
Efficient Continuous Multi-Query Processing
over Graph Streams

Lefteris Zervakis§†, Vinay Setty§‡, Christos Tryfonopoulos†, Katja Hose§
§ Aalborg University, Aalborg, Denmark

† University of the Peloponnese, Tripolis, Greece
‡ University of Stavanger, Stavanger, Norway

{lefteris,vinay,khose}@cs.aau.dk,{zervakis,trifon}@uop.gr,vsetty@acm.org

ABSTRACT
Graphs are ubiquitous and ever-present data structures that have a
wide range of applications involving social networks, knowledge
bases and biological interactions. The evolution of a graph in such
scenarios can yield important insights about the nature and ac-
tivities of the underlying network, which can then be utilized for
applications such as news dissemination, network monitoring, and
content curation. Capturing the continuous evolution of a graph
can be achieved by long-standing sub-graph queries. Although,
for many applications this can only be achieved by a set of quer-
ies, state-of-the-art approaches focus on a single query scenario.
In this paper, we therefore introduce the notion of continuous
multi-query processing over graph streams and discuss its appli-
cation to a number of use cases. To this end, we designed and
developed a novel algorithmic solution for efficient multi-query
evaluation against a stream of graph updates and experimentally
demonstrated its applicability. Our results against two baseline
approaches using real-world, as well as synthetic datasets, confirm
a two orders of magnitude improvement of the proposed solution.

1 INTRODUCTION
In recent years, graphs have emerged as prevalent data structures
to model information networks in several domains such as social
networks, knowledge bases, communication networks, biological
networks and the World Wide Web. These graphs are massive in
scale and evolve constantly due to frequent updates. For example,
according to its latest quarterly update, Facebook has over 1.52B
daily active users who generate over 500K posts/comments and
four million likes every minute resulting in massive updates to the
Facebook social graph.

To gain meaningful and up-to-date insights in such frequently
updated graphs, it is essential to be able to monitor and detect
continuous patterns of interest. There are several applications from
a variety of domains that may benefit from such monitoring. In so-
cial networks, such applications may involve targeted advertising,
spam detection [3, 40], and fake news propagation monitoring
based on specific patterns [34]. Similarly, other applications like
(i) protein interaction patterns in biological networks [37, 45],
(ii) traffic monitoring in transportation networks, (iii) attack de-
tection (e.g., distributed denial of service attacks in computer
networks), (iv) question answering in knowledge graphs [2], and
(v) reasoning over RDF graphs may also benefit from such pattern
detection.

For the applications mentioned above it is necessary to ex-
press the required patterns as continuous sub-graph queries over
© 2020 Copyright held by the owner/author(s). Published in Proceedings of the
23rd International Conference on Extending Database Technology (EDBT), March
30-April 2, 2020, ISBN 978-3-89318-083-7 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

(a) (b)
Figure 1: Spam detection: Users sharing and liking content
with links to flagged domains. (a) A clique of users who know
each other, and (b) Users sharing the same IP address.

(one or many) streams of graph updates and appropriately notify
the subscribed users for any patterns that match their subscrip-
tion. Detecting these query patterns is fundamentally a sub-graph
isomorphism problem which is known to be NP-complete due
to the exponential search space resulting from all possible sub-
graphs [18, 33]. The typical solution to address this issue is to
pre-materialize the necessary sub-graph views for the queries and
perform exploratory joins [36]; an expensive operation even for a
single query in a static setting.

These applications deal with graph streams in such a setup
that is often essential to be able to support hundreds or thou-
sands of continuous queries simultaneously. This leads to several
challenges that require: (i) quickly detecting the affected queries
for each update, (ii) maintaining a large number of materialized
views, and (iii) avoiding the expensive join and explore approach
for large sets of queries.

To better illustrate the remarks above, consider the application
of spam detection in social networks. Fig. 1 shows an example
of two graph patterns that may emerge from malicious user activ-
ities, i.e., users posting links to domains that have been flagged
as fraudulent. Notice that malicious behavior could be caused
either because a group of users that know each other share and
like each other’s posts containing content from a flagged domain
(Fig. 1(a)), or because the group of users shared the same flagged
post several times from the same IP (Fig. 1(b)). Even though
these two queries are fundamentally different and produce differ-
ent matching patterns, they share a common sub-graph pattern,

i.e., “User1
shares
−−−−−→Post1

links
−−−−→Domain1”. If these two queries are

evaluated independently, all the computations for processing the
common pattern have to be executed twice. However, by identify-
ing common patterns in query sets, we can amortize the costs of
processing and answering them.

One simple approach to avoid processing all the (continuous)
queries upon receiving a graph update is to index the query graphs
using an inverted-index at the granularity of edges. While this

Series ISSN: 2367-2005 13 10.5441/002/edbt.2020.03

https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2020.03

approach may help us quickly detect all the affected queries for a
given graph update, we still need to perform several exploratory
joins to answer the affected queries. For example, in Fig. 1, we
would need to join and explore the edges matching the pattern

“User1
Shares
−−−−−→Post1 and Post1

Links
−−−−→Domain1” upon each update

to process the two queries. On the contrary, if we first identify
the maximal sub-graph patterns shared among the queries instead,
we can minimize the number of operations necessary to answer
the queries. Therefore, a solution which groups queries based
on their shared patterns would be expected to deliver significant
performance gains. To the best of our knowledge, none of the
existing works provide a solution that exploits common patterns
for continuous multi-query answering.

In this paper, we address this gap by proposing a novel algorith-
mic solution, coined TRIC (TRIe-based Clustering) to index and
cluster continuous graph queries. In TRIC, we first decompose
queries into a set of directed paths such that each vertex in the
query graph pattern belongs to at least one path (path covering
problem [11]). However, obtaining such paths leads to redundant
query edges and vertices in the paths; this is undesirable since it
affects the performance of the query processing. Therefore, we
are interested in finding paths which are shared among different
queries, with minimal duplication of vertices. The paths obtained
are then indexed using ‘tries’ that allow us to minimize query
answering time by (i) quickly identifying the affected queries, (ii)
sharing materialized views between common patterns, and (iii)
efficiently ordering the joins between materialized views affected
from the update. To this end, our contributions are:
• We formalize the problem of continuous multi-query an-

swering over graph streams (Section 3).
• We propose a novel query graph clustering algorithm that

is able to efficiently handle large numbers of continuous
graph queries by resorting on (i) the decomposition of
continuous query graphs to minimum covering paths and
(ii) the utilization of tries for capturing the common parts
of those paths (Section 4).
• Since no prior work in the literature has considered con-

tinuous multi-query answering in the context of graph
streams, we designed and developed two algorithmic so-
lutions that utilize inverted indexes for the graph query
answering. Additionally, we deploy and extend Neo4j [43],
a well-established graph database solution, to support our
proposed paradigm. To this end, the proposed solutions
will serve as baselines approaches during the experimental
evaluation (Section 5).
• We experimentally evaluate the proposed solution using

three different datasets from social networks, transporta-
tion, and biology domains, and compare the performance
against the three baselines. In this context, we show that
our solution can achieve up to two orders of magnitude
improvement in query processing time (Section 6).

2 RELATED WORK
Structural graph pattern search using graph isomorphism has been
studied in the literature before [18, 33]. In [17], the authors pro-
pose a solution that aims at reducing the search space for a single
query graph. The solution identifies candidate regions in the graph
that can contain query embeddings, while it is coupled with a
neighborhood equivalence locating strategy to generate enumer-
ations. In the same spirit [30] aims at reducing the search space
in the graph by exploiting syntactic similarities present on vertex

relationships. [31] considers the sub-graph isomorphism problem
when multiple queries are answered simultaneously. However,
these techniques are designed for static graphs and are not suitable
for processing continuous graph queries on evolving graphs.

Continuous sub-graph matching has been considered in [41] but
the authors assume a static set of sub-graphs to be matched against
update events, use approximate methods that yield false positives,
and small (evolving) graphs. An extension to this work considers
the problem of uncertain graph streams [7], over wireless sensor
networks and PPIs. The work in [15] considers a setup of con-
tinuous graph pattern matching over knowledge graph streams.
The proposed solution utilizes finite automatons to represent and
answer the continuous queries. However, this approach can sup-
port a handful of queries, since, each query is evaluated separately,
while, it generates false positives due to the adopted sliding win-
dow technique. These solutions are not suitable for answering
large number of continuous queries on graphs with high update
rates.

There are a few publish/subscribe solutions on ontology graphs
proposed in [29, 42], but they are limited to the RDF data model.
Distributed pub/sub middleware for graphs has recently been
proposed in [5], however, the main focus is on node constraints
(attributes) while ignoring the graph structure.

The work in [9] provides an exact subgraph search algorithm
that exploits the temporal characteristics of representative quer-
ies for online news or social media exploration. The algorithm
exploits the structural and semantic characteristics of the graph
through a specialized data structure. Where the authors consider
continuous query answering with graph patterns over dynamic
multi-relation graphs. In [36] the authors perform subgraph match-
ing over a billion node graph by proposing graph exploration
methods based on cloud technologies. While the aforementioned
works are similar to the query evaluation scenario, the emphasis is
on efficient search mechanisms, rather than continuous answering
over streaming graphs.

In the graph streams domain; [28] proposes algorithms to iden-
tify correlated graphs from a graph stream. This differs from our
setup since a sliding window that covers a number of batches of
data is used, and the main focus is set on identifying subgraphs
with high Pearson correlation coefficients. In [14], the authors pro-
pose continuous pattern detection in graph streams with snapshot
isolation. However, this solution considers only isolated queries
(i.e., one query at a time) and the patterns detected are approximate.
Finally, in [13] the authors propose a solution over a distributed
computational environment, while the solution operates under the
assumption of a static and limited query set.

Finally, some of the techniques used for increasing the effi-
ciency of the proposed algorithm employ standard data indexing
practices from a variety of domains, although the assumed setup
and target applications differ significantly: (i) the representation of
materialized views bears similarities with techniques from central-
ized RDF query processing [24, 32, 39] and statement/property
tables as in Jena1 and Jena2 [44], (ii) the problem of maintaining
the materialized views of (graph) queries relates to incremen-
tal view maintenance [4, 8, 25, 47] in database and warehousing
environments, (iii) while query decomposition and tree-based clus-
tering is typical in a variety of domains and applications [31, 38].

In general, solutions like the proposed one on continuous sub-
graph pattern matching can be applied in a wide range of do-
mains such as social networks, protein-protein interactions (PPI),
cyber-security, knowledge graphs, road network monitoring, and
co-authorship graphs. Social network graphs emerge naturally

14

Update stream S
u1 = (checksIn = (P1, plc))
u2 = (checksIn = (P2, plc))
u3 = (checksIn = (P3, plc))

(a)

knows

checksIn

u1
checksIn =(P1 , plc)

u2
checksIn =(P2, plc)

u3
checksIn =(P3, plc)

G G' G'' G'''

kn
ow

s

knows
P1 P2

P3

kn
ow

s

knows

checksIn

P1 P2

P3 plc

kn
ow

s

knows

ch
ec
ks
InchecksIn

P1 P2

P3 plc

kn
ow

s

ch
ec
ks
InchecksIn

P1 P2

P3 plc

(b)
Figure 2: (a) An update stream S and (b) the evolution of graph G after inserting ui ∈ S .

from the evolving interactions and activities of the users, while
applications such as advertising, recommendation systems, and
information discovery aim at exploiting these interactions. So-
cial network applications may benefit from continuous pattern
matching, and can leverage on already observed patterns in con-
tent propagation [21, 22, 46] and influential user discovery [6, 9].
PPIs are data repositories [35, 37] that index proteins (graph ver-
tices) and the interactions (graph edges) between them. PPI graphs
are constantly updated due to additions and invalidations of in-
teractions, while scientists manually query PPIs to discover new
patterns. In such scenarios, subgraph matching could enhance
information discovery through appropriate graphical user inter-
face tools. In cyber-security, subgraph matching could be applied
for network motoring, denial of service, and exfiltration attacks
[20], while subgraph matching over road networks could capture
traffic events, and taxi route pricing. Finally, in the domain of co-
authorship graphs, users may utilize continuous query evaluation
in services similar to Google Scholar Alerts, when requesting to
be notified about newly published content.

3 DATA MODEL AND PROBLEM
DEFINITION

In this section we outline the data (Section 3.1) and query model
(Section 3.2) that our approach builds upon.

3.1 Graph Model
In this paper, we use attribute graphs [10] (Definition 3.1), as our
data model, as they are used natively in a wide variety of applica-
tions, such as social network graphs, traffic network graphs, and
citation graphs. Datasets in other data models can be mapped to
attribute graphs in a straightforward manner so that our approach
can be applied to them as well.

Definition 3.1. An attribute graph G is defined as a directed
labeled multigraph:

G = (V ,E, lV , lE , ΣV , ΣE)

whereV is the set of vertices and E the set of edges. An edge e ∈ E
is an ordered pair of vertices e : (s, t), where s, t ∈ V represent
source and target vertices. lV : V → ΣV and lE : E → ΣE are
labeling functions assigning labels to vertices and edges from the
label sets ΣV and ΣE .

For ease of presentation, we denote an edge e as e = (s, t),
where e, s and t are the labels of the edge(lE (e)), source vertex
(lV (s)) and target vertex (lV (t)) respectively.

As our goal is to facilitate efficient continuous multi-query
processing over graph streams, we also provide formal definitions
for updates and graph streams (Definitions 3.2 and 3.3).

Definition 3.2. An update ut on graph G is defined as an ad-
dition (e) of an edge e at time t . An addition leads to new edges
between vertices and possibly the creation of new vertices.

Figure 3: Example query graph pattern.

Definition 3.3. A graph stream S = (u1,u2, . . . ,ut) of graph G
is an ordered sequence of updates.

Fig. 2(a) presents an update stream S consisting of three graph
updates u1, u2, and u3 generated from social network events.
While, Fig. 2 (b) shows the initial state of graphG and its evolution
after inserting sequentially the three updates.

3.2 Query Model
For our query model we assume that users (or services operat-
ing on their behalf) are interested to learn when certain patterns
emerge in an evolving graph. Definition 3.4 formalizes query
graph patterns that define structural and attribute constraints on
graphs.

Definition 3.4. A query graph pattern Qi is defined as a di-
rected labeled multigraph:

Qi = (VQi ,EQi ,vars, lV , lE , ΣV , ΣE)

where VQi is a set of vertices, EQi a set of edges, and vars a set
of variables. lV : V → {ΣV ∪vars} and lE : E → ΣE are labeling
functions assigning labels (and variables) to vertices and edges.

Let us consider an example where a user wants to be notified
when his friends visit places nearby. Fig. 3 shows the correspond-
ing query graph pattern that will result in a user notification when
two people check in at the same place/location in Rio.

Based on the above definitions, let us now define the problem
of multi-query processing over graph streams.

Problem Definition. Given a set of query graph patterns QDB =

{Q1,Q2, . . . ,Qk }, an initial attribute graph G, and a graph stream
S with continuous updates ut ∈ S , the problem of multi-query
processing over graph streams consists of continuously identify-
ing all satisfied query graph patterns Qi ∈ QDB when applying
incoming updates.

Query Set and Graph Modifications. A set of query graph pat-
ternsQDB is subject to modifications (i.e., additions and deletions).
In this work, we focus on streamlining the query indexing phase,
while developing techniques that allow processing each incom-
ing query graph pattern separately, thus supporting continuous
additions in QDB . In the same manner, a graph G is subject to
edge additions and deletions, our main objective is to efficiently
determine the queries satisfied by an edge addition. The proposed
model does not require indexing the entire graph G and retains
solely the necessary parts of G for the query answering. To this

15

Q3

Q4Q2

Q1

?f1
hasMod posted

pst1

pst2

?p1

posted

reply

?com1

has
Mo

d

?f2

?f1 ?p1 posted
pst1

containedIn

hasCreator

com1

hasMod
?f1 ?p1

?f1 ?p1
posted

pst1

containedIn

hasMod

(a)

Query ID Set of Covering Paths

Q1
P1 = {?var

hasMod
−−−−−−−−−→?var

posted
−−−−−−−−→ “pst1”}

P2 = {?var
hasMod
−−−−−−−−−→?var

posted
−−−−−−−−→ “pst2”}

P3 = {?var
r eply
−−−−−−→ “pst2”}

Q2 P1 = {?var
hasMod
−−−−−−−−−→?var }

Q3
P1 = {“com1”

hasCreator
−−−−−−−−−−−−−→?var

posted
−−−−−−−−→

“pst1”
containedIn
−−−−−−−−−−−−−−→?var }

Q4
P1 = {?var

hasMod
−−−−−−−−−→?var

posted
−−−−−−−−→ “pst1”

containedIn
−−−−−−−−−−−−−−→?var }

(b)

Figure 4: (a) Four query graph patterns that capture events generated inside a social network and (b) their covering paths.

end, we do not further discuss deletions on QDB and G, as we
focus on providing high performance query answering algorithms.

4 TRIE-BASED CLUSTERING
To solve the problem defined in the previous section, we propose
TRIC (TRIe-based Clustering). As motivated in Section 1, the key
idea behind TRIC lies in the fact that query graph patterns overlap
in their structural and attribute restrictions. After identifying and
indexing these shared characteristics (Section 4.1), they can be
exploited to batch-answer the indexed query set and in this way
reduce query response time (Section 4.2).

4.1 Query Indexing Phase
TRIC indexes each query graph pattern Qi by applying the follow-
ing two steps:
1. Transforming the original query graph pattern Qi into a set

of path conjuncts, that cover all vertices and edges of Qi , and
when combined can effectively re-compose Qi .

2. Indexing all paths in a trie-based structure along with unique
query identifiers, while clustering all paths of all indexed
queries by exploiting commonalities among them.

In the following, we present each step of the query indexing
phase of Algorithm TRIC, give details about the data structures
utilized and provide its pseudocode (Fig. 5).

Step 1 : Extracting the Covering Paths. In the first step of the
query indexing process, Algorithm TRIC decomposes a query
graph pattern Qi and extracts a set of paths CP(Qi) (Fig. 5, line 1).
This set of paths, covers all vertices V ∈ Qi and edges E ∈ Qi . At
first, we give the definition of a path and subsequently define and
discuss the covering path set problem.

Definition 4.1. A path Pi ∈ Qi is defined as a list of vertices
Pi = {v1

e1
−−→ v2

e2
−−→ . . .vk

ek
−−→ vk+1} where vi ∈ Qi , such

that two sequential vertices vi ,vi+1 ∈ Pi have exactly one edge
ei ∈ Qi connecting them, i.e., ek = (vk ,vk+1).

Definition 4.2. The covering paths [1] CP of a query graph Qi
is defined as a set of paths CP(Qi) = {P1, P2, . . . , Pk } that cover
all vertices and edges ofQi . In more detail, we are interested in the
least number of paths while ensuring that for every vertex vi ∈ Qi
there is at least one path Pj that contains vi , i.e., ∀i∃j : vi ∈ Pj ,
vi ∈ Qi . In the same manner, for every edge ei ∈ Qi there is at
least one path Pj that contains ei , i.e., ∀i∃j : ei ∈ Pj .
Obtaining the Set of Covering Paths. The problem of obtaining
a set of paths that covers all vertices and edges is a graph opti-
mization problem that has been studied in literature [1, 27]. In our
approach, we choose to solve the problem by applying a greedy

Input: Query Qi = (VQi , EQi , vars, lV , lE , ΣV , ΣE)
Output: QDB ← QDB ∪ Qi

1 Paths← CP(Qi); // Obtain the set of covering paths

2 foreach Pi ∈ Paths do // For each covering path Pi of Qi
3 foreach trie Ti with root(Ti) = e1 : e1 ∈ Pi do
4 depthFirstSearch(Ti); // Traverse trie in DFS

// If there exists a trie that can store Pi
5 if ∃{n0 → . . . ni → . . . nk } ⊆ Pi then

// Store the trie path positions

6 positions← {n0 → . . . ni → . . . nk };

// If all edges ei ∈ Pi cannot be indexed, create

additional trie nodes to index them

7 if positions ∩ Pi , ∅ then
8 create_nodes(Pi \ positions);

9 last(positions) ← id (Qi); // Store the query id

// Keep a reference to the last trie node

10 pathPositions→ pathPositions ∪ last(positions);
// Store tries Ti under which, edge ei is indexed

11 foreach ei ∈ Pi do
12 edgeInd[ei] ← Ti ;

// Store the nodes that Qi was indexed under

13 queryInd[id (Qi)] ← pathPositions

S
te
p
1

S
te
p
2

Figure 5: Query indexing phase of Algorithm TRIC.

algorithm, as follows: For all vertices vi in the query graph Qi
execute a depth-first walk until a leaf vertex (no outgoing edge)
of the graph is reached, or there is no new vertex to visit. Subse-
quently, repeat this step until all vertices and edges of the query
graph Qi have been visited at least once and a list of paths has
been obtained. Finally, for each path in the obtained list, check if
it is a sub-path of an already discovered path, and remove it from
the list of covering paths. The end result of this procedure yields
the set of covering paths.

Example 4.3. In Fig. 4(a) we present four query graph patterns.
These query graph patterns capture activities of users inside a
social network. By applying Definition 4.2 on the four query
graph patterns presented, Algorithm TRIC extracts four sets of
covering paths, presented in Fig. 4(b).

Obtaining a set of paths serves two purposes: (a) it gives a
less complex representation of the query graph that is easier to
manage, index and cluster, as well as (b) it provides a streamlined
approach on how to perform the materialization of the subgraphs
that match a query graph pattern, i.e., the query answering during
the evolution of the graph.

Materialization. Each edge ei that is present in the query set
has a materialized view that corresponds to its matV [ei]. The
materialized view of ei stores all the updates ui that contain ei . In
order to obtain the subgraphs that satisfy a query graph pattern Qi
all edges ei ∈ Qi must have a non-empty materialized view (i.e.,
matV , ∅) and the materialized views should be joined as defined
by the query graph pattern.

16

Figure 6: Data structures utilized by Algorithm TRIC to cluster query graph patterns.
Q1

=
matV[hasMod = (?var, ?var)]

?var ?var

matV[posted = (?var, pst1)]

?var pst1

f1 p1
f2 p1 p2 pst1

p1 pst1

matV[hasMod = (?var, ?var)]

?var ?var

f1 p1
f2 p1

matV[posted = (?var, pst2)]

?var pst2

p1 pst2 =

P1 :

?var ?var pst1

matV[hasMod = (?var, ?var),
posted = (?var, pst1)]

f2 p1 pst1
f1 p1 pst1

P2 :

matV[hasMod = (?var, ?var),
posted = (?var, pst2)]

?var ?var pst2

f2 p1 pst2
f1 p1 pst2

matV[reply = (?var, pst2)]

?var pst2

com1 pst2P3 :

Figure 7: Materialized views of Q1.

In essence, the query graph pattern determines the execution
plan of the query. However, given that a query pattern in itself is a
graph there is a high number of possible execution plans available.
A path Pi = {v1

e1
−−→ v2

e2
−−→ . . .vk } serves as a model that

defines the order in which the materialization should be performed.
Thus, starting from the source vertex v1 ∈ Pi and joining all the
materialized views from v1 to the leaf vertex vk ∈ Pi : |P | = k
yields all the subgraphs that satisfy the path Pi . After all paths Pi
that belong inQi have been satisfied, a final join operation must be
performed between all the paths. This join operation will produce
the subgraphs that satisfy the query graph Qi . To achieve this path
joining set, additional information is kept about the intersection
of the paths Pi ∈ Qi . The intersection of two paths Pi and Pj are
their common vertices.

Example 4.4. Fig. 7 presents some possible materialized views
that correspond to the covering paths of query graph Q1 (Fig. 4
(b)). In order to locate all subgraphs that satisfy the structural
and attribute restrictions posed by paths P1, P2 and P3 their ma-
terialized views should be calculated. More specifically, path

P1 = {?var
hasMod
−−−−−−−→?var

posted
−−−−−−→ “pst1”}, is formulated by two

edges, edges hasMod = (?var , ?var) and posted = (?var ,pst1),
thus, their materialized views matV [hasMod = (?var , ?var)] and
matV [posted = (?var ,pst1)] must be joined. These two views
contains all updates ui that correspond to them, while the re-
sult of their join operation will be a new materialized view
matV [hasMod = (?var , ?var),posted = (?var ,pst1)] as shown
in Fig. 7. In a similar manner, the subgraphs that satisfy path P2
are calculated, while P3 that is formulated by a single edge does
not require any join operations. Finally, in order to calculate the
subgraphs that match Q1 all materialized views that correspond to
paths P1, P2 and P3 must be joined.

Step 2 : Indexing the Paths. Algorithm TRIC proceeds into in-
dexing all the paths, extracted in Step 1, into a trie-based data
structure. For each path Pi ∈ CP(Qi), TRIC examines the forest
for trie roots that can index the first edge e1 ∈ Pi (Fig. 5, lines
3 − 6). To access the trie roots, TRIC utilizes a hash table (namely

rootInd) that indexes the values of the root-nodes (keys) and the
references to the root nodes (values). If such trie Ti is located, Ti
is traversed in a DFS manner to determine in which sub-trie path
Pi can be indexed (Fig. 5, line 4). Thus, TRIC traverses the forest
to locate an existing trie-path {n1 → . . .ni → . . .nk } that can
index the ordered set of edges {e1, . . . , ek } ∈ Pi . If the discovered
trie-path can index Pi partially (Fig. 5, line 7), TRIC proceeds into
creating a set of new nodes under nk that can index the remaining
edges (Fig. 5, line 8). Finally, the algorithm stores the identifier of
Qi at the last node of the trie path (Fig. 5, line 9).

Algorithm TRIC makes use of two additional data structures,
namely edgeInd and queryInd. The former data structure is a hash
table that stores each edge ei ∈ Pi (key) and a collection of trie
roots Ti which index ei as the hash table’s value (Fig. 5, lines
11 − 12). Finally, TRIC utilizes a matrix queryInd that indexes
the query identifier alongside the set of nodes under which its
covering paths Pi ∈ CP(Qi) was indexed (Fig. 5, line 13).

Example 4.5. Fig. 6 presents an example of rootInd, queryInd
and edgeInd of Algorithm TRIC when indexing the set of covering
paths of Fig. 4 (b). Notice that TRIC indexes paths P1, P2 ∈ Q1,
path P1 ∈ Q2 and path P1 ∈ Q4 under the same trie T1, thus,
clustering together their common structural restrictions (all the
aforementioned paths) and their attribute restrictions. Additionally,
note that the queryInd data structure keeps references to the last
node where each path Pi ∈ Qi is stored, e.g. for Q1 it keeps
a set of node positions {&n2,&n4,&n5} that correspond to its
original paths P1, P2 and P3 respectively. Finally, edgeInd stores
all the unique edges present in the path set of Fig. 4 (b), with
references to the trie roots under which they are indexed, e.g.
edge posted = (?var ,pst1) that is present in P1 ∈ Q1, P1 ∈ Q3
and P1 ∈ Q4, is indexed under both tries T1 and T3, thus this
information is stored in set {&T1,&T3}.

The time complexity of Algorithm TRIC when indexing a path
Pi , where |Pi | = M edges and B the branching factor of the forest,
is O(M ∗ B), since TRIC uses a DFS strategy, with the maximum
depth bound by the number of edges. Thus, for a new query graph
pattern Qi with N covering paths, the total time complexity is
O(N ∗M ∗ B). Finally, the space complexity of Algorithm TRIC
when indexing a query Qi is O(N ∗M), where M is the number
of edges in a path and N the cardinality of Qi ’s covering paths.

Variable Handling. A query graph pattern Qi contains vertices
that can either be literals (specific entities in the graph) identified
by their label, or variables denoted as “?var”. This approach allevi-
ates restrictions posed by naming conventions and thus leverages
on the common structural constraints of paths.

However, by substituting the variable vertices with the generic
“?var” requires to keep information about the joining order of each
edge ei ∈ Pi , as well as, how each Pi ∈ CP(Qi) intersects with the

17

Input: Update ui = (ei) : ei = (s, t)
Output: Locate matched queries

1 affectedTries← edgeInd[ei]; // Get affected tries

2 foreach Ti ∈ affectedTries do
3 foreach node ni ∈ Ti do // Traverse Ti in DFS
4 if edge(nc) = ei then // If current node indexes ei
5 fndPos← n ; // Store the position

6 break ; // Terminate the traversal

// Update matVs of f ndPos and its children

7 affectedQueries← Trie Traversal & Materialization (fndPos);

8 foreach query Qi ∈ affectedQueries do
9 results← ∅;

10 foreach Pi ∈ Qi do // For the covering paths of Qi
11 results← results 1 matV [Pi];

12 if results , ∅ then
13

S
te
p
1

mark_Matched(Qi);

Figure 8: Query answering phase (Step 1) of Algo-
rithm TRIC.

rest of the paths inCP(Qi). In order to calculate the subgraphs that
satisfy each covering path Pi ∈ CP(Qi), each matV [ei] : ei ∈ Pi
must be joined. Each path Pi that is indexed under a trie path
{n1 → . . .ni → . . .nk } maintains the original ordering of its
edges and vertices, while the order under which each edge of a
node ni is connected with its children nodes (chn(ni)), is deter-
mined as follows: the target vertex t ∈ ei (where ei is indexed un-
der ni) is connected with the source node s ∈ ei+1 : ei+1 ∈ chn(ni)
of the parent node ni . Finally, for each covering path Pi ∈ CP(Qi)

TRIC maintains information about the vertices that intersected
in the original query graph pattern Qi , while this information is
utilized during the query answering phase.

4.2 Query Answering Phase
During the evolution of the graph, a constant stream of updates
S = (u1,u2, . . . ,uk) arrives at the system. For each update ui ∈ S
Algorithm TRIC performs the following steps:
1. Determines which tries are affected by update ui and proceeds

in examining them.

2. While traversing the affected tries, performs the materializa-
tion and prunes sub-tries that are not affected by ui .

In the following, we describe each step of the query answer-
ing phase of Algorithm TRIC. The pseudocode for each step is
provided in Figs. 8 and 10.

Step 1 : Locate and Traverse Affected Tries. When an update
ui arrives at the system, Algorithm TRIC utilizes the edge ei ∈ ui
to locate the tries that are affected by ui . To achieve this, TRIC
uses the hash table edgeInd to obtain the list of tries that con-
tain ei in their children set. Thus, Algorithm TRIC receives a
list (affectedTries) that contains all the tries that were affected by
ui and must be examined (Fig. 8, line 1). Subsequently, Algo-
rithm TRIC proceeds into examining each trie Ti ∈ affectedTries
by traversing each Ti in order to locate the node ni that indexes
edge ei ∈ ui . When node ni is located, the algorithm proceeds in
Step2 of the query answering process described below (Fig. 8,
lines 3 − 7).

Example 4.6. Let us consider the data structures presented
in Fig. 6, the materialized views in Fig. 9, and an update
u1 = (posted = (p2,pst1)) that arrives into the evolving graph
(Fig. 9(a)). Algorithm TRIC prompts hash table edgeInd and ob-
tains list {&T1,&T3}. Subsequently, TRIC will traverse triesT1 and
T3. When traversing trie T1 TRIC locates node n2 that matches
update e1 ∈ u1 and proceeds in Step2 (described below). Fi-
nally, when traversing T3 TRIC will stop the traversal at root

(a)

(c)

(b) pst1 ?var
matV[hasCreator = (pst1, ?var)]

=

matV[posted = (?var, pst1)]matV[n1] matV[n2]

u1
p2 pst1
p1 pst1
?var pst1 ?var ?var pst1

f2 p2 pst1
f2 p1 pst1
f1 p1 pst1

?var ?var
f1 p1
f2 p1
f2 p2

= ∅
pst1 ?var

matV[containedIn = (pst1, ?var)]
matV[n2]

?var ?var pst1

f2 p2 pst1
f2 p1 pst1
f1 p1 pst1

Figure 9: Updating materialized views.

Function: Trie Traversal & Materialization
Input: Node ni
Output: Locate matched queries
// Update the current materialized view by joining the

parent materialized view with the materialized view
of the edge in node ni

1 result ← matV [prnt(ni)] 1 matV [edge(ni)];
2 if result = ∅ then
3 return;

// Store the query identifiers of node ni
4 affectedQueries← affectedQueries ∪ qIDs(ni);
// Recursively update the matVs of ni’s children

5 foreach nc ∈ chn(ni) do
6 Trie Traversal & Materialization (nc);

7

S
te
p
2

return affectedQueries ; // Return the affected qIDs

Figure 10: Query answering phase (Step 2) of Algo-
rithm TRIC.

node n6 as its materialized view is empty matV [hasCreator =
(pst1, ?var)] = ∅ (Fig. 9 (b)), thus all sub-tries will yield empty
materialized views.

Step 2 : Trie Traversal and Materialization. Intuitively, a trie
path {n0 → . . .ni → . . .nk } represents a series of joined materi-
alized views matVs = {matV 1, matV 2 , . . . , matVk }. Each mate-
rialized view matV i ∈ matVs corresponds to a node ni that stores
edge ei and the materialized view matV i . The materialized view
contains the results of the join operation between the matV [ei]
and the materialized view of the parent node ni (matV (prnt(ni)]),
i.e., matV i = matV [prnt(ni)] 1 matV [ei]. Thus, when an update
ui affects a node ni in this “chain” of joins, ni ’s and its children’s
(chn(ni)) materialized views must be updated with ui . Based on
this TRIC searches for and locates node ni insideTi that is affected
by ui and updates ni ’s sub-trie.

After locating node ni ∈ Ti that is affected by ui , Algo-
rithm TRIC continues the traversal of ni ’s sub-trie and prunes
the remaining sub-tries of Ti (Fig. 8, line 7). Subsequently, TRIC
updates the materialized view of ni by performing a join operation
between its parent’s node materialized view matV [prnt(ni)] and
the update ui , i.e., results = matV [prnt(ni)] 1 ui . Notice that Al-
gorithm TRIC calculates the subgraphs formulated by the current
update solely based on the update u1 and does not perform a full
join operation between matV [prnt(ni)] and matV [edge(ni)], the
updated results are then stored in the corresponding matV [ni].

For each child node nj ∈ chn(ni), TRIC updates its corre-
sponding materialized view by joining its view matV [nj] that
corresponds to the edge that it stores (given by matV [edge(nj)])
with its parent node materialized view matV [ni] (Fig. 10, lines
1− 7). If at any point the process of joining the materialized views
returns an empty result set the specific sub-trie is pruned, while,

18

the traversal continues in a different sub-trie of Ti (Fig. 10, lines
5−6). Subsequently, for each trie node nj in the trie traversal when
there is a successful join operation among matV [ej] : ej ∈ nj and
matV [ni], the query identifiers indexed under nj are stored in
affectedQueries list (Fig. 10, lines 4 and 7). Note that similarly
to before, only the updated part of a materialized view is uti-
lized as the parent’s materialized view, an approach applied on
database-management system [16].

Example 4.7. Let us consider the data structures presented in
Fig. 6, Fig. 9, and an update u1 = (posted = (p2,pst1)) that ar-
rives into the evolving graph. After locating the affected trie node
n2 (described in Example 4.6) TRIC proceeds in updating the
materialized view of n2, i.e., matV [n2], by calculating the join
operation between its parents materialized view, i.e., matV [n1]
and the update u1. Fig. 9, demonstrates the operations of join-
ing matV [n2] with update u1, the result of the operation is tu-
ple (f 2,p2,pst1), which is added into matV [n2], presented in
Fig. 9(a). While the query identifiers of n2 (i.e., Q1) are indexed in
affectedQueries. Finally, TRIC proceeds in updating the sub-trie of
n2, node n3, where the updated tuple (f 2,p2,pst1) is joined with
matV [edge(n3)] (i.e., matV [containedIn = (pst1, ?var)]). This
operation yields an empty result (Fig. 9(c)), thus terminating the
traversal.

Finally, to complete the filtering phase Algorithm TRIC iterates
through the affected list of queries and performs the join opera-
tions among the paths that form a query, thus, yielding the final
answer (Fig. 8, lines 8 − 13).

The time complexity, of Algorithm TRIC when filtering an
update ui , is calculated as follows: The traversal complexity is
O(T ∗ (Pm ∗ B)), where T denotes the number of tries that contain
ei ∈ ui , Pm denotes the size of the longest trie path, and B the
branching factor. The time complexity of joining two materialized
views matV 1 and matV 2, where |matV 1 | = N and |matV 2 | = M ,
is O(N ∗M). Finally, the total time complexity is calculated as
O((T ∗ (Pm ∗ B)) ∗ (N ∗M)).

Caching. During Step 2, two materialized views are joined using
a typical hash join operation with a build and a probe phase. In
the build phase, a hash table for the smallest (in the number of
tuples) table is constructed, while in the probe phase the largest
table is scanned and the hash table is probed to perform the join.
TRIC discards all the data structures and intermediate results after
the join operation commences. In order to enhance this resource
intensive operation, we cache and reuse the data structures gener-
ated during the build and probe phases as well as the intermediate
results whenever possible. This approach constitutes an extension
of our proposed solution (TRIC) and it is coined TRIC+.

4.3 Supporting richer models and languages
The proposed algorithm is easily extensible to more sophisticated
data models and query languages; in this section, we briefly out-
line the necessary modifications to support graph deletions and
updates, as well as more general types of graphs (e.g., property
graphs).

Edge deletions may be handled by algorithms TRIC and TRIC+
by locating the affected paths, and traversing each path to locate
the deleted edges; while visiting each edge, the materialized view
that corresponds to that edge should be accessed and all affected
tuples should be removed. Updates on the graph (e.g., on the
label of an edge) may be modeled as an edge deletion followed
by an edge addition operation. Finally, extending our solution

Figure 11: Index structures utilized by Algorithm INV.

for more general graph types, like property graphs, entails the
addition of extra constraints within the nodes of the tries and the
usage of a separate data structure to appropriately index these
constraints. Then, query answering would include an extra phase
for the determining the satisfaction of the additional constraints.
Efficient execution of such extensions is an interesting topic for
future research (see Section 7).

5 ADVANCED BASELINES
Since no prior work in the literature considers the problem of
continuous multi-query evaluation, we designed and implemented
Algorithms INV and INC, two advanced baselines that utilize
inverted index data structures. Finally, we provide a third baseline
that is based on the well-established graph database Neo4j [43].

5.1 Algorithm INV
Algorithm INV (INVerted Index), utilizes inverted index data struc-
tures to index the query graph patterns. The inverted index data
structure is able to capture and index common elements of the
graph patterns at the edge level during indexing time. Subse-
quently, the inverted index is utilized during filtering time to
determine which queries have been satisfied. In the following, we
describe the query indexing and answering phase of INV.

The Query Indexing Phase of Algorithm INV, for each query
graph pattern Qi , is performed in two steps: (1) Transforming
the original query graph pattern Qi into a set of path conjuncts,
that cover all vertices and edges of Qi , and when combined can
effectively re-compose Qi , and finally, indexing those covering
paths in a matrix along the unique query identifier, (2) Indexing
all edges ei ∈ Qi into an inverted index structure. In the following,
we present each step of the query indexing phase of INV and give
details about the data structures utilized.

Step 1 : Extracting the Covering Paths. In the first step of the
query indexing phase, Algorithm INV decomposes a query graph
Qi into a set of paths CP , a process described in detail in Sec-
tion 4.1. Thus, given the query set presented in Fig. 4 (a), INV

yields the same set of covering paths CP (Fig. 4 (b)). Finally, the
covering path set CP is indexed into an array (queryInd) with the
query identifier of Qi .

Step 2 : Indexing the Query Graph. Algorithm INV builds
three inverted indexes, where it stores the structural and attribute
constrains of the query graph pattern Qi . Hash table edgeInd in-
dexes all edges ei ∈ QDB (keys), and the respective query identi-
fiers as values, hash table sourceInd indexes the source vertices of
each edge (key), where the edges are indexed as values , and hash
table targetInd that indexes the target vertices of each edge (key),
where the edges are indexed as values. In Fig. 4(a) we present
four query graph patterns, and in Fig. 11 the data structures of

19

INV when indexing those queries. Finally, INV applies the same
techniques of handling variables as Algorithm TRIC (Section 4.1).

The Query Answering Phase of Algorithm INV, when a con-
stant stream of updates S = (u1,u2, . . . ,uk) arrives at the system,
is performed in three steps: (1) Determines which queries are af-
fected by update ui , (2) Prompts the inverted index data structure
and determines which paths have been affected by update ui , (3)
Performs the materialization while querying the inverted index
data structures. In the following, we describe each step of the
query answering phase:

Step 1 : Locate the Affected Queries. When a new update ui
arrives at the system, Algorithm INV utilizes the edge ei ∈ ui to
locate the queries that are affected, by querying the hash table
edgeInd to obtain the query identifier qIDs that contain ei . Subse-
quently, the algorithm iterates through the list of affectedQueries
and checks each query Qi ∈ qIDs. For each query Qi the algo-
rithm checks ∀ei ∈ Qi if matV [ei] , ∅, i.e., each ei should have a
non empty materialized view. The check is performed by iterating
through the edge list that is provided by queryInd and a hash table
that keeps all materialized views present in the system. Intuitively,
a queryQi is candidate to match, as long as, all materialized views
that correspond to its edges can be used in the query answering
process.

Step 2 : Locate the Affected Paths. Algorithm INV proceeds to
examine the inverted index structures sourceInd and targetInd by
making use of ei ∈ ui . INV queries sourceInd and targetInd to
determine which edges are affected by the update, by utilizing the
source and target vertices of update ui . INV examines each current
edge ec of the affected edge set and recursively visits all edges
connected to ec , which are determined by querying the sourceInd
and targetInd. While examining the current edge ec , INV checks if
ec is part of affectedQueries, if not, the examination of the specific
path is pruned. For efficiency reasons, the examination is bound
by the maximum length of a path present in affectedQueries which
is calculated by utilizing the queryInd data structure.

Step 3 : Path Examination and Materialization. While INV

examines the paths affected by update ui (Step 2), it performs
the materialization on the currently examined path. INV searches
through the paths formulated by the visits of edge sets determined
by targetInd and sourceInd, and maintains a path Pc = {v1

e1
−−→

v2
e2
−−→ . . .vk

ek
−−→ vk+1} that corresponds to the edges already

visited.
While, visiting each edge ec , INV accesses the materialized

view that corresponds to it (i.e., matV [ec]) and updates the set of
materialized views matVs = {matV 1,matV 2, . . . ,matVk } that
correspond to the current path. For example, given an already vis-
ited path P = {v1

e1
−−→ v2

e2
−−→ v3} its materialized view matV [P]

will be generated, by matV [P] = matV [e1] 1 matV [e2]. When
visiting the next edge en , a new path P ′ is generated and its materi-
alized view matV [P ′] = matV [P] 1 matV [en] will be generated.
If at any point, the process of joining the materialized views yields
an empty result set the examination of the edge is terminated (prun-
ing). This allows us to prune paths that are not going to satisfy
any Qi ∈ affectedQueries. If a path Pi yields a successful series of
join operations (i.e., matV [Pi] , ∅), it is marked as matched.

Finally, to produce the final answer subgraphs Algorithm INV

iterates through the affected list of queries qIDs ∈ affectedQueries
and performs the final join operation among all the paths that
comprise the query.

Caching. In the spirit of TRIC+ (Section 4.2), we developed
an extension of INV, namely INV+, that caches and reuses the
calculated data structures of the hash join phase.

5.2 Algorithm INC
Based on Algorithm INV we developed an algorithmic extension,
namely Algorithm INC. Algorithm INC utilizes the same inverted
index data structures to index the covering paths, edges, source
and target vertices as Algorithm INV, while the examination of
a path affected during query answering remains similar. The key
difference lies in executing the joining operations between the
materialized views that correspond to edges belonging to a path.
More specifically, when Algorithm INV executes a series of joins
between the materialized views (that formulate a path) to deter-
mine which subgraphs match a path; it utilizes all tuples of each
materialized view that participate in the joining process. On the
other hand, Algorithm INC makes use of only the update ui and
thus reduces the number of tuples examined through out the join-
ing process of the paths.

Caching. In the spirit of TRIC+ (Section 4.2), we developed
an extension of INC, namely INC+, that caches and reuses the
calculated data structures of the hash join phase.

5.3 Neo4j
To evaluate the efficiency of the proposed algorithm against a
real-world approach, we implemented a solution based on the
well-established graph database Neo4j [43]. In this approach, we
extend Neo4j’s native functionality with auxiliary data structures
to efficiently store the query set. They are used during the an-
swering phase to located affected queries and execute them on
Neo4j.

The Query Indexing Phase. To address the continuous multi-
query evaluation scenario, we designed main-memory data struc-
tures to facilitate indexing of query graph patterns. Initially, in
the preprocessing phase, we convert each incoming query Qi into
Neo4j’s native query language Cypher1. Subsequently, the query
indexing phase of Neo4j commences as follows: (1) indexing each
Cypher query in the queryInd data structure, and (2) indexing all
edges ei ∈ Qi in the edgeInd data structure where ei is used as
key, and a collection of query identifiers as values. The queryInd
structure is defined as matrix, while the edgeInd is an inverted
index, similarly to the data structures described in Section 5.1.

The Query Answering Phase. Each update that is received as
part of an incoming stream of updates S = (u1,u2, . . . ,uk) is
processed in the following steps: (1) an incoming update ui is
applied to Neo4j (2) the inverted index edgeInd is queried with
ei ∈ ui , to determine which queries are affected, (3) all affected
queries are retrieved from matrix queryInd, (4) the affected queries
are executed.

To enhance performance, the following configurations are ap-
plied: (1) the graph database builds indexes on all labels of the
schema allowing for faster look up times of nodes, (2) the exe-
cution of Cypher queries employs the parameters syntax2 as it
enables the execution planner of Neo4j to cache the query plans
for future use, (3) the number of writes per transaction3 in the
database and the allocated memory were optimized based on the
hardware configuration (see Section 6.1).
1https://neo4j.com/developer/cypher-query-language/
2https://neo4j.com/docs/cypher-manual/current/syntax/parameters/
3https://neo4j.com/docs/cypher-manual/current/introduction/transactions/

20

0.0

0.5

1.0

1.5

2.0

10 20 30 40 50 60 70 80 90 100

20
40
60
80

100
120
140
160
180
200

10 16 22 28 33 38 43 48 52 57

A
ns

w
er

in
g

ti
m

e
(m

se
c/

up
da

te
)

Graph size (Edges x1000)

TRIC
TRIC+

Graph size (Vertices x1000)

INV

INV+
INC

INC+
Neo4j

(a) Influence of graph size.

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

10% 15% 20% 25% 30%

20
50

100

150

200

250

300

350

A
ns

w
er

in
g

ti
m

e
(m

se
c/

up
da

te
)

Varying σ

TRIC
TRIC+

INV

INV+
INC

INC+
Neo4j

(b) Influence of σ .

0

1

10

100

1000

1000 3000 5000

A
ns

w
er

in
g

ti
m

e
(m

se
c/

up
da

te
)

Varying |QDB |

INV

INV+
INC

INC+
Neo4j
TRIC
TRIC+

(c) Influence of query database size.

0.0
1.0
2.0
3.0
4.0
5.0
6.0

3 5 7 9

15

500

1000

1500

2000

2500

3000

3500

A
ns

w
er

in
g

ti
m

e
(m

se
c/

up
da

te
)

Varying l

TRIC
TRIC+

INV

INV+
INC

INC+
Neo4j

(d) Influence of l.

0.0
0.5
1.0
1.5
2.0
2.5
3.0

25% 35% 45% 55% 65%

20
50

100

150

200

250

A
ns

w
er

in
g

ti
m

e
(m

se
c/

up
da

te
)

Varying o

TRIC
TRIC+

INV

INV+
INC

INC+
Neo4j

(e) Influence of o.

0

2

4

6

8

10

100 200 300 400 500 600 700 800 900 1000

20

500

1000

1500

2000

57 106 149 188 226 270 318 367 415 463

*

**

A
ns

w
er

in
g

ti
m

e
(m

se
c/

up
da

te
)

Graph size (Edges x1000)

TRIC
TRIC+

Graph size (Vertices x1000)

INV

INV+
INC

INC+
Neo4j

(f) Influence of graph size.
Figure 12: Query answering time for the SNB dataset.

6 EXPERIMENTAL EVALUATION
In this section, we present a series of experiments that compare
the performance of the presented algorithms.

6.1 Experimental Setup
Data and Query Sets. For the experimental evaluation we used a
synthetic and two real-world datasets.

The SNB Dataset. The first dataset we utilized is the LDBC Social
Network Benchmark (SNB) [12]. SNB is a synthetic benchmark
designed to accurately simulate the evolution of a social network
through time (i.e, vertex and edge sets labels, event distribution
etc). This evolution is modeled using activities that occur inside
a social network (i.e. user account creation, friendship linking,
content creation, user interactions etc). Based on the SNB gen-
erator we simulated the evolution of a graph consisting of user
activities over a time period of 2 years. From this dataset we de-
rived 3 query loads and configurations: (i) a set with a graph size
of |GE | = 100K edges and |GV | = 57K vertices, (ii) a set with a
graph size of |GE | = 1M edges and |GV | = 463K vertices, and (iii)
a set with a graph size of |GE | = 10M edges and |GV | = 3.5M .

The NYC Dataset. The second dataset we utilized is a real world
set of taxi rides performed in New York City4 (TAXI) in 2013
utilized in DEBS 2015 Grand Challenge [19]. TAXI contains
more that 160M entries of taxi rides with information about the
license, pickup and drop-off location, the trip distance, the date
and duration of the trip, and the fare. We utilized the available data
to generate a stream of updates that result in a graph of |GE | = 1M
edges and |GV | = 280K , accompanied by a set of 5K query graph
patterns.

The BioGRID Dataset. The third dataset we utilized is Bi-
oGRID [35], a real world dataset that represents protein to protein
interactions. This dataset is used as a stress test for our algorithms
4https://chriswhong.com/open-data/foil_nyc_taxi/

since it contains one type of edge (interacts) and vertex (protein),
and thus every update affects the whole query database. We used
BioGRID to generate a stream of updates that result in a graph
size of |GE | = 1M edges and |GV | = 63K vertices, with a set of
5K query graph patterns.

Query Set Configuration. In order to construct the set of query
graph patterns QDB we identified three distinct query classes that
are typical in the relevant literature: chains, stars, and cycles [15,
26]. Each type of query graph pattern was chosen equiprobably
during the generation of the query set. The baseline values for
the query set are: (i) an average size l of 5 edges/query graph
pattern, a value derived from the query workloads presented in
SNB [12], (ii) a query database |QDB | size of 5K graph patterns,
(iii) a factor that denotes the percentage of the query set QDB that
will ultimately be satisfied, denoted as selectivity σ = 25%, and
(iv) a factor that denotes the percentage of overlap between the
queries in the set, o = 35%.

Metrics. In our evaluation, we present and discuss the filtering
and indexing time of each algorithm, along with the total memory
requirements.

Technical Configuration. All algorithms were implemented in
Java 8 while for the materialization implementation the Stream
API was employed. The Neo4j-based approach was implemented
using the embedded version of Neo4j 3.4.7. Extensive exper-
imentation evaluation concluded that a transactionsection 5.3
can perform up to 20K writes in the database without degrad-
ing Neo4j’s performance, while in order to guarantee indexes
are cached in main memory 55GB of main memory were allo-
cated. A machine with Intel(R) Xeon(R) Processor E5-2650 at
2.00GHz, 64GB RAM, and Ubuntu Linux 14.04 was used. The
time shown in the graphs is wall-clock time and the results of each
experiment are averaged over 10 runs to eliminate fluctuations in
measurements.

21

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10

463 829 1128 1444 1878 2159 2465 2820 3146 3531

*

*

A
ns

w
er

in
g

tim
e

(m
se

c/
up

da
te

)

Graph size (Edges x106)

Graph size (Vertices x1000)

TRIC
Neo4j
TRIC+

(a) Query answering time.

0.00

0.01

0.10

1.00

1 2 3 4 5

In
de

xi
ng

tim
e

(m
se

c/
qu

er
y)

Varying QDB (x1000)

INC+
INC

TRIC+
TRIC

INV+
INV

Neo4j

(b) Query insertion time.

Algorithm
Dataset

SNB NYC BioGRID
TRIC 201MB 257MB 233MB
TRIC+ 248MB 273MB 262MB
INV 205MB 273MB 271MB50K

INV+ 228MB 381MB 301MB50K

INC 206MB 273MB 270MB50K

INC+ 228MB 378MB 310MB60K

Neo4j 443MB 590MB 314MB

(c) Memory requirements.

Figure 13: Results for (a) & (b) the SNB dataset, and (c) the SNB, TAXI , BioGRID datasets.

6.2 Results for the SNB Dataset
In this section, we present the evaluation for the SNB benchmark
and highlight the most significant findings.

Query Answering Time. Fig. 12(a) presents the results regarding
the query answering time, i.e., the average time in milliseconds
needed to determine which queries are satisfied by an incoming
update, against a query set of QDB = 5K . Please notice that the
y-axis is split due to the high differences in the performance of
TRIC/TRIC+and its competitors. We observe that the answer-
ing time increases for all algorithms as the graph size increases.
Algorithms TRIC/TRIC+ achieve the lowest answering times, sug-
gesting better performance. Contrary, the competitors are more
sensitive in graph size changes, with Algorithm INV performing
the worst (highest query answering time). When comparing Al-
gorithm TRIC to INV, INC and Neo4j the query answering time
is improved by 99.15%, 98.14% and 91.86% respectively, while the
improvement between INC and INV is 54.33%. Finally, comparing
Algorithm TRIC+ to INV+, INC+ and Neo4j demonstrates a per-
formance improvement of 99.62%, 99.17% and 96.74% respectively,
while the difference of INC+ and INV+ is 54.6%.

The results (Fig. 12(a)) suggest that all solutions that im-
plement caching are faster compared to the versions without
it. In more detail, Algorithms TRIC+/INV+/INC+ are consis-
tently faster than their non-caching counterparts, by 59.95%, 9.36%
and 9.91% respectively. This is attributed to the fact that Algo-
rithms TRIC/INV/INC, have to recalculate the probe and build
structures required for the joining process, in contrast to Algo-
rithms TRIC+/INV+/INC+ that store these structures and incre-
mentally update them, thus providing better performance.

In Fig. 12(b) we present the results when varying the parameter
σ , for 10%, 15%, 20%, 25% and 30% of a query set for |QDB | = 5K
and |GE | = 100K . In this setup the algorithms are evaluated for
a varying percentage of queries that match. A higher number of
queries satisfied, increases the number of calculations performed
by each algorithm. The results show that all algorithms behave in a
similar manner as previously described. In more detail, Algorithm
TRIC+ is the most efficient of all, and thus the fastest among the
extensions that utilize caching, while TRIC is the most efficient
solution among the solutions that do not employ a caching strat-
egy. Finally, the percentage differences, between the algorithmic
solutions remain the same as before in most cases.

Fig. 12(c) presents the results of the experimental evaluation
when varying the size of the query database |QDB |. More specifi-
cally, we present the answering time per triple when |QDB | = 1K ,
3K and 5K , and |GE | = 100K . Please notice the y-axis is in loga-
rithmic scale. The results demonstrate that all algorithm’s behavior

is aligned with our previous observations. More specifically, Al-
gorithms TRIC+ and TRIC exhibit the highest performance (i.e.,
lowest answering time), throughout the increase of |QDB |, and
thus determine faster which queries of |QDB | have matched given
an update ui . Similarly to the previous setups, the competitors
have the lowest performance, while Algorithms INC and INC+
perform better compared to INV and INV+.

In Fig. 12(d) we give the results of the experimental evalua-
tion when varying the average query size l. More specifically,
we present the answering time per triple when l = 3, 5, 7 and
9 of a query set for |QDB | = 5K and |GE | = 100K . We observe
that the answering time increases for all algorithms as the aver-
age query length increases. More specifically, Algorithms TRIC+
and TRIC exhibit the highest performance (i.e., lowest answering
time), throughout the increase of ls, and thus determine faster
which queries have been satisfied. Similarly to the previous eval-
uation setups, the Algorithms INV/INV+/INC/INC+/Neo4j have
the lowest performance, and increase significantly their answering
time when l increases, while Algorithms INC and INC+ perform
better compared to INV, INV+ and Neo4j when l = 9.

Fig. 12(e) gives the results of the experimental evaluation when
varying the parameter o, for 25%, 35%, 45%, 55% and 65% of a
query set for |QDB | = 5K and |GE | = 100K . In this setup the
algorithms are evaluated for varying percentage of query overlap.
A higher number of query overlap, should decrease the number of
calculations performed by algorithms designed to exploit common-
alities among the query set. The results show that all algorithm
behave in a similar manner as previously described, while Al-
gorithmsINV/INV+/INC/INC+ observe higher performance gains.
Algorithm TRIC+ is the most efficient of all, and thus the fastest
among the extensions that utilize caching techniques, while TRIC
is the most efficient solution among the solutions that do not
employ caching.

Fig. 12(f) presents the results regarding the query answering
time, for all algorithms when indexing a query set of |QDB | = 5K
and a final graph of |GE | = 1M and |GV | = 463K . Given the
extremely slow performance of some algorithms we have set
an execution time threshold of 24 hours, for all algorithms un-
der evaluation, thus, when the threshold was crossed the evalua-
tion was terminated. Algorithms TRIC/TRIC+ achieve the low-
est answering times, suggesting better performance, while Al-
gorithms INV/INV+/INC/INC+ are more sensitive in graph size
changes and thus fail to terminate within the time threshold. More
specifically, Algorithms INV/INV+ time out at |GE | = 210K , while
INC/INC+ time out at |GE | = 310K as denoted by the asterisks

22

0
2
4
6
8

10
12

100 200 300 400 500 600 700 800 900 1000

25
100
200
300
400
500
600
700
800

44 70 96 121 147 174 202 228 254 280

**

* *

A
ns

w
er

in
g

ti
m

e
(m

se
c/

up
da

te
)

Graph size (Edges x1000)

TRIC+
TRIC

Graph size (Vertices x1000)

INV

INV+
INC

INC+
Neo4j

(a) Influence of graph size.

0
2
4
6
8

10
12
14

10 20 30 40 50 60 70 80 90 100

100

1000

2000

3000

4000

5000

6.4 7.6 11.9 15.0 15.7 16.2 16.5 16.8 17.1 17.2

*
*
*

*

A
ns

w
er

in
g

ti
m

e
(m

se
c/

up
da

te
)

Graph size (Edges x1000)

TRIC
TRIC+

Graph size (Vertices x1000)

INV

INV+
INC

INC+
Neo4j

(b) Influence of graph size.

0

20

40

60

80

100

120

140

160

180

100 200 300 400 500 600 700 800 900 1000

17 27 29 35 44 48 54 58 61 63

*

A
ns

w
er

in
g

ti
m

e
(m

se
c/

up
da

te
)

Graph size (Edges x1000)

Graph size (Vertices x1000)

Neo4j
TRIC
TRIC+

(c) Influence of graph size.

Figure 14: Query answering time for (a) the TAXI dataset, and (b) & (c) the BioGRID dataset.

in the plot. When comparing TRIC/TRIC+ to Neo4j the query
answering is improved by 77.01% and 92.86% respectively.

Fig. 13(a) presents the results regarding the query answering
time, for Algorithms TRIC, TRIC+ and Neo4j when indexing a
query set of QDB = 5K and a final graph size of |GE | = 10M
and |GV | = 3.5M . Again, we have set an execution time thresh-
old of 24 hours, for all the algorithms under evaluation. Algo-
rithm TRIC+ achieves the lowest answering times, suggesting
better performance, while Algorithms TRIC and Neo4j fail to
terminate within the given time threshold. More specifically, Al-
gorithm TRIC times out at |GE | = 5.47M , while Algorithm Neo4j
times out at |GE | = 4.3M as denoted by the asterisks in the plot.

Overall, Algorithms TRIC+ and TRIC, the two solutions that
utilize trie structures to capture and index the common structural
and attribute restrictions of query graphs achieve the lowest query
answering times, compared to Algorithms INV/INV+/INC/INC+
that employ no clustering techniques, as well as when com-
pared with commercial solutions such as Neo4j. Adopting the
incremental joining techniques (found in Algorithm TRIC) into
Algorithm INC does not seem to significantly improve its per-
formance when compared to Algorithm INV. While, adopting
caching techniques that store the data structures generated dur-
ing the join operations, changes significantly the performance
of Algorithm TRIC+. Taking all the above into consideration,
we conclude that the algorithms that utilize trie-based indexing
achieve low query answering times compared to their competitors.

Indexing Time. Fig. 13(b) presents the indexing time in millisec-
onds required to insert 1K query graph patterns when the query
database size increases. We observe that the time required to go
from an empty query database to a query database of size 1K is
higher compared to the time required for the next iterations. Please
notice the y-axis is in logarithmic scale. This can be explained
as follows, all algorithms utilize data structures that need to be
initialized during the initial stages of query indexing phase, i.e.
when inserting queries in an empty database, while as the queries
share common restrictions less time is required for creating new
entries in the data structures. Additionally, the time required to
index a query graph pattern in the database does not vary signifi-
cantly for all algorithms. Notice that query indexing time is not a
critical performance parameter in the proposed paradigm, since
the most important dimension is query answering time.

6.3 Results for the NYC and BioGRID Dataset
In this section, we present the evaluation for the NYC and
BioGRID dataset and highlight the most significant findings.

The NYC Dataset. Fig. 14(a) presents the results from the eval-
uation of the algorithms for the NYC dataset. More specifically,
we present the results regarding the query answering performance
of all algorithms when QDB = 5K , l = 5, o = 35%, σ = 25%
and an execution time threshold of 24 hours. Please notice that
the y-axis is split due to high differences in the performance
of the algorithms. Algorithms INV and INV+ fail to terminate
within the time threshold and time out at |GE | = 210K and
|GE | = 300K respectively. Similarly, Algorithms INC and INC+
time out at |GE | = 220K and 360K respectively. When compar-
ing Algorithms TRIC and TRIC+ to Neo4j the query answering
is improved by 59.68% and 81.76% respectively. These results
indicate that again an algorithmic solution that exploits and in-
dexes together the common parts of query graphs (i.e., Algo-
rithms TRIC/TRIC+) achieves significantly lower query answer-
ing time compared to approaches that do not apply any clustering
techniques (i.e., AlgorithmsINV/INV+INC/INC+/Neo4j).

The BioGRID Dataset. Figs. 14(b) and 14(c) present the results
from the evaluation of the algorithms for the BioGRID dataset.
In Fig. 14(b) we present the results regarding the query answer-
ing performance of the algorithms, when QDB = 5K , σ = 25%
for a final graph size of |GE | = 100K and |GV | = 17.2K . Addi-
tionally, we set an execution time threshold of 24 hours due to
the high differences in the performance of the algorithms. The
BioGRID dataset serves as a stress test for our algorithms, since
it contains only one type of edge and vertex, thus each incoming
update will affect (but not necessarily satisfy) the entire query
database. To this end, Algorithms INV/INV+/INC exceed the time
threshold and time out at |GE | = 50K , while INC+ times out
at |GE | = 60K as denoted by the asterisks in the plot. Finally,
Fig. 14(c) presents the results for the BioGRID dataset for a final
graph size of |GE | = 1M and |GV | = 63K . We again observe
that Algorithms TRIC and TRIC+ achieve the lowest answering
time, while Neo4j exceeds the time threshold and times out at
|GE | = 550K . As it is demonstrated from the results yielded by
the evaluation, Algorithms TRIC and TRIC+ are the most effi-
cient of all; this is attributed to the fact that both algorithms create
a combined representation of the query graph patterns that can
efficiently be utilized during query answering time.

Comparing Memory Requirements. Fig. 13(c) presents the
memory requirements of each algorithm, for the SNB, NYC
and BioGRID datasets when indexing |QDB = 5K | and a graph
of |GE | = 100K . We observe, that across all datasets, Algo-
rithms TRIC, INV and INC have the lowest main memory re-
quirements, while, Algorithms TRIC+, INV+, INC+ and Neo4j
exhibit higher memory requirements. The marginally higher mem-
ory requirements of algorithms that employ a caching strategy,

23

(i.e., Algorithms TRIC+/INV+/INC+) is attributed to the fact that
all structures calculated during the materialization phase are kept
in memory for future usage; this results in slightly higher mem-
ory requirements compared to algorithms that do not apply this
caching technique (i.e., Algorithms TRIC/INV/INC). To this end,
employing a caching strategy for all algorithms yields significant
performance gains with minimal impact on main memory. Fi-
nally, Neo4j is a full fledged database management system, thus it
occupies more memory to support the required specifications.

7 OUTLOOK
In this work, we proposed a new paradigm to efficiently capture
the evolving nature of graphs through query graph patterns. We
proposed a novel method that indexes and continuously evaluates
queries over graph streams, by leveraging on the shared restric-
tions present in query sets. We also evaluated our solution using
three different datasets from social networks, transportation and bi-
ological interactions domains, and demonstrated that our approach
is up to two orders of magnitude faster when compared to typical
join-and-explore inverted index solutions, and the well-established
graph database Neo4j.

Our future research plans involve (i) further improving the al-
gorithm performance by storing materializations within the trie
to minimize trie traversal at query answering time and exploiting
workload-driven statistics in the spirit of [23] and (ii) increas-
ing the model expressiveness by implementing graph deletions,
supporting more general graph types (e.g., property graphs), and
introducing query classes that aim at clustering coefficient, short-
est path, and betweenness centrality.

ACKNOWLEDGMENTS
This research was partially funded by the Danish Council for
Independent Research (DFF) under grant agreement No. DFF-
4093-00301B, by the Poul Due Jensen Foundation, and by project
ENIRISST under grant agreement No. MIS 5027930 (co-financed
by Greece and the EU through the European Regional Develop-
ment Fund).

REFERENCES
[1] Paul Ammann and Jeff Offutt. 2008. Introduction to software testing. Cam-

bridge University Press.
[2] D.F. Barbieri, D. Braga, S. Ceri, E.D. Valle, and M. Grossniklaus. 2010. C-

SPARQL: A Continuous Query Language for RDF Data Streams. IJSC (2010).
[3] Yazan Boshmaf, Ildar Muslukhov, Konstantin Beznosov, and Matei Ripeanu.

2011. The socialbot network: when bots socialize for fame and money. In
ACSAC.

[4] Horst Bunke, Thomas Glauser, and T.-H. Tran. 1990. An Efficient Imple-
mentation of Graph Grammars Based on the RETE Matching Algorithm. In
4th International Workshop on Graph-Grammars and Their Application to
Computer Science.

[5] C. Canas, E. Pacheco, B. Kemme, J. Kienzle, and H-A. Jacobsen. 2015. GraPS:
A Graph Publish/Subscribe Middleware. In Middleware.

[6] Meeyoung Cha, Hamed Haddadi, Fabrício Benevenuto, and P. Krishna Gum-
madi. 2010. Measuring User Influence in Twitter: The Million Follower Fallacy.
In ICWSM.

[7] L. Chen and C. Wang. 2010. Continuous Subgraph Pattern Search over Certain
and Uncertain Graph Streams. IEEE TKDE (2010).

[8] Rada Chirkova and Jun Yang. 2012. Materialized Views. Foundations and
Trends in Databases 4, 4 (2012), 295–405.

[9] Sutanay Choudhury, Lawrence B. Holder, George Chin Jr., Khushbu Agarwal,
and John Feo. 2015. A Selectivity based approach to Continuous Pattern
Detection in Streaming Graphs. In EDBT.

[10] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
2009. Introduction to Algorithms. MIT Press.

[11] Reinhard Diestel. 2005. Graph Theory. GTM (2005).
[12] Orri Erling, Alex Averbuch, Josep-Lluís Larriba-Pey, Hassan Chafi, Andrey

Gubichev, Arnau Prat-Pérez, Minh-Duc Pham, and Peter A. Boncz. 2015. The
LDBC Social Network Benchmark: Interactive Workload. In ACM SIGMOD.

[13] Jun Gao, Yuqiong Liu, Chang Zhou, and Jeffrey Xu Yu. 2017. Path-based
holistic detection plan for multiple patterns in distributed graph frameworks.
VLDB Journal (2017).

[14] Jun Gao, Chang Zhou, and Jeffrey Xu Yu. 2016. Toward continuous pattern
detection over evolving large graph with snapshot isolation. VLDB Journal
(2016).

[15] Syed Gillani, Gauthier Picard, and Frédérique Laforest. 2016. Continuous
graph pattern matching over knowledge graph streams. In ACM DEBS.

[16] Ashish Gupta, Inderpal Singh Mumick, and V. S. Subrahmanian. 1993. Main-
taining Views Incrementally. In ACM SIGMOD.

[17] Wook-Shin Han, Jinsoo Lee, and Jeong-Hoon Lee. 2013. Turboiso: towards
ultrafast and robust subgraph isomorphism search in large graph databases. In
ACM SIGMOD.

[18] Huahai He and A.K. Singh. 2006. Closure-Tree: An Index Structure for Graph
Queries. In ICDE.

[19] Zbigniew Jerzak and Holger Ziekow. 2015. The DEBS 2015 grand challenge.
In ACM DEBS.

[20] Cliff Joslyn, Sutanay Choudhury, David Haglin, Bill Howe, Bill Nickless, and
Bryan Olsen. 2013. Massive scale cyber traffic analysis: a driver for graph
database research. In GRADES SIGMOD/PODS.

[21] Jure Leskovec, Lada A. Adamic, and Bernardo A. Huberman. 2007. The
dynamics of viral marketing. ACM TWEB (2007).

[22] Jure Leskovec, Ajit Singh, and Jon M. Kleinberg. 2006. Patterns of Influence
in a Recommendation Network. In PAKDD.

[23] Amgad Madkour, Ahmed M. Aly, and Walid G. Aref. 2018. WORQ: Workload-
Driven RDF Query Processing. In ISWC.

[24] Marios Meimaris, George Papastefanatos, Nikos Mamoulis, and Ioannis Anag-
nostopoulos. 2017. Extended Characteristic Sets: Graph Indexing for SPARQL
Query Optimization. In IEEE ICDE.

[25] Hoshi Mistry, Prasan Roy, S. Sudarshan, and Krithi Ramamritham. 2001. Ma-
terialized View Selection and Maintenance Using Multi-Query Optimization.
In ACM SIGMOD.

[26] Jayanta Mondal and Amol Deshpande. 2016. CASQD: continuous detection of
activity-based subgraph pattern queries on dynamic graphs. In ACM DEBS.

[27] Simeon C. Ntafos and S. Louis Hakimi. 1979. On Path Cover Problems in
Digraphs and Applications to Program Testing. IEEE TSE (1979).

[28] S. Pan and X. Zhu. 2012. CGStream: continuous correlated graph query for
data streams. In CIKM.

[29] M. Petrovic, H. Liu, and H.-A. Jacobsen. 2005. G-ToPSS - fast filtering of
graph-based metadata. In WWW.

[30] Xuguang Ren and Junhu Wang. 2015. Exploiting vertex relationships in
speeding up subgraph isomorphism over large graphs. VLDB (2015).

[31] Xuguang Ren and Junhu Wang. 2016. Multi-query optimization for subgraph
isomorphism search. PVLDB (2016).

[32] S. Sakr, M. Wylot, R. Mutharaju, D. Le Phuoc, and I. Fundulaki. 2018. Cen-
tralized RDF Query Processing. Springer, Chapter 3.

[33] D. Shasha, J.T.L. Wang, and R. Giugno. 2002. Algorithmics and Applications
of Tree and Graph Searching. In PODS.

[34] Chunyao Song, Tingjian Ge, Cindy X. Chen, and Jie Wang. 2014. Event Pattern
Matching over Graph Streams. PVLDB (2014).

[35] Chris Stark, Bobby-Joe Breitkreutz, Teresa Reguly, Lorrie Boucher, Ashton
Breitkreutz, and Mike Tyers. 2006. BioGRID: a general repository for interac-
tion datasets. Oxford Academic NAR (2006).

[36] Zhao Sun, Hongzhi Wang, Haixun Wang, Bin Shao, and Jianzhong Li. 2012.
Efficient Subgraph Matching on Billion Node Graphs. PVLDB (2012).

[37] The UniProt Consortium. 2017. UniProt: the universal protein knowledgebase.
NAR (2017).

[38] Christos Tryfonopoulos, Manolis Koubarakis, and Yannis Drougas. 2004. Fil-
tering algorithms for information retrieval models with named attributes and
proximity operators. In ACM SIGIR.

[39] Petros Tsialiamanis, Lefteris Sidirourgos, Irini Fundulaki, Vassilis
Christophides, and Peter A. Boncz. 2012. Heuristics-based query opti-
misation for SPARQL. In EDBT.

[40] Alex Hai Wang. 2010. Don’t Follow Me - Spam Detection in Twitter. In
SECRYPT.

[41] C. Wang and L. Chen. 2009. Continuous Subgraph Pattern Search over Graph
Streams. In ICDE.

[42] J. Wang, B. Jin, and J. Li. 2004. An Ontology-Based Publish/Subscribe System.
In Middleware.

[43] Jim Webber. 2012. A programmatic introduction to Neo4j. In SPLASH.
[44] Kevin Wilkinson, Craig Sayers, Harumi A. Kuno, and Dave Reynolds. 2003.

Efficient RDF Storage and Retrieval in Jena2. In SWDB.
[45] I. Xenarios, L. Salwnski, X.J. Duan, P. Higney, S.M. Kim, and D. Eisenberg.

2002. DIP, the Database of Interacting Proteins: a research tool for studying
cellular networks of protein interactions. NAR (2002).

[46] Chengxi Zang, Peng Cui, Chaoming Song, Christos Faloutsos, and Wenwu
Zhu. 2017. Quantifying Structural Patterns of Information Cascades. In WWW.

[47] Jingren Zhou, Per-Åke Larson, Johann Christoph Freytag, and Wolfgang
Lehner. 2007. Efficient exploitation of similar subexpressions for query pro-
cessing. In ACM SIGMOD.

24

	Efficient Continuous Multi-Query Processing over Graph StreamsLefteris Zervakis, Vinay Setty, Christos Tryfonopoulos, Katja Hose

