
Incremental Based Top-k Similarity Search Framework for
Interactive-Data-Analysis Sessions

Oded Elbaz, Tova Milo, and Amit Somech

Tel Aviv University, Israel

ABSTRACT
Interactive Data Analysis (IDA) is a core knowledge-discovery

process, in which data scientists explore datasets by issuing a

sequence of data analysis actions (e.g. filter, aggregation, visu-

alization), referred to as a session. Since IDA is a challenging

task, special recommendation systems were devised in previ-

ous work, aimed to assist users in choosing the next analysis

action to perform at each point in the session. Such systems of-

ten record previous IDA sessions and utilize them to generate

next-action recommendations. To do so, a compound, dedicated

session-similarity measure is employed to find the top-k sessions

most similar to the session of the current user. Clearly, the effi-

ciency of the top-k similarity search is critical to retain interactive

response times. However, optimizing this search is challenging

due to the non-metric nature of the session similarity measure.

To address this problem we exploit a key property of IDA,

which is that the user session progresses incrementally, with the

top-k similarity search performed, by the recommender system,

at each step. We devise efficient top-k algorithms that harness

the incremental nature of the problem to speed up the similarity

search, employing a novel, effective filter-and-refine method. Our

experiments demonstrate the efficiency of our solution, obtaining

a running-time speedup of over 180X compared to a sequential

similarity search.

1 INTRODUCTION
Interactive Data Analysis (IDA) is an important procedure in any

process of data-driven discovery. It is ubiquitously performed by

data scientists and analysts who interact with their data “hands-

on” by iteratively applying analysis actions (e.g. filtering, aggre-

gations, visualizations) and manually examining the results. This

is primarily done to understand the nature of the data and ex-

tract knowledge from it, yet is also fundamental for particular

data scientific tasks such as data wrangling and cleaning, feature

selection and engineering, and explaining decision models.

However, since IDA is long known as a complex and difficult

task, extensive research has been devoted to the development

of recommendation systems that assist users in choosing an ap-

propriate next-action to perform at each point in an IDA session.

Many of these IDA recommendation systems [2, 15, 16, 26, 43]

rely on a similarity comparison between users’ sequences of anal-

ysis actions (denoted sessions). They follow the assumption that

if two session prefixes are similar, their continuation is likely to

also be similar. Hence, they utilize a repository of prior analysis

sessions (of the same or other users): Given an ongoing user’s

session, such systems first retrieve the top-k most similar session

prefixes from the repository, then examine their continuation

and use the gathered information to form a possible next-action

© 2020 Copyright held by the owner/author(s). Published in Proceedings of the

23rd International Conference on Extending Database Technology (EDBT), March

30-April 2, 2020, ISBN 978-3-89318-083-7 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons

license CC-by-nc-nd 4.0.

recommendation [2, 15, 16, 43]. Since these recommender sys-

tems are interactive, the efficiency of the top-k session similarity

search is critical. However, most previous work focuses on the

quality and applicability of the produced IDA recommendations,

rather than on their scalability and running time performance.
Our goal in this paper is thus to devise efficient, scalable al-

gorithms for this particular top-k similarity search problem, a

significant computational bottleneck in many IDA recommender

systems. Specifically, we focus our attention on a dedicated simi-

larity measure for analysis sessions [3], which we denote by SW-
SIM . In a comprehensive user study [3], SW-SIM was compared,

quality wise, against several alternative similarity measures, and

was found to be the most suitable for the context of data analy-

sis sessions. Consequently, it has been adopted by multiple IDA

recommender systems and applications, e.g., [2, 4, 30, 41, 44].

SW-SIM is an extension of the well-known Smith-Waterman al-

gorithm [35] for local sequence alignment. Intuitively, given a

similarity metric for individual analysis-actions (e.g. filter, ag-

gregation, visualization), SW-SIM compares two sessions s, s ′ by
aligning them, i.e. matching similar action pairs using an align-
ment matrix. The measure allows for (yet penalizes) gaps in the

alignment, and gives a higher weight to the more recent actions

in the session, since they are expected to have higher relevance

on the current user’s intent.

Given a current user session and a sessions repository, a naive

top-k search may be done by sequentially iterating over all ses-

sions in the repository, computing the SW-SIM similarity score of

the current session w.r.t. each of their prefixes, then selecting the

top-k prefixes with the highest score. This simple algorithm, how-

ever, is prohibitively time consuming: Our experiments show
that even when employed on a medium size repository of
10K sessions, the naive sequential search takes more than
17 seconds to complete. This is excessively high for a real-time

response.

To optimize it, two key challenges must be addressed:

1. A single similarity comparison of two sessions is expen-
sive to begin with. Computing SW-SIM requires to construct

an alignment matrix, which results in a high computation time

(quadratic in the mean session length).

2. Employing existing optimizations is highly non-trivial.
Since SW-SIM is a non-metric similarity measure, existing op-

timizations for similarity search e.g. [8, 33, 37] are inadequate.

Furthermore, because analysis sessions are compound sequences

of complex analysis actions, they do not have a numeric vector

representation, which is a requirement by other top-k optimiza-

tion works [33].(See Section 2 for an elaborated discussion.)

A key observation underlying our work is that the user session

progresses incrementally with the top-k similarity search per-

formed by the IDA recommender system at each step. We exploit

this property to address the two challenges mentioned above:

Our first, rather direct optimization, speeds up the processing of

a single similarity comparison between two sessions by utilizing

Series ISSN: 2367-2005 97 10.5441/002/edbt.2020.10

https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2020.10

previous-step computations. Our second, more sophisticated opti-

mization, tackles the top-k search by employing a novel filter-and-

refine technique. It employs lower and upper bounds stemming

from the incremental growth of the sessions accompanied by

a dedicated index structure. Our experiments demonstrate that

using our optimizations, a speedup of more than 180X is
obtained compared to a non-optimized sequential search.
Importantly, this is done while retaining a perfect accuracy of

results, since our algorithms are exact.

We next explicitly state our assumptions and focus, then sum-

marize our contributions and paper organization.

Paper Focus and Assumptions.
1. Although the particular IDA settings may vary, many
IDA recommender systems rely on a top-k prefixes search.
IDA settings may vary between systems, in terms of, e.g., the

type of allowed analysis actions, structure of the data, user ex-

pertise, etc. However, the incremental, session-like nature of the

process characterizes most IDA settings. Our paper is thus aimed

at solving a computational bottleneck in a growing number of

IDA-dedicated recommendation systems [2, 15, 16, 26, 43] that

rely on finding the top-k most similar session prefixes in order

to generate recommendations. Our solution is generic, suitable

for a wide range of IDA platforms, regardless of their particular

settings.

2. SW-SIM is currently the most-suitable measure for IDA
sessions similarity. A multitude of definitions exist for mea-

suring the similarity between two arbitrary sequences, such as

Dynamic Time Warping for time series and Smith-Waterman for

DNA sequences. In the context of data analysis sessions, SW-SIM
is considered the most comprehensive and suitable (See [3] for a

comparative study).

3. The focus of this paper is on performance and scalabil-
ity, rather than on the quality of the produced recommen-
dations. Different IDA recommender systems may use the se-

lected top-k sessions in different ways in order to generate rec-

ommendations, possibly using additional information such as the

data properties, user profiles, etc. But in all of them - response

time optimization of the top-k search is clearly a critical issue.

We therefore focus on performance and scalability rather than

discussing the quality of the recommendations produced. For the

latter, we refer the reader to works e.g. [2, 15, 16, 26, 43] in which

the focus is on the quality of recommendations produced.

Technical Contributions & Paper Organization.
Section 3: We provide a simple, generic model for representing

IDA sessions, and describe the alignment-based session similarity

notion. Based on this model, we develop a formal definition for

the incremental top-k similarity search problem.

Section 4: We describe an optimization for the incremental con-

struction of a session alignment matrix and means to derive

prefixes similarity scores from it.

Section 5: We present a novel threshold-based algorithm for the

incremental top-k search, which utilizes effective similarity lower

and upper bounds, also stemming from the incremental nature

of the search problem.

Section 6: We demonstrate the efficiency of our solution via ex-

tensive experiments on artificial and real-life session repositories.

We begin by reviewing related work (Section 2), and finally

present our conclusions and limitations in Section 7.

2 RELATEDWORK
There is vast literature on sequences similarity, alignment, and

top-k search. We survey works in numerous application domains,

explaining why existing optimizations are inadequate for the

context of IDA.

Bioinformatics-based optimizations for sequence alignment.
Local alignment techniques are known to be extremely useful

in the bioinformatics domain for tasks such as DNA and protein

sequencing [22, 25, 39]. In this application domain, alignment is

often performed between a query sequence and an extremely long

reference string (e.g. a DNA genome), often from a fixed, small

size alphabet (comprises, e.g., six nucleotides). Consequently,

biology-driven optimizations such as [14, 18, 28, 40] exploit this

particular property (small alphabet size) in order to index the

large reference string. These solutions typically use a prefix/suffix

tree or hash tables mapping small, common substrings to their

location in the reference string. In contrast, in our context the

“alphabet" (namely the analysis-actions space) is unbounded and,

as explained in the next section, there is a predefined notion of

distance between letters (analysis actions in our context). Such

solutions, therefore, cannot be directly employed in our case.

Edit Distance and Dynamic TimeWarping (DTW). Edit dis-
tance and DTW are popular alignment-based measures that are

used in numerous application domains such as textual auto-

correction, speech recognition and the comparison of time series.

However, as noted in [3], these measures lack important proper-

ties for the context of IDA sessions. Classical edit-distance, which

originated from the comparison of textual strings, assumes that

letters are either identical or mismatched, which is inadequate

for the context of IDA. This is because the alphabet, containing

individual actions, is much larger and more complex. Also, the

compound similarity of individual “letters” (actions) should be

taken into consideration. DTW, on the other hand, does support

the employment of a designated distancemetric for the sequences’

objects, yet is not compatible with the notion of gaps [32]. Also,
both measures do not support the important time-discount fea-

ture [3], which allows giving a higher weight to the more recent

actions in the session. Optimization works for these measures

are typically based on specific properties of the measures or

application domain [19, 38].

General solutions for similarity search in a non-metric
space. SW-SIM is a non-metric similarity measure, thus many

optimizations that rely on the triangle inequality property (e.g.,[8,

27]) cannot be used here. Other solutions for non-metric spaces,

e.g. [6, 7, 19, 34], assume that the sequences’ objects are numeric

vectors (e.g. as in Minkowski distance, Cosine distance), as op-

posed to sequences of abstract objects (analysis actions in our

case). But even ignoring this, employing any such solutions in

our context requires indexing each session prefix, which may be

prohibitively large (typically by an order of magnitude compared

to the number of sessions). Existing solutions for optimized top-k

search supporting arbitrary, non-metric similarity measure are

Constant Shift Embedding (CSE) [31] and NM-Tree [34]. We ex-

amine these solutions in our experimental evaluation (Section 6.2)

and show that our algorithm is consistently superior, obtaining

a performance improvement of at least two orders of magnitude.

Incremental keyword query autocompletion. Incremental

computation is used for optimization in a variety of database

applications, e.g., interactive association-rules and sequence min-

ing [29], butmost notably for incremental text autocompletion [10,

17, 24]. the latter solutions efficiently perform a top-k keyword

98

similarity search at each key stroke of the user (using string edit

distance). However, such solutions also exploit the rather small

alphabet size and use a trie-index, a dedicated prefix tree for

strings. As explained above, in our case the “alphabet” (i.e., the

analysis-actions space) is complex and unbounded. Last, [21] and

[20] suggest algorithms for incrementally computing the string
edit distance of Ax and B (where x is an additional character) in

O(|A| + |B |) by using the distance matrix computed for A and

B. We employ similar principles for our single-pair incremental

alignment computation (Section 4), yet, importantly, augment

them with novel techniques for efficient top-k similarity search.

Similarity search of scientific/business workflows. Similar-

ity search has also been considered in the context of workflows [12,

23, 36] in two main contexts - searching for workflow specifica-
tions, and searching for workflow traces. They employ, however,

a different notions of similarity focusing mainly on the struc-

ture/nesting of the workflow-specification components (different

from the the unstructured, free-form nature of IDA sessions).

Also, to our knowledge, these works do not address the incremen-
tal nature of the top-k similarity search problem, that is more

typical for IDA sessions than for workflows.

3 PRELIMINARIES
We start by providing basic definitions for IDA, then define the

incremental top-k similarity search problem.

Interactive Analysis Sessions. In the process of IDA, users in-

vestigate datasets via an interactive user interface which allows

them to formulate and issue analysis actions (e.g., filter, group-

ing, aggregation, visualization, mining) and to examine their

results. Formally, we assume an infinite domain
1
of analysis ac-

tions Q and model an analysis session as a sequence of actions

s = ⟨q1,q2, . . . ,qn⟩|qi ∈ Q. We use s[i] to denote the i’th ac-

tion in s (qi) and si to denote the session’s prefix up to qi , i.e.
si = ⟨q1,q2, . . . ,qi ⟩. Therefore, s = sn , and s0 is the empty ses-

sion. An ongoing user session, denoted u , is built incrementally.

At time t the user issues an action qt , then analyzes its results

and decides whether to issue a next action qt+1 or to terminate

the session. The session (prefix) ut at time t thus consists of the
actions ⟨q1, . . . ,qt ⟩, where the following actions in the session,

i.e., qt+1, ..qn are not yet known.

In this work we consider the case of comparing the similarity

of the user session u to other sessions (and parts thereof) in a

given repository, denoted S , containing prior analysis sessions
performed by the same or other users. To formally define sessions

similarity, let us first consider the similarity of individual analysis

actions, then generalize to sessions.

Individual Actions Similarity. Given a distance metric for in-
dividual analysis actions ∆ : Q × Q → [0, 1] over the actions

domain, the action similarity function σ (q1,q2) is the complement

function defined by σ (q1,q2) = 1 − ∆(q1,q2) for all q1,q2 in Q.
Several distance/similarity measures for many kinds of analysis

actions, e.g. for SQL and OLAP queries visualizations, and web-

based analysis actions have been proposed in the literature (e.g.

[3, 16, 26]) and our framework can employ any of them as long

as the corresponding measure defines a metric space.

Session Similarity. As mentioned in Section 2, there are several

ways to lift the similarity of individual elements into similarity

of sequences [11]. To assess which measure is the most suitable

1
The domain is practically infinite since some action types, e.g. “filter”, may have

an unbounded number of possible parameter assignments.

a b c A B
0 0 0 0 0 0

A 0 0.24 0.19 0.13 0.66 0.58
B 0 0.19 0.53 0.47 0.58 1.47
A 0 0.30 0.47 0.53 1.28 1.38
B 0 0.23 0.66 0.58 1.19 2.28

(a) Session ϕ

A B a b c
0 0 0 0 0 0

A 0 0.48 0.43 0.37 0.30 0.23
B 0 0.43 1.07 1.00 0.93 0.85
A 0 0.59 1.00 1.43 1.35 1.26
B 0 0.52 1.32 1.35 1.88 1.78

A AB
ABAB 0.80 1.81

(b) Session ψ

Figure 1: Alignment Matrices for u4 = ”ABAB”

for comparing analysis sessions, the authors of [3] formulated

desiderata for an ideal session similarity measure, based on an

in-depth user study:

• It should take the actions’ order of execution into consider-

ation, i.e. two sessions are similar if they contain a similar
set of actions, performed in a similar order.
• “Gaps” (i.e subsequences of non-matching actions) should

be allowed yet penalized.

• Long matching subsequences should be better rewarded

than shorter matching subsequences.

• Recent actions in the sessions are more relevant than old

ones.

They conclude that the only measure respecting all of the

above mentioned desiderata is the Smith-Waterman similarity
measure [35], a popular measure for local sequence alignment,

and propose an extension suitable for the context of analysis

actions, denoted SW-SIM in our work. We next describe the mea-

sure.

The similarity score of two sessions is defined recursively, on

increasingly growing prefixes, with the base of the recursion

being the empty prefix. At each point, the similarity of the pair

of actions at the end of the prefixes is considered, and the best

option, score-wise, is chosen. The two actions may either be

matched, in which case an award proportional to their similarity

is added to the accumulated score for their preceding prefixes,

or, alternatively, one of the actions is skipped over. In this case a

linear gap penalty 0 ≤ δ ≤ 1 is deducted from the accumulated

score. To reflect the fact that the matching/skipping of older ac-

tions is less important than that of recent ones, rewards/penalties

are multiplied by a decay factor 0 ≤ β ≤ 1 with an exponent re-

flecting how distant the actions are from the sessions’ end. More

formally, the sessions similarity is defined using an alignment
matrix.

Definition 3.1 (Alignment Matrix, Similarity Score). Given ses-

sions s, s ′ of lengths n,m resp., their alignment matrix As,s ′ ∈

R(n+1)×(m+1) is recursively defined as follows. For 0 ≤ i ≤ n,
0 ≤ j ≤ m:

As,s′ [i, j] =

0, if i = 0 ∨ j = 0, else:

max

As,s′ [i − 1, j − 1] + σ (s[i], s′[j])β (n−i)+(m−j)

As,s′ [i, j − 1] − δ β (n−i)+(m−j)

As,s′ [i − 1, j] − δ β (n−i)+(m−j)

0

The similarity score between s and s ′ is defined as:

Sim(s, s ′) := As,s ′[n,m]

Note that even though the distance between individual actions
forms a metric space, as noted in the introduction, SW-SIM does

not induce a metric on IDA sessions.

99

The optimal values for the decay factor β and the gap penalty

δ are typically chosen by the system administrator using an

extrinsic evaluation, as explained in Section 6.1.

The following example illustrates the definition.

Example 3.2. For simplicity, assume that the action space is

represented by the English letters, both uppercase and lowercase,

and assume the following action similarity for any two distinct

uppercase lettersX ,Y and their corresponding lowercase versions

x ,y.

σ (·, ·) :=

σ (X , X) = 1

σ (x, x) = 1

σ (x, X) = σ (X , x) = 0.5

σ (x, y) = σ (X , Y) = 0.1

σ (X , y) = σ (y, X) = 0

Identical letters are maximally similar, and two instances of

the same letter, but in different case (upper/lower), are 0.5 sim-

ilar. Different letters but of the same case are 0.1 similar. Let

u4 =“ABAB” be the current user session, and consider two repos-
itory sessionsϕ =“abcAB” andψ =“ABabc”. Intuitively, according
to the desiderata above, we expect ϕ to be more similar tou4 than
ψ , as their most recent suffix (“AB") is identical. This is reflected

also in the alignment matrices of ϕ andψ , depicted in Figure 1a

and Figure 1b (resp.), when setting the gap penalty δ = 0.1 and

decay factor β = 0.9. The bottom-right cell in each matrix reflects

the alignment score of the two sessions. The highlighted cells

describes the alignment "trace", namely the cells chosen (among

the three options in alignment formula) when advancing to the

next step in the final score computation. Specifically, when the

highlighted trace moves vertically/horizontally we have a gap,

and when it moves diagonally the corresponding actions are

matched. As we can see, the similarity score Sim(u4,ϕ) is higher
than Sim(u4,ψ).

Our definition of SW-SIM follows that of [3, 35] with a minor

adaptation to our context. First, we define the similarity score

as the bottom-right cell of the alignment matrix, as opposed to

the maximal cell value in [3, 35]. This is because we focus on

measuring the similarity of the current session to all session
prefixes in the repository

2
. Second, we apply a decay factor to

both actions matches and gaps, as opposed to only matches in

[3], since their significance decreases as the session advances.

Also, note that [3] suggests dynamically setting the decay factor

and gap penalty, which are both constants in our case. As we

shall see, the use of constant parameter values facilitates effective

optimization via computation factorization.

Problem Definition. To assist the user in choosing an appropri-

ate next-action, IDA recommender systems search the repository

S to identify session prefixes that are most similar to ut - the
current, ongoing user session at time t . The continuation of the

retrieved sessions is then processed by the recommender systems

and used to derive a next-action recommendation for ut .
3

Let Pre f ix(S) be the set consisting of all session prefixes in

repository S , i.e. Pre f ix(S) = {si |s ∈ S, 1 ≤ i ≤ |s |}. Since the
user session u = ⟨q1,q2, ...⟩ is built incrementally, at each step

t = 1, . . . , |u | we are given ut and wish to identify its top-k most

similar session prefixes in the repository.

2
This is done by IDA recommendation systems in order to process the continuation

of matching session-prefixes to next-action recommendations.

3
Other information is often used as well, e.g. the interestingness or frequency of the

actions to be recommended, the user profile, etc.

u \ φ a ab abc abcA abcAB
ABAB 0 0.35 0.90 0.71 1.32 2.28

ABABc 0 0.22 0.71 1.23 1.09 1.95
(a) u , ϕ

u \ ψ A AB ABa ABab ABabc
ABAB 0 0.80 1.81 1.67 2.09 1.78

ABABc 0 0.62 1.53 1.47 1.78 2.19
(b) u , ψ

Figure 2: Similarity vectors for u4 and u5

Definition 3.3 (Incremental Top-k Similarity Search). Given a

user session ut at time t and a sessions repository S , the set

topk (ut , S) ⊆ Pre f ix(S) consists of k session prefixes s.t. ∀s ∈
topk (ut , S),∀s ′ ∈ Pre f ix(S)\topk (ut , S) : Sim(ut , s) ≥ Sim(ut , s

′).

The incremental search problem is to compute, at each t =
1, . . . , |u |, the set topk (ut , S).

For simplicity, we assume that in the course of a user session

u , the repository S is unchanged. In Section 5.5 we discuss the

minor changes required in our framework to support the case of

a dynamic repository where sessions are incremented or added.

Last, note that while session prefixes may be long and con-

tain “historical” actions of less importance, SW-SIM (as explained

above) favors recent, later actions over old ones. Also, it is easy to
show that in SW-SIM , the similarity of a prefix si = ⟨q1,q2, ...qi ⟩
is always higher (or equal) than the similarity of any shorter

sub-session of s ending in qi .

4 INCREMENTAL SIMILARITY COMPUTATION
We first optimize the similarity calculations between the current

user session u and all prefixes of a single repository session s .
Rather than computing the alignment matrix from scratch for

each prefix of s , we show that: (1) it is sufficient to compute one

alignment matrix between two sessions, then use it to simultane-

ously derive all prefixes similarity scores, and (2) the alignment

matrix Aut ,s at time t can be efficiently constructed by reusing

the previous matrix Aut−1,s computed at time t − 1.
Given a current user session ut and a repository session s of

size |s |, we define a similarity vector, ®Sim(ut , s) containing the

similarity score of ut and each prefix of s , i.e.,

®Sim(ut , s) = [Sim(ut , s0), Sim(ut , s1), . . . , Sim(ut , s |s |)]

We use ®Sim(ut , s)[j], where j = 1 . . . |S |, to denote the j element

in the vector. The similarity vector ®Sim(ut , s) can be derived from
the alignment matrix Aut ,s using the following observation:

Observation 4.1. Given an alignment matrix Aut ,s

∀0 ≤ j ≤ |s | : ®Sim(ut , s)[j] =
Aut ,s [t , j]

β |s |−j

Namely, the similarity score of ut and prefix sj is derived from
their corresponding element in the alignment matrix, Aut ,s [t , j],
by readjusting the decay factor β . The proof is derived from the

more general observation that for arbitrary prefixes si and s
′
j of

session s and s ′:

Asi ,s ′j [i, j] =
As,s ′[i, j]

β (|s |−i)+(|s
′ |−j)

(1)

Example 4.2. To continue with our running example, the simi-

larity vectors ®Sim(u4,ϕ) and ®Sim(u4,ψ) are given in the first row

of the tables in Figure 2a, and Figure 2b, resp. According to Obser-

vation 4.1, an element in the similarity vector, e.g. ®Sim(u4,ϕ)[3],
may be computed directly from the corresponding cell in the

100

alignmentmatrix ofu4 andϕ: ®Sim(u4,ϕ)[3] =
Au

4
,ϕ [4,3]

β 2
= 0.58

0.81 =

0.71.

Further exploiting the incremental nature of the problem,

we next show how to efficiently construct a similarity vector

®Sim(ut , s) at time t , from that computed at time t − 1, thereby
avoiding explicitly building the entire alignment matrix. To do

so, we generalize the dynamic programming construction of the

alignment matrix (Definition 3.1). Vector entries at time t are
computed by reusing entries in the previous similarity vector

®Sim(ut−1, s), computed at time t − 1 (see the colored parts of the

formula in Proposition 4.3).

Proposition 4.3. For every repository session s , user session u
and time t > 1,

®Sim(ut , s)[j] =

0, if j = 0, else:

max

®Sim(ut−1, s)[j − 1] β 2 + σ (ut [t], s[j])
®Sim(ut , s)[j − 1]β − δ

®Sim(ut−1, s)[j] β − δ

0

The proof is obtained by employing Equation 1 on each case

of the conditional definition.

Example 4.4. Continuing with our example, assume that the

user now issues a new action "c", i.e. at t = 5, u5 = ”ABABc”. The
new similarity vectors ®Sim(u5,ϕ) and ®Sim(u5,ψ), are depicted in

the bottom row of Figures 2a and 2b, resp. As before, the similarity

scores Sim(u5,ϕ) and Sim(u5,ψ), appear in the right-most cell of

the vectors. Using Proposition 4.3 we can derive each value in the

new vectors from the previous corresponding similarity vectors

at time t = 4. For example, the fourth element in ®Sim(u5,ψ) is
given by:

®Sim(u5, ψ)[4] =max

®Sim(u4, ψ)[3]β 2 + σ (“c”, “b”)
®Sim(u5, ψ)[3]β − δ
®Sim(u4, ψ)[4]β − δ

=max (1.45, 1.22, 1.78) = 1.78

Let us analyze the reduction in time complexity resulting from

these two simple optimizations. Let |̂s | be the average session
size and λ the complexity of computing similarity for individual

actions. The expected time complexity of computing the similar-

ity vector ®Sim(ut , s) by construcitng all (|̂s |) allignemnt matrices

is O(|̂s |3λ). Employing Observation 4.1 allows us to compute

the same vector by constructing only one alignment matrix, in

O(|̂s |2λ). Further employing Proposition 4.3 reduces the expected

time to O(|̂s |λ) since only |s | action similarity calculations are

required, between ut [t] (the new action in ut) and all actions of

s .

5 INCREMENTAL TOP-K ALGORITHMS
We are now ready to address the incremental top-k problem -

given an ongoing user session u , retrieve the set topk (ut , S) of
similar prefixes at each time t = 1, . . . , |u |. We first present a sim-

ple algorithm, denoted I-TopK, that iterates over the repository

S and computes the similarity vector for each session. We then

show how a much faster variant, denoted T-TopK, is obtained by

employing a novel, incremental-based filter-and-refine approach.

Algorithm 1 T-TopK(ut , S,k)

Input: ut - current user session,
S - session repository,

k - size of the top-k set.

Output: topk (ut , S) - a set of top-k most similar session

prefixes to ut .
1: top ← MaxHeap(k)
2: if t == 1 then
3: Use I-TopK to obtain topk (ut , S)
4: else
5: Compute inf t , the lower-bound similarity threshold

6: C ← {s |s ∈ S ∧ supt (s) ≥ inf t }
7: for session s ∈ C do
8: m ← latest time t ′ < t that ®Sim(ut ′, s) was computed.

9: for (i =m + 1; i ≤ t ; i + +) do
10: Compute ®Sim(ui , s) using Proposition 4.3

11: for (j = 1; j ≤ |s |; j + +) do
12: top .push(®Sim(ut , s)[j], sj)

13: if |top | == k then
14: C ← C \ {s |supt (s) < minScore(top)}
15: return top

5.1 Iterative Top-k Algorithm (I-TopK)
Algorithm I-TopK takes the following as input: the current session

ut , the sessions repository S , and the desired size k of the top-

k set. It iterates over the repository, computing the similarity

vector ®Sim(ut , s) for each s ∈ S by employing Proposition 4.3,

i.e. by using the similarity vector ®Sim(ut−1, s) calculated at the

previous iteration (t − 1). The top-k similarity scores (along with

their corresponding prefixes) are maintained in a max-heap of

size k , which will contain the exact set topk (ut , S) of the top-k
most similar prefixes to ut at the end the loop.

The time complexity of I-TopK is O(|S | |̂s |λ), since it iterates
over a session repository of size |S | and computes a similarity

vector inO(|̂s |λ). The max-heap is maintained in a negligible cost

ofO(loд k), as we assume that k << |S |. As for space complexity,

I-TopK requires storing the previous similarity vectors computed

at t − 1, therefore it requires O(|S | |̂s |) space, where |̂s | is the
average session size.

5.2 Threshold-Based Algorithm (T-TopK)
The T-TopK algorithm follows a filter-and-refine paradigm, s.t.

in the filter step, repository sessions are pruned according to

an overestimation of their similarity scores. Then, during the

refinement step, the similarity vectors are computed only for

candidate sessions passing the filter step. Importantly, T-TopK is

guaranteed to be exact since the filter step always overestimates
the true similarity scores and underestimates the filter thresholds.
The novelty and efficiency of the algorithm stem from exploiting

the incremental nature of the search problem.

We first describe the outline of the T-TopK algorithm, then in

Sections 5.3 we present the techniques used for its filter step, i.e.,
the efficient calculation of the similarity lower and upper bounds.

T-TopK Algorithm Outline. Algorithm 1 depicts the outline of

the T-TopK algorithm. For a given user session ut , a sessions

repository S and a number k , the prefixes set topk (ut , S) is re-
trieved in the following manner. First, if ut contains only one

101

action, the I-TopK algorithm will be used, since we have no pre-

vious prefix to rely on. Otherwise we employ a filter-and-refine
process as follows.

Filter Step. We first find candidate sessions that are likely to

contain prefixes in the top-k set topk (ut , S):
(1) Form a global similarity threshold. We first compute

an initial lower bound threshold, denoted inf t , for the similarity

score of a prefix to be a member of topk (ut , S). The threshold
inf t underestimates the true minimal similarity score (Line 5).

(2) Compute a similarity upper-bound for each session.
We then form a similarity upper-bound for each session s , denoted
supt (s), that overestimates the maximal similarity of a prefix in

s to the current user session ut .
The algorithm then filters the repository S by retrieving all ses-

sions having similarity upper-bounds greater than inf t (Line 6).
Importantly, since the lower bound is underestimated and the

upper bounds are overestimated - no false negatives can occur.

In Section 5.3 we describe how the similarity lower and upper

bounds are defined and efficiently calculated.

Refinement Step. We employ a refinement step over the candi-

date sessions and calculate the exact similarity scores using their

similarity-vectors. Recall that to efficiently construct a similarity

vector (Proposition 4.3) at time t , we need to have the vector of

time t − 1. However, we may not have calculated a similarity vec-

tor at t −1 if a session was pruned in the filter step. Thus, for each

such candidate session we reconstruct, if necessary, its previous

vectors from time < t (We discuss below how this computation

can be performed in user idle-times, allowing T-TopK a further

speed-up), then compute the current similarity vector ®Sim(ut , s)
(Lines 9- 10).

Last, we iteratively push each element in the similarity vector

into a max-heap top of size k (Lines 11- 12), and further prune

candidate sessions if their upper bound is lower than the mini-

mum score in top (Lines 13-14). Finally, the max-heap top holds

the set topk (ut , S), containing the top-k most similar prefixes to

ut .

Offline computation in user idle-times. User idle-times occur

between two consecutive actions - while the user examines the

results of her current action, before executing the next one (which

typically takes several seconds). Our algorithm utilizes such idle-

times, to compute similarity vectors skipped at previous iterations

offline, so that they are already available when needed in the top-k
search.

Correctness of the T-TopK algorithm. We next sketch the cor-

rectness proof, showing that the T-TopK algorithm is correct,

i.e., always retrieves the exact set of top-k most similar session

prefixes:

Let top denote the output of the algorithm. We need to show

that topk (ut , S) = top. We will consider t > 1 (the case of t=1 is

trivial). First, we show that for an arbitrary prefix sj of a repos-
itory session s , sj ∈ topk (ut , S) → sj ∈ top. If s ∈ topk (ut , S)
then Sim(ut , s) ≥ inf t (as inf t is the similarity lower bound).

Hence, for the upper bound supt (s) of session s we can eas-

ily see that supt (s) ≥ inf t , thus s ∈ C , i.e. s is retrieved and

processed as a candidate session. The proof for the case that

sj ∈ topk (ut , S) ← sj ∈ top follows similar lines.

To complete the picture we still need to explain how (1) the

similarity lower bound inf t , and (2) the upper bounds supt (s)
are computed and compared.

5.3 Incremental-Based Similarity Bounds
We first explain how the similarity lower and upper bounds are

defined, then describe how the candidate sessions are efficiently

retrieved.

5.3.1 Similarity Threshold (Lower Bound). The threshold inf t

forms a lower-bound (underestimated) for the similarity score

of a prefix to be a member of topk (ut , S). Intuitively, we use the
sessions in the (already computed) top-k set of time t − 1 as a
potential representative for the top-k set of time t , and define

our threshold w.r.t. them. Let St−1top ⊆ S denote the set of sessions

with prefixes in topk (ut−1, S). The similarity threshold is defined

by:

inf t =minScore(topk (ut , S
t−1
top))

As the size of St−1top is at most k , inf t is computed efficiently.

The proof that inf t always underestimates the exact lower-

bound can be immediately obtained from the simple observation

that:

∀S ′ ⊆ S,minScore(topk (ut , S
′)) ≤ minScore(topk (ut , S

′))

In particular, the observation holds for S ′ = St−1top .

Nevertheless, we show that inf t cannot be too far from the

exact threshold at t-1, using the following observation:

Observation 5.1. minScore(topk (ut−1, S))β − δ ≤ inf t

This stems from the fact that the lowest possible inf t is ob-
tained when the last query in ut is not aligned in any of the

sessions in St−1top (hence a gap penalty is absorbed).

Example 5.2. Assume that k = 1 (i.e. we are interested in the

top-1 similar prefixes), and consider the sessions u ,ϕ,ψ from our

running example. Considering the similarity vectors at t = 4

(detailed in Example 4.2), the most similar prefix is ϕ5 and thus

top1(u4, {ϕ,ψ }) = {ϕ5}. Consequently, its corresponding ses-

sion is in the set S4top = {ϕ}. For computing the threshold

inf 5 =minScore(top1(u5, S
4

top)), we construct the similarity vec-

tor ®Sim(u5,ϕ) (bottom row in Figure 2a), and take the maximal

score among its elements, thus inf 5 = 1.95.

5.3.2 Upper-Bounding Similarity Scores.
Let ŝupt (s) = max

1≤j≤ |s |Sim(ut , sj) denote the tight, exact
upper bound for the similarity score of all prefixes in s . Recall
that for sessions in St−1top , we already computed their similarity

vectors when computed the lower bound inf t , therefore their
tight bound is already at hand. Nevertheless, for the rest of the

sessions, i.e. s ∈ S \ St−1top , we show that the incremental nature

of the computation can be used to form supt (s), an effective

over-approximation to ŝupt (s). An important observation is that

we are only interested in upper-bounding the scores of sessions

containing at least one prefix with a similarity scores higher than

inf t (otherwise it can be safely pruned). We therefore define a

proper similarity upper bound as follows:

Definition 5.3 (Proper upper bound). supt (s) is a proper upper
bound w.r.t. ut and S , if for every session s having some prefix sj
where Sim(ut , sj) > inf t , we have that supt (s) ≥ ŝupt (s).

A second important observation, is that unless the last action

in ut , denoted qt , is aligned to an action in s ∈ S \ St−1top , s can be

safely pruned.

102

Observation 5.4. For a session s ∈ S \St−1top , if when computing
Sim(ut , s) the action qt is not matched with any of s’s actions, then
for every prefix sj of s , Sim(ut , sj) ≤ inf t .

This is because if qt is not matched with an action in sj it ab-
sorbs a gap penalty, i.e., Sim(ut , sj) = Sim(ut−1, sj)β − δ (Propo-

sition 4.3). On the other hand, since sj < topk (ut−1, S) we know
that Sim(ut−1, sj) ≤ minScore(topk (ut−1, S)). Then, using Obser-
vation 5.1 we can see that Sim(ut , sj) can never exceed inf t .

Consequently, in the analysis below we ignore sessions where

qt is not matched with any of s’s actions, and for brevity, unless

stated otherwise, whenever we refer to a session s we mean one

in S \ St−1top where qt has a match.

We next provide two ways to overestimate ŝupt (s). In our

efficient implementation of the filter procedure for candidate

session retrieval (to be detailed in the next subsection), we use

the first bound to quickly prune irrelevant sessions, then use the

second one for further pruning the candidates set.

First bound (B1). The following observation shows that we

can bound ŝupt (s) from above using the top-k set of the previous

iteration and the maximal similarity of the session’s individual

actions to the new action qt .

Observation 5.5.

ŝupt (s) ≤ minScore(topk (ut−1, S))β
2 +maxq∈s {σ (qt ,q)}

Intuitively, this is because for every prefix not in topk (ut−1, S),
the similarity to ut−1 is smaller than

minScore(topk (ut−1, S)). Consequently, even if the newly added

action qt is matched to the most similar action in s , by the defi-

nition of the similarity measure, the cumulative score cannot be

greater than the prefix similarity (multiplied by the decay factor,

following the arrival of a new action) plus the similarity of the

best match (Proof omitted). We therefore use the following as

our first upper-bound:

B1(s) =minScore(topk (ut−1, S))β
2 +maxq∈s {σ (qt ,q)}

Note that since topk (ut−1, S) is already computed, to calculate

the bound we only need the similarity of qt and the actions in s .
As individual actions do reside in a metric space (unlike session-

s/prefixes), we show in Section 5.4 how this is done efficiently.

Second bound (B2). An alternative, less intuitive upper-bound

for ŝupt (s) is achieved by dividing ut into three disjoint subse-

quences w.r.t. a session s , and separately bounding the similarity

to each part: (a) the segment of ut that was already compared to

s in previous iterations, denoted uτ (b) the segment containing

only the last added action qt , and (c) the segment in between

these two. By adding up the bounds for each segment we obtain

a bound for the whole sequence:

Proposition 5.6.

ŝupt (s) ≤ max
1≤j≤ |s |{ ®simuτ ,s [j]}β

2(t−τ) +
β2(t−τ) − β2

β2 − 1
+

+maxq∈s {σ (ut [t],q)}

The latter proposition holds for β < 1
4
.

Proof Sketch. We prove by induction. We denote

sτ := max
1≤j≤ |s |{ ®simuτ ,s [j]}. The base case is when t = τ + 1.

4
For the case of β = 1, the middle part in the compound expression is defined to be

0

We can easily show that:

ŝupτ+1(s) ≤ sτ β
2 +maxq∈s {σ (ut [t],q)}

We know that:

ŝupt+1(s) ≤ ŝupt (s)β2 +maxq∈s {σ (ut+1[t + 1],q)} (2)

Assuming the inequality holds for t , we can bound ŝupt (s)β2:

ŝupt (s)β2 ≤ β2(sτ β
2(t−τ) +

β2(t−τ) − β2

β2 − 1
+maxq∈s {σ (ut [t],q)})

Sincemaxq∈s {σ (ut [t],q)} ≤ 1 we have:

ŝupt (s)β2 ≤ sτ β
2(t+1−τ) +

β2(t+1−τ) − β4 + β2(β2 − 1)

β2 − 1

We can use the latter expression in (2) to obtain:

ŝupt+1(s) ≤ sτ β
2(t+1−τ)+

β2(t+1−τ) − β2

β2 − 1
+maxq∈s {σ (ut+1[t+1],q)}

Hence the inequality holds for t + 1 □

Importantly, note that this bound requires no action-similarity

computations besides those already performed for B1, and that all
other values are either predefined constants or already computed

in previous iterations. The proper upper bound supt (s) is defined
as the minimum of the two bounds: supt (s) =min(B1(s),B2(s))

5.4 Efficient Retrieval of Candidate Sessions
As mentioned above, we use the first bound B1 to quickly iden-

tify relevant sessions, then compute the full bound only for the

retrieved sessions, for further pruning. We use the following

observation, which follows immediately from Observation 5.5.

Observation 5.7. For supt (s) to be not smaller than inf t , s
must contain some action q s.t.

σ (qt ,q) ≥ inf t −minScore(topk (ut−1, S))β
2

To identify sessions that contain such actions, we employ

an index structure that uses the fact that the action similarity

measure defines a metric space (See Section 3). Specifically, in

our implementation we use a metric-tree [8] - a popular index
structure that harnesses the triangle inequality property of a

metric space to facilitate a fast similarity search.

Sessions selection via the actions metric-tree. Individual actions
are stored in a metric tree, with pointers from each action to the

session it appears in
5
. From Observation 5.7 and our definition of

the action distance notion, it follows that all sessions that satisfy

the bound B1 must contain some action q s.t.:

∆(qt ,q) ≤ 1 − inf t +minScore(topk (ut−1, S))β
2

We thus use the metric tree for a fast retrieval of all such actions

q, and follow their associated pointers to identify the relevant

sessions. Now we only need to compute Bound B2 for the re-

trieved sessions to select those with upper bound greater than

inf t .

Example 5.8. For our running example, at t = 5 we retrieve

candidate sessions via the metric tree, w.r.t. the lower bound

1.95 (computed as in Example 5.2). Recall that our goal is to

retrieve sessions having an action q s.t. ∆(q5,q) ≤ 1 − inf 5 +
minScore(top1(u4, {ϕ,ψ }))β

2
, namely actions similar to q5 = “c”

with distance no more than 1 − 1.95 + 2.28 ∗ 0.81 = 0.897. Only

5
The distance function used is the complement of our predefined action similarity

function, i.e. ∆(q, q′) = 1 − σ (q, q′)

103

the letters “C” and “c” meet this constraint, therefore sessionsψ
(that contains “c”) is retrieved and added to the initial candidate

sessions set. Then, the upper bound forψ is given by sup5(ψ) =
min({B1(ψ),B2(ψ)}) =min(2.84, 3.09) = 2.84 (full computation

omitted), which is greater than the lower bound 1.95, therefore

the final set of candidate sessions is {ψ }.

5.5 Analysis of Pruning Effectiveness
Intuitively, the effectiveness of T-TopK is dependent on (1) the

amount of reduction in the examined candidate sessions, on which

the exact similarity scores are calculated, as well as on (2) the

cost of retrieving the candidate sessions.

First, let us assess the expected time complexity of T-TopK. Let

|Ĉ | be the expected number of candidate sessions meeting the

bounds (we assume |Ĉ | >> k), and let τ̂ be the expected number

of missing similarity vectors that need to be computed for each

candidate session. Also, denote by α the cost of the metric-tree

search. Thus the average time complexity of T-TopK is given by

O(α + λ |Ĉ |τ̂ |̂s |).
The parameters |̂s | (mean session size) and λ (cost of individ-

ual action similarity operation) are not controllable nor affected

by the implementation of the T-TopK algorithm. We therefore

analyze the performance of T-TopK according to the following

parameters: α - the cost of the actions metric tree search, |Ĉ | -
the expected number of candidate sessions, and τ̂ the expected

number of missing vectors per candidate session.

Cost of searching the actions metric tree (α). Recall that the
individual actions metric tree is used to efficiently retrieve all

repository sessions that satisfy BoundB1. Based on the costmodel

for metric trees proposed in [9], α is given by:

∑L
l=1 λMl+1F (r̂l +

rq), where: F (x) is the action-distance probability distribution

(i.e., the probability that the distance of two arbitrary actions

≤ x), L is the number of levels in the tree, andMl is the number

of nodes in level l of the tree, r̂l is the mean covering radius of
nodes at level l , and rq is the search range (in our case, rq =

1 − inf t + minScore(topk (ut−1, S))β
2
). Also note that ML+1 is

the total number of individual actions stored in the metric tree.

Based on this cost model, we can see that (1) naturally, increasing

the size of the actions domain and the cost of action-distance

computation increases α . (2) More importantly, decreasing the

range rq decreases α . The latter is greatly affected by the lower

bound inf t and the upper bound B1, as described next.

Expected number of candidate sessions (|Ĉ |). The number

of candidate sessions directly stems from the number of ses-

sions that satisfy both bounds B1 and B2. Intuitively, |Ĉ | de-
pends on three factors: (1) How high is the lower-bound. Natu-
rally, the higher the lower-bound inf t is, the less the repository
sessions may surpass it. The lower bound inf t , computed by

minScore(topk (ut , S
t−1
top)) is higher, if the least similar prefix in

the top-k set, computed over the sessions in St−1top , is of high simi-

larity tout . In turn, this holds if the probability that qt , the newly
added action to ut will be similar enough to actions contained

in the sessions of St−1top , and also on the exact similarity thresh-

old computed at t-1 (higher is better). (2) How low are the upper
bounds. Similarly, lower upper-bounds reduce the chance that
repository sessions can surpass the lower bound. Both upper

bounds are lower when the decay factor β is lower (this directly

stems from Observation 5.5 and Proposition 5.6). Also, for both

upper bounds, if the probability that qt is aligned to an action in

s ∈ S \St−1top is lower - so are the upper bounds. (3) The underlying

session similarity probability distribution - intuitively, how many

sessions, on expectation, may contain prefixes with high simi-

larity to ut - sufficient to satisfy Bounds B1 and B2. Naturally,
if many sessions are likely to have prefixes similar to ut , more

candidates will be retrieved.

Expected number of missing similarity vectors τ̂ . A higher

number of missing similarity vectors decreases the performance

of T − TopK . It may happen if a session did not make it to the

candidates set C for several consecutive iterations, yet is sud-

denly considered at time t . However, recall that many of these

missing vectors may be effectively computed in user idle times.

We also show in Section 6.3 that even idle-times shorter than the

minimal human reaction time (250ms) are sufficient to compute

a significant portion of the missing vectors.

In summary, the effectiveness of the pruning is dependent on

multiple, intertwined factors that stem both from the underlying

structure of the analysis sessions (and actions) as well as the prob-

lem parameters (such as the gap penalty δ and the size of k). In
our experimental evaluation (See Section 6) we have empirically

examined the effect of various such parameters on the perfor-

mance of T-TopK. Besides using a real-life session repository,

we used a multitude artificially crafted repositories, each with

different underlying structure, as well as different settings of the

search problem. We show that in almost all such configurations,

T-TopK is highly efficient in comparison to I-TopK and surpasses

other baseline algorithms by 2-3 orders of magnitude.

Additional Remarks. We conclude with two remarks. First, con-

sidering the space complexity of T-TopK - on top of storing the

similarity vectors there is an additional cost induced by main-

taining the metric tree. However, assuming that the metric tree

is balanced, the overall space complexity of the algorithm is thus

O(|S | |̂s |), which is the same as for I-TopK. In Section 6 we show

that the additional cost induced by the metric tree is marginal,

even when the session repository contains over 1.5M individual

actions.

Last, note that in practical settings the repository is dynamic,

i.e., new sessions are added and existing ones are incremented.

T-TopK can be easily adapted to this setting, as newly added

or incremented repository sessions merely induce more missing
similarity vectors. Recall from Section 5.2 that missing vectors

can be computed during user idle-times (between her consecutive

actions) thereby minimizing the effect on computation time.

6 EXPERIMENTAL STUDY
As mentioned above, since the speedup achieved by our opti-

mizations may be affected by the underlying structure of the

session repositories, one would ideally like to evaluate their per-

formance on a multitude of real-life session repositories with

different characteristics.

However, the only publicly available repository (to our knowl-

edge) of real-life analysis sessions is rather small [1]. Therefore,

we first performed experimental evaluations on a variety of artifi-

cially crafted session repositories, each having different internal

characteristics that may effect the performance of our solutions.

Then, we used the session repository of [1] to verify that the

same performance trends hold on real life sessions as well.

Last, let us recall that our experiments focus on running-

time performance. For an evaluation of the quality of recom-

mendations generated based on SW-SIM we refer the reader to,

e.g., [2, 3].

104

In what comes next, we describe the experimental setup and

the construction method for the artificial repositories in Sec-

tion 6.1, then show the performance of our solution compared to

numerous baseline approaches in Section 6.2. Last, we examine

the scalability and performance trends w.r.t. numerous parame-

ters of the search problem and session repositories (Section 6.3).

6.1 Experimental Datasets & Setup
Artificial Session Repositories Construction. In the absence of

real-life session repositories that are large enough and publicly

available, we constructed a multitude of artificial repositories,

each with different underlying characteristics that may affect the

performance of our solution. Each repository was constructed by

first building an action (metric-) space with certain, configurable

properties, then constructing repository sessions by drawing

actions from this space (also w.r.t. a configurable setting). The

controllable parameters and the ranges we use are depicted in

Table 1.

Generating the individual action space. Recall that our algo-
rithmsmodel analysis actions as abstract objects in a givenmetric

space. We represent here actions as points in an N -dimensional

Euclidean space, with the Euclidean distance as the distance met-

ric. To obtain values in [0, 1] range, each element is restricted to

the range [0, 1√
N
]. We the simulate a controlled degree of similar-

ity between actions as follows: first draw a (controllable) number

of action points uniformly at random (u.a.r.), to serve as cluster

centers, then generate additional actions around each center us-

ing a (multi-variant) normal distribution, with the cluster-center

as mean. In our experiments we varied the number N of action-

space dimensions, the number of action clusters, and their radius

(standard deviation), obtaining different degrees of underlying

action-similarity in the repository session.

Generating repository sessions. The sessions repository is

constructed in an analogous manner. We first generate a set of

“seed” sessions, then use them to generate sessions with varying

degrees of similarity to the seed. For each session (seed or other)

we draw its length from a given normal distribution. To construct

a seed-session we select (u.a.r) a sequence of actions of the given

length. The rest of the repository sessions are constructed based

on one of the seed-sessions. To further control the similarity of

an arbitrary session s to its corresponding seed, we set a fraction

p of “random” actions in s . Namely, p · l actions in s are randomly

drawn (u.a.r) from the entire action space. The rest (1−p)·l actions
in s are chosen from the same action-clusters as the actions in

the corresponding seed session. Intuitively, setting a high value

of p of “random” actions significantly decreases the potential of

two sessions to be similar.

In the experiments below we used multiple repository config-

urations, as depicted in Table 1.

REACT-IDA Session Repository. We used the only publicly avail-

able repository (to our knowledge) of real-life sessions [1], col-

lected as part of the experimental evaluation of an existing IDA

recommender system [26]. The user sessions were performed by

56 analysts who used a web-based IDA interface in order to ex-

plore four different datasets from the cyber-security domain. The

repository contains 1100 distinct actions. The average session

length is 8.5 actions, and the median user idle-time is 40 seconds.

Action Similarity. Recall that both algorithms require a mea-

sure for action similarity. When using the real-life repository,

we employed the similarity measure of the IDA recommender

Parameter Min Max Default
Problem Parameters

Decay Factor β 0.1 1 0.9

Gap Penalty δ 0.05 1 0.1

Output Size k 4 24 12

Controlled Repository Parameters
Action Dim. 5 500 25

#Action Clusters 3K 24K 6K

Cluster Rad. (std) 0.0075 0.012 0.003

#Seed Sessions 6% 16% 10%

%Random Actions (p) 0% 100% 80%

Idle Time (s) 0 5 1

Repository Scale Parameters
#Sessions 1K 100K 10K

Session len. N(4, 32) N(32, 122) N(16, 32)

Table 1: Problem & Repository Parameters

system [26] whose analysis UI was used to record the sessions.
6

For the artificial repositories, where the actions reside in a multi-

dimensional metric-space, we used Euclidean distance.

Default Parameters Selection. The search problem parameters

(namely, the decay factor β , the gap penalty δ , and the size of

k) may affect the performance of our solution. However, to cap-

ture the real-life setting where the algorithms are embedded in

actual IDA recommender systems, the default values are set to

optimize the quality of the SW-SIM measure, rather than the per-

formance of our optimizations. To do so, we embedded SW-SIM as

the top-k search component in the IDA next-step recommender

system [26] (code available in [1]), and performed the hyper-

parameters selection routine as described in [26]. Briefly, this

is done by executing a grid search for the systems’ parameters

(including the top-k problem parameters), and selecting the con-

figuration that allows the recommender system to achieve the

highest qualitative performance (as determined in a predictive

accuracy evaluation).

As for the artificial repository construction, intermediate val-

ues were chosen as default values, as stated in Table 1. Never-

theless, in Section 6.3 we examine the effect of varying each

problem/repository parameter on the running time performance

of our solution.

Hardware and Software Specifications. We implemented the

algorithms presented in the previous sections in Java 8, using
Guava (https://github.com/google/guava) for the max-heap. For

the metric-tree we used an M-tree [8] Java implementation (https:

//github.com/erdavila/M-Tree), employingMinimum Sum of Radii
split policy (See [8]), and a maximum node capacity of 20 objects.

All experiments were conducted over Intel Core i7-4790, 3.6GHz
machine (4 dual cores), equipped with 8GB RAM.

6.2 Baseline Comparison
We compared the performance of the T-TopK algorithm to the

following baseline algorithms, each computing the exact set

topk (ut , S) according to the alignment based similarity measure

(Definition 3.1). Among these, we show the results of the follow-

ing baselines: (1) Naive Sequential Search (NSS) that retrieves
the set of similar prefixes by iteratively comparing ut to each

prefix of each repository session in S using a direct implementa-

tion of Definition 3.1 with no further optimizations, then selects

6
The similarity notion considers both the action syntax and (a signature of) the

results. (See [26]).

105

REACT-IDA (1.1K actions) Repo-10 (160K actions) Repo-100 (1.6M actions)Baseline Time (ms) #ops Time (ms) #ops Time (s) #ops
NM-Tree 42.3 27.5K 18,503 12.3M 186 123M

CSE 55 36.6K 18,224 12.1M 183 121M

NSS 51.9 35K 17,204 11.5M 170 123M

OSS 7.6 5.1K 3,242 1.36M 32 13.6M

I-TopK 1 1.1K 237 160K 2.4 1.6M

T-TopK 0.5 641 59 39K 0.9 722K

Table 2: Baseline Comparison. We compared various baseline algorithms in terms of running times and the number of similarity operations

the top-k similar prefixes. (2) Optimized Sequential Search
(OSS), which employs the first optimization described in Sec-

tion 4, instead of computing the alignment matrix for each prefix.

Namely, it iterates over all sessions in s ∈ S , constructs a single
alignment matrix Aut ,s , and uses Observation 4.1 to derive the

similarity scores of ut and each prefix of s . (3) I-TopK, the itera-
tive algorithm depicted in Section 5.1 which employs both of the

optimizations in Section 4. (4) T-TopK, the optimized algorithm

described in Sections 5.2-5.4. (5) Constant Shift Embedding
(CSE)[31] and (6) NM-Tree [34], are general purpose solutions
for top-k search in a non-metric space. Both usemetrization tech-

niques: CSE use a simple solution that increments each distance

score by a predefined constant, so the triangle inequality is en-

forced. Then, all session prefixes in S are stored in a metric tree
(w.r.t. the new metric space). When given the ongoing session

ut , the metric tree is traversed, using the new metric to obtain

the exact set of top-k similar prefixes. NM-tree uses a more so-

phisticated similarity-preserving transformation on the original

(non-metric) distance measure, then employs an extension of the

metric tree to index and query the transformed metric space.

Finally, recall from Section 2 that optimization techniques

dedicated to other similarity measures (e.g., DTW, Global Se-

quence Alignment) are inadequate for SW-SIM , therefore could

not serve as baselines. Also, approximation-based solutions were

omitted as well since this work concerns with the case of exact

computation of the similarity scores.

Evaluation Process. We evaluated all baselines using a mul-

titude of configurations for the top-k search problem (i.e. the

constants β , δ of the similarity measure, and k), on various con-

figurations of artificial repositories.

The evaluation process is as follows. Given a session repository

S , in each trial we draw a random session prefix as ut , then
employ each baseline to retrieve topk (ut , S). We performed 100

trials for each repository, capturing the average execution time

and memory consumption, and the average number of action

similarity operations performed in each run.

Results. Table 2 presents a representative sample of the results,

showing the average running time and the number of action sim-

ilarity operations (denoted #ops) obtained by each baseline. The

comparison is presented for the REACT-IDA repository (Con-

taining 1.1K actions) as well as Repo-10 and Repo-100, which are

two artificial session repositories (with the default configuration

stated in Table 1) containing 10K and 100K sessions (resp., 160K

and 1.6M actions).

First, for both Repo-10 and Repo-100, the performance of NM-
Tree and CSE is almost on-par with NSS (the naive sequential

search). This could be due to the fact that transforming the non-

metric space may induce high overlap between the metric-tree

nodes, therefore the search deteriorates to sequential search plus

additional overhead induced by the metric tree (See [34]). Second,

note that OSS improves running times by 5X (and #ops by 9X)

10 20 30 40 50 60 70 80 90 100
of Sessions (x1000)

0

250000

500000

750000

1000000

1250000

1500000

1750000

2000000

#O
P
S

0

350

700

1050

1400

1750

2100

2450

2800

R
un

ni
ng

 T
im
e
(m

s)

(a) Repository Size

4 8 12 16 20 24 28 32
Mean Session Size

0

50000

100000

150000

200000

250000

300000

350000

#O
P
S

0

70

140

210

280

350

420

490

R
un
ni
ng
 T
im
e
(m

s)

(b) Mean Session len.

Figure 3: Effect of Scale Parameters

over NSS due to its efficient use of Observation 4.1. However, a

more significant improvement of 15X in running times (and 9X
in terms of #ops) is achieved by I-TopK which utilizes the incre-

mental computation. Finally, an additional 2-4X speedup is
obtained by T-TopK, resulting in an overall improvement
of 189X to 291X over the NSS baseline.

The performance trends on the REACT-IDA repository (com-

prising the smaller collection of real-life sessions) are similar, with

some minor variation. We can first see that NM-Tree performs

slightly better than NSS and CSE. This is due to the underlying

structure of the dataset that allows the NM-Tree to perform (and

store) the distance-preserving transformations more efficiently.

However, both our optimized algorithms perform significantly

better, with T-TopK dominating. Interestingly, while the REACT-

IDA is fairly small, the pruning-based optimizations of T-TopK

are still highly effective. T-TopK retains a 2X speedup compared

to I-TopK, and significantly outperforms the other baselines.

Next, we present a performance comparison of the algorithms

when employed on a multitude of different repositories and with

different problem parameters, as well as an examination of the

computation segments in T-TopK. Since in all configurations, the

performance of T-TopK was significantly better (by at least an

order of magnitude) than the baseline algorithms, we omit them

from presentation and use only I-TopK as a baseline.

6.3 Scalability & Parameters Effect
We next analyze the performance of the T-TopK Algorithm com-

pared to I-TopK, by varying the problem parameters as well as

the repository parameters, one at a time, while keeping the rest

at their default values (As in Table 1). We measured both the

running times, number of action similarity operations (#ops), and
memory consumption.

Scalability Parameters. Figure 3a depicts the performance of

the algorithms when increasing the number of sessions in the

repository. For both algorithmswe can see a rather linear increase

in running times (correspondingly, #ops however the two plots

overlap), but T-TopK shows a significant speed up of 3X (on aver-

age) over I-TopK. Moreover, as we can see in Figure 3b, when the

mean session length increases, T-TopK performance stays stable

compared to a linear increase for I-TopK. This demonstrates that

106

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Decay Factor β

0

200

400

600

800

1000

#O
P

S

(a) R: Decay Factor β .

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Decay Factor β

0

50

100

150

200

250

S
et

 S
iz

e

M-tree Results
Candidate Sessions

(b) R: M-tree Res./#Cands (β).
4 8 12 16 20 24

Output Size k
0

200

400

600

800

1000

#O
P
S

(c) R: Output Set Size k
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Gap Penalty δ
0

25000

50000

75000

100000

125000

150000

#O
P

S

(d) A: Gap Penalty (δ)

1000 2000 4000 8000 16000 32000
of Action Clusters

0

25000

50000

75000

100000

125000

150000

#O
PS

(e) A: # Action Clusters
6% 8% 10% 12% 14% 16%

% of Session Seeds
0

25000

50000

75000

100000

125000

150000

#O
P
S

(f) A: % Seed Sessions
0% 10% 20% 30% 40% 50% ≥60%

% of Random Actions (p)
0

25000

50000

75000

100000

125000

150000

175000

#O
PS

(g) A: % Random Actions
0 30 60 90 120 150 180 210 240

User Idle-Time (ms)
0

25000

50000

75000

100000

125000

150000

#O
P
S

(h) A: Idle-Time

Figure 4: Parameters Effect on REACT-IDA (R) and Artificial (A) Datasets

the effectiveness of the threshold-based approach further grows

for longer sessions. As for memory consumption, the maximal

usage for T-TopK did not exceed 74MB even for a repository as

big as 100K sessions (1.6M individual actions), which is negli-

gible in practice. We therefore do not further discuss memory

consumption in the next experiments.

Problem Parameters. Recall that the problem parameters are

the gap penalty δ , the decay factor β and the output set size k .
We examine their effect on the performance, when varying each

parameter, and keeping the rest at their default values. To gain a

better insight on the computation of T-TopK, we break the total

#ops performed into three computational segments: (1) forming

the initial similarity lower bound, (2) the metric-tree search, and

(3) computing similarity vectors for candidate sessions. The cor-

responding running time trends are similar, therefore omitted

from the figures below. Also, as Segment (3) is negligibly small

when using the default idle-time, we further restrict the default

user idle-time to 150ms, which naturally stresses T-TopK. The

performance of I-TopK in terms of #ops is represented by a dotted

flat line since it is not dependent on the problem parameters.

We observe that increasing each of the problem parameters

results in a minor increase in #ops for T-TopK. Figure 4a and

Figure 4c show the effect of the decay factor β and the output

size k on performance, when the algorithms are employed on

the REACT-IDA repository, and Figure 4d shows the effect of the

gap penalty δ on the default artificial repository (the effect of δ
on the REACT-IDA repository was marginal, therefore the figure

is omitted). The increase in performance is expected, since the

values of the problem parameters play a part in the lower/upper

bound computations: (1) The decay factor β affects the upper

bound, therefore lower values induce more restrictive candidate

selection, and thereby better performance. (2) Increasing the

output size k causes a decrease in the lower bound threshold

inf t , thus more candidate sessions are examined.

To gain a deeper insight on the performance w.r.t. the compu-

tation segments, we examine in Figure 4b, the number of sessions

retrieved in the metric-tree search results (i.e. sessions satisfying

bound B1) and the number of sessions among them that also

meet bound B2 (hence satisfy the upper bound), for varying β
values. We can see that the first set grows with β (hence the cost

of Segment 2 increases), but many sessions are pruned via bound

B2 (thus the cost of Segment 3 does not increase).

Repository Parameters. As is the case for most top-k search

optimizations and dedicated data structures, the underlying struc-

ture of the data points may impact the performance of the T-TopK

algorithm (note that the incremental similarity optimizations pre-

sented in Section 4 are not affected by such parameters).

Therefore, to properly evaluate the effectiveness of T-TopK

we constructed a multitude of artificial repositories (as described

above), each with a different underlying structure that stems from

a particular repository-parameters configuration. We varied each

construction parameter and examined its effect on the perfor-

mance of T-TopK (keeping the rest of the parameters at their

default configuration). Figures 4e, 4f and 4g depict the perfor-

mance of T-TopK compared to I-TopK when varying the amount

of individual action clusters, percentage of “seed sessions”, and

the percentage of random actions in a session, respectively. Intu-

itively, increasing the values of each of these parameters inflict

more “randomness” on the underlying structure of the data points

(sessions), therefore the mean similarity score of two arbitrary

sessions decreases. In turn, lower similarity scores imply smaller

lower bounds, therefore more candidate sessions are examined.

With the exception of one case, in all observed settings, even

when increasing these parameters, T-TopK was still effective,

outperforming I-TopK. The only setting where I-TopK outper-

formed T-TopK was when setting a high (> 60%) percentage of

random actions in the repository sessions, which significantly de-

creases the average session similarity score (Importantly, further

increasing this parameter had a negligible effect on performance).

However, as we show next, given slightly higher user idle-times,

(which is a very reasonable assumption) T-TopK still outperforms

I-TopK, even when the percentage of random actions is high, as

the computation segment of calculating similarity vectors (in

green) is significantly diminished.

User Idle-Times. We measured how the mean user idle-time

affects the performance of T-TopK. Such idle time between con-

secutive actions of the same user often takes several seconds.

Figure 4h depicts the performance when varying the expected

time ranges from 0 to 0.24 seconds. Interestingly, even the lat-

ter, which is lower than the minimal human reaction time to a

visual stimulus, was already sufficient to compute all missing

vectors offline. As expected, T-TopK improves when the idle-time

increases, and when all missing vectors are computed offline -

T-TopK obtains almost a 3X speedup over I-TopK.

107

7 CONCLUSION
In this work, we show (for the first time, to our knowledge) that by

utilizing the progressive nature of IDA sessions, a major running-

time speedup (of over 180X) can be obtained, compared to current

solutions for top-k similarity search of analysis sessions. Our

solution allows IDA recommendation systems to effectively rely

on much larger session repositories while retaining interactive

response times.

However, the scope of our work is limited in two main as-

pects: First, our solution is dedicated to the SW-SIM similarity

measure for analysis sessions. While considered a very compre-

hensive, useful measure, some IDA recommendation systems use

different session similarity measures. Nevertheless, we believe

that the core principles of our solution may be applicable (with

some tweaking and adaptations) to other similarity measures -

even outside the scope of IDA, (e.g. scientific/business workflows,

prescriptive analytics, mashups [5, 13, 42]).

Second, as common in many filter-and-refine based frame-

works, the efficiency of the pruning techniques used by the T-

TopK algorithm may be affected by underlying characteristics of

the session repository, as well as the parameters of the search

problem. In the absence of large enough, publicly available real-

life IDA workloads, our experimental evaluation is performed,

primarily, over a multitude of carefully crafted artificial repos-

itories, each with different characteristics. Although we have

shown that similar performance trends occur on the real-life

session repository as well (the only one that is publicly available),

it is still left to demonstrate the performance speedup on other

real-life IDA workloads (when such become publicly available).

Nevertheless, recall that the efficiency of the single-alignment

optimizations, and the computation of the similarity vectors (as

presented in Section 4), is independent of the session repository

or problem parameters - and even these alone still provide a sig-

nificant speedup of 40− 80X compared to the currently available

solutions.

Acknowledgments. This work has been partially funded by the

Israel Innovation Authority (MDM), the Israel Science Founda-

tion, the Binational US-Israel Science foundation, Len Blavatnik

and the Blavatnik Family foundation, and Intel® AI DevCloud.

REFERENCES
[1] [n. d.]. REACT: IDA Benchmark Dataset. ([n. d.]). https://git.io/fhyOR.

[2] Julien Aligon, Enrico Gallinucci, Matteo Golfarelli, Patrick Marcel, and Stefano

Rizzi. 2015. A collaborative filtering approach for recommending OLAP

sessions. DSS 69 (2015).
[3] Julien Aligon, Matteo Golfarelli, Patrick Marcel, Stefano Rizzi, and Elisa Tur-

ricchia. 2014. Similarity measures for OLAP sessions. KAIS 39 (2014).
[4] Marie Aufaure, Nicolas Kuchmann-Beauger, Patrick Marcel, Stefano Rizzi, and

Yves Vanrompay. 2013. Predicting your next OLAP query based on recent

analytical sessions. DaWaK (2013).

[5] Ralph Bergmann and Yolanda Gil. 2014. Similarity assessment and efficient

retrieval of semantic workflows. Information Systems 40 (2014), 115–127.
[6] Michael W Berry and Murray Browne. 2005. Understanding search engines:

mathematical modeling and text retrieval. Vol. 17. Siam.

[7] Paolo Ciaccia and Marco Patella. 2002. Searching in metric spaces with user-

defined and approximate distances. ACM Transactions on Database Systems
(TODS) 27, 4 (2002), 398–437.

[8] Paolo Ciaccia, Marco Patella, and Pavel Zezula. 1997. M-tree: An Efficient

Access Method for Similarity Search in Metric Spaces. In VLDB.
[9] Paolo Ciaccia, Marco Patella, and Pavel Zezula. 1998. A cost model for simi-

larity queries in metric spaces. In SIGCART. ACM.

[10] Dong Deng, Guoliang Li, HeWen, HV Jagadish, and Jianhua Feng. 2016. META:

an efficient matching-based method for error-tolerant autocompletion. PVLDB
9, 10 (2016).

[11] Michel Marie Deza and Elena Deza. 2009. Encyclopedia of distances. Springer,

1–583.

[12] Remco Dijkman, Marlon Dumas, Boudewijn Van Dongen, Reina Käärik, and

Jan Mendling. 2011. Similarity of business process models: Metrics and evalu-

ation. Information Systems 36, 2 (2011), 498–516.
[13] Fan Du, Catherine Plaisant, Neil Spring, and Ben Shneiderman. 2016. Even-

tAction: Visual analytics for temporal event sequence recommendation. In

2016 IEEE Conference on Visual Analytics Science and Technology (VAST). IEEE,
61–70.

[14] Robert C Edgar. 2010. Search and clustering orders of magnitude faster than

BLAST. Bioinformatics 26, 19 (2010), 2460–2461.
[15] Magdalini Eirinaki, Suju Abraham, Neoklis Polyzotis, and Naushin Shaikh.

2014. Querie: Collaborative database exploration. TKDE (2014).

[16] Arnaud Giacometti, Patrick Marcel, and Elsa Negre. 2009. Recommending
multidimensional queries. Springer Berlin Heidelberg.

[17] Shengyue Ji, Guoliang Li, Chen Li, and Jianhua Feng. 2009. Efficient interactive

fuzzy keyword search. In Proceedings of the 18th international conference on
World wide web. ACM, 371–380.

[18] W James Kent. 2002. BLAT—the BLAST-like alignment tool. Genome research
12, 4 (2002), 656–664.

[19] Eamonn Keogh and Chotirat Ann Ratanamahatana. 2005. Exact indexing

of dynamic time warping. Knowledge and information systems 7, 3 (2005),

358–386.

[20] Sung-Ryul Kim and Kunsoo Park. 2000. A dynamic distance table. CPM
(2000).

[21] Gad M Landau, Eugene W Myers, and Jeanette P Schmidt. 1998. Incremental

string comparison. SIAM J. Comput. 27, 2 (1998), 557–582.
[22] Ben Langmead, Cole Trapnell, Mihai Pop, and Steven Salzberg. 2009. Ultra-

fast and memory-efficient alignment of short DNA sequences to the human

genome. Genome biology (2009).

[23] David Leake and Joseph Kendall-Morwick. 2008. Towards case-based sup-

port for e-science workflow generation by mining provenance. In European
Conference on Case-Based Reasoning. Springer, 269–283.

[24] Guoliang Li, Jiannan Wang, Chen Li, and Jianhua Feng. 2012. Supporting

efficient top-k queries in type-ahead search. In Proceedings of the 35th inter-
national ACM SIGIR conference on Research and development in information
retrieval. ACM, 355–364.

[25] Elaine R Mardis. 2008. The impact of next-generation sequencing technology

on genetics. Trends in genetics 24, 3 (2008), 133–141.
[26] Tova Milo and Amit Somech. 2018. Next-Step Suggestions for Modern Inter-

active Data Analysis Platforms. In KDD.
[27] David Novak and Pavel Zezula. 2006. M-Chord: a scalable distributed similarity

search structure. In ICSIS.
[28] Panagiotis Papapetrou, Vassilis Athitsos, George Kollios, and Dimitrios Gunop-

ulos. 2009. Reference-based alignment in large sequence databases. VLDB
(2009).

[29] Srinivasan Parthasarathy, Mohammed Javeed Zaki, Mitsunori Ogihara, and

Sandhya Dwarkadas. 1999. Incremental and interactive sequence mining. In

CIKM.

[30] Stefano Rizzi and Enrico Gallinucci. 2014. CubeLoad: a parametric generator

of realistic OLAP workloads. In CAISE.
[31] Volker Roth, Julian Laub, Motoaki Kawanabe, and Joachim M Buhmann. 2003.

Optimal cluster preserving embedding of nonmetric proximity data. TPAMI
(2003).

[32] Hiroaki Sakoe and Seibi Chiba. 1978. Dynamic programming algorithm opti-

mization for spoken word recognition. TASSP (1978).

[33] Victor Sepulveda and Benjamin Bustos. 2010. CP-Index: using clustering and

pivots for indexing non-metric spaces. In SISAP.
[34] Tomáš Skopal and Jakub Lokoč. 2008. NM-tree: Flexible approximate similarity

search in metric and non-metric spaces. In DEXA.
[35] Temple F Smith and Michael S Waterman. 1981. Identification of common

molecular subsequences. Journal of molecular biology 147, 1 (1981), 195–197.

[36] Johannes Starlinger, Sarah Cohen-Boulakia, Sanjeev Khanna, Susan B David-

son, and Ulf Leser. 2016. Effective and efficient similarity search in scientific

workflow repositories. FGCS 56 (2016), 584–594.
[37] Narayanan Sundaram, Aizana Turmukhametova, Nadathur Satish, et al. 2013.

Streaming similarity search over one billion tweets using parallel locality-

sensitive hashing. VLDB (2013).

[38] Yu Tang, Yilun Cai, Nikos Mamoulis, Reynold Cheng, et al. 2013. Earth mover’s

distance based similarity search at scale. VLDB (2013).

[39] Tatiana A Tatusova and Thomas L Madden. 1999. BLAST 2 Sequences, a new

tool for comparing protein and nucleotide sequences. FEMS Microbiol. Lett.
174, 2 (1999).

[40] Sebastian Wandelt, Johannes Starlinger, Marc Bux, and Ulf Leser. 2013. RCSI:

Scalable similarity search in thousand (s) of genomes. VLDB (2013).

[41] Ting Xie, Varun Chandola, and Oliver Kennedy. 2018. Query log compression

for workload analytics. Proceedings of the VLDB Endowment 12, 3 (2018),

183–196.

[42] Sen Yang, Xin Dong, Leilei Sun, Yichen Zhou, Richard A Farneth, Hui Xiong,

Randall S Burd, and Ivan Marsic. 2017. A Data-driven Process Recommender

Framework. In KDD.
[43] Xiaoyan Yang, Cecilia M Procopiuc, and Divesh Srivastava. 2009. Recommend-

ing join queries via query log analysis. In ICDE.
[44] Youwei Yuan, Weixin Chen, Guangjie Han, and Gangyong Jia. 2017. OLAP4R:

A Top-K Recommendation System for OLAP Sessions. TIIS (2017).

108

	Incremental Based Framework for Efficient Top-K Similarity Search in Interactive Data Analysis SessionsAmit Somech, Tova Milo, Oded Elbaz

