big Data, Partitioning, Contextual dimensions

1 INTRODUCTION
A dataset analyzed using parallel data processing systems, such

as Hadoop or Spark, is usually divided into chunks, or splits. The
basic partitioning approach uses the amount of bytes (e.g., 64 or

128MB) as splitting technique, without considering the content of

the data. In case of batch processing, where the dataset is always

analyzed entirely, this solution is reasonable. Nevertheless, if

the dataset is analyzed using selective queries based on some

attributes of the data, like time intervals or spatial regions [6, 11],

such an approach may not be efficient, since the partitioning

does not exploit the correlations in the data.

Consider for instance a dataset that collects the visits of tourists

at different Points of Interests (PoIs). The tourists have a city pass

which they swipe at the entrance of a PoI. Each swipe contains

the identifier of the city pass, the name and location (coordinates)

of the visited PoI, together with an entrance timestamp. One may

analyze such a dataset considering the timestamp (How many

tourists have been there in a specific day?), or the space (How

many times has a specific PoI been visited?), or PoI type (Are

modern-art museums preferred to science museums?). One may

© 2020 Copyright held by the owner/author(s). Published in Proceedings of the

23rd International Conference on Extending Database Technology (EDBT), March

30-April 2, 2020, ISBN 978-3-89318-083-7 on OpenProceedings.org.
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also combine different dimensions (How many tourists visited a

specific PoI in a specific hour?).

As a general approach, we consider context-aware partitioning
techniques. Assuming that a dataset can be analyzed w.r.t. several

dimensions, the idea is to group in the same split records that

are context-related [7]. For instance, if the context is defined by

the space and time dimensions, a context-aware partitioning will

include in the same split records that are nearby to each other

from both a spatial and temporal point of view.

Previous works proposed partitioning approaches mainly ba-

sed on spatial [9, 12] and spatio-temporal [1, 2] characteristics.

In case of spatial partitioning, one may partition based on space

(grid and Quad-tree), based on data (STR, STR+, K-d tree), or

based on space filling curves (Z-curve, Hilbert curve) [8]. The

selection of the partitioning technique is usually left to the user,

and only few works automatically select the best partitioning

technique based on the dataset distribution [5].

When two or more dimensions need to be combined, there are

two possible approaches. The first one considers each dimension

independently and builds amulti-level partitioning. This approach
produces a list of n grids (one for each level) that are used for

performing the partitioning, and it imposes an order between

them. The chosen order can have a great impact on the nature

and balancing of the resulting splits. For instance, ST-Hadoop [1]

firstly divide the dataset based on temporal granularity, and then

splits each portion based on spatial proximity. A query focused

on spatial properties (e.g., Has PoI x been visited more than PoI

y?) requires the analysis of all, temporally organized, splits.

The second approach considers all the dimensions together

and builds a multi-dimensional partition, i.e., a n-dimensional

grid. An example is HadoopTrajectory [2], in which partitions

are 3D cubes where the three dimensions are space (planar co-

ordinates) and time. Given a query focused on one dimension,

this approach allows the exact selection of the splits that could

be useful in answering the query. The challenge imposed by the

multi-dimensional partitioning is to find the best size of the grid

cells in each dimension, so that the amount of data in each cell is

balanced. This can be a non trivial task, especially in the general

case where data are not uniformly distributed [3, 5].

In this paper, we consider a context-based multi-dimensional

partitioning approach, which takes as input a dataset D and the

set of n contextual dimensions relevant to analyse D. We design

a solution that automatically produces the most appropriate di-

vision of the n−dimensional space, considering the distribution

of each contextual dimension inside D. The proposed technique

could be adopted in case of recurrent queries, to drive the parti-

tioning of the dataset that is stored permanently (e.g., HDFS), or

it can be used in a dynamic scenario, where the dataset is kept

in-memory (e.g., Spark), and it can be repartitioned based on the

current set of queries.
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We evaluate our solution on a real-world dataset containing

the swipes of a city pass – with the characteristics previously de-

scribed. The results show that we are able exploit the partitioning

to efficiently process a set of representative queries.

2 PROBLEM FORMULATION
This section formalizes the context-aware partitioning problem.

Definition 2.1 (Dataset). A dataset schema S = ⟨a1, . . . ,am⟩ is

a list of attributes, each one belonging to a particular domain, de-

noted as∆(ai ). A dataset D = {r1, . . . , rn } over a schema S is a col-
lections of records ri = ⟨v1, . . . ,vm⟩, where∀i ∈ {1, . . . ,m}vi ∈
∆(ai ).

Definition 2.2 (Context). Given a dataset D over a schema S =
⟨a1, . . . ,am⟩, the context is a subset of the attributes in S :

C = {c1, . . . , ck } ⊆ {a1, . . . ,am } (1)

Definition 2.3 (Partitioning). Given a dataset D = {r1, . . . , rn },
a partitioning P is a collection of subsets of D:

P = {p1, . . . ,ph } such that ∀pi ∈ P (pi ⊆ D) and D = ∪ipi (2)

Definition 2.4 (Balanced partitioning). A partitioning P = {p1,
. . . ,ph } for a dataset D is said to be balanced if and only if:

∀pi ,pj ∈ P : abs(|pi | − |pj |) ≤ ε (3)

where |pi | denotes the cardinality of the partition pi .

Definition 2.5 (Context-aware partitioning). A partitioning PC
for a datasetD is the minimal one for the contextC and a context-

based query q if and only if:

(1) it is a balanced partitioning, i.e. it is able to produce bal-

anced partitions,

(2) it minimizes the number of splits to consider for answering

the query q. Notice that a partition might contain also

more than one split.

3 CONTEXT-BASED PARTITIONING
In order to partition a dataset D considering a context C with

several dimensions of analysis, different approaches can be ap-

plied. For instance, in the multi-dimensional partitioning the

subdivision of the elements in D is performed by defining an

n-dimensional grid where n = |C |. Conversely, a multi-level

partitioning could also be applied by using n grids, each one

representing a level and corresponding to a dimension in C .
Notice that given a dataset D, a context C and a query q, it

is possible to have multiple minimal partitionings. Indeed, the

quality of the resulting set of partitions can highly depend on

the distribution in D of the values of the dimensions belonging

to C and those used in q. When our partitioning technique is not

applied on-line before executing each query q, the minimality

of a partitioning can be evaluated by considering the average

number of splits used for a reference set of context-based queries.

Given a contextC for a datasetD, the identification of the most

appropriate partitioning requires an easy and efficient way for

evaluating the skewness in D of each context dimension. Based

on this evaluation, the right shape of each n-dimensional cell

inside the n-dimensional grid can be determined.

The aim of this paper is to propose a partitioning technique

able to capture the distribution of the dataset w.r.t. each context

dimension and based on this to build the right set of partitions

even for skewed datasets. For this purpose, we extend the idea

originally proposed in [5] for the spatial domain to the man-

agement of a generic number n of context dimensions. For this

reason, we present below the definition of the box-counting func-

tion BC
q
r (D,a) for a given dataset D and a context dimension a,

that is the fundamental notion for the skewness evaluation.

Definition 3.1 (Box-counting function for a dimension a). Given
a datasetD, containing an attribute a belonging to a domain ∆(a),
and a scale r representing the cell size of a mono-dimensional

grid covering the range of values of ∆(a) appearing in D, the
box-counting function BC

q
r (D,a) is defined as:

BC
q
r (D,a) =

∑
i
δi (D,a)

q
with q , 1 (4)

where δi (D,a) is the number of records in D whose value for a
is contained in the cell i . The case q = 1 is excluded, since it does

not depend on r and it equals the number of records in D. �

Intuitively, given a grid with cells of side r , the box-counting
function with q = 0 counts the number of cells that contains at

least one record of D. When q is greater than 1, the box-counting

becomes the sum of the number of records that a cell contains,

raised to q. This function can be used to detect the skewness of a

dataset by computing it for q = 0 and q = 2, while varying the

value of r . More specifically, the level of skewness of a dataset

depends on how this value changes while increasing r .

Definition 3.2 (Box-counting plot). Given a dataset D, contain-
ing an attribute a belonging to a domain ∆(a), the box-counting
plot is the plot of BC

q
r (D,a) versus r in logarithmic scale.

On datasets representing fractals, since it can be derived from

theory, and on real datasets, as shown in [5, 10], the following

observation can be considered valid.

Observation 1. For finite datasets representing fractals and
real datasets the box counting plot reveals a trend of the box count-
ing function that, in a large interval of scale values r , behaves as
power law:

BC
q
r (D,a) = α · rEq (5)

where α is a constant of proportionality and Eq is a fixed exponent
that characterizes the power law.

The power law exponent Eq for a given dataset D and an

attribute a can be computed by starting from the box-counting

plot, since it becomes the slope of the strait line that approximates

BC
q
r (D,a) in a range of scale (r1, r2), thus it can be computed by

a linear regression procedure.

We can observe that E0 and E2 could be chosen as reference

descriptors about the distribution of the values of the attribute a
in the datasetD. Indeed, E0 can be an indicator of the cases where
the dataset leaves empty some areas of the range of values of a
covered by D, while E2 can also be affected by the concentration

of the values in some areas with respect to other ones, i.e. the

situations where there are no empty areas, but different data

concentrations in different areas.

In order to optimize the computation of E0 and E2 for a big
dataset Dbig the following approach can be applied. First, we

consider a sample of Dbig (usually 10% of the records) for the

computation of the n-dimensional histogram: it is composed of

a n-dimensional cube counting the number of records falling in

each cell (only the non-empty cells are represented). Second, the

projection of then-dimensional cube on each dimension produces

n one-dimensional histograms to be used for the computation of

E0 and E2 for each dimension. Third, considering the heuristics

presented in [5], accordingly to E0 and E2 the suitable partition-
ing technique for each dimension is chosen (possible techniques
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are: regular grid, space-based partitioning, record-based parti-

tioning). Finally,Dbig is scanned and partitioned using the n-cube
produced by intersecting the list of splitting planes obtained by

applying the chosen techniques. Notice that for each dimension

a different technique might have been chosen.

4 CASE STUDY EVALUATION
The proposed technique has been applied to a real-world dataset

containing the swipes of a city pass, called VeronaCard, which is

provided by the tourist office of Verona, a municipality in North-

ern Italy. The dataset contains about 1,200,000 records concerning

4 years. Each record reports beside to the identifier of the city

pass and the name of the visited PoI: the location (coordinates)

of the PoI, the entrance timestamp and the age of the tourist

holding the card.

Fig. 1 shows the spatial distribution of the records: the size

of the circle surrounding the PoI name represents the number

of records regarding that location: bigger cycles represent PoIs

with the higher number of visits. As you can notice, the records

are not uniformely distributed w.r.t. space, since there are some

PoIs, such as Arena and Casa di Giulietta, which have much more

visits w.r.t. others, like San Fermo.

Figure 1: Spatial distribution of the swipes: bigger circlers
represent an higher number of visits in that PoI (records).

A sample about the distribution of the records w.r.t. the time

is represented in Fig. 2 by means of histograms. In particular, we

show the distribution of three PoIs aggregated by the day of the

week. Even in this case the distribution is not uniform, since

there are some days in which a PoI is mostly visited than others

(es. weekend days vs week days). Moreover, some PoI can have a

closing day in which there are no visits at all.

Finally, the age distribution is reported in Fig. 3 by means of a

Pie chart. Even in this case the distribution is not uniform: some

ages more frequent than others, reflecting the fact that there are

PoIs more suitable for some kinds of tourists than others.

These different distributions are recognized also by the expo-

nents E0 and E2 of their box counting plot, as reported in Tab. 1

together with the chosen partitioning technique.

Tab. 2 illustrates some statistics about the partitions produced

by the four considered partitioning techniques: Rand is the de-

fault partitioning technique traditionally supported by a MapRe-

duce environment, it simply subdivides the dataset into parts

with homogeneous size in bytes. MDдr id is a multi-dimensional

uniform grid partitioning technique which essentially subdivides

the dataset by using uniform d-dimensional cells for data aggre-

gation, while MLдr id is a multi-level uniform grid partitioning

Figure 2: Number of swipes for 3 PoIs by day of the week.

Figure 3: Number of swipes for each age value.

Table 1: Exponents E0 and E2 and technique choice.

Context attribute −E0 E2 Index

time 1.041 0.963 Regular Grid

x 0.041 0.001 Space-based partitioning

y 0.054 0.154 Space-based partitioning

age 0.506 0.474 Record-based partitioning

which considers only a dimension at each phase during the uni-

form subdivision. Finally, CBP is the context-based partitioning

technique proposed in this paper which uses the computation of

the box counting plot and the corresponding exponents E0 and
E2, in order to produce the most appropriate d-dimensional grid

in order to accomodate also non uniform data.

Table 2: Experimental results: RAND is the random parti-
tioning, %RSD is the relative standard deviation with re-
spect to the dimension analysis.

Index #parts #splits %RSD %RSD %RSD %RSD %RSD

#size time x y age

Rand 69 69 1% 57% 33% 35% 58%

MDдr id 64 109 64% 25% 4% 17% 24%

MLдr id 73 117 71% 26% 4% 14% 23%

CBP 88 88 26% 20% 2% 3% 19%

The first consideration we can done is that while Rand is

able to produce the minimum number of splits with respect to

the dataset dimension and the split size (#parts = #splits), the
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other techniques can produce a greater number of splits which

is equal to: ⌈ d
√
ds/sp⌉ where d is the number of dimensions, ds is

the dataset size in bytes and sp is the split size in bytes. Notice

that since the dataset is not uniformly distributed: (1) some cells

could be empty, so they are not produced (i.e., MDдr id has 64

partitions and MLдr id has 73 partitions). (2) Some cells could be

overpopulated, so they have to be split in order to comply with

the split size prescription, i.e., at the and MDдr id has 109 splits,

while MLдr id has 117 splits. Conversely, Rand and CBP has a

number of splits equal to the number computed of partitions.

CBP produces more partitions than Rand due to the additional

subdivision of the n-dimensional space in case of clustered data.

The non uniformity of the dataset distribution has a direct

effect also on the split size variability. In order to evaluate the

variability of a given feature, we use the %RSD, which is the

relative standard deviation, namely it is a statistical measurement

describing the spread of data with respect to the mean and the

result is expressed as a percentage. Clearly, the Rand technique

is able to produce very balanced splits, since the partitioning is

guided only by this parameter. Conversely, MDдr id and MLдr id
produce very unbalanced splits due to the data skeweness. With

CBP, we obtain quite good results in terms of balancing.

The second aspect to consider is the variability of each dimen-

sion values inside the splits. Columns 5-8 in Tab. 2 reports the

average %RSD for each considered dimension. As you can notice,

all the last three techniques generally improve the performances

of the Rand technique. In particular, as regards to the temporal

dimension, since it is quite uniformly distributed and also it is the

first considered dimension by the MLдr id , its average spread is

the same forMDдr id andMLдr id , while for the other dimensions

the spread is less for MDдr id since it considers all dimensions

at the same level for producing the partitioning. CBP produces

splits with less variability in each dimension w.r.t. all the other

techniques.

Given the partitions induced by the four considered partition-

ing techniques, we have performed some representative range

queries in order to evaluate their performances. The performan-

ces are evaluated as the number of splits that have to be processed

in order to produce the desired result, namely in the filtering

capabilities induced by each partitioning technique.

We consider 4 queries, the first one has a condition on all the

context dimensions, while the other ones contain conditions on

less dimensions. The results are reported in Tab. 3.

Q1: find all visits performed around the Arena during spring
2015 by young tourists. The spatial location is defined by a buffer

around the Arena, while the period spring 2015 is defined by a

temporal interval, and the young tourists are identified by an age

range. Since the condition regards all the four dimensions, the

performance of MDдr id and MLдr id are quite similar.

Q2: find all visits performed by teenager in 2016 everywhere in
Verona. In this case the spatial dimensions are not considered in

the filter, while a pruning is performed on the temporal dimen-

sion. Since this represents the first level for MLдr id , it sightly
outperforms MDдr id .

Q3: find all visits around Arena performed by senior tourists. In
this case the temporal dimension is not considered, while the

spatial and age dimensions are considered. Differently to the

previous case, the advantage of MLдr id is loss, since no filtering

can be performed at the first level.

Q4: find all the visits performed by adult tourists. As you can

notice here the filter is applied only on the 4th dimension, so

Table 3: Experimental results. Numbers represents #splits.

Query Rand MDдr id MLдr id CBP
Q1 69 3 3 2

Q2 69 32 30 14

Q3 69 6 6 5

Q4 69 85 94 80

MLдr id performs worst than MDдr id , because it has to scan all

the levels before applying a filter.

5 CONCLUSION
In MapReduce frameworks the partitioning of a dataset into

independent splits is a critical operation, since the degree of par-

allelism and the overall performances directly depend from the

initial partitioning technique. This is particularly true in case of

context-based applications, where data present correlations and

consequently data could be aggregated and filtered in order to

reduce the amount of work to be done during the analysis. More-

over, beside the need for a context-based partitioning technique,

in order to produce balanced splits, it is necessary to consider

the distribution of the dataset w.r.t. the analysis dimensions. This

paper proposes a context-based partitioning technique which

takes care of the dimension distributions to produce the best par-

titioning for the dataset at hand. We also apply it to a real-world

dataset and compare its performances w.r.t. existing partitioning

techniques for highlighting its differences and benefits. The ob-

tained preliminary results confirm the goodness of the approach

and encourage further research in this direction, for instance as

regards to the managament of multi-accuracy data [4].
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ABSTRACT
Aggregate window computations lie at the core of online analyt-
ics in both academic and industrial applications. To efficiently
compute sliding windows, the state-of-the-art algorithms utilize
incremental processing that avoids the recomputation of window
results from scratch. In this paper, we propose a novel algorithm,
called SlideSide, that extends TwoStacks for multiple concur-
rent aggregate queries over the same data stream. Our approach
uses different yet similar processing schemes for invertible and
non-invertible functions and exhibits up to 2× better through-
put compared to the state-of-the-art incremental techniques in a
multi-query environment.

1 INTRODUCTION
An ever-growing amount of data needs to be analyzed in real-
time. Applications ranging from credit card fraud detection to
clickstream analytics are not supported by “classic” relational
systems and algorithms. Consequently, streaming applications
have become increasingly important. One of the key operators in
stream processing is window aggregation [1], i.e., the calculation
of running aggregates over the continuous data stream.

Since data streams are conceptually infinite, they are parti-
tioned into finite subsets of elements, called windows. A window
has a definition, which maps each input tuple to a window in-
stance. Upon aggregation, each window instance yields a result.
Windows can be distinguished by whether their instances are dis-
joint (“tumbling windows”) or not (“sliding windows”). Tumbling
(a.k.a. fixed) windows slice up the input stream into segments
with a fixed size temporal length (static window size). Sliding
(a.k.a. hopping) windows generalize tumbling windows by speci-
fying a slide parameter in addition to the size that specifies the
distance between the start of two windows.

While tumbling windows are amenable to classic “relational”
queries implementation techniques, the performance of sliding
windows is more challenging to compute efficiently. Incremental
algorithms introduce inherent control dependencies in the CPU
instruction stream, as intermediate results from previous win-
dow instances have to be used to compute efficiently the next
result. This is amplified in the case of multiple-queries applying
computations over the same data stream, which has not been
explored comprehensively. An example of the latter scenario is a
live-visualization dashboard that plots line charts of aggregates
on time-series data at different zoom levels [9].

Our contributions are the following:
• We study the performance of the best-performing incremental
algorithms, as reported in recent literature [4, 6]. We determine
sections of the problem space in which different approaches
perform best (focusing specifically on multi-query processing).

© 2020 Copyright held by the owner/author(s). Published in Proceedings of the
23rd International Conference on Extending Database Technology (EDBT), March
30-April 2, 2020, ISBN 978-3-89318-083-7 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.
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Figure 1: The TwoStacks algorithm

• We propose a novel approach for incremental processing in
multi-queries scenarios, called SlideSide. Our solution extends
the logic of TwoStacks [4] based on the insight that the algo-
rithm maintains a running preffix-/suffix-scan over the in-
put stream. SlideSide optimizes its performance for associative
aggregation functions and can serve as a drop-in replacement
for the aggregation operator in a streaming system.

• Finally, we demonstrate that SlideSide is competitive with
highly optimized single-query algorithms, while it yields up
to 2× better throughput and comparable latency in the multi-
query scenario.
The remainder of the paper is organized as follows: in Sec-

tion 2 we survey the state-of-the-art in incremental window
computation. Section 3 introduces our novel incremental algo-
rithm. The paper finishes with evaluation results (Section 4), and
conclusions (Section 5).

2 BACKGROUND
In this section, we provide background on the underlying con-
cepts of incremental processing. We also review current ap-
proaches and provide in Table 1 a summary of their complexities.
Algebraic Properties. In this work, we focus on associative
algebraic aggregations [3] and consider the following properties:
• Invertibility: (x ⊕ y) ⊖ y = x , ∀ x ,y. This property can be
exploited by introducing the following function: inverse(a:
Agg, b: Agg): Agg , which removes the oldest partial aggregate
from the window result with an incremental operation.

• Commutativity: x ⊕ y = y ⊕ x , ∀ x ,y

Partial Aggregates are smaller units of computation that com-
pose the aggregate functions. Partial aggregation allow us to
buffer and apply inexpensive aggregation and trivially parallelize
the computation (e.g., using SIMD instructions [8]), when there
are no data dependencies. This idea is applied in the form of
window slicing [9] over a stream of data, where a slice is defined
as the largest sequence of tuples that offer no sharing potential.
Incremental Aggregation Techniques. After the computa-
tion of partial results, the final aggregation step has to be applied
to generate the query results. For that, streaming systems utilize
the incremental aggregation techniques we describe next and
summarize in Table 1.
Subtract-on-Evict (SoE) [4] is the best-performing approach in
the case of invertible functions, i.e., AGGsum. With SoE, the result
of the previous window instance is re-used to compute the next
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Algorithm
Time Space

Single Query Multi-
Queries Single-

Query Multi-Queries
Amort Worst Amort Worst

SoE [4] Inv 2 2 q q n qn
Non-Inv n n qn qn n qn

FlatFAT [7] loд(n) loд(n) qloд(n) qloд(n) 2n 2n
TwoStacks [4] 3 n q qn 2n 2qn

Slick
Deque [6]

Inv 2 2 2q 2q n q+n
Non-Inv <2 n q qn 2 to 2n 2 to 2n

Slide
Side

Inv 3 n q q 3n 3n
Non-Inv 3 n q qn 2n 2n

Table 1: Algorithmic Complexities

(partial aggregates: n, queries: q)

in constant time, by removing the expired elements and merging
in the new data. However, SoE cannot efficiently compute non-
invertible functions (e.g., AGGmin), as the whole window needs
to be rescanned in the worst-case scenario.
TwoStacks [4] can be used for non-invertible functions. Figure 1
illustrates an example of the TwoStacks algorithm, which main-
tains a back and a front stack to store the input values and the
aggregates required to produce the window results. When a new
input value v arrives, its aggregate is computed based on the
value of the back stack’s top element and it is pushed onto the
back stack. For every pop operation, the top from the front stack
is removed and a result is produced by aggregating its value with
the top of the back stack. Whenever the front stack is empty, the
algorithm flips the back onto the front stack, reversing the order
of the values and recalculating the aggregates. However, as this
happens infrequently, it exhibits O(1) amortized complexity.
Multi-Query Algorithms. The previous algorithms are not de-
signed to efficiently share intermediate results between multiple
window definitions over the same stream, in contrary to ap-
proaches such as FlatFAT [7] and SlickDeque [6]. FlatFAT uses
a pointer-less binary tree structure to store the partials, which
results in O(loдn) complexity for a single query. SlickDeque pro-
poses a different solution for invertible and non-invertible func-
tions. For invertible functions, SlickDeque generalises SoE to an-
swer multiple queries, by maintaining multiple instances of the
original algorithm with partials that share the same memory
space. In the case of non-invertible functions, instead of using
a queue implemented by two stacks, SlickDeque uses a deque
structure for insertions/removals of aggregates and answering
queries withO(1) amortized complexity. The time and space com-
plexities of the non-invertible functions (see Table 1) depend on
the input, with the worst-case scenario being a stream that is
ordered in the opposite way of the aggregate operator order (i.e.,
if AGGmax the input is ordered descendingly).

3 SLIDESIDE
Let us now, describe SlideSide, our novel algorithm for acceler-
ating incremental aggregation in a multi-query environment. It
aggressively reuses intermediate results with data structures that
have a sequential memory layout. Fundamentally, SlideSide is an
extension of the TwoStacks algorithm. However, it uses different
processing schemes for invertible and non-invertible functions.

Regarding the algebraic properties of the aggregate functions,
SlideSide has the same requirements as the state-of-the-art al-
gorithms described in Section 2 (associative aggregate functions).
SlideSide can be applied to FIFO windows (in-order data).

3.1 Invertible Aggregates
The simpler case are invertible combiners, such as AGGsum. The
natural approach of evaluating multiple simultaneous windows
would be to run multiple loop-fused instances of SoE. However,

Algorithm 1: SlideSide (Inv) Pseudocode
Input: A set of aggregate queries Q, a combiner operation ⊕, an inverse operation ⊖

Output: The results of the window queries in Q

1 windowSize = Q.getMaxWindowSize()
2 backStack [windowSize+1] = {neutralVal} // used for prefix-scan
3 frontStack [windowSize+1] = {neutralVal} // used for suffix-scan
4 elements [windowSize] = {neutralVal} // used for input stream
5 curPos = 0
6 foreach val: stream do
7 insert(backStack, frontStack, elements, curPos, windowSize, val)
8 emitResults(backStack, frontStack, curPos, windowSize, Q)

Algorithm 2: Algorithm for insert(...)
1 // compute the suffix-scan
2 if (curPos==0) then
3 for i=0,1,. . . , windowSize do
4 frontStack[i+1] = frontStack[i] ⊕ partials[windowSize-i-1]

5 elements[curPos] = val
6 backStack[curPos+1] = elements[curPos] ⊕ backStack[curPos]
7 curPos = (curPos+1) % windowSize // wrap around the circular buffer

we found that the TwoStacks algorithm can be extended to sup-
port this case as well, yielding a more cache efficient approach.
Somewhat surprisingly, this can be implemented using only two
stacks (illustrated in Figure 2). Like the single query case, the
elements of the back and front stacks share the same memory
space and their aggregates are kept separately. Next, we will
explain the algorithm and provide an example with two queries.

During the initialization phase of Algorithm 1, the back stack
(blue row), the front stack (green row) and a circular buffer of
elements (light-blue row) are allocated with size equal to the
largest window from a given set of queries, Q , and initialized
with the neutral element of the aggregate function (lines 1-4).
For every input value val from the stream, we call the insert
function and then compute the results for every query in Q with
emitResults in line 6-8.

Upon the arrival of a new element, using the insert function
(Algorithm 2), its val is stored in the next available slot in the
circular buffer, defined by the curPos variable in line 5. The back
stack is used for maintaining the prefix-scan of the input with
every insert (line 6). If we reach the end of the elements buffer,
we wrap around to the beginning and compute a suffix-scan

over the input (lines 2-4) before applying the new insertion. Note
that, as in TwoStacks, the computation of the suffix-scan occurs
infrequently and the algorithm has O(1) amortized complexity.

Algorithm 3: Algorithm for emitResults(...)
1 foreach query q : Q do
2 curWindowSize = q.getSize();
3 hasWrapped = false;
4 endPtr = curPos;
5 if (endPtr == 0) then
6 endPtr = windowSize

7 startPtr = endPtr - curWindowSize;
8 if (startPtr < 0) then
9 hasWrapped = true // the window wraps around the circular buffer;

10 startPtr + = windowSize;

11 if (!hasWrapped && startPtr == 0) then
12 res = backStack[endPtr] // use the result from prefix-scan;

13 else if (hasWrapped) then
14 res = backStack[endPtr] ⊕ frontStack[windowSize - startPtr];

15 else
16 res = backStack[endPtr] ⊖ backStack[startPtr];

17 forward answer res to query q;

After the insertion, the emitResults function (Algorithm 3)
is called for computing the results for each query with the set
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Q . Based on the values of curPos and the window size of each
query, this algorithm first computes the start and end pointers
(lines 2-10) that are used for “bookkeeping”. Next, we distinguish
three different cases based on the value of these pointers: a)
if the start pointer is 0, the result is already computed by the
prefix-scan and returned in line 12; b) if the start pointer is
greater than 0 and the end pointer does not wrap around the
beginning of the elements buffer, the result value is computed by
applying the inverse aggregate function on the values from the
back stack in the positions of start and end pointers (line 16); c) if
the end pointer haswrapped, the result is computed by combining
backStack[endPtr] and frontStack[winSize-startPtr] in line 14.

In Figure 2, we present an example of SlideSide for two win-
dows of size 3 (Q1) and 4 (Q2) and slide 1. The red boxes represent
the result for the queries on each phase. The white boxes hold the
values of the start and end pointers we discussed above. At our
initial phase t0, the values 3, 4 and 2 have been already inserted
in the elements buffer (from left to right) and their prefix-scan is
computed in the back stack above (3, 7, 9). In the next phase t1, we
have an insertion in the last slot of the elements buffer, which trig-
gers the computation of the prefix-scan again for backStack[4]
by combining the values 9 (previous result) and 8.

After the insertion, the algorithm is ready to emit results for
both queries. For Q2, the result contains all the elements and
the window starts from position 0 (case a) from above). Thus
the result is already computed by the prefix-scan and can be
obtained by accessing the value of backStack[3] which is 17. For
Q1, the result contains only the latest three elements and the
window points at positions 1 and 3 (case c)). Thus, the result
is computed by applying the inverse aggregate function on the
elements from the back stack placed at that positions (17-3=14).

When we reach the end of the elements buffer (t2), we wrap
around to the beginning and we compute a suffix-scan over the
input using the front stack. In phase t3, we have the first eviction,
where the latest input value 5 replaces value 3 and backStack[1]

becomes equal to 5. Now, both query windows have wrapped
(case b)). This operation is going to return the suffix-scan of the
remaining elements after evictions using the front stack and the
current running aggregate from the back stack, which results in
15 and 19 respectively for queries Q1 and Q2.

3.2 Non-Invertible Aggregates
Processing multiple non-invertible functions can be performed
with the Algorithm 1, but the suffix-scans have to be triggered
more frequently. The algorithm is omitted to conserve space,
but the logic is similar. The intuition behind this approach is
that, while each of the queries maintains and operates on its
own pair of stacks, these can be overlayed and start at the same
memory address. In effect, the smallest stack is stored in the same
memory region as the bottom part of the next larger, and so forth.
To preserve correctness among the results, the computation of the
suffix-scan is triggered every time the query with the smallest
window size starts to evict.

In addition to the previous observations, we can apply op-
timizations proposed for single-query evaluation in Hammer-
Slide [8], such as maintaining only the top value of the back
stack. During the suffix-scan computation we can also stop
propagating the changes from the current position until the end
of the stack, if our computations do not alter the aggregate values,
which reduces greatly the overhead of multiple flip phases and
result in constant amortized complexity (see Table 1).

4 EVALUATION
In this section, we evaluate SlideSide for both invertible and
non-invertible functions to show the benefits of our incremen-
tal strategy. To evaluate the efficiency of different aggregation
algorithms, we run our experiments as a standalone prototype.
We compare SlideSide to SlickDeque (for non-invertible func-
tions we tradeoff performance with memory by using a fixed size
deque), TwoStacks (using optimizations from [8]), SoE and FlatFAT

when it’s applicable (e.g., SoE is evaluated only for invertible func-
tions). Each prototype maintains sliding windows with slide 1
by performing an eviction, an insertion and producing a result.
We start our evaluation with the case we focus on: multi-queries
and we demonstrate that SlideSide achieves higher performance.
After that, we study the performance in the single query case, in
which our solution exhibits only small performance loss.

4.1 Experimental setup and workloads
Hardware. All experiments are performed on a server with 2
Intel Xeon E5-2640 v3 2.60 GHz CPUs, a 20MB LLC cache and
64 GB of memory. We used Ubuntu 18.04 with 4.15.0-50-generic
Linux kernel and compiled all experiments with clang++ version
9.0.0 and optimization level -03.
Workload. Our workload emulates an anomaly detection sce-
nario using the energy consumption trace from a smart electricity
grid. This trace contains smart meter data from electrical devices
in households [5] (32 bytes tuple size). We use two queries to
perform analysis over the stream and detect outliers: SG1, an
aggregation that computes a sliding global AGGsum and SG2,
which computes a sliding global AGGmin over the meter load.

4.2 Multi-Query Evaluation
In the multi-query experiments, we generate queries of uniformly
random window sizes (within the range [1, 32768] of tuples),
while maintaining a constant window slide of 1 tuple for all of
them. In this setup, we created workloads that contain from 1 up
to 65 concurrent queries. TwoStacks and SoE can not be used to
evaluate multiple queries, so we replicate their data-structures
for every single window definition, as illustrated in Table 1.
Invertible Functions. For invertible functions, we are com-
puting query SG1 over different window definitions. Figure 3a
demonstrates that SoE is the fastest algorithm and outperforms
the multi-query solutions by up to 2.5× for a single query. How-
ever, as the number of queries increases, the overhead ofmaintain-
ing multiple data-structure replicates becomes noticeable. Thus,
we observe that the multi-query algorithms perform nearly 4×.
Comparing SlideSide with SlickDeque reveals a small perfor-
mance benefit that reaches up to 40% with the increase of query
concurrency. Our approach allows the compiler to generate more
efficient code, because of the simpler CPU instruction stream,
while providing more predictable memory access.
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Figure 3: Comparison of incremental techniques

Non-Invertible Functions. For the non-invertible functions
we are computing the AGGmin over the generated windows. In
Figure 3b, we observe that the multiple instances of TwoStacks
outperform both SlideSide and SlickDeque for the first two and
three workloads respectively. After that point, SlideSide is from
70% up to 2.2× faster compared to SlickDeque and more than
4× compared to the other two techniques. This illustrates that
even though SlideSide requires more memory compared to
SlickDeque, its CPU-cache-friendly data layout scales better with
the number of queries in comparison to the deque data structure.

4.3 Performance Overhead for Single-Query
In this section, we present the efficiency of SlideSide for single-
query workloads. We use queries SG1-2 to measure throughput
and latency of the aforementioned approaches.
Throughput. For this experiment, we use SG1 and SG2 over
windows with window sizes that vary between 1 and 1048576
tuples. Figure 3c illustrates the throughput penalty introduced
by our algorithm for invertible functions in a single query sce-
nario. SlideSide exhibits throughput nearly 3× worse than SoE

and TwoStacks. In Figure 3d, we observe that TwoStacks is the
best-performing non-invertible algorithm for different window
sizes (440 million tuples/sec). In contrary, SlideSide is 3× worse
but exhibits better performance than SlickDeque, because of its
underlying data structure with sequential memory layout.
Latency. To measure the latency of all the previous approaches,
we use a fixed window size of 32K tuple and window slide of 1.
In Figure 3e, we omit the latency of FlatFAT, as it consistently
is an order of magnitude higher than the other algorithms. We
show that SlideSide exhibits latency that is comparable to the
best-performing solutions for both invertible and non-invertible
functions (minimal overhead) and better compared to the other
multi-query solution, SlickDeque.

Overall, we observe that for single query evaluation SlideSide
ends up exhibiting nearly 3× worse performance in throughput
and similar latency compared to the best-performing approaches.
This is the result of the memory pressure from maintaining extra
dependencies (not needed by a single-query) along with a more
complex CPU instruction stream that hinders optimizations.

5 CONCLUSION
In this paper, we presented a novel algorithm for highly efficient
evaluation of multiple aggregate queries by maintaining a prefix-
and a suffix-scan over the input. Our algorithm can be used as
a drop-in replacement for any associative aggregation operator
in a commercial streaming system, such as Flink [2] (e.g., as
an aggregate store for Scotty[9]). SlideSide outperforms the
state-of-the-art algorithms in multi-query scenarios by up to
2× in throughput, while exhibiting better latency. However, our
study reveals that current window aggregation techniques do not
exhibit robust performance across different types of aggregation
functions and concurrency levels. Thus, a streaming engine will
either perform poorly for different points within this design space
or have to maintain multiple algorithms with a cost model.
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Figure 1: Four node graphlets: a 3-path, a 3-star, a rectangle or 4-cycle, a tailed-triangle, a diamond, and a 4-clique.

ABSTRACT
Graphlet enumeration is known to be a challenging task in graph

analysis. This is because the cost is exponential in the order of the

graphlet. Triangle is a graphlet of order three that has received

special attention because it is relatively small but non-trivial,

and can still be enumerated quite fast even for massive graphs

of millions of nodes and edges. In this paper, we propose an

efficient algorithm for enumerating four node graphlets, such as

4-cycles, 4-cliques, diamonds, etc by leveraging the most efficient

algorithm for triangle enumeration. We show that despite the

belief that any such enumeration algorithm cannot terminate in

reasonable time, our method can handle large graphs containing

trillions of such graphlets, using a single commodity machine,

within a reasonable amount of time.

1 INTRODUCTION
It is commonly thought that graphlets, beyond three nodes, are

difficult to enumerate. This is because the number of possible

instances grows as O(nk ), where k is the order of the graphlet

and n is the order of the graph. Thus, for massive graphs, it

was believed that an enumeration algorithm, which has to touch

each graphlet, cannot terminate in a reasonable time [11]. Indeed,

previous methods, such as Fanmod [18] and Rage [8], do not scale

well and take a very long time to run on million scale graphs.

Other proposed solutions, such as Arabesque [17] and PGD [1]

use distributed platforms. However, our focus is to explore the

limits of what can be achieved using single-machine algorithms.

There are several algorithms proposed in the literature to

count the number of the graphlets. They are either estimates

using approximation methods, such as Graft [13], or exact count-

ing without full enumeration, notably Orca [6] and Escape [11].

However, what if we need to find each of the graphlet instances?

Knowing where the graphlets are is useful in analysing the lo-

cal structures of the graph. For example, enumerating graphlets

is important in detecting cancer through differential graphlet

communities [19]. Also, enumeration can yield graphlet degree

counts which are useful for uncovering biological network func-

tions [9].

It is worth noting that there have been plenty of studies on

triangle enumeration. It was found that triangles can be enumer-

ated quite efficiently using the compact forward edge-iterator

algorithm [7]. In general, graphlets of order k can be enumerated
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using an algorithm with runtime O(ndk−1) where d is the maxi-

mum degree [15]. However, in [14] it was shown that through

careful preprocessing, triangle enumeration using edge-iterator

can be significantly faster than O(nd2) time. Can we achieve a

better runtime than O(ndk−1), for higher order graphlets?
In this paper we show that efficient enumeration for triangles

can be leveraged to enumerate higher order graphlets, in partic-

ular four node graphlets. Our algorithm achieves a significantly

improved runtime, which depends on the number of three-node

graphlets and is able to handle large graphs efficiently on a single

machine. Moreover, unlike most in the literature, our solution

yields the counts of all four node graphlets in a single run.
Our contributions are as follows:

(1) We propose a new algorithm to enumerate all types of
four node graphlets of an undirected graph on a single

run. Enumeration is done carefully so that no graphlet is

listed more than once.

(2) We provide detailed analyses on the algorithm correctness

and time complexity. We refine the time upper-bound

of enumeration to depend on the number of three-node

graphlets and thus be significantly better than O(nd3) for
real-world networks.

(3) We create an efficient implementation of the algorithm for

a single machine. Our algorithm is able to run on graphs

of millions nodes and edges, which contain trillions of

graphlets, within reasonable time.

2 RELATEDWORK
Chiba and Nishizeki published several subgraph listing algo-

rithms [5] which can be considered as a pioneering work on

graphlet enumeration. Milo et al. [10] analysed frequent subgraph

patterns, and called them network motifs. Since then, there have

been many studies on how to find and count small subgraphs

within a graph or network, including those we already discussed

in the Introduction. Also, Silvestri [16] provided another com-

plexity analysis on subgraph enumeration. To the best of our

knowledge, there has not been a solution using the method that

we propose here, to simultaneously, and fully, enumerate all the

graphlets (of order four) through triangles and wedges, and that

can scale to large graphs using a single machine.

3 PRELIMINARIES
In this paper we solely work on simple undirected graphs. We

denote a graph by G(V , E) where V is the set of nodes and E is

the set of edges. Let n = |V | andm = |E |. The degree of a node is
the number of edges incident on it. For simple graphs, there is no

self-loop and the degree is equal to the number of neighbours. We
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Algorithm 1 Triangle Enumeration

Input: An undirected graph G(V , E) in an adjacency list repre-

sentation

1: for all vertex u ∈ V (G) do
2: for all vertex v ∈ N (u) do
3: if v > u then
4: for allw ∈ N (u) ∩ N (v) do
5: if w > v then
6: EnumerateTriangle (u,v,w)

denote the set of neighbours of node u by N (u), and the degree

of u by d(u) = |N (u)|. A subgraph of G(V (G), E(G)) is a graph

H (V (H ), E(H )) such thatV (H ) ⊆ V (G) and E(H ) ⊆ E(G). We use

the notation H ⊆ G to say that H is a subgraph ofG . A subgraph

H ⊆ G is an induced subgraph if any edge (u,v) (which = (v,u)
for undirected graphs), with u,v ∈ V (H ), is in E(H ) if and only

if (u,v) is in E(G). A subgraph is connected if every pair of nodes

in it is connected by a path of edges. We assume the following

definition: A graphlet is an induced connected subgraph.

There are two kinds of graphlets of three nodes: wedge (Hence-

forth labeled as д1) and triangle (д2). Note that for induced sub-

graphs, wedges and triangles cannot be on top of each other (i.e.,

a wedge and a triangle cannot have the same set of three nodes

within the same graph.). For four nodes, we have six types of

graphlets, depicted in Figure 1. These are 3-path (or four-node-

path) (д3), 3-star (д4), 4-cycle or rectangle (д5), tailed-triangle
(д6), diamond (д7), and 4-clique (д8). The labels that we use here
follow the common labelling used by some papers in the litera-

ture [2, 12].

Notice that д6, д7 and д8 contain triangle(s). A д6 contains

one triangle, a д7 contains two triangles, and a д8 contains four
triangles. This fact suggests that we can find them through the

triangles in the graph. Whenever we find a triangle, we can check

if this triangle is a part of anyд6,д7 and/orд8. Similarly,д3,д4 and
д5 contain two, three and four wedges, respectively. Therefore,

we can find them through wedges.

We list graphlets by their nodes. Thus, for example, (u,v,w, z)8
is a д8 with nodes u, v , w and z. In enumeration, some care is

needed to avoid multiple listing. Without lost of generality, we

can use label 1, 2, 3, 4 to represent the nodes in a graphlet. Clearly,

1 < 2 < 3 < 4, so 1 represents the smallest node.

There are 3! = 6 permutations of three nodes. Therefore, for

wedges, we have (1, 2, 3)1, (1, 3, 2)1, (2, 1, 3)1, (2, 3, 1)1, (3, 1, 2)1
and (3, 2, 1)1. However, (1, 2, 3)1 is the same wedge as (3, 2, 1)1,

(1, 3, 2)1 is the same as (2, 3, 1)1, and (2, 1, 3)1 is the same as

(3, 1, 2)1. Thus, we have only three possible wedges, only one

can be present (for induced case). Our convention is to list with

the smaller leg first, i.e. (1, 2, 3)1, (1, 3, 2)1, and (2, 1, 3)1. We can

divide these into two types: those with the smallest node at the

center of the wedge (type 1), i.e., (2, 1, 3)1, and those with the

smallest node at one of the legs (type 2), i.e., (1, 2, 3)1 and (1, 3, 2)1.

We will see that they require separate treatment. For triangles,
all six permutations are isomorphic. Therefore, we only need one

to list. We choose the one with the nodes ordered ascendingly:

(1, 2, 3)2.

Now for four nodes, there are 4! = 24 permutations. For 3-
paths, by symmetry we only need half (i.e. twelve) of them. For

3-stars, we have four distinct ones depending on which one is

the centre. For 4-cycles, the cyclic symmetry gives us a factor

of four, while the clockwise counter-clockwise symmetry gives

Algorithm 2 Graph-Prep

Input: An undirected graph G(V , E)
1: Sort V based on the degrees, in ascending order.

2: Relabel the vertices according to their new order.

3: Build adjacency list of the sorted and relabeled vertices.

4: Cut out the smaller neighbours from each neighbour list.

us a factor of two. Therefore, we have only 24/8 = 3 distinct

permutations. For tailed-triangles, the distinguishing nodes are
the end node and the centre node, giving us

(
4

2

)
or twelve distinct

configurations. For diamonds, we have a pair of triangles. Let
us call the two end nodes of the shared edge as the connecting

nodes, and the other two nodes as the opposing nodes. There

are symmetries between the two opposing nodes, and between

the two connecting nodes, giving us 24/2/2 = 6 distinct configu-

rations. For 4-cliques, we can exchange any pair of nodes and

get the same clique. Thus there is only one unique configuration,

and we choose to list the nodes in order: (1, 2, 3, 4)8.

4 THE ALGORITHMS
The algorithm that we use for triangle enumeration is an edge

iterator algorithm (Algorithm 1) combined with nodes order-

ing. This combination is similar to the Compact-Forward algo-

rithm [7] but with the ordering done in a pre-processing before

the enumeration (Algorithm 2).

Algorithm 3 Triangle and Wedge Enumeration

Input: An undirected graph G(V , E) in an adjacency list repre-

sentation

1: for all vertex u ∈ V (G) do
2: for all vertex v ∈ N (u) do
3: if u < v then
4: for all u ′ ∈ N (u) and v ′ ∈ N (v) do
5: if (u ′ > u) ∧ (v ′ > u) then
6: if u ′ = v ′ > v then
7: EnumerateTriangle (u,v,u ′)

8: if (u ′ < v ′) ∧ (u ′ > v) then
9: EnumerateWedgeType1 (v,u,u ′)

10: if u ′ > v ′ then
11: EnumerateWedgeType2 (u,v,v ′)

The graph preprocessing is based on the following observa-

tions: (i) Because of lines 3 and 5 of Algorithm 1 we need to

consider only bigger neighbours of every vertex, i.e., N >(u) =
{v ∈ N (u)|v > u}. (ii) The triangle count in a graph will not

change if we relabel the vertices.

Algorithm 1 can be modified to enumerate the wedges as well.

This is shown in Algorithm 3. Notice that by condition on line

3 we assure that u is always smaller than v . To avoid multiple

listing, when we iterate neighbours of v we consider only those

that are bigger than u (line 5). However, we need to include

smaller neighbours of v (i.e. those between u and v) to catch all

of the wedges.

We extend each of the EnumerateTriangle and Enumer-

ateWedge functions above to search for four-node graphlets.

Whenever we find a triangle, (u,v,w)2, we call the ExploreTri-

angle function (Algorithm 4), which checks for the intersections

among the neighbour sets of the three triangle nodes, N (u), N (v)
and N (w). If we find a z ∈ N (u) ∩ N (v) ∩ N (w), then (u,v,w, z)
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Algorithm 4 Explore Triangle

Input: Given triangle (u,v,w)2, u < v < w : N (u), N (v), N (w).

1: Compute intersections among the three neighbour sets.

2: for all z ∈ N (u) ∩ N (v) ∩ N (w) with z > w do
3: Enumerate4Cliqe (u,v,w, z)8

4: for all z in two sets and z > opposite node do
5: EnumerateDiamond (.)7

6: for all z in one set only do
7: EnumerateTailedTriangle (.)6

is a four-clique (i.e. д8). A node z that is in two of the three

neighbour sets gives us a diamond (i.e. д7), while a z that is in
only one of the three neighbour sets gives us a tailed triangle

(i.e. д6). For 4-cliques, we can use the sets of larger neighbours.

For diamonds, we can use the sets of neighbours larger than u.
For the tailed triangles, however, we need to include all of the

neighbours. Due to this last case we lost some of the advantage of

the graph preprocessing. As a result, the runtime might be much

longer compared to the triangle enumeration time, depending

on the maximum degree.

Algorithm 5 Explore Wedge Type-1

Input: Given wedge (v,u,w)1, u < v < w : N >u (u), N >u (v),
N >u (w).

1: Compute intersections among the three neighbour sets.

2: for all z ∈ N >u (v) ∩ N >u (w) with z < N >u (u) do
3: EnumerateRectangle (u,v, z,w)5

4: for all z ∈ N >u (u) only do
5: if z > w then
6: Enumerate3Star (u,v,w, z)4

7: for all z ∈ N >u (v) only do
8: Enumerate3Path (w,u,v, z)3

9: for all z ∈ N >u (w) only do
10: Enumerate3Path (v,u,w, z)3

For the wedges, we call two different functions depending

on the type of the wedge, either Algorithm 5 or 6. In this two

functions we only need sets of neighbours that are larger than u,
but this is not done in a pre-processing. Notice that in Algorithm 6

w can be smaller than v , which is the center of the wedge.

Algorithm 6 Explore Wedge Type-2

Input: Given wedge (u,v,w)1, u < v , u < w : N >u (u), N >u (v),
N >u (w).

1: Compute intersections among the three neighbour sets.

2: for all z ∈ N >u (v) only do
3: if z > w then
4: Enumerate3Star (v,u,w, z)4

5: for all z ∈ N >u (w) only do
6: if z , v then
7: Enumerate3Path (u,v,w, z)3

5 ANALYSIS
Theorem 1. Algorithm 3 correctly enumerates wedges and tri-

angles in an undirected graph.

Proof. Each edge (u,v), with u < v , is iterated once and only
once. For each, we enumerate all the intersecting neighbours

(i.e., triangles), and non-intersecting neighbours (i.e., wedges).

Thus, all wedges and triangles in the graph would be found.

For triangles, we avoid multiple listing by imposing condition

u ′ = v ′ > v . For type-1 wedges we impose condition u ′ > v . For
type-2 wedges, sinceu < v ′

there will be no double counting. □

Theorem 2. Algorithms 4, 5 and 6, combined with algorithm 3,
correctly enumerate all four node graphlets in an undirected graph.

Proof. As proven above, all triangles and wedges are enu-

merated once. For each triangle, the three neighbour sets are

checked. Each node that is in only one of the sets yields a tailed-

triangle. All tails would be found in the sets. A node that is in

the intersection of two sets yields a diamond. By asserting that

this node is larger than the opposite node in the diamond we

assure that any diamond would be listed just once. A node that

is in the intersection of all three sets yields a 4-clique. We assert

that this node is larger than any node in the triangle to assure

that the clique has not been listed in any previous iteration. For

wedges, similarly, all four node graphlets attached to each wedge

would be found. Multiple listing is avoided by considering only

3-paths, 3-stars and 4-cycles, and by careful conditions on the

node ordering. For the 3-paths we make sure that the smallest

node is always in the first half of the path. For the 3-stars we

make sure that the fourth node is greater than the third node.

The center node does not need to be the smallest. For 4-cycles we

make sure that the fourth node is opposite to the first node. □

Theorem 3. The runtime of the four node graphlet enumeration
is bounded by O((N∆ + N∠)dmax + T3д), where N∆ (N∠) is the
number of triangles (wedges), and T3д is the time to enumerate
triangles and wedges.

Proof. For each triangle andwedge the algorithm runs through

the neighbor sets to check the intersections with cost ≤ (d(u) +
d(v) + d(w)). □

Note that in general (N∆ + N∠) ≲ nd2
max

, with the upper

value is satisfied by a regular graph. However, for all real world

networks, we have (N∆ + N∠) ≪ nd2
max

. Also, T3д ≪ nd2
max

using efficient enumeration. Therefore, in practice, our runtime

is much less than worst case bound of O(nd3
max

).

6 EXPERIMENTS
The networks that we study are listed in Table 2. All of the

datasets were downloaded from the Laboratory for Web Algorith-

mics [3, 4], http://law.di.unimi.it/datasets.php. We symmetrized

them and got rid of any loops to get simple undirected graphs.

We implemented our code in Java with parallel streams, and use

Webgraph library [4]. We used a Linux machine with dual Xeon

E5-2620 processors of 24 threads and 128 GB of RAM. We no-

tice, however, that the memory usage is < 1 GB throughout the

experiment.

The graphlet counts are listed in Table 1. We can check that

for all of these graphs, N∆ +N∠ ≪ nd2
max

using their dmax values

from Table 2. For example, for amazon, N∆ + N∠ ≈ 42M and

nd2
max

≈ 853B, a four order of magnitude difference. For all of

the graphs that we consider here the difference is from three to

five orders of magnitude.

The runtimes are shown in Table 3. We include the triangle

enumeration time, T∆, for comparison. As wedges cannot take

full advantage of the pre-processing, they take longer time for

enumeration, henceT3д is larger thanT∆. Notice that the prepro-
cessing time, TPrep, is just about the same magnitude as T∆.
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Table 1: Counts of the graphlets. The dewiki dataset needs longer than our time limit to terminate.

Graph д1 д2 д3 д4 д5 д6 д7 д8

enron 40,309,453 1,067,993 2,511,039,670 8,043,804,283 21,598,984 582,841,848 46,141,288 5,001,773

cnr 7,798,287,209 20,977,629 6,118,026,632 41,392,015,937,553 37,876,822,234 79,429,334,745 42,974,515,602 159,814,399

dblp 81,529,950 7,005,235 2,678,518,695 3,545,925,764 1,483,611 543,447,587 21,608,538 40,910,658

amazon 38,015,403 4,464,791 372,366,885 609,961,827 2,689,696 9,232,707 13,096,219 4,192,682

dewiki 51,141,107,679 88,611,282 .. .. .. .. .. ..

ljournal 8,726,048,197 411,155,444 1,812,284,632,329 8,847,128,736,944 8,551,292,956 189,716,360,703 26,962,410,402 16,129,080,442

Note thatT4д , the time required to enumerate all 3 and 4-node

graphlets, does not strongly depend on the size of the graph, but

rather on the degrees and the numbers of triangles and wedges,

validating our analysis. For example, comparing ljournal with
amazon, the ratio of their (N∠ + N∆)dmax values is about four

thousand, while the ratio of theirT4д values is about six thousand,

i.e. approximately the same order. This observation experimen-

tally validates the statement of Theorem 3 relating the runtime

to the (N∠ + N∆)dmax value.

Interestingly, cnr requires longer runtime than ljournal. Even
though it is smaller by an order ofmagnitude it hasmore graphlets.

The amazon dataset, which has relatively small maximum de-

gree can be processed in merely 14 seconds. The dewiki dataset
has enormous number of wedges and large maximum degree and

the algorithm did not terminate even after running for four days.

Table 2: The undirected graphs. Here, dBG
max

is the effec-
tivemaximumdegree when only larger neighbours are in-
cluded after the preprocessing.

Dataset n m dmax dBG
max

davg

enron 69,244 254,449 1,634 87 7.35

cnr 325,557 2,738,969 18,236 85 16.83

dblp 986,324 3,353,618 979 118 6.80

amazon 735,323 3,523,472 1,077 16 9.58

dewiki 1,532,354 33,093,029 118,246 490 43.19

ljournal 5,363,260 49,514,271 19,432 756 18.46

Table 3: The runtime, in seconds, for preprocessing, for
triangle enumeration, for wedges and triangles together,
and for all three and four node graphlets together.

Graph TPrep T∆ T3д T4д

enron 0.87 1.03 3.49 76.50

cnr 1.93 1.75 57.03 176K

dblp 4.87 1.93 3.45 62.05

amazon 5.80 1.73 2.53 14.05

dewiki 26.45 12.79 517.3 > 300K

ljournal 46.68 32.96 257.1 82K

7 CONCLUSIONS
In this study we have shown that it is possible to enumerate

all types of four node graphlets simultaneously with runtime

O((N∆+N∠)dmax+T3д). Wedges and triangles can be enumerated

relatively fast (in a pre-run) and the result can be used to estimate

the time needed to enumerate the four node graphlets. We found

that the runtime upper bound depends more on the maximum

degree than on the size of the graph. Our algorithm can finish the

enumeration in seconds when the maximum degree is around 1K.

Moreover, it does not require large memory space, and it would

run for even larger graphs (provided that we allow enough time).

Notably, we were able to process massive graphs of millions of

nodes and edges and enumerate about 40 trillions graphlets in a

single run, within a reasonable amount of time.
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ABSTRACT
Interval data are found in a wide range of applications (e.g., va-
lidity intervals in temporal databases, ranges of uncertain values
in probabilistic databases, etc.) We study the efficient (parallel)
evaluation of band joins for interval data. Specifically, given two
collections R and S of intervals, the objective is to find all pairs
(r , s), such that r ∈ R, s ∈ S , and the difference gap between r and
s is at most equal to a given threshold ϵ . We first show how this
problem can be solved by directly applying the state-of-the-art
domain-based partitioning approach for interval joins, after ex-
tending the intervals by ϵ . Then, we propose a novel partitioning
strategy for the original intervals, which defines the partitions
using the threshold ϵ and achieves much better performance, on
most datasets, for reasonably large values of ϵ .

1 INTRODUCTION
The evaluation of joins with non-equality predicates finds many
applications, especially in data domains where values are approxi-
mate by nature (e.g., temporal data). For example, one application
is finding pairs of events whose time difference is not greater
than a given threshold ϵ . This bounded-difference join is also
called band join [6], since for each value v in one join input, the
objective is to find the values in the other input, which are inside
an [−ϵ, ϵ] band around v .

Although the evaluation of band joins has already been stud-
ied for offline (disk-resident) [6, 10] and streaming data [1, 7],
previous work focuses on joins between collections of values
(not intervals). In addition, the possibilities of parallel evalua-
tion using modern hardware are not fully explored. In this paper,
we study the evaluation of band joins between two collections
of intervals. Specifically, given two collections R and S of inter-
vals and a band constraint ϵ , our objective is to find all pairs
(r , s) of intervals, such that r ∈ R, s ∈ S , and the difference gap
between r and s is at most ϵ . More precisely, for two intervals
r = [r .start , r .end] and s = [s .start , s .end] to qualify the join, it
should be s .start ≤ r .end + ϵ and r .start ≤ s .end + ϵ .

To our knowledge, this problem has not been studied before,
although it has important applications. For example, the user of a
temporal database [9] may often be interested in finding pairs of
intervals that qualify some overlap or distance constraints (e.g.,
find pairs of flights which do not have a difference gap larger
than 2 hours). Band joins can also be useful for coalescing pairs of
intervals that overlap or they are close to each other [2]. Another

© 2020 Copyright held by the owner/author(s). Published in Proceedings of the
22nd International Conference on Extending Database Technology (EDBT), March
30-April 2, 2020, ISBN 978-3-89318-083-7 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

application is in probabilistic databases, where uncertain values
are often approximated by confidence intervals [5, 11]. Finding
pairs of values that differ less than a threshold ϵ can be modeled
and solved as a band interval join problem. XML queries can be
modeled as joins between intervals that capture the positions
and ancestor-descendant relationships scope of nodes in XML
trees [4]. Queries over data streams [1] also constrain the time
differences between events, which could be instantaneous or
with a temporal duration (i.e., intervals); hence, streaming data
analytics could benefit from fast band join evaluation algorithms.

In our previous work [3], we studied the parallel evaluation of
interval overlap joins, where the objective is to find the pairs of
intervals from two collections that overlap (i.e., share at least one
value). This is a special case of the problem that we study here
for ϵ = 0. We proposed a domain-based partitioning approach,
which divides the data from the two collections into partitions
and processes the partitions independently and in parallel, while
avoiding duplicate results.

In this work, we extend our framework to evaluate interval
band joins. An intuitive and straightforward approach in this
direction is to expand the intervals in both collections by ϵ (e.g.,
by adding ϵ to endpoint x .end of each interval x). The interval
overlap join between the two collections of expanded intervals
is equivalent to the interval band join on the original data inputs
and, hence, we can directly apply the original approach of [3]. On
the other hand, expanding the intervals increases data replication,
which could slow down the evaluation of the join.

This motivated us to design an alternative approach that par-
titions the original intervals, as in an overlap join, but sets the
width of each partition to ϵ . Our new algorithm joins each par-
tition Ri from R with exactly two partitions from S , Si and Si+1
(and vice versa), corresponding to the same and the next ϵ-wide
stripes of the domain. As we show, the Ri Z Si band join re-
duces to a cross-product, while the Ri Z Si+1 band join can be
processed very efficiently, after further dividing the intervals in
each partition into classes, based on the way they intersect the
corresponding stripe.

We evaluate the proposed algorithm on four real datasets and
varying ϵ thresholds and confirm that the ϵ-wide stripes approach
is superior to the baseline adaptation of [3] on most datasets, for
reasonably large values of ϵ .

2 BACKGROUND
In this section, we review the domain-based partitioning ap-
proach of [3] for interval overlap joins, which is necessary for
understanding our solutions to the band interval join problem.

In order to process the join efficiently and in parallel, this ap-
proach first divides the data domain into disjoint regions (stripes),
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Step 1: divide the intervals of each partition (e.g. Ri) into 3 
groups (done at the time of partitioning)
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(a) Domain-based partitioning (b) mini-partitions

Figure 1: Example of domain-based partitioning

the union of which covers the entire domain. For each of the
two input collections R and S , we then define one partition per
stripe and assign each interval to all stripes that the interval
overlaps. Hence, an interval may span multiple partitions. After
this partitioning phase, partition Ri (respectively, Si ) includes all
intervals from R (respectively, S) which overlap the i-th stripe.
During the join phase, each partition Ri only has to be joined with
the corresponding partition Si . Moreover, each of the Ri Z Si
partition-to-partition joins can be evaluated independently from
the others and the joins can be processed in parallel. Figure 1(a)
illustrates an exemplary domain partitioning to four stripes and
two intervals; r ∈ R is assigned to partitions R1, R2, and R3 and
s ∈ S is assigned to partitions S1 and S2.

However, a brute-force implementation of the join phase may
produce duplicate results. For example, in Figure 1(a), join pair
(r , s)would be reported by both R1 Z S1 and R2 Z S2. Duplicates
can be avoided by reporting a pair (r , s) in a partition-to-partition
join Ri Z Si only if at least one of r or s starts inside the i-th
stripe. Otherwise, the pair would also be detected in the join of a
previous stripe. Hence, in our example, pair (r , s) is reported by
R1 Z S1, but the pair is pruned, after being detected by R2 Z S2.

Instead of eliminating duplicates this way, the approach of
[3] goes one step further, by avoiding the generation of such
duplicates overall. The idea is to further divide each partition Ri
into threemini-partitionsRAi ,R

B
i , andR

C
i ;R

A
i takes all intervals in

Ri which start in stripe i , RBi takes all intervals in Ri which start
before stripe i and end inside stripe i , and RCi takes all intervals
that start before stipe i and end after stripe i . Figure 1(b) shows
examples of three intervals from R2 that go to different mini-
partitions. Now, each Ri Z Si can be computed by performing 5
mini-joins between the mini-partitions, as shown in Figure 2:

• RAi Z SAi is computed as a typical interval overlap join;
• RAi Z SBi and RBi Z SAi are computed as a special case of
an interval join, where the start point of every interval in
SBi (resp. RBi ) precedes all start points of all intervals in
RAi (resp. SAi ) [3].

• RAi Z SCi and RCi Z SAi are cross products, hence their
computation requires no comparisons;

• RBi Z SBi , R
B
i Z SCi , R

C
i Z SBi , and RCi Z SCi do not have

to be computed because they would produce duplicate join
results (guaranteed to be found in previous stripes).

Mini-joins are evaluated by an optimized version of a forward
scan algorithm based on plane-sweep (also proposed in [3]).

3 EVALUATING BAND JOINS
3.1 Evaluation based on interval overlap joins
As discussed in the Introduction, a baseline evaluation algorithm
for interval band joins transforms the problem to an interval
overlap join. For this purpose, it expands the intervals from both
input collections by ϵ . Without loss of generality, each interval
r ∈ R and s ∈ R becomes r ′ = [r .start , r .end + ϵ] and s ′ =

Mini-joins breakdown
for each domain-partition, 3 types of intervals à 9 mini-join tasks

(1) (2) (3) (4) (5)

(8)(6) (7) (9)

Same complexity 
as original join

Single scan of join inputs Cross product: no comparisons

No need to evaluate: they would generate duplicates

5

3

RAi SAi RAi SBi RBi SAi RAi SCi RCi SAi

RBi SBi RBi SCiRCi SBi RCi SCi

Figure 2: Breakdown of Ri Z Si into mini-joins

[s .start , s .end + ϵ], respectively. We can easily show that if r ′
overlaps s ′ then s .start ≤ r .end + ϵ and r .start ≤ s .end + ϵ hold,
i.e., pair (r , s) satisfies the band join predicate.

This baseline can be straightforwardly implemented using the
approach of [3]. The expansion of the input intervals takes place
before they are assigned to the partitions, while the mini-joins
breakdown operates exactly as discussed in the previous section.

3.2 Evaluation on ϵ-wide partitions
Despite its simplicity, the baseline exhibits two shortcomings.
First, due to expanding intervals by ϵ ,data replication increases
(compared to the replication in the overlap interval join prob-
lem). This increases the cost of the partition-to-partition joins.
The second drawback is that the domain-based partitioning is
agnostic to the input parameter ϵ . For instance, a pair of intervals
located at the two different ends of a stripe may not qualify the
band join predicate; nevertheless, they need to be checked.

To address these issues, we next propose our second solution
for band joins. The key idea of the method is to split the domain
into disjoint ranges (stripes), such that the width of each stripe
is ϵ (in case the domain cannot be divided exactly by ϵ , the last
stripe is narrower). The input intervals from R (resp. S) are not
expanded, but directly assigned to every partition Ri (resp. Si )
they intersect, as described in Section 2.

Since the width of each stripe i is (at most) ϵ , it is guaranteed
that every pair of interval (r , s) with r ∈ Ri , s ∈ Si forms a
result of the band join. In other words, r .end + ϵ < s .start or
s .end + ϵ < r .start cannot hold; otherwise, r and s would not
have been assigned to the same partition. Hence, we can directly
report all pairs (r , s) with r ∈ Ri , s ∈ Si as results. However, the
same pair of intervals could co-exist in other stripes as well (e.g.,
the (i − 1)-th and/or the (i + 1)-th). Therefore, as in the interval
overlap join case, we should only report a pair if it is not a join
result in a previous stripe, i.e., if at least one of r or s start inside
stripe i . To avoid this test, we can divide each partition Ri (and Si )
again into three mini-partitions RAi , R

B
i , R

C
i (and SAi , S

B
i , S

C
i ), as

explained in Section 2 and then evaluate all RAi Z SAi , R
A
i Z SBi ,

RBi Z SAi , R
A
i Z SCi , and R

C
i Z SAi mini-joins as cross-products.

However, we are not done yet. There could also be band join
results (r , s), such that r ends in stripe i , s starts in stripe i + 1
and r .end + ϵ ≤ s .start (and the symmetric case). The current
decomposition has no explicit partition for all intervals that end
in stripe i , i.e., the mini-partitionRAi does not distinguish between
the intervals r ∈ R that end in stripe i from those that end after
stripe i . To this end, we define an additional mini-partition RA1i ,
which contains the intervals r ∈ Ri that both start and end inside
stripe i . Mini-partition RA1i is a subset of RAi , but their contents
are sorted differently to enhance the join evaluation, as we discuss
in the next paragraph. Figure 3 shows examples of four intervals
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Figure 3: Mini-partitions for band joins
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Figure 4: Mini-joins breakdown in band joins

which are assigned toRA2 ,R
B
2 ,R

C
2 , andR

A1
2 . Observe that intervals

which are assigned to RA12 are also assigned to RA2 .
In Figure 4, we illustrate the set of mini-joins that have to be

evaluated by the new algorithm. Besides the 5 cross-products
between mini-partitions in the same stripe, we have to perform
four mini-joins RA1i Z SAi+1, R

B
i Z SAi+1, S

A1
i Z RAi+1, S

B
i Z RAi+1,

at every pair i and i + 1 of neighboring partitions. All these
mini-joins can be evaluated efficiently in a similar manner as
mini-join RBi Z SAi of the interval overlap join problem (illus-
trated in Figure 2). Specifically, the intervals in mini-partitions
RA1i , RBi , S

A1
i , SBi are sorted by r .end or s .end and the intervals

in mini-partitions RAi and SAi are sorted by r .start and s .start ,
respectively. Then, at each of the four mini-joins, we can compute
the result by concurrently scanning the join inputs only once.

Consider, for instance, the mini-join between RA1i (sorted by
r .end) and SAi+1 (sorted by r .start ). We first check whether r .end+
ϵ ≥ s .start holds for the first r in RA1i and the first s in SAi+1. If
so, (r , s) is a band join result. At the same time, we can conclude
that for all intervals r ′ that follow r in RA1i , (r ′, s) is also a band
join result, since r ′.end ≥ r .end holds (due to sorting). Note that
all these join results are generated without any comparisons.
Afterwards, we advance to the next interval s ∈ SAi and repeat
the test r .end + ϵ ≥ s .start . If the test is negative, we advance
to the next interval r ∈ RA1i and repeat the test, etc. As soon as
either r or s is out of bounds, i.e., the input mini-partitions are
fully scanned, the join algorithm terminates.

For example, in Figure 5, we first consider intervals r1 and s1.
As r1.end + ϵ ≥ s1.start holds, all intervals in RA1i form band
join pairs with s1. Next, we examine s2 and repeat the test to
find again that r1.end + ϵ ≥ s2.start . Hence, we also report all
intervals in RA1i paired with s2 as band join results. However,
when we advance to s3, we observe that r1.end + ϵ < s3.start ,
so (r1, s3) is not a join result. At this point, we consider the next
intervals r from RA1i while r .end+ϵ < s .start holds and stop at r3,
where we have r3.end + ϵ ≥ s3.start . Again, we report join pairs
(r3, s3) and (r4, s3) and advance to s4. Since r3.end + ϵ < s4.start ,
we finally advance to r4; since, r4.end + ϵ ≥ s4.start holds, we
report join pair (r4, s4). At this point, both mini-partitions are
completely scanned and the algorithm terminates.

The number of comparisons conducted by the above algorithm
(applied for all mini-joins which are not cross products) equals

7

RA1i SAi+1

r1 r2
r3

r4

ε
s1
s2

s3 s4

Figure 5: Mini-join between neighboring partitions

Table 1: Statistics of datasets
INFECTIOUS BOOKS TAXIS WEBKIT

Cardinality 415,912 2,312,602 14,212,261 2,347,346
Domain duration (secs) 6,946,360 31,507,200 2,592,000 461,829,284
Distinct domain points 81,514 5,330 2,229,932 174,471
Shortest interval (secs) 20 1 1 1
Avg. interval dur. (secs) 20 2,201,320 685 33,206,300
Longest interval (secs) 20 31,406,400 1,816,164 461,815,512

the total number of intervals in its two inputs (e.g., |RA1i |+ |SAi+1 |),
which means that mini-joins are evaluated very efficiently.
Parallel evaluation.As shown in [3], the best approach to paral-
lelize interval joins based on domain-based partitioning is to treat
every mini-join as an independent task. Each task is scheduled
to one of the available CPU threads. To maximize load balancing,
the tasks are greedily assigned to threads in decreasing order of
their expected costs (based on the size of the involved partitions).

4 EXPERIMENTAL EVALUATION
Our evaluation was conducted on a machine with 384 GBs of
RAM and a dual Intel(R) Xeon(R) CPU E5-2630 v4 clocked at
2.20GHz. All methods were implemented in C++, compiled us-
ing gcc (v4.8.5) with flags -O3, -mavx and -march=native. We
activated hyper-threading, allowing us to run up to 40 threads
and used OpenMP for multi-threaded processing. Every interval
contains two 64-bit domain point attributes (i.e., start and end)
while the workload accumulates the number of result pairs. All
data reside in main memory.
Methods. We compare our ϵ-wide partitioning join (denoted
by ϵ-WIDE) to the baseline (denoted by BSL). In addition, we
include a version of BSL (denoted by ϵ-BSL), which uses ϵ-wide
domain partitions, but it conducts an overlap join using the ex-
tended intervals, instead of the method described in Section 3.2.
Both variants of the baseline use our optimized forward scan
based plane sweep method from [3] and all our optimizations to
improve load balancing in domain-based partitioning.
Datasets. Table 1 details our 4 real-world experimental datasets.
INFECTIOUS [8] stores contact intervals between visitors at
an exhibition at the Science Gallery in Dublin from 2009/05
to 2009/07. BOOKS [3] includes periods of book lent outs at
Aarhus public libraries in 2013 (https://www.odaa.dk). TAXIS
(https://www1.nyc.gov/site/tlc/index.page) stores durations of
taxi trips in NYC, in Jan 2013. WEBKIT [3] records durations of
file versions in the git repository of the Webkit project from 2001
to 2016 (https://webkit.org).
Tests. To assess the performance of the methods, we measure
their response time while varying (i) threshold ϵ as a fraction of
the domain duration inside {0.001, 0.005, 0.01, 0.05, 0.1} and (ii)
the number of available CPU threads inside {5, 10, 15, 20, 25, 30,
35, 40}. We also experimented with uniformly sampled subsets of
the dataset as R and set the entire dataset as S ; for this purpose,
we varied the |R |/|S | ratio inside {0.25, 0.5, 0.75, 1}.
Results. Figures 6-8 summarize our experimental results. When
varying ϵ , we observe the following. First, ϵ-WIDE is consis-
tently faster than ϵ-BSL. This shows that applying the mini-joins
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described in Section 3.2 on the original intervals is faster than ap-
plying the mini-joins of [3] on the ϵ-extended intervals. However,
the number of ϵ-wide partitions can become extremely large for
small values of ϵ , which renders these approaches slower com-
pared to BSL. Note that BSL chooses the number of partitions,
according to the number of threads that can run in parallel as
suggested in [3]. On WEBKIT, TAXIS and INFECTIOUS, ϵ-WIDE
is up to a few time faster compared to BSL and ϵ-BSL for a wide
range of ϵ/domain ratios. On the other hand, on dataset BOOKS,
ϵ-WIDE is faster than the competition for ϵ/domain ratios larger
than 2%. When varying the number of threads, we observe that
all methods scale well until when the number of threads becomes
20, after which hyper threading comes into effect. The join on
INFECTIOUS is already very cheap and does not benefit from
increasing parallelism. Last, as expected all methods are affected
by increasing |R |/|S |; their execution time rises.

5 CONCLUSION
In this short paper, we studied the evaluation of band joins be-
tween two collections of intervals. We extended our framework
for interval overlap joins [3] in two directions; a baseline ap-
proach that expands all intervals by ϵ and then evaluates an
overlap join and a novel approach that uses ϵ to define the parti-
tions and then conducts cheaper joins between partitions. Our
experimental findings show that the second approach is more
efficient, unless ϵ is very small compared to the domain size.
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ABSTRACT
Graphs are everywhere. Personalized Page Rank (PPR) is a partic-

ularly important task to support search and exploration within

such datasets. PPR computes the proximity between query nodes

and other nodes in the graph. This is used, among others, for

entity exploration, query expansion, and product recommenda-

tion. Graph databases are used for storing knowledge graphs.

Unfortunately, the exact computation of PPR is computation-

ally expensive. While different solutions have been proposed to

compute PPR values with high precision, these are extremely

complex to implement, and in some cases require heavy pre-

processing. In this work, we sustain that a better approach exists:

particle filtering. Particle filtering methods produce ranks with

sufficient precision while exploiting what graph databases archi-

tectures are already optimized for: navigating local connections.

We present the implementation of such an approach in a popular

commercial database and show how this outperforms the already

implemented functionality. With this, we aim to motivate future

research to optimize and improve upon this research direction.

1 INTRODUCTION
Graphs are everywhere [20], in particular, Knowledge Graphs

(KG) [17] gained increasing attention thanks to their ability to rep-

resent entities and their relationships in many domains. Knowl-

edge graphs model entities as nodes and the relationships among

them as labelled edges. They are used to store the relationships

about products, customers, events, locations, and more.

Personalized Page Rank [4, 5, 9, 12] (PPR) is a particularly

important task to support search and exploration within graphs.

At a high level, PPR extends the well known Page Rank [18] by

computing a local popularity (or proximity) instead of a global

importance score for nodes. In practice, given a small set of

query entities, PPR returns a ranked list of other relevant entities

based on a computed random-walk proximity to the query nodes.

Famous examples of the application of PPR are the Twitter Who
To Follow [8] that suggest to users other users to follow and

the Pinterest related pins suggestions [14]. In other contexts, it

can suggest related scientific articles, related entities, or suggest

products to buy.

When it comes to PPR applications to KGs, a number of aspects

become important, namely: the possibility to use a small set

of nodes as query (e.g., for product recommendation or query

expansion), the ability to include edgeweights in the computation

(given that in a KG different edges have different semantics), and

fast response times for top-k queries (since in practical cases

only a small set of high ranked nodes are required in contrast to

computing such values for all nodes in the graph).

© 2020 Copyright held by the owner/author(s). Published in Proceedings of the

22nd International Conference on Extending Database Technology (EDBT), March

30-April 2, 2020, ISBN 978-3-89318-083-7 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons

license CC-by-nc-nd 4.0.

Currently, graph data management systems (GDBMS) [13] are

the de-facto solution for managing knowledge graphs in transac-

tional settings, thus, they need to support PPR queries. Unfortu-

nately, the exact calculation of PPR is computationally expensive.

In the literature many solutions have been proposed to provide

fast computation of PPR values [2, 6, 7, 10, 11, 15, 19, 22–25]. Yet,

they have been designed with the needs of social networks in

mind, i.e., they focus on single source queries, unlabeled edges,

and high-precision PPR value computations (required for commu-

nity detection [26]). In many cases, they require pre-computation

of indexes and other data-structures. In short, most existing meth-

ods are not designed to focus on the real needs for KG search,

neither they take into account the requirements for being imple-

mented in real-world Graph DBMS.

In this work, we study PPR computation solutions designed

around the needs of Knowledge Graph search and the strengths

of graph databases. We proposed a much simpler approach for

computing Personalized Page Rank queries with multiple sources

and heterogeneous edge weights. To achieve a significant per-

formance in computing the top-k PPR, we extend the damping
function template [4] with the particle filtering procedure [12],
extended to correctly take into account the teleportation probabil-
ity and account for the non-uniform edge importance typical of

KGs. Currently, the only implementation of a similar approach

has been proposed for an in-memory research prototype [16]. In

our work, instead, we show how real word commercial graph

databases can support this functionality.

Our experiments, on real large graphs, demonstrate the su-

periority of this approach (which we have made available as

open-source
1
) against the currently implemented version in a

major commercial GDBMS (Neo4j
2
). Furthermore, this direction

is open to interesting challenges and can foster the development

of new techniques to improve real-world graph databases.

2 RELATEDWORKS
Personalized Page Rank [9] has been initially proposed as an

alternative to global Page Rank since it computes local proximity

to query nodes based on random-walks. Since that seminal work,

many different approaches and implementations have followed.

In general, they follow three alternative strategies, namely (1)

matrix computation, (2) Monte-Carlo simulations, or (3) local

search. For matrix computation, the graph is represented as its

adjacency matrix, as in the original formulation, and different

matrix multiplications are performed to compute the final val-

ues. These approaches [7, 10, 11, 22] are typically computation-

ally expensive, hence they tend to be optimized through heavy

pre-computations and large scale indexing. Matrix computation

approaches are impractical for real-world graph databases, since

GDBMS do not usually represent a graph as an adjacency matrix,

and would require to maintain the pre-computed results.

1
https://github.com/DenisGallo/Neo4j-ParticleFiltering

2
https://neo4j.com/docs/graph-algorithms/
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Monte-Carlo approaches, on the other hand, simulate a num-

ber of random traversals of the graph in order to compute the

final PPR values. Employing this strategy offers few guarantees

on the final output and on the actual response time. In general,

a large number of random traversals are required to obtain re-

liable results. Hence, also in this case, precomputed values and

indexes are employed [23, 24], suffering though from the same

shortcomings discussed earlier.

Local search approaches, start, instead, from the query nodes

and spread a rank value following the local neighborhoods until

some stopping condition verifies. Usually, once this condition is

encountered, they employ some additional Monte-Carlo traver-

sals to refine the obtained approximate results and ensure higher

precision [2, 5, 6, 15, 19, 24, 25]. Yet, most of these approaches

have focused on either source-target queries, i.e., compute the

PPR value of a target node given a source node, or single source

queries with focus on computing high precision PPR values for

very large portions of nodes in the graph. Both these directions,

while useful in cases like social networks, impose an unneces-

sary burden on the system (since they focus on the actual PPR

value instead of just computing a ranking of nodes) and neither

address other important required features, like the necessity to

differentiate edge types, the possibility to have multiple source

nodes in the query, or the requirement of returning a ranked list

of nodes of usually small size (i.e., top-k queries).

Contrary tomost recent literature, following promising prelim-

inary results from knowledge graph exploration [16], we study

a method to enable multi-source, edge-weighted, top-k Person-

alized Page Rank queries within a Graph DBMS. We explicitly

focus on the now prevalent need of Knowledge Graph search and

on fully exploiting the ability of graph databases to efficiently

query the local neighborhood of nodes [13]. Our method extends

the damping function template [4], yet it implements an approach

similar to particle filtering procedure [12] with two main differ-

ences: it has been extended to correctly take into account the

teleportation probability that was not accounted for there, and it

provides the ability to include edge relevance in the calculation,

a feature that has been largely neglected in the literature. This

solution has the advantage that it does not require any internal

ad-hoc data-structure (our solution is a stored procedure of about

two hundreds lines of code) and obtains both fast response time

and high-quality results in practice.

3 APPROXIMATE PERSONALIZED PAGE
RANK COMPUTATION

Given a graph G : ⟨V , E⟩ with V nodes and E edges, the result of

a Personalized Page Rank (PPR) [9] given a set of query nodes

Q⊂V computes a proximity value of every node inV to the nodes

in Q . Formally, the result of the computation is represented as a

vector v, with size |V | representing the stationary distribution of

the Markov chain [9] with state transition given by the equation

(1 − c)Av + cp (1)

Given the column normalized transition probability matrix

A, the teleportation probability c , and the preference vector p.
The matrix A (of size |V | × |V |) contains values between 0 and 1

according to the probability that an edge is traversed (hence the

column normalization), where a value of 0 corresponds to non-

existing edges. In general, a KG is a graph with edges of different

types (an edge-labelled graph) and in many cases, different edge

types are assigned different relevance scores (i.e., a weight in

[0,1]). Furthermore, p is an |V | × 1 column vector, which serves

Algorithm 1 PPR by Particle Filtering

Require: Graph G; Query nodes Q
Require: Restart probability c ∈ [0, 1]; Threshold τ ∈ [0, 1]
Require: Query value k
Ensure: Ranked Top-K nodes

1: p← {}
2: for each qi ∈ Q do
3: p[qi ] ← 1/τ ▷ Initialize Particles

4: while ∃ ni ∈ p | p[ni ] , 0 do
5: temp← {}
6: for each ni ∈ p | p[ni ] , 0 do
7: particles ← p[ni ] × (1 − c)
8: for each e : (ni → nj ) ∈ G do ▷ Sorted by Weight

9: if particles ≤ τ then
10: break
11: passinд←MAX(particles × e .weight(),τ )
12: temp[nj ] ← temp[nj ] + passinд
13: particles ← particles − passinд

14: p← temp
15: for each ni ∈ p do
16: v[ni ] ← v[ni ] + p[ni ] × c ▷ Update score

17: return top-k(v)

as the normalized preference vector, for which p[n],0 and in par-

ticular 0<p[n]≤1 iff n∈Q . Finally, the teleportation probability

c ∈ (0, 1) is typically ≈ 0.15 in the literature [18].

In practice, the goal of the PPR value is to rank nodes, hence

the exact value of the PPR is not necessary as far as the ranking
is preserved. We propose an approximation of this process [4]

and apply an approach similar to the weighted particle filtering
procedure [12] to consider the non-uniform edge weights.

The approach simulates a set of 1/τ floating particles (lines 2-3,
Algorithm 1) starting from each node in the query setQ . At each

iteration (lines 5-16), the particles distribute among the neighbors

of the current node (minus the number of particles that restart,
line 7). An important optimization is to prevent particles to split

to arbitrarily small sizes, limiting them to a minimum of τ (lines 9-
11). When distributing the particles among the neighbors, the

algorithm gives preference to the edges with higher weights

(line 8). Since the weight is normalized on the edges of each node,

this operation matches the damping function framework [4].

The restart probability c will dissipate part of the particles at

every iteration (line 8), and the algorithm will stop when no

more particles can be distributed. During the process, a vector

v accumulates the total amount of particles visiting each node

(lines 15-16). Hence, the final list of top-k nodes is based on v.

Here, we argue that for the case of Knowledge Graphs, the Particle
Filtering approach for PPR computation is the best-suited approach
to extend GDBMS functionalities for retrieving Top-K nodes.

The benefits of this approach are that (1) it does not require any

complex preprocessing nor any additional persistent data struc-

ture, (2) it is directly implementable within any graph databases

by direct use of core operations that are already optimized (namely

local node neighbor traversal [13]), (3) it returns a ranking that

strictly correlates with the actual ranking, (4) it can account for

heterogeneous edge types and importance, (5) it does not require

to traverse the entire graph and its exploration rate (and hence

running time) can be fine-tuned through the τ and c parameters.
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4 EXPERIMENTS
We investigated the performance and the quality of the ranking of

Particle Filtering (PF) compared to the current exact implementa-

tion of Personalized Page Rank (PPR) in a commercial database. In

particular, we implemented particle filtering (PF – Algorithm 1)

as a Java stored procedure in Neo4j
3
v3.5.5, and compared it

against the current implemented exact solution (PPR - Graph

Algorithms v3.5.2)
4
. Experiments have been executed on a server

with 12 cores and 128GB RAM.

Datasets: We compared the two alternatives on 4 different

KGs from different domains and different sizes, widely used in

the literature (Table 1). These KGs have been obtained from

a dataset of movies, including also information about actors,

directors, and genres
5
(Movies); from an established benchmark

for triplestores [1] representing an heterogenous product catalog

(WatDiv); an open domain knowledge graph (DBpedia [3]); and
finally a knowledge base about drugs, their composition, and

their interactions (DrugBank [21]). Of these, Movies, DBpedia,

and DrugBank are real-world datasets, while WatDiv is synthetic.

Queries, Parameters, and Evaluation Metrics: For each
dataset, we extracted 5 sets of 20 queries. Each set contains 20

queries of the same size (i.e., number of source nodes). We gener-

ated through sampling queries of size 1, 5, 10, 20, and 100 nodes,

for a total of 100 queries. For each query, we recorded the ex-

ecution time (average of 3 runs), and for the queries executed

with PF, we recorded NDCG score at top-5, 50, 100, and 500. We

executed queries both with the weighted (i.e., assigning weights

based on label informativeness [16]) and unweighted (i.e., uni-

form weights) version of the algorithm. We tested the PF with

three values of τ : 0.1, 0.05, and 0.01.

Results: Due to space constraints, we report here only results
for the two largest graphs, namely WatDiv and DBpedia, for the

labelled case. The full set of experimental results can be found

in the extended version of this document
6
. Nonetheless, we also

comment on some of the findings of the excluded experiments.

Quality of Ranking: Over all the datasets, the NDCG score

for PF with τ = 0.01 has the best quality, and often close to the

perfect ranking (i.e., between 0.8 and 1.0) with queries containing

up to 10 nodes. In most cases, also PF with τ = 0.05 obtains a good

quality ranking (NDCG>0.65). With more than 10 query nodes,

the quality of ranking is subject to high variability, especially

depending on the dataset. On DBpedia and WatDiv, still, we

obtain NDCG scores above 0.65 for both τ=0.05 and 0.01 with 20

nodes in input at top-500, while for 100 nodes, we need τ=0.01 on
DBpedia. This confirms the suitability for KG exploration cases.

Running Time: Compared to the running time of exact PPR,

the PF algorithm provides a speedup between 1 and 4 orders

of magnitudes, i.e., returning on average in 1-30 seconds while

the exact solution requires 3-6 minutes (on DBpedia). In general,

the speedup is proportional to the value of τ , i.e., τ=0.01 is be-
tween 10 and 100 times slower than τ=0.1. Yet, for 100 query

nodes on DBpedia, we report that τ=0.01 rarely achieves sensible
improvements due to the high number of particles generated.

Effect of Weights: when considering weights particle tran-

sitions are skewed towards more relevant nodes (through more

informative edges). This has a noticeable effect on the running

time because for high degree edges only the most informative

edges are traversed (given the fact that they are prioritized), and

3
https://neo4j.com/download-center/#community

4
https://github.com/neo4j-contrib/neo4j-graph-algorithms

5
https://neo4j.com/developer/example-data/

6
http://people.cs.aau.dk/~matteo/pdf/EDBT2020-pf-long.pdf

Movies WatDiv DBpedia DrugBank

#Nodes 63K 5.2M 11.6M 391K

#Edges 106K 95.8M 216.7M 1M

#Edge types 4 31 13k 68

Density 3.93E-05 3.48E-06 1.61E-06 6.82E-06

#Con. Components 433 1 2 1

Min size CC 3 5.2M 59.3k 391K

Max size CC 58.2k 5.2M 11.5M 391K

Avg size CC 142 5.2M 579K 391K

Median size CC 6 5.2M 579K 391K

Max Out-degree 71 345 7.2k 423

Avg Out-degree 2.13 18.4 22.6 3.3

Median Out-degree 1 1 9 2

Max In-degree 92 585K 3.3M 316K

Avg In-degree 9.18 20.3 20.1 2.8

Median In-degree 8 1 2 1

Table 1: Size and characteristics of the datasets
many less relevant edges are skipped. For a similar reason, we

notice that the NDCG score when weighted edges are considered

is higher because for nodes with very high degrees, there are not

enough particles to visit all the neighbors, hence in the weighted

case the PF prioritization is consistent with the importance of the

node, while in the unweighted case all of them should be visited.

Open Challenges: In our experiments, we noticed that when

starting nodes are hubs (i.e., nodes with high degree) or are near

hubs, the weighted traversal is the bottleneck. The reason is that

current GDBMS can very quickly retrieve all the neighbors of

a node, but then we require to sort them by weight. Hence, we

identify the opportunity in GDBMS for implementing sorted edge
iterators for weighted edges to speed up this step and other similar

cases. Moreover, automatic tuning of the τ threshold depending

on the query is an open research challenge.

5 CONCLUSIONS
In this paper, we argue that, when computing the Personalized

Page Rank value in a knowledge graph, the approximate com-

putation framework offered by the Particle Filtering approach,

provides substantial advantages in terms of running time and

ease of implementation, while ensuring good ranking quality.

Our implementation can provide an efficient solution for extend-

ing existing graph databases since it exploits the strengths of

these systems. While this approach is simple and effective for

queries with few input nodes and limited to the first few hun-

dreds nodes (typical of on-line exploration settings), we believe

that the algorithm can be further expanded to assure high-quality

ranking also for nodes in the long tail and larger queries.
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Figure 1: Running time (top) and NDCG (bottom) vs. weighted exact PPR on DBpedia, varying τ and # of input nodes.
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ABSTRACT
We investigate efficient evaluation of regular path queries with
memory (RQM), which are an extension of regular path queries
(RPQ) with additional constraints on data encountered along
a path in a graph. We show how Waveguide, a state of the art
system capable of planning RPQs, can be extended to facilitate
RQM planning. Furthermore, we show that RQM planning is not
as trivial as finding a conventional optimal join order and adding-
on data constraints. Rather, we showcase that efficient evaluation
of RQMs poses a number of non-trivial novel challenges.

1 INTRODUCTION
Regular path queries with memory (RQM) are subgraph-matching
queries that allow the definition of constraints on both topology
and data in graphs [3]. RQMs extend the expressive power of
regular path queries (RPQ) [1] in many useful ways while main-
taining an acceptable PSPACE-complete combined complexity.

An example of a query that is expressible as an RQM but not as
an RPQ is to find all pairs of people (x,y) such that x directly or
indirectly knowsy and all people along the chain of acquaintance
have the same age.

The initial study of RQMs [3], provides an extension of regular
expressions called regular expressions with memory (REM) that
are used to write RQMs, along with a procedure for construct-
ing a k-register data path automaton that can be used for the
evaluation of an RQM. While k-register data path automata are
an excellent tool for the investigation of the expressive power
and complexities of RQMs, they do not represent effective query
plans, and do not provide opportunities for query optimisation.

We aim to develop the first practical evaluation engine for
RQMs [4]. Here we take first steps towards this goal by (1) study-
ing the shortcomings of the proposed automata from a query
planning- and evaluation perspective, (2) addressing these short-
comings by proposing a more expressive type of automata that
can be used to represent query plans and (3) showing that optimis-
ing such plans for topological- and data constraints are orthogonal
problems. That is, a query plan that is optimal for evaluating only
the topological constraints of a query on a particular graph, and
another query plan that is optimal for evaluating the topological-
and data constraints of the same query on the same graph, need
not consider the topology of the query in the same order.

We extend Waveguide [5], a cost-based optimizer for property
paths which builds query plans calledwaveplans that guide query
evaluation. Waveplans are based on automata, which allows us
to combine concepts from waveplans and k-register data path
automata to obtain k-register waveplans.

© 2020 Copyright held by the owner/author(s). Published in Proceedings of the
23rd International Conference on Extending Database Technology (EDBT), March
30-April 2, 2020, ISBN 978-3-89318-083-7 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

2 REGULAR QUERIES WITH MEMORY
Data graphs are defined over a finite alphabet Σ and a countably
infinite set of data values D as a triple G = ⟨V , E, ρ⟩, where:

• V is a finite set of nodes;
• E ⊆ V × Σ ×V is a set of labelled edges; and
• ρ : V → D is a function that assigns a data value to each
node in V .

To write regular expressions that can specify paths in data
graphs, regular expressions with memory (REMs) over a finite al-
phabet Σ and set of variables x1, ..., xk are introduced and defined
by the grammar

e := ϵ | a | e + e | e · e | e+ | e[c] | ↓ x .e | (e), (1)

where a ∈ Σ, c is a condition and x a tuple of variables from
x1, ..., xn . A condition, in turn, is defined by the grammar

c := x=i | x,i | z= | z, | c ∧ c | c ∨ c | ¬c | (c), 1 ≤ i ≤ k, (2)

where z is a data value in D, also referred to as a constant.
As an example, consider the following REM:

(owns· ↓ x1.isLocatedIn)
+ · hasCapital[x=1 ] (3)

This REM specifies paths where we encounter at least one se-
quence of two edges labelled owns and isLocatedIn, followed by
an edge labelled hasCapital. Additionally, the data value asso-
ciated with the source of an edge labelled isLocatedIn is stored
in the first register, which is subsequently compared to the data
value associated with the target of an edge labelled hasCapital.

A regular query with memory is defined as an expression
of the form Q := x

e
−→ y where e is an REM, and x and y are

variables that are mapped to nodes in a data graph. Hence, the
evaluation ofQ amounts to finding pairs (u,v) ∈ V ×V such that
there exists a path from u to v that adheres to e . See Section 3.3
of [3] for the formal semantics of REMs and RQMs.

3 QUERY PLANNING
Query planning in the most general sense, is the process of find-
ing an ordering of operations that, when executed, produce the
solution to the given query. In the context of regular queries with
memory, this means finding an ordering of edge labels, assign-
ments, conditions and projections.

3.1 Automata as Query Plans
Query plans for relational database systems are often represented
as trees. Due to the recursive nature of RQMs introduced by the
Kleene plus (+) operator, it is more convenient to represent query
plans for RQMs as automata instead.

Regular Data Path Automata (RDPA) [3] have been proposed
as a representation of RQMs. These RDPAs, however, capture the
operations necessary for the evaluation of an RQM Q = x

e
−→ y

only in the order corresponding to the left-deep parsing of e .
Hence, RDPAs are not a suitable formalism for representing query
plans for RQMs.

Short paper

 

 

Series ISSN: 2367-2005 451 10.5441/002/edbt.2020.55

https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2020.55


Instead, we will consider Waveguide [5], a state of the art
query optimiser for RPQs. It represents query plans as waveplans,
a automaton-based formalism that allows for a rich variety of
query plans, due to its inverse transitions and transitions over views.
Conceptually, a waveplan consists of one or more wavefronts,
which are automata that are used to compute (part of) the solution
to a query. We extend wavefronts with assignments, conditions
and projection over data values and registers.

Inverse- and view transitions. Let Σ be a finite alphabet,
and L a finite set of state labels disjoint from Σ. We define Σ∗ =⋃
a∈Σ∪L{/a,a/} as a set of labels. A transition with label /a ∈

Σ∗ is said to append edges labelled a to an intermediate result,
whereas a transition labelled a/ ∈ Σ∗ is said to prepend edges
labelled a to an intermediate result. The latter is referred to as an
inverse transition. Inverse transitions allow our plans to represent
many different orders of edge labels, such as a right-deep order.

A transition with label /2 ∈ Σ∗ appends paths computed by
the state with label 2 to an intermediate result. Such a transition
is called a transition over a view. Transitions over views further ex-
tend the orders of edge labels our plans can express by including
bushy plans.

Projection. Data paths are defined as a sequence of interleav-
ing nodes and edge labels that always start and end with a node
[3]. Consider the REM e from (3) and a data path:

π = v1 ownsv2 isLocatedInv3 hasCapitalv4

Checking whether or not π is accepted by e in a right-deep order
means first finding edges labelled hasCapital, then amongst
those finding edges that are preceded by edges labelled
isLocatedIn, etc. This is a valid order of evaluating the edge la-
bels and may be more efficient than a left-deep order, depending
on the input graph. This order provides a problem with respect
to the assignment- and condition in this REM. Namely, we would
like to check that ρ(v4) = x1 where x1 is the value in the first
register. We can only do so once the first register has been as-
signed the value ρ(v2). Hence, to make this ordering of the edge
labels work, ρ(v4) will have to be stored until the assignment
has been made. To indicate which data- and register values must
be stored at which point during query evaluation, we associate
with each state in our automata finite sets PD ⊂ N and Pr ⊂ N
that contain the positions of nodes in a path and the indices of
registers that must be kept, respectively. For instance, to indicate
that ρ(v4) and x1 (i.e. the value of the first register) must be kept,
we would set PD = {4} and Pr = {1}.

3.2 k-Register Waveplans
We will refer to the extension of waveplans and wavefronts with
assignments, conditions and projections as k-register waveplans
and k-register wavefronts, respectively.

Let Σ∗ be a finite labelling alphabet, k a natural number and
C a finite set of conditions. Formally, a k-register wavefront is a
tuplewl = ⟨l, S,Q,q0,ΠD,Πr , δ , F , τ0⟩, where

• l is a wavefront label,
• S is a seed,
• Q is a set of states,
• q0 is the starting state q0 ∈ Q ,
• ΠD : Q → 2N is a function assigning a projection PD of
path positions corresponding to data values to each state,

• Πr : Q → 2N is a function assigning a projection Pr of
register indices to each state,
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Figure 1: A k-register waveplan for (3)

• δ is a transition relation δ : Q × Σ∗ × 2[k ] × C ×Q ,
• F ⊆ Q is a set of accepting states, and
• τ0 ∈ Dk

⊥ is the initial configuration of the registers.
A tuple d = (q1,a,K, c,q2) ∈ δ consists of source- and target
states q1 and q2, label a, a set K ⊆ {1, ...,k} indicating which
registers are to be assigned a value during this transition and a
condition c which is to be checked during this transition.

A k-register waveplan p is an ordered set of wavefronts. Con-
sider any pair of wavefrontsw,w ′ ∈ p such that
w = ⟨l, S,Q,q0,ΠD,Πr , δ , F , τ0⟩ and
w ′ = ⟨l ′, S ′,Q ′,q′0,Π

′
D
,Π′

r , δ
′, F ′, τ0⟩. Then p defines an order

<p on wavefronts as follows:

∀w,w ′ ∈ p |w <p w ′ : l ′ < S ∧ l ′ < L

Given this order, lower wavefronts cannot use labels of higher
wavefronts in their seeds or transitions.

The role of seeds inWaveguide is quite complex. Here it suffices
to say that seeds are necessary to ensure semantically correct
plans when dealing with multiple wavefronts in a waveplan, or
single wavefronts implementing a closure over an expression.

Figure 1 shows a k-register waveplan for the REM from (3).
It consists of two wavefronts. The first wavefront computes the
result to the expression e ′ = (owns/↓ x1.isLocatedIn)+ in a
right-deep order. It assigns a value to the first register (i.e. x1 is set
to the data value at the source of an edge labelled isLocatedIn).
The second wavefront computes the result to (3) by first com-
puting e ′′ = hasCapital, storing the data value at the target
of edges labelled hasCapital in state 5. The result of state 2 is
prepended to the result of state 5, and x1 is checked for equality
against the data value at the end of the resulting paths (i.e. at the
target of an edge labelled hasCapital).

3.3 Topological Order
Let e be a regular expression with memory. We will refer to te
as the topology of e which is a regular expression obtained by
recursively replacing

• every sub-expression e1[c] of e by e1, and
• every sub-expression ↓ x .e1 of e by e1

such that te no longer contains assignments and conditions.
We can now define the order in which a k-register waveplan

p considers the topology of a query as follows. Consider a wave-
front w ∈ p. We define the topological order λw of w as a se-
quence ⟨t0, ..., tn⟩ where ti is the sub-expression of te for which
the state with label i in p returns an intermediate result. We
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ignore all states that are part of a cycle inw , except for accept-
ing states, when constructing any sequence λw . We define the
topological order λp of a k-register waveplan p as a sequence
of sequences ⟨⟨t0, ..., tl ⟩, ..., ⟨tm, ..., tn⟩⟩, where each inner se-
quence corresponds to the topological order of the wavefronts
that make up p, in the order defined by <p . Consider the wave-
plan in Figure 1. Its topological order is
⟨⟨ϵ, isLocatedIn, (owns/isLocatedIn)+⟩,
⟨ϵ, hasCapital, (owns/isLocatedIn)+/hasCapital⟩⟩.

3.4 Query Evaluation
As per [5], query evaluation is done using a procedure based on
breadth-first search in which a waveplan guides the search (i.e.
determines which edges are to be explored based on their label
and possibly the satisfaction of conditions) until a fix-point is
reached.

Edge walks. The metric by which we will judge the perfor-
mance of a plan on the query evaluation task is that of the total
number of edge walks. Every distinct tuple that is added to the
queue during the search is considered one edge walk. Notice that
a tuple that is added to the queue is an n-tuple with n ≥ 3. A
tuple contains at least a pair of nodes representing the end-points
of a path and the state of the waveplan that produced this pair.
Additionally, for a queryQ := x

e
−→ y, a tuple can also contain up

to k register values and up to l data values, where l is bounded
by the number of sub-expressions of e of the shape e1[c]. Hence
n ≤ k + l + 3.

Optimality of query plans. - Consider a pair of RQMs Q :=
x

e
−→ y and Q ′ := x

te
−−→ y. These queries are topologically

equivalent (since te is the topology of e), but Q may contain
assignments and conditions. Let PQ and PQ ′ be sets of k-register
waveplans for Q and Q ′, respectively. For every plan p ∈ PQ
there exists a plan q ∈ PQ ′ such that λp = λq because Q and Q ′

are topologically equivalent. Hence, we can construct a relation
R ⊂ PQ ×N×PQ ′×Nwhere (p,n,q,m) ∈ R if and only if λp = λq
and be assured that there exists a tuple r ∈ R for every p ∈ PQ
such that p is part of r . The values n and m denote the total
number of edge walks produced by p and q, respectively.

We can define sets OPTQ ⊆ PQ and OPTQ ′ ⊆ PQ ′ as

OPTQ = {p | ∃(p,n,q,m) ∈ R ∧ ∀(p′,n′,q′,m′) ∈ R : n ≤ n′ }
(4)

OPTQ ′ = {q | ∃(p,n,q,m) ∈ R ∧ ∀(p′,n′,q′,m′) ∈ R :m ≤ m′ }

(5)
That is, OPTQ and OPTQ ′ are the sets of plans for Q and Q ′

that produce a minimal number of edge walks. We say that any
q ∈ OPTQ ′ is optimal with respect to topology, and any p ∈ OPTQ
is optimal with respect to topology and data.

We define a simple query Q as a query where

∀(p,n,q,m) ∈ R | q ∈ OPTQ ′ ⇒ p ∈ OPTQ

which states that a simple query is one where optimality with re-
spect to topology guarantees optimality with respect to topology
and data.

We investigate the performance difference between a planp2 ∈

OPTQ and a planp1 < OPTQ forwhich there exists (p1,n1,q1,m1) ∈
R such that q1 ∈ OPTQ ′ . Such an investigation will yield insights
into the performance improvements that are neglected when
query plan- and graph topology are assumed to be the determin-
ing factors in query performance.

To this end, we define a performance ratio between the edge
walks produced by such plans p1 and p2. Formally, φ is defined
over Q (from which R,OPTQ and OPTQ ′ are derived) as

φ(Q)


n1
n2
, if ∃(p1,n1,q1,m1), (p2,n2,q2,m2) ∈ R |

q1 ∈ OPTQ ′ ∧ p1 < OPTQ ∧ p2 ∈ OPTQ

1, otherwise
(6)

Notice that φ(Q) = 1 if and only if Q is simple.

4 EXPERIMENTAL SETUP
In order to show that optimising k-register waveplans with re-
spect to the topology of a query is orthogonal to optimising
these plans with respect to the query’s data constraints, we will
construct a workload W consisting of pairs (Q,G) where Q is
a regular path query with memory, and G is a data graph. We
will count the number of pairs (Q,G) such that Q is simple on
G, and investigate the average- and worst-case improvements in
performance that are neglected when the topology of a query
plan and graph are assumed to be the determining factors in
query performance.

4.1 Query Pattern
The queries in W will be based on instances of the pattern:

((a· ↓ x1.b)
+) · c[x=1 ] (7)

The motivation for the choice of this particular pattern is three-
fold:

(1) it contains interactions with data through a register (i.e.
an assignment and condition) inside of a closure,

(2) it is simple in terms of the number of edge labels it contains
and registers it uses, and

(3) its interactions with data apply to nodes that are neither:
• part of the pairs in the result of the query evaluation
problem, or

• guaranteed to have the same data value associated with
them

The first point is important because any pattern that does not
interact with data at all, or does so only outside of closures can be
modelled as a (C)RPQ [1], and is therefore not an example of the
increased expressive power of RQMs. The second point is more
practical in that it is possible to find many different instances of a
pattern which contains few edge labels and uses few registers in
real graph data. Thirdly, a pattern such as (↓ x1.a·b ·c[x=1 ])

+ would
also satisfy the first two points. However, since all its interactions
with data pertain to the data values in nodes that are either part
of the pairs in the result of the query evaluation problem, or
pertain to nodes that have the same data value associated with
them (i.e. the nodes with an incoming edge labelled c and an
outgoing edge labelled a in the closure), such queries are too
selective in practice.

Seventeen concrete combinations of edge labels for a, b and
c are obtained from the semantic knowledge graph Yago2s [2].
Example instances are:

• (isLocatedIn· ↓ x1.dealsWith)+ · hasCapital[x=1 ]
• (owns· ↓ x1.isLocatedIn)+ · hasCapital[x=1 ]
• (isLocatedIn· ↓ x1.owns)+ · isConnectedTo[x=1 ]
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4.2 Data Graphs
A data graphG = ⟨V , E, ρ⟩ is extracted from the semantic knowl-
edge base Yago2s. Yago2s consists of RDF-triples, derived from
Wikipedia, WordNet and GeoNames [2].

Let U denote the set of all distinct subjects and objects in
Yago2s’ RDF-triples. Similarly, let Σ denote the set of all distinct
predicates in Yago2s’ RDF-triples. We identified P ⊂ Σ as a set of
13 predicates such that for all triples (s,p,o) with p ∈ P it holds
that o is a numerical value. No other predicates in the Yago2s
data set could be identified that co-occur with edge labels for (7)
and have numerical values. The range of values over all objects
o was categorized into three equally sized categories. Thus, the
data domain for each p ∈ P is set to {0, 1, 2} where we interpret
the data values 0, 1 and 2 as low, medium and high, respectively.
Consider an RDF-triple (s,p,o) where p ∈ P . Let γ (o) ∈ {0, 1, 2}
denote the category that o was assigned to.

Since |P | = 13 but the data graph model only allows a single
data value per node, we can construct multiple data graphs Gi
from Yago2s. Note that the query pattern from (7) requires data
values at the source of edges labelled b and at the target of edges
labelled c . Hence, for all 132 pairs from P × P we construct a data
graph Gi .

Let (q1,q2) be an arbitrary pair from P × P . To construct Gi
we:

• add a node v to V for every u ∈ U . Let η(u) = v denote
the node in G that corresponds to u;

• for every triple (s,p,o)with p ∈ Σ−P we add (η(s),p,η(o))
to E;

• for every pair of triples (s,p,o), (s,b,o′) where p ∈ P and
b in some instance of (7) we set ρ(η(s)) = γ (o);

• for every pair of triples (s,p,o), (s ′, c, s) where p ∈ P and
c in some instance of (7) we set ρ(η(s)) = γ (o);

• for every v ∈ V where v is not yet in the domain of ρ we
set ρ(v) = 3.

Thus the labelling alphabet of each Gi is Σ − P and the set of
data valuesD is {0, 1, 2, 3}. When checking equality for two data
values d1,d2 ∈ D, we will maintain that d1 = 3 ∨ d2 = 3 ⇒

d1 , d2. That is, if neither of the data values were obtained from
Yago2s we consider them unknown and therefore unequal.

4.3 Query Workload
The combination of 17 instances of query pattern (7) and the
132 = 169 data graphs allows for a maximum workload size of
17 ∗ 169 = 2873. However, many of these combinations will yield
empty result sets on the query evaluation problem because there
existed no RDF-triples in Yago2s that produce data values from
{0, 1, 2} for the source- or target nodes of edges labelled b or c ,
respectively. Instead, the workload W consists of 579 distinct
pairs of RQMs and data graphs where the combination of edge
labels for a, b and c from Σ − P and properties q1 and q2 from P
resulted in at least one v ∈ V where ρ(v) ∈ {0, 1, 2}.

5 RESULTS
Out of the 579 pairs of regular queries with memory and data
graphs (Q,G) only 87 queries Q are simple on G (as shown in
Table 1). Because a large majority of the queries is not simple we
conclude that, for the given query pattern and data set, the topol-
ogy of a data graph and RQM are not, by themselves, determining
factors in the performance of query plans.

On average, k-register waveplans that are optimal with respect
to topology (but not necessarily optimal with respect to data)

simple non-simple total

# of queries 87 492 579
% of queries 15.03% 84.97% 100%

Table 1: The number- and percentage of simple and non-
simple queries

min max mean std

φ(Q) 1.0 29.08 2.42 5.30
Table 2: A breakdown of the values for φ(Q) overW

produce close to 2.5 times the number of edge walks to evaluate
a query as do those k-register waveplans that are optimal with
respect to topology and data.

Moreover, for the worst-case ratio φ(Q) observed inW, a plan
that is optimal with respect to topology performed just over 29
times more edge walks than a plan for the same query, on the
same graph, that is optimal with respect to topology and data.
A breakdown of the minimum, maximum, mean and standard
deviation of φ(Q) overW is presented in Table 2.

A caveat to the results obtained in this way is the following; the
evaluation procedure employs a time-out mechanism whereby
a query plan that has produced more edge walks than the best
performing (i.e. fewest edge walks producing) plan thus far for
the same query is terminated, even if it has not yet completed its
evaluation. Hence, the observed ratios are a lower-bound on the
actual performance ratios.

We have presented evidence of the orthogonality that exists
between optimising query plans for RQMs with respect to topol-
ogy and data, showing that such optimization involves novel-
and non-trivial challenges that go beyond finding an optimal
join order for edge labels. Ignoring this orthogonality leads to
significant decreases in performance, both on average and in
worst-case scenarios.

6 CONCLUDING REMARKS
In our experimental study we found that (1) a large majority of
queries is not simple, fromwhichwe can conclude that optimising
for topology and data are orthogonal problems; (2) on average,
plans that are optimal w.r.t. topology (but not necessarily w.r.t.
data) perform 2.5 times worse than plans that are optimal overall;
and, (3) plans that are optimal w.r.t.topology only can perform
up to 29 times worse than plans that are optimal overall

Looking ahead, a main direction of future work is to continue
our study of RQM query optimization in the context of a fully-
fledged property graph query engine.
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ABSTRACT
Demand forecasting, which aims to predict future product sales,
is one of the most important tasks in retail markets. With the
help of time series prediction models, the literature works either
perform the prediction of each individual product item sepa-
rately, or adopt a multivariate time series forecasting approach.
However, none of them leveraged the structural information of
product items, such as product brands and multi-level categories.
Moreover, various product items have significantly different tem-
poral characteristics, such as periodicity. In this short paper, we
propose a deep learning-based prediction model to find inherent
inter-dependencies and temporal characteristics among product
items for more accurate prediction. Evaluation on two real-world
datasets validates that our model can achieve much higher accu-
racy compared with state-of-the-art methods.

1 INTRODUCTION
Demand forecasting, which aims to predict future product sales,
is one of the most important tasks in retail markets. The accurate
prediction is important to avoid either insufficient or excess in-
ventory in product warehouses for a typical retail market which
typically sells at least thousands of product items.

Traditional works adopt either univariate time series models
or multivariate time series model. The univariate time series
models, such as the autoregressive integrated moving average
(ARIMA) [1], autoregression (AR) [1], moving average (MA) [1]
and autoregressive moving average (ARMA) [1], treat different
product items separately. ARIMA is rather time consuming espe-
cially when there are thousands of products or more. In addition,
ARIMA assumes that the current value of time series is a linear
combination of historical observations of itself and a random
noise. It is hard for ARIMA to capture non-linear relationships
and inter-dependencies of different product items. Some machine
learning models can also be applied to demand forecasting prob-
lems, such as linear regression [11] and linear support vector
regression (SVR) [2]. Nonetheless, these machine learning models
suffer from the similar weaknesses as ARIMA [15].

Multivariate time series models instead take into account the
inter-dependencies among product items. For example, as an
extension of ARIMA, vector autoregression (VAR) [9] can handle
multivariate time series. However, the model capacity of VAR
grows linearly over temporal window size and quadratically over
the number of variables, making it hard to model thousands of
product items with a long history. More recently, deep learn-
ing models have demonstrated outstanding performance in time
series forecasting problems. There are basic recurrent neural
network (RNN) [5] and its variants including long short-term
memory (LSTM) network [10] and gated recurrent unit (GRU) [4].

© 2020 Copyright held by the owner/author(s). Published in Proceedings of the
23rd International Conference on Extending Database Technology (EDBT), March
30-April 2, 2020, ISBN 978-3-89318-083-7 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

On this basis, a recent work LSTNet [7] combines convolutional
neural network (CNN) [8] and GRU to perform multivariate time
series forecasting. The LSTNet model uses a special recurrent-
skip component to capture very long-term periodic patterns.
However, it assumes that all variables in the multivariate time se-
ries have same periodicity, which is invalid for most real datasets.

Other than the aforementioned weaknesses, the existing pre-
diction methods ignore that product items have inherent struc-
tural information, e.g., the relations between product items and
brands, and the relations among various product items (which
may share the same multi-level categories). Our work is moti-
vated by a clustering algorithm [3] to segment product items
with help of a so-called product tree. This tree structure takes
product categories as internal nodes and product items as leaf
nodes. Beyond that, we extend the product tree by incorporat-
ing product brands and then construct a product graph structure.
This structure explicitly represents the structural information
of product items. Figure 1 illustrates an example of the graph
structure of four product items. We can easily find that the brand
Master Kong has three products, which belong to two different
subcategories. Consider that a customer prefers the brand Master
Kong and recently bought a product item Master Kong Jasmine
Tea. It is reasonable to infer that he will try another product item
Master Kong Black Tea, especially when Master Kong Black Tea
involves a sale promotion campaign.

Grapefruit 
Tea 1L

Jasmine 
Tea 500mL

Black 
Tea 1L

Black 
Tea 500mL

Black Tea

Master KongNongfu
Spring

Scented Tea

Drink

TeaCategory 
Tree

Product 
Items

Brand

Figure 1: An example of Product Graph Structure involv-
ing Categories, Items and Brands.

Without the product graph structure as prior, previous meth-
ods either treat all product items equally or have to implicitly
infer the inherent relationship but at the cost of accuracy loss. To
overcome the issues, with help of the graph structure, we propose
a new deep learning model to precisely predict product demands
in a multivariate time series forecasting manner, called Structural
Temporal Attention Network (STANet). This network incorpo-
rates both the product graph structure (see Figure 1) and temporal
characteristics of product items. In particular, we note that the
inter-dependencies of products and temporal dependencies (e.g.,
temporal periodicity) may change over time. Thus, we leverage
attention mechanism [12] to deal with these variations. In this
way, STANet assigns various weights with respect to different
inputs involving the variations. Based on graph attention net-
work (GAT) [13], GRU, and a special temporal attention, STANet
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performs better than existing methods. As a summary, we make
the following contributions.

• We give adequate analysis on two real datasets to vali-
date the motivation of our model, including the product
structural inter-dependencies and temporal dependencies.

• The proposed STANet leverages GAT to capture the prod-
uct structural inter-dependencies and GRU to capture tem-
poral patterns. Moreover, a temporal attention mechanism
is adopted on the hidden states of GRU to deal with diverse
temporal characteristics of product items. Thus, the two
attention mechanisms, i.e., GAT and temporal attention,
work together to comfortably learn the product structural
inter-dependencies and temporal dependencies.

• Evaluations on two real-world sales datasets show that
STANet achieves the best results compared with several
state-of-the-art methods.

The rest of this paper is organized as follows. Section 2 gives
the problem formulation, and Section3 describes the proposed
approach STANet. Then, Section 4 reports evaluation results on
two real-world datasets. Finally, Section 5 concludes the paper.

2 PROBLEM FORMULATION
We consider a data set of transaction records in a market. Each
transaction record contains 3 fields: the transaction timestamp,
item ID, and amount of sold items. Moreover, via the item ID,
we can find a list of product categories (in our dataset, each
product item is with a list of 4-level categories) and an associated
product brand. In this way, we augment each transaction record
by totally 8 (=3+4+1) fields. Given a certain time horizon (e.g.,
one day or one week), we pre-process the transaction records
into a multivariate time series of the volumes of sold product
items. In addition, for a certain category (or brand), we sum
the volumes of all product items belonging to the category (or
brand). In this way, we have the multivariate time series of the
volumes of product items, categories, and brands. Meanwhile, the
product graph structure is stored in an adjacency matrix, where
an element 1 indicates an edge between two nodes (such as a
product item and its brand), otherwise 0.

Formally, we denote the number of product items by Np and
the total number of items, brands and categories as N . Given
the augmented multivariate time series X = {x1,x2, . . . ,xT },
xt ∈ RN×1, t = 1, 2, . . . ,T and adjacency matrix M ∈ RN×N ,
we aim to predict future product sale volume xT+h where h is
the desirable horizon ahead of the current time stamp. More
specifically, to train a model using historical data, we use a time
window of size τ to split existing data into fixed length inputs,
where each input is expressed as {xt , . . . ,xt+τ−1} and xt+τ−1+h
is the label. The adjacency matrix M is fixed. In this way, the
demand forecasting problem is equivalent to learning a function
fM : RN×τ → RN×1. On the testing stage, we only need to
calculate evaluation metric for the Np real product items.

3 FRAMEWORK
In this section, we present the detail of the proposed model
STANet. Figure 2 gives the framework of STANet.

3.1 Graph Attention Component
For multivariate time series forecasting, one of the most cru-
cial tasks is to capture the inter-dependencies between differ-
ent variables. What’s more, as shown in Section 4.1, the inter-
dependencies may change over time. To explore inter-dependencies
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Figure 2: The framework of STANet.

from product graph structure, we need graph neural network. Fur-
thermore, to handle dynamic inter-dependencies, we choose at-
tention mechanism because it can assign various weights with re-
spect to different inputs. As a result, the first layer of STANet is a
graph attention layer [13]. Given the input time seriesX ∈ RN×τ

and adjacency matrix M ∈ RN×N , we use a multi-head graph
attention layer to process X time step by time step. Formally, this
operation at time step t is given by

hit = σ
©« 1
K

K∑
k=1

∑
j∈Ni

αki jW
k x jt

ª®¬ , (1)

where x jt is the sale of variable (product, or brand, or category) j
at time step t ,W k is a linear transformation to obtain sufficient
expressive power, Ni refers to all the adjacent nodes of variable i
given by M , K is the number of multi-head attention and σ is an
activation function. αki j is the coefficient of attention mechanism
computed by

αki j =
exp

(
LeakyReLU

(
fa

(
W k x it ,W

k x jt
)))

∑
ℓ∈Ni exp

(
LeakyReLU

(
fa

(
W k x it ,W

k x ℓt
))) , (2)

where fa is a scoring function to evaluate relevance, and in our
model it is a single-layer feedforward neural network.

Suppose W k ∈ RF×1, with aforementioned X and M , the
output of the graph attention component is XG ∈ RFN×τ .

3.2 Recurrent Component
When the variable-to-variable relationships have been processed,
XG is fed into the recurrent component to capture temporal
patterns. Here we use gated recurrent unit (GRU) [4] as the re-
current layer. Compared with vanilla recurrent neural networks
(RNN) [5], GRU is more capable to capture long-term patterns.
Suppose the hidden size of GRU isdr , then the output of recurrent
component is XR ∈ Rdr×τ .

3.3 Variable-Wise Temporal Attention
After the graph attention component and recurrent component,
the model has successfully captured inter-dependencies and basic
temporal patterns. Nonetheless, temporal patterns could also be
dynamic. Therefore, as a commonly used technique in RNN,
temporal attention can be added to the model as

α t+τ−1 = fa (Ht+τ−1, ht+τ−1) , (3)

where α t+τ−1 ∈ Rτ×1, fa is a scoring function and ht+τ−1 is the
last hidden state of RNN, Ht+τ−1 = [ht , . . . ,ht+τ−1] is a matrix
stacking the hidden states of RNN.

However, we will show in Section 4.1 that various products
may have rather different temporal characteristics such as peri-
odicity. Instead of using the same attention mechanism for all
product items, we propose a variable-wise temporal attention
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Table 1: Datasets statistics, where T is length of time step,
P is the time interval, Np , Nb , Nc are numbers of products,
brands, categories respectively, N = Np +Nb +Nc , and spar-
sity means proportion of zero value in the data.

Datasets T P Np Nb Nc N Sparsity
Dataset-1 572 1 day 1878 433 612 2923 53%
Dataset-2 833 1 day 1925 289 771 2985 39%

mechanism to compute the attention for each variable indepen-
dently as

α i
t+τ−1 = fa

(
H i
t+τ−1, h

i
t+τ−1

)
. (4)

Equation (4) is similar to Equation (3), except a superscript i =
1, 2, . . . ,dr , indicating that the attention mechanism is calculated
for a particular GRU hidden variable. In this way, our model could
deal with different temporal characteristics such as periodicity for
different variables. With the coefficients α i

t+τ−1, the weighted
context vector of ith hidden variable is calculated as

c it+τ−1 = H
i
t+τ−1α

i
t+τ−1 , (5)

whereH i
t+τ−1 ∈ R1×τ andα i

t+τ−1 ∈ Rτ×1. Let ct+τ−1 be context
vector of all hidden variables, then we can calculate the final
output for horizon h as

yt+τ−1+h =W [c t+τ−1 ;ht+τ−1] + b , (6)

hereW ∈ RN×2dr and b ∈ R1×1 are parameters of a fully con-
nected layer.

3.4 Autoregressive Component
Similar to LSTNet [7], we add an autoregressive component to
capture the local trend of product demands. This component is
a linear bypass that predicts future demands directly from the
input data to address the scale problem. This linear bypass will
fit all products’ historical data with a single linear layer.

The final prediction of STANet is then obtained by integrating
the outputs of the neural network part and the autoregressive
component using an automatically learned weight.

4 EXPERIMENTS AND EVALUATIONS
We first analyze two used real-world datasets to motivate STANet
and then compare STANet against 6 counterparts.

4.1 Datasets and Analysis
We use two real-world datasets collected from two medium size
stores of a chain retail in Shandong Province, China. Table 1
summarizes the statistics. As shown in this table, the sparsity of
dataset-1 is greater than 50%, which makes the forecasting task
rather challenging. Both datasets are split into training set (70%),
validation set (15%) and testing set (15%) in chronological order.
To explore the inter-dependencies and temporal characteristics
of datasets, we give following analysis.

We consider two variables have inter-dependencies if the his-
tory of one variable can help forecasting another. Assuming two
univariate time series x = x1, x2, . . . , xT , y = y1,y2, . . . ,yT and
a specific time lagm, we model y as a regression of itself and x :

yt = a0 + a1yt−1 + . . . + amyt−m + b1xt−1 + . . . + bmxt−m . (7)

If y gets the best fitting when all bi = 0 for i = 1, . . . ,m, we
believe that x cannot help forecasting y. To test whether x can

help forecast y, we use the Granger causality test [6], and for
each lagm the result maybe differ. We use

GRx ,y =
number of m where x helps f orecast y

total number of m
(8)

to represent importance of x to y, GRx ,y ∈ [0, 1]. We select
one category and two concrete products to verify the inter-
dependencies in Figure 3.
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Figure 3: GR among three variables, whereT .5 is the prod-
uct item “Black Tea 500mL”, T1 is the item “Black Tea 1L”
and T is the category “black tea”. Time range is split into
two parts. (a) Mutual GR of three pairs. (b) Change of de-
pendencies over time.

From Figure 3(a), we can find that GRT ,T .5 and GRT ,T 1 are
quite darker while GRT .5,T and GRT 1,T are almost white. This
figure means that the historical data of the category “black tea”
helps forecasting the demand of its children and instead the
children’s history data is trivial to the forecast of their parent
category. GRT .5,T 1 and GRT 1,T .5 involve the different degree of
darkness. It means that GRT .5,T 1 can improve the forecast of
GRT 1,T .5 and vice versa. However, the improvement degree is
not identical. Figure 3(b) shows that the inter-dependencies is
dynamically changing over time.

To verify that various variables have different temporal char-
acteristics, we use Fast Fourier Transform (FFT) to plot the peri-
odogram [14] for the category “black tea” and its two children
product items in Figure 4. We can easily find that they have rather
different periodicity at the rectangles. Thus, we cannot simply
apply the same attention onto all variables.
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Figure 4: Periodogram of one category and two products.
The rectangles highlight points for periodicity candidates.

4.2 Methods and Metric
We compare our model with five other methods, and their vari-
ants. For AR, Ridge and LSVR, we train models for each product
separately, while neural network models take multivariate data
as input directly.

• AR [1]: A classic univariate time series modeling method.
• Ridge [11]: Linear regression with ℓ2 regularization.
• LSVR [2]: Linear SVR, another machine leaning method

for regression.
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Table 2: RSE of six methods and their variants on two
datasets: boldface indicates the best result on each dataset.

Methods Dataset-1 Dataset-2
AR [1] 0.8016 0.5313
Ridge [11] 0.7981 0.5628
LSVR [2] 3.2446 7.8246
GRU [4] 0.8535 0.9067
LSTNet [7] 0.7907 0.7570
LSTNet-IAttn 0.8230 0.5399
STANet 0.7783 0.5233
STANet-oStructure 0.8907 0.6179
STANet-oCategory 0.8256 0.5569
STANet-oBrand 0.8640 0.5471
STANet-oAR 0.8327 0.8850

• GRU [4]: Recurrent neural network using GRU cell.
• LSTNet [7]: A state-of-the-art model composed of CNN,

GRU and highway network.
• LSTNet-IAttn: LSTNet improved by the variable-wise tem-

poral attention.
• STANet-oStructure: STANet without structural informa-

tion.
• STANet-oCategory: STANet without category informa-

tion.
• STANet-oBrand: STANet without brand information.
• STANet-oAR: STANet without autoregressive component.

We measure the forecasting performance by root relative
squared error (RSE).

RSE =

√∑N
i=1

∑t1
t=t0

(
yi ,t − ŷi ,t

)2√∑N
i=1

∑t1
t=t0

(
yi ,t −mean(Y )

)2 , (9)

where y and ŷ are ground truth and predicted value respectively,
t0 and t1 are start and end time of testing set, and Y ∈ RN×(t1−t0)

represents the matrix of all labels y in testing set. RSE can be
regarded as RMSE divided by standard deviation of testing set,
so scale differences between different datasets can be ignored.
Lower RSE generally means better forecasting performance.

4.3 Results of Different Methods
Table 2 provides the RSE of aforementioned methods on two
datasets for horizon = 1. Our proposed model STANet outper-
forms others on both datasets. It is because STANet leverages
the attention mechanism and inherent product structural infor-
mation to precisely capture structural and temporal dependen-
cies. LSVR performs worst on both datasets. Vanilla GRU suffers
from worse performance than univariate models, because not
every product has inter-dependency with each other and simply
adding irrelevant data would harm the forecasting task. LSTNet
can achieve lower errors than AR and Ridge on dataset-1, but not
on dataset-2. It is mainly because the product items in dataset-1
exhibit much stronger structural inter-dependencies than those
in dataset-2. For most methods except LSVR and GRU, the RSE
on dataset-2 is much lower than that on dataset-1. It is due to the
fact that dataset-1 contains much sparser data than dataset-2.

In terms of the ablation experiments of STANet, we can find
that the structural information and the AR component play the
major contribution in the forecasting task. For example, the result
of STANet-oStructure indicates that the removal of structural
information could greatly harm the forecasting accuracy. Incor-
porating the brand and category information will benefit the

forecast and their corresponding contribution heavily depends
upon the datasets. Both parts work together to the best perfor-
mance. Also the results of STANet-oAR without the AR compo-
nent indicate that its RSE is much higher than the original STANet
especially on dataset-2. This is because the AR component can
more comfortably capture the local trend in dataset-2 with a
lower sparsity than the one in dataset-1. Finally, by comparing
the results of LSTNet and LSTNet-IAttn, we find that LSTNet-
IAttn by incorporating the variable-wise attention mechanism
can greatly improve the forecast performance on dataset-2.

5 CONCLUSIONS
In this paper, we propose a novel deep learning-based forecasting
model STANet in a multivariate time series manner. The model
integrates the four components of GAT, GRU, variable-wise at-
tention mechanism and auto-regression to precisely capture the
inherent product structural information and temporal periodicity
for more accurate prediction. Our analytic result on two real
datasets demonstrates that the two real datasets exhibit strong
product structural information and temporal periodicity. The
evaluation result on the two datasets validates that STANet out-
performs 6 counterparts and 4 variants of STANet. As the future
work, we plan to further improve STANet and provide more
experimental results on both online and offline transaction data.
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ABSTRACT
We present a dimension indexing based algorithm for skyline

computation. We first show that the dominance tests required

to determine a skyline tuple can be sufficiently bounded to a

subset of the current skyline, and then propose the algorithm

SDI, of which the time complexity is better than the best known

algorithm in high-dimensionality domains with reasonably low

cardinality. Our performance evaluation on synthetic and real

datasets shows that SDI outperforms the state-of-the-art skyline

algorithm in both low-dimensionality and high-dimensionality

domains.

1 INTRODUCTION
The skyline computation problem aims at retrieving the complete

set of dominating tuples frommultidimensional data, with respect

to a monotonic preference order on all dimensions. Over several

past decades, many algorithms have been developed, which can

be categorized into sorting based [1, 4, 6, 7, 14] and partitioning

based [2–4, 8–13, 15]. Most the existing skyline algorithms have

been designed for low-dimensionality domains because of the

quadratic issue raised by the worst case time complexity.

In this paper, we present a dimension indexing based skyline

algorithm SDI (Scalable Dimension Indexing) that is efficient in

high-dimensionality domains as well as in low-dimensionality

domains. We show that by indexing all dimensions, it is sufficient

to test a tuple only with the existing skyline tuples on an arbitrary

dimension instead of with the complete set of skyline tuples. We

also show that any skyline tuple can be used as a stop line that
traverses the indexed dimensions to stop the computation, which

is much performant than the calculation of stop point mentioned

in SaLSa [1]. Furthermore, SDI adopts the weak incomparability
checking to take the incomparability between tuples into account,

which is the most important feature of the state-of-the-art skyline

algorithm BSkyTree [10]. Our analysis shows that the worst time

complexity of SDI is better than the best known one [13] in high-

dimensionality domains with reasonably low cardinality, and our

performance evaluation shows that SDI outperforms BSkyTree
on both low and high dimensional data, but less efficient than

BSkyTree on medium dimensional data.

The rest of this paper is organized as follows. Section 2 presents

the SDI algorithm with preliminary definitions. We show our

theoretical analysis of the computational complexity of SDI in
Section 3. Section 4 reports the performance evaluation of SDI
on both synthetic and real datasets. We conclude in Section 5.

2 THE SDI APPROACH
Let t be a d-dimensional tuple, we denote t[i] the dimension
value of t on the dimension i , where 1 ≤ i ≤ d . We define the

© 2020 Copyright held by the owner/author(s). Published in Proceedings of the

22nd International Conference on Extending Database Technology (EDBT), March

30-April 2, 2020, ISBN 978-3-89318-083-7 on OpenProceedings.org.
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preference order, denoted by ≺, as a total order that covers each

dimension such that given two tuples t and u, t[i] is better than
u[i] if t[i] ≺ u[i]; t[i] is equal tou[i] if t[i] = u[i];u[i] is not worse
than t[i] if (t[i] ≺ u[i])∨(t[i] = u[i]) holds, denoted by t[i] ⪯ u[i].
We say that a tuple t dominates a tuple u, denoted by t ≺ u, if and
only if for each dimension i , we have t[i] ⪯ u[i], and for at least

one dimension k we have t[k] ≺ u[k]. We denote t ⊀ u that t
does not dominateu, and t ≁ u that t andu are incomparable, that
is, (t ⊀ u)∧(u ⊀ t). Considering ad-dimensional databaseD and

a preference order ≺ on D, a tuple t ∈ D is a skyline tuple if and
only if ∄u ∈ D such that u ≺ t . The skyline of D is the complete

set S of skyline tuples such that S = {t ∈ D | ∄u ∈ D,u ≺ t}.
We have s ≁ t for any two skyline tuples s and t .

Given a database, the dimension index, denoted I, is the set of
d ordered lists on a preference order ≺, in which each list Ii ∈ I is

a dimensional subindex that contains all dimension values sorted

with respect to ≺.
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Figure 1: A dimension index example.

Let us consider the 5 tuples {a, e,д,h, i} presented in Figure

1 that shows a dimension index example consisting of 10 tuples

and 6 subindexes, where the dashed lines link the tuple among

the subindexes. Obviously, a is a skyline tuple, which can be

independently concluded from I1, I2, and I6 because no tuple

can dominate a; if we regard only I4, h is immediately a skyline

tuple and in order to determine whether i , the second tuple in

this subindex, is a skyline tuple, it is enough to compare i with h
because any tuple x located after the position of i in I4 cannot
dominate i since we have i[4] ≺ x[4] in I4. Nevertheless, if we
focus on I3, we see that h ≺ i and i ≺ h must be first tested in

order to decide whether h or/and i shall be skyline tuple(s) since
h[3] = i[3] (indeed we have h ≺ i and i ⊀ h). That is also the

case in I6, where 3 tuples contain the same dimension value 0.15,

so all these 3 tuples must be first locally compared in order to

filter the potential skyline tuples (in our example, e). We call such

tuples as h in I3 and e in I6 the local skyline tuple. It is easy to

see that any tuple is a local skyline tuple on a given dimension if

there are no identical dimension values.

Theorem 1. Let I be the dimension index of a database D and
Ii ∈ I be an arbitrary subindex of the dimension i . Then, a local
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skyline tuple t is a skyline tuple if and only if (1) there is no tuple
u such that u[i] ≺ t[i], or (2) for any skyline tuple s such that
s[i] ≺ t[i], we have s ⊀ t .

Proof. Let t be a local skyline tuple. If t is the first tuple in
Ii , then t is a skyline tuple because no tuple is better than t .
Otherwise, let s be a skyline tuple such that s[i] ≺ t[i], then if

s ≺ t , t cannot be a skyline tuple since s dominates t ; if s ⊀ t ,
then there exists at least on dimension k , i such that t[k] ≺ s[k]
so no tuple dominated by s dominates t . Hence, for each skyline

tuple s such that s[i] ≺ t[i], if we have s ⊀ t , then no tuple in the

database dominates t , thus, t is a skyline tuple. If t[i] ≺ s[i], then
s ⊀ t so it is meaningless to compare t with s . □

Theorem 1 allows to determine whether a tuple is a skyline

tuple only with a subset of the existing skyline. Furthermore, once

the dimension index has been constructed, Theorem 1 allows to

switch among subindexes so that the best one containing the

least of known skyline tuples can always be selected. Indeed, let p
be a skyline tuple, then any tuple t such that p ≺ t can be pruned

from the database in order to reduce the computation time. In this

paper, we propose the notion of stop line based on the dimension

index of which the effectiveness can be guaranteed.

Theorem 2. Let I be a dimension index of a d-dimensional
database D and p ∈ D be an arbitrary skyline tuple. Let oi (p)
denote the largest offset of any tuple x such that x[i] = p[i] in the
dimensional subindex Ii ∈ I, if all offsets oi (p), 1 ≤ i ≤ d , have
been reached by following a top-down traversal on all dimensions,
then the complete set of skyline tuples has been identified and the
computation can be terminated.

Proof. Letp and t ∈ D\p be two skyline tuples inD, we have:

(1) t ≁ p; or (2) t and p have identical values on all dimensions.

We denote Lp =
⋃

1≤i≤d oi (p) the set of all offsets oi (p). In the

first case, t ≁ p ⇒ ∃k such that p[k] ≺ t[k], i.e. ok (p) < ok (t),
hence, if the index traversal reaches all offsets in Lp , t must have

been identified at least in the dimension k . In the second case, we

have p[i] = t[i] on any dimension i . In both cases, if all offsets in

Lp have been reached, all skyline tuples have been identified. □

We call the set Lp =
⋃

1≤i≤d oi (p) a stop line that can safely

terminate the skyline computation of SDI. In theoretical, any

skyline tuple can be selected as a stop line, however, different

stop lines behave differently in pruning irrelevant tuples. We

propose therefore a functionminstop to find the best stop line

L∗p , defined as:

L∗p =minstop (p) = argmin

p
(max{oi (p)},

d∑
i=1

oi (p)),

where d is the dimensionality of the data. The functionminstop
sorts first by the maximum offset, then by the sum of offsets in

all dimensions, so the skyline tuple having the minimized value

is the best stop line. The best stop line Lp can be dynamically

maintained by keeping minstop (p) < minstop (t) for any two

skyline tuples p and t .
The incomparability checking is taken into account while a

dominance test is proceeding. In our approach, we consider that

a d-dimensional dominance test runs in O(d) time, so any tuple

comparison better than O(d) time shall improve the efficiency

of SDI. Indeed, to efficiently determine s ≁ t in stead of testing

s ≺ t in the case of s ⊀ t is an essential time-costly task while

comparing t with all existing skyline tuples in a dimensional

subindex. In this paper, we propose a weak checking mechanism

of the incomparability between a skyline tuple s and a testing

tuple t in a dimensional subindex Ii as following.

Theorem 3. Let I be a dimension index and s be a skyline tuple
present in a dimensional subindex Ii ∈ I. Given a tuple t such
that s[i] ≺ t[i], we sufficiently have s ≁ t ifmax(s) > max(t), or
min(s) > min(t), or sum(s) > sum(t).

Proof. The sets Ls and Lp (see the proof of Theorem 2 for the

definition) can be considered as the coordinates of two curves in a

two-dimensional space. In Euclidean geometry,max(s) > max(t),
ormin(s) > min(t), or sum(s) > sum(t) are sufficient conditions

for the existence of at least one intersection of the curves formed

by s and t since we have s[i] ≺ t[i], i.e. oi (s) < oi (t), that is,
according to the definition of dominance, s ≁ t . □

Note that the maximal value, the minimal value, and the sum

of a tuple can be pre-calculated while constructing the dimension

index, so Theorem 3 can efficiently determine s ≁ t . However,
Theorem 3 shows in fact 3 sufficient conditions for s ≁ t , hence
a dominance test is necessary to determine s ≁ t in the cases

that are not covered by Theorem 3, for which we call Theorem 3

a weak incomparability checking. The sketch of SDI is listed in

Algorithm 1.

Algorithm 1: SDI
Input: Dimension index I

Output: Skyline S
1 while true do
2 Ibest ← BestSubindex (I)
3 while T ← NextLocalSkyl ine(Ibest ) do
4 if T = null then
5 return S

6 foreach t ∈ T and t < S do
7 if Sbest ⊀ t then
8 Sbest ← Sbest ∪ t
9 S ← S ∪ t

10 if Found new skyline tuples then
11 Update StopLine
12 break

13 if StopLine is reached then
14 return S

Extensions. (1) SDI computes the skyline in the categorical

domains as long as the preference order ≺ can be defined; (2) SDI
can be immediately adapted to subspace skyline computation by

skipping unrelated dimensions; (3) SDI can be extended to the

skyline maintenance by dynamically constructing the dimension

index; (4) SDI can handle the top-k skyline query by finding the

skyline tuples having the best positions in the dimension index.

3 THEORETICAL ANALYSIS
We denote d the dimensionality and N the cardinality of the

data, andM the size of the skyline. We discuss without duplicate

values on any dimension, but if K duplicate values are present in

a dimensional subindex, O(dK2) shall be considered in assuming

that BNL is applied to compute local skylines. Note that we

consider O(d) time for a d-dimensional dominance test, which

implies the tests of s ≺ t and t ≺ s , hence, the dominance test

460



0 2x104 4x104 6x104 8x104 105

Cardinality

T
im

e

SDI

Sheng & Tao

0 2x105 4x105 6x105 8x105 106

Cardinality

T
im

e

SDI

Sheng & Tao

0 2x108 4x108 6x108 8x108 109

Cardinality

T
im

e

SDI

Sheng & Tao

0 109 2x109 3x109 4x109 5x109

Cardinality

T
im

e

SDI

Sheng & Tao

(a) d = 6, N = 1 × 105. (b) d = 6, N = 1 × 106. (c) d = 8, N = 1 × 109. (d) d = 8, N = 5 × 109.

Figure 2: Numerical simulation for complexity study in the worst case.

within SDI is considered in O(d/2) time since s ≺ t is sufficient.

We also note that the construction of dimension index requires

O(dN logN ) time with respect to general O(N logN ) sorting
algorithms on d dimensions, and we do not consider the two

heuristics of stop line and incomparability checking.

The average time complexity of SDI is measured onM skyline

tuples uniformly distributed in d dimensional subindexes.

Theorem 4. Considering M skyline tuples, SDI computes the
skyline of a d-dimensional database with the cardinality N in

O(dN logN +
M(2N −M − d)

4

).

Proof. WithM skyline tuples uniformly distributed on each

dimension, (N − M)/d non skyline tuples must be compared

withM/d skyline tuples. For each dimension, in the worst case,

(M/d)(M/d−1)/2 dominance tests are required by skyline tuples,

((N −M)/d)(M/d) dominance tests are required by non skyline

tuples, and each dominance test cost O(d/2) time. Therefore, the

average time complexity of SDI is O(((M/d)(M/d − 1)/2+ ((N −
M)/d)(M/d))(d/2)d), that is the result shown in Theorem 4. □

Theorem 5. In the worst case, all N tuples in a d-dimensional
database are skyline tuples. SDI computes the skyline in

O(dN logN +
N 2 − dN

4

).

Proof. The proof is immediate if we replaceM in Theorem 4

by N . □

Comparing with the best known worst-case time complexity

O(N log
max (1,d−2) N ) proposed by Sheng and Tao [13], given

d > 2, the following equation must be resolved:

N log
d−2 N > dN logN +

N 2 − dN

4

.

The above equation belongs to transcendental equations that

have no closed-form solutions. Our numerical simulation results

presented in Figure 2 shows that while d = 6, SDI is better than
the approach of Sheng and Tao for N < 5 × 10

5
; and while

d = 8, the compared approach beats SDI only if N > 4× 109. SDI
performs better in high-dimensionality domains with respect to

a reasonable data cardinality.

4 PERFORMANCE EVALUATION
We evaluate the performance of SDI in comparisonwithBSkyTree
implemented in SkyBench

1
[5] on both synthetic datasets and real

world datasets. The synthetic datasets are generated by Skyline

Benchmark Data Generator
2
, including uniform independent

1
https://github.com/sean-chester/SkyBench

2
http://pgfoundry.org/projects/randdataset

(UI), correlated (CO), and anti-correlate (AC) data; the real world
datasets include NBA, HOUSE, and WEATHER [5]. We implemented

SDI3 in C++ standard and all executables are compiled by LLVM
Clang with -O3 option. All experiments have been conducted on

an Intel Core i5 2.8 GHz processor with 16GB 1600 MHz DDR3

RAM, running macOS 10.15.1 operating system. We note that all

results reported are the average performance over 5 iterations.

First, the effects of (1) dimensionality and (2) cardinality
of data have been evaluated. For (1), the cardinality is fixed to

100K and for (2), the dimensionality of data is fixed to 24. Due to

the space limitation, only overall elapsed time, that is, the sum

of data loading time, data structure construction time, and query

time, has been reported in this paper. Indeed, we consider that for

single-round skyline queries, to focus on total processing time is

much important than to focus only on the query time without

looking at data structure building time.

Dataset d = 2 d = 4 d = 6 d = 8 d = 10 d = 12

UI 7 259 2,597 9,960 25,737 46,301

CO 1 5 31 120 449 790

AC 50 4,100 26,713 56,118 75,668 87,857

Dataset d = 14 d = 16 d = 18 d = 20 d = 22 d = 24

UI 67,676 82,286 92,011 96,832 99,059 99,662

CO 1,439 2,941 5,471 8,936 14,498 16,948

AC 94,053 96,956 98,413 99,205 99,570 99,760

Table 1: Skyline size of synthetic datasets (N = 100K).

Table 1 lists the skyline size of synthetic datasets with the

cardinality of 100K. We see that the higher the dimensionality

of data, the closer to the worst case is likely to be. For instance,

the skyline consists of 92% of tuples in UI data while d = 18,

however while d = 14 of AC data, the skyline rate reaches already
94%. Figure 3 shows the effect of dimensionality on SDI where
the cardinality N = 100K is reasonable in the most of use cases.

SDI outperforms BSkyTree in both low-dimensionality and high-

dimensionality domains on UI (d ≤ 10 or d > 20) and AC data

(d ≤ 4 or d > 20), but is less efficient than BSkyTree in other

dimensionalities. In fact, we note that the stop line takes no

advantage in AC data because of the anti-correlated characteristics
of data, however SDI systematically outperforms BSkyTree on
the CO data because the stop line can efficiently determined with

respect to the strong correlation in data. Figure 4 shows the effect

of cardinality on SDI with the highest dimensionality in our

experiments. In high-dimensionality domains, SDI outperforms

BSkyTree in most cases except in AC data. Again, we confirm that

the stop line does not show any advantage in high-dimensionality

3
https://github.com/skyline-sdi/sdi-bench
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(a) The UI dataset. (b) The AC dataset. (c) The CO dataset.

Figure 3: Performance evaluation on the effect of dimensionality (N = 100K).
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Figure 4: Performance evaluation on the effect of cardinality (d = 24).

and high-cardinality AC data. Table 2 lists the pruned tuples by

the stop line in different synthetic datasets while N = 100K, that

are relevant to our experimental results.

Dataset d = 2 d = 4 d = 6 d = 8 d = 10 d = 12

UI 99,849 88,011 63,260 30,576 12,381 8,110

CO 99,997 97,773 98,832 97,656 96,526 92,066

AC 36,731 5,022 2,227 240 30 27

Dataset d = 14 d = 16 d = 18 d = 20 d = 22 d = 24

UI 3,794 297 933 35 3 8

CO 87,901 80,587 73,837 51,347 39,742 48,239

AC 13 25 0 10 0 0

Table 2: Pruned tuples by the stop line (N = 100K).

Table 3 shows the performance comparaison between SDI and
BSkyTree on real datasets. SDI outperforms BSkyTree on NBA and
HOUSE datasets but is much slower than BSkyTree on the WEATHER
dataset because the huge number of duplicate dimension values

in WEATHER makes O(dK2) (discussed in Section 3) an important

factor.

Dataset d N |S | SDI BSkyTree

HOUSE 6 127,931 5,774 306 ms 839 ms

NBA 8 17,264 1,796 45 ms 155 ms

WEATHER 15 566,268 26,713 18,680 ms 11,641 ms

Table 3: Performance evaluation on real datasets.

5 CONCLUSION
In this paper, we presented an efficient Skyline computation

algorithm.We proved that in multidimensional databases, skyline

computation can be conducted on an arbitrary dimensional index

which is constructed with respect to a predefined total order

that determines the skyline. We further showed that any skyline

tuple can be used to stop the computation process by outputting

the complete skyline. Our experimental evaluation shows that

SDI outperforms the state-of-the-art skyline algorithm in both

low-dimensionality and high-dimensionality domains.
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ABSTRACT
Transformer architectures have proven to be very effective and
provide state-of-the-art results in many natural language tasks.
The attention-based architecture in combinationwith pre-training
on large amounts of text lead to the recent breakthrough and a
variety of slightly different implementations.

In this paper we analyze how well four of the most recent
attention-based transformer architectures (BERT[6], XLNet[33],
RoBERTa[17] and DistilBERT [23]) perform on the task of entity
matching - a crucial part of data integration. Entity matching
(EM) is the task of finding data instances that refer to the same
real-world entity. It is a challenging task if the data instances
consist of long textual data or if the data instances are "dirty" due
to misplaced values.

To evaluate the capability of transformer architectures and
transfer-learning on the task of EM, we empirically compare
the four approaches on inherently difficult data sets. We show
that transformer architectures outperform classical deep learning
methods in EM[7, 20] by an average margin of 27.5%.

1 INTRODUCTION
Entity Matching (EM) is the task of determining if two data
instances refer to the same real-world object. As a simple example
consider the entries in Table 1 and Table 2. We need to match
two entities based on attributes like names, addresses or product
information while dealing with various formats and differing,
missing or wrong values. Given this uncertainty, the challenge
of entity matching is to identify which existing entity pairs have
the highest probability of being a match.

The task of entity matching is crucial especially for the process
of data integration and data cleaning [4]. Due to the large amount
of data produced every day, the challenge of data integration and
therefore entity matching becomes more urgent than ever for
corporations and large institutions with data stemming from
multiple sources [27].

While early solutions often relied on rule-based approaches
and hand-crafted heuristics, entity matching by now is mainly
based on machine learning (ML) approaches. Large projects
like Magellan[14] provide tools and libraries for the whole EM-
pipeline with good results on structured and semi-structured
data.

However, what if the data consists of large textual instances,
such as product descriptions, posts on Reddit, Quora, Stackover-
flow, or company descriptions?What if the data has structure, but
attributes are dirty, e.g. the attribute "name" consists of a given
name and a last name, while "given name" is empty? In those
cases, traditional EM approaches provide only mediocre results

© 2020 Copyright held by the owner/author(s). Published in Proceedings of the
23rd International Conference on Extending Database Technology (EDBT), March
30-April 2, 2020, ISBN 978-3-89318-083-7 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

or require large efforts in hand-crafted features [2, 13]. There-
fore and due to the recent advances of deep learning in natural
language processing (NLP), several papers suggest end-to-end
deep learning architectures [7, 20, 34] for EM.

Table 1: DatabaseA - structured product information,with
description being a text-blob.

Title Brand Description Price

iPhone XS Apple
The brand new iPhone

899.99now available in white,
red and silver.

ZenFone 4 Pro Asus

Thin and light, yet incredibly

530.00
strong, the ZenFone 4
Pro (ZS551KL) features
an expansive 5.5-inch,
Full HD AMOLED display

Table 2: Database B - textual product information.

Product description

Apple’s new iPhone XS - a masterpiece of design. Available
now with 64 or 128GB storage and in
three colors: white, silver and red
A smart device for a decent price - Nokia’s Pure View 9,
powered by a pure android, is the gift you need for Christmas.
With it’s incredible robust design and a battery duration
of two days under heavy load, you will love it from day one.

The above-mentioned deep learning architectures for EM
apply different modern NLP techniques: [7] is based on a bi-
directional LSTM and word embeddings, [20] uses an attention
mechanism on top of an LSTM and [34] introduces the power of
pre-trained models.

While these deep learning approaches already lead to massive
performance improvements on difficult data sets [20], none of
them use modern transformer architectures for EM. Transformer
architectures, largely based on the influential "Attention is All
You Need" [30] paper, have proven to be effective on a large va-
riety of NLP tasks. Especially in combination with pre-training
on large text corpora, they almost always beat earlier deep learn-
ing approaches based on recurrent neural networks (RNNs) on
popular NLP benchmarks [6].

The contributions of our paper are as follows:
• To the best of our knowledge, we are the first to compare
four of the most recent transformer architectures, namely
BERT[6], XLNet[33], DistilBERT[23] and RoBERTa[17] on
the task of entity matching. We run experiments with all
of them on five different EM data sets. Since the authors
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of [20] have shown that most of the traditional, structured
EM data sets are not challenging for advanced deep learn-
ing architectures anymore, we focus on "dirty" data sets
and data sets with large textual data instances.

• We compare the results of modern transformer architec-
tures with more traditional deep learning architectures
[7, 20, 34]. Our experiments demonstrate that all trans-
former architectures clearly outperform classical deep
learning methods in EM. On challenging datasets, the best
transformer outperforms DeepMatcher[20] by an average
margin of 27.5%.

• Finally, we analyze how much training is required to
achieve good results on the EM tasks with heavily pre-
trained transformers. To elaborate on this, we compare
the results before fine tuning on the data set (zero-shot
learning) and after each epoch. The results indicate that
transformers reach already good results after only one
epoch of training, while after 2-3 epochs they converge
towards their optimum solution.

The paper is organized as follows. Section 2 reviews the re-
lated work on entity matching and gives a brief overview on
transformer technologies that appear to be a valid technology for
entity matching. Section 3 provides the background knowledge
on attention-learning and the transformer architecture. Section 4
describes the four architectures and their pre-training algorithms
in detail and explains the intuition behind each approach. In Sec-
tion 5 we compare the four architectures based on their results
on five selected EM data sets. Finally, we present our conclusion
and future work in Section 6.

2 RELATEDWORK
We can divide the work related to this paper roughly in two
categories, namely entity matching and transformer architectures.
We will discuss each of them in more detail.

2.1 Entity Matching
The entity matching process as a whole has been tackled over
the years by many works [4, 7, 13, 14, 20], with [4] providing an
excellent overview over the major challenges of entity matching.
Recent projects likeMagellan[14] focus not only on research, but
provide a set of practical tools to solve entity matching in data
integration processes. For a long time the field of entity matching
focused on rather structured data records [8], with each attribute
of the data records containing only relatively short amounts of
text.

To calculate the similarity of such textual attributes, a variety
of similarity functions has been developed [4]. Many of them
focus on specific data structures as e.g. the Jaro-Winkler distance
[11], known to work well on person names. The similarity val-
ues of such functions where then used as features in a binary
classification problem (match/no match)[4].

With the emergence of deep learning in NLP, several papers
[7, 20] started to apply new techniques such as word embeddings
and attention to the task of entity matching. The advantages of
such deep learning models is that they remove the need for hand-
crafted features. While recent work [34] introduced the power
of pre-training for entity matching, we are to our knowledge the
first paper approaching entity matching with modern transformer
architectures.

2.2 Transformer Architectures
Based on the well-known paper "Attention is all you need"[30],
transformers - a special type of neural networks - started by mid
2017 to become one of the most interesting techniques for NLP.
BERT [6], combining the transformer architecture with massive
unsupervised pre-training was the first paper to achieve state-
of-the-art results in a large number of NLP tasks. Succeeding
works by [16, 17, 33] achieved even higher results on said NLP
benchmarks.

While transformers undeniably are one of the largest achieve-
ments in the 2018/2019 NLP landscape, they also started a con-
troversy about the more data/larger models/more computational
power mentality. Therefore, in addition to increasing model sizes
like the authors of [26] did, research started also to develop more
lean transformer models, which can be used on mobile devices
or non-GPU servers at inference time [23].

Transformers have traditionally been used for NLP-tasks. How-
ever, we will apply this technology for entity matching - an im-
portant aspect of data integration.

3 ATTENTION AND TRANSFORMERS
In this section we provide detailed background information on a
special type of neural networks called transformers. We will use
this technology later on for entity matching.

The field of NLP has been dominated for a long time by archi-
tectures using recurrent neural networks (RNNs) at its core. The
most popular approaches for machine translations were so-called
seq2seq[29] or encoder/decoder[3] architectures, which basically
consist of two RNNs, one for the encoder, and one for the de-
coder. Incrementally improved versions of these architectures
are used in most translation software packages. For instance,
Google Translate started using such models in late 2016. Even
though the RNN architecture seems to be well-suited for build-
ing representations of sequential text data, several issues were
discovered:

• The so-called bottleneck problem[1] makes it hard to trans-
fer knowledge about the source sentence to the target
sentence. The bottleneck is the context vector, which is
basically all the decoder network gets as an input. By con-
ditioning only on this single vector, the decoder then has
to produce an output sequence of length N . It is intuitive
to understand that the longer the sequence, the harder it
is to get all necessary information of the source sentence
in one single vector.

• An RNN is, due to its sequential nature, harder to paral-
lelize and therefore takes longer to train than a simple
feed forward network.

• Long range dependencies are hard to learn with RNNs,
even though LSTMs and GRU (gate recurrent unit) archi-
tectures theoretically allow it. The authors of [30] describe
this effect by the path length between two tokens (e.g. two
words in a sentence), which is the number of steps the
signal has to flow through the network. The longer the
path, the harder to learn a dependency.

3.1 Attention
To overcome the bottleneck problem, [1] and [18] came up with
a new technique called attention. Let us first elaborate on the
idea of self-attention, to describe the intuition: A word can be
represented as a weighted combination of its neighborhood. As
an example, take the word "it" in Figure 1. For the human reader it
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is intuitive that the word it in this sentence can be represented by
the words The and animal. By applying an attention mechanism,
we can train a language model to pay attention to relevant words
in its neighborhood in a similar way.

The

animal

did

not

cross

the

street

because

it

was

too

tired

The

animal

did

not

cross

the

street

because

it

was

too

tired

..

Figure 1: Self-Attention: The token "it" (see right side) can
refer to the tokens "The", "animal", "street" etc. (see left
side).

A sightly different version of attention was used by the first
seq2seq model with attention mechanism[1]. This approach ap-
plied attention between the target sentence and the source sen-
tence. So instead of only transferring knowledge between encoder
and decoder via one context vector at the end of the encoding,
the decoder has access to all the hidden states of the encoder.

Assume that wewant to translate the English sentence "The cat
is sleeping" to the German counterpart "Die Katze schläft", as in
Figure 2. It is helpful for the decoder to only consider information
of the encoder’s hidden state for is and sleeping, when the decoder
is trying to produce the word schläft. By applying attention, the
decoder will learn to focus on the important hidden states of the
encoder at each given time step.

3.2 The Transformer
In 2018, Vaswani et al. published a paper with a more radical ap-
proach [30]: an architecture that completely relinquishes RNNs
with the idea to build a model with attention only. The core of this
paper, the so-called transformer, can be found in Figure 3. While
the transformer still retains the classical encoder/decoder struc-
ture, it replaced the RNN by a so-called Multi-Head-Attention
sub-layer. There are three of those attention sub-layers in each
of the N stacked layers. The first two Multi-Head Attention sub-
layers implement the self-attention mechanism. During the train-
ing, they will independently learn dependencies in the source and
target sentence respectively, as previously shown in Figure 1. It
is important to understand that in the decoder, the self-attention
mechanism will only have access to all the words produced by
the decoder so far, while all the words that still need to be pro-
cessed are masked. Masking words with high negative values
will basically "hide" them from the learning algorithm.

While the encoder contains only one Multi-Head Attention
sub-layer per layer, the decoder contains a second one. This sub-
layer performs attention over the output of the encoder stack.

The cat is sleeping <Start> Die Katze

schläft

Attention Distribution

Figure 2: Sequence-to-sequencemodel with attention. The
decoder (green) has access to all hidden states of the en-
coder (red) and learns how much attention to pay to each
hidden state. To predict the word schläft, the decoder pays
most attention to the hidden state of is and sleeping.

From a conceptual point of view, this sub-layer performs a similar
task to the attention mechanism of classical seq2seq architectures
(see previously discussed Figure 2). As a consequence, the Multi-
Head Attention sub-layer allows the decoder to pay attention
only to the relevant words of the source sentence.

Since a transformermodel does not contain any recurrence, the
authors had to introduce the idea of ordered, sequential inputs
in a different way. They do this by using so-called positional
encoding for each input word. This allows the model to make use
of both the position of a word and the relative distance between
twowords. The authors of [30] use a combination of the functions
sine and cosinewith different frequencies to implement positional
encodings.

A last detail to mention is the residual connection [9] around
each sub-layer. The residual connection will, on the one hand,
improve training performance, but even more importantly, it
allows the positional encoding to flow untouched up to the higher
layers.

4 BERT AND FRIENDS
The transformer architecture appearing first in 2017 triggered a
wave of new papers based on this idea. With BERT [6] being the
most popular one and setting a new state-of-the-art for many
NLP tasks in 2018, other papers followed quickly and further
improved performance on many tasks. In this section we will
have a look at the four approaches used in our experiments: BERT,
XLNet, RoBERTa and DistilBERT. The order of the subsections
corresponds to the publication date of the papers.

4.1 BERT
BERT is a universal languagemodel, pre-trained on large amounts
of text data with the intention of fine-tuning it on downstream
tasks (e.g. entitymatching) in a supervisedmanner with relatively
little data.

The abbreviation BERT stands for Bidirectional Encoder Repre-
sentations from Transformers, with the emphasis on bidirectional.
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Figure 3: The original transformer architecture by
Vaswani et al. as shown in the paper[30].

It is in its core a transformer language model as designed by [30],
but contrary to other language models (e.g. OpenAI’s GPT[21])
it is jointly conditioning on both the left- and right context of
the query token during pre-training. This is somehow counter
intuitive, as the most common training task of language models
is to simply predict the next token (word).

Let us consider the following fraction of a sentence "[..] prob-
lems turning into banking crisis as [..]" (see Figure 4). Let us
further assume that we want to predict the query token "into"
by its left context, which is all the input to the left of the query
token. With this training task one can by definition only use the
left or the right context. By using both contexts together, the task
would become trivial since you already know the next token.

.... problems turning into banking crisis as

Figure 4: Left-to-right: Using the left context to predict the
query token into.

.... problems turning [MASK] banking crisis as

Figure 5: Bidirectional: Using both the left- and right con-
text to predict a masked token.

To be able to condition on both the left and right context,
BERT had to change the training task. Instead of predicting the
next word, it tries to predict masked tokens as seen in Figure 5
by using both the left and right context. By predicting masked
tokens, the BERT model is classified as an auto encoder. It learns
to reconstruct the original data by restoring corrupted input, i.e.
the masked tokens.

In a second training task, BERT performs Next Sentence Predic-
tion (NSP). Here, the model receives two sentences as input, and
has to predict if the first sentence is followed by the second one.
This pre-training is necessary for all tasks which are based on
the relationship between sentences. Typical examples of these
tasks are Question Answering, Natural Language Inference or En-
tity Matching. It is important to understand that both training
tasks are unsupervised tasks and do not require labels, but only
large amounts of text data. Labeled data are only required for
task-specific fine-tuning.

The ablation studies of the BERT paper demonstrate that using
both the left and right context is the most important contribution
of the paper. As a second contribution the BERT-team shows,
that massive unsupervised pre-training on large data (BooksCor-
pus and Wikipedia) improves performance on a large number
of tasks without the need for task-specific architectures. The
BERT architecture further demonstrates to be very flexible as it
allows simple fine-tuning on a range of downstream tasks such as
Question/Answering, Named Entity Recognition or Classification.

4.2 XLNet and Transformer-XL
As seen in Section 4.1, BERT’s most important contribution is
its bidirectional representation. To achieve it, an auto encoder
approach is necessary, with the training task to predict [MASK]
tokens instead of predicting the next word. The XLNet [33] paper
demonstrates the downsides of this approach and proposes a new
architecture to solve it. According to XLNet there are two major
downsides of the BERT approach:

• Predicting [MASK] tokens is what BERT learns during its
pre-training phase. But those artificial symbols never oc-
cur in downstream tasks, which creates a pretrain-finetune
discrepancy.

• BERT reconstructs all [MASK] tokens in parallel and in-
dependent of each other. This independence assumption is
not justified as a simple example in Figure 6 demonstrates.

To overcome these flaws, XLNet returns to the more classi-
cal architecture of an autoregressive (AR) language model. In
contrast to BERT’s autoencoder approach, an AR model does
not suffer from the downsides described above, as it does not
introduce any artificial symbols and simply learns to predict the
next token.

However, as we discussed in Section 4.1, an AR pre-training
cannot use forward and backward contexts at the same time. To
be able to capture a bidirectional context (as in BERT) and still
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I went to [MASK] [MASK] and saw the [MASK] [MASK] [MASK].

I went to New York and saw the Empire State building.

I went to San Francisco and saw the Golden Gate bridge.

I went to San Francisco and saw the Empire State building.

Figure 6: The independence assumption between the
masked tokens is not justified.

have the advantages of an AR model, XLNet proposes a new
generalized autoregressive pre-training method.

The core of this method is a new pre-train objective, which
is called permutation language modeling. Instead of approaching
a sequence of tokens only in a forward or backward manner,
permutation language modeling takes into account all possible
factorization orders of a sequence.

Assume that we have the following sentence "New York is a
city". Further assume that we have already received the tokens
"New" and "York". Next, we want to predict the token "is". Figure
7 shows how the model tries to predict the third token "is" with
different factorization orders.

Let us discuss the three permutations in more detail:

• Permutation 1 is the classical autoregressive left-to-right
order. The model has access to the left side context (x1, x2)
and tries to predict the query token x3.

• In Permutation 2 one can grasp the advantage of the per-
mutation method: due to its order, the model now has
access to the context x4, x2, x1 to predict x3. Be aware
that in this sequence order, token x5 is not accessible, as
it appears to the right of token x3.

• In Permutation 3 the model has access to the tokens x4 and
x5, as those appear to the left of token x3 in the factoriza-
tion order. By looking at this example it becomes intuitive
that the token x3 (that has to be predicted) has seen every
other tokens in the sequence and will therefore, similar to
an autoencoder model, capture the bidirectional context.

In addition to its core contribution, the permutation language
modeling, XLNet includes two major improvements originally
proposed in the Transformer-XL paper [5]. The Transformer-
XL architecture is based on the original transformer [30], but
with several improvements. The most important one, which is
also implemented in XLNet, is the ability to learn dependencies
beyond a fixed length without disrupting temporal coherence.
This is possible due to a segment-level recurrence mechanism
and a novel positional encoding scheme.

XLNet outperforms BERT on 20 tasks and achieves state-of-
the-art results on 18 tasks including question answering, natural
language inference, sentiment analysis, and document ranking
[33].

4.3 RoBERTa
RoBERTa [17], a paper released at the end of July 2019, differs
from other all the other papers as it does not come up with
a new transformer approach, but new insights on BERT. The
authors claim that BERT, without any major changes, can match
or exceed every published model after it by just using the right
hyperparameters and enough training data.

x1 x2 x3

“New” “York” “is”

x4

“a”

x5

“city”

h1 h2 h3 h4 h5

x3

Factorization order: 1 → 2 → 3 → 4 → 5

Permutation 1

x1 x2 x3

“New” “York” “is”

x4

“a”

x5

“city”

h1 h2 h3 h4 h5

x3

Factorization order: 4 →2 → 1 → 3 → 5

Permutation 2

x1 x2 x3

“New” “York” “is”

x4

“a”

x5

“city”

h1 h2 h3 h4 h5

x3

Factorization order: 5 →4 → 3 → 1 → 2

Permutation 3

Figure 7: Permutation language modeling: predicting x3
given the same input sequence but with different factor-
ization orders.

The authors find that BERTwas significantly undertrained and
propose the following modifications for maximal performance:

• More training data. The original BERT was trained on
the BookCorpus and English Wikipedia, covering around
16 GB of text. Many of the subsequent papers used much
larger data sets, some of them publicly available, others
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not. RoBERTa uses five English-language corpora with a
total size of over 160 GB of text.

• Longer training. RoBERTa evaluates three training du-
rations with 100K, 300K and 500K steps. They show that
maximal training duration, together with the additional
data, results in best performance.

• Larger batch size.While the original mini-batch size of
BERT is 256, RoBERTa further evaluates batch sizes of
2,000 and 8,000 samples per mini-batch. The experiments
on several downstream tasks indicate that a batch size of
2,000 is the best choice, given the learning rate is increased
appropriately.

• Get rid of the next sentence prediction (NSP) objec-
tive. In contrast to [6], the authors of RoBERTa show that
by removing the NSP loss, they achieve slightly better
downstream task performance. They also show though
that it is crucial to use the full attention span (the model
input size, max. 512 tokens) during pre-training in order
for BERT to learn long-range dependencies.

• Change themasking pattern of training data dynam-
ically. While BERT uses a relatively static masking pro-
cedure applied during preprocessing, RoBERTa suggests
dynamically masking of each sample during training be-
fore feeding it to the model.

With all thesemodifications, RoBERTa’s performance is evaluated
on the GLUE, SQuAD and RACE benchmarks. RoBERTa achieves
state-of-the-art results on all three challenges, with slightly better
results than XLNet (its closest competitor) on most challenges
and clearly better than the original BERT [17].

4.4 DistilBERT - Smaller, Faster, Cheaper
While all three models discussed so far focused on improving the
state-of-the-art, the authors of DistilBERT [23] pursue another
objective. Instead of better results, DistilBERT aims for a smaller
and faster models which can be used in real-world projects. In-
deed, the size of recent transformer models is impressive:

• A BERT-Large model uses 340M parameters.
• RoBERTa works with 355M parameters while using 160
GB data for pre-training.

• NVIDIA trained a transformer languagemodel calledMega-
tronLM[26], using 8300M parameters.

The authors of DistilBERT see the challenge of modern trans-
former models mainly at inference time, when a model should
be small and fast, so it can work on mobile devices or non-GPU
servers.

There are several approaches to reduce model size while ap-
proximating performance, namely quantization, weights pruning
and distillation. The authors of DistilBERT focus on knowledge
distillation.

4.4.1 Knowledge Distillation. The core idea of knowledge dis-
tillation is to train a smaller model (the student) which learns
from the original model (the teacher). Themethod has been gener-
alized by [10] and is sometimes also referred to as teacher-student
learning.

The challenge of knowledge distillation is to learn the so-
called dark knowledge of a model. Let us assume the example
in Figure 8, where a language model predicts the last token in
a sentence. While one or two predictions usually have a high
probability, there will almost always be a long tail of tokens with
low probability. This knowledge, even though the probabilities

‘I’, ‘think’, ‘this’, ‘is’, ‘the’, ‘beginning’, ‘of’, ‘a’, ‘beautiful’, [MASK]
Input:

Predicted token (top 16):

#1 token: ‘day’ p: 0.213
#2 token: ‘life’ p: 0.183
#3 token: ‘future’ p: 0.062
#4 token: ‘story’ p: 0.058
#5 token: ‘world’ p: 0.049
#6 token: ‘era’ p: 0.045
#7 token: ‘time’ p: 0.032
#8 token: ‘year’ p: 0.017

#9  token: ‘summer’    p: 0.016
#10 token: ‘adventure’ p: 0.013
#11 token: ‘dream’     p: 0.012
#12 token: ‘moment’    p: 0.012
#13 token: ‘night’     p: 0.011
#14 token: ‘beginning’ p: 0.010
#15 token: ‘season’    p: 0.009
#16 token: ‘journey’ p: 0.006

Figure 8: Predicting a masked token with BERT: The first
two tokens show a high probability, followed by a long tail
of near-zero possibilities.

might be low, is crucial for a model to generalize. The challenge
of knowledge distillation is therefore not only to learn the one
prediction with high probability, but also the near-zero probabil-
ities on other classes. In terms of distillation loss function, this
near-zero probabilities are called soft targets.

4.4.2 Loss Objective. To motivate a model to learn both high
and near-zero probabilities, DistillBERT suggests a composite
loss function as follows:

• Distillation Loss The student learns the probabilities of
the teacher (soft targets) with L =

∑
i ti ∗ log(si ) where ti

is a probability estimated by the teacher and si the proba-
bility estimated by the student. To control the smoothness
of the output distribution, a further technique from [10]
called softmax-temperature is used.

• Masked Language Modeling (MLM) Loss [6] As the
teacher model used in DistilBERT is the original BERT
model, the second loss function is the original MLM, with
the goal to predict the masked tokens.

• Cosine Embedding Loss A rather technical loss to align
the directions of the student and teacher hidden states
vectors.

4.4.3 Student Model Architecture. While using the original
BERT architecture as teacher model, the student model archi-
tecture is a purged version of the BERT model. Token-type em-
beddings and the pooler have been removed and the number of
layers have been reduced by factor 2. This reduces the overall
size of the model by 40% [23].

Note that the distillation process happens on the general-
purpose model, before applying fine-tuning on downstream tasks.
This in contrast to task-specific distillation, which distills the
model after already being fine-tuned on a specific task.

4.4.4 Performance. To compare DistilBERTs performance, it
has been fine-tuned on two of the usual benchmarks (GLUE,
SQuAD). DistilBERT retains 97% of the original BERT model
while reducing the model size by 40% and being 60% faster [23].
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5 EVALUATION
In this section, we present and discuss the results of the experi-
ments conducted with the transformer architectures described
in Section 4. In particular, we will address the following research
questions with respect to entity matching:

• How well do transformer architectures perform compared
to traditional, non-deep-learning ML approaches?

• How well do transformer architectures perform compared
to recent deep learning approaches?

• Which transformer architecture performs best on the task
of entity matching?

• Transformer architectures are complex deep neural net-
works. How much training is necessary to fine-tune them
on the entity matching task? Is the amount of training
data in a traditional EM dataset sufficient to fine-tune a
transformer?

5.1 Datasets
The authors of DeepMatching[20] demonstrated that modern
deep learning methods do not perform better in entity matching
tasks on structured data than traditional approaches. Traditional
ML approaches such as e.g. Magellan[14] perform even slightly
better and training time is magnitudes shorter than for deep learn-
ing methods. In addition, the scores of Magellan on structured
data are high - it performs on those 11 datasets with an average
F1-score of 86% - without the rather textual dataset Amazon-
Google the F1-score is even 90%. The authors of DeepER[7], a
second approach using deep learning for entity matching, con-
firm these results with F1-scores between 88% and 100% on these
structured datasets.

We therefore focus our experiments on challenging datasets
where other approaches showed relatively low performance. To
evaluate our transformer approaches we use both textual and so-
called dirty datasets provided by the Magellan team [20]. We use
all publicly available datasets except the textual dataset Company,
as this contains text blobs with lengths between 2000-3000 tokens,
which exceeds the maximal attention spans of 512 tokens for
transformer architectures. There have been recent approaches to
extend this attention span to 8000+ tokens by [28]. However, we
leave these challenges for future work.

For our entity matching experiments, we use the following five
datasets to evaluate the transformer architectures (see Table 3):
(1) Abt-Buy: Product data from Abt.com and Buy.com. The core
attribute is description, which is a long text blob describing the
product. We use no informative attribute (e.g. the title), but only
the noisy description attribute, similar to [20]. (2) iTunes-Amazon
(Dirty): music data from iTunes and Amazon. The data has been
modified to simulate dirty data as done by [20]. They suggest for
each attribute other than "title" to randomly move each value to
the attribute "title" in the same tuple with a probability of p = 0.5.
(3) DBLP-ACM (Dirty): Bibliographic data from DBLP and ACM.
The data has been modified to simulate dirty data. (4) DBLP-
Scholar (Dirty): Bibliographic data fromDBLP and Google Scholar.
The data has been modified to simulate dirty data. (5) Walmart-
Amazon (Dirty): Product data from Walmart and Amazon. The
data has been modified to simulate dirty data.

To evaluate our transformer architectures, we split all five
datasets into into three parts with a ratio of 3:1:1. We use the 60%
split of the data for training, and the two 20% splits for validation
and test. All reported numbers in this paper show results on the
test split.

Table 3: Datasets used in our experiments.

Dataset Domain Size # Matches # Attr.

Abt-Buy Products 9,575 1,028 3
iTunes-Amazon Music 539 132 8
Walmart-Amazon Products 10,242 962 5

DBLP-ACM Citation 12,363 2,220 4
DBLP-Scholar Citation 28,707 5,347 4

5.2 Setup & Methods
In this section we will describe the hardware we used for our
experiments as well as the implementation of the transformers
along with the hyperparameters and pre-trained models.

5.2.1 Hardware. All experiments were executed on a single
Nvidia TITAN Xp GPU (12GB Memory) with Intel(R) Xeon(R)
CPU E5-2650 v4 (4 cores) and 8GB memory. The experiments are
implemented using PyTorch and the transformer implementa-
tions are based on [32].

5.2.2 Methods. Figure 9 shows how an entity pair consisting
of Entity A and Entity B is fed into a transformer architecture.
This approach is used at both training and inference time. The
data feeding approach looks similar in all four transformer archi-
tectures, while having minor differences in the use of separator
tokens, position embeddings and the classification representation
(CLS) in the last layer. The detailed description of the following
section refers to BERT/RoBERTa and DistilBERT, while being
very similar in XLNet.

We will now describe how we use the transformer for entity
matching in detail. Entity A and Entity B contain a single
text blob each. In case of textual data (Abt-Buy), the text blob
consists of the single attribute description. For "dirty" datasets, all
attributes of a data instance are concatenated, for instance [name
+ brand + description + price]. Next, the single text blob
is tokenized. For each token, the corresponding embedding is
looked up (for details on tokenizing and embedding see Section
5.2.3).

Each token embedding is then summed up with a positional
embedding and a segment embedding. The segment embedding
is used to distinguish between tokens of Entity A and Entity B.
The sum of all three embeddings is then fed into the transformer.
The maximum length of the input (A1 −AN plus B1 − BM plus
the two artificial tokens classification and separator) has been
empirically defined based on the longest data rows in the training
data. It lies between 128 and 265 tokens, depending on the data
set.

In one pass, a pair of two entities (all tokens of Entity A and
Entity B) is processed by the transformer model. This leads to
major performance improvements compared to classical deep
learning models based on RNNs[20], where each token is depend-
ing on the tokens appearing earlier in the sequence. The output
of a pass is then represented in the hidden state at position 0, the
purple CLS symbol in Figure 9. This hidden state (a vector of size
768) is then passed into a single classification layer (Classifier in
Figure 9).

Keep in mind that transformer models are universal language
models, capable of performing different downstream tasks (e.g.
classification, seq2seq, question/answering, NER, etc.). Hence,
to feed the classification output of the transformer model via a
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[SEP]
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Figure 9: Transformer feeding approach. Entity A and
Entity B are tokenized (e.g. Tok A1,red). The embed-
ding of each token (EA1,yellow) is fed into the trans-
former together with positional- and segment embed-
dings (E0,gray/EA,blue). Special symbols are used to feed
the output into the classification layer ([CLS]) and to sep-
arate the two entities ([SEP])

designated representation symbol (CLS) into a specific classifica-
tion layer, is an architectural decision of [6] to keep the model
flexible. When using the model for other tasks, e.g. for NER, the
ouput layer looks differently.

The classification layer is - in contrast to the rest of the model -
not pre-trained and contains a fully connected layer with 768 neu-
rons plus two output neurons. These two output neurons finally
represent the two classes of an entity matching problem:"Entity
A and B match" or "Entity A and B do not match".

We use Adam [12] for optimization in combination with a
linear learning rate. The choice of optimizer, learning rate and
other hyperparameters are based on best practices for similar
classification tasks, e.g. the GLUE-QQP benchmark [6, 17, 23, 31,
33].

With the implementation described above, we evaluate all four
transformer architectures described in Section 4: BERT, XLNet,
RoBERTa and DistilBERT. To reproduce the experiments, we
provide source code and hyperparameters on GitHub1.

5.2.3 Tokenization and Embeddings. Before feeding a pair of
Entity A and Entity B into the transformer, tokenizing the
input and a lookup of embeddings is necessary. Transformers
like almost all modern language models work with embeddings
as input values. Using embeddings increases performance over
simple one-hot encoded vectors massively, as demonstrated by
the influential word2vec paper [19].

We use the following tokenization/embedding techniques:

1https://github.com/brunnurs/entity-matching-transformer.

Table 4: Pre-trained models used in our experiments.

Transformer Details

BERT
12-layer, 768-hidden, 12-heads, 110M
parameters. BERT-base model.
Trained on lower-cased English text.

XLNet 12-layer, 768-hidden, 12-heads, 110M
parameters. XLNet English model

RoBERTa
12-layer, 768-hidden, 12-heads, 125M
parameters. RoBERTa is using the
BERT-base architecture.

DistilBERT
6-layer, 768-hidden, 12-heads, 66M
parameters. The DistilBERT model is
distilled from the BERT-base model.

• BERT/DistilBERT:Wefirst split thewhole input textblob
into single tokens by simple white space- and punctua-
tion splitting rules. In a second step, we create Wordpiece
embeddings by applying the original algorithm from[24].

• RoBERTa: We split the whole input into tokens by us-
ing white spaces, punctuation and special abbreviations
(’s|’t|’re|’ve|’m|’ll|’d). We then apply Byte-level
Byte-Pair-Encoding [25].

• XLNet: In contrast to the other approaches, we do not
pre-tokenize the input into word sequences, but directly
input the raw text blob into a SentecePiece[15] subword
tokenizer.

5.2.4 Pre-Trained Models. Due to their model sizes, all four
transformer architectures require very resource-intensive pre-
training on large amounts of data. As an example, the BERTLARGE
model was trained on 64 TPU chips for 4 days while RoBERTa
uses 1024 V100 GPUs for approximately one day [6, 17]. The
transformers performance is therefore heavily dependent on the
pre-trained model. In Table 4 we list all pre-trained models used
in the experiments. We use the pre-trained models provided by
the original papers [32] and gathered by Hugging Face2. Note
that due to hardware constrains, we always used the smallest
available pre-trained model. We expect larger pre-trained models
to perform as good or even better.

5.3 Comparison with Classical Models

Table 5: F1-scores of the best performing Transformer
model in comparison with Magellan (MG) and Deep-
Matcher (DeepM).

Dataset MG DeepM TBEST ∆F1

Abt-Buy 33.0 55.0 90.9 35.9
iTunes-AmazonDir ty 46.8 79.4 94.2 14.8
Walmart-AmazonDir ty 37.4 53.8 85.5 31.7

DBLP-ACMDir ty 91.9 98.1 98.9 0.8
DBLP-ScholarDir ty 82.5 93.8 95.6 1.8

Table 5 shows the performance of transformer models in com-
parison with Magellan and DeepMatcher. The results are mea-
sured, similar to other papers in the field [7, 20], by an F1 score
where recall is the ratio of true matches predicted vs. all true
2https://github.com/huggingface/transformers
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Figure 10: Performance of transformers on the Abt-Buy
dataset, averaged over five runs. We only visualize F1
scores in range 60 - 100% to emphasize the difference.

matches. For each dataset we report the best performing of the
four DeepMatcher DL models, the result of Magellan and the best
performing transformer. The transformer result is an average
over five runs. We see that transformer architectures out-
performs both DeepMatcher and Magellan by a large mar-
gin on the challenging datasets Abt-Buy (35.9%), iTunes-
Amazon (14.8%) andWalmart-Amazon (31.7%).

We are also interested in how transformer architectures per-
form on datasets where DeepMatcher and Magellan perform very
well, like on DBLP-ACM (DeepMatcher: 98.1%, Magellan: 91.9%)
and DBLP-Scholar (DeepMatcher: 93.8%, Magellan: 82.5%). As
expected, the transformers perform better than existing methods
also on these datasets with a ∆F1 of 0.8% and 1.8%, respectively.
In comparison to the challenging datasets though, the improve-
ments are relatively small. Since the results of DeepMatcher on
these datasets are already very high (F1-score: 98.1% and 93.8%)
we assume that better language models only slightly improve the
performance on those tasks.

5.4 Transformers Architectures
Head-to-Head

The performance of transformer architectures has been compared
many times in recent papers [6, 17, 33], usually on large NLP
benchmarks (e.g. GLUE, SQuAD [22, 31]). However, we are not
aware of any related work where transformers were used for
entity matching.

Figures 10 - 14 show the performance of the different trans-
former architectures on the datasets defined in Section 5.1. The
results have been averaged over five runs. The main findings of
our systematic, experimental evaluation are as follows:

• All transformer architectures perform remarkably
well on the task of entity matching. Even the least
performing transformer, DistilBERT, performs clearly bet-
ter than classical approaches (see Section 5.3).

• After only one epoch of training, most experiments
rangewithin a 5% interval of their peak performance. After
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Figure 11: Performance of transformers on the iTunes-
AmazonDir ty dataset, averaged over five runs. The effect
of little training data is visible at epoch 1.
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Figure 12: Performance of transformers on the Walmart-
AmazonDir ty dataset, averaged over five runs. We only vi-
sualize F1 scores in range 50 - 100% to emphasize the dif-
ference.

3-5 epochs, almost all experiments converge to their peak
performance. The effort to fine-tune a transformer on an
entity matching task is therefore manageable, especially
considering the training time per epoch in Section 5.5.

• Overall, RoBERTa performs best, also reaching high re-
sults already after only a few epochs. We conclude that
the massive pre-training effort on a huge amount of data
(compared to the other three approaches) gives RoBERTa
a slight advantage in the task of entity matching.
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Figure 13: Performance of transformers on the DBLP-
ACMDir ty dataset, averaged over five runs.We only visual-
ize F1 scores in range 96 - 100% to emphasize the difference.
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Figure 14: Performance of transformers on the DBLP-
ScholarDir ty dataset, averaged over five runs. We only vi-
sualize F1 scores in range 93 - 96% to emphasize the differ-
ence.

• DistilBERT performs worst, averaged on all tasks. This is
explainable due to the comparably small model of Distil-
BERT. Still though the results of DistilBERT are close to its
"big brothers" and higher than classical approaches (see
Section 5.3).

• XLNET requires, on average, longer training times to reach
peak results. We conclude the permutation language mod-
eling eventually results in high performance (XLNet per-
forms often almost equally well as RoBERTa), but due to
the large amount of permutations, it requires more train-
ing time.

Table 6: Training time per epoch on each data set.

Dataset BERT XLNet RoB.a D.BERT

Abt-Buy 2m 42s 6m 15s 2m 43s 1m 22s
iTunes-AmazonDir ty 7s 12s 7s 3.5s
Walmart-AmazonDir ty 1m 41s 2m 29s 1m 41s 52s

DBLP-ACMDir ty 2m 24s 4m 9s 2m 24s 1m 13s
DBLP-ScholarDir ty 4m 5s 5m 57s 4m 13s 2m 6s

• The iTunes-AmazonDir ty dataset is extremely small con-
taining only 132 matching records . As we see in Figure
11, this is influencing the training process. After epoch 1
almost all experiments have an F1-score of 0%, in compar-
ison to the other datasets where after epoch 1 the results
are already close to peak performance. We see, though,
that even with this small amount of training data, the
fine-tuning converges after 4-6 epochs of training.

5.5 Training Time
Transformer models are known to be resource-intensive architec-
tureswithmillions of parameters. For instance, DistilBERTSMALL
consists of 66 million parameters and RoBERTaLARGE has even
355 million parameters. As we have seen in Section 4, training a
transformer is split in two tasks: (1) unsupervised pre-training on
large amounts of unspecific data and (2) supervised fine-tuning
on downstream tasks (e.g. entity matching) with task-specific
data. While pre-training is doing a major part of finding these
parameters (see Section 5.2.4), it is still a large model to fine-tune
on a specific downstream task like entity matching.

Table 6 shows the training time for fine-tuning each trans-
former on the given datasets. The times reported are per epoch
on the training set (which is roughly 60% of the total dataset).

As fine-tuning usually converges to maximum performance
after 1-3 epochs (see Section 5.4), total training takes between
10s (DistilBERT on iTunes-AmazonDir ty , 3 epochs) and 11m
55s (XLNet on DBLP-ScholarDir ty , 2 epochs). It is important
to note that the experiments ran on low budget hardware (see
Section 5.2.1) without any parallelization. With state-of-the-art-
hardware, these times can be reduced by an order of magnitude.

If we compare these training times to the reported results of
DeepMatcher [20], we can draw two important conclusions:

(1) Compared to conventional, non-deep learning EM models
as e.g.Magellan, fine-tuning a transformer is still relatively
slow.

(2) Compared to training a deep learning model as proposed
in DeepMatcher, fine-tuning a transformer is fast. Deep-
Matcher reports training times from 10min to 11h, de-
pending on the dataset and solution. This is 1-2 magni-
tudes slower than fine-tuning a transformer as we propose,
especially as DeepMatcher uses faster hardware than we
do.

The reason fine-tuning a transformer is faster than training a
comparably light-weighted deep learning model[20] is clearly the
resource-intensive pre-training, which improves convergence on
the downstream task (entity matching) enormously.
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6 CONCLUSIONS
In this work, we show for the first time the strong impact of
transformer architectures and pre-training for entity matching
on datasets with large textual- or "dirty" data. We show that
all transformers described can be used for EM out of the box,
without the need for a task-specific architecture. Our experiments
on five datasets show a significant improvement of F1-scores of
up to 35.9% of transformers on challenging datasets compared
to state-of-the-art approaches. In addition, we demonstrate that
on relatively small and clean datasets, transformers still perform
slightly better than earlier deep learning approaches.

We demonstrate that fine tuning a transformer on an EM task
takes relatively little time and requires no particularly capable
hardware, which might be contrary to expectations due to the
large size of transformer models. Regarding the question on
which of the four transformer models performs best on the EM
task, experiments show that all of them deliver relatively similar
results. In comparison with average results, RoBERTa shows
slightly better and DistilBERT slightly worse performance, which
is in line with the theoretical background of these approaches.

We consider transformer approaches as a valuable technology
for entity matching. Using standard transformer architectures in-
stead of designing EM-specific architecture does not only benefit
from simplicity, but profits also directly from further advances
in the NLP field of pre-training and transformers.
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ABSTRACT
Machine learning is critical to the success of many products
across application domains. At Uber, we have a variety of ma-
chine learning applications including matching, pricing, recom-
mendation, and personalization. As a result, we have a large
number of machine learning models to manage in production.
Generally, building machine learning models is an iterative pro-
cess and machine learning models span across a set of stages of
a lifecycle. In this paper, we describe Gallery, a machine learning
model lifecycle management system to save and serve models
and metrics and automatically orchestrate the �ow of models
across di�erent stages in the lifecycle. We then use the Uber
Marketplace Forecasting and Simulation platforms as examples
to show how Uber uses Gallery in production and the bene�ts
we get by using Gallery.

1 INTRODUCTION
Machine learning is critical to the success of many products
across application domains. Companies employ machine learn-
ing for recommendation, targeting, and personalization. Uber
uses machine learning across product features including match-
ing, pricing, personalization, ETA estimation, and Uber Eats rec-
ommendations. Recently, there have been various systems and
frameworks [1, 12, 22, 26] designed and built to make machine
learning easy-to-use and scalable in production systems. How-
ever, as the interaction of models with systems have becomemore
complex, a growing technology need exists to manage machine
learning models through their lifecycle to accelerate the process
of getting a model from exploration to production and improve
the model iteration velocity.

Building machine learning models is an iterative process [7].
Given a problem to solve, the common lifecycle of a model, as
shown in Figure 1, starts with model exploration, during which
we design and explore multiple models. When we �nd a model
that beats a benchmark, we build the model into a production
system. Getting a model into production starts at the model
training, where we generate model instances. We refer to the
trained models as the instances of a model. We evaluate the
performance of trained model instances and deploy instances
when the performance is above certain thresholds. Otherwise, we
continue to improve the models. When models are deployed in
production, monitoring performance is critical. If a performance
degradation is detected or we have a new model, we will need to
re-train the appropriate model, deprecate the old model instances,
and deploy the new model instances.

Managing a handful of models is feasible for a production
system. However, operational scale quickly becomes untenable

© 2020 Copyright held by the owner/author(s). Published in Proceedings of the
22nd International Conference on Extending Database Technology (EDBT), March
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Figure 1: Machine Learning Model Lifecycle

with multiple machine learning problems, and more so when
each problem has hundreds of model instances to manage. For
example, when doing Marketplace-level forecasting at Uber, we
forecast supply, demand, and other quantities in real time for
hundreds of cities across the globe. We shard the problem spa-
tially by city, training a model instance for each city-quantity
combination because Uber is operating in many cities across the
world, and di�erent cities may pose di�erent geospatial charac-
teristics. Besides, the Uber business might be at di�erent growth
stages for di�erent cities.

Though there are variances across applications and projects,
many interesting questions about how to manage a large num-
ber of machine learning models in production are common. In
this section, we list a sample of the questions which are raised
between use cases: Where do we save and serve the models gen-
erated during model exploration or trained in production? How
do we e�ciently search for models and their experiment results?
How can we con�dently deploy a large-scale number of models
and avoid regressions? How and when do we trigger model re-
training due to model performance deterioration? In a complex
system like the Uber Marketplace, the result of applying one
model could be the input to another model. How can we manage
the dependencies between multiple models?

How to address the above model management questions of-
ten depends on the experiences of machine learning engineers
who work on these problems. Even within one company like
Uber, di�erent machine learning applications may use di�erent
approaches to solve these problems. For example, prior to Gallery
there were over seven di�erent storage solutions (e.g., MySQL,
HDFS, Cassandra and Git repo) engineers used to save machine
learning models. As a result, similar functionalities to manage
machine learning models are scattered across a variety of pro-
duction systems. This results in increased overhead to build and
maintain individual systems, and causes a loss of visibility into
the machine learning models across a production system. With
the increasing number of machine learning solutions being built
to solve business problems at Uber, we built Gallery, a model
lifecycle management system to systematically and uniformally
address these common questions to improve machine learning
model velocity and productivity across Uber.

Gallery was started as a system to solve Uber Marketplace
Forecasting model management problems and was later inte-
grated as part of Michelangelo [6], Uber’s ML Platform. It is a
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system designed to manage machine learning models by provid-
ing functions for model saving, searching, serving, performance
monitoring, and orchestration across di�erent stages of themodel
development lifecycle.

Overall, the major contributions in this paper are as follows:

• A comprehensive analysis of the problems we addressed
at Uber in order to manage machine learning models in a
large-scale, distributed, microservices-based system.

• We describe Gallery, a model lifecycle management system
used in production at Uber.

• We use Uber Marketplace Forecasting and Simulation case
studies to demonstrate how we utilize Gallery to manage
machine learning models and the bene�ts we have gained
with Gallery.

2 THE MODEL MANAGEMENT PROBLEM
We �rst share some machine learning model management con-
text at Uber before we de�ne the problem. At Uber, we employ
numerous machine learning applications, such as request dis-
patching, pricing, user growth, and recommendations. Overall,
the Uber platform is microservice-based. Application teams build
their own services and have di�erent requirements for cadence
and latency, implying di�erent patterns of running the models.
For example, long-term forecasting predicts hourly trips for a
city for weeks in the future, while real-time forecasting predicts
sub-hour demand. As a result, di�erent applications might use
di�erent languages, modeling techniques, and frameworks for
building and serving models.

In addition to the variety of applications and models, Uber is
operating in markets across the world that have unique condi-
tions in terms of population, city layout, climate, and population
density. As a result, it is common to see machine learning models
trained separately for di�erent markets. We also need to fre-
quently retrain the models when we detect model performance
degradation due to the changing market conditions, and we need
to independently trigger the retraining of the models for a city.
Often it is not e�cient to blindly re-train the models for all the
cities, e.g., the training data for real-time demand forecasts can
easily go up as much as terabytes for one city. Instead, we would
like to retrain the models periodically if performance evaluation
shows the need.

To solve the model management issue across heterogenous use
cases, a system to manage a variety of machine learning models
across di�erent frameworks, languages, and usage patterns, from
model exploration to models deployed in production, is necessary.
To be clear, we refer to a machine learning model as an abstract
data transformation which we can use to solve a particular prob-
lem or business use case. A model contains the speci�cation of
the input, output, and transformation, e.g., linear regression or
random forest classi�cation and all the corresponding hyperpa-
rameters. A model instance consists of a set of coe�cients that is
a learned representation of a given model on a particular training
data set. The terms “model” and “model instance” are commonly
used interchangeably when there is no ambiguity. Accordingly,
we de�ne the model management problem as: how to consis-
tently and scalably manage a large number of complex models
and model instances across stages of a model lifecycle.

3 THE GALLERY SYSTEM
In the section, we describe Gallery, a model lifecycle management
system, built at Uber to solve the aforementioned model man-
agement problems. We �rst introduce the principles that guide
our design. Then, we discuss the overall system architecture,
followed by the description of each major system component.

3.1 Design Principles
Immutable. Any machine learning model and model instance

generated and managed in our system is immutable. Any update
of a model or model instance will result in a new version in
production. This is critical to guarantee no unexpected behavior
in production, and ensures that all decisions can be traced back
to a speci�c model version. This builds the foundation for model
performance observability and debuggability.

Model Neutral. Each model is treated as a black box and the
model management system does not interpret the models. In this
way, we can have one system to provide management for the
varying models built for each application, e.g., a deep learning
model using TensorFlow or PyTorch, or linear regression models
using scikit-learn. Users are not blocked from leveraging the
model management system because of their modeling technology
choices.

Framework Agnostic. Any framework for model training, eval-
uation, deployment and serving, e.g., model exploration with
Python code manually on a local server or scheduled pipelines
to train models in production, could be seamlessly integrated
with the model management system. With this �exibility, we can
manage models from all di�erent machine learning projects at
di�erent development stages. This lowers the on-boarding cost
for new users and provides model management support for a
wide array of use cases.

Automation. With a large number of machine learning models
and model instances, automatically moving models across dif-
ferent stages in the lifecycle is the key to high scalability and
velocity. Achieving automation requires the management sys-
tem to have an integrated holistic view of the model work�ow
including training, evaluation and deployment.

3.2 Overall Architecture
We show the overall view of the Gallery architecture in Figure 2.
Advanced model management is a core component of a machine
learning system as it orchestrates the �ow of a model across
di�erent stages of a lifecycle. For the sake of completeness, we in-
clude a generic machine learning system that encompass the basic
stages of a machine learning lifecycle and the data infrastructure
we leverage in Gallery for the storage in the architecture. We
describe the major components of the Gallery system separately
in the rest of this section.

3.3 Data Model
To manage the lifecycle of a machine learning model, Gallery col-
lects data of models, model instances, and model performance, and
the corresponding metadata information. We present a simpli�ed
version of the basic Gallery data model in Figure 3.

3.3.1 Model. A machine learning model is generally a rep-
resentation of a transformation from a given input to a given
output. We use model metadata to store the basic model informa-
tion including the model owner, model description (e.g., linear
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Figure 2: Gallery Overall Architecture

regression formula or neural network structure), features, hyper-
parameters, and also the information on how the model can be
trained and served.

Building machine learning models is always an iterative pro-
cess through which we generally start with a simple baseline
model and subsequently improve the model performance by op-
timizing the model structure, tuning the hyperparameters, or
updating the model features. Therefore, we keep track of the
evolution of a model through next and previous pointers in the
model record. In a complex production system, we often have
one model depending on the output of other models. To get a
holistic view of the application of machine learning models in
such a system, we also keep track of the model dependency via
upstream and downstream pointers.

3.3.2 Model Instance. A model instance is a realization of a
model given a set of training data. It consists of the model pa-
rameters learnt from the training data and it is used to construct
the model in serving for prediction. To achieve model neutrality,
we treat model instances as uninterpreted binary blob data and
any updates to the blob will be versioned as a new instance in
Gallery. As a result, Gallery can not interpret any model and
treats all the models the same. Depending on the types of models,
the model instance sizes vary from a few KBs to 10s GBs. Model
blob storage is abstracted from the users, and the blob is saved
via Gallery in distributed data storage systems, e.g., S3 or HDFS.

We decouple the storage of the model instance blob with other
model information. Each model instance has a �eld to record the
model instance blob location, which could be a HDFS or S3 path.

For a model instance, we use metadata to keep track of the
training data, training framework, and other con�gurations (e.g.,
seed for random number generator, number of epochs for training
a deep learning model) we have set for the training to generate
the model instance. Storing all the information about the models
and model instances allow users of Gallery to closely reproduce
their model instances on demand. Note that it is not always

possible to generate exactly the same model instance due to the
randomness introduced in training the models.

3.3.3 Model Performance. We track the performance of ev-
ery model instance for o�ine model evaluation and online per-
formance monitoring. When users measure their models either
o�ine or online, they can write blobs of evaluation metrics that
pertain to a speci�c mode instance. Each metric also has its own
set of metadata to describe the nature of the evaluation. We store
metrics as blobs in order to remain model neutral and frame-
work agnostic. For di�erent model evaluations, we can have
di�erent metrics, e.g., precision, recall, AUC for classi�cation
models and MSE (Mean Squared Error), MAPE (Mean Absolute
Percentage Error) for regressions models. There are also a lot of
customized metrics de�ned for application-speci�c evaluations.
Gallery treats all the metrics the same and the metrics take the
form of a structured blob with the basic format of “<metric>:
<value>” pairs.

3.3.4 Metadata. As shown in the Figure 3, for Gallery models,
model instances, and model performance, we keep a comprehen-
sive set of metadata to identify model ownership, associate each
model with its serving context, and link models to their training
datasets. With metadata, we can improve the discoverability of
models and instances by enabling search over key metadata �elds.
We record all necessary con�gurations, e.g., training code pointer,
hyperparameters, and training data location and version, to make
model instances reproducible. We provide a standard set of meta-
data �elds and naming conventions to unify the characteristics
of a model over a production system.

Note that none of the metadata about a model or a model
instance is generated in Gallery. Users of Gallery need to save
the information to Gallery via APIs within the Gallery server. An
example of the usage of the Gallery APIs is presented in Section
4.1. Gallery simply manages the information and indexes the data
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Figure 3: Gallery Basic Data Model

for querying. As a result, Gallery is model neutral and agnostic
to any modeling framework.

3.4 Model Versioning
Model versioning is an approach to uniquely identify a model
or model instance. It is the foundation for model immutability.
With versioning, we never override an existing model or model
instance. Any update to a model or model instance will introduce
a new version. We keep track of the update history as the lineage
of the model or model instance.

Versioning of code or artifacts is a basic requirement for any
production system.While it is standard to use Git for code version
control, there is no such standard for versioning models or model
instances. As a result, many users derive their own versioning
schemas, like Semantic Versioning [8] and timestamps, which
lead to high maintenance costs due to lack of standandarization
across users users and applications. Gallery abstracts model ver-
sioning away from users, analogous to what Git provides to code,
and provides APIs for users to trace model lineages.

3.4.1 Model Instance Versioning. Each model can have one or
multiple model instances. We not only version models, but also
model instances. This is because bothmodels andmodel instances
have their own notions of change that need to be tracked. An
update to a model represents some change to the underlying data
transform such as feature and hyperparameter changes. Typically,
these changes happen in response to new approaches for solving
a problem and are usually less frequent than model instance
updates. Model instance versions represent updates against an
existing model with new training data. In production, periodic
retraining is expected as new training data becomes available, and

information about retraining is captured in the model instance
versioning.

The versioning approach we took before Gallery is based on se-
mantic versioning using the format of “<major>.<minor>.<patch>”.
A version example for a demand forecasting model instance is
"1.3.10". We adhere to the following basic version updating rules:
1) update major versions when model architectures change, e.g.,
from linear regression to neural network; 2) update minor ver-
sions when features or hyper-parameters change, e.g., adding a
new feature, and 3) update patch versions when the model in-
stance is retrained. This approach works well when we have one
simple forecasting model for a handful of cities. However, it is
not manageable when we build and launch multiple forecasting
model for hundreds of cities. As di�erent models might perform
better or worse for di�erent cities and the forecasting model
performance might degrade gradually due to the changes in the
Uber business, we expect retraining models to improve model
performance. However we do not want to retrain models for all
the cities if one city performs poorly since that needlessly wastes
computing resources. As a result, we very quickly end up with
multiple model versions for di�erent cites in the production sys-
tem which becomes impossible to manually manage. The basic
semantic versioning schema also loses meaning because cities
are no longer aligned against the same versions.

In Gallery, instead of incorporating model semantics into the
versions, we adopted a Git style versioning approach and assign a
UUID for each model instance. We associate metadata to capture
the model semantics and make it easy to search for. To be speci�c,
when users create a new model, they declare a base version
id for the model. The base version id is the top-level identi�er
that is linked to all its descendent model instances. Typically, a
base version id represents some approach to solving a particular
problem (e.g., demand forecasting). Each time a model instance
is trained, a unique identi�er is assigned to the trained model
and its metadata tracks which base version id the instance was
trained from. In this way, users can query for speci�c model
instances, or traverse the evolution of their model by following
all instances linked to a given base version id.

Figure 4 shows one example of a model and model instance.
There are two base model version ids “demand_conversion” and
“supply_cancellation” which represent models for the correspond-
ing business problems. For example, “supply_cancellation” has
evolved over four iterations with di�erent model instances which
are identi�ed by four di�erent UUIDs. The model instances are
sorted by time and linked to the base model they were trained
from.

3.4.2 DependencyManagementWith Versioning. Besidesmodel
and instance identi�cation, versioning is at the core of model
dependency tracking and management. As collaboration grows
within a production system and models become more advanced,
there are scenarios where models become dependent on one an-
other. For example, the output of one demand forecasting model
could be used as a feature for a pricing model. As systems become
more complex, these types of relationships become very di�cult
to track. Tracking these relationships is an important prerequisite
for understanding how a model impacts the entire production
environment with a holistic view. Users need to be aware of the
consequences of changes in their models, or need to be aware
that changes in their model’s behavior could be due to upstream
dependencies. For example, the performance of Model A could
improve even though the only change is on its upstream Model
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Figure 4: Model and Model Instance Versioning

Figure 5: Model Dependency Graph

Figure 6: Model Dependency Update

B. Without tracking this dependency relationship, we would lose
track of Model B’s impact on the production system.

Here, we present one example to show how dependencies
of 5 models are managed by Gallery. In Figure 5, we show a
dependency graph of �ve models. Both Model X and Y depend on
Model A and Model A depends on Model B and C. For readability,
we use numbers instead of UUIDs to represent the model instance
versions in this example. In Figure 6, we show the case of a model
dependency update. When we update instance of Model B from
version 2.0 to 2.1, this triggers the version updates for all Model
B’s downstream models including A, X and Y. Considering that
there is no real change of Model A, X or Y, we automatically
update the model instance version by adding a newmodel version
to Gallery without changing the production versions. The owner

Figure 7: Adding New Model Dependency

of Model A can choose to upgrade to the new model version,
if they want to include the updated Model B. But, models are
not automatically updated because we would like users to be
aware that their model dependencies have changed before their
production environment is updated.

Figure 7 shows a use case when we add a new model de-
pendency for an existing model. By adding the Model D as the
dependency of Model A, we will automatically update model
A’s instance version to 4.2. Accordingly, the downstream Mod-
els X and Y will also be updated to instance version 7.2 and 8.2
separately.

Dependencies between models are established by the user
when models are �rst registered in Gallery. When adding models,
Gallery provides operations for the user to add dependent models
by their uuids. There are also operations exposed for updating or
removing dependencies. Once the dependencies are established,
Gallery provides users with APIs to query their model’s upstream
or downstream dependencies and will track model updates across
dependencies.

3.5 Model Storage
The Gallery model storage layer de�nes the interface through
which model blobs, metadata, and metrics are stored and re-
trieved. We have the following model storage requirements:
searchability, agnostic, high availability, and low-latency.

To satisfy these requirements, we build the Gallery model stor-
age using a hybrid approach. Considering that model metadata
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and metrics are commonly structured data, we use a relational
database, e.g., MySQL, for storing metadata and providing sup-
port of �exible queries. The MySQL service is supported by the
Uber infrastructure team to guarantee high availability and de-
ployed cross data centers. Considering the enormity of models
and model instances, we would not be able to scale up to handle
thousands of models and instances if we need to interpret each
model. As a result, we treat each model equally and store each
model blob as binary data. We leverage Uber’s large data storage
service built on top of S3 and HDFS to store the model blobs to
achieve model neutral and framework agnostic design principles.
We expect Gallery users to provide their models as serialized
binaries, which are in turn stored in Uber’s large data storage
service. The storage locations are subsequently stored as part of
the model metadata so that they can be retrieved at serving time.
Another bene�t of taking this approach to save model blobs is
that it does not have data size constraints, which can be an issue
for large deep learning models. To handle cases of inconsistent
data due to system failures, e.g., MySQL or HDFS write fails, we
always write model blobs �rst and only write the model metadata
after the model blobs are successfully stored. If the model blob
of a model instance is saved but the metadata fails to save, then
the model instance will not be available in the system.

Model metadata searchability is critical for users managing a
high volume of models. Users conducting experiments or man-
aging production environments need the ability to easily search
and query models based on key metadata like training dates,
model type, and features. Model searchability allows easy track-
ing of all models in the wild and more e�cient analysis and
experimentation over the various models.

Brie�y, model storage is accessed via a uni�ed DAL (data
access layer). The model performance metrics are saved and
read from MySQL to support �exible queries for analysis and
monitoring. When models instance blobs are queried, the request
�rst goes to MySQL to get the location of the model blob, and
then the model is directly accessed via the storage location. The
cache is updated with the requested blob and then is subsequently
returned to the user.

3.6 Model Performance and Health
When building and maintaining production-grade software sys-
tems, it is standard to de�ne SLAs with consumers to establish
accountability and trust. Typical SLAs for software systems in-
clude availability, latency, and throughput. For machine learning
systems, we also would like to have SLAs on performance. We
de�ne model health as a set of metrics and standards for users to
adhere to in order to guarantee some level of accountability of
models in Gallery.

More speci�cally, we de�ne two categories of metrics to mea-
sure the model health. One category of the metrics is on the
completeness of model information, which consists of metadata
for model reproducibility and model performance. Production
models should contain enough metadata to reproduce the model
and annotate the behavior leading to a decision. Di�erent models
may have di�erent performance metrics. In Gallery, we ensure
that the performance of each model is evaluated and stored for
monitoring and analysis.

The second category of model health metrics provides a holis-
tic view of model performance across model lifecycle stages
including training, validation and production. All model perfor-
mance is agnostic to the system and provided by the applications.

Model training performance is generally available as a by-product
of model training. Model validation performance is produced by
validation processes or backtesting and is used to check for model
over�tting or as a gauge of whether to deploy a model to produc-
tion. Model production performance is measured against served
predictions and re�ects the online performance of a model. The
evaluation criteria for each performance metric is entirely up
to the user and is con�gurable, since di�erent models and ap-
plications optimize for varying outcomes. We store an object of
metrics in Gallery and de�ne the above metrics as guidelines for
users.

With model performance metrics, we can derive various in-
sights about the models in Gallery. The insights can give model
owners a signal on how their model behaves over time, informa-
tion about their serving environment, and establishes a level of
trust between model owners and model consumers. Here are two
examples of insights that Gallery can provide: model drift and
production skew.

Model Dri� . Model drift refers to the case when the statisti-
cal properties of the target variable, which the model is trying
to predict, change over time in unpredictable ways. With real-
time platforms, data changes. Accordingly, if the data we use in
production gradually evolve to have di�erent patterns from the
data we use in the training, we may see the model performance
degrade over time. Considering Uber’s rapid growth in many
markets, this drift can occur and once detected, triggers model
re-training via Gallery rule engine using the new training data.

Production Skew. Production skew is the di�erence between
performance at training time and serving time. Multiple factors
can result in production skew, such as bugs in training or serving
implementation, or discrepancies between training data and data
feeding to model serving. The ability to detect production skew
is critical for model performance monitoring.

3.7 Orchestration Rule Engine
As the number of models and model instances grow in a pro-
duction system, it becomes increasingly di�cult to manually
manage their various states. Therefore, we designed and built a
rule engine in Gallery to orchestrate the model work�ows. Based
on the model metadata, such as deployment con�guration and
various model performance metrics in Gallery, users can de�ne
conditions and actions in rules to automatically move the models
across the stages of the lifecycle, such as model deployment and
serving, monitoring and retraining, and deprecation.

In the following section, we �rst show the basic automations
we need in the model lifecycle stages where the rule engine can
help. Then, we describe our design of the rule engine system and
illustrate how it works with examples.

Model Deployment and Serving Automation. When we gen-
erate model instances through training, we decide whether to
deploy a model instance to production and replace the existing
instance. It is common to have multiple models and instances
deployed in production and use rules to select the best performer
for serving, based on performance metrics generated by evalua-
tion systems. Normally, di�erent applications will have their own
evaluation systems to measure the performance of the models.
For example, in real-time forecasting, we have a heuristic model
which uses the mean value of last 5 minutes as the forecasts.
The heuristic model is stable and consistent, but may not always
produce the best performance. We also have complex forecasting
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models that take in more features, like historical data, into the
prediction, which are generally better performing but may not
perform well when there are unanticipated events not speci�-
cally considered in the modeling. We have a real-time system
to evaluate the performance of the models. Therefore, we can
combine the bene�ts of di�erent models to achieve the overall
best performance by using the model metrics in Gallery to make
decisions. With a rule engine, we can de�ne the model candidates
to consider and the selection criteria for choosing a champion.
At serving time, users will query Gallery for the champion model
to serve based on the user-de�ned rules.

Model Monitoring and Retraining. After we train models and
deploy model instances into production, we need to keep mon-
itoring the performance and alert in cases like model drift, as
discussed in the previous section. At the same time, model perfor-
mance can degrade because the training data we used to �t the
model no longer best represents the production data. Therefore,
we can re-train the model with the latest training data. With a
rule engine, we can set rules to automatically detect model drift,
send out alerts, and trigger model training.

Model Deprecation. Models are not used forever, we may not
always improve the performance of a model by retraining, and
we keep experimenting with new models. When a model consis-
tently performs worse than other models, we should deprecate it
to save computational resources. Users can utilize the rule engine
to de�ne the deprecation criteria based on sustained underper-
formance, and training and serving costs, e.g., training takes too
long or requires a large amount of computational resources. This
precaution allows users to ensure that their production systems
are not being negatively impacted by poorly performing models.
When a model or model instance is deprecated, we would not
delete them from the system, but rather �ag them as deprecated.
With the �ag, we can skip them during model fetching or search-
ing. Any application depending on these deprecated models or
model instances can still use them until the application �nishes
migration to new models.

3.7.1 Rule Engine Design. To satisfy the needs of orchestrat-
ing models across lifecycle stages in production, we identify
three requirements to design the rule engine: rules being easy to
understand, reliable, and agnostic to supporting services.

Making rules easy to understand and safe to update is the �rst
principle. We use the rules to control the production systems for
model deployment and serving. We need to make sure Gallery
users understand the rules and have con�dence updating the rules
to avoid outages due to unexpected rule usage or changes. At the
same time, we need to make sure the system reliably applies the
rules within a reasonable response time (SLA) when the rule is
triggered. The rule engine needs also to be framework-agnostic
so that any model training, monitoring, or serving components
can leverage and integrate with the Gallery.

Based on frequent use cases, Gallery leverages two type of
rules: model selection rules and action rules. Applying a model
selection rule will return a model based on some selection criteria,
e.g., returning the model that maximize AUC (area under curve).
Applying an action rule will trigger some event, e.g., deploying
a model instance. To make the rule engine agnostic to di�erent
frameworks within the machine learning work�ow, we expect
users to de�ne callback functions that will be triggered by the
rule engine. For example, to deploy a real-time forecasting model,
we have one action that automatically makes a con�guration

change, via http request, that updates the version of the model
served to consumers. There are also a default set of common
actions that users can leverage or extend, like sending an email
or alerting.

We use the classical Given/When/Then model to de�ne rules.
More concretely, for “Then” we de�ne two templates: model
selection and callback action. For example, the following rule is
designed for the selection of a forecasting model.

Listing 1: Model Selection Rule Example
{

�team�: �forecasting�,
�uuid�: �316b3ab4-2509-4ea7-8025-ca879dac61�,
�rule�: {

�GIVEN�: modelName ==
�linear_regression�
AND model_domain == �UberX�,

�WHEN�: �metrics[�mae�] <= 5�,
�ENVIRONMENT�: �production�,
�MODEL_SELECTION�:
�a.created_time > b.created_time�

}
}

With this rule, we select the latest trained linear regression model
if the model performance is good, i.e., mae (mean absolute error)
is less than 5. This rule allows the user to automatically fetch the
freshest models and have con�dence that the returned models
are within their accepted error threshold.

The following is an example of an action rule which speci�es:
when we have a new model instance, and if the model perfor-
mance is within a threshold, e.g., forecasting bias less than 0.1
and greater than -0.1, we can deploy the model in production.

Listing 2: Action Rule Example
{

�team�: �forecasting�,
�uuid�: �43057544-92b0-4421-a1b0-d7d87f77a�,
�rule�: {

�GIVEN�: �model_domain == �UberX�
AND model_name == �Random Forest�,

�WHEN�: �metrics.bias <= 0.1
AND metrics.bias > -0.1�,

�CALLBACK_ACTIONS�: [
{

�action�:�forecasting_deployment�
}

],
�ENVIRONMENT�: �production�
}

}

3.7.2 Rule Engine Implementation. We show the overall ar-
chitecture of the Gallery rule engine in Figure 8. For rule storage,
we use a Git repository. To add or update a rule, users need to
check it into Git within their allocated directory. The advantage
of using Git is that we automatically have version control for the
rules, which is critical for a production environment and enables
us to set up a test framework to validate each rule before it can
impact production. With Git, we can also easily enforce the peer
review process for the rules to avoid production outages due to
accidental updates of rules. We use Java Expression Language
(JEXL) [2] to implement the rules.

The rule evaluation implementation is event based and we
currently have two kinds of events to trigger the evaluation of a
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Figure 8: Gallery Rule Engine

rule: 1) directly sending a request to the rule trigger or 2) updating
any metadata or metrics speci�c in a registered rule. Since we
focus on two types of customized rules, we implement the rule
evaluation ourselves instead of using other rule engines. In Figure
8, we demonstrate the work�ow of the rules with two application
clients. Client 1 has a model selection rule and sends the rule
directly to the rule engine trigger via Gallery service. The rule
is �rst placed in the job queue and goes through the evaluation
during which the performance metrics of the related models
are queried from the storage. Then the best model instance is
fetched and returned to Client 1 via a Gallery service based on
the condition in the rule.

Client 2 has an action rule registered in the Git rule repo.
Whenever there is an update of the corresponding metadata or
metric speci�ed in the rule via a Gallery service, the evaluation
of the rule will start and the job is put into evaluation job queue.
If there are any action triggers, then the callback speci�ed in
the rule is executed, e.g., "when a model instance performance
metric mae is less than 0.2, we deploy the model in production."

4 GALLERY IMPLEMENTATION AND
USAGE CASE STUDIES

Gallery was built by the Uber Marketplace team for managing
forecasting models to improve the Uber plaftform. We leverage
the Uber storage infrastructure for saving the model related in-
formation and we built Gallery as a stateless microservice that
includes versioning, dependency management and rule engine in
Java. Gallery was designed and built to be horizontally scalable
across di�erent data centers.

Before Gallery, there was a lot of manual cost and overhead to
manage our forecasting models. For about 100 models, engineers
and data scientists spent 1-2 hours a day manipulating �les on
HDFS and Git, measuring performance and triggering model
retraining. Now, Gallery has been in production for two years
and is supported as part of Uber’s Michelangelo ML platform.
Under Michelangelo, Gallery is managing more than 1 million
model instances for many machine learning applications, and

engineers or data scientists no longer spend time managing �les
and training scripts, but instead are able to spend their energy
on model iteration and experiments.

4.1 Gallery Interface
Gallery users interact with Gallery via a standard set of Thrift
APIs with language-speci�c clients. By using Thrift, users can
access the functionality of Gallery in their ownmodeling environ-
ment and language of their choice (e.g., Jupyter notebook, Spark
application, services build in Java). With the APIs, Gallery users
can manage their models cross the stages of a model lifecycle. In
the following example, we use a Python application example to
show one typical Gallery user work�ow using the basic Gallery
APIs.

���
Train a ML model using SparkML and upload the

model blob to Gallery with model instance
metadata information.

���
# Using a SparlML pipeline to fit a model
model_object = pipeline.fit(train_df)
# Model is serialized to a binary blob
model_content = serialize(model_object)

# Create and upload the trained model instance
with metadata to Gallery.

model = createGalleryModel(project=�example -
project �, base_version_id=�supply_rejection �
)

# Add model instance information
modelInstance = createModelInstance(model)
modelInstance.content = model_content
modelInstance.modelName = �Random Forest �
modelInstance.city = �New York City�
modelInstance.modelType = �SparkML �
modelInstance.trainingDataSet = �...�
modelInstance.trainingDataMetadata = �...�
...

# Update model instance to Gallery
modelInstanceId = uploadModel(project=�example -

project �, base_version_id=�supply_rejection �
, modelInstanceRecord=modelInstance

)

Listing 3: Create and Save Gallery Model

The sample code in Listing 3 shows that we use SparkML to
train a machine learning model and serialize the model into a
binary blob. Then we add the related model instance metadata
information and save the model instance to Gallery.

# Upload a model instance performance metric
modelPerformanceRecord = ModelEvaluationMetric(

metricName=�bias�,
scope=�Validation �,
value =0.05
)

insertModelInstanceMetric(project=�example -
project �, modelInstanceId=modelInstanceId ,
modelPerformanceRecord=
modelPerformanceRecord

)

Listing 4: Save Model Performance Metric
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With the model instance we have trained previously, we keep
track of the model evaluation performance by saving the per-
formance metrics in Gallery as shown in the sample code in
Listing 4. At the same time, if we have one rule similar to what
is shown in Listing 2 registered in the rule Git repository, then
the corresponding model deployment process might be triggered
based on a rule condition. How to automatically deploy model in
production is di�erent for di�erent serving systems and we leave
this part to Gallery users to de�ne their own callback functions.
For example, a realtime forecasting model is deployed in Uber by
updating some con�guration which is continuously monitored
by the forecasting serving system in production.

# Model query with a given performance criteria
searchConstraint = [

{�field �:�projectId �, �operator �:equal ,
�value �:�example -project �},

{�field �:�modelName �, �operator �:equal ,
�value �:�random_forest �},

{�field �:�metricName �, �operator �:equal ,
�value �:�bias�},

{�field �:�metricValue �, �operator �:
smaller_than , �value �:0.25}

]
modelInstance = modelQuery(searchConstraint)

Listing 5: Model Search

We save the related metadata and performance metrics of the
models and model instances in Gallery. Then, we could fetch the
models we want with the conditions as shown in Listing 5.

4.2 Case 1: Marketplace Forecasting
At Uber, the Marketplace Forecasting team generates real-time
and long-term forecasts for multiple applications, including dri-
ver suggestions and pricing [4]. Multiple supply and demand
models have evolved through di�erent model classes ranging
from simple time series models, linear regression models, and
now deep learning models. Each model class is trained and de-
ployed per city Uber operates in. Each city faces di�erent market
dynamics, and classes of models perform di�erently based on
certain spatial or temporal characteristics of the city. Therefore,
the team needs a mechanism to track and train each model’s
performance on a per city basis, and a systematic way to deter-
mine which model class to serve at a given time. As a result,
the Marketplace Forecasting team alone has thousands of model
instances to maintain and decisions to make each minute about
which model to serve. Gallery’s model management solution
with storage and automation via rule engine has reduced model
deployment from two hours of engineering work per model to 0.

Another use case is dynamic model switching for forecasts
when there are events e.g., holidays. Via action rules, Gallery is
able to inform forecasting serving system about the performance
of models that include holiday/event features versus those that
do not, and subsequently switch to serve the appropriate mod-
els for the duration of the event. This improves the accuracy of
the served predictions by more than 10% MAPE (Mean Absolute
Percent Error) compared to a static served model. Furthermore,
Model Health alerts continue to monitor the performance of such
models and can alert engineers regarding issues with predic-
tion accuracy. These alerts have proven useful in the case of un-
planned events (e.g., public transit outages) that cause unexpected
spikes in demand, and gives engineers or ops an opportunity to
intervene and mitigate the performance degradation.

4.3 Case 2: Marketplace Simulation Platform
The Marketplace Simulation platform [5] hosts a simulated world
with driver-partners and riders, mimicking scenarios in the real
world. Leveraging an agent-based discrete event simulator, the
platform allows Uber Marketplace engineers and data scientists
to rapidly prototype and test new features and hypotheses in a
risk-free environment.

Priori to leveraging Gallery, one issue the simulation platform
had is model reusability. ML developers implemented models
directly in the simulator and trained them on the �y as the simu-
lator ran. As a result, the complexity of the system and the wide
array of models being simulated degraded the performance of
the platform.

Gallery became part of the solution by providing the simula-
tion platform with metadata and model binary storage, which
enabled the platform to decouple model training and serving.
O�ine processes can store reusable model instances into Gallery,
and the simulation backend service can instantiate such models
as they’re needed. This decoupling allows model developers to
iterate and evolve their models, independently of the simulator’s
backend, whereas before they need to wait for the entire end-
to-end process each time they trained/updated a model. Once a
model developer is satis�ed with their model, they can store their
model in Gallery, which will signal to the backend service the
presence of a new model. Furthermore, decoupling model train-
ing workloads from the simulator, allowed the Simulation team
to simplify the complexity of the simulator reduce maintenance
costs, conserve hardware resources while improving system e�-
ciency. The Gallery system has saved the simulation platform an
estimated 8GB memory and one hour CPU time per simulation.

5 RELATEDWORK
With the proliferation of Big Data and large-scale computing (e.g.,
MapReduce [16], Apache Spark[31]), several scalable machine
learning platforms [32] have emerged in recent years with the
focus of machine learning training on a large amount of data.
Apache Spark is a general data processing framework. MLlib [20,
23], the machine learning library added to Apache Spark, makes
Apache Spark broadly used for some simple large-scale machine
learning model training. However, for complex machine learning
tasks, especially deep learning [17], which requires state updates
and iteration, parameter server architecture is used for enabling
in-place updates for very large parameters, e.g., Parameter Server
[18], PMLS [30], Google DistBelief [15]. TensorFlow [11] and
MXNet [24] are advanced machine learning frameworks focusing
more on the deep learning problem and can fully utilize di�erent
devices like CPU and GPU.

Managing a large number of machine learning models in pro-
duction is challenging. There is an ever-increasing interest in
the problem and several academic and industry e�orts have been
published. ModelDB [28] is an open source model management
system which provides APIs for saving models and associated
metadata, measuring performance, and querying models. It has a
web-frontend for easy visualization and summary of the model
information. ModelDB also provides clients with the ability to
integrate its model management features with Apache Spark ML
and scikit-learn [25]. However, there is no orchestration of model
training, serving and deployment in ModelDB.

A lightweight system is proposed in [27] to extract, store, and
manage machine learning model metadata. It tracks the prove-
nance information of datasets, models, predictions, evaluations
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Table 1: Model Management System Comparison (Y: Yes, N: No)

Systems Saving Loading Metadata Searching Serving Metrics Orchestration
ModelDB [28] Y Y Y Y N Y N
ModelHUB [21] Y Y Y Y N Y N

Metadata Tracking [27] N N Y Y N Y N
Velox [13] Y Y Y N Y Y Y
Clipper [14] Y Y N N Y Y Y
MLFlow [22] Y Y Y Y Y Y N
TFX [12] Y Y Y N Y Y Y

Azure ML [1] Y Y N N Y N Y
SageMaker [26] Y Y N N Y N Y

Gallery Y Y Y Y N Y Y

and training runs in machine learning experiments. With model
metadata and provenance, the system provides a basis for com-
parability and repeatability of machine learning experiments.
Similar to ModelDB, there is no orchestration of machine learn-
ing stages in this system. This system is focusing on the metadata
associated with model experiments instead of managing the ma-
chine learning models.

ModelHUB [21] was built to manage the lifecycle of deep
learning models. Considering the huge space of potential deep
learning models by tweaking neural network architectures and
hyperparameters, ModelHUB compactly stores a large number
of models and snapshots with fast query performance. It also
keeps track of the model metadata including the model accuracy
score. ModelHUB focuses on deep learning models and is not
framework agnostic.

Velox [13] is a low-latency and large-scale model serving sys-
tem. It focuses on making the model serving e�cient by caching
computation and scaling out model prediction. Velox leverages a
cluster computation framework and incremental model updates
to scale out the model training process. Velox also manages the
model lifecycle by detecting model performance degradation to
trigger model rollback or re-training. However, the project was
deprecated [29].

Clipper [14], the follow-up project of Velox, is a general-purpose
low-latency prediction serving system. It can incorporate mul-
tiple machine learning frameworks including TensorFlow [11],
Apache Spark [31] and scikit-learn [25]. Similar to Velox, it uses
caching, as well as batch and adaptive model selection to improve
model prediction latency and performance. Clipper focuses on
serving models with low latency across di�erent frameworks.

ML�ow [22] is an open source platform under active devel-
opment for managing the machine learning lifecycle. There are
three major components in ML�ow: ML�ow Tracking, which
tracks the experiments results and parameters; ML�ow Project,
which packages the ML code to be easily reproducible; and
MLFlow Model, which provides a standard format for packaging
ML models across di�erent libraries or framework. The same
model could be packed with di�erent �avors such that a model
could be applied in di�erent frameworks, e.g., a TensorFlow
model can be used with TensorFlow �avor or python function
�avor. With this ML�ow Model format, the models can be used
in a variety of downstream tools, e.g., real-time serving through
a REST API or batch inference on Apache Spark. MLFlow also
provides CLI to run the ML�ow models for model deployment.
However, there is no orchestration to coordinate the moving of
models across di�erent stages in a model lifecycle.

TFX [12] is a production-scale machine learning platform for
TensorFlow and it consists of multiple components for machine
learning, including data transformation, model training, model
evaluation, and model serving. With the TensorFlow serving
component [9], TensorFlow models can be deployed and served
in production. However, TensorFlow serving is a not generic
component for managing a variety of machine learning models
using di�erent frameworks. Kube�ow [3] is a project to make
deploying ML work�ows on Kubernetes simple, portable, and
scalable. It started as an open source project from Google that
highlighted how the company ran Tensor�ow internally based
on TFX. Now, Kube�ow has extended to be a multi-architecture,
multi-cloud framework for running entire ML pipelines.

Azure ML [1] is a machine learning platform where we can
process data, build models and publish and stage a predictive
model as an Azure-based service. Similar to Azure ML [1], AWS
SageMaker [26] also provides the functionality to build models,
train models, and deploy models in production. Both Azure ML
and AWS SageMaker are closed systems making single compo-
nent integrations challenging. The model management in Azure
ML and AWS SageMaker is really focused on training a model
and deploying a model in its own system. They are not model
neutral and framework agnostic. Kepler [19] and Taverna [10]
are popular scienti�c work�ow systems which manage complex
data analytics pipelines including data access, data analysis and
mining steps, and many other steps including computationally
intensive jobs on high-performance cluster computers.

We present a feature comparison of di�erent model manage-
ment systems in Table 1.

6 LESSONS LEARNT IN BUILDING GALLERY
6.1 Common ML Tools
Machine learning is becoming the essential component of many
Uber product features. Accordingly, more and more teams at
Uber are using machine learning or beginning to use machine
learning. Di�erent teams might be at di�erent maturity stages of
applying machine learning depending on the team’s experience,
but all of them will go through solving the common issues of
managing the models in a machine learning application. Without
shared common ML infrastructure tools, each team might waste
a lot of resources to “reinvent the wheel.” When we built Gallery,
many teams express the similar needs of Gallery to manage their
models. As a result, we made Gallery part of Uber’s standard ML
infrastructure as part of Michelangelo so that it could bene�t
all the teams at Uber. It also shows the importance of building
common ML tools so that all the product teams can boost their
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productivity by focusing on their own business problems and
model iterations without worrying about how to train, manage
and serve their models.

6.2 Model Reproducibility
Shortly after onboarding the �rst group of users of Gallery, we
observed and learned that one of the more desired features was
model reproducibility. Reproducibility was not one of the original
use cases we had in mind when we built Gallery. Instead, we had
focused directly on performance tracking and alerting. However,
it became clear that a user’s natural follow-up to an alert is to
attempt to reproduce the problem, and it was apparent a model
management system needs to support this functionality. The
original Gallery data model did not include many of the metadata
components included today that led to model reproducibility (e.g.,
training data information, training frameworks and features), but
an important lesson learned is that reproducibility is central to
supporting the ML model lifecycle. Users need the ability to
recreate models or replay history in order to understand their
production �ows and debug performance. Gallery has proven to
be a valuable tool for model builders at Uber in simplifying the
model debugging process.

6.3 Tiered Service O�ering
Another lesson we have learned during the development of
Gallery is how to make user adoption of such tools easy. As
discussed before, there is a wide variety of ML tooling being
used at Uber and teams across the company are working against
their own deadlines with di�erent features in their tech stacks.
Therefore, there would be no single opportunity to ask users to
migrate their work�ows and no central mechanism by which
we could directly onboard them to Gallery. Instead, we opted to
provide a tiered set of features and solutions that teams could
leverage as they had the bandwidth and discovered the need. We
wanted our features to be modular in that users at any point in
their maturity could leverage the system, with the opportunity
to add more complex functionalities in the future.

Gallery features are broken up into four groups that are built
on top of one another: 1) model storage and retrieval; 2) meta-
data storage and search; 3) metric storage and search; and 4)
rule engine automation. As teams start to use Gallery in their
systems, they sequence their onboarding based on the features
and complexity that they need to unlock. For teams exploring
new modeling techniques or building a system from scratch, it is
often the case that they only need feature set 1), and optionally
2). Teams doing experimentation have not yet thought about
automation and only need a place to dump models to rapidly do
more testing. However, once teams have built out a model and
are trying to scale to meet business requirements, they then see
the need for feature sets 3) and 4). By using the base functionality
of data storage and retrieval in their experimentation, there is
only an incremental additional e�ort required to unlock more
complex Gallery features that help to automate entire work�ows.
This approach helped Gallery gain quick adoption among �ve
teams with in its �rst six months.

7 CONCLUSIONS
In this paper, we describe the machine learning model manage-
ment problem across the di�erent stages of a model’s lifecycle
for a large number of models and model instances in production

environments at Uber. We describe the model lifecycle manage-
ment system, Gallery, a solution used in production to manage
machine learning models across di�erent services at Uber.

Design for system automation up front is critical to manage
thousands of machine learning models in production. Developing
and applying machine learning models involves multiple stages
across a model’s lifecycle. Manually managing the models and
model instances in production is not scalable and is error-prone.
Building generic systems to be able collect and keep track of
model and instance information, as well as dependencies is criti-
cal for maintaining accurate production systems. On top of the
raw information, we can produce intelligence. With the help of
rules, we can orchestrate the whole modeling work�ow, which
dramatically boosts data scientists and engineers’ productivity
and also makes the machine learning systems more reliable and
scalable.

Building an agnostic model management system is critical for
adoption and user on-boarding. At Uber, there are a large number
of existing machine learning applications, which often leverage
di�erent languages and frameworks for model development and
serving. Building Gallery to be agnostic to machine learning
frameworks has allowed the system to be adopted by many teams
at Uber and has helped the company to align on a common
infrastructure for the machine learning model management.
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ABSTRACT
Many applications maintain a repository of user profiles with
semantically rich information on each user. Such repositories
have a potential of allowing active opinion procurement: reaching
out to users to ask for their opinions on different topics. An
important desideratum of the procurement process is that it
targets a diverse set of users.

To realize this potential, we present Podium: a first framework,
to our knowledge, that supports the selection of diverse represen-
tatives in presence of high-dimensional, semantically rich user
profiles. We demonstrate that data dimensionality is a challenge
for both defining and achieving diversification. We address these
challenges by proposing a lightweight, flexible notion of diversity
that in turn allows explanations and customization of diversifica-
tion results. We show that the problem of finding an optimally
diverse user subset is intractable, and provide a greedy algorithm
that computes an approximate solution. We have implemented
our solution in a system prototype and tested it on real-world
crowdsourcing platform data. Our experimental results show that
Podium is effective in selecting users with diverse properties, and
in turn that the opinions of these users are diverse according to
multiple metrics.

1 INTRODUCTION
Multiple applications involve active procurement of opinions
from users. Consider, for example, a traveler planning a trip and
looking for specific “tips” on some destination; an owner of a new
restaurant wishing to perform a preliminary customer survey;
or a website manager seeking usability feedback. A recurring
desideratum in such applications is that procured opinions are di-
verse: the restaurant owner may seek users with diverse culinary
preferences who live in a certain region, whereas the website
manager may seek feedback from users with diverse activity his-
tory. Notably, diversity considerations may greatly differ between
scenarios, even if users are selected from the same set.

Platforms such as Yelp1 that have a large user base and high-
dimensional, rich data on each user, provide an opportunity for
procuring opinions from a diverse set of users. Yet, to our knowl-
edge, there is no generic solution for selecting diverse represen-
tative users accounting for high-dimensional user profiles. In
particular, users chosen for opinion procurement should ideally
reflect the full range of user properties as observed in the source
population – e.g., the full range of opinions on different topics,
from positive to negative; the full range of user skills or activity
levels, from low to high; etc. Hence, existing diversification solu-
tions that target the overall accuracy of user answers/relevance
of items and therefore operate by optimizing properties across
multiple axes (e.g., selecting users’ highest skills or activity levels)
are inapplicable in this context, as explained in Section 2.
1Yelp website: https://www.yelp.com
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To this end, we introduce Podium: a novel tool for the procurement
of diverse opinions, utilizing multidimensional user profiles. We
next overview our main contributions.

Model. Our model captures user profiles including both per-
sonal details provided by the users and their past interactions
with the platform. These properties may be associated with a
numeric score (reflecting, e.g., rating) and form high-dimensional
data. We then provide a formal definition of the diverse user selec-
tion problem that is coverage-based [1–4]: i.e., the goal is selecting
a user subset that in some sense represents or “covers” many of
the different, possibly overlapping groups within a source pop-
ulation. This class of diversity notions fits typical scenarios of
opinion procurement (e.g., surveys, market research), in contrast
with distance-based diversity, which focuses on maximizing the
differences between the members of the selected group [4–7]. As
observable from Table 1, our diversity notion fulfills a unique
combination of desiderata that arise at an opinion procurement
scenario. We overview the desiderata and the compared solutions
in Sections 2 and 9. We further propose an operative method for
computing user groups from a repository of profiles, along with
weight functions to prioritize the coverage of these groups, where
the coverage of every group is impossible.

Analysis of the Basic Problem. Based on our model, we develop
a solution to the diverse user selection problem. First, we show
by a reduction from Set Cover that the decision problem corre-
sponding to user selection in our context is NP-complete, and that
finding a user subset of size approximately minimal that covers
all the possible groups is also computationally hard. Moreover, in
a high-dimensional setting, full coverage would typically require
an unrealistically large number of procured opinions. Thus, in-
stead of targeting full coverage and optimizing the subset size, we
bound the size according to some budget and aim to select a user
subset of that size that maximizes the total coverage score, to be
defined in Section 3. Fortunately, a user subset whose coverage
score is within a constant factor of the optimal can be found in
PTIME. We show a simple greedy algorithm that achieves this
bound, explain its data structures and optimizations, analyze its
time complexity and demonstrate its operation on a sample user
repository.

Customization and explanations. The required notion of diver-
sity may vary based on the concrete application and depending
on the multiple dimensions of user data, as exemplified above
with respect to the different needs of a traveler versus restau-
rant owner versus website manager. We thus adopt a lightweight
solution that facilitates interpretation of the results and in turn
allows the clients to interact with the system to customize and
fine-tune user selection. This is achieved through a formal def-
inition of explanations for how the selected subset covers the
population groups and the contribution of each selected user.
We then formally define the semantics of a user feedback that
allows an informed control over the user groups/data dimensions
whose coverage is targeted. We extend our problem definition
and analysis accordingly.
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System Type Range High-Dimension Explanations Customizable

Podium Coverage-based Intrinsic X X X X

Cohen & Yashinski [2] Coverage-based Intrinsic X∗ X

Stratified sampling (e.g., [8]) Coverage-based Intrinsic X X

T-Model [4] Coverage-based Predicted X∗

APM [3], IA-Select [1] Coverage-based Predicted

Yu et Al. [7] Distance-based Intrinsic X ∗∗

S-Model [4], DiRec [5] Distance-based Intrinsic X∗∗∗ X∗∗∗

DivRSci [6] Distance-based Predicted X∗∗∗ X∗∗∗

Table 1: Comparison of selected diversification solutions, according to the aspects discussed in Section 2. A diversity notion
fulfills Range if it can diversify along a range of values (low to high) rather than just among categories, and High-Dimension if every candidate may
be associated with a high number of properties. See Section 9 for more details on these solutions. Remarks: ∗ Can support range coverage on a single
dimension/property. ∗∗ Explanation for item relevance rather than subset diversity. ∗∗∗ Depends on the choice of distance function.

Implementation and experiments. We have implemented our
solution in Podium, a prototype system including back-end imple-
mentation of our diverse user selection algorithm and a front-end
that provides visualizations for our notions of explanations and
user-friendly means of providing customization feedback (see
Figure 1 for its architecture). We use this prototype to examine
our approach over data from large-scale real-life user reposito-
ries. We first study the performance of our approximation algo-
rithm, showing that it is effective in achieving diversity in terms
of the selected user profiles according to the target function it
approximates as well as multiple other diversity metrics. Next,
we simulate opinion procurement using our algorithms (using
ground truth user opinions), and test the diversity of procured
opinions according to different metrics. Finally, scalability tests
support the practicality of our algorithm for real-world data.

Paper Outline. In Section 2we describe andmotivate the desider-
ata from a diversification system in our context. Section 3 presents
our model and basic problem definition, without customization,
and in Section 4 we develop and analyze our solution for this
basic problem. Next, we extend the basic solution to support the
explanation and customization of the selection results in Sec-
tions 5 and 6 respectively. We describe our implementation of
Podium in Section 7 and the experimental study conducted over
it in Section 8. Section 9 discusses related work and we conclude
in Section 10.

2 DESIDERATA
Diversification has been extensively studied in multiple contexts;
we claim that diversification in the concrete context of opinion
procurement has a unique combination of traits, which are not
accounted for by previous work. We compare several representa-
tive previous solutions under the prism of these traits in Table 1.
Next, we explain these features as well as the desiderata of diver-
sification that follow; further detailed comparison with related
work is given in Section 9.

Coverage vs. distance-based. A prominent approach for diver-
sification is to quantify the (dis)similarity between items, and to
then aim at finding items that optimize some aggregate function
over the similarity scores, for instance, maximizing the mini-
mal pairwise distance (e.g., [4–7]). Such an approach is valid in
our setting, yet its sensitivity to skews in group sizes may yield

less meaningful results for real-life datasets, as observed in our
experimental results for the Yelp dataset in Section 8.

When it comes to gathering user opinions, a natural desidera-
tum is that opinions are collected from users that in some sense
faithfully represent the characteristics of the full population.
Such representativeness is targeted by coverage-based approaches
in different selection contexts – e.g., retrieving documents that
cover the topics in a repository, or users that represent prede-
fined groups within a source population (e.g., [1–4]). In contrast
with distance-based approaches, coverage-based approaches can
in particular be agnostic of the similarities within the selected
subset.

We next define the proportionate-allocation user subset.

Definition 2.1. Let G ⊆ P(U) be a set of user groups. A user
subsetU ⊆ U is a proportionate allocation of G if for every д ∈ G,
it holds that

|д ∩U |

|U |
=
|д |

|U|

A user subset for which this definition holds faithfully repre-
sents the source population in the sense that it has a number of
selected representatives from each group that is proportionate to
their number in the population. This trait is used by surveyors in
stratified sampling to guarantee that certain inferences from the
survey are statistically sound (e.g., [8, 9]). For that, surveyors and
domain experts carefully define a small set of non-overlapping
population groups to be represented (in particular, |U | ≥ |G|).
See further discussion on surveys in Section 9.

However, in this work we consider user repositories that of-
ten form a huge number of highly overlapping user groups,
making proportionate allocation infeasible. A user subset of size
|U | << |G| with every group even roughly proportionally rep-
resented is unlikely to exist. We therefore develop, in the fol-
lowing sections, solutions for a relaxed problem formulation, in
particular, aiming to avoid under-representation of groups but
allowing over-representation and prioritizing the coverage of
certain groups over others.

Intrinsic vs. predicted. Intrinsic diversity is computed based
only on known properties (e.g., [2, 4, 5, 7]), whereas predicted
diversity utilizes a function predicting unknown values for each
selected item (e.g., a probabilistic distribution of the answer to
some question) [1, 3, 4, 6]. Thus, predicted diversity notions
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typically optimize an expected target function (e.g., the expected
number of different answers to be obtained).

In opinion procurement scenarios, the intrinsic approach, i.e.,
relying on user profiles rather than prediction of their opinions,
is often preferable. First, the representation of different groups in
the population may be the main client need, regardless of what
their opinions are (e.g., having representatives for as many gen-
ders, age groups, nationalities, etc. as possible). Second, obtaining
a reliable prediction of user opinions may be impractical – at
least as hard as the original opinion procurement task. When this
is the case, users with diverse profiles may provide a good alter-
native, since they are likely to provide relatively diverse opinions
(as demonstrated in our experimental results in Section 7 and
in [4]).

Diversification along a range of opinions. Diversification for
opinion procurement is characterized by the need to diversify
along ranges of property values – for example, one has to represent
the full range of user opinions, from negative to positive; the
full range of user activity or expertise levels, from low to high;
users of all ages; etc. In contrast, diversification solutions that
target the maximization of user skill or item relevance in diverse
categories (as in, e.g., [1, 3]) are not applicable for capturing the
full range of (skill/relevance) values in each category.

Support of high data dimensionality. In large-scale user repos-
itories, each profile may consist of hundreds to thousands of
properties (e.g., up to 2189 properties per user in the TripAdvi-
sor dataset used in Section 8). Using such properties along with
ranges of values associated with them (e.g., frequencies of some
activity from lowest to highest), allows defining a huge number
of meaningful population groups, larger by orders of magnitude
from the number of selected representatives. A practical diver-
sification solution should address this dimensionality problem
either by significantly reducing the number of considered groups
and/or by adopting a diversity notion and implementation that
scale with the problem dimension.

Explanations and customization. Last, we have already noted
(in the Introduction) that there is no one-size-fits-all solution
for diversification and that different clients may have different
diversification needs. To be able to fine-tune the diversification
results, the clients must first be able to understand them - via
some notion of explanations – and then have user-friendly cus-
tomization mechanisms of modifying them according to their
needs. The use of intricate optimization problems and/or interde-
pendencies between selected items, which often makes sense the
context of diversification, as well as the high scale and dimension
make this desideratum nontrivial to achieve. Here, we address
this challenge by adopting a simple diversification notion based
on profile properties, which in turn are human-understandable,
and then explanations and customization pertain to (modifying)
how these properties are represented by the selected subset. (See
Sections 5-6.)

In the following sections we describe our model and algorith-
mic solutions, achieving these desiderata.

3 MODEL
We next describe how user profiles are modeled in our framework.
We then formally define the problem of diverse user selection
with respect to this model.

Property Alice Bob Carol David Eve

livesIn Tokyo(2) NYC(1) Bali(1) Tokyo Paris(1)

ageGroup 50-64(2) – 50-64 – –
avgRating Mexican 0.95(3) 0.3(1) – 0.75 0.8
visitFreq Mexican 0.8(1) 0.25(1) – 0.6(2) 0.45
avgRating CheapEats 0.1(1) 0.9(1) 0.45(2) – 0.6
visitFreq CheapEats 0.6(1) 0.85(1) 0.2(2) – 0.3

Table 2: Example user profiles

3.1 User Profiles
LetU be a population of users and P be some domain of prop-
erty labels. Following [10], we define the profile of a user u ∈
U as a tuple Du = ⟨Pu , Su ⟩ where Pu ⊆ P includes all the
properties known for u and Su : Pu → [0, 1] maps each prop-
erty to a score (normalized to [0, 1]). We use the notation |p | =
|{u ∈ U | p ∈ Pu }|, where U is assumed to be clear from the
context. Property scores may have different interpretations de-
pending on the type of property, e.g., true/false, user rating, and
so on, and may be provided directly byu or automatically derived
from u’s activity in the website.

Example 3.1. Table 2 shows a few profiles from a travel web-
site (for now, ignore the numbers in superscript). In the first
two rows, livesIn <city> and ageGroup <X-Y> are true/false
properties for relevant cities and age ranges. E.g., livesIn Tokyo
is a property with score 1 (i.e., true) in Alice’s profile. The third
and fifth rows show scores that reflect the user average ratings
for different types of restaurants, normalized to [0, 1]. Not every
property is recorded for every user, e.g., Carol has never rated
Mexican food. The fourth and sixth rows show scores reflecting
the relative frequency that each of the users visits different types
of restaurants.

In practice, user profiles may contain many properties – e.g.,
we have constructed from TripAdvisor2 a user repository with
up to 665 properties per user (Section 7). This is due to various
activities of a user in the system (e.g., providing opinions about
many destinations, each with many different features), due to
various types of analysis performed over the data (e.g., one can
compute the average rating, maximum rating. . . ) and so on.

Using taxonomies to enrich profiles. To allow for an informed
selection of users based on their profiles, these profiles should be
as complete as possible. To this end, we perform a preprocessing
step and apply inference rules on Boolean properties or on the raw
data from which properties are derived. Such inference rules can
be pre-specified as in RDF languages [11, 12] or derived via rule
mining techniques [13]. A particularly useful type of inference
rules is generalization rules, as exemplified next.

Example 3.2. The property avgRating Mexican in Table 2 is
derived by averaging over the ratings given by each user to restau-
rants labelled as “Mexican Cuisine”. On this raw data, we can
apply a generalization rule if we know, e.g., by a cuisine taxon-
omy, that Mexican cuisine is a particular type of Latin cuisine.
This will enable us to derive properties such as avgRating Latin
for existing user profiles.

As another example, if livesIn is known to be a function,
i.e., each person can only have one residence location in our
repository, we can infer the falsehood of residence locations other

2TripAdvisor website: https://www.tripadvisor.com
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than the one specified. Thus, by SAlice(livesIn Tokyo) = 1 we
can infer that SAlice(livesIn X) = 0 for every X,Tokyo.

Having inferred all possible properties, we consider all other
properties by the open world assumption: missing properties may
be either false or true. For instance, if no frequency of visiting
Mexican restaurants is known for Carol, this does not mean she
has not been to such restaurants.

3.2 Weight-based Diversification
We next define a generic, weight-based approach to coverage-
based diversification. We exemplify different choices of weights
and show their usefulness for capturing user selection strategies.

Definition 3.3. A diversification instance is a tuple (G,wei, cov)
where G ⊆ 2U is a set of (possibly overlapping) user groups of
interest, wei : G→R+ captures the weight of each group, and
cov : G →N captures the number of users required so that a
group is said to be covered.

Given a diversification instance and a selected user set U ⊆
U, we define the score of U as scoreG(U ) =

∑
G ∈G wei(G) ·

min{|U ∩G | , cov(G)}.
Finally, given a diversification instance and a budget B ∈ N,

we define BASE-DIVERSITY as the problem of finding a subset
U ⊆ U such that |U | ≤ B and scoreG(U ) is maximized.

Note that if groups in G are overlapping, each user may con-
tribute multiple group weights to the total score. This definition
accounts for diverse subset selection in the sense that the score
increases as more groups in G have (more) representatives in U .
Excessive representation (|U ∩G | > cov(G)) is not rewarded but
also not penalized.

The problem is defined in a generic way with the diversifica-
tion instance given as input. We next discuss and exemplify the
three parts of this instance.

Groups. Our diversification solution can support any set of
groups input by the client, including manually crafted groups as
typically defined by surveyors [8, 9].

To support large-scale, high-dimensional user repositories
we develop here a concrete group definition that is efficiently
computable for such repositories on the one hand, and effective
in identifying meaningful groups for diversification on the other
hand. Recall that user profiles comprise of properties from P
with scores in [0, 1].

Definition 3.4. Let p ∈ P be a property and b ⊆ [0, 1] be a
(continuous) range of scores. A simple user group is the subset of
users whose score for p falls in b, formally,

Gp,b B {u ∈ U | Du = ⟨Pu , Su ⟩ ∧ p ∈ Pu ∧ Su (p) ∈ b}

For the ranges of scores, we split the range of scores of each
property p ∈ P into a set of non-overlapping buckets β(p). The
rationale is, e.g., to group Mexican food lovers and dislikers sep-
arately. The computation of β(p) is done by partitioning the 1-d
data into intervals (clusters). There are several methods for 1-d
interval splitting that are more effective than general clustering
since the data is ordered (e.g., Jenks optimization [14], K-means,
Expectation Maximization and by kernel density).

Simple user groups can be used to define more complex ones
as the intersection or union of a few simple groups.

We note that the simplicity of our group definition is key for
allowing explanations (see Section 5). There are more complex
alternatives to splitting ranges into groups, such as multidimen-
sional clustering (in our case, over multiple properties); however,

these generally do not facilitate explainability. For instance, mul-
tidimensional clusters have no intuitive “label" or meaning.

Example 3.5. Reconsider Table 2. Letp be the property livesIn
Tokyo and b = [1, 1]; then Gp,b = {Alice, David} (group of
“Tokyo residents”). Let p′ be the property avgRating Mexican
and b ′ = (0.65, 1]; then Gp′,b′ = {Alice, David, Eve} (group of
“Mexican food lovers”). One can also define, e.g.,Gp,b ∩Gp′,b′ =

{Alice,David} (“Tokyo Residents who are also Mexican food
lovers”).

Our default definition of G consists only of simple groups,
and we examine its effectiveness in Section 8. In particular, we
empirically show that this approach also implicitly accounts for
more complex groups in the population (such as ‘Tokyo Residents
who are also Mexican food lovers” from the example above).

Group functions. Similarly to group definition, the groupweights
(wei) and cover sizes (cov) functions can in principle be manu-
ally tailored for a specific domain and diversification context.
As a more practical alternative, we next propose a few general-
purpose choices, which can be fine-tuned by clients via our cus-
tomization mechanism (see Section 6).

Definition 3.6. Weights are used to prioritize groups. The fol-
lowing are three examples of wei(G):
• Identical Group Importance (Iden): wei(G) B 1 (constant func-

tion).
• Group Importance Linearly By Size (LBS): wei(G) B |G |.
• Group Importance Enforced By Size (EBS): define ord(·) as an
ordering of the groups from smallest to largest, 3 then define
wei(G) B (|U | + 1)ord(G)

Iden is the most “diverse” choice in the sense that it does not
distinguish between groups, which by our problem definition
will maximize the number of groups that are covered. However,
in cases where only a small fraction of the groups can be rep-
resented/covered, one may choose to prioritize certain groups –
e.g., large groups. Using LBS, the group importance is linear with
its size, thus, e.g., the total weight of two groups of size X equals
the weight of one group of size 2X . This roughly corresponds to
maximizing the number of groups represented per user. In EBS
group importance by size is enforced, meaning that representing
larger groups is always preferred over smaller ones. The latter
requirement may apply to some diversification contexts, e.g., po-
litical surveys may aim to have at least one representative for
each of the largest population groups.

Definition 3.7. The coverage function cov(G) is used to guide
how many users will be selected from each group. Examples
include
• Single Representative (Single): cov(G) B 1 (constant function).
• Proportional Representation (Prop): cov(G) B max{⌊ |U | · |G |/|U|⌋, 1}
where |U | is the size of the subset to be selected.

Here, Single is the most “diverse” definition in the sense that
it requires only one representative from a group to consider
it covered. In contrast, Prop rewards a representation that is
proportional to the group size in the population.

We next exemplify the effect of using different functions on
the resulting user choices.

Example 3.8. Reconsider the user profiles in Table 2 and as-
sume that we define, for each property, three groups of users:
3Ties, i.e., groups of equal size, are broken arbitrarily.
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those with scores in [0.65, 1] (“high”), in [0.4, 0.65) (”medium”)
and in [0, 0.4) (“low”). The numbers in superscript at the table
show the weights according to LBS – i.e., number of users – on
the first user of each group. E.g., the only group with 3 users is
avgRating Mexican high. The diverse user subset of size 2 that
would be selected is {Alice, Eve} with total score 17. Single and
Prop behave similarly here, and EBS would yield the same result
with different scores. If instead we use Iden, then {Alice, Bob} will
be selected with total score 11 (number of represented groups).
This exemplifies the tendency of Iden to select more eccentric
users, in this case Bob who is the only member of his groups,
where LBS and EBS prioritize representatives of larger groups,
in this case leading to a larger overlap (Alice and Eve are both
Mexican food lovers).

Having defined our model, we next address the computational
problem of BASE-DIVERSITY.

4 SOLVING BASE-DIVERSITY
We next consider the computation of a diverse subset of users
according to Def. 3.3 of the BASE-DIVERSITY problem. We start
by analyzing the complexity of the problem.

Unsurprisingly, we show that achieving an optimal solution
is intractable in the subset size B unless P = NP, even for simple
weight functions and even without customization. The decision
problem DEC-DIVERSITY corresponding to BASE-DIVERSITY is
that of the existence of a subsetU with |U | ≤ B such that the sum
of (customized) weights of covered groups exceeds a thresholdT .
We can then show:

Proposition 4.1. DEC-DIVERSITY is NP-complete in B.

Proof. Membership is immediate, since computing the total
weight of a given user subset is in PTIME.

Hardness is proved by a reduction from Set Cover: Given a
universe {1 . . .N }, a set of subsets {S1, . . . , Sm } and an integer k ,
we define B = k , G = {G1, . . . ,GN } andU = {u1, . . . ,um }, such
that iff i ∈ Sj , then uj ∈ Gi . Finally, we set T =

∑
G ∈G wei(G) ·

min{cov(G) ,B}, where wei(G) can be any legal function and we
set cov(G) as the constant function 1 (Single, as we need only one
set to cover each element). Since T is the maximum total score
achievable, by covering every group in G, it will be achieved by
and only by a user subset that corresponds to a Set Cover. �

Approximate solution. The reduction from Set Cover implies
not only the intractability of an exact solution but also of a
constant-factor approximation in terms of the size of the covering
group. To formalize this, given an instance of BASE-DIVERSITY
and a threshold scoreT , let opt(T ) be the minimal size of a subset
U ⊆ U whose score exceeds T . We then have, based on [15]
inapproximability result for set cover:

Proposition 4.2. Assuming P , NP , there is no PTIME algo-
rithm for BASE-DIVERSITY that given a threshold score T , finds a
user subsetU of size (1−O(1))·ln(|G|)·opt(T )with scoreG(U ) ≥ T .

Fortunately, this does not exclude the possibility of approxi-
mation in the second axis, namely achieving a near-optimal score
while conforming to the given budget. Indeed, a simple greedy
algorithm achieves a constant approximation ratio in this sense.

Algorithm 1 outlines this greedy selection. Its input is a repos-
itory of users, a bound B on the number of users and a diversifi-
cation instance (groups, weight function and coverage function).
The algorithm starts by initializing an emptyU (line 1) and com-
puting, for each user the value margu ,U , which stands for the

Algorithm 1: Greedy User Selection
Input: U, B , G, wei , cov
Output: U (a set of ≤ B users)

1 U ← ∅;
2 foreach u ∈ U do margu ,U ←

∑
G∈G|u∈G wei(G) ;

3 for i ∈ 1..B do
4 if U is empty then break;
5 maxUser← argmaxu∈U margu ,U ;
6 U ← U ∪ {maxUser}, U ← U − {maxUser};
7 foreach Group G such that maxUser ∈ G and cov(G) > 0

do
8 cov(G) ← cov(G) − 1;
9 if cov(G) = 0 then
10 foreach u ∈ G do margu ,U ← margu ,U −wei(G);

11 return U

potential marginal contribution of u to the total score if added
toU (line 2). The algorithm then iteratively selects B users. Unless
U is empty (line 4), the usermaxUser with the greatest marginal
contribution is selected (line 5) and moved fromU toU (line 6).
For each group G covered by maxUser, its required coverage
cov(G) decreases by 1 (line 8), and if no more representatives are
required to cover G (cov(G) = 0) then G should have no effect
on the selection of the following users. We thus, subtract wei(G)
from the marginal contribution of its other members (line 10).
After B iterations (or earlier, if |U| < B) the algorithm returnsU .

Data Structures. For efficiency, we represent both the groups
and the users as lists, each group G ∈ G with its current wei(G)
and cov(G) values, and each user u ∈ U with margu ,U . We fur-
ther keep links in both directions between the lists, from groups
to their members and vice versa. Whenever we (re)compute
margu ,U we can remove the links from the user to groups with
weight 0 or coverage size 0, which are not (or no longer) relevant
for the user selection, to improve the performance of subsequent
computations.

Example 4.3. We next exemplify the execution of Algorithm 1
for the user selection scenario in Example 3.8, using LBS and
Single. After executing line 2 the marginal contributions of Alice,
Bob, Carol, David and Eve, namely, the sum of weights of their
properties, are 10, 5, 7, 6 and 10 respectively. Assume that at the
first iteration of the external loop Alice is chosen and removed
fromU toU (ties are arbitrarily broken; in this example, select-
ing Eve happens to lead to the same output). Then the coverage
of each of Alice’s groups is set to 0. For each such update, the
marginal contribution of other members of the groups is reduced:
first, the contribution of David is reduced by 2 due to the livesIn
Tokyo group; next, the contributions of David and Eve are re-
duced by 3 due to the avgRating Mexican high group; and so
on. At the end of the first iteration, the contributions of Carol,
David and Eve are updated to 5, 2 and 7 respectively. Thus, Eve is
chosen at the next iteration, and {Alice, Eve} would be the output,
which in this case is also the optimal solution.

Proposition 4.4. Algorithm 1 computes a (1−1/e)-approximation
of BASE-DIVERSITY, i.e. achieves a score that within a multiplica-
tive factor of at least ≥ (1−1/e) of the optimal for the given budget,
in time O(B ·maxG ∈G |G | ·maxu ∈U |{G ′ ∈ G | u ∈ G ′}|).

Proof. The complexity of Algorithm 1 is O(B · |U| · |G|) due
to the updates of the marginal user contributions (line 10). This
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line is nested within three loops. The loop line 3 repeats O(B)
times, the loop at line 7 repeats O(maxu ∈U |{G ′ ∈ G | u ∈ G ′}|)
times, namely, bounded by the maximal number of groups per
user, and the innermost loop (line 10) repeats atmostO(maxG ∈G |G |)
times, namely, bounded by the size of the largest group. We as-
sume constant complexity for arithmetic computations and for
getting the next group of a given user/next user of a given group
(as links in both directions are maintained).

As for the approximation ratio, observe that the score function
satisfy the following properties regardless of the choice of wei ,
cov :
• Submodularity. For any U ⊆ U ′ ⊆ U and u ∈ U we have

scoreG(U ∪ {u})−scoreG(U ) ≥ scoreG(U ′ ∪ {u})−scoreG(U ′).
• Non-negativity. scoreG(·) > 0 since wei(G) and cov(G) are

positive.
• Monotonicity. IfU ⊆ U ′ then scoreG(U ) ≤ scoreG(U ′).
• Bounded input. The size of a selected subset is bounded by B.

For such functions, a greedy algorithm that iteratively adds one
useru to the selected subsetU so as tomaximize scoreG(U ∪ {u})
is known to guarantee the stated approximation ratio [16]. �

Clearly,maxG ∈G |G | = O(|U|) andmaxu ∈U |{G ′ ∈ G | u ∈ G ′}| =
O(|G|). If we use only simple groups, the complexity bound of
Prop. 4.4may be simplywritten asO(B ·maxG ∈G |G | ·maxu ∈U |Pu |).

5 EXPLANATIONS
We have proposed a simple generic framework for diverse user
selection. We next consider notions of explanations of the diversi-
fication results, allowing clients to understand why certain users
were selected and how certain groups were covered. This, in turn
will enable the clients to use customization (see the next section)
to refine these results.

Recall first that we have defined user profiles based on support
values with respect to properties. We will use the set of property
names in P to define labels; in practice, this entails that we will
keep them in a human-readable form, and their combination will
be used in presented explanations.

We further introduce labeling to simple groups, as follows.
Each bucket is given a label, e.g. “low scores”, “medium scores”
and “high scores”. Then, the label Gp,b of each group can be con-
structed from the property name p and the label corresponding
to the bucket b, e.g., “high scores for Mexican cuisine (average
rating)”.

We then define the notion of explanation to be presented to the
client alongside the computed user subsets. Such explanations
may be practically shown to users by visual means (see Section 7).

Definition 5.1. We introduce three types of explanations.
• Group explanations. LetG ∈ G be a group labeled lG , we define
its explanation as expl(д) = ⟨lG ,wei(G) , cov(G)⟩, namely the
property and bucket that defines it, along with its weight and
required coverage.
• User explanation.The explanation of a selected useru ∈ U ⊆ U
is defined as expl(u) = {G ∈ G | u ∈ G}, namely, the groups
which u represents.
• Subset-group explanation. LetU ⊆ U and G ∈ G be a selected
user subset and a group. The explanation of howU covers G
is the pair ⟨cov(G) , |U ∩G |⟩, which represents the required
versus actual coverage.

These explanations are complementary in the sense that they
provide intuition about different aspects of the diverse selection:

respectively, of the group meaning and importance; of why a
given user was selected; and on how the selected user subset, as
a whole, covers a certain group.

Example 5.2. Reconsider the selection of {Alice, Eve} in Ex-
ample 3.8 in our running example. Assume that each property
is given a human readable label, and we are further given la-
bels for the buckets of Boolean properties and properties with a
score. Group explanations may then be ⟨“high average rating for
Mexican Cuisine”, 3, 1⟩, since the weight of this group reflects its
size, 3, and we use Single – one user to cover each group. “High”
is the label of the bucket in range (0, 65, 1]. Similarly, we may
have ⟨“lives in Tokyo”, 2, 1⟩, where the label of the bucket [1, 1] is
empty for Boolean properties, and “lives in Tokyo” is the property
label. Next, an explanation for Alice would be the groups she
represents, “high average rating for Mexican Cuisine”, “lives in
Tokyo” and so on. The explanation for {Alice, Eve} with respect
to the former group would be ⟨1, 2⟩, meaning both selected users
belong to this group, exceeding the required coverage.

6 CUSTOMIZATION
Given the user selection results and their explanations, clients
may fine-tune the algorithms if the results do not fit their needs.
Specifically, we introduce customization at the level of individual
groups (which, in a sense, correspond to the granularity of expla-
nations that are shown). This customization is applied “on top”
of the high-level decisions of how weights are assigned, which
would typically not be made at the group level.

Definition 6.1. A customization feedback of the user is com-
posed of four subsets of G.
• G+ : “must have” groups, each selected user must belong to

all of them.
• G– : “must not” groups, each selected user must belong to

none of them.
• Gd : “priority coverage” groups, whose coverage is prioritized

over others.
• Gd? : “standard coverage” groups, whose coverage is of a lower

priority with respect to the priority coverage groups.

Intuitively, the first two types of feedback serve to filter the
repository of users. To avoid contradictions, if G+ contains more
than one bucket of some property p, users need only belong to
one of them. By default, G+ = G– = ∅. The priority and standard
coverage group definitions allow to prioritize the coverage of
certain groups, or completely ignore them in terms of coverage
(groups in G − (Gd ∪ Gd?)). By default, Gd = ∅ and Gd? = G.

Example 6.2. Assume that for a particular application, the
client prefers users from diverse locations and who are famil-
iar with Mexican food. This may be captured by the following
customization feedback:
• The “must have” groups consists of the three buckets of
AvgRating Mexican, thereby requiring that the selected
users have provided some rating for some Mexican restau-
rant.
• The “priority coverage” groups Gd consists of the multiple
livesIn <city> properties.
• Finally, G– = ∅ and Gd? = G − Gd .

We will demonstrate below how these choices guide user se-
lection.

The effect of a customization feedback on the chosen groups
is formalized as follows.
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Definition 6.3. Given a customization feedback G+,G–,Gd
and Gd?, define the refined set of users as

U ′ ={u ∈ U | ∀Gp,b ∈ G+, ∃b
′ ∈ β(p) : u ∈ Gp,b′ ∧Gp,b′ ∈ G+}

∩ {u ∈ U | ∀Gp,b ∈ G– : u < Gp,b }

The customized diversity problem CUSTOM-DIVERSITY is then
to select new subset U ⊆ U ′, of size ≤ B, that maximizes
scoreGd (U ), namely, the sum of weights over covered groups
from Gd , breaking ties by scoreGd? (U ).

Example 6.4. Reconsider the problem of selecting a user subset
of size 2 from Example 3.8.We now incorporate the customization
feedback of Example 6.2. The refined user set will exclude Carol
who did not rate Mexican food. The best user subsets using Single
and LBS functions is still {Alice, Eve}: first, it maximizes the
sum of weights over livesIn <city> properties (to 3). Among
other subsets that achieve this maximum (e.g., {Alice, Bob}), the
selected subset further maximizes the sum of weights over other
properties (to 14). Note that a different customization feedback
would yield a different result; e.g., if we set Gd? = ∅ then any
subset maximizing the sum of weights over livesIn <city>
properties may be selected.

Results revisited. CUSTOM-DIVERSITY is NP-complete, as an
easy consequence of the NP-completeness of BASE-DIVERSITY.
Further, the counterpart of Proposition 4.4 holds:

Proposition 6.5. CUSTOM-DIVERSITY may be approximated
within a multiplicative factor of at least (1 − 1/e) in time
O(B ·maxG ∈G |G | ·maxu ∈U′ |{G ′ ∈ G | u ∈ G ′}|)

Proof. The approximation algorithm is an adaptation of Al-
gorithm 1 to account for customization feedback, as follows.

We first change the weights of the total score function to
simulate a primary order by “priority coverage” groups and sec-
ondary order by “standard coverage” groups. The �score(U ) =
scoreGd (U ) ·MAX-SCORE+ scoreGd?(U )whereMAX-SCORE is
a value greater than the maximum value of scoreGd?(U ).

It now holds that:

Lemma 6.6. The �score(U ) function is submodular, non-negative
and monotone.

We further refine the user repository to beU ′ of Definition
6.3, by filtering out user profiles that do not satisfy the conditions.

Last, we change Algorithm 1 so that instead of greedily se-
lecting fromU based on scoreG(U ), it selects fromU ′ based on�score(U ). Following Lemma 6.6, the refined algorithm satisfies
the approximation guarantees.

�

Figure 2: Screenshot of Podium UI: selection explanation

Explanations. The explanations defined in Section 5 can also
be used for explaining customized results. The set of users and
weights of groupsmay be different; in particular priority coverage
groups will have a higher weight indicating a higher priority.
Clients may not be able to interpret the values of weights, but they
will be able to compare weights between groups to understand
their relative importance.

7 IMPLEMENTATION
We developed Podium as a prototype system, implemented in
Python using Flask4. Its architecture is depicted in Figure 1. The
input to Podium is a set of user profiles, as explained in Section 3.1,
in JSON format. Given a set of user profiles, the Grouping Module
computes the bucketing of properties and the weights of groups
in an offline process. Podium also allows an administrator to feed
in an initial set of diversification configurations with associated
textual descriptions.

The Graphical User Interface of Podium was created using
AngularJS 1.6.45. Given a user selection request, the Selection
Module executes the user selection algorithm and returns the
selected subset and its explanations to the client via the Visu-
alization module. Figure 2 shows the explanation page for the
initial configuration titled “Summer Pavilion”, which only consid-
ers properties related to a restaurant in that name. The labels of
the groups in this page are taken from the group explanations of
Def. 5.1. The left pane displays the names of selected users, along
with the top-weight groups that were covered by each (corre-
sponding to user explanations of Def. 5.1). The middle pane uses
the subset-group explanations of Def. 5.1 to show the percentage
of top-weight relevant groups covered by the selected subset (in
this case, 97%). The list of groups, ordered by decreasing weight,
is displayed below with covered groups in green and the oth-
ers in red.6 When clicking any group, the right pane displays a
graph comparing the score distribution for the relevant property
between the entire population and the selected subset (in Fig-
ure 2 the distributions are almost identical). Users can browse
the different groups and refine the selection by adding groups to
G+ and G- (“Selected users must / not have this property”); and
to Gd and Gd? (“Do not / diversify on this property”).

8 EXPERIMENTAL STUDY
We have examined the performance of our system, first, by eval-
uating the intrinsic diversity of the selected subset, i.e., how well
it represents the source population (as explained in Section 2,
proportional allocation is generally impossible in our setting).
While an intrinsically diverse subset is sufficient in some user
selection scenarios, in others one cares also for the eventual di-
versity of procured opinions. In order to examine this aspect, we

4Flask. http://flask.pocoo.org
5AngularJS. https://angularjs.org
6For space constraints, some group names in Figure 2 are truncated.
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have selected datasets with known ground truth, i.e., where user
opinions are already recorded. We have used these to simulate
opinion procurement from the selected user subset and evaluate
the diversity of collected opinions.

8.1 Datasets
The datasets used in our experimental study are real-world user
repositories, focusing on the domain of restaurant reviews. The
raw data is pre-processed to obtain aggregated scores for different
categories based on user activity, as explained below.

The first dataset that we use consists of a sample of TripAd-
visor [17] restaurant reviews data. This dataset contains data
from 4475 users reviewing a total of 50K restaurants, and 11749
different groups. The raw data contains both user submitted data
(e.g. age, residence) and user activity data (e.g. visited destina-
tions), pre-processed and enriched as explained in Section 3.1, to
generalize, e.g., Mexican cuisine to Latin cuisine.

The second dataset is the Yelp Open Dataset [18], which con-
tains businesses, reviews, and user data for use in academic pur-
poses. In our experiments we have used a subset of the data:
for compatibility with the TripAdvisor dataset we used only
restaurant-related data and took the 60K users with most reviews
– reviewing a total of 52K restaurants and forming 8491 differ-
ent groups. This limit was used in our qualitative experiments
(see Section 8.4) due to memory limitations of some of the other
baselines – recall that each user belongs to many groups. In com-
parison with the TripAdvisor dataset, the Yelp dataset has more
users, but less groups due to its simpler semantics.

The datasets include two types of properties: ones that ap-
peared explicitly in the original data, such as age and address;
and ones that we have derived based on aggregation of user
activities, as follows.
• Average Rating. The average rating given by a user to
restaurants of a certain category (e.g. French cuisine), nor-
malized by the overall average rating of that user.
• Visit Frequency. The fraction, among all the restaurants
visited by a user, of restaurants from a certain category.
• Enthusiasm Level. A combination of rating and visit fre-
quency, computed as the fraction of rating points given
by the user to restaurants of a certain category.

8.2 Metrics
We next introduce metrics for algorithm performance, in three
categories. Intrinsic diversitymetrics are computed from the known
properties of the selected user subset.Opinion diversitymetrics are
computed from opinions of the user subset, which are unknown
to the user selection algorithms as explained in the beginning of
this section. Finally, we evaluate the scalability of the algorithms.

Intrinsic diversity metrics. We consider a few complementary
metrics, including our definition of total score – since our algo-
rithm only approximates its optimal value – but also metrics of
coverage that are not targeted directly by Podium.
• Selection total Score. According to Def. 3.3. We focus on
the LBS weights and Single coverage functions, which our
algorithm aims to approximate. This score can give us
an intuition about alternative algorithms, since it reflects
the number of groups and users within them that are
represented by the subset.
• Top-k groups coverage. There are thousands of groups
within the source population, which cannot be covered

even by one representative in a small selected subset. We
consider whether the top-k largest groups have selected
representatives. In our experiments we have set k = 200.
• Intersected-Property Coverage. This metric is similar to the
previous one, but now we consider intersections of simple
groups that are at least as large as the k-th largest simple
group.
• Distribution Similarity. This metric examines the similarity
of user distribution between the source population and
the selected subset, according to Def. 8.1 below.

The last metric aims at testing whether the number of repre-
sentatives selected for groups is proportional to their number
in the population, even if the coverage size is Single. Intuitively,
our algorithm is likely to choose more representatives for larger
groups without targeting it explicitly. However, standard distribu-
tion similarity metrics (such as Kolmogorov-Smirnov goodness
of fit test) are not adequate for this purpose: to enhance cover-
age, small groups must be over-represented. We therefore define
a distribution similarity metric that only taxes the selected user
subset for under-representation of groups.

Definition 8.1. Let B = b1, . . . ,bk be a discrete set of values.
Let fsubset, fall : B→[0, 1] be two functions over B, intuitively ap-
plied to the entire population and the selected subset respectively.
We define the coverage-oriented distribution similarity (CD-sim,
for short), as cd-sim(fsubset, fall) =

1 −
1
k

∑
fsubset(bi )<fall(bi )

(fall(bi ) − fsubset(bi ))

fall(bi )

Note that this definition sums only over values of the do-
main for which the subset (fsubset) returns a lower result than
the full population (fall), corresponding to under-representation.
Normalizing by the size of the full population guarantees that
under-representations of larger groups are preferred, since the
relative tax each missing user incurs is smaller.

For the group bucket distribution similarity, for a given prop-
erty p ∈ P, we set B = β(p) (i.e., the set of buckets computed for

p) and for b ∈ β(p), we define fall(b) 7→
wei(Gp ,b )∑

b′∈β (p) wei
(
Gp ,b′

) (the

fraction of theweight that falls in theb bucket, which corresponds
to the fraction of the users that belongs to this group). Similarly,

we define fsubset(b) 7→
wei(Gp ,b∩U )∑

b′∈β (p) wei
(
Gp ,b′∩U

) for a selected subset
U ⊆ U. For the overall distribution score, we average CD-sim
for the top-20 largest groups.

Example 8.2. An example user distribution for the property
“Mexican Food Average Rating” could be [0.23,0.4,0.37], meaning
23% of the population rate Mexican food poorly, etc. A selection
distribution of [0.4,0.5,0.1] would receive a CD-sim score of 0.76,
reflecting a penalty solely for the under-representation of the
third sub-group, and not for the over-representation of the others.

Diverse opinion metrics. Thus far, the diversity metrics we
considered were defined over user profiles. We next introduce
metrics that consider the diversity of procured opinions. For
that, we split the data into profiles used for selection, and data
that simulates the procured opinions. For instance, we can select
users from TripAdvisor based on their profiles excluding the
data related to some destination, then evaluate diversity of the
selected subset reviews on the excluded destination.

Tomeasure diversity of opinions we have used complementary
metrics that relate to the rating provided by the selected subset
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and their reviews’ contents. Importantly, user opinions range
not only over sentiment (positive or negative), but also over the
facets that interest them with respect to the object in review.
• Topic+Sentiment Coverage. We measure content coverage
using a list of prevalent topics extracted by TripAdvisor
from each destination’s reviews. We measure the fraction
of topics that appear in the selected subset reviews.We also
consider the review sentiment, such that 100% coverage
means every topic appears in both a positive and a negative
review.
• Usefulness. Available only for Yelp dataset, based on user
feedback to reviews. A review is more useful when it is
well-written, but also when a larger group of users agree or
can relate to its contents. In this sense, the review is more
likely to represent the opinions of large population groups,
which is what we target in coverage-based diversity. We
compute this metric by summing over individual reviews
usefulness levels.
• Rating Distribution Similarity. Reusing our distribution
similarity metric CD-sim, we measure the similarity in rat-
ing distribution between the selected subset and the entire
population. For a given destination we set B = {1, . . . ,k}
(i.e., the set of possible rating values) and for i ∈ {1, . . . ,k},
let Ri ⊆ U be the set of users that gave this destination
a rating of i . We define fall(i) 7→

|Ri |∑k
j=1 |Rj |

. Similarly, for a

selected subsetU ⊆ U we define fsubset(i) 7→
|Ri∩U |∑k
j=1 |Rj∩U |

• Rating variance. Variance of the rating given by the se-
lected subset to a given destination.

All of the above metrics are defined per destination, to obtain
an overall score we average over all destinations.

Scalability. We have tested the system execution times and
scalability with respect to the number of users and profile size.

8.3 Baselines
We consider the following alternatives algorithms for diverse
user selection.
• Podium. Our implementation as described above. By de-
fault, we use no customization feedback, LBS weights
(Def. 3.6), the Single coverage function (Def. 3.7) and a
budget B = 8, which also applies to the other baselines.
• Random Selection. An algorithm that selects a subset of
the users uniformly at random. This method is a common
practice in user selection for opinion procurement in the
context of e.g. surveys, and under certain conditions there
are reasons to assume the selected set of users is likely
to be diverse. However, it has already been observed that
explicitly managing diversity is often helpful in improving
the results [4], which we will demonstrate in our setting.
• Clustering. Splitting the entire user repository into clus-
ters, and choosing one representative from each – assum-
ing each cluster represents a community. This approach
has an inherent drawback as the clusters may have no
intuitive explanation or customization; yet here we com-
pare its performance to ours on other metrics. There are
many options for clustering algorithms and representa-
tive choice. We have tested several options and show here
one generally practical choice: computing B clusters us-
ing k-means (Scikit-Learn implementation7), then taking

7Scikit-Learn. http://scikit-learn.org

the near-mean user as the representative per cluster. k-
means is particularly suitable to our settings: large, high-
dimensional normally-distributed data, easy parametriza-
tion and is known to achieve comparatively high quality
and low execution times (see, e.g., a comparison of clus-
tering solutions in [19]).
• Distance-based diversity.While the distance-based approach
for diversification has a different goal than coverage-based
diversity (as explained in Section 2), it is still interesting
to compare its performance to ours. As a representative
distance-based baseline we use the S-Model of [4] via a
greedy algorithm that maximizes the pairwise Jaccard dis-
tances between the properties of the selected subset.
• Optimal Selection. Naïve iteration over all user subsets of
size B to obtain the optimal total score. This baseline is
naturally applicable only for small values of B, and used to
examine how good is the approximation achieved by our
algorithm in practice, compared to the theoretical bound.

8.4 Qualitative Results
We next describe our experimental results regarding the achieved
diversity. All experiments have been conducted on a Windows
10 machine powered by an Intel Core i7 7500U processor with a
16 GB of DDR4 memory.

Intrinsic diversity results. We depict the intrinsic diversity com-
parison between baselines for the TripAdvisor and Yelp datasets
in Figures 3a and 3c, respectively. For showing different metrics
on a similar scale, all scores are normalized relative to the leading
algorithm’s score; the value of the leading score is denoted on the
relevant bar. Our main findings are summarized as follows.

• Podium outperforms its alternatives in every tested diver-
sity metric.
• Yelp is a more difficult dataset than TripAdvisor, since the
former has less properties and less “room for maneuver”;
for this dataset our results are better than the baselines by
a significantly larger gap.
• Results for top-200 coverage and intersected property cov-
erage indicate that our algorithm implicitly accounts for
representing a high percentage of the largest groups, in-
cluding complex ones – suggesting that selection based
on simple groups may be sufficient for coverage purposes.
• The distance-based baseline performs poorly in covering
complex groups, since it explicitly avoids intersections
with overlapping properties between users.
• Surprisingly, our algorithm achieves a high similarity to
the group distribution in the source population, although
we do not optimize this directly.
• Our algorithm achieves the best total selection score by a
large gap - this is expected, since our algorithm approxi-
mates the optimal value for this function.
• We were only able to test the optimal selection algorithm
on a restricted source population and very small subset
sizes due to the exponential runtime, hence it is omitted
from the graphs. Generally, the total score achieved by
Podium greatly exceeded the approximation bound and
was near-optimal in all of our experiments. E.g., for select-
ing 5 out of 40 users Podium provided a .998 approximation
ratio of the optimal.
• Since each user belongs to many groups, we can achieve
high coverage even with a small B. As B increases, all the
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(d) Yelp opinion diversity

Figure 3: Quality experimental results

quality metric improve and the gaps between the baselines
slightly decrease, but the general trends are preserved.

These results indicate that it is able to select good represen-
tatives of the sources population in different respects, covering
most large groups and leaving few under-represented groups.
Regarding the competitors, we observe that clustering is infe-
rior in almost every metric; this indicates that the splitting of
population into cluster is probably unable to identify meaningful
groups, and is outperformed even by random sampling.

The results also indicate that distance-based selection is less
able to represent groups not explicitly defined in the dataset.
Generally, the main difference between the distance-based ap-
proach and ours is the pairwise intersection in user properties
– e.g., 2 versus tens on average that we get for the Yelp dataset.
Consequently, when there are a few prevalent categories that are
shared by many users, the distance-based approach tends to seek
the few users that do not have these categories, which comes at
the expense of coverage and distribution similarity.

Opinion diversity results. We now consider whether indeed
the selected user subset, by Podium and its alternatives, provides
diverse opinions, according to the metrics defined in Section 8.2.
Naturally, the considered groups in G may affect the opinion di-
versity for algorithms that rely on groups. In these experiments,
we have chosen to consider groups that are defined from proper-
ties related to cuisine and location, as a client seeking opinions
about a restaurant might have chosen.

For the TripAdvisor dataset (Figure 3b) we have examined 50
destinations with an average of 90 reviews per destination.

For the Yelp experiment (Figure 3d) we have considered 130
destinations with an average of 1730 reviews per destination.

Concluding both experiments, our main findings are:

• Podium achieves the best results in any tested metric for
each dataset, with the exception of rating variance.
• Distance-based is the strongest competitor of Podium in
this set of experiments; however, in the Yelp dataset we

still see a significant gap w.r.t. Podium in topic coverage
and usefulness.
• Podium achieves a good balance in the tradeoff between
attaining dissimilar ratings/sentiments (as reflected in rat-
ing variance and distribution similarity) – which tends to
the selection of “eccentric” users – and attaining represen-
tative opinions that cover prominent topics (as reflected in
topic coverage, usefulness) – which tends to the selection
of “mainstream” users.
• Random achieves a comparatively better performance in
“dissimilarity” metrics (rating variance and distribution
similarity), although still inferior to Podium and distance-
based, and inferior results in “representativeness” metrics
(topic-sentiment, usefulness), as expected.
• Clustering shows the opposite trends to those of Random,
probably due to selection of near-mean users as represen-
tatives, which reduces the randomness of their selection
but increases their representativeness.

These results reconfirm the assumption, proposed in previous
work, that diverse users provide diverse opinions [4]. We have
been able, by selecting a small user subset, to capture prominent
topics and the ratings of the source population – even though
Podium is not explicitly calibrated to predict opinions.

The effect of customization. We next consider the effect of
customization on the selected user subset, with respect to the
intrinsic quality metrics of the selected subset. We focus on the
effect of “priority coverage” feedback from Def. 6.1. For that, we
have selected from the Yelp dataset with 30K users, uniformly
at random, four subsets G20 ⊆ G40 ⊆ G60 ⊆ G80 ⊆ G such that
|Gi | = i . Each subset was, in turn, fed into Podium as the set
of priority coverage groups Gd . Then, we have selected a user
subset of size 8 in the customized setting. We have repeated this
process 20 times and recorded the average for each metric.

The results are detailed in Figure 4, along with the intrinsic
diversity metrics for the setting without customization, for com-
parison. Notably, all the quality metrics slightly decrease with
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Figure 4: Yelp intrinsic diversity with customization

every increase of the subset size, indicating that covering the pri-
ority groups restricts Podium’s ability to cover standard priority
groups – surprisingly, not by a significant gap. The newly-added
Feedback Group Coveragemetric measures the percentage of prior-
ity groups that were covered. Note that the groups are randomly
selected with equal probability and are thus likely to be small
and non-overlapping. Hence, there may not be 8 users who cover
all of them. As expected, we can observe that the more priority
groups are defined their coverage significantly decreases.

8.5 Scalability Results
We have examined the scalability of our algorithm w.r.t. the
number of users and size of user profiles, which affect the number
of groups. Here we only compare results with the clustering and
distance-based baselines (random is immediate).

Scalability in number of users. In these experiments we have
used user profiles with up to 200 properties. Following the com-
plexity analysis in Section 4 we expect to witness a linear growth
in the running time of the algorithm with accordance to the
change in population size.

Scalability in profile size. The number of users has been set
at 8K, and we varied the properties assembling the user profiles
thus affecting their size. Again, we expect the running time to be
linear to the average profile size.

Figures 5 and 6 depict the running times achieved by the
algorithms. Our main findings are:
• Podium and distance-basedare ∼9 times faster than the
clustering alternative.
• Execution time for Podium scales linearly in the size of
the population as well as the number of properties.
• The Optimal baseline, due to its exponential complexity,
demonstrated poor scalability. E.g., for |U| = 40 and B=5
its execution time was 443 seconds, and for |U| = 100 we
have terminated its execution after an hour. It is therefore
omitted from the graphs.

9 RELATEDWORK
A comparison between diversification approaches is given in
Table 1. We now elaborate more on these solutions and others.

Diversity in crowdsourcing. A few studies (e.g., [2–4]) have
considered the selection of diverse users in the context of crowd-
sourcing, namely performing tasks with the collaborative help of
Web users/workers. The work of [4] is the most relevant to ours
since it also studies diverse opinion procurement. They present
two approaches for diversification: S-Model is distance-based,
where pairwise distance is assumed to be known; and T-Model
is coverage-based on predicted data, i.e., targets the selection of
a user subset with a certain opinion distribution, but only in a
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Figure 6: The effect of profile size on execution time.

single category. Other studies consider the selection of diverse
crowd workers in order to improve the overall accuracy. In [3]
the authors study the selection of diverse users by modeling the
dependence of error rates within access paths (corresponding to
non-overlapping user groups), and optimizing the information
gain by the selected subset. This, however, does not apply to opin-
ion procurement where there are no errors and every opinion
should be accounted for. The recent [2] resembles ours in con-
sidering coverage-based diversity and supporting customization.
However, they consider only a single group per worker.

Diverse search results. Search results diversification has been
extensively studied in the field of information retrieval (e.g., [1,
6, 20, 21]). Apart from solving query ambiguity, diversification
is used to avoid over-personalization of search results [22]. The
classification of diversity definitions as coverage-based versus
distance-based is also considered in this context [23, 24]. In con-
trast with our approach, IR solutions generally target relevance
and therefore are inadequate for diversifying along different axes
and accounting for positive and negative opinions.

Diversity in recommender systems. Diversification has also
been studied in the context of recommender systems. Diver-
sity can be computed based on item properties [6] or collabo-
rative filtering, namely, the ratings of similar users to similar
items [5, 7]. Specifically, in [7] a notion of explanation-based
diversity is presented, but is different than ours – certain item
properties are identified as recommendation-relevant and these
are used for diversification. In contrast, we do not assume that
relevant properties are predefined but rather derive explanations
from the actual diversification results. Moreover, to our knowl-
edge, coverage-based approaches have not been considered in
the context of recommender systems.

User sampling in survey research. The selection of people rep-
resenting some population has been vastly studied in the context
of surveys. While also concerned with opinion procurement, the
focus of this research field is different. Specifically, as explained
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in Section 2, the dimensionality of user profiles in surveys is typ-
ically, by design, much lower than ours. This is because the goal
of surveys is to ensure the statistical soundness of specific infer-
ences from the participants’ answers to larger populations [8, 9].
Statistical soundness may require the selected participants to be
proportionally allocated (Def. 2.1), which, as explained in Section 2,
is impossible in our high-dimensional setting due to the presence
of many overlapping groups. Our approach involves a different
problem formulation suitable for the high-dimensional setting.
Also in contrast to surveys, which require a careful design and
thereby a heavy load of manual curation, our solution applies to
a given user repository as-is and may be easily executed multiple
times, e.g., to incorporate data updates.

User selection. Various studies have considered the selection
or filtering of users who undertake a task in crowdsourcing plat-
forms or social networks. This includes assessment of crowd
worker skill and filtering of low-skill workers [25]; filtering of
low trust or spammer users [26]; filtering of slow or inefficient
users [27]; expert finding [28–30]; and general-purpose declar-
ative crowd selection [10, 31–33]. In general, these works are
orthogonal to ours, since we can view the scores they derive as
additional user properties that can be used for diversification.

A particular line of work considers team formation (or group
formation), namely the selection of a set of workers that in some
sense function as a team, by having e.g. complementary skills,
similar properties, and/or better collaboration means [2, 34–37].
Among these, [2] is the most relevant to ours in targeting worker
diversification, as discussed above. [37] uses coverage and diver-
sity notions that our quite different than ours and thus render
the problem and solution techniques quite different: diversity is
considered between formed groups and is distance-based; and
coverage is considered with respect to items rather than groups
and does not support dimensionality.

10 CONCLUSION AND FUTURE WORK
In this work, we presented a framework for the selection of di-
verse user subsets for opinion procurement. We define a generic
diversity notion that, while simple, satisfies a unique combina-
tion of desiderata that arise in presence of high-dimensional
user profiles. In particular, as we showed, this notion admits ef-
ficient near-optimal computation and allows explanations and
customization by the client. Our experimental study, on real user
data, examines different metrics for diverse selection and shows
that our algorithm outperforms a variety of baselines.

In future work, we plan to investigate further enhancement
of the usability of our system, by methods of proposing rele-
vant refinements for the user and by additional visualizations
of the selection results. Another direction involves foundational
study of the statistical properties of our algorithm: we have em-
pirically shown that it performs well with respect to various
measures other than our total score, e.g., distribution similarity
and coverage of complex groups; the next step is formulating
the guarantees for the algorithm performance in these metrics.
The framework we have proposed is deterministic in choosing
the (near-)optimal user subset by our definition, and is shown
to outperform a fully random algorithm. Our implementation
adds some randomness in randomly breaking ties, and we plan to
further incorporation of randomness in our solution, e.g., adding
noise to group weights, and its effect on the output diversity.
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ABSTRACT

Cloud infrastructures allow to dynamically adapt to work-
load changes by provisioning additional resources or de-
provisioning resources to reduce costs. This offers also
opportunities for scalable distributed data management.
However, elastic scaling in databases requires to migrate
or even repartition data. In this work, we present an ap-
proach implemented in Actian’s MPP solution VectorH
that speeds up the elastic resizing process by minimizing
partition reassignments while still achieving load balancing.
Moreover, we describe a buffer matching and pre-filling
technique to further increase performance after the resize
step. The experimental evaluation shows that our solution
significantly outperforms the non-elastic way of scaling
using a system restart by a factor of 2 up to 4 and reduces
downtimes during resizing to less than one minute.

1 INTRODUCTION

Cloud computing gained extraordinary importance over
the past several years with the advent of enabling technolo-
gies like distributed systems, virtualization or fast network.
While consumers moved their business applications to the
cloud environment, important technology companies like
Amazon, Google or Microsoft directed their focus towards
cloud technologies, competing with each other for the lead-
ership position in this promising new market. One of the
decisive properties for the success of cloud computing is
elasticity, providing users with flexibility to meet require-
ment changes in the fast moving technology world we live in.
In the context of the cloud environment, elasticity describes
a system’s ability to adapt to changes in user demands and
can be achieved in every system layer, e.g. storage, network
or computing power. Therefore, developing software that is
optimized for the cloud environment requires the software
to support elastic changes in the underlying environment.

Actian Avalanche is the Software as a Service version of
Actian VectorH [4], a massively parallel processing (MPP)
solution for data analytics. The software is deployed in
public cloud environments like Amazon web services (AWS)
or Microsoft Azure, which both offer an elastic environment.
As the VectorH MPP solution was originally designed to
run on a static cluster, it does not exploit the opportunities
provided by those environments. Furthermore, the currently

© 2020 Copyright held by the owner/author(s). Published in Pro-
ceedings of the 23rd International Conference on Extending Database
Technology (EDBT), March 30-April 2, 2020, ISBN 978-3-89318-
083-7 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0.

implemented partition management is not designed to cope
with non-static clusters and needs to be overhauled.

As the cloud environment offers elasticity, the main goal
is to make VectorH able to utilize the provided elasticity
of computing and storage resources. For this purpose, we
focus on three major goals:

∙ Develop an elastic resize feature: Nodes need
to be efficiently added or removed from a VectorH
cluster during the system uptime, avoiding the draw-
backs of a full restart. This is the key feature to
enable elastic scaling.

∙ Provide a partition strategy applicable for
the cloud environment: Partitioning is the key
concept of VectorH to distribute work among nodes.
As scaling the system becomes a frequent operation
in the elastic environment, the partition strategy has
to support elastic scaling by minimizing partition re-
assignments to nodes while providing load balancing.

∙ Smoothen the performance after a cluster re-
size: Although the partition strategy in intended to
minimize partition reassignments, each cluster resize
operation involves changes in data responsibilities.
These changes should be transparent to the user
by providing the full system performance once the
scaling process finished.

The remainder of this paper is organized as follows. We
give an overview over related work in Section 2, including
a discussion of commercial products available on the mar-
ket and how they provide elasticity. Section 3 provides an
overview over the basic concepts of VectorH, before describ-
ing the design of the elastic scaling feature in Section 4.
We compare different approaches for partition manage-
ment and present the implemented approach in Section 5.
Based on experiments, we describe the design of the buffer
matching and filling mechanism in Section 6, which is an
optimization on top of elastic scaling. Finally, we evaluate
our solution in several experiments in Section 7, before
concluding and giving an outlook in Section 8.

2 RELATED WORK

Achieving elasticity for cloud database systems is solved in
different ways in the research community. ElasTraS [6] as
an example is explicitly designed for the cloud environment
and supports elasticity by the separation of storage and
compute resources. The system distinguishes between high
level transaction managers (HTM) and owning transaction
managers (OTM). While HTMs handle user connections
and execute queries using their local caches, OTMs are
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responsible for the actual data access. Depending on the cur-
rent load, both HTM and OTM can be scaled independently
and tasks are distributed among all running managers. As
a different approach, Albatross [7] uses virtualization and
live migration of databases to provide elasticity. The sys-
tem aims at multi-tenant databases, which often face the
problem of efficiently migrating single tenants instead of
the whole system. To accelerate migration performance
Albatross creates a database snapshot, which is placed in a
network storage, and only migrates caches and active trans-
action states to a newly provisioned system. Afterwards,
the system is switched using an atomic handover operation.
In addition to elasticity, the system ensures serializability
and correctness in failure cases. The experiments show
that this approach does not abort any active transactions,
harms query latency only in a negligible way and makes the
database unavailable only for a small time window of about
300ms. A similar concept is used by ShuttleDB [1]. In con-
trast to Albatross, ShuttleDB can be seen as a middleware
to make an arbitrary database management system elastic.
It uses virtualization techniques to be transparent from the
actual database instance and therefore works with common
database systems without changes in their engine. On top
of the live migration concept for single tenants, ShuttleDB
offers automated elasticity. The system monitors query
latencies of database tenants, automatically chooses ten-
ants to scale and migrates them to another instance after
deciding for a suitable migration strategy.

While ElasTraS, Albatross and ShuttleDB are mainly
evolved from a cloud provider point of view, meaning max-
imizing utilization while fulfilling user demands, the King-
fisher system presented in [14] deals with elasticity from a
customer point of view. Exploiting cloud pricing models,
Kingfisher dynamically provisions virtual server capacity
while being cost-aware. Using monitoring and forecasting
of the query workload in combination with solving a linear
optimization problem, the system minimizes infrastructure
costs (e.g. cores, servers) and transition costs (time and
costs to change environment).

In the field of commercial systems, Snowflake [5] was
build from scratch for the cloud environment. It uses so
called micro-partitions of several MB size to automatically
partition and cluster data. Based on that, work distribu-
tion among nodes is realized using consistent hashing. In
combination with work stealing, this approach automati-
cally handles node failures as well as elastic scaling, while
also minimizing the reassignment of micro-partitions as a
property of the consistent hashing algorithm. As a second
example, Amazon Redshift [9] divides compute nodes into
the abstract concept of slices and assigns data to these
slices. For scaling, the system offers two possibilities. While
the “classic resize” deploys a new cluster in the background
and sets the system in a read-only mode for several hours,
the “elastic resize” reduces the downtime by saving a snap-
shot to the cloud file system, adding/removing nodes and
reassigning work by reshuffling the abstract slices between
nodes. This way, the downtime for the scaling process is
reduced to several minutes. Nevertheless, user queries are
on hold during the scaling. Third, Googles BigQuery relies
on the concept of overpartitioning to avoid repartitioning
in the elastic environment. In the case of scaling, tasks in
the Dremel execution engine [13] are resized and data is

read again from the storage layer, trusting in the speed
of Google’s Jupiter network technology and the Colossus
storage system.

3 VECTORH OVERVIEW

Actian VectorH [4] is the scale-out version of the Vector-
wise/X100 system [3] running on Hadoop clusters. It offers
high and scalable query performance by exploiting oppor-
tunities of modern CPUs (e.g. SIMD, caching) with its
vectorized execution engine. As a key for parallel process-
ing of data the system uses hash partitioning and exploits
co-located foreign-key joins for efficient node-local join
processing, while partitions are assigned to nodes using a
round-robin assignment. Furthermore, it reduces I/O costs
by advanced compression methods and data skipping.

The Hadoop distributed file system (HDFS) is used as
the storage layer and provides fault tolerance and scalability.
Although HDFS is append-only, VectorH offers efficient
updates by using Positional Delta Trees [11]. In order to
efficiently read data from HDFS, the system is aware of
data locality and replication. Nevertheless, processing data
that is already in memory is another key to high query
performance. Therefore, VectorH allocates a configurable
bufferpool on system startup and maintains buffered blocks
over different buffer policies [15].

For data exchange among cluster nodes, VectorH uses
the Message Passing Interface (MPI) for implementing
exchange operators described in the Volcano model [8]. The
MPI library offers point-to-point communication as well as
collective communication and is based on the concept of
groups. Nodes within a group are identified using a rank
starting at 0 and they are able to communicate with each
other using a so called intra-communicator related to this
group. In addition to that, so called inter-communicators
allow communication among groups.

In order to scale a VectorH installation, the cluster con-
figuration has to be changed and the system has to perform
a restart, which has two major drawbacks. During the start
process the system replays the write-ahead log, which might
be a long-running operation depending on the log size. In
addition to that, allocated memory is freed during the
system shutdown. As a result, buffers are empty after a
restart and data needs to be read again from storage, which
impacts the performance of the first queries. Therefore, we
need a solution to scale a running MPI application without
performing a full restart. In addition to that, we want to
avoid a performance degradation after the scaling opera-
tion by adapting the buffer management using the buffer
matching and filling mechanism presented in Section 6 and
by being aware of this issue when assigning work to nodes
in a scaled environment.

Scaling can be invoked by the user to achieve one of the
following goals. Either performance should be increased
while keeping the data size fixed, or the system should be
enabled to handle larger data sizes (while keeping perfor-
mance constant). While the first goal refers to Amdahl’s
law, the second one is the use case for Gustafson’s law
(both in [10]). For VectorH, work distribution among clus-
ter nodes is realized using partitioning, where the optimal
number of partitions per table is approximately the total
number of parallel threads the cluster offers. Assuming a
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homogeneous cluster, this is equal to the number of nodes
multiplied with the number of physical cores per node.
In order to support both mentioned scaling cases while
avoiding an expensive repartitioning, we use the concept
of overpartitioning, initially splitting tables into more par-
titions than necessary for the initial cluster configuration.
The chosen number of partitions is crucial in terms of per-
formance and the ability to scale the cluster size. Figure 1
shows the runtime of the TPC-H [2] query set on scale
factor 1000 GB as a function of the number of partitions.
The experiments were made on a cluster of 4 to 6 nodes
with 24 cores each, providing a parallelism of 96 to 144
threads. First, the results show that increasing the cluster
size while keeping the data size constant can lead to a per-
formance benefit. Second, one can observe that increasing
the number of partitions above the optimal partitioning
of one partition per thread comes with an increasing per-
formance penalty, which is caused by the introduction of
an Union operator on top of table scans. Furthermore, in-
creasing the number of partitions heavily impacts update
performance, as update operations have to be performed on
more fine-grained partitions. As a consequence, the number
of partitions should not be chosen too large. Third, one can
observe that VectorH is able to handle underpartitioning
to a certain degree by performing node-local splits dur-
ing table scans, achieving the assignment of one partition
per thread. However, this resplitting harms node-local join
processing and is therefore not a desired behaviour.
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Figure 1: Dependency of Partitioning on TPC-H
SF1000 runtime

4 ELASTIC SCALING

This section presents the design and implementation a
dynamic cluster resize functionality for VectorH. With this
feature we want to face the problem of scaling VectorH and
solve the first goal stated in Section 1. Two new functions,
add nodes and remove nodes, were implemented using the
VectorH syscall functionality, allowing to issue commands
against the system without forming SQL queries.

The new cluster resize functionality exploits the op-
portunities of the MPI group and communicator manage-
ment. The basic approach of adding nodes using MPI
routines is illustrated in Figure 2. Starting from an exist-
ing group of current nodes with an intra-communicator
(A), a new group of processes is spawned by starting the
application on the newly provisioned cluster nodes us-
ing the MPI COMM SPAWN routine. All nodes of the
new process group are able to communicate with each

other using their own intra-communicator (B) and with
the old group of nodes using the inter-communicator (C)
returned by the MPI routine. In order to abstract from
these different types of communication in a second step,
both groups form a new intra-communicator (D) using the
MPI INTERCOMM MERGE routine and replace group
communicators (A), (B) and (C). After new nodes are
added in the add nodes call, the master node has to broad-
cast the current partition mappings as described in Sec-
tion 5 in order to provide the new nodes with the correct
initial partition assignments. Afterwards the current nodes
have to follow the new nodes’ startup, as there are various
synchronization points within the startup procedure. To
simulate a collective start of all servers, the current servers
have to perform all of these synchronizations to make the
added servers finish their initialization, before performing
the buffer matching mechanism described in Section 6. The
cluster resize functionality has to be compatible with the
following optimization made in VectorH. In order to re-
duce memory consumption, the creation of storage objects
and minmax indexes is skipped for partitions a node is
not responsible for. After adding nodes, this responsibil-
ity assignment changes as some partitions of the current
nodes get assigned to the newly added ones. As a result,
current nodes hold structures for partitions they are not
responsible for anymore. Each node checks for these kind
of unused structures by iterating over all tables in their cat-
alogs, dropping information and freeing memory whenever
possible. This could also be done in a lazy way by checking
for unused information within a partition responsibility
check during query execution. But as these checks are very
frequent operations and are called multiple times within
each query, the decision was made to cleanup the unused
structures directly as part of the add nodes operation.

Removing nodes reverses the presented mechanism. In
the first step the nodes are divided into two distinct groups
S and R with corresponding intra-communicators using
a MPI COMM SPLIT routine. While nodes of group S
perform a collective shutdown as a second step, the nodes
of group R form the new cluster. Passing a list of hostnames
to the function call, each node checks whether it is included
in S and should terminate or not. It is currently not allowed
to terminate the master node, so remove nodes returns an
error in this case. The remaining nodes (group R) now
update their partition mappings as described in Section 5.
Removing nodes assigns more partitions to the remaining
nodes, and, as the nodes were not responsible for these
partitions before, the creation of storage structures and
minmax indexes was skipped. In order to reconstruct the
missing information, an adapted replay of the write ahead
log is performed. Within this replay, all log actions are
skipped except those related to storage and minmax indexes
for tables the node is now responsible for and was not
responsible for before. This information is provided by the
partition manager.

With the design of the elastic cluster resize feature we
achieved the possibility to scale the VectorH cluster without
restarting the existing nodes. We therefore ensured that
the scaled system state is similar to the state before the
scaling in terms of communication, metadata and catalog
state. Furthermore, we automatically achieve support for
updates that are resident in in-memory PDT structures
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Figure 2: Schematic overview of cluster resize

mentioned in Section 3, as the log replay that is included
in both add nodes and remove nodes also covers PDT log
actions. As a result, the process reconstructs the update
information needed to ensure data consistency.

Our implementation relies on the following assumption.
For the add nodes functionality binaries, configuration files
and user data are accessible from the new nodes in the
same way (especially using the same directory paths) as
for the already running nodes. Triggering the operation
over a front-end, e.g., a web-based management tool, would
invoke starting the new nodes (dependent on the cloud
service provider) and synchronizing necessary data before
the add nodes operation is started. A functionality for
synchronizing the VectorH installation directory already
exists and is used for cluster deployment, so this assumption
is no restriction.

Besides assumptions the presented implementation comes
with some limitations. First, the resize functionality must
be issued in a separate session with no concurrent sessions.
The system is able to block/hold incoming session requests
when a scaling request is made. Second, the hosts to be re-
moved are restricted to be the ones with the highest ranks.
As all nodes except the master node are treated equally and
the user does not call this function directly but through a
frontend only providing the cluster size he wants to reach,
the frontend can choose the nodes to remove as the ones
that where added most recently. This ensures that only
the highest ranks are selected. In case this is considered as
too restrictive, one could extend the algorithm such that it
first rearranges the nodes before the resize operation and
assigns ranks in a way that fulfills the restriction. Third,
it is currently not allowed to remove the master node as
worker nodes are not able to replace a missing master node
(which also holds for master node failure).

5 PARTITION MANAGEMENT

In this section, we present a partition management ap-
proach that is suitable for the elastic cloud environment,
which corresponds to the second goal stated in Section 1.

5.1 Partition assignment approaches

We start by comparing basic approaches for partition as-
signment. The comparison is based on the following require-
ments, prioritized from most important to least important:

(1) Load balancing: Assigning an equal number of par-
titions to each node is crucial to achieve an optimal
query performance. As partitions are already built
using the partitioning method, the assignment strat-
egy can only affect the number of partitions per node,
not the size of each partition.

(2) Lookup time: The mapping 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 → 𝑛𝑜𝑑𝑒 is
evaluated numerous times within each query and
should therefore be an efficient operation.

(3) Update time: As resizing the cluster changes par-
tition assignments, the structures of the partition
assignment should be updatable in an efficient way.

Besides these main objectives, the partition assignment
strategies must fulfill the following side conditions for per-
formance reasons:

∙ Keep co-locality of foreign-key related tables
∙ Minimize the number of reassigned partitions on
cluster resize

Keeping the co-locality of related tables is a key for achiev-
ing optimal query performance by exploiting node-local
joins and is therefore an important demand. Reassigning
partitions has several effects and should therefore be min-
imized. First, it leads to storage access for reading the
partition, as the data is not present in the node’s buffer.
Second, nodes have to update their catalog information
when becoming responsible or loosing the responsibility for
a new partition, as described in Section 4.

We can state a lower bound for the minimum number of
partitions that have to be reassigned on cluster resize. Let
𝑑 be the total number of partitions for an arbitrary table
and we assume that partition assignment is balanced before
a resize operation. When adding 𝑛 nodes to an existing
cluster of 𝑛𝑜𝑙𝑑 nodes with 𝑛𝑛𝑒𝑤 = 𝑛𝑜𝑙𝑑 + 𝑛, it is clear that
every node has to be responsible for 𝑑

𝑛𝑛𝑒𝑤
partitions after

resizing to achieve load balancing. We assume that 𝑛𝑛𝑒𝑤 is
a divider of 𝑑 and if not, every node gets one additional
partition until the remaining partitions are assigned. As
every new node get’s 𝑑

𝑛𝑛𝑒𝑤
partitions, the minimum total

number of reassigned partitions is 𝑑
𝑛𝑛𝑒𝑤

· 𝑛. For removing

𝑛 nodes from an existing cluster of 𝑛𝑜𝑙𝑑 nodes it can be
easily seen that 𝑑

𝑛𝑜𝑙𝑑
· 𝑛 partitions have to be reassigned,

as every node was responsible for 𝑑
𝑛𝑜𝑙𝑑

partitions before
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resizing. Overall we can state the lower bound of

reassigned partitions ≥ 𝑑

𝑛𝑚𝑎𝑥
· 𝑛

with 𝑛𝑚𝑎𝑥 = 𝑚𝑎𝑥{𝑛𝑛𝑒𝑤, 𝑛𝑜𝑙𝑑} for adding/removing 𝑛 nodes.
Round-robin assignment: Round-robin assignment

is the currently used assignment strategy in VectorH. It is
clear that this strategy provides load balancing and as it can
be evaluated using an arithmetic operation, has a very fast
lookup time while not needing additional data structures.
Nevertheless, with respect to the additional cluster resize
functionality, round-robin is one of the worst choices as it
reassigns nearly all partitions when not resizing the cluster
with a factor that is a power of two, as shown in Figure 3.
Doubling the number of nodes leads to a reassignment
of half of the partitions, which is basically the minimum
for achieving load balancing. But increasing the number
of nodes by a factor being an arbitrary number and not
being a power of two leads to a reassignment of nearly all
partitions. Therefore, this strategy is not applicable for the
cloud environment.

Figure 3: Round-robin partition assignment on
cluster resize

Consistent hashing: The requirement of minimizing
the number of reassignments on cluster resize directly leads
to the method of consistent hashing, which places elements
and buckets on a logical ring representing the set of hash
values produced by the hash function. In order to improve
load balancing, buckets can be replicated on the logical
ring. It is shown that removing/adding one hash bucket
leads to a reassignment of 𝑘

𝑛
keys, with 𝑘 being the total

number of keys and 𝑛 being the number of hash buckets [12].
With keys being partitions and hash buckets being nodes,
this is the lower bound of reassigned partitions we stated
before. If a node is removed, only the partitions assigned
to the removed node have to be reassigned and adding
a node leads to a reassignment of all partitions between
the added node and its last predecessor on the logical ring.
Consistent hashing can be implemented by holding a sorted
array or list of nodes, so a lookup operation to find a node
responsible for a partition takes time 𝑂(log(𝑛 · 𝑟)) with
𝑟 being the replication factor and using binary search on
that list. Updating the number of nodes leads to resorting
the list with a complexity of 𝑂(𝑛 · log(𝑛)), for example
using insertion sort for adding a few nodes or merge sort
for adding a sorted list of nodes. Holding the list consumes

memory in the size of 𝑂(𝑛 · 𝑟), which is independent from
the number of partitions.

Explicitly storing and maintaining the assignment
mapping: This approach tries to provide a minimal lookup
time and a best possible load balancing by explicitly main-
taining and storing the mapping [𝑑] → [𝑛] from the set of
partitions to the set of nodes for each possible partitioning
using a partition manager structure. The mapping can be
stored as an array with the size 𝑑, providing lookup time
𝑂(1). Tables with equal number of partitions 𝑑𝑖 build an
equivalence class 𝑖 ∈ 𝐸𝑞, so as a side effect, this guarantees
co-location of foreign-key related tables when assuming
them to have equal partition numbers (otherwise node-
local joins would not be possible anyway). Maintaining
the mapping explicitly ensures that the best possible load
balancing is achieved. As a drawback, this approach has a
quite high memory consumption of 𝑂(

∑︀
𝑖∈Eq 𝑑𝑖), which is

especially not independent from the number of partitions
and increases with the number of distinct numbers of par-
titions. Nevertheless, the number of different partitionings
and therefore the number of equivalent classes is typically
small in user scenarios.

Comparison: Table 1 compares the approaches of con-
sistent hashing and partition manager. The partition man-
ager approach outperforms consistent hashing in the most
important categories load balancing and lookup time, while
also minimizing partition reassignment. Assuming that the
number of different partitionings is quite small and hence
the number of equivalence classes is small, the time for
updating the structure and the memory consumption is
justifiable. As an example, a database consisting of 1000
tables sharing the same partitioning schema of 1000 parti-
tions would lead to a memory consumption of around 5KB
for 1000 4-byte-integer values and 1000 boolean values re-
garding the partition manager design shown in Section 5.2.
Even for 1000 different partitioning schemas with a max-
imum of 2000 partitions each we would get a few MB of
memory consumption. Therefore, the decision has been
made towards the partition manager approach.

5.2 Partition manager design

The partition manager structure, illustrated in Figure 4
maintains partition mapping objects for each equivalent
class, which consist of the number of partitions, a mapping
array and an is moved array, both of the size of the specific
number of partitions. Each position 𝑖 in mapping holds
the node ID of the node responsible for partition 𝑖. The
mappings are adapted during each cluster resize operation
to maintain load balancing. In addition to that, the boolean
is moved value at position 𝑖 indicates, whether the partition
was moved during the last cluster resize operation, which
is important to determine partitions to replay from the
log when removing nodes or to delete the storage objects
from when adding nodes. On top of the partition mapping
objects, the partition manager maintains a hash table of
partition mapping pointers to efficiently find the mapping
for a given number of partitions.

For implementing a partition assignment, two assump-
tions are stated. First, it is assumed that co-local partitions
have the same partition ID. This assumption is fulfilled by
the hash partitioning method, as tuples with same keys
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Consistent hashing Partition manager

Load balancing Good, not guaranteed Best possible

Partition reassignment Minimized Minimized

Lookup time 𝑂(log(nodes · replication)) 𝑂(1)

Update Re-sort array Adapt every mapping
𝑂(equi classes · partitions)

Memory consumption 𝑂(nodes · replication) 𝑂(equi classes · partitions)
Table 1: Comparison of partition assignment strategies

Figure 4: Partition manager overview

(either primary or foreign keys) are mapped to the same
hash value, which is used as partition ID. Second, it is
assumed that tables with a foreign key relationship have
the same number of partitions specified. Having an unequal
number of partitions while using the currently implemented
hash partitioning violates the requirement of co-locality.
Especially, it is not ensured by the current hash function
that having a table 𝑇 with 𝑘 times the number of partitions
than it’s join partner 𝑆 results in a partitioning that maps
one partition of 𝑆 to exactly 𝑘 partitions of table 𝑇 .

Initialization:During server startup, the partition man-
ager structure is initialized to a global variable by creating
an empty hash table. When the partition manager gets
queried for a partition mapping that is not present in its
hash table, a partition mapping object for the queried
number of partitions is created and inserted into the hash
table using the number of partitions 𝑑 as key. The mapping
is initialized using a round-robin strategy, so for partition
ID 𝑖 we get 𝑚𝑎𝑝𝑝𝑖𝑛𝑔[𝑖] = 𝑖 mod 𝑑. The choice of this initial
strategy is arbitrary and could be replaced by any other
strategy that provides a balanced assignment for 𝑛 nodes.
The is moved array is initialized with FALSE at every
position. The described process has time complexity 𝑂(𝑑)
to initialize a single partition mapping.

Lookup: Knowing the structure of the partition man-
ager, the lookup implementation is straight forward by a
single hash table access and a single array access. Due to
the design, the lookup operation has complexity 𝑂(1).

Update: Whenever adding or removing nodes, all par-
tition mappings have to be adapted. Therefore, we iterate
over all entries in the partition manager’s hash table and
adapt every mapping using an algorithm divided into the
following steps:

(1) Compute the optimal load balancing for the new
cluster state by computing partitions per node and

a remainder if the number of nodes is not a divider
of the number of partitions.

(2) Compute a diffs array, with diffs[𝑖] indicating wether
node 𝑖 has to get additional partitions (positive en-
try) or get partitions removed (negative entry) to
achieve the computed load balancing. The sum over
all entries in the diffs array is 0, as the total number
of partitions does not change.

(3) Adapt the actual partition mapping by iterating
over the 𝑚𝑎𝑝𝑝𝑖𝑛𝑔 array. If we find a partition whose
responsible node has a negative diffs entry, we move
the partition to a node with a positive diffs entry.

With step three being the dominant step in terms of run-
time, the algorithm runs in 𝑂(𝑑). As we adapt the mapping
of every equivalence class, the update operation has a total
runtime of 𝑂(

∑︀
𝑖∈Eq 𝑑𝑖).

Exchange: After new nodes are added to the system,
they check during startup whether they are added to an
existing cluster and if so, they prepare to receive the
current partition assignments. The current nodes trigger
this exchange functionality within the execution of the
add nodes query. The exchange operation is implemented
using MPI BCAST (broadcast), so it has to be performed
collectively. After broadcasting the number of mappings,
the number of partitions and the mapping array are broad-
casted for each partition mapping. This way it is ensured
that all nodes call the broadcast the same number of times.

As a result, the chosen approach minimizes the reassign-
ment of partitions in the case of scaling while providing
load balancing and efficient lookup and update functions.

6 BUFFER MATCHING AND
FILLING

We now motivate the problem of decreased performance
after a cluster resize operation and present the design
and the implementation of the buffer matching and filling
mechanism, solving the performance problem and therefore
being a solution to the third goal stated in Section 1.

For a brief intermediate evaluation of the cluster resize
functionality and the partition manager described in Sec-
tions 4 and 5, the TPC-H benchmark was run on scale
factor 300 using 8 of the 16 cluster nodes described in
Section 7. Afterwards, the remaining 8 nodes were added
and the benchmark was run again. Overall, it was observed
that queries are slower after adding nodes than before. As
an example, we pick query 1 of the benchmark, which is a
selection and aggregation query on the lineitem table. The
runtimes are shown in Figure 5. The query was run on 8
nodes with filled buffers (run 1) before adding 8 additional
nodes and running the query several times again (runs 2,
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3, and 4). Doubling the number of resources, we would
expect a speedup up to factor 2, but the results clearly
show an increase in runtime for the first run after the resize
operation. However, the performance increases as expected
with more consecutive query runs.
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Figure 5: Runtime of TPC-H SF300 Query 1 in
consecutive runs with run 1 on 8 nodes and runs
2,3 and 4 on 16 nodes after a cluster resize

From a user perspective, this behavior is not satisfac-
tory, as he pays for extra resources without getting any
immediate benefit. The observed performance is a direct
consequence of the buffer management. Figure 6 shows the
qualitative performance (runtime and output cardinality)
of the scan operation of TPC-H query 1 for all threads on
all nodes. The right half of the plot, which covers the 8
nodes added by the cluster resize, shows a runtime that
is up to 5 times slower with respect to the left half of the
plot, which covers the 8 nodes that were already running
before the cluster resize. This is caused by filled buffers
of the old nodes, while the added nodes start with empty
buffers. In order to smoothen this runtime, we present the
buffer matching mechanism to fill the buffers of added
nodes during the cluster resize step. Doing so, we move
the overhead of filling the buffer from user queries to the
cluster resize operation, which is more justifiable to the
user, as the elapsed time between the user toggling a cluster
resize until finishing the resize also involves demanding new
cluster nodes from the cloud service provider, which is also
a potentially long-running operation and dependent on the
actual provider. General approaches for buffer pre-filling
must answer the following questions:

∙ Which data should be chosen to fill into the buffers?
∙ How is data brought to the buffers?

Especially the second question is important for the cloud
setup. As cloud storage systems offer lower bandwidth and
higher latencies than node-local storages, sending buffered
data between nodes is also worth considering next to read-
ing data from storage.

The chosen solution for this problem is our buffer match-
ing mechanism. In order to discuss the mechanism from
an abstract point of view, we identify a sender side and
a receiver side, dividing the set of nodes into two distinct
sets. Nodes of the sender side are characterized by losing
the responsibility of partitions and having blocks in their
buffer they are not responsible for anymore, while nodes of
the receiver side become responsible for new partitions and
do not have any buffered data for them. Note that because
of our partition manager design in Section 5, a node is

either a sender or a receiver. During data exchange, each
node of the sender side can possibly have a connection to
each node of the receiver side.

Block selection: The first step of buffer matching is to
identify for each node the set of blocks that needs to be sent
to other nodes, as well as each block’s specific destination.
First we get a list of all blocks currently resident in the
buffer memory sorted by importance. The importance of a
block is determined by the actually used buffer replacement
policy. In addition to that, we identify the destination of
the blocks by querying the partition manager described in
Section 5 to get the responsible node. Blocks that belong to
a partition for which the node remains responsible are not
sent and therefore dropped from the list. All other blocks
are appended to a list of blocks per receiver, so as the
result of the block selection step, each sender node holds a
(potentially empty) list of blocks for each receiver node. One
special case needs to be handled. Due to data distribution
or due to buffering blocks of only a few partitions caused
by selection predicates, it might occur that receiver nodes
are intended to receive more blocks than they can actually
fit into their buffers. The calculated cardinality difference
is balanced between all senders to this receiver node and
each sender is informed about the number of blocks to send
before starting to send data. As the block lists are sorted
by importance, the sender just drops the end of the list in
this case.

Data exchange: We now want to answer the question
how buffer data is brought to nodes. As reading data from
cloud storage might be slow compared to usual local disks or
network transfer, the decision was made towards explicitly
sending data to nodes over the network. The implemented
data exchange mechanism follows three basic steps:

(1) Exchange the number of blocks to transfer between
each sender and receiver node.

(2) Exchange block metadata.
(3) Exchange buffer content.

The first step is important to establish synchronization
between senders and receivers. Each node of the receiver
side has to know about the number of blocks to receive
from each node of the sender side. After the block selection
step, each sender node holds a list of blocks per receiver.
The length of these lists is shared with the respective re-
ceivers using MPI GATHER routines, called within a loop
over all added nodes. A receiver node with rank 𝑖 becomes
the receiver of the MPI GATHER call in exactly one loop
iteration. In this round, all other nodes send the length
of their list 𝑖, indicating the number of blocks to send to
node rank 𝑖. As a result, node 𝑖 has the complete informa-
tion about the number of blocks to receive after success
of loop iteration 𝑖. In the second step, we transfer the
blocks metadata (e.g., used bytes, columnID or the ID of
the commit creating the block) to the receiver nodes. It
is important to note that metadata and actual data of a
block cannot be transferred all-in-one using a single MPI
call by default, as metadata and actual data are not placed
in consecutive memory areas due to the VectorH buffer
management, which preallocates the whole buffer memory
during startup. Constructing an additional structure hold-
ing both metadata and buffer data would lead to copying
major parts of the buffer, which is not desirable. Sending
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Figure 6: Qualitative TPC-H scan performance of query 1 for run 2

the metadata is important for two reasons. First, the re-
spective block can be searched in the receiver’s catalog.
VectorH uses a replicated catalog, so a each block is already
created on the receiver side. Second, the metadata contain
information about the buffer content, like the actual data
size or a flag to indicate wether data has been changed.
This information is created during data load, so it needs
to be sent as we do not load data from storage. Sending
the metadata arrays is realized using non-blocking MPI
point-to-point communication. This eliminates the need
for explicit synchronization in this step. After receiving the
metadata, each receiver performs catalog lookups to get
pointers to the block structures and demands memory in
the buffer memory for each block, before the blocks are
inserted into the buffer replacement policy. In the third
step, we transfer the actual buffer data. As the data for
blocks is not placed in consecutive memory areas, they
have to be sent one-by-one. Using non-blocking MPI com-
munication like in the second step would therefore lead
to 𝑘 communication calls per sender and receiver with 𝑘
being the number of blocks to transfer between sender
and receiver, making it difficult to handle for the MPI
environment when scaling the problem up. Therefore, we
use synchronous, blocking communication for this step. To
avoid deadlocks and reduce waiting time, we handle the
communication in a multi-threaded way. For each point-
to-point connection between a sender and a receiver node,
having a non-zero number of blocks to transfer, both sender
and receiver node open a separate thread running their
side of the communication, resulting in a communication
network. Each thread blocks until the respective counter-
part of the communication is called. Upon receiving buffer
data for one block, the data is copied to the buffer memory
of the receiver node.

Fault tolerance: The buffer matching mechanism is
an addition to the cluster resize functionality. The success
of the buffer matching step is not indispensable for the
success of the whole cluster resize operation, but should
not lead to a undefined state on the occurrence of errors.
Therefore, the mechanism is designed to be fault tolerant.
We distinguish between different times of error occurrence.
If an error is detected before the block metadata in the
catalog of a receiver is changed, we can simply perform
a collective abort, as no durable changes were done yet.
This is realized using a synchronization point between the
second and the third step. If an error occurs during data
exchange within third step, we have to ensure that the
system handles the block’s buffer content in the right way.
After receiving a single block’s data and copying it to the
buffer memory, we verify the correctness of the data using
an already existing magic number in the block’s data. This
magic number is a fixed constant which is used to discover
transmission failures. This mechanism could be further
improved using a checksum. If the verification succeeds,

the block is flagged to be in memory. If the verification
fails or an error occurs during communication, the current
block is flagged as “LOAD”, leading the system to not use
the buffer content before an IO-thread loads the data from
storage (and adjusts the metadata again). Furthermore, all
pending blocks that have not been transferred yet are also
flagged as “LOAD”. All other communication threads are
not affected and may succeed.

Integration: The described mechanism is integrated
into the add nodes and the remove nodes call. For adding
nodes, the sender side is formed by the current nodes,
as they lose responsibilities for partitions and may have
buffered data for them, while all newly added nodes form
the receiver side. During the system startup of the added
nodes, buffer matching is integrated after the partition
mapping exchange and the log replay, but before the server
is able to handle user connections. This way the server
already has the full catalog information. The current nodes
perform buffer matching after following the server startup
communication of the new nodes. For scaling the cluster
size down, the removed nodes form the sender side of the
buffer matching mechanism, while the remaining nodes
form the receiver side. In order to enable removed nodes to
determine the target of their buffered blocks, they update
their partition mappings according to Section 5. Afterwards,
they perform buffer matching while the remaining nodes
perform it during execution of the remove nodes call. In
order to isolate the buffer matching communication from
all other communication, a separate MPI communicator
is build, being only valid during the buffer matching step.
Finishing the buffer matching step, this communicator is
destroyed. To provide the user the possibility to toggle the
buffer matching mechanism on/off, an additional parameter
is introduced into the VectorH configuration API.

Optimizations: After describing the basic ideas behind
the buffer matching mechanism, we want to introduce two
additional optimizations to the concept: the deletion of un-
used blocks at the sender side and the use of an alternative
data exchange implementation. The strategies of the buffer
policies are designed to keep the most important elements
in the buffer by using priority queues. After performing
buffer matching, blocks a sender node is not responsible
for anymore may remain in its buffer queues. Due to the
behavior of the strategies, these blocks are displaced at
some time in the future. Nevertheless, a block may remain
a long time in the queues once it is categorized as very
important, depending on the actual displacement strat-
egy. As a consequence, this buffer page is useless for a
long time, blocking possibly important blocks from finding
their way into the buffer. Therefore, we explicitly drop sent
blocks from the buffer replacement policy on the sender
side. The third step of the buffer matching mechanism uses
blocking MPI calls to send the block’s data one-by-one,
as the buffered data of multiple blocks are not placed in
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consecutive memory areas (in this case, one call pointing
to the start of the memory area would suffice). The MPI
environment can be configured to use several communica-
tion protocols and uses the Transmission Control Protocol
(TCP) in the VectorH integration. Therefore, each call to
send/receive a data block invokes communication setup,
as well as the common TCP slow start phase, which is
unnecessary overhead. As an optimization, we introduce a
second, socket-based data exchange implementation. Sim-
ilar to the described mechanism in the third step of the
data exchange step, each sender-receiver pair with non-zero
number of blocks to be transferred opens a thread on each
side. Instead of starting MPI communication, the nodes
establish a TCP stream socket connection. The receiver
node creates a socket, sends the socket address information
to the sender node using MPI and listens for an incoming
connection. The sender node connects to the socket and
sends data over the socket. As this single connection keeps
alive until all data is sent, the overhead of communication
establishment and slow start phase is reduced compared
to the MPI implementation. In order to provide the same
level of fault tolerance, each side of the socket checks the
socket status using select before sending/receiving data.
Furthermore, data blocks can be send in chunks, and only
after a full block is received, the receiver verifies the block.
Similarly to the fault tolerant behavior, blocks are flagged
on connection or communication errors.

7 EVALUATION

During the evaluation, we want to prove the superiority of
the implemented cluster resize feature over the inelastic way
of scaling. Furthermore, we want to show that the usage
of the buffer matching and filling mechanism improves
query performance after a cluster resize operation and is,
therefore, a useful extension. Due to expenditure reasons,
the evaluation was done on a private cluster of 16 nodes,
each with the following configuration:

∙ AMD Opteron Processor 3380 @2600MHz with 4
modules of 2 cores each

∙ 32 GB DDR3 RAM
∙ 3.5 TB disk space, distributed among 4 HDDs
∙ CentOS-7 64 Bit

The nodes are connected over a 1GBit/s ethernet connec-
tion and Hadoop 2.7.1 is installed on the cluster. Comparing
the hardware to resources available on Amazon Web Ser-
vices (AWS), this setup should be slower than all available
EC2 instances. Therefore, the measured runtimes in the
experiments can be seen as an upper bound and we expect
our implementation to perform better on any AWS clus-
ters with equal number of nodes. In addition, the TPC-H
benchmark [2] on scale factor 1000 GB provided test data
and test queries. This benchmark covers a well-understood
synthetical workload in order to evaluate and compare
data warehouse solutions with a dataset inspired by real
world applications. The large tables of the benchmark are
partitioned into 192 partitions, which is an overpartitioning
for the cluster of 16 nodes with 8 cores each.

Scaling performance: The first experiment evaluates
the performance of the implemented cluster resize feature.
For the investigation of the upscaling process we start with
a cluster of 4 nodes with filled buffers and vary the number

of added nodes, while we start with 16 nodes and vary the
number of removed nodes for the downscaling process. For
these experiments, we keep the size of the bufferpool at
10 GB and the block size at 1 MB. Figure 7 illustrates the
results of the experiment. One can observe that the runtime
for adding nodes without using buffer matching increases
in a linear way with the number of added nodes. The main
reason for this behavior is the collective startup of the nodes.
Starting more nodes at the same time increases the impact
of the various synchronization points within the startup
process. The buffer matching mechanism adds a nearly
constant overhead to the measured add nodes runtime. In
a more detailed consideration one can observe that the
buffer matching mechanism shows its minimum runtime
when adding 8 nodes. Adding more nodes also increases the
buffer matching data exchange parallelism (the number of
receiver nodes per sender node), so the minimum runtime
is expected to be at the number of physical cores, which
is 8 in the used hardware setup. The downscaling runtime
shows a slight increase when removing more nodes, which
is caused by the adapted log replay the remaining nodes
have to perform. Within this step, removing more nodes
leads to more log entries that have to be replayed in the
remaining nodes. The buffer matching mechanism was not
applied for the downscaling process, as buffers where totally
filled before scaling, so there was no buffer space left in
the remaining nodes to receive blocks from removed nodes.
Overall we can state that downscaling takes significantly
less time than upscaling, because the synchronization effort
for downscaling is lower. Once the nodes are split into
two groups within the remove nodes process, the group of
removed nodes can simply perform a shutdown.
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Figure 7: Scaling performance for adding and re-
moving nodes

Scaled query performance: This experiment investi-
gates the impact of the cluster resize operations on query
performance. For this we repeatedly run a query while
changing the cluster size between runs. As the main im-
pact is expected to be within the scan operators, we use
a query scanning two columns of the lineitem table. In
order to fit the data into the buffer of the smallest cluster
configuration, we limit the number of tuples to 500 mil-
lion using a selection predicate, while setting the buffer
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memory to 20 GB per node. This way we avoid I/O access
that would create an unintended bias in the measurements.
Moreover we minimize the network traffic by applying an
aggregation on each column, which is executed locally on
each partition and results in a single tuple that needs to
be send to the master node. Figures 8 and 9 show the
measured query runtimes. Regarding the case of upscaling,
we can observe that adding nodes accelerates the query
runtime as expected. However, the behavior varies between
different buffer matching configurations. With activated
buffer matching, query runtime drops and stays on the
same level for the respective query runs after cluster resize,
because the buffers already contain the needed data. On
the contrary, not using buffer matching leads to signifi-
cantly slower queries, especially for the first run after a
cluster resize. The reason for this behavior is that added
nodes have to read data from storage. In the following runs
the query performance improves as buffers of added nodes
fill. For the case of downscaling, we have to distinguish
between two use cases. On the one hand, the reason a user
triggers a downscale operation can be that the system is in
an overprovisioning state, so the system underutilizes the
provided hardware. In this case, removing server capacity
should not have an impact on the systems performance. For
VectorH we neglect this case as we aim to have more parti-
tions than nodes at every point in time. If this condition is
violated, a repartition operation is triggered by the system.
On the other hand, the user could invoke the downscaling
to save costs while accepting slower system performance,
e.g., when the expected load becomes less during specific
times of a day. This case is expressed by Figure 9. When
scaling down the cluster, we can observe a performance
degradation, again varying between buffer matching con-
figurations. Similar to the upscaling case, the runtime of
the first query run after cluster resize is significantly slower
when not using buffer matching, as remaining nodes become
responsible for data of removed nodes and have to read
it from storage. With activated buffer matching, data is
sent to the remaining nodes, leading to an immediately fast
runtime after resize. Overall, this experiment proves that
using the buffer matching mechanism during cluster resize
perceptibly increases query performance after resizing.

Buffer matching performance: In this experiment,
we want to evaluate the buffer matching performance for
both implemented data exchange mechanisms, using MPI
and using data streams over sockets. The two main pa-
rameters that have an impact on the buffer matching per-
formance are buffer size and block size. While the buffer
size affects the amount of data that is shipped during
the buffer matching data exchange, the block size affects
the granularity of shipped blocks and as a result also the
communication overhead. Trying to touch as much data
as possible, we use query 9 of the TPC-H benchmark for
this experiment, as it touches five of the 8 tables in the
benchmark and scans about seven billion tuples for the
used scale factor of 1000 GB.

The plot in Figure 10 shows the runtime of the buffer
matching mechanism as a function of the buffer size per
node for both data exchange implementations, using a con-
stant block size of 1 MB. For these measurements, we used
the up-scale step from 8 to 16 nodes. First of all, the results
show that the data exchange takes the major part (about

6

8

10

Q
u
er
y
R
u
n
ti
m
e

Buffer matching on

Buffer matching off

1 2 3 4 5 6 7 8

4

6

8

10

12

Query run

N
o
d
es

Number of nodes

Figure 8: Scaled query performance after adding
nodes (buffer matching impact highlighted)

6

8

10

12

Q
u
er
y
R
u
n
ti
m
e

Buffer matching on

Buffer matching off

1 2 3 4 5 6 7 8

4

6

8

10

12

Query run

N
o
d
es

Number of nodes

Figure 9: Scaled query performance after removing
nodes (buffer matching impact highlighted)

2 4 6 8 10 12 14
0

2

4

6

8

10

12

Buffer size in GB

B
u
ff

er
m

a
tc

h
in

g
ru

n
ti

m
e

in
se

co
n
d
s

MPI data exchangeMPI data exchange

Socket data exchange

Preprocessing

Figure 10: Buffer matching runtime for preprocess-
ing and actual data exchange as a function of the
buffer size for upscaling from 8 to 16 nodes with a
constant block size of 1 MB

507



98%) of the whole buffer matching step. Furthermore, the
plot illustrates the expected runtime increase when increas-
ing the buffer size and shows that they correlate in a linear
way. Comparing both data exchange implementations, we
can observe that the socket implementation is faster in
terms of runtime and also shows a smaller grow in runtime
when increasing the buffer size. As discussed in Section 6,
this behavior is presumably caused by the fact that the
MPI implementation has to re-initiate the communication
for each block, as the blocks may be randomly placed
within the buffer memory space. The socket implementa-
tion on the other hand initiates the communication once
before sending a data stream and therefore reduces the
communication overhead.

In a further experiment we evaluate the impact of varying
block sizes on the buffer matching mechanism. For this
we keep the buffer size constant at 10 GB and we only
consider the pure data exchange runtime, as we have seen
in Figure 10 that preprocessing only takes a minor part
of the overall runtime. Increasing the block size implies
an increase of the necessary memory to allocate blocks.
Therefore, we had to switch to scale factor 300 GB for this
experiment as the overall available memory did not suffice
for the largest tested block size of 8 MB and scale factor
1000 GB. Figure 11 shows the results of this experiment.
For both implementations we can observe a slight increase
in runtime when increasing the block size. This is caused by
increased data volume that has to be exchanged, as larger
block sizes come along with larger unused space or padding.
Besides that, the socket implementation is not heavily
impacted by varying block sizes, as data is simply written
to stream sockets not considering any block boundaries. On
the contrary, the MPI implementation profits from larger
block sizes, as the communication overhead shrinks with
the decreasing number of blocks to be sent. As a result, the
difference in runtime between both implementations also
shrinks with larger block sizes. Nevertheless, the choice of
the block size also impacts other parts of the system, so
this choice is usually fixed around a value of 1MB and can
not be changed after database creation. For these block
sizes, the socket implementation is surely the better choice
compared to the MPI implementation.

Cluster resize usability: In the last experiment, we
compare the implemented cluster resize functionality with
the “inelastic” scaling, which involves the following steps:

(1) Shutdown of the system
(2) Adjustment of a list that holds the VectorH node

names
(3) Restart of the system
(4) Run a query

These step are encapsulated in a script to reliably mea-
sure the runtime. We define the start state of the exper-
iment as a running VectorH system with filled buffers.
Furthermore, we define the end state as the moment we get
a query result from a scaled VectorH instance. The runtime
between start and end state is measured for the cluster re-
size feature with and without activated buffer matching, as
well as for the inelastic scaling process. As query workload
we choose query 1 and query 9 of the TPC-H benchmark.
The buffer size is set to 10 GB per node and we investigate
the cases of scaling from 8 to 16 nodes and vice versa.
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Figure 11: Buffer matching data exchange runtime
as a function of the block size with constant buffer
size of 10GB when upscaling from 8 to 16 nodes

add nodes remove nodes

Q1 Q9 Q1 Q9

BM on 57.74 s 77.55 s 32.02 s 51.06 s
BM off 58.70 s 87.95 s 32.56 s 52.04 s
Inelastic 167.68 s 223.30 s 123.20 s 147.94 s

Table 2: Runtime for scaling the system using the
inelastic scaling process or the cluster resize fea-
ture with and without buffer matching (BM)

Table 2 shows the measured runtime results of the exper-
iment. For all cases, the implemented cluster resize feature
outperforms the inelastic scaling up to a factor 4. In addi-
tion to that, activated buffer matching shows a benefit in
runtime for the cases of scaling the system up, caused by
the buffer pre-filling. The amount of benefit is dependent
on the actual query for this experiment, so query 9 shows a
better speedup than query 1 using buffer matching. For the
case of removing nodes, buffer matching has a negligible
impact, as buffers of the remaining nodes are already filled.
Therefore, a buffer merging strategy could be a possible
optimization in the future. Moreover, we can state that
adding nodes to the system is slower than removing nodes,
both for inelastic scaling and the cluster resize feature. The
reason for this is that started servers perform a collective
startup with several synchronization points and do a full
log replay. Increasing the number of servers, this startup
time also increases, leading also the inelastic scale-up to be
slower than the scale-down. In the contrary, removed nodes
can shutdown independently after the remaining servers
form a new communicator (see Section 4), not influencing
the further query processing. This experiment is highly
dependent on the cluster configuration (e.g. network speed)
as well as the size of the write-ahead log that has to be
replayed. Therefore, this experiment should not be used
for a quantitative comparison, but is intended to show a
qualitative difference between the scaling methods.

Overall the evaluation proves that the implemented
cluster resize feature outperforms the “inelastic” scaling
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method using a restart up to a factor of 4. The buffer match-
ing mechanism shows to add a minor runtime overhead to
the scaling step, but proves to have a major impact on the
query performance. The first queries after scaling show a
significant performance gain when using buffer matching,
which is caused by the pre-filling of buffers. As a result, the
user gets an immediate performance boost when deciding
to scale the VectorH installation up, which is the behavior
he expects when increasing his service cost. Furthermore,
the experiments prove that the socket implementation im-
proves the buffer matching data exchange step compared
to the MPI implementation, which was the expectation
this optimization was based on. As we evaluated our imple-
mentation using a private cluster, the time for acquiring
resources from a cloud service provider is not included in
our results.

8 CONCLUSION

In this paper, we presented our approach to adapt Ac-
tian VectorH for the elastic cloud environment. As the
first goal, we implemented an elastic cluster resize feature
for VectorH, enabling adding and removing nodes during
system uptime and therefore avoiding the drawbacks of a
full system restart, e.g. full log replay and empty buffers.
For the implementation of the feature we utilized group
and communicator management offered by the Message
Passing Interface (MPI), which is used for node-to-node
communication within VectorH. As a second contribution,
we designed a partition manager that is suitable for the
cloud environment. By using overpartitioning and explic-
itly managing partition-to-node mappings for equivalence
classes of partitionings, the implemented solution minimizes
partition reassignments, keeps partition co-locations, bal-
ances load on partition level and provides efficient lookup
and update functions. The partition manager replaces the
round-robin partition assignment in VectorH, which showed
to be not suitable for the elastic cloud environment. While
evaluating the cluster resize feature in combination with
the implemented partition manager, queries did not show
the expected speedup immediately after the resize, which
was caused by empty buffers. As an optimization, we intro-
duced the buffer matching and filling mechanism into the
cluster resize feature. After changing partition mappings,
nodes scan their buffers and send buffered data to other
nodes in order to pre-fill their buffers, leading to immediate
speedup after cluster resize. For the buffer matching data
exchange, we implemented two different approaches using
MPI communication and using data streams over sockets
and evaluated them against each other.

The experiments showed that the elastic cluster resize
feature significantly outperforms the inelastic scaling pro-
cess using a system restart. Activating the buffer matching
mechanism further increases the performance after the clus-
ter resize, enabling the user to immediately profit from
additional resources. Evaluating both buffer matching data
exchange mechanisms, the socket implementation showed
to be the better choice for all tested cases.

Future work includes the investigation on online scaling
allowing concurrent read and/or write transactions dur-
ing the scaling process, as well as query driven scaling,
optimizing a query for a given goal (e.g., cost, runtime)

by scaling the system automatically. In addition to that,
further data exchange mechanisms, such as RDMA (re-
mote direct memory access) based data exchange, will be
evaluated to accelerate the buffer matching data exchange
step. The buffer matching mechanism could also be further
extended with a predictive buffer filling strategy for adding
nodes or a buffer merging strategy for removing nodes.
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Micha lSwitakowski, Cristian Bârca, Juliusz Sompolski,
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ABSTRACT
Online job marketplaces are becoming very popular. Either jobs

or people are ranked by algorithms. For example, Google and

Facebook job search return a ranked list of jobs given a search

query. TaskRabbit and Fiverr, on the other hand, produce rank-

ings of workers for a given query. Qapa, an online marketplace,

can be used to rank both workers and jobs. In this paper, we de-

velop a unified framework for fairness to study ranking workers

and jobs. We case study two particular sites: Google job search

and TaskRabbit. Our framework addresses group fairness where

groups are obtained with any combination of protected attributes.

We define a measure for unfairness for a given group, query and

location. We also define two generic fairness problems that we

address in our framework: quantification, such as finding the k
groups (resp., queries, locations) for which the site is most or least

unfair, and comparison, such as finding the locations at which

fairness between two groups differs from all locations, or finding

the queries for which fairness at two locations differ from all

queries. Since the number of groups, queries and locations can

be arbitrarily large, we adapt Fagin top-k algorithms to address

our fairness problems. To evaluate our framework, we run exten-

sive experiments on two datasets crawled from TaskRabbit and

Google job search.

1 INTRODUCTION
Online job search is gaining popularity as it allows to find people

to hire for jobs or to find jobs to apply for. Many online job

search sites exist nowadays such as Facebook job search
1
and

Google job search
2
. On those sites, users can find jobs that match

their skills in nearby businesses. On the other hand, freelancing

platforms such as TaskRabbit
3
and Fiverr

4
are examples of online

job marketplaces that provide access to a pool of temporary

employees in the physical world (e.g., looking for a plumber), or

employees to complete virtual "micro-gigs" such as designing a

logo.

1
https://www.facebook.com/jobs/

2
https://jobs.google.com/about/

3
https://www.taskrabbit.com/

4
https://www.fiverr.com/
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In online job search, either jobs are ranked for people or peo-

ple are ranked for jobs. For instance, on Google and Facebook job

search, a potential employee sees a ranked list of jobs while on

TaskRabbit, an employer sees a ranked list of potential employees.

This ranking of jobs or individuals naturally poses the question

of fairness. For instance, consider two different users searching

for a software development job in San Francisco using Google

job search. If the users are shown different jobs based on their

search and browsing history, which could correlate with their

demographics such as race or gender, this may be considered

unfair. Similarly, a ranking of job seekers in NYC might be unfair

if it is biased towards certain groups of people, say where White

Males are consistently ranked above Black Males or White Fe-

males. This can commonly happen since such rankings might

depend on the ratings of individuals and the number of jobs they

completed, both of which can perpetuate bias against certain

groups of individuals.

In this paper, we propose to quantify unfairness in ranking

when looking for jobs online. We develop a unified framework

to address group unfairness, which is defined as the unequal

treatment of individuals based on their protected attributes such

as gender, race, ethnicity, neighborhood, income, etc. [11]. To

quantify unfairness for a group, we measure the difference in

rankings between that group and its comparable groups, i.e., those
groups which share at least one protected attribute value with the

given group. For instance, consider the group “Black Females”,

comparable groups would be “Black Males”, “White Females” and
“Asian Females”.

The difference in ranking naturally depends on what is being

ranked, jobs or people, and we formalize various measures of

unfairness on different types of sites (job search sites and on-

line job marketplaces). Figures 1 and 2 illustrate examples of job

ranking on Google job search and people ranking on TaskRabbit,

respectively. For a given query on Google job search, “Home

Cleaning" in location "San Francisco” in Figure 1, we quantify

unfairness in ranking for a given demographic group, “Black

Females”, using Kendall Tau (we also use Jaccard Coefficient in

our data model), between the search results of black females and

all other users in comparable groups, as is done in [12]. To quan-

tify unfairness for “Black Females” on TaskRabbit for the query

"Cleaning Services" in location "New York City", we compute the

average Earth Mover’s Distance [20] between the distribution of

rankings of Black Females and all comparable groups, as in [11].

In our framework, we also compute the difference of exposure

of workers from this demographic group and their relevance in
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contrast to comparable groups and then use this as a measure of

unfairness for this group, as in [2, 22].

Figure 1: The unfairness for “Black Females” for the
Google job search query “HomeCleaning" in location "San
Francisco” using Kendall Tau between the search results
of Black Females and all other users in comparable groups
is 0.70+0.50+0.30

3
= 0.50.

Figure 2: The unfairness for “Black Females” for the
query "Cleaning Services" in location "New York City" on
TaskRabbit using Earth Mover’s Distance between rank-
ing distributions of Black Females and its comparable
groups is 0.45+0.25+0.65

3
= 0.45.

Various fairness questions can be formulated either to quantify

how well a site treats groups for different jobs and at different

locations, or to compare groups, queries or locations. Our frame-

work allows us to define two generic fairness problems: quan-
tification, such as finding the k groups (resp., queries, locations)

for which the site is most or least unfair, and comparison, such
as finding the locations at which fairness between two groups

differs from all locations, or finding the queries for which fairness

at two locations differ from all queries. Examples of quantification
questions are: what are the five groups for which Google job search
is most unfair? what are the five fairest queries for women? and at
which locations do Asians have the highest chance to be hired for a
given job?. Examples of comparison questions are: how differently
does TaskRabbit treat men and women and for which queries is the
treatment different? at which locations is it easiest to be hired as

a house cleaner than as a gardener? and which jobs are the most
likely to accept hiring asian females over black females?.

We develop efficient Fagin top-k algorithms to solve our prob-

lems. Our algorithms make use of three types of indices: group-
based, query-based, and location-based, that pre-compute unfair-

ness values for combinations of groups, queries and locations,

for faster processing.

To evaluate our framework, we run extensive experiments on

two datasets crawled from Google job search and TaskRabbit.

The choice of these two platforms is justified by our goal to show

the applicability of our framework to two different treatments of

online employment, namely ranking jobs and ranking workers.

We ran 5,361 queries on TaskRabbit and extracted for each query,

the rank of each tasker, their profile pictures, and demographics,

where the number of taskers returned per query was limited

to 50. We processed the results and recorded unfairness values.

We then derived user groups of interest and equivalent Google

search terms from data crawled from TaskRabbit. This resulted

in 20 queries (the top 10 and bottom 10 frequently searched

queries) and their corresponding locations from data crawled in

TaskRabbit. We setup 60 user studies on Prolific Academic
5
and

recruited participants, who belong to chosen groups. To control

for noise in search, we asked those participants to use a Google

Chrome extension we developed that automatically executes

on Google the search queries in 10 locations. We processed the

results and recorded unfairness values.

Our results are organized into the two problems we solve: fair-

ness quantification and fairness comparison. On TaskRabbit, we

found that Asian Females and Asian Males are the ones most dis-
criminated against.We also found that Handyman and Yard Work
are the most unfair jobs and that Furniture Assembly and Delivery,
are the fairest and that Birmingham, UK and Oklahoma City, OK
are the least fair while Chicago and San Francisco are the fairest
locations across all jobs.We also quantified the fairest/unfairest

locations for some jobs and the fairest/unfairest jobs for some

locations. Our TaskRabbit results demonstratethe flexibility and

expressiveness of fairness quantification, and provided the ability

to generate hypotheses to be tested on Google job search.
OnGoogle job search, we found thatWashington, DC is deemed

the fairest. On the other hand, London, UK is deemed the unfairest
location. For queries, we found that Yard Work jobs are deemed
the most unfair whereas Furniture Assembly jobs are deemed the
most fair.

While fairness quantification resulted in largely known results,

our fairness comparison experiment on both platforms revealed

new results. For instance, on TaskRabbit, in Chicago, Nashville and
San Francisco, Females are treated more fairly than Males, which
differs from the overall comparison. Most results are consistent

between EMD and Exposure. Similarly for Google job search,

most results are consistent between Jaccard and Kendall Tau.

This is quite encouraging and and merits further investigation in

future work.

The paper is organized as follows. We review related work in

Section 2. In Section 3, we present our data model. In Section 4

we describe our unfairness problems and the algorithms we use

to solve these problems. Section 5 describes our case study on

two sites, Google job search and TaskRabbit. Finally, we conclude

and present future work in Section 6.

5
https://prolific.co
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2 RELATEDWORK
To the best of our knowledge, our work is the first to formal-

ize group-fairness, query-fairness, location-fairness, and fairness

comparisons, and conduct an extensive evaluation of job search

on a virtual marketplace and a job search site. Further statisti-

cal and manual investigations are necessary for causality and

explainability. Our goal is to reduce initial manual effort by pro-

viding necessary tools to assess fairness.

Fairness has been trending in research for the last few years

as we increasingly rely on algorithms for decision making. Bias

has been identified as a major risk in algorithmic decision mak-

ing [4, 11, 16, 23, 27]. One algorithmic solution is based on the

formalization in [16] to quantify unfairness. To detect unfairness

in algorithms, a framework [24] for "unwarranted associations"

was designed to identify associations between a protected at-

tribute, such as a person’s race, and the algorithmic output using

the FairTest tool. In [11], the notion of unfairness was defined as

a disparity in treatment between different groups of people based

on their protected attributes (i.e., what is commonly referred to

as group unfairness). In this context, to assess unfairness mathe-

matically, one needs to compare distributions of decisions across

different groups of people. In our work, we adapt the definition of

unfairness in [11]. However, rather than trying to fix it, the goal

of our work is to just reveal any unfairness by the ranking pro-

cess, which in some cases might be positive discrimination [19]

where certain disadvantaged individuals are favored based on

their protected attributes.

There is a wealth of work on addressing fairness of ranking in

general (for example [6, 16, 22, 24–26]). Unlike our work, the ma-

jority of these works that focus on group fairness either assume

the presence of pre-defined groups based on protected attributes

of users, or the presence of ranking constraints that bound the

number of users per protected attribute value in the top-k rank-

ing. On the other hand, the work in [2] focuses on addressing

amortized individual fairness in a series of rankings. In [15], the

authors introduce subgroup fairness and formalize the problem

of auditing and learning classifiers for a rich class of subgroups.

Our work differs in many ways: we are interested in ranking

individuals and not classifying them, as well as ranking jobs and

we seek to quantify the fairness of jobs, locations and groups and

compare fairness across different dimensions.

In [1], the authors develop a system that helps users inspect

how assigning different weights to ranking criteria affects rank-

ing. Each ranking function can be expressed as a point in a multi-

dimensional space. For a broad range of fairness criteria, includ-

ing proportionality, they show how to efficiently identify groups

(defined as a combination of multiple protected attributes). Their

system tells users whether their proposed ranking function satis-

fies the desired fairness criteria and, if it does not, suggests the

smallest modification that does.

In [9], the authors studied fairness of ranking in online job

marketplaces. To do this, they defined an optimization problem

to find a partitioning of the individuals being ranked based on

their protected attributes that exhibits the highest unfairness by

a given scoring function. They used the Earth Mover’s Distance

between score distributions as a measure of unfairness. Unlike

other related work, we did not assume a pre-defined partition-

ing of individuals and instead developed two different fairness

problems, one aiming at quantifying fairness and the other at

comparing it.

There is a wealth of work that empirically assessed fairness

in online markets such as crowdsourcing or freelancing plat-

forms [8, 13, 17, 17, 21]. For instance, the authors in [17] analyze

ten categories of design and policy choices through which plat-

forms may make themselves more or less conducive to discrimi-

nation by users. In [13], the authors found evidence of bias in two

prominent online freelance marketplace, TaskRabbit and Fiverr.

Precisely, in both marketplaces, they found that gender and race

are significantly correlated with worker evaluations, which could

harm the employment opportunities afforded to the workers on

these platforms. The work in [21] studies the Uber platform to

explore how bias may creep into evaluations of drivers through

consumer-sourced rating systems. They concluded that while

companies like Uber are legally prohibited from making employ-

ment decisions based on protected characteristics of workers,

their reliance on potentially biased consumer ratings to make

material determinations may nonetheless lead to a disparate im-

pact in employment outcomes. Finally, discrimination in Airbnb

was studied in [8] and high evidence of discrimination against

African American guests was reported.

In [7], the authors study ethics in crowd work in general. They

analyze recent crowdsourcing literature and extract ethical issues

by following the PAPA (privacy, accuracy, property, accessibility

of information) concept, a well-established approach in informa-

tion systems. The review focuses on the individual perspective

of crowd workers, which addresses their working conditions and

benefits.

Several discrimination scenarios in task qualification and al-

gorithmic task assignment were defined in [3]. That includes

only accounting for requester preferences without quantifying

how that affects workers, and vice versa. Another discriminatory

scenario in [3] is related to worker’s compensation since a re-

quester can reject work and not pay the worker or a worker can

be under-payed. Discrimination in crowdsourcing can be defined

for different processes.

In [18], the authors study how to reduce unfairness in vir-

tual marketplaces. Two principles must be adapted: 1) platforms

should track the composition of their population to shed light

on groups being discriminated against; and 2) platforms should

experiment on their algorithms and data-sets in a timely man-

ner to check for discrimination. In this same paper, the authors

define four design strategies to help reduce discrimination, a

platform manager should first answer these questions: 1) are

we providing too much information? 2) can we automate the

transaction process further? 3) can we remind the user of dis-

criminatory consequences when they are making a decision? 4)

should the algorithm be discrimination-aware? In question 1),

they address the issue of transparency. Discrimination and trans-

parencymight be highly correlated but their correlation has yet to

be studied profoundly. In [3], transparency plug-ins are reviewed.

Those plug-ins disclose computed information, from worker’s

performance to requester’s ratings such as TurkBench [14], and

Crowd-Workers [5]. Such plug-ins might be helpful in a more

detailed study of the effect of transparency on fairness.

3 FRAMEWORK
3.1 Unfairness Model
On any given site, we consider a set of groups G, a set of job-

related queries Q, and a set of locations L. We associate to each

group д a label label(д) in the form of a conjunction of predicates

a = val . We useA(д) to refer to all attributes used in label(д). For
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example, if label(д) is (gender = male) ∧ (ethnicity = black), we
have: A(д) is {gender, ethnicity}. We define variants(д,a) where
a ∈ A(д) as all groups whose label differs from д on the value of a.
For instance, variants(д, gender) contains a single groupwhose la-
bel is (gender = female) ∧ (ethnicity = black), variants(д, ethnicity)
contains two groups whose labels are (gender = male) ∧ (ethnicity
= asian) and (gender = male) ∧ (ethnicity = white), respectively.

We define the set of comparable groups for a group д as {д′ ∈
∪a∈A(д)variants(д,a)}. In our example, it is variants(д, gender)∪
variants(д, ethnicity). This notion of comparable groups can be

more easily leveraged for explanations. To consider other notions,

we believe we would need to extend only our fairness model, and

not the full framework.

Each query q ∈ Q contains a set of keywords such as “Home

Cleaning” or “Logo Design”. The same query can be asked at

different geographic locations l ∈ L. In some applications such

as TaskRabbit, a query will be used to refer to a set of jobs in

the same category such as Handyman, Furniture Assembly and

Delivery services.

We denote by d<д,q,l> the unfairness value of the triple <

д,q, l >. We discuss next how this unfairness value is computed

for different types of sites.

3.2 Unfairness Measure for Search Engines
In a search engine such as Google Search, each user u ∈ д is

associated with a ranked list of search results Elq (u). We compute

unfairness of д as:

d<д,q,l> = avgд′ DIST (д,д
′) ∀д′ ∈ ∪a∈A(д)variants(д,a) (1)

A common way to compare search results is to use measures

such as Jaccard Index or Kendall Tau [12]. Hence, we define

DIST (д,д′) as one of the following two:

• avg

u,u′
τ (Elq (u),E

l
q (u
′)),∀u ∈ д,∀u ′ ∈ д′, whereτ (Elq (д),Elq (д′))

is the Kendall Tau between the ranked lists Elq (u) and

Elq (u
′).

• avg

u,u′
JACCARD(Elq (u),E

l
q (u
′)),

∀u ∈ д,∀u ′ ∈ д′, where JACCARD(Elq (u),E
l
q (u
′)) is the

Jaccard Index between the ranked lists Elq (u) and E
l
q (u
′).

In Table 1, we display a toy example of the top-3 results for

10 users on a search engine for the query "Home Cleaning" in

location "San Francisco". Figure 3 shows how the unfairness value

for the group "Black Females" is computed using Jaccard index.

In the figure, the Jaccard index between every Black Female user

and Asian Female user is computed and then average of the

Jaccard index is used to measure unfairness value between the

two groups "Black Females" and "Asian Females". To compute the

overall unfairness value for the group "Black Females", the same

computation must be done between Black Females and all other

comparable groups, namely "Black Males" and "White Females"

and then the average of the individual unfairness values between

groups is taken.

3.3 Unfairness Measure for Online Job
Marketplaces

In online marketplaces such as TaskRabbit, we are given a set

of workersW, and a scoring function f lq : W → [0, 1]. Each

workerw ∈ W is ranked based on her score f lq (w). To measure

Table 1: Top-3 results for 10 users for the query "Home
Cleaning" in location "San Francisco" on a search engine.

Worker Top-3

w1 b, d, e

w2 d, b, e

w3 a, b, c

w4 b, a, c

w5 a, b, c

w6 d, a, b

w7 a, b, d

w8 d, a, b

w9 a, b, c

w10 a, b, c

Figure 3: The partial unfairness in a search engine for
“Black Females” in Table 2 with respect to one of its com-
parable groups, "Asian Females", using Jaccard Index is
0.8+0.5

2
= 0.65.

d<д,q,l> , we can use one of two methods: Earth Mover’s Distance
(EMD) [20] and Exposure [2, 22].

3.3.1 EMD Unfairness. In the EMD notion of unfairness, the

unfairness for a group д for query q at location l is computed as

the distance between the score distributions of workers in group

д and all its comparable groups д′ ∈ ∪a∈A(д)variants(д,a) as
follows:

d<д,q,l> = avgд′ DIST (д,д
′) ∀д′ ∈ ∪a∈A(д)variants(д,a) (2)

where

DIST (д,д′) = EMD(h(д, f lq ),h(д
′, f lq ))

where h(д, f lq ) is a histogram of the scores of workers in д using

f lq .
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In Table 2, we show a toy example consisting of 10 workers

looking for a "Home Cleaning" job in San Francisco and their

protected attributes. The ranking of these workers is shown in

Table 3. Figure 4 illustrates how the EMD unfairness of Black

Females, д, is calculated. Since A(д) is Gender and Ethnicity, the
comparable groups in the toy example are Black Males, Asian

Females and White Females.

Table 2: Example of 10workers looking for a "HomeClean-
ing" job in San Francisco and their protected attributes

Worker Gender Nationality Ethnicity

w1* Female America Asian

w2 Male America White

w3* Female America White

w4 Male Other Asian

w5 Female Other Black
w6* Male America Black

w7 Female America Black
w8* Male Other Black

w9 Male Other White

w10* Female America White

Table 3: Ranking of the 10 workers for the query "Home
Cleaning" in San Francisco on an online job marketplace

Ranking Worker f lq (w)

1 w3 0.9

2 w8 0.8

3 w6 0.7

4 w2 0.6

5 w1 0.5

6 w4 0.4

7 w7 0.3

8 w5 0.2

9 w9 0.1

10 w10 0

Figure 4: The unfairness of “Black Females” based on the
ranking in Table 3 using EMD is 0.70+0.50+0.30

3
= 0.50.

Since the actual scores of each worker for a query and location,

f lq (w) is not always available (no job marketplace makes that

score available), we rely on the rank of workers rank(w,q, l) to
compute their relevance for a query and location. The rank of

workers for a pair (q, l) is available since it can be observed in

the results of running q at l . We can hence compute rel lq (w), the
relevance score of a worker as follows:

rel lq (w) = 1 −
rank(w,q, l)

N
where rank(w,q, l) denotes the rank of workerw for query q at

location l as shown in Table 3, and N is the number of workers

in the resultset, here set to 10. The relevance scores generated

for all workers in our example are reported in Table 3.

To compute the EMD unfairness of Black Females for this

query at this location, we generate a histogram for Black Females

and each of the comparable groups based on the relevance scores

rel lq (w) computed for workers. We then compute the average

EMD between the histogram of Black Females and each of the

comparable groups’ histograms.

3.3.2 Exposure Unfairness. In the exposure notion of fairness,

the intuition is that higher ranked workers receive more exposure

as people tend to only examine top-ranked results. Thus, each

worker receives an exposure inversely proportional to her rank

d<д,q,l> as follows. First, for every w ∈ д, we compute her

exposure as:

explq (w) =
1

loд(1 + rank(w,q, l))

We also compute the relevance of workerw ∈ д as rel lq (w) as
defined above. Now, the exposure of a group of workers д is set

to:

explq (д) =

∑
w ∈д exp

l
q (w)∑

д′∈д∪a∈A(д)var iants(д,a)
∑
w ∈д′ exp

l
q (w)

Similarly, we define the relevance of a group д as:

rel lq (д) =

∑
w ∈д rel

l
q (w)∑

д′∈д∪a∈A(д)var iants(д,a)
∑
w ∈д′ rel

l
q (w)

Next, we assume that each group д should receive exposure

proportional to its relevance. We thus measure deviation from

the ideal exposure using the L1-norm as the unfairness of a group

д: d<д,q,l> = |exp
l
q (д) − rel

l
q (д)|.

Figure 5 illustrates how the exposure unfairness of Black Fe-

males, д, is calculated. To compute the exposure unfairness of

Black Females for this query in the given location, we compute

the exposure and relevance of all Black Female workers (bold in

Table 2) and the workers belonging to their comparable groups (*

in Table 2) using f lq (w) and ranking shown in 3. We then sum up

the exposure and relevance values for all Black Females workers

and the comparable groups separately.

3.4 Notation Generalization
We have used d<д,q,l> to refer to the unfairness for group д for

the job-related query q at location l . This value is obtained by

contrasting the ranking for group д with the ranking of all its

comparable groups. Unfairness can also be computed for sev-

eral job-related queries and at multiple locations. For a set of

queries Q ⊆ Q and a set of locations L ⊆ L, we can compute the

unfairness for group д as follows:

d<д,Q,L> = avgq∈Q,l ∈L d<д,q,l>
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Figure 5: Computing the unfairness for “Black Females”
based on the ranking in Table 3. The exposure of Black
Females is 0.94

0.94+4.0 = 0.19. Its relevance is 0.5
0.5+2.9 = 0.15. Its

unfairness is 0.19 − 0.15 = 0.04.

Similarly, we could compute the unfairness for a set of groups

G ⊆ G at a location l ∈ L for all queries in Q ⊆ Q as follows:

d<G,Q,l> = avgд∈G,q∈Q d<д,q,l>

Finally, we could also compute the unfairness for a set of groups

G ⊆ G for a given query q ∈ Q at all locations L ⊆ L as follows:

d<G,q,L> = avgд∈G,l ∈L d<д,q,l>

4 PROBLEMS AND ALGORITHMS
In this section, we first provide two generic problem formulations

that capture the variety of group fairness questions we may ask

(Section 4.1). We then describe the algorithms we designed to

solve those problems (Section 4.2).

4.1 Problem Variants
To formulate a generic problem, we will use the term dimension
to refer to one of group, query or location. Our first problem aims

to quantify how well a site treats groups for different queries and

at different locations. The problem returns instances of a chosen

dimension, e.g., groups, and aggregates their unfairness values

along the two others, e.g., queries and locations.

Problem 1 (Fairness Quantification). Given R a dimension
to be returned and two other dimensions AGG1 and AGG2 to be
aggregated, return the k results in R for which the site is most/least
unfair, where the unfairness for each result r ∈ R, d<AGG1,AGG2,r> ,
is computed as: avgagg1∈AGG1,agg2∈AGG2 d<aдд1,aдд2,r>

There are 3 instances of this problem: one where R is a set of

groups, one where it is a set of queries, and the third one where

it is a set of locations.

When R is a set of groups, the problem, referred to as group-
fairness, returns k groups for which the site is most/least unfair.

For instance, it could be used to find the 5 groups for which the

site is least unfair with respect to all queries at all locations or
to answer the question: Out of Black Males, Asian Males, Asian
Females, and White Females, what are the 2 groups for which the
site, say Google job search, is the most unfair?

When R is a set of queries, the problem, referred to as query-
fairness returns k queries which are the most/least unfair. This

instance of the problem can address questions such as what are
the 5 least unfair queries at all locations? or which 2 queries are
black males most likely to get in the West Coast?

Finally, when R refers to locations, the problem, referred to as

location-fairness addresses questions such asWhich 3 locations
are the easiest to find a job at? or out of NYC, Boston and Washing-
ton DC, what is the least unfair location for women looking for an
event staffing job on a given site, say TaskRabbit?

Our second problem formulation aims to capture comparisons

between two dimensions. It admits two dimensions to compare,

e.g. males and females, or NYC and San Francisco, or cleaning

services and event staffing, and it returns a breakdown of compar-

ison dimensions into sub-dimensions whose fairness comparison

differs from the comparison of the input dimensions.

Problem 2 (Fairness Comparison). Given two comparison
dimensions r1 and r2, and a breakdown dimension B, return all
b ∈ B s.t. d<r1,b> >= d<r2,b> ∧ d<r1,B> <= d<r2,B>
∨d<r1,b> <= d<r2,b> ∧ d<r1,B> >= d<r2,B>

The first instance of our comparison problem is referred to

as group-comparison in which r1 and r2 are demographic groups.

For example, when r1 refers to Males, r2 to Females, and B to

locations, fairness comparison returns all locations where the

comparison between males and females differs from that of all

males and females. Table 4 shows an example. In this case, our

problem returns the unfairness values of males and females at

those two locations that compare differently from all locations.

Table 4: Comparison between Male and Female workers
in Oklahoma City and Salt Lake City differ from the over-
all

Group-comparison Males Females

All 0.48 0.74

Oklahoma City, OK 0.853 0.732

Salt Lake City, UT 0.933 0.553

The second instance of our comparison problem is referred

to as query-comparison. For example, if r1 is lawn mowing and

r2 furniture mounting and B is ethnicity, fairness comparison

returns all ethnicities for which the comparison between lawn

mowing and furniture mounting differs from the whole popula-

tion. For instance, our problem finds that ethnicity Black must be

returned because the unfairness values between lawn mowing

and furniture mounting for blacks compare differently from all

ethnicities.

The third instance of our comparison problem is referred to

as location-comparison. For example when r1 is California, and r2
is Arizona, and B is outdoor home services, fairness comparison

returns all queries related to outdoor home services (e.g., lawn

mowing, garage cleaning, patio painting, etc), for which the com-

parison in California and Arizona differs from all outdoor home

services. Our problem returns the jobs garage cleaning and patio

painting because the unfairness values between California and
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Arizona for those two jobs are different from all outdoor home

services.

4.2 Algorithms
The computational complexity of our problems calls for designing

scalable solutions. In this section, we propose adaptations of

Fagin’s algorithms to solve our problems. We first describe the

indices we generate: group-based, query-based, and location-based.
The group-based indices associate to every (q, l) pair an in-

verted index where groups are sorted in descending order based

on d<д,q,l> .
The query-based indices associate to every (д, l) pair an in-

verted index where queriesq are sorted in descending order based
on d<д,q,l> .

The location-based indices associate to every (д,q) pair an
inverted index where locations l are sorted in descending order

based on d<д,q,l> . Table 5 shows an illustration of the three

types of indices.

Table 5: Group-based, query-based, location-based indices

I(q,l )
. .

дj d(дj ,q, l)
. .

I(д,l )
. .

qj d(qj ,д, l)
. .

I(д,q)
. .

lj d(д,q, lj )
. .

Algorithm 1 is an adaption of Fagin’s Threshold Algorithm

[10] for the group-fairness instance of our problem. It finds the k
groups for which the site is most unfair. The algorithm takes as

input a set of groups G, a set of queries Q and a set of locations

L, and returns k groups. It makes use of the group-based indices

(Table 5).

All other instances of Problem 1 including query-fairness,

location-fairness and their bottom k versions, are adaptations of

Algorithm 1.

Algorithm 2 solves our second problem (Problem 2) for the

group-comparison instance of our problem. It takes as input 2

groups д1 and д2 and a breakdown dimension L. It first calls Algo-
rithm 3 to compute the fairness values of д1 and д2 for all values
of L and all queries Q . It then calls the query-based index to sum

up all the values for all the queries by scanning the index for each

location and for each of the two groups. Finally, it returns only

those locations for which the order on unfairness values for the

two groups is reversed. All other instances of Problem 2 including

query-comparison and location-comparison are adaptations of

Algorithm 2.

Algorithm 3 computes the fairness for a group д for all queries

in Q and all locations in L. It takes as input a group д, a set

of queries Q and a set of locations L, and returns the average

unfairness value for д over all queries and locations.

5 EXPERIMENTS
Our experiments use real data collected from TaskRabbit and

Google Search and were conducted from June to August 2019.

We first describe the overall setup for each platform and then

report the results.

5.1 Experimental setup
5.1.1 TaskRabbit setup. TaskRabbit is an online marketplace

that matches freelance labor with local demand, allowing con-

sumers to find immediate help with everyday tasks.

Algorithm 1 findTopKGroups(G: a set of groups, Q : a set of

queries, L: a set of locations, k : an integer)

1: topk ← createMinHeap()
2: Initialize |Q | ∗ |L| cursors to 0

3: τ ← +∞
4: while topk .minValue() < τ or topk .size() < k do
5: τ ← 0

6: for q ∈ Q do
7: for l ∈ L do
8: (д,d<д,q,l>) ← I(q,l ). f ind(cur(q,l )) ▷ Read

entry in I(q,l ) pointed to by cursor cur(q,l )
9: d<д,Q,L> ← d<д,q,l>
10: τ ← τ + d<д,q,l>
11: for q′ ∈ Q do
12: for l ′ ∈ L do
13: if q′ , q or l ′ , l then
14: d<д,q′,l ′> ← I(q′,l ′). f ind(д) ▷

Perform a random access on I(q′,l ′) to retrieve the unfairness
value of д for the pair (q′, l ′)

15: d<д,Q,L> ← d<д,Q,L> + d<д,q′,l ′>
16: end if
17: end for
18: end for
19: d<д,Q,L> ← d<д,Q,L>/(|Q | ∗ |L|)
20: if topk .size() < k then
21: topk .insert(д,d<д,Q,L>)

22: else
23: if topk .minValue() < d<д,Q,L> then
24: topk .pop()
25: topk .insert(д,d<д,Q,L>)

26: end if
27: end if
28: cur(q,l ) ← cur(q,l ) + 1
29: end for
30: end for
31: τ ← τ/(|Q | ∗ |L|)
32: end while
33: return topk

Figure 6: Flow of TaskRabbit Experiments

TaskRabbit is supported in 56 different cities mostly in the US.

For each location, we retrieved all jobs offered in that location.

We thus generated a total of 5,361 job-related queries, where

each query is a combination of a job and a location, e.g., Home
Cleaning in New York.
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Figure 7: Gender breakdown Figure 8: Ethnic breakdown

Algorithm 2CompareGroups(Groups:д1,д2, L: a set of locations
as breakdown, Q : a set of queries)

1: loc ← ∅
2: d<д1,Q,L> ← ComputeGroupUnfairness(д1,Q,L)
3: d(<д2,Q,L> ← ComputeGroupUnfairness(д2,Q,L)
4: for l ∈ L do
5: sum1 ← 0

6: sum2 ← 0

7: cur1 ← 0

8: cur2 ← 0

9: for q ∈ Q do
10: sum1+ = I(д1,l ). f ind(cur1)
11: sum2+ = I(д2,l ). f ind(cur2)
12: cur1 ← cur1 + 1
13: cur2 ← cur2 + 1
14: end for
15: if reversed(sum1, sum2 , d<g1,Q,L> , d<g2,Q,L>) then
16: loc+ = l
17: end if
18: end for
19: return loc

Algorithm 3 ComputeGroupUnfairness(д: a group, Q : a set of
queries, L: a set of locations)

1: sum ← 0

2: for q ∈ |Q | do
3: for l ∈ |L| do
4: sum ← sum + I(q,l ). f ind(д) ▷ Perform a random

access on I(q,l ) to retrieve the unfairness value of д for the

pair (q, l)
5: end for
6: end for
7: return sum/(|Q | ∗ |L|)

Figure 6 summarizes the flow of the TaskRabbit experiment.

Our algorithms are encapsulated in the F-Box. For each one of

the 5,361 queries, we extracted the rank of each tasker, their

badges, reviews, profile pictures, and hourly rates, where the

number of taskers returned per query was limited to 50. Since

the demographics of the taskers were not readily available on

the platform, we asked workers on Amazon Mechanical Turk

(AMT)
6
to indicate the gender and ethnicity of the TaskRabbit

taskers based on their profile pictures. The taskers were given

pre-defined categories for gender = {Male, Female} and ethnicity

= {Asian, Black, White}. Each profile picture was labeled by three

different contributors on AMT and a majority vote determined

the final label.

The gender and ethnic breakdowns of the taskers in our dataset

are shown in Figures 7 and 8. Overall, we had a total of 3,311

unique taskers in our crawled dataset, the majority of which were

male (≈ 72%) and white (≈ 66%).

5.1.2 Google Search setup. Google Search personalizes queries
based on a user’s profile which includes user data, activity, and

saved preferences. While personalization can be beneficial to

users, it may introduce the possibility of unfairness, which we

aim to observe.

Figure 9: Flow of Google job search Experiments

We designed the experiments to ensure that variations in the

search results are largely based on differences in profiles rather

than other known noise sources identified in related work such

as carry-over-effect, geolocation, distributed infrastructure, and

A/B testing [12].

The flow of the Google Search experiment is summarized in

Figure 9. We first derived user groups of interest and equivalent

Google search terms from data crawled from TaskRabbit. We then

setup user studies on Prolific Academic
7
and recruited partici-

pants, who belong to those groups. We asked those participants

6
https://mturk.com

7
https://prolific.co
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Table 6: Sample TaskRabbit queries and equivalent Google search terms

TaskRabbit Query Location Equivalent Google Search Terms

run errand London, UK run errand jobs near London UK, errand service jobs near London UK, errand runner jobs near
London, UK, errands and odd jobs near London, UK, jobs running errands for seniors near
London, UK

yard work New York City, NY yard work jobs near New York City, NY, yard worker near New York City, NY, lawn work
needed near New York City, NY, yard help needed near New York City, NY, yard work help
wanted near New York City, NY

to use our Google Chrome extension that automatically executes

on Google the search queries derived. Finally, we processed the

results and provided them as input to the F-Box and recorded

unfairness values.

Search Queries. For our Google Search experiments, we se-

lected 20 queries (the top 10 and bottom 10 frequently searched

queries) and their corresponding locations from data crawled in

TaskRabbit. From this list, we chose those from 10 unique loca-

tions. We then generated equivalent search terms using Google

Keyword Planner, a tool that outputs a list of search terms similar

or related to a given search string and a location. We shortlisted

50 formulations for each query, manually examined them, then

chose 5 search terms whose results are similar to the original

term. Table 6 shows sample queries from TaskRabbit and their

equivalent Google search terms.

Groups. The combination of pre-defined categories for gender

= {Male, Female} and ethnicity = {Asian, Black, White} results in

six groups: Asian Male, Asian Female, Black Male, Black Female,

White Male, and White Female.

We recruited an average of 3 participants per study through

Prolific Academic, a crowdsourcing platform that allows researchers

to recruit participants who have been categorized through the

platform’s screening mechanism.

User Study. Given the search terms and the groups, we have a

total of 60 studies. Each study is composed of two tasks. In the

first task, a participant is asked to set her browsing language to

English and install our Google Chrome extension that runs the

search terms. Participants who are able to successfully complete

the first task are invited to do a second task where they are asked

whether they think the instructions of the first task were clear

and whether the reward is fair. The reward for each task is 0.50

GBP.

Given the distribution of workers on Prolific Academic, we

ended up with 10 locations, namely London, UK, New York City,

NY, Los Angeles, CA, Boston, MA, Bristol, UK, Charlotte, NC,

Pittsburg, PA, Birmingham, UK, Manchester, UK and Detroit, MI.

For those 10 locations, we have five categories of jobs: yard work,

general cleaning, event staffing, moving job and run errand. Table

7 shows the number of locations per job that we collected search

results for.

Google Chrome Extension and noise handling. We developed a

Google Chrome extension that automatically executes the Google

search terms. The extension runs the five search terms every 12

minutes to minimize noise due to the carry-over effect. Mean-

while, every search term is executed at least twice to account for

noise caused by A/B testing. The extension also sets the browser’s

location to a fixed location and uses a proxy so that all queries

originate from the same location thus minimizing noise caused by

Table 7: Number of locations per job

Job Location

yard work 4

general cleaning 3

event staffing 1

moving job 1

run errand 1

distributed infrastructure and different geolocations. The search

results are then inserted to a Google Sheets document. We empha-

sized to the participants that we store no identifying information

about them.

5.2 Fairness quantification
5.2.1 TaskRabbit fairness quantification. We report the results

of solving our fairness quantification problem (Problem 1 in

Section 4.1) for groups, queries and locations using both EMD

and exposure to measure unfairness (see Sections 3.3.1 and 3.3.2

for their formal definitions).

Table 8 reports all groups in TaskRabbit ranked by their de-

creasing unfairness values (both EMD and exposure). We can

see that the two measures agree on the top 7 groups for whom

TaskRabbit is the most unfair: Asian Females and Asian Males are
the ones most discriminated against.

Table 9 reports all job types in TaskRabbit ranked by their

decreasing unfairness values (both EMD and exposure). The two

measures largely agree on the ranking showing that Handyman
and YardWork are themost unfair jobs and that Furniture Assembly
and Delivery, are the fairest.

Since the number of locations is large, we report the top and

bottom 10 locations in Tables 10 and 11 respectively. The results

show that Birmingham, UK and Oklahoma City, OK are the least
fair while Chicago and San Francisco are the fairest locations across
all jobs.

We also report the fairest/unfairest locations for some jobs and

the fairest/unfairest jobs for some locations. For Handyman and
Run Errands, the fairest location is San Francisco Bay Area, CA for
both when using EMD and, when using exposure, it is Boston, MA
for Handyman, and San Francisco Bay Area, CA for Run Errands.
The unfairest location for both jobs is Birmingham, UK when using
EMD.

For Birmingham, Detroit, and Nashville, the fairest jobs are
Delivery and Furniture Assembly for all, and the unfairest are Yard
Work, General Cleaning, and General Cleaning, respectively. For
Philadelphia, San Diego and Chicago, the fairest jobs are Delivery,
Furniture Assembly, and Delivery, respectively, and the unfairest is
Yard Work for Birmingham, Detroit, and Run Errands for Nashville.
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Table 8: EMD and Exposure of all groups in TaskRabbit,
ranked from the unfairest to the fairest.

Group EMD Group Exposure

Asian Female 0.876 Asian Female 0.821

Asian Male 0.755 Asian Male 0.662

Black Female 0.726 Black Female 0.615

Asian 0.694 Asian 0.594

Black Male 0.578 Black Male 0.413

White Female 0.542 White Female 0.359

Black 0.498 Black 0.341

Male 0.468 Female 0.299

Female 0.468 White Male 0.154

White 0.448 Male 0.117

White Male 0.421 White 0.104

Table 9: EMD and Exposure for all jobs in TaskRabbit,
ranked from the unfairest to the fairest.

Job EMD Job Exposure

Handyman 0.692 Handyman 0.515

Event Staffing 0.639 Event Staffing 0.504

General Cleaning 0.611 General Cleaning 0.456

Yard Work 0.672 Yard Work 0.5

Moving 0.604 Moving 0.418

Delivery 0.499 Furniture Assembly 0.383

Furniture Assembly 0.541 Delivery 0.331

Run Errands 0.519 Run Errands 0.352

Table 10: 10 unfairest locations using EMD and Exposure,
ranked from the unfairest to the fairest.

City EMD City Exposure

Birmingham, UK 1 Birmingham, UK 0.926

Oklahoma City, OK 0.998 Oklahoma City, OK 0.819

Bristol, UK 0.91 Bristol, UK 0.761

Manchester, UK 0.851 Manchester, UK 0.739

New Haven, CT 0.838 New Haven, CT 0.67

Milwaukee, WI 0.824 Memphis, TN 0.668

Indianapolis, IN 0.815 Milwaukee, WI 0.668

Nashville, TN 0.808 Charlotte, NC 0.643

Detroit, MI 0.806 Nashville, TN 0.637

Table 11: 10 fairest locations using EMD and Exposure,
ranked from the fairest to the unfairest.

City EMD City Exposure

Chicago, IL 0.274 Chicago, IL 0.107

San Francisco, CA 0.286 San Francisco, CA 0.12

Washington, DC 0.329 Boston, MA 0.169

Los Angeles, CA 0.33 Washington, DC 0.174

Boston, MA 0.353 Los Angeles, CA 0.189

Atlanta, GA 0.4 Houston, TX 0.217

Houston, TX 0.417 Atlanta, GA 0.234

Orlando, FL 0.431 San Diego, CA 0.241

Philadelphia, PA 0.45 Orlando, FL 0.242

San Diego, CA 0.454 Philadelphia, PA 0.273

In summary, our results demonstrate the flexibility and expres-
siveness provided by solving the fairness quantification problem
for groups, queries and locations. They also provide the ability to
generate hypotheses to be tested across platforms, in our case from
TaskRabbit to Google job search.

5.2.2 Google fairness quantification. We ran our unfairness

quantification algorithm (Algorithm 1) on the data crawled from

Google Search. Our algorithm found that regardless of themetrics

we use, Kendall Tau or Jaccard Index, the most discriminated
against group is White Females and the least is Black Males. This
indicates that search results between White Females were the

most different, whereas those for Black Males were the most

similar.

When quantifying unfairness for locations, we found that

Washington, DC is deemed the fairest indicating no difference in

search results between users at this location using both Jaccard

Index and Kendall Tau. On the other hand, London, UK is deemed
the unfairest location.

Finally, for queries, we found that using both metrics, Yard
Work jobs are deemed the most unfair whereas Furniture Assembly
jobs are deemed the most fair.

5.3 Fairness comparison
5.3.1 TaskRabbit fairness comparison. We report the results

of solving our fairness comparison problem (Problem 2 in Sec-

tion 4.1) in Tables 12, 13, 14 and 15. The tables only report the
locations, demographics, and jobs that differ from the overall com-
parison.

Table 12: Comparison between Male and Female workers
after including locations using Exposure. The listed loca-
tions are the ones for which Females are treated more fairly
than Males, which differs from the overall comparison.

Group-comparison Males Females

All 0.117 0.299
Charlotte, NC 0.399 0.345

Chicago, IL 0.062 0.062

Nashville, TN 0.330 0.309

Norfolk, VA 0.331 0.168

San Francisco Bay Area, CA 0.084 0.084

St. Louis, MO 0.255 0.190

Table 13: Comparison between Lawn Mowing and Event
Decorating workers after including Ethnicity using EMD.
Caucasians are the ones for which the comparison between
Lawn Mowing jobs and Event Decorating jobs is different
from the whole population, showing that Lawn Mowing
jobs are fairer than Event Decorating for Caucasians.

Job-comparison Lawn Mowing Event Decorating

All 0.674 0.613
White 0.552 0.569

In summary, we can conclude that overall, EMD and Exposure
yield the same observations when solving the fairness comparison
problem on TaskRabbit.

519



Table 14: Comparison between Lawn Mowing and Event
Decorating jobs after including Ethnicity using Exposure.
Unlike Table 13, in this case blacks are the ones for whom
Lawn Mowing jobs are fairer than Event Decorating. This
warrants further investigation in the future.

Job-comparison Lawn Mowing Event Decorating

All 0.500 0.442
Black 0.445 0.453

Table 15: Comparison between San Francisco Bay Area
and Chicago after including General Cleaning jobs using
EMD. San Francisco is shown to be fairer for all jobs but the
trend is inverted for the listed jobs.

Location-comparison San Francisco Bay Area, CA Chicago, IL

All 0.213 0.233
Back To Organized 0.198 0.135

Organize & Declutter 0.224 0.191

Organize Closet 0.174 0.153

5.3.2 Google fairness comparison. Similarly to TaskRabbit,

we report the results of solving our fairness comparison problem

(Problem 2 in Section 4.1) in Tables 16, 17, 18, 19, 20, and 21. The
tables show the cases that differ from the overall comparison.

Table 16: Comparison between Male and Female work-
ers after including locations using Kendall Tau. The listed
locations are the ones for which Females are treated more
fairly than Males, which differs from the overall compari-
son.

Group-comparison Males Females

All 0.537 0.552
Birmingham, UK 0.906 0.901

Bristol, UK 0.921 0.918

Detroit, MI 0.928 0.901

New York City, NY 0.913 0.906

Table 17: Comparison between Male and Female workers
after including locations using Jaccard. The results differ
from the ones in Table 16 because the overall results differ.
This warrants further investigation in the future.

Group-comparison Males Females

All 0.395 0.393
Boston, MA 0.894 0.896

Charlotte, NC 0.893 0.901

London, UK 0.776 0.785

Los Angeles, CA 0.875 0.878

Manchester, UK 0.869 0.875

Pittsburgh, PA 0.877 0.88

In summary, we observed that Kendall Tau and Jaccard report
mostly similar results when solving the fairness comparison problem
on Google job search. This is quite encouraging and merits further
investigation in future work.

Table 18: Comparison between Running Errands jobs
and General Cleaning jobs after including Ethnicity using
Kendall Tau.

Job-comparison Running Errands General Cleaning

All 0.927 0.926
Black 0.927 0.950

Asian 0.925 0.938

Table 19: Comparison between Running Errands jobs and
General cleaning jobs after including Ethnicity using Jac-
card.The results differ from those reported in Table 18. This
warrants further investigation in the future.

Job-comparison Running Errands General Cleaning

All 0.902 0.887
Black 0.903 0.94

Table 20: Comparison between Boston, MA and Bristol,
UK after including General Cleaning jobs using Kendall
Tau. This result is similar to the one reported in Table 21.

Group Comparison Boston, MA Bristol, UK

All 0.641 0.689
office cleaning jobs 0.735 0.627

private cleaning jobs 0.572 0.398

Table 21: Comparison between Boston, MA and Bristol,
UK after including General Cleaning jobs using Jaccard.
This result is similar to the one reported in Table 20.

Group Comparison Boston, MA Bristol, UK

All 0.447 0.603
private cleaning jobs 0.403 0.364

6 CONCLUSION
We develop a framework to study fairness in job search and a

detailed empirical evaluation of two sites: Google job search and

TaskRabbit. We formulate two generic problems. Our first prob-

lem returns the k least/most unfair dimensions, i.e., the k groups

for which a site is most/least unfair, the k least/most unfair jobs

(queries), or the k least/most unfair locations. Our second prob-

lem captures comparisons between two dimensions. It admits two

dimensions to compare, e.g. males and females, or NYC and San

Francisco, or cleaning services and event staffing, and it returns a

breakdown of those dimensions that exhibits different unfairness

values (for instance, on TaskRabbit, while females are discrim-

inated against when compared to males, this trend is inverted

in California). We apply threshold-based algorithms to solve our

problems. We report the results of extensive experiments on real

datasets from TaskRabbit and Google job search.

Our framework can be used to generate hypotheses and verify
them across sites. That is what we did from TaskRabbit to Google
job search. It can also be used to verify hypotheses by solving the
comparison problem. As a result, one could use it in iterative sce-
narios where the purpose is to explore and compare fairness. We
are currently designing such exploratory scenarios.
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ABSTRACT
Many e-commerce platforms serve as an intermediary between
companies and consumers, receiving a commission per purchase.
To increase sales, these platforms tend to offer as many items
as possible. However, in many situations a reduced subset of the
items should be offered for sale, e.g., when opening an express
delivery branch, starting operations in a new region, or disposing
of redundant items to improve data quality and decrease mainte-
nance costs. In all these cases it is imperative to select a reduced
inventory which maximally covers consumer needs. A naïve, yet
popular, solution is to focus on the top selling items. This however
ignores the hidden relations between items, and in particular the
tendency of shoppers to buy, in the absence of an item they are
looking for, a satisfying alternative.

In this paper we introduce the Preference Cover problem, and
investigate its application to practical inventory reduction. Given
a large set of items, a bound on the number of items that can be re-
tained and consumer preferences in terms of items popularity and
suitability as alternatives, the goal is to select a reduced inventory
which maximizes the likelihood of a purchase. We first model the
problem via a dedicated weighted directed graph which captures
the relevant information, then study two problem variants, which
differ in their interpretation of the probabilistic dependencies be-
tween consumer preferences. We prove both variants are NP-hard,
and characterize their approximation hardness. Since in the prac-
tical application the overall number of items and the bound on
the reduced item set are very large - in the order of magnitude of
millions - we propose a highly parallelizable and scalable algo-
rithm along with approximation guarantees. Finally, we present
an end-to-end solution that fits the real-world e-commerce appli-
cation, and provide an extensive set of experiments demonstrating
the efficiency and effectiveness of our solution.

1 INTRODUCTION
Due to the rapid growth of the e-commerce industry, online selling
has become one of the most trending businesses of today. Many e-
commerce platforms serve as an intermediary between companies
and consumers, receiving a commission per purchase. To increase
the number of sales, such sites tend to offer a large number of
items1. Nonetheless, they often pursue complementary objectives
where selecting and offering a reduced inventory is required. Com-
mon such scenarios, reported by our industry collaborators, are
the following:

Launching an express delivery store. When large companies
provide express delivery services (alongside existing services) of-
fering items for same-day-delivery, these items should be available
in different warehouses for immediate shipping. It is not feasible
to ensure immediate availability, in terms of storage space and
1Note that “item" here refers to a specific item type from a specific seller, e.g., Silver
iPhone Xs 256GB by Best Buy, rather than to individual instances of this item.

© 2020 Copyright held by the owner/author(s). Published in Proceedings of the
23rd International Conference on Extending Database Technology (EDBT), March
30-April 2, 2020, ISBN 978-3-89318-083-7 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

maintenance overhead, except for a significantly reduced inven-
tory, as seen for example in the Amazon Prime same-day-delivery
catalog, which offers a small percentage of the entire inventory.

Opening a branch overseas. When e-commerce platforms
start operations in new regions, it is often done gradually, initially
offering a small backlog of items. This is in part because one
needs to require the vendors to ship abroad, with regulations
often restricting the number of products that are allowed to be
distributed. A notable example is AliExpress (consumer facing
branch of Alibaba), which due to regulations restricts the number
of items offered for shipping abroad.

Reducing maintenance costs. Maintaining large inventories
incurs substantial data maintenance overhead (e.g., in data clean-
ing, validation, entity resolution and semantic enhancement [5]).
Hence, companies periodically dispose of some small percentage
of items deemed to be least valuable.

These examples demonstrate the need to select a reduced in-
ventory that minimizes the loss in the number of sales. A naïve,
yet popular, solution is to focus on the top selling items. This
approach however entirely ignores the hidden relations between
items. In particular, studies show that consumers are flexible, and
when searching for a specific item are often willing to buy in its
absence what they consider to be a reasonable alternative [34]. For
example, in the absence of a specific 19” LG TV a customer may
be willing to settle for a slightly bigger LG TV or for the same
size TV from Samsung. Retaining a set of items which are not
only popular in-and-of-themselves, but are also likely to “cover"
the inventory and serve as suitable alternatives for omitted items,
can significantly improve the overall satisfaction of the customers.

To model consumer preferences and item alternatives we use
a preference graph - a directed graph with weights on both the
nodes and the edges. The nodes correspond to the items, and the
node weights reflect the items’ purchase popularity (% out of total
sold items). A (directed) edge from item A to item B indicates that,
in A’s absence, consumers consider B as a possible alternative2.
The edge weight reflects the probability that a consumer is willing
to buy B as an alternative to A, if A is missing. (We discuss how
edge weights are derived via customary techniques from click-
stream data, commonly available to e-commerce companies, in
the Experiments Section.)

We use the preference graph to devise effective algorithms for
the selection of items. However, before presenting our results, let
us first illustrate through a simple example how the information
provided in the graph is employed.

Example 1.1. Consider the preference graph depicted in Figure
1. Assume that of the five available items we wish to choose two.
We can see that A is the best selling item (purchased by 33%
of customers) while D is the least sold (6%). We can also see
that consumers interested in E are likely to settle in its absence
for D, but will not transitively buy C. Such behavior is common,
for instance, when D (resp. C) is a one-step upgrade of E (D):
people are often flexible and willing to add a small amount of

2We assume that all transitive relationships, when/if exists, are directly represented
in the graph by single edges.
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Figure 1: Sample graph of items

money in return for an upgrade, but a two-steps delta may be
overly expensive. We can also see that consumers interested in
C (B) will settle in its absence for B (C), and that B is a more
likely replacement for A thanC. Selecting the two best-sold items,
A and B, is likely to satisfy about 77% of the customers (those
interested in C, who in its absence are likely to purchase B, and
those interested in A and B). Interestingly, a more careful analysis
(which we only describe here intuitively and will formalize later in
the paper) shows that in fact retaining B and D (the least sold item!)
is the optimal solution, covering 87.3% of requests. Intuitively this
is because B covers most requests for A, B, and C, whereas D
covers itself and most of E. In this simple example the sets of
requests served by the two retained items are disjoint, but a similar
analysis can be applied to general overlapping cases.

The probability of a purchase is contingent on the dependencies
between choosing different alternatives. Such dependencies can be
extremely complicated, hence a practical model should simplify
them in a manner which approximates well real life settings. We
define in this paper two variants of the Preference Cover prob-
lem, which we have observed to be most prevalent in real-world
e-commerce applications (see technical discussion in Section 5.2),
the Independent and the Normalized variants. These variants differ
by the semantics of edge dependencies. The Independent variant
assumes independence between all alternatives. Whereas, the Nor-
malized variant assumes that each consumer considers at most one
item as an alternative she will actually buy, and thus the sum of
weights of outgoing edges from any item is bounded by 1 (hence
the name Normalized). In the experiments section, we show that
both variants capture real-world consumer behavior. We will dis-
cuss the similarity and differences between these two problem
variants (and when each is suitable) in depth in the following
sections and propose effective algorithms to solve both.

To get an idea on what one may hope to achieve in terms of
efficiency, we first study the computational complexity of the two
problem variants. We prove that both are NP-hard but have dif-
ferent approximation bounds. Nevertheless, we devise a single
greedy scheme that, with only minor adaptations, is able to support
both variants, providing in both cases approximation guarantees.
For the Independent variant we also prove this to be the opti-
mal approximation ratio (matching the inapproximability bound
we proved). For the Normalized variant, we show (by proving
equivalence to the Max Vertex Cover problem) that while tighter
theoretical upper bounds do exist, their corresponding algorithms
are not scalable and thus impractical for our setting. Indeed, in
the e-commerce application that we study here, both the overall
number of available items and the number of items to be selected
are very large - in the order of magnitude of millions. Thus, scala-
bility is critical. Our solution consequently trades off the tightness
of approximation guarantee in return for improved performance.

The simple greedy scheme which we use to solve both prob-
lem variants is highly parallelizable and scalable. It further has
the added value of allowing to directly solve the complementary

minimization problem, where, instead of an upper bound on the
number of items to retain, one is given a lower bound on the per-
centage of item requests that should be covered, and the goal is to
identify the smallest set of items that achieves the required cover-
age. Note that a naive solution for this complementary problem
can be obtained via binary search on the target set size, by running
any algorithm for the original problem. But this incurs a O(logn)
factor overhead, n being the number of available items. Our direct
greedy approach allows to avoid this overhead.

Our contributions can be summarized as follows.

(1) We formulate the Preference Cover problem and propose a
graph-based model to capture it, with two natural possible
variants.

(2) We study the theoretical computational complexity of the
two problem variants and prove their NP-hardness and
approximation hardness.

(3) We propose efficient algorithms to solve both variants, and
prove their approximation guarantees.

(4) To demonstrate the practicality of our approach we describe
the process of creating the preference graph from data
available to actual e-commerce companies, based on well
agreed upon inference methods in e-commerce research.

(5) We present an extensive experimental study, based on real-
world data from a large e-commerce company, for both
variants of the problem, demonstrating the effectiveness
and efficiency of our algorithms.

Finally, we note that in the problem setting that we study
here (which is common to many intermediary platforms [1]) the
commission-per-purchase (or the perceived gain per purchase) is
considered fixed and the intermediary platform is indifferent to
the items’ cost/revenue or required physical storage. Extending
our work to support varying revenues and storage considerations,
in a scalable manner, is an intriguing future work. We overview, in
the Related Work, results in the field of operational research that
incorporate such factors but in more complex models that do not
lend to practical big data solutions. Other lines of work that bear
resemblance to ours are recommendation systems and query re-
sults diversification. However, as we explain in the Related Work,
the optimization problems they study differ from ours, yielding
different complexity results and algorithms.

A first prototype of our system was implemented with help of
our industry collaborators, and demonstrated at CIKM’19 [15].
The short paper accompanying the demonstration gives only a
brief overview of the system architecture, whereas the present
work provides a comprehensive description of the underlying
model, algorithms and applications.

Paper outline. Section 2 provides the necessary definitions and
formalism behind our problem. Sections 3 and 4 each study one of
the two variants of our problem. Implementation and experimental
studies are presented in Section 5. Finally, the related work appears
in Section 6, and we conclude in Section 7.

2 PRELIMINARIES
We introduce here the Preference Cover problem. We start by
formally describing the general model along with two concrete
variants - the Independent and the Normalized variants.

Recall that the main motivation for our problem is an e-commerce
setting, where consumers are interested in specific items but, if not
available, may be willing to settle for some alternatives. Given a
bound on the number of different item types a store may offer, our
goal is to retain those which maximize the likelihood of purchase.
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Formally, we represent consumer preferences via a Preference
Graph which, along with an integer k , serve as input for the Pref-
erence Cover problem. A preference graph G = (V , E,WV ,WE )

is a directed graph with weighted vertices and edges. The vertex
set V corresponds to n items. For each vertex v ∈ V , its weight,
WV (v) ∈ [0, 1], is defined as the probability of v being requested
by a consumer. The sum of all node weights is therefore 1. We
say that u is a neighbor of v if there exists an outgoing edge
from v into u. The neighbors of a node v are all the items that
are considered by consumers as possible alternatives. For each
edge from v into a neighbor node u, its weight,WE (v,u) ∈ (0, 1],
implies the probability of u matching a request for v as an alter-
native. We explain later how these edge weights are computed
and interpreted. For simplicity we omit in the sequel subscripts of
weighting functions when clear from context.

Given a number k, our goal is to choose a subset S ⊆ V of k
items, marking them as retained. Given a request for item v, if
it is retained, the request is considered matched. Otherwise, if v
is not retained, a request has some probability of being matched
by another retained neighboring item of v, as indicated by the
weights of edges outgoing from v into its retained neighbors. We
define a target function C : 2V → [0, 1], s.t. assuming S is the
retained set of items, C(S) is the probability a request drawn from
the distribution indicated by the node weights is matched. The
Preference Cover problem aims to compute argmaxS , |S |=k C(S).
We are ultimately only interested in whether or not a request is
matched, and it makes no difference theoretically which item
matches it. This corresponds to a real-life setting where intermedi-
ary platforms value the selling of each item as equally beneficial,
and accordingly seek to maximize the number of sales.

We term C(·) as the Cover function, and say that the value C(S)
is the cover of S . Similarly, we call the probability a request for v
is matched by a retained set S as the cover of v by S .

An explicit formula for computing C(·) is contingent on the
dependencies, if such exist, between the probabilities indicated
by the edges. In this paper we study two variants of the problem
which, as our analysis of real data indicates, approximate well
common real life scenarios: the Independent variant assumes that
the probabilities modeled by edges are independent, while the
Normalized variant assumes that each consumer considers at most
one item as a most suitable alternative. In both cases, the goal is to
retain the set of items which covers most of the predicted requests
as implied by the preferences model.

In both variants when considering alternatives for a request for
itemv, we only take into accountv’s immediate neighbors. This is
because, as mentioned earlier, the possible transitive processes of
considering an alternative followed by an alternative to that alter-
native and so on is already taken into account when constructing
the graph and assigning edge weights, which means, intuitively,
that the preference graph is the transitive closure of a graph mod-
eling the probabilities to correspond to such replacement paths.

We now formally describe the two variants we study in this
paper. In the presentation below, given a retained set S we denote
the retained neighbors of node v by Rv (S) = {u |(v,u) ∈ E,u ∈ S}

2.1 Independent variant
In the Independent variant we assume complete independence
between the edges. Namely, the probability a given alternative
matches a request is not affected by whether or not a different
alternative matches it. Thus, the probability of the event of not
matching a request for a non-retained item v, which occurs when

no retained alternative is suitable, is, due to independence, the
product of all such probabilities,

∏
u ∈Rv (S )(1 −W (v,u)). The

probability of the complement of this event, which is matching the
request, is 1 −

∏
u ∈Rv (S )(1 −W (v,u)). We next formally define

the Independent variant of the Preference Cover problem.

Definition 2.1 (IPCk ). Given a preference graph G and an in-
teger k, the Independent Preference Cover problem (IPCk ) is
computing argmaxS , |S |=k C(S), where

C(S) =
∑
v ∈S

W (v) +
∑

v ∈V \S

[
W (v) · (1 −

∏
u ∈Rv (S )

(1 −W (v,u)))
]

The first addend is due to requests for retained items being
matched with probability 1. The second addend corresponds to
summing over all items not in S , for each such item v adding
the probability it is both requested (W (v)) and covered by S
((1 −

∏
u ∈Rv (S )(1 −W (v,u))). Recall that we are computing the

purchasing probability of a single consumer session, which in
the hypothetical case where all items are available would have re-
sulted in a purchase. The overall expected number of sales, given
only S is retained, is thus the number of such sessions times C(S).
Cases where a consumer is looking to purchase several items, or
several copies of the same items, are modeled as separate sessions.

2.2 Normalized Variant
In the Normalized variant we assume that each consumer considers
at most one item as a suitable alternative (i.e. the item she will
actually buy). Neighbors are therefore dependent, in the sense that
for any requested item v, a retained neighbor matching the request
implies that all other neighbors do not. It follows that the sum of
the weights of all edges outgoing from any given node is at most
1, and given a request for a non-retained item v, the probability
it is matched is

∑
u ∈Rv (S )W (v,u). We next formally define the

Normalized variant of the Preference Cover problem.

Definition 2.2 (NPCk ). Given a preference graph G and an
integer k, the Normalized Preference Cover problem (NPCk ) is
computing argmaxS , |S |=k C(S), where

C(S) =
∑
v ∈S

W (v) +
∑

v ∈V \S

[
W (v) ·

∑
u ∈Rv (S )

W (v,u)
]

Here again the first addend,
∑
v ∈SW (v), is due to requests

for retained items being matched with probability 1. The second
addend corresponds to summing over all items not in S , and for
each such itemv adding the probability it is both requested (W (v))
and covered by S (

∑
u ∈Rv (S )W (v,u)).

We discuss the choice of these particular variants and which
real-life settings they correspond to in Section 5. Intuitively, the
Independent variant asserts that the opinion on the suitability of
a given alternative is not demonstrated to be strongly dependent
for most consumers on their opinion of other alternatives. The
dependencies are either insignificant overall or tend to cancel out
when summed over the entire user base. In contrast, the Normal-
ized variant is suited for domains where it is demonstrated that
consumer requests are often very specific in nature, and the num-
ber of suitable alternatives is very small, which the Normalized
variant models as a single alternative at most per request (though
this can be a different alternative per each request for the same
item). Finally, note that the weight of a node does not necessarily
represent the probability of a premeditated and explicit request for
the item, rather, more generally, the probability, given all items
are available and a purchase is made, of this specific item being
the one purchased.
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2.3 Set functions
We next present some general definitions and results pertaining
to set functions (f : 2V → R, given universe V ), which will be
useful in the following sections for formally characterizing C(·).

Definition 2.3. f is nonnegative if ∀S ⊆ V : f (S) ≥ 0.

Definition 2.4. f is monotone if ∀S ⊆ V ,∀v ∈ V :
f (S ∪ {v}) ≥ f (S).

Definition 2.5. f is submodular if ∀S ⊆ T ⊆ V ,∀v ∈ V : f (S∪
{v}) − f (S) ≥ f (T ∪ {v}) − f (T ).

The following is a key result in submodular optimization.

LEMMA 2.6 ([22]). Given universeV , k ≤ |V |, and a nonneg-
ative, monotone submodular function f : 2V → R, there exists
a polynomial algorithm achieving an approximation ratio of at
least (1 − 1

e ) in maximizing f (·) over subsets of size k. This algo-
rithm, at each of its k iterations, selects an element maximizing
the marginal gain to f (·).

2.4 Related problems
Finally, we present definitions and results pertaining to related
problems, which will also serve us in the formal analysis.

Definition 2.7. In the Directed Max Dominating Set Problem
(DSk ) the input is a directed graph and a number k, and the goal
is to find a subset of the vertices of size k such that the number of
vertices adjacent to this subset is maximized.

Definition 2.8. In the Max Vertex Cover Problem (VCk ) the
input is a number k and an undirected graph (self edges allowed)
with positive weights assigned to its edges, and the goal is to select
a subset of the vertices of size k such that the weight of edges
incident to this subset is maximized.

We now provide hardness results pertaining to the above prob-
lems. The following theorem was proven in [21] for undirected
graphs, but trivially extends to directed graphs, as undirected
graphs are a special case where for each edge there exists a paral-
lel edge in the opposite direction.

THEOREM 2.9. [21, 25] The DSk problem is NP-hard. It has
no polynomial approximation algorithm of a factor higher than
(1-1/e), unless P = NP . The problem is NP-hard even when the
maximal degree in the graph is bounded by a constant.

THEOREM 2.10. [14, 27] The VCk problem is NP-hard, and
is hard to approximate to within (1 − δ ) factor for some (small)
δ > 0, unless P = NP . Moreover,VCk is NP-hard even for graphs
of degree at most 3.

Tighter approximation hardness bounds forVCk are not known,
and existing algorithms are discussed in Section 3.2. We also note
that the NP-hardness of the bounded degree cases in both of the
above theorems was proven by [14] and [25] for the minimiza-
tion versions of the Vertex Cover (VC) and Dominating Set (DS)
problems, resp. In the minimization versions the goal is to find
the smallest set covering the entire graph. However, the hardness
extends to our top-k versions, as VC (resp. DS) can be solved by
solving VCk (resp. DSk ) at most n times for varying values of k.

In each of the following two sections we study in detail one
of the two variants of the Preference Cover problem. We analyze
the Normalized variant first, as it is more complicated technically.
Moreover, part of the discussion of the Normalized variant (in
particular the proposed algorithm) applies, with minor adaptations,
to the Independent variant as well.

Table 1: Approximation ratios of the greedy algorithm and
best known polynomial algorithms for VCk

Range of k/n Greedy Algorithm Best Known
o(1) (1 − 1/e) 0.75+ϵ (SDP) [11]
Θ(1), [0, ≈0.39) (1 − 1/e) 0.92 (SDP) [19]
(≈0.39, ≈0.72) (1 − (1 − k

n )
2) 0.92 (SDP) [19]

(≈0.72, 0.74) (1 − (1 − k
n )

2) ≈0.93 (SDP) [17]
[0.74, 1] (1 − (1 − k

n )
2) (1 − (1 − k

n )
2) [11]

3 NORMALIZED VARIANT
3.1 Theoretical Analysis
We begin this section by studying the complexity and the ap-
proximation hardness of NPCk , the Normalized variant of the
Preference Cover problem. In both these respects we prove an
equivalence to the VCk problem, which has been studied exten-
sively in the literature, implying in particular that both upper and
lower bounds on the approximation of VCk apply for NPCk as
well. We then discuss algorithms for solving NPCk . Here again
we utilize the equivalence to VCk to adapt its known algorithms
to our setting. Concretely, we present the currently best known
approaches in terms of the approximation ratio guarantee, which
vary for different ranges of k , and discuss their performance w.r.t.
scalability. We note the trade-off between performance and ap-
proximation guarantees, and as our goal is to provide a scalable
solution for big data settings, we focus on a fast algorithm, for
which we provide an efficient parallelizable implementation, and
demonstrate it to be highly scalable in our experiments. More-
over, its approximation factor is the best known for high values
of k, and is not far off for lower ranges. We further argue that all
algorithms known to provide a better approximation guarantee
for lower ranges are not scalable at all. We discuss additional
advantages of our approach in Section 3.2.

THEOREM 3.1. The NPCk problem is hard to approximate to
within a (1−δ ) factor for some (small) δ > 0, unless P = NP . The
problem is NP-hard, even when the maximal degree (disregarding
edge orientation) is 3. Furthermore, any α-approximation algo-
rithm for VCk implies an α-approximation algorithm for NPCk ,
and vice versa.

PROOF. We first reduce NPCk to VCk (Definition 2.8), and
show that any α-approximation algorithm for VCk implies an
algorithm for NPCk with the same factor. Given an instance I =
⟨G,k⟩ of NPCk , we add a self edge to every node whose sum of
outgoing edge weights is less than 1, and assign to it the weight
which completes the total outgoing weight to 1. This added weight
intuitively represents the relative part of requests for this item
which cannot be covered by any alternative. Observe that this
change has no bearing on the cover function C(·), as when a node
is retained, its weight is covered entirely all the same. Next we
reduce this instance I to an instance I ′ = ⟨G ′,k⟩ of VCk , such
that G ′ has the same nodes as G only without weights, the same
edges only without orientation, and the weight of every edge (v,u)
changes fromW (v,u) toW (v) ·W (v,u) (multiplied by the weight
of its origin node). Note thatG ′ may have pairs of nodes connected
by 2 parallel edges, if edges in both directions connected these
nodes in G. This is equivalent, w.r.t. VCk , to replacing both edges
with a single edge whose weight is the combined weight of the
original two. However, we do not combine parallel edges, as we
analyze their weight contributions separately.
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We now argue that for any choice of a node set S ⊆ V , its
cover weight in G ′ is equal to the cover C(S) in G. Indeed, let ES
denote all edges that are outgoing from a node in S in G, then
the sum of weights of the edges in G ′ originating from ES is
exactly

∑
v ∈SW (v), which corresponds to the first addend in the

formula in Definition 2.2 (each node in S contributes its weight to
C(S)); considering all remaining edges adjacent to S in G ′ which
are not in ES : the sum of weights of all such edges originating
in any given node v < S isW (v) ·

∑
u ∈Rv (S )W (v,u) (recall that

Rv (S) = {u |(v,u) ∈ E,u ∈ S}), which, when summing over all
such v < S , is exactly the remaining addend in the formula for
C(S), thus proving the equivalence.

As for the other direction, which is proving that NPCk is just
as hard to approximate as VCk , from which the NP-hardness
and hardness of approximation follow, assume we are given an
instance I ′ = ⟨G ′,k⟩ of VCk . We reduce it to an instance I =
⟨G,k⟩ of NPCk such that all nodes inG are the same as inG ′, and
the edges are also the same with the orientation chosen arbitrarily.
Now for any node v let Mv denote the sum of weights of all its
outgoing edges at this point, then we setW (v) = Mv , and for every
outgoing edge e from v, we change its weight from its original
weight in G ′, denoted byW ′(e) toW (e) = W ′(e)

Mv
. It follows that

the sum of weights of all outgoing edges from any given node,
which has at least one such edge, is 1. We set the weight of any
node without any outgoing edges adjacent to it to 0.

Following this reduction the sum of weights of all nodes, de-
noted by N , is not necessarily 1. This requirement over the sum
of node weights is due to the semantics of the problem, and is
computationally insignificant. Indeed, we can normalize, and di-
vide all node weights by N , and denote the resulting graph Ĝ. It
follows that the cover of any solution S , including the optimal
solution, changes after this normalization from C(S) in G to C(S )

N
in Ĝ, and thus the approximation ratio is not changed. Given an α -
approximation algorithm for NPCk , we run it over the normalized
graph Ĝ, and it follows that this solution has the same ratio for the
non-normalized instance I of NPCk . Finally, observe that if we
reduce I to an instance of VCk , as we described in the first direc-
tion of the proof, we once again get I ′ (multiplying edge weights
by the original node weight cancels out their normalization by the
same factor), implying, by the same logic as before, that for any
set S its cover weight in G ′ equals C(S) in G. Therefore, the same
node set S guarantees an α-approximation of the original VCk
instance. Note that as the reduction preserves the maximal degree,
it follows that NPCk is NP-hard for maximal degree 3. □

Due to the equivalence to VCk , tight inapproximability bounds
for NPCk are also not known. We discuss below existing approx-
imation algorithms, as VCk algorithms can be adapted to NPCk
maintaining the same approximation factors. For a recent review
of VCk results see [19].

3.2 Algorithms
In this section we discuss algorithms for NPCk , and focus on the
implementation of a greedy algorithm, which we argue to be by
far the most scalable option, on top of having high approximation
guarantees.

The equivalence of NPCk to VCk combined with the linear
approximation-preserving reductions described in the proof of
Theorem 3.1, imply that when looking for an algorithm for NPCk ,
one should examine the algorithms known forVCk , an extensively

Algorithm 1: Greedy Algorithm
Input: G, k

1 S = ∅

2 foreach 1 ≤ i ≤ k do
3 foreach v ∈ V \ S do
4 C(S ∪v) = Gain(S,v)

5 v̂ = argmaxv C(S ∪v)
6 S,C(S) ← AddNode(S, v̂,C(S))

7 return S,C(S)

studied problem. The algorithms providing the best known ap-
proximation guarantees vary for different ranges of k. Detailed
results are presented in Table 1 (the second column pertains to
a greedy algorithm on which we focus in the sequel). Neverthe-
less, for k < 0.74n, all top algorithms are based on the same core
technique of semidefinite programming (SDP). SDP is a much
more general extension of linear programming (LP). An algorithm
based on LP also exists [2], with an approximation factor of 0.75.
These SDP (and LP) based algorithms are important mainly for
the theoretical analysis of the problem, in particular finding out
the best approximation ratios. On the other hand, these solutions
are not scalable, especially for big data settings, as they are known
for having an impractical running time, even for medium sized
programs [7, 37] (for example, the number of constraints in the
program, as devised in [11], is of order O(n3)).

Another approach is a greedy algorithm, introduced in [16],
and analyzed by [11] to have an approximation factor ofmax{(1−
1/e), (1−(1− kn )

2)}. This factor positively correlates with k , and for
k ≥ 0.74n it is the best known guarantee, exceeding a 0.93 factor.
To the best of our knowledge, any algorithm which surpasses
the approximation guarantee of the greedy algorithm, for any
range of k, is based on SDP or LP. The greedy algorithm, unlike
these alternatives, lends itself to an efficient implementation. As
our goal is to provide a practical solution, we focus on the greedy
algorithm, which we implement and evaluate. The implementation
we provide is adapted directly into our setting without a reduction
to VCk . It is parallelizable, and as we prove in the experiments
(Section 5), highly scalable even for graphs containing millions
of nodes. Additional advantages of this approach are discussed
towards the end of this section. As mentioned, Table 1 depicts,
for various ranges of k, the best known approximation factor,
alongside the factor of the greedy algorithm.

Greedy Algorithm The greedy algorithm (Algorithm 1) inci-
dentally applies schematically for both the Normalized and the
Independent variants (with latent distinctions, described in the
next section, devoted to IPCk , the Independent variant). We use
an array I of size n, with an entry I [v] for each v ∈ V , eventually
set to the probability of v being both requested and matched by
the produced solution S (the product ofW (v) and the cover of v
by S). The summation of all entries in I , as indicated in Definition
2.2, equals C(S). For simplicity, we assume the preference graph
G and the array I are global variables, with I initialized to zeros.

Algorithm 1 maintains an initially empty solution set S (line 1).
At each of its k iterations (line 2), it goes over all nodes currently
not in S (line 3), and for each such node it computes the gain to
C(S) obtained by adding it to S (line 5). The node that maximized
this gain is then chosen (line 6) and is added to S , with C(S)
updated accordingly (line 7). Finally, after completing k iterations,
S and C(S) are returned (line 8).
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Algorithm 2: Gain - Normalized
Input: S, v
Global: G, I

1 д =W (v) − I [v]

2 foreach u ∈ V \ S s.t.W (u,v) ∈ E do
3 д +=W (u) ·W (u,v)

4 return д

The procedures Gain (Algorithm 2) and AddNode (Algorithm
3) are conceptually similar as both compute the marginal effects of
adding a given node, with the main distinction being that AddNode
also updates accordingly I and C(S).

In Algorithm 3, line 1 adds to S the node v which was chosen
in Algorithm 1 as maximizing the marginal gain. Line 2 adds to
C(S) the gain in the cover of itself and line 3 updates I [v] toW (v)
as the newly added node covers itself completely. Next we iterate
over all nodes outside of S with an edge into v, and for each such
node u, we compute the marginal gain to its cover by v, and add it
to I [u] and C(S) (lines 5 and 6, resp.). We can see that after each
call to Algorithm 3 the array I is updated with each entry set to
the contribution of covering the corresponding node by S to C(S).
As we mentioned, Algorithm 2 is the same as Algorithm 3, only
focusing solely on the marginal gain, without updating I and C(S).

Although we adapted the greedy algorithm directly to prefer-
ence graphs, without reducing to VCk , it is easy to show along
the same lines as the proof of Theorem 3.1, that a reduction to
VCk would have resulted in choosing the same nodes. Hence, the
approximation factor of max{(1 − 1/e), (1 − (1 − k

n )
2)}, proven

for VCk in [11], holds here as well.
To illustrate the operation of Algorithm 1, consider the follow-

ing example.

Example 3.2. Recall the preference graph depicted in Figure 1
and assume k = 2. The algorithm first computes the gain obtained
by selecting each node and retains the most beneficial, which
is B (66%, covering W (B), W (C) and 2/3 of W (A)). After B is
retained, the algorithm proceeds to the second and final iteration,
to choose the next node with the highest marginal gain, which is
D. D itself is requested only by 6% of consumers, while A and C
are 22% and 33%, resp. However, B being selected in the previous
step reduces A’s and C’s marginal gain to 11% (the 1/3 ofW (A)
corresponding to consumers not accepting B as an alternative
to A) and 0% (all consumers who wanted C are happy to get B
instead), resp. On other hand, D covers 6% (itself) and 15.3%
(9/10 ofW (E) - consumers that wanted E, but also agree to have D
as alternative), which gives a total of 21.3%. Finally, the retained
items, B and D, cover 87.3% of consumer preferences (which in
this case is also the optimal possible pair).

Performance Analysis We now analyze the complexity of the
greedy algorithm. Let d(v) denote the incoming degree of a node
v, and let D denote the maximum incoming degree over all nodes.
Observe that in both Algorithms 2 and 3 the number of operations
performed is Θ(d(v)) = O(D) (v is the node whose marginal gain
is evaluated). For each of the k iterations, Algorithm 2 is called
O(n) times, hence the overall time complexity is O(nkD).

Furthermore, the algorithm is highly parallelizable. When Algo-
rithm 1 iterates in line 3 overO(n) nodes to compute their marginal
gain, computations for each node are independent, and can be per-
formed in parallel. Moreover, in each such call to Algorithm 2
(or 3) the iteration in line 2 over the O(D) nodes adjacent to the

Algorithm 3: AddNode - Normalized
Input: S, v, C(S)
Global: G, I

1 S ← S ∪ {v}

2 C(S) +=W (v) − I [v]

3 I [v] =W (v)

4 foreach u ∈ V \ S s.t.W (u,v) ∈ E do
5 C(S) +=W (u) ·W (u,v)

6 I [u] +=W (u) ·W (u,v)

7 return S,C(S)

added node can also be done in parallel. Concretely, for N < nD
threads, the complexity of each of the k iterations becomesO(nDN )
resulting in an overall O(k + nkD

N ). The space complexity of the
algorithm (excluding the input, which we treat as read-only), is
O(|V |) for storing I . We can also reduce the space complexity to
O(k) by doing away with I , at the expense of computing the value
I [v] from scratch in line 1 of Algorithm 2 (line 2 in Algorithm
3), which takes O(D) operations, and does not affect the overall
complexity.

Additional Advantages Finally, we identify several additional
benefits of our greedy algorithm. First, we can return I as part
of the output. This enables to efficiently compute, for each non
retained item u, its cover by S , which equals I [u]

W (u) . This provides
important information about which item requests are affected by
reducing the inventory and to what extent. Moreover, the incre-
mental nature of the greedy approach, when the retained set is
produced in the order in which the nodes were added to it, can
provide solutions to related instances and problems. Namely, an
ordered solution S of size k, also produces the solution for any
k ′ < k, which is the first k ′ nodes in S (the same solution that
running the algorithm with k ′ would have produced). Therefore,
solving for k = n provides at once the solutions for all k values,
and, moreover, directly provides (an approximated) solution for
the related problem where the goal is to retain the smallest set,
such that the cover exceeds a given threshold.

4 INDEPENDENT VARIANT
4.1 Theoretical Analysis
We now study the theoretical properties of IPCk , the Independent
variant, and our proposed algorithm. We first prove our main
result, stating that IPCk is NP-hard (even given a constant bound
on node degrees), and has a tight approximation factor of (1−1/e)
by a polynomial time algorithm. In fact, this factor is achieved by
the same greedy approach as the one discussed in Section 3 for
NPCk , with small adjustments. The adaptations that need to be
performed to previously presented algorithms and analysis of the
adapted algorithms are then discussed in detail in Section 4.2.

THEOREM 4.1. The IPCk problem has a tight approximation
bound of (1 − 1/e) in polynomial time, unless P=NP. Moreover,
it is NP-hard, even given a constant bound on the maximal node
degree (disregarding edge orientation).

PROOF. To prove hardness of approximation (and thereby the
NP-hardness), we assume an α -approximation algorithm for IPCk ,
and reduce an instance I ′ = ⟨G ′,k⟩ of DSk to an instance I =
⟨G,k⟩ of IPCk , such that an α-approximation solution is implied
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Algorithm 4: Gain - Independent
Input: S, v
Global: G, I

1 д =W (v) − I [v]

2 foreach u ∈ V \ S s.t.W (u,v) ∈ E do
3 д +=W (u,v) · (W (u) − I [u])

4 return д

for DSk . The hardness results then follow from Theorem 2.9. The
reduction preserves the maximal degree, implying NP-hardness
even given a constant bound on it. Concretely, G has the same
nodes and edges as G ′, except all edge orientations are reversed.
All edges are assigned the weight 1, and all nodes are assigned
the weight 1

n .
We argue that for any solution S ⊆ V , the number of vertices it

dominates3 in G ′ is n ·C(S) (C(S) is the cover of S in G), proving
the same approximation ratio. To see this, observe that all |S |
nodes in S dominate themselves in G ′, which corresponds to the
first addend in the formula in Definition 2.1 (the sum of weights
of nodes in S) which equals |S |n . The remaining nodes dominated
by S in G ′ form the set of all nodes outside of S that have an
incoming edge from S , denoted by T . This corresponds to the
remaining addend in the formula for C(S), which (as the edges in
G are reversed w.r.t. G ′) is the cover of the set of nodes outside of
S with an outgoing edge into S in G, which equals

∑
v ∈T

1
n =

|T |
n .

Overall, we see that there is a fixed ratio of 1
n between the values

of the target functions of the two problems for any S , proving the
equivalence of the approximation. This proves a (1−1/e) hardness
bound on the approximation of IPCk .

To show this bound is tight, we prove that all conditions spec-
ified in Lemma 2.6 (the function is nonnegative, monotone and
submodular) hold for C(·), implying that a greedy incremental
algorithm maximizing the marginal gain at each of its k iterations
guarantees a (1 − 1/e) approximation. Indeed, these properties are
evident from the formula in Definition 2.1. C(·) is by definition
nonnegative. The addition of any node to the solution maximally
covers itself, and can only increase the cover of any other node
(it decreases the product

∏
u ∈Rv (S )(1 −W (v,u)) in the formula

forC(S), increasing the overall value), which proves monotonicity.
Finally, C(·) is submodular: given two sets S ⊂ T ⊆ V and a node
u ′, we show that f (S∪{u ′})− f (S) ≥ f (T ∪{u ′})− f (T ). If u ′ be-
longs to any of these two sets then this follows trivially. Otherwise,
as T covered u ′ at least as much as S (due to monotonicity), the
complete covering of u ′ after its addition is at most the same for
T compared to S . As for any other node v (which has an edge into
u ′, as otherwise adding u ′ can have no effect on it): if v ∈ T and
v < S , thenT already covered it completely, and the addition of u ′

toT adds nothing. Otherwise (v < T ), for S andT , resp., the effect
is that both

∏
u ∈Rv (S )(1 −W (v,u)) and

∏
u ∈Rv (T )(1 −W (v,u))

are multiplied by the (1 −W (v,u ′)). As the second product (with
T ) is not bigger than the first (with S), then the additive difference
after multiplying it by (1 −W (v,u ′)) is also not bigger, leading to
an overall smaller (or equal) increase in the cover (when added to
T ). As the increase in the cover of every node is not bigger when
adding to T , submodularity follows.

□

3A vertex is dominated by a solution S , if it is either in S or has an edge incoming
from some node in S .

Algorithm 5: AddNode - Independent
Input: S, v, C(S)
Global: G, I

1 S ← S ∪ {v}

2 C(S) +=W (v) − I [v]

3 I [v] =W (v)

4 foreach u ∈ V \ S s.t.W (u,v) ∈ E do
5 C(S) +=W (u,v) · (W (u) − I [u])

6 I [u] +=W (u,v) · (W (u) − I [u])

7 return S,C(S)

4.2 Greedy Algorithm
We now discuss our proposed algorithm for IPCk . Here again
we opt for the same greedy approach as presented in Section
3.2 for NPCk , which for IPCk guarantees an optimal (1 − 1/e)
approximation factor, following Theorems 4.1 and 2.9. Moreover,
the algorithm scheme is also depicted in Algorithm 1, with the
distinction that the procedures Gain and AddNode, called, resp.,
in lines 4 and 6, have different implementations (resp., Algorithm
4 instead of Algorithm 2 and Algorithm 5 instead of Algorithm 3).
These procedures, however, remain analogous to their counterparts
for NPCk (Algorithms 2 and 3), as the adjustments only reflect the
technical difference between the formulas for C(·) in Definitions
2.1 and 2.2. Therefore, we do not discuss the algorithm in detail,
as this is largely covered in Section 3.2, but rather focus on the
distinctions from the NPCk implementation.

Recall that I is an array, initialized with zeros, with an entry for
each v ∈ V , denoted by I [v], eventually set to the probability of
v being both requested and matched by the produced solution S ,
and hence the summation of all entries in I equals C(S). We once
again set it to be a global variable whose value is saved between
calls. In Algorithm 4 line 1 remains the same as in the analogous
Algorithm 2, as in both variants it holds that a retained node
is completely covered by itself. Line 3, however, is different. It
pertains to the marginal gain obtained by adding the node v in the
cover of node u, which has v as a neighbor. Let S and S ′ denote
the solution set before and after resp., adding v, and let IS [u]
and IS ′[u] denote the correct value of I [u] for solutions S and S ′,
resp. The marginal gain by v over u is IS ′[u] − IS [u], which after
doing the algebra is simplified intoW (u,v) · (W (u) − I [u]). This
is the gain appearing in Line 3 of Algorithm 4. The correctness
of this expression follows a straightforward computation, which
we omit to avoid convoluted notation, and instead provide the
intuition. Note that the computation of the probability u not being
covered by S is the product of the probabilities of all its retained
neighbours not being suitable alternatives. This probability can be
easily computed from IS [u] (see the second sum in the formula in
2.1). The only change in S ′ is that this product is now multiplied
by the probability v is also not a suitable alternative, which is
(1 −W (u,v)). Therefore, when computing the product pertaining
to S ′ (which implies IS ′[u]), we can reuse the computed product
for S (implied by IS [u]), and reduce the number of operations in
computing the marginal gain to O(1) per each such u. Moreover,
the similarity of the computations for IS [u] and IS ′[u] allows
the simplification of the expression for the marginal gain. The
adjustments made in Algorithm 5 are completely analogous.

Performance Analysis Following exactly the same consider-
ations as in the NPCk implementation (Section 3.2), both Algo-
rithms 4 and 5 have the same time complexity, hence the overall
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complexity of the greedy algorithm is O(nkD) here as well (recall
that D denotes the maximal incoming degree of a node in G). The
potential parallelization is also the same, thus the complexity for
N < nD threads becomes O(k + nkD

N ), same as in Section 3.2.
As for the space complexity (excluding the input), while it is also
O(n), due to storing I , in the IPCk case it is no longer true that we
can do away with I to reduce the space to O(k), without sacrific-
ing efficiency (here the computation of the marginal gain is more
reliant on previous computations). Finally, the additional benefits
pertaining to the incremental nature of the greedy approach remain
the same as for NPCk , as described at the end of Section 3.2.

5 IMPLEMENTATION AND EXPERIMENTS
We start this section by describing the system architecture, focus-
ing on the flow from raw data to a suggested list of k retained
items. Afterwards, we discuss how real-life e-commerce data can
be adapted to construct the preference graph. Then, we describe
the experimental setup, where we introduce the real-life datasets
we used for the experiments, and describe concretely which adap-
tations we made to these datasets to fit our models. Finally, we
present the evaluation results.

5.1 System Architecture
The system architecture, depicted in Figure 2, demonstrates the
end-to-end flow. The system consists of two main modules: the
Data Adaptation Engine and the Preference Cover Solver. The
Data Adaptation Engine takes as input the raw e-commerce data
and the variant (Normalized or Independent), and builds the corre-
sponding preference graph. Detailed discussion about what type
of raw data is necessary, which of the two variants to choose in a
given situation, and how the adaptation is actually performed is
presented in the following section (Section 5.2). The constructed
preference graph is then passed as input to the Preference Cover
Solver, along with k, the desired number of retained items. The
solver runs Algorithm 1, adapted to the specific variant (calling
Algorithms 2 and 3 for the Normalized variant, and Algorithms 4
and 5, resp., for the Independent variant). The solver produces a
list S of retained items (in the order in which the items were added
by the algorithm), accompanied with metadata, such as C(S) (the
cover achieved by S), and the coverage percentage of every item
(implied by the array I , used in our algorithms), i.e. how well the
item is covered by the retained alternatives in S (the coverage of
retained items is obviously 100%). For example, the rightmost
part of Figure 2 highlights the produced set of retained items, B
and D (for the input of k = 2 and the preference graph depicted
in the center of Figure 2, originally introduced in Figure 1 as part
of Example 1.1). The coverage of the non-retained item C is also
100%, since it is completely covered by B. The coverage of items
A and E is 67% and 90% since they are covered by B and D, resp.

Note that, as explained at the end of in Section 3.2, the same
architecture can be used to also solve the complementary problem

where the goal is to retain the smallest set of items, such that the
cover exceeds a given threshold.

5.2 Adaptation of Raw Data
As mentioned in previous sections, adapting e-commerce data into
our graph model is an essential phase, which is also incorporated
in our architecture. E-commerce platforms collect tracking data
from browsing sessions to learn consumer patterns and preferences
to improve the shopping experience and increase revenue. The
data is often stored in the format of a clickstream, consisting of
the history of events performed by consumers during browsing,
grouped by sessions. The information included in the clickstream
usually contains the session id, date and time, search query, search
page results, clicks, add-to-cart events, purchases and consumer
related information, such as username, IP address, geolocation,
etc. To ensure wide applicability, we assume that the available
clickstreams include only minimal basic information: clicks and
purchases grouped by sessions (which is true for most existing
platforms and datasets [3])4.

Graph construction process We now discuss the process of
constructing a preference graph from the raw data. Recall that our
model captures a session by identifying the “desired” item, which,
if available, is the item the consumer would buy, and otherwise
outgoing edges indicate her willingness to purchase concrete alter-
natives. Therefore, ideally, we would like to have for each session
information identifying the desired item (for example, a search
query specifying it explicitly), as well as a sufficient number of
sessions where the specified item is not available, so as to accu-
rately capture the suitability of alternatives, implied by the items
purchased instead. However, in real life, when considering the
main store which offers the product catalog in its entirety (which
is the source for inferring the what-if probabilities necessary for
curating the store with the limited inventory), it is overwhelmingly
the case that all relevant items in a user session are in-stock. While
this allows to identify the desired item as the one purchased5, and
derive an accurate estimation of each item’s relative popularity, it
is, nevertheless, harder to approximate user preferences pertaining
to alternatives. In light of this limitation, we can use clicks on each
item to estimate its suitability as an alternative to the purchased
item. We note that assuming strong positive correlation between
clicks and an intention to buy is a common practice employed by
analysts in many e-commerce companies, when modeling con-
sumer preferences6, and it is also suggested in relevant studies
[26, 32]. When viewing each click as an intention to buy (as an
alternative), it is possible to overestimate this actual willingness
to make a purchase, likely resulting in a diminished probability
assigned to the event where no alternative is suitable. This can be

4One may also use semantic similarity between items to approximate edge weights,
however we do not pursue this direction here.
5Sessions with no purchase, as all items are assumed to be available, are not driven
by an intention to buy, and hence do not affect our modeling.
6Based on private conversations with analysts in multiple companies.
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Figure 3: Preference graph construction process

addressed by a more refined learning process where more vari-
ables are taken into account, subsequently normalizing the edge
weights by a corrective factor. For example, by considering the
amount of time spent viewing each item [32]. However, discussing
such methods in detail is beyond the scope of this paper.

In view of the discussion above, we construct the preference
graph, given clickstream data containing clicks and purchases per
session, in the following way. The nodes in the graph correspond
to the items. The node weights are assigned the percentage of
purchases of an item out of total number of purchases. An edge
from A to B exists only if the data contains a session where A was
purchased, and B was clicked. The weight assigned to this edge is
the fraction out of all sessions where A was purchased, in which
B was also clicked.

Note that, it may seem at first logical to learn the edges in
the opposite direction, i.e. to assign the weight of and edge from
A to B based on sessions where A was clicked and later B was
purchased, such that the edge direction “matches" the order of
the operations. However, this does not fit the semantics of our
model. Namely, we assume a “requested item" is bought with
probability 1 when in stock, and an edge from A to B refers to
sessions where A is a requested item which is out of stock, and
B is an alternative. Since in most cases (and in the available data
in particular) the items are in stock (examining only data where
a desired item is out of stock will reduce the size of the relevant
sessions to several thousands), clicking on A when available and
then choosing another item implies that A is not the requested
item. The other direction, which we opt for, is arguably more
logical, given sessions where all relevant items are in stock, as the
purchased item is almost certainly the most preferred item, and
clicks on other items serve as considering these items as alterna-
tives. Moreover, when estimating the weights of edges between
A and B, we purposely avoid taking into account sessions where
both A and B were clicked but neither was purchased. This is
because the edges do not represent browsing probabilities (i.e.
the probability B is clicked on next, when currently A is view, or
vice versa), rather purchasing probabilities. Thus, our graph can
intuitively be viewed as a transitive closure of a graph modeling
“browsing" probabilities, with the purchased item viewed last (see
discussion in Section 2). Observe that for items rarely clicked,
the low number of corresponding sessions allows for more noise
and the derived correlations to alternatives are less reliable. How-
ever, rarely clicked items have also (by definition) low weights,
and hence these "noisier" items correspondingly have negligible
influence over solution, as it focuses on more popular items.

How to choose the variant Finally, we explain when each of
our two variants is a suitable choice given the data. We note that
we focus in this work on these two models for edge dependencies,

as in our inspection of clickstreams, we observed that in almost all
cases one of the variants fits the data (in an approximated manner
described next). Nevertheless, it is of course theoretically possible
for other dependencies to exist, fitting neither of our models. We
leave the adaptation of our techniques to such cases for future
work, as here we focus on dependency schemes we have observed
to be particularly prevalent.

The Normalized variant models the data well when at most one
item, apart from the one purchased, was clicked. In practice it is
unlikely any data perfectly adheres to this rule. However, when
exceptions are rare we consider this to be a good approximation.
In our experiments we applied the Normalized variant when in at
least 90% of the sessions at most one alternative was clicked. In
such datasets, when processing sessions where t > 1 other items
were clicked, we “normalized” by counting each as a 1

t -fraction
of a click.

As for the Independent variant, it fits well when for any 2 al-
ternatives (w.r.t. a given desired item) the fraction of sessions in
which one was clicked remains the same when conditioned on
clicking on the other (counting the fraction only out of sessions
where the other was clicked). Once again, expecting any data
to demonstrate such complete independence is not realistic. We,
therefore, consider the Independent variant to be a reasonable
approximation, when the following condition holds. We use a
common measure for dependence of random variables, known as
Normalized mutual information [31], which produces a value in
[0, 1], such that 1 indicates total dependence and 0 total indepen-
dence. For any given item, we compute this measure for all pairs
of alternatives, and take the average. Finally, we take the weighted
average of these averages over all desired items, corresponding to
the node weights (such that the average is not skewed by rarely
purchased items)7. If this measure is below 0.1, analogously to
the 90% cutoff in the Normalized variant, then we consider the
Independent variant to be a a fitting choice of model.

To illustrate the process described above, consider Figure 3a, de-
picting a tiny sample of sessions taken from a real-life clickstream
of users that purchased an iPhone 8 256GB. This smartphone
comes in 3 different colors: Silver, Gold and Space Gray. The
clickstream consists of these 3 items and 5 sessions, each ending
in a purchase. The corresponding preference graph is depicted in
Figure 3b. There are 2 purchases of the Space Gray iPhone, 2 of
Silver and 1 of Gold. Hence, the node weights are 0.4, 0.4 and 0.2,
resp. Out of the 2 times the Silver iPhone was purchased, each
of the other 2 phones was clicked exactly once. Hence, the edge
weights from Silver to Gold and Space Gray are 1/2. Whereas,
from the 2 sessions where Space Gray phone was purchased, one
had no other clicks, and the other had 1 click on Silver. Hence,
there is an edge from Space Gray to Silver with weight 1/2. Fi-
nally, the Gold iPhone was purchased once, and in that session the
Space Gray phone was clicked as well. Hence, there is a single
edge of weight 1 from Gold to Space Gray. As for the problem
variant, it is clear that the Normalized variant is a good fit, since
no session implies more than one alternative.

Note that given a more detailed clickstream, an e-commerce
platform can construct a more precise graph. For example, one can
analyze the clickstream and combine with the information about
out-of-stock items to find which items were purchased instead.
Another idea for improvement is using the search query text and
filter out items from the clickstream that are not matching the
user’s intent. However, as mentioned before, such information is

7Of course, other thresholds and statistical distances can be applied just as well.
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Table 2: The datasets used in the experiments

DS Sessions Purchases Items Edges
PE 10,782,918 10,782,918 1,921,701 9,250,131
PF 8,630,541 8,630,541 1,681,625 7,182,318
PM 8,154,160 8,154,160 1,396,674 5,826,429

YC 9,249,729 259,579 52,739 249,008

not always available in sufficient volume, hence it can be used
as an enhancement on top of the proposed solution to adjust the
weights. In general, more sophisticated data can be collected, with
more resources invested in its analysis, resulting in a refined mod-
ule for constructing the graph, which comes in place of our Data
Adaptation Engine, with the rest of the architecture remaining
the same. The methods we focus on here are chosen to fit actual
information currently available to most e-commerce platforms.

5.3 Experimental Setup
We implemented our system using Python, and ran the experi-
ments on a server with 128GB RAM and 32 cores. To evaluate
our solution, we have performed a set of extensive experiments,
both on a publicly available real-world dataset and on a bigger
(private) dataset provided by a large e-commerce company8. We
compare our approach to 4 baselines, using 4 evaluation methods.

Datasets. The first dataset, provided by a large e-commerce
company, contains 5M items and 27M sessions, all ending with
a single item purchase (we specifically requested such sessions).
The dataset is private and comes as three independent parts, di-
vided by domains - Electronics (PE), Fashion (PF) and Motors
(PM). Due to its size, this dataset is particularly useful for scala-
bility tests. The second dataset, marked as YC, is a public dataset,
which was provided by the company YooChoose for the Rec-
Sys 2015 Challenge [3]. This dataset contains a clickstream with
approximately 260K sessions ending in a single item purchase,
covering a 6 month period in 2014 (from April 1st to September
30th). We have included this publicly available data, to allow the
reader to reproduce the results.

The summary of these datasets is presented in Table 2. It in-
cludes the number of sessions, purchases, items and edges. Recall
our discussion at the end of Section 5.2 regarding the conditions
we set for each variant to fit a given dataset. It follows that the
YC, PE and PF datasets fit the Independent variant, as in all three
datasets our proposed independence measure is below 0.1. The
PM dataset (whose items are parts and accessories for automo-
biles), however, is better captured by the Normalized variant, as in
its sessions few alternatives were considered prior to purchasing.
In particular, the percentage of sessions implying no more than a
single alternative is above 90%.

Algorithms. We compare 5 different algorithms, over the same
inputs (each input consists of a preference graph and a size bound
k). The experiments are performed separately for both variants
of the problem, and hence the following algorithms have in fact
two versions, each with minor adaptations in accordance with the
difference in the computation of the coverage function. We refer
to the Normalized and Independent versions of the corresponding
algorithm as NAME-N and NAME-I, resp. We next describe our
selected algorithms.

8Company name omitted due to privacy considerations.

• Greedy - Our proposed greedy algorithm (Algorithm 1).
• BF - A brute-force algorithm that evaluates all subsets of

size k , and returns a set with the highest coverage. We use
this baseline as it is the only one which guarantees the
optimal solution, implying the exact approximation ratios
achieved by our algorithm.
• TopK-W - An algorithm returning the top-k items by

weight. This is the naïve baseline that considers each item
individually without taking alternatives into account.
• TopK-C - An algorithm that returns the top-k items with

the highest Coverage. This is a refined version of the previ-
ous baseline, which takes alternatives into account, however
not from a global viewpoint as in our solution.
• Random - An algorithm that returns k items in a random

manner. This is the simplest baseline.
Note that we did not include any SDP or LP based approxima-

tion algorithms, as they are not at all scalable (see discussion in
section 3.2).

Evaluation Methods. We performed 4 complementary types of
experiments to evaluate our end-to-end solution.

First, to examine the actual approximation factors Greedy at-
tains in practice, we compare its coverage to that of BF, which is
of course optimal. Greedy has a theoretical approximation guar-
antee in each variant, however it refers to the worst case, and
in practice may achieve much better results. Moreover, we show
in these experiments that approximation is necessary, as BF has
impractical running times even on tiny inputs.

To show the quality of our algorithm in terms of the coverage
it obtains on real-life high-scale data, we compare it to all other
baselines, except BF, as it cannot scale to handle real-life data.

To demonstrate the scalability and parallelizability of our so-
lution, in our third set of experiments we run it both on a single
thread, varying the number of items (nodes), as well as on graphs
of fixed size, varying the number of cores.

The fourth set of experiments was performed for the comple-
mentary minimization problem, where we set different thresholds
and aim to find the smallest retained set whose cover exceeds the
given threshold. We compare our adapted algorithm to analogous
adaptations of the other algorithms, to demonstrate its effective-
ness in terms of the size of the retained set.

5.4 Evaluation Results
We present the results for the experiments detailed above.

Comparison to Brute Force. The brute-force algorithm does
not scale to big graphs, since even for n = 30 and k = 15, there
are 155M possible solutions. We show here a representative com-
parison of the algorithms on a subset of the YC dataset, reduced
to 30 products (similar results were obtained for small subsets of
all datasets). Figure 4a depicts the coverage achieved by Greedy
compared to the optimal coverage achieved by BF. Figure 4b
depicts (in log scale) the running times in seconds, over the Nor-
malized variant (the Independent variant showed similar trends,
hence omitted). We can see that the coverage of Greedy is very
close to optimal, while having significantly better running times.

Coverage Quality. We compared all algorithms in terms of
the achieved coverage quality, over all datasets. Figure 4c de-
picts the results on the YC dataset (Independent variant) for k ∈
{0.1n, 0.3n, ..., 0.9n}. The results over all other datasets (which in-
clude the Normalized variant) demonstrate a similar trend, hence
omitted. BF cannot scale beyond small networks, and is excluded
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Figure 4: Experimental results

from this experiment. As expected, Greedy is the top performing
algorithm, while TopK-W and TopK-C lag behind, since they do
not take into account, resp., alternatives, or overlaps in covers by
different items. Random also achieves bad results (taking the best
across 10 executions) as it makes no use of information pertaining
to the popularity of items or their alternatives.

Scalability and Parallelizability. We performed the scalability
tests on graphs of various sizes over all datasets. Note that we
present only the running times of the algorithm, as the graph con-
struction is considered to be an offline phase, hence not included
in the measurements. Figure 4d depicts the running time of Greedy
for n ∈ {10K, 100K, 500K, 1M} and k = 5K , performed on subsets
of the largest dataset (PE), while over other datasets similar trends
were demonstrated, hence not shown here. The parallelizability
analysis of Greedy, depicted in Figure 4e, was performed over
the same dataset and an input graph of fixed size for varying the
number of cores: 1, 4, 8, 16 and 32. The results show almost
perfect parallelization, which scales well as the number of cores
grows. For example, the execution of Greedy on 1 core compared
to 32 cores runs 20x times faster.

Complementary problem. We conclude this section by evaluat-
ing our approach when adapted to the complementary minimiza-
tion problem (as explained at the end of Section 3.2). The goal is
to find the smallest set whose coverage exceeds a given threshold.
Figure 4f depicts the results, in terms of the size of the produced
set, obtained by our algorithm, when executed over the YC dataset
(Independent variant), for thresholds ∈ {0.5, 0.6, 0.7, 0.8, 0.9}, com-
pared to the results obtained by TopK-W and TopK-C. These algo-
rithms were also adapted to perform a binary search over a sorted
list of nodes (by the relevant metric - weight or coverage, resp.),
choosing the smallest prefix to exceed the threshold. The results
demonstrate that the superiority of our approach carries over into
this version of the problem, as it outperforms other baselines, pro-
ducing a much smaller set. The results over the other datasets (and
the Normalized variant) are similar.

6 RELATED WORK
E-commerce related problems attracted the interest of many re-
searchers in recent years. Some extensively studied problems are
product classification [9, 33], product ranking in search results

[18] and automatic product content generation [10, 24]. Of such
problems close to us in spirit are works on diversity [36], produc-
ing the top k most collectively dissimilar elements, typically out
of a result set to a given search query. This relates to a similar
concept in our problem, where we aim to avoid retaining items
that match the same requests. The resemblance is even greater
when elements are weighted by importance and there is a require-
ment, such as in [8], that each non-selected element is covered by
a similar selected item, relating to our aim of choosing popular
items and items covering as alternatives non-retained items. Nev-
ertheless, there are many differences between their models and
ours. Importantly, unlike in diversification problems, we do not
aim to maximize diversity, rather it is a feature which is, to some
extent, typical of good solutions to our problem, yet not at all
necessary. Moreover, even when diversity is a constraint and the
items are weighted [8], the goal is to maximize the total weight of
the selection, in contrast to our model, where one must also (par-
tially) count weights of adjacent items, which is a crucial property.
Furthermore, as our edges represent choice probabilities (rather
than item dissimilarity), we can support this original concept of
covering neighboring items to a concrete and partial extent, which
along with the aforementioned distinctions lead to vast differences
in the algorithmic solutions and concrete computations.

Another line of work similar to ours is recommendations [28],
as it also deals with selecting a subset of items to increase pur-
chasing probability. However, there are important qualitative and
quantitative differences. Primarily, recommendations are typically
personalized w.r.t. a given user (and often a given product as well),
and deal with a far smaller k. Some works on recommendations
that derive product alternatives [20] may potentially serve as ba-
sis for another method of computing edge weights in preference
graphs. We intend to investigate this approach in future work.

Other existing works in e-commerce that deal with finding top-
k beneficial products to offer [35] focus on setting prices such that
the predicted revenue (including costs) is maximized. However, in
contrast to our models, they do not take into account consumers
opting for alternatives.

Closest to our work is a subfield of Operations Research called
Assortment Optimization. These works typically employ more
complex models such as the Markov chain choice model [4, 23],
multinomial logit model [29] and nested logit model [12]. The
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considered Markov chain model bears some resemblance to our
Normalized variant, but is more complicated due to the consider-
ation of varying item revenues and/or multiple-step graph paths
(which are directly captured in our model by transitive edges).
Consequently, their algorithms are also more complex and the
work is geared towards theoretical analysis of the model rather
than practical evaluation. The experiments, when exist, consider
small scale item sets (order of 1000 items) [4], and the results are
not scalable to big data. Furthermore, they mostly use synthetic
datasets, and the process of model derivation from real-life data
(which our end-to-end solution includes), is not considered there.

Our model is inspired by research in behavioral economics. In
particular, [30] observed that consumers experience increased anx-
iety and are less likely to take action when faced with too wide of
a selection. Additionally, [34] demonstrated that consumers, when
searching for a specific item, are often willing to buy in its absence
what they consider to be a reasonably satisfying alternative.

Our work draws on results in classical Top-k cover problems in
graphs [13, 16]. Most notable is the Max Vertex Cover problem
(VCk ) [11, 19], which was discussed in detail in Section 3. An
existing direction in the study VCk , whose practical adaptation
to our setting would be an intriguing future work, is devising
algorithms for graphs with bounded degree [13], as this special
case arises in practice in our model. Similar problems include
Max dominating set and Max edge domination [21]. All these
problems can be viewed as special cases of the more abstract
Maximum Coverage problem [6]. Moreover, each of these prob-
lems is strongly related to its more extensively researched variant,
such as the Vertex Cover problem [25], where k is unspecified,
and the goal is to find the smallest subset such that the entire
graph is covered. Theoretical bounds and algorithms can often be
adapted from one variant to the other, which is also the case for
our problem as well, as discussed in Sections 3 and 4.

7 CONCLUSION
This paper introduces the Preference Cover problem, which aims
to select a reduced inventory maximizing the likelihood of a pur-
chase. We model consumer preferences via a preference graph
and study two problem variants, Normalized and Independent,
which differ in their interpretation of the probabilistic dependen-
cies between the suitability of different alternatives. We study their
approximation hardness, and since the overall number of items,
and the bound on the retained set, tend to be very large in this
context (in the order of magnitude of millions), we propose highly
parallelizable and scalable algorithms that come with approxima-
tion guarantees. Finally, we present an end-to-end solution that
maps real-world data into our model, and provide an extensive set
of experiments on multiple datasets, demonstrating the efficiency
and effectiveness of our approach.

In the problem setting studied here (which is common to inter-
mediary e-commerce platforms [1]) the commission-per-purchase
is considered fixed and the goal is to maximize the number of
sales. Extending our work to support varying per-item revenues
and storage considerations is an intriguing future work. Another
interesting direction we are currently pursuing is incremental
maintenance in response to changes over time.
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ABSTRACT
In big data ecosystems, it is becoming inevitable to query data
that span multiple heterogeneous data sources (remote systems)
to build meaningful querying and analytical workflows. Existing
work that aims at unifying heterogeneous systems into a single ar-
chitecture lacks the fundamental aspect of efficient cost estimation
of SQL-based operators over remote systems. The problem is fun-
damental because all modern optimizers are cost-based, and with-
out accurate cost estimation for each query operator, the generated
plans can be way off the optimal plan. Nevertheless, the problem is
mostly overlooked by existing systems because the focus is either
on homogeneous distributed RDBMSs in which cost estimation
is already extensively studied, or on fully heterogeneous engines
in which SQL querying and SQL query optimization are not ap-
plicable (or at least are not the core problem). In this paper, we
propose a comprehensive remote-system cost estimation module
for SQL operators, which is a core module within the Teradata In-
telliSphere architecture. The proposed module encompasses three
costing approaches, namely logical-operator, sub-operator, and
hybrid approaches, which are suitable for black box, open box,
and a mix of black and open box systems, respectively. The cost
estimation module leverages analytical and deep learning models
with novel techniques for efficient extrapolation when needed. The
techniques presented in this paper are modular and can be adopted
by other systems. Extensive experimental evaluation shows the
practicality and efficiency of the proposed system.

1 INTRODUCTION
There has been an increasing necessity, especially in big data
applications, for managing and querying data that span multiple
heterogeneous data sources (remote systems) [12, 13, 31]. The
number of the remote system types is increasing dramatically,
each system has unique inherent characteristics and processing
capabilities, some systems are openbox with well-known internal
details while others are blackbox with very little knowledge about
their internals—and many levels in between, and each system
offers different levels of sophistication w.r.t. query planning and
optimization. Although such interconnectivity and interoperability
create unprecedented opportunities for advanced analytics and
data sciences, the unification of such diverse systems in a single
architecture and the orchestration of the overall processing among
them represent a classical challenging problem of many facets.
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technic Institute, MA, USA (meltabakh@wpi.edu).
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Several architectures have been proposed to address different
aspects of the problem including federated systems [8, 11, 24],
polystore systems [13], and data integration and warehousing
systems [10, 12, 28, 31]. A big bulk of federated systems’ re-
search has focused on distributed relational database systems
where distributed transaction processing, concurrency control, re-
covery control, and replica management have been extensively
studied [9, 14, 20, 24]. Other research focuses on heterogeneous
federated systems, where schema mapping, query translation, con-
flict management, and mediation design are the core addressed
issues [10, 12, 28, 31]. More recent polystore systems, e.g., the
BigDAWG system [13], target transparent unification and access
across multiple backend systems of different data models, e.g.,
array, graph, streaming, and relational models. Although query
optimization is a core component of BigDAWG, building an ad-
vanced cost estimation module is not the current focus as reported
in [13]. Finally, the data integration and warehousing systems
focus on offline data integration issues in contrast to online ad-hoc
querying and query optimization.

“Teradata IntelliSphere” [4] is a project that shares a com-
mon theme with the aforementioned systems, i.e., accessing data
across multiple heterogeneous data sources. In the IntelliSphere
architecture (See Figure 1), Teradata is the master engine and the
communication point with the end-users. The other underlying
sources (called remote systems) are heterogeneous, but they are all
assumed to have SQL-like interface (even if the internal execution
is not SQL). This covers a wide spectrum of systems such as
Hive [25, 26], SparkSQL [7], Presto [27], Impala [22], and other
RDBMSs [1, 2, 23]. Therefore, IntelliSphere’s query language is
SQL, and Teradata is responsible for building a SQL query plan
and deciding where each SQL operator, e.g., join or aggregation,
will execute on one of the IntelliSphere’s systems (either Teradata
or a remote system).

In this paper, we focus on one fundamental aspect of Intelli-
Sphere, which is the cost estimation of a given SQL operator over
remote systems. The “cost” in our context is basically the elapsed
execution time of a SQL operator on the remote system. The
problem is fundamental because all modern optimizers (including
Teradata’s optimizer) are cost-based, and without accurate cost
estimation for each query operator, the generated plans can be
way off the optimal plan. Evidently, in the popular pay-as-you-go
cloud model, bad execution plans can have unacceptable time and
monetary overheads. Despite the importance of the problem, it is
briefly touched by existing systems because as highlighted above,
and will be elaborated on further in Section 6, each of the existing
systems focuses on other aspects of the big problem.

Accurately estimating a remote operator cost is a challenging
problem because: 1) Some remote systems are openbox where ex-
perts can inject a lot of details about them into IntelliSphere while
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other systems are blackbox with very little knowledge on how
they execute. 2) Two remote systems, e.g., Hive and Impala, may
offer entirely different set of algorithms to physically implement a
given operator, e.g., joining two tables, and thus whatever learned
from one system does not necessarily apply to another system.
3) Within a single remote system, it is not trivial for IntelliSphere
to predict which physical algorithm, possibly from several can-
didates, will be used for a given operation. And 4) Putting the
simplistic assumption that all remote systems are blackboxes and
the only way to learn their behavior is by submitting many queries
as in [13] is not a practical scalable solution. This is because,
as we will show in the paper, such approach of learning is very
expensive and should be used as a last resort instead of the default
and only solution.

In this paper, we propose a comprehensive remote-system cost
estimation module for SQL operators that addresses the challenges
highlighted above. To be specific, the costing metric that we try
to measure in this project is the elapsed execution time within the
remote system. This time encapsulates and reflects other detailed
costs, e.g., query compilation, scheduling, I/O and CPU costs
within the remote system. We assume that the network costs,
e.g., establishing a connection and data transfer back and forth,
are learned through some other mechanisms, which are outside
the scope of this paper. Ultimately, the Teradata optimizer will
combine multiple costs together to come up with a final cost for
the SQL operator, and based on that it decides where to execute
the operator. The techniques presented in this paper focus only on
estimating the elapsed execution time, which is a major factor in
the cost equation.

We propose three costing approaches, namely logical-operator,
sub-operator, and hybrid approaches, which are suitable for black-
box, openbox, and a mix of black and open box systems, respec-
tively. The cost estimation module leverages analytical models as
well as deep learning models within the different approaches. We
show that although the deep learning models are good in capturing
non-linear cost estimation, they fall short in providing accurate
estimations for un-seen (un-trained) ranges. To overcome this
limitation, we propose online remedy and offline tuning phases to
enhance the estimation quality.

The key contributions of the paper are summarized as follows:

• Proposing a comprehensive remote-system cost estimation
module for SQL operators, that encompasses three approaches,
namely logical-operator (logical-op), sub-operator (sub-op), and
hybrid approaches. Each of the logical-op and sub-op approaches
has pros, cons, and applicability cases. The hybrid approach com-
bines their advantages.

• Leveraging both analytical cost models and deep learning
models within the different costing approaches. The deep learning
models are empowered with online remedy and offline tuning
phases to ensure high quality estimations even for un-trained
ranges.

• The proposed cost estimation module is modular, and due to
its applicability to openbox and blackbox systems, it can be easily
adopted by and integrated within other systems such as polystore
systems.

• Evaluating the proposed cost estimation module empirically
in the context of Teradata and Hive as a proof of concept. Ex-
tensions to other systems such as SparkSQL, Presto, and Impala
follow the same methodology. The results show the effectiveness
of the proposed module compared to the state-of-art approaches.

Teradata	

QueryGrid	

End-users	

SQL	
Queries	

Query	
Results	

RDBMS	

…	…	

Figure 1: Teradata IntelliSphere Architecture.

The rest of the paper is organized as follows. In Section 2, we
present the architecture of the IntelliSphere system and introduce
the problem definition. In Sections 3, 4, and 5, we describe the
details of the three costing approaches: logical-op, sub-op, and
hybrid, respectively. In Section 6, we overview the related work,
and in Section 7, we present the experimental evaluation of the
system. Finally, Section 8 contains the conclusion remarks.

2 TERADATA INTELLISPHERE
In this section, we overview a simplified architecture of the Tera-
data IntelliSphere system [4] and the basic workflow components
related to this paper1. Teradata IntelliSphere is designed to be
a cost-effective and scalable analytical ecosystem that offers nu-
merous software solutions to ingest, access, and manage big data
across multiple heterogeneous data sources. For the purpose of
this paper, we focus on the following basic components of the
architecture (See Figure 1):

Teradata: The master engine in the entire architecture is the
Teradata Database [2]. It also represents the communication point
with the end-users. It receives a user’s query in the form of a SQL
query, generates a cost-based efficient query plan where each SQL
operator is scheduled for execution on one of the IntelliSphere’s
systems, combines the results, and passes the final answer back to
the user.

Remote Systems: The underlying heterogeneous data sources
are referred to as remote systems. They are all assumed to have
SQL-like interface where they can receive a SQL operation such
as a join, aggregation, filter, and projection, perform the computa-
tions of that operation and return the results back to Teradata. It is
possible that the internal execution of a remote system is different
from the relational DBMS model, e.g, Hive’s internal execution is
map-reduce. And it is also possible that a remote system may not
support some of the SQL operations, e.g., a remote system may
not have the capability to perform a join operation.

Remote System Profile: Each remote system registers in the
IntelliSphere architecture through a profile. This profile describes
the remote system setup, e.g., a cluster configuration, and the
capabilities of the remote system, e.g., what operations it can or
cannot support. The profile is constructed during the registration
step, and can be modified afterwards as needed. We will use the
profile extensively to store all metadata information related to
the cost estimation module as will be described in the following
sections.

QueryGrid: It is the communication layer that facilitates the
transfer of data across the involved systems [3]. Several QueryGrid

1Teradata IntelliSphere is a more comprehensive architecture with features and
functionalities beyond what is presented in this paper. We only highlight the aspects
related to our paper.
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connectors are built to enable queries to access tables stored in
remote systems. The differentiating factor between Teradata’s
QueryGrid technology and other connectors is that it works in
conjunction with the query processing engines to optimize the
overall execution. For example, simple predicates—in a well-
defined language—can be passed to QueryGrid for execution
on-the-fly while the data is being transferred from one system to
another. This capability can save unnecessary scanning of a local
data, writing back to the file system after evaluating the predicate,
and then passing the results to the QueryGrid for transfer.

Data Storage, Statistics, and Transfer: A given dataset con-
sists of a set of tables {T1, T2, ..., Tk}, where each table is stored
on one of the IntelliSphere’s systems (Teradata or a remote sys-
tem). Any remote table is registered inside Teradata as a foreign
table—and thus Teradata knows its schema and location. As a re-
sult, a single SQL query can seamlessly reference multiple foreign
tables across several remote systems. We assume that Teradata can
collect basic statistics on remote tables, e.g., the number of rows,
average row size, the number of distinct values in each column,
etc. Such information is either already available on the remote
system or Teradata can estimate them by submitting some queries
over the data. Regarding the transfer of data, the data cannot be
transferred directly between two remote systems, instead it can be
only transferred between a remote system and Teradata.

Query Plans: As in standard RDBMSs, Teradata generates
many equivalent SQL query plans during the optimization phase,
and part of that is deciding on where each operator will execute—
which clearly implies different costs depending on the host system.
To limit the search space, IntelliSphere considers scheduling an
operator only on a remote system that owns the input data (or
part of it) or the Teradata system. For example, assume joining
two relations R and S , where R is stored in Hive and S is stored
in Presto. Then, there are three possibilities for placing the join
operator, either on Hive (and S will be passed to Teradata and
then to Hive), on Presto (and R will be passed to Teradata and
then to Presto), or on Teradata (and both R and S will be passed to
Teradata). The results computed on a remote system do not have to
be immediately transferred to Teradata, instead they may remain
on that remote system for further computations, and then at some
point in the query, the results will be transferred to Teradata.

Problem at Hand and Design Assumptions: Given the setup
described above, IntelliSphere leverages the full-fledged capa-
bilities of Teradata’s mature optimizer in generating efficient
cost-based query plans. The only missing piece is estimating
an operator’s cost were it to be executed on a remote system. As
highlighted in Section 1, this cost involves several factors, we only
focus on estimating the wall-clock elapsed execution time within
the remote system. Therefore, while estimating the execution cost,
we assume that the needed data is already on the remote system—
and thus the network communication and data transfer costs are
out of the picture 2.

Supervised ecosystem: The learning and model building step for
a given remote system is performed only once when the remote
system is added to the IntelliSphere ecosystem. Therefore, the
learned models are for specific cluster configuration, access meth-
ods, physical data layout, etc. The IntelliSphere ecosystem is su-
pervised in the sense that changes to a remote system, e.g., adding
or removing nodes, creating or dropping indexes, re-partitioning

2Teradata can estimate the amount of data that need to be sent to the remote system
as well as the output size that will be sent back to Teradata. Based on these estimates,
other costs such as the the network cost and data transfer are estimated.
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Figure 2: Logical-Operator Costing for Join Operator.

the data, etc., are known to Teradata. Such changes, would require
re-doing the learning phase from scratch.

Stable workload: Another underlying assumption is to have a
roughly consistent workload on the remote system. That is, the
workload during the training and model construction phase should
roughly remain the same while executing users’ queries later. In
our experiments, we assume the remote system is dedicated to
the submitted queries and no other workloads are running. Super-
vised ecosystem and stable workloads are the same assumptions
used in almost all other related work [15, 21, 30], otherwise it is
impossible to predict the remote system behavior.

Integration in bigger query plans: In Teradata, the cost of a
SQL query operator includes several low-level factors such as the
I/O costs, e.g., index scans, disk page accesses for data, and CPU
costs, e.g., hash table creation, hash table lookup, records merge
or sort, etc. Ultimately, these costs are translated to an estimated
execution time cost per operator. As such, the estimated execution
time for the remote operators fit directly in bigger plans.

3 LOGICAL-OPERATOR COSTING
One approach for estimating a remote operator cost is the Logical-
Operator Costing (logical-op costing for short). In this approach,
the training and learning phase is performed at the logical operator
level, e.g., join and aggregation operators. This is the approach
used in other systems, e.g., BigDAWG [13]. The main idea of
the logical-op costing is to build a relatively large set of training
queries, execute them on the remote system, and build a model
for the target operator. The key advantage is that it requires no
knowledge about the internal execution of the remote system, e.g.,
it does not need to know which physical join algorithm is used
to perform the join. In other words, the remote system is treated
as a blackbox. However, the main drawback is that to build a
reasonably accurate model for a given operator, it would require a
large number of queries to cover a wide range of possible configu-
rations. This would certainly require a prolonged training phase
and potentially consume valuable resources. In the following, we
describe in detail the phases involved in this costing approach.

Building a training dataset: In general, the more complex
the logical operator and the more variations in physically im-
plementing it, the more training queries are needed to build its
corresponding model. We created logical-op training models for
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the join and aggregation operators. For the join operator, the train-
ing model has seven dimensions, which include the row size and
the number of rows in each of the two tables, the sum of the pro-
jected attribute sizes from the each table, and the number of output
rows (See Figure 2). For the aggregation operator, the model has
four dimensions, which include the number of input rows, input
row size, number of output rows, and output row size.

Coming up with appropriate training dimensions is crucial and
requires some level of expertise. On one hand, we need to min-
imize the number of dimensions because the number of queries
grows exponentially when adding more dimensions. On the other
hand, we need to capture enough parameters in order to model the
targeted operator accurately. Based on our team’s experience with
the Teradata query optimizer, we selected the highlighted dimen-
sions as the representative dimensions for the join and aggregation
operators.

The next step is to assign for each dimension a domain re-
flecting the possible training values that this dimension may take.
In some applications, there can be samples of existing data or
workloads to help selecting the appropriate domain for each di-
mension. Otherwise, we start with reasonable assignments, and
then a continuous learning phase will help to gradually expand
the domains as the system observes and executes more queries (as
will be explained later).

Assume dimension i has a domain di of size |di |, then the total
number of configurations in the training set for one operator is

computed as
k∏
i=1
|di |, where k is the number of dimensions. For

example, as illustrated in Figure 2, each row represents one con-
figuration, which maps to a single query over the remote system.
After executing the queries, each configuration will be labeled with
the observed execution cost. This step of executing the queries
over the remote system can be very expensive, e.g., it may take
days if the number of queries is large.

Building a costing model: The next step in the logical-op cost-
ing is to build a model from the observed costs. For that purpose,
regression or neural network models can be used. We experi-
mented with both, and we found out that linear regression models
introduce more errors as will be demonstrated in the experiment
section (around three times larger w.r.t the root-mean-square error
RMSE). This is primarily because the number of data points can
be large, e.g., in thousands, the number of input dimensions can
be also large, and the relationship between the inputs and outputs
might not be linear—especially for complex operators like join
and aggregation. Simple light-weight neural networks tend to be
more accurate under such complex modeling. For that reason, we
opt for the neural network model in the rest of the paper.

There is no rule of thumb for deciding on the optimal neural
network structure. Typically, two or three hidden layers are enough
for not highly-complex problems [18]. Therefore, we fix the num-
ber of layers to two for both the join and aggregation operators.
And then we use a cross-validation technique to determine the
number of nodes (neurons) in each layer [16]. More specifically,
we vary the number of nodes in the 1st layer between the number
of inputs (7 for join, and 4 for aggregation) and the double of that
number, and vary the number of nodes in the 2nd layer between
three and half the number of the 1st layer’s nodes. Then, for each
topology, we use a cross validation test involving 70% of data as
training and 30% as a test to measure the accuracy of the network.

Query Q 

Input Parameters are  
within the trained range? 

(β threshold) 

-  Use the existing NN model  
-  Return estimated exec. cost  

Operator will exec. 
remotely ? 

 // Logging Phase 
-  Collect actual execution cost 
-  Dump a record into the batch 
     (Input parameters + cost)  

END 

Yes 

Yes 

No 

No 

// Online Remedy Phase 
-  Call QueryTime-Remedy() 
-  Return combined estimated  
    Cost  

Figure 3: Logical-Operator Costing: cost-estimation flow
chart at query time.

Finally, we select the topology that introduces the least root-mean-
square error (RMSE). Figure 2 shows the neural network model
over the seven-dimension inputs for the join operator.

Usage and model expansion: In the typical scenarios, the
constructed model is directly used at query time to estimate the
cost of a remote operator. Given an operator that is candidate for
execution on a remote system, e.g., a join operator where one of
the input relations is on that remote system, the system calculates
and/or estimates the input parameters for the operator’s model. For
example, the seven input parameters illustrated in Figure 2 need
to be estimated for the join operator. These parameters are then
fed to the neural network model to predict the output value, which
represents the estimated cost (See the flowchart in Figure 3).

The estimation process is straightforward as long as all the
input parameters fall within (or in the proximity of) the ranges
on which the neural network is trained. However, in the cases
where one or more parameters are way off the trained ranges,
the model may not provide accurate estimation. This is because
neural networks are good in capturing complex relationships but
not good in extrapolating out-of-range values.

In real deployment systems like Teradata IntelliSphere these
cases need to be adequately handled. Therefore, we propose a two-
phase solution that consists of an online query-time remedy phase
and an offline batch tuning phase. The online remedy phase pro-
vides an immediate best-guess estimation to the operator at hand
to continue the query optimization and execution. Whereas, the
offline batch tuning phase provides a mechanism for readjusting
and tuning the neural network from the actual logged executions.
Both phases are described in detail below.

Online Remedy Phase: The main idea of the online remedy
phase is presented in Figures 3 and 4. Initially, the system main-
tains metadata information for each input dimension in the train-
ing set of a given operator. This metadata includes the covered
range using min and max boundaries and a stepSize. For exam-
ple, Figure 2 shows the metadata of the Row size dimension,
which indicates the training covers the range from 100 to 1, 000
bytes and the step size is 100. Now, if the current query at hand
involves a join where the estimated row size is 10, 000 bytes,
the system will detect that this parameter is way off the trained
range, and will not get the estimate by relying only on the neural
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network model, but instead it will trigger the execution of the
QueryTime-Remedy() procedure (See the top diamond box
in Figure 3). More specifically, if the value of a given dimension
is outside the [min, max] range by more than β ∗ stepSize, where
β > 1 is a configuration parameter, then that dimension is consid-
ered way off the trained range. The procedure on the fly builds a
regression model and combine it with the neural network model
to come up with the final estimate as illustrated in Figure 4.

Lets illustrate the construction of the regression model using
a simple scenario. Assume a join query Q that involves only
one dimension, say Row size of R, where its estimated value
is way off the trained range in the neural network. We refer to
that dimension as the Pivot dimension. All other dimensions
(refer to them as DinRanдe ) are within the trained range. The
QueryTime-Remedy() procedure extracts a set of training
records of size k, where k is a system parameter, having the fol-
lowing properties: (1) their values in the DinRanдe dimensions
are matching (or very close) to the corresponding values in Q ,
and (2) their values in the Pivot dimension are the immediate
successors and/or predecessors of the corresponding value in Q .
This set should represent the closest possible training points to
the query point. The pivot values in this set are then extracted and
used to build a regression model. The algorithm can be extended
to handle more than one pivot dimension as illustrated in Figure 4.

The QueryTime-Remedy() procedure uses the constructed
regression model to extrapolate on the pivot dimension(s) and
predict the cost. This cost is then combined with the estimated
cost from the neural network model to come up with the final cost
(See Figure 4). The reason we combine the two costs is that they
capture different and complementary factors. The neural network
captures the complex relationship between the input parameters
and the output but cannot extrapolate. In contrast, the regression
model can extrapolate but oblivious to the other dimensions. The
costs are combined using a weighted factor α (0 < α < 1) as
illustrated in Figure 4. Initially, α is set to 0.5, and as the system
executes more queries, α gets automatically adjusted to narrow
the gap between the estimated and actual execution times.

Offline Tuning Phase: Whenever IntelliSphere executes a re-
mote operator on an external system (depending on the optimizer’s
decision), it captures the actual execution cost and pushes this
information to a log (See the bottom diamond box in Figure 3).
Periodically, this log is fed to the neural network model to tune its
structure with the new observed data.

One interesting detail to highlight here is the mechanism for
updating the metadata information of the training dataset at the
end of the tuning phase. Recall that a metadata information is
maintained for each dimension in a training set including the
min, max, stepSize values. When a log gets executed to update
the neural network model, the metadata gets also updated. More
specifically, the [min, max] range gets expanded if the log has
entries with out-of-range values. However, this expansion takes
place only if a continuity in the training points is maintained. For
example, referring to the metadata in Figure 2, if the log has some
entries with out-of-range values or the 1st dimension like 8, 000
and 10, 000 bytes, then the current range will remain intact because
there are many missing points between that range and the new
values, i.e., continuity will be broken. Instead, more information
is added to the metadata to indicate that training dataset of 8, 000
and 10, 000 bytes

The implication of this expansion strategy is that when a new
join query comes and it includes an out-of-range value for the
1st dimension, say 6, 000 bytes, the system will still trigger the
online remedy phase highlighted in Figure 4 to come up with
the final estimated cost instead of relying only on the neural
network model. The positive thing is that the prediction from both
the neural network and the regression models are getting better
because they take into account the previous log records even if the
[min, max] range has not been modified.

4 SUB-OPERATOR COSTING
Another approach for remote operator costing is what we refer
to as sub-operator costing (or sub-op costing for short). In this
approach, the learning and training is performed at the granularity
of small building block operators, e.g., scan, shuffle, sort, read,
and write operations. And then, the higher-level query operators,
e.g., join and aggregation, are expressed as formulas on top of the
sub-ops. The main advantage is that learning the cost of each sub-
op is relatively straightforward and fast because: (1) The number
of dimensions in a training set for each sub-op is typically very
small (only two or three), (2) As a result of the low-dimensionality,
the number of needed training queries is very small—which saves
training time and cost, and (3) The logic and behavior of each
sub op is relatively simple and thus linear regression is typically
enough to model most of these sub ops.

On the other hand, the main disadvantage of the sub-op ap-
proach is that it requires a great deal of knowledge about the
remote system, which may not be available in some cases. For
example, it requires identifying a set of the building block opera-
tors (the sub ops) that is sufficient to accurately model the query
operators. It also requires understanding the different algorithms
of the physical implementations for the different operators, e.g., a
join operator can have four or five different physical algorithms
such as broadcast join, re-distribution hash join, etc., and defining
a formula to express each algorithm in terms of the sub ops. Evi-
dently, if such level of knowledge is not already available, then it
takes a long time to collect with these details.

Identifying sub operators and costing formulas: The first
step in this approach is to identify the key sub operators of the

538



Read (DFS) 1 rD Reading a record from dist. file system 

Write (DFS) 2 wD Writing a record to dist. file system 

Read (Local) rL Reading a record from local file system 

Write (Local)  3 wL Writing a record to local file system 

Shuffle f Shuffle a record between machine 

Broadcast 4 b Broadcast a record to all machines 

Sort o Main memory sort cost per record 

Scan c Main memory scan cost per record 

HashTable Build 5 hI Inserting a record into hash table 
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1 Query that reads from HDFS and does not produce any output. 
2  Query that reads from HDFS and writes back to HDFS. Subtract rD from the measured values 
3  Query that reads from HDFS and writes content to local file. And then subtract rD from the   
     measured values 
4 Query that reads from HDFS, produces no output, and broadcasts a file (distributed cache) to  
      all nodes (without reading it). Subtract rD from the measured values 
5 Query that reads from HDFS, builds a hash table for each HDFS block, and does not produce  
    any output. Subtract rD from the measured values 

Figure 5: List of Common Sub Operators in Remote Systems.
Additional sub ops can be defined specifically for certain re-
mote systems.

remote system, which may differ from one system to another.
However, in the majority of the modern distributed systems, which
have shared-nothing architecture in common, these sub operators
typically include: reading from disk, writing to disk, shuffling
across machines, in-memory sorting, and scanning a memory
block. Other more specific sub operators include insertion into a
hash table, probing a hash table, and merging two records.

In Figure 5, we highlight a list of the key and common sub
operators and categorize them into two categories, namely Basic
and Specific. The sub operators under the Basic category are kind
of mandatory to learn, otherwise it would not make sense for the
corresponding remote system to be costed using this approach.
The other sub operators are good to have, but missing them is
not a hinder to this approach because either they are specific to
few query operators, they are not dominating factors in the cost
formulas in which they participate, or IntelliSphere can provide
rough default values for them. We will provide more details and
examples in this section for these sub operators.

It is worth to highlight that Teradata costing mechanism is
based on the sub-op costing approach. It is highly reliable, effi-
cient to use for estimation, and easy to calibrate and extrapolate
whenever needed. Given that all engine details are known, Tera-
data optimizer maintains a long and detailed list of sub operators.
In contrast, for remote systems, it is more practical to assume
limited knowledge about them. That is why we try to capture a
minimal, but sufficient, set of sub ops as highlighted in Figure 5.

After defining the sub operators, each query operator for which
a costing model need to be built, e.g., join and aggregation, need to
be expressed as a composition of the sub operators. Since each of
these query operators can have multiple physical implementations
carrying significantly different costs, it is important for a technical
expert to know the list of physical algorithms that are supported
by the remote system for a given query operator. For example,
Hive supports five types of join algorithms, which are: Shuffle
Join, Broadcast Join, Bucket Map Join, Sort Merge Bucket Join,
and Skew Join [19]. Similarly, Spark supports five join algorithms,
which are: Broadcast Hash Join, Shuffle Hash Join, SortMerge

Join, Broadcast NestedLoop Join, and Cartesian Product Join.
Each of these algorithms need to be expressed in terms of the
defined sub operators.

In Figure 6, we provide a detailed example using the Broadcast
Join algorithm between two relations R and S , where S is assumed
to be the small relation. The top part of the figure shows the algo-
rithm workflow while the bottom part shows the corresponding
cost formula. The algorithm starts by reading the small relation S
from the distributed file system, e.g., HDFS, and broadcasting it to
all workers, and it gets stored locally on each machine. Then each
task—in Hadoop terminology, it is called a map task—executes
the loop illustrated in Figure 6. Basically, each task reads rela-
tion S and builds a main memory hash table, and then reads one
block from the big relation R and for each record in that block, it
probes S’s hash table for possible joins. The read block from R is
assumed to be on the local disk because most distributed systems
try to achieve data locality by putting the computational task on
the machine storing the data. Previous studies have shown that
although data locality is a best effort mechanism, it is achieved
more than 90% of times. The last step in the workflow is for the
task to write its output back to the distributed file system3.

The costing formula in Figure 6 has almost one-to-one map-
ping to the steps in the workflow. We use the notation | | to in-
dicate the cardinality (number of records) of an input. The term
NumTaskWaves represents the number of cascaded tasks ex-
ecuted on a single machine. It is computed as total number of
tasks in the join job divided by the total number of parallelism
in the system, i.e., the total number of cores. Notice that the
values for factors such as NumTaskWaves, |Block(R)|, and
|TaskOutput| are calculated and/or estimated by another mod-
ule in the IntelliSphere system different from the costing module
and that module is outside the scope of this paper.

Building a training dataset: The upfront effort put in specify-
ing the sub ops and the cost formulas will pay of by simplifying
the subsequent phases of the sub-op costing approach. For the
training dataset, what is needed is to build a set of queries for
each of the sub ops to learn its cost in the remote system. Since
each sub op is primitive, the number of dimensions in its training
dataset is very small. In fact, we found it enough for almost all sub
operators under the Basic category (Refer to Figure 5) to have only
two dimensions in the training dataset, which are the number of
records and record size. The only exception is the Broadcast sub
operator, which requires a third dimension, which is the number
of machines.

Since the number of dimensions is small, and additionally
the number of values assigned to each dimension is also small
(because the sub op models are easy to extrapolate as we will
discuss later), the number of records in the training set becomes
very small. In fact, it is between one to two orders of magnitudes
smaller than that of the logical-operator approach, which intro-
duces a significant reduction in the training time and cost over a
remote system.

For measuring the cost (execution time) for each sub-op, we
avoided instrumenting and injecting special code inside the re-
mote system since such instrumentation may not be feasible for
some remote systems. Instead, we submitted primitive queries that
execute specific type of operations, and from that we extracted the
values of the individual sub-ops. In Figure 5, we show examples

3Cost formulas for other join algorithms can be derived in the same manner. We
omitted them from the paper due to space limitations.
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rD * |S| + b * |S|  + NumTaskWaves *(rL * |S| +  hI * |S|  +  rL * |Block(R)|     +   hP * |Block(R)|     + wD * |TaskOutput|)

ReadingDFS(S) à 	Broadcasting(S) à 	 ReadingLocal(S) à	 BuildingHashTable(S) à 	ReadingLocal(OneBlock(R))  à	 ProbinhHashTable-S(OneBlock(R))) à 	 WritingDFS(TaskOutput) 	
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Performed  by each task. Number of cascades = Number of task waves 
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Figure 6: Broadcast Join (R, S) in Hive & Spark (Broadcast Hash Join). The Algorithm workflow and the costing formula in
terms of the sub ops. Relation S is the small relation to be broadcasted.
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(a) ReadDFS cost for a 1,000 byte record (b) ReadDFS linear regression model 

Figure 7: Sub-Op Costing Model for ReadDFS Operator.

of these queries and how they can be used to measure specific
sub-ops.

Building a costing model: In this step, a cost model is built for
each sub operator. For simplicity, we will focus our discussion on
the majority of the sub ops, which involve two dimensions in the
training set, i.e., number of records and record size. It is possible
to consider these two dimensions as separate (orthogonal) dimen-
sions while building the model. However, we experimentally ob-
served that the model can be further simplified because for a given
record size, say s, the measurements across the other dimension
(the records’ number) are very similar to each other. Therefore,
it is practical to group the measurements by the record size, and
compute the average across the varying number of records. In
Figure 7(a), we illustrate this observation. The experiment is mea-
suring the ReadDFS (Reading from distributed file system) cost
for a record size of 1,000 bytes under varying number of records.
The dotted line shows the average value. Similar findings are
observed for other record sizes and other sub operators.

Based on this observation, a simple linear regression costing
model can be built as depicted in Figure 7(b) for the ReadDFS
operator. As can be noticed a big advantage of the sub-op costing
approach is that most sub-ops have simple and tight linear regres-
sion models that can be easily learned from small training dataset
(more results will be presented in Section 7). Moreover, these
models are easy to extrapolate for un-seen values, which is not
the case for the more complex neural network models presented
in Section 3.

Usage: At query time, lets say a join query between R and S ,
the first thing to be done by the IntelliSphere cardinality estimation
module is to provide the required cardinalities and statistics, e.g.,
the cardinality of each relation, the number of distinct values in
the join keys, the average number of records per key, etc. Then,
if the operator at hand has only one physical implementation
in the remote system, then IntelliSphere uses the corresponding

cost formula to estimate the cost. Otherwise, if there are multiple
possibilities, which is the case for the join operator (Refer to
Figures 6), then IntelliSphere needs to predict which algorithm
the remote system will use.

Predicting the remote system choice is tricky, especially for
complex systems such as other relational databases, e.g., DB2,
SQL Server, or Oracle. Yet, it is more straightforward for sys-
tems like Hive and Spark. Lets take the join operator, which has
the most algorithmic variations, as an example. Although it has
five algorithms in Hive and Spark, most of the choices can be
easily eliminated based on some observations. For example, if
the relation in Teradata side, say S , which will be sent to the
remote system is not partitioned by the join key—which Intelli-
Sphere should know—then the choices of Bucket Map Join and
Sort Merge Bucket Join in the case of Hive can be eliminated.
Even if S is partitioned on the join key, but there is no way to tell
the remote system such property after the data transfer, then still
the two choices above can be safely eliminated. If the join is not
Cartesian product, then the choices of Broadcast NestedLoop Join
and Cartesian Product Join in the case of Spark can be eliminated.
If both join relations are quite large, then the choices of Broadcast
Join either in Hive or Spark can be eliminated.

These observations, or what we refer to them as “Applicabil-
ity Rules”, are defined by the technical experts while defining
the cost formula for each possible algorithm. IntelliSphere uses
them at query time to eliminate inapplicable choices based on
the cardinalities and statistics at hand. Finally, if there are still
multiple possible choices, then the system can either take the high-
est cost (assuming the worst case scenario), the average cost, or
the “in-house comparable” cost. The in-house comparable cost is
applicable when the remote system is another relational database
system. In this case, IntelliSphere assumes that the remote system
will pick the algorithm that Teradata would have picked were the
data in-house.

5 HYBRID-OPERATOR COSTING
As highlighted in Sections 3 and 4, each of the sub-op and logical-
op approaches has pros and cons. Such tradeoff between the two
approaches and the diverse remote systems available nowadays
in the Big Data ecosystem call for a hybrid approach that can
combine the advantages of both worlds.

In Figure 8, we provide a summary comparison between the
two approaches. In general, the sub-op costing model can be
significantly superior w.r.t the training cost, training time, and
the ease of extrapolation given that a detailed knowledge on the
remote systems is already available. Otherwise, the logical-op
model would be the favorite.
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Sub-Op	Cos7ng	 Logical-Op	Cos7ng	

Modeled Operators	 Low-level building block operators such as read, write, scan, 
and re-distribute 
	

Logical query operators such as join and aggregation	

Parameter Space	
(# dimensions in the training 
dataset per operator)	

The parameter space is small. Most sub-ops need only two 
dimensions in their training dataset	
 	
  
Example: “read”, “write”, and “re-distribute” each has two 
dimensions, i.e., (1) number of records, and (2) record size	

The parameter space tend to be large and  the number of 
dimensions is high. 
	
Example: “join” has at least seven dimensions including: (1) 
record size in R, (2) Number of records in R, (3) record size in S, 
(4) Number of records in S, (5) projected output record size from 
R, (6) projected output record size from S, and (7) number of 
output records 
	

Size of training dataset (# of 
training queries per operator)	

Small, because the parameter space is small	 Can be very large because the parameter space is usually large	

Training Time	 Shorter	 Longer	

Ability to Extrapolate	 Easier	 Harder	

Remote	System	Assump.on	 Open	box		 Black	box	

Remote System 	
Prerequisites (Knowledge)	

-  Knowledge on how logical operators, e.g., join or  
     aggregation, get physically implemented	
-  Knowledge o what types of sub-ops operators to model	
-  Knowledge on how to express logical operators in terms 

of the sub operators 

None. No internal knowledge of the remote system is needed	

Model	Con.nuous	Tuning	
(especially	for	un-seen	values)		

Less	cri.cal	because	extrapola.on	is	straigheorward		 More	cri.cal	because	for	complex	models,	extrapola.on	is	not	
straigheorward		
	

Maintenance under change or 
addition of algorithms in remote 
system (E.g., adding a new join 
algorithm)   
	

-   Need to change or add a cost formula for the modified or     
    added algorithm 
-  Add the applicability rules indicating the cases under     
    which the new algorithm is applicable	

-  Need to partially re-run queries from the training set that 
(hopefully) trigger the modified or new algorithm to learn its 
execution pattern	

Figure 8: Comparison between Sub-Op and Logical-Op Costing Approaches.
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Figure 9: Overview on the Hybrid Costing Model.

The main idea of the hybrid approach is depicted in Figure 9.
Basically, the Teradata IntelliSphere architecture will connect and
communicate with different remote systems using one of the two
costing approaches. The choice depends on several factors includ-
ing whether or not there is enough knowledge about the remote
system, and whether or not the resources allow for a prolonged
training phases—which can be days in the case of logical-ops .

For example, referring to Figure 9, remote system A can be
a well-known openbox system, e.g., Hive or Spark, and in this
case the sub-op costing can be the model of choice. In contrast,
remote system B is a blackbox and its workload and resources

allow for a prolonged training phase, in this case the logical-
op costing model is a good choice. On the other hand, remote
system C has little knowledge known about it and its workload
and resources do not allow for a dedicated several-days training
phase (for logical-op training). In this case, an approximate sub-op
costing can be applied toC—even if not highly accurate—until the
more extensive training for the logical-op costing is performed,
which may span weeks, and then C switches from the sub-op
costing to the logical-op costing. The IntelliSphere architecture
provides such flexibility.

As highlighted in Figure 9, each remote system has a costing
profile (CP) containing all needed details based on its costing
model. For example, for the sub-op costing, it includes a list of the
sub-ops, a list of the physical algorithms for each logical operator,
the costing formula of each algorithm, and the applicability rules
for each algorithm. For the logical-op costing, it includes the neu-
ral network model for each operator, the metadata information of
the training dataset, plus other information. Updating the costing
profile information instantaneously reflects on the remote table
costing. Although not currently supported in IntelliSphere, the
hybrid approach is also applicable within a single system. That
is, some operators, e.g., selection and aggregation, can be trained
using the logical-op approach, while other higher-dimensional
operators such as joins can be trained using the sub-op approach.
The CP profile is flexible enough to store different costing models
for different operators. We plan to explore this extension in the
near future.
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6 RELATED WORK
Accessing and querying datasets that span multiple heterogeneous
data sources is a complex problem, and several systems and ar-
chitectures have been proposed to address certain aspects of the
problem. In this section, we overview these related systems and
emphasize the differences to the IntelliSphere system.

Federated Systems: Federated systems provide a virtual layer
of a unified access and management over a collection of data
sources [8, 11, 24]. The federation can be over a collection of
homogeneous relational databases, e.g., distributed DBMSs (Cat-
egory I), and most of the research in this category focuses on
distributed transaction processing, replica management, recovery
control, and concurrency control [14, 20, 24].

Systems such as [30] belong to Category I, and they address
the cost model issue across multi relational databases by dividing
the workload into multiple query classes, then sample a subset of
queries from each class and submit them to the remote database(s).
The objective is to learn the corresponding unknown coefficients
of the cost equation using statistical regression models. This ap-
proach is similar to our proposed logical-op learning, however in
their work they did not consider the sub-op costing, which some
times has clear advantage of the logical-op costing especially
when dealing with heterogeneous systems.

The federation can also be over a collection of heterogeneous
data sources (Category II), and the focus of this category is on
building unified data and representation models, query translation,
mediation design, data extraction, schema matching and coalesc-
ing, and conflict and resolution management [10, 12, 28, 31].
IntelliSphere is fundamentally different from these systems be-
cause IntelliSphere’s focus is on efficient query plan generation
and remote operator cost estimation.

Some work under Category II such as that proposed in [21]
addresses the costing in such heterogeneous data sources. How-
ever, their assumed sources are not limited to SQL-like operators,
e.g., the sources can be web search engines, image processing
systems, CAD systems, etc. In this setting, the authors proposed
wrappers around each source that acts as a mini-optimizer and
feeds a global optimizer with the estimated costs for a given oper-
ation. The developers of the remote systems need to code these
wrappers and augment in them optimizer-like logic to derive the
cost of the different possible operations on these remote systems.
IntelliSphere is fundamentally different from that work because
our focus is only on the costing of SQL operators, e.g., selection,
projection, join, aggregation, etc. For that, there are no strong
justifications for the complexity of adding a wrapper’s layer and
the non-trivial task of coding a mini-optimizer for each remote
system.

Polystore Systems: The key characteristic of the polystore
systems, e.g., the BigDAWG system [13], is that they provide
transparent access across multiple engines of different data models,
e.g., relational, graph, NoSQL, array, and steaming engines. In
BigDAWG, the underlying sources are grouped into islands by
their data model type, and then each source has a “shim” which
acts as the source’s communication wrapper. BigDAWG addresses
issues including location transparency, casting among the different
data models, unified query language, and query planning and
optimization across the islands.

The IntelliSphere system is distinct from the polystore sys-
tems in the following: (1) IntelliSphere is not a polystore system
because it assumes a common relational-like data model for all
underlying data sources with a SQL-like interface. Therefore,

Table naming convention:  Tx_y  (in total 120 tables) 

-  x (number of records): {k x 104, k x 105, k x 106, k x 107}, where k     {1, 2, 4, 6, 8} 
     Total configurations: 20  

∈

-  y (record size): {40, 70, 100, 250, 500, 1000} 
     Total configurations: 6 

Table Schema: (a1 ,  a2,  a5,  a10,  a20,  a50,  a100,  z,  dummy) 

        - Each column ai is of type Integer 
     - Duplication rate of column ai is i (e.g., each value in a5 is duplicated 5 times) 
     - Column z is of type Integer, where all values are zeros 

       - Column dummy is of type Character, and is used to reach a specific record size 
  Aggregation Queries:  

     - The aggregation factor (shrinking factor in the number of records) is achieved by  
        aggregating over a specific column ai to get a factor of i  
     - The number of aggregate functions computed varies from 1 to 5. All are of type SUM() 

Join Queries:  
     - The join condition between R and S is fixed to R.a1 = S.a1  (which are unique-value columns) 
     - The output cardinality of the join is thus the cardinality of the smaller table. 
           (The values in the smaller table are subset of the values in the larger table) 
    -  To provide more flexibility on the output cardinality, an extra condition is added in the form 
         of  (R.a1 + S.z < threshold). Since S.z is always zero, we can precisely control the selectivity 
         of this predicate before producing the output.  Combined with the join condition, the output  
         selectivity is controlled to be 100%, 50%, 25%, or 1% of the smaller table cardinality. 

Figure 10: Experimental Setup and Synthetic Dataset Description.

IntelliSphere does not focus on issues such as casting among
the different data models and building a unified query language.
(2) Although cost estimation is a fundamental issue in BigDAWG,
it is briefly touched and the system is currently using primitive
approaches as a first step [13]. In contrast, IntelliSphere introduces
a comprehensive cost estimation module for efficient query plan
generation across the underlying systems. The innovations pre-
sented in this project can be certainly leveraged by other systems
such as the BigDAWG system.

Advanced Learning in Query Optimization: Learning-
based models have been studied for both static and dynamic query
workloads at coarse-grained plan-level models to fine-grained
operator-level models [6]. Machine learning techniques have been
also used in the context of query optimizers [17, 29]. The LEO
project [17] uses model-based techniques to create self-tuning
query optimizer by producing better cost estimates. The work
in [29] uses regression techniques to create cost models for XML
operators. And the work in [5] proposes building analytical models
for query mix interaction to determine good execution schedules.
The IntelliSphere system combines both the analytical models and
machine learning techniques into its cost estimation module.

7 EXPERIMENTAL EVALUATION
In this section, we experimentally evaluate the various techniques
of the IntelliSphere’s cost estimation module. As a proof of
concept, we study the learning of one remote system, which is
Hive/Hadoop. We focus on evaluating the aggregation and join op-
erators since they are the most expensive operators in the relational
model.

Cluster and Dataset Description: The Hive VM cluster has
a total of four nodes, one master node and three data nodes. The
total HDFS size is 445GBs divided equally across the data nodes.
Each node has 8GBs of memory and two CPU cores model In-
tel(R) E5-2697@2.7GHz. We used synthetic datasets in which we
generated 120 tables. The details of the generated tables are sum-
marized in Figure 10. As presented in the figure, we created 20
different configurations for the number of records, and 6 different
configurations for the record size. All tables have the same schema
as indicated in the figure. The schema is designed such that the
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Figure 11: Aggregation Logical-Operator: Training Costing & Accuracy over the remote system.

different columns will have different duplication factor, which
facilitates the design of the aggregation and join queries to pro-
duce specific output cardinalities. Overall, the generated dataset
occupies around 45% of the total HDFS capacity (including the
default three-fold replication).

Logical-Op Evaluation: In Figures 11 and 12, we present
the logical-op evaluation for the aggregation and join operators,
respectively. Recall that the aggregation operator has four param-
eters (four dimensions) training dataset, which are the number
of input rows, input row size, number of output rows, and output
row size. We created a total of approximately 3,700 aggregation
queries by varying the target table (from the 120 available ones),
and the shrinking factor and the number of computed aggregates
as highlighted in Figure 10. Figure 11(a) shows the cumulative
training time needed to execute the queries over the remote system
(∼ 4.3 Hours).

The collected cost values are then fed to train a neural network
model. As discussed in Section 3, the topology of the network
has two layers, and the number of nodes in each layer is decided
using a cross-validation technique. We omit such details from this
section since it is not part of our core contributions. The neural
network is trained using 70% of the data points, and then the
accuracy is measured using the remaining 30% of the data points.
Figure 11(b) illustrates the convergence of the model. It reaches
a steady state after 7,000 to 9,000 iterations. The figures shows
a total of 20,000 iterations (x-axis), and the y-axis represents the
error percentage, which is measured as (e × 100/v), where e is the
root mean square error (REMS), and v is the average execution
time over all queries. The entire network training takes negligible
time (∼ 70 Seconds).

After building the model, the test dataset (30%) is used to test
the neural network model accuracy, which is presented in Fig-
ure 11(c). The figure shows very high agreement between the
actual (x-axis) and estimated (y-axis) execution times. This in-
dicates that the four-parameter model is a good model for the
aggregation operator, and that the neural network model can cap-
ture the relationship between the inputs and outputs with high
precision. In Figure 11(d), we illustrate the model accuracy under
a linear regression model instead of the neural network model.
For the aggregation operation, the linear regression model shows
a reasonable accuracy, although it is still lower than the neural
network model.

Figure 12 illustrates the training cost and accuracy of the join
logical operator. The operator has seven dimensions training set
(refer to Figure 2). We created a training set of 4,000 queries
by varying the possibilities in each dimension according to the

procedure highlighted in Figure 10. Figure 12(a) shows that the
training time is really high (∼ 26 Hours). It is worth highlighting
that our testing cluster is small, and with bigger clusters, more
training configurations need to be covered. Hence, the training
time shown in Figures 11(a) and 12(a) can easily grow by an order
of magnitude.

In Figure 12(b), we show the convergence and error percentage
of the trained neural network model over the training dataset. And
Figure 12(c) shows how well the model can learn the execution
pattern. We tested the accuracy using the test dataset (30% of
the entire data), and the model shows good linear correlation.
In Figure 12(d), we illustrate the model accuracy under a linear
regression model instead of the neural network model. Unlike the
aggregation query type in which the linear regression performed
relatively well, in the case of the join queries, the regression model
performed poorly and could not capture the execution pattern.
Therefore, we believe that for logical operators, it is more accurate
and stable to use the neural network model.

Sub-Op Evaluation: For the sub-operator costing approach,
the training of each sub-op needs only few number of queries,
e.g., in the range of few 10s of queries. As mentioned in Sec-
tion 4, we did not instrument the remote system to measure the
execution time of the sub-op, but instead used primitive queries
as presented in Figure 5. Figure 13(a) shows the training time
for a number of queries ranging from 6 to 32, which is few min-
utes. The results from those queries are then used to construct
a linear regression model for each sub-op. Figures 13(c), 13(d),
and 13(e) illustrate the model of the WriteDFS, Shuffle, and Rec
Merge sub-ops, respectively.

As we discussed in Section 4 while presenting the ReadDFS
sub-op (Figure 7), we do not construct a separate sub-op model
under different dataset sizes (number of rows). Instead, for each
record size, say k bytes, we perform four experiments with varying
number of rows (1, 2, 4, and 8 millions), and then use the average
value to construct a single linear regression model for each sub-op.
This average value is shown to be a good-enough representation
across datasets as confirmed by the results in Figure 13(b) (for the
WriteDFS sub-op as an example), and earlier in Figure 7(a) for
the ReadDFS sub-op.

For the Hash Build sub-op an interesting behavior is observed,
which is that the results actually resemble two distinct models (See
Figure 13(f)). This is because the sub-op is sensitive to whether the
hash table fits in memory or not. We experimented with both cases
and constructed a model for each case. Recall that the Hash Build
sub-op is primarily used in the hash join algorithm, where the
smaller of the two joined relations is broadcasted to all machines,
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Figure 12: Join Logical-Operator: Training Costing & Accuracy over the remote system.
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Figure 13: Sub-Op Model: Training Costing & Accuracy over the remote system.

and each machine will build a hash table for this smaller relation.
Therefore, given a specific cluster configuration, if the broadcasted
relation fits in memory, i.e., falls in the L.H.S area of the vertical
dotted line in Figure 13(f), then the corresponding model is used.
Otherwise, the system can predict that the broadcasted relation
will not fit in memory, and hence the other model is used.

Finally, Figure 13(g) shows the results from combining mul-
tiple sub-ops in an analytical formula to estimate the merge join
algorithm. Recall that such formula is provided by the domain
expert and stored in the remote system profile (Refer to Figures 6).
As the results show, the sub-op costing approach provides very
good estimation. We found that the sub-op approach slightly tends
to overestimate the cost (and similar trend is observed for other
algorithms as well), which is a typical trend even within RDBMSs.

Estimation for Out-of-Range Inputs:
In Figure 14, we study the accuracy of the different costing

approaches when estimating out-of-range values. This is a typi-
cal scenario because an initial training dataset—even if large in
size—cannot cover every possible scenario. In this experiment,
we studied the merge join algorithm. Both the sub-op and logical-
op approaches are trained using datasets of up-to 8x106 records
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Figure 14: Evaluation of Out-of-Range Prediction Models:
Merge Join Algorithm (Fixed α = 0.5).

with different record sizes. Then, the models are constructed from
this training dataset. The figure shows the estimation accuracy
for a set of new queries, where the number of input records is
20x106, while the record sizes are within the trained ranges. We
generated 45 queries with different configurations, e.g., in some
configurations only one of the join table is out-of-range and in
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Table 1: Online Remedy Technique: Automatically Adjusting
the Cost-Combining Factor α .

Batch 1 Batch 2 Batch 3 Batch 4 Batch 5
α 0.5 0.62 0.66 0.57 0.71

RMES% 16.32% 12.6% 12.2% 10.87% 9.1%

other configurations both tables are out-of-range. We compared
the estimation accuracy of the sub-op approach with that of the
logical-op approach (the neural network “NN” model).

The results show that the sub-op approach is relatively con-
sistent and can easily extrapolate its trained range to cover out-
of-range values. However, due to the non-linearity in the neural
network model (the “NN” line), its accuracy degrades and cannot
extrapolate well. Interestingly, with the Online Remedy technique
(Introduced in Figure 4), the accuracy of the estimation improves
significantly as depicted in the figure. In this experiment, we fix α
(the cost-combining factor) to 0.5.

We also measured the accuracy of the offline tuning phase as
follows. We randomly divided the new out-of-range queries (45
in total) into two batches of sizes 70% and 30% roughly. The
observed execution times from the 70% batch are added to the
neural network model before executing the remaining 30%. And
then, the accuracy of remaining 30% is measured. As Figure 14
shows the model adjusts its weights and nicely learns to provide
accurate estimations for the new ranges.

Finally, to measure how well the system can adjust the cost-
combining factor α in the Online Remedy technique (Refer to
Figure 4), and its effect on the performance, we performed the
following experiment. We initially set α = 0.5, and then we ran-
domly divide the 45 out-of-range queries into 5 batches each of
size 9. After the execution of each batch, the system adjusts α
to minimize the root-mean-square error percentage (RMSE%) of
the previously executed batches. The RMSE% is computed as
(e × 100/v), where e is the root-mean-square error (REMS) of a
given batch, and v is the average execution time over all queries
within that batch. The new value of α is then used for the cost
estimation of the subsequent batch. In Table 1, we present the
changes of the α values across batches along with the RMSE%
for each batch. The results show a trend towards putting a higher
weight on the cost factor produced from the neural network, but
still the cost produced from the linear regression extrapolation
contributes to the final cost by a 30% to 40%.

In summary, as Figure 14 shows, combining the two costs
seems effective during the online estimation until the systems
collects enough points and applies the offline tuning phase over
the neural network model.

8 CONCLUSION
We presented a comprehensive cost estimation module, which is
part of the Teradata IntelliSphere project. This work addresses a
fundamental problem in the modern big data ecosystems, which
is the need to efficiently access and query data across multiple het-
erogenous sources (remote systems). In order to generate efficient
execution plans, accurate cost estimation on the remote systems
is an essential building block step. We proposed three costing
approaches, namely logical-op, sub-op, and hybrid approaches.
They cover the spectrum of blackbox, openbox, and a mix of such
systems. We demonstrated that none of the logical-op or sub-op
approaches is superior (or practical) in all cases, and thus a hybrid
approach should be deployed. We also presented the pros, cons,
and applicability cases of each approach. Given the complexity

of the problem, we integrated deep learning and analytical mod-
els within the proposed cost estimation module. Moreover, we
proposed techniques for enhancing the estimation quality for the
out-of-range (un-seen) values. As part of future work, we plan
to study more types of remote systems such as SparkSQL and
Impala.
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JournalâĂŤThe International Journal on Very Large Data Bases, 5(1):048–063,
1996.

[25] A. Thusoo, R. Murthy, J. S. Sarma, Z. Shao, N. Jain, P. Chakka, S. Anthony,
H. Liu, and N. Zhang. Hive - a petabyte scale data warehousing using hadoop.
In ICDE, 2010.

[26] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu,
P. Wyckoff, and R. Murthy. Hive - a warehousing solution over a map-reduce
framework. PVLDB, 2(2):1626–1629, 2009.

[27] M. Traverso. Presto: Interacting with petabytes of data at Facebook. 2013.
[28] G. Wiederhold. Mediators in the architecture of future information systems.

Computer, 25(3):38–49, 1992.
[29] N. Zhang, P. J. Haas, V. Josifovski, G. M. Lohman, and C. Zhang. Statistical

learning techniques for costing xml queries. In Proceedings of the 31st interna-
tional conference on Very large data bases, pages 289–300. VLDB Endowment,
2005.

[30] Q. Zhu and P. . Larson. Building regression cost models for multidatabase
systems. In Fourth International Conference on Parallel and Distributed
Information Systems, pages 220–231, 1996.

[31] P. Ziegler and K. R. Dittrich. Data Integration — Problems, Approaches, and
Perspectives, pages 39–58. Springer Berlin Heidelberg, 2007.

545



Fast Entropy Maximization for Selectivity Estimation of
Conjunctive Predicates on CPUs and GPUs

Diego Havenstein

SAP SE

diego.havenstein@sap.com

Peter Lysakovski

SAP SE

peter.lysakovski@sap.com

Norman May

SAP SE

norman.may@sap.com

Guido Moerkotte

University of Mannheim

moerkotte@uni-mannheim.de

Gabriele Steidl

University of Kaiserslautern

steidl@mathematik.uni-kl.de

ABSTRACT
Entropy maximization is the only principled approach to com-

bine several (partial) selectivity estimates to an estimate for a

full conjunction. However, this approach has no appearance in

database management systems. We conjecture that the main rea-

son is a lack of implementations with good performance. Indeed,

the originally proposed iterative scaling algorithm has a slow

convergence rate and high complexity in each iteration. As an

alternative, we propose to use a method based on Newton’s algo-

rithm to solve the entropy maximization problem. Further, we

show how this general approach can be implemented very effi-

ciently for both CPUs and GPUs. Our experiments show that our

CPU and GPU implementation is more than 4 orders of magni-

tude faster than the state-of-the-art method for the most complex

problem it could handle. For even more complex problems our

new GPU implementation outperforms our CPU implementation

by more than 43x. In a few milliseconds it is now possible to

compute all partial selectivities for complex conjunctive predi-

cates with 20 or more predicates. We strongly believe that the

proposed implementation is ready for production-grade database

management systems.

1 INTRODUCTION
Query optimizers need precise cardinality estimates to generate

query execution plans of high quality. Basic approaches to esti-

mate result cardinalities rely on the assumptions that values are

uniformly distributed and the selectivities of predicates are inde-

pendent. Increasingly sophisticated techniques were proposed

to address the uniform distribution assumption and also corre-

lation between predicates, see [1, 6] for comprehensive surveys.

However, the space consumption and maintenance effort for all

combinations of multi-column histograms [12], samples [3], or

statistics on views [7] exponentially grows with the number of

columns considered. For this reason, these statistics are genera-

ted only for a few out of all possible column subsets. We address

the challenge how to integrate estimates produced from these

sources of statistics consistently. Note that in general sampling

alone is not sufficient because it can result in highly imprecise

estimates, and thus other synopsis have to be used [11, 15].

Markl et al. [9] observed that the query optimizer makes subop-

timal plan choices despite the rich statistics at hand to find the

optimal plan because fleeing to ignorance seems to be the most

© 2020 Copyright held by the owner/author(s). Published in Proceedings of the

23rd International Conference on Extending Database Technology (EDBT), March

30-April 2, 2020, ISBN 978-3-89318-083-7 on OpenProceedings.org.
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license CC-by-nc-nd 4.0.

reasonable choice. They suggested the maximum entropy met-

hod to exploit all available knowledge and to handle inconsis-

tent and missing information in a consistent way. Consider for

example the following scenario. Assume we have three predi-

cates p0, p1, p2 whose selectivities are estimated to be s0 = 0.5,

s1 = 0.5, and s2 = 0.5. Further assume that the combined se-

lectivity for p0 ∧ p1 is s01 = 0.4 and for p1 ∧ p2 is s12 = 0.1.

These selectivities could be estimates produced from single co-

lumn histograms, 2-dimensional histograms, and/or sampling.

The question is what is the selectivity of the whole conjunct

p0 ∧ p1 ∧ p2? The answer given by entropy maximization (as

proposed by Markl et al. [9]) is 0.08, which clearly deviates from

the estimate 0.5 ∗ 0.5 ∗ 0.5 = 0.125 produced under the inde-

pendence assumption. Clearly, the estimate produced under the

independence assumption is inconsistent since it is larger than

the selectivity of p1 ∧ p2. Indeed, it is widely known that the

independence assumption (1) does not hold in general and (2)

leads to bad cardinality estimates and, consequently, (3) leads to

suboptimal query execution plans [8].

In order to derive the missing selectivity values, Markl et al.

propose to find the unique vector x = (x0, x1, . . . x2z−1) (for z
predicates) that maximizes the entropy

H (s) =
∑
i
−xi logxi

subject to the constraints given by the known selectivities. A

formal definition requires some preliminaries and will be given

in Sec. 2. Maximizing entropy can be seen as a generalization of

the independence assumption limited to the case of unknown

selectivities. Since the known selectivities are possibly derived

from several synopsis, the problem may become inconsistent. In

this case, a corrector step is necessary. Since different correctors

have been proposed in the literature (e.g., [9, 10]), we assume in

this paper that the problem on hand is consistent.

To solve the entropy maximization problem, Markl et al. use

iterative scaling. However, this algorithm is known to have very

slow convergence [2, p82] and, additionally, has a relatively high

asymptotic complexity of O(m2 ∗ n) in each iteration, wherem is

the number of known selectivities, z the number of predicates

and n = 2
z
. For example, for eight predicates, iterative scaling

needs on average 260 iterations and 115 ms whereas a Newton-

based algorithm needs 10 iterations and 0.14 ms on a system with

an Intel i7-4790 CPU. For scenarios with even more predicates

iterative scaling quickly becomes too slow to be practical while

our new Newton-based algorithm on the CPU and even more so

on the GPU are able to calculate a solution in a few milliseconds.

Hence, with our method we can avoid strategies like partitioning

the set of predicates to reduce the problem size that can be found

in real-world scenarios [9].
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Notation Description

p0, . . . ,pz−1 z predicates
N = {0, . . . , z − 1} set of all predicate indices

n = 2
z

abbreviation

T ⊆ 2
N

set of indices of known selectivities

m = |T | number of known selectivities

βT vector of known selectivities

C complete design matrix

D (partial) design matrix

s(p) selectivity of predicate p

Bit-wise operations Description

| bit-wise or

& bit-wise and

˜ bit-wise complement

i ⊆ j boolean function returning j = (i |j)

Table 1: Notation

In this paper, we propose to use a Newton-based algorithm

to solve the entropy maximization problem. We formalize the

problem as a series of vector- and matrix operations. However,

a naive implementation of these operations fails to achieve the

performance requirements for this method. Hence, we discuss

in depth how to efficiently implement this algorithm and show

that it is vastly superior to both iterative scaling and the naive

implementation of the Newton method. We elaborate on the

efficient implementation for both the CPU and the GPU.

The rest of the paper is organized as follows. Section 2 for-

mally introduces the problem as a series of vector- and matrix

operations. Section 3 describes and evaluates the (almost) straight-

forward implementation and the optimized implementation of

Newton’s algorithm for the CPU. Section 4 describes and evalua-

tes our GPU implementation of the algorithm. Section 5 reviews

how entropy maximization can be integrated into query optimi-

zers and concludes the paper.

2 PROBLEM FORMALIZATION
In this section, we present an elegant way to formalize the max-

imum entropy method for selectivity estimation. This is a ne-

cessity since standard entropy maximization algorithms require

a matrix-based representation of the problem, which is not yet

readily available. Only this matrix-based representation of the

problem will allow us to derive an efficient algorithms.

2.1 Design Matrix
Since we need a matrix representation of the problem, we need to

heavily deviate from the notation of Markl et al. [9]. However, in

our opinion, the resulting representation is much more elegant.

From the notation of Markl et al. [9], we only keep the letterT to

denote the indices of the known selectivities. For convenience, the

most important parts of the notation are summarized in Table 1.

The lower part contains the notation for bit-wise operations,

which will be required for our efficient implementations.

2.1.1 Conjunctions of (Simple) Predicates (β). Consider a con-
junctive query

p0 ∧ . . . ∧ pz−1

of z predicates. These may be selection predicates or join predi-

cates [9].

Let N = {0, . . . , z − 1} be the set of numbers from 0 to z − 1.

Then, all subsets X ⊆ N can be represented as a bit-vector of

length z denoted by bv(X ) where the set bits indicate the indexes

of those elements of N which are also included in the subset X .
Further, this bit-vector can be interpreted as a binary number.

We make no distinction between the bit-vector and the integer it

represents and use whatever is more convenient. For example,

we use the notation i ⊆ j to denote the fact that i has a ’1’ only
in those positions where j has a ’1’, i.e., j = i |j holds.

For any X ⊆ N define the formula

β(X ) := ∧i ∈X pi

i.e., β(X ) is the conjunction of all predicates pi whose index i is
contained in X . The following table gives a complete overview

for z = 3, where we order bits from least significant to most

significant:

bv(X ) β(X )

1=100 p0
2=010 p1
3=110 p0 ∧ p1
4=001 p2
5=101 p0 ∧ p2
6=011 p1 ∧ p2
7=111 p0 ∧ p1 ∧ p2

where the first column gives the integer value and its bit-vector

representation of the index set X and the second column the

corresponding conjunction of predicates contained in X . We use

β(i) instead of β(X ) if i is the bit-vector/integer representation
of some X .

The selectivity of β(X ), i.e., the probability of β(X ) being true

is denoted by β(X ). A special case occurs for the empty set. The

empty conjunct is always true. Thus β(∅) = β(0) = 1.

2.1.2 Complete Conjuncts (γ ). A conjunction of literals con-

taining all predicates either positively or negatively is called

complete conjunct (atom by Markl et al., also minterm). For n = 3,

the following table contains a list of all complete conjuncts:

i γ (i)

0=000 ¬p0 ∧ ¬p1 ∧ ¬p2
1=100 p0 ∧ ¬p1 ∧ ¬p2
2=010 ¬p0 ∧ p1 ∧ ¬p2
3=110 p0 ∧ p1 ∧ ¬p2
4=001 ¬p0 ∧ ¬p1 ∧ p2
5=101 p0 ∧ ¬p1 ∧ p2
6=011 ¬p0 ∧ p1 ∧ p2
7=111 p0 ∧ p1 ∧ p2

Note that two different complete conjuncts can never be true si-

multaneously. The complete conjuncts have been indexed by their

bit-vector representation, where a positive atom corresponds to

’1’ and a negative atom corresponds to ’0’. For a given X ⊆ N ,

denote by γ (X ) the complete conjunct X :

γ (X ) :=
∧
i ∈X

pi ∧
∧
i<X

¬pi

The probability of a complete conjunct γ (X ) for some X being

true is denoted by γ (X ).

2.1.3 Correspondence between β and γ . For a given X ⊆ N ,

the bit-vectors y of the complete conjuncts γ (Z ) contributing to

β(X ) can be expressed as all the bit-vectors y which contain a

’1’ at least at those positions where the bit-vector representation
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bv(X ) of X contains a ’1’. That is

{y |y ⊇ bv(X )}.

Consider X = {0} (=̂100). Then

β(X ) = s( p0 ∧ ¬p1 ∧ ¬p2 )+

s( p0 ∧ p1 ∧ ¬p2 )+

s( p0 ∧ ¬p1 ∧ p2 )+

s( p0 ∧ p1 ∧ p2 ),

where s(p) denotes the selectivity of the complete conjunct p. For
X = {0, 1} (=̂110):

β(X ) = s(p0 ∧ p1 ∧ ¬p2) + s(p0 ∧ p1 ∧ p2).

As a special case, we get for X = ∅ (=̂000) that all complete

conjuncts contribute to β(∅). Further, the sum of them must

be one. Consequently, we always assume that the empty set is

contained in the set of known selectivities T , i.e., ∅ ∈ T .

2.1.4 Complete Design Matrix C . In case T = 2
N
, all selecti-

vities are known. Define n = 2
z
. Then, we define the complete

design matrix A ∈ Rn,n as

C = (ci , j ) =

{
1 if i ⊆ j
0 else

where we use indices in [0, 2z − 1]. Note that C is unit upper

triangular, nonsingular, positive definite, and persymmetric.

For z = 3, we have

C =

©«

1 1 1 1 1 1 1 1

0 1 0 1 0 1 0 1

0 0 1 1 0 0 1 1

0 0 0 1 0 0 0 1

0 0 0 0 1 1 1 1

0 0 0 0 0 1 0 1

0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 1

ª®®®®®®®®®®®¬
This design matrix helps us to go from probabilities for com-

plete conjuncts to selectivities for positive conjuncts. Let b =
(β(0), ..., β(n− 1))t the column vector containing all the selectivi-

ties β(X ) for all X ∈ 2
N

and x = (γ (0), ...,γ (n − 1))t the column

vector containing all the selectivities for all complete conjuncts.

Then,

Cx = b

holds.

2.2 The (Partial) Design Matrix D
We first establish some notation to eliminate rows and columns in

some matrixA. LetA ∈ Rn,n be some matrix. LetT ⊆ {0, . . . ,n−
1},m := |T |, be a set of column indices. Then, we denote byA|c(T )
the matrix where only the columns in T are retained. Likewise,

we denote byA|r (T ) the matrix derived by retaining only the rows

inT . These operations can be expressed via matrix multiplication.

For an index set T withm = |T |, we define the matrix Em,n,T ∈

Rm,n
as

Em,n,T (i, j) =

{
1 if j = T [i]
0 else

whereT [i] denotes the i-th element of the sorted index setT . For
example, form = 4, n = 8, T = {1, 3, 5, 7}, we get

E4,8,T =
©«
0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

ª®®®¬

NewtonA(b(= βT ),T , ϵ)

1 w = 0

2 x = exp(−1)

3 while (δ > ϵ)
4 A = Ddiag(x)Dt

5 solve Ay = b − Dx
6 w =w + y
7 x = exp(Dtw − 1)

8 δ = | |b − Dx | |
9 return (x , Cx )

Figure 1: Newton Variant A [2, p73]

Then, for A ∈ Rn,n

A|r (T ) = Em,n,TA

A|c(T ) = A(Em,n,T )
t

holds. For a given subset T ⊆ {0, . . . ,n − 1} (of known selectivi-

ties), we retain only those rows from the complete design matrix

C for which there is an entry inT . We define the problem specific

(partial) design matrix D for T as

D := C |r (T ) = Em,n,TC ∈ Rm,n
(1)

wherem := |T |. Clearly, the rank of D ism.

2.3 Problem Definition
For z predicates, a given vector βT of known selectivities and

indices T thereof, the idea of Markl et al. is to find the solution

to Dx = βT that maximizes the entropy of the solution vector x
[9]. That is, the problem to solve can be specified as

argmax

x

n−1∑
i=0

−xi logxi subject to Dx = βT and x ≥ 0 (2)

where n = 2
z
. Note that, we must have that

∑n−1
i=1 xi = 1, but this

is implied since we assume that ∅ ∈ T always holds.

3 EFFICIENT CPU IMPLEMENTATION
In this section, we first discuss an implementation of Newton’s

algorithm to solve the entropy maximization problem that is

directly derived from [2]. Due to the matrix-based formalization

of our problem, the algorithm is readily applicable andwe call this

Variant A, and it represents the state-of-the-art implementation

of Newton’s algorithm. This algorithm it’s rather inefficient since

its steps require multiplications of large vectors and matrices.

We improve this by devising a method for how these matrix and

vector operations can be computed very efficiently. This leads

us to Variant B of Newton’s algorithm. Finally, we evaluate the

runtime of both variants on an Intel CPU and compare it with

the iterative scaling which was used by Markl et al.

3.1 Newton Variant A
Markl et al. propose to use iterative scaling to solve the opti-

mization problem in Eqn. 2 [9]. However, it is well-known that

iterative scaling converges very slowly [2, p82]. In contrast, a

Newton-based approach exhibits local quadratic convergence [2,

p73]. We thus selected a Newton-based algorithm applied to the

dual problem of Eqn. 2:

argmin

w
exp(Dtw − 1)t ®1 − βtTw (3)
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as the basis of our work, where we suppose that the set {x ∈ Rn :

Dx = βT , x ≥ 0} has a nonempty interior (see also [2, p55]).

Fig. 1 shows the code of a Newton-based algorithm to solve

the maximum entropy problem defined in Sec. 2.3. As input, it

receives the vectors b and T of known selectivities and their

indices, and some ϵ > 0 used in the stop criterion. It returns the

solution x maximizing the entropy and the vector Cx containing

the β-selectivities for all possible conjuncts. Although T does

not occur in the body of Fig. 1, it is used in the definition of the

design matrix D (see Eqn. 1).

The steps in the algorithm differ vastly in complexity. The ini-

tializations ofw and x have complexity O(n) and O(m), respecti-

vely, and are thus rather uncritical. The calculation ofw = w + z
in Line 6 has complexity O(m) and is thus rather uncritical, too.

The calculation of A = Ddiag(x)Dt
in Line 4 can be very ex-

pensive if implemented literally. Note that diag(x) is a diagonal
(n×n)-matrix with x on its diagonal. Using standard matrix multi-

plication, the complexity of this step isO(m∗n2+m2∗n). However
diag(x) contains only zero’s besides the diagonal and thus a more

efficient procedure which does not rely on materializing diag(x)
can be devised:

get_DdiagxDt(D, x)

1 for (0 ≤ i < m, 0 ≤ j < m)

2 s = 0

3 for (0 ≤ k < n)
4 s += D[i,k] ∗ x[k] ∗ D[j,k]
5 A(i, j) = s
6 return A

This procedure has complexity O(m2 ∗ n) and is thus far better

than the naive approach using matrix multiplication.

In step (5), we need to solve Ay = b − Dx for y. Calculating
Dx has complexityO(m ∗n). To solve the equation, note that the
(m,m)matrixA = Ddiag(x)D ′

calculated in step (2) is symmetric,

non-singular, and positive definite. Thus, the efficient Cholesky

decomposition [5, p237] can be applied to derive a lower triangu-

lar matrix L with A = LLt . Then, we derive the solution y using

back substitution [4, p89]. The complexity of this procedure is

O(m3).

In step (7), we need to calculate Dtw , which has complexity

O(m ∗ n). Step (8) with complexity O(m) is uncritical again, as

Dx has been calculated in step (5) already.

In step (9), we need to calculate the product of the complete

design matrixC with the primal solution vector x . Using standard
matrix multiplication this step has complexity O(m ∗ n).

The complexities of the steps become visible when profiling

Newton Variant A for z = 8...10: roughly 80% of the runtime is

spent in procedure get_DdiaxDt.

3.2 Newton Variant B
As we will see in below, a careful analysis of the structure of

the complete design matrix C allows us to derive a reduction-

based algorithm that avoids redundant computations resulting

in an algorithm for Newton’s method with lower computational

complexity than the state-of-the-art algorithm from Sec 3.1.

3.2.1 Recursive Characterization of C . The complete design

matrix C can also be defined recursively. Denote by Cz ∈ Rn×n

with n = 2
z
the complete design matrix for z predicates. Then

C0 = (1)

and

Cz+1 =

[
Cz Cz
0 Cz

]
characterize the complete design matrix C . Another possibility
to define C is to use the Kronecker product ⊗ [5, p337]. With

C1 =

(
1 1

0 1

)
we have

Cz+1 = C1 ⊗ Cz

3.2.2 Efficient Calculation ofCx andCtx . Let us turn to calcu-
latingCx for some vector x ∈ Rn , which we need to do efficiently

for our Newton-based algorithm. If we cut x ∈ Rn into two halves

x1, x2 ∈ Rn/2, we observe that

Czx =

(
Cz−1 Cz−1
0 Cz−1

) (
x1
x2

)
=

(
Cz−1x1 +Cz−1x2

Cz−1x2

)
(4)

The termCz−1x2 occurs twice but has to be calculated only once.

Based on this observation, it is easy to implement a recursive

procedure calculating Czx in O(z2z ), i.e. O(nloдn) substituting
n = 2

z
. As a major contribution of this paper, we are now able to

reduce the algorithmic complexity of the newton method from

O(n2) down to O(nloдn).
In order to avoid the overhead of recursion, we provide an

efficient iterative algorithm. We assume that the in/out argument

Cx has been initialized with x . Further, vp_add is an AVX2-based

implementation to add two vectors of length h.

void get_Cx(double* Cx, uint z)

1 w = h = s = t = 0;

2 n = 1 << z;

3 for (w = 2;w <= n;w <<= 1) // width

4 for (s = 0; s < n; s+ = w) // start of first half

5 h = (w >> 1); // half of width

6 t = s + h; // start of second half

7 vp_add(Cx + s, Cx + t, h);

A procedure to efficiently calculate Cty can be devised simi-

larly by replacing Cx by Ctx and vp_add(Cx + s, Cx + t, h) by

vp_add(Ctx + t, Ctx + s, h). We call this algorithm get_Ctx tow ′
.

3.2.3 Efficient Calculation of Dx and Dtx . First remember

that forn = 2
z
, z being the number of predicates, (1) the complete

design matrix C is of dimension (n,n) and (2) the design matrix

D is of dimension (m,n). where in typical applicationsm will be

much smaller than n = 2
z
.

As we have seen in Sec. 3.2.2, calculating Cx in Line 9 can be

implemented very efficiently. By exploiting the definition of D
in Eqn. 1, we can evaluate Dx = Em,n,TCx efficiently by first

calculating Cx and then picking the components contained in T .
This has to be done only once to calculate the expressions Dx in

Lines 5 and 8, and Cx in Line 9. Further, Ctx can be calculated

efficiently using algorithm get_Ctx. Thus, calculating Dtw in

step (7) can be implemented efficiently by exploiting the fact that

Dt = CtETm,n,T . We can embedw into a vectorw ′
in Rn via

w ′[j] =

{
w[i] if j = T [i] for some i
0 else

(0 ≤ i < m, 0 ≤ j < n) and apply algorithm get_Ctx.
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3.2.4 Efficient calculation of Ddiag(x)Dt . Next, we discuss an
efficient implementation of step (4). Aswe have already calculated

Cx , we now show that it is possible to calculate (Ddiag(x)Dt )

from Cx . We start with an efficient algorithm to calculate

(Cdiag(v)Ct ).

Observe that (diag(v)Ct ) = (Cdiag(v))t . Further,

(Cdiag(x))[j,k] =
n−1∑
l=0

c j ,ldiag(x)[l,k] = c j ,kxk

Thus, using

(Cdiag(x)Ct )[i, j] =

n−1∑
k=0

ci ,k (Cdiag(x))
t [k, j]

=

n−1∑
k=0

ci ,k (Cdiag(x))[j,k]

=

n−1∑
k=0

ci ,kc j ,kxk

=
∑

(i |j)⊆k

xk

= (Cx)[i |j]

we can calculate (Cdiag(x)Ct ) from Cx . Since

Ddiag(x)Dt = (Em,n,TC)diag(x)(Em,n,TC)
t

= Em,n,T (Cdiag(x)C
t )Etm,n,T

we can use Cx to fill (Ddiag(x)Dt ) ∈ Rm,m
via

(Ddiag(x)Dt )[i, j] = (Cx)[T [i] | T [j]] (5)

for 0 ≤ i, j < m.

3.3 Evaluation
In order to evaluate the implementations of the two variants of

Newton’s algorithm and the iterative scaling used by Markl et

al., we need to generate entropy maximization problems. Since

generation of β selectivities easily leads to inconsistencies, we

generate a random vector x of size n containing positive integers

interpreted as cardinalities for all complete conjuncts γ . Divi-
ding each xi by

∑
i xi results in γ -selectivities. Calculating b =

Cx results in a complete set of consistent β-selectivities. From
these, we select the subset T of known selectivities by extracting

selectivities for single predicates and conjunctions of two or three

predicates. In practice, not all pairs or triples will be available.

Thus, the runtimes reported in the experiments below can be

seen as loose upper bounds on the runtime in practice.

We use the stopping criterion | |b/Dx | |q ≤ ϵ where b/Dx
denotes component-wise division,

| |y | |q := max

i
(max(yi , 1/yi )),

and ϵ = 1 + 10−8.

We implemented iterative scaling and the two variants of our

Newton-based algorithm in C++ and compiled them with g++

version 7.2.1 with option -O3. The experiments where run on a sy-

stem with an Intel i7-4790 CPU. Note that this CPU with Haswell

architecture had a better single-thread performance than a newer

server CPU with Skylake architecture. We report the average

execution time of 777 generated problems for each number z of
predicates. Our implementation runs in single-threaded mode.

Figures 2 and 3 show the average runtime of our CPU imple-

mentation versus the runtime of iterative scaling (as proposed

Newton Newton Iterative Scaling

Var. A Var. B

z m runtime [ms] #itr runtime [ms] #itr

3 7 0.009 0.004 7.3 0.14 190

4 11 0.017 0.008 7.8 0.47 190

5 16 0.061 0.027 8.1 2.1 200

6 22 0.23 0.048 9 9.4 210

7 29 0.84 0.075 9.1 34 240

8 37 2.9 0.14 10 120 260

9 46 10 0.25 11 370 280

10 56 29 0.41 11 1100 310

11 67 98 0.73 12 — —

12 79 310 1.4 13 — —

13 92 1000 2.7 13 — —

14 106 3300 5.3 14 — —

15 121 11000 11 15 — —

16 137 — 23 15 — —

17 154 — 48 16 — —

18 172 — 100 17 — —

19 191 — 200 17 — —

20 211 — 480 18 — —

(Intel i7-4790, single-threaded, T = {t |popcnt(t) ≤ 2})

Figure 2: Newton vs. Iterative Scaling

Newton Newton Iterative Scaling

Var. A Var. B

z m runtime [ms] #itr runtime [ms] #itr

4 15 0.04 0.02 8.7 3 890

5 26 0.15 0.05 9 16 910

6 42 0.79 0.13 9.3 79 1000

7 64 3.9 0.33 10 360 1200

8 93 16 0.76 10 1600 1400

9 130 65 1.8 11 6700 1580

10 176 230 4.1 11 26000 1800

11 232 890 9.1 12 — —

12 299 3400 20 13 — —

13 378 11000 40 13 — —

14 470 38000 80 14 — —

15 576 120000 150 15 — —

16 697 — 270 15 — —

17 834 — 480 16 — —

18 988 — 880 17 — —

19 1160 — 1400 17 — —

20 1351 — 2600 18 — —

(Intel i7-4790, single-threaded, T = {t |popcnt(t) ≤ 3})

Figure 3: Newton vs. Iterative Scaling

by Markl et al. [9]) if the set of known selectivities T contains all

unary and additionally all binary or ternary conjuncts. Column

z contains the number of predicates considered and columnm
contains the number of known selectivities. Besides the average

runtime in milliseconds, we include the average number of itera-

tions.

As one can see, our Newton-based implementation is much

more efficient than the originally proposed iterative scaling algo-

rithm. For ten conjuncts the runtime of iterative scaling already

exceeds one second. Further, as expected, Newton Variant B is

much more efficient than Newton Variant A.
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Figure 4: Scheme of the efficient GPU implementation of
Cx for an initial x = 0, 1, . . . , 7

Figure 2 shows that for up to ten predicates, the runtime to

calculate all selectivities needed by the query optimizer is below

0.5 milliseconds if Newton Variant B is used, i.e. three orders of

magnitude faster than iterative scaling. However, somewhere

between 11 and 20 predicates, depending on the context (e.g., ad

hoc queries vs. repeated execution), even the runtimes of our

optimized Newton Variant B implementation becomes too high.

In particular, Figure 2 indicates that the Newton Variant B with 13

predicates exceeds one second of runtime, while our new method

B finishes even 20 conjuncts in less than a second.

In general the runtimes are higher when the problems contain

all unary, binary or ternary conjuncts. As can be seen in Figure 3,

iterative scaling needs almost 26 seconds for 10 predicates while

our newNewtonmethodwith Variant B calculates these problems

in about 4 milliseconds, i.e. more than 4 orders of magnitude

faster. The naive implementation of Newton’s method in Variant

A needs more then ten seconds runtime for 15 predicates while

Variant B is nearly 4 orders of magnitude faster for the same

problems.

The increasing runtimes as we consider more and more com-

plex predicates motivated us to pursue a GPU implementation.

4 EFFICIENT GPU IMPLEMENTATION
In this section we describe how the Newton algorithm can be

implemented efficiently on a modern GPU. We first explain the

multi-threaded GPU implementation of Variant B presented in

Sec. 3.2. After that we present experimental results of our imple-

mentation using CUDA 10.0 on an NVIDIA Tesla V100 GPU.

4.1 Newton Variant B on the GPU
We discuss how Variant B of Newton’s method can be imple-

mented on an NVIDIA GPU. We focus our presentation on the

implementation of Cx because, as we have seen in Sec. 3.2, this

operation is at the heart of the implementation of steps (4), (7), (8)

and (9) of the Newton algorithm presented in Figure 1. We also

point out how the remaining step (5), the Cholesky decomposi-

tion, is implemented efficiently on the GPU. Finally we outline

how we organize our code in kernels of the end-to-end imple-

mentation.

4.1.1 GPU Implementation of Cx and Ctx . As the NVIDIA
V100 GPU used in our experiments offers an abundance of 5120

CUDA cores, we need to extend the implementation of get_Cx

presented in Sec. 3.2.2 to support massive multi-threading. Fi-

gure 4 illustrates the parallelization scheme we use in our im-

plementation. Here, the required operations for calculating Cx
are shown for x = {0, 1, 2, 3, 4, 5, 6, 7} and z = 3. Boxes repre-

sent the contents of x after each iteration i , and dark (light) blue

circles represent active (inactive) CUDA threads. In each itera-

tion, every active thread performs one addition and stores the

result. The connecting blue lines indicate the flow of data. In

every iteration half of the GPU threads are active while the other

half is idle. While this may seem wasteful, it allows us to use a

simple mapping from thread-id to accessed memory addresses.

A more effective use of the GPU threads would require a more

complex mapping. In fact, we did not find an efficient way to map

thread-ids to memory addresses while keeping all threads active

all the time. As the maximum number of threads per thread block

for the Tesla V100 is 1024, the first ten iterations of our scheme

can be performed without requiring communication between

different thread blocks. During these ten iterations we make use

of the GPUs shared memory, and access to global memory is

only required once when loading x into shared memory and

once when writing Cx back to global memory. This is benefi-

cial because compared to global memory, shared memory on the

NVIDIA V100 GPU offers lower latency and significantly higher

bandwidth. Hence, for z ≤ 10 we use the kernel using shared

memory shown in Listing 1. In every iteration of the outer loop

we advance with processing vector x by the number of available

threads. Note, that for z predicates we have n = 2
z
elements to

process, i.e. for z = 15 we have 2
15 = 32768 elements to process.

The inner loop in Listing 1 adds the elements as illustrated in

Figure 4.

For z > 10, no efficient shared memory implementation is

possible as threads of one thread block would need to access

shared memory allocated in another thread block. This is not

possible, and as a consequence all memory accesses have to go

to global memory. This requires global synchronization through

individual kernel launches. We call this global kernel to compute

Cx once for every z > 10. It is shown in Listing 2. In our imple-

mentation we use templates to generate these calls at compile

time. The parameter direction allows us to not only calculate

Cx but also to calculate Ctx . When direction is set to 1, the

algorithm proceeds backwards, giving us Ctx . This is needed in

step (7) of the Newton algorithm where we use the product Dtw .

Recall that steps (4), (7), (8) and (9) in the Newton algorithm

shown in Figure 1 build upon or use the calculation of Cx . This
is why we do not describe the implementation of these steps in

detail here. The basic ideas are similar to the ones presented for

the computation of Cx .

4.1.2 Cholesky Solver. As for the CPU implementation pre-

sented in Sec 3.1, solving Ay = b − Dx for y in step (5) of the

Newton algorithm shown in Figure 1 can be done using Cholesky

decomposition [5, p237]. Fortunately, we can use the cuSolver

library from the CUDA toolkit [16] for large problems, i.e. for

m ≥ 40. First, we rely on cusolverDnDpotrf to factorize A in a

kernel call. Then, we call the kernel cusolverDnDpotrs where
we pass b − Dx as argument and get y as result of step (5).

As multiple kernel calls are involved in these steps, and each

kernel call implies a call overhead of approximately 5 − 10µs ,
we also implement a variant of the Cholesky decomposition

using only a single kernel call. We use this kernel as a solver

for small problems, i.e. m < 40. The implementation is based

on [13] and calculates the solution of the system of equations via
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Listing 1: Kernel to compute Cx in shared memory
1 template < in t BLOCK_SIZE_X>

2 __g l o b a l _ _ void getCxShared ( double ∗ _ _ r e s t r i c t _ _ const x , const unsigned int z ,

3 const bool d i r e c t i o n =0 ) {

4 unsigned int s t r i d e = blockDim . x ∗ gridDim . x ;

5 __shared__ double xShared [ BLOCK_SIZE_X ] ;

6 unsigned int end = (1 << z ) ;

7 for ( in t g l o b a l I d x = t h r e a d I d x . x+blockDim . x ∗ b l o c k I d x . x ; g l o b a l I d x < end ; g l o b a l I d x += s t r i d e ) {

8 xShared [ t h r e a d I d x . x ] = x [ g l o b a l I d x ] ;

9 __ sync th r e ad s ( ) ;

10 for ( in t w = 1 ; w < BLOCK_SIZE_X ; w<<=1) {

11 i f ( ( t h r e a d I d x . x /w) %2 == d i r e c t i o n ) {

12 xShared [ t h r e a d I d x . x ]+= xShared [ t h r e a d I d x . x+w− d i r e c t i o n ∗ 2 ∗w] ;

13 }

14 __ sync th r e ad s ( ) ;

15 }

16 x [ g l o b a l I d x ] = xShared [ t h r e a d I d x . x ] ;

17 }

18 }

Listing 2: Kernel to compute Cx in global memory
1 template <unsigned int i t e r a t i o n >

2 __g l o b a l _ _ void ge tCxGloba l ( double ∗ _ _ r e s t r i c t _ _ const x , const bool d i r e c t i o n =0 ) {

3 s t a t i c con s t e xp r auto o f f s e t = 1U << i t e r a t i o n ;

4 const int myGloba l Idx = t h r e a d I d x . x+blockDim . x ∗ b l o c k I d x . x ;

5 const int b l o c kO f f s e t = ( b l o c k I d x . x ∗ 1 0 2 4 / o f f s e t ) ∗ 2 ∗ o f f s e t ;

6 const int myElementIdx = o f f s e t ∗ d i r e c t i o n + b l o c kO f f s e t + myGloba l Idx% o f f s e t ;

7 x [ myElementIdx ]+=x [ myElementIdx+ o f f s e t −2∗ d i r e c t i o n ∗ o f f s e t ] ;

8 }

Gaussian elimination without pivoting. It is implemented to run

in a single thread block using shared memory. In our experiments,

this reduced the end-to-end runtimes of the Newton algorithm by

0.2 − 0.4ms . However, as the CPU implementation is still faster

than the GPU for such small problems this alternative is not

really needed.

4.1.3 End-To-EndGPU Implementation. Wenowdescribe how

the various kernels are combined to implement Newton’s algo-

rithm on the GPU. In Figure 5, we can only present pseudo code

as all the GPU code taken together is several hundred lines long.

The initialization in steps (1) - (3) and the main loop are realized

in function NewtonB_GPU.
While the logic of the loop is the same as in Figure 1 for the

CPU code we organize the code to minimize the number of kernel

calls. For example, in step (5) we compute both Ddiag(x)Dt
and

also b−Dx in a single kernel call to buildMatrixA. In this kernel

we first computeCx calling getCxShared and then, if z > 10, we

call getCxGlobal in a loop for every 10 < w ≤ z. In the second

step of kernel buildMatrixA, we gather from Cx the elements

for Dx and A = Ddiag(x)Dt
as explained in Sec 3.2.3 and Eqn 5

in Sec 3.2.4. In Sec 4.1.2 we explain how we implement step (6) of

the loop in function NewtonB_GPU, i.e. using the cuSolver library

of CUDA for larger problems. Step (7) computes w = w − y
using thrust::transform from Thrust, the CUDA C++ template

library [16]. Then, step (8) fuses steps (7) and the computation

of b − Dx in step (8) of the CPU-based code from Figure 1 into a

single kernel productOfDtw. This kernel first distributes vector
w into x , and then productOfDtw uses the logic of get_Cx_GPU
to compute Dtw using direction = 1 as parameter to handle the

transposed matrix; see Sec 3.2.3. As part of this computation

we can also calculate the vectors uold ,unew and x in the same

kernel. Notice, that after the call to productOfDtw the vectoruold
contains the element-wise delta of the last loop iteration. We use

this vector in step (9) to determine δ to check for convergence

of the algorithm. In our GPU implementation we use the L∞
norm and ϵ = 10

−8
. Because of the local quadratic convergence

of the Newton algorithm we found that the norm used to check

for convergence had virtually no impact on the convergence of

the algorithm. If convergence is reached, we return the solution

of the Newton algorithm in step (11) by doing one final call to

get_Cx_GPU(x,0).

4.2 Evaluation
To evaluate the performance of the GPU-based implementation

of the Newton algorithm presented in Sec 4.1, we generated the

same entropy maximization problems as in Sec 3.3. We compiled

the Newton algorithm using gcc 7.3.1 for the host code and CUDA

10.0 for the kernels on the GPU and compiled them with g++ -O3

The experiments where run on a system with an Intel Xeon

E7-8890v3, i.e., using a CPU from the same hardware generation

as we used for the evaluation of the CPU-based implementation

in Sec 3.3. The system was equipped with a PCI-attached NVIDIA

Tesla V100 GPU with 16GB of HBM2 memory. We report the

average execution time of the generated problems for different

numbers of predicates, z. During the experiments, the host code

on the CPU was running in a single thread; virtually all computa-

tion was done on the GPU. We remark that the runtimes for the

CPU implementations reported in Sec 3.3 used a single thread

on the host. The GPU implementation we used here performs

busy waiting on the host. With CUDA 10.1 the graph feature
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get_Cx_GPU(x,direction)

1 y = getCxShared(x,direction)

2 forw = 1 to z − 10

3 Cx = getCxGlobal<10 + w>(y,direction)
4 return Cx

buildMatrixA(b, x)

1 Cx = get_Cx_GPU(x,0)

2 (A, Dx ) = distribute Cx to A and Dx using Sec 3.2.3 and Sec 3.2.4

3 return (A, Dx )

productOfDtw(w)

1 Dtw = 0

2 distributew into x
3 Dtw = get_Cx_GPU(x,1)

4 together with get_Cx_GPU(x,1), in the same kernel also compute

5 x = exp(−Dtw)

6 unew = x/exp(1)
7 uold = uold − unew
8 return (Dtw,uold ,unew , x )

NewtonB_GPU(b(= βT ),T , ϵ)

1 w = 0

2 b = b ∗ exp(1)

3 x = 1

4 while (δ > ϵ)
5 (A, Dx ) = buildMatrixA(b, x)

6 solve Ay = b − Dx for y using cuSolver

7 w = w − y
8 (Dtw,uold ,unew , x ) = productOfDtw(w)

9 δ = | |uold | |∞
10 swap(uold , unew )

11 return (get_Cx_GPU(x,0))

Figure 5: GPU version of Newton Variant B

became available which allows to model the graph of kernels and

reduce the call overheads for the kernels. Furthermore, the graph

recapture feature introduce with CUDA 10.2. supports passing

parameters to these graphs further reducing the call overheads

of the GPU. With this the GPU implementation may become

faster for smaller problems, but an initial overhead to create and

instantiate the graph of about 0.4ms would remain. For larger

problems these overheads become insignificant.

In Figure 6 we present the runtime for configurations with

different complexity. As in Sec 3.3 column z contains the number

of predicates considered and columnm contains the number of

known selectivities.

The runtimes in the third column in Figure 6 are reported

for problems where the set of known selectivities T contains

all unary and additionally all binary conjuncts. In this setup,

the GPU is faster than the fastest CPU implementation for 13

or more predicates. For 20 predicates the runtime of the fastest

CPU implementation was 480 ms (see Figure 2) while the GPU

implementation only needs 18 ms, i.e. speed-up of 27x. Further-

more, the NVIDIA V100 GPU is able to compute problems with

25 predicates in only 632 ms. In comparison, the state-of-the art

method based on iterative scaling presented by Markl et al. [9]

already needs more than one second to compute the result for

only 10 predicates (see Figure 2).

The runtimes in the fifth column in Figure 6 refer to problems

where the set of known selectivities T contains all unary, binary

Newton GPU

z m runtime [ms] m runtime [ms]

3 7 0.9 8 1.0

4 11 0.7 15 0.9

5 16 0.7 26 0.9

6 22 0.7 42 1.2

7 29 0.8 64 1.4

8 37 1.0 93 1.8

9 46 1.3 130 2.9

10 56 1.5 176 3.5

11 67 1.8 232 4.9

12 79 2.2 299 6.5

13 92 2.5 378 8.8

14 106 3.1 470 11

15 121 3.7 576 16

16 137 4.7 697 20

17 154 6.2 834 28

18 172 7.7 988 33

19 191 11 1160 46

20 211 18 1351 63

21 232 35 1562 90

22 254 63 1794 130

23 277 140 2048 220

24 301 310 2325 420

25 326 630 2626 760

(NVIDIA Tesla V100)

Figure 6: GPU implementation of Variant B of Newton’s
algorithm

and ternary conjuncts. Here, the GPU is faster than our fastest

CPU-based implementation for 10 or more predicates. For 20

predicates the GPU-based implementation is more than 43 times

faster than our fastest CPU-based implementation. Such a com-

plex problem could not be solved in a reasonable time by the

state-of-the art method based on iterative scaling [9]. According

to Figure 3, that implementation processed problems with 10

predicates in almost 26 seconds while our GPU-based implemen-

tation finishes this task in only 3.5 ms, i.e. almost five orders of

magnitude faster.

5 DISCUSSION AND CONCLUSION
Query optimizers rely on several sources to estimate the selecti-

vity of complex conjunctive predicates. Many database systems

use elaborate methods to serve selectivity estimation, e.g., multi-

column histograms [12], samples [3], statistics on views [7] or

even query feedback [14].

Entropy maximization as proposed by Markl et al. [9] consi-

ders all available information to derive a consistent estimate for

all partial conjuncts of a predicate. However, as the runtimes for

iterative scaling are prohibitively high already for 8 predicates,

Markl et al. suggests to partition the problem into smaller con-

juncts assuming independence between the selectivities of the

predicates of the partitions. This risks loosing valuable informa-

tion from the set of known selectivities.

With the formalization of the entropy maximization problem

as a series of vector- and matrix operations we are able to derive

efficient implementations for this problem using the Newton

algorithm. As our CPU based algorithm is more than 4 orders of

magnitude faster than the iterative scaling for the most complex

problem it could handle, entropymaximization becomes a feasible
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option even for complex predicates without sacrificing the quality

of the cardinality estimates. Even more, the new implementations

can be applied to conjuncts with 18 predicates for the CPU or even

25 predicates for the GPU with runtimes of less than a second

making partitioning the input problem irrelevant for virtually all

scenarios. While Markl et al. already explained in detail how to

integrate the maximum entropy method into query optimizers,

we conclude that using the implementation techniques presented

in this paper, entropy maximization is ready to be included into

production-grade database management systems.

REFERENCES
[1] G. Cormode, M. Garofalakis, P. Haas, and C. Jermaine. 2012. Synopses for

Massive Data: Samples, Histograms, Wavelets, Sketches. NOW Press.

[2] S.-C. Fang, J. R. Rajasekera, and H. S. J. Tsao. 1997. Entropy Maximization and
Mathematical Programming. Kluwer.

[3] Rainer Gemulla, Wolfgang Lehner, and Peter J. Haas. 2007. Maintaining

bernoulli samples over evolving multisets. In Proc. ACM SIGMOD/SIGACT
Conf. on Princ. of Database Syst. (PODS). 93–102.

[4] G. Golub and C. van Loan. 1996. Matrix Computations. The John Hopkins

University Press. Third Edition.

[5] D. Harville. 2008. Matrix Algebra from a Statistician’s Perspective. Springer.
[6] Y. Ioannidis. 2003. The History of Histograms (abridged). In Proc. Int. Conf. on

Very Large Data Bases (VLDB). 19–30.
[7] P.-Å. Larson, W. Lehner, J. Zhou, and P. Zabback. 2007. Cardinality estimation

using sample views with quality assurance. In Proc. of the ACM SIGMOD Conf.
on Management of Data. 175–186.

[8] V. Leis, A. Gubichev, A. Mirchev, P. Boncz, A. Kemper, and T. Neumann. 2015.

How Good Are Query Optimizers, Really? PVLDB 9, 3 (2015), 204–215.

[9] V. Markl, P.J. Haas, M. Kutsch, N. Megiddo, U. Srivastava, and T.M. Tran. 2007.

Consistent Selectivity Estimation Via Maximum Entropy. VLDB Journal 16, 1
(January 2007), 55–76.

[10] G. Moerkotte, M. Montag, A. Repetti, and G. Steidl. 2015. Proximal opera-

tor of quotient functions with application to a feasibility problem in query

optimization. J. Computational Applied Mathematics 285 (2015), 243–255.
[11] Magnus Müller, Guido Moerkotte, and Oliver Kolb. 2018. Improved Selectivity

Estimation by Combining Knowledge from Sampling and Synopses. PVLDB
11, 9 (May 2018), 1016–1028. https://doi.org/10.14778/3213880.3213882

[12] V. Poosala and Y. Ioannidis. 1997. Selectivity Estimation Without the Attribute

Value Independence Assumption. In Proc. Int. Conf. on Very Large Data Bases
(VLDB). 486–495.

[13] William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T. Vetter-

ling. 1988. Numerical Recipes in C: The Art of Scientific Computing. Cambridge

University Press, New York, NY, USA.

[14] Michael Stillger, Guy M. Lohman, Volker Markl, and Mokhtar Kandil. 2001.

LEO - DB2’s LEarning Optimizer. In Proceedings of the 27th International
Conference on Very Large Data Bases (VLDB ’01). Morgan Kaufmann Publishers

Inc., San Francisco, CA, USA, 19–28.

[15] Xiaohui Yu, Nick Koudas, and Calisto Zuzarte. 2006. HASE: a hybrid approach

to selectivity estimation for conjunctive predicates. In International Conference
on Extending Database Technology. Springer, 460–477.

[16] CUDA Developer Zone. 2019. CUDA Toolkit Documentation.

https://docs.nvidia.com/cuda/.

554



Weaving Enterprise Knowledge Graphs:
The Case of Company Ownership Graphs∗

Paolo Atzeni
Università Roma Tre

Luigi Bellomarini
Banca d’Italia

Michela Iezzi
Banca d’Italia

Emanuel Sallinger
TU Wien and

University of Oxford

Adriano Vlad
Università Roma Tre and
University of Oxford

ABSTRACT
Motivated by our experience in building the Enterprise Knowl-
edge Graph of Italian companies for the Central Bank of Italy, in
this paper we present an in-depth case analysis of company own-
ership graphs, graphs having company ownership as a central
concept. In particular, we study and introduce three industrially
relevant problems related to such graphs: company control, asset
eligibility and detection of personal links. We formally charac-
terize the problems and present Vada-Link, a framework based
on state-of-the-art approaches for knowledge representation and
reasoning. With our methodology and system, we solve the prob-
lems at hand in a scalable, model-independent and generalizable
way.We illustrate the favourable architectural properties ofVada-
Link and give experimental evaluation of the approach.

1 INTRODUCTION
This paper is motivated by our experience in building the Enter-
prise Knowledge Graph of Italian companies for Banca d’Italia,
the central bank of Italy.

Company ownership graphs are central objects in corporate
economics [9, 19, 23, 36] and are of high importance for central
banks, financial authorities and national statistical offices, to solve
relevant problems in different areas: banking supervision, credit-
worthiness evaluation, anti-money laundering, insurance fraud
detection, economic and statistical research and many more. As
shown in Figure 1, in such graphs, ownership is the core concept:
nodes are companies and persons (black resp. blue nodes), and
ownership edges (black solid links) are labelled with the fraction
of shares that a company or person x owns of a company y.
Company graphs are helpful in many situations.

One first important problem that can be solved with such
graphs is company control (also effectively formalized in the con-
text of logic programming [18]), which amounts to deciding
whether a company x controls a company y, that is, x can push
decisions through in y having the vote majority. Consider the
graph in Figure 1: P1 controls C , D (via C), E (since it controls D,
which owns 40% of E and P1 directly owns 20% of it), and F (via
E and D). Similarly, P2 controls all its descendants except for L.
Apparently, P1 exerts no control on L either.

∗The views and opinions expressed in this paper are those of the authors and do
not necessarily reflect the official policy or position of Banca d’Italia. This work is
supported by the EPSRC grant EP/M025268/1, the Vienna Science and Technology
Fund (WWTF) grant VRG18-013, and the EC grant 809965.

© 2020 Copyright held by the owner/author(s). Published in Proceedings of the
23rd International Conference on Extending Database Technology (EDBT), March
30-April 2, 2020, ISBN 978-3-89318-083-7 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Figure 1: Sample excerpt of a company ownership KG.

A second particularly representative application of company
graphs is in the context of collateral eligibility (also known as as-
set eligibility or close link) problem, which consists of estimating
the risk to grant a specific loan to a company x that is backed
by collateral issued by another company y. According to Euro-
pean Central Bank regulations [1], company y cannot act as a
guarantor for x if it is too “close” to it in terms of ownership; the
regulation gives a detailed definition for this concept of closely-
linked entity, which includes: “the two companies must not be
owned by a common third party entity, which owns more than
20% of both”. With respect to Figure 1, we see that, for example,
G and I are closely linked since P2 owns more than 20% of both.1

Besides financial relationships, personal or family connections
enable much broader use of such company graphs: detecting
family businesses or studying the real dispersion of control [21]
are just two such applications. In our example in Figure 1, know-
ing that P1 and P2 have personal connections –e.g., are married–
allows to deduce that, in fact, P1 and P2 together control L. Likely,
they act as a single center of interest: L is in fact a family busi-
ness, with control in the hands of a single family, with P1 and
P2 together controlling 60% of it. Similarly, although D and G do
not strictly fulfil the definition of close link, as P1 and P2 have
a personal connection, there is very low risk differentiation be-
tween them and so it is reasonable to prevent G from acting as a
guarantor for D or vice versa.

In all the above settings, and indeed in many more, it is our
experience that the links representing relevant relationships in
the financial realm are not immediately available in data stores.
For instance, there are no enterprise graphs readily providing
company control relationships, close links or family connections.
Reasons fall mostly into four categories: (i) such links represent
non-trivial relationships, whose calculation is complex and is not

1Actually, here we are forcing the concept of close links to include individuals.
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typically done while building the enterprise data stores, for exam-
ple in the ETL (Extract, Transform, Load) jobs; (ii) the enterprise
data stores are mainly relational and neglect specific connections
because they are not easily navigable without a graph-based tech-
nology; (iii) edges between entities in different data stores are
ignored because enterprise databases follow a siloed approach;
(iv) edges are considered less trustworthy (lower data quality)
than the entities they connect, and so are skipped.

Contribution. In this paper, we focus on the industrial context of
the ownership graph of Banca d’Italia and provide the following
contributions:

• We provide a compact but formal characterization of the prob-
lems of company control, asset eligibility and detection of per-
sonal connections over ownership graphs. We argue that the
three problems belong to a much broader class, which we name
knowledge graph augmentation, (KG augmentation). By KG aug-
mentation, we wish to characterize a special case of link predic-
tion [29], the key problem of predicting hidden links in network
structures, where the emphasis is on the need for a careful com-
bination of the extensional data (existing nodes and edges) and
the available domain knowledge.
• We present Vada-Link, a framework for the solution of KG aug-
mentation problems, leveraging state-of-the-art methodologies
for logic-based reasoning [14, 24], which provide a very good bal-
ance between computational complexity of the reasoning task,
being PTIME in data complexity, and expressive power, thanks
to logic-based Knowledge Representation and Reasoning (KRR)
languages such as Vadalog [14]. In fact, Vadalog captures full
Datalog [18, 27] and is able to express SPARQL queries under
set semantics and the entailment regime for OWL 2 QL [24].
• From the structured enterprise data stores, we build a Prop-
erty Graph [3] (PG) –a graph with labelled nodes and edges–
and model KG augmentation problems as reasoning tasks on a
Knowledge Graphs (KG), based on such PG. In particular, here a
KG is a data model combining an extensional component, that
is, the data from the enterprise data stores, with a formal repre-
sentation of the domain of interest, the intensional component,
expressed in some KRR language. KGs typically represent do-
mains that are well suited for being modeled as property graphs
complemented with rules that express domain knowledge.
• We argue that our approach is general and can be used to
augment KGs with new links that can be deterministically or
heuristically deduced from a combination of extensional data
and domain knowledge. In particular, we motivate that our ap-
proach is schema independent, as it is not coupled to a specific
graph structure (i.e., specific types for nodes, edges and their
properties), but relies on meta-level concepts describing graph
constructs. At the same time, our solution is problem aware, as
specific reasoning steps adopt polymorphic behaviour, depend-
ing on the specific problem. Moreover, our approach is data
model independent, in the sense that the extensional component
can be based on diverse data sources.
• With our KG-based approach, we build a company knowledge
graph, where the PG of the ownership graph represents the
extensional component of the KG and the hidden links, object
of the above problems, are obtained by combining a logic-based
intensional definition of their specification, i.e., the intensional
component of the KG, with the extensional component. Our so-
lution provides an approach to KG augmentation that shows at
the same time high accuracy and efficiency, achieved by multi-
level clustering of the search space, with techniques inspired by

record linkage experience [20]. In particular, in the KG inten-
sional component, we combine highly selective feature-based
clustering with neighborhood-preserving embeddings: the for-
mer technique avoids quadratic blow-up of the search space,
while the latter enhances accuracy by recognizing graph-based
similarities of the entities.
• We exploit the framework to build our company knowledge
graph. We motivate that our solution has very favourable prop-
erties: it is scalable, since it uses a tractable logic fragment,
Vadalog [14] and reduces the search space via multi-level
clustering; it is understandable, IT-independent and modifi-
able thanks to the adoption of a fully declarative approach;
Vada-Link decisions are explainable and unambiguous, as the
semantics of Vadalog is based on that of Datalog, well known
in the database community [2].
• We provide extensive experimental evaluation of Vada-Link.

KG augmentation. In Vada-Link, we structure our link predic-
tion tasks into two of subgoals. First, a clustering task, where we
aim at grouping the nodes into candidate clusters in order to limit
the search space of connected nodes. This allows to overcome
the need to compare a quadratic number of nodes, which would
make the approach infeasible. Clustering is performed with a
combination deterministic rule-based choices and embedding
techniques, e.g., node2vec [26], which allows to exploit not only
the textual or numeric features of edges, but also their structural
properties, such as: specific shared neighbours (along with their
properties, etc.), topological role nodes and so on.

Clearly, clustering requires a preliminary feature engineering
phase, needed to individuate the most informative features, which
is however out of the scope of this paper. The second subgoal is
a multi-class classification problem, where we aim at assigning
each pair of nodes a link class, if any.
Related work. Different research areas and data management
problems can be seen as related to Vada-Link. Link prediction
is the problem of discovering links between nodes in network
structures: it is relevant in social network analysis [29] and a va-
riety of approaches have been recently proposed, e.g. [39]. In this
work, we refer to a different setting, which we called Knowledge
Graph augmentation: it is the problem of inferring connections
that are necessarily present on the basis of a combination of
extensional knowledge and domain experience. In this sense,
we borrow techniques that are common in link prediction, e.g.
node2vec [26] for clustering purposes, but we do not use them
to make linking decisions, which are taken only via logic-based
reasoning. In the context of KGs, there have been some propos-
als for link prediction approaches [28, 32]. However, unlike our
approach, the emphasis is still on guessing new connections that
cannot be deduced from existing data.

In this paper, for our goals, we borrow from the vast experi-
ence of the database community in record linkage [20], which
is a different yet closely related problem. It consists in deciding
whether two records without a common database identifier ac-
tually refer to the same real-world entity. Here, the problem is
different as we are deciding whether two different real-world
entities have some relationship and, if so, its type. Nevertheless,
we inherit ideas for search space reduction, namely blocking and
feature-based probabilistic record linkage, adapting them in the
context of knowledge graphs. In doing so, we also rely in our
experience in formulating and solving data science and data in-
tegration problems in a declarative context and in Vadalog in
particular [11]. Finally, the general theoretical setting, including
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the definition of basic data models (e.g., property graphs), is also
shared with the graph querying community [15].

Overview. The remainder of the paper is organized as follows.
In Section 2 we describe our industrial setting of the company
ownership graph at Banca d’Italia. In Section 3, we introduce the
background of Vadalog-based KGs, graph embeddings as well
as the foundations of our approach. In Section 4 we present the
details of Vada-Link. In Section 5 we illustrate the architecture
of the system, while Section 6 shows experimental evaluation.
We draw our conclusions in Section 7.

2 INDUSTRIAL SETTING:
AUGMENTING OWNERSHIP GRAPHS

A central bank needs data about companies to pursue a number
of core institutional goals. In particular, the Bank of Italy owns
the database of Italian companies, provided by the Italian Cham-
bers of Commerce. Although the database is extremely rich and
comprehensive, we shall see that many of the problems of inter-
est that cannot easily be solved using traditional query languages
can be concisely formulated as reasoning tasks on knowledge
graphs. We show how to build such a company knowledge graph,
in particular to identify hidden links between the involved enti-
ties in various scenarios. Such problems can be easily represented
as a KG augmentation problem: given an input graph, we seek
new edges that improve the connectivity of the graph to gain the
ability to find new and undiscovered patterns. Let us start with a
high-level description of the database.

The Italian Company Database. The database provided by
the Italian Chambers of Commerce contains several features for
each company such as legal name, address, incorporation date,
legal form, shareholders and so on. A shareholder can be either a
person or company. For persons, we find the associated personal
data, such as first name, surname, date and place of birth, sex,
home address, and so on. Detailed shareholding structure is also
available: for each shareholder the database contains the actual
share as well as the type of legal right associated to each share
(ownership, bare ownership and so on).

The database at our disposal contains data from 2005 to 2018. If
we see the database as a graph, where companies and persons are
nodes and shareholding is represented by edges, on average, for
each year the graph has 4.059M nodes and 3.960M edges. There
are 4.058M Strongly Connected Components (SCC), composed
on average of one node, and more than 600K Weakly Connected
Components (WCC), composed on average of 6 nodes, resulting
in an high level of fragmentation. Interestingly, the largest SCC
has only 15 nodes, while the largest WCC has more than one
million nodes. The average in- and out-degree of each node is
≈ 1 and that the average clustering coefficient is ≈ 0.0084, very
low when compared to the number of nodes and edges. Further-
more, it is interesting to observe that the maximum in-degree of
a node is more than 5K and the maximum out-degree is more
than 28K nodes. We also observe a high number of self-loops,
almost 3K , i.e., companies that own shares of themselves, which
could be referred to the buy-back phenomenon [4]. The resulting
graph shows a scale-free network structure, as most real-world
networks [7, 22, 34]: the degree distribution follows a power-law
and there are several nodes in the network that act as hubs.

Use Cases. Let us introduce three relevant problems in the con-
text of this database considering Figure 2.

Figure 2: ItalianCompanyGraph. Red-dashed edges repre-
sent personal connections, green-dashed edges represent
control links, magenta-dashed edges are close-links.

(1) Does P2 control C7? More generally, we want to under-
stand if a company or a person exerts control, through the
majority of voting rights, on another company, i.e., the
Company Control problem.

(2) Are companies C6 and C8 closely related? More generally,
wewant to understandwhether there exists a link between
two companies based on high overlap of shares, i.e., the
close link problem.

(3) Are there personal/family links between the persons in
the company graph? More generally, we wish to detect
personal connections and label them, on the basis of the
kind of relationship.

Solving the third problem allows us to see the first two under a
new light: are there a groups of people (e.g., of the same family) in
control of a certain company? Are two companies closely related
because of the personal ties between their shareholders?

Towards a formalization of the above problems, we propose a
graph-based representation of the company database, for which
we need some preliminary notions.

Definition 2.1. A (regular) Property Graph (PG) is a tuple of
the form G = (N ,E, ρ, λ,σ ), where:
• N is a finite set of nodes;
• E (disjoint from N ) is a finite set of edges;
• incidence function ρ : E → Nn is a total function that
associates each edge in E with an n-tuple of nodes from
N –we will consider n = 2 from hereinafter;
• the labelling function λ : (N ∪ E) → L is a partial function
that associates nodes/edges with a label from a set L;
• σ : (N ∪ E) × P→ V is a partial function that associates
nodes/edges with properties from P to a value from a set
V for each property.

The provided company database can be represented in terms of
a property graph, as follows.

Definition 2.2. A Company Graph is a property graph G =
(N ,E, ρ, λ,σ ), such that:
• N contains companies and persons;
• E are shareholding edges, from companies to companies
or persons to companies;
• the labeling set L is defined as {C, P , S}, where C stands
for a Company node and P stands for a Person node; S
represents a Shareholding edge;
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• each node n has an identifier x ∈ P, with value σ (n,x),
and a set of properties (or features) f1, . . . , fm , with values
σ (n, f1), . . . ,σ (n, fm );
• each edge e has share amount w with value σ (e,w) ∈
(0, 1] ⊆ R.

Figure 2 shows an example of the Company Graph. Let us intro-
duce the definitions for the industrial use cases of our interest.

The Company Control Problem. Let us start with that of com-
pany control, with an effective formulation presented in the con-
text of logic programming [18].

Definition 2.3. A company (or a person) x controls a company
y, if: (i) x directly owns more than 50% of y; or, (ii) x controls a
set of companies that jointly (i.e., summing the share amounts),
and possibly together with x , own more than 50% of y.

Example 2.4. Referring to Figure 2: P1 controls C4 by means
of a direct 80% edge; P2 controlsC7, viaC5 andC6. Green-dashed
edges represent the resulting control links.

The Close Link Problem. For the second use case, we need
to define the notion of accumulated ownership of a company or
person x over a company y.

Definition 2.5. Let G be a Company Graph and let ϕxy be
finite the set of all the s simple paths from x to y. Let ϕmij , with
1 ≤ m ≤ s , be each of such paths.
The accumulated ownership ΦG (x ,y) of x over y is:

ΦG (x ,y) =
∑

ϕmxy ∈ϕxy

W (ϕmxy ) (1)

where:
W (ϕmxy ) =

∏
e ∈ϕmxy

σ (e,w). (2)

Starting from Definition 2.5, we can now define Close Links.

Definition 2.6. Given a Company GraphG , there is a Close Link
relationship between a pair of companies x and y for a threshold
t ∈ (0, 1] ⊆ R if: (i) ΦG (x ,y) ≥ t ; or, (ii) ΦG (y,x) ≥ t ; or, (iii)
there exists a person or company z s.t. ΦG (z,x) ≥ t , ΦG (z,y) ≥ t .

Example 2.7. Let us refer to Figure 2 and consider t = 0.2.
We have that P3 owns 40% of C6 and 50% of C8, therefore they
are in close link relationship by Definition 2.6-(iii). Also, since
ΦG (C4,C7) = 0.2, it follows that C4 and C7 are in close link
relationships by Definition 2.6-(i).

Detecting Personal Connections. As we have seen, detecting
personal connections enables insightful analyses, including the
possibility to achieve more comprehensive view of company
control and close links. In particular, we are interested in family
relationships of various degrees, i.e. “PartnerOf”, “SiblingOf”, and
so on. Many different models to predict family links exist. We
adopt a simple one and, as common in these cases, we define
the presence of a family link between x and y with a multi-
feature Bayesian classifier. For a given feature fi , we compute the
conditional probability pi = P(Lxy | d(f

x
i , f

y
i ) < Tf ) of having

a link Lxy , given that some distance between the feature values
is under a given threshold for that feature (e.g., Levenshtein
distance between two strings “name” of person). The probability
pi and thresholdTf can be estimated by observing P(d(f xi , f

y
i ) <

Tf | Lxy ) from training data and given the a priori likelihood of

P(d(f xi , f
y
i ) < Tf ) and P(L). Then, we combine all the conditional

probabilities pi into p by applying Graham Combination [25]:

p =

∏n
i=1 pi∏n

i=1 pi +
∏n

i=1(1 − pi )
(3)

Finally, a family link exists whenever p > T , where T is an
established confidence threshold.

Knowing family connections, we can extend Definitions 2.3
and 2.6 to a more general setting. Let us define a family F as a
set of persons directly or indirectly connected by personal links.

Definition 2.8. A family F controls a company y if: (i) a person
x ∈ F controls y according to Definition 2.3; or, (ii) F controls a
(possibly empty) set of companies that jointly, and possibly to-
gether with direct ownerships of {x1, . . . ,xn } ⊆ F (i.e., summing
the share amounts), directly own more than 50% of y.

Definition 2.9. Given a Company Graph G, there is a Close
Link relation between a pair of companies x and y for a threshold
t ∈ (0, 1] ⊆ R if: (i) Definition 2.6 holds; or, (ii) there exist two
persons z1 and z2 (z1 , z2) s.t. z1, z2 ∈ F , where F is a family,
and ΦG (z1,x) ≥ t and ΦG (z2,y) ≥ t .

Example 2.10. Referring to Figure 2, the red-dashed edge be-
tween P2 and P3 represent “PartnerOf” relationship. For example,
P2 and P3 are in the same family. Neither P2 nor P3 control C8
singularly. Yet, they have a jointly ownership of 60%; so, their
family controlsC8. Also,C5 andC8 are closely linked, via P2 that
owns the 60% of C5 and P3 that owns 50% of C8.

The major limitation to answer the illustrated business cases is
the translation of all the above definitions into computationally
infeasible algorithms due to the dimension of the graph and the
complexity of the problems. For example, the close link definition
resorts to the ownership definition, and not only: with regard
to the third condition of Definition 2.6, the so-called third-party
requires to look for a comparison of all existing ownership of
companies linked to the third-party entity and a check of the fixed
threshold passing. This involves finding all simple paths between
pairs of nodes, a paradigmatic computationally hard problem in
complexity theory, technically in the #P class [38]. Finding family
connections is also challenging, requiring exhaustive comparison
of all pairs of persons. Therefore, the intensional part of the
company knowledge graph is urgently needed.

3 RELATIONAL GRAPH REPRESENTATION
In order to present the full detail of our KG-based solutions
to the settings illustrated in Section 2, let us introduce some
basic notions and see how we use them to model and reason on
company graphs.

Knowledge Graphs (KG). Along the lines given in [10], we de-
fine a KG as a semi-structured data model composed of three
components: (i) a ground extensional component (or simply ex-
tensional component), that is, a set of relational constructs for
schema and data, which can be effectively modeled as a property
graph; (ii) an intensional component, that is, a set of inference
rules over the constructs of the ground extensional component;
(iii) a derived extensional component that can be produced as the
result of the application of the inference rules over the ground
extensional component (with the so-called “reasoning” process).

In order to fulfil (i), we adopt a mapping of PG constructs into
relational constructs. Let us introduce the background for both
and describe our mapping.
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Relational Foundations. Let C, N, and V be disjoint countably
infinite sets of constants, (labeled) nulls and (regular) variables,
respectively. A (relational) schema S is a finite set of relation
symbols (or predicates) with associated arity. A term is either
a constant or variable. An atom over S is an expression of the
form R(v̄), where R ∈ S is of arity n > 0 and v̄ is an n-tuple of
terms. A database instance (or simply database) over S associates
to each relation symbol in S a relation of the respective arity over
the domain of constants and nulls. The members of relations are
called tuples. By some abuse of notations, we sometimes use the
terms tuple and fact interchangeably.
Relational Representation for PGs. We map constructs of
PGs into relational terms as follows. L-labelled nodes n ∈ N (with
Ln ∈ L) are represented by facts L(ĉx , c1

f , c
2
f , . . . , c

n
f ) of predicate

L, where for each property (feature) fi ∈ P, we have a constant
term cif of L of value σ (n, fi ). Note that here we assume a total
ordering of property names, so we can map them into positional
atom terms and no ambiguity arises (a non-positional perspective
could be easily adopted as well). We also assume every node has
an identifier x , whose value ĉx = σ (n,x) identifies its facts.

We map each Le -labelled edge e ∈ E, into facts of predicate
Le : Le (ĉ1

x , . . . , ĉ
k
x , f1, . . . , fm ), where for each argument i of the

incidence function ρ, there is a constant term ĉix of Le with value
σ (n,x), where n = ρ(e)[i] and x is n identifier, and for each
feature fi ∈ P of e there is a constant cif of Le with value σ (e, fi ).

Observe that node and edge labels operate at schema level
and map into predicate names. Properties and identifiers are
at instance level and define term values for facts representing
nodes and edges. With this premises given, in our setting the
extensional component of a KG is therefore a database instance
representing the PG by means of the mapping described above.

Example 3.1. The extensional component of a KG based on
the PG in Figure 1 has the following relational representation.
Company(C),Company(D),Company(E),Company(F ),
Company(G),Company(H ),Company(I ),Company(L),
Person(P1), Person(P2),Own(P1,C, 0.8),Own(C,D, 0.75),
Own(D,E, 0.4),Own(D, F , 0.2),Own(E, F , 0.4),Own(P1,E, 0.2),
Own(P2,G, 0.6),Own(G,H , 0.6),Own(H ,L, 0.4),Own(H , I , 0.1),
Own(P2, I , 0.5),Own(F ,L, 0.2).

Inference Rules. We describe the intensional components of
KGs with logical inference rules in the Vadalog language. At the
core of Vadalog, there is Warded Datalog± [12, 14] a language
part of the Datalog± family [17]. Datalog± languages consists of
existential rules, which generalize Datalog rules with existential
quantification in rule heads, so that a rule is a first-order sentence
of the form: ∀x̄∀ȳ(φ(x̄ , ȳ) → ∃z̄ψ (x̄ , z̄)), where φ (the body)
andψ (the head) are conjunctions of atoms with constants and
variables. For brevity, we write this existential rule as φ(x̄ , ȳ) →
∃z̄ψ (x̄ , z̄) and replace ∧ with comma to denote conjunction of
atoms. The semantics of such rule is intuitively as follows: for
each fact φ(t̄ , t̄ ′) that occurs in an instance I , then there exists
a tuple t̄ ′′ of constants and nulls such that the factsψ (t̄ , t̄ ′′) are
also in I . More formally, the semantics of a set of existential
rules Σ over a database D, denoted Σ(D), is defined via the well-
known chase procedure [2]: new facts are added to D by the chase
(possibly involving null values to satisfy existentially quantified
variables) until Σ(D) satisfies all the existential rules of Σ.

Example 3.2. The following rules define intensional edges
linking persons with companies they are influential on (e.g., in

the sense of control on company decisions). By Rule (1) a person x
affects a company c she owns; her spouse also affects the company
by Rule (2). Rules (3) and (4) generate Spouse edges, having a
validity interval from t1 to t2, from Married edges.
(1) Person(x),Own(x , c,v) → Influence(x , c).
(2) Own(x , c,v), Spouse(x ,y, t1, t2) → Influence(y, c).
(3)Married(x ,y) → ∃t1, t2 Spouse(x ,y, t1, t2).
(4) Spouse(x ,y, t1, t2) → Spouse(y,x , t1, t2).

4 THE VADA-LINK FRAMEWORK
In this section we focus on Vada-Link and describe in detail our
technique for KG augmentation.

Algorithm 1 Basic KG augmentation algorithm.
Input: G = (N ,E, ρ, λ,σ ), C: link classes
Output: U = (N ,E ′, ρ ′, λ′,σ )

1: U ← G
2: changed← true
3: while changed do
4: changed← false
5: K← GraphEmbedClust(U )
6: for K ∈ K do ▷ First level
7: B← GenerateBlocks(K)
8: for B(NB ,EB , ρB , λB ,σB ) ∈ B do ▷ Second level
9: for p1,p2 ∈ NB , c ∈ C do
10: if Candidate(p1,p2, c) and e < EB then
11: add e to EB
12: set ρB (e) = (p1,p2)
13: set λB (e,TYPE) = C .
14: changed← true
15: return U

Algorithm 1 presents a high-level overview of the approach. We
take as input a property graph G and return a property graphU ,
which is obtained by adding the predicted edges. In our industrial
case introduced in Section 2, the property graph is a company
graph and the predicted links can be a control relationship, a
close link relationship, or a family link.

The overall approach consists in a double level of clustering
(which we will also call blocking) of the graph: after the first
grouping, possible links between nodes are searched only within
a single cluster in order to limit the number of needed compar-
isons. We start from a clustering K (line 5) performed by the
function GraphEmbedClust. We compute a node embedding of
the whole graph U : nodes are mapped into multi-dimensional
vectors, whose distance reflects the similarity of the nodes, eval-
uated on the basis of both their features and role in the graph
topology. Then each cluster K is in turn partitioned into a more
specific clustering B (line 7) by the function GenerateBlocks. The
search for nodes to be linked is then performed within each clus-
ter B and for each type c ∈ C of links by Candidate (line 10). If
an edge is to be created for the considered nodes, it is labeled
with the proper type (lines 11-13). Once all clusters B in B have
been used to enrich U with new edges, first-level clustering via
graph embedding is recursively applied (line 5). The algorithm
proceeds until no changes occur. Finally,U is returned.
The Knowledge Graph. We implemented the core KG augmen-
tation logic of Vada-Link described in Algorithm 1 with a Vada-
log KG, whereG is the ground extensional component and the
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intensional component is defined by three set of rules, encoding
the prediction logic for the edges to be added to G to obtain U .
The first set of rules (Algorithm 2) is the input mapping: they
take as input the relational representation of one specific PG, as
defined in Section 3 (for example that of the company graph) and
transform it into higher-level concepts: generic nodes, generic
edges and types and properties for those nodes and edges. The
second set of rules (Algorithm 3) is the actual link prediction logic:
it contains the core reasoning process giving rise to new edges; it
operates on generic nodes and edges. Finally, the third set of rules
(Algorithm 4) is the output mapping: it transforms the high-level
generic links that have been created by the link prediction logic
into their relational representation in the PG.

Let us now analyse the details of the three sets of rules.

Algorithm 2 Input mapping for the company PG.
(1) Company(name, addr, inc. date, leg. form, . . .),

z = #skc (name) →
Node(z, name, addr, inc. date, leg. form),NodeType(z,Comp).

(2) Person(name, birth, addr, . . .),
z = #skp (name) →

Node(z, name, birth, addr, . . .),NodeType(z, Person).
(3) Own(x ,y, amount, right, . . .), right = pers.share→

∃z Link(z, #skp (x), #skc (y), amount, right, . . .),
EdgeType(z, Shareholding).

(4) Own(x ,y, amount, right, . . .), right = comp.share→
∃z Link(z, #skc (x), #skc (y), amount, right, . . .),

EdgeType(z, Shareholding).

The ground extensional component is modeled by means of three
atoms: Company, Person and Own. Company and Person hold the
basic features for companies and persons, respectively –the fea-
ture names are self explanatory– and are identified by name; Own
connects a person/company with name x to a company with
name y, when x is a shareholder of y and contains the respective
features, such as amount and type (right) of share. Clearly, here
we are assuming that name is a valid unique identifier for the
sake of simplicity, while in practice fiscal code or other more
appropriate codes are used. Rule (1) upgrades companies into
generic Nodes of NodeType “Company” (quotes are omitted in
the rules for readability). Similarly, Rule (2) upgrades persons.
For simplicity of presentation and without loss of generality, here
we assume that atoms are variadic (denoting extra terms with
“. . . ”) so as to support an arbitrary number of features; coher-
ence is guaranteed by the adoption of a positional perspective
in our relational representation of PGs and by nodes and edges
being typed. Clearly, we could replace variadic nodes and edges
with Feature(x , f ,v) atoms, explicitly representing a feature f
of value v for node x .

Both Rules (1) and (2) use functions denoted by #sk, namely
Skolem functors, to generate node identifiers. Skolem functors
are often used in variants of Datalog with OID invention, where
identifiers need to be generated [5, 16] with specific properties:
(i) determinism: repeated applications of the same functor on the
same argument yield the same OID –this will be useful to gener-
ate edges; (ii) injectivity: there are no distinct domain elements
yielding the same OID –for instance, no different companies will
be assigned the same OID; (iii) disjoint range: different Skolem
functors cannot produce the same OID –in case a company and a
person have the same name, #skc and #skp will produce different
OIDs. Vadalog supports Skolem functors in this form.

Rule (3) and Rule (4) upgrade ownership into generic Links
with an EdgeType depending on the type of ownership:
pers.share for persons holding companies, comp.share, in the
case of a company owning a company. We adopt existential
quantification to generate OIDs for Links and Skolem functors
to obtain the OIDs of the Nodes associated to names x and y.

Observe that the application order of the rules is irrelevant:
thanks to determinism of Skolem functors, Links can be gener-
ated even before the respective Nodes for companies and persons.

Algorithm 3 Vadalog KG augmentation logic.
(1) Node(x , f x1 , . . . , f

x
n ), Link(e,v,w, f e1 , . . . , f

e
m ),

NodeType(x , tn ),EdgeType(e, te ),
b1 = #GraphEmbedClust(f x1 , . . . , f

x
n , f

e
1 , . . . , f

e
m , tn , te , ⟨e⟩),

b2 = #GenerateBlocks(f x1 , . . . , f
x
n , tn ) → Block(b1,b2,x)

(2) Node(x , f x1 , . . . , f
x
n ),Node(y, f y1 , . . . , f

y
n ),

NodeType(x , tn ),NodeType(y, tn ),x , y,
Block(b1,b2,x),Block(b1,b2,y), LinkClass(t),

Candidate(x ,y, t) → ∃z Link(z,x ,y, . . .),EdgeType(z, t).

Algorithm 3 represents the core prediction logic of Vada-Link.
For every node x , Rule (1) considers all the edges e of the graph
and positions x into a two-level nested clustering structure rep-
resented by the atom Block, where b1 and b2 are the clustering
levels. The first clustering is established by applying the function
#GraphEmbedClust, which wraps a function call to a specific
clustering algorithm based on node embedding (details in Sec-
tion 4.1). It takes as input the features of x , all the edges e of the
graph along with their features, the respective types tn and te and
returns the identifier b1 of the first-level cluster. The second-level
clustering is determined by applying the function #Generate-
Blocks, whose resulting cluster identifier b2 only depends on the
node properties and type.

Some discussion of the use of functions in our solution is
needed. #GenerateBlocks is a fact-level function (details in Sec-
tion 4.2) and its semantics is quite straightforward: for a specific
binding of the function arguments that is part of its domain, a
value for b1 is produced. The function is in some sense polymor-
phic: depending on the type tn of the involved nodes, a specific
semantics is applied to decide the target cluster on the basis of
the node features. For example, if the node represents a person,
a specific algorithm may rely on last names or addresses; in case
of companies, the industrial sector may be relevant, and so on.

#GraphEmbedClust is a monotonic aggregation function. Ag-
gregation functions are adopted in various settings making use
of logical formalism and the need for a careful definition arises
in all of them, especially in the presence of model based seman-
tics [31]. Among the various types of aggregation that Vada-
log features [13], in our solutionwe adopt themonotonic one [37],
which respects monotonicity w.r.t. to set containment. Intuitively,
aggregation is provided in the form stateful fact-level functions,
which memorize the current aggregate value; subsequent invo-
cations of a function then yield updated values for the aggregate
so as that the “final value” is the actually desired aggregate value.
Thanks to monotonicity, such final value can be easily identified
as the minimum/maximum value. In order to decide the first-level
clustering for node x , the function #GraphEmbedClust takes as
input the node features, an edge e with its features, and the node
and edge types tn and te ; for a given node x , whenever the func-
tion is activated for a new edge e (notation ⟨e⟩ denotes that e
is such an aggregation contributor), a more accurate clustering
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is possible and a new, greater value for b1 is returned. In fact,
#GraphEmbedClust wraps the invocation of a node2vec primi-
tive (some details in Section 4.1), whose precision depends on
the portion of the graph that is available to it.

For every second-level cluster defined by a Block fact, Rule (2)
exhaustively considers all the pairs of nodes x and y and for
every possible LinkClass t (wrt our case many exist: Control,
CloseLink, ParentOf, PartnerOf, etc.); the Candidate predicate
(details in Section 4.3) is used decide whether a Link from x to
y must be produced or not. If the case, a new t-typed edge is
created. Observe that Rule (2) compares only the pairs of nodes
in the same sub-cluster (identified by b1 and b2).

Algorithm 4 Output mapping for the company PG.
(1) Link(z,x ,y),EdgeType(z,Control) → Control(x ,y).
(2) Link(z,x ,y),EdgeType(z,CloseLink) → CloseLink(x ,y).
(3) Link(z,x ,y),EdgeType(z, ParentOf) → ParentOf(x ,y).
(4) Link(z,x ,y),EdgeType(z, PartnerOf) → PartnerOf(x ,y).

Algorithm 4 is the output mapping, actually transforming the pre-
dicted edges back into the PG language. With reference to our in-
dustrial case, Rules (1) and (2) generate Control and CloseLink
links, respectively. Rules (3) and (4) exemplify possible family
links, and many more exist.

4.1 Clustering with Node Embeddings
Embeddings are mappings of real-world objects into high di-
mensional real-valued vectors that guarantee specific, e.g. geo-
metric, properties reflecting the semantic relationships between
the objects. Typically, embeddings are based on some similar-
ity or neighbourhood notion, like in word embeddings [6]. The
function #GraphEmbedClust in Rule (1) of Algorithm 3 imple-
ments a graph embedding, specifically a node embedding, that
is, mappings of graph nodes into vectors so that network node
neighbourhood is preserved. Specific algorithms learn node em-
beddings with different random walk strategies, resulting in the
optimization of different measures as a consequence. In the func-
tion we adopt node2vec [26], a particularly interesting embedding
which optimizes both network vicinity and network role of a
node. We map graph nodes into vectors with 128 dimensions, in
such a way that their distance preserves feature-based node sim-
ilarity as well as neighbourhood, e.g., the so-called “homophily”,
that is, nodes having the same friend nodes are considered similar.
We also apply a preliminary dimensionality reduction step based
on T-SNE (t-distributed stochastic neighbor embedding spectral
clustering) [35]. The #GraphEmbedClust is polymorphic in the
sense that depending on the types tn and te of involved nodes
and edges, it adopts different embedding strategies, which high-
light the topological peculiarity of the problem. For instance, it is
indeed common that persons having largely overlapping groups
of family members are in turn connected by a family relationship;
conversely, companies in hold of overlapping sets of shares of
other companies, tend to be part of the same group.

Clustering based on graph embeddings shows to be particu-
larly useful in the industrial cases at hand, since it includes in
the same clusters candidates that would be far in terms of their
descriptive features. This goes beyond the textual or numeric
features of companies and persons. Moreover, the interplay be-
tween different types of links is also interesting: for example,
it is our experience that people in hold of overlapping sets of
shares tend to be family members; vice versa, companies owned

by overlapping sets of people tend to be part of the same group.
The combination of quantitative features and structural graph
property is also noteworthy. People owning certain patterns of
shares of the same company tend to have family connections.

4.2 Generating Blocks
#GenerateBlocks in Rule (1) of Algorithm 3 reduces the search
space for link candidates by sub-clustering. In particular, the
function takes as input a vector of features of a node x (a person
or a company in our case), belonging to first-level cluster b1 and
returns the identifier b2 of a second-level cluster. Note that a care-
ful choice the features, feature engineering phase, is fundamental:
in Vada-Link, we modularize out this highly domain dependent
aspect into the specific implementations of #GenerateBlocks, so
that the overall solution is general and ad-hoc tuning is possible
whenever new business domains arise.

Vada-Link provides different pluggable implementations for
various domains. In most of the cases sub-clustering can be de-
termined on the basis of well-known hashing or partitioning
techniques. We support intuitive declarative specifications of
auxiliary functions in Vadalog as follows:

Hash(h, f1, . . . , fn ), Features(f1, . . . , fn ) → Ans(h).

Here, the Feature atom binds to the vector of features taken
as input by #GenerateBlocks; with a join with the Hash atom,
the functionally dependent hash value h is returned. The above
rule is clearly complemented by the set of facts defining the
underlying hash relation. Conventionally the Ans atom denotes
the function return value. Alternative implementations could be
based on Skolem functors as follows:

h = #Skh (f1, . . . , fn ), Features(f1, . . . , fn ) → Ans(h).

4.3 Generating Matching Candidates
The possible candidates to be linked are matched by the polymor-
phic Candidate predicate, which has different implementations,
depending on type of link to be predicted. Let us show how this
is applied in our cases.

Algorithm 5 Candidate predicate for company control.
(1) Node(x , f1, . . . , fn ),NodeType(x ,Company) →

Candidate(x ,x ,Control).
(2) Candidate(x , z,Control), Link(u, z,y,w)

EdgeType(u, Shareholding),msum(w, ⟨z⟩) > 0.5
→ Candidate(x ,y,Control).

The Vadalog rules in Algorithm 5 define candidate companies
to be linked by a control relationship, according to Definition 2.3.
Such relationship holds for a company on itself (Rule (1)); then,
whenever a company x controls a set of companies z that jointly
own more than 50% of a company y, then x controls y.

Algorithm 6 defines companies that are in close link relation-
ships (with threshold T ) according to Definition 2.6. Rule (1)
and (2) calculate accumulated ownership for companies x and
y, according to Definition 2.5. Rule (3) gives the base case for
close links: accumulated ownership greater than or equal to 20%
is a close link. Close links are symmetric, by Rule (4). Finally, if a
company z owns a significant share of both x and y, they are a
close link by Rule (5).
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Algorithm 6 Candidate predicate for close links.
(1) Link(z,x ,y,w),EdgeType(z, Shareholding) →

AccOwn(x, y,w).
(2) Link(u,x , z,w1),EdgeType(u, Shareholding),

AccOwn(z,y,w2),v = msum(w1 ·w2, ⟨z⟩)
→ AccOwn(x ,y,v).

(3) AccOwn(x ,y,w),w ≥ T → Candidate(x ,y,CloseLink).
(4) Candidate(y,x ,CloseLink) → Candidate(x ,y,CloseLink).
(5) AccOwn(z,x ,w1),AccOwn(z,y,w2),w1 ≥ T ,w1 ≥ T ,

→ Candidate(x ,y,CloseLink).

Algorithm 7 Candidate predicate for PartnerOf.
Node(x , f x1 . . . f

x
n ),Node(y, f y1 . . . f

y
n ),NodeType(x, Person),

NodeType(y, Person), #LinkProbability(fx
1 . . . f

x
n , f

y
1 . . . f

y
n ) >

T→ Candidate(x, y, PartnerOf).

Algorithm 7 defines a pair of candidate persons that have a family
connection. In the example, the function #LinkProbability imple-
ments Equation 3 of Section 2. Here we consider the “PartnerOf”
relationship, but similar algorithms are valid for all personal
connection types.

We are now able to extend company control and close link
detection to support the presence of families. For the sake of
space, we omit here Vadalog rules generating “Family” nodes F
and “Family” links connecting persons to their family.

Algorithm 8 Candidate predicate for family control.
(1) Node(F , f F1 , . . . , f

F
n ),NodeType(F , Family),

Link(z,x , F ),EdgeType(z, Family), Link(v, x, y),
EdgeType(v,Control) → Candidate(F, y,Control).

(2) Candidate(F ,x ,Control), Link(z, x, y,w),
EdgeType(z, Shareholding),msum(w, ⟨x⟩) > 0.5

→ Candidate(F ,y,Control).
(3) Link(u, i, F ),EdgeType(u, Family),

Link(z, i,y,w),EdgeType(z, Shareholding),
msum(w, ⟨i⟩) > 0.5→ Candidate(F ,y,Control).

Rules (1) Algorithm 8 implement condition (i) of Definition 2.8,
while Rules (2) and (3) implement condition (ii) by accounting
for the contribution on y of both the companies x controlled by
F and the direct ownership of members of F . Technically, the
two monotonic summations of Rules (2) and (3) contribute to the
same total, one for each ⟨F ,y⟩ pair.

Algorithm 9 Candidate predicate for family close link.
(1) Link(z, i, F ),EdgeType(z, Family),

Link(k, j, F ),EdgeType(k, Family), i , j,
AccOwn(i, x, v), v ≥ 0.2, AccOwn(j, y,w),w ≥ 0.2,

→ Candidate(x ,y,CloseLink).

Finally, Algorithm 9 extends Algorithm 6 and implements part (ii)
of Definition 2.9.

4.4 Discussion
We conclude the section with some informal arguments about
termination, correctness and properties of our approach. I.e.,
Algorithms 2, 3 and 4 terminate and, in particular, Algorithm 3
correctly adds the required edges as defined in Algorithm 1.

Termination. As we have touched on in Section 3, the semantics
of a set of existential rules Σ is given by the chase procedure,
where new facts are added to database D (the extensional com-
ponent), until Σ(D) satisfies all the rules. We argue that in our
case Σ(D) is always finite.

• Algorithms 2 and 4 are non-recursive, therefore each rule adds
a finite number of facts to Σ(D), because of the finiteness of the
extensional component.
• Algorithm 3 is recursive, as Links generated by Rule (2) appear
in the body of Rule (1) –edges recursively improve the embed-
dings. The number of Links that can be generated by Rule (2) is
finite and, in the worst case, it amounts to |N |2×C , where N are
the PG nodes andC is the number of possible link types. There-
fore, Rule (2) produces a finite number of facts in Σ(D), up to
renaming of link identifiers z. Technically, the Vadalog chase
procedure applies isomorphism check to prevent the generation
of redundant facts. Therefore, Rule (1) produces a finite number
of clusterings ⟨b1,b2⟩, since it can fire in the worst case for
every single edge in E plus all the ones introduced by Rule (2).
Therefore Algorithm 3 always terminates.
• Special care must be paid in the specific polymorphic imple-
mentations of the Candidate predicate. Observe that in our
settings, Algorithms presented in Section 4.3, in the worst case
enumerate all the graph paths, and so always terminate.

Correctness. Let us show that each element (e.g., a company or
a person) is correctly assigned to a single cluster and pairwise
comparison is correctly performed inside each of them and for
all possible link classes, as defined in Algorithm 1.

• The nested clustering is produced by the joint use of functions
#GraphEmbedClust and #GenerateBlocks within Rule (1) of Al-
gorithm 3. They are both applied to each node and the generated
identifiers, b1 and b2, appear as terms the head of Rule (1) as
well as the node x . As a consequence, because of set semantics,
every node x is assigned to a unique pair ⟨b1,b2⟩.
• In the body of Rule (2) of Algorithm 3, the two Node atoms
operate on all pairs of nodes ⟨x ,y⟩ such that x and y share the
clustering configuration ⟨b1,b2⟩. Therefore, no other elements
are involved in the comparison performed by the Candidate
predicate. Moreover, Rule (2) fires for each possible class t of
LinkClasses and so, eventually, all possible triples ⟨x ,y, t⟩,
with ⟨x , t⟩ in the same cluster are evaluated.

A broader consideration of the overall correctness and complete-
ness of the approach applied to the specific problems over com-
pany ownership graphs is necessary. All the implementations
of the Candidate predicate we presented in Section 4.3 are de-
terministic, in the sense that they apply a priori conditions that
encode the domain knowledge and produce a linking decision.
Clearly, Candidate may be implemented as a statistical model,
but still, this decision remains deterministic. The specific config-
uration of the clustering mechanism, i.e., the specific implemen-
tations of #GraphEmbedClust and #GenerateBlocks, determines
which pairs of nodes are considered by Candidate and, as we
will see in Section 6, this is the main key to achieving scalability.
Hence, if two nodes x and y are supposed to be connected by a
t-typed edge e and the recursive clustering mechanism always as-
signs them to different blocks, the final result will not be complete
and miss e . It is the responsibility of the data engineer to strike
an acceptable balance between completeness and granularity of
clustering from case to case.
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Finally, observe that the correctness of the links predicted
by Vada-Link depends on the correctness/statistical robustness
of the single implementations of Candidate, which is problem
dependent and out of the scope of this paper.

Complexity. In the average case, clustering allows for linear
behaviour, as we experimentally show in Section 6. In the worst
case, i.e., all nodes are assigned to the same cluster, the approach
performs |N |2 ×C comparisons, where N are the nodes in the
extensional components andC the number of possible link types.
However, with highly dense graphs, complexity is dominated by
that of #GraphEmbedClust since node2vec has quadratic com-
plexity in the graph branching factor [33]. Also, the complexity
of the specific implementations of Candidate must be taken
into consideration from case to case, as it could be dominating,
for example with problems that require path enumeration. Full
complexity characterization of company graph problems is be-
yond the scope of this paper. However, we point out that the
complexity of Candidate can be controlled by a careful choice
of the sub-fragment of Vadalog language. In fact, if the task is
described in Warded Datalog±, the fragment at the core of the
Vadalog language, there is the formal guarantee of polynomial
complexity [12].

Properties of the approach. Our approach is schema and model
independent. It is schema independent in the sense that Vada-
Link is able to perform KG augmentation regardless of the spe-
cific input PGs. This independence is achieved by means of a
preliminary “promotion” of the relational representation of the
extensional component into a generic graph model (Algorithm 2),
with abstract constructs (nodes, edges, features, types). The link
prediction logic is then applied within the generic graph, with
specific polymorphic implementations of Candidate for each
problem, encoded in Vadalog in terms of these high-level con-
structs. In this sense, the approach is also problem aware. Finally,
the generated links are mapped again into the specific graph
schema with Algorithm 4.

The approach is model independent in the sense that the exten-
sional component can originate from heterogeneous data sources,
even based on different data models (relational, object oriented,
XML, NoSQL models), under the condition it can be imported
into the relational representation of PGs described in Section 3.

Finally, it is worth remarking that our prediction technique is
based on a kind of reinforcement principle because the positively
predicted edges in turn help new predictions. In fact, the first-
level clustering in Algorithm 3 is gradually improved with new
edges being considered from both the ground ones and those
generated by Rule (2).

5 THE ARCHITECTURE OF VADA-LINK
The development of enterprise applications using KGs is still
a largely unexplored area and design methodologies as well as
architectural patterns are gradually emerging. In [10], we pro-
posed a set of architectural principles for the design of KG-based
applications; in the following, we briefly motivate how those
principles are satisfied by Vada-Link architecture.
• Assign the immediately known, original information to the ground
extensional component of the KG. In fact, Algorithm 2 embod-
ies the construction of a property graph exactly holding the
information available in the company database. Besides the
simple mapping, we clearly perform data cleaning and quality
enhancement steps, whose details are omitted in this work.

• For the schema design of the extensional component, adopt well-
known conceptual modeling techniques. In Vada-Link, we pro-
vide a relational representation of the extensional data (Sec-
tion 3) that respects consolidated design and data normalization
practices: relevant entities, persons, ownerships and companies
in the case at hand, reflect into standalone relations, incorpo-
rating identifiers as well as the specific features as attributes.
• Use extensional rules to model sophisticated and reasoning inten-
sive business rules. We represent the logic needed to generate the
links in the form of declarative specifications. More concretely,
with respect to the company KG, we consider multiple kinds of
links (close links, company control, family relationships) and
for each of them propose a Vadalog program representing it.
• Keep business logic in the applications (do not let it drift into the
KG intensional component). We carefully separate the business
logic of the client applications, that is, the software components
using our KG for internal purposes (e.g., economic research,
anti-money laundering, etc.) from any logic needed to generate
the links. The Vadalog rules represent only the latter, whereas
the application business logic resides within the application
components. We choose not to implement each polymorphic
variant of generation of clusters and evaluation of matching
candidates (Sections 4.2 and 4.3) in a dedicated software mod-
ule. First, such module would be highly coupled to data and
hardly explainable or modifiable; more in general, the advan-
tages of declarative approaches in the KG realm are largely
acknowledged [30]. In our case, the adoption of logic-based
rules appears particularly effective under three perspectives.
Understandability: it is our experience that business users ap-
proach and appreciate human-readable rules instead of pure
code; modifiability: given by the combination of high abstrac-
tion level and compactness of code (20-30 lines ofVadalog rules
against 1K+ lines of Python code for the three cases at hand);
IT independence: avoiding the strong coupling to a specific pro-
gramming language.

Figure 3 shows the full functional architecture of Vada-Link. Its
goal is building a KG from an existing source database. To this
aim, data fetched from the RDBMS are enriched with features
and extensions from external sources, with common ETL jobs.

The enriched dataset is then used as input to build the ex-
tensional component of the KG, that is, the property graph.
Our graph-building pipeline takes as input an arbitrary database
schema and maps it into the relational representation for PGs
described in Section 3. The property graph is stored into a Neo4J
server. The set of Vadalog rules in Algorithms 2, 3 and 4 are
stored into a dedicated repository and executed by Vadalog.
Enterprise applications interact with the KG via a reasoning API.
Full details about Vadalog architecture are in [14].

6 EXPERIMENTS
In this section, we provide an experimental evaluation our ap-
proach to KG augmentation. The goal of the section is to high-
light the scalability and accuracy of the overall approach in Vada-
Link and not focussing on the specific Vadalog implementations
of the three problems. In fact, out of the three KG augmentation
problems we have presented, for the goal of this section we con-
centrate on the detection of family connections, which is at the
same time straightforward but helpful to stress the system. Spe-
cific performance tests on complex reasoning tasks, including
company control, can be found in [12, 14].
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Figure 3: The functional architecture of Vada-Link.

We validate Vada-Link on both real-world and artificial data,
showing that it exhibits good scalability and accuracy.

Datasets. The real-world data we use in the following experi-
ments is the database of Italian companies of Banca d’Italia, as
described in Section 2. For the synthetic data, we developed a
graph generator. In particular, since company networks tend to
be scale-free networks (see Section 2), we built different artificial
graphs by adopting Barábasi algorithm [8] for the generation of
scale-free networks, varying the number of nodes and the graph
density. For each node, we randomly generated 6 features, out of
distributions respecting their statistical properties.

Software and hardware configuration. We ran the experi-
ments on a MacBook with 1.8 GHz Intel Core i5 and 4 GB 1600
MHz DDR3 memory. Vada-Link has been compiled with JDK
1.8.0_4 and clustering functions executed with Python 3.2.3.

6.1 Evaluating Scalability
We tested the scalability of Vada-Link in a number of settings,
varying both the graph topology (e.g., number of nodes, density)
and the data distribution, inducing different clustering structures.

Varying number of nodes. We investigate the impact of the
number of nodes on the performance of Vada-Link. For the real-
world case, we built 20 scenarios with subsets from the Italian
company graph presented in Section 2, with ≈ 1-100k nodes
representing persons. In order to stress the system even more
with synthetic data, we built 6 artificial graphs with≈ 1-10k nodes,
having the same scale-free topology as the real-world graphs, but
much higher density. We performed each experiment 10 times
and averaged the elapsed times.
Results. The results for real-world data are reported in Figure 4(a).
Vada-Link shows good scalability: execution time (blue line)
grows slightly more than linearly with the number of nodes and
remains under 20 seconds for 10k nodes. The trend is significantly
far from quadratic growth, which we would expect with the naive
approach consisting of exhaustive all-pairs comparison (red line).
Figure 4(b) shows the results for synthetic data. Although the
elapsed times are higher by one order of magnitude, which we
explain with the highly dense topology of the generated artificial
data, the trend is still linear and the approach effective.

Varying the number of clusters. We seek to observe the im-
pact of the number of clusters on the overall execution time. To
this end, we crafted a real-world-like experiment adopting the
company graph presented in Section 2 and artificially tweaking
the value of some features. As we have illustrated in Sections 4.1
and 4.2, our clustering technique is based on a recursive com-
bination of node2vec (first-level clustering) and feature based
blocking (second-level clustering); in particular, in Section 4.2
we have shown that the assignment to a second-level cluster is
decided on the basis of a deterministic mapping –via hashing
or Skolem functors– of a feature vector f1, . . . , fn into a cluster
identifier. In this experiment, we alter the value of k of such n
features in order to hijack the mapping into an increasing num-
ber of clusters of decreasing size and observe how this affects
elapsed time. We extract values for the vector f1, . . . , fk from a
discrete multivariate uniform distribution over the sample space
S1, . . . , Sk . To induce more (fewer) and smaller (bigger) clusters,
we restrict (expand) the cardinality of the domain of S1 × . . .×Sk .
Specifically, we mapped f1, . . . , fn into ≈ 1-500 clusters.

Results. Figure 4(c) confirms that, as usual in clustering approaches,
effective application of Vada-Link calls for a careful feature engi-
neering phase: the selectivity of the features, i.e., the number of
distinct values in the domain, and the cardinality of their domain
affect the number and size of the clusters. For example, searching
for the “siblingOf” relationship among people of the same last
name and age range, would lead to clusters including thousands
of persons, since certain last names are notably more common
than others. Resorting to specific features, for example address
vicinity or geographic area, could highly reduce the search space.
Also, while the above considerations are somehow intrinsic and
common to any clustering approach, in Vada-Link, the adoption
of a hybrid node2vec/feature-based clustering combined within
a recursive self-improving approach make it easier to strike a
good balance between number of clusters (and hence elapsed
time) and recall, as we shall see in Section 6.2.

Varying the density. In this experiment we investigate the im-
pact of the density of the graph on the performance ofVada-Link.
To this end, we built 4 artificial scenarios, superdense, dense, nor-
mal, sparse, corresponding to graphs of increasing density, and
measured execution time for subset of these graphs of 1-1k nodes.
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Figure 4: Analysis of Vada-Link execution time, depending on: (a) number of nodes in the graph (real-world data from
the graph of Italian companies); (b) number of nodes in the graph (synthetic data); (c) number and size of the clusters
(real-world data); (d) graph density (synthetic data). Analysis of Vada-Link recall, depending on: (e) number and size of the
clusters (synthetic data).

Results. The results, shown in Figure 4(d), highlight that the
performance of Vada-Link is influenced by the density of the
considered graph. In particular, we notice an increase of the
elapsed times, especially significant for more than 500 nodes.
For lower values, sparse, normal and dense show similar trends,
whilst superdense is slower, with ≈30 seconds for 500 nodes. The
trend is amplified for greater values, with superlinear growth
for dense and superdense. While for second-level clustering,
#GenerateBlocks in Algorithm 3 is not affected by node den-
sity by construction, since it only considers node features, both
first-level clustering (#GraphEmbedClust) and the implementa-
tions of Candidate predicate are. Node2vec needs to process a
number of random walks that grows with the density; neverthe-
less, once a density is fixed, it scales almost linearly with the
number of nodes, as also experimentally shown in [26]. Also
the behaviour of Candidate is highly dependent on the con-
sidered KG augmentation problem. For example, detection of
family connections have good scalability w.r.t. density as evident
in Figure 4(d). Company control and close link detections are
more challenging (specific experiments in [12, 14]). Nevertheless,
thanks to clustering, Vada-Link can achieve good behaviour also
in this case, clearly at the cost of loss in accuracy.

6.2 Evaluating Accuracy
As typically done in the validation of link prediction settings [26],
we consider a graph with some edges arbitrarily removed; then,
it is our goal to predict those missing edges and in so-doing we
are interested in recall, i.e., how many of those removed edges we
have recovered. We wish to infer the connections that need to be
present and whose definitions are expressed by the polymorphic
but deterministic implementations of the Candidate predicate,
for example, Algorithm 7.

In some settings, Candidate implements certain models, like
in the case of company control and asset eligibility, for which we
would just need to discuss correctness from case to case; in others,
Candidate encodes a classification model, for which the usual
validation methodologies (confusion matrix, accuracy, precision,
recall, ROC, AUC, etc.) would be valuable. This is indeed the case
of the detection of family connections, our third setting. However,
our goal here is not to concentrate on the statistical properties
of specific link prediction models: in fact, besides our simple
but effective Bayesian approach, more sophisticated models can
be plugged in into Vada-Link, each with specific fine tuning.
Instead, here our interest is in evaluating the overall tradeoff
between scalability and recall.

Varying the number of clusters. We seek to observe the im-
pact of the number of clusters on the recall of Vada-Link. We
artificially built 10 random graphs Si (with 1 ≤ i ≤ 10) having
the same number of nodes, topology and features as the real-
world graph presented in Section 2. For each of them, we ran
Vada-Link in “no cluster mode”, that is, we forced the system to
concentrate all nodes inside one single cluster in order to pro-
duce all the theoretically possible links by means of the naive
exhaustive comparison. Therefore, for each subgraph Si we pro-
duced an augmented one Ŝi . Then, from each Ŝi , we randomly
selected 10 edge sets Θi j (with 1 ≤ j ≤ 10), each containing 20%
of the predicted links and generated new subgraphs SΘi j without
those edges. For each SΘi j we ran Vada-Link by varying the
number of clusters with 20 configurations from 1 to 500, with
the technique described in Section 6.1. For each case and cluster,
we obtained an augmented graph ŜΘi j and computed the recall
Ri jc as the fraction of edges cardinality |E(ŜΘi j )|/|E(Ŝi )|, that is,
the percentage of removed edges that have been recovered. For
each of the 20 clusters, we averaged the 100 computed recall Ri j .
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Results. Figure 4(e) shows how recall decreases with the number
of clusters: It is clearly maximum for the single cluster case; then,
the recall obtained for 20 clusters, 99.4%, is certainly acceptable
for our use cases and, in general reasonable for industrial settings
in ownership graphs. We then observe 98.6% for 50 clusters and
the approach becomes ineffective for more than 400 clusters, with
a recall steadily under 50%. A comparison with Figure 4(c) is inter-
esting and confirms that with more than 10 clusters, processing
time is under 10 seconds. This implies that for our case, an effec-
tive balance between efficiency and recall is between 10 and 20
clusters. More generally, Figure 4(e) shows a slow decrease of re-
call, which proves the robustness of Vada-Link. We explain that
with the recursive interaction between first- and second-level
clustering we have in Algorithm 3. Whenever in a second-level
cluster new links are predicted, they are used by the aggregate
function #GraphEmbedClust to improve the embedding and pro-
vide better first-level grouping and, as a consequence, increase the
likelihood that in the second-level clustering, #GenerateBlocks
considers new candidates. In other words, the recursive interplay
between the two clustering functions compensate for increases
in the number of clusters and contributes to a favourable balance
between scalability and recall.

7 CONCLUSION
Company ownership graphs confront us with several problems,
relevant in the financial realm. Discovering company control, rea-
soning on asset eligibility or finding out family connections are
three interesting examples we focus on in this paper, motivated
by the construction of the Enterprise Knowledge Graph of Banca
d’Italia. Many more such settings exist, all with the common goal
of enriching the company graph with new links. The need for
actionable solutions is felt by the the national central banks of
the European system, the national statistical offices and many
more financial authorities

In this paper, we proposed Vada-Link, a new approach for the
creation of valuable links in company graphs that leverages the
vast amount of domain knowledge typically present in financial
realm. On the basis of recent developments in the KG research
area, we model the input graph as the extensional component of
a logic-defined KG, where domain knowledge is encoded in Vada-
log and link prediction is operated as a reasoning task within the
KG. We discussed several favourable properties of our approach,
which is general and applies to different data models and schemas.
We also discussed the architecture of Vada-Link and provided
experimental evaluation, highlighting good performance. We be-
lieve that with Vada-Link we are shedding light on problems of
the financial realm that have specific scientific relevance per se
and a graph- and logic-based view on them can certainly con-
tribute to their full characterization.
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ABSTRACT
Medical knowledge bases (KBs) are known to be vital for tasks like
clinical decision support and medical question answering, since
they provide well-structured relational information between en-
tities. One of the main challenges for querying a medical KB is
the mismatch between the terms in the KB and the colloquial
and imprecise terminology used in user queries. To address this
challenge, we propose a domain-specific query relaxation ap-
proach that leverages rich medical domain vocabularies and their
semantic relationships from external knowledge sources, such as
taxonomies, ontologies, and semantic networks, to expand the
vocabulary of KBs. Our main goal is to expand both the set of
queries that we can answer, as well as the set of answers to the
queries, over the medical KB. We introduce a lightweight adapta-
tion method to customize and incorporate external knowledge
sources to work with the existing KB, and propose a novel simi-
larity metric to leverage the information content in the KB, the
structural information in the external knowledge source, and the
contextual information from user queries. We implement our pro-
posed techniques for a medical KB, and use SNOMED CT as the
external knowledge source. We experimentally demonstrate the
effectiveness of our proposed method and the improved quality
of query results in terms of both precision and recall, compared
to state-of-the-art approaches. Finally, we conduct user studies to
evaluate how much a conversational interface can benefit from
our proposed method in terms of its query capability on the
medical KB.

1 INTRODUCTION
Medical knowledge bases (KBs) provide structured information
about medical entities (such as drugs and diseases) and their rela-
tionships, which are invaluable in medical applications. Such KBs
are often created from medical information sources, including
medical literature, patient data, claims data, etc, and offer deep do-
main specialization with rich and detailed information, which is
known to be vital for domain-specific tasks like clinical decision
support and medical question answering. The medical KBs are
different from cross-domain large-scale KBs such as DBpedia [5]
and Freebase [9] which provide well-structured, encyclopedic
knowledge but with less detail and precision.

When querying medical KBs, the users do not always formu-
late their queries precisely to match the terms in the KB, espe-
cially when they use natural language. For example, users are
likely to use informal words, phrases, or abbreviations of certain

*Rebecca Geis is currently a graduate student at Technische Universität Darmstadt.
© 2020 Copyright held by the owner/author(s). Published in Proceedings of the
23nd International Conference on Extending Database Technology (EDBT), March
30-April 2, 2020, ISBN 978-3-89318-083-7 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

terms in their natural language queries, which makes match-
ing the mentioned entities to the medical KB a non-trivial task.
Query relaxation [18] is one of the most prominent techniques
used for query answering, allowing more domain-specific terms
in user queries. Instead of returning no or incomplete answers,
query relaxation can transform the query in a way that the user’s
intent is better represented, greatly improving the flexibility and
usability of a medical KB.

The problem of query relaxation has been extensively studied
in information retrieval and database systems with the goal of
returning information beyond what is specified by a standard
query [17, 26]. However, the techniques, traditionally designed
for formally defined query languages such as SQL, cannot handle
the complexity from natural language queries that involve com-
plex semantic constraints and logic [37, 43]. Hence, they often
fail to ensure query answering with high precision and recall.
Recent work [3, 8, 14] demonstrated that deep learning models
built at word or sentence level can be used for semantic simi-
larity estimation. However, these methods demand high-quality
training data, which is critical and expensive in reality.

In this paper, we focus on a medical KB (MED) which con-
tains medication, disease and toxicology information to support
informed diagnosis and treatment decisions for evidence-based
clinical decisions and patient education. We observe that this
and similar medical KBs can be further enriched by external
knowledge sources, such as medical ontologies, taxonomies, and
semantic networks (e.g., Unified Medical Language System [40],
SNOMED Clinical Terms [38], and Gene Ontology [12]). These
knowledge sources can be exploited by query relaxation to ex-
pand query answers.

We introduce a novel query relaxation method that leverages
rich domain vocabularies and their semantic relationships from
external medical knowledge sources, which largely consist of sub-
sumption relationships (e.g., A ⊑ B, where A and B are concepts
in the external knowledge source). We first find the concept corre-
sponding to a given query term in the external knowledge source,
and then relax the term by exploring the concept’s neighborhood
to identify semantically related concepts.

The rich domain vocabulary and structural information of
external knowledge sources empower query relaxation to gener-
alize or specialize query terms beyond syntactic matching. How-
ever, external knowledge sources such as SNOMED CT are often
not customized to the application’s requirements. Using external
knowledge sources without proper adaptation may introduce
semantically unrelated information into the results, leading to
low precision and recall. To provide high-quality results, a query
relaxation method has to address the following challenges.

External knowledge source ingestion. External knowledge
sources are often comprehensive, consisting of an excessive
amount of information describing a domain. The given KB is
often substantially smaller than the external knowledge sources.
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This makes it challenging to identify semantically related results
from the external knowledge source. For example, given a query
“what drugs treat pertussis”, there might be no drug directly as-
sociated with “pertussis” in the given KB. Instead, a generalized
clinical finding, “bronchitis”, in the KB has corresponding drug
information. However, the distance (i.e., the number of hops)
between “pertussis” and “bronchitis” in SNOMED CT is large,
making it difficult for query relaxation to identify the seman-
tic similarity between the two terms. Worse yet, many findings
closer in distance but not semantically related might be returned
as well, causing low-precision results.

Exploiting the query context. Contextual information has
significant impact on the semantic correctness of the relaxed re-
sults. For example, a user may ask “what drugs treat psychogenic
fever”, in which case the context is “treatment” and “psychogenic
fever” is a query term in the given medical KB. This term appears
in SNOMED CT as the name of a clinical finding, with both “hy-
perpyrexia” and “hypothermia” being similar findings. However,
in the context of “treatment”, drugs for “hypothermia” should not
be returned, as “hypothermia” is the opposite of “hyperpyrexia”
and “psychogenic fever”.

To address these challenges, we propose a novel two-phase
query relaxationmethod, consisting of external knowledge source
ingestion phase and the online query relaxation phase. We im-
plemented our techniques for the medical KB (MED), and used
SNOMED CT as the external knowledge source. The main con-
tributions of this paper are as follows.
•We present a lightweight, yet effective offline ingestion pro-

cess that customizes the external knowledge source to the given
KB.
•We propose a novel similarity metric to identify semantically

related concepts, leveraging (i) the information content in the
KB, (ii) the structural information in the external knowledge
source, and (iii) the contextual information from the user query.
•We introduce a programmaticway to incorporate ourmethod

into two state-of-the-art systems, a conversational system [21]
and a natural language query (NLQ) system [23, 35] for the med-
ical KB, using SNOMED CT as the external knowledge source.
• Our experiments show that our query relaxation method for

the medical KB outperforms state-of-the-art methods, including
deep learning-based ones, in precision and recall.We also conduct
a user study demonstrating how our query relaxation method
improves the response quality of a conversational system.

Outline. The rest of the paper is organized as follows. In Sec-
tion 2, we introduce the basic concepts used in this paper, and
in Section 3, we provide an overview of our query relaxation
approach. Section 4 describes context generation, extraction, and
management. Section 5 introduces our query relaxation method
in detail. We explain how to integrate our query relaxation tech-
nique into two natural language interface systems in Section 6,
and provide experimental results in Section 7. We review related
work in Section 8, and conclude in Section 9.

2 BACKGROUND
2.1 Knowledge Base
Following the standard notation of description logic [6], we as-
sume that a KB is given in the form of TBox and ABox. In this
paper, TBox is referred to as domain ontology and ABox is referred
to as instances or data.

The domain ontology describes the concepts relevant to the
domain, and the relationships (roles) among different concepts.

The concepts associated with a relationship are provided by the
domain (i.e., source) and range (i.e., destination) constraints of
this relationship. The context of a query term used in a query can
be represented by a relationship and its associated concepts from
the domain ontology.

Figure 1 shows a fragment of a sample medical domain ontol-
ogy. The concept “Finding” connects to both concepts “Indication”
and “Risk” through the relationship “hasFinding”. This shows that
“Finding” can be potentially used in two different contexts (i.e.,
Risk-hasFinding-Finding and Indication-hasFinding-Finding). Two
example queries could be “which drugs have the risk of causing
diabetes” and “which drugs treat diabetes”, where the query term
is “diabetes”.

treat

forDrug

hasFinding

hasFinding

forIndication

Drug General 
Dosage

IndicationFinding

Risk

Contra
Indication

BlackBox
Warning

Adverse
Effect

⊑

Concept

Relationship

cause

⊑

⊑

Figure 1: Snippet of a medical ontology.

The instances (data) of the given KB are stored separately for
query answering as shown in Figure 3. For example, “fever” and
“renal impairment” are two instances of “Finding”. We assume that
our input is in the form of a query term and its associated context.
Following the previous example, the input to our query relaxation
method would be [diabetes, Risk-hasFinding-Finding] or [diabetes,
Indication-hasFinding-Finding]. Recent technologies [1, 21, 28]
have been designed to extract the contextual information from
natural language questions. In this paper, our method is inte-
grated with Watson Assistant [21] to receive the contextual infor-
mation, and finds semantically related instances for a given query
term with high precision and recall. We provide more details on
how we bootstrap the conversation space in Section 4.

2.2 External Knowledge Source
In this work, we utilize the rich medical domain vocabularies and
their semantic relationships from external knowledge sources
such as ontologies, semantic networks, and knowledge graphs.
In particular, we are interested in the subsumption relationships
in the form of A ⊑ B, where A and B are concepts in the ex-
ternal knowledge source. In this case, we say that A specializes
B, and that B generalizes A. We refer to the direct and implied
(by transitivity) specializations of a concept A, excluding A, as
the descendants of A. We assume that the external knowledge
source is a directed acyclic graph (DAG), in which a top concept
(owl:Thing in OWL) is the root and every concept is a descendant
of the root. To avoid confusion with the concepts of the domain
ontology, we refer to the concepts in the external knowledge
source as external concepts.

2.3 Semantic Similarity Measures
Semantic similarity measures estimate the similarity between
concepts, and are commonly used in various processing tasks
(e.g., entity resolution [10, 15], link prediction [27], change detec-
tion [22]). The knowledge-based approach to semantic similarity
exploits taxonomies like WordNet. Typically, path finding mea-
sures and information content (IC) measures are two common
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categories in knowledge-based approaches [19]. In addition to
a knowledge source, the IC approach can leverage a frequency
value f req(A), accounting for the number of times a concept A
is mentioned in a document corpus, to compute the similarity
between concepts. Specifically, the IC of a concept A is defined
as the inverse of the log of the concept’s frequency [25, 34]:

IC(A) = −loд(f req(A)), (1)
where f req(A) is recursively defined as:

f req(A) = |A| +
∑
Ai ⊑A

f req(Ai ), (2)

with |A| being the number of times concept A is directly men-
tioned in the document corpus, and Ai being the direct descen-
dants ofA in the taxonomy. The intuition is that the more general
a concept is, the more likely it is that the concept or its descen-
dants appear in the corpus. We describe how we compute this
equation in the next section.

The IC-based similarity measure compares the IC of a pair of
concepts to the IC of their Least Common Subsumer (LCS)1. The
greater the IC of the LCS (i.e., the more specific the LCS), the
more similar is the pair of concepts:

simIC (A,B) =
2 × IC(lcs(A,B))
IC(A) + IC(B)

. (3)

In general, the IC similarity measure is shown to outperform
other approaches on various semantic similarity benchmarks [2,
19, 29]. Hence we adopt the above IC similarity measure and
further integrate it with the structural information in the external
knowledge source, as well as the contextual information from
the natural language query.

3 APPROACH OVERVIEW
In this section, we provide an overview of our query relaxation
method, as shown in Figure 2. We propose a two-phase approach:
an offline phase, in which we construct context specifications,
as well as incorporate an external knowledge source into the
given KB, and an online phase, in which we take a query term
associated with a context, and return the semantically related
results as answers for the query.

Offline phase. In the offline phase, also called external knowl-
edge source ingestion, we perform the following tasks: (i) we
initialize a set of possible contexts based on the domain ontology,
and optionally generate training examples for context classifica-
tion (if needed by natural language interface (NLI) system), (ii)
we compute the frequency of each external concept in the ex-
ternal knowledge source with respect to the associated contexts,
and (iii) we generate mappings between instance data in the
knowledge base and external concepts in the external knowledge
source.

To initialize the set of possible contexts, we traverse the do-
main ontology and return all the relationships, along with their
source and destination concepts. Those relationships constitute
the set of possible contexts, which we provide to the NLI system.
We can also provide labeled data for training a context classifier
in the NLI system if required (described in Section 4).

To compute the frequency of each external concept, we lever-
age the document corpus from which the given knowledge base
1A LCS of two concepts always exists in the external knowledge source. When
multiple LCSs exist, we choose the one with the shortest path to the pair of concepts.
If multiple LCSs have equal distance to the pair of concepts, we use the average IC
of these LCSs for the similarity measure.

Query Relaxation

Knowledge 
Base

External Knowledge 
Source

mapping

Conversational
System

Natural Language
Query System

[query, context]answer

Natural Language Interface Systems

Figure 2: Approach overview.

is curated. Additionally, we differentiate the frequency of the
external concepts with respect to different contexts, as described
in Section 5.1.

To map the instance data from the given KB to the external
concepts in the external knowledge source, we provide three al-
ternative methods, depending on the accuracy requirement from
the application. Specifically, these methods include matching
the instance data and external concepts with exactly the same
names (exact match), very similar names in terms of edit distance,
or similar names in terms of word embeddings, as described in
Section 7.2.

Online phase. In the online phase, also called online query
relaxation, we receives as input a [query term, context] pair and
perform the following tasks: (i)we search for an external concept
Q corresponding to the query term in the external knowledge
source, and (ii) we retrieve the top-k similar external concepts
having corresponding matching instances in the KB to Q as the
answers.

To identify an external concept Q that corresponds to the
input query term, we follow a similar process used in the of-
fline external knowledge source ingestion: we identify Q as the
external concept whose name either matches with the exact
query term, or is very similar in terms of either edit distance
or word embeddings. Additionally, several knowledge sources
(e.g., SNOMED CT2, DrugBank3, DBpedia4) may offer a more
sophisticated lookup service, which we can also utilize to find
such mappings.

Finally, having identified the external concept Q that corre-
sponds to the input query term, we retrieve its top-k similar
external concepts that have corresponding instances in the given
KB. For the similarity computation, we leverage the information
content from the KB, the structural information in the external
knowledge source, as well as the contextual information from
the query, as described in Section 5.2.

2https://browser.ihtsdotools.org/
3https://www.drugbank.ca
4https://github.com/dbpedia/lookup
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4 CONTEXT SPECIFICATION
As explained in Section 2.1, the context can be represented by a
relationship and its associated concepts from the domain ontol-
ogy. In this section, we provide a brief overview of: (i) how our
method provides the necessary information that an NLI system
requires for context recognition, and (ii) how the conversational
context differs from simple question answering. We note that the
process of context recognition is orthogonal to our method, and
we refer the reader to [33] for more details.

Context generation and extraction. Context reflects the
intent or goal expressed in the user query/input5. NLI systems
typically use a learning-based model to identify the intent for a
given user query within the current conversation. As a conse-
quence, most of these systems require as input the specification
of all possible contexts expected in a given workload with labeled
query examples for training the intent classifier. These contexts
are usually based on (i) the purpose of the application and the
scope of questions that it intends to handle, (ii) the anticipated
set of questions that the users might ask within the scope of the
application.

To feed suchNLI systemwith training data, we need to follow a
two-step process. The first step is to generate all possible contexts,
based on the domain ontology. For this step, we traverse the
domain ontology and extract all relationships, along with their
associated concepts, i.e., their source and destination concepts.
Since a context can be represented by a relationship, we define
the set of possible contexts (i.e., possible labels for training data)
as the set of relationships.

The second step is to associate a query workload to the gener-
ated contexts. There are different options for this step, which go
beyond the scope of this work. One simple approach is to retrieve
an existing query workload, and ask domain experts to label each
query in the workload with the most relevant context. Once we
have such an annotated query workload, we can either stop the
process here, or we can further enrich the query workload. For
enriching the query workload, we can replace identified instances
with other instances of the same concept. For example, we can
generate more queries in our workload from a given query “what
drugs treat fever”, labeled with the context Indication-hasFinding-
Finding), by replacing “fever” with other instances of “Finding”,
such as “headache”, “sore throat”, and “pain in throat”.

The result of this two-step process is a set of queries, each
labeled with a context, which we can provide to a NLI system as
training data for context recognition.

Context management. In Figure 2, we show two alternative
NLI systems that can benefit from our query relaxation method.
The main difference between a conversational system and a nat-
ural language query system is that the latter can be stateless.
Namely, a conversational system needs to keep track of the con-
versational flow, i.e., the state of the dialogue and its history.
This way, the current context can be inferred from the previous
state, even if not explicitly mentioned in the current query. For
example, if the current query is “what about fever?”, there is no
clear context, if this query is processed individually. However, if
it is processed as part of a conversation, in which the previous
query was “which drugs treat diabetes”, then a conversational
system can infer that the previous context Indication-hasFinding-
Finding) remains unchanged. More details on that subject can
be found in [23]. On the other hand, a natural language query

5We use the terms context and intent interchangeably in this section.

system typically handles contexts in one-shot queries without
considering previously asked queries.

5 QUERY RELAXATION METHOD
Our query relaxation method has two phases, the offline external
knowledge source ingestion and the online query relaxation. In
this section, we first focus on describing how to customize and
incorporate an external knowledge source into the given KB,
and then we show how to use the adapted knowledge sources in
online query relaxation.

5.1 External Knowledge Source Ingestion
The external knowledge source ingestion addresses the following
two issues. First, we need to count the frequency f req(A) of an
external concept A (Equation 2) based on the corpus from where
the given medical KB is curated. Its frequency should reflect
the context in which the concept is used. Second, the external
knowledge source typically contains an excessive amount of
information in terms of domain vocabulary and relationships. It is
imperative to customize and incorporate the external knowledge
source in accordance with the given KB for query relaxation.

Concept frequency. First, we need to map the instances from
the given KB to their corresponding external concepts in the ex-
ternal knowledge source, as illustrated in Figure 3. A variety of
techniques can be leveraged to produce such mappings, ranging
from exact string matching, approximate string matching using
edit distance, to word embeddings. In this paper, we use these
techniques in a pluggable fashion, and we compare the effec-
tiveness of these algorithms in the experimental evaluation. If
an instance is mapped to an external concept, then this concept
is marked with a flag (the concepts in yellow in Figure 3). The
online query relaxation only returns flagged concepts as seman-
tically related results to a given query term, since the given KB
only contains information about those concepts.

Next, as mentioned earlier, a concept could be used in different
contexts depending on the natural language query, and the se-
mantic meaning can be completely different in different contexts.
For example, a condition treated by a drug is different from an ad-
verse effect (i.e., condition) caused by the same drug. In this case,
having a single frequency associated with a concept (Equation 2)
would not be sufficient to capture the semantic differences over
all possible contexts.

To resolve this issue, we identify all the contexts where an
external concept A can be used. Specifically, we use the rela-
tionships associated to a concept in the domain ontology as the
contexts ofA, if an instance of this concept is mapped toA. Then,
we compute the concept frequency with respect to each context.
The online query relaxation phase chooses the appropriate con-
cept frequency according to the query context as described later
in this section.

To compute the frequency of external concepts, we assume
that the KB is curated based on a document corpus, and we
count the number of times that each external concept name is
mentioned within this corpus. To account for the sparsity of
certain concept names in the corpus, the concept frequency is
further adjusted based on the number of documents in which the
concept name appears. For example, “asthma” is mentioned in 54
drug descriptions in DrugBank [16], whereas “lung cancer” has
only a handful of associated specialty drugs. Hence, we utilize
the commonly used tf-idf weighting to alleviate this bias.
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Figure 3: External knowledge source ingestion.

Example 1. In the medical ontology depicted in Figure 1, the
concept “Finding” is connected to both “Indication” and “Risk”.
In this case, the external concepts associated with instances of
“Finding”, have two concept frequencies corresponding to the
contexts “Indication-hasFinding-Finding” and “Risk-hasFinding-
Finding”. Depending on the query context, one of the concept
frequencies is used in query relaxation. In Figure 4, we show
a snippet of SNOMED CT with the external concept frequency
populated. The external concepts in brackets are all mapped from
different instances of “Finding” in the domain KB, so they can be
used in two different contexts (“Indication-hasFinding-Finding”
and “Risk-hasFinding-Finding”). Hence, they are associated with
two concept frequencies. For example, “headache” is the only
direct descendant of “craniofacial pain”, and the frequency of
“craniofacial pain” is the frequency of itself, together with the one
of “headache”. Accordingly, the frequency of “pain of head and
neck region” is a summation of the frequencies of “craniofacial
pain”, “pain in throat”, and itself, which is 19164 (i.e., 18878 +
283 + 3) in the context of “Indication-hasFinding-Finding” and
1656 in the context of “Risk-hasFinding-Finding”.

Craniofacial pain
<Indication-hasFinding-Finding, 18878>

<Risk-hasFinding-Finding, 1656>

[Headache]
<Indication-hasFinding-Finding, 18878>

<Risk-hasFinding-Finding, 1656>

Dental headache
<Indication-hasFinding-Finding, 0>

<Risk-hasFinding-Finding, 0>

Frequent headache
<Indication-hasFinding-Finding, 0>

<Risk-hasFinding-Finding, 0>

Head finding
<Indication-hasFinding-Finding, 18878>

<Risk-hasFinding-Finding, 1656>

[Pain of head and neck region]
<Indication-hasFinding-Finding, 19164>

<Risk-hasFinding-Finding, 1656>

[Pain in throat]
< Indication-hasFinding-Finding, 283>

<Risk-hasFinding-Finding, 0>

Figure 4: Snippet of SNOMED CT with frequencies.

Finally, all of these frequencies are normalized between [0,
1], which corresponds to the probability of a concept appear-
ing in the corpus. The root concept has the highest normalized
frequency of 1, because all concepts in the external knowledge
source are its descendants.

Sparsity of external knowledge source. The commonly
used external knowledge sources, such as SNOMED CT, are com-
prehensive, consisting of an excessive amount of information
describing the domain. They often consist of rich domain vocab-
ularies associated with deep hierarchies. On the contrary, the

given KB is often relatively smaller compared to the external
knowledge source. Therefore, only a small subset of the exter-
nal concepts may have corresponding instances in the KB. Any
pair of concepts could be connected through multiple interme-
diate ones, which makes finding semantically related concepts
prohibitively time-consuming for an online system. One straight-
forward approach would be computing the pairwise similarity
between all concepts offline. However, this leads to unnecessary
computations and space consumption, since most of these pre-
computed similarities may not even be used during the online
query relaxation.

In the offline ingestion phase, we alleviate the above issue by
introducing additional application-specific edges to the external
knowledge source. Specifically, an additional directed edge is
introduced from an external concept A to an external concept B,
if all the following conditions are satisfied: (1) A and B are not
directly connected (i.e., one-hop neighbors), (2)A is a descendant
of B, and (3) at least one of the two concepts has a corresponding
instance in the given KB. Consequently, they become one-hop
neighbors with respect to the application. The distance between
two external concepts is attached to the new edge so that the
original semantic information between two concepts is preserved.
This way, external concepts come closer, avoiding unnecessary
delays in the online query relaxation phase.

[Chronic kidney disease stage 1 due 
to benign hypertension]

Chronic kidney disease stage 1 due to 
hypertension

Chronic kidney disease stage 1

Renal impairment

[Kidney disease]

3-
ho

p

2-
ho

p
2-

ho
p

3-
ho

p

Figure 5: External knowledge source customization.

Example 2. In Figure 5, “chronic kidney disease stage 1 due to
hypertension” is 3 hops away from “kidney disease”, which has a
corresponding instance in the KB. By introducing an additional
edge (the dashed line) between these two external concepts, they
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are only 1 hop away. Therefore, more semantically related con-
cepts are within a close distance, and the semantic similarity
between two external concepts remains unchanged since the
original path information (3-hop) between them is attached to
the new edge.

Overall, the offline external knowledge source ingestion pro-
cess is summarized in Algorithm 1. The algorithm receives as
input the medical KB (as domain ontology O and instances I )
and the external knowledge source EKS , and it returns the set of
possible contexts C , the frequencies F of the external concepts
for each context, the mappingsM from instances to external con-
cepts, and the set of external concepts that are marked with a flag
FEC . The algorithm consists of 3 almost independent procedures:
context generation, mappings, and concept frequency. Addition-
ally, for efficiency, sparsity of external knowledge source is also
handled in the same loop as concept frequency, even though one
does not depend on the other.

In Lines 1-4, we create the set of possible contexts, based on the
domain ontology’s relationship, along with their domains (source
concepts) and ranges (destination concepts). In Lines 5-11, we
find an external concept A as a mapping for every instance i ∈ I ,
if such exists, based on a chosenmapping function, and return the
set of mappingsM . At the end of this loop, the set FEC contains
all the external concepts that have been marked with a flag, i.e.,
all the external concepts that have a corresponding instance in
I . In Line 12, we sort the external concepts in topological order,
such that the descendants precede their ancestors (note that EKS
is a DAG). This way, we can easily compute the frequency of
each external concept for a given context (Lines 14-18), using the
recursive function of Equation 2. Since the external concepts are
already topologically sorted, we add application-specific edges
to alleviate the sparsity of EKS in the same loop (Lines 19-23).
Specifically, in Line 21, we add an edge from external concept
A to external concept B, when all three conditions (previously
described) are satisfied, while attaching their original distance
(as |shortestPath(A,B)|) to the new edge.

Time complexity analysis. The time complexity of external
knowledge source ingestion can be broken down into the follow-
ing parts. First, creating all possible contexts requires iterating
through all relationships (|R |) in the domain ontology. Hence the
time complexity is Θ(|R |). Second, the time complexity of finding
an external concept A for every instance depends on the chosen
method. For example, using word embeddings to find mappings
requires Θ(|I | · Cost(lookup)), where |I | denotes the total num-
ber of instances and Cost(lookup) denotes the constant cost of
embedding lookup for each instance. If an approximate string
matching algorithm is used, then the time complexity becomes
O(|I | ·mn), where O(mn) denotes the time complexity of typical
approximate string matching algorithm (m and n are the lengths
of two strings). Third, topological sorting of all external concepts
requires O(|V | + |E |) time complexity, assuming that V is the
set of concepts and E is the set of relationships in the external
knowledge source. Fourth, the time complexity of computing
frequency of each external concept for all possible context is
O(|V | · AVG(contexts)), where AVG(contexts) denotes the av-
erage number of contexts per concept in the domain ontology.
Regarding adding application-specific edges to EKS , we ignore its
time complexity since the number of concepts satisfying is much
less than |V |. In summary, the total time complexity is Θ(|R |)
+ Θ(|I | · Cost(lookup)) + O(|V | + |E |) + O(|V | · AVG(contexts)).
Note that the external knowledge source ingestion is an offline
process that is executed only once.

Algorithm 1 Knowledge Source Ingestion Algorithm.
Input: Domain ontology O , Instances I , External Knowledge

Source EKS
Output: (Set of contexts C), External concept frequencies F ,

MappingsM , Flagged external concepts FEC

▷ Context generation
1: C ← ∅
2: for each r ∈ Relationships(O) do
3: C ← C ∪ {(domain(r ), r , ranдe(r ))}
4: end for

▷ Mappings
5: M ← ∅
6: FEC ← ∅ // Flagged external concepts
7: for each i ∈ I do
8: A←mappinд(i, EKS) // map i to an external concept A
9: M ← M ∪ {(i,A)}
10: FEC ← FEC ∪ {A}
11: end for

▷ Concept frequency
12: Q ← topol .Sort(Concepts(EKS)) // children before parents
13: F ← ∅ // Frequencies wrt. context
14: while Q is not empty do
15: A← Q .next()
16: for each c ∈ C do
17: F ← F ∪ {(A, c, f req(A))} // see Equation 2
18: end for

// External knowledge source customization
19: for each B ∈ ancestors(A, EKS) \ parents(A, EKS) do
20: if A ∈ FEC or B ∈ FEC then
21: EKS .addEdдe(A, |shortestPath(A,B)|,B)
22: end if
23: end for
24: Q .remove(A)
25: end while
26: return C, F ,M, FEC

5.2 Online Query Relaxation
Given a query term, the goal of online query relaxation is to
identify the semantically related instances contained in the given
KB by leveraging the external knowledge source. In this subsec-
tion, we present a novel similarity measure that leverages the
information content from the medical KB, the structural informa-
tion in the external knowledge source, as well as the contextual
information from the query.

Contextual information. As described earlier, the possible
contexts of a query term mapped to a concept in the domain
ontology, are the relationships of the concept to its adjacent
concepts. With the contextual information, the online query
relaxation phase can choose the appropriate concept frequency
to use in Equation 2.

Example 3. For the query “what are the risks of using aspirin”,
the context is “Drug-cause-Risk”. As shown in Figure 1, “Risk”
has three descendants “Black Box Warning”, “Adverse Effect”, and
“Contra Indication”. Assuming that the query term “aspirin” cannot
be found in the given KB, then the online query relaxation would
consider related conditions in the context of “Drug-cause-Risk”.
Hence, the concept frequency used for the similarity measure
should be the total frequency of all three descendants of “Risk”.
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In case the contextual information is not available for online
query relaxation, our method can aggregate the frequencies (i.e.,
all possible contexts) associated with an external concept. As
verified in the experimental evaluation section, the contextual
information greatly improves the quality of the results.

Structural (Path) information. As described above, exter-
nal knowledge sources contain generalization and specialization
relationships between concepts. Generalizing the query term in
a user query may cause information loss [24]. For example, as
shown in Figure 4, “headache” can be generalized to “craniofacial
pain”, which can in turn be generalized as “pain of head and neck
region” including “pain in throat”. Apparently, “pain in throat” no
longer describes pain in head, even if it is as close to “craniofacial
pain” as “frequent headache”.

In this case, solely relying on the IC similarity measure (Equa-
tion 3) with contextual information can be insufficient as it can-
not differentiate the semantic difference between specialization
(i.e., the opposite direction of subsumption edges in the external
knowledge source) and generalization (i.e., following the direc-
tion of subsumption edges). We tackle this challenge by assigning
different weights to generalization and specialization in the ex-
ternal knowledge source. The weight of a path connecting two
external concepts A and B is thus computed as:

pA,B =

|D |∏
i
wD−i
i , (4)

where the distance between external concepts A and B is |D |,
and wi indicates the weight of the i-th edge from A to B. The
intuition is that we penalize a generalization and the penalty is
more if it appears early on in a path from A to B. In fact, such
distinction helps us to better capture the semantic similarity
between a pair of concepts based on their relative locations in
the external knowledge source.

To learn the weights of both generalization and specializa-
tion, simple statistical regression analysis [7] such as logistic
regression can be used. In our empirical study, the weights of
generalization and specialization are set to 0.9 and 1, respectively.

Example 4. In Figure 6, the penalty associated with the path
(dashed orange lines) connecting two external concepts can be
different, depending on which concept corresponds to the query
term. In this example, there are 4 hops between “pneumonia” and
“lower respiratory tract infection”. If the query term is “pneumonia”,
it would be penalized more as the first 3 hops in the path starting
from “pneumonia” to “lower respiratory tract infection” are all
generalizations (Figure 6(a)). On the other hand, if the query
term is “lower respiratory tract infection”, it only suffers from one
generalization at the beginning (Figure 6(b)).

Putting it all together. Overall, the online query relaxation
uses a novel similarity measure, which takes as input the infor-
mation content, the contextual information, and the structural
information to find semantically related concepts.

sim(A,B) = pA,B × simIC (A,B). (5)
For a given query term, the query relaxation method first finds

the corresponding external concept A in the external knowledge
source. Then, it searches for the concepts within a distance r
from A. Last, our method retrieves the pre-computed similarity
between A and each external concept in its neighborhood. Top-
k relaxed results are returned based on their similarity scores,
where k is application-specific and defined by users. The radius r
can be set in different ways. Namely, it can be set as a fixed value

Lower respiratory 
tract infection

Disorder of lower
respiratory system

Disorder of lung

Pneumonitis

Pneumonia

generalize
(0.92)

specialize (1)

generalize
(0.93)

generalize
(0.94)

(a) Path 1: From Pneumonia (query term) to Lower respiratory tract
infection.

Lower respiratory 
tract infection

Disorder of lower
respiratory system

Disorder of lung

Pneumonitis

Pneumonia

specialize
(1)

generalize (0.94)

specialize
(1)

specialize
(1)

(b) Path 2: From Lower respiratory tract infection (query term) to
Pneumonia.

Figure 6: Example of paths between two external concepts.

by empirical studies, or dynamically decided if a fixed r cannot
provide k results.

Overall, the online query relaxation process is summarized
in Algorithm 2. The algorithm receives as input a query term
q, along with its associated context c , the instances I from the
given KB, the external knowledge source EKS , the set of external
concepts that are marked with a flag FEC , the mappingsM from
I to EKS concepts, the radius r and an integer k , and it returns
the top-k results Res from I .

Algorithm 2 Online Query Relaxation Algorithm.
Input: Query termq, Context c , Instances I , External Knowledge

Source EKS , Flagged external concepts FEC , Mappings M ,
radius r , integer k

Output: Top-k results Res ⊆ I

1: A←mappinд(q, EKS) // concept A corresponds to q in EKS

▷ candidates are flagged concepts within radius r from A
2: Candidates ← neiдhbors(A, EKS, r ) ∩ FEC
3: sort(Candidates, sim(A,B)) // Equation 5 for context c
4: Res ← ∅
5: while |Res | ≤ k and |Candidates | > 0 do
6: B ← Candidates .pop() // get next element and remove it
7: Res ← Res ∪ {i |(i,B) ∈ M}
8: end while
9: return Res

In Line 1, we retrieve the external concept A that corresponds
to the query term q, using the same mapping function as in Al-
gorithm 1. Then, we get the set of candidate external concepts
within radius r from A, which are marked with a flag, i.e., mem-
bers of FEC (Line 2), and we sort them in descending order of
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similarity to A (Line 3). Finally, we iterate through the sorted
candidates and add to the results Res the instances i that map to
those candidates, until k results have been retrieved, or there are
no more candidates (Lines 5-8).

Time complexity analysis. For online query relaxation, we
again assume that V is the set of concepts in the external knowl-
edge source and the total number of flagged external concepts
FEC is N . Then finding a corresponding external concept A cor-
responding to the query term q requiresO(|V |) time in the worst
case. Returning all flagged external concepts within radius r from
A requires O(N ) time in the worst case (i.e., r is large enough to
include all flagged external concepts). Sorting these candidates
and returning the top-k results take Θ(NloдN ) and Θ(k) time,
respectively. Hence, the total time complexity of online query
relaxation is Θ(NloдN ).

6 APPLICATIONS OF QUERY RELAXATION
Our proposed method is applicable and beneficial to various natu-
ral language interface systems, including conversational systems,
question and answer systems, as well as natural language query
systems to KBs. In this section, we describe how to integrate
the query relaxation method with two state-of-the-art systems
for the medical data set MED, that is used to support evidence-
based clinical decisions and patient education, and SNOMED
CT as the external knowledge source, since it is one of the most
comprehensive and widely used medical knowledge sources.

6.1 Integration with a Conversational System
In the following, we describe how we extended a conversational
system [33] that is built on top of IBM Watson Assistant [21], to
include query relaxation. The query relaxation method is imple-
mented in Java and is deployed on IBM Cloud™ to interact with
Watson Assistant. The medical data set is stored in IBM Db2®
Database and the external knowledge source (SNOMED CT) is
stored in a graph database (i.e., JanusGraph6).

As described in Section 4, the possible intents (i.e., contexts)
are bootstrapped based on the domain ontology, and our query
relaxation method provides training examples to Watson Assis-
tant for intent classification. At query time, Watson Assistant
provides the input to our query relaxation method in the form of
a [query term, context] pair.

In this case, the context comes from the intent classifier of
the conversational system. Regarding the query term, Watson
Assistant extracts entity mentions from an input natural language
query7 and passes the unknown entity mentions as query terms
to our relaxation method. Next, we showcase two scenarios in
which our query relaxation are used (Figures 7 and 8).

The first scenario is to expand the set of queries by using query
relaxation when there is no answer in the KB for the user query.
For example, when the query term (“pyelectasia” ) is unknown
(i.e., no matching concept in the given KB), Watson Assistant
triggers the query relaxation method to find a list of semantically
related concepts that are contained in the given KB by utilizing
the external knowledge source (i.e., SNOMED CT). As shown in
Figure 7, these additional concepts are then used as a means to
“repair” the conversation and smoothly redirect the user to the
information contained in the KB. Consequently, the conversation
can continue with follow-up questions around the expanded
result, “kidney disease”. Without our query relaxation, Watson

6https://janusgraph.org/
7For a demo, refer to https://natural-language-understanding-demo.ng.bluemix.net.

Not in the 
medical KB

Figure 7: Integration with Watson Assistant (Scenario 1).

Assistant would not be able to return any useful information
except replying messages such as “I don’t understand”. Worse yet,
it may return irrelevant and incorrect information to the user, as
illustrated in Section 7.2.

In the second scenario, we use query relaxation to expand
query answers beyond what matches to the query term in the KB
directly. As seen in Figure 8, the query term (“fever” ) is identified
by Watson Assistant as an instance of the concept (Finding) in
the medical KB. Without query relaxation, identifying “fever” as
Finding triggers one predefined intent “Indication-hasFinding-
Finding” in Watson Assistant. Hence, the information such as
syndromes and treatments for “fever” would be returned to the
user. With our query relaxation method for concept expansion,
7 additional concepts related to “fever” are returned before pro-
viding any information specific to “fever”. Hence, it offers more
opportunities for the user to explore the information contained
in the given knowledge base.

6.2 Integration with a Natural Language
Query System

Currently, we are also working on incorporating our method with
a natural language query (NLQ) system [23, 35]. The NLQ system
is different from the previously described conversational system
as it targets one-shot complex queries. In this case, the NLQ
system receives a natural language query as input and interprets
it over the domain ontology to produce a structured query such
as SQL. The proposed query relaxation method is utilized to
increase the flexibility and robustness of query interpretation.
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Figure 8: Integration with Watson Assistant (Scenario 2).

We outline the solution with a running example from the medical
domain as captured in Figure 1 for the query: “What are the risks
caused by using Aspirin with pyelectasia”.

Evidence generation. In the very first step, the NLQ system
tries to identify all the different mentions of ontology elements in
the input natural language query [35]. The NLQ system iterates
through all the word tokens in the query and collects evidences
of one or more elements which have been referenced in the input
query. These elements can be concepts or relationships in the
domain ontology, as well as the instances of those concepts in
the knowledge base.

In general, a token can match multiple elements in the ontol-
ogy. For example, the token “risks” is mapped to a concept “Risk”,
and the phrase “caused by” is mapped to “cause” relationship in
the ontology. “Aspirin” is mapped to the concept of “Drug”.

There are two types of evidence: (i) a metadata evidence is
generated by matching the token to the ontology elements (e.g.,
“Risk” ), and (ii) a data-value evidence is generated by looking up
a token in the knowledge base (e.g., “Aspirin” ). The evidence for
a token can either be metadata or data-value, but not both [35].

Due to the colloquial and imprecise terminology used in natu-
ral language queries, our query relaxation method is particularly
useful to increase the capability of query understanding. The
NLQ system relies on the semantically related results from our
query relaxation method to match a token to either a metadata
or a data-value evidence. The NLQ system associates these se-
mantically relevant results with ontology elements on the fly,
as shown in Figure 9. Again, if “pyelectasia” is not contained
in either domain ontology or knowledge base, our query relax-
ation returns semantically relevant results (e.g., “kidney disease”,
“nephropathy”, etc.), which can be then mapped to the concept of
“Finding” in the domain ontology.

Interpretation generation.Note that only one element from
the evidence set of each token corresponds to the correct query. In
this phase, the NLQ system tries all such combination of elements

What are the risks caused by using Aspirin with pyelectasia?Tokens T

Evidence
type metadata metadata instance data query term

Chosen
Element Risk cause Drug

Contexts
{Fetal pyelectasis, Congenital pyelectasia}
{Kidney disease, nephropathy}Risk-hasFinding-Finding

Drug-treat-Indication

Figure 9: Evidence set.

from each evidence set. Each such combination, called selection
set, is used to generate an interpretation, which is represented
as a sub-graph in the semantic graph connecting one evidence
for each token for each ontology element [35]. This semantically
grounds the words in the input query to specific contexts by
referring to elements in the semantic graph. Connecting these
referred elements produces a unique interpretation for the given
natural language query based on the ontology semantics.

For each selection set, a sub-tree, called Interpretation Tree,
is computed, which uniquely identifies the relationship paths
among the evidences in the selected set [35]. It is computed by
connecting all the elements in the selected set in the semantic
graph and satisfying the following constraint. The NLQ system
uses a Steiner-tree-based algorithm [35] and ranks the interpre-
tations according to their compactness to generate an interpreta-
tion of minimal size for a selected set. Note that query relaxation
returns a similarity score associated with each result value. We
are currently extending the ranking algorithm to take this rank-
ing score into account, in addition to compactness.

For example, the top ranked interpretation as found from
selected set is ITree = { (Drug→ cause→ Risk→ hasFinding→
Finding), (Drug→ treat→ Indication→ hasFinding→ Finding)
}. Two interpretations have the same compactness. In this case,
if we take into consideration the similarity scores associated
with the relaxed results, the former interpretation would be more
preferable since “Kidney disease” is the most semantically similar
concept to the search term “pyelectasia”.

7 EXPERIMENTAL EVALUATION
In this section, we describe experiments using a medical data
set (MED) to show the efficacy of our proposed query relax-
ation method in terms of precision, recall, and F1-score. We also
conduct user studies, in which we use Watson Assistant as the
conversational interface.

7.1 Experimental Setup
Data set.We use a medical data set (MED) that is used to support
evidence-based clinical decisions and patient education. The total
size of this data set is around 1.2 GB. The ontology corresponding
to MED consists of 43 concepts and 58 relationships. We chose
SNOMED CT as the external knowledge source since it consists
of comprehensive information regarding terms, synonyms, and
definitions used in clinical documentation and reporting.

Users. 20 Subject Matter Experts (SMEs) participated in our
experiments. They all have deep knowledge and understanding
of the medical domain, and are able to distinguish between a
correct and a wrong answer.

Methodologies. We conducted two sets of experiments to
evaluate the efficacy of our proposed query relaxation method
with respect to precision and recall. First, we show the superiority
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of our method compared to alternative methods. Second, a user
study demonstrates the benefit of applying our query relaxation
method in a conversational system.

7.2 Evaluation Results
Precision and recall. We chose 100 commonly used concepts
of medical conditions, and used the methods described below
to identify the semantically related concepts. The participants
were asked to evaluate whether these relaxed concepts are indeed
related to the given ones.

We first study the effectiveness of the methods used for map-
ping instances from the given KB to the external knowledge
source, including exact string matching (EXACT), approximate
string matching with an edit-distance threshold τ = 2 (EDIT), and
a variant of word embedding to support longer pieces of text [3]
(EMBEDDING). Table 1 reports Precision, Recall as well as F1-score
of these three mapping methods.

We observe that word embedding achieves the best overall
result quality. This provides our query relaxation method a solid
foundation to identify semantically related concepts in the neigh-
borhood of these concepts. On the contrary, exact and approxi-
mate string matching suffer from lower recall compared to the
word embedding method. Hence we used word embeddings in
the rest of the experiments as the matching method.

Table 1: Accuracy of mapping methods.

Methods Precision Recall F1
EXACT 100 83.33 90.01
EDIT 96.36 88.33 92.17
EMBEDDING 96.49 91.67 94.02

Next, we compare our proposed query relaxation method (QR)
against its variants as well as alternative approaches, including
our proposed method without the frequency information from
the corpus (QR-no-corpus), our proposed method without the con-
textual information (QR-no-context), a baseline IC-based semantic
measure (IC) [2], a baseline method [3, 8] using both pre-trained
embeddings [32] (Embedding-pre-trained) and embeddings we
trained on a given medical document corpus (Embedding-trained).

Table 2: Overall effectiveness.

Methods P@10 R@10 F1
QR 90.51 82.64 86.40
QR-no-context 85.45 77.27 81.15
QR-no-corpus 78.23 70.91 74.39
IC 75.55 68.18 71.68
Embedding-pre-trained 66.14 60.13 62.99
Embedding-trained 79.37 71.81 75.40

Table 2 reports Precision@10, Recall@10 as well as F1-score
against theMED data set. Precision@10 corresponds to the number
of relevant results among the top 10 returned concepts, Recall@10
is the proportion of relevant results found in the top 10 returned
concepts to the total number of relevant results, and F1-score is
the harmonic mean of Precision@10 and Recall@10. Our proposed
methods including (QR-no-corpus and QR-no-context) are more
accurate than the baseline IC. Specifically, we observe that QR-
no-context still returns higher quality results than the baseline IC.

This shows that differentiating specialization and generalization
relationships helps capturing the semantic similarity between a
pair of concepts. It is not surprising that QR-no-context further
improves the result quality when the frequency information is
available from the corpus. Regarding Embedding-pre-trained, we
observe that it achieves the lowest precision and recall among all
methods. This is expected as the model was trained on a different
medical corpus and many of the words contained in SNOMED CT
are out of its vocabulary. For the embedding of multi-word query
terms, we used the average its words’ embeddings. The result
quality of Embedding-trained is much improved as we trained
the embedding model on our medical document corpus, and the
embedding of a (multi-word) query term is further computed
based on [3]. However, without the contextual information from
the query, many concepts in the given KB are cluttered with the
query term in the low-dimensional vector space. Hence the qual-
ity of Embedding-trained is still not as good as QR. In summary,
our method QR, which incorporates both the frequency infor-
mation from the corpus, as well as the context from the query,
achieves the highest precision and recall.

User study. In this user study, participants were asked to com-
plete two tasks to evaluate the query understanding capability of
a conversational system with and without our query relaxation
method. The participants were allowed to get familiar with the
conversational system over the given KB. In task 1 (T1), we asked
participants to come up with 20 questions around 20 given con-
cepts (i.e., condition names). For example, the participant may
ask “what drugs are used to treat [condition]” or “what drugs
cause [condition]”. In task 2 (T2), the participants were allowed to
come up with 10 questions of their own choice about anything
in MED.

The participants were then asked to grade the quality of the
relaxed results in a scale of 1-5. If the system returns a correct
response in the first attempt, it receives 5 points. If the system
fails to return a correct response, the participants can rephrase
their questions for at most 4 more times. Each time a wrong
result is returned, the participant subtracts a point. For example,
if the correct answer is returned after 3 attempts (i.e., 2 failed
attempts) the participant gives in total 5-2 = 3 points. In addition
to the score, we also asked the participants to provide detailed
feedback.

Table 3: Watson Assistant with and without QR.

QR no QR
Score T1 T2 T1 T2
1 (Very dissatisfied) 2.1% 10.55% 13.06% 11.11%
2 (Dissatisfied) 10.35% 11.07% 16.87% 38.26%
3 (Okay) 25.59% 29.33% 36.29% 30.85%
4 (Satisfied) 35.21% 33.37% 18.25% 12.47%
5 (Very satisfied) 26.85% 15.68% 15.53% 7.31%
AVG 3.73 3.31 3.06 2.67

Table 3 shows the aggregated grades received by our query
relaxation method for the two tasks described above. The num-
bers in the table show the percentage of each particular grade.
Clearly, the conversation system with query relaxation achieves
a substantially higher score than the one without query relax-
ation in both tasks. The average grades of the system with query
relaxation in both tasks are 20% higher than the ones without
relaxation. Specifically, our query relaxation method performed
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slightly better in T1 than T2. The reasons are that the questions
used in T2 were completely from the participants and a non-
trivial number of questions (9 out of 200) do not have an answer
in the given KB, as opposed to T1, where 20 concepts were pro-
vided to the users. Moreover, the feedback from the participants
indicates that the lower grades in Table 3 are due to other reasons
orthogonal to the quality of our query relaxation method.

Specifically, there are 7 incidences in which the expected an-
swers are not contained in the given KB (MED). There are 11
incidences where the users complained about the conversational
flow irrespective of the query relaxation results. For example,
some users prefer smaller number of interactions with the con-
versational system in order to complete their tasks. Some users
failed to follow the instructions, and hence ran into unexpected
follow-up questions. Moreover, there are 10 incidences that the
users did not provide any negative feedback but gave a low grade
such as 1 or 3. Last but not the least, the SMEs reported 6 instances
that the amount of information returned is overwhelming even
though the relaxed results are semantically correct. All these
cases resulted in low grades, including 1, 2, and 3. Note that all
the above cases are counted in Table 3. One straightforward so-
lution to address these issues would be to incorporate the user’s
relevance feedback [39] in the query relaxation method, and to
progressively improve the relaxed results.

8 RELATEDWORK
Natural language querying over KBs. Several approaches
have been recently investigated to build natural language inter-
faces to KBs. In [13], query templates are learned from KBs and
question answering corpora. Wang et al. [41] leverage terms and
their relationships from a web corpus and map them to related
concepts using a KB. Then, a randomwalk-based algorithm is pro-
posed for understanding the terms in a given query. The seman-
tic parsing methods proposed in [4] use a domain-independent
representation derived from combinatory categorical grammar
parsers. Most recently, a supervised learning framework [20] is
introduced to exploit sentence embedding for the medical ques-
tion answering task. However, they usually require a large labeled
corpus or pairs of questions and answers. Our approach is com-
plementary to these methods since they only focus on answering
queries with ‘strict’ execution, which often results in no answers.
Our query relaxation expands the domain vocabulary used in
queries and provides more semantically related results.

Query relaxation for databases. The database community
has developed query relaxation methods that return informa-
tion beyond a standard query. Query relaxation expands the
query selection criteria to include additional relevant informa-
tion, often by consulting a semantic model of the data domain.
Gaasterland [18] introduces query relaxation techniques in de-
ductive databases, using logic rules to specify legal relaxation
constraints. Query relaxation [11] is introduced to relational
databases using type-abstraction hierarchies to find semantically
similar query results. A taxonomy-based relational algebra is
proposed to extend the capability of selection and join by re-
lating values occurring in the tuples with values in the query
using the taxonomy [26]. Poulovassilis et al. [31] applied query
approximation and query relaxation techniques based on RDFS
inference rules to the evaluation of conjunctive regular path
queries (CRPQs) over graph data. Our approach is different from
the above work as we leverage external knowledge sources to
expand the domain vocabulary. Further, our approach uses the

domain ontology and context information to differentiate the
semantic subtleties among instances.

Semantic similarity measures. Among various semantic
measures, path finding measure [42] is based on the shortest path
separating concepts, which traverses the LCS of two concepts.
IC-based measures can be estimated solely from the structure of
a taxonomy [36], or from the distribution of concepts in a text
corpus and a taxonomy [34]. Our semantic similarity measure is
designed upon these measures and overcomes their limitations
by utilizing the domain ontology to differentiate the semantic
subtleties. Hence our method can achieve significant gain of
recall without sacrificing the precision.

Recent works demonstrated that deep learning models built
at word [8, 30] or sentence [3, 14] level can be used for semantic
similarity estimation. However, these methods demand high qual-
ity training data sets, which is critical and expensive in reality.
Moreover, directly applying word or sentence embeddings to our
problem is not sufficient since the structural and contextual infor-
mation are not considered when the model is trained. Hence, we
use word and sentence embeddings for linking the given KB to
the external knowledge source and build our similarity measure
on top of it.

9 CONCLUSION
In this paper, we present a novel two-phase query relaxation
method that leverages external knowledge sources to expand
answers for querying medical KBs. We introduce a novel similar-
ity metric to empower our query relaxation method to identify
semantically related concepts. Our method is successfully inte-
grated with two exemplary systems, a conversational system
and a natural language query system, respectively. Our experi-
ments show that our query relaxation method for the medical KB
outperforms state-of-the-art methods, including deep learning-
based ones, in precision and recall. We also conduct a user study
demonstrating how our query relaxation method expands the
query results and improves their quality for medical KBs.
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ABSTRACT
In the context of urbanization and the rapid growth of energy
demand, understanding the spatial and temporal dynamics of ur-
ban energy use is crucial for identifying energy-saving potentials.
In this demo, we present a visual analysis tool, VAP, that allows
users to explore the dynamics of urban energy use at different
spatial and temporal scales. In contrast to traditional statistical
and machine learning methods, the visual analysis based tool
focuses on analytical thinking, user interactions and answering
business questions by examining different visual analysis views.
In the demonstration, conference attendees will interact with
VAP and learn its capabilities in discovering typical consumption
patterns and spatio-temporal shift patterns from a real-world
case study of electricity.

1 INTRODUCTION
In recent years, the availability of high-resolution energy con-
sumption data has exploded at an unprecedented rate, along with
the diffusion of smart metering technology. The energy sector
is increasingly in need of advanced tools and methods to gain
insights from big smart meter data sets for decision-making pur-
poses [1]. However, traditional statistical and machine learning
methods fail or are too complex to answer some central business
questions such as “What is the consumption trend or pattern over
time?" and “Does mass mobility affect energy demand?". On the
other hand, these questions can bemuch easier to answer through
visual analysis supported by human cognitive capabilities. The
visual analysis focuses on analytical reasoning, facilitated by
interactive user interfaces, and exploring the views that most
effectively answer these questions [2]. The visual analysis en-
compasses several disciplines, including geographic information
systems, information visualization, and data computing. Visual
analysis has been employed in bioinformatics, physics, astron-
omy, and climate, but until now rarely in energy.

Themost relevant workwe have found is the tool implemented
in [3] to study energy consumption in the Chicago area in con-
nection with census data. This tool supports the disaggregation
analysis on several spatial levels, but without further functionali-
ties, e.g. for the analysis of spatio-temporal patterns and demand
shifts caused by mass behaviors. However, much research has
been attempted on spatio-temporal data analysis, which involves

© 2020 Copyright held by the owner/author(s). Published in Proceedings of the
23rd International Conference on Extending Database Technology (EDBT), March
30-April 2, 2020, ISBN 978-3-89318-083-7 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

the identification of object spatial positions at specific moments,
e.g., [2], and the detection of anomalies such as traffic congestion
[4], cyber attacks [5], medical diagnoses [6] and more. We believe
that there is great potential for visual analysis in the applications
of energy management systems, because especially many areas
in this sector can achieve better results efficiently and effectively
with the help of visual analysis. Among others, these include
the study of consumer behaviors and living habits, the planning
of energy supply, the development of energy strategies and the
design of personalized services.

In this demo, we introduce a visual analysis tool, VAP, to sup-
port the study of urban energy consumption patterns and dynam-
ics on different spatial and temporal scales. This tool is unique
in at least two ways:

• Unlike traditional segmentation analysis, which uses clus-
tering algorithms to find typical patterns, VAP supports
typical pattern recognition through visual mining. High-
dimensional time series are first reduced to low-dimensional
data points, and closely placed together on a view accord-
ing to their similarity, then users can identify patterns by
interactively selecting the points on the view. Therefore,
pattern recognition is an interactive process embedded
in human cognitive recognition. The identified patterns
represent customers with similar consumption behaviors
or habits, which can be used to develop targeting demand-
response programs, forecast energy consumption, and pro-
vide personalized services.

• VAP supports the analysis of energy shift patterns in dif-
ferent spatial and temporal scales. The variation in energy
demand over time has been studied intensively, while the
variation in demand across different spatial spaces has
rarely been studied. The demand shift patterns can be
identified and visualized with VAP, and the shifts in high
energy demand over time can help utilities plan energy
distribution and improve energy flexibility.

In Section 2, we will describe the visual analysis framework, the
tool, and the pattern discovery methods. In Section 3, we will
outline the demonstration scenarios that illustrate how VAP can
be used to discover typical patterns and shift patterns of energy
demand through visual analysis in a real-world case study. The
conference attendees can interact with VAP by first asking busi-
ness questions, then probing the answers through interactions
with the tool, and finally gaining knowledge from the visualized
outcomes. This demo presents the elements that drive research
for visual analysis in the energy sector, and provides an outlook
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Figure 1: Overview of the visual analysis framework for spatio-temporal pattern discovery
on the use potentials on a higher spatial scale as well as on other
urban energy uses.

Through the demonstration of VAP, we hope to increase the
awareness of the emerging technologies for the domain-specific
applications within the data management community. We also
hope that this demonstration will stimulate the research of ap-
plying new database technologies in the applications for smart
energy systems, including data acquisition, processing, storage,
analysis and visualization. We plan to make the code open-source
and create an online demonstration version for others to use, ex-
perience and extend.

2 APPROACH
Visual analysis aims to help users gain insights into the data by
interacting with the visual diagrams that interpret the data. The
overview of the visual analysis framework is illustrated in Fig-
ure 1, which integrates the components including Data, Models,
Visualization and Users. The data for this demo is spatio-temporal
energy consumption data from smart meters. The data were pre-
processed, including removal of anomalies and correction of
missing values. To derive knowledge from the data, the models
including typical pattern recognition and spatio-temporal shift
pattern recognition were implemented. The visualization aids in
the presentation of the analysis results, knowledge generation
and communication with users. Users typically gain knowledge
by first asking business questions and then exploring analytical
views to answer their questions. This is an iterative process of
discovering knowledge from the data and refining parameters of
the models.

2.1 Pattern recognition models
VAP supports typical consumption pattern discovery and spatial-
temporal shift pattern discovery of energy demand using the
visual analysis method. The two pattern recognition models are
described as follows.

Typical pattern discovery model. Typical consumption patterns
are often used to segment customer groups for offering person-
alized services in the energy sector. In order to visually analyze
typical consumption patterns, high-dimensional time series must
first be reduced to a lower dimension so that it can be displayed
in a low-dimensional space. The proposed model supports the
t-distributed Stochastic Neighbor Embedding (t-SNE) [7] and
the Multi-Dimensional Scaling (MDS) [8] for high-dimensional

time series data reduction. The positions of the resulting low-
dimensional data points on the view are determined by minimiz-
ing the Kullback-Leibler divergence defined as follows.

KL(P ∥P ′) =
∑
i,j

Pi j log
Pi j

P ′i j
(1)

where Pi j is the similarity probability distribution between the
high-dimensional objects, oi and oj , while P ′i j is the similarity
probability distribution between the reduced low-dimensional
objects, o′i and o′j . Here, the Pearson correlation coefficient is
used as the distance metric for calculating the similarity as it
can be better to reflect the correlation of the trend between two
time series [9]. The similarity probability distribution of the low-
dimensional objects can be obtained by:

P ′i j =

(
1 +

o′i − o′j

2)−1
∑
k,l

(
1 +

o′k − o′l

2)−1 (2)

where k and l are the indices of the objects; and ∥ · ∥ represents
the distance. The similarity probability determines whether the
two objects should be placed closely or far away on the view, i.e.
the more similar, the closer.

With the reduced data points, typical patterns of energy con-
sumption can be interactively identified by selecting the closely
placed points on the view in a low-dimensional space.

Shift pattern discovery model. This model is used to capture the
changes of high energy demand locations over time. The shift
pattern of energy demand is essential for planning the energy
supply between different geographical areas. For example, the
high-demand area may shift from commercial to residential when
people go home after work. This can be happening within the
time interval of 1 - 2 hours, but the detection of demand shifts is
helpful for energy supply planning. Here, we use the flow map
method [10] to visualize the spatial migration of high-energy
demand flow, which implies the flow between spatially different
areas. Figure 2 illustrates the flow map method with a schematic
diagram. First, the spatio-temporal distributions of the discrete
energy demand are expressed as two different density-strength
maps over the time from t1 to t2 (see Figure 2a). The density
strength map can be obtained using a kernel density estimation
method (KDE). Then, the flows are obtained by the difference
between the strength maps in two time steps. The resulting flow
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Figure 2: Flow map method for shift pattern discovery

Figure 3: Spatio-temporal pattern discovery using VAP

map represents the spatio-temporal shifts of high energy demand
(see Figure 2b).

The method is formalized in the following. Let x1, x2, ...., xn be
the discrete geographical locations of the customers, xi denoted
as a vector (loni , lati )T of longitude and latitude. The density of
a position of x in a 2D space is defined as follows:

f̂2D (x) =
1
n

n∑
i=1

ciKh (x − xi ) =
1
nh

n∑
i=1

ciK
(x − xi

h

)
(3)

where n is the sample size, ci is a normalized value of the average
energy consumption used to re-weight the demand strength with
respect to the geographical distribution, and h is the bandwidth
of the kernel Kh . Gaussian kernel is used in the implementation,
but note that other kernels can also be used. Since the Gaussian
kernel can cover a larger spatial area for the changes, and it has
a lower computation complexity compared with other kernels
with exponential functions. The flow patterns representing the
energy demand shift between t1 and t2 can be expressed as the

density difference as follows:

Shift(x)|(t1,t2) = f̂2D (x)|t2 − f̂2D (x)|t1 (4)

2.2 Visual analysis tool
The visual analysis tool VAP is implemented as a web applica-
tion with an architecture of three layers data layer, logic layer
and presentation layer. In the data layer, PostgreSQL is used as
the database management system, with PostGIS added to sup-
port spatial data processing. In the logic layer, all algorithms
are implemented in Python, including the typical pattern dis-
covery and spatio-temporal RESTful APIs are implemented to
exchange JSON-formatted data between client and server. In the
presentation layer, HTML5, CSS and JavaScript are used to imple-
ment the user interface (see Figure 3). Especially the JavaScript
library, Leaflet.js [11], is used for the visualization of Scalable
Vector Graphics (SVG) and the mapping. The flow patterns are
displayed as colored arrows on the map, and the color depth
represents the rate of change of the flow patterns; the darker the
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color, the higher the rate. The JavaScript library d3.js [12] is used
for time series visualization.

Figure 3 shows the main user interface of VAP, which consists
of the three views: A, B, and C. View A displays the spatial
information of the clustered customers. This view supports users
in selecting different map types, displaying the geographical
positions of customers with markers, and visualizing the spatial
distribution density with a heat map and spatio-temporal shift
patterns with flow vectors. View B shows the time series for the
customers selected in view C. This view visualizes the typical
consumption pattern for all selected customers. View C is an
interactive navigator that allows users to explore different energy
consumption patterns by selecting the points by clicking and
dragging. The closer the points are to each other, the more similar
the patterns will be.

VAP supports visual analysis for any type of energy consump-
tion with spatial information. The design of the database model
can be interpolated with specific energy data sets in real use
cases. Figure 3 illustrates an example for the visual analysis of an
electricity consumption data set (note: the coordinates are offset
for anonymization), where five typical patterns were discovered,
including (i) bimodal pattern, (ii) energy-saving pattern, (iii) idle
pattern, (iv) constant high pattern and (v) suspicious pattern.
View A and B shows the flow map and the aggregated consump-
tion pattern for the customers selected in the reduced 2D space in
view C, respectively. The pattern is a bimodal pattern with a peak
in winter and summer, respectively, which may be caused by the
use of electrical heating and cooling appliances. The other four
typical patterns can be interpreted in a similar way by examining
the consumer behaviors or habits of customers, which will be
explained in the demonstration. In view A, the area covered by
the arrows is a commercial area, while the area pointed to by the
arrows is a residential area (i.e. the light red area). This flow map
indicates that the area with high energy demand is shifted to the
residential area when people go home after work.

3 DEMONSTRATION
We will use a real-world electricity consumption data set for the
demonstration. We will introduce the system architecture, the
visual analysis process and how to use the tool to solve practical
problems in energy planning. Conference attendees will inter-
act with the tool to perform visual analysis on the data, i.e., ask
business questions, answer questions through the exploration of
the views and acquire knowledge. In particular, the participants
will interactively discover typical and shift patterns of electric-
ity consumption with VAP. We aim to help participants learn
more about visual analysis for energy decision makings, explore
the approaches for energy demand-side management, and raise
their awareness of energy savings. Two demo scenarios will be
presented during the conference.

S1: Typical patterns discovery. In this demo scenario, confer-
ence attendees will interact with VAP by investigating typical
energy consumption patterns and identifying the spatial distri-
bution of customers in the study area. We will explain to the
participants the meaning of each identified pattern and the rea-
son behind it. First, an attendee can start by asking questions, e.g.,
who are the early birds with a morning peak between 5:00–7:00?
They investigate the customers of interest by selecting the points
at different places on the view. Second, the attendees will study
the transition of consumption patterns based on point similarity
(or point spacing) in 2D space. They select the closely placed
points continuously, and observe the pattern transition over the

spatial space. Third, they can select the scatter plots generated by
different dimensional reduction methods, including t-SNE and
MDS, observe difference and compare capabilities in typical pat-
tern discovery. Fourth, we will run the k-mean algorithm on the
sampled data to discover typical patterns, compare the results,
and explain the advantages of using the visual analysis method.

S2: Spatio-temporal shift pattern discovery. In this demo sce-
nario, conference attendees will examine the patterns of the
energy demand interactively, and we will explain the discovered
shift patterns accordingly. First, an attendee examines the shift
patterns by varying the temporal granular intervals, including
hourly, every four hours, daily, weekly, monthly, quarterly, and
yearly. They can then learn the sensitivity of the shift pattern
changes against different time granularity. Second, they select
different customer groups according to the consumption inten-
sity in a quartile value ranging from 30% to 90%. They can then
learn the sensitivity against different energy consumption in-
tensities. Third, we can further demonstrate the shift pattern
dynamics through a simulation. If, for example, the data are fed
to the system in a short time interval, e.g., every 10 seconds, we
can observe the changes of patterns in near real time.

4 CONCLUSION
We presented a visual analysis framework and a tool that sup-
ports both spatial and temporal pattern analysis for smart energy
systems. We described the technique of dimension reduction and
discussed how to reduce and visualize high dimensional data to
a low dimensional space. We described and demonstrated the
discovery of typical consumption patterns and spatial-temporal
shift patterns of energy demand using a real case study. The
demonstration validated the plausibility of the proposed visual
analysis framework and the effectiveness of the tool in knowledge
discovery through user interactions.
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ABSTRACT
Systems evaluations are an important part of empirical research

in computer science. Such evaluations encompass the systematic

assessment of the run-time characteristics of systems based on

one or several parameters. Considering all possible parameter

settings is often a very tedious and time-consuming task with

many manual activities, or at least the manual creation of eval-

uation scripts. Ideally, the thorough evaluation of a complete

evaluation space can be fully automated. This includes the set-up

of the evaluation, its execution, and the subsequent analysis of

the results. In this paper, we introduce Chronos, a system for the

automation of the entire evaluation workflow.While Chronos has

originally been built for database systems evaluations, its generic

approach also allows its usage in other domains. We show how

Chronos can be deployed for a concrete database evaluation, the

comparative performance analysis of different storage engines

in MongoDB.

1 INTRODUCTION
Scientific practice considers the development of novel theories

and their empirical evaluation. In computer science, empirical

evidence is to a large extent obtained by the systematic evaluation

of systems. Essentially, such a systematic evaluation includes the

thorough assessment of the quantitative behavior of a system

based on one or several parameters. This means that systems need

to be run over and over again with a modified set of parameters.

This is a tedious and highly repetitive task, but essential for

obtaining insights into the run-time characteristics of the system

under evaluation (SuE).

In the database community, systems evaluations are mostly

based on benchmarks that combine test data and certain access

characteristics (queries). Systems evaluations need to be tailored

to the characteristics of an SuE and to the parameters of the

latter that determine their behavior. Nevertheless, the overall

evaluation workflows, seen from a high-level perspective, show

quite some commonalities even across systems. First, the SuE

needs to be set up with the exact parameters of a particular

evaluation run. This also contains the configuration of the SuE —

in the database world, this includes the generation of benchmark

data and their ingestion into the system. Second, the SuE needs

to undergo a warm-up phase, for instance filling internal buffers,

to make sure that the behavior of the SuE reflects a realistic

use. Third, the actual evaluation is run. In the case of a database

benchmark, this is the execution of the predefined queries in a

given query mix. The evaluation finally generates data which at

the end needs to be analyzed.

In most cases, these steps are implemented to a large extent

by means of manual activities and are highly repetitive. Even in
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cases of (semi-)automated evaluations, they need to be re-started

over and over again with varying parameters.

Ideally, a complete set of evaluation runs that systematically

and thoroughly assess a given parameter space of an SuE can be

fully automated. The only requirement on an SuE is that its evalu-

ation workflow does not require any human interaction, allowing

such SuEs to be evaluated using a generic evaluation toolkit. In

order to provide systems Evaluations-as-a-Service (EaaS), such
a toolkit, once linked to the SuE, has to fulfill the following re-

quirements: (i) It has to feature an easy to use UI for defining

new experiments, for scheduling their execution, for monitoring

their progress, and for analyzing their results. (ii) The toolkit

has to support different SuEs at the same time and in particu-

lar parallel executions of benchmarks of these systems. (iii) To

allow SuEs to be considered in long-running evaluations, the

toolkit has to exhibit a high level of reliability. This includes an

automated failure handling and the recovery of failed evaluation

runs. (iv) The toolkit has to provide mechanisms for archiving

the results of the evaluations as well as of all parameter settings

which have led to these results. (v) Already existing evaluation

clients should be easily integrable into the toolkit which also has

to support developers in building new clients. (vi) The toolkit

has to offer a large set of basic analysis functions (e.g., different

types of diagrams), support the extension by custom ones, and

provide standard metrics for measurements (e.g., execution time).

Finally, (vii) it should be easy to apply the toolkit to new SUEs.

In this paper, we introduce Chronos, a generic evaluation

toolkit for systematic systems evaluations. The contribution of

this paper is twofold: First, we describe the functionality of Chro-

nos which automates the entire evaluation workflow and assists

users in the analysis and visualization of the evaluation results.

Second, we demonstrate how Chronos can be configured for the

evaluation of different SuEs and for the systematic analysis of a

complete evaluation space by using two different storage engines

in MongoDB
1
as running example.

Since its first version, Chronos has been used for the evalu-

ation of several research prototypes, including ADAMpro [6],

Beowulf [9], Icarus [10], and Polypheny-DB [11] as well as in

various student evaluation activities. It has been released on

GitHub
2
under the MIT open source license.

The remainder of this paper is structured as follows: In Sec-

tion 2 we introduce Chronos and Section 3 shows Chronos at

work. Section 4 discusses related work and Section 5 concludes.

2 CHRONOS
Chronos is a toolkit for defining, monitoring, and analyzing the

results of evaluations. It consists out of two main building blocks

(see Figure 1): First, Chronos Control (in green), the heart of the

evaluation toolkit that provides a web UI and a RESTful API

for managing evaluations; second, the Chronos Agents (in red)

1
https://www.mongodb.com

2
https://github.com/Chronos-EaaS
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Figure 1: Chronos Toolkit Architecture Overview

which interact with the (existing) evaluation clients and which

leverage the REST API to get the required information to perform

the evaluations. While it is possible to write a custom Chronos

Agent, there is also a generic Chronos Agent available for Java.

This allows to easily integrate Chronos into existing projects. In

this section, we present the implementation of Chronos and how

to integrate it into existing projects.

2.1 Data Model
The data model of Chronos contains projects, experiments, eval-

uations, jobs, systems, and deployments.

Project. A project is an organizational unit which groups ex-

periments and allows multiple users to collaborate on a specific

evaluation. Access permissions are handled at the level of projects

so that every member of a project has access to all experiments,

evaluations, and their results. Users can archive entire projects,

i.e., make their evaluation settings and the results persistent.

Experiment. An experiment is the definition of an evaluation

with all its parameters; when executed, it results in the creation

of an evaluation. Like projects, experiments can be archived.

Evaluation. An evaluation is the run of an experiment and

consists of one or multiple jobs. If the objective of an evaluation is,

for example, to compare the performance of two storage engines

of a database system for different numbers of threads, every job

would execute the benchmark for a specific number of threads for

each engine. Depending on the evaluation, the execution of jobs

can be parallelized if there are multiple identical deployments of

the SuE.

Job. A job is a subset of an evaluation, e.g., the run of a bench-

mark for a specific set of parameters and a given DB storage

engine. The result of every job is stored together with its log

output. A job can be in one of the following states: scheduled,
running, finished, aborted, or failed. Jobs which are in the status

scheduled or running can be aborted and those which are failed
can be re-scheduled.

Result. A result belongs to a job and consists of a JSON and a

zip file. Every data item which is required for the analysis within

Chronos Control is stored in the JSON file. Additional results

can be stored in the zip file (e.g., for further analysis outside of

Chronos).

System. A system is the internal representation of an SuE. For

every SuE, it is defined which parameters the SuE expects, how

the results are structured, and how they should be visualized.

Deployment. A deployment is an instance of an SuE in a spe-

cific environment. There can be multiple deployments of an SuE

at the same time. Deployments serve two purposes: First, they

allow to simultaneously execute evaluations in different (hard-

ware) environments or different versions of the SuE; second, they

allow to parallelize the evaluation in case of multiple identical

deployments.

2.2 Implementation
In the following section, we give details on the implementation

of Chronos’ architecture as depicted in Figure 1.

Chronos Control. It is designed as a web application allowing

the management and analysis of evaluations using common web

browsers. It offers a RESTful web service for clients benchmark-

ing the SuEs. Chronos Control has only a few run-time require-

ments: Apache HTTP Server
3
, PHP

4
, MySQL

5
or MariaDB

6
, and

git
7
. For the SuE extensions, Mercurial

8
is also supported. The

provided installation script handles the complete setup of Chro-

nos including the creation of the necessary database schema and

user account.

User Interface. Chronos’ web UI is based on Bootstrap
9
and

comes with an advanced session and role-based user manage-

ment to support the deployment in a multi-user environment.

A key feature of the Web UI is its modular architecture which

enables the easy integration of different SuEs. For every SuE,

only the available parameters for an experiment and information

on how the results are to be visualized have to be specified. Both

can be done completely UI-based. Chronos Control therefore

provides several parameter and diagram types. Parameter types

include Boolean, check box, and value types as well intervals

and ratios. For the result visualization, Chronos provides bar,

line, and pie diagrams. If more parameter types and diagrams are

required, the built-in set of types can be extended by providing

an external repository containing PHP scripts with additional

implementations.

REST Interface. Chronos’ REST API is used for both the clients

requesting information to perform their benchmarks (e.g., re-

questing job descriptions or submitting results) and for the inte-

gration of the Chronos toolkit into existing evaluation workflows.

For this, the API offers methods to, for example, schedule an eval-

uation which is caused by a successful build of the SuEs build

bot. To support the smooth evolution of Chronos, the API is ver-

sioned. This allows new clients to simultaneously use the newly

developed features while other clients still use older versions of

the REST API.

Chronos Agent. Chronos Agents are clients or client libraries
connecting to Chronos’ REST API that perform or trigger the

actual evaluation workload. Agents are essential to link existing

or newly developed evaluation clients of the SuEs with Chronos.

An agent can be implemented in any language supporting the

3
https://httpd.apache.org/

4
https://secure.php.net/

5
https://mysql.com/

6
https://mariadb.org/

7
https://git-scm.com/

8
https://mercurial-scm.org/

9
https://getbootstrap.com/
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Figure 2: Configuration of a System in Chronos’ Web UI

access to the RESTful web service. Along with Chronos Control,

we provide a reference implementation of a generic agent library

written in Java (also available on GitHub
2
). This reference imple-

mentation handles all the communication with Chronos Control

including the upload of the results via HTTP or FTP. The latter

allows to use a different server or a NAS for storing the results

which also reduces the load and storage requirements on the

Chronos Control server. During its run, the agent periodically

sends the output of the logger to Chronos Control and the agent

library allows to easily update the progress of the evaluation.

Furthermore, the agent library already measures basic metrics

which are returned to Chronos Control along with the results.

Integrating the Chronos Agent library into an existing evalua-

tion client is the only part which requires programming. All other

steps can be done completely UI-based. However, the required

amount of programming is rather negligible, since the agent li-

brary already provides an interface with all necessary methods

to be implemented. Depending on the existing evaluation client,

this usually narrows down to calling already existing methods of

the evaluation client.

3 CHRONOS ATWORK
In this section, we present the two main workflows supported by

Chronos: First, the registration of an SuE in the Chronos toolkit,

and second, the necessary steps to perform an actual evaluation.

The first workflow demonstrates how easy it is to integrate

the Chronos Agent into an existing evaluation client using the

Java library. After building a Chronos-enabled evaluation client

and setting-up an instance of the SuE, it needs to be registered

in Chronos Control. This can be done by either specifying the

parameters required for the evaluation client and the SuE in

Chronos Control or by providing a path to a git or mercurial

repository. Figure 2 shows the overview page of a system in

the Chronos Web UI. Once the system has been created and its

parameters have been configured, the first workflow is finished

and Chronos is ready for executing evaluations against this SuE.

The second workflow starts with the creation of a project.

Afterwards, one or multiple experiments are defined (Figure 3a).

To schedule work for a Chronos Agent, an evaluation needs to

be created which consists of one or multiple jobs as depicted in

Figure 3b. Figure 3c shows the overview page of a job providing

the current status of the job including its progress and the log

output. Furthermore, it allows to abort a scheduled or running

job or to reschedule a failed one. The timeline shows all events

associated with this job. When the Chronos Agent has finished

its work, the evaluation results are visualized (Figure 3d).

The separation of experiments and evaluations comes in handy

if certain evaluations need to be repeated multiple times. This

is the case during the development of an SuE, for example, in

the bug-fixing phase, or for the quality assurance monitoring the

performance of an SuE over subsequent change sets.

A demonstration that has been prepared to show Chronos’

capabilities considers two workflows using the comparative eval-

uation of two storage engines of MongoDB (wiredTiger and

mmapv1) as an example. This demonstration allows to create

short running evaluations for the two MongoDB deployments

and to directly analyze the results in the Chronos Web UI.

The MongoDB Chronos agent is available on GitHub
2
and

the demo that will be presented at the conference is summarized

in a short video
10

that shows how Chronos can be used for the

comparative evaluation of the two storage engines of MongoDB.

4 RELATEDWORK
Like the Chronos toolkit, the PEEL framework introduced in [1]

automates the evaluation process and helps improving the repro-

ducibility of evaluations. PEEL, however, is designed with a focus

on Machine Learning applications running on frameworks like

Hadoop MapReduce, Spark, Flink, and others. In PEEL, the SuE

and the experiments are described using XML or Scala classes.

These documents are compiled into a bundle containing the PEEL

framework, the required configuration, and the evaluation data

sets. The bundle is then deployed on the target machine running

the SuE.

PROVA! [7] is a distributed workflow and system management

tool for benchmarks on HPC systems. It allows to easily bench-

mark applications on different systems and architectures. Similar

to Chronos it visualizes the results. While Chronos is a general-

purpose tool for all kinds of evaluations and benchmarks with a

focus on database evaluations, PROVA! is specifically tailored to

the HPC domain.

OLTP-Bench [5] is a benchmarking framework which pro-

vides implementations for in total 15 different transactional, web-

oriented, and feature testing benchmarks including YCSB [4],

TPC-C
11
, and CH-benCHmark [3]. In contrast to OLTP-Bench,

Chronos addresses the complete evaluation workflow and thus

also includes the definition of the experiments and the analysis of

the results. However, a combination of Chronos (automation of

the evaluation workflow) and OLTP-Bench (definition of various

benchmarks) would even further facilitate the definition, set-up,

execution, and analysis of evaluations. In our future work, we

thus plan to develop a Chronos Agent that wraps the OLTP-Bench

so as to combine both systems.

The TREET testbed [8] allows developers of trust and reputa-

tion systems (e.g., online marketplaces) to evaluate their systems

using standardized test cases. Further, TREET can be flexibly

extended with custom agents and test cases allowing the testing

of the developer’s application. Like Chronos, but for a different

domain, TREET supports the execution of experiments and the

comparison between different trust and reputation systems.

5 CONCLUSION
In this paper, we have presented the evaluation toolkit Chro-

nos, a first step towards the concept of Evaluation-as-a-Service.

Chronos automates the entire evaluation workflow and assists

users in the results analysis. The Chronos toolkit is available on

10
https://youtu.be/fNmsZH4HOl0

11
http://www.tpc.org/tpcc/
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(a) Creation of an Experiment (b) Details of a Running Evaluation

(c) Details of a Running Job (d) Basic Result Analysis done by Chronos Control

Figure 3: Basic Evaluation Workflow

GitHub
2
. Future releases of Chronos will be extended with the

functionality for setting up the infrastructure of an SuE automat-

ically, for example, in an on-premise cluster or in the Cloud. Also,

we plan to release additional reference implementations of agent

libraries, for instance for Python.
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ABSTRACT
As the data is becoming bigger, more heterogeneous, and origi-
nating from different sources, the availability of the same infor-
mation in different forms leads to various entity linkage problems.
We demonstrate our skyex package, an R package that supports
all three steps of entity linkage: blocking, pairwise comparison,
and labeling. Thus, the user can solve the whole process using
skyex, but not necessarily; the skyex modules are independent,
meaning that the user can easily integrate them with other pack-
ages or even other environments. Additionally, we are the first
to provide the implementation of two skyline-based algorithms
(SkyEx-F and SkyEx-D) that can label the compared pairs with-
out the need for weights, scoring functions, etc. skyex supports
the typical workflow of entity linkage, using minimalist, user-
friendly function calls.

1 INTRODUCTION
The entity linkage problem, sometimes called data matching, en-
tity resolution, duplicate detection, reconciliation, etc., detects dif-
ferent records that belong to the same entity. Even though the
process varies in different domains, the main steps are the same:
blocking, pairwise comparison, and labeling the pairs (Fig.1). The
entity linkage process starts with a set of entities that might
contain duplicates. First, a blocking method is used to group en-
tities that show a certain level of similarity and are of interest to
compare further. Then, the pairwise comparison step compares
the entities in the same blocks, e.g., using similarity metrics of
the attributes of the entities or comparing the structure of their
connections. Finally, the labeling step decides whether a pair of
candidates belongs to the same entity or not. The entity linkage
process results in a set of labeled pairs.

We present an R package, skyex, that supports all three steps
of the entity linkage problem. In the labeling step, we provide
the novel SkyEx-F and SkyEx-D algorithms in [6, 8]. The R lan-
guage is in the top five languages of data science, and even more
importantly, R is the second most used software in data science
scientific papers, corresponding to 50,000 articles 1. Moreover, R
is used by different industries besides academia, such as health-
care, government, insurance, etc., where entity resolution is a
common obstacle 2. The current entity linkage tools [1–4, 9–11]
offer rule-based solutions with blocking and comparison func-
tions [3, 10], crowdsourcing solutions [4, 9], or machine learning

1http://r4stats.com/articles/popularity/
2https://stackoverflow.blog/2017/10/10/impressive-growth-r/

© 2020 Copyright held by the owner/author(s). Published in Proceedings of the
23rd International Conference on Extending Database Technology (EDBT), March
30-April 2, 2020, ISBN 978-3-89318-083-7 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Figure 1: The entity linkage process

solutions [1, 2, 11]. In contrast to all the current tools, we con-
tribute with a Labeling module that implements two novel algo-
rithms (SkyEx-F and SkyEx-D) [6, 8], which can label the pairs
without the need of weights, scoring functions, or exhaustive
experiments. In order to support the full entity linkage workflow,
we provide functions to perform blocking based on text and spa-
tial attributes, and we offer a module for textual, spatial, semantic
pairwise comparison. Similarly to [2], we support analysis and
visualization functions that assist in the interpretation of the
results and assessing the quality of the labeling. Analogously to
[11] that uses Python, skyex uses the R ecosystem and can be
easily integrated with other packages, in contrast to the current
standalone tools. Finally, we demonstrate the different scenarios
that can be supported by our tool using three real-world datasets.
Overall, skyex solves the entity linkage problem with minimal
effort and background knowledge.

The remainder of the paper continues with the functionalities
covered by our skyex package in Section 2, a description of our
on-site demonstration in Section 3, and finally, concluding in
Section 4.

2 SKYEX PACKAGE FUNCTIONALITIES
The skyex package is composed of 17 functions corresponding
to four main modules: Blocking, Pairwise Comparison, Labeling,
and Analysis and Visualization. The workflow of using skyex is
illustrated in Fig. 2. The user starts with a dataframe (a common
data type for storing tables in R) of entities. In order to illustrate
the workflow and our functions, we will use a real-world dataset
of spatial entities extracted as in [5] and used in the experiments
of [8]. The dataset contains spatial entities in the North Denmark
region, originating from four sources, Google Places, Yelp, Krak
(online yellow pages in Denmark, www.krak.dk), and Foursquare.
We also introduce the running example of six records of entities
(entities) from this dataset in Fig. 2, which are identified by an
ID, by geographic coordinates latitude and longitude, categories
that explain the type of spatial entity, and the address.

Blocking module. After loading the data, we can use a block-
ing technique (textual or spatial) from the Blocking module. The
textual blocking is executed by the textual.blocking func-
tion, choosing a similarity metric among levenshtein, cosine, jac-
card, jaro-winker, and qgram, and setting a maximal distance al-
lowed. For example, textual.blocking on the attribute "name"
with levenshtein and maximal distance 4 will group the enti-
ties with names "Bilhuset Biersted A/S" and "Bilhuset Biersted"
(from entities in Fig. 2). Note that textual.blocking is accu-
rate but time-consuming. Alternatively, prefix.blocking and
suffix.blocking produce faster results. Besides, in some do-
mains, e.g., for species names, thesemethods can bemore relevant
than textual blocking. For spatial entities, being spatially close is
often a better indicator of block quality than the name. For exam-
ple, two records with the same name, e.g., Fakta supermarkets in
different cities, are two different entities. spatial.blocking cre-
ates blocks of entities that are at mostmax_distance meters apart.
The code snippets for these blocking methods are as follows:

Demonstration
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#Textual blocking using levenshtein distance and max_distance=4

blocks <-textual.blocking(data=entities , column = "name",

method = "levenshtein", max_distance = 4)

#Prefix blocking for the first 4 characters

blocks <-prefix.blocking(data=entities , column = "name", prefix_size = 4)

#Spatial blocking for entities at most 50 m apart

blocks <-spatial.blocking(data=example , longitude = "long",

latitude = "lat", max_distance = 50)

Pairwise Comparison module. The Blocking module out-
puts a dataframe of pairs, which saves the user from the task of
having to create the pairs from each block. The Pairwise Compar-
ison module offers three functions that compare text syntactically
and semantically, as well as spatial attributes. Moreover, all three
functions output normalized values, which can be directly used
in the Labeling module. text.similarity calculates the simi-
larity of the pairs based on a text attribute using similarity met-
rics such as levenshtein, cosine, jaccard, jaro-winker. levenshtein
similarity is calculated using the formula in [7, 8] in order to
return a normalized value. spatial.similarity also requires
a maximal distance for the normalization. For example, for a
max_distance = 70, "Uno-X" and "Fakta" will have a similarity of
0.0, because their distance of 83 meters is beyond the threshold.
In the case of Bilhuset Biersted A/S and Bilhuset Biersted, this
distance is 63 meters, which translates to a similarity of 0.09.

Regarding the semantic similarity, our work in [8] uses the
Wu&Palmer metric fromWordnet. There exists a wordnet library
in R, but it does not provide the metrics. Moreover, Wu&Palmer
needs the whole path of both words that need to be compared,
which in R, it could be resolved only through recursive calls.
Through experimentation, this implementation turned out to be
non-efficient. Thus, we include two Python scripts in the skyex
package for two different metrics in Wordnet. These scripts are
wrapped in R functions; thus, the user only needs to have a
Python interpreter installed and give its path to the R function.
The code for the pairwise comparisons is as follows:
#Text similarity using cosine

blocks$SimName <-text.similarity(data=blocks , method = "cosine",

column1 = "name.x", column2 = "name.y")

#Spatial similarity with max_distance=70

blocks$SimSpatial <-spatial.similarity(data=blocks , lat1 = "lat.x",

long1 = "long.x", lat2 = "lat.y", long2 = "long.y",

max_distance = 70)

#Semantic similarity with Wu&Palmer

blocks$SimSemantic <-semantic.similarity(data=blocks ,

column1 = "categories.x", column2 = "categories.y",

pythonpath = "/Users /..", method = "wup" )

Labeling module. After the pairs are compared, the user can
decide which similarities should go into the labeling process. Usu-
ally, he would select those similarities that are likely to indicate
a match, e.g., the similarity of the names of the entities. We will
consider the similarity of the name "SimName", the similarity
of the address "SimAddress", and the semantic similarity of the
categories "SimSemantic" as in [8]. Then, the user decides on the
preference function for the Pareto Optimality calculations. In our
case, we prefer a high value for each similarity. Depending on the
availability of the labels, the user can choose between running
skyexf or skyexd, corresponding to the threshold-based SkyEx-
F, or to the fully unsupervised SkyEx-D, respectively [6]. SkyEx-F
finds that skyline level k that separates best the classes and max-
imizes the F-measure. It starts with assigning the skyline to all
the points and then checking different cut-offs while measuring
precision, recall, and f-measure. Finally, it labels the data, and the
skyexf obj is returned, containing the classes, an analysis data
frame, the proposed cut-off k , and the corresponding f-measure.

For unlabeled data, SkyEx-D finds the skyline level k where
the mean distance of the points in the positive class starts to

drop, meaning that we are entering the denser area of the neg-
ative class. It starts by assigning the corresponding skyline to
each point; then, calculating the cumulative mean distance in the
positive class and its first derivative; later, finding where the first
derivative becomes negative for the first time. Finally, SkyEx-D
labels the data and wraps the classes, the analysis data frame, and
the proposed cut-off k in a skyexd obj. Detailed explanations
about both algorithms can be found in [6]. Our skyex package
hides all the details above from the user, meaning that the pro-
cesses inside the dotted line boxes (Fig. 2) are performed simply
by the skyexf and skyexd function calls. The script for running
both algorithms, storing the results of each labeling algorithm
in separate objects, and attaching the predicted classes to the
dataset is as follows:
#Define the preference

p<-high(SimName )*high(SimSemantic )*high(SimAddress)

#Call SkyEx -F algorithm and store the result in f.obj

f.obj <-skyexf(data=blocks , p=p, label="Class",posclass=1, negclass=0)

#Call SkyEx -D algorithm and store the result in d.obj

d.obj <-skyexd(data=blocks , p=p, simlist=c("SimName", "SimSemantic",

"SimAddress"), posclass=1, negclass=0, smooth.coefficient=5)

blocks$fpred <-f.obj$classes

blocks$dpred <-d.obj$classes

We thus provide a labeling procedure that can be used with
only two lines of code: defining the preference and calling the
labeling function. However, for a more knowledgeable user, we of-
fer the possibility to do analysis and visualize the results through
the Analysis and Visualization module.

Analysis and Visualization module. To illustrate the anal-
ysis of the labeling, we will use the 1500 manually-labeled pairs
in [8]. Additionally, this dataset is also available in our pack-
age under the name pairsManual and can be loaded simply
by data(pairsManual). The Analysis and Visualization mod-
ule needs the output of the Labeling module as input, which is
a skyexd or skyexf object. The raw analysis can be accessed
simply by calling the dataframe analysis from obj (inspect
obj$analysis in Fig. 2). In the case of a skyexf object, analysis
contains all the cut-offs, the size of the positive class, precision,
recall, and f-measure. In order to facilitate the exploration of
analysis, the user can call plot.skyexf.cutoffs, which pro-
duces graphs that monitor the evolution of the metrics when pass-
ing to the deeper skylines (see Fig. 2). plot.skyexf.cutoffs by
default plots the f-measure. However, it is possible to plot the pre-
cision and the recall separately, and also all metrics together. The
code snippets for plotting the f-measure (first two), the precision,
the recall, and all the metrics are as follows:
plot.skyexf.cutoffs(f.obj)

plot.skyexf.cutoffs(f.obj , "fmeasure")

plot.skyexf.cutoffs(f.obj , "precision")

plot.skyexf.cutoffs(f.obj , "recall")

plot.skyexf.cutoffs(f.obj , "all")

The resulting plots from the above script on pairsManual are
shown in Fig. 2 in the Analysis and Visualization module. Un-
derstandably, precision is high in the first skylines because it is
very likely that the pairs in the first skylines that we label as
positives are actual positives, but it degrades while moving in
deeper cut-offs. On the contrary, recall is always increasing, the
more we label as positive, the more likely it is to find an actual
positive. The F-measure gives the trade-off between both metrics.
All graphs show the suggested cut-off by f.obj in the red dotted
line. However, the user can explore different trade-offs for his
problem. In that case, plotting all metrics in a graph (the last
script) gives a better overview.

In the case of a skyexd object, analysis keeps the cut-offs, the
size of the positive class, the first derivative, and the smoothed
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values. Similarly, plot.skyexd.cutoffs aids exploring the raw
analysis by plotting the smoothed first derivative function for
each cut-off. If the plot looks too "smoothed" or too "raw", it is
possible to play with different smoothing coefficients without
having to re-run skyexd again by calling plot.skyexd.smooth.
(see the code below). Fig. 2 shows the analysis of skyexd, which
was run with smooth.coefficient=5, and also the results of
plot.skyexd.smooth(d.obj, 10). The higher the smoothing
coefficient, the higher the cut-off k , since smoother values push
the cut-off towards deeper skylines.
#Plot the first derivative and the current cut -off k

plot.skyexd.cutoffs(d.obj)

#Smooth the first derivative with 10

plot.skyexd.smooth(d.obj , 10)

evaluate.skyex can also be called as in the code below, to mea-
sure precision, recall, and f-measure when the labels are available.
The values of these metrics will be printed in the console.
evaluate.skyex(prediction=d.obj$classes , labels=data$Class , posclass = 1)

Additionally, we offer user-friendly functions to plot the data
and the obj results. We offer 2D plots, 3D plots, and interactive
3D plots, where the user can play and move the dimensions while
looking at the data. The color of the points reflects if the pair
is a true positive TP (an actual positive labeled as positive), a
true negative TN (an actual negative labeled as negative), a false
positive FP (an actual negative labeled as positive), and a false
negative FN (an actual positive labeled as negative). The user can
decide to change the colors of the points based on his preference.
The code for these plots is as follows:
#Plot 2D using SimName and SimSemantic

plot.pairs2D(data=data , sim1="SimName", sim2="SimSemantic",

prediction=f.obj$classes , labels=data$Class , posclass = 1)

#Plot 3D using SimName , SimSemantic , and SimAddress

plot.pairs3D(data=data , sim1="SimName", sim2="SimSemantic",sim3="SimAddress",

prediction=f.obj$classes , labels=data$Class , posclass = 1)

#Plot 3D interactive plot using SimName , SimSemantic , and SimAddress

plot.pairs.interactive.3D(data=data , sim1="SimName", sim2="SimSemantic",

sim3="SimAddress", prediction=f.obj$classes ,

labels=data$Class , posclass = 1)

Fig. 2 shows the results of pairsManual with the three types
of plots. These graphs can also be considered as an analysis since
they show the problems with labeling and where to locate them.
For example, it is noticeable that we have a bigger problem with
the false positives then with the false negatives, thus if precision
is fundamental to the domain, we could go back to the analysis
and evaluation module and consider a smaller k for the cut-off.
The interactive 3D plot offers a better view of the data points
since it is possible to move and rotate the graph.

Summary. The workflow of skyex supports typical entity
linkage tasks, from blocking to evaluating the quality of the labels.
The Blocking, Pairwise Comparison, and Labeling modules are
completely independent, which means that the user can decide to
perform his own methods and still be able to connect to the work-
flow of skyex. The labeling task can be as simple as just calling
two lines of code to get the classes and as detailed as performing
analysis, playing with the parameters, visualizing the labels, and
highlighting the errors, etc. Moreover, the user can always go
back, choosing new similarities and new preferences until the re-
sults are satisfactory. The skyex package is dependent on rPref,
dplyr, fields, rgl, plot3D, smoother, fuzzyjoin, stringr,
stringdist, geosphere, reticulate, and pracma which sup-
port some basic functionalities in our functions. skyexf and
skyexd) scale relatively well for an R environment; e.g. they run
in less than a minute for 50,000 pairs, less than 15 minutes for
150,000 pairs, and around 1 hour for 300,000 pairs.

3 DEMONSTRATION OVERVIEW
In the on-site demonstration, the user can download skyex3,
which is publicly available in GitHub, by following the README
instructions, or use our pre-installed R environment. We will pro-
vide three datasets: entities (2814 spatial entities in the North
Denmark region with an ID, name, categories, and address) [8],
restaurants4 (a collection of 864 restaurant records with name,
address, city, and type), and pairsManual (1500 labeled pairs with
pre-compared similarities of the name, address, and categories)
[8]. Additionally, we have published a full video5 demonstrating
our functionalities for all three datasets, and a short video6 for the
restaurants dataset. We will provide example scripts, which the
user can adapt based on his preference. The user will start with
different blocking techniques on entities and restaurants,
discussing with us what would be a good blocking technique for
this dataset. Afterwards, he can play with different similarity met-
rics and different thresholds for the pairwise comparison. Later,
the user can decide either to continue with the dataset of pairs
he created so far from entities and restaurants, or move to
the pre-compared pairsManual and play with the labeling pa-
rameters. The user can try both algorithms and will be guided
by us through the Analysis and Visualization module. He can try
the visualizations (including the interactive plotting) in order to
detect problems with the labeling. Finally, he can discuss with us
the applicability of the method across domains and possibilities
for improvement.

4 CONCLUSIONS AND FUTUREWORK
We introduced the skyex package, a user-friendly R package
that supports all three steps of the entity linkage process. We
demonstrated the functions of skyex with scripts and sample
data, and supported the full workflow of the user. We showed
that our Labeling module could solve the labeling problem with
only two lines of code, but at the same time, offer the possibility
for deeper analysis for the knowledgeable user. As future work,
we intend to work on the scalability of our tool for big data, as
well as on a similar package in Python.
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ABSTRACT
This demo proposes MeSQuaL, a system for profiling and check-
ing data quality before further tasks, such as data analytics and
machine learning. MeSQuaL extends SQL for querying relational
data with constraints on data quality and facilitates the verifi-
cation of statistical tests. The system includes: (1) a query inter-
preter for SQuaL, the SQL-extended language we propose for
declaring and querying data with data quality checks and statis-
tical tests; (2) an extensible library of user-defined functions for
profiling the data and computing various data quality indicators;
and (3) a user interface for declaring data quality constraints,
profiling data, monitoring data quality with SQuaL queries, and
visualizing the results via data quality dashboards. We showcase
our system in action with various scenarios on real-world data
sets and show its usability for monitoring data quality over time
and checking the quality of data on-demand.

1 INTRODUCTION
Assessing data quality is challenging and requires the detection
and elimination of a variety of data quality problems, such as
errors, duplicate, inconsistent, obsolete, and incomplete infor-
mation [3, 10]. A wide range of methods for statistical analysis,
constraint mining, consistency checking, and duplicate elimina-
tion has to be used [6] and their specifications can be complex
for various reasons:
• Data quality checking is a highly domain- and task-specific
problem. Data quality is multidimensional. A plethora of mea-
surable dimensions can be used to characterize the quality of
data with various indicators (e.g., value accuracy, consistency,
completeness, freshness, or absence of duplicate records). Multi-
ple techniques can be implemented to evaluate each dimension
whose specification ultimately depends on the requirements of
the user, the task at hand, and the application domain. Moreover,
depending on the machine learning (ML) task, statistical assump-
tions must be verified before applying a given ML model, and the
test results may ultimately influence the data preparation with a
selection of specific data transformations accordingly.
• Data quality checking is inherently a human-in-the-loop (HIL)
process. The user needs a tool offering a flexible and declarative
way to define, evaluate, and check various data quality indicators
and query the data with some data quality requirements in mind
that can be made explicit.
• Data quality checking is a continuous process. Data quality may
vary over time due to the temporal and dynamic nature of the
data and the evolving real world, but also as a consequence of
various data cleaning and repairing actions. This bears the need
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{   SELECT timestamp, node_id,value_raw,valuehrf
    FROM ChicagoDataset
    WHERE ChicagoDataset.sensor = 'o3'
}
QWITH CheckBeforeAnalysis 
    AND CheckQDB.completeness> 0.95;

Figure 5: SQuAL query example 
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Figure 1: MeSQuaL Architecture.

for monitoring the quality of different versions of the database
and the quality of query results.

Our Approach. To deal with these challenges, we believe
that it is essential to build tools that enable the data scientists to
specify and verify data quality requirements in a declarative way.
In particular, tools for analyzing data quality, testing statistical as-
sumptions, and monitoring data quality continuously to provide
insights about the data glitches and help in selecting appropriate
data preparation and cleaning strategies. In this demo, we present
MeSQuaL that we built for this purpose.

2 MESQUAL OVERVIEW
Architecture. As in Fig. 1, MeSQuaL consists of two main com-
ponents: (1) the SQuaL query interpreter enabling the decla-
ration of contracts for data quality checking and SQL queries
extended with QWITH statement; (2) the Data Quality and Tests
(DQT) Manager that operates over three types of RDBMS (Oracle,
MySQL, and PostgreSQL) storing the data and related metadata.
Our framework provides: (1) several built-in functions for data
quality checking and statistical tests; (2) the possibility to call
functions in Python, Java, C++, R, and OCaml; or (3) the possibil-
ity to define custom command-line calls to a UDFs (User-Defined
Functions). Once a quality contract is declared in SQuaL with
a list of dimensions, associated UDFs, and constraints, the DQT
Manager computes the corresponding data quality indicators and
stores them as metadata. SQuaL query result and visualization
are displayed via a Grafana graphical interface1.

1https://grafana.com/
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<squal-script> ::= (<squal-query> | <contract-type> | <contract>)*
<squal-query> ::= ‘{’ <sql-query> ‘}’  QWITH <qwith-formula> ‘;’ 
<sql-query> ::= <select-clause><from-clause>[<where-clause>] [<group-by-clause>] [<having-clause>] [<order-by>] [<sql-sets-operator><sql-query>]* ';' 
<select-clause> ::= <attribute-name> [ = <sql-subquery>]* [, <attribute-name> [ = <sql-subquery>]* ]* 
<from-clause> ::= <from-element> [, <from-element> | <join-operator> <from-element>  ON <join-equality>]* 
<from-element> ::= (<sql-subquery> AS <name>|<relation-name> [AS <name>]) 
<where-clause> ::= WHERE [NOT] EXISTS <sql-subquery> | WHERE <expression> [NOT] IN <sql-subquery> 
                             | WHERE <expression> <comparison-operator> [ANY|ALL] <sql-subquery> 
<having-clause> ::= <having-element> [AND <having-element>]* 
<having-element> ::=  <having-expression> <comparison-operator> (<compared-value>|<sql-subquery>) 
<sql-subquery> ::= (<sql-query>|<squal-query>)  
<qwith-formula> ::= <qwith-element> [ AND <qwith-element>]*
<qwith-element> ::= (<contract-name> | <constraint>)
<contracttype> ::= (CREATE | REPLACE) CONTRACTTYPE <contracttype-name> <dimension> [‘,’ <dimension>]* ‘;’

             | DELETE CONTRACTTYPE <contracttype-name>  ‘;’
<dimension> ::= <dimension-name> BY FUNCTION <binary-path> LANGUAGE <language>
<contract> ::= (CREATE | REPLACE) CONTRACT <contract-name> ‘(’<constraint> (‘AND’ <constraint>)* ‘);’

             | DELETE CONTRACT <contract-name> ‘;’
<constraint> ::=  <contract-name> | [<contract-name> ‘.’] <dimension-name> <comparison-operator> <reference-value>
<comparison-operator> ::=  ‘<>’ | ‘=’ | ‘!=’ | ‘>’ | ‘<’ | ‘<=’ | ‘>=’

CREATE CONTRACT RegressionAssumptions (
    StatTests.autocorrelation > 0
    AND StatTests.autocorrelation < 4
    AND StatTests.multicollinearity <= 4
    AND StatTests.heteroscedasticity < 0.05
    AND StatTests.SWerrorNormality < 0.05);

CREATE CONTRACT CheckBeforeAnalysis (
    RegressionAssumptions
    AND CheckQDB.consistency > 0.9
    AND CheckQDB.outlyingness < 0.2);

Figure 2: SQuaL Syntax in EBNF

Figure 3: CONTRACTTYPE Examples 

CREATE CONTRACTTYPE StatTests (
    autocorrelation BY FUNCTION 'durbinWatsonTest.py' LANGUAGE PYTHON,
    multicollinearity BY FUNCTION 'varInflationFactor.py' LANGUAGE PYTHON,
    heteroscedasticity BY FUNCTION 'BreuschPaganTest.py' LANGUAGE PYTHON,
    KMerrorNormality BY FUNCTION 'KolmogorovSmirnov.py' LANGUAGE PYTHON,
    SWerrorNormality BY FUNCTION 'ShapiroWilkTest.py' LANGUAGE PYTHON);

CREATE CONTRACTTYPE CheckQDB (
    completeness BY FUNCTION 'completeness.py' LANGUAGE PYTHON,
    uniqueness BY FUNCTION 'uniqueness.py' LANGUAGE PYTHON,
    consistency BY FUNCTION 'consistency.py' LANGUAGE PYTHON,
    outlyingness BY FUNCTION 'outlyingness.py' LANGUAGE PYTHON);

Figure 4: CONTRACT Examples 

{   SELECT timestamp, node_id,value_raw,valuehrf
    FROM ChicagoDataset
    WHERE ChicagoDataset.sensor = 'o3'
}
QWITH CheckBeforeAnalysis 
    AND CheckQDB.completeness> 0.95;

Figure 5: SQuaL query example 
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SQuaL Syntax. Each step of a data quality checking scenario
can be expressed in SQuaL, the SQL-extended language we im-
plemented on top of each RDBMS. The grammar of SQuaL is
provided in Fig. 2. A user can easily express data quality con-
cerns and requirements either re-using the library of UDFs we
provide with MeSQuaL or, depending on his/her programming
skills, adding new functions and codes in Python, Java, C++, R,
or OCaml to check the quality of data and test other hypotheses.

• Contract type. Data quality measures and indicators can
be expressed via the declaration of quality contract types. In the
⟨contracttype⟩ statement of the grammar in Fig. 2, a contract
type statement creates (or replaces) a contract type as a list of
quality dimensions of interest. Each dimension indicator is com-
puted by a UDF. Once the contract type is created and UDFs are
loaded, it can be instantiated as a contract with constraints on the
pre-declared dimensions and later on, invoked in SQuaL queries.
A dimension is defined by a ⟨dimension-name⟩, the path of its
UDF, and the language in which the UDF is implemented. Fig. 3
presents several examples of contract type declarations.

• Contract. A quality contract, described by the ⟨contract⟩
statement in Fig. 2, derives from one (or more) pre-existing con-
tract type(s) and is a set of one-sided range constraints on the di-
mensions declared in the contract type(s). Constraints are simple
comparison expressions involving the pre-declared dimension,

and a reference value. Fig. 4 presents several examples of contract
declaration based on the contract types declared in the examples
of Fig. 3. The DQT Manager executes the contracts on-demand
when they are invoked in the QWITH statement of a SQuaL query.

• Qwith Query. In a SQuaL query, described in the grammar
in Fig. 2 by the ⟨squal-query⟩ statement, the QWITH operator can
be used to extend and constraint a regular SQL query result as
illustrated in Fig. 5. It can be applied to the whole database or to a
query as it adds constraints to the semantics of the SQL query and
returns the query result that satisfies the quality requirements
defined in the contract types and contract instances with the
UDFs executed by the DQT Manager. Additionally, QWITH can be
used inside nested SQL queries.

Note that before declaring and creating data quality contract
types and contract instances using SQuaL, an important and chal-
lenging task in dealing with real-world (possibly dirty) data is
data exploration to better understand the reasons for poor data
quality and how it can affect the processes that consume the
data. Since data exploration is out of the scope of this demo and
not directly enabled by our system, we assume that data explo-
ration should be achieved before and externally for the adequate
specifications of the contract types, instances, and constraints.
Goals. In this demo, we showcase the principal features of
MeSQuaL:

• Seamless integration of user-defined functions and constraints
in the query language to compute and check various dimensions
of data quality. A common way to use our system is to declare the
data quality dimensions of interest, bind and invoke the functions
that compute relevant quality indicators (as shown in Fig. 3 with
CheckQDB contract type for example), and query the data with
constraints on these indicators using QWITH statement of our
query language (as illustrated in Fig. 5);
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Figure 6: Screenshot of MeSQuaL’s User Interface with Dynamic Dashboards

• Continuous data-quality checking and monitoring. MeSQuaL
results can help the user in defining or comparing various meth-
ods for checking and profiling the quality of data over time,
selecting the most appropriate ones, or refining the data quality
checking process, and select the most appropriate contracts to
monitor continuously;

• Statistical testing. Interactive hypothesis testing allows the
user to check various statistical assumptions on the data distribu-
tions and make sure that the data conform to the requirements
of a given ML model (as in Fig. 3 with StatTests contract type);

• Efficient profiling of data quality indicators and visualiza-
tion of static and dynamic profiles showing the evolution of data
quality over time with the Monitoring Panel

�� ��E in Fig. 6.
To increase the automation of data quality checking, we claim

that there is a need for augmenting database management sys-
tems with a flexible and declarative way to declare, check, and
monitor the quality of data, independently from the data model,
format, or application, and this actually motivated the design of
MeSQuaL.

3 DEMONSTRATION SCENARIOS
We will demonstrate MeSQuaL using two domain-specific data
sets: the clinical database MIMIC-III2 [7] and the ChicagoDataset
from the Array of Things3 real-time urban data (AoT) [5]. The
users can examine and query the data sets and explore the data
quality checking functions available in MeSQuaL to gain a sense
of its usability. We will guide the users through the following
scenarios.

2https://physionet.org/content/mimiciii/1.4/
3https://aot-file-browser.plenar.io/data-sets

1) Declaring data quality indicators and constraints. This
scenario is dedicated to showcase the use of the SQuaL lan-
guage for creating and using relevant contract types and con-
tract instances to specify data quality checks and submit SQL
queries extended with QWITH statement. In Panel

�� ��C of Fig. 6,
the users can explore available contract types and contract in-
stances predefined for the data set, like CheckQDB contract type
and CheckBeforeAnalysis contract proposed in Fig. 3 and Fig. 4
that will check the completeness, uniqueness, consistency, or out-
lyingness of the data. The users will be able to declare new data
quality checks and rules, and query the data sets with SQuaL in
Panel

�� ��A . For the query of Fig. 5, Panel
�� ��B presents the results on

ChicagoDataset and red gauges of Panel
�� ��D show that neither

the constraints on data consistency and completeness are satisfied
by the queried data of ozone sensors (‘o3’), nor the constraints
defined in RegressionAssumptions contract. As presented in
Table 1, other SQuaL queries including nested SQuaL queries
(e.g., Q8) will be tested to show the usability of our system.
2) Evaluating the applicability of learning models with
declarative statistical hypothesis testing. In this scenario,
the user will see in more detail how MeSQuaL can be used to
declare various statistical tests, and visualize which data lead to
violations of some statistical assumptions or other requirements
of various ML models. For example, before the application of a
linear regression over a data set, at least four critical assump-
tions need to be verified: normality, linearity, homoscedasticity,
and absence of multicollinearity. Using StatTests contract type
instantiated by RegressionAssumptions contract (defined in
Fig. 3 and Fig. 4) available in the contract explorer (Panel

�� ��C ),
the user will easily check if the statistical properties are met by
the query results. The attendees will notice that new contracts
can be added in a flexible and modular way, and they will ex-
plore our library of tests, inspect the logs of previous queries and
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Table 1: SQuaL Query examples of the demo

Query# SQuaL Query SQuaL
Query
time (ms)

SQL
query
time (ms)

UDF
time
(ms)

Total
time
(ms)

Q1 CREATE CONTRACTTYPE CheckQDB2 ( completeness2 FLOAT ON DATABASE BY FUNCTION ’completeness.py’ LANGUAGE
PYTHON, uniqueness2 FLOAT ON DATABASE BY FUNCTION ’uniqueness.py’ LANGUAGE PYTHON, consistency2 FLOAT
ON DATABASE BY FUNCTION ’consistency.py’ LANGUAGE PYTHON, outlyingness2 FLOAT ON DATABASE BY FUNCTION
’outlyingness.py’ LANGUAGE PYTHON);

24.6 - 2482.4 2507

Q2 CREATE CONTRACT RegressionAssumptions ( StatTests.autocorrelation > 0 AND
StatTests.autocorrelation < 4 AND StatTests.multicollinearity <= 4 AND
StatTests.heteroscedasticity < 0.05 AND StatTests.SWerrorNormality < 0.05);

28.3 - 2550.8 2579.1

Q3 { SELECT * FROM ChicagoDataset } QWITH CheckQDB.completeness> 0.95; 32.9 587.2 566.2 1186.3

Ao
T Q4 { SELECT * FROM ChicagoDataset } QWITH CheckBeforeAnalysis AND RegressionAssumptions; 274.6 499.6 500.4 1274.6

Q5 { SELECT timestamp, node_id,value_raw,valuehrf FROM ChicagoDataset WHERE ChicagoDataset.sensor = ’o3’
} QWITH CheckBeforeAnalysis AND CheckQDB.completeness> 0.95;

214.2 21.5 784.7 1020.4

Q6 { SELECT * FROM Admissions } QWITH CheckQDB.completeness> 0.95; 42.1 346.8 472.3 861.2

MI
MI
C-
II
I Q7

{ SELECT * FROM Admissions WHERE Admissions.insurance = ’Private’ }
QWITH CheckBeforeAnalysis AND CheckQDB.completeness> 0.95;

237.0 154.1 493.8 884.9

Q8 { SELECT gender, dob, admittime FROM Admissions INNER JOIN (SELECT * FROM Patients WHERE dob < ’2090-12-12
00:00:00’ QWITH CheckQDB.completeness> 0.95) as Pat ON Admissions.subject_id=Pat.subject_id; }
QWITH CheckQDB.completeness> 0.95;

318.9 16.6 1610.1 1945.6

checks (Panel
�� ��F ), and reload the visualization of some previous

SQuaL queries (from Panel
�� ��C ). MeSQuaL combines the declara-

tive and scripting approaches for querying the data and checking
various assumptions simultaneously. It facilitates notably the
data preparation choices to meet the requirements of some ML
algorithms. Since the declared contracts are independent of the
data sets, they can be reused whenever the assumptions and data
quality checks need to be checked.
3) Monitoring the evolution of data quality indicators. In
this last scenario, the attendees will see the possibilities offered by
MeSQuaL for monitoring the evolution of data quality indicators
in Panel

�� ��E . Once declared, contract types and contract instances
are stored as metadata and executed regularly by MeSQuaL’s
DQT Manager via its configuration to schedule recurring SQuaL
queries. The user can act as a DBA and define various thresholds
for the declared data quality indicators to alert when some results
are suspicious. Using the AoT ChicagoDataset, the attendees
will see how MeSQuaL facilitates the continuous monitoring of
data quality indicators to detect, for instance, inconsistent data
from neighboring air pollution sensors or intermittent sensor
failures with the use of the library of UDFs provided byMeSQuaL.
Using MeSQuaL’s user interface shown in Fig. 6, the user can
visualize the declared data quality indicators and spot the periodic
or punctual errors in the data over time in Panel

�� ��E .

4 RELATEDWORK
Data quality has been extensively studied by the database com-
munity in the last decades [3, 10] with a line of data cleansing
commodity systems and tools that can detect anomalies and re-
duce the burden on data scientists for data repairing and data
preparation in the context ofML pipelines [1, 2, 8, 9, 13].MeSQuaL
is similar to some extent to two main operational data validation
systems: (1) Google TensorFlow Data Validation (TFDV) system
[4], used in production, is a library for exploring and validating
ML data, including schema inspection and anomaly detection,
such as missing features, out-of-range values, or wrong feature
types, and (2) the Amazon system implementing unit-tests for
data verification has been proposed in [11, 12]; it offers a declar-
ative API that allows users to define checks on their data by
composing a variety of available constraints. However, the main
drawback of these systems is that they do not provide the user
with (1) the possibility to interact with the data quality checking
process, (2) the flexibility to declare new data quality metrics with
user-defined functions, or constraints for data quality checks, and

(3) the extension of the query language to check the results with
respect to data quality requirements and constraints.

The key novelty of MeSQuaL is to provide the user with a
framework for checking the quality of their relational data by
declaring UDFs and constraints using SQuaL, an SQL-like query
language extension for querying data and checking on-demand
the quality of the results.
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ABSTRACT
Facility placement has been receiving considerable research at-
tention due to the proliferation of GPS equipped mobile devices.
Establishing new facilities has a wide spectrum of applications
including billboard placement, wildlife monitoring, supermar-
ket/restaurant placement, etc. In all these applications, finding
the best position to place a facility can lead to the optimal benefit
given plenty of target users, which are associated with many his-
torical position logs, e.g., user check-in data, wildlife monitor logs.
In this work, we demonstrate a general system, namely MALOS,
for answering the majority of facility placement problems given
movement logs of a series of target users. Specifically, MALOS
leverages on three academic works in the following scenarios.
Find the best one/k position/s to place one/k new facilities in
order that the overall benefit can be maximized; find one position
to place an extra facility given that there are k existing facilities
in different places, such that the overall benefit can be maximized.
Notably, in MALOS we consider only the geographical issues
that are common in all facility placement applications and choose
not to take into account the specialized factors that vary across
applications, such as billboard size, restaurant type, etc. We shall
provide an opportunity for demonstration users to experience
all kinds of these facility placement queries with a real-world
historical movement logs and corresponding maps interface.

1 INTRODUCTION
Facility placement has been receiving considerable research at-
tention due to the proliferation of GPS equipped mobile devices.
Establishing new facilities has a wide spectrum of applications,
for example, setting up billboards, monitoring wildlife, running
restaurants, building charge stations and urban planning. Majori-
ties of existing research work focus on solving a specific problem,
such as setting up billboards or running restaurants, etc. If we
change the application, these researches cannot be applied di-
rectly to the new one. Therefore, we are motivated to design a
general system to address facility placement problem, namely
Movement-Aware LOcation Selection system (MALOS).

Compared with the maximum coverage problem of existing
work [7], the advantages of MALOS are as follows. Firstly, as a
ready-to-use integrated system, instead of loading offline dataset
as input, MALOS incorporates a data acquisition module that col-
lects historical check-in data from the Internet and is updated in
real-time; secondly, [7] can only be applied in outdoor advertising
applications but fails to fit in other applications. In comparison,

© 2020 Copyright held by the owner/author(s). Published in Proceedings of the
23rd International Conference on Extending Database Technology (EDBT), March
30-April 2, 2020, ISBN 978-3-89318-083-7 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

we take into account the common factor of different facility place-
ment applications, i.e., distance, and allows user-configuration
for other factors specialized for particular scenarios. Thirdly, MA-
LOS is a general system that supports up to three different use
cases, while [7] considers only one of them.

MALOS is a general movement-aware facility placement sys-
tem, where general can be interpreted as follows: 1)We generalize
the common spatial-correlated issues within facility placement
applications, and avoid falling into application-dependent factors,
e.g., size and price of billboard, categories of restaurant and etc.,
which can be extremely different across applications. 2) We con-
sider the following representative scenarios in facility placement,
given the historical movement logs for a large scale of users.

• Place-One: query the optimal location which can influence
the maximum moving objects [6].

• Place-k : return k locations which can influence the largest
number of moving objects [4].

• Incremental-One: add a location into the existing locations
set which could provide the best marginal [1].

Our key contributions in this work are summarized as follows.
• We develop a general system based on user movement
data, namely MALOS, answering general facility place-
ment queries with user-friendly browser-based interface.

• The system provides three different queries to meet the
major requirements for facility placement applications.

• We provide a module to further incorporate check-ins data
for each moving object in real-time.

The rest of the demonstration proposal is organized as follows.
Section 2 formally defines the specific queries supported by MA-
LOS. Then, we introduce MALOS system in Section 3. Section 4
offers the demonstration details. Finally, Section 5 concludes the
demonstration.

2 DEFINITION OF QUERIES
In this section, we will introduce the definitions of three queries
mentioned before.

Definition 2.1 (Place-One). Given a set of candidate locations
C , a set of moving objects Ω, a certain distance-based probability
function PF and a user-specified influence threshold τ , the Place-
One query aims to find the optimal candidate c ∈ C such that
∀c ′ ∈ C − {c}, in f (c) ≥ in f (c ′), where in f (c) is the number of
moving objects in Ω that are influenced by c [6].

Definition 2.2 (Place-k). Given a set of candidate locations
C = {c1, c2, ..., cn }, a set of moving objects Ω and the budget
number of new facilities k(k ≤ n). Place-k aims to find ∃S ⊆ C to
maximize σ (S). σ (S) denotes the total number of moving objects
that are influenced by candidate set S [4].
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Figure 1: Architecture of MALOS.

Definition 2.3 (Incremental-One). Given a set of candidate loca-
tionsC , a spatial network graphG(V ,E), a set of existing facilities
F and a set of moving objects Ω, each of whose movement can
be modeled as a set of reference locations, Incremental-One aims
to find the optimal location c among a set C of query candidates
such that ∀c ′ ∈ C,∆(c) ≥ ∆(c ′), where ∆(c) is expected reduction
of total distance for c [1].

In particular, in our default settings, we follow the same sug-
gestions from original corresponding academic works for differ-
ent queries. For instance, in Place-One, the probability of a user
checking-in at a point-of-interest decays as the power-law of
the distance between them. We set the distance-based probabil-
ity function PF as ρ(d0 + dist(c,p))−λ by default as suggested
in [6], where ρ is a factor to describe behavior pattern, d0 is a
distance factor, dist(c,p) is the distance between candidate c and
position of moving object p, λ is a exponential factor to configure
the mapping from distance to influence probability. In MALOS
system, the default values of the number of candidates, probabil-
ity threshold τ , behavior factor ρ, and exponential factor λ are
600, 0.7, 0.9, and 1.0, respectively. In fact, it can also be manually
adapted to other functions by MALOS users.

3 MALOS PROTYPE
In this section, we cover the framework of MALOS, the acquisi-
tion of check-in data, modeling of check-in data in database and
interaction with data.

3.1 The MALOS architecture
MALOS adopts the browser-server model and is implemented
with JavaScript and Java, built on top of PostgreSQL. MALOS im-
plements three algorithms: PINOCCHIO algorithm [6], GreedyPS
algorithm [4] and Local Network Based (LNB) algorithm [1].
However, MALOS is not a simple aggregation of these three algo-
rithms, which consider only how to address particular use cases
given the data sources. Instead, as a real-time and ready-to-use
system, MALOS has to additionally address two other grand chal-
lenges, 1) where and how to get the data these algorithms rely
on; 2) how to store the data such that these algorithms can be
efficiently carried out. Our solutions towards both challenges are
discussed in detail within Section 3.2 and 3.3, respectively.

The architecture of MALOS is shown in Figure 1, which in-
cludes data acquisition, query processing and visualization mod-
ules. The data acquisition module obtains the historical position
logs from third-party resources (e.g., Sina Weibo, Twitter). In or-
der to efficiently crawl data from theweb, we use the Scrapy archi-
tecture, which can efficiently obtain historical location check-in
data to ensure real-time performance [5]. Users submit query
requests through the browser, which executes a particular facil-
ity placement algorithm (Place-One, Place-k or Incremental-One )
based on the request. Finally, the results are returned to the users,

and are displayed over a Map interface (e.g., Google Maps, Baidu
Map) in the browser.

3.2 Data acquisition
How to obtain moving users’ historical position data is a first
challenge for MALOS. At present, there are two direct ways to
address it, one is to be authorized to obtain real-time data directly
from giant LBS (location-based service) enterprises (e.g., Uber,
Google), the other is to cooperate with government departments.
However, neither of them is easy to be carried out for ordinary
companies. In this end, MALOS system aims to provide a friendly
usage for general public users, who are unable to get the data
through the ways discussed above. Therefore, we developed a
general web crawler to obtain the historical locations of people
through third-party services.

In MALOS system, we use Scrapy framework [5] to collect
data. Scrapy is an excellent open source framework for quick
crawling of web sites and extracting structured data. There are
mainly seven components in Scrapy. Scrapy Engine is responsible
for controlling the data flow between all components of the sys-
tem. Scheduler receives requests from the engine and enqueues
them for further usage by the engine. Downloader is responsible
for fetching web pages and feeding them to the engine which, in
turn, feeds them to the spiders. Spiders are custom classes written
by us to parse responses and extract items from them or addi-
tional URLs to follow. Item Pipeline is responsible for processing
items once they have been extracted by the spiders. Downloader
Middlewares are specific hooks that sit between the Engine and
the Downloader; and process requests (resp., responses) when
they pass from the Engine to the Downloader (resp., Downloader
to the Engine). Spider Middlewares are specific hooks that sit
between the Engine and the Spiders; they are able to process
spider input (responses) and output (items and requests). The
framework also provides a convenient mechanism for extending
Scrapy functionality by plugging custom code.

We present a feasible crawling strategy for MALOS (By de-
fault, the crawling site of the MALOS system is Weibo). First, we
select one (or more) seed users in a region as the initial target,
which is determined by the geographic location label in the per-
sonal information list. For each crawled object, we grab personal
information in turn, locations of historical check-ins in all Weibo
pages, as well as fans list and follower list. Then, add the two lists
in the upper level watchlist to the crawl object list. Following this
iteration, the reptile radiation can be formed, which takes the
seed user as the core and diffuses outward layer by layer. In fact,
there are a lot of records with noise information, such as some
vulgar marketing numbers. Therefore, we need to set a threshold
value for the captured object to determine whether the user is a
target user. In MALOS, we parameterize a target moving user as
follows: the number of message < 5000, fans < 5000, follower <
5000.

Given the above strategy, Scrapy in MALOS works as follows
(illustrated in the left part of Figure 1). When the web Spider
starts, it will extract each URL from the start URL of a seed user
and encapsulate it into a request, which will be sent to the Engine.
Then the requests are passed over to the Scheduler and form a
queue. The first item in the queue will be sent to Downloader for
retrieving the corresponding content. The response file returned
from the Downloader will be handed over to a parse method.
Finally, the parse method calls the a predefined XPath to extract
the check-in data from the crawled page content.
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Figure 2: The browser interface of MALOS.

In order to meet our requirements, we customize these com-
ponents by defining some parameters as followings.

ROBOTSTXT OBEY = False
DOWNLOAD DELAY = 0.1

CONCURRENT REQUESTS = 16

3.3 Storage of check-in data
The check-in data reflects the spatio-temporal behavior of the
moving object. It generally includes user ID, check-in location,
timestamp, check-in area, etc. The check-in location sequence
with time mark constitutes the user’s historical positions logs.
Based on the check-in records, we are able to construct historical
positions logs for each individual Weibo user we have crawled.
In particular, in PostgreSQL we present the following schema for
user historical positions logs.

CI PAIR (USER ID varchar(40), LAT real, LNG real, CI Time
timestamp, CITY varchar(256));

Each CI PAIR object stores the position of a moving user at a
particular timestamp. Multiple records of a user are combined to
form a spatial-temporal movement history.

We store the dataset in PostgreSQL (version 11.6) extended by
PostGIS1. In addition to using the embedded distance calculation
function ST Distance (дeometry д1,дeometry д2), MALOS sys-
tem extends the integration of PLACEONE(dataset ), PLACEK(
dataset , parameter k) and INCREONE (dataset , parameter k)
functions into the PostgreSQL database. The extensions are basi-
cally customized functions that define specific query processing
algorithms. As a mild coupling external module, the extensions
can be easily distributed and maintained.

3.4 Usage of MALOS in facility placement
In MALOS system, data operations are initiated by users from
browser side. The browser side offers two panels, the function
panel and the map panel [2]. The function panel provides the
interfaces to users for obtaining check-in data and generating
queries. The map panel shows a map that illustrates the returned
objects given the required query input of system users.

Users interact with the system through the function panel. The
function panel provides data acquisition interaction function and
location query interaction function. Note that in case that API
authentication settings for real-time crawling mode may require
troublesome modifications, in the demonstration we also provide
an alternative mode to allow the system to load offline track data.

The MALOS system mainly provides users with three func-
tions: Place-One, Place-k and Incremental-One. Place-One and
1www.postgis.net/

Place-k functions are mainly for users who have not yet deployed
any facility and want to select locations to deploy new ones in
some candidate areas, which can also be manually set by the
system users. Place-One, which aims to find the optimal loca-
tion from a set of candidates to place a new facility such that
a score (i.e., benefit or influence on some given objects) can be
maximized. Further, a user can specify a constraint k to perform
Place-k , which indicates the number of candidate locations the
user plan to choose. Considering that there are existing facil-
ities, and users may intend to expand the scale of the facility
network by opening a new one, the system provides Incremental-
One function, which allows users to enter a series of existing
facilities locations as constraints for location selection. Different
algorithms with respect to each of these use cases have been
implemented in MALOS system.

The Place-One function is addressed using PINOCCHIO algo-
rithm. PINOCCHIO algorithm employs the R-tree structure to
build geographic data index, then leverages two pruning rules
based on a novel distance measure. With the help of influence
arcs (IA) rule, it identify the candidates that influence the object.
For the remnant candidates, non-influence boundary (NIB) rule
is used to exclude those cannot influence the object. Lastly, the
remnant candidates are verified.

The Place-k function is solved byGreedyPS algorithm. GreedyPS
algorithm first calculates the set of objects affected by all candi-
dates. Then it maps these sets tow bitmaps. Finally, it selects the
candidates with the largest number of ‘1’ in bitmaps until K is in
each iteration process.

The Incremental-One function is addressed via LNB algorithm.
It first constructs an index structure, Local Network Table (LNT),
based on network locality. With the help of LNT, we initialize a
Max Heap LNH ordered by ∆+(vivj ), which is the upper bound
of expected reduction of total distance (ERD) if a facility is built
on edge vivj . Then it iteratively checks the top candidate c in
LNH. If ∆(ol) of current optimal candidate ol is greater than ERD
upper bound for the top edge in LNH, the validation is finished.
Otherwise, for every reference location whose local network
covers vivj , it needs to calculate ∆(c) through relevant rules. If a
better candidate is found, it updates ol by c and eventually the
optimal answer can be obtained, where ∆(c) is ERD for c .

After the request is processed by the server, the objects re-
trieved are returned. In order to enable users to observe the data
intuitively, we need to visually present the spatial and temporal
distribution of trajectory data. Visual comparison is one of the
most fundamental and common visualization tasks [3]. Thus, we
add a thermal layer, where we provide users with two types of
density maps, namely, heatmap and roadmap. The thermal layer
demonstrates the distribution density of the target trajectory in
the geographic location by overlaying different color blocks on
the map. In case that the volume of the check-in location data
heat layer does not clearly reflect the trajectories of the crowd,
we extensively add a trajectory layer to the system. The trajec-
tory layer distinguishes the trajectories of different people by
different colors, and reflects the overall trend of the trajectories
by sampling method, which enhances the interaction experience
for users. The marker layer provides a solution for visually pre-
senting the results returned by the server and marking the input
location points by users. For the Incremental-One function, a user
does not need to enter the specific latitude and longitude coor-
dinates of the existing facility in the system function panel. It
is only necessary to find the location of the facility in the map
panel and perform correlated marking on the marker layer.
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Figure 3: Illustration of Incremental-One function.

4 DEMONSTRATION
In our demonstration, as discussed before, we additionally im-
plement an offline mode within MALOS system, in case there is
troublesome modification for crawler API settings that is brought
by the network connection issues. In offline mode, we adopt real-
world check-in data in Singapore2 to give users the opportunity
to interact with MALOS and experience how the system can be
used to select the location of facilities. The browser interfaces of
MALOS has been shown in Figure 2. Users can use the system to
find the best location of facilities in various scenarios, including
Place-One, Place-k and Incremental-One.

4.1 Data loading and request submission
First, the user needs to select a target city to place the facility, and
then select a function in the function panel to initiate the request.
In MALOS system, we provide a list of cities for users to choose.
For offline mode, the city can be only configured as Singapore.
When the user selects a region where he wants to deploy the
facilities, the map panel will automatically switches to focus on
the corresponding area, and the server loads the historical check-
in locations within the region. As shown in Figure 2, when the
system loads the offline Singapore dataset, and the map panel
also switches to Singapore. To specify the interested location, an
audience can select a fine-grained location by drawing a rectangle
on map panel (the latitude and longitude of the location are
obtained using the Map API). For the Incremental-One function,
theMALOS system allows users to enter some request constraints
before running it. A user can enter a constant k to indicate the
number of locations need to be picked. As illustrated in Figure 3,
user enters a constant of 5 and marks five locations on the map
to indicate the currently deployed facilities. The results display
list also shows the longitude and latitude of these five facilities
for user input verification.

4.2 Visualization and results display
Users can also explore the distribution of urban population infor-
mation by visualization. There are three kinds of visualization
methods, namely, heatmap, roadmap and trajectory-map for users
to choose. As shown in Figure 4, heatmap is shown. In heatmap
and roadmap, the darker the color, the greater the population
density. The trajectory map shows the migration path of the
crowd, and users can view the spatial and temporal distribution
of urban population. As illustrated in Figure 3, when the query

2The default trajectory data source can be found in the github of PINOCCHIO listed
in our MALOS project homepage: https://lihuixidian.github.io/malos/

Figure 4: A visualization method of MALOS sys-
tem(heatmap).

results are returned to the browser, the result objects are dis-
played in both the map panel and the result list. At the same time,
users can further explore the surrounding environment of the
recommended location by the system with the visualization.

5 CONCLUSION
In this demonstration, we present a general facility placement
system, namely MALOS. MALOS solves a group of representative
facility placement problems based on historical check-in location
data that comes from the Internet and is updated in real time.
MALOS adopts the browser-server model and provides an easy-
to-use interface to answer Place-One, Place-k and Incremental-One
queries. The queries cover the majority of facility placement prob-
lems given historical movement logs of massive users. Moreover,
the system focuses on geographical issues that are general in all
facility placement applications, and avoids taking into account
application-dependent factors, such as the size of billboard, etc.
In this way, the system can be used as a basic framework and
easily adapted to different applications by taking into account
extra specific application-aware factors.
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ABSTRACT
This demonstration paper focuses on transportation-related
queries within a city that go beyond simple routing and that
are of interest to different types of users. For instance, individual
users could be interested in which modes of transport are more
effective to reach a set of alternative locations at a given time
of the day, whereas urban planners could be interested in the
effect that adding/removing a bus line would have in connecting
regions of a city, e.g., a residential neighborhood and downtown.
Given that context and using real data from the city of Berlin, we
introduce RRAMEN, an interactive tool which is well equipped to
support different city-scale mobility-related queries by different
types of users.

1 MOTIVATION
Mobility within a city is both an important problem from an
individual point of view as well as a higher level concern from a
planning perspective. In sync with the current efforts towards
mitigating climate change, we believe that there should be, when-
ever possible, a concerted effort to incentivize the use of public
transportation systems. A few of the many worthy goals that
can be accomplished with better public transportation systems
are reducing traffic, therefore gas consumption, pollution and
noise, reducing the need to dedicate large spaces for parking,
thus creating more space for people, reducing costs associated
with road maintenance, etc. Hence, there is a clear need for better
(or complementary) tools that can support/promote a shift from
using private vehicles on a regular basis towards public transit.
This is the context that implicitly motivates our discussions and
contributions in this paper. Also, in keeping with the above and
for the purpose of this demonstration, but without loss of gener-
ality, we constrain ourselves to two modes of transport, public
transit and private vehicles, and two types of users, individuals
and urban planners.

Individual users are likely familiar with mobile routing solu-
tions, e.g., Google Maps1. Those apps are typically designed for
end-to-end routing (possibly setting some intermediate points,
between origin and destination). Some of these apps also allow
users to compare the efficiency of different modes of transport,
e.g., public transit, private cars, bike and walking. However, as
we will discuss shortly, comparing modes of transport is a use-
case that is not easily contemplated by current apps but which is

1https://www.google.com/maps

© 2020 Copyright held by the owner/author(s). Published in Proceedings of the
23rd International Conference on Extending Database Technology (EDBT), March
30-April 2, 2020, ISBN 978-3-89318-083-7 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

nonetheless of practical interest to individuals in the sense that
it can, even if in a subtle manner, persuade them towards using
public transportation. Additionally, we consider the role of urban
planners. These individuals are interested in transportation from
a collective rather than individual perspective and could make
use of tools that help them in that respect.

Many existing systems, e.g., SANET [5], TransCad2, and
ISOGA [4], provide algorithmic solutions that enable the eval-
uation of public transportation systems through accessibility
and/or reachability analysis [2, 8]. Another common approach
employed by systems such as TRANSIMS [7], is the analysis of
transportation systems through simulation. While the aforemen-
tioned systems can provide insight for the design and evaluation
of transportation networks, they also come with the shortcoming
of examining modes of transport in isolation. In many real-world
scenarios though, users are more interested in the efficiency of a
mode of transport in comparison to other available ones.

Towards the goal of investigating the compromises between
different modes of transport from different perspectives, we re-
cently proposed the notion of Relative Reachability [3]:

Given a set of modes of transport and a source loca-
tion, the Relative Reachability (RR) determines the
mode of transport which minimizes arrival time
at a given destination location. (As we shall dis-
cuss later, this concept can be extend to multiple
destinations and/or regions.)

Given this context, our main goal in this demonstration paper
is to present RRAMEN3, a web-based tool which leverages on the
RR concept in order to support different types of users with
different needs. Towards this goal, in what follows, we discuss
the data model underneath RRAMEN, along with its potential users
and queries of interest. Next, we discuss in more detail a few
queries reflecting the motivation above, while at the same time
illustrating how RRAMEN can be used to answer these queries.

2 OVERVIEW OF RRAMEN
RRAMEN is a tool for Relative Reachability Analysis on Multi-
modal NEtworks that enables users to process a variety of RR
queries and visualize the results. Our system is implemented in
Python using the NetworkX4 package for modelling the network,
uses PostGIS5 to store road and public transportation network
data, and employs Mapbox6 to display the map and visualize re-
sults. Figure 1 shows RRAMEN’s interface. On the top left-hand side
the user can define the source(s) and the destination(s), which

2https://www.caliper.com/tcovu.htm
3https://github.com/camilaferc/rramen
4https://networkx.github.io
5http://postgis.net
6https://www.mapbox.com
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Figure 1: Illustration of RRAMEN’s interface as well as the scenario discussed in
Section 3.1.

Figure 2: Speed over an edge during
the day as %-age of maximum speed.

u vw

R1

R2

P

Figure 3: Stop with three routes, R1,
R2 and R3, and a parent node P con-
nected to the road network.

can be either a single location, multiple locations or a region. The
user can easily select these by clicking on the map. We note that
while the processing of some queries is a computationally inter-
esting topic, this paper focuses on discussing their applicability
and on how RRAMEN can be used in practice.

In order to answer the queries supported by RRAMEN, we first
obtain the road network (including footpaths) from Open Street
Map (OSM)7. A PostGIS table is created to store the road net-
works’ edges with their length, maximum speed, allowed trans-
portation modes and geometry. To mimic how traffic fluctuates
during a day, we assign to each edge of the network a speed
distribution similar to the one illustrated in Figure 2. To compute
such a distribution, we obtain the maximum allowed speed for
each edge from OSM, split the day into a fixed number of time
intervals (twenty four) and introduce a penalty that reduces the
maximum speed during rush hour. Naturally, this assumption is
orthogonal to RRAMEN’s operation, i.e., should one have the actual
speed distribution for each edge of the network, that could be
easily integrated into RRAMEN.

Next, we obtain public transit data from GTFS8 feeds, which
include transit information such as stops, routes, trips and sched-
ules. Such information is stored in a set of relational tables in
PostGIS. For each route, we first extract the stop sequence covered
by it. Then, for each existing route-stop pair, we create a node
and add it to the public transit network. For instance, consider
the stop shown in Figure 3 represented by a dotted box. There
are three routes, R1, R2 and R3, passing through the stop and,
consequently, three nodes are created for that stop. Moreover, all
nodes within a stop are directly connected to each other through
an edge, the cost of which is given by the time to transfer from
one route to another. Such a transfer time is extracted from the
GTFS feed whenever available or set to 0 otherwise. Next, con-
secutive stops of a route are connected through an edge which
is associated with a timetable containing the departure/arrival
times for the corresponding route represented by that edge.

Finally, we build a multimodal network following the time-
dependent model [6]. To connect the public transit network with
the road network we create links from each stop to its closest

7https://www.openstreetmap.org/
8https://developers.google.com/transit/gtfs/reference

road edge, as shown in Figure 3. More specifically, we first create
a parent node P for each stop that acts as an entrance point, and
we connect all route nodes within the stop to P with zero-cost
edges. Then we look for the closest road edge (u,v) to P . If the
closest point to P is u (orv), we add a link edge from P to u (orv).
Otherwise, a new nodew is created along with two new edges
(u,w) and (w,v) and a link edge is added from P tow . The cost
of the link edge is given by the travel time on foot.

To process RR queries, RRAMEN employs variants of Barrett’s
algorithm for the language constrained shortest path [1]. We note
that RRAMEN can build routes that use a combination of public
transit modes, i.e., bus, train or tram, and walking, as well as
driving and walking. In the latter case, we assume that a user
can walk to where his/her car is parked, drive and possibly walk
again to the destination. Due to lack of more fine-grained data,
we make the optimistic assumption that when using a private
car one parks as close as possible to the source location and to
the destination.

RRAMEN can support a variety of types of users and queries.
Table 1 shows two types of users and queries that would be well
supported by RRAMEN. Note that while many of the requirements
of individual users can also be addressed using existing route
planning systems by executing multiple (independent) queries,
RRAMEN makes the exploration and the decision making process
much easier. Furthermore, while it is true that some users will
choose a transportation mode regardless of the RR of the destina-
tion, we believe that allowing one to make such choices quickly
and easily is of practical value. In particular, it may incentivize
one to make choices that favour the use of public transit.

3 DEMONSTRATION SCENARIOS
In this section, we use real data from the city of Berlin to demon-
strate how RRAMEN can be used in practice by individual users
as well as urban planners. Note that while in the following dis-
cussion each query is associated with a particular type of user,
RRAMEN imposes no such binding by design.

3.1 Individual users

Single source-multiple destinations. Consider a user who is
at home and wishes to watch a movie which is showing in a

600



Table 1: Sample users and queries supported by RRAMEN

Users Queries (location-wise)
Individual Users Urban Planners One-to-many / Many-to-one Many-to-many
Can use RRAMEN to find eas-
ily reachable facilities within
a city, or to make decisions re-
lated to their commute.

Can study transportation
systems and the impact of
changes on them.

Queries from a single source to
multiple destinations or from
multiple sources to a single des-
tination.

Queries from multiple
sources to multiple destina-
tions (which can also model
regions).

number of movie theatres. The choice of theatre could be based on
how convenient it would be to reach that theatre w.r.t. the means
of transportation considered. Figure 1 illustrates this type of one-
to-many scenario, where the source is denoted by an orange
marker and the destinations are denoted by green markers. The
result of this query reveals that the two locations on the left half
of the map (denoted by blue dots) have an arrival time earlier
by public transportation than by car. Likewise, the other three
possible destinations have an earlier arrival time by car.

In addition to determining the RRs for all destinations, the user
may be interested in the actual arrival time at a given destination
(using either means of transportation). For that he/she would
simply click on the destination which would cause not only the
arrival times to be displayed but also the actual suggested routes.
This is illustrated in Figure 4 where we “zoom in” on the map in
order to show only the relevant part of the interface9.

Figure 4: Arrival times forMovie Theatre 3, alongwith the
routes by both public transit and private car.

Now, one may ask, what is the practical relevance of such
a query? Naturally, there are trade-offs to be considered. For
instance, if a user measures convenience by not having to look
and (very likely) pay for parking and/or being able to have a drink
or two after watching the movie, he/she would choose to go to
some movie theatre using public transit regardless of its RR. Also,
if a movie theatre that can be reached faster by public transit is far
away, the user may choose a closer one to be reached by car, even
with the associated overhead. Either way, RRAMEN empowers the
user to consider such tradeoffs by him/herself.

Multiple sources-single destination. Let us now consider a
scenario that is sort of the “reverse” of the one above. Consider
a user that is moving to a city to work at a certain location and
is looking for a place to rent. One criterion to choose where to
live may be how convenient it would be for him/her to reach
his/her workplace by public transit whenever his/her working
shift starts. In this case, it would be useful to see the RRs of
different rental units. An important difference of this scenario
w.r.t. the previous one, is that in the previous scenario the RRs
are computed w.r.t. the destinations (which theatre would be
more convenient to reach from home), whereas now the RRs are
computed w.r.t. the sources (from which potential apartment it
would be more convenient to reach the workplace).
9Due to limited space, in what follows we show just the map part of the interface.

Figures 5 and 6 show the RRs of five apartments (orange mark-
ers) w.r.t. the working place of the user (green marker) at two
different times, 7:30am and 5:30pm, respectively. By comparing
the two figures we observe that the RR of all apartments but #4
remain the same. That is, if the user is interested in using public
transportation, then apartments #3 and #5 are the best choices.
We can imagine the case where apartment #4 may be a good
choice if one is typically carpooling in the morning but riding a
bus in the afternoon. The main point here is that, again, a single
query returns the best available options to the user, leaving the
final decision to him/herself.

Figure 5: RR for apartments early in the morning.

Figure 6: RR for apartments late in the afternoon. Note
thatApartment #4’s RR is different fromearlier in the day.

Single source-region destination. Similar to the example
above, one may want to consider living in a neighborhood that
offers good transportation options towards a region on week-
ends. Figure 7 shows such a scenario at 8am, where the source is
denoted by the orange marker and the destination region (say,
the entertainment district) is determined by a polygon drawn by
the user. We note that, besides selecting one or more destination
points or sources as done in the scenarios above, RRAMEN allows
the user to draw a region or select from a pre-determined set
of regions, e.g., municipalities. As one can see in Figure 7, each
point (node in the network) is either coloured blue or red (de-
pending on whether the arrival time is earlier by public transit or
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Figure 7: RR of points in a region w.r.t. a single source lo-
cation at 8am.

Figure 8: Same scenario of Figure 7 for 8am and 5pm. The
dotted circles highlight the changed RRs.

car, respectively). Interestingly, if the departure time were to be
set to 5pm, the RRs within the destination region change quite
a lot, as shown in Figure 8. Once again, by changing a single
parameter in RRAMEN’s interface the user can be better informed
before making his/her decision.

3.2 Urban Planner

Multiple sources-region destination. Here we envision a sce-
nario where a planner would select a number of representative
points in the city, e.g., shopping malls, and identify their RR w.r.t.
a region, e.g., downtown. While on the surface this may seem
similar to the multiple sources-single destination query discussed
earlier, there is a fundamental difference. For the earlier query
each source location had its own RR, whereas for the current
query, the RR for each one of the potential destination locations
within the target region reflects an average over the RRs com-
puted from all different source locations. Figure 9 illustrates this
scenario, where the colors of each point reflect how much more
likely it is for a transportation mode to be the most efficient w.r.t.
the source locations. That is, the closer to red (or blue) the more
likely it is, over the set of source locations, that private cars (or
public transit) reach that point earlier.

Multiple sources-region destination before-after analysis.
The following discussion is a natural follow-up from the previous
one and depicts a scenario that may reflect best the usefulness
of RRAMEN for an urban planner. What would happen if more
resources were allocated to the public transportation system? For
example, what would happen if one new train line was added?
Figure 10 illustrates such a before-after comparison. One can
clearly see that the northwest and southwest corners of the region
in the figure on the right have more blue points than in the figure
on the left. That is, by adding one additional train line, the RR
of some locations would “flip” towards public transit, which we

Figure 9: RR of all points within a region w.r.t. multiple
source locations

Figure 10: Detailed view before and after adding a new
train line. The dotted circles highlight the changed RRs.

believe should be one of the goals of an urban planner. A similar
analysis can be done in case one removes transit lines and/or
removes (or adds) thoroughfares for private cars.

4 CONCLUSION
We presented RRAMEN, a web-based tool based on the concept of
Relative Reachability, the main goal of which is to aid individual
users and urban planners (among others) in making informed
choices and evaluating changes w.r.t. a city’s transportation net-
work. There are a few interesting directions for further work,
such as taking into account the demographics of a city when
evaluating how changes impact a city’s population at large. From
a computational aspect, it would be also interesting to consider
incremental and parallel/distributed computation models to scale
up the overall efficiency of the the tool.
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ABSTRACT
JedAI is an open-source toolkit that allows for building and bench-
marking thousands of schema-agnostic Entity Resolution (ER)
pipelines through a non-learning, blocking-based end-to-end
workflow. In this paper, we present its latest release, JedAI3,
which conveys two new end-to-end workflows: one for budget-
agnostic ER that is based on similarity joins, and one for budget-
aware (i.e., progressive) ER. This version also adds support for
pre-trained word or character embeddings and connects JedAI
to the Python data analysis ecosystem. Overall, these enhance-
ments provide JedAI with features offered by no other ER tool,
especially in the schema- and domain-agnostic context.

1 INTRODUCTION
Entity Resolution (ER) aims to detect duplicates, i.e., different en-
tity profiles that describe the same real-world objects. It is a core
data integration task, with many applications that range from
knowledge bases to question answering [8]. Yet, the available
systems focus exclusively on batch ER, which is carried out in a
budget-agnostic, offline way that imposes no strict constraints
on temporal or computational resources. This means that they do
not support progressive ER, which is carried out in a budget-aware
manner that determines specific time frames or resources (e.g.,
by executing a fixed number of comparisons).

Even for batch ER, though, the existing tools have significant
limitations: they cover the end-to-end pipeline partially, they
constitute stand-alone systems with a limited variety of methods
(usually the methods proposed by their creators), they apply only
to a specific data type (i.e., structured or semi-structured data),
or they require power users, providing insufficient guidelines on
how to perform ER efficiently and effectively [8]. Another major
disadvantage of existing tools is that they typically disregard the
bulk of similarity join algorithms that allow for detecting pairs
of duplicates in a rather efficient way.

Magellan resolves most of these issues, but is restricted to
Clean-Clean ER, i.e., the task of detecting duplicate profiles across
two overlapping, but individually duplicate-free datasets. This
means that Magellan cannot tackle Dirty ER, i.e., the task of
resolving the entities of a single dataset that contains duplicates
in itself. Moreover, Magellan applies exclusively to relational data,
it lacks a GUI, merely offering a command-line interface, and

© 2020 Copyright held by the owner/author(s). Published in Proceedings of the
23rd International Conference on Extending Database Technology (EDBT), March
30-April 2, 2020, ISBN 978-3-89318-083-7 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.
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Figure 1: JedAI’s architecture.

requires heavy user involvement. Its goal is actually to facilitate
the development of tailor-made methods for the data at hand [8].

Java gEneric DAta Integration (JedAI) Toolkit [15] goes be-
yond existing ER tools by focusing on non-learning, schema-
and structure-agnostic methods, which apply seamlessly to both
structured and semi-structured data. At the same time, JedAI
requires minimal human intervention, as neither domain knowl-
edge nor training sets are needed. At its core lies a blocking-based
end-to-end ER workflow, which is implemented by JedAI-core1,
conveying numerous state-of-the-art methods in each step. These
methods can be mixed and matched to form thousands of ER
pipelines that can be easily benchmarked through the wizard-
like interface of its desktop application, JedAI-gui2. Thus, JedAI
fulfills the main challenges arising in data integration [5]: the
development of extensible, open-source3 tools and the provision
of solutions that apply to data of any structuredness - even un-
structured (free-text) data. These new capabilities are exhibited
through a live demonstration that involves user interaction.

In more detail, this demonstration presents the latest release
of JedAI3, which significantly enhances the core blocking-based
workflow: it connects it with the Python ecosystem (see Sec-
tion 5.1) and enriches it with pre-trained embeddings and with
new techniques and capabilities per workflow step (see Section
2.1). Most importantly, JedAI now supports two new workflows:
one based on similarity joins (Section 3) and one implement-
ing budget-aware ER pipelines (Section 4). These enhancements
equip JedAI with unique features that are offered by no other ER
tool, especially in a schema- and domain-agnostic context.

1https://github.com/scify/JedAIToolkit
2https://github.com/scify/jedai-ui
3All code is available under Apache License V2.0, which supports both academic
and industrial applications.
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Figure 2: ER workflows in JedAI: (a) blocking-based; (b)
join-based (new); (c) progressive (new).

2 BATCH, BLOCKING-BASED ER
WORKFLOW

Figure 2(a) depicts the budget-agnostic, blocking-based end-to-
end ER workflow of JedAI. It consists of the following steps.

1) Data Reading loads from disk the dataset(s) to be processed
and the golden standard. The JedAI data model accommodates
both structured (relational databases, CSV) and semi-structured
(SPARQL endpoints, CSV, XML, OWL and RDF) data as well as
any mixture of those.

2) Schema Clustering groups together attributes that share
similar names and/or values, but are not necessarily semantically
equivalent. It is an optional step that is suitable for highly het-
erogeneous datasets with hundreds of different attribute names.
In these settings, it significantly improves the overall precision
with no impact on recall [15, 18].

3) Block Building clusters similar entities into blocks so as to
drastically reduce the candidate match space. It includes most of
the state-of-the-art methods, using their schema-agnostic adap-
tation [13], which extracts multiple blocking keys from each
entity and places it into multiple blocks. The resulting overlap-
ping blocks contain high levels of redundancy, achieving high
recall at the cost of low precision [13], due to two types of un-
necessary comparisons [13]: (i) the redundant ones, which are
repeated across different blocks, and (ii) the superfluous ones,
which involve non-matching entities.

4) Block Cleaning is an optional step that cleans the original
blocks from both types of unnecessary comparisons, improving
their precision at a negligible cost in recall. All available methods
are complementary and can be combined.

5) Comparison Cleaning is another optional step that targets
both types of unnecessary comparisons. It operates at the level of
individual comparisons, achieving higher accuracy at the cost of
a higher time complexity. Several methods are included, primarily
Meta-blocking techniques [14, 18].

6) Entity Matching implements schema-agnostic methods for
assessing the value similarity of all entity pairs in the final set of
blocks. These methods can be combined with various similarity
measures and graph or bag representation models from the Text
Processing component (see Figure 1). The end result is a similarity
graph, where the nodes correspond to entities, and the weighted
edges connect compared entities.

7) Entity Clustering includes the main methods that are typi-
cally used for partitioning the nodes of the similarity graph into
equivalence clusters, such that every cluster corresponds to a
distinct real-world object [6].

8) Evaluation uses the golden standard of the selected dataset
in order to compute several measures for effectiveness and time
efficiency. The user may store intermediate or end results through
the Data Writing functionality.

2.1 New features
This workflow has been enriched with support for embeddings,
which lie at the core of the latest ER works that are based on

Id Rule Dataset Recall Precision F1

R1 0.59 < JaccardSim (title1, title2) & 
0.26 < JaccardSim (authors1, authors2)

DBLP-ACM 0.926 0.930 0.928

R2 0.53 < JaccardSim (title1, title2) Cora 0.855 0.749 0.799

R3 0.25 < JaccardSim ( all_tokens1, all_tokens2) 1OK census 0.969 0.995 0.982

Figure 3: Three matching rules along with their perfor-
mance over established datasets.

deep learning [4, 12]. JedAI supports any pre-trained character-
(e.g., fastText [1]) and word-level embeddings (e.g., Glove [17],
word2vec [11]). The user is only required to provide a path to an
embeddings file in CSV form. These embeddings can be used in
two steps: (i) in Block Building, combining them with LSH as in
[4], and (ii) in Entity Matching, providing external, contextual
information for the computation of value similarities, which is
particularly useful for noisy entity profiles [12].

Another major improvement is the combination of multiple
Entity Matching methods. It is now possible to select any (rea-
sonable) number of algorithms, similarity measures and repre-
sentation models for comparing the candidate matches that are
contained in a set of blocks. For example, it is possible to combine
the traditional bag-of-words model with the popular word2vec
embeddings, each coupled with a different similarity measure.
JedAI combines the similarity scores produced by the individual
methods and normalizes them into the [0, 1] interval.

Finally, several steps of this workflow have been enriched with
new techniques. For example, Data Reading and Data Writing
now support HDT and JSON files, while Entity Clustering con-
veys two new algorithms for Clean-Clean ER that are designed
for solving the assignment problem: an efficient approximation
called Row-Column Proxy Clustering [9], and a heuristic algorithm
called Assignment Problem Heuristic Clustering [2].

3 JOIN-BASED ERWORKFLOW (NEW)
Similarity joins [7, 10] constitute a rather efficient alternative to
blocking-based ER, especially for structured data that conforms to
a schema of known quality. These joins accelerate the execution
of matching rules and are combined with an Entity Clustering
algorithm for high effectiveness [6], as shown in Figure 2(b).
For example, consider the atomic (R1, R2) and composite (R3)
matching rules in Figure 3, which exhibit very high effectiveness
in combination with Connected Components clustering over
established benchmark datasets [13].

JedAI-core now implements the workflow in Figure 2(b), con-
veying a library with the state-of-the-art string [7] and set [10]
similarity join techniques. Most of them require that the user
is familiar with the schema describing the entity profiles so as
to select the most suitable attribute names. JedAI-gui facilitates
this process through the data exploration feature, which allows
for observing the schema and the values of entity profiles. Most
importantly, JedAI goes beyond this schema-aware approach, ap-
plying similarity joins to semi-structured data through a schema-
agnostic transformation that considers all tokens (or q-grams) in
all attribute values (e.g., R2 in Figure 3). The only caveat comes
from the resulting low similarity thresholds that render inappli-
cable character-based and token-based methods that are crafted
for much larger thresholds [7, 10]. JedAI covers such cases by
incorporating novel join techniques that inherently support low
similarity thresholds, like SilkMoth [3] and Atlas [21].

The list of the character- and token-based similarity joins that
are currently supported by JedAI appears in Figure 4. It entails
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Prioritization Methods

Token-based Character-based 1) Local Progressive Sorted Neighborhood

1) AllPairs 1) AllPairs 2) Global Progressive Sorted Neighborhood

2) PPJoin 2) FastSS 3) Progressive Block Scheduling

3) SilkMoth 3) PassJoin 4) Progressive Entity Scheduling

4) EdJoin 5) Progressive Global Top Comparisons

6) Progressive Local Top Comparisons

Similarity Join Methods

Figure 4: The methods available for the workflow steps
Similarity Join (Section 3) and Prioritization (Section 4).

(a)

(b)

Figure 5: JedAI-gui reporting the performance of a Pro-
gressive ER workflow (a) and its benchmark screen (b).

most state-of-the-art approaches, as determined by recent exper-
imental analyses [7, 10]. Any combination of matching rules and
similarity join techniques is allowed to form atomic and com-
posite schema-based or schema-agnostic pipelines. These can be
readily juxtaposed to more complex blocking-based ones, provid-
ing a unique feature that is offered by no other relevant tool.

4 PROGRESSIVE ER WORKFLOW (NEW)
Progressive ER applies to budget-aware applications, which have
limited computational or time resources. These limitations can
only be addressed in a pay-as-you-go way that provides the best
possible partial solution in the context of the available resources.
For example, the Google dataset search system has indexed ∼26
billion datasets [5], which can only be resolved progressively.

Schema-based progressive methods have been proposed [16,
20], but JedAI exclusively considers domain-agnostic ones [19],
implementing the workflow in Figure 2(c). The first four steps
are common with the blocking-based ER workflow, which is
depicted in Figure 2(a). The only difference is that Data Reading
also receives as input the user-specified budget, either in terms of
the maximum running time or the maximum number of executed
comparisons. Next, Prioritization is applied, assigning a weight
to all entities, comparisons or blocks in order to schedule their
processing in decreasing likelihood that they involve duplicates.
Then, the top-weighted entity pairs are iteratively emitted, one at
a time, in order to compare the corresponding entity descriptions
(Entity Matching). Finally, the Evaluation estimates the rate of
detected duplicates per comparison, i.e., the evolution of recall
as more comparisons are executed. The resulting diagram is
used for estimating the area under curve, which is analogous to
performance - see Figure 5(a).

JedAI implements the Prioritizationmethods in Figure 4, which
can be distinguished into two types:

i) Inspired by Sorted Neighborhood (SN), the sort-based meth-
ods rely on the similarity of blocking keys. They produce a list
of entities by sorting all descriptions alphabetically, according
to the corresponding blocking keys. In the schema-agnostic con-
text, every token forms a blocking key and thus, every entity
appears in the list as many times as the number of its distinct
attribute value tokens. To avoid the large number of redundant

Figure 6: JedAI in Python.

comparisons and the arbitrary ordering of entities with identical
keys, Local Schema-agnostic Progressive SN [19] weights all com-
parisons within the current window size via a schema-agnostic
function that considers the frequency of appearance of every
entity in the list along with the co-occurrence frequency of entity
pairs for the current window size. The Global Schema-agnostic
Progressive SN [19] does the same, but for a predetermined range
of windows, eliminating their redundant comparisons.

ii) The hash-based methods are based on identical, schema-
agnostic blocking keys and the resulting overlapping blocks. Sim-
ilar to Meta-blocking, they assign a weight to every pair of candi-
date matches, assuming that their similarity is proportional to the
number of blocks they share [14]. Progressive Block Scheduling
[19] orders the blocks in ascending number of comparisons and
then prioritizes all comparisons in the current block, by ordering
them in decreasing weight. Progressive Profile Scheduling [19] or-
ders entities in decreasing average weight of the corresponding
candidate matches and then prioritizes all comparisons involv-
ing the current entity by ordering them in decreasing weight.
Progressive Global (Local) Top Comparisons considers the top-K
weights over the entire blocking graph (per entity), where K is
derived from the given budget.

5 USER INTERFACE
Up to v2.1, JedAI offered two interfaces for user interaction [15]:
(i) the desktop application, JedAI-gui, which offers a graphical
interface, and (ii) the command-line interface implemented by
JedAI-core. Both of them allow for constructing any combination
of the available methods in the context of the blocking-based
end-to-end ER workflow. Especially, JedAI-core conveys the Doc-
umentation module (see Figure 1), which facilitates the use and
configuration of ER methods. It also enables the benchmark-
ing of different workflows or configurations over a particular
dataset through the workbench window, which summarizes the
outcome of all runs and maintains details about the performance
and the configuration of every step [15] (see Figure 5(b)).

5.1 New features
JedAI3 extends both interfaces so that they cover all new fea-
tures discussed above. The command-line interface has also been
enriched with documentation support: at any step, the user is
able to retrieve information about individual methods or spe-
cific parameters, thus facilitating their use. JedAI-core has also
been augmented with a Python wrapper based on pyjnius, thus
facilitating its adoption by the large user base of Python data
analytics (see Figure 6). For example, the new wrapper allows
for integrating JedAI with popular frameworks like scikit4 for
machine learning and NLTK5 for natural language processing.
4https://scikit-learn.org
5https://www.nltk.org
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6 DEMONSTRATION SCENARIOS
In this demo, wewill present JedAI through a live interaction with
users so as to highlight all new features discussed above. First, the
user is asked to choose among the available interfaces: command-
line, JedAI-gui or a Jupyter notebook. Then, she is asked to
select one dataset among a set of carefully selected ones, which
are easy to comprehend, yet interesting for an ER application,
while involving both a structured and a semi-structured part (e.g.,
CSV-XML). These settings lay the ground for the following demo
scenarios that showcase JedAI’s functionalities.
1. Versatility. In this scenario, we compare the new ER work-
flows supported by JedAI with the blocking-based one that lies
at the core of the previous version. Four different workflows are
involved in this process:

(1) The user builds a traditional blocking-based workflow to
be applied to the selected dataset.

(2) The same workflow is enhanced with word embeddings
so as to examine the effect of deep learning techniques on
improving accuracy.

(3) The user is asked to form a join-based end-to-end ER
workflowwithmatching rules of arbitrary complexity; this
might seem a complex procedure, but in reality, JedAI’s
data visualization feature simplifies it to a large extent.

(4) The user forms a Progressive ER workflow and applies it
to the same dataset.

In all cases, the user canmanually configure all methods, or use
the recommended default parameter values. JedAI’s workbench
functionality allows to easily compare the performance of these
fundamentally different workflows, assessing their pros and cons.
2. Automatic Configuration. In this scenario, we fine-tune the
configuration parameters of the above four workflows in one of
the available automatic ways, i.e., through random or grid search
in a step-by-step or a holistic approach. Thus, the goal of this
scenario is three-fold: (i) to test how well users can manually
tune the parameters, (ii) to evaluate how close the default pa-
rameter values are to the "optimal" ones, and (iii) to compare the
four workflows in terms of their best possible performance. For
example, the performance of the fine-tuned progressive work-
flow demonstrates the minimum number of comparisons that
are required for achieving sufficiently high recall. How close
are the other three workflows to this ideal case? Again, JedAI’s
workbench functionality, the first for such a tool, renders these
complex comparative process into a simple procedure.
3. Scalability. This last scenario focuses on the time efficiency
of the selected workflows. The results of the previous scenar-
ios advise us beforehand about the relative running time of the
selected workflows, as JedAI’s workbench feature reports both
effectiveness and efficiency measures. Here, though, we examine
how well each workflow scales to datasets of increasing size (10K,
50K, 100K, 500K, 1M and 2M entities), which have been derived
from the selected dataset using artificial noise. This scenario
demonstrates how workflows with similar running times over
small datasets might end up differing by orders of magnitude.
Most importantly, JedAI’s workbench reports the running time
per workflow step, thus facilitating the detection of bottlenecks.

Finally, it is worth stressing that during our demonstration,
we will take special care to explain to users how to make the
most of JedAI’s functionalities, emphasizing the new features.
Note also that most of the features listed above are demonstrated
for the first time, and are not supported by any other ER system.

7 CONCLUSIONS
JedAI3 is an open-source ER tool with 4 unique characteristics: (i)
Based on blocking and similarity joins, it implements two differ-
ent end-to-end workflows for batch ER that allow for composing
millions of pipelines. (ii) It supports pre-trained embeddings of
any kind. (iii) It supports budget-aware ER, enabling thousands of
schema-agnostic progressive workflows. (iv) It can be integrated
with Python’s data analysis ecosystem. These capabilities will be
exhibited through a live demonstration with user interaction.
Acknowledgements. This work was partially funded by the EU
H2020 projects ExtremeEarth (825258) and SmartDataLake (825041).
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ABSTRACT

Text values are valuable information in relational database sys-
tems for analysis and machine learning (ML) tasks. Since ML
techniques depend on numerical input representations, word
embeddings are increasingly utilized to convert symbolic rep-
resentations such as text into meaningful numbers. However,
those models do not incorporate the context-specific semantics
of text values in the database. To significantly improve the repre-
sentation of text values occurring in DBMS, we propose a novel
retrofitting approach called Retro which considers both, the se-
mantics of the word embedding and the relational schema. Based
on this, we developed RetroLive, an interactive system, that
allows exploring how the retrofitted embeddings improve the
performance for various ML and integration tasks. Moreover, the
demo includes several interactive visualizations to explore the
characteristics of the adapted vectors and their connection to the
relational database.

1 INTRODUCTION

Due to their appealing properties, word embedding techniques
such as word2vec [8], GloVe [9] or fastText [2] have become
conventional wisdom in many research fields such as NLP or
information retrieval to represent text values. These word vec-
tors are trained by processing large text corpora, e.g. the GloVe
embedding1 was trained on a corpus with 840 billion tokens.
These embeddings are typically used to convert text values in a
meaningful numerical representations used as input for ML tasks.
However, a naïve application of a word embedding model is not
sufficient to represent the meaning of text values in a database
which is often more specific than the meaning in the natural lan-
guage. Thus, we aim for additionally incorporating information
given by the disposition of the text values in the database schema
into the embedding, e.g. which words appear in the same column
or are related. Therefore, we developed a relational retrofitting
approach called Retro [5] which is able to automatically derive
high-quality numerical representations of textual data residing
in databases without any manual effort.

1https://nlp.stanford.edu/projects/glove/

© 2020 Copyright held by the owner/author(s). Published in Proceedings of the
23rd International Conference on Extending Database Technology (EDBT), March
30-April 2, 2020, ISBN 978-3-89318-083-7 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.
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Relational Retrofitting. Figure 1 provides a small example
sketching the main principles of the relational retrofitting pro-
cess. Retro expects a database and a word embedding as input,
e.g. a movie table T that should be retrofitted into a pre-trained
word embeddingW0.W0 can be generated using well-known
text embedding techniques. Those models are able to generate
embeddings capturing syntactic and semantic relations between
words, such as word analogies, gender-inflections, or geographi-
cal relationships. To provide vector representations for textual
information in databases one could simply reuse the vectors of
pre-trained embeddings, e.g. map each term from T to a term-
vector pair inW0.
However, there often will be a semantic mismatch between word
embeddings and textual information in databases:
1) Given the movie table, it is known that all entities within the
movie column must be movies, although some of the titles, such
as “Brazil" or “Alien", may be interpreted differently by the word
embedding model.
2) T provides a specific amount of relation types like the movie-
director, whereas in the word embedding representationW0 large
amounts of implicit relations are modeled, e.g. if the director of a
movie is also the producer or one of the actors this might be rep-
resented in the word embedding although not explicitly visible.
3) Terms in T which occurring infrequent in the general do-
main can not be modeled accurately by word embedding models.
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For instance word2vec has a limited vocabulary according to a
frequency threshold. Many terms appearing in a database will
therefore have no counter-part within the embedding.
Therefore, we developed Retro [5] which incorporates the data-
base semantics and augments all terms in database relation by a
dense vector representation. In the context of our movie exam-
ple, Retro would generate a new embedding for “Terry Gilliam"
which should be close to other directors and their respective
vectors. Furthermore, Retro would create vectors for all other
textual values in the movie table that encode the semantics given
by the pre-trained word embeddings and the database. On one
hand, this ensures that vectors appearing in the same column,
such as movies or directors, are close to each other. On the other
hand, this ensures that movie-director pairs can be resolved.
These vectors are ready-to-use for a wide range of ML, retrieval
and data cleaning tasks such as classification, regression, null
value imputation, entity resolution, and many more.
Demonstration. Our web-based demo called RetroLive show-
cases our novel retrofitting approach and guides the user through
the whole retrofitting process. The demo provides different data-
base schemas and target word embeddings the users can choose
from and allows to explore their data statistics and character-
istics. Additionally, RetroLive allows to set and fine-tune the
various hyperparameters of the retrofitting learning problem.
The impact of the hyperparameter values, the input data char-
acteristic and target embeddings can be studied in detail using
either 2-dimensional projections or by using word similarity
and analogy benchmarks. To demonstrate the usefulness of the
embedding generated by the relational retrofitting approach,
RetroLive comes with various pre-defined extrinsic evaluation
tasks for classification and regression. Furthermore, the users
are able to define their own machine learning tasks. Finally, the
demo includes several baseline approaches such as the node em-
bedding technique DeepWalk [10] and the original retrofitting
approach [4] from Faruqui et al.

2 RETRO – BACKGROUND

Retro aims at combining word embeddings with relational text
data to generate good vector representations for text values re-
siding within databases. Therefore, our relational retrofitting ap-
proach learns a matrix of vector representationsW = (v1, . . .vn )
with vi ∈ RD for every unique text value T = (t1, . . . tn ) in a
database. To find initial word vectors for every text value, we
tokenize the them based on the vocabulary of the basis word
embedding model and build centroid vectors which is a conve-
nient way to obtain a representation of text values consisting
of multiple tokens [1, 11]. These vectors are stored in a matrix
W 0 = (v ′

1, . . .v
′
n ) forming the basis for the retrofitting process.

Besides, columnar and relational connections are extracted from
the database (see Section 2.1). This encompasses semantic rela-
tions between text values, which are derived from the relational
schema. Those connections are used to create a representation
capturing the context of the text value in the database and thus
help to preserve their semantics more accurately compared to
a plain word embedding representation. In order to apply node
embedding techniques like DeepWalk [10], all information is con-
densed into a common graph representation shortly presented in
Section 2.2. The core procedure of the relational retrofitting is the
adaption of the basis vectorsW 0. This is performed by solving
an optimization problem detailed further in Section 2.3.

2.1 Extracting Relational Information

One can derive different structural relations from the alignment
of text values in the relational schema.
Columnar Connections: Text values with the same attribute,
i.e. appearing in the same column, usually form hyponyms of
a common hypernym (similar to subclass superclass relations).
Thus, they share a lot of common properties which typically
leads to similarity. We capture this information and assign each
text value ti to its column C(i).
Relational Connections: Relations exhibit from the co-occur-
rence of text values in the same row as well as from foreign
key relations. Those relations are important to characterize the
semantics of text value in the database. We define a set of relation
types R which is specific for a certain pair of text value columns.
Those columns are related because they are either part of the
same table or there exists a foreign key relationship between their
tables. For every relation type r ∈ R there is a set Er containing
the tuples of related text value ids. Relation types are directed.
Accordingly, there is an inverted counterpart r̄ for each relation
r with Er̄ = {(j, i)|(i, j) ∈ Er }.

2.2 Graph Generation

A graph representation is a pre-requisite for training node em-
beddings such as DeepWalk [10] which serve as a strong baseline
for Retro. To compile a graph G = (V ,E) the text values ex-
tracted by the tokenization process together with columnar and
relational connections (Section 2.1) are combined. The node-set
V = VC ∪VT consists of text value nodesVT for every distinct text
value in a database column and blank nodes for every column
VC . The edge set E =

⋃
r ∈R Er ∪ EC consists of a set of edges Er

for every relational type and edges EC connecting text values of
one column to a common category node.

2.3 Optimization Problem

Retro considers relational and columnar connections (see Sec-
tion 2.1) to retrofit an initial embedding. Accordingly, we define a
loss function Ψ adapting embeddings to be similar to their basis
word embedding representationW 0, the embeddings appearing
in the same column, and related embeddings.

Ψ(W ) =

n∑
i=1

[
αi | |vi −v ′

i | |
2 + βiΨC (vi ,W ) + ΨR (vi ,W )

]
(1)

The columnar loss is defined by ΨC and treats every embedding
vi to be similar to the constant centroid ci of the basis embed-
dings of text values in the same column C(i).

ΨC (vi ,W ) = | |vi − ci | |
2 ci =

∑
j ∈C(i)

v ′
j

|C(i)|
(2)

The relational loss ΨR treats embeddings vi and vj to be similar
if there exists a relation between them and dissimilar otherwise.
Er is the set of tuples where a relation r exists. Ẽr is the set of all
tuples (i, j) < Er where i and j are part of relation r . Thus, each
of both indices has to occur at least in one tuple of Er .

ΨR (vi ,W ) =
∑
r ∈R

[∑
j :(i, j)
∈Er

γ ri | |vi −vj | |
2 −

∑
k :(i,k )
∈Ẽr

δ ri | |vi −vk | |
2
]
(3)

α , β , γ and δ are hyperparameters. Ψ has to be a convex func-
tion. In [5] we proved the convexity of Ψ for hyperparameter
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configurations fulfilling the following inequation:

∀r ∈ R, i ∈ {1, . . . ,n} (αi ≥ 0, βi ≥ 0, γ ri ≥ 0) (4)

∀vi ∈W (4αi −
∑
r ∈R

∑
j :(i, j)∈Ẽr

δ ri ≥ 0)

Given the property of convexity, an iterative algorithm can be
used to minimize Ψ. Using sparse matrix calculations this can
be done in parallel with linear time complexity according to the
number of text values inW . Details are outlined in [5].

3 SYSTEM OVERVIEW

RetroLive is a fully functional system built on top of PostgreSQL.
The front-end is a web application managing the provided input
databases and embeddings (Section 3.1), controlling the relational
retrofitting process (Section 2) and performs several ML tasks
(Section 3.2). The system overview is depicted in Figure 2.
Based on an input database schema ( 1 ) and a target word embed-
ding wodel ( 2 ) a so-called basis word embedding ( 3 ) is created
which encodes each text value in the database as a dense vector.
These vectors together with the extracted relational schema in-
formation ( 4 ) comprise the input for the relation retrofitting
which returns a retrofitted embedding ( 5 ). In addition, a graph
representation ( 7 ) of the text value relations (see Section 2.2)
is generated and used to create node embeddings ( 8 ) which
serve as a strong baseline for our approach. Moreover, the graph
representation is used to apply the original retrofitting approach
of Faruqui et al. ( 6 ). The basis word embeddings, node embed-
dings, simple and relational retrofitted embeddings are used to
train and test ML models ( 9 ).

3.1 Datasets

The deployment used for the demonstration contains several
preloaded database schemas and target word embeddings. Addi-
tionally, it provides several baseline embeddings.
Relational datasets: We prepared three datasets and imported
them into PostgreSQL: The Movie Database (TMDB)2, Google
Play Store Apps3 and Open Food Facts 4 which are all very pop-
ular datasets on Kaggle with a significant portion of textual data.
Target Word Embeddings: We used the popular 300 dimen-
sional Google News embeddings5 and an English fastText6 model
as target word embeddings for our retrofitting process.
Baseline Embeddings:We applied the original retrofitting ap-
proach [4] using the proposed standard parameter configuration
of αi = 1 and the reciprocal of the outdegree of i for βi within 20
iterations. DeepWalk (DW) is trained with its standard parame-
ters and a 300 dimensions representation size.

3.2 ML Tasks

To demonstrate the usefulness of the relational retrofitting, the
user can perform different extrinsic evaluation tasks, such as bi-
nary classification, missing value imputation and link prediction,
on the embeddings generated with the relational retrofitting ap-
proach as well as the various baseline embeddings.
RetroLive comes with a set of pre-defined ML models:
Binary Classification: Text values can be assigned to two dis-
tinct classes by a classifier, e.g. we defined the task to distinguish

2https://www.kaggle.com/rounakbanik/the-movies-dataset
3https://www.kaggle.com/lava18/google-play-store-apps/
4https://www.kaggle.com/openfoodfacts/world-food-facts
5https://code.google.com/archive/p/word2vec/
6https://github.com/facebookresearch/fastText/blob/master/docs/pretrained-vectors.md
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US-American and non-US-American directors in TMDB.
Regression: Regression tasks assign input data points to a re-
lated numerical value, e.g. the budget or revenue in US dollar for
a movie title.
Null Value Imputation: Text values are assigned to one cat-
egory out of a finite set of category values, e.g. the “original
language” of a movie or the app category for apps in the Google
Play Store Apps dataset.
Link Prediction: The link prediction problem is typically de-
fined on graphs where the goal is to predict links that are missing
or likely to be created in the future. In our case, we consider
the link prediction task for a specific relation to predict missing
foreign key relations.
Our models consist of different multi-layer dense neural net-
works that can be applied on the generated node embeddings,
pre-trained word embeddings, and our retrofitted embeddings.
Details on the specific neural network architectures for all ML
models are given in [5]. All experiments are repeated multiple
times to obtain the distribution of the accuracy values.

4 DEMONSTRATORWALKTHROUGH

Users access RetroLive through an interactive web interface
shown in Figure 3 where they can configure and explore the
whole relational retrofitting process. There are six main views:
Config and Retrofit: Those views allow to choose the database
(three are pre-defined) and the target word embedding and con-
figure the retrofitting process by setting the hyperparameters
( A ). If the retrofitting is done on the same data used for the
ML Task (e.g. to predict the genres of movies expressed in the
database by foreign key relations), users can blacklist specific
relations for the retrofitting in the config view. Further, the rela-
tional retrofitting process can be triggered and monitored ( B ).
Results: In this view the user can inspect the extracted relational
information (see Section 2.2) from the input schema in form of
graph ( C ). Additionally, the embedding statistics for each text
column are presented ( D ).
Analysis: In the analysis view, the users can inspect the char-
acteristic of the retrofitted embeddings and compare them with
the plain input word embedding. An interactive histogram ( E )
shows the distribution of the cosine similarity between the plain
word vectors and the retrofitted vectors, i.e. to which degree
certain vectors have been changed during the retrofitting pro-
cess. The user can click on the individual bins to see additional
information, e.g. in how many relations certain terms have been
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involved or in how many different columns a term appeared or to
get a complete list of embeddings in the selected bin. Moreover,
a 2-dimensional projection (PCA) shows the user-selected plain
text and retrofitted vectors ( F ). In context of the TMDB database
example, it can be seen that the vectors for movies and directors
are arbitrarily distributed in the word embedding (red). How-
ever, after applying relational retrofitting the movie and director
vectors (blue) are clustered and the difference vectors between
movie and director pairs are of same length and orientation.
ML Tasks: To show the benefits of relation retrofitting the users
can run different ML tasks (Section 3.2). The users select the
embedding model (retrofitted, node, plain, etc.) they want to use
for the given task. Training and testing data is retrieved from
the database using pre-defined SQL queries which can be also
modified by the user. Diagrams visualize the results ( G ).
Evaluation: Our demonstrator includes 14 intrinsic evaluation
tasks to test word similarity, e.g. SimLex999 [6] MEN [3] or analo-
gies, e.g. Google Analogy [7] ( H ). Here, the users can investigate
whether original retrofitting and relational retrofitting affect the
intrinsic task performance compared to plain word embeddings.

5 CONCLUSION

In this paper, we presented RetroLive, a novel system which
allows generating retrofitted embeddings for an arbitrary data-
base in a fully automated fashion. Participants can experience
first-hand the power of relational retrofitting by tuning different
hyperparameters, playing with different input datasets and inves-
tigating the effect of using a rich set of visualizations. Our demon-
stration highlights the potential of relational retrofitted vectors
which achieve very good results for machine learning tasks like
regression, binary, and multi-class classification. RetroLive also
implements state-of-the-art baselines such as DeepWalk and the
approach of Faruqui et al. which are both out-performed. Our
system is publicly available under the permissive MIT license7.

7https://github.com/guenthermi/postgres-retrofit
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ABSTRACT
Record-level matching rules are chains of similarity join predi-
cates on multiple attributes employed to join records that refer
to the same real-world object when an explicit foreign key is not
available on the data sets at hand. They are widely employed
from data scientists and practitioners that work with data lakes,
open data, and data in the wild.

We present RulER, the first tool that allows to efficiently ex-
ecute record-level matching rules on parallel and distributed
systems—we developed that on top of Apache Spark to leverage
on its vast ecosystem of libraries and wide adoption. In this demo,
we show how RulER can be easily employed for data prepara-
tion tasks (i.e., to join data sets to be consumed by data analytic
tasks) and to support the user in debugging record-level match-
ing rules. Finally, we demonstrate how our execution strategy
of the record-level matching rules—introduced by RulER—is up
to 3 times faster than the naïve concatenation of similarity join
predicates.

1 INTRODUCTION
Combining data sets that bare information about the same real-
world objects is an everyday task for practitioners that work
with structured and semi-structured data. Frequently (e.g., when
dealing with data lakes or when integrating open data with pro-
prietary data) data sets do not have explicit keys that can be used
for a traditional equi-join [4, 8, 9]. When that happens, a common
solution is to perform a similarity join [6], i.e., to join records that
have an attribute value similar above a certain threshold, accord-
ing to a given similarity measure, as in the following example:

Example 1.1 (Similarity Join). Given two product data sets, join
all the record pairs with the Jaccard similarity of the product names
above 0.8.

Aplethora of algorithms have been proposed in the last decades
to efficiently execute the similarity join considering a single at-
tribute, i.e., attribute-level matching rules (see [6] for a survey). At
their core, all these algorithms try to prune the candidate pairs of
records, on the basis of a single-attribute predicate—to alleviate
the quadratic complexity of the problem.

Interestingly, only a few works had been focused on studying
how to execute record-level matching rules, i.e., the combination
of multiple similarity join predicates on multiple attributes (see
section 2.1.1). Yet, this kind of rules permits to specify more
flexible rules to match records, as in the following example:

Example 1.2 (Record-level matching rule). Given two product
data sets, join all the record pairs that have a Jaccard similarity
of the product names above 0.8, or that have a Jaccard similarity

© 2020 Copyright held by the owner/author(s). Published in Proceedings of the
23rd International Conference on Extending Database Technology (EDBT), March
30-April 2, 2020, ISBN 978-3-89318-083-7 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

of the description that is above 0.6 and the edit distance of the
manufacturer lower than 3.

Furthermore, record-level matching rules can be used to rep-
resent decision trees [1], hence learned with machine learning
algorithms when training data is available. As a matter of fact,
a decision tree for binary classification (i.e., classification of
matching/not-matching records) can be naturally represented
with DNF (disjunctive normal form) predicates—the same con-
sideration can be done for a forest of trees.

To the best of our knowledge, no techniques have been pro-
posed to leverage on distributed and parallel computing for scal-
ing record-level matching rules. The benefit is twofold: (i) dis-
tributed computation allows to scale to large data sets that cannot
be handled with a single machine; (ii) parallel execution reduces
the execution times (3 time faster in our experiments). As a mat-
ter of fact, being able to efficiently execute similarity join is
crucial when time is a critical component, e.g., when users are
involved in the process. For instance, in exploratory search in a
data lake [7], users typically look for related data sets and low
latency in performing similarity join is required for enabling
the user’s interactive exploration. Also, when debugging record-
level matching rules, users typically try different configurations
of similarity metrics, thresholds, and attributes. Hence, enabling
fast execution of such rules can significantly save user’ time.
Contribution.We present RulER, a tool that enables users to effi-
ciently execute record-level matching rules to join large data sets
on distributed parallel systems. In particular, we implemented
RulER on top of Apache Spark1, to leverage on its vast ecosystem
of libraries and tools for data preparation, and machine learn-
ing. In this demonstration, we will showcase RulER on several
real-world data sets; attendees will write their own matching
rules through Jupyter notebooks, and explore and analyze the
results. We will demonstrate how to employ RulER both in a data
preparation pipeline and to debug record-level matching rules.
We implemented state-of-the-art similarity join algorithms for
Spark that can be employed to build chains of similarity join
predicates (i.e., to mimic record-level matching rules). Attendees
will run such similarity join chains and verify that RulER is actu-
ally significantly faster (up to an order of magnitude) and more
convenient to program such rules thanks to its APIs.

2 TOOL ARCHITECTURE
2.1 Preliminaries

2.1.1 Record-level matching rules. In RulER, matching rules
are written in Disjunctive Normal Form (DNF), i.e., as a disjunc-
tion (logical OR) of conjunctions (logical AND) of similarity join
predicates on multiple attribute (i.e., at the record level). This
design choice is driven by the fact that DNF matching rules are
easy to read and thus to debug, in practice. Moreover, DNFs can
be employed to represent the trained model of a decision tree (or

1https://spark.apache.org/
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of a random forest), hence suitable for exploiting labelled data.
In this demonstration, we focus on how to scale DNF matching
rules and we do not investigate how to generate good DNFs (i.e.,
decision trees/random forests) starting from training data.

To the best of our knowledge, the only related work tackling
this problem is [1], which focuses on single-node execution, bor-
rowing optimization techniques from the traditional relational
database approaches. Similarly, [5] focuses on how to optimize
multi-attribute similarity join, but only for conjunctions of pred-
icates (i.e., not for DNF).

2.1.2 Similarity join with prefix index. The naïve solution for
similarity join (i.e., each predicate of a DNF) is to enumerate
and compare every pair of records, i.e., highly inefficient and
not feasible on large data sets. To reduce the task complexity,
different approaches were proposed in literature [2, 10–12]. All
these approaches adopt a filter-verification pattern: (i) first an
index is used to obtain a set of pre-candidates (e.g., prefix filter);
(ii) the pre-candidates are filtered using a set of filters that are
fast to apply; (iii) the resulting candidate pairs are probed with
the similarity function to generate the final result.

The most efficient technique to obtain the pre-candidates effi-
ciently is the prefix filter [2], which works as follows. Given
a set of strings (the values of an attribute in a table, for in-
stance), a pre-processing function is applied to each string to
obtain a set of elements (e.g., tokens or n-grams, etc.). These
elements are then sorted according to a global order, usually by
their not decreasing document frequency of the elements (i.e.,
1/#(strinдs containinд that element))—typically infrequent ele-
ments yield fewer candidate pairs [2]. Then, for each sorted set
of elements only the first π are considered, i.e., the prefixes. A
pair of element ⟨ri , r j ⟩ can be safely pruned if their prefixes have
no common elements. The prefix size depends on the adopted
similarity function and threshold. For example, the prefix filter
for the overlap similarity is defined as follows: given two sets, ri
and r j , and an overlap threshold t ; if |ri ∩ r j | ≥ t , then there is
at least one common element within the πri -prefix of ri and the
πr j -prefix of r j , where r = |r j | − t + 1 and s = |r j | − t + 1.

An example of prefix filtering is reported in Figure 1. The
prefixes, assuming an overlap threshold t = 4 are highlighted
in grey. Since the two prefixes do not share any element, the
pair ⟨ri , r j ⟩ can be pruned. The intuition behind this is that the 3
remaining elements to check can provide at most a similarity of
3, that is not enough to reach the requested threshold t .

a b c ? ? ? d e ? ? ?t = 4 r1 r2

Figure 1: Prefix filtering example: The pair ⟨ri , r j ⟩ can be
pruned since the prefixes (in grey) have no common ele-
ments. The elements to check can provide at most an over-
lap similarity of 3 (or a Jaccard similarity of 3/8).

The prefix filter can be adapted to work with many similarity
measures like Jaccard, Dice, Cosine, Overlap [11] and Edit Dis-
tance [10], and it is employed by best performing similarity join
algorithms [6].

The state-of-the-art distributed and parallel similarity join
algorithms [3] partition the candidate pair of records according
to the entry in the prefix index, i.e., for each element in the in-
dex, all the corresponding pairs of candidates are assigned to a
computational node—more optimizations can be performed, but
at their core, this is how parallelization is achieved by existing
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Figure 2: RulER execution model: green cells represents
executed and passed rules; red cells executed that do not
pass the rules; grey cells not executed rules.

algorithms. So, if two different similarity join conditions are con-
sidered (e.g., two different similarity measures on two different
attributes), existing algorithms would create two different prefix
indexes and generate two completely different parallelization
strategies. Thus, given a fixed number of computational nodes,
by employing existing algorithms, the only way to get the com-
plete result of multiple similarity joins (i.e., the predicates of the
matching rule) is to perform the joins in series and then combine
the result sets.

2.2 The RulER execution model
The main intuition of RulER is to exploit the prefix indexes—one
prefix index for each predicate of the matching rule—to build
a graph structure, which is then employed to iterate over the
records (the nodes of the graph), efficiently applying the rules
and keep only the candidates (the edges of the graph) that pass
the whole rule. In other words, RulER adopts a record-based
parallelization approach; in contrast to the existing algorithms,
which adopt a prefix-based parallelization approach on a single
predicate at a time.

Example 2.1 (Distributed and parallel matching rulewithRulER).
Given amatching ruleR = (C1∧C2∧C3)∨(C4∧C5), in which each
Cx is a similarity join predicate (e.g., Jaccard Similarity title ≥ 0.8).
An example of how RulER executes R is outlined in Figure 2. First,
a prefix index is built on the basis of the record-level matching
rules expressed in the main matching rule R. Then, the index is
distributed to each worker. Each worker iterates over each record
in its partition extracting the possible candidates from the prefix
index. The rules are applied to each candidate. If more rules are
in or it is possible to avoid computing the other rules when one
of them is verified, e.g., with r1-r2 the rule (C1 ∧C2 ∧C3) is not
verified since the pair passes the rule (C4 ∧C5). Otherwise, if more
rules are in and , it is possible to avoid the computation when one
of them fails, for example for the pair r1-r3 C2 fails, so C3 has not
to be computed.

2.2.1 The algorithm. The RulER matching rule algorithm is
outlined in Algorithm 1. The presented algorithm is the self-join
version for sake of the presentation; adapting it for joining two
different data sets is straightforward. The algorithm takes as
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input a collection of records and a record-level matching rule
M and gives as output the set of record pairs that satisfyM.
Recall thatM is in DNF, i.e., it is composed of sets of predicates
Pj in logical or, each set Pj contains predicates pk in logical and.
First of all, the values of attributes are converted into sets of
elements (Line 1) according to the matching rule requirements
(e.g., n-grams, trigrams, tokens, etc.); then the prefix indexes
are built to find the candidate pairs (line 2)—one prefix index is
needed for each predicate pk of the matching rule. The prefix
indexes are sent in broadcast to each node (line 3) to be available
to each computational node (called worker). Then, each worker
iterates over its portion of records (lines 5-6), and performs the
following operations for each record ri . First, a set of candidates
for ri is initialized as an empty set Cri (line 7). Second, for each
set Pj , a set of candidates CPj is initialized as an empty set (lines
8-9) and for each pk ∈ Pj the candidates Cri ,pk that can match
with ri are extracted using the prefix indexes (lines 10-11). Third,
the candidates Cri ,pk are pruned by removing those that already
passed one of the previous Pj set of predicates (line 14), and
those that did not passed previous pk ∈ Pj predicates (lines 15-
16). Fourth, the retained candidates are probed with other filters
that further improve the efficiency of the overall process (e.g.,
length filter, position filter, etc. [10, 11]) according to the rule
(line 18). Since pk is in logical and with the previous predicates,
only the candidates that pass the filters are kept. Finally, the
resulting candidates from Pj are added to Cri (line 20).

2.2.2 Difference operator. RulER implements a method to per-
form the difference between the result pairs generated by two
matching rules, i.e., given two matching rules M1, M2 it ef-
ficiently performs the difference of the result sets res(M1) \
res(M2). Since the algorithm works at record level it is possible
to perform a fine control on the application of the rules: when a
record ri is processed firstM1 is checked, so to get res(M1, ri );
then,M2 is applied only on the records r j ∈ res(M1, ri ), avoid-
ing to compute it on the whole pairs again, retaining only the
records r j that do not satisfyM2 (i.e., res(M1) \ res(M2)).

Algorithm 1 RulER core
Input: R collection of records to join
Input: M matching rule in DNF
Output: C , the pairs of records that can satisfyM
1: RT ← дetElements(R,M)
2: I ← buildPref ix Indexes(RT ,M)
3: broadcast(I )
4: C ← {} //Candidate pairs
5: foreach partition par t ∈ RT
6: for each ri ∈ par t do
7: Cri ← {} //Candidates for ri
8: for each Pj ∈ M do //For each set of predicates in logical or
9: CPj ← {} //Candidates that satisfy Pj
10: for each pk ∈ Pj do //For each predicate in logical and
11: Cri ,pk ← I (pk , ri ) //Gets the candidates from the prefix index

12: /*Removes candidates that already passed previous predicates in or

13: and those that did not pass previous predicates in and*/
14: Cri ,pk ← Cri ,pk −Cri
15: if CPj , ∅ then
16: Cri ,pk ← Cri ,pk ∩CPj
17: /*Applies filters (length, positional, ...)*/
18: CPj ← applyF il ter s(ri ,Cri ,pk , pk )
19: Cri ← Cri ∪CPj
20: C .append (Cri )

3 DEMONSTRATION SCENARIO
During the demonstration, participants will try RulER2 on several
scenarios and data sets by means of Jupyter Notebooks3. Users
will be guided in: defining custom matching rules for a practical
data preparation task (Section 3.1); debugging a matching rule
(Section 3.2); and compare the efficiency of RulER w.r.t. existing
state-of-the-art similarity joins (Section 3.3). Multiple scenarios
and data sets (e.g., products, movies, books, finance, etc.) on
which it is possible to try our RulER are available, but for sake of
the presentation we describe only some of them in the following.

3.1 Data preparation scenario
In this scenario we use two movies data sets Rotten Tomatoes4

and Roger Erbert5. The former gather users’ ratings about
movies, the latter critics’ ratings. There is no foreign key be-
tween the two data sets. We ask the attendee to discover if
there is a correlation between the ratings given by the users
with the ones given by the critics. To do that, we need to define
a matching rule to integrate the two data sets, then we com-
pute the Pearson correlation on the obtained results. We ask to
the attendee to write a record-level matching rule, for instance:
(”movie_name”, ”Title”, JS, 0.8) ∧ (”actors”, ”Cast”, JS, 0.5), That
means that the JS between the names of the movies must be
greater or equal than 0.8 and the JS between the actors of the
movies must be greater or equal than 0.5. After the matching, it
is possible to obtain a scatter plot of the ratings, and compute
the Pearsons correlation rating given by critics and the rating
given by users on the same movie.

Figure 3 shows how simple is to use RulER. The user has just to:
include RulER library (line 1), load the data as Spark Dataframe
(lines 3-4), define the rules (lines 6-7) and combine them to obtain
the final matching rule (line 9). Finally, the matching rule can be
used to join the two dataframes with the joinWithRules method
(line 11).

3.2 Matching rule debugging scenario
In this scenario we show how RulER can be used to efficiently
debug different matching rules by using the difference operator.
In particular, given two matching rulesM1,M2 we will show
how to use RulER to find the matches provided by the first rule
that are not present in the matches provided by the second one,
i.e. how to perform the difference between the two result sets
res(M1) \ res(M2). An example is shown in Figure 4. First, two
matching rules are defined: in the first one the records are aligned
by using the title and the director of the movies, while in the latter
by using the title and the cast. Then, a new debugging rule is
created using the difference operator defined in RulER. Finally,
the debugging rule is applied to the dataset, obtaining thematches
generated bym1 that are not generated bym2.

3.3 RulER efficiency demonstration
In this scenario we connect to a Spark cluster and use a subset of
the IMDB data set6 that contains records about movies, providing
different fields that can be used to generate matching rules (e.g.
movie title, cast, director, plot, etc.).

2We implemented RulER in Scala and made it open source: https://github.com/
Gaglia88/ruler
3https://jupyter.org
4https://www.rottentomatoes.com
5https://www.rogerebert.com
6https://www.imdb.com
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Figure 3: RulER usage example.

Figure 4: Rule’s debugging example.

We show how difficult is to write a complex rule by using ex-
isting similarity join algorithms w.r.t. the use of RulER. Moreover,
RulER is much more faster. Figure 6 presents this scenario. To
execute the rule as a similarity join chain, we use EDJoin [10]
to perform a similarity join based on Edit Distance and PPJoin
[11] to perform a similarity join based on Jaccard Similarity. The
matching rule written by chaining similarity joins is expressed
in lines 13-16. Note that, each rule provides a partial result and
then the partial results of each rule have to be combined (line
16). If two rules are in and the partial results have to be inter-
sected; if they are in or they have to be merged. To merge two
candidate sets and avoid duplicates, a distinct operation has to be
performed. The distinct and the intersection are very expensive
operations in Spark because they require a shuffling since the
same pairs have to be computed by the same worker.

0 10 20 30 40 50 60
Execution time (s)

Join chain
RulER

prefix processing join res. merge

Figure 5: Execution time of RulER vs the execution time
of the join chain in Figure 6.

Figure 5 shows the execution time of both the solutions. For
the join chain, the prefix indexing and join times are computed
as the sum of each join. The RulER indexing time is higher due
to the time requested to broadcast the index, but the join time
is faster. Moreover, RulER does not need to merge the partial
results, that is the costly task of the join chain, which makes it
highly inefficient.

Figure 6: Join chain vs RulER execution.
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ABSTRACT
Schema mapping generation identifies how data sets can be com-
bined to create views that are relevant to an application. Where
the data sets to be combined lack declared relationships, such as
foreign keys, schema mapping generation can be considered to
be in the wild. In this paper, we describe an approach to schema
mapping generation in the context of open government data,
in particular, the London Datastore. Mapping generation is in-
formed by inferred profiling data about the data sets and their
relationships, where the data sets are made available as csv files.
We outline the mapping generation algorithm, and describe a
demonstration of the approach, in which the user can: (i) specify
the target to be populated by the generated mappings over a
collection of sources from The London Datastore; (ii) browse the
generated candidate mappings and the evidence that informed
their creation; and (iii) steer the mapping generation process, to
make use of preferred sources and dependable profiling results.

1 INTRODUCTION
Given a collection of source datasets, some metadata about them,
and a target schema, schema mapping generation produces a
collection of views that provide ways of populating the target
from the sources. Mapping generation is important because the
data of relevance to an application or an analysis is often not
immediately available in a single, suitable, integrated form.

Mostwork onmapping generation has assumed that the source
and the target benefit from declared constraints, for example in
the form of primary and foreign keys (e.g., as in the seminal work
on Clio and its descendents, as reviewed in [5]). However, with
the growing availability of open data sets, and the emergence
of data lakes, mapping generation over independently produced
data sets, with minimal explicit metadata, is arguably even more
necessary than for well-defined schemas.

We refer to mapping generation over data sets without de-
clared relationships as in the wild. Mapping generation must,
among other things, take into account relationships between
data sources, and, in this paper, we assume that candidate keys
and (partial) inclusion dependencies have been inferred through
data profiling [1]. Then, to deploy schema mapping generation
in the wild, the following are required:

(1) A way of exploring the space of candidate mappings. We use
a dynamic programming algorithm to identify promising
mappings, referred to as Dynamap [8].

© 2020 Copyright held by the owner/author(s). Published in Proceedings of the 23rd
International Conference on Extending Database Technology (EDBT), March 30-
April 2, 2020, ISBN 978-3-89318-083-7 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

(2) A way of displaying to the user these mappings, their prop-
erties, and the evidence on which they build. As (1) builds
on necessarily speculative profiling data, the results of
mapping generation must be able to be reviewed by users,
for example to ensure that joins are building on inclusion
dependencies that represent valid real-world relationships.

(3) A way to enable the user to steer the mapping generation
process. As (2) may identify issues with generated map-
pings, users must be able to steer the mapping generation
process away from unsuitable decisions, for example by
ruling out the use of certain inclusion dependencies.

To show (1) to (3) in practice, we demonstrate our mapping
generation algorithm, and its associated user interface, in use
with data from The London Datastore1, which provides hundreds
of data sets providing diverse information about London.

The remainder of the paper is structured as follows. Section 2
provides some details on The London Datastore. Our mapping
generation approach is reviewed in Section 3. The demonstration
in Section 4 shows an example of viewing a generated mapping
and understanding it based on its properties and the evidence
based on which it was created. The user can steer mapping gen-
eration based on the presented information. Section 5 concludes.

2 OPEN DATA CASE STUDY: THE LONDON
DATASTORE

Open government data is published in a collection of national,
regional, city or topic-based portals, with a view to increasing
transparency and informing decision making [3]. The London
Datastore is a representive example of a city data repository, pro-
viding data sets across a range of topic areas, including transport,
employment, housing, health and education. These datasets come
from a variety of publishers, including local and national gov-
ernment departments, and many of the data sets use consistent,
generous licenses. The London Datastore supports both search
and browse interfaces, and allows data sets to be downloaded in
a variety of formats.

The demonstration uses comma-separated-value file data sets,
released under the UK Open Government License2. Typically
files contain from a few tens of rows (e.g., there are numerous
data sets that have one row for each London Borough, of which
there are 33), to a few thousand rows (e.g., there are around 5000
rows in a data set of modelled household income estimates at
a particular, rather fine, area granularity). There may be few
(e.g., 2) to many columns in each table (e.g., there are hundreds
of columns in a ward atlas table, describing different properties
of an electoral ward).

1https://data.london.gov.uk
2http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
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Figure 1: London datasets example

Figure 1 contains fragments (i.e., shows subsets of both tuples
and attributes of the tables) from three tables in The London
Datastore that are used in our running example. The tables in
Figure 1 show population statistics for different London areas
and (possibly their corresponding) crime rates3.

3 MAPPING GENERATION IN DYNAMAP
In this section, we illustrate mapping generation in Dynamap
with an example over The London Datastore.
The problem and some evidence. The problem is that of gen-
erating a set of mappings that populate a target table from a set of
source tables. The target table definition provides only the names
of the columns, and the source table definitions contain only
column names and their associated values. Mapping generation
techniques have been developed that use different types of evi-
dence, including declared constraints [5], data examples [2] and
feedback [4]. In Dynamap, the evidence used to inform mapping
generation is matches between source and target attributes, and
(partial) inclusion dependencies, both of which can be inferred
using standard profiling algorithms [1]. In Figure 1, the target
requires information about population and employment statistics
per area (first 7 attributes), together with the corresponding num-
ber of offences in each area (last attribute). Also, Figure 1 shows
the detected profile data on the represented sources: 10 inclusion
dependencies (represented by arrows, where their direction is
from the dependent to the referenced source) and 12 candidate
keys (annotated with [CK]). The overlap (θ ) is the fraction of the
distinct values in the dependent attribute that are found in the ref-
erenced attribute. In the example, eight inclusion dependencies
are partial (θ ∈ (0, 1)) and two are full (θ = 1.0).
Exploring the search space. Mapping generation is typically
a search problem, either using generic (e.g., [6]) or bespoke (e.g.,
[5]) algorithms. In Dynamap, the space of candidate mappings

3Due to space limitations, throughout the rest of this paper, the figures contain
attribute and table names capped at 15 characters.

is every way of combining the sources using union or join op-
erations, where union compatibility is detected by comparing
matches with the target and join operations are based on full
or partial inclusion dependencies. We explore the search space
using dynamic programming, but with pruning to ensure that
only promising parts of the space are actually visited. As a result,
mappings are constructed bottom-up, from pairs of tables, then
from tables with intermediate mappings containing two tables,
etc. For example, in Figure 1, a first step could be to merge Indices
of deprivation with London borough profiles by joining on Area
attributes, and then, their result intermediate mapping could be
merged further with the crime rates table through join on either
Code or Area/Borough attributes.
Annotating candidatemappings.As the search must combine
pairs of intermediate mappings, we need to know the candidate
keys of candidate mappings and their (partial) inclusion depen-
dencies. These need to be derived during the search process, as it
is not computationally viable to evaluate (i.e., materialize) every
candidate mapping and run a profiler on it. The derived profile
information is also used to compute a fitness, which represents
the predicted fraction of complete rows. Formulas have been
developed for propagating profiling data through unions and
joins [8]. For example, in Figure 1, after joining Indices of depri-
vation with London borough profiles on Area, their corresponding
inclusion dependencies and candidate keys are propagated such
that it shows the relationship between the newly created interme-
diate mapping and the crime rates table. Based on this propagated
profiling data, the mapping generation system can detect that the
new mapping will produce Area and Code values that are over-
lapping with Borough and Code in crime rates, thus, it concludes
that they can be joined on one of the overlapping attribute pairs.

4 DEMONSTRATION
Mapping generation in the wild will be demonstrated through
hands-on experience generating and examining mappings over
datasets from The London Datastore, in the context of the Data
Preparer4 data integration and cleaning platform, a descendent
of the VADA Architecture [7]. Users interact with the system
via a web interface; our goals are to demonstrate: (i) how data
profiling can be used to provide information about the properties
of the data sets; (ii) how this evidence can be used by Dynamap to
combine sources in plausible ways; (iii) how users can review the
candidate mappings, and the evidence on which they are based;
and (iv) how users can steer the mapping generation process, for
example by excluding schema elements or profiling data that are
not relevant to the result.

Figure 2 shows an example that extends the one in Figure 1
by adding to it three other sources containing data about house
and population density, national insurance registrations, and
statistics on the population from the local authorities. Although
the demonstrationwill support differentways of using the system,
one approach would involve the following steps.
Browse the available sources. The interface supports search
and browse over the sources that are input to the system.
Define a target. The user can interactively name a target ta-
ble and its attributes, or edit an existing target to add/remove
attributes. The target table used throughout is that from Figure 1.
Generate mappings and view the result. Given some source
tables and a target, the user can ask the system to generate a result,

4https://thedatavaluefactory.com
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Figure 2: Mapping explanation tree and associated information

which means running a matcher, a data profiler (for detecting
candidate keys and partial/full inclusion dependencies), mapping
generation and result display.

View a candidate mapping. From the result, the user can ask
the system to explain how the generated mappings were pro-
duced. Each generatedmapping has (i) a view that has the schema
of the chosen target table and that shows how the target is pop-
ulated once the mapping is executed (e.g., 1 in Figure 2), and
(ii) a mapping explanation. Each mapping is explained through
the help of a tree view where the user can understand in which
order the sources were merged and which operators were used to
merge them. Figure 2 shows how six sources are merged through
five joins by a mapping. The root of the tree is the chosen target
table and the leaves of the tree are the input sources merged by
the mapping. The intermediate nodes represent the incremental
build-up of the explained mapping, starting with the merge of
the leaves (the sources) and reaching the target when all sources
were merged or when no other merge opportunities could be
identified. As mentioned in Section 3, the mappings are con-
structed in a bottom-up fashion, and this is shown by the tree
representation, where each intermediate mapping has two cor-
responding nodes in the tree: (i) an operation node (e.g., 3 in
Figure 2), and (ii) a L/R node (e.g., 2 , 4 , 5 ). The operation node
is used to show which was the chosen operation between the
two operands, and (if present) the join condition. As explained

in [8], the operations considered by Dynamap are union, (equi)
join or full outer join; different combinations of profiling data
lead to different operations, e.g., a candidate key whose attributes
share a partial inclusion dependency can lead to a full outer join,
while a full inclusion dependency can lead to a join. The L/R node
shows whether the newly created intermediate mapping is the
left or right operand in the next operation (if any). For example,
in Figure 2, the national insurance table ( 1 ) is represented as the
left operand ( 2 ) for the join operation represented in node 3 .

Understand a mapping. For understanding mappings, the user
can interact with the mapping explanation tree and drill down
on the evidence that informed its creation. The interaction is
done by clicking on the three types of nodes, i.e., leaf, L/R, and
operation nodes, each revealing evidence for that merge step:
Leaf node. Clicking on a leaf node leads to a snippet of the initial
source that it represents. This helps the user understand the
dataset information and whether it was semantically correct to
merge it with the other sources in the mapping. This helps to
decide whether to keep or discard a source from the search. For
instance, after clicking on national insurance ( 1 ) a snippet of the
source appears ( 5 ). It can be observed from it that the source
contains data about national insurance registrations, which is
relevant to the chosen target that requires employment data.
L/R node. Clicking on a L/R node shows information about each
attribute of that intermediate mapping: (i) the target attribute
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that it matches (if any), and (ii) the provenance of the distinct val-
ues in the attribute. The information about the value provenance
is shown as set operations based on how the parent attributes
were merged, e.g., the result of joined attributes contains the
intersection of their values. This helps to understand if a match
is inappropriate or if source attributes were incorrectly merged.
In Figure 2, to understand how the national insurance source con-
tributes to the target, the user needs to click on its corresponding
L node ( 2 ), for which the information about the attributes ap-
pears ( 4 ) so they learn that this source contributes with both
Area and NIN registration values to the target (highlighted in blue
in 4 ). Node 4 is another example of L/R node that corresponds
to the result of the join on Area between national insurance and
indices of deprivation datasets ( 3 ). The attribute information for
this intermediate mapping shows that its Area attribute contains
the intersection of the values from Area attributes in national in-
surance and indices of deprivation, while the rest of the attributes
are not merged.
Operation node. Clicking on an operation node shows the pro-
filing data that was used to choose a certain merge operation.
The information shown contains a table listing inclusion depen-
dencies and another table for candidate keys. This helps decide
whether the used profiling data is meaningful. In Figure 2, to
understand how the national insurance dataset is merged with
indices of deprivation, the user accesses the information about
their merge by clicking on the corresponding operation node ( 3 ).
This shows the profiling data that was used to decide their join on
Area ( 3 ), which comprises two candidate keys onArea attributes
in both sources that share one full inclusion dependency.

Steer mapping generation. Understanding the generated map-
pings can be crucial in the selection of proper mappings to popu-
late a target. Thus, a user can understand if the chosen sources
should be merged or not, or if Dynamap was misled by any faulty
matches or profiling data. After the user explores the mapping
explanation and pins down any wrong decisions, they can alter
through the interface the input that previously led to incorrect
merges. The steering can be done through (i) adding/deleting
source-to-target matches, e.g., remove those between a source
attribute that represents a different concept than the one re-
quired by the target, (ii) removing misleading inclusion depen-
dencies, e.g., remove those between semantically different source
attributes that have common values, (iii) removing candidate
keys on attributes which should not be keys, but were detected
due to the (possibly) scarce data in the source, or (iv) remov-
ing unnecessary datasets from the search space. For example,
in Figure 2, the merge opportunities that Dynamap finds seem
correct as all joined attributes are suitable pairs in terms of their
meaning and value overlap. However, the snippet of the target
( 1 ) shows that many tuples have the same attribute values, for
which only the Population values differ, indicating there might
be an incorrect join with the source(s) that contributes to the
Population attribute. By accessing the attribute information ( 7 )
corresponding to the last merge in the mapping ( 5 ) it is shown
that the value provenance of Population is from the housing den-
sity source. The next step is to analyze the data in the source by
clicking on the corresponding leaf node ( 6 ) for which a snippet
of its extent ( 6 ) is shown. Analyzing the dataset fragment, it can
be observed that the match is incorrect although the Population
attribute in housing density has exactly the same name as the
target, which makes it seem a correct match. The two attributes

represent different types of population: in the source, the popu-
lation information is per ward, not per area as required by the
target. Thus, it can be concluded that the match is inaccurate.
In such situations, it is not straightforward to differentiate be-
tween two (possibly close) semantic meanings, especially when
the attributes contain numerical values. Learning about this in-
correct match, the user steers the mapping generation process
by discarding the Population match. After a new rerun of the
mapping generation process with the updated input, the new
resulting mappings produce sensible results in terms of aligned
data per area. However, given that the housing density source
does not contribute anything else to the target, it is automatically
eliminated from the search space, thus, the new mappings do not
involve it.

5 CONCLUSIONS
We have illustrated mapping generation in the wild with open
data. Not only do we produce useful mappings, but also the sys-
tem is transparent – the user can see what has been done, and
steer the production of future mappings by altering and/or cor-
recting the three types of input: inaccurate matches, misleading
profiling data (candidate keys and inclusion dependencies), and
unnecessary sources.

The problem of automated mapping generation might seem
as an overly-engineered approach when the number of input
sources is small and an expert user can hand-craft the mappings.
However, the problem becomes increasingly complicated when
tens or hundreds of sources are involved and they have a plethora
of merge opportunities. Thus, automating mapping generation
becomes an essential component for data integration. Moreover,
given autonomous input sources, finding correct mappings com-
pletely automatically might become an unfeasible task. This gives
rise to the problem of understanding complex mappings that
involve numerous, autonomous sources. Helping the user under-
stand the mappings leads to steering the mapping generation
process by providing proper input, based on which the system
can make correct decisions.
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ABSTRACT
There is an increasing demand from domain experts for tools that
assist them to extract information about the scientific progress
and technological innovations from bibliographic archives such as
the Web of Science, arXiv, PubMed, etc. Topic evolution graphs
track the evolution of science by identifying and analyzing sci-
ence evolution patterns like the emergence and decay of research
topics or the split of one research topic into several subtopics, etc.
Building such topic evolution networks for extracting meaningful
evolution patterns is still a difficult task requiring the tuning of
several technical parameters. In our demonstration, we present our
prototype implementation of a generic topic evolution model for
representing and filtering evolution patterns extracted from very
large document archives.

1 INTRODUCTION
Revealing meaningful evolution patterns from document archives
has many applications and can be used to synthetize narratives
from datasets accross multiple domains, including new stories,
research papers, legal cases and works of literature [12]. The
study of science evolution can help philosophers and historians
of science [10] to test their theories with data, researchers to
position their work in its scientific context, policy makers to foster
innovation and get key indicators for decision-making processes,
industry to evaluate the potential for innovation and technological
transfer, librarians to classify scientific documents, etc.

Scientific evolution can broadly be studied by adopting a cog-
nitive view or a social view on evolution dynamics. The cognitive
view emphasizes the shared knowledge and the change of ideas
(Kuhn’s approach [10]), whereas the social view takes account
of authorship and social interaction (e.g., citation graphs) [7, 13].
Bibliographic archives often include both kinds of information and
there also exist methods which also combine both views to study
science evolution [8]. In the interdisciplinary EPIQUE project1

we adopt the cognitive view for modeling science evolution and
assume that the evolution only depends on the content of the doc-
uments. Whereas this choice clearly reduces the expressivity of
our evolution model it also decreases the ”social” bias and detects
more easily possible interactions between scientific ideas and con-
tributions independently of any particular scientific community.

The goal of topic evolution networks is to track complex tem-
poral changes by epoch-wise topic discovery and temporal simi-
larity graphs aligning topics of different epochs. Existing evolu-
tion network based frameworks mainly can be distinguished by
the chosen topic extraction and alignment methods. [4] comes

1This work was funded by French ANR-16-CE38-0002-01 project EPIQUE.
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up with a method to enable a bottom-up reconstruction of the
dynamics of scientific fields. They generate topics by word co-
occurrence graphs and align inter-temporal topics by Jaccard sim-
ilarity [9]. [1] generates topics by a Hierarchical Dirichlet Process
(HDP) [14] and uses Bhattacharyya similarity [2], representing
the gradual speciation and convergence similar to biologic evo-
lution, for identifying topic alignments. The alignment process
also applies (asymmetric) Kullback-Leibler divergence (KLD) for
detecting topic split and merge. [11] introduces a novel approach
to the early detection of research topics by using the Computer Sci-
ence Ontology2 to model research topics in the Rexplore system.
They apply a Clique Percolation Method (ACPM) for analyzing
the dynamics between existent topics. Other examples of science
evolution studies explore how "cognitive science" as a field has
changed over the last three decades [6] or analyze topic evolu-
tion patterns (split, merge and knowledge transfer) in the field of
Information retrieval (IR) [5].

The goal of our work is to develop a general framework which
is easier to use by domain experts who can ignore the details of the
underlying topic analysis methods. The contributions presented
in our demonstration can be summarized as follows:
• We propose a generic topic evolution model enabling the speci-

fication and extraction of meaningful topic evolution patterns
independently of a particular topic extraction method.

• We define high-level measures for estimating the quality of the
topic extraction process and for characterizing the structural
and quantitative evolution of topics during a time period. This
enables the experts to tune the topic extraction process and
explore large topic evolution graphs by defining complex topic
evolution patterns.

• We implemented a scalable prototype on top of Apache Spark
for processing large scientific corpora containing millions of
documents and finding meaningful topic evolution graphs for
both stable topics and highly evolving ones.

2 TOPIC EVOLUTION MODEL
Topic evolution graphs: We consider a corpusC of time-stamped

documents, a set of periods P and a set of terms V (vocabulary).
Let M : 2C → 2R

|V |

be a topic extraction method generating
for a subset of documents C ′ ⊆ C a set of (sparse) weighted
term vectors M(C ′) ⊆ R |V | . We denote by Cp ⊆ C the corpus
of documents with timestamp p ∈ P and by Tp = M(Cp ) the
topic descriptions extracted from the documents Cp of period p
using topic extraction method M. A topic t ∈ Tp is then defined
by a couple t = (d,p) where d ∈ M(Cp ). We will denote by
t .d the topic description and by t .p the topic period. Observe
that topics from different periods may share the same descrip-
tion. For example in Figure 1, P has 3 periods: p1="2000 − 2002",
p2="2002 − 2004" p3="2004 − 2006", Tp1 contains topics 54 to 92,
and topic 92 = (d,p1), where d is a weighted vector containing

2http://cso.kmi.open.ac.uk/
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Figure 1: Pivot topics containing term "database" extracted from arXiv, green = emerging terms, blue = stable terms, red = decaying terms

terms "queri", "optim", "databas"... We define a topic evolution
function sim : T×T → [0, 1] estimating the similarity between top-
ics in T . For example in Figure 1, the similarity measure depends
on the topic description and estimates their semantic proximity
using cosine similarity. The similarity between topic 77 and topic
100 is sim(77, 100) = 0.74.

Based on the topic evolution function, we define a topic evolu-
tion graph as a directed labeled multistage graphGβ = (T ,E, sim, β)
over topics T where the edges E connect all topics from consecu-
tive periods with similarity higher or equal to some threshold β :
E = {(ti , tj ) ∈ T |sim(ti , tj ) ≥ β ∧ tj .p = ti .p + 1}.

Topic labeling: For visualization, we assume that all topics
t of some evolution graph Gβ are labeled by the top-k highest
weighted terms in the topic description t .d. Let t .l be the top-k
highest weighted terms in t .d and t .lp ⊆ t .l and t .lf ⊆ t .l be the
subsets of past and future terms which appear, respectively, in
the ancestor topics and in the descendant topics of t . Then, the
terms in some topic vector t .l are partitioned into the following
four subsets of :

• emerging future terms t .le = t .lf − t .lp which do not exist in
past topics,

• decaying past terms t .ld = t .lp − t .lf which do not exist in
future topics,

• stable terms t .lд = t .lp ∩ t .lf which exist in the past and the
future topics of t , and

• specific terms t .ls = t .l − (t .lp ∪ t .lf ) which neither exist in the
past nor in the future topics of t .

The quadruple [t .le , t .ld , t .lд , t .ls ] is called the term label of t .
Figure 1 shows two snippets of a single topic evolution graph

extracted from the arXiv3 corpus for the category DB (databases).
Although the number of documents of category DB are limited,
the generated graphs still generate meaningful evolution patterns.
Emerging terms are shown in green boxes, decaying term boxes
are colored in red, stable terms which exist both in ancestor topics
and in descendant topics are grouped in blue boxes and specific

3https://arxiv.org/

terms which appear only in current topic are in white boxes. The
thickness of edges reflects the similarity between topics. Sev-
eral topics in both subgraphs contain the term "database" and
we can observe different evolution patterns. The left hand graph
shows that in period 2002-2004, topic 77 ("databases, queries, op-
timization, integration") split into topics 100 and 188 ("databases,
queries and constraints") and topics 104, 191, 152 ("prediction,
probability, random" ). The right subgraph covers the same period
with topics related to "data mining" (83), "data access interfaces"
(90), "information retrieval" (92), "logics, semantics" (80) and
"knowledge, reasoning" (54). The first three topics converge in
2002-2004 into a single topic on "object, xml, store, data min-
ing" (146) which splits in the period of 2004-2006 into "storage
servers" (170), "data mining and management" (158) and "knowl-
edge and ontologies" (150).

Pivot evolution graphs: Threshold β strongly influences the
complexity of the obtained evolution graphs. It is easy to see that
Gβ ′ is a subgraph of Gβ for all β ′ ≥ β and G0 is the complete
graph connecting all topics of two consecutive periods. More ex-
actly, higher β values generate more "linear" graphs with many
isolated topics, whereas lower values generate more complex
graphs containing a variety of potentially interesting structures.
Observe also that, whereas the pivot graph complexity of the
same topic increases with decreasing β , high β thresholds might
still generate complex pivot graphs and vice-versa. Analyzing
science evolution by using topic evolution graphs then becomes a
complex task which consist in computing and visually exploring
multiple graphs for different β values. To solve this problem, we
propose a different approach which allows users to formulate fil-
tering queries for selecting interesting subgraphs with meaningful
measures from a set of evolution graphs defined by a set of β
thresholds. For this, we decompose topic evolution graphs into
the set of all connected subgraphs defined by all paths containing
a given topic t (one graph per topic). More formally, a pivot evolu-
tion graphGβ (t) = (T ′,E ′, sim, β) of topic t inGβ is the subgraph
of Gβ which contains t and all ancestors and descendants of t .
The subgraph of Gβ (t) containing all nodes which are reachable
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from t by a path is called the future of t , denoted by Fβ (t), and
the subgraph of nodes which can reach t through a path is called
the past of t , denoted by Pβ (t). The couple (t , β) is called a pivot
topic with pivot graphGβ (t), future Fβ (t) and past Pβ (t). It is easy
to see that if t1 appears in the future (past) of t2, then the future
(past) of t1 is a subgraph of the future (past) of t2 and t2 appears
in the past (future) of t1. This property can be exploited to filter
topics wrt. future and past topics (see the definition of Connection
Filters below).

The evolution of topics within their evolution graphs can be
characterized by the following metrics:

• The liveliness live(Gβ (t)), of a pivot topic (t , β) is defined by
the diameter (longest path length) of its pivot graph Gβ (t). A
high liveliness value describes a long living topic, whereas
a value equal to 0 corresponds to an isolated topic without
ancestors and descendants. The liveliness live(Pβ (t)) of t in
its past estimates the "age" of t wrt. the first period, whereas
live(Fβ (t)) returns the "life expectation" of t (in its future).

• The relative evolution degree revol(Gβ (t)) of a pivot topic (t , β)
is defined by the average topic dissimilarity (edge) weight in
Gβ (t). A low relative evolution degree states that most topics
are connected to very similar topics, i.e., most topics in Gβ (t)
evolve slowly. On the other hand, a high value signifies that
most topics have an important "semantic gap". By definition,
revol(Gβ (t)) ≥ β .

• The pivot evolution degree pevol(Gβ (t)) of a pivot topic (t , β)
is defined by the average dissimilarity of all topics in Gβ (t)
with respect to the pivot topic t . A low pivot evolution degree
signifies that the pivot topic does not evolve a lot (all other
topics are similar), whereas a high value indicates that the pivot
topic evolves rapidly .

• The split degree split(Gβ (t)) of a pivot topic (t , β) is defined by
the average outdegree of Gβ (t). A low value signifies that the
topics evolve along linear paths and a high value signifies that
the topics split into several future sub-topics.

• The convergence degree conv(Gβ (t)) of a pivot topic (t , β) is
defined by the average indegree of Gβ (t). A low value signifies
that many topics depend on a single parent topic and a high
value signifies that many topics are the result of the fusion of
past topics.

Evolution Pattern Filters: The previous evolution metrics char-
acterize the the evolution of a topic in some evolution graph Gβ .
Combined with other filters on the topic labels and the graph struc-
ture, it is possible to filter pivot topics satisfying rich evolution
patterns within a set of evolution graphs Gβi , 1 ≤ i ≤ n.

Term Filters select pivot graphs with respect to the pivot topic
labels. In particular, they can be applied to filter pivot graphs
wrt. to their emerging, decaying, stable, and specific terms.

Temporal Filters allow experts to filter the pivot topics situated
within a certain time period.

Pattern Filters can filter topics by their pivot graph structure
along their liveliness, split degree and convergence degree.

Evolution Filters are applied to filter topics by their relative and
pivot evolution degrees.

The previous filters are applied to sets of pivot topics and can
be combined with the following other kinds of operators:

Connection Filters are binary operators which select all pivot
topics that are connected to at least one pivot topic in some
other set of topics.

Temporal Projection allows to restrict structural, evolution and
connection filters to the past or the future of the pivot topics.

Set Operators allow to combine two sets of topics by union,
intersection and difference.

Ordering Operators sort pivot topics by their attributes, such as
the topic period, its liveliness, evolution degree etc.

3 WORKFLOW AND IMPLEMENTATION
Figure 2 illustrates the overall workflow which takes as input a
corpus of documents split into several, possibly overlapping time
periods (the same document might appear in two periods).

Figure 2: Topic evolution model of EPIQUE

All documents within a period are processed by LDA [3] to
generate a set of topics which are aligned to produce a single topic
evolution graph Gβ0 for some small alignment threshold β0. This
global evolution graph is then transformed into n families of pivot
evolution graphs defined by a set of alignment thresholds βi > β0,
1 ≤ i ≤ n. Each family contains the pivot graphs Gβi (t) of all
pivot topics (t , βi ). The final database contains n× |T | pivot graphs
where |T | is the number of topics in Gβ0 . These graphs can then
be queried using the filters defined in Section 2.

Figure 3: EPIQUE web application architecture

Figure 3 gives an overview of the architecture of our web
application implemented on top of Apache Spark and Jupyter
Notebook. The entire process to study science evolution over a
corpus is split into two steps for building the pivot evolution graphs
and for interactively exploring these graphs. Each step corresponds
to a separate user interface. The evolution graph generation is
implemented in Scala and exectued through the Spylon4 kernel.
Evolution graph exploration uses a standard Python kernel to take
advantage of advanced Python 3 graphical user interface libraries
for facilitating user interaction.
4https://github.com/Valassis-Digital-Media/spylon-kernel
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4 DEMONSTRATION
Our EPIQUE prototype allows the audience to easily and intu-
itively generate high-quality evolution graphs and explore them.
Among the corpora we have prepared in several domains, our
demonstration focuses on the evolution of computer science based
on the ArXiv corpus. We propose two interactive demonstration
scenarios5.

Figure 4: Screenshot: topic diversity evaluation

Scenario 1 The audience selects or uploads a corpus of docu-
ments with a vocabulary of terms pre-processed by an on-line text-
mining tool Gargantext6 and specifies the time periods through
sliding window over a global time period. Then, the LDA topic
model is generated for each period. LDA requires a vocabulary
and a number of topics to be generated. This number obviously
influences the diversity of the resulting topics. Therefore, the ap-
plication first generates a set of topic models for different topic
numbers per period. The user can then visualize the diversity of
the extracted topic models (topic dissimilairty distribution) and
choose the model with the highest diversity for each period. A
topic diversity distribution for different topic numbers is reported
as shown in Figure 4 and, for example, by observing the 5th
percentile values (blue line), the user can retain one of the two
models (40 or 50 topics per period) that achieves 95% of pairwise
dissimilarities above 0.8.

Then, the topics of consecutive periods are aligned and all pivot
topic evolution graphs are generated along with their main tempo-
ral, structural and evolution indicators: liveliness, split degree, etc.
All topic labels are also generated automatically in this step.

Figure 5: Screenshot: pivot topic evolution graph visualization

In the next step, the user specifies its exploration goal through
an intuitive declarative query-by-example interface (as shown in
the demonstration video5) and visualizes pivot topic evolution

5see http://www-bd.lip6.fr/wiki/site/recherche/projets/epique/demo/start for a video
demonstration
6https://gargantext.org/

graphs as shown in Figure 5. These graphs are pre-computed in
the last step to ensure fast query answer display.

We showcase a search for topic graphs containing a given term
(e.g., database) or set of terms suggested by the audience. Besides
the topic content, the audience can search for topic graphs on their
shape as well. We also prepared 10 predefined query templates
for a typical shapes of high interest such as (i) topics that split in
distinct 5+ years long branches, (ii) topic graphs with low relative
evolution degree and high end-to-end pivot evolution degree. We
also demonstrate more complex queries combining several query
templates to build, for example, concept drift queries looking for
pivot topics that contain emerging terms originating from other,
"older" topics which are not part of their past pivot subgraph.

Scenario 2 In the second scenario, we will provide the audi-
ence with the possibility to prepare their own corpus using the
Gargantext service which is also part of the EPIQUE project. Gar-
gantext includes a number of bibliographic archives like Pubmed,
Web of Science, etc. and allows to create domain specific docu-
ment collections and vocabularies which are then processed by
the same workflow as in Scenario 1.

5 FUTURE WORK
In the next step, we intend to optimize the computation of pivot
topic evolution graphs and exploit the LDA document-topic matrix
for enriching the analysis. Additionally, we plan to integrate other
topic extraction methods than LDA. This prototype will also be
used to validate our evolution model with philosophers of science
to define and extract complex evolution patterns from different
scientific domains.
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ABSTRACT
Specialized worker profiles of crowdsourcing platforms may con-

tain a large amount of identifying and possibly sensitive per-

sonal information (e.g., personal preferences, skills, available

slots, available devices) raising strong privacy concerns. This led

to the design of privacy-preserving crowdsourcing platforms,

that aim at enabling efficient crowdsourcing processes while pro-

viding strong privacy guarantees even when the platform is not

fully trusted. We propose a demonstration of the PKD algorithm,

a privacy-preserving space partitioning algorithm dedicated to

enabling secondary usages of worker profiles within privacy-

preserving crowdsourcing platforms by combining differentially

private perturbation with additively-homomorphic encryption.

The demonstration scenario showcases the PKD algorithm by

illustrating its use for enabling requesters tune their tasks accord-

ing to the actual distribution of worker profiles while providing

sound privacy guarantees.

1 INTRODUCTION
Crowdsourcing platforms are online intermediates between

requesters and workers: workers have skills and look for tasks,

while requesters propose tasks that require specific skills. Crowd-

sourcing platforms are used in various application domains such

as micro-tasks
1
or specialized software engineering

2
. Their effi-

ciency, either for matching tasks to profiles (the primary usage

of profiles) or for giving to requesters insights about the distri-

bution of skills available within the population in order, e.g., to

attract new requesters or to let requesters fine-tune their tasks

according to the actual population of workers
3
(secondary usage

of profiles), depends especially on the detailed information con-

tained within worker profiles. A profile may indeed contain an

arbitrary amount of information: professional or personal skills,

daily availabilities, minimum wages, diplomas, professional ex-

periences, centers of interest and personal preferences, devices

owned and available, etc.
However fine grain worker profiles can be highly identifying

or sensitive and privacy scandals have shown that those platforms

are not immune to negligence or misbehaviours
4
. In a context

where users expect crowdsourcing platforms to protect their

personal data [Xia et al. 2017] and laws firmly require businesses

and public organizations to safeguard the privacy of individuals

(such as the European GDPR
5
or the California Consumer Privacy

1
https://www.mturk.com

2
https://tara.ai

3
For example, if functional language gurus are rare, it might be worth awarding

more money for the task or updating the task such that it fits more common profiles.

4
See, e.g., [Lease et al. 2013] or https://www.theverge.com/2014/11/19/7245447/

uber-allegedly-tracked-journalist-with-internal-tool-called-god-view

5
https://eur-lex.europa.eu/eli/reg/2016/679/oj
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Act
6
) , designing and implementing sound privacy-preserving

crowdsourcing processes is of utmost importance.

In this demonstration, we present the PKD algorithm [Duguépéroux

and Allard 2019], a privacy-preserving space partitioning algo-

rithm dedicated to enabling a wide range of secondary usages of

worker profiles within privacy-preserving crowdsourcing plat-

forms (see Figure 1). The PKD algorithm is distributed between a

set of distrustful workers and an untrusted platform and builds on

differentially private perturbation and additively-homomorphic

encryption in order to compute a hierarchical partitioning of

the skills of workers together with the approximate number of

workers per partition. No raw worker profile is ever commu-

nicated to any other participant during the computation. The

output of the PKD algorithm can be used for computing multi-

dimensional COUNTs over worker profiles. The security of the

PKD algorithm relies on composable security models in order

to integrate well with privacy-preserving solutions to primary

usages [Béziaud et al. 2017; Kajino 2015] without jeopardizing

the privacy guarantees.

The demonstration scenario showcases the use of the PKD
algorithm for letting requesters tune their tasks according to

the actual population of workers, all this with sound privacy

guarantees. The demonstration scenario essentially illustrates the

impact of knowing the distribution of workers when tuning a task,

and sheds the light on the tradeoff between privacy and utility

within privacy-preserving crowdsourcing platforms, showing

that a high privacy level can be guaranteed while still allowing

high-standard secondary usages.

6
https://www.caprivacy.org/
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2 PRIVACY-PRESERVING INFORMED
TASK-TUNING: AN OVERVIEW

2.1 Preliminaries

2.1.1 Participants. Three types of participants collaborate to-
gether during our crowdsourcing process. Workers are interested

in solving tasks relevant to their profile, requesters propose tasks

to be solved by appropriate workers, and the platform supports

the intermediation. The number of skills n is fixed. A worker

profile p ∈ P is represented by an n-dimensional vector of floats

where each value p[j] ∈ [0, 1] represents the degree of com-

petency of the profile p with respect to skill j. A task t ∈ T is

made of two parts. The first part is the meta-data containing

the requirements needed to perform the task. We model it as an

n-dimensional vector of ranges over skills (i.e., a subspace of the
space of profiles). The second part is the detailed task description

provided by the requester (an arbitrary bitstring). In this work,

we focus on the metadata part.

We assume that the participants are equipped with today’s

commodity hardware (i.e., the typical CPU/bandwidth/storage

resources of a personal computer). However, we expect the plat-

form to be available 24/7, similarly to a traditional client/server

setting.

2.1.2 Security. We assume that all participants follow the

honest-but-curious attack model: they may use any information

disclosed along the algorithm to infer information about profiles,

but they do not step outside the protocol.

As stated in Definition 1, the privacymodel satisfied by the PKD
algorithm is a computational variant of the well-known differ-
ential privacy model [Dwork 2006] called ϵκ-SIM-CDP [Mironov

et al. 2009] (see the proofs in the technical report [Duguépéroux

and Allard 2019]).

Definition 1 (ϵκ -SIM-CDP privacy [Mironov et al. 2009]

(simplified)). The randomized function fκ provides ϵκ-SIM-CDP
if there exists a function Fκ that satisfies ϵ-differential privacy
and a negligible function neдl (·), such that for every set of worker
profiles P, every probabilistic polynomial time adversary Aκ , every
auxiliary background knowledge ζκ ∈ {0, 1}∗, it holds that:

|Pr[Ak (fκ (P, ζκ )) = 1] − Pr[Ak (Fκ (P, ζκ )) = 1]| ≤ neдl (κ)

The original ϵ-differential privacy model applies to a random-

ized function f and aims at hiding the impact of any possible

individual value on the possible outputs of f , often by adding

random noise to it. Computational variants of differential privacy

are especially relevant when differentially private perturbation

and semantically secure encryption are used jointly, as done

within the PKD algorithm. First, the differentially private per-

turbation scheme used by the PKD algorithm is the Geometric

mechanism [Ghosh et al. 2012]. It consists essentially in sampling

a two-sided geometric distribution parameterized by the differ-

ential privacy parameter ϵ and by the aggregate to be perturbed.

It benefits from the following nice properties: it is designed for

perturbing integers, and the sampling can be easily distributed

over workers (infinite divisibility of the two-sided geometric

distribution [Duguépéroux and Allard 2019]). Second, the PKD
algorithm makes use of an additively homomorphic encryption
scheme. Additively-homomorphic encryption schemes essentially

allow to perform addition operations over encrypted data. Any

additively-homomorphic encryption scheme fits our approach

as long as it provides semantic security guarantees (usual secu-
rity guarantees), additively-homomorphic encryption (possibility

to perform additively homomorphic sums) and non-interactive
threshold decryption (allows the decryption key to be split in K
key-shares, such that a complete decryption requires to perform

independently T ≤ K partial decryption by distinct key-shares).

The Damgard-Jurik cryptosystem [Damgård and Jurik 2001], a

generalization of Paillier [Paillier 1999], is an instance of encryp-

tion scheme that provides the desired properties. We refer the

interested reader to the original paper for details [Damgård and

Jurik 2001].

2.1.3 Quality. Roughly speaking, we evaluate the quality

achieved by the outputs of the PKD algorithm by measuring the

average absolute error between (approximate) counts estimated

through its outputs and the corresponding exact counts com-

puted on the raw, non-protected, worker profiles. We refer the

interested reader to the technical report [Duguépéroux and Al-

lard 2019] for more details on the quality definition and on the

experimental results.

2.2 The PKD algorithm
The PKD algorithm is an adaptation of the well-known central-

ized KD-Tree construction algorithm [Bentley 1975], to a context

where no central server is trusted, and the result is private. The

resulting KD-Tree is used to estimate the underlying multidi-
mensional distribution of workers (e.g., to let requesters tune

their tasks accordingly). Each worker holds his profile locally

and engages with the platform and other workers in the execu-

tion of the PKD algorithm. The PKD algorithm consists essentially

in splitting recursively the space of skills in two and stops when

a termination criterion is met (e.g., fixed number of splits). The

split is performed by choosing one dimension d at each iteration

(e.g., considering on dimension after the other), projecting the set

of skills on d , and forming two partitions around the median. The

PKD algorithm outputs a binary tree where each node is a parti-

tion of the space of skills with the (perturbed) number of worker

profiles it contains. The key operation of the PKD algorithm is

the distributed privacy-preserving computation of medians. It is

implemented by building at each iteration the (perturbed) his-

togram of the dimension being split and using the histogram

in order to estimate the median. This histogram results from

the privacy-preserving aggregation, on the platform, of the local

histograms of workers. The following execution steps synthesize

the computation of a perturbed histogram over the dimension d :

(1) Each worker locally instantiates his local histogram over

the dimension d such that all the bins are set to 0 except

the bin within which the worker’s skill degree on d falls,

set to 1.

(2) Each worker locally adds a noise-share to each bin, where

a noise-share is a random variable such that the sum of a

fixed number of noise-shares follows the two-sided geo-

metric distribution. Recall (1) that the two-sided geometric

distribution is infinitely divisible, and (2) that the addition

to an integer of a random variable sampled from a two-

sided geometric distribution well parameterized satisfies

differential privacy (see above).

(3) Each worker encrypts each of its bins with the additively-

homomorphic encryption scheme and sends it to the plat-

form.
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(4) The platform sums up all the encrypted histograms re-

ceived from workers (bin per bin).

(5) The workers and the platform collaboratively decrypt the

resulting encrypted histogram building on the threshold

decryption feature of the encryption scheme (see above).

The platform thus obtains the perturbed “summed up”

histogram.

(6) The platform estimates themedian based on the histogram,

splits the dimensiond around it, and either iterates on each

of the two resulting partitions, or stops the algorithm if

a termination criteria is met (e.g., sufficient number of

splits).

The PKD algorithm further improves the quality of the counts

of the hierarchy of partitions by post-processing them based on

constrained inference techniques (see [Cormode et al. 2012; Hay

et al. 2010] for details). A complete description of the PKD algo-
rithm together with thorough experimental results are available

in [Duguépéroux and Allard 2019].

2.3 Informed Task Tuning
The partitioning of the space of skills output by the PKD algo-

rithm enables the computation of multi-dimensional COUNTs over
the space of skills of the actual population of workers. A large

variety of usages can be envisioned. We focus in this paper on a

precise illustration that consists in publishing the partitioning

of the space to requesters, and letting them tune their tasks ac-

cording to the actual distribution of skills. For example, through

an appropriate task tuning helper , provided by the platform or

implemented on behalf of the requester, the latter could define

wages according to the scarcity of a profile, or tune the skills

required by a task such that they fit the profiles of a sufficiently

high number of workers which results in lower pickup times.

3 DEMONSTRATION

This demonstration illustrates the PKD algorithm by (1) allow-

ing its execution on a wide variety of parameters (e.g., various

populations of workers, different numbers of iteration, different

values of the ϵ privacy parameter) and (2) allowing the audience

to create tasks matching the population of workers through a sim-

ple task tuning helper. The demonstration platform is centralized

and simulates the distributed components of the PKD algorithm.

We present below the technicals details of the demonstration

platform, the parameters that can be set up by the audience

(called mutable parameter) , the parameters that are fixed, and

the demonstration scenario.

3.1 Platform
Figure 2 depicts the demonstration platform. The demonstration

is implemented as a web application running through a single

docker-compose file. In this file, several services handle every as-

pect of the application without any configuration or installation

(except for docker and docker-compose, which are not specific

to this demonstration). The first service and the core of the ap-

plication is a Python Django web server used to serve the web

interface and handle the commands issued by the demonstrator.

The user interface, served by Django consists in simple HTML

pages using the CSS framework Bootstrap for the design and

ViewJS scripts for the dynamic components. A second service

handles the long tasks in the background that cannot reasonably

Figure 2: The demonstration runs on a single laptop
executing the demonstration platform: the web server
(Python Django), the background tasks handler (Celery)
and the databases (PostgreSQL and Redis). The demon-
stration is accessible through a web interface (e.g., on the
browser of the demonstration laptop).

be handled by Django without causing a loss of the user expe-

rience (i.e., tasks that last more than a few seconds such as the

PKD algorithm and the CSV import of the workers). This service

is written in Python with the Celery framework. Databases re-

quired by the application (PostgreSQL and Redis), to handle data

persistency, are directly embedded in the docker-compose file.

The homomorphic encryption features are disabled in order to

reduce computation time for the demonstration. Indeed, for the

sake of simplicity, all distributed operations, normally done by

distinct workers, are done locally by the demonstration platform
7
.

In particular, worker profiles are stored locally rather than being

hold by individual workers, and the encrypted sum of histograms

is replaced by a cleartext sum. These simplifications have no con-

sequence on the output of the PKD algorithm. The source code of

the demonstration is available publicly
8
and can be executed on

a laptop where docker is installed (no configuration is required).

3.2 Parameters
In this demonstration we let the audience set various parameters,

while others are fixed to default values. Default parameters are

chosen to reflect plausible real-life settings while keeping the

computation time reasonable. In particular, we limit the number

of skills (e.g., 2 or 3 skills chosen by the audience) and the number

of workers (e.g., a few hundreds instead of a few thousands in a

real-life system).

The audience is able to set the skills, the worker profiles (either

manually or automatically) and the PKD algorithm parameters.

For these parameters, we also provide default values to help the

audience: the differential privacy security parameter (ϵ = 0.1),

the number of splits for the partitioning (splits = 7) and the

number of bins of histograms (bins = 10). Finally, the audience

can tune tasks to fit with the previously defined workers.

Note that the termination criteria must be chosen carefully

because it limits the number of splits of the space of skills
9
. The

dimensions that are not part of the sequence will simply be

ignored. The number of dimensions in workers profiles, and

their respective priorities, is closely related to the application

domain (e.g., How specific does the crowdsourcing process need

to be?). In this paper, we make no assumption on the relative

importance of dimensions.

7
In a real-life scenario, encrypted operations would be performed in parallel by

workers and the platform itself, which greatly reduces the costs

8
https://gitlab.inria.fr/crowdguard-public/implems/pkd-demo

9
It also impacts the overall computation time and quality of the estimation
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3.3 Datasets
Three populations of workers are available by default: two popu-

lations are generated synthetically (i.e., through our UNIFworker
generator that samples skill levels uniformly at random and our

ONESPE worker generator that choses one strong skill uniformly

at random for each worker and sets a low skill level to all others

skills - see [Duguépéroux and Allard 2019] for details), and one

population is computed from the public Stackoverflow dataset
10
.

Additionally, the audience can instantiate a set of workers manu-

ally. Additional arbitrary populations of workers defined by the

audience can be imported. Our platform accepts CSV files, such
that each line is defined by three columns, as shown in Figure 3.

UserID (int) SkillID (int) SkillLevel (float in [0; 1])

12 3 0.4

Figure 3: Format of a worker dataset and illustration on a
single worker.

3.4 Scenario

The demonstration scenario presents a simple execution se-

quence allowing the audience to observe the different steps of

the PKD algorithm and to use the task tuning module. It concen-

trates on the task design, only the necessary information about

the distribution of workers is displayed. A strong focus has been

put on the simplicity and the clarity of the GUI which includes

all the explanations needed to understand intuitively each step of

the demonstration. The GUI is divided into a sequence of screens,

10
We consider that a user is a worker, tags of posts are skills, and skill levels are

a simple popularity score computed from the number of up-votes of each post.

See https://gitlab.inria.fr/crowdguard-public/data/workers-stackoverflow for more

details (i.e., description of the method and pre-processing scripts).

Figure 4: Tuning the task with information from the hier-
archy of partitions. On the first half of the screen (top), the
skills requirements of a task are being tuned over the Java
and C programming skills (the union of the leaf partitions
appears on the green lines, and neighboring nodes appear
on the red lines). On the second half of the screen (bot-
tom), the screen displays information about the perturbed
and actual number of workers corresponding to the task
requirements.

where each screen is dedicated to a specific step of the execution

sequence. First, an introduction screen presents the demonstra-

tion and its objective. Second, the audience choses the set of

skills to consider. Third, the audience can launch the workers

import (according to the various methods described above, in-

cluding the import of a CSV file from the audience). Additional

information about the distribution of skills within the dataset

chosen is displayed through a Notebook document and com-

mented. Fourth, the PKD algorithm is executed on the population

of workers defined and outputs the space partitioning computed.

Finally and most importantly, the audience uses our simple task

tuning helper in order to tune a few tasks (1) without any in-

formation on the underlying population (default method within

privacy-preserving crowdsourcing platforms) and (2) with the

hierarchy of partitions computed by the PKD algorithm. Figure 4

shows the screen dedicated to tuning the task with information

from the hierarchy of partitions. Optionnally, in order to observe

the privacy/utility tradeoff, the audience is invited to explore the

hierarchy of partitions and inspect the impact of the differentially

private perturbation by comparing the perturbed counts to the

exact unperturbed number of workers within each partition.
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ABSTRACT
Applications for the Internet of Things (IoT) face several chal-
lenges when it comes to exploiting the underlying infrastructure
for data management operations efficiently. IoT infrastructures
consist of heterogeneous compute nodes and geographically dis-
tributed network topologies. Today’s IoT applications offload data
management to cloud-based stream processing engines (SPEs).
However, this offloading represents a severe bottleneck that
might hinder upcoming large-scale IoT applications in the future.
In our demonstration, we showcase this problem using a public
transport application as a potential large-scale IoT application.
Our application consists of an interactive map for monitoring
public transport vehicles and current demand. We implement this
application on top of NebulaStream (NES), a new data manage-
ment system that is designed for the IoT. In contrast to common
cloud-based SPEs, NES answers queries by unifying cloud, fog,
and sensor nodes under one system. Thus, NES minimizes net-
work traffic and avoids resource over-utilization by considering
the physical network topology and available compute nodes. The
goal of this demonstration is to reveal the shortcomings of cur-
rent system designs for large-scale IoT applications. Furthermore,
we showcase how NES addresses these shortcomings and thus
enables future large-scale IoT applications.

1 INTRODUCTION
Applications for the IoT, such as reporting and monitoring dash-
boards, consist of real-time data preprocessing and data mining
tasks. Such applications visualize high-velocity data streams,
resulting from large sensor networks, which flow through het-
erogeneous hardware and network topologies to the cloud.

Sensor streams naturally match the stream processing pro-
gramming abstractions provided by cloud-based SPEs. Thus to-
day’s IoT applications use such systems to offload data man-
agement tasks. SPEs exploit the on-demand scalability of cloud
resources to process compute-intensive data management work-
loads efficiently. However, state-of-the-art SPEs, such as Apache
Flink [4], were designed for cloud environments composed of
homogeneous high-performance hardware, where nodes are in-
terconnected through high-speed network connections.

In contrast, IoT infrastructures have different characteristics
regarding compute nodes and network connections [3]. In this
new type of infrastructure, nodes are heterogeneous, geographi-
cally distributed, and sparsely interconnected through unstable
networks. Geographically distributed sensor nodes continuously
generate data, resulting in a large number of data streams with
small-sized records. Intermediate nodes, also called fog nodes,
provide network resources to route sensor data to the cloud. Cer-
tain nodes provide compute resources that support executing data

© 2020 Copyright held by the owner/author(s). Published in Proceedings of the
23rd International Conference on Extending Database Technology (EDBT), March
30-April 2, 2020, ISBN 978-3-89318-083-7 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

management tasks. In particular, intermediate nodes range from
low-end devices, such as system-on-a-chip devices, to high-end
nodes, e.g., desktop computers and server racks. Cloud-based
SPEs ignore intermediate nodes when distributing their load,
hindering IoT applications from scaling beyond the cloud.

To scale data management tasks on all participating devices
of an IoT infrastructure, the design of data management systems
must be revisited. Recent work points out that to exploit resources
of every node in an IoT infrastructure, data management systems
must employ infrastructure-aware execution strategies [11]. A
data management system for the IoT should leverage the scale-
out capabilities of the cloud, and at the same time, exploit the
resources of intermediate nodes. In particular, cloud nodes can
scale resources for compute-intensive tasks within the cloud,
while intermediate nodes apply fog computing techniques [6–8]
to reduce intermediate results. As a result, network traffic and
cloud resources are minimized. However, cloud-based approaches
utilize intermediate nodes only to forward data.

NebulaStream [11] is an application and data management
platform designed for the upcoming IoT era. NES addresses the
mentioned IoT challenges by unifying sensor, fog, and cloud
nodes into a single system. To this end, NES combines research
from sensor network, distributed, and database system commu-
nities. This allows NES to transparently optimize and efficiently
execute data management workloads across IoT infrastructures.
The unified sensor-fog-cloud approach enables scaling the num-
ber of sensors in data management and visualization applications.

In our demonstration, we simulate an IoT infrastructure with
Raspberry PIs and showcase a visualization application for a pub-
lic transport system. Our application aims to provide real-time
monitoring for public transport systems and suggestions for vehi-
cle rescheduling. Therefore, it detects critical geographical areas,
i.e., underserved areas with high demand. Our GUI consists of an
interactive map, which visualizes real-time public transport vehi-
cles and potential passengers. During the demonstration, visitors
will interact with the map by filtering objects and configuring
the clustering algorithm employed for critical area detection.

Furthermore, visitors will explore potential execution strate-
gies for datamanagement tasks on IoT infrastructures.We demon-
strate how all participating nodes of a public transport system
can be part of a query and how this influences performance and
resource utilization. Our application demonstrates both central-
ized system designs and new designs enabled by NES. Overall,
we showcase that in contrast to cloud-based SPEs, NES allows
large-scale applications on IoT infrastructures, and thus enables
a variety of upcoming IoT application use cases.

The rest of this paper is structured as follows. In Section 2, we
discuss IoT application scenarios and challenges related to data
management. In Section 3, we provide a brief overview of NES’s
design and architecture. After that, in Section 4, we present our
demonstration scenario and finally conclude in Section 5.

Demonstration
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Figure 1: Exemplary IoT Infrastructure.

2 DATA MANAGEMENT IN THE IOT
In the following, we introduce a representative IoT scenario (Sec-
tion 2.1) and discuss data management challenges (Section 2.2).

2.1 IoT Application Scenarios
In Figure 1, we illustrate a public transport system as a represen-
tative large-scale IoT scenario. In our scenario, the cloud hosts
applications, i.e., a real-time dashboard that monitors the under-
lying IoT infrastructure. The infrastructure consists of geograph-
ically distributed and constantly moving sensors, base stations,
and cloud nodes. In particular, potential passengers with mobile
phones and vehicles with attached sensors move within a city
and transmit measurements to base stations in regular time in-
tervals. Base stations are geographically distributed nodes that
collect and forward sensor streams to the cloud. Cloud nodes
receive the data from the base stations and enrich it with exter-
nal sources, e.g., databases with weather or air pollution data.
Finally, applications consume the preprocessed sensor stream,
apply additional processing, and visualize the result for users.

Public transport agencies could employ such applications
to enable various smart city optimizations. Examples include
rescheduling vehicles based on the demand of potential passen-
gers, air pollution reduction by traffic light control mechanisms,
and ad-hoc route planning to cope with traffic jams.

2.2 IoT Infrastructure Challenges
Today’s IoT applications use data acquisition systems for data
ingestion [7, 9, 10] and cloud-based SPEs for data management
operations. IoT infrastructures differ significantly from cloud
infrastructures, and thus pose several challenges for data man-
agement operations. Zeuch et al. [11] point out that cloud-based
SPEs rely on assumptions that IoT infrastructures violate. First,
fog and cloud paradigms assume different network topologies. In
particular, processing nodes in cloud-based SPEs are densely con-
nected, i.e., each node has stable connections with all other nodes.
In contrast, the physical IoT topology predefines the network
paths from data sources (sensors) to data sinks (cloud). Therefore,
every node accesses only the subset of data that is routed through
it. For example, in the IoT infrastructure depicted in Figure 1,
base stations located in the west of the city are not able to directly
access sensor streams that are generated on the east of the city.

Second, both paradigms expect different types of input streams.
In an IoT infrastructure, millions of sensors constantly produce
data streams. Those streams consist of small records that possibly
capture physical phenomena, such as earthquakes, and might pro-
duce data at infrequent intervals. In contrast, cloud-based SPEs

expect a few large-volume data streams at constant producing
intervals. Furthermore, to ingest the sensor streams, cloud-based
systems utilize message brokers, such as Apache Kafka.

In sum, IoT applications relying on cloud-based data man-
agement paradigms do not exploit intermediate nodes. The as-
sumptions of cloud-based SPEs regarding physical topologies and
types of incoming streams do not hold in IoT infrastructures.

3 NEBULASTREAM PLATFORM OVERVIEW
In the following, we present specific aspects of NES. We refer the
reader to our previous work [11] for a detailed description of NES.
First, in Section 3.1, we outline the limitations of cloud-based
SPEs that prevent applications from exploiting IoT infrastructures.
After that, we describe NES and its architecture in Section 3.2.

3.1 Limitations of State-of-the-art SPEs
In the following, we discuss two important features that hinder
cloud-based SPEs to efficiently support future IoT scenarios.

Exploiting Intermediate Nodes: Applications relying on
cloud-based SPEs do not exploit all participating heterogeneous
intermediate and sensor nodes, since data management tasks
are executed only in the cloud layer. For example, consider a
simple aggregation task, e.g., counting the number of vehicles
per geographical area. To execute this task, cloud-based systems
would have to wait until intermediate nodes propagate data to the
cloud. However, in the described IoT infrastructure, intermediate
nodes can execute this task at an earlier stage and forward pre-
aggregated intermediate results.

Minimizing Network Resources: If a set of running queries
requires only a subset of the sensor data, acquisitional data pro-
cessing avoids redundant sensor reads [7]. Another technique to
further reduce network traffic between sensors and cloud is to
adapt sensor sampling frequencies based on the query require-
ments [9]. For example, a vehicle could acquire and send its data
only if it is located in a certain area [11]. These techniques are
not available in cloud-based SPEs, but allow for scaling IoT data
processing by minimizing redundant data traffic.

3.2 Architecture
In the following, we describe NES’s architecture, illustrated in
Figure 2. We focus only on the components that are related to
our application scenario and omit components that are out of the
scope of this demonstration, e.g., fault-tolerance mechanisms.

Optimization: NES exposes APIs for common data process-
ing operations, as found in cloud-bases SPEs, extending those
with fog-specific abstractions. IoT applications, e.g., our visualiza-
tion application, submit queries to the underlying data streams,
both ad-hoc and long-running. To allow for multi-query opti-
mization, the Query Manager maintains a catalog of submitted
queries. Query optimization and execution in NES proceeds as
follows. First, NES translates user queries to logical query plans.
After that, the plan is handed over to the optimizer. The NES
Optimizer consults the NES Topology Manager, which provides
information about the infrastructure status and the performance
statistics. After optimizing the execution plan, it is handed over
to the NES Deployment Manager.

Deployment and Execution: NES’s execution plan maps
segmented sub-plans to participating intermediate, or cloud nodes.
Each segment contains processing instructions (tasks), as well as
information about I/O operations. The NES Deployment Manager
is responsible for transmitting the sub-plans to each node. After
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receiving a sub-plan, a node initializes the necessary network
connections and starts the execution utilizing its task scheduler.

Monitoring: During runtime, the NES Topology Manager
monitors the execution, and reacts to changes incrementally, e.g.,
by transitioning smoothly between execution plans. To this end,
the NES Topology Manager collects hardware statistics, such as
CPU and main memory utilization, and additional metadata, such
as selectivities and data distributions. NES nodes are designed to
handle several scenarios autonomously, e.g., transient network
failures. Once failed network connections are restored, topology
updates are propagated to the Topology Manager.
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Figure 2: Simplified NES architecture overview.

The holistic view of the underlying infrastructure and the sub-
mitted queries allow NES to optimize for specific combinations
of queries and topologies. In contrast, cloud-based SPEs handle
incoming queries independently and schedule queries with exter-
nal cluster resource management frameworks. Its characteristics
allow NES to overcome limitations of cloud-based SPEs in IoT
infrastructures, and to offer scalable data management for the
upcoming IoT application scenarios.

4 DEMONSTRATION
In the following, we describe our user interface (Section 4.1),
demonstration setup (Section 4.2), and application (Section 4.3).

4.1 User Interface
Visitors interact with our application through a GUI, as shown in
Figure 3. Our GUI consists of an interactive map, which includes
moving objects that are either potential passengers or public
transport vehicles (trains, buses, etc.). Our application aims at
detecting crowded geographical areas, that public transport ve-
hicles underserve. The application clusters potential passengers
according to their geolocation. When public transport vehicles
underserve a cluster of potential passengers, our application no-
tifies the visitor by highlighting the respective clusters on the
map. The resulting notifications are useful for public transport
agencies, e.g., to schedule vehicles for crowded areas.

Additionally, our GUI allows filtering by moving the visible
map area and by selecting vehicle types. The visitor configures the
visible objects and the clustering algorithm by changing parame-
ters, e.g., object distance and cluster size, as shown in Figure 3 1 .
A main feature is choosing between processing modes 2 that
represent the solution space for IoT applications. To show the im-
plications of each mode, we provide performance metrics, such as
ad-hoc application statistics 3 and resource utilization 4 . Our
demonstration aims at showcasing the strengths and weaknesses
of each solution in a hands-on experience.

4.2 Demo Setup
In the following, we describe the setup of our demonstration.

Hardware: For our demonstration scenario, we assume a
topology where each public transport vehicle carries a sensor
transmitting information to base stations at regular time inter-
vals. Potential passengers send their geolocation to base stations,
e.g., through a mobile application. We use Raspberry PIs as base
stations (fog nodes), and a mobile workstation as a cloud node.

Software: Our application consists of a frontend and a back-
end component. The backend uses NES to offload data manage-
ment operations. The backend acts as a sink for NES, i.e., it is
an intermediator between multiple user frontends and NES. It
coordinates query transmission to NES, forwarding results to
connected frontends. Our application backend is implemented in
Python and utilizes the Flask microframework. The frontend is
implemented in Javascript, utilizes websockets for communica-
tion, Leaflet for its map, and Grafana for monitoring.

Dataset: We simulated two sensor streams to compose our
dataset. First, we simulated vehicle sensor data using real-world
General Transit Feed Specification datasets [1] (enhanced with
vehicle occupancy). Second, we simulated potential passengers
using the Simulation of Urban Mobility (SUMO) generator [2].
We merge the two resulting datasets, and partition them by ge-
olocation, to resemble geographically distributed base stations.
We utilize sensor data from the city of Berlin, however, our appli-
cation supports all sensor streams following the GTFS schema.

4.3 Application
We highlight two aspects of an IoT data management application
scenario. First, we describe our deployment process, duringwhich
our application transforms user queries to execution plans and
deploys them on the underlying nodes. Second, we demonstrate
several execution strategies by deploying different execution
plans and revealing their implications on resource utilization.

4.3.1 Query and Deployment. Every time a visitor interacts
with the map and its options, our application sends NES a new
query with the following parametrized operations.

Map Bounding Box: These parameters filter vehicles and po-
tential passengers located within a bounding box. The bounding
box is defined by two coordinates and is automatically computed
by the map area currently viewed by the visitor.

Vehicles and Passengers: These parameters filter potential
passengers and selected vehicle types, e.g., bus, train, or subway.

Clustering:These parameters, e.g., object distance and cluster
size, are related to our clustering algorithm (DBSCAN [5]).

Overall, our application composes and deploys queries that
filter sensor records, cluster them by geolocation, calculate the
average vehicle capacity within each cluster, and yield critical
areas depending on user-defined thresholds.

In this application, NES allows us to reduce data as early as
possible in the IoT infrastructure. Especially in visualization sce-
narios, data reduction is a key performance factor, and naturally
occurs because users are seldomly interested in all sensor data.
To this end, NES provides the option to filter data needed for vi-
sualization purposes already in the intermediate (fog) layer. The
resulting data reduction is two-fold. First, NES uses on-demand
data acquisition techniques to only gather sensor data that is cur-
rently required to answer a query. Second, NES uses intermediate
nodes to evict unnecessary data close to the sensors. Both data
reductions minimize the overall network traffic within the IoT
infrastructure, as well as data that has to be sent to applications.
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Figure 3: Demo GUI with potential passengers, buses, and trains. The application clusters potential passengers (green) by
area density, and marks clusters red for insufficiently covered areas. The visitor may configure the query parameters 1 ,
the processing modes 2 , and observe query information 3 and runtime statistics about resource utilization 4 .

4.3.2 Query Execution. In Section 3, we introduced the NES
Optimizer, which produces, and evaluates potential execution
plans. Each execution plan contains a mapping between NES
operators and nodes in the IoT infrastructure. The optimizer
would come up with three execution plans that resemble cloud-
based, fog-based, and unified approaches, which we refer to as
processing modes. Note that in our demonstration, we use NES
to reproduce all processing modes.

The graphs in Figure 3 2 illustrate the processing modes. Ver-
tices represent sensor, fog and cloud nodes, while edges define the
network connections between them. We color filter operations
green, and clustering operations blue. In our demonstration, visi-
tors can choose between the following three processing modes.

Cloud Mode: NES places all operations on the cloud, and uti-
lizes the remaining nodes only for data forwarding. Performance
metrics will reveal that the main workload gathers in the cloud
layer, while resources of intermediate fog nodes remain unused.

Fog Mode: NES places all operations on the intermediate
layer. Filtering on the fog reduces network traffic. CPU, and RAM
utilization on the fog nodes increases significantly.

NESMode:NES places filter operations on fog nodes and clus-
tering operations on the cloud. Performance metrics show that
network traffic, CPU and RAM utilization remain at moderate
levels, since operations are evenly distributed.

In sum, our demonstration showcases how future data manage-
ment systems allow exploiting all resources of an IoT infrastruc-
ture, instead of relying solely on the cloud. Our public transport
monitoring system and its underlying topology resemble com-
mon IoT application scenarios.

5 CONCLUSION
In this paper, we highlighted data processing challenges in the
IoT domain, and described a representative IoT scenario, a public
transport system. Our application, a public transport monitor-
ing system, visualizes vehicles and potential passengers on an
interactive map, and detects underserved areas. Our application

translates user actions on its GUI to NES queries. We offload data
management tasks on the IoT infrastructure in different ways,
using potential NES execution plans. The visitor can explore
these execution plans and observe their implications on resource
utilization. Our demonstration shows that existing systems do
not address scaling data management on IoT infrastructures.
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ABSTRACT
The processing of geo-distributed data streams is a key challenge
for many Internet of Things (IoT) applications. Cloud-based SPEs
process data centrally and thus require all data to be present in
the cloud before processing. However, this centralized approach
becomes a bottleneck for processing data from millions of geo-
distributed sensors on a large scale IoT infrastructure. A new
line of research extends the centralized cloud with decentralized
fog devices to mitigate this bottleneck. One major challenge for
an SPE in this unified fog-cloud environment is to fulfill user
requirements by placing operators on fog or cloud nodes.

In this demonstration, we introduce Governor, an operator
placement approach for a unified fog-cloud environment. Our
approach consists of the Governor placement process and Governor
policies (GPs). The Governor placement process utilizes heuristic-
based GPs to optimize operator placement for a user query. Using
GPs, administrators can control the operator placement process
to fulfill specific Service-Level-Agreement (SLA). We implement
Governor in the NebulaStream Platform (NES), a data and ap-
plication management system for the IoT. We showcase the im-
pact of GPs on operator placement for different example queries.
Our demonstration invites participants to simulate the opera-
tor placement of queries and discover their characteristics. This
demonstration represents a first step towards an efficient opera-
tor placement approach for upcoming IoT infrastructures with
millions of sensors and thousands of queries.

1 INTRODUCTION
Over the last decade, the adoption of IoT devices has increased
significantly [7]. Processing IoT data in real-time enables a wide
range of new opportunities for businesses (e.g., smart homes,
connected cars, health-care) [13]. Many IoT applications today
are implemented using a cloud-based infrastructure. To perform
the data processing, a continuous transfer of geo-distributed IoT
data to a centralized data-center is required. Data processing
frameworks such as Flink [2] and Spark [12] are designed for
cloud-based environments and support efficient data analytics
and virtually unlimited scaling. However, cloud-based processing
of geo-distributed IoT data presents challenges for real-time and
latency-sensitive applications. These challenges include high data
transmission costs, delayed data processing, and high demand
for cloud-resources [13].

Fog computing addresses these shortcomings by processing
data closer to the source devices [1]. In particular, fog computing
leverages intermediate compute nodes to perform data processing
and thus minimizes data transfer between source IoT devices and
cloud servers. However, in contrast to the robust and elastic cloud
resources, the fog consists of limited, unreliable, and low-end

© 2020 Copyright held by the owner/author(s). Published in Proceedings of the
23rd International Conference on Extending Database Technology (EDBT), March
30-April 2, 2020, ISBN 978-3-89318-083-7 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

heterogeneous nodes. On the one hand, the fog can apply in-
network processing to reduce large volumes of data. On the other
hand, the fog has to cope with unreliable nodes and intermittent
failures [11, 13].

The NebulaStream Platform provides data analytics capabili-
ties in a unified fog-cloud environment [13]. The proximity of
computing resources to IoT devices in the fog, combined with
nearly unlimited computing resources in the cloud, presents
novel opportunities for IoT data processing and holistic opti-
mizations. One major challenge in such an environment is the
placement of query operators on compute nodes with regards to
the unique infrastructure characteristics and specific SLA require-
ments. Recent work on operator placement in the cloud focuses
mainly on network and compute resource efficiency but does not
take the volatility and heterogeneity of the fog infrastructure
into account [5, 8, 10]. In contrast, approaches for unified fog-
cloud environments consider volatility and heterogeneity but
only optimize for a specific goal, e.g., network efficiency or fault-
tolerance [3, 4, 6]. Furthermore, current approaches do not allow
administrators to specify SLA objectives (e.g., high-throughput,
low resource consumption) for operator placement.

In this demonstration, we introduce Governor, a new fog-cloud
operator placement approach that allows specifying custom SLA
objectives. Our approach consists of a set of heuristic-based rules
called Governor policies and a two-phase Governor placement pro-
cess. Using GPs, we enable administrators to tune the Governor
placement process for specific SLAs. The two phases of the Gover-
nor placement process are the following. First, the path selection
phase identifies a set of paths between sensors, intermediate com-
pute nodes, and the cloud. Second, the operator assignment phase
assigns operators to the compute nodes residing on the identi-
fied paths. In this demonstration, we showcase our placement
approach and the impact of different GPs using five example
scenarios. Attendees of our demonstration can compare operator
placements of custom queries for different GPs. Overall, our ap-
proach allows administrators to guide operator placement using
GPs and finds effective operator mappings for large query plans
over millions of sensors. In summary, our contributions are as
follows:

(1) We introduce Governor for performing operator place-
ment in a unified fog-cloud environment.

(2) We present five Governor Policies for example scenarios.
(3) We present a user interface that allows attendees to study

the impact of different GPs on operator placement.
The rest of this paper is structured as follows. In Section 2, we

introduce our Governor approach. In Section 3, we present our
demonstration scenario and describe the overall system design.
We discuss related work in Section 4 and conclude in Section 5.

2 GOVERNOR
Governor consists of Governor Policies and the Governor place-
ment process. We introduce GPs in Section 2.1 and the Governor
placement process in Section 2.2. After that, we showcase the
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Figure 1: Governor placement process.
application of the Governor approach using example scenarios
(see Section 2.3).

2.1 Governor Polices
Governor Policies are a fixed set of heuristic-based rules that
guide the operator placement of a query. For example, to place a
query with a SLA-objective high fault-tolerance SLA-objective, a
GP selects all available network paths between source and sink
nodes, and places replicated operators on different nodes along
the selected paths. In case of an operator failure, another replica
operator will take over the failed operator’s workload, thereby
achieving the fault-tolerance objective. Using GPs, the operator
placement process will optimize the query execution for a specific
SLA-objective. An administrator prepares the GP by selecting
rules from a predefined catalog, which is maintained and updated
by a domain expert. The rules are classified into two categories:
path selection and operator assignment. The path selection rules
guide the selection of a subset of all available paths. In contrast,
the operator assignment rules guide the placement of operators
on nodes on the selected paths. In general, a GP contains at
least one rule from each category. However, an administrator can
define several GPs, each aiming to optimize query placement for
a unique SLA-objective using its distinct set of rules. Additionally,
while different GPs can share individual rules, the combination
of rules within a GP is unique.

2.2 Governor Placement Process
In this section, we describe how the Governor placement process
performs the operator assignments while taking GPs into ac-
count. Figure 1 shows the steps necessary to place the operators
of a query on a physical infrastructure. First, NES transforms a
user query into a directed acyclic graph (DAG) that is composed
of query operators and directed links among them, as shown
in Figure 1(a). The query DAG Q is represented by Q = {O,L}
where O and L represent operators and directed links respec-
tively. In the background, NES maintains an infrastructure graph
containing compute nodes that are interconnected by network
links (see Figure 1(b)). The infrastructure graph G is represented
asG = {V ,E} where V and E represent vertices and edges respec-
tively. Second, NES provides the query DAG, the infrastructure
graph, and a GP to Governor for operator placement. Governor
uses its placement process to assign the DAG operators on the
infrastructure nodes while following the rules from GP.

The operator placement process consists of two phases: the
path selection phase and the operator assignment phase. In the
path selection phase, shown in Figure 1(c), Governor identifies
the path between sources (IoT device) and the sink (cloud servers)
node using the heuristics defined in the GP. The number of paths
that are selected in the path selection phase ranges from all paths
to just a specific path, and thus reduces the search space for the
operator assignment phase. The path selection phase is crucial for

Fog

Cloud

User Gateway

Figure 2: Infrastructure for a ride sharing services.

large-scale IoT infrastructures containing thousands of heteroge-
neous nodes and millions of data sources. We make use of depth
first search (DFS) algorithm for finding paths. The maximum
number of source nodes in G is given by total number of vertices
|V |. The worst-case runtime complexity for identifying paths
between |V | sources and sink node is represented by O(|V |3).

In the operator assignment phase, shown in Figure 1(d), Gov-
ernor performs the operator placement on nodes along the se-
lected paths. During the operator assignment phase, Governor
distinguishes between pinned and unpinned operators. Pinned
operators reside on a specific location, e.g., source operators on
IoT devices and sink operators on cloud servers. In contrast, un-
pinned operators can be placed on any node along the selected
paths (if resource constraints permit this). Common strategies
would place non-blocking operators (e.g., filter, source, sink) close
to the IoT devices and blocking operators with state (e.g., window,
aggregation, join) close to the cloud servers. For a query DAG Q
with |O | operators and |P | selected paths with average |N | nodes,
the worst-case runtime complexity of operator assignment phase
is given by O(|O | ∗ |N | ∗ |P |).

2.3 Governor in Action
In Figure 2, we show a representative IoT infrastructure for ride-
sharing services such as ShareNow1, WeShare2, or Coup3. Ve-
hicles with on-board computing units communicate with fog
computing devices and transmit the operational information
(e.g., location, user, or time information) to the fog infrastructure.
While data is flowing through the fog into the cloud, fog nodes
can apply processing. Users interact with the cloud-based sys-
tem using a mobile application for locating, renting, or accessing
various other services. Using this infrastructure, we present five
example application scenarios:

(1) Fast-response: Realtime tracking of vehicle fleet.
(2) Fail-safety: Billing at the end of a trip.
(3) Bursty-data: Monitor vehicle statistics during usage.
(4) Save-resource: Health checks on IoT infrastructure.
(5) Save-energy: Save energy on battery-operated vehicles.

The presented scenarios have different SLA requirements, which
guide their respective placement of operators. In Table 1, we
present five example GPs for these scenarios. The Low-Latency,
Fault-Tolerance, and High-Throughput GPs are focused primarily
on the performance of queries. In contrast, theMinimum Resource
Consumption andMinimum Energy Consumption GPs are focused
on the performance of the infrastructure nodes. In the following,
we use GPs from Table 1 and briefly discuss the placement process
for the five application scenarios.

Fast-response requires fast event processing and delivery
by performing early data computation and using low latency
network links. The Low-Latency GP from Table 1 satisfies this
SLA requirement. In the path selection phase, Governor selects
distinct paths with low link latencies between source and sink

1 www.sharenow.com 2 www.weshare.com 3 www.coup.com
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Low-Latency Fault-Tolerance High-Throughput Minimum Resource
Consumption

Minimum Energy
Consumption

Path Selection
Phase

• Distinct paths with low
link latency

• All paths between
sources and sink

• Distinct paths with high
bandwidth capacity

• Common path between
sources and sink

• Common path between
sources and sink

Operator Assignment
Phase

• Non-blocking operators
closer to source
• Replicate operators
when possible

• Use shared nodes
among selected paths
• Replicate operators
when possible

• Non-blocking operators
closer to source
• Blocking operators closer
to sink

• Share intermediate operators
among different sources
• Avoid operator replication

• Non-blocking operators
closer to source
• Share intermediate operators
among different sources
• Avoid operator replication

Table 1: Five example Governor policies.

REST

Topology
Catalog

Monitoring
U

pd
at

e

Worker Node 1 Worker Node nWorker Node 2 . . .

User Requests

Dispatcher Governor
Fetch

Query

Update

Query Parser

Web Interface

Topology GraphLogical PlanExecution Plan
Logical

Plan
1

2

3 54

Central Coordinator

Figure 3: Demonstration system architecture.
nodes. In the operator assignment phase, Governor places all non-
blocking operators close to the source operators and replicates the
operators wherever possible to achieve high data parallelism [9].

Fail-safety requires events to be delivered irrespective of
intermittent network or node failures by using alternative nodes
or links for processing and data transfer. The Fault-Tolerance
GP from Table 1 satisfies this SLA. In the path selection phase,
Governor selects all possible paths between the sources and the
sink nodes. In the operator assignment phase, Governor places
operators on the nodes shared across multiple paths such that in
the event of a path failure, another network path can be used for
data delivery.

Bursty-data requires the query to handle a sudden burst of
events by transmitting data using a high bandwidth link. The
High-Throughput GP from Table 1 satisfies this SLA. In the path
selection phase, Governor selects distinct paths with high band-
width capacity between source and sink nodes. In the operator
assignment phase, Governor places all non-blocking operators
close to the source operator and all blocking operators close to
the sink operator.

Save-resource requires the compute node to save resources
by sharing query operators and preventing replications. The
Minimum Resource Consumption GP from Table 1 satisfies this
SLA. In the path selection phase, Governor selects a common
path between source and sink nodes. In the operator assignment
phase, Governor ensures a high degree of operator sharing among
multiple sources contributing to the query.

Save-energy requires the compute nodes to save power ei-
ther by reusing the existing query operators or by reducing the
amount of data transmitted over the network. The Minimum
Energy Consumption GP from Table 1 satisfies this SLA. Like
for Save-resource, Governor selects a common path between
source and sink nodes. However, in the operator assignment
phase, Governor tries to place non-blocking operators closer to
the source to reduce downstream data traffic and thus saving
energy for transmission.

Governor uses a greedy approach for the operator placement,
which can return a solution in a reasonable amount of time at
the cost of sub-optimal placement decisions. In the future work,
we will examine the response time-optimality trade-off in detail.
Although Governor uses one query plan as an input, this query

plan can be the outcome of a multi-query optimization process
and thus may contain operators from multiple queries.

3 DEMONSTRATION
In Section 3.1, we introduce the architecture of our demonstra-
tion. After that, we present the web interface and describe the
functions available for the attendees to explore in Section 3.2.

3.1 Demonstration System Architecture
In Figure 3, we present the interaction among the web interface,
the central coordinator, and the worker nodes. The web interface
submits queries and retrieves information from NES over a REST
interface, e.g., the DAG for currently deployed query or the infras-
tructure topology. The central coordinator node manages both
the query placement and the deployment process. The worker
nodes manage the execution of operators from different queries.
We refer the reader to relevant literature for a detailed design
overview of NES [13]. In this section, we will only cover aspects
that affect the operator placement process of NES.

Inside the coordinator node, the queries are first validated and
parsed into DAGs using the Query Parser 1 . After that, Gover-
nor receives the logical query plan and fetches the information
from the Topology Catalog 2 . The topology catalog maintains the
latest infrastructure graph, including information on resource
availability and the set of deployed query operators on individ-
ual infrastructure nodes. Based on this information, Governor 3
creates the execution plan, which contains the operator place-
ment information. Finally, the Dispatcher 4 receives the overall
execution plan and forwards it to the respective worker nodes.

In an asynchronous second feedback loop, Governor updates
the topology catalog with the operator placement information.
Furthermore, worker nodes send regular updates to the Monitor-
ing 5 system, which in turn updates the topology catalog.

3.2 Web Interface
Figure 4 shows the web interface that attendees can use to explore
operator placement with Governor. Attendees have to write their
queries into the text panel 1 to explore different functionalities
of the web interface. The central coordinator system from Fig-
ure 3 is responsible for parsing, validating, and returning the DAG
for the input query. The button-panel 2 on the web interface
presents various options for interacting with the components
of the demonstration system. First, attendees can click on the
Show Topology button to fetch the infrastructure graph represent-
ing the latest state of compute nodes and network connections
among them. The display panel 4 shows the returned infras-
tructure graph. Second, the button Show Query Plan triggers the
query parser component, which returns a DAG of interconnected
operators for the submitted user query in the text panel 1 . The
display panel 3 shows the query DAG. Third, the drop-down but-
ton Execution Plan presents a set of GPs for triggering Governor.
Attendees can choose between any of the available GPs shown
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in Table 1, i.e., Low-Latency, Fault-Tolerance, High-Throughput,
Low Energy Consumption, and Low Resource Consumption. The
display panel 5 will show the operator placement plan returned
by Governor. The operator placement plan contains pinned, un-
pinned, as well as system-generated operators (e.g., forward oper-
ators) and their corresponding mappings on infrastructure nodes.
Additionally, the time taken for the plan computation using the
selected GP is shown in the UI 6 .

Overall, attendees of our demonstration can explore the opera-
tor placement in a unified fog-cloud infrastructure. We will point
out different options and their impact on particular characteris-
tics. Using this demonstration, we present a first step towards an
operator placement designed for upcoming IoT infrastructures
with millions of sensors and thousands of queries.

4 RELATEDWORK
In this section, we categorize related work from different research
areas. One line of research covers operator placement approaches
for a centralized computing infrastructure. Huang et al. offer a
heuristic-based operator placement approach for optimizing with
latency and throughput [8]. Kafil et al. consider heterogeneity
within a distributed environment to find one optimum compute
node to place all operators together [10]. Chatzistergiou et al.
optimize the operator placement for inter-node network bottle-
necks by reducing the number of nodes required to running a
query [5]. In contrast, Governor allows a flexible and controlled
operator placement strategy by enabling administrators to specify
different optimization objectives within the same infrastructure.

Another line of research examines placement approaches for
a unified fog-cloud environment. The approach presented by
Veith et al. focuses mainly on minimizing total data processing la-
tency [6]. However, this approach does not consider the node and
link volatility within the fog as a factor that can significantly im-
pact query execution. Cardellini et al. present a multi-objective
operator placement approach [4]. However, their approach is
not optimized for computing operator placements for a large
scale IoT infrastructure. In contrast, Governor considers vari-
ous characteristics of the fog-cloud infrastructure, including the
high volatility that is commonly present in a fog infrastructure.
Furthermore, Governor’s two-phase approach using heuristics
reduces the computation time for operator placement.

Overall, none of the previous approaches support defining
flexible operator placement objectives. In contrast, Governor
allows the administrator to specify different optimization goals
using GPs for each query submission.

5 CONCLUSION
In this demonstration, we present Governor, a first step towards
operator placement on IoT infrastructures with millions of sen-
sors and thousands of queries. We demonstrate Governor’s ability
to accept custom Governor Policies with different optimization
objectives for operator placement. In addition, we present five
example policies and showcase their placement for five example
application scenarios. In our demonstration, we will present the
challenges as well as early solutions for operator placement in
the future IoT era.
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ABSTRACT
JSON established itself as a popular data format for representing
data whose structure is irregular or unknown a priori. JSON col-
lections are usually massive and schema-less. Inferring a schema
describing the structure of these collections is crucial for for-
mulating meaningful queries and for adopting schema-based
optimizations.

In a recent work, we proposed aMap/Reduce schema inference
approach that either infers a compact representation of the input
collection or a precise description of every possible shape in the
data. Since no level of precision is ideal, it is more appealing to
give the analyst the freedom of choosing between different levels
of precisions in an interactive fashion. In this paper we describe
a schema inference system offering this important functionality.

1 INTRODUCTION
Borrowing flexibility from semistructured data models and sim-
plicity from nested relational ones, JSON affirmed as a convenient
and widely adopted data format for exchanging data between ap-
plications as well as for exporting data through Web API and/or
public repositories. JSON datasets are usually retrieved from
remote, uncontrolled sources, with partial, incomplete, or no
schema information about the data. In these contexts, however,
having a precise description of the structure of the data is of
paramount importance, in order to design effective and efficient
data processing pipelines. Schema inference, therefore, becomes a
crucial operation enabling the formulation of meaningful queries
and the adoption of well-known schema-based optimization tech-
niques.

Several approaches and tools exist for inferring structural
information from JSON data collections [13–15]. As pointed out
in [10, 11], the common aspect of all these approaches is the
extraction of some structural description with a precision that
is fixed a priori, by the approach itself. While this methodology
has the advantage of simplicity, it is in practice not satisfactory,
since a JSON dataset can be rather (oftentimes highly) irregular
in structure, and for this reason it can be typically described
at different precision levels by a schema, while there exists no
“best” precision level that can be fixed a priori. In general, one is
interested in a description that is compact, easy to read even if it
hides lots of details, typically in the first exploration steps, while
in subsequent steps he/she is likely to be interested in a more

© 2020 Copyright held by the owner/author(s). Published in Proceedings of the
23rd International Conference on Extending Database Technology (EDBT), March
30-April 2, 2020, ISBN 978-3-89318-083-7 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

precise, and therefore less succinct, schema description, where
more details about the alternative shapes that can be found in
the data are provided.

We believe that leaving the user the ability of tuning the level
of precision of the inferred schema, by trying different possi-
bilities and changing the level of details at different times, is
an important feature, that existing techniques do not provide.
With such a motivation in mind, in two recent works [9, 12], we
devised, respectively, i) a Map/Reduce-based schema inference
technique for massive JSON data that enables the user to choose,
a priori, the level of precision of the inferred schema, and ii) a
formal system which provides the user with mechanisms to inter-
actively refine/expand the inferred schema, even locally, without
the need of re-processing the data multiple times.

The goal of this demonstration is to showcase results and
mechanisms provided by these two works, by means of an imple-
mentation of the parametric schema inference system [9] which
is based on Spark and which interacts with a Web interface that
the user can exploit to choose or submit a dataset of interest, and
to play with the interactive schema inference process [12].

The user interacts with the system by choosing an existing,
already analyzed, dataset, or by submitting a new one. The sys-
tem initially returns to the user a succinct, but not very precise,
schema, and the user then can explore it in order to decide where
to get more precision, at several nesting levels: indeed, the user
can choose to get a more detailed schema description at a given
nesting level, while leaving the inner levels described in a more
succinct fashion, hence at a lower degree of precision.

In the remainder of this article, Sections 2 and 3 introduce
the parametric [9] and the interactive schema [12] inference
techniques, while Section 4 details the architecture supporting
our system and the demonstration scenario.

2 PARAMETRIC SCHEMA INFERENCE
The schema inference technique proposed in [9] is based on a
Map/Reduce algorithm to ensure scalability. During the map
phase, an input collection of JSON objects is processed by infer-
ring a schema for each object in the collection. The reduce phase
produces the final schema by invoking a commutative and asso-
ciative function whose role is to merge the object schemas that
are equivalent. Deciding whether two schemas are equivalent is
a crucial aspect of our approach, as this allows one to choose
between different precision levels. We rely on two main equiva-
lence relations (kind equivalence and label equivalence), which
we identified to be useful in practice, but our system, which is
parametric, allows for using other equivalences defined by the
user (see [9] for details).
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When using the kind equivalence (K), every record type is
equivalent to any other record type, and every array type is
equivalent to any array type. Hence, this equivalence leads to
merging all record types into a single one while indicating for
each field whether it is optional or mandatory.

To illustrate, consider the following heterogeneous collection
containing three JSON records and one array.

o1 {a : 1,b : 2,d : {e : 3, f : 4}}
o2 {a : 1, c : 2,d : {д : 3,h : 4}}
o3 {a : 1, c : 2,d : {e : 3, f : 4}}
o4 [123, ”abc”, {a : 10,b : 20}]

The map phase yields for each value a corresponding schema.
Essentially, atomic values are mapped to their corresponding
atomic types (numbers to Num, etc), while complex constructs are
processed recursively. The potentially heterogeneous content of
arrays is concisely represented using the union (+) operator.

o1 → s1 = {a : Num,b : Num,d : {e : Num, f : Num}}
o2 → s2 = {a : Num, c : Num,d : {д : Num,h : Num}}
o3 → s3 = {a : Num, c : Num,d : {e : Num, f : Num}}
o4 → s4 = [Num + Str + {a : Num,b : Num}]

During the reduce phase, equivalent types are merged based
on the chosen equivalence relation. The K equivalence merges
all record types and yields a union of a record and array type, as
follows:

S3 = { a : Num,b : Num?, c : Num?,
d : {e : Num?, f : Num?,д : Num?,h : Num?}

}

+ [ Num + Str + {a : Num,b : Num}]
The record type reports all fields appearing in the merged

record types from the map phase, while indicating whether they
are mandatory or optional (this latter fact being indicated by
decorating the fields with ?). For instance, a is a mandatory field
of type Num, while b, c , and d are optional fields of type Num;
furthermore, d values are objects whose fields are all optional.
Notation 2.1 In the following, when a union schema s1+ . . . +sn
is inferred by means of an equivalence E, we will use the prefix no-
tation +E (s1, . . . , sn ), so that the inferred schema indicates which
equivalence has been used in order to decide what schemas to merge
in the inference process. For readability, we omit the +E prefix for
atomic types when they appear as a singleton.

So for instance, we note S3 as

S3 = +K ( { a : Num,b : Num?, c : Num?,
d : +K ({e : Num?, f : Num?,д : Num?,h : Num?})

},

[ +K (Num, Str, {a : Num,b : Num})]
)

Concerning precision, it is worth observing that the above
schema hides important correlation information like the fact that
b and c never co-occur or the fact that fields e and f always occur
together.

To derive a more precise schema, where records having differ-
ent labels are kept separated, we use the label equivalence (L),
according to which record types are equivalent only if they share
the same top-level field labels. So, by means of the L equivalence
only s2 and s3 are merged, thus obtaining:

S4 = +L( { a : Num, b : Num, d : {e : Num, f : Num}},
{ a : Num, c : Num,
d : +L({e : Num, f : Num}, {д : Num,h : Num} ) },

[ +L(Num, Str, {a : Num,b : Num} )]
)

The resulting inferred schema S4 gives now a very detailed
description of the records in the data by sacrificing conciseness.

However, in general, schemas are much larger than those
in the above example, and this could be a complication for an
analyst who wants a precise description of a specific part of the
dataset/schema (for instance one specific record type) without
being overwhelmed by a too large schema describing all the
rest. In order to overcome this limitation, we show in the next
section how inferred schemas can be interactively manipulated
by the analyst, by preserving soundness (schemas obtained in
the interaction all describe the dataset at hand).

3 INTERACTIVE SCHEMA INFERENCE
The interactive schema inference is very useful when it allows
for describing the same data with different levels of precision-
succinctness, so that parts of greater interest to the user are
described with the finest precision, while parts with lower in-
terest are described in a succinct way. The interactive schema
inference proposed in [12] goes into this direction, and to show
its effectiveness we illustrate below a possible interaction that the
user can perform on the schema inferred from a real-life dataset,
crawled from the official NYTimes API [5] and consisting in meta-
data about articles of the newspaper. This dataset is interesting
for our problem since it features many irregularities at several
levels, and discovering these irregularities, using a traditional
type inference mechanism, may simply become unpractical.

A simplified version of the K type inferred from this dataset
is depicted in Figure 1. This schema focuses on the byline part
which describes the authors of the articles. By examining this
schema, the user realizes that almost all the fields are optional
and hence, she/he may want to dig deeper to investigate for a
potential correlation between the different fields.

+K ({ docs :
+K ({ byline :

+K ({ contributor : Str?
orдanization : Str?
oriдinal : Str?
person : [+K ({ f n : Str?,

ln : Str?,
mn : Str?,
orд : Str?}) ]

})

})

})

Figure 1: The NYTimes K type.

The type resulting from refining the content of byline is de-
picted in Figure 2 and shows four possible situations which corre-
spond to different combinations of the contributor, organization,
and original fields, but, more interestingly, it reveals that the oc-
currence of organization implies that person has an empty array,
while its absence coincides with the case where person contains
an array with a record type. This observation can be explained by
the fact that, when an article is written by an organization, the
person field is not relevant and hence it contains an empty array
and, conversely, when it is written by persons, the organization
field is irrelevant and, hence, it just does not appear in the byline
field.

Now that the user has gained some knowledge about the struc-
ture of the byline field, she/he may want to explore the person
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+K ({ docs :
+K ({ byline :

+L({ contributor : Str
orдanization : Str
oriдinal : Str
person : [ ]
},

{ contributor : Str
oriдinal : Str?
person : [+K ({ f n : Str?, ...

...,orд : Str? }) ]

},

{ orдanization : Str
oriдinal : Str
person : [ ]
},

{ oriдinal : Str
person : [+K ({ f n : Str?, ...

...,orд : Str? }) ]

})

})

})

Figure 2: The L refinement of the content of byline.

field which also contains records with optional fields. The user
can recover the original type depicted in Figure 1, then expand
the record inside the array resulting in the type that is partially
depicted in Figure 3. This type shows different situations whose
relevance is left to the discretion of the user.

[+L(

{ f n : Str, ln : Str,mn : Str,orд : Str},
{ f n : Str, ln : Str,orд : Str},
{ f n : Str,orд : Str}

) ]

Figure 3: The L refinement of the content of person.

4 DEMONSTRATION OVERVIEW
The objective of this demonstration is to help the attendees under-
stand the features and the goals of our schema inference system.
To this aim, attendees will be able to:

(i) infer schemas for real-life JSON datasets according to K
and L;

(ii) explore the inferred schemas and interactively fine-tune
their precision;

(iii) get a concrete representation of the inferred schemas in
JSON Schema.

We first describe the architecture of our system as well as
the setup of the demo, and then illustrate the demonstration
scenarios we propose.

4.1 System Architecture and Setup Details
Our system is based on a web application implemented following
the client-server architecture depicted in Figure 4. The web client
is used for loading the JSON collection and for performing the
interactive schema inference, while the web server is dedicated
to storing the collection and to inferring the initial schema. The
storage is supported by HDFS while the computation is ensured

by Spark, as presented in [9]. The web client and the remote in-
ference engine communicate through a REST API implemented
in Python 3 using the Flask [2] library. The API requests from the
client are processed by an orchestrator that coordinates between
the storage and the inference modules in the server side. This
coordination is ensured by API calls using two open source li-
braries: webHDFS [8] for communicating with the HDFS storage
system, and livy [4] for submitting jobs to the Spark engine.

Upon receiving the input collection in JSONLines format [3],
through the client, the server will store the collection on the
HDFS then infers the L schema, using the Spark engine. The
L schema is then sent to the client and used for inferring the
K schema. The schema visualizer displays the K schema and
translates the user actions into corresponding schema operations
that are processed by the schema manager. These two modules
coordinate during all the interaction session to fulfill the user
requests.

The web client is implemented in Typescript [7] using the
Angular 6 platform [1], which offers many advantages like mod-
ularity and the clean separation between the content of a web
page and the program modifying its content; the schema infer-
ence module of the server is implemented in Scala and is fully
described in [9].

A lightweight system showcasing the core features of the full-
system is available online at [6]. Differently from the full-system
that will be demonstrated at the conference, the lightweight
system performs schema inference on the client side and hence,
it is limited to processing small size documents.

Figure 4: System architecture.

4.2 Demonstration Scenario
Our demonstration enables attendees to infer schemas for pre-
loaded JSON datasets, to provide their own datasets, to explore
the extracted schemas, and to fine-tune their precision, as well
as to convert them in more popular schema languages like JSON
Schema. The datasets we plan to use in our demo are described
below.

The GitHub dataset corresponds to metadata generated upon
pull requests issued by users willing to commit a new version
of code. It takes 14GB of storage and contains 1 million JSON
objects sharing the same top-level schema and only varying
in their lower-level schema. All objects of this dataset consist
exclusively of records nested up to four levels of nesting. Arrays
are not used at all.

The Twitter dataset corresponds to metadata that are attached
to the tweets shared by Twitter users. It takes 23 GB of storage and
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contains nearly 10 million records corresponding, in most cases,
to tweet entities. A tiny fraction of these records corresponds to
a specific API call meant to delete tweets using their ids.

Finally, the NYTimes dataset, which was partly described in
Section 3, contains approximately 1.2 million records and reaches
the size of 22GB. Its records feature both nested records and
arrays, and are nested up to 7 levels. Most of the fields in records
are associated to text data which explains the large size of this
dataset compared to the previous ones.

Schema Inference. The attendee will start the demo by con-
necting the web interface to the remote engine, and by select-
ing a pre-loaded dataset for schema inference; alternatively, the
attendee will request the system to load an external dataset by
providing a URI. Once selected a dataset, the attendee will choose
an inference algorithm to be used by the remote engine. While
the focus of this demonstration is on the interactive refinement
of K-based schemas, the attendee will also have the opportunity
to directly infer a schema according to the L-based approach as
well as to get basic statistics about the data (average object size,
AST height, etc). Once the inference system has completed the
schema extraction process, it will upload the inferred schema to
the web interface.

Schema Exploration. After the inference of the K schema, the
attendee will likely start to explore this schema through the web
interface which allows the user to change the precision level
of the schema without any further intervention of the remote
inference engine.

Schema Translation. After having explored the inferred schema
and (possibly) fine-tuned its precision level, the attendee will be
able to translate the schema in a JSON Schema representation;
by relying on this feature, the attendee will be able to exploit the
schema in any system or application supporting this language,
without the need to manually rephrase the schema.

5 RELATEDWORK
The problem of inferring structural information from JSON re-
ceived some attention as reviewed in our recent paper [9], where

we outlined the improvements of our approach over state-of-the-
art approaches for JSON schema inference, while the topic of
interactive JSON schema inference was only recently addressed
[12].

In the context of XML, the only work about interactive infer-
ence we are aware of relies on user intervention for recognizing
regular expressions that are similar enough to be merged and for
deriving sophisticated XML schemas expressing complex con-
structs like inheritance and derivation [16].
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ABSTRACT
In this demo, we explain the working of ReProVide, a frame-
work that integrates an on-the-fly reconfigurable FPGA-based
SoC architecture with a DBMS for accelerated query processing.
For this, a capability-aware optimization that can optimize and
partition the queries is demonstrated. This optimization for the
hardware is based on its capabilities. Our hardware can also gen-
erate statistics of the data while executing a query. In contrast
to the existing approaches, this does not have any additional
costs in terms of execution time. We will demonstrate how these
statistics are later used by the DBMS to select the best plan from
the search space using accurate cost values.

1 INTRODUCTION
Current trends in hardware technologies such as manycores,
GPUs and field-programmable gate arrays (FPGAs) for data pro-
cessing, NVRAM and open-channel SSDs for storage solutions
and RDMA-capable high-speed network solutions are interest-
ing candidates for the acceleration of database query processing
on Big Data. In this scenario, the German DFG Priority Pro-
gram no. 20371 on “Scalable Data Management for Future Hard-
ware”, funds research projects to develop new architectural con-
cepts for data management systems that support both current
as well as future hardware technologies. Our Reconfigurable
data provider (ReProVide) project is one of them. The goal of
the ReProVide project is to provide a new FPGA-based smart
storage solution together with query optimization techniques,
which considers the capabilities of the hardware for the scalable
and powerful near-data processing of Big Data. The benefits of
FPGA technology are pipelined processing of data at line rate (at
least for non-blocking operators), energy-efficiency and speedup
through parallelization, as well as the option of dynamic adapta-
tion of the hardware through reconfiguration. In the ReProVide
project, a generic FPGA architecture named ReProVide process-
ing unit (RPU) for the efficient processing of database queries is
developed. The goal of such an architecture is to serve as intel-
ligent storage system and reconfigurable data (pre-) processing
interface between diverse data sources and host systems request-
ing data from these sources. This can reduce network utilization
and host workload as well as saving power to a great extent.

Integrating smart storage like RPUs into a database manage-
ment system (DBMS) requires novel optimization techniques to
(a) decide which operations are worthwhile to assign to the RPU,
and which are not (query partitioning [2]) and (b) to determine
1https://www.dfg-spp2037.de/
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how to map and execute the assigned (sub-)queries or database
operators on the RPU (query placement [1]). For query partition-
ing, the DBMS query optimizer must take the characteristics of
an RPU system into account. This involves considering which
particular operators are actually supported by the RPU as not
all operators and data types can be accelerated at line rate on
FPGAs. It also includes using novel cost models for estimating
the RPU performance which consider hardware reconfiguration
overheads and make use of hardware-generated statistics of the
data it currently stores. We therefore also investigate a novel hi-
erarchical (multi-level) query-optimization technique where the
global optimizer of the DBMS and the architecture-specific local
optimizer of the RPU work together to obtain scalable query pro-
cessing [2]. A bidirectional hint interface (see Fig. 1b) exchanging
hints between global and local optimizer enables scalable opti-
mization in both directions. i. e., globally and locally.

In this demo, we show how DBMS and RPU work together to
process database queries with the goal of minimizing the overall
execution time. We will demonstrate how our techniques abstract
away the complex decision space of how to partition and execute
queries on heterogeneous hardware. We furthermore will explain
the underlying hardware concepts and optimization techniques.

2 SYSTEM OVERVIEW
2.1 ReProVide
The ReProVide system is a distributed/federated data-processing
system which includes Apache Calcite as the DBMS as well as
FPGA-based hardware (RPU) as the co-processor and the remote
data storage (see Fig. 1a). ReProVide follows the idea of near-
data processing, which means the RPU has the query-processing
capabilities (near to data storage), that can be used for data (pre-
)processing.

Apache Calcite2 is a dynamic data-management framework
that provides query processing, optimization, and query-language
support to many data-processing system [5]. It is a complete
query-processing system, except for data storage. The framework
that Calcite provides for building databases allows to extend its
set of rules, cost models, relational expressions, and user-defined
functions. This property of Calcite has encouraged us to choose
it as our DBMS for this project. Calcite provides data-provider
federation through adapters. Hence it is possible to connect any
number of databases to Calcite using their own adapter.

An RPU is implemented on a programmable SoC (multi-core
CPU + FPGA) that serves as a data provider accessible via an
Ethernet network. The data is stored in non-volatile storage
such as solid-state disks (SSDs) and in volatile memory such
as DDR-SDRAM, which is directly attached to and managed by
the platform and can be processed by accelerators implemented

2https://calcite.apache.org/
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Figure 1: ( 1a) shows the architecture diagram of ReProVide system. ( 1b) gives the interaction between co-operating opti-
mizers in ReProVide. ( 1c) illustrates the RPU with the FPGA part (programmable logic (PL)) of the system on chip (SoC)
colored blue and the processing system (PS) with its dual core processor colored yellow. Two partially reconfigurable
regions (PRs) are available with PR0 being configured with Accelerator 0.

in the Programmable Logic (PL/FPGA) part of the system. This
design also enables an RPU to locally optimize the storage layout
of the data with regards to availability, access latency, power con-
sumption, and the access patterns of the hardware accelerators.

The interaction of the DBMS and ReProVide is sketched in
Fig. 1b. Global optimization applies rules to the query-evaluation
plan (QEP), with the major goal of partitioning the QEP into
sub-trees and assigning some of them to the RPU (query parti-
tioning). The local optimizer is responsible for finding the best
implementation of a sub-tree on the RPU (query placement [1]).

The execution of a query mainly consists of three phases (see
Fig. 2) : In the first phase, the local optimizer provides information
on its capabilities. The global optimizer uses this information
to decide, which operations of a QEP can be assigned to the
RPU. Based on this the query will be partitioned. For finding
the best partitioning, statistics of the data stored in the RPU
can be requested. Generation of such statistics on streaming
hardware comes at almost no cost [3] and can even be refined
when subsequently accessing the same data (see section 4.2).

In the second phase, the sub-tree of QEP (partition) is passed
from the global optimizer to the local optimizer, including some
hints (e.g. re-execution probability, upper latency bound, a time
budget for running the local optimizer). The local optimizer then
selects the required accelerators, maps query operations to these
accelerators, and schedules the reconfiguration of the accelerators
specific to the operations that it receives. Based on the hints, the
local optimizer can adjust buffer sizes for higher throughput but
decreased latency until the first data is sent.

In the third and final phase, the query is executed and the
results are returned to the host system.

2.2 RPU
The RPU constitutes a heterogeneous hardware/software system,
as shown in Figure 1c. The table management is executed on
one core of the processing system (PS). While the processing
system could also process the full variety of operators and types,
its performance may be limited. Thus, handling of the data is
mostly dealt with within the programmable logic (PL). Requests
are received via a high-speed network interface and forwarded
to the management software for further processing. To relieve
the processing system from the task of result transmission, a
specialized Network Controller implemented in the static system
allows sending the resulting data to the requesting host with
minimum intervention from the management software.

Figure 2: Sequence Diagram for the demonstrated query
processing

RPUs include partially reconfigurable regions (PR) into which
hardware accelerators can be dynamically loaded and which can
be configured to process operations on streaming data. By means
of hardware reconfiguration, different hardware accelerators can
be loaded onto the FPGA for processing the locally-stored data
before transmitting it to the requesting DBMS.

A dedicated and parameterizable hardware component called
Scan Controller is responsible for data loading. The controller also
has direct access to the attached FLASH storage to stream the
relevant data to the accelerators. RPUs make use of a library of
pre-synthesized reconfigurable hardware accelerators for query
placement as the dynamic synthesis of a new hardware acceler-
ator (query compilation) can take from minutes up to multiple
hours. As such, the capabilities of a RPU are determined by the
accelerators in the library: Operators for which no accelerators
are available in the library cannot be executed on the RPU. Oper-
ators available span from simple filters on integer values to more
complex filters such as regular expressions. Also accelerators for
hash-joins have been developed. Please see [4, 15].

2.3 RPU-enabled DBMS
The implemented RPU-enabledDBMS is prototyped usingApache
Calcite. We have implemented the Global Optimizer as follows.

Calcite allows to extend its rules for query optimization via
adapters. The global optimizermust be tuned to act as a capability-
aware optimizer by defining some additional rules (push-down
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(a) Logical plan. (b) Feasible plans. (c) Selected physical plan.

Figure 3: Query optimization by global optimizer.

rules) to consider the capabilities of RPU during the query opti-
mization. These push-down rules define required operations and
attributes which can be pushed down to RPU. The main purpose
of the attribute push-down is to avoid unnecessary data transfer
over the network and thus to reduce network traffic as well as
host workload. These push-down rules are not RPU specific, and
can be applied with any hardware configuration connected with
Calcite but require the capabilities of the connected co-processor.
As an example, consider the query below:

SELECT d_year, d_dow
FROM date_dim
WHERE d_day_name="Monday" AND
(d_year > 1900 OR d_moy > 4 )
ORDER BY d_year

Fig. 3a. shows the logical plan of the given query. The global op-
timizer (GO) partitions the query using push-down rules. In this
example, the RPU is only capable (a) of doing Filter operations
in the Where clause, so the Sort operation cannot be assigned to
the RPU, and (b) it can either do String comparison or Integer
comparison at a time. Hence, the Filter node is partitioned into
a String comparison and an Integer comparison node. Only one
can be pushed down to the RPU, so two plans are generated acc.
to Fig.3b. Based on cost models and statistics, the GO now selects
one alternative and converts it into a physical plan (see Fig. 3c).

3 EVALUATION
Initial measurements of our system were performed on Intel Core
i9-7920x processor with CPU 2.90GHz × 24 and Memory 64 GiB.
For comparison, PostgreSQL executed on the same system is used
as a baseline for comparison. Please note that for the PostgreSQL
baseline the data is available locally and, in contrast to our setup,
has no network overhead involved. For the ReProVide setup, the
RPU is connected via a 1Gb/s Ethernet. Both, the RPU and Post-
greSQL are connected to Calcite using their respective software
drivers. To evaluate the performance of our proposed system, we
chose two different SELECT statements and varied the WHERE
clause to test the influence of selectivity. As Table we used the
date dimension of the TPC-DS benchmark suite. Figure 4 depicts
the relative execution time difference of ReProVide versus Post-
greSQL. Due to the run-to-completion implementation of this
early version of the RPUs, we can observe a slowdown for the
query (blue) with bigger tuple sizes of the result table: Overhead
for allocating and synchronizing buffers depends on their sizes.
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Figure 4: Relative execution time improvement vs.
Tuple Selectivity. The improvement is calculated as
t imePostдr eSQL−t imeReProV ide

t imePostдr eSQL
. One query (blue) selects all

available attributes of the TPC-DS date dimension while
the second query (red) only selects a single attribute.

This overhead is greatly reduced if only a small part (columns)
will be present in the intermediate result (red) or the selectivity
rises and the buffers become less and less oversized. Furthermore,
as the RPU is network connected there is an initial latency to
send the request and receive the results which PostgreSQL run-
ning in the same host doesn’t suffer from. As one can see, even
with PostgreSQL having these benefits and higher data transfer
rates, our approach already shows benefits in terms of execution
time reduction of up to 40%.

4 DEMONSTRATIONWALKTHROUGH
For the demonstration, we will present all the above mentioned
concepts to the conference attendees. They will be explained
how to use our framework for executing their own queries. They
do not require any prerequisite understanding about any of the
hardware or software that we are using for demonstration. The
demo includes a laptop where the DBMS (particularly Calcite)
is running which will be connected with an FPGA board (RPU)
using an Ethernet cable.

4.1 Query partition and execution
The conference attendees can select/ frame a query that they
want to execute in our framework. When the attendee types in a
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query and presses the execute button, the query execution log
will be displayed. The push-down rules are listed and possible
execution plans generated by the global optimizer using those
push-down rules are visualized. Furthermore, the selected plan
for the execution and, finally, the result of the query (as depicted
by Fig 5) are shown.

Figure 5: Final results

Figure 6: Statistics received from RPU

4.2 Online Statistics Visualization
One speciality of the RPU is the possibility to generate statistics
such as histograms at almost zero cost during regular query
execution runs [3]. The demo will present the refined histograms
after new information is available in an event driven way to
demonstrate that statistics can be refined without additional cost
(see Fig 6). The statistics can then guide the optimizer to select
the better plans with more accurate cost estimations.

5 RELATEDWORKS
Research about the benefits of modern hardware, especially FP-
GAs and GPUs, for query accelerations is well exploited in recent
years. [11–14] are studying the performance improvement when
integrating FPGAs into CPU systems for query acceleration. Con-
trary, we are introducing a co-operating optimizer, where FPGA
and CPU are interacting. Based on this interaction, a capability-
aware optimization is implemented.

In [7] the statistics (histogram) have been generated as a side
effect of query processing but with additional hardware resources
while in our system, statistics are gathered during the execution
of partial query[3].

Heterogeneity-aware query optimization has been studied
extensively in [6, 8–10]. But other than the approaches they have

implemented, a capability-aware optimization using the hints
from the attached co-processor is used in our approach to find
the best operations for them.

6 CONCLUSION AND FUTUREWORK
A reconfigurable near-data accelerator and a capability-aware
global optimizer for a scalable and energy efficient execution of
an SQL query processing is shown in this demo. In the current
version, we are focusing on the query partition and on-the-fly
reconfiguration of accelerators. In the future work, we would like
to address multi-query optimization and common sub-expression
evaluation.
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ABSTRACT
The Big Data movement proposes data streaming systems to
tame velocity and to enable reactive decision making. However,
approaching such systems is still too complex due to the paradigm
shift they require, i.e., moving from scalable batch processing to
continuous data analysis and pattern detection.

Recently, declarative Languages are playing a crucial role in
fostering the adoption of Stream Processing solutions. In partic-
ular, several key players introduce SQL extensions for stream
processing. These new languages are currently playing a cen-
tral role in fostering the stream processing paradigm shift. In
this tutorial, we give an overview of the various languages for
declarative querying interfaces big streaming data. To this ex-
tent, we discuss how the different Big Stream Processing Engines
(BigSPE) interpret, execute, and optimize continuous queries ex-
pressed with SQL-like languages such as KSQL, Flink-SQL, and
Spark SQL. Finally, we present the open research challenges in
the domain.

KEYWORDS
Stream Processing, Data Stream Management Systems, Complex
Event Processing, Streaming SQL

1 GOALS & OBJECTIVES
The world is accelerating; every day, hour, minute, and second
the amount of data that we produce grows quicker. Initially,
Big Data systems focused on scalable batch processing, and
MapReduce [12] led the analytics market for more than a decade.

Recently, with the growing interest for (near) real-time in-
sights, we observed a paradigm-shift, i.e., from data at rest and
post-hoc analyses, to data-in-motion and continuous analyses.
Thus, Big Data systems evolved to process streams with low
latency and high throughput. Nowadays, the state of the art in-
cludes many alternative solutions, such as Storm, Flink, Spark
Structured Streaming, and Kafka Streams) to name the most
prominent ones.

Models for continuous data processing have been around for
decades [15]. However, the advent of the Big-Data dramatically
increased the popularity of data streams in several application
domains. For example, developers aim at implementing efficient
and effective analytics on massive flows of data for realizing the
Smart X phenomena (e.g., Smart Home, Smart Hospital, Smart
City). Stream processing systems are designed to support a large
class of applications in which data are generated from multiple

© 2020 Copyright held by the owner/author(s). Published in Proceedings of the
22nd International Conference on Extending Database Technology (EDBT), March
30-April 2, 2020, ISBN 978-3-89318-083-7 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

sources and are pushed asynchronously to servers which are
responsible for processing them [13].

To facilitate the adoption, initially, most of the big stream
processing systems provided their users with a set of API for
implementing their applications. However, recently, the need for
declarative stream processing languages has emerged to simplify
common coding tasks; making code more readable and main-
tainable, and fostering the development of more complex appli-
cations. Thus, Big Data frameworks (e.g., Flink [9], Spark [3],
Kafka Streams1, and Storm [19]) are starting to develop their
own SQL-like approaches (e.g., Flink SQL2, Beam SQL3, KSQL4)
to declaratively tame data velocity.

In general, declarative languages are extremely useful when
writing the optimal solution is harder than solving the problem
itself. Indeed, they leverage compilers to catch programming
mistakes and automatically transform and optimize code. They
fill the gap between expert and normal users. They also increase
the acceptance and usability of the system for the end-users. The
aim of this tutorial is to provide an overview of the state-of-the-
art of the ongoing research and development efforts in the domain
of declarative languages for big streaming data processing. In
particular, the goals of the tutorial are:

• providing an overview of the fundamental notions of pro-
cessing streams with declarative languages;

• outlining the process of developing and deploying stream
processing applications;

• offering an overview of state of the art for streaming query
languages, with a deep-dive into optimization techniques
and examples from prominent systems; and

• presenting open research challenges and future research
directions in the field.

The content of this tutorial is highly relevant for EBDT-2020
attendees, as it focuses on database-related aspects that concern
SQL-like domain-specific languages for stream processing.

2 TUTORIAL PROGRAM OUTLINE
The tutorial introduces the various approaches for declarative
stream processing for Big Data. It is centered on providingmotiva-
tions, models, and optimization techniques related to declarative
Stream Processing languages, e.g., EPL, KSQL, Flink-SQL and
Spark Structured Streaming. In the following, we provide
an overview of program followed by a detailed description of
the different lectures. Notably, we aim at preparing also practi-
cal examples and exercises for the audience to interact with the
presented tools.
1https://kafka.apache.org/documentation/streams/
2https://ci.apache.org/projects/flink/flink-docs-stable/dev/table/sql.html
3https://beam.apache.org/documentation/dsls/sql/overview/
4https://www.confluent.io/product/ksql/
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Figure 1: Adoption of Declarative Interfaces for Stream Processing.

(1) A Brief History of Stream Processing and Its Models.
(2) Big Stream Processing Engines

• Apache Flink [9]
• Apache Spark [22]
• Apache Kafka and Kafka Streams [6]
• Esper5

(3) Declarative Languages for Stream Processing
• The Continuous Query Language [2]
• Flink SQL (i.e.,Apache Calcite [7])
• Spark SQL [3]
• KSQL [14]

(4) Conclusion and Research Directions

2.1 A Brief History of Stream Processing
During this part, we will focus on describing the motivations that
led to the development of stream processing [20]. Besides, we
present the state of the art, surveying from seminal models [5, 8]
to the more recent ones [1, 17].

SECRET [8] is a model to explain the operational semantics
of window-based SPEs. SECRET focuses on modeling stream-to-
relation operators using four abstractions:

• the Scope function maps an event time instant to the time
interval over which the computation will occur.

• the Content function maps a processing time instant to the
subset of stream elements that occur during the event-time
interval identified by the scope function.

• the Report dimension identifies the set of conditions under
which the window content become visible to downstream
operators.

• the Tick dimension shows the conditions that cause a
report strategy to be evaluated.

The Dataflow Model [1] presented a fundamental shift on the
approach of stream processing, leaving the user the choice of the
appropriate trade-off between correctness, latency and cost. The
model describes the processing model of Google Cloud Dataflow.
In particular, it operates on streams of (key, value) pairs using
the following primitives.

• ParDo for generic element-wise parallel processing pro-
ducing zero or more output elements per input.

• GroupByKey for collecting data for a given key before
sending them downstream for reduction.

Being data unbounded GroupByKey needs windowing in order
to be able to decide when it can output. Windowing is usually
treated as key modifier, this way GroupByKey will group also
by window. The model addresses the problem of window com-
pleteness, claiming the Watermarking an insufficient mechanism
5http://www.espertech.com/

to regulate out-of-order arrival. Therefore, the Dataflow Model
introduces Triggers to provide multiple answers for any given
window. Windows and Triggers are complementary operators.
The former determines when data are grouped together for pro-
cessing using event time; the latter determines where the results
of groupings are emitted in processing time.

The Stream and Table Duality [17] includes three notions,
i.e., table, table changelog stream and a record stream. The static
view of an operator’s state is a table, updated for each input record
and has a primary key attribute. Record streams and changelog
streams are special cases of streams. A changelog stream is the
dynamic view of the result of an update operation on a table. The
semantics of an update is defined over both keys and timestamps.
Replaying a table changelog stream allows to materialize the
operator result as a table. On the other hand, a record stream
represents facts instead of updates. A record streams model im-
mutable items and, thus, each record has a unique key. Stream
processing operators are divided in stateless and stateful ones,
may have one or multiple input streams and might be defined
over special types of input streams only.

2.2 Big Stream Processing Engines
During this section of the tutorial, we provide an overview of
the following Big Stream Processing Engines (BigSPE). Figure 1
reports the system publication timeline, indicating in light-grey
to that are in the scope of the tutorial.

Apache Flink [9] is an open source platform for distributed
stream and batch processing. Flink uses a streaming dataflow
engine that provides data distribution, communication, and fault
tolerance for distributed computations. Apache Flink features
two relational APIs - the Table API and SQL - for unified stream
and batch processing. Flink’s Streaming SQL support is based on
Apache Calcite which implements the SQL standard.

Apache Spark [3] is a general-purpose cluster computing
system. It provides high-level APIs in Java, Scala, Python and R,
and an optimized engine that supports general execution graphs.
Spark’s main abstraction are resilient distributed datasets (RDDs).
An RDD is a collection of elements partitioned across the nodes
of the cluster that can be operated on in parallel.

Apache Kafka [21] is a distributed streaming platform. Kafka
is run as a cluster on one or more servers, called brokers, that
can span multiple datacenters. The Kafka cluster stores streams
of records in unbounded append only logs called topics. Each
record consists of a key, a value, and a timestamp. Kafka Streams
is a stream processing library built on top of Apache Kafka pro-
ducer/consumer APIs. It is based on the Stream/Table duality
model, which combines the Dataflow model and CQL.
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2.3 Declarative Stream Processing Languages

Figure 2: Expressiveness vs Simplicity w.r.t. Declarative
Stream Processing Languages

In the context of Big Data Streams, declarative languages suffer
from the absence of a shared formal framework that clarifies
execution models and time-management approaches. Therefore,
existing systems have developed their declarative languages with
a primary focus on meeting specific industrial needs.

The Continuous Query Language (CQL) [2] is the first at-
tempt to extend relational algebra to process streams of data.
CQL defines three families of operators, i.e., Stream-to-Relation
(S2R) operators that produce a relation from a stream, Relation-
to-Relation (R2R) operators that produce a relation from one or
more other relations, and Relation-to-Stream (R2S) operators that
produce a stream from a relation. Combining these operators is
it possible to define stream-to-stream transformations.

During this section, we survey existing declarative languages
for stream processing. Influenced by CQL, BigSPEs’ languages
try to be as syntactically-close as possible to SQL focusing on us-
ability at the cost of solid design principles like Codd’s ones [10].
Following Cugola and Margara’s classification [11], we will ex-
plain and compare them in terms of expressiveness and simplicity,
as shown in Figure 2.

Flink SQL is based on Apache Calcite [7], i.e., a system that
provides query parsing, planning, optimization, and execution
of SQL queries on top of any data management system. Calcite
leaves data storage and management to specialized engines. Flink
relies on Calcite to offer a streaming-compliant SQL interface
and an advanced query optimization layer. Any language con-
struct used in Flink is also compliant to the SQL standard syntax.
Listing 1 shows an example of Flink SQL query that counts the
number of views per nation every hour and reporting every
minute.

1 SELECT nat ion , COUNT( ∗ )
2 FROM pageviews
3 GROUP BY HOP( rowtime , INTERVAL 1H, INTERVAL 1M) , n a t i on

Listing 1: Counting Page Views using Flink SQL.

Spark SQL [4] a Spark module for structured data process-
ing. It provides a Dataframe API that can perform relational
operations. Moreover, it relies on Catalyst, i.e., an extensible opti-
mizer that allows custom optimization rules. The Dataframe API
provides to Catalyst source metadata that allows it to perform

optimizations. Structured Streaming [3] ports to Spark some of
the Google DataFlow ideas, e.g., the separation between event-
time and processing-time. Structured Streaming reuses the Spark
SQL execution engine, Catalyst, and the code generator. To sup-
port streaming, Structured Streaming add the features to Spark
SQL:(1) Triggers to control result reporting; (2) Time extractors
to mark a column for event time;(3) Stateful operators to imple-
ment complex aggregations. Listing 2 shows the same query of
Listing 1, but using Spark SQL.

1 v a l d f = pagev iews . groupBy (
2 window ( $ " t imestamp " , " 1 hour " , " 1 minute " ) , $ " n a t i on "
3 ) . count ( )

Listing 2: Counting Page Views using Spark SQL.

KSQL [14] is a streaming SQL engine implemented on top of
the Kafka Streams API. KSQL is directly based on the Stream Du-
ality model [17]. Thus, it relies on two first-class constructs, i.e.,
Streams and Tables. To move between these abstractions, KSQL
provides powerful stream processing capabilities such as joins,
aggregations, event-time windowing, and many more. Listing ??
shows our example pageviews query using KSQL syntax.

1 CREATE TABLE a n a l y s i s AS SELECT nat ion , COUNT( ∗ )
2 FROM pageviews
3 WINDOW HOPPING ( SIZE 1 HOUR, ADVANCE BY 1 MINUTE )
4 GROUP BY na t i on ;

Listing 3: Counting Page Views using KSQL label

The presenters go in-depth regarding the languages above,
focusing in particular on the following constructs [18]: (i) Filters
and stateless operations; (ii) table-stream and stream-to-stream
joins; (iii) windowing, aggregates, and stateful computations.

Finally, presenters will comment on the design of the lan-
guages above w.r.t. the Codd’s principles:

• Minimality, i.e., a language should provide only a small set
of needed language constructs so that different language
constructs cannot express the same meaning;

• Symmetry, i.e., a language should ensure that the same
language construct always expresses the same semantics
regardless of the context it is used in; and

• Orthogonality, i.e., a language should guarantee that every
meaningful combination its constructs is applicable.

2.4 Conclusion and Research Directions
This section closes the tutorial indicating ongoing research and in-
dustrial works. Moreover, we will ask the audience about the fact
that SQL was not intended to be used with unbounded streams of
data nor with the continuous semantics required to process them.
Nevertheless, existing BigSPE are adopting it and a question
naturally raises: Can we consider BigSPE as databases?

3 LEARNING OUTCOMES
The tutorial targets researchers, knowledge workers, and practi-
tioners who want to understand the current state-of-the-art as
well as the future directions of stream processing.

This tutorial includes relevant technologies and topics for
people from IoT, as well as social media, pervasive health, ans oil
industry, who have to analyze in massive amounts of streaming
data. After attending this tutorial, the audience will have:

• Good understanding of the fundamental and main con-
cepts of stream processing its models;
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• An overview and detailed insight into declarative stream
processing languages and the ongoing developments by
big data streaming system in this domain;

• An overview of research directions in which the state-of-
the-art can be improved.

The material of the tutorial will cover some of the work of the
presenters on the topics of the tutorial, including [13, 16, 18]

4 PREVIOUS EDITIONS
The first version of this tutorial was presented at the DEBS 2019
conference6. It was a full-day tutorial, and it focused on the pro-
cessing models behind declarative stream processing languages.
With the tutorial, the presenters were invited to publish a com-
panion short paper [18] and a website7.

5 PRESENTERS & ORGANIZERS
Riccardo Tommasini is a research fellow at the University of
Tartu, Estonia. Riccardo did his PhD at the Department of Elec-
tronics and Information of the Politecnico di Milano. His thesis,
titled "Velocity on the Web", investigates the velocity aspects
that concern the Web environment. His research interests span
Stream Processing, Knowledge Graphs, Logics and Programming
Languages. Riccardo’s tutorial activities comprise Stream Rea-
soning Tutorials at ISWC 2017, ICWE 2018, ESWC 2019, and
TheWebConf 2019, and DEBS 2019.

Sherif Sakr is the Head of Data Systems Group at the Institute of
Computer Science, University of Tartu, Estonia. He received his
PhD degree in Computer and Information Science from Konstanz
University, Germany in 2007. He is currently the Editor-in-Chief
of the Springer Encyclopedia of Big Data Technologies. His re-
search interest include data and information management, big
data processing systems, big data analytics and data science. Prof.
Sakr has published more than 150 research papers in interna-
tional journals and conferences. He delivered several tutorials
in various conferences including WWW’12, IC2E’14, CAiSE’14,
EDBT Summer School 2015, . The 2nd ScaDS International Sum-
mer School on Big Data 2016, The 3rd Keystone Training School
on Keyword search in Big Linked Data 2017, DEBS 2019 and
ISWC 2019.

Emanuele Della Valle is an Assistant Professor at the Depart-
ment of Electronics and Information of the Politecnico di Milano.
His research interests covered Big Data, Stream Processing, Se-
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Telecom and IoT data streams in collaboration with Telecom
Italia, IBM, Siemens, Oracle, Indra, and Statoil. Emanuele pre-
sented several Stream Reasoning related tutorials at SemTech
2011, ESWC 2011, ISWC 2013, ESWC 2014, ISWC 2014, ISWC
2015, ISWC 2016, DEBS 2016, ISWC 2017 and KR 2018.

Hojjat Jafarpour is a Software Engineer and the creator of KSQL
at Confluent. Before joining Confluent he has worked at NEC
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ABSTRACT
Entity Resolution (ER) lies at the core of data integration, with
a bulk of research focusing on its effectiveness and its time ef-
ficiency. Most past relevant works were crafted for addressing
Veracity over structured (relational) data. They typically rely on
schema, expert and external knowledge to maximize accuracy.
Part of these methods have been recently extended to process
large volumes of data through massive parallelization techniques,
such as the MapReduce paradigm. With the present advent of Big
Web Data, the scope moved towards Variety, aiming to handle
semi-structured data collections, with noisy and highly heteroge-
neous information. Relevant works adopt a novel, loosely schema-
aware functionality that emphasizes scalability and robustness
to noise. Another line of present research focuses on Velocity, i.e.,
processing data collections of a continuously increasing volume.

In this tutorial, we present the ER generations by discussing
past, present, and yet-to-come mechanisms. For each genera-
tion, we outline the corresponding ER workflow along with the
state-of-the-art methods per workflow step. Thus, we provide
the participants with a deep understanding of the broad field
of ER, highlighting the recent advances in crowd-sourcing and
deep learning applications in this active research domain. We
also equip them with practical skills in applying ER workflows
through a hands-on session that involves our publicly available
ER toolbox and data.

1 GOALS AND OBJECTIVES
Entity profiles assemble valuable information about real-world
objects. Hence, entities constitute the core organizational unit of
structured (e.g., relational databases) as well as semi-structured
data (e.g., knowledge bases, such as DBPedia and Geonames).
Various data management applications, such as query answer-
ing [47], are based on entity semantics and connections in order
to improve their performance. Typically, these applications re-
quire the integration of different profiles that pertain to the same
real-world object [11, 18]. The task of inter-linking and dedupli-
cating (i.e., canonicalizing) data instances that describe the same
real-world objects is called Entity Resolution (ER) [12].

ER is a relatively old problem that was mainly crafted for
structured data, which were described by schemata of known
semantics and quality [11]. This schema knowledge allowed ex-
perts to develop customized solutions that effectively addressed
Veracity, i.e., the various forms of inconsistencies, noise or er-
rors in entity profiles, which are introduced during manual data
entry, or by the limitations of the automatic extraction techniques
[23]. For even higher effectiveness, labelled instances are also
typically used in order to automatically learn matching rules that
simultaneously maximize precision and recall [48, 60, 61].

© 2020 Copyright held by the owner/author(s). Published in Proceedings of the
23rd International Conference on Extending Database Technology (EDBT), March
30-April 2, 2020, ISBN 978-3-89318-083-7 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.
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Figure 1: The workflow of the 1st and 2nd ER generations.

The end-to-end workflow implemented by the 1st generation
of ER solutions is depicted in Figure 1 [11]. The first step, Schema
Matching, creates mappings between the attributes of the input
entities based on their relatedness, as inferred from the similarity
of their structure, name and/or values [6, 45]. By identifying
semantically identical attributes (e.g., “profession” and “job”),
it facilitates the schema-aware functionality of the subsequent
workflow steps.

The second step, which is called Blocking, addresses the qua-
dratic time complexity,O(n2), of brute-force ER, which compares
every entity profile with all others [11]. Blocking reduces the
executed comparisons to a significant extent by sacrificing recall
to a minor extent. It restricts the computational cost by compar-
ing only the most similar entity profiles, as they are determined
by signatures that are composed of (combinations of) parts of
values that correspond to the most informative attribute names
[11]. E.g., two person entities are likely matches if their addresses
have the same zip code.

The entities that co-occur in at least one block are compared
during the third step, which is called Entity Matching. This ap-
plies a combination of string similarity measures to the values
of selected attribute names. The resulting degree of similarity
is then used to assign the entity pairs into one of the three pos-
sible categories, i.e., match, non-match or uncertain [11]. In
case of collective approaches, the latest decision is propagated
to neighboring entities, i.e., entities connected with important
relationships to the compared pair, so as to refine their matching
likelihood [7, 16].

Note that each step accommodates both learning-based and
non-learning methods [41]; the former methods leverage labelled
instances to extract effective rules through a Machine Learning
algorithm, while the latter methods rely on heuristics that capture
expert or domain knowledge.

The same workflow lies at the core of the 2nd generation,
which additionally targets Volume, i.e., the cases where the in-
put data comprise (tens of) millions of entity profiles. Typically,
this challenge is addressed through the new paradigm for mas-
sive parallelization, i.e., Map/Reduce [14]. Several techniques for
Blocking [38] and Entity Matching [9] have been adapted to
MapReduce so that they scale to voluminous datasets. Special
care is also taken to avoid underutilization of the computational
resources through Load Balancing techniques [39, 77].

A shift was marked by the 3rd generation of the ER end-
to-end workflow, which is depicted in Figure 2. In addition to
Veracity and Volume, its goal is to address Variety, which is
caused by the unprecedented levels of schema heterogeneity and
noise as well as the loose schema binding of unclear semantics [12,
17]. Instead of a database-like schema, there is a rich diversity of
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Figure 2: The workflow of the 3rd ER generation.

the domains. For example, there are ∼2,600 different vocabularies
in the LOD cloud but only 109 from them are shared by more
than one entity collection [22]. This results in hundreds, or even
thousands, of different attributes with high entity frequency,
rendering inapplicable the schema-aware methods of the first
two generations [31, 54].

The first step in the new workflow is Schema Clustering, which
clusters together attributes with similar values, regardless of
their semantics. The goal is to improve the performance of the
subsequent steps. E.g., Blocking uses the created schema clusters
and the associated signatures (i.e., blocking keys) to split large
blocks into smaller ones. This significantly enhances precision
for a negligible (if any) impact on recall. This idea has been
successfully applied to Blocking via Attribute Clustering [52]
and to Meta-blocking via BLAST [62].

The second step, which is called Block Building, creates a set
of blocks by disregarding schema knowledge and the ensuing
human intervention completely. Through a schema-agnostic ap-
proach that leverages redundancy, it is inherently crafted for
tackling the unprecedented levels of schema heterogeneity in
semi-structured data. In this way, it yields blocks of very high re-
call, but very low precision, independently of human intervention
and domain/expert knowledge [12, 54].

The third step of the workflow is Block Processing, which en-
hances precision to a significant extent at a limited, if any, cost
in recall [52, 54, 56]. To this end, it refines the original blocks by
efficiently removing comparisons that are repeated or involve
non-matching entities. Its techniques are distinguished into two
categories: the Block Cleaning ones operate at the coarse-grained
level of entire blocks (e.g., Block Clustering [26]), while the Com-
parison Cleaning ones operate at the fine-grained level of indi-
vidual comparisons (e.g., Meta-blocking [18, 53] and Blast [62]).
In both cases, all techniques are generic and schema-agnostic
by definition, thus applying naturally to both structured and
semi-structured data [56].

Subsequently, Entity Matching executes all comparisons con-
tained in the final set of blocks. Typically, this process depends
heavily on neighbor similarity, using the entity relations in the
semi-structured data. This is done through an iterative process
that discovers duplicate entities gradually and propagates the
latest matches to related entities that could benefit from them
[42, 44, 66]. This step can also consider probabilistic matching of
the entities, e.g., [1, 36].

The end result of Entity Matching is a similarity graph, which
conveys a node for every entity and a weighted edge for every
pair of entities that have been compared. This intermediate model
is transformed into the final outcome of ER by Entity Clustering
[34], which partitions the graph nodes into equivalence clusters -
every cluster contains all duplicate entity profiles that actually
correspond to the same real-world object. These techniques are
schema-agnostic by default, as they exclusively consider the
information contained in the similarity graph.

The 4th generation of ER goes beyond the previous ones,
by also addressing Velocity. This pertains to the continuously
increasing volume of available data that imposes special ER chal-
lenges, e.g., the data set can never be considered as final, and
incoming data might alter the existing ones. To address them,

BlockingSchema
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MatchingPrioritization

(a)

Block
Building

Block
Processing Prioritization

Entity
Matching

Schema
Clustering

(b)

Figure 3: The end-to-end workflow of the 4th ER genera-
tion for (a) structured and (b) semi-structured data.

Progressive ER produces useful results in a pay-as-you-go manner
before the full completion of ER. Figures 3(a) and (b) illustrate
the schema-aware [58] and the schema-agnostic [63] workflows.
Incremental ER [33] is another mechanism, which minimizes the
cost for updating the existing results when new evidence becomes
available. Some methods also consider that the new evidence
might be conflicting with already processed data [36]. Another
mechanism is Query-driven ER [4], which gradually resolves en-
tities that are returned as results to incoming queries. A different
mechanism is supporting queries for obtaining aggregate, statis-
tical insights about the collection of resulting entities [35].

Note that all generations can be upgraded by exploiting exter-
nal knowledge to achieve higher performance. To this category
fall Deep Learning techniques for ER [20, 48], which incorpo-
rate contextual information in the form of word- or character-
embeddings, and Crowd-sourced ER [13, 15, 24, 30, 32, 67–70, 72,
75], which relies on human feedback. These two approaches lie
at the focus of the latest breakthroughs in ER.

After examining the four ER generations, our tutorial pro-
ceeds with a hands-on session that focuses on the state-of-the-
art tools for end-to-end Entity Resolution, like Magellan [40].
We then present JedAI [57], which constitutes a comprehensive,
open-source toolkit that implements most of the state-of-the-art
methods for every step of the 3rd and 4th ER generations. Thus,
it enables users to build versatile workflows on-the-fly and can
be readily used both for experimentation and for integration in
Entity Resolution applications. It is distributed under the Apache
License 2.0 and, thus, it is suitable for both the academic and the
commercial domain.

Overall, our tutorial provides researchers with a complete cov-
erage of the state-of-the-art ER methods along with a discussion
of the main open research problems. Practitioners get a good
overview of the benefits of the primary ER methods and learn
how to use them to improve the productivity of their businesses.
They also learn to identify the methods or products that are more
suitable for a particular task at hand, or better fit their general
needs. Additionally, the audience and especially the developers
of information integration tools benefit from the hands-on ses-
sion, learning how to integrate (parts of) the JedAI Toolkit into
their applications. Developers also become acquainted with novel
ideas that could well improve their existing products.
Related Tutorials. Our tutorial provides for the first time a
novel holistic and systematic view of the evolution of ER, stress-
ing the current state-of-the-art in deep learning and crowd-
sourcing applications. We categorize the main ER methods into
four generations, going from those crafted for maximizing Verac-
ity over structured data, all the way to those tackling Veracity,
Volume, Variety and Velocity over semi-structured data. No other
tutorial covers comprehensively large-scale, end-to-end ER for
both structured and semi-structured data. Past tutorials on the
subject [17, 27, 29, 65] focus either on one of these data types, or
cover partially the end-to-end ER workflow.
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2 SCOPE AND COVERAGE
Our tutorial aims to provide an overview of the state-of-the-art
techniques for all generations of End-to-End ER, analyzing each
one in a different session of ∼10 minutes. More emphasis is de-
voted to the approaches leveraging external knowledge in order
to upgrade any workflow step in any generation (∼30 minutes),
while a hands-on session discusses the main ER tools and demon-
strates the latest version of JedAI (∼10 minutes). Together with
the introduction, 5 minutes for questions and the conclusions,
the intended duration of the tutorial is 1.5 hours. The content of
the individual sessions is outlined below:
I. Introduction and motivation

• Preliminaries on Entity Resolution [12, 18]
• Fundamental Assumptions, Principles and Definitions [23]

II. The 1st ER Generation: Tackling Veracity
• Schema Matching [6, 19]
• Blocking [11, 37, 61]
• Entity Matching [5, 16, 60]

III. The 2nd ERGeneration: Tackling Volume and Veracity
• Parallel Blocking [38]
• Parallel Entity Matching [59]
• Load Balancing [39, 77]

IV. The 3rd ER Generation: Tackling Variety,
Volume and Veracity

• Schema Clustering [52, 62]
• Block Building [50–52]: Parallel Methods [12]
• Block Processing [8, 26, 55, 56, 62]: Parallel Methods [21]
• Entity Matching [42, 44, 66]: Parallel Methods [9, 22]
• Entity Clustering [34]

V. The 4th ER Generation: Tackling Velocity,
Variety, Volume and Veracity

• Progressive ER for (Semi-)Structured Data [58, 63, 76]
• Incremental Entity Resolution [33, 74]
• Query-Driven Entity Resolution [2–4, 71]
• Query Analytics for Entity Resolution [35, 64].

VI. Entity Resolution Revisited:
Leveraging External Knowledge

• Deep Learning for Entity Resolution [20, 48]
• Crowd-sourced Entity Resolution:
– Generating HITs [15, 43, 70]
– Formulating HIts [25, 67–69, 72, 75]
– Balancing accuracy and monetary cost [10, 28, 73, 78]
– Restrict the labour cost [13, 30]

VII. Hands-on Session: ER tools
• The state-of-the-art end-to-end ER tools [40]
• The JedAI Open Source Toolkit [57]

VIII. Challenges and Final Remarks
• Automatic Parameter Configuration [46, 49]
• Multi-modal Entity Resolution
• Conclusions

3 INTENDED AUDIENCE AND MATERIAL
Our tutorial is example-driven, avoiding excessive technical de-
tails and proofs. As a result, there is no prerequisite knowledge,
apart from a basic understanding of data management technol-
ogy. This renders it suitable for a broad audience, covering not
only students and researchers, but also practitioners and develop-
ers. In other words, it is intended for anyone with an interest in
understanding the main techniques for scalable and robust end-
to-end Entity Resolution over structured and semi-structured
data, using both non-learning and learning-based techniques.

In addition to the theoretical background in the state-of-the-
art in the field, the tutorial also presents available entity-related
resources, enabling the participants to directly work on the par-
ticular domain. Discussed resources include available data as well
as the state-of-the-art tools for performing end-to-end Entity Res-
olution, like Magellan [40] and JedAI [57], which can be readily
used to tackle ER problems via numerous combinations of the
most prominent methods.
Tutorial Material. The material of the tutorial is distributed
through the conference website1 as well as through a dedicated
website2. In both locations, we also give pointers and guidelines
for the ER toolkit that is used during the hands-on session. All
relevant code is publicly released through the Apache License
2.0, which supports both academic and commercial uses.

4 PRESENTERS
The tutorial is given by three presenters:

(1) George Papadakis is a Research Fellow at the Department
of Informatics of the University of Athens, Greece, and
an Internal Auditor of Information Systems at the Public
Power Company, the main electricity company in Greece.

(2) Ekaterini Ioannou is an Assistant Professor at the Univer-
sity of Tilburg, Netherlands.

(3) Themis Palpanas is a Senior Member of the French Univer-
sity Insitute (IUF), and a Professor of Computer Science at
the University of Paris, France.

All authors have published papers related to Entity Resolution,
focusing on the efficient management of large data collections
as well as on addressing various challenges, such as uncertainty,
volatility, and correlations.
Acknowledgements. This work was partially funded by the EU
H2020 project ExtremeEarth (825258).
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ABSTRACT
With the growing complexity of the available online information,
search engines via rankings and recommender systems come to
the rescue, providing suggestions to users about items of potential
interest, from movies and products to news articles and even
potential friends. Such results and suggestions aim at covering
the user information needs and play an important role in guiding
users’ decisions and in forming their opinions.

However, the same technology, if not used responsibly, may
lead to discrimination, amplify potential biases in the original
data, restrict transparency and strengthen unfairness. For exam-
ple, consider scenarios in which models based on biased data
produce results that abet violence, decrease diversity, or have an
adverse impact on economic policies.

While the potential benefits of rankings and recommenders
are well-accepted and understood, the importance of using such
systems in a fair manner has only recently attracted attention. In
this tutorial, we cover recent advancements and highlight future
research directions in this increasingly relevant research area.

1 INTRODUCTION
Currently, algorithmic systems driven by large amounts of data
are increasingly being used in all aspects of society. Such systems
offer enormous opportunities. They accelerate scientific discov-
ery in all domains, including personalized medicine and smart
weather forecasting, they automate tasks, they help in improv-
ing our life through personal assistants and recommendations,
they have the potential of transforming society through open
government, to name just a few of their benefits.

Often, such systems are being used to assist, or, even replace
human decision making in diverse domains. Examples include
software systems used in school admissions, housing, pricing
of goods, credit score estimation, job applicant selection, and
sentencing decisions in courts and surveillance. A prominent case
is the COMPAS software used in courts in the US to assist bail
and sentencing decisions through a risk assessment algorithm
that predicts future crime.

The ubiquitous use of such systemsmay create possible threats
of economic loss, social stigmatization, or even loss of liberty. For
instance, a known study by ProPublica found that in COMPAS,
the false positive rate for African American defendants, namely
people labelled "high-risk" who did not re-offend, was nearly
twice as high as that for white defendants [11]. Another well-
known study shows that names used predominantly by men and
women of colour are much more likely to generate ads related to
arrest records [34].

Data-driven systems are also being employed by search and
recommendation engines, social media tools, and news outlets,
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among others. Recent studies report that social media has be-
come the main source of online news with more than 2.4 billion
internet users, of which nearly 64.5% receive breaking news from
social media instead of traditional sources [22]. Thus, to a great
extent, such systems play a central role in shaping our experi-
ences and influencing our perception of the world. Again, there
are many reports questioning the output of such systems. For
instance, a known study on search results showed evidence for
stereotype exaggeration in images returned when people search
for professional careers [16].

Fairness in rankings and recommenders. In this tutorial, we pay
special attention to the concept of fairness in rankings and rec-
ommender systems. By fairness, we typically mean lack of dis-
crimination. It is not correct to assume that insights achieved
via computations on data are unbiased simply because data was
collected automatically or processing was performed algorithmi-
cally. Bias may come from the algorithm, reflecting, for example,
commercial or other preferences of its designers, or even from the
actual data, for example, if a survey contains biased questions, or,
if some specific population is misrepresented in the input data.

In this tutorial, we review a number of definitions of fairness
that aim at addressing discrimination, bias amplification, and
ensure fair treatment. We organize these definitions around the
notions of individual and group fairness.We also present methods
for achieving fairness in rankings and recommendations, taking
a cross-type view, distinguishing them between pre-processing,
in-processing and post-processing approaches. We conclude with
a discussion of the new research directions that arise.

2 TUTORIAL OBJECTIVES
This tutorial aims at presenting a toolkit of definitions, models
and methods used for ensuring fairness in rankings and recom-
mendations. Our objectives are three-fold: (a) to provide a solid
framework on a novel, quickly evolving, and impactful domain,
(b) to highlight challenges and research paths for researchers
and practitioners that work on problems in the intersection of
recommender systems and databases, and (c) to show how fair-
ness challenges manifest in other areas (e.g., cloud computation
and job scheduling) and transfer findings from existing works in
these areas.

For this purpose, we organize our tutorial along the follow-
ing main axes: (i) Motivation and background for the need for
fair rankings and recommendations, (ii) Modeling fairness in
rankings and recommendations, (iii) Ensuring fair rankings and
recommendations, and (iv) Fairness in computations, algorithms
and systems, and open research challenges.

3 MOTIVATION AND BACKGROUND
Fairness has emerged as an important category of research for
machine learning systems in many application areas. Extending
this concept to rankings and recommendations is tricky. First,
there is an essential tension between the goals of fairness and
those of personalization. Inherent in the idea of personalization
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is that the best items for one user may be different than those
for another. However, there are contexts in which equity across
rankings and recommendation outcomes is a desirable goal. Fur-
thermore, fairness is a multi-sided concept (e.g., [7, 8]), in which
the impacts on multiple groups of individuals must be considered.

In this tutorial, we start by presenting motivating examples
for the need for fair rankings and recommendations from several
domains, including justice, ads, image search and others. We
highlight possible causes of unfairness, such as biased or incom-
plete data, and algorithmic inefficiencies. We point out potential
harms, such as filter bubbles, polarization, loss of opportunity,
and discrimination.

We consider a number of different dimensions based on which
we classify existing models and approaches. Firstly, we distin-
guish between the multiple viewpoints that fairness can have
in recommendation systems, namely (a) fairness for the recom-
mended items (e.g., [31]), (b) fairness for the users (e.g., [19, 38]),
(c) fairness for groups of users (e.g., [1, 24, 29]) and (d) fairness for
the item providers, and the recommendation platform (e.g., [25]).
Furthermore, we distinguish the existing methods for achieving
fairness in rankings and recommendations as: (a) pre-processing
(e.g., [31]), (b) in-processing (e.g., [13]) and (c) post-processing
approaches (e.g., [15]).

4 MODELING FAIRNESS
Fairness is a general term and coming up with a single definition
or model is tricky. We start this part of the tutorial by reviewing
definitions of fairness which, in general, ask for nondiscrimina-
tion of users or items, based on the values of one or more sensitive
or protected attributes, such as gender or race. We organize the
definitions with respect to the notions of individual fairness, i.e.,
treating similar individuals similarly [10, 18], and group fairness,
i.e., treating different groups equally (e.g., nondiscrimination of
sensitive groups) [2, 35].

We present a number of widely used models and definitions
for fairness [23, 36], including:

• Demographic (or statistical) parity (e.g., [35]), stating that
the proportion of each part of a protected class (e.g., gen-
der) should take the positive outcome at equal rates.

• Conditional statistical parity (e.g., [36]), which defines sta-
tistical parity given a set of legitimate factors.

• Equalized odds (e.g., [2]), stating that the protected and un-
protected groups should have equal rates for true positives
and false positives.

• Fairness through awareness (e.g., [10]), stating that any two
similar individuals should receive a similar outcome.

• Counterfactual fairness (e.g., [18]), stating that a decision
for an individual is fair, if it is the same in both the actual
world and a counterfactual world where the individual
belongs to a different demographic group.

• Calibration-based fairness (e.g., [26]), stating that if a group
receives a predicted probability p, at least a fraction p of
its members should belong to the predicted class.

Next, we review how these models of fairness have been ex-
tended in the case of ranked outputs, including attention-based
and probability-based approaches [3] as well as approaches based
on pair-wise comparisons [4, 37]. Then, we look at how defini-
tions of algorithmic fairness and fair ranking have been adopted
in recommender systems (e.g., [31, 39]). Given that fairness is a
multi-sided concept, we extend our taxonomy under the umbrella
of recommender systems, considering that fairness can refer to

suggested data items [31], users [19, 38], group of users [27, 29]
or item providers. Finally, we investigate the notion of fairness in
sequential and multi-round recommenders [5, 6, 25, 33], where
the goal is to ensure fairness in a number of interactions between
the users and the system. We also discuss fairness in the case
of link recommendations in networks and related concepts of
homogeneity, echo chambers and polarity [12].

This part of the tutorial concludes with a discourse on other
related concepts, such as the relationship between fairness and
diversity [9], recommendation independence, transparency [15]
and feedback loops.

5 ENSURING FAIRNESS
In this section, we present methods for achieving fairness in
rankings and recommendations. We first discuss the trade-offs
among fairness, personalization and accuracy.

Taking a cross-type view, approaches can be distinguished as
pre-processing, in-processing and post-processing.

• Pre-processing approaches target at transforming the data
so that any underlying bias or discrimination is removed.

• In-processing approaches target at modifying existing or
introducing new algorithms that result in fair rankings
and recommendations, e.g., by removing bias.

• Post-processing approaches treat the algorithms for pro-
ducing rankings and recommendations as black boxes,
without changing their inner workings. To ensure fair-
ness, they modify the output of the algorithm.

5.1 Recommenders
We first study fairness in systems that produce recommenda-
tions for individuals. These comprise the majority of existing
recommender systems. We start by presenting pre-processing ap-
proaches that work on modifying the input to the recommender,
for example, by appropriate sampling (e.g., [9]), by adding more
data to the input (e.g., [31]), or by performing database repair
[28]. Then, we focus on approaches for designing fairness-aware
algorithms, that is, recommendation algorithms that produce fair
recommendations. We will present algorithms for fairness-aware
matrix factorization [7, 38], multi-armed bandits [13, 21] and
deep learning recommenders (e.g., [6, 44]). For instance, we show
that when fairness with respect to both consumers and to item
providers is important, variants of the well-known sparse linear
method (SLIM) can be used to negotiate the trade-off between
fairness and accuracy and improve the balance of user and item
neighborhoods [7]. Alternatively, we can augment the learning
objective in matrix factorization by adding a smoothed varia-
tion of a fairness metric [38]. As another example, we present
methods that mitigate bias to increase fairness by incorporating
randomness in variational autoencoders recommenders (e.g., [6]).
Finally, we present post-processing approaches that modify the
output of the recommenders to ensure fairness (e.g., [15]).

Moving from individuals to groups, group recommendations
have attracted significant research efforts for their importance in
benefiting a group of users. However, maximizing the satisfaction
of each group member while minimizing the unfairness between
them is very challenging [20]. We study different fair-aware
algorithms for group recommenders [20, 27, 29, 32].
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5.2 Rankings
In order to guarantee fair rankings, in-processing approacheswork
with result generation procedures that allow the systematic con-
trol of the degree of unfairness in the output, by exploiting learn-
ing techniques, satisfying statistical parity, while preserving rel-
evance [37, 43]. The work in [30] formulates fairness constraints
on rankings, targeting at relevance maximization, in terms of
exposure allocation. A learning-based in-processing approach
is also used in [41] to reduce discrimination and inequality of
opportunity in rankings, Here, the method learns a ranking func-
tion with an additional objective that reduces disparate exposure.
A recent learning to rank approach, DELTR, looks at the average
probability of items from a protected group to be ranked at the
top position [42].

The post-processing approach of [40] aims at satisfying statisti-
cal tests of representativeness, when ranking items in a certain
order, so as to ensure that the ratio of protected individuals that
appear within a prefix of the ranking (namely, top-k) must be
above a given proportion. The attention received by the items
in different positions in the ranking is also not the same: items
ranked in first positions are exposed to much more attention than
the lower ones. [5] tackles the problem of having a ranking to be
presented as a query result, where the items in the first positions
have the same or very similar relevance. When it happens, there
is a decision to be made of which items are being top-ranked
and which are not. A solution to this situation, called amortized
fairness, considers that the position index is a proxy for the level
of attention an item is exposed, while the output of the predic-
tion algorithm corresponds to the item relevance. Accumulated
attention across a series of rankings should be proportional to
accumulated relevance, as indicating long term ranking fairness.

6 OPEN ISSUES AND RESEARCH
DIRECTIONS

In this section, we present a critical comparison of the existing
work on ensuring fair rankings and recommendations, and the
lessons learnt in these areas. Furthermore, we discuss open issues
and new research directions that arise.

First, we present fairness concepts studied in different areas
of computer science. Fairness is often a ubiquitous property of
computations, algorithms, and systems beyond recommender
systems. For instance, in federated stream processing systems, it
is an open challenge how to ensure global fairness on processing
quality experienced by queries [14]. Systems for processing big
data such as Hadoop, Spark, and massively parallel databases,
need to run workloads on behalf of multiple tenants simulta-
neously. The abundant disk-based storage in these systems is
usually complemented by a smaller, but much faster, cache. Cache
allocation strategies are required that speed up the overall work-
load while being fair to each tenant [17].

Then, we highlight a number of possible research directions.
We start with the observation that even if there exist several
definitions and models for representing fairness, coming from
different research perspectives, these definitions and models are
many times somewhat incomparable, hindering consistent un-
derstanding and treatment. Compiling existing definitions to
produce new ones and evaluating their suitability in different
domains and applications appears to be an open topic for further
research. Fairness in recommendations is multi-sided, achieving
fairness for all parties involved is also a topic that needs to be
investigated further.

While the potential benefits of fairness are well-accepted
nowadays, we still need to study the actual impact of fairness-
enhancing algorithms. For example, extensive user studies are
needed to evaluate the level of acceptance of the fairness-enhanced
results by the users and the long term effect of these results on
their own perceptions and preferences. Extensive studies that
exploit feedback loops, should also be performed in this line of
work, so as to investigate deeper the connections between the
concepts of fairness, explainability and personalization. More-
over, it will be very advantageous to study comparatively the
notions of equality, that ensures equal treatment, over equity,
that ensures treatment based on needs. Operationalizing equity
is a difficult task that often depends on the domain under study.

7 TUTORIAL INFORMATION
Motivation and Target Audience: The tutorial’s topic lies in
the core of the conference interests. The tutorial aims at re-
searchers and students, as well as IT professionals and developers
in searching, ranking and recommender systems, and the general
data management community. Researchers and students will get
a good introduction to the topic and get inspired by challenging
research problems. Furthermore, IT professionals and develop-
ers will learn appropriate fairness-aware techniques to promote
fairness in their systems. All the materials that will be used for
the tutorial will be publicly available.
Prerequisites: The tutorial is carefully structured to accommo-
date both attendees unfamiliar with the topic and more experi-
enced participants by providing required background knowledge,
shared terminology and common understanding of the basic
fairness-related concepts.
Intended Duration:We are aiming for a 90-minute tutorial.
Link to Tutorial Resources:
https://sites.google.com/view/fair-ranking-recommend

8 PRESENTERS
Evaggelia Pitoura is a Prof. at the Univ. of Ioannina, Greece,
where she also leads the Distributed Management of Data Labo-
ratory. She received her PhD degree from Purdue Univ., USA. Her
research interests are in the area of data management systems
with a recent emphasis on social networks and responsible data
management. Her publications include more than 150 articles in
international journals (including TODS, TKDE, PVLDB) and con-
ferences (including SIGMOD, ICDE, WWW) and a highly-cited
book on mobile computing. Her research has been funded by the
EC and national sources. She has served or serves on the editorial
board of ACM TODS, VLDBJ, TKDE, DAPD and as a group leader,
senior PC member, or co-chair of many international conferences
(including PC chair of EDBT 2016 and ICDE 2012). She has more
than 20 years experience in teaching. Prior tutorials: Tempo-
ral Graphs [eBISS’17], Social Graphs [BigDat’15], Data Graphs
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[ICDE’03], Pervasive Computing [ICDE’00].

Georgia Koutrika is Research Director at Athena Research Cen-
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papers in peer-reviewed conferences and journals, including SIG-
MOD, ICDE, and ACM TODS, and a book on entity resolution
in the Web of data. He has 8 years experience in teaching. Prior
tutorials: Recommender Systems [MUMIA Training School’14],
Personalization [ICDE’10], Entity Resolution [ICDE’17, ESWC’16,
WWW’14, CIKM’13].

REFERENCES
[1] Sihem Amer-Yahia, Senjuti Basu Roy, Ashish Chawla, Gautam Das, and Cong

Yu. 2009. Group Recommendation: Semantics and Efficiency. PVLDB 2, 1
(2009), 754–765.

[2] Pranjal Awasthi, Matthäus Kleindessner, and Jamie Morgenstern. 2019. Ef-
fectiveness of Equalized Odds for Fair Classification under Imperfect Group
Information. CoRR abs/1906.03284 (2019).

[3] Richard Berk, Hoda Heidari, Shahin Jabbari, Matthew Joseph, Michael J.
Kearns, Jamie Morgenstern, Seth Neel, and Aaron Roth. 2017. A Convex
Framework for Fair Regression. CoRR abs/1706.02409 (2017).

[4] Alex Beutel, Jilin Chen, Tulsee Doshi, Hai Qian, Li Wei, Yi Wu, Lukasz Heldt,
Zhe Zhao, Lichan Hong, Ed H. Chi, and Cristos Goodrow. 2019. Fairness
in Recommendation Ranking through Pairwise Comparisons. In KDD. 2212–
2220.

[5] Asia J. Biega, Krishna P. Gummadi, and Gerhard Weikum. 2018. Equity of
Attention: Amortizing Individual Fairness in Rankings. In SIGIR. 405–414.

[6] Rodrigo Borges and Kostas Stefanidis. 2019. Enhancing Long Term Fairness
in Recommendations with Variational Autoencoders. In MEDES. 95–102.

[7] Robin Burke. 2017. Multisided Fairness for Recommendation. CoRR
abs/1707.00093 (2017).

[8] Robin Burke, Nasim Sonboli, and Aldo Ordonez-Gauger. 2018. Balanced
Neighborhoods for Multi-sided Fairness in Recommendation. In FAT. 202–
214.

[9] L. Elisa Celis, Amit Deshpande, Tarun Kathuria, and Nisheeth K. Vishnoi. 2016.
How to be Fair and Diverse? CoRR abs/1610.07183 (2016).

[10] Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard S.
Zemel. 2012. Fairness through awareness. In Innovations in Theoretical Com-
puter Science. 214–226.

[11] J. Angwin et al. 2016. Machine Bias. ProPublica (2016). https://www.propublica.
org/article/machine-bias-risk-assessments-in-criminal-sentencing

[12] Kiran Garimella, Gianmarco De Francisci Morales, Aristides Gionis, and
Michael Mathioudakis. 2018. Reducing Controversy by Connecting Opposing
Views. In IJCAI. 5249–5253.

[13] Matthew Joseph, Michael J. Kearns, Jamie H. Morgenstern, and Aaron Roth.
2016. Fairness in Learning: Classic and Contextual Bandits. In NIPS. 325–333.

[14] Evangelia Kalyvianaki, Marco Fiscato, Theodoros Salonidis, and Peter Pietzuch.
2016. THEMIS: Fairness in Federated Stream Processing Under Overload. In
SIGMOD. 541–553.

[15] Toshihiro Kamishima, Shotaro Akaho, Hideki Asoh, and Jun Sakuma. 2018.
Recommendation Independence. In FAT. 187–201.

[16] Matthew Kay, Cynthia Matuszek, and Sean A. Munson. 2015. Unequal Repre-
sentation and Gender Stereotypes in Image Search Results for Occupations.
In CHI. 3819–3828.

[17] Mayuresh Kunjir, Brandon Fain, Kamesh Munagala, and Shivnath Babu. 2017.
ROBUS: Fair Cache Allocation for Data-parallel Workloads. In SIGMOD. 219–
234.

[18] Matt J. Kusner, Joshua R. Loftus, Chris Russell, and Ricardo Silva. 2017. Coun-
terfactual Fairness. In NIPS. 4066–4076.

[19] Jurek Leonhardt, Avishek Anand, and Megha Khosla. 2018. User Fairness in
Recommender Systems. In WWW. 101–102.

[20] Xiao Lin, Min Zhang, Yongfeng Zhang, Zhaoquan Gu, Yiqun Liu, and Shaoping
Ma. 2017. Fairness-Aware Group Recommendation with Pareto-Efficiency. In
RecSys. 107–115.

[21] Yang Liu, Goran Radanovic, Christos Dimitrakakis, Debmalya Mandal, and
David C. Parkes. 2017. Calibrated Fairness in Bandits. CoRR abs/1707.01875
(2017).

[22] N. Martin. 2018. How Social Media Has Changed How We Consume
News. Forbes (2018). https://www.forbes.com/sites/nicolemartin1/2018/11/
30/how-social-media-has-changed-how-we-consume-news/#18ae4c093c3c

[23] Ninareh Mehrabi, Fred Morstatter, Nripsuta Saxena, Kristina Lerman, and
Aram Galstyan. 2019. A Survey on Bias and Fairness in Machine Learning.
CoRR abs/1908.09635 (2019).

[24] Eirini Ntoutsi, Kostas Stefanidis, Kjetil Nørvåg, and Hans-Peter Kriegel. 2012.
Fast Group Recommendations by Applying User Clustering. In ER. 126–140.

[25] Gourab K Patro, Abhijnan Chakraborty, Niloy Ganguly, and Krishna P Gum-
madi. 2020. Incremental Fairness in Two-SidedMarket Platforms: On Smoothly
Updating Recommendations. In AAAI.

[26] Geoff Pleiss, Manish Raghavan, Felix Wu, Jon Kleinberg, and Kilian Q Wein-
berger. 2017. On Fairness and Calibration. In Advances in Neural Information
Processing Systems 30, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett (Eds.). Curran Associates, Inc., 5680–5689.

[27] Dimitris Sacharidis. 2019. Top-N group recommendations with fairness. In
SAC. 1663–1670.

[28] Babak Salimi, Luke Rodriguez, Bill Howe, and Dan Suciu. 2019. Interventional
Fairness: Causal Database Repair for Algorithmic Fairness. In SIGMOD. 793–
810.

[29] Dimitris Serbos, ShuyaoQi, NikosMamoulis, Evaggelia Pitoura, and Panayiotis
Tsaparas. 2017. Fairness in Package-to-Group Recommendations. InWWW.
371–379.

[30] Ashudeep Singh and Thorsten Joachims. 2018. Fairness of Exposure in Rank-
ings. In KDD. 2219–2228.

[31] Harald Steck. 2018. Calibrated recommendations. In RecSys. 154–162.
[32] Maria Stratigi, Haridimos Kondylakis, and Kostas Stefanidis. 2018. FairGRecs:

Fair Group Recommendations by Exploiting Personal Health Information. In
DEXA. 147–155.

[33] Maria Stratigi, Jyrki Nummenmaa, Evaggelia Pitoura, and Kostas Stefanidis.
2020. Fair Sequential Group Recommendations. In SAC.

[34] Latanya Sweeney. 2013. Discrimination in online ad delivery. Commun. ACM
56, 5 (2013), 44–54.

[35] Virginia Tsintzou, Evaggelia Pitoura, and Panayiotis Tsaparas. 2019. Bias
Disparity in Recommendation Systems. In RMSE.

[36] Sahil Verma and Julia Rubin. 2018. Fairness definitions explained. In FairWare.
1–7.

[37] Ke Yang and Julia Stoyanovich. 2017. Measuring Fairness in Ranked Outputs.
In SSDM. 22:1–22:6.

[38] Sirui Yao and Bert Huang. 2017. Beyond Parity: Fairness Objectives for Col-
laborative Filtering. In NIPS. 2921–2930.

[39] Sirui Yao and Bert Huang. 2017. New Fairness Metrics for Recommendation
that Embrace Differences. FAT/ML (2017).

[40] Meike Zehlike, Francesco Bonchi, Carlos Castillo, Sara Hajian, Mohamed
Megahed, and Ricardo Baeza-Yates. 2017. FA*IR: A Fair Top-k Ranking Algo-
rithm. In CIKM. 1569–1578.

[41] Meike Zehlike and Carlos Castillo. 2018. Reducing Disparate Exposure in
Ranking: A Learning To Rank Approach. CoRR abs/1805.08716 (2018).

[42] Meike Zehlike, Gina-Theresa Diehn, and Carlos Castillo. 2020. Reducing
Disparate Exposure in Ranking: A Learning to Rank Approach. In WWW.

[43] Richard S. Zemel, Yu Wu, Kevin Swersky, Toniann Pitassi, and Cynthia Dwork.
2013. Learning Fair Representations. In ICML. 325–333.

[44] Ziwei Zhu, Xia Hu, and James Caverlee. 2018. Fairness-Aware Tensor-Based
Recommendation. In CIKM. 1153–1162.

654



NoSQL Schema Evolution and Data Migration:
State-of-the-Art and Opportunities

Uta Störl
Darmstadt Univ. of Applied Sciences

Germany
uta.stoerl@h-da.de

Meike Klettke
University of Rostock

Germany
meike.klettke@uni-rostock.de

Stefanie Scherzinger
OTH Regensburg

Germany
stefanie.scherzinger@oth-r.de

ABSTRACT
NoSQL database systems are very popular in agile software de-
velopment. Naturally, agile deployment goes hand-in-hand with
database schema evolution. The main aim of this tutorial is to
present to the audience the current state-of-the-art in continuous
NoSQL schema evolution and data migration: (1) We present case
studies on schema evolution in NoSQL databases; (2) we survey
existing approaches to schema management and schema infer-
ence, as implemented in popular NoSQL database products, and
also as proposed in academic research; (3) we present approaches
for extracting schema versions; (4) we analyze different methods
for efficient NoSQL data migration; and (5) we give an outlook
on further research opportunities.

Duration: 1.5 hours

1 INTRODUCTION
Recent position papers demand more schema flexibility, such as
the ability to handle variational data [3, 42]. Many agile software
developers have long since turned towards NoSQL database sys-
tems such as MongoDB1, Couchbase2, or ArangoDB3 which are
schema-flexible, or even altogether schema-free. They allow to
store datasets in different structural versions to co-exist.

Yet even when the database management system does not
maintain an explicit schema, there is commonly an implicit schema,
as the application code makes assumptions about the structure of
the stored data. For instance, in Figure 1, the Java code in lines 1
through 9 implies a schema: An entity for person Jo Bloggs is
created, and then persisted in the people collection.

1 List<Integer> books = Arrays.asList(27464, 747854);
2 DBObject person = new BasicDBObject("_id", "jo")
3 .append("name", "Jo Bloggs")
4 .append("address",
5 new BasicDBObject("street", "123 Fake St")
6 .append("city", "Faketon")
7 .append("state", "MA")
8 .append("zip", 12345))
9 .append("books", books);
10 DBCollection collection = database.getCollection("people");
11 collection.insert(person);

Figure 1: Storing a person entity inMongoDB, using Java.4

1https://docs.mongodb.com/
2https://www.couchbase.com/products/server
3https://www.arangodb.com/
4From “Getting Started with MongoDB and Java”, https://www.mongodb.com/blog/
post/getting-started-with-mongodb-and-java-part-i, published August 2014.

© 2020 Copyright held by the owner/author(s). Published in Proceedings of the
22nd International Conference on Extending Database Technology (EDBT), March
30-April 2, 2020, ISBN 978-3-89318-083-7 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

With each new release of the software, the application code
evolves. Eventually, so will the implicit schema declarations.
Then, data stored in the production system will have to be mi-
grated accordingly. Yet writing custommigration scripts — which
seems to be the common practice today — is error-prone and
expensive. Thus, there is a dire need for well-principled tool
support for long-term maintenance of NoSQL database schemas.

With the schema declared within the application layer, the
burden of schema maintenance is shifted into the domain of the
application developers. Accordingly, we observe various grass-
roots efforts from the developer community to tackle schema
evolution. Unfortunately, these solutions do not build upon the
existing state-of-the-art in research. Overall, we see it as an op-
portunity for the database research community to contribute
well-founded and practical solutions to real-world problems.

In this tutorial, we give an overview of schema management
in agile development with NoSQL database systems. The authors
proposing this tutorial have been publishing in this domain for
over 6 years. We present the current state-of-the-art in research,
as well as in practice. We cover inferring schema-on-read with
outlier detection, deriving schema versions, the corresponding
schema evolution operations matching between them, as well
as the resulting data migration operations. Different migration
strategies and their impact, such as the overall migration costs
and the latency upon accessing an entity, are also discussed.

A strong point of this tutorial is that we motivate the problem
domain by presenting an empirical study on NoSQL schema
evolution in real-world applications. Moreover, we demo existing
tools for NoSQL schema management, e.g., for schema design
and schema extraction. Incorporating small, live demos, we put
together a diverse and diverting tutorial.

2 OUTLINE
This 1.5-hour tutorial is split into five parts:

(1) Case Studies (~15 min.). We present an empirical study
on the schema imposed on NoSQL databases by applica-
tions, as well as the dynamics of NoSQL schema evolution.

(2) NoSQL Schema Management (~20 min.). In this part
we discuss different architectures and existing solutions
for NoSQL schema management. Here, we present re-
search approaches as well as first products.

(3) NoSQLEvolutionManagement (~25min.). We present
solutions for NoSQL evolution management. Beside a lan-
guage for declaring NoSQL schema evolution operations,
we focus on approaches for extracting schema versions.

(4) Data Migration (~20 min.). Based on the previous parts,
we present different data migration strategies and discuss
their quantitative assessment.

(5) Future Opportunities (~10 min.). Finally, we outline
open research problems as potential directions for further
research, as well as current development in this area.
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3 GOALS AND OBJECTIVES
3.1 Case Studies
For our introduction, we present an empirical study on real-world
database applications, each backed by a schema-flexible NoSQL
data store. We investigate whether developers denormalize their
schema, as is the recommended practice in data modeling for
NoSQL data stores, and also a research subject [4, 25]. Further,
we analyze the entire project history, and with it, the evolution
of the NoSQL schema. By looking at real-world evidence, we pin-
point characteristic problems (such as the increased frequency
of schema changes). We discuss how existing solutions do not
fully transfer (e.g., since they rely on the schema being declared
explicitly, rather than being implicit in the code). Thus, existing
solutions cannot address the needs of application developers.
Finally, we state the desiderata for tackling NoSQL schema evo-
lution, in preparation to the subsequent tutorial.

3.2 NoSQL Schema Management
NoSQL database systems differ with regard to schema support:
There are schema-free systems without any native schema sup-
port (e.g. Couchbase, CouchDB5, Neo4j6). Other systems offer op-
tional schema support (e.g. MongoDB, OrientDB7; some of these
systems support different schema modes: schema-full or schema-
flexible). There are also schema-full systems, with a mandatory
schema (e.g. Cassandra8). In addition, there are proposals for
vendor-independentmiddleware thatmanages theNoSQL schema
(e.g. the Darwin schema management component [45]).

3.2.1 Capturing the NoSQL Schema. In our tutorial, we present
three strategies how the NoSQL schema can be captured from
a schema-free or schema-flexible data store: (a) In the tradition
of textbook schema design, the NoSQL schema can be derived
top-down from some conceptual model. (b) The schema may be
extracted posthumously, given a data instance. (c) The schema
may be also derived by static analysis of the application code. We
now briefly discuss these options.

a) Forward Engineering/Schema-First. In forward engineering,
or schema-first approaches, the schema is explicitly defined –
for example with modeling tools such as Hackolade9 or erwin10:
Users of these tools draw extended entity relationship models or
graphical visualizations of JSON Schema, which they can compile
for a given NoSQL database system. The principles behind NoSQL
schema design are being explored in academic research: In [1], a
model-driven approach for designing NoSQL databases has been
developed. The authors of [4] propose an abstract data model for
NoSQL databases, which exploits the commonalities of various
NoSQL systems. Another project [8] extends the schema-first
approach and generates object-oriented class hierarchies. The
class declarations actually represent entity collections, using
Object-NoSQL mapper libraries such as Mongoose and Morphia.

Yet in agile development, the schema is often not fixed up
front. Therefore, we next discuss schema reverse engineering.

b) Reverse Engineering fromData/Schema-on-Read. For process-
ing data without explicit schema information, reverse engineering
can be necessary. In the followingwewill refer to this approach as

5https://couchdb.apache.org/
6https://neo4j.com/
7https://orientdb.org/
8http://cassandra.apache.org/
9https://hackolade.com/
10https://erwin.com/products/erwin-dm-nosql/

Figure 2: The Big Picture: Moving from schema version n
(blue, shown to the left) to version n + 1 (orange, shown to
the right), the persisted entities (blue) may not be imme-
diately migrated. Rather, the data store now holds entities
in both schema versions (blue and orange).

schema-on-read (this term is currently used differently in various
Big Data/NoSQL application areas).

The general idea has been introduced in [22], based on an
earlier approach for XML schema extraction in [26]: The implicit
structural information from all entities is combined into a graph,
from which the schema and statistics can be derived. The schema
inference approach delivers a schema overview. The algorithm
and its optimizations will be introduced.

Similar approaches [2, 13, 20, 33, 36] also infer a schema or
generate conceptual models. The authors of [43] consider the
challenge of designing schemas for existing JSON datasets as an
interactive problem and present a roll-up/drill-down style inter-
face for exploring collections of JSON records. In [5], schemas
are inferred from datasets by typing the input according to a type
system. This approach is designed for MapReduce-based, and
thus highly scalable, execution. In [48], a descriptive schema is in-
ferred, and documents are indexed by their structural properties,
so that they may even be queried accordingly.

Certain (NoSQL) database design tools, such as Hackolade and
erwin, also implement schema reverse engineering, and certain
NoSQL database systems (for example MongoDB) come with
similar features built-in.

Schema inference from existing data is also one of the sub-
tasks in data lake analytics [29]. In data lakes, the “load-first,
schema-later” paradigm requires a combination of schema infer-
ence with the inference of integrity constraints [12, 14, 30, 31],
and further descriptions of the data content, such as the semantic
data type [19]. Data cleaning methods are also based on reverse
engineering of structure and frequencies of occurrence [32, 38].

c) Reverse Engineering from Code. Since the application code
implicitly declares a schema, this schema may be extracted. This
task is straightforward when applications use Object-NoSQL
mapper libraries, since class declarations then map to collections
of persisted entities. This approach is followed in [34, 39]. For
application code without mapper libraries, we need to resort to
more involved code analysis. For instance, in programmatically
extracting a schema for collection people from the code in Fig-
ure 1, we might employ data flow analysis, as done in [49], to
detect which statements characterize a collection.

3.2.2 The Big Picture. Figure 2 gives an overview of NoSQL
schema (evolution) management and data migration, which will
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accompany us through the entire tutorial. The left part of the fig-
ure visualizes the approaches of forward engineering and reverse
engineering discussed so far (top-down vs. bottom-up).

If we want to consider not only a static view of the schema,
but also its evolution along with the application code (illustrated
by application versions n and n + 1 in the upper part, and two
different versions of the database instance at two different times,
in the lower part of Figure 2), new challenges arise. In our tutorial,
we next discuss challenges and solutions for handling data in co-
existing schema versions, especially schema evolution operations
(represented by the right arrow in the center of the figure), as
well as approaches for extracting not only a schema, but to also
identifying different schema versions.

In the fourth part of the tutorial we then discuss various data
migration strategies (symbolized by the self-referencing arrow
on the bottom right of Figure 2).

3.3 NoSQL Schema Evolution Management
Handling different versions of data in a single database is becom-
ing more and more important – in relational databases [3, 16, 42]
as well as for different types of NoSQL databases [6, 40]. In this
tutorial, we survey different approaches.

NoSQL Evolution Language. Most NoSQL database manage-
ment systems do not provide a language capturing schema evolu-
tion operations. There are several proposals for such a language.
For instance, the authors of [41] define a language originally
for transformation between different NoSQL databases that can
also be used for data migration within the same store [15]. In
this tutorial, we present the NoSQL schema evolution language
introduced in [40] for different types of NoSQL database systems,
implemented in [45] and extended in [18] for multi-model data.
The language contains operations that affect only one entity-
type, or synonymously in MongoDB terminology, one collection
(single-type operations are add, delete, and rename). For complex
refactoring, operations that affect the entities of more than one
entity type (multi-type operations copy, move, split, and merge)
are available. Via these schema evolution operations (or schema
modification operations by the terminology of [9]), the schema
changes between consecutive versions of the application code
can be declared. This mapping is sketched by the red arrow in
the center of Figure 2.

Heterogeneity Classes. We capture the degree of structural
heterogeneity in a data instance via the notion of heterogeneity
classes, introduced in [27]. For example, persisted entities may
be very homogeneous in their structure, or very heterogeneous.
We outline the implications, present illustrative examples, and
define the class-specific semantics of evolution operations.

Schema-Versions-on-Read. Whereas the schema overview pre-
sented in the second part of the tutorial delivers information on
structures, data types, nesting of information, as well as infor-
mation on required and optional parts, it does not capture the
structural changes over time. For this reason, we present a further
method, developed for inferring schema versions, as well as the
changes between consecutive versions [21, 44]. Approaches for
extracting schema-versions-on-read are based on a partial order
of the data, e.g. based on timestamps. Besides schema inference,
we can use the partial order to find out when and how structural
information has changed and derive schema versions accord-
ingly. Applying additional information on integrity constraints,
we also can suggest evolution operations that have caused the

schema changes [21]. To our knowledge, this functionality is not
yet offered by any commercial products, but primarily imple-
mented in research prototypes, e.g., [7, 35] for representing UML
class model versions, and [21, 45] for generating JSON Schema
versions as well as the matching evolution operations.

3.4 Data Migration
After identifying the schema evolution operations, the data can
be migrated. There are various strategies, with different impacts
on latency and migration effort. Traditionally, data migration is
carried out eagerly, i.e., all data is migrated immediately when the
schema changes. Since this can be expensive, especially in a cloud
environment [11, 17], data can be migrated lazily [23, 37], so data
is not migrated until it is actually accessed. This approach is
preferable in databases where the share of “hot” data is relatively
small compared to the total amount of data. The downside is that
lazy migration adds latency to database reads and writes, since
the data might still have to be migrated. Figure 3 visualizes the
conflicting goals of monetary data migration costs (e.g., charged
by a cloud provider) and latency overhead upon read or write
access, for different migration strategies.

Figure 3: Tradeoffs in data migration (from [17]).

A compromise between the two competing goals is to migrate
hot data proactively (one of the options in Figure 3). In [23] and
[17], different proactive strategies are presented. Depending on
the characteristics of the data, the workload, and the schema
evolution operations, predictively migrating data promises good
latency at moderate costs. In the tutorial, we give a detailed
overview over such strategies and their tradeoffs. Further we
discuss optimizations, such as the version jumps suggested in [23,
46]. In [17], we propose a first tool providing decision support
for the challenge of choosing between migration strategies.

In addition to the impact on costs and latency, it should be
noted that for all strategies except eager, the database system
or the external schema management component must support
query rewriting, since data may exist in previous (older) versions
and therefore with a different structure than expected by the
query [16, 28]. Depending on the heterogeneity class (c.f. Sec-
tion 3.3), there are additional challenges to query rewriting [27].

In some cases, a no migration approach may be necessary,
when auditing requires that datasets are preserved in their origi-
nal version. Then, when an entity in a legacy version is accessed,
we may migrate it lazily, but we preserve the original entity.

3.5 Future Opportunities
We finally discuss selected research opportunities related to
NoSQL schema evolution and data migration.

Cost Models. For choosing an appropriate data migration strat-
egy, appropriate cost models are needed. These cost models must
take into account the characteristics of NoSQL database systems
such as distribution, replication, the consistency concepts. A
related challenge is the design of a suitable benchmark.
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Multi-Model Data. Multi-model database systems like Orient-
DB, ArangoDB, and Cosmos DB11 support more than one data
model [24]. Similarly, polystores [10, 47] pose new challenges
in our context. As we outline in [18], evolution in multi-model
databases triggers further research questions, such as inter-model
operations, the handling of global vs. local evolution operations,
inference of multi-model schemas, and synchronizing migration
over different models/systems.

4 INTENDED AUDIENCE AND MATERIAL
Our goal is to give EDBT attendees an overview of the challenges
and the current state-of-the-art in both research and practice on
NoSQL schema evolution and data migration. We will not assume
any background in NoSQL database systems, making our tutorial
appropriate for researchers, practitioners, and graduate students.

The material is available at https://tinyurl.com/evolving-nosql.
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ABSTRACT
A number of extensions to the classical notion of functional de-
pendencies have been proposed to express and enforce application
semantics. One of these extensions is that of order dependencies
(ODs), which express rules involving order. The article entitled
“Discovering Order Dependencies through Order Compatibility”
by Consonni et al., published in the EDBT conference proceedings
in March 2019, investigates the OD discovery problem. The au-
thors claim to prove that their OD discovery algorithm, OCDDIS-
COVER, is complete, as well as being significantly more efficient
in practice than the state-of-the-art. They further claim that the
implementation of the existing FASTOD algorithm (ours)—we
shared our code base with the authors—which they benchmark
against is flawed, as OCDDISCOVER and FASTOD report differ-
ent sets of ODs over the same data sets.

In this rebuttal, we show that their claim of completeness is, in
fact, not true. OCDDISCOVER’s pruning rules are overly aggres-
sive, and prune parts of the search space that contain legitimate
ODs. This is the reason their approach appears to be “faster” in
practice. Finally, we show that Consonni et al. misinterpret our
set-based canonical form for ODs, leading to an incorrect claim
that our FASTOD implementation has an error.

1 INTRODUCTION
Integrity constraints specify the intended semantics of dataset
attributes. They are commonly used in a number of application
areas, such as schema design, data integration, data cleaning, and
query optimization [2]. Past work focused primarily on functional
dependencies (FDs). In recent years, several extensions to the
notion of an FD have been studied, including that of order de-
pendencies (ODs) [3, 5–8, 10]. FDs cannot capture relationships
among attributes with naturally ordered domains, such as over
timestamps, numbers, and strings, which are common in business
data [9]. For example, consider Table 1, which shows employee
tax records in which tax is calculated as a percentage of salary.
Both tax and percentage are non-decreasing with salary.

Order dependencies naturally express such semantics. For a
second example from Table 1, the OD <salary orders group,
subgroup> holds. When the table is sorted by salary, it is also
then sorted by group (with ties broken by subgroup). However,
<salary orders subgroup, group> does not hold. This illustrates
that the order in which attributes appear in the OD matters.
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Table 1: Table with employee information.

# ID yr posit bin sal perc tax grp subg

t1 10 19 secr 1 5K 20% 1K A III
t2 11 19 mngr 2 8K 25% 2K C II
t3 12 19 direct 3 10K 30% 3K D I

t4 10 18 secr 1 4.5K 20% 0.9K A III
t5 11 18 mngr 2 6K 25% 1.5K C I
t6 12 18 direct 3 8K 25% 2K C II

The theory of order dependencies subsumes that of functional
dependencies. Any FD can be mapped to an equivalent OD by
prefixing the left-hand-side attributes onto the right-hand side
[8, 10]. For example, if salary functionally determines tax, then
salary orders salary, tax.

The purpose of this article is to refute the following claims in
Consonni et al. [3].
(1) The authors present a definition of minimality for order com-

patibility dependencies (OCDs). An OCD is a more specific
form of order dependency in which two lists of attributes or-
der each other, when taken together [8]. They claim that their
definition of minimality is complete; that is, from it, one can
recover all valid OCDs that hold over a given table.

(2) Given their definition of minimal OCDs, Consonni et al. [3]
propose an algorithm to discover ODs via OCDs, which has
factorial complexity in the number of attributes. They claim to
prove that their algorithm produces a canonically complete set
of ODs. (That is, a minimal set of ODs with respect to their
definition, from which all the ODs which hold over the data
could purportedly be inferred.)

(3) The authors claim that their experimental evaluation illus-
trates an error in our implementation of OD discovery algo-
rithm (FASTOD) [6, 7], which leads to discovering many
additional—and, purportedly, incorrect—dependencies. In
spite of this claim of an “implementation error” in the FAS-
TOD implementation that we provided them, they support
via benchmark experiments that their algorithm, OCDDIS-
COVER, outperforms our algorithm, FASTOD.

We show that each of these three claims is incorrect, in turn.
(1) The definition of minimality in Consonni et al. [3]—insofar as

its intended purpose is a canonical form—is incorrect. Their
“canonical” form does not allow for the inference of all OCDs.
It misses an important subclass of OCDs (and, respectively,
ODs), any dependency which has a common prefix on the left
and right (that is, repeated attributes at the beginning of the
dependency).
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(2) The claim of completeness of the OD discovery algorithm in
Consonni et al. [3] is incorrect, as it relies upon their incor-
rect notion of “minimal” OCDs. Their conjecture that their
algorithm is complete is incorrect; it is incomplete.

(3) Consonni et al. [3] misinterpret our set-based canonical form
for ODs [6, 7] (which is equivalent to the list-based canonical
form for ODs). This leads the authors to confuse set-based
OCDs with ODs. Their claim that our implementation has an
error arises from this, and their belief that their approach is
complete. Consonni et al. [3] conclude that their algorithm is
faster in practice, despite being significantly worse in asymp-
totic complexity. This arises in their benchmark experiments,
however, due to the fact that their algorithm is incomplete.

In Section 2, we provide basic definitions and canonical forms
for ODs. In Section 3, we analyze the completeness of OD dis-
covery. In Section 4, we discuss the experimental evaluation con-
ducted by Consonni et al. [3]. We conclude in Section 5.

2 FOUNDATIONS
2.1 Background
We use the following notational conventions.

Table 2: Notational conventions.

• Relations. R denotes a relation schema and r denotes a specific
table instance. Letters from the beginning of the alphabet, A,
B and C, denote single attributes. Additionally, t and s denote
tuples, and tA denotes the value of an attribute A in a tuple t.

• Sets. Letters from the end of the alphabet, X, Y and Z, denote
sets of attributes. Also, tX denotes the projection of a tuple t on
X. XY is shorthand for X ∪ Y. The empty set of attributes is
denoted as {}.

• Lists. X, Y and Z denote lists. The empty list of attributes is
represented as [ ]. List [A,B,C] denotes an explicit list. [A | T]
denotes a list with the head A and the tail T. XY is shorthand for
X concatenate Y. Set X denotes the set of elements in list X. Xp

denotes any arbitrary permutation of list X or set X. Given a set
of attributes X, for brevity, we state ∀i, Xi to indicate indices
[1, ..., i] that have valid ranges (i ≤ |X|).

We provide a summary of the relevant definitions. The operator
‘⪯X’ defines a weak total order over any set of tuples, where X
denotes a list of attributes. Unless otherwise specified, numbers
are ordered numerically, strings are ordered lexicographically and
dates are ordered chronologically.

Definition 2.1. [6, 7] Let X be a list of attributes. For two
tuples t and s, X ∈ R, t ⪯X s if1

– X = [ ]; or
– X = [A | T] and tA < sA; or
– X = [A | T], tA = sA, and t ⪯T s.
Let t ≺X s if t ⪯X s but s ⪯̸X t.

Next, we define order dependencies.
Definition 2.2. [3, 5–8, 10] Let X and Y be lists of attributes

over a relation schema R. Table r over R satisfies an OD X 7→ Y
(r |= X 7→ Y), read as X orders Y, if for all t, s ∈ r, t ⪯X s implies
t ⪯Y s. X 7→ Y is said to hold for R (R |= X 7→ Y) if, for each
admissible table instance r of R, table r satisfies X 7→ Y. X 7→ Y

1 By some conventions, “iff ”—“if and only if—would be used here. The intent, in
any case, is that the use of “if” defines completely the notion.

is trivial if, for all r, r |= X 7→ Y. X ↔ Y, read as X and Y are
order equivalent, if X 7→ Y and Y 7→ X.

The OD X 7→ Y means that Y values are monotonically non-
decreasing wrt X values. Thus, if a list of tuples is ordered by X,
then it is also ordered by Y, but not necessarily vice versa.

Example 2.3. Consider Table 1 in which tax is calculated as a
percentage of salary, and tax groups and subgroups are based on
salary. Tax, percentage and group are not decreasing with salary.
Furthermore, within the same group, subgroup is not decreasing
with salary. Finally, within the same year, bin increases with
salary. Thus, the following order dependencies hold in that table:
[salary] 7→ [tax], [salary] 7→ [percentage], [salary] 7→

[group, subgroup] and [year, salary] 7→ [year, bin].
Definition 2.4. [3, 5, 8, 10] Two order specifications X and Y

are order compatible, denoted as X ∼ Y, if XY ↔ YX. ODs in the
form of X ∼ Y are called order compatible dependencies (OCDs)

The empty list of attributes (i.e., [ ]) is order compatible with
any list of attributes. There is a strong relationship between ODs
and FDs. Any OD implies an FD, modulo lists and sets, however,
not vice versa.

LEMMA 2.5. [8, 10] If R |= X 7→ Y (OD), then R |= X → Y

(FD).

Also, there is a correspondence between FDs and ODs.

THEOREM 2.6. [8, 10] R |= X → Y iff X 7→ XY, for any
list X over the attributes of X and any list Y over the attributes of
Y.

ODs can be violated in two ways.

THEOREM 2.7. [8, 10] R |= X 7→ Y (OD) iff R |= X 7→ XY
(FD) and X ∼ Y (OCD).

We are now ready to explain the two sources of OD violations:
splits and swaps [8, 10]. An OD X 7→ Y can be violated in two
ways, as per Theorem 2.7.

Definition 2.8. [8, 10] A split wrt an OD X 7→ XY (FD) is a
pair of tuples s and t such that sX = tX but sY , tY .

Definition 2.9. [8, 10] A swap wrt X ∼ Y (OCD) is a pair of
tuples s and t such that s ≺X t, but t ≺Y s.

Example 2.10. In Table 1, there are three splits with respect to
the OD [position] 7→ [position, salary] because position
does not functionally determine salary. The violating tuple pairs
are t1 and t4, t2 and t5, and t3 and t6. There is a swap with respect
to [salary] ∼ [subgroup], e.g., over the pair of tuples t1 and t2.

2.2 Canonical Forms
Consonni et al. [3] use a native list-based canonical form, which
is based on decomposing an OD into a FD and an OCD [8, 10].
Recall that based on Theorem 2.7 “OD = FD + OCD", as X 7→

Y iff X 7→ XY (FD) and X ∼ Y (OCD). The authors exploit
this relationship to guide their discovery algorithm through order
compatibility. Since they use a list-based representation for ODs,
this leads to factorial complexity of OD discovery in the number
of attributes.

Expressing ODs in a natural way relies on lists of attributes, as
in the SQL order-by statement. One might well wonder whether
lists are inherently necessary. We provide a polynomial mapping
of list-based ODs into equivalent set-based canonical ODs [6, 7].
The mapping allows us to develop an OD discovery algorithm
that traverses a much smaller set-containment lattice (to identify
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candidates for ODs) rather than the list-containment lattice used
in Consonni et al. [3].

Two tuples, t and s, are equivalent over a set of attributes X
if tX = sX . An attribute set X partitions tuples into equivalence
classes [4]. We denote the equivalence class of a tuple t ∈ r over
a set X as E(tX), i.e., E(tX) = {s ∈ r | sX = tX}. A partition of
r over X is the set of equivalence classes, ΠX = {E(tX) | t ∈ r}.
For instance, in Table 1, E(t1{year}) = E(t2{year}) = E(t3{year}) =
{t1, t2, t3} and Πyear = {{t1, t2, t3}, {t4, t5, t6}}.

We now present a set-based canonical form for ODs.
Definition 2.11. [6, 7] An attribute A is a constant within each

equivalence class over X, denoted as X: [ ] 7→ A, if Xp 7→ XpA.
Furthermore, two attributes, A and B, are order-compatible within
each equivalence class wrt X, denoted as X: A ∼ B, if XpA ∼

XpB. ODs of the form of X: [ ] 7→ A and X: A ∼ B are called
(set-based) canonical ODs, and the set X is called a context.

Example 2.12. In Table 1, the attribute bin is a constant in the
context of position (posit) written as {position}: [ ] 7→ bin,
since E(t1{position}) |= [ ] 7→ bin, E(t2{position}) |= [ ] 7→

bin and E(t3{position}) |= [ ] 7→ bin. Also, there is no swap be-
tween bin and salary in the context of year, i.e., {year}: bin ∼

salary, since E(t1{year}) |= bin ∼ salary and E(t4{year}) |=

bin ∼ salary.

Based on Theorem 2.13 and Theorem 2.14, list-based ODs
in the form of FDs and OCDs, respectively, can be mapped into
equivalent set-based ODs.

THEOREM 2.13. [6, 7] R |= X 7→ XY iff ∀A ∈ Y, R |=

X: [ ] 7→ A.

THEOREM 2.14. [6, 7] R |= X ∼ Y iff ∀i, j, R |= {X1, ..,Xi−1,
Y1, ..,Yj−1}: Xi ∼ Yj .

A list-based OD can be mapped into an equivalent set of set-
based ODs via a polynomial mapping.

THEOREM 2.15. [6, 7] R |= X 7→ Y iff ∀A ∈ Y, R |=

X: [ ] 7→ A and ∀i, j, R |= {X1, .., Xi−1, Y1, .., Yj−1}: Xi ∼ Yj .

Example 2.16. The OD [AB] 7→ [CD] can be mapped to the
following equivalent canonical ODs: {A,B}: [ ] 7→ C, {A,B}: [ ] 7→
D, {}: A ∼ C, {A}: B ∼ C, {C}: A ∼ D, {A,C}: B ∼ D.

3 COMPLETENESS ANALYSIS
While the theoretical search space for FASTOD [6, 7] is O(2 |R |),
the search space for OCDDISCOVER [3] is O(|R|!), which is
much larger as it traverses a lattice of attribute permutations
(where |R| denotes the number of attributes over a relational
schema R). To mitigate the factorial complexity, the list-based
algorithm in Consonni et al. [3] uses pruning rules. We show
that, despite the authors’ claim that their approach discovers a
canonically complete set of ODs, their pruning rules lead to in-
completeness.

Section 3 in Consonni et al. [3] addresses their completeness
“proof” for their OD discovery algorithm. The authors introduce a
notion of minimality of a set of dependencies which is incorrect.
Herein, a set of dependencies is called minimal—as it is in pre-
vious work on FDs and ODs [4, 6, 7]—if all dependencies that
logically hold over a relation schema R can be inferred from this
minimal (canonical) set of dependencies.2 That is, a set of depen-
dencies M is minimal over a table r, if {X 7→ Y | M |= X 7→ Y}
is equivalent to {X 7→ Y | r |= X 7→ Y}.
2In some previous work [1], minimal dependencies M also satisfy an additional
condition that that no proper subset of M can be used to infer all dependencies.

Thus, one should be able to infer from a minimal set of depen-
dencies via the inference rules (axioms), I, all the dependencies
that are valid over the given instance of the table. That is, {X 7→ Y
| M ⊢I X 7→ Y} is equal to {X 7→ Y | r |= X 7→ Y}. Consonni et
al. [3] use the set of sound and complete OD inference rules, I,
from [9, 10].

Pruning applied by a dependency discovery algorithm, thus,
must respect minimality. This allows for the implicit discovery of
the full set of valid dependencies, and thus be deemed complete.

In [3], an attribute list is minimal if it has no embedded order
dependency (the list of attributes is the shortest possible).

Definition 3.1. [3] An attribute list X is minimal if there is no
other list of attributes X′ such that:
• X′ is smaller than X, and
• X ↔ X′

Example 3.2. [A,B,A] is not minimal as [A,B,A] ↔ [A,B].

It follows then that an OCD is minimal in [3] if and only if
there are no repeated attributes in the OCD. That is, there are no
repeated attributes within the left or within the right list of the
minimal OCD, as each is a minimal attribute list, and there is no
repeated attribute between left and right.

Definition 3.3. [3] An OCD X ∼ Y is minimal if
• X and Y are minimal attribute lists and
• X ∩ Y = ∅.

Definition 3.3 of minimality with no permitted repeated at-
tributes is at the heart of the incompleteness problem of [3], as it
does not allow for the inference of all dependencies that are valid
over the given table. Theorem 3.4 states this, that an OCD with
a common prefix between left and right (repeated attributes) can
hold over a table, while no OCD without repeated attributes holds.
Our proof of Theorem 3.4 is by offering a counter-example to the
completeness premise in [3].

THEOREM 3.4. R ̸ |= Y ∼ Z, R ̸ |= XY ∼ Z and R ̸ |= Y ∼ XZ
do not imply R ̸ |= XY ∼ XZ

Proof
It suffices to construct a table in which the OCD of the form

• XY ∼ XZ
holds, but OCDs

• Y ∼ Z,
• XY ∼ Z, and
• Y ∼ XZ

do not.
Consider Table 3 constructed over attributes A, B and C. In

Table 3, the OCD [A,B] ∼ [A,C] holds, but [B] ∼ [C], [AB] ∼
[C], and [B] ∼ [AC] do not. □

In [3], the authors only show—as is stated in Theorem 3.5
below—that OCDs of the form XY ∼ XZ can be derived from
Y ∼ Z (Theorem 3.5 via Theorem 3.10 in [3]).

THEOREM 3.5. [3] If R |= Y ∼ Z, then R |= XY ∼ XZ

Theorem 3.5 in [3] is true. The flaw in the authors’ logic is that
this theorem proves only one direction (the “if” of an intended “if
and only if”). The “only if” (not proved by the theorem) is implic-
itly assumed as true, while it assuredly is not. It follows that their
claim of canonical completeness for their definition of minimal
OCDs is incorrect (Section 3.3 in [3]). OCDs with common pre-
fixes between their left and right attribute lists are not redundant,
by Theorem 3.4. This leads to an incomplete approach for OD
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Table 3: Incompleteness of OCDDISCOVER [3].

# A B C

t1 0 0 1
t2 1 1 0
t3 2 3 2
t4 3 2 3

T������ 3.10 (C����������� �� ������� OCD � 1).
Y ∼ Z

XY ∼ XZ

P����. By the Shift theorem [21] and the fact that X↔ X by
Re�exivity (AX1):

YZ� ZY
X↔ X

XYZ� XZY

by Normalization (AX3) and Replace [21] XYXZ� XZXY. Anal-
ogously by the Shift theorem [21] starting from ZY� YZ we ob-
tain XZXY� XYXZ. Thus XYXZ↔ XZXY, i.e., XY ∼ XZ ⇤

The following theorem proves that attribute lists with repeated
attributes at the end are also redundant:

T������ 3.11 (C����������� �� ������� OCD � 2).
X ∼ Y

XZ ∼ Y
X ∼ YZ

XZ ∼ YZ

P����. (1) using XY ↔ YX and XZY ↔ YXZ, by Nor-
malization (AX3) XZY ↔ XZYZ and by Replace [21]
YXZ↔ XZYZ;

(2) using XY ↔ YX and XYZ ↔ YZX, by Normalization
(AX3) YZX↔ YZXZ, by Replace [21] YXZ↔ YZX and
by Transitivity (AX4) YXZ↔ YZXZ;

By Transitivity (AX4) YXZ ↔ XZYZ and YXZ ↔ YZXZ
imply XZYZ↔ YZXZ, i.e., XZ ∼ YZ. ⇤

Finally, the following theorem proves that attribute lists with
repeated attributes in the middle are redundant:

T������ 3.12 (C����������� �� ������� OCD � 3).
X ∼M

XY ∼M
X ∼MY

XY ∼MN

XY ∼MYN
P����.

(1) from XY ∼ MN, by Normalization (AX3) XYMYN ↔
MNXY;

(2) from XY ∼M and X ∼MY, using X ∼M and Replace [21]
we get MYX↔ XYM and MXY↔MYX↔ XYM;

(3) from (2), by the Shift theorem [21] with MY↔ MY and
MNXY↔ XYMMYN we get MYMNXY↔MYXYMMYN;

(4) by Normalization (AX3) MYMNXY↔MYNXY;
(5) from MYXYMMYN, using MYX ↔ XYM and Normal-

ization (AX3) we get XYMYMYN and �nally XYMYN;
From points (3), (4) and (5) we �nally get MYNXY↔ XYMYN,
i.e., XY ∼MYN. ⇤

4 THE OCDDISCOVER ALGORITHM
We present now the details of our algorithm, called �����������,
by �rst examining its search strategy to cover all the possible
combinations and then presenting an implementation in pseudo-
code.

AA BB CC

A � CA � CA � BA � B B � CB � C

B � CAB � CABA � CBA � CA � CBA � CBAB � CAB � CA � BCA � BCAC � BAC � B

� = 2� = 2

� = 0� = 0

� = 1� = 1

� = 3� = 3

Figure 1: Permutation tree for a table withn = 3 attributes.

4.1 Column Reduction
Given that the search space grows with the number of columns,
we start our discovery algorithm focusing on the columns show-
ing special properties and we perform two operations: (a) the re-
moval of constant columns; (b) the reduction of order-equivalent
columns. The dependencies provided by these operations are an
integral part of the results provided by our algorithm.

Removal of constant columns. Constant columns generate
a huge amount of ODs; in fact, over an instance r a constant
column C is ordered by any other attribute list X.1 Thus, we
remove all constant columns and we collect the corresponding
dependencies.

Reduction of order-equivalent columns. Order-equivalent
columns asA↔ B describe a relation in which both the directions
of the order dependency hold. By the Replace theorem (Theorem
6, [21]), we can replace any order dependency where A appears
with another dependency with any instance of A replaced with
B, that is:

XAY�MAN⇔ XBY�MBN

We check any combination of order-equivalent dependencies,
i.e. for all A,B ∈ U we verify the validity of A � B and B � A,
and we build the equivalence classes of columns using the Tarjan
algorithm [25].

We choose a representative from each of these equivalence
classes; we then remove all other columns. We store this infor-
mation to later recover the redundant dependencies.

4.2 Search Tree
We use a breadth-�rst search strategy for identifying OCD re-
lations in r ; in this way, shorter minimal dependencies are dis-
covered before longer ones. At the �rst level, we consider the
set of all pairs of single attributes. Given that OCDs are com-
mutative, we build this set by enumerating all the attributes
with A1,A2, . . . ,An and taking all the pairs (Ai ,Aj) such that{(Ai ,Aj) � Ai ,Aj ∈ U , i < j}.

Figure 1 shows the tree T of generated candidates for a relation
r with attributes U = {A,B,C} where all possible candidates are
generated.

Each OCD candidate X ∼ Y is checked for order compatibility;
we are then confronted with two possibilities:

1If C is constant column, the following property holds for any tuple p, q in any
instance r of R: pX ≤ qX ⇒ pC = qC , where the second part of the implication is
always true by de�nition of constant column.

���

Figure 1: Lattice permutation tree for OCDDISCOVER [3].

discovery, as the recovery of the full set of valid dependencies is
not possible.

Details of the OD discovery algorithm, OCDDISCOVER, by
Consonni et al. [3] are presented in their Section 4. Let U be a set
of attributes over a relation schema R. In the first level of the lat-
tice, they generate candidates of the form A ∼ B, where A,B ∈ U

and A , B. (An OCD B ∼ A is not generated as it is equivalent to
A ∼ B.) At each level of the lattice (Fig. 1), if the candidate X ∼ Y
is order compatible, they generate dependencies for the next level
of the lattice. For each attribute not already present in the OCD, for
each attribute A ∈ U \ {X ∪Y}, they add it to the right of each at-
tribute list; i.e., XA ∼ Y and X ∼ YA. Thus, important OCDs with
repeated attributes in a common prefix are never considered (as is
consistent with their incorrect definition of minimality for OCDs).
For example, an OCD [year, month] ∼ [year, week] would be
missed. As a consequence, the authors do not discover ODs with
repeated attributes, such as [year, salary] 7→ [year, bin] (recall
Table 1).

In contrast, our FASTOD algorithm [6, 7] is complete for OD
discovery. It does not miss dependencies with common prefixes.
This is because the algorithm considers as candidates dependen-
cies of the set-based form: OCD {X}: A ∼ B. This is built into
the context of the set-based notation used in [6, 7], and cannot be
missed when using this representation (see Theorem 2.14). Thus,
dependencies with common prefixes are considered.

4 EXPERIMENTAL ANALYSIS
We demonstrate that the experimental analysis in Consonni et
al. [3] that compares their OD discovery algorithm, OCDDIS-
COVER, with ours, FASTOD [6, 7], is incorrect. The authors
misinterpret the set-based canonical representation for ODs as
introduced in [6, 7] and as used in FASTOD. They conflate OCDs
and ODs as we report them when evaluating the results. In [6, 7],
we quantify the numbers of found FDs and OCDs. In [3], they
incorrectly report these as the FDs and ODs, respectively, that
we found. This occurs in their Table 6, where, for instance, they

Table 4: Correctness of implementation for FASTOD [6].

# A B C D

t1 1 3 1 1
t2 2 3 3 2
t3 2 3 2 2
t4 2 5 2 2
t5 3 1 2 3
t6 4 4 4 2
t7 4 5 3 2

report 400 ODs and 89,571 FDs found by FASTOD, whereas this
should be 400 OCDs and 89,571 FDs, respectively.

As a consequence of this misunderstanding of the set-based
canonical representation for ODs [6, 7], the authors in [3] claim
that the implementation of FASTOD finds ODs that are not present
in the data. As an example of this, they provide the OD [B] 7→
[A,C] over Table 4 [3]. However, the FASTOD algorithm imple-
mentation in question finds the following ODs with respect to
Table 4, where clearly the OD [B] 7→ [A,C] is not present.

(1) OCD {D}: A ∼ C
(2) OCD {C}: A ∼ D
(3) FD {A}:[ ] 7→ D
(4) OCD {B}: A ∼ D
(5) OCD {B}: C ∼ D
(6) OCD {B}: A ∼ C
(7) FD {B,C}:[ ] 7→ D
(8) FD {B,C}:[ ] 7→ A
(9) FD {A,B}:[ ] 7→ C

(10) OCD {C,D}: A ∼ B

The authors confuse the OCD {B}: A ∼ C with the OD
[B] 7→ [A,C]. Consequently, they falsely assert that the reason
the number of ODs found by OCDDISCOVER and FASTOD
differ is due to an error in the implementation of FASTOD that
we provided them.3 The real reason that the number of reported
dependencies differ, however, is, that OCDDISCOVER [3] is in-
complete. The claim that they outperform the state-of-art despite
a much worse asymptotic complexity, when tested in practice on
real datasets, is invalid.

The authors in Consonni et al. [3] also state that FASTOD
considers all columns to be of type string, while their code also
considers real and integer numbers. While a minor point, we
wish to clarify that the implementation we sent the authors does
discover ODs over data types including real and integer numbers.
The dependencies 1–10 reported in Table 4 remain the same,
regardless of using numerical or string data type, given that the
values are in the range of 1 to 5.

5 CONCLUSIONS
In this article, we have conducted a detailed analysis of the cor-
rectness of the results in the recent article by Consonni et al. [3]
concerning the order dependency discovery problem. We have
shown that, for the main claimed results related to the OD discov-
ery problem, there are fundamental errors and omissions in the
proof or experiments.

3While Consonni et al. [3] state that they were not able to isolate and resolve
the root cause of what they felt was incorrect behavior in the implementation of
FASTOD (which we had provided to them at their request for “ensuring fairness and
reproducibility”), they never contacted us to help resolve it.
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