
Towards Planning of RegularQueries with Memory
Thomas Mulder, Nikolay Yakovets, George Fletcher

Technische Universiteit Eindhoven
The Netherlands

[t.mulder,hush,g.h.l.fletcher]@tue.nl

ABSTRACT
We investigate efficient evaluation of regular path queries with
memory (RQM), which are an extension of regular path queries
(RPQ) with additional constraints on data encountered along
a path in a graph. We show how Waveguide, a state of the art
system capable of planning RPQs, can be extended to facilitate
RQM planning. Furthermore, we show that RQM planning is not
as trivial as finding a conventional optimal join order and adding-
on data constraints. Rather, we showcase that efficient evaluation
of RQMs poses a number of non-trivial novel challenges.

1 INTRODUCTION
Regular path queries with memory (RQM) are subgraph-matching
queries that allow the definition of constraints on both topology
and data in graphs [3]. RQMs extend the expressive power of
regular path queries (RPQ) [1] in many useful ways while main-
taining an acceptable PSPACE-complete combined complexity.

An example of a query that is expressible as an RQM but not as
an RPQ is to find all pairs of people (x,y) such that x directly or
indirectly knowsy and all people along the chain of acquaintance
have the same age.

The initial study of RQMs [3], provides an extension of regular
expressions called regular expressions with memory (REM) that
are used to write RQMs, along with a procedure for construct-
ing a k-register data path automaton that can be used for the
evaluation of an RQM. While k-register data path automata are
an excellent tool for the investigation of the expressive power
and complexities of RQMs, they do not represent effective query
plans, and do not provide opportunities for query optimisation.

We aim to develop the first practical evaluation engine for
RQMs [4]. Here we take first steps towards this goal by (1) study-
ing the shortcomings of the proposed automata from a query
planning- and evaluation perspective, (2) addressing these short-
comings by proposing a more expressive type of automata that
can be used to represent query plans and (3) showing that optimis-
ing such plans for topological- and data constraints are orthogonal
problems. That is, a query plan that is optimal for evaluating only
the topological constraints of a query on a particular graph, and
another query plan that is optimal for evaluating the topological-
and data constraints of the same query on the same graph, need
not consider the topology of the query in the same order.

We extend Waveguide [5], a cost-based optimizer for property
paths which builds query plans calledwaveplans that guide query
evaluation. Waveplans are based on automata, which allows us
to combine concepts from waveplans and k-register data path
automata to obtain k-register waveplans.

© 2020 Copyright held by the owner/author(s). Published in Proceedings of the
23rd International Conference on Extending Database Technology (EDBT), March
30-April 2, 2020, ISBN 978-3-89318-083-7 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

2 REGULAR QUERIES WITH MEMORY
Data graphs are defined over a finite alphabet Σ and a countably
infinite set of data values D as a triple G = ⟨V , E, ρ⟩, where:

• V is a finite set of nodes;
• E ⊆ V × Σ ×V is a set of labelled edges; and
• ρ : V → D is a function that assigns a data value to each
node in V .

To write regular expressions that can specify paths in data
graphs, regular expressions with memory (REMs) over a finite al-
phabet Σ and set of variables x1, ..., xk are introduced and defined
by the grammar

e := ϵ | a | e + e | e · e | e+ | e[c] | ↓ x .e | (e), (1)

where a ∈ Σ, c is a condition and x a tuple of variables from
x1, ..., xn . A condition, in turn, is defined by the grammar

c := x=i | x,i | z= | z, | c ∧ c | c ∨ c | ¬c | (c), 1 ≤ i ≤ k, (2)

where z is a data value in D, also referred to as a constant.
As an example, consider the following REM:

(owns· ↓ x1.isLocatedIn)
+ · hasCapital[x=1] (3)

This REM specifies paths where we encounter at least one se-
quence of two edges labelled owns and isLocatedIn, followed by
an edge labelled hasCapital. Additionally, the data value asso-
ciated with the source of an edge labelled isLocatedIn is stored
in the first register, which is subsequently compared to the data
value associated with the target of an edge labelled hasCapital.

A regular query with memory is defined as an expression
of the form Q := x

e
−→ y where e is an REM, and x and y are

variables that are mapped to nodes in a data graph. Hence, the
evaluation ofQ amounts to finding pairs (u,v) ∈ V ×V such that
there exists a path from u to v that adheres to e . See Section 3.3
of [3] for the formal semantics of REMs and RQMs.

3 QUERY PLANNING
Query planning in the most general sense, is the process of find-
ing an ordering of operations that, when executed, produce the
solution to the given query. In the context of regular queries with
memory, this means finding an ordering of edge labels, assign-
ments, conditions and projections.

3.1 Automata as Query Plans
Query plans for relational database systems are often represented
as trees. Due to the recursive nature of RQMs introduced by the
Kleene plus (+) operator, it is more convenient to represent query
plans for RQMs as automata instead.

Regular Data Path Automata (RDPA) [3] have been proposed
as a representation of RQMs. These RDPAs, however, capture the
operations necessary for the evaluation of an RQM Q = x

e
−→ y

only in the order corresponding to the left-deep parsing of e .
Hence, RDPAs are not a suitable formalism for representing query
plans for RQMs.

Short paper

Series ISSN: 2367-2005 451 10.5441/002/edbt.2020.55

https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2020.55

Instead, we will consider Waveguide [5], a state of the art
query optimiser for RPQs. It represents query plans as waveplans,
a automaton-based formalism that allows for a rich variety of
query plans, due to its inverse transitions and transitions over views.
Conceptually, a waveplan consists of one or more wavefronts,
which are automata that are used to compute (part of) the solution
to a query. We extend wavefronts with assignments, conditions
and projection over data values and registers.

Inverse- and view transitions. Let Σ be a finite alphabet,
and L a finite set of state labels disjoint from Σ. We define Σ∗ =⋃
a∈Σ∪L{/a,a/} as a set of labels. A transition with label /a ∈

Σ∗ is said to append edges labelled a to an intermediate result,
whereas a transition labelled a/ ∈ Σ∗ is said to prepend edges
labelled a to an intermediate result. The latter is referred to as an
inverse transition. Inverse transitions allow our plans to represent
many different orders of edge labels, such as a right-deep order.

A transition with label /2 ∈ Σ∗ appends paths computed by
the state with label 2 to an intermediate result. Such a transition
is called a transition over a view. Transitions over views further ex-
tend the orders of edge labels our plans can express by including
bushy plans.

Projection. Data paths are defined as a sequence of interleav-
ing nodes and edge labels that always start and end with a node
[3]. Consider the REM e from (3) and a data path:

π = v1 ownsv2 isLocatedInv3 hasCapitalv4

Checking whether or not π is accepted by e in a right-deep order
means first finding edges labelled hasCapital, then amongst
those finding edges that are preceded by edges labelled
isLocatedIn, etc. This is a valid order of evaluating the edge la-
bels and may be more efficient than a left-deep order, depending
on the input graph. This order provides a problem with respect
to the assignment- and condition in this REM. Namely, we would
like to check that ρ(v4) = x1 where x1 is the value in the first
register. We can only do so once the first register has been as-
signed the value ρ(v2). Hence, to make this ordering of the edge
labels work, ρ(v4) will have to be stored until the assignment
has been made. To indicate which data- and register values must
be stored at which point during query evaluation, we associate
with each state in our automata finite sets PD ⊂ N and Pr ⊂ N
that contain the positions of nodes in a path and the indices of
registers that must be kept, respectively. For instance, to indicate
that ρ(v4) and x1 (i.e. the value of the first register) must be kept,
we would set PD = {4} and Pr = {1}.

3.2 k-Register Waveplans
We will refer to the extension of waveplans and wavefronts with
assignments, conditions and projections as k-register waveplans
and k-register wavefronts, respectively.

Let Σ∗ be a finite labelling alphabet, k a natural number and
C a finite set of conditions. Formally, a k-register wavefront is a
tuplewl = ⟨l, S,Q,q0,ΠD,Πr , δ , F , τ0⟩, where

• l is a wavefront label,
• S is a seed,
• Q is a set of states,
• q0 is the starting state q0 ∈ Q ,
• ΠD : Q → 2N is a function assigning a projection PD of
path positions corresponding to data values to each state,

• Πr : Q → 2N is a function assigning a projection Pr of
register indices to each state,

0 1 2

3

4 5 6

[], [] [], [1]

[], [] [3], []

[], [1]

[], []

[], [1]

isLocatedIn/, , {1} ε owns/, , ∅ ε

is
Lo

ca
te

dI
n/

,
,

∅
ε

ow
ns

/,
,

∅
ε

/hasCapital, , ∅ ε 2/, , ∅ x=
1

Figure 1: A k-register waveplan for (3)

• δ is a transition relation δ : Q × Σ∗ × 2[k] × C ×Q ,
• F ⊆ Q is a set of accepting states, and
• τ0 ∈ Dk

⊥ is the initial configuration of the registers.
A tuple d = (q1,a,K, c,q2) ∈ δ consists of source- and target
states q1 and q2, label a, a set K ⊆ {1, ...,k} indicating which
registers are to be assigned a value during this transition and a
condition c which is to be checked during this transition.

A k-register waveplan p is an ordered set of wavefronts. Con-
sider any pair of wavefrontsw,w ′ ∈ p such that
w = ⟨l, S,Q,q0,ΠD,Πr , δ , F , τ0⟩ and
w ′ = ⟨l ′, S ′,Q ′,q′0,Π

′
D
,Π′

r , δ
′, F ′, τ0⟩. Then p defines an order

<p on wavefronts as follows:

∀w,w ′ ∈ p |w <p w ′ : l ′ < S ∧ l ′ < L

Given this order, lower wavefronts cannot use labels of higher
wavefronts in their seeds or transitions.

The role of seeds inWaveguide is quite complex. Here it suffices
to say that seeds are necessary to ensure semantically correct
plans when dealing with multiple wavefronts in a waveplan, or
single wavefronts implementing a closure over an expression.

Figure 1 shows a k-register waveplan for the REM from (3).
It consists of two wavefronts. The first wavefront computes the
result to the expression e ′ = (owns/↓ x1.isLocatedIn)+ in a
right-deep order. It assigns a value to the first register (i.e. x1 is set
to the data value at the source of an edge labelled isLocatedIn).
The second wavefront computes the result to (3) by first com-
puting e ′′ = hasCapital, storing the data value at the target
of edges labelled hasCapital in state 5. The result of state 2 is
prepended to the result of state 5, and x1 is checked for equality
against the data value at the end of the resulting paths (i.e. at the
target of an edge labelled hasCapital).

3.3 Topological Order
Let e be a regular expression with memory. We will refer to te
as the topology of e which is a regular expression obtained by
recursively replacing

• every sub-expression e1[c] of e by e1, and
• every sub-expression ↓ x .e1 of e by e1

such that te no longer contains assignments and conditions.
We can now define the order in which a k-register waveplan

p considers the topology of a query as follows. Consider a wave-
front w ∈ p. We define the topological order λw of w as a se-
quence ⟨t0, ..., tn⟩ where ti is the sub-expression of te for which
the state with label i in p returns an intermediate result. We

452

ignore all states that are part of a cycle inw , except for accept-
ing states, when constructing any sequence λw . We define the
topological order λp of a k-register waveplan p as a sequence
of sequences ⟨⟨t0, ..., tl ⟩, ..., ⟨tm, ..., tn⟩⟩, where each inner se-
quence corresponds to the topological order of the wavefronts
that make up p, in the order defined by <p . Consider the wave-
plan in Figure 1. Its topological order is
⟨⟨ϵ, isLocatedIn, (owns/isLocatedIn)+⟩,
⟨ϵ, hasCapital, (owns/isLocatedIn)+/hasCapital⟩⟩.

3.4 Query Evaluation
As per [5], query evaluation is done using a procedure based on
breadth-first search in which a waveplan guides the search (i.e.
determines which edges are to be explored based on their label
and possibly the satisfaction of conditions) until a fix-point is
reached.

Edge walks. The metric by which we will judge the perfor-
mance of a plan on the query evaluation task is that of the total
number of edge walks. Every distinct tuple that is added to the
queue during the search is considered one edge walk. Notice that
a tuple that is added to the queue is an n-tuple with n ≥ 3. A
tuple contains at least a pair of nodes representing the end-points
of a path and the state of the waveplan that produced this pair.
Additionally, for a queryQ := x

e
−→ y, a tuple can also contain up

to k register values and up to l data values, where l is bounded
by the number of sub-expressions of e of the shape e1[c]. Hence
n ≤ k + l + 3.

Optimality of query plans. - Consider a pair of RQMs Q :=
x

e
−→ y and Q ′ := x

te
−−→ y. These queries are topologically

equivalent (since te is the topology of e), but Q may contain
assignments and conditions. Let PQ and PQ ′ be sets of k-register
waveplans for Q and Q ′, respectively. For every plan p ∈ PQ
there exists a plan q ∈ PQ ′ such that λp = λq because Q and Q ′

are topologically equivalent. Hence, we can construct a relation
R ⊂ PQ ×N×PQ ′×Nwhere (p,n,q,m) ∈ R if and only if λp = λq
and be assured that there exists a tuple r ∈ R for every p ∈ PQ
such that p is part of r . The values n and m denote the total
number of edge walks produced by p and q, respectively.

We can define sets OPTQ ⊆ PQ and OPTQ ′ ⊆ PQ ′ as

OPTQ = {p | ∃(p,n,q,m) ∈ R ∧ ∀(p′,n′,q′,m′) ∈ R : n ≤ n′ }
(4)

OPTQ ′ = {q | ∃(p,n,q,m) ∈ R ∧ ∀(p′,n′,q′,m′) ∈ R :m ≤ m′ }

(5)
That is, OPTQ and OPTQ ′ are the sets of plans for Q and Q ′

that produce a minimal number of edge walks. We say that any
q ∈ OPTQ ′ is optimal with respect to topology, and any p ∈ OPTQ
is optimal with respect to topology and data.

We define a simple query Q as a query where

∀(p,n,q,m) ∈ R | q ∈ OPTQ ′ ⇒ p ∈ OPTQ

which states that a simple query is one where optimality with re-
spect to topology guarantees optimality with respect to topology
and data.

We investigate the performance difference between a planp2 ∈

OPTQ and a planp1 < OPTQ forwhich there exists (p1,n1,q1,m1) ∈
R such that q1 ∈ OPTQ ′ . Such an investigation will yield insights
into the performance improvements that are neglected when
query plan- and graph topology are assumed to be the determin-
ing factors in query performance.

To this end, we define a performance ratio between the edge
walks produced by such plans p1 and p2. Formally, φ is defined
over Q (from which R,OPTQ and OPTQ ′ are derived) as

φ(Q)

n1
n2
, if ∃(p1,n1,q1,m1), (p2,n2,q2,m2) ∈ R |

q1 ∈ OPTQ ′ ∧ p1 < OPTQ ∧ p2 ∈ OPTQ

1, otherwise
(6)

Notice that φ(Q) = 1 if and only if Q is simple.

4 EXPERIMENTAL SETUP
In order to show that optimising k-register waveplans with re-
spect to the topology of a query is orthogonal to optimising
these plans with respect to the query’s data constraints, we will
construct a workload W consisting of pairs (Q,G) where Q is
a regular path query with memory, and G is a data graph. We
will count the number of pairs (Q,G) such that Q is simple on
G, and investigate the average- and worst-case improvements in
performance that are neglected when the topology of a query
plan and graph are assumed to be the determining factors in
query performance.

4.1 Query Pattern
The queries in W will be based on instances of the pattern:

((a· ↓ x1.b)
+) · c[x=1] (7)

The motivation for the choice of this particular pattern is three-
fold:

(1) it contains interactions with data through a register (i.e.
an assignment and condition) inside of a closure,

(2) it is simple in terms of the number of edge labels it contains
and registers it uses, and

(3) its interactions with data apply to nodes that are neither:
• part of the pairs in the result of the query evaluation
problem, or

• guaranteed to have the same data value associated with
them

The first point is important because any pattern that does not
interact with data at all, or does so only outside of closures can be
modelled as a (C)RPQ [1], and is therefore not an example of the
increased expressive power of RQMs. The second point is more
practical in that it is possible to find many different instances of a
pattern which contains few edge labels and uses few registers in
real graph data. Thirdly, a pattern such as (↓ x1.a·b ·c[x=1])

+ would
also satisfy the first two points. However, since all its interactions
with data pertain to the data values in nodes that are either part
of the pairs in the result of the query evaluation problem, or
pertain to nodes that have the same data value associated with
them (i.e. the nodes with an incoming edge labelled c and an
outgoing edge labelled a in the closure), such queries are too
selective in practice.

Seventeen concrete combinations of edge labels for a, b and
c are obtained from the semantic knowledge graph Yago2s [2].
Example instances are:

• (isLocatedIn· ↓ x1.dealsWith)+ · hasCapital[x=1]
• (owns· ↓ x1.isLocatedIn)+ · hasCapital[x=1]
• (isLocatedIn· ↓ x1.owns)+ · isConnectedTo[x=1]

453

4.2 Data Graphs
A data graphG = ⟨V , E, ρ⟩ is extracted from the semantic knowl-
edge base Yago2s. Yago2s consists of RDF-triples, derived from
Wikipedia, WordNet and GeoNames [2].

Let U denote the set of all distinct subjects and objects in
Yago2s’ RDF-triples. Similarly, let Σ denote the set of all distinct
predicates in Yago2s’ RDF-triples. We identified P ⊂ Σ as a set of
13 predicates such that for all triples (s,p,o) with p ∈ P it holds
that o is a numerical value. No other predicates in the Yago2s
data set could be identified that co-occur with edge labels for (7)
and have numerical values. The range of values over all objects
o was categorized into three equally sized categories. Thus, the
data domain for each p ∈ P is set to {0, 1, 2} where we interpret
the data values 0, 1 and 2 as low, medium and high, respectively.
Consider an RDF-triple (s,p,o) where p ∈ P . Let γ (o) ∈ {0, 1, 2}
denote the category that o was assigned to.

Since |P | = 13 but the data graph model only allows a single
data value per node, we can construct multiple data graphs Gi
from Yago2s. Note that the query pattern from (7) requires data
values at the source of edges labelled b and at the target of edges
labelled c . Hence, for all 132 pairs from P × P we construct a data
graph Gi .

Let (q1,q2) be an arbitrary pair from P × P . To construct Gi
we:

• add a node v to V for every u ∈ U . Let η(u) = v denote
the node in G that corresponds to u;

• for every triple (s,p,o)with p ∈ Σ−P we add (η(s),p,η(o))
to E;

• for every pair of triples (s,p,o), (s,b,o′) where p ∈ P and
b in some instance of (7) we set ρ(η(s)) = γ (o);

• for every pair of triples (s,p,o), (s ′, c, s) where p ∈ P and
c in some instance of (7) we set ρ(η(s)) = γ (o);

• for every v ∈ V where v is not yet in the domain of ρ we
set ρ(v) = 3.

Thus the labelling alphabet of each Gi is Σ − P and the set of
data valuesD is {0, 1, 2, 3}. When checking equality for two data
values d1,d2 ∈ D, we will maintain that d1 = 3 ∨ d2 = 3 ⇒

d1 , d2. That is, if neither of the data values were obtained from
Yago2s we consider them unknown and therefore unequal.

4.3 Query Workload
The combination of 17 instances of query pattern (7) and the
132 = 169 data graphs allows for a maximum workload size of
17 ∗ 169 = 2873. However, many of these combinations will yield
empty result sets on the query evaluation problem because there
existed no RDF-triples in Yago2s that produce data values from
{0, 1, 2} for the source- or target nodes of edges labelled b or c ,
respectively. Instead, the workload W consists of 579 distinct
pairs of RQMs and data graphs where the combination of edge
labels for a, b and c from Σ − P and properties q1 and q2 from P
resulted in at least one v ∈ V where ρ(v) ∈ {0, 1, 2}.

5 RESULTS
Out of the 579 pairs of regular queries with memory and data
graphs (Q,G) only 87 queries Q are simple on G (as shown in
Table 1). Because a large majority of the queries is not simple we
conclude that, for the given query pattern and data set, the topol-
ogy of a data graph and RQM are not, by themselves, determining
factors in the performance of query plans.

On average, k-register waveplans that are optimal with respect
to topology (but not necessarily optimal with respect to data)

simple non-simple total

of queries 87 492 579
% of queries 15.03% 84.97% 100%

Table 1: The number- and percentage of simple and non-
simple queries

min max mean std

φ(Q) 1.0 29.08 2.42 5.30
Table 2: A breakdown of the values for φ(Q) overW

produce close to 2.5 times the number of edge walks to evaluate
a query as do those k-register waveplans that are optimal with
respect to topology and data.

Moreover, for the worst-case ratio φ(Q) observed inW, a plan
that is optimal with respect to topology performed just over 29
times more edge walks than a plan for the same query, on the
same graph, that is optimal with respect to topology and data.
A breakdown of the minimum, maximum, mean and standard
deviation of φ(Q) overW is presented in Table 2.

A caveat to the results obtained in this way is the following; the
evaluation procedure employs a time-out mechanism whereby
a query plan that has produced more edge walks than the best
performing (i.e. fewest edge walks producing) plan thus far for
the same query is terminated, even if it has not yet completed its
evaluation. Hence, the observed ratios are a lower-bound on the
actual performance ratios.

We have presented evidence of the orthogonality that exists
between optimising query plans for RQMs with respect to topol-
ogy and data, showing that such optimization involves novel-
and non-trivial challenges that go beyond finding an optimal
join order for edge labels. Ignoring this orthogonality leads to
significant decreases in performance, both on average and in
worst-case scenarios.

6 CONCLUDING REMARKS
In our experimental study we found that (1) a large majority of
queries is not simple, fromwhichwe can conclude that optimising
for topology and data are orthogonal problems; (2) on average,
plans that are optimal w.r.t. topology (but not necessarily w.r.t.
data) perform 2.5 times worse than plans that are optimal overall;
and, (3) plans that are optimal w.r.t.topology only can perform
up to 29 times worse than plans that are optimal overall

Looking ahead, a main direction of future work is to continue
our study of RQM query optimization in the context of a fully-
fledged property graph query engine.

REFERENCES
[1] A. Bonifati, G. Fletcher, H. Voigt, and N. Yakovets. 2018. Querying Graphs.

Morgan & Claypool Publishers.
[2] Johannes Hoffart, Fabian M. Suchanek, Klaus Berberich, and Gerhard Weikum.

2013. YAGO2: A Spatially and Temporally Enhanced Knowledge Base from
Wikipedia. Artif. Intell. 194 (Jan. 2013), 28–61.

[3] Leonid Libkin, Wim Martens, and Domagoj Vrgoč. 2016. Querying Graphs
with Data. J. ACM 63, 2, Article 14 (March 2016), 53 pages.

[4] Thomas Mulder. 2019. Regular Queries with Memory: From Theory to Practice.
MSc thesis. Technische Universiteit Eindhoven.

[5] Nikolay Yakovets, Parke Godfrey, and Jarek Gryz. 2016. Query planning for
evaluating SPARQL property paths. In Proceedings of the 2016 International
Conference on Management of Data. ACM, 1875–1889.

454

	Towards Planning of Regular Queries with MemoryThomas Mulder, Nikolay Yakovets, George Fletcher

