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ABSTRACT
Demand forecasting, which aims to predict future product sales,
is one of the most important tasks in retail markets. With the
help of time series prediction models, the literature works either
perform the prediction of each individual product item sepa-
rately, or adopt a multivariate time series forecasting approach.
However, none of them leveraged the structural information of
product items, such as product brands and multi-level categories.
Moreover, various product items have significantly different tem-
poral characteristics, such as periodicity. In this short paper, we
propose a deep learning-based prediction model to find inherent
inter-dependencies and temporal characteristics among product
items for more accurate prediction. Evaluation on two real-world
datasets validates that our model can achieve much higher accu-
racy compared with state-of-the-art methods.

1 INTRODUCTION
Demand forecasting, which aims to predict future product sales,
is one of the most important tasks in retail markets. The accurate
prediction is important to avoid either insufficient or excess in-
ventory in product warehouses for a typical retail market which
typically sells at least thousands of product items.

Traditional works adopt either univariate time series models
or multivariate time series model. The univariate time series
models, such as the autoregressive integrated moving average
(ARIMA) [1], autoregression (AR) [1], moving average (MA) [1]
and autoregressive moving average (ARMA) [1], treat different
product items separately. ARIMA is rather time consuming espe-
cially when there are thousands of products or more. In addition,
ARIMA assumes that the current value of time series is a linear
combination of historical observations of itself and a random
noise. It is hard for ARIMA to capture non-linear relationships
and inter-dependencies of different product items. Some machine
learning models can also be applied to demand forecasting prob-
lems, such as linear regression [11] and linear support vector
regression (SVR) [2]. Nonetheless, these machine learning models
suffer from the similar weaknesses as ARIMA [15].

Multivariate time series models instead take into account the
inter-dependencies among product items. For example, as an
extension of ARIMA, vector autoregression (VAR) [9] can handle
multivariate time series. However, the model capacity of VAR
grows linearly over temporal window size and quadratically over
the number of variables, making it hard to model thousands of
product items with a long history. More recently, deep learn-
ing models have demonstrated outstanding performance in time
series forecasting problems. There are basic recurrent neural
network (RNN) [5] and its variants including long short-term
memory (LSTM) network [10] and gated recurrent unit (GRU) [4].
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On this basis, a recent work LSTNet [7] combines convolutional
neural network (CNN) [8] and GRU to perform multivariate time
series forecasting. The LSTNet model uses a special recurrent-
skip component to capture very long-term periodic patterns.
However, it assumes that all variables in the multivariate time se-
ries have same periodicity, which is invalid for most real datasets.

Other than the aforementioned weaknesses, the existing pre-
diction methods ignore that product items have inherent struc-
tural information, e.g., the relations between product items and
brands, and the relations among various product items (which
may share the same multi-level categories). Our work is moti-
vated by a clustering algorithm [3] to segment product items
with help of a so-called product tree. This tree structure takes
product categories as internal nodes and product items as leaf
nodes. Beyond that, we extend the product tree by incorporat-
ing product brands and then construct a product graph structure.
This structure explicitly represents the structural information
of product items. Figure 1 illustrates an example of the graph
structure of four product items. We can easily find that the brand
Master Kong has three products, which belong to two different
subcategories. Consider that a customer prefers the brand Master
Kong and recently bought a product item Master Kong Jasmine
Tea. It is reasonable to infer that he will try another product item
Master Kong Black Tea, especially when Master Kong Black Tea
involves a sale promotion campaign.
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Figure 1: An example of Product Graph Structure involv-
ing Categories, Items and Brands.

Without the product graph structure as prior, previous meth-
ods either treat all product items equally or have to implicitly
infer the inherent relationship but at the cost of accuracy loss. To
overcome the issues, with help of the graph structure, we propose
a new deep learning model to precisely predict product demands
in a multivariate time series forecasting manner, called Structural
Temporal Attention Network (STANet). This network incorpo-
rates both the product graph structure (see Figure 1) and temporal
characteristics of product items. In particular, we note that the
inter-dependencies of products and temporal dependencies (e.g.,
temporal periodicity) may change over time. Thus, we leverage
attention mechanism [12] to deal with these variations. In this
way, STANet assigns various weights with respect to different
inputs involving the variations. Based on graph attention net-
work (GAT) [13], GRU, and a special temporal attention, STANet
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performs better than existing methods. As a summary, we make
the following contributions.

• We give adequate analysis on two real datasets to vali-
date the motivation of our model, including the product
structural inter-dependencies and temporal dependencies.

• The proposed STANet leverages GAT to capture the prod-
uct structural inter-dependencies and GRU to capture tem-
poral patterns. Moreover, a temporal attention mechanism
is adopted on the hidden states of GRU to deal with diverse
temporal characteristics of product items. Thus, the two
attention mechanisms, i.e., GAT and temporal attention,
work together to comfortably learn the product structural
inter-dependencies and temporal dependencies.

• Evaluations on two real-world sales datasets show that
STANet achieves the best results compared with several
state-of-the-art methods.

The rest of this paper is organized as follows. Section 2 gives
the problem formulation, and Section3 describes the proposed
approach STANet. Then, Section 4 reports evaluation results on
two real-world datasets. Finally, Section 5 concludes the paper.

2 PROBLEM FORMULATION
We consider a data set of transaction records in a market. Each
transaction record contains 3 fields: the transaction timestamp,
item ID, and amount of sold items. Moreover, via the item ID,
we can find a list of product categories (in our dataset, each
product item is with a list of 4-level categories) and an associated
product brand. In this way, we augment each transaction record
by totally 8 (=3+4+1) fields. Given a certain time horizon (e.g.,
one day or one week), we pre-process the transaction records
into a multivariate time series of the volumes of sold product
items. In addition, for a certain category (or brand), we sum
the volumes of all product items belonging to the category (or
brand). In this way, we have the multivariate time series of the
volumes of product items, categories, and brands. Meanwhile, the
product graph structure is stored in an adjacency matrix, where
an element 1 indicates an edge between two nodes (such as a
product item and its brand), otherwise 0.

Formally, we denote the number of product items by Np and
the total number of items, brands and categories as N . Given
the augmented multivariate time series X = {x1,x2, . . . ,xT },
xt ∈ RN×1, t = 1, 2, . . . ,T and adjacency matrix M ∈ RN×N ,
we aim to predict future product sale volume xT+h where h is
the desirable horizon ahead of the current time stamp. More
specifically, to train a model using historical data, we use a time
window of size τ to split existing data into fixed length inputs,
where each input is expressed as {xt , . . . ,xt+τ−1} and xt+τ−1+h
is the label. The adjacency matrix M is fixed. In this way, the
demand forecasting problem is equivalent to learning a function
fM : RN×τ → RN×1. On the testing stage, we only need to
calculate evaluation metric for the Np real product items.

3 FRAMEWORK
In this section, we present the detail of the proposed model
STANet. Figure 2 gives the framework of STANet.

3.1 Graph Attention Component
For multivariate time series forecasting, one of the most cru-
cial tasks is to capture the inter-dependencies between differ-
ent variables. What’s more, as shown in Section 4.1, the inter-
dependencies may change over time. To explore inter-dependencies
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Figure 2: The framework of STANet.

from product graph structure, we need graph neural network. Fur-
thermore, to handle dynamic inter-dependencies, we choose at-
tention mechanism because it can assign various weights with re-
spect to different inputs. As a result, the first layer of STANet is a
graph attention layer [13]. Given the input time seriesX ∈ RN×τ

and adjacency matrix M ∈ RN×N , we use a multi-head graph
attention layer to process X time step by time step. Formally, this
operation at time step t is given by

hit = σ
©« 1
K

K∑
k=1

∑
j∈Ni

αki jW
k x jt

ª®¬ , (1)

where x jt is the sale of variable (product, or brand, or category) j
at time step t ,W k is a linear transformation to obtain sufficient
expressive power, Ni refers to all the adjacent nodes of variable i
given by M , K is the number of multi-head attention and σ is an
activation function. αki j is the coefficient of attention mechanism
computed by

αki j =
exp

(
LeakyReLU

(
fa

(
W k x it ,W

k x jt
)))

∑
ℓ∈Ni exp

(
LeakyReLU

(
fa

(
W k x it ,W

k x ℓt
))) , (2)

where fa is a scoring function to evaluate relevance, and in our
model it is a single-layer feedforward neural network.

Suppose W k ∈ RF×1, with aforementioned X and M , the
output of the graph attention component is XG ∈ RFN×τ .

3.2 Recurrent Component
When the variable-to-variable relationships have been processed,
XG is fed into the recurrent component to capture temporal
patterns. Here we use gated recurrent unit (GRU) [4] as the re-
current layer. Compared with vanilla recurrent neural networks
(RNN) [5], GRU is more capable to capture long-term patterns.
Suppose the hidden size of GRU isdr , then the output of recurrent
component is XR ∈ Rdr×τ .

3.3 Variable-Wise Temporal Attention
After the graph attention component and recurrent component,
the model has successfully captured inter-dependencies and basic
temporal patterns. Nonetheless, temporal patterns could also be
dynamic. Therefore, as a commonly used technique in RNN,
temporal attention can be added to the model as

α t+τ−1 = fa (Ht+τ−1, ht+τ−1) , (3)

where α t+τ−1 ∈ Rτ×1, fa is a scoring function and ht+τ−1 is the
last hidden state of RNN, Ht+τ−1 = [ht , . . . ,ht+τ−1] is a matrix
stacking the hidden states of RNN.

However, we will show in Section 4.1 that various products
may have rather different temporal characteristics such as peri-
odicity. Instead of using the same attention mechanism for all
product items, we propose a variable-wise temporal attention
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Table 1: Datasets statistics, where T is length of time step,
P is the time interval, Np , Nb , Nc are numbers of products,
brands, categories respectively, N = Np +Nb +Nc , and spar-
sity means proportion of zero value in the data.

Datasets T P Np Nb Nc N Sparsity
Dataset-1 572 1 day 1878 433 612 2923 53%
Dataset-2 833 1 day 1925 289 771 2985 39%

mechanism to compute the attention for each variable indepen-
dently as

α i
t+τ−1 = fa

(
H i
t+τ−1, h

i
t+τ−1

)
. (4)

Equation (4) is similar to Equation (3), except a superscript i =
1, 2, . . . ,dr , indicating that the attention mechanism is calculated
for a particular GRU hidden variable. In this way, our model could
deal with different temporal characteristics such as periodicity for
different variables. With the coefficients α i

t+τ−1, the weighted
context vector of ith hidden variable is calculated as

c it+τ−1 = H
i
t+τ−1α

i
t+τ−1 , (5)

whereH i
t+τ−1 ∈ R1×τ andα i

t+τ−1 ∈ Rτ×1. Let ct+τ−1 be context
vector of all hidden variables, then we can calculate the final
output for horizon h as

yt+τ−1+h =W [c t+τ−1 ;ht+τ−1] + b , (6)

hereW ∈ RN×2dr and b ∈ R1×1 are parameters of a fully con-
nected layer.

3.4 Autoregressive Component
Similar to LSTNet [7], we add an autoregressive component to
capture the local trend of product demands. This component is
a linear bypass that predicts future demands directly from the
input data to address the scale problem. This linear bypass will
fit all products’ historical data with a single linear layer.

The final prediction of STANet is then obtained by integrating
the outputs of the neural network part and the autoregressive
component using an automatically learned weight.

4 EXPERIMENTS AND EVALUATIONS
We first analyze two used real-world datasets to motivate STANet
and then compare STANet against 6 counterparts.

4.1 Datasets and Analysis
We use two real-world datasets collected from two medium size
stores of a chain retail in Shandong Province, China. Table 1
summarizes the statistics. As shown in this table, the sparsity of
dataset-1 is greater than 50%, which makes the forecasting task
rather challenging. Both datasets are split into training set (70%),
validation set (15%) and testing set (15%) in chronological order.
To explore the inter-dependencies and temporal characteristics
of datasets, we give following analysis.

We consider two variables have inter-dependencies if the his-
tory of one variable can help forecasting another. Assuming two
univariate time series x = x1, x2, . . . , xT , y = y1,y2, . . . ,yT and
a specific time lagm, we model y as a regression of itself and x :

yt = a0 + a1yt−1 + . . . + amyt−m + b1xt−1 + . . . + bmxt−m . (7)

If y gets the best fitting when all bi = 0 for i = 1, . . . ,m, we
believe that x cannot help forecasting y. To test whether x can

help forecast y, we use the Granger causality test [6], and for
each lagm the result maybe differ. We use

GRx ,y =
number of m where x helps f orecast y

total number of m
(8)

to represent importance of x to y, GRx ,y ∈ [0, 1]. We select
one category and two concrete products to verify the inter-
dependencies in Figure 3.
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Figure 3: GR among three variables, whereT .5 is the prod-
uct item “Black Tea 500mL”, T1 is the item “Black Tea 1L”
and T is the category “black tea”. Time range is split into
two parts. (a) Mutual GR of three pairs. (b) Change of de-
pendencies over time.

From Figure 3(a), we can find that GRT ,T .5 and GRT ,T 1 are
quite darker while GRT .5,T and GRT 1,T are almost white. This
figure means that the historical data of the category “black tea”
helps forecasting the demand of its children and instead the
children’s history data is trivial to the forecast of their parent
category. GRT .5,T 1 and GRT 1,T .5 involve the different degree of
darkness. It means that GRT .5,T 1 can improve the forecast of
GRT 1,T .5 and vice versa. However, the improvement degree is
not identical. Figure 3(b) shows that the inter-dependencies is
dynamically changing over time.

To verify that various variables have different temporal char-
acteristics, we use Fast Fourier Transform (FFT) to plot the peri-
odogram [14] for the category “black tea” and its two children
product items in Figure 4. We can easily find that they have rather
different periodicity at the rectangles. Thus, we cannot simply
apply the same attention onto all variables.
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Figure 4: Periodogram of one category and two products.
The rectangles highlight points for periodicity candidates.

4.2 Methods and Metric
We compare our model with five other methods, and their vari-
ants. For AR, Ridge and LSVR, we train models for each product
separately, while neural network models take multivariate data
as input directly.

• AR [1]: A classic univariate time series modeling method.
• Ridge [11]: Linear regression with ℓ2 regularization.
• LSVR [2]: Linear SVR, another machine leaning method

for regression.
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Table 2: RSE of six methods and their variants on two
datasets: boldface indicates the best result on each dataset.

Methods Dataset-1 Dataset-2
AR [1] 0.8016 0.5313
Ridge [11] 0.7981 0.5628
LSVR [2] 3.2446 7.8246
GRU [4] 0.8535 0.9067
LSTNet [7] 0.7907 0.7570
LSTNet-IAttn 0.8230 0.5399
STANet 0.7783 0.5233
STANet-oStructure 0.8907 0.6179
STANet-oCategory 0.8256 0.5569
STANet-oBrand 0.8640 0.5471
STANet-oAR 0.8327 0.8850

• GRU [4]: Recurrent neural network using GRU cell.
• LSTNet [7]: A state-of-the-art model composed of CNN,

GRU and highway network.
• LSTNet-IAttn: LSTNet improved by the variable-wise tem-

poral attention.
• STANet-oStructure: STANet without structural informa-

tion.
• STANet-oCategory: STANet without category informa-

tion.
• STANet-oBrand: STANet without brand information.
• STANet-oAR: STANet without autoregressive component.

We measure the forecasting performance by root relative
squared error (RSE).

RSE =

√∑N
i=1

∑t1
t=t0

(
yi ,t − ŷi ,t

)2√∑N
i=1

∑t1
t=t0

(
yi ,t −mean(Y )

)2 , (9)

where y and ŷ are ground truth and predicted value respectively,
t0 and t1 are start and end time of testing set, and Y ∈ RN×(t1−t0)

represents the matrix of all labels y in testing set. RSE can be
regarded as RMSE divided by standard deviation of testing set,
so scale differences between different datasets can be ignored.
Lower RSE generally means better forecasting performance.

4.3 Results of Different Methods
Table 2 provides the RSE of aforementioned methods on two
datasets for horizon = 1. Our proposed model STANet outper-
forms others on both datasets. It is because STANet leverages
the attention mechanism and inherent product structural infor-
mation to precisely capture structural and temporal dependen-
cies. LSVR performs worst on both datasets. Vanilla GRU suffers
from worse performance than univariate models, because not
every product has inter-dependency with each other and simply
adding irrelevant data would harm the forecasting task. LSTNet
can achieve lower errors than AR and Ridge on dataset-1, but not
on dataset-2. It is mainly because the product items in dataset-1
exhibit much stronger structural inter-dependencies than those
in dataset-2. For most methods except LSVR and GRU, the RSE
on dataset-2 is much lower than that on dataset-1. It is due to the
fact that dataset-1 contains much sparser data than dataset-2.

In terms of the ablation experiments of STANet, we can find
that the structural information and the AR component play the
major contribution in the forecasting task. For example, the result
of STANet-oStructure indicates that the removal of structural
information could greatly harm the forecasting accuracy. Incor-
porating the brand and category information will benefit the

forecast and their corresponding contribution heavily depends
upon the datasets. Both parts work together to the best perfor-
mance. Also the results of STANet-oAR without the AR compo-
nent indicate that its RSE is much higher than the original STANet
especially on dataset-2. This is because the AR component can
more comfortably capture the local trend in dataset-2 with a
lower sparsity than the one in dataset-1. Finally, by comparing
the results of LSTNet and LSTNet-IAttn, we find that LSTNet-
IAttn by incorporating the variable-wise attention mechanism
can greatly improve the forecast performance on dataset-2.

5 CONCLUSIONS
In this paper, we propose a novel deep learning-based forecasting
model STANet in a multivariate time series manner. The model
integrates the four components of GAT, GRU, variable-wise at-
tention mechanism and auto-regression to precisely capture the
inherent product structural information and temporal periodicity
for more accurate prediction. Our analytic result on two real
datasets demonstrates that the two real datasets exhibit strong
product structural information and temporal periodicity. The
evaluation result on the two datasets validates that STANet out-
performs 6 counterparts and 4 variants of STANet. As the future
work, we plan to further improve STANet and provide more
experimental results on both online and offline transaction data.
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